code
stringlengths 1
1.05M
| repo_name
stringlengths 6
83
| path
stringlengths 3
242
| language
stringclasses 222
values | license
stringclasses 20
values | size
int64 1
1.05M
|
|---|---|---|---|---|---|
import math
def euclidean_distance(x1, x2):
if len(x1) != len(x2):
raise ValueError("两个样本必须具有相同的维度")
# 欧氏距离公式:sqrt(sum((x1_i - x2_i)^2))
return math.sqrt(sum((a - b) ** 2 for a, b in zip(x1, x2)))
def knn_classify(train_features, train_labels, test_sample, k):
# 输入合法性检查
if not train_features:
raise ValueError("训练样本不能为空")
if len(train_features) != len(train_labels):
raise ValueError("训练特征与标签数量必须一致")
if k <= 0:
raise ValueError("k必须为正整数")
# 若k大于训练样本数,强制使用所有样本
if k > len(train_features):
k = len(train_features)
print(f"警告:k值大于训练样本数,已自动调整为{k}")
# 检查特征维度是否一致
feature_dim = len(train_features[0])
if len(test_sample) != feature_dim:
raise ValueError(f"测试样本维度({len(test_sample)})与训练样本维度({feature_dim})不一致")
# 1. 计算测试样本与所有训练样本的距离
distances = []
for i in range(len(train_features)):
dist = euclidean_distance(test_sample, train_features[i])
distances.append((dist, train_labels[i])) # 存储(距离,标签)元组
# 2. 按距离升序排序(距离越小越近)
distances.sort(key=lambda x: x[0]) # 按元组第一个元素(距离)排序
# 3. 取前k个最近邻的标签
k_nearest_labels = [item[1] for item in distances[:k]]
# 4. 投票:选择出现次数最多的标签作为预测结果
label_count = {}
for label in k_nearest_labels:
if label in label_count:
label_count[label] += 1
else:
label_count[label] = 1
# 处理票数相同的情况(取第一个出现的最大票数标签)
max_count = -1
predicted_label = None
for label, count in label_count.items():
if count > max_count:
max_count = count
predicted_label = label
return predicted_label
def knn_predict_batch(train_features, train_labels, test_samples, k):
return [knn_classify(train_features, train_labels, sample, k) for sample in test_samples]
# 训练数据(二维特征,标签为0或1)
train_features = [
[1.2, 2.3], [1.8, 1.9], [2.1, 2.8], [2.5, 2.2], # 标签0
[5.3, 6.1], [6.0, 5.8], [6.2, 6.5], [7.0, 6.3] # 标签1
]
train_labels = [0, 0, 0, 0, 1, 1, 1, 1]
# 测试样本
test_samples = [
[1.5, 2.5], # 预计属于0
[6.5, 6.0], # 预计属于1
[3.0, 3.5] # 靠近0的样本,预计属于0
]
# 预测(k=3)
predictions = knn_predict_batch(train_features, train_labels, test_samples, k=3)
print("测试样本:", test_samples)
print("预测标签:", predictions)
|
2301_80822435/machine-learning-course
|
assignment4/2班46.py
|
Python
|
mit
| 2,916
|
import math
import operator
from collections import Counter
def euclidean_distance(point1, point2):
"""
计算两个点之间的欧几里得距离
"""
if len(point1) != len(point2):
raise ValueError("Points must have the same dimensions")
squared_distance = 0
for i in range(len(point1)):
squared_distance += (point1[i] - point2[i]) ** 2
return math.sqrt(squared_distance)
def manhattan_distance(point1, point2):
"""
计算两个点之间的曼哈顿距离
"""
if len(point1) != len(point2):
raise ValueError("Points must have the same dimensions")
distance = 0
for i in range(len(point1)):
distance += abs(point1[i] - point2[i])
return distance
def get_neighbors(training_set, test_instance, k, distance_metric='euclidean'):
"""
获取测试实例的k个最近邻
"""
distances = []
# 选择距离度量函数
if distance_metric == 'euclidean':
distance_func = euclidean_distance
elif distance_metric == 'manhattan':
distance_func = manhattan_distance
else:
raise ValueError("Unsupported distance metric")
# 计算测试实例与所有训练实例的距离
for i, training_point in enumerate(training_set):
# training_point格式: (features, label)
features = training_point[0]
label = training_point[1]
dist = distance_func(test_instance, features)
distances.append((training_point, dist, label))
# 按距离排序并返回前k个
distances.sort(key=operator.itemgetter(1))
neighbors = distances[:k]
return neighbors
def predict_classification(neighbors):
"""
基于邻居进行分类预测(多数投票)
"""
class_votes = {}
for neighbor in neighbors:
label = neighbor[2] # 邻居的标签
if label in class_votes:
class_votes[label] += 1
else:
class_votes[label] = 1
# 按票数排序,返回票数最多的类别
sorted_votes = sorted(class_votes.items(), key=operator.itemgetter(1), reverse=True)
return sorted_votes[0][0]
def predict_regression(neighbors):
"""
基于邻居进行回归预测(平均值)
"""
if not neighbors:
return 0
# 假设标签是数值型
values = [neighbor[2] for neighbor in neighbors]
return sum(values) / len(values)
class KNN:
"""
K近邻算法类
"""
def __init__(self, k=3, distance_metric='euclidean'):
"""
初始化KNN模型
参数:
k: 邻居数量
distance_metric: 距离度量方法 ('euclidean' 或 'manhattan')
"""
self.k = k
self.distance_metric = distance_metric
self.training_set = None
def fit(self, X_train, y_train):
"""
训练模型(实际上只是存储训练数据)
"""
if len(X_train) != len(y_train):
raise ValueError("X_train and y_train must have the same length")
self.training_set = []
for i in range(len(X_train)):
self.training_set.append((X_train[i], y_train[i]))
def predict(self, X_test, problem_type='classification'):
"""
预测测试数据的标签
参数:
X_test: 测试数据
problem_type: 问题类型 ('classification' 或 'regression')
"""
if self.training_set is None:
raise ValueError("Model must be fitted before prediction")
predictions = []
for test_instance in X_test:
neighbors = get_neighbors(self.training_set, test_instance, self.k, self.distance_metric)
if problem_type == 'classification':
prediction = predict_classification(neighbors)
elif problem_type == 'regression':
prediction = predict_regression(neighbors)
else:
raise ValueError("problem_type must be 'classification' or 'regression'")
predictions.append(prediction)
return predictions
def score(self, X_test, y_test, problem_type='classification'):
"""
计算模型在测试集上的准确率(分类)或R²分数(回归)
"""
predictions = self.predict(X_test, problem_type)
if problem_type == 'classification':
# 计算准确率
correct = 0
for i in range(len(predictions)):
if predictions[i] == y_test[i]:
correct += 1
return correct / len(predictions)
else: # regression
# 计算R²分数
y_mean = sum(y_test) / len(y_test)
ss_total = sum((y - y_mean) ** 2 for y in y_test)
ss_residual = sum((y_test[i] - predictions[i]) ** 2 for i in range(len(y_test)))
if ss_total == 0:
return 1.0 # 完美预测
return 1 - (ss_residual / ss_total)
# 测试代码
if __name__ == "__main__":
print("=== K近邻算法测试 ===\n")
# 测试1:分类问题
print("1. 分类问题测试:")
# 简单的二维分类数据
X_train_class = [
[1, 2], [1, 4], [2, 1], [2, 3], # 类别0
[5, 6], [6, 5], [7, 7], [6, 8] # 类别1
]
y_train_class = [0, 0, 0, 0, 1, 1, 1, 1]
X_test_class = [[1, 3], [6, 6]]
y_test_class = [0, 1]
# 创建并训练KNN分类器
knn_classifier = KNN(k=3, distance_metric='euclidean')
knn_classifier.fit(X_train_class, y_train_class)
# 预测
predictions_class = knn_classifier.predict(X_test_class, 'classification')
accuracy = knn_classifier.score(X_test_class, y_test_class, 'classification')
print(f"训练数据: {X_train_class}")
print(f"训练标签: {y_train_class}")
print(f"测试数据: {X_test_class}")
print(f"真实标签: {y_test_class}")
print(f"预测结果: {predictions_class}")
print(f"准确率: {accuracy:.2f}")
# 测试2:回归问题
print("\n2. 回归问题测试:")
# 简单的一维回归数据
X_train_reg = [[1], [2], [3], [4], [5], [6]]
y_train_reg = [2, 4, 6, 8, 10, 12] # y = 2x
X_test_reg = [[2.5], [4.5]]
y_test_reg = [5, 9]
# 创建并训练KNN回归器
knn_regressor = KNN(k=2, distance_metric='euclidean')
knn_regressor.fit(X_train_reg, y_train_reg)
# 预测
predictions_reg = knn_regressor.predict(X_test_reg, 'regression')
r2_score = knn_regressor.score(X_test_reg, y_test_reg, 'regression')
print(f"训练数据: {X_train_reg}")
print(f"训练标签: {y_train_reg}")
print(f"测试数据: {X_test_reg}")
print(f"真实值: {y_test_reg}")
print(f"预测值: {[f'{x:.2f}' for x in predictions_reg]}")
print(f"R²分数: {r2_score:.2f}")
# 测试3:手动使用函数
print("\n3. 手动函数使用示例:")
# 准备训练数据(格式:[(features, label), ...])
training_data = []
for i in range(len(X_train_class)):
training_data.append((X_train_class[i], y_train_class[i]))
test_point = [1, 3]
neighbors = get_neighbors(training_data, test_point, k=3)
print(f"测试点: {test_point}")
print("最近的3个邻居:")
for i, (point, distance, label) in enumerate(neighbors):
print(f" 邻居{i+1}: 点{point[0]}, 距离{distance:.2f}, 标签{label}")
prediction = predict_classification(neighbors)
print(f"预测标签: {prediction}")
|
2301_80822435/machine-learning-course
|
assignment4/2班47.py
|
Python
|
mit
| 7,708
|
import math # 导入数学模块
def euclidean_distance(point1, point2): # 计算欧几里得距离
return math.sqrt(sum((a - b) ** 2 for a, b in zip(point1, point2))) # 计算两点间距离
def knn_predict(train_data, train_labels, test_point, k=3): # K近邻预测函数
distances = [] # 存储距离的列表
for i, train_point in enumerate(train_data): # 遍历训练数据
dist = euclidean_distance(test_point, train_point) # 计算测试点到训练点的距离
distances.append((dist, train_labels[i])) # 存储距离和对应标签
distances.sort(key=lambda x: x[0]) # 按距离从小到大排序
k_nearest = distances[:k] # 取前k个最近邻
k_labels = [label for _, label in k_nearest] # 提取k个最近邻的标签
# 返回出现次数最多的标签
return max(set(k_labels), key=k_labels.count) # 统计并返回最多出现的标签
# 测试代码
if __name__ == "__main__":
# 训练数据:特征
train_data = [
[1, 2], [1, 4], [2, 1], [2, 3], # 类别0
[5, 6], [6, 5], [7, 7], [6, 8] # 类别1
]
# 训练数据:标签
train_labels = [0, 0, 0, 0, 1, 1, 1, 1] # 对应标签
# 测试点
test_point = [3, 3] # 待分类的点
# 使用KNN预测
prediction = knn_predict(train_data, train_labels, test_point, k=3) # K=3进行预测
print(f"测试点 {test_point} 的预测类别是: {prediction}") # 输出预测结果
|
2301_80822435/machine-learning-course
|
assignment4/2班49.py
|
Python
|
mit
| 1,502
|
import math
def euclidean_distance(x1, x2):
"""
计算两个数据点之间的欧氏距离
参数:
x1, x2: 数据点(列表或元组)
返回:
欧氏距离
"""
return math.sqrt(sum((x1[i] - x2[i]) ** 2 for i in range(len(x1))))
def find_k_nearest_neighbors(x, X_train, k):
"""
找到数据点x的k个最近邻
参数:
x: 待查询的数据点
X_train: 训练数据点列表
k: 近邻数量
返回:
k个最近邻的索引列表
"""
distances = [(i, euclidean_distance(x, X_train[i])) for i in range(len(X_train))]
distances.sort(key=lambda item: item[1])
return [idx for idx, _ in distances[:k]]
def KNN_predict(x, X_train, y_train, k):
"""
K近邻分类预测
参数:
x: 待预测的数据点
X_train: 训练数据点列表
y_train: 训练标签列表
k: 近邻数量
返回:
预测的类别
"""
neighbors_idx = find_k_nearest_neighbors(x, X_train, k)
neighbor_labels = [y_train[i] for i in neighbors_idx]
# 投票决定类别
label_counts = {}
for label in neighbor_labels:
label_counts[label] = label_counts.get(label, 0) + 1
# 返回出现次数最多的类别
return max(label_counts, key=label_counts.get)
def KNN_predict_regression(x, X_train, y_train, k):
"""
K近邻回归预测
参数:
x: 待预测的数据点
X_train: 训练数据点列表
y_train: 训练值列表
k: 近邻数量
返回:
预测值(k个近邻的平均值)
"""
neighbors_idx = find_k_nearest_neighbors(x, X_train, k)
neighbor_values = [y_train[i] for i in neighbors_idx]
return sum(neighbor_values) / len(neighbor_values)
# 测试示例
if __name__ == "__main__":
# 分类示例
print("=== KNN分类示例 ===")
X_train = [
[1, 1], [1, 2], [2, 1], [2, 2],
[5, 5], [5, 6], [6, 5], [6, 6],
[9, 9], [9, 10], [10, 9], [10, 10]
]
y_train = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
test_point = [3, 3]
k = 3
prediction = KNN_predict(test_point, X_train, y_train, k)
print(f"测试点 {test_point} 的预测类别: {prediction}")
# 回归示例
print("\n=== KNN回归示例 ===")
X_train_reg = [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]]
y_train_reg = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
test_point_reg = [5.5]
k_reg = 3
prediction_reg = KNN_predict_regression(test_point_reg, X_train_reg, y_train_reg, k_reg)
print(f"测试点 {test_point_reg} 的预测值: {prediction_reg}")
|
2301_80822435/machine-learning-course
|
assignment4/2班50.py
|
Python
|
mit
| 2,698
|
"""
手动实现K近邻算法(K-Nearest Neighbors, KNN)
只使用Python标准库
"""
import math
def knn_predict(X_train, y_train, x_test, k=3, weighted=True):
"""
K近邻预测(分类)- 简洁版本
参数:
X_train: 训练特征 [[x1, x2, ...], ...]
y_train: 训练标签 [label1, label2, ...]
x_test: 测试点 [x1, x2, ...] 或测试点列表 [[x1, x2, ...], ...]
k: 最近邻数量
weighted: 是否使用距离加权投票(True=加权,False=简单投票)
返回:
预测结果(单个值或列表)
"""
# 处理单个测试点
if isinstance(x_test[0], (int, float)):
return _knn_single(X_train, y_train, x_test, k, weighted)
# 批量预测
return [_knn_single(X_train, y_train, x, k, weighted) for x in x_test]
def _knn_single(X_train, y_train, x, k, weighted):
"""单个测试点的KNN预测"""
# 计算距离并排序,取前k个
neighbors = sorted(
[(math.sqrt(sum((a - b) ** 2 for a, b in zip(x, xi))), yi)
for xi, yi in zip(X_train, y_train)],
key=lambda d: d[0]
)[:k]
if weighted:
# 距离加权投票:权重 = 1/(距离+1e-10) 避免除零
votes = {}
for dist, label in neighbors:
weight = 1.0 / (dist + 1e-10)
votes[label] = votes.get(label, 0) + weight
return max(votes.items(), key=lambda x: x[1])[0]
else:
# 简单投票:选择k个最近邻中最常见的标签
labels = [label for _, label in neighbors]
return max(set(labels), key=labels.count)
def knn_regress(X_train, y_train, x_test, k=3, weighted=True):
"""
返回:
预测值(单个值或列表)
"""
# 处理单个测试点
if isinstance(x_test[0], (int, float)):
return _knn_regress_single(X_train, y_train, x_test, k, weighted)
# 批量预测
return [_knn_regress_single(X_train, y_train, x, k, weighted) for x in x_test]
def _knn_regress_single(X_train, y_train, x, k, weighted):
"""单个测试点的KNN回归"""
# 计算距离并排序,取前k个
neighbors = sorted(
[(math.sqrt(sum((a - b) ** 2 for a, b in zip(x, xi))), yi)
for xi, yi in zip(X_train, y_train)],
key=lambda d: d[0]
)[:k]
if weighted:
# 距离加权平均:权重 = 1/(距离+1e-10)
weights = [1.0 / (dist + 1e-10) for dist, _ in neighbors]
values = [val for _, val in neighbors]
return sum(w * v for w, v in zip(weights, values)) / sum(weights)
else:
# 简单平均
return sum(val for _, val in neighbors) / k
# 测试代码
if __name__ == "__main__":
print("=" * 60)
print("K近邻算法(简洁版)")
print("=" * 60)
# 分类示例
print("\n【分类示例】")
X_train = [[1, 1], [1.5, 1.5], [2, 2], [5, 5], [5.5, 5.5], [6, 6]]
y_train = [0, 0, 0, 1, 1, 1]
X_test = [[1.2, 1.2], [5.3, 5.3], [3.5, 3.5]]
print("训练数据:", list(zip(X_train, y_train)))
print("测试数据:", X_test)
# 加权投票
preds_weighted = knn_predict(X_train, y_train, X_test, k=3, weighted=True)
print("加权投票预测:", preds_weighted)
# 简单投票
preds_simple = knn_predict(X_train, y_train, X_test, k=3, weighted=False)
print("简单投票预测:", preds_simple)
# 单个点预测
single_pred = knn_predict(X_train, y_train, [2, 2], k=3)
print("单点预测 [2,2]:", single_pred)
# 回归示例
print("\n【回归示例】")
X_train_reg = [[1, 1], [2, 2], [3, 3], [4, 4], [5, 5]]
y_train_reg = [2.1, 4.0, 5.9, 8.2, 10.1]
X_test_reg = [[1.5, 1.5], [3.5, 3.5]]
print("训练数据:", list(zip(X_train_reg, y_train_reg)))
print("测试数据:", X_test_reg)
# 加权平均
reg_weighted = knn_regress(X_train_reg, y_train_reg, X_test_reg, k=3, weighted=True)
print("加权平均预测:", [f"{x:.2f}" for x in reg_weighted])
# 简单平均
reg_simple = knn_regress(X_train_reg, y_train_reg, X_test_reg, k=3, weighted=False)
print("简单平均预测:", [f"{x:.2f}" for x in reg_simple])
print("\n" + "=" * 60)
|
2301_80822435/machine-learning-course
|
assignment4/2班51.py
|
Python
|
mit
| 4,267
|
import math
from collections import Counter # Counter 用来统计邻居标签出现次数
from typing import List # 为函数/变量添加类型提示,提高可读性和 IDE 支持
def euclidean_distance(a: List[float], b: List[float]) -> float:
"""
计算两条等长向量的欧氏距离。
"""
if len(a) != len(b):
raise ValueError("向量维度不一致")# 防止维度不匹配导致 zip 失真
return math.sqrt(sum((x - y) ** 2 for x, y in zip(a, b)))
class KNN:
"""
手动实现的 K 近邻分类器。
"""
def __init__(self, k: int, label_num: int):
"""
:param k: 近邻数目
:param label_num: 类别总数(用于统计)
"""
if k <= 0:
raise ValueError("k 必须为正整数")
self.k = k
self.label_num = label_num
self.x_train: List[List[float]] = [] # 训练特征矩阵(列表的列表)
self.y_train: List[int] = [] # 训练标签向量
def fit(self, x_train: List[List[float]], y_train: List[int]) -> None:
"""
保存训练数据。
"""
if len(x_train) != len(y_train):
raise ValueError("特征和标签数量不匹配")
self.x_train = x_train
self.y_train = y_train
def _get_knn_indices(self, x: List[float]) -> List[int]:
"""
返回距离样本 x 最近的 k 个训练样本的索引。
"""
# 计算所有训练样本到 x 的距离
distances = [euclidean_distance(sample, x) for sample in self.x_train]
# 按距离升序排列,取前 k 个索引
sorted_indices = sorted(range(len(distances)), key=lambda i: distances[i])
return sorted_indices[:self.k]
def _vote_label(self, knn_indices: List[int]) -> int:
"""
根据 k 个最近邻的标签进行投票,返回出现次数最多的标签。
"""
# 统计邻居标签出现次数
label_counter = Counter(self.y_train[i] for i in knn_indices)
# 选取出现次数最多的标签(若出现次数相同,取最小标签号)
most_common_label, _ = max(label_counter.items(), key=lambda item: (item[1], -item[0]))
return most_common_label
def predict(self, x_test: List[List[float]]) -> List[int]:
"""
对测试集进行预测,返回预测标签列表。
"""
predictions = []
for x in x_test:
knn_idx = self._get_knn_indices(x) # 找最近的 k 个邻居
pred_label = self._vote_label(knn_idx) # 投票决定标签
predictions.append(pred_label)
return predictions
# ------------------- 示例 -------------------
if __name__ == "__main__":
# 简单的二维数据集
X_train = [
[1.0, 2.0],
[1.5, 1.8],
[5.0, 8.0],
[6.0, 9.0],
[1.0, 0.6],
[9.0, 11.0],
]
y_train = [0, 0, 1, 1, 0, 1] # 两类标签 0 / 1
X_test = [
[2.0, 3.0],
[8.0, 9.0],
[0.5, 0.5],
]
knn = KNN(k=3, label_num=2) # k=3 表示看最近的 3 个邻居,label_num=2 表示共有 2 类
knn.fit(X_train, y_train) # 训练(其实只是保存数据)
y_pred = knn.predict(X_test) # 预测
print("预测结果:", y_pred) # 示例输出: [0, 1, 0]
|
2301_80822435/machine-learning-course
|
assignment4/2班54.py
|
Python
|
mit
| 3,365
|
import numpy as np
from collections import Counter
import matplotlib.pyplot as plt
plt.rcParams['font.family'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
class KNearestNeighbors:
def __init__(self, k=3):
self.k = k
self.X_train = None
self.y_train = None
def fit(self, X, y):
self.X_train = np.array(X)
self.y_train = np.array(y)
def _distance(self, x1, x2):
return np.sqrt(np.sum((x1 - x2) ** 2))
def predict(self, X):
X = np.array(X)
predictions = []
for test_point in X:
distances = [(self._distance(test_point, train_point), label)
for train_point, label in zip(self.X_train, self.y_train)]
distances.sort(key=lambda x: x[0])
k_neighbors = [label for _, label in distances[:self.k]]
most_common = Counter(k_neighbors).most_common(1)[0][0]
predictions.append(most_common)
return np.array(predictions)
def score(self, X, y):
y_pred = self.predict(X)
return np.mean(y_pred == y)
if __name__ == "__main__":
np.random.seed(42)
class0 = np.random.normal([2, 2], 1, (50, 2))
class1 = np.random.normal([6, 6], 1, (50, 2))
X = np.vstack([class0, class1])
y = np.hstack([np.zeros(50), np.ones(50)])
split_idx = int(0.8 * len(X))
X_train, X_test = X[:split_idx], X[split_idx:]
y_train, y_test = y[:split_idx], y[split_idx:]
print(f"训练集: {len(X_train)}, 测试集: {len(X_test)}")
k_values = [1, 3, 5, 7, 9]
accuracies = []
for k in k_values:
knn = KNearestNeighbors(k=k)
knn.fit(X_train, y_train)
accuracy = knn.score(X_test, y_test)
accuracies.append(accuracy)
print(f"k={k}, 准确率: {accuracy:.4f}")
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(k_values, accuracies, 'bo-')
plt.xlabel('k值')
plt.ylabel('准确率')
plt.title('不同k值的准确率')
plt.grid(True, alpha=0.3)
plt.subplot(1, 2, 2)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.linspace(x_min, x_max, 50),
np.linspace(y_min, y_max, 50))
knn = KNearestNeighbors(k=3)
knn.fit(X_train, y_train)
Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3)
plt.scatter(X_train[y_train == 0, 0], X_train[y_train == 0, 1],
c='blue', label='类别0-训练', alpha=0.7)
plt.scatter(X_train[y_train == 1, 0], X_train[y_train == 1, 1],
c='red', label='类别1-训练', alpha=0.7)
plt.scatter(X_test[y_test == 0, 0], X_test[y_test == 0, 1],
c='blue', marker='^', label='类别0-测试')
plt.scatter(X_test[y_test == 1, 0], X_test[y_test == 1, 1],
c='red', marker='^', label='类别1-测试')
plt.xlabel('特征1')
plt.ylabel('特征2')
plt.title('KNN分类结果 (k=3)')
plt.legend()
plt.tight_layout()
plt.show()
new_samples = np.array([[3, 3], [5, 5], [2, 6]])
predictions = knn.predict(new_samples)
print("\n新样本预测:")
for sample, pred in zip(new_samples, predictions):
print(f"样本{sample} -> 类别{int(pred)}")
|
2301_80822435/machine-learning-course
|
assignment4/2班55.py
|
Python
|
mit
| 3,357
|
import math
class KNN:
def __init__(self, k=3, task='classification'):
self.k = k
self.task = task
self.X_train = None
self.y_train = None
def fit(self, X, y):
self.X_train = X
self.y_train = y
return self
def _euclidean_distance(self, a, b):
distance = 0.0
for i in range(len(a)):
distance += (a[i] - b[i]) ** 2
return math.sqrt(distance)
def _get_k_neighbors(self, x):
distances = []
for i in range(len(self.X_train)):
dist = self._euclidean_distance(x, self.X_train[i])
distances.append((i, dist))
for i in range(len(distances)):
for j in range(i + 1, len(distances)):
if distances[i][1] > distances[j][1]:
distances[i], distances[j] = distances[j], distances[i]
return distances[:self.k]
def _most_common(self, labels):
count_dict = {}
for label in labels:
if label in count_dict:
count_dict[label] += 1
else:
count_dict[label] = 1
max_count = 0
most_common_label = None
for label, count in count_dict.items():
if count > max_count:
max_count = count
most_common_label = label
return most_common_label
def predict(self, X):
predictions = []
for sample in X:
neighbors = self._get_k_neighbors(sample)
neighbor_labels = [self.y_train[idx] for idx, _ in neighbors]
if self.task == 'classification':
prediction = self._most_common(neighbor_labels)
predictions.append(prediction)
elif self.task == 'regression':
total = 0.0
for label in neighbor_labels:
total += label
predictions.append(total / len(neighbor_labels))
return predictions
def predict_proba(self, X):
if self.task != 'classification':
raise ValueError("predict_proba 仅适用于分类任务")
probabilities = []
for sample in X:
neighbors = self._get_k_neighbors(sample)
neighbor_labels = [self.y_train[idx] for idx, _ in neighbors]
label_count = {}
for label in neighbor_labels:
if label in label_count:
label_count[label] += 1
else:
label_count[label] = 1
total = len(neighbors)
all_labels = sorted(set(self.y_train))
prob_list = []
for label in all_labels:
count = label_count.get(label, 0)
prob_list.append(count / total)
probabilities.append(prob_list)
return probabilities
def score(self, X, y):
predictions = self.predict(X)
if self.task == 'classification':
correct = 0
for i in range(len(predictions)):
if predictions[i] == y[i]:
correct += 1
return correct / len(y)
else:
total_y = 0.0
for value in y:
total_y += value
mean_y = total_y / len(y)
ss_tot = 0.0
for value in y:
ss_tot += (value - mean_y) ** 2
ss_res = 0.0
for i in range(len(y)):
ss_res += (y[i] - predictions[i]) ** 2
if ss_tot == 0:
return 0.0
return 1 - (ss_res / ss_tot)
|
2301_80822435/machine-learning-course
|
assignment4/2班56.py
|
Python
|
mit
| 3,610
|
import numpy as np
from collections import Counter
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
class KNN:
def __init__(self, k=3):
self.k = k
self.X_train = None
self.y_train = None
def fit(self, X, y):
self.X_train, self.y_train = np.array(X), np.array(y)
return self
def _distance(self, x1, x2, metric='euclidean'):
if metric == 'euclidean':
return np.sqrt(np.sum((x1 - x2) ** 2))
elif metric == 'manhattan':
return np.sum(np.abs(x1 - x2))
raise ValueError("距离度量支持: 'euclidean' 或 'manhattan'")
def predict(self, X, metric='euclidean'):
X = np.array(X)
return np.array([self._predict_single(x, metric) for x in X])
def _predict_single(self, x, metric):
distances = [self._distance(x, x_train, metric) for x_train in self.X_train]
k_indices = np.argsort(distances)[:self.k]
k_labels = self.y_train[k_indices]
return Counter(k_labels).most_common(1)[0][0]
def score(self, X, y, metric='euclidean'):
return np.mean(self.predict(X, metric) == y)
if __name__ == "__main__":
np.random.seed(42)
# 生成数据
class0 = np.column_stack((np.random.normal(0, 1, 50), np.random.normal(0, 1, 50)))
class1 = np.column_stack((np.random.normal(3, 1, 50), np.random.normal(3, 1, 50)))
X = np.vstack((class0, class1))
y = np.hstack((np.zeros(50), np.ones(50)))
# 打乱并分割
indices = np.random.permutation(len(X))
X, y = X[indices], y[indices]
split = int(0.8 * len(X))
X_train, X_test, y_train, y_test = X[:split], X[split:], y[:split], y[split:]
print(f"训练集: {X_train.shape}, 测试集: {X_test.shape}")
# 测试不同k值
k_values = [1, 3, 5, 7, 9]
accuracies = []
for k in k_values:
accuracy = KNN(k=k).fit(X_train, y_train).score(X_test, y_test)
accuracies.append(accuracy)
print(f"k={k}, 准确率: {accuracy:.4f}")
# 可视化
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))
# 数据分布
ax1.scatter(X_train[y_train == 0, 0], X_train[y_train == 0, 1], c='red', label='类别 0', alpha=0.6)
ax1.scatter(X_train[y_train == 1, 0], X_train[y_train == 1, 1], c='blue', label='类别 1', alpha=0.6)
ax1.scatter(X_test[:, 0], X_test[:, 1], c='green', marker='x', label='测试点', s=100)
ax1.set_xlabel('特征 1'), ax1.set_ylabel('特征 2'), ax1.set_title('数据分布')
ax1.legend(), ax1.grid(True, alpha=0.3)
# k值影响
ax2.plot(k_values, accuracies, 'bo-', linewidth=2, markersize=8)
ax2.set_xlabel('k值'), ax2.set_ylabel('准确率'), ax2.set_title('k值对准确率的影响')
ax2.grid(True, alpha=0.3)
# 决策边界
best_k = k_values[np.argmax(accuracies)]
knn = KNN(k=best_k).fit(X_train, y_train)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1))
Z = knn.predict(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)
ax3.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.RdYlBu)
ax3.scatter(X_train[y_train == 0, 0], X_train[y_train == 0, 1], c='red', label='类别 0', alpha=0.6)
ax3.scatter(X_train[y_train == 1, 0], X_train[y_train == 1, 1], c='blue', label='类别 1', alpha=0.6)
ax3.set_xlabel('特征 1'), ax3.set_ylabel('特征 2'), ax3.set_title(f'决策边界 (k={best_k})')
ax3.legend(), ax3.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
# 距离度量比较
print("\n距离度量比较:")
knn = KNN(k=3).fit(X_train, y_train)
for metric in ['euclidean', 'manhattan']:
accuracy = knn.score(X_test, y_test, metric)
print(f"{metric}距离准确率: {accuracy:.4f}")
|
2301_80822435/machine-learning-course
|
assignment4/2班57.py
|
Python
|
mit
| 3,930
|
import numpy as np
from collections import Counter
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, classification_report
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
class KNN:
def __init__(self, k=3, distance_metric='euclidean'):
self.k = k
self.distance_metric = distance_metric
self.X_train = None
self.y_train = None
def fit(self, X, y):
"""
训练模型(kNN只是存储数据)
"""
self.X_train = X
self.y_train = y
return self
def _calculate_distance(self, x1, x2):
"""
计算两个样本之间的距离
"""
if self.distance_metric == 'euclidean':
return np.sqrt(np.sum((x1 - x2) ** 2))
elif self.distance_metric == 'manhattan':
return np.sum(np.abs(x1 - x2))
elif self.distance_metric == 'minkowski':
# 这里使用p=3作为示例
return np.sum(np.abs(x1 - x2) ** 3) ** (1 / 3)
else:
raise ValueError("不支持的距離度量方法")
def predict(self, X):
"""
预测类别
"""
predictions = [self._predict_single(x) for x in X]
return np.array(predictions)
def _predict_single(self, x):
"""
预测单个样本的类别
"""
# 计算所有训练样本与当前样本的距离
distances = []
for i, x_train in enumerate(self.X_train):
dist = self._calculate_distance(x, x_train)
distances.append((dist, self.y_train[i]))
# 按距离排序并选择前k个邻居
distances.sort(key=lambda x: x[0])
k_nearest = distances[:self.k]
# 获取k个邻居的标签
k_labels = [label for _, label in k_nearest]
# 返回最常见的标签
most_common = Counter(k_labels).most_common(1)
return most_common[0][0]
def predict_proba(self, X):
"""
预测概率(每个类别的概率)
"""
probas = []
for x in X:
# 计算所有训练样本与当前样本的距离
distances = []
for i, x_train in enumerate(self.X_train):
dist = self._calculate_distance(x, x_train)
distances.append((dist, self.y_train[i]))
# 按距离排序并选择前k个邻居
distances.sort(key=lambda x: x[0])
k_nearest = distances[:self.k]
# 获取k个邻居的标签
k_labels = [label for _, label in k_nearest]
# 计算每个类别的概率
label_counts = Counter(k_labels)
proba = {label: count / self.k for label, count in label_counts.items()}
probas.append(proba)
return probas
# 示例:使用鸢尾花数据集测试kNN算法
def example_usage():
# 加载数据
iris = load_iris()
X, y = iris.data, iris.target
# 数据分割
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42, stratify=y
)
# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 创建并训练kNN模型
knn = KNN(k=5, distance_metric='euclidean')
knn.fit(X_train, y_train)
# 预测
y_pred = knn.predict(X_test)
# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f"准确率: {accuracy:.4f}")
print("\n分类报告:")
print(classification_report(y_test, y_pred, target_names=iris.target_names))
return knn, X_test, y_test, y_pred
# 可视化结果
def plot_results(X_test, y_test, y_pred, feature_names, target_names):
"""
可视化预测结果(使用前两个特征)
"""
plt.figure(figsize=(12, 5))
# 真实标签
plt.subplot(1, 2, 1)
scatter = plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='viridis', alpha=0.7)
plt.xlabel(feature_names[0])
plt.ylabel(feature_names[1])
plt.title('真实标签')
plt.colorbar(scatter, ticks=range(len(target_names)))
# 预测标签
plt.subplot(1, 2, 2)
scatter = plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred, cmap='viridis', alpha=0.7)
plt.xlabel(feature_names[0])
plt.ylabel(feature_names[1])
plt.title('预测标签')
plt.colorbar(scatter, ticks=range(len(target_names)))
plt.tight_layout()
plt.show()
# 测试不同k值的影响
def test_different_k():
iris = load_iris()
X, y = iris.data, iris.target
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=42, stratify=y
)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
k_values = range(1, 16)
accuracies = []
for k in k_values:
knn = KNN(k=k)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
accuracies.append(accuracy)
print(f"k={k}: 准确率 = {accuracy:.4f}")
# 绘制k值与准确率的关系
plt.figure(figsize=(10, 6))
plt.plot(k_values, accuracies, 'bo-', linewidth=2, markersize=8)
plt.xlabel('k值')
plt.ylabel('准确率')
plt.title('k值对kNN算法性能的影响')
plt.grid(True, alpha=0.3)
plt.show()
# 找到最佳k值
best_k = k_values[np.argmax(accuracies)]
best_accuracy = max(accuracies)
print(f"\n最佳k值: {best_k}, 最高准确率: {best_accuracy:.4f}")
if __name__ == "__main__":
print("=== kNN算法实现示例 ===\n")
# 基本使用示例
print("1. 基本使用示例:")
knn_model, X_test, y_test, y_pred = example_usage()
# 可视化结果
iris = load_iris()
plot_results(X_test, y_test, y_pred, iris.feature_names, iris.target_names)
# 测试不同k值
print("\n2. 测试不同k值的影响:")
test_different_k()
# 预测概率示例
print("\n3. 预测概率示例:")
probas = knn_model.predict_proba(X_test[:3])
for i, proba in enumerate(probas):
print(f"样本 {i + 1} 的预测概率: {proba}")
|
2301_80822435/machine-learning-course
|
assignment4/2班59.py
|
Python
|
mit
| 6,382
|
import numpy as np
from collections import Counter
class KNN:
def __init__(self, k=3):
"""初始化KNN模型,指定近邻数量k"""
self.k = k
self.X_train = None # 训练特征
self.y_train = None # 训练标签
def fit(self, X, y):
"""训练模型(KNN是惰性学习,仅存储训练数据)"""
self.X_train = X
self.y_train = y
def _euclidean_distance(self, x1, x2):
"""计算两个样本之间的欧氏距离"""
return np.sqrt(np.sum((x1 - x2) **2))
def predict(self, X):
"""预测新样本的类别"""
predictions = [self._predict_single(x) for x in X]
return np.array(predictions)
def _predict_single(self, x):
"""预测单个样本的类别"""
# 1. 计算与所有训练样本的距离
distances = [self._euclidean_distance(x, x_train) for x_train in self.X_train]
# 2. 按距离排序,取前k个样本的索引
k_indices = np.argsort(distances)[:self.k]
# 3. 取前k个样本的标签
k_nearest_labels = [self.y_train[i] for i in k_indices]
# 4. 多数投票决定预测结果
most_common = Counter(k_nearest_labels).most_common(1)
return most_common[0][0]
# 测试代码
if __name__ == "__main__":
# 生成示例数据(分类问题:两个类别)
X_train = np.array([
[1, 2], [2, 3], [3, 4], [6, 7], [7, 8], [8, 9] # 特征
])
y_train = np.array([0, 0, 0, 1, 1, 1]) # 标签(0或1)
# 初始化并训练模型
knn = KNN(k=3)
knn.fit(X_train, y_train)
# 预测新样本
X_test = np.array([[4, 5], [5, 6]]) # 待预测样本
predictions = knn.predict(X_test)
print("预测结果:", predictions) # 输出:[0 1](根据距离判断)
|
2301_80822435/machine-learning-course
|
assignment4/2班61.py
|
Python
|
mit
| 1,851
|
import math
import heapq
def euclidean_distance(x1, x2):
if len(x1) != len(x2):
raise ValueError("两个样本的维度必须一致")
dist_sq = 0.0
for a, b in zip(x1, x2):
dist_sq += (a - b) ** 2
return math.sqrt(dist_sq)
def knn_classify(train_data, train_labels, x, k=3, distance_func=euclidean_distance):
if len(train_data) != len(train_labels):
raise ValueError("训练数据与标签数量必须一致")
if not isinstance(k, int) or k <= 0:
raise ValueError("k必须是正整数")
if k > len(train_data):
raise ValueError("k不能大于训练样本数量")
if len(train_data) == 0:
raise ValueError("训练数据集不能为空")
# 校验待预测样本与训练样本维度一致
dim = len(train_data[0])
if len(x) != dim:
raise ValueError(f"待预测样本维度({len(x)})与训练样本维度({dim})不一致")
distance_label = []
for idx, train_x in enumerate(train_data):
dist = distance_func(x, train_x)
distance_label.append( (dist, train_labels[idx]) )
# heapq.nlargest 取最大的k个,这里取负距离实现“最小k个”(比排序后切片更高效)
k_nearest = heapq.nsmallest(k, distance_label, key=lambda item: item[0])
label_count = {}
for dist, label in k_nearest:
if label in label_count:
label_count[label] += 1
else:
label_count[label] = 1
# 找出投票数最多的标签(若有平局,返回先出现的最多标签)
max_count = 0
result_label = None
for label, count in label_count.items():
if count > max_count:
max_count = count
result_label = label
return result_label
class KNNClassifier:
def __init__(self, k=3, distance_func=euclidean_distance):
self.k = k
self.distance_func = distance_func
self.train_data = None
self.train_labels = None
def fit(self, train_data, train_labels):
# 校验输入合法性(复用核心函数的校验逻辑)
if len(train_data) != len(train_labels):
raise ValueError("训练数据与标签数量必须一致")
if len(train_data) == 0:
raise ValueError("训练数据集不能为空")
self.train_data = train_data
self.train_labels = train_labels
def predict(self, x):
if self.train_data is None or self.train_labels is None:
raise RuntimeError("请先调用fit()方法训练模型")
return knn_classify(
self.train_data, self.train_labels, x, self.k, self.distance_func
)
def predict_batch(self, X):
return [self.predict(x) for x in X]
if __name__ == "__main__":
train_data = [
[5.1, 3.5], [4.9, 3.0], [4.7, 3.2], [4.6, 3.1], [5.0, 3.6], # 0类
[5.4, 3.9], [4.6, 3.4], [5.0, 3.4], [4.4, 2.9], [4.9, 3.1], # 0类
[6.0, 2.2], [5.8, 2.6], [5.6, 2.8], [5.9, 3.0], [5.5, 2.4], # 1类
[5.7, 2.8], [5.7, 2.6], [5.8, 2.7], [6.2, 2.9], [5.6, 2.2], # 1类
[6.3, 3.3], [5.8, 2.7], [7.1, 3.0], [6.3, 2.9], [6.5, 3.0], # 2类
[6.2, 3.4], [5.9, 3.0], [6.1, 3.0], [6.4, 2.8], [6.6, 3.0] # 2类
]
train_labels = [0]*10 + [1]*10 + [2]*10 # 对应3类标签
# 待预测样本
test_samples = [
[5.0, 3.5], # 预期标签0
[5.8, 2.7], # 预期标签1
[6.4, 3.1], # 预期标签2
[5.2, 2.8] # 预期标签1
]
# 初始化并训练KNN分类器(k=5)
knn = KNNClassifier(k=5)
knn.fit(train_data, train_labels)
predictions = knn.predict_batch(test_samples)
print("KNN分类预测结果:")
for idx, sample in enumerate(test_samples):
print(f"样本{sample} -> 预测标签:{predictions[idx]}")
|
2301_80822435/machine-learning-course
|
assignment4/2班63.py
|
Python
|
mit
| 3,818
|
import numpy as np
from collections import Counter
class SimpleKNN:
def __init__(self, k=3):
self.k = k
self.X_train = None
self.y_train = None
# 计算欧氏距离
def _distance(self, x1, x2):
return np.sqrt(np.sum((x1 - x2) ** 2, axis=1))
# 训练
def fit(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train
# 预测
def predict(self, X_test):
predictions = []
for x in X_test:
dists = self._distance(x, self.X_train)
k_neighbor_labels = self.y_train[np.argsort(dists)[:self.k]]
predictions.append(Counter(k_neighbor_labels).most_common(1)[0][0])
return np.array(predictions)
if __name__ == "__main__":
X_train = np.array([[1,2], [2,3], [3,4], [4,5], [1,3], [4,3]])
y_train = np.array([0, 0, 0, 1, 1, 1])
# 测试样本
X_test = np.array([[2,2], [3,3]])
# 运行KNN
knn = SimpleKNN(k=3)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print("预测结果:", y_pred)
|
2301_80822435/machine-learning-course
|
assignment4/2班64.py
|
Python
|
mit
| 1,095
|
import math
from collections import Counter
def euclidean_distance(x1, x2):
"""
计算两个向量之间的欧几里得距离。
"""
distance = 0.0
for a, b in zip(x1, x2):
distance += (a - b) ** 2
return math.sqrt(distance)
class KNN:
def __init__(self, k=3, task_type='classification'):
"""
初始化 KNN 分类器/回归器。
参数:
k (int): 近邻数量。
task_type (str): 任务类型, 'classification' (分类) 或 'regression' (回归)。
"""
if k <= 0:
raise ValueError("k 必须是正整数")
self.k = k
self.task_type = task_type.lower()
if self.task_type not in ['classification', 'regression']:
raise ValueError("task_type 必须是 'classification' 或 'regression'")
# KNN 不训练模型,只存储数据
self.X_train = None
self.y_train = None
def fit(self, X, y):
"""
拟合模型,即存储训练数据。
参数:
X (list of lists): 训练特征向量。
y (list): 训练标签。
"""
if len(X) != len(y):
raise ValueError("特征向量 X 和标签 y 的长度必须相同")
self.X_train = X
self.y_train = y
def predict(self, X):
"""
对新样本进行预测。
参数:
X (list of lists): 待预测的特征向量。
返回:
list: 预测结果。
"""
if self.X_train is None or self.y_train is None:
raise ValueError("请先调用 fit 方法进行训练")
predictions = []
for x in X:
# 1. 计算距离
distances = [euclidean_distance(x, x_train) for x_train in self.X_train]
# 2. 寻找 k 个最近邻的索引
# argsort 返回的是数组值从小到大的索引值
k_indices = sorted(range(len(distances)), key=lambda i: distances[i])[:self.k]
# 3. 获取 k 个最近邻的标签
k_nearest_labels = [self.y_train[i] for i in k_indices]
# 4. 根据任务类型进行预测
if self.task_type == 'classification':
# 分类:投票表决
most_common = Counter(k_nearest_labels).most_common(1)
predictions.append(most_common[0][0])
elif self.task_type == 'regression':
# 回归:取平均值
prediction = sum(k_nearest_labels) / len(k_nearest_labels)
predictions.append(prediction)
return predictions
|
2301_80822435/machine-learning-course
|
assignment4/2班65.py
|
Python
|
mit
| 2,674
|
import numpy as np
import matplotlib.pyplot as plt
from collections import Counter
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
class KNN:
def __init__(self, k=3, task='classification', label_num=None):
self.k = k
self.task = task
self.label_num = label_num
self.x_train = None
self.y_train = None
def fit(self, x_train, y_train):
self.x_train = np.array(x_train)
self.y_train = np.array(y_train)
# 如果是分类任务且未指定类别数量,自动推断
if self.task == 'classification' and self.label_num is None:
self.label_num = len(np.unique(y_train))
return self
def euclidean_distance(self, a, b):
return np.sqrt(np.sum(np.square(a - b)))
def get_knn_indices(self, x):
# 计算与所有训练样本的距离
distances = [self.euclidean_distance(train_sample, x) for train_sample in self.x_train]
# 按距离排序并获取前k个索引
knn_indices = np.argsort(distances)[:self.k]
return knn_indices
def get_label(self, x):
if self.task != 'classification':
raise ValueError("此方法仅适用于分类任务")
knn_indices = self.get_knn_indices(x)
# 类别计数
label_statistic = np.zeros(shape=[self.label_num])
for index in knn_indices:
label = int(self.y_train[index])
label_statistic[label] += 1
# 返回数量最多的类别
return np.argmax(label_statistic)
def predict_single(self, x):
knn_indices = self.get_knn_indices(x)
if self.task == 'classification':
# 分类任务:多数投票
neighbor_labels = [self.y_train[idx] for idx in knn_indices]
most_common = Counter(neighbor_labels).most_common(1)
return most_common[0][0]
else:
# 回归任务:取平均值
neighbor_values = [self.y_train[idx] for idx in knn_indices]
return np.mean(neighbor_values)
def predict(self, x_test):
x_test = np.array(x_test)
predicted_labels = np.zeros(shape=[len(x_test)])
for i, x in enumerate(x_test):
predicted_labels[i] = self.predict_single(x)
return predicted_labels
def score(self, x_test, y_test):
y_pred = self.predict(x_test)
y_true = np.array(y_test)
if self.task == 'classification':
return np.mean(y_pred == y_true)
else:
return np.mean(np.square(y_pred - y_true))
# 测试MNIST数据集
def test_mnist():
print("=== MNIST手写数字分类测试 ===")
np.random.seed(42)
n_samples = 1000
n_features = 784 # 28x28像素
# 生成模拟的MNIST数据
x_train = np.random.randn(int(n_samples * 0.8), n_features)
y_train = np.random.randint(0, 10, int(n_samples * 0.8))
x_test = np.random.randn(int(n_samples * 0.2), n_features)
y_test = np.random.randint(0, 10, int(n_samples * 0.2))
print(f"训练集大小: {len(x_train)}")
print(f"测试集大小: {len(x_test)}")
# 测试不同的k值
accuracies = []
k_values = range(1, 10)
for k in k_values:
knn = KNN(k=k, task='classification', label_num=10)
knn.fit(x_train, y_train)
accuracy = knn.score(x_test, y_test)
accuracies.append(accuracy)
print(f'K的取值为 {k}, 预测准确率为 {accuracy * 100:.1f}%')
# 绘制准确率随k值变化图
plt.figure(figsize=(10, 6))
plt.plot(k_values, accuracies, 'bo-', linewidth=2, markersize=8)
plt.xlabel('K值')
plt.ylabel('准确率')
plt.title('MNIST数据集上KNN不同K值的准确率')
plt.grid(True, alpha=0.3)
plt.show()
return accuracies
def test_gaussian():
print("\n=== 高斯数据集分类测试 ===")
# 生成高斯数据集
np.random.seed(42)
n_samples = 200
# 生成两个高斯分布的数据
mean1, cov1 = [2, 2], [[1, 0.5], [0.5, 1]]
mean2, cov2 = [-2, -2], [[1, -0.3], [-0.3, 1]]
class1 = np.random.multivariate_normal(mean1, cov1, n_samples // 2)
class2 = np.random.multivariate_normal(mean2, cov2, n_samples // 2)
x_data = np.vstack([class1, class2])
y_data = np.hstack([np.zeros(n_samples // 2), np.ones(n_samples // 2)])
# 可视化原始数据
plt.figure(figsize=(8, 6))
plt.scatter(x_data[y_data == 0, 0], x_data[y_data == 0, 1], c='blue', marker='o', label='Class 0', alpha=0.7)
plt.scatter(x_data[y_data == 1, 0], x_data[y_data == 1, 1], c='red', marker='x', label='Class 1', alpha=0.7)
plt.xlabel('X axis')
plt.ylabel('Y axis')
plt.title('高斯数据集分布')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
return x_data, y_data
def visualize_decision_boundary(x_data, y_data, k_values=[1, 3, 10]):
# 设置网格
step = 0.1
x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1
y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, step),
np.arange(y_min, y_max, step))
grid_data = np.c_[xx.ravel(), yy.ravel()]
# 创建子图
fig, axes = plt.subplots(1, len(k_values), figsize=(15, 5))
cmap_light = ListedColormap(['lightblue', 'lightcoral'])
for i, k in enumerate(k_values):
# 训练KNN模型
knn = KNN(k=k, task='classification', label_num=2)
knn.fit(x_data, y_data)
# 预测网格点
z = knn.predict(grid_data)
z = z.reshape(xx.shape)
# 绘制决策边界
ax = axes[i]
ax.pcolormesh(xx, yy, z, cmap=cmap_light, alpha=0.8)
ax.scatter(x_data[y_data == 0, 0], x_data[y_data == 0, 1],
c='blue', marker='o', label='Class 0', alpha=0.7)
ax.scatter(x_data[y_data == 1, 0], x_data[y_data == 1, 1],
c='red', marker='x', label='Class 1', alpha=0.7)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_title(f'K = {k}')
ax.legend()
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
def test_regression():
print("\n=== KNN回归任务测试 ===")
# 生成回归数据
np.random.seed(42)
x = np.linspace(0, 10, 100)
y = np.sin(x) + 0.1 * np.random.randn(100)
# 划分训练测试集
split = int(0.8 * len(x))
x_train, x_test = x[:split].reshape(-1, 1), x[split:].reshape(-1, 1)
y_train, y_test = y[:split], y[split:]
# 训练KNN回归模型
knn = KNN(k=5, task='regression')
knn.fit(x_train, y_train)
y_pred = knn.predict(x_test)
mse = knn.score(x_test, y_test)
print(f"回归任务均方误差: {mse:.4f}")
# 可视化回归结果
plt.figure(figsize=(10, 6))
plt.scatter(x_train, y_train, c='blue', alpha=0.6, label='训练数据')
plt.scatter(x_test, y_test, c='green', alpha=0.6, label='测试数据')
plt.scatter(x_test, y_pred, c='red', alpha=0.8, label='预测值')
plt.xlabel('X')
plt.ylabel('y')
plt.title('KNN回归任务结果')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
if __name__ == "__main__":
# 运行所有测试
print("K近邻算法完整实现")
print("=" * 50)
# 1. MNIST分类测试
mnist_accuracies = test_mnist()
# 2. 高斯数据集测试
x_gauss, y_gauss = test_gaussian()
# 3. 可视化决策边界
print("\n=== 决策边界可视化 ===")
visualize_decision_boundary(x_gauss, y_gauss)
# 4. 回归任务测试
test_regression()
# 总结
print("\n=== 算法总结 ===")
print("KNN算法特点:")
print("1. 简单直观,易于理解和实现")
print("2. 无需训练过程,但预测时计算复杂度高")
print("3. 对异常值敏感,需要合适的K值选择")
print("4. 适用于小到中等规模的数据集")
|
2301_80822435/machine-learning-course
|
assignment4/2班66.py
|
Python
|
mit
| 8,271
|
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
def distance(a, b):
return np.sqrt(np.sum((a - b) ** 2))
class KNN:
def __init__(self, k, label_num):
self.k = k
self.label_num = label_num
def fit(self, x_train, y_train):
self.x_train = x_train
self.y_train = y_train
def get_knn_indices(self, x):
dis = list(map(lambda a: distance(a, x), self.x_train))
knn_indices = np.argsort(dis)[:self.k]
return knn_indices
def get_label(self, x):
knn_indices = self.get_knn_indices(x)
label_statistic = np.zeros(self.label_num)
for idx in knn_indices:
label_statistic[int(self.y_train[idx])] += 1
return np.argmax(label_statistic)
def predict(self, x_test):
preds = np.zeros(len(x_test), dtype=int)
for i, x in enumerate(x_test):
preds[i] = self.get_label(x)
return preds
np.random.seed(0)
x0 = np.random.randn(50, 2) + np.array([2, 2])
y0 = np.zeros(50)
x1 = np.random.randn(50, 2) + np.array([7, 7])
y1 = np.ones(50)
x_train = np.vstack([x0, x1])
y_train = np.hstack([y0, y1])
plt.figure()
plt.scatter(x_train[y_train==0,0], x_train[y_train==0,1], c='blue', marker='o', label='Class 0')
plt.scatter(x_train[y_train==1,0], x_train[y_train==1,1], c='red', marker='x', label='Class 1')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Simple 2D Dataset')
plt.legend()
plt.show()
np.random.seed(1)
k = np.random.choice(np.arange(1, 11))
print(f"随机选择的 K 值为: {k}")
cmap_light = ListedColormap(['lightblue', 'lightcoral'])
x_min, x_max = x_train[:,0].min()-1, x_train[:,0].max()+1
y_min, y_max = x_train[:,1].min()-1, x_train[:,1].max()+1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
np.arange(y_min, y_max, 0.1))
grid_data = np.c_[xx.ravel(), yy.ravel()]
knn = KNN(k=k, label_num=2)
knn.fit(x_train, y_train)
z = knn.predict(grid_data)
plt.figure(figsize=(7,6))
plt.pcolormesh(xx, yy, z.reshape(xx.shape), cmap=cmap_light, alpha=0.5)
plt.scatter(x_train[y_train==0,0], x_train[y_train==0,1], c='blue', marker='o', label='Class 0')
plt.scatter(x_train[y_train==1,0], x_train[y_train==1,1], c='red', marker='x', label='Class 1')
plt.xlabel('X')
plt.ylabel('Y')
plt.title(f'KNN Classification (K={k})')
plt.legend()
plt.show()
pred_train = knn.predict(x_train)
accuracy = np.mean(pred_train == y_train)
print(f"K = {k} 时,训练集准确率 = {accuracy*100:.2f}%")
|
2301_80822435/machine-learning-course
|
assignment4/2班68.py
|
Python
|
mit
| 2,512
|
import numpy as np
import matplotlib
matplotlib.use('TkAgg') # 兼容 PyCharm 绘图后端
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 解决中文乱码
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
# =======================
# 距离函数:闵可夫斯基距离
# =======================
def minkowski_distance(a, b, p=2):
return np.sum(np.abs(a - b) ** p) ** (1 / p)
# =======================
# 自定义 KNN 分类器
# =======================
class KNN:
def __init__(self, k=3, label_num=None, p=2):
self.k = k
self.label_num = label_num
self.p = p # p=1 曼哈顿距离, p=2 欧氏距离
def fit(self, x_train, y_train):
self.x_train = x_train
self.y_train = y_train
if self.label_num is None:
self.label_num = len(np.unique(y_train))
def get_knn_indices(self, x):
distances = [minkowski_distance(a, x, self.p) for a in self.x_train]
knn_indices = np.argsort(distances)[:self.k]
return knn_indices
def get_label(self, x):
knn_indices = self.get_knn_indices(x)
label_count = np.zeros(self.label_num)
for idx in knn_indices:
label = int(self.y_train[idx])
label_count[label] += 1
return np.argmax(label_count)
def predict(self, x_test):
predictions = np.zeros(len(x_test), dtype=int)
for i, x in enumerate(x_test):
predictions[i] = self.get_label(x)
return predictions
# =======================
# 主程序入口
# =======================
if __name__ == "__main__":
# 使用 Iris 数据集
iris = load_iris()
X = iris.data[:, :2] # 取前两个特征便于可视化
y = iris.target
# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 实例化并训练模型
knn = KNN(k=5, p=2)
knn.fit(X_train, y_train)
# 预测
y_pred = knn.predict(X_test)
# 计算精度
accuracy = np.mean(y_pred == y_test)
print(f"预测准确率: {accuracy * 100:.2f}%")
# ============ 可视化 ============
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
np.arange(y_min, y_max, 0.02))
# 网格点预测
grid_points = np.c_[xx.ravel(), yy.ravel()]
Z = knn.predict(grid_points)
Z = Z.reshape(xx.shape)
# 绘图
plt.figure(figsize=(8, 6))
plt.contourf(xx, yy, Z, alpha=0.3, cmap=plt.cm.rainbow)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, edgecolors='k', cmap=plt.cm.rainbow)
plt.title(f"KNN 分类结果 (k={knn.k}, p={knn.p}, 准确率={accuracy:.2f})")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.show()
|
2301_80822435/machine-learning-course
|
assignment4/2班70.py
|
Python
|
mit
| 3,109
|
import math
import random
# ================================
# 1. 计算两点欧氏距离
# ================================
def euclidean_distance(x1, x2):
distance = 0
for i in range(len(x1)):
distance += (x1[i] - x2[i]) ** 2
return math.sqrt(distance)
# ================================
# 2. KNN 分类器
# ================================
class KNN:
def __init__(self, k=3):
self.k = k
self.X_train = None
self.y_train = None
# “训练”其实就是保存训练数据
def fit(self, X, y):
self.X_train = X
self.y_train = y
# 预测单个样本
def predict_one(self, x):
distances = []
# 1)计算所有训练样本到 x 的距离
for i in range(len(self.X_train)):
d = euclidean_distance(x, self.X_train[i])
distances.append((d, self.y_train[i])) # (距离, 标签)
# 2)按距离升序排序
distances.sort(key=lambda t: t[0])
# 3)取前 k 个
k_neighbors = distances[:self.k]
# 4)投票:统计出现次数最多的类别
votes = {}
for d, label in k_neighbors:
votes[label] = votes.get(label, 0) + 1
# 返回投票最多的类别
return max(votes, key=votes.get)
# 批量预测
def predict(self, X):
return [self.predict_one(x) for x in X]
# ================================
# 3. 测试代码(手动生成数据)
# ================================
if __name__ == "__main__":
# 随机生成两类二维数据
random.seed(0)
X = []
y = []
# 类别0:中心在 (1,1)
for _ in range(20):
X.append([1 + random.random(), 1 + random.random()])
y.append(0)
# 类别1:中心在 (3,3)
for _ in range(20):
X.append([3 + random.random(), 3 + random.random()])
y.append(1)
# 创建模型
knn = KNN(k=3)
knn.fit(X, y)
# 测试样本
test = [[2, 2], [0.5, 0.5], [3.5, 3.2]]
print("预测结果:", knn.predict(test))
|
2301_80822435/machine-learning-course
|
assignmnet4/2班58.py
|
Python
|
mit
| 2,143
|
import os
import sys
import binascii
import struct
import zlib
import itertools
import re
from collections import defaultdict
from PIL import Image
from PySide6.QtWidgets import (
QMainWindow,
QWidget,
QVBoxLayout,
QLabel,
QLineEdit,
QPushButton,
QFileDialog,
QTextEdit,
QToolBar,
QApplication,
)
from PySide6.QtGui import QAction, QIcon
import ctypes
def resource_path(relative_path):
"""获取资源文件的绝对路径(适用于打包后的程序)"""
try:
# PyInstaller 创建的临时文件夹
base_path = sys._MEIPASS
except Exception:
base_path = os.path.dirname(os.path.abspath(__file__))
return os.path.join(base_path, relative_path)
# 定义文件签名(Magic Numbers)
SIGNATURES = [
(b'\x89\x50\x4E\x47\x0D\x0A\x1A\x0A', 'PNG', 'png'),
(b'\x47\x49\x46\x38\x37\x61', 'GIF', 'gif'),
(b'\x47\x49\x46\x38\x39\x61', 'GIF', 'gif'),
(b'\xFF\xD8\xFF', 'JPEG', 'jpg'),
(b'\x25\x50\x44\x46\x2D', 'PDF', 'pdf'),
(b'\x50\x4B\x03\x04', 'ZIP', 'zip'),
(b'\x1F\x8B\x08', 'GZIP', 'gz'),
(b'\x52\x61\x72\x21\x1A\x07\x00', 'RAR', 'rar'),
(b'\x52\x61\x72\x21\x1A\x07\x01\x00', 'RAR5', 'rar'),
(b'\x4D\x5A\x90\x00', 'PE32', 'exe'),
]
class MainWindow(QMainWindow):
def __init__(self):
super(MainWindow, self).__init__()
self.setWindowTitle("图像处理工具")
self.setGeometry(100, 100, 600, 450)
# 文件路径输入框
self.file_path_label = QLabel("图片路径:", self)
self.file_path_input = QLineEdit(self)
self.file_path_input.setReadOnly(True)
# 文件选择按钮
self.select_file_button = QPushButton("选择文件", self)
self.select_file_button.clicked.connect(self.select_file)
# 一把梭按钮
self.one_click_button = QPushButton("一把梭", self)
self.one_click_button.clicked.connect(self.one_click_process)
# 输出日志
self.log_text = QTextEdit(self)
self.log_text.setReadOnly(True)
# 布局
layout = QVBoxLayout()
layout.addWidget(self.file_path_label)
layout.addWidget(self.file_path_input)
layout.addWidget(self.select_file_button)
layout.addWidget(self.one_click_button)
layout.addWidget(QLabel("执行日志:"))
layout.addWidget(self.log_text)
container = QWidget()
container.setLayout(layout)
self.setCentralWidget(container)
# 添加工具栏
self.add_toolbars()
# 设置背景图片和图标
self.set_background_and_icon()
def set_background_and_icon(self):
# 设置背景图片
background_path = resource_path("img/OIP-C.jpg(1)")
self.setStyleSheet(f"MainWindow {{ background-image: url({background_path}); background-size: cover; }}")
# 设置窗口图标
icon_path = resource_path("img/OIP-C.jpg")
self.setWindowIcon(QIcon(icon_path))
def add_toolbars(self):
# 添加工具栏
toolbar = QToolBar("工具栏")
self.addToolBar(toolbar)
# 添加动作
action1 = QAction("清屏", self)
action1.triggered.connect(self.clear_log)
toolbar.addAction(action1)
def select_file(self):
file_path, _ = QFileDialog.getOpenFileName(
self, "选择图片文件", "", "图片文件 (*.png *.jpg *.jpeg *.gif *.bmp)"
)
if file_path:
self.file_path_input.setText(file_path)
self.log(f"已选择文件: {file_path}")
self.add_separator()
def clear_log(self):
self.log_text.clear()
with open("result.txt", "w") as f:
f.write("")
def log(self, message):
self.log_text.append(message)
with open("result.txt", "a", encoding='utf-8') as f:
f.write(message + "\n")
def add_separator(self):
separator = "-" * 50
self.log(separator)
def image_to_hex(self):
file_path = self.file_path_input.text()
if not file_path:
self.log("请先选择图片文件!")
return
try:
with open(file_path, 'rb') as image_file:
binary_data = image_file.read()
hex_data = binascii.hexlify(binary_data).decode('utf-8')
with open("hex.txt", 'w') as hex_file:
hex_file.write(hex_data)
self.log("图片已成功转换为16进制,保存到 hex.txt")
self.add_separator()
except Exception as e:
self.log(f"转换图片为16进制时出错: {e}")
self.add_separator()
def process_image(self):
file_path = self.file_path_input.text()
if not file_path:
self.log("请先选择图片文件!")
return
try:
# 检查图片格式是否为 PNG
with Image.open(file_path) as img:
if img.format != 'PNG':
self.log("图片不是 PNG 格式,跳过宽高爆破。")
self.add_separator()
return
with open(file_path, 'rb') as file:
bin_data = file.read()
crc32key = zlib.crc32(bin_data[12:29])
original_crc32 = int(bin_data[29:33].hex(), 16)
if crc32key == original_crc32:
self.log("宽高没有问题!")
self.add_separator()
else:
self.log("开始爆破宽高...")
for i, j in itertools.product(range(4096), range(4096)):
data = bin_data[12:16] + struct.pack('>i', i) + struct.pack('>i', j) + bin_data[24:29]
crc32 = zlib.crc32(data)
if crc32 == original_crc32:
self.log(f"找到正确宽高: 宽度={i}, 高度={j}")
self.modify_hex_file(i, j)
return
self.log("破解失败")
self.add_separator()
except Exception as e:
self.log(f"处理图片时出错: {e}")
self.add_separator()
def modify_hex_file(self, width, height):
try:
with open('hex.txt', 'r') as hex_file:
hex_data = hex_file.read()
bin_data = binascii.unhexlify(hex_data)
modified_data = bin_data[:16] + struct.pack('>I', width) + struct.pack('>I', height) + bin_data[24:]
modified_hex_data = binascii.hexlify(modified_data).decode('utf-8')
with open('hex.txt', 'w') as hex_file:
hex_file.write(modified_hex_data)
with open('modified_image.png', 'wb') as png_file:
png_file.write(modified_data)
self.log("修改后的16进制数据已保存到 hex.txt,修改后的图片已保存为 modified_image.png")
self.add_separator()
except Exception as e:
self.log(f"修改 hex.txt 文件时出错: {e}")
self.add_separator()
def scan_hidden_files(self):
input_file = 'hex.txt'
if not os.path.exists(input_file):
self.log(f"Error: Input file '{input_file}' not found.")
self.add_separator()
return
try:
with open(input_file, 'r', encoding='utf-8') as f:
hex_content = f.read()
hex_data = re.findall(r'[0-9A-Fa-f]{2}', hex_content)
hex_str = ''.join(hex_data)
data = binascii.unhexlify(hex_str)
matches = []
for signature, file_type, ext in SIGNATURES:
offset = 0
while True:
offset = data.find(signature, offset)
if offset == -1:
break
matches.append((offset, signature, file_type, ext))
offset += 1
if not matches:
self.log("No files found in the hex data.")
self.add_separator()
return
self.log(f"Found {len(matches)} potential files:")
for offset, _, file_type, _ in matches:
self.log(f" {file_type} at offset 0x{offset:X}")
# 提取文件
output_dir = 'extracted_files'
self.log("文件已经成功提取到extracted_files文件夹中")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for idx, (offset, signature, file_type, ext) in enumerate(matches):
file_data = data[offset:]
file_name = f"{file_type}_{idx}.{ext}"
file_path = os.path.join(output_dir, file_name)
with open(file_path, 'wb') as f:
f.write(file_data)
self.log(f"Extracted {file_type} file: {file_name} (Offset: 0x{offset:X})")
self.add_separator()
except Exception as e:
self.log(f"Error scanning hidden files: {e}")
self.add_separator()
def get_image_info(self):
file_path = self.file_path_input.text()
if not file_path:
self.log("请先选择图片文件!")
return
try:
with Image.open(file_path) as img:
self.log("图片属性详细信息:")
self.log(f"文件路径: {file_path}")
self.log(f"文件格式: {img.format}")
self.log(f"图片尺寸: {img.size} (宽度 x 高度)")
self.log(f"图片模式: {img.mode}")
exif_data = img._getexif()
if exif_data:
self.log("\n图片属性详细信息:")
from PIL.ExifTags import TAGS
for tag, value in exif_data.items():
tag_name = TAGS.get(tag, tag)
self.log(f"{tag_name}: {value}")
else:
self.log("\n该图片没有属性详细信息。")
self.add_separator()
except Exception as e:
self.log(f"处理图片时出错: {e}")
self.add_separator()
def string_search(self):
input_file = 'hex.txt'
if not os.path.exists(input_file):
self.log(f"Error: Input file '{input_file}' not found.")
self.add_separator()
return
try:
with open(input_file, 'r', encoding='utf-8') as f:
hex_content = f.read()
# 将16进制字符串转换为字节流
hex_data = re.findall(r'[0-9A-Fa-f]{2}', hex_content)
hex_str = ''.join(hex_data)
data = binascii.unhexlify(hex_str)
# 将字节流解码为字符串(忽略非ASCII字符)
text = data.decode('utf-8', errors='replace')
# 定义要搜索的关键词
keywords = ["ctf", "CTF", "FLAG", "flag", "{}", "ZmxhZwo", "Y3RmCg", "password", "pd", "=="]
# 搜索文件中的关键词
matches = []
for keyword in keywords:
index = text.find(keyword)
while index != -1:
# 获取匹配字符串的上下文
start = max(0, index - 32)
end = min(len(text), index + len(keyword) + 32)
context = text[start:end]
matches.append((keyword, context))
index = text.find(keyword, index + 1)
if not matches:
self.log("未找到关键词。")
else:
self.log(f"找到 {len(matches)} 个关键词:")
for keyword, context in matches:
self.log(f" 关键词: {keyword}")
self.log(f" 上下文: {context}\n")
self.add_separator()
except Exception as e:
self.log(f"字符串搜索时出错: {e}")
self.add_separator()
def lsb_decrypt(self):
file_path = self.file_path_input.text()
if not file_path:
self.log("请先选择图片文件!")
return
try:
# 打开图片
with Image.open(file_path) as img:
if img.mode not in ['RGB', 'RGBA']:
self.log("图片模式不支持 LSB 隐写解密,请使用 RGB 或 RGBA 模式的图片。")
self.add_separator()
return
# 将图片转换为 RGB 模式
img = img.convert('RGB')
pixels = list(img.getdata())
# 提取 LSB
binary_data = []
for pixel in pixels:
for channel in pixel:
# 提取最低有效位
binary_data.append(channel & 1)
# 将二进制数据转换为字符串
binary_str = ''.join(map(str, binary_data))
# 将二进制数据转换为16进制
hex_data = []
for i in range(0, len(binary_str), 8):
byte = binary_str[i:i + 8]
if len(byte) < 8:
break
hex_byte = hex(int(byte, 2))[2:].zfill(2)
hex_data.append(hex_byte)
# 将16进制数据转换为字符串
hex_str = ''.join(hex_data)
# 将16进制数据保存到 lsb_hex.txt
with open("lsb_hex.txt", "w") as f:
f.write(hex_str)
# 将16进制转化为ASCII码
try:
asc_str = bytes.fromhex(hex_str).decode('utf-8', errors='ignore')
except ValueError:
# 如果转换失败,可能是因为16进制字符串长度不是偶数
# 可以尝试修复
hex_str = hex_str[:len(hex_str) // 2 * 2] # 截取偶数长度
asc_str = bytes.fromhex(hex_str).decode('utf-8', errors='ignore')
# 在日志中显示前30位数据
self.log("LSB 隐写解密结果:")
self.log(f"前30位ascII数据: {asc_str[:40]}")
self.log(f"16进制数据已保存到 lsb_hex.txt")
self.add_separator()
except Exception as e:
self.log(f"LSB 隐写解密时出错: {e}")
self.add_separator()
def scan_lsb_hex_files(self):
input_file = 'lsb_hex.txt'
if not os.path.exists(input_file):
self.log(f"Error: Input file '{input_file}' not found.")
self.add_separator()
return
try:
with open(input_file, 'r', encoding='utf-8') as f:
hex_content = f.read()
# 将16进制字符串转换为字节流
hex_data = re.findall(r'[0-9A-Fa-f]{2}', hex_content)
hex_str = ''.join(hex_data)
data = binascii.unhexlify(hex_str)
matches = []
for signature, file_type, ext in SIGNATURES:
offset = 0
while True:
offset = data.find(signature, offset)
if offset == -1:
break
matches.append((offset, signature, file_type, ext))
offset += 1
if not matches:
self.log("No files found in the LSB hex data.")
self.add_separator()
return
self.log(f"Found {len(matches)} potential files in LSB hex data:")
for offset, _, file_type, _ in matches:
self.log(f" {file_type} at offset 0x{offset:X}")
# 提取文件
output_dir = 'lsb_extracted_files'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for idx, (offset, signature, file_type, ext) in enumerate(matches):
file_data = data[offset:]
file_name = f"LSB_{file_type}_{idx}.{ext}"
file_path = os.path.join(output_dir, file_name)
with open(file_path, 'wb') as f:
f.write(file_data)
self.log(f"Extracted {file_type} file from LSB hex data: {file_name} (Offset: 0x{offset:X})")
self.add_separator()
except Exception as e:
self.log(f"Error scanning LSB hex data for hidden files: {e}")
self.add_separator()
def extract_channels(self):
file_path = self.file_path_input.text()
if not file_path:
self.log("请先选择图片文件!")
return
try:
with Image.open(file_path) as img:
if img.mode not in ['RGB', 'RGBA']:
self.log("图片模式不支持通道提取,请使用 RGB 或 RGBA 模式的图片。")
self.add_separator()
return
# 分离通道
if img.mode == 'RGB':
r, g, b = img.split()
channels = {'R': r, 'G': g, 'B': b}
else: # RGBA
r, g, b, a = img.split()
channels = {'R': r, 'G': g, 'B': b, 'A': a}
# 保存原始通道
output_dir = 'extracted_channels'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for channel_name, channel_img in channels.items():
channel_path = os.path.join(output_dir, f"{channel_name}_channel.png")
channel_img.save(channel_path)
self.log(f"通道 {channel_name} 已保存为 {channel_path}")
# 提取位平面
for channel_name, channel_img in channels.items():
# 创建位平面文件夹
bit_plane_dir = os.path.join(output_dir, f"{channel_name}_bit_planes")
if not os.path.exists(bit_plane_dir):
os.makedirs(bit_plane_dir)
# 提取每个位平面(0到7)
for bit in range(8):
# 创建一个新的图像来存储当前位平面
bit_plane_img = Image.new('L', channel_img.size)
pixels = bit_plane_img.load()
# 提取当前位平面
for y in range(channel_img.size[1]):
for x in range(channel_img.size[0]):
pixel = channel_img.getpixel((x, y))
# 提取第 bit 位,并将其放大为 0 或 255 以提高可见性
pixels[x, y] = (pixel >> bit) & 1
# 将位平面转换为黑白图像(0 或 255)
pixels[x, y] = pixels[x, y] * 255
# 保存位平面
bit_plane_path = os.path.join(bit_plane_dir, f"{channel_name}_bit_plane_{bit}.png")
bit_plane_img.save(bit_plane_path)
self.log(f"成功保存在extracted_channels")
self.add_separator()
except Exception as e:
self.log(f"提取通道或位平面时出错: {e}")
self.add_separator()
def one_click_process(self):
self.log("开始执行'一把梭'流程...")
self.add_separator()
self.image_to_hex()
self.process_image()
self.scan_hidden_files()
self.get_image_info()
self.string_search()
self.lsb_decrypt()
self.scan_lsb_hex_files()
self.extract_channels()
self.log("流程执行完成!")
self.add_separator()
if __name__ == "__main__":
app = QApplication(sys.argv)
window = MainWindow()
window.show()
sys.exit(app.exec())
|
2301_80905479/123
|
run_GUL.py
|
Python
|
unknown
| 20,600
|
<script>
export default {
onLaunch: function() {
console.log('App Launch')
},
onShow: function() {
console.log('App Show')
},
onHide: function() {
console.log('App Hide')
},
onError() {
console.log();
}
}
</script>
<style>
/*每个页面公共css */
@import 'lib/smart.css';
</style>
|
2301_80750063/SmartUI_lwh050
|
App.vue
|
Vue
|
unknown
| 317
|
<template>
<view class="cardstyle" :style="{'background-color': bgColor}">
<slot name="header"></slot>
<!-- 标题区域 -->
<view class="titlebox">
<!-- 模式2和3显示图片 -->
<view class="imgbox" v-if="mode === 2 || mode === 3">
<image :src="showImage" @error="handleImageException" mode="aspectFill"></image>
</view>
<view class="content-area">
<!-- 模式3显示灰色标题 -->
<text v-if="mode === 3" class="ad-title">{{ title }}</text>
<!-- 其他模式正常显示 -->
<text v-else class="normal-title">{{ title }}</text>
<!-- 模式3显示多图广告区域 -->
<view class="adbox" v-if="mode === 3">
<view class="ad-images">
<image
v-for="(img, index) in images"
:key="index"
:src="img"
@error="handleAdImageError(index)"
mode="aspectFill"
class="ad-image"
></image>
</view>
<text class="ad-source">{{ author }}</text>
</view>
</view>
</view>
<!-- 底部信息区域 -->
<view class="tips-box" v-if="mode !== 3">
<text class="top-tag" v-if="isTop">置顶</text>
<text class="author" :style="authorColor">{{ author }}</text>
<text class="comments">{{ comments }}评</text>
<view class="time-wrapper">
<text class="time">{{ timedata }}</text>
</view>
</view>
<!-- 广告模式的底部信息 -->
<view class="ad-tips-box" v-if="mode === 3">
<text class="ad-author">{{ author }}</text>
<text class="ad-comments">{{ comments }}评</text>
</view>
<slot name="tips" v-if="showSearch"></slot>
<slot name="footer"></slot>
</view>
</template>
<script>
export default {
name: "CardViewText",
data() {
return {
defaultPic: "/static/logo.png",
failPic: "/static/logo.png",
imageError: false,
adImageErrors: {}
};
},
computed: {
showImage() {
if (!this.images || this.images.length === 0) {
console.log("showImage Default-->" + this.title);
return this.defaultPic;
}
if (this.imageError) {
console.log("showImage Error-->" + this.title);
return this.failPic;
}
return this.images[0];
},
authorColor() {
return this.isTop ? 'color: #f00;' : 'color: #666;';
},
bgColor() {
// 根据模式设置不同背景色
switch(this.mode) {
case 1: return '#ffffff'; // 置顶新闻
case 2: return '#f8f9fa'; // 普通新闻
case 3: return '#f0f2f5'; // 广告
default: return '#ffffff';
}
}
},
methods: {
handleImageException() {
console.log("handleImageException: " + this.title);
this.imageError = true;
},
handleAdImageError(index) {
console.log("广告图片加载失败: " + index);
this.$set(this.adImageErrors, index, true);
// 替换为默认图片
if (this.images && this.images[index]) {
this.$set(this.images, index, this.failPic);
}
}
},
props: {
title: {
type: String,
default: "新闻标题",
required: true
},
isTop: {
type: Boolean,
default: false
},
author: {
type: String,
default: "来源"
},
comments: {
type: String,
default: "0"
},
timedata: {
type: String,
default: "2000.01.01"
},
mode: {
type: Number,
default: 1,
require: true
},
images: {
type: Array,
default: () => []
},
showSearch: {
type: Boolean,
default: false
}
}
};
</script>
<style scoped>
.cardstyle {
background-color: #fff;
padding: 24rpx;
border-radius: 16rpx;
box-shadow: 0 4rpx 16rpx rgba(0, 0, 0, 0.08);
margin-bottom: 20rpx;
}
.titlebox {
display: flex;
flex-direction: row;
align-items: flex-start;
}
.imgbox {
margin-right: 20rpx;
flex-shrink: 0;
}
.imgbox image {
width: 120rpx;
height: 90rpx;
border-radius: 8rpx;
}
.content-area {
flex: 1;
}
.normal-title {
font-size: 32rpx;
font-weight: 500;
color: #333;
line-height: 1.4;
}
.ad-title {
font-size: 28rpx;
color: #aaa;
line-height: 1.4;
}
.adbox {
margin-top: 16rpx;
}
.ad-images {
display: flex;
gap: 10rpx;
margin-bottom: 12rpx;
}
.ad-image {
width: 80rpx;
height: 60rpx;
border-radius: 6rpx;
}
.ad-source {
font-size: 24rpx;
color: #999;
}
.tips-box {
display: flex;
align-items: center;
margin-top: 20rpx;
font-size: 24rpx;
color: #666;
}
.ad-tips-box {
display: flex;
align-items: center;
margin-top: 16rpx;
font-size: 22rpx;
color: #999;
gap: 20rpx;
}
.top-tag {
color: #f00;
font-weight: bold;
margin-right: 20rpx;
padding: 4rpx 12rpx;
background: #ffeaea;
border-radius: 6rpx;
font-size: 20rpx;
}
.author {
margin-right: 20rpx;
}
.comments {
margin-right: auto;
}
.time-wrapper {
display: flex;
justify-content: flex-end;
}
.time {
color: #999;
}
</style>
|
2301_80750063/SmartUI_lwh050
|
components/CardViewText.vue
|
Vue
|
unknown
| 4,863
|
<template>
<view class="content">
<text style="font-size: 50rpx ;">子组件A</text>
<view>
<text>父组件传进来的值:</text>
<text style="font-weight: bold;color:red">{{intent}}</text>
</view>
<button type="primary" @click="sendData()">传值给B组件</button>
</view>
</template>
<script>
export default {
name:"comA",
props:['intent'],
data() {
return {
};
},
mounted() {
console.log("comA---mouted");
},
methods:{
sendData(){
console.log("comA---sendData");
uni.$emit('sendIntent',this.intent)
}
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
components/comA.vue
|
Vue
|
unknown
| 603
|
<template>
<view class="content">
<view class="title">
子组件B
</view>
<view>
ComA组件传进来的值:
<text class="intent-text-box">{{result}}</text>
</view>
<view style="margin: 10rpx">
<text>回传值:</text>
<input type="text" :value="callBackValue" style="color: yellow;" />
<button @click="sendOutside()" size="mini">回传</button>
</view>
</view>
</template>
<script>
export default {
name:"comB",
data() {
return {
};
},
methods: {
sendOutside() {
console.warn("----ComB----sendOutside------>"+this.callBackValue);
this.$emit('callBackFunction',this.callBackValue);
}
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
components/comB.vue
|
Vue
|
unknown
| 688
|
<!DOCTYPE html>
<html lang="zh-CN">
<head>
<meta charset="UTF-8" />
<script>
var coverSupport = 'CSS' in window && typeof CSS.supports === 'function' && (CSS.supports('top: env(a)') ||
CSS.supports('top: constant(a)'))
document.write(
'<meta name="viewport" content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0' +
(coverSupport ? ', viewport-fit=cover' : '') + '" />')
</script>
<title></title>
<!--preload-links-->
<!--app-context-->
</head>
<body>
<div id="app"><!--app-html--></div>
<script type="module" src="/main.js"></script>
</body>
</html>
|
2301_80750063/SmartUI_lwh050
|
index.html
|
HTML
|
unknown
| 675
|
.smart-container{
padding: 15rpx;
background-color: #CEFFCE;
}
.smart-panel{
margin-bottom: 12px;
}
.smart-panel-title{
background-color: #f1f1f1;
font-size: 18px;
font-weight: normal;
padding: 5px;
flex-direction: row;
}
.smart-panel-h{
background-color: #ffffff;
flex-direction: row;
align-items: center;
padding: 5px;
margin-bottom: 2px;
}
.smart-panel-head{
padding: 35prx;
text-align: center;
}
.smart-panel-head-title{
font-size: 50rpx;
height: 88rpx;
line-height: 80rpx;
color: #aaff00;
border-bottom: 2rpx solid #d8d8d8;
padding: 0 40rpx;
box-sizing: border-box;
display: inline-block;
}
.smart-flex{
display: flex;
}
.smart-row{
flex-direction: row;
}
.smart-padding-wrap{
padding: 0 30rpx;
}
.flex-item{
width: 33.3%;
height: 200rpx;
line-height: 200rpx;
text-align: center;
}
.smart-bg-red{
background-color: #f76260;
color: #FFFFFF;
}
.smart-bg-green{
background-color: #09bb07;
color: #FFFFFF;
}
.smart-bg-blue{
background-color: #007aff;
color: #FFFFFF;
}
.smart-column{
flex-direction: column;
}
.flex-item-c{
width: 100%;
height: 100rpx;
line-height: 100rpx;
text-align: center;
}
.text{
margin: 15rpx 10rpx;
padding: 0 20rpx;
background-color: #ebebeb;
height: 70rpx;
line-height: 70rpx;
color: #777;
font-size: 26rpx;
}
/* scroll-view */
.scroll-view-tiem{
width: 100%;
height: 300rpx; /* 每个item的高度 */
line-height: 300rpx;
color: #FFFFFF;
}
.scroll-y{
height: 300rpx; /* scrollview的显示高度 */
}
.scroll-x{
white-space: nowrap; /* 强制在同一行显示所有文本 */
width: 100%;
}
.scroll-view-tiem-h{
display: inline-block;
height: 300rpx;
width: 100%;
line-height: 300rpx;
text-align: center;
}
/*swiper*/
.swiper-item {
display: block;
height: 300rpx;
line-height: 300rpx;
text-align: center;
}
.smart-bg-0{
background-color: #f76260;
}
.smart-bg-1{
background-color: #D8D8D8;
}
.smart-bg-2{
background-color: #AA99FF;
}
.smart-bg-3{
background-color: #007AFF;
}
/* textview */
.text-box{
margin-bottom: 40rpx;
padding: 40rpx 0;
display: flex;
min-height: 300rpx;
background-color: #d8d8d8;
justify-content: center; /* 元素在主轴(横轴)方向上的对齐方式 */
text-align: center;
font-size: 30rpx;
color: #353535;
line-height: 1.8;
}
.text-space{
background-color: #AA99FF;
}
/*input输入框*/
.smart-input {
height: 28px;
line-height: 28px;
font-size: 15px;
flex: 1;
background-color: #D8D8D8;
padding: 3px;
}
/* 页面头部样式 */
.smart-page-head {
padding: 10px;
background-color: #f5f5f5;
border-bottom: 1px solid #eee;
}
.smart-page-head-title {
font-size: 16px;
font-weight: bold;
}
|
2301_80750063/SmartUI_lwh050
|
lib/smart.css
|
CSS
|
unknown
| 2,659
|
import App from './App'
// #ifndef VUE3
import Vue from 'vue'
import './uni.promisify.adaptor'
Vue.config.productionTip = false
App.mpType = 'app'
const app = new Vue({
...App
})
app.$mount()
// #endif
// #ifdef VUE3
import { createSSRApp } from 'vue'
export function createApp() {
const app = createSSRApp(App)
return {
app
}
}
// #endif
|
2301_80750063/SmartUI_lwh050
|
main.js
|
JavaScript
|
unknown
| 352
|
<template>
<view>
<view>
<image :src="iconFilePath" mode="aspectFit"></image>
</view>
<button @click="downloadImage" :disabled="downloading">
{{ downloading ? '下载中...' : '下载图片' }}
</button>
<button @click="previewImage" :disabled="!iconFilePath">
预览图片
</button>
</view>
</template>
<script>
export default {
data() {
return {
imageURL: "https://cdn.pixabay.com/photo/2025/11/05/20/57/monastery-9939590_1280.jpg",
iconFilePath: "",
downloading: false
}
},
methods: {
downloadImage() {
this.downloading = true;
const imagetask = uni.downloadFile({
url: this.imageURL,
success: (res) => {
if (res.statusCode === 200) {
console.log('下载成功');
this.iconFilePath = res.tempFilePath;
}
},
fail: (err) => {
console.error('下载失败:', err);
}
});
imagetask.onProgressUpdate((res) => {
console.log('下载进度:', res.progress + "%");
console.log('已下载:', res.totalBytesWritten);
console.log('总大小:', res.totalBytesExpectedToWrite);
});
},
previewImage() {
if (this.iconFilePath) {
uni.previewImage({
urls: [this.iconFilePath]
});
}
}
}
}
</script>
|
2301_80750063/SmartUI_lwh050
|
pages/APIpages/DownloadImages/DownloadImages.vue
|
Vue
|
unknown
| 1,278
|
<template>
<view style="padding-top:100rpx;">
<view class="text-area">
<text>输入值:</text>
<input type="text" v-model="title" style="color: red;" />
</view>
<view class="text-area">
<text>回传值:</text>
<input type="text" :value="callBackValue" style="color: yellow;" />
</view>
<comA :itent="title"></comA>
<comB @callBackFunction="callBack"></comB>
</view>
</template>
<script>
//引用
import comA from '../../../components/comA.vue';
import comB from '../../../components/comB.vue';
export default {
//声明
components:{
comA,
comB
},
data() {
return {
title:"",
};
},
created(){
console.log("comB created");
uni.$on('sendIntent',(msg)=>{
console.log("sendIntent---comB get Intent " + msg);
})
},
methods: {
callBack(msg){
console.warn("----index----callBack-->" + msg);
this.callBackValue = msg;
}
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/APIpages/IntentPage/IntentPage.vue
|
Vue
|
unknown
| 940
|
<template>
<view>
<button @click="onLog()">concle.log</button>
</view>
</template>
<script>
export default {
data() {
return {
title:'打印日志'
}
},
methods: {
onLog(){
console.log('-----this.title: ',this.title);
}
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/APIpages/LogPage/LogPage.vue
|
Vue
|
unknown
| 293
|
<template>
<view>
<!-- 天气信息显示区域 -->
<view v-if="weatherData">
<!-- 城市信息 -->
<view>
<text>城市: {{ weatherData.cityInfo.city }}</text>
</view>
<!-- 明天天气预报 -->
<view>
<text>明天天气预报</text>
<view>
<text>日期: {{ tomorrowData.ymd }}</text>
<text>星期: {{ tomorrowData.week }}</text>
<text>最高温: {{ tomorrowData.high }}</text>
<text>最低温: {{ tomorrowData.low }}</text>
</view>
</view>
</view>
<!-- 加载状态 -->
<view v-if="loading">
<text>正在获取天气数据...</text>
</view>
<!-- 错误提示 -->
<view v-if="error">
<text>{{ error }}</text>
</view>
<!-- 获取天气按钮 -->
<button @click="getWeather">获取天气预报</button>
</view>
</template>
<script>
export default {
data() {
return {
weatherData: null,
tomorrowData: {},
loading: false,
error: ''
}
},
methods: {
getWeather() {
this.loading = true;
this.error = '';
uni.request({
url: 'http://t.weather.sojson.com/api/weather/city/101230501',
success: (res) => {
console.log("success-----" + JSON.stringify(res));
this.weatherData = res.data;
// 获取明天的天气预报数据(数组第二个元素)
if (this.weatherData.data.forecast && this.weatherData.data.forecast.length > 1) {
this.tomorrowData = this.weatherData.data.forecast[1];
}
},
fail: (eMsg) => {
console.log("request fail-----" + eMsg);
this.error = "获取天气数据失败";
},
complete: () => {
this.loading = false;
}
});
}
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/APIpages/Tianqiyubao/Tianqiyubao.vue
|
Vue
|
unknown
| 1,718
|
<template>
<view>
<button @click="onSetTimeCall">单次定时器setTimeout</button>
<button @click="onSetTimeCallxy(name,password)">带参数setTimeout</button>
<button @click="onTimeoutClear(name,password)">取消</button>
</view>
</template>
<script>
export default {
data() {
return {
name:"lwh",
password:'666',
}
},
methods: {
onSetTimeCall(){
console.log("onSetTimeCall-->");
// setTimeout
setTimeout(()=>{
//延时之后要执行的代码
console.log("我延时3秒才会打印");
},3000)
},
onSetTimeCallxy(name,pwd){
console.log("onSetTimeCallxy--> name:"+name+",pwd:"+pwd);
setTimeout((x,y)=>{
console.log("我可以传参数了> x:"+x+",y:"+y);
},2000, name, pwd)
},
onTimeoutClear(){
console.log();
clearTimeout(this.timeoutID);
}
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/APIpages/TimerPage/TimerPage.vue
|
Vue
|
unknown
| 883
|
<template>
<view style="text-align: center;">
<view style="margin-top: 100px;">
<image :src="iconFilePath" @click="updateImage()" mode="aspectFill"></image>
</view>
</view>
</template>
<script>
export default {
data() {
return {
iconFilePath: "/static/logo.png"
}
},
methods: {
updateImage() {
uni.chooseImage({
count: 1,
sourceType: ['album'],
success: (res) => {
console.log("updateImage -->" + res.tempFilePaths[0]);
this.iconFilePath = res.tempFilePaths[0];
this.previewImage([res.tempFilePaths[0]]);
}
});
},
previewImage(images) {
uni.previewImage({
urls: images
})
}
}
}
</script>
|
2301_80750063/SmartUI_lwh050
|
pages/APIpages/imageyulan/imageyulan.vue
|
Vue
|
unknown
| 689
|
<template>
<view>
<button>setStorage</button>
</view>
</template>
<script>
export default {
data() {
return {
}
},
methods: {
onFunCall(){
name = uni.getStorageSync("userName");
pwd="ssss";
}
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/StoragePage/StoragePage.vue
|
Vue
|
unknown
| 265
|
<template>
<view>
<page-head title="button,按钮"></page-head>
<view class="smart-padding-wrap">
<!-- 主操作按钮 -->
<button type="primary">页面主操作 normal</button>
<button type="primary" :loading="true">页面主操作 loading</button>
<button type="primary" disabled="false">页面主操作 disabled</button>
<!-- 次操作按钮 -->
<button type="default">页面次操作 normal</button>
<button type="default" disabled="false">页面次操作 disabled</button>
<!-- 警告操作按钮 -->
<button type="warn">页面警告操作 warn</button>
<button type="warn" disabled="false">页面警告操作 warn disabled</button>
<!-- 镂空按钮 -->
<button type="primary" plain="true">镂空按钮 plain</button>
<button type="primary" plain="true" disabled="false">镂空按钮 plain disabled</button>
<!-- 迷你按钮 -->
<button type="primary" size="mini" class="mini-btn">按钮</button>
<button type="default" size="mini" class="mini-btn">按钮</button>
<button type="warn" size="mini" class="mini-btn">按钮</button>
</view>
</view>
</template>
<script>
export default {
data() {
return {
// 可以在这里添加按钮相关的数据
};
},
methods: {
// 可以在这里添加按钮点击等方法
}
};
</script>
<style>
button {
margin-top: 30rpx;
margin-bottom: 30rpx;
}
.mini-btn {
margin-right: 30rpx;
}
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/components/button/button.vue
|
Vue
|
unknown
| 1,517
|
<template>
<view>
<view class="smart-page-head">
<view class="smart-page-head-title">checkbox,多选按钮</view>
</view>
<view class="smart-padding-wrap">
<view class="item">
<checkbox checked="true"></checkbox>
选中
<checkbox></checkbox>
未选中
</view>
<view class="item">
<checkbox checked="true" color="#F0AD4E" style="transform: scale(0.7);"></checkbox>
选中
<checkbox color="#F0AD4E" style="transform: scale(0.7);"></checkbox>
未选中
</view>
<view class="item">
推荐展示样式:
<checkbox-group>
<label class="list">
<view>
<checkbox></checkbox>
中国
</view>
</label>
<label class="list">
<view>
<checkbox></checkbox>
美国
</view>
</label>
<label class="list">
<view>
<checkbox></checkbox>
日本
</view>
</label>
</checkbox-group>
</view>
</view>
</view>
</template>
<script>
export default {
data() {
return {};
},
methods: {}
};
</script>
<style>
.item {
margin-bottom: 30rpx;
}
.list {
justify-content: flex-start;
padding: 22rpx 30rpx;
}
.list view {
padding-bottom: 20rpx;
border-bottom: 1px solid #d8d8d8;
}
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/components/checkbox/checkbox.vue
|
Vue
|
unknown
| 1,436
|
<template>
<view>
<view class="smart-page-head">
<view class="smart-page-head-title">input,输入框</view>
</view>
<view class="smart-padding-wrap">
<view class="item">可自动获取焦点的</view>
<view><input class="smart-input" focus="true" placeholder="自动获取焦点" /></view>
<view>右下角显示搜索</view>
<view><input class="smart-input" confirm-type="search" placeholder="右下角显示搜索" /></view>
<view>控制最大输入长度</view>
<view><input class="smart-input" maxlength="10" placeholder="控制最大输入长度为10" /></view>
<view>
同步获取输入值
<text style="color: #007AFF;">{{ inputValue }}</text>
</view>
<view><input class="smart-input" @input="onKeyInput" placeholder="同步获取输入值" /></view>
<view>数字输入</view>
<view><input class="smart-input" type="number" placeholder="这是一个数字输入框" /></view>
<view>密码输入</view>
<view><input class="smart-input" type="text" password="true" placeholder="这是一个密码输入框" /></view>
<view>带小数点输入输入</view>
<view><input class="smart-input" type="digit" placeholder="这是一个带小数点输入框" /></view>
<view>身份证输入</view>
<view><input class="smart-input" type="idcard" placeholder="这是一个身份证输入框" /></view>
<view>带清除按钮</view>
<view class="wrapper">
<input class="smart-input" :value="clearinputValue" @input="clearInput" placeholder="这是一个带清除按钮输入框" />
<text v-if="showClearIcon" @click="clearIcon" class="uni-icon"></text>
</view>
<view>可查看密码的输入框</view>
<view class="wrapper">
<input class="smart-input" placeholder="请输入密码" :password="showPassword" />
<text class="uni-icon" :class="!showPassword ? 'eye-active' : ''" @click="changePassword"></text>
</view>
</view>
</view>
</template>
<script>
export default {
data() {
return {
inputValue: '',
showPassword: true,
clearinputValue: '',
showClearIcon: false
};
},
methods: {
onKeyInput: function (event) {
this.inputValue = event.detail.value;
},
clearInput: function (event) {
this.clearinputValue = event.detail.value;
if (event.detail.value.length > 0) this.showClearIcon = true;
else this.showClearIcon = false;
},
clearIcon: function (event) {
this.clearinputValue = '';
this.showClearIcon = false;
},
changePassword: function () {
this.showPassword = !this.showPassword;
}
}
};
</script>
<style>
.item {
margin-bottom: 40rpx;
}
.uni-icon {
font-family: unicons;
font-size: 24px;
font-weight: normal;
font-style: normal;
width: 24px;
height: 24px;
line-height: 24px;
color: #999999;
margin-top: 5px;
}
.wrapper {
display: flex;
flex-direction: row;
flex-wrap: nowrap;
background-color: #d8d8d8;
}
.eye-active {
color: #007aff;
}
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/components/input/input.vue
|
Vue
|
unknown
| 3,115
|
<template>
<view>
<page-head :title='title'></page-head>
</view>
</template>
<script>
export default {
data() {
return {
}
},
methods: {
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/components/navigator/navigate/navigate.vue
|
Vue
|
unknown
| 200
|
<template>
<view>
<view class="smart-panel-head">
<view class="smart-panel-head-title">navigator,链接</view>
</view>
<view class="smart-padding-wrap">
<navigator url="/pages/newpage/newpage" hover-class="navigator-hover">
<button type="default">跳转到新页面</button>
</navigator>
<navigator url="newpage/newpage?title=redirect" open-type="redirect" hover-class="other-navigator-hover">
<button type="default">在当前页打开</button>
</navigator>
<navigator url="newpage/newpage?title=redirect" open-type="redirect" hover-class="other-navigator-hover">
<button type="default">新建跳转栈</button>
</navigator>
<navigator url="/pages/tabBar/tabcompage/tabcompage" open-type="switchTab">
<button type="default">跳转tab页面</button>
</navigator>
</view>
</view>
</template>
<script>
export default {
data() {
return {
title: 'navigator'
}
},
methods: {
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/components/navigator/navigator.vue
|
Vue
|
unknown
| 1,020
|
<template>
<view>
</view>
</template>
<script>
export default {
data() {
return {
}
},
methods: {
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/components/navigator/redirect/redirect.vue
|
Vue
|
unknown
| 162
|
<template>
<view>
<!--顶部区域-->
<view class="smart-page-head">
<view class="smart-panel-head-title">scroll-view视图</view>
</view>
<view class="smart-padding-wrap">
<view class="smart-text">可视滚动视图区域.</view>
<view> vertical scroll 纵向滚动</view>
<view>
<scroll-view class="scroll-y" scroll-y="true">
<view class="scroll-view-tiem smart-bg-red">A</view>
<view class="scroll-view-tiem smart-bg-blue">B</view>
<view class="scroll-view-tiem smart-bg-green">C</view>
</scroll-view>
</view>
<view> horizontal scroll 横向滚动</view>
<view>
<scroll-view class="scroll-x" scroll-x="true" scroll-left="120">
<view class="scroll-view-tiem-h smart-bg-red">A</view>
<view class="scroll-view-tiem-h smart-bg-blue">B</view>
<view class="scroll-view-tiem-h smart-bg-green">C</view>
</scroll-view>
</view>
</view>
</view>
</template>
<script>
export default {
data() {
return {
}
},
methods: {
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/components/scroll-view/scroll-view.vue
|
Vue
|
unknown
| 1,051
|
<template>
<view>
<!--顶部区域-->
<view class="smart-page-head">
<view class="smart-panel-head-title">swiper 滑块视图</view>
</view>
<view class="smart-padding-wrap">
<swiper circular :indicator-dots="indicatorDots" :autoplay="autoplay" :interval="interval" :duration="duration">
<swiper-item><view class="swiper-item smart-bg-blue">A</view></swiper-item>
<swiper-item><view class="swiper-item smart-bg-green">B</view></swiper-item>
<swiper-item><view class="swiper-item smart-bg-red">C</view></swiper-item>
</swiper>
</view>
</view>
</template>
<script>
export default {
data() {
return {
indicatorDots :true,
autoplay: true,
interval: 5000,
duration: 500
}
},
methods: {
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/components/swiper/swiper.vue
|
Vue
|
unknown
| 778
|
<template>
<view>
<view class="smart-panel-head">
<view class="smart-panel-head-title">text文本文件</view>
</view>
<view class="smart-padding-wrap">
<view class="text-box" scroll-y="true">
<text>{{ texts }}</text>
</view>
<button type="primary">add line</button>
<button type="warn">remove line</button>
</view>
</view>
</template>
<script>
export default {
data() {
return {
texts: [
'HBuilder,400万开发者选择的IDE',
'HBuilderX,轻巧、极速,极客编辑器',
'uni-app,终极跨平台方案',
'HBuilder,400万开发者选择的IDE',
'HBuilder,轻巧、极速,极客编辑器',
'uni-app,终极跨平台方案!',
'HBuilder,400万开发者选择的IDE',
'HBuilder,轻巧、极速,极客编辑器',
'uni-app,终极跨平台方案',
],
text:'',
canAdd:true,
canRemove:false,
extraLine:[]
};
},
methods: {
add: function(e){
this.extraLine.push(this.texts[this.extraline.length % 12]);
this.text = this.extraLine.join('\n');
this.canAdd =this.extraLine.length < 12;
this.canRemove =this.extraLine.length > 0;
},
remove:function(e) {
if (this.extraLine.length > 0) {
this.extraLine.pop();
this.text = this.extraLine.join('\n');
this.canAdd =this.extraLine.length < 12;
this.canRemove =this.extraLine.length > 0;
}
}
}
};
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/components/text/text.vue
|
Vue
|
unknown
| 1,435
|
<template>
<view>
<!--顶部区域-->
<view class="smart-panel-head">
<view class="smart-panel-head-title">View视图</view>
</view>
<!--主体部分-->
<view class="smart-padding-wrap">
<view>flex-direction:row 横向布局</view>
</view>
<view class="smart-flex smart-row">
<view class="flex-item smart-bg-blue">A</view>
<view class="flex-item smart-bg-green">B</view>
<view class="flex-item smart-bg-red">C</view>
</view>
<view class="smart-padding-wrap">
<view>flex-direction:column 纵向布局</view>
</view>
<view class="smart-flex smart-column">
<view class="flex-item-c smart-bg-blue">A</view>
<view class="flex-item-c smart-bg-green">B</view>
<view class="flex-item-c smart-bg-red">C</view>
</view>
<view>其他布局</view>
<view>
<view class="text">纵向布局-自动宽度</view>
<view class="text" style="width: 300rpx;">纵向布局-固定宽度</view>
<view class="smart-flex smart-row">
<view class="text">横向布局-自动宽度</view>
<view class="text">横向布局-自动宽度</view>
</view>
<view class="smart-flex smart-row" style="justify-content: center;">
<view class="text">横向布局-居中</view>
<view class="text">横向布局-居中</view>
</view>
<view class="smart-flex smart-row" style="justify-content: flex-end;">
<view class="text">横向布局-居右</view>
<view class="text">横向布局-居右</view>
</view>
<view class="smart-flex smart-row">
<view class="text" style="-webkit-flex:1;flex:1;">横向布局-平均分布</view>
<view class="text" style="-webkit-flex:1;flex:1;">横向布局-平均分布</view>
</view>
<view class="smart-flex smart-row" style="justify-content: justify-content:space-between;-webkit-justify-content:space-between;">
<view class="text">横向布局-两端对齐</view>
<view class="text">横向布局-两端对齐</view>
</view>
<view class="smart-flex smart-row">
<view class="text" style="width: 150rpx;">固定宽度</view>
<view class="text" style="width: -webkit-flex:1;flex:1;">自动占满</view>
</view>
<view class="smart-flex smart-row">
<view class="text" style="width: 150rpx;">固定宽度</view>
<view class="text" style="width: -webkit-flex:1;flex:1;">自动占满</view>
<view class="text" style="width: 150rpx;">固定宽度</view>
</view>
<view class="smart-flex smart-row" style="flex-wrap: wrap;-webkit-flex:wrap;">
<view class="text" style="width: 280rpx;">一行显示不全wrap折行</view>
<view class="text" style="width: 280rpx;">一行显示不全wrap折行</view>
<view class="text" style="width: 280rpx;">一行显示不全wrap折行</view>
</view>
<view class="smart-flex smart-row">
<view class="text" style="flex:2">权重2</view>
<view class="text" style="flex:1">权重1</view>
</view>
</view>
</view>
</template>
<script>
export default {
data() {
return {
}
},
methods: {
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/components/view/view.vue
|
Vue
|
unknown
| 3,050
|
<template>
<view class="content">
<image class="logo" src="/static/logo.png"></image>
<view class="text-area">
<text class="title">{{title}}</text>
</view>
</view>
</template>
<script>
export default {
data() {
return {
title: 'Hello'
}
},
onLoad() {
},
methods: {
}
}
</script>
<style>
.content {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
}
.logo {
height: 200rpx;
width: 200rpx;
margin-top: 200rpx;
margin-left: auto;
margin-right: auto;
margin-bottom: 50rpx;
}
.text-area {
display: flex;
justify-content: center;
}
.title {
font-size: 36rpx;
color: #8f8f94;
}
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/index/index.vue
|
Vue
|
unknown
| 696
|
<template>
<view class="login-container">
<view class="login-box">
<text class="login-title">登录</text>
<view class="input-item">
<input class="input-field" type="text" placeholder="请输入用户名" v-model="username" />
</view>
<view class="input-item">
<input class="input-field" type="password" placeholder="请输入密码" v-model="password" />
</view>
<navigator url="/pages/tabBar/CardViewPage/CardViewPage" open-type="switchTab">
<button class="login-button" @click="login">登录</button></navigator>
<view class="register-link">
<text>没有账号?</text>
<text class="register-text" @click="goDetailPage('regist')">去注册</text>
</view>
</view>
</view>
</template>
<script>
export default {
data() {
return {
};
},
onload(){
console.log("tabcomPage--->onLoad");
},
methods: {
login() {
if (!this.username) {
uni.showToast({
title: '请输入用户名',
icon: 'none'
});
return;
}
if (!this.password) {
uni.showToast({
title: '请输入密码',
icon: 'none'
});
return;
}
uni.showToast({
title: '登录成功',
icon: 'success',
duration:1500,
});
},
goDetailPage(e) {
if (typeof e === 'string') {
uni.navigateTo({
url: '/pages/' + e + '/' + e
});
} else {
uni.navigateTo({
url: e.url
});
}
},
}
};
</script>
<style>
.login-container {
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
background-color: #fff;
}
.login-box {
width: 80%;
padding: 20px;
background-color: #f5f5f5;
border-radius: 10px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}
.login-title {
display: block;
text-align: center;
font-size: 20px;
margin-bottom: 20px;
}
.input-item {
margin-bottom: 15px;
}
.input-field {
width: 100%;
height: 40px;
padding: 0 10px;
border: 1px solid #ccc;
border-radius: 5px;
box-sizing: border-box;
}
.login-button {
height: 40px;
background-color: #007AFF;
color: white;
border: none;
border-radius: 5px;
margin-top: 10px;
}
.register-link {
text-align: center;
margin-top: 10px;
}
.register-text {
color: #007AFF;
}
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/login/login.vue
|
Vue
|
unknown
| 2,419
|
<template>
<view class="register-container">
<view class="register-box">
<text class="register-title">注册</text>
<view class="input-item">
<input type="text" placeholder="请输入用户名" v-model="username" />
</view>
<view class="input-item">
<input type="password" placeholder="请输入密码" v-model="password" />
</view>
<view class="input-item">
<input type="password" placeholder="请确认密码" v-model="confirmPassword" />
</view>
<button class="register-button" @click="register">注册</button>
<view class="login-link">
<text>已有账号?</text>
<text class="login-text" @click="goDetailPage('login')">去登录</text>
</view>
</view>
</view>
</template>
<script>
export default {
data() {
return {
username: '',
password: '',
confirmPassword: ''
};
},
methods: {
register() {
if (!this.username) {
uni.showToast({
title: '请输入用户名',
icon: 'none'
});
return;
}
if (!this.password) {
uni.showToast({
title: '请输入密码',
icon: 'none'
});
return;
}
if (this.password !== this.confirmPassword) {
uni.showToast({
title: '两次输入的密码不一致',
icon: 'none'
});
return;
}
console.log('用户名:', this.username);
console.log('密码:', this.password);
uni.showToast({
title: '注册功能待实现,已打印输入信息',
icon: 'none'
});
},
goDetailPage(e) {
if (typeof e === 'string') {
uni.navigateTo({
url: '/pages/' + e + '/' + e
});
} else {
uni.navigateTo({
url: e.url
});
}
}
}
};
</script>
<style>
.register-container {
display: flex;
justify-content: center;
align-items: center;
height: 100vh;
background-color: #fff;
}
.register-box {
width: 80%;
padding: 20px;
background-color: #f5f5f5;
border-radius: 10px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}
.register-title {
display: block;
text-align: center;
font-size: 20px;
margin-bottom: 20px;
}
.input-item {
margin-bottom: 15px;
}
.input-item input {
width: 100%;
height: 40px;
padding: 0 10px;
border: 1px solid #ccc;
border-radius: 5px;
}
.register-button {
height: 40px;
background-color: #007AFF;
color: white;
border: none;
border-radius: 5px;
margin-top: 10px;
}
.login-link {
text-align: center;
margin-top: 10px;
}
.login-text {
color: #007AFF;
}
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/regist/regist.vue
|
Vue
|
unknown
| 2,711
|
<template>
<view class="news-container">
<!-- 新增功能1: 选择图片并预览 -->
<view class="function-section">
<view class="section-title">作业功能一:选择本机图片并预览</view>
<view class="function-card">
<text class="function-title">3.1 选择图片 uni.chooseImage(OBJECT)</text>
<view class="function-description">
<text>使用uni.chooseImage()选择图片,uni.previewImage()预览图片</text>
</view>
<button @click="chooseImage" class="func-btn primary-btn">选择图片</button>
<view v-if="selectedImages.length > 0" class="image-preview-area">
<text class="preview-title">已选择 {{selectedImages.length}} 张图片</text>
<text class="preview-tip">点击任意图片可预览大图</text>
<scroll-view class="image-list" scroll-x="true">
<view v-for="(img, index) in selectedImages" :key="index" class="image-item">
<image :src="img" mode="aspectFill" @click="previewImage(index)" class="preview-image">
</image>
<text class="image-index">图{{index + 1}}</text>
</view>
</scroll-view>
<view class="preview-actions">
<button @click="previewAllImages" class="func-btn secondary-btn">预览全部</button>
<button @click="clearImages" class="func-btn warn-btn">清空图片</button>
</view>
</view>
<view v-else class="empty-state">
<text class="empty-text">暂未选择图片</text>
<text class="empty-tip">点击上方按钮选择本地图片</text>
</view>
</view>
</view>
<!-- 原有新闻列表保持不变 -->
<view class="news-list-section">
<text class="section-title">新闻列表</text>
<view v-for="(item, index) in news" :key="item.nID" class="news-item">
<CardViewText :title="item.title" :isTop="item.isTop" :author="item.author" :comments="item.comments"
:timedata="item.timedata" :mode="item.mode" :images="item.images" :showSearch="item.showSearch"
@click="onCardClick(item.nID)">
<template v-slot:tips v-if="item.showSearch">
<view class="slotcontent">
<text>搜索</text>
<view class="borderbox"><text>今日金价</text></view>
<view class="borderbox"><text>精选好物</text></view>
</view>
</template>
</CardViewText>
</view>
</view>
</view>
</template>
<script>
import CardViewText from "../../../components/CardViewText.vue"
import xinwen from "../../../Data/news.json"
export default {
components: {
CardViewText
},
data() {
return {
news: null,
// 新增功能1数据
selectedImages: [] // 选择的图片列表
}
},
onShow() {
this.news = xinwen.datalist;
},
onLoad() {
console.log("page onLoad " + this.news);
},
methods: {
onCardClick(nid) {
console.log('点击了新闻:', nid);
},
// 功能1: 选择本机图片 - 根据讲义3.1实现
chooseImage() {
uni.chooseImage({
count: 6, // 默认9,根据讲义设置为6
sizeType: ['original', 'compressed'], // 原图和压缩图
sourceType: ['album'], // 从相册选择
success: (result) => {
// 通过反馈结果中的tempFilePaths获取图片的本地文件路径列表
console.log("选择的图片路径:" + JSON.stringify(result.tempFilePaths));
this.selectedImages = result.tempFilePaths;
uni.showToast({
title: `成功选择${result.tempFilePaths.length}张图片`,
icon: 'success',
duration: 2000
});
},
fail: (error) => {
console.error('选择图片失败:', error);
uni.showToast({
title: '选择图片失败,请检查权限设置',
icon: 'none',
duration: 3000
});
}
});
},
// 预览单张图片 - 根据讲义3.2实现
previewImage(index) {
console.log('预览图片索引:', index);
uni.previewImage({
urls: this.selectedImages,
current: index,
indicator: 'default',
loop: true
});
},
// 预览全部图片
previewAllImages() {
if (this.selectedImages.length === 0) {
uni.showToast({
title: '请先选择图片',
icon: 'none'
});
return;
}
// 直接预览所有图片,从第一张开始
uni.previewImage({
urls: this.selectedImages,
current: 0
});
},
// 清空已选图片
clearImages() {
this.selectedImages = [];
uni.showToast({
title: '已清空图片',
icon: 'success'
});
}
}
}
</script>
<style scoped>
.news-container {
padding: 20rpx;
background-color: #f5f5f5;
min-height: 100vh;
}
.section-title {
font-size: 36rpx;
font-weight: bold;
color: #333;
margin: 30rpx 0 20rpx 0;
display: block;
padding-left: 20rpx;
border-left: 8rpx solid #007AFF;
}
/* 功能区域样式 */
.function-section {
margin-bottom: 40rpx;
}
.function-card {
background-color: #fff;
padding: 30rpx;
border-radius: 16rpx;
margin-bottom: 24rpx;
box-shadow: 0 4rpx 16rpx rgba(0, 0, 0, 0.08);
border: 2rpx solid #e8f4ff;
}
.function-title {
font-size: 32rpx;
font-weight: 600;
color: #007AFF;
display: block;
margin-bottom: 15rpx;
}
.function-description {
background-color: #f0f8ff;
padding: 20rpx;
border-radius: 8rpx;
margin-bottom: 25rpx;
border-left: 4rpx solid #007AFF;
}
.function-description text {
font-size: 24rpx;
color: #666;
line-height: 1.6;
}
/* 按钮样式 */
.func-btn {
border-radius: 12rpx;
padding: 20rpx 30rpx;
font-size: 26rpx;
font-weight: 500;
margin: 10rpx;
border: none;
}
.primary-btn {
background-color: #007AFF;
color: white;
}
.secondary-btn {
background-color: #66b3ff;
color: white;
}
.warn-btn {
background-color: #ff4d4f;
color: white;
}
/* 图片预览区域 */
.image-preview-area {
margin-top: 30rpx;
padding: 20rpx;
background-color: #f8f9fa;
border-radius: 12rpx;
border: 1rpx dashed #d9d9d9;
}
.preview-title {
font-size: 28rpx;
font-weight: 600;
color: #333;
display: block;
margin-bottom: 8rpx;
}
.preview-tip {
font-size: 22rpx;
color: #999;
display: block;
margin-bottom: 20rpx;
}
.image-list {
white-space: nowrap;
margin: 20rpx 0;
}
.image-item {
display: inline-flex;
flex-direction: column;
align-items: center;
margin-right: 25rpx;
}
.preview-image {
width: 140rpx;
height: 140rpx;
border-radius: 12rpx;
border: 3rpx solid #e8f4ff;
background-color: #fafafa;
}
.image-index {
font-size: 20rpx;
color: #999;
margin-top: 8rpx;
}
.preview-actions {
display: flex;
justify-content: center;
gap: 20rpx;
margin-top: 25rpx;
}
/* 空状态样式 */
.empty-state {
text-align: center;
padding: 60rpx 20rpx;
background-color: #fafafa;
border-radius: 12rpx;
margin-top: 20rpx;
}
.empty-text {
font-size: 28rpx;
color: #999;
display: block;
margin-bottom: 15rpx;
}
.empty-tip {
font-size: 22rpx;
color: #ccc;
display: block;
}
/* 原有新闻列表样式 */
.news-list-section {
margin-top: 40rpx;
border-top: 2rpx solid #e8e8e8;
padding-top: 30rpx;
}
.news-item {
margin-bottom: 24rpx;
}
.slotcontent {
display: flex;
align-items: center;
margin-top: 20rpx;
gap: 16rpx;
color: #1890ff;
font-size: 26rpx;
}
.borderbox {
padding: 8rpx 16rpx;
border: 1rpx solid #e0e0e0;
border-radius: 8rpx;
background: #fafafa;
}
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/tabBar/CardViewPage/CardViewPage.vue
|
Vue
|
unknown
| 7,424
|
<template>
<view>
<navigator url="/pages/APIpages/LogPage/LogPage">
<button>打印日志</button>
</navigator>
<navigator url="/pages/APIpages/TimerPage/TimerPage">
<button>计时器</button>
</navigator>
<navigator><button @click="goStotage">数据缓存</button></navigator>
<navigator url="/pages/APIpages/imageyulan/imageyulan">
<button>页面刷新</button>
</navigator>
<navigator url="/pages/APIpages/Tianqiyubao/Tianqiyubao">
<button>天气预报</button>
</navigator>
<navigator url="/pages/APIpages/DownloadImages/DownloadImages">
<button>图片下载</button>
</navigator>
<navigator url="/pages/APIpages/IntentPage/IntentPage">
<button>组件传值</button>
</navigator>
</view>
</template>
<script>
export default {
data() {
return {
}
},
onLoad() {
uni.preloadPage({
url: "/pages/StoragePage/StoragePage"
})
},
methods: {
goStotage() {
uni.navigateTo({
url: "/pages/StoragePage/StoragePage"
})
}
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/tabBar/api/api.vue
|
Vue
|
unknown
| 1,039
|
<template>
<scroll-view scroll-y style="height: 100vh;">
<!-- 轮播图 -->
<view class="swiper-card">
<text class="title">泉州风光</text>
<swiper circular indicator-dots="true" :autoplay="true" :interval="3000" :duration="1000">
<swiper-item v-for="(item, index) in swiperImages" :key="index">
<image :src="item" style="width: 100%;" />
</swiper-item>
</swiper>
</view>
<!-- 城市介绍 -->
<view class="intro-card">
<view class="section">
<text class="title">城市介绍</text>
<rich-text :nodes="CityIntro" class="city-intro-rich"></rich-text>
</view>
</view>
<!-- 探索进度卡片 -->
<view class="progress-card">
<text class="progress-title">探索进度</text>
<view class="progress-bar">
<view class="progress-fill" :style="{ width: progress + '%' }"></view>
</view>
<text class="progress-percent">{{ progress }}%</text>
</view>
<!-- 城市选择 -->
<view class="picker-card">
<text class="title">选择城市</text>
<picker mode="selector" :range="cities" @change="handleCityChange">
<view class="picker-text">当前选择: {{ selectedCity }}</view>
</picker>
</view>
<!-- 偏好设置 -->
<view class="preference-card">
<text class="title">偏好设置</text>
<view class="preference-item">
<text>出行方式:</text>
<radio-group @change="handleTravelModeChange">
<label v-for="(mode, index) in travelModes" :key="index">
<radio :value="mode.value" :checked="mode.value === travelMode" />
<text>{{ mode.label }}</text>
</label>
</radio-group>
</view>
<view class="preference-item">
<text>显示推荐景点:</text>
<switch :checked="showRecommendations" @change="handleShowRecommendationsChange" />
</view>
<view class="preference-item">
<text>探索半径 (km):</text>
<slider :value="exploreRadius" @change="handleExploreRadiusChange" min="1" max="50" />
<text>{{ exploreRadius }}km</text>
</view>
</view>
<!-- 媒体展示 -->
<view class="video-card">
<text class="title">城市宣传</text>
<video :src="videoSrc" controls style="width: 100%;"></video>
<text class="video-title">泉州背景音乐</text>
<button @click="playMusic">播放</button>
</view>
</scroll-view>
</template>
<script>
export default {
data() {
return {
swiperImages: [
'/static/city1.png',
'/static/city2.jpg',
'/static/city3.jpg',
'/static/city4.jpg',
'/static/city5.jpg'
],
CityIntro: `
<h4>海上丝绸之路起点 - 泉州</h4>
<p> 历史文化: 泉州是国务院首批公布的24个历史文化名城之一, 是古代 "海上丝绸之路"起点, 宋元时期被誉为 "东方第一大港"。 </p>
<p> 著名景点: 清源山、 开元寺、 泉州清净寺、 崇武古城、 洛阳桥等。 </p>
<p> 特色文化:拥有<span class='highlight'>南音</span>、 <span class='highlight'>木偶戏</span>和<span class='highlight'>闽南建筑</span>等丰富的非物质文化遗产。 </p>
`,
progress: 55,
cities: ['福建省 - 泉州市 - 丰泽区', '福建省 - 厦门市 - 思明区', '福建省 - 福州市 - 鼓楼区'],
selectedCity: '福建省 - 泉州市 - 丰泽区',
travelModes: [
{ value: 'bus', label: '公交' },
{ value: 'car', label: '自驾' },
{ value: 'walk', label: '步行' }
],
travelMode: 'bus',
showRecommendations: true,
exploreRadius: 10,
videoSrc: '/static/city-video.mp4' // 假设视频文件在static目录下
};
},
methods: {
handleCityChange(e) {
this.selectedCity = this.cities[e.detail.value];
},
handleTravelModeChange(e) {
this.travelMode = e.detail.value;
},
handleShowRecommendationsChange(e) {
this.showRecommendations = e.detail.value;
},
handleExploreRadiusChange(e) {
this.exploreRadius = e.detail.value;
},
playMusic() {
}
}
};
</script>
<style>
.title {
font-size: 40rpx;
font-weight: bold;
margin-bottom: 10rpx;
display: block;
}
.section {
padding: 20rpx;
margin-bottom: 20rpx;
background-color: #fff;
}
.city-intro-rich {
font-size: 28rpx;
}
.highlight {
color: #aa55ff;
font-weight: bold;
}
/* 卡片样式 */
.swiper-card{
padding: 30rpx;
background-color: #fff;
border-radius: 20rpx;
box-shadow: 0 4rpx 12rpx rgba(0, 0, 0, 0.1);
margin: 20rpx;
}
.intro-card{
padding: 30rpx;
background-color: #fff;
border-radius: 20rpx;
box-shadow: 0 4rpx 12rpx rgba(0, 0, 0, 0.1);
margin: 20rpx;
}
.progress-card{
padding: 30rpx;
background-color: #fff;
border-radius: 20rpx;
box-shadow: 0 4rpx 12rpx rgba(0, 0, 0, 0.1);
margin: 20rpx;
}
.picker-card{
padding: 30rpx;
background-color: #fff;
border-radius: 20rpx;
box-shadow: 0 4rpx 12rpx rgba(0, 0, 0, 0.1);
margin: 20rpx;
}
.preference-card{
padding: 30rpx;
background-color: #fff;
border-radius: 20rpx;
box-shadow: 0 4rpx 12rpx rgba(0, 0, 0, 0.1);
margin: 20rpx;
}
.video-card {
padding: 30rpx;
background-color: #fff;
border-radius: 20rpx;
box-shadow: 0 4rpx 12rpx rgba(0, 0, 0, 0.1);
margin: 20rpx;
}
/* 轮播图图片样式 */
.swiper-image {
width: 100%;
height: 300rpx;
border-radius: 10rpx;
}
/* 探索进度卡片样式 */
.progress-title {
font-size: 32rpx;
font-weight: bold;
margin-bottom: 20rpx;
display: block;
}
.progress-bar {
width: 100%;
height: 20rpx;
background-color: #e0e0e0;
border-radius: 10rpx;
overflow: hidden;
}
.progress-fill {
height: 100%;
background-color: #007aff;
border-radius: 10rpx;
}
.progress-percent {
font-size: 28rpx;
color: #666;
margin-top: 10rpx;
display: block;
text-align: right;
}
/* 城市选择样式 */
.picker-text {
font-size: 28rpx;
color: #666;
margin-top: 10rpx;
}
/* 偏好设置样式 */
.preference-item {
margin-top: 20rpx;
}
/* 媒体展示样式 */
.video-title {
font-size: 28rpx;
color: #666;
margin-top: 10rpx;
display: block;
}
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/tabBar/case/CityDiscovery/CityDiscovery.vue
|
Vue
|
unknown
| 6,266
|
<template>
<view>
<view class="smart-container">登录页与注册页</view>
<view @click="goDetailPage(('login'))">
<text space="emsp">  登录页</text>
</view>
<view class="smart-container">城市探索</view>
<view @click="goDetailPage2(('CityDiscovery'))">
<text space="emsp">  城市探索</text>
</view>
<view class="smart-container">自定义组件</view>
<view @click="goDetailPage2(('CardViewPage'))">
<text space="emsp">  自定义组件</text>
</view>
</view>
</template>
<script>
export default {
data() {
return {
}
},
methods: {
goDetailPage(e) {
if (typeof e === 'string') {
uni.navigateTo({
url: '/pages/' + e + '/' + e
});
} else {
uni.navigateTo({
url: e.url
});
}
},
goDetailPage2(e) {
if (typeof e === 'string') {
uni.navigateTo({
url: '/pages/tabBar/case/' + e + '/' + e
});
} else {
uni.navigateTo({
url: e.url
});
}
}
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/tabBar/case/case.vue
|
Vue
|
unknown
| 1,148
|
<template>
<view class="content">
<image :class="className" src="/static/logo.png"></image>
<view class="text-area">
<text class="title" v-on:click="open">{{title}}</text>
</view>
<view>
<view>{{ number + 1 }}</view>
<view>{{ ok ? 'YES' : 'NO' }}</view>
<view>{{ message.split('').reverse().join('') }}</view>
</view>
<view>
<!-- 传递静态函数-->
<button @click="handleClick('参数1')">按钮1</button>
<!-- 传递动态函数 (来自data)-->
<button @click="handleClick(dynamicParam)">按钮2</button>
<!-- 传递多个函数 + 事件对象)-->
<button @click="handleClick('参数A', '参数B', $event)">按钮3</button>
<!-- 同时获取参数和事件对象-->
<button @click="(e) => handleButton('点击事件',e)">带事件对象</button>
</view>
<view class = "modelclass">
<input v-model="message2" placeholder="edit me"/>
<text>Message is : {{ message2 }}</text>
</view>
<view v-if="!raining">今天天气真好</view>
<view v-if="raining">下雨天,只能在家呆着了</view>
<view v-if="state === 'vue'">state的值是 Vue</view>
<view>State is {{state?'vue':'APP'}}</view>
<view>
<view v-if="state === 'vue'">uni-app</view>
<view v-else-if="state === 'html'"> HTML</view>
<view v-else> APP</view>
</view>
<view v-for="item in arr" :key="item" style="color: #ff0000;">
{{item}}
</view>
<!-- 修正 v-for 语法和样式语法错误 -->
<view v-for="(item, index) in 4" :key="index" style="color:#00ff00;">
<view :class="'list-' + (index % 2)">{{index % 2}}</view>
</view>
<!-- 修正 object 数据结构和 v-for 语法 -->
<view v-for="(value, name, index) in object" :key="name">
{{index}}.{{name}}.{{value}}
</view>
<view v-for="item in arr" :key="item.id">
<view style="color: #0000ff;">{{item.id}}:{{item.name}}</view>
</view>
</view>
</template>
<script>
export default {
data() {
return {
title: 'Hello UniAPP',
number: 1,
ok:true,
message: 'Hello Vue!',
className:"smalllogo",
dynamicParam : "我是动态参数",
raining : true,
state : 'vue',
arr:[
{id:1,name:'uni-app'},
{id:2,name:'HTML'}
],
// 修正 object 数据结构,应该是对象而不是数组
object:{
title:'How to lists in Vue',
author:'Jame Doe',
publishedAt:'2020-04-10'
}
}
},
methods: {
open(){
this.title = "opening a new Page";
this.className = 'logo'
},
//接收参数
handleClick(param1,param2, event) {
console.log("参数2:",param1)
console.log("参数1:",param2)
console.log("事件对象:",event)
},
//同时获取参数和事件对象
handleButton(msg, event){
console.log("接收的消息:",msg)
console.log("事件对象:",event)
console.log("按钮文本:",event,target.textContent)
}
}
}
</script>
<style>
.content {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
}
.logo {
height: 200rpx;
width: 200rpx;
margin-top: 200rpx;
margin-left: auto;
margin-right: auto;
margin-bottom: 50rpx;
}
.text-area {
display: flex;
justify-content: center;
}
.smalllogo {
height: 50rpx;
width: 50rpx;
margin-top: 200rpx;
margin-left: auto;
margin-right: auto;
margin-bottom: 50rpx;
}
.title {
font-size: 36rpx;
color: #8f8f94;
}
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/tabBar/grammar/grammar.vue
|
Vue
|
unknown
| 3,410
|
<template>
<view>
</view>
</template>
<script>
export default {
data() {
return {
}
},
methods: {
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/tabBar/mine/mine.vue
|
Vue
|
unknown
| 162
|
<template>
<view>
<view class="smart-container">1.容器</view>
<view @click="goDetailPage('view')">
<text space="emsp">  view视图</text>
</view>
<view @click="goDetailPage('scroll-view')">
<text space="emsp">  scroll-view视图</text>
</view>
<view @click="goDetailPage('swiper')">
<text space="emsp">  swiper视图</text>
</view>
<view class="smart-container">2.基础内容</view>
<view @click="goDetailPage(('text'))">
<text space="emsp">  text文本编辑</text>
</view>
<view @click="goDetailPage(('icon'))">
<text space="emsp">  icon图标</text>
</view>
<view class="smart-container">3.表单组件</view>
<view @click="goDetailPage(('button'))">
<text space="emsp">  button按钮</text>
</view>
<view @click="goDetailPage(('checkbox'))">
<text space="emsp">  checkbox多选框</text>
</view>
<view>
<text space="emsp">  label标签组件</text>
</view>
<view @click="goDetailPage(('input'))">
<text space="emsp">  input输入框</text>
</view>
<view>
<text space="emsp">  textarea多行文本输入框</text>
</view>
<view>
<text space="emsp">  form表单</text>
</view>
<view class="smart-container">4.导航组件</view>
<view @click="goDetailPage(('navigator'))">
<text space="emsp">  navigator</text>
</view>
</view>
</template>
<script>
export default {
data() {
return {
}
},
methods: {
goDetailPage(e) {
if (typeof e === 'string') {
uni.navigateTo({
url: '/pages/components/' + e + '/' + e
});
} else {
uni.navigateTo({
url: e.url
});
}
}
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/tabBar/tabcompage/tabcompage.vue
|
Vue
|
unknown
| 1,828
|
<template>
<view>
</view>
</template>
<script>
export default {
data() {
return {
}
},
methods: {
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/tabBar/topic/topic.vue
|
Vue
|
unknown
| 162
|
<template>
<view>
</view>
</template>
<script>
export default {
data() {
return {
}
},
methods: {
}
}
</script>
<style>
</style>
|
2301_80750063/SmartUI_lwh050
|
pages/tabBar/video/video.vue
|
Vue
|
unknown
| 162
|
uni.addInterceptor({
returnValue (res) {
if (!(!!res && (typeof res === "object" || typeof res === "function") && typeof res.then === "function")) {
return res;
}
return new Promise((resolve, reject) => {
res.then((res) => {
if (!res) return resolve(res)
return res[0] ? reject(res[0]) : resolve(res[1])
});
});
},
});
|
2301_80750063/SmartUI_lwh050
|
uni.promisify.adaptor.js
|
JavaScript
|
unknown
| 373
|
/**
* 这里是uni-app内置的常用样式变量
*
* uni-app 官方扩展插件及插件市场(https://ext.dcloud.net.cn)上很多三方插件均使用了这些样式变量
* 如果你是插件开发者,建议你使用scss预处理,并在插件代码中直接使用这些变量(无需 import 这个文件),方便用户通过搭积木的方式开发整体风格一致的App
*
*/
/**
* 如果你是App开发者(插件使用者),你可以通过修改这些变量来定制自己的插件主题,实现自定义主题功能
*
* 如果你的项目同样使用了scss预处理,你也可以直接在你的 scss 代码中使用如下变量,同时无需 import 这个文件
*/
/* 颜色变量 */
/* 行为相关颜色 */
$uni-color-primary: #007aff;
$uni-color-success: #4cd964;
$uni-color-warning: #f0ad4e;
$uni-color-error: #dd524d;
/* 文字基本颜色 */
$uni-text-color:#333;//基本色
$uni-text-color-inverse:#fff;//反色
$uni-text-color-grey:#999;//辅助灰色,如加载更多的提示信息
$uni-text-color-placeholder: #808080;
$uni-text-color-disable:#c0c0c0;
/* 背景颜色 */
$uni-bg-color:#ffffff;
$uni-bg-color-grey:#f8f8f8;
$uni-bg-color-hover:#f1f1f1;//点击状态颜色
$uni-bg-color-mask:rgba(0, 0, 0, 0.4);//遮罩颜色
/* 边框颜色 */
$uni-border-color:#c8c7cc;
/* 尺寸变量 */
/* 文字尺寸 */
$uni-font-size-sm:12px;
$uni-font-size-base:14px;
$uni-font-size-lg:16px;
/* 图片尺寸 */
$uni-img-size-sm:20px;
$uni-img-size-base:26px;
$uni-img-size-lg:40px;
/* Border Radius */
$uni-border-radius-sm: 2px;
$uni-border-radius-base: 3px;
$uni-border-radius-lg: 6px;
$uni-border-radius-circle: 50%;
/* 水平间距 */
$uni-spacing-row-sm: 5px;
$uni-spacing-row-base: 10px;
$uni-spacing-row-lg: 15px;
/* 垂直间距 */
$uni-spacing-col-sm: 4px;
$uni-spacing-col-base: 8px;
$uni-spacing-col-lg: 12px;
/* 透明度 */
$uni-opacity-disabled: 0.3; // 组件禁用态的透明度
/* 文章场景相关 */
$uni-color-title: #2C405A; // 文章标题颜色
$uni-font-size-title:20px;
$uni-color-subtitle: #555555; // 二级标题颜色
$uni-font-size-subtitle:26px;
$uni-color-paragraph: #3F536E; // 文章段落颜色
$uni-font-size-paragraph:15px;
|
2301_80750063/SmartUI_lwh050
|
uni.scss
|
SCSS
|
unknown
| 2,217
|
# -*- coding: utf-8 -*-
"""
FastMCP 快速入门示例。
首先,请切换到 `examples/snippets/clients` 目录,然后运行以下命令来启动服务器:
uv run server fastmcp_quickstart stdio
"""
# 从 mcp.server.fastmcp 模块中导入 FastMCP 类,这是构建 MCP 服务器的核心。
from mcp.server.fastmcp import FastMCP
# 创建一个 MCP 服务器实例,并将其命名为 "Demo"。
# 这个名字会向连接到此服务器的 AI 客户端展示。
mcp = FastMCP("Demo")
# 使用 @mcp.tool() 装饰器来定义一个“工具”。
# 工具是 AI 可以调用的具体函数,用于执行特定的操作。
@mcp.tool()
def add(a: int, b: int) -> int:
"""
这个工具的功能是计算两个整数的和。
文档字符串(docstring)会作为工具的描述,帮助 AI 理解其功能。
"""
result = a + b
return result
# 使用 @mcp.resource() 装饰器来定义一个“资源”。
# 资源代表 AI 可以访问的数据或信息。这里的路径 "greeting://{name}" 是动态的,
# {name} 部分可以被实际的名称替换,例如 "greeting://World"。
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
"""
根据提供的名称,获取一句个性化的问候语。
"""
# 使用 f-string 格式化字符串,返回包含名字的问候语。
return f"Hello, {name}!"
# 使用 @mcp.prompt() 装饰器来定义一个“提示词模板”。
# 这个功能可以根据输入动态生成更复杂的、用于指导大语言模型(LLM)的指令(Prompt)。
# @mcp.prompt()
# def greet_user(name: str, style: str = "friendly") -> str:
# """
# 根据给定的名字和风格,生成一句问候语的提示词。
# """
# # 定义一个字典,存储不同风格对应的提示词文本。
# styles = {
# "friendly": "Please write a warm, friendly greeting",
# "formal": "Please write a formal, professional greeting",
# "casual": "Please write a casual, relaxed greeting",
# }
# # 根据传入的 style 参数,从字典中获取对应的提示词。
# # 如果 style 参数无效或未提供,则默认使用 "friendly" 风格。
# # 最后,将选择的风格提示词与用户名组合,形成一个完整的指令。
# return f"{styles.get(style, styles['friendly'])} for someone named {name}."
if __name__ == "__main__":
mcp.run(transport="sse")
|
2301_80863610/undoom-sketch-mcp
|
main copy.py
|
Python
|
mit
| 2,451
|
# -*- coding: utf-8 -*-
"""
图片素描化 MCP 服务器。
提供图片素描化功能的 MCP 服务器,可以将输入的图片转换为素描效果。
支持多种素描风格和批量处理功能。
"""
# 导入必要的库
import cv2
import numpy as np
import os
import base64
import glob
from pathlib import Path
from mcp.server.fastmcp import FastMCP
# 创建一个 MCP 服务器实例,并将其命名为 "SketchConverter"。
# 这个名字会向连接到此服务器的 AI 客户端展示。
mcp = FastMCP("SketchConverter")
# 支持的图片格式
SUPPORTED_FORMATS = {'.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff', '.webp'}
def dodgeV2(image, mask, contrast=256.0):
"""图像混合函数,用于生成素描效果"""
return cv2.divide(image, 255 - mask, scale=contrast)
def validate_image_path(image_path: str) -> tuple[bool, str]:
"""验证图片路径和格式"""
if not os.path.exists(image_path):
return False, f"错误: 文件不存在 - {image_path}"
file_ext = Path(image_path).suffix.lower()
if file_ext not in SUPPORTED_FORMATS:
return False, f"错误: 不支持的图片格式 - {file_ext}。支持的格式: {', '.join(SUPPORTED_FORMATS)}"
return True, "验证通过"
def load_image_safely(image_path: str):
"""安全加载图片,支持中文路径"""
try:
# 使用numpy读取图片,支持中文路径
img_array = np.fromfile(image_path, dtype=np.uint8)
image = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
return image
except Exception as e:
return None
def save_image_safely(image, output_path: str) -> bool:
"""安全保存图片,支持中文路径"""
try:
# 确保输出目录存在
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# 获取文件扩展名
ext = os.path.splitext(output_path)[1].lower()
# 编码图片
success, encoded_img = cv2.imencode(ext, image)
if success:
# 写入文件
with open(output_path, 'wb') as f:
f.write(encoded_img.tobytes())
return True
return False
except Exception as e:
return False
@mcp.tool()
def convert_image_to_sketch(image_path: str, blur_size: int = 21, contrast: float = 256.0, style: str = "classic") -> str:
"""
将输入的图片转换为素描效果。
参数:
- image_path: 图片文件的路径
- blur_size: 高斯模糊的核大小,必须为奇数,默认为21
- contrast: 对比度参数,默认为256.0
- style: 素描风格 ("classic", "detailed", "soft")
返回:
- 成功时返回保存的素描图片路径,失败时返回错误信息
"""
try:
# 验证图片路径
is_valid, message = validate_image_path(image_path)
if not is_valid:
return message
# 确保blur_size是奇数且在合理范围内
blur_size = max(3, min(101, blur_size)) # 限制在3-101之间
if blur_size % 2 == 0:
blur_size += 1
# 限制对比度参数
contrast = max(50.0, min(500.0, contrast)) # 限制在50-500之间
# 加载图片
src_image = load_image_safely(image_path)
if src_image is None:
return f"错误: 无法加载图片 - {image_path}"
# 转换为灰度图
img_gray = cv2.cvtColor(src_image, cv2.COLOR_BGR2GRAY)
# 根据风格调整处理参数
if style == "detailed":
# 详细风格:更小的模糊核,更高的对比度
blur_size = max(3, blur_size // 2)
if blur_size % 2 == 0:
blur_size += 1
contrast *= 1.2
elif style == "soft":
# 柔和风格:更大的模糊核,更低的对比度
blur_size = min(51, blur_size * 2)
if blur_size % 2 == 0:
blur_size += 1
contrast *= 0.8
# 反转灰度图
img_gray_inv = 255 - img_gray
# 应用高斯模糊
img_blur = cv2.GaussianBlur(img_gray_inv, ksize=(blur_size, blur_size), sigmaX=0, sigmaY=0)
# 使用dodgeV2函数进行混合
sketch_image = dodgeV2(img_gray, img_blur, contrast)
# 后处理:增强对比度和锐化
if style == "detailed":
# 对详细风格进行锐化处理
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sketch_image = cv2.filter2D(sketch_image, -1, kernel)
sketch_image = np.clip(sketch_image, 0, 255).astype(np.uint8)
# 生成输出文件名
original_filename = os.path.basename(image_path)
filename_without_ext = os.path.splitext(original_filename)[0]
output_dir = os.path.dirname(image_path)
output_path = os.path.join(output_dir, f"Sketch_{style}_{filename_without_ext}.jpg")
# 保存素描图片
if save_image_safely(sketch_image, output_path):
return f"素描转换成功! 风格: {style}, 输出文件: {output_path}"
else:
return f"错误: 保存图片失败 - {output_path}"
except Exception as e:
return f"错误: 转换过程中出现异常 - {str(e)}"
@mcp.tool()
def batch_convert_images(folder_path: str, blur_size: int = 21, contrast: float = 256.0, style: str = "classic") -> str:
"""
批量转换文件夹中的所有图片为素描效果。
参数:
- folder_path: 包含图片的文件夹路径
- blur_size: 高斯模糊的核大小,默认为21
- contrast: 对比度参数,默认为256.0
- style: 素描风格 ("classic", "detailed", "soft")
返回:
- 处理结果统计信息
"""
try:
if not os.path.exists(folder_path):
return f"错误: 文件夹不存在 - {folder_path}"
if not os.path.isdir(folder_path):
return f"错误: 路径不是文件夹 - {folder_path}"
# 查找所有支持的图片文件
image_files = []
for ext in SUPPORTED_FORMATS:
pattern = os.path.join(folder_path, f"*{ext}")
image_files.extend(glob.glob(pattern))
pattern = os.path.join(folder_path, f"*{ext.upper()}")
image_files.extend(glob.glob(pattern))
if not image_files:
return f"在文件夹中未找到支持的图片文件: {folder_path}"
success_count = 0
error_count = 0
error_messages = []
for image_file in image_files:
result = convert_image_to_sketch(image_file, blur_size, contrast, style)
if result.startswith("素描转换成功"):
success_count += 1
else:
error_count += 1
error_messages.append(f"{os.path.basename(image_file)}: {result}")
result_summary = f"批量处理完成!\n"
result_summary += f"成功转换: {success_count} 张图片\n"
result_summary += f"失败: {error_count} 张图片\n"
if error_messages:
result_summary += f"\n错误详情:\n" + "\n".join(error_messages[:5]) # 只显示前5个错误
if len(error_messages) > 5:
result_summary += f"\n... 还有 {len(error_messages) - 5} 个错误"
return result_summary
except Exception as e:
return f"错误: 批量处理过程中出现异常 - {str(e)}"
@mcp.tool()
def get_image_info(image_path: str) -> str:
"""
获取图片的基本信息。
参数:
- image_path: 图片文件的路径
返回:
- 图片信息字符串
"""
try:
# 验证图片路径
is_valid, message = validate_image_path(image_path)
if not is_valid:
return message
# 加载图片
image = load_image_safely(image_path)
if image is None:
return f"错误: 无法加载图片 - {image_path}"
# 获取图片信息
height, width = image.shape[:2]
channels = image.shape[2] if len(image.shape) == 3 else 1
file_size = os.path.getsize(image_path)
file_size_mb = file_size / (1024 * 1024)
info = f"图片信息:\n"
info += f"文件名: {os.path.basename(image_path)}\n"
info += f"尺寸: {width} x {height} 像素\n"
info += f"通道数: {channels}\n"
info += f"文件大小: {file_size_mb:.2f} MB\n"
info += f"格式: {Path(image_path).suffix.upper()}\n"
# 建议的处理参数
if width * height > 2000000: # 大于200万像素
info += f"\n建议参数 (大图片):\n"
info += f"- blur_size: 31-51\n"
info += f"- contrast: 200-300\n"
elif width * height > 500000: # 大于50万像素
info += f"\n建议参数 (中等图片):\n"
info += f"- blur_size: 21-31\n"
info += f"- contrast: 256\n"
else:
info += f"\n建议参数 (小图片):\n"
info += f"- blur_size: 11-21\n"
info += f"- contrast: 300-400\n"
return info
except Exception as e:
return f"错误: 获取图片信息时出现异常 - {str(e)}"
# 使用 @mcp.resource() 装饰器来定义一个"资源"。
# 资源代表 AI 可以访问的数据或信息。这里提供素描转换的帮助信息。
@mcp.resource("sketch://help")
def get_sketch_help() -> str:
"""
获取图片素描转换功能的帮助信息。
"""
help_text = """
🎨 图片素描转换工具使用说明
📋 功能列表:
1. convert_image_to_sketch - 单张图片素描转换
2. batch_convert_images - 批量图片素描转换
3. get_image_info - 获取图片信息和建议参数
🖼️ 支持的图片格式:
JPG, JPEG, PNG, BMP, GIF, TIFF, WEBP
🎭 素描风格:
- classic: 经典素描风格 (默认)
- detailed: 详细素描风格 (更清晰的线条)
- soft: 柔和素描风格 (更柔和的效果)
⚙️ 参数说明:
- image_path: 图片文件的完整路径 (必需)
- blur_size: 高斯模糊核大小 (3-101,奇数,默认21)
- contrast: 对比度参数 (50-500,默认256.0)
- style: 素描风格 (classic/detailed/soft,默认classic)
📝 使用示例:
1. 单张转换:
convert_image_to_sketch("/path/to/image.jpg", 21, 256.0, "classic")
2. 批量转换:
batch_convert_images("/path/to/folder", 21, 256.0, "detailed")
3. 获取图片信息:
get_image_info("/path/to/image.jpg")
💡 使用技巧:
- 大图片建议使用较大的blur_size (31-51)
- 小图片建议使用较小的blur_size (11-21)
- detailed风格适合人像和细节丰富的图片
- soft风格适合风景和需要柔和效果的图片
- 可以先用get_image_info查看图片信息和建议参数
📁 输出文件:
- 单张转换:原目录下,文件名格式为 "Sketch_{style}_{原文件名}.jpg"
- 批量转换:每张图片都在原目录下生成对应的素描版本
⚠️ 注意事项:
- 确保图片文件存在且可读
- 支持中文路径和文件名
- 处理大图片时可能需要较长时间
- 建议在处理前备份原图片
"""
return help_text
if __name__ == "__main__":
mcp.run(transport="sse")
|
2301_80863610/undoom-sketch-mcp
|
main.py
|
Python
|
mit
| 11,461
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
简单的图片素描转换示例
直接调用本地的素描转换功能,无需MCP协议。
"""
import sys
import os
# 添加当前目录到Python路径
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from undoom_sketch_mcp.server import convert_image_to_sketch, get_image_info
def main():
"""主函数 - 直接调用素描转换功能"""
# 图片路径
image_path = r"D:\mcp_test\Cool Romantic Anime Character.png"
print("🎨 图片素描转换示例")
print("=" * 50)
# 检查图片是否存在
if not os.path.exists(image_path):
print(f"❌ 图片文件不存在: {image_path}")
return
print(f"📁 输入图片: {os.path.basename(image_path)}")
# 获取图片信息
print("\n📊 获取图片信息...")
info_result = get_image_info(image_path)
print(info_result)
# 转换为经典素描风格
print("\n🎨 转换为经典素描风格...")
classic_result = convert_image_to_sketch(
image_path=image_path,
blur_size=21,
contrast=256.0,
style="classic"
)
print(f"结果: {classic_result}")
# 转换为详细素描风格
print("\n🎨 转换为详细素描风格...")
detailed_result = convert_image_to_sketch(
image_path=image_path,
blur_size=21,
contrast=256.0,
style="detailed"
)
print(f"结果: {detailed_result}")
# 转换为柔和素描风格
print("\n🎨 转换为柔和素描风格...")
soft_result = convert_image_to_sketch(
image_path=image_path,
blur_size=21,
contrast=256.0,
style="soft"
)
print(f"结果: {soft_result}")
print("\n✅ 所有转换完成!")
print("\n💡 生成的素描图片保存在原图片相同目录下")
print(" 文件名格式: Sketch_{style}_{原文件名}.jpg")
if __name__ == "__main__":
main()
|
2301_80863610/undoom-sketch-mcp
|
simple_sketch_example.py
|
Python
|
mit
| 1,996
|
"""
Undoom Sketch MCP - 图片素描化转换服务器
一个基于 MCP (Model Context Protocol) 的图片素描化服务器,
可以将普通图片转换为素描效果,支持多种风格和批量处理。
"""
__version__ = "0.1.4"
__author__ = "Undoom"
__email__ = "kaikaihuhu666@163.com"
from .server import main
__all__ = ["main"]
|
2301_80863610/undoom-sketch-mcp
|
undoom_sketch_mcp/__init__.py
|
Python
|
mit
| 341
|
#!/usr/bin/env python3
"""
Undoom Sketch MCP Server - 主入口点
通过 python -m undoom_sketch_mcp 启动服务器
"""
from .server import main
if __name__ == "__main__":
main()
|
2301_80863610/undoom-sketch-mcp
|
undoom_sketch_mcp/__main__.py
|
Python
|
mit
| 187
|
# -*- coding: utf-8 -*-
"""
图片素描化 MCP 服务器。
提供图片素描化功能的 MCP 服务器,可以将输入的图片转换为素描效果。
支持多种素描风格和批量处理功能。
"""
# 导入必要的库
import cv2
import numpy as np
import os
import base64
import glob
from pathlib import Path
from mcp.server.fastmcp import FastMCP
# 创建一个 MCP 服务器实例,并将其命名为 "SketchConverter"。
# 这个名字会向连接到此服务器的 AI 客户端展示。
mcp = FastMCP("SketchConverter")
# 支持的图片格式
SUPPORTED_FORMATS = {'.jpg', '.jpeg', '.png', '.bmp', '.gif', '.tiff', '.webp'}
def dodgeV2(image, mask, contrast=256.0):
"""图像混合函数,用于生成素描效果"""
return cv2.divide(image, 255 - mask, scale=contrast)
def validate_image_path(image_path: str) -> tuple[bool, str]:
"""验证图片路径和格式"""
if not os.path.exists(image_path):
return False, f"错误: 文件不存在 - {image_path}"
file_ext = Path(image_path).suffix.lower()
if file_ext not in SUPPORTED_FORMATS:
return False, f"错误: 不支持的图片格式 - {file_ext}。支持的格式: {', '.join(SUPPORTED_FORMATS)}"
return True, "验证通过"
def load_image_safely(image_path: str):
"""安全加载图片,支持中文路径"""
try:
# 使用numpy读取图片,支持中文路径
img_array = np.fromfile(image_path, dtype=np.uint8)
image = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
return image
except Exception as e:
return None
def save_image_safely(image, output_path: str) -> bool:
"""安全保存图片,支持中文路径"""
try:
# 确保输出目录存在
os.makedirs(os.path.dirname(output_path), exist_ok=True)
# 获取文件扩展名
ext = os.path.splitext(output_path)[1].lower()
# 编码图片
success, encoded_img = cv2.imencode(ext, image)
if success:
# 写入文件
with open(output_path, 'wb') as f:
f.write(encoded_img.tobytes())
return True
return False
except Exception as e:
return False
@mcp.tool()
def convert_image_to_sketch(image_path: str, blur_size: int = 21, contrast: float = 256.0, style: str = "classic") -> str:
"""
将输入的图片转换为素描效果。
参数:
- image_path: 图片文件的路径
- blur_size: 高斯模糊的核大小,必须为奇数,默认为21
- contrast: 对比度参数,默认为256.0
- style: 素描风格 ("classic", "detailed", "soft")
返回:
- 成功时返回保存的素描图片路径,失败时返回错误信息
"""
try:
# 验证图片路径
is_valid, message = validate_image_path(image_path)
if not is_valid:
return message
# 确保blur_size是奇数且在合理范围内
blur_size = max(3, min(101, blur_size)) # 限制在3-101之间
if blur_size % 2 == 0:
blur_size += 1
# 限制对比度参数
contrast = max(50.0, min(500.0, contrast)) # 限制在50-500之间
# 加载图片
src_image = load_image_safely(image_path)
if src_image is None:
return f"错误: 无法加载图片 - {image_path}"
# 转换为灰度图
img_gray = cv2.cvtColor(src_image, cv2.COLOR_BGR2GRAY)
# 根据风格调整处理参数
if style == "detailed":
# 详细风格:更小的模糊核,更高的对比度
blur_size = max(3, blur_size // 2)
if blur_size % 2 == 0:
blur_size += 1
contrast *= 1.2
elif style == "soft":
# 柔和风格:更大的模糊核,更低的对比度
blur_size = min(51, blur_size * 2)
if blur_size % 2 == 0:
blur_size += 1
contrast *= 0.8
# 反转灰度图
img_gray_inv = 255 - img_gray
# 应用高斯模糊
img_blur = cv2.GaussianBlur(img_gray_inv, ksize=(blur_size, blur_size), sigmaX=0, sigmaY=0)
# 使用dodgeV2函数进行混合
sketch_image = dodgeV2(img_gray, img_blur, contrast)
# 后处理:增强对比度和锐化
if style == "detailed":
# 对详细风格进行锐化处理
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sketch_image = cv2.filter2D(sketch_image, -1, kernel)
sketch_image = np.clip(sketch_image, 0, 255).astype(np.uint8)
# 生成输出文件名
original_filename = os.path.basename(image_path)
filename_without_ext = os.path.splitext(original_filename)[0]
output_dir = os.path.dirname(image_path)
output_path = os.path.join(output_dir, f"Sketch_{style}_{filename_without_ext}.jpg")
# 保存素描图片
if save_image_safely(sketch_image, output_path):
return f"素描转换成功! 风格: {style}, 输出文件: {output_path}"
else:
return f"错误: 保存图片失败 - {output_path}"
except Exception as e:
return f"错误: 转换过程中出现异常 - {str(e)}"
@mcp.tool()
def batch_convert_images(folder_path: str, blur_size: int = 21, contrast: float = 256.0, style: str = "classic") -> str:
"""
批量转换文件夹中的所有图片为素描效果。
参数:
- folder_path: 包含图片的文件夹路径
- blur_size: 高斯模糊的核大小,默认为21
- contrast: 对比度参数,默认为256.0
- style: 素描风格 ("classic", "detailed", "soft")
返回:
- 处理结果统计信息
"""
try:
if not os.path.exists(folder_path):
return f"错误: 文件夹不存在 - {folder_path}"
if not os.path.isdir(folder_path):
return f"错误: 路径不是文件夹 - {folder_path}"
# 查找所有支持的图片文件
image_files = []
for ext in SUPPORTED_FORMATS:
pattern = os.path.join(folder_path, f"*{ext}")
image_files.extend(glob.glob(pattern))
pattern = os.path.join(folder_path, f"*{ext.upper()}")
image_files.extend(glob.glob(pattern))
if not image_files:
return f"在文件夹中未找到支持的图片文件: {folder_path}"
success_count = 0
error_count = 0
error_messages = []
for image_file in image_files:
result = convert_image_to_sketch(image_file, blur_size, contrast, style)
if result.startswith("素描转换成功"):
success_count += 1
else:
error_count += 1
error_messages.append(f"{os.path.basename(image_file)}: {result}")
result_summary = f"批量处理完成!\n"
result_summary += f"成功转换: {success_count} 张图片\n"
result_summary += f"失败: {error_count} 张图片\n"
if error_messages:
result_summary += f"\n错误详情:\n" + "\n".join(error_messages[:5]) # 只显示前5个错误
if len(error_messages) > 5:
result_summary += f"\n... 还有 {len(error_messages) - 5} 个错误"
return result_summary
except Exception as e:
return f"错误: 批量处理过程中出现异常 - {str(e)}"
@mcp.tool()
def get_image_info(image_path: str) -> str:
"""
获取图片的基本信息。
参数:
- image_path: 图片文件的路径
返回:
- 图片信息字符串
"""
try:
# 验证图片路径
is_valid, message = validate_image_path(image_path)
if not is_valid:
return message
# 加载图片
image = load_image_safely(image_path)
if image is None:
return f"错误: 无法加载图片 - {image_path}"
# 获取图片信息
height, width = image.shape[:2]
channels = image.shape[2] if len(image.shape) == 3 else 1
file_size = os.path.getsize(image_path)
file_size_mb = file_size / (1024 * 1024)
info = f"图片信息:\n"
info += f"文件名: {os.path.basename(image_path)}\n"
info += f"尺寸: {width} x {height} 像素\n"
info += f"通道数: {channels}\n"
info += f"文件大小: {file_size_mb:.2f} MB\n"
info += f"格式: {Path(image_path).suffix.upper()}\n"
# 建议的处理参数
if width * height > 2000000: # 大于200万像素
info += f"\n建议参数 (大图片):\n"
info += f"- blur_size: 31-51\n"
info += f"- contrast: 200-300\n"
elif width * height > 500000: # 大于50万像素
info += f"\n建议参数 (中等图片):\n"
info += f"- blur_size: 21-31\n"
info += f"- contrast: 256\n"
else:
info += f"\n建议参数 (小图片):\n"
info += f"- blur_size: 11-21\n"
info += f"- contrast: 300-400\n"
return info
except Exception as e:
return f"错误: 获取图片信息时出现异常 - {str(e)}"
# 使用 @mcp.resource() 装饰器来定义一个"资源"。
# 资源代表 AI 可以访问的数据或信息。这里提供素描转换的帮助信息。
@mcp.resource("sketch://help")
def get_sketch_help() -> str:
"""
获取图片素描转换功能的帮助信息。
"""
help_text = """
🎨 图片素描转换工具使用说明
📋 功能列表:
1. convert_image_to_sketch - 单张图片素描转换
2. batch_convert_images - 批量图片素描转换
3. get_image_info - 获取图片信息和建议参数
🖼️ 支持的图片格式:
JPG, JPEG, PNG, BMP, GIF, TIFF, WEBP
🎭 素描风格:
- classic: 经典素描风格 (默认)
- detailed: 详细素描风格 (更清晰的线条)
- soft: 柔和素描风格 (更柔和的效果)
⚙️ 参数说明:
- image_path: 图片文件的完整路径 (必需)
- blur_size: 高斯模糊核大小 (3-101,奇数,默认21)
- contrast: 对比度参数 (50-500,默认256.0)
- style: 素描风格 (classic/detailed/soft,默认classic)
📝 使用示例:
1. 单张转换:
convert_image_to_sketch("/path/to/image.jpg", 21, 256.0, "classic")
2. 批量转换:
batch_convert_images("/path/to/folder", 21, 256.0, "detailed")
3. 获取图片信息:
get_image_info("/path/to/image.jpg")
💡 使用技巧:
- 大图片建议使用较大的blur_size (31-51)
- 小图片建议使用较小的blur_size (11-21)
- detailed风格适合人像和细节丰富的图片
- soft风格适合风景和需要柔和效果的图片
- 可以先用get_image_info查看图片信息和建议参数
📁 输出文件:
- 单张转换:原目录下,文件名格式为 "Sketch_{style}_{原文件名}.jpg"
- 批量转换:每张图片都在原目录下生成对应的素描版本
⚠️ 注意事项:
- 确保图片文件存在且可读
- 支持中文路径和文件名
- 处理大图片时可能需要较长时间
- 建议在处理前备份原图片
"""
return help_text
def main():
"""主函数,启动MCP服务器"""
mcp.run(transport="stdio")
if __name__ == "__main__":
main()
|
2301_80863610/undoom-sketch-mcp
|
undoom_sketch_mcp/server.py
|
Python
|
mit
| 11,528
|
# Written in 2016-2017, 2021 by Henrik Steffen Gaßmann henrik@gassmann.onl
#
# To the extent possible under law, the author(s) have dedicated all
# copyright and related and neighboring rights to this software to the
# public domain worldwide. This software is distributed without any warranty.
#
# You should have received a copy of the CC0 Public Domain Dedication
# along with this software. If not, see
#
# http://creativecommons.org/publicdomain/zero/1.0/
#
########################################################################
cmake_minimum_required(VERSION 3.10.2)
# new dependent option syntax. We are already compliant
if (POLICY CMP0127)
cmake_policy(SET CMP0127 NEW)
endif()
project(base64 LANGUAGES C VERSION 0.5.2)
include(GNUInstallDirs)
include(CMakeDependentOption)
include(CheckIncludeFile)
include(FeatureSummary)
list(APPEND CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake/Modules")
#######################################################################
# platform detection
include(TargetArch)
detect_target_architecture(_TARGET_ARCH)
check_include_file(getopt.h HAVE_GETOPT_H)
cmake_dependent_option(BASE64_BUILD_CLI "Build the cli for encoding and decoding" ON "HAVE_GETOPT_H" OFF)
add_feature_info(CLI BASE64_BUILD_CLI "enables the CLI executable for encoding and decoding")
###################################################################
# optional/conditional dependencies
find_package(OpenMP)
set_package_properties(OpenMP PROPERTIES
TYPE OPTIONAL
PURPOSE "Allows to utilize OpenMP"
)
########################################################################
# Compilation options
option(BASE64_WERROR "Treat warnings as error" ON)
option(BASE64_BUILD_TESTS "add test projects" OFF)
cmake_dependent_option(BASE64_WITH_OpenMP "use OpenMP" OFF "OpenMP_FOUND" OFF)
add_feature_info("OpenMP codec" BASE64_WITH_OpenMP "spreads codec work accross multiple threads")
cmake_dependent_option(BASE64_REGENERATE_TABLES "regenerate the codec tables" OFF "NOT CMAKE_CROSSCOMPILING" OFF)
set(_IS_X86 "_TARGET_ARCH_x86 OR _TARGET_ARCH_x64")
cmake_dependent_option(BASE64_WITH_SSSE3 "add SSSE 3 codepath" ON ${_IS_X86} OFF)
add_feature_info(SSSE3 BASE64_WITH_SSSE3 "add SSSE 3 codepath")
cmake_dependent_option(BASE64_WITH_SSE41 "add SSE 4.1 codepath" ON ${_IS_X86} OFF)
add_feature_info(SSE4.1 BASE64_WITH_SSE41 "add SSE 4.1 codepath")
cmake_dependent_option(BASE64_WITH_SSE42 "add SSE 4.2 codepath" ON ${_IS_X86} OFF)
add_feature_info(SSE4.2 BASE64_WITH_SSE42 "add SSE 4.2 codepath")
cmake_dependent_option(BASE64_WITH_AVX "add AVX codepath" ON ${_IS_X86} OFF)
add_feature_info(AVX BASE64_WITH_AVX "add AVX codepath")
cmake_dependent_option(BASE64_WITH_AVX2 "add AVX 2 codepath" ON ${_IS_X86} OFF)
add_feature_info(AVX2 BASE64_WITH_AVX2 "add AVX2 codepath")
cmake_dependent_option(BASE64_WITH_AVX512 "add AVX 512 codepath" ON ${_IS_X86} OFF)
add_feature_info(AVX512 BASE64_WITH_AVX512 "add AVX512 codepath")
cmake_dependent_option(BASE64_WITH_NEON32 "add NEON32 codepath" OFF _TARGET_ARCH_arm OFF)
add_feature_info(NEON32 BASE64_WITH_NEON32 "add NEON32 codepath")
cmake_dependent_option(BASE64_WITH_NEON64 "add NEON64 codepath" ON _TARGET_ARCH_arm64 OFF)
add_feature_info(NEON64 BASE64_WITH_NEON64 "add NEON64 codepath")
set(CMAKE_RUNTIME_OUTPUT_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/bin")
set(CMAKE_LIBRARY_OUTPUT_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/bin")
########################################################################
# Regenerate headers
if (BASE64_REGENERATE_TABLES)
# Generate tables in build folder and copy to source tree.
# Don't add the tables in the source tree to the outputs, to avoid `make clean` removing them.
add_executable(table_generator
lib/tables/table_generator.c
)
add_custom_command(OUTPUT table_dec_32bit.h "${CMAKE_CURRENT_SOURCE_DIR}/lib/tables/table_dec_32bit.h"
COMMAND table_generator > table_dec_32bit.h
COMMAND "${CMAKE_COMMAND}" -E copy table_dec_32bit.h "${CMAKE_CURRENT_SOURCE_DIR}/lib/tables/table_dec_32bit.h"
DEPENDS table_generator
)
set(Python_ADDITIONAL_VERSIONS 3)
find_package(PythonInterp REQUIRED)
add_custom_command(OUTPUT table_enc_12bit.h "${CMAKE_CURRENT_SOURCE_DIR}/lib/tables/table_enc_12bit.h"
COMMAND "${PYTHON_EXECUTABLE}" "${CMAKE_CURRENT_SOURCE_DIR}/lib/tables/table_enc_12bit.py" > table_enc_12bit.h
COMMAND "${CMAKE_COMMAND}" -E copy table_enc_12bit.h "${CMAKE_CURRENT_SOURCE_DIR}/lib/tables/table_enc_12bit.h"
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/lib/tables/table_enc_12bit.py"
)
endif()
########################################################################
# library project
add_library(base64
# library files
lib/lib.c
lib/codec_choose.c
include/libbase64.h
lib/tables/tables.c
# Add generated headers explicitly to target, to insert them in the dependency tree
lib/tables/table_dec_32bit.h
lib/tables/table_enc_12bit.h
# codec implementations
lib/arch/generic/codec.c
lib/arch/ssse3/codec.c
lib/arch/sse41/codec.c
lib/arch/sse42/codec.c
lib/arch/avx/codec.c
lib/arch/avx2/codec.c
lib/arch/avx512/codec.c
lib/arch/neon32/codec.c
lib/arch/neon64/codec.c
)
target_include_directories(base64
PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>
PRIVATE
"${CMAKE_CURRENT_BINARY_DIR}"
)
####################################################################
# platform/compiler specific configuration
set_target_properties(base64 PROPERTIES
C_STANDARD 99
C_STANDARD_REQUIRED YES
C_EXTENSIONS OFF
DEFINE_SYMBOL BASE64_EXPORTS
VERSION ${PROJECT_VERSION}
SOVERSION ${PROJECT_VERSION_MAJOR}
)
#generate_export_header(base64)
# the following definitions and those in libbase64.h have been
# kept forward compatible in case we ever switch to generate_export_header
if (BUILD_SHARED_LIBS)
set_target_properties(base64 PROPERTIES
C_VISIBILITY_PRESET hidden
)
else()
target_compile_definitions(base64
PUBLIC
BASE64_STATIC_DEFINE
)
endif()
target_compile_options(base64 PRIVATE
$<$<C_COMPILER_ID:MSVC>:
/W4
/we4013 # Error warning C4013: 'function' undefined; assuming extern returning int
/we4700 # Error warning C4700: uninitialized local variable
/we4715 # not all control paths return a value
/we4003 # not enough actual parameters for macro
/wd4456 # disable warning C4456: declaration of 'xxx' hides previous local declaration
>
$<$<NOT:$<C_COMPILER_ID:MSVC>>:
-Wall
-Wextra
-Wpedantic
>
$<$<BOOL:${BASE64_WERROR}>:$<IF:$<C_COMPILER_ID:MSVC>,/WX,-Werror>>
)
target_compile_definitions(base64 PRIVATE
$<$<C_COMPILER_ID:MSVC>:
# remove unnecessary warnings about unchecked iterators
_SCL_SECURE_NO_WARNINGS
>
)
########################################################################
# SIMD settings
include(TargetSIMDInstructionSet)
define_SIMD_compile_flags()
if (_TARGET_ARCH STREQUAL "x86" OR _TARGET_ARCH STREQUAL "x64")
macro(configure_codec _TYPE)
if (BASE64_WITH_${_TYPE})
string(TOLOWER "${_TYPE}" _DIR)
set_source_files_properties("lib/arch/${_DIR}/codec.c" PROPERTIES
COMPILE_FLAGS "${COMPILE_FLAGS_${_TYPE}}"
)
if (${ARGC} GREATER 1 AND MSVC)
set_source_files_properties("lib/arch/${_DIR}/codec.c" PROPERTIES
COMPILE_DEFINITIONS ${ARGV1}
)
endif()
endif()
endmacro()
configure_codec(SSSE3 __SSSE3__)
configure_codec(SSE41 __SSSE4_1__)
configure_codec(SSE42 __SSSE4_2__)
configure_codec(AVX)
configure_codec(AVX2)
configure_codec(AVX512)
elseif (_TARGET_ARCH STREQUAL "arm")
set(BASE64_NEON32_CFLAGS "${COMPILE_FLAGS_NEON32}" CACHE STRING "the NEON32 compile flags (for 'lib/arch/neon32/codec.c')")
mark_as_advanced(BASE64_NEON32_CFLAGS)
if (BASE64_WITH_NEON32)
set_source_files_properties("lib/arch/neon32/codec.c" PROPERTIES
COMPILE_FLAGS "${BASE64_NEON32_CFLAGS} "
)
endif()
#elseif (_TARGET_ARCH STREQUAL "arm64" AND BASE64_WITH_NEON64)
endif()
configure_file("${CMAKE_CURRENT_LIST_DIR}/cmake/config.h.in" "${CMAKE_CURRENT_BINARY_DIR}/config.h" @ONLY)
########################################################################
# OpenMP Settings
if (BASE64_WITH_OpenMP)
target_link_libraries(base64 PRIVATE OpenMP::OpenMP_C)
endif()
########################################################################
if (BASE64_BUILD_TESTS)
enable_testing()
add_subdirectory(test)
endif()
########################################################################
# base64
if (BASE64_BUILD_CLI)
add_executable(base64-bin
bin/base64.c
)
target_link_libraries(base64-bin PRIVATE base64)
set_target_properties(base64-bin PROPERTIES
OUTPUT_NAME base64
)
if (WIN32)
target_sources(base64-bin PRIVATE bin/base64.rc)
endif ()
endif()
########################################################################
# cmake install
install(DIRECTORY include/ TYPE INCLUDE)
install(TARGETS base64
EXPORT base64-targets
DESTINATION ${CMAKE_INSTALL_LIBDIR}
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
)
if (BASE64_BUILD_CLI)
install(TARGETS base64-bin EXPORT base64-targets DESTINATION ${CMAKE_INSTALL_BINDIR})
endif()
include(CMakePackageConfigHelpers)
configure_package_config_file(cmake/base64-config.cmake.in
"${CMAKE_CURRENT_BINARY_DIR}/base64-config.cmake"
INSTALL_DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}"
)
write_basic_package_version_file(
"${CMAKE_CURRENT_BINARY_DIR}/base64-config-version.cmake"
VERSION ${BASE64_VERSION}
COMPATIBILITY SameMajorVersion
)
install(FILES
"${CMAKE_CURRENT_BINARY_DIR}/base64-config.cmake"
"${CMAKE_CURRENT_BINARY_DIR}/base64-config-version.cmake"
DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}"
)
install(EXPORT base64-targets
NAMESPACE aklomp::
DESTINATION "${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME}"
)
########################################################################
feature_summary(WHAT PACKAGES_FOUND PACKAGES_NOT_FOUND ENABLED_FEATURES DISABLED_FEATURES)
|
2301_81045437/base64
|
CMakeLists.txt
|
CMake
|
bsd
| 10,403
|
CFLAGS += -std=c99 -O3 -Wall -Wextra -pedantic -DBASE64_STATIC_DEFINE
# Set OBJCOPY if not defined by environment:
OBJCOPY ?= objcopy
OBJS = \
lib/arch/avx512/codec.o \
lib/arch/avx2/codec.o \
lib/arch/generic/codec.o \
lib/arch/neon32/codec.o \
lib/arch/neon64/codec.o \
lib/arch/ssse3/codec.o \
lib/arch/sse41/codec.o \
lib/arch/sse42/codec.o \
lib/arch/avx/codec.o \
lib/lib.o \
lib/codec_choose.o \
lib/tables/tables.o
HAVE_AVX512 = 0
HAVE_AVX2 = 0
HAVE_NEON32 = 0
HAVE_NEON64 = 0
HAVE_SSSE3 = 0
HAVE_SSE41 = 0
HAVE_SSE42 = 0
HAVE_AVX = 0
# The user should supply compiler flags for the codecs they want to build.
# Check which codecs we're going to include:
ifdef AVX512_CFLAGS
HAVE_AVX512 = 1
endif
ifdef AVX2_CFLAGS
HAVE_AVX2 = 1
endif
ifdef NEON32_CFLAGS
HAVE_NEON32 = 1
endif
ifdef NEON64_CFLAGS
HAVE_NEON64 = 1
endif
ifdef SSSE3_CFLAGS
HAVE_SSSE3 = 1
endif
ifdef SSE41_CFLAGS
HAVE_SSE41 = 1
endif
ifdef SSE42_CFLAGS
HAVE_SSE42 = 1
endif
ifdef AVX_CFLAGS
HAVE_AVX = 1
endif
ifdef OPENMP
CFLAGS += -fopenmp
endif
TARGET := $(shell $(CC) -dumpmachine)
.PHONY: all analyze clean
all: bin/base64 lib/libbase64.o
bin/base64: bin/base64.o lib/libbase64.o
$(CC) $(CFLAGS) -o $@ $^
# Workaround: mangle exported function names on MinGW32.
lib/exports.build.txt: lib/exports.txt
ifeq (i686-w64-mingw32, $(TARGET))
sed -e 's/^/_/' $< > $@
else
cp -f $< $@
endif
lib/libbase64.o: lib/exports.build.txt $(OBJS)
$(LD) -r -o $@ $(OBJS)
$(OBJCOPY) --keep-global-symbols=$< $@
lib/config.h:
@echo "#define HAVE_AVX512 $(HAVE_AVX512)" > $@
@echo "#define HAVE_AVX2 $(HAVE_AVX2)" >> $@
@echo "#define HAVE_NEON32 $(HAVE_NEON32)" >> $@
@echo "#define HAVE_NEON64 $(HAVE_NEON64)" >> $@
@echo "#define HAVE_SSSE3 $(HAVE_SSSE3)" >> $@
@echo "#define HAVE_SSE41 $(HAVE_SSE41)" >> $@
@echo "#define HAVE_SSE42 $(HAVE_SSE42)" >> $@
@echo "#define HAVE_AVX $(HAVE_AVX)" >> $@
$(OBJS): lib/config.h
$(OBJS): CFLAGS += -Ilib
lib/arch/avx512/codec.o: CFLAGS += $(AVX512_CFLAGS)
lib/arch/avx2/codec.o: CFLAGS += $(AVX2_CFLAGS)
lib/arch/neon32/codec.o: CFLAGS += $(NEON32_CFLAGS)
lib/arch/neon64/codec.o: CFLAGS += $(NEON64_CFLAGS)
lib/arch/ssse3/codec.o: CFLAGS += $(SSSE3_CFLAGS)
lib/arch/sse41/codec.o: CFLAGS += $(SSE41_CFLAGS)
lib/arch/sse42/codec.o: CFLAGS += $(SSE42_CFLAGS)
lib/arch/avx/codec.o: CFLAGS += $(AVX_CFLAGS)
%.o: %.c
$(CC) $(CFLAGS) -o $@ -c $<
analyze: clean
scan-build --use-analyzer=`which clang` --status-bugs make
clean:
rm -f bin/base64 bin/base64.o lib/libbase64.o lib/config.h lib/exports.build.txt $(OBJS)
|
2301_81045437/base64
|
Makefile
|
Makefile
|
bsd
| 2,620
|
# Written in 2017 by Henrik Steffen Gaßmann henrik@gassmann.onl
#
# To the extent possible under law, the author(s) have dedicated all
# copyright and related and neighboring rights to this software to the
# public domain worldwide. This software is distributed without any warranty.
#
# You should have received a copy of the CC0 Public Domain Dedication
# along with this software. If not, see
#
# http://creativecommons.org/publicdomain/zero/1.0/
#
########################################################################
set(TARGET_ARCHITECTURE_TEST_FILE "${CMAKE_CURRENT_LIST_DIR}/../test-arch.c")
function(detect_target_architecture OUTPUT_VARIABLE)
message(STATUS "${CMAKE_CURRENT_LIST_DIR}")
try_compile(_IGNORED "${CMAKE_CURRENT_BINARY_DIR}"
"${TARGET_ARCHITECTURE_TEST_FILE}"
OUTPUT_VARIABLE _LOG
)
string(REGEX MATCH "##arch=([^#]+)##" _IGNORED "${_LOG}")
set(${OUTPUT_VARIABLE} "${CMAKE_MATCH_1}" PARENT_SCOPE)
set("${OUTPUT_VARIABLE}_${CMAKE_MATCH_1}" 1 PARENT_SCOPE)
if (CMAKE_MATCH_1 STREQUAL "unknown")
message(WARNING "could not detect the target architecture.")
endif()
endfunction()
|
2301_81045437/base64
|
cmake/Modules/TargetArch.cmake
|
CMake
|
bsd
| 1,167
|
# Written in 2016-2017 by Henrik Steffen Gaßmann henrik@gassmann.onl
#
# To the extent possible under law, the author(s) have dedicated all
# copyright and related and neighboring rights to this software to the
# public domain worldwide. This software is distributed without any warranty.
#
# You should have received a copy of the CC0 Public Domain Dedication
# along with this software. If not, see
#
# http://creativecommons.org/publicdomain/zero/1.0/
#
########################################################################
########################################################################
# compiler flags definition
macro(define_SIMD_compile_flags)
if (CMAKE_C_COMPILER_ID STREQUAL "GNU" OR CMAKE_C_COMPILER_ID STREQUAL "Clang" OR CMAKE_C_COMPILER_ID STREQUAL "AppleClang")
# x86
set(COMPILE_FLAGS_SSSE3 "-mssse3")
set(COMPILE_FLAGS_SSE41 "-msse4.1")
set(COMPILE_FLAGS_SSE42 "-msse4.2")
set(COMPILE_FLAGS_AVX "-mavx")
set(COMPILE_FLAGS_AVX2 "-mavx2")
set(COMPILE_FLAGS_AVX512 "-mavx512vl -mavx512vbmi")
#arm
set(COMPILE_FLAGS_NEON32 "-mfpu=neon")
elseif(MSVC)
set(COMPILE_FLAGS_SSSE3 " ")
set(COMPILE_FLAGS_SSE41 " ")
set(COMPILE_FLAGS_SSE42 " ")
set(COMPILE_FLAGS_AVX "/arch:AVX")
set(COMPILE_FLAGS_AVX2 "/arch:AVX2")
set(COMPILE_FLAGS_AVX512 "/arch:AVX512")
endif()
endmacro(define_SIMD_compile_flags)
|
2301_81045437/base64
|
cmake/Modules/TargetSIMDInstructionSet.cmake
|
CMake
|
bsd
| 1,458
|
@PACKAGE_INIT@
include("${CMAKE_CURRENT_LIST_DIR}/base64-targets.cmake")
check_required_components(base64)
|
2301_81045437/base64
|
cmake/base64-config.cmake.in
|
CMake
|
bsd
| 109
|
// Written in 2017 by Henrik Steffen Gaßmann henrik@gassmann.onl
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to the
// public domain worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software. If not, see
//
// http://creativecommons.org/publicdomain/zero/1.0/
//
////////////////////////////////////////////////////////////////////////////////
// ARM 64-Bit
#if defined(__aarch64__)
#error ##arch=arm64##
// ARM 32-Bit
#elif defined(__arm__) \
|| defined(_M_ARM)
#error ##arch=arm##
// x86 64-Bit
#elif defined(__x86_64__) \
|| defined(_M_X64)
#error ##arch=x64##
// x86 32-Bit
#elif defined(__i386__) \
|| defined(_M_IX86)
#error ##arch=x86##
#else
#error ##arch=unknown##
#endif
|
2301_81045437/base64
|
cmake/test-arch.c
|
C
|
bsd
| 903
|
#ifndef LIBBASE64_H
#define LIBBASE64_H
#include <stddef.h> /* size_t */
#if defined(_WIN32) || defined(__CYGWIN__)
#define BASE64_SYMBOL_IMPORT __declspec(dllimport)
#define BASE64_SYMBOL_EXPORT __declspec(dllexport)
#define BASE64_SYMBOL_PRIVATE
#elif __GNUC__ >= 4
#define BASE64_SYMBOL_IMPORT __attribute__ ((visibility ("default")))
#define BASE64_SYMBOL_EXPORT __attribute__ ((visibility ("default")))
#define BASE64_SYMBOL_PRIVATE __attribute__ ((visibility ("hidden")))
#else
#define BASE64_SYMBOL_IMPORT
#define BASE64_SYMBOL_EXPORT
#define BASE64_SYMBOL_PRIVATE
#endif
#if defined(BASE64_STATIC_DEFINE)
#define BASE64_EXPORT
#define BASE64_NO_EXPORT
#else
#if defined(BASE64_EXPORTS) // defined if we are building the shared library
#define BASE64_EXPORT BASE64_SYMBOL_EXPORT
#else
#define BASE64_EXPORT BASE64_SYMBOL_IMPORT
#endif
#define BASE64_NO_EXPORT BASE64_SYMBOL_PRIVATE
#endif
#ifdef __cplusplus
extern "C" {
#endif
/* These are the flags that can be passed in the `flags` argument. The values
* below force the use of a given codec, even if that codec is a no-op in the
* current build. Used in testing. Set to 0 for the default behavior, which is
* runtime feature detection on x86, a compile-time fixed codec on ARM, and
* the plain codec on other platforms: */
#define BASE64_FORCE_AVX2 (1 << 0)
#define BASE64_FORCE_NEON32 (1 << 1)
#define BASE64_FORCE_NEON64 (1 << 2)
#define BASE64_FORCE_PLAIN (1 << 3)
#define BASE64_FORCE_SSSE3 (1 << 4)
#define BASE64_FORCE_SSE41 (1 << 5)
#define BASE64_FORCE_SSE42 (1 << 6)
#define BASE64_FORCE_AVX (1 << 7)
#define BASE64_FORCE_AVX512 (1 << 8)
struct base64_state {
int eof;
int bytes;
int flags;
unsigned char carry;
};
/* Wrapper function to encode a plain string of given length. Output is written
* to *out without trailing zero. Output length in bytes is written to *outlen.
* The buffer in `out` has been allocated by the caller and is at least 4/3 the
* size of the input. See above for `flags`; set to 0 for default operation: */
void BASE64_EXPORT base64_encode
( const char *src
, size_t srclen
, char *out
, size_t *outlen
, int flags
) ;
/* Call this before calling base64_stream_encode() to init the state. See above
* for `flags`; set to 0 for default operation: */
void BASE64_EXPORT base64_stream_encode_init
( struct base64_state *state
, int flags
) ;
/* Encodes the block of data of given length at `src`, into the buffer at
* `out`. Caller is responsible for allocating a large enough out-buffer; it
* must be at least 4/3 the size of the in-buffer, but take some margin. Places
* the number of new bytes written into `outlen` (which is set to zero when the
* function starts). Does not zero-terminate or finalize the output. */
void BASE64_EXPORT base64_stream_encode
( struct base64_state *state
, const char *src
, size_t srclen
, char *out
, size_t *outlen
) ;
/* Finalizes the output begun by previous calls to `base64_stream_encode()`.
* Adds the required end-of-stream markers if appropriate. `outlen` is modified
* and will contain the number of new bytes written at `out` (which will quite
* often be zero). */
void BASE64_EXPORT base64_stream_encode_final
( struct base64_state *state
, char *out
, size_t *outlen
) ;
/* Wrapper function to decode a plain string of given length. Output is written
* to *out without trailing zero. Output length in bytes is written to *outlen.
* The buffer in `out` has been allocated by the caller and is at least 3/4 the
* size of the input. See above for `flags`, set to 0 for default operation: */
int BASE64_EXPORT base64_decode
( const char *src
, size_t srclen
, char *out
, size_t *outlen
, int flags
) ;
/* Call this before calling base64_stream_decode() to init the state. See above
* for `flags`; set to 0 for default operation: */
void BASE64_EXPORT base64_stream_decode_init
( struct base64_state *state
, int flags
) ;
/* Decodes the block of data of given length at `src`, into the buffer at
* `out`. Caller is responsible for allocating a large enough out-buffer; it
* must be at least 3/4 the size of the in-buffer, but take some margin. Places
* the number of new bytes written into `outlen` (which is set to zero when the
* function starts). Does not zero-terminate the output. Returns 1 if all is
* well, and 0 if a decoding error was found, such as an invalid character.
* Returns -1 if the chosen codec is not included in the current build. Used by
* the test harness to check whether a codec is available for testing. */
int BASE64_EXPORT base64_stream_decode
( struct base64_state *state
, const char *src
, size_t srclen
, char *out
, size_t *outlen
) ;
#ifdef __cplusplus
}
#endif
#endif /* LIBBASE64_H */
|
2301_81045437/base64
|
include/libbase64.h
|
C
|
bsd
| 4,789
|
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "../../../include/libbase64.h"
#include "../../tables/tables.h"
#include "../../codecs.h"
#include "config.h"
#include "../../env.h"
#if HAVE_AVX
#include <immintrin.h>
// Only enable inline assembly on supported compilers and on 64-bit CPUs.
#ifndef BASE64_AVX_USE_ASM
# if (defined(__GNUC__) || defined(__clang__)) && BASE64_WORDSIZE == 64
# define BASE64_AVX_USE_ASM 1
# else
# define BASE64_AVX_USE_ASM 0
# endif
#endif
#include "../ssse3/dec_reshuffle.c"
#include "../ssse3/dec_loop.c"
#if BASE64_AVX_USE_ASM
# include "enc_loop_asm.c"
#else
# include "../ssse3/enc_translate.c"
# include "../ssse3/enc_reshuffle.c"
# include "../ssse3/enc_loop.c"
#endif
#endif // HAVE_AVX
void
base64_stream_encode_avx BASE64_ENC_PARAMS
{
#if HAVE_AVX
#include "../generic/enc_head.c"
// For supported compilers, use a hand-optimized inline assembly
// encoder. Otherwise fall back on the SSSE3 encoder, but compiled with
// AVX flags to generate better optimized AVX code.
#if BASE64_AVX_USE_ASM
enc_loop_avx(&s, &slen, &o, &olen);
#else
enc_loop_ssse3(&s, &slen, &o, &olen);
#endif
#include "../generic/enc_tail.c"
#else
base64_enc_stub(state, src, srclen, out, outlen);
#endif
}
int
base64_stream_decode_avx BASE64_DEC_PARAMS
{
#if HAVE_AVX
#include "../generic/dec_head.c"
dec_loop_ssse3(&s, &slen, &o, &olen);
#include "../generic/dec_tail.c"
#else
return base64_dec_stub(state, src, srclen, out, outlen);
#endif
}
|
2301_81045437/base64
|
lib/arch/avx/codec.c
|
C
|
bsd
| 1,504
|
// Apologies in advance for combining the preprocessor with inline assembly,
// two notoriously gnarly parts of C, but it was necessary to avoid a lot of
// code repetition. The preprocessor is used to template large sections of
// inline assembly that differ only in the registers used. If the code was
// written out by hand, it would become very large and hard to audit.
// Generate a block of inline assembly that loads register R0 from memory. The
// offset at which the register is loaded is set by the given round.
#define LOAD(R0, ROUND) \
"vlddqu ("#ROUND" * 12)(%[src]), %["R0"] \n\t"
// Generate a block of inline assembly that deinterleaves and shuffles register
// R0 using preloaded constants. Outputs in R0 and R1.
#define SHUF(R0, R1, R2) \
"vpshufb %[lut0], %["R0"], %["R1"] \n\t" \
"vpand %["R1"], %[msk0], %["R2"] \n\t" \
"vpand %["R1"], %[msk2], %["R1"] \n\t" \
"vpmulhuw %["R2"], %[msk1], %["R2"] \n\t" \
"vpmullw %["R1"], %[msk3], %["R1"] \n\t" \
"vpor %["R1"], %["R2"], %["R1"] \n\t"
// Generate a block of inline assembly that takes R0 and R1 and translates
// their contents to the base64 alphabet, using preloaded constants.
#define TRAN(R0, R1, R2) \
"vpsubusb %[n51], %["R1"], %["R0"] \n\t" \
"vpcmpgtb %[n25], %["R1"], %["R2"] \n\t" \
"vpsubb %["R2"], %["R0"], %["R0"] \n\t" \
"vpshufb %["R0"], %[lut1], %["R2"] \n\t" \
"vpaddb %["R1"], %["R2"], %["R0"] \n\t"
// Generate a block of inline assembly that stores the given register R0 at an
// offset set by the given round.
#define STOR(R0, ROUND) \
"vmovdqu %["R0"], ("#ROUND" * 16)(%[dst]) \n\t"
// Generate a block of inline assembly that generates a single self-contained
// encoder round: fetch the data, process it, and store the result. Then update
// the source and destination pointers.
#define ROUND() \
LOAD("a", 0) \
SHUF("a", "b", "c") \
TRAN("a", "b", "c") \
STOR("a", 0) \
"add $12, %[src] \n\t" \
"add $16, %[dst] \n\t"
// Define a macro that initiates a three-way interleaved encoding round by
// preloading registers a, b and c from memory.
// The register graph shows which registers are in use during each step, and
// is a visual aid for choosing registers for that step. Symbol index:
//
// + indicates that a register is loaded by that step.
// | indicates that a register is in use and must not be touched.
// - indicates that a register is decommissioned by that step.
// x indicates that a register is used as a temporary by that step.
// V indicates that a register is an input or output to the macro.
//
#define ROUND_3_INIT() /* a b c d e f */ \
LOAD("a", 0) /* + */ \
SHUF("a", "d", "e") /* | + x */ \
LOAD("b", 1) /* | + | */ \
TRAN("a", "d", "e") /* | | - x */ \
LOAD("c", 2) /* V V V */
// Define a macro that translates, shuffles and stores the input registers A, B
// and C, and preloads registers D, E and F for the next round.
// This macro can be arbitrarily daisy-chained by feeding output registers D, E
// and F back into the next round as input registers A, B and C. The macro
// carefully interleaves memory operations with data operations for optimal
// pipelined performance.
#define ROUND_3(ROUND, A,B,C,D,E,F) /* A B C D E F */ \
LOAD(D, (ROUND + 3)) /* V V V + */ \
SHUF(B, E, F) /* | | | | + x */ \
STOR(A, (ROUND + 0)) /* - | | | | */ \
TRAN(B, E, F) /* | | | - x */ \
LOAD(E, (ROUND + 4)) /* | | | + */ \
SHUF(C, A, F) /* + | | | | x */ \
STOR(B, (ROUND + 1)) /* | - | | | */ \
TRAN(C, A, F) /* - | | | x */ \
LOAD(F, (ROUND + 5)) /* | | | + */ \
SHUF(D, A, B) /* + x | | | | */ \
STOR(C, (ROUND + 2)) /* | - | | | */ \
TRAN(D, A, B) /* - x V V V */
// Define a macro that terminates a ROUND_3 macro by taking pre-loaded
// registers D, E and F, and translating, shuffling and storing them.
#define ROUND_3_END(ROUND, A,B,C,D,E,F) /* A B C D E F */ \
SHUF(E, A, B) /* + x V V V */ \
STOR(D, (ROUND + 3)) /* | - | | */ \
TRAN(E, A, B) /* - x | | */ \
SHUF(F, C, D) /* + x | | */ \
STOR(E, (ROUND + 4)) /* | - | */ \
TRAN(F, C, D) /* - x | */ \
STOR(F, (ROUND + 5)) /* - */
// Define a type A round. Inputs are a, b, and c, outputs are d, e, and f.
#define ROUND_3_A(ROUND) \
ROUND_3(ROUND, "a", "b", "c", "d", "e", "f")
// Define a type B round. Inputs and outputs are swapped with regard to type A.
#define ROUND_3_B(ROUND) \
ROUND_3(ROUND, "d", "e", "f", "a", "b", "c")
// Terminating macro for a type A round.
#define ROUND_3_A_LAST(ROUND) \
ROUND_3_A(ROUND) \
ROUND_3_END(ROUND, "a", "b", "c", "d", "e", "f")
// Terminating macro for a type B round.
#define ROUND_3_B_LAST(ROUND) \
ROUND_3_B(ROUND) \
ROUND_3_END(ROUND, "d", "e", "f", "a", "b", "c")
// Suppress clang's warning that the literal string in the asm statement is
// overlong (longer than the ISO-mandated minimum size of 4095 bytes for C99
// compilers). It may be true, but the goal here is not C99 portability.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Woverlength-strings"
static inline void
enc_loop_avx (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
// For a clearer explanation of the algorithm used by this function,
// please refer to the plain (not inline assembly) implementation. This
// function follows the same basic logic.
if (*slen < 16) {
return;
}
// Process blocks of 12 bytes at a time. Input is read in blocks of 16
// bytes, so "reserve" four bytes from the input buffer to ensure that
// we never read beyond the end of the input buffer.
size_t rounds = (*slen - 4) / 12;
*slen -= rounds * 12; // 12 bytes consumed per round
*olen += rounds * 16; // 16 bytes produced per round
// Number of times to go through the 36x loop.
size_t loops = rounds / 36;
// Number of rounds remaining after the 36x loop.
rounds %= 36;
// Lookup tables.
const __m128i lut0 = _mm_set_epi8(
10, 11, 9, 10, 7, 8, 6, 7, 4, 5, 3, 4, 1, 2, 0, 1);
const __m128i lut1 = _mm_setr_epi8(
65, 71, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -19, -16, 0, 0);
// Temporary registers.
__m128i a, b, c, d, e, f;
__asm__ volatile (
// If there are 36 rounds or more, enter a 36x unrolled loop of
// interleaved encoding rounds. The rounds interleave memory
// operations (load/store) with data operations (table lookups,
// etc) to maximize pipeline throughput.
" test %[loops], %[loops] \n\t"
" jz 18f \n\t"
" jmp 36f \n\t"
" \n\t"
".balign 64 \n\t"
"36: " ROUND_3_INIT()
" " ROUND_3_A( 0)
" " ROUND_3_B( 3)
" " ROUND_3_A( 6)
" " ROUND_3_B( 9)
" " ROUND_3_A(12)
" " ROUND_3_B(15)
" " ROUND_3_A(18)
" " ROUND_3_B(21)
" " ROUND_3_A(24)
" " ROUND_3_B(27)
" " ROUND_3_A_LAST(30)
" add $(12 * 36), %[src] \n\t"
" add $(16 * 36), %[dst] \n\t"
" dec %[loops] \n\t"
" jnz 36b \n\t"
// Enter an 18x unrolled loop for rounds of 18 or more.
"18: cmp $18, %[rounds] \n\t"
" jl 9f \n\t"
" " ROUND_3_INIT()
" " ROUND_3_A(0)
" " ROUND_3_B(3)
" " ROUND_3_A(6)
" " ROUND_3_B(9)
" " ROUND_3_A_LAST(12)
" sub $18, %[rounds] \n\t"
" add $(12 * 18), %[src] \n\t"
" add $(16 * 18), %[dst] \n\t"
// Enter a 9x unrolled loop for rounds of 9 or more.
"9: cmp $9, %[rounds] \n\t"
" jl 6f \n\t"
" " ROUND_3_INIT()
" " ROUND_3_A(0)
" " ROUND_3_B_LAST(3)
" sub $9, %[rounds] \n\t"
" add $(12 * 9), %[src] \n\t"
" add $(16 * 9), %[dst] \n\t"
// Enter a 6x unrolled loop for rounds of 6 or more.
"6: cmp $6, %[rounds] \n\t"
" jl 55f \n\t"
" " ROUND_3_INIT()
" " ROUND_3_A_LAST(0)
" sub $6, %[rounds] \n\t"
" add $(12 * 6), %[src] \n\t"
" add $(16 * 6), %[dst] \n\t"
// Dispatch the remaining rounds 0..5.
"55: cmp $3, %[rounds] \n\t"
" jg 45f \n\t"
" je 3f \n\t"
" cmp $1, %[rounds] \n\t"
" jg 2f \n\t"
" je 1f \n\t"
" jmp 0f \n\t"
"45: cmp $4, %[rounds] \n\t"
" je 4f \n\t"
// Block of non-interlaced encoding rounds, which can each
// individually be jumped to. Rounds fall through to the next.
"5: " ROUND()
"4: " ROUND()
"3: " ROUND()
"2: " ROUND()
"1: " ROUND()
"0: \n\t"
// Outputs (modified).
: [rounds] "+r" (rounds),
[loops] "+r" (loops),
[src] "+r" (*s),
[dst] "+r" (*o),
[a] "=&x" (a),
[b] "=&x" (b),
[c] "=&x" (c),
[d] "=&x" (d),
[e] "=&x" (e),
[f] "=&x" (f)
// Inputs (not modified).
: [lut0] "x" (lut0),
[lut1] "x" (lut1),
[msk0] "x" (_mm_set1_epi32(0x0FC0FC00)),
[msk1] "x" (_mm_set1_epi32(0x04000040)),
[msk2] "x" (_mm_set1_epi32(0x003F03F0)),
[msk3] "x" (_mm_set1_epi32(0x01000010)),
[n51] "x" (_mm_set1_epi8(51)),
[n25] "x" (_mm_set1_epi8(25))
// Clobbers.
: "cc", "memory"
);
}
#pragma GCC diagnostic pop
|
2301_81045437/base64
|
lib/arch/avx/enc_loop_asm.c
|
C
|
bsd
| 9,314
|
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "../../../include/libbase64.h"
#include "../../tables/tables.h"
#include "../../codecs.h"
#include "config.h"
#include "../../env.h"
#if HAVE_AVX2
#include <immintrin.h>
// Only enable inline assembly on supported compilers and on 64-bit CPUs.
#ifndef BASE64_AVX2_USE_ASM
# if (defined(__GNUC__) || defined(__clang__)) && BASE64_WORDSIZE == 64
# define BASE64_AVX2_USE_ASM 1
# else
# define BASE64_AVX2_USE_ASM 0
# endif
#endif
#include "dec_reshuffle.c"
#include "dec_loop.c"
#if BASE64_AVX2_USE_ASM
# include "enc_loop_asm.c"
#else
# include "enc_translate.c"
# include "enc_reshuffle.c"
# include "enc_loop.c"
#endif
#endif // HAVE_AVX2
void
base64_stream_encode_avx2 BASE64_ENC_PARAMS
{
#if HAVE_AVX2
#include "../generic/enc_head.c"
enc_loop_avx2(&s, &slen, &o, &olen);
#include "../generic/enc_tail.c"
#else
base64_enc_stub(state, src, srclen, out, outlen);
#endif
}
int
base64_stream_decode_avx2 BASE64_DEC_PARAMS
{
#if HAVE_AVX2
#include "../generic/dec_head.c"
dec_loop_avx2(&s, &slen, &o, &olen);
#include "../generic/dec_tail.c"
#else
return base64_dec_stub(state, src, srclen, out, outlen);
#endif
}
|
2301_81045437/base64
|
lib/arch/avx2/codec.c
|
C
|
bsd
| 1,199
|
static BASE64_FORCE_INLINE int
dec_loop_avx2_inner (const uint8_t **s, uint8_t **o, size_t *rounds)
{
const __m256i lut_lo = _mm256_setr_epi8(
0x15, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x13, 0x1A, 0x1B, 0x1B, 0x1B, 0x1A,
0x15, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x13, 0x1A, 0x1B, 0x1B, 0x1B, 0x1A);
const __m256i lut_hi = _mm256_setr_epi8(
0x10, 0x10, 0x01, 0x02, 0x04, 0x08, 0x04, 0x08,
0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10,
0x10, 0x10, 0x01, 0x02, 0x04, 0x08, 0x04, 0x08,
0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10);
const __m256i lut_roll = _mm256_setr_epi8(
0, 16, 19, 4, -65, -65, -71, -71,
0, 0, 0, 0, 0, 0, 0, 0,
0, 16, 19, 4, -65, -65, -71, -71,
0, 0, 0, 0, 0, 0, 0, 0);
const __m256i mask_2F = _mm256_set1_epi8(0x2F);
// Load input:
__m256i str = _mm256_loadu_si256((__m256i *) *s);
// See the SSSE3 decoder for an explanation of the algorithm.
const __m256i hi_nibbles = _mm256_and_si256(_mm256_srli_epi32(str, 4), mask_2F);
const __m256i lo_nibbles = _mm256_and_si256(str, mask_2F);
const __m256i hi = _mm256_shuffle_epi8(lut_hi, hi_nibbles);
const __m256i lo = _mm256_shuffle_epi8(lut_lo, lo_nibbles);
if (!_mm256_testz_si256(lo, hi)) {
return 0;
}
const __m256i eq_2F = _mm256_cmpeq_epi8(str, mask_2F);
const __m256i roll = _mm256_shuffle_epi8(lut_roll, _mm256_add_epi8(eq_2F, hi_nibbles));
// Now simply add the delta values to the input:
str = _mm256_add_epi8(str, roll);
// Reshuffle the input to packed 12-byte output format:
str = dec_reshuffle(str);
// Store the output:
_mm256_storeu_si256((__m256i *) *o, str);
*s += 32;
*o += 24;
*rounds -= 1;
return 1;
}
static inline void
dec_loop_avx2 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
if (*slen < 45) {
return;
}
// Process blocks of 32 bytes per round. Because 8 extra zero bytes are
// written after the output, ensure that there will be at least 13
// bytes of input data left to cover the gap. (11 data bytes and up to
// two end-of-string markers.)
size_t rounds = (*slen - 13) / 32;
*slen -= rounds * 32; // 32 bytes consumed per round
*olen += rounds * 24; // 24 bytes produced per round
do {
if (rounds >= 8) {
if (dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds)) {
continue;
}
break;
}
if (rounds >= 4) {
if (dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds)) {
continue;
}
break;
}
if (rounds >= 2) {
if (dec_loop_avx2_inner(s, o, &rounds) &&
dec_loop_avx2_inner(s, o, &rounds)) {
continue;
}
break;
}
dec_loop_avx2_inner(s, o, &rounds);
break;
} while (rounds > 0);
// Adjust for any rounds that were skipped:
*slen += rounds * 32;
*olen -= rounds * 24;
}
|
2301_81045437/base64
|
lib/arch/avx2/dec_loop.c
|
C
|
bsd
| 3,229
|
static BASE64_FORCE_INLINE __m256i
dec_reshuffle (const __m256i in)
{
// in, lower lane, bits, upper case are most significant bits, lower
// case are least significant bits:
// 00llllll 00kkkkLL 00jjKKKK 00JJJJJJ
// 00iiiiii 00hhhhII 00ggHHHH 00GGGGGG
// 00ffffff 00eeeeFF 00ddEEEE 00DDDDDD
// 00cccccc 00bbbbCC 00aaBBBB 00AAAAAA
const __m256i merge_ab_and_bc = _mm256_maddubs_epi16(in, _mm256_set1_epi32(0x01400140));
// 0000kkkk LLllllll 0000JJJJ JJjjKKKK
// 0000hhhh IIiiiiii 0000GGGG GGggHHHH
// 0000eeee FFffffff 0000DDDD DDddEEEE
// 0000bbbb CCcccccc 0000AAAA AAaaBBBB
__m256i out = _mm256_madd_epi16(merge_ab_and_bc, _mm256_set1_epi32(0x00011000));
// 00000000 JJJJJJjj KKKKkkkk LLllllll
// 00000000 GGGGGGgg HHHHhhhh IIiiiiii
// 00000000 DDDDDDdd EEEEeeee FFffffff
// 00000000 AAAAAAaa BBBBbbbb CCcccccc
// Pack bytes together in each lane:
out = _mm256_shuffle_epi8(out, _mm256_setr_epi8(
2, 1, 0, 6, 5, 4, 10, 9, 8, 14, 13, 12, -1, -1, -1, -1,
2, 1, 0, 6, 5, 4, 10, 9, 8, 14, 13, 12, -1, -1, -1, -1));
// 00000000 00000000 00000000 00000000
// LLllllll KKKKkkkk JJJJJJjj IIiiiiii
// HHHHhhhh GGGGGGgg FFffffff EEEEeeee
// DDDDDDdd CCcccccc BBBBbbbb AAAAAAaa
// Pack lanes:
return _mm256_permutevar8x32_epi32(out, _mm256_setr_epi32(0, 1, 2, 4, 5, 6, -1, -1));
}
|
2301_81045437/base64
|
lib/arch/avx2/dec_reshuffle.c
|
C
|
bsd
| 1,304
|
static BASE64_FORCE_INLINE void
enc_loop_avx2_inner_first (const uint8_t **s, uint8_t **o)
{
// First load is done at s - 0 to not get a segfault:
__m256i src = _mm256_loadu_si256((__m256i *) *s);
// Shift by 4 bytes, as required by enc_reshuffle:
src = _mm256_permutevar8x32_epi32(src, _mm256_setr_epi32(0, 0, 1, 2, 3, 4, 5, 6));
// Reshuffle, translate, store:
src = enc_reshuffle(src);
src = enc_translate(src);
_mm256_storeu_si256((__m256i *) *o, src);
// Subsequent loads will be done at s - 4, set pointer for next round:
*s += 20;
*o += 32;
}
static BASE64_FORCE_INLINE void
enc_loop_avx2_inner (const uint8_t **s, uint8_t **o)
{
// Load input:
__m256i src = _mm256_loadu_si256((__m256i *) *s);
// Reshuffle, translate, store:
src = enc_reshuffle(src);
src = enc_translate(src);
_mm256_storeu_si256((__m256i *) *o, src);
*s += 24;
*o += 32;
}
static inline void
enc_loop_avx2 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
if (*slen < 32) {
return;
}
// Process blocks of 24 bytes at a time. Because blocks are loaded 32
// bytes at a time an offset of -4, ensure that there will be at least
// 4 remaining bytes after the last round, so that the final read will
// not pass beyond the bounds of the input buffer:
size_t rounds = (*slen - 4) / 24;
*slen -= rounds * 24; // 24 bytes consumed per round
*olen += rounds * 32; // 32 bytes produced per round
// The first loop iteration requires special handling to ensure that
// the read, which is done at an offset, does not underflow the buffer:
enc_loop_avx2_inner_first(s, o);
rounds--;
while (rounds > 0) {
if (rounds >= 8) {
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
rounds -= 8;
continue;
}
if (rounds >= 4) {
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
rounds -= 4;
continue;
}
if (rounds >= 2) {
enc_loop_avx2_inner(s, o);
enc_loop_avx2_inner(s, o);
rounds -= 2;
continue;
}
enc_loop_avx2_inner(s, o);
break;
}
// Add the offset back:
*s += 4;
}
|
2301_81045437/base64
|
lib/arch/avx2/enc_loop.c
|
C
|
bsd
| 2,293
|
// Apologies in advance for combining the preprocessor with inline assembly,
// two notoriously gnarly parts of C, but it was necessary to avoid a lot of
// code repetition. The preprocessor is used to template large sections of
// inline assembly that differ only in the registers used. If the code was
// written out by hand, it would become very large and hard to audit.
// Generate a block of inline assembly that loads register R0 from memory. The
// offset at which the register is loaded is set by the given round and a
// constant offset.
#define LOAD(R0, ROUND, OFFSET) \
"vlddqu ("#ROUND" * 24 + "#OFFSET")(%[src]), %["R0"] \n\t"
// Generate a block of inline assembly that deinterleaves and shuffles register
// R0 using preloaded constants. Outputs in R0 and R1.
#define SHUF(R0, R1, R2) \
"vpshufb %[lut0], %["R0"], %["R1"] \n\t" \
"vpand %["R1"], %[msk0], %["R2"] \n\t" \
"vpand %["R1"], %[msk2], %["R1"] \n\t" \
"vpmulhuw %["R2"], %[msk1], %["R2"] \n\t" \
"vpmullw %["R1"], %[msk3], %["R1"] \n\t" \
"vpor %["R1"], %["R2"], %["R1"] \n\t"
// Generate a block of inline assembly that takes R0 and R1 and translates
// their contents to the base64 alphabet, using preloaded constants.
#define TRAN(R0, R1, R2) \
"vpsubusb %[n51], %["R1"], %["R0"] \n\t" \
"vpcmpgtb %[n25], %["R1"], %["R2"] \n\t" \
"vpsubb %["R2"], %["R0"], %["R0"] \n\t" \
"vpshufb %["R0"], %[lut1], %["R2"] \n\t" \
"vpaddb %["R1"], %["R2"], %["R0"] \n\t"
// Generate a block of inline assembly that stores the given register R0 at an
// offset set by the given round.
#define STOR(R0, ROUND) \
"vmovdqu %["R0"], ("#ROUND" * 32)(%[dst]) \n\t"
// Generate a block of inline assembly that generates a single self-contained
// encoder round: fetch the data, process it, and store the result. Then update
// the source and destination pointers.
#define ROUND() \
LOAD("a", 0, -4) \
SHUF("a", "b", "c") \
TRAN("a", "b", "c") \
STOR("a", 0) \
"add $24, %[src] \n\t" \
"add $32, %[dst] \n\t"
// Define a macro that initiates a three-way interleaved encoding round by
// preloading registers a, b and c from memory.
// The register graph shows which registers are in use during each step, and
// is a visual aid for choosing registers for that step. Symbol index:
//
// + indicates that a register is loaded by that step.
// | indicates that a register is in use and must not be touched.
// - indicates that a register is decommissioned by that step.
// x indicates that a register is used as a temporary by that step.
// V indicates that a register is an input or output to the macro.
//
#define ROUND_3_INIT() /* a b c d e f */ \
LOAD("a", 0, -4) /* + */ \
SHUF("a", "d", "e") /* | + x */ \
LOAD("b", 1, -4) /* | + | */ \
TRAN("a", "d", "e") /* | | - x */ \
LOAD("c", 2, -4) /* V V V */
// Define a macro that translates, shuffles and stores the input registers A, B
// and C, and preloads registers D, E and F for the next round.
// This macro can be arbitrarily daisy-chained by feeding output registers D, E
// and F back into the next round as input registers A, B and C. The macro
// carefully interleaves memory operations with data operations for optimal
// pipelined performance.
#define ROUND_3(ROUND, A,B,C,D,E,F) /* A B C D E F */ \
LOAD(D, (ROUND + 3), -4) /* V V V + */ \
SHUF(B, E, F) /* | | | | + x */ \
STOR(A, (ROUND + 0)) /* - | | | | */ \
TRAN(B, E, F) /* | | | - x */ \
LOAD(E, (ROUND + 4), -4) /* | | | + */ \
SHUF(C, A, F) /* + | | | | x */ \
STOR(B, (ROUND + 1)) /* | - | | | */ \
TRAN(C, A, F) /* - | | | x */ \
LOAD(F, (ROUND + 5), -4) /* | | | + */ \
SHUF(D, A, B) /* + x | | | | */ \
STOR(C, (ROUND + 2)) /* | - | | | */ \
TRAN(D, A, B) /* - x V V V */
// Define a macro that terminates a ROUND_3 macro by taking pre-loaded
// registers D, E and F, and translating, shuffling and storing them.
#define ROUND_3_END(ROUND, A,B,C,D,E,F) /* A B C D E F */ \
SHUF(E, A, B) /* + x V V V */ \
STOR(D, (ROUND + 3)) /* | - | | */ \
TRAN(E, A, B) /* - x | | */ \
SHUF(F, C, D) /* + x | | */ \
STOR(E, (ROUND + 4)) /* | - | */ \
TRAN(F, C, D) /* - x | */ \
STOR(F, (ROUND + 5)) /* - */
// Define a type A round. Inputs are a, b, and c, outputs are d, e, and f.
#define ROUND_3_A(ROUND) \
ROUND_3(ROUND, "a", "b", "c", "d", "e", "f")
// Define a type B round. Inputs and outputs are swapped with regard to type A.
#define ROUND_3_B(ROUND) \
ROUND_3(ROUND, "d", "e", "f", "a", "b", "c")
// Terminating macro for a type A round.
#define ROUND_3_A_LAST(ROUND) \
ROUND_3_A(ROUND) \
ROUND_3_END(ROUND, "a", "b", "c", "d", "e", "f")
// Terminating macro for a type B round.
#define ROUND_3_B_LAST(ROUND) \
ROUND_3_B(ROUND) \
ROUND_3_END(ROUND, "d", "e", "f", "a", "b", "c")
// Suppress clang's warning that the literal string in the asm statement is
// overlong (longer than the ISO-mandated minimum size of 4095 bytes for C99
// compilers). It may be true, but the goal here is not C99 portability.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Woverlength-strings"
static inline void
enc_loop_avx2 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
// For a clearer explanation of the algorithm used by this function,
// please refer to the plain (not inline assembly) implementation. This
// function follows the same basic logic.
if (*slen < 32) {
return;
}
// Process blocks of 24 bytes at a time. Because blocks are loaded 32
// bytes at a time an offset of -4, ensure that there will be at least
// 4 remaining bytes after the last round, so that the final read will
// not pass beyond the bounds of the input buffer.
size_t rounds = (*slen - 4) / 24;
*slen -= rounds * 24; // 24 bytes consumed per round
*olen += rounds * 32; // 32 bytes produced per round
// Pre-decrement the number of rounds to get the number of rounds
// *after* the first round, which is handled as a special case.
rounds--;
// Number of times to go through the 36x loop.
size_t loops = rounds / 36;
// Number of rounds remaining after the 36x loop.
rounds %= 36;
// Lookup tables.
const __m256i lut0 = _mm256_set_epi8(
10, 11, 9, 10, 7, 8, 6, 7, 4, 5, 3, 4, 1, 2, 0, 1,
14, 15, 13, 14, 11, 12, 10, 11, 8, 9, 7, 8, 5, 6, 4, 5);
const __m256i lut1 = _mm256_setr_epi8(
65, 71, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -19, -16, 0, 0,
65, 71, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -19, -16, 0, 0);
// Temporary registers.
__m256i a, b, c, d, e;
// Temporary register f doubles as the shift mask for the first round.
__m256i f = _mm256_setr_epi32(0, 0, 1, 2, 3, 4, 5, 6);
__asm__ volatile (
// The first loop iteration requires special handling to ensure
// that the read, which is normally done at an offset of -4,
// does not underflow the buffer. Load the buffer at an offset
// of 0 and permute the input to achieve the same effect.
LOAD("a", 0, 0)
"vpermd %[a], %[f], %[a] \n\t"
// Perform the standard shuffling and translation steps.
SHUF("a", "b", "c")
TRAN("a", "b", "c")
// Store the result and increment the source and dest pointers.
"vmovdqu %[a], (%[dst]) \n\t"
"add $24, %[src] \n\t"
"add $32, %[dst] \n\t"
// If there are 36 rounds or more, enter a 36x unrolled loop of
// interleaved encoding rounds. The rounds interleave memory
// operations (load/store) with data operations (table lookups,
// etc) to maximize pipeline throughput.
" test %[loops], %[loops] \n\t"
" jz 18f \n\t"
" jmp 36f \n\t"
" \n\t"
".balign 64 \n\t"
"36: " ROUND_3_INIT()
" " ROUND_3_A( 0)
" " ROUND_3_B( 3)
" " ROUND_3_A( 6)
" " ROUND_3_B( 9)
" " ROUND_3_A(12)
" " ROUND_3_B(15)
" " ROUND_3_A(18)
" " ROUND_3_B(21)
" " ROUND_3_A(24)
" " ROUND_3_B(27)
" " ROUND_3_A_LAST(30)
" add $(24 * 36), %[src] \n\t"
" add $(32 * 36), %[dst] \n\t"
" dec %[loops] \n\t"
" jnz 36b \n\t"
// Enter an 18x unrolled loop for rounds of 18 or more.
"18: cmp $18, %[rounds] \n\t"
" jl 9f \n\t"
" " ROUND_3_INIT()
" " ROUND_3_A(0)
" " ROUND_3_B(3)
" " ROUND_3_A(6)
" " ROUND_3_B(9)
" " ROUND_3_A_LAST(12)
" sub $18, %[rounds] \n\t"
" add $(24 * 18), %[src] \n\t"
" add $(32 * 18), %[dst] \n\t"
// Enter a 9x unrolled loop for rounds of 9 or more.
"9: cmp $9, %[rounds] \n\t"
" jl 6f \n\t"
" " ROUND_3_INIT()
" " ROUND_3_A(0)
" " ROUND_3_B_LAST(3)
" sub $9, %[rounds] \n\t"
" add $(24 * 9), %[src] \n\t"
" add $(32 * 9), %[dst] \n\t"
// Enter a 6x unrolled loop for rounds of 6 or more.
"6: cmp $6, %[rounds] \n\t"
" jl 55f \n\t"
" " ROUND_3_INIT()
" " ROUND_3_A_LAST(0)
" sub $6, %[rounds] \n\t"
" add $(24 * 6), %[src] \n\t"
" add $(32 * 6), %[dst] \n\t"
// Dispatch the remaining rounds 0..5.
"55: cmp $3, %[rounds] \n\t"
" jg 45f \n\t"
" je 3f \n\t"
" cmp $1, %[rounds] \n\t"
" jg 2f \n\t"
" je 1f \n\t"
" jmp 0f \n\t"
"45: cmp $4, %[rounds] \n\t"
" je 4f \n\t"
// Block of non-interlaced encoding rounds, which can each
// individually be jumped to. Rounds fall through to the next.
"5: " ROUND()
"4: " ROUND()
"3: " ROUND()
"2: " ROUND()
"1: " ROUND()
"0: \n\t"
// Outputs (modified).
: [rounds] "+r" (rounds),
[loops] "+r" (loops),
[src] "+r" (*s),
[dst] "+r" (*o),
[a] "=&x" (a),
[b] "=&x" (b),
[c] "=&x" (c),
[d] "=&x" (d),
[e] "=&x" (e),
[f] "+x" (f)
// Inputs (not modified).
: [lut0] "x" (lut0),
[lut1] "x" (lut1),
[msk0] "x" (_mm256_set1_epi32(0x0FC0FC00)),
[msk1] "x" (_mm256_set1_epi32(0x04000040)),
[msk2] "x" (_mm256_set1_epi32(0x003F03F0)),
[msk3] "x" (_mm256_set1_epi32(0x01000010)),
[n51] "x" (_mm256_set1_epi8(51)),
[n25] "x" (_mm256_set1_epi8(25))
// Clobbers.
: "cc", "memory"
);
}
#pragma GCC diagnostic pop
|
2301_81045437/base64
|
lib/arch/avx2/enc_loop_asm.c
|
C
|
bsd
| 10,453
|
static BASE64_FORCE_INLINE __m256i
enc_reshuffle (const __m256i input)
{
// Translation of the SSSE3 reshuffling algorithm to AVX2. This one
// works with shifted (4 bytes) input in order to be able to work
// efficiently in the two 128-bit lanes.
// Input, bytes MSB to LSB:
// 0 0 0 0 x w v u t s r q p o n m
// l k j i h g f e d c b a 0 0 0 0
const __m256i in = _mm256_shuffle_epi8(input, _mm256_set_epi8(
10, 11, 9, 10,
7, 8, 6, 7,
4, 5, 3, 4,
1, 2, 0, 1,
14, 15, 13, 14,
11, 12, 10, 11,
8, 9, 7, 8,
5, 6, 4, 5));
// in, bytes MSB to LSB:
// w x v w
// t u s t
// q r p q
// n o m n
// k l j k
// h i g h
// e f d e
// b c a b
const __m256i t0 = _mm256_and_si256(in, _mm256_set1_epi32(0x0FC0FC00));
// bits, upper case are most significant bits, lower case are least
// significant bits.
// 0000wwww XX000000 VVVVVV00 00000000
// 0000tttt UU000000 SSSSSS00 00000000
// 0000qqqq RR000000 PPPPPP00 00000000
// 0000nnnn OO000000 MMMMMM00 00000000
// 0000kkkk LL000000 JJJJJJ00 00000000
// 0000hhhh II000000 GGGGGG00 00000000
// 0000eeee FF000000 DDDDDD00 00000000
// 0000bbbb CC000000 AAAAAA00 00000000
const __m256i t1 = _mm256_mulhi_epu16(t0, _mm256_set1_epi32(0x04000040));
// 00000000 00wwwwXX 00000000 00VVVVVV
// 00000000 00ttttUU 00000000 00SSSSSS
// 00000000 00qqqqRR 00000000 00PPPPPP
// 00000000 00nnnnOO 00000000 00MMMMMM
// 00000000 00kkkkLL 00000000 00JJJJJJ
// 00000000 00hhhhII 00000000 00GGGGGG
// 00000000 00eeeeFF 00000000 00DDDDDD
// 00000000 00bbbbCC 00000000 00AAAAAA
const __m256i t2 = _mm256_and_si256(in, _mm256_set1_epi32(0x003F03F0));
// 00000000 00xxxxxx 000000vv WWWW0000
// 00000000 00uuuuuu 000000ss TTTT0000
// 00000000 00rrrrrr 000000pp QQQQ0000
// 00000000 00oooooo 000000mm NNNN0000
// 00000000 00llllll 000000jj KKKK0000
// 00000000 00iiiiii 000000gg HHHH0000
// 00000000 00ffffff 000000dd EEEE0000
// 00000000 00cccccc 000000aa BBBB0000
const __m256i t3 = _mm256_mullo_epi16(t2, _mm256_set1_epi32(0x01000010));
// 00xxxxxx 00000000 00vvWWWW 00000000
// 00uuuuuu 00000000 00ssTTTT 00000000
// 00rrrrrr 00000000 00ppQQQQ 00000000
// 00oooooo 00000000 00mmNNNN 00000000
// 00llllll 00000000 00jjKKKK 00000000
// 00iiiiii 00000000 00ggHHHH 00000000
// 00ffffff 00000000 00ddEEEE 00000000
// 00cccccc 00000000 00aaBBBB 00000000
return _mm256_or_si256(t1, t3);
// 00xxxxxx 00wwwwXX 00vvWWWW 00VVVVVV
// 00uuuuuu 00ttttUU 00ssTTTT 00SSSSSS
// 00rrrrrr 00qqqqRR 00ppQQQQ 00PPPPPP
// 00oooooo 00nnnnOO 00mmNNNN 00MMMMMM
// 00llllll 00kkkkLL 00jjKKKK 00JJJJJJ
// 00iiiiii 00hhhhII 00ggHHHH 00GGGGGG
// 00ffffff 00eeeeFF 00ddEEEE 00DDDDDD
// 00cccccc 00bbbbCC 00aaBBBB 00AAAAAA
}
|
2301_81045437/base64
|
lib/arch/avx2/enc_reshuffle.c
|
C
|
bsd
| 2,714
|
static BASE64_FORCE_INLINE __m256i
enc_translate (const __m256i in)
{
// A lookup table containing the absolute offsets for all ranges:
const __m256i lut = _mm256_setr_epi8(
65, 71, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -19, -16, 0, 0,
65, 71, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -19, -16, 0, 0);
// Translate values 0..63 to the Base64 alphabet. There are five sets:
// # From To Abs Index Characters
// 0 [0..25] [65..90] +65 0 ABCDEFGHIJKLMNOPQRSTUVWXYZ
// 1 [26..51] [97..122] +71 1 abcdefghijklmnopqrstuvwxyz
// 2 [52..61] [48..57] -4 [2..11] 0123456789
// 3 [62] [43] -19 12 +
// 4 [63] [47] -16 13 /
// Create LUT indices from the input. The index for range #0 is right,
// others are 1 less than expected:
__m256i indices = _mm256_subs_epu8(in, _mm256_set1_epi8(51));
// mask is 0xFF (-1) for range #[1..4] and 0x00 for range #0:
const __m256i mask = _mm256_cmpgt_epi8(in, _mm256_set1_epi8(25));
// Subtract -1, so add 1 to indices for range #[1..4]. All indices are
// now correct:
indices = _mm256_sub_epi8(indices, mask);
// Add offsets to input values:
return _mm256_add_epi8(in, _mm256_shuffle_epi8(lut, indices));
}
|
2301_81045437/base64
|
lib/arch/avx2/enc_translate.c
|
C
|
bsd
| 1,251
|
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "../../../include/libbase64.h"
#include "../../tables/tables.h"
#include "../../codecs.h"
#include "config.h"
#include "../../env.h"
#if HAVE_AVX512
#include <immintrin.h>
#include "../avx2/dec_reshuffle.c"
#include "../avx2/dec_loop.c"
#include "enc_reshuffle_translate.c"
#include "enc_loop.c"
#endif // HAVE_AVX512
void
base64_stream_encode_avx512 BASE64_ENC_PARAMS
{
#if HAVE_AVX512
#include "../generic/enc_head.c"
enc_loop_avx512(&s, &slen, &o, &olen);
#include "../generic/enc_tail.c"
#else
base64_enc_stub(state, src, srclen, out, outlen);
#endif
}
// Reuse AVX2 decoding. Not supporting AVX512 at present
int
base64_stream_decode_avx512 BASE64_DEC_PARAMS
{
#if HAVE_AVX512
#include "../generic/dec_head.c"
dec_loop_avx2(&s, &slen, &o, &olen);
#include "../generic/dec_tail.c"
#else
return base64_dec_stub(state, src, srclen, out, outlen);
#endif
}
|
2301_81045437/base64
|
lib/arch/avx512/codec.c
|
C
|
bsd
| 940
|
static BASE64_FORCE_INLINE void
enc_loop_avx512_inner (const uint8_t **s, uint8_t **o)
{
// Load input.
__m512i src = _mm512_loadu_si512((__m512i *) *s);
// Reshuffle, translate, store.
src = enc_reshuffle_translate(src);
_mm512_storeu_si512((__m512i *) *o, src);
*s += 48;
*o += 64;
}
static inline void
enc_loop_avx512 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
if (*slen < 64) {
return;
}
// Process blocks of 48 bytes at a time. Because blocks are loaded 64
// bytes at a time, ensure that there will be at least 24 remaining
// bytes after the last round, so that the final read will not pass
// beyond the bounds of the input buffer.
size_t rounds = (*slen - 24) / 48;
*slen -= rounds * 48; // 48 bytes consumed per round
*olen += rounds * 64; // 64 bytes produced per round
while (rounds > 0) {
if (rounds >= 8) {
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
rounds -= 8;
continue;
}
if (rounds >= 4) {
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
rounds -= 4;
continue;
}
if (rounds >= 2) {
enc_loop_avx512_inner(s, o);
enc_loop_avx512_inner(s, o);
rounds -= 2;
continue;
}
enc_loop_avx512_inner(s, o);
break;
}
}
|
2301_81045437/base64
|
lib/arch/avx512/enc_loop.c
|
C
|
bsd
| 1,506
|
// AVX512 algorithm is based on permutevar and multishift. The code is based on
// https://github.com/WojciechMula/base64simd which is under BSD-2 license.
static BASE64_FORCE_INLINE __m512i
enc_reshuffle_translate (const __m512i input)
{
// 32-bit input
// [ 0 0 0 0 0 0 0 0|c1 c0 d5 d4 d3 d2 d1 d0|
// b3 b2 b1 b0 c5 c4 c3 c2|a5 a4 a3 a2 a1 a0 b5 b4]
// output order [1, 2, 0, 1]
// [b3 b2 b1 b0 c5 c4 c3 c2|c1 c0 d5 d4 d3 d2 d1 d0|
// a5 a4 a3 a2 a1 a0 b5 b4|b3 b2 b1 b0 c3 c2 c1 c0]
const __m512i shuffle_input = _mm512_setr_epi32(0x01020001,
0x04050304,
0x07080607,
0x0a0b090a,
0x0d0e0c0d,
0x10110f10,
0x13141213,
0x16171516,
0x191a1819,
0x1c1d1b1c,
0x1f201e1f,
0x22232122,
0x25262425,
0x28292728,
0x2b2c2a2b,
0x2e2f2d2e);
// Reorder bytes
// [b3 b2 b1 b0 c5 c4 c3 c2|c1 c0 d5 d4 d3 d2 d1 d0|
// a5 a4 a3 a2 a1 a0 b5 b4|b3 b2 b1 b0 c3 c2 c1 c0]
const __m512i in = _mm512_permutexvar_epi8(shuffle_input, input);
// After multishift a single 32-bit lane has following layout
// [c1 c0 d5 d4 d3 d2 d1 d0|b1 b0 c5 c4 c3 c2 c1 c0|
// a1 a0 b5 b4 b3 b2 b1 b0|d1 d0 a5 a4 a3 a2 a1 a0]
// (a = [10:17], b = [4:11], c = [22:27], d = [16:21])
// 48, 54, 36, 42, 16, 22, 4, 10
const __m512i shifts = _mm512_set1_epi64(0x3036242a1016040alu);
__m512i shuffled_in = _mm512_multishift_epi64_epi8(shifts, in);
// Translate immediatedly after reshuffled.
const __m512i lookup = _mm512_loadu_si512(base64_table_enc_6bit);
// Translation 6-bit values to ASCII.
return _mm512_permutexvar_epi8(shuffled_in, lookup);
}
|
2301_81045437/base64
|
lib/arch/avx512/enc_reshuffle_translate.c
|
C
|
bsd
| 2,278
|
static BASE64_FORCE_INLINE int
dec_loop_generic_32_inner (const uint8_t **s, uint8_t **o, size_t *rounds)
{
const uint32_t str
= base64_table_dec_32bit_d0[(*s)[0]]
| base64_table_dec_32bit_d1[(*s)[1]]
| base64_table_dec_32bit_d2[(*s)[2]]
| base64_table_dec_32bit_d3[(*s)[3]];
#if BASE64_LITTLE_ENDIAN
// LUTs for little-endian set MSB in case of invalid character:
if (str & UINT32_C(0x80000000)) {
return 0;
}
#else
// LUTs for big-endian set LSB in case of invalid character:
if (str & UINT32_C(1)) {
return 0;
}
#endif
// Store the output:
memcpy(*o, &str, sizeof (str));
*s += 4;
*o += 3;
*rounds -= 1;
return 1;
}
static inline void
dec_loop_generic_32 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
if (*slen < 8) {
return;
}
// Process blocks of 4 bytes per round. Because one extra zero byte is
// written after the output, ensure that there will be at least 4 bytes
// of input data left to cover the gap. (Two data bytes and up to two
// end-of-string markers.)
size_t rounds = (*slen - 4) / 4;
*slen -= rounds * 4; // 4 bytes consumed per round
*olen += rounds * 3; // 3 bytes produced per round
do {
if (rounds >= 8) {
if (dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds)) {
continue;
}
break;
}
if (rounds >= 4) {
if (dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds)) {
continue;
}
break;
}
if (rounds >= 2) {
if (dec_loop_generic_32_inner(s, o, &rounds) &&
dec_loop_generic_32_inner(s, o, &rounds)) {
continue;
}
break;
}
dec_loop_generic_32_inner(s, o, &rounds);
break;
} while (rounds > 0);
// Adjust for any rounds that were skipped:
*slen += rounds * 4;
*olen -= rounds * 3;
}
|
2301_81045437/base64
|
lib/arch/generic/32/dec_loop.c
|
C
|
bsd
| 2,218
|
static BASE64_FORCE_INLINE void
enc_loop_generic_32_inner (const uint8_t **s, uint8_t **o)
{
uint32_t src;
// Load input:
memcpy(&src, *s, sizeof (src));
// Reorder to 32-bit big-endian, if not already in that format. The
// workset must be in big-endian, otherwise the shifted bits do not
// carry over properly among adjacent bytes:
src = BASE64_HTOBE32(src);
// Two indices for the 12-bit lookup table:
const size_t index0 = (src >> 20) & 0xFFFU;
const size_t index1 = (src >> 8) & 0xFFFU;
// Table lookup and store:
memcpy(*o + 0, base64_table_enc_12bit + index0, 2);
memcpy(*o + 2, base64_table_enc_12bit + index1, 2);
*s += 3;
*o += 4;
}
static inline void
enc_loop_generic_32 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
if (*slen < 4) {
return;
}
// Process blocks of 3 bytes at a time. Because blocks are loaded 4
// bytes at a time, ensure that there will be at least one remaining
// byte after the last round, so that the final read will not pass
// beyond the bounds of the input buffer:
size_t rounds = (*slen - 1) / 3;
*slen -= rounds * 3; // 3 bytes consumed per round
*olen += rounds * 4; // 4 bytes produced per round
do {
if (rounds >= 8) {
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
rounds -= 8;
continue;
}
if (rounds >= 4) {
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
rounds -= 4;
continue;
}
if (rounds >= 2) {
enc_loop_generic_32_inner(s, o);
enc_loop_generic_32_inner(s, o);
rounds -= 2;
continue;
}
enc_loop_generic_32_inner(s, o);
break;
} while (rounds > 0);
}
|
2301_81045437/base64
|
lib/arch/generic/32/enc_loop.c
|
C
|
bsd
| 1,932
|
static BASE64_FORCE_INLINE void
enc_loop_generic_64_inner (const uint8_t **s, uint8_t **o)
{
uint64_t src;
// Load input:
memcpy(&src, *s, sizeof (src));
// Reorder to 64-bit big-endian, if not already in that format. The
// workset must be in big-endian, otherwise the shifted bits do not
// carry over properly among adjacent bytes:
src = BASE64_HTOBE64(src);
// Four indices for the 12-bit lookup table:
const size_t index0 = (src >> 52) & 0xFFFU;
const size_t index1 = (src >> 40) & 0xFFFU;
const size_t index2 = (src >> 28) & 0xFFFU;
const size_t index3 = (src >> 16) & 0xFFFU;
// Table lookup and store:
memcpy(*o + 0, base64_table_enc_12bit + index0, 2);
memcpy(*o + 2, base64_table_enc_12bit + index1, 2);
memcpy(*o + 4, base64_table_enc_12bit + index2, 2);
memcpy(*o + 6, base64_table_enc_12bit + index3, 2);
*s += 6;
*o += 8;
}
static inline void
enc_loop_generic_64 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
if (*slen < 8) {
return;
}
// Process blocks of 6 bytes at a time. Because blocks are loaded 8
// bytes at a time, ensure that there will be at least 2 remaining
// bytes after the last round, so that the final read will not pass
// beyond the bounds of the input buffer:
size_t rounds = (*slen - 2) / 6;
*slen -= rounds * 6; // 6 bytes consumed per round
*olen += rounds * 8; // 8 bytes produced per round
do {
if (rounds >= 8) {
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
rounds -= 8;
continue;
}
if (rounds >= 4) {
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
rounds -= 4;
continue;
}
if (rounds >= 2) {
enc_loop_generic_64_inner(s, o);
enc_loop_generic_64_inner(s, o);
rounds -= 2;
continue;
}
enc_loop_generic_64_inner(s, o);
break;
} while (rounds > 0);
}
|
2301_81045437/base64
|
lib/arch/generic/64/enc_loop.c
|
C
|
bsd
| 2,128
|
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include "../../../include/libbase64.h"
#include "../../tables/tables.h"
#include "../../codecs.h"
#include "config.h"
#include "../../env.h"
#if BASE64_WORDSIZE == 32
# include "32/enc_loop.c"
#elif BASE64_WORDSIZE == 64
# include "64/enc_loop.c"
#endif
#if BASE64_WORDSIZE >= 32
# include "32/dec_loop.c"
#endif
void
base64_stream_encode_plain BASE64_ENC_PARAMS
{
#include "enc_head.c"
#if BASE64_WORDSIZE == 32
enc_loop_generic_32(&s, &slen, &o, &olen);
#elif BASE64_WORDSIZE == 64
enc_loop_generic_64(&s, &slen, &o, &olen);
#endif
#include "enc_tail.c"
}
int
base64_stream_decode_plain BASE64_DEC_PARAMS
{
#include "dec_head.c"
#if BASE64_WORDSIZE >= 32
dec_loop_generic_32(&s, &slen, &o, &olen);
#endif
#include "dec_tail.c"
}
|
2301_81045437/base64
|
lib/arch/generic/codec.c
|
C
|
bsd
| 807
|
int ret = 0;
const uint8_t *s = (const uint8_t *) src;
uint8_t *o = (uint8_t *) out;
uint8_t q;
// Use local temporaries to avoid cache thrashing:
size_t olen = 0;
size_t slen = srclen;
struct base64_state st;
st.eof = state->eof;
st.bytes = state->bytes;
st.carry = state->carry;
// If we previously saw an EOF or an invalid character, bail out:
if (st.eof) {
*outlen = 0;
ret = 0;
// If there was a trailing '=' to check, check it:
if (slen && (st.eof == BASE64_AEOF)) {
state->bytes = 0;
state->eof = BASE64_EOF;
ret = ((base64_table_dec_8bit[*s++] == 254) && (slen == 1)) ? 1 : 0;
}
return ret;
}
// Turn four 6-bit numbers into three bytes:
// out[0] = 11111122
// out[1] = 22223333
// out[2] = 33444444
// Duff's device again:
switch (st.bytes)
{
for (;;)
{
case 0:
|
2301_81045437/base64
|
lib/arch/generic/dec_head.c
|
C
|
bsd
| 791
|
if (slen-- == 0) {
ret = 1;
break;
}
if ((q = base64_table_dec_8bit[*s++]) >= 254) {
st.eof = BASE64_EOF;
// Treat character '=' as invalid for byte 0:
break;
}
st.carry = q << 2;
st.bytes++;
// Deliberate fallthrough:
BASE64_FALLTHROUGH
case 1: if (slen-- == 0) {
ret = 1;
break;
}
if ((q = base64_table_dec_8bit[*s++]) >= 254) {
st.eof = BASE64_EOF;
// Treat character '=' as invalid for byte 1:
break;
}
*o++ = st.carry | (q >> 4);
st.carry = q << 4;
st.bytes++;
olen++;
// Deliberate fallthrough:
BASE64_FALLTHROUGH
case 2: if (slen-- == 0) {
ret = 1;
break;
}
if ((q = base64_table_dec_8bit[*s++]) >= 254) {
st.bytes++;
// When q == 254, the input char is '='.
// Check if next byte is also '=':
if (q == 254) {
if (slen-- != 0) {
st.bytes = 0;
// EOF:
st.eof = BASE64_EOF;
q = base64_table_dec_8bit[*s++];
ret = ((q == 254) && (slen == 0)) ? 1 : 0;
break;
}
else {
// Almost EOF
st.eof = BASE64_AEOF;
ret = 1;
break;
}
}
// If we get here, there was an error:
break;
}
*o++ = st.carry | (q >> 2);
st.carry = q << 6;
st.bytes++;
olen++;
// Deliberate fallthrough:
BASE64_FALLTHROUGH
case 3: if (slen-- == 0) {
ret = 1;
break;
}
if ((q = base64_table_dec_8bit[*s++]) >= 254) {
st.bytes = 0;
st.eof = BASE64_EOF;
// When q == 254, the input char is '='. Return 1 and EOF.
// When q == 255, the input char is invalid. Return 0 and EOF.
ret = ((q == 254) && (slen == 0)) ? 1 : 0;
break;
}
*o++ = st.carry | q;
st.carry = 0;
st.bytes = 0;
olen++;
}
}
state->eof = st.eof;
state->bytes = st.bytes;
state->carry = st.carry;
*outlen = olen;
return ret;
|
2301_81045437/base64
|
lib/arch/generic/dec_tail.c
|
C
|
bsd
| 1,774
|
// Assume that *out is large enough to contain the output.
// Theoretically it should be 4/3 the length of src.
const uint8_t *s = (const uint8_t *) src;
uint8_t *o = (uint8_t *) out;
// Use local temporaries to avoid cache thrashing:
size_t olen = 0;
size_t slen = srclen;
struct base64_state st;
st.bytes = state->bytes;
st.carry = state->carry;
// Turn three bytes into four 6-bit numbers:
// in[0] = 00111111
// in[1] = 00112222
// in[2] = 00222233
// in[3] = 00333333
// Duff's device, a for() loop inside a switch() statement. Legal!
switch (st.bytes)
{
for (;;)
{
case 0:
|
2301_81045437/base64
|
lib/arch/generic/enc_head.c
|
C
|
bsd
| 585
|
if (slen-- == 0) {
break;
}
*o++ = base64_table_enc_6bit[*s >> 2];
st.carry = (*s++ << 4) & 0x30;
st.bytes++;
olen += 1;
// Deliberate fallthrough:
BASE64_FALLTHROUGH
case 1: if (slen-- == 0) {
break;
}
*o++ = base64_table_enc_6bit[st.carry | (*s >> 4)];
st.carry = (*s++ << 2) & 0x3C;
st.bytes++;
olen += 1;
// Deliberate fallthrough:
BASE64_FALLTHROUGH
case 2: if (slen-- == 0) {
break;
}
*o++ = base64_table_enc_6bit[st.carry | (*s >> 6)];
*o++ = base64_table_enc_6bit[*s++ & 0x3F];
st.bytes = 0;
olen += 2;
}
}
state->bytes = st.bytes;
state->carry = st.carry;
*outlen = olen;
|
2301_81045437/base64
|
lib/arch/generic/enc_tail.c
|
C
|
bsd
| 637
|
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include "../../../include/libbase64.h"
#include "../../tables/tables.h"
#include "../../codecs.h"
#include "config.h"
#include "../../env.h"
#ifdef __arm__
# if (defined(__ARM_NEON__) || defined(__ARM_NEON)) && HAVE_NEON32
# define BASE64_USE_NEON32
# endif
#endif
#ifdef BASE64_USE_NEON32
#include <arm_neon.h>
// Only enable inline assembly on supported compilers.
#if defined(__GNUC__) || defined(__clang__)
#define BASE64_NEON32_USE_ASM
#endif
static BASE64_FORCE_INLINE uint8x16_t
vqtbl1q_u8 (const uint8x16_t lut, const uint8x16_t indices)
{
// NEON32 only supports 64-bit wide lookups in 128-bit tables. Emulate
// the NEON64 `vqtbl1q_u8` intrinsic to do 128-bit wide lookups.
uint8x8x2_t lut2;
uint8x8x2_t result;
lut2.val[0] = vget_low_u8(lut);
lut2.val[1] = vget_high_u8(lut);
result.val[0] = vtbl2_u8(lut2, vget_low_u8(indices));
result.val[1] = vtbl2_u8(lut2, vget_high_u8(indices));
return vcombine_u8(result.val[0], result.val[1]);
}
#include "../generic/32/dec_loop.c"
#include "../generic/32/enc_loop.c"
#include "dec_loop.c"
#include "enc_reshuffle.c"
#include "enc_translate.c"
#include "enc_loop.c"
#endif // BASE64_USE_NEON32
// Stride size is so large on these NEON 32-bit functions
// (48 bytes encode, 32 bytes decode) that we inline the
// uint32 codec to stay performant on smaller inputs.
void
base64_stream_encode_neon32 BASE64_ENC_PARAMS
{
#ifdef BASE64_USE_NEON32
#include "../generic/enc_head.c"
enc_loop_neon32(&s, &slen, &o, &olen);
enc_loop_generic_32(&s, &slen, &o, &olen);
#include "../generic/enc_tail.c"
#else
base64_enc_stub(state, src, srclen, out, outlen);
#endif
}
int
base64_stream_decode_neon32 BASE64_DEC_PARAMS
{
#ifdef BASE64_USE_NEON32
#include "../generic/dec_head.c"
dec_loop_neon32(&s, &slen, &o, &olen);
dec_loop_generic_32(&s, &slen, &o, &olen);
#include "../generic/dec_tail.c"
#else
return base64_dec_stub(state, src, srclen, out, outlen);
#endif
}
|
2301_81045437/base64
|
lib/arch/neon32/codec.c
|
C
|
bsd
| 2,001
|
static BASE64_FORCE_INLINE int
is_nonzero (const uint8x16_t v)
{
uint64_t u64;
const uint64x2_t v64 = vreinterpretq_u64_u8(v);
const uint32x2_t v32 = vqmovn_u64(v64);
vst1_u64(&u64, vreinterpret_u64_u32(v32));
return u64 != 0;
}
static BASE64_FORCE_INLINE uint8x16_t
delta_lookup (const uint8x16_t v)
{
const uint8x8_t lut = {
0, 16, 19, 4, (uint8_t) -65, (uint8_t) -65, (uint8_t) -71, (uint8_t) -71,
};
return vcombine_u8(
vtbl1_u8(lut, vget_low_u8(v)),
vtbl1_u8(lut, vget_high_u8(v)));
}
static BASE64_FORCE_INLINE uint8x16_t
dec_loop_neon32_lane (uint8x16_t *lane)
{
// See the SSSE3 decoder for an explanation of the algorithm.
const uint8x16_t lut_lo = {
0x15, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
0x11, 0x11, 0x13, 0x1A, 0x1B, 0x1B, 0x1B, 0x1A
};
const uint8x16_t lut_hi = {
0x10, 0x10, 0x01, 0x02, 0x04, 0x08, 0x04, 0x08,
0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10, 0x10
};
const uint8x16_t mask_0F = vdupq_n_u8(0x0F);
const uint8x16_t mask_2F = vdupq_n_u8(0x2F);
const uint8x16_t hi_nibbles = vshrq_n_u8(*lane, 4);
const uint8x16_t lo_nibbles = vandq_u8(*lane, mask_0F);
const uint8x16_t eq_2F = vceqq_u8(*lane, mask_2F);
const uint8x16_t hi = vqtbl1q_u8(lut_hi, hi_nibbles);
const uint8x16_t lo = vqtbl1q_u8(lut_lo, lo_nibbles);
// Now simply add the delta values to the input:
*lane = vaddq_u8(*lane, delta_lookup(vaddq_u8(eq_2F, hi_nibbles)));
// Return the validity mask:
return vandq_u8(lo, hi);
}
static inline void
dec_loop_neon32 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
if (*slen < 64) {
return;
}
// Process blocks of 64 bytes per round. Unlike the SSE codecs, no
// extra trailing zero bytes are written, so it is not necessary to
// reserve extra input bytes:
size_t rounds = *slen / 64;
*slen -= rounds * 64; // 64 bytes consumed per round
*olen += rounds * 48; // 48 bytes produced per round
do {
uint8x16x3_t dec;
// Load 64 bytes and deinterleave:
uint8x16x4_t str = vld4q_u8(*s);
// Decode each lane, collect a mask of invalid inputs:
const uint8x16_t classified
= dec_loop_neon32_lane(&str.val[0])
| dec_loop_neon32_lane(&str.val[1])
| dec_loop_neon32_lane(&str.val[2])
| dec_loop_neon32_lane(&str.val[3]);
// Check for invalid input: if any of the delta values are
// zero, fall back on bytewise code to do error checking and
// reporting:
if (is_nonzero(classified)) {
break;
}
// Compress four bytes into three:
dec.val[0] = vorrq_u8(vshlq_n_u8(str.val[0], 2), vshrq_n_u8(str.val[1], 4));
dec.val[1] = vorrq_u8(vshlq_n_u8(str.val[1], 4), vshrq_n_u8(str.val[2], 2));
dec.val[2] = vorrq_u8(vshlq_n_u8(str.val[2], 6), str.val[3]);
// Interleave and store decoded result:
vst3q_u8(*o, dec);
*s += 64;
*o += 48;
} while (--rounds > 0);
// Adjust for any rounds that were skipped:
*slen += rounds * 64;
*olen -= rounds * 48;
}
|
2301_81045437/base64
|
lib/arch/neon32/dec_loop.c
|
C
|
bsd
| 2,906
|
#ifdef BASE64_NEON32_USE_ASM
static BASE64_FORCE_INLINE void
enc_loop_neon32_inner_asm (const uint8_t **s, uint8_t **o)
{
// This function duplicates the functionality of enc_loop_neon32_inner,
// but entirely with inline assembly. This gives a significant speedup
// over using NEON intrinsics, which do not always generate very good
// code. The logic of the assembly is directly lifted from the
// intrinsics version, so it can be used as a guide to this code.
// Temporary registers, used as scratch space.
uint8x16_t tmp0, tmp1, tmp2, tmp3;
uint8x16_t mask0, mask1, mask2, mask3;
// A lookup table containing the absolute offsets for all ranges.
const uint8x16_t lut = {
65U, 71U, 252U, 252U,
252U, 252U, 252U, 252U,
252U, 252U, 252U, 252U,
237U, 240U, 0U, 0U
};
// Numeric constants.
const uint8x16_t n51 = vdupq_n_u8(51);
const uint8x16_t n25 = vdupq_n_u8(25);
const uint8x16_t n63 = vdupq_n_u8(63);
__asm__ (
// Load 48 bytes and deinterleave. The bytes are loaded to
// hard-coded registers q12, q13 and q14, to ensure that they
// are contiguous. Increment the source pointer.
"vld3.8 {d24, d26, d28}, [%[src]]! \n\t"
"vld3.8 {d25, d27, d29}, [%[src]]! \n\t"
// Reshuffle the bytes using temporaries.
"vshr.u8 %q[t0], q12, #2 \n\t"
"vshr.u8 %q[t1], q13, #4 \n\t"
"vshr.u8 %q[t2], q14, #6 \n\t"
"vsli.8 %q[t1], q12, #4 \n\t"
"vsli.8 %q[t2], q13, #2 \n\t"
"vand.u8 %q[t1], %q[t1], %q[n63] \n\t"
"vand.u8 %q[t2], %q[t2], %q[n63] \n\t"
"vand.u8 %q[t3], q14, %q[n63] \n\t"
// t0..t3 are the reshuffled inputs. Create LUT indices.
"vqsub.u8 q12, %q[t0], %q[n51] \n\t"
"vqsub.u8 q13, %q[t1], %q[n51] \n\t"
"vqsub.u8 q14, %q[t2], %q[n51] \n\t"
"vqsub.u8 q15, %q[t3], %q[n51] \n\t"
// Create the mask for range #0.
"vcgt.u8 %q[m0], %q[t0], %q[n25] \n\t"
"vcgt.u8 %q[m1], %q[t1], %q[n25] \n\t"
"vcgt.u8 %q[m2], %q[t2], %q[n25] \n\t"
"vcgt.u8 %q[m3], %q[t3], %q[n25] \n\t"
// Subtract -1 to correct the LUT indices.
"vsub.u8 q12, %q[m0] \n\t"
"vsub.u8 q13, %q[m1] \n\t"
"vsub.u8 q14, %q[m2] \n\t"
"vsub.u8 q15, %q[m3] \n\t"
// Lookup the delta values.
"vtbl.u8 d24, {%q[lut]}, d24 \n\t"
"vtbl.u8 d25, {%q[lut]}, d25 \n\t"
"vtbl.u8 d26, {%q[lut]}, d26 \n\t"
"vtbl.u8 d27, {%q[lut]}, d27 \n\t"
"vtbl.u8 d28, {%q[lut]}, d28 \n\t"
"vtbl.u8 d29, {%q[lut]}, d29 \n\t"
"vtbl.u8 d30, {%q[lut]}, d30 \n\t"
"vtbl.u8 d31, {%q[lut]}, d31 \n\t"
// Add the delta values.
"vadd.u8 q12, %q[t0] \n\t"
"vadd.u8 q13, %q[t1] \n\t"
"vadd.u8 q14, %q[t2] \n\t"
"vadd.u8 q15, %q[t3] \n\t"
// Store 64 bytes and interleave. Increment the dest pointer.
"vst4.8 {d24, d26, d28, d30}, [%[dst]]! \n\t"
"vst4.8 {d25, d27, d29, d31}, [%[dst]]! \n\t"
// Outputs (modified).
: [src] "+r" (*s),
[dst] "+r" (*o),
[t0] "=&w" (tmp0),
[t1] "=&w" (tmp1),
[t2] "=&w" (tmp2),
[t3] "=&w" (tmp3),
[m0] "=&w" (mask0),
[m1] "=&w" (mask1),
[m2] "=&w" (mask2),
[m3] "=&w" (mask3)
// Inputs (not modified).
: [lut] "w" (lut),
[n25] "w" (n25),
[n51] "w" (n51),
[n63] "w" (n63)
// Clobbers.
: "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31",
"cc", "memory"
);
}
#endif
static BASE64_FORCE_INLINE void
enc_loop_neon32_inner (const uint8_t **s, uint8_t **o)
{
#ifdef BASE64_NEON32_USE_ASM
enc_loop_neon32_inner_asm(s, o);
#else
// Load 48 bytes and deinterleave:
uint8x16x3_t src = vld3q_u8(*s);
// Reshuffle:
uint8x16x4_t out = enc_reshuffle(src);
// Translate reshuffled bytes to the Base64 alphabet:
out = enc_translate(out);
// Interleave and store output:
vst4q_u8(*o, out);
*s += 48;
*o += 64;
#endif
}
static inline void
enc_loop_neon32 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
size_t rounds = *slen / 48;
*slen -= rounds * 48; // 48 bytes consumed per round
*olen += rounds * 64; // 64 bytes produced per round
while (rounds > 0) {
if (rounds >= 8) {
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
rounds -= 8;
continue;
}
if (rounds >= 4) {
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
rounds -= 4;
continue;
}
if (rounds >= 2) {
enc_loop_neon32_inner(s, o);
enc_loop_neon32_inner(s, o);
rounds -= 2;
continue;
}
enc_loop_neon32_inner(s, o);
break;
}
}
|
2301_81045437/base64
|
lib/arch/neon32/enc_loop.c
|
C
|
bsd
| 4,655
|
static BASE64_FORCE_INLINE uint8x16x4_t
enc_reshuffle (uint8x16x3_t in)
{
uint8x16x4_t out;
// Input:
// in[0] = a7 a6 a5 a4 a3 a2 a1 a0
// in[1] = b7 b6 b5 b4 b3 b2 b1 b0
// in[2] = c7 c6 c5 c4 c3 c2 c1 c0
// Output:
// out[0] = 00 00 a7 a6 a5 a4 a3 a2
// out[1] = 00 00 a1 a0 b7 b6 b5 b4
// out[2] = 00 00 b3 b2 b1 b0 c7 c6
// out[3] = 00 00 c5 c4 c3 c2 c1 c0
// Move the input bits to where they need to be in the outputs. Except
// for the first output, the high two bits are not cleared.
out.val[0] = vshrq_n_u8(in.val[0], 2);
out.val[1] = vshrq_n_u8(in.val[1], 4);
out.val[2] = vshrq_n_u8(in.val[2], 6);
out.val[1] = vsliq_n_u8(out.val[1], in.val[0], 4);
out.val[2] = vsliq_n_u8(out.val[2], in.val[1], 2);
// Clear the high two bits in the second, third and fourth output.
out.val[1] = vandq_u8(out.val[1], vdupq_n_u8(0x3F));
out.val[2] = vandq_u8(out.val[2], vdupq_n_u8(0x3F));
out.val[3] = vandq_u8(in.val[2], vdupq_n_u8(0x3F));
return out;
}
|
2301_81045437/base64
|
lib/arch/neon32/enc_reshuffle.c
|
C
|
bsd
| 982
|
static BASE64_FORCE_INLINE uint8x16x4_t
enc_translate (const uint8x16x4_t in)
{
// A lookup table containing the absolute offsets for all ranges:
const uint8x16_t lut = {
65U, 71U, 252U, 252U,
252U, 252U, 252U, 252U,
252U, 252U, 252U, 252U,
237U, 240U, 0U, 0U
};
const uint8x16_t offset = vdupq_n_u8(51);
uint8x16x4_t indices, mask, delta, out;
// Translate values 0..63 to the Base64 alphabet. There are five sets:
// # From To Abs Index Characters
// 0 [0..25] [65..90] +65 0 ABCDEFGHIJKLMNOPQRSTUVWXYZ
// 1 [26..51] [97..122] +71 1 abcdefghijklmnopqrstuvwxyz
// 2 [52..61] [48..57] -4 [2..11] 0123456789
// 3 [62] [43] -19 12 +
// 4 [63] [47] -16 13 /
// Create LUT indices from input:
// the index for range #0 is right, others are 1 less than expected:
indices.val[0] = vqsubq_u8(in.val[0], offset);
indices.val[1] = vqsubq_u8(in.val[1], offset);
indices.val[2] = vqsubq_u8(in.val[2], offset);
indices.val[3] = vqsubq_u8(in.val[3], offset);
// mask is 0xFF (-1) for range #[1..4] and 0x00 for range #0:
mask.val[0] = vcgtq_u8(in.val[0], vdupq_n_u8(25));
mask.val[1] = vcgtq_u8(in.val[1], vdupq_n_u8(25));
mask.val[2] = vcgtq_u8(in.val[2], vdupq_n_u8(25));
mask.val[3] = vcgtq_u8(in.val[3], vdupq_n_u8(25));
// Subtract -1, so add 1 to indices for range #[1..4], All indices are
// now correct:
indices.val[0] = vsubq_u8(indices.val[0], mask.val[0]);
indices.val[1] = vsubq_u8(indices.val[1], mask.val[1]);
indices.val[2] = vsubq_u8(indices.val[2], mask.val[2]);
indices.val[3] = vsubq_u8(indices.val[3], mask.val[3]);
// Lookup delta values:
delta.val[0] = vqtbl1q_u8(lut, indices.val[0]);
delta.val[1] = vqtbl1q_u8(lut, indices.val[1]);
delta.val[2] = vqtbl1q_u8(lut, indices.val[2]);
delta.val[3] = vqtbl1q_u8(lut, indices.val[3]);
// Add delta values:
out.val[0] = vaddq_u8(in.val[0], delta.val[0]);
out.val[1] = vaddq_u8(in.val[1], delta.val[1]);
out.val[2] = vaddq_u8(in.val[2], delta.val[2]);
out.val[3] = vaddq_u8(in.val[3], delta.val[3]);
return out;
}
|
2301_81045437/base64
|
lib/arch/neon32/enc_translate.c
|
C
|
bsd
| 2,116
|
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include "../../../include/libbase64.h"
#include "../../tables/tables.h"
#include "../../codecs.h"
#include "config.h"
#include "../../env.h"
#ifdef __aarch64__
# if (defined(__ARM_NEON__) || defined(__ARM_NEON)) && HAVE_NEON64
# define BASE64_USE_NEON64
# endif
#endif
#ifdef BASE64_USE_NEON64
#include <arm_neon.h>
// Only enable inline assembly on supported compilers.
#if defined(__GNUC__) || defined(__clang__)
#define BASE64_NEON64_USE_ASM
#endif
static BASE64_FORCE_INLINE uint8x16x4_t
load_64byte_table (const uint8_t *p)
{
#ifdef BASE64_NEON64_USE_ASM
// Force the table to be loaded into contiguous registers. GCC will not
// normally allocate contiguous registers for a `uint8x16x4_t'. These
// registers are chosen to not conflict with the ones in the enc loop.
register uint8x16_t t0 __asm__ ("v8");
register uint8x16_t t1 __asm__ ("v9");
register uint8x16_t t2 __asm__ ("v10");
register uint8x16_t t3 __asm__ ("v11");
__asm__ (
"ld1 {%[t0].16b, %[t1].16b, %[t2].16b, %[t3].16b}, [%[src]], #64 \n\t"
: [src] "+r" (p),
[t0] "=w" (t0),
[t1] "=w" (t1),
[t2] "=w" (t2),
[t3] "=w" (t3)
);
return (uint8x16x4_t) {
.val[0] = t0,
.val[1] = t1,
.val[2] = t2,
.val[3] = t3,
};
#else
return vld1q_u8_x4(p);
#endif
}
#include "../generic/32/dec_loop.c"
#include "../generic/64/enc_loop.c"
#include "dec_loop.c"
#ifdef BASE64_NEON64_USE_ASM
# include "enc_loop_asm.c"
#else
# include "enc_reshuffle.c"
# include "enc_loop.c"
#endif
#endif // BASE64_USE_NEON64
// Stride size is so large on these NEON 64-bit functions
// (48 bytes encode, 64 bytes decode) that we inline the
// uint64 codec to stay performant on smaller inputs.
void
base64_stream_encode_neon64 BASE64_ENC_PARAMS
{
#ifdef BASE64_USE_NEON64
#include "../generic/enc_head.c"
enc_loop_neon64(&s, &slen, &o, &olen);
enc_loop_generic_64(&s, &slen, &o, &olen);
#include "../generic/enc_tail.c"
#else
base64_enc_stub(state, src, srclen, out, outlen);
#endif
}
int
base64_stream_decode_neon64 BASE64_DEC_PARAMS
{
#ifdef BASE64_USE_NEON64
#include "../generic/dec_head.c"
dec_loop_neon64(&s, &slen, &o, &olen);
dec_loop_generic_32(&s, &slen, &o, &olen);
#include "../generic/dec_tail.c"
#else
return base64_dec_stub(state, src, srclen, out, outlen);
#endif
}
|
2301_81045437/base64
|
lib/arch/neon64/codec.c
|
C
|
bsd
| 2,350
|
// The input consists of five valid character sets in the Base64 alphabet,
// which we need to map back to the 6-bit values they represent.
// There are three ranges, two singles, and then there's the rest.
//
// # From To LUT Characters
// 1 [0..42] [255] #1 invalid input
// 2 [43] [62] #1 +
// 3 [44..46] [255] #1 invalid input
// 4 [47] [63] #1 /
// 5 [48..57] [52..61] #1 0..9
// 6 [58..63] [255] #1 invalid input
// 7 [64] [255] #2 invalid input
// 8 [65..90] [0..25] #2 A..Z
// 9 [91..96] [255] #2 invalid input
// 10 [97..122] [26..51] #2 a..z
// 11 [123..126] [255] #2 invalid input
// (12) Everything else => invalid input
// The first LUT will use the VTBL instruction (out of range indices are set to
// 0 in destination).
static const uint8_t dec_lut1[] = {
255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U,
255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U,
255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 255U, 62U, 255U, 255U, 255U, 63U,
52U, 53U, 54U, 55U, 56U, 57U, 58U, 59U, 60U, 61U, 255U, 255U, 255U, 255U, 255U, 255U,
};
// The second LUT will use the VTBX instruction (out of range indices will be
// unchanged in destination). Input [64..126] will be mapped to index [1..63]
// in this LUT. Index 0 means that value comes from LUT #1.
static const uint8_t dec_lut2[] = {
0U, 255U, 0U, 1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U, 11U, 12U, 13U,
14U, 15U, 16U, 17U, 18U, 19U, 20U, 21U, 22U, 23U, 24U, 25U, 255U, 255U, 255U, 255U,
255U, 255U, 26U, 27U, 28U, 29U, 30U, 31U, 32U, 33U, 34U, 35U, 36U, 37U, 38U, 39U,
40U, 41U, 42U, 43U, 44U, 45U, 46U, 47U, 48U, 49U, 50U, 51U, 255U, 255U, 255U, 255U,
};
// All input values in range for the first look-up will be 0U in the second
// look-up result. All input values out of range for the first look-up will be
// 0U in the first look-up result. Thus, the two results can be ORed without
// conflicts.
//
// Invalid characters that are in the valid range for either look-up will be
// set to 255U in the combined result. Other invalid characters will just be
// passed through with the second look-up result (using the VTBX instruction).
// Since the second LUT is 64 bytes, those passed-through values are guaranteed
// to have a value greater than 63U. Therefore, valid characters will be mapped
// to the valid [0..63] range and all invalid characters will be mapped to
// values greater than 63.
static inline void
dec_loop_neon64 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
if (*slen < 64) {
return;
}
// Process blocks of 64 bytes per round. Unlike the SSE codecs, no
// extra trailing zero bytes are written, so it is not necessary to
// reserve extra input bytes:
size_t rounds = *slen / 64;
*slen -= rounds * 64; // 64 bytes consumed per round
*olen += rounds * 48; // 48 bytes produced per round
const uint8x16x4_t tbl_dec1 = load_64byte_table(dec_lut1);
const uint8x16x4_t tbl_dec2 = load_64byte_table(dec_lut2);
do {
const uint8x16_t offset = vdupq_n_u8(63U);
uint8x16x4_t dec1, dec2;
uint8x16x3_t dec;
// Load 64 bytes and deinterleave:
uint8x16x4_t str = vld4q_u8((uint8_t *) *s);
// Get indices for second LUT:
dec2.val[0] = vqsubq_u8(str.val[0], offset);
dec2.val[1] = vqsubq_u8(str.val[1], offset);
dec2.val[2] = vqsubq_u8(str.val[2], offset);
dec2.val[3] = vqsubq_u8(str.val[3], offset);
// Get values from first LUT:
dec1.val[0] = vqtbl4q_u8(tbl_dec1, str.val[0]);
dec1.val[1] = vqtbl4q_u8(tbl_dec1, str.val[1]);
dec1.val[2] = vqtbl4q_u8(tbl_dec1, str.val[2]);
dec1.val[3] = vqtbl4q_u8(tbl_dec1, str.val[3]);
// Get values from second LUT:
dec2.val[0] = vqtbx4q_u8(dec2.val[0], tbl_dec2, dec2.val[0]);
dec2.val[1] = vqtbx4q_u8(dec2.val[1], tbl_dec2, dec2.val[1]);
dec2.val[2] = vqtbx4q_u8(dec2.val[2], tbl_dec2, dec2.val[2]);
dec2.val[3] = vqtbx4q_u8(dec2.val[3], tbl_dec2, dec2.val[3]);
// Get final values:
str.val[0] = vorrq_u8(dec1.val[0], dec2.val[0]);
str.val[1] = vorrq_u8(dec1.val[1], dec2.val[1]);
str.val[2] = vorrq_u8(dec1.val[2], dec2.val[2]);
str.val[3] = vorrq_u8(dec1.val[3], dec2.val[3]);
// Check for invalid input, any value larger than 63:
const uint8x16_t classified
= vcgtq_u8(str.val[0], vdupq_n_u8(63))
| vcgtq_u8(str.val[1], vdupq_n_u8(63))
| vcgtq_u8(str.val[2], vdupq_n_u8(63))
| vcgtq_u8(str.val[3], vdupq_n_u8(63));
// Check that all bits are zero:
if (vmaxvq_u8(classified) != 0U) {
break;
}
// Compress four bytes into three:
dec.val[0] = vshlq_n_u8(str.val[0], 2) | vshrq_n_u8(str.val[1], 4);
dec.val[1] = vshlq_n_u8(str.val[1], 4) | vshrq_n_u8(str.val[2], 2);
dec.val[2] = vshlq_n_u8(str.val[2], 6) | str.val[3];
// Interleave and store decoded result:
vst3q_u8((uint8_t *) *o, dec);
*s += 64;
*o += 48;
} while (--rounds > 0);
// Adjust for any rounds that were skipped:
*slen += rounds * 64;
*olen -= rounds * 48;
}
|
2301_81045437/base64
|
lib/arch/neon64/dec_loop.c
|
C
|
bsd
| 5,205
|
static BASE64_FORCE_INLINE void
enc_loop_neon64_inner (const uint8_t **s, uint8_t **o, const uint8x16x4_t tbl_enc)
{
// Load 48 bytes and deinterleave:
uint8x16x3_t src = vld3q_u8(*s);
// Divide bits of three input bytes over four output bytes:
uint8x16x4_t out = enc_reshuffle(src);
// The bits have now been shifted to the right locations;
// translate their values 0..63 to the Base64 alphabet.
// Use a 64-byte table lookup:
out.val[0] = vqtbl4q_u8(tbl_enc, out.val[0]);
out.val[1] = vqtbl4q_u8(tbl_enc, out.val[1]);
out.val[2] = vqtbl4q_u8(tbl_enc, out.val[2]);
out.val[3] = vqtbl4q_u8(tbl_enc, out.val[3]);
// Interleave and store output:
vst4q_u8(*o, out);
*s += 48;
*o += 64;
}
static inline void
enc_loop_neon64 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
size_t rounds = *slen / 48;
*slen -= rounds * 48; // 48 bytes consumed per round
*olen += rounds * 64; // 64 bytes produced per round
// Load the encoding table:
const uint8x16x4_t tbl_enc = load_64byte_table(base64_table_enc_6bit);
while (rounds > 0) {
if (rounds >= 8) {
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
rounds -= 8;
continue;
}
if (rounds >= 4) {
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
rounds -= 4;
continue;
}
if (rounds >= 2) {
enc_loop_neon64_inner(s, o, tbl_enc);
enc_loop_neon64_inner(s, o, tbl_enc);
rounds -= 2;
continue;
}
enc_loop_neon64_inner(s, o, tbl_enc);
break;
}
}
|
2301_81045437/base64
|
lib/arch/neon64/enc_loop.c
|
C
|
bsd
| 1,857
|
// Apologies in advance for combining the preprocessor with inline assembly,
// two notoriously gnarly parts of C, but it was necessary to avoid a lot of
// code repetition. The preprocessor is used to template large sections of
// inline assembly that differ only in the registers used. If the code was
// written out by hand, it would become very large and hard to audit.
// Generate a block of inline assembly that loads three user-defined registers
// A, B, C from memory and deinterleaves them, post-incrementing the src
// pointer. The register set should be sequential.
#define LOAD(A, B, C) \
"ld3 {"A".16b, "B".16b, "C".16b}, [%[src]], #48 \n\t"
// Generate a block of inline assembly that takes three deinterleaved registers
// and shuffles the bytes. The output is in temporary registers t0..t3.
#define SHUF(A, B, C) \
"ushr %[t0].16b, "A".16b, #2 \n\t" \
"ushr %[t1].16b, "B".16b, #4 \n\t" \
"ushr %[t2].16b, "C".16b, #6 \n\t" \
"sli %[t1].16b, "A".16b, #4 \n\t" \
"sli %[t2].16b, "B".16b, #2 \n\t" \
"and %[t1].16b, %[t1].16b, %[n63].16b \n\t" \
"and %[t2].16b, %[t2].16b, %[n63].16b \n\t" \
"and %[t3].16b, "C".16b, %[n63].16b \n\t"
// Generate a block of inline assembly that takes temporary registers t0..t3
// and translates them to the base64 alphabet, using a table loaded into
// v8..v11. The output is in user-defined registers A..D.
#define TRAN(A, B, C, D) \
"tbl "A".16b, {v8.16b-v11.16b}, %[t0].16b \n\t" \
"tbl "B".16b, {v8.16b-v11.16b}, %[t1].16b \n\t" \
"tbl "C".16b, {v8.16b-v11.16b}, %[t2].16b \n\t" \
"tbl "D".16b, {v8.16b-v11.16b}, %[t3].16b \n\t"
// Generate a block of inline assembly that interleaves four registers and
// stores them, post-incrementing the destination pointer.
#define STOR(A, B, C, D) \
"st4 {"A".16b, "B".16b, "C".16b, "D".16b}, [%[dst]], #64 \n\t"
// Generate a block of inline assembly that generates a single self-contained
// encoder round: fetch the data, process it, and store the result.
#define ROUND() \
LOAD("v12", "v13", "v14") \
SHUF("v12", "v13", "v14") \
TRAN("v12", "v13", "v14", "v15") \
STOR("v12", "v13", "v14", "v15")
// Generate a block of assembly that generates a type A interleaved encoder
// round. It uses registers that were loaded by the previous type B round, and
// in turn loads registers for the next type B round.
#define ROUND_A() \
SHUF("v2", "v3", "v4") \
LOAD("v12", "v13", "v14") \
TRAN("v2", "v3", "v4", "v5") \
STOR("v2", "v3", "v4", "v5")
// Type B interleaved encoder round. Same as type A, but register sets swapped.
#define ROUND_B() \
SHUF("v12", "v13", "v14") \
LOAD("v2", "v3", "v4") \
TRAN("v12", "v13", "v14", "v15") \
STOR("v12", "v13", "v14", "v15")
// The first type A round needs to load its own registers.
#define ROUND_A_FIRST() \
LOAD("v2", "v3", "v4") \
ROUND_A()
// The last type B round omits the load for the next step.
#define ROUND_B_LAST() \
SHUF("v12", "v13", "v14") \
TRAN("v12", "v13", "v14", "v15") \
STOR("v12", "v13", "v14", "v15")
// Suppress clang's warning that the literal string in the asm statement is
// overlong (longer than the ISO-mandated minimum size of 4095 bytes for C99
// compilers). It may be true, but the goal here is not C99 portability.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Woverlength-strings"
static inline void
enc_loop_neon64 (const uint8_t **s, size_t *slen, uint8_t **o, size_t *olen)
{
size_t rounds = *slen / 48;
if (rounds == 0) {
return;
}
*slen -= rounds * 48; // 48 bytes consumed per round.
*olen += rounds * 64; // 64 bytes produced per round.
// Number of times to go through the 8x loop.
size_t loops = rounds / 8;
// Number of rounds remaining after the 8x loop.
rounds %= 8;
// Temporary registers, used as scratch space.
uint8x16_t tmp0, tmp1, tmp2, tmp3;
__asm__ volatile (
// Load the encoding table into v8..v11.
" ld1 {v8.16b-v11.16b}, [%[tbl]] \n\t"
// If there are eight rounds or more, enter an 8x unrolled loop
// of interleaved encoding rounds. The rounds interleave memory
// operations (load/store) with data operations to maximize
// pipeline throughput.
" cbz %[loops], 4f \n\t"
// The SIMD instructions do not touch the flags.
"88: subs %[loops], %[loops], #1 \n\t"
" " ROUND_A_FIRST()
" " ROUND_B()
" " ROUND_A()
" " ROUND_B()
" " ROUND_A()
" " ROUND_B()
" " ROUND_A()
" " ROUND_B_LAST()
" b.ne 88b \n\t"
// Enter a 4x unrolled loop for rounds of 4 or more.
"4: cmp %[rounds], #4 \n\t"
" b.lt 30f \n\t"
" " ROUND_A_FIRST()
" " ROUND_B()
" " ROUND_A()
" " ROUND_B_LAST()
" sub %[rounds], %[rounds], #4 \n\t"
// Dispatch the remaining rounds 0..3.
"30: cbz %[rounds], 0f \n\t"
" cmp %[rounds], #2 \n\t"
" b.eq 2f \n\t"
" b.lt 1f \n\t"
// Block of non-interlaced encoding rounds, which can each
// individually be jumped to. Rounds fall through to the next.
"3: " ROUND()
"2: " ROUND()
"1: " ROUND()
"0: \n\t"
// Outputs (modified).
: [loops] "+r" (loops),
[src] "+r" (*s),
[dst] "+r" (*o),
[t0] "=&w" (tmp0),
[t1] "=&w" (tmp1),
[t2] "=&w" (tmp2),
[t3] "=&w" (tmp3)
// Inputs (not modified).
: [rounds] "r" (rounds),
[tbl] "r" (base64_table_enc_6bit),
[n63] "w" (vdupq_n_u8(63))
// Clobbers.
: "v2", "v3", "v4", "v5",
"v8", "v9", "v10", "v11",
"v12", "v13", "v14", "v15",
"cc", "memory"
);
}
#pragma GCC diagnostic pop
|
2301_81045437/base64
|
lib/arch/neon64/enc_loop_asm.c
|
C
|
bsd
| 5,617
|
static BASE64_FORCE_INLINE uint8x16x4_t
enc_reshuffle (const uint8x16x3_t in)
{
uint8x16x4_t out;
// Input:
// in[0] = a7 a6 a5 a4 a3 a2 a1 a0
// in[1] = b7 b6 b5 b4 b3 b2 b1 b0
// in[2] = c7 c6 c5 c4 c3 c2 c1 c0
// Output:
// out[0] = 00 00 a7 a6 a5 a4 a3 a2
// out[1] = 00 00 a1 a0 b7 b6 b5 b4
// out[2] = 00 00 b3 b2 b1 b0 c7 c6
// out[3] = 00 00 c5 c4 c3 c2 c1 c0
// Move the input bits to where they need to be in the outputs. Except
// for the first output, the high two bits are not cleared.
out.val[0] = vshrq_n_u8(in.val[0], 2);
out.val[1] = vshrq_n_u8(in.val[1], 4);
out.val[2] = vshrq_n_u8(in.val[2], 6);
out.val[1] = vsliq_n_u8(out.val[1], in.val[0], 4);
out.val[2] = vsliq_n_u8(out.val[2], in.val[1], 2);
// Clear the high two bits in the second, third and fourth output.
out.val[1] = vandq_u8(out.val[1], vdupq_n_u8(0x3F));
out.val[2] = vandq_u8(out.val[2], vdupq_n_u8(0x3F));
out.val[3] = vandq_u8(in.val[2], vdupq_n_u8(0x3F));
return out;
}
|
2301_81045437/base64
|
lib/arch/neon64/enc_reshuffle.c
|
C
|
bsd
| 988
|