content
stringlengths
5
1.05M
from __future__ import print_function import json import random import logging print('Loading function') logger = logging.getLogger() logger.setLevel(logging.INFO) def respond(err, res=None): return res def lambda_handler(event, context): print("Print Received event: " + json.dumps(event, indent=2)) num_list = event['numbers'] # print("num_str : ", type(num_str), num_str) # print("num_str[0] : ", type(num_str[0]), num_str[0]) my_sorted = sorted(num_list) return respond(None, my_sorted)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os import json from collections import OrderedDict from collections import defaultdict import numpy as np from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval from ..modeling.keypoint_utils import oks_nms __all__ = ['KeyPointTopDownCOCOEval'] class KeyPointTopDownCOCOEval(object): def __init__(self, anno_file, num_samples, num_joints, output_eval, iou_type='keypoints', in_vis_thre=0.2, oks_thre=0.9): super(KeyPointTopDownCOCOEval, self).__init__() self.coco = COCO(anno_file) self.num_samples = num_samples self.num_joints = num_joints self.iou_type = iou_type self.in_vis_thre = in_vis_thre self.oks_thre = oks_thre self.output_eval = output_eval self.res_file = os.path.join(output_eval, "keypoints_results.json") self.reset() def reset(self): self.results = { 'all_preds': np.zeros( (self.num_samples, self.num_joints, 3), dtype=np.float32), 'all_boxes': np.zeros((self.num_samples, 6)), 'image_path': [] } self.eval_results = {} self.idx = 0 def update(self, inputs, outputs): kpts, _ = outputs['keypoint'][0] num_images = inputs['image'].shape[0] self.results['all_preds'][self.idx:self.idx + num_images, :, 0: 3] = kpts[:, :, 0:3] self.results['all_boxes'][self.idx:self.idx + num_images, 0: 2] = inputs['center'].numpy()[:, 0:2] self.results['all_boxes'][self.idx:self.idx + num_images, 2: 4] = inputs['scale'].numpy()[:, 0:2] self.results['all_boxes'][self.idx:self.idx + num_images, 4] = np.prod( inputs['scale'].numpy() * 200, 1) self.results['all_boxes'][self.idx:self.idx + num_images, 5] = np.squeeze(inputs['score'].numpy()) self.results['image_path'].extend(inputs['im_id'].numpy()) self.idx += num_images def _write_coco_keypoint_results(self, keypoints): data_pack = [{ 'cat_id': 1, 'cls': 'person', 'ann_type': 'keypoints', 'keypoints': keypoints }] results = self._coco_keypoint_results_one_category_kernel(data_pack[0]) if not os.path.exists(self.output_eval): os.makedirs(self.output_eval) with open(self.res_file, 'w') as f: json.dump(results, f, sort_keys=True, indent=4) try: json.load(open(self.res_file)) except Exception: content = [] with open(self.res_file, 'r') as f: for line in f: content.append(line) content[-1] = ']' with open(self.res_file, 'w') as f: for c in content: f.write(c) def _coco_keypoint_results_one_category_kernel(self, data_pack): cat_id = data_pack['cat_id'] keypoints = data_pack['keypoints'] cat_results = [] for img_kpts in keypoints: if len(img_kpts) == 0: continue _key_points = np.array( [img_kpts[k]['keypoints'] for k in range(len(img_kpts))]) _key_points = _key_points.reshape(_key_points.shape[0], -1) result = [{ 'image_id': img_kpts[k]['image'], 'category_id': cat_id, 'keypoints': _key_points[k].tolist(), 'score': img_kpts[k]['score'], 'center': list(img_kpts[k]['center']), 'scale': list(img_kpts[k]['scale']) } for k in range(len(img_kpts))] cat_results.extend(result) return cat_results def get_final_results(self, preds, all_boxes, img_path): _kpts = [] for idx, kpt in enumerate(preds): _kpts.append({ 'keypoints': kpt, 'center': all_boxes[idx][0:2], 'scale': all_boxes[idx][2:4], 'area': all_boxes[idx][4], 'score': all_boxes[idx][5], 'image': int(img_path[idx]) }) # image x person x (keypoints) kpts = defaultdict(list) for kpt in _kpts: kpts[kpt['image']].append(kpt) # rescoring and oks nms num_joints = preds.shape[1] in_vis_thre = self.in_vis_thre oks_thre = self.oks_thre oks_nmsed_kpts = [] for img in kpts.keys(): img_kpts = kpts[img] for n_p in img_kpts: box_score = n_p['score'] kpt_score = 0 valid_num = 0 for n_jt in range(0, num_joints): t_s = n_p['keypoints'][n_jt][2] if t_s > in_vis_thre: kpt_score = kpt_score + t_s valid_num = valid_num + 1 if valid_num != 0: kpt_score = kpt_score / valid_num # rescoring n_p['score'] = kpt_score * box_score keep = oks_nms([img_kpts[i] for i in range(len(img_kpts))], oks_thre) if len(keep) == 0: oks_nmsed_kpts.append(img_kpts) else: oks_nmsed_kpts.append([img_kpts[_keep] for _keep in keep]) self._write_coco_keypoint_results(oks_nmsed_kpts) def accumulate(self): self.get_final_results(self.results['all_preds'], self.results['all_boxes'], self.results['image_path']) coco_dt = self.coco.loadRes(self.res_file) coco_eval = COCOeval(self.coco, coco_dt, 'keypoints') coco_eval.params.useSegm = None coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() keypoint_stats = [] for ind in range(len(coco_eval.stats)): keypoint_stats.append((coco_eval.stats[ind])) self.eval_results['keypoint'] = keypoint_stats def log(self): stats_names = [ 'AP', 'Ap .5', 'AP .75', 'AP (M)', 'AP (L)', 'AR', 'AR .5', 'AR .75', 'AR (M)', 'AR (L)' ] num_values = len(stats_names) print(' '.join(['| {}'.format(name) for name in stats_names]) + ' |') print('|---' * (num_values + 1) + '|') print(' '.join([ '| {:.3f}'.format(value) for value in self.eval_results['keypoint'] ]) + ' |') def get_results(self): return self.eval_results
import cv2 as cv import numpy as np titleWindow = 'Hit_miss.py' input_image = np.array(( [0, 0, 0, 0, 0, 0, 0, 0], [0, 255, 255, 255, 0, 0, 0, 255], [0, 255, 255, 255, 0, 0, 0, 0], [0, 255, 255, 255, 0, 255, 0, 0], [0, 0, 255, 0, 0, 0, 0, 0], [0, 0, 255, 0, 0, 255, 255, 0], [0,255, 0, 255, 0, 0, 255, 0], [0, 255, 255, 255, 0, 0, 0, 0]), dtype="uint8") kernel = np.array(( [0, 1, 0], [1, -1, 1], [0, 1, 0]), dtype="int") output_image = cv.morphologyEx(input_image, cv.MORPH_HITMISS, kernel) rate = 50 kernel = (kernel + 1) * 127 kernel = np.uint8(kernel) kernel = cv.resize(kernel, None, fx = rate, fy = rate, interpolation = cv.INTER_NEAREST) cv.imshow(titleWindow + " - kernel", kernel) cv.moveWindow(titleWindow + " - kernel", 0, 0) input_image = cv.resize(input_image, None, fx = rate, fy = rate, interpolation = cv.INTER_NEAREST) cv.imshow(titleWindow + " - Original", input_image) cv.moveWindow(titleWindow + " - Original", 0, 200) output_image = cv.resize(output_image, None , fx = rate, fy = rate, interpolation = cv.INTER_NEAREST) cv.imshow(titleWindow + " - Hit or Miss", output_image) cv.moveWindow(titleWindow + " - Hit or Miss", 500, 200) cv.waitKey(0) cv.destroyAllWindows()
import smart_imports smart_imports.all() settings = dext_app_settings.app_settings('PVP', BALANCER_SLEEP_TIME=5, BALANCING_TIMEOUT=5 * 60, BALANCING_MAX_LEVEL_DELTA=16, BALANCING_MIN_LEVEL_DELTA=4, BALANCING_WITHOUT_LEVELS=False # remove level limitation )
from datetime import date a = int(input('Que ano quer analisar? Coloque 0 para analisar o ano atual: ')) if a == 0: a = date.today().year if a % 4 == 0 and a % 100 != 0 or a % 400 == 0: print('O ano {} é bissexto'.format(a)) else: print('O ano {} NÃO é BISSEXTO'.format(a))
from django.utils.text import slugify from dcim.models import Site from extras.scripts import * class MyScript(Script): class Meta: name = "Fix Site Slug" description = "updates all sites to use the lower case facility code as the site slug" commit_default = False def run(self, data, commit): for site in Site.objects.all(): try: site.slug = site.facility.lower() site.save() except KeyError: self.log_warning(f"Could not update site [{site}]")
from unityagents import UnityEnvironment import numpy as np from dqn_agent import Agent from collections import deque import torch # Get the Unity environment env = UnityEnvironment(file_name="Banana_Windows_x86_64/Banana.exe") # Get the default brain brain_name = env.brain_names[0] brain = env.brains[brain_name] env_info = env.reset(train_mode=False)[brain_name] # Reset the environment state = env_info.vector_observations[0] # Initialize the state def run(): global env score = 0 # Initialize the score env_info = env.reset(train_mode=False)[brain_name] # Reset the environment state = env_info.vector_observations[0] # Initialize the state while True: action = int(agent.act(state)) env_info = env.step(action)[brain_name] # Send the action to the environment next_state = env_info.vector_observations[0] # Get the next state reward = env_info.rewards[0] # Get the reward done = env_info.local_done[0] # See if episode has finished score += reward # Update the score state = next_state # Update the state if done: # Exit loop if episode finished break agent = Agent(state_size=len(state), action_size=brain.vector_action_space_size, seed=1) run() agent.qnetwork_local.load_state_dict(torch.load('agent.pth')) run() # Close the environment env.close()
""" Mock plugin file for tests """ import numpy as np from batman.functions import Ishigami, Branin f_ishigami = Ishigami() f_branin = Branin() def f_snapshot(point): return np.array([42, 87, 74, 74])
# coding: utf-8 # Copyright (c) 2018 ubirch GmbH. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ubirch.anchoring import * from kafka import * args = set_arguments("multichain") server = args.server if server == 'SQS': print("SERVICE USING SQS QUEUE MESSAGING") print("output queue name : %s" % args.output) url = args.url region = args.region aws_secret_access_key = args.accesskey aws_access_key_id = args.keyid output_messages = get_queue(args.output, url, region, aws_secret_access_key, aws_access_key_id) producer = None while True: response = output_messages.receive_messages() for r in response: print(r.body) r.delete() elif server == 'KAFKA': print("SERVICE USING APACHE KAFKA FOR MESSAGING") print("output topic name : %s" % args.output) bootstrap_server = args.bootstrap_server output_messages = KafkaConsumer(args.output, bootstrap_servers=bootstrap_server, value_deserializer=lambda m: json.dumps(m.decode('ascii'))) for message in output_messages: print(json.loads(message.value))
# country code used is alpha 3 country code currency_countrycode_mapping = {'AED':'ARE', 'AFN':'AFG', 'ALL':'ALB', 'AMD':'ARM', 'ANG':'ANT', 'AOA':'AGO', 'ARS':'ARG', 'AUD':'AUS', 'AWG':'ABW', 'AZN':'AZE', 'BAM':'BIH', 'BBD':'BRB', 'BDT':'BGD', 'BGN':'BGR', 'BHD':'BHR', 'BIF':'BDI', 'BMD':'BMU', 'BND':'BRN', 'BOB':'BOL', 'BRL':'BRA', 'BSD':'BHS', 'BTN':'BTN', 'BWP':'BWA', 'BYR':'BLR', 'BZD':'BLZ', 'CAD':'CAN', 'CDF':'COD', 'XAF':'CAF', 'CHF':'CHE', 'CLP':'CHL', 'CNH':'CHN', 'CNY':'CHN', 'COP':'COL', 'CRC':'CRI', 'CUP':'CUB', 'CVE':'CPV', 'CZK':'CZE', 'DJF':'DJI', 'DKK':'DNK', 'DOP':'DOM', 'DZD':'DZA', 'ECS':'ECU', 'EGP':'EGY', 'ERN':'ERI', 'ETB':'ETH', 'EUR':'EUR', 'FJD':'FJI', 'FKP':'FLK', 'GBP':'GBR', 'GEL':'GEO', 'GHS':'GHA', 'GIP':'GIB', 'GMD':'GMB', 'GNF':'GIN', 'GTQ':'GTM', 'GYD':'GUY', 'HKD':'HKG', 'HNL':'HND', 'HRK':'HRV', 'HTG':'HTI', 'HUF':'HUN', 'IDR':'IDN', 'ILS':'ISR', 'INR':'IND', 'IQD':'IRQ', 'ISK':'ISL', 'JMD':'JAM', 'JOD':'JOR', 'JPY':'JPN', 'KES':'KEN', 'KGS':'KGZ', 'KHR':'KHM', 'KRW':'KOR', 'KWD':'KWT', 'KYD':'CYM', 'KZT':'KAZ', 'LAK':'LAO', 'LBP':'LBN', 'LKR':'LKA', 'LRD':'LBR', 'LSL':'LSO', 'LYD':'LBY', 'MAD':'MAR', 'MDL':'MDA', 'MGA':'MDG', 'MKD':'MKD', 'MMK':'MMR', 'MNT':'MNG', 'MOP':'MAC', 'MRO':'MRT', 'MUR':'MUS', 'MVR':'MDV', 'MWK':'MWI', 'MXN':'MEX', 'MYR':'MYS', 'MZN':'MOZ', 'NAD':'NAM', 'NGN':'NGA', 'NIO':'NIC', 'NOK':'NOR', 'NPR':'NPL', 'NZD':'NZL', 'OMR':'OMN', 'PAB':'PAN', 'PEN':'PER', 'XPF':'PYF', 'PGK':'PNG', 'PHP':'PHL', 'PKR':'PAK', 'PLN':'POL', 'PYG':'PRY', 'QAR':'QAT', 'RON':'ROU', 'RSD':'SRB', 'RUB':'RUS', 'RWF':'RWA', 'SAR':'SAU', 'SBD':'SLB', 'SCR':'SYC', 'SEK':'SWE', 'SGD':'SGP', 'SHP':'SHN', 'SLL':'SLE', 'SOS':'SOM', 'SRD':'SUR', 'STD':'STP', 'SVC':'SLV', 'SZL':'SWZ', 'THB':'THA', 'TJS':'TJK', 'TND':'TUN', 'TOP':'TON', 'TRY':'TUR', 'TTD':'TTO', 'TWD':'TWN', 'TZS':'TZA', 'UAH':'UKR', 'UGX':'UGA', 'USD':'USA', 'UYU':'URY', 'UZS':'UZB', 'VEF':'VEN', 'VND':'VNM', 'VUV':'VUT', 'WST':'WSM', 'YER':'YEM', 'ZAR':'ZAF', 'ZMW':'ZMB' } def currency_to_countrycode(currency): return currency_countrycode_mapping.get(currency,None) def countrycode_to_currency(country): for currency, countrycode in currency_countrycode_mapping.items(): if countrycode == country: return currency return None
from HiParTIPy.PtiCffi import pti,PTI import os class VecBuff: def __init__(self,size): self.nthreads = (int)(os.popen('grep -c cores /proc/cpuinfo').read()) print(self.nthreads) self.address = pti.cast("ptiValueVector *", PTI.malloc(self.nthreads * pti.sizeof(pti.new("ptiValueVector *")))) PTI.ptiMakeVectorBuff(self.address, size) def free(self): PTI.ptiFreeVecBuff(self.address) class MatBuff: def __init__(self,ncols,nrows): self.nthreads = (int)(os.popen('grep -c cores /proc/cpuinfo').read()) print(self.nthreads) self.address = pti.cast("ptiMatrix *", PTI.malloc(self.nthreads * pti.sizeof(pti.new("ptiMatrix *")))) PTI.ptiMakeMatrixBuff(self.address, ncols,nrows)
from Bio import SeqIO import sys # take the output of gffread and make a file with the longest isoforms genes = SeqIO.to_dict(SeqIO.parse(sys.argv[1],"fasta")) longest = {} for rec in genes: gene = genes[rec].description.split("=")[-1] if (gene not in longest) or (longest[gene][0] < len(rec)): longest[gene] = (len(genes[rec]),genes[rec].id) for gene in longest: description = genes[longest[gene][1]].id genes[longest[gene][1]].id = gene genes[longest[gene][1]].description = description print(genes[longest[gene][1]].format("fasta"), end="")
# -*- coding: utf-8 -*- # Copyright (c) 2021, trava and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document class LabelPrinting(Document): def validate(self): self.validate_item() def validate_item(self): for item in self.items: data_item = frappe.db.get_value("Item", filters={"item_code":item.item_code}, fieldname=["item_name", "article"]) item.item_name = data_item[0] item.article = data_item[1]
from typing import Any, Optional import attr @attr.s(eq=False, frozen=True, slots=True) class Vertex: """Represents a vertex in a Knowledge Graph.""" name = attr.ib(type=str, validator=attr.validators.instance_of(str)) predicate = attr.ib( default=False, type=bool, validator=attr.validators.instance_of(bool), repr=False, ) vprev = attr.ib(default=None, type=Optional[Any], repr=False) vnext = attr.ib(default=None, type=Optional[Any], repr=False) def __eq__(self, other: Any) -> bool: """Defines behavior for the equality operator, ==. Args: other: The other vertex to test the equality. Returns: True if the hash of the vertices are equal, False otherwise. """ if not isinstance(other, Vertex): return False elif self.predicate: return (self.vprev, self.vnext, self.name) == ( other.vprev, other.vnext, other.name, ) return self.name == other.name def __hash__(self) -> int: """Defines behavior for when hash() is called on a vertex. Returns: The identifier and name of the vertex, as well as its previous and next neighbor if the vertex has a predicate. The hash of the name of the vertex otherwise. """ if self.predicate: return hash((self.vprev, self.vnext, self.name)) return hash(self.name) def __lt__(self, other: "Vertex") -> bool: """Defines behavior for the small than operator, <. Args: other: The other vertex. Returns: True if the first vertex is smaller than the second, False otherwise. """ return self.name < other.name
# wsdl.py - WSDLParser class, part of osa. # Copyright 2013 Sergey Bozhenkov, boz at ipp.mpg.de # Licensed under LGPLv3 or later, see the COPYING file. """ Conversion of WSDL documents into Python. """ from . import xmlnamespace from . import xmlparser from . import xmlschema from . import xmltypes from . import message from . import method import xml.etree.cElementTree as etree class WSDLParser(object): """ Parser to get types and methods defined in the document. """ def __init__(self, wsdl_url): """ Initialize parser. The WSDL document is loaded and is converted into xml. Initialized members: self.wsdl_url - url of wsdl document, or file self.wsdl - xml document read from wsdl_url (etree.Element) self.tns - target namespace Parameters ---------- wsdl_url : str Address of the WSDL document. """ self.wsdl_url = wsdl_url self.wsdl = xmlparser.parse_qualified_from_url(wsdl_url) if self.wsdl.tag != "{%s}definitions" % xmlnamespace.NS_WSDL: raise ValueError("Not a WSDL xml, the top level element: %s" % self.wsdl.tag) # get target namespace self.tns = self.wsdl.get('targetNamespace', "") def get_types(self, ): """ Constructs a map of all types defined in the document. Returns ------- out : dict A map of found types {type_name : complex class} """ types_section = self.wsdl.findall('.//{%s}types' % xmlnamespace.NS_WSDL)[0] schemas = types_section.findall('./{%s}schema' % xmlnamespace.NS_XSD) xtypes = {} for schema in schemas: parser = xmlschema.XMLSchemaParser(schema, wsdl_url=self.wsdl_url) xtypes.update(parser.get_list_of_defined_types()) types = xmlschema.XMLSchemaParser.convert_xmltypes_to_python(xtypes) xmltypes.XMLAny._types.update(types) return types def get_messages(self, types): """ Construct messages from message section. Parameters ---------- types : dictionary of types Types as returned by get_types(). Returns ------- out : dict Map message name -> Message instance """ xmessages = self.wsdl.findall('./{%s}message' % xmlnamespace.NS_WSDL) messages = {} for x in xmessages: message_name = "{%s}%s" % (self.tns, x.get("name", "")) parts = [] xparts = x.findall('./{%s}part' % xmlnamespace.NS_WSDL) for y in xparts: part_name = y.get("name", "") part_type = y.get("element", None) if part_type is None: part_type = y.get("type", None) if part_type is None: raise ValueError("Could not find part type in:\n %s" % (etree.tostring(x).decode())) cls = None if part_type in types: cls = types[part_type] elif part_type in xmltypes.primmap: cls = xmltypes.primmap[part_type] else: raise ValueError("Type %s not found for message:\n%s" % (part_type, etree.tostring(x).decode())) parts.append([part_name, cls]) messages[message_name] = message.Message(message_name, parts) return messages def get_operations(self, messages): """ Get list of operations with messages from portType section. Parameters ---------- messages : dict Dictionary of message from `get_messages`. Returns ------- out : dict {portType -> {operation name -> Method instance}} The method here does not have location. """ xports = self.wsdl.findall('./{%s}portType' % xmlnamespace.NS_WSDL) ports = {} for xport in xports: port_name = "{%s}%s" % (self.tns, xport.get("name", "")) ports[port_name] = {} xops = xport.findall('./{%s}operation' % xmlnamespace.NS_WSDL) for xop in xops: op_name = xop.get("name", "") ports[port_name][op_name] = {} xin = xop.findall('./{%s}input' % xmlnamespace.NS_WSDL) if not(xin): raise ValueError("No input message in operation: \n%s" % (etree.tostring(xop).decode())) in_name = xin[0].get("message", "") if not in_name in messages: raise ValueError("Message %s not found." % in_name) in_cl = messages[in_name] out_cl = None xout = xop.findall('./{%s}output' % xmlnamespace.NS_WSDL) if xout: out_name = xout[0].get("message", "") if not out_name in messages: raise ValueError("Message %s not found." % in_name) out_cl = messages[out_name] # documentation doc = xop.find('{%s}documentation' % xmlnamespace.NS_WSDL) if doc is not None: doc = doc.text op = method.Method(op_name, in_cl, out_cl, doc=doc) ports[port_name][op_name] = op return ports def get_bindings(self, operations): """ Check binding document/literal and http transport. If any of the conditions is not satisfied the binding is dropped, i.e. not present in the return value. This also sets soapAction and use_parts of the messages. Parameters ---------- operations : dict as returned by get_operations Returns ------- out : dict Map similar to that from get_operations but with binding names instead of portType names. """ xbindings = self.wsdl.findall("./{%s}binding" % xmlnamespace.NS_WSDL) bindings = {} for xb in xbindings: b_name = "{%s}%s" % (self.tns, xb.get("name", "")) b_type = xb.get("type", None) if b_type is None: raise ValueError("No type in binding %s" % (etree.tostring(xb).decode())) if not b_type in operations: raise ValueError("Binding type %s no in operations" % b_type) xb_soap = xb.findall("./{%s}binding" % xmlnamespace.NS_SOAP) if not(xb_soap): continue # not a soap binding in wsdl if xb_soap[0].get("style", "") == "rpc": continue if xb_soap[0].get("transport", "") !=\ "http://schemas.xmlsoap.org/soap/http": continue ops = operations[b_type] bindings[b_name] = {} xops = xb.findall("./{%s}operation" % xmlnamespace.NS_WSDL) for xop in xops: op_name = xop.get("name", "") if not op_name in ops: raise ValueError("operation %s no in operations" % op_name) soap_op = xop.find("./{%s}operation" % xmlnamespace.NS_SOAP) s_action = None if soap_op is not None: s_action = soap_op.get("soapAction", "") all_literal = True xop_in = xop.find("./{%s}input" % xmlnamespace.NS_WSDL) if xop_in is not None: xop_in_body = xop_in.find("./{%s}body" % xmlnamespace.NS_SOAP) if xop_in_body is None: raise ValueError("No body found for %s" % (etree.tostring(xop).decode())) if xop_in_body.get("use") != "literal": all_literal = False parts = xop_in_body.get("parts") if parts is None: ops[op_name].input.use_parts = ops[op_name].input.parts else: parts = parts.split(" ") ops[op_name].input.use_parts = [] for p in parts: for pp in ops[op_name].input.parts: if pp[0] == p: ops[op_name].input.use_parts.append(pp) break xop_out = xop.find("./{%s}output" % xmlnamespace.NS_WSDL) if xop_out is not None: xop_out_body = xop_out.find("./{%s}body" % xmlnamespace.NS_SOAP) if xop_out_body is None: raise ValueError("No body found for %s" % (etree.tostring(xop).decode())) if xop_out_body.get("use") != "literal": all_literal = False parts = xop_out_body.get("parts") if parts is None: ops[op_name].output.use_parts = ops[op_name].output.parts else: parts = parts.split(" ") ops[op_name].output.use_parts = [] for p in parts: for pp in ops[op_name].output.parts: if pp[0] == p: ops[op_name].output.use_parts.append(pp) break # rebuild __doc__ after messing with messages ops[op_name]._redoc() if all_literal: ops[op_name].action = s_action bindings[b_name][op_name] = ops[op_name] return bindings def get_services(self, bindings): """ Find all services an make final list of operations. This also sets location to all operations. Parameters ---------- bindings : dic from get_bindings. Returns ------- out : dict Dictionary {service -> {operation name -> method}. """ xservices = self.wsdl.findall('./{%s}service' % xmlnamespace.NS_WSDL) services = {} for xs in xservices: s_name = xs.get("name", "") xports = xs.findall('./{%s}port' % xmlnamespace.NS_WSDL) for xp in xports: b = xp.get("binding", "") xaddr = xp.findall('./{%s}address' % xmlnamespace.NS_SOAP) if not(xaddr): continue # no soap 11 loc = xaddr[0].get("location", "") if b in bindings: for k, v in bindings[b].items(): v.location = loc services[s_name] = bindings[b] return services def parse(self): """ Do parsing, return types, services. Returns ------- out : (types, services) """ t = self.get_types() m = self.get_messages(t) op = self.get_operations(m) b = self.get_bindings(op) s = self.get_services(b) return t, s
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from .multihead_attention import MultiheadAttention from .graphormer_layers import GraphNodeFeature, GraphAttnBias from .graphormer_graph_encoder_layer import GraphormerGraphEncoderLayer from .graphormer_graph_encoder import GraphormerGraphEncoder, init_graphormer_params
# -*- coding: utf-8 -*- # Copyright (c) 2020 CPV.BY # LICENSE: Commercial # класс работы с локальной БД SQL # таблицы - GRUPPA, TOVAR, MOD, CASHIER, CLIENT import os from libs.base.lbsql import qsql import json import time from datetime import datetime from libs.applibs.programsettings import oConfig from kivy.config import ConfigParser class Oqsql(qsql): dbname = 'localdb' ctables = 'gruppa','tovar','cashier' lopen =False dictstru =[] # структура таблиц config = None dictstrusave = [] # структурвтаблицы для записи def __init__(self, **kwargs): super(Oqsql, self).__init__(**kwargs) self.sqlstrconnect = self.dbname + '.db' self.config = oConfig(oApp = self) # проверка наличия БД, при отсутствии-создание БД и таблицctable self.dictstru = [] self.dictstrusave = [] #if not self.dbcheck_lite():return True # проверка наличия БД # создание БД при отсутствии # сверка структуры БД def dbcheck_lite(self): if not self.open():return False ctxt = "SELECT " + "name FROM sqlite_master WHERE type='table' AND name='tovar';" if not self.execute(ctxt): return False allrec = self.getresult() if len(allrec) > 0: return True # Образы берём из файла структур. if not self.getstru():return False # проверяем наличие таблиц в БД,если нет- создаём for item in self.dictstru: for ctable in item: # пропускаем служебные таблицы if ctable in ['index','proc', 'work_id'] : continue self.dictstrusave = [] # формируем структуру script = '' for csr in item[ctable]: if len(script) > 0: script +=', ' script += csr['column'] + ' ' + self.gettype(csr['field'], csr['description'],csr['column']) script = "CREATE TABLE IF NOT EXISTS " + ctable + "(" + script + ")" try: self.execute(script) self.commit() aa = 123 except: self.errmsg = 'Error create sqlite table' return False # сохраняем поля сформированной таблицыв настройках if not self.savetoini('structure',ctable, self.dictstrusave): return False return True # импорт структуры таблиц def getstru(self): cfile = "data/update/structure" # проверяем наличие файла со структурой, читаем файл, импортируем структуру if not os.path.isfile(cfile): self.errmsg = 'Not found structure file' return False try: f = open(cfile, encoding='utf-8') except: self.errmsg = 'Error reading structure file' return False alljson = json.loads(f.read()) if len(alljson) == 0: self.errmsg ='Empty structure file' return False for cstr in alljson: self.dictstru.append({cstr:alljson[cstr]}) f.close() return True # возвращает тип поля SQL соответствующий структуры и дефолтное значени def gettype(self, field, description, column): if field == 'serial': #self.dictstrusave.append({column:'integer'}) return "INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL" elif field == 'integer': self.dictstrusave.append({column:'integer'}) return "INTEGER NOT NULL DEFAULT 0" elif field == 'text': self.dictstrusave.append({column:'text'}) return "TEXT NOT NULL DEFAULT ''" elif field == 'boolean': self.dictstrusave.append({column:'integer'}) return "INTEGER NOT NULL DEFAULT 0" elif field == 'character': self.dictstrusave.append({column:'TEXT'}) return "TEXT NOT NULL DEFAULT ''" elif field == 'decimal': self.dictstrusave.append({column:'real'}) return "REAL NOT NULL DEFAULT 0" elif field == 'timestamp': self.dictstrusave.append({column:'integer'}) default = datetime.today() unixtime = time.mktime(default.timetuple()) return "INTEGER NOT NULL DEFAULT " + str(unixtime) else: self.dictstrusave.append({column:'text'}) return 'TEXT NOT NULL DEFAULT "" ' # сохранение структуры def savetoini(self, structure,option, value): config = ConfigParser() config.read('set/worksetting.ini') try: config.setdefaults('tblstru',{option: value }) config.write() except: self.errmsg = 'Error save structure table' return False return True def select(self,ctable, cwhere): if len(cwhere) > 0: if not self.execute('SELECT ' + '* FROM ' + ctable +' WHERE ' + cwhere+ ';'): return False else: if not self.execute('SELECT ' + '* FROM ' + ctable + ';'): return False return True # вставляем данные в таблицу def insert(self, ctable, dictdata): column = ''; value ='' for item in dictdata: if len(column) != 0: column += ', ' if len(value) != 0: value += ', ' column += item if type(dictdata[item]) != str: value += str(dictdata[item]) else: value += '"'+dictdata[item]+'"' if not self.execute('INSERT INTO ' + ctable + '(' + column + ') VALUES('+ value +');' ): return False return True # удаление строк def delete(self, ctable, cwhere): csript = 'DELETE FROM '+ ctable + ' WHERE '+ cwhere +';' if not self.execute(csript): return False return True # обновление данных def update(self,ctable, dictdata, cwhere): cstr ='' for item in dictdata: if len(cstr) != 0: cstr += ', ' cstr += item + '=' if type(dictdata[item]) != str: cstr += str(dictdata[item]) else: cstr += '"'+dictdata[item]+'"' csript = 'UPDATE '+ ctable + ' SET '+ cstr + ' WHERE ' + cwhere +';' if not self.execute(csript): return False return True
import logging from kazoo.client import KazooClient, KazooState from constants import zk_sequencer_root from strategy import SequenceStrategy class DistributedSequenceCoordinator(object): def __init__(self, zookeeper_connect, autoscaling_grp_name, strategy_name, instance_id, max_sequence_id, asg_instances_ids): self.zk = KazooClient(hosts=zookeeper_connect) self.running = False self.interrupted = False self.autoscaling_grp_name = autoscaling_grp_name self.strategy_name = strategy_name self.instance_id = instance_id self.max_sequence_id = max_sequence_id self.asg_instances_ids = asg_instances_ids def state_change_listener(self, state): logging.debug('zookeeper state changed to {0}'.format(state)) if state == KazooState.LOST or state == KazooState.SUSPENDED: if self.running: self.interrupted = True self.log_msg('distributed coordination interrupted') raise Exception('zookeeper session interrupted') """ Responsible for executing operation in isolation even-in cases of failures, connection-resets etc. Uses optimistic concurrency control by assuming that operation would be executed without any interruption, and if any interruption occurs, then acquires a new lock and re-execute the idempotent operation to guarantee isolation. """ def execute(self): result = None # exception-handling for cases where unable to establish connection to zookeeper try: # TODO: use python retrying lib to control with timeouts, max & exponential back-off wait time b/w retries while result is None or self.interrupted: self.running = True self.interrupted = False self.log_msg('distributed operation starting') self.zk.start() self.zk.add_listener(self.state_change_listener) try: lock = self.zk.Lock(zk_sequencer_root, self.autoscaling_grp_name) logging.debug('zookeeper lock created {}'.format(lock.data)) self.log_msg('entering zookeeper lock') with lock: result = self.operation() except Exception as e: logging.exception(e) self.log_msg('encountered zk exception') finally: self.log_msg('stopping zk') self.zk.stop() except Exception as e: raise e if result is None: raise Exception('Unable to generate sequence id') return result def operation(self): instances_root_path = "/".join([zk_sequencer_root, self.autoscaling_grp_name]) self.zk.ensure_path(instances_root_path) instance_nodes = self.zk.get_children(instances_root_path) zk_instance_sequencers = {} for instance_node in instance_nodes: instance_node_path = "/".join([instances_root_path, instance_node]) instance_id = self.zk.get(instance_node_path)[0] zk_instance_sequencers[str(instance_id)] = int(instance_node) logging.debug('zk instances: {0}'.format(zk_instance_sequencers)) instance_sequencers = {k: v for k, v in zk_instance_sequencers.items() if k in self.asg_instances_ids} logging.debug('active instances with assigned sequences: {0}'.format(instance_sequencers)) generator = SequenceStrategy(self.strategy_name, self.instance_id, instance_sequencers, self.max_sequence_id) sequence_id = generator.get_sequence_id() current_instance_node_path = "/".join([instances_root_path, str(sequence_id)]) self.zk.ensure_path(current_instance_node_path) self.zk.set(current_instance_node_path, str.encode(str(self.instance_id))) self.running = False return sequence_id def log_msg(self, msg): logging.debug('{0}, running = {1}, interrupted = {2}'.format(msg, self.running, self.interrupted))
async def handleRequest(request): visitor_ip = request.headers.js_get('CF-Connecting-IP') console.log(visitor_ip) r = await fetch("https://api.ip.sb/geoip/" + visitor_ip) d = await r.json() d['time'] = Date.now() return __new__(Response(JSON.stringify(d), { 'headers' : { 'content-type' : 'text/plain' } })) addEventListener('fetch', (lambda event: event.respondWith(handleRequest(event.request))))
#!/usr/bin/env python # -*- coding: utf-8 -*- """ :mod:`test_standard` ================== .. module:: test_standard :platform: Unix, Windows :synopsis: .. moduleauthor:: hbldh <henrik.blidh@nedomkull.com> Created on 2015-07-04, 12:00 """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import re import pytest import numpy as np from calibraxis import Calibraxis @pytest.fixture(scope='module') def points_1(): # Measuring range +/-8 return np.array([[-4772.38754098, 154.04459016, -204.39081967], [3525.0346179, -68.64924886, -34.54604833], [-658.17681729, -4137.60248854, -140.49377865], [-564.18562092, 4200.29150327, -130.51895425], [-543.18289474, 18.14736842, -4184.43026316], [-696.62532808, 15.70209974, 3910.20734908], [406.65271419, 18.46827992, -4064.61085677], [559.45926413, -3989.69513798, -174.71879106], [597.22629169, -3655.54153041, -1662.83257031], [1519.02616089, -603.82472204, 3290.58469588]]) @pytest.fixture(scope='module') def points_2(): return np.array([[-1575.43324607, 58.07787958, -72.69371728], [1189.53102547, -11.92749837, -23.37687786], [-212.62989556, -1369.82898172, -48.73498695], [-183.42717178, 1408.61463096, -33.89745265], [-162.57253886, 23.43005181, -1394.36722798], [-216.76963011, 19.37118754, 1300.13822193], [-809.20208605, 69.1029987, -1251.60104302], [-1244.03955901, -866.0843061, -67.02594034], [-1032.3692107, 811.19178082, 699.69602087], [-538.82617188, -161.6171875, -1337.34895833]]) def test_calibration_points_1(points_1): c = Calibraxis(verbose=False) c.add_points(points_1) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) def test_calibration_points_1_scaled(points_1): c = Calibraxis(verbose=False) c.add_points(points_1 / ((2 ** 15) / 8.)) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) def test_calibration_points_2(points_2): c = Calibraxis(verbose=False) c.add_points(points_2) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) def test_calibration_points_2_scaled(points_2): c = Calibraxis(verbose=False) c.add_points(points_2 / ((2 ** 15) / 16.)) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) def test_recalibration_points_2(points_2): c = Calibraxis(verbose=False) points = points_2 / ((2 ** 15) / 16.) for p in points[:-1, :]: c.add_points(p) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) c.add_points(points[-1, :]) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) def test_add_points_1(points_1): c = Calibraxis(verbose=False) points = points_1 / ((2 ** 15) / 8.) for p in points: c.add_points(p) np.testing.assert_almost_equal(np.linalg.norm(np.array(c._calibration_points) - points), 0.0, 6) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) def test_add_points_2(points_1): c = Calibraxis(verbose=False) points = points_1 / ((2 ** 15) / 8.) for p in points: c.add_points(list(p)) np.testing.assert_almost_equal(np.linalg.norm(np.array(c._calibration_points) - points), 0.0, 6) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) def test_add_points_3(points_1): c = Calibraxis(verbose=False) points = points_1 / ((2 ** 15) / 8.) for p in points: c.add_points(tuple(p)) np.testing.assert_almost_equal(np.linalg.norm(np.array(c._calibration_points) - points), 0.0, 6) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) def test_add_points_4(points_2): c = Calibraxis(verbose=False) points = points_2 / ((2 ** 15) / 8.) c.add_points(points.tolist()) np.testing.assert_almost_equal(np.linalg.norm(np.array(c._calibration_points) - points), 0.0, 6) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) def test_add_points_5(points_2): c = Calibraxis(verbose=False) points = points_2 / ((2 ** 15) / 8.) c.add_points(points) c.add_points([]) np.testing.assert_almost_equal(np.linalg.norm(np.array(c._calibration_points) - points), 0.0, 6) c.calibrate_accelerometer() np.testing.assert_almost_equal(c._calibration_errors[-1], 0.0, 2) def test_apply(points_1): c = Calibraxis(verbose=False) c.add_points(points_1) c.calibrate_accelerometer() np.testing.assert_almost_equal(np.linalg.norm(c.apply(points_1[0, :])), 1.0, 2) def test_batch_apply(points_1): c = Calibraxis(verbose=False) c.add_points(points_1) c.calibrate_accelerometer() out = c.batch_apply(points_1) normed = np.sqrt((np.array(out) ** 2).sum(axis=1)) np.testing.assert_array_almost_equal(normed, 1.0, 2) def test_error_to_few_points(points_2): c = Calibraxis(verbose=False) for p in points_2[:5, :]: c.add_points(p) with pytest.raises(ValueError): c.calibrate_accelerometer() def test_verbose_prints_progress(points_2, capsys): c = Calibraxis(verbose=True) c.add_points(points_2) c.calibrate_accelerometer() out, err = capsys.readouterr() for row in filter(None, out.split('\n')): assert re.match('^([0-9]+):\s([0-9\-\.e]+)\s*(\([0-9\s\-\.e,]+\))$', row)
''' Convert CSV file to a basic ruleset package ''' import os import pathlib import re import argparse from numpy.core.numeric import full import pandas as pd from tqdm import tqdm TPL_RULENAME_CM = 'cm_%s' TPL_REGEXP_FILENAME = "resources_regexp_re%s.txt" TPL_USED_RES_FILENAME = "used_resources.txt" TPL_MATCHRULES_FILENAME = "resources_rules_matchrules.txt" TPL_CONTEXTRULE_FILENAME = "contextRule_%s.txt" SKIP_TERMS = set(['-', '_', '']) # current path FULLPATH = pathlib.Path(__file__).parent.absolute() def __norm(s): ''' Normalize the norm ''' # remove the terms s2 = re.sub(r'[\\\/\-\s]', '_', s) # remove the multiple _ s3 = re.sub(r'[_]{2,}', '_', s2) # make a upper s4 = s3.upper() return s4 def __norm_dense(s): ''' Make a dense norm ''' return re.sub(r'[_]', '', s) def __term(s): ''' Normalize the term ''' s = str(s).strip().lower() return s def mk_matchrule(norm): ''' Make a matchrule line ''' return """RULENAME="cm_{norm_dense}",REGEXP="\\b(?i)(?:%re{norm_dense})\\b",LOCATION="NA",NORM="{norm}" """.format(norm=norm, norm_dense=__norm_dense(norm)) def create_file_used_resources(ruleset_name, text, output=FULLPATH): ''' Create the file for all used files ''' fn = TPL_USED_RES_FILENAME full_fn = os.path.join( output, ruleset_name, fn ) with open(full_fn, 'w') as f: f.write(text) return os.path.join( '.', fn ) def create_file_matchrules(ruleset_name, text, output=FULLPATH): ''' Create the file for the matchrules ''' fn = TPL_MATCHRULES_FILENAME full_fn = os.path.join( output, ruleset_name, 'rules', fn ) with open(full_fn, 'w') as f: f.write(text) return os.path.join( '.', 'rules', fn ) def create_file_regexp(ruleset_name, norm, text, output=FULLPATH): ''' Creat the file for the resource regexp ''' norm_dense = __norm_dense(norm) fn = TPL_REGEXP_FILENAME % norm_dense full_fn = os.path.join( output, ruleset_name, 'regexp', fn ) with open(full_fn, 'w') as f: f.write(text) return os.path.join( '.', 'regexp', fn ) def convert_to_ruleset(full_fn, output=FULLPATH, tmode='one', add_norm='yes'): ''' Convert the file to ruleset format ''' if full_fn.endswith('.csv'): df = pd.read_csv(full_fn) elif full_fn.endswith('.tsv'): df = pd.read_csv(full_fn, sep="\t") elif full_fn.endswith('.xlsx') or full_fn.endswith('.xls'): df = pd.read_excel(full_fn) else: raise Exception('Not support file format') # get the file name as the ruleset name for creating folder ruleset_name = pathlib.Path(full_fn).stem # the first column is the norm col_norm = df.columns[0] # the second column is the text or term col_term = df.columns[1] # create a dictionary for the output r_dict = {} # loop on each record for idx, row in tqdm(df.iterrows()): norm = row[col_norm] term = row[col_term] # make sure the term is a text term = str(term) # get the normalized norm and text norm_normed = __norm(norm) # use the normalized norm to make sure no duplicated if norm_normed not in r_dict: if add_norm == 'yes': r_dict[norm_normed] = { "dict": set([norm_normed]), "items": [norm_normed] } else: r_dict[norm_normed] = { "dict": set([]), "items": [] } if tmode == 'more': term_list = term.split(';') for _term in term_list: term_normed = __term(term) # skip those useless terms if term_normed in SKIP_TERMS: continue # add the normed terms if term_normed not in r_dict[norm_normed]["dict"]: # ok, a new term r_dict[norm_normed]["dict"].add(term_normed) # add the original term to list r_dict[norm_normed]["items"].append(_term) else: # usually just one term term_normed = __term(term) # skip those useless terms if term_normed in SKIP_TERMS: continue # add the normed terms if term_normed not in r_dict[norm_normed]["dict"]: # ok, a new term r_dict[norm_normed]["dict"].add(term_normed) # add the original term to list r_dict[norm_normed]["items"].append(term) print('* found %s norms' % ( len(r_dict) )) # now begin to save the files # first, mkdir # before saving, make sure the foler exsits folders = [ os.path.join( output, ruleset_name ), os.path.join( output, ruleset_name, 'rules' ), os.path.join( output, ruleset_name, 'regexp' ), os.path.join( output, ruleset_name, 'context' ), ] for folder in folders: if not os.path.exists(folder): os.makedirs(folder, exist_ok=True) print('* created %s' % folder) else: print('* found %s' % folder) # then create the files according to norm and text matchrules = [] used_resources = [] for norm in tqdm(r_dict): items = r_dict[norm]["items"] text = '\n'.join(items) # save the rules matchrule = mk_matchrule(norm) matchrules.append(matchrule) # save the regexp file fn = create_file_regexp(ruleset_name, norm, text, output) # add this file to used resources used_resources.append(fn) # save the matchrules fn = create_file_matchrules( ruleset_name, '\n'.join(matchrules), output ) used_resources.append(fn) # save the used_resources used_resources.append(os.path.join( '.', TPL_USED_RES_FILENAME )) create_file_used_resources( ruleset_name, '\n'.join(used_resources), output ) print('* done') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Converter for Building MedTagger Ruleset') # add paramters parser.add_argument("fn", type=str, help="The path to the data file (csv, tsv, xls, or xlsx)") parser.add_argument("--tmode", type=str, default='one', choices=['one', 'more'], help="The term mode in the second column, one term or more?") parser.add_argument("--add_norm", type=str, default='yes', choices=['yes', 'no'], help="add norm itself to list?") parser.add_argument("--out", type=str, help="The output folder") # parse args = parser.parse_args() convert_to_ruleset(args.fn, args.out, args.tmode, args.add_norm)
#!/usr/bin/env python3 import json import os print('Content-Type: text/html') print() payload = { # Question 1 'environment_variables': dict(os.environ), # Question 2 'query_parameter': os.environ['HTTP_USER_AGENT'], # Question 3 'browser_info': os.environ['HTTP_USER_AGENT'] } for section_title, contents in payload.items(): print(f''' <h1>{section_title}</h1> <pre>{contents}</pre> ''')
import femagtools def create_fsl(): machine = dict( name="PM 130 L4", lfe=0.1, poles=4, outer_diam=0.04, bore_diam=0.022, inner_diam=0.005, airgap=0.001, stator=dict( num_slots=12, statorBG=dict( yoke_diam_ins=0.0344, slot_h1=0.0005, slot_h3=0.004, slot_width=0.00395, slot_r1=0.0008, slot_r2=0.0007, tooth_width=0.0032, middle_line=1, tip_rad=-0.03, slottooth=0) ), magnet=dict( magnetSector=dict( magn_num=1, magn_width_pct=0.8, magn_height=0.002, magn_shape=0.0, bridge_height=0.0, magn_type=1, condshaft_r=0.005, magn_ori=2, magn_rfe=0.0, bridge_width=0.0, magn_len=1.0) ), windings=dict( num_phases=3, num_wires=10, coil_span=1, num_layers=2) ) return femagtools.create_fsl(machine) if __name__ == '__main__': import os import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') modelname = os.path.split(__file__)[-1].split('.')[0] logger = logging.getLogger(modelname) workdir = os.path.join(os.path.expanduser('~'), 'femag') with open(os.path.join(workdir, modelname+'.fsl'), 'w') as f: f.write('\n'.join(create_fsl())) logger.info("FSL %s created", os.path.join(workdir, modelname+'.fsl'))
import sys class AutoIndent(object): def __init__(self, stream): self.stream = stream self.offset = 0 self.frame_cache = {} def indent_level(self): i = 0 base = sys._getframe(2) f = base.f_back while f: if id(f) in self.frame_cache: i += 1 f = f.f_back if i == 0: # clear out the frame cache self.frame_cache = {id(base): True} else: self.frame_cache[id(base)] = True return i def write(self, stuff): indentation = ' ' * self.indent_level() def indent(l): if l: return indentation + l else: return l stuff = '\n'.join([indent(line) for line in stuff.split('\n')]) self.stream.write(stuff) -------------------------------------------------------------------------- >>> # Example usage >>> >>> def f(x): ... print "f(%s)" % x ... if x == 0: ... return 0 ... elif x == 1: ... return 1 ... else: ... return f(x-1) + f(x-2) >>> >>> import sys >>> sys.stdout = AutoIndent(sys.stdout) >>> >>> f(6) f(6) f(5) f(4) f(3) f(2) f(1) f(0) f(1) f(2) f(1) f(0) f(3) f(2) f(1) f(0) f(1) f(4) f(3) f(2) f(1) f(0) f(1) f(2) f(1) f(0) 8 >>>
""" Helper functions to query and send commands to the controller. """ import requests REQUESTS_TIMEOUT = 10 def status_schedule(token): """ Returns the json string from the Hydrawise server after calling statusschedule.php. :param token: The users API token. :type token: string :returns: The response from the controller. If there was an error returns None. :rtype: string or None """ url = 'https://app.hydrawise.com/api/v1/statusschedule.php' payload = { 'api_key': token, 'hours': 168} get_response = requests.get(url, params=payload, timeout=REQUESTS_TIMEOUT) if get_response.status_code == 200 and \ 'error_msg' not in get_response.json(): return get_response.json() return None def customer_details(token): """ Returns the json string from the Hydrawise server after calling customerdetails.php. :param token: The users API token. :type token: string :returns: The response from the controller. If there was an error returns None. :rtype: string or None. """ url = 'https://app.hydrawise.com/api/v1/customerdetails.php' payload = { 'api_key': token, 'type': 'controllers'} get_response = requests.get(url, params=payload, timeout=REQUESTS_TIMEOUT) if get_response.status_code == 200 and \ 'error_msg' not in get_response.json(): return get_response.json() return None def set_zones(token, action, relay=None, time=None): """ Controls the zone relays to turn sprinklers on and off. :param token: The users API token. :type token: string :param action: The action to perform. Available actions are: run, runall, stop, stopall, suspend, and suspendall. :type action: string :param relay: The zone to take action on. If no zone is specified then the action will be on all zones. :type relay: int or None :param time: The number of seconds to run or unix epoch time to suspend. :type time: int or None :returns: The response from the controller. If there was an error returns None. :rtype: string or None """ # Actions must be one from this list. action_list = [ 'run', # Run a zone for an amount of time. 'runall', # Run all zones for an amount of time. 'stop', # Stop a zone. 'stopall', # stop all zones. 'suspend', # Suspend a zone for an amount of time. 'suspendall' # Suspend all zones. ] # Was a valid action specified? if action not in action_list: return None # Set the relay id if we are operating on a single relay. if action in ['runall', 'stopall', 'suspendall']: if relay is not None: return None else: relay_cmd = '' else: relay_cmd = '&relay_id={}'.format(relay) # Add a time argument if the action requires it. if action in ['run', 'runall', 'suspend', 'suspendall']: if time is None: return None else: custom_cmd = '&custom={}'.format(time) period_cmd = '&period_id=999' else: custom_cmd = '' period_cmd = '' # If action is on a single relay then make sure a relay is specified. if action in ['stop', 'run', 'suspend'] and relay is None: return None get_response = requests.get('https://app.hydrawise.com/api/v1/' 'setzone.php?' '&api_key={}' '&action={}{}{}{}' .format(token, action, relay_cmd, period_cmd, custom_cmd), timeout=REQUESTS_TIMEOUT) if get_response.status_code == 200 and \ 'error_msg' not in get_response.json(): return get_response.json() return None
""" A permutation of length n is an ordering of the positive integers {1,2,…,n}. For example, π=(5,3,2,1,4) is a permutation of length 5. Given: A positive integer n≤7. Return: The total number of permutations of length n, followed by a list of all such permutations (in any order). """ from typing import Sequence from itertools import permutations def get_permutations(lines: Sequence[str]) -> str: """ :param lines: A line with n, a positive integer :return: Number of permutations followed by permutations of numbers between 1 and n """ if len(lines) != 1: raise ValueError("There must be only 1 line of input") line, *_ = lines[0] n = int(line) if n <= 0: raise ValueError("N must be a positive integer") # casting to list to get the total number permutations_ = list(permutations(range(1, n+1))) formatted_permutations = '\n'.join([' '.join((str(number) for number in nums)) for nums in permutations_]) return f"{len(permutations_)}\n{formatted_permutations}"
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import os import re import sys import struct from Peach.generator import Generator from Peach.Generators.dictionary import * from Peach.Generators.static import * import Peach.Generators.static class XmlCreateElements(Generator): """ This generator create XML elements N deep """ _startingDepth = 1 _increment = 1 _nodePrefix = Static('PeachFuzz') _nodePostfix = None _elementAttributs = None _currentDepth = 1 _maxDepth = 1000 def __init__(self, group, startingDepth=None, increment=None, maxDepth=None, nodePrefix=None, nodePostfix=None, elementAttributes=None): """ @type group: Group @param group: Group to use @type startingDepth: integer @param startingDepth: How many deep to start at, default 1 @type increment: integer @param increment: Incrementor, default 1 @type maxDepth: integer @param maxDepth: Max depth, default 1000 @type nodePrefix: Generator @param nodePrefix: Node prefix, default is Static('PeachFuzz') @type nodePostfix: Generator @param nodePostfix: Node postfix, default is None @type elementAttributes: Generator @param elementAttributes: Element attributes, default is None """ self.setGroup(group) if startingDepth is not None: self._startingDepth = startingDepth if increment is not None: self._increment = increment if nodePrefix is not None: self._nodePrefix = nodePrefix if nodePostfix is not None: self._nodePostfix = nodePostfix if elementAttributes is not None: self._elementAttributes = elementAttributes if maxDepth is not None: self._maxDepth = maxDepth def next(self): self._currentDepth += self._increment if self._currentDepth > self._maxDepth: raise generator.GeneratorCompleted("XmlCreateNodes") def getRawValue(self): ret = '' postFixs = [] for i in range(self._currentDepth): if self._nodePostfix is not None: postFixs[i] = self._nodePostfix.getValue() if self._elementAttributes is not None: ret += "<%s%s %s>" % (self._nodePrefix.getValue(), postFixs[i], self._elementAttributes.getValue()) else: ret += "<%s%s>" % (self._nodePrefix.getValue(), postFixs[i]) else: if self._elementAttributes is not None: ret += "<%s %s>" % (self._nodePrefix.getValue(), self._elementAttributes.getValue()) else: ret += "<%s>" % self._nodePrefix.getValue() for j in range(self._currentDepth): if self._nodePostfix is not None: ret += "</%s%s>" % (self._nodePrefix.getValue(), postFixs[i - j]) else: ret += "</%s>" % self._nodePrefix.getValue() return ret def reset(self): self._currentDepth = 1 @staticmethod def unittest(): expected = '<PeachFuzz1><PeachFuzz2><PeachFuzz3></PeachFuzz3></PeachFuzz2></PeachFuzz1>' g = XmlCreateNodes(1, 1) g.next() g.next() g.next() if g.getRawValue() != expected: print("FAILURE!!! XmlCreateNodes") class XmlCreateNodes(Generator): """ This generator create XML nodes N deep """ _startingDepth = 1 _increment = 1 _nodePrefix = Static('PeachFuzz') _currentDepth = 1 _maxDepth = 1000 def __init__(self, group, startingDepth, increment, maxDepth, nodePrefix): """ @type group: Group @param group: Group to use @type startingDepth: integer @param startingDepth: How many deep to start at, default 1 @type increment: integer @param increment: Incrementor, default 1 @type maxDepth: integer @param maxDepth: Max depth, default 1000 @type nodePrefix: Generator @param nodePrefix: Node prefix, default is Static('PeachFuzz') """ self.setGroup(group) if startingDepth is not None: self._startingDepth = startingDepth if increment is not None: self._increment = increment if nodePrefix is not None: self._nodePrefix = nodePrefix if maxDepth is not None: self._maxDepth = maxDepth def next(self): self._currentDepth += self._increment if self._currentDepth > self._maxDepth: raise generator.GeneratorCompleted("XmlCreateNodes") def getRawValue(self): ret = '' for i in range(self._currentDepth): ret += "<%s%d>" % (self._nodePrefix.getValue(), i) for j in range(self._currentDepth): ret += "</%s%d>" % (self._nodePrefix.getValue(), i - j) return ret def reset(self): self._currentDepth = 1 @staticmethod def unittest(): expected = '<PeachFuzz1><PeachFuzz2><PeachFuzz3></PeachFuzz3></PeachFuzz2></PeachFuzz1>' g = XmlCreateNodes(1, 1) g.next() g.next() g.next() if g.getRawValue() != expected: print("FAILURE!!! XmlCreateNodes") class XmlParserTests(Generator): """ W3C XML Validation Tests. This includes all sets of tests, invalid, non-well formed, valid and error. NOTE: Test files are in samples/xmltests.zip these are the latest test cases from W3C as of 02/23/06 for XML. """ def __init__(self, group, testFiles=None): """ @type group: Group @param group: Group this Generator belongs to @type testFiles: string @param testFiles: Location of test files """ Generator.__init__(self) p = None if not (hasattr(sys, "frozen") and sys.frozen == "console_exe"): p = Peach.Generators.static.__file__[:-10] else: p = os.path.dirname(os.path.abspath(sys.executable)) testFiles = os.path.join(p, "xmltests") self._generatorList = GeneratorList(group, [XmlParserTestsInvalid(None, testFiles), XmlParserTestsNotWellFormed(None, testFiles), XmlParserTestsValid(None, testFiles)]) def getRawValue(self): return self._generatorList.getRawValue() def next(self): self._generatorList.next() class XmlParserTestsGeneric(Generator): """ Base class """ def __init__(self, group, testsFolder, testsFile): """ @type group: Group @param group: Group this Generator belongs to @type testsFolder: string @param testsFolder: Location of test files @type testsFile: string @param testsFile: File with listing of test files """ Generator.__init__(self) self._testsFolder = 'xmltests' self._testsFile = 'invalid.txt' self._currentValue = None self._currentTestNum = 1 self._currentFilename = None self._fdTests = None self._fd = None self.setGroup(group) if testsFile is not None: self._testsFile = testsFile if testsFolder is not None: self._testsFolder = testsFolder def next(self): if self._fdTests is None: fileName = os.path.join(self._testsFolder, self._testsFile) self._fdTests = open(fileName, 'rb') self._currentFilename = os.path.join(self._testsFolder, self._fdTests.readline()) self._currentFilename = self._currentFilename.strip("\r\n") if len(self._currentFilename) <= len(self._testsFolder) + 2: raise generator.GeneratorCompleted( "Peach.Generators.xml.XmlParserTestsInvalid") if self._fd is None: self._fd = open(self._currentFilename, 'rb') if self._fd is None: raise Exception('Unable to open', self._currentFilename) self._currentValue = self._fd.read() self._fd = None def getRawValue(self): if self._currentValue is None: self.next() return self._currentValue def reset(self): self._fd = None self._fdTests = None self._currentValue = None @staticmethod def unittest(): pass class XmlParserTestsInvalid(XmlParserTestsGeneric): """ W3C XML Validation Tests, invalid set only. NOTE: Test files are in samples/xmltests.zip these are the latest test cases from W3C as of 02/23/06 for XML. """ def __init__(self, group, testsFolder): """ @type group: Group @param group: Group this Generator belongs to @type testsFolder: string @param testsFolder: Location of test files """ XmlParserTestsGeneric.__init__(self, group, testsFolder, None) self.setGroup(group) self._testsFile = 'invalid.txt' if testsFolder is not None: self._testsFolder = testsFolder class XmlParserTestsValid(XmlParserTestsGeneric): """ W3C XML Validation Tests, valid set only. NOTE: Test files are in samples/xmltests.zip these are the latest test cases from W3C as of 02/23/06 for XML. """ def __init__(self, group, testsFolder): """ @type group: Group @param group: Group this Generator belongs to @type testsFolder: string @param testsFolder: Location of test files """ XmlParserTestsGeneric.__init__(self, group, testsFolder, None) self.setGroup(group) self._testsFile = 'valid.txt' if testsFolder is not None: self._testsFolder = testsFolder class XmlParserTestsError(XmlParserTestsGeneric): """ W3C XML Validation Tests, error set only. NOTE: Test files are in samples/xmltests.zip these are the latest test cases from W3C as of 02/23/06 for XML. """ def __init__(self, group, testsFolder): """ @type group: Group @param group: Group this Generator belongs to @type testsFolder: string @param testsFolder: Location of test files """ XmlParserTestsGeneric.__init__(self, group, testsFolder, None) self.setGroup(group) self._testsFile = 'error.txt' if testsFolder is not None: self._testsFolder = testsFolder class XmlParserTestsNotWellFormed(XmlParserTestsGeneric): """ W3C XML Validation Tests, Invalid set only. NOTE: Test files are in samples/xmltests.zip these are the latest test cases from W3C as of 02/23/06 for XML. """ def __init__(self, group, testsFolder): """ @type group: Group @param group: Group this Generator belongs to @type testsFolder: string @param testsFolder: Location of test files """ XmlParserTestsGeneric.__init__(self, group, testsFolder, None) self.setGroup(group) self._testsFile = 'nonwf.txt' if testsFolder is not None: self._testsFolder = testsFolder
def __sort_array(a_list): result = a_list for i in range(0, len(result) - 1, 1): for j in range(i + 1, len(result), 1): if result[i] > result[j]: result[i], result[j] = result[j], result[i] return result def find_the_pair_of_values(first_array, second_array): __sort_array(first_array) __sort_array(second_array) minimum_value = 999999999 result = [None, None] it = 0 jit = 0 while it < len(first_array) and jit < len(second_array): if minimum_value > abs(first_array[it] - second_array[jit]): result[0] = first_array[it] result[1] = second_array[jit] minimum_value = abs(first_array[it] - second_array[jit]) if first_array[it] < second_array[jit]: it += 1 else: jit += 1 return result if __name__ == '__main__': print(find_the_pair_of_values([4, 17, 3, 49, 9], [127, 36, 7, 220, 25, 70]))
# -*- coding: utf-8 -*- import os import re import struct import sys from socket import inet_ntoa from lumbermill.BaseThreadedModule import BaseThreadedModule from lumbermill.utils.Decorators import ModuleDocstringParser @ModuleDocstringParser class NetFlow(BaseThreadedModule): r""" Netflow parser Decode netflow packets. source_field: Input field to decode. target_field: Event field to be filled with the new data. Configuration template: - parser.NetFlow: source_field: # <default: 'data'; type: string; is: optional> target_field: # <default: 'data'; type: string; is: optional> keep_original: # <default: False; type: boolean; is: optional> receivers: - NextModule """ module_type = "parser" """Set module type""" NF_V5_HEADER_LENGTH = 24 NF_V5_RECORD_LENGTH = 48 TH_FIN = 0x01 # end of data TH_SYN = 0x02 # synchronize sequence numbers TH_RST = 0x04 # reset connection TH_PUSH = 0x08 # push TH_ACK = 0x10 # acknowledgment number set TH_URG = 0x20 # urgent pointer set TH_ECE = 0x40 # ECN echo, RFC 3168 TH_CWR = 0x80 # congestion window reduced IP_PROTOCOLS = {} # Helper functions def readProtocolInfo(self): path = "%s/../assets/ip_protocols" % os.path.dirname(os.path.realpath(__file__)) r = re.compile("(?P<proto>\S+)\s+(?P<num>\d+)") with open(path, 'r') as f: for line in f: m = r.match(line) if not m: continue NetFlow.IP_PROTOCOLS[int(m.group("num"))] = m.group("proto") def configure(self, configuration): # Call parent configure method BaseThreadedModule.configure(self, configuration) self.source_field = self.getConfigurationValue('source_field') self.target_field = self.getConfigurationValue('target_field') self.drop_original = not self.getConfigurationValue('keep_original') self.readProtocolInfo() def getTcpFflags(self, flags): ret = [] if flags & NetFlow.TH_FIN: ret.append('FIN') if flags & NetFlow.TH_SYN: ret.append('SYN') if flags & NetFlow.TH_RST: ret.append('RST') if flags & NetFlow.TH_PUSH: ret.append('PUSH') if flags & NetFlow.TH_ACK: ret.append('ACk') if flags & NetFlow.TH_URG: ret.append('URG') if flags & NetFlow.TH_ECE: ret.append('ECE') if flags & NetFlow.TH_CWR: ret.append('CWR') return ret def decodeVersion5(self, raw_nf_data, record_count): nf_data = {} (nf_data['sys_uptime'], nf_data['unix_secs'], nf_data['unix_nsecs'], nf_data['flow_sequence'], nf_data['engine_type'], nf_data['engine_id'], nf_data['sampling_interval']) = struct.unpack('!IIIIBBH', raw_nf_data[4:24]) for i in range(0, record_count): record_starts_at = NetFlow.NF_V5_HEADER_LENGTH + (i * NetFlow.NF_V5_RECORD_LENGTH) record = raw_nf_data[record_starts_at:record_starts_at+NetFlow.NF_V5_RECORD_LENGTH] # Decode record, except src and dest addresses. decoded_record = struct.unpack('!HHIIIIHHBBBBHHBBH', record[12:]) nf_data['srcaddr'] = inet_ntoa(record[:4]) nf_data['dstaddr'] = inet_ntoa(record[4:8]) nf_data['nexthop'] = inet_ntoa(record[8:12]) nf_data['snmp_index_in_interface'] = decoded_record[0] nf_data['snmp_index_out_interface'] = decoded_record[1] nf_data['packet_count'] = decoded_record[2] nf_data['byte_count'] = decoded_record[3] nf_data['uptime_start'] = decoded_record[4] nf_data['uptime_end'] = decoded_record[5] nf_data['srcport'] = decoded_record[6] nf_data['dstport'] = decoded_record[7] nf_data['tcp_flags_binary'] = decoded_record[9] nf_data['tcp_flags'] = self.getTcpFflags(decoded_record[9]) nf_data['prot'] = decoded_record[10] nf_data['prot_name'] = NetFlow.IP_PROTOCOLS[decoded_record[10]] nf_data['tos'] = decoded_record[11] nf_data['src_as'] = decoded_record[12] nf_data['dst_as'] = decoded_record[13] nf_data['src_mask'] = decoded_record[14] nf_data['dst_mask'] = decoded_record[15] yield nf_data def handleEvent(self, event): if self.source_field not in event: yield event return raw_nf_data = event[self.source_field] # Try to get netflow version. try: (version, record_count) = struct.unpack('!HH', raw_nf_data[0:4]) except: etype, evalue, etb = sys.exc_info() self.logger.warning("Could not detect netflow version: %s. Exception: %s, Error: %s." % (raw_nf_data, etype, evalue)) yield event # Call decoder for detected version. try: decoder_func = getattr(self, "decodeVersion%s" % version) except AttributeError: etype, evalue, etb = sys.exc_info() self.logger.error("Netflow parser does not implement decoder for netflow version: %s. Exception: %s, Error: %s" % (version, etype, evalue)) self.lumbermill.shutDown() copy_event = False for netflow_data in decoder_func(raw_nf_data, record_count): if copy_event: event = event.copy() copy_event = True if self.drop_original and self.source_field is not self.target_field: event.pop(self.source_field, None) event[self.target_field] = netflow_data event['lumbermill']['event_type'] = "NetFlowV%s" % version yield event
class FilterModule(object): def filters(self): return { 'get_zone_interfaces': self.get_zone_interfaces, } def get_zone_interfaces(self, zones): dmz_lab_interfaces = list() home_interfaces = list() internet_interfaces = list() if 'multi-routing-engine-results' in zones: zone_information = zones['multi-routing-engine-results']['multi-routing-engine-item']['zones-information']['zones-security'] if isinstance(zone_information,list): for each in zone_information: if each['zones-security-zonename'] == "DMZ_LAB": if isinstance(each['zones-security-interfaces']['zones-security-interface-name'],list): for interface in each['zones-security-interfaces']['zones-security-interface-name']: dmz_lab_interfaces.append(interface) else: dmz_lab_interfaces.append(each['zones-security-interfaces']['zones-security-interface-name']) elif each['zones-security-zonename'] == "HOME": if isinstance(each['zones-security-interfaces']['zones-security-interface-name'],list): for interface in each['zones-security-interfaces']['zones-security-interface-name']: home_interfaces.append(interface) else: home_interfaces.append(each['zones-security-interfaces']['zones-security-interface-name']) elif each['zones-security-zonename'] == "INTERNET": if isinstance(each['zones-security-interfaces']['zones-security-interface-name'],list): for interface in each['zones-security-interfaces']['zones-security-interface-name']: internet_interfaces.append(interface) else: internet_interfaces.append(each['zones-security-interfaces']['zones-security-interface-name']) else: pass zone_ifaces = dict() zone_ifaces['dmz_lab_interfaces'] = dmz_lab_interfaces zone_ifaces['home_interfaces'] = home_interfaces zone_ifaces['internet_interfaces'] = internet_interfaces return zone_ifaces elif 'zones-information' in zones: zone_information = zones['zones-information']['zones-security'] if isinstance(zone_information,list): for each in zone_information: if each['zones-security-zonename'] == "DMZ_LAB": if isinstance(each['zones-security-interfaces']['zones-security-interface-name'],list): for interface in each['zones-security-interfaces']['zones-security-interface-name']: dmz_lab_interfaces.append(interface) else: dmz_lab_interfaces.append(each['zones-security-interfaces']['zones-security-interface-name']) elif each['zones-security-zonename'] == "HOME": if isinstance(each['zones-security-interfaces']['zones-security-interface-name'],list): for interface in each['zones-security-interfaces']['zones-security-interface-name']: home_interfaces.append(interface) else: home_interfaces.append(each['zones-security-interfaces']['zones-security-interface-name']) elif each['zones-security-zonename'] == "INTERNET": if isinstance(each['zones-security-interfaces']['zones-security-interface-name'],list): for interface in each['zones-security-interfaces']['zones-security-interface-name']: internet_interfaces.append(interface) else: internet_interfaces.append(each['zones-security-interfaces']['zones-security-interface-name']) else: pass zone_ifaces = dict() zone_ifaces['dmz_lab_interfaces'] = dmz_lab_interfaces zone_ifaces['home_interfaces'] = home_interfaces zone_ifaces['internet_interfaces'] = internet_interfaces return zone_ifaces
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) Spyder Project Contributors # # Licensed under the terms of the MIT License # (see LICENSE.txt for details) # ----------------------------------------------------------------------------- # Standard library imports import time # Local imports from spyder.plugins.preferences.api import PreferencePages from spyder.plugins.maininterpreter.plugin import MainInterpreter from spyder.plugins.preferences.tests.conftest import MainWindowMock from spyder.utils.conda import get_list_conda_envs from spyder.utils.pyenv import get_list_pyenv_envs # Get envs to show them in the Main interpreter page. This is actually # done in a thread in the InterpreterStatus widget. # We also recording the time needed to get them to compare it with the # loading time of that config page. t0 = time.time() get_list_conda_envs() get_list_pyenv_envs() GET_ENVS_TIME = time.time() - t0 def test_load_time(qtbot): from spyder.plugins.maininterpreter.confpage import ( MainInterpreterConfigPage) # Create Preferences dialog main = MainWindowMock() preferences = main.preferences preferences.config_pages.pop(PreferencePages.General) main_interpreter = MainInterpreter(main) main.register_plugin(main_interpreter) # Create page and measure time to do it t0 = time.time() preferences.open_dialog(None) load_time = time.time() - t0 container = preferences.get_container() dlg = container.dialog widget = dlg.get_page() # Assert the combobox is populated with the found envs assert widget.cus_exec_combo.combobox.count() > 0 # Assert load time is smaller than the one required to get envs # directly. This means we're using the cached envs instead assert load_time < GET_ENVS_TIME # Load time should be small too because we perform simple validations # on the page. assert load_time < 0.5
import serial # Serial port configuration ser = serial.Serial() ser.port = 'COM3' ser.baudrate = 4800 ser.open() # Send data continuously while ser.isOpen(): #print(ser.portstr) # check which port was really used ser.write(bytes("150", 'ascii')) # write a string #ser.close() # close port
# Copyright (c) 2020, 2021, Oracle and/or its affiliates. # # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ # from utils import auxutil from setup import defaults class Config: version_tag = defaults.VERSION_TAG min_supported_version = defaults.MIN_SUPPORTED_VERSION max_supported_version = defaults.MAX_SUPPORTED_VERSION image_registry = defaults.IMAGE_REGISTRY image_repository = defaults.IMAGE_REPOSITORY image_registry_host = "" image_registry_port = "" image_registry_is_loopback = "" operator_image_name = defaults.OPERATOR_IMAGE_NAME operator_ee_image_name = defaults.OPERATOR_EE_IMAGE_NAME operator_version_tag = defaults.OPERATOR_VERSION_TAG operator_pull_policy = defaults.OPERATOR_PULL_POLICY operator_gr_ip_whitelist = defaults.OPERATOR_GR_IP_WHITELIST # server server_version_tag = defaults.SERVER_VERSION_TAG server_image_name = defaults.SERVER_IMAGE_NAME server_ee_image_name = defaults.SERVER_EE_IMAGE_NAME # router router_version_tag = defaults.ROUTER_VERSION_TAG router_image_name = defaults.ROUTER_IMAGE_NAME router_ee_image_name = defaults.ROUTER_EE_IMAGE_NAME # oci oci_skip = defaults.OCI_SKIP oci_backup_apikey_path = defaults.OCI_BACKUP_APIKEY_PATH oci_restore_apikey_path = defaults.OCI_RESTORE_APIKEY_PATH oci_backup_bucket = defaults.OCI_BACKUP_BUCKET @property def operator_shell_version_num(self): a,b,c = self.operator_version_tag.split("-")[0].split(".") return int(a)*10000 + int(b)*100 + int(c) def commit(self): if self.image_registry: self.image_registry_host, self.image_registry_port, self.image_registry_is_loopback = auxutil.resolve_registry_url(self.image_registry) def get_old_version_tag(self): return self.min_supported_version def get_image_registry_repository(self): if self.image_registry: if self.image_repository: return self.image_registry + "/" + self.image_repository else: return self.image_registry else: return self.image_repository def get_operator_image(self): return f"{self.get_image_registry_repository()}/{self.operator_image_name}:{self.operator_version_tag}" def get_server_image(self, version=None): return f"{self.get_image_registry_repository()}/{self.server_image_name}:{version if version else self.version_tag}" def get_old_server_image(self): return self.get_server_image(self.get_old_version_tag()) def get_router_image(self): return f"{self.get_image_registry_repository()}/{self.router_image_name}:{self.version_tag}" # test-suite configuration g_ts_cfg = Config()
n = int(input()) for _ in range(n): c = 0 linha = input() esquerda = [] for x, n in enumerate(linha): if n == '<': esquerda.append(n) elif n == '>' and esquerda: esquerda.pop() c += 1 print(c)
# Copyright (c) 2015, # Philipp Hertweck # # This code is provided under the BSD 2-Clause License. # Please refer to the LICENSE.txt file for further information. import sys from os import path sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) ) ) import unittest from testing import integration_test as integration_test from testing.tcpdump.Packet import Packet # Network used in this test from networks import sample_network as network class TestPacketAnalyzer(integration_test.IntegrationTestCase): def setUp(self): # TestConfiguration self.CONTROLLER_PATH = '../../controller/routing_switch.py' self.NETWORK = network.Network super(TestPacketAnalyzer, self).setUp() def test_received_packets(self): self.analyze_packets(["h1","h2"], lambda: self.net.pingAll()) self.assertPacketIn("Host 1 received a packet", "h1") def test_received_eth_packet(self): host1, host2 = self.net.get("h1", "h2") self.analyze_packets(["h1","h2"], lambda: self.net.ping((host1, host2))) # Analyze packets on h1 packet = Packet() packet.eth_src = "cc:cc:cc:cc:cc:01" packet.eth_dst = "cc:cc:cc:cc:cc:02" self.assertReceivedPacket(packet, "Received eth packet", "h1") packet1 = Packet() packet1.eth_src = "aa:aa:aa:aa:aa:aa" packet1.eth_dst = "cc:cc:cc:cc:cc:02" self.assertNotReceivedPacket(packet1, "Not received packet from switch.", "h1") # Analyze packets on h2 packet3 = Packet() packet3.eth_src = "cc:cc:cc:cc:cc:01" packet3.eth_dst = "cc:cc:cc:cc:cc:02" self.assertReceivedPacket(packet3, "Received eth packet", "h2") packet4 = Packet() packet4.eth_src = "aa:aa:aa:aa:aa:aa" packet4.eth_dst = "cc:cc:cc:cc:cc:02" self.assertNotReceivedPacket(packet4, "Not received packet from switch.", "h2") if __name__ == '__main__': unittest.main()
from setuptools import setup install_requires = [ # Pin deps for now, to be upgraded after tests are much expanded. 'Genshi==0.7', 'lxml==3.6.0', 'Pygments==1.4', 'python-dateutil==2.5.3', 'Twisted[tls]==16.4.0', 'klein', 'treq', 'attrs', ] extras_require = { 'testing': [ 'coverage', 'ddt', ], } setup( name='infobob', version='0.1.0-dev', author='habnabit', author_email='_@habnab.it', maintainer='Colin Dunklau', maintainer_email='colin.dunklau@gmail.com', packages=['infobob', 'infobob.tests', 'twisted.plugins'], include_package_data=True, install_requires=install_requires, extras_require=extras_require, )
import numpy as np class Settings: """ Class for different program settings. At the start these settings are loaded from predefined file. """ def __init__(self): """ This function has different properties: Attributes ---------- self.derivative_dx : float Increment size for derivative calculation. self.formalism : str Possible two values. Palatini or Metric, by default None. """ self.formalism = "Metric" self.scalar_field_range = [0, 10] self.scalar_field_step = 1e-6 self.scalar_field_step_plot = 1e-6 self.scalar_field_domain = np.arange( self.scalar_field_range[0], self.scalar_field_range[1]+self.scalar_field_step, self.scalar_field_step) self.scalar_field_domain_plot = np.arange( self.scalar_field_range[0], self.scalar_field_range[1]+self.scalar_field_step_plot, self.scalar_field_step_plot) self.N_values = [50, 60] self.N_range = [0, 100] self.N_step = 0.1 self.N_list = np.unique( np.concatenate( (np.arange(self.N_range[0], self.N_range[1]+self.N_step, self.N_step), self.N_range[1] + np.exp(np.arange(0, 10+self.N_step, self.N_step)), self.N_values) ) ) # Numerical calculation self.derivative_dx = 1e-6 # self.root_precision = 1e-4 self.simplify = False def create_interval_list(self): return np.arange(self.scalar_field_range[0], self.scalar_field_range[1]+self.scalar_field_step, self.scalar_field_step)
import flax.linen as nn import jax.numpy as jnp from .config import Config from .wavenet import WaveNetBlock class DiffWave(nn.Module): """DiffWave: A Versatile Diffusion Model for Audio Synthesis. """ config: Config def setup(self): """Setup modules. """ config = self.config # [F], fourier coefficient self.fcoeff = 2 ** jnp.array(config.fourier) # signal proj self.proj = nn.Dense(config.channels) # embedding self.proj_embed = [ nn.Dense(config.embedding_proj) for _ in range(config.embedding_layers)] # mel-upsampler self.upsample = [ nn.ConvTranspose( 1, config.upsample_kernels, config.upsample_strides, padding='SAME') for _ in range(config.upsample_layers)] # wavenet blocks self.blocks = [ WaveNetBlock( channels=config.channels, kernels=config.kernels, dilations=config.dilations ** i) for _ in range(config.num_cycles) for i in range(config.num_layers)] self.scale = config.num_layers ** -0.5 # output projection self.proj_context = nn.Dense(config.channels) self.proj_out = nn.Dense(1) def __call__(self, signal: jnp.ndarray, snr: jnp.ndarray, mel: jnp.ndarray) -> jnp.ndarray: """Estimate noise from signal with respect to given snr and mel-spectrogram. Args: signal: [float32; [B, T]], noised signal. snr: [float32; [B]], normalized signal-to-noise ratio. mel: [float32; [B, T // H, M]], mel-spectrogram. Returns: [float32; [B, T]], estimated noise. """ # [B, T, F], fourier features x = self.fcoeff * signal[..., None] * jnp.pi # [B, T, F x 2 + 1] x = jnp.concatenate([signal[..., None], jnp.sin(x), jnp.cos(x)], axis=-1) # [B, T, C] x = nn.swish(self.proj(x)) # [B, E'] embed = self.embedding(snr) # [B, E] for proj in self.proj_embed: embed = nn.swish(proj(embed)) # [B, T // H, M, 1] mel = mel[..., None] for upsample in self.upsample: mel = nn.swish(upsample(mel)) # [B, T, M] mel = mel.squeeze(-1) # WaveNet context = 0. for block in self.blocks: # [B, T, C], [B, T, C] x, skip = block(x, embed, mel) context = context + skip # [B, T, C] context = nn.swish(self.proj_context(context * self.scale)) # [B, T] return nn.tanh(self.proj_out(context)).squeeze(-1) def embedding(self, snr: jnp.ndarray) -> jnp.ndarray: """Generate embedding. Args: snr: [float32; [B]], unit normalized signal-to-noise ratio. Returns: [float32; [B, E]], embeddings. """ # [E // 2] i = jnp.arange(0, self.config.embedding_size, 2) # [E // 2] denom = jnp.exp(-jnp.log(10000) * i / self.config.embedding_size) # [B, E // 2] context = snr[:, None] * denom[None] * self.config.embedding_factor # [B, E // 2, 2] pe = jnp.stack([jnp.sin(context), jnp.cos(context)], axis=-1) # [B, E] return pe.reshape(-1, self.config.embedding_size)
#!/usr/bin/env python3 # ============================================================== # author: Lars Gabriel # # runEVM.py: Run EVM for a set of partitions # ============================================================== import argparse import subprocess as sp import multiprocessing as mp import os import csv import sys class FileMissing(Exception): pass evm = '' bin = os.path.dirname(os.path.realpath(__file__)) workdir = '' partition_list = [] weights = '' threads = 1 def main(): global evm, workdir, partition_list, weights, bin, threads args = parseCmd() workdir = os.path.abspath('{}/EVM/{}/'.format(args.species_dir, args.test_level)) evm = os.path.abspath(args.evm_path) threads = args.threads # read partition lists partition_list_path = '{}/partitions/part_test.lst'.format(workdir) with open(partition_list_path, 'r') as file: part = csv.reader(file, delimiter='\t') for p in part: partition_list.append(p) # Check if weight file exists weights = '{}/EVM.weights.tab'.format(workdir) if not os.path.exists(weights): raise FileMissing('Weight file is missing at: {}'.format(weights)) ''' for part in partition_list: prediction(part[3], part[0]) ''' # Run evm predicitons job_results = [] pool = mp.Pool(threads) for part in partition_list: r = pool.apply_async(prediction, (part[3], part[0])) job_results.append(r) for r in job_results: r.wait() pool.close() pool.join() def prediction(exec_dir, contig): # make a EVM predcition for one partition part_name = exec_dir.split('/')[-1] start = int(part_name.split('_')[1].split('-')[0]) chr = part_name.split('_')[0] # Run EVM evm_out = '{}/evm.out'.format(exec_dir) evm_cmd = '{}/evidence_modeler.pl -G genome.fasta.masked -g gene_set.gff'.format(evm) \ + ' -w {} -e evm_pasa.gff -p evm_protein.gff --exec_dir {} > {} 2> {}.log'.format(\ weights, exec_dir, evm_out, evm_out) q = sp.Popen(evm_cmd, shell=True, stdout=sp.PIPE, stderr=sp.PIPE) stdout, stderr = q.communicate() if stderr.decode(): sys.stderr.write('Error in {} with: {}'.format(evm_cmd, stderr.decode())) # check if EVM predicted at least one gene and convert evm.out to gff and gtf format if not os.stat(evm_out).st_size == 0: gff_out = '{}/evm.gff'.format(exec_dir, part_name) cmd = '{}/EvmUtils/EVM_to_GFF3.pl {} {} > {}'.format(evm, evm_out, contig, gff_out) sp.call(cmd, shell=True) gtf_out = '{}/evm.gtf'.format(exec_dir, part_name) cmd = '{}/gff32gtf.py --gff {} --out {}'.format(bin, gff_out, gtf_out) sp.call(cmd, shell=True) def parseCmd(): """Parse command line arguments Returns: dictionary: Dictionary with arguments """ parser = argparse.ArgumentParser(description='Run EVM for a set of partitions') parser.add_argument('--species_dir', type=str, help='Directory containing the results of TSEBRA-experiment 1 for one species') parser.add_argument('--test_level', type=str, help='One of "species_excluded", "family_excluded" or "order_excluded"') parser.add_argument('--evm_path', type=str, help='Path to the directory where EVidenceModeler is installed') parser.add_argument('--threads', type=int, help='') return parser.parse_args() if __name__ == '__main__': main()
import regex as re def remove_feminine_infl(text): text = re.sub('(.*)/in(?!\w)', r'\1', text) text = re.sub('(.*)/n(?!\w)', r'\1', text) return text def remove_article(text): if not re.search('^ein\s+((für alle)|(paar))', text): text = re.sub('^(?:die|der|das|dem|den|ein|eine|einen|einem)\s+', '', text) return text
from typing import Text from ..request import get from ..Model.ApiModel import Channel from pydantic import BaseModel class all_channel(BaseModel): ch:list[Channel] def get_channel(channel_id:Text) -> Channel: """获取子频道信息""" channel = get(f"/channels/{channel_id}") channel_info = Channel(**channel) return channel_info def get_guilds_all_channel(guild_id:Text) -> list[Channel]: """获取频道下的子频道列表""" channel = get(f"/guilds/{guild_id}/channels") channel_info = all_channel(**{"ch":channel}) return channel_info.ch
# Standard lib imports import logging # Third party imports # None # Project level imports # None log = logging.getLogger(__name__) class UserInfo(object): def __init__(self, connection): """ Initialize a new instance """ self.conn = connection def whoami(self): """ Example JSON result from the API: { u'common_name': u'ecsadmin@internal', u'distinguished_name': u'', u'namespace': u'', u'roles': [ u'SYSTEM_ADMIN' ] } """ log.info('Getting my own user info (whoami)') return self.conn.get('user/whoami')
class Solution(object): def thirdMax(self, nums): n1 = n2 = n3 = None for e in nums: if e != n1 and e != n2 and e != n3: if n1 is None or e > n1: n1, n2, n3 = e, n1, n2 elif n2 is None or e > n2: n2, n3 = e, n2 elif n3 is None or e > n3: n3 = e return n1 if n3 is None else n3
import http from flask import request from flask_restful import Resource, reqparse from models import User from utils.decorators import api_response_wrapper from utils.rate_limit import rate_limit from .login_service import generate_jwt_tokens parser = reqparse.RequestParser() parser.add_argument("email", help="This field cannot be blank", required=True) parser.add_argument("password", help="This field cannot be blank", required=True) class UserLogin(Resource): @rate_limit() @api_response_wrapper() def post(self): """ Login method for users --- tags: - user parameters: - in: body name: body schema: id: UserLogin required: - email - password properties: email: type: string description: The user's email. default: "JohnDoe@mail.ru" password: type: string description: The user's password. default: "Qwerty123" responses: 200: description: Success user's login schema: properties: success: type: boolean description: Response status default: True data: type: array description: Response data items: type: object properties: access_token: type: string refresh_token: type: string message: type: string description: Response message 400: description: Bad request response schema: properties: success: type: boolean description: Response status default: False data: type: array description: Response data items: type: object default: ... default: [] message: type: string description: Response message 429: description: Too many requests. Limit in interval seconds. """ data = parser.parse_args() email: str = data.get("email") current_user = User.find_by_email(email=email) if not current_user: return {"message": f"User {email} doesn't exist"}, http.HTTPStatus.NOT_FOUND if current_user.check_password(password=data.get("password")): jwt_tokens: dict[str, str] = generate_jwt_tokens( current_user=current_user, request=request ) return { "message": f"Logged in as {current_user.username}", "access_token": jwt_tokens.get("access_token"), "refresh_token": jwt_tokens.get("refresh_token"), }, http.HTTPStatus.OK return {"message": "Wrong credentials"}, http.HTTPStatus.BAD_REQUEST
from numba import jit import math import numpy as _np from netket import random as _random class _HamiltonianKernel: def __init__(self, hamiltonian): self._hamiltonian = hamiltonian self._sections = _np.empty(1, dtype=_np.int32) self._hamconn = self._hamiltonian.get_conn_flattened self._n_conn = self._hamiltonian.n_conn self._hilbert = hamiltonian.hilbert def transition(self, state, state_1, log_prob_corr): sections = self._sections sections = _np.empty(state.shape[0], dtype=_np.int32) vprimes = self._hamconn(state, sections)[0] self._choose(vprimes, sections, state_1, log_prob_corr) self._n_conn(state_1, sections) log_prob_corr -= _np.log(sections) def random_state(self, state): for i in range(state.shape[0]): self._hilbert.random_state(out=state[i]) @staticmethod @jit(nopython=True) def _choose(states, sections, out, w): low_range = 0 for i, s in enumerate(sections): n_rand = _random.randint(low_range, s, size=()) out[i] = states[n_rand] w[i] = math.log(s - low_range) low_range = s
import pytest from data_structures.heap import Heap @pytest.fixture def base_heap(): heap = Heap() heap.push(1) heap.push(2) heap.push(3) heap.push(4) heap.push(5) return heap def test_heap_init(): basic_heap = Heap() init_list_heap = Heap([9, 8, 7, 5, 1, 2]) assert isinstance(basic_heap, Heap) assert isinstance(init_list_heap, Heap) def test_heap_push(): heap = Heap() heap.push(2) heap.push(3) heap.push(1) def test_heap_pop(base_heap): assert base_heap.pop() == 1 assert base_heap.pop() == 2 def test_heap_peek(base_heap): assert base_heap.peek() == 1 def test_heap_empty(): heap = Heap() assert heap.empty() heap.push(1) assert not heap.empty() def test_heapify_up_and_down(base_heap): base_heap.pop() base_heap.pop() base_heap.push(8) base_heap.push(1) base_heap.push(0) base_heap.push(9) assert base_heap.get_heap() == [0, 3, 1, 8, 4, 5, 9] def test_heapify(): heap = Heap([8, 9, 5, 1, 3, 2, 0, 6]) assert heap.get_heap() == [0, 1, 2, 6, 3, 8, 5, 9]
import predict import cv2 import base64 import json def make_json(img, happy, confidence): # 인코딩된 스트링을 저장할 객체 encoded_string = None # 이미지 저장 cv2.imwrite('Cropped_image.jpg', img) # 이미지를 다시 열고 (이것은 대훈이가 이렇게 하는게 된다고 함 꼼수인듯 ㄱㅇㄷ) with open("Cropped_image.jpg", "rb") as image_file: encoding_string = base64.b64encode(image_file.read()) # print("길이 계산 ") # print(len(encoding_string)) # print(type(encoding_string)) # print(encoding_string[:100]) send_msg_dict = {'value': happy, 'confidence': confidence, 'Image': str(encoding_string)} json_msg = json.dumps(send_msg_dict) print(happy, confidence) cv2.imshow('Image view', img) cv2.waitKey(0) cv2.destroyAllWindows() return json_msg # Cropped된 이미지와 상태, 피곤함 측정 결과 정도를 img,happy,confidence에 받아옴. img,happy,confidence = predict.starting('image.jpg') json_msg = make_json(img,happy,confidence) print(type(json_msg),len(json_msg))
import CGIHTTPServer,BaseHTTPServer server_address = ('', 8000) handler = CGIHTTPServer.CGIHTTPRequestHandler httpd = BaseHTTPServer.HTTPServer(server_address, handler) print("server running on port %s" %server_address[1]) httpd.serve_forever()
# -*- coding: utf-8 -*- tipos = int(input()) quantidades = list(map(int, input().split())) print(min(quantidades))
import torch import torch.nn as nn def lerp_nn(source: nn.Module, target: nn.Module, tau: float): for t, s in zip(target.parameters(), source.parameters()): t.data.copy_(t.data * (1. - tau) + s.data * tau) def get_huber_loss(bellman_errors, kappa=1): be_abs = bellman_errors.abs() huber_loss_1 = (be_abs <= kappa).float() * 0.5 * bellman_errors ** 2 huber_loss_2 = (be_abs > kappa).float() * kappa * (be_abs - 0.5 * kappa) return huber_loss_1 + huber_loss_2 def flat_grads(params): return torch.cat( [p.grad.data.flatten() for p in params if p.grad is not None])
from app.drivers.mslookup import base from app.actions.mslookup import biosets as lookups from app.drivers.options import mslookup_options class BioSetLookupDriver(base.LookupDriver): outsuffix = '_setlookup.sqlite' lookuptype = 'biosets' command = 'biosets' commandhelp = ('Create SQLite lookup of mzML input files and ' 'biological set names. Input files are passed to -i, ' 'respective set names are passed to --setnames.') def __init__(self): super().__init__() self.infiletype = 'mzML spectra' def set_options(self): super().set_options() del(self.options['--dbfile']) self.options.update(self.define_options(['setnames'], mslookup_options)) def parse_input(self, **kwargs): super().parse_input(**kwargs) self.lookupfn = None self.setnames = [x.replace('"', '') for x in self.setnames] def create_lookup(self): lookups.create_bioset_lookup(self.lookup, self.fn, self.setnames)
import asyncio import base64 import hashlib import hmac from http.cookies import SimpleCookie import json import urllib.request SALT = "datasette-auth-github" class BadSignature(Exception): pass class Signer: def __init__(self, secret): self.secret = secret def signature(self, value): return ( base64.urlsafe_b64encode(salted_hmac(SALT, value, self.secret).digest()) .strip(b"=") .decode() ) def sign(self, value): return "{}:{}".format(value, self.signature(value)) def unsign(self, signed_value): if ":" not in signed_value: raise BadSignature("No : found") value, signature = signed_value.rsplit(":", 1) if hmac.compare_digest(signature, self.signature(value)): return value raise BadSignature("Signature does not match") async def send_html(send, html, status=200, headers=None): headers = headers or [] if "content-type" not in [h.lower() for h, v in headers]: headers.append(["content-type", "text/html; charset=UTF-8"]) await send( { "type": "http.response.start", "status": status, "headers": [ [key.encode("utf8"), value.encode("utf8")] for key, value in headers ], } ) await send({"type": "http.response.body", "body": html.encode("utf8")}) async def http_request(url, body=None): "Performs POST if body provided, GET otherwise." def _request(): message = urllib.request.urlopen(url, data=body) return message.status, tuple(message.headers.raw_items()), message.read() loop = asyncio.get_event_loop() status_code, headers, body = await loop.run_in_executor(None, _request) return Response(status_code, headers, body) class Response: "Wrapper class making HTTP responses easier to work with" def __init__(self, status_code, headers, body): self.status_code = status_code self.headers = headers self.body = body def json(self): return json.loads(self.text) @property def text(self): # Should decode according to Content-Type, for the moment assumes utf8 return self.body.decode("utf-8") def ensure_bytes(s): if not isinstance(s, bytes): return s.encode("utf-8") else: return s def force_list(value): if isinstance(value, str): return [value] return value def salted_hmac(salt, value, secret): salt = ensure_bytes(salt) secret = ensure_bytes(secret) key = hashlib.sha1(salt + secret).digest() return hmac.new(key, msg=ensure_bytes(value), digestmod=hashlib.sha1) def cookies_from_scope(scope): cookie = dict(scope.get("headers") or {}).get(b"cookie") if not cookie: return {} simple_cookie = SimpleCookie() simple_cookie.load(cookie.decode("utf8")) return {key: morsel.value for key, morsel in simple_cookie.items()}
import requests import telebot import time url = 'https://api.github.com/orgs/JBossOutreach/repos' json_data = requests.get(url).json() numoflists = len(json_data) stars = 0 for i in range(numoflists): stars += json_data[i]['stargazers_count'] bot_token = '566958721:AAEVVrN8R5f0DfDW_pdxsekdpqo3C1Vs4ao' bot = telebot.TeleBot(token = bot_token) @bot.message_handler(commands=['liststars']) def send_stars(message): bot.reply_to(message,stars) bot.polling() print(stars)
# Copyright (c) Jean-Charles Lefebvre # SPDX-License-Identifier: MIT from sys import version_info if version_info < (3, 6): raise ImportError('fitdecode requires Python 3.6+') del version_info from .__meta__ import ( __version__, version_info, __title__, __fancy_title__, __description__, __url__, __license__, __author__, __copyright__) from .exceptions import * from .records import * from .reader import * from .processors import * from . import types from . import profile from . import utils from . import processors from . import reader
""" Python Template =============== python is a collection of python TEMPLATES. usage: >>> import python >>> help(python) """ __version__ = "0.0.1" from . import docstring # import docstring from the same directory as __init__.py
from dados import produtos, pessoas, lista print('-=-'* 20) print(f'{" MAP com listas ":=^40}') print(lista) # map() sempre recebe uma função como primeiro parâmetro. # map retorna sempre um iterador. nova_lista = map(lambda x: x * 2, lista) # utilizando o list comprehenson no lugar de map() nova_lista = [x * 2 for x in lista] print(list(nova_lista)) print('-=-'* 20) #Utilizando MAP com dicionarios - produtos print(f'{" MAP com dicionários 1 ":=^40}') def aumenta_preco(p): p['preco'] = round(p['preco'] * 1.05, 2) return p novo_prd = map(aumenta_preco, produtos) for prod in novo_prd: print(prod) print('-=-'* 20) #Utilizando MAP com dicionarios - pessoas print(f'{" MAP com dicionários 2 ":=^40}') nomes = map(lambda p: round(p['idade'] * 1.20,2), pessoas) for pessoa in nomes: print(pessoa) print('-=-'* 20)
from sectool.services.github import GitHub def test_make_url(): assert GitHub(user='japsu').make_owner_url('repos') == 'https://api.github.com/users/japsu/repos'
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/type/month.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='google/type/month.proto', package='google.type', syntax='proto3', serialized_options=_b('\n\017com.google.typeB\nMonthProtoP\001Z6google.golang.org/genproto/googleapis/type/month;month\242\002\003GTP'), serialized_pb=_b('\n\x17google/type/month.proto\x12\x0bgoogle.type*\xb0\x01\n\x05Month\x12\x15\n\x11MONTH_UNSPECIFIED\x10\x00\x12\x0b\n\x07JANUARY\x10\x01\x12\x0c\n\x08\x46\x45\x42RUARY\x10\x02\x12\t\n\x05MARCH\x10\x03\x12\t\n\x05\x41PRIL\x10\x04\x12\x07\n\x03MAY\x10\x05\x12\x08\n\x04JUNE\x10\x06\x12\x08\n\x04JULY\x10\x07\x12\n\n\x06\x41UGUST\x10\x08\x12\r\n\tSEPTEMBER\x10\t\x12\x0b\n\x07OCTOBER\x10\n\x12\x0c\n\x08NOVEMBER\x10\x0b\x12\x0c\n\x08\x44\x45\x43\x45MBER\x10\x0c\x42]\n\x0f\x63om.google.typeB\nMonthProtoP\x01Z6google.golang.org/genproto/googleapis/type/month;month\xa2\x02\x03GTPb\x06proto3') ) _MONTH = _descriptor.EnumDescriptor( name='Month', full_name='google.type.Month', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='MONTH_UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='JANUARY', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FEBRUARY', index=2, number=2, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MARCH', index=3, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='APRIL', index=4, number=4, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='MAY', index=5, number=5, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='JUNE', index=6, number=6, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='JULY', index=7, number=7, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AUGUST', index=8, number=8, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='SEPTEMBER', index=9, number=9, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='OCTOBER', index=10, number=10, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='NOVEMBER', index=11, number=11, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='DECEMBER', index=12, number=12, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=41, serialized_end=217, ) _sym_db.RegisterEnumDescriptor(_MONTH) Month = enum_type_wrapper.EnumTypeWrapper(_MONTH) MONTH_UNSPECIFIED = 0 JANUARY = 1 FEBRUARY = 2 MARCH = 3 APRIL = 4 MAY = 5 JUNE = 6 JULY = 7 AUGUST = 8 SEPTEMBER = 9 OCTOBER = 10 NOVEMBER = 11 DECEMBER = 12 DESCRIPTOR.enum_types_by_name['Month'] = _MONTH _sym_db.RegisterFileDescriptor(DESCRIPTOR) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
### The Bat-Code ### import turtle as dark import math dark.width(8) dark.bgcolor("black") dark.color("#FDD017") zoom=30 dark.left(90) dark.penup() dark.goto(-7*zoom,0) dark.pendown() for xz in range(-7*zoom,-3*zoom,1): x=xz/zoom absx=math.fabs(x) y=1.5*math.sqrt((-math.fabs(absx-1))*math.fabs(3-absx)/((absx-1)*(3-absx)))*(1+math.fabs(absx-3)/(absx-3))*math.sqrt(1-(x/7)**2)+(4.5+0.75*(math.fabs(x-0.5)+math.fabs(x+0.5))-2.75*(math.fabs(x-0.75)+math.fabs(x+0.75)))*(1+math.fabs(1-absx)/(1-absx)) dark.goto(xz,y*zoom) for xz in range(-3*zoom,-1*zoom-1,1): x=xz/zoom absx=math.fabs(x) y=(2.71052+1.5-0.5*absx-1.35526*math.sqrt(4-(absx-1)**2))*math.sqrt(math.fabs(absx-1)/(absx-1)) dark.goto(xz,y*zoom) dark.goto(-1*zoom,3*zoom) dark.goto(int(-0.5*zoom),int(2.2*zoom)) dark.goto(int(0.5*zoom),int(2.2*zoom)) dark.goto(1*zoom,3*zoom) for xz in range(1*zoom+1,3*zoom+1,1): x=xz/zoom absx=math.fabs(x) y=(2.71052+1.5-0.5*absx-1.35526*math.sqrt(4-(absx-1)**2))*math.sqrt(math.fabs(absx-1)/(absx-1)) dark.goto(xz,y*zoom) for xz in range(3*zoom+1,7*zoom+1,1): x=xz/zoom absx=math.fabs(x) y = 1.5*math.sqrt((-math.fabs(absx-1))*math.fabs(3-absx)/((absx-1)*(3-absx)))*(1+math.fabs(absx-3)/(absx-3))*math.sqrt(1-(x/7)**2)+(4.5+0.75*(math.fabs(x-0.5)+math.fabs(x+0.5))-2.75*(math.fabs(x-0.75)+math.fabs(x+0.75)))*(1+math.fabs(1-absx)/(1-absx)) dark.goto(xz,y*zoom) for xz in range(7*zoom,4*zoom,-1): x=xz/zoom absx=math.fabs(x) y=(-3)*math.sqrt(1-(x/7)**2) * math.sqrt(math.fabs(absx-4)/(absx-4)) dark.goto(xz,y*zoom) for xz in range(4*zoom,-4*zoom,-1): x=xz/zoom absx=math.fabs(x) y=math.fabs(x/2)-0.0913722*x**2-3+math.sqrt(1-(math.fabs(absx-2)-1)**2) dark.goto(xz,y*zoom) for xz in range(-4*zoom-1,-7*zoom-1,-1): x=xz/zoom absx=math.fabs(x) y =(-3)*math.sqrt(1-(x/7)**2) * math.sqrt(math.fabs(absx-4)/(absx-4)) dark.goto(xz,y*zoom) dark.penup() #dark.goto(300,300) #Heading dark.goto (0,-190) dark.speed(40) dark.color('#FFA62F') style = ('verdana', 40, 'bold') dark.pu() dark.write('GOTHAM', font=style, align='center') dark.pd() dark.done()
# coding: utf-8 from dohq_teamcity.custom.base_model import TeamCityObject # from dohq_teamcity.models.license_key import LicenseKey # noqa: F401,E501 class LicenseKeys(TeamCityObject): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'count': 'int', 'href': 'str', 'license_key': 'list[LicenseKey]' } attribute_map = { 'count': 'count', 'href': 'href', 'license_key': 'licenseKey' } def __init__(self, count=None, href=None, license_key=None, teamcity=None): # noqa: E501 """LicenseKeys - a model defined in Swagger""" # noqa: E501 self._count = None self._href = None self._license_key = None self.discriminator = None if count is not None: self.count = count if href is not None: self.href = href if license_key is not None: self.license_key = license_key super(LicenseKeys, self).__init__(teamcity=teamcity) @property def count(self): """Gets the count of this LicenseKeys. # noqa: E501 :return: The count of this LicenseKeys. # noqa: E501 :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this LicenseKeys. :param count: The count of this LicenseKeys. # noqa: E501 :type: int """ self._count = count @property def href(self): """Gets the href of this LicenseKeys. # noqa: E501 :return: The href of this LicenseKeys. # noqa: E501 :rtype: str """ return self._href @href.setter def href(self, href): """Sets the href of this LicenseKeys. :param href: The href of this LicenseKeys. # noqa: E501 :type: str """ self._href = href @property def license_key(self): """Gets the license_key of this LicenseKeys. # noqa: E501 :return: The license_key of this LicenseKeys. # noqa: E501 :rtype: list[LicenseKey] """ return self._license_key @license_key.setter def license_key(self, license_key): """Sets the license_key of this LicenseKeys. :param license_key: The license_key of this LicenseKeys. # noqa: E501 :type: list[LicenseKey] """ self._license_key = license_key
import re from oks import ok from config import THE def csv(src): for x,y in xy( # seperate line into independent and depednent variables data( # convert (some) strings to floats cols( # kill cols we are skipping rows( # kill blanks and comments src)))): # reading from some source yield x,y def fromString(txt): for line in txt.splitlines(): yield line def fromFile(file): with open(file) as fs: for line in fs: yield line #---------------- def rows(src, doomed=r'([\n\r\t ]|#.*)', sep=","): # ascii file to rows of cells for line in src: line = re.sub(doomed, "", line) if line: yield line.split(sep) def cols(src, skip="?"): use=None for row in src: use = use or [n for n, x in enumerate(row) if x[0] != skip] assert len(row) == len(use), 'row %s lacks %s cells' % (n, len(use)) yield [row[n] for n in use] def data(src, rules={"$": float, "<": float, ">": float, "_": int}): "rows of cells coerced to values according to the rules seen on line 1" changes = None change1 = lambda x, f: x if x[0] == "?" else f(x) for row in src: if changes: row = [change1(x, f) for x, f in zip(row, changes)] else: changes = [rules.get(x[0], str) for x in row] yield row def xy(src, rules=['<', '>', '!']): "rows of values divided into independent and dependent values" xs, ys = None, None for row in src: xs = xs or [n for n, z in enumerate(row) if not z[0] in rules] ys = ys or [n for n, z in enumerate(row) if z[0] in rules] yield [row[x] for x in xs], [row[y] for y in ys] @ok def XY(): "demo xy import" for n, r in enumerate(csv(fromFile(THE.data))): if n < 10: print(r) @ok def FROMSTRING(): "REad csv data from string" string=""" outlook, $temp, $humid, wind, !play sunny, 85, 85, FALSE, no sunny, 80, 90, TRUE, no overcast, 83, 86, FALSE, yes rainy, 70, 96, FALSE, yes rainy, 68, 80, FALSE, yes rainy, 65, 70, TRUE, no overcast, 64, 65, TRUE, yes sunny, 72, 95, FALSE, no sunny, 69, 70, FALSE, yes rainy, 75, 80, FALSE, yes sunny, 75, 70, TRUE, yes overcast, 72, 90, TRUE, yes overcast, 81, 75, FALSE, yes rainy, 71, 91, TRUE, no """ for x,y in csv(fromString(string)): print(x," ==> ", y)
# Copyright 2017-present Open Networking Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/python from flask import request, Request, jsonify from flask import Flask from flask import make_response from kombu.connection import BrokerConnection from kombu.messaging import Exchange, Queue, Consumer, Producer import logging import logging.handlers import logging.config import exampleservice_stats as stats import threading import subprocess import six import uuid import datetime from urlparse import urlparse app = Flask(__name__) start_publish = False keystone_tenant_id='3a397e70f64e4e40b69b6266c634d9d0' keystone_user_id='1e3ce043029547f1a61c1996d1a531a2' rabbit_user='openstack' rabbit_password='80608318c273f348a7c3' rabbit_host='10.11.10.1' rabbit_exchange='cord' publisher_id='exampleservice_publisher' @app.route('/monitoring/agent/exampleservice/start',methods=['POST']) def exampleservice_start_monitoring_agent(): global start_publish, rabbit_user, rabbit_password, rabbit_host, rabbit_exchange global keystone_tenant_id, keystone_user_id, publisher_id try: # To do validation of user inputs for all the functions target = request.json['target'] logging.debug("target:%s",target) keystone_user_id = request.json['keystone_user_id'] keystone_tenant_id = request.json['keystone_tenant_id'] url = urlparse(target) rabbit_user = url.username rabbit_password = url.password rabbit_host = url.hostname setup_rabbit_mq_channel() start_publish = True periodic_publish() logging.info("Exampleservice monitoring is enabled") return "Exampleservice monitoring is enabled" except Exception as e: return e.__str__() @app.route('/monitoring/agent/exampleservice/stop',methods=['POST']) def openstack_stop(): global start_publish start_publish = False logging.info ("Exampleservice monitoring is stopped") return "Exampleservice monitoring is stopped" producer = None def setup_rabbit_mq_channel(): global producer global rabbit_user, rabbit_password, rabbit_host, rabbit_exchange,publisher_id service_exchange = Exchange(rabbit_exchange, "topic", durable=False) # connections/channels connection = BrokerConnection(rabbit_host, rabbit_user, rabbit_password) logging.info('Connection to RabbitMQ server successful') channel = connection.channel() # produce producer = Producer(channel, exchange=service_exchange, routing_key='notifications.info') p = subprocess.Popen('hostname', shell=True, stdout=subprocess.PIPE) (hostname, error) = p.communicate() publisher_id = publisher_id + '_on_' + hostname logging.info('publisher_id=%s',publisher_id) def publish_exampleservice_stats(example_stats): global producer global keystone_tenant_id, keystone_user_id, publisher_id for k,v in example_stats.iteritems(): msg = {'event_type': 'cord.'+k, 'message_id':six.text_type(uuid.uuid4()), 'publisher_id': publisher_id, 'timestamp':datetime.datetime.now().isoformat(), 'priority':'INFO', 'payload': {'counter_name':k, 'counter_unit':v['unit'], 'counter_volume':v['val'], 'counter_type':v['metric_type'], 'resource_id':'exampleservice', 'user_id':keystone_user_id, 'tenant_id':keystone_tenant_id } } producer.publish(msg) logging.debug('Publishing exampleservice event: %s', msg) def periodic_publish(): global start_publish if not start_publish: return stats.retrieve_status_page() resParse = stats.parse_status_page() logging.debug ("publish:%(data)s" % {'data':resParse}) publish_exampleservice_stats(resParse) threading.Timer(60, periodic_publish).start() if __name__ == "__main__": logging.config.fileConfig('monitoring_agent.conf', disable_existing_loggers=False) logging.info ("Exampleservice monitoring is listening on port 5004") app.run(host="0.0.0.0",port=5004,debug=False)
class Unit(object): def __init__(self, shortname, fullname): self._shortname = shortname self._fullname = fullname def shortname(self): return self._shortname def fullname(self): return self._fullname def __str__(self): return 'Unit(%s, %s)' % (self.shortname(), self.fullname()) def __repr__(self): return '%s/%s' % (self.shortname(), self.fullname())
""" Interface to run an experiment on Kernel Tuner """ from copy import deepcopy import numpy as np import progressbar from typing import Any, Tuple import time as python_time import warnings import yappi from metrics import units, quantity from caching import CachedObject record_data = ['mean_actual_num_evals'] def remove_duplicates(res: list, remove_duplicate_results: bool): """ Removes duplicate configurations from the results """ if not remove_duplicate_results: return res unique_res = list() for result in res: if result not in unique_res: unique_res.append(result) return unique_res def tune(kernel, kernel_name: str, device_name: str, strategy: dict, tune_options: dict, profiling: bool) -> Tuple[list, int]: """ Execute a strategy, return the result, runtime and optional profiling statistics """ def tune_with_kerneltuner(): """ interface with kernel tuner to tune the kernel and return the results """ if profiling: yappi.set_clock_type("cpu") yappi.start() res, env = kernel.tune(device_name=device_name, strategy=strategy['strategy'], strategy_options=strategy['options'], **tune_options) if profiling: yappi.stop() return res, env total_start_time = python_time.perf_counter() warnings.simplefilter("ignore", UserWarning) try: res, _ = tune_with_kerneltuner() except ValueError: print("Something went wrong, trying once more.") res, _ = tune_with_kerneltuner() warnings.simplefilter("default", UserWarning) total_end_time = python_time.perf_counter() total_time_ms = round((total_end_time - total_start_time) * 1000) # TODO when profiling, should the total_time_ms not be the time from profiling_stats? Otherwise we're timing the profiling code as well return res, total_time_ms def collect_results(kernel, kernel_name: str, device_name: str, strategy: dict, expected_results: dict, default_records: dict, profiling: bool, optimization='time', remove_duplicate_results=True) -> dict: """ Executes strategies to obtain (or retrieve from cache) the statistical data """ print(f"Running {strategy['display_name']}") nums_of_evaluations = strategy['nums_of_evaluations'] max_num_evals = min(strategy['nums_of_evaluations']) # TODO put the tune options in the .json in strategy_defaults? tune_options = { 'verbose': False, 'quiet': True, 'simulation_mode': True } def report_multiple_attempts(rep: int, len_res: int, len_unique_res: int, strategy_repeats: int): """ If multiple attempts are necessary, report the reason """ if len_res < 1: print(f"({rep+1}/{strategy_repeats}) No results found, trying once more...") elif len_unique_res < max_num_evals: print(f"Too few unique results found ({len_unique_res} in {len_res} evaluations), trying once more...") else: print(f"({rep+1}/{strategy_repeats}) Only invalid results found, trying once more...") # repeat the strategy as specified repeated_results = list() total_time_results = np.array([]) for rep in progressbar.progressbar(range(strategy['repeats']), redirect_stdout=True): attempt = 0 only_invalid = True while only_invalid or (remove_duplicate_results and len_unique_res < max_num_evals): if attempt > 0: report_multiple_attempts(rep, len_res, len_unique_res, strategy['repeats']) res, total_time_ms = tune(kernel, kernel_name, device_name, strategy, tune_options, profiling) len_res = len(res) # check if there are only invalid configs, if so, try again only_invalid = len_res < 1 or min(res[:20], key=lambda x: x['time'])['time'] == 1e20 unique_res = remove_duplicates(res, remove_duplicate_results) len_unique_res = len(unique_res) attempt += 1 # register the results repeated_results.append(unique_res) total_time_results = np.append(total_time_results, total_time_ms) if len(strategy['nums_of_evaluations']) <= 0: nums_of_evaluations = np.append(nums_of_evaluations, len_unique_res) # gather profiling data and clear the profiler before the next round if profiling: stats = yappi.get_func_stats() # stats.print_all() path = "../experiments/profilings/V3/profile-v1.prof" stats.save(path, type="pstat") # pylint: disable=no-member yappi.clear_stats() # transpose and summarise to get the results per number of evaluations strategy['nums_of_evaluations'] = nums_of_evaluations results_to_write = deepcopy(expected_results) results_to_write = transpose_results(results_to_write, repeated_results, optimization, strategy) results_to_write = summarise_results(default_records, results_to_write, total_time_results, strategy, tune_options) return results_to_write def transpose_results(results_to_write: dict, repeated_results: list, optimization: str, strategy: dict) -> dict: """ Transposes the results for summarise_results to go from num. of evaluations per result to results per num. of evaluations """ nums_of_evaluations = strategy['nums_of_evaluations'] for res_index, res in enumerate(repeated_results): for num_of_evaluations in nums_of_evaluations: limited_res = res[:num_of_evaluations] if optimization == 'time': best = min(limited_res, key=lambda x: x['time']) elif optimization == 'GFLOP/s': best = max(limited_res, key=lambda x: x['GFLOP/s']) time = best['time'] if time == 1e20: error_message = f"({res_index+1}/{len(repeated_results)}) Only invalid values found after {num_of_evaluations} evaluations for strategy {strategy['display_name']}. Values: {limited_res}" raise ValueError(error_message) gflops = best['GFLOP/s'] if 'GFLOP/s' in best else np.nan cumulative_execution_time = sum(x['time'] for x in limited_res if x['time'] != 1e20) loss = best['loss'] if 'loss' in best else np.nan noise = best['noise'] if 'noise' in best else np.nan # write to the results to the arrays result = results_to_write['results_per_number_of_evaluations'][str(num_of_evaluations)] result['actual_num_evals'] = np.append(result['actual_num_evals'], len(limited_res)) result['time'] = np.append(result['time'], time) result['GFLOP/s'] = np.append(result['GFLOP/s'], gflops) result['loss'] = np.append(result['loss'], loss) result['noise'] = np.append(result['noise'], noise) result['cumulative_execution_time'] = np.append(result['cumulative_execution_time'], cumulative_execution_time) return results_to_write def summarise_results(default_records: dict, expected_results: dict, total_time_results: np.ndarray, strategy: dict, tune_options: dict) -> dict: """ For every number of evaluations specified, find the best and collect details on it """ # create the results dict for this strategy nums_of_evaluations = strategy['nums_of_evaluations'] results_to_write = deepcopy(expected_results) # add the total time in miliseconds total_time_mean = np.mean(total_time_results) total_time_std = np.std(total_time_results) total_time_mean_per_eval = total_time_mean / nums_of_evaluations[-1] print("Total mean time: {} ms, std {}".format(round(total_time_mean, 3), round(total_time_std, 3))) results_to_write['total_time_mean'] = total_time_mean results_to_write['total_time_err'] = total_time_std for num_of_evaluations in nums_of_evaluations: result = results_to_write['results_per_number_of_evaluations'][str(num_of_evaluations)] # automatically summarise from default_records # TODO look into calculation of compile and execution times result['mean_cumulative_compile_time'] = 0 cumulative_total_time = total_time_mean_per_eval * num_of_evaluations mean_runtimes = ['mean_cumulative_strategy_time', 'mean_cumulative_total_time'] for key in default_records.keys(): if key in mean_runtimes: continue if key == 'mean_cumulative_strategy_time': result[ 'mean_cumulative_strategy_time'] = cumulative_total_time - result['mean_cumulative_compile_time'] - result['mean_cumulative_execution_time'] if tune_options['simulation_mode']: result['mean_cumulative_strategy_time'] = cumulative_total_time elif key == 'mean_cumulative_total_time': result['mean_cumulative_total_time'] = cumulative_total_time + result['mean_cumulative_compile_time'] + result['mean_cumulative_execution_time'] if tune_options['simulation_mode']: result['mean_cumulative_total_time'] = cumulative_total_time elif key == 'mean_cumulative_compile_time': continue elif key.startswith('mean_'): result[key] = np.mean(result[key.replace('mean_', '')]) elif key.startswith('err_'): result[key] = np.std(result[key.replace('err_', '')]) # summarise execution times # TODO do this properly # check for errors if 'err_actual_num_evals' in default_records.keys() and result['err_actual_num_evals'] != 0: raise ValueError('The number of actual evaluations over the runs has varied: {}'.format(result['actual_num_evals'])) if 'mean_actual_num_evals' in default_records.keys() and result['mean_actual_num_evals'] != num_of_evaluations: print( "The set number of evaluations ({}) is not equal to the actual number of evaluations ({}). Try increasing the fraction or maxiter in strategy options." .format(num_of_evaluations, result['mean_actual_num_evals'])) return results_to_write
from django.contrib import admin from umap.models import Result, Race, Pmodel, Log class ResultInline(admin.TabularInline): fields = ["rank", "bracket", "horse_num", "horse_name", "sex", "age", "jockey_name", "weight", "finish_time", "time_lag", "odds", "prize"] model = Result readonly_fields = fields ordering = ["rank", "horse_num"] def has_delete_permission(self, request, obj): return False def has_add_permission(self, request): return False class RaceAdmin(admin.ModelAdmin): list_display = ("race_dt", "place_name", "round", "title", "course", "weather", "condition", "result_flg") ordering = ["-result_flg", "-race_dt", "race_id"] search_fields = ["race_id", "race_dt", "title", "results__horse_name", "place_name"] inlines = [ResultInline] class ResultAdmin(admin.ModelAdmin): list_display = ("rank", "bracket", "horse_num", "horse_name", "sex", "age", "finish_time", "odds", "odor") search_fields = ["key", "race__race_id", "race__title", "horse_name"] class PmodelAdmin(admin.ModelAdmin): list_display = ("title", "method", "columns", "recall", "precision", "roi", "updated_at") class LogAdmin(admin.ModelAdmin): ordering = ["-start_time", "pid"] list_display = ("start_time", "pid", "label", "exec_time", "finish") admin.site.register(Race, RaceAdmin) admin.site.register(Result, ResultAdmin) admin.site.register(Pmodel, PmodelAdmin) admin.site.register(Log, LogAdmin)
import cv2 import numpy as np import face_recognition as fr import serial from gpiozero import LED from numpy import savetxt from numpy import loadtxt inFace = "images/"+input("Enter path to Face: ") mode = input("Enter Mode [2 for rPI, 1 for arduino, 0 for null]: ") outFace = loadtxt("faEnc.csv", delimiter=",") imgTs = fr.load_image_file(inFace) imgTs = cv2.cvtColor(imgTs, cv2.COLOR_BGR2RGB) def faceAdd(fa): imgTr = fr.load_image_file("images/"+fa) imgTr = cv2.cvtColor(imgTr, cv2.COLOR_BGR2RGB) faLocTr = fr.face_locations(imgTr)[0] outFace = fr.face_encodings(imgTr)[0] cv2.rectangle(imgTr, (faLocTr[3], faLocTr[0]), (faLocTr[1], faLocTr[2]), (255, 0, 255), 2) savetxt("faEnc.csv", outFace, delimiter=',') # faceAdd("suraj.jpg") faLocTs = fr.face_locations(imgTs)[0] faEncTs = fr.face_encodings(imgTs)[0] cv2.rectangle(imgTs, (faLocTs[3], faLocTs[0]), (faLocTs[1], faLocTs[2]), (255, 0, 255), 2) result = fr.compare_faces([outFace], faEncTs) if result[0] == True: result = "H" # nodemcu problem high = low else: result = "L" # nodemcu problem low = high accu = fr.face_distance([outFace], faEncTs) print(result) print(accu*100, "Accuracy") if(mode == "1"): port = "COM5" Brate = 9600 a = result se = serial.Serial(port,Brate) if a == "H": se.write(b"H") elif a == "L": se.write(b"L") se.close() if(mode == "2"): l = LED(22) if(result == "H"): l.on() else: l.off() cv2.imshow("ElonTest", imgTs) cv2.waitKey(0)
# Time: O(V+E) # Space: O(times) class Solution: def networkDelayTime(self, times: List[List[int]], N: int, K: int) -> int: import heapq graph = collections.defaultdict(list) for src, tgt, wt in times: graph[src].append([wt, tgt]) heap = [[0, K]] # time it took to get to start, start, max_time = float('-inf') visited = set() # do bfs while heap: cur_time, cur_node = heapq.heappop(heap) visited.add(cur_node) max_time = max(max_time, cur_time) if len(visited)==N: return max_time for time, nei in graph[cur_node]: if nei not in visited: heapq.heappush(heap, [cur_time+time, nei]) return max_time if len(visited)==N else -1
import music21 as mus import numpy as np class NoteDistribution: ''' This class contains methods to get statistics about the notes in the melody of a song. ''' def __init__(self): pass @staticmethod def get_note_matrix(scores): ''' This method takes a list of score objects as input. The output is a tuple containing the a 128x128 matrix with MIDI notes probabilities and a note probability dictionary. OUTPUT: (128x128 matrix, {Note: probability}) ''' # Dictionary to store probabilites of neighboring notes note_pair_dictionary = {} note_dictionary = {} # iterate through all the scores for score in scores: # The actual list of notes notes = score.flat.notes itr = iter(range(len(notes) - 1)) # Iterate through all the notes for i in itr: # Make sure all the notes are ACTUALLY notes... if not isinstance(notes[i], mus.note.Note) or not isinstance(notes[i+1], mus.note.Note): continue # Create pairs of notes for stochastic matrix pair = str(notes[i].pitch.midi) + " " + str(notes[i+1].pitch.midi) # Add them to the dictionary if pair in note_pair_dictionary: note_pair_dictionary[pair] += 1 else: note_pair_dictionary[pair] = 1 if str(notes[i].pitch.midi) in note_dictionary: note_dictionary[str(notes[i].pitch.midi)] += 1 else: note_dictionary[str(notes[i].pitch.midi)] = 1 # Raise NoNotesFoundException if notes is empty if len(notes) == 0: raise NoNotesFoundException() # Get the very last note since we miss it in the loop above if notes[len(notes)-1].pitch.midi in note_dictionary: note_dictionary[str(notes[len(notes) - 1].pitch.midi)] += 1 else: note_dictionary[str(notes[len(notes) - 1].pitch.midi)] = 1 # Check if the notes are actually being added to the dictionary # We could have issues if a file ONLY has chords if len(note_pair_dictionary.keys()) == 0: raise NoNotesFoundException() note_dictionary_probability = NoteDistribution.get_note_probabilities(note_dictionary) stochastic_matrix = NoteDistribution.get_stochastic_note_matrix(note_pair_dictionary) return (stochastic_matrix, note_dictionary_probability) @staticmethod def get_stochastic_note_matrix(distribution): ''' This method takes a dictionary as input {Note : probability}. It ouputs a 128x128 matrix representing the probability of each MIDI note and the interaction with other notes. OUPUT: 128x128 matrix ''' # 128 total MIDI notes size = 128 # Create matrix of 128x128, one row and column for each MIDI note matrix = np.zeros((size, size), dtype=float) for i in distribution.keys(): value = distribution[i] # MIDI note values were kept as strings in the dictionary. # Change them to ints indices = [int(i.split(' ')[0]), int(i.split(' ')[1])] # Insert the value at the proper position matrix[indices[0], indices[1]] = value for i in range(len(matrix[0, ])): sum_count = sum(matrix[i, ]) for j in range(len(matrix[0, ])): if sum_count != 0: matrix[i, j] = np.divide(matrix[i, j], sum_count) return matrix @staticmethod def get_note_probabilities(distribution): ''' This method takes a dictionary as input {Note : number of occurences}. It ouputs a dictionary with the probability of each note occuring. OUTPUT: {Note : probability} ''' total = sum(distribution.values()) for key in distribution.keys(): distribution[key] /= total return distribution class NoNotesFoundException(Exception): ''' This class contains methods to raise exception of files having no notes. ''' def __init__(self, message="The provided MIDI or MusicXML files do not contain any notes."): self.message = message super().__init__(self.message)
#!/usr/bin/env python # -*- encoding: utf-8 """ Best-effort clean up of downloaded YouTube .srt subtitle files. """ import re import sys data = open(sys.argv[1]).read() # Now throw away all the timestamps, which are typically of # the form: # # 00:00:01,819 --> 00:00:01,829 align:start position:0% # data, _ = re.subn( r'\d{2}:\d{2}:\d{2},\d{3} \-\-> \d{2}:\d{2}:\d{2},\d{3} align:start position:0%\n', '', data ) # And the color changes, e.g. # # <c.colorE5E5E5> # data, _ = re.subn(r'<c\.color[0-9A-Z]{6}>', '', data) # And any other timestamps, typically something like: # # </c><00:00:00,539><c> # # with optional closing/opening tags. data, _ = re.subn(r'(?:</c>)?(?:<\d{2}:\d{2}:\d{2},\d{3}>)?(?:<c>)?', '', data) # 00:00:03,500 --> 00:00:03,510 data, _ = re.subn(r'\d{2}:\d{2}:\d{2},\d{3} \-\-> \d{2}:\d{2}:\d{2},\d{3}\n', '', data) # Separate out the different segments of the subtitle track. # I'm not sure what these numbers mean, but they're a start! components = [data] while True: i = len(components) last_component = components.pop() if f'\n{i}\n' in last_component: components.extend(list(last_component.split(f'\n{i}\n'))) assert len(components) == i + 1 elif last_component.startswith('1\n'): components.extend(list(last_component.split(f'1\n', 1))) else: break # Now chuck away the first bit, which is something like "Kind: captions" # -- I don't know what it is, but we don't need it. if components[0].startswith('Kind: captions\n'): components.pop(0) # Next, remove all the trailing whitespace from each subtitle. components = [c.rstrip() for c in components] # This gets a lot of duplication -- try to remove it as best we can. dedupe_components = [] for c in components: if not c: continue for line in c.splitlines(): if dedupe_components and dedupe_components[-1] == line: continue else: dedupe_components.append(line) with open(sys.argv[1] + '.txt', 'w') as outfile: outfile.write('\n'.join(dedupe_components)) print(sys.argv[1] + '.txt')
import os import numpy as np from .dsl import dsnn
#--------------------------------------------------------------------------- # Copyright 2014 The Open Source Electronic Health Record Agent # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #--------------------------------------------------------------------------- """ A Python dictionary to specify the format to output FileMan File data entry in html format. The key of the dictionary is FileMan File Number in string format The Value of the dictionary is a dictionary of various key/value. 1. Key "Name": Special Fields or function to display the entry, the default is to use the .01 field if not specified here. 2. Key "Fields": A List of fields in order for displaying a summary of the data entry. 3. Key "Category": A Function to categorize the data entry by package, default is None """ FILEMAN_FILE_OUTPUT_FORMAT = { "8994": { # REMOTE PROCEDURE FILE # 8994 "Fields": [ { 'id': '.01', }, # Name { 'id': '.02', }, # Tag { 'id': '.03', 'func': None}, # Routine { 'id': '.05', }, # Availability ], "Category": None, # Categorize by package }, }
#!/usr/bin/env python # -*- coding: utf-8 -*- from gym_minigrid.minigrid import * from gym_minigrid.register import register import numpy as np class FourRoomsSkillsEnv(MiniGridEnv): """ Classic 4 rooms gridworld environment. Can specify agent and goal position, if not it set at random. """ def __init__(self, train: bool, skills: list, agent_pos=None, goal_pos=None, visualize=False): # TODO: Remember to make sure skills are already removed according to length range self._train = train self._skills = skills self._agent_default_pos = agent_pos self._goal_default_pos = goal_pos self.goal_pos = None self._visualize=visualize # set True for visualization (see manual_control_skills.py) grid_size = 19 # for large fourrooms, change to (grid_size=38, max_steps=200) super().__init__(grid_size=grid_size, max_steps=100) self.action_space = spaces.Discrete(len(self._skills)) self.observation_space = spaces.Box( # [agent_x, agent_y, agent_dir, goal_x, goal_y] low = np.array([0, 0, 0, 0, 0]), high = np.array([grid_size - 1, grid_size - 1, 3, grid_size - 1, grid_size - 1]) ) def _gen_grid(self, width, height): # Create the grid self.grid = Grid(width, height) # Generate the surrounding walls self.grid.horz_wall(0, 0) self.grid.horz_wall(0, height - 1) self.grid.vert_wall(0, 0) self.grid.vert_wall(width - 1, 0) room_w = width // 2 room_h = height // 2 # For each row of rooms for j in range(0, 2): # For each column for i in range(0, 2): xL = i * room_w yT = j * room_h xR = xL + room_w yB = yT + room_h # Bottom wall and door if i + 1 < 2: self.grid.vert_wall(xR, yT, room_h) pos = (xR, self._rand_int(yT + 1, yB)) self.grid.set(*pos, None) # Bottom wall and door if j + 1 < 2: self.grid.horz_wall(xL, yB, room_w) pos = (self._rand_int(xL + 1, xR), yB) self.grid.set(*pos, None) # Randomize the player start position and orientation if self._agent_default_pos is not None: self.agent_pos = self._agent_default_pos self.grid.set(*self._agent_default_pos, None) self.agent_dir = self._rand_int(0, 4) # assuming random start direction else: self.place_agent() if self._goal_default_pos is not None: goal = Goal() self.put_obj(goal, *self._goal_default_pos) goal.init_pos, goal.cur_pos = self._goal_default_pos else: self.place_obj(Goal()) self.mission = 'Reach the goal' def add_heat(self, search_path): self.grid.add_heat(search_path) def update_skills(self, skills): self._skills = skills self.action_space = spaces.Discrete(len(self._skills)) def set_path(self, i, j, skill): if (i,j) == self.goal_pos or i == self.agent_pos[0] and j == self.agent_pos[1]: return self.grid.set_path(i,j,skill) def step(self, action, skill=None): total_reward = 0 actual_action = self._skills[action] for primitive_action in actual_action: obs, reward, done, info = MiniGridEnv.step(self, primitive_action) total_reward += reward if done: break if self._visualize: return (obs, self.build_obs()), total_reward, done, info else: return self.build_obs(), total_reward, done, info def reset(self): # keep resetting MiniGrid until training_valid depending on train/test while True: # Current position and direction of the agent self.agent_pos = None self.agent_dir = None # Generate a new random grid at the start of each episode # To keep the same grid for each episode, call env.seed() with # the same seed before calling env.reset() self._gen_grid(self.width, self.height) # These fields should be defined by _gen_grid assert self.agent_pos is not None assert self.agent_dir is not None # Check that the agent doesn't overlap with an object start_cell = self.grid.get(*self.agent_pos) assert start_cell is None or start_cell.can_overlap() # Item picked up, being carried, initially nothing self.carrying = None # Step count since episode start self.step_count = 0 # Generate goal self.goal_pos = self.grid.find_goal() if not self.training_valid() ^ self._train: # XNOR obs = self.gen_obs() break # Return observation if self._visualize: return (obs, self.build_obs()) else: return self.build_obs() # include here to prevent circular dependency def training_valid(self): agent_pos = self.agent_pos goal_pos = self.goal_pos agent_goal = (in_room(agent_pos), in_room(goal_pos)) test_set = { (1, 3), (3, 1), (2, 4), (4, 2) } return agent_goal not in test_set def build_obs(self): return np.concatenate((self.agent_pos, [self.agent_dir], self.goal_pos), axis=0) # include here to prevent circular dependency def in_room(pos): # | 4 | 1 | # | 3 | 2 | w, h = pos if w < 9 and h < 9: return 4 elif w < 9 and h > 9: return 3 elif w > 9 and h < 9: return 1 else: return 2 register( id='MiniGrid-FourRoomsSkills-v0', entry_point='gym_minigrid.envs:FourRoomsSkillsEnv' )
from tzwhere import tzwhere import datetime import unittest class LocationTestCase(unittest.TestCase): TEST_LOCATIONS = ( ( 35.295953, -89.662186, 'Arlington, TN', 'America/Chicago'), ( 33.58, -85.85, 'Memphis, TN', 'America/Chicago'), ( 61.17, -150.02, 'Anchorage, AK', 'America/Anchorage'), ( 44.12, -123.22, 'Eugene, OR', 'America/Los_Angeles'), ( 42.652647, -73.756371, 'Albany, NY', 'America/New_York'), ( 55.743749, 37.6207923, 'Moscow', 'Europe/Moscow'), ( 34.104255, -118.4055591, 'Los Angeles', 'America/Los_Angeles'), ( 55.743749, 37.6207923, 'Moscow', 'Europe/Moscow'), ( 39.194991, -106.8294024, 'Aspen, Colorado', 'America/Denver'), ( 50.438114, 30.5179595, 'Kiev', 'Europe/Kiev'), ( 12.936873, 77.6909136, 'Jogupalya', 'Asia/Kolkata'), ( 38.889144, -77.0398235, 'Washington DC', 'America/New_York'), ( 59.932490, 30.3164291, 'St Petersburg', 'Europe/Moscow'), ( 50.300624, 127.559166, 'Blagoveshchensk', 'Asia/Yakutsk'), ( 42.439370, -71.0700416, 'Boston', 'America/New_York'), ( 41.84937, -87.6611995, 'Chicago', 'America/Chicago'), ( 28.626873, -81.7584514, 'Orlando', 'America/New_York'), ( 47.610615, -122.3324847, 'Seattle', 'America/Los_Angeles'), ( 51.499990, -0.1353549, 'London', 'Europe/London'), ( 51.256241, -0.8186531, 'Church Crookham', 'Europe/London'), ( 51.292215, -0.8002638, 'Fleet', 'Europe/London'), ( 48.868743, 2.3237586, 'Paris', 'Europe/Paris'), ( 22.158114, 113.5504603, 'Macau', 'Asia/Macau'), ( 56.833123, 60.6097054, 'Russia', 'Asia/Yekaterinburg'), ( 60.887496, 26.6375756, 'Salo', 'Europe/Helsinki'), ( 52.799992, -1.8524408, 'Staffordshire', 'Europe/London'), ( 5.016666, 115.0666667, 'Muara', 'Asia/Brunei'), (-41.466666, -72.95, 'Puerto Montt seaport', 'America/Santiago'), ( 34.566666, 33.0333333, 'Akrotiri seaport', 'Asia/Nicosia'), ( 37.466666, 126.6166667, 'Inchon seaport', 'Asia/Seoul'), ( 42.8, 132.8833333, 'Nakhodka seaport', 'Asia/Vladivostok'), ( 50.26, -5.051, 'Truro', 'Europe/London'), ( 50.26, -9.051, 'Sea off Cornwall', None), ( 35.82373, -110.72144, 'Hopi Nation', 'America/Phoenix'), ( 35.751956, -110.169460, 'Deni inside Hopi Nation', 'America/Denver'), ( 68.38068073677294, -133.73396065378114, 'Upper hole in America/Yellowknife', 'America/Inuvik') ) TEST_LOCATIONS_FORCETZ = ( ( 35.295953, -89.662186, 'Arlington, TN', 'America/Chicago'), ( 33.58, -85.85, 'Memphis, TN', 'America/Chicago'), ( 61.17, -150.02, 'Anchorage, AK', 'America/Anchorage'), ( 40.7271, -73.98, 'Shore Lake Michigan', 'America/New_York'), ( 50.1536, -8.051, 'Off Cornwall', 'Europe/London'), ( 49.2698, -123.1302, 'Vancouver', 'America/Vancouver'), ( 50.26, -9.051, 'Far off Cornwall', None) ) def _test_tzwhere(self, locations, forceTZ): start = datetime.datetime.now() w = tzwhere.tzwhere(forceTZ=forceTZ) end = datetime.datetime.now() print('Initialized in: '), print(end - start) template = '{0:20s} | {1:20s} | {2:20s} | {3:2s}' print(template.format('LOCATION', 'EXPECTED', 'COMPUTED', '==')) for (lat, lon, loc, expected) in locations: computed = w.tzNameAt(float(lat), float(lon), forceTZ=forceTZ) ok = 'OK' if computed == expected else 'XX' print(template.format(loc, str(expected), str(computed), ok)) assert computed == expected def test_lookup(self): self._test_tzwhere(self.TEST_LOCATIONS,forceTZ=False) def test_forceTZ(self): self._test_tzwhere(self.TEST_LOCATIONS_FORCETZ,forceTZ=True)
class Solution: def __init__(self, string: str): self.string = string def toQuestion(self): pass def main(): givenString1 = Solution("enter_string") print(givenString1.toQuestion()) givenString2 = Solution("enter_2nd_string") print(givenString2.toQuestion()) if __name__ == '__main__': main() #################### # String #################### # class Solution: # def __init__(self, string:str, key:int) -> int: # self.string = string # self.key = key # def caesarCipherEncryptor(self): # newLetters = [] # newKey = self.key % 26 # alphabet = list("abcdefghijklmnopqrstuvwxyz") # for letter in self.string: # newLetters.append(self.getNewLetter(letter, newKey, alphabet)) # this function calls it's sub function # return "".join(newLetters) # def getNewLetter(self, letter, key, alphabet): # newLetterCode = alphabet.index(letter) + self.key # return alphabet[newLetterCode % 26] # def main(): # givenString1 = Solution("xyz", 2) # print(givenString1.caesarCipherEncryptor()) # # don't need to call getNewLetter sub function # if __name__ == '__main__': # main() #################### # Array #################### # class Dictionary: # def __init__(self, dictionary): # self.dictionary = dictionary # def sort_ascending(self): # return sorted(self.dictionary.items(), key=lambda x: x[1]) # def sort_descending(self): # return sorted(self.dictionary.items(), key=lambda x: x[1], reverse=True) # def main(): # dictionary = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5} # print(Dictionary(dictionary).sort_ascending()) # print(Dictionary(dictionary).sort_descending()) # if __name__ == '__main__': # main() #################### # self is the only parameter #################### # class Solution: # def fizzbuzz(self): # for i in range(1, 101): # 0 - 100 # if i % 3 == 0 and i % 5 == 0: # print("Fizz Buzz") # elif i % 3 == 0: # print("Fizz") # elif i % 5 == 0: # print("Buzz") # else: # print(i) # def main(): # p1 = Solution() # p1.fizzbuzz() # if __name__ == '__main__': # main() ######### # # Max Subarray with Unit Test ######### # """ Note: # Kadane's Algorithm # """ # Max Subarray # # O(n) time, O(1) space # class Solution: # def maxSubArray(self, nums) -> int: # max_sum, current_sum = -float('inf'), 0 # for num in nums: # current_sum = max(num, current_sum + num) # if nums > current_sum + nums, then current_sum + nums is the new current_sum # max_sum = max(current_sum, max_sum) # if current_sum > max_sum, then current_sum is the new max_sum # return max_sum # import unittest # class Test(unittest.TestCase): # def test(self): # test = Solution() # nums = [-2,1,-3,4,-1,2,1,-5,4] # self.assertEqual(test.maxSubArray(nums), 6) # def test2(self): # test = Solution() # nums = [-2,1] # self.assertEqual(test.maxSubArray(nums), 1) # def main(): # unittest.main() # if __name__ == "__main__": # main()
import efficientnet.tfkeras from tensorflow.keras.models import load_model from tensorflow import nn from tensorflow.keras.backend import shape from tensorflow.keras.layers import Dropout import segmentation_models as sm import tf2onnx import onnxruntime as rt import tensorflow as tf class FixedDropout(Dropout): def _get_noise_shape(self, inputs): if self.noise_shape is None: return self.noise_shape return tuple([shape(inputs)[i] if sh is None else sh for i, sh in enumerate(self.noise_shape)]) customObjects = { 'swish': nn.swish, 'FixedDropout': FixedDropout, 'dice_loss_plus_1binary_focal_loss': sm.losses.binary_focal_dice_loss, 'iou_score': sm.metrics.iou_score, 'f1-score': sm.metrics.f1_score } def main(): #semantic_model = keras.models.load_model(args.hdf5_file) #h5file = '/home/mohan/git/backups/segmentation_models/examples/best_mode_model_filel.h5' h5file = '/home/mohan/git/Thesis_Repos/segmentation_models/examples/ss_unet_fmodel_new_70.h5' semantic_model = load_model(h5file, custom_objects=customObjects) spec = (tf.TensorSpec((None, 320, 480, 3), tf.float32, name="input"),) #output_path = semantic_model.name + ".onnx" output_path = "seg_model_unet_ep100_new_op13" + ".onnx" model_proto, _ = tf2onnx.convert.from_keras(semantic_model, input_signature=spec, opset=13, output_path=output_path) output_names = [n.name for n in model_proto.graph.output] print(output_names) print('done') if __name__ == "__main__": main()
from PyQt5 import * from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtWidgets import * from deritradeterminal.util.deribit_api import RestClient from deritradeterminal.managers.ConfigManager import ConfigManager class PositionsUpdateThread(QThread): signeler = pyqtSignal(int,str,str,str,str,str,str,str) def collectProcessData(self): try: config = ConfigManager.get_config() index = 0 for x in config.tradeApis: client = RestClient(config.tradeApis[x][0], config.tradeApis[x][1], ConfigManager.get_config().apiUrl) cposition = client.positions() if len(cposition) >= 1: position = cposition[0] direction = "" if position['direction'] == "buy": direction = "Long" else: direction = "Short" self.signeler.emit(index, x, direction, str(position["size"]), str(format(position["sizeBtc"], '.8f')), str(format(position["averagePrice"], '.4f')), str(format(position["profitLoss"], '.8f')), str(format(position["initialMargin"], '.8f'))) else: self.signeler.emit(index, x, "No Position", "", "", "", "", "") index = index + 1 except Exception as e: print(e) def __init__(self): QThread.__init__(self) def run(self): while True: self.collectProcessData()
import os import datetime import re import paho.mqtt.client as mqtt import json import yaml from argparse import ArgumentParser def args(): p = ArgumentParser() p.add_argument("--secrets", '-s', action="store", type=str, help='Transfer specified file as secrets.json') p.add_argument("--ignore-retained", '-r', action="store_true", help='Ignore retained messages.') p.add_argument("--topic", '-t', action="store", type=str, help='MQTT topic to subscribe to.') return p.parse_args() args = args() with open(args.secrets or 'secrets.yaml') as f: secrets = yaml.load(f, Loader=yaml.FullLoader) topic = args.topic or '/'.join((i for i in [ secrets['MQTT_PREFIX'], '#', ] if i)) client = mqtt.Client("mqtt-listen") print('Username:', secrets['MQTT_USERNAME']) client.username_pw_set(secrets['MQTT_USERNAME'], password = secrets['MQTT_PASSWORD']) def on_message(client, userdata, message): try: if not (args.ignore_retained and message.retain): print("") print("[%s] %s:" % (message.retain and "PERMANENT" or str(datetime.datetime.now()), message.topic)) text = message.payload.decode("utf-8") try: print( json.dumps( json.loads( text ), sort_keys=False, indent=4 ) ) except: print('[TEXT]', text) except Exception as e: print(e) client.on_message = on_message print('Connecting to:', secrets['MQTT_BROKER']) client.connect(secrets['MQTT_BROKER']) print('Listening to:', topic) client.subscribe(topic) client.loop_forever()
""" manhattan.py Minor Programmeren, Programmeertheorie, Chips & Circuits Misbaksels: Lisa Eindhoven, Sebastiaan van der Laan & Mik Schutte These functions calculate the (minimum/maximum) manhattan distance between (a multitude of) two sets of coordinates. Use min/max_net for the determined shortest distance, use min/max_nets to randomize the result in case of a tie. """ import random def measure(a_coordinates, b_coordinates): """ This function returns the manhattan distance as measured between two sets of coordinates. """ x_diff = abs(a_coordinates[0] - b_coordinates[0]) y_diff = abs(a_coordinates[1] - b_coordinates[1]) z_diff = abs(a_coordinates[2] - b_coordinates[2]) return x_diff + y_diff + z_diff def measurement_list(nets): """ This function returns a dict of the different manhattan distances between all the provided nets. """ manh_netlist = {} for net in nets: manh_diff = measure(net.begin_gate.coordinate(), net.end_gate.coordinate()) manh_netlist[net.id] = manh_diff return manh_netlist def min_net(nets): """ Returns net.id of shortest manhattan distance in the provided netlist. """ manh_netlist = measurement_list(nets) min_net = min(manh_netlist, key=lambda k: manh_netlist[k]) return min_net def min_nets(nets): """ Returns a random net.id of all the equally shortest distances in a netlist. """ manh_netlist = measurement_list(nets) min_value = min(manh_netlist.values()) min_netlist = [net_id for net_id in manh_netlist if manh_netlist[net_id] == min_value] return random.choice(min_netlist) def max_net(nets): """ Returns net.id of longest manhattan distance in the provided netlist. """ manh_netlist = measurement_list(nets) max_net = max(manh_netlist, key=lambda k: manh_netlist[k]) return max_net def max_nets(nets): """ Returns a random net.id of all the equally long distances in a netlist. """ manh_netlist = measurement_list(nets) max_value = max(manh_netlist.values()) max_netlist = [net_id for net_id in manh_netlist if manh_netlist[net_id] == max_value] return random.choice(max_netlist)
#!/usr/bin/env python # -*- coding:utf-8 -*- import logging import json import os import shutil import numpy as np from keras.callbacks import EarlyStopping from dde.cnn_model import build_model, train_model, reset_model, save_model, write_loss_report from dde.input import read_input_file from dde.molecule_tensor import get_molecule_tensor, pad_molecule_tensor from dde.data import (prepare_data_one_fold, prepare_folded_data_from_multiple_datasets, prepare_full_train_data_from_multiple_datasets, split_inner_val_from_train_data, prepare_folded_data_from_file, prepare_full_train_data_from_file) from dde.layers import MoleculeConv from dde.uncertainty import RandomMask, EnsembleModel class Predictor(object): def __init__(self, input_file=None, data_file=None, save_tensors_dir=None, keep_tensors=False, out_dir=None, normalize=False): self.model = None self.input_file = input_file self.data_file = data_file self.save_tensors_dir = save_tensors_dir self.keep_tensors = keep_tensors self.out_dir = out_dir self.normalize = normalize self.datasets = None self.add_extra_atom_attribute = None self.add_extra_bond_attribute = None self.differentiate_atom_type = None self.differentiate_bond_type = None self.padding = None self.padding_final_size = None self.prediction_task = None self.y_mean = None self.y_std = None if self.input_file is not None: read_input_file(self.input_file, self) self.get_data_from_file = False if self.data_file is not None: if self.data_file.endswith('.csv'): self.get_data_from_file = True else: self.specify_datasets(self.data_file) def build_model(self): """ This method is intended to provide a way to build default model """ self.model = build_model() def load_input(self, input_file): """ This method is intended to provide a way to build model from an input file """ if input_file: self.input_file = input_file read_input_file(self.input_file, self) def specify_datasets(self, datasets_file_path=None): """ This method specifies which datasets to use for training """ self.datasets = [] with open(datasets_file_path, 'r') as f_in: for line in f_in: line = line.strip() if line and not line.startswith('#'): dataset, testing_ratio = [token.strip() for token in line.split(':')] host, db, table = [token.strip() for token in dataset.split('.')] self.datasets.append((host, db, table, float(testing_ratio))) def kfcv_train(self, folds, lr_func, save_model_path, pretrained_weights=None, batch_size=1, nb_epoch=150, patience=10, training_ratio=0.9, testing_ratio=0.0): # prepare data for training if self.get_data_from_file: folded_data = prepare_folded_data_from_file( self.data_file, folds, add_extra_atom_attribute=self.add_extra_atom_attribute, add_extra_bond_attribute=self.add_extra_bond_attribute, differentiate_atom_type=self.differentiate_atom_type, differentiate_bond_type=self.differentiate_bond_type, padding=self.padding, padding_final_size=self.padding_final_size, save_tensors_dir=self.save_tensors_dir, testing_ratio=testing_ratio) else: folded_data = prepare_folded_data_from_multiple_datasets( self.datasets, folds, add_extra_atom_attribute=self.add_extra_atom_attribute, add_extra_bond_attribute=self.add_extra_bond_attribute, differentiate_atom_type=self.differentiate_atom_type, differentiate_bond_type=self.differentiate_bond_type, padding=self.padding, padding_final_size=self.padding_final_size, prediction_task=self.prediction_task, save_tensors_dir=self.save_tensors_dir) X_test, y_test, folded_Xs, folded_ys = folded_data losses, inner_val_losses, outer_val_losses, test_losses = [], [], [], [] train_rmses, inner_val_rmses, outer_val_rmses, test_rmses = [], [], [], [] train_maes, inner_val_maes, outer_val_maes, test_maes = [], [], [], [] for fold in range(folds): data = prepare_data_one_fold(folded_Xs, folded_ys, current_fold=fold, training_ratio=training_ratio) # execute train_model X_train, X_inner_val, X_outer_val, y_train, y_inner_val, y_outer_val = data if self.normalize: y_train, y_inner_val, y_outer_val, y_test = self.normalize_output(y_train, y_inner_val, y_outer_val, y_test) train_model_output = train_model(self.model, X_train, y_train, X_inner_val, y_inner_val, X_test, y_test, X_outer_val, y_outer_val, nb_epoch=nb_epoch, batch_size=batch_size, lr_func=lr_func, patience=patience, load_from_disk=True if self.save_tensors_dir is not None else False, save_model_path=save_model_path) model, loss, inner_val_loss, mean_outer_val_loss, mean_test_loss = train_model_output # loss and inner_val_loss each is a list # containing loss for each epoch losses.append(loss) inner_val_losses.append(inner_val_loss) outer_val_losses.append(mean_outer_val_loss) test_losses.append(mean_test_loss) # Calculate RMSEs and MAEs train_rmse, train_mae = self.evaluate(X_train, y_train) inner_val_rmse, inner_val_mae = self.evaluate(X_inner_val, y_inner_val) outer_val_rmse, outer_val_mae = self.evaluate(X_outer_val, y_outer_val) test_rmse, test_mae = self.evaluate(X_test, y_test) train_rmses.append(train_rmse) train_maes.append(train_mae) inner_val_rmses.append(inner_val_rmse) inner_val_maes.append(inner_val_mae) outer_val_rmses.append(outer_val_rmse) outer_val_maes.append(outer_val_mae) test_rmses.append(test_rmse) test_maes.append(test_mae) # save model and write fold report fpath = os.path.join(save_model_path, 'fold_{0}'.format(fold)) self.save_model(loss, inner_val_loss, mean_outer_val_loss, mean_test_loss, fpath, train_rmse=train_rmse, train_mae=train_mae, inner_val_rmse=inner_val_rmse, inner_val_mae=inner_val_mae, outer_val_rmse=outer_val_rmse, outer_val_mae=outer_val_mae, test_rmse=test_rmse, test_mae=test_mae) # once finish training one fold, reset the model if pretrained_weights is not None: self.load_parameters(pretrained_weights) else: self.reset_model() # mean inner_val_loss and outer_val_loss used for selecting parameters, # e.g., lr, epoch, attributes, etc full_folds_mean_loss = np.mean([l[-1] for l in losses if len(l) > 0]) full_folds_mean_inner_val_loss = np.mean([l[-1] for l in inner_val_losses if len(l) > 0]) full_folds_mean_outer_val_loss = np.mean(outer_val_losses) full_folds_mean_test_loss = np.mean(test_losses) full_folds_mean_train_rmse = np.mean(train_rmses) full_folds_mean_train_mae = np.mean(train_maes) full_folds_mean_inner_val_rmse = np.mean(inner_val_rmses) full_folds_mean_inner_val_mae = np.mean(inner_val_maes) full_folds_mean_outer_val_rmse = np.mean(outer_val_rmses) full_folds_mean_outer_val_mae = np.mean(outer_val_maes) full_folds_mean_test_rmse = np.mean(test_rmses) full_folds_mean_test_mae = np.mean(test_maes) full_folds_loss_report_path = os.path.join(save_model_path, 'full_folds_loss_report.txt') write_loss_report(full_folds_mean_loss, full_folds_mean_inner_val_loss, full_folds_mean_outer_val_loss, full_folds_mean_test_loss, full_folds_loss_report_path, train_rmse=full_folds_mean_train_rmse, train_mae=full_folds_mean_train_mae, inner_val_rmse=full_folds_mean_inner_val_rmse, inner_val_mae=full_folds_mean_inner_val_mae, outer_val_rmse=full_folds_mean_outer_val_rmse, outer_val_mae=full_folds_mean_outer_val_mae, test_rmse=full_folds_mean_test_rmse, test_mae=full_folds_mean_test_mae) # Delete tensor directory if self.save_tensors_dir is not None: if not self.keep_tensors: shutil.rmtree(self.save_tensors_dir) def full_train(self, lr_func, save_model_path, batch_size=1, nb_epoch=150, patience=10, training_ratio=0.9, testing_ratio=0.0): # prepare data for training if self.get_data_from_file: split_data = prepare_full_train_data_from_file( self.data_file, add_extra_atom_attribute=self.add_extra_atom_attribute, add_extra_bond_attribute=self.add_extra_bond_attribute, differentiate_atom_type=self.differentiate_atom_type, differentiate_bond_type=self.differentiate_bond_type, padding=self.padding, padding_final_size=self.padding_final_size, save_tensors_dir=self.save_tensors_dir, testing_ratio=testing_ratio, meta_dir=self.out_dir ) else: split_data = prepare_full_train_data_from_multiple_datasets( self.datasets, add_extra_atom_attribute=self.add_extra_atom_attribute, add_extra_bond_attribute=self.add_extra_bond_attribute, differentiate_atom_type=self.differentiate_atom_type, differentiate_bond_type=self.differentiate_bond_type, padding=self.padding, padding_final_size=self.padding_final_size, prediction_task=self.prediction_task, save_tensors_dir=self.save_tensors_dir, meta_dir=self.out_dir ) X_test, y_test, X_train, y_train = split_data losses = [] inner_val_losses = [] test_losses = [] data = split_inner_val_from_train_data(X_train, y_train, training_ratio=training_ratio) X_train, X_inner_val, y_train, y_inner_val = data if self.normalize: y_train, y_inner_val, y_test = self.normalize_output(y_train, y_inner_val, y_test) # execute train_model logging.info('\nStart full training...') logging.info('Training data: {} points'.format(len(X_train))) logging.info('Inner val data: {} points'.format(len(X_inner_val))) logging.info('Test data: {} points'.format(len(X_test))) train_model_output = train_model(self.model, X_train, y_train, X_inner_val, y_inner_val, X_test, y_test, X_outer_val=None, y_outer_val=None, nb_epoch=nb_epoch, batch_size=batch_size, lr_func=lr_func, patience=patience, load_from_disk=True if self.save_tensors_dir is not None else False, save_model_path=save_model_path) model, loss, inner_val_loss, mean_outer_val_loss, mean_test_loss = train_model_output # loss and inner_val_loss each is a list # containing loss for each epoch losses.append(loss) inner_val_losses.append(inner_val_loss) test_losses.append(mean_test_loss) # Calculate RMSEs and MAEs train_rmse, train_mae = self.evaluate(X_train, y_train) inner_val_rmse, inner_val_mae = self.evaluate(X_inner_val, y_inner_val) test_rmse, test_mae = self.evaluate(X_test, y_test) # save model and write report fpath = os.path.join(save_model_path, 'full_train') self.save_model(loss, inner_val_loss, mean_outer_val_loss, mean_test_loss, fpath, train_rmse=train_rmse, train_mae=train_mae, inner_val_rmse=inner_val_rmse, inner_val_mae=inner_val_mae, test_rmse=test_rmse, test_mae=test_mae) # Delete tensor directory if self.save_tensors_dir is not None: if not self.keep_tensors: shutil.rmtree(self.save_tensors_dir) def kfcv_batch_train(self, folds, pretrained_weights=None, batch_size=50, nb_epoch=150, patience=10, training_ratio=0.9, testing_ratio=0.0): # prepare data for training if self.get_data_from_file: folded_data = prepare_folded_data_from_file( self.data_file, folds, add_extra_atom_attribute=self.add_extra_atom_attribute, add_extra_bond_attribute=self.add_extra_bond_attribute, differentiate_atom_type=self.differentiate_atom_type, differentiate_bond_type=self.differentiate_bond_type, padding=self.padding, padding_final_size=self.padding_final_size, save_tensors_dir=self.save_tensors_dir, testing_ratio=testing_ratio) else: folded_data = prepare_folded_data_from_multiple_datasets( self.datasets, folds, add_extra_atom_attribute=self.add_extra_atom_attribute, add_extra_bond_attribute=self.add_extra_bond_attribute, differentiate_atom_type=self.differentiate_atom_type, differentiate_bond_type=self.differentiate_bond_type, padding=self.padding, padding_final_size=self.padding_final_size, prediction_task=self.prediction_task, save_tensors_dir=self.save_tensors_dir) X_test, y_test, folded_Xs, folded_ys = folded_data # Data might be stored as file names if len(X_test) > 0: if isinstance(X_test[0], str): dims = np.load(X_test[0]).shape X_test_new = np.zeros((len(X_test),) + dims) for i, fname in enumerate(X_test): X_test_new[i] = np.load(fname) X_test = X_test_new for fold in range(folds): data = prepare_data_one_fold(folded_Xs, folded_ys, current_fold=fold, training_ratio=training_ratio) X_train, X_inner_val, X_outer_val, y_train, y_inner_val, y_outer_val = data if isinstance(X_train, np.ndarray): X_train = np.concatenate((X_train, X_inner_val)) else: X_train.extend(X_inner_val) if isinstance(y_train, np.ndarray): y_train = np.concatenate((y_train, y_inner_val)) else: y_train.extend(y_inner_val) # Data might be stored as file names if isinstance(X_train[0], str): dims = np.load(X_train[0]).shape X_train_new = np.zeros((len(X_train),) + dims) X_outer_val_new = np.zeros((len(X_outer_val),) + dims) for i, fname in enumerate(X_train): X_train_new[i] = np.load(fname) for i, fname in enumerate(X_outer_val): X_outer_val_new[i] = np.load(fname) X_train = X_train_new X_outer_val = X_outer_val_new if self.normalize: y_train, y_outer_val, y_test = self.normalize_output(y_train, y_outer_val, y_test) earlyStopping = EarlyStopping(monitor='val_loss', patience=patience, verbose=1, mode='auto') history_callback = self.model.fit(np.asarray(X_train), np.asarray(y_train), callbacks=[earlyStopping], nb_epoch=nb_epoch, batch_size=batch_size, validation_split=1.0-training_ratio) loss_history = history_callback.history with open(os.path.join(self.out_dir, 'history.json_fold_{0}'.format(fold)), 'w') as f_in: json.dump(loss_history, f_in, indent=2) # evaluate outer validation loss outer_val_loss = self.model.evaluate(np.asarray(X_outer_val), np.asarray(y_outer_val), batch_size=50) logging.info("\nOuter val loss: {0}".format(outer_val_loss)) if len(X_test) > 0: test_loss = self.model.evaluate(np.asarray(X_test), np.asarray(y_test), batch_size=50) logging.info("\nTest loss: {0}".format(test_loss)) # once finish training one fold, reset the model if pretrained_weights is not None: self.load_parameters(pretrained_weights) else: self.reset_model() # Delete tensor directory if self.save_tensors_dir is not None: if not self.keep_tensors: shutil.rmtree(self.save_tensors_dir) def load_architecture(self, param_path=None): from keras.models import model_from_json f = open(param_path,'r').read() self.model = model_from_json(json.loads(f), custom_objects={"EnsembleModel":EnsembleModel, "RandomMask":RandomMask, "MoleculeConv":MoleculeConv}) def normalize_output(self, y_train, *other_ys): y_train = np.asarray(y_train) self.y_mean = np.mean(y_train, axis=0) self.y_std = np.std(y_train, axis=0) logging.info('Mean: {}, std: {}'.format(self.y_mean, self.y_std)) y_train = (y_train - self.y_mean) / self.y_std other_ys = tuple((np.asarray(y) - self.y_mean) / self.y_std for y in other_ys) return (y_train,) + other_ys def load_parameters(self, param_path=None, mean_and_std_path=None): if param_path is not None: self.model.load_weights(param_path) logging.info('Loaded weights from {}'.format(param_path)) if mean_and_std_path is not None: npzfile = np.load(mean_and_std_path) self.y_mean = npzfile['mean'] self.y_std = npzfile['std'] logging.info('Loaded mean and std from {}'.format(mean_and_std_path)) def reset_model(self): self.model = reset_model(self.model) def save_model(self, loss, inner_val_loss, mean_outer_val_loss, mean_test_loss, fpath, **kwargs): save_model(self.model, loss, inner_val_loss, mean_outer_val_loss, mean_test_loss, fpath, **kwargs) if self.y_mean is not None and self.y_std is not None: np.savez(fpath + '_mean_std.npz', mean=self.y_mean, std=self.y_std) logging.info('...saved y mean and standard deviation to {}_mean_std.npz'.format(fpath)) def predict(self, molecule=None, molecule_tensor=None, sigma=False): """ Predict the output given a molecule. If a tensor is specified, it overrides the molecule argument. """ if molecule is None and molecule_tensor is None: raise Exception('No molecule is specified...') if molecule_tensor is None: molecule_tensor = get_molecule_tensor(molecule, self.add_extra_atom_attribute, self.add_extra_bond_attribute, self.differentiate_atom_type, self.differentiate_bond_type) if self.padding: molecule_tensor = pad_molecule_tensor(molecule_tensor, self.padding_final_size) molecule_tensor_array = np.array([molecule_tensor]) if sigma: y_pred, y_sigma = self.model.predict(molecule_tensor_array, sigma=sigma) if self.y_mean is not None and self.y_std is not None: y_pred = y_pred * self.y_std + self.y_mean y_sigma = y_sigma * self.y_std if self.prediction_task == "Cp(cal/mol/K)": return y_pred[0], y_sigma[0] else: return y_pred[0][0], y_sigma[0][0] else: y_pred = self.model.predict(molecule_tensor_array) if self.y_mean is not None and self.y_std is not None: y_pred = y_pred * self.y_std + self.y_mean if self.prediction_task == "Cp(cal/mol/K)": return y_pred[0] else: return y_pred[0][0] def evaluate(self, X, y): """ Evaluate RMSE and MAE given a list or array of file names or tensors and a list or array of outputs. """ y_pred = [] for x in X: if self.save_tensors_dir is not None: x = np.load(x) y_pred.append(self.predict(molecule_tensor=x)) y_pred = np.array(y_pred).flatten() y = np.asarray(y) if self.y_mean is not None and self.y_std is not None: y = y * self.y_std + self.y_mean y = y.flatten() diff = y - y_pred rmse = np.sqrt(np.dot(diff.T, diff) / len(y)) mae = np.sum(np.abs(diff)) / len(y) return rmse, mae
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-05-30 11:38 from __future__ import unicode_literals import consent.models from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('consent', '0020_auto_20170530_1615'), ] operations = [ migrations.AlterField( model_name='educationdetail', name='resume', field=models.FileField(blank=True, null=True, storage=consent.models.OverwriteStorage(), upload_to=consent.models.resume_file_path), ), ]
import unittest import math import io from pathlib import Path import vcfpy from cerebra.germline_filter import write_filtered_vcf from cerebra.utils import GenomePosition, GenomeIntervalTree class GermlineFilterTestCase(unittest.TestCase): @classmethod def setUpClass(self): self.data_path = Path(__file__).parent / "data" / "test_germline_filter" def test_germline_filter(self): filtered_cell_vcf_paths = self.data_path.glob("GF_*.vcf") for filtered_cell_vcf_path in filtered_cell_vcf_paths: cell_name = filtered_cell_vcf_path.stem.replace("GF_", '') cell_vcf_path = self.data_path / (cell_name + ".vcf") germline_vcf_paths = self.data_path.glob(cell_name + "_GL*.vcf") # Create germline genome tree germline_vcf_records = [list(vcfpy.Reader.from_path(path)) for path in germline_vcf_paths] # Flatten records germline_vcf_records = sum(germline_vcf_records, []) germline_genome_tree = GenomeIntervalTree(GenomePosition.from_vcf_record, germline_vcf_records) # Test writing VCF with io.StringIO() as out_file: with open(cell_vcf_path, mode='r') as in_file: write_filtered_vcf(in_file, germline_genome_tree, out_file) # Reset the buffer's cursor position out_file.seek(0) with open(filtered_cell_vcf_path, mode='r') as expected_file: expected_reader = vcfpy.Reader.from_stream(expected_file) out_reader = vcfpy.Reader.from_stream(out_file) expected_records, out_records = list(expected_reader), list(out_reader) self.assertEqual(expected_records, out_records) if __name__ == "__main__": unittest.main()
import hashlib import threading readlock = threading.Lock() writelock = threading.Lock() def get_hash(data): if type(data) != bytes: # wierd hack # be warned data = data.encode('utf-8') gfg = hashlib.sha3_256() gfg.update(data) return gfg.hexdigest() empty_hash = get_hash('') class BlockList(): def __init__(self) -> None: self.blocks = [] self.block_map = {} self.last_hash = empty_hash def add(self, value, hash, sign_hash): readlock.acquire() self.blocks.append({"hash": hash, "value": value, "sign": sign_hash}) self.block_map[hash] = { "messages": value, "sign_hash": sign_hash, "prev_hash": self.last_hash} self.last_hash = hash readlock.release() def all_blocks(self): return list(self.block_map.keys())
# coding: utf-8 """ NRF NFDiscovery Service NRF NFDiscovery Service. © 2020, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC). All rights reserved. # noqa: E501 The version of the OpenAPI document: 1.1.0.alpha-4 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import openapi_client from com.h21lab.TS29510_Nnrf_NFDiscovery.model.stored_search__document_api import StoredSearchDocumentApi # noqa: E501 from openapi_client.rest import ApiException class TestStoredSearchDocumentApi(unittest.TestCase): """StoredSearchDocumentApi unit test stubs""" def setUp(self): self.api = com.h21lab.TS29510_Nnrf_NFDiscovery.model.stored_search__document_api.StoredSearchDocumentApi() # noqa: E501 def tearDown(self): pass def test_retrieve_stored_search(self): """Test case for retrieve_stored_search """ pass if __name__ == '__main__': unittest.main()
import numpy as np from pandas import Categorical, Series import pandas._testing as tm class TestUnique: def test_unique_data_ownership(self): # it works! GH#1807 Series(Series(["a", "c", "b"]).unique()).sort_values() def test_unique(self): # GH#714 also, dtype=float ser = Series([1.2345] * 100) ser[::2] = np.nan result = ser.unique() assert len(result) == 2 # explicit f4 dtype ser = Series([1.2345] * 100, dtype="f4") ser[::2] = np.nan result = ser.unique() assert len(result) == 2 def test_unique_nan_object_dtype(self): # NAs in object arrays GH#714 ser = Series(["foo"] * 100, dtype="O") ser[::2] = np.nan result = ser.unique() assert len(result) == 2 def test_unique_none(self): # decision about None ser = Series([1, 2, 3, None, None, None], dtype=object) result = ser.unique() expected = np.array([1, 2, 3, None], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_unique_categorical(self): # GH#18051 cat = Categorical([]) ser = Series(cat) result = ser.unique() tm.assert_categorical_equal(result, cat) cat = Categorical([np.nan]) ser = Series(cat) result = ser.unique() tm.assert_categorical_equal(result, cat)
#!/bin/python3 # from matplotlib import colors, cm # from matplotlib.ticker import PercentFormatter # import matplotlib.pyplot as plt from scipy import stats from subprocess import Popen, PIPE import numpy as np import pathlib, json, glob, os import random import math ## Commented out counters are zero at the 99th percentile in both fast and slow cases. ## ## TODO: figure out how to handle MSR_PEBS_FRONTEND.EVTSEL events (which have event=A6 umask=01) ## TODO: handle MEM_TRANS_RETIRED.LOAD_LATENCY_GT_* events (with event=CD umask=01) counters = { "counts": "--event=00 --umask=03", "CPU_CLK_UNHALTED.REF_TSC": "--event=00 --umask=03", "LD_BLOCKS.STORE_FORWARD": "--event=03 --umask=02", "LD_BLOCKS.NO_SR": "--event=03 --umask=08", "LD_BLOCKS_PARTIAL.ADDRESS_ALIAS": "--event=07 --umask=01", "DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK": "--event=08 --umask=01", "DTLB_LOAD_MISSES.WALK_COMPLETED_4K": "--event=08 --umask=02", "DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M": "--event=08 --umask=04", "DTLB_LOAD_MISSES.WALK_COMPLETED_1G": "--event=08 --umask=08", "DTLB_LOAD_MISSES.WALK_COMPLETED": "--event=08 --umask=0E", "DTLB_LOAD_MISSES.WALK_PENDING": "--event=08 --umask=10", "DTLB_LOAD_MISSES.WALK_ACTIVE": "--event=08 --umask=10 --counter-mask=1", "DTLB_LOAD_MISSES.STLB_HIT": "--event=08 --umask=20", "INT_MISC.RECOVERY_CYCLES": "--event=0D --umask=01", "INT_MISC.RECOVERY_CYCLES_ANY": "--event=0D --umask=01 --anyt", "INT_MISC.CLEAR_RESTEER_CYCLES": "--event=0D --umask=80", "UOPS_ISSUED.ANY": "--event=0E --umask=01", "UOPS_ISSUED.STALL_CYCLES": "--event=0E --umask=01 --counter-mask=1 --invert", "UOPS_ISSUED.VECTOR_WIDTH_MISMATCH": "--event=0E --umask=02", "UOPS_ISSUED.SLOW_LEA": "--event=0E --umask=20", "ARITH.DIVIDER_ACTIVE": "--event=14 --umask=01", "L2_RQSTS.DEMAND_DATA_RD_MISS": "--event=24 --umask=21", "L2_RQSTS.RFO_MISS": "--event=24 --umask=22", "L2_RQSTS.CODE_RD_MISS": "--event=24 --umask=24", "L2_RQSTS.ALL_DEMAND_MISS": "--event=24 --umask=27", "L2_RQSTS.PF_MISS": "--event=24 --umask=38", "L2_RQSTS.MISS": "--event=24 --umask=3F", "L2_RQSTS.DEMAND_DATA_RD_HIT": "--event=24 --umask=41", "L2_RQSTS.RFO_HIT": "--event=24 --umask=42", "L2_RQSTS.CODE_RD_HIT": "--event=24 --umask=44", "L2_RQSTS.PF_HIT": "--event=24 --umask=D8", "L2_RQSTS.ALL_DEMAND_DATA_RD": "--event=24 --umask=E1", "L2_RQSTS.ALL_RFO": "--event=24 --umask=E2", "L2_RQSTS.ALL_CODE_RD": "--event=24 --umask=E4", "L2_RQSTS.ALL_DEMAND_REFERENCES": "--event=24 --umask=E7", "L2_RQSTS.ALL_PF": "--event=24 --umask=E8", "L2_RQSTS.REFERENCES": "--event=24 --umask=FF", "CORE_POWER.LVL0_TURBO_LICENSE": "--event=28 --umask=07", "CORE_POWER.LVL1_TURBO_LICENSE": "--event=28 --umask=18", "CORE_POWER.LVL2_TURBO_LICENSE": "--event=28 --umask=20", "CORE_POWER.THROTTLE": "--event=28 --umask=40", "LONGEST_LAT_CACHE.MISS": "--event=2E --umask=41", "LONGEST_LAT_CACHE.REFERENCE": "--event=2E --umask=4F", "CPU_CLK_UNHALTED.THREAD_P": "--event=3C --umask=00", "CPU_CLK_UNHALTED.THREAD_P_ANY": "--event=3C --umask=00 --anyt", "CPU_CLK_UNHALTED.RING0_TRANS": "--event=3C --umask=00 --counter-mask=1 --edge-detect", "CPU_CLK_UNHALTED.REF_XCLK": "--event=3C --umask=01", "CPU_CLK_UNHALTED.REF_XCLK_ANY": "--event=3C --umask=01 --anyt", "CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE": "--event=3C --umask=02", "L1D_PEND_MISS.PENDING": "--event=48 --umask=01", "L1D_PEND_MISS.PENDING_CYCLES": "--event=48 --umask=01 --counter-mask=1", "L1D_PEND_MISS.PENDING_CYCLES_ANY": "--event=48 --umask=01 --counter-mask=1 --anyt", "L1D_PEND_MISS.FB_FULL": "--event=48 --umask=02", "DTLB_STORE_MISSES.MISS_CAUSES_A_WALK": "--event=49 --umask=01", "DTLB_STORE_MISSES.WALK_COMPLETED_4K": "--event=49 --umask=02", "DTLB_STORE_MISSES.WALK_COMPLETED_2M_4M": "--event=49 --umask=04", "DTLB_STORE_MISSES.WALK_COMPLETED_1G": "--event=49 --umask=08", "DTLB_STORE_MISSES.WALK_COMPLETED": "--event=49 --umask=0e", "DTLB_STORE_MISSES.WALK_PENDING": "--event=49 --umask=10", "DTLB_STORE_MISSES.WALK_ACTIVE": "--event=49 --umask=10 --counter-mask=1", "DTLB_STORE_MISSES.STLB_HIT": "--event=49 --umask=20", "LOAD_HIT_PRE.SW_PF": "--event=4C --umask=01", "EPT.WALK_PENDING": "--event=4F --umask=10", "L1D.REPLACEMENT": "--event=51 --umask=01", "TX_MEM.ABORT_CONFLICT": "--event=54 --umask=01", "TX_MEM.ABORT_CAPACITY": "--event=54 --umask=02", "TX_MEM.ABORT_CAPACITY": "--event=54 --umask=04", "TX_MEM.ABORT_HLE_ELISION_BUFFER_NOT_EMPTY": "--event=54 --umask=08", "TX_MEM.ABORT_HLE_ELISION_BUFFER_MISMATCH": "--event=54 --umask=10", "TX_MEM.ABORT_HLE_ELISION_BUFFER_UNSUPPORTED_ALIGNMENT": "--event=54 --umask=20", "TX_MEM.HLE_ELISION_BUFFER_FULL": "--event=54 --umask=40", "TX_EXEC.MISC1": "--event=5D --umask=01", "TX_EXEC.MISC2": "--event=5D --umask=02", "TX_EXEC.MISC3": "--event=5D --umask=04", "TX_EXEC.MISC4": "--event=5D --umask=08", "TX_EXEC.MISC5": "--event=5D --umask=10", "RS_EVENTS.EMPTY_CYCLES": "--event=5E --umask=01", "RS_EVENTS.EMPTY_END": "--event=5E --umask=01 --counter-mask=1 --edge-detect --invert", "OFFCORE_REQUESTS_OUTSTANDING.DEMAND_DATA_RD": "--event=60 --umask=01", "OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DEMAND_DATA_RD": "--event=60 --umask=01 --counter-mask=1", "OFFCORE_REQUESTS_OUTSTANDING.DEMAND_DATA_RD_GE_6": "--event=60 --umask=01 --counter-mask=6", "OFFCORE_REQUESTS_OUTSTANDING.DEMAND_CODE_RD": "--event=60 --umask=02 --counter-mask=1", "OFFCORE_REQUESTS_OUTSTANDING.DEMAND_RFO": "--event=60 --umask=04 --counter-mask=1", "OFFCORE_REQUESTS_OUTSTANDING.ALL_DATA_RD": "--event=60 --umask=08", "OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DATA_RD": "--event=60 --umask=08 --counter-mask=1", "OFFCORE_REQUESTS_OUTSTANDING.L3_MISS_DEMAND_DATA_RD": "--event=60 --umask=10", "OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_L3_MISS_DEMAND_DATA_RD": "--event=60 --umask=10 --counter-mask=1", "OFFCORE_REQUESTS_OUTSTANDING.L3_MISS_DEMAND_DATA_RD_GE_6": "--event=60 --umask=10 --counter-mask=6", "IDQ.MITE_UOPS": "--event=79 --umask=04", "IDQ.MITE_CYCLES": "--event=79 --umask=04 --counter-mask=1", "IDQ.DSB_UOPS": "--event=79 --umask=08", "IDQ.DSB_CYCLES": "--event=79 --umask=08 --counter-mask=1", "IDQ.MS_DSB_CYCLES": "--event=79 --umask=10", "IDQ.ALL_DSB_CYCLES_4_UOPS": "--event=79 --umask=18 --counter-mask=4", "IDQ.ALL_DSB_CYCLES_ANY_UOPS": "--event=79 --umask=18 --counter-mask=1", "IDQ.MS_MITE_UOPS": "--event=79 --umask=20", "IDQ.ALL_MITE_CYCLES_4_UOPS": "--event=79 --umask=24 --counter-mask=4", "IDQ.ALL_MITE_CYCLES_ANY_UOPS": "--event=79 --umask=24 --counter-mask=1", "IDQ.MS_CYCLES": "--event=79 --umask=30 --counter-mask=1", "IDQ.MS_SWITCHES": "--event=79 --umask=30 --counter-mask=1 --edge-detect", "IDQ.MS_UOPS": "--event=79 --umask=30", "ICACHE_16B.IFDATA_STALL": "--event=80 --umask=04", "ICACHE_64B.IFTAG_HIT": "--event=83 --umask=01", "ICACHE_64B.IFTAG_MISS": "--event=83 --umask=02", "ICACHE_64B.IFTAG_STALL": "--event=83 --umask=04", "ITLB_MISSES.MISS_CAUSES_A_WALK": "--event=85 --umask=01", "ITLB_MISSES.WALK_COMPLETED_4K": "--event=85 --umask=02", "ITLB_MISSES.WALK_COMPLETED_2M_4M": "--event=85 --umask=04", "ITLB_MISSES.WALK_COMPLETED_1G": "--event=85 --umask=08", "ITLB_MISSES.WALK_COMPLETED": "--event=85 --umask=0E", "ITLB_MISSES.WALK_PENDING": "--event=85 --umask=10", "ITLB_MISSES.WALK_ACTIVE": "--event=85 --umask=10 --counter-mask=1", "ITLB_MISSES.STLB_HIT": "--event=85 --umask=20", "ILD_STALL.LCP": "--event=87 --umask=01", "IDQ_UOPS_NOT_DELIVERED.CORE": "--event=9C --umask=01", "IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE": "--event=9C --umask=01 --counter-mask=4", "IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_1_UOP_DELIV.CORE": "--event=9C --umask=01 --counter-mask=3", "IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_2_UOP_DELIV.CORE": "--event=9C --umask=01 --counter-mask=2", "IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_3_UOP_DELIV.CORE": "--event=9C --umask=01 --counter-mask=1", "IDQ_UOPS_NOT_DELIVERED.CYCLES_FE_WAS_OK": "--event=9C --umask=01 --counter-mask=1 --invert", "UOPS_DISPATCHED_PORT.PORT_0": "--event=A1 --umask=01", "UOPS_DISPATCHED_PORT.PORT_1": "--event=A1 --umask=02", "UOPS_DISPATCHED_PORT.PORT_2": "--event=A1 --umask=04", "UOPS_DISPATCHED_PORT.PORT_3": "--event=A1 --umask=08", "UOPS_DISPATCHED_PORT.PORT_4": "--event=A1 --umask=10", "UOPS_DISPATCHED_PORT.PORT_5": "--event=A1 --umask=20", "UOPS_DISPATCHED_PORT.PORT_6": "--event=A1 --umask=40", "UOPS_DISPATCHED_PORT.PORT_7": "--event=A1 --umask=80", "RESOURCE_STALLS.ANY": "--event=A2 --umask=01", "RESOURCE_STALLS.SB": "--event=A2 --umask=08", "CYCLE_ACTIVITY.CYCLES_L2_MISS": "--event=A3 --umask=01 --counter-mask=1", "CYCLE_ACTIVITY.CYCLES_L3_MISS": "--event=A3 --umask=02 --counter-mask=2", "CYCLE_ACTIVITY.STALLS_TOTAL": "--event=A3 --umask=04 --counter-mask=4", "CYCLE_ACTIVITY.STALLS_L2_MISS": "--event=A3 --umask=05 --counter-mask=5", "CYCLE_ACTIVITY.STALLS_L3_MISS": "--event=A3 --umask=06 --counter-mask=6", "CYCLE_ACTIVITY.CYCLES_L1D_MISS": "--event=A3 --umask=08 --counter-mask=8", "CYCLE_ACTIVITY.STALLS_L1D_MISS": "--event=A3 --umask=0C --counter-mask=12", "CYCLE_ACTIVITY.CYCLES_MEM_ANY": "--event=A3 --umask=10 --counter-mask=16", "CYCLE_ACTIVITY.STALLS_MEM_ANY": "--event=A3 --umask=14 --counter-mask=20", "EXE_ACTIVITY.EXE_BOUND_0_PORTS": "--event=A6 --umask=01", "EXE_ACTIVITY.1_PORTS_UTIL": "--event=A6 --umask=02", "EXE_ACTIVITY.2_PORTS_UTIL": "--event=A6 --umask=04", "EXE_ACTIVITY.3_PORTS_UTIL": "--event=A6 --umask=08", "EXE_ACTIVITY.4_PORTS_UTIL": "--event=A6 --umask=10", "EXE_ACTIVITY.BOUND_ON_STORES": "--event=A6 --umask=40", "LSD.UOPS": "--event=A8 --umask=01", "LSD.CYCLES_ACTIVE": "--event=A8 --umask=01 --counter-mask=1", "LSD.CYCLES_4_UOPS": "--event=A8 --umask=01 --counter-mask=4", "DSB2MITE_SWITCHES.PENALTY_CYCLES": "--event=AB --umask=02", "ITLB.ITLB_FLUSH": "--event=AE --umask=01", "OFFCORE_REQUESTS.DEMAND_DATA_RD": "--event=B0 --umask=01", "OFFCORE_REQUESTS.DEMAND_CODE_RD": "--event=B0 --umask=02", "OFFCORE_REQUESTS.DEMAND_RFO": "--event=B0 --umask=04", "OFFCORE_REQUESTS.ALL_DATA_RD": "--event=B0 --umask=08", "OFFCORE_REQUESTS.L3_MISS_DEMAND_DATA_RD": "--event=B0 --umask=10", "OFFCORE_REQUESTS.ALL_REQUESTS": "--event=B0 --umask=80", "UOPS_EXECUTED.THREAD": "--event=B1 --umask=01", "UOPS_EXECUTED.STALL_CYCLES": "--event=B1 --umask=01 --counter-mask=1 --invert", "UOPS_EXECUTED.CYCLES_GE_1_UOP_EXEC": "--event=B1 --umask=01 --counter-mask=1", "UOPS_EXECUTED.CYCLES_GE_2_UOPS_EXEC": "--event=B1 --umask=01 --counter-mask=2", "UOPS_EXECUTED.CYCLES_GE_3_UOPS_EXEC": "--event=B1 --umask=01 --counter-mask=3", "UOPS_EXECUTED.CYCLES_GE_4_UOPS_EXEC": "--event=B1 --umask=01 --counter-mask=4", "UOPS_EXECUTED.CORE": "--event=B1 --umask=02", "UOPS_EXECUTED.CORE_CYCLES_GE_1": "--event=B1 --umask=02 --counter-mask=1", "UOPS_EXECUTED.CORE_CYCLES_GE_2": "--event=B1 --umask=02 --counter-mask=2", "UOPS_EXECUTED.CORE_CYCLES_GE_3": "--event=B1 --umask=02 --counter-mask=3", "UOPS_EXECUTED.CORE_CYCLES_GE_4": "--event=B1 --umask=02 --counter-mask=4", "UOPS_EXECUTED.CORE_CYCLES_NONE": "--event=B1 --umask=02 --counter-mask=1 --invert", "UOPS_EXECUTED.X87": "--event=B1 --umask=10", "OFFCORE_REQUESTS_BUFFER.SQ_FULL": "--event=B2 --umask=01", "TLB_FLUSH.DTLB_THREAD": "--event=BD --umask=01", "TLB_FLUSH.STLB_ANY": "--event=BD --umask=20", "INST_RETIRED.ANY_P": "--event=C0 --umask=00", "INST_RETIRED.PREC_DIST": "--event=C0 --umask=01", "OTHER_ASSISTS.ANY": "--event=C1 --umask=3F", "UOPS_RETIRED.STALL_CYCLES": "--event=C2 --umask=01 --counter-mask=1 --invert", "UOPS_RETIRED.TOTAL_CYCLES": "--event=C2 --umask=01 --counter-mask=10 --invert", "UOPS_RETIRED.RETIRE_SLOTS": "--event=C2 --umask=02", "MACHINE_CLEARS.COUNT": "--event=C3 --umask=01 --counter-mask=1 --edge-detect", "MACHINE_CLEARS.MEMORY_ORDERING": "--event=C3 --umask=02", "MACHINE_CLEARS.SMC": "--event=C3 --umask=04", "BR_INST_RETIRED.ALL_BRANCHES": "--event=C4 --umask=00", "BR_INST_RETIRED.CONDITIONAL": "--event=C4 --umask=01", "BR_INST_RETIRED.NEAR_CALL": "--event=C4 --umask=02", "BR_INST_RETIRED.NEAR_RETURN": "--event=C4 --umask=08", "BR_INST_RETIRED.NOT_TAKEN": "--event=C4 --umask=10", "BR_INST_RETIRED.NEAR_TAKEN": "--event=C4 --umask=20", "BR_INST_RETIRED.FAR_BRANCH": "--event=C4 --umask=40", "BR_MISP_RETIRED.ALL_BRANCHES": "--event=C5 --umask=00", "BR_MISP_RETIRED.CONDITIONAL": "--event=C5 --umask=01", "BR_MISP_RETIRED.NEAR_CALL": "--event=C5 --umask=02", "BR_MISP_RETIRED.NEAR_TAKEN": "--event=C5 --umask=20", "FP_ARITH_INST_RETIRED.SCALAR_DOUBLE": "--event=C7 --umask=01", "FP_ARITH_INST_RETIRED.SCALAR_SINGLE": "--event=C7 --umask=02", "FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE": "--event=C7 --umask=04", "FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE": "--event=C7 --umask=08", "FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE": "--event=C7 --umask=10", "FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE": "--event=C7 --umask=20", "FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE": "--event=C7 --umask=40", "FP_ARITH_INST_RETIRED.512B_PACKED_SINGLE": "--event=C7 --umask=80", "HLE_RETIRED.START": "--event=C8 --umask=01", "HLE_RETIRED.COMMIT": "--event=C8 --umask=02", "HLE_RETIRED.ABORTED": "--event=C8 --umask=04", "HLE_RETIRED.ABORTED_MEM": "--event=C8 --umask=08", "HLE_RETIRED.ABORTED_TIMER": "--event=C8 --umask=10", "HLE_RETIRED.ABORTED_UNFRIENDLY": "--event=C8 --umask=20", "HLE_RETIRED.ABORTED_MEMTYPE": "--event=C8 --umask=40", "HLE_RETIRED.ABORTED_EVENTS": "--event=C8 --umask=80", "RTM_RETIRED.START": "--event=C9 --umask=01", "RTM_RETIRED.COMMIT": "--event=C9 --umask=02", "RTM_RETIRED.ABORTED": "--event=C9 --umask=04", "RTM_RETIRED.ABORTED_MEM": "--event=C9 --umask=08", "RTM_RETIRED.ABORTED_TIMER": "--event=C9 --umask=10", "RTM_RETIRED.ABORTED_UNFRIENDLY": "--event=C9 --umask=20", "RTM_RETIRED.ABORTED_MEMTYPE": "--event=C9 --umask=40", "RTM_RETIRED.ABORTED_EVENTS": "--event=C9 --umask=80", "FP_ASSIST.ANY": "--event=CA --umask=1E --counter-mask=1", "HW_INTERRUPTS.RECEIVED": "--event=CB --umask=01", "ROB_MISC_EVENTS.LBR_INSERTS": "--event=CC --umask=20", "MEM_INST_RETIRED.STLB_MISS_LOADS": "--event=D0 --umask=11", "MEM_INST_RETIRED.STLB_MISS_STORES": "--event=D0 --umask=12", "MEM_INST_RETIRED.LOCK_LOADS": "--event=D0 --umask=21", "MEM_INST_RETIRED.SPLIT_LOADS": "--event=D0 --umask=41", "MEM_INST_RETIRED.SPLIT_STORES": "--event=D0 --umask=42", "MEM_INST_RETIRED.ALL_LOADS": "--event=D0 --umask=81", "MEM_INST_RETIRED.ALL_STORES": "--event=D0 --umask=82", "MEM_LOAD_RETIRED.L1_HIT": "--event=D1 --umask=01", "MEM_LOAD_RETIRED.L2_HIT": "--event=D1 --umask=02", "MEM_LOAD_RETIRED.L3_HIT": "--event=D1 --umask=04", "MEM_LOAD_RETIRED.L1_MISS": "--event=D1 --umask=08", "MEM_LOAD_RETIRED.L2_MISS": "--event=D1 --umask=10", "MEM_LOAD_RETIRED.L3_MISS": "--event=D1 --umask=20", "MEM_LOAD_RETIRED.FB_HIT": "--event=D1 --umask=40", "MEM_LOAD_L3_HIT_RETIRED.XSNP_MISS": "--event=D2 --umask=01", "MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT": "--event=D2 --umask=02", "MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM": "--event=D2 --umask=04", "MEM_LOAD_L3_HIT_RETIRED.XSNP_NONE": "--event=D2 --umask=08", "MEM_LOAD_L3_MISS_RETIRED.LOCAL_DRAM": "--event=D3 --umask=01", "MEM_LOAD_L3_MISS_RETIRED.REMOTE_DRAM": "--event=D3 --umask=02", "MEM_LOAD_L3_MISS_RETIRED.REMOTE_HITM": "--event=D3 --umask=04", "MEM_LOAD_L3_MISS_RETIRED.REMOTE_FWD": "--event=D3 --umask=08", "MEM_LOAD_MISC_RETIRED.UC": "--event=D4 --umask=04", "BACLEARS.ANY": "--event=E6 --umask=01", "L2_TRANS.L2_WB": "--event=F0 --umask=40", "L2_LINES_IN.ALL": "--event=F1 --umask=1F", "L2_LINES_OUT.SILENT": "--event=F2 --umask=01", "L2_LINES_OUT.NON_SILENT": "--event=F2 --umask=02", "L2_LINES_OUT.USELESS_PREF": "--event=F2 --umask=04", "SQ_MISC.SPLIT_LOCK": "--event=F4 --umask=10", "IDI_MISC.WB_UPGRADE": "--event=FE --umask=02", "IDI_MISC.WB_DOWNGRADE": "--event=FE --umask=04", } print(" counter normal slow") for name, cmd in counters.items(): p = Popen(["target/release/seismograph", "--stdout"] + cmd.split(' '), stdout=PIPE, stderr=PIPE) output = p.stdout.read() if len(output) == 0: print("{} <error>".format(name.rjust(50))) continue data = json.loads(output) times = [[], []] uops = [[], []] values = [[], []] for p in data["data"]: if p["average_cycles"] < 350: i = 0 else: i = 1 times[i].append(float(p["average_cycles"])/2.4 + random.random() - 0.5) uops[i].append(p["uops_retired"]) values[i].append(p["counter"]) if name == "counts": print("median = ", np.median(times[0] + times[1]) * 2.4) print("p90 = ", np.percentile(times[0] + times[1], 90) * 2.4) print("p99 = ", np.percentile(times[0] + times[1], 99) * 2.4) print("p999 = ", np.percentile(times[0] + times[1], 99.9) * 2.4) print("{} {:^13} {:^13}".format(name.rjust(50), len(values[0]), len(values[1]))) elif int(np.percentile(values[0], 99)) == 0 and int(np.percentile(values[1], 99)) == 0: print("{}".format(name.rjust(50))) else: z = abs(np.mean(values[0]) - np.mean(values[1])) / math.sqrt((np.std(values[0])/math.sqrt(len(values[0])))**2 + (np.std(values[1])/math.sqrt(len(values[1])))**2) if z < 2.33: print("{} \033[1;30m{:>6}/{:<6} {:>6}/{:<6} [z={:.1f}] \033[0m".format(name.rjust(50), int(np.percentile(values[0], 25)), int(np.percentile(values[0], 75)), int(np.percentile(values[1], 25)), int(np.percentile(values[1], 75)), z)) else: print("{} {:>6}/{:<6} {:>6}/{:<6} [z={:.1f}]".format(name.rjust(50), int(np.percentile(values[0], 25)), int(np.percentile(values[0], 75)), int(np.percentile(values[1], 25)), int(np.percentile(values[1], 75)), z)) # print("{} {:>8} {:>8}".format(name.rjust(50), int(np.median(values[0])), int(np.median(values[1]))))
from django.conf.urls import url from . import views urlpatterns = [ url(r'^pool/(?P<pk>[0-9a-zA-Z\/]+)/$', views.UserRedirectView.as_view(), name='pool'), url(r'^pool/(?P<pk>[\d\w_]+)$', views.pool_fix, name='pool_fix'), #allow decimal and words only. ]
#!/usr/bin/env python3 if not __name__ == "__main__": exit("You should not run this application as a library!") import pygame import tkinter as tk from tkinter import filedialog FPS = 30 FONT_SIZE = 18 OUTLINE_WIDTH = 2 UI_SPACING = 10 COLOR_BUTTON_SIZE = 22 pygame.init() window = pygame.display.set_mode((800, 600), pygame.RESIZABLE) pygame.display.set_caption("Spriteline") pygame.display.set_icon(pygame.image.load_basic("assets/icon.bmp")) APP_FONT = pygame.font.SysFont("Arial", FONT_SIZE) current_color = (0x00, 0x00, 0x00) running = True clock = pygame.time.Clock() def check_window_close(): global running for event in pygame.event.get(): if event.type == pygame.QUIT: running = False return class ColorPalette: BASE = (0x18, 0x18, 0x18) TEXT = (0xE8, 0xE8, 0xE8) FILL = (0x4F, 0x23, 0x23) OUTLINE = (0xB0, 0x5F, 0x5F) CANVAS = (0x88, 0x88, 0x88) class Button: mouse_previously_pressed = False def __init__(self, X: int, Y: int, TEXT: str, PADDING: int, BG: bool, ON_CLICK): self.X = X self.Y = Y self.TEXT = TEXT self._TEXT_SURFACE = APP_FONT.render(self.TEXT, False, ColorPalette.TEXT).convert() self.BG = BG self.PADDING = PADDING self.WIDTH = self._TEXT_SURFACE.get_width() + (self.PADDING * 2) self.HEIGHT = self._TEXT_SURFACE.get_height() + (self.PADDING * 2) self.ON_CLICK = ON_CLICK def check_click(self): MOUSE_STATE = pygame.mouse.get_pressed() if MOUSE_STATE[0] == True: # MB1 MOUSE_X, MOUSE_Y = pygame.mouse.get_pos() if MOUSE_X in range(self.X, self.X + self.WIDTH) and MOUSE_Y in range(self.Y, self.Y + self.HEIGHT): if not Button.mouse_previously_pressed: self.ON_CLICK() Button.mouse_previously_pressed = True else: Button.mouse_previously_pressed = False def render(self): if self.BG: pygame.draw.rect(window, ColorPalette.FILL, (self.X, self.Y, self.WIDTH, self.HEIGHT)) pygame.draw.rect(window, ColorPalette.OUTLINE, (self.X, self.Y, self.WIDTH, self.HEIGHT), OUTLINE_WIDTH) window.blit(self._TEXT_SURFACE, (self.X + self.PADDING, self.Y + self.PADDING)) class TopBar: def __init__(self, X: int, Y: int, BUTTONS, PADDING: int): self.X = X self.Y = Y self.BUTTONS = BUTTONS desired_x = 0 for button_index in range(len(self.BUTTONS)): desired_x = 0 for button in self.BUTTONS[:button_index]: desired_x += button.WIDTH + PADDING self.BUTTONS[button_index].X = self.X + desired_x + PADDING self.BUTTONS[button_index].Y = self.Y + PADDING self.WIDTH = desired_x + self.BUTTONS[len(self.BUTTONS) - 1].WIDTH + (PADDING * 2) self.HEIGHT = self.BUTTONS[0].HEIGHT + (PADDING * 2) def render(self): pygame.draw.rect(window, ColorPalette.FILL, (self.X, self.Y, self.WIDTH, self.HEIGHT)) pygame.draw.rect(window, ColorPalette.OUTLINE, (self.X, self.Y, self.WIDTH, self.HEIGHT), OUTLINE_WIDTH) for button in self.BUTTONS: button.render() class ColorSelectionButton: mouse3_previously_pressed = False def __init__(self, X: int, Y: int, R: int, G: int, B: int): self.X = X self.Y = Y self.color = (R, G, B) def render(self): pygame.draw.rect(window, self.color, (self.X, self.Y, COLOR_BUTTON_SIZE, COLOR_BUTTON_SIZE)) pygame.draw.rect(window, (0x00, 0x00, 0x00), (self.X, self.Y, COLOR_BUTTON_SIZE, COLOR_BUTTON_SIZE), OUTLINE_WIDTH) def on_click(self): global current_color current_color = self.color def on_right_click(self): tk_root = tk.Tk() R_LABEL = tk.Label(tk_root, text = "R:") R_LABEL.pack() r_entry_box = tk.Entry(tk_root) r_entry_box.pack() r_entry_box.insert(0, "255") G_LABEL = tk.Label(tk_root, text = "G:") G_LABEL.pack() g_entry_box = tk.Entry(tk_root) g_entry_box.pack() g_entry_box.insert(0, "255") B_LABEL = tk.Label(tk_root, text = "B:") B_LABEL.pack() b_entry_box = tk.Entry(tk_root) b_entry_box.pack() b_entry_box.insert(0, "255") def submit(): new_r_str = r_entry_box.get() new_g_str = g_entry_box.get() new_b_str = b_entry_box.get() try: NEW_COLOR = ( int(new_r_str), int(new_g_str), int(new_b_str), ) for color_value in NEW_COLOR: if color_value > 255 or color_value < 0: raise Exception() self.color = NEW_COLOR except Exception: pass tk_root.destroy() ok_button = tk.Button(tk_root, text = "Ok", command = submit) ok_button.pack() tk_root.mainloop() def check_click(self): MOUSE_STATE = pygame.mouse.get_pressed() if MOUSE_STATE[0] == True: # MB1 MOUSE_X, MOUSE_Y = pygame.mouse.get_pos() if MOUSE_X in range(self.X, self.X + COLOR_BUTTON_SIZE) and MOUSE_Y in range(self.Y, self.Y + COLOR_BUTTON_SIZE): if not Button.mouse_previously_pressed: self.on_click() Button.mouse_previously_pressed = True else: Button.mouse_previously_pressed = False if MOUSE_STATE[2] == True: # MB3 MOUSE_X, MOUSE_Y = pygame.mouse.get_pos() if MOUSE_X in range(self.X, self.X + COLOR_BUTTON_SIZE) and MOUSE_Y in range(self.Y, self.Y + COLOR_BUTTON_SIZE): if not ColorSelectionButton.mouse3_previously_pressed: self.on_right_click() ColorSelectionButton.mouse3_previously_pressed = True else: ColorSelectionButton.mouse3_previously_pressed = False class ColorSelectionSection: def __init__(self, X: int, Y: int, COLOR_BUTTONS, PADDING: int): self.color_buttons = [] self.X = X self.Y = Y new_row = [] for color_button_index in range(len(COLOR_BUTTONS)): new_row.append(COLOR_BUTTONS[color_button_index]) if len(new_row) == 4: self.color_buttons.append(new_row) new_row = [] if not not new_row: self.color_buttons.append(new_row) new_row = [] for row_index in range(len(self.color_buttons)): for button_index in range(len(self.color_buttons[row_index])): self.color_buttons[row_index][button_index].X = self.X + button_index * COLOR_BUTTON_SIZE + PADDING self.color_buttons[row_index][button_index].Y = self.Y + row_index * COLOR_BUTTON_SIZE + PADDING self.WIDTH = len(self.color_buttons[0]) * COLOR_BUTTON_SIZE + (2 * PADDING) self.HEIGHT = len(self.color_buttons) * COLOR_BUTTON_SIZE + (2 * PADDING) def render(self): pygame.draw.rect(window, ColorPalette.FILL, (self.X, self.Y, self.WIDTH, self.HEIGHT)) pygame.draw.rect(window, ColorPalette.OUTLINE, (self.X, self.Y, self.WIDTH, self.HEIGHT), OUTLINE_WIDTH) for row in self.color_buttons: for color_button in row: color_button.render() class SideBar: def __init__(self, X: int, Y: int, BUTTONS, PADDING: int): self.X = X self.Y = Y self.BUTTONS = BUTTONS desired_y = 0 for button_index in range(len(self.BUTTONS)): desired_y = 0 for button in self.BUTTONS[:button_index]: desired_y += button.HEIGHT + PADDING self.BUTTONS[button_index].X = self.X + PADDING self.BUTTONS[button_index].Y = self.Y + desired_y + PADDING self.color_selection_section = ColorSelectionSection( self.X + PADDING, desired_y + self.BUTTONS[len(self.BUTTONS) - 1].HEIGHT + (PADDING * 2), [ ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), # white ColorSelectionButton(0, 0, 0x00, 0x00, 0x00), # black ColorSelectionButton(0, 0, 0xBC, 0x73, 0x97), # light red ColorSelectionButton(0, 0, 0x99, 0x43, 0x43), # red ColorSelectionButton(0, 0, 0x56, 0x2A, 0x1C), # dark red ColorSelectionButton(0, 0, 0xB9, 0xCC, 0x7E), # light green ColorSelectionButton(0, 0, 0x4E, 0x99, 0x43), # green ColorSelectionButton(0, 0, 0x0D, 0x47, 0x33), # dark green ColorSelectionButton(0, 0, 0x6D, 0xAC, 0xBA), # light blue ColorSelectionButton(0, 0, 0x43, 0x4D, 0x99), # blue ColorSelectionButton(0, 0, 0x18, 0x11, 0x56), # dark blue ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ColorSelectionButton(0, 0, 0xFF, 0xFF, 0xFF), ], 2, ) BUTTONS_WIDTH = self.BUTTONS[len(self.BUTTONS) - 1].WIDTH + (PADDING * 2) COLORS_WIDTH = self.color_selection_section.WIDTH + (PADDING * 2) if BUTTONS_WIDTH > COLORS_WIDTH: self.WIDTH = BUTTONS_WIDTH else: self.WIDTH = COLORS_WIDTH self.HEIGHT = desired_y + self.BUTTONS[len(self.BUTTONS) - 1].HEIGHT + self.color_selection_section.HEIGHT + (PADDING * 2) def render(self): pygame.draw.rect(window, ColorPalette.FILL, (self.X, self.Y, self.WIDTH, self.HEIGHT)) pygame.draw.rect(window, ColorPalette.OUTLINE, (self.X, self.Y, self.WIDTH, self.HEIGHT), OUTLINE_WIDTH) for button in self.BUTTONS: button.render() self.color_selection_section.render() class Canvas: zoom_plus_previously_pressed = False zoom_minus_previously_pressed = False _previous_mouse_position = (0, 0) def __init__(self, X: int, Y: int, SIZE_X: int, SIZE_Y: int): self.x = X self.y = Y self.size_x = SIZE_X self.size_y = SIZE_Y self.image = pygame.Surface((self.size_x, self.size_y)).convert() self.image.fill(ColorPalette.CANVAS) self.zoom = 1 self.current_image_original_size = (self.size_x, self.size_y) def render(self): window.blit(self.image, (self.x, self.y)) def readjust_size(self, NEW_SIZE_X: int, NEW_SIZE_Y: int): self.size_x = NEW_SIZE_X self.size_y = NEW_SIZE_Y self.image = pygame.transform.scale(self.image, (self.size_x, self.size_y)).convert() def load_image(self, FILENAME: str): self.zoom = 1 NEW_IMAGE = pygame.image.load_basic(FILENAME).convert() self.readjust_size(NEW_IMAGE.get_width(), NEW_IMAGE.get_height()) self.current_image_original_size = (self.size_x, self.size_y) self.image = NEW_IMAGE def zoom_in(self): self.zoom += 1 self.readjust_size(self.size_x * 2, self.size_y * 2) def zoom_out(self): if self.zoom == 1: return self.zoom -= 1 self.readjust_size(int(self.size_x / 2), int(self.size_y / 2)) def handle_input(self): PRESSED_KEYS = pygame.key.get_pressed() PRESSED_MOUSE_BUTTONS = pygame.mouse.get_pressed() if PRESSED_KEYS[pygame.K_LCTRL]: if PRESSED_KEYS[pygame.K_PLUS] or PRESSED_KEYS[pygame.K_KP_PLUS]: if not Canvas.zoom_plus_previously_pressed: self.zoom_in() Canvas.zoom_plus_previously_pressed = True else: Canvas.zoom_plus_previously_pressed = False if PRESSED_KEYS[pygame.K_MINUS] or PRESSED_KEYS[pygame.K_KP_MINUS]: if not Canvas.zoom_minus_previously_pressed: self.zoom_out() Canvas.zoom_minus_previously_pressed = True else: Canvas.zoom_minus_previously_pressed = False if PRESSED_MOUSE_BUTTONS[0]: # MB1 if Canvas._previous_mouse_position == (0, 0): Canvas._previous_mouse_position = pygame.mouse.get_pos() MOUSE_POSITION = pygame.mouse.get_pos() DELTA_X = MOUSE_POSITION[0] - Canvas._previous_mouse_position[0] DELTA_Y = MOUSE_POSITION[1] - Canvas._previous_mouse_position[1] Canvas._previous_mouse_position = MOUSE_POSITION self.x += DELTA_X self.y += DELTA_Y else: Canvas._previous_mouse_position = (0, 0) else: if PRESSED_MOUSE_BUTTONS[0]: # MB1 MOUSE_POSITION = pygame.mouse.get_pos() RELATIVE_MOUSE_POSITION = (MOUSE_POSITION[0] - self.x, MOUSE_POSITION[1] - self.y) TILED_MOUSE_POSITION = ( int(RELATIVE_MOUSE_POSITION[0] * (0.5 ** (self.zoom - 1))) * (2 ** (self.zoom - 1)), int(RELATIVE_MOUSE_POSITION[1] * (0.5 ** (self.zoom - 1))) * (2 ** (self.zoom - 1))) BRUSH_SCALE = 2 ** (self.zoom - 1) if RELATIVE_MOUSE_POSITION[0] >= 0 and RELATIVE_MOUSE_POSITION[1] >= 0: if RELATIVE_MOUSE_POSITION[0] < self.size_x and RELATIVE_MOUSE_POSITION[1] < self.size_y: self.image.fill(current_color, (TILED_MOUSE_POSITION[0], TILED_MOUSE_POSITION[1], BRUSH_SCALE, BRUSH_SCALE)) def get_image_to_save(self) -> pygame.Surface: image_to_save = pygame.transform.scale(self.image, self.current_image_original_size) return image_to_save canvas = Canvas(64, 64, 32, 32) def resize_canvas(): tk_root = tk.Tk() WIDTH_LABEL = tk.Label(tk_root, text = "Width:") WIDTH_LABEL.pack() width_entry_box = tk.Entry(tk_root) width_entry_box.pack() width_entry_box.insert(0, "32") HEIGHT_LABEL = tk.Label(tk_root, text = "Height:") HEIGHT_LABEL.pack() height_entry_box = tk.Entry(tk_root) height_entry_box.pack() height_entry_box.insert(0, "32") def submit(): new_width_str = width_entry_box.get().replace(' ', "") new_height_str = height_entry_box.get().replace(' ', "") try: NEW_WIDTH: int = int(new_width_str) NEW_HEIGHT: int = int(new_height_str) if NEW_WIDTH <= 0 or NEW_HEIGHT <= 0: raise Exception() canvas.readjust_size(NEW_WIDTH, NEW_HEIGHT) canvas.zoom = 1 canvas.current_image_original_size = (NEW_WIDTH, NEW_HEIGHT) except Exception: pass tk_root.destroy() ok_button = tk.Button(tk_root, text = "Ok", command = submit) ok_button.pack() tk_root.mainloop() def zoom_canvas_plus(): canvas.zoom_in() Canvas.zoom_minus_previously_pressed = True def zoom_canvas_minus(): canvas.zoom_out() Canvas.zoom_minus_previously_pressed = True SIDE_BAR = SideBar( 0, 0, [ Button(0, 0, "resize", 2, False, resize_canvas ), Button(0, 0, "zoom+", 2, False, zoom_canvas_plus ), Button(0, 0, "zoom-", 2, False, zoom_canvas_minus), ], 2, ) def save_current(): global canvas tk_root = tk.Tk() tk_root.withdraw() FILENAME = filedialog.asksaveasfilename(title = "Choose where to save your sprite!") pygame.image.save(canvas.get_image_to_save(), FILENAME) tk_root.destroy() def open_file(): global canvas tk_root = tk.Tk() tk_root.withdraw() FILENAME = filedialog.askopenfilename(title = "Open a sprite to edit!") try: canvas.load_image(FILENAME) except Exception: pass tk_root.destroy() TOP_BAR = TopBar( SIDE_BAR.WIDTH + UI_SPACING, 0, [ Button(0, 0, "save", 2, False, save_current), Button(0, 0, "load", 2, False, open_file), ], 2, ) canvas.x, canvas.y = SIDE_BAR.WIDTH + UI_SPACING, TOP_BAR.HEIGHT + UI_SPACING while running: clock.tick(FPS) check_window_close() for button in TOP_BAR.BUTTONS: button.check_click() for button in SIDE_BAR.BUTTONS: button.check_click() for row in SIDE_BAR.color_selection_section.color_buttons: for button in row: button.check_click() canvas.handle_input() window.fill(ColorPalette.BASE) canvas.render() SIDE_BAR.render() TOP_BAR.render() pygame.display.flip() pygame.display.quit() pygame.quit()
# Gradient descent will be performed for Rosenbrock function: (a-x)**2+ b(y-x**2)**2 def process(numIter, alpha, x, y, a, b): history_arr = [] history_arr.append((x, y, get_f(x, y, a, b))) for i in range(numIter): x -= alpha * get_delta_x(x, y, a, b) y -= alpha * get_delta_y(x, y, a, b) history_arr.append((x, y, get_f(x, y, a, b))) return history_arr def get_delta_x(x, y, a, b): return -2 * (a - x) - 2 * b * (y - x ** 2) * 2 * x def get_delta_y(x, y, a, b): return 2 * b * (y - x ** 2) def get_f(x, y, a, b): return (a - x) ** 2 + b * ((y - x ** 2) ** 2)
import cv2 import numpy as np import time video = cv2.VideoCapture(0, cv2.CAP_DSHOW) time.sleep(3) for i in range(60): check, background = video.read() background = np.flip(background, axis=1) while(video.isOpened()): check, img = video.read() if check == False: break img = np.flip(img, axis=1) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) lower_red = np.array([0, 120, 50]) upper_red = np.array([10, 255, 255]) mask1 = cv2.inRange(hsv, lower_red, upper_red) lower_red = np.array([170, 120, 70]) upper_red = np.array([180, 255, 255]) mask2 = cv2.inRange(hsv, lower_red, upper_red) mask1 = mask1 + mask2 mask1 = cv2.morphologyEx(mask1, cv2.MORPH_OPEN, np.ones((3, 3), np.uint8)) mask1 = cv2.morphologyEx(mask1, cv2.MORPH_DILATE, np.ones((3, 3), np.uint8)) mask2 = cv2.bitwise_not(mask1) res1 = cv2.bitwise_and(img, img, mask=mask2) res2 = cv2.bitwise_and(background, background, mask=mask1) final = cv2.addWeighted(res1, 1, res2, 1, 0) cv2.imshow("final", final) key = cv2.waitKey(1) if key == ord('q'): break video.release() cv2.destroyAllWindows()
import os import pynbody import numpy as np import tangos import tangos.input_handlers.pynbody from tangos import testing, input_handlers, tools, log, parallel_tasks import numpy.testing as npt def _get_gadget_snap_path(snapname): return os.path.join(os.path.dirname(__file__),"test_simulations", "test_gadget_rockstar",snapname) def _create_dummy_simsnap(): f = pynbody.new(dm=2097152) f['iord'] = np.arange(2097152) f['pos'] = np.zeros((2097152,3)).view(pynbody.array.SimArray) f['pos'].units="Mpc" f['vel'] = np.zeros((2097152, 3)).view(pynbody.array.SimArray) f['vel'].units = "km s^-1" f['mass'] = np.zeros(2097152).view(pynbody.array.SimArray) f['mass'].units="Msol" f.properties['boxsize'] = pynbody.units.Unit("50 Mpc") return f def _ensure_dummy_gadgetsnaps_exist(): f = None if not os.path.exists(_get_gadget_snap_path("snapshot_013")): f = _create_dummy_simsnap() f.properties['z'] = 2.9322353443127693 f.write(pynbody.snapshot.gadget.GadgetSnap, _get_gadget_snap_path("snapshot_013")) if not os.path.exists(_get_gadget_snap_path("snapshot_014")): if not f: f = _create_dummy_simsnap() f.properties['z'] = 2.2336350508252085 f.write(pynbody.snapshot.gadget.GadgetSnap, _get_gadget_snap_path("snapshot_014")) def setup(): _ensure_dummy_gadgetsnaps_exist() testing.init_blank_db_for_testing() tangos.config.base = os.path.join(os.path.dirname(__file__), "test_simulations") manager = tools.add_simulation.SimulationAdderUpdater(input_handlers.pynbody.GadgetRockstarInputHandler("test_gadget_rockstar")) with log.LogCapturer(): manager.scan_simulation_and_add_all_descendants() def teardown(): tangos.core.close_db() def test_property_import(): importer = tools.property_importer.PropertyImporter() importer.parse_command_line("X Y Z Mvir --for test_gadget_rockstar".split()) with log.LogCapturer(): parallel_tasks.use('multiprocessing') parallel_tasks.launch(importer.run_calculation_loop,2) Mvir_test, = tangos.get_timestep("test_gadget_rockstar/snapshot_013").calculate_all("Mvir") npt.assert_allclose(Mvir_test, [1.160400e+13, 8.341900e+12, 5.061400e+12, 5.951900e+12]) def test_consistent_tree_import(): importer = tools.consistent_trees_importer.ConsistentTreesImporter() importer.parse_command_line("--for test_gadget_rockstar --with-ids".split()) with log.LogCapturer(): importer.run_calculation_loop() assert (tangos.get_timestep("test_gadget_rockstar/snapshot_014").calculate_all("consistent_trees_id", object_typetag='halo')[0]==[17081, 19718, 19129]).all() testing.assert_halolists_equal(tangos.get_timestep("test_gadget_rockstar/snapshot_014").calculate_all("earlier(1)", object_typetag='halo')[0], ["test_gadget_rockstar/snapshot_013/halo_2", "test_gadget_rockstar/snapshot_013/halo_4"]) assert tangos.get_halo("%/%13/halo_1").next == tangos.get_halo("%/%14/phantom_1")
import torch, numpy as np, warnings, pandas as pd, collections, torch.nn.functional as F from torch.utils.data import DataLoader from pytorch_lightning import Trainer from pytorch_lightning.callbacks import LearningRateMonitor from ..util import (_LitValidated, empty_cache_on_exit, create_matrix, create_second_order_dataframe, default_random_split, auto_cast_lazy_score) from .bpr import _BPR_Common try: import dgl, dgl.function as fn except ImportError: warnings.warn("GraphConv requires dgl package") def _plain_average(G, item_embeddings): with G.local_scope(): G.srcdata['h'] = item_embeddings G.update_all(fn.copy_src('h', 'm'), fn.mean(msg='m', out='h')) return G.dstdata['h'] class _GraphConv(_BPR_Common): """ module to compute user RFM embedding. """ def __init__(self, n_users=None, n_items=None, user_rec=True, item_rec=True, no_components=32, n_negatives=10, lr=1, weight_decay=1e-5, user_conv_model='GCN', # plain_average user_embeddings=None, item_embeddings=None, item_zero_bias=False, recency_boundary_multipliers=[0.1, 0.3, 1, 3, 10], horizon=float("inf")): super().__init__(user_rec, item_rec, n_negatives, lr, weight_decay) if item_embeddings is not None: warnings.warn("setting no_components according to provided embeddings") no_components = item_embeddings.shape[-1] self.item_encoder = torch.nn.Embedding(n_items, no_components) if item_embeddings is not None: self.item_encoder.weight.requires_grad = False self.item_encoder.weight.copy_(torch.as_tensor(item_embeddings)) self.item_bias_vec = torch.nn.Embedding(n_items, 1) if item_zero_bias: self.item_bias_vec.weight.requires_grad = False self.item_bias_vec.weight.copy_(torch.zeros_like(self.item_bias_vec.weight)) if user_conv_model == 'GCN': self.user_conv = dgl.nn.pytorch.conv.GraphConv(no_components, no_components, "none") elif user_conv_model == 'plain_average': self.user_conv = _plain_average self.user_layer_norm = torch.nn.LayerNorm(no_components) if user_embeddings is not None: self.user_ext_layer_norm = torch.nn.LayerNorm(user_embeddings.shape[1]) self.register_buffer("recency_boundaries", torch.as_tensor(recency_boundary_multipliers) * horizon) self.recency_encoder = torch.nn.Embedding(len(recency_boundary_multipliers) + 1, 1) self.init_weights() def init_weights(self): initrange = 0.1 if self.item_encoder.weight.requires_grad: torch.nn.init.uniform_(self.item_encoder.weight, -initrange, initrange) if self.item_bias_vec.weight.requires_grad: torch.nn.init.zeros_(self.item_bias_vec.weight) if hasattr(self.user_conv, "weight"): torch.nn.init.uniform_(self.user_conv.weight, -initrange, initrange) if hasattr(self.user_conv, "bias"): torch.nn.init.zeros_(self.user_conv.bias) def _user_subgraph(self, i, G): I, i_reverse = torch.unique(i, return_inverse=True) if len(I) < 0.5 * G.num_nodes('user'): sampler = dgl.dataloading.neighbor.MultiLayerFullNeighborSampler(1) mfg = sampler.sample_blocks(G.to(I.device), {'user': I})[0] sub_G = dgl.edge_type_subgraph(dgl.block_to_graph(mfg), mfg.etypes) return i_reverse, sub_G, sub_G.srcdata['_ID'] else: return i, G, torch.arange(G.num_nodes('item')).to(i) def user_encoder(self, i, G): i, G, src_j = self._user_subgraph(i, G) item_embeddings = self.item_encoder(src_j) user_embeddings = self.user_layer_norm(self.user_conv(G, item_embeddings)) if 'embedding' in G.dstdata: user_ext = self.user_ext_layer_norm(G.dstdata['embedding']) user0, user1 = torch.split(user_embeddings, [ user_embeddings.shape[1] - user_ext.shape[1], user_ext.shape[1]], 1) user_embeddings = torch.cat([user0, user1 + user_ext], 1) return user_embeddings[i] def user_bias_vec(self, i, G): with G.local_scope(): G.update_all(lambda x: None, fn.max('t', 'last_t')) user_recency = G.nodes['user'].data['test_t'] - G.nodes['user'].data['last_t'] recency_buckets = torch.bucketize(user_recency, self.recency_boundaries) return self.recency_encoder(recency_buckets)[i] def on_fit_start(self): if hasattr(self, "prior_score") and not hasattr(self, "prior_score_T"): self.prior_score_T = [getattr(p, "T", None) for p in self.prior_score] self.G_list = [G.to(self.device) for G in self.G_list] def training_step(self, batch, batch_idx): k = batch[:, -1] loss_list = [] for s, (G, u_p, i_p, p, pT) in enumerate(zip( self.G_list, self.user_proposal, self.item_proposal, self.prior_score, self.prior_score_T )): single_loss = self._bpr_training_step(batch[k == s, :-1], u_p, i_p, p, pT, user_kw={"G": G}) loss_list.append(single_loss) loss = torch.stack(loss_list).mean() self.log("train_loss", loss, prog_bar=True) return loss class GraphConv: def __init__(self, D, batch_size=10000, max_epochs=50, sample_with_prior=True, sample_with_posterior=0.5, **kw): self._padded_item_list = [None] + D.training_data.item_df.index.tolist() self.batch_size = batch_size self.max_epochs = max_epochs self.sample_with_prior = sample_with_prior self.sample_with_posterior = sample_with_posterior self._model_kw = {'horizon': D.horizon} if "embedding" in D.training_data.item_df: item_embeddings = np.vstack(D.training_data.item_df["embedding"]).astype('float32') item_embeddings = np.pad(item_embeddings, ((1, 0), (0, 0)), constant_values=0) self._model_kw["item_embeddings"] = item_embeddings self._model_kw.update(kw) def _extract_features(self, D): """ create item -> user graph; allow same USER_ID with different TEST_START_TIME """ user_non_empty = D.user_in_test.reset_index()[D.user_in_test['_hist_len'].values > 0] past_event_df = user_non_empty['_hist_items'].explode().to_frame("ITEM_ID") past_event_df["TIMESTAMP"] = user_non_empty['_hist_ts'].explode().values past_event_df = past_event_df.join( # item embeddings are shared for different times pd.Series({k: j for j, k in enumerate(self._padded_item_list)}).to_frame("j"), on="ITEM_ID", how='inner') # drop oov items G = dgl.heterograph( {('user', 'source', 'item'): (past_event_df.index.values, past_event_df["j"].values)}, {'user': len(D.user_in_test), 'item': len(self._padded_item_list)} ) G.edata['t'] = torch.as_tensor(past_event_df["TIMESTAMP"].values.astype('float64')) # add padding item to guard against users with empty histories n_users = G.num_nodes('user') pad_time = -np.inf * torch.ones(n_users).double() G = dgl.add_edges(G, range(n_users), [0] * n_users, {'t': pad_time}) user_test_time = D.user_in_test['TEST_START_TIME'].values G.nodes['user'].data['test_t'] = torch.as_tensor(user_test_time) if hasattr(D.user_in_test, 'embedding'): user_ext_embeddings = np.vstack(D.user_in_test['embedding']).astype('float32') G.nodes['user'].data['embedding'] = torch.as_tensor(user_ext_embeddings) return G.reverse(copy_edata=True) def _extract_task(self, k, V): user_proposal = np.ravel(V.target_csr.sum(axis=1) + 0.1) ** self.sample_with_posterior item_proposal = np.ravel(V.target_csr.sum(axis=0) + 0.1) ** self.sample_with_posterior item_proposal = pd.Series(item_proposal, V.item_in_test.index) \ .reindex(self._padded_item_list, fill_value=0).values V = V.reindex(self._padded_item_list, axis=1) target_coo = V.target_csr.tocoo() dataset = np.transpose([ target_coo.row, target_coo.col, k * np.ones_like(target_coo.row), ]).astype(int) G = self._extract_features(V) return dataset, G, user_proposal, item_proposal, getattr(V, "prior_score", None) @empty_cache_on_exit def fit(self, *V_arr): dataset, G_list, user_proposal, item_proposal, prior_score = zip(*[ self._extract_task(k, V) for k, V in enumerate(V_arr) ]) print("GraphConv label sizes", [len(d) for d in dataset]) dataset = np.vstack(dataset) if "embedding" in V_arr[0].user_in_test: self._model_kw["user_embeddings"] = np.vstack( V_arr[0].user_in_test['embedding'].iloc[:1]) # just need shape[1] model = _GraphConv(None, len(self._padded_item_list), **self._model_kw) N = len(dataset) train_set, valid_set = default_random_split(dataset) trainer = Trainer( max_epochs=self.max_epochs, gpus=int(torch.cuda.is_available()), log_every_n_steps=1, callbacks=[model._checkpoint, LearningRateMonitor()]) model.G_list = G_list model.user_proposal = user_proposal model.item_proposal = item_proposal if self.sample_with_prior: model.prior_score = [auto_cast_lazy_score(p) for p in prior_score] else: model.prior_score = [None for p in prior_score] trainer.fit( model, DataLoader(train_set, self.batch_size, shuffle=True, num_workers=(N > 1e4) * 4), DataLoader(valid_set, self.batch_size, num_workers=(N > 1e4) * 4)) model._load_best_checkpoint("best") for attr in ['G_list', 'user_proposal', 'item_proposal', 'prior_score', 'prior_score_T']: delattr(model, attr) src_j = torch.arange(len(self._padded_item_list)) self.item_embeddings = model.item_encoder(src_j).detach().numpy() self.item_biases = model.item_bias_vec(src_j).detach().numpy().ravel() self.model = model return self def transform(self, D): G = self._extract_features(D) i = torch.arange(G.num_nodes('user')) user_embeddings = self.model.user_encoder(i, G).detach().numpy() user_biases = self.model.user_bias_vec(i, G).detach().numpy().ravel() S = create_second_order_dataframe( user_embeddings, self.item_embeddings, user_biases, self.item_biases, D.user_in_test.index, self._padded_item_list, 'softplus') return S.reindex(D.item_in_test.index, axis=1)
import re s = 'life is short, i use python' res = re.search('life(.*)python', s) print(res) # <re.Match object; span=(0, 27), match='life is short, i use python'> print(res.group()) # life is short, i use python print(res.group(0)) # life is short, i use python --> 0 代表完整匹配结果 print(res.group(1)) # is short, i use print(res.groups()) # (' is short, i use ',)
BBBB BBBBBBBBBBBBBBBBBBBBBBB BB BBBB BBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB BBBBBBB BBB BBBB BB BBBBBBB XXXX XXXXXXXXXXXXXXXXXXX BBBBBBB BBBBBBBBBBBBBBBBBBBBBBBB XXXXXX BBBBBB
from ecoxipy.pyxom.output import PyXOMOutput from ecoxipy.decorators import markup_builder_namespace from ecoxipy.html import HTML5_ELEMENT_NAMES from tests.performance.ecoxipy_base import create_testdoc create_testdoc = markup_builder_namespace( PyXOMOutput, '_b', *HTML5_ELEMENT_NAMES)(create_testdoc) create_testdoc_string = lambda *args: bytes(create_testdoc(*args))
from .models import SocialLink, MainMenuPoint def load_settings(request): """The processor for implements social_links and menu options in the context of every page on the site""" return { 'social_links': SocialLink.objects.all(), 'main_menu': MainMenuPoint.objects.all(), }
import math import os import shutil import socket import stat import subprocess import textwrap import time from aioredis.log import logger REDIS_SERVER_EXEC = os.environ.get('REDIS_SERVER_EXEC') or 'redis-server' REDIS_SLOT_COUNT = 16384 _MAX_RETRY_ERRORS = 4 _ATTEMPT_INTERVAL = 0.3 class TestCluster: """This class allows to create a local Redis cluster for test purposes. It also includes methods to stop and restart nodes to test failover behaviour. Parameters: - *ports*: The cluster will use the ports from ports list - *directory* is used to store the configuration files of all processes. - *node_timeout*: The cluster node timeout in millliseconds, see http://redis.io/topics/cluster-tutorial. """ def __init__(self, ports, directory, node_timeout=3000, server_exec=REDIS_SERVER_EXEC, assign_slots=True): self.redis_count = len(ports) self.ports = ports self.directory = os.path.abspath(directory) self.node_timeout = node_timeout self.processes = {} self._new_directories = set() self._exec = server_exec self._assign_slots_in_setup = assign_slots def setup(self): self._setup_directory() self._create_redis_directories() for port in self.get_ports(): self._start_redis(port) self.configure_cluster() def terminate(self): for process in self.processes.values(): process.terminate() for process in self.processes.values(): process.wait(1) def clear_directories(self): for directory in self._new_directories: try: self._delete_directory_contents(directory) os.rmdir(directory) except PermissionError as error: print(error) def stop_redis(self, port): if port not in self.processes: raise ValueError('No Redis running at port {}.'.format(port)) process = self.processes.pop(port) process.terminate() process.wait(1) def restart_redis(self, port): if port in self.processes: raise ValueError('Redis process at port {} is still running.' .format(port)) self._start_redis(port) def get_ports(self): return self.ports def _setup_directory(self): if not os.path.exists(self.directory): os.makedirs(self.directory) def _create_redis_directories(self): for port in self.get_ports(): redis_directory = self._get_redis_directory(port) if not os.path.exists(redis_directory): os.mkdir(redis_directory) else: self._delete_directory_contents(redis_directory) self._write_redis_config_file(os.path.join( redis_directory, 'redis.conf'), port) self._new_directories.add(redis_directory) def _start_redis(self, port): directory = self._get_redis_directory(port) self.processes[port] = subprocess.Popen( [self._exec, 'redis.conf'], cwd=directory) def configure_cluster(self): time.sleep(_ATTEMPT_INTERVAL) # Give cluster some time to start up addresses = [('127.0.0.1', port) for port in self.get_ports()] sockets = self._connect_sockets(addresses) masters_count = math.ceil(self.redis_count / 2) masters = sockets[:masters_count] master_addresses = addresses[:masters_count] slaves = sockets[masters_count:] master_node_ids = [self._determine_node_id(master, address) for master, address in zip(masters, addresses)] if self._assign_slots_in_setup: self._assign_slots(masters, master_addresses) self._send_meet_messages_to_all(sockets, addresses) # MEET messages need some time to propagate time.sleep(_ATTEMPT_INTERVAL) self._send_replicate_messages(slaves, master_node_ids) if self._assign_slots_in_setup: # cluster never becomes 'ok' if slots are unbound self._wait_until_cluster_state_ok(sockets) for sock in sockets: sock.close() def _connect_sockets(self, addresses): return self._retry(socket.create_connection, addresses, error_message='Could not connect to Redis.') def _determine_node_id(self, socket, address): socket.sendall(b'CLUSTER NODES\r\n') data = self._read_bulk_string_response(socket) node_id = data[:40].decode('utf-8') logger.debug("Master at {} has node id {}.".format(address, node_id)) return node_id def _assign_slots(self, masters, addresses): slot_boundaries = [math.floor(i * REDIS_SLOT_COUNT / len(masters)) for i in range(len(masters) + 1)] slot_ranges = [range(b1, b2) for b1, b2 in zip(slot_boundaries, slot_boundaries[1:])] for master, slot_range, address in zip( masters, slot_ranges, addresses): logger.debug( "Assigning master at {} slots {}-{}" .format(address, slot_range.start, slot_range.stop - 1) ) slots = ' '.join(str(slot) for slot in slot_range) try: self._send_command_and_expect_ok( master, 'CLUSTER ADDSLOTS {}\r\n'.format(slots)) except IOError as e: raise IOError( "ADDSLOTS failed. Maybe a cluster is already running? " "({}).".format(str(e)) ) def _send_meet_messages_to_all(self, sockets, addresses): for i, sock in enumerate(sockets): for j, address in enumerate(addresses): if i != j: self._send_command_and_expect_ok( sock, 'CLUSTER MEET {} {}\r\n'.format(*address)) def _send_replicate_messages(self, slaves, master_node_ids): def _send_replicate_message(arg): slave, master_node_id = arg self._send_command_and_expect_ok( slave, 'CLUSTER REPLICATE {}\r\n'.format(master_node_id)) self._retry( _send_replicate_message, list(zip(slaves, master_node_ids)), 'Replication failed.' ) def _wait_until_cluster_state_ok(self, sockets): def _check_state(socket): socket.sendall(b'CLUSTER INFO\r\n') data = self._read_bulk_string_response(socket).decode('utf-8') if 'cluster_state:ok' not in data: raise IOError('Cluster state not ok') self._retry( _check_state, sockets, error_message='Cluster state not ok.', max_errors=10 ) def _retry(self, method, arguments, error_message, max_errors=_MAX_RETRY_ERRORS, interval=_ATTEMPT_INTERVAL): results = [None] * len(arguments) successful_indexes = [] errors = 0 while len(successful_indexes) < len(arguments): for i, argument in enumerate(arguments): if i not in successful_indexes: try: results[i] = method(argument) successful_indexes.append(i) except (IOError, ConnectionRefusedError): errors += 1 if errors >= max_errors: raise IOError( error_message + ' Stop retrying after {} errors.' .format(errors) ) else: logger.info( error_message + ' Will retry after {}s.' .format(interval) ) time.sleep(interval) return results def _recv_until(self, socket, delimiter): data = b'' while delimiter not in data: data += socket.recv(1024) index = data.index(delimiter) return data[:index], data[index + len(delimiter):] def _recv_bytes(self, socket, byte_count): data = b'' while len(data) < byte_count: received = socket.recv(min(1024, byte_count - len(data))) if len(received) == 0: raise IOError('Socket closed') else: data += received return data def _send_command_and_expect_ok(self, socket, command): socket.sendall(command.encode('utf-8')) response, _ = self._recv_until(socket, b'\r\n') if response != b'+OK': raise IOError(response.decode('utf-8')) def _read_bulk_string_response(self, socket): header, data = self._recv_until(socket, b'\r\n') if header[0] != ord('$'): raise ValueError('Expected bulk string response.') byte_count = int(header[1:].decode('utf-8')) missing_byte_count = byte_count - len(data) + 2 if missing_byte_count > 0: remaining_data = self._recv_bytes(socket, missing_byte_count) if remaining_data[-2:] != b'\r\n': raise ValueError('Invalid bulk string received.') data += remaining_data[:-2] return data def _get_redis_directory(self, port): return os.path.join(self.directory, 'redis-{}'.format(port)) @staticmethod def _delete_directory_contents(directory): for name in os.listdir(directory): path = os.path.join(directory, name) if os.path.isdir(path): shutil.rmtree(path) else: os.remove(path) def _write_redis_config_file(self, path, port): with open(path, 'w') as file: file.write(textwrap.dedent(""" port {} cluster-enabled yes cluster-config-file nodes.conf cluster-node-timeout {} """.format(port, self.node_timeout) )) # Protect against the CONFIG REWRITE test self._remove_write_access(path) @staticmethod def _remove_write_access(path): os.chmod(path, stat.S_IRUSR | stat.S_IRGRP | stat.S_IROTH)
from pyhf.parameters.paramsets import ( paramset, unconstrained, constrained_by_normal, constrained_by_poisson, ) from pyhf.parameters.utils import reduce_paramsets_requirements from pyhf.parameters.paramview import ParamViewer __all__ = [ 'paramset', 'unconstrained', 'constrained_by_normal', 'constrained_by_poisson', 'reduce_paramsets_requirements', 'ParamViewer', ] def __dir__(): return __all__
import time import datetime print("Please type your text after 3 seconds") print("3") time.sleep(1) print("2") time.sleep(1) print("Go!") time.sleep(0.2) before = datetime.datetime.now() text=input("Type here:") after = datetime.datetime.now() speed = after - before seconds = round(speed.total_seconds(),2) letter_per_second = round(len(text) / seconds,1) print("You typed in : {} seconds.".format(seconds)) print("{} letters per second.".format(letter_per_second))
import pygments, markdown, os from flask import Flask, flash, redirect, render_template, render_template_string, request, url_for, send_from_directory from flask import current_app as app from flask_flatpages import FlatPages, pygmented_markdown, pygments_style_defs from flask_mail import Mail, Message from .forms.paginate import Paginate as Paginate from .forms.forms import ContactForm as ContactForm email_addr = os.environ.get('EMAIL_ACC', '') pages = FlatPages(app) mail = Mail(app) # 404 @app.errorhandler(404) def page_not_found(e): return render_template("404.html"), 404 @app.route('/pygments.css') def pygments_css(): return pygments_style_defs("monokai"), 200, {"Content-Type":"text/css"} @app.route("/") def index(num = 0): posts = [p for p in pages if "date" in p.meta] sorted_pages=sorted(posts, reverse=True, key=lambda page: page.meta["date"]) ppaginate=Paginate(app.config["PAGES_NUMBER_PER_PAGE"],sorted_pages) if (num >= ppaginate.get_total_number()): return redirect(url_for("index_extend")) return render_template("index.html",num=num,pages=ppaginate.get_number_pages(num),config=app.config,current_number=num,total_num=ppaginate.get_total_number()- 1) @app.route("/index/<string:num>.html") def index_extend(num): num=int(num) posts = [p for p in pages if "date" in p.meta] sorted_pages=sorted(posts, reverse=True, key=lambda page: page.meta["date"]) ppaginate=Paginate(app.config["PAGES_NUMBER_PER_PAGE"],sorted_pages) if (num >= ppaginate.get_total_number()): num = 0 return render_template("index.html", num=num, pages=ppaginate.get_number_pages(num), config=app.config, current_number=num, total_num=ppaginate.get_total_number() - 1) @app.route("/<path:path>/") def staticpage(path): print('path', path) p = pages.get_or_404(path) staticpage = p if "static" in p.meta else None if page == None: return page_not_found(404) return render_template("page.html", page=staticpage) @app.route('/status') def status(): return 200 @app.route('/img/<path:filename>/') def serve_static(filename): print('filename', filename) root_dir = os.path.dirname(os.path.realpath(__file__)) print(root_dir) return send_from_directory(os.path.join(root_dir, 'pages', 'img'), filename) @app.route("/articles/<path:path>/") def page(path): p = pages.get_or_404(path) page = p if "date" in p.meta else None if page == None: return page_not_found(404) return render_template("post.html", page=page) @app.route("/tag/<string:tag>/") def tag(tag): tagged = [p for p in pages if tag in p.meta.get("tags", [])] return render_template("tags.html", pages=tagged, tag=tag) @app.route("/contact", methods=("GET", "POST")) def contact(): form = ContactForm() error = None if request.method == "POST": if form.validate() == False: error = "Please fill in all fields" else: msg = Message( "Message from " + form.name.data + "," + form.email.data, sender=email_addr, recipients=[email_addr]) msg.body = """ From: %s <%s>, %s """ % (form.name.data, form.email.data, form.message.data) mail.send(msg) flash("Message sent.") return redirect( url_for("contact") ) return render_template("contact.html", form=form, error=error)
import json import kenlm from tqdm import tqdm model = kenlm.Model("../es.arpa.bin") def get_perplexity(doc): doc_log_score, doc_length = 0, 0 for line in doc.split("\n"): log_score = model.score(line) length = len(line.split()) + 1 doc_log_score += log_score doc_length += length return 10.0 ** (-doc_log_score / doc_length) with open("mc4-es-train-50M-stats.csv", "w") as csv: with open("mc4-es-train-50M-steps.jsonl", "r") as data: for line in tqdm(data): text = json.loads(line)["text"] csv.write(f"{len(text.split())},{get_perplexity(text)}\n")