code
stringlengths
1
1.05M
repo_name
stringlengths
6
83
path
stringlengths
3
242
language
stringclasses
222 values
license
stringclasses
20 values
size
int64
1
1.05M
import { onContentUpdated } from 'vitepress'; import { computed, shallowRef } from 'vue'; import { getHeaders } from '../composables/outline'; import { useData } from './data'; export function useLocalNav() { const { theme, frontmatter } = useData(); const headers = shallowRef([]); const hasLocalNav = computed(() => { return headers.value.length > 0; }); onContentUpdated(() => { headers.value = getHeaders(frontmatter.value.outline ?? theme.value.outline); }); return { headers, hasLocalNav }; }
2301_80257615/MateChat
docs/theme-default/composables/local-nav.js
JavaScript
mit
563
import { ref, watch } from 'vue'; import { useRoute } from 'vitepress'; export function useNav() { const isScreenOpen = ref(false); function openScreen() { isScreenOpen.value = true; window.addEventListener('resize', closeScreenOnTabletWindow); } function closeScreen() { isScreenOpen.value = false; window.removeEventListener('resize', closeScreenOnTabletWindow); } function toggleScreen() { isScreenOpen.value ? closeScreen() : openScreen(); } /** * Close screen when the user resizes the window wider than tablet size. */ function closeScreenOnTabletWindow() { window.outerWidth >= 768 && closeScreen(); } const route = useRoute(); watch(() => route.path, closeScreen); return { isScreenOpen, openScreen, closeScreen, toggleScreen }; }
2301_80257615/MateChat
docs/theme-default/composables/nav.js
JavaScript
mit
885
import { onMounted, onUnmounted, onUpdated } from 'vue'; import { throttleAndDebounce } from '../support/utils'; // cached list of anchor elements from resolveHeaders const resolvedHeaders = []; export function resolveTitle(theme) { return ( (typeof theme.outline === 'object' && !Array.isArray(theme.outline) && theme.outline.label) || theme.outlineTitle || '' ); } export function getHeaders(range) { const headers = [...document.querySelectorAll('.vp-doc :where(h1,h2,h3,h4,h5,h6)')] .filter((el) => el.id && el.hasChildNodes()) .map((el) => { const level = Number(el.tagName[1]); return { element: el, title: serializeHeader(el), link: el.id, level, }; }); return resolveHeaders(headers, range); } function serializeHeader(h) { let ret = ''; for (const node of h.childNodes) { if (node.nodeType === 1) { if ( node.classList.contains('VPBadge') || node.classList.contains('header-anchor') || node.classList.contains('ignore-header') ) { continue; } ret += node.textContent; } else if (node.nodeType === 3) { ret += node.textContent; } } return ret.trim(); } export function resolveHeaders(headers, range) { if (range === false) { return []; } const levelsRange = (typeof range === 'object' && !Array.isArray(range) ? range.level : range) || 2; const [high, low] = typeof levelsRange === 'number' ? [levelsRange, levelsRange] : levelsRange === 'deep' ? [2, 6] : levelsRange; return buildTree(headers, high, low); } export function useActiveAnchor(container) { const onScroll = throttleAndDebounce(setActiveLink, 100); let prevActiveLink = null; onMounted(() => { requestAnimationFrame(setActiveLink); window.addEventListener('scroll', onScroll); }); onUpdated(() => { // sidebar update means a route change activateLink(location.hash); }); onUnmounted(() => { window.removeEventListener('scroll', onScroll); }); function setActiveLink() { const scrollY = window.scrollY; const innerHeight = window.innerHeight; const offsetHeight = document.body.offsetHeight; const isBottom = Math.abs(scrollY + innerHeight - offsetHeight) < 1; const headers = resolvedHeaders .map(({ element, link }) => ({ link, top: getAbsoluteTop(element), })) .filter(({ top }) => !Number.isNaN(top)) .sort((a, b) => a.top - b.top); // no headers available for active link if (!headers.length) { activateLink(null); return; } // page top if (scrollY < 1) { activateLink(null); return; } // page bottom - highlight last link if (isBottom) { activateLink(headers[headers.length - 1].link); return; } // find the last header above the top of viewport let activeLink = null; for (const { link, top } of headers) { if (top > scrollY + 4) { break; } activeLink = link; } activateLink(activeLink); } function activateLink(hash) { if (prevActiveLink) { prevActiveLink.classList.remove('active'); } if (hash == null) { prevActiveLink = null; } else { prevActiveLink = container.value.querySelector(`.content-nav #nav-${hash}`); } const activeLink = prevActiveLink; if (activeLink) { activeLink.classList.add('active'); } } } function getAbsoluteTop(element) { let offsetTop = 0; while (element !== document.body) { if (element === null) { // child element is: // - not attached to the DOM (display: none) // - set to fixed position (not scrollable) // - body or html element (null offsetParent) return NaN; } offsetTop += element.offsetTop; element = element.offsetParent; } return offsetTop; } function buildTree(data, min, max) { resolvedHeaders.length = 0; const result = []; const stack = []; data.forEach((item) => { const node = { ...item, children: [] }; let parent = stack[stack.length - 1]; while (parent && parent.level >= node.level) { stack.pop(); parent = stack[stack.length - 1]; } if (node.element.classList.contains('ignore-header') || (parent && 'shouldIgnore' in parent)) { stack.push({ level: node.level, shouldIgnore: true }); return; } if (node.level > max || node.level < min) return; resolvedHeaders.push({ element: node.element, link: node.link }); if (parent) parent.children.push(node); else result.push(node); stack.push(node); }); return result; }
2301_80257615/MateChat
docs/theme-default/composables/outline.js
JavaScript
mit
4,667
import { computed } from 'vue'; import { useData } from './data'; import { isActive } from '../../shared'; import { getSidebar, getFlatSideBarLinks } from '../support/sidebar'; export function usePrevNext() { const { page, theme, frontmatter } = useData(); return computed(() => { const sidebar = getSidebar(theme.value.sidebar, page.value.relativePath); const links = getFlatSideBarLinks(sidebar); // ignore inner-page links with hashes const candidates = uniqBy(links, (link) => link.link.replace(/[?#].*$/, '')); const index = candidates.findIndex((link) => { return isActive(page.value.relativePath, link.link); }); const hidePrev = (theme.value.docFooter?.prev === false && !frontmatter.value.prev) || frontmatter.value.prev === false; const hideNext = (theme.value.docFooter?.next === false && !frontmatter.value.next) || frontmatter.value.next === false; return { prev: hidePrev ? undefined : { text: (typeof frontmatter.value.prev === 'string' ? frontmatter.value.prev : typeof frontmatter.value.prev === 'object' ? frontmatter.value.prev.text : undefined) ?? candidates[index - 1]?.docFooterText ?? candidates[index - 1]?.text, link: (typeof frontmatter.value.prev === 'object' ? frontmatter.value.prev.link : undefined) ?? candidates[index - 1]?.link }, next: hideNext ? undefined : { text: (typeof frontmatter.value.next === 'string' ? frontmatter.value.next : typeof frontmatter.value.next === 'object' ? frontmatter.value.next.text : undefined) ?? candidates[index + 1]?.docFooterText ?? candidates[index + 1]?.text, link: (typeof frontmatter.value.next === 'object' ? frontmatter.value.next.link : undefined) ?? candidates[index + 1]?.link } }; }); } function uniqBy(array, keyFn) { const seen = new Set(); return array.filter((item) => { const k = keyFn(item); return seen.has(k) ? false : seen.add(k); }); }
2301_80257615/MateChat
docs/theme-default/composables/prev-next.js
JavaScript
mit
2,580
import { useMediaQuery } from '@vueuse/core'; import { computed, onMounted, onUnmounted, ref, watch, watchEffect, watchPostEffect } from 'vue'; import { isActive } from '../../shared'; import { hasActiveLink as containsActiveLink, getSidebar, getSidebarGroups } from '../support/sidebar'; import { useData } from './data'; export function useSidebar() { const { frontmatter, page, theme } = useData(); const is960 = useMediaQuery('(min-width: 960px)'); const isOpen = ref(false); const _sidebar = computed(() => { const sidebarConfig = theme.value.sidebar; const relativePath = page.value.relativePath; return sidebarConfig ? getSidebar(sidebarConfig, relativePath) : []; }); const sidebar = ref(_sidebar.value); watch(_sidebar, (next, prev) => { if (JSON.stringify(next) !== JSON.stringify(prev)) sidebar.value = _sidebar.value; }); const hasSidebar = computed(() => { return (frontmatter.value.sidebar !== false && sidebar.value.length > 0 && frontmatter.value.layout !== 'home'); }); const leftAside = computed(() => { if (hasAside) return frontmatter.value.aside == null ? theme.value.aside === 'left' : frontmatter.value.aside === 'left'; return false; }); const hasAside = computed(() => { if (frontmatter.value.layout === 'home') return false; if (frontmatter.value.aside != null) return !!frontmatter.value.aside; return theme.value.aside !== false; }); const isSidebarEnabled = computed(() => hasSidebar.value && is960.value); const sidebarGroups = computed(() => { return hasSidebar.value ? getSidebarGroups(sidebar.value) : []; }); function open() { isOpen.value = true; } function close() { isOpen.value = false; } function toggle() { isOpen.value ? close() : open(); } return { isOpen, sidebar, sidebarGroups, hasSidebar, hasAside, leftAside, isSidebarEnabled, open, close, toggle }; } /** * a11y: cache the element that opened the Sidebar (the menu button) then * focus that button again when Menu is closed with Escape key. */ export function useCloseSidebarOnEscape(isOpen, close) { let triggerElement; watchEffect(() => { triggerElement = isOpen.value ? document.activeElement : undefined; }); onMounted(() => { window.addEventListener('keyup', onEscape); }); onUnmounted(() => { window.removeEventListener('keyup', onEscape); }); function onEscape(e) { if (e.key === 'Escape' && isOpen.value) { close(); triggerElement?.focus(); } } } export function useSidebarControl(item) { const { page, hash } = useData(); const collapsed = ref(false); const collapsible = computed(() => { return item.value.collapsed != null; }); const isLink = computed(() => { return !!item.value.link; }); const isActiveLink = ref(false); const updateIsActiveLink = () => { isActiveLink.value = isActive(page.value.relativePath, item.value.link); }; watch([page, item, hash], updateIsActiveLink); onMounted(updateIsActiveLink); const hasActiveLink = computed(() => { if (isActiveLink.value) { return true; } return item.value.items ? containsActiveLink(page.value.relativePath, item.value.items) : false; }); const hasChildren = computed(() => { return !!(item.value.items && item.value.items.length); }); watchEffect(() => { collapsed.value = !!(collapsible.value && item.value.collapsed); }); watchPostEffect(() => { ; (isActiveLink.value || hasActiveLink.value) && (collapsed.value = false); }); function toggle() { if (collapsible.value) { collapsed.value = !collapsed.value; } } return { collapsed, collapsible, isLink, isActiveLink, hasActiveLink, hasChildren, toggle }; }
2301_80257615/MateChat
docs/theme-default/composables/sidebar.js
JavaScript
mit
4,287
import { onMounted, onUnmounted } from 'vue'; import { throttleAndDebounce } from '../support/utils'; /** * Defines grid configuration for each sponsor size in tuple. * * [Screen width, Column size] * * It sets grid size on matching screen size. For example, `[768, 5]` will * set 5 columns when screen size is bigger or equal to 768px. * * Column will set only when item size is bigger than the column size. For * example, even we define 5 columns, if we only have 1 sponsor yet, we would * like to show it in 1 column to make it stand out. */ const GridSettings = { xmini: [[0, 2]], mini: [], small: [ [920, 6], [768, 5], [640, 4], [480, 3], [0, 2] ], medium: [ [960, 5], [832, 4], [640, 3], [480, 2] ], big: [ [832, 3], [640, 2] ] }; export function useSponsorsGrid({ el, size = 'medium' }) { const onResize = throttleAndDebounce(manage, 100); onMounted(() => { manage(); window.addEventListener('resize', onResize); }); onUnmounted(() => { window.removeEventListener('resize', onResize); }); function manage() { adjustSlots(el.value, size); } } function adjustSlots(el, size) { const tsize = el.children.length; const asize = el.querySelectorAll('.vp-sponsor-grid-item:not(.empty)').length; const grid = setGrid(el, size, asize); manageSlots(el, grid, tsize, asize); } function setGrid(el, size, items) { const settings = GridSettings[size]; const screen = window.innerWidth; let grid = 1; settings.some(([breakpoint, value]) => { if (screen >= breakpoint) { grid = items < value ? items : value; return true; } }); setGridData(el, grid); return grid; } function setGridData(el, value) { el.dataset.vpGrid = String(value); } function manageSlots(el, grid, tsize, asize) { const diff = tsize - asize; const rem = asize % grid; const drem = rem === 0 ? rem : grid - rem; neutralizeSlots(el, drem - diff); } function neutralizeSlots(el, count) { if (count === 0) { return; } count > 0 ? addSlots(el, count) : removeSlots(el, count * -1); } function addSlots(el, count) { for (let i = 0; i < count; i++) { const slot = document.createElement('div'); slot.classList.add('vp-sponsor-grid-item', 'empty'); el.append(slot); } } function removeSlots(el, count) { for (let i = 0; i < count; i++) { el.removeChild(el.lastElementChild); } }
2301_80257615/MateChat
docs/theme-default/composables/sponsor-grid.js
JavaScript
mit
2,596
import './styles/fonts.css'; import './styles/global.scss'; import Layout from './components/Layout.vue'; export * from './without-fonts'; export { Layout }; import { ThemeServiceInit, infinityTheme, galaxyTheme } from 'devui-theme'; import { ThemeKey } from './components/datas/type'; // 默认使用无限主题 export const themeServiceInstance = ThemeServiceInit( { infinityTheme, galaxyTheme, }, 'infinityTheme', ); if (typeof localStorage !== 'undefined' && localStorage.getItem('theme') === ThemeKey.Galaxy) { themeServiceInstance.applyTheme(galaxyTheme); }
2301_80257615/MateChat
docs/theme-default/index.js
JavaScript
mit
583
@media (prefers-reduced-motion: reduce) { *, ::before, ::after { animation-delay: -1ms !important; animation-duration: 1ms !important; animation-iteration-count: 1 !important; background-attachment: initial !important; scroll-behavior: auto !important; transition-duration: 0s !important; transition-delay: 0s !important; } } *, ::before, ::after { box-sizing: border-box; } html { line-height: 1.4; font-size: 16px; -webkit-text-size-adjust: 100%; } html.dark { color-scheme: dark; } body { margin: 0; width: 100%; min-width: 320px; min-height: 100vh; line-height: 24px; font-family: var(--vp-font-family-base); font-size: 16px; font-weight: 400; color: var(--vp-c-text-1); font-synthesis: style; text-rendering: optimizeLegibility; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; } main { display: block; } h1, h2, h3, h4, h5, h6 { margin: 0; line-height: 24px; font-size: 16px; font-weight: 400; } p { margin: 0; } strong, b { font-weight: 600; } /** * Avoid 300ms click delay on touch devices that support the `touch-action` * CSS property. * * In particular, unlike most other browsers, IE11+Edge on Windows 10 on * touch devices and IE Mobile 10-11 DON'T remove the click delay when * `<meta name="viewport" content="width=device-width">` is present. * However, they DO support removing the click delay via * `touch-action: manipulation`. * * See: * - http://v4-alpha.getbootstrap.com/content/reboot/#click-delay-optimization-for-touch * - http://caniuse.com/#feat=css-touch-action * - http://patrickhlauke.github.io/touch/tests/results/#suppressing-300ms-delay */ a, area, button, [role='button'], input, label, select, summary, textarea { touch-action: manipulation; } a { color: inherit; text-decoration: inherit; } ol, ul { list-style: none; margin: 0; padding: 0; } blockquote { margin: 0; } body pre, body code, body kbd, body samp { font-family: var(--vp-font-family-mono); } img, svg, video, canvas, audio, iframe, embed, object { display: block; } figure { margin: 0; } img, video { max-width: 100%; height: auto; } button, input, optgroup, select, textarea { border: 0; padding: 0; line-height: inherit; color: inherit; } button { padding: 0; font-family: inherit; background-color: transparent; background-image: none; } button:enabled, [role='button']:enabled { cursor: pointer; } button:focus, button:focus-visible { outline: 1px dotted; outline: 4px auto -webkit-focus-ring-color; } button:focus:not(:focus-visible) { outline: none !important; } input:focus, textarea:focus, select:focus { outline: none; } table { border-collapse: collapse; } input { background-color: transparent; } input:-ms-input-placeholder, textarea:-ms-input-placeholder { color: var(--vp-c-text-3); } input::-ms-input-placeholder, textarea::-ms-input-placeholder { color: var(--vp-c-text-3); } input::placeholder, textarea::placeholder { color: var(--vp-c-text-3); } input::-webkit-outer-spin-button, input::-webkit-inner-spin-button { -webkit-appearance: none; margin: 0; } input[type='number'] { -moz-appearance: textfield; } textarea { resize: vertical; } select { -webkit-appearance: none; } fieldset { margin: 0; padding: 0; } h1, h2, h3, h4, h5, h6, li, p { overflow-wrap: break-word; } vite-error-overlay { z-index: 9999; } mjx-container { overflow-x: auto; } mjx-container > svg { display: inline-block; margin: auto; }
2301_80257615/MateChat
docs/theme-default/styles/base.css
CSS
mit
3,568
.custom-block { border: 1px solid transparent; border-radius: 8px; padding: 16px 16px 8px; line-height: 24px; font-size: var(--vp-custom-block-font-size); color: var(--vp-c-text-2); } .custom-block.info { border-color: var(--vp-custom-block-info-border); color: var(--vp-custom-block-info-text); background-color: var(--vp-custom-block-info-bg); } .custom-block.info a, .custom-block.info code { color: var(--vp-c-brand-1); } .custom-block.info a:hover, .custom-block.info a:hover > code { color: var(--vp-c-brand-2); } .custom-block.info code { background-color: var(--vp-custom-block-info-code-bg); } .custom-block.note { border-color: var(--vp-custom-block-note-border); color: var(--vp-custom-block-note-text); background-color: var(--vp-custom-block-note-bg); } .custom-block.note a, .custom-block.note code { color: var(--vp-c-brand-1); } .custom-block.note a:hover, .custom-block.note a:hover > code { color: var(--vp-c-brand-2); } .custom-block.note code { background-color: var(--vp-custom-block-note-code-bg); } .custom-block.tip { border-color: var(--vp-custom-block-tip-border); color: var(--vp-custom-block-tip-text); background-color: var(--vp-custom-block-tip-bg); } .custom-block.tip a, .custom-block.tip code { color: var(--vp-c-tip-1); } .custom-block.tip a:hover, .custom-block.tip a:hover > code { color: var(--vp-c-tip-2); } .custom-block.tip code { background-color: var(--vp-custom-block-tip-code-bg); } .custom-block.important { border-color: var(--vp-custom-block-important-border); color: var(--vp-custom-block-important-text); background-color: var(--vp-custom-block-important-bg); } .custom-block.important a, .custom-block.important code { color: var(--vp-c-important-1); } .custom-block.important a:hover, .custom-block.important a:hover > code { color: var(--vp-c-important-2); } .custom-block.important code { background-color: var(--vp-custom-block-important-code-bg); } .custom-block.warning { border-color: var(--vp-custom-block-warning-border); color: var(--vp-custom-block-warning-text); background-color: var(--vp-custom-block-warning-bg); } .custom-block.warning a, .custom-block.warning code { color: var(--vp-c-warning-1); } .custom-block.warning a:hover, .custom-block.warning a:hover > code { color: var(--vp-c-warning-2); } .custom-block.warning code { background-color: var(--vp-custom-block-warning-code-bg); } .custom-block.danger { border-color: var(--vp-custom-block-danger-border); color: var(--vp-custom-block-danger-text); background-color: var(--vp-custom-block-danger-bg); } .custom-block.danger a, .custom-block.danger code { color: var(--vp-c-danger-1); } .custom-block.danger a:hover, .custom-block.danger a:hover > code { color: var(--vp-c-danger-2); } .custom-block.danger code { background-color: var(--vp-custom-block-danger-code-bg); } .custom-block.caution { border-color: var(--vp-custom-block-caution-border); color: var(--vp-custom-block-caution-text); background-color: var(--vp-custom-block-caution-bg); } .custom-block.caution a, .custom-block.caution code { color: var(--vp-c-caution-1); } .custom-block.caution a:hover, .custom-block.caution a:hover > code { color: var(--vp-c-caution-2); } .custom-block.caution code { background-color: var(--vp-custom-block-caution-code-bg); } .custom-block.details { border-color: var(--vp-custom-block-details-border); color: var(--vp-custom-block-details-text); background-color: var(--vp-custom-block-details-bg); } .custom-block.details a { color: var(--vp-c-brand-1); } .custom-block.details a:hover, .custom-block.details a:hover > code { color: var(--vp-c-brand-2); } .custom-block.details code { background-color: var(--vp-custom-block-details-code-bg); } .custom-block-title { font-weight: 600; } .custom-block p + p { margin: 8px 0; } .custom-block.details summary { margin: 0 0 8px; font-weight: 700; cursor: pointer; user-select: none; } .custom-block.details summary + p { margin: 8px 0; } .custom-block a { color: inherit; font-weight: 600; text-decoration: underline; text-underline-offset: 2px; transition: opacity 0.25s; } .custom-block a:hover { opacity: 0.75; } .custom-block code { font-size: var(--vp-custom-block-code-font-size); } .custom-block.custom-block th, .custom-block.custom-block blockquote > p { font-size: var(--vp-custom-block-font-size); color: inherit; }
2301_80257615/MateChat
docs/theme-default/styles/components/custom-block.css
CSS
mit
4,480
.vp-code-group { margin-top: 16px; } .vp-code-group .tabs { position: relative; display: flex; margin-right: -24px; margin-left: -24px; padding: 0 12px; background-color: var(--vp-code-tab-bg); overflow-x: auto; overflow-y: hidden; box-shadow: inset 0 -1px var(--vp-code-tab-divider); } @media (min-width: 640px) { .vp-code-group .tabs { margin-right: 0; margin-left: 0; border-radius: 8px 8px 0 0; } } .vp-code-group .tabs input { position: fixed; opacity: 0; pointer-events: none; } .vp-code-group .tabs label { position: relative; display: inline-block; border-bottom: 1px solid transparent; padding: 0 12px; line-height: 48px; font-size: 14px; font-weight: 500; color: var(--vp-code-tab-text-color); white-space: nowrap; cursor: pointer; transition: color 0.25s; } .vp-code-group .tabs label::after { position: absolute; right: 8px; bottom: -1px; left: 8px; z-index: 1; height: 2px; border-radius: 2px; content: ''; background-color: transparent; transition: background-color 0.25s; } .vp-code-group label:hover { color: var(--vp-code-tab-hover-text-color); } .vp-code-group input:checked + label { color: var(--vp-code-tab-active-text-color); } .vp-code-group input:checked + label::after { background-color: var(--vp-code-tab-active-bar-color); } .vp-code-group div[class*='language-'], .vp-block { display: none; margin-top: 0 !important; border-top-left-radius: 0 !important; border-top-right-radius: 0 !important; } .vp-code-group div[class*='language-'].active, .vp-block.active { display: block; } .vp-block { padding: 20px 24px; }
2301_80257615/MateChat
docs/theme-default/styles/components/vp-code-group.css
CSS
mit
1,656
.dark .vp-code span { color: var(--shiki-dark, inherit); } html:not(.dark) .vp-code span { color: var(--shiki-light, inherit); }
2301_80257615/MateChat
docs/theme-default/styles/components/vp-code.css
CSS
mit
134
/** * Headings * -------------------------------------------------------------------------- */ .vp-doc h1, .vp-doc h2, .vp-doc h3, .vp-doc h4, .vp-doc h5, .vp-doc h6 { position: relative; font-weight: 600; outline: none; } .vp-doc h1 { letter-spacing: -0.02em; line-height: 40px; font-size: 28px; } .vp-doc h2 { margin: 48px 0 16px; border-top: 1px solid var(--vp-c-divider); padding-top: 24px; letter-spacing: -0.02em; line-height: 32px; font-size: 24px; } .vp-doc h3 { margin: 32px 0 0; letter-spacing: -0.01em; line-height: 28px; font-size: 20px; } .vp-doc h4 { margin: 24px 0 0; letter-spacing: -0.01em; line-height: 24px; font-size: 18px; } .vp-doc .header-anchor { display: none; } @media (min-width: 768px) { .vp-doc h1 { letter-spacing: -0.02em; line-height: 40px; font-size: 32px; } } /** * Paragraph and inline elements * -------------------------------------------------------------------------- */ .vp-doc p, .vp-doc summary { margin: 16px 0; } .vp-doc p { line-height: 28px; } .vp-doc blockquote { margin: 16px 0; border-left: 2px solid var(--vp-c-divider); padding-left: 16px; transition: border-color 0.5s; color: var(--vp-c-text-2); } .vp-doc blockquote > p { margin: 0; font-size: 16px; transition: color 0.5s; } .vp-doc a { font-weight: 500; color: var(--vp-c-brand-1); text-decoration: underline; text-underline-offset: 2px; transition: color 0.25s, opacity 0.25s; } .vp-doc a:hover { color: var(--vp-c-brand-2); } .vp-doc strong { font-weight: 600; } /** * Lists * -------------------------------------------------------------------------- */ .vp-doc ul, .vp-doc ol { padding-left: 1.25rem; margin: 16px 0; } .vp-doc ul { list-style: disc; } .vp-doc ol { list-style: decimal; } .vp-doc li + li { margin-top: 8px; } .vp-doc li > ol, .vp-doc li > ul { margin: 8px 0 0; } /** * Table * -------------------------------------------------------------------------- */ .vp-doc table { display: block; border-collapse: collapse; margin: 20px 0; overflow-x: auto; } .vp-doc tr { background-color: var(--vp-c-bg); border-top: 1px solid var(--vp-c-divider); transition: background-color 0.5s; } .vp-doc tr:nth-child(2n) { background-color: var(--vp-c-bg-soft); } .vp-doc th, .vp-doc td { border: 1px solid var(--vp-c-divider); padding: 8px 16px; } .vp-doc th { text-align: left; font-size: 14px; font-weight: 600; color: var(--vp-c-text-2); background-color: var(--vp-c-bg-soft); } .vp-doc td { font-size: 14px; } /** * Decorational elements * -------------------------------------------------------------------------- */ .vp-doc hr { margin: 16px 0; border: none; border-top: 1px solid var(--vp-c-divider); } /** * Custom Block * -------------------------------------------------------------------------- */ .vp-doc .custom-block { margin: 16px 0; } .vp-doc .custom-block p { margin: 8px 0; line-height: 24px; } .vp-doc .custom-block p:first-child { margin: 0; } .vp-doc .custom-block div[class*='language-'] { margin: 8px 0; border-radius: 8px; } .vp-doc .custom-block div[class*='language-'] code { font-weight: 400; background-color: transparent; } .vp-doc .custom-block .vp-code-group .tabs { margin: 0; border-radius: 8px 8px 0 0; } /** * Code * -------------------------------------------------------------------------- */ /* inline code */ .vp-doc :not(pre, h1, h2, h3, h4, h5, h6) > code { font-size: var(--vp-code-font-size); color: var(--vp-code-color); } .vp-doc :not(pre) > code { border-radius: 4px; padding: 3px 6px; background-color: var(--vp-code-bg); transition: color 0.25s, background-color 0.5s; } .vp-doc a > code { color: var(--vp-code-link-color); } .vp-doc a:hover > code { color: var(--vp-code-link-hover-color); } .vp-doc h1 > code, .vp-doc h2 > code, .vp-doc h3 > code, .vp-doc h4 > code { font-size: 0.9em; } .vp-doc div[class*='language-'], .vp-block { border-radius: 8px; position: relative; margin: 16px 0px; background-color: var(--vp-code-block-bg); overflow-x: auto; transition: background-color 0.5s; } @media (min-width: 640px) { .vp-doc div[class*='language-'], .vp-block { border-radius: 8px; margin: 16px 0; } } @media (max-width: 639px) { .vp-doc li div[class*='language-'] { border-radius: 8px 0 0 8px; } } .vp-doc div[class*='language-'] + div[class*='language-'], .vp-doc div[class$='-api'] + div[class*='language-'], .vp-doc div[class*='language-'] + div[class$='-api'] > div[class*='language-'] { margin-top: -8px; } .vp-doc [class*='language-'] pre, .vp-doc [class*='language-'] code { /*rtl:ignore*/ direction: ltr; /*rtl:ignore*/ text-align: left; white-space: pre; word-spacing: normal; word-break: normal; word-wrap: normal; -moz-tab-size: 4; -o-tab-size: 4; tab-size: 4; -webkit-hyphens: none; -moz-hyphens: none; -ms-hyphens: none; hyphens: none; } .vp-doc [class*='language-'] pre { position: relative; z-index: 1; margin: 0; padding: 20px 0; background: transparent; overflow-x: auto; } .vp-doc [class*='language-'] code { display: block; padding: 0 24px; width: fit-content; min-width: 100%; line-height: var(--vp-code-line-height); font-size: var(--vp-code-font-size); color: var(--vp-code-block-color); transition: color 0.5s; } .vp-doc [class*='language-'] code .highlighted { background-color: var(--vp-code-line-highlight-color); transition: background-color 0.5s; margin: 0 -24px; padding: 0 24px; width: calc(100% + 2 * 24px); display: inline-block; } .vp-doc [class*='language-'] code .highlighted.error { background-color: var(--vp-code-line-error-color); } .vp-doc [class*='language-'] code .highlighted.warning { background-color: var(--vp-code-line-warning-color); } .vp-doc [class*='language-'] code .diff { transition: background-color 0.5s; margin: 0 -24px; padding: 0 24px; width: calc(100% + 2 * 24px); display: inline-block; } .vp-doc [class*='language-'] code .diff::before { position: absolute; left: 10px; } .vp-doc [class*='language-'] .has-focused-lines .line:not(.has-focus) { filter: blur(0.095rem); opacity: 0.4; transition: filter 0.35s, opacity 0.35s; } .vp-doc [class*='language-'] .has-focused-lines .line:not(.has-focus) { opacity: 0.7; transition: filter 0.35s, opacity 0.35s; } .vp-doc [class*='language-']:hover .has-focused-lines .line:not(.has-focus) { filter: blur(0); opacity: 1; } .vp-doc [class*='language-'] code .diff.remove { background-color: var(--vp-code-line-diff-remove-color); opacity: 0.7; } .vp-doc [class*='language-'] code .diff.remove::before { content: '-'; color: var(--vp-code-line-diff-remove-symbol-color); } .vp-doc [class*='language-'] code .diff.add { background-color: var(--vp-code-line-diff-add-color); } .vp-doc [class*='language-'] code .diff.add::before { content: '+'; color: var(--vp-code-line-diff-add-symbol-color); } .vp-doc div[class*='language-'].line-numbers-mode { /*rtl:ignore*/ padding-left: 32px; } .vp-doc .line-numbers-wrapper { position: absolute; top: 0; bottom: 0; /*rtl:ignore*/ left: 0; z-index: 3; /*rtl:ignore*/ border-right: 1px solid var(--vp-code-block-divider-color); padding-top: 20px; width: 32px; text-align: center; font-family: var(--vp-font-family-mono); line-height: var(--vp-code-line-height); font-size: var(--vp-code-font-size); color: var(--vp-code-line-number-color); transition: border-color 0.5s, color 0.5s; } .vp-doc [class*='language-'] > button.copy { /*rtl:ignore*/ direction: ltr; position: absolute; top: 12px; /*rtl:ignore*/ right: 12px; z-index: 3; border: 1px solid var(--vp-code-copy-code-border-color); border-radius: 4px; width: 40px; height: 40px; background-color: var(--vp-code-copy-code-bg); opacity: 0; cursor: pointer; background-image: var(--vp-icon-copy); background-position: 50%; background-size: 20px; background-repeat: no-repeat; transition: border-color 0.25s, background-color 0.25s, opacity 0.25s; } .vp-doc [class*='language-']:hover > button.copy, .vp-doc [class*='language-'] > button.copy:focus { opacity: 1; } .vp-doc [class*='language-'] > button.copy:hover, .vp-doc [class*='language-'] > button.copy.copied { border-color: var(--vp-code-copy-code-hover-border-color); background-color: var(--vp-code-copy-code-hover-bg); } .vp-doc [class*='language-'] > button.copy.copied, .vp-doc [class*='language-'] > button.copy:hover.copied { /*rtl:ignore*/ border-radius: 0 4px 4px 0; background-color: var(--vp-code-copy-code-hover-bg); background-image: var(--vp-icon-copied); } .vp-doc [class*='language-'] > button.copy.copied::before, .vp-doc [class*='language-'] > button.copy:hover.copied::before { position: relative; top: -1px; /*rtl:ignore*/ transform: translateX(calc(-100% - 1px)); display: flex; justify-content: center; align-items: center; border: 1px solid var(--vp-code-copy-code-hover-border-color); /*rtl:ignore*/ border-right: 0; border-radius: 4px 0 0 4px; padding: 0 10px; width: fit-content; height: 40px; text-align: center; font-size: 12px; font-weight: 500; color: var(--vp-code-copy-code-active-text); background-color: var(--vp-code-copy-code-hover-bg); white-space: nowrap; content: var(--vp-code-copy-copied-text-content); } .vp-doc [class*='language-'] > span.lang { position: absolute; top: 2px; /*rtl:ignore*/ right: 8px; z-index: 2; font-size: 12px; font-weight: 500; user-select: none; color: var(--vp-code-lang-color); transition: color 0.4s, opacity 0.4s; } .vp-doc [class*='language-']:hover > button.copy + span.lang, .vp-doc [class*='language-'] > button.copy:focus + span.lang { opacity: 0; } /** * Component: Team * -------------------------------------------------------------------------- */ .vp-doc .VPTeamMembers { margin-top: 24px; } .vp-doc .VPTeamMembers.small.count-1 .container { margin: 0 !important; max-width: calc((100% - 24px) / 2) !important; } .vp-doc .VPTeamMembers.small.count-2 .container, .vp-doc .VPTeamMembers.small.count-3 .container { max-width: 100% !important; } .vp-doc .VPTeamMembers.medium.count-1 .container { margin: 0 !important; max-width: calc((100% - 24px) / 2) !important; } /** * External links * -------------------------------------------------------------------------- */ /* prettier-ignore */ :is(.vp-external-link-icon, .vp-doc a[href*='://'], .vp-doc a[target='_blank']):not(.no-icon)::after { display: inline-block; margin-top: -1px; margin-left: 4px; width: 11px; height: 11px; background: currentColor; color: var(--vp-c-text-3); flex-shrink: 0; --icon: url("data:image/svg+xml, %3Csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 24 24' %3E%3Cpath d='M0 0h24v24H0V0z' fill='none' /%3E%3Cpath d='M9 5v2h6.59L4 18.59 5.41 20 17 8.41V15h2V5H9z' /%3E%3C/svg%3E"); -webkit-mask-image: var(--icon); mask-image: var(--icon); } .vp-external-link-icon::after { content: ''; } /* prettier-ignore */ .external-link-icon-enabled :is(.vp-doc a[href*='://'], .vp-doc a[target='_blank'])::after { content: ''; color: currentColor; }
2301_80257615/MateChat
docs/theme-default/styles/components/vp-doc.css
CSS
mit
11,390
/* webfont-marker-begin */ @import url('https://fonts.googleapis.com/css2?family=Inter:ital,opsz,wght@0,14..32,100..900;1,14..32,100..900&display=swap'); /* webfont-marker-end */ @font-face { font-family: Inter; font-style: normal; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-roman-cyrillic-ext.woff2') format('woff2'); unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F; } @font-face { font-family: Inter; font-style: normal; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-roman-cyrillic.woff2') format('woff2'); unicode-range: U+0301, U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116; } @font-face { font-family: Inter; font-style: normal; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-roman-greek-ext.woff2') format('woff2'); unicode-range: U+1F00-1FFF; } @font-face { font-family: Inter; font-style: normal; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-roman-greek.woff2') format('woff2'); unicode-range: U+0370-0377, U+037A-037F, U+0384-038A, U+038C, U+038E-03A1, U+03A3-03FF; } @font-face { font-family: Inter; font-style: normal; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-roman-vietnamese.woff2') format('woff2'); unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+0300-0301, U+0303-0304, U+0308-0309, U+0323, U+0329, U+1EA0-1EF9, U+20AB; } @font-face { font-family: Inter; font-style: normal; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-roman-latin-ext.woff2') format('woff2'); unicode-range: U+0100-02AF, U+0304, U+0308, U+0329, U+1E00-1E9F, U+1EF2-1EFF, U+2020, U+20A0-20AB, U+20AD-20C0, U+2113, U+2C60-2C7F, U+A720-A7FF; } @font-face { font-family: Inter; font-style: normal; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-roman-latin.woff2') format('woff2'); unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+0304, U+0308, U+0329, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; } @font-face { font-family: Inter; font-style: italic; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-italic-cyrillic-ext.woff2') format('woff2'); unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F; } @font-face { font-family: Inter; font-style: italic; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-italic-cyrillic.woff2') format('woff2'); unicode-range: U+0301, U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116; } @font-face { font-family: Inter; font-style: italic; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-italic-greek-ext.woff2') format('woff2'); unicode-range: U+1F00-1FFF; } @font-face { font-family: Inter; font-style: italic; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-italic-greek.woff2') format('woff2'); unicode-range: U+0370-0377, U+037A-037F, U+0384-038A, U+038C, U+038E-03A1, U+03A3-03FF; } @font-face { font-family: Inter; font-style: italic; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-italic-vietnamese.woff2') format('woff2'); unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+0300-0301, U+0303-0304, U+0308-0309, U+0323, U+0329, U+1EA0-1EF9, U+20AB; } @font-face { font-family: Inter; font-style: italic; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-italic-latin-ext.woff2') format('woff2'); unicode-range: U+0100-02AF, U+0304, U+0308, U+0329, U+1E00-1E9F, U+1EF2-1EFF, U+2020, U+20A0-20AB, U+20AD-20C0, U+2113, U+2C60-2C7F, U+A720-A7FF; } @font-face { font-family: Inter; font-style: italic; font-weight: 100 900; font-display: swap; src: url('../fonts/inter-italic-latin.woff2') format('woff2'); unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+0304, U+0308, U+0329, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; } @font-face { font-family: 'Punctuation SC'; font-weight: 400; src: local('PingFang SC Regular'), local('Noto Sans CJK SC'), local('Microsoft YaHei'); unicode-range: U+201C, U+201D, U+2018, U+2019, U+2E3A, U+2014, U+2013, U+2026, U+00B7, U+007E, U+002F; } @font-face { font-family: 'Punctuation SC'; font-weight: 500; src: local('PingFang SC Medium'), local('Noto Sans CJK SC'), local('Microsoft YaHei'); unicode-range: U+201C, U+201D, U+2018, U+2019, U+2E3A, U+2014, U+2013, U+2026, U+00B7, U+007E, U+002F; } @font-face { font-family: 'Punctuation SC'; font-weight: 600; src: local('PingFang SC Semibold'), local('Noto Sans CJK SC Bold'), local('Microsoft YaHei Bold'); unicode-range: U+201C, U+201D, U+2018, U+2019, U+2E3A, U+2014, U+2013, U+2026, U+00B7, U+007E, U+002F; } @font-face { font-family: 'Punctuation SC'; font-weight: 700; src: local('PingFang SC Semibold'), local('Noto Sans CJK SC Bold'), local('Microsoft YaHei Bold'); unicode-range: U+201C, U+201D, U+2018, U+2019, U+2E3A, U+2014, U+2013, U+2026, U+00B7, U+007E, U+002F; } /* Generate the subsetted fonts using: `pyftsubset <file>.woff2 --unicodes="<range>" --output-file="inter-<style>-<subset>.woff2" --flavor=woff2` */
2301_80257615/MateChat
docs/theme-default/styles/fonts.css
CSS
mit
5,523
@import 'devui-theme/styles-var/devui-var.scss'; html { scrollbar-width: thin; scrollbar-color: transparent transparent; overflow-y: scroll; //这是为了兼容ie8,不支持:root, vw } html:hover { scrollbar-color: $devui-line transparent; } body[ui-theme='galaxy-theme'] #content-slider-tabs { --devui-base-bg: #3f3f3f; ul { background-color: #1a1a1c99 !important; } } body[ui-theme='galaxy-theme'] #icon-container { background-color: #1a1a1c99 !important; } body { background-color: $devui-base-bg; } .devui-scrollbar::-webkit-scrollbar { width: 8px; height: 8px; } .devui-scrollbar::-webkit-scrollbar-track { background-color: transparent; } .devui-scrollbar::-webkit-scrollbar-thumb { border-radius: 8px; background-color: $devui-line; } .devui-scrollbar::-webkit-scrollbar-thumb:hover { background-color: $devui-placeholder; } .devui-scroll-overlay { overflow: auto; } .devui-scroll-overlay::-webkit-scrollbar-thumb { background-color: transparent; } .devui-scroll-overlay:hover::-webkit-scrollbar-thumb { background-color: $devui-line; } .devui-scroll-overlay:hover::-webkit-scrollbar-thumb:hover { background-color: $devui-placeholder; } .devui-text-ellipsis { overflow: hidden; white-space: nowrap; text-overflow: ellipsis; } button.copy { display: none; } // 以下13行是防止滚动条显示与隐藏时页面抖动 :root { overflow-y: auto; overflow-x: hidden; } :root body { position: absolute; } #app { width: 100vw; overflow: hidden; }
2301_80257615/MateChat
docs/theme-default/styles/global.scss
SCSS
mit
1,527
[class^='vpi-'], [class*=' vpi-'], .vp-icon { width: 1em; height: 1em; } [class^='vpi-'].bg, [class*=' vpi-'].bg, .vp-icon.bg { background-size: 100% 100%; background-color: transparent; } [class^='vpi-']:not(.bg), [class*=' vpi-']:not(.bg), .vp-icon:not(.bg) { -webkit-mask: var(--icon) no-repeat; mask: var(--icon) no-repeat; -webkit-mask-size: 100% 100%; mask-size: 100% 100%; background-color: currentColor; color: inherit; } /* internal icons - used under ISC from https://lucide.dev/ */ .vpi-align-left { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Cpath d='M21 6H3M15 12H3M17 18H3'/%3E%3C/svg%3E"); } .vpi-arrow-right, .vpi-arrow-down, .vpi-arrow-left, .vpi-arrow-up { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Cpath d='M5 12h14M12 5l7 7-7 7'/%3E%3C/svg%3E"); } .vpi-chevron-right, .vpi-chevron-down, .vpi-chevron-left, .vpi-chevron-up { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Cpath d='m9 18 6-6-6-6'/%3E%3C/svg%3E"); } .vpi-chevron-down, .vpi-arrow-down { transform: rotate(90deg); } .vpi-chevron-left, .vpi-arrow-left { transform: rotate(180deg); } .vpi-chevron-up, .vpi-arrow-up { transform: rotate(-90deg); } .vpi-square-pen { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Cpath d='M12 3H5a2 2 0 0 0-2 2v14a2 2 0 0 0 2 2h14a2 2 0 0 0 2-2v-7'/%3E%3Cpath d='M18.375 2.625a2.121 2.121 0 1 1 3 3L12 15l-4 1 1-4Z'/%3E%3C/svg%3E"); } .vpi-plus { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Cpath d='M5 12h14M12 5v14'/%3E%3C/svg%3E"); } .vpi-sun { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Ccircle cx='12' cy='12' r='4'/%3E%3Cpath d='M12 2v2M12 20v2M4.93 4.93l1.41 1.41M17.66 17.66l1.41 1.41M2 12h2M20 12h2M6.34 17.66l-1.41 1.41M19.07 4.93l-1.41 1.41'/%3E%3C/svg%3E"); } .vpi-moon { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Cpath d='M12 3a6 6 0 0 0 9 9 9 9 0 1 1-9-9Z'/%3E%3C/svg%3E"); } .vpi-more-horizontal { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Ccircle cx='12' cy='12' r='1'/%3E%3Ccircle cx='19' cy='12' r='1'/%3E%3Ccircle cx='5' cy='12' r='1'/%3E%3C/svg%3E"); } .vpi-languages { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Cpath d='m5 8 6 6M4 14l6-6 2-3M2 5h12M7 2h1M22 22l-5-10-5 10M14 18h6'/%3E%3C/svg%3E"); } .vpi-heart { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Cpath d='M19 14c1.49-1.46 3-3.21 3-5.5A5.5 5.5 0 0 0 16.5 3c-1.76 0-3 .5-4.5 2-1.5-1.5-2.74-2-4.5-2A5.5 5.5 0 0 0 2 8.5c0 2.3 1.5 4.05 3 5.5l7 7Z'/%3E%3C/svg%3E"); } .vpi-search { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Ccircle cx='11' cy='11' r='8'/%3E%3Cpath d='m21 21-4.3-4.3'/%3E%3C/svg%3E"); } .vpi-layout-list { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Crect width='7' height='7' x='3' y='3' rx='1'/%3E%3Crect width='7' height='7' x='3' y='14' rx='1'/%3E%3Cpath d='M14 4h7M14 9h7M14 15h7M14 20h7'/%3E%3C/svg%3E"); } .vpi-delete { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Cpath d='M20 5H9l-7 7 7 7h11a2 2 0 0 0 2-2V7a2 2 0 0 0-2-2ZM18 9l-6 6M12 9l6 6'/%3E%3C/svg%3E"); } .vpi-corner-down-left { --icon: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='currentColor' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Cpath d='m9 10-5 5 5 5'/%3E%3Cpath d='M20 4v7a4 4 0 0 1-4 4H4'/%3E%3C/svg%3E"); } :root { /* clipboard */ --vp-icon-copy: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='rgba(128,128,128,1)' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Crect width='8' height='4' x='8' y='2' rx='1' ry='1'/%3E%3Cpath d='M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2'/%3E%3C/svg%3E"); /* clipboard-copy */ --vp-icon-copied: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' fill='none' stroke='rgba(128,128,128,1)' stroke-linecap='round' stroke-linejoin='round' stroke-width='2' viewBox='0 0 24 24'%3E%3Crect width='8' height='4' x='8' y='2' rx='1' ry='1'/%3E%3Cpath d='M16 4h2a2 2 0 0 1 2 2v14a2 2 0 0 1-2 2H6a2 2 0 0 1-2-2V6a2 2 0 0 1 2-2h2'/%3E%3Cpath d='m9 14 2 2 4-4'/%3E%3C/svg%3E"); }
2301_80257615/MateChat
docs/theme-default/styles/icons.css
CSS
mit
6,037
.visually-hidden { position: absolute; width: 1px; height: 1px; white-space: nowrap; clip: rect(0 0 0 0); clip-path: inset(50%); overflow: hidden; }
2301_80257615/MateChat
docs/theme-default/styles/utils.css
CSS
mit
163
/** * Colors: Solid * -------------------------------------------------------------------------- */ :root { --vp-c-white: #ffffff; --vp-c-black: #000000; --vp-c-neutral: var(--vp-c-black); --vp-c-neutral-inverse: var(--vp-c-white); } .dark { --vp-c-neutral: var(--vp-c-white); --vp-c-neutral-inverse: var(--vp-c-black); } /** * Colors: Palette * * The primitive colors used for accent colors. These colors are referenced * by functional colors such as "Text", "Background", or "Brand". * * Each colors have exact same color scale system with 3 levels of solid * colors with different brightness, and 1 soft color. * * - `XXX-1`: The most solid color used mainly for colored text. It must * satisfy the contrast ratio against when used on top of `XXX-soft`. * * - `XXX-2`: The color used mainly for hover state of the button. * * - `XXX-3`: The color for solid background, such as bg color of the button. * It must satisfy the contrast ratio with pure white (#ffffff) text on * top of it. * * - `XXX-soft`: The color used for subtle background such as custom container * or badges. It must satisfy the contrast ratio when putting `XXX-1` colors * on top of it. * * The soft color must be semi transparent alpha channel. This is crucial * because it allows adding multiple "soft" colors on top of each other * to create a accent, such as when having inline code block inside * custom containers. * -------------------------------------------------------------------------- */ :root { --vp-c-gray-1: #dddde3; --vp-c-gray-2: #e4e4e9; --vp-c-gray-3: #ebebef; --vp-c-gray-soft: rgba(142, 150, 170, 0.14); --vp-c-indigo-1: #3451b2; --vp-c-indigo-2: #3a5ccc; --vp-c-indigo-3: #5672cd; --vp-c-indigo-soft: rgba(100, 108, 255, 0.14); --vp-c-purple-1: #6f42c1; --vp-c-purple-2: #7e4cc9; --vp-c-purple-3: #8e5cd9; --vp-c-purple-soft: rgba(159, 122, 234, 0.14); --vp-c-green-1: #18794e; --vp-c-green-2: #299764; --vp-c-green-3: #30a46c; --vp-c-green-soft: rgba(16, 185, 129, 0.14); --vp-c-yellow-1: #915930; --vp-c-yellow-2: #946300; --vp-c-yellow-3: #9f6a00; --vp-c-yellow-soft: rgba(234, 179, 8, 0.14); --vp-c-red-1: #b8272c; --vp-c-red-2: #d5393e; --vp-c-red-3: #e0575b; --vp-c-red-soft: rgba(244, 63, 94, 0.14); --vp-c-sponsor: #db2777; } .dark { --vp-c-gray-1: #515c67; --vp-c-gray-2: #414853; --vp-c-gray-3: #32363f; --vp-c-gray-soft: rgba(101, 117, 133, 0.16); --vp-c-indigo-1: #a8b1ff; --vp-c-indigo-2: #5c73e7; --vp-c-indigo-3: #3e63dd; --vp-c-indigo-soft: rgba(100, 108, 255, 0.16); --vp-c-purple-1: #c8abfa; --vp-c-purple-2: #a879e6; --vp-c-purple-3: #8e5cd9; --vp-c-purple-soft: rgba(159, 122, 234, 0.16); --vp-c-green-1: #3dd68c; --vp-c-green-2: #30a46c; --vp-c-green-3: #298459; --vp-c-green-soft: rgba(16, 185, 129, 0.16); --vp-c-yellow-1: #f9b44e; --vp-c-yellow-2: #da8b17; --vp-c-yellow-3: #a46a0a; --vp-c-yellow-soft: rgba(234, 179, 8, 0.16); --vp-c-red-1: #f66f81; --vp-c-red-2: #f14158; --vp-c-red-3: #b62a3c; --vp-c-red-soft: rgba(244, 63, 94, 0.16); } /** * Colors: Background * * - `bg`: The bg color used for main screen. * * - `bg-alt`: The alternative bg color used in places such as "sidebar", * or "code block". * * - `bg-elv`: The elevated bg color. This is used at parts where it "floats", * such as "dialog". * * - `bg-soft`: The bg color to slightly distinguish some components from * the page. Used for things like "carbon ads" or "table". * -------------------------------------------------------------------------- */ :root { --vp-c-bg: #ffffff; --vp-c-bg-alt: #f6f6f7; --vp-c-bg-elv: #ffffff; --vp-c-bg-soft: #f6f6f7; } .dark { --vp-c-bg: #1b1b1f; --vp-c-bg-alt: #161618; --vp-c-bg-elv: #202127; --vp-c-bg-soft: #202127; } /** * Colors: Borders * * - `divider`: This is used for separators. This is used to divide sections * within the same components, such as having separator on "h2" heading. * * - `border`: This is designed for borders on interactive components. * For example this should be used for a button outline. * * - `gutter`: This is used to divide components in the page. For example * the header and the lest of the page. * -------------------------------------------------------------------------- */ :root { --vp-c-border: #c2c2c4; --vp-c-divider: #e2e2e3; --vp-c-gutter: #e2e2e3; } .dark { --vp-c-border: #3c3f44; --vp-c-divider: #2e2e32; --vp-c-gutter: #000000; } /** * Colors: Text * * - `text-1`: Used for primary text. * * - `text-2`: Used for muted texts, such as "inactive menu" or "info texts". * * - `text-3`: Used for subtle texts, such as "placeholders" or "caret icon". * -------------------------------------------------------------------------- */ :root { --vp-c-text-1: rgba(60, 60, 67); --vp-c-text-2: rgba(60, 60, 67, 0.78); --vp-c-text-3: rgba(60, 60, 67, 0.56); } .dark { --vp-c-text-1: rgba(255, 255, 245, 0.86); --vp-c-text-2: rgba(235, 235, 245, 0.6); --vp-c-text-3: rgba(235, 235, 245, 0.38); } /** * Colors: Function * * - `default`: The color used purely for subtle indication without any * special meanings attached to it such as bg color for menu hover state. * * - `brand`: Used for primary brand colors, such as link text, button with * brand theme, etc. * * - `tip`: Used to indicate useful information. The default theme uses the * brand color for this by default. * * - `warning`: Used to indicate warning to the users. Used in custom * container, badges, etc. * * - `danger`: Used to show error, or dangerous message to the users. Used * in custom container, badges, etc. * * To understand the scaling system, refer to "Colors: Palette" section. * -------------------------------------------------------------------------- */ :root { --vp-c-default-1: var(--vp-c-gray-1); --vp-c-default-2: var(--vp-c-gray-2); --vp-c-default-3: var(--vp-c-gray-3); --vp-c-default-soft: var(--vp-c-gray-soft); --vp-c-brand-1: var(--vp-c-indigo-1); --vp-c-brand-2: var(--vp-c-indigo-2); --vp-c-brand-3: var(--vp-c-indigo-3); --vp-c-brand-soft: var(--vp-c-indigo-soft); /* DEPRECATED: Use `--vp-c-brand-1` instead. */ --vp-c-brand: var(--vp-c-brand-1); --vp-c-tip-1: var(--vp-c-brand-1); --vp-c-tip-2: var(--vp-c-brand-2); --vp-c-tip-3: var(--vp-c-brand-3); --vp-c-tip-soft: var(--vp-c-brand-soft); --vp-c-note-1: var(--vp-c-brand-1); --vp-c-note-2: var(--vp-c-brand-2); --vp-c-note-3: var(--vp-c-brand-3); --vp-c-note-soft: var(--vp-c-brand-soft); --vp-c-success-1: var(--vp-c-green-1); --vp-c-success-2: var(--vp-c-green-2); --vp-c-success-3: var(--vp-c-green-3); --vp-c-success-soft: var(--vp-c-green-soft); --vp-c-important-1: var(--vp-c-purple-1); --vp-c-important-2: var(--vp-c-purple-2); --vp-c-important-3: var(--vp-c-purple-3); --vp-c-important-soft: var(--vp-c-purple-soft); --vp-c-warning-1: var(--vp-c-yellow-1); --vp-c-warning-2: var(--vp-c-yellow-2); --vp-c-warning-3: var(--vp-c-yellow-3); --vp-c-warning-soft: var(--vp-c-yellow-soft); --vp-c-danger-1: var(--vp-c-red-1); --vp-c-danger-2: var(--vp-c-red-2); --vp-c-danger-3: var(--vp-c-red-3); --vp-c-danger-soft: var(--vp-c-red-soft); --vp-c-caution-1: var(--vp-c-red-1); --vp-c-caution-2: var(--vp-c-red-2); --vp-c-caution-3: var(--vp-c-red-3); --vp-c-caution-soft: var(--vp-c-red-soft); } /** * Typography * -------------------------------------------------------------------------- */ :root { --vp-font-family-base: 'Inter', ui-sans-serif, system-ui, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji'; --vp-font-family-mono: ui-monospace, 'Menlo', 'Monaco', 'Consolas', 'Liberation Mono', 'Courier New', monospace; font-optical-sizing: auto; } :root:where(:lang(zh)) { --vp-font-family-base: 'Punctuation SC', 'Inter', ui-sans-serif, system-ui, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji'; } /** * Shadows * -------------------------------------------------------------------------- */ :root { --vp-shadow-1: 0 1px 2px rgba(0, 0, 0, 0.04), 0 1px 2px rgba(0, 0, 0, 0.06); --vp-shadow-2: 0 3px 12px rgba(0, 0, 0, 0.07), 0 1px 4px rgba(0, 0, 0, 0.07); --vp-shadow-3: 0 12px 32px rgba(0, 0, 0, 0.1), 0 2px 6px rgba(0, 0, 0, 0.08); --vp-shadow-4: 0 14px 44px rgba(0, 0, 0, 0.12), 0 3px 9px rgba(0, 0, 0, 0.12); --vp-shadow-5: 0 18px 56px rgba(0, 0, 0, 0.16), 0 4px 12px rgba(0, 0, 0, 0.16); } /** * Z-indexes * -------------------------------------------------------------------------- */ :root { --vp-z-index-footer: 10; --vp-z-index-local-nav: 20; --vp-z-index-nav: 30; --vp-z-index-layout-top: 40; --vp-z-index-backdrop: 50; --vp-z-index-sidebar: 60; } @media (min-width: 960px) { :root { --vp-z-index-sidebar: 25; } } /** * Layouts * -------------------------------------------------------------------------- */ :root { --vp-layout-max-width: 1440px; } /** * Component: Header Anchor * -------------------------------------------------------------------------- */ :root { --vp-header-anchor-symbol: '#'; } /** * Component: Code * -------------------------------------------------------------------------- */ :root { --vp-code-line-height: 1.7; --vp-code-font-size: 0.875em; --vp-code-color: var(--vp-c-brand-1); --vp-code-link-color: var(--vp-c-brand-1); --vp-code-link-hover-color: var(--vp-c-brand-2); --vp-code-bg: var(--vp-c-default-soft); --vp-code-block-color: var(--vp-c-text-2); --vp-code-block-bg: var(--vp-c-bg-alt); --vp-code-block-divider-color: var(--vp-c-gutter); --vp-code-lang-color: var(--vp-c-text-3); --vp-code-line-highlight-color: var(--vp-c-default-soft); --vp-code-line-number-color: var(--vp-c-text-3); --vp-code-line-diff-add-color: var(--vp-c-success-soft); --vp-code-line-diff-add-symbol-color: var(--vp-c-success-1); --vp-code-line-diff-remove-color: var(--vp-c-danger-soft); --vp-code-line-diff-remove-symbol-color: var(--vp-c-danger-1); --vp-code-line-warning-color: var(--vp-c-warning-soft); --vp-code-line-error-color: var(--vp-c-danger-soft); --vp-code-copy-code-border-color: var(--vp-c-divider); --vp-code-copy-code-bg: var(--vp-c-bg-soft); --vp-code-copy-code-hover-border-color: var(--vp-c-divider); --vp-code-copy-code-hover-bg: var(--vp-c-bg); --vp-code-copy-code-active-text: var(--vp-c-text-2); --vp-code-copy-copied-text-content: 'Copied'; --vp-code-tab-divider: var(--vp-code-block-divider-color); --vp-code-tab-text-color: var(--vp-c-text-2); --vp-code-tab-bg: var(--vp-code-block-bg); --vp-code-tab-hover-text-color: var(--vp-c-text-1); --vp-code-tab-active-text-color: var(--vp-c-text-1); --vp-code-tab-active-bar-color: var(--vp-c-brand-1); } /** * Component: Button * -------------------------------------------------------------------------- */ :root { --vp-button-brand-border: transparent; --vp-button-brand-text: var(--vp-c-white); --vp-button-brand-bg: var(--vp-c-brand-3); --vp-button-brand-hover-border: transparent; --vp-button-brand-hover-text: var(--vp-c-white); --vp-button-brand-hover-bg: var(--vp-c-brand-2); --vp-button-brand-active-border: transparent; --vp-button-brand-active-text: var(--vp-c-white); --vp-button-brand-active-bg: var(--vp-c-brand-1); --vp-button-alt-border: transparent; --vp-button-alt-text: var(--vp-c-text-1); --vp-button-alt-bg: var(--vp-c-default-3); --vp-button-alt-hover-border: transparent; --vp-button-alt-hover-text: var(--vp-c-text-1); --vp-button-alt-hover-bg: var(--vp-c-default-2); --vp-button-alt-active-border: transparent; --vp-button-alt-active-text: var(--vp-c-text-1); --vp-button-alt-active-bg: var(--vp-c-default-1); --vp-button-sponsor-border: var(--vp-c-text-2); --vp-button-sponsor-text: var(--vp-c-text-2); --vp-button-sponsor-bg: transparent; --vp-button-sponsor-hover-border: var(--vp-c-sponsor); --vp-button-sponsor-hover-text: var(--vp-c-sponsor); --vp-button-sponsor-hover-bg: transparent; --vp-button-sponsor-active-border: var(--vp-c-sponsor); --vp-button-sponsor-active-text: var(--vp-c-sponsor); --vp-button-sponsor-active-bg: transparent; } /** * Component: Custom Block * -------------------------------------------------------------------------- */ :root { --vp-custom-block-font-size: 14px; --vp-custom-block-code-font-size: 13px; --vp-custom-block-info-border: transparent; --vp-custom-block-info-text: var(--vp-c-text-1); --vp-custom-block-info-bg: var(--vp-c-default-soft); --vp-custom-block-info-code-bg: var(--vp-c-default-soft); --vp-custom-block-note-border: transparent; --vp-custom-block-note-text: var(--vp-c-text-1); --vp-custom-block-note-bg: var(--vp-c-default-soft); --vp-custom-block-note-code-bg: var(--vp-c-default-soft); --vp-custom-block-tip-border: transparent; --vp-custom-block-tip-text: var(--vp-c-text-1); --vp-custom-block-tip-bg: var(--vp-c-tip-soft); --vp-custom-block-tip-code-bg: var(--vp-c-tip-soft); --vp-custom-block-important-border: transparent; --vp-custom-block-important-text: var(--vp-c-text-1); --vp-custom-block-important-bg: var(--vp-c-important-soft); --vp-custom-block-important-code-bg: var(--vp-c-important-soft); --vp-custom-block-warning-border: transparent; --vp-custom-block-warning-text: var(--vp-c-text-1); --vp-custom-block-warning-bg: var(--vp-c-warning-soft); --vp-custom-block-warning-code-bg: var(--vp-c-warning-soft); --vp-custom-block-danger-border: transparent; --vp-custom-block-danger-text: var(--vp-c-text-1); --vp-custom-block-danger-bg: var(--vp-c-danger-soft); --vp-custom-block-danger-code-bg: var(--vp-c-danger-soft); --vp-custom-block-caution-border: transparent; --vp-custom-block-caution-text: var(--vp-c-text-1); --vp-custom-block-caution-bg: var(--vp-c-caution-soft); --vp-custom-block-caution-code-bg: var(--vp-c-caution-soft); --vp-custom-block-details-border: var(--vp-custom-block-info-border); --vp-custom-block-details-text: var(--vp-custom-block-info-text); --vp-custom-block-details-bg: var(--vp-custom-block-info-bg); --vp-custom-block-details-code-bg: var(--vp-custom-block-info-code-bg); } /** * Component: Input * -------------------------------------------------------------------------- */ :root { --vp-input-border-color: var(--vp-c-border); --vp-input-bg-color: var(--vp-c-bg-alt); --vp-input-switch-bg-color: var(--vp-c-default-soft); } /** * Component: Nav * -------------------------------------------------------------------------- */ :root { --vp-nav-height: 64px; --vp-nav-bg-color: var(--vp-c-bg); --vp-nav-screen-bg-color: var(--vp-c-bg); --vp-nav-logo-height: 24px; } .hide-nav { --vp-nav-height: 0px; } .hide-nav .VPSidebar { --vp-nav-height: 22px; } /** * Component: Local Nav * -------------------------------------------------------------------------- */ :root { --vp-local-nav-bg-color: var(--vp-c-bg); } /** * Component: Sidebar * -------------------------------------------------------------------------- */ :root { --vp-sidebar-width: 272px; --vp-sidebar-bg-color: var(--vp-c-bg-alt); } /** * Colors Backdrop * -------------------------------------------------------------------------- */ :root { --vp-backdrop-bg-color: rgba(0, 0, 0, 0.6); } /** * Component: Home * -------------------------------------------------------------------------- */ :root { --vp-home-hero-name-color: var(--vp-c-brand-1); --vp-home-hero-name-background: transparent; --vp-home-hero-image-background-image: none; --vp-home-hero-image-filter: none; } /** * Component: Badge * -------------------------------------------------------------------------- */ :root { --vp-badge-info-border: transparent; --vp-badge-info-text: var(--vp-c-text-2); --vp-badge-info-bg: var(--vp-c-default-soft); --vp-badge-tip-border: transparent; --vp-badge-tip-text: var(--vp-c-tip-1); --vp-badge-tip-bg: var(--vp-c-tip-soft); --vp-badge-warning-border: transparent; --vp-badge-warning-text: var(--vp-c-warning-1); --vp-badge-warning-bg: var(--vp-c-warning-soft); --vp-badge-danger-border: transparent; --vp-badge-danger-text: var(--vp-c-danger-1); --vp-badge-danger-bg: var(--vp-c-danger-soft); } /** * Component: Carbon Ads * -------------------------------------------------------------------------- */ :root { --vp-carbon-ads-text-color: var(--vp-c-text-1); --vp-carbon-ads-poweredby-color: var(--vp-c-text-2); --vp-carbon-ads-bg-color: var(--vp-c-bg-soft); --vp-carbon-ads-hover-text-color: var(--vp-c-brand-1); --vp-carbon-ads-hover-poweredby-color: var(--vp-c-text-1); } /** * Component: Local Search * -------------------------------------------------------------------------- */ :root { --vp-local-search-bg: var(--vp-c-bg); --vp-local-search-result-bg: var(--vp-c-bg); --vp-local-search-result-border: var(--vp-c-divider); --vp-local-search-result-selected-bg: var(--vp-c-bg); --vp-local-search-result-selected-border: var(--vp-c-brand-1); --vp-local-search-highlight-bg: var(--vp-c-brand-1); --vp-local-search-highlight-text: var(--vp-c-neutral-inverse); }
2301_80257615/MateChat
docs/theme-default/styles/vars.css
CSS
mit
17,362
// adapted from https://stackoverflow.com/a/46432113/11613622 export class LRUCache { max; cache; constructor(max = 10) { this.max = max; this.cache = new Map(); } get(key) { let item = this.cache.get(key); if (item !== undefined) { // refresh key this.cache.delete(key); this.cache.set(key, item); } return item; } set(key, val) { // refresh key if (this.cache.has(key)) this.cache.delete(key); // evict oldest else if (this.cache.size === this.max) this.cache.delete(this.first()); this.cache.set(key, val); } first() { return this.cache.keys().next().value; } clear() { this.cache.clear(); } }
2301_80257615/MateChat
docs/theme-default/support/lru.js
JavaScript
mit
809
import { ensureStartingSlash } from './utils'; import { isActive } from '../../shared'; /** * Get the `Sidebar` from sidebar option. This method will ensure to get correct * sidebar config from `MultiSideBarConfig` with various path combinations such * as matching `guide/` and `/guide/`. If no matching config was found, it will * return empty array. */ export function getSidebar(_sidebar, path) { if (Array.isArray(_sidebar)) return addBase(_sidebar); if (_sidebar == null) return []; path = ensureStartingSlash(path); const dir = Object.keys(_sidebar) .sort((a, b) => { return b.split('/').length - a.split('/').length; }) .find((dir) => { // make sure the multi sidebar key starts with slash too return path.startsWith(ensureStartingSlash(dir)); }); const sidebar = dir ? _sidebar[dir] : []; return Array.isArray(sidebar) ? addBase(sidebar) : addBase(sidebar.items, sidebar.base); } /** * Get or generate sidebar group from the given sidebar items. */ export function getSidebarGroups(sidebar) { const groups = []; let lastGroupIndex = 0; for (const index in sidebar) { const item = sidebar[index]; if (item.items) { lastGroupIndex = groups.push(item); continue; } if (!groups[lastGroupIndex]) { groups.push({ items: [] }); } groups[lastGroupIndex].items.push(item); lastGroupIndex++; } return groups; } export function getFlatSideBarLinks(sidebar) { const links = []; function recursivelyExtractLinks(items) { for (const item of items) { if (item.text && item.link) { links.push({ text: item.text, link: item.link, docFooterText: item.docFooterText }); } if (item.items) { recursivelyExtractLinks(item.items); } } } recursivelyExtractLinks(sidebar); return links; } /** * Check if the given sidebar item contains any active link. */ export function hasActiveLink(path, items) { if (Array.isArray(items)) { return items.some((item) => hasActiveLink(path, item)); } return isActive(path, items.link) ? true : items.items ? hasActiveLink(path, items.items) : false; } function addBase(items, _base) { return [...items].map((_item) => { const item = { ..._item }; const base = item.base || _base; if (base && item.link) item.link = base + item.link; if (item.items) item.items = addBase(item.items, base); return item; }); }
2301_80257615/MateChat
docs/theme-default/support/sidebar.js
JavaScript
mit
2,776
import { useData } from '../composables/data'; /** * @param themeObject Can be an object with `translations` and `locales` properties */ export function createSearchTranslate(defaultTranslations) { const { localeIndex, theme } = useData(); function translate(key) { const keyPath = key.split('.'); const themeObject = theme.value.search?.options; const isObject = themeObject && typeof themeObject === 'object'; const locales = (isObject && themeObject.locales?.[localeIndex.value]?.translations) || null; const translations = (isObject && themeObject.translations) || null; let localeResult = locales; let translationResult = translations; let defaultResult = defaultTranslations; const lastKey = keyPath.pop(); for (const k of keyPath) { let fallbackResult = null; const foundInFallback = defaultResult?.[k]; if (foundInFallback) { fallbackResult = defaultResult = foundInFallback; } const foundInTranslation = translationResult?.[k]; if (foundInTranslation) { fallbackResult = translationResult = foundInTranslation; } const foundInLocale = localeResult?.[k]; if (foundInLocale) { fallbackResult = localeResult = foundInLocale; } // Put fallback into unresolved results if (!foundInFallback) { defaultResult = fallbackResult; } if (!foundInTranslation) { translationResult = fallbackResult; } if (!foundInLocale) { localeResult = fallbackResult; } } return (localeResult?.[lastKey] ?? translationResult?.[lastKey] ?? defaultResult?.[lastKey] ?? ''); } return translate; }
2301_80257615/MateChat
docs/theme-default/support/translation.js
JavaScript
mit
1,937
import { withBase } from 'vitepress'; import { useData } from '../composables/data'; import { isExternal, treatAsHtml } from '../../shared'; import { LocaleKey } from '../components/datas/type'; export function throttleAndDebounce(fn, delay) { let timeoutId; let called = false; return () => { if (timeoutId) clearTimeout(timeoutId); if (!called) { fn(); (called = true) && setTimeout(() => (called = false), delay); } else timeoutId = setTimeout(fn, delay); }; } export function ensureStartingSlash(path) { return /^\//.test(path) ? path : `/${path}`; } export function normalizeLink(url) { const { pathname, search, hash, protocol } = new URL(url, 'http://a.com'); if (isExternal(url) || url.startsWith('#') || !protocol.startsWith('http') || !treatAsHtml(pathname)) return url; const { site } = useData(); const normalizedPath = pathname.endsWith('/') || pathname.endsWith('.html') ? url : url.replace(/(?:(^\.+)\/)?.*$/, `$1${pathname.replace(/(\.md)?$/, site.value.cleanUrls ? '' : '.html')}${search}${hash}`); return withBase(normalizedPath); } export function getLocaleUrlPrefix(origin) { let url = origin; if (typeof localStorage !== 'undefined' && localStorage.getItem('locale') === LocaleKey.en) { url = '/en' + origin; } return url; }
2301_80257615/MateChat
docs/theme-default/support/utils.js
JavaScript
mit
1,320
import './styles/vars.css'; import './styles/base.css'; import './styles/icons.css'; import './styles/utils.css'; import './styles/components/custom-block.css'; import './styles/components/vp-code.css'; import './styles/components/vp-code-group.css'; import './styles/components/vp-doc.css'; export { useSidebar } from './composables/sidebar'; export { useLocalNav } from './composables/local-nav';
2301_80257615/MateChat
docs/theme-default/without-fonts.js
JavaScript
mit
400
import { defineConfig } from 'vite'; import path from 'node:path'; export default defineConfig({ resolve: { alias: { '@matechat/core': path.resolve(__dirname, '../packages/components'), }, }, });
2301_80257615/MateChat
docs/vite.config.ts
TypeScript
mit
215
<!DOCTYPE html> <html lang=""> <head> <meta charset="UTF-8"> <link rel="icon" href="/favicon.ico"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>MetaChat Playground</title> </head> <body> <div id="app"></div> <script type="module" src="/src/main.ts"></script> </body> </html>
2301_80257615/MateChat
playground/index.html
HTML
mit
340
<template> <McLayout class="container"> <McHeader :title="'MateChat'" :logoImg="'https://matechat.gitcode.com/logo.svg'"> <template #operationArea> <div class="operations"> <i class="icon-helping"></i> </div> </template> </McHeader> <McLayoutContent v-if="startPage" style="display: flex; flex-direction: column; align-items: center; justify-content: center; gap: 12px"> <McIntroduction :logoImg="'https://matechat.gitcode.com/logo2x.svg'" :title="'MateChat'" :subTitle="'Hi,欢迎使用 MateChat'" :description="description"></McIntroduction> <McPrompt :list="introPrompt.list" :direction="introPrompt.direction" class="intro-prompt" @itemClick="onSubmit($event.label)"></McPrompt> </McLayoutContent> <McLayoutContent v-else> <template v-for="(msg, idx) in messages" :key="idx"> <McBubble v-if="msg.from === 'user'" :content="msg.content" :align="'right'" :avatarConfig="{ imgSrc: 'https://matechat.gitcode.com/png/demo/userAvatar.svg' }"> </McBubble> <McBubble v-else :content="msg.content" :avatarConfig="{ imgSrc: 'https://matechat.gitcode.com/logo.svg' }"> </McBubble> </template> </McLayoutContent> <div class="shortcut" style="display: flex; align-items: center; gap: 8px"> <McPrompt v-if="!startPage" :list="simplePrompt" :direction="'horizontal'" style="flex: 1" @itemClick="onSubmit($event.label)"></McPrompt> <d-button style="margin-left: auto" icon="add" shape="circle" title="新建对话" size="sm" @click=" startPage = true; messages = []; " /> </div> <McLayoutSender> <McInput :value="inputValue" :maxLength="2000" @change="(e) => (inputValue = e)" @submit="onSubmit"> <template #extra> <div class="input-foot-wrapper"> <div class="input-foot-left"> <span v-for="(item, index) in inputFootIcons" :key="index"> <i :class="item.icon"></i> {{ item.text }} </span> <span class="input-foot-dividing-line"></span> <span class="input-foot-maxlength">{{ inputValue.length }}/2000</span> </div> <div class="input-foot-right"> <d-button icon="op-clearup" shape="round" :disabled="!inputValue" @click="inputValue = ''">清空输入</d-button> </div> </div> </template> </McInput> </McLayoutSender> </McLayout> </template> <script setup lang="ts"> import { ref } from 'vue'; const description = [ 'MateChat 可以辅助研发人员编码、查询知识和相关作业信息、编写文档等。', '作为AI模型,MateChat 提供的答案可能不总是确定或准确的,但您的反馈可以帮助 MateChat 做的更好。', ]; const introPrompt = { direction: 'horizontal', list: [ { value: 'quickSort', label: '帮我写一个快速排序', iconConfig: { name: 'icon-info-o', color: '#5e7ce0' }, desc: '使用 js 实现一个快速排序', }, { value: 'helpMd', label: '你可以帮我做些什么?', iconConfig: { name: 'icon-star', color: 'rgb(255, 215, 0)' }, desc: '了解当前大模型可以帮你做的事', }, { value: 'bindProjectSpace', label: '怎么绑定项目空间', iconConfig: { name: 'icon-priority', color: '#3ac295' }, desc: '如何绑定云空间中的项目', }, ], }; const simplePrompt = [ { value: 'quickSort', iconConfig: { name: 'icon-info-o', color: '#5e7ce0' }, label: '帮我写一个快速排序', }, { value: 'helpMd', iconConfig: { name: 'icon-star', color: 'rgb(255, 215, 0)' }, label: '你可以帮我做些什么?', }, ]; const startPage = ref(true); const inputValue = ref(''); const inputFootIcons = [ { icon: 'icon-at', text: '智能体' }, { icon: 'icon-standard', text: '词库' }, { icon: 'icon-add', text: '附件' }, ]; const messages = ref([ { from: 'user', content: '你好', }, { from: 'model', content: '你好,我是 MateChat', id: 'init-msg', }, ]); const onSubmit = (evt) => { startPage.value = false; // 用户发送消息 messages.value.push({ from: 'user', content: evt, }); setTimeout(() => { // 模型返回消息 messages.value.push({ from: 'model', content: evt, }); }, 200); }; </script> <style> .container { width: 1000px; margin: 0 auto; height: 100vh; padding: 20px; gap: 8px; background: #fff; } .input-foot-wrapper { display: flex; justify-content: space-between; align-items: center; width: 100%; height: 100%; margin-right: 8px; .input-foot-left { display: flex; align-items: center; gap: 8px; span { font-size: var(--devui-font-size-sm); color: var(--devui-text); cursor: pointer; } .input-foot-dividing-line { width: 1px; height: 14px; background-color: var(--devui-line); } .input-foot-maxlength { font-size: var(--devui-font-size-sm); color: var(--devui-aide-text); } } .input-foot-right { &>*:not(:first-child) { margin-left: 8px; } } } </style>
2301_80257615/MateChat
playground/src/App.vue
Vue
mit
5,301
<template> <div ref="markdownCardRef" class="mc-markdown-render" v-html="markedHtml"></div> </template> <script setup lang="ts"> import markdownit from 'markdown-it'; import hljs from 'highlight.js'; import { computed } from 'vue'; const props = defineProps({ content: { type: String, default: '', }, }); const mdt = markdownit({ breaks: true, linkify: true, html: true, highlight: (str, lang) => { if (lang && hljs.getLanguage(lang)) { try { return hljs.highlight(str, { language: lang }).value; } catch (_) {} } return ''; // use external default escaping }, }); const markedHtml = computed(() => { return mdt.render(props.content); }); </script> <style lang="scss" scoped> .mc-markdown-render { overflow-x: auto; :deep(p) { margin: 0 !important; } } </style>
2301_80257615/MateChat
playground/src/RenderMarkdown.vue
Vue
mit
835
/* color palette from <https://github.com/vuejs/theme> */ :root { --vt-c-white: #ffffff; --vt-c-white-soft: #f8f8f8; --vt-c-white-mute: #f2f2f2; --vt-c-black: #181818; --vt-c-black-soft: #222222; --vt-c-black-mute: #282828; --vt-c-indigo: #2c3e50; --vt-c-divider-light-1: rgba(60, 60, 60, 0.29); --vt-c-divider-light-2: rgba(60, 60, 60, 0.12); --vt-c-divider-dark-1: rgba(84, 84, 84, 0.65); --vt-c-divider-dark-2: rgba(84, 84, 84, 0.48); --vt-c-text-light-1: var(--vt-c-indigo); --vt-c-text-light-2: rgba(60, 60, 60, 0.66); --vt-c-text-dark-1: var(--vt-c-white); --vt-c-text-dark-2: rgba(235, 235, 235, 0.64); } /* semantic color variables for this project */ :root { --color-background: var(--vt-c-white); --color-background-soft: var(--vt-c-white-soft); --color-background-mute: var(--vt-c-white-mute); --color-border: var(--vt-c-divider-light-2); --color-border-hover: var(--vt-c-divider-light-1); --color-heading: var(--vt-c-text-light-1); --color-text: var(--vt-c-text-light-1); --section-gap: 160px; } @media (prefers-color-scheme: dark) { :root { --color-background: var(--vt-c-black); --color-background-soft: var(--vt-c-black-soft); --color-background-mute: var(--vt-c-black-mute); --color-border: var(--vt-c-divider-dark-2); --color-border-hover: var(--vt-c-divider-dark-1); --color-heading: var(--vt-c-text-dark-1); --color-text: var(--vt-c-text-dark-2); } } *, *::before, *::after { box-sizing: border-box; margin: 0; font-weight: normal; } body { min-height: 100vh; color: var(--color-text); background: var(--color-background); transition: color 0.5s, background-color 0.5s; line-height: 1.6; font-family: Inter, -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, 'Fira Sans', 'Droid Sans', 'Helvetica Neue', sans-serif; font-size: 15px; text-rendering: optimizeLegibility; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; }
2301_80257615/MateChat
playground/src/assets/base.css
CSS
mit
2,067
@import './base.css'; #app { max-width: 1280px; margin: 0 auto; padding: 2rem; font-weight: normal; } a, .green { text-decoration: none; color: hsla(160, 100%, 37%, 1); transition: 0.4s; padding: 3px; } @media (hover: hover) { a:hover { background-color: hsla(160, 100%, 37%, 0.2); } } @media (min-width: 1024px) { body { display: flex; place-items: center; } #app { display: grid; grid-template-columns: 1fr 1fr; padding: 0 2rem; } }
2301_80257615/MateChat
playground/src/assets/main.css
CSS
mit
492
<template> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor"> <path d="M15 4a1 1 0 1 0 0 2V4zm0 11v-1a1 1 0 0 0-1 1h1zm0 4l-.707.707A1 1 0 0 0 16 19h-1zm-4-4l.707-.707A1 1 0 0 0 11 14v1zm-4.707-1.293a1 1 0 0 0-1.414 1.414l1.414-1.414zm-.707.707l-.707-.707.707.707zM9 11v-1a1 1 0 0 0-.707.293L9 11zm-4 0h1a1 1 0 0 0-1-1v1zm0 4H4a1 1 0 0 0 1.707.707L5 15zm10-9h2V4h-2v2zm2 0a1 1 0 0 1 1 1h2a3 3 0 0 0-3-3v2zm1 1v6h2V7h-2zm0 6a1 1 0 0 1-1 1v2a3 3 0 0 0 3-3h-2zm-1 1h-2v2h2v-2zm-3 1v4h2v-4h-2zm1.707 3.293l-4-4-1.414 1.414 4 4 1.414-1.414zM11 14H7v2h4v-2zm-4 0c-.276 0-.525-.111-.707-.293l-1.414 1.414C5.42 15.663 6.172 16 7 16v-2zm-.707 1.121l3.414-3.414-1.414-1.414-3.414 3.414 1.414 1.414zM9 12h4v-2H9v2zm4 0a3 3 0 0 0 3-3h-2a1 1 0 0 1-1 1v2zm3-3V3h-2v6h2zm0-6a3 3 0 0 0-3-3v2a1 1 0 0 1 1 1h2zm-3-3H3v2h10V0zM3 0a3 3 0 0 0-3 3h2a1 1 0 0 1 1-1V0zM0 3v6h2V3H0zm0 6a3 3 0 0 0 3 3v-2a1 1 0 0 1-1-1H0zm3 3h2v-2H3v2zm1-1v4h2v-4H4zm1.707 4.707l.586-.586-1.414-1.414-.586.586 1.414 1.414z" /> </svg> </template>
2301_80257615/MateChat
playground/src/components/icons/IconCommunity.vue
Vue
mit
1,054
<template> <svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="currentColor"> <path d="M10 3.22l-.61-.6a5.5 5.5 0 0 0-7.666.105 5.5 5.5 0 0 0-.114 7.665L10 18.78l8.39-8.4a5.5 5.5 0 0 0-.114-7.665 5.5 5.5 0 0 0-7.666-.105l-.61.61z" /> </svg> </template>
2301_80257615/MateChat
playground/src/components/icons/IconSupport.vue
Vue
mit
288
<!-- This icon is from <https://github.com/Templarian/MaterialDesign>, distributed under Apache 2.0 (https://www.apache.org/licenses/LICENSE-2.0) license--> <template> <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" role="img" class="iconify iconify--mdi" width="24" height="24" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24" > <path d="M20 18v-4h-3v1h-2v-1H9v1H7v-1H4v4h16M6.33 8l-1.74 4H7v-1h2v1h6v-1h2v1h2.41l-1.74-4H6.33M9 5v1h6V5H9m12.84 7.61c.1.22.16.48.16.8V18c0 .53-.21 1-.6 1.41c-.4.4-.85.59-1.4.59H4c-.55 0-1-.19-1.4-.59C2.21 19 2 18.53 2 18v-4.59c0-.32.06-.58.16-.8L4.5 7.22C4.84 6.41 5.45 6 6.33 6H7V5c0-.55.18-1 .57-1.41C7.96 3.2 8.44 3 9 3h6c.56 0 1.04.2 1.43.59c.39.41.57.86.57 1.41v1h.67c.88 0 1.49.41 1.83 1.22l2.34 5.39z" fill="currentColor" ></path> </svg> </template>
2301_80257615/MateChat
playground/src/components/icons/IconTooling.vue
Vue
mit
913
import './assets/base.css'; import 'vue-devui/style.css'; import '@devui-design/icons/icomoon/devui-icon.css'; import { createApp } from 'vue'; import DevUI from 'vue-devui'; import 'vue-devui/style.css'; import '@devui-design/icons/icomoon/devui-icon.css'; import App from './App.vue'; import MateChat from '@matechat/core'; const app = createApp(App) app.use(DevUI) app.use(MateChat) app.mount('#app'); import { ThemeServiceInit, infinityTheme } from 'devui-theme'; // 使用无限主题 ThemeServiceInit({ infinityTheme }, 'infinityTheme');
2301_80257615/MateChat
playground/src/main.ts
TypeScript
mit
548
<template> <div class="container"> <McInput ref="inputRef" v-mention="isVisible" :trigger="[{ key: '/', onlyInputStart: true }, '@']" :onSearchChange="onSearchChange" :value="inputValue" :maxLength="2000" @change="onInputChange" > <template #mention> <McList :data="options" :inputEl="inputRef" enableShortKey @select="onListSelect"></McList> </template> </McInput> </div> </template> <script setup lang="ts"> import { ref } from 'vue'; const inputRef = ref(); const inputValue = ref(''); const isVisible = ref(false); const options = ref(new Array(6).fill(0).map((item, i) => ({ label: `Option ${i + 1}`, value: i + 1 }))); let triggerIndex: number; let cursorIndex: number; let currentTrigger: string; const onSearchChange = (e) => { triggerIndex = e.triggerIndex; cursorIndex = e.cursorIndex; currentTrigger = e.trigger; }; const onListSelect = (e) => { inputValue.value = inputValue.value.slice(0, triggerIndex) + currentTrigger + e.label + inputValue.value.slice(cursorIndex); }; const onInputChange = (e) => { inputValue.value = e; }; </script> <style scoped lang="scss"> .container { display: flex; flex-direction: column; justify-content: flex-end; padding: 20px; width: 500px; height: 600px; } </style>
2301_80257615/MateChat
playground/src/mention-demo.vue
Vue
mit
1,316
import quickSortMd from './quicksort.md?raw'; import helpMd from './help.md?raw'; export const introPrompt = { direction: 'horizontal', list: [ { value: 'quickSort', label: '帮我写一个快速排序', icon: 'icon-info-o', color: 'rgb(255, 215, 0)', desc: '使用 js 快速实现一个可用的快速排序', }, { value: 'helpMd', label: '你可以帮我做些什么?', icon: 'icon-star', color: 'rgb(255, 215, 0)', desc: '了解当前大模型可以帮你做的事', }, { value: 'helpMd', label: '你可以帮我做些什么?', icon: 'icon-star', color: 'rgb(255, 215, 0)', desc: '了解当前大模型可以帮你做的事', }, ], }; export const guessQuestions = [ { label: '怎么绑定项目空间' }, { label: '最近执行流水线列表' }, { label: '帮我写一个快速排序' }, { label: '使用 js 格式化时间' }, ]; export const simplePrompt = [ { value: 'quickSort', icon: 'icon-info-o', color: 'rgb(255, 215, 0)', label: '帮我写一个快速排序', }, { value: 'helpMd', icon: 'icon-star', color: 'rgb(255, 215, 0)', label: '你可以帮我做些什么?', }, ]; export const mockAnswer = { quickSort: quickSortMd, helpMd: helpMd, };
2301_80257615/MateChat
playground/src/mock.constants.ts
TypeScript
mit
1,340
<template> <Prompt class="p10" :title="prompts.title" :color="prompts.color" :icon="prompts.icon" :list="prompts.list" :direction="'horizontal'" @itemClick="onItemClick($event)" ></Prompt> <Prompt class="p10" :title="prompts.title" :color="prompts.color" :icon="prompts.icon" :list="prompts.list" :direction="'vertical'" @itemClick="onItemClick($event)" ></Prompt> <Prompt class="p10" :title="promptsSub.title" :color="promptsSub.color" :icon="promptsSub.icon" :list="promptsSub.list" :direction="'horizontal'" @itemClick="onItemClick($event)" ></Prompt> <Prompt class="p10" :list="listText" :direction="'horizontal'" @itemClick="onItemClick($event)"></Prompt> <Prompt class="p10" :list="listIcon" :direction="'horizontal'" @itemClick="onItemClick($event)"></Prompt> <Prompt class="p10" :list="listDesc" :direction="'horizontal'" @itemClick="onItemClick($event)"></Prompt> </template> <script setup lang="ts"> import Prompt from '@matechat/core/Prompt/Prompt.vue'; const prompts = { title: 'Inspirational Sparks and Marvelous Tips', icon: 'like', color: 'rgb(24, 144, 255)', direction: 'horizontal', list: [ { value: '1', label: 'Ignite Your Creativity', icon: 'icon-info-o', color: 'rgb(255, 215, 0)', desc: 'Got any sparks for a new project?', }, { value: '2', label: 'Uncover Background Info', icon: 'icon-star', color: 'rgb(255, 215, 0)', desc: 'Help me understand the background of this topic.', }, ], }; const promptsSub = { title: 'Inspirational Sparks and Marvelous Tips', icon: 'like', color: 'rgb(24, 144, 255)', direction: 'horizontal', list: [ { value: '1', label: 'Ignite Your Creativity', icon: 'icon-info-o', color: 'rgb(255, 215, 0)', subList: [ { value: '1', label: 'Ignite Your Creativity', icon: 'icon-info-o', color: 'rgb(255, 215, 0)', desc: 'Got any sparks for a new project?', }, { value: '2', label: 'Uncover Background Info', icon: 'icon-star', color: 'rgb(255, 215, 0)', desc: 'Help me understand the background of this topic.', }, ], }, { value: '2', label: 'Uncover Background Info', icon: 'icon-star', color: 'rgb(255, 215, 0)', subList: [ { value: '1', label: 'Ignite Your Creativity', icon: 'icon-info-o', color: 'rgb(255, 215, 0)', desc: 'Got any sparks for a new project?', }, { value: '2', label: 'Uncover Background Info', icon: 'icon-star', color: 'rgb(255, 215, 0)', desc: 'Help me understand the background of this topic.', }, ], }, ], }; const listText = [ { value: '1', label: 'Ignite Your Creativity', }, { value: '2', label: 'Ignite Your XXX', }, ]; const listIcon = [ { value: '1', icon: 'icon-info-o', color: 'rgb(255, 215, 0)', }, { value: '2', icon: 'icon-star', color: 'rgb(255, 215, 0)', }, ]; const listDesc = [ { value: '1', desc: 'icon-info-o', }, { value: '2', desc: 'icon-star', }, ]; function onItemClick(item) { console.log(item); } </script> <style scoped lang="scss"> @import 'devui-theme/styles-var/devui-var.scss'; .p10 { padding: 10px; } </style>
2301_80257615/MateChat
playground/src/testPrompt.vue
Vue
mit
3,554
import { defineConfig } from 'vite'; import vue from '@vitejs/plugin-vue'; import vueJsx from '@vitejs/plugin-vue-jsx'; import path from 'node:path'; console.log(path.resolve(__dirname, '../packages/components/dist')) // https://vite.dev/config/ export default defineConfig({ plugins: [vue(), vueJsx()], resolve: { alias: { '@matechat/core': path.resolve(__dirname, '../packages/components'), '@': path.resolve(__dirname, 'src'), }, }, optimizeDeps: { exclude: ['fsevents'] }, });
2301_80257615/MateChat
playground/vite.config.ts
TypeScript
mit
511
import path from 'node:path'; import vue from '@vitejs/plugin-vue'; import vueJsx from '@vitejs/plugin-vue-jsx'; import fs from 'fs-extra'; import { build, defineConfig } from 'vite'; import { buildLibOutputDir, buildLibOutputIndexDtsFile, buildLibOutputIndexFile, componentIndexFile, componentsDir, ignoreDirs, } from './const.js'; import { resolveFilesInfo } from './utils.js'; async function buildComponents() { const filesInfo = resolveFilesInfo(componentsDir, ['node_modules', 'dist']); for (let i = 0; i < filesInfo.length; i++) { await buildSingle(filesInfo[i]); } autoImportCss(); copyIndex(); generateIndexDts(); } async function buildSingle(itemFile) { await build( defineConfig({ configFile: false, publicDir: false, plugins: [vue(), vueJsx()], build: { rollupOptions: { external: [ 'vue', '@floating-ui/dom', '@vue/shared', 'lodash-es', /@matechat\/core/, 'markdown-it', 'highlight.js', 'xss', ], }, lib: { entry: itemFile.indexPath, name: 'index', fileName: 'index', formats: ['es'], }, outDir: path.resolve(buildLibOutputDir, `./${itemFile.name}`), }, }), ); } // 自动引入index.css function autoImportCss() { const ignore = [...ignoreDirs, 'Locale']; const itemDirs = fs .readdirSync(buildLibOutputDir) .filter( (itemDir) => fs.statSync(path.resolve(buildLibOutputDir, itemDir)).isDirectory() && !ignore.includes(itemDir), ) .map((itemDir) => ({ indexPath: path.resolve(buildLibOutputDir, itemDir, 'index.js'), })); for (const itemDir of itemDirs) { const fileContent = fs.readFileSync(itemDir.indexPath); const outputFileContent = `import "./index.css";\n${fileContent}`; fs.outputFile(itemDir.indexPath, outputFileContent, 'utf-8'); } } // 复制components/index.ts的内容到dist/index.js function copyIndex() { const fileContent = fs.readFileSync(componentIndexFile, 'utf-8'); fs.ensureFileSync(buildLibOutputIndexFile); fs.outputFileSync(buildLibOutputIndexFile, fileContent, 'utf-8'); } // 生成index.d.ts function generateIndexDts() { const fileStr = `import type { App } from 'vue'; declare function install(app: App): void declare const _default: { install: typeof install; }; export default _default;`; fs.outputFileSync(buildLibOutputIndexDtsFile, fileStr, 'utf8'); } buildComponents();
2301_80257615/MateChat
scripts/build-component.js
JavaScript
mit
2,584
import path from 'path'; import { fileURLToPath } from 'url'; import { dirname } from 'path'; const __filename = fileURLToPath(import.meta.url); const __dirname = dirname(__filename); export const indexFileName = 'index.ts'; export const ignoreDirs = ['PopperTrigger', 'node_modules', 'dist']; export const componentsDir = path.resolve(__dirname, '../packages/components'); export const componentIndexFile = path.resolve(componentsDir, `./${indexFileName}`); export const buildLibOutputDir = path.resolve(__dirname, '../packages/components/dist'); export const buildLibOutputIndexFile = path.resolve(buildLibOutputDir, './mate-chat.js'); export const buildLibOutputIndexDtsFile = path.resolve(buildLibOutputDir, './index.d.ts');
2301_80257615/MateChat
scripts/const.js
JavaScript
mit
731
import fs from 'fs-extra'; import { ignoreDirs, componentsDir, componentIndexFile } from './const.js'; import { resolveFilesInfo, parseExport, createIndexTemplate } from './utils.js'; function generateComponent() { const exportModules = []; const filesInfo = resolveFilesInfo(componentsDir, ignoreDirs); filesInfo.forEach((item) => { exportModules.push(parseExport(item)); }); const template = createIndexTemplate(exportModules); fs.writeFile(componentIndexFile, template, 'utf-8'); } generateComponent();
2301_80257615/MateChat
scripts/generate-component.js
JavaScript
mit
527
import path from 'path'; import fs from 'fs-extra'; import { fileURLToPath } from 'url'; import { dirname } from 'path'; const __filename = fileURLToPath(import.meta.url); const __dirname = dirname(__filename); const release = () => { const packageSourceFile = path.resolve(__dirname, '../packages/components/package.json'); const packageTargetFile = path.resolve(__dirname, '../packages/components/dist/package.json'); const readmeSourceFile = path.resolve(__dirname, '../packages/components/README.md'); const readmeTargetFile = path.resolve(__dirname, '../packages/components/dist/README.md'); fs.copySync(packageSourceFile, packageTargetFile); fs.copySync(readmeSourceFile, readmeTargetFile); }; release();
2301_80257615/MateChat
scripts/release.js
JavaScript
mit
727
import path from 'path'; import fs from 'fs-extra'; import traverse from '@babel/traverse'; import babelParser from '@babel/parser'; import { indexFileName } from './const.js'; export function resolveFilesInfo(targetDir, ignoreDirs = []) { return fs .readdirSync(targetDir) .filter((itemDir) => fs.statSync(path.resolve(targetDir, itemDir)).isDirectory() && !ignoreDirs.includes(itemDir)) .map((itemDir) => ({ name: itemDir, indexPath: path.resolve(targetDir, itemDir, indexFileName) })); } export function parseExport(fileInfo) { const fileContent = fs.readFileSync(fileInfo.indexPath, 'utf-8'); const ast = babelParser.parse(fileContent, { sourceType: 'module', plugins: ['typescript'], }); const exportNames = []; const installer = 'Mc' + fileInfo.name; traverse.default(ast, { ExportNamedDeclaration({ node }) { if (node.specifiers.length) { node.specifiers.forEach((specifier) => { exportNames.push(specifier.local.name); }); } else if (node.declaration) { if (node.declaration.declarations) { node.declaration.declarations.forEach((dec) => { exportNames.push(dec.id.name); }); } else if (node.declaration.id) { exportNames.push(node.declaration.id.name); } } }, }); return { installer, exportNames, dirName: fileInfo.name }; } export function createIndexTemplate(exportModules) { const exportComponents = []; const imports = []; const installs = []; exportModules.forEach((item) => { const { installer, exportNames, dirName } = item; const importStr = `import { ${exportNames.join(', ')} } from './${dirName}';`; imports.push(importStr); installs.push(installer); exportComponents.push(...exportNames); }); const template = `\ ${imports.join('\n')} const installs = [ ${installs.join(',\n ')} ]; export { ${exportComponents.join(',\n ')} }; export default { install(app) { installs.forEach((p) => app.use(p)); } }; `; return template; }
2301_80257615/MateChat
scripts/utils.js
JavaScript
mit
2,059
<script> export default { onLaunch: function() { console.log('App Launch') }, onShow: function() { console.log('App Show') }, onHide: function() { console.log('App Hide') } } </script> <style> /*每个页面公共css */ </style>
2301_80750063/Test1
App.vue
Vue
unknown
254
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8" /> <script> var coverSupport = 'CSS' in window && typeof CSS.supports === 'function' && (CSS.supports('top: env(a)') || CSS.supports('top: constant(a)')) document.write( '<meta name="viewport" content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0' + (coverSupport ? ', viewport-fit=cover' : '') + '" />') </script> <title></title> <!--preload-links--> <!--app-context--> </head> <body> <div id="app"><!--app-html--></div> <script type="module" src="/main.js"></script> </body> </html>
2301_80750063/Test1
index.html
HTML
unknown
672
import App from './App' // #ifndef VUE3 import Vue from 'vue' import './uni.promisify.adaptor' Vue.config.productionTip = false App.mpType = 'app' const app = new Vue({ ...App }) app.$mount() // #endif // #ifdef VUE3 import { createSSRApp } from 'vue' export function createApp() { const app = createSSRApp(App) return { app } } // #endif
2301_80750063/Test1
main.js
JavaScript
unknown
352
<template> <view class="content"> <image class="logo" src="/static/logo.png"></image> <view class="text-area"> <text class="title">{{title}}</text> </view> </view> </template> <script> export default { data() { return { title: 'Hellounify' } }, onLoad() { }, methods: { } } </script> <style> .content { display: flex; flex-direction: column; align-items: center; justify-content: center; } .logo { height: 200rpx; width: 200rpx; margin-top: 200rpx; margin-left: auto; margin-right: auto; margin-bottom: 50rpx; } .text-area { display: flex; justify-content: center; } .title { font-size: 36rpx; color: #8f8f94; } </style>
2301_80750063/Test1
pages/index/index.vue
Vue
unknown
699
uni.addInterceptor({ returnValue (res) { if (!(!!res && (typeof res === "object" || typeof res === "function") && typeof res.then === "function")) { return res; } return new Promise((resolve, reject) => { res.then((res) => { if (!res) return resolve(res) return res[0] ? reject(res[0]) : resolve(res[1]) }); }); }, });
2301_80750063/Test1
uni.promisify.adaptor.js
JavaScript
unknown
373
/** * 这里是uni-app内置的常用样式变量 * * uni-app 官方扩展插件及插件市场(https://ext.dcloud.net.cn)上很多三方插件均使用了这些样式变量 * 如果你是插件开发者,建议你使用scss预处理,并在插件代码中直接使用这些变量(无需 import 这个文件),方便用户通过搭积木的方式开发整体风格一致的App * */ /** * 如果你是App开发者(插件使用者),你可以通过修改这些变量来定制自己的插件主题,实现自定义主题功能 * * 如果你的项目同样使用了scss预处理,你也可以直接在你的 scss 代码中使用如下变量,同时无需 import 这个文件 */ /* 颜色变量 */ /* 行为相关颜色 */ $uni-color-primary: #007aff; $uni-color-success: #4cd964; $uni-color-warning: #f0ad4e; $uni-color-error: #dd524d; /* 文字基本颜色 */ $uni-text-color:#333;//基本色 $uni-text-color-inverse:#fff;//反色 $uni-text-color-grey:#999;//辅助灰色,如加载更多的提示信息 $uni-text-color-placeholder: #808080; $uni-text-color-disable:#c0c0c0; /* 背景颜色 */ $uni-bg-color:#ffffff; $uni-bg-color-grey:#f8f8f8; $uni-bg-color-hover:#f1f1f1;//点击状态颜色 $uni-bg-color-mask:rgba(0, 0, 0, 0.4);//遮罩颜色 /* 边框颜色 */ $uni-border-color:#c8c7cc; /* 尺寸变量 */ /* 文字尺寸 */ $uni-font-size-sm:12px; $uni-font-size-base:14px; $uni-font-size-lg:16px; /* 图片尺寸 */ $uni-img-size-sm:20px; $uni-img-size-base:26px; $uni-img-size-lg:40px; /* Border Radius */ $uni-border-radius-sm: 2px; $uni-border-radius-base: 3px; $uni-border-radius-lg: 6px; $uni-border-radius-circle: 50%; /* 水平间距 */ $uni-spacing-row-sm: 5px; $uni-spacing-row-base: 10px; $uni-spacing-row-lg: 15px; /* 垂直间距 */ $uni-spacing-col-sm: 4px; $uni-spacing-col-base: 8px; $uni-spacing-col-lg: 12px; /* 透明度 */ $uni-opacity-disabled: 0.3; // 组件禁用态的透明度 /* 文章场景相关 */ $uni-color-title: #2C405A; // 文章标题颜色 $uni-font-size-title:20px; $uni-color-subtitle: #555555; // 二级标题颜色 $uni-font-size-subtitle:26px; $uni-color-paragraph: #3F536E; // 文章段落颜色 $uni-font-size-paragraph:15px;
2301_80750063/Test1
uni.scss
SCSS
unknown
2,217
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8" /> <link rel="icon" type="image/svg+xml" href="/vite.svg" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <title>canvas-editor</title> </head> <body> <div id="app"></div> <script type="module" src="/src/main.ts"></script> </body> </html>
2301_80689990/canvas-editor
index.html
HTML
unknown
360
<template> <div class="app" @keydown="handleKeyDown" tabindex="0"> <header class="app-header"> <h1>我的画布</h1> <div class="toolbar"> <button @click="undoAction" :disabled="!canvasStore.canUndo" class="undo-btn" title="撤销 (Ctrl/Cmd+Z)" > 撤销 </button> <button @click="redoAction" :disabled="!canvasStore.canRedo" class="redo-btn" title="重做 (Ctrl/Cmd+Shift+Z / Ctrl/Cmd+Y)" > 重做 </button> <button @click="addRectangle">矩形</button> <button @click="addCircle">圆形</button> <button @click="addTriangle">三角形</button> <button @click="addText" class="text-btn">文本</button> <button @click="triggerImageUpload" class="image-btn"> 图片 </button> <input type="file" ref="fileInput" accept="image/png,image/jpeg,image/jpg" @change="handleImageUpload" style="display: none" > <button @click="resetView" class="view-btn">重置</button> <div class="zoom-info"> {{ Math.round(viewport.scale * 100) }}% </div> <button @click="deleteSelected" :disabled="!hasSelection" class="delete-btn" > 删除 </button> </div> </header> <main class="app-main"> <CanvasRenderer /> <Toolbar /> </main> </div> </template> <script setup lang="ts"> import { ref, computed, onMounted } from 'vue'; import CanvasRenderer from './components/CanvasRenderer.vue'; import Toolbar from './components/Toolbar.vue'; import { useCanvasStore } from './stores/canvas'; import type { RectangleElement, CircleElement, TriangleElement, TextElement, ImageElement } from './types/canvas'; const canvasStore = useCanvasStore(); const fileInput = ref<HTMLInputElement>(); // 触发文件选择 const triggerImageUpload = (): void => { fileInput.value?.click(); }; // 处理图片上传 const handleImageUpload = (event: Event): void => { const target = event.target as HTMLInputElement; const file = target.files?.[0]; if (!file) return; if (!file.type.startsWith('image/')) { console.error('请选择图片文件!'); return; } if (file.size > 5 * 1024 * 1024) { console.error('图片大小不能超过5MB!'); return; } const reader = new FileReader(); reader.onload = (e) => { const result = e.target?.result as string; if (result) { addImageElement(result); } }; reader.onerror = () => { console.error('图片读取失败,请重试!'); }; reader.readAsDataURL(file); target.value = ''; }; // 生成唯一ID的辅助函数 const generateId = (): string => 'element_' + Date.now() + '_' + Math.random().toString(36).substr(2, 9); // 添加图片元素到画布 const addImageElement = (src: string): void => { const img = new Image(); img.onload = () => { // 计算初始尺寸(刚上传到画布时的尺寸) const initialWidth = img.width > 300 ? 300 : img.width; const initialHeight = img.width > 300 ? (img.height * 300) / img.width : img.height; const newImage: ImageElement = { id: generateId(), type: 'image', x: 100, y: 100, width: initialWidth, // 使用初始尺寸 height: initialHeight, originalWidth: img.width, originalHeight: img.height, initialWidth: initialWidth, // 保存初始尺寸 initialHeight: initialHeight, src, filter: 'none', opacity: 1, borderWidth: 0, borderColor: '#000000', selected: false, zIndex: 0 }; canvasStore.addElement(newImage); }; img.onerror = () => console.error('图片加载失败'); img.src = src; }; // 计算属性:视口状态 const viewport = computed(() => canvasStore.viewport); // 计算属性:是否有选中的元素 const hasSelection = computed((): boolean => { return canvasStore.selectedElements().length > 0; }); // 添加矩形的方法 const addRectangle = (): void => { const newRectangle: RectangleElement = { id: generateId(), type: 'rectangle', x: 100, y: 100, width: 200, height: 150, background: '#ff6b6b', borderWidth: 0, borderColor: '#000000', selected: false, zIndex: 0 }; canvasStore.addElement(newRectangle); }; // 添加圆形的方法 const addCircle = (): void => { const newCircle: CircleElement = { id: generateId(), type: 'circle', x: 150, y: 150, width: 120, height: 120, background: '#4ecdc4', borderWidth: 0, borderColor: '#000000', selected: false, zIndex: 0 }; canvasStore.addElement(newCircle); }; // 添加三角形的方法 const addTriangle = (): void => { const newTriangle: TriangleElement = { id: generateId(), type: 'triangle', x: 200, y: 200, width: 150, height: 130, background: '#45b7d1', borderWidth: 0, borderColor: '#000000', selected: false, zIndex: 0 }; canvasStore.addElement(newTriangle); }; // 新增:添加文本元素 const addText = (): void => { const newText: TextElement = { id: generateId(), type: 'text', x: 250, y: 250, width: 120, height: 40, selected: false, zIndex: 0, content: '双击编辑文本', fontSize: 16, fontFamily: 'Arial', color: '#000000', background: 'transparent', bold: false, italic: false, underline: false, textAlign: 'left', strikethrough: false, // 默认无删除线 }; canvasStore.addElement(newText); }; // 重置视图 const resetView = (): void => { canvasStore.resetViewport(); }; // 删除选中的元素 const deleteSelected = (): void => { if (hasSelection.value) { canvasStore.deleteSelectedElements(); } }; // --- ⚡ 撤销/重做操作 ⚡ --- const undoAction = (): void => { const success = canvasStore.undo(); if (!success) { console.warn('无法撤销:撤销栈为空'); } }; const redoAction = (): void => { const success = canvasStore.redo(); if (!success) { console.warn('无法重做:重做栈为空'); } }; // --- ✨ 样式切换辅助函数 (之前缺失的部分) ✨ --- const toggleTextStyle = (property: 'bold' | 'italic' | 'underline'): void => { const selected = canvasStore.selectedElements(); selected.forEach(element => { // 只有文本元素才响应这些快捷键 if (element.type === 'text') { // 强制类型断言,告诉 TS 这是一个 TextElement const textElement = element as TextElement; // 取反当前状态 (true -> false, false -> true) const newValue = !textElement[property]; // 更新 Store canvasStore.updateElement(element.id, { [property]: newValue }); } }); }; // 键盘事件处理 const handleKeyDown = (event: KeyboardEvent): void => { // 边界处理:快捷键冲突 - 检查是否在输入框中 const activeElement = document.activeElement; const isInputFocused = activeElement?.tagName === 'INPUT' || activeElement?.tagName === 'TEXTAREA'; if (isInputFocused) { return; } const isMetaOrCtrl = event.metaKey || event.ctrlKey; // 撤销 (Ctrl+Z) if (isMetaOrCtrl && event.key.toLowerCase() === 'z' && !event.shiftKey) { event.preventDefault(); undoAction(); } // 重做 (Ctrl+Shift+Z 或 Ctrl+Y) else if (isMetaOrCtrl && ((event.key.toLowerCase() === 'z' && event.shiftKey) || event.key.toLowerCase() === 'y')) { event.preventDefault(); redoAction(); } // Delete 键或 Backspace 键删除选中元素 if ((event.key === 'Delete' || event.key === 'Backspace') && hasSelection.value) { event.preventDefault(); deleteSelected(); } // Ctrl+C 复制 if (isMetaOrCtrl && event.key === 'c') { event.preventDefault(); const success = canvasStore.copySelectedElements(); if (success) console.log('复制成功'); } // Ctrl+V 粘贴 if (isMetaOrCtrl && event.key === 'v') { event.preventDefault(); const success = canvasStore.pasteElements(); if (success) console.log('粘贴成功'); } // Ctrl+B 加粗 if (isMetaOrCtrl && (event.key === 'b' || event.key === 'B')) { event.preventDefault(); toggleTextStyle('bold'); } // Ctrl+I 斜体 if (isMetaOrCtrl && (event.key === 'i' || event.key === 'I')) { event.preventDefault(); toggleTextStyle('italic'); } // Ctrl+U 下划线 if (isMetaOrCtrl && (event.key === 'u' || event.key === 'U')) { event.preventDefault(); toggleTextStyle('underline'); } // Ctrl + +/- 缩放 if (isMetaOrCtrl && (event.key === '=' || event.key === '+' || event.key === 'Equal')) { event.preventDefault(); if (hasSelection.value) canvasStore.scaleSelectedElements(1.1); } if (isMetaOrCtrl && event.key === '-') { event.preventDefault(); if (hasSelection.value) canvasStore.scaleSelectedElements(0.9); } }; onMounted(() => { canvasStore.loadFromLocalStorage(); canvasStore.loadClipboardFromLocalStorage(); }); </script> <style> /* 重置默认样式 */ * { margin: 0; padding: 0; box-sizing: border-box; } html, body { width: 100%; height: 100%; overflow: hidden; } #app { width: 100%; height: 100%; } .app { width: 100%; height: 100vh; display: flex; flex-direction: column; padding-bottom: 0; outline: none; } .app-header { padding: 0rem 1rem; background: white; display: flex; justify-content: space-between; align-items: center; flex-shrink: 0; } .app-header h1 { font-size: 2.5rem; margin: 10px; } .app-main { flex: 1; overflow: hidden; margin: 0 20px 20px 20px; background: white; border-radius: 8px; box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1); } .toolbar { display: flex; gap: 10px; } /* 通用按钮样式 */ .toolbar button { padding: 0.5rem 1rem; background: #4a90e2; color: white; border: none; border-radius: 4px; cursor: pointer; transition: all 0.2s; outline: none; /* 移除点击时的黑框 */ } .toolbar button:focus { outline: none; /* 移除焦点时的黑框 */ box-shadow: 0 0 0 2px rgba(255, 255, 255, 0.3); /* 添加自定义焦点样式 */ } .toolbar button:hover:not(:disabled) { background: #357abd; transform: translateY(-1px); } /* --- 撤销/重做按钮样式 --- */ .undo-btn, .redo-btn { padding: 0.5rem 1rem; border: none; border-radius: 4px; cursor: pointer; transition: all 0.2s; display: flex; align-items: center; gap: 4px; outline: none; /* 移除点击时的黑框 */ } .undo-btn:focus, .redo-btn:focus { outline: none; /* 移除焦点时的黑框 */ box-shadow: 0 0 0 2px rgba(255, 255, 255, 0.3); /* 添加自定义焦点样式 */ } .undo-btn { background: #4a90e2; color: white; } .undo-btn:hover:not(:disabled) { background: #357abd; transform: translateY(-1px); } .redo-btn { background: #2ecc71; color: white; } .redo-btn:hover:not(:disabled) { background: #27ae60; transform: translateY(-1px); } .undo-btn:disabled, .redo-btn:disabled { opacity: 0.5; cursor: not-allowed; transform: none; } .undo-btn .icon, .redo-btn .icon { font-size: 16px; } .view-btn { background: #27ae60 !important; margin-left: 10px; } .view-btn:hover { background: #219653 !important; } .image-btn { background: #e67e22 !important; } .image-btn:hover { background: #d35400 !important; } .zoom-info { padding: 0.5rem 1rem; background: #34495e; color: white; border-radius: 4px; font-size: 14px; font-family: monospace; display: flex; align-items: center; justify-content: center; min-width: 60px; text-align: center; } .toolbar button:disabled { background: #cccccc; cursor: not-allowed; opacity: 0.6; } .text-btn { background: #9b59b6 !important; } .text-btn:hover { background: #8e44ad !important; } .delete-btn { background: #e74c3c !important; margin-left: 10px; } .delete-btn:hover:not(:disabled) { background: #c0392b !important; } </style>
2301_80689990/canvas-editor
src/App.vue
Vue
unknown
12,278
<template> <div class="canvas-container"> <canvas ref="canvasRef"></canvas> </div> </template> <script setup lang="ts"> import { onMounted, onUnmounted, ref, watch } from 'vue'; import { useCanvasStore } from '../stores/canvas'; import { Application, Graphics, Container, Rectangle, Texture, Sprite, Text, TextStyle, TextMetrics } from 'pixi.js'; import { filters } from 'pixi.js'; import type { CanvasElement, TextElement, ImageElement, RectangleElement, CircleElement, TriangleElement } from '../types/canvas'; const { ColorMatrixFilter, BlurFilter } = filters; const canvasRef = ref<HTMLCanvasElement>(); const canvasStore = useCanvasStore(); let app: Application; /** 新增:worldLayer(会缩放的世界层)与 uiLayer(不缩放的 UI 层) */ let worldLayer: Container; let uiLayer: Container; let selectionGraphics: Graphics; let lastTextClickTime = 0; const SCALE_HANDLE_SIZE = 8; const SCALE_HANDLE_FILL = 0x4a90e2; const SCALE_HANDLE_STROKE = 0xffffff; onMounted(() => { if (!canvasRef.value) return; app = new Application({ view: canvasRef.value, width: canvasRef.value.clientWidth, height: canvasRef.value.clientHeight, backgroundColor: 0xffffff, resolution: window.devicePixelRatio || 1, autoDensity: true }); // 初始化世界层与 UI 层 worldLayer = new Container(); uiLayer = new Container(); // uiLayer 不随缩放变化 uiLayer.scale.set(1); uiLayer.position.set(0, 0); // 把两个层加入 stage(worldLayer 在下面,uiLayer 在上层) app.stage.addChild(worldLayer); app.stage.addChild(uiLayer); // selectionGraphics 放到 uiLayer(不随缩放) selectionGraphics = new Graphics(); uiLayer.addChild(selectionGraphics); window.addEventListener('resize', handleResize); handleResize(); renderElements(); setupCanvasInteractions(); }); const getScaleCursor = (handle: string): string => { switch (handle) { case 'nw': case 'se': return 'nwse-resize'; case 'ne': case 'sw': return 'nesw-resize'; case 'n': case 's': return 'ns-resize'; case 'e': case 'w': return 'ew-resize'; default: return 'default'; } }; const setupCanvasInteractions = () => { if (!app) return; app.stage.eventMode = 'static'; app.stage.hitArea = app.screen; app.stage.on('wheel', (event) => { event.preventDefault(); const wheelEvent = event.data.originalEvent as unknown as WheelEvent; canvasStore.zoom(wheelEvent.deltaY, wheelEvent.clientX, wheelEvent.clientY); }); app.stage.on('pointerdown', (event) => { const mouseEvent = event.data.originalEvent as unknown as MouseEvent; // 中键或 Ctrl+左键平移 if (mouseEvent.button === 1 || (mouseEvent.ctrlKey && mouseEvent.button === 0)) { event.stopPropagation(); const pos = event.data.global; canvasStore.startPan(pos.x, pos.y); if (app.renderer.view.style) app.renderer.view.style.cursor = 'grabbing'; } // 左键点击空白处:框选 else if (mouseEvent.button === 0 && event.target === app.stage) { const pos = event.data.global; if (!canvasStore.dragState.isDragging && !canvasStore.viewport.isPanning) { if (!mouseEvent.shiftKey) canvasStore.clearSelection(); // 传递屏幕坐标给 Store,Store 会转为世界坐标 canvasStore.startSelection(pos.x, pos.y); if (app.renderer.view.style) app.renderer.view.style.cursor = 'crosshair'; renderSelectionBox(); } } }); app.stage.on('pointermove', (event) => { const pos = event.data.global; if (canvasStore.scaleState.isScaling) { canvasStore.updateScale(pos.x, pos.y); if (app.renderer.view.style) app.renderer.view.style.cursor = getScaleCursor(canvasStore.scaleState.scaleHandle); } else if (canvasStore.dragState.isDragging) { canvasStore.updateDrag(pos.x, pos.y); if (app.renderer.view.style) app.renderer.view.style.cursor = 'grabbing'; } else if (canvasStore.viewport.isPanning) { canvasStore.updatePan(pos.x, pos.y); if (app.renderer.view.style) app.renderer.view.style.cursor = 'grabbing'; } else if (canvasStore.selectionBox.isSelecting) { canvasStore.updateSelection(pos.x, pos.y); renderSelectionBox(); if (app.renderer.view.style) app.renderer.view.style.cursor = 'crosshair'; } else if (event.target !== app.stage) { if (app.renderer.view.style) app.renderer.view.style.cursor = 'grab'; } else { if (app.renderer.view.style) app.renderer.view.style.cursor = 'default'; } }); const onPointerUp = (): void => { if (canvasStore.scaleState.isScaling) { canvasStore.endScale(); if (app.renderer.view.style) app.renderer.view.style.cursor = 'default'; } if (canvasStore.selectionBox.isSelecting) { canvasStore.endSelection(); clearSelectionBox(); if (app.renderer.view.style) app.renderer.view.style.cursor = 'default'; } canvasStore.endDrag(); canvasStore.endPan(); if (app.renderer.view.style) app.renderer.view.style.cursor = 'default'; }; app.stage.on('pointerup', onPointerUp); app.stage.on('pointerupoutside', onPointerUp); }; watch(() => [canvasStore.elements, canvasStore.viewport], () => renderElements(), { deep: true }); const handleResize = () => { if (!app || !canvasRef.value) return; const parent = canvasRef.value.parentElement; if (parent) app.renderer.resize(parent.clientWidth, parent.clientHeight); }; // ✨✨ 优化:框选渲染 - 视觉线条粗细修正 ✨✨ const renderSelectionBox = () => { if (!selectionGraphics || !canvasStore.selectionBox.isSelecting) return; const { startX, startY, currentX, currentY } = canvasStore.selectionBox; // 关键修复:selectionBox存储的是世界坐标,但uiLayer不随缩放,需要转换为屏幕坐标 const x1 = startX * canvasStore.viewport.scale + canvasStore.viewport.x; const y1 = startY * canvasStore.viewport.scale + canvasStore.viewport.y; const x2 = currentX * canvasStore.viewport.scale + canvasStore.viewport.x; const y2 = currentY * canvasStore.viewport.scale + canvasStore.viewport.y; const x = Math.min(x1, x2); const y = Math.min(y1, y2); const width = Math.abs(x2 - x1); const height = Math.abs(y2 - y1); selectionGraphics.clear(); // 关键:线条粗细显示一致(UI 层已不缩放) const lineWidth = 2; selectionGraphics.lineStyle(lineWidth, 0x4a90e2, 0.8); selectionGraphics.beginFill(0x4a90e2, 0.1); selectionGraphics.drawRect(x, y, width, height); selectionGraphics.endFill(); }; const clearSelectionBox = () => selectionGraphics && selectionGraphics.clear(); const renderElements = () => { if (!app) return; // ✅ 不再清空整个 stage,改为只清空 worldLayer(所有会缩放的元素) worldLayer.removeChildren(); worldLayer.x = canvasStore.viewport.x; worldLayer.y = canvasStore.viewport.y; worldLayer.scale.set(canvasStore.viewport.scale); const sortedElements = [...canvasStore.elements].sort((a, b) => (a.zIndex || 0) - (b.zIndex || 0)); sortedElements.forEach(element => { let graphics; if ('type' in element) { const typedElement = element as { type: string }; switch (typedElement.type) { case 'rectangle': graphics = createRectangle(element as RectangleElement); break; case 'circle': graphics = createCircle(element as CircleElement); break; case 'triangle': graphics = createTriangle(element as TriangleElement); break; case 'text': graphics = createText(element as TextElement); break; case 'image': graphics = createImage(element as ImageElement); break; default: console.warn('未知元素:', typedElement.type); } } if (graphics) worldLayer.addChild(graphics); }); // selectionGraphics 位于 uiLayer(不随缩放),直接绘制或清空 if (selectionGraphics) { if (canvasStore.selectionBox.isSelecting) renderSelectionBox(); else selectionGraphics.clear(); } }; const hexToNumber = (hex: string) => { if (!hex || typeof hex !== 'string') return 0; return parseInt(hex.replace('#', ''), 16); } // --- 元素创建函数 --- const createImage = (element: ImageElement): Container => { const container = new Container(); const DEFAULT_SIZE = 200; const w = element.width ?? DEFAULT_SIZE; const h = element.height ?? DEFAULT_SIZE; const sprite = Sprite.from(element.src); sprite.width = w; sprite.height = h; sprite.alpha = element.opacity ?? 1; container.addChild(sprite as any); if (element.borderWidth > 0) { const border = new Graphics().lineStyle(element.borderWidth, hexToNumber(element.borderColor)).drawRect(0, 0, w, h); container.addChild(border as any); } applyFilter(sprite, element.filter || '无滤镜'); if (element.selected) { const highlight = new Graphics().lineStyle(3 / canvasStore.viewport.scale, 0x4a90e2).drawRect(-2, -2, w + 4, h + 4); container.addChild(highlight as any); drawScaleHandles(container, 0, 0, w, h, element.id); } container.x = element.x; container.y = element.y; container.hitArea = new Rectangle(-5, -5, w + 10, h + 10); setupInteractive(container, element); return container; }; const applyFilter = (sprite: Sprite, name: string): void => { sprite.filters = []; const m = new ColorMatrixFilter(); switch (name) { case '灰度': m.grayscale(1, false); sprite.filters = [m]; break; case '复古': m.sepia(false); sprite.filters = [m]; break; case '反色': m.negative(false); sprite.filters = [m]; break; case '高饱和': m.saturate(2, false); sprite.filters = [m]; break; case '去饱和': m.saturate(0, false); sprite.filters = [m]; break; case '色相180°': m.hue(180, false); sprite.filters = [m]; break; case '提亮': m.brightness(1.3, false); sprite.filters = [m]; break; case '高对比': m.contrast(1.5, false); sprite.filters = [m]; break; case '模糊': sprite.filters = [new BlurFilter(8)]; break; } }; const createRectangle = (element: CanvasElement): Container => { const container = new Container(); const g = new Graphics(); if ('background' in element) { g.beginFill(hexToNumber(element.background)); } if ('borderWidth' in element && element.borderWidth > 0 && 'borderColor' in element) { g.lineStyle(element.borderWidth, hexToNumber(element.borderColor)); } g.drawRect(0, 0, element.width, element.height); g.endFill(); if (element.selected) { g.lineStyle(3 / canvasStore.viewport.scale, 0x4a90e2).drawRect(-2, -2, element.width + 4, element.height + 4); drawScaleHandles(container, 0, 0, element.width, element.height, element.id); } container.addChild(g as any); container.x = element.x; container.y = element.y; container.hitArea = new Rectangle(-5, -5, element.width + 10, element.height + 10); setupInteractive(container, element); return container; }; const createCircle = (element: CanvasElement): Container => { const container = new Container(); const g = new Graphics(); const rx = element.width / 2, ry = element.height / 2; if ('background' in element) { g.beginFill(hexToNumber(element.background)); } if ('borderWidth' in element && element.borderWidth > 0 && 'borderColor' in element) { g.lineStyle(element.borderWidth, hexToNumber(element.borderColor)); } g.drawEllipse(rx, ry, rx, ry); g.endFill(); if (element.selected) { g.lineStyle(3 / canvasStore.viewport.scale, 0x4a90e2).drawEllipse(rx, ry, rx + 2, ry + 2); drawScaleHandles(container, 0, 0, element.width, element.height, element.id); } container.addChild(g as any); container.x = element.x; container.y = element.y; container.hitArea = new Rectangle(-5, -5, element.width + 10, element.height + 10); setupInteractive(container, element); return container; }; const createTriangle = (element: CanvasElement): Container => { const container = new Container(); const g = new Graphics(); const w = element.width, h = element.height; if ('background' in element) { g.beginFill(hexToNumber(element.background)); } if ('borderWidth' in element && 'borderColor' in element) { g.lineStyle(element.borderWidth, hexToNumber(element.borderColor)); } g.moveTo(w/2, 0).lineTo(0, h).lineTo(w, h).lineTo(w/2, 0); g.endFill(); if (element.selected) { g.lineStyle(3 / canvasStore.viewport.scale, 0x4a90e2); g.moveTo(w/2, -3).lineTo(-3, h+3).lineTo(w+3, h+3).lineTo(w/2, -3); drawScaleHandles(container, 0, 0, w, h, element.id); } container.addChild(g as any); container.x = element.x; container.y = element.y; container.hitArea = new Rectangle(-5, -5, w + 10, h + 10); setupInteractive(container, element); return container; }; const createText = (element: any) => { const container = new Container(); const graphics = new Graphics(); // 1. 初始化样式 const style = new TextStyle({ fontFamily: element.fontFamily || 'Arial, Helvetica, sans-serif', fontSize: Number(element.fontSize) || 16, fill: element.color || '#000000', fontWeight: element.bold ? 'bold' : 'normal', fontStyle: element.italic ? 'italic' : 'normal', align: element.textAlign || 'left', wordWrap: true, wordWrapWidth: Number(element.width) || 200, breakWords: true, padding: 10, trim: true, textBaseline: 'middle' }); // 2. 创建文本对象 const textSprite = new Text(element.content, style); textSprite.style = style; textSprite.text = element.content; try { (textSprite as any).updateText && (textSprite as any).updateText(); } catch (e) { } // 手动处理对齐 if (element.textAlign === 'center') { textSprite.anchor.set(0.5, 0); textSprite.x = element.width / 2; } else if (element.textAlign === 'right') { textSprite.anchor.set(1, 0); textSprite.x = element.width; } else { textSprite.anchor.set(0, 0); textSprite.x = 0; } textSprite.y = 0; // 3. 绘制背景 if (element.background && element.background !== 'transparent') { graphics.beginFill(hexToNumber(element.background)); } else { graphics.beginFill(0x000000, 0); } graphics.drawRect(0, 0, element.width, element.height); graphics.endFill(); // 4. 选中状态高亮 if (element.selected) { graphics.lineStyle(2 / canvasStore.viewport.scale, 0x4a90e2); graphics.drawRect(-2, -2, element.width + 4, element.height + 4); drawScaleHandles(container, 0, 0, element.width, element.height, element.id); } // 5. 组装 container.addChild(graphics as any); container.addChild(textSprite as any); // ... (省略装饰线逻辑,保持不变,因为你之前的代码装饰线逻辑已经是好的) ... // ✨✨ 手动绘制线条 (修复多行渲染 & 消失Bug) ✨✨ const drawStrikethrough = element.strikethrough; const drawUnderline = !drawStrikethrough && element.underline; if (drawStrikethrough || drawUnderline) { const lineGraphics = new Graphics(); const lineColor = hexToNumber(element.color); lineGraphics.lineStyle(2, lineColor); const metrics = TextMetrics.measureText(element.content, style, element.wordWrap); const lineHeight = metrics.lineHeight; metrics.lines.forEach((lineText, i) => { const lineWidth = TextMetrics.measureText(lineText, style, element.wordWrap).width; let lineXOffset = 0; if (element.textAlign === 'center') { lineXOffset = (element.width - lineWidth) / 2; } else if (element.textAlign === 'right') { lineXOffset = element.width - lineWidth; } const finalStartX = lineXOffset; const finalEndX = finalStartX + lineWidth; const lineTopY = textSprite.y + i * lineHeight; if (drawStrikethrough) { const strikeY = lineTopY + lineHeight * 0.55; lineGraphics.moveTo(finalStartX, strikeY); lineGraphics.lineTo(finalEndX, strikeY); } else if (drawUnderline) { const underlineY = lineTopY + lineHeight * 0.92; lineGraphics.moveTo(finalStartX, underlineY); lineGraphics.lineTo(finalEndX, underlineY); } }); container.addChild(lineGraphics); } // 位置与交互 container.x = element.x; container.y = element.y; container.eventMode = 'static'; container.cursor = 'text'; container.hitArea = new Rectangle(0, 0, element.width, element.height); container.on('pointerdown', (event) => { event.stopPropagation(); const currentTime = Date.now(); if (currentTime - lastTextClickTime < 300) { startTextEdit(element); // 双击编辑 lastTextClickTime = 0; return; } lastTextClickTime = currentTime; const pos = event.data.global; if ((event.data.originalEvent as unknown as KeyboardEvent).shiftKey) { canvasStore.toggleElementSelection(element.id); } else { if (!element.selected) canvasStore.selectElement(element.id); } canvasStore.bringToFront(); container.scale.set(1.05); setTimeout(() => container.scale.set(1.0), 150); // ✅ 关键:把屏幕坐标转换为世界坐标后再 startDrag(统一世界坐标) const world = canvasStore.screenToWorld(pos.x, pos.y); canvasStore.startDrag(element.id, world.x, world.y); }); return container; }; const setupInteractive = (container: Container, element: any) => { container.eventMode = 'static'; container.cursor = 'pointer'; container.on('pointerover', () => container.cursor = 'grab'); container.on('pointerout', () => container.cursor = 'pointer'); container.on('pointerdown', (e) => { e.stopPropagation(); container.cursor = 'grabbing'; const global = e.data.global; if ((e.data.originalEvent as unknown as KeyboardEvent).shiftKey) canvasStore.toggleElementSelection(element.id); else if (!element.selected) canvasStore.selectElement(element.id); canvasStore.bringToFront(); container.scale.set(1.05); setTimeout(() => container.scale.set(1.0), 150); // ✅ 关键:统一传入世界坐标(screen -> world) const world = canvasStore.screenToWorld(global.x, global.y); canvasStore.startDrag(element.id, world.x, world.y); }); container.on('pointerup', () => container.cursor = 'grab'); }; // ✨✨ 优化:缩放手柄 - 视觉大小修正 ✨✨ const drawScaleHandles = (container: Container, x: number, y: number, w: number, h: number, id: string) => { const handles = [ { id: 'nw', x: x, y: y, c: 'nwse-resize' }, { id: 'n', x: x + w/2, y: y, c: 'ns-resize' }, { id: 'ne', x: x + w, y: y, c: 'nesw-resize' }, { id: 'e', x: x + w, y: y + h/2, c: 'ew-resize' }, { id: 'se', x: x + w, y: y + h, c: 'nwse-resize' }, { id: 's', x: x + w/2, y: y + h, c: 'ns-resize' }, { id: 'sw', x: x, y: y + h, c: 'nesw-resize' }, { id: 'w', x: x, y: y + h/2, c: 'ew-resize' } ]; handles.forEach(hdl => { const g = new Graphics(); // 关键:除以 scale,确保手柄视觉大小不变 const size = SCALE_HANDLE_SIZE / canvasStore.viewport.scale; g.beginFill(SCALE_HANDLE_FILL).lineStyle(1 / canvasStore.viewport.scale, SCALE_HANDLE_STROKE); g.drawRect(hdl.x - size/2, hdl.y - size/2, size, size); g.endFill(); g.eventMode = 'static'; g.cursor = hdl.c; g.on('pointerdown', (e) => { e.stopPropagation(); e.data.originalEvent.preventDefault(); // startScale 在 store 端期望屏幕坐标(startX,startY),因此我们传入屏幕坐标 canvasStore.startScale(id, hdl.id, e.data.global.x, e.data.global.y); }); container.addChild(g as any); }); }; const startTextEdit = (element: any) => { const parent = app.view.parentElement; if (!parent) return; const textarea = document.createElement('textarea'); const scale = canvasStore.viewport.scale; const x = element.x * scale + canvasStore.viewport.x; const y = element.y * scale + canvasStore.viewport.y; textarea.value = element.content; textarea.style.position = 'absolute'; textarea.style.left = `${x}px`; textarea.style.top = `${y}px`; textarea.style.width = `${element.width * scale}px`; textarea.style.height = `${element.height * scale}px`; textarea.style.fontSize = `${element.fontSize * scale}px`; textarea.style.fontFamily = element.fontFamily; textarea.style.color = element.color; textarea.style.textAlign = element.textAlign; textarea.style.fontWeight = element.bold ? 'bold' : 'normal'; textarea.style.fontStyle = element.italic ? 'italic' : 'normal'; textarea.style.textDecoration = element.strikethrough ? 'line-through' : (element.underline ? 'underline' : 'none'); textarea.style.background = element.background === 'transparent' ? 'rgba(255,255,255,0.8)' : element.background; textarea.style.border = '1px dashed #4a90e2'; textarea.style.outline = 'none'; textarea.style.padding = '0'; textarea.style.margin = '0'; textarea.style.resize = 'none'; textarea.style.zIndex = '1000'; const finish = (): void => { if (textarea.value !== element.content) { canvasStore.updateElement(element.id, { content: textarea.value }); } if (textarea.parentNode) textarea.parentNode.removeChild(textarea); }; textarea.onblur = finish; textarea.onkeydown = (e) => { if (e.key === 'Enter' && !e.shiftKey) { e.preventDefault(); finish(); } if (e.key === 'Escape') textarea.remove(); e.stopPropagation(); }; parent.appendChild(textarea); setTimeout(() => { textarea.focus(); textarea.select(); }, 10); }; onUnmounted(() => { if (app) app.destroy(true, { children: true, texture: true, baseTexture: true }); window.removeEventListener('resize', handleResize); }); </script> <style scoped> .canvas-container { width: 100%; height: 100%; background: #f5f5f5; position: relative; overflow: hidden; } canvas { display: block; width: 100%; height: 100%; } </style>
2301_80689990/canvas-editor
src/components/CanvasRenderer.vue
Vue
unknown
22,008
<script setup lang="ts"> import { ref } from 'vue' defineProps<{ msg: string }>() const count = ref(0) </script> <template> <h1>{{ msg }}</h1> <div class="card"> <button type="button" @click="count++">count is {{ count }}</button> <p> Edit <code>components/HelloWorld.vue</code> to test HMR </p> </div> <p> Check out <a href="https://vuejs.org/guide/quick-start.html#local" target="_blank" >create-vue</a >, the official Vue + Vite starter </p> <p> Learn more about IDE Support for Vue in the <a href="https://vuejs.org/guide/scaling-up/tooling.html#ide-support" target="_blank" >Vue Docs Scaling up Guide</a >. </p> <p class="read-the-docs">Click on the Vite and Vue logos to learn more</p> </template> <style scoped> .read-the-docs { color: #888; } </style>
2301_80689990/canvas-editor
src/components/HelloWorld.vue
Vue
unknown
856
<template> <div v-if="hasSelection" class="toolbar" ref="toolbarRef" :style="toolbarStyle" > <div class="toolbar-handle" @mousedown="startDrag"> ⠿ 拖拽移动 </div> <div class="toolbar-section"> <h3>属性设置</h3> <div v-if="selectedTypes.includes('text')" class="text-properties"> <div class="toolbar-item"> <label>内容:</label> <input type="text" v-model="selectedContent" @input="updateSelectedElementsOptimized('content', selectedContent)" @focus="disableGlobalKeys" @blur="enableGlobalKeys" > </div> <div class="toolbar-row"> <div class="toolbar-item"> <label>字号:</label> <input type="number" min="12" v-model="selectedFontSize" @input="updateSelectedElementsOptimized('fontSize', selectedFontSize)" @focus="disableGlobalKeys" @blur="enableGlobalKeys" > </div> <div class="toolbar-item"> <label>字体:</label> <select v-model="selectedFontFamily" @change="updateSelectedElementsOptimized('fontFamily', selectedFontFamily)" style="width: 100px; height: 30px;" > <option value="Arial">Arial</option> <option value="Times New Roman">Times New Roman</option> <option value="SimSun">宋体</option> <option value="Microsoft YaHei">微软雅黑</option> <option value="SimHei">黑体</option> </select> </div> </div> <div class="toolbar-item"> <label>颜色:</label> <input type="color" v-model="selectedTextColor" @input="updateSelectedElementsOptimized('color', selectedTextColor)" > </div> <div class="toolbar-item style-buttons"> <button :class="{ active: selectedBold }" @click="updateSelectedElementsOptimized('bold', !selectedBold)" title="加粗 (Ctrl+B)" > B </button> <button :class="{ active: selectedItalic }" @click="updateSelectedElementsOptimized('italic', !selectedItalic)" title="斜体 (Ctrl+I)" > <span style="display:inline-block; transform: skewX(-12deg); font-family: Arial;"> I </span> </button> <button :class="{ active: selectedUnderline }" @click="updateSelectedElementsOptimized('underline', !selectedUnderline)" title="下划线 (Ctrl+U)" > U </button> <button :class="{ active: selectedStrikethrough }" @click="updateSelectedElementsOptimized('strikethrough', !selectedStrikethrough)" title="删除线" style="text-decoration: line-through;" > S </button> </div> <div class="toolbar-item style-buttons"> <button :class="{ active: selectedTextAlign === 'left' }" @click="updateSelectedElementsOptimized('textAlign', 'left')">左</button> <button :class="{ active: selectedTextAlign === 'center' }" @click="updateSelectedElementsOptimized('textAlign', 'center')">中</button> <button :class="{ active: selectedTextAlign === 'right' }" @click="updateSelectedElementsOptimized('textAlign', 'right')">右</button> </div> <hr class="divider"> </div> <div class="toolbar-item"> <label>背景色:</label> <div style="display: flex; gap: 5px; align-items: center;"> <input type="color" v-model="displayBackgroundColor" > <button @click="setBackgroundTransparent" class="small-btn" :class="{ active: selectedBackground === 'transparent' }" title="设为透明" > 透明 </button> </div> </div> <div class="toolbar-item"> <label>边框色:</label> <input type="color" v-model="selectedBorderColor" @input="updateSelectedElementsOptimized('borderColor', selectedBorderColor)" > <span class="color-value">{{ selectedBorderColor }}</span> </div> <div class="toolbar-item"> <label>边框宽度:</label> <input type="range" min="0" max="10" v-model="selectedBorderWidth" @input="updateSelectedElementsOptimized('borderWidth', parseInt(selectedBorderWidth.toString()))" > <span>{{ selectedBorderWidth }}px</span> </div> <div class="toolbar-item" v-if="selectedTypes.includes('image')"> <label>滤镜:</label> <select v-model="selectedFilter" @input="updateSelectedElementsOptimized('filter', ($event.target as HTMLSelectElement).value)"> <option value="无滤镜">无滤镜</option> <option value="灰度">灰度</option> <option value="复古">复古</option> <option value="反色">反色</option> <option value="提亮">提亮</option> <option value="高对比">高对比</option> <option value="高饱和">高饱和</option> <option value="去饱和">去饱和</option> <option value="色相180°">色相180°</option> <option value="模糊">模糊</option> </select> </div> <div class="toolbar-item" v-if="showImageProperties"> <label>透明度:</label> <input type="range" min="0" max="1" step="0.05" :value="selectedOpacity" @input="onOpacityInput" > <span>{{ Math.round(selectedOpacity * 100) }}%</span> </div> <div class="toolbar-actions" v-if="showImageProperties"> <button class="reset-btn" @click="resetImageSize">重置尺寸</button> </div> <div class="toolbar-row"> <div class="toolbar-item"> <label>X:</label> <input type="number" v-model="selectedX" @input="updateSelectedElementsOptimized('x', parseInt(selectedX.toString()) || 0)" @focus="disableGlobalKeys" @blur="enableGlobalKeys" ref="xInput" > </div> <div class="toolbar-item"> <label>Y:</label> <input type="number" v-model="selectedY" @input="updateSelectedElementsOptimized('y', parseInt(selectedY.toString()) || 0)" @focus="disableGlobalKeys" @blur="enableGlobalKeys" ref="yInput" > </div> </div> <div class="toolbar-row"> <div class="toolbar-item"> <label>宽度:</label> <input type="number" min="10" v-model="selectedWidth" @input="updateSelectedElementsOptimized('width', Math.max(1, parseInt(selectedWidth.toString()) || 100))" @focus="disableGlobalKeys" @blur="enableGlobalKeys" ref="widthInput" > </div> <div class="toolbar-item"> <label>高度:</label> <input type="number" min="10" v-model="selectedHeight" @input="updateSelectedElementsOptimized('height', Math.max(1, parseInt(selectedHeight.toString()) || 100))" @focus="disableGlobalKeys" @blur="enableGlobalKeys" ref="heightInput" > </div> </div> <div class="toolbar-actions"> <button @click="copySelected" class="copy-btn" :disabled="!hasSelection"> 复制 (Ctrl+C) </button> <button @click="pasteElements" class="paste-btn" :disabled="!canPaste"> 粘贴 (Ctrl+V) </button> <button @click="deleteSelected" class="delete-btn"> 删除 </button> <button @click="clearSelection" class="clear-btn"> 取消 </button> </div> <div class="selection-info"> <p>已选中 {{ selectedCount }} 个元素</p> <p v-if="selectedTypes.length > 0">类型: {{ selectedTypes.join(', ') }}</p> </div> </div> </div> </template> <script setup lang="ts"> import { ref, watch, computed, onMounted, onUnmounted } from 'vue'; import { useCanvasStore } from '../stores/canvas'; import type { TextElement } from '../types/canvas'; // 防抖和节流函数 const debounce = <T extends (...args: any[]) => void>(func: T, delay: number) => { let timeoutId: ReturnType<typeof setTimeout>; return (...args: Parameters<T>) => { clearTimeout(timeoutId); timeoutId = setTimeout(() => func(...args), delay); }; }; const throttle = <T extends (...args: any[]) => void>(func: T, limit: number) => { let inThrottle: boolean; return (...args: Parameters<T>) => { if (!inThrottle) { func(...args); inThrottle = true; setTimeout(() => inThrottle = false, limit); } }; }; const canvasStore = useCanvasStore(); const toolbarRef = ref<HTMLElement>(); // 图片专属表单数据 const selectedOpacity = ref<number>(1); const selectedFilter = ref(''); // 输入框引用 const xInput = ref<HTMLInputElement>(); const yInput = ref<HTMLInputElement>(); const widthInput = ref<HTMLInputElement>(); const heightInput = ref<HTMLInputElement>(); const isDragging = ref(false); const dragOffset = ref({ x: 0, y: 0 }); const loadToolbarPosition = () => { const saved = localStorage.getItem('toolbar-position'); if (saved) return JSON.parse(saved); return { x: 20, y: 80 }; }; const saveToolbarPosition = (position: { x: number; y: number }) => { localStorage.setItem('toolbar-position', JSON.stringify(position)); }; const toolbarPosition = ref(loadToolbarPosition()); const globalKeysEnabled = ref(true); const toolbarStyle = computed(() => ({ left: `${toolbarPosition.value.x}px`, top: `${toolbarPosition.value.y}px` })); // 计算属性 const hasSelection = computed(() => canvasStore.selectedElements().length > 0); const selectedCount = computed(() => canvasStore.selectedElements().length); const selectedElements = computed(() => canvasStore.selectedElements()); const canPaste = computed(() => canvasStore.clipboard.length > 0); const selectedTypes = computed(() => [...new Set(selectedElements.value.map(el => el.type))]); const showImageProperties = computed(() => selectedElements.value.some((el: { type: string }) => el.type === 'image')); // 表单数据 const selectedBackground = ref('#ffffff'); const selectedBorderColor = ref('#000000'); const selectedBorderWidth = ref(0); const selectedX = ref(0); const selectedY = ref(0); const selectedWidth = ref(100); const selectedHeight = ref(100); // 文本专属数据 const selectedContent = ref(''); const selectedFontSize = ref(16); const selectedFontFamily = ref('Arial'); const selectedTextColor = ref('#000000'); const selectedBold = ref(false); const selectedItalic = ref(false); const selectedUnderline = ref(false); const selectedStrikethrough = ref(false); const selectedTextAlign = ref('left'); // 计算属性:解决背景色输入框不支持 transparent 的问题 const displayBackgroundColor = computed({ get: () => { return selectedBackground.value === 'transparent' ? '#ffffff' : selectedBackground.value; }, set: (val) => { selectedBackground.value = val; updateSelectedElementsOptimized('background', val); } }); // 方法定义 const disableGlobalKeys = () => { globalKeysEnabled.value = false; }; const enableGlobalKeys = () => { globalKeysEnabled.value = true; }; const onOpacityInput = (e: Event) => { const val = parseFloat((e.target as HTMLInputElement).value); selectedOpacity.value = val; updateSelectedElementsOptimized('opacity', val); }; const resetImageSize = () => { const img = canvasStore.selectedElements().find((el: { type: string }) => el.type === 'image'); if (!img) return; const w = (img as any).initialWidth || (img as any).width || 200; const h = (img as any).initialHeight || (img as any).height || 200; updateSelectedElements('width', w); updateSelectedElements('height', h); selectedWidth.value = w; selectedHeight.value = h; }; // 拖拽逻辑 const startDrag = (event: MouseEvent) => { event.preventDefault(); isDragging.value = true; if (toolbarRef.value) { const rect = toolbarRef.value.getBoundingClientRect(); dragOffset.value = { x: event.clientX - rect.left, y: event.clientY - rect.top }; } document.addEventListener('mousemove', handleDrag); document.addEventListener('mouseup', stopDrag); }; const handleDrag = (event: MouseEvent) => { if (!isDragging.value) return; const newX = event.clientX - dragOffset.value.x; const newY = event.clientY - dragOffset.value.y; const maxX = window.innerWidth - 300; const maxY = window.innerHeight - 400; toolbarPosition.value = { x: Math.max(0, Math.min(newX, maxX)), y: Math.max(0, Math.min(newY, maxY)) }; }; const stopDrag = () => { isDragging.value = false; saveToolbarPosition(toolbarPosition.value); document.removeEventListener('mousemove', handleDrag); document.removeEventListener('mouseup', stopDrag); }; const handleResize = () => { const maxX = window.innerWidth - 300; const maxY = window.innerHeight - 400; if (toolbarPosition.value.x > maxX || toolbarPosition.value.y > maxY) { toolbarPosition.value = { x: Math.min(toolbarPosition.value.x, maxX), y: Math.min(toolbarPosition.value.y, maxY) }; saveToolbarPosition(toolbarPosition.value); } }; // 监听选中元素变化 watch(selectedElements, (newElements) => { const img = newElements.find((el: { type: string }) => el.type === 'image'); selectedFilter.value = img ? (img.filter ?? '无滤镜') : '无滤镜'; selectedOpacity.value = img ? (img.opacity ?? 1) : 1; if (newElements.length) { const firstElement = newElements[0]; selectedBackground.value = firstElement.background ?? '#ffffff'; selectedBorderColor.value = firstElement.borderColor ?? '#000000'; selectedBorderWidth.value = firstElement.borderWidth ?? 0; selectedX.value = firstElement.x; selectedY.value = firstElement.y; selectedWidth.value = firstElement.width; selectedHeight.value = firstElement.height; if (newElements.length === 1 && firstElement.type === 'text') { const textEl = firstElement as TextElement; selectedContent.value = textEl.content || ''; selectedFontSize.value = textEl.fontSize || 16; selectedFontFamily.value = textEl.fontFamily || 'Arial'; selectedTextColor.value = textEl.color || '#000000'; selectedBold.value = textEl.bold || false; selectedItalic.value = textEl.italic || false; selectedUnderline.value = textEl.underline || false; selectedStrikethrough.value = textEl.strikethrough || false; selectedTextAlign.value = textEl.textAlign || 'left'; } } else { selectedBackground.value = '#ffffff'; selectedBorderColor.value = '#000000'; selectedBorderWidth.value = 0; selectedX.value = 0; selectedY.value = 0; selectedWidth.value = 0; selectedHeight.value = 0; } }, { immediate: true, deep: true }); // 更新方法 const updateSelectedElements = (property: string, value: any) => { if (property === 'filter' && value === '') value = '无滤镜'; if (property === 'width' || property === 'height') { const minSize = 10; value = Math.max(minSize, parseInt(value) || minSize); if (property === 'width') selectedWidth.value = value; else if (property === 'height') selectedHeight.value = value; } const selectedIds = canvasStore.selectedElements().map(el => el.id); selectedIds.forEach(id => { canvasStore.updateElement(id, { [property]: value }); }); }; const setBackgroundTransparent = () => { selectedBackground.value = 'transparent'; updateSelectedElementsOptimized('background', 'transparent'); }; // 核心修复函数:处理字体大小类型转换 const updateSelectedElementsOptimized = (property: string, value: any) => { if (property === 'background' && value !== 'transparent') { selectedBackground.value = value; } // ✨✨ 核心修复:字号必须转为数字 ✨✨ if (property === 'fontSize') { const size = parseInt(String(value)); if (isNaN(size) || size < 10) return; debounceUpdate(property, size); return; } // ✨✨ 核心修复:边框宽度必须转为数字 ✨✨ if (property === 'borderWidth') { const width = parseInt(String(value)); if (isNaN(width) || width < 0) return; throttleUpdate(property, width); return; } if (['opacity'].includes(property)) throttleUpdate(property, value); else if (['x', 'y', 'width', 'height'].includes(property)) debounceUpdate(property, value); else immediateUpdate(property, value); }; const immediateUpdate = (property: string, value: any) => updateSelectedElements(property, value); const throttleUpdate = throttle((property: string, value: any) => updateSelectedElements(property, value), 50); const debounceUpdate = debounce((property: string, value: any) => updateSelectedElements(property, value), 100); const deleteSelected = () => canvasStore.deleteSelectedElements(); const clearSelection = () => canvasStore.clearSelection(); const copySelected = () => canvasStore.copySelectedElements(); const pasteElements = () => canvasStore.pasteElements(); onMounted(() => window.addEventListener('resize', handleResize)); onUnmounted(() => { document.removeEventListener('mousemove', handleDrag); document.removeEventListener('mouseup', stopDrag); window.removeEventListener('resize', handleResize); }); </script> <style scoped> .toolbar { position: fixed; background: white; border: 1px solid #e0e0e0; border-radius: 8px; padding: 0; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1); min-width: 280px; z-index: 1000; cursor: default; user-select: none; } .toolbar-handle { padding: 12px 16px; background: #f8f9fa; border-bottom: 1px solid #e0e0e0; cursor: grab; font-size: 14px; color: #666; border-radius: 8px 8px 8px 8px; display: flex; align-items: center; justify-content: space-between; } .toolbar-handle::before { font-size: 16px; margin-right: 8px; } .toolbar-handle:active { cursor: grabbing; background: #dee2e6; } .toolbar-section { padding: 16px; } .toolbar-section h3 { margin: 0 0 16px 0; font-size: 16px; border-bottom: 1px solid #eee; padding-bottom: 8px; } .toolbar-item { display: flex; align-items: center; margin-bottom: 12px; gap: 8px; } .toolbar-item label { min-width: 80px; font-size: 14px; color: #666; } .toolbar-item input[type="color"] { width: 40px; height: 30px; border: 1px solid #ddd; cursor: pointer; } .toolbar-item input[type="range"] { flex: 1; } .toolbar-item input[type="number"], .toolbar-item input[type="text"] { width: 70px; padding: 4px 8px; border: 1px solid #ddd; border-radius: 4px; } .toolbar-row { display: flex; gap: 12px; } .toolbar-actions { display: flex; gap: 8px; margin-top: 16px; padding-top: 16px; border-top: 1px solid #eee; transform: translateY(0); } .toolbar-actions button { flex: 1; padding: 8px; border: none; border-radius: 4px; cursor: pointer; color: white; margin-bottom: 8px; } .delete-btn { background: #e74c3c; } .copy-btn { background: #3498db; } .paste-btn { background: #2ecc71; } .clear-btn { background: #95a5a6; } .reset-btn { background: #f39c12 !important; } .reset-btn:hover, .reset-btn:active { background: #e67e22 !important; } .selection-info { margin-top: 12px; font-size: 12px; color: #666; border-top: 1px solid #eee; padding-top: 8px; } /* 文本样式按钮 */ .style-buttons { display: flex; gap: 4px; } .style-buttons button { flex: 1; padding: 6px; background: #f8f9fa; border: 1px solid #ddd; border-radius: 4px; cursor: pointer; font-weight: bold; color: #333; } .style-buttons button.active { background: #4a90e2; color: white; border-color: #357abd; } .divider { border: 0; border-top: 1px solid #eee; margin: 12px 0; } .small-btn { padding: 2px 6px; font-size: 12px; background: #f1f1f1; border: 1px solid #ccc; border-radius: 4px; cursor: pointer; } .small-btn.active { background: #e0e0e0; color: #999; border-style: dashed; } </style>
2301_80689990/canvas-editor
src/components/Toolbar.vue
Vue
unknown
20,694
import { createApp } from 'vue' import { createPinia } from 'pinia' // 导入pinia import './style.css' import App from './App.vue' const app = createApp(App) const pinia = createPinia() app.use(pinia) // 使用pinia app.mount('#app')
2301_80689990/canvas-editor
src/main.ts
TypeScript
unknown
239
// 新增:拖拽状态类型 interface DragState { isDragging: boolean; dragElementId: string; startX: number; startY: number; elementStartX: number; elementStartY: number; selectedIds: string[]; // 所有选中的元素ID elementStartPositions: { [key: string]: { x: number, y: number } }; // 所有元素的初始位置 } // 在 canvas.ts 中添加缩放状态接口 interface ScaleState { isScaling: boolean; scaleHandle: string; // 'nw' | 'ne' | 'sw' | 'se' | 'n' | 'e' | 's' | 'w' elementId: string; startX: number; startY: number; elementStartX: number; elementStartY: number; elementStartWidth: number; elementStartHeight: number; scaleMultiple: boolean; // 是否同时缩放多个元素 selectedIds: string[]; elementStartPositions: { [key: string]: { x: number, y: number, width: number, height: number } }; } // 用于移动操作的元素位置接口 interface ElementPosition { id: string; x: number; y: number; } type OperationData = { // 整体画布状态(用于全局撤销/重做) elements?: CanvasElement[]; // 特定元素操作(用于局部撤销/重做) elementId?: string; before?: Partial<CanvasElement> | CanvasElement[] | ElementPosition[]; // 操作前状态 after?: Partial<CanvasElement> | CanvasElement[] | ElementPosition[]; // 操作后状态 }; export interface CanvasOperation { id: string; // 操作 ID type: 'add' | 'delete' | 'move' | 'resize' | 'update' | 'clear' | 'batch'; // 操作类型 timestamp: number; // 时间戳 description: string; // 操作描述 data: OperationData; // 操作数据 } // 1.1 数据结构定义:HistoryState 接口 export interface HistoryState { undoStack: CanvasOperation[]; // 撤销栈 redoStack: CanvasOperation[]; // 重做栈 maxHistory: number; // 最大历史条数 isRecording: boolean; // 记录开关 } // 1. 导入必要的工具 import { defineStore } from 'pinia'; import { ref, computed } from 'vue'; import type { CanvasElement } from '../types/canvas'; // 2. 创建仓库 export const useCanvasStore = defineStore('canvas', () => { // 1.3 撤销:从撤销栈取出最后一条操作,恢复到操作前状态,移入重做栈 const undo = (): boolean => { if (historyState.value.undoStack.length === 0) { console.warn('撤销栈为空,无法撤销。') return false } const operation = historyState.value.undoStack.pop() as CanvasOperation // 4.2 ① 暂停记录 pauseRecording() try { console.log(`[undo] ${operation.description} (${operation.type})`) const { before, after } = operation.data switch (operation.type) { case 'add': { // 新增撤销:删除对应元素 const elementId = operation.data.elementId; const idsToDel = elementId ? [elementId] : (after as CanvasElement[]).map(e => e.id) elements.value = elements.value.filter(el => !idsToDel.includes(el.id)) break } case 'delete': { // 删除撤销:只保留真值元素 const toRestore = (Array.isArray(before) ? before : [before]) .filter((b): b is CanvasElement => b != null) if (toRestore.length) elements.value.push(...deepClone(toRestore)) break } case 'update': case 'move': case 'resize': case 'batch': { // 批量或单个:用 before 快照覆盖 const arr = Array.isArray(before) ? before : [before] arr.forEach(b => { if (b) { const target = elements.value.find(el => el.id === b.id) if (target) Object.assign(target, deepClone(b)) } }) break } case 'clear': { // 清空撤销:整份恢复 elements.value = deepClone(before as CanvasElement[]) break } default: console.warn(`[undo] 未知类型: ${operation.type}`) break } // 移入重做栈 historyState.value.redoStack.push(operation) // 收尾 clearSelection() saveToLocalStorage() return true } catch (e) { // 4.2 异常捕获 & 回滚 console.error('[undo] 失败:', e) historyState.value.undoStack.push(operation) // 还回去 return false } finally { // 4.2 恢复记录 resumeRecording() } } // const undo = () => { // if (historyState.value.undoStack.length === 0) { // console.warn('撤销栈为空,无法撤销。'); // return false; // } // const operation = historyState.value.undoStack.pop() as CanvasOperation; // // 1. 暂停记录,防止撤销操作本身被记录 // pauseRecording(); // try { // console.log(`执行撤销操作: ${operation.description} (类型: ${operation.type})`); // // 使用操作前状态 (operation.data.before) 恢复元素状态 // const elementId = operation.data.elementId; // const beforeState = operation.data.before; // const afterState = operation.data.after; // 记录当前状态(操作后的状态),用于重做 // switch (operation.type) { // case 'add': // // 新增操作的撤销:删除被新增的元素 // if (elementId) { // elements.value = elements.value.filter(el => el.id !== elementId); // } else if (Array.isArray(afterState)) { // // 批量添加的撤销:删除所有新增的元素(afterState即为新增的元素列表) // const idsToDelete = afterState.map(el => el.id); // elements.value = elements.value.filter(el => !idsToDelete.includes(el.id)); // } // break; // case 'delete': // // 删除操作的撤销:恢复被删除的元素 (beforeState即为被删除的元素列表) // if (Array.isArray(beforeState)) { // // 批量删除的撤销:恢复所有被删除的元素 // elements.value.push(...deepClone(beforeState)); // } else if (beforeState && elementId) { // // 单个删除的撤销:恢复单个元素 // elements.value.push(deepClone(beforeState) as CanvasElement); // } // break; // case 'update': // case 'move': // case 'resize': // case 'batch': // 批量更新/移动/缩放 // // 更新/移动/缩放的撤销:恢复元素操作前的状态 // if (Array.isArray(beforeState)) { // // 批量操作的撤销 (beforeState是包含多个元素的数组) // beforeState.forEach(b => { // const target = elements.value.find(el => el.id === b.id); // if (target) { // Object.assign(target, b); // } // }); // } else if (beforeState && elementId) { // // 单个操作的撤销 // const target = elements.value.find(el => el.id === elementId); // if (target) { // Object.assign(target, beforeState); // } // } // break; // case 'clear': // // 清空操作的撤销:恢复所有被清空的元素 // if (Array.isArray(beforeState)) { // elements.value = deepClone(beforeState); // } // break; // default: // console.warn(`未知操作类型 "${operation.type}",无法撤销。`); // break; // } // // 2. 将操作移入重做栈,用于重做 // // 确保重做栈中的操作数据是“撤销前”的状态(即操作原本的“之后”状态) // historyState.value.redoStack.push(operation); // // 清除选择状态,防止撤销后操作的元素仍然处于选中状态 // clearSelection(); // saveToLocalStorage(); // return true; // } catch (e) { // console.error('执行撤销逻辑时发生错误:', e); // // 失败后将操作推回 undo 栈(但不恢复记录) // historyState.value.undoStack.push(operation); // return false; // } finally { // // 3. 恢复记录 // resumeRecording(); // } // }; // 1.3 重做:从重做栈取出操作,重新执行该操作,将操作移回撤销栈 const redo = (): boolean => { if (historyState.value.redoStack.length === 0) { console.warn('重做栈为空,无法重做。') return false } const operation = historyState.value.redoStack.pop() as CanvasOperation // 4.2 ① 暂停记录 pauseRecording() try { console.log(`[redo] ${operation.description} (${operation.type})`) const { before, after } = operation.data switch (operation.type) { case 'add': { // 新增重做:把 after 里的元素重新 push const toAdd = Array.isArray(after) ? after : [after] elements.value.push(...deepClone(toAdd).filter((a): a is CanvasElement => a != null)) break } case 'delete': { // 删除重做:再次删掉 before 里的元素 const idsToDel = (Array.isArray(before) ? before : [before]) .filter((b): b is CanvasElement => b != null) .map(b => b.id) elements.value = elements.value.filter(el => !idsToDel.includes(el.id)) break } case 'update': case 'move': case 'resize': case 'batch': { const arr = (Array.isArray(after) ? after : [after]) .filter((a): a is CanvasElement => a != null) for (const a of arr) { const target = elements.value.find(el => el.id === a.id) if (target) Object.assign(target, deepClone(a)) } break } case 'clear': { // 清空重做:再次清空 elements.value = [] break } default: console.warn(`[redo] 未知类型: ${operation.type}`) break } // 移回撤销栈 historyState.value.undoStack.push(operation) // 收尾 clearSelection() saveToLocalStorage() return true } catch (e) { // 4.2 ② 异常捕获 & 回滚 console.error('[redo] 失败:', e) historyState.value.redoStack.push(operation) // 还回去 return false } finally { // 4.2 ① 必恢复记录 resumeRecording() } } // const redo = () => { // if (historyState.value.redoStack.length === 0) { // console.warn('重做栈为空,无法重做。'); // return false; // } // const operation = historyState.value.redoStack.pop() as CanvasOperation; // // 1. 暂停记录,防止重做操作本身被记录 // pauseRecording(); // try { // console.log(`执行重做操作: ${operation.description} (类型: ${operation.type})`); // // 使用操作后状态 (operation.data.after) 恢复元素状态 // const elementId = operation.data.elementId; // const beforeState = operation.data.before; // 记录当前状态(操作前的状态),用于撤销 // const afterState = operation.data.after; // switch (operation.type) { // case 'add': // // 新增操作的重做:重新添加元素 (afterState即为新增的元素) // if (Array.isArray(afterState)) { // elements.value.push(...deepClone(afterState)); // } else if (afterState) { // elements.value.push(deepClone(afterState) as CanvasElement); // } // break; // case 'delete': // // 删除操作的重做:重新删除元素 (beforeState即为被删除的元素列表) // if (Array.isArray(beforeState)) { // const idsToDelete = beforeState.map(el => el.id); // elements.value = elements.value.filter(el => !idsToDelete.includes(el.id)); // } else if (beforeState && elementId) { // elements.value = elements.value.filter(el => el.id !== elementId); // } // break; // case 'update': // case 'move': // case 'resize': // case 'batch': // // 更新/移动/缩放的重做:应用元素操作后的状态 (afterState) // if (Array.isArray(afterState)) { // // 批量操作的重做 // afterState.forEach(a => { // const target = elements.value.find(el => el.id === a.id); // if (target) { // Object.assign(target, a); // } // }); // } else if (afterState && elementId) { // // 单个操作的重做 // const target = elements.value.find(el => el.id === elementId); // if (target) { // Object.assign(target, afterState); // } // } // break; // case 'clear': // // 清空操作的重做:清空所有元素 // elements.value = []; // break; // default: // console.warn(`未知操作类型 "${operation.type}",无法重做。`); // break; // } // // 2. 将操作移回撤销栈 // historyState.value.undoStack.push(operation); // // 重新保存本地状态 // clearSelection(); // saveToLocalStorage(); // return true; // } catch (e) { // console.error('执行重做逻辑时发生错误:', e); // // 失败后将操作推回 redo 栈(但不恢复记录) // historyState.value.redoStack.push(operation); // return false; // } finally { // // 3. 恢复记录 // resumeRecording(); // } // }; // 1.3 clearHistory:清空所有操作记录 const clearHistory = (): void => { historyState.value.undoStack = []; historyState.value.redoStack = []; console.log('历史记录已清空。'); }; // 1.2 recordOperation:将操作记录存入撤销栈,限制栈最大长度,新增操作时清空重做栈 const recordOperation = (operation: CanvasOperation): void => { if (!historyState.value.isRecording) { console.warn(`记录已暂停,操作 "${operation.description}" 未被记录。`); return; } // 1. 新增操作时清空重做栈 if (historyState.value.redoStack.length > 0) { historyState.value.redoStack = []; console.log(`清空重做栈,当前新操作: ${operation.description}`); } // 2. 将新操作存入撤销栈 historyState.value.undoStack.push(operation); // 3. 限制栈最大长度 const max = historyState.value.maxHistory; if (historyState.value.undoStack.length > max) { // 移除最旧的(栈底的)操作 historyState.value.undoStack.shift(); console.log(`撤销栈超出最大限制 (${max}),移除最旧记录。`); } console.log(`记录操作成功: ${operation.description} (Undo 栈: ${historyState.value.undoStack.length})`); }; // 1.2 pauseRecording:暂停操作记录 const pauseRecording = (): void => { historyState.value.isRecording = false; console.log('操作记录已暂停。'); }; // 1.2 resumeRecording:恢复操作记录 const resumeRecording = (): void => { historyState.value.isRecording = true; console.log('操作记录已恢复。'); }; // 1.2 getHistoryInfo:返回当前可撤销 / 可重做状态(布尔值) const getHistoryInfo = (): { canUndo: boolean; canRedo: boolean } => { return { canUndo: historyState.value.undoStack.length > 0, canRedo: historyState.value.redoStack.length > 0, }; }; // 1.2 createOperation:创建标准化操作记录,自动生成唯一 ID、填充时间戳 const createOperation = ( type: CanvasOperation['type'], description: string, data: OperationData ): CanvasOperation => { return { id: generateId(), // 假设 generateId 已经存在并可用 type, timestamp: Date.now(), description, data: deepClone(data) as OperationData, // 使用深拷贝保证数据的独立性 }; }; //深拷贝 const deepClone = <T>(obj: T): T => { if (obj === null || typeof obj !== 'object') { return obj; } if (Array.isArray(obj)) { return obj.map(item => deepClone(item)) as T; } const cloned = {} as T; for (const key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { cloned[key] = deepClone(obj[key]); } } return cloned; }; // 1.1 新增:历史记录状态对象 const historyState = ref<HistoryState>({ undoStack: [], redoStack: [], maxHistory: 50, // 默认最大记录条数 isRecording: true // 默认开启记录 }); // 在 useCanvasStore 函数中添加缩放状态 const scaleState = ref<ScaleState>({ isScaling: false, scaleHandle: '', elementId: '', startX: 0, startY: 0, elementStartX: 0, elementStartY: 0, elementStartWidth: 0, elementStartHeight: 0, scaleMultiple: false, selectedIds: [], elementStartPositions: {} }); // 这里写仓库的具体内容 const elements = ref<CanvasElement[]>([]); const dragState = ref<DragState>({ isDragging: false, dragElementId: '', startX: 0, startY: 0, elementStartX: 0, elementStartY: 0, selectedIds: [] as string[], elementStartPositions: {} as { [key: string]: { x: number, y: number } } }); // 新增:视口状态(画布视图) const viewport = ref({ x: 0, // 画布偏移X y: 0, // 画布偏移Y scale: 1, // 缩放比例 isPanning: false, // 是否正在平移 panStart: { x: 0, y: 0 } // 平移起始点 }); // 在现有的状态后添加框选状态 const selectionBox = ref({ isSelecting: false, startX: 0, startY: 0, currentX: 0, currentY: 0 }); // 元素添加配置:可配置的偏移量和默认位置 const elementAddConfig = ref({ defaultOffset: 10, // 默认偏移量(可配置) defaultPosition: { x: 100, y: 100 }, // 默认基准位置 maxSameTypeCount: 1000 // 防止计数溢出 }); // 元素添加历史记录:按类型分别记录最后位置和计数 const elementAddHistory = ref<{ [key: string]: { lastAddedPosition: { x: number, y: number }, sameTypeCount: number, lastAddedTime: number // 记录最后添加时间,用于错误处理 } }>({}); // 添加框选方法 const startSelection = (startX: number, startY: number): void => { // 关键修复:将传入的屏幕坐标转换为世界坐标,确保与元素坐标系统一致 const worldStartX = (startX - viewport.value.x) / viewport.value.scale; const worldStartY = (startY - viewport.value.y) / viewport.value.scale; selectionBox.value = { isSelecting: true, startX: worldStartX, startY: worldStartY, currentX: worldStartX, currentY: worldStartY }; }; const updateSelection = (currentX: number, currentY: number): void => { if (!selectionBox.value.isSelecting) return; // 关键修复:将传入的屏幕坐标转换为世界坐标 const worldCurrentX = (currentX - viewport.value.x) / viewport.value.scale; const worldCurrentY = (currentY - viewport.value.y) / viewport.value.scale; selectionBox.value.currentX = worldCurrentX; selectionBox.value.currentY = worldCurrentY; }; const endSelection = (): void => { if (!selectionBox.value.isSelecting) return; // 计算选择框的范围 const startX = Math.min(selectionBox.value.startX, selectionBox.value.currentX); const startY = Math.min(selectionBox.value.startY, selectionBox.value.currentY); const endX = Math.max(selectionBox.value.startX, selectionBox.value.currentX); const endY = Math.max(selectionBox.value.startY, selectionBox.value.currentY); const width = endX - startX; const height = endY - startY; // 如果选择框太小,认为是点击而不是框选 if (width < 5 && height < 5) { selectionBox.value.isSelecting = false; return; } // 查找在选择框内的元素 const selectedIds: string[] = []; elements.value.forEach(element => { // 计算元素的边界(考虑视口变换) const elementLeft = element.x; const elementTop = element.y; const elementRight = element.x + element.width; const elementBottom = element.y + element.height; // 检查元素是否与选择框相交 const isIntersecting = !( elementRight < startX || elementLeft > endX || elementBottom < startY || elementTop > endY ); if (isIntersecting) { selectedIds.push(element.id); } }); // 更新选中状态 if (selectedIds.length > 0) { // 先取消所有选择 elements.value.forEach(element => { element.selected = false; }); // 选中在选择框内的元素 selectedIds.forEach(id => { const element = elements.value.find(el => el.id === id); if (element) { element.selected = true; } }); saveToLocalStorage(); } selectionBox.value.isSelecting = false; }; // 元素类型识别和验证函数 const validateElementType = (element: CanvasElement): boolean => { // 验证元素类型是否有效 const validTypes = ['rectangle', 'circle', 'triangle', 'text', 'image']; if (!validTypes.includes(element.type)) { console.warn(`无效的元素类型: ${element.type}`); return false; } // 验证元素位置是否有效 if (typeof element.x !== 'number' || typeof element.y !== 'number' || isNaN(element.x) || isNaN(element.y)) { console.warn(`无效的元素位置: x=${element.x}, y=${element.y}`); return false; } return true; }; // 获取同类型元素最后位置信息 const getLastPositionOfSameType = (elementType: string): { x: number, y: number } | null => { const history = elementAddHistory.value[elementType]; if (history && history.lastAddedPosition) { // 检查位置数据是否有效(防止错误数据) if (typeof history.lastAddedPosition.x === 'number' && typeof history.lastAddedPosition.y === 'number' && !isNaN(history.lastAddedPosition.x) && !isNaN(history.lastAddedPosition.y)) { return history.lastAddedPosition; } } return null; }; // 计算新元素位置(基于绝对定位) const calculateNewPosition = (elementType: string): { x: number, y: number } => { const lastPosition = getLastPositionOfSameType(elementType); if (lastPosition) { // 存在上一个同类型元素:向右下偏移 const offset = elementAddConfig.value.defaultOffset; return { x: lastPosition.x + offset, y: lastPosition.y + offset }; } else { // 首个该类型元素:使用默认基准位置 return { x: elementAddConfig.value.defaultPosition.x, y: elementAddConfig.value.defaultPosition.y }; } }; // 更新元素添加历史记录 const updateElementHistory = (elementType: string, position: { x: number, y: number }): void => { if (!elementAddHistory.value[elementType]) { // 创建新的历史记录 elementAddHistory.value[elementType] = { lastAddedPosition: position, sameTypeCount: 1, lastAddedTime: Date.now() }; } else { // 更新现有历史记录 elementAddHistory.value[elementType].lastAddedPosition = position; elementAddHistory.value[elementType].sameTypeCount++; elementAddHistory.value[elementType].lastAddedTime = Date.now(); // 防止计数溢出 if (elementAddHistory.value[elementType].sameTypeCount > elementAddConfig.value.maxSameTypeCount) { elementAddHistory.value[elementType].sameTypeCount = 1; } } }; // 添加元素的方法(完善的类型识别和偏移机制) const addElement = (element: CanvasElement): void => { // 预先生成ID,保证操作记录和实际元素 ID 一致 const newElementId = generateId(); element.id = newElementId; // 赋予ID // ⚡ 关键步骤:在添加到数组之前,先更新选中状态 ⚡ // 确保取消选中所有其他元素 elements.value.forEach(el => el.selected = false); // 设置新元素为选中状态 element.selected = true; try { // 1. 验证元素类型和位置 (保持不变) if (!validateElementType(element)) { console.error('元素验证失败,无法添加'); return; } // 2. 计算新元素位置 (保持不变) const newPosition = calculateNewPosition(element.type); element.x = newPosition.x; element.y = newPosition.y; // 3. 记录操作:在元素添加到数组之前 if (historyState.value.isRecording) { const operation = createOperation( 'add', `添加了 ${element.type} 元素`, { elementId: newElementId, before: undefined, // 添加操作没有操作前状态 after: deepClone(element), // 记录新增元素的完整状态 (包括已选中的状态) } ); recordOperation(operation); } // 4. 更新元素添加历史记录 (保持不变) updateElementHistory(element.type, newPosition); // 5. 添加元素到数组 (保持不变) elements.value.push(element); // 6. 保存到本地存储 (保持不变) saveToLocalStorage(); console.log(`添加${element.type}元素成功,位置: (${element.x}, ${element.y})`); resetPasteState(); // 添加新元素后重置粘贴计数 } catch (error) { console.error('添加元素时发生错误:', error); // ... 错误处理逻辑保持不变 saveToLocalStorage(); } }; // const addElement = (element: CanvasElement) => { // try { // // 1. 验证元素类型和位置 // if (!validateElementType(element)) { // console.error('元素验证失败,无法添加'); // return; // } // // 2. 计算新元素位置(基于绝对定位) // const newPosition = calculateNewPosition(element.type, element.x, element.y); // // 3. 更新元素位置 // element.x = newPosition.x; // element.y = newPosition.y; // // 4. 更新元素添加历史记录 // updateElementHistory(element.type, newPosition); // // 5. 添加元素到数组 // elements.value.push(element); // // 6. 保存到本地存储 // saveToLocalStorage(); // console.log(`添加${element.type}元素成功,位置: (${element.x}, ${element.y})`); // } catch (error) { // console.error('添加元素时发生错误:', error); // // 错误处理:回退到默认位置 // element.x = elementAddConfig.value.defaultPosition.x; // element.y = elementAddConfig.value.defaultPosition.y; // elements.value.push(element); // saveToLocalStorage(); // } // }; // 更新元素添加配置的方法 const updateElementAddConfig = (newConfig: Partial<typeof elementAddConfig.value>): void => { try { Object.assign(elementAddConfig.value, newConfig); console.log('元素添加配置已更新:', elementAddConfig.value); } catch (error) { console.error('更新元素添加配置时发生错误:', error); } }; // 重置元素添加历史记录 const resetElementAddHistory = (elementType?: string): void => { try { if (elementType) { // 重置特定类型的元素历史 delete elementAddHistory.value[elementType]; console.log(`已重置${elementType}类型的元素添加历史`); } else { // 重置所有类型的元素历史 elementAddHistory.value = {}; console.log('已重置所有类型的元素添加历史'); } } catch (error) { console.error('重置元素添加历史时发生错误:', error); } }; // 获取元素添加统计信息 const getElementAddStats = (): { [key: string]: { count: number, lastAdded: number } } => { const stats: { [key: string]: { count: number, lastAdded: number } } = {}; Object.keys(elementAddHistory.value).forEach(type => { const history = elementAddHistory.value[type]; if (history) { stats[type] = { count: history.sameTypeCount, lastAdded: history.lastAddedTime }; } }); return stats; }; // 新增:选择单个元素 const selectElement = (id: string): void => { // 先取消所有元素的选中状态 elements.value.forEach(element => { element.selected = false; }); // 选中指定元素 const element = elements.value.find(el => el.id === id); if (element) { element.selected = true; } saveToLocalStorage(); }; // 新增:取消所有选择 const clearSelection = (): void => { elements.value.forEach(element => { element.selected = false; }); saveToLocalStorage(); }; // 新增:切换元素选择状态(用于多选) const toggleElementSelection = (id: string): void => { const element = elements.value.find(el => el.id === id); if (element) { element.selected = !element.selected; } saveToLocalStorage(); }; // 新增:获取选中的元素 const selectedElements = (): CanvasElement[] => { return elements.value.filter(element => element.selected); }; // 新增:开始拖拽 const startDrag = (elementId: string, startX: number, startY: number): void => { // const element = elements.value.find(el => el.id === elementId); const selectedIds = selectedElements().map(el => el.id); // if (element) { // dragState.value = { // isDragging: true, // dragElementId: elementId, // startX, // startY, // elementStartX: element.x, // elementStartY: element.y // }; // } // 如果没有任何元素被选中,就选中当前点击的元素 if (selectedIds.length === 0) { selectElement(elementId); selectedIds.push(elementId); } // 记录所有选中元素的初始位置 const elementStartPositions: { [key: string]: { x: number, y: number } } = {}; selectedIds.forEach(id => { const el = elements.value.find(e => e.id === id); if (el) { elementStartPositions[id] = { x: el.x, y: el.y }; } }); // 关键修复:将传入的世界坐标转换为屏幕坐标,确保与updateDrag中的坐标系统一致 const screenStartX = startX * viewport.value.scale + viewport.value.x; const screenStartY = startY * viewport.value.scale + viewport.value.y; dragState.value = { isDragging: true, dragElementId: elementId, // 仍然记录最初拖动的元素 startX: screenStartX, startY: screenStartY, elementStartX: 0, // 不再使用单个元素的位置 elementStartY: 0, selectedIds, // 新增:记录所有选中的元素ID elementStartPositions // 新增:记录所有选中元素的初始位置 }; }; // 开始缩放 const startScale = (elementId: string, handle: string, startX: number, startY: number): void => { const element = elements.value.find(el => el.id === elementId); if (!element) return; const selectedElementsList = selectedElements(); const selectedIds = selectedElementsList.map(el => el.id); // 记录所有选中元素的初始位置和尺寸 const elementStartPositions: { [key: string]: { x: number, y: number, width: number, height: number } } = {}; // 如果有多选且当前元素被选中,则缩放所有选中的元素 if (selectedIds.length > 1 && selectedIds.includes(elementId)) { selectedIds.forEach(id => { const el = elements.value.find(e => e.id === id); if (el) { elementStartPositions[id] = { x: el.x, y: el.y, width: el.width, height: el.height }; } }); } else { // 只缩放当前元素 selectedIds.forEach(id => { if (id === elementId) { elementStartPositions[id] = { x: element.x, y: element.y, width: element.width, height: element.height }; } }); } scaleState.value = { isScaling: true, scaleHandle: handle, elementId, startX, startY, elementStartX: element.x, elementStartY: element.y, elementStartWidth: element.width, elementStartHeight: element.height, scaleMultiple: selectedIds.length > 1, selectedIds: selectedIds.includes(elementId) ? selectedIds : [elementId], elementStartPositions }; }; // 更新缩放 const updateScale = (currentX: number, currentY: number): void => { if (!scaleState.value.isScaling) return; // 关键修复:将屏幕坐标差值转换为世界坐标差值,考虑缩放比例 const deltaX = (currentX - scaleState.value.startX) / viewport.value.scale; const deltaY = (currentY - scaleState.value.startY) / viewport.value.scale; const handle = scaleState.value.scaleHandle; // 计算缩放比例(基于初始尺寸) const minWidth = 10; // 最小宽度 const minHeight = 10; // 最小高度 // 处理每个选中的元素 scaleState.value.selectedIds.forEach(id => { const element = elements.value.find(el => el.id === id); const startPos = scaleState.value.elementStartPositions[id]; if (!element || !startPos) return; let newX = startPos.x; let newY = startPos.y; let newWidth = startPos.width; let newHeight = startPos.height; // 根据控制柄位置计算新的位置和尺寸 switch (handle) { case 'nw': // 左上 newX = startPos.x + deltaX; newY = startPos.y + deltaY; newWidth = Math.max(minWidth, startPos.width - deltaX); newHeight = Math.max(minHeight, startPos.height - deltaY); break; case 'ne': // 右上 newY = startPos.y + deltaY; newWidth = Math.max(minWidth, startPos.width + deltaX); newHeight = Math.max(minHeight, startPos.height - deltaY); break; case 'sw': // 左下 newX = startPos.x + deltaX; newWidth = Math.max(minWidth, startPos.width - deltaX); newHeight = Math.max(minHeight, startPos.height + deltaY); break; case 'se': // 右下 newWidth = Math.max(minWidth, startPos.width + deltaX); newHeight = Math.max(minHeight, startPos.height + deltaY); break; case 'n': // 上 newY = startPos.y + deltaY; newHeight = Math.max(minHeight, startPos.height - deltaY); break; case 's': // 下 newHeight = Math.max(minHeight, startPos.height + deltaY); break; case 'e': // 右 newWidth = Math.max(minWidth, startPos.width + deltaX); break; case 'w': // 左 newX = startPos.x + deltaX; newWidth = Math.max(minWidth, startPos.width - deltaX); break; } // 应用新的位置和尺寸 element.x = newX; element.y = newY; element.width = newWidth; element.height = newHeight; }); }; // 结束缩放 const endScale = (): void => { if (!scaleState.value.isScaling) return; if (historyState.value.isRecording) { // 1. 提取缩放前的元素状态 (在 startScale 中记录) const selectedIds = scaleState.value.selectedIds; const beforeState = selectedIds.map(id => { const startPos = scaleState.value.elementStartPositions[id]; if (startPos) { return { id: id, x: startPos.x, y: startPos.y, width: startPos.width, height: startPos.height, }; } return undefined; }).filter((x): x is { id: string, x: number, y: number, width: number, height: number } => x !== undefined); // 2. 提取缩放后的元素状态 const afterState = selectedIds.map(id => { const el = elements.value.find(e => e.id === id); return el ? { id: id, x: el.x, y: el.y, width: el.width, height: el.height } : undefined; }).filter((x): x is { id: string, x: number, y: number, width: number, height: number } => x !== undefined); // 3. 记录操作 const operation = createOperation( 'resize', `缩放了 ${selectedIds.length} 个元素`, { before: beforeState, after: afterState } ); recordOperation(operation); } scaleState.value.isScaling = false; saveToLocalStorage(); resetPasteState(); // 缩放结束时重置粘贴计数 }; // const endScale = () => { // if (scaleState.value.isScaling) { // scaleState.value.isScaling = false; // saveToLocalStorage(); // } // }; // 按比例缩放选中元素 const scaleSelectedElements = (scaleFactor: number): void => { const selected = selectedElements(); if (selected.length === 0) return; const minSize = 10; // 最小尺寸限制 selected.forEach(element => { const newWidth = Math.max(minSize, element.width * scaleFactor); const newHeight = Math.max(minSize, element.height * scaleFactor); updateElement(element.id, { width: newWidth, height: newHeight }); }); }; // 新增:更新拖拽位置 const updateDrag = (currentX: number, currentY: number): void => { if (!dragState.value.isDragging) return; // 关键优化:将屏幕坐标差值转换为世界坐标差值,考虑缩放比例 const deltaX = (currentX - dragState.value.startX) / viewport.value.scale; const deltaY = (currentY - dragState.value.startY) / viewport.value.scale; // 移动所有选中的元素 dragState.value.selectedIds.forEach(id => { const element = elements.value.find(el => el.id === id); const startPos = dragState.value.elementStartPositions[id]; if (element && startPos) { element.x = startPos.x + deltaX; element.y = startPos.y + deltaY; } }); }; // 结束拖拽 const endDrag = (): void => { if (!dragState.value.isDragging) return; if (historyState.value.isRecording) { // 1. 提取拖拽前的元素状态 (在 startDrag 中记录) const selectedIds = dragState.value.selectedIds; const beforeState = selectedIds.map(id => { const startPos = dragState.value.elementStartPositions[id]; if (startPos) { return { id: id, x: startPos.x, y: startPos.y, }; } return undefined; }).filter((x): x is { id: string, x: number, y: number } => x !== undefined); // 2. 提取拖拽后的元素状态 const afterState = selectedIds.map(id => { const el = elements.value.find(e => e.id === id); return el ? { id: id, x: el.x, y: el.y } : undefined; }).filter((x): x is { id: string, x: number, y: number } => x !== undefined); // 3. 记录操作 const operation = createOperation( 'move', `移动了 ${selectedIds.length} 个元素`, { before: beforeState, after: afterState } ); recordOperation(operation); } dragState.value.isDragging = false; saveToLocalStorage(); // 拖拽结束时保存 resetPasteState(); // 拖拽结束时重置粘贴计数 }; // const endDrag = () => { // if (dragState.value.isDragging) { // dragState.value.isDragging = false; // saveToLocalStorage(); // 拖拽结束时保存 // } // }; // 新增:画布平移方法 const startPan = (startX: number, startY: number): void => { viewport.value.isPanning = true; viewport.value.panStart = { x: startX, y: startY }; }; const updatePan = (currentX: number, currentY: number): void => { if (!viewport.value.isPanning) return; const deltaX = currentX - viewport.value.panStart.x; const deltaY = currentY - viewport.value.panStart.y; viewport.value.x += deltaX; viewport.value.y += deltaY; viewport.value.panStart = { x: currentX, y: currentY }; }; const endPan = (): void => { viewport.value.isPanning = false; }; // 新增:画布缩放方法 const zoom = (delta: number, centerX?: number, centerY?: number): void => { const zoomFactor = delta > 0 ? 1.1 : 0.9; // 滚轮向上放大,向下缩小 const oldScale = viewport.value.scale; const newScale = Math.max(0.1, Math.min(5, viewport.value.scale * zoomFactor)); // 限制缩放范围 // 如果有中心点,基于中心点缩放 if (centerX !== undefined && centerY !== undefined) { const worldX = (centerX - viewport.value.x) / oldScale; const worldY = (centerY - viewport.value.y) / oldScale; viewport.value.x = centerX - worldX * newScale; viewport.value.y = centerY - worldY * newScale; } viewport.value.scale = newScale; }; // 新增:重置视图 const resetViewport = (): void => { viewport.value = { x: 0, y: 0, scale: 1, isPanning: false, panStart: { x: 0, y: 0 } }; }; // 持久化 const saveToLocalStorage = (): void => { const state = { elements: elements.value, viewport: { x: viewport.value.x, y: viewport.value.y, scale: viewport.value.scale } }; localStorage.setItem('canvas-state', JSON.stringify(state)); }; const loadFromLocalStorage = (): void => { const saved = localStorage.getItem('canvas-state'); if (saved) { const state = JSON.parse(saved); elements.value = state.elements || []; if (state.viewport) { viewport.value.x = state.viewport.x || 0; viewport.value.y = state.viewport.y || 0; viewport.value.scale = state.viewport.scale || 1; } } }; // 更新元素 (Update Element) const updateElement = (id: string, updates: Partial<CanvasElement>): void => { const element = elements.value.find(el => el.id === id); if (!element) return; if (historyState.value.isRecording) { // 1. 记录元素更新前的完整状态 const beforeState = deepClone(element); // 2. 执行更新 Object.assign(element, updates); // 3. 记录元素更新后的完整状态 const afterState = deepClone(element); // 4. 将操作记录存入撤销栈 const operation = createOperation( 'update', `更新了元素 ${id} 的属性`, { elementId: id, before: beforeState, after: afterState } ); recordOperation(operation); } else { // 如果记录暂停,则直接更新 Object.assign(element, updates); } saveToLocalStorage(); // 如果修改了位置或尺寸,则重置粘贴计数 if (updates.x !== undefined || updates.y !== undefined || updates.width !== undefined || updates.height !== undefined) { resetPasteState(); } }; // const updateElement = (id: string, updates: Partial<CanvasElement>) => { // const element = elements.value.find(el => el.id === id); // if (element) { // Object.assign(element, updates); // saveToLocalStorage(); // } // }; // 新增:剪贴板状态 const clipboard = ref<CanvasElement[]>([]); // 新增:粘贴状态(用于连续粘贴的偏移量控制) const pasteState = ref({ pasteCount: 0, // 粘贴次数 lastPastePosition: { x: 0, y: 0 }, // 最后一次粘贴的位置 originalBoundingBox: { minX: 0, minY: 0, maxX: 0, maxY: 0, centerX: 0, centerY: 0 } // 原始包围盒 }); // 新增:复制选中的元素到剪贴板 const copySelectedElements = (): boolean => { const selected = selectedElements(); if (selected.length === 0) { console.warn('没有选中的元素可以复制'); return false; } // 检查是否复制了相同的元素(防止重复复制相同内容) const selectedIds = selected.map(el => el.id).sort().join(','); const lastCopiedIds = clipboard.value.map(el => el.id).sort().join(','); if (selectedIds === lastCopiedIds) { console.log('复制了相同的元素,剪贴板内容保持不变'); return true; // 仍然返回成功,但内容不变 } try { // 深拷贝选中的元素,并清除选中状态 clipboard.value = selected.map(element => ({ ...JSON.parse(JSON.stringify(element)), selected: false, id: generateId() // 为复制的元素生成新的ID })); // 记录原始包围盒信息,用于连续粘贴 pasteState.value.originalBoundingBox = calculateBoundingBox(selected); pasteState.value.pasteCount = 0; // 重置粘贴计数 // 保存剪贴板状态到本地存储 saveClipboardToLocalStorage(); console.log(`复制了 ${selected.length} 个元素到剪贴板`); console.log(`原始包围盒: (${pasteState.value.originalBoundingBox.minX}, ${pasteState.value.originalBoundingBox.minY}) - (${pasteState.value.originalBoundingBox.maxX}, ${pasteState.value.originalBoundingBox.maxY})`); return true; } catch (error) { console.error('复制元素时发生错误:', error); return false; } }; // 新增:计算元素组的包围盒(最小矩形边界) const calculateBoundingBox = (elements: CanvasElement[]): { minX: number, minY: number, maxX: number, maxY: number, width: number, height: number, centerX: number, centerY: number } => { if (elements.length === 0) { return { minX: 0, minY: 0, maxX: 0, maxY: 0, width: 0, height: 0, centerX: 0, centerY: 0 }; } let minX = Infinity; let minY = Infinity; let maxX = -Infinity; let maxY = -Infinity; elements.forEach(element => { minX = Math.min(minX, element.x); minY = Math.min(minY, element.y); maxX = Math.max(maxX, element.x + element.width); maxY = Math.max(maxY, element.y + element.height); }); const width = maxX - minX; const height = maxY - minY; const centerX = minX + width / 2; const centerY = minY + height / 2; return { minX, minY, maxX, maxY, width, height, centerX, centerY }; }; // 新增:计算视口中心的世界坐标 const getViewportCenter = (): { x: number, y: number } => { // 假设画布大小为 800x600,可以根据实际情况调整 const canvasWidth = 800; const canvasHeight = 600; // 计算视口中心的世界坐标 const viewportCenterX = (-viewport.value.x + canvasWidth / 2) / viewport.value.scale; const viewportCenterY = (-viewport.value.y + canvasHeight / 2) / viewport.value.scale; return { x: viewportCenterX, y: viewportCenterY }; }; // 新增:检查元素是否在画布边界内 const isElementInCanvasBounds = (element: CanvasElement): boolean => { // 定义画布边界(可以根据实际需求调整) const canvasBounds = { minX: -1000, minY: -1000, maxX: 2000, maxY: 2000 }; return element.x >= canvasBounds.minX && element.y >= canvasBounds.minY && element.x + element.width <= canvasBounds.maxX && element.y + element.height <= canvasBounds.maxY; }; // 新增:粘贴剪贴板中的元素到画布,保持相对位置关系 // 粘贴剪贴板中的元素到画布,保持相对位置关系 const pasteElements = (offsetX: number = 10, offsetY: number = 10): boolean => { if (clipboard.value.length === 0) { console.warn('剪贴板为空,无法粘贴'); return false; } // 检查剪贴板数据是否有效 if (!Array.isArray(clipboard.value) || clipboard.value.some(el => !el || !el.type)) { console.error('剪贴板数据无效,无法粘贴'); clipboard.value = []; saveClipboardToLocalStorage(); return false; } try { // 计算剪贴板中元素的包围盒 const clipboardBoundingBox = calculateBoundingBox(clipboard.value); // 计算粘贴位置(基于当前选中元素或视口中心) const selectedElementsList = selectedElements(); let targetX = 0; let targetY = 0; let pasteStrategy = ''; if (selectedElementsList.length > 0) { // 策略1:如果有选中的元素,基于选中元素的包围盒中心粘贴 const selectedBoundingBox = calculateBoundingBox(selectedElementsList); targetX = selectedBoundingBox.centerX; targetY = selectedBoundingBox.centerY; pasteStrategy = '基于选中元素中心'; } else { // 策略2:如果没有选中的元素,基于视口中心粘贴 const viewportCenter = getViewportCenter(); targetX = viewportCenter.x; targetY = viewportCenter.y; pasteStrategy = '基于视口中心'; } // 固定偏移量机制:每次粘贴都向右下偏移10px const fixedOffsetX = offsetX; const fixedOffsetY = offsetY; // 应用固定偏移量 targetX += fixedOffsetX; targetY += fixedOffsetY; const newElements: CanvasElement[] = []; let outOfBoundsCount = 0; // 粘贴所有剪贴板中的元素,保持相对位置关系 clipboard.value.forEach(element => { // 计算元素相对于包围盒中心的偏移量 const elementRelativeX = element.x - clipboardBoundingBox.centerX; const elementRelativeY = element.y - clipboardBoundingBox.centerY; // 应用相同的偏移量到目标位置 const newX = targetX + elementRelativeX; const newY = targetY + elementRelativeY; // 注意:这里需要确保 newElement 是一个深拷贝,避免对 clipboard.value 的引用污染 const newElement: CanvasElement = { ...deepClone(element), // 确保是深拷贝 x: newX, y: newY, id: generateId() // 为每个粘贴的元素生成新的ID }; // 验证元素数据完整性 if (!newElement.type || !newElement.id) { console.warn('跳过无效的剪贴板元素'); return; } // 检查元素是否在画布边界内 if (!isElementInCanvasBounds(newElement)) { console.warn(`元素 ${newElement.id} 超出画布边界,已调整位置`); outOfBoundsCount++; // 可以在这里添加边界调整逻辑 } newElements.push(newElement); }); if (newElements.length === 0) { console.warn('没有有效的元素可以粘贴'); return false; } // 1. **执行操作:批量添加新元素** elements.value.push(...newElements); // 2. 清除所有选中状态,然后选中刚刚粘贴的元素 clearSelection(); newElements.forEach(element => { element.selected = true; }); // 3. **记录操作** if (historyState.value.isRecording) { const operation = createOperation( 'add', // 使用 'add' 类型,因为其撤销逻辑是删除元素 `粘贴了 ${newElements.length} 个元素`, { before: undefined, after: newElements.map(el => deepClone(el)), // 记录粘贴后所有元素的完整状态 } ); recordOperation(operation); } // 4. 更新粘贴状态 pasteState.value.pasteCount = pasteState.value.pasteCount + 1; pasteState.value.lastPastePosition = { x: targetX, y: targetY }; saveToLocalStorage(); // 详细的日志输出,便于调试 const newBoundingBox = calculateBoundingBox(newElements); console.log(`粘贴了 ${newElements.length} 个元素,保持相对位置关系`); console.log(`粘贴策略: ${pasteStrategy}`); console.log(`粘贴次数: ${pasteState.value.pasteCount}`); console.log(`固定偏移量: (${fixedOffsetX}, ${fixedOffsetY})`); console.log(`原始包围盒: (${clipboardBoundingBox.minX}, ${clipboardBoundingBox.minY}) - (${clipboardBoundingBox.maxX}, ${clipboardBoundingBox.maxY})`); console.log(`目标位置: (${targetX}, ${targetY})`); console.log(`新包围盒: (${newBoundingBox.minX}, ${newBoundingBox.minY}) - (${newBoundingBox.maxX}, ${newBoundingBox.maxY})`); if (outOfBoundsCount > 0) { console.warn(`${outOfBoundsCount} 个元素超出画布边界`); } return true; } catch (error) { console.error('粘贴元素时发生错误:', error); return false; } }; // const pasteElements = (offsetX: number = 10, offsetY: number = 10) => { // if (clipboard.value.length === 0) { // console.warn('剪贴板为空,无法粘贴'); // return false; // } // // 检查剪贴板数据是否有效 // if (!Array.isArray(clipboard.value) || clipboard.value.some(el => !el || !el.type)) { // console.error('剪贴板数据无效,无法粘贴'); // clipboard.value = []; // saveClipboardToLocalStorage(); // return false; // } // try { // // 计算剪贴板中元素的包围盒 // const clipboardBoundingBox = calculateBoundingBox(clipboard.value); // // 计算粘贴位置(基于当前选中元素或视口中心) // const selectedElementsList = selectedElements(); // let targetX = 0; // let targetY = 0; // let pasteStrategy = ''; // if (selectedElementsList.length > 0) { // // 策略1:如果有选中的元素,基于选中元素的包围盒中心粘贴 // const selectedBoundingBox = calculateBoundingBox(selectedElementsList); // targetX = selectedBoundingBox.centerX; // targetY = selectedBoundingBox.centerY; // pasteStrategy = '基于选中元素中心'; // } else { // // 策略2:如果没有选中的元素,基于视口中心粘贴 // const viewportCenter = getViewportCenter(); // targetX = viewportCenter.x; // targetY = viewportCenter.y; // pasteStrategy = '基于视口中心'; // } // // 连续粘贴的偏移量累加机制 // const pasteCount = pasteState.value.pasteCount; // const cumulativeOffsetX = offsetX * (pasteCount + 1); // const cumulativeOffsetY = offsetY * (pasteCount + 1); // // 应用累加的偏移量 // targetX += cumulativeOffsetX; // targetY += cumulativeOffsetY; // const newElements: CanvasElement[] = []; // let outOfBoundsCount = 0; // // 粘贴所有剪贴板中的元素,保持相对位置关系 // clipboard.value.forEach(element => { // // 计算元素相对于包围盒中心的偏移量 // const elementRelativeX = element.x - clipboardBoundingBox.centerX; // const elementRelativeY = element.y - clipboardBoundingBox.centerY; // // 应用相同的偏移量到目标位置 // const newX = targetX + elementRelativeX; // const newY = targetY + elementRelativeY; // const newElement = { // ...JSON.parse(JSON.stringify(element)), // x: newX, // y: newY, // id: generateId() // 为每个粘贴的元素生成新的ID // }; // // 验证元素数据完整性 // if (!newElement.type || !newElement.id) { // console.warn('跳过无效的剪贴板元素'); // return; // } // // 检查元素是否在画布边界内 // if (!isElementInCanvasBounds(newElement)) { // console.warn(`元素 ${newElement.id} 超出画布边界,已调整位置`); // outOfBoundsCount++; // // 可以在这里添加边界调整逻辑 // } // newElements.push(newElement); // }); // if (newElements.length === 0) { // console.warn('没有有效的元素可以粘贴'); // return false; // } // // 批量添加新元素 // elements.value.push(...newElements); // // 清除所有选中状态,然后选中刚刚粘贴的元素 // clearSelection(); // newElements.forEach(element => { // element.selected = true; // }); // // 更新粘贴状态 // pasteState.value.pasteCount = pasteCount + 1; // pasteState.value.lastPastePosition = { x: targetX, y: targetY }; // saveToLocalStorage(); // // 详细的日志输出,便于调试 // const newBoundingBox = calculateBoundingBox(newElements); // console.log(`粘贴了 ${newElements.length} 个元素,保持相对位置关系`); // console.log(`粘贴策略: ${pasteStrategy}`); // console.log(`粘贴次数: ${pasteState.value.pasteCount}`); // console.log(`默认偏移量: (${offsetX}, ${offsetY})`); // console.log(`累加偏移量: (${cumulativeOffsetX}, ${cumulativeOffsetY})`); // console.log(`原始包围盒: (${clipboardBoundingBox.minX}, ${clipboardBoundingBox.minY}) - (${clipboardBoundingBox.maxX}, ${clipboardBoundingBox.maxY})`); // console.log(`目标位置: (${targetX}, ${targetY})`); // console.log(`新包围盒: (${newBoundingBox.minX}, ${newBoundingBox.minY}) - (${newBoundingBox.maxX}, ${newBoundingBox.maxY})`); // if (outOfBoundsCount > 0) { // console.warn(`${outOfBoundsCount} 个元素超出画布边界`); // } // return true; // } catch (error) { // console.error('粘贴元素时发生错误:', error); // return false; // } // }; // 新增:保存剪贴板状态到本地存储 const saveClipboardToLocalStorage = (): void => { localStorage.setItem('canvas-clipboard', JSON.stringify(clipboard.value)); }; // 新增:从本地存储加载剪贴板状态 const loadClipboardFromLocalStorage = (): void => { const saved = localStorage.getItem('canvas-clipboard'); if (saved) { try { clipboard.value = JSON.parse(saved); } catch (error) { console.error('加载剪贴板数据失败:', error); clipboard.value = []; } } }; // 新增:生成唯一ID的辅助函数 const generateId = (): string => 'element_' + Date.now() + '_' + Math.random().toString(36).substr(2, 9); const resetPasteState = (): void => { if (pasteState.value.pasteCount > 0) { pasteState.value.pasteCount = 0; console.log('元素被修改或移动,粘贴计数已重置。'); } }; // 在现有的方法后面添加删除方法 // 删除选中的元素 const deleteSelectedElements = (): void => { const selected = selectedElements(); if (selected.length === 0) { return; } // 1. 记录操作前被删除元素的完整状态 (深拷贝) // 在执行删除操作之前获取快照,是正确的。 let operation: CanvasOperation | null = null; if (historyState.value.isRecording) { operation = createOperation( 'delete', `删除了 ${selected.length} 个元素`, { // 记录被删除元素的快照,用于撤销 before: selected.map(el => deepClone(el)), after: undefined // 删除操作的 'after' 状态是 undefined/null } ); } // 2. 执行删除操作 (无论是否记录历史,都要执行) const selectedIds = selected.map(el => el.id); elements.value = elements.value.filter(element => !selectedIds.includes(element.id)); // 3. 将操作记录存入撤销栈 (如果操作已创建) if (operation) { // 检查 operation 是否在第 1 步被创建 recordOperation(operation); } // ⚠️ 注意:您原来的代码中有一个 else 块,这导致如果 isRecording=false, // elements.value 会被修改,但不会保存到本地。 // 4. 执行其他收尾工作 (始终执行) saveToLocalStorage(); resetPasteState(); }; // const deleteSelectedElements = () => { // // 获取所有选中的元素ID // const selectedIds = selectedElements().map(el => el.id); // // 过滤掉选中的元素 // elements.value = elements.value.filter(element => !selectedIds.includes(element.id)); // saveToLocalStorage(); // }; // 新增:将选中元素提升到最前面 const bringToFront = (): boolean => { const selected = selectedElements(); if (selected.length === 0) { console.warn('没有选中的元素可以提升层级'); return false; } // 获取当前最大的zIndex值 const maxZIndex = Math.max(...elements.value.map(el => el.zIndex || 0)); // 为每个选中的元素设置新的zIndex值(比当前最大值大1) selected.forEach(element => { element.zIndex = maxZIndex + 1; }); saveToLocalStorage(); console.log(`已将 ${selected.length} 个元素提升到最前面,新zIndex: ${maxZIndex + 1}`); return true; }; // 在 canvas.ts 中添加自动扩展机制 const AUTO_EXPAND_AMOUNT = 1000; // 每次扩展1000像素 const checkAndExpandViewport = () => { // 获取当前所有元素的边界 const bounds = getElementsBounds(); const canvasSize = getCanvasSize(); // 计算当前视口在世界坐标中的位置 const worldViewport = getViewportWorldRect(); // 检查是否需要扩展各个方向 if (worldViewport.x + worldViewport.width > bounds.maxX - 500) { // 向右扩展 expandBounds('right', AUTO_EXPAND_AMOUNT); } if (worldViewport.y + worldViewport.height > bounds.maxY - 500) { // 向下扩展 expandBounds('down', AUTO_EXPAND_AMOUNT); } if (worldViewport.x < bounds.minX + 500) { // 向左扩展 expandBounds('left', AUTO_EXPAND_AMOUNT); } if (worldViewport.y < bounds.minY + 500) { // 向上扩展 expandBounds('up', AUTO_EXPAND_AMOUNT); } }; const expandBounds = (direction: 'left' | 'right' | 'up' | 'down', amount: number) => { const bounds = canvasStore.viewport.bounds; switch (direction) { case 'left': bounds.minX -= amount; bounds.width += amount; break; case 'right': bounds.maxX += amount; bounds.width += amount; break; case 'up': bounds.minY -= amount; bounds.height += amount; break; case 'down': bounds.maxY += amount; bounds.height += amount; break; } // 更新所有相关元素 updateScrollbars(); }; // 新增:屏幕坐标转换为世界坐标 const screenToWorld = (screenX: number, screenY: number): { x: number, y: number } => { // 考虑视口偏移和缩放 const worldX = (screenX - viewport.value.x) / viewport.value.scale; const worldY = (screenY - viewport.value.y) / viewport.value.scale; return { x: worldX, y: worldY }; }; return { elements, dragState, scaleState, // 新增:缩放状态 viewport, // 新增 selectionBox, // 新增 clipboard, // 新增:剪贴板状态 elementAddConfig, // 新增:元素添加配置 elementAddHistory, // 新增:元素添加历史记录 historyState, // 💡 新增:历史记录状态对象 undo, redo, resetPasteState, clearHistory, // 💡 新增:操作记录核心方法 createOperation, recordOperation, pauseRecording, resumeRecording, getHistoryInfo, deepClone, // 💡 新增:深拷贝辅助函数 addElement, selectElement, clearSelection, toggleElementSelection, selectedElements, startDrag, updateDrag, endDrag, // 新增的缩放方法 startScale, updateScale, endScale, scaleSelectedElements, // 按比例缩放选中元素 startPan, // 新增 updatePan, // 新增 endPan, // 新增 zoom, // 新增 resetViewport, // 新增 updateElement, // 确保有这个 deleteSelectedElements, // 新增 startSelection, // 新增 updateSelection, // 新增 endSelection, // 新增 copySelectedElements, // 新增:复制方法 pasteElements, // 新增:粘贴方法 bringToFront, // 新增:层级提升方法 updateElementAddConfig, // 新增:更新元素添加配置 resetElementAddHistory, // 新增:重置元素添加历史记录 getElementAddStats, // 新增:获取元素添加统计信息 loadFromLocalStorage, loadClipboardFromLocalStorage, // 新增:加载剪贴板数据 screenToWorld, // 新增:屏幕坐标转世界坐标 canUndo: computed(() => historyState.value.undoStack.length > 0), canRedo: computed(() => historyState.value.redoStack.length > 0), }; });
2301_80689990/canvas-editor
src/stores/canvas.ts
TypeScript
unknown
65,325
:root { font-family: system-ui, Avenir, Helvetica, Arial, sans-serif; line-height: 1.5; font-weight: 400; color-scheme: light dark; color: rgba(255, 255, 255, 0.87); background-color: #242424; font-synthesis: none; text-rendering: optimizeLegibility; -webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; } a { font-weight: 500; color: #646cff; text-decoration: inherit; } a:hover { color: #535bf2; } body { margin: 0; display: flex; place-items: center; min-width: 320px; min-height: 100vh; } h1 { font-size: 3.2em; line-height: 1.1; } button { border-radius: 8px; border: 1px solid transparent; padding: 0.6em 1.2em; font-size: 1em; font-weight: 500; font-family: inherit; background-color: #1a1a1a; cursor: pointer; transition: border-color 0.25s; } button:hover { border-color: #646cff; } button:focus, button:focus-visible { outline: 4px auto -webkit-focus-ring-color; } .card { padding: 2em; } #app { max-width: 1280px; margin: 0 auto; padding: 0; text-align: center; } @media (prefers-color-scheme: light) { :root { color: #213547; background-color: #ffffff; } a:hover { color: #747bff; } button { background-color: #f9f9f9; } }
2301_80689990/canvas-editor
src/style.css
CSS
unknown
1,270
// 定义基础接口 export interface BaseElement { id: string; // 唯一标识 type: string; // 元素类型 x: number; // x坐标 y: number; // y坐标 width: number; // 宽度 height: number; // 高度 selected: boolean; // 选中状态 zIndex: number; // 层级控制属性 } // 定义矩形特有接口(继承基础接口) export interface RectangleElement extends BaseElement { type: 'rectangle'; background: string; borderWidth: number; borderColor: string; } // 圆形元素接口 export interface CircleElement extends BaseElement { type: 'circle'; background: string; borderWidth: number; borderColor: string; } // 三角形元素接口 export interface TriangleElement extends BaseElement { type: 'triangle'; background: string; borderWidth: number; borderColor: string; } // ✨✨ 文本元素接口 (确认 strikethrough 存在) ✨✨ export interface TextElement extends BaseElement { type: 'text'; content: string; fontSize: number; fontFamily: string; color: string; background: string; bold: boolean; italic: boolean; underline: boolean; strikethrough: boolean; // 👈 必须有这个 textAlign: 'left' | 'center' | 'right'; } // 图片元素接口 export interface ImageElement extends BaseElement { type: 'image'; src: string; originalWidth: number; originalHeight: number; initialWidth: number; // 上传到画布时的初始宽度 initialHeight: number; // 上传到画布时的初始高度 filter?: string; opacity: number; borderWidth: number; borderColor: string; } export interface SelectionBoxState { isSelecting: boolean; startX: number; startY: number; currentX: number; currentY: number; } // 更新联合类型 export type CanvasElement = RectangleElement | CircleElement | TriangleElement | TextElement | ImageElement;
2301_80689990/canvas-editor
src/types/canvas.ts
TypeScript
unknown
1,856
import { defineConfig } from 'vite' import vue from '@vitejs/plugin-vue' import { resolve } from 'path' // https://vite.dev/config/ export default defineConfig({ plugins: [vue()], resolve: { alias: { '@': resolve(__dirname, 'src') } } })
2301_80689990/canvas-editor
vite.config.ts
TypeScript
unknown
259
#!/bin/bash # 定义下载地址和文件名 DOWNLOAD_URL="https://cangjie-lang.cn/v1/files/auth/downLoad?nsId=142267&fileName=Cangjie-0.53.13-linux_x64.tar.gz&objectKey=6719f1eb3af6947e3c6af327" FILE_NAME="Cangjie-0.53.13-linux_x64.tar.gz" # 检查 cangjie 工具链是否已安装 echo "确保 cangjie 工具链已安装..." if ! command -v cjc -v &> /dev/null then echo "cangjie工具链 未安装,尝试进行安装..." # 下载文件 echo "Downloading Cangjie compiler..." curl -L -o "$FILE_NAME" "$DOWNLOAD_URL" # 检查下载是否成功 if [ $? -eq 0 ]; then echo "Download completed successfully." else echo "Download failed." exit 1 fi # 解压文件 echo "Extracting $FILE_NAME..." tar -xvf "$FILE_NAME" # 检查解压是否成功 if [ $? -eq 0 ]; then echo "Extraction completed successfully." else echo "Extraction failed." exit 1 fi # 检查 envsetup.sh 是否存在并进行 source if [[ -f "cangjie/envsetup.sh" ]]; then echo "envsetup.sh found!" source cangjie/envsetup.sh else echo "envsetup.sh not found!" exit 1 fi fi # 检查 openEuler 防火墙状态 echo "检查 openEuler 防火墙状态..." if systemctl status firewalld | grep "active (running)" &> /dev/null; then echo "防火墙已开启,尝试开放 21 端口..." firewall-cmd --zone=public --add-port=21/tcp --permanent firewall-cmd --reload echo "21 端口已开放。" else echo "防火墙未开启,无需开放端口。" fi # 编译ftp_server echo "正在编译 ftp_server..." cjpm build # 检查编译是否成功 if [ $? -eq 0 ]; then echo "编译成功." else echo "编译失败." exit 1 fi # 运行 ftp_server echo "正在启动 ftp 服务器..." cjpm run
2301_80220344/Cangjie-Examples
FTP/run-ftp.sh
Shell
apache-2.0
1,967
<!DOCTYPE html> <html lang="cn"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Document</title> </head> <body> <div>Hello Cangjie!</div> <p></p> <script> let xhr = new XMLHttpRequest() xhr.open("POST", "/Hello", true) xhr.onreadystatechange = () => { if(xhr.readyState == 4 && xhr.status == 200){ let res = JSON.parse(xhr.responseText) document.body.innerHTML += `<div>${res.msg}</div>` } } xhr.send(JSON.stringify({ name: "Chen", age: 999 })) </script> </body> </html>
2301_80220344/Cangjie-Examples
HTTPServer/index.html
HTML
apache-2.0
687
{"cells":[{"cell_type":"markdown","metadata":{"id":"AB155B13302D459CBAAABA327849B76D","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"# 说明\n特征工程部分照搬社区的baseline未作改动,仅仅进行了模型的部分参数调整和基于stacking的模型融合。\n另外,由于是输出概率,后续按照回归去做,故删除了不平衡样本的处理,一开始当成分类去做,最高只能到0.8+,按照回归轻松0.9+\n参数仅做了简单的调整,非最优,线下0.9361018703876826,线上验证0.93536922"},{"cell_type":"markdown","metadata":{"id":"C325760DBE164B398588C602C8C376BC","jupyter":{},"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"source":"# 查看数据"},{"cell_type":"code","execution_count":1,"metadata":{"collapsed":false,"id":"0A028E17E34B4CFEABE9DFF956D89741","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"import pandas as pd\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport seaborn as sns\n\nplt.rcParams['font.sans-serif'] = ['SimHei']\nplt.rcParams['axes.unicode_minus'] = False"},{"cell_type":"code","execution_count":2,"metadata":{"collapsed":false,"id":"001F87A7D41644E4BA2EA25513B0D1B3","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"train=pd.read_csv(r'/home/mw/input/data9803/train_set.csv')\ntest=pd.read_csv('/home/mw/input/data9803/test_set.csv')"},{"cell_type":"code","execution_count":3,"metadata":{"collapsed":false,"id":"B8C543716B964973872549E7B4DFDFAA","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"data = pd.concat([train.drop(['y'],axis=1),test],axis=0).reset_index(drop=True)"},{"cell_type":"code","execution_count":4,"metadata":{"id":"D7CE94A95A2544AE808C26A4B1901BA7","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true,"collapsed":false},"outputs":[{"output_type":"stream","text":"job : ['management' 'technician' 'admin.' 'services' 'retired' 'student'\n 'blue-collar' 'unknown' 'entrepreneur' 'housemaid' 'self-employed'\n 'unemployed']\nmarital : ['married' 'divorced' 'single']\neducation : ['tertiary' 'primary' 'secondary' 'unknown']\ndefault : ['no' 'yes']\nhousing : ['yes' 'no']\nloan : ['no' 'yes']\ncontact : ['unknown' 'cellular' 'telephone']\nmonth : ['may' 'apr' 'jul' 'jun' 'nov' 'aug' 'jan' 'feb' 'dec' 'oct' 'sep' 'mar']\npoutcome : ['unknown' 'other' 'failure' 'success']\n","name":"stdout"}],"source":"# 对object型数据查看unique\nstr_features = []\nnum_features=[]\nfor col in train.columns:\n if train[col].dtype=='object':\n str_features.append(col)\n print(col,': ',train[col].unique())\n if train[col].dtype=='int64' and col not in ['ID','y']:\n num_features.append(col)"},{"cell_type":"markdown","metadata":{"id":"29CB9E135078402DBE2F479858631C1D","jupyter":{},"mdEditEnable":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"source":"# 特征工程"},{"cell_type":"code","execution_count":6,"metadata":{"collapsed":true,"id":"928046C510F54165A50D2FFBEFB4A5B5","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"from scipy.stats import chi2_contingency # 数值型特征检验,检验特征与标签的关系\nfrom scipy.stats import f_oneway,ttest_ind # 分类型特征检验,检验特征与标签的关系"},{"cell_type":"code","execution_count":7,"metadata":{"collapsed":true,"id":"B5098300108B4CB784E1E1D8A1A7AF40","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"#----------数据集处理--------------#\nfrom sklearn.model_selection import train_test_split # 划分训练集和验证集\nfrom sklearn.model_selection import KFold,StratifiedKFold # k折交叉\nfrom imblearn.combine import SMOTETomek,SMOTEENN # 综合采样\nfrom imblearn.over_sampling import SMOTE # 过采样\nfrom imblearn.under_sampling import RandomUnderSampler # 欠采样\n\n#----------数据处理--------------#\nfrom sklearn.preprocessing import StandardScaler # 标准化\nfrom sklearn.preprocessing import OneHotEncoder # 热独编码\nfrom sklearn.preprocessing import OrdinalEncoder"},{"cell_type":"markdown","metadata":{"id":"AB4FDF679736489B86708802E2B4E05B","jupyter":{},"mdEditEnable":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"source":"## 特征处理"},{"cell_type":"markdown","metadata":{"id":"B76FEED533744B93AD63ED6825716E5C","jupyter":{},"mdEditEnable":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"source":"**连续变量即数值化数据做标准化处理**"},{"cell_type":"code","execution_count":8,"metadata":{"collapsed":true,"id":"DD0BE0C3EF0D4755A0F255565CA064B3","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"# 异常值处理\ndef outlier_processing(dfx):\n df = dfx.copy()\n q1 = df.quantile(q=0.25)\n q3 = df.quantile(q=0.75)\n iqr = q3 - q1\n Umin = q1 - 1.5*iqr\n Umax = q3 + 1.5*iqr \n df[df>Umax] = df[df<=Umax].max()\n df[df<Umin] = df[df>=Umin].min()\n return df"},{"cell_type":"code","execution_count":9,"metadata":{"collapsed":true,"id":"353D496D273C4456A8EF7C663D1C81C1","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"train['age']=outlier_processing(train['age'])\ntrain['day']=outlier_processing(train['day'])\ntrain['duration']=outlier_processing(train['duration'])\ntrain['campaign']=outlier_processing(train['campaign'])\n\n\ntest['age']=outlier_processing(test['age'])\ntest['day']=outlier_processing(test['day'])\ntest['duration']=outlier_processing(test['duration'])\ntest['campaign']=outlier_processing(test['campaign'])"},{"cell_type":"code","execution_count":10,"metadata":{"id":"605C7188AA404524AA2B935E363D1E6C","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[{"data":{"text/html":["<div>\n","<style scoped>\n"," .dataframe tbody tr th:only-of-type {\n"," vertical-align: middle;\n"," }\n","\n"," .dataframe tbody tr th {\n"," vertical-align: top;\n"," }\n","\n"," .dataframe thead th {\n"," text-align: right;\n"," }\n","</style>\n","<table border=\"1\" class=\"dataframe\">\n"," <thead>\n"," <tr style=\"text-align: right;\">\n"," <th></th>\n"," <th>age</th>\n"," <th>balance</th>\n"," <th>day</th>\n"," <th>duration</th>\n"," <th>campaign</th>\n"," <th>pdays</th>\n"," <th>previous</th>\n"," </tr>\n"," </thead>\n"," <tbody>\n"," <tr>\n"," <th>count</th>\n"," <td>25317.000000</td>\n"," <td>25317.000000</td>\n"," <td>25317.000000</td>\n"," <td>25317.000000</td>\n"," <td>25317.000000</td>\n"," <td>25317.000000</td>\n"," <td>25317.000000</td>\n"," </tr>\n"," <tr>\n"," <th>mean</th>\n"," <td>40.859502</td>\n"," <td>1357.555082</td>\n"," <td>15.835289</td>\n"," <td>234.235138</td>\n"," <td>2.391437</td>\n"," <td>40.248766</td>\n"," <td>0.591737</td>\n"," </tr>\n"," <tr>\n"," <th>std</th>\n"," <td>10.387365</td>\n"," <td>2999.822811</td>\n"," <td>8.319480</td>\n"," <td>175.395559</td>\n"," <td>1.599851</td>\n"," <td>100.213541</td>\n"," <td>2.568313</td>\n"," </tr>\n"," <tr>\n"," <th>min</th>\n"," <td>18.000000</td>\n"," <td>-8019.000000</td>\n"," <td>1.000000</td>\n"," <td>0.000000</td>\n"," <td>1.000000</td>\n"," <td>-1.000000</td>\n"," <td>0.000000</td>\n"," </tr>\n"," <tr>\n"," <th>25%</th>\n"," <td>33.000000</td>\n"," <td>73.000000</td>\n"," <td>8.000000</td>\n"," <td>103.000000</td>\n"," <td>1.000000</td>\n"," <td>-1.000000</td>\n"," <td>0.000000</td>\n"," </tr>\n"," <tr>\n"," <th>50%</th>\n"," <td>39.000000</td>\n"," <td>448.000000</td>\n"," <td>16.000000</td>\n"," <td>181.000000</td>\n"," <td>2.000000</td>\n"," <td>-1.000000</td>\n"," <td>0.000000</td>\n"," </tr>\n"," <tr>\n"," <th>75%</th>\n"," <td>48.000000</td>\n"," <td>1435.000000</td>\n"," <td>21.000000</td>\n"," <td>317.000000</td>\n"," <td>3.000000</td>\n"," <td>-1.000000</td>\n"," <td>0.000000</td>\n"," </tr>\n"," <tr>\n"," <th>max</th>\n"," <td>70.000000</td>\n"," <td>102127.000000</td>\n"," <td>31.000000</td>\n"," <td>638.000000</td>\n"," <td>6.000000</td>\n"," <td>854.000000</td>\n"," <td>275.000000</td>\n"," </tr>\n"," </tbody>\n","</table>\n","</div>"],"text/plain":[" age balance day duration campaign \\\n","count 25317.000000 25317.000000 25317.000000 25317.000000 25317.000000 \n","mean 40.859502 1357.555082 15.835289 234.235138 2.391437 \n","std 10.387365 2999.822811 8.319480 175.395559 1.599851 \n","min 18.000000 -8019.000000 1.000000 0.000000 1.000000 \n","25% 33.000000 73.000000 8.000000 103.000000 1.000000 \n","50% 39.000000 448.000000 16.000000 181.000000 2.000000 \n","75% 48.000000 1435.000000 21.000000 317.000000 3.000000 \n","max 70.000000 102127.000000 31.000000 638.000000 6.000000 \n","\n"," pdays previous \n","count 25317.000000 25317.000000 \n","mean 40.248766 0.591737 \n","std 100.213541 2.568313 \n","min -1.000000 0.000000 \n","25% -1.000000 0.000000 \n","50% -1.000000 0.000000 \n","75% -1.000000 0.000000 \n","max 854.000000 275.000000 "]},"execution_count":10,"metadata":{},"output_type":"execute_result"}],"source":"train[num_features].describe()"},{"cell_type":"markdown","metadata":{"id":"FA30A072639C418283A5F9FF7BB70A5A","jupyter":{},"mdEditEnable":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"source":"**分类变量做编码处理**"},{"cell_type":"code","execution_count":11,"metadata":{"collapsed":true,"id":"B843C59639844E1A872AECAFE7926878","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"dummy_train=train.join(pd.get_dummies(train[str_features])).drop(str_features,axis=1).drop(['ID','y'],axis=1)\ndummy_test=test.join(pd.get_dummies(test[str_features])).drop(str_features,axis=1).drop(['ID'],axis=1)"},{"cell_type":"markdown","metadata":{"id":"F2EA03BA7FAA45FF85F2CEDA21AB2F25","jupyter":{},"mdEditEnable":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"source":"## 统计检验与特征筛选 \n\n\n**连续变量-连续变量 相关分析**\n\n**连续变量-分类变量 T检验/方差分析**\n\n**分类变量-分类变量 卡方检验**"},{"cell_type":"markdown","metadata":{"id":"500456AC13CA4815858E06D09EE17A9E","jupyter":{},"mdEditEnable":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"source":"**对类别标签(离散变量)用卡方检验分析重要性**\n\n卡方检验认为显著水平大于95%是差异性显著的,这里即看p值是否是p>0.05,若p>0.05,则说明特征不会呈现差异性"},{"cell_type":"code","execution_count":12,"metadata":{"id":"40798A95334C4A85812FCB8A3CE6DD75","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["job 卡方检验p值: 0.0000\n","marital 卡方检验p值: 0.0000\n","education 卡方检验p值: 0.0000\n","default 卡方检验p值: 0.0001\n","housing 卡方检验p值: 0.0000\n","loan 卡方检验p值: 0.0000\n","contact 卡方检验p值: 0.0000\n","month 卡方检验p值: 0.0000\n","poutcome 卡方检验p值: 0.0000\n"]}],"source":"for col in str_features:\n obs=pd.crosstab(train['y'],\n train[col],\n rownames=['y'],\n colnames=[col])\n chi2, p, dof, expect = chi2_contingency(obs)\n print(\"{} 卡方检验p值: {:.4f}\".format(col,p))"},{"cell_type":"markdown","metadata":{"id":"30A24D4C89AF4BDAA0115FDF8F7C12E5","jupyter":{},"mdEditEnable":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"source":"**对连续变量做方差分析进行特征筛选**\n"},{"cell_type":"code","execution_count":13,"metadata":{"id":"43185B05C4AB48628437C4224F86F348","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["scores_: [ 13.38856992 84.16396612 25.76507245 4405.56959938 193.97418155\n"," 296.33099313 199.09942912]\n","pvalues_: [2.53676251e-04 4.89124305e-20 3.88332900e-07 0.00000000e+00\n"," 6.26768275e-44 4.93591331e-66 4.86613654e-45]\n","selected index: [0 1 2 3 4 5 6]\n"]}],"source":"from sklearn.feature_selection import SelectKBest,f_classif\n\nf,p=f_classif(train[num_features],train['y'])\nk = f.shape[0] - (p > 0.05).sum()\nselector = SelectKBest(f_classif, k=k)\nselector.fit(train[num_features],train['y'])\n\nprint('scores_:',selector.scores_)\nprint('pvalues_:',selector.pvalues_)\nprint('selected index:',selector.get_support(True))"},{"cell_type":"code","execution_count":14,"metadata":{"collapsed":true,"id":"5AC3B3DFF3134BDC83E167086A48540B","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"# 标准化,返回值为标准化后的数据\nstandardScaler=StandardScaler()\nss=standardScaler.fit(dummy_train.loc[:,num_features])\ndummy_train.loc[:,num_features]=ss.transform(dummy_train.loc[:,num_features])\ndummy_test.loc[:,num_features]=ss.transform(dummy_test.loc[:,num_features])"},{"cell_type":"code","execution_count":15,"metadata":{"collapsed":true,"id":"EEEA48883D2E4FA58FB392991E531C86","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"X=dummy_train\ny=train['y']"},{"cell_type":"markdown","metadata":{"id":"A16ACA2680A243C0880DE1F19CFB6AAD","jupyter":{},"mdEditEnable":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"source":"**因为后续是进行回归而非分类,个人认为没有必要进行不平衡处理,故此部分就注释掉了**"},{"cell_type":"code","execution_count":16,"metadata":{"collapsed":true,"id":"AFE7C8F818B148178A42245BBF4C8878","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"# X_train,X_valid,y_train,y_valid=train_test_split(X,y,test_size=0.2,random_state=2020)"},{"cell_type":"code","execution_count":17,"metadata":{"collapsed":true,"id":"046EFE395ED34BFCAD11F2721BBE40FD","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[],"source":"# smote_tomek = SMOTETomek(random_state=2020)\n# X_resampled, y_resampled = smote_tomek.fit_resample(X, y)"},{"cell_type":"markdown","metadata":{"id":"13F7B7216054465D9437CEB872026BC3","jupyter":{},"mdEditEnable":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"source":"# 数据建模"},{"cell_type":"code","execution_count":19,"metadata":{"id":"0E1FC19C7DF74042B6F1A9F5527AA4AE","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\dask\\dataframe\\utils.py:13: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.\n"," import pandas.util.testing as tm\n"]}],"source":"#----------建模工具--------------#\nfrom sklearn.model_selection import GridSearchCV\nfrom sklearn.pipeline import Pipeline\nfrom sklearn.model_selection import KFold,RepeatedKFold\nimport lightgbm as lgb\nfrom sklearn.ensemble import RandomForestRegressor\nimport xgboost as xgb\nfrom xgboost import XGBRegressor\nfrom sklearn.linear_model import BayesianRidge\nfrom catboost import CatBoostRegressor, Pool\nfrom lightgbm import LGBMRegressor\n#----------模型评估工具----------#\nfrom sklearn.metrics import confusion_matrix # 混淆矩阵\nfrom sklearn.metrics import classification_report\nfrom sklearn.metrics import recall_score,f1_score\nfrom sklearn.metrics import roc_auc_score\nfrom sklearn.model_selection import cross_val_score\nfrom sklearn.metrics import roc_curve,auc\nfrom sklearn.metrics import roc_auc_score"},{"cell_type":"markdown","metadata":{"id":"D59F8B42DDB34650B81C23D56AE0BB43","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"## 模型建立和参数调整"},{"cell_type":"markdown","metadata":{"id":"B6C0DDA8DA53482ABA9E2EE753DB105D","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"### 基于GridSearchCV的随机森林参数调整"},{"cell_type":"code","execution_count":45,"metadata":{"id":"4451159F5E62465CB52012889AD801B2","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Fitting 3 folds for each of 3 candidates, totalling 9 fits\n","{'max_features': 11, 'min_samples_leaf': 1, 'n_estimators': 1700}\n"]}],"source":"# 随机森林\n# param = {'n_estimators':[1500,1700,2000],\n# 'max_features':[7,11,15]\n# }\n# gs = GridSearchCV(estimator=RandomForestRegressor(), param_grid=param, cv=3, scoring=\"neg_mean_squared_error\", n_jobs=-1, verbose=10) \n# gs.fit(X_resampled,y_resampled)\n# print(gs.best_params_) \n"},{"cell_type":"markdown","metadata":{"id":"821CD114AA87471B9188366261086B72","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"### 基于五折交叉验证的随机森林"},{"cell_type":"code","execution_count":46,"metadata":{"id":"46ED98A1821C450E85F2338B49A197C6","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["0.929373220326099\n"]}],"source":"n_fold = 5\nfolds = KFold(n_splits=n_fold, shuffle=True, random_state=2022)\noof_rf = np.zeros(len(X))\nprediction_rf = np.zeros(len(dummy_test))\nfor fold_n, (train_index, valid_index) in enumerate(folds.split(X)):\n X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]\n y_train, y_valid = y[train_index], y[valid_index]\n# smote_tomek = SMOTETomek(random_state=2022)\n# X_resampled, y_resampled = smote_tomek.fit_resample(X_train, y_train)\n model_rf = RandomForestRegressor(max_features=11,min_samples_leaf=1,n_estimators=1700,random_state=2022).fit(X_train,y_train)\n y_pred_valid = model_rf.predict(X_valid)\n y_pred = model_rf.predict(dummy_test)\n oof_rf[valid_index] = y_pred_valid.reshape(-1, )\n prediction_rf += y_pred\nprediction_rf /= n_fold \nprint(roc_auc_score(y, oof_rf))\n#0.929373220326099"},{"cell_type":"markdown","metadata":{"id":"A03808ADDE7A4AC4AEFDC87F09A5A017","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"### 基于GridSearchCV的XGB参数调整"},{"cell_type":"code","execution_count":123,"metadata":{"id":"A26971BEEF684860B739522723029593","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Fitting 3 folds for each of 3 candidates, totalling 9 fits\n","{'colsample_bytree': 0.6, 'learning_rate': 0.05, 'max_depth': 3, 'n_estimators': 800, 'subsample': 0.8}\n"]}],"source":"# param = {'max_depth': [3],\n# 'learning_rate': [0.01],\n# 'subsample':[0.8],\n# 'colsample_bytree':[0.6],\n# 'n_estimators': [8000]\n\n# }\n# gs = GridSearchCV(estimator=XGBRegressor(), param_grid=param, cv=3, scoring=\"neg_mean_squared_error\", n_jobs=-1, verbose=10) \n# gs.fit(X,y)\n# print(gs.best_params_) \n"},{"cell_type":"markdown","metadata":{"id":"7AF59354E891478D8154F963C5EDE251","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"### 基于五折交叉验证的XGB"},{"cell_type":"code","execution_count":126,"metadata":{"id":"C0C60825A129420F8F4C983DEC926AC6","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["[0]\tvalidation_0-auc:0.86541\n","[1]\tvalidation_0-auc:0.88478\n","[2]\tvalidation_0-auc:0.89516\n","[3]\tvalidation_0-auc:0.90166\n","[4]\tvalidation_0-auc:0.90600\n","[5]\tvalidation_0-auc:0.90680\n","[6]\tvalidation_0-auc:0.90747\n","[7]\tvalidation_0-auc:0.90969\n","[8]\tvalidation_0-auc:0.90979\n","[9]\tvalidation_0-auc:0.90992\n","[10]\tvalidation_0-auc:0.91239\n"]},{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\xgboost\\sklearn.py:797: UserWarning: `eval_metric` in `fit` method is deprecated for better compatibility with scikit-learn, use `eval_metric` in constructor or`set_params` instead.\n"," UserWarning,\n","E:\\Anaconda3\\lib\\site-packages\\xgboost\\sklearn.py:797: UserWarning: `early_stopping_rounds` in `fit` method is deprecated for better compatibility with scikit-learn, use `early_stopping_rounds` in constructor or`set_params` instead.\n"," UserWarning,\n"]},{"name":"stdout","output_type":"stream","text":"[11]\tvalidation_0-auc:0.91302\n[12]\tvalidation_0-auc:0.91294\n[13]\tvalidation_0-auc:0.91220\n[14]\tvalidation_0-auc:0.91338\n[15]\tvalidation_0-auc:0.91288\n[16]\tvalidation_0-auc:0.91278\n[17]\tvalidation_0-auc:0.91364\n[18]\tvalidation_0-auc:0.91342\n[19]\tvalidation_0-auc:0.91408\n[20]\tvalidation_0-auc:0.91458\n[21]\tvalidation_0-auc:0.91514\n[22]\tvalidation_0-auc:0.91541\n[23]\tvalidation_0-auc:0.91541\n[24]\tvalidation_0-auc:0.91533\n[25]\tvalidation_0-auc:0.91583\n[26]\tvalidation_0-auc:0.91574\n[27]\tvalidation_0-auc:0.91588\n[28]\tvalidation_0-auc:0.91624\n[29]\tvalidation_0-auc:0.91635\n[30]\tvalidation_0-auc:0.91886\n[31]\tvalidation_0-auc:0.91898\n[32]\tvalidation_0-auc:0.91876\n[33]\tvalidation_0-auc:0.91921\n[34]\tvalidation_0-auc:0.91927\n[35]\tvalidation_0-auc:0.91894\n[36]\tvalidation_0-auc:0.91962\n[37]\tvalidation_0-auc:0.91952\n[38]\tvalidation_0-auc:0.91979\n[39]\tvalidation_0-auc:0.91998\n[40]\tvalidation_0-auc:0.92026\n[41]\tvalidation_0-auc:0.92031\n[42]\tvalidation_0-auc:0.92050\n[43]\tvalidation_0-auc:0.92028\n[44]\tvalidation_0-auc:0.92069\n[45]\tvalidation_0-auc:0.92116\n[46]\tvalidation_0-auc:0.92123\n[47]\tvalidation_0-auc:0.92150\n[48]\tvalidation_0-auc:0.92170\n[49]\tvalidation_0-auc:0.92155\n[50]\tvalidation_0-auc:0.92219\n[51]\tvalidation_0-auc:0.92242\n[52]\tvalidation_0-auc:0.92279\n[53]\tvalidation_0-auc:0.92275\n[54]\tvalidation_0-auc:0.92314\n[55]\tvalidation_0-auc:0.92312\n[56]\tvalidation_0-auc:0.92295\n[57]\tvalidation_0-auc:0.92310\n[58]\tvalidation_0-auc:0.92318\n[59]\tvalidation_0-auc:0.92353\n[60]\tvalidation_0-auc:0.92354\n[61]\tvalidation_0-auc:0.92378\n[62]\tvalidation_0-auc:0.92391\n[63]\tvalidation_0-auc:0.92395\n[64]\tvalidation_0-auc:0.92396\n[65]\tvalidation_0-auc:0.92381\n[66]\tvalidation_0-auc:0.92382\n[67]\tvalidation_0-auc:0.92389\n[68]\tvalidation_0-auc:0.92386\n[69]\tvalidation_0-auc:0.92375\n[70]\tvalidation_0-auc:0.92381\n[71]\tvalidation_0-auc:0.92370\n[72]\tvalidation_0-auc:0.92367\n[73]\tvalidation_0-auc:0.92388\n[74]\tvalidation_0-auc:0.92374\n[75]\tvalidation_0-auc:0.92375\n[76]\tvalidation_0-auc:0.92374\n[77]\tvalidation_0-auc:0.92368\n[78]\tvalidation_0-auc:0.92361\n[79]\tvalidation_0-auc:0.92382\n[80]\tvalidation_0-auc:0.92401\n[81]\tvalidation_0-auc:0.92394\n[82]\tvalidation_0-auc:0.92405\n[83]\tvalidation_0-auc:0.92407\n[84]\tvalidation_0-auc:0.92416\n[85]\tvalidation_0-auc:0.92399\n[86]\tvalidation_0-auc:0.92386\n[87]\tvalidation_0-auc:0.92389\n[88]\tvalidation_0-auc:0.92388\n[89]\tvalidation_0-auc:0.92398\n[90]\tvalidation_0-auc:0.92403\n[91]\tvalidation_0-auc:0.92402\n[92]\tvalidation_0-auc:0.92398\n[93]\tvalidation_0-auc:0.92399\n[94]\tvalidation_0-auc:0.92403\n[95]\tvalidation_0-auc:0.92406\n[96]\tvalidation_0-auc:0.92393\n[97]\tvalidation_0-auc:0.92406\n[98]\tvalidation_0-auc:0.92400\n[99]\tvalidation_0-auc:0.92407\n[100]\tvalidation_0-auc:0.92414\n[101]\tvalidation_0-auc:0.92435\n[102]\tvalidation_0-auc:0.92449\n[103]\tvalidation_0-auc:0.92457\n[104]\tvalidation_0-auc:0.92450\n[105]\tvalidation_0-auc:0.92462\n[106]\tvalidation_0-auc:0.92475\n[107]\tvalidation_0-auc:0.92476\n[108]\tvalidation_0-auc:0.92494\n[109]\tvalidation_0-auc:0.92495\n[110]\tvalidation_0-auc:0.92496\n[111]\tvalidation_0-auc:0.92491\n[112]\tvalidation_0-auc:0.92489\n[113]\tvalidation_0-auc:0.92490\n[114]\tvalidation_0-auc:0.92495\n[115]\tvalidation_0-auc:0.92502\n[116]\tvalidation_0-auc:0.92507\n[117]\tvalidation_0-auc:0.92516\n[118]\tvalidation_0-auc:0.92516\n[119]\tvalidation_0-auc:0.92521\n[120]\tvalidation_0-auc:0.92523\n[121]\tvalidation_0-auc:0.92526\n[122]\tvalidation_0-auc:0.92533\n[123]\tvalidation_0-auc:0.92537\n[124]\tvalidation_0-auc:0.92531\n[125]\tvalidation_0-auc:0.92532\n[126]\tvalidation_0-auc:0.92532\n[127]\tvalidation_0-auc:0.92531\n[128]\tvalidation_0-auc:0.92527\n[129]\tvalidation_0-auc:0.92527\n[130]\tvalidation_0-auc:0.92525\n[131]\tvalidation_0-auc:0.92551\n[132]\tvalidation_0-auc:0.92549\n[133]\tvalidation_0-auc:0.92551\n[134]\tvalidation_0-auc:0.92545\n[135]\tvalidation_0-auc:0.92550\n[136]\tvalidation_0-auc:0.92551\n[137]\tvalidation_0-auc:0.92559\n[138]\tvalidation_0-auc:0.92562\n[139]\tvalidation_0-auc:0.92567\n[140]\tvalidation_0-auc:0.92566\n[141]\tvalidation_0-auc:0.92566\n[142]\tvalidation_0-auc:0.92566\n[143]\tvalidation_0-auc:0.92568\n[144]\tvalidation_0-auc:0.92566\n[145]\tvalidation_0-auc:0.92564\n[146]\tvalidation_0-auc:0.92560\n[147]\tvalidation_0-auc:0.92582\n[148]\tvalidation_0-auc:0.92579\n[149]\tvalidation_0-auc:0.92579\n[150]\tvalidation_0-auc:0.92577\n[151]\tvalidation_0-auc:0.92571\n[152]\tvalidation_0-auc:0.92571\n[153]\tvalidation_0-auc:0.92576\n[154]\tvalidation_0-auc:0.92572\n[155]\tvalidation_0-auc:0.92571\n[156]\tvalidation_0-auc:0.92577\n[157]\tvalidation_0-auc:0.92572\n[158]\tvalidation_0-auc:0.92567\n[159]\tvalidation_0-auc:0.92570\n[160]\tvalidation_0-auc:0.92565\n[161]\tvalidation_0-auc:0.92559\n[162]\tvalidation_0-auc:0.92562\n[163]\tvalidation_0-auc:0.92565\n[164]\tvalidation_0-auc:0.92568\n[165]\tvalidation_0-auc:0.92568\n[166]\tvalidation_0-auc:0.92568\n[167]\tvalidation_0-auc:0.92564\n[168]\tvalidation_0-auc:0.92559\n[169]\tvalidation_0-auc:0.92557\n[170]\tvalidation_0-auc:0.92553\n[171]\tvalidation_0-auc:0.92550\n[172]\tvalidation_0-auc:0.92549\n[173]\tvalidation_0-auc:0.92552\n[174]\tvalidation_0-auc:0.92548\n[175]\tvalidation_0-auc:0.92545\n[176]\tvalidation_0-auc:0.92547\n[177]\tvalidation_0-auc:0.92549\n[178]\tvalidation_0-auc:0.92554\n[179]\tvalidation_0-auc:0.92566\n[180]\tvalidation_0-auc:0.92571\n[181]\tvalidation_0-auc:0.92586\n[182]\tvalidation_0-auc:0.92585\n[183]\tvalidation_0-auc:0.92594\n[184]\tvalidation_0-auc:0.92594\n[185]\tvalidation_0-auc:0.92605\n[186]\tvalidation_0-auc:0.92598\n[187]\tvalidation_0-auc:0.92597\n[188]\tvalidation_0-auc:0.92598\n[189]\tvalidation_0-auc:0.92595\n[190]\tvalidation_0-auc:0.92608\n[191]\tvalidation_0-auc:0.92609\n[192]\tvalidation_0-auc:0.92613\n[193]\tvalidation_0-auc:0.92609\n[194]\tvalidation_0-auc:0.92614\n[195]\tvalidation_0-auc:0.92613\n[196]\tvalidation_0-auc:0.92614\n[197]\tvalidation_0-auc:0.92629\n[198]\tvalidation_0-auc:0.92626\n[199]\tvalidation_0-auc:0.92622\n[200]\tvalidation_0-auc:0.92622\n[201]\tvalidation_0-auc:0.92626\n[202]\tvalidation_0-auc:0.92644\n[203]\tvalidation_0-auc:0.92647\n[204]\tvalidation_0-auc:0.92645\n[205]\tvalidation_0-auc:0.92653\n[206]\tvalidation_0-auc:0.92667\n[207]\tvalidation_0-auc:0.92681\n[208]\tvalidation_0-auc:0.92674\n[209]\tvalidation_0-auc:0.92684\n[210]\tvalidation_0-auc:0.92689\n[211]\tvalidation_0-auc:0.92691\n[212]\tvalidation_0-auc:0.92691\n[213]\tvalidation_0-auc:0.92689\n[214]\tvalidation_0-auc:0.92687\n[215]\tvalidation_0-auc:0.92692\n[216]\tvalidation_0-auc:0.92687\n[217]\tvalidation_0-auc:0.92686\n[218]\tvalidation_0-auc:0.92686\n[219]\tvalidation_0-auc:0.92686\n[220]\tvalidation_0-auc:0.92706\n[221]\tvalidation_0-auc:0.92705\n[222]\tvalidation_0-auc:0.92707\n[223]\tvalidation_0-auc:0.92706\n[224]\tvalidation_0-auc:0.92705\n[225]\tvalidation_0-auc:0.92712\n[226]\tvalidation_0-auc:0.92727\n[227]\tvalidation_0-auc:0.92725\n[228]\tvalidation_0-auc:0.92726\n[229]\tvalidation_0-auc:0.92727\n[230]\tvalidation_0-auc:0.92721\n[231]\tvalidation_0-auc:0.92724\n[232]\tvalidation_0-auc:0.92739\n[233]\tvalidation_0-auc:0.92746\n[234]\tvalidation_0-auc:0.92753\n[235]\tvalidation_0-auc:0.92754\n[236]\tvalidation_0-auc:0.92756\n[237]\tvalidation_0-auc:0.92759\n[238]\tvalidation_0-auc:0.92761\n[239]\tvalidation_0-auc:0.92756\n[240]\tvalidation_0-auc:0.92754\n[241]\tvalidation_0-auc:0.92750\n[242]\tvalidation_0-auc:0.92749\n[243]\tvalidation_0-auc:0.92757\n[244]\tvalidation_0-auc:0.92760\n[245]\tvalidation_0-auc:0.92760\n[246]\tvalidation_0-auc:0.92765\n[247]\tvalidation_0-auc:0.92765\n[248]\tvalidation_0-auc:0.92761\n[249]\tvalidation_0-auc:0.92768\n[250]\tvalidation_0-auc:0.92766\n[251]\tvalidation_0-auc:0.92768\n[252]\tvalidation_0-auc:0.92772\n[253]\tvalidation_0-auc:0.92772\n[254]\tvalidation_0-auc:0.92770\n[255]\tvalidation_0-auc:0.92763\n[256]\tvalidation_0-auc:0.92771\n[257]\tvalidation_0-auc:0.92775\n[258]\tvalidation_0-auc:0.92776\n[259]\tvalidation_0-auc:0.92776\n[260]\tvalidation_0-auc:0.92780\n[261]\tvalidation_0-auc:0.92783\n[262]\tvalidation_0-auc:0.92784\n[263]\tvalidation_0-auc:0.92785\n[264]\tvalidation_0-auc:0.92788\n[265]\tvalidation_0-auc:0.92792\n[266]\tvalidation_0-auc:0.92791\n[267]\tvalidation_0-auc:0.92791\n[268]\tvalidation_0-auc:0.92787\n[269]\tvalidation_0-auc:0.92785\n[270]\tvalidation_0-auc:0.92797\n[271]\tvalidation_0-auc:0.92796\n[272]\tvalidation_0-auc:0.92795\n[273]\tvalidation_0-auc:0.92802\n[274]\tvalidation_0-auc:0.92811\n[275]\tvalidation_0-auc:0.92809\n[276]\tvalidation_0-auc:0.92810\n[277]\tvalidation_0-auc:0.92811\n[278]\tvalidation_0-auc:0.92813\n[279]\tvalidation_0-auc:0.92813\n[280]\tvalidation_0-auc:0.92807\n[281]\tvalidation_0-auc:0.92811\n[282]\tvalidation_0-auc:0.92816\n[283]\tvalidation_0-auc:0.92821\n[284]\tvalidation_0-auc:0.92821\n[285]\tvalidation_0-auc:0.92824\n[286]\tvalidation_0-auc:0.92829\n[287]\tvalidation_0-auc:0.92833\n[288]\tvalidation_0-auc:0.92832\n[289]\tvalidation_0-auc:0.92830\n[290]\tvalidation_0-auc:0.92833\n[291]\tvalidation_0-auc:0.92835\n[292]\tvalidation_0-auc:0.92842\n[293]\tvalidation_0-auc:0.92843\n[294]\tvalidation_0-auc:0.92844\n[295]\tvalidation_0-auc:0.92845\n[296]\tvalidation_0-auc:0.92845\n[297]\tvalidation_0-auc:0.92849\n[298]\tvalidation_0-auc:0.92851\n[299]\tvalidation_0-auc:0.92853\n[300]\tvalidation_0-auc:0.92854\n[301]\tvalidation_0-auc:0.92853\n[302]\tvalidation_0-auc:0.92851\n[303]\tvalidation_0-auc:0.92865\n[304]\tvalidation_0-auc:0.92865\n[305]\tvalidation_0-auc:0.92867\n[306]\tvalidation_0-auc:0.92865\n[307]\tvalidation_0-auc:0.92871\n[308]\tvalidation_0-auc:0.92869\n[309]\tvalidation_0-auc:0.92866\n[310]\tvalidation_0-auc:0.92865\n[311]\tvalidation_0-auc:0.92862\n[312]\tvalidation_0-auc:0.92863\n[313]\tvalidation_0-auc:0.92867\n[314]\tvalidation_0-auc:0.92865\n[315]\tvalidation_0-auc:0.92884\n[316]\tvalidation_0-auc:0.92883\n[317]\tvalidation_0-auc:0.92881\n[318]\tvalidation_0-auc:0.92880\n[319]\tvalidation_0-auc:0.92878\n[320]\tvalidation_0-auc:0.92880\n[321]\tvalidation_0-auc:0.92886\n[322]\tvalidation_0-auc:0.92889\n[323]\tvalidation_0-auc:0.92890\n[324]\tvalidation_0-auc:0.92891\n[325]\tvalidation_0-auc:0.92893\n[326]\tvalidation_0-auc:0.92892\n[327]\tvalidation_0-auc:0.92893\n[328]\tvalidation_0-auc:0.92889\n[329]\tvalidation_0-auc:0.92894\n[330]\tvalidation_0-auc:0.92895\n[331]\tvalidation_0-auc:0.92903\n[332]\tvalidation_0-auc:0.92903\n[333]\tvalidation_0-auc:0.92908\n[334]\tvalidation_0-auc:0.92909\n[335]\tvalidation_0-auc:0.92909\n[336]\tvalidation_0-auc:0.92908\n[337]\tvalidation_0-auc:0.92917\n[338]\tvalidation_0-auc:0.92921\n[339]\tvalidation_0-auc:0.92921\n[340]\tvalidation_0-auc:0.92923\n[341]\tvalidation_0-auc:0.92923\n[342]\tvalidation_0-auc:0.92923\n[343]\tvalidation_0-auc:0.92924\n[344]\tvalidation_0-auc:0.92920\n[345]\tvalidation_0-auc:0.92924\n[346]\tvalidation_0-auc:0.92926\n[347]\tvalidation_0-auc:0.92928\n[348]\tvalidation_0-auc:0.92928\n[349]\tvalidation_0-auc:0.92934\n[350]\tvalidation_0-auc:0.92936\n[351]\tvalidation_0-auc:0.92934\n[352]\tvalidation_0-auc:0.92933\n[353]\tvalidation_0-auc:0.92932\n[354]\tvalidation_0-auc:0.92930\n[355]\tvalidation_0-auc:0.92932\n[356]\tvalidation_0-auc:0.92934\n[357]\tvalidation_0-auc:0.92937\n[358]\tvalidation_0-auc:0.92937\n[359]\tvalidation_0-auc:0.92939\n[360]\tvalidation_0-auc:0.92937\n[361]\tvalidation_0-auc:0.92939\n[362]\tvalidation_0-auc:0.92936\n[363]\tvalidation_0-auc:0.92933\n[364]\tvalidation_0-auc:0.92934\n[365]\tvalidation_0-auc:0.92934\n[366]\tvalidation_0-auc:0.92936\n[367]\tvalidation_0-auc:0.92940\n[368]\tvalidation_0-auc:0.92945\n[369]\tvalidation_0-auc:0.92943\n[370]\tvalidation_0-auc:0.92946\n[371]\tvalidation_0-auc:0.92945\n[372]\tvalidation_0-auc:0.92938\n[373]\tvalidation_0-auc:0.92936\n[374]\tvalidation_0-auc:0.92937\n[375]\tvalidation_0-auc:0.92940\n[376]\tvalidation_0-auc:0.92943\n[377]\tvalidation_0-auc:0.92942\n[378]\tvalidation_0-auc:0.92947\n[379]\tvalidation_0-auc:0.92947\n[380]\tvalidation_0-auc:0.92946\n[381]\tvalidation_0-auc:0.92946\n[382]\tvalidation_0-auc:0.92946\n[383]\tvalidation_0-auc:0.92947\n[384]\tvalidation_0-auc:0.92953\n[385]\tvalidation_0-auc:0.92951\n[386]\tvalidation_0-auc:0.92959\n[387]\tvalidation_0-auc:0.92959\n[388]\tvalidation_0-auc:0.92964\n[389]\tvalidation_0-auc:0.92967\n[390]\tvalidation_0-auc:0.92967\n[391]\tvalidation_0-auc:0.92967\n[392]\tvalidation_0-auc:0.92966\n[393]\tvalidation_0-auc:0.92964\n[394]\tvalidation_0-auc:0.92959\n[395]\tvalidation_0-auc:0.92960\n[396]\tvalidation_0-auc:0.92964\n[397]\tvalidation_0-auc:0.92969\n[398]\tvalidation_0-auc:0.92969\n[399]\tvalidation_0-auc:0.92969\n[400]\tvalidation_0-auc:0.92970\n[401]\tvalidation_0-auc:0.92967\n[402]\tvalidation_0-auc:0.92969\n[403]\tvalidation_0-auc:0.92971\n[404]\tvalidation_0-auc:0.92974\n[405]\tvalidation_0-auc:0.92977\n[406]\tvalidation_0-auc:0.92975\n[407]\tvalidation_0-auc:0.92974\n[408]\tvalidation_0-auc:0.92972\n[409]\tvalidation_0-auc:0.92972\n[410]\tvalidation_0-auc:0.92974\n[411]\tvalidation_0-auc:0.92974\n[412]\tvalidation_0-auc:0.92971\n[413]\tvalidation_0-auc:0.92967\n[414]\tvalidation_0-auc:0.92969\n[415]\tvalidation_0-auc:0.92965\n[416]\tvalidation_0-auc:0.92963\n[417]\tvalidation_0-auc:0.92966\n[418]\tvalidation_0-auc:0.92968\n[419]\tvalidation_0-auc:0.92968\n[420]\tvalidation_0-auc:0.92968\n[421]\tvalidation_0-auc:0.92965\n[422]\tvalidation_0-auc:0.92964\n[423]\tvalidation_0-auc:0.92964\n[424]\tvalidation_0-auc:0.92965\n[425]\tvalidation_0-auc:0.92965\n[426]\tvalidation_0-auc:0.92966\n[427]\tvalidation_0-auc:0.92967\n[428]\tvalidation_0-auc:0.92967\n[429]\tvalidation_0-auc:0.92968\n[430]\tvalidation_0-auc:0.92970\n[431]\tvalidation_0-auc:0.92971\n[432]\tvalidation_0-auc:0.92971\n[433]\tvalidation_0-auc:0.92971\n[434]\tvalidation_0-auc:0.92974\n[435]\tvalidation_0-auc:0.92977\n[436]\tvalidation_0-auc:0.92979\n[437]\tvalidation_0-auc:0.92978\n[438]\tvalidation_0-auc:0.92981\n[439]\tvalidation_0-auc:0.92986\n[440]\tvalidation_0-auc:0.92987\n[441]\tvalidation_0-auc:0.92990\n[442]\tvalidation_0-auc:0.92990\n[443]\tvalidation_0-auc:0.92990\n[444]\tvalidation_0-auc:0.92988\n[445]\tvalidation_0-auc:0.92992\n[446]\tvalidation_0-auc:0.92991\n[447]\tvalidation_0-auc:0.92998\n[448]\tvalidation_0-auc:0.92999\n[449]\tvalidation_0-auc:0.92996\n[450]\tvalidation_0-auc:0.92999\n[451]\tvalidation_0-auc:0.92998\n[452]\tvalidation_0-auc:0.92997\n[453]\tvalidation_0-auc:0.93000\n[454]\tvalidation_0-auc:0.93001\n[455]\tvalidation_0-auc:0.93004\n[456]\tvalidation_0-auc:0.93004\n[457]\tvalidation_0-auc:0.93005\n[458]\tvalidation_0-auc:0.93004\n[459]\tvalidation_0-auc:0.93008\n[460]\tvalidation_0-auc:0.93008\n[461]\tvalidation_0-auc:0.93006\n[462]\tvalidation_0-auc:0.93003\n[463]\tvalidation_0-auc:0.93003\n[464]\tvalidation_0-auc:0.93001\n[465]\tvalidation_0-auc:0.93003\n[466]\tvalidation_0-auc:0.93000\n[467]\tvalidation_0-auc:0.93004\n[468]\tvalidation_0-auc:0.93003\n[469]\tvalidation_0-auc:0.93003\n[470]\tvalidation_0-auc:0.93001\n[471]\tvalidation_0-auc:0.93000\n[472]\tvalidation_0-auc:0.93004\n[473]\tvalidation_0-auc:0.93001\n[474]\tvalidation_0-auc:0.93002\n[475]\tvalidation_0-auc:0.93003\n[476]\tvalidation_0-auc:0.93005\n[477]\tvalidation_0-auc:0.93005\n[478]\tvalidation_0-auc:0.93004\n[479]\tvalidation_0-auc:0.93003\n[480]\tvalidation_0-auc:0.93001\n[481]\tvalidation_0-auc:0.93000\n[482]\tvalidation_0-auc:0.93000\n[483]\tvalidation_0-auc:0.92998\n[484]\tvalidation_0-auc:0.92997\n[485]\tvalidation_0-auc:0.92998\n[486]\tvalidation_0-auc:0.92998\n[487]\tvalidation_0-auc:0.92996\n[488]\tvalidation_0-auc:0.92991\n[489]\tvalidation_0-auc:0.92993\n[490]\tvalidation_0-auc:0.92996\n[491]\tvalidation_0-auc:0.92994\n[492]\tvalidation_0-auc:0.92994\n[493]\tvalidation_0-auc:0.92995\n[494]\tvalidation_0-auc:0.92993\n[495]\tvalidation_0-auc:0.92992\n[496]\tvalidation_0-auc:0.92998\n[497]\tvalidation_0-auc:0.92996\n[498]\tvalidation_0-auc:0.92997\n[499]\tvalidation_0-auc:0.92997\n[500]\tvalidation_0-auc:0.92997\n[501]\tvalidation_0-auc:0.92996\n[502]\tvalidation_0-auc:0.92999\n[503]\tvalidation_0-auc:0.93002\n[504]\tvalidation_0-auc:0.93002\n[505]\tvalidation_0-auc:0.93005\n[506]\tvalidation_0-auc:0.93006\n[507]\tvalidation_0-auc:0.93002\n[508]\tvalidation_0-auc:0.93002\n[509]\tvalidation_0-auc:0.93004\n[510]\tvalidation_0-auc:0.93003\n[511]\tvalidation_0-auc:0.93000\n[512]\tvalidation_0-auc:0.93001\n[513]\tvalidation_0-auc:0.93001\n[514]\tvalidation_0-auc:0.93001\n[515]\tvalidation_0-auc:0.92996\n[516]\tvalidation_0-auc:0.92994\n[517]\tvalidation_0-auc:0.92993\n[518]\tvalidation_0-auc:0.92993\n[519]\tvalidation_0-auc:0.92993\n[520]\tvalidation_0-auc:0.92994\n[521]\tvalidation_0-auc:0.92996\n[522]\tvalidation_0-auc:0.92995\n[523]\tvalidation_0-auc:0.92996\n[524]\tvalidation_0-auc:0.93004\n[525]\tvalidation_0-auc:0.92999\n[526]\tvalidation_0-auc:0.93000\n[527]\tvalidation_0-auc:0.93002\n[528]\tvalidation_0-auc:0.93001\n[529]\tvalidation_0-auc:0.93002\n[530]\tvalidation_0-auc:0.93005\n[531]\tvalidation_0-auc:0.93004\n[532]\tvalidation_0-auc:0.93003\n[533]\tvalidation_0-auc:0.93004\n[534]\tvalidation_0-auc:0.93006\n[535]\tvalidation_0-auc:0.93007\n[536]\tvalidation_0-auc:0.93006\n[537]\tvalidation_0-auc:0.93006\n[538]\tvalidation_0-auc:0.93007\n[539]\tvalidation_0-auc:0.93010\n[540]\tvalidation_0-auc:0.93010\n[541]\tvalidation_0-auc:0.93011\n[542]\tvalidation_0-auc:0.93011\n[543]\tvalidation_0-auc:0.93013\n[544]\tvalidation_0-auc:0.93019\n[545]\tvalidation_0-auc:0.93019\n[546]\tvalidation_0-auc:0.93023\n[547]\tvalidation_0-auc:0.93033\n[548]\tvalidation_0-auc:0.93034\n[549]\tvalidation_0-auc:0.93031\n[550]\tvalidation_0-auc:0.93030\n[551]\tvalidation_0-auc:0.93028\n[552]\tvalidation_0-auc:0.93032\n[553]\tvalidation_0-auc:0.93031\n[554]\tvalidation_0-auc:0.93029\n[555]\tvalidation_0-auc:0.93021\n[556]\tvalidation_0-auc:0.93024\n[557]\tvalidation_0-auc:0.93020\n[558]\tvalidation_0-auc:0.93021\n[559]\tvalidation_0-auc:0.93024\n[560]\tvalidation_0-auc:0.93023\n[561]\tvalidation_0-auc:0.93020\n[562]\tvalidation_0-auc:0.93024\n[563]\tvalidation_0-auc:0.93023\n[564]\tvalidation_0-auc:0.93025\n[565]\tvalidation_0-auc:0.93024\n[566]\tvalidation_0-auc:0.93020\n[567]\tvalidation_0-auc:0.93016\n[568]\tvalidation_0-auc:0.93014\n[569]\tvalidation_0-auc:0.93022\n[570]\tvalidation_0-auc:0.93015\n[571]\tvalidation_0-auc:0.93018\n[572]\tvalidation_0-auc:0.93015\n[573]\tvalidation_0-auc:0.93016\n[574]\tvalidation_0-auc:0.93015\n[575]\tvalidation_0-auc:0.93013\n[576]\tvalidation_0-auc:0.93013\n[577]\tvalidation_0-auc:0.93013\n[578]\tvalidation_0-auc:0.93008\n[579]\tvalidation_0-auc:0.92997\n[580]\tvalidation_0-auc:0.92997\n[581]\tvalidation_0-auc:0.92997\n[582]\tvalidation_0-auc:0.92994\n[583]\tvalidation_0-auc:0.92996\n[584]\tvalidation_0-auc:0.92995\n[585]\tvalidation_0-auc:0.92998\n[586]\tvalidation_0-auc:0.92996\n[587]\tvalidation_0-auc:0.92996\n[588]\tvalidation_0-auc:0.92992\n[589]\tvalidation_0-auc:0.92992\n[590]\tvalidation_0-auc:0.92994\n[591]\tvalidation_0-auc:0.92993\n[592]\tvalidation_0-auc:0.92995\n[593]\tvalidation_0-auc:0.92996\n[594]\tvalidation_0-auc:0.92994\n[595]\tvalidation_0-auc:0.92999\n[596]\tvalidation_0-auc:0.92997\n[597]\tvalidation_0-auc:0.93000\n[598]\tvalidation_0-auc:0.92999\n[599]\tvalidation_0-auc:0.93000\n[600]\tvalidation_0-auc:0.93001\n[601]\tvalidation_0-auc:0.92998\n[602]\tvalidation_0-auc:0.93001\n[603]\tvalidation_0-auc:0.93000\n[604]\tvalidation_0-auc:0.93000\n[605]\tvalidation_0-auc:0.93000\n[606]\tvalidation_0-auc:0.92997\n[607]\tvalidation_0-auc:0.92996\n[608]\tvalidation_0-auc:0.92995\n[609]\tvalidation_0-auc:0.92996\n[610]\tvalidation_0-auc:0.92994\n[611]\tvalidation_0-auc:0.92993\n[612]\tvalidation_0-auc:0.92994\n[613]\tvalidation_0-auc:0.92993\n[614]\tvalidation_0-auc:0.93001\n[615]\tvalidation_0-auc:0.93001\n[616]\tvalidation_0-auc:0.92999\n[617]\tvalidation_0-auc:0.92999\n[618]\tvalidation_0-auc:0.92998\n[619]\tvalidation_0-auc:0.93000\n[620]\tvalidation_0-auc:0.92997\n[621]\tvalidation_0-auc:0.92996\n[622]\tvalidation_0-auc:0.92995\n[623]\tvalidation_0-auc:0.92993\n[624]\tvalidation_0-auc:0.92996\n[625]\tvalidation_0-auc:0.92995\n[626]\tvalidation_0-auc:0.92995\n[627]\tvalidation_0-auc:0.92994\n[628]\tvalidation_0-auc:0.92993\n[629]\tvalidation_0-auc:0.92994\n[630]\tvalidation_0-auc:0.92994\n[631]\tvalidation_0-auc:0.92999\n[632]\tvalidation_0-auc:0.92998\n[633]\tvalidation_0-auc:0.92999\n[634]\tvalidation_0-auc:0.92997\n[635]\tvalidation_0-auc:0.92999\n[636]\tvalidation_0-auc:0.93000\n[637]\tvalidation_0-auc:0.93003\n[638]\tvalidation_0-auc:0.93004\n[639]\tvalidation_0-auc:0.93003\n[640]\tvalidation_0-auc:0.93003\n[641]\tvalidation_0-auc:0.92998\n[642]\tvalidation_0-auc:0.92994\n[643]\tvalidation_0-auc:0.92996\n[644]\tvalidation_0-auc:0.92996\n[645]\tvalidation_0-auc:0.92995\n[646]\tvalidation_0-auc:0.92992\n[647]\tvalidation_0-auc:0.92993\n[0]\tvalidation_0-auc:0.86701\n[1]\tvalidation_0-auc:0.87891\n[2]\tvalidation_0-auc:0.89505\n[3]\tvalidation_0-auc:0.90440\n[4]\tvalidation_0-auc:0.90702\n[5]\tvalidation_0-auc:0.90887\n[6]\tvalidation_0-auc:0.90934\n[7]\tvalidation_0-auc:0.91298\n[8]\tvalidation_0-auc:0.91290\n[9]\tvalidation_0-auc:0.91572\n[10]\tvalidation_0-auc:0.91688\n"},{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\xgboost\\sklearn.py:797: UserWarning: `eval_metric` in `fit` method is deprecated for better compatibility with scikit-learn, use `eval_metric` in constructor or`set_params` instead.\n"," UserWarning,\n","E:\\Anaconda3\\lib\\site-packages\\xgboost\\sklearn.py:797: UserWarning: `early_stopping_rounds` in `fit` method is deprecated for better compatibility with scikit-learn, use `early_stopping_rounds` in constructor or`set_params` instead.\n"," UserWarning,\n"]},{"name":"stdout","output_type":"stream","text":"[11]\tvalidation_0-auc:0.91640\n[12]\tvalidation_0-auc:0.91649\n[13]\tvalidation_0-auc:0.91567\n[14]\tvalidation_0-auc:0.91686\n[15]\tvalidation_0-auc:0.91657\n[16]\tvalidation_0-auc:0.91638\n[17]\tvalidation_0-auc:0.91766\n[18]\tvalidation_0-auc:0.91773\n[19]\tvalidation_0-auc:0.91769\n[20]\tvalidation_0-auc:0.91741\n[21]\tvalidation_0-auc:0.91777\n[22]\tvalidation_0-auc:0.91795\n[23]\tvalidation_0-auc:0.91779\n[24]\tvalidation_0-auc:0.91799\n[25]\tvalidation_0-auc:0.91792\n[26]\tvalidation_0-auc:0.91767\n[27]\tvalidation_0-auc:0.91750\n[28]\tvalidation_0-auc:0.91767\n[29]\tvalidation_0-auc:0.91753\n[30]\tvalidation_0-auc:0.91849\n[31]\tvalidation_0-auc:0.91840\n[32]\tvalidation_0-auc:0.91850\n[33]\tvalidation_0-auc:0.91938\n[34]\tvalidation_0-auc:0.91975\n[35]\tvalidation_0-auc:0.91945\n[36]\tvalidation_0-auc:0.91969\n[37]\tvalidation_0-auc:0.91947\n[38]\tvalidation_0-auc:0.91946\n[39]\tvalidation_0-auc:0.91965\n[40]\tvalidation_0-auc:0.92008\n[41]\tvalidation_0-auc:0.92049\n[42]\tvalidation_0-auc:0.92055\n[43]\tvalidation_0-auc:0.92052\n[44]\tvalidation_0-auc:0.92039\n[45]\tvalidation_0-auc:0.92074\n[46]\tvalidation_0-auc:0.92098\n[47]\tvalidation_0-auc:0.92105\n[48]\tvalidation_0-auc:0.92125\n[49]\tvalidation_0-auc:0.92137\n[50]\tvalidation_0-auc:0.92198\n[51]\tvalidation_0-auc:0.92203\n[52]\tvalidation_0-auc:0.92201\n[53]\tvalidation_0-auc:0.92221\n[54]\tvalidation_0-auc:0.92233\n[55]\tvalidation_0-auc:0.92231\n[56]\tvalidation_0-auc:0.92225\n[57]\tvalidation_0-auc:0.92228\n[58]\tvalidation_0-auc:0.92240\n[59]\tvalidation_0-auc:0.92259\n[60]\tvalidation_0-auc:0.92284\n[61]\tvalidation_0-auc:0.92299\n[62]\tvalidation_0-auc:0.92302\n[63]\tvalidation_0-auc:0.92323\n[64]\tvalidation_0-auc:0.92317\n[65]\tvalidation_0-auc:0.92309\n[66]\tvalidation_0-auc:0.92307\n[67]\tvalidation_0-auc:0.92310\n[68]\tvalidation_0-auc:0.92310\n[69]\tvalidation_0-auc:0.92314\n[70]\tvalidation_0-auc:0.92313\n[71]\tvalidation_0-auc:0.92299\n[72]\tvalidation_0-auc:0.92299\n[73]\tvalidation_0-auc:0.92307\n[74]\tvalidation_0-auc:0.92291\n[75]\tvalidation_0-auc:0.92332\n[76]\tvalidation_0-auc:0.92338\n[77]\tvalidation_0-auc:0.92343\n[78]\tvalidation_0-auc:0.92346\n[79]\tvalidation_0-auc:0.92357\n[80]\tvalidation_0-auc:0.92361\n[81]\tvalidation_0-auc:0.92361\n[82]\tvalidation_0-auc:0.92361\n[83]\tvalidation_0-auc:0.92369\n[84]\tvalidation_0-auc:0.92362\n[85]\tvalidation_0-auc:0.92363\n[86]\tvalidation_0-auc:0.92362\n[87]\tvalidation_0-auc:0.92371\n[88]\tvalidation_0-auc:0.92363\n[89]\tvalidation_0-auc:0.92372\n[90]\tvalidation_0-auc:0.92375\n[91]\tvalidation_0-auc:0.92381\n[92]\tvalidation_0-auc:0.92383\n[93]\tvalidation_0-auc:0.92385\n[94]\tvalidation_0-auc:0.92390\n[95]\tvalidation_0-auc:0.92394\n[96]\tvalidation_0-auc:0.92397\n[97]\tvalidation_0-auc:0.92401\n[98]\tvalidation_0-auc:0.92404\n[99]\tvalidation_0-auc:0.92399\n[100]\tvalidation_0-auc:0.92407\n[101]\tvalidation_0-auc:0.92416\n[102]\tvalidation_0-auc:0.92409\n[103]\tvalidation_0-auc:0.92418\n[104]\tvalidation_0-auc:0.92412\n[105]\tvalidation_0-auc:0.92404\n[106]\tvalidation_0-auc:0.92411\n[107]\tvalidation_0-auc:0.92412\n[108]\tvalidation_0-auc:0.92424\n[109]\tvalidation_0-auc:0.92416\n[110]\tvalidation_0-auc:0.92418\n[111]\tvalidation_0-auc:0.92417\n[112]\tvalidation_0-auc:0.92417\n[113]\tvalidation_0-auc:0.92422\n[114]\tvalidation_0-auc:0.92434\n[115]\tvalidation_0-auc:0.92428\n[116]\tvalidation_0-auc:0.92439\n[117]\tvalidation_0-auc:0.92440\n[118]\tvalidation_0-auc:0.92439\n[119]\tvalidation_0-auc:0.92445\n[120]\tvalidation_0-auc:0.92448\n[121]\tvalidation_0-auc:0.92457\n[122]\tvalidation_0-auc:0.92461\n[123]\tvalidation_0-auc:0.92462\n[124]\tvalidation_0-auc:0.92455\n[125]\tvalidation_0-auc:0.92466\n[126]\tvalidation_0-auc:0.92471\n[127]\tvalidation_0-auc:0.92470\n[128]\tvalidation_0-auc:0.92474\n[129]\tvalidation_0-auc:0.92473\n[130]\tvalidation_0-auc:0.92470\n[131]\tvalidation_0-auc:0.92488\n[132]\tvalidation_0-auc:0.92487\n[133]\tvalidation_0-auc:0.92488\n[134]\tvalidation_0-auc:0.92483\n[135]\tvalidation_0-auc:0.92490\n[136]\tvalidation_0-auc:0.92490\n[137]\tvalidation_0-auc:0.92486\n[138]\tvalidation_0-auc:0.92487\n[139]\tvalidation_0-auc:0.92490\n[140]\tvalidation_0-auc:0.92493\n[141]\tvalidation_0-auc:0.92494\n[142]\tvalidation_0-auc:0.92493\n[143]\tvalidation_0-auc:0.92497\n[144]\tvalidation_0-auc:0.92494\n[145]\tvalidation_0-auc:0.92499\n[146]\tvalidation_0-auc:0.92500\n[147]\tvalidation_0-auc:0.92503\n[148]\tvalidation_0-auc:0.92504\n[149]\tvalidation_0-auc:0.92502\n[150]\tvalidation_0-auc:0.92504\n[151]\tvalidation_0-auc:0.92505\n[152]\tvalidation_0-auc:0.92503\n[153]\tvalidation_0-auc:0.92507\n[154]\tvalidation_0-auc:0.92503\n[155]\tvalidation_0-auc:0.92501\n[156]\tvalidation_0-auc:0.92505\n[157]\tvalidation_0-auc:0.92505\n[158]\tvalidation_0-auc:0.92508\n[159]\tvalidation_0-auc:0.92512\n[160]\tvalidation_0-auc:0.92510\n[161]\tvalidation_0-auc:0.92509\n[162]\tvalidation_0-auc:0.92515\n[163]\tvalidation_0-auc:0.92522\n[164]\tvalidation_0-auc:0.92521\n[165]\tvalidation_0-auc:0.92523\n[166]\tvalidation_0-auc:0.92522\n[167]\tvalidation_0-auc:0.92522\n[168]\tvalidation_0-auc:0.92519\n[169]\tvalidation_0-auc:0.92518\n[170]\tvalidation_0-auc:0.92518\n[171]\tvalidation_0-auc:0.92527\n[172]\tvalidation_0-auc:0.92524\n[173]\tvalidation_0-auc:0.92529\n[174]\tvalidation_0-auc:0.92532\n[175]\tvalidation_0-auc:0.92534\n[176]\tvalidation_0-auc:0.92535\n[177]\tvalidation_0-auc:0.92539\n[178]\tvalidation_0-auc:0.92545\n[179]\tvalidation_0-auc:0.92551\n[180]\tvalidation_0-auc:0.92545\n[181]\tvalidation_0-auc:0.92545\n[182]\tvalidation_0-auc:0.92543\n[183]\tvalidation_0-auc:0.92548\n[184]\tvalidation_0-auc:0.92553\n[185]\tvalidation_0-auc:0.92548\n[186]\tvalidation_0-auc:0.92552\n[187]\tvalidation_0-auc:0.92553\n[188]\tvalidation_0-auc:0.92552\n[189]\tvalidation_0-auc:0.92552\n[190]\tvalidation_0-auc:0.92558\n[191]\tvalidation_0-auc:0.92556\n[192]\tvalidation_0-auc:0.92560\n[193]\tvalidation_0-auc:0.92560\n[194]\tvalidation_0-auc:0.92565\n[195]\tvalidation_0-auc:0.92567\n[196]\tvalidation_0-auc:0.92569\n[197]\tvalidation_0-auc:0.92571\n[198]\tvalidation_0-auc:0.92573\n[199]\tvalidation_0-auc:0.92574\n[200]\tvalidation_0-auc:0.92574\n[201]\tvalidation_0-auc:0.92580\n[202]\tvalidation_0-auc:0.92588\n[203]\tvalidation_0-auc:0.92586\n[204]\tvalidation_0-auc:0.92590\n[205]\tvalidation_0-auc:0.92597\n[206]\tvalidation_0-auc:0.92600\n[207]\tvalidation_0-auc:0.92598\n[208]\tvalidation_0-auc:0.92595\n[209]\tvalidation_0-auc:0.92598\n[210]\tvalidation_0-auc:0.92593\n[211]\tvalidation_0-auc:0.92597\n[212]\tvalidation_0-auc:0.92592\n[213]\tvalidation_0-auc:0.92590\n[214]\tvalidation_0-auc:0.92599\n[215]\tvalidation_0-auc:0.92599\n[216]\tvalidation_0-auc:0.92600\n[217]\tvalidation_0-auc:0.92602\n[218]\tvalidation_0-auc:0.92607\n[219]\tvalidation_0-auc:0.92610\n[220]\tvalidation_0-auc:0.92611\n[221]\tvalidation_0-auc:0.92613\n[222]\tvalidation_0-auc:0.92614\n[223]\tvalidation_0-auc:0.92619\n[224]\tvalidation_0-auc:0.92618\n[225]\tvalidation_0-auc:0.92618\n[226]\tvalidation_0-auc:0.92627\n[227]\tvalidation_0-auc:0.92625\n[228]\tvalidation_0-auc:0.92629\n[229]\tvalidation_0-auc:0.92630\n[230]\tvalidation_0-auc:0.92633\n[231]\tvalidation_0-auc:0.92636\n[232]\tvalidation_0-auc:0.92639\n[233]\tvalidation_0-auc:0.92637\n[234]\tvalidation_0-auc:0.92645\n[235]\tvalidation_0-auc:0.92645\n[236]\tvalidation_0-auc:0.92644\n[237]\tvalidation_0-auc:0.92646\n[238]\tvalidation_0-auc:0.92644\n[239]\tvalidation_0-auc:0.92647\n[240]\tvalidation_0-auc:0.92650\n[241]\tvalidation_0-auc:0.92648\n[242]\tvalidation_0-auc:0.92646\n[243]\tvalidation_0-auc:0.92651\n[244]\tvalidation_0-auc:0.92653\n[245]\tvalidation_0-auc:0.92651\n[246]\tvalidation_0-auc:0.92654\n[247]\tvalidation_0-auc:0.92659\n[248]\tvalidation_0-auc:0.92656\n[249]\tvalidation_0-auc:0.92658\n[250]\tvalidation_0-auc:0.92658\n[251]\tvalidation_0-auc:0.92662\n[252]\tvalidation_0-auc:0.92663\n[253]\tvalidation_0-auc:0.92663\n[254]\tvalidation_0-auc:0.92663\n[255]\tvalidation_0-auc:0.92664\n[256]\tvalidation_0-auc:0.92664\n[257]\tvalidation_0-auc:0.92671\n[258]\tvalidation_0-auc:0.92672\n[259]\tvalidation_0-auc:0.92673\n[260]\tvalidation_0-auc:0.92671\n[261]\tvalidation_0-auc:0.92672\n[262]\tvalidation_0-auc:0.92675\n[263]\tvalidation_0-auc:0.92680\n[264]\tvalidation_0-auc:0.92680\n[265]\tvalidation_0-auc:0.92679\n[266]\tvalidation_0-auc:0.92679\n[267]\tvalidation_0-auc:0.92683\n[268]\tvalidation_0-auc:0.92686\n[269]\tvalidation_0-auc:0.92685\n[270]\tvalidation_0-auc:0.92684\n[271]\tvalidation_0-auc:0.92685\n[272]\tvalidation_0-auc:0.92683\n[273]\tvalidation_0-auc:0.92686\n[274]\tvalidation_0-auc:0.92688\n[275]\tvalidation_0-auc:0.92688\n[276]\tvalidation_0-auc:0.92687\n[277]\tvalidation_0-auc:0.92690\n[278]\tvalidation_0-auc:0.92693\n[279]\tvalidation_0-auc:0.92693\n[280]\tvalidation_0-auc:0.92693\n[281]\tvalidation_0-auc:0.92693\n[282]\tvalidation_0-auc:0.92692\n[283]\tvalidation_0-auc:0.92699\n[284]\tvalidation_0-auc:0.92703\n[285]\tvalidation_0-auc:0.92702\n[286]\tvalidation_0-auc:0.92700\n[287]\tvalidation_0-auc:0.92701\n[288]\tvalidation_0-auc:0.92703\n[289]\tvalidation_0-auc:0.92703\n[290]\tvalidation_0-auc:0.92703\n[291]\tvalidation_0-auc:0.92702\n[292]\tvalidation_0-auc:0.92701\n[293]\tvalidation_0-auc:0.92699\n[294]\tvalidation_0-auc:0.92699\n[295]\tvalidation_0-auc:0.92698\n[296]\tvalidation_0-auc:0.92698\n[297]\tvalidation_0-auc:0.92699\n[298]\tvalidation_0-auc:0.92704\n[299]\tvalidation_0-auc:0.92705\n[300]\tvalidation_0-auc:0.92706\n[301]\tvalidation_0-auc:0.92708\n[302]\tvalidation_0-auc:0.92710\n[303]\tvalidation_0-auc:0.92711\n[304]\tvalidation_0-auc:0.92715\n[305]\tvalidation_0-auc:0.92718\n[306]\tvalidation_0-auc:0.92714\n[307]\tvalidation_0-auc:0.92716\n[308]\tvalidation_0-auc:0.92713\n[309]\tvalidation_0-auc:0.92713\n[310]\tvalidation_0-auc:0.92714\n[311]\tvalidation_0-auc:0.92715\n[312]\tvalidation_0-auc:0.92712\n[313]\tvalidation_0-auc:0.92710\n[314]\tvalidation_0-auc:0.92709\n[315]\tvalidation_0-auc:0.92717\n[316]\tvalidation_0-auc:0.92715\n[317]\tvalidation_0-auc:0.92716\n[318]\tvalidation_0-auc:0.92717\n[319]\tvalidation_0-auc:0.92718\n[320]\tvalidation_0-auc:0.92717\n[321]\tvalidation_0-auc:0.92722\n[322]\tvalidation_0-auc:0.92718\n[323]\tvalidation_0-auc:0.92720\n[324]\tvalidation_0-auc:0.92722\n[325]\tvalidation_0-auc:0.92718\n[326]\tvalidation_0-auc:0.92717\n[327]\tvalidation_0-auc:0.92715\n[328]\tvalidation_0-auc:0.92715\n[329]\tvalidation_0-auc:0.92716\n[330]\tvalidation_0-auc:0.92721\n[331]\tvalidation_0-auc:0.92721\n[332]\tvalidation_0-auc:0.92722\n[333]\tvalidation_0-auc:0.92721\n[334]\tvalidation_0-auc:0.92722\n[335]\tvalidation_0-auc:0.92725\n[336]\tvalidation_0-auc:0.92726\n[337]\tvalidation_0-auc:0.92724\n[338]\tvalidation_0-auc:0.92724\n[339]\tvalidation_0-auc:0.92722\n[340]\tvalidation_0-auc:0.92724\n[341]\tvalidation_0-auc:0.92728\n[342]\tvalidation_0-auc:0.92727\n[343]\tvalidation_0-auc:0.92725\n[344]\tvalidation_0-auc:0.92724\n[345]\tvalidation_0-auc:0.92732\n[346]\tvalidation_0-auc:0.92736\n[347]\tvalidation_0-auc:0.92735\n[348]\tvalidation_0-auc:0.92736\n[349]\tvalidation_0-auc:0.92732\n[350]\tvalidation_0-auc:0.92732\n[351]\tvalidation_0-auc:0.92734\n[352]\tvalidation_0-auc:0.92735\n[353]\tvalidation_0-auc:0.92732\n[354]\tvalidation_0-auc:0.92731\n[355]\tvalidation_0-auc:0.92735\n[356]\tvalidation_0-auc:0.92737\n[357]\tvalidation_0-auc:0.92745\n[358]\tvalidation_0-auc:0.92742\n[359]\tvalidation_0-auc:0.92741\n[360]\tvalidation_0-auc:0.92737\n[361]\tvalidation_0-auc:0.92732\n[362]\tvalidation_0-auc:0.92736\n[363]\tvalidation_0-auc:0.92736\n[364]\tvalidation_0-auc:0.92735\n[365]\tvalidation_0-auc:0.92739\n[366]\tvalidation_0-auc:0.92738\n[367]\tvalidation_0-auc:0.92741\n[368]\tvalidation_0-auc:0.92740\n[369]\tvalidation_0-auc:0.92742\n[370]\tvalidation_0-auc:0.92743\n[371]\tvalidation_0-auc:0.92744\n[372]\tvalidation_0-auc:0.92745\n[373]\tvalidation_0-auc:0.92747\n[374]\tvalidation_0-auc:0.92749\n[375]\tvalidation_0-auc:0.92749\n[376]\tvalidation_0-auc:0.92748\n[377]\tvalidation_0-auc:0.92752\n[378]\tvalidation_0-auc:0.92749\n[379]\tvalidation_0-auc:0.92753\n[380]\tvalidation_0-auc:0.92754\n[381]\tvalidation_0-auc:0.92751\n[382]\tvalidation_0-auc:0.92752\n[383]\tvalidation_0-auc:0.92752\n[384]\tvalidation_0-auc:0.92752\n[385]\tvalidation_0-auc:0.92754\n[386]\tvalidation_0-auc:0.92755\n[387]\tvalidation_0-auc:0.92755\n[388]\tvalidation_0-auc:0.92754\n[389]\tvalidation_0-auc:0.92753\n[390]\tvalidation_0-auc:0.92754\n[391]\tvalidation_0-auc:0.92753\n[392]\tvalidation_0-auc:0.92753\n[393]\tvalidation_0-auc:0.92755\n[394]\tvalidation_0-auc:0.92755\n[395]\tvalidation_0-auc:0.92753\n[396]\tvalidation_0-auc:0.92752\n[397]\tvalidation_0-auc:0.92752\n[398]\tvalidation_0-auc:0.92755\n[399]\tvalidation_0-auc:0.92755\n[400]\tvalidation_0-auc:0.92756\n[401]\tvalidation_0-auc:0.92758\n[402]\tvalidation_0-auc:0.92757\n[403]\tvalidation_0-auc:0.92755\n[404]\tvalidation_0-auc:0.92756\n[405]\tvalidation_0-auc:0.92756\n[406]\tvalidation_0-auc:0.92751\n[407]\tvalidation_0-auc:0.92756\n[408]\tvalidation_0-auc:0.92756\n[409]\tvalidation_0-auc:0.92756\n[410]\tvalidation_0-auc:0.92753\n[411]\tvalidation_0-auc:0.92753\n[412]\tvalidation_0-auc:0.92751\n[413]\tvalidation_0-auc:0.92752\n[414]\tvalidation_0-auc:0.92753\n[415]\tvalidation_0-auc:0.92751\n[416]\tvalidation_0-auc:0.92752\n[417]\tvalidation_0-auc:0.92750\n[418]\tvalidation_0-auc:0.92752\n[419]\tvalidation_0-auc:0.92751\n[420]\tvalidation_0-auc:0.92752\n[421]\tvalidation_0-auc:0.92751\n[422]\tvalidation_0-auc:0.92751\n[423]\tvalidation_0-auc:0.92753\n[424]\tvalidation_0-auc:0.92756\n[425]\tvalidation_0-auc:0.92755\n[426]\tvalidation_0-auc:0.92757\n[427]\tvalidation_0-auc:0.92760\n[428]\tvalidation_0-auc:0.92760\n[429]\tvalidation_0-auc:0.92761\n[430]\tvalidation_0-auc:0.92759\n[431]\tvalidation_0-auc:0.92764\n[432]\tvalidation_0-auc:0.92763\n[433]\tvalidation_0-auc:0.92761\n[434]\tvalidation_0-auc:0.92764\n[435]\tvalidation_0-auc:0.92766\n[436]\tvalidation_0-auc:0.92768\n[437]\tvalidation_0-auc:0.92767\n[438]\tvalidation_0-auc:0.92766\n[439]\tvalidation_0-auc:0.92763\n[440]\tvalidation_0-auc:0.92767\n[441]\tvalidation_0-auc:0.92767\n[442]\tvalidation_0-auc:0.92766\n[443]\tvalidation_0-auc:0.92766\n[444]\tvalidation_0-auc:0.92762\n[445]\tvalidation_0-auc:0.92760\n[446]\tvalidation_0-auc:0.92759\n[447]\tvalidation_0-auc:0.92760\n[448]\tvalidation_0-auc:0.92761\n[449]\tvalidation_0-auc:0.92758\n[450]\tvalidation_0-auc:0.92760\n[451]\tvalidation_0-auc:0.92760\n[452]\tvalidation_0-auc:0.92762\n[453]\tvalidation_0-auc:0.92764\n[454]\tvalidation_0-auc:0.92765\n[455]\tvalidation_0-auc:0.92767\n[456]\tvalidation_0-auc:0.92767\n[457]\tvalidation_0-auc:0.92772\n[458]\tvalidation_0-auc:0.92776\n[459]\tvalidation_0-auc:0.92776\n[460]\tvalidation_0-auc:0.92777\n[461]\tvalidation_0-auc:0.92780\n[462]\tvalidation_0-auc:0.92779\n[463]\tvalidation_0-auc:0.92777\n[464]\tvalidation_0-auc:0.92781\n[465]\tvalidation_0-auc:0.92781\n[466]\tvalidation_0-auc:0.92783\n[467]\tvalidation_0-auc:0.92781\n[468]\tvalidation_0-auc:0.92779\n[469]\tvalidation_0-auc:0.92783\n[470]\tvalidation_0-auc:0.92782\n[471]\tvalidation_0-auc:0.92785\n[472]\tvalidation_0-auc:0.92782\n[473]\tvalidation_0-auc:0.92780\n[474]\tvalidation_0-auc:0.92781\n[475]\tvalidation_0-auc:0.92781\n[476]\tvalidation_0-auc:0.92780\n[477]\tvalidation_0-auc:0.92783\n[478]\tvalidation_0-auc:0.92782\n[479]\tvalidation_0-auc:0.92782\n[480]\tvalidation_0-auc:0.92786\n[481]\tvalidation_0-auc:0.92785\n[482]\tvalidation_0-auc:0.92786\n[483]\tvalidation_0-auc:0.92786\n[484]\tvalidation_0-auc:0.92785\n[485]\tvalidation_0-auc:0.92784\n[486]\tvalidation_0-auc:0.92784\n[487]\tvalidation_0-auc:0.92783\n[488]\tvalidation_0-auc:0.92782\n[489]\tvalidation_0-auc:0.92781\n[490]\tvalidation_0-auc:0.92780\n[491]\tvalidation_0-auc:0.92778\n[492]\tvalidation_0-auc:0.92781\n[493]\tvalidation_0-auc:0.92785\n[494]\tvalidation_0-auc:0.92782\n[495]\tvalidation_0-auc:0.92783\n[496]\tvalidation_0-auc:0.92786\n[497]\tvalidation_0-auc:0.92785\n[498]\tvalidation_0-auc:0.92784\n[499]\tvalidation_0-auc:0.92785\n[500]\tvalidation_0-auc:0.92784\n[501]\tvalidation_0-auc:0.92784\n[502]\tvalidation_0-auc:0.92787\n[503]\tvalidation_0-auc:0.92792\n[504]\tvalidation_0-auc:0.92793\n[505]\tvalidation_0-auc:0.92796\n[506]\tvalidation_0-auc:0.92795\n[507]\tvalidation_0-auc:0.92796\n[508]\tvalidation_0-auc:0.92796\n[509]\tvalidation_0-auc:0.92797\n[510]\tvalidation_0-auc:0.92793\n[511]\tvalidation_0-auc:0.92794\n[512]\tvalidation_0-auc:0.92793\n[513]\tvalidation_0-auc:0.92794\n[514]\tvalidation_0-auc:0.92793\n[515]\tvalidation_0-auc:0.92797\n[516]\tvalidation_0-auc:0.92797\n[517]\tvalidation_0-auc:0.92798\n[518]\tvalidation_0-auc:0.92798\n[519]\tvalidation_0-auc:0.92797\n[520]\tvalidation_0-auc:0.92795\n[521]\tvalidation_0-auc:0.92795\n[522]\tvalidation_0-auc:0.92798\n[523]\tvalidation_0-auc:0.92798\n[524]\tvalidation_0-auc:0.92795\n[525]\tvalidation_0-auc:0.92791\n[526]\tvalidation_0-auc:0.92788\n[527]\tvalidation_0-auc:0.92785\n[528]\tvalidation_0-auc:0.92785\n[529]\tvalidation_0-auc:0.92786\n[530]\tvalidation_0-auc:0.92789\n[531]\tvalidation_0-auc:0.92786\n[532]\tvalidation_0-auc:0.92785\n[533]\tvalidation_0-auc:0.92786\n[534]\tvalidation_0-auc:0.92786\n[535]\tvalidation_0-auc:0.92784\n[536]\tvalidation_0-auc:0.92783\n[537]\tvalidation_0-auc:0.92784\n[538]\tvalidation_0-auc:0.92783\n[539]\tvalidation_0-auc:0.92784\n[540]\tvalidation_0-auc:0.92783\n[541]\tvalidation_0-auc:0.92789\n[542]\tvalidation_0-auc:0.92792\n[543]\tvalidation_0-auc:0.92792\n[544]\tvalidation_0-auc:0.92792\n[545]\tvalidation_0-auc:0.92790\n[546]\tvalidation_0-auc:0.92788\n[547]\tvalidation_0-auc:0.92782\n[548]\tvalidation_0-auc:0.92781\n[549]\tvalidation_0-auc:0.92778\n[550]\tvalidation_0-auc:0.92778\n[551]\tvalidation_0-auc:0.92778\n[552]\tvalidation_0-auc:0.92776\n[553]\tvalidation_0-auc:0.92775\n[554]\tvalidation_0-auc:0.92771\n[555]\tvalidation_0-auc:0.92772\n[556]\tvalidation_0-auc:0.92770\n[557]\tvalidation_0-auc:0.92772\n[558]\tvalidation_0-auc:0.92772\n[559]\tvalidation_0-auc:0.92771\n[560]\tvalidation_0-auc:0.92768\n[561]\tvalidation_0-auc:0.92768\n[562]\tvalidation_0-auc:0.92768\n[563]\tvalidation_0-auc:0.92768\n[564]\tvalidation_0-auc:0.92769\n[565]\tvalidation_0-auc:0.92774\n[566]\tvalidation_0-auc:0.92779\n[567]\tvalidation_0-auc:0.92778\n[568]\tvalidation_0-auc:0.92781\n[569]\tvalidation_0-auc:0.92779\n[570]\tvalidation_0-auc:0.92776\n[571]\tvalidation_0-auc:0.92774\n[572]\tvalidation_0-auc:0.92772\n[573]\tvalidation_0-auc:0.92772\n[574]\tvalidation_0-auc:0.92771\n[575]\tvalidation_0-auc:0.92771\n[576]\tvalidation_0-auc:0.92775\n[577]\tvalidation_0-auc:0.92776\n[578]\tvalidation_0-auc:0.92776\n[579]\tvalidation_0-auc:0.92776\n[580]\tvalidation_0-auc:0.92776\n[581]\tvalidation_0-auc:0.92774\n[582]\tvalidation_0-auc:0.92770\n[583]\tvalidation_0-auc:0.92775\n[584]\tvalidation_0-auc:0.92769\n[585]\tvalidation_0-auc:0.92768\n[586]\tvalidation_0-auc:0.92770\n[587]\tvalidation_0-auc:0.92772\n[588]\tvalidation_0-auc:0.92772\n[589]\tvalidation_0-auc:0.92774\n[590]\tvalidation_0-auc:0.92772\n[591]\tvalidation_0-auc:0.92772\n[592]\tvalidation_0-auc:0.92771\n[593]\tvalidation_0-auc:0.92770\n[594]\tvalidation_0-auc:0.92769\n[595]\tvalidation_0-auc:0.92770\n[596]\tvalidation_0-auc:0.92769\n[597]\tvalidation_0-auc:0.92765\n[598]\tvalidation_0-auc:0.92763\n[599]\tvalidation_0-auc:0.92762\n[600]\tvalidation_0-auc:0.92761\n[601]\tvalidation_0-auc:0.92763\n[602]\tvalidation_0-auc:0.92763\n[603]\tvalidation_0-auc:0.92762\n[604]\tvalidation_0-auc:0.92758\n[605]\tvalidation_0-auc:0.92756\n[606]\tvalidation_0-auc:0.92757\n[607]\tvalidation_0-auc:0.92757\n[608]\tvalidation_0-auc:0.92756\n[609]\tvalidation_0-auc:0.92754\n[610]\tvalidation_0-auc:0.92753\n[611]\tvalidation_0-auc:0.92751\n[612]\tvalidation_0-auc:0.92757\n[613]\tvalidation_0-auc:0.92757\n[614]\tvalidation_0-auc:0.92760\n[615]\tvalidation_0-auc:0.92761\n[616]\tvalidation_0-auc:0.92760\n[617]\tvalidation_0-auc:0.92766\n[0]\tvalidation_0-auc:0.86082\n[1]\tvalidation_0-auc:0.87954\n[2]\tvalidation_0-auc:0.89021\n[3]\tvalidation_0-auc:0.88417\n[4]\tvalidation_0-auc:0.88310\n[5]\tvalidation_0-auc:0.90295\n[6]\tvalidation_0-auc:0.90830\n[7]\tvalidation_0-auc:0.90873\n[8]\tvalidation_0-auc:0.90841\n[9]\tvalidation_0-auc:0.91263\n[10]\tvalidation_0-auc:0.91663\n[11]\tvalidation_0-auc:0.91804\n"},{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\xgboost\\sklearn.py:797: UserWarning: `eval_metric` in `fit` method is deprecated for better compatibility with scikit-learn, use `eval_metric` in constructor or`set_params` instead.\n"," UserWarning,\n","E:\\Anaconda3\\lib\\site-packages\\xgboost\\sklearn.py:797: UserWarning: `early_stopping_rounds` in `fit` method is deprecated for better compatibility with scikit-learn, use `early_stopping_rounds` in constructor or`set_params` instead.\n"," UserWarning,\n"]},{"name":"stdout","output_type":"stream","text":"[12]\tvalidation_0-auc:0.92002\n[13]\tvalidation_0-auc:0.92045\n[14]\tvalidation_0-auc:0.92028\n[15]\tvalidation_0-auc:0.92117\n[16]\tvalidation_0-auc:0.92060\n[17]\tvalidation_0-auc:0.92007\n[18]\tvalidation_0-auc:0.92012\n[19]\tvalidation_0-auc:0.92056\n[20]\tvalidation_0-auc:0.92115\n[21]\tvalidation_0-auc:0.92272\n[22]\tvalidation_0-auc:0.92302\n[23]\tvalidation_0-auc:0.92345\n[24]\tvalidation_0-auc:0.92380\n[25]\tvalidation_0-auc:0.92478\n[26]\tvalidation_0-auc:0.92474\n[27]\tvalidation_0-auc:0.92540\n[28]\tvalidation_0-auc:0.92551\n[29]\tvalidation_0-auc:0.92551\n[30]\tvalidation_0-auc:0.92604\n[31]\tvalidation_0-auc:0.92591\n[32]\tvalidation_0-auc:0.92639\n[33]\tvalidation_0-auc:0.92736\n[34]\tvalidation_0-auc:0.92697\n[35]\tvalidation_0-auc:0.92699\n[36]\tvalidation_0-auc:0.92696\n[37]\tvalidation_0-auc:0.92697\n[38]\tvalidation_0-auc:0.92672\n[39]\tvalidation_0-auc:0.92667\n[40]\tvalidation_0-auc:0.92712\n[41]\tvalidation_0-auc:0.92706\n[42]\tvalidation_0-auc:0.92704\n[43]\tvalidation_0-auc:0.92712\n[44]\tvalidation_0-auc:0.92666\n[45]\tvalidation_0-auc:0.92658\n[46]\tvalidation_0-auc:0.92653\n[47]\tvalidation_0-auc:0.92649\n[48]\tvalidation_0-auc:0.92651\n[49]\tvalidation_0-auc:0.92647\n[50]\tvalidation_0-auc:0.92653\n[51]\tvalidation_0-auc:0.92679\n[52]\tvalidation_0-auc:0.92676\n[53]\tvalidation_0-auc:0.92684\n[54]\tvalidation_0-auc:0.92712\n[55]\tvalidation_0-auc:0.92728\n[56]\tvalidation_0-auc:0.92727\n[57]\tvalidation_0-auc:0.92732\n[58]\tvalidation_0-auc:0.92721\n[59]\tvalidation_0-auc:0.92728\n[60]\tvalidation_0-auc:0.92753\n[61]\tvalidation_0-auc:0.92751\n[62]\tvalidation_0-auc:0.92750\n[63]\tvalidation_0-auc:0.92753\n[64]\tvalidation_0-auc:0.92756\n[65]\tvalidation_0-auc:0.92754\n[66]\tvalidation_0-auc:0.92760\n[67]\tvalidation_0-auc:0.92749\n[68]\tvalidation_0-auc:0.92738\n[69]\tvalidation_0-auc:0.92746\n[70]\tvalidation_0-auc:0.92767\n[71]\tvalidation_0-auc:0.92795\n[72]\tvalidation_0-auc:0.92798\n[73]\tvalidation_0-auc:0.92780\n[74]\tvalidation_0-auc:0.92772\n[75]\tvalidation_0-auc:0.92786\n[76]\tvalidation_0-auc:0.92789\n[77]\tvalidation_0-auc:0.92800\n[78]\tvalidation_0-auc:0.92822\n[79]\tvalidation_0-auc:0.92836\n[80]\tvalidation_0-auc:0.92846\n[81]\tvalidation_0-auc:0.92868\n[82]\tvalidation_0-auc:0.92875\n[83]\tvalidation_0-auc:0.92887\n[84]\tvalidation_0-auc:0.92901\n[85]\tvalidation_0-auc:0.92906\n[86]\tvalidation_0-auc:0.92900\n[87]\tvalidation_0-auc:0.92919\n[88]\tvalidation_0-auc:0.92927\n[89]\tvalidation_0-auc:0.92970\n[90]\tvalidation_0-auc:0.92981\n[91]\tvalidation_0-auc:0.92983\n[92]\tvalidation_0-auc:0.92990\n[93]\tvalidation_0-auc:0.93004\n[94]\tvalidation_0-auc:0.93023\n[95]\tvalidation_0-auc:0.93021\n[96]\tvalidation_0-auc:0.93024\n[97]\tvalidation_0-auc:0.93021\n[98]\tvalidation_0-auc:0.93031\n[99]\tvalidation_0-auc:0.93070\n[100]\tvalidation_0-auc:0.93070\n[101]\tvalidation_0-auc:0.93074\n[102]\tvalidation_0-auc:0.93070\n[103]\tvalidation_0-auc:0.93078\n[104]\tvalidation_0-auc:0.93084\n[105]\tvalidation_0-auc:0.93085\n[106]\tvalidation_0-auc:0.93093\n[107]\tvalidation_0-auc:0.93099\n[108]\tvalidation_0-auc:0.93100\n[109]\tvalidation_0-auc:0.93098\n[110]\tvalidation_0-auc:0.93103\n[111]\tvalidation_0-auc:0.93102\n[112]\tvalidation_0-auc:0.93098\n[113]\tvalidation_0-auc:0.93099\n[114]\tvalidation_0-auc:0.93110\n[115]\tvalidation_0-auc:0.93120\n[116]\tvalidation_0-auc:0.93124\n[117]\tvalidation_0-auc:0.93125\n[118]\tvalidation_0-auc:0.93125\n[119]\tvalidation_0-auc:0.93126\n[120]\tvalidation_0-auc:0.93118\n[121]\tvalidation_0-auc:0.93100\n[122]\tvalidation_0-auc:0.93099\n[123]\tvalidation_0-auc:0.93095\n[124]\tvalidation_0-auc:0.93089\n[125]\tvalidation_0-auc:0.93086\n[126]\tvalidation_0-auc:0.93080\n[127]\tvalidation_0-auc:0.93080\n[128]\tvalidation_0-auc:0.93080\n[129]\tvalidation_0-auc:0.93093\n[130]\tvalidation_0-auc:0.93098\n[131]\tvalidation_0-auc:0.93100\n[132]\tvalidation_0-auc:0.93099\n[133]\tvalidation_0-auc:0.93100\n[134]\tvalidation_0-auc:0.93098\n[135]\tvalidation_0-auc:0.93103\n[136]\tvalidation_0-auc:0.93130\n[137]\tvalidation_0-auc:0.93132\n[138]\tvalidation_0-auc:0.93144\n[139]\tvalidation_0-auc:0.93147\n[140]\tvalidation_0-auc:0.93146\n[141]\tvalidation_0-auc:0.93156\n[142]\tvalidation_0-auc:0.93160\n[143]\tvalidation_0-auc:0.93161\n[144]\tvalidation_0-auc:0.93164\n[145]\tvalidation_0-auc:0.93167\n[146]\tvalidation_0-auc:0.93171\n[147]\tvalidation_0-auc:0.93173\n[148]\tvalidation_0-auc:0.93172\n[149]\tvalidation_0-auc:0.93169\n[150]\tvalidation_0-auc:0.93164\n[151]\tvalidation_0-auc:0.93171\n[152]\tvalidation_0-auc:0.93168\n[153]\tvalidation_0-auc:0.93167\n[154]\tvalidation_0-auc:0.93169\n[155]\tvalidation_0-auc:0.93170\n[156]\tvalidation_0-auc:0.93171\n[157]\tvalidation_0-auc:0.93173\n[158]\tvalidation_0-auc:0.93180\n[159]\tvalidation_0-auc:0.93190\n[160]\tvalidation_0-auc:0.93205\n[161]\tvalidation_0-auc:0.93202\n[162]\tvalidation_0-auc:0.93211\n[163]\tvalidation_0-auc:0.93213\n[164]\tvalidation_0-auc:0.93217\n[165]\tvalidation_0-auc:0.93216\n[166]\tvalidation_0-auc:0.93220\n[167]\tvalidation_0-auc:0.93239\n[168]\tvalidation_0-auc:0.93237\n[169]\tvalidation_0-auc:0.93246\n[170]\tvalidation_0-auc:0.93248\n[171]\tvalidation_0-auc:0.93244\n[172]\tvalidation_0-auc:0.93249\n[173]\tvalidation_0-auc:0.93253\n[174]\tvalidation_0-auc:0.93261\n[175]\tvalidation_0-auc:0.93262\n[176]\tvalidation_0-auc:0.93257\n[177]\tvalidation_0-auc:0.93257\n[178]\tvalidation_0-auc:0.93250\n[179]\tvalidation_0-auc:0.93250\n[180]\tvalidation_0-auc:0.93253\n[181]\tvalidation_0-auc:0.93249\n[182]\tvalidation_0-auc:0.93252\n[183]\tvalidation_0-auc:0.93247\n[184]\tvalidation_0-auc:0.93252\n[185]\tvalidation_0-auc:0.93250\n[186]\tvalidation_0-auc:0.93255\n[187]\tvalidation_0-auc:0.93254\n[188]\tvalidation_0-auc:0.93253\n[189]\tvalidation_0-auc:0.93256\n[190]\tvalidation_0-auc:0.93268\n[191]\tvalidation_0-auc:0.93275\n[192]\tvalidation_0-auc:0.93281\n[193]\tvalidation_0-auc:0.93279\n[194]\tvalidation_0-auc:0.93285\n[195]\tvalidation_0-auc:0.93295\n[196]\tvalidation_0-auc:0.93298\n[197]\tvalidation_0-auc:0.93303\n[198]\tvalidation_0-auc:0.93302\n[199]\tvalidation_0-auc:0.93316\n[200]\tvalidation_0-auc:0.93316\n[201]\tvalidation_0-auc:0.93319\n[202]\tvalidation_0-auc:0.93325\n[203]\tvalidation_0-auc:0.93320\n[204]\tvalidation_0-auc:0.93326\n[205]\tvalidation_0-auc:0.93321\n[206]\tvalidation_0-auc:0.93333\n[207]\tvalidation_0-auc:0.93339\n[208]\tvalidation_0-auc:0.93337\n[209]\tvalidation_0-auc:0.93341\n[210]\tvalidation_0-auc:0.93339\n[211]\tvalidation_0-auc:0.93338\n[212]\tvalidation_0-auc:0.93340\n[213]\tvalidation_0-auc:0.93344\n[214]\tvalidation_0-auc:0.93348\n[215]\tvalidation_0-auc:0.93346\n[216]\tvalidation_0-auc:0.93343\n[217]\tvalidation_0-auc:0.93342\n[218]\tvalidation_0-auc:0.93347\n[219]\tvalidation_0-auc:0.93349\n[220]\tvalidation_0-auc:0.93349\n[221]\tvalidation_0-auc:0.93350\n[222]\tvalidation_0-auc:0.93350\n[223]\tvalidation_0-auc:0.93359\n[224]\tvalidation_0-auc:0.93359\n[225]\tvalidation_0-auc:0.93363\n[226]\tvalidation_0-auc:0.93368\n[227]\tvalidation_0-auc:0.93375\n[228]\tvalidation_0-auc:0.93377\n[229]\tvalidation_0-auc:0.93376\n[230]\tvalidation_0-auc:0.93378\n[231]\tvalidation_0-auc:0.93388\n[232]\tvalidation_0-auc:0.93389\n[233]\tvalidation_0-auc:0.93389\n[234]\tvalidation_0-auc:0.93385\n[235]\tvalidation_0-auc:0.93394\n[236]\tvalidation_0-auc:0.93399\n[237]\tvalidation_0-auc:0.93407\n[238]\tvalidation_0-auc:0.93407\n[239]\tvalidation_0-auc:0.93407\n[240]\tvalidation_0-auc:0.93406\n[241]\tvalidation_0-auc:0.93412\n[242]\tvalidation_0-auc:0.93411\n[243]\tvalidation_0-auc:0.93424\n[244]\tvalidation_0-auc:0.93422\n[245]\tvalidation_0-auc:0.93421\n[246]\tvalidation_0-auc:0.93422\n[247]\tvalidation_0-auc:0.93431\n[248]\tvalidation_0-auc:0.93426\n[249]\tvalidation_0-auc:0.93423\n[250]\tvalidation_0-auc:0.93425\n[251]\tvalidation_0-auc:0.93431\n[252]\tvalidation_0-auc:0.93434\n[253]\tvalidation_0-auc:0.93439\n[254]\tvalidation_0-auc:0.93439\n[255]\tvalidation_0-auc:0.93443\n[256]\tvalidation_0-auc:0.93445\n[257]\tvalidation_0-auc:0.93448\n[258]\tvalidation_0-auc:0.93445\n[259]\tvalidation_0-auc:0.93446\n[260]\tvalidation_0-auc:0.93451\n[261]\tvalidation_0-auc:0.93451\n[262]\tvalidation_0-auc:0.93457\n[263]\tvalidation_0-auc:0.93454\n[264]\tvalidation_0-auc:0.93453\n[265]\tvalidation_0-auc:0.93455\n[266]\tvalidation_0-auc:0.93453\n[267]\tvalidation_0-auc:0.93452\n[268]\tvalidation_0-auc:0.93454\n[269]\tvalidation_0-auc:0.93458\n[270]\tvalidation_0-auc:0.93458\n[271]\tvalidation_0-auc:0.93452\n[272]\tvalidation_0-auc:0.93454\n[273]\tvalidation_0-auc:0.93454\n[274]\tvalidation_0-auc:0.93451\n[275]\tvalidation_0-auc:0.93456\n[276]\tvalidation_0-auc:0.93463\n[277]\tvalidation_0-auc:0.93470\n[278]\tvalidation_0-auc:0.93471\n[279]\tvalidation_0-auc:0.93477\n[280]\tvalidation_0-auc:0.93481\n[281]\tvalidation_0-auc:0.93486\n[282]\tvalidation_0-auc:0.93486\n[283]\tvalidation_0-auc:0.93487\n[284]\tvalidation_0-auc:0.93488\n[285]\tvalidation_0-auc:0.93484\n[286]\tvalidation_0-auc:0.93486\n[287]\tvalidation_0-auc:0.93485\n[288]\tvalidation_0-auc:0.93489\n[289]\tvalidation_0-auc:0.93488\n[290]\tvalidation_0-auc:0.93488\n[291]\tvalidation_0-auc:0.93489\n[292]\tvalidation_0-auc:0.93490\n[293]\tvalidation_0-auc:0.93490\n[294]\tvalidation_0-auc:0.93494\n[295]\tvalidation_0-auc:0.93497\n[296]\tvalidation_0-auc:0.93502\n[297]\tvalidation_0-auc:0.93499\n[298]\tvalidation_0-auc:0.93497\n[299]\tvalidation_0-auc:0.93499\n[300]\tvalidation_0-auc:0.93500\n[301]\tvalidation_0-auc:0.93502\n[302]\tvalidation_0-auc:0.93500\n[303]\tvalidation_0-auc:0.93501\n[304]\tvalidation_0-auc:0.93501\n[305]\tvalidation_0-auc:0.93504\n[306]\tvalidation_0-auc:0.93499\n[307]\tvalidation_0-auc:0.93504\n[308]\tvalidation_0-auc:0.93502\n[309]\tvalidation_0-auc:0.93505\n[310]\tvalidation_0-auc:0.93511\n[311]\tvalidation_0-auc:0.93517\n[312]\tvalidation_0-auc:0.93527\n[313]\tvalidation_0-auc:0.93532\n[314]\tvalidation_0-auc:0.93530\n[315]\tvalidation_0-auc:0.93529\n[316]\tvalidation_0-auc:0.93532\n[317]\tvalidation_0-auc:0.93537\n[318]\tvalidation_0-auc:0.93537\n[319]\tvalidation_0-auc:0.93537\n[320]\tvalidation_0-auc:0.93536\n[321]\tvalidation_0-auc:0.93537\n[322]\tvalidation_0-auc:0.93540\n[323]\tvalidation_0-auc:0.93536\n[324]\tvalidation_0-auc:0.93536\n[325]\tvalidation_0-auc:0.93536\n[326]\tvalidation_0-auc:0.93538\n[327]\tvalidation_0-auc:0.93542\n[328]\tvalidation_0-auc:0.93544\n[329]\tvalidation_0-auc:0.93544\n[330]\tvalidation_0-auc:0.93550\n[331]\tvalidation_0-auc:0.93550\n[332]\tvalidation_0-auc:0.93550\n[333]\tvalidation_0-auc:0.93549\n[334]\tvalidation_0-auc:0.93550\n[335]\tvalidation_0-auc:0.93547\n[336]\tvalidation_0-auc:0.93551\n[337]\tvalidation_0-auc:0.93554\n[338]\tvalidation_0-auc:0.93553\n[339]\tvalidation_0-auc:0.93554\n[340]\tvalidation_0-auc:0.93552\n[341]\tvalidation_0-auc:0.93553\n[342]\tvalidation_0-auc:0.93554\n[343]\tvalidation_0-auc:0.93552\n[344]\tvalidation_0-auc:0.93552\n[345]\tvalidation_0-auc:0.93551\n[346]\tvalidation_0-auc:0.93553\n[347]\tvalidation_0-auc:0.93552\n[348]\tvalidation_0-auc:0.93555\n[349]\tvalidation_0-auc:0.93555\n[350]\tvalidation_0-auc:0.93557\n[351]\tvalidation_0-auc:0.93558\n[352]\tvalidation_0-auc:0.93557\n[353]\tvalidation_0-auc:0.93564\n[354]\tvalidation_0-auc:0.93565\n[355]\tvalidation_0-auc:0.93567\n[356]\tvalidation_0-auc:0.93575\n[357]\tvalidation_0-auc:0.93579\n[358]\tvalidation_0-auc:0.93579\n[359]\tvalidation_0-auc:0.93584\n[360]\tvalidation_0-auc:0.93582\n[361]\tvalidation_0-auc:0.93586\n[362]\tvalidation_0-auc:0.93591\n[363]\tvalidation_0-auc:0.93586\n[364]\tvalidation_0-auc:0.93586\n[365]\tvalidation_0-auc:0.93587\n[366]\tvalidation_0-auc:0.93588\n[367]\tvalidation_0-auc:0.93587\n[368]\tvalidation_0-auc:0.93585\n[369]\tvalidation_0-auc:0.93588\n[370]\tvalidation_0-auc:0.93585\n[371]\tvalidation_0-auc:0.93585\n[372]\tvalidation_0-auc:0.93587\n[373]\tvalidation_0-auc:0.93587\n[374]\tvalidation_0-auc:0.93586\n[375]\tvalidation_0-auc:0.93584\n[376]\tvalidation_0-auc:0.93585\n[377]\tvalidation_0-auc:0.93591\n[378]\tvalidation_0-auc:0.93591\n[379]\tvalidation_0-auc:0.93595\n[380]\tvalidation_0-auc:0.93594\n[381]\tvalidation_0-auc:0.93594\n[382]\tvalidation_0-auc:0.93594\n[383]\tvalidation_0-auc:0.93599\n[384]\tvalidation_0-auc:0.93600\n[385]\tvalidation_0-auc:0.93602\n[386]\tvalidation_0-auc:0.93600\n[387]\tvalidation_0-auc:0.93600\n[388]\tvalidation_0-auc:0.93604\n[389]\tvalidation_0-auc:0.93607\n[390]\tvalidation_0-auc:0.93612\n[391]\tvalidation_0-auc:0.93611\n[392]\tvalidation_0-auc:0.93612\n[393]\tvalidation_0-auc:0.93615\n[394]\tvalidation_0-auc:0.93614\n[395]\tvalidation_0-auc:0.93615\n[396]\tvalidation_0-auc:0.93615\n[397]\tvalidation_0-auc:0.93614\n[398]\tvalidation_0-auc:0.93615\n[399]\tvalidation_0-auc:0.93617\n[400]\tvalidation_0-auc:0.93618\n[401]\tvalidation_0-auc:0.93621\n[402]\tvalidation_0-auc:0.93621\n[403]\tvalidation_0-auc:0.93623\n[404]\tvalidation_0-auc:0.93621\n[405]\tvalidation_0-auc:0.93620\n[406]\tvalidation_0-auc:0.93621\n[407]\tvalidation_0-auc:0.93626\n[408]\tvalidation_0-auc:0.93624\n[409]\tvalidation_0-auc:0.93622\n[410]\tvalidation_0-auc:0.93622\n[411]\tvalidation_0-auc:0.93625\n[412]\tvalidation_0-auc:0.93627\n[413]\tvalidation_0-auc:0.93628\n[414]\tvalidation_0-auc:0.93631\n[415]\tvalidation_0-auc:0.93630\n[416]\tvalidation_0-auc:0.93629\n[417]\tvalidation_0-auc:0.93640\n[418]\tvalidation_0-auc:0.93636\n[419]\tvalidation_0-auc:0.93645\n[420]\tvalidation_0-auc:0.93643\n[421]\tvalidation_0-auc:0.93643\n[422]\tvalidation_0-auc:0.93642\n[423]\tvalidation_0-auc:0.93640\n[424]\tvalidation_0-auc:0.93642\n[425]\tvalidation_0-auc:0.93643\n[426]\tvalidation_0-auc:0.93645\n[427]\tvalidation_0-auc:0.93644\n[428]\tvalidation_0-auc:0.93644\n[429]\tvalidation_0-auc:0.93645\n[430]\tvalidation_0-auc:0.93643\n[431]\tvalidation_0-auc:0.93644\n[432]\tvalidation_0-auc:0.93652\n[433]\tvalidation_0-auc:0.93652\n[434]\tvalidation_0-auc:0.93657\n[435]\tvalidation_0-auc:0.93658\n[436]\tvalidation_0-auc:0.93664\n[437]\tvalidation_0-auc:0.93662\n[438]\tvalidation_0-auc:0.93661\n[439]\tvalidation_0-auc:0.93663\n[440]\tvalidation_0-auc:0.93659\n[441]\tvalidation_0-auc:0.93660\n[442]\tvalidation_0-auc:0.93661\n[443]\tvalidation_0-auc:0.93664\n[444]\tvalidation_0-auc:0.93661\n[445]\tvalidation_0-auc:0.93661\n[446]\tvalidation_0-auc:0.93659\n[447]\tvalidation_0-auc:0.93658\n[448]\tvalidation_0-auc:0.93659\n[449]\tvalidation_0-auc:0.93660\n[450]\tvalidation_0-auc:0.93658\n[451]\tvalidation_0-auc:0.93659\n[452]\tvalidation_0-auc:0.93663\n[453]\tvalidation_0-auc:0.93665\n[454]\tvalidation_0-auc:0.93666\n[455]\tvalidation_0-auc:0.93666\n[456]\tvalidation_0-auc:0.93668\n[457]\tvalidation_0-auc:0.93669\n[458]\tvalidation_0-auc:0.93669\n[459]\tvalidation_0-auc:0.93666\n[460]\tvalidation_0-auc:0.93669\n[461]\tvalidation_0-auc:0.93673\n[462]\tvalidation_0-auc:0.93672\n[463]\tvalidation_0-auc:0.93672\n[464]\tvalidation_0-auc:0.93671\n[465]\tvalidation_0-auc:0.93671\n[466]\tvalidation_0-auc:0.93672\n[467]\tvalidation_0-auc:0.93670\n[468]\tvalidation_0-auc:0.93670\n[469]\tvalidation_0-auc:0.93669\n[470]\tvalidation_0-auc:0.93669\n[471]\tvalidation_0-auc:0.93670\n[472]\tvalidation_0-auc:0.93671\n[473]\tvalidation_0-auc:0.93672\n[474]\tvalidation_0-auc:0.93676\n[475]\tvalidation_0-auc:0.93676\n[476]\tvalidation_0-auc:0.93680\n[477]\tvalidation_0-auc:0.93677\n[478]\tvalidation_0-auc:0.93678\n[479]\tvalidation_0-auc:0.93680\n[480]\tvalidation_0-auc:0.93677\n[481]\tvalidation_0-auc:0.93678\n[482]\tvalidation_0-auc:0.93679\n[483]\tvalidation_0-auc:0.93679\n[484]\tvalidation_0-auc:0.93681\n[485]\tvalidation_0-auc:0.93685\n[486]\tvalidation_0-auc:0.93685\n[487]\tvalidation_0-auc:0.93685\n[488]\tvalidation_0-auc:0.93687\n[489]\tvalidation_0-auc:0.93687\n[490]\tvalidation_0-auc:0.93684\n[491]\tvalidation_0-auc:0.93681\n[492]\tvalidation_0-auc:0.93683\n[493]\tvalidation_0-auc:0.93681\n[494]\tvalidation_0-auc:0.93684\n[495]\tvalidation_0-auc:0.93683\n[496]\tvalidation_0-auc:0.93686\n[497]\tvalidation_0-auc:0.93685\n[498]\tvalidation_0-auc:0.93687\n[499]\tvalidation_0-auc:0.93686\n[500]\tvalidation_0-auc:0.93687\n[501]\tvalidation_0-auc:0.93688\n[502]\tvalidation_0-auc:0.93685\n[503]\tvalidation_0-auc:0.93684\n[504]\tvalidation_0-auc:0.93687\n[505]\tvalidation_0-auc:0.93687\n[506]\tvalidation_0-auc:0.93687\n[507]\tvalidation_0-auc:0.93687\n[508]\tvalidation_0-auc:0.93688\n[509]\tvalidation_0-auc:0.93688\n[510]\tvalidation_0-auc:0.93687\n[511]\tvalidation_0-auc:0.93686\n[512]\tvalidation_0-auc:0.93688\n[513]\tvalidation_0-auc:0.93692\n[514]\tvalidation_0-auc:0.93691\n[515]\tvalidation_0-auc:0.93693\n[516]\tvalidation_0-auc:0.93692\n[517]\tvalidation_0-auc:0.93694\n[518]\tvalidation_0-auc:0.93693\n[519]\tvalidation_0-auc:0.93695\n[520]\tvalidation_0-auc:0.93693\n[521]\tvalidation_0-auc:0.93695\n[522]\tvalidation_0-auc:0.93696\n[523]\tvalidation_0-auc:0.93694\n[524]\tvalidation_0-auc:0.93694\n[525]\tvalidation_0-auc:0.93692\n[526]\tvalidation_0-auc:0.93691\n[527]\tvalidation_0-auc:0.93697\n[528]\tvalidation_0-auc:0.93698\n[529]\tvalidation_0-auc:0.93695\n[530]\tvalidation_0-auc:0.93696\n[531]\tvalidation_0-auc:0.93697\n[532]\tvalidation_0-auc:0.93694\n[533]\tvalidation_0-auc:0.93693\n[534]\tvalidation_0-auc:0.93691\n[535]\tvalidation_0-auc:0.93694\n[536]\tvalidation_0-auc:0.93693\n[537]\tvalidation_0-auc:0.93695\n[538]\tvalidation_0-auc:0.93697\n[539]\tvalidation_0-auc:0.93697\n[540]\tvalidation_0-auc:0.93696\n[541]\tvalidation_0-auc:0.93691\n[542]\tvalidation_0-auc:0.93693\n[543]\tvalidation_0-auc:0.93694\n[544]\tvalidation_0-auc:0.93693\n[545]\tvalidation_0-auc:0.93691\n[546]\tvalidation_0-auc:0.93691\n[547]\tvalidation_0-auc:0.93694\n[548]\tvalidation_0-auc:0.93699\n[549]\tvalidation_0-auc:0.93700\n[550]\tvalidation_0-auc:0.93698\n[551]\tvalidation_0-auc:0.93697\n[552]\tvalidation_0-auc:0.93698\n[553]\tvalidation_0-auc:0.93698\n[554]\tvalidation_0-auc:0.93698\n[555]\tvalidation_0-auc:0.93699\n[556]\tvalidation_0-auc:0.93699\n[557]\tvalidation_0-auc:0.93701\n[558]\tvalidation_0-auc:0.93699\n[559]\tvalidation_0-auc:0.93700\n[560]\tvalidation_0-auc:0.93700\n[561]\tvalidation_0-auc:0.93701\n[562]\tvalidation_0-auc:0.93701\n[563]\tvalidation_0-auc:0.93700\n[564]\tvalidation_0-auc:0.93701\n[565]\tvalidation_0-auc:0.93701\n[566]\tvalidation_0-auc:0.93703\n[567]\tvalidation_0-auc:0.93706\n[568]\tvalidation_0-auc:0.93706\n[569]\tvalidation_0-auc:0.93710\n[570]\tvalidation_0-auc:0.93712\n[571]\tvalidation_0-auc:0.93712\n[572]\tvalidation_0-auc:0.93711\n[573]\tvalidation_0-auc:0.93709\n[574]\tvalidation_0-auc:0.93711\n[575]\tvalidation_0-auc:0.93707\n[576]\tvalidation_0-auc:0.93706\n[577]\tvalidation_0-auc:0.93707\n[578]\tvalidation_0-auc:0.93708\n[579]\tvalidation_0-auc:0.93708\n[580]\tvalidation_0-auc:0.93707\n[581]\tvalidation_0-auc:0.93706\n[582]\tvalidation_0-auc:0.93708\n[583]\tvalidation_0-auc:0.93706\n[584]\tvalidation_0-auc:0.93706\n[585]\tvalidation_0-auc:0.93703\n[586]\tvalidation_0-auc:0.93707\n[587]\tvalidation_0-auc:0.93704\n[588]\tvalidation_0-auc:0.93705\n[589]\tvalidation_0-auc:0.93703\n[590]\tvalidation_0-auc:0.93703\n[591]\tvalidation_0-auc:0.93704\n[592]\tvalidation_0-auc:0.93703\n[593]\tvalidation_0-auc:0.93705\n[594]\tvalidation_0-auc:0.93702\n[595]\tvalidation_0-auc:0.93699\n[596]\tvalidation_0-auc:0.93697\n[597]\tvalidation_0-auc:0.93697\n[598]\tvalidation_0-auc:0.93698\n[599]\tvalidation_0-auc:0.93697\n[600]\tvalidation_0-auc:0.93697\n[601]\tvalidation_0-auc:0.93707\n[602]\tvalidation_0-auc:0.93709\n[603]\tvalidation_0-auc:0.93705\n[604]\tvalidation_0-auc:0.93704\n[605]\tvalidation_0-auc:0.93703\n[606]\tvalidation_0-auc:0.93702\n[607]\tvalidation_0-auc:0.93704\n[608]\tvalidation_0-auc:0.93702\n[609]\tvalidation_0-auc:0.93702\n[610]\tvalidation_0-auc:0.93705\n[611]\tvalidation_0-auc:0.93706\n[612]\tvalidation_0-auc:0.93706\n[613]\tvalidation_0-auc:0.93707\n[614]\tvalidation_0-auc:0.93707\n[615]\tvalidation_0-auc:0.93706\n[616]\tvalidation_0-auc:0.93707\n[617]\tvalidation_0-auc:0.93705\n[618]\tvalidation_0-auc:0.93712\n[619]\tvalidation_0-auc:0.93709\n[620]\tvalidation_0-auc:0.93712\n[621]\tvalidation_0-auc:0.93711\n[622]\tvalidation_0-auc:0.93708\n[623]\tvalidation_0-auc:0.93708\n[624]\tvalidation_0-auc:0.93707\n[625]\tvalidation_0-auc:0.93706\n[626]\tvalidation_0-auc:0.93705\n[627]\tvalidation_0-auc:0.93705\n[628]\tvalidation_0-auc:0.93705\n[629]\tvalidation_0-auc:0.93705\n[630]\tvalidation_0-auc:0.93706\n[631]\tvalidation_0-auc:0.93705\n[632]\tvalidation_0-auc:0.93707\n[633]\tvalidation_0-auc:0.93706\n[634]\tvalidation_0-auc:0.93706\n[635]\tvalidation_0-auc:0.93705\n[636]\tvalidation_0-auc:0.93700\n[637]\tvalidation_0-auc:0.93701\n[638]\tvalidation_0-auc:0.93700\n[639]\tvalidation_0-auc:0.93702\n[640]\tvalidation_0-auc:0.93702\n[641]\tvalidation_0-auc:0.93703\n[642]\tvalidation_0-auc:0.93705\n[643]\tvalidation_0-auc:0.93708\n[644]\tvalidation_0-auc:0.93708\n[645]\tvalidation_0-auc:0.93709\n[646]\tvalidation_0-auc:0.93710\n[647]\tvalidation_0-auc:0.93707\n[648]\tvalidation_0-auc:0.93710\n[649]\tvalidation_0-auc:0.93710\n[650]\tvalidation_0-auc:0.93708\n[651]\tvalidation_0-auc:0.93708\n[652]\tvalidation_0-auc:0.93708\n[653]\tvalidation_0-auc:0.93710\n[654]\tvalidation_0-auc:0.93711\n[655]\tvalidation_0-auc:0.93713\n[656]\tvalidation_0-auc:0.93710\n[657]\tvalidation_0-auc:0.93708\n[658]\tvalidation_0-auc:0.93706\n[659]\tvalidation_0-auc:0.93719\n[660]\tvalidation_0-auc:0.93719\n[661]\tvalidation_0-auc:0.93717\n[662]\tvalidation_0-auc:0.93716\n[663]\tvalidation_0-auc:0.93716\n[664]\tvalidation_0-auc:0.93714\n[665]\tvalidation_0-auc:0.93717\n[666]\tvalidation_0-auc:0.93716\n[667]\tvalidation_0-auc:0.93718\n[668]\tvalidation_0-auc:0.93722\n[669]\tvalidation_0-auc:0.93721\n[670]\tvalidation_0-auc:0.93721\n[671]\tvalidation_0-auc:0.93719\n[672]\tvalidation_0-auc:0.93720\n[673]\tvalidation_0-auc:0.93720\n[674]\tvalidation_0-auc:0.93719\n[675]\tvalidation_0-auc:0.93723\n[676]\tvalidation_0-auc:0.93722\n[677]\tvalidation_0-auc:0.93721\n[678]\tvalidation_0-auc:0.93721\n[679]\tvalidation_0-auc:0.93719\n[680]\tvalidation_0-auc:0.93720\n[681]\tvalidation_0-auc:0.93720\n[682]\tvalidation_0-auc:0.93722\n[683]\tvalidation_0-auc:0.93722\n[684]\tvalidation_0-auc:0.93721\n[685]\tvalidation_0-auc:0.93721\n[686]\tvalidation_0-auc:0.93721\n[687]\tvalidation_0-auc:0.93722\n[688]\tvalidation_0-auc:0.93723\n[689]\tvalidation_0-auc:0.93724\n[690]\tvalidation_0-auc:0.93724\n[691]\tvalidation_0-auc:0.93720\n[692]\tvalidation_0-auc:0.93721\n[693]\tvalidation_0-auc:0.93722\n[694]\tvalidation_0-auc:0.93724\n[695]\tvalidation_0-auc:0.93723\n[696]\tvalidation_0-auc:0.93722\n[697]\tvalidation_0-auc:0.93722\n[698]\tvalidation_0-auc:0.93734\n[699]\tvalidation_0-auc:0.93733\n[700]\tvalidation_0-auc:0.93735\n[701]\tvalidation_0-auc:0.93735\n[702]\tvalidation_0-auc:0.93735\n[703]\tvalidation_0-auc:0.93735\n[704]\tvalidation_0-auc:0.93734\n[705]\tvalidation_0-auc:0.93733\n[706]\tvalidation_0-auc:0.93731\n[707]\tvalidation_0-auc:0.93729\n[708]\tvalidation_0-auc:0.93729\n[709]\tvalidation_0-auc:0.93732\n[710]\tvalidation_0-auc:0.93731\n[711]\tvalidation_0-auc:0.93731\n[712]\tvalidation_0-auc:0.93731\n[713]\tvalidation_0-auc:0.93732\n[714]\tvalidation_0-auc:0.93734\n[715]\tvalidation_0-auc:0.93733\n[716]\tvalidation_0-auc:0.93734\n[717]\tvalidation_0-auc:0.93734\n[718]\tvalidation_0-auc:0.93733\n[719]\tvalidation_0-auc:0.93733\n[720]\tvalidation_0-auc:0.93734\n[721]\tvalidation_0-auc:0.93734\n[722]\tvalidation_0-auc:0.93736\n[723]\tvalidation_0-auc:0.93737\n[724]\tvalidation_0-auc:0.93738\n[725]\tvalidation_0-auc:0.93738\n[726]\tvalidation_0-auc:0.93739\n[727]\tvalidation_0-auc:0.93737\n[728]\tvalidation_0-auc:0.93738\n[729]\tvalidation_0-auc:0.93738\n[730]\tvalidation_0-auc:0.93736\n[731]\tvalidation_0-auc:0.93735\n[732]\tvalidation_0-auc:0.93734\n[733]\tvalidation_0-auc:0.93733\n[734]\tvalidation_0-auc:0.93735\n[735]\tvalidation_0-auc:0.93736\n[736]\tvalidation_0-auc:0.93734\n[737]\tvalidation_0-auc:0.93735\n[738]\tvalidation_0-auc:0.93737\n[739]\tvalidation_0-auc:0.93735\n[740]\tvalidation_0-auc:0.93732\n[741]\tvalidation_0-auc:0.93731\n[742]\tvalidation_0-auc:0.93735\n[743]\tvalidation_0-auc:0.93734\n[744]\tvalidation_0-auc:0.93732\n[745]\tvalidation_0-auc:0.93730\n[746]\tvalidation_0-auc:0.93730\n[747]\tvalidation_0-auc:0.93732\n[748]\tvalidation_0-auc:0.93733\n[749]\tvalidation_0-auc:0.93733\n[750]\tvalidation_0-auc:0.93734\n[751]\tvalidation_0-auc:0.93733\n[752]\tvalidation_0-auc:0.93731\n[753]\tvalidation_0-auc:0.93731\n[754]\tvalidation_0-auc:0.93732\n[755]\tvalidation_0-auc:0.93731\n[756]\tvalidation_0-auc:0.93732\n[757]\tvalidation_0-auc:0.93733\n[758]\tvalidation_0-auc:0.93733\n[759]\tvalidation_0-auc:0.93736\n[760]\tvalidation_0-auc:0.93739\n[761]\tvalidation_0-auc:0.93736\n[762]\tvalidation_0-auc:0.93740\n[763]\tvalidation_0-auc:0.93742\n[764]\tvalidation_0-auc:0.93740\n[765]\tvalidation_0-auc:0.93739\n[766]\tvalidation_0-auc:0.93739\n[767]\tvalidation_0-auc:0.93737\n[768]\tvalidation_0-auc:0.93737\n[769]\tvalidation_0-auc:0.93739\n[770]\tvalidation_0-auc:0.93741\n[771]\tvalidation_0-auc:0.93741\n[772]\tvalidation_0-auc:0.93739\n[773]\tvalidation_0-auc:0.93740\n[774]\tvalidation_0-auc:0.93741\n[775]\tvalidation_0-auc:0.93741\n[776]\tvalidation_0-auc:0.93738\n[777]\tvalidation_0-auc:0.93737\n[778]\tvalidation_0-auc:0.93738\n[779]\tvalidation_0-auc:0.93737\n[780]\tvalidation_0-auc:0.93738\n[781]\tvalidation_0-auc:0.93737\n[782]\tvalidation_0-auc:0.93737\n[783]\tvalidation_0-auc:0.93736\n[784]\tvalidation_0-auc:0.93734\n[785]\tvalidation_0-auc:0.93735\n[786]\tvalidation_0-auc:0.93736\n[787]\tvalidation_0-auc:0.93737\n[788]\tvalidation_0-auc:0.93736\n[789]\tvalidation_0-auc:0.93734\n[790]\tvalidation_0-auc:0.93736\n[791]\tvalidation_0-auc:0.93735\n[792]\tvalidation_0-auc:0.93734\n[793]\tvalidation_0-auc:0.93735\n[794]\tvalidation_0-auc:0.93735\n[795]\tvalidation_0-auc:0.93733\n[796]\tvalidation_0-auc:0.93732\n[797]\tvalidation_0-auc:0.93734\n[798]\tvalidation_0-auc:0.93733\n[799]\tvalidation_0-auc:0.93729\n[800]\tvalidation_0-auc:0.93729\n[801]\tvalidation_0-auc:0.93729\n[802]\tvalidation_0-auc:0.93729\n[803]\tvalidation_0-auc:0.93727\n[804]\tvalidation_0-auc:0.93727\n[805]\tvalidation_0-auc:0.93726\n[806]\tvalidation_0-auc:0.93727\n[807]\tvalidation_0-auc:0.93726\n[808]\tvalidation_0-auc:0.93723\n[809]\tvalidation_0-auc:0.93723\n[810]\tvalidation_0-auc:0.93724\n[811]\tvalidation_0-auc:0.93725\n[812]\tvalidation_0-auc:0.93724\n[813]\tvalidation_0-auc:0.93722\n[814]\tvalidation_0-auc:0.93720\n[815]\tvalidation_0-auc:0.93719\n[816]\tvalidation_0-auc:0.93720\n[817]\tvalidation_0-auc:0.93720\n[818]\tvalidation_0-auc:0.93721\n[819]\tvalidation_0-auc:0.93719\n[820]\tvalidation_0-auc:0.93720\n[821]\tvalidation_0-auc:0.93717\n[822]\tvalidation_0-auc:0.93718\n[823]\tvalidation_0-auc:0.93716\n[824]\tvalidation_0-auc:0.93717\n[825]\tvalidation_0-auc:0.93713\n[826]\tvalidation_0-auc:0.93716\n[827]\tvalidation_0-auc:0.93716\n[828]\tvalidation_0-auc:0.93715\n[829]\tvalidation_0-auc:0.93714\n[830]\tvalidation_0-auc:0.93714\n[831]\tvalidation_0-auc:0.93713\n[832]\tvalidation_0-auc:0.93710\n[833]\tvalidation_0-auc:0.93710\n[834]\tvalidation_0-auc:0.93709\n[835]\tvalidation_0-auc:0.93706\n[836]\tvalidation_0-auc:0.93703\n[837]\tvalidation_0-auc:0.93701\n[838]\tvalidation_0-auc:0.93700\n[839]\tvalidation_0-auc:0.93701\n[840]\tvalidation_0-auc:0.93697\n[841]\tvalidation_0-auc:0.93700\n[842]\tvalidation_0-auc:0.93700\n[843]\tvalidation_0-auc:0.93699\n[844]\tvalidation_0-auc:0.93700\n[845]\tvalidation_0-auc:0.93699\n[846]\tvalidation_0-auc:0.93699\n[847]\tvalidation_0-auc:0.93699\n[848]\tvalidation_0-auc:0.93699\n[849]\tvalidation_0-auc:0.93699\n[850]\tvalidation_0-auc:0.93699\n[851]\tvalidation_0-auc:0.93698\n[852]\tvalidation_0-auc:0.93700\n[853]\tvalidation_0-auc:0.93700\n[854]\tvalidation_0-auc:0.93700\n[855]\tvalidation_0-auc:0.93698\n[856]\tvalidation_0-auc:0.93699\n[857]\tvalidation_0-auc:0.93699\n[858]\tvalidation_0-auc:0.93696\n[859]\tvalidation_0-auc:0.93696\n[860]\tvalidation_0-auc:0.93694\n[861]\tvalidation_0-auc:0.93691\n[862]\tvalidation_0-auc:0.93694\n[863]\tvalidation_0-auc:0.93695\n[0]\tvalidation_0-auc:0.87061\n[1]\tvalidation_0-auc:0.89799\n[2]\tvalidation_0-auc:0.89406\n[3]\tvalidation_0-auc:0.88494\n[4]\tvalidation_0-auc:0.88084\n[5]\tvalidation_0-auc:0.90076\n[6]\tvalidation_0-auc:0.90776\n[7]\tvalidation_0-auc:0.90517\n[8]\tvalidation_0-auc:0.90161\n"},{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\xgboost\\sklearn.py:797: UserWarning: `eval_metric` in `fit` method is deprecated for better compatibility with scikit-learn, use `eval_metric` in constructor or`set_params` instead.\n"," UserWarning,\n","E:\\Anaconda3\\lib\\site-packages\\xgboost\\sklearn.py:797: UserWarning: `early_stopping_rounds` in `fit` method is deprecated for better compatibility with scikit-learn, use `early_stopping_rounds` in constructor or`set_params` instead.\n"," UserWarning,\n"]},{"name":"stdout","output_type":"stream","text":"[9]\tvalidation_0-auc:0.90911\n[10]\tvalidation_0-auc:0.91437\n[11]\tvalidation_0-auc:0.91579\n[12]\tvalidation_0-auc:0.91731\n[13]\tvalidation_0-auc:0.91850\n[14]\tvalidation_0-auc:0.91759\n[15]\tvalidation_0-auc:0.91874\n[16]\tvalidation_0-auc:0.91750\n[17]\tvalidation_0-auc:0.91686\n[18]\tvalidation_0-auc:0.91712\n[19]\tvalidation_0-auc:0.91780\n[20]\tvalidation_0-auc:0.91763\n[21]\tvalidation_0-auc:0.91862\n[22]\tvalidation_0-auc:0.91930\n[23]\tvalidation_0-auc:0.91870\n[24]\tvalidation_0-auc:0.91875\n[25]\tvalidation_0-auc:0.91975\n[26]\tvalidation_0-auc:0.91984\n[27]\tvalidation_0-auc:0.92001\n[28]\tvalidation_0-auc:0.92029\n[29]\tvalidation_0-auc:0.92005\n[30]\tvalidation_0-auc:0.92083\n[31]\tvalidation_0-auc:0.92096\n[32]\tvalidation_0-auc:0.92150\n[33]\tvalidation_0-auc:0.92204\n[34]\tvalidation_0-auc:0.92178\n[35]\tvalidation_0-auc:0.92211\n[36]\tvalidation_0-auc:0.92255\n[37]\tvalidation_0-auc:0.92264\n[38]\tvalidation_0-auc:0.92287\n[39]\tvalidation_0-auc:0.92265\n[40]\tvalidation_0-auc:0.92270\n[41]\tvalidation_0-auc:0.92273\n[42]\tvalidation_0-auc:0.92261\n[43]\tvalidation_0-auc:0.92279\n[44]\tvalidation_0-auc:0.92307\n[45]\tvalidation_0-auc:0.92333\n[46]\tvalidation_0-auc:0.92327\n[47]\tvalidation_0-auc:0.92306\n[48]\tvalidation_0-auc:0.92284\n[49]\tvalidation_0-auc:0.92313\n[50]\tvalidation_0-auc:0.92357\n[51]\tvalidation_0-auc:0.92386\n[52]\tvalidation_0-auc:0.92382\n[53]\tvalidation_0-auc:0.92401\n[54]\tvalidation_0-auc:0.92423\n[55]\tvalidation_0-auc:0.92426\n[56]\tvalidation_0-auc:0.92409\n[57]\tvalidation_0-auc:0.92443\n[58]\tvalidation_0-auc:0.92448\n[59]\tvalidation_0-auc:0.92436\n[60]\tvalidation_0-auc:0.92447\n[61]\tvalidation_0-auc:0.92473\n[62]\tvalidation_0-auc:0.92479\n[63]\tvalidation_0-auc:0.92467\n[64]\tvalidation_0-auc:0.92455\n[65]\tvalidation_0-auc:0.92472\n[66]\tvalidation_0-auc:0.92485\n[67]\tvalidation_0-auc:0.92480\n[68]\tvalidation_0-auc:0.92490\n[69]\tvalidation_0-auc:0.92515\n[70]\tvalidation_0-auc:0.92521\n[71]\tvalidation_0-auc:0.92522\n[72]\tvalidation_0-auc:0.92528\n[73]\tvalidation_0-auc:0.92549\n[74]\tvalidation_0-auc:0.92526\n[75]\tvalidation_0-auc:0.92546\n[76]\tvalidation_0-auc:0.92533\n[77]\tvalidation_0-auc:0.92556\n[78]\tvalidation_0-auc:0.92560\n[79]\tvalidation_0-auc:0.92574\n[80]\tvalidation_0-auc:0.92585\n[81]\tvalidation_0-auc:0.92602\n[82]\tvalidation_0-auc:0.92600\n[83]\tvalidation_0-auc:0.92601\n[84]\tvalidation_0-auc:0.92601\n[85]\tvalidation_0-auc:0.92615\n[86]\tvalidation_0-auc:0.92614\n[87]\tvalidation_0-auc:0.92613\n[88]\tvalidation_0-auc:0.92625\n[89]\tvalidation_0-auc:0.92643\n[90]\tvalidation_0-auc:0.92642\n[91]\tvalidation_0-auc:0.92644\n[92]\tvalidation_0-auc:0.92641\n[93]\tvalidation_0-auc:0.92639\n[94]\tvalidation_0-auc:0.92641\n[95]\tvalidation_0-auc:0.92647\n[96]\tvalidation_0-auc:0.92639\n[97]\tvalidation_0-auc:0.92657\n[98]\tvalidation_0-auc:0.92681\n[99]\tvalidation_0-auc:0.92684\n[100]\tvalidation_0-auc:0.92683\n[101]\tvalidation_0-auc:0.92680\n[102]\tvalidation_0-auc:0.92683\n[103]\tvalidation_0-auc:0.92686\n[104]\tvalidation_0-auc:0.92698\n[105]\tvalidation_0-auc:0.92705\n[106]\tvalidation_0-auc:0.92708\n[107]\tvalidation_0-auc:0.92725\n[108]\tvalidation_0-auc:0.92721\n[109]\tvalidation_0-auc:0.92734\n[110]\tvalidation_0-auc:0.92738\n[111]\tvalidation_0-auc:0.92748\n[112]\tvalidation_0-auc:0.92740\n[113]\tvalidation_0-auc:0.92757\n[114]\tvalidation_0-auc:0.92754\n[115]\tvalidation_0-auc:0.92756\n[116]\tvalidation_0-auc:0.92755\n[117]\tvalidation_0-auc:0.92770\n[118]\tvalidation_0-auc:0.92765\n[119]\tvalidation_0-auc:0.92760\n[120]\tvalidation_0-auc:0.92764\n[121]\tvalidation_0-auc:0.92767\n[122]\tvalidation_0-auc:0.92764\n[123]\tvalidation_0-auc:0.92758\n[124]\tvalidation_0-auc:0.92763\n[125]\tvalidation_0-auc:0.92770\n[126]\tvalidation_0-auc:0.92767\n[127]\tvalidation_0-auc:0.92771\n[128]\tvalidation_0-auc:0.92772\n[129]\tvalidation_0-auc:0.92793\n[130]\tvalidation_0-auc:0.92795\n[131]\tvalidation_0-auc:0.92792\n[132]\tvalidation_0-auc:0.92798\n[133]\tvalidation_0-auc:0.92803\n[134]\tvalidation_0-auc:0.92806\n[135]\tvalidation_0-auc:0.92801\n[136]\tvalidation_0-auc:0.92814\n[137]\tvalidation_0-auc:0.92812\n[138]\tvalidation_0-auc:0.92809\n[139]\tvalidation_0-auc:0.92812\n[140]\tvalidation_0-auc:0.92827\n[141]\tvalidation_0-auc:0.92843\n[142]\tvalidation_0-auc:0.92839\n[143]\tvalidation_0-auc:0.92844\n[144]\tvalidation_0-auc:0.92859\n[145]\tvalidation_0-auc:0.92868\n[146]\tvalidation_0-auc:0.92869\n[147]\tvalidation_0-auc:0.92865\n[148]\tvalidation_0-auc:0.92867\n[149]\tvalidation_0-auc:0.92866\n[150]\tvalidation_0-auc:0.92867\n[151]\tvalidation_0-auc:0.92880\n[152]\tvalidation_0-auc:0.92881\n[153]\tvalidation_0-auc:0.92886\n[154]\tvalidation_0-auc:0.92887\n[155]\tvalidation_0-auc:0.92883\n[156]\tvalidation_0-auc:0.92885\n[157]\tvalidation_0-auc:0.92882\n[158]\tvalidation_0-auc:0.92883\n[159]\tvalidation_0-auc:0.92893\n[160]\tvalidation_0-auc:0.92901\n[161]\tvalidation_0-auc:0.92903\n[162]\tvalidation_0-auc:0.92911\n[163]\tvalidation_0-auc:0.92920\n[164]\tvalidation_0-auc:0.92924\n[165]\tvalidation_0-auc:0.92923\n[166]\tvalidation_0-auc:0.92924\n[167]\tvalidation_0-auc:0.92935\n[168]\tvalidation_0-auc:0.92937\n[169]\tvalidation_0-auc:0.92936\n[170]\tvalidation_0-auc:0.92935\n[171]\tvalidation_0-auc:0.92938\n[172]\tvalidation_0-auc:0.92935\n[173]\tvalidation_0-auc:0.92939\n[174]\tvalidation_0-auc:0.92940\n[175]\tvalidation_0-auc:0.92944\n[176]\tvalidation_0-auc:0.92940\n[177]\tvalidation_0-auc:0.92936\n[178]\tvalidation_0-auc:0.92935\n[179]\tvalidation_0-auc:0.92932\n[180]\tvalidation_0-auc:0.92930\n[181]\tvalidation_0-auc:0.92927\n[182]\tvalidation_0-auc:0.92933\n[183]\tvalidation_0-auc:0.92927\n[184]\tvalidation_0-auc:0.92942\n[185]\tvalidation_0-auc:0.92942\n[186]\tvalidation_0-auc:0.92946\n[187]\tvalidation_0-auc:0.92953\n[188]\tvalidation_0-auc:0.92955\n[189]\tvalidation_0-auc:0.92954\n[190]\tvalidation_0-auc:0.92968\n[191]\tvalidation_0-auc:0.92970\n[192]\tvalidation_0-auc:0.92981\n[193]\tvalidation_0-auc:0.92979\n[194]\tvalidation_0-auc:0.92980\n[195]\tvalidation_0-auc:0.92983\n[196]\tvalidation_0-auc:0.92986\n[197]\tvalidation_0-auc:0.92986\n[198]\tvalidation_0-auc:0.92984\n[199]\tvalidation_0-auc:0.92985\n[200]\tvalidation_0-auc:0.92982\n[201]\tvalidation_0-auc:0.92986\n[202]\tvalidation_0-auc:0.92984\n[203]\tvalidation_0-auc:0.92984\n[204]\tvalidation_0-auc:0.92986\n[205]\tvalidation_0-auc:0.92989\n[206]\tvalidation_0-auc:0.92991\n[207]\tvalidation_0-auc:0.92988\n[208]\tvalidation_0-auc:0.92987\n[209]\tvalidation_0-auc:0.92984\n[210]\tvalidation_0-auc:0.92984\n[211]\tvalidation_0-auc:0.92982\n[212]\tvalidation_0-auc:0.92982\n[213]\tvalidation_0-auc:0.92980\n[214]\tvalidation_0-auc:0.92990\n[215]\tvalidation_0-auc:0.92992\n[216]\tvalidation_0-auc:0.93002\n[217]\tvalidation_0-auc:0.93000\n[218]\tvalidation_0-auc:0.92999\n[219]\tvalidation_0-auc:0.92997\n[220]\tvalidation_0-auc:0.92997\n[221]\tvalidation_0-auc:0.92999\n[222]\tvalidation_0-auc:0.92999\n[223]\tvalidation_0-auc:0.93006\n[224]\tvalidation_0-auc:0.93002\n[225]\tvalidation_0-auc:0.93004\n[226]\tvalidation_0-auc:0.93007\n[227]\tvalidation_0-auc:0.93007\n[228]\tvalidation_0-auc:0.93007\n[229]\tvalidation_0-auc:0.93011\n[230]\tvalidation_0-auc:0.93018\n[231]\tvalidation_0-auc:0.93021\n[232]\tvalidation_0-auc:0.93020\n[233]\tvalidation_0-auc:0.93018\n[234]\tvalidation_0-auc:0.93016\n[235]\tvalidation_0-auc:0.93014\n[236]\tvalidation_0-auc:0.93017\n[237]\tvalidation_0-auc:0.93014\n[238]\tvalidation_0-auc:0.93017\n[239]\tvalidation_0-auc:0.93014\n[240]\tvalidation_0-auc:0.93023\n[241]\tvalidation_0-auc:0.93023\n[242]\tvalidation_0-auc:0.93019\n[243]\tvalidation_0-auc:0.93020\n[244]\tvalidation_0-auc:0.93019\n[245]\tvalidation_0-auc:0.93016\n[246]\tvalidation_0-auc:0.93017\n[247]\tvalidation_0-auc:0.93018\n[248]\tvalidation_0-auc:0.93019\n[249]\tvalidation_0-auc:0.93023\n[250]\tvalidation_0-auc:0.93023\n[251]\tvalidation_0-auc:0.93023\n[252]\tvalidation_0-auc:0.93024\n[253]\tvalidation_0-auc:0.93024\n[254]\tvalidation_0-auc:0.93029\n[255]\tvalidation_0-auc:0.93031\n[256]\tvalidation_0-auc:0.93029\n[257]\tvalidation_0-auc:0.93026\n[258]\tvalidation_0-auc:0.93030\n[259]\tvalidation_0-auc:0.93027\n[260]\tvalidation_0-auc:0.93034\n[261]\tvalidation_0-auc:0.93038\n[262]\tvalidation_0-auc:0.93032\n[263]\tvalidation_0-auc:0.93030\n[264]\tvalidation_0-auc:0.93031\n[265]\tvalidation_0-auc:0.93035\n[266]\tvalidation_0-auc:0.93035\n[267]\tvalidation_0-auc:0.93039\n[268]\tvalidation_0-auc:0.93039\n[269]\tvalidation_0-auc:0.93037\n[270]\tvalidation_0-auc:0.93038\n[271]\tvalidation_0-auc:0.93047\n[272]\tvalidation_0-auc:0.93052\n[273]\tvalidation_0-auc:0.93054\n[274]\tvalidation_0-auc:0.93054\n[275]\tvalidation_0-auc:0.93052\n[276]\tvalidation_0-auc:0.93050\n[277]\tvalidation_0-auc:0.93052\n[278]\tvalidation_0-auc:0.93052\n[279]\tvalidation_0-auc:0.93059\n[280]\tvalidation_0-auc:0.93067\n[281]\tvalidation_0-auc:0.93068\n[282]\tvalidation_0-auc:0.93069\n[283]\tvalidation_0-auc:0.93072\n[284]\tvalidation_0-auc:0.93065\n[285]\tvalidation_0-auc:0.93063\n[286]\tvalidation_0-auc:0.93063\n[287]\tvalidation_0-auc:0.93065\n[288]\tvalidation_0-auc:0.93066\n[289]\tvalidation_0-auc:0.93065\n[290]\tvalidation_0-auc:0.93071\n[291]\tvalidation_0-auc:0.93067\n[292]\tvalidation_0-auc:0.93064\n[293]\tvalidation_0-auc:0.93062\n[294]\tvalidation_0-auc:0.93060\n[295]\tvalidation_0-auc:0.93062\n[296]\tvalidation_0-auc:0.93064\n[297]\tvalidation_0-auc:0.93063\n[298]\tvalidation_0-auc:0.93070\n[299]\tvalidation_0-auc:0.93069\n[300]\tvalidation_0-auc:0.93070\n[301]\tvalidation_0-auc:0.93072\n[302]\tvalidation_0-auc:0.93073\n[303]\tvalidation_0-auc:0.93081\n[304]\tvalidation_0-auc:0.93079\n[305]\tvalidation_0-auc:0.93078\n[306]\tvalidation_0-auc:0.93075\n[307]\tvalidation_0-auc:0.93079\n[308]\tvalidation_0-auc:0.93077\n[309]\tvalidation_0-auc:0.93076\n[310]\tvalidation_0-auc:0.93083\n[311]\tvalidation_0-auc:0.93086\n[312]\tvalidation_0-auc:0.93084\n[313]\tvalidation_0-auc:0.93088\n[314]\tvalidation_0-auc:0.93088\n[315]\tvalidation_0-auc:0.93085\n[316]\tvalidation_0-auc:0.93086\n[317]\tvalidation_0-auc:0.93092\n[318]\tvalidation_0-auc:0.93093\n[319]\tvalidation_0-auc:0.93095\n[320]\tvalidation_0-auc:0.93096\n[321]\tvalidation_0-auc:0.93094\n[322]\tvalidation_0-auc:0.93094\n[323]\tvalidation_0-auc:0.93099\n[324]\tvalidation_0-auc:0.93095\n[325]\tvalidation_0-auc:0.93100\n[326]\tvalidation_0-auc:0.93099\n[327]\tvalidation_0-auc:0.93098\n[328]\tvalidation_0-auc:0.93101\n[329]\tvalidation_0-auc:0.93099\n[330]\tvalidation_0-auc:0.93101\n[331]\tvalidation_0-auc:0.93106\n[332]\tvalidation_0-auc:0.93111\n[333]\tvalidation_0-auc:0.93110\n[334]\tvalidation_0-auc:0.93114\n[335]\tvalidation_0-auc:0.93117\n[336]\tvalidation_0-auc:0.93118\n[337]\tvalidation_0-auc:0.93120\n[338]\tvalidation_0-auc:0.93117\n[339]\tvalidation_0-auc:0.93122\n[340]\tvalidation_0-auc:0.93123\n[341]\tvalidation_0-auc:0.93121\n[342]\tvalidation_0-auc:0.93119\n[343]\tvalidation_0-auc:0.93122\n[344]\tvalidation_0-auc:0.93122\n[345]\tvalidation_0-auc:0.93121\n[346]\tvalidation_0-auc:0.93120\n[347]\tvalidation_0-auc:0.93121\n[348]\tvalidation_0-auc:0.93120\n[349]\tvalidation_0-auc:0.93117\n[350]\tvalidation_0-auc:0.93121\n[351]\tvalidation_0-auc:0.93124\n[352]\tvalidation_0-auc:0.93122\n[353]\tvalidation_0-auc:0.93122\n[354]\tvalidation_0-auc:0.93123\n[355]\tvalidation_0-auc:0.93126\n[356]\tvalidation_0-auc:0.93129\n[357]\tvalidation_0-auc:0.93130\n[358]\tvalidation_0-auc:0.93132\n[359]\tvalidation_0-auc:0.93134\n[360]\tvalidation_0-auc:0.93136\n[361]\tvalidation_0-auc:0.93135\n[362]\tvalidation_0-auc:0.93137\n[363]\tvalidation_0-auc:0.93141\n[364]\tvalidation_0-auc:0.93143\n[365]\tvalidation_0-auc:0.93141\n[366]\tvalidation_0-auc:0.93146\n[367]\tvalidation_0-auc:0.93144\n[368]\tvalidation_0-auc:0.93144\n[369]\tvalidation_0-auc:0.93145\n[370]\tvalidation_0-auc:0.93147\n[371]\tvalidation_0-auc:0.93145\n[372]\tvalidation_0-auc:0.93145\n[373]\tvalidation_0-auc:0.93147\n[374]\tvalidation_0-auc:0.93146\n[375]\tvalidation_0-auc:0.93145\n[376]\tvalidation_0-auc:0.93148\n[377]\tvalidation_0-auc:0.93150\n[378]\tvalidation_0-auc:0.93152\n[379]\tvalidation_0-auc:0.93150\n[380]\tvalidation_0-auc:0.93150\n[381]\tvalidation_0-auc:0.93150\n[382]\tvalidation_0-auc:0.93148\n[383]\tvalidation_0-auc:0.93146\n[384]\tvalidation_0-auc:0.93147\n[385]\tvalidation_0-auc:0.93146\n[386]\tvalidation_0-auc:0.93147\n[387]\tvalidation_0-auc:0.93145\n[388]\tvalidation_0-auc:0.93144\n[389]\tvalidation_0-auc:0.93144\n[390]\tvalidation_0-auc:0.93147\n[391]\tvalidation_0-auc:0.93146\n[392]\tvalidation_0-auc:0.93147\n[393]\tvalidation_0-auc:0.93145\n[394]\tvalidation_0-auc:0.93143\n[395]\tvalidation_0-auc:0.93144\n[396]\tvalidation_0-auc:0.93144\n[397]\tvalidation_0-auc:0.93147\n[398]\tvalidation_0-auc:0.93147\n[399]\tvalidation_0-auc:0.93152\n[400]\tvalidation_0-auc:0.93150\n[401]\tvalidation_0-auc:0.93152\n[402]\tvalidation_0-auc:0.93151\n[403]\tvalidation_0-auc:0.93153\n[404]\tvalidation_0-auc:0.93153\n[405]\tvalidation_0-auc:0.93153\n[406]\tvalidation_0-auc:0.93154\n[407]\tvalidation_0-auc:0.93155\n[408]\tvalidation_0-auc:0.93157\n[409]\tvalidation_0-auc:0.93155\n[410]\tvalidation_0-auc:0.93156\n[411]\tvalidation_0-auc:0.93157\n[412]\tvalidation_0-auc:0.93157\n[413]\tvalidation_0-auc:0.93154\n[414]\tvalidation_0-auc:0.93155\n[415]\tvalidation_0-auc:0.93155\n[416]\tvalidation_0-auc:0.93155\n[417]\tvalidation_0-auc:0.93156\n[418]\tvalidation_0-auc:0.93154\n[419]\tvalidation_0-auc:0.93157\n[420]\tvalidation_0-auc:0.93155\n[421]\tvalidation_0-auc:0.93155\n[422]\tvalidation_0-auc:0.93155\n[423]\tvalidation_0-auc:0.93153\n[424]\tvalidation_0-auc:0.93151\n[425]\tvalidation_0-auc:0.93151\n[426]\tvalidation_0-auc:0.93152\n[427]\tvalidation_0-auc:0.93150\n[428]\tvalidation_0-auc:0.93149\n[429]\tvalidation_0-auc:0.93146\n[430]\tvalidation_0-auc:0.93148\n[431]\tvalidation_0-auc:0.93148\n[432]\tvalidation_0-auc:0.93149\n[433]\tvalidation_0-auc:0.93148\n[434]\tvalidation_0-auc:0.93145\n[435]\tvalidation_0-auc:0.93144\n[436]\tvalidation_0-auc:0.93147\n[437]\tvalidation_0-auc:0.93150\n[438]\tvalidation_0-auc:0.93152\n[439]\tvalidation_0-auc:0.93152\n[440]\tvalidation_0-auc:0.93152\n[441]\tvalidation_0-auc:0.93150\n[442]\tvalidation_0-auc:0.93152\n[443]\tvalidation_0-auc:0.93152\n[444]\tvalidation_0-auc:0.93151\n[445]\tvalidation_0-auc:0.93152\n[446]\tvalidation_0-auc:0.93152\n[447]\tvalidation_0-auc:0.93151\n[448]\tvalidation_0-auc:0.93149\n[449]\tvalidation_0-auc:0.93147\n[450]\tvalidation_0-auc:0.93149\n[451]\tvalidation_0-auc:0.93150\n[452]\tvalidation_0-auc:0.93152\n[453]\tvalidation_0-auc:0.93152\n[454]\tvalidation_0-auc:0.93152\n[455]\tvalidation_0-auc:0.93152\n[456]\tvalidation_0-auc:0.93153\n[457]\tvalidation_0-auc:0.93153\n[458]\tvalidation_0-auc:0.93155\n[459]\tvalidation_0-auc:0.93154\n[460]\tvalidation_0-auc:0.93153\n[461]\tvalidation_0-auc:0.93154\n[462]\tvalidation_0-auc:0.93154\n[463]\tvalidation_0-auc:0.93153\n[464]\tvalidation_0-auc:0.93152\n[465]\tvalidation_0-auc:0.93157\n[466]\tvalidation_0-auc:0.93158\n[467]\tvalidation_0-auc:0.93156\n[468]\tvalidation_0-auc:0.93155\n[469]\tvalidation_0-auc:0.93156\n[470]\tvalidation_0-auc:0.93152\n[471]\tvalidation_0-auc:0.93150\n[472]\tvalidation_0-auc:0.93153\n[473]\tvalidation_0-auc:0.93154\n[474]\tvalidation_0-auc:0.93156\n[475]\tvalidation_0-auc:0.93157\n[476]\tvalidation_0-auc:0.93160\n[477]\tvalidation_0-auc:0.93162\n[478]\tvalidation_0-auc:0.93162\n[479]\tvalidation_0-auc:0.93158\n[480]\tvalidation_0-auc:0.93158\n[481]\tvalidation_0-auc:0.93160\n[482]\tvalidation_0-auc:0.93161\n[483]\tvalidation_0-auc:0.93158\n[484]\tvalidation_0-auc:0.93161\n[485]\tvalidation_0-auc:0.93162\n[486]\tvalidation_0-auc:0.93163\n[487]\tvalidation_0-auc:0.93164\n[488]\tvalidation_0-auc:0.93163\n[489]\tvalidation_0-auc:0.93164\n[490]\tvalidation_0-auc:0.93164\n[491]\tvalidation_0-auc:0.93163\n[492]\tvalidation_0-auc:0.93164\n[493]\tvalidation_0-auc:0.93164\n[494]\tvalidation_0-auc:0.93164\n[495]\tvalidation_0-auc:0.93164\n[496]\tvalidation_0-auc:0.93162\n[497]\tvalidation_0-auc:0.93162\n[498]\tvalidation_0-auc:0.93158\n[499]\tvalidation_0-auc:0.93156\n[500]\tvalidation_0-auc:0.93158\n[501]\tvalidation_0-auc:0.93156\n[502]\tvalidation_0-auc:0.93155\n[503]\tvalidation_0-auc:0.93153\n[504]\tvalidation_0-auc:0.93151\n[505]\tvalidation_0-auc:0.93148\n[506]\tvalidation_0-auc:0.93148\n[507]\tvalidation_0-auc:0.93148\n[508]\tvalidation_0-auc:0.93149\n[509]\tvalidation_0-auc:0.93154\n[510]\tvalidation_0-auc:0.93157\n[511]\tvalidation_0-auc:0.93156\n[512]\tvalidation_0-auc:0.93153\n[513]\tvalidation_0-auc:0.93155\n[514]\tvalidation_0-auc:0.93157\n[515]\tvalidation_0-auc:0.93157\n[516]\tvalidation_0-auc:0.93156\n[517]\tvalidation_0-auc:0.93154\n[518]\tvalidation_0-auc:0.93156\n[519]\tvalidation_0-auc:0.93156\n[520]\tvalidation_0-auc:0.93154\n[521]\tvalidation_0-auc:0.93151\n[522]\tvalidation_0-auc:0.93154\n[523]\tvalidation_0-auc:0.93152\n[524]\tvalidation_0-auc:0.93151\n[525]\tvalidation_0-auc:0.93150\n[526]\tvalidation_0-auc:0.93153\n[527]\tvalidation_0-auc:0.93153\n[528]\tvalidation_0-auc:0.93155\n[529]\tvalidation_0-auc:0.93155\n[530]\tvalidation_0-auc:0.93156\n[531]\tvalidation_0-auc:0.93156\n[532]\tvalidation_0-auc:0.93154\n[533]\tvalidation_0-auc:0.93153\n[534]\tvalidation_0-auc:0.93152\n[535]\tvalidation_0-auc:0.93153\n[536]\tvalidation_0-auc:0.93151\n[537]\tvalidation_0-auc:0.93150\n[538]\tvalidation_0-auc:0.93150\n[539]\tvalidation_0-auc:0.93151\n[540]\tvalidation_0-auc:0.93153\n[541]\tvalidation_0-auc:0.93151\n[542]\tvalidation_0-auc:0.93150\n[543]\tvalidation_0-auc:0.93152\n[544]\tvalidation_0-auc:0.93155\n[545]\tvalidation_0-auc:0.93154\n[546]\tvalidation_0-auc:0.93154\n[547]\tvalidation_0-auc:0.93154\n[548]\tvalidation_0-auc:0.93155\n[549]\tvalidation_0-auc:0.93153\n[550]\tvalidation_0-auc:0.93151\n[551]\tvalidation_0-auc:0.93151\n[552]\tvalidation_0-auc:0.93151\n[553]\tvalidation_0-auc:0.93150\n[554]\tvalidation_0-auc:0.93152\n[555]\tvalidation_0-auc:0.93152\n[556]\tvalidation_0-auc:0.93151\n[557]\tvalidation_0-auc:0.93150\n[558]\tvalidation_0-auc:0.93149\n[559]\tvalidation_0-auc:0.93149\n[560]\tvalidation_0-auc:0.93150\n[561]\tvalidation_0-auc:0.93149\n[562]\tvalidation_0-auc:0.93150\n[563]\tvalidation_0-auc:0.93152\n[564]\tvalidation_0-auc:0.93150\n[565]\tvalidation_0-auc:0.93148\n[566]\tvalidation_0-auc:0.93147\n[567]\tvalidation_0-auc:0.93147\n[568]\tvalidation_0-auc:0.93148\n[569]\tvalidation_0-auc:0.93146\n[570]\tvalidation_0-auc:0.93148\n[571]\tvalidation_0-auc:0.93147\n[572]\tvalidation_0-auc:0.93150\n[573]\tvalidation_0-auc:0.93150\n[574]\tvalidation_0-auc:0.93149\n[575]\tvalidation_0-auc:0.93147\n[576]\tvalidation_0-auc:0.93148\n[577]\tvalidation_0-auc:0.93149\n[578]\tvalidation_0-auc:0.93150\n[579]\tvalidation_0-auc:0.93153\n[580]\tvalidation_0-auc:0.93153\n[581]\tvalidation_0-auc:0.93153\n[582]\tvalidation_0-auc:0.93153\n[583]\tvalidation_0-auc:0.93151\n[584]\tvalidation_0-auc:0.93152\n[585]\tvalidation_0-auc:0.93152\n[586]\tvalidation_0-auc:0.93151\n[587]\tvalidation_0-auc:0.93151\n[0]\tvalidation_0-auc:0.86942\n[1]\tvalidation_0-auc:0.89070\n[2]\tvalidation_0-auc:0.88742\n[3]\tvalidation_0-auc:0.87897\n[4]\tvalidation_0-auc:0.87720\n[5]\tvalidation_0-auc:0.90129\n[6]\tvalidation_0-auc:0.90854\n[7]\tvalidation_0-auc:0.90787\n[8]\tvalidation_0-auc:0.90431\n[9]\tvalidation_0-auc:0.91046\n"},{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\xgboost\\sklearn.py:797: UserWarning: `eval_metric` in `fit` method is deprecated for better compatibility with scikit-learn, use `eval_metric` in constructor or`set_params` instead.\n"," UserWarning,\n","E:\\Anaconda3\\lib\\site-packages\\xgboost\\sklearn.py:797: UserWarning: `early_stopping_rounds` in `fit` method is deprecated for better compatibility with scikit-learn, use `early_stopping_rounds` in constructor or`set_params` instead.\n"," UserWarning,\n"]},{"name":"stdout","output_type":"stream","text":"[10]\tvalidation_0-auc:0.91408\n[11]\tvalidation_0-auc:0.91608\n[12]\tvalidation_0-auc:0.91840\n[13]\tvalidation_0-auc:0.91914\n[14]\tvalidation_0-auc:0.91867\n[15]\tvalidation_0-auc:0.91971\n[16]\tvalidation_0-auc:0.91925\n[17]\tvalidation_0-auc:0.91914\n[18]\tvalidation_0-auc:0.91887\n[19]\tvalidation_0-auc:0.91968\n[20]\tvalidation_0-auc:0.91991\n[21]\tvalidation_0-auc:0.92078\n[22]\tvalidation_0-auc:0.92122\n[23]\tvalidation_0-auc:0.92099\n[24]\tvalidation_0-auc:0.92052\n[25]\tvalidation_0-auc:0.92125\n[26]\tvalidation_0-auc:0.92111\n[27]\tvalidation_0-auc:0.92123\n[28]\tvalidation_0-auc:0.92137\n[29]\tvalidation_0-auc:0.92094\n[30]\tvalidation_0-auc:0.92228\n[31]\tvalidation_0-auc:0.92244\n[32]\tvalidation_0-auc:0.92273\n[33]\tvalidation_0-auc:0.92338\n[34]\tvalidation_0-auc:0.92305\n[35]\tvalidation_0-auc:0.92392\n[36]\tvalidation_0-auc:0.92400\n[37]\tvalidation_0-auc:0.92406\n[38]\tvalidation_0-auc:0.92395\n[39]\tvalidation_0-auc:0.92397\n[40]\tvalidation_0-auc:0.92420\n[41]\tvalidation_0-auc:0.92421\n[42]\tvalidation_0-auc:0.92402\n[43]\tvalidation_0-auc:0.92400\n[44]\tvalidation_0-auc:0.92413\n[45]\tvalidation_0-auc:0.92423\n[46]\tvalidation_0-auc:0.92447\n[47]\tvalidation_0-auc:0.92430\n[48]\tvalidation_0-auc:0.92398\n[49]\tvalidation_0-auc:0.92396\n[50]\tvalidation_0-auc:0.92421\n[51]\tvalidation_0-auc:0.92446\n[52]\tvalidation_0-auc:0.92457\n[53]\tvalidation_0-auc:0.92460\n[54]\tvalidation_0-auc:0.92465\n[55]\tvalidation_0-auc:0.92436\n[56]\tvalidation_0-auc:0.92416\n[57]\tvalidation_0-auc:0.92396\n[58]\tvalidation_0-auc:0.92380\n[59]\tvalidation_0-auc:0.92358\n[60]\tvalidation_0-auc:0.92393\n[61]\tvalidation_0-auc:0.92403\n[62]\tvalidation_0-auc:0.92413\n[63]\tvalidation_0-auc:0.92405\n[64]\tvalidation_0-auc:0.92395\n[65]\tvalidation_0-auc:0.92396\n[66]\tvalidation_0-auc:0.92405\n[67]\tvalidation_0-auc:0.92405\n[68]\tvalidation_0-auc:0.92409\n[69]\tvalidation_0-auc:0.92443\n[70]\tvalidation_0-auc:0.92456\n[71]\tvalidation_0-auc:0.92462\n[72]\tvalidation_0-auc:0.92468\n[73]\tvalidation_0-auc:0.92493\n[74]\tvalidation_0-auc:0.92498\n[75]\tvalidation_0-auc:0.92528\n[76]\tvalidation_0-auc:0.92526\n[77]\tvalidation_0-auc:0.92547\n[78]\tvalidation_0-auc:0.92553\n[79]\tvalidation_0-auc:0.92548\n[80]\tvalidation_0-auc:0.92569\n[81]\tvalidation_0-auc:0.92601\n[82]\tvalidation_0-auc:0.92591\n[83]\tvalidation_0-auc:0.92587\n[84]\tvalidation_0-auc:0.92597\n[85]\tvalidation_0-auc:0.92615\n[86]\tvalidation_0-auc:0.92632\n[87]\tvalidation_0-auc:0.92656\n[88]\tvalidation_0-auc:0.92666\n[89]\tvalidation_0-auc:0.92697\n[90]\tvalidation_0-auc:0.92710\n[91]\tvalidation_0-auc:0.92701\n[92]\tvalidation_0-auc:0.92718\n[93]\tvalidation_0-auc:0.92717\n[94]\tvalidation_0-auc:0.92717\n[95]\tvalidation_0-auc:0.92716\n[96]\tvalidation_0-auc:0.92717\n[97]\tvalidation_0-auc:0.92720\n[98]\tvalidation_0-auc:0.92732\n[99]\tvalidation_0-auc:0.92731\n[100]\tvalidation_0-auc:0.92720\n[101]\tvalidation_0-auc:0.92712\n[102]\tvalidation_0-auc:0.92720\n[103]\tvalidation_0-auc:0.92729\n[104]\tvalidation_0-auc:0.92741\n[105]\tvalidation_0-auc:0.92764\n[106]\tvalidation_0-auc:0.92777\n[107]\tvalidation_0-auc:0.92792\n[108]\tvalidation_0-auc:0.92775\n[109]\tvalidation_0-auc:0.92791\n[110]\tvalidation_0-auc:0.92793\n[111]\tvalidation_0-auc:0.92793\n[112]\tvalidation_0-auc:0.92795\n[113]\tvalidation_0-auc:0.92805\n[114]\tvalidation_0-auc:0.92810\n[115]\tvalidation_0-auc:0.92821\n[116]\tvalidation_0-auc:0.92824\n[117]\tvalidation_0-auc:0.92831\n[118]\tvalidation_0-auc:0.92825\n[119]\tvalidation_0-auc:0.92831\n[120]\tvalidation_0-auc:0.92838\n[121]\tvalidation_0-auc:0.92856\n[122]\tvalidation_0-auc:0.92856\n[123]\tvalidation_0-auc:0.92855\n[124]\tvalidation_0-auc:0.92871\n[125]\tvalidation_0-auc:0.92876\n[126]\tvalidation_0-auc:0.92868\n[127]\tvalidation_0-auc:0.92875\n[128]\tvalidation_0-auc:0.92889\n[129]\tvalidation_0-auc:0.92896\n[130]\tvalidation_0-auc:0.92899\n[131]\tvalidation_0-auc:0.92897\n[132]\tvalidation_0-auc:0.92891\n[133]\tvalidation_0-auc:0.92894\n[134]\tvalidation_0-auc:0.92898\n[135]\tvalidation_0-auc:0.92894\n[136]\tvalidation_0-auc:0.92892\n[137]\tvalidation_0-auc:0.92889\n[138]\tvalidation_0-auc:0.92894\n[139]\tvalidation_0-auc:0.92900\n[140]\tvalidation_0-auc:0.92910\n[141]\tvalidation_0-auc:0.92937\n[142]\tvalidation_0-auc:0.92950\n[143]\tvalidation_0-auc:0.92964\n[144]\tvalidation_0-auc:0.92968\n[145]\tvalidation_0-auc:0.92971\n[146]\tvalidation_0-auc:0.92975\n[147]\tvalidation_0-auc:0.92972\n[148]\tvalidation_0-auc:0.92979\n[149]\tvalidation_0-auc:0.92981\n[150]\tvalidation_0-auc:0.92982\n[151]\tvalidation_0-auc:0.92986\n[152]\tvalidation_0-auc:0.92980\n[153]\tvalidation_0-auc:0.92990\n[154]\tvalidation_0-auc:0.92995\n[155]\tvalidation_0-auc:0.92993\n[156]\tvalidation_0-auc:0.92994\n[157]\tvalidation_0-auc:0.92991\n[158]\tvalidation_0-auc:0.92994\n[159]\tvalidation_0-auc:0.92994\n[160]\tvalidation_0-auc:0.93000\n[161]\tvalidation_0-auc:0.93001\n[162]\tvalidation_0-auc:0.93004\n[163]\tvalidation_0-auc:0.93009\n[164]\tvalidation_0-auc:0.93014\n[165]\tvalidation_0-auc:0.93012\n[166]\tvalidation_0-auc:0.93010\n[167]\tvalidation_0-auc:0.93019\n[168]\tvalidation_0-auc:0.93031\n[169]\tvalidation_0-auc:0.93033\n[170]\tvalidation_0-auc:0.93034\n[171]\tvalidation_0-auc:0.93036\n[172]\tvalidation_0-auc:0.93038\n[173]\tvalidation_0-auc:0.93040\n[174]\tvalidation_0-auc:0.93042\n[175]\tvalidation_0-auc:0.93044\n[176]\tvalidation_0-auc:0.93048\n[177]\tvalidation_0-auc:0.93045\n[178]\tvalidation_0-auc:0.93049\n[179]\tvalidation_0-auc:0.93055\n[180]\tvalidation_0-auc:0.93065\n[181]\tvalidation_0-auc:0.93067\n[182]\tvalidation_0-auc:0.93074\n[183]\tvalidation_0-auc:0.93073\n[184]\tvalidation_0-auc:0.93071\n[185]\tvalidation_0-auc:0.93073\n[186]\tvalidation_0-auc:0.93074\n[187]\tvalidation_0-auc:0.93081\n[188]\tvalidation_0-auc:0.93080\n[189]\tvalidation_0-auc:0.93081\n[190]\tvalidation_0-auc:0.93085\n[191]\tvalidation_0-auc:0.93093\n[192]\tvalidation_0-auc:0.93098\n[193]\tvalidation_0-auc:0.93096\n[194]\tvalidation_0-auc:0.93104\n[195]\tvalidation_0-auc:0.93117\n[196]\tvalidation_0-auc:0.93116\n[197]\tvalidation_0-auc:0.93124\n[198]\tvalidation_0-auc:0.93122\n[199]\tvalidation_0-auc:0.93124\n[200]\tvalidation_0-auc:0.93128\n[201]\tvalidation_0-auc:0.93132\n[202]\tvalidation_0-auc:0.93134\n[203]\tvalidation_0-auc:0.93137\n[204]\tvalidation_0-auc:0.93143\n[205]\tvalidation_0-auc:0.93141\n[206]\tvalidation_0-auc:0.93153\n[207]\tvalidation_0-auc:0.93158\n[208]\tvalidation_0-auc:0.93164\n[209]\tvalidation_0-auc:0.93162\n[210]\tvalidation_0-auc:0.93161\n[211]\tvalidation_0-auc:0.93164\n[212]\tvalidation_0-auc:0.93167\n[213]\tvalidation_0-auc:0.93167\n[214]\tvalidation_0-auc:0.93163\n[215]\tvalidation_0-auc:0.93165\n[216]\tvalidation_0-auc:0.93172\n[217]\tvalidation_0-auc:0.93167\n[218]\tvalidation_0-auc:0.93171\n[219]\tvalidation_0-auc:0.93177\n[220]\tvalidation_0-auc:0.93179\n[221]\tvalidation_0-auc:0.93183\n[222]\tvalidation_0-auc:0.93190\n[223]\tvalidation_0-auc:0.93192\n[224]\tvalidation_0-auc:0.93195\n[225]\tvalidation_0-auc:0.93197\n[226]\tvalidation_0-auc:0.93204\n[227]\tvalidation_0-auc:0.93211\n[228]\tvalidation_0-auc:0.93212\n[229]\tvalidation_0-auc:0.93212\n[230]\tvalidation_0-auc:0.93210\n[231]\tvalidation_0-auc:0.93213\n[232]\tvalidation_0-auc:0.93214\n[233]\tvalidation_0-auc:0.93213\n[234]\tvalidation_0-auc:0.93214\n[235]\tvalidation_0-auc:0.93217\n[236]\tvalidation_0-auc:0.93214\n[237]\tvalidation_0-auc:0.93220\n[238]\tvalidation_0-auc:0.93236\n[239]\tvalidation_0-auc:0.93234\n[240]\tvalidation_0-auc:0.93234\n[241]\tvalidation_0-auc:0.93237\n[242]\tvalidation_0-auc:0.93241\n[243]\tvalidation_0-auc:0.93255\n[244]\tvalidation_0-auc:0.93254\n[245]\tvalidation_0-auc:0.93257\n[246]\tvalidation_0-auc:0.93257\n[247]\tvalidation_0-auc:0.93256\n[248]\tvalidation_0-auc:0.93256\n[249]\tvalidation_0-auc:0.93253\n[250]\tvalidation_0-auc:0.93250\n[251]\tvalidation_0-auc:0.93254\n[252]\tvalidation_0-auc:0.93257\n[253]\tvalidation_0-auc:0.93259\n[254]\tvalidation_0-auc:0.93263\n[255]\tvalidation_0-auc:0.93272\n[256]\tvalidation_0-auc:0.93269\n[257]\tvalidation_0-auc:0.93273\n[258]\tvalidation_0-auc:0.93275\n[259]\tvalidation_0-auc:0.93281\n[260]\tvalidation_0-auc:0.93281\n[261]\tvalidation_0-auc:0.93277\n[262]\tvalidation_0-auc:0.93278\n[263]\tvalidation_0-auc:0.93283\n[264]\tvalidation_0-auc:0.93279\n[265]\tvalidation_0-auc:0.93298\n[266]\tvalidation_0-auc:0.93299\n[267]\tvalidation_0-auc:0.93298\n[268]\tvalidation_0-auc:0.93300\n[269]\tvalidation_0-auc:0.93306\n[270]\tvalidation_0-auc:0.93307\n[271]\tvalidation_0-auc:0.93308\n[272]\tvalidation_0-auc:0.93307\n[273]\tvalidation_0-auc:0.93304\n[274]\tvalidation_0-auc:0.93305\n[275]\tvalidation_0-auc:0.93313\n[276]\tvalidation_0-auc:0.93328\n[277]\tvalidation_0-auc:0.93330\n[278]\tvalidation_0-auc:0.93335\n[279]\tvalidation_0-auc:0.93338\n[280]\tvalidation_0-auc:0.93337\n[281]\tvalidation_0-auc:0.93340\n[282]\tvalidation_0-auc:0.93347\n[283]\tvalidation_0-auc:0.93351\n[284]\tvalidation_0-auc:0.93355\n[285]\tvalidation_0-auc:0.93350\n[286]\tvalidation_0-auc:0.93351\n[287]\tvalidation_0-auc:0.93353\n[288]\tvalidation_0-auc:0.93353\n[289]\tvalidation_0-auc:0.93355\n[290]\tvalidation_0-auc:0.93355\n[291]\tvalidation_0-auc:0.93359\n[292]\tvalidation_0-auc:0.93361\n[293]\tvalidation_0-auc:0.93363\n[294]\tvalidation_0-auc:0.93367\n[295]\tvalidation_0-auc:0.93368\n[296]\tvalidation_0-auc:0.93368\n[297]\tvalidation_0-auc:0.93368\n[298]\tvalidation_0-auc:0.93369\n[299]\tvalidation_0-auc:0.93369\n[300]\tvalidation_0-auc:0.93365\n[301]\tvalidation_0-auc:0.93369\n[302]\tvalidation_0-auc:0.93371\n[303]\tvalidation_0-auc:0.93371\n[304]\tvalidation_0-auc:0.93372\n[305]\tvalidation_0-auc:0.93374\n[306]\tvalidation_0-auc:0.93373\n[307]\tvalidation_0-auc:0.93371\n[308]\tvalidation_0-auc:0.93371\n[309]\tvalidation_0-auc:0.93375\n[310]\tvalidation_0-auc:0.93381\n[311]\tvalidation_0-auc:0.93387\n[312]\tvalidation_0-auc:0.93394\n[313]\tvalidation_0-auc:0.93395\n[314]\tvalidation_0-auc:0.93398\n[315]\tvalidation_0-auc:0.93399\n[316]\tvalidation_0-auc:0.93399\n[317]\tvalidation_0-auc:0.93405\n[318]\tvalidation_0-auc:0.93404\n[319]\tvalidation_0-auc:0.93406\n[320]\tvalidation_0-auc:0.93405\n[321]\tvalidation_0-auc:0.93406\n[322]\tvalidation_0-auc:0.93407\n[323]\tvalidation_0-auc:0.93404\n[324]\tvalidation_0-auc:0.93408\n[325]\tvalidation_0-auc:0.93409\n[326]\tvalidation_0-auc:0.93410\n[327]\tvalidation_0-auc:0.93410\n[328]\tvalidation_0-auc:0.93416\n[329]\tvalidation_0-auc:0.93417\n[330]\tvalidation_0-auc:0.93417\n[331]\tvalidation_0-auc:0.93413\n[332]\tvalidation_0-auc:0.93420\n[333]\tvalidation_0-auc:0.93425\n[334]\tvalidation_0-auc:0.93435\n[335]\tvalidation_0-auc:0.93437\n[336]\tvalidation_0-auc:0.93437\n[337]\tvalidation_0-auc:0.93435\n[338]\tvalidation_0-auc:0.93438\n[339]\tvalidation_0-auc:0.93439\n[340]\tvalidation_0-auc:0.93439\n[341]\tvalidation_0-auc:0.93436\n[342]\tvalidation_0-auc:0.93434\n[343]\tvalidation_0-auc:0.93439\n[344]\tvalidation_0-auc:0.93440\n[345]\tvalidation_0-auc:0.93440\n[346]\tvalidation_0-auc:0.93439\n[347]\tvalidation_0-auc:0.93446\n[348]\tvalidation_0-auc:0.93448\n[349]\tvalidation_0-auc:0.93448\n[350]\tvalidation_0-auc:0.93450\n[351]\tvalidation_0-auc:0.93449\n[352]\tvalidation_0-auc:0.93448\n[353]\tvalidation_0-auc:0.93450\n[354]\tvalidation_0-auc:0.93451\n[355]\tvalidation_0-auc:0.93458\n[356]\tvalidation_0-auc:0.93456\n[357]\tvalidation_0-auc:0.93456\n[358]\tvalidation_0-auc:0.93454\n[359]\tvalidation_0-auc:0.93456\n[360]\tvalidation_0-auc:0.93454\n[361]\tvalidation_0-auc:0.93452\n[362]\tvalidation_0-auc:0.93453\n[363]\tvalidation_0-auc:0.93456\n[364]\tvalidation_0-auc:0.93453\n[365]\tvalidation_0-auc:0.93455\n[366]\tvalidation_0-auc:0.93466\n[367]\tvalidation_0-auc:0.93468\n[368]\tvalidation_0-auc:0.93466\n[369]\tvalidation_0-auc:0.93463\n[370]\tvalidation_0-auc:0.93470\n[371]\tvalidation_0-auc:0.93471\n[372]\tvalidation_0-auc:0.93471\n[373]\tvalidation_0-auc:0.93472\n[374]\tvalidation_0-auc:0.93477\n[375]\tvalidation_0-auc:0.93480\n[376]\tvalidation_0-auc:0.93484\n[377]\tvalidation_0-auc:0.93484\n[378]\tvalidation_0-auc:0.93483\n[379]\tvalidation_0-auc:0.93484\n[380]\tvalidation_0-auc:0.93486\n[381]\tvalidation_0-auc:0.93485\n[382]\tvalidation_0-auc:0.93484\n[383]\tvalidation_0-auc:0.93484\n[384]\tvalidation_0-auc:0.93486\n[385]\tvalidation_0-auc:0.93487\n[386]\tvalidation_0-auc:0.93486\n[387]\tvalidation_0-auc:0.93483\n[388]\tvalidation_0-auc:0.93485\n[389]\tvalidation_0-auc:0.93483\n[390]\tvalidation_0-auc:0.93485\n[391]\tvalidation_0-auc:0.93483\n[392]\tvalidation_0-auc:0.93483\n[393]\tvalidation_0-auc:0.93482\n[394]\tvalidation_0-auc:0.93487\n[395]\tvalidation_0-auc:0.93487\n[396]\tvalidation_0-auc:0.93488\n[397]\tvalidation_0-auc:0.93487\n[398]\tvalidation_0-auc:0.93487\n[399]\tvalidation_0-auc:0.93488\n[400]\tvalidation_0-auc:0.93494\n[401]\tvalidation_0-auc:0.93497\n[402]\tvalidation_0-auc:0.93498\n[403]\tvalidation_0-auc:0.93499\n[404]\tvalidation_0-auc:0.93501\n[405]\tvalidation_0-auc:0.93504\n[406]\tvalidation_0-auc:0.93508\n[407]\tvalidation_0-auc:0.93506\n[408]\tvalidation_0-auc:0.93504\n[409]\tvalidation_0-auc:0.93504\n[410]\tvalidation_0-auc:0.93503\n[411]\tvalidation_0-auc:0.93504\n[412]\tvalidation_0-auc:0.93504\n[413]\tvalidation_0-auc:0.93507\n[414]\tvalidation_0-auc:0.93511\n[415]\tvalidation_0-auc:0.93512\n[416]\tvalidation_0-auc:0.93516\n[417]\tvalidation_0-auc:0.93517\n[418]\tvalidation_0-auc:0.93516\n[419]\tvalidation_0-auc:0.93519\n[420]\tvalidation_0-auc:0.93515\n[421]\tvalidation_0-auc:0.93512\n[422]\tvalidation_0-auc:0.93513\n[423]\tvalidation_0-auc:0.93513\n[424]\tvalidation_0-auc:0.93516\n[425]\tvalidation_0-auc:0.93514\n[426]\tvalidation_0-auc:0.93514\n[427]\tvalidation_0-auc:0.93513\n[428]\tvalidation_0-auc:0.93518\n[429]\tvalidation_0-auc:0.93517\n[430]\tvalidation_0-auc:0.93517\n[431]\tvalidation_0-auc:0.93517\n[432]\tvalidation_0-auc:0.93520\n[433]\tvalidation_0-auc:0.93521\n[434]\tvalidation_0-auc:0.93522\n[435]\tvalidation_0-auc:0.93522\n[436]\tvalidation_0-auc:0.93518\n[437]\tvalidation_0-auc:0.93523\n[438]\tvalidation_0-auc:0.93524\n[439]\tvalidation_0-auc:0.93527\n[440]\tvalidation_0-auc:0.93528\n[441]\tvalidation_0-auc:0.93527\n[442]\tvalidation_0-auc:0.93531\n[443]\tvalidation_0-auc:0.93535\n[444]\tvalidation_0-auc:0.93535\n[445]\tvalidation_0-auc:0.93535\n[446]\tvalidation_0-auc:0.93536\n[447]\tvalidation_0-auc:0.93539\n[448]\tvalidation_0-auc:0.93542\n[449]\tvalidation_0-auc:0.93542\n[450]\tvalidation_0-auc:0.93543\n[451]\tvalidation_0-auc:0.93543\n[452]\tvalidation_0-auc:0.93547\n[453]\tvalidation_0-auc:0.93551\n[454]\tvalidation_0-auc:0.93550\n[455]\tvalidation_0-auc:0.93553\n[456]\tvalidation_0-auc:0.93554\n[457]\tvalidation_0-auc:0.93553\n[458]\tvalidation_0-auc:0.93554\n[459]\tvalidation_0-auc:0.93559\n[460]\tvalidation_0-auc:0.93560\n[461]\tvalidation_0-auc:0.93557\n[462]\tvalidation_0-auc:0.93559\n[463]\tvalidation_0-auc:0.93561\n[464]\tvalidation_0-auc:0.93563\n[465]\tvalidation_0-auc:0.93564\n[466]\tvalidation_0-auc:0.93565\n[467]\tvalidation_0-auc:0.93563\n[468]\tvalidation_0-auc:0.93565\n[469]\tvalidation_0-auc:0.93563\n[470]\tvalidation_0-auc:0.93567\n[471]\tvalidation_0-auc:0.93565\n[472]\tvalidation_0-auc:0.93566\n[473]\tvalidation_0-auc:0.93569\n[474]\tvalidation_0-auc:0.93570\n[475]\tvalidation_0-auc:0.93568\n[476]\tvalidation_0-auc:0.93572\n[477]\tvalidation_0-auc:0.93572\n[478]\tvalidation_0-auc:0.93573\n[479]\tvalidation_0-auc:0.93573\n[480]\tvalidation_0-auc:0.93574\n[481]\tvalidation_0-auc:0.93573\n[482]\tvalidation_0-auc:0.93576\n[483]\tvalidation_0-auc:0.93577\n[484]\tvalidation_0-auc:0.93580\n[485]\tvalidation_0-auc:0.93579\n[486]\tvalidation_0-auc:0.93582\n[487]\tvalidation_0-auc:0.93583\n[488]\tvalidation_0-auc:0.93582\n[489]\tvalidation_0-auc:0.93582\n[490]\tvalidation_0-auc:0.93581\n[491]\tvalidation_0-auc:0.93586\n[492]\tvalidation_0-auc:0.93584\n[493]\tvalidation_0-auc:0.93587\n[494]\tvalidation_0-auc:0.93589\n[495]\tvalidation_0-auc:0.93589\n[496]\tvalidation_0-auc:0.93589\n[497]\tvalidation_0-auc:0.93590\n[498]\tvalidation_0-auc:0.93590\n[499]\tvalidation_0-auc:0.93589\n[500]\tvalidation_0-auc:0.93591\n[501]\tvalidation_0-auc:0.93589\n[502]\tvalidation_0-auc:0.93589\n[503]\tvalidation_0-auc:0.93591\n[504]\tvalidation_0-auc:0.93594\n[505]\tvalidation_0-auc:0.93590\n[506]\tvalidation_0-auc:0.93593\n[507]\tvalidation_0-auc:0.93592\n[508]\tvalidation_0-auc:0.93594\n[509]\tvalidation_0-auc:0.93598\n[510]\tvalidation_0-auc:0.93597\n[511]\tvalidation_0-auc:0.93594\n[512]\tvalidation_0-auc:0.93593\n[513]\tvalidation_0-auc:0.93589\n[514]\tvalidation_0-auc:0.93591\n[515]\tvalidation_0-auc:0.93592\n[516]\tvalidation_0-auc:0.93591\n[517]\tvalidation_0-auc:0.93591\n[518]\tvalidation_0-auc:0.93591\n[519]\tvalidation_0-auc:0.93591\n[520]\tvalidation_0-auc:0.93589\n[521]\tvalidation_0-auc:0.93588\n[522]\tvalidation_0-auc:0.93588\n[523]\tvalidation_0-auc:0.93595\n[524]\tvalidation_0-auc:0.93595\n[525]\tvalidation_0-auc:0.93598\n[526]\tvalidation_0-auc:0.93598\n[527]\tvalidation_0-auc:0.93599\n[528]\tvalidation_0-auc:0.93595\n[529]\tvalidation_0-auc:0.93594\n[530]\tvalidation_0-auc:0.93597\n[531]\tvalidation_0-auc:0.93594\n[532]\tvalidation_0-auc:0.93594\n[533]\tvalidation_0-auc:0.93595\n[534]\tvalidation_0-auc:0.93594\n[535]\tvalidation_0-auc:0.93594\n[536]\tvalidation_0-auc:0.93594\n[537]\tvalidation_0-auc:0.93593\n[538]\tvalidation_0-auc:0.93592\n[539]\tvalidation_0-auc:0.93596\n[540]\tvalidation_0-auc:0.93595\n[541]\tvalidation_0-auc:0.93596\n[542]\tvalidation_0-auc:0.93597\n[543]\tvalidation_0-auc:0.93596\n[544]\tvalidation_0-auc:0.93603\n[545]\tvalidation_0-auc:0.93605\n[546]\tvalidation_0-auc:0.93606\n[547]\tvalidation_0-auc:0.93603\n[548]\tvalidation_0-auc:0.93604\n[549]\tvalidation_0-auc:0.93602\n[550]\tvalidation_0-auc:0.93604\n[551]\tvalidation_0-auc:0.93604\n[552]\tvalidation_0-auc:0.93606\n[553]\tvalidation_0-auc:0.93605\n[554]\tvalidation_0-auc:0.93606\n[555]\tvalidation_0-auc:0.93607\n[556]\tvalidation_0-auc:0.93607\n[557]\tvalidation_0-auc:0.93608\n[558]\tvalidation_0-auc:0.93607\n[559]\tvalidation_0-auc:0.93608\n[560]\tvalidation_0-auc:0.93609\n[561]\tvalidation_0-auc:0.93608\n[562]\tvalidation_0-auc:0.93609\n[563]\tvalidation_0-auc:0.93609\n[564]\tvalidation_0-auc:0.93610\n[565]\tvalidation_0-auc:0.93609\n[566]\tvalidation_0-auc:0.93608\n[567]\tvalidation_0-auc:0.93611\n[568]\tvalidation_0-auc:0.93611\n[569]\tvalidation_0-auc:0.93612\n[570]\tvalidation_0-auc:0.93609\n[571]\tvalidation_0-auc:0.93610\n[572]\tvalidation_0-auc:0.93613\n[573]\tvalidation_0-auc:0.93613\n[574]\tvalidation_0-auc:0.93614\n[575]\tvalidation_0-auc:0.93616\n[576]\tvalidation_0-auc:0.93616\n[577]\tvalidation_0-auc:0.93615\n[578]\tvalidation_0-auc:0.93618\n[579]\tvalidation_0-auc:0.93619\n[580]\tvalidation_0-auc:0.93617\n[581]\tvalidation_0-auc:0.93617\n[582]\tvalidation_0-auc:0.93617\n[583]\tvalidation_0-auc:0.93616\n[584]\tvalidation_0-auc:0.93623\n[585]\tvalidation_0-auc:0.93625\n[586]\tvalidation_0-auc:0.93628\n[587]\tvalidation_0-auc:0.93629\n[588]\tvalidation_0-auc:0.93630\n[589]\tvalidation_0-auc:0.93628\n[590]\tvalidation_0-auc:0.93625\n[591]\tvalidation_0-auc:0.93625\n[592]\tvalidation_0-auc:0.93623\n[593]\tvalidation_0-auc:0.93625\n[594]\tvalidation_0-auc:0.93626\n[595]\tvalidation_0-auc:0.93626\n[596]\tvalidation_0-auc:0.93626\n[597]\tvalidation_0-auc:0.93627\n[598]\tvalidation_0-auc:0.93624\n[599]\tvalidation_0-auc:0.93626\n[600]\tvalidation_0-auc:0.93624\n[601]\tvalidation_0-auc:0.93622\n[602]\tvalidation_0-auc:0.93622\n[603]\tvalidation_0-auc:0.93626\n[604]\tvalidation_0-auc:0.93627\n[605]\tvalidation_0-auc:0.93624\n[606]\tvalidation_0-auc:0.93627\n[607]\tvalidation_0-auc:0.93628\n[608]\tvalidation_0-auc:0.93626\n[609]\tvalidation_0-auc:0.93629\n[610]\tvalidation_0-auc:0.93631\n[611]\tvalidation_0-auc:0.93631\n[612]\tvalidation_0-auc:0.93637\n[613]\tvalidation_0-auc:0.93638\n[614]\tvalidation_0-auc:0.93639\n[615]\tvalidation_0-auc:0.93640\n[616]\tvalidation_0-auc:0.93639\n[617]\tvalidation_0-auc:0.93639\n[618]\tvalidation_0-auc:0.93638\n[619]\tvalidation_0-auc:0.93639\n[620]\tvalidation_0-auc:0.93641\n[621]\tvalidation_0-auc:0.93642\n[622]\tvalidation_0-auc:0.93640\n[623]\tvalidation_0-auc:0.93638\n[624]\tvalidation_0-auc:0.93637\n[625]\tvalidation_0-auc:0.93638\n[626]\tvalidation_0-auc:0.93645\n[627]\tvalidation_0-auc:0.93648\n[628]\tvalidation_0-auc:0.93646\n[629]\tvalidation_0-auc:0.93646\n[630]\tvalidation_0-auc:0.93646\n[631]\tvalidation_0-auc:0.93645\n[632]\tvalidation_0-auc:0.93646\n[633]\tvalidation_0-auc:0.93647\n[634]\tvalidation_0-auc:0.93649\n[635]\tvalidation_0-auc:0.93650\n[636]\tvalidation_0-auc:0.93650\n[637]\tvalidation_0-auc:0.93654\n[638]\tvalidation_0-auc:0.93655\n[639]\tvalidation_0-auc:0.93657\n[640]\tvalidation_0-auc:0.93658\n[641]\tvalidation_0-auc:0.93657\n[642]\tvalidation_0-auc:0.93656\n[643]\tvalidation_0-auc:0.93656\n[644]\tvalidation_0-auc:0.93654\n[645]\tvalidation_0-auc:0.93653\n[646]\tvalidation_0-auc:0.93652\n[647]\tvalidation_0-auc:0.93651\n[648]\tvalidation_0-auc:0.93652\n[649]\tvalidation_0-auc:0.93654\n[650]\tvalidation_0-auc:0.93655\n[651]\tvalidation_0-auc:0.93654\n[652]\tvalidation_0-auc:0.93653\n[653]\tvalidation_0-auc:0.93652\n[654]\tvalidation_0-auc:0.93652\n[655]\tvalidation_0-auc:0.93652\n[656]\tvalidation_0-auc:0.93650\n[657]\tvalidation_0-auc:0.93649\n[658]\tvalidation_0-auc:0.93649\n[659]\tvalidation_0-auc:0.93650\n[660]\tvalidation_0-auc:0.93651\n[661]\tvalidation_0-auc:0.93650\n[662]\tvalidation_0-auc:0.93649\n[663]\tvalidation_0-auc:0.93649\n[664]\tvalidation_0-auc:0.93650\n[665]\tvalidation_0-auc:0.93648\n[666]\tvalidation_0-auc:0.93649\n[667]\tvalidation_0-auc:0.93648\n[668]\tvalidation_0-auc:0.93653\n[669]\tvalidation_0-auc:0.93653\n[670]\tvalidation_0-auc:0.93654\n[671]\tvalidation_0-auc:0.93656\n[672]\tvalidation_0-auc:0.93652\n[673]\tvalidation_0-auc:0.93652\n[674]\tvalidation_0-auc:0.93652\n[675]\tvalidation_0-auc:0.93654\n[676]\tvalidation_0-auc:0.93653\n[677]\tvalidation_0-auc:0.93653\n[678]\tvalidation_0-auc:0.93652\n[679]\tvalidation_0-auc:0.93655\n[680]\tvalidation_0-auc:0.93655\n[681]\tvalidation_0-auc:0.93655\n[682]\tvalidation_0-auc:0.93656\n[683]\tvalidation_0-auc:0.93656\n[684]\tvalidation_0-auc:0.93654\n[685]\tvalidation_0-auc:0.93654\n[686]\tvalidation_0-auc:0.93655\n[687]\tvalidation_0-auc:0.93654\n[688]\tvalidation_0-auc:0.93654\n[689]\tvalidation_0-auc:0.93653\n[690]\tvalidation_0-auc:0.93653\n[691]\tvalidation_0-auc:0.93653\n[692]\tvalidation_0-auc:0.93652\n[693]\tvalidation_0-auc:0.93651\n[694]\tvalidation_0-auc:0.93653\n[695]\tvalidation_0-auc:0.93655\n[696]\tvalidation_0-auc:0.93656\n[697]\tvalidation_0-auc:0.93656\n[698]\tvalidation_0-auc:0.93654\n[699]\tvalidation_0-auc:0.93656\n[700]\tvalidation_0-auc:0.93657\n[701]\tvalidation_0-auc:0.93656\n[702]\tvalidation_0-auc:0.93655\n[703]\tvalidation_0-auc:0.93655\n[704]\tvalidation_0-auc:0.93660\n[705]\tvalidation_0-auc:0.93662\n[706]\tvalidation_0-auc:0.93661\n[707]\tvalidation_0-auc:0.93659\n[708]\tvalidation_0-auc:0.93660\n[709]\tvalidation_0-auc:0.93657\n[710]\tvalidation_0-auc:0.93655\n[711]\tvalidation_0-auc:0.93654\n[712]\tvalidation_0-auc:0.93653\n[713]\tvalidation_0-auc:0.93654\n[714]\tvalidation_0-auc:0.93655\n[715]\tvalidation_0-auc:0.93654\n[716]\tvalidation_0-auc:0.93655\n[717]\tvalidation_0-auc:0.93656\n[718]\tvalidation_0-auc:0.93656\n[719]\tvalidation_0-auc:0.93657\n[720]\tvalidation_0-auc:0.93654\n[721]\tvalidation_0-auc:0.93655\n[722]\tvalidation_0-auc:0.93653\n[723]\tvalidation_0-auc:0.93654\n[724]\tvalidation_0-auc:0.93655\n[725]\tvalidation_0-auc:0.93658\n[726]\tvalidation_0-auc:0.93659\n[727]\tvalidation_0-auc:0.93659\n[728]\tvalidation_0-auc:0.93658\n[729]\tvalidation_0-auc:0.93657\n[730]\tvalidation_0-auc:0.93656\n[731]\tvalidation_0-auc:0.93653\n[732]\tvalidation_0-auc:0.93652\n[733]\tvalidation_0-auc:0.93651\n[734]\tvalidation_0-auc:0.93651\n[735]\tvalidation_0-auc:0.93651\n[736]\tvalidation_0-auc:0.93650\n[737]\tvalidation_0-auc:0.93648\n[738]\tvalidation_0-auc:0.93652\n[739]\tvalidation_0-auc:0.93651\n[740]\tvalidation_0-auc:0.93651\n[741]\tvalidation_0-auc:0.93650\n[742]\tvalidation_0-auc:0.93649\n[743]\tvalidation_0-auc:0.93652\n[744]\tvalidation_0-auc:0.93652\n[745]\tvalidation_0-auc:0.93651\n[746]\tvalidation_0-auc:0.93652\n[747]\tvalidation_0-auc:0.93652\n[748]\tvalidation_0-auc:0.93652\n[749]\tvalidation_0-auc:0.93651\n[750]\tvalidation_0-auc:0.93651\n[751]\tvalidation_0-auc:0.93649\n[752]\tvalidation_0-auc:0.93648\n[753]\tvalidation_0-auc:0.93648\n[754]\tvalidation_0-auc:0.93651\n[755]\tvalidation_0-auc:0.93651\n[756]\tvalidation_0-auc:0.93651\n[757]\tvalidation_0-auc:0.93651\n[758]\tvalidation_0-auc:0.93652\n[759]\tvalidation_0-auc:0.93653\n[760]\tvalidation_0-auc:0.93655\n[761]\tvalidation_0-auc:0.93654\n[762]\tvalidation_0-auc:0.93652\n[763]\tvalidation_0-auc:0.93652\n[764]\tvalidation_0-auc:0.93655\n[765]\tvalidation_0-auc:0.93654\n[766]\tvalidation_0-auc:0.93655\n[767]\tvalidation_0-auc:0.93652\n[768]\tvalidation_0-auc:0.93653\n[769]\tvalidation_0-auc:0.93654\n[770]\tvalidation_0-auc:0.93653\n[771]\tvalidation_0-auc:0.93653\n[772]\tvalidation_0-auc:0.93654\n[773]\tvalidation_0-auc:0.93653\n[774]\tvalidation_0-auc:0.93653\n[775]\tvalidation_0-auc:0.93657\n[776]\tvalidation_0-auc:0.93656\n[777]\tvalidation_0-auc:0.93658\n[778]\tvalidation_0-auc:0.93659\n[779]\tvalidation_0-auc:0.93659\n[780]\tvalidation_0-auc:0.93658\n[781]\tvalidation_0-auc:0.93657\n[782]\tvalidation_0-auc:0.93654\n[783]\tvalidation_0-auc:0.93654\n[784]\tvalidation_0-auc:0.93651\n[785]\tvalidation_0-auc:0.93652\n[786]\tvalidation_0-auc:0.93652\n[787]\tvalidation_0-auc:0.93653\n[788]\tvalidation_0-auc:0.93652\n[789]\tvalidation_0-auc:0.93654\n[790]\tvalidation_0-auc:0.93655\n[791]\tvalidation_0-auc:0.93654\n[792]\tvalidation_0-auc:0.93652\n[793]\tvalidation_0-auc:0.93656\n[794]\tvalidation_0-auc:0.93654\n[795]\tvalidation_0-auc:0.93653\n[796]\tvalidation_0-auc:0.93655\n[797]\tvalidation_0-auc:0.93658\n[798]\tvalidation_0-auc:0.93657\n[799]\tvalidation_0-auc:0.93656\n[800]\tvalidation_0-auc:0.93654\n[801]\tvalidation_0-auc:0.93653\n[802]\tvalidation_0-auc:0.93653\n[803]\tvalidation_0-auc:0.93653\n[804]\tvalidation_0-auc:0.93652\n[805]\tvalidation_0-auc:0.93650\n0.9326219985474677\n"}],"source":"n_fold = 5\nfolds = KFold(n_splits=n_fold, shuffle=True, random_state=2022)\noof_xgb = np.zeros(len(X))\nprediction_xgb = np.zeros(len(dummy_test))\nfor fold_n, (train_index, valid_index) in enumerate(folds.split(X)):\n X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]\n y_train, y_valid = y[train_index], y[valid_index]\n# smote_tomek = SMOTETomek(random_state=2022)\n# X_resampled, y_resampled = smote_tomek.fit_resample(X_train, y_train)\n eval_set = [(X_valid, y_valid)]\n model_xgb = XGBRegressor(\n max_depth=9,learning_rate=0.01,n_estimators=10000,colsample_bytree=0.6,subsample=0.8,random_state=2022\n ).fit(X_train,y_train,early_stopping_rounds=100, eval_metric=\"auc\",eval_set=eval_set, verbose=True)\n y_pred_valid = model_xgb.predict(X_valid)\n y_pred = model_xgb.predict(dummy_test)\n oof_xgb[valid_index] = y_pred_valid.reshape(-1, )\n prediction_xgb += y_pred\nprediction_xgb /= n_fold \nprint(roc_auc_score(y, oof_xgb))\n# 0.9326219985474677"},{"cell_type":"markdown","metadata":{"id":"D03CB6619D8B44B08E990ED3EA01C61D","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"### 基于GridSearchCV的LGBM参数调整"},{"cell_type":"code","execution_count":65,"metadata":{"id":"082D0D1C79D14C0BB07870203B74F5F8","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["{'colsample_bytree': 0.8, 'learning_rate': 0.01, 'max_depth': 30, 'n_estimators': 10000, 'num_leaves': 59, 'subsample': 0.7}\n"]}],"source":"# param = {'max_depth': [30],\n# 'learning_rate': [0.01],\n# 'num_leaves': [59],\n# 'subsample': [0.7],\n# 'colsample_bytree': [0.8],\n# 'n_estimators': [10000]}\n# gs = GridSearchCV(estimator=LGBMRegressor(), param_grid=param, cv=5, scoring=\"neg_mean_squared_error\", n_jobs=-1) \n# gs.fit(X_resampled,y_resampled)\n# print(gs.best_params_) \n"},{"cell_type":"markdown","metadata":{"id":"23ADF0543B77452A8DCC799C0582D474","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"### 基于五折交叉验证的LGBM"},{"cell_type":"code","execution_count":115,"metadata":{"id":"D2313DA33FCA4D7EA5F3C32DD98D6BBA","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"outputs":[{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\lightgbm\\sklearn.py:726: UserWarning: 'early_stopping_rounds' argument is deprecated and will be removed in a future release of LightGBM. Pass 'early_stopping()' callback via 'callbacks' argument instead.\n"," _log_warning(\"'early_stopping_rounds' argument is deprecated and will be removed in a future release of LightGBM. \"\n","E:\\Anaconda3\\lib\\site-packages\\lightgbm\\sklearn.py:736: UserWarning: 'verbose' argument is deprecated and will be removed in a future release of LightGBM. Pass 'log_evaluation()' callback via 'callbacks' argument instead.\n"," _log_warning(\"'verbose' argument is deprecated and will be removed in a future release of LightGBM. \"\n"]},{"name":"stdout","output_type":"stream","text":["[50]\ttraining's auc: 0.94085\ttraining's l2: 0.0788925\tvalid_1's auc: 0.925864\tvalid_1's l2: 0.0818997\n","[100]\ttraining's auc: 0.944802\ttraining's l2: 0.0672695\tvalid_1's auc: 0.928742\tvalid_1's l2: 0.0719714\n","[150]\ttraining's auc: 0.948559\ttraining's l2: 0.0607984\tvalid_1's auc: 0.930343\tvalid_1's l2: 0.0672457\n","[200]\ttraining's auc: 0.951549\ttraining's l2: 0.056876\tvalid_1's auc: 0.931374\tvalid_1's l2: 0.0649636\n","[250]\ttraining's auc: 0.954385\ttraining's l2: 0.054275\tvalid_1's auc: 0.931987\tvalid_1's l2: 0.0639735\n","[300]\ttraining's auc: 0.957015\ttraining's l2: 0.0521878\tvalid_1's auc: 0.932396\tvalid_1's l2: 0.0634468\n","[350]\ttraining's auc: 0.960145\ttraining's l2: 0.0503487\tvalid_1's auc: 0.93328\tvalid_1's l2: 0.0630066\n","[400]\ttraining's auc: 0.962937\ttraining's l2: 0.0486323\tvalid_1's auc: 0.93371\tvalid_1's l2: 0.062822\n","[450]\ttraining's auc: 0.965233\ttraining's l2: 0.0471381\tvalid_1's auc: 0.933886\tvalid_1's l2: 0.0627358\n","[500]\ttraining's auc: 0.96724\ttraining's l2: 0.0458021\tvalid_1's auc: 0.934201\tvalid_1's l2: 0.0626506\n","[550]\ttraining's auc: 0.969189\ttraining's l2: 0.0445553\tvalid_1's auc: 0.934529\tvalid_1's l2: 0.0624507\n","[600]\ttraining's auc: 0.970941\ttraining's l2: 0.0434685\tvalid_1's auc: 0.93459\tvalid_1's l2: 0.0623492\n","[650]\ttraining's auc: 0.972602\ttraining's l2: 0.0424998\tvalid_1's auc: 0.934349\tvalid_1's l2: 0.0622475\n","[700]\ttraining's auc: 0.974021\ttraining's l2: 0.041611\tvalid_1's auc: 0.934276\tvalid_1's l2: 0.0621712\n","[750]\ttraining's auc: 0.975347\ttraining's l2: 0.0408109\tvalid_1's auc: 0.933644\tvalid_1's l2: 0.0622134\n","[800]\ttraining's auc: 0.976582\ttraining's l2: 0.0400338\tvalid_1's auc: 0.933249\tvalid_1's l2: 0.0622394\n"]},{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\lightgbm\\sklearn.py:726: UserWarning: 'early_stopping_rounds' argument is deprecated and will be removed in a future release of LightGBM. Pass 'early_stopping()' callback via 'callbacks' argument instead.\n"," _log_warning(\"'early_stopping_rounds' argument is deprecated and will be removed in a future release of LightGBM. \"\n","E:\\Anaconda3\\lib\\site-packages\\lightgbm\\sklearn.py:736: UserWarning: 'verbose' argument is deprecated and will be removed in a future release of LightGBM. Pass 'log_evaluation()' callback via 'callbacks' argument instead.\n"," _log_warning(\"'verbose' argument is deprecated and will be removed in a future release of LightGBM. \"\n"]},{"name":"stdout","output_type":"stream","text":["[50]\ttraining's auc: 0.9402\ttraining's l2: 0.07935\tvalid_1's auc: 0.932536\tvalid_1's l2: 0.0801626\n","[100]\ttraining's auc: 0.943739\ttraining's l2: 0.0676194\tvalid_1's auc: 0.934496\tvalid_1's l2: 0.0702667\n","[150]\ttraining's auc: 0.947848\ttraining's l2: 0.061121\tvalid_1's auc: 0.936416\tvalid_1's l2: 0.065416\n","[200]\ttraining's auc: 0.950776\ttraining's l2: 0.0572456\tvalid_1's auc: 0.937341\tvalid_1's l2: 0.0630831\n","[250]\ttraining's auc: 0.953983\ttraining's l2: 0.0545583\tvalid_1's auc: 0.938133\tvalid_1's l2: 0.0619445\n","[300]\ttraining's auc: 0.956913\ttraining's l2: 0.0523396\tvalid_1's auc: 0.93872\tvalid_1's l2: 0.0612938\n","[350]\ttraining's auc: 0.959894\ttraining's l2: 0.0504202\tvalid_1's auc: 0.939454\tvalid_1's l2: 0.0609051\n","[400]\ttraining's auc: 0.962519\ttraining's l2: 0.0487443\tvalid_1's auc: 0.939785\tvalid_1's l2: 0.0607129\n","[450]\ttraining's auc: 0.964735\ttraining's l2: 0.0473303\tvalid_1's auc: 0.939786\tvalid_1's l2: 0.0606189\n","[500]\ttraining's auc: 0.966875\ttraining's l2: 0.0459614\tvalid_1's auc: 0.940058\tvalid_1's l2: 0.0605379\n","[550]\ttraining's auc: 0.968779\ttraining's l2: 0.0447104\tvalid_1's auc: 0.94022\tvalid_1's l2: 0.0605152\n","[600]\ttraining's auc: 0.97058\ttraining's l2: 0.0435918\tvalid_1's auc: 0.940533\tvalid_1's l2: 0.0604589\n","[650]\ttraining's auc: 0.972085\ttraining's l2: 0.0426417\tvalid_1's auc: 0.940571\tvalid_1's l2: 0.0604517\n","[700]\ttraining's auc: 0.973432\ttraining's l2: 0.0417863\tvalid_1's auc: 0.940672\tvalid_1's l2: 0.0604522\n","[750]\ttraining's auc: 0.974732\ttraining's l2: 0.0409048\tvalid_1's auc: 0.940905\tvalid_1's l2: 0.0603683\n","[800]\ttraining's auc: 0.975899\ttraining's l2: 0.0401361\tvalid_1's auc: 0.940962\tvalid_1's l2: 0.0603816\n","[850]\ttraining's auc: 0.976931\ttraining's l2: 0.0394491\tvalid_1's auc: 0.940966\tvalid_1's l2: 0.0603915\n","[900]\ttraining's auc: 0.977929\ttraining's l2: 0.0387792\tvalid_1's auc: 0.94085\tvalid_1's l2: 0.0604162\n","[950]\ttraining's auc: 0.978862\ttraining's l2: 0.0381312\tvalid_1's auc: 0.940734\tvalid_1's l2: 0.0604662\n"]},{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\lightgbm\\sklearn.py:726: UserWarning: 'early_stopping_rounds' argument is deprecated and will be removed in a future release of LightGBM. Pass 'early_stopping()' callback via 'callbacks' argument instead.\n"," _log_warning(\"'early_stopping_rounds' argument is deprecated and will be removed in a future release of LightGBM. \"\n","E:\\Anaconda3\\lib\\site-packages\\lightgbm\\sklearn.py:736: UserWarning: 'verbose' argument is deprecated and will be removed in a future release of LightGBM. Pass 'log_evaluation()' callback via 'callbacks' argument instead.\n"," _log_warning(\"'verbose' argument is deprecated and will be removed in a future release of LightGBM. \"\n"]},{"name":"stdout","output_type":"stream","text":["[50]\ttraining's auc: 0.941654\ttraining's l2: 0.0795005\tvalid_1's auc: 0.922594\tvalid_1's l2: 0.0787988\n","[100]\ttraining's auc: 0.945571\ttraining's l2: 0.0677357\tvalid_1's auc: 0.92527\tvalid_1's l2: 0.0696453\n","[150]\ttraining's auc: 0.949356\ttraining's l2: 0.0611459\tvalid_1's auc: 0.926724\tvalid_1's l2: 0.0655987\n","[200]\ttraining's auc: 0.952608\ttraining's l2: 0.0570597\tvalid_1's auc: 0.928057\tvalid_1's l2: 0.0637265\n","[250]\ttraining's auc: 0.955616\ttraining's l2: 0.0543341\tvalid_1's auc: 0.928873\tvalid_1's l2: 0.0630037\n","[300]\ttraining's auc: 0.95832\ttraining's l2: 0.0522183\tvalid_1's auc: 0.929336\tvalid_1's l2: 0.0626532\n","[350]\ttraining's auc: 0.961151\ttraining's l2: 0.0503588\tvalid_1's auc: 0.930429\tvalid_1's l2: 0.0623272\n","[400]\ttraining's auc: 0.963634\ttraining's l2: 0.0487219\tvalid_1's auc: 0.93069\tvalid_1's l2: 0.0622242\n","[450]\ttraining's auc: 0.965829\ttraining's l2: 0.0472595\tvalid_1's auc: 0.930543\tvalid_1's l2: 0.0621943\n","[500]\ttraining's auc: 0.967929\ttraining's l2: 0.0459291\tvalid_1's auc: 0.930614\tvalid_1's l2: 0.0621045\n","[550]\ttraining's auc: 0.969991\ttraining's l2: 0.0446926\tvalid_1's auc: 0.930791\tvalid_1's l2: 0.0620086\n","[600]\ttraining's auc: 0.971611\ttraining's l2: 0.0436567\tvalid_1's auc: 0.930556\tvalid_1's l2: 0.0619909\n","[650]\ttraining's auc: 0.973089\ttraining's l2: 0.0427368\tvalid_1's auc: 0.930451\tvalid_1's l2: 0.0619711\n","[700]\ttraining's auc: 0.974456\ttraining's l2: 0.0418338\tvalid_1's auc: 0.930732\tvalid_1's l2: 0.0618934\n","[750]\ttraining's auc: 0.975701\ttraining's l2: 0.0409687\tvalid_1's auc: 0.93121\tvalid_1's l2: 0.0617997\n","[800]\ttraining's auc: 0.976774\ttraining's l2: 0.04021\tvalid_1's auc: 0.931229\tvalid_1's l2: 0.0618136\n","[850]\ttraining's auc: 0.977858\ttraining's l2: 0.0394732\tvalid_1's auc: 0.931142\tvalid_1's l2: 0.061852\n","[900]\ttraining's auc: 0.978878\ttraining's l2: 0.0387557\tvalid_1's auc: 0.930934\tvalid_1's l2: 0.0618529\n","[950]\ttraining's auc: 0.979878\ttraining's l2: 0.0380331\tvalid_1's auc: 0.930689\tvalid_1's l2: 0.0618732\n"]},{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\lightgbm\\sklearn.py:726: UserWarning: 'early_stopping_rounds' argument is deprecated and will be removed in a future release of LightGBM. Pass 'early_stopping()' callback via 'callbacks' argument instead.\n"," _log_warning(\"'early_stopping_rounds' argument is deprecated and will be removed in a future release of LightGBM. \"\n","E:\\Anaconda3\\lib\\site-packages\\lightgbm\\sklearn.py:736: UserWarning: 'verbose' argument is deprecated and will be removed in a future release of LightGBM. Pass 'log_evaluation()' callback via 'callbacks' argument instead.\n"," _log_warning(\"'verbose' argument is deprecated and will be removed in a future release of LightGBM. \"\n"]},{"name":"stdout","output_type":"stream","text":["[50]\ttraining's auc: 0.938779\ttraining's l2: 0.0783692\tvalid_1's auc: 0.929724\tvalid_1's l2: 0.0849279\n","[100]\ttraining's auc: 0.943638\ttraining's l2: 0.0667337\tvalid_1's auc: 0.932269\tvalid_1's l2: 0.074493\n","[150]\ttraining's auc: 0.94752\ttraining's l2: 0.0603255\tvalid_1's auc: 0.933807\tvalid_1's l2: 0.0694419\n","[200]\ttraining's auc: 0.950881\ttraining's l2: 0.056408\tvalid_1's auc: 0.93552\tvalid_1's l2: 0.0669414\n","[250]\ttraining's auc: 0.95406\ttraining's l2: 0.0536874\tvalid_1's auc: 0.935899\tvalid_1's l2: 0.0658231\n","[300]\ttraining's auc: 0.957231\ttraining's l2: 0.05144\tvalid_1's auc: 0.936191\tvalid_1's l2: 0.0651672\n","[350]\ttraining's auc: 0.960257\ttraining's l2: 0.0495814\tvalid_1's auc: 0.936883\tvalid_1's l2: 0.064655\n","[400]\ttraining's auc: 0.962809\ttraining's l2: 0.0479463\tvalid_1's auc: 0.937101\tvalid_1's l2: 0.0644035\n","[450]\ttraining's auc: 0.965109\ttraining's l2: 0.0464814\tvalid_1's auc: 0.937094\tvalid_1's l2: 0.0642898\n","[500]\ttraining's auc: 0.967202\ttraining's l2: 0.0451684\tvalid_1's auc: 0.937229\tvalid_1's l2: 0.0641968\n","[550]\ttraining's auc: 0.969275\ttraining's l2: 0.0439568\tvalid_1's auc: 0.937514\tvalid_1's l2: 0.0640906\n","[600]\ttraining's auc: 0.971103\ttraining's l2: 0.0428949\tvalid_1's auc: 0.937774\tvalid_1's l2: 0.0639556\n","[650]\ttraining's auc: 0.972795\ttraining's l2: 0.0419193\tvalid_1's auc: 0.938085\tvalid_1's l2: 0.0638854\n","[700]\ttraining's auc: 0.974376\ttraining's l2: 0.0409977\tvalid_1's auc: 0.938299\tvalid_1's l2: 0.0637705\n","[750]\ttraining's auc: 0.975719\ttraining's l2: 0.0401733\tvalid_1's auc: 0.938254\tvalid_1's l2: 0.0638389\n","[800]\ttraining's auc: 0.976952\ttraining's l2: 0.039378\tvalid_1's auc: 0.938171\tvalid_1's l2: 0.0638989\n","[850]\ttraining's auc: 0.977996\ttraining's l2: 0.0386485\tvalid_1's auc: 0.93817\tvalid_1's l2: 0.0639324\n","[900]\ttraining's auc: 0.978923\ttraining's l2: 0.0380388\tvalid_1's auc: 0.938106\tvalid_1's l2: 0.0639588\n"]},{"name":"stderr","output_type":"stream","text":["E:\\Anaconda3\\lib\\site-packages\\lightgbm\\sklearn.py:726: UserWarning: 'early_stopping_rounds' argument is deprecated and will be removed in a future release of LightGBM. Pass 'early_stopping()' callback via 'callbacks' argument instead.\n"," _log_warning(\"'early_stopping_rounds' argument is deprecated and will be removed in a future release of LightGBM. \"\n","E:\\Anaconda3\\lib\\site-packages\\lightgbm\\sklearn.py:736: UserWarning: 'verbose' argument is deprecated and will be removed in a future release of LightGBM. Pass 'log_evaluation()' callback via 'callbacks' argument instead.\n"," _log_warning(\"'verbose' argument is deprecated and will be removed in a future release of LightGBM. \"\n"]},{"name":"stdout","output_type":"stream","text":["[50]\ttraining's auc: 0.941106\ttraining's l2: 0.0789061\tvalid_1's auc: 0.916192\tvalid_1's l2: 0.0814378\n","[100]\ttraining's auc: 0.945514\ttraining's l2: 0.0669373\tvalid_1's auc: 0.919579\tvalid_1's l2: 0.0723827\n","[150]\ttraining's auc: 0.949487\ttraining's l2: 0.0604246\tvalid_1's auc: 0.921699\tvalid_1's l2: 0.068301\n","[200]\ttraining's auc: 0.953036\ttraining's l2: 0.0563975\tvalid_1's auc: 0.922555\tvalid_1's l2: 0.0664568\n","[250]\ttraining's auc: 0.955869\ttraining's l2: 0.0536905\tvalid_1's auc: 0.923021\tvalid_1's l2: 0.0656804\n","[300]\ttraining's auc: 0.958501\ttraining's l2: 0.0515648\tvalid_1's auc: 0.923196\tvalid_1's l2: 0.0654114\n","[350]\ttraining's auc: 0.961319\ttraining's l2: 0.0497304\tvalid_1's auc: 0.924204\tvalid_1's l2: 0.0651377\n","[400]\ttraining's auc: 0.963981\ttraining's l2: 0.0480409\tvalid_1's auc: 0.924832\tvalid_1's l2: 0.0648762\n","[450]\ttraining's auc: 0.96626\ttraining's l2: 0.0466098\tvalid_1's auc: 0.925281\tvalid_1's l2: 0.0647658\n","[500]\ttraining's auc: 0.968523\ttraining's l2: 0.0452797\tvalid_1's auc: 0.925673\tvalid_1's l2: 0.0647242\n","[550]\ttraining's auc: 0.970423\ttraining's l2: 0.0440425\tvalid_1's auc: 0.926443\tvalid_1's l2: 0.0646256\n","[600]\ttraining's auc: 0.972048\ttraining's l2: 0.0429566\tvalid_1's auc: 0.926666\tvalid_1's l2: 0.064639\n","[650]\ttraining's auc: 0.97356\ttraining's l2: 0.0419683\tvalid_1's auc: 0.926761\tvalid_1's l2: 0.0646741\n","[700]\ttraining's auc: 0.974844\ttraining's l2: 0.0411034\tvalid_1's auc: 0.926648\tvalid_1's l2: 0.0647594\n","[750]\ttraining's auc: 0.976116\ttraining's l2: 0.0402927\tvalid_1's auc: 0.92654\tvalid_1's l2: 0.0648155\n","0.9342991211145983\n"]}],"source":"n_fold = 5\nfolds = KFold(n_splits=n_fold, shuffle=True,random_state=1314)\nparams = {\n 'learning_rate':0.01,\n 'subsample': 0.7,\n 'num_leaves': 59,\n 'n_estimators':1500,\n 'max_depth': 30,\n 'colsample_bytree': 0.8,\n 'verbose': -1,\n 'seed': 2022,\n 'n_jobs': -1\n}\n\noof_lgb = np.zeros(len(X))\npredictions_lgb = np.zeros(len(dummy_test))\nfor fold_n, (train_index, valid_index) in enumerate(folds.split(X)):\n X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]\n y_train, y_valid = y[train_index], y[valid_index]\n# smote_tomek = SMOTETomek(random_state=2022)\n# X_resampled, y_resampled = smote_tomek.fit_resample(X_train, y_train)\n model = lgb.LGBMRegressor(**params)\n model.fit(X_train, y_train,\n eval_set=[(X_train, y_train), (X_valid, y_valid)],\n eval_metric='auc',\n verbose=50, early_stopping_rounds=200)\n y_pred_valid = model.predict(X_valid)\n y_pred = model.predict(dummy_test, num_iteration=model.best_iteration_)\n oof_lgb[valid_index] = y_pred_valid.reshape(-1, )\n predictions_lgb += y_pred\npredictions_lgb /= n_fold\nprint(roc_auc_score(y, oof_lgb))\n# 0.9342991211145983"},{"cell_type":"markdown","metadata":{"id":"1D0CF99ED0F04505ADAF99D733B04257","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"### 基于GridSearchCV的catboost参数调整"},{"cell_type":"code","execution_count":1,"metadata":{"collapsed":true,"id":"40143CE0A1F7461A9D5AAFEB614609B5","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"outputs":[],"source":"\n# param = {'depth': [7,9,11],\n# 'learning_rate': [0.01],\n# 'iterations': [8000]}\n# gs = GridSearchCV(estimator=CatBoostRegressor(), param_grid=param, cv=3, scoring=\"neg_mean_squared_error\", n_jobs=-1) \n# gs.fit(X_resampled,y_resampled)\n# print(gs.best_params_) "},{"cell_type":"markdown","metadata":{"id":"0E595CF0D95341E69AB1154B1849F14E","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"### 基于五折交叉验证的catboost"},{"cell_type":"code","execution_count":67,"metadata":{"id":"3A557EC583C0481488702DC367D10F53","jupyter":{},"scrolled":false,"slideshow":{"slide_type":"slide"},"tags":[],"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["0:\tlearn: 0.3201355\ttest: 0.3215319\tbest: 0.3215319 (0)\ttotal: 55.1ms\tremaining: 22m 57s\n","1000:\tlearn: 0.2210492\ttest: 0.2482059\tbest: 0.2482059 (1000)\ttotal: 34.7s\tremaining: 13m 51s\n","Stopped by overfitting detector (300 iterations wait)\n","\n","bestTest = 0.2468782072\n","bestIteration = 1477\n","\n","Shrink model to first 1478 iterations.\n","0:\tlearn: 0.3208935\ttest: 0.3185105\tbest: 0.3185105 (0)\ttotal: 69.5ms\tremaining: 28m 57s\n","1000:\tlearn: 0.2206024\ttest: 0.2464808\tbest: 0.2464751 (998)\ttotal: 37.8s\tremaining: 15m 5s\n","2000:\tlearn: 0.1971871\ttest: 0.2454924\tbest: 0.2454188 (1725)\ttotal: 1m 13s\tremaining: 14m 5s\n","Stopped by overfitting detector (300 iterations wait)\n","\n","bestTest = 0.2454188002\n","bestIteration = 1725\n","\n","Shrink model to first 1726 iterations.\n","0:\tlearn: 0.3214860\ttest: 0.3161403\tbest: 0.3161403 (0)\ttotal: 42ms\tremaining: 17m 30s\n","1000:\tlearn: 0.2210140\ttest: 0.2480678\tbest: 0.2480521 (995)\ttotal: 36.2s\tremaining: 14m 27s\n","Stopped by overfitting detector (300 iterations wait)\n","\n","bestTest = 0.24699407\n","bestIteration = 1556\n","\n","Shrink model to first 1557 iterations.\n","0:\tlearn: 0.3186885\ttest: 0.3274174\tbest: 0.3274174 (0)\ttotal: 54ms\tremaining: 22m 30s\n","1000:\tlearn: 0.2202664\ttest: 0.2525361\tbest: 0.2525361 (1000)\ttotal: 36.4s\tremaining: 14m 32s\n","Stopped by overfitting detector (300 iterations wait)\n","\n","bestTest = 0.2515410448\n","bestIteration = 1603\n","\n","Shrink model to first 1604 iterations.\n","0:\tlearn: 0.3209030\ttest: 0.3185929\tbest: 0.3185929 (0)\ttotal: 75.6ms\tremaining: 31m 29s\n","1000:\tlearn: 0.2212537\ttest: 0.2523067\tbest: 0.2523067 (1000)\ttotal: 34.7s\tremaining: 13m 51s\n","Stopped by overfitting detector (300 iterations wait)\n","\n","bestTest = 0.250998901\n","bestIteration = 1618\n","\n","Shrink model to first 1619 iterations.\n"]}],"source":"# 本地交叉验证\nn_fold = 5\nfolds = KFold(n_splits=n_fold, shuffle=True, random_state=1314)\n\noof_cat = np.zeros(len(X))\nprediction_cat = np.zeros(len(dummy_test))\nfor fold_n, (train_index, valid_index) in enumerate(folds.split(X)):\n X_train, X_valid = X.iloc[train_index], X.iloc[valid_index]\n y_train, y_valid = y[train_index], y[valid_index]\n# smote_tomek = SMOTETomek(random_state=2022)\n# X_resampled, y_resampled = smote_tomek.fit_resample(X_train, y_train)\n train_pool = Pool(X_train, y_train)\n eval_pool = Pool(X_valid, y_valid)\n cbt_model = CatBoostRegressor(iterations=25000, # 注:baseline 提到的分数是用 iterations=60000 得到的,但运行时间有点久\n learning_rate=0.01, # 注:事实上好几个 property 在 lr=0.1 时收敛巨慢。后面可以考虑调大\n# eval_metric='SMAPE',\n depth=9,\n use_best_model=True,\n random_seed=2022,\n logging_level='Verbose',\n #task_type='GPU',\n devices='0',\n gpu_ram_part=0.5,\n early_stopping_rounds=300)\n \n cbt_model.fit(train_pool,\n eval_set=eval_pool,\n verbose=1000)\n\n y_pred_valid = cbt_model.predict(X_valid)\n y_pred_c = cbt_model.predict(dummy_test)\n oof_cat[valid_index] = y_pred_valid.reshape(-1, )\n prediction_cat += y_pred_c\nprediction_cat /= n_fold \n"},{"cell_type":"code","execution_count":68,"metadata":{"id":"27A63B61DB094FCF95CEEB6A1E3ADC5A","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["0.935264298588153\n"]}],"source":"print(roc_auc_score(y, oof_cat))\n# 0.935264298588153"},{"cell_type":"markdown","metadata":{"id":"9470A77D276E418F9CB2ACD8D18E6F68","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"### 基于stacking的模型融合"},{"cell_type":"code","execution_count":71,"metadata":{"id":"4A24F209D61E47E7A27F4A26D6687B89","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["fold 0\n","fold 1\n","fold 2\n","fold 3\n","fold 4\n","fold 5\n","fold 6\n","fold 7\n","fold 8\n","fold 9\n","CV score: 0.06156606\n"]}],"source":"# from sklearn.linear_model import Bayesian\nfrom sklearn.metrics import mean_squared_error,mean_absolute_error,make_scorer\n\n# 将多个模型的结果进行stacking(叠加)\ntrain_stack = np.vstack([oof_rf,oof_lgb,oof_cat,oof_xgb]).transpose()\ntest_stack = np.vstack([prediction_rf,prediction_lgb,prediction_cat,prediction_xgb]).transpose()\n#贝叶斯分类器也使用交叉验证的方法,5折,重复2次\nfolds_stack = RepeatedKFold(n_splits=5, n_repeats=2, random_state=2018)\noof_stack = np.zeros(train_stack.shape[0])\npredictions = np.zeros(test_stack.shape[0])\n \nfor fold_, (trn_idx, val_idx) in enumerate(folds_stack.split(train_stack,y)):\n print(\"fold {}\".format(fold_))\n trn_data, trn_y = train_stack[trn_idx], y.iloc[trn_idx].values\n val_data, val_y = train_stack[val_idx], y.iloc[val_idx].values#\n \n clf_3 = BayesianRidge()\n clf_3.fit(trn_data, trn_y)\n \n oof_stack[val_idx] = clf_3.predict(val_data)#对验证集有一个预测,用于后面计算模型的偏差\n predictions += clf_3.predict(test_stack) / 10#对测试集的预测,除以10是因为5折交叉验证重复了2次\n \nmean_squared_error(y.values, oof_stack)#计算出模型在训练集上的均方误差\nprint(\"CV score: {:<8.8f}\".format(mean_squared_error(y.values, oof_stack)))"},{"cell_type":"code","execution_count":72,"metadata":{"id":"33AB2F850236462DB7F0DFE549A2C559","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["0.9361018703876826\n"]}],"source":"print(roc_auc_score(y, oof_stack))\n# 0.9361018703876826"},{"cell_type":"markdown","metadata":{"id":"1D7C809913E14DD79D1E399F519EDC1C","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"source":"# 保存结果"},{"cell_type":"code","execution_count":73,"metadata":{"collapsed":true,"id":"BC37DA49289D45C2951D2FFDC91043BA","jupyter":{},"tags":[],"slideshow":{"slide_type":"slide"},"trusted":true},"outputs":[],"source":"test['pred'] = predictions\ntest[['ID', 'pred']].to_csv(r'C:\\Users\\hepei\\Desktop\\比赛代码\\练习赛\\客户购买预测\\结果\\sub.csv', index=None, encoding=\"utf-8\")"}],"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"name":"python","mimetype":"text/x-python","nbconvert_exporter":"python","file_extension":".py","version":"3.5.2","pygments_lexer":"ipython3"}},"nbformat":4,"nbformat_minor":2}
2301_80733725/DVLab
Baseline客户购买预测.ipynb
Jupyter Notebook
unknown
165,004
#!/bin/bash # 定义下载地址和文件名 DOWNLOAD_URL="https://cangjie-lang.cn/v1/files/auth/downLoad?nsId=142267&fileName=Cangjie-0.53.13-linux_x64.tar.gz&objectKey=6719f1eb3af6947e3c6af327" FILE_NAME="Cangjie-0.53.13-linux_x64.tar.gz" # 检查 cangjie 工具链是否已安装 echo "确保 cangjie 工具链已安装..." if ! command -v cjc -v &> /dev/null then echo "cangjie工具链 未安装,尝试进行安装..." # 下载文件 echo "Downloading Cangjie compiler..." curl -L -o "$FILE_NAME" "$DOWNLOAD_URL" # 检查下载是否成功 if [ $? -eq 0 ]; then echo "Download completed successfully." else echo "Download failed." exit 1 fi # 解压文件 echo "Extracting $FILE_NAME..." tar -xvf "$FILE_NAME" # 检查解压是否成功 if [ $? -eq 0 ]; then echo "Extraction completed successfully." else echo "Extraction failed." exit 1 fi # 检查 envsetup.sh 是否存在并进行 source if [[ -f "cangjie/envsetup.sh" ]]; then echo "envsetup.sh found!" source cangjie/envsetup.sh else echo "envsetup.sh not found!" exit 1 fi fi # 检查 openEuler 防火墙状态 echo "检查 openEuler 防火墙状态..." if systemctl status firewalld | grep "active (running)" &> /dev/null; then echo "防火墙已开启,尝试开放 21 端口..." firewall-cmd --zone=public --add-port=21/tcp --permanent firewall-cmd --reload echo "21 端口已开放。" else echo "防火墙未开启,无需开放端口。" fi # 编译ftp_server echo "正在编译 ftp_server..." cjpm build # 检查编译是否成功 if [ $? -eq 0 ]; then echo "编译成功." else echo "编译失败." exit 1 fi # 运行 ftp_server echo "正在启动 ftp 服务器..." cjpm run
2301_80674151/Cangjie-Examples_9958
FTP/run-ftp.sh
Shell
apache-2.0
1,967
<!DOCTYPE html> <html lang="cn"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Document</title> </head> <body> <div>Hello Cangjie!</div> <p></p> <script> let xhr = new XMLHttpRequest() xhr.open("POST", "/Hello", true) xhr.onreadystatechange = () => { if(xhr.readyState == 4 && xhr.status == 200){ let res = JSON.parse(xhr.responseText) document.body.innerHTML += `<div>${res.msg}</div>` } } xhr.send(JSON.stringify({ name: "Chen", age: 999 })) </script> </body> </html>
2301_80674151/Cangjie-Examples_9958
HTTPServer/index.html
HTML
apache-2.0
687
#!/bin/bash # 定义下载地址和文件名 DOWNLOAD_URL="https://cangjie-lang.cn/v1/files/auth/downLoad?nsId=142267&fileName=Cangjie-0.53.13-linux_x64.tar.gz&objectKey=6719f1eb3af6947e3c6af327" FILE_NAME="Cangjie-0.53.13-linux_x64.tar.gz" # 检查 cangjie 工具链是否已安装 echo "确保 cangjie 工具链已安装..." if ! command -v cjc -v &> /dev/null then echo "cangjie工具链 未安装,尝试进行安装..." # 下载文件 echo "Downloading Cangjie compiler..." curl -L -o "$FILE_NAME" "$DOWNLOAD_URL" # 检查下载是否成功 if [ $? -eq 0 ]; then echo "Download completed successfully." else echo "Download failed." exit 1 fi # 解压文件 echo "Extracting $FILE_NAME..." tar -xvf "$FILE_NAME" # 检查解压是否成功 if [ $? -eq 0 ]; then echo "Extraction completed successfully." else echo "Extraction failed." exit 1 fi # 检查 envsetup.sh 是否存在并进行 source if [[ -f "cangjie/envsetup.sh" ]]; then echo "envsetup.sh found!" source cangjie/envsetup.sh else echo "envsetup.sh not found!" exit 1 fi fi # 检查 openEuler 防火墙状态 echo "检查 openEuler 防火墙状态..." if systemctl status firewalld | grep "active (running)" &> /dev/null; then echo "防火墙已开启,尝试开放 21 端口..." firewall-cmd --zone=public --add-port=21/tcp --permanent firewall-cmd --reload echo "21 端口已开放。" else echo "防火墙未开启,无需开放端口。" fi # 编译ftp_server echo "正在编译 ftp_server..." cjpm build # 检查编译是否成功 if [ $? -eq 0 ]; then echo "编译成功." else echo "编译失败." exit 1 fi # 运行 ftp_server echo "正在启动 ftp 服务器..." cjpm run
2301_80674151/Cangjie-Examples
FTP/run-ftp.sh
Shell
apache-2.0
1,967
<!DOCTYPE html> <html lang="cn"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Document</title> </head> <body> <div>Hello Cangjie!</div> <p></p> <script> let xhr = new XMLHttpRequest() xhr.open("POST", "/Hello", true) xhr.onreadystatechange = () => { if(xhr.readyState == 4 && xhr.status == 200){ let res = JSON.parse(xhr.responseText) document.body.innerHTML += `<div>${res.msg}</div>` } } xhr.send(JSON.stringify({ name: "Chen", age: 999 })) </script> </body> </html>
2301_80674151/Cangjie-Examples
HTTPServer/index.html
HTML
apache-2.0
687
#答案生成模块 import openai import json from typing import List, Dict from config import OPENAI_API_KEY, DEEPSEEK_API_KEY, XINGHE_API_KEY, XINGHE_BASE_URL, OPENAI_MODEL, DEEPSEEK_MODEL, XINGHE_MODEL from model_status import model_status import requests from prompt_templates import prompt_templates from knowledge_enhancer import zhiyuan_enhancer from performance_timer import global_timer, APITimer class AnswerGenerator: def __init__(self, openai_api_key=OPENAI_API_KEY, deepseek_api_key=DEEPSEEK_API_KEY, xinghe_api_key=XINGHE_API_KEY, gemini_api_key="AIzaSyB1lMryiHH_V_7-OVT4eyuLBrHbLsigRCs"): self.openai_client = openai.OpenAI(api_key=openai_api_key) self.deepseek_client = openai.OpenAI(api_key=deepseek_api_key, base_url="https://api.deepseek.com/v1") self.xinghe_client = openai.OpenAI(api_key=xinghe_api_key, base_url=XINGHE_BASE_URL) self.gemini_api_key = gemini_api_key self.gemini_url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" def generate(self, question: str, classification: Dict, retrieved_docs: List[Dict], context: List[Dict], preferred_model: str = None) -> str: """生成回答,支持指定模型。如果不指定,则按顺序尝试:星河大模型、Gemini、OpenAI、DeepSeek、本地模板。""" # 如果是问候语,直接返回简单回复,不进行知识增强 if classification.get('label') == 'greeting': return self._generate_greeting_response(question) context_info = self._build_context_info(context) knowledge_info = self._build_knowledge_info(retrieved_docs) # 使用新的提示词模板系统 multimodal_prompt = prompt_templates.get_multimodal_prompt( classification['label'], question, knowledge_info, context_info ) # 如果指定了模型,尝试使用该模型,失败则回退到本地方案 if preferred_model: try: return self._generate_with_specific_model(preferred_model, question, classification, knowledge_info, context_info, multimodal_prompt) except Exception as e: error_msg = str(e) print(f"指定模型 {preferred_model} 调用失败,回退到本地备用方案: {error_msg}") # 回退到本地备用方案 print("使用本地备用回答生成") with APITimer("本地模板生成"): model_status.update_status('fallback', True) model_status.switch_model('fallback') fallback_answer = self._generate_fallback_answer(question, classification, retrieved_docs) # 使用智源研究院知识增强回答 enhanced_answer = zhiyuan_enhancer.enhance_answer_with_knowledge(question, fallback_answer, classification) # 添加模型信息和计时器信息 global_timer.add_info("使用模型", f"本地备用方案 (原选择: {self._get_model_display_name(preferred_model)})") enhanced_answer = f"## 🤖 使用模型: 本地备用方案\n\n> ⚠️ 注意:您选择的 **{self._get_model_display_name(preferred_model)}** 暂时不可用,已自动切换到本地备用方案。\n\n{enhanced_answer}" return enhanced_answer # 否则按顺序尝试各个模型 # 1. 优先使用星河大模型 if model_status.status['xinghe']['available']: try: # 使用提示词模板系统 prompt_data = prompt_templates.format_prompt( classification['label'], question, knowledge_info, context_info ) with APITimer("星河大模型API"): response = self.xinghe_client.chat.completions.create( model=XINGHE_MODEL, messages=[ {"role": "system", "content": prompt_data["system"]}, {"role": "user", "content": prompt_data["user"]} ], max_tokens=2000, temperature=0.7 ) model_status.update_status('xinghe', True) model_status.switch_model('xinghe') answer = response.choices[0].message.content # 使用智源研究院知识增强回答 with APITimer("星河知识增强"): enhanced_answer = zhiyuan_enhancer.enhance_answer_with_knowledge(question, answer, classification) # 添加模型信息和计时器信息 global_timer.add_info("使用模型", f"星河大模型 ({model_status.status['xinghe']['model']})") enhanced_answer = f"## 🤖 使用模型: 星河大模型 ({model_status.status['xinghe']['model']})\n\n{enhanced_answer}" return enhanced_answer except Exception as e: error_msg = str(e) print(f"星河大模型API调用失败: {error_msg}") model_status.update_status('xinghe', False, error_msg) global_timer.add_info("星河错误", error_msg[:100]) # 2. 使用Gemini try: gemini_payload = { "contents": [ {"parts": [ {"text": multimodal_prompt} ]} ] } headers = { "Content-Type": "application/json", "X-goog-api-key": self.gemini_api_key } with APITimer("Gemini模型API"): resp = requests.post(self.gemini_url, json=gemini_payload, headers=headers, timeout=30) if resp.status_code == 200: data = resp.json() # Gemini返回格式兼容Markdown if "candidates" in data and data["candidates"]: content = data["candidates"][0]["content"]["parts"][0]["text"] model_status.update_status('gemini', True) model_status.switch_model('gemini') # 使用智源研究院知识增强回答 with APITimer("Gemini知识增强"): enhanced_answer = zhiyuan_enhancer.enhance_answer_with_knowledge(question, content, classification) # 添加模型信息和计时器信息 global_timer.add_info("使用模型", "Gemini") enhanced_answer = f"## 🤖 使用模型: Gemini\n\n{enhanced_answer}" return enhanced_answer else: raise Exception("Gemini无有效回答") else: raise Exception(f"Gemini API错误: {resp.status_code} {resp.text}") except Exception as e: error_msg = str(e) print(f"Gemini API调用失败: {error_msg}") model_status.update_status('gemini', False, error_msg) global_timer.add_info("Gemini错误", error_msg[:100]) # 3. 尝试使用OpenAI if model_status.status['openai']['available']: try: # 使用提示词模板系统 prompt_data = prompt_templates.format_prompt( classification['label'], question, knowledge_info, context_info ) with APITimer("OpenAI模型API"): response = self.openai_client.chat.completions.create( model=OPENAI_MODEL, messages=[ {"role": "system", "content": prompt_data["system"]}, {"role": "user", "content": prompt_data["user"]} ], max_tokens=2000, temperature=0.7 ) model_status.update_status('openai', True) model_status.switch_model('openai') answer = response.choices[0].message.content # 使用智源研究院知识增强回答 with APITimer("OpenAI知识增强"): enhanced_answer = zhiyuan_enhancer.enhance_answer_with_knowledge(question, answer, classification) # 添加模型信息和计时器信息 global_timer.add_info("使用模型", f"OpenAI ({model_status.status['openai']['model']})") enhanced_answer = f"## 🤖 使用模型: OpenAI ({model_status.status['openai']['model']})\n\n{enhanced_answer}" return enhanced_answer except Exception as e: error_msg = str(e) print(f"OpenAI API调用失败: {error_msg}") model_status.update_status('openai', False, error_msg) global_timer.add_info("OpenAI错误", error_msg[:100]) # 4. 尝试使用DeepSeek if model_status.status['deepseek']['available']: try: # 使用提示词模板系统 prompt_data = prompt_templates.format_prompt( classification['label'], question, knowledge_info, context_info ) with APITimer("DeepSeek模型API"): response = self.deepseek_client.chat.completions.create( model=DEEPSEEK_MODEL, messages=[ {"role": "system", "content": prompt_data["system"]}, {"role": "user", "content": prompt_data["user"]} ], max_tokens=2000, temperature=0.7 ) model_status.update_status('deepseek', True) model_status.switch_model('deepseek') answer = response.choices[0].message.content # 使用智源研究院知识增强回答 with APITimer("DeepSeek知识增强"): enhanced_answer = zhiyuan_enhancer.enhance_answer_with_knowledge(question, answer, classification) # 添加模型信息和计时器信息 global_timer.add_info("使用模型", f"DeepSeek ({model_status.status['deepseek']['model']})") enhanced_answer = f"## 🤖 使用模型: DeepSeek ({model_status.status['deepseek']['model']})\n\n{enhanced_answer}" return enhanced_answer except Exception as e2: error_msg = str(e2) print(f"DeepSeek API调用失败: {error_msg}") model_status.update_status('deepseek', False, error_msg) global_timer.add_info("DeepSeek错误", error_msg[:100]) # 5. 本地模板 print("使用本地备用回答生成") with APITimer("本地模板生成"): model_status.update_status('fallback', True) model_status.switch_model('fallback') fallback_answer = self._generate_fallback_answer(question, classification, retrieved_docs) # 使用智源研究院知识增强回答 enhanced_answer = zhiyuan_enhancer.enhance_answer_with_knowledge(question, fallback_answer, classification) # 添加模型信息和计时器信息 global_timer.add_info("使用模型", "本地备用方案") enhanced_answer = f"## 🤖 使用模型: 本地备用方案\n\n{enhanced_answer}" return enhanced_answer def _generate_with_specific_model(self, model_name: str, question: str, classification: Dict, knowledge_info: str, context_info: str, multimodal_prompt: str) -> str: """使用指定的模型生成回答""" # 星河大模型 if model_name == 'xinghe': # 即使状态为不可用,也尝试调用(可能是状态更新不及时) try: prompt_data = prompt_templates.format_prompt( classification['label'], question, knowledge_info, context_info ) with APITimer("星河大模型API"): response = self.xinghe_client.chat.completions.create( model=XINGHE_MODEL, messages=[ {"role": "system", "content": prompt_data["system"]}, {"role": "user", "content": prompt_data["user"]} ], max_tokens=2000, temperature=0.7 ) model_status.update_status('xinghe', True) model_status.switch_model('xinghe') answer = response.choices[0].message.content with APITimer("星河知识增强"): enhanced_answer = zhiyuan_enhancer.enhance_answer_with_knowledge(question, answer, classification) global_timer.add_info("使用模型", f"星河大模型 ({model_status.status['xinghe']['model']})") enhanced_answer = f"## 🤖 使用模型: 星河大模型 ({model_status.status['xinghe']['model']})\n\n{enhanced_answer}" return enhanced_answer except Exception as e: error_msg = str(e) print(f"星河大模型API调用失败: {error_msg}") model_status.update_status('xinghe', False, error_msg) raise Exception(f"星河大模型调用失败: {error_msg}") # Gemini模型 elif model_name == 'gemini': try: gemini_payload = { "contents": [ {"parts": [ {"text": multimodal_prompt} ]} ] } headers = { "Content-Type": "application/json", "X-goog-api-key": self.gemini_api_key } with APITimer("Gemini模型API"): resp = requests.post(self.gemini_url, json=gemini_payload, headers=headers, timeout=30) if resp.status_code == 200: data = resp.json() if "candidates" in data and data["candidates"]: content = data["candidates"][0]["content"]["parts"][0]["text"] model_status.update_status('gemini', True) model_status.switch_model('gemini') with APITimer("Gemini知识增强"): enhanced_answer = zhiyuan_enhancer.enhance_answer_with_knowledge(question, content, classification) global_timer.add_info("使用模型", "Gemini") enhanced_answer = f"## 🤖 使用模型: Gemini\n\n{enhanced_answer}" return enhanced_answer else: raise Exception("Gemini无有效回答") else: raise Exception(f"Gemini API错误: {resp.status_code} {resp.text}") except Exception as e: error_msg = str(e) print(f"Gemini API调用失败: {error_msg}") model_status.update_status('gemini', False, error_msg) raise Exception(f"Gemini模型调用失败: {error_msg}") # OpenAI模型 elif model_name == 'openai': # 即使状态为不可用,也尝试调用(可能是状态更新不及时) try: prompt_data = prompt_templates.format_prompt( classification['label'], question, knowledge_info, context_info ) with APITimer("OpenAI模型API"): response = self.openai_client.chat.completions.create( model=OPENAI_MODEL, messages=[ {"role": "system", "content": prompt_data["system"]}, {"role": "user", "content": prompt_data["user"]} ], max_tokens=2000, temperature=0.7 ) model_status.update_status('openai', True) model_status.switch_model('openai') answer = response.choices[0].message.content with APITimer("OpenAI知识增强"): enhanced_answer = zhiyuan_enhancer.enhance_answer_with_knowledge(question, answer, classification) global_timer.add_info("使用模型", f"OpenAI ({model_status.status['openai']['model']})") enhanced_answer = f"## 🤖 使用模型: OpenAI ({model_status.status['openai']['model']})\n\n{enhanced_answer}" return enhanced_answer except Exception as e: error_msg = str(e) print(f"OpenAI API调用失败: {error_msg}") model_status.update_status('openai', False, error_msg) raise Exception(f"OpenAI模型调用失败: {error_msg}") # DeepSeek模型 elif model_name == 'deepseek': # 即使状态为不可用,也尝试调用(可能是状态更新不及时) try: prompt_data = prompt_templates.format_prompt( classification['label'], question, knowledge_info, context_info ) with APITimer("DeepSeek模型API"): response = self.deepseek_client.chat.completions.create( model=DEEPSEEK_MODEL, messages=[ {"role": "system", "content": prompt_data["system"]}, {"role": "user", "content": prompt_data["user"]} ], max_tokens=2000, temperature=0.7 ) model_status.update_status('deepseek', True) model_status.switch_model('deepseek') answer = response.choices[0].message.content with APITimer("DeepSeek知识增强"): enhanced_answer = zhiyuan_enhancer.enhance_answer_with_knowledge(question, answer, classification) global_timer.add_info("使用模型", f"DeepSeek ({model_status.status['deepseek']['model']})") enhanced_answer = f"## 🤖 使用模型: DeepSeek ({model_status.status['deepseek']['model']})\n\n{enhanced_answer}" return enhanced_answer except Exception as e: error_msg = str(e) print(f"DeepSeek API调用失败: {error_msg}") model_status.update_status('deepseek', False, error_msg) raise Exception(f"DeepSeek模型调用失败: {error_msg}") else: raise Exception(f"未知的模型名称: {model_name}") def _get_model_display_name(self, model_name: str) -> str: """获取模型的显示名称""" model_names = { 'xinghe': '星河大模型', 'gemini': 'Gemini', 'openai': 'OpenAI', 'deepseek': 'DeepSeek' } return model_names.get(model_name, model_name) def _generate_greeting_response(self, question: str) -> str: """生成问候语回复""" greeting_responses = [ """# 👋 你好! 很高兴见到你!我是你的Rust编程学习助手。 ## 🦀 我能为你做什么? **Rust知识解答**: - 解释Rust概念和语法 - 提供代码示例和最佳实践 - 协助调试和错误解决 - 回答编程相关问题 ## 💡 开始学习 有什么Rust相关的问题想要了解吗?比如: - "什么是所有权?" - "如何使用Vec?" - "生命周期是什么?" 随时提问,我会尽力帮助你!""", """# 🌟 欢迎! 你好!我是专业的Rust编程助手。 ## 🚀 服务特色 **智能问答**:基于星河大模型的专业回答 **知识增强**:结合智源研究院最新研究成果 **多模态输出**:支持代码高亮、图表、表格 **在线编程**:Monaco Editor集成,支持代码运行 ## 🎯 开始探索 准备好开始你的Rust学习之旅了吗?有什么问题尽管问我!""", """# 🦀 Hello Rust! 很高兴认识你!我是你的Rust学习伙伴。 ## 💪 我的能力 - **概念解释**:深入浅出地解释Rust概念 - **代码示例**:提供实用的代码示例 - **错误调试**:帮助解决编译和运行时问题 - **最佳实践**:分享Rust编程的最佳实践 ## 🔥 立即开始 有什么Rust问题想要了解?我在这里等你!""" ] # 根据问题内容选择不同的回复 question_lower = question.lower() if 'hello' in question_lower or 'hi' in question_lower: return greeting_responses[0] elif '你好' in question_lower: return greeting_responses[1] else: return greeting_responses[2] def _build_context_info(self, context: List[Dict]) -> str: """构建上下文信息""" if not context: return "" context_info = "**对话历史:**\n" for i, turn in enumerate(context[-3:], 1): # 只保留最近3轮 context_info += f"{i}. 问:{turn['question']}\n 答:{turn['answer'][:100]}...\n\n" return context_info def _build_knowledge_info(self, docs: List[Dict]) -> str: """构建知识库信息""" if not docs: return "**相关知识点:** 未找到相关知识\n" knowledge_info = "**相关知识点:**\n" for doc in docs: knowledge_info += f"- **{doc['topic']}**:{doc['content']}\n" if 'code' in doc: knowledge_info += f" ```rust\n {doc['code']}\n ```\n" return knowledge_info def _is_non_rust_question(self, question: str) -> bool: """判断是否为非Rust相关问题""" question_lower = question.lower() # 定义Rust相关关键词 rust_keywords = [ 'rust', '生命周期', '所有权', '借用', '可变', '不可变', 'trait', 'struct', 'enum', 'match', 'option', 'result', '迭代器', '闭包', '宏', '模块', 'cargo', '编译', '错误', '调试', '内存', '安全', '并发', '异步', 'future', 'pin', 'unsafe' ] # 定义通用问候语 greetings = ['你好', 'hello', 'hi', '您好', '早上好', '下午好', '晚上好', '嗨'] # 如果是问候语,直接返回True if any(greeting in question_lower for greeting in greetings): return True # 检查是否包含Rust相关关键词 has_rust_keywords = any(keyword in question_lower for keyword in rust_keywords) # 如果没有Rust关键词,可能是非Rust问题 return not has_rust_keywords def _generate_general_response(self, question: str) -> str: """生成通用回答(非Rust相关问题)""" question_lower = question.lower() # 问候语回答 if any(greeting in question_lower for greeting in ['你好', 'hello', 'hi', '您好', '早上好', '下午好', '晚上好', '嗨']): return """## 您好! 👋 很高兴见到您!我是**Rust知识解释智能体**,专门帮助您学习Rust编程语言。 ### 🤖 我能为您做什么? - **概念解释**:解释Rust的核心概念,如所有权、生命周期等 - **用法指导**:提供代码示例和最佳实践 - **错误调试**:帮助解决编译和运行时错误 - **语言对比**:比较Rust与其他编程语言的异同 - **学习建议**:提供Rust学习路径和资源推荐 ### 💡 试试这些Rust相关问题: - "Rust的所有权是什么?" - "如何使用迭代器?" - "这个编译错误怎么解决?" - "Rust和C++有什么区别?" - "如何学习Rust?" ### 🚀 开始探索Rust世界 请在下方输入您的Rust相关问题,我会为您提供详细的解答! ### 🔧 代码编辑器 想要实践代码?点击这里进入 <a href="http://127.0.0.1:5000/code_editor" target="_blank"><b>代码编辑器</b></a> 进行在线编程练习!""" # 其他非Rust问题的回答 return f"""## 关于"{question}"的回复 🤔 我注意到您的问题可能不是关于Rust编程的。我是**Rust知识解释智能体**,专门帮助用户学习Rust编程语言。 ### 🎯 我的专长领域 - **Rust编程概念**:所有权、生命周期、借用检查器等 - **Rust语法和用法**:变量、函数、结构体、枚举等 - **Rust错误调试**:编译错误、运行时错误等 - **Rust最佳实践**:代码组织、性能优化等 ### 💡 如果您想了解Rust,可以试试: - "Rust是什么?" - "Rust适合什么项目?" - "如何开始学习Rust?" - "Rust有什么特点?" ### 🔗 其他资源 如果您需要其他方面的帮助,建议您: - 使用专门的搜索引擎 - 访问相关领域的专业网站 - 咨询相关领域的专家 我很乐意继续为您提供Rust编程方面的帮助! 🦀""" def _generate_fallback_answer(self, question: str, classification: Dict, retrieved_docs: List[Dict]) -> str: """生成备用回答(当API调用失败时)""" question_lower = question.lower() # 根据问题类型生成不同的回答 if classification['label'] == 'definition': return self._generate_definition_fallback(question) elif classification['label'] == 'usage': return self._generate_usage_fallback(question) elif classification['label'] == 'error_debug': return self._generate_error_debug_fallback(question) elif classification['label'] == 'comparison': return self._generate_comparison_fallback(question) else: return self._generate_faq_fallback(question) def _generate_definition_fallback(self, question: str) -> str: """生成定义类问题的备用回答,代码练习和综合案例根据用户问题动态生成""" # 动态生成代码练习题 code_ex1 = f"练习1:请编写一个函数,演示“{question}”相关的基本用法。" code_ex2 = f"练习2:请实现一个结构体或算法,体现“{question}”的核心特性。" # 动态生成综合案例 case_req = f"案例要求:设计一个小项目,要求充分体现“{question}”的实际应用场景。" case_steps = f"实现步骤:1. 明确项目目标和输入输出;2. 设计主要数据结构和函数;3. 实现核心功能;4. 编写测试用例验证。" return f""" <div class=\"system-section\"> <div class=\"system-section-title\"><i class=\"fas fa-book\"></i> 概念定义</div> <ol class=\"system-section-list\"> <li><strong>{question.replace('是什么', '').replace('?', '').replace('什么意思', '')}</strong>是Rust编程语言中的一个重要概念。</li> <li>这是Rust的核心特性之一</li> <li>确保内存安全和线程安全</li> <li>编译时检查,运行时零开销</li> <li>提供强大的抽象能力</li> </ol> <div class=\"system-section-title\"><i class=\"fas fa-code\"></i> 代码练习</div> <ol class=\"system-section-list\"> <li>{code_ex1}</li> <li>{code_ex2}</li> </ol> <div class=\"system-section-title\"><i class=\"fas fa-lightbulb\"></i> 综合案例</div> <ol class=\"system-section-list\"> <li>{case_req}</li> <li>{case_steps}</li> </ol> <div class=\"system-section-title\"><i class=\"fas fa-edit\"></i> 实践练习</div> <p>想要实践这些代码练习?点击这里进入 <a href="http://127.0.0.1:5000/code_editor" target="_blank"><b>代码编辑器</b></a> 进行在线编程!</p> </div> """ def _generate_usage_fallback(self, question: str) -> str: """生成用法类问题的备用回答""" return f"""## 基本用法 以下是**{question.replace('怎么', '').replace('如何', '').replace('使用', '').replace('?', '')}**的基本用法: ### 代码示例 ```rust fn main() {{ // 基本用法示例 let result = example_function(); println!("结果: {{}}", result); }} fn example_function() -> i32 {{ 42 }} ``` ### 参数说明 - param1: 第一个参数的作用 - param2: 第二个参数的作用 ### 最佳实践 1. 遵循Rust的命名约定 2. 使用适当的错误处理 3. 考虑性能影响 4. 编写清晰的文档 ### 常见用法 - 基本语法 - 函数调用 - 错误处理 - 模块组织 ### 🔧 实践练习 想要运行这些代码示例?点击这里进入 <a href="http://127.0.0.1:5000/code_editor" target="_blank"><b>代码编辑器</b></a> 进行在线编程练习!""" def _generate_error_debug_fallback(self, question: str) -> str: """生成错误调试类问题的备用回答""" return f"""## 错误分析 您遇到的**{question.replace('错误', '').replace('问题', '').replace('?', '')}**通常是由于以下原因: ### 常见原因 - 借用检查器规则违反 - 生命周期不匹配 - 类型不匹配 - 所有权问题 ### 解决方案 ```rust // 错误代码示例 let mut v = vec![1, 2, 3]; let first = &v[0]; v.push(4); // 编译错误 // 正确代码 let mut v = vec![1, 2, 3]; v.push(4); let first = &v[0]; // 正确 ``` ### 调试技巧 1. 仔细阅读编译器错误信息 2. 使用 `cargo check` 进行静态检查 3. 逐步简化代码定位问题 4. 查看官方文档和示例 ### 预防措施 - 理解所有权规则 - 注意生命周期 - 合理使用借用 - 编写测试代码 ### 🔧 调试练习 想要实践这些调试技巧?点击这里进入 <a href="http://127.0.0.1:5000/code_editor" target="_blank"><b>代码编辑器</b></a> 进行在线调试练习!""" def _generate_comparison_fallback(self, question: str) -> str: """生成对比类问题的备用回答""" return f"""## 对比分析 **{question.replace('区别', '').replace('不同', '').replace('比较', '').replace('?', '')}**的主要差异: ### 核心差异 | 特性 | Rust | 其他语言 | |------|------|----------| | 内存管理 | 所有权系统 | 垃圾回收/手动管理 | | 并发安全 | 编译时检查 | 运行时检查 | | 性能 | 零开销抽象 | 可能有运行时开销 | | 学习曲线 | 较陡峭 | 相对平缓 | ### 代码对比 ```rust // Rust 示例 let s = String::from("hello"); // 所有权自动管理 ``` ```cpp // C++ 示例 std::string s = "hello"; // 需要手动管理内存 ``` ### 适用场景 - **Rust**: 系统编程、性能敏感应用、安全关键系统 - **其他**: 快速原型、脚本编程、通用应用开发 ### 选择建议 - 需要内存安全:选择Rust - 需要快速开发:选择其他语言 - 需要高性能:Rust是很好的选择 ### 🔧 实践对比 想要亲自体验Rust的特性?点击这里进入 <a href="http://127.0.0.1:5000/code_editor" target="_blank"><b>代码编辑器</b></a> 进行在线编程实践!""" def _generate_faq_fallback(self, question: str) -> str: """生成FAQ类问题的备用回答""" return f"""## 问题解答 关于**{question.replace('?', '')}**的详细解答: ### 背景说明 这是一个常见的问题,涉及到Rust的学习路径和最佳实践。 ### 实践建议 1. 从官方文档开始学习 2. 多做练习项目 3. 参与社区讨论 4. 阅读优秀代码 ### 学习资源 - [Rust官方文档](https://doc.rust-lang.org/) - [Rust Book](https://doc.rust-lang.org/book/) - [Rust by Example](https://doc.rust-lang.org/rust-by-example/) - [Rust社区](https://users.rust-lang.org/) ### 扩展阅读 - 所有权系统详解 - 生命周期管理 - 错误处理最佳实践 - 并发编程模式 ### 学习路径 1. 基础语法 2. 所有权和借用 3. 错误处理 4. 高级特性 5. 项目实践 ### 🔧 开始实践 想要开始Rust编程实践?点击这里进入 <a href="http://127.0.0.1:5000/code_editor" target="_blank"><b>代码编辑器</b></a> 进行在线编程学习!"""
2301_80743186/rust-agent-code
answer_generator.py
Python
unknown
32,937
#Web应用主入口 from flask import Flask, render_template, request, jsonify, session, redirect, url_for from main import KnowledgeExplanationAgent from config import FLASK_SECRET_KEY, DEFAULT_USERS, DEBUG_MODE from model_status import model_status from multimodal_enhancer import multimodal_enhancer from knowledge_enhancer import zhiyuan_enhancer import json import os import threading from functools import wraps from tempfile import NamedTemporaryFile import subprocess # 导入性能计时器 from performance_timer import global_timer, StepTimer, APITimer app = Flask(__name__) app.config['SECRET_KEY'] = FLASK_SECRET_KEY # 初始化知识解释智能体 agent = KnowledgeExplanationAgent() def preload_resources(): """ 预加载模型和FAISS索引,避免用户第一个问题时的延迟 """ try: print("开始预加载资源...") # 预加载retriever资源 if hasattr(agent, 'retriever') and hasattr(agent.retriever, '_ensure_resources_loaded'): print("正在预加载检索器模型和FAISS索引...") agent.retriever._ensure_resources_loaded() print("检索器资源预加载完成") else: print("检索器不存在或没有_ensure_resources_loaded方法") # 这里可以添加其他需要预加载的资源 print("所有资源预加载完成") except Exception as e: print(f"预加载资源时出错: {str(e)}") def login_required(f): """登录验证装饰器""" @wraps(f) def decorated_function(*args, **kwargs): if 'user_id' not in session: return redirect(url_for('login')) return f(*args, **kwargs) return decorated_function @app.route('/') def index(): """重定向到登录页面""" return redirect(url_for('login')) @app.route('/login', methods=['GET', 'POST']) def login(): """登录页面""" if request.method == 'POST': data = request.get_json() username = data.get('username') password = data.get('password') if username in DEFAULT_USERS and DEFAULT_USERS[username]['password'] == password: session['user_id'] = username session['user_role'] = DEFAULT_USERS[username]['role'] session['user_name'] = DEFAULT_USERS[username]['name'] return jsonify({'status': 'success', 'redirect': '/dashboard'}) else: return jsonify({'status': 'error', 'message': '用户名或密码错误'}), 401 return render_template('login.html') @app.route('/logout') def logout(): """登出""" session.clear() return redirect(url_for('login')) @app.route('/dashboard') @login_required def dashboard(): """主页面(需要登录)""" return render_template('index.html', user=session) @app.route('/code_editor') @login_required def code_editor(): return render_template('code_editor.html', user=session) @app.route('/api/chat', methods=['POST']) @login_required def chat(): """聊天API接口""" try: data = request.get_json() user_id = session.get('user_id', 'anonymous') message = data.get('message', '').strip() preferred_model = data.get('model', None) # 获取用户选择的模型 if not message: return jsonify({ 'status': 'error', 'message': '消息不能为空' }), 400 # 重置性能计时器 global_timer.reset() with StepTimer("完整问答流程"): # 调用知识解释智能体处理问题 with StepTimer("智能体处理问题"): result = agent.process_question(user_id, message, preferred_model=preferred_model) # 保存并打印性能报告 global_timer.save_report(message, result.get('content', '')) global_timer.print_summary() return jsonify(result) except Exception as e: # 即使出错也要保存性能报告 try: global_timer.save_report(message or "", f"错误: {str(e)}") except: pass return jsonify({ 'status': 'error', 'message': f'服务器错误: {str(e)}' }), 500 @app.route('/api/status') def status(): """系统状态检查""" return jsonify({ 'status': 'success', 'message': '系统运行正常', 'version': '1.0.0', 'model_status': model_status.get_status_summary() }) @app.route('/api/export', methods=['POST']) def export_chat(): """导出聊天记录""" try: data = request.get_json() chat_history = data.get('history', []) # 生成导出文件 export_data = { 'timestamp': data.get('timestamp'), 'user_id': data.get('user_id'), 'history': chat_history } return jsonify({ 'status': 'success', 'data': export_data }) except Exception as e: return jsonify({ 'status': 'error', 'message': f'导出失败: {str(e)}' }), 500 @app.route('/api/knowledge', methods=['GET']) def get_knowledge(): """获取知识库信息""" try: # 这里可以返回知识库统计信息 return jsonify({ 'status': 'success', 'data': { 'total_docs': len(agent.retriever.knowledge_base), 'categories': ['definition', 'usage', 'error_debug', 'comparison', 'faq'] } }) except Exception as e: return jsonify({ 'status': 'error', 'message': f'获取知识库信息失败: {str(e)}' }), 500 @app.route('/api/session/<session_id>', methods=['GET']) def get_session(session_id): """获取会话信息""" try: context = agent.context_manager.get_context(session_id) summary = agent.context_manager.get_session_summary(session_id) return jsonify({ 'status': 'success', 'data': { 'context': context, 'summary': summary } }) except Exception as e: return jsonify({ 'status': 'error', 'message': f'获取会话信息失败: {str(e)}' }), 500 @app.route('/api/session/<session_id>', methods=['DELETE']) def clear_session(session_id): """清空会话""" try: agent.context_manager.clear_context(session_id) return jsonify({ 'status': 'success', 'message': '会话已清空' }) except Exception as e: return jsonify({ 'status': 'error', 'message': f'清空会话失败: {str(e)}' }), 500 @app.route('/api/storage/stats', methods=['GET']) @login_required def get_storage_stats(): """获取存储统计信息""" try: stats = agent.context_manager.get_storage_stats() return jsonify({ 'status': 'success', 'stats': stats }) except Exception as e: return jsonify({ 'status': 'error', 'message': f'获取存储统计失败: {str(e)}' }), 500 @app.route('/api/render', methods=['POST']) def render_markdown(): """渲染Markdown为HTML""" try: data = request.get_json() markdown_content = data.get('markdown', '') if not markdown_content: return jsonify({ 'status': 'error', 'message': 'Markdown内容不能为空' }), 400 # 使用多模态增强器 enhanced_content = multimodal_enhancer.enhance_content(markdown_content) return jsonify({ 'status': 'success', 'html': enhanced_content['enhanced_html'], 'code_blocks': enhanced_content['code_blocks'], 'mermaid_diagrams': enhanced_content['mermaid_diagrams'], 'tables': enhanced_content['tables'] }) except Exception as e: return jsonify({ 'status': 'error', 'message': f'渲染失败: {str(e)}' }), 500 @app.route('/api/multimodal/styles') def get_multimodal_styles(): """获取多模态增强样式""" try: css_styles = multimodal_enhancer.generate_css_styles() return jsonify({ 'status': 'success', 'css': css_styles }) except Exception as e: return jsonify({ 'status': 'error', 'message': f'获取样式失败: {str(e)}' }), 500 @app.route('/api/multimodal/scripts') def get_multimodal_scripts(): """获取多模态增强脚本""" try: js_functions = multimodal_enhancer.generate_js_functions() return jsonify({ 'status': 'success', 'javascript': js_functions }) except Exception as e: return jsonify({ 'status': 'error', 'message': f'获取脚本失败: {str(e)}' }), 500 @app.route('/api/zhiyuan/stats', methods=['GET']) @login_required def get_zhiyuan_stats(): """获取智源研究院知识统计""" try: stats = zhiyuan_enhancer.get_knowledge_statistics() return jsonify({ 'status': 'success', 'stats': stats }) except Exception as e: return jsonify({ 'status': 'error', 'message': f'获取统计信息失败: {str(e)}' }), 500 @app.route('/api/run_rust_code', methods=['POST']) @login_required def run_rust_code(): """运行Rust代码并返回结果""" try: data = request.get_json() code = data.get('code', '') if not code: return jsonify({'status': 'error', 'message': '代码不能为空'}), 400 # 写入临时文件 with NamedTemporaryFile('w', encoding='utf-8', suffix='.rs', delete=False) as f: f.write(code) rust_file = f.name exe_file = rust_file[:-3] + '.exe' # 编译 compile_proc = subprocess.run(['rustc', rust_file, '-o', exe_file], capture_output=True, text=True, timeout=10) if compile_proc.returncode != 0: return jsonify({'status': 'error', 'message': '编译错误', 'stderr': compile_proc.stderr}) # 运行 run_proc = subprocess.run([exe_file], capture_output=True, text=True, timeout=5) return jsonify({'status': 'success', 'stdout': run_proc.stdout, 'stderr': run_proc.stderr}) except subprocess.TimeoutExpired: return jsonify({'status': 'error', 'message': '运行超时'}), 500 except Exception as e: return jsonify({'status': 'error', 'message': f'运行失败: {str(e)}'}), 500 @app.route('/api/analyze_rust_code', methods=['POST']) @login_required def analyze_rust_code(): """调用大模型分析Rust代码,返回分析结果""" from answer_generator import AnswerGenerator try: data = request.get_json() code = data.get('code', '') examples_raw = data.get('examples', '') if not code: return jsonify({'status': 'error', 'message': '代码不能为空'}), 400 # 解析 examples try: examples = json.loads(examples_raw) if examples_raw else {} except Exception as e: examples = {} code_practice = examples.get('code_practice', '') comprehensive_case = examples.get('comprehensive_case', '') # 构造更详细的分析prompt prompt = f""" 你是一个专业的Rust编程题目批改与优化专家。请根据下方的【题目内容】和【用户提交代码】,完成如下分析: 【题目内容】 {code_practice}\n{comprehensive_case} 【用户提交代码】 ```rust {code} ``` 请严格按照以下结构输出: 1. **题目归属判断**:判断该代码最有可能是针对哪一道题目(请给出题号和题目标题/内容,若无法判断请说明原因)。 2. **正确性分析**:判断代码是否正确,若有错误请详细指出并给出修改建议。 3. **优化建议**:从风格、性能、安全性等角度给出具体可操作的优化建议。 4. **完美代码示例**:给出针对该题目的最优/标准Rust代码(用```rust代码块包裹)。 5. **正向反馈**:指出该代码的优点、亮点或值得肯定的地方,鼓励用户继续学习。 请用分点详细说明,内容要简明、专业、鼓励性强。 """ ag = AnswerGenerator() # 直接用Gemini API分析 try: gemini_payload = { "contents": [ {"parts": [ {"text": prompt} ]} ] } headers = { "Content-Type": "application/json", "X-goog-api-key": ag.gemini_api_key } import requests resp = requests.post(ag.gemini_url, json=gemini_payload, headers=headers, timeout=30) if resp.status_code == 200: data = resp.json() if "candidates" in data and data["candidates"]: content = data["candidates"][0]["content"]["parts"][0]["text"] return jsonify({'status': 'success', 'result': content}) else: raise Exception("Gemini无有效分析结果") else: raise Exception(f"Gemini API错误: {resp.status_code} {resp.text}") except Exception as e: return jsonify({'status': 'error', 'message': f'大模型分析失败: {str(e)}'}) except Exception as e: return jsonify({'status': 'error', 'message': f'服务器错误: {str(e)}'}) @app.errorhandler(404) def not_found(error): return jsonify({ 'status': 'error', 'message': '接口不存在' }), 404 @app.errorhandler(500) def internal_error(error): return jsonify({ 'status': 'error', 'message': '服务器内部错误' }), 500 if __name__ == '__main__': # 确保静态文件目录存在 os.makedirs('static/css', exist_ok=True) os.makedirs('static/js', exist_ok=True) os.makedirs('templates', exist_ok=True) print("启动Rust知识解释智能体Web服务...") print("访问地址: http://localhost:5000") print("API文档: http://localhost:5000/api/status") # 异步预加载资源,避免阻塞应用启动 preload_thread = threading.Thread(target=preload_resources) preload_thread.daemon = True # 设置为守护线程,主线程结束时自动终止 preload_thread.start() app.run(debug=DEBUG_MODE, host='0.0.0.0', port=5000)
2301_80743186/rust-agent-code
app.py
Python
unknown
14,856
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 性能测试脚本 - 用于测量semantic_retriever.py的性能指标 可以在代码修改前后运行,对比性能变化 """ import time import json import os from typing import Dict, List, Tuple from semantic_retriever import SemanticRetriever def test_retrieval_performance(retriever: SemanticRetriever, test_questions: List[str], iterations: int = 5) -> Dict: """ 测试检索性能 Args: retriever: 语义检索实例 test_questions: 测试问题列表 iterations: 每个问题重复测试的次数 Returns: Dict: 包含性能指标的字典 """ print(f"\n开始测试检索性能(每个问题重复{iterations}次)...") results = { "question_times": [], "total_time": 0, "average_time_per_question": 0 } total_start_time = time.time() for i, question in enumerate(test_questions): question_total_time = 0 print(f"测试问题 {i+1}/{len(test_questions)}: '{question}'") for j in range(iterations): start_time = time.time() retrieved_docs = retriever.retrieve(question, top_k=3) end_time = time.time() elapsed = (end_time - start_time) * 1000 # 转换为毫秒 question_total_time += elapsed print(f" 迭代 {j+1}/{iterations}: {elapsed:.2f}ms, 返回文档数: {len(retrieved_docs)}") avg_time = question_total_time / iterations results["question_times"].append({ "question": question, "average_time_ms": avg_time, "total_time_ms": question_total_time }) print(f" 平均时间: {avg_time:.2f}ms") total_end_time = time.time() total_time_ms = (total_end_time - total_start_time) * 1000 avg_time_per_question = total_time_ms / (len(test_questions) * iterations) results["total_time"] = total_time_ms results["average_time_per_question"] = avg_time_per_question print(f"\n总测试时间: {total_time_ms:.2f}ms") print(f"平均每个问题检索时间: {avg_time_per_question:.2f}ms") return results def test_initialization_performance(kb_path: str = 'rust_knowledge_base/rust_docs_sample.json', iterations: int = 3) -> Dict: """ 测试初始化性能 Args: kb_path: 知识库路径 iterations: 重复测试的次数 Returns: Dict: 包含性能指标的字典 """ print(f"\n开始测试初始化性能(重复{iterations}次)...") results = { "init_times": [], "total_time": 0, "average_time": 0 } total_start_time = time.time() for i in range(iterations): print(f"初始化迭代 {i+1}/{iterations}...") start_time = time.time() # 创建新的检索器实例 retriever = SemanticRetriever(kb_path) end_time = time.time() elapsed = (end_time - start_time) * 1000 # 转换为毫秒 results["init_times"].append(elapsed) print(f" 初始化时间: {elapsed:.2f}ms, 知识库文档数: {len(retriever.knowledge_base)}") total_end_time = time.time() total_time_ms = (total_end_time - total_start_time) * 1000 avg_time = total_time_ms / iterations results["total_time"] = total_time_ms results["average_time"] = avg_time print(f"\n总初始化时间: {total_time_ms:.2f}ms") print(f"平均初始化时间: {avg_time:.2f}ms") return results def test_embedding_generation(retriever: SemanticRetriever, texts: List[str]) -> Dict: """ 测试嵌入向量生成性能 Args: retriever: 语义检索实例 texts: 测试文本列表 Returns: Dict: 包含性能指标的字典 """ if not retriever.model: print("模型未初始化,跳过嵌入向量生成测试") return {"error": "Model not initialized"} print(f"\n开始测试嵌入向量生成性能...") # 测试单个短文本 short_text = "这是一个简短的测试文本" start_time = time.time() short_embedding = retriever.model.encode([short_text]) short_time = (time.time() - start_time) * 1000 # 测试多个文本 start_time = time.time() embeddings = retriever.model.encode(texts) batch_time = (time.time() - start_time) * 1000 avg_time_per_text = batch_time / len(texts) # 正确处理numpy数组的维度获取 embedding_dimension = embeddings.shape[1] if embeddings.size > 0 else 0 results = { "short_text_time_ms": short_time, "batch_test": { "total_texts": len(texts), "total_time_ms": batch_time, "average_time_per_text_ms": avg_time_per_text, "embedding_dimension": embedding_dimension } } print(f"单个短文本嵌入时间: {short_time:.2f}ms") print(f"批量文本嵌入 ({len(texts)}个文本): 总时间 {batch_time:.2f}ms, 平均每文本 {avg_time_per_text:.2f}ms") print(f"嵌入向量维度: {embedding_dimension}") return results def run_comprehensive_benchmark(kb_path: str = 'rust_knowledge_base/rust_docs_sample.json', iterations: int = 3) -> Dict: """ 运行综合性能基准测试 Args: kb_path: 知识库路径 iterations: 重复测试次数 Returns: Dict: 包含所有性能测试结果的字典 """ print("=" * 60) print("开始综合性能基准测试") print(f"测试配置: 知识库='{kb_path}', 迭代次数={iterations}") print("=" * 60) # 记录开始时间 overall_start_time = time.time() # 初始化测试 init_results = test_initialization_performance(kb_path, iterations) # 创建一个检索器实例用于后续测试 print("\n创建检索器实例用于后续测试...") retriever = SemanticRetriever(kb_path) # 准备测试问题和文本 test_questions = [ "什么是Rust的所有权?", "如何在Rust中声明可变变量?", "解释一下Rust的生命周期概念", "Rust中的借用规则是什么?", "如何处理Rust中的错误?" ] # 从知识库中提取一些文本用于嵌入测试 test_texts = [doc.get('content', '')[:200] for doc in retriever.knowledge_base[:5]] # 嵌入生成测试 embedding_results = test_embedding_generation(retriever, test_texts) # 检索性能测试 retrieval_results = test_retrieval_performance(retriever, test_questions, iterations) # 记录结束时间 overall_end_time = time.time() overall_time_ms = (overall_end_time - overall_start_time) * 1000 # 汇总结果 results = { "timestamp": time.strftime("%Y-%m-%d %H:%M:%S"), "overall_test_time_ms": overall_time_ms, "initialization": init_results, "embedding_generation": embedding_results, "retrieval": retrieval_results } # 保存结果到文件 output_file = f"performance_benchmark_{int(time.time())}.json" with open(output_file, 'w', encoding='utf-8') as f: json.dump(results, f, ensure_ascii=False, indent=2) print("\n" + "=" * 60) print(f"性能测试完成,结果已保存到 {output_file}") print(f"总测试时间: {overall_time_ms:.2f}ms") print("=" * 60) # 打印关键性能指标摘要 print("\n性能指标摘要:") print(f"1. 初始化时间: {init_results['average_time']:.2f}ms") if 'batch_test' in embedding_results: print(f"2. 文本嵌入时间: {embedding_results['batch_test']['average_time_per_text_ms']:.2f}ms/文本") print(f"3. 问题检索时间: {retrieval_results['average_time_per_question']:.2f}ms/问题") return results def compare_benchmark_files(file1: str, file2: str) -> None: """ 比较两个基准测试结果文件 Args: file1: 第一个基准测试文件路径 file2: 第二个基准测试文件路径 """ if not os.path.exists(file1) or not os.path.exists(file2): print(f"错误: 找不到文件 {file1} 或 {file2}") return with open(file1, 'r', encoding='utf-8') as f1, open(file2, 'r', encoding='utf-8') as f2: results1 = json.load(f1) results2 = json.load(f2) print("\n" + "=" * 70) print(f"性能对比: {file1} vs {file2}") print("=" * 70) # 比较初始化时间 init1 = results1['initialization']['average_time'] init2 = results2['initialization']['average_time'] init_diff = ((init2 - init1) / init1) * 100 print(f"初始化时间: {init1:.2f}ms → {init2:.2f}ms ({init_diff:+.2f}%)") # 比较嵌入时间 if 'batch_test' in results1['embedding_generation'] and 'batch_test' in results2['embedding_generation']: emb1 = results1['embedding_generation']['batch_test']['average_time_per_text_ms'] emb2 = results2['embedding_generation']['batch_test']['average_time_per_text_ms'] emb_diff = ((emb2 - emb1) / emb1) * 100 print(f"文本嵌入时间: {emb1:.2f}ms → {emb2:.2f}ms ({emb_diff:+.2f}%)") # 比较检索时间 ret1 = results1['retrieval']['average_time_per_question'] ret2 = results2['retrieval']['average_time_per_question'] ret_diff = ((ret2 - ret1) / ret1) * 100 print(f"问题检索时间: {ret1:.2f}ms → {ret2:.2f}ms ({ret_diff:+.2f}%)") # 比较总时间 total1 = results1['overall_test_time_ms'] total2 = results2['overall_test_time_ms'] total_diff = ((total2 - total1) / total1) * 100 print(f"总测试时间: {total1:.2f}ms → {total2:.2f}ms ({total_diff:+.2f}%)") # 总结 print("\n" + "=" * 70) if ret_diff < 0: print(f"性能提升: 检索速度提高了 {-ret_diff:.2f}%") else: print(f"性能下降: 检索速度降低了 {ret_diff:.2f}%") print("=" * 70) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Semantic Retriever 性能测试工具') parser.add_argument('--compare', nargs=2, metavar=('FILE1', 'FILE2'), help='比较两个性能测试结果文件') parser.add_argument('--iterations', type=int, default=3, help='测试迭代次数(默认:3)') parser.add_argument('--kb-path', default='rust_knowledge_base/rust_docs_sample.json', help='知识库文件路径') args = parser.parse_args() if args.compare: compare_benchmark_files(args.compare[0], args.compare[1]) else: run_comprehensive_benchmark(args.kb_path, args.iterations)
2301_80743186/rust-agent-code
benchmark_semantic_retriever.py
Python
unknown
10,901
# 配置文件 import os # API密钥配置 OPENAI_API_KEY = "" DEEPSEEK_API_KEY = "sk-6b9a1c1845294019acc98577326b3e9a" # Gemini API Key GEMINI_API_KEY = "" # 星河大模型 API 配置 XINGHE_API_KEY = "bce-v3/ALTAK-GC9TQ2g1jvMelu6uIKMMX/e07d1814829c9e121bb3091b803f860c824e9238" XINGHE_BASE_URL = "https://qianfan.baidubce.com/v2" # 模型配置 OPENAI_MODEL = "gpt-3.5-turbo" DEEPSEEK_MODEL = "deepseek-chat" XINGHE_MODEL = "ernie-4.5-turbo-vl" # 星河大模型名称 # 应用配置 FLASK_SECRET_KEY = '4c04b4599e28ed1ce04231ae9694cf00c02a9d600bae80051631607a4c537626' DEBUG_MODE = True # 默认用户配置 DEFAULT_USERS = { 'admin': {'password': '123456', 'role': 'admin', 'name': '管理员'}, 'student': {'password': '123456', 'role': 'student', 'name': '学生'}, 'teacher': {'password': '123456', 'role': 'teacher', 'name': '教师'} } # 知识库配置 KNOWLEDGE_BASE_PATH = 'rust_knowledge_base/rust_docs_sample.json' # 问题分类标签 QUESTION_LABELS = ["greeting", "definition", "usage", "error_debug", "comparison", "faq"] # 从环境变量读取API密钥(如果存在) if os.getenv('OPENAI_API_KEY'): OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') if os.getenv('DEEPSEEK_API_KEY'): DEEPSEEK_API_KEY = os.getenv('DEEPSEEK_API_KEY') if os.getenv('GEMINI_API_KEY'): GEMINI_API_KEY = os.getenv('GEMINI_API_KEY') if os.getenv('XINGHE_API_KEY'): XINGHE_API_KEY = os.getenv('XINGHE_API_KEY')
2301_80743186/rust-agent-code
config.py
Python
unknown
1,448
#上下文管理模块 import json import time import os from typing import List, Dict, Optional from datetime import datetime class ContextManager: def __init__(self, max_context_length: int = 5, storage_dir: str = "chat_sessions"): self.sessions = {} self.max_context_length = max_context_length self.storage_dir = storage_dir self._ensure_storage_dir() self._load_all_sessions() def get_context(self, session_id: str) -> List[Dict]: """获取会话上下文""" if session_id not in self.sessions: return [] session = self.sessions[session_id] return session.get('context', []) def update_context(self, session_id: str, question: str, answer: str, classification: Dict): """更新会话上下文""" if session_id not in self.sessions: self.sessions[session_id] = { 'created_at': datetime.now().isoformat(), 'last_updated': datetime.now().isoformat(), 'context': [], 'question_count': 0, 'question_types': [] } session = self.sessions[session_id] # 添加新的对话轮次 turn = { 'timestamp': datetime.now().isoformat(), 'question': question, 'answer': answer, 'classification': classification, 'turn_id': len(session['context']) + 1 } session['context'].append(turn) session['last_updated'] = datetime.now().isoformat() session['question_count'] += 1 session['question_types'].append(classification['label']) # 限制上下文长度 if len(session['context']) > self.max_context_length: session['context'] = session['context'][-self.max_context_length:] # 保存到文件 self._save_session(session_id) # 更新会话统计 self._update_session_stats(session_id) def get_session_summary(self, session_id: str) -> Dict: """获取会话摘要""" if session_id not in self.sessions: return {} session = self.sessions[session_id] context = session.get('context', []) # 统计问题类型 type_counts = {} for turn in context: label = turn['classification']['label'] type_counts[label] = type_counts.get(label, 0) + 1 # 生成摘要 summary = { 'session_id': session_id, 'created_at': session['created_at'], 'last_updated': session['last_updated'], 'total_turns': len(context), 'question_types': type_counts, 'current_topic': self._extract_current_topic(context), 'learning_progress': self._assess_learning_progress(context) } return summary def _extract_current_topic(self, context: List[Dict]) -> str: """提取当前学习主题""" if not context: return "未开始" # 简单的主题提取逻辑 recent_questions = [turn['question'] for turn in context[-3:]] question_text = " ".join(recent_questions).lower() # 关键词匹配 topics = { '生命周期': ['生命周期', 'lifetime', '作用域'], '所有权': ['所有权', 'ownership', 'move'], '借用': ['借用', 'borrow', '引用'], '错误处理': ['错误', 'error', 'panic', 'result'], '迭代器': ['迭代器', 'iterator', 'for'], '模块': ['模块', 'module', 'use', 'mod'] } for topic, keywords in topics.items(): if any(keyword in question_text for keyword in keywords): return topic return "综合学习" def _assess_learning_progress(self, context: List[Dict]) -> Dict: """评估学习进度""" if not context: return {'level': 'beginner', 'confidence': 0.0} # 基于问题类型和复杂度评估 type_scores = { 'definition': 1, 'usage': 2, 'error_debug': 3, 'comparison': 4, 'faq': 1 } total_score = 0 for turn in context: label = turn['classification']['label'] total_score += type_scores.get(label, 1) avg_score = total_score / len(context) if avg_score >= 3.5: level = 'advanced' confidence = min(0.9, avg_score / 5.0) elif avg_score >= 2.0: level = 'intermediate' confidence = min(0.8, avg_score / 3.0) else: level = 'beginner' confidence = min(0.7, avg_score / 2.0) return { 'level': level, 'confidence': confidence, 'score': avg_score } def _update_session_stats(self, session_id: str): """更新会话统计信息""" session = self.sessions[session_id] # 计算会话时长 created_at = datetime.fromisoformat(session['created_at']) last_updated = datetime.fromisoformat(session['last_updated']) duration = (last_updated - created_at).total_seconds() session['duration_seconds'] = duration session['avg_turn_interval'] = duration / session['question_count'] if session['question_count'] > 0 else 0 def clear_context(self, session_id: str): """清除会话上下文""" if session_id in self.sessions: self.sessions[session_id]['context'] = [] self.sessions[session_id]['last_updated'] = datetime.now().isoformat() # 保存到文件 self._save_session(session_id) def get_all_sessions(self) -> Dict: """获取所有会话信息""" return { session_id: self.get_session_summary(session_id) for session_id in self.sessions.keys() } def save_sessions(self, file_path: str): """保存会话数据到文件""" with open(file_path, 'w', encoding='utf-8') as f: json.dump(self.sessions, f, ensure_ascii=False, indent=2) def load_sessions(self, file_path: str): """从文件加载会话数据""" try: with open(file_path, 'r', encoding='utf-8') as f: self.sessions = json.load(f) except FileNotFoundError: print(f"会话文件 {file_path} 不存在,使用空会话") self.sessions = {} def _ensure_storage_dir(self): """确保存储目录存在""" if not os.path.exists(self.storage_dir): os.makedirs(self.storage_dir) def _save_session(self, session_id: str): """保存单个会话到文件""" if session_id in self.sessions: session_file = os.path.join(self.storage_dir, f"{session_id}.json") try: with open(session_file, 'w', encoding='utf-8') as f: json.dump(self.sessions[session_id], f, ensure_ascii=False, indent=2) except Exception as e: print(f"保存会话 {session_id} 失败: {e}") def _load_all_sessions(self): """加载所有会话文件""" if not os.path.exists(self.storage_dir): return for filename in os.listdir(self.storage_dir): if filename.endswith('.json'): session_id = filename[:-5] # 移除.json后缀 session_file = os.path.join(self.storage_dir, filename) try: with open(session_file, 'r', encoding='utf-8') as f: self.sessions[session_id] = json.load(f) except Exception as e: print(f"加载会话 {session_id} 失败: {e}") def delete_session(self, session_id: str): """删除会话文件和内存数据""" # 删除内存中的数据 if session_id in self.sessions: del self.sessions[session_id] # 删除文件 session_file = os.path.join(self.storage_dir, f"{session_id}.json") if os.path.exists(session_file): try: os.remove(session_file) except Exception as e: print(f"删除会话文件 {session_id} 失败: {e}") def get_storage_stats(self) -> Dict: """获取存储统计信息""" if not os.path.exists(self.storage_dir): return {"total_sessions": 0, "total_size": 0, "storage_dir": self.storage_dir} total_sessions = 0 total_size = 0 for filename in os.listdir(self.storage_dir): if filename.endswith('.json'): total_sessions += 1 file_path = os.path.join(self.storage_dir, filename) total_size += os.path.getsize(file_path) return { "total_sessions": total_sessions, "total_size": total_size, "total_size_mb": round(total_size / (1024 * 1024), 2), "storage_dir": self.storage_dir }
2301_80743186/rust-agent-code
context_manager.py
Python
unknown
9,351
#对话管理模块 class DialogueManager: def __init__(self): self.sessions = {} def get_context(self, user_id): return self.sessions.get(user_id, []) def append_turn(self, user_id, question, answer): if user_id not in self.sessions: self.sessions[user_id] = [] self.sessions[user_id].append({'question': question, 'answer': answer})
2301_80743186/rust-agent-code
dialogue_manager.py
Python
unknown
393
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Rust知识库扩充工具 自动从公开资源和模板生成Rust知识库条目 """ import json import os import random import time # import requests # 可选,目前未使用 from typing import List, Dict import re class RustKnowledgeBaseExpander: def __init__(self, output_path='rust_knowledge_base/rust_docs_expanded.json'): self.output_path = output_path self.existing_knowledge = [] self.new_entries = [] self.categories = ["definition", "usage", "error_debug", "comparison", "faq"] self.difficulties = ["beginner", "intermediate", "advanced"] # Rust主题分类和相关子主题 self.rust_topics = { "所有权与生命周期": ["所有权系统", "借用规则", "生命周期参数", "移动语义", "复制语义", "引用计数"], "基础类型": ["标量类型", "复合类型", "元组", "数组", "切片", "字符串"], "函数与闭包": ["函数定义", "函数参数", "返回值", "闭包", "高阶函数", "递归"], "结构体与枚举": ["结构体定义", "方法实现", "枚举类型", "模式匹配", "Option类型", "Result类型"], "特质系统": ["特质定义", "默认实现", "特质边界", "关联类型", "特质对象", "孤儿规则"], "泛型编程": ["泛型函数", "泛型类型", "泛型特质", "泛型约束", "类型参数", "单态化"], "模块系统": ["模块定义", "可见性", "use声明", "pub关键字", "super和self", "包管理"], "错误处理": ["Result类型", "?操作符", "panic宏", "错误传播", "自定义错误", "错误转换"], "集合类型": ["Vec动态数组", "HashMap哈希表", "HashSet集合", "BTreeMap有序映射", "BTreeSet有序集合", "迭代器"], "智能指针": ["Box智能指针", "Rc引用计数", "Arc原子引用", "RefCell内部可变性", "Cell类型", "Weak引用"], "并发编程": ["线程创建", "消息传递", "互斥锁", "读写锁", "原子类型", "线程安全"], "异步编程": ["async/await", "Future特质", "异步运行时", "异步任务", "并发控制", "流处理"], "不安全Rust": ["unsafe关键字", "原始指针", "FFI接口", "内联汇编", "全局变量", "内存布局"], "宏系统": ["声明宏", "过程宏", "derive宏", "属性宏", "函数式宏", "宏展开"], "测试与基准": ["单元测试", "集成测试", "文档测试", "基准测试", "测试属性", "测试工具"], "性能优化": ["零成本抽象", "内存优化", "算法优化", "并发优化", "编译优化", "分析工具"], "Rust生态": ["Cargo工具", "crates.io", "标准库", "第三方库", "开发工具", "社区实践"], "高级特性": ["无栈协程", "类型族", "常量泛型", "稳定ABI", "内联汇编", "链接优化"] } # 代码模板 self.code_templates = { "definition": [ "// 定义{topic}\n{code}", "// {topic}的基本实现\n{code}", "// {topic}的核心概念示例\n{code}" ], "usage": [ "// 使用{topic}\n{code}", "// {topic}的常见用法\n{code}", "// {topic}的实际应用示例\n{code}" ], "error_debug": [ "// {topic}的错误示例\n{code}\n// 修复方法: {fix}", "// 错误代码\n{code}\n// 正确版本\n{correct}", "// 编译错误: {error}\n{code}" ], "comparison": [ "// Rust中的{topic}\n{rust_code}\n\n// 其他语言中的类似实现\n// {other_language}:\n// {other_code}", "// {topic}在Rust vs {other_language}\n\n// Rust:\n{rust_code}\n\n// {other_language}:\n// {other_code}" ], "faq": [ "// 如何在Rust中实现{topic}?\n{code}", "// {topic}的最佳实践\n{code}", "// 处理{topic}的推荐方法\n{code}" ] } def load_existing_knowledge(self, existing_path='rust_knowledge_base/rust_docs_sample.json'): """加载现有的知识库文件""" if os.path.exists(existing_path): try: with open(existing_path, 'r', encoding='utf-8') as f: self.existing_knowledge = json.load(f) print(f"成功加载现有知识库,共{len(self.existing_knowledge)}条记录") return True except Exception as e: print(f"加载现有知识库失败: {e}") return False def generate_entry_from_template(self, entry_id: str, category: str, difficulty: str) -> Dict: """从模板生成知识条目""" # 随机选择主题和子主题 main_topic = random.choice(list(self.rust_topics.keys())) sub_topic = random.choice(self.rust_topics[main_topic]) # 根据类别和难度生成内容 if category == "definition": content = f"Rust中的{sub_topic}是{main_topic}的重要组成部分。{sub_topic}用于{self._generate_description(category, sub_topic)}。" code = self._generate_code_snippet(category, sub_topic, difficulty) elif category == "usage": content = f"在Rust中使用{sub_topic}的方法:{self._generate_description(category, sub_topic)}。{self._generate_usage_examples(sub_topic, difficulty)}。" code = self._generate_code_snippet(category, sub_topic, difficulty) elif category == "error_debug": content = f"常见的{sub_topic}错误及解决方案:{self._generate_description(category, sub_topic)}。{self._generate_error_fix(sub_topic)}。" code = self._generate_code_snippet(category, sub_topic, difficulty) elif category == "comparison": other_language = random.choice(["C++", "Python", "Go", "JavaScript"]) content = f"Rust与{other_language}中的{sub_topic}对比:{self._generate_description(category, sub_topic)}。{self._generate_language_comparison(sub_topic, other_language)}。" code = self._generate_code_snippet(category, sub_topic, difficulty, other_language) elif category == "faq": content = f"关于Rust中{sub_topic}的常见问题:{self._generate_description(category, sub_topic)}。{self._generate_faq_answer(sub_topic)}。" code = self._generate_code_snippet(category, sub_topic, difficulty) # 生成标签 tags = [main_topic, sub_topic] # 根据内容添加一些相关标签 if "所有权" in content: tags.append("所有权") if "生命周期" in content: tags.append("生命周期") if "借用" in content: tags.append("借用") if "并发" in content: tags.append("并发") if "异步" in content: tags.append("异步") # 确保标签不重复且数量适中 tags = list(set(tags))[:5] # 最多5个标签 # 选择合适的代码模板 code_template = random.choice(self.code_templates[category]) # 创建参数字典,始终包含topic params = {'topic': sub_topic} # 根据模板字符串中需要的参数,添加相应的值 if '{code}' in code_template: params['code'] = code if '{error}' in code_template: params['error'] = code.get('error', code) if isinstance(code, dict) else code if '{fix}' in code_template: params['fix'] = code.get('fix', '修复相关错误') if isinstance(code, dict) else '修复相关错误' if '{correct}' in code_template: params['correct'] = code.get('correct', '// 正确代码示例') if isinstance(code, dict) else '// 正确代码示例' if '{rust_code}' in code_template: params['rust_code'] = code.get('rust', code) if isinstance(code, dict) else code if '{other_language}' in code_template: params['other_language'] = code.get('other_language', 'C++') if isinstance(code, dict) else 'C++' if '{other_code}' in code_template: params['other_code'] = code.get('other_code', '// 其他语言代码示例') if isinstance(code, dict) else '// 其他语言代码示例' # 格式化模板 filled_code = code_template.format(**params) return { "id": entry_id, "title": sub_topic, "content": content, "code": filled_code, "tags": tags, "category": category, "difficulty": difficulty } def _generate_description(self, category: str, topic: str) -> str: """生成描述文本""" descriptions = { "definition": f"{topic}是Rust语言的基础概念,它提供了{self._get_topic_feature(topic)}的能力", "usage": f"正确使用{topic}可以提高代码的{self._get_benefit(topic)}", "error_debug": f"常见的错误包括{self._get_common_errors(topic)}", "comparison": f"Rust的{topic}实现更加安全高效", "faq": f"这个问题经常被Rust初学者问到" } return descriptions.get(category, "这是一个重要的Rust概念") def _generate_code_snippet(self, category: str, topic: str, difficulty: str, other_language: str = "C++") -> str: """生成代码片段""" # 根据主题和类别生成相应的代码片段 if topic == "所有权系统": return "let s1 = String::from(\"hello\");\nlet s2 = s1; // s1的所有权移动到s2\n// println!(\"{}\", s1); // 错误:s1不再有效" elif topic == "借用规则": return "let mut s = String::from(\"hello\");\nlet r1 = &s; // 不可变借用\nlet r2 = &s; // 不可变借用\n// let r3 = &mut s; // 错误:不能同时有可变和不可变借用" elif topic == "生命周期参数": return "fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {\n if x.len() > y.len() { x } else { y }\n}" elif topic == "结构体定义": return "struct User {\n name: String,\n age: u32,\n active: bool,\n}\n\nlet user = User {\n name: String::from(\"Alice\"),\n age: 30,\n active: true,\n};" elif topic == "错误处理" and category == "error_debug": return { "error": "fn read_file() {\n let file = File::open(\"hello.txt\"); // 缺少错误处理\n let mut contents = String::new();\n file.read_to_string(&mut contents); // 错误\n}", "correct": "use std::fs::File;\nuse std::io::{self, Read};\n\nfn read_file() -> io::Result<String> {\n let mut file = File::open(\"hello.txt\")?;\n let mut contents = String::new();\n file.read_to_string(&mut contents)?;\n Ok(contents)\n}", "fix": "使用?操作符进行错误传播" } elif topic == "并发编程" and category == "comparison": return { "rust": "use std::thread;\nuse std::sync::mpsc;\n\nfn main() {\n let (tx, rx) = mpsc::channel();\n \n thread::spawn(move || {\n tx.send(String::from(\"hello\")).unwrap();\n });\n \n let received = rx.recv().unwrap();\n println!(\"Got: {}\", received);\n}", "other_language": other_language, "other_code": "// C++版本\n#include <thread>\n#include <iostream>\n#include <string>\n\nint main() {\n std::thread t([]{\n std::cout << \"hello\" << std::endl;\n });\n t.join();\n return 0;\n}" } elif topic == "闭包": return "// 闭包定义\nlet add_one = |x: i32| -> i32 { x + 1 };\nlet result = add_one(5); // 结果是6\n\n// 更简洁的语法\nlet multiply = |x, y| x * y;\nlet product = multiply(3, 4); // 结果是12" elif topic == "泛型函数": return "// 泛型函数定义\nf<T>(x: T, y: T) -> T where T: std::ops::Add<Output = T> {\n x + y\n}\n\n// 使用泛型函数\nlet sum_i32 = add(5, 10); // i32类型\nlet sum_f64 = add(3.14, 2.71); // f64类型" elif topic == "特质定义": return "// 特质定义\ntrait Animal {\n fn name(&self) -> &str;\n \n // 默认实现\n fn speak(&self) -> String {\n format!(\"{} makes a sound\", self.name())\n }\n}\n\n// 实现特质\nstruct Dog { name: String }\nimpl Animal for Dog {\n fn name(&self) -> &str { &self.name }\n fn speak(&self) -> String {\n format!(\"{} barks\", self.name())\n }\n}" else: # 为其他主题生成通用代码 return self._generate_generic_code(topic, difficulty) def _generate_generic_code(self, topic: str, difficulty: str) -> str: """生成通用代码片段""" if difficulty == "beginner": return f"// {topic}的基础示例\nfn main() {{\n println!(\"Hello, {topic}!\");\n}}" elif difficulty == "intermediate": return f"// {topic}的中级示例\nfn process_{topic.lower().replace(' ', '_')}() -> Result<(), Box<dyn std::error::Error>> {{\n // 实现{topic}的逻辑\n Ok(())\n}}\n\nfn main() {{\n if let Err(e) = process_{topic.lower().replace(' ', '_')}() {{\n eprintln!(\"Error: {{}}\", e);\n }}\n}}" else: # advanced # 先选择特性 sync_feature = random.choice(['Mutex', 'Arc', 'RwLock']) data_feature = random.choice(['Mutex', 'Arc']) # 然后构建字符串 code = f"// {topic}的高级示例\nuse std::sync::{sync_feature};\nuse std::thread;\n\n" code += f"fn advanced_{topic.lower().replace(' ', '_')}() {{\n // 复杂的{topic}实现\n let data = {data_feature}::new(vec![1, 2, 3]);\n // 多线程或其他高级特性\n}}\n\n" code += f"fn main() {{\n advanced_{topic.lower().replace(' ', '_')}();\n}}" return code def _get_topic_feature(self, topic: str) -> str: """获取主题特性描述""" features = [ "内存安全", "并发控制", "类型安全", "零成本抽象", "高性能", "错误处理", "代码复用", "模块化", "可扩展性", "可读性" ] return random.choice(features) def _get_benefit(self, topic: str) -> str: """获取使用主题的好处""" benefits = [ "安全性", "性能", "可维护性", "可读性", "可扩展性", "代码复用", "错误预防", "运行效率", "开发效率", "可靠性" ] return random.choice(benefits) def _get_common_errors(self, topic: str) -> str: """获取常见错误描述""" errors = [ "生命周期不匹配", "借用规则违反", "类型错误", "空指针解引用", "数据竞争", "资源泄漏", "无限递归", "溢出", "死锁", "错误处理不当" ] return random.choice(errors) def _generate_usage_examples(self, topic: str, difficulty: str) -> str: """生成使用示例描述""" examples = [ f"在实际项目中,{topic}常用于处理{self._get_use_case(topic)}", f"{topic}的典型应用场景包括{self._get_use_case(topic)}", f"推荐在{self._get_situation(topic)}时使用{topic}" ] return random.choice(examples) def _generate_error_fix(self, topic: str) -> str: """生成错误修复方法""" fixes = [ "检查生命周期注解", "遵循借用规则", "正确使用智能指针", "添加适当的类型约束", "实现错误处理逻辑", "优化内存使用" ] return random.choice(fixes) def _generate_language_comparison(self, topic: str, other_language: str) -> str: """生成语言对比描述""" comparisons = [ f"Rust的{topic}比{other_language}更安全", f"Rust在{topic}方面提供了编译时检查,而{other_language}依赖运行时", f"Rust的{topic}实现兼顾了安全和性能,{other_language}在这方面有所取舍" ] return random.choice(comparisons) def _generate_faq_answer(self, topic: str) -> str: """生成FAQ答案""" answers = [ f"要实现{topic},建议遵循Rust的最佳实践", f"{topic}的关键在于理解Rust的所有权模型", f"对于{topic},推荐使用标准库中的{self._get_recommended_feature(topic)}" ] return random.choice(answers) def _get_use_case(self, topic: str) -> str: """获取使用场景""" use_cases = [ "复杂数据结构", "并发程序", "系统编程", "Web后端", "命令行工具", "游戏开发", "嵌入式系统", "高性能计算" ] return random.choice(use_cases) def _get_situation(self, topic: str) -> str: """获取适用情况""" situations = [ "需要高性能", "对安全性要求高", "处理复杂数据", "并发编程", "系统级开发", "跨平台应用" ] return random.choice(situations) def _get_recommended_feature(self, topic: str) -> str: """获取推荐特性""" features = [ "标准集合类型", "智能指针", "并发原语", "错误处理机制", "特质系统", "泛型", "异步运行时", "宏系统" ] return random.choice(features) def fetch_from_rust_docs(self, topic: str) -> Dict: """尝试从Rust官方文档获取内容(可选增强功能)""" # 这是一个占位函数,可以扩展为实际的API调用 # 由于Rust官方文档可能没有开放API,可以考虑使用其他公开资源 return {} def generate_knowledge_base(self, target_count: int = 500): """生成指定数量的知识条目""" # 确定需要生成的新条目数量 existing_count = len(self.existing_knowledge) if existing_count >= target_count: print(f"现有知识库已有{existing_count}条记录,已满足目标数量{target_count}") return new_count = target_count - existing_count print(f"需要生成{new_count}条新的知识条目") # 生成新条目 for i in range(new_count): # 生成唯一ID entry_id = f"k{i + existing_count + 1:03d}" # 随机选择类别和难度,但保持一定的分布 category_weights = { "definition": 0.3, "usage": 0.3, "error_debug": 0.2, "comparison": 0.1, "faq": 0.1 } category = random.choices( list(category_weights.keys()), weights=list(category_weights.values()) )[0] # 根据类别调整难度分布 if category in ["definition", "usage"]: difficulty_weights = {"beginner": 0.4, "intermediate": 0.5, "advanced": 0.1} else: difficulty_weights = {"beginner": 0.2, "intermediate": 0.5, "advanced": 0.3} difficulty = random.choices( list(difficulty_weights.keys()), weights=list(difficulty_weights.values()) )[0] # 生成条目 entry = self.generate_entry_from_template(entry_id, category, difficulty) self.new_entries.append(entry) # 显示进度 if (i + 1) % 50 == 0: print(f"已生成{i + 1}/{new_count}条记录") # 避免生成过快 time.sleep(0.01) print(f"成功生成{len(self.new_entries)}条新的知识条目") def combine_and_save(self): """合并现有条目和新条目并保存""" # 合并所有条目 combined_knowledge = self.existing_knowledge + self.new_entries # 确保ID唯一 seen_ids = set() unique_knowledge = [] for entry in combined_knowledge: if entry["id"] not in seen_ids: seen_ids.add(entry["id"]) unique_knowledge.append(entry) # 按ID排序 unique_knowledge.sort(key=lambda x: x["id"]) # 保存到文件 os.makedirs(os.path.dirname(self.output_path), exist_ok=True) with open(self.output_path, 'w', encoding='utf-8') as f: json.dump(unique_knowledge, f, ensure_ascii=False, indent=2) print(f"成功保存扩充后的知识库到{self.output_path}") print(f"最终知识库包含{len(unique_knowledge)}条记录") # 统计各类别的分布 category_count = {} difficulty_count = {} for entry in unique_knowledge: category = entry.get("category", "unknown") difficulty = entry.get("difficulty", "unknown") category_count[category] = category_count.get(category, 0) + 1 difficulty_count[difficulty] = difficulty_count.get(difficulty, 0) + 1 print("\n类别分布:") for cat, count in category_count.items(): print(f" {cat}: {count}") print("\n难度分布:") for diff, count in difficulty_count.items(): print(f" {diff}: {count}") def validate_knowledge_base(self, file_path=None): """验证知识库格式是否正确""" path_to_check = file_path or self.output_path if not os.path.exists(path_to_check): print(f"文件不存在: {path_to_check}") return False try: with open(path_to_check, 'r', encoding='utf-8') as f: knowledge = json.load(f) if not isinstance(knowledge, list): print("错误:知识库必须是一个数组") return False required_fields = ["id", "title", "content", "code", "tags", "category", "difficulty"] seen_ids = set() invalid_entries = [] for i, entry in enumerate(knowledge): # 检查必需字段 missing_fields = [field for field in required_fields if field not in entry] if missing_fields: invalid_entries.append((i, f"缺少必需字段: {', '.join(missing_fields)}")) continue # 检查ID唯一性 if entry["id"] in seen_ids: invalid_entries.append((i, f"ID重复: {entry['id']}")) seen_ids.add(entry["id"]) # 检查字段类型 if not isinstance(entry["tags"], list): invalid_entries.append((i, "tags必须是数组类型")) if invalid_entries: print(f"发现{len(invalid_entries)}个无效条目:") for idx, error in invalid_entries: print(f" 条目{idx}: {error}") return False print(f"知识库验证成功,共{len(knowledge)}条有效记录") return True except json.JSONDecodeError as e: print(f"JSON格式错误: {e}") return False except Exception as e: print(f"验证过程中发生错误: {e}") return False def main(): print("=== Rust知识库扩充工具 ===") print("此工具将帮助您自动扩充Rust知识库,无需手动输入\n") # 创建扩充器实例 expander = RustKnowledgeBaseExpander() # 加载现有知识库 expander.load_existing_knowledge() # 设置目标数量 target_count = 500 # 默认目标500条 # 生成新条目 expander.generate_knowledge_base(target_count) # 合并并保存 expander.combine_and_save() # 验证生成的知识库 expander.validate_knowledge_base() print("\n=== 知识库扩充完成 ===") print("您可以在config.py中修改KNOWLEDGE_BASE_PATH指向新的知识库文件") print("或者将生成的文件复制到rust_knowledge_base/rust_docs_sample.json替换原有文件") if __name__ == "__main__": main()
2301_80743186/rust-agent-code
expand_knowledge_base.py
Python
unknown
24,904
# 知识增强模块 - 集成智源研究院数据 import requests import json import os from typing import Dict, List, Optional from datetime import datetime, timedelta import hashlib from performance_timer import global_timer, APITimer, StepTimer class ZhiyuanKnowledgeEnhancer: """智源研究院知识增强器""" def __init__(self): self.cache_dir = "zhiyuan_cache" self.cache_duration = timedelta(hours=24) # 缓存24小时 self.api_endpoints = { "papers": "https://api.zhiyuan.com/papers", # 论文数据 "datasets": "https://api.zhiyuan.com/datasets", # 数据集 "models": "https://api.zhiyuan.com/models", # 模型 "news": "https://api.zhiyuan.com/news" # 新闻动态 } self._ensure_cache_dir() def _ensure_cache_dir(self): """确保缓存目录存在""" if not os.path.exists(self.cache_dir): os.makedirs(self.cache_dir) def _get_cache_key(self, query: str, category: str) -> str: """生成缓存键""" return hashlib.md5(f"{query}_{category}".encode()).hexdigest() def _is_cache_valid(self, cache_file: str) -> bool: """检查缓存是否有效""" if not os.path.exists(cache_file): return False file_time = datetime.fromtimestamp(os.path.getmtime(cache_file)) return datetime.now() - file_time < self.cache_duration def _load_from_cache(self, cache_file: str) -> Optional[Dict]: """从缓存加载数据""" try: with open(cache_file, 'r', encoding='utf-8') as f: return json.load(f) except: return None def _save_to_cache(self, cache_file: str, data: Dict): """保存数据到缓存""" try: with open(cache_file, 'w', encoding='utf-8') as f: json.dump(data, f, ensure_ascii=False, indent=2) except Exception as e: print(f"缓存保存失败: {e}") def search_rust_knowledge(self, query: str, category: str = "all") -> Dict: """搜索Rust相关知识""" cache_key = self._get_cache_key(query, category) cache_file = os.path.join(self.cache_dir, f"{cache_key}.json") # 检查缓存 if self._is_cache_valid(cache_file): cached_data = self._load_from_cache(cache_file) if cached_data: print(f"使用缓存数据: {query}") return cached_data # 从智源研究院获取数据 knowledge_data = self._fetch_zhiyuan_data(query, category) # 保存到缓存 if knowledge_data: self._save_to_cache(cache_file, knowledge_data) return knowledge_data def _fetch_zhiyuan_data(self, query: str, category: str) -> Dict: """从智源研究院获取数据""" try: # 模拟智源研究院API调用(实际使用时需要真实的API) rust_knowledge = self._get_rust_knowledge_base() # 根据查询内容匹配相关知识 matched_knowledge = self._match_knowledge(query, rust_knowledge) return { "status": "success", "query": query, "category": category, "knowledge": matched_knowledge, "source": "智源研究院", "timestamp": datetime.now().isoformat() } except Exception as e: print(f"智源研究院数据获取失败: {e}") return { "status": "error", "message": str(e), "knowledge": [] } def _get_rust_knowledge_base(self) -> Dict: """获取Rust知识库(基于智源研究院的研究成果)""" return { "papers": [ { "title": "Rust语言内存安全机制研究", "authors": ["智源研究院", "清华大学"], "year": 2023, "abstract": "本文深入分析了Rust语言的所有权系统和借用检查器,提出了内存安全的新理论框架。", "keywords": ["Rust", "内存安全", "所有权", "借用检查器"], "url": "https://zhiyuan.com/papers/rust-memory-safety" }, { "title": "并发编程语言对比研究:Rust vs Go vs C++", "authors": ["智源研究院", "中科院"], "year": 2023, "abstract": "对比分析了Rust、Go和C++在并发编程方面的优劣,为开发者选择提供参考。", "keywords": ["Rust", "并发编程", "性能对比", "Go", "C++"], "url": "https://zhiyuan.com/papers/concurrent-languages" }, { "title": "Rust生态系统发展现状与趋势分析", "authors": ["智源研究院"], "year": 2024, "abstract": "分析了Rust生态系统的发展现状,包括Cargo包管理器、社区发展等。", "keywords": ["Rust", "生态系统", "Cargo", "社区"], "url": "https://zhiyuan.com/papers/rust-ecosystem" } ], "datasets": [ { "name": "Rust代码质量评估数据集", "description": "包含10万个Rust项目的代码质量评估数据", "size": "2.5GB", "format": "JSON", "url": "https://zhiyuan.com/datasets/rust-code-quality" }, { "name": "Rust性能基准测试数据集", "description": "Rust与其他语言性能对比的基准测试数据", "size": "1.8GB", "format": "CSV", "url": "https://zhiyuan.com/datasets/rust-benchmarks" } ], "models": [ { "name": "Rust代码生成模型", "description": "基于Transformer的Rust代码自动生成模型", "parameters": "7B", "accuracy": "92.3%", "url": "https://zhiyuan.com/models/rust-codegen" }, { "name": "Rust漏洞检测模型", "description": "使用深度学习检测Rust代码中的潜在漏洞", "parameters": "3B", "accuracy": "89.7%", "url": "https://zhiyuan.com/models/rust-vuln-detection" } ], "news": [ { "title": "Rust 1.75.0发布:性能优化与安全增强", "date": "2024-01-15", "summary": "新版本在编译速度和内存使用方面有显著改进", "url": "https://zhiyuan.com/news/rust-1-75-0" }, { "title": "智源研究院开源Rust机器学习框架", "date": "2024-01-10", "summary": "为Rust生态系统贡献了新的机器学习工具", "url": "https://zhiyuan.com/news/rust-ml-framework" } ] } def _match_knowledge(self, query: str, knowledge_base: Dict) -> List[Dict]: """根据查询匹配相关知识""" matched_items = [] query_lower = query.lower() # Rust核心概念到论文主题的映射 concept_to_paper_mapping = { # 所有权和借用相关概念 -> 内存安全论文 "引用": ["Rust语言内存安全机制研究"], "不可变引用": ["Rust语言内存安全机制研究"], "可变引用": ["Rust语言内存安全机制研究"], "借用": ["Rust语言内存安全机制研究"], "所有权": ["Rust语言内存安全机制研究"], "生命周期": ["Rust语言内存安全机制研究"], "借用检查器": ["Rust语言内存安全机制研究"], "内存安全": ["Rust语言内存安全机制研究"], # 并发相关概念 -> 并发编程论文 "并发": ["并发编程语言对比研究:Rust vs Go vs C++"], "异步": ["并发编程语言对比研究:Rust vs Go vs C++"], "线程": ["并发编程语言对比研究:Rust vs Go vs C++"], # 生态系统相关概念 -> 生态系统论文 "cargo": ["Rust生态系统发展现状与趋势分析"], "包管理": ["Rust生态系统发展现状与趋势分析"], "生态系统": ["Rust生态系统发展现状与趋势分析"], "社区": ["Rust生态系统发展现状与趋势分析"] } # 匹配论文 for paper in knowledge_base["papers"]: matched = False relevance = 0.0 # 方法1: 直接关键词匹配 if any(keyword.lower() in query_lower for keyword in paper["keywords"]): matched = True relevance = self._calculate_relevance(query, paper["keywords"]) # 方法2: 通过概念映射匹配 for concept, paper_titles in concept_to_paper_mapping.items(): if concept in query_lower and paper["title"] in paper_titles: matched = True # 概念匹配的相关性稍低,但仍然是相关的 relevance = max(relevance, 0.6) # 方法3: 如果查询包含"rust"且论文标题包含"Rust",给予基础相关性 if "rust" in query_lower and "rust" in paper["title"].lower(): matched = True relevance = max(relevance, 0.5) if matched: matched_items.append({ "type": "paper", "title": paper["title"], "abstract": paper["abstract"], "relevance": relevance, "url": paper["url"] }) # 匹配数据集 for dataset in knowledge_base["datasets"]: if "rust" in query_lower and any(word in query_lower for word in ["数据", "数据集", "质量", "性能"]): matched_items.append({ "type": "dataset", "name": dataset["name"], "description": dataset["description"], "relevance": 0.8, "url": dataset["url"] }) # 匹配模型 for model in knowledge_base["models"]: if "rust" in query_lower and any(word in query_lower for word in ["模型", "生成", "检测", "AI"]): matched_items.append({ "type": "model", "name": model["name"], "description": model["description"], "relevance": 0.7, "url": model["url"] }) # 按相关性排序 matched_items.sort(key=lambda x: x["relevance"], reverse=True) return matched_items[:5] # 返回前5个最相关的结果 def _calculate_relevance(self, query: str, keywords: List[str]) -> float: """计算相关性分数""" query_words = set(query.lower().split()) keyword_words = set([kw.lower() for kw in keywords]) intersection = len(query_words & keyword_words) union = len(query_words | keyword_words) return intersection / union if union > 0 else 0.0 def enhance_answer_with_knowledge(self, question: str, answer: str, classification: Dict) -> str: """使用智源研究院知识增强回答""" try: # 检查缓存 cache_key = self._get_cache_key(question + answer, "enhanced") cache_file = os.path.join(self.cache_dir, f"{cache_key}.json") if self._is_cache_valid(cache_file): cached_result = self._load_from_cache(cache_file) if cached_result: global_timer.add_info("知识增强", "使用缓存") return cached_result with StepTimer("知识增强完整流程"): # 检查是否为问候语,如果是则跳过知识增强 if classification.get('label') == 'greeting': global_timer.add_info("知识增强", "问候语,跳过") return answer # 检查问题是否包含Rust相关关键词 question_lower = question.lower() rust_keywords = [ 'rust', '生命周期', '所有权', '借用', '可变', '不可变', 'trait', 'struct', 'enum', 'match', 'option', 'result', '迭代器', '闭包', '宏', '模块', 'cargo', '编译', '错误', '调试', '内存', '安全', '并发', '异步', 'future', 'pin', 'unsafe', '引用', '指针', '智能指针', 'box', 'rc', 'arc', 'refcell', 'cell', 'weak', 'vec', 'hashmap', 'hashset', 'btreemap', 'btreeset', '字符串', '切片', '函数', '方法', '闭包', '泛型', '类型', '变量', '常量', '静态变量' ] # 如果问题不包含任何Rust相关关键词,跳过知识增强 if not any(keyword in question_lower for keyword in rust_keywords): global_timer.add_info("知识增强", "非Rust问题,跳过") return answer # 搜索相关知识 with APITimer("知识搜索"): knowledge_data = self.search_rust_knowledge(question, classification.get('label', 'all')) global_timer.add_info("知识搜索结果", len(knowledge_data.get("knowledge", []))) if knowledge_data.get("status") == "success" and knowledge_data.get("knowledge"): # 构建增强的回答 with StepTimer("构建增强回答"): enhanced_answer = self._build_enhanced_answer(answer, knowledge_data["knowledge"]) # 缓存结果 self._save_to_cache(cache_file, enhanced_answer) return enhanced_answer else: return answer except Exception as e: print(f"知识增强失败: {e}") global_timer.add_info("知识增强错误", str(e)[:100]) return answer def _build_enhanced_answer(self, original_answer: str, knowledge_items: List[Dict]) -> str: """构建增强的回答""" if not knowledge_items: return original_answer # 添加智源研究院知识增强部分 enhancement_section = "\n\n## 🧠 智源研究院知识增强\n" enhancement_section += "基于智源研究院的最新研究成果,为您提供更深入的专业见解:\n\n" for item in knowledge_items[:3]: # 只显示前3个最相关的 if item["type"] == "paper": enhancement_section += f"### 📄 相关研究论文\n\n" # 添加可点击的标题链接 paper_url = item.get('url', '#') enhancement_section += f"**[{item['title']}]({paper_url})**\n\n" enhancement_section += f"{item['abstract']}\n\n" enhancement_section += f"<div style='margin-top: 8px; padding: 8px; background: #f0f7ff; border-left: 3px solid #3498db; border-radius: 4px;'>\n" enhancement_section += f"<small>📌 <strong>来源:</strong>智源研究院 | <strong>相关性:</strong>{item['relevance']:.1%} | " enhancement_section += f"<a href='{paper_url}' target='_blank' style='color: #3498db; text-decoration: none;'>🔗 查看详情</a></small>\n" enhancement_section += f"</div>\n\n" elif item["type"] == "dataset": enhancement_section += f"### 📊 相关数据集\n\n" dataset_url = item.get('url', '#') enhancement_section += f"**[{item['name']}]({dataset_url})**\n\n" enhancement_section += f"{item['description']}\n\n" enhancement_section += f"<div style='margin-top: 8px; padding: 8px; background: #f0f7ff; border-left: 3px solid #3498db; border-radius: 4px;'>\n" enhancement_section += f"<small>📌 <strong>来源:</strong>智源研究院 | <strong>相关性:</strong>{item['relevance']:.1%} | " enhancement_section += f"<a href='{dataset_url}' target='_blank' style='color: #3498db; text-decoration: none;'>🔗 查看详情</a></small>\n" enhancement_section += f"</div>\n\n" elif item["type"] == "model": enhancement_section += f"### 🤖 相关AI模型\n\n" model_url = item.get('url', '#') enhancement_section += f"**[{item['name']}]({model_url})**\n\n" enhancement_section += f"{item['description']}\n\n" enhancement_section += f"<div style='margin-top: 8px; padding: 8px; background: #f0f7ff; border-left: 3px solid #3498db; border-radius: 4px;'>\n" enhancement_section += f"<small>📌 <strong>来源:</strong>智源研究院 | <strong>相关性:</strong>{item['relevance']:.1%} | " enhancement_section += f"<a href='{model_url}' target='_blank' style='color: #3498db; text-decoration: none;'>🔗 查看详情</a></small>\n" enhancement_section += f"</div>\n\n" enhancement_section += "### 🔗 更多资源\n" enhancement_section += "- [智源研究院官网](https://zhiyuan.com)\n" enhancement_section += "- [Rust研究专题](https://zhiyuan.com/rust-research)\n" enhancement_section += "- [开源项目](https://github.com/zhiyuan-ai)\n" return original_answer + enhancement_section def get_knowledge_statistics(self) -> Dict: """获取知识库统计信息""" try: knowledge_base = self._get_rust_knowledge_base() return { "papers_count": len(knowledge_base["papers"]), "datasets_count": len(knowledge_base["datasets"]), "models_count": len(knowledge_base["models"]), "news_count": len(knowledge_base["news"]), "last_updated": datetime.now().isoformat(), "cache_size": self._get_cache_size() } except Exception as e: return {"error": str(e)} def _get_cache_size(self) -> str: """获取缓存大小""" try: total_size = 0 for filename in os.listdir(self.cache_dir): filepath = os.path.join(self.cache_dir, filename) if os.path.isfile(filepath): total_size += os.path.getsize(filepath) if total_size < 1024: return f"{total_size} B" elif total_size < 1024 * 1024: return f"{total_size / 1024:.1f} KB" else: return f"{total_size / (1024 * 1024):.1f} MB" except: return "未知" # 创建全局实例 zhiyuan_enhancer = ZhiyuanKnowledgeEnhancer()
2301_80743186/rust-agent-code
knowledge_enhancer.py
Python
unknown
20,017
#知识检索模块 import json import os class KnowledgeRetriever: def __init__(self, kb_path='rust_knowledge_base/rust_docs_sample.json'): self.kb_path = kb_path if os.path.exists(self.kb_path): with open(self.kb_path, 'r', encoding='utf-8') as f: self.docs = json.load(f) else: self.docs = [] def retrieve(self, question, topk=3): # 简单关键词匹配,返回相关文档 results = [] for doc in self.docs: if any(word in doc['content'] for word in question.split()): results.append(doc) return results[:topk] if results else self.docs[:topk]
2301_80743186/rust-agent-code
knowledge_retriever.py
Python
unknown
684
#主模块import json import os from question_classifier import QuestionClassifier from semantic_retriever import SemanticRetriever from answer_generator import AnswerGenerator from performance_timer import global_timer, StepTimer, APITimer from multimodal_renderer import MultimodalRenderer from context_manager import ContextManager import json class KnowledgeExplanationAgent: def __init__(self): self.classifier = QuestionClassifier() self.retriever = SemanticRetriever() self.generator = AnswerGenerator() self.renderer = MultimodalRenderer() self.context_manager = ContextManager() def process_question(self, user_id, question, session_id=None, preferred_model=None): """处理用户问题的完整流程""" try: # M1: 问题分类 with StepTimer("问题分类"): classification = self.classifier.classify(question) global_timer.add_info("问题类型", classification['label']) print(f"问题分类: {classification}") # # M2: 语义检索(可选,当前知识库为空可跳过或返回空列表) # retrieved_docs = [] # 暂不使用知识库 # M2: 语义检索 with StepTimer("语义检索"): retrieved_docs = self.retriever.retrieve(question, classification['label']) global_timer.add_info("检索结果数量", len(retrieved_docs)) # M5: 上下文管理 with StepTimer("获取上下文"): context = self.context_manager.get_context(session_id or user_id) # M3: 回答生成 with StepTimer("回答生成"): answer_markdown = self.generator.generate( question=question, classification=classification, retrieved_docs=retrieved_docs, context=context, preferred_model=preferred_model ) # M4: 更新上下文(记录对话历史) with StepTimer("更新上下文"): self.context_manager.update_context( session_id or user_id, question, answer_markdown, classification ) # 只返回Markdown内容,不做多模态HTML渲染 return { 'status': 'success', 'classification': classification, 'answer_markdown': answer_markdown } except Exception as e: return { 'status': 'error', 'message': f'处理问题时出错: {str(e)}' } if __name__ == "__main__": agent = KnowledgeExplanationAgent() print("=== 知识解释智能体系统 ===") print("支持的问题类型: definition, usage, error_debug, comparison, faq") print("输入 'exit' 退出\n") while True: user_id = input("用户ID: ") if user_id.lower() == 'exit': break question = input("问题: ") if question.lower() == 'exit': break result = agent.process_question(user_id, question) if result['status'] == 'success': print(f"\n=== 处理结果 ===") print(f"问题类型: {result['classification']['label']}") print(f"置信度: {result['classification']['confidence']:.3f}") print(f"\n=== 生成的回答 ===") print(result['answer_markdown']) else: print(f"错误: {result['message']}") print("\n" + "="*50 + "\n")
2301_80743186/rust-agent-code
main.py
Python
unknown
3,784
# 模型状态监控模块 import time from typing import Dict, List class ModelStatus: def __init__(self): self.status = { 'xinghe': { 'available': True, 'last_check': time.time(), 'error_count': 0, 'model': 'ernie-bot-turbo' }, 'openai': { 'available': True, 'last_check': time.time(), 'error_count': 0, 'model': 'gpt-3.5-turbo' }, 'deepseek': { 'available': True, 'last_check': time.time(), 'error_count': 0, 'model': 'deepseek-chat' }, 'fallback': { 'available': True, 'last_check': time.time(), 'error_count': 0, 'model': 'local-fallback' } } self.current_model = 'xinghe' def update_status(self, model: str, success: bool, error_message: str = None): """更新模型状态""" if model in self.status: self.status[model]['last_check'] = time.time() if success: self.status[model]['available'] = True self.status[model]['error_count'] = 0 else: self.status[model]['error_count'] += 1 if self.status[model]['error_count'] >= 3: self.status[model]['available'] = False def get_available_models(self) -> List[str]: """获取可用的模型列表""" return [model for model, info in self.status.items() if info['available']] def get_current_model(self) -> str: """获取当前使用的模型""" return self.current_model def switch_model(self, model: str): """切换模型""" if model in self.status and self.status[model]['available']: self.current_model = model return True return False def get_status_summary(self) -> Dict: """获取状态摘要""" return { 'current_model': self.current_model, 'available_models': self.get_available_models(), 'status': self.status } def reset_status(self): """重置所有模型状态""" for model in self.status: self.status[model]['available'] = True self.status[model]['error_count'] = 0 self.status[model]['last_check'] = time.time() self.current_model = 'xinghe' # 全局状态实例 model_status = ModelStatus()
2301_80743186/rust-agent-code
model_status.py
Python
unknown
2,628
# 多模态增强器 import re import json from typing import Dict, List, Any, Optional class MultimodalEnhancer: def __init__(self): self.mermaid_counter = 0 def _normalize_markdown_codeblock(self, text: str) -> str: """还原被转义的markdown代码块前缀""" import re # 先还原mermaid和rust等带语言的 text = re.sub(r'\\+`{3}\s*mermaid', '```mermaid', text) text = re.sub(r'\\+`{3}\s*rust', '```rust', text) # 再还原普通代码块 text = re.sub(r'\\+`{3}', '```', text) return text def enhance_content(self, content: str) -> Dict[str, Any]: """增强内容,提取多模态元素""" # 先去除markdown代码块前缀的多余转义 content = self._normalize_markdown_codeblock(content) enhanced = { 'text_content': content, 'code_blocks': [], 'mermaid_diagrams': [], 'tables': [], 'images': [], 'enhanced_html': content } # 提取代码块 enhanced['code_blocks'] = self._extract_code_blocks(content) # 提取Mermaid图表 enhanced['mermaid_diagrams'] = self._extract_mermaid_diagrams(content) # 提取表格 enhanced['tables'] = self._extract_tables(content) # 生成增强的HTML enhanced['enhanced_html'] = self._generate_enhanced_html(content, enhanced) return enhanced def _extract_code_blocks(self, content: str) -> List[Dict[str, str]]: """提取代码块""" code_blocks = [] pattern = r'```(\w+)?\n(.*?)```' matches = re.finditer(pattern, content, re.DOTALL) for match in matches: language = match.group(1) or 'text' code = match.group(2).strip() code_blocks.append({ 'language': language, 'code': code, 'id': f'code-{len(code_blocks)}' }) return code_blocks def _extract_mermaid_diagrams(self, content: str) -> List[Dict[str, str]]: """提取Mermaid图表""" mermaid_diagrams = [] pattern = r'```mermaid\s*\n(.*?)```' matches = re.finditer(pattern, content, re.DOTALL) for match in matches: diagram_code = match.group(1).strip() self.mermaid_counter += 1 mermaid_diagrams.append({ 'id': f'mermaid-{self.mermaid_counter}', 'code': diagram_code, 'type': self._detect_mermaid_type(diagram_code) }) return mermaid_diagrams def _detect_mermaid_type(self, diagram_code: str) -> str: """检测Mermaid图表类型""" if 'graph' in diagram_code or 'flowchart' in diagram_code: return 'flowchart' elif 'sequenceDiagram' in diagram_code: return 'sequence' elif 'classDiagram' in diagram_code: return 'class' elif 'stateDiagram' in diagram_code: return 'state' elif 'gantt' in diagram_code: return 'gantt' elif 'pie' in diagram_code: return 'pie' else: return 'unknown' def _extract_tables(self, content: str) -> List[Dict[str, Any]]: """提取Markdown表格""" tables = [] pattern = r'\|.*\|\n\|[\s\-:|]+\|\n(\|.*\|\n)*' matches = re.finditer(pattern, content) for match in matches: table_text = match.group(0) table_data = self._parse_markdown_table(table_text) tables.append({ 'id': f'table-{len(tables)}', 'data': table_data, 'html': self._table_to_html(table_data) }) return tables def _parse_markdown_table(self, table_text: str) -> List[List[str]]: """解析Markdown表格""" lines = table_text.strip().split('\n') table_data = [] for line in lines: if line.startswith('|') and line.endswith('|'): # 移除首尾的|并分割 cells = [cell.strip() for cell in line[1:-1].split('|')] table_data.append(cells) return table_data def _table_to_html(self, table_data: List[List[str]]) -> str: """将表格数据转换为HTML""" if not table_data: return "" html = '<table class="enhanced-table">\n' for i, row in enumerate(table_data): if i == 0: html += ' <thead>\n <tr>\n' for cell in row: html += f' <th>{cell}</th>\n' html += ' </tr>\n </thead>\n <tbody>\n' else: html += ' <tr>\n' for cell in row: html += f' <td>{cell}</td>\n' html += ' </tr>\n' html += ' </tbody>\n</table>' return html def _generate_enhanced_html(self, content: str, enhanced: Dict[str, Any]) -> str: """生成增强的HTML内容(美化代码块和mermaid图表,并分块分段,p标签仅包裹纯文本)""" html_content = content # 1. 标题美化 html_content = re.sub(r'^### (.*)$', r'<h3 style="margin: 18px 0 8px 0; font-size: 1.1em; color: #2d3748;">\1</h3>', html_content, flags=re.MULTILINE) html_content = re.sub(r'^## (.*)$', r'<h2 style="margin: 28px 0 12px 0; font-size: 1.3em; color: #2563eb;">\1</h2>', html_content, flags=re.MULTILINE) html_content = re.sub(r'^# (.*)$', r'<h1 style="margin: 36px 0 16px 0; font-size: 1.6em; color: #1a202c;">\1</h1>', html_content, flags=re.MULTILINE) # 2. Mermaid图表 def mermaid_repl(match): code = match.group(1).strip() return ( '<div class="mermaid-container" style="margin: 24px 0;">\n' ' <div class="mermaid-header" style="padding: 8px 16px; background: #f0fdf4; border-bottom: 1px solid #c6f6d5;">\n' ' <span class="diagram-type" style="color: #38a169; font-weight: bold;">关系图</span>\n' ' </div>\n' ' <div class="mermaid-content" style="padding: 18px; background: #f9fafb; text-align: center;">\n' f' <div class="mermaid">{self._escape_html(code)}</div>\n' ' </div>\n' '</div>' ) html_content = re.sub(r'```mermaid\s*\n([\s\S]*?)\n```', mermaid_repl, html_content, flags=re.DOTALL) # 3. 代码块 def code_repl(match): lang = match.group(1) or 'text' code = match.group(2).strip() return ( '<div class="code-block" style="margin: 24px 0;">\n' ' <div class="code-header" style="display: flex; align-items: center; justify-content: space-between; background: #f7fafc; padding: 8px 16px; border-bottom: 1px solid #e2e8f0;">\n' f' <span class="language-tag" style="color: #3182ce; font-weight: bold;">{lang}</span>\n' ' <button class="copy-btn" style="background: #edf2f7; border: none; border-radius: 4px; padding: 2px 10px; cursor: pointer;">复制</button>\n' ' </div>\n' ' <pre style="margin: 0; background: #f9fafb;"><code class="language-' + lang + '">' + self._escape_html(code) + '</code></pre>\n' '</div>' ) html_content = re.sub(r'```(\w+)?\s*\n([\s\S]*?)\n```', code_repl, html_content, flags=re.DOTALL) # 4. 列表美化 html_content = re.sub(r'^\s*[-\*] (.*)$', r'<ul><li>\1</li></ul>', html_content, flags=re.MULTILINE) html_content = re.sub(r'^\s*\d+\. (.*)$', r'<ol><li>\1</li></ol>', html_content, flags=re.MULTILINE) html_content = re.sub(r'(</ul>)\s*<ul>', '', html_content) # 合并相邻ul html_content = re.sub(r'(</ol>)\s*<ol>', '', html_content) # 5. 表格美化(简单处理) html_content = re.sub(r'^\|(.+?)\|$', r'<div class="table-block">|\1|</div>', html_content, flags=re.MULTILINE) # 6. 只对纯文本行用<p>包裹 lines = html_content.split('\n') new_lines = [] for line in lines: lstr = line.strip() if not lstr: continue # 只包裹非HTML标签开头和结尾的纯文本 if not (lstr.startswith('<') and lstr.endswith('>')): new_lines.append(f'<p>{lstr}</p>') else: new_lines.append(line) html_content = '\n'.join(new_lines) return html_content def _escape_html(self, text: str) -> str: """转义HTML特殊字符""" return text.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;').replace('"', '&quot;').replace("'", '&#39;') def generate_css_styles(self) -> str: """生成增强样式""" return """ /* 多模态增强样式 */ .enhanced-table { width: 100%; border-collapse: collapse; margin: 15px 0; background: white; border-radius: 8px; overflow: hidden; box-shadow: 0 2px 8px rgba(0,0,0,0.1); } .enhanced-table th, .enhanced-table td { padding: 12px 15px; text-align: left; border-bottom: 1px solid #eee; } .enhanced-table th { background: #f8f9fa; font-weight: 600; color: #2c3e50; } .enhanced-table tr:hover { background: #f8f9fa; } .code-block { margin: 15px 0; border-radius: 8px; overflow: hidden; box-shadow: 0 2px 8px rgba(0,0,0,0.1); } .code-header { display: flex; justify-content: space-between; align-items: center; padding: 8px 15px; background: #2d3748; color: white; } .language-tag { font-size: 0.9rem; font-weight: 500; } .copy-btn { background: #4a5568; color: white; border: none; padding: 4px 8px; border-radius: 4px; font-size: 0.8rem; cursor: pointer; transition: background 0.2s; } .copy-btn:hover { background: #718096; } .code-block pre { margin: 0; padding: 15px; background: #2d3748; color: #e2e8f0; overflow-x: auto; } .mermaid-container { margin: 20px 0; border: 1px solid #e2e8f0; border-radius: 8px; overflow: hidden; background: white; } .mermaid-header { padding: 10px 15px; background: #f7fafc; border-bottom: 1px solid #e2e8f0; } .diagram-type { font-size: 0.9rem; font-weight: 500; color: #4a5568; } .mermaid-content { padding: 20px; text-align: center; } /* 响应式设计 */ @media (max-width: 768px) { .enhanced-table { font-size: 0.9rem; } .enhanced-table th, .enhanced-table td { padding: 8px 10px; } .code-block pre { padding: 10px; font-size: 0.85rem; } } """ def generate_js_functions(self) -> str: """生成JavaScript函数""" return """ // 复制代码功能 function copyCode(codeId) { const codeBlock = document.getElementById(codeId); const code = codeBlock.querySelector('code').textContent; navigator.clipboard.writeText(code).then(() => { const btn = codeBlock.querySelector('.copy-btn'); const originalText = btn.textContent; btn.textContent = '已复制!'; btn.style.background = '#48bb78'; setTimeout(() => { btn.textContent = originalText; btn.style.background = '#4a5568'; }, 2000); }).catch(err => { console.error('复制失败:', err); alert('复制失败,请手动复制'); }); } // 初始化Mermaid图表 function initMermaid() { if (typeof mermaid !== 'undefined') { mermaid.initialize({ startOnLoad: true, theme: 'default', flowchart: { useMaxWidth: true, htmlLabels: true } }); } } // 页面加载完成后初始化 document.addEventListener('DOMContentLoaded', function() { initMermaid(); }); """ # 创建全局实例 multimodal_enhancer = MultimodalEnhancer()
2301_80743186/rust-agent-code
multimodal_enhancer.py
Python
unknown
12,323
#多模态渲染模块 import re from typing import Dict, List class MultimodalRenderer: def __init__(self): self.css_styles = self._get_css_styles() def render(self, markdown_content: str) -> str: """将Markdown内容渲染为HTML""" html = self._markdown_to_html(markdown_content) return self._wrap_with_template(html) def _markdown_to_html(self, markdown: str) -> str: """Markdown转HTML的核心逻辑""" html = markdown # 处理标题 html = re.sub(r'^### (.*$)', r'<h3>\1</h3>', html, flags=re.MULTILINE) html = re.sub(r'^## (.*$)', r'<h2>\1</h2>', html, flags=re.MULTILINE) html = re.sub(r'^# (.*$)', r'<h1>\1</h1>', html, flags=re.MULTILINE) # 处理粗体 html = re.sub(r'\*\*(.*?)\*\*', r'<strong>\1</strong>', html) # 处理斜体 html = re.sub(r'\*(.*?)\*', r'<em>\1</em>', html) # 处理代码块 html = re.sub( r'```rust\n(.*?)\n```', r'<pre class="code-block rust"><code>\1</code></pre>', html, flags=re.DOTALL ) html = re.sub( r'```(.*?)\n(.*?)\n```', r'<pre class="code-block \1"><code>\2</code></pre>', html, flags=re.DOTALL ) # 处理行内代码 html = re.sub(r'`(.*?)`', r'<code class="inline-code">\1</code>', html) # 处理列表 html = re.sub(r'^\d+\. (.*$)', r'<li>\1</li>', html, flags=re.MULTILINE) html = re.sub(r'^- (.*$)', r'<li>\1</li>', html, flags=re.MULTILINE) # 处理段落 html = re.sub(r'\n\n([^<].*?)\n\n', r'<p>\1</p>', html, flags=re.DOTALL) # 处理Mermaid图表 html = re.sub( r'```mermaid\n(.*?)\n```', r'<div class="mermaid">\1</div>', html, flags=re.DOTALL ) # 处理换行 html = html.replace('\n', '<br>') return html def _wrap_with_template(self, content: str) -> str: """包装HTML模板""" return f""" <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Rust知识解释</title> <script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css"> <script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/components/prism-core.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/plugins/autoloader/prism-autoloader.min.js"></script> <style> {self.css_styles} </style> </head> <body> <div class="container"> <div class="content"> {content} </div> </div> <script> mermaid.initialize({{ startOnLoad: true }}); Prism.highlightAll(); </script> </body> </html> """ def _get_css_styles(self) -> str: """获取CSS样式""" return """ body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; line-height: 1.6; color: #333; max-width: 800px; margin: 0 auto; padding: 20px; background-color: #f8f9fa; } .container { background: white; border-radius: 8px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); overflow: hidden; } .content { padding: 30px; } h1, h2, h3 { color: #2c3e50; margin-top: 30px; margin-bottom: 15px; } h1 { font-size: 2em; border-bottom: 3px solid #3498db; padding-bottom: 10px; } h2 { font-size: 1.5em; border-bottom: 2px solid #ecf0f1; padding-bottom: 8px; } h3 { font-size: 1.2em; color: #34495e; } p { margin-bottom: 15px; text-align: justify; } .code-block { background: #f8f9fa; border: 1px solid #e9ecef; border-radius: 6px; padding: 15px; margin: 15px 0; overflow-x: auto; font-family: 'Fira Code', 'Monaco', 'Consolas', monospace; font-size: 14px; line-height: 1.4; } .inline-code { background: #f1f3f4; padding: 2px 6px; border-radius: 4px; font-family: 'Fira Code', monospace; font-size: 0.9em; color: #d73a49; } .mermaid { text-align: center; margin: 20px 0; padding: 20px; background: #f8f9fa; border-radius: 6px; } li { margin-bottom: 8px; } strong { color: #2c3e50; font-weight: 600; } em { color: #7f8c8d; font-style: italic; } @media (max-width: 768px) { body { padding: 10px; } .content { padding: 20px; } h1 { font-size: 1.5em; } h2 { font-size: 1.3em; } } """ def save_html(self, markdown_content: str, file_path: str): """保存渲染后的HTML到文件""" html_content = self.render(markdown_content) with open(file_path, 'w', encoding='utf-8') as f: f.write(html_content)
2301_80743186/rust-agent-code
multimodal_renderer.py
Python
unknown
6,008
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 性能分析工具 - 用于测量 SemanticRetriever 的各个操作耗时 """ import time import json import numpy as np from semantic_retriever import SemanticRetriever def measure_time(func, *args, **kwargs): """ 测量函数执行时间 Args: func: 要执行的函数 *args: 函数参数 **kwargs: 函数关键字参数 Returns: tuple: (函数返回值, 执行时间(毫秒)) """ start_time = time.time() result = func(*args, **kwargs) end_time = time.time() elapsed_time = (end_time - start_time) * 1000 # 转换为毫秒 return result, elapsed_time def run_performance_analysis(): """ 运行完整的性能分析测试 """ print("=" * 80) print("SemanticRetriever 性能分析工具") print("此工具用于测量各个关键操作的耗时,帮助优化性能") print("=" * 80) # 测试配置 config = { 'kb_path': 'rust_knowledge_base/rust_docs_sample.json', 'test_questions': [ "什么是所有权?", "如何处理借用检查器错误?", "Rust和C++的主要区别是什么?", "生命周期参数的作用是什么?", "如何声明可变变量?" ], 'top_k_values': [1, 3, 5], 'iterations': 3 # 每个操作执行的次数,取平均值 } print(f"测试配置: {json.dumps(config, ensure_ascii=False, indent=2)}") print("\n开始性能测试...\n") # 1. 初始化时间 print("[测试1] 初始化时间测量") retriever, init_time = measure_time(SemanticRetriever, config['kb_path']) print(f"初始化完成,耗时: {init_time:.2f} ms") # 2. 资源加载时间(确保加载所有资源) print("\n[测试2] 资源加载时间测量") _, resource_load_time = measure_time(retriever._ensure_resources_loaded) print(f"资源加载完成,耗时: {resource_load_time:.2f} ms") # 3. 知识库大小 print(f"\n知识库信息: {len(retriever.knowledge_base)} 条记录") if hasattr(retriever, 'index') and retriever.index is not None: print(f"FAISS索引维度: {retriever.index.d}") # 4. 分词性能测试 print("\n[测试3] 分词性能测试") test_texts = [ "Rust是一种系统编程语言,注重安全性、并发和内存效率。", "The borrow checker ensures memory safety without garbage collection.", "可变变量可以通过mut关键字声明。mutable variables can be declared with mut keyword." ] tokenize_times = [] for text in test_texts: _, tokenize_time = measure_time(retriever._tokenize_text, text) tokens = retriever._tokenize_text(text) tokenize_times.append(tokenize_time) print(f"文本: {text[:30]}... | 分词数: {len(tokens)} | 耗时: {tokenize_time:.2f} ms") print(f"平均分词时间: {np.mean(tokenize_times):.2f} ms") # 5. 嵌入向量生成性能 print("\n[测试4] 嵌入向量生成性能") embedding_times = [] for text in test_texts: _, embed_time = measure_time(retriever._get_embedding, text) embedding_times.append(embed_time) print(f"文本: {text[:30]}... | 耗时: {embed_time:.2f} ms") print(f"平均嵌入时间: {np.mean(embedding_times):.2f} ms") # 6. 检索性能测试 print("\n[测试5] 检索性能测试") retrieval_results = {} for question in config['test_questions']: question_results = {} for top_k in config['top_k_values']: iteration_times = [] iteration_results = [] for i in range(config['iterations']): results, retrieve_time = measure_time( retriever.retrieve, question=question, top_k=top_k, debug=False ) iteration_times.append(retrieve_time) iteration_results.append(len(results)) avg_time = np.mean(iteration_times) question_results[top_k] = { 'avg_time': avg_time, 'min_time': np.min(iteration_times), 'max_time': np.max(iteration_times), 'avg_results': np.mean(iteration_results) } print(f"问题: '{question}' | top_k={top_k} | 平均时间: {avg_time:.2f} ms | \\n" + f" 最小值: {np.min(iteration_times):.2f} ms | 最大值: {np.max(iteration_times):.2f} ms | 平均结果数: {np.mean(iteration_results):.1f}") retrieval_results[question] = question_results # 7. 缓存效率测试 print("\n[测试6] 缓存效率测试") # 清除缓存 if hasattr(retriever, 'token_cache'): retriever.token_cache.clear() if hasattr(retriever, 'embedding_cache'): retriever.embedding_cache.clear() # 第一次执行 first_time = [] for question in config['test_questions'][:2]: # 只测试前两个问题 _, time1 = measure_time(retriever.retrieve, question=question, top_k=3) first_time.append(time1) avg_first_time = np.mean(first_time) # 第二次执行(应该使用缓存) second_time = [] for question in config['test_questions'][:2]: _, time2 = measure_time(retriever.retrieve, question=question, top_k=3) second_time.append(time2) avg_second_time = np.mean(second_time) cache_improvement = (1 - avg_second_time / avg_first_time) * 100 if avg_first_time > 0 else 0 print(f"第一次检索平均时间: {avg_first_time:.2f} ms") print(f"第二次检索平均时间: {avg_second_time:.2f} ms") print(f"缓存带来的性能提升: {cache_improvement:.1f}%") # 8. 缓存大小统计 if hasattr(retriever, 'token_cache'): print(f"分词缓存大小: {len(retriever.token_cache)} 条") if hasattr(retriever, 'embedding_cache'): print(f"嵌入向量缓存大小: {len(retriever.embedding_cache)} 条") # 生成综合报告 print("\n" + "=" * 80) print("综合性能报告") print("=" * 80) report = { 'init_time_ms': init_time, 'resource_load_time_ms': resource_load_time, 'avg_tokenize_time_ms': np.mean(tokenize_times), 'avg_embedding_time_ms': np.mean(embedding_times), 'cache_improvement_percent': cache_improvement, 'retrieval_performance': retrieval_results } print(json.dumps(report, ensure_ascii=False, indent=2)) # 保存报告到文件 timestamp = time.strftime("%Y%m%d_%H%M%S") report_file = f"performance_report_{timestamp}.json" try: with open(report_file, 'w', encoding='utf-8') as f: json.dump(report, f, ensure_ascii=False, indent=2) print(f"\n报告已保存到: {report_file}") except Exception as e: print(f"\n警告: 保存报告失败: {str(e)}") print("\n性能分析完成!") print("建议在代码修改前后各运行一次,比较性能差异。") if __name__ == "__main__": run_performance_analysis()
2301_80743186/rust-agent-code
performance_analyzer.py
Python
unknown
7,284
import time import json import os from datetime import datetime from contextlib import contextmanager class PerformanceTimer: """ 性能计时器,用于记录各个环节的执行时间 """ def __init__(self): self.reset() def reset(self): """重置所有计时数据""" self.start_time = time.time() self.steps = {} self.api_calls = {} self.info = {} self.question = "" self.answer = "" def start_step(self, step_name): """开始记录一个步骤的时间""" self.steps[step_name] = { 'start': time.time(), 'end': None, 'duration': None } def end_step(self, step_name): """结束记录一个步骤的时间""" if step_name in self.steps: self.steps[step_name]['end'] = time.time() self.steps[step_name]['duration'] = self.steps[step_name]['end'] - self.steps[step_name]['start'] def start_api_call(self, api_name): """开始记录一个API调用的时间""" self.api_calls[api_name] = { 'start': time.time(), 'end': None, 'duration': None } def end_api_call(self, api_name): """结束记录一个API调用的时间""" if api_name in self.api_calls: self.api_calls[api_name]['end'] = time.time() self.api_calls[api_name]['duration'] = self.api_calls[api_name]['end'] - self.api_calls[api_name]['start'] def add_info(self, key, value): """添加额外信息""" self.info[key] = value def get_total_time(self): """获取总执行时间""" return time.time() - self.start_time def print_summary(self): """打印性能摘要""" print("\n===== 性能报告 =====") print(f"总执行时间: {self.get_total_time():.2f} 秒") print("\n步骤执行时间:") for step_name, step_data in sorted(self.steps.items(), key=lambda x: x[1]['duration'] or 0, reverse=True): duration = step_data['duration'] or 0 percentage = (duration / self.get_total_time()) * 100 if self.get_total_time() > 0 else 0 print(f" {step_name}: {duration:.2f} 秒 ({percentage:.1f}%)") print("\nAPI调用时间:") for api_name, api_data in sorted(self.api_calls.items(), key=lambda x: x[1]['duration'] or 0, reverse=True): duration = api_data['duration'] or 0 percentage = (duration / self.get_total_time()) * 100 if self.get_total_time() > 0 else 0 print(f" {api_name}: {duration:.2f} 秒 ({percentage:.1f}%)") if self.info: print("\n额外信息:") for key, value in self.info.items(): print(f" {key}: {value}") print("====================\n") def save_report(self, question, answer): """保存性能报告到文件""" self.question = question self.answer = answer # 创建报告目录 report_dir = "performance_reports" if not os.path.exists(report_dir): os.makedirs(report_dir) # 生成报告文件名 timestamp = datetime.now().strftime("%Y%m%d_%H%M%S_%f")[:-3] filename = os.path.join(report_dir, f"report_{timestamp}.json") # 准备报告数据 report_data = { 'timestamp': datetime.now().isoformat(), 'total_time': self.get_total_time(), 'steps': {k: {'duration': v['duration']} for k, v in self.steps.items() if v['duration'] is not None}, 'api_calls': {k: {'duration': v['duration']} for k, v in self.api_calls.items() if v['duration'] is not None}, 'info': self.info, 'question': question, 'answer_preview': answer[:200] + "..." if len(answer) > 200 else answer } # 保存报告 with open(filename, 'w', encoding='utf-8') as f: json.dump(report_data, f, ensure_ascii=False, indent=2) print(f"性能报告已保存到: {filename}") class StepTimer: """ 步骤计时器上下文管理器 """ def __init__(self, step_name): self.step_name = step_name def __enter__(self): global_timer.start_step(self.step_name) return self def __exit__(self, exc_type, exc_val, exc_tb): global_timer.end_step(self.step_name) return False class APITimer: """ API调用计时器上下文管理器 """ def __init__(self, api_name): self.api_name = api_name def __enter__(self): global_timer.start_api_call(self.api_name) return self def __exit__(self, exc_type, exc_val, exc_tb): global_timer.end_api_call(self.api_name) return False # 创建全局计时器实例 global_timer = PerformanceTimer()
2301_80743186/rust-agent-code
performance_timer.py
Python
unknown
4,983
#个性化模块 class Personalization: def __init__(self): # 假设有简单的用户画像数据 self.user_profiles = { '1001': {'level': 'beginner', 'name': '小明'}, '1002': {'level': 'advanced', 'name': '小红'}, } def get_user_profile(self, user_id): # 默认初学者 return self.user_profiles.get(user_id, {'level': 'beginner', 'name': '未知'})
2301_80743186/rust-agent-code
personalization.py
Python
unknown
430
# 提示词模板系统 from typing import Dict, List, Any import json class PromptTemplateSystem: def __init__(self): self.templates = self._initialize_templates() def _initialize_templates(self) -> Dict[str, Dict[str, str]]: """初始化所有提示词模板""" return { "definition": { "system": """你是一个专业的Rust编程知识解释智能体,专门负责概念定义类问题的回答。 你的回答必须严格按照以下层次结构输出: # 📚 概念定义 **核心定义**:简洁明了的定义 **重要特征**:列出3-5个关键特征 ## 🎯 核心要点 - **要点1**:详细说明 - **要点2**:详细说明 - **要点3**:详细说明 ## 💻 示例代码 \`\`\`rust // 完整可运行的示例代码 \`\`\` ## 🔄 概念关系图 \`\`\`mermaid // 展示概念间关系的流程图 \`\`\` ## 🔗 相关概念 - **概念1**:简要说明 - **概念2**:简要说明 - **概念3**:简要说明 ## 📖 学习建议 1. **第一步**:建议 2. **第二步**:建议 3. **第三步**:建议 --- ## 📝 代码练习 请根据下述用户问题,生成2个与该问题紧密相关的简单Rust编程题,题目要具体、可操作,适合初学者练习,且必须与用户问题高度相关,不要泛泛而谈。 - 练习1: - 练习2: ## 🏆 综合案例 请根据下述用户问题,生成1个与该问题紧密相关的综合项目案例,需包含: - 案例要求:简明描述项目目标和功能需求,必须与用户问题高度相关 - 实现步骤:详细列出实现该项目的主要步骤,步骤要清晰、可操作 用户问题:{question} 要求: - 使用中文回答 - 严格按照上述层次结构输出 - 每个层次都要有明确的标题和图标 - 代码块使用```rust标记 - 图表使用mermaid语法 - 确保所有内容都在界面范围内显示""", "user": """请为以下Rust概念提供详细解释: **问题**:{question} **相关知识点**: {knowledge_info} **对话历史**: {context_info} 请生成包含文字解释、代码示例和图示的完整回答。""" }, "usage": { "system": """你是一个专业的Rust编程知识解释智能体,专门负责用法说明类问题的回答。 你的回答必须严格按照以下层次结构输出: # 🚀 基本用法 **语法说明**:核心语法和用法 **使用场景**:适用的情况和条件 ## 📝 语法详解 - **语法点1**:详细说明 - **语法点2**:详细说明 - **语法点3**:详细说明 ## 💻 代码示例 \`\`\`rust // 完整可运行的示例代码 \`\`\` ## ⚙️ 参数说明 | 参数 | 类型 | 说明 | 示例 | |------|------|------|------| | 参数1 | 类型1 | 说明1 | 示例1 | | 参数2 | 类型2 | 说明2 | 示例2 | ## 🔄 使用流程图 \`\`\`mermaid // 展示使用步骤的流程图 \`\`\` ## 💡 最佳实践 1. **实践1**:详细建议 2. **实践2**:详细建议 3. **实践3**:详细建议 ## 🎯 常见用法 - **用法1**:典型应用场景 - **用法2**:典型应用场景 - **用法3**:典型应用场景 要求: - 使用中文回答 - 严格按照上述层次结构输出 - 每个层次都要有明确的标题和图标 - 代码块使用```rust标记 - 图表使用mermaid语法 - 确保所有内容都在界面范围内显示""", "user": """请为以下Rust用法问题提供详细说明: **问题**:{question} **相关知识点**: {knowledge_info} **对话历史**: {context_info} 请生成包含文字解释、代码示例和图示的完整回答。""" }, "error_debug": { "system": """你是一个专业的Rust编程知识解释智能体,专门负责错误调试类问题的回答。 你的回答必须严格按照以下层次结构输出: # 🚨 错误分析 **错误类型**:具体的错误类型 **错误原因**:详细的原因分析 ## 🔍 错误详情 - **错误信息**:完整的错误信息 - **错误位置**:错误发生的具体位置 - **错误影响**:错误可能造成的影响 ## ❌ 错误代码示例 \`\`\`rust // 导致错误的代码 \`\`\` ## ✅ 正确解决方案 \`\`\`rust // 修复后的正确代码 \`\`\` ## 🔄 修复流程图 \`\`\`mermaid // 展示错误修复步骤的流程图 \`\`\` ## 🛡️ 预防措施 1. **预防1**:具体的预防方法 2. **预防2**:具体的预防方法 3. **预防3**:具体的预防方法 ## 🔧 调试技巧 - **技巧1**:调试方法和工具 - **技巧2**:调试方法和工具 - **技巧3**:调试方法和工具 ## 📚 相关资源 - **文档链接**:相关官方文档 - **工具推荐**:调试工具推荐 - **学习资源**:深入学习资源 要求: - 使用中文回答 - 严格按照上述层次结构输出 - 每个层次都要有明确的标题和图标 - 代码块使用```rust标记 - 图表使用mermaid语法 - 确保所有内容都在界面范围内显示""", "user": """请为以下Rust错误调试问题提供详细解决方案: **问题**:{question} **相关知识点**: {knowledge_info} **对话历史**: {context_info} 请生成包含文字解释、代码示例和图示的完整回答。""" }, "comparison": { "system": """你是一个专业的Rust编程知识解释智能体,专门负责概念对比类问题的回答。 你的回答必须严格按照以下层次结构输出: # ⚖️ 对比概述 **对比对象**:明确要对比的概念或技术 **对比维度**:从哪些角度进行对比 ## 📊 对比维度 - **维度1**:性能对比 - **维度2**:安全性对比 - **维度3**:易用性对比 - **维度4**:适用场景对比 ## 🔍 详细差异分析 | 特性 | 选项A | 选项B | 说明 | |------|-------|-------|------| | 特性1 | 表现1 | 表现2 | 差异说明 | | 特性2 | 表现1 | 表现2 | 差异说明 | | 特性3 | 表现1 | 表现2 | 差异说明 | ## 💻 代码对比示例 ### 选项A的实现 \`\`\`rust // 选项A的代码示例 \`\`\` ### 选项B的实现 \`\`\`rust // 选项B的代码示例 \`\`\` ## 🔄 对比关系图 \`\`\`mermaid // 展示对比关系的图表 \`\`\` ## 🎯 适用场景 ### 选择选项A的场景 - **场景1**:具体说明 - **场景2**:具体说明 - **场景3**:具体说明 ### 选择选项B的场景 - **场景1**:具体说明 - **场景2**:具体说明 - **场景3**:具体说明 ## 💡 选择建议 1. **建议1**:具体建议 2. **建议2**:具体建议 3. **建议3**:具体建议 ## 📚 深入学习 - **资源1**:相关学习资源 - **资源2**:相关学习资源 - **资源3**:相关学习资源 要求: - 使用中文回答 - 严格按照上述层次结构输出 - 每个层次都要有明确的标题和图标 - 代码块使用```rust标记 - 图表使用mermaid语法 - 确保所有内容都在界面范围内显示""", "user": """请为以下Rust概念对比问题提供详细分析: **问题**:{question} **相关知识点**: {knowledge_info} **对话历史**: {context_info} 请生成包含文字解释、代码示例和图示的完整回答。""" }, "greeting": { "system": """你是一个友好的Rust编程知识解释智能体,专门负责问候语类问题的回答。 你的回答必须简洁友好,包含以下内容: # 👋 问候回应 **友好回应**:热情友好的问候回复 **服务介绍**:简要介绍你能提供的Rust学习帮助 ## 🦀 Rust学习助手 **我能帮助你**: - 解答Rust编程问题 - 解释Rust概念和语法 - 提供代码示例和最佳实践 - 协助调试和错误解决 ## 💡 开始学习 **建议**:鼓励用户开始提问Rust相关问题 要求: - 使用中文回答 - 保持友好和热情的语气 - 简洁明了,不要过于冗长 - 鼓励用户提问Rust相关问题""", "user": """用户问候:{question} 请给出友好的回应,并简要介绍你能提供的Rust学习帮助。""" }, "faq": { "system": """你是一个专业的Rust编程知识解释智能体,专门负责常见问题类问题的回答。 你的回答必须严格按照以下层次结构输出: # ❓ 问题解答 **直接回答**:简洁明了的答案 **核心要点**:回答的关键要点 ## 📖 背景说明 **问题背景**:问题的产生背景和原因 **重要性**:为什么这个问题很重要 ## 💡 详细解释 - **要点1**:详细说明 - **要点2**:详细说明 - **要点3**:详细说明 ## 💻 实践示例 \`\`\`rust // 相关的代码示例 \`\`\` ## 🔄 解决流程图 \`\`\`mermaid // 展示问题解决步骤的流程图 \`\`\` ## 🎯 实践建议 1. **建议1**:具体的实践建议 2. **建议2**:具体的实践建议 3. **建议3**:具体的实践建议 ## 📚 学习资源 | 资源类型 | 推荐内容 | 链接/说明 | |----------|----------|-----------| | 官方文档 | 相关文档 | 链接或说明 | | 教程视频 | 推荐教程 | 链接或说明 | | 实践项目 | 练习项目 | 链接或说明 | ## 🚀 扩展阅读 - **进阶主题1**:相关进阶内容 - **进阶主题2**:相关进阶内容 - **进阶主题3**:相关进阶内容 ## 🔗 相关链接 - **链接1**:相关资源链接 - **链接2**:相关资源链接 - **链接3**:相关资源链接 要求: - 使用中文回答 - 严格按照上述层次结构输出 - 每个层次都要有明确的标题和图标 - 代码块使用```rust标记 - 图表使用mermaid语法 - 确保所有内容都在界面范围内显示""", "user": """请为以下Rust常见问题提供详细解答: **问题**:{question} **相关知识点**: {knowledge_info} **对话历史**: {context_info} 请生成包含文字解释、代码示例和图示的完整回答。""" } } def get_template(self, question_type: str) -> Dict[str, str]: """获取指定问题类型的提示词模板""" return self.templates.get(question_type, self.templates["faq"]) def format_prompt(self, question_type: str, question: str, knowledge_info: str = "", context_info: str = "") -> Dict[str, str]: """格式化提示词模板""" template = self.get_template(question_type) formatted_user = template["user"].format( question=question, knowledge_info=knowledge_info or "未找到相关知识", context_info=context_info or "无对话历史" ) return { "system": template["system"], "user": formatted_user } def get_multimodal_prompt(self, question_type: str, question: str, knowledge_info: str = "", context_info: str = "") -> str: """获取多模态输出的完整提示词""" template = self.get_template(question_type) multimodal_system = template["system"] + """ **多模态输出要求**: - 文字解释:清晰的概念说明和步骤描述 - 代码示例:完整的Rust代码,使用```rust标记 - 图示说明:使用mermaid语法创建流程图、关系图或时序图 - 表格对比:使用Markdown表格进行对比分析 - 列表总结:使用有序或无序列表总结要点 **图示类型建议**: - 概念关系图:展示概念间的关联 - 流程图:展示操作步骤 - 时序图:展示执行顺序 - 类图:展示结构关系 - 状态图:展示状态转换 **实践链接**: 在每个回答的最后,添加一个实践练习部分,包含指向代码编辑器的链接: ### 🔧 实践练习 想要实践这些代码示例?点击这里进入 <a href="http://127.0.0.1:5000/code_editor" target="_blank"><b>代码编辑器</b></a> 进行在线编程练习!""" formatted_user = template["user"].format( question=question, knowledge_info=knowledge_info or "未找到相关知识", context_info=context_info or "无对话历史" ) return f"{multimodal_system}\n\n{formatted_user}" # 创建全局实例 prompt_templates = PromptTemplateSystem()
2301_80743186/rust-agent-code
prompt_templates.py
Python
unknown
12,483
#问题分类模块 import openai import json import requests from config import OPENAI_API_KEY, DEEPSEEK_API_KEY, XINGHE_API_KEY, XINGHE_BASE_URL, OPENAI_MODEL, DEEPSEEK_MODEL, XINGHE_MODEL, QUESTION_LABELS from model_status import model_status class QuestionClassifier: def __init__(self, openai_api_key=OPENAI_API_KEY, deepseek_api_key=DEEPSEEK_API_KEY, xinghe_api_key=XINGHE_API_KEY, gemini_api_key="AIzaSyB1lMryiHH_V_7-OVT4eyuLBrHbLsigRCs"): self.openai_client = openai.OpenAI(api_key=openai_api_key) self.deepseek_client = openai.OpenAI(api_key=deepseek_api_key, base_url="https://api.deepseek.com/v1") self.xinghe_client = openai.OpenAI(api_key=xinghe_api_key, base_url=XINGHE_BASE_URL) self.gemini_api_key = gemini_api_key self.gemini_url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent" self.labels = QUESTION_LABELS def classify(self, question): """分类用户问题""" system_prompt = """你是一个Rust编程问题分类专家。请将用户的问题分类为以下6种类型之一: 1. greeting - 问候语类:打招呼、问候、寒暄等 示例:"你好"、"Hello"、"早上好"、"Hi"、"你好吗?" 2. definition - 概念定义类:询问Rust概念、术语的定义和含义 示例:"生命周期是什么?"、"所有权是什么意思?" 3. usage - 用法说明类:询问如何使用某个功能、语法或API 示例:"如何使用迭代器?"、"怎么声明可变变量?" 4. error_debug - 错误调试类:询问编译错误、运行时错误或调试问题 示例:"这个编译错误怎么解决?"、"为什么会出现借用检查器错误?" 5. comparison - 语言/概念对比类:比较Rust与其他语言或概念的异同 示例:"Rust和C++有什么区别?"、"生命周期和垃圾回收有什么不同?" 6. faq - 常见问题类:一般性的Rust学习问题或最佳实践 示例:"Rust适合什么项目?"、"如何学习Rust?" 请返回JSON格式:{"label": "分类标签", "confidence": 置信度(0-1)}""" # 1. 优先使用星河大模型 if model_status.status['xinghe']['available']: try: response = self.xinghe_client.chat.completions.create( model=XINGHE_MODEL, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"请分类这个问题:{question}"} ], max_tokens=100, temperature=0.1 ) result_text = response.choices[0].message.content.strip() # 尝试解析JSON try: result = json.loads(result_text) if result['label'] not in self.labels: result['label'] = 'faq' # 默认分类 model_status.update_status('xinghe', True) return result except json.JSONDecodeError: # 如果JSON解析失败,使用简单规则分类 model_status.update_status('xinghe', False, "JSON解析失败") return self._rule_based_classify(question) except Exception as e: print(f"星河大模型分类API调用失败: {e}") model_status.update_status('xinghe', False, str(e)) # 2. 使用Gemini try: gemini_payload = { "contents": [ {"parts": [ {"text": f"{system_prompt}\n\n请分类这个问题:{question}"} ]} ] } headers = { "Content-Type": "application/json", "X-goog-api-key": self.gemini_api_key } resp = requests.post(self.gemini_url, json=gemini_payload, headers=headers, timeout=20) if resp.status_code == 200: data = resp.json() if "candidates" in data and data["candidates"]: result_text = data["candidates"][0]["content"]["parts"][0]["text"].strip() # 尝试解析JSON try: result = json.loads(result_text) if result['label'] not in self.labels: result['label'] = 'faq' # 默认分类 model_status.update_status('gemini', True) return result except json.JSONDecodeError: # 如果JSON解析失败,使用简单规则分类 model_status.update_status('gemini', False, "JSON解析失败") return self._rule_based_classify(question) else: raise Exception("Gemini无有效回答") else: raise Exception(f"Gemini API错误: {resp.status_code} {resp.text}") except Exception as e: print(f"Gemini分类API调用失败: {e}") model_status.update_status('gemini', False, str(e)) # 3. 尝试使用OpenAI if model_status.status['openai']['available']: try: response = self.openai_client.chat.completions.create( model=OPENAI_MODEL, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"请分类这个问题:{question}"} ], max_tokens=100, temperature=0.1 ) result_text = response.choices[0].message.content.strip() # 尝试解析JSON try: result = json.loads(result_text) if result['label'] not in self.labels: result['label'] = 'faq' # 默认分类 model_status.update_status('openai', True) return result except json.JSONDecodeError: # 如果JSON解析失败,使用简单规则分类 model_status.update_status('openai', False, "JSON解析失败") return self._rule_based_classify(question) except Exception as e: print(f"OpenAI分类API调用失败: {e}") model_status.update_status('openai', False, str(e)) # 4. 尝试使用DeepSeek if model_status.status['deepseek']['available']: try: response = self.deepseek_client.chat.completions.create( model=DEEPSEEK_MODEL, messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": f"请分类这个问题:{question}"} ], max_tokens=100, temperature=0.1 ) result_text = response.choices[0].message.content.strip() # 尝试解析JSON try: result = json.loads(result_text) if result['label'] not in self.labels: result['label'] = 'faq' # 默认分类 model_status.update_status('deepseek', True) return result except json.JSONDecodeError: # 如果JSON解析失败,使用简单规则分类 model_status.update_status('deepseek', False, "JSON解析失败") return self._rule_based_classify(question) except Exception as e2: print(f"DeepSeek分类API调用失败: {e2}") model_status.update_status('deepseek', False, str(e2)) # 5. 使用规则分类作为最终备用方案 print("使用本地规则分类作为备用方案") model_status.update_status('fallback', True) return self._rule_based_classify(question) def _rule_based_classify(self, question): """基于规则的备用分类方法""" question_lower = question.lower() # 定义关键词规则 greeting_keywords = ['你好', 'hello', 'hi', '早上好', '下午好', '晚上好', '你好吗', 'how are you', 'good morning', 'good afternoon', 'good evening'] definition_keywords = ['是什么', '什么意思', '定义', '概念', '术语'] usage_keywords = ['怎么', '如何', '使用', '用法', '语法'] error_keywords = ['错误', '编译', '运行', '调试', '问题', '失败'] comparison_keywords = ['区别', '不同', '比较', 'vs', '对比'] # 首先检查问候语 if any(keyword in question_lower for keyword in greeting_keywords): return {"label": "greeting", "confidence": 0.9} elif any(keyword in question_lower for keyword in definition_keywords): return {"label": "definition", "confidence": 0.8} elif any(keyword in question_lower for keyword in usage_keywords): return {"label": "usage", "confidence": 0.8} elif any(keyword in question_lower for keyword in error_keywords): return {"label": "error_debug", "confidence": 0.8} elif any(keyword in question_lower for keyword in comparison_keywords): return {"label": "comparison", "confidence": 0.8} else: return {"label": "faq", "confidence": 0.6}
2301_80743186/rust-agent-code
question_classifier.py
Python
unknown
9,778
# 语义检索模块,目前只更改了test_system里面的 # 采用paraphrase-multilingual-MiniLM-L12-v2 import json import os import re from typing import List, Dict import faiss import numpy as np from sentence_transformers import SentenceTransformer import logging from performance_timer import global_timer, StepTimer # 配置日志(默认设置为WARNING级别以减少性能影响) logging.basicConfig(level=logging.WARNING, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # 尝试导入jieba进行中文分词 try: import jieba import logging as jieba_logging JIEBA_AVAILABLE = True # 禁用jieba的日志输出以提高性能 jieba_logging.basicConfig(level=logging.ERROR) except ImportError: print("警告: jieba库未安装,将使用简单分词方法,对中文支持有限") JIEBA_AVAILABLE = False # 下载faiss,numpy,sentence_transformers:pip install faiss-cpu numpy sentence-transformers class SemanticRetriever: def __init__(self, kb_path='rust_knowledge_base/rust_docs_sample.json'): self.kb_path = kb_path self.knowledge_base = [] self.index = None self.model = None # 添加缓存机制 self.token_cache = {} self.embedding_cache = {} # 延迟加载标志 self._kb_loaded = False self._model_loaded = False self._index_built = False def _ensure_resources_loaded(self): """ 确保所有必要的资源都已加载 """ if not self._kb_loaded: self.knowledge_base = self._load_knowledge_base() self._kb_loaded = True if not self._model_loaded: self._init_model() self._model_loaded = True if not self._index_built and self._kb_loaded and self._model_loaded: self._build_faiss_index() self._index_built = True def _init_model(self): """ 初始化嵌入模型 """ try: # 初始化嵌入模型 # 优先尝试使用本地D盘的多语言模型 local_model_path = 'D:/paraphrase-multilingual-MiniLM-L12-v2' if os.path.exists(local_model_path): print(f"使用本地多语言模型: {local_model_path}") self.model = SentenceTransformer(local_model_path) else: # 如果本地模型不存在,使用模型名称让系统自动下载并缓存 print("使用模型名称,系统将自动查找缓存或下载多语言模型") self.model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2') # 禁用jieba的DEBUG输出 if JIEBA_AVAILABLE: import jieba jieba.setLogLevel(20) # 设置为INFO级别,隐藏DEBUG输出 except Exception as e: logger.error(f"初始化嵌入模型失败: {str(e)}") print(f"警告: 初始化嵌入模型失败: {str(e)}") self.model = None def _load_knowledge_base(self) -> List[Dict]: # 知识库加载并标准化 """加载知识库并转换为统一格式""" if os.path.exists(self.kb_path): with open(self.kb_path, 'r', encoding='utf-8') as f: raw_docs = json.load(f) # 转换格式以匹配代码期望的结构 converted_docs = [] for i, doc in enumerate(raw_docs): # 优先使用知识库中已有的tags:如果存在且非空,直接使用;否则自动提取 if 'tags' in doc and doc['tags']: # 检查tags字段存在且不为空(空列表/空字符串都不满足) tags = doc['tags'] # 可选:对已有tags做简单清洗(去重、过滤短词,保持数据一致性) tags = list(dict.fromkeys([t.strip() for t in tags if len(t.strip()) > 1]))[:10] else: # 无已有tags,自动从内容提取关键词作为标签 tags = [] if 'content' in doc: # 简单的关键词提取,实际项目中可以使用更复杂的NLP方法 content_words = doc['content'].lower().split() # 过滤掉常见停用词和短词 common_stopwords = set( ['的', '了', '和', '是', '在', '有', '我', '他', '她', '它', '这', '那', '为', '与', '而', '就', '都', '但', '及', '于', '要', '把', '将', '被', '也', '更', '还', '你', '您', '们']) keywords = [word.strip('.,;!?\n') for word in content_words if word not in common_stopwords and len(word) > 2] # 去重并取前10个关键词作为标签 tags = list(dict.fromkeys(keywords))[:10] # 优先使用知识库中已有的category:如果存在且非"unknown",直接使用;否则自动分类 category = doc.get('category', 'unknown') # 先读取已有category,默认unknown if category == 'unknown' or not category: # 仅当category为unknown或空时,执行自动分类 title_lower = doc.get('title', '').lower() content_lower = doc.get('content', '').lower() # 简单的分类规则 if any(word in title_lower or word in content_lower for word in ['什么是', '什么', '定义', '概念', '介绍']): category = 'definition' elif any(word in title_lower or word in content_lower for word in ['如何', '使用', '用法', '怎么', '步骤']): category = 'usage' elif any(word in title_lower or word in content_lower for word in ['错误', '问题', 'debug', '修复', '解决']): category = 'error_debug' elif any(word in title_lower or word in content_lower for word in ['比较', '区别', 'vs', 'vs.', '对比']): category = 'comparison' else: category = 'faq' # 默认归为常见问题 # 标准化文档格式(统一字段) converted_doc = { "id": f"k{i + 1:03d}", "topic": doc.get("title", ""), # 使用title作为topic "content": doc.get("content", ""), "tags": tags, # 优先用已有tags,无则自动提取 "category": category, # 优先用已有category,无则自动分类 "code": doc.get("code", "") } converted_docs.append(converted_doc) print( f"知识库加载完成,共{len(converted_docs)}条记录,平均每文档标签数: {sum(len(doc['tags']) for doc in converted_docs) / len(converted_docs):.1f}") return converted_docs else: # 若知识库文件不存在,返回默认知识库 return [ { "id": "k001", "topic": "生命周期", "content": "Rust的生命周期用于确保引用始终有效。生命周期是引用保持有效的作用域。", "tags": ["生命周期", "引用", "作用域"], "category": "definition", "code": "fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {\n if x.len() > y.len() { x } else { y }\n}" }, { "id": "k002", "topic": "所有权", "content": "Rust的所有权系统是内存安全的核心。每个值都有一个所有者,当所有者离开作用域时,值会被丢弃。", "tags": ["所有权", "内存管理", "作用域"], "category": "definition", "code": "let s1 = String::from(\"hello\");\nlet s2 = s1; // s1的所有权移动到s2" }, { "id": "k003", "topic": "可变变量", "content": "使用mut关键字声明可变变量,允许修改变量的值。", "tags": ["变量", "mut", "可变性"], "category": "usage", "code": "let mut x = 5;\nx = 10; // 可以修改" }, { "id": "k004", "topic": "借用检查器错误", "content": "借用检查器错误通常是由于违反了Rust的借用规则导致的。常见错误包括同时存在可变和不可变借用。", "tags": ["借用检查器", "错误", "调试"], "category": "error_debug", "code": "let mut v = vec![1, 2, 3];\nlet first = &v[0];\nv.push(4); // 错误:同时存在可变和不可变借用" }, { "id": "k005", "topic": "Rust vs C++", "content": "Rust和C++都是系统编程语言,但Rust通过所有权系统提供内存安全,而C++需要手动管理内存。", "tags": ["Rust", "C++", "比较"], "category": "comparison", "code": "// Rust: 自动内存管理\nlet s = String::from(\"hello\");\n// C++: 手动内存管理\n// std::string s = \"hello\";" } ] def _build_faiss_index(self): # 构建 FAISS 向量索引 """ 构建FAISS向量索引,使用更高效的索引类型,并支持索引持久化 """ if not self.knowledge_base or not self.model: # 若知识库或模型为空,直接返回 return # 索引文件路径 index_path = os.path.splitext(self.kb_path)[0] + '_index.faiss' # 尝试从文件加载索引,避免重复构建 if os.path.exists(index_path) and not self._index_built: try: self.index = faiss.read_index(index_path) print(f"从文件加载FAISS索引: {index_path}") self._index_built = True return except Exception as e: print(f"加载FAISS索引失败,将重新构建: {str(e)}") # 使用缓存机制生成嵌入向量 embeddings = [] for doc in self.knowledge_base: # 组合关键信息:主题 + 分类 + 标签 + 内容 + 代码 # 将标签转换为空格分隔的字符串 tags_str = " ".join(doc.get('tags', [])) # 标签转为空格分隔的字符串 # 构建完整文本(包含所有关键字段) combined_text = ( f"主题: {doc['topic']} " f"分类: {doc['category']} " f"标签: {tags_str} " f"内容: {doc['content']}" ) # 如果有代码也加入 if doc.get('code'): combined_text += f" 代码: {doc['code']}" # 使用缓存的嵌入向量 embedding = self._get_embedding(combined_text) if embedding is not None: embeddings.append(embedding) embeddings = np.array(embeddings).astype(np.float32) print(f"生成嵌入向量类型: {type(embeddings)}, 形状: {embeddings.shape}") # 根据文档数量选择合适的索引类型 dimension = embeddings.shape[1] total_docs = len(embeddings) if total_docs > 1000: # 对于大数据集,使用IVF索引加速搜索 nlist = min(100, total_docs // 10) quantizer = faiss.IndexFlatIP(dimension) self.index = faiss.IndexIVFFlat(quantizer, dimension, nlist, faiss.METRIC_INNER_PRODUCT) self.index.train(embeddings) else: # 对于小数据集,使用Flat索引保证准确性 self.index = faiss.IndexFlatIP(dimension) # 添加向量到索引 self.index.add(embeddings) # 尝试保存索引到文件 try: faiss.write_index(self.index, index_path) print(f"FAISS索引已保存到文件: {index_path}") except Exception as e: logger.warning(f"保存FAISS索引失败: {str(e)}") print(f"警告: 保存FAISS索引失败: {str(e)}") print(f"FAISS索引构建完成,共 {total_docs} 个文档") def _tokenize_text(self, text: str) -> List[str]: # 文本分词 """ 对文本进行分词,支持中英文,并使用缓存避免重复计算 """ # 检查缓存 if text in self.token_cache: return self.token_cache[text] # 去除空白字符和特殊字符 text = re.sub(r'\s+|[,.!?;\n]', ' ', text.lower().strip()) # 检查文本中是否包含中文字符 if JIEBA_AVAILABLE and re.search(r'[\u4e00-\u9fff]', text): # 使用jieba分词处理中文 result = list(jieba.cut(text)) else: # 英文分词(按空格)+ 简单中文分词(按字) # 提取所有汉字作为单独的词 chinese_chars = re.findall(r'[\u4e00-\u9fff]', text) # 提取英文单词 english_words = re.findall(r'[a-zA-Z]+', text) # 合并结果 result = chinese_chars + english_words # 存入缓存 self.token_cache[text] = result return result def _get_embedding(self, text: str): """ 获取文本的嵌入向量,并使用缓存避免重复计算 """ # 检查缓存 if text in self.embedding_cache: return self.embedding_cache[text] # 确保模型已加载 if not self._model_loaded: self._init_model() self._model_loaded = True if not self.model: return None # 生成嵌入向量 embedding = self.model.encode([text], normalize_embeddings=True)[0] # 存入缓存 self.embedding_cache[text] = embedding return embedding def _calculate_comprehensive_score(self, vector_score: float, doc: Dict, question: str, question_type: str, question_tokens: set = None) -> float: #综合评分计算 """ 计算综合评分,结合向量相似度和关键词匹配 """ # 向量相似度分数(已在向量检索时计算) vector_score_contribution = vector_score * 0.5 # 向量相似度权重0.5 # 关键词匹配分数计算 # 1. 提取文档的关键信息:主题、分类、标签、内容、代码 doc_keywords = set() # 提取主题中的关键词 if doc.get('topic'): doc_keywords.update(self._tokenize_text(doc['topic'])) # 提取分类中的关键词 if doc.get('category'): doc_keywords.update(self._tokenize_text(doc['category'])) # 提取标签作为关键词 if doc.get('tags'): for tag in doc['tags']: doc_keywords.update(self._tokenize_text(tag)) # 提取内容中的关键词(取前100个字符进行分词) if doc.get('content'): content_preview = doc['content'][:100] doc_keywords.update(self._tokenize_text(content_preview)) # 提取代码中的关键词(如果有) if doc.get('code'): # 从代码中提取标识符(变量名、函数名等) code_identifiers = set(re.findall(r'[a-zA-Z_][a-zA-Z0-9_]*', doc['code'])) doc_keywords.update(code_identifiers) # 对问题进行分词(使用预计算的分词结果,如果提供) if question_tokens is None: question_keywords = set(self._tokenize_text(question)) else: question_keywords = question_tokens # 计算关键词匹配比例 keyword_match_score = 0.0 if question_keywords: # 计算交集的大小(共同关键词的数量) common_keywords = question_keywords.intersection(doc_keywords) keyword_match_score = len(common_keywords) / len(question_keywords) # 关键词匹配分数贡献(权重0.5) keyword_match_contribution = keyword_match_score * 0.5 # 类型匹配加分(可选,根据question_type) type_match_bonus = 0.0 if question_type and doc.get('category') == question_type: type_match_bonus = 0.1 # 类型匹配加0.1分 # 综合得分 score = vector_score_contribution + keyword_match_contribution + type_match_bonus return min(1.0, score) # 确保不超过1.0 def retrieve(self, question: str, question_type: str = None, top_k: int = 3, debug: bool = False) -> List[Dict]: """ 语义检索相关文档 - 使用向量检索 """ try: with StepTimer("语义检索完整流程"): # 确保所有资源已加载 with StepTimer("加载资源"): self._ensure_resources_loaded() if not self.index: print("FAISS索引未初始化") return [] # 使用缓存获取查询向量 with StepTimer("生成查询向量"): query_embedding = self._get_embedding(question) if query_embedding is None: return [] query_embedding = np.array([query_embedding]).astype(np.float32) # 动态计算搜索范围 - 优化搜索范围以提高性能 total_docs = len(self.knowledge_base) # 减少搜索范围,从0.1减少到0.05,提高性能 search_k = max(top_k * 5, min(int(total_docs * 0.05), total_docs)) with StepTimer("FAISS检索"): scores, indices = self.index.search(query_embedding, search_k) if debug: print(f"检索问题: '{question}'") print(f"搜索到 {len(indices[0])} 个候选结果") with StepTimer("结果过滤与排序"): results = [] # 提前对问题进行分词(使用jieba,若可用),供后续标题匹配使用 question_tokens = set(self._tokenize_text(question)) # 限制处理的候选文档数量,避免不必要的计算 max_candidates = min(search_k, 20) for i, (score, idx) in enumerate(zip(scores[0][:max_candidates], indices[0][:max_candidates])): if idx < len(self.knowledge_base): doc = self.knowledge_base[idx] # 计算综合评分,传入预计算的问题分词结果以避免重复计算 final_score = self._calculate_comprehensive_score(score, doc, question, question_type, question_tokens) # 核心:增加基于jieba分词的标题匹配逻辑 # 即使综合评分略低,但标题与问题高度相关,也纳入结果 is_relevant = False # 原过滤条件:分数>0.35 if final_score > 0.35: is_relevant = True # 放宽条件:分数>0.25且标题与问题高度相关(依赖jieba分词结果) elif final_score > 0.25: # 对文档标题进行分词(使用jieba,若可用) topic_tokens = set(self._tokenize_text(doc.get('topic', ''))) # 计算标题分词与问题分词的重叠比例,超过50%则认为高度相关 if topic_tokens and len(question_tokens & topic_tokens) / len(topic_tokens) > 0.5: if debug: print(f"DEBUG: 标题高度相关(分词匹配),破格录取: {doc.get('topic', '无标题')}") is_relevant = True # 类型匹配条件(保持不变) category_match = (not question_type or doc.get('category') == question_type or question_type == "unknown") # 满足相关性和类型匹配则加入结果 if is_relevant and category_match: results.append({ **doc, 'score': float(final_score) }) # 提前结束如果已收集足够文档 if len(results) >= top_k: break # 按分数排序 results.sort(key=lambda x: x['score'], reverse=True) global_timer.add_info("检索到文档数", len(results)) if results: global_timer.add_info("最高相似度得分", max(results, key=lambda x: x['score'])['score']) if debug: print(f"返回 {len(results)} 个最终结果") return results except Exception as e: print(f"检索失败: {e}") global_timer.add_info("检索错误", str(e)[:100]) return [] # """语义检索相关文档""" # # 向量检索模式(优先) # if self.model and self.index: # try: # return self._vector_retrieve(question, question_type, top_k) # except Exception as e: # print(f"向量检索失败: {str(e)}") # print("切换到备用检索方法: 关键词匹配") # else: # print("模型或索引未初始化,使用备用检索方法: 关键词匹配") # # 备用关键词匹配模式 # return self._keyword_retrieve(question, question_type, top_k) # def _vector_retrieve(self, question: str, question_type: str = None, top_k: int = 3) -> List[Dict]: # """使用向量检索相关文档""" # # 将问题转换为向量 # query_embedding = self.model.encode([question], normalize_embeddings=True).astype(np.float32) # # # 使用FAISS进行相似度搜索 - 增加搜索范围 # # search_k = min(top_k * 3, len(self.knowledge_base)) # total_docs = len(self.knowledge_base) # search_k = min(total_docs, top_k * 10) # scores, indices = self.index.search(query_embedding, search_k) # # print(f"检索问题: '{question}'") # print(f"搜索到 {len(indices[0])} 个候选结果") # # results = [] # for i, (score, idx) in enumerate(zip(scores[0], indices[0])): # if idx < len(self.knowledge_base): # doc = self.knowledge_base[idx] # # # 计算综合评分 # final_score = self._calculate_comprehensive_score(score, doc, question, question_type) # # # 降低阈值并优化过滤逻辑 # # 1. 首先降低阈值到0.2,让更多文档能被检索到 # # 2. 对于特定情况可以进一步放宽限制 # is_relevant = False # # # 基本条件:分数超过阈值 # if final_score > 0.2: # is_relevant = True # # 如果问题和文档标题有较多重叠,即使分数略低也考虑 # elif final_score > 0.15: # question_tokens = set(self._tokenize_text(question)) # topic_tokens = set(self._tokenize_text(doc.get('topic', ''))) # if topic_tokens and len(question_tokens & topic_tokens) / len(topic_tokens) > 0.5: # print(f"DEBUG: 标题高度相关,破格录取: {doc.get('topic', '无标题')}") # is_relevant = True # # # 分类匹配可以适当放宽 # category_match = not question_type or doc.get('category') == question_type or question_type == "unknown" # # if is_relevant and category_match: # results.append({ # **doc, # 'score': float(final_score) # }) # # # 如果已经收集到足够的文档,提前结束 # if len(results) >= top_k: # break # # # 按分数排序 # results.sort(key=lambda x: x['score'], reverse=True) # print(f"返回 {len(results)} 个最终结果") # return results # # def _keyword_retrieve(self, question: str, question_type: str = None, top_k: int = 3) -> List[Dict]: # """备用关键词检索方法""" # results = [] # # for doc in self.knowledge_base: # score = 0 # # # 基于问题类型的过滤 # if question_type and doc.get('category') == question_type: # score += 0.5 # # # 关键词匹配(使用改进的分词方法) # question_tokens = set(self._tokenize_text(question)) # content_tokens = set(self._tokenize_text(doc['content'])) # tag_tokens = set() # for tag in doc.get('tags', []): # tag_tokens.update(self._tokenize_text(tag)) # # # 计算匹配度 # content_match = len(question_tokens & content_tokens) / len(question_tokens) if question_tokens else 0 # tag_match = len(question_tokens & tag_tokens) / len(question_tokens) if question_tokens else 0 # # score += content_match * 0.3 + tag_match * 0.2 # # if score > 0: # results.append({ # **doc, # 'score': score # }) # # # 按分数排序并返回top_k # results.sort(key=lambda x: x['score'], reverse=True) # return results[:top_k] def add_document(self, doc: Dict): """ 添加新文档到知识库 """ # 确保资源已加载 self._ensure_resources_loaded() if 'id' not in doc: doc['id'] = f"k{len(self.knowledge_base) + 1:03d}" self.knowledge_base.append(doc) # 保存到文件 try: with open(self.kb_path, 'w', encoding='utf-8') as f: json.dump(self.knowledge_base, f, ensure_ascii=False, indent=2) print(f"成功添加文档: {doc.get('topic', '无标题')}") except Exception as e: print(f"警告: 保存文档到文件失败: {str(e)}") # 重新构建索引(仅当向量检索模式可用时) try: if self.model: # 清除相关缓存以确保数据一致性 self._index_built = False self.embedding_cache.clear() self._build_faiss_index() except Exception as e: print(f"警告: 重建FAISS索引失败: {str(e)}") if __name__ == "__main__": print("开始测试语义检索模块...") # 创建检索器实例,默认不使用调试模式 retriever = SemanticRetriever() # 测试问题 test_questions = [ "变量如何声明?", "什么是可变变量?", "如何定义函数?" ] # 启用调试模式进行测试 for question in test_questions: print(f"\n=== 测试问题: {question} ===") results = retriever.retrieve(question, top_k=2, debug=True) for i, result in enumerate(results): print(f"{i + 1}. 主题: {result['topic']}, 分数: {result['score']:.4f}") print(f" 内容: {result['content']}") print()
2301_80743186/rust-agent-code
semantic_retriever.py
Python
unknown
28,895
# 语义检索模块,目前只更改了test_system里面的 import json import os from typing import List, Dict import faiss import numpy as np from sentence_transformers import SentenceTransformer # 下载faiss,numpy,sentence_transformers:pip install faiss-cpu numpy sentence-transformers class SemanticRetriever: def init(self, kb_path='rust_knowledge_base/rust_docs_sample.json'): self.kb_path = kb_path self.knowledge_base = self._load_knowledge_base() # 初始化嵌入模型和FAISS索引 self.model = SentenceTransformer('D:/all-MiniLM-L6-v2') # 暂存在这里 self.index = None self._build_faiss_index() def _load_knowledge_base(self) -> List[Dict]: """加载知识库并转换为统一格式""" if os.path.exists(self.kb_path): with open(self.kb_path, 'r', encoding='utf-8') as f: raw_docs = json.load(f) # 转换格式以匹配代码期望的结构 converted_docs = [] for i, doc in enumerate(raw_docs): converted_doc = { "id": f"k{i + 1:03d}", "topic": doc.get("title", ""), # 使用title作为topic "content": doc.get("content", ""), "tags": [], # 您的JSON中没有tags,设为空列表 "category": "unknown", # 默认分类 "code": doc.get("code", "") } converted_docs.append(converted_doc) return converted_docs else: # 默认知识库(保持原样) return [ { "id": "k001", "topic": "生命周期", "content": "Rust的生命周期用于确保引用始终有效。生命周期是引用保持有效的作用域。", "tags": ["生命周期", "引用", "作用域"], "category": "definition", "code": "fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {\n if x.len() > y.len() { x } else { y }\n}" }, { "id": "k002", "topic": "所有权", "content": "Rust的所有权系统是内存安全的核心。每个值都有一个所有者,当所有者离开作用域时,值会被丢弃。", "tags": ["所有权", "内存管理", "作用域"], "category": "definition", "code": "let s1 = String::from(\"hello\");\nlet s2 = s1; // s1的所有权移动到s2" }, { "id": "k003", "topic": "可变变量", "content": "使用mut关键字声明可变变量,允许修改变量的值。", "tags": ["变量", "mut", "可变性"], "category": "usage", "code": "let mut x = 5;\nx = 10; // 可以修改" }, { "id": "k004", "topic": "借用检查器错误", "content": "借用检查器错误通常是由于违反了Rust的借用规则导致的。常见错误包括同时存在可变和不可变借用。", "tags": ["借用检查器", "错误", "调试"], "category": "error_debug", "code": "let mut v = vec![1, 2, 3];\nlet first = &v[0];\nv.push(4); // 错误:同时存在可变和不可变借用" }, { "id": "k005", "topic": "Rust vs C++", "content": "Rust和C++都是系统编程语言,但Rust通过所有权系统提供内存安全,而C++需要手动管理内存。", "tags": ["Rust", "C++", "比较"], "category": "comparison", "code": "// Rust: 自动内存管理\nlet s = String::from(\"hello\");\n// C++: 手动内存管理\n// std::string s = \"hello\";" } ] def _build_faiss_index(self): """构建FAISS向量索引""" if not self.knowledge_base: return # 优化文本组合策略 texts = [] for doc in self.knowledge_base: # 多种文本组合方式,增加信息密度 combined_texts = [ # 方式1:标题+内容 f"{doc['topic']} {doc['content']}", # 方式2:标题重复强调 + 内容 f"{doc['topic']} {doc['topic']} {doc['content']}", # 方式3:纯内容 doc['content'] ] # 选择最长的文本(通常包含最多信息) best_text = max(combined_texts, key=len) texts.append(best_text) # 生成嵌入向量 embeddings = self.model.encode(texts, normalize_embeddings=True) print(f"生成嵌入向量类型: {type(embeddings)}, 形状: {embeddings.shape}") # 创建FAISS索引 dimension = embeddings.shape[1] self.index = faiss.IndexFlatIP(dimension) # 使用内积相似度 # 添加向量到索引 self.index.add(embeddings.astype(np.float32)) print(f"FAISS索引构建完成,共 {len(self.knowledge_base)} 个文档") def _calculate_comprehensive_score(self, vector_score: float, doc: Dict, question: str, question_type: str) -> float: """计算综合评分""" # 将向量相似度分数归一化到[0,1]范围 normalized_vector_score = max(0, min(1, vector_score)) # 关键词匹配 question_words = set(question.lower().split()) content_words = set(doc['content'].lower().split()) tag_words = set([tag.lower() for tag in doc.get('tags', [])]) # 计算匹配度 content_match = len(question_words & content_words) / len(question_words) if question_words else 0 tag_match = len(question_words & tag_words) / len(question_words) if question_words else 0 # 计算问题类型匹配 type_match = 0.15 if question_type and doc.get('category') == question_type else 0 # 综合评分 = 向量相似度(0.7) + 内容匹配(0.1) + 标签匹配(0.05) + 类型匹配(0.15) # 总加和不超过1.0 score = ( normalized_vector_score * 0.7 + # 向量相似度占比最大 content_match * 0.1 + # 内容匹配 tag_match * 0.05 + # 标签匹配 type_match * 0.15 # 类型匹配 ) return min(1.0, score) # 确保不超过1.0 def retrieve(self, question: str, question_type: str = None, top_k: int = 3) -> List[Dict]: """语义检索相关文档 - 使用向量检索""" if not self.index: print("FAISS索引未初始化") return [] # 将问题转换为向量 query_embedding = self.model.encode([question], normalize_embeddings=True).astype(np.float32) # 使用FAISS进行相似度搜索 - 增加搜索范围 search_k = min(top_k * 3, len(self.knowledge_base)) scores, indices = self.index.search(query_embedding, search_k) print(f"检索问题: '{question}'") print(f"搜索到 {len(indices[0])} 个候选结果") results = [] for i, (score, idx) in enumerate(zip(scores[0], indices[0])): if idx < len(self.knowledge_base): doc = self.knowledge_base[idx] # 计算综合评分 final_score = self._calculate_comprehensive_score(score, doc, question, question_type) # 基于问题类型的过滤和最低分数阈值 if (final_score > 0.3 and (not question_type or doc.get('category') == question_type or question_type == "unknown")): results.append({ **doc, 'score': float(final_score) }) # 如果已经收集到足够的文档,提前结束 if len(results) >= top_k: break # 按分数排序 results.sort(key=lambda x: x['score'], reverse=True) print(f"返回 {len(results)} 个最终结果") return results def add_document(self, doc: Dict): """添加新文档到知识库""" if 'id' not in doc: doc['id'] = f"k{len(self.knowledge_base) + 1:03d}" self.knowledge_base.append(doc) # 保存到文件 with open(self.kb_path, 'w', encoding='utf-8') as f: json.dump(self.knowledge_base, f, ensure_ascii=False, indent=2) # 重新构建索引 self._build_faiss_index() if name == "main": print("开始测试语义检索模块...") retriever = SemanticRetriever() # 更全面的测试问题 test_questions = [ "如何声明变量?", "mut关键字有什么用?", "怎样定义一个函数?", "Rust中的所有权是什么?", "生命周期怎么用?" ] for question in test_questions: print(f"\n{'=' * 50}") results = retriever.retrieve(question, top_k=2) print(f"=== 检索分析: {question} ===") if not results: print("未找到相关结果") continue print(f"找到 {len(results)} 个相关文档:") for i, result in enumerate(results): print(f"{i + 1}. [{result['score']:.3f}] {result['topic']}") # 分析分数分布 scores = [r['score'] for r in results] if scores: print(f"分数范围: {min(scores):.3f} - {max(scores):.3f}") print(f"平均分数: {sum(scores) / len(scores):.3f}") for i, result in enumerate(results): print(f"\n{i + 1}. 主题: {result['topic']}") print(f" 分数: {result['score']:.4f}") print(f" 内容: {result['content'][:100]}...") if result.get('code'): print(f" 代码: {result['code'][:50]}...")
2301_80743186/rust-agent-code
semantic_retriever_old.py
Python
unknown
10,355
# 简单测试问候语功能 from answer_generator import AnswerGenerator # 测试问候语回复 ag = AnswerGenerator() response = ag._generate_greeting_response("你好") print("问候语回复生成成功,长度:", len(response)) print("包含中文:", "你好" in response) print("包含Rust:", "Rust" in response)
2301_80743186/rust-agent-code
simple_test.py
Python
unknown
323
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Rust知识解释智能体Web应用启动脚本 """ import os import sys import subprocess from pathlib import Path def check_dependencies(): """检查依赖包是否已安装""" required_packages = ['flask', 'openai'] missing_packages = [] for package in required_packages: try: __import__(package) except ImportError: missing_packages.append(package) if missing_packages: print(f"❌ 缺少依赖包: {', '.join(missing_packages)}") print("请运行以下命令安装依赖:") print("pip install -r requirements.txt") return False return True def check_files(): """检查必要文件是否存在""" required_files = [ 'app.py', 'main.py', 'question_classifier.py', 'semantic_retriever.py', 'answer_generator.py', 'multimodal_renderer.py', 'context_manager.py', 'templates/index.html', 'static/css/style.css', 'static/js/app.js' ] missing_files = [] for file_path in required_files: if not Path(file_path).exists(): missing_files.append(file_path) if missing_files: print(f"❌ 缺少文件: {', '.join(missing_files)}") return False return True def create_directories(): """创建必要的目录""" directories = ['static/css', 'static/js', 'templates'] for directory in directories: Path(directory).mkdir(parents=True, exist_ok=True) def main(): """主函数""" print("🚀 Rust知识解释智能体Web应用启动器") print("=" * 50) # 检查依赖 print("📦 检查依赖包...") if not check_dependencies(): sys.exit(1) print("✅ 依赖包检查通过") # 检查文件 print("📁 检查文件完整性...") if not check_files(): print("❌ 文件检查失败,请确保所有文件都存在") sys.exit(1) print("✅ 文件检查通过") # 创建目录 print("📂 创建必要目录...") create_directories() print("✅ 目录创建完成") # 启动应用 print("\n🎯 启动Web应用...") print("📱 访问地址: http://localhost:5001") print("🔧 API状态: http://localhost:5001/api/status") print("⏹️ 按 Ctrl+C 停止服务") print("=" * 50) try: # 导入并运行Flask应用 from app import app app.run(debug=True, host='0.0.0.0', port=5001) except KeyboardInterrupt: print("\n👋 服务已停止") except Exception as e: print(f"❌ 启动失败: {e}") sys.exit(1) if __name__ == "__main__": main()
2301_80743186/rust-agent-code
start_web.py
Python
unknown
2,771
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Rust知识解释智能体Web应用启动脚本(带登录功能) """ import os import sys import subprocess from pathlib import Path def check_dependencies(): """检查依赖包是否已安装""" required_packages = ['flask', 'openai'] missing_packages = [] for package in required_packages: try: __import__(package) except ImportError: missing_packages.append(package) if missing_packages: print(f"缺少依赖包: {', '.join(missing_packages)}") print("请运行以下命令安装依赖:") print("pip install -r requirements.txt") return False return True def check_files(): """检查必要文件是否存在""" required_files = [ 'app.py', 'main.py', 'question_classifier.py', 'semantic_retriever.py', 'answer_generator.py', 'multimodal_renderer.py', 'context_manager.py', 'templates/login.html', 'templates/index.html', 'static/css/auth.css', 'static/css/style.css', 'static/js/auth.js', 'static/js/app.js' ] missing_files = [] for file_path in required_files: if not Path(file_path).exists(): missing_files.append(file_path) if missing_files: print(f"缺少文件: {', '.join(missing_files)}") return False return True def create_directories(): """创建必要的目录""" directories = ['static/css', 'static/js', 'templates'] for directory in directories: Path(directory).mkdir(parents=True, exist_ok=True) def show_default_users(): """显示默认用户信息""" print("\n默认用户账户:") print("=" * 40) print("管理员: admin / 123456") print("学生: student / 123456") print("教师: teacher / 123456") print("=" * 40) def main(): """主函数""" print("Rust知识解释智能体Web应用启动器(带登录功能)") print("=" * 60) # 检查依赖 print("检查依赖包...") if not check_dependencies(): sys.exit(1) print("依赖包检查通过") # 检查文件 print("检查文件完整性...") if not check_files(): print("文件检查失败,请确保所有文件都存在") sys.exit(1) print("文件检查通过") # 创建目录 print("创建必要目录...") create_directories() print("目录创建完成") # 显示默认用户 show_default_users() # 启动应用 print("\n启动Web应用...") print("登录页面: http://localhost:5001/login") print("主页面: http://localhost:5001/dashboard") print("API状态: http://localhost:5001/api/status") print("按 Ctrl+C 停止服务") print("=" * 60) try: # 导入并运行Flask应用 from app import app app.run(debug=True, host='0.0.0.0', port=5001) except KeyboardInterrupt: print("\n服务已停止") except Exception as e: print(f"启动失败: {e}") sys.exit(1) if __name__ == "__main__": main()
2301_80743186/rust-agent-code
start_with_auth.py
Python
unknown
3,202
/* 认证页面样式 */ * { margin: 0; padding: 0; box-sizing: border-box; } :root { --primary-color: #3498db; --secondary-color: #2ecc71; --accent-color: #e74c3c; --text-color: #2c3e50; --light-text: #7f8c8d; --bg-color: #f8f9fa; --card-bg: #ffffff; --border-color: #ecf0f1; --shadow: 0 4px 6px rgba(0, 0, 0, 0.1); --shadow-hover: 0 8px 15px rgba(0, 0, 0, 0.15); --border-radius: 12px; --transition: all 0.3s ease; } /*body {*/ /* font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif;*/ /* background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);*/ /* min-height: 100vh;*/ /* display: flex;*/ /* align-items: center;*/ /* justify-content: center;*/ /* padding: 20px;*/ /*}*/ body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); /* 保留原背景 */ min-height: 100vh; display: flex; align-items: center; /* 保持垂直居中(不改动) */ justify-content: flex-end; /* 核心修改:水平靠右对齐 */ padding: 20px; /* 保留基础内边距 */ padding-right: 150px; /* 关键:卡片与右侧间距100px(按需调整) */ padding-left: 20px; /* 左侧留小间距,避免小屏幕贴边 */ } .auth-container { width: 100%; max-width: 450px; /* 保留原最大宽度,缩放基于此值 */ animation: fadeInUp 2s ease; margin-left: 0; /* 关键:删除左侧负边距,避免卡片向右偏移 */ } .auth-container { width: 100%; max-width: 450px; animation: fadeInUp 0.8s ease; } .auth-card { background: var(--card-bg); border-radius: var(--border-radius); box-shadow: var(--shadow-hover); overflow: hidden; position: relative; } /* 头部样式 */ .auth-header { text-align: center; padding: 40px 30px 30px; background: linear-gradient(135deg, var(--primary-color), #2980b9); color: white; } .auth-header h1 { font-size: 1.8rem; font-weight: 700; margin-bottom: 10px; text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3); } .auth-header p { font-size: 1rem; opacity: 0.9; font-weight: 300; } /* 表单样式 */ .auth-form { padding: 30px; } .form-group { margin-bottom: 20px; } .form-group label { display: block; margin-bottom: 8px; font-weight: 500; color: var(--text-color); font-size: 0.95rem; } .form-group label i { margin-right: 8px; color: var(--primary-color); } .form-group input { width: 100%; padding: 12px 15px; border: 2px solid var(--border-color); border-radius: 8px; font-size: 1rem; transition: var(--transition); background: var(--bg-color); } .form-group input:focus { outline: none; border-color: var(--primary-color); box-shadow: 0 0 0 3px rgba(52, 152, 219, 0.1); background: white; } /* 密码输入框 */ .password-input { position: relative; } .toggle-password { position: absolute; right: 12px; top: 50%; transform: translateY(-50%); background: none; border: none; color: var(--light-text); cursor: pointer; padding: 5px; transition: var(--transition); } .toggle-password:hover { color: var(--primary-color); } /* 复选框样式 */ .checkbox-label { display: flex; align-items: center; cursor: pointer; font-size: 0.9rem; color: var(--light-text); } .checkbox-label input[type="checkbox"] { width: auto; margin-right: 10px; accent-color: var(--primary-color); } .terms-link { color: var(--primary-color); text-decoration: none; } .terms-link:hover { text-decoration: underline; } /* 按钮样式 */ .auth-btn { width: 100%; padding: 14px 20px; border: none; border-radius: 8px; font-size: 1rem; font-weight: 600; cursor: pointer; transition: var(--transition); display: flex; align-items: center; justify-content: center; gap: 8px; margin-bottom: 15px; } .login-btn { background: var(--primary-color); color: white; } .login-btn:hover { background: #2980b9; transform: translateY(-2px); box-shadow: var(--shadow-hover); } .register-btn { background: var(--bg-color); color: var(--text-color); border: 2px solid var(--border-color); } .register-btn:hover { background: var(--secondary-color); color: white; border-color: var(--secondary-color); transform: translateY(-2px); } .register-submit-btn { background: var(--secondary-color); color: white; } .register-submit-btn:hover { background: #27ae60; transform: translateY(-2px); box-shadow: var(--shadow-hover); } .login-back-btn { background: var(--bg-color); color: var(--text-color); border: 2px solid var(--border-color); } .login-back-btn:hover { background: var(--primary-color); color: white; border-color: var(--primary-color); transform: translateY(-2px); } /* 分割线 */ .auth-divider { text-align: center; margin: 20px 0; position: relative; } .auth-divider::before { content: ''; position: absolute; top: 50%; left: 0; right: 0; height: 1px; background: var(--border-color); } .auth-divider span { background: var(--card-bg); padding: 0 15px; color: var(--light-text); font-size: 0.9rem; } /* 默认用户提示 */ .default-users { padding: 20px 30px; background: var(--bg-color); border-top: 1px solid var(--border-color); } .default-users h4 { color: var(--text-color); margin-bottom: 15px; font-size: 1rem; display: flex; align-items: center; gap: 8px; } .user-list { display: flex; flex-direction: column; gap: 8px; } .user-item { font-size: 0.9rem; color: var(--light-text); padding: 8px 12px; background: white; border-radius: 6px; border: 1px solid var(--border-color); } .user-item strong { color: var(--text-color); } /* 状态消息 */ .status-message { position: absolute; top: 20px; right: 20px; padding: 12px 20px; border-radius: 8px; font-size: 0.9rem; font-weight: 500; z-index: 1000; animation: slideInRight 0.3s ease; } .status-message.success { background: #d4edda; color: #155724; border: 1px solid #c3e6cb; } .status-message.error { background: #f8d7da; color: #721c24; border: 1px solid #f5c6cb; } .status-message.info { background: #d1ecf1; color: #0c5460; border: 1px solid #bee5eb; } /* 响应式设计 */ @media (max-width: 480px) { .auth-container { max-width: 100%; } .auth-header { padding: 30px 20px 20px; } .auth-header h1 { font-size: 1.5rem; } .auth-form { padding: 20px; } .default-users { padding: 15px 20px; } } /* 动画 */ @keyframes fadeInUp { from { opacity: 0; transform: translateY(30px); } to { opacity: 1; transform: translateY(0); } } @keyframes slideInRight { from { opacity: 0; transform: translateX(30px); } to { opacity: 1; transform: translateX(0); } } /* 表单切换动画 */ .auth-form { transition: var(--transition); } .auth-form.hidden { opacity: 0; transform: translateX(-20px); pointer-events: none; } .auth-form.visible { opacity: 1; transform: translateX(0); pointer-events: all; }
2301_80743186/rust-agent-code
static/css/auth.css
CSS
unknown
7,631
/* 全局样式 */ * { margin: 0; padding: 0; box-sizing: border-box; } :root { --primary-color: #3498db; --secondary-color: #2ecc71; --accent-color: #e74c3c; --text-color: #2c3e50; --light-text: #7f8c8d; --bg-color: #f8f9fa; --card-bg: #ffffff; --border-color: #ecf0f1; --shadow: 0 4px 6px rgba(0, 0, 0, 0.1); --shadow-hover: 0 8px 15px rgba(0, 0, 0, 0.15); --border-radius: 12px; --transition: all 0.3s ease; } body, html { height: 100%; width: 100%; } body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif; background: #f0f0f0; min-height: 100vh; color: var(--text-color); line-height: 1.6; } /* 容器布局 */ .container { max-width: none; width: 100vw; min-height: 100vh; height: 100vh; margin: 0; padding: 0; display: flex; flex-direction: column; } /* 头部样式 */ .header { text-align: center; margin-bottom: 30px; animation: fadeInDown 0.8s ease; } .header h1 { font-size: 2.5rem; font-weight: 700; color: #1976d2; margin-bottom: 10px; text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3); } .header p { font-size: 1.1rem; color: #1976d2; font-weight: 300; } /* 主要内容区域 */ .main-content { display: flex; flex: 1 1 auto; height: 100%; min-height: 0; } /* 侧边栏 */ .sidebar { position: fixed; left: 0; top: 0; bottom: 0; width: 270px; z-index: 100; height: 100vh; overflow-y: auto; border-radius: 0; box-shadow: var(--shadow); background: var(--card-bg); padding: 25px 20px 25px 20px; } .sidebar h3 { color: var(--primary-color); margin-bottom: 20px; font-size: 1.3rem; border-bottom: 2px solid var(--border-color); padding-bottom: 10px; } .sidebar-actions { margin-top: 25px; display: flex; flex-direction: column; gap: 10px; } .action-btn { padding: 10px 15px; background: var(--bg-color); border: 1px solid var(--border-color); border-radius: 8px; color: var(--text-color); font-size: 0.9rem; cursor: pointer; transition: var(--transition); display: flex; align-items: center; gap: 8px; } .action-btn:hover { background: var(--primary-color); color: white; border-color: var(--primary-color); } /* 用户信息 */ .user-info { margin-bottom: 25px; } .user-info label { display: block; margin-bottom: 8px; font-weight: 500; color: var(--text-color); } .current-user { background: var(--bg-color); padding: 12px 15px; border-radius: 8px; border: 2px solid var(--border-color); margin-bottom: 15px; } .current-user strong { display: block; color: var(--primary-color); font-size: 1.1rem; margin-bottom: 5px; } .user-role { background: var(--primary-color); color: white; padding: 4px 8px; border-radius: 12px; font-size: 0.8rem; font-weight: 500; } .user-status { display: flex; align-items: center; gap: 8px; margin-top: 10px; font-size: 0.9rem; color: var(--light-text); } .status-dot { width: 8px; height: 8px; border-radius: 50%; background: var(--light-text); } .status-dot.online { background: var(--secondary-color); box-shadow: 0 0 0 2px rgba(46, 204, 113, 0.2); } .user-info input { width: 100%; padding: 12px 15px; border: 2px solid var(--border-color); border-radius: 8px; font-size: 1rem; transition: var(--transition); } .user-info input:focus { outline: none; border-color: var(--primary-color); box-shadow: 0 0 0 3px rgba(52, 152, 219, 0.1); } .user-actions { margin-bottom: 25px; } .logout-btn { background: var(--accent-color) !important; color: white !important; border-color: var(--accent-color) !important; } .logout-btn:hover { background: #c0392b !important; border-color: #c0392b !important; } /* 模型选择器 */ .model-selector { margin-bottom: 25px; padding: 15px; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%); border-radius: var(--border-radius); border: 1px solid var(--border-color); } .model-selector h4 { margin-bottom: 15px; color: var(--text-color); font-size: 1.1rem; display: flex; align-items: center; gap: 8px; } .model-selector h4 i { color: var(--primary-color); } .model-options { display: flex; flex-direction: column; gap: 10px; } .model-option { display: flex; align-items: center; padding: 12px; background: white; border: 2px solid var(--border-color); border-radius: 8px; cursor: pointer; transition: var(--transition); position: relative; } .model-option:hover { border-color: var(--primary-color); background: #f0f7ff; transform: translateX(3px); box-shadow: 0 2px 8px rgba(52, 152, 219, 0.15); } .model-option input[type="radio"] { margin-right: 12px; width: 18px; height: 18px; cursor: pointer; accent-color: var(--primary-color); } .model-option input[type="radio"]:checked + .model-name { color: var(--primary-color); font-weight: 600; } .model-option input[type="radio"]:checked ~ .model-desc { color: var(--primary-color); } .model-option:has(input[type="radio"]:checked) { border-color: var(--primary-color); background: linear-gradient(135deg, #e3f2fd 0%, #f0f7ff 100%); box-shadow: 0 2px 8px rgba(52, 152, 219, 0.2); } .model-name { flex: 1; display: flex; align-items: center; gap: 8px; font-size: 0.95rem; font-weight: 500; color: var(--text-color); transition: var(--transition); } .model-name i { font-size: 1rem; color: var(--primary-color); } .model-desc { /* font-size: 0.8rem; */ font-size: 0.7rem; color: var(--light-text); transition: var(--transition); } /* 问题类型指示器 */ .question-types { margin-bottom: 25px; } .question-types h4 { margin-bottom: 15px; color: var(--text-color); font-size: 1.1rem; } .type-indicator { display: flex; flex-wrap: wrap; gap: 8px; } .type-tag { padding: 6px 12px; border-radius: 20px; font-size: 0.85rem; font-weight: 500; background: var(--bg-color); color: var(--light-text); border: 1px solid var(--border-color); transition: var(--transition); } .type-tag.active { background: var(--primary-color); color: white; border-color: var(--primary-color); } /* 聊天区域 */ .chat-area { margin-left: 270px; flex: 1 1 0; min-width: 0; max-width: calc(100vw - 270px); height: 100vh; display: flex; flex-direction: column; /* animation: fadeInRight 0.8s ease; */ } /* 聊天头部 */ .chat-header { padding: 20px 25px; border-bottom: 1px solid var(--border-color); background: linear-gradient(135deg, var(--primary-color), #2980b9); color: white; border-radius: var(--border-radius) var(--border-radius) 0 0; } .chat-header h3 { font-size: 1.3rem; margin-bottom: 5px; } .chat-header p { opacity: 0.9; font-size: 0.95rem; } /* 消息列表 */ .messages { flex: 1 1 auto; overflow-y: auto; overflow-x: hidden; padding-bottom: 16px; padding-left: 20px; padding-right: 20px; } .message { margin-bottom: 20px; animation: fadeInUp 0.5s ease; } .message.user { text-align: right; background: none !important; box-shadow: none !important; color: #222; } .message.assistant { text-align: left; } .message-content { background: #fff !important; color: var(--text-color); border-radius: 10px; padding: 16px 18px; box-shadow: 0 2px 8px rgba(0,0,0,0.04); font-size: 1rem; word-break: break-word; word-wrap: break-word; overflow-wrap: break-word; max-width: 100%; overflow-x: auto; margin-bottom: 6px; } .message.user .message-content { background: #f5f6fa !important; color: #222 !important; border-bottom-right-radius: 5px; } .message.assistant .message-content { background: var(--bg-color); color: var(--text-color); border: 1px solid var(--border-color); border-bottom-left-radius: 5px; } .message-time { font-size: 0.8rem; color: var(--light-text); margin-top: 5px; opacity: 0.7; border: none; background: none; box-shadow: none; } /* 输入区域 */ .input-area { position: sticky; bottom: 0; left: 0; width: 100%; background: var(--card-bg); box-shadow: 0 -2px 8px rgba(0,0,0,0.04); z-index: 10; padding: 12px 20px 8px 20px; } .input-container { display: flex; gap: 15px; align-items: flex-end; } .input-container textarea { flex: 1; padding: 15px; border: 2px solid var(--border-color); border-radius: 12px; font-size: 1rem; font-family: inherit; resize: none; min-height: 50px; max-height: 120px; transition: var(--transition); } .input-container textarea:focus { outline: none; border-color: var(--primary-color); box-shadow: 0 0 0 3px rgba(52, 152, 219, 0.1); } .send-btn { padding: 15px 25px; background: var(--primary-color); color: white; border: none; border-radius: 12px; font-size: 1rem; font-weight: 600; cursor: pointer; transition: var(--transition); display: flex; align-items: center; gap: 8px; } .send-btn:hover { background: #2980b9; transform: translateY(-2px); box-shadow: var(--shadow-hover); } .send-btn:disabled { background: var(--light-text); cursor: not-allowed; transform: none; box-shadow: none; } /* 加载动画 */ .loading { display: flex; align-items: center; gap: 8px; color: var(--light-text); font-style: italic; } .spinner { width: 20px; height: 20px; border: 2px solid var(--border-color); border-top: 2px solid var(--primary-color); border-radius: 50%; animation: spin 1s linear infinite; } /* 状态指示器 */ .status-indicator { display: flex; align-items: center; gap: 10px; margin-bottom: 15px; padding: 10px 15px; background: var(--bg-color); border-radius: 8px; border-left: 4px solid var(--secondary-color); } .status-indicator.error { border-left-color: var(--accent-color); background: #fdf2f2; } .status-indicator.success { border-left-color: var(--secondary-color); background: #f0f9ff; } /* 响应式设计 */ @media (max-width: 900px) { .sidebar { position: fixed; left: 0; top: 0; width: 200px; padding: 15px 8px 15px 8px; z-index: 200; transform: translateX(-100%); transition: transform 0.3s; } .sidebar.active { transform: translateX(0); } .chat-area { margin-left: 0; } /* 移动端模型选择器优化 */ .model-selector { padding: 12px; margin-bottom: 20px; } .model-selector h4 { font-size: 1rem; margin-bottom: 12px; } .model-option { padding: 10px; font-size: 0.9rem; } .model-name { font-size: 0.9rem; } .model-desc { font-size: 0.75rem; } } /* 动画 */ @keyframes fadeInDown { from { opacity: 0; transform: translateY(-30px); } to { opacity: 1; transform: translateY(0); } } @keyframes fadeInLeft { from { opacity: 0; transform: translateX(-30px); } to { opacity: 1; transform: translateX(0); } } @keyframes fadeInRight { from { opacity: 0; transform: translateX(30px); } to { opacity: 1; transform: translateX(0); } } @keyframes fadeInUp { from { opacity: 0; transform: translateY(20px); } to { opacity: 1; transform: translateY(0); } } @keyframes spin { 0% { transform: rotate(0deg); } 100% { transform: rotate(360deg); } } /* 滚动条样式 */ .messages::-webkit-scrollbar { width: 6px; } .messages::-webkit-scrollbar-track { background: var(--bg-color); border-radius: 3px; } .messages::-webkit-scrollbar-thumb { background: var(--border-color); border-radius: 3px; } .messages::-webkit-scrollbar-thumb:hover { background: var(--light-text); } /* 代码块样式 */ .code-block { margin: 15px 0; border-radius: 8px; overflow: hidden; box-shadow: 0 2px 8px rgba(0,0,0,0.1); max-width: 100%; } .code-header { display: flex; justify-content: space-between; align-items: center; padding: 8px 15px; background: #2d3748; color: white; } .language-tag { font-size: 0.9rem; font-weight: 500; } .copy-btn { background: #4a5568; color: white; border: none; padding: 4px 8px; border-radius: 4px; font-size: 0.8rem; cursor: pointer; transition: background 0.2s; } .copy-btn:hover { background: #718096; } .code-block pre { margin: 0; padding: 15px; background: #1e1e1e; color: #d4d4d4; overflow-x: auto; font-family: 'Fira Code', 'Monaco', 'Consolas', monospace; font-size: 0.9rem; line-height: 1.6; max-width: 100%; word-break: break-all; white-space: pre-wrap; } .code-block code { background: none; color: #d4d4d4; padding: 0; border-radius: 0; font-size: inherit; font-weight: 400; text-shadow: none; } /* 确保代码高亮后的文字清晰可见 */ .code-block code.hljs { color: #d4d4d4 !important; background: transparent !important; } .code-block .hljs-keyword { color: #569cd6 !important; } .code-block .hljs-string { color: #ce9178 !important; } .code-block .hljs-comment { color: #6a9955 !important; } .code-block .hljs-function { color: #dcdcaa !important; } .code-block .hljs-number { color: #b5cea8 !important; } .code-block .hljs-type { color: #4ec9b0 !important; } /* 覆盖 Prism.js 的默认样式,解决代码显示模糊问题 */ .code-block code[class*="language-"], .code-block pre[class*="language-"] { color: #d4d4d4 !important; /* background: #1e1e1e !important; */ background: #2d3748 !important; text-shadow: none !important; /* 移除导致模糊的阴影 */ font-family: 'Fira Code', 'Monaco', 'Consolas', monospace !important; font-size: 0.9rem !important; line-height: 1.6 !important; } /* 覆盖 Prism.js 的 token 颜色 */ .code-block .token.cdata, .code-block .token.comment, .code-block .token.doctype, .code-block .token.prolog { color: #6a9955 !important; /* 注释 - 绿色 */ } .code-block .token.punctuation { color: #d4d4d4 !important; /* 标点符号 */ } .code-block .token.boolean, .code-block .token.constant, .code-block .token.deleted, .code-block .token.number, .code-block .token.property, .code-block .token.symbol, .code-block .token.tag { color: #569cd6 !important; /* 关键字 - 蓝色 */ } .code-block .token.attr-name, .code-block .token.builtin, .code-block .token.char, .code-block .token.inserted, .code-block .token.selector, .code-block .token.string { color: #ce9178 !important; /* 字符串 - 橙色 */ } .code-block .token.entity, .code-block .token.operator, .code-block .token.url { color: #d4d4d4 !important; background: transparent !important; } .code-block .token.atrule, .code-block .token.attr-value, .code-block .token.keyword { color: #569cd6 !important; /* 关键字 - 蓝色 */ } .code-block .token.class-name, .code-block .token.function { color: #dcdcaa !important; /* 函数 - 黄色 */ } .code-block .token.important, .code-block .token.regex, .code-block .token.variable { color: #ce9178 !important; /* 变量 - 橙色 */ } /* 确保选中时的背景色清晰 */ .code-block code[class*="language-"]::selection, .code-block code[class*="language-"]::-moz-selection, .code-block pre[class*="language-"]::selection, .code-block pre[class*="language-"]::-moz-selection { text-shadow: none !important; background: #264f78 !important; /* 选中时的背景色 */ color: #ffffff !important; } .code-block p { margin: 0.8px !important; /* 仅代码块内的<p>生效 */ } .inline-code { background: #f7fafc; color: #e53e3e; padding: 2px 4px; border-radius: 4px; font-family: 'Fira Code', 'Monaco', 'Consolas', monospace; font-size: 0.9em; } /* 图表容器 */ .mermaid-container { margin: 20px 0; border: 1px solid var(--border-color); border-radius: 8px; overflow: hidden; background: white; max-width: 100%; } .mermaid-header { padding: 10px 15px; background: #f7fafc; border-bottom: 1px solid var(--border-color); } .diagram-type { font-size: 0.9rem; font-weight: 500; color: #4a5568; } .mermaid-content { padding: 20px; text-align: center; overflow-x: auto; } .mermaid { display: inline-block; max-width: 100%; } .mermaid-error { color: #e53e3e; padding: 10px; background: #fed7d7; border-radius: 4px; font-size: 0.9rem; } /* 工具提示 */ .tooltip { position: relative; display: inline-block; } .tooltip .tooltiptext { visibility: hidden; width: 200px; background-color: var(--text-color); color: white; text-align: center; border-radius: 6px; padding: 8px; position: absolute; z-index: 1; bottom: 125%; left: 50%; margin-left: -100px; opacity: 0; transition: opacity 0.3s; font-size: 0.85rem; } .tooltip:hover .tooltiptext { visibility: visible; opacity: 1; } .sidebar-toggle { display: none; position: fixed; top: 18px; left: 18px; z-index: 300; background: var(--primary-color); color: #fff; border: none; border-radius: 8px; padding: 10px 14px; font-size: 1.3rem; cursor: pointer; box-shadow: var(--shadow); transition: background 0.2s; } .sidebar-toggle:hover { background: var(--secondary-color); } @media (max-width: 900px) { .sidebar-toggle { display: block; } } /* 表格样式 */ .enhanced-table { width: 100%; border-collapse: collapse; margin: 15px 0; background: white; border-radius: 8px; overflow: hidden; box-shadow: 0 2px 8px rgba(0,0,0,0.1); max-width: 100%; } .enhanced-table th, .enhanced-table td { padding: 12px 15px; text-align: left; border-bottom: 1px solid #eee; word-wrap: break-word; max-width: 200px; } .enhanced-table th { background: #f8f9fa; font-weight: 600; color: #2c3e50; } .enhanced-table tr:hover { background: #f8f9fa; } /* 消息内容样式增强 */ .message-content h1, .message-content h2, .message-content h3 { margin: 25px 0 15px 0; color: var(--text-color); font-weight: 600; } .message-content h1 { font-size: 2rem; border-bottom: 3px solid var(--primary-color); padding-bottom: 8px; margin-top: 0; position: relative; } .message-content h1::before { content: ''; position: absolute; left: 0; bottom: -3px; width: 50px; height: 3px; background: var(--secondary-color); } .message-content h2 { font-size: 1.6rem; border-bottom: 2px solid var(--border-color); padding-bottom: 5px; margin-top: 30px; position: relative; padding-left: 15px; } .message-content h2::before { content: ''; position: absolute; left: 0; top: 50%; transform: translateY(-50%); width: 4px; height: 20px; background: var(--primary-color); border-radius: 2px; } .message-content h3 { font-size: 1.4rem; margin-top: 25px; color: var(--primary-color); border-left: 3px solid var(--secondary-color); padding-left: 12px; } .message-content p { margin: 15px 0; line-height: 1.7; color: #4a5568; } .message-content ul, .message-content ol { margin: 15px 0; padding-left: 25px; } .message-content li { margin: 8px 0; line-height: 1.6; color: #4a5568; } /* 层次化列表样式 */ .message-content ul li { position: relative; padding-left: 5px; } .message-content ul li::before { content: '•'; color: var(--primary-color); font-weight: bold; position: absolute; left: -15px; } /* 去除对ul li的所有特殊渲染,恢复为原生li小圆点 */ .message-content ul li, .message-content ul li::before { all: unset; display: list-item; color: inherit; font-size: inherit; font-weight: inherit; margin: 0; padding: 0; } /* 去除对消息内容中有序列表li的特殊样式,恢复原生数字 */ .message-content ol li, .message-content ol li::before { all: unset; display: list-item; color: inherit; font-size: inherit; font-weight: inherit; margin: 0; padding: 0; } .message-content strong { color: var(--primary-color); font-weight: 700; background: linear-gradient(120deg, rgba(52, 152, 219, 0.1) 0%, rgba(52, 152, 219, 0.1) 100%); padding: 2px 6px; border-radius: 4px; } .message-content a { color: var(--primary-color); text-decoration: none; border-bottom: 1px dotted var(--primary-color); transition: all 0.3s ease; } .message-content a:hover { color: var(--secondary-color); border-bottom: 1px solid var(--secondary-color); background: rgba(46, 204, 113, 0.1); padding: 2px 4px; border-radius: 4px; } /* 层次化内容容器 */ .message-content > div { margin: 20px 0; padding: 15px; border-radius: 8px; background: rgba(248, 249, 250, 0.5); border-left: 4px solid var(--primary-color); } /* 层次化内容容器样式 */ .content-section { margin: 25px 0; padding: 20px; border-radius: 12px; background: linear-gradient(135deg, rgba(255, 255, 255, 0.9) 0%, rgba(248, 249, 250, 0.9) 100%); box-shadow: 0 4px 15px rgba(0, 0, 0, 0.08); border: 1px solid rgba(52, 152, 219, 0.1); transition: all 0.3s ease; } .content-section:hover { transform: translateY(-2px); box-shadow: 0 8px 25px rgba(0, 0, 0, 0.12); } .main-section { border-left: 6px solid var(--primary-color); background: linear-gradient(135deg, rgba(52, 152, 219, 0.05) 0%, rgba(255, 255, 255, 0.95) 100%); } .sub-section { border-left: 4px solid var(--secondary-color); margin-left: 20px; background: linear-gradient(135deg, rgba(46, 204, 113, 0.05) 0%, rgba(255, 255, 255, 0.95) 100%); } .section-title { margin: 0 0 20px 0 !important; padding: 0 !important; border: none !important; font-size: 1.8rem !important; color: var(--primary-color) !important; font-weight: 700 !important; text-shadow: 0 1px 2px rgba(0, 0, 0, 0.1); } .sub-section .section-title { font-size: 1.5rem !important; color: var(--secondary-color) !important; } .section-subtitle { margin: 20px 0 15px 0 !important; padding: 0 !important; border: none !important; font-size: 1.3rem !important; color: #2c3e50 !important; font-weight: 600 !important; border-bottom: 2px solid #ecf0f1 !important; padding-bottom: 8px !important; } /* 层次化间距 */ .content-section > p:first-child { margin-top: 0; } .content-section > p:last-child { margin-bottom: 0; } /* 图标样式 */ .message-content h1::after, .message-content h2::after { content: attr(data-icon); margin-left: 10px; font-size: 0.8em; opacity: 0.7; } /* 系统回复内容统一样式 */ .system-section { border: 1.5px solid var(--border-color); border-radius: 10px; background: var(--card-bg); margin: 24px 0; padding: 18px 22px 18px 22px; box-shadow: var(--shadow); transition: var(--transition); } .system-section-title { font-size: 1.15em; font-weight: bold; color: var(--primary-color); margin-bottom: 12px; display: flex; align-items: center; gap: 8px; } .system-section-title i { color: var(--primary-color); font-size: 1.1em; } .system-section-list { margin-left: 22px; margin-bottom: 0; } .system-section-list li { margin-bottom: 8px; line-height: 1.7; font-size: 1em; color: var(--text-color); } /* Mermaid关系图容器自适应更大,始终居中且最大化显示 */ .mermaid-container, .mermaid { width: 100vw !important; min-height: 70vh !important; max-width: none !important; overflow: auto !important; background: #fff; margin: 0 auto 24px auto; display: flex !important; justify-content: center; align-items: center; box-sizing: border-box; } .mermaid svg { width: 90vw !important; height: 70vh !important; max-width: none !important; display: block; margin: 0 auto; }
2301_80743186/rust-agent-code
static/css/style.css
CSS
unknown
24,969
// 知识解释智能体前端应用 class KnowledgeAgentApp { constructor() { this.currentUserId = ''; this.sessionId = ''; this.isLoading = false; this.selectedModel = 'xinghe'; // 默认选择星河大模型 this.init(); } init() { this.bindEvents(); this.loadUserSession(); this.updateQuestionTypes(); this.showWelcomeMessage(); // 显示用户登录状态 this.showUserStatus(); // 加载多模态增强功能 this.loadMultimodalEnhancements(); } bindEvents() { // 用户ID输入 const userIdInput = document.getElementById('userId'); if (userIdInput) { userIdInput.addEventListener('change', (e) => { this.currentUserId = e.target.value; this.sessionId = `session_${this.currentUserId}_${Date.now()}`; this.saveUserSession(); }); } // 消息输入 const messageInput = document.getElementById('messageInput'); const sendBtn = document.getElementById('sendBtn'); if (messageInput) { messageInput.addEventListener('keypress', (e) => { if (e.key === 'Enter' && !e.shiftKey) { e.preventDefault(); this.sendMessage(); } }); // 自动调整高度 messageInput.addEventListener('input', () => { this.adjustTextareaHeight(messageInput); }); } if (sendBtn) { sendBtn.addEventListener('click', () => { this.sendMessage(); }); } // 模型选择器事件 const modelOptions = document.querySelectorAll('input[name="model"]'); modelOptions.forEach(option => { option.addEventListener('change', (e) => { this.selectedModel = e.target.value; this.showStatus(`已切换到: ${this.getModelName(this.selectedModel)}`, 'success'); }); }); // 清空聊天记录 const clearBtn = document.getElementById('clearChat'); if (clearBtn) { clearBtn.addEventListener('click', () => { this.clearChat(); }); } // 导出聊天记录 const exportBtn = document.getElementById('exportChat'); if (exportBtn) { exportBtn.addEventListener('click', () => { this.exportChat(); }); } } async sendMessage() { const messageInput = document.getElementById('messageInput'); const message = messageInput.value.trim(); if (!message) return; // 添加用户消息 this.addMessage(message, 'user'); messageInput.value = ''; this.adjustTextareaHeight(messageInput); // 显示加载状态 this.setLoading(true); try { // 调用后端API const response = await this.callBackendAPI(message); if (response.status === 'success') { // 统一使用 renderEnhancedMarkdown 渲染,保持与新消息和历史消息一致的渲染效果 // 自动提取代码练习和综合案例并存入localStorage(只提取题目和步骤) let code_practice = ''; let comprehensive_case = ''; // 提取代码练习两个题目 const codePracticeMatch = response.answer_markdown.match(/(代码练习[\s\S]*?)(?=(#|##|###|\*\*|🏆|\u{1F3C6}|综合案例|$))/u); if (codePracticeMatch) { // 匹配所有“练习1:...”和“练习2:...” const exs = Array.from(codePracticeMatch[0].matchAll(/练习[12]:(.+?)(?=\n|$)/g)); code_practice = exs.map(e => e[0]).join('\n'); } // 提取综合案例的案例要求和实现步骤 const comprehensiveCaseMatch = response.answer_markdown.match(/(综合案例[\s\S]*)/u); if (comprehensiveCaseMatch) { // 匹配“案例要求:...”和“实现步骤:...” const req = comprehensiveCaseMatch[0].match(/案例要求:([\s\S]*?)(?=实现步骤|$)/); const steps = comprehensiveCaseMatch[0].match(/实现步骤:([\s\S]*)/); comprehensive_case = ''; if (req) comprehensive_case += '案例要求:' + req[1].trim() + '\n'; if (steps) comprehensive_case += '实现步骤:' + steps[1].trim(); } // 调试:直接存储大模型原始内容,确保分析界面能读取 // 去除“实践练习”部分(支持多种格式) let answerForAnalysis = response.answer_markdown // Markdown标题格式(匹配### 实践练习等,兼容表情但不强制匹配) .replace(/### ?[\s\S]*?(实践练习|调试练习|实践对比|开始实践)[\s\S]*?(?=\n###|\n##|\n#|$)/g, '') // HTML格式(如fallback回答) .replace(/<div class="system-section-title">.*?(实践练习|调试练习|实践对比|开始实践).*?<\/div>[\s\S]*?<\/p>/g, ''); localStorage.setItem('rust_examples', JSON.stringify({ code_practice: answerForAnalysis, comprehensive_case: answerForAnalysis })); console.log('已存入rust_examples:', { code_practice: answerForAnalysis, comprehensive_case: answerForAnalysis }); // 直接传递 markdown 文本,让 addMessage 统一使用 renderEnhancedMarkdown 渲染 this.addMessage(response.answer_markdown, 'assistant', response.classification); this.updateQuestionTypeIndicator(response.classification.label); this.showStatus(`问题类型: ${response.classification.label} | 置信度: ${(response.classification.confidence * 100).toFixed(1)}%`, 'success'); } else { this.addMessage(`抱歉,处理您的问题时出现错误:${response.message}`, 'assistant'); this.showStatus('处理失败', 'error'); } } catch (error) { console.error('API调用错误:', error); this.addMessage('抱歉,网络连接出现问题,请稍后重试。', 'assistant'); this.showStatus('网络错误', 'error'); } finally { this.setLoading(false); } } async callBackendAPI(message) { try { const response = await fetch('/api/chat', { method: 'POST', headers: { 'Content-Type': 'application/json', }, body: JSON.stringify({ user_id: this.currentUserId || 'anonymous', message: message, model: this.selectedModel // 发送选择的模型 }) }); if (!response.ok) { throw new Error(`HTTP error! status: ${response.status}`); } const data = await response.json(); return data; } catch (error) { console.error('API调用错误:', error); // 如果API调用失败,回退到模拟响应 return this.getMockResponse(message); } } getMockResponse(message) { return new Promise((resolve) => { setTimeout(() => { const mockResponse = { status: 'success', classification: { label: this.detectQuestionType(message), confidence: 0.85 + Math.random() * 0.15 }, answer_markdown: this.generateMockAnswer(message), rendered_html: '<div>Mock HTML</div>', context_length: Math.floor(Math.random() * 5) + 1 }; resolve(mockResponse); }, 1000); }); } detectQuestionType(message) { const lowerMessage = message.toLowerCase(); if (lowerMessage.includes('是什么') || lowerMessage.includes('定义') || lowerMessage.includes('概念')) { return 'definition'; } else if (lowerMessage.includes('怎么') || lowerMessage.includes('如何') || lowerMessage.includes('使用')) { return 'usage'; } else if (lowerMessage.includes('错误') || lowerMessage.includes('问题') || lowerMessage.includes('调试')) { return 'error_debug'; } else if (lowerMessage.includes('区别') || lowerMessage.includes('不同') || lowerMessage.includes('比较')) { return 'comparison'; } else { return 'faq'; } } generateMockAnswer(question) { const answers = { definition: `## 概念定义 **${question.replace('是什么', '').replace('?', '')}**是Rust编程语言中的一个重要概念。 ## 核心要点 - 这是Rust的核心特性之一 - 确保内存安全和线程安全 - 编译时检查,运行时零开销 ## 示例代码 \`\`\`rust // 示例代码 fn example() { println!("这是一个示例"); } \`\`\` ## 相关概念 - 所有权系统 - 借用检查器 - 生命周期管理`, usage: `## 基本用法 以下是**${question.replace('怎么', '').replace('如何', '').replace('使用', '').replace('?', '')}**的基本用法: ## 代码示例 \`\`\`rust fn main() { // 基本用法示例 let result = example_function(); println!("结果: {}", result); } fn example_function() -> i32 { 42 } \`\`\` ## 参数说明 - param1: 第一个参数的作用 - param2: 第二个参数的作用 ## 最佳实践 1. 遵循Rust的命名约定 2. 使用适当的错误处理 3. 考虑性能影响`, error_debug: `## 错误分析 您遇到的**${question.replace('错误', '').replace('问题', '').replace('?', '')}**通常是由于以下原因: ## 常见原因 - 借用检查器规则违反 - 生命周期不匹配 - 类型不匹配 ## 解决方案 \`\`\`rust // 错误代码 let mut v = vec![1, 2, 3]; let first = &v[0]; v.push(4); // 编译错误 // 正确代码 let mut v = vec![1, 2, 3]; v.push(4); let first = &v[0]; // 正确 \`\`\` ## 调试技巧 1. 仔细阅读编译器错误信息 2. 使用 cargo check 进行静态检查 3. 逐步简化代码定位问题`, comparison: `## 对比分析 **${question.replace('区别', '').replace('不同', '').replace('比较', '').replace('?', '')}**的主要差异: ## 核心差异 | 特性 | Rust | 其他语言 | |------|------|----------| | 内存管理 | 所有权系统 | 垃圾回收/手动管理 | | 并发安全 | 编译时检查 | 运行时检查 | | 性能 | 零开销抽象 | 可能有运行时开销 | ## 代码对比 \`\`\`rust // Rust 示例 let s = String::from("hello"); // 所有权自动管理 \`\`\` \`\`\`cpp // C++ 示例 std::string s = "hello"; // 需要手动管理内存 \`\`\` ## 适用场景 - **Rust**: 系统编程、性能敏感应用 - **其他**: 快速原型、脚本编程`, faq: `## 问题解答 关于**${question.replace('?', '')}**的详细解答: ## 背景说明 这是一个常见的问题,涉及到Rust的学习路径和最佳实践。 ## 实践建议 1. 从官方文档开始学习 2. 多做练习项目 3. 参与社区讨论 ## 学习资源 - [Rust官方文档](https://doc.rust-lang.org/) - [Rust Book](https://doc.rust-lang.org/book/) - [Rust by Example](https://doc.rust-lang.org/rust-by-example/) ## 扩展阅读 - 所有权系统详解 - 生命周期管理 - 错误处理最佳实践` }; const questionType = this.detectQuestionType(question); return answers[questionType] || answers.faq; } addMessage(content, sender, classification = null) { const messagesContainer = document.querySelector('.messages'); const messageDiv = document.createElement('div'); messageDiv.className = `message ${sender}`; const time = new Date().toLocaleTimeString(); let messageContent = content; // 如果是助手消息,使用多模态渲染 if (sender === 'assistant') { if (content.includes('<div class="code-block"') || content.includes('<div class="mermaid-container"')) { messageContent = content; } else { messageContent = this.renderEnhancedMarkdown(content); } } messageDiv.innerHTML = ` <div class="message-content"> ${messageContent} ${classification ? `<div class="message-meta"> <small>类型: ${classification.label} | 置信度: ${(classification.confidence * 100).toFixed(1)}%</small> </div>` : ''} </div> <div class="message-time">${time}</div> `; messagesContainer.appendChild(messageDiv); messagesContainer.scrollTop = messagesContainer.scrollHeight; if (sender === 'assistant') { // 立即处理消息内容(代码高亮和Mermaid渲染) this.processMessageContent(messageDiv); } } renderEnhancedMarkdown(markdown) { // 1. 用 marked 解析所有 Markdown let html = marked.parse(markdown); // 2. 处理 Mermaid 图表 html = html.replace(/```mermaid\s*\n([\s\S]*?)\n```/g, (match, code) => { const id = `mermaid-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`; return `<div class="mermaid-container" id="${id}"> <div class="mermaid-header"> <span class="diagram-type">流程图</span> </div> <div class="mermaid-content"> <div class="mermaid" data-mermaid="${encodeURIComponent(code)}"> ${code} </div> </div> </div>`; }); // 3. 处理 Rust 代码块 html = html.replace(/<pre><code class="language-rust">([\s\S]*?)<\/code><\/pre>/g, (match, code) => { const id = `code-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`; return `<div class="code-block" data-language="rust" id="${id}"> <div class="code-header"> <span class="language-tag">rust</span> <button class="copy-btn" onclick="copyCode('${id}')">复制</button> </div> <pre><code class="language-rust">${this.escapeHtml(code)}</code></pre> </div>`; }); // 4. 其他代码块 html = html.replace(/<pre><code class="language-([\w-]+)">([\s\S]*?)<\/code><\/pre>/g, (match, lang, code) => { if (lang === 'rust') return match; // rust已处理 const id = `code-${Date.now()}-${Math.random().toString(36).substr(2, 9)}`; return `<div class="code-block" data-language="${lang}" id="${id}"> <div class="code-header"> <span class="language-tag">${lang}</span> <button class="copy-btn" onclick="copyCode('${id}')">复制</button> </div> <pre><code class="language-${lang}">${this.escapeHtml(code)}</code></pre> </div>`; }); // 5. 包裹到主容器 if (!html.includes('content-section')) { html = `<div class="content-section main-section">${html}</div>`; } html += '</div>'; return html; } escapeHtml(text) { const div = document.createElement('div'); div.textContent = text; return div.innerHTML; } processMessageContent(messageDiv) { // 处理代码高亮 const codeBlocks = messageDiv.querySelectorAll('pre code'); codeBlocks.forEach(block => { if (window.hljs) { hljs.highlightElement(block); } }); // 处理Mermaid图表 - 立即渲染 const mermaidDivs = messageDiv.querySelectorAll('.mermaid'); mermaidDivs.forEach((div, index) => { if (window.mermaid) { // 获取原始代码 const mermaidCode = div.getAttribute('data-mermaid') ? decodeURIComponent(div.getAttribute('data-mermaid')) : div.textContent.trim(); if (!mermaidCode) return; // 生成唯一ID const mermaidId = `mermaid-${Date.now()}-${index}-${Math.random().toString(36).substr(2, 9)}`; // 立即渲染Mermaid图表 mermaid.render(mermaidId, mermaidCode) .then(({ svg }) => { div.innerHTML = svg; // Mermaid渲染后,svg已插入,添加缩放拖拽 const svgElem = div.querySelector('svg'); if (svgElem && window.svgPanZoom) { const panZoomInstance = svgPanZoom(svgElem, { zoomEnabled: true, controlIconsEnabled: true, fit: true, center: true, minZoom: 0.2, maxZoom: 20 }); // 自动放大到合适的大小 panZoomInstance.zoom(2); } }) .catch(error => { console.error('Mermaid渲染失败:', error); div.innerHTML = `<div class="mermaid-error">图表渲染失败: ${error.message}</div>`; }); } }); } renderMarkdown(markdown) { // 简单的Markdown渲染(备用方法) let html = markdown // 标题 .replace(/^### (.*$)/gm, '<h3>$1</h3>') .replace(/^## (.*$)/gm, '<h2>$1</h2>') .replace(/^# (.*$)/gm, '<h1>$1</h1>') // 粗体 .replace(/\*\*(.*?)\*\*/g, '<strong>$1</strong>') // 代码块 .replace(/```rust\n([\s\S]*?)\n```/g, '<pre class="code-block"><code>$1</code></pre>') .replace(/```([\s\S]*?)```/g, '<pre class="code-block"><code>$1</code></pre>') // 行内代码 .replace(/`(.*?)`/g, '<code class="inline-code">$1</code>') // 列表 .replace(/^\d+\. (.*$)/gm, '<li>$1</li>') .replace(/^- (.*$)/gm, '<li>$1</li>') // 链接 .replace(/\[(.*?)\]\((.*?)\)/g, '<a href="$2" target="_blank">$1</a>') // 换行 .replace(/\n/g, '<br>'); // 处理列表 html = html.replace(/(<li>.*<\/li>)/gs, '<ul>$1</ul>'); return html; } setLoading(loading) { this.isLoading = loading; const sendBtn = document.getElementById('sendBtn'); const messageInput = document.getElementById('messageInput'); if (loading) { sendBtn.disabled = true; sendBtn.innerHTML = '<div class="spinner"></div> 处理中...'; messageInput.disabled = true; } else { sendBtn.disabled = false; sendBtn.innerHTML = '发送'; messageInput.disabled = false; } } showStatus(message, type = 'info') { const statusContainer = document.querySelector('.status-indicator'); if (statusContainer) { statusContainer.className = `status-indicator ${type}`; statusContainer.innerHTML = ` <span>${type === 'error' ? '❌' : type === 'success' ? '✅' : 'ℹ️'}</span> <span>${message}</span> `; statusContainer.style.display = 'flex'; // 3秒后自动隐藏 setTimeout(() => { statusContainer.style.display = 'none'; }, 3000); } } updateQuestionTypes() { const types = ['definition', 'usage', 'error_debug', 'comparison', 'faq']; const container = document.querySelector('.type-indicator'); if (container) { container.innerHTML = types.map(type => `<span class="type-tag" data-type="${type}">${this.getTypeLabel(type)}</span>` ).join(''); } } updateQuestionTypeIndicator(activeType) { const tags = document.querySelectorAll('.type-tag'); tags.forEach(tag => { tag.classList.remove('active'); if (tag.dataset.type === activeType) { tag.classList.add('active'); } }); } getTypeLabel(type) { const labels = { definition: '定义', usage: '用法', error_debug: '调试', comparison: '对比', faq: 'FAQ' }; return labels[type] || type; } getModelName(model) { const names = { xinghe: '星河大模型', gemini: 'Gemini', openai: 'OpenAI', deepseek: 'DeepSeek' }; return names[model] || model; } adjustTextareaHeight(textarea) { textarea.style.height = 'auto'; textarea.style.height = Math.min(textarea.scrollHeight, 120) + 'px'; } showWelcomeMessage() { const userName = this.currentUserId || '用户'; const welcomeMessage = ` ## 欢迎使用Rust知识解释智能体! 🤖 您好,**${userName}**!我是您的专属Rust编程助手,可以帮助您: ### 🎯 支持的问题类型 - **定义类**: "生命周期是什么?" - **用法类**: "如何使用迭代器?" - **调试类**: "这个编译错误怎么解决?" - **对比类**: "Rust和C++有什么区别?" - **FAQ类**: "Rust适合什么项目?" ### 💡 使用建议 1. 提出具体的Rust相关问题 2. 我会根据问题类型提供个性化解答 3. 支持多轮对话和上下文理解 4. 享受智能化的编程学习体验 ### 🚀 开始提问 请在下方输入您的Rust相关问题,我会为您提供详细的解答! `; this.addMessage(welcomeMessage, 'assistant'); } clearChat() { const messagesContainer = document.querySelector('.messages'); messagesContainer.innerHTML = ''; this.showWelcomeMessage(); this.showStatus('聊天记录已清空', 'success'); } exportChat() { const messages = document.querySelectorAll('.message'); let exportText = 'Rust知识解释智能体 - 聊天记录\n'; exportText += '='.repeat(50) + '\n\n'; messages.forEach(message => { const sender = message.classList.contains('user') ? '用户' : '智能体'; const content = message.querySelector('.message-content').textContent; const time = message.querySelector('.message-time').textContent; exportText += `[${time}] ${sender}:\n${content}\n\n`; }); const blob = new Blob([exportText], { type: 'text/plain;charset=utf-8' }); const url = URL.createObjectURL(blob); const a = document.createElement('a'); a.href = url; a.download = `rust-chat-${new Date().toISOString().slice(0, 10)}.txt`; a.click(); URL.revokeObjectURL(url); this.showStatus('聊天记录已导出', 'success'); } async clearChat() { if (!this.currentUserId) return; if (confirm('确定要清空所有聊天记录吗?此操作不可恢复。')) { try { const response = await fetch(`/api/session/${this.currentUserId}`, { method: 'DELETE' }); if (response.ok) { // 清空前端消息显示 const messagesContainer = document.querySelector('.messages'); if (messagesContainer) { messagesContainer.innerHTML = ''; } this.showStatus('聊天记录已清空', 'success'); } else { this.showStatus('清空失败', 'error'); } } catch (error) { console.error('清空聊天记录失败:', error); this.showStatus('清空失败', 'error'); } } } loadUserSession() { // 从页面中获取用户ID const userIdInput = document.getElementById('userId'); if (userIdInput && userIdInput.value) { this.currentUserId = userIdInput.value; this.sessionId = `session_${this.currentUserId}_${Date.now()}`; } else { // 如果没有用户ID,尝试从当前用户信息中获取 const currentUserElement = document.querySelector('.current-user strong'); if (currentUserElement) { this.currentUserId = currentUserElement.textContent; this.sessionId = `session_${this.currentUserId}_${Date.now()}`; } } // 加载历史对话 this.loadChatHistory(); } saveUserSession() { if (this.currentUserId) { localStorage.setItem('rustAgentUserId', this.currentUserId); } } async loadChatHistory() { if (!this.currentUserId) return; try { const response = await fetch(`/api/session/${this.currentUserId}`); if (response.ok) { const data = await response.json(); if (data.status === 'success' && data.data.context.length > 0) { // 清空当前消息 const messagesContainer = document.querySelector('.messages'); if (messagesContainer) { messagesContainer.innerHTML = ''; } // 加载历史消息 data.data.context.forEach(turn => { // 添加用户消息 this.addMessage(turn.question, 'user'); // 添加助手消息 this.addMessage(turn.answer, 'assistant', turn.classification); }); // 滚动到底部 this.scrollToBottom(); this.showStatus(`已加载 ${data.data.context.length} 条历史消息`, 'success'); } } } catch (error) { console.error('加载历史消息失败:', error); } } showUserStatus() { if (this.currentUserId) { this.showStatus(`欢迎回来,${this.currentUserId}!系统已就绪`, 'success'); } } async loadMultimodalEnhancements() { try { // 加载多模态样式 const stylesResponse = await fetch('/api/multimodal/styles'); if (stylesResponse.ok) { const stylesData = await stylesResponse.json(); if (stylesData.status === 'success') { document.getElementById('multimodal-styles').textContent = stylesData.css; } } // 加载多模态脚本 const scriptsResponse = await fetch('/api/multimodal/scripts'); if (scriptsResponse.ok) { const scriptsData = await scriptsResponse.json(); if (scriptsData.status === 'success') { document.getElementById('multimodal-scripts').textContent = scriptsData.javascript; } } } catch (error) { console.error('加载多模态增强功能失败:', error); } } async renderMultimodalContent(markdownContent) { try { const response = await fetch('/api/render', { method: 'POST', headers: { 'Content-Type': 'application/json', }, body: JSON.stringify({ markdown: markdownContent }) }); if (response.ok) { const data = await response.json(); if (data.status === 'success') { // 处理Mermaid图表 this.processMermaidDiagrams(data.mermaid_diagrams); // 处理代码高亮 this.processCodeBlocks(data.code_blocks); return data.html; } } } catch (error) { console.error('多模态渲染失败:', error); } // 如果多模态渲染失败,回退到普通Markdown渲染 return this.renderMarkdown(markdownContent); } processMermaidDiagrams(diagrams) { if (!diagrams || diagrams.length === 0) return; // 延迟处理Mermaid图表,确保DOM已更新 setTimeout(() => { diagrams.forEach(diagram => { const container = document.getElementById(diagram.id); if (container) { mermaid.render(diagram.id, diagram.code).then(({ svg }) => { container.innerHTML = svg; // Mermaid渲染后,svg已插入,添加缩放拖拽 const svgElem = container.querySelector('svg'); if (svgElem && window.svgPanZoom) { const panZoomInstance = svgPanZoom(svgElem, { zoomEnabled: true, controlIconsEnabled: true, fit: true, center: true, minZoom: 0.2, maxZoom: 10 }); // 自动放大到5倍 panZoomInstance.zoom(5); } }).catch(error => { console.error('Mermaid渲染失败:', error); container.innerHTML = `<div class="mermaid-error">图表渲染失败: ${error.message}</div>`; }); } }); }, 100); } scrollToBottom() { const messagesContainer = document.querySelector('.messages'); if (messagesContainer) { messagesContainer.scrollTop = messagesContainer.scrollHeight; } } processCodeBlocks(codeBlocks) { if (!codeBlocks || codeBlocks.length === 0) return; // 延迟处理代码高亮,确保DOM已更新 setTimeout(() => { codeBlocks.forEach(block => { const container = document.getElementById(block.id); if (container) { const codeElement = container.querySelector('code'); if (codeElement) { hljs.highlightElement(codeElement); } } }); }, 100); } } // 登出功能 function logout() { if (confirm('确定要退出登录吗?')) { window.location.href = '/logout'; } } // 复制代码功能 function copyCode(codeId) { const codeBlock = document.getElementById(codeId); if (!codeBlock) return; const code = codeBlock.querySelector('code'); if (!code) return; const textToCopy = code.textContent; navigator.clipboard.writeText(textToCopy).then(() => { const btn = codeBlock.querySelector('.copy-btn'); if (btn) { const originalText = btn.textContent; btn.textContent = '已复制!'; btn.style.background = '#48bb78'; setTimeout(() => { btn.textContent = originalText; btn.style.background = '#4a5568'; }, 2000); } }).catch(err => { console.error('复制失败:', err); alert('复制失败,请手动复制'); }); } // 页面加载完成后初始化应用 document.addEventListener('DOMContentLoaded', () => { window.app = new KnowledgeAgentApp(); }); // Markdown渲染+代码高亮+Mermaid渲染 function renderMarkdown(mdText) { return marked.parse(mdText, { highlight: function(code, lang) { if (lang && hljs.getLanguage(lang)) { return hljs.highlight(code, { language: lang }).value; } return code; } }); } function renderMessage(mdText, container) { // 1. 渲染Markdown container.innerHTML = renderMarkdown(mdText); // 2. 代码高亮 container.querySelectorAll('pre code').forEach((block) => { hljs.highlightElement(block); }); // 3. Mermaid 渲染 container.querySelectorAll('code.language-mermaid').forEach((block) => { const parent = block.parentElement; const mermaidDiv = document.createElement('div'); mermaidDiv.className = 'mermaid'; mermaidDiv.innerHTML = block.textContent; parent.replaceWith(mermaidDiv); }); if (window.mermaid) { mermaid.init(undefined, container.querySelectorAll('.mermaid')); } } // 移动端导航栏展开/收起 window.addEventListener('DOMContentLoaded', function() { const sidebarToggle = document.getElementById('sidebarToggle'); const sidebar = document.querySelector('.sidebar'); if (sidebarToggle && sidebar) { sidebarToggle.addEventListener('click', function() { sidebar.classList.toggle('active'); }); // 点击主内容区时自动收起侧边栏(移动端) document.querySelector('.chat-area')?.addEventListener('click', function() { if (window.innerWidth <= 900) { sidebar.classList.remove('active'); } }); } });
2301_80743186/rust-agent-code
static/js/app.js
JavaScript
unknown
34,578
// 认证页面JavaScript class AuthApp { constructor() { this.defaultUsers = { 'admin': { password: '123456', role: 'admin', name: '管理员' }, 'student': { password: '123456', role: 'student', name: '学生' }, 'teacher': { password: '123456', role: 'teacher', name: '教师' } }; this.init(); } init() { this.bindEvents(); this.loadSavedCredentials(); } bindEvents() { // 登录表单提交 const loginForm = document.getElementById('loginForm'); if (loginForm) { loginForm.addEventListener('submit', (e) => { e.preventDefault(); this.handleLogin(); }); } // 注册表单提交 const registerForm = document.getElementById('registerForm'); if (registerForm) { registerForm.addEventListener('submit', (e) => { e.preventDefault(); this.handleRegister(); }); } // 回车键提交 document.addEventListener('keypress', (e) => { if (e.key === 'Enter') { const activeForm = document.querySelector('.auth-form:not([style*="display: none"])'); if (activeForm) { const submitBtn = activeForm.querySelector('button[type="submit"]'); if (submitBtn) { submitBtn.click(); } } } }); } async handleLogin() { const username = document.getElementById('username').value.trim(); const password = document.getElementById('password').value; const rememberMe = document.getElementById('rememberMe').checked; // 验证输入 if (!username || !password) { this.showStatus('请填写用户名和密码', 'error'); return; } try { // 调用后端登录API const response = await fetch('/login', { method: 'POST', headers: { 'Content-Type': 'application/json', }, body: JSON.stringify({ username: username, password: password }) }); const data = await response.json(); if (data.status === 'success') { // 保存用户信息到本地存储(用于记住我功能) if (rememberMe) { const userInfo = { username: username, role: this.defaultUsers[username]?.role || 'user', name: this.defaultUsers[username]?.name || username, loginTime: new Date().toISOString() }; localStorage.setItem('rustAgentUser', JSON.stringify(userInfo)); } this.showStatus('登录成功,正在跳转...', 'success'); // 延迟跳转 setTimeout(() => { window.location.href = data.redirect || '/dashboard'; }, 1000); } else { this.showStatus(data.message || '登录失败', 'error'); } } catch (error) { console.error('登录请求失败:', error); // 如果API调用失败,回退到前端验证 if (this.validateUser(username, password)) { this.showStatus('登录成功,正在跳转...', 'success'); setTimeout(() => { window.location.href = '/dashboard'; }, 1000); } else { this.showStatus('用户名或密码错误', 'error'); } } } handleRegister() { const username = document.getElementById('regUsername').value.trim(); const email = document.getElementById('regEmail').value.trim(); const password = document.getElementById('regPassword').value; const confirmPassword = document.getElementById('regConfirmPassword').value; const agreeTerms = document.getElementById('agreeTerms').checked; // 验证输入 if (!username || !email || !password || !confirmPassword) { this.showStatus('请填写所有必填字段', 'error'); return; } if (password !== confirmPassword) { this.showStatus('两次输入的密码不一致', 'error'); return; } if (password.length < 6) { this.showStatus('密码长度至少6位', 'error'); return; } if (!agreeTerms) { this.showStatus('请同意服务条款和隐私政策', 'error'); return; } // 检查用户名是否已存在 if (this.defaultUsers[username]) { this.showStatus('用户名已存在', 'error'); return; } // 模拟注册成功 this.showStatus('注册成功!请使用新账户登录', 'success'); // 清空表单 document.getElementById('registerForm').reset(); // 切换到登录页面 setTimeout(() => { this.showLogin(); }, 1500); } validateUser(username, password) { const user = this.defaultUsers[username]; return user && user.password === password; } showStatus(message, type = 'info') { const statusElement = document.getElementById('statusMessage'); if (statusElement) { statusElement.textContent = message; statusElement.className = `status-message ${type}`; statusElement.style.display = 'block'; // 3秒后自动隐藏 setTimeout(() => { statusElement.style.display = 'none'; }, 3000); } } loadSavedCredentials() { const savedUser = localStorage.getItem('rustAgentUser') || sessionStorage.getItem('rustAgentUser'); if (savedUser) { try { const userInfo = JSON.parse(savedUser); document.getElementById('username').value = userInfo.username; document.getElementById('rememberMe').checked = true; } catch (e) { console.error('解析保存的用户信息失败:', e); } } } } // 全局函数 function showRegister() { const loginForm = document.getElementById('loginForm'); const registerForm = document.getElementById('registerForm'); if (loginForm && registerForm) { loginForm.style.display = 'none'; registerForm.style.display = 'block'; registerForm.classList.add('visible'); } } function showLogin() { const loginForm = document.getElementById('loginForm'); const registerForm = document.getElementById('registerForm'); if (loginForm && registerForm) { registerForm.style.display = 'none'; loginForm.style.display = 'block'; loginForm.classList.add('visible'); } } function togglePassword() { const passwordInput = document.getElementById('password'); const toggleBtn = document.querySelector('.toggle-password i'); if (passwordInput.type === 'password') { passwordInput.type = 'text'; toggleBtn.className = 'fas fa-eye-slash'; } else { passwordInput.type = 'password'; toggleBtn.className = 'fas fa-eye'; } } function toggleRegPassword() { const passwordInput = document.getElementById('regPassword'); const toggleBtn = document.querySelector('#regPassword + .toggle-password i'); if (passwordInput.type === 'password') { passwordInput.type = 'text'; toggleBtn.className = 'fas fa-eye-slash'; } else { passwordInput.type = 'password'; toggleBtn.className = 'fas fa-eye'; } } function toggleRegConfirmPassword() { const passwordInput = document.getElementById('regConfirmPassword'); const toggleBtn = document.querySelector('#regConfirmPassword + .toggle-password i'); if (passwordInput.type === 'password') { passwordInput.type = 'text'; toggleBtn.className = 'fas fa-eye-slash'; } else { passwordInput.type = 'password'; toggleBtn.className = 'fas fa-eye'; } } // 页面加载完成后初始化 document.addEventListener('DOMContentLoaded', () => { window.authApp = new AuthApp(); });
2301_80743186/rust-agent-code
static/js/auth.js
JavaScript
unknown
8,578
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Rust代码分析 - Rust知识解释智能体</title> <link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/highlight.js@11.8.0/styles/github.min.css"> <style> body { margin: 0; padding: 0; min-height: 100vh; background: #f5f6fa; font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .layout { display: flex; min-height: 100vh; } .sidebar { width: 420px; background: #fff; border-radius: 0 18px 18px 0; box-shadow: 2px 0 16px rgba(52,152,219,0.08); padding: 32px 24px 24px 24px; display: flex; flex-direction: column; align-items: flex-start; z-index: 2; } .sidebar h3 { margin-top: 0; color: #222; font-size: 1.2rem; display: flex; align-items: center; gap: 8px; } .sidebar .task-list { margin-top: 24px; width: 100%; overflow-y: auto; flex: 1; } .sidebar .task-list::-webkit-scrollbar { width: 6px; background: #f0f0f0; } .sidebar .task-list::-webkit-scrollbar-thumb { background: #e0e6ed; border-radius: 3px; } .main-content { flex: 1; display: flex; justify-content: center; align-items: flex-start; padding: 48px 0; } .editor-card { background: #fff; border-radius: 18px; box-shadow: 0 4px 24px rgba(52,152,219,0.10); padding: 48px 60px 36px 36px; /* 缩小padding */ max-width: 1100px; /* 缩小最大宽度 */ width: 100%; display: flex; flex-direction: column; align-items: center; margin-left:300px; /* 缩小左边距 */ } .editor-title { font-size: 1.3rem; color: #222; font-weight: bold; margin-bottom: 0; display: flex; align-items: center; gap: 8px; } .blue-underline { width: 200px; height: 4px; background: #4f8cff; border-radius: 2px; margin: 10px 0 24px 0; } #monaco-editor { width: 100%; min-height: 400px; max-height:50vh; border-radius: 10px; border: 1.5px solid #e0e6ed; box-shadow: 0 2px 8px rgba(52,152,219,0.08); margin-bottom: 24px; background: #181c24; max-width: 1300px; /* 提高最大宽度 */ } .button-group { display: flex; justify-content: center; align-items: center; gap: 18px; margin-bottom: 18px; width: 100%; max-width: 1300px; /* 提高最大宽度 */ } .submit-btn, .run-btn { background: linear-gradient(90deg, #4f8cff 0%, #27ae60 100%); color: #fff; border: none; border-radius: 14px; padding: 12px 36px; font-size: 1.08rem; font-weight: 700; cursor: pointer; box-shadow: 0 2px 8px rgba(52,152,219,0.10); transition: all 0.18s cubic-bezier(.4,1.3,.6,1); margin: 0; display: flex; align-items: center; gap: 8px; letter-spacing: 0.5px; } .submit-btn:hover, .run-btn:hover { background: linear-gradient(90deg, #27ae60 0%, #4f8cff 100%); } .run-result, .analysis-result { background: #f8f9fa; border-radius: 8px; padding: 12px 10px; min-height: 40px; font-size: 0.98rem; color: #222; box-shadow: 0 2px 8px rgba(0,0,0,0.04); white-space: pre-wrap; word-break: break-all; width: 100%; margin-bottom: 0; } @media (max-width: 1000px) { .sidebar { display: none; } .main-content { padding: 12px 0; } .editor-card { max-width: 98vw; padding: 16px 4vw; } } @media (max-width: 600px) { .editor-title { font-size: 1.05rem; } .blue-underline { width: 120px; } .editor-card { padding: 8px 2vw; } } </style> <script src="https://unpkg.com/monaco-editor@0.34.1/min/vs/loader.js"></script> <script src="https://unpkg.com/mermaid@10.9.0/dist/mermaid.min.js"></script> </head> <body> <div class="layout"> <div class="sidebar" id="examplesSidebar"> <button onclick="window.location.href='/dashboard'" style="margin-bottom: 18px; background: #4f8cff; color: #fff; border: none; border-radius: 8px; padding: 8px 22px; font-size: 1rem; font-weight: 600; cursor: pointer; box-shadow: 0 2px 8px rgba(52,152,219,0.10); transition: all 0.18s;"> ← 返回问答界面 </button> <h3><i class="fas fa-tasks"></i> 编程任务</h3> <div class="task-list" id="examplesContent"> <p>从问答界面获取的例题和案例将显示在这里。</p> </div> </div> <div class="main-content"> <div class="editor-card"> <div class="editor-title"> <i class="fas fa-code"></i> Rust 代码分析与在线运行 </div> <div class="blue-underline"></div> <div id="monaco-editor"></div> <div class="button-group"> <button type="button" class="run-btn" id="runRustBtn"><i class="fas fa-play"></i> 运行</button> <button type="button" class="submit-btn" id="analyzeBtn"><i class="fas fa-paper-plane"></i> 提交分析</button> </div> <div id="runResult" class="run-result" style="display:none;"></div> <div id="analysisResult" class="analysis-result">分析结果将在此处展示</div> </div> </div> </div> <script src="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/js/all.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"></script> <script> let monacoEditor; require.config({ paths: { 'vs': 'https://unpkg.com/monaco-editor@0.34.1/min/vs' }}); require(['vs/editor/editor.main'], function() { monacoEditor = monaco.editor.create(document.getElementById('monaco-editor'), { value: '// 在此输入您的Rust代码\nfn main() {\n println!("Hello, Rust!");\n}', language: 'rust', theme: 'vs-dark', fontSize: 16, minimap: { enabled: false }, automaticLayout: true }); fetchAndDisplayExamples(); }); async function fetchAndDisplayExamples() { // 优先从localStorage读取rust_examples let examples = localStorage.getItem('rust_examples'); const container = document.getElementById('examplesContent'); function beautifyContent(raw) { if (!raw) return '<div style="color:#888;">暂无编程任务。</div>'; let html = ''; // 练习部分 const exerciseMatches = Array.from(raw.matchAll(/练习[0-9]+[\s\S]*?(?=(练习[0-9]+|综合案例|$))/g)); exerciseMatches.forEach((match, idx) => { let block = match[0].trim(); let lines = block.split('\n').filter(l => l.trim()); let title = lines[0] || `练习${idx+1}`; let body = lines.slice(1).join('\n'); html += `<div class="task-card" style="background:#f8f9fa;border-radius:12px;padding:18px 18px 14px 18px;margin-bottom:18px;border:1.5px solid #e0e6ed;box-shadow:0 2px 8px #4f8cff11;"> <div class="task-title" style="font-weight:bold;color:#1976d2;font-size:1.13rem;margin-bottom:10px;letter-spacing:1px;">${title}</div> <pre style="color:#234;font-size:1.08rem;line-height:1.85;background:#f4f6fb;border-radius:8px;border:none;margin:0;padding:12px 14px 10px 14px;white-space:pre-wrap;">${body}</pre> </div>`; }); // 综合案例部分 const caseMatch = raw.match(/综合案例[\s\S]*/); if (caseMatch) { let block = caseMatch[0].trim(); let lines = block.split('\n').filter(l => l.trim()); let title = lines[0] || '综合案例'; let body = lines.slice(1).join('\n'); html += `<div class="task-card" style="background:#fffbe6;border-radius:12px;padding:18px 18px 14px 18px;margin-bottom:18px;border:1.5px solid #ffe58f;box-shadow:0 2px 8px #faad1411;"> <div class="task-title" style="font-weight:bold;color:#faad14;font-size:1.13rem;margin-bottom:10px;letter-spacing:1px;">${title}</div> <pre style="color:#8c6d1f;font-size:1.08rem;line-height:1.85;background:#fffdf3;border-radius:8px;border:none;margin:0;padding:12px 14px 10px 14px;white-space:pre-wrap;">${body}</pre> </div>`; } return html || '<div style="color:#888;">暂无编程任务。</div>'; } if (examples) { try { examples = JSON.parse(examples); let content = examples.code_practice || ''; // 只展示“代码练习”及其后内容 let codePracticeIndex = content.indexOf('代码练习'); if (codePracticeIndex !== -1) { content = content.substring(codePracticeIndex); } container.innerHTML = beautifyContent(content); } catch(e) { container.innerHTML = '<p style="color:#e74c3c;">编程任务加载失败</p>'; } } else { try { const response = await fetch('/api/get_examples'); const data = await response.json(); if (data.status === 'success' && (data.data.examples.length > 0 || data.data.comprehensive_case)) { let content = ''; if (data.data.examples.length > 0) { content += data.data.examples.join('\n'); } if (data.data.comprehensive_case) { content += '\n' + data.data.comprehensive_case; } container.innerHTML = beautifyContent(content); } else { container.innerHTML = '<div style="text-align: center; color: #999; padding: 20px;"><i class="fas fa-info-circle"></i><br>当前没有相关的编程任务</div>'; } } catch (error) { console.error('获取编程任务失败:', error); container.innerHTML = '<div style="text-align: center; color: #e74c3c; padding: 20px;"><i class="fas fa-exclamation-triangle"></i><br>加载编程任务失败,请稍后重试</div>'; } } } // 运行按钮事件 document.addEventListener('DOMContentLoaded', function() { const runBtn = document.getElementById('runRustBtn'); const runResultDiv = document.getElementById('runResult'); if (runBtn) { runBtn.addEventListener('click', async function() { runResultDiv.style.display = 'block'; runResultDiv.innerHTML = '<div style=\'font-weight:bold;color:#fff;background:#222;padding:6px 12px 4px 12px;border-radius:8px 8px 0 0;font-size:1rem;\'>运行结果</div>' + '<pre id=\'runResultBox\' style=\'background:#181c24;color:#e8eaf6;padding:16px 14px 14px 14px;border-radius:0 0 8px 8px;margin:0;font-size:1.05rem;overflow-x:auto;\'>正在运行...</pre>'; const code = monacoEditor.getValue(); try { const resp = await fetch('/api/run_rust_code', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ code }) }); const data = await resp.json(); const resultBox = document.getElementById('runResultBox'); if (data.status === 'success') { resultBox.textContent = (data.stdout && data.stdout.trim() ? data.stdout : '[无输出]') + (data.stderr ? ('\n[stderr]\n' + data.stderr) : ''); } else { resultBox.textContent = (data.message || '运行失败') + (data.stderr ? ('\n' + data.stderr) : ''); } } catch (e) { const resultBox = document.getElementById('runResultBox'); resultBox.textContent = '运行出错: ' + e; } }); } }); // 分析按钮事件 document.getElementById('analyzeBtn').onclick = async function() { const analysisDiv = document.getElementById('analysisResult'); analysisDiv.innerHTML = '<span style="color:#888;">正在分析,请稍候...</span>'; const code = monacoEditor.getValue(); let examples = localStorage.getItem('rust_examples'); try { const resp = await fetch('/api/analyze_rust_code', { method: 'POST', headers: { 'Content-Type': 'application/json' }, body: JSON.stringify({ code, examples }) }); const data = await resp.json(); if (data.status === 'success') { let result = data.result || ''; // 每一块用小卡片包裹,标题为“1. 题目归属判断”等 function beautifyAnalysisSections(md) { // 优化分块正则,支持多种常见大项标题格式 // 支持:### 1.、### 1、、### 一、、#### 1.、1. 、1、 、一、 const sectionRegex = /^(###|####)?\s*((\d+|[一二三四五六七八九十]+)[\.、])\s*[^\n]*$/gm; let indices = []; let match; while ((match = sectionRegex.exec(md)) !== null) { indices.push({ idx: match.index, title: match[0] }); } let parts = []; if (indices.length === 0) { // 没有分块,整体渲染 let content = mdToOrderedList(md); return `<div class='analysis-section-card' style='background:#fff;border-radius:8px;padding:18px 16px 14px 16px;margin-bottom:18px;border:1.5px solid #e0e6ed;box-shadow:0 2px 8px #4f8cff08;'> <div class='analysis-section-title' style='font-weight:bold;color:#1976d2;font-size:1.08rem;margin-bottom:10px;'>代码分析结果</div> <div class='analysis-section-content'>${content}</div> </div>`; } for (let i = 0; i < indices.length; i++) { let start = indices[i].idx; let end = (i + 1 < indices.length) ? indices[i + 1].idx : md.length; let sectionMd = md.slice(start, end).trim(); // 提取标题文本(保留数字和内容) let titleLine = indices[i].title; let titleText = titleLine.replace(/^(###|####)?\s*/, ''); // 去掉标题行再渲染内容,并去除内容中重复出现的标题(如1.题目归属判断等) let sectionContentMd = sectionMd.replace(titleLine, '').trim(); // 去除内容开头的“1.题目归属判断”、“1、题目归属判断”、“一、题目归属判断”、“1. 正确性分析”、“**正确性分析**:”等 sectionContentMd = sectionContentMd.replace(/^(\s*[\d一二三四五六七八九十]+[\.、])?\s*(\*\*|__)?[\u4e00-\u9fa5A-Za-z0-9_()()]+([::\.]|\*\*|__)*\s*/u, ''); // 只对每个分块内容做分条转有序列表 let content = mdToOrderedList(sectionContentMd); parts.push(`<div class='analysis-section-card' style='background:#fff;border-radius:8px;padding:18px 16px 14px 16px;margin-bottom:18px;border:1.5px solid #e0e6ed;box-shadow:0 2px 8px #4f8cff08;'> <div class='analysis-section-title' style='font-weight:bold;color:#1976d2;font-size:1.08rem;margin-bottom:10px;'>${titleText}</div> <div class='analysis-section-content'>${content}</div> </div>`); } // 只返回分块卡片拼接 return parts.join(''); } // 分点转有序列表函数,提升到外部作用域 function mdToOrderedList(md) { const lines = md.split(/\r?\n/); let inList = false; let html = ''; let listBuffer = []; for (let line of lines) { if (/^([*\-•]|\d+[\.、])\s+/.test(line)) { inList = true; listBuffer.push(line.replace(/^([*\-•]|\d+[\.、])\s+/, '')); } else { if (inList) { html += '<ol style="margin:0 0 0 22px;padding:0 0 0 8px;">' + listBuffer.map(item => `<li>${item}</li>`).join('') + '</ol>'; listBuffer = []; inList = false; } html += line ? `<div>${line}</div>` : '<br>'; } } if (inList && listBuffer.length > 0) { html += '<ol style="margin:0 0 0 22px;padding:0 0 0 8px;">' + listBuffer.map(item => `<li>${item}</li>`).join('') + '</ol>'; } return html; } analysisDiv.innerHTML = beautifyAnalysisSections(result); } else { analysisDiv.innerHTML = '<span style="color:#e74c3c;">' + (data.message || '分析失败') + '</span>'; } } catch (e) { analysisDiv.innerHTML = '<span style="color:#e74c3c;">分析出错: ' + e + '</span>'; } }; </script> </body> </html>
2301_80743186/rust-agent-code
templates/code_editor.html
HTML
unknown
19,290
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Rust知识解释智能体</title> <link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css"> <script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/components/prism-core.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/plugins/autoloader/prism-autoloader.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script> <!-- Markdown 渲染 --> <script src="https://cdn.jsdelivr.net/npm/marked/marked.min.js"></script> <!-- 代码高亮 --> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/highlight.js@11.8.0/styles/github.min.css"> <script src="https://cdn.jsdelivr.net/npm/highlight.js@11.8.0/lib/highlight.min.js"></script> <script src="https://cdn.jsdelivr.net/npm/highlight.js@11.8.0/lib/languages/rust.min.js"></script> <!-- 多模态增强样式 --> <style id="multimodal-styles"></style> </head> <body> <div class="container"> <!-- 移动端汉堡菜单按钮 --> <button class="sidebar-toggle" id="sidebarToggle" aria-label="展开/收起导航栏"> <i class="fas fa-bars"></i> </button> <!-- 头部 --> <header class="header"> <h1><i class="fas fa-robot"></i> Rust知识解释智能体</h1> <p>智能问答 · 多轮对话 · 个性化讲解 · 多模态展示</p> </header> <!-- 主要内容区域 --> <main class="main-content"> <!-- 侧边栏 --> <aside class="sidebar"> <h3><i class="fas fa-user"></i> 用户信息</h3> <div class="user-info"> <label>当前用户</label> <div class="current-user"> <strong>{{ user.user_name }}</strong> <span class="user-role">{{ user.user_role }}</span> </div> <input type="text" id="userId" value="{{ user.user_id }}" style="display: none;"> <div class="user-status"> <span class="status-dot online"></span> <span>已登录</span> </div> </div> <div class="user-actions"> <button onclick="logout()" class="action-btn logout-btn"> <i class="fas fa-sign-out-alt"></i> 退出登录 </button> </div> <div class="model-selector"> <h4><i class="fas fa-brain"></i> 选择AI模型</h4> <div class="model-options"> <label class="model-option"> <input type="radio" name="model" value="xinghe" checked> <span class="model-name"> <i class="fas fa-star"></i> 星河大模型 </span> <span class="model-desc">默认推荐</span> </label> <label class="model-option"> <input type="radio" name="model" value="gemini"> <span class="model-name"> <i class="fas fa-gem"></i> Gemini </span> <span class="model-desc">Google AI</span> </label> <label class="model-option"> <input type="radio" name="model" value="openai"> <span class="model-name"> <i class="fas fa-robot"></i> OpenAI </span> <span class="model-desc">GPT模型</span> </label> <label class="model-option"> <input type="radio" name="model" value="deepseek"> <span class="model-name"> <i class="fas fa-rocket"></i> DeepSeek </span> <span class="model-desc">国产大模型</span> </label> </div> </div> <div class="question-types"> <h4><i class="fas fa-tags"></i> 问题类型</h4> <div class="type-indicator"> <span class="type-tag" data-type="definition">定义</span> <span class="type-tag" data-type="usage">用法</span> <span class="type-tag" data-type="error_debug">调试</span> <span class="type-tag" data-type="comparison">对比</span> <span class="type-tag" data-type="faq">FAQ</span> </div> </div> <div class="sidebar-actions"> <button id="codeAnalysis" class="action-btn" onclick="window.location.href='http://127.0.0.1:5000/code_editor'"> <i class="fas fa-code"></i> 例题练习 </button> <button id="clearChat" class="action-btn"> <i class="fas fa-trash"></i> 清空聊天 </button> <button id="exportChat" class="action-btn"> <i class="fas fa-download"></i> 导出记录 </button> </div> <div class="status-indicator" style="display: none;"> <span>ℹ️</span> <span>系统就绪</span> </div> </aside> <!-- 聊天区域 --> <section class="chat-area"> <!-- 聊天头部 --> <div class="chat-header"> <h3><i class="fas fa-comments"></i> 智能对话</h3> <p>与AI助手进行Rust编程知识交流</p> </div> <!-- 消息列表 --> <div class="messages"> <!-- 消息将在这里动态添加 --> </div> <!-- 输入区域 --> <div class="input-area"> <div class="input-container"> <textarea id="messageInput" placeholder="请输入您的Rust相关问题... (按Enter发送,Shift+Enter换行)" rows="1" ></textarea> <button id="sendBtn" class="send-btn"> <i class="fas fa-paper-plane"></i> 发送 </button> </div> </div> </section> </main> </div> <!-- JavaScript --> <script src="{{ url_for('static', filename='js/app.js') }}"></script> <!-- 多模态增强脚本 --> <script id="multimodal-scripts"></script> <!-- 初始化Mermaid --> <script> mermaid.initialize({ startOnLoad: true, theme: 'default', flowchart: { useMaxWidth: true, htmlLabels: true } }); </script> <!-- svg-pan-zoom CDN,必须在app.js后引入 --> <script src="https://cdn.jsdelivr.net/npm/svg-pan-zoom@3.6.1/dist/svg-pan-zoom.min.js"></script> </body> </html>
2301_80743186/rust-agent-code
templates/index.html
HTML
unknown
7,946
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>登录 - Rust知识解释智能体</title> <link rel="stylesheet" href="{{ url_for('static', filename='css/auth.css') }}"> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css"> </head> <body> <div class="auth-container"> <div class="auth-card"> <!-- 头部 --> <div class="auth-header"> <h1><i class="fas fa-robot"></i> Rust知识解释智能体</h1> <p>智能问答 · 多轮对话 · 个性化讲解</p> </div> <!-- 登录表单 --> <form id="loginForm" class="auth-form"> <div class="form-group"> <label for="username"> <i class="fas fa-user"></i> 用户名 </label> <input type="text" id="username" name="username" placeholder="请输入用户名" value="admin" required > </div> <div class="form-group"> <label for="password"> <i class="fas fa-lock"></i> 密码 </label> <div class="password-input"> <input type="password" id="password" name="password" placeholder="请输入密码" value="123456" required > <button type="button" class="toggle-password" onclick="togglePassword()"> <i class="fas fa-eye"></i> </button> </div> </div> <div class="form-group"> <label class="checkbox-label"> <input type="checkbox" id="rememberMe" checked> <span class="checkmark"></span> 记住我 </label> </div> <button type="submit" class="auth-btn login-btn"> <i class="fas fa-sign-in-alt"></i> 登录 </button> <div class="auth-divider"> <span>或者</span> </div> <button type="button" class="auth-btn register-btn" onclick="showRegister()"> <i class="fas fa-user-plus"></i> 注册新账户 </button> </form> <!-- 注册表单 --> <form id="registerForm" class="auth-form" style="display: none;"> <div class="form-group"> <label for="regUsername"> <i class="fas fa-user"></i> 用户名 </label> <input type="text" id="regUsername" name="username" placeholder="请输入用户名" required > </div> <div class="form-group"> <label for="regEmail"> <i class="fas fa-envelope"></i> 邮箱 </label> <input type="email" id="regEmail" name="email" placeholder="请输入邮箱" required > </div> <div class="form-group"> <label for="regPassword"> <i class="fas fa-lock"></i> 密码 </label> <div class="password-input"> <input type="password" id="regPassword" name="password" placeholder="请输入密码" required > <button type="button" class="toggle-password" onclick="toggleRegPassword()"> <i class="fas fa-eye"></i> </button> </div> </div> <div class="form-group"> <label for="regConfirmPassword"> <i class="fas fa-lock"></i> 确认密码 </label> <div class="password-input"> <input type="password" id="regConfirmPassword" name="confirmPassword" placeholder="请再次输入密码" required > <button type="button" class="toggle-password" onclick="toggleRegConfirmPassword()"> <i class="fas fa-eye"></i> </button> </div> </div> <div class="form-group"> <label class="checkbox-label"> <input type="checkbox" id="agreeTerms" required> <span class="checkmark"></span> 我同意 <a href="#" class="terms-link">服务条款</a> 和 <a href="#" class="terms-link">隐私政策</a> </label> </div> <button type="submit" class="auth-btn register-submit-btn"> <i class="fas fa-user-plus"></i> 注册 </button> <div class="auth-divider"> <span>或者</span> </div> <button type="button" class="auth-btn login-back-btn" onclick="showLogin()"> <i class="fas fa-sign-in-alt"></i> 返回登录 </button> </form> <!-- 默认用户提示 --> <div class="default-users"> <h4><i class="fas fa-info-circle"></i> 默认用户</h4> <div class="user-list"> <div class="user-item"> <strong>管理员:</strong> admin / 123456 </div> <div class="user-item"> <strong>学生:</strong> student / 123456 </div> <div class="user-item"> <strong>教师:</strong> teacher / 123456 </div> </div> </div> <!-- 状态提示 --> <div id="statusMessage" class="status-message" style="display: none;"></div> </div> </div> <script src="{{ url_for('static', filename='js/auth.js') }}"></script> </body> </html>
2301_80743186/rust-agent-code
templates/login.html
HTML
unknown
7,285
<!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Rust知识解释</title> <script src="https://cdn.jsdelivr.net/npm/mermaid/dist/mermaid.min.js"></script> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/themes/prism.min.css"> <script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/components/prism-core.min.js"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.29.0/plugins/autoloader/prism-autoloader.min.js"></script> <style> body { font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif; line-height: 1.6; color: #333; max-width: 800px; margin: 0 auto; padding: 20px; background-color: #f8f9fa; } .container { background: white; border-radius: 8px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); overflow: hidden; } .content { padding: 30px; } h1, h2, h3 { color: #2c3e50; margin-top: 30px; margin-bottom: 15px; } h1 { font-size: 2em; border-bottom: 3px solid #3498db; padding-bottom: 10px; } h2 { font-size: 1.5em; border-bottom: 2px solid #ecf0f1; padding-bottom: 8px; } h3 { font-size: 1.2em; color: #34495e; } p { margin-bottom: 15px; text-align: justify; } .code-block { background: #f8f9fa; border: 1px solid #e9ecef; border-radius: 6px; padding: 15px; margin: 15px 0; overflow-x: auto; font-family: 'Fira Code', 'Monaco', 'Consolas', monospace; font-size: 14px; line-height: 1.4; } .inline-code { background: #f1f3f4; padding: 2px 6px; border-radius: 4px; font-family: 'Fira Code', monospace; font-size: 0.9em; color: #d73a49; } .mermaid { text-align: center; margin: 20px 0; padding: 20px; background: #f8f9fa; border-radius: 6px; } li { margin-bottom: 8px; } strong { color: #2c3e50; font-weight: 600; } em { color: #7f8c8d; font-style: italic; } @media (max-width: 768px) { body { padding: 10px; } .content { padding: 20px; } h1 { font-size: 1.5em; } h2 { font-size: 1.3em; } } </style> </head> <body> <div class="container"> <div class="content"> <br><h1>Rust生命周期详解</h1><br><br><h2>概念定义</h2><br><strong>生命周期</strong>是Rust中引用保持有效的作用域。<br><br><h2>示例代码</h2><br><pre class="code-block rust"><code>fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {<br> if x.len() > y.len() { x } else { y }<br>}</code></pre><br><br><h2>流程图</h2><br><pre class="code-block mermaid"><code>graph TD<br> A[创建引用] --> B[生命周期开始]<br> B --> C[使用引用]<br> C --> D[生命周期结束]<br> D --> E[引用失效]</code></pre><br><br><h2>关键要点</h2><br><li>生命周期确保引用安全</li><br><li>编译器自动推断生命周期</li><br><li>显式标注用于复杂情况</li><br> </div> </div> <script> mermaid.initialize({ startOnLoad: true }); Prism.highlightAll(); </script> </body> </html>
2301_80743186/rust-agent-code
test_output.html
HTML
unknown
4,149
import tkinter as tk from tkinter import ttk class ColumnSelector: def __init__(self, parent, columns, column_types, title, callback): self.callback = callback self.selected_columns = [] self.window = tk.Toplevel(parent) self.window.title(title) self.window.geometry('300x400') # 创建说明标签 ttk.Label(self.window, text="选择需要处理的列:").pack(pady=10) # 创建列表框和滚动条 frame = ttk.Frame(self.window) frame.pack(fill=tk.BOTH, expand=True, padx=10) scrollbar = ttk.Scrollbar(frame) scrollbar.pack(side=tk.RIGHT, fill=tk.Y) self.listbox = tk.Listbox(frame, selectmode=tk.MULTIPLE, yscrollcommand=scrollbar.set) self.listbox.pack(side=tk.LEFT, fill=tk.BOTH, expand=True) scrollbar.config(command=self.listbox.yview) # 添加列名到列表框 for col in columns: col_type = column_types[col] self.listbox.insert(tk.END, f"{col} ({col_type})") # 创建按钮框架 button_frame = ttk.Frame(self.window) button_frame.pack(fill=tk.X, padx=10, pady=10) ttk.Button(button_frame, text="确定", command=self.on_confirm).pack(side=tk.LEFT, padx=10) ttk.Button(button_frame, text="取消", command=self.window.destroy).pack(side=tk.LEFT) def on_confirm(self): # 获取选中的列名(去除类型信息) self.selected_columns = [self.listbox.get(i).split(' (')[0] for i in self.listbox.curselection()] self.callback(self.selected_columns) self.window.destroy() class ParameterDialog: def __init__(self, parent, params, title, callback): self.callback = callback self.params = params self.values = {} self.window = tk.Toplevel(parent) self.window.title(title) self.window.geometry('400x300') # 创建主框架 main_frame = ttk.Frame(self.window) main_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=10) # 创建参数输入区域 for param_name, param_info in params.items(): frame = ttk.Frame(main_frame) frame.pack(fill=tk.X, pady=5) ttk.Label(frame, text=param_info['label']).pack(side=tk.LEFT) if param_info['type'] == 'choice': var = tk.StringVar(value=param_info['default']) combo = ttk.Combobox(frame, textvariable=var, values=param_info['choices']) combo.pack(side=tk.RIGHT, fill=tk.X, expand=True) self.values[param_name] = var elif param_info['type'] == 'int': var = tk.IntVar(value=param_info['default']) spin = ttk.Spinbox(frame, from_=param_info['min'], to=param_info['max'], textvariable=var) spin.pack(side=tk.RIGHT, fill=tk.X, expand=True) self.values[param_name] = var elif param_info['type'] == 'str': var = tk.StringVar(value=param_info['default']) entry = ttk.Entry(frame, textvariable=var) entry.pack(side=tk.RIGHT, fill=tk.X, expand=True) self.values[param_name] = var # 创建按钮区域 button_frame = ttk.Frame(self.window) button_frame.pack(fill=tk.X, padx=10, pady=10) ttk.Button(button_frame, text="确定", command=self.on_confirm).pack(side=tk.LEFT, padx=10) ttk.Button(button_frame, text="取消", command=self.window.destroy).pack(side=tk.LEFT) def on_confirm(self): result = {param_name: var.get() for param_name, var in self.values.items()} self.callback(result) self.window.destroy()
2301_80863610/Undoom
Excel格式化工具/src/components.py
Python
unknown
3,799
import pandas as pd import numpy as np import logging from datetime import datetime class DataHandler: def __init__(self): self.df = None self.operation_history = [] self.redo_history = [] def load_excel(self, file_path): """加载Excel文件并验证格式""" try: file_ext = file_path.lower().split('.')[-1] if file_ext not in ['xlsx', 'xls']: raise ValueError('不支持的文件格式,请使用.xlsx或.xls格式的Excel文件') self.df = pd.read_excel(file_path) return self.df except Exception as e: logging.error(f'加载Excel文件失败: {str(e)}') raise def save_excel(self, file_path): """保存Excel文件""" try: self.df.to_excel(file_path, index=False) logging.info(f'文件已保存: {file_path}') except Exception as e: logging.error(f'保存Excel文件失败: {str(e)}') raise def get_statistics(self): """获取数据统计信息""" return { 'row_count': len(self.df), 'column_count': len(self.df.columns), 'null_count': self.df.isnull().sum().sum() } def get_column_types(self): """获取列数据类型""" return self.df.dtypes def remove_spaces(self, columns): """删除指定列的空格""" for col in columns: if self.df[col].dtype == object: self.df[col] = self.df[col].str.strip() return self.df def normalize_case(self, case_type, columns): """统一大小写""" for col in columns: if self.df[col].dtype == object: if case_type == 'lower': self.df[col] = self.df[col].str.lower() elif case_type == 'upper': self.df[col] = self.df[col].str.upper() elif case_type == 'title': self.df[col] = self.df[col].str.title() return self.df def format_numbers(self, decimal_places, columns): """格式化数字""" for col in columns: if pd.api.types.is_numeric_dtype(self.df[col]): self.df[col] = self.df[col].round(decimal_places) return self.df def format_dates(self, date_format, columns): """格式化日期""" for col in columns: if pd.api.types.is_datetime64_any_dtype(self.df[col]): self.df[col] = self.df[col].dt.strftime(date_format) return self.df def remove_special_chars(self, pattern, columns): """删除特殊字符""" for col in columns: if self.df[col].dtype == object: self.df[col] = self.df[col].str.replace(pattern, '', regex=True) return self.df def fill_empty_values(self, method, value=None, columns=None): """填充空值""" if columns is None: columns = self.df.columns for col in columns: if method == 'value': self.df[col].fillna(value, inplace=True) elif method == 'mean': if pd.api.types.is_numeric_dtype(self.df[col]): self.df[col].fillna(self.df[col].mean(), inplace=True) elif method == 'median': if pd.api.types.is_numeric_dtype(self.df[col]): self.df[col].fillna(self.df[col].median(), inplace=True) elif method == 'mode': self.df[col].fillna(self.df[col].mode()[0], inplace=True) elif method == 'ffill': self.df[col].fillna(method='ffill', inplace=True) elif method == 'bfill': self.df[col].fillna(method='bfill', inplace=True) return self.df def remove_empty_rows(self): """删除空行 删除所有单元格都为空值(包括NaN、None、空字符串)的行 """ try: # 检查每个单元格是否为空(包括NaN、None和空字符串) is_empty = self.df.apply(lambda x: x.isna() | (x.astype(str).str.strip() == '')) # 找出所有单元格都为空的行 empty_rows = is_empty.all(axis=1) # 删除空行 self.df = self.df[~empty_rows] logging.info(f'已删除 {empty_rows.sum()} 个空行') return self.df except Exception as e: logging.error(f'删除空行失败: {str(e)}') raise
2301_80863610/Undoom
Excel格式化工具/src/data_handler.py
Python
unknown
4,592
import tkinter as tk from tkinter import ttk, filedialog, messagebox import logging import os from datetime import datetime from data_handler import DataHandler from components import ColumnSelector, ParameterDialog # 配置日志 logging.basicConfig( filename='excel_cleaner.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) class ExcelCleaner: def __init__(self): self.window = tk.Tk() self.window.title("Excel数据格式化工具") self.window.geometry("1200x800") self.window.configure(bg='#f0f0f0') # 初始化数据处理器 self.data_handler = DataHandler() self.current_file = None # 创建主界面 self.create_gui() def create_gui(self): # 创建主框架 main_frame = ttk.Frame(self.window) main_frame.pack(fill=tk.BOTH, expand=True, padx=10, pady=5) # 左侧工具面板 left_panel = ttk.LabelFrame(main_frame, text="工具面板", padding=10) left_panel.pack(side=tk.LEFT, fill=tk.Y, padx=5, pady=5) # 文件操作区域 self.create_file_frame(left_panel) # 数据处理操作区域 self.create_operation_frame(left_panel) # 右侧预览区域 right_panel = ttk.LabelFrame(main_frame, text="数据预览", padding=10) right_panel.pack(side=tk.LEFT, fill=tk.BOTH, expand=True, padx=5, pady=5) # 创建预览表格 self.create_preview_table(right_panel) # 创建状态栏 self.status_var = tk.StringVar() self.status_var.set("就绪") status_bar = ttk.Label(self.window, textvariable=self.status_var, relief=tk.SUNKEN) status_bar.pack(side=tk.BOTTOM, fill=tk.X) def create_file_frame(self, parent): file_frame = ttk.LabelFrame(parent, text="文件操作", padding=5) file_frame.pack(fill=tk.X, pady=5) ttk.Button(file_frame, text="打开文件", command=self.open_file).pack(fill=tk.X, pady=2) ttk.Button(file_frame, text="保存文件", command=self.save_file).pack(fill=tk.X, pady=2) def create_operation_frame(self, parent): op_frame = ttk.LabelFrame(parent, text="数据处理", padding=5) op_frame.pack(fill=tk.X, pady=5) operations = [ ("删除空格", self.remove_spaces), ("统一大小写", self.normalize_case), ("格式化数字", self.format_numbers), ("格式化日期", self.format_dates), ("删除特殊字符", self.remove_special_chars), ("填充空值", self.fill_empty_values), ("删除空行", self.remove_empty_rows) ] for op_name, op_func in operations: ttk.Button(op_frame, text=op_name, command=op_func).pack(fill=tk.X, pady=2) def create_preview_table(self, parent): # 创建表格框架 table_frame = ttk.Frame(parent) table_frame.pack(fill=tk.BOTH, expand=True) # 创建水平和垂直滚动条 h_scrollbar = ttk.Scrollbar(table_frame, orient=tk.HORIZONTAL) v_scrollbar = ttk.Scrollbar(table_frame) h_scrollbar.pack(side=tk.BOTTOM, fill=tk.X) v_scrollbar.pack(side=tk.RIGHT, fill=tk.Y) # 创建表格 self.preview_table = ttk.Treeview(table_frame, yscrollcommand=v_scrollbar.set, xscrollcommand=h_scrollbar.set) self.preview_table.pack(fill=tk.BOTH, expand=True) # 配置滚动条 h_scrollbar.config(command=self.preview_table.xview) v_scrollbar.config(command=self.preview_table.yview) def update_preview(self): # 清空现有数据 for item in self.preview_table.get_children(): self.preview_table.delete(item) if self.data_handler.df is not None: # 设置列 self.preview_table['columns'] = list(self.data_handler.df.columns) self.preview_table['show'] = 'headings' # 设置列标题 for column in self.data_handler.df.columns: self.preview_table.heading(column, text=column) self.preview_table.column(column, width=100) # 添加数据(限制显示前100行) for idx, row in self.data_handler.df.head(100).iterrows(): self.preview_table.insert('', tk.END, values=list(row)) # 更新状态栏 stats = self.data_handler.get_statistics() self.status_var.set( f"总行数: {stats['row_count']} | 总列数: {stats['column_count']} | " f"空值数: {stats['null_count']}") def open_file(self): try: file_path = filedialog.askopenfilename( filetypes=[("Excel文件", "*.xlsx;*.xls")] ) if file_path: self.current_file = file_path self.data_handler.load_excel(file_path) self.update_preview() messagebox.showinfo("成功", "文件加载成功!") except Exception as e: messagebox.showerror("错误", str(e)) def save_file(self): if self.data_handler.df is None: messagebox.showwarning("警告", "没有数据可保存!") return try: file_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel文件", "*.xlsx")] ) if file_path: self.data_handler.save_excel(file_path) messagebox.showinfo("成功", "文件保存成功!") except Exception as e: messagebox.showerror("错误", str(e)) def remove_spaces(self): if self.data_handler.df is None: messagebox.showwarning("警告", "请先加载数据!") return def on_columns_selected(columns): try: self.data_handler.remove_spaces(columns) self.update_preview() messagebox.showinfo("成功", "空格删除成功!") except Exception as e: messagebox.showerror("错误", str(e)) ColumnSelector(self.window, self.data_handler.df.columns, self.data_handler.get_column_types(), "选择要删除空格的列", on_columns_selected) def normalize_case(self): if self.data_handler.df is None: messagebox.showwarning("警告", "请先加载数据!") return params = { 'case_type': { 'label': '大小写类型', 'type': 'choice', 'choices': ['lower', 'upper', 'title'], 'default': 'lower' } } def on_params_set(params_values): def on_columns_selected(columns): try: self.data_handler.normalize_case(params_values['case_type'], columns) self.update_preview() messagebox.showinfo("成功", "大小写转换成功!") except Exception as e: messagebox.showerror("错误", str(e)) ColumnSelector(self.window, self.data_handler.df.columns, self.data_handler.get_column_types(), "选择要转换大小写的列", on_columns_selected) ParameterDialog(self.window, params, "设置大小写转换参数", on_params_set) def format_numbers(self): if self.data_handler.df is None: messagebox.showwarning("警告", "请先加载数据!") return params = { 'decimal_places': { 'label': '小数位数', 'type': 'int', 'min': 0, 'max': 10, 'default': 2 } } def on_params_set(params_values): def on_columns_selected(columns): try: self.data_handler.format_numbers(params_values['decimal_places'], columns) self.update_preview() messagebox.showinfo("成功", "数字格式化成功!") except Exception as e: messagebox.showerror("错误", str(e)) ColumnSelector(self.window, self.data_handler.df.columns, self.data_handler.get_column_types(), "选择要格式化的数字列", on_columns_selected) ParameterDialog(self.window, params, "设置数字格式化参数", on_params_set) def format_dates(self): if self.data_handler.df is None: messagebox.showwarning("警告", "请先加载数据!") return params = { 'date_format': { 'label': '日期格式', 'type': 'choice', 'choices': ['%Y-%m-%d', '%Y/%m/%d', '%Y年%m月%d日'], 'default': '%Y-%m-%d' } } def on_params_set(params_values): def on_columns_selected(columns): try: self.data_handler.format_dates(params_values['date_format'], columns) self.update_preview() messagebox.showinfo("成功", "日期格式化成功!") except Exception as e: messagebox.showerror("错误", str(e)) ColumnSelector(self.window, self.data_handler.df.columns, self.data_handler.get_column_types(), "选择要格式化的日期列", on_columns_selected) ParameterDialog(self.window, params, "设置日期格式化参数", on_params_set) def remove_special_chars(self): if self.data_handler.df is None: messagebox.showwarning("警告", "请先加载数据!") return params = { 'pattern': { 'label': '要删除的字符模式', 'type': 'str', 'default': '[^\w\s]' } } def on_params_set(params_values): def on_columns_selected(columns): try: self.data_handler.remove_special_chars(params_values['pattern'], columns) self.update_preview() messagebox.showinfo("成功", "特殊字符删除成功!") except Exception as e: messagebox.showerror("错误", str(e)) ColumnSelector(self.window, self.data_handler.df.columns, self.data_handler.get_column_types(), "选择要处理的列", on_columns_selected) ParameterDialog(self.window, params, "设置特殊字符删除参数", on_params_set) def fill_empty_values(self): if self.data_handler.df is None: messagebox.showwarning("警告", "请先加载数据!") return def remove_empty_rows(self): if self.data_handler.df is None: messagebox.showwarning("警告", "请先加载数据!") return try: self.data_handler.remove_empty_rows() self.update_preview() messagebox.showinfo("成功", "空行删除成功!") except Exception as e: messagebox.showerror("错误", str(e)) params = { 'method': { 'label': '填充方法', 'type': 'choice', 'choices': ['value', 'mean', 'median', 'mode', 'ffill', 'bfill'], 'default': 'value' }, 'value': { 'label': '填充值(仅用于固定值填充)', 'type': 'str', 'default': '0' } } def on_params_set(params_values): def on_columns_selected(columns): try: self.data_handler.fill_empty_values( method=params_values['method'], value=params_values['value'], columns=columns ) self.update_preview() messagebox.showinfo("成功", "空值填充成功!") except Exception as e: messagebox.showerror("错误", str(e)) ColumnSelector(self.window, self.data_handler.df.columns, self.data_handler.get_column_types(), "选择要填充的列", on_columns_selected) ParameterDialog(self.window, params, "设置空值填充参数", on_params_set) def run(self): self.window.mainloop() if __name__ == '__main__': app = ExcelCleaner() app.run()
2301_80863610/Undoom
Excel格式化工具/src/main.py
Python
unknown
13,218
import pandas as pd import numpy as np from tkinter import * from tkinter import ttk, filedialog, messagebox import os from tkinter.scrolledtext import ScrolledText import threading from queue import Queue import logging from datetime import datetime # 配置日志 logging.basicConfig( filename='excel_cleaner.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) # 模拟 DataHandler, ColumnSelector, ParameterDialog 类 class DataHandler: def __init__(self): self.df = None self.operation_history = [] self.redo_history = [] def load_excel(self, file_path): self.df = pd.read_excel(file_path) return self.df def save_excel(self, file_path): self.df.to_excel(file_path, index=False) def get_statistics(self): return { 'row_count': len(self.df), 'column_count': len(self.df.columns) } def get_column_types(self): return self.df.dtypes def remove_spaces(self, columns): for col in columns: if self.df[col].dtype == object: self.df[col] = self.df[col].str.strip() return self.df def normalize_case(self, case_type, columns): for col in columns: if self.df[col].dtype == object: if case_type == 'lower': self.df[col] = self.df[col].str.lower() elif case_type == 'upper': self.df[col] = self.df[col].str.upper() elif case_type == 'title': self.df[col] = self.df[col].str.title() return self.df def format_numbers(self, decimal_places, columns): for col in columns: if pd.api.types.is_numeric_dtype(self.df[col]): self.df[col] = self.df[col].round(decimal_places) return self.df def format_dates(self, date_format, columns): for col in columns: if pd.api.types.is_datetime64_any_dtype(self.df[col]): self.df[col] = self.df[col].dt.strftime(date_format) return self.df def remove_special_chars(self, pattern, columns): for col in columns: if self.df[col].dtype == object: self.df[col] = self.df[col].str.replace(pattern, '', regex=True) return self.df def fill_empty_values(self, method, value=None, columns=None): if columns is None: columns = self.df.columns for col in columns: if method == 'value': self.df[col].fillna(value, inplace=True) elif method == 'mean': self.df[col].fillna(self.df[col].mean(), inplace=True) elif method == 'median': self.df[col].fillna(self.df[col].median(), inplace=True) elif method == 'mode': self.df[col].fillna(self.df[col].mode()[0], inplace=True) elif method == 'ffill': self.df[col].fillna(method='ffill', inplace=True) elif method == 'bfill': self.df[col].fillna(method='bfill', inplace=True) return self.df class ColumnSelector: def __init__(self, parent, columns, column_types, title, callback): self.callback = callback self.selected_columns = [] self.window = Toplevel(parent) self.window.title(title) ttk.Label(self.window, text="选择列:").pack(pady=10) self.listbox = Listbox(self.window, selectmode=MULTIPLE) for col in columns: self.listbox.insert(END, col) self.listbox.pack(fill=BOTH, expand=True, padx=10, pady=10) button_frame = ttk.Frame(self.window) button_frame.pack(fill=X, padx=10, pady=10) ttk.Button(button_frame, text="确定", command=self.on_confirm).pack(side=LEFT, padx=10) ttk.Button(button_frame, text="取消", command=self.window.destroy).pack(side=LEFT) def on_confirm(self): self.selected_columns = [self.listbox.get(i) for i in self.listbox.curselection()] self.callback(self.selected_columns) self.window.destroy() class ParameterDialog: def __init__(self, parent, params, title, callback): self.callback = callback self.params = params self.values = {} self.window = Toplevel(parent) self.window.title(title) for param_name, param_info in params.items(): ttk.Label(self.window, text=param_info['label']).pack(pady=5) if param_info['type'] == 'choice': var = StringVar() var.set(param_info['default']) ttk.Combobox(self.window, textvariable=var, values=param_info['choices']).pack(fill=X, padx=10) self.values[param_name] = var elif param_info['type'] == 'int': var = IntVar() var.set(param_info['default']) ttk.Spinbox(self.window, from_=param_info['min'], to=param_info['max'], textvariable=var).pack(fill=X, padx=10) self.values[param_name] = var elif param_info['type'] == 'str': var = StringVar() var.set(param_info['default']) ttk.Entry(self.window, textvariable=var).pack(fill=X, padx=10) self.values[param_name] = var button_frame = ttk.Frame(self.window) button_frame.pack(fill=X, padx=10, pady=10) ttk.Button(button_frame, text="确定", command=self.on_confirm).pack(side=LEFT, padx=10) ttk.Button(button_frame, text="取消", command=self.window.destroy).pack(side=LEFT) def on_confirm(self): result = {param_name: var.get() for param_name, var in self.values.items()} self.callback(result) self.window.destroy() class ExcelCleaner: def __init__(self): self.window = Tk() self.window.title("Excel数据格式化批处理工具") self.window.geometry("1000x800") self.window.configure(bg='#f0f0f0') # 初始化数据处理器 self.data_handler = DataHandler() self.processing_queue = Queue() # 设置样式 self.setup_styles() # 创建菜单栏 self.create_menu() # 创建主框架 main_frame = ttk.Frame(self.window) main_frame.pack(fill=BOTH, expand=True, padx=10, pady=5) # 左侧工具面板 left_panel = ttk.LabelFrame(main_frame, text="工具面板", padding=10) left_panel.pack(side=LEFT, fill=Y, padx=5, pady=5) # 文件操作区域 self.create_file_frame(left_panel) # 清洗操作区域 self.create_clean_frame(left_panel) # 右侧主要内容区域 right_panel = ttk.Frame(main_frame) right_panel.pack(side=LEFT, fill=BOTH, expand=True, padx=5) # 预览区域 self.create_preview_frame(right_panel) # 状态栏 self.create_status_bar() # 进度条 self.create_progress_bar() # 绑定快捷键 self.bind_shortcuts() def setup_styles(self): style = ttk.Style() style.theme_use('clam') # 配置按钮样式 style.configure( "Tool.TButton", padding=5, font=('微软雅黑', 10), background='#e1e1e1', foreground='#333333' ) # 配置标签样式 style.configure( "Title.TLabel", font=('微软雅黑', 12, 'bold'), background='#f0f0f0', foreground='#333333' ) # 配置框架样式 style.configure( "Card.TLabelframe", background='#ffffff', padding=10 ) # 配置树形视图样式 style.configure( "Preview.Treeview", font=('微软雅黑', 10), rowheight=25 ) # 配置进度条样式 style.configure( "Progress.Horizontal.TProgressbar", troughcolor='#f0f0f0', background='#4CAF50', thickness=10 ) def create_progress_bar(self): self.progress_var = DoubleVar() self.progress_bar = ttk.Progressbar( self.window, style="Progress.Horizontal.TProgressbar", variable=self.progress_var, maximum=100 ) self.progress_bar.pack(fill=X, padx=5, pady=2) def bind_shortcuts(self): self.window.bind('<Control-o>', lambda e: self.select_file()) self.window.bind('<Control-s>', lambda e: self.save_file()) self.window.bind('<Control-z>', lambda e: self.undo()) self.window.bind('<Control-y>', lambda e: self.redo()) self.window.bind('<F1>', lambda e: self.show_help()) def process_in_background(self, func, *args, **kwargs): """在后台线程中处理耗时操作""" def wrapper(): try: self.progress_var.set(0) self.status_var.set("正在处理...") self.window.update() # 执行操作 result = func(*args, **kwargs) # 更新UI self.window.after(0, self.update_ui_after_processing, result) except Exception as e: logging.error(f"处理错误: {str(e)}") self.window.after(0, self.show_error, str(e)) finally: self.window.after(0, self.progress_var.set, 100) self.window.after(0, self.status_var.set, "处理完成") # 启动后台线程 thread = threading.Thread(target=wrapper) thread.daemon = True thread.start() def update_ui_after_processing(self, result): """处理完成后更新UI""" if isinstance(result, tuple): self.data_handler.df = result[0] if len(result) > 1: removed_rows = result[1] self.status_var.set(f"已删除 {removed_rows} 行数据") elif isinstance(result, pd.DataFrame): self.data_handler.df = result if result is not None: self.update_preview() def show_error(self, error_msg): """显示错误消息""" messagebox.showerror("错误", f"处理过程中出现错误:{error_msg}") self.status_var.set("处理失败") def select_file(self): file_path = filedialog.askopenfilename( filetypes=[("Excel files", "*.xlsx *.xls")] ) if file_path: self.process_in_background(self.data_handler.load_excel, file_path) def save_file(self): if self.data_handler.df is not None: file_path = filedialog.asksaveasfilename( defaultextension=".xlsx", filetypes=[("Excel files", "*.xlsx")] ) if file_path: self.process_in_background(self.data_handler.save_excel, file_path) def undo(self): """撤销上一步操作""" if self.data_handler.operation_history: last_operation = self.data_handler.operation_history.pop() self.data_handler.df = last_operation['previous_state'].copy() self.update_preview() self.status_var.set("已撤销上一步操作") def redo(self): """重做上一步操作""" if hasattr(self.data_handler, 'redo_history') and self.data_handler.redo_history: last_operation = self.data_handler.redo_history.pop() self.data_handler.df = last_operation['next_state'].copy() self.data_handler.operation_history.append(last_operation) self.update_preview() self.status_var.set("已重做上一步操作") def add_operation_to_history(self, operation_name, previous_state, next_state): """添加操作到历史记录""" self.data_handler.operation_history.append({ 'name': operation_name, 'previous_state': previous_state.copy(), 'next_state': next_state.copy() }) # 清空重做历史 if hasattr(self.data_handler, 'redo_history'): self.data_handler.redo_history.clear() def remove_duplicates(self): if self.data_handler.df is not None: previous_state = self.data_handler.df.copy() self.data_handler.df = self.data_handler.df.drop_duplicates() removed_rows = len(previous_state) - len(self.data_handler.df) self.add_operation_to_history("删除重复行", previous_state, self.data_handler.df.copy()) self.update_preview() self.status_var.set(f"已删除 {removed_rows} 行重复数据") def remove_empty_rows(self): if self.data_handler.df is not None: previous_state = self.data_handler.df.copy() self.data_handler.df = self.data_handler.df.dropna(how='all') removed_rows = len(previous_state) - len(self.data_handler.df) self.add_operation_to_history("删除空行", previous_state, self.data_handler.df.copy()) self.update_preview() self.status_var.set(f"已删除 {removed_rows} 行空数据") def remove_spaces(self): if self.data_handler.df is not None: def on_columns_selected(columns): self.process_in_background( self.data_handler.remove_spaces, columns=columns ) ColumnSelector( self.window, list(self.data_handler.df.columns), self.data_handler.get_column_types(), title="选择要去除空格的列", callback=on_columns_selected ) def normalize_case(self): if self.data_handler.df is not None: def on_params_set(params): def on_columns_selected(columns): self.process_in_background( self.data_handler.normalize_case, case_type=params["case_type"], columns=columns ) ColumnSelector( self.window, list(self.data_handler.df.columns), self.data_handler.get_column_types(), title="选择要统一大小写的列", callback=on_columns_selected ) params = { "case_type": { "type": "choice", "label": "大小写格式", "default": "lower", "choices": ["lower", "upper", "title"] } } ParameterDialog( self.window, params, title="选择大小写格式", callback=on_params_set ) def format_numbers(self): if self.data_handler.df is not None: def on_params_set(params): def on_columns_selected(columns): self.process_in_background( self.data_handler.format_numbers, decimal_places=params["decimal_places"], columns=columns ) ColumnSelector( self.window, list(self.data_handler.df.columns), self.data_handler.get_column_types(), title="选择要格式化的数值列", callback=on_columns_selected ) params = { "decimal_places": { "type": "int", "label": "小数位数", "default": 2, "min": 0, "max": 10 } } ParameterDialog( self.window, params, title="设置数值格式", callback=on_params_set ) def format_dates(self): if self.data_handler.df is not None: def on_params_set(params): def on_columns_selected(columns): self.process_in_background( self.data_handler.format_dates, date_format=params["date_format"], columns=columns ) ColumnSelector( self.window, list(self.data_handler.df.columns), self.data_handler.get_column_types(), title="选择要格式化的日期列", callback=on_columns_selected ) params = { "date_format": { "type": "choice", "label": "日期格式", "default": "%Y-%m-%d", "choices": [ "%Y-%m-%d", "%Y/%m/%d", "%d-%m-%Y", "%m/%d/%Y" ] } } ParameterDialog( self.window, params, title="选择日期格式", callback=on_params_set ) def remove_special_chars(self): if self.data_handler.df is not None: def on_params_set(params): def on_columns_selected(columns): self.process_in_background( self.data_handler.remove_special_chars, pattern=params["pattern"], columns=columns ) ColumnSelector( self.window, list(self.data_handler.df.columns), self.data_handler.get_column_types(), title="选择要处理的列", callback=on_columns_selected ) params = { "pattern": { "type": "str", "label": "正则表达式", "default": r'[^\w\s]' } } ParameterDialog( self.window, params, title="设置正则表达式", callback=on_params_set ) def fill_empty_values(self): if self.data_handler.df is not None: def on_params_set(params): def on_columns_selected(columns): value = params.get("value") if params["method"] == "value" and value: try: # 尝试转换为数值 value = float(value) if '.' in value else int(value) except ValueError: pass self.process_in_background( self.data_handler.fill_empty_values, method=params["method"], value=value, columns=columns ) ColumnSelector( self.window, list(self.data_handler.df.columns), self.data_handler.get_column_types(), title="选择要填充的列", callback=on_columns_selected ) params = { "method": { "type": "choice", "label": "填充方式", "default": "mean", "choices": ["mean", "median", "mode", "ffill", "bfill", "value"] }, "value": { "type": "str", "label": "填充值", "default": "" } } ParameterDialog( self.window, params, title="选择填充方式", callback=on_params_set ) def analyze_data(self): if self.data_handler.df is not None: analysis_window = Toplevel(self.window) analysis_window.title("数据分析") analysis_window.geometry("600x400") stats_text = ScrolledText(analysis_window, wrap=WORD, width=70, height=20) stats_text.pack(padx=10, pady=10, fill=BOTH, expand=True) stats = [] stats.append("数据基本信息:") stats.append("-" * 50) stats.append(f"总行数:{len(self.data_handler.df)}") stats.append(f"总列数:{len(self.data_handler.df.columns)}") stats.append("\n数值列统计:") stats.append("-" * 50) numeric_stats = self.data_handler.df.describe() stats.append(str(numeric_stats)) stats.append("\n空值统计:") stats.append("-" * 50) null_counts = self.data_handler.df.isnull().sum() stats.append(str(null_counts)) stats_text.insert(END, "\n".join(stats)) stats_text.configure(state='disabled') def visualize_data(self): if self.data_handler.df is not None: try: import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg # 设置中文字体 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 viz_window = Toplevel(self.window) viz_window.title("数据可视化") viz_window.geometry("800x600") options_frame = ttk.Frame(viz_window) options_frame.pack(fill=X, padx=10, pady=5) ttk.Label(options_frame, text="图表类型:").pack(side=LEFT) chart_type = StringVar(value="bar") ttk.Radiobutton(options_frame, text="柱状图", variable=chart_type, value="bar").pack(side=LEFT) ttk.Radiobutton(options_frame, text="折线图", variable=chart_type, value="line").pack(side=LEFT) ttk.Radiobutton(options_frame, text="散点图", variable=chart_type, value="scatter").pack(side=LEFT) # 添加列选择 ttk.Label(options_frame, text=" 选择列:").pack(side=LEFT) column_var = StringVar() numeric_columns = list(self.data_handler.df.select_dtypes(include=[np.number]).columns) if not numeric_columns: messagebox.showwarning("警告", "没有可用的数值列进行可视化") return column_combo = ttk.Combobox(options_frame, textvariable=column_var, values=numeric_columns) column_combo.pack(side=LEFT) column_combo.set(numeric_columns[0]) fig, ax = plt.subplots(figsize=(10, 6)) canvas = FigureCanvasTkAgg(fig, master=viz_window) canvas.get_tk_widget().pack(fill=BOTH, expand=True, padx=10, pady=5) def update_chart(): try: ax.clear() chart_style = chart_type.get() selected_column = column_var.get() if not selected_column: messagebox.showwarning("警告", "请选择要可视化的列") return if chart_style == "bar": self.data_handler.df[selected_column].plot(kind='bar', ax=ax) ax.set_title(f"{selected_column} 柱状图") elif chart_style == "line": self.data_handler.df[selected_column].plot(kind='line', ax=ax) ax.set_title(f"{selected_column} 折线图") else: # scatter if len(numeric_columns) >= 2: x_col = selected_column y_col = next(col for col in numeric_columns if col != x_col) self.data_handler.df.plot(kind='scatter', x=x_col, y=y_col, ax=ax) ax.set_title(f"{x_col} vs {y_col} 散点图") else: messagebox.showwarning("警告", "需要至少两个数值列才能创建散点图") return plt.tight_layout() canvas.draw() except Exception as e: messagebox.showerror("错误", f"绘图时发生错误:{str(e)}") ttk.Button(options_frame, text="更新图表", command=update_chart).pack(side=LEFT, padx=10) update_chart() except ImportError: messagebox.showwarning("警告", "请安装matplotlib库以使用可视化功能") def run(self): self.window.mainloop() def create_menu(self): menubar = Menu(self.window) self.window.config(menu=menubar) # 文件菜单 file_menu = Menu(menubar, tearoff=0) menubar.add_cascade(label="文件", menu=file_menu) file_menu.add_command(label="打开 (Ctrl+O)", command=self.select_file) file_menu.add_command(label="保存 (Ctrl+S)", command=self.save_file) file_menu.add_separator() file_menu.add_command(label="退出", command=self.window.quit) # 编辑菜单 edit_menu = Menu(menubar, tearoff=0) menubar.add_cascade(label="编辑", menu=edit_menu) edit_menu.add_command(label="撤销 (Ctrl+Z)", command=self.undo) edit_menu.add_command(label="重做 (Ctrl+Y)", command=self.redo) # 视图菜单 view_menu = Menu(menubar, tearoff=0) menubar.add_cascade(label="视图", menu=view_menu) view_menu.add_checkbutton(label="显示状态栏", command=self.toggle_status_bar) # 帮助菜单 help_menu = Menu(menubar, tearoff=0) menubar.add_cascade(label="帮助", menu=help_menu) help_menu.add_command(label="使用说明 (F1)", command=self.show_help) help_menu.add_command(label="关于", command=self.show_about) def create_file_frame(self, parent): file_frame = ttk.LabelFrame(parent, text="文件操作", padding=10, style="Card.TLabelframe") file_frame.pack(fill=X, pady=(0, 10)) # 文件选择 self.file_path = StringVar() ttk.Label(file_frame, text="Excel文件:", style="Title.TLabel").pack(anchor=W) ttk.Entry(file_frame, textvariable=self.file_path, width=30).pack(fill=X, pady=5) button_frame = ttk.Frame(file_frame) button_frame.pack(fill=X) ttk.Button(button_frame, text="浏览", command=self.select_file, style="Tool.TButton").pack(side=LEFT, padx=2) ttk.Button(button_frame, text="保存", command=self.save_file, style="Tool.TButton").pack(side=LEFT, padx=2) def create_clean_frame(self, parent): clean_frame = ttk.LabelFrame(parent, text="数据清洗", padding=10, style="Card.TLabelframe") clean_frame.pack(fill=BOTH, expand=True) operations = [ ("删除重复行", self.remove_duplicates), ("删除空行", self.remove_empty_rows), ("去除空格", self.remove_spaces), ("统一大小写", self.normalize_case), ("数值格式化", self.format_numbers), ("日期格式化", self.format_dates), ("删除特殊字符", self.remove_special_chars), ("填充空值", self.fill_empty_values), ("数据分析", self.analyze_data), ("数据可视化", self.visualize_data) ] for text, command in operations: btn = ttk.Button(clean_frame, text=text, command=command, style="Tool.TButton") btn.pack(fill=X, pady=2) def create_preview_frame(self, parent): preview_frame = ttk.LabelFrame(parent, text="数据预览", padding=10, style="Card.TLabelframe") preview_frame.pack(fill=BOTH, expand=True) # 创建带滚动条的树形视图 tree_frame = ttk.Frame(preview_frame) tree_frame.pack(fill=BOTH, expand=True) # 创建水平滚动条 h_scrollbar = ttk.Scrollbar(tree_frame, orient=HORIZONTAL) h_scrollbar.pack(side=BOTTOM, fill=X) # 创建垂直滚动条 v_scrollbar = ttk.Scrollbar(tree_frame) v_scrollbar.pack(side=RIGHT, fill=Y) # 创建树形视图 self.tree = ttk.Treeview( tree_frame, style="Preview.Treeview", xscrollcommand=h_scrollbar.set, yscrollcommand=v_scrollbar.set ) self.tree.pack(fill=BOTH, expand=True) # 配置滚动条 h_scrollbar.config(command=self.tree.xview) v_scrollbar.config(command=self.tree.yview) # 创建统计信息面板 stats_frame = ttk.Frame(preview_frame) stats_frame.pack(fill=X, pady=(10, 0)) self.stats_label = ttk.Label(stats_frame, text="", style="Title.TLabel") self.stats_label.pack(side=LEFT) def create_status_bar(self): self.status_var = StringVar() self.status_bar = ttk.Label( self.window, textvariable=self.status_var, relief=SUNKEN, padding=(5, 2) ) self.status_bar.pack(fill=X, padx=5, pady=2) def toggle_status_bar(self): # 切换状态栏显示/隐藏 if self.status_bar.winfo_viewable(): self.status_bar.pack_forget() else: self.status_bar.pack(fill=X, padx=5, pady=2) def update_preview(self): # 清空现有数据 for item in self.tree.get_children(): self.tree.delete(item) if self.data_handler.df is not None: df = self.data_handler.df # 设置列 self.tree["columns"] = list(df.columns) self.tree["show"] = "headings" for column in df.columns: self.tree.heading(column, text=column) self.tree.column(column, width=100, anchor='center') # 添加数据(仅显示前100行) for i, row in df.head(100).iterrows(): self.tree.insert("", END, values=list(row)) # 更新统计标签 stats = self.data_handler.get_statistics() self.stats_label.config( text=f"行数: {stats['row_count']} | 列数: {stats['column_count']}" ) # 更新状态栏 self.status_var.set( f"当前加载文件: {os.path.basename(self.file_path.get())} | " f"行数: {stats['row_count']} | 列数: {stats['column_count']}" ) else: self.status_var.set("请先加载文件") def show_help(self): help_text = """ Excel数据格式化批处理工具使用说明: 1. 文件操作: - 点击"浏览"选择Excel文件 - 点击"保存"保存处理后的文件 2. 数据清洗功能: - 删除重复行:删除完全重复的数据行 - 删除空行:删除全为空值的行 - 去除空格:删除文本中的首尾空格 - 统一大小写:统一文本的大小写格式 - 数值格式化:统一数值的小数位数 - 日期格式化:统一日期的显示格式 - 删除特殊字符:清除文本中的特殊字符 - 填充空值:使用多种方式填充缺失值 3. 数据分析: - 查看基本统计信息 - 空值分析 - 数据分布可视化 4. 快捷键: - Ctrl+O:打开文件 - Ctrl+S:保存文件 - Ctrl+Z:撤销 - Ctrl+Y:重做 - F1:显示帮助 """ help_window = Toplevel(self.window) help_window.title("使用说明") help_window.geometry("600x400") help_text_widget = ScrolledText(help_window, wrap=WORD, width=70, height=20) help_text_widget.pack(padx=10, pady=10, fill=BOTH, expand=True) help_text_widget.insert(END, help_text) help_text_widget.configure(state='disabled') def show_about(self): about_text = """ Excel数据格式化批处理工具 功能特点: - 支持多种数据清洗操作 - 实时预览数据变化 - 数据分析和可视化 - 后台处理,避免卡顿 - 撤销/重做功能 - 友好的图形界面 """ messagebox.showinfo("关于", about_text) if __name__ == "__main__": try: app = ExcelCleaner() app.run() except Exception as e: logging.error(f"程序运行错误: {str(e)}") messagebox.showerror("错误", f"程序运行出错:{str(e)}") # 优化的代码,运行即出现GUI界面
2301_80863610/Undoom
Excel格式化工具/test.py
Python
unknown
33,323
#!/bin/bash # 定义下载地址和文件名 DOWNLOAD_URL="https://cangjie-lang.cn/v1/files/auth/downLoad?nsId=142267&fileName=Cangjie-0.53.13-linux_x64.tar.gz&objectKey=6719f1eb3af6947e3c6af327" FILE_NAME="Cangjie-0.53.13-linux_x64.tar.gz" # 检查 cangjie 工具链是否已安装 echo "确保 cangjie 工具链已安装..." if ! command -v cjc -v &> /dev/null then echo "cangjie工具链 未安装,尝试进行安装..." # 下载文件 echo "Downloading Cangjie compiler..." curl -L -o "$FILE_NAME" "$DOWNLOAD_URL" # 检查下载是否成功 if [ $? -eq 0 ]; then echo "Download completed successfully." else echo "Download failed." exit 1 fi # 解压文件 echo "Extracting $FILE_NAME..." tar -xvf "$FILE_NAME" # 检查解压是否成功 if [ $? -eq 0 ]; then echo "Extraction completed successfully." else echo "Extraction failed." exit 1 fi # 检查 envsetup.sh 是否存在并进行 source if [[ -f "cangjie/envsetup.sh" ]]; then echo "envsetup.sh found!" source cangjie/envsetup.sh else echo "envsetup.sh not found!" exit 1 fi fi # 检查 openEuler 防火墙状态 echo "检查 openEuler 防火墙状态..." if systemctl status firewalld | grep "active (running)" &> /dev/null; then echo "防火墙已开启,尝试开放 21 端口..." firewall-cmd --zone=public --add-port=21/tcp --permanent firewall-cmd --reload echo "21 端口已开放。" else echo "防火墙未开启,无需开放端口。" fi # 编译ftp_server echo "正在编译 ftp_server..." cjpm build # 检查编译是否成功 if [ $? -eq 0 ]; then echo "编译成功." else echo "编译失败." exit 1 fi # 运行 ftp_server echo "正在启动 ftp 服务器..." cjpm run
2301_80674151/Cangjie-Examples_4666
FTP/run-ftp.sh
Shell
apache-2.0
1,967