content
stringlengths
5
1.05M
""" baemo.entity ~~~~~~~~~~~~~~~~~~~~~~~~ This module defines the Entity and Entities interfaces. Entities is a cache of Entity groups that allows for retrieval by name. Entity is a metaclass that creates Model and Collection classes. """ from collections import OrderedDict from .delimited import DelimitedDict from .projection import Projection from .references import References from .sort import Sort from .exceptions import EntityNotSet class EntityMeta(object): pass class Entities(object): cache = {} @classmethod def set(cls, name, entity): Entities.cache[name] = entity @classmethod def get(cls, name): if name not in Entities.cache: raise EntityNotSet(name) else: return Entities.cache[name] class Entity(type): def __new__(cls, name, model_options=None, collection_options=None): from .model import Model from .collection import Collection entity_definition = {} entity_config = [{ "type": "model", "bases": [Model, EntityMeta], "options": model_options }, { "type": "collection", "bases": [Collection, EntityMeta], "options": collection_options }] for member_config in entity_config: # pre handle configuration options if member_config["options"] is not None: # base classes if "bases" in member_config["options"]: bases = member_config["options"]["bases"] del member_config["options"]["bases"] if type(bases) is not list: bases = [bases] member_config["bases"] = bases + member_config["bases"] # create entity member class entity_definition[member_config["type"]] = type( "{}{}".format(name, member_config["type"].title()), tuple(member_config["bases"]), dict() ) # for each base class in reverse order, cache and merge dict # type attributes NOTE: attribute type will be what it was # when first encountered while scanning base classes, this is # important because attributes set in model/collection options # as dicts at entity creation time must become the type # appropriate for the attribute to function correctly # Sort for sorts, References for references etc. bases_attribute_cache = {} for base in reversed(member_config["bases"]): # for each attribute in base class for key in dir(base): attr = getattr(base, key) # determine correct type by checking type on base model if isinstance(attr, (dict, OrderedDict, DelimitedDict)): if key not in bases_attribute_cache: bases_attribute_cache[key] = attr.__class__() bases_attribute_cache[key] = DelimitedDict._merge( attr, bases_attribute_cache[key] ) # add merged base attribute to options if bases_attribute_cache: if member_config["options"] is None: member_config["options"] = {} for key, value in bases_attribute_cache.items(): # overwrite if key not in member_config["options"]: member_config["options"][key] = value # merge # if key not in member_config["options"]: # member_config["options"][key] = value.__class__() # # # overwrite values inherited with values in options # member_config["options"][key] = DelimitedDict._merge( # value, # member_config["options"][key] # ) # cast back to correct type # member_config["options"][key] = value.__class__(member_config["options"][key]) # # if there are no options, continue # if member_config["options"] is None: # continue # add options attributes to entity member class for key, value in member_config["options"].items(): # check against type of attribute in Model or Collection base # for attributes passed only as options and if hasattr(member_config["bases"][-2], key): attr = getattr(member_config["bases"][-2], key) if isinstance(attr, (dict, OrderedDict, DelimitedDict)): if not isinstance(value, attr.__class__): value = attr.__class__(value) # set attribute on entity member class setattr(entity_definition[member_config["type"]], key, value) # connect model and collection via entity definition entity_definition["model"].__entity__ = entity_definition entity_definition["collection"].__entity__ = entity_definition # set entity member in Entities cache Entities.set(name, entity_definition) return entity_definition["model"], entity_definition["collection"]
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from TorchSUL import Model as M import config from . import hrnet class Head(M.Model): def initialize(self, head_layernum, head_chn): self.layers = nn.ModuleList() for i in range(head_layernum): self.layers.append(M.ConvLayer(3, head_chn, activation=M.PARAM_PRELU, batch_norm=True, usebias=False)) def forward(self, x): for l in self.layers: x = l(x) return x class DepthToSpace(M.Model): def initialize(self, block_size): self.block_size = block_size def forward(self, x): bsize, chn, h, w = x.shape[0], x.shape[1], x.shape[2], x.shape[3] assert chn%(self.block_size**2)==0, 'DepthToSpace: Channel must be divided by square(block_size)' x = x.view(bsize, -1, self.block_size, self.block_size, h, w) x = x.permute(0,1,4,2,5,3) x = x.reshape(bsize, -1, h*self.block_size, w*self.block_size) return x class UpSample(M.Model): def initialize(self, upsample_layers, upsample_chn): self.prevlayers = nn.ModuleList() #self.uplayer = M.DeConvLayer(3, upsample_chn, stride=2, activation=M.PARAM_PRELU, batch_norm=True, usebias=False) self.uplayer = M.ConvLayer(3, upsample_chn*4, activation=M.PARAM_PRELU, usebias=False) self.d2s = DepthToSpace(2) self.postlayers = nn.ModuleList() for i in range(upsample_layers): self.prevlayers.append(M.ConvLayer(3, upsample_chn, activation=M.PARAM_PRELU, batch_norm=True, usebias=False)) for i in range(upsample_layers): self.postlayers.append(M.ConvLayer(3, upsample_chn, activation=M.PARAM_PRELU, batch_norm=True, usebias=False)) def forward(self, x): for p in self.prevlayers: x = p(x) x = self.uplayer(x) x = self.d2s(x) # print('UPUP', x.shape) for p in self.postlayers: x = p(x) return x class HR3DNet(M.Model): def initialize(self, head_layernum, head_chn, upsample_layers, upsample_chn): self.backbone = hrnet.Body() self.upsample = UpSample(upsample_layers, upsample_chn) self.head = Head(head_layernum, head_chn) self.head2 = Head(head_layernum, head_chn) self.head3 = Head(head_layernum, head_chn) self.head4 = Head(head_layernum, head_chn) self.c1 = M.ConvLayer(1, config.num_pts) self.c2 = M.ConvLayer(1, config.num_pts) self.c3 = M.ConvLayer(1, 1) self.c4 = M.ConvLayer(1, config.num_pts-1) def build_forward(self, x, *args, **kwargs): feat = self.backbone(x) feat = self.upsample(feat) feat1 = self.head(feat) feat2 = self.head2(feat) feat3 = self.head3(feat) feat4 = self.head4(feat) outs = self.c1(feat1) idout = self.c2(feat2) depout = self.c3(feat3) depallout = self.c4(feat4) nn.init.normal_(self.c1.conv.weight, std=0.001) nn.init.normal_(self.c2.conv.weight, std=0.001) nn.init.normal_(self.c3.conv.weight, std=0.001) nn.init.normal_(self.c4.conv.weight, std=0.001) print('normal init for last conv ') return outs, idout, depout, depallout def forward(self, x, density_only=False): feat = self.backbone(x) feat = self.upsample(feat) h1 = self.head(feat) h2 = self.head2(feat) h3 = self.head3(feat) h4 = self.head4(feat) # results = self.density_branch(feat) # idout = self.id_branch(feat) outs = self.c1(h1) idout = self.c2(h2) depout = self.c3(h3) depallout = self.c4(h4) result = torch.cat([outs, idout, depout, depallout], dim=1) # return outs, idout, depout, depallout return [result,]
from typing import List import os import pathlib import csv import io import logging _logger = logging.getLogger(__name__) class DatasetDeployer(object): """Common deploy operations for persisting files to a local folder. """ def __init__(self, key="filename.csv", body="a random data", output_dir="."): self.key = key self.body = body self.output_dir = output_dir def _persist_to_local(self): """Persists specific data onto an s3 bucket. This method assumes versioned is handled on the bucket itself. """ _logger.info(f"persisting {self.key} {self.output_dir}") with open(os.path.join(self.output_dir, self.key), "wb") as f: # hack to allow the local writer to take either bytes or a string # note this assumes that all strings are given in utf-8 and not, # like, ASCII f.write(self.body.encode("UTF-8") if isinstance(self.body, str) else self.body) def persist(self): self._persist_to_local() def upload_csv(key_name: str, csv: str, output_dir: str): blob = { "key": f"{key_name}.csv", "body": csv, "output_dir": output_dir, } obj = DatasetDeployer(**blob) obj.persist() _logger.info(f"Generated csv for {key_name}") def flatten_dict(data: dict, level_separator: str = ".") -> dict: """Flattens a nested dictionary, separating nested keys by separator. Args: data: data to flatten level_separator: separator to use when combining keys from nested dictionary. """ flattened = {} for key, value in data.items(): if not isinstance(value, dict): flattened[key] = value continue value = flatten_dict(value) new_data = { f"{key}{level_separator}{nested_key}": nested_value for nested_key, nested_value in value.items() } flattened.update(new_data) return flattened def write_nested_csv(data: List[dict], key: str, output_dir: str): """Writes list of data as a nested csv. Args: data: list of data to write. key: Stem of file to write output_dir: Output directory to write to. """ if not data: raise ValueError("Cannot upload a 0 length list.") header = flatten_dict(data[0]).keys() output_path = pathlib.Path(output_dir) / f"{key}.csv" _logger.info(f"Writing {key} to {output_path}") with output_path.open("w") as csvfile: writer = csv.DictWriter(csvfile, header) writer.writeheader() for row in data: flattened_row = flatten_dict(row) # if a nested key is optional (i.e. {a: Optional[dict]}) and there is no # value for a, (i.e. {a: None}), don't write a, as it's not in the header. flattened_row = {k: v for k, v in flattened_row.items() if k in header} writer.writerow(flattened_row) def upload_json(key_name, json: str, output_dir: str): DatasetDeployer(f"{key_name}.json", json, output_dir).persist() def deploy_shape_files( output_dir: str, key: str, shp_bytes: io.BytesIO, shx_bytes: io.BytesIO, dbf_bytes: io.BytesIO, ): """Deploys shape files to specified output dir. Args: output_dir: Output directory to save shapefiles to. key: stem of filename to save shapefiles to. shp_bytes: shx_bytes: dbf_bytes: """ DatasetDeployer(key=f"{key}.shp", body=shp_bytes.getvalue(), output_dir=output_dir).persist() DatasetDeployer(key=f"{key}.shx", body=shx_bytes.getvalue(), output_dir=output_dir).persist() DatasetDeployer(key=f"{key}.dbf", body=dbf_bytes.getvalue(), output_dir=output_dir).persist()
# -*- coding: utf-8 -*- import json import csv import glob import os import sys # 3rd party import pymongo from pprint import pprint #%%####################################################################### ## establishing mongo connection, only after you get mongod.exe is running # C:\Program Files\MongoDB\Server\3.2\bin ########################################################################## conn=pymongo.MongoClient() db = conn.mydb conn.database_names() collection = db.PbP_Full #%%####################################################################### ## Import of JSONS into mongo; not necessary to run if you already have mongo database already generated locally ########################################################################## if __name__ == '__main__': os.chdir(os.path.dirname(sys.argv[0])) list_jsons = glob.glob('.\\data\\PlaybyPlay\\*.json') for x in list_jsons: data_file=x with open(data_file) as data_file: singleLoad = json.load(data_file) singlePbP = singleLoad['_playbyplay']['resultSets']['PlayByPlay'] for i in singlePbP: collection.insert_one(i) #pprint to identify where the game events are actually present. #%%####################################################################### ## Outputting to CSV directly from mongo. Pretty sleek yo. ########################################################################## cursor = collection.find({"$or":[ {"PLAYER1_TEAM_ABBREVIATION":"SAS"}, {"PLAYER2_TEAM_ABBREVIATION":"SAS"}, {"PLAYER3_TEAM_ABBREVIATION":"SAS"}]}) def pbp_csv_to_mongo(cursor): with open('pbp_SAS.csv', 'a', newline='') as outfile: fields = ['SCORE', 'PERSON3TYPE', 'PLAYER3_NAME', 'PLAYER3_TEAM_CITY', 'VISITORDESCRIPTION', 'PLAYER1_ID', 'PERSON1TYPE', 'PERIOD', 'PLAYER1_TEAM_NICKNAME', 'HOMEDESCRIPTION', 'PLAYER1_TEAM_ID', '_id', 'WCTIMESTRING', 'PLAYER2_TEAM_NICKNAME', 'SCOREMARGIN', 'PLAYER2_NAME', 'PCTIMESTRING', 'PLAYER3_TEAM_NICKNAME', 'PLAYER1_TEAM_CITY', 'PLAYER2_ID', 'EVENTMSGTYPE', 'GAME_ID', 'PERSON2TYPE', 'EVENTNUM', 'PLAYER1_NAME', 'PLAYER3_ID', 'PLAYER3_TEAM_ABBREVIATION', 'PLAYER2_TEAM_ABBREVIATION', 'EVENTMSGACTIONTYPE', 'PLAYER3_TEAM_ID', 'PLAYER2_TEAM_CITY', 'NEUTRALDESCRIPTION', 'PLAYER2_TEAM_ID', 'PLAYER1_TEAM_ABBREVIATION'] writer = csv.DictWriter(outfile, fieldnames=fields) writer.writeheader() for x in cursor: writer.writerow(x) def array_front9(nums): count = 0 for i in range(0,3): count = count + 1 return count
# Copyright (C) 2014 eNovance SAS <licensing@enovance.com> # # Author: Sylvain Afchain <sylvain.afchain@enovance.com> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import functools from neutronclient.v2_0 import client as clientv20 from oslo.config import cfg from ceilometer.openstack.common import log cfg.CONF.import_group('service_credentials', 'ceilometer.service') LOG = log.getLogger(__name__) def logged(func): @functools.wraps(func) def with_logging(*args, **kwargs): try: return func(*args, **kwargs) except Exception as e: LOG.exception(e) raise return with_logging class Client(object): """A client which gets information via python-neutronclient.""" def __init__(self): conf = cfg.CONF.service_credentials params = { 'insecure': conf.insecure, 'ca_cert': conf.os_cacert, 'username': conf.os_username, 'password': conf.os_password, 'auth_url': conf.os_auth_url, 'region_name': conf.os_region_name, 'endpoint_type': conf.os_endpoint_type } if conf.os_tenant_id: params['tenant_id'] = conf.os_tenant_id else: params['tenant_name'] = conf.os_tenant_name self.client = clientv20.Client(**params) @logged def network_get_all(self): """Returns all networks.""" resp = self.client.list_networks() return resp.get('networks') @logged def port_get_all(self): resp = self.client.list_ports() return resp.get('ports') @logged def vip_get_all(self): resp = self.client.list_vips() return resp.get('vips') @logged def pool_get_all(self): resp = self.client.list_pools() return resp.get('pools') @logged def member_get_all(self): resp = self.client.list_members() return resp.get('members') @logged def health_monitor_get_all(self): resp = self.client.list_health_monitors() return resp.get('health_monitors') @logged def pool_stats(self, pool): return self.client.retrieve_pool_stats(pool) @logged def vpn_get_all(self): resp = self.client.list_vpnservices() return resp.get('vpnservices') @logged def ipsec_site_connections_get_all(self): resp = self.client.list_ipsec_site_connections() return resp.get('ipsec_site_connections') @logged def firewall_get_all(self): resp = self.client.list_firewalls() return resp.get('firewalls') @logged def fw_policy_get_all(self): resp = self.client.list_firewall_policies() return resp.get('firewall_policies')
import configparser import datetime import os import json import simplejson def getConfig(file): config = configparser.ConfigParser() config.read(file) if len(config.sections()) == 0: raise Exception('Could not parse configuration file. Aborting.') return config class Config: CONFIG_FILE = "../bidder.conf" config = getConfig(os.path.join(os.path.abspath(os.path.dirname(__file__)), CONFIG_FILE)) @classmethod def getParam(cls, section, attr): return cls.config[section][attr] @classmethod def getMockedCampaigns(cls): mock = cls.getParam('campaignresponse', 'mock') params_file = cls.getParam('campaignresponse', 'mockjsonfile') params_filepath = os.path.join(os.path.abspath(os.path.dirname(__file__)), "../"+params_file) if mock: paramsfile = open(params_filepath, 'r') # Read the file's data try: data = json.load(paramsfile) except simplejson.scanner.JSONDecodeError: logger.error('Did not get valid json response:{0}. Giving up.'.format(data)) except Exception as error: logger.error('Error encountered in loading paramsfile to json: {0}'.format(error)) return data else: return None
# Create hourly land and full storm catalog for the Contiguous United States (CONUS). # Full storm catalog includes storm precipitation and area over the sea, while the land storm catalog only includes # storms over the land of CONUS. # author: Yuan Liu # 2021/12/21 import numpy as np from time import time import pandas as pd import os import mpu from geographiclib.geodesic import Geodesic import xarray as xr def make_folder(save_path): """ Function to create a new folder at specified path. :param save_path: The path of the new folder. :return: """ try: os.mkdir(save_path) except OSError as error: pass def build_storm_catalog(year, low_threshold, track_storms, mtpr_xarray, mer_xarray, mvimd_xarray, dwdt_xarray, conus_boundary, save_loc): """ Compute first-stage storm attributes based on tracking results. :param year: The year of storm tracking. :param low_threshold: The low threshold used in storm identification, default 0.03 mm/hour. :param track_storms: Storm tracking result array with dim (time, lon, lat). :param mtpr_xarray: Preprocessed precipitation nc file read by xarray package. :param mer_xarray: Preprocessed evaporation nc file read by xarray package. :param mvimd_xarray: Preprocessed divergence nc file read by xarray package. :param dwdt_xarray: Preprocessed time derivative of precipitable water nc file read by xarray package :param conus_boundary: Boundary array of the CONUS, where the grid is 1 if it is inside the CONUS. :param save_loc: Location to save storm catalog data. :return: """ # record start time ts = time() # create a dataframe to store all storms full_storm_catalog = pd.DataFrame() # create a dataframe to store only the land part of the storms land_storm_catalog = pd.DataFrame() # extract the data array mer_array = mer_xarray['mer'].data mvimd_array = mvimd_xarray['mvimd'].data # dw/dt array data need to be shortened to have consistent time step if year == 1979: # note: For ERA5 data in 1979, precipitation, evaporation, and divergence start from T07, # but dw/dt starts from T00, so dwdt should be cut to start from T07 to be consistent dwdt_array = dwdt_xarray['dwdt'].data[7:-1] else: # drop the last element to be consistent with other variables. dwdt_array = dwdt_xarray['dwdt'].data[:-1] # extract the timestamp and covert to string type timestamp = mtpr_xarray['time'].data.astype("datetime64[h]").astype("str") # extract lon and lat coordinates lat_data = mtpr_xarray['latitude'].data lon_data = mtpr_xarray['longitude'].data # compute projected area of each pixel (km^2) lon_2, lat_2 = np.meshgrid(lon_data, lat_data) grid_cell_degree = 0.25 pixel_area = np.cos(lat_2 * np.pi / 180) * 111 * 111 * grid_cell_degree * grid_cell_degree # extract precipitation data and filter it by the low threshold prcp_array = mtpr_xarray['mtpr'].data filtered_array = np.where(prcp_array < low_threshold, 0, prcp_array) # quantification # quantify storm sizes (sqkm) sizes = get_size_prj(storms=track_storms, grid_cell_degree=0.25, lat_data=lat_data, lon_data=lon_data) # quantify storm avg intensity (mm/hour) averages = get_average(storms=track_storms, precip=filtered_array) # quantify storm max intensity (mm/hour) max_intensity = get_max_intensity(storms=track_storms, precip=filtered_array) # quantify storm central location (degree) central_loc = get_central_loc_degree(storms=track_storms, precip=filtered_array, lat_data=lat_data, lon_data=lon_data) # find individual storm ids unique_labels = np.unique(track_storms) print("Total storm number: {0}".format(unique_labels.shape[0])) # create a folder to save spatial pattern of each storm record single_record_save_loc = os.path.join(save_loc, "single_record") make_folder(single_record_save_loc) # skip 0 because 0 is background for storm_label in np.arange(1, unique_labels.max() + 1): # find time period of the current storm storm_binary = sizes[:, storm_label] != 0 # extract the storm period from tracking results storm_tracks = track_storms[storm_binary] # assign 1 to the current storm area, 0 otherwise selected_storm = np.where(storm_tracks == storm_label, storm_label, 0) # extract the precipitation distrbution, mer distribution, mvimd distribution, and dwdt distribution precip_distribution = np.where(selected_storm == storm_label, filtered_array[storm_binary], 0) mer_distribution = np.where(selected_storm == storm_label, mer_array[storm_binary], 0) mvimd_distribution = np.where(selected_storm == storm_label, mvimd_array[storm_binary], 0) dwdt_distribution = np.where(selected_storm == storm_label, dwdt_array[storm_binary], 0) # compute the storm duration (hour) duration_storm = selected_storm.shape[0] duration_storm_list = [duration_storm] * duration_storm # compute the duration by day rounded_days = round(duration_storm / 24) rounded_days_list = [rounded_days] * duration_storm # extract timestamp sequence time_stamp_storm = timestamp[storm_binary] time_stamp_storm = pd.DatetimeIndex(time_stamp_storm) # initialize lists to save storm centroids lon_storm = [] lat_storm = [] # initialize the list to save move distance storm centroid per hour (km) distance_list = [] # initialize the list to save storm bearing (degree) bearing_list = [] # extract storm centroids array([lon, lat]) centroid_coord_pair = central_loc[storm_binary][:, storm_label] for i in range(centroid_coord_pair.shape[0]): lon_storm.append(centroid_coord_pair[i][0]) lat_storm.append(centroid_coord_pair[i][1]) if i == 0: # the distance and bearing are 0 for the first time step distance = 0 bearing = 0 distance_list.append(distance) bearing_list.append(bearing) else: # obtain the centroids for current and previous time steps lat1 = centroid_coord_pair[i-1][1] lon1 = centroid_coord_pair[i-1][0] lat2 = centroid_coord_pair[i][1] lon2 = centroid_coord_pair[i][0] # compute the distance between two centroids (sqkm) # https: // stackoverflow.com / questions / 19412462 / getting - distance - between - two - points - based - on - latitude - longitude distance = mpu.haversine_distance((lat1, lon1), (lat2, lon2)) distance_list.append(distance) # compute the bearing between two centroids (degree) # https://stackoverflow.com/questions/54873868/python-calculate-bearing-between-two-lat-long bearing = Geodesic.WGS84.Inverse(lat1, lon1, lat2, lon2)['azi1'] # return the bearing in degrees bearing_list.append(bearing) # compute avg intensity (mm/hour) avg_intensity_storm = averages[storm_binary, storm_label] # compute max intensity (mm/hour) max_intensity_storm = max_intensity[storm_binary, storm_label] # compute projected area (km^2) prj_area_storm = sizes[storm_binary, storm_label] # generate storm ID id_storm = str(year) + str(storm_label).zfill(5) id_storm_list = [id_storm] * duration_storm # create lists to save distributions of storm moisture variables list_mask = [selected_storm[i] for i in np.arange(duration_storm)] # the mask corresponds to storm labels # precipitation distribution list_precip_distribution = [precip_distribution[i] for i in np.arange(duration_storm)] # evaporation distribution list_mer_distribution = [mer_distribution[i] for i in np.arange(duration_storm)] # divergence distribution list_mvimd_distribution = [mvimd_distribution[i] for i in np.arange(duration_storm)] # time derivative distribution list_dwdt_distribution = [dwdt_distribution[i] for i in np.arange(duration_storm)] # initialize lists to save area-weighted average moisture variables land_avg_mtpr_list = [] land_avg_mer_list = [] land_avg_dwdt_list = [] land_avg_mvimd_list = [] land_avg_residual_list = [] # initialize lists to save only the land part of the moisture distribution of the storm land_mtpr_distribution_list = [] land_mer_distribution_list = [] land_mvimd_distribution_list = [] land_dwdt_distribution_list = [] land_residual_distribution_list = [] # initialize the list to save storm land boundary storm_extent_list = [] # initialize the list to save storm area over the land land_area_list = [] # compute the land extent properties of the storm for time_index in np.arange(duration_storm): # extract the storm extent storm_extent = list_precip_distribution[time_index] != 0 # extract the storm event over the land non_nan_loc = (conus_boundary == 1) & (storm_extent) # compute the land area (sqkm) non_nan_extent_area = pixel_area[non_nan_loc].sum() # append the land extend and arae to the lists storm_extent_list.append(non_nan_loc) land_area_list.append(non_nan_extent_area) # get the moisture variable distributions over the land part of the storm for time_index in np.arange(duration_storm): land_mtpr_distribution = np.where(storm_extent_list[time_index], list_precip_distribution[time_index], 0) land_mer_distribution = np.where(storm_extent_list[time_index], list_mer_distribution[time_index], 0) land_mvimd_distribution = np.where(storm_extent_list[time_index], list_mvimd_distribution[time_index], 0) land_dwdt_distribution = np.where(storm_extent_list[time_index], list_dwdt_distribution[time_index], 0) # compute the residual distribution land_residual_distribution = land_mtpr_distribution + land_mer_distribution + land_mvimd_distribution + land_dwdt_distribution # append the distribution to the list land_mtpr_distribution_list.append(land_mtpr_distribution) land_mer_distribution_list.append(land_mer_distribution) land_mvimd_distribution_list.append(land_mvimd_distribution) land_dwdt_distribution_list.append(land_dwdt_distribution) land_residual_distribution_list.append(land_residual_distribution) # compute the area-weighted averaged moisture variables # if land area is zero, then the average is zero if land_area_list[time_index] == 0: land_avg_mtpr = 0 land_avg_mer = 0 land_avg_mvimd = 0 land_avg_dwdt = 0 land_avg_residual = 0 else: # compute the area-weighted averages land_avg_mtpr = ((land_mtpr_distribution * pixel_area).sum()) / land_area_list[time_index] land_avg_mer = ((land_mer_distribution * pixel_area).sum()) / land_area_list[time_index] land_avg_mvimd = ((land_mvimd_distribution * pixel_area).sum()) / land_area_list[time_index] land_avg_dwdt = ((land_dwdt_distribution * pixel_area).sum()) / land_area_list[time_index] land_avg_residual = land_avg_mtpr + land_avg_mer + land_avg_mvimd + land_avg_dwdt # append the averages to the lists land_avg_mtpr_list.append(land_avg_mtpr) land_avg_mer_list.append(land_avg_mer) land_avg_dwdt_list.append(land_avg_dwdt) land_avg_mvimd_list.append(land_avg_mvimd) land_avg_residual_list.append(land_avg_residual) # save storm season and month, which are determined by the first timestamp of the storm start_month = time_stamp_storm[0].month if start_month in [12, 1, 2]: season_storm = "win" season_id = 4 elif start_month in [3, 4, 5]: season_storm = 'spr' season_id = 1 elif start_month in [6, 7, 8]: season_storm = 'sum' season_id = 2 else: season_storm = 'fal' season_id = 3 season_id_list = [season_id] * duration_storm season_storm_list = [season_storm] * duration_storm month_storm = time_stamp_storm[0].month mont_storm_list = [month_storm] * duration_storm # create a dataframe to save all the information for the storm storm_record = pd.DataFrame() storm_record['ID'] = id_storm_list storm_record['Projected_area(sqkm)'] = prj_area_storm storm_record['Timestamp'] = time_stamp_storm storm_record['Avg_intensity(mm/h)'] = avg_intensity_storm storm_record['Max_intensity(mm/h)'] = max_intensity_storm storm_record['Duration(hour)'] = duration_storm_list storm_record['DurationDays(day)'] = rounded_days_list storm_record['Central_lon(degree)'] = lon_storm storm_record['Central_lat(degree)'] = lat_storm storm_record['Season'] = season_storm_list storm_record['Season_id'] = season_id_list storm_record['Month'] = mont_storm_list storm_record['Distance(km)'] = distance_list storm_record['Bearing(degree)'] = bearing_list storm_record['Land_area(sqkm)'] = land_area_list storm_record['Land_area_avg_mtpr(mm/h)'] = land_avg_mtpr_list storm_record['Land_area_avg_mer(mm/h)'] = land_avg_mer_list storm_record['Land_area_avg_dwdt(mm/h)'] = land_avg_dwdt_list storm_record['Land_area_avg_mvimd(mm/h)'] = land_avg_mvimd_list storm_record['Land_area_avg_residual(mm/h)'] = land_avg_residual_list # deep copy the storm record land_storm_record = storm_record.copy(deep=True) # adjust the storm duration based on its presence on land record_length = land_storm_record.shape[0] start_index = 0 for i in range(record_length): if land_storm_record.loc[i, 'Land_area(sqkm)'] == 0: land_storm_record.drop(i, axis=0, inplace=True) start_index = start_index + 1 else: break # if the storm has no time on land, remove the record if land_storm_record.shape[0] == 0: # print('The storm is empty.') continue end_index = record_length for i in range(record_length): if land_storm_record.loc[record_length - 1 - i, 'Land_area(sqkm)'] == 0: # print('Remove sea storm record') land_storm_record.drop(record_length - 1 - i, axis=0, inplace=True) end_index = end_index - 1 else: break # if the storm has no time on land, remove the record if land_storm_record.shape[0] == 0: # print('The storm is empty.') continue # update the storm duration storm_duration = land_storm_record.shape[0] storm_day = round(storm_duration / 24) storm_duration_list = [storm_duration] * storm_duration storm_day_list = [storm_day] * storm_duration land_storm_record['Duration(hour)'] = storm_duration_list land_storm_record['DurationDays(day)'] = storm_day_list # transform the list of moisture distributions to array mask_grid_array = np.array(list_mask[start_index:end_index]) land_mtpr_array = np.array(land_mtpr_distribution_list[start_index:end_index]) land_mer_array = np.array(land_mer_distribution_list[start_index:end_index]) land_mvimd_array = np.array(land_mvimd_distribution_list[start_index:end_index]) land_dwdt_array = np.array(land_dwdt_distribution_list[start_index:end_index]) land_residual_array = np.array(land_residual_distribution_list[start_index:end_index]) # save the array to a netcdf file da = xr.Dataset( data_vars={ "mask": (('time', "lat", "lon"), mask_grid_array), "land_mtpr": (('time', "lat", "lon"), land_mtpr_array), "land_mer": (('time', "lat", "lon"), land_mer_array), "land_mvimd": (('time', "lat", "lon"), land_mvimd_array), "land_dwdt": (('time', "lat", "lon"), land_dwdt_array), "land_residual": (('time', "lat", "lon"), land_residual_array), }, coords={ "lon": lon_data, "lat": lat_data, "time": time_stamp_storm[start_index:end_index] }, attrs=dict( description="Single record of storm " + id_storm, units="mm/hour") ) da.to_netcdf(os.path.join(single_record_save_loc, id_storm + ".nc"), encoding={"mask": {"dtype": "int16", 'zlib': True}, "land_mtpr": {"dtype": "f4", 'zlib': True}, "land_mer": {"dtype": "f4", 'zlib': True}, "land_mvimd": {"dtype": "f4", 'zlib': True}, "land_dwdt": {"dtype": "f4", 'zlib': True}, "land_residual": {"dtype": "f4", 'zlib': True}, }) # append the record to the catalog land_storm_catalog = land_storm_catalog.append(land_storm_record, ignore_index=True) full_storm_catalog = full_storm_catalog.append(storm_record, ignore_index=True) # save the storm catalog land_storm_catalog.to_pickle(os.path.join(save_loc, "land_storm_catalog_" + str(year) + ".pkl")) full_storm_catalog.to_pickle(os.path.join(save_loc, "full_storm_catalog_" + str(year) + ".pkl")) print("Storm catalog in {0} finished, time spent: {1} s".format(year, time() - ts)) def get_duration(storms: np.ndarray, time_interval: float) -> np.ndarray: """Computes the duration (in the time unit of time_interval) of each storm across all time slices given. :param storms: the tracked storms returned by the tracking algorithm, given as an array of dimensions Time x Rows x Cols. :param time_interval: the period between temporal 'snapshots', given as a float. :return: An array of length equal to the number of tracked storms + 1, where the value at [x] corresponds to the duration of the storm x. The index 0 (referring to the background) is always 0 and provided for ease of indexing. """ # find the number of time slices in the data lifetime = storms.shape[0] ls = [] for time_index in range(lifetime): # compute the labels that appear in that time slice curr_labels = np.unique(storms[time_index]) ls.append(curr_labels) # Convert list of different size into a numpy array storm_array = np.zeros([len(ls), len(max(ls, key=lambda x: len(x)))]) for i, j in enumerate(ls): storm_array[i][0:len(j)] = j storm_array = np.array(storm_array, dtype=np.int32) unique, counts = np.unique(storm_array, return_counts=True) counts[0] = 0 result = counts * time_interval return result def get_size_prj(storms: np.ndarray, grid_cell_degree: float, lat_data: np.ndarray, lon_data: np.ndarray) -> np.ndarray: """ Compute the size of each storm with unit of km^2. :param storms: the tracked storms returned by the tracking algorithm, given as an array of dimensions Time x Rows x Cols. :param grid_cell_degree: 0.25 degree for ERA5 storms. :param lat_data: latitude coordinate array. :param lon_data: longitude coordinate array. :return: a lifetime x total_storms array where the value found at [y][x] corresponds to the size of the storm at t=y, storm=x. Except in the case of index 0, which is always 0 for any t. """ # compute the projected area for each pixel lon_2, lat_2 = np.meshgrid(lon_data, lat_data) pixel_area = np.cos(lat_2 * np.pi / 180) * 111 * 111 * grid_cell_degree * grid_cell_degree # find the number of time slices in the data lifetime = storms.shape[0] # and the number of storms total_storms = len(np.unique(storms)) # initialize an array with dimensions number of time slices by number of storms result = np.zeros((lifetime, total_storms)) for time_index in range(lifetime): # find the unique labels labels = np.unique(storms[time_index]) # for each label that appears in this time slice (that's not the background) for label in labels: if label: # add up its coverage area over the pixel_area_matrix storm_size = np.sum(np.where(storms[time_index] == label, pixel_area, 0)) # and place it at that correct location in the array to return result[time_index][label] = storm_size return result def get_average(storms: np.ndarray, precip: np.ndarray) -> np.ndarray: """ Computes the average intensity of each storm across all time slices given. :param storms: the tracked storms returned by the tracking algorithm, given as an array of dimensions Time x Rows x Cols. :param precip: the precipitation data corresponding to the tracked storms, with the same dimensions as tracked_storms. :return: a lifetime x total_storms array where the value found at [y][x] corresponds to the mean intensity of the storm at t=y, storm=x. Except in the case of index 0, which is always 0 for any t. """ # find the number of time slices in the data lifetime = storms.shape[0] # and the number of storms total_storms = len(np.unique(storms)) # initialize an array with dimensions number of time slices by number of storms result = np.zeros((lifetime, total_storms)) for time_index in range(lifetime): # find the unique labels labels = np.unique(storms[time_index]) # for each label that appears in this time slice (that's not the background) for label in labels: if label: # find the precipitation where it appears in the current time slice storm_precip = np.where(storms[time_index] == label, precip[time_index], 0) # sum the precipitation storm_precip_sum = np.sum(storm_precip) # find the number of grid cells belonging to the storm storm_size = np.sum(np.where(storms[time_index] == label, 1, 0)) # find the storm's average precipitation in this time slice storm_avg = storm_precip_sum / storm_size # and store it in the appropriate place in our result array result[time_index][label] = storm_avg return result def get_max_intensity(storms: np.ndarray, precip: np.ndarray) -> np.ndarray: """ Computes the average intensity of each storm across all time slices given. :param storms: the tracked storms returned by the tracking algorithm, given as an array of dimensions Time x Rows x Cols. :param precip: the precipitation data corresponding to the tracked storms, with the same dimensions as tracked_storms. :return: a lifetime x total_storms array where the value found at [y][x] corresponds to the mean intensity of the storm at t=y, storm=x. Except in the case of index 0, which is always 0 for any t. """ # find the number of time slices in the data lifetime = storms.shape[0] # and the number of storms total_storms = len(np.unique(storms)) # initialize an array with dimensions number of time slices by number of storms result = np.zeros((lifetime, total_storms)) for time_index in range(lifetime): # find the unique labels labels = np.unique(storms[time_index]) # for each label that appears in this time slice (that's not the background) for label in labels: if label: # find the precipitation where it appears in the current time slice storm_precip = np.where(storms[time_index] == label, precip[time_index], 0) # get the maximum precipitation storm_precip_max = np.max(storm_precip) # find the number of grid cells belonging to the storm # storm_size = np.sum(np.where(storms[time_index] == label, 1, 0)) # find the storm's average precipitation in this time slice # storm_avg = storm_precip_sum / storm_size # and store it in the appropriate place in our result array result[time_index][label] = storm_precip_max return result def get_central_loc_degree(storms: np.ndarray, precip: np.ndarray, lat_data: np.ndarray, lon_data: np.ndarray) \ -> np.ndarray: """ Compute the precipitation intensity weighted centroid of the storm with unit of degree. :param storms: the tracked storms returned by the tracking algorithm, given as an array of dimensions Time x Rows x Cols. :param precip: the precipitation data corresponding to the tracked storms data, with the same dimensions as tracked_storms. :param lat_data: lat_data. 1 * lenth array :param lon_data: lon_data 1 * lenth array :return: a lifetime x total_storms array where the value found at [y][x] corresponds to the central location of the storm at t=y, storm=x. Except in the case of index 0, which is always 0 for any t. """ # create mesh grid of lat and lon data lon_array, lat_array = np.meshgrid(lon_data, lat_data) lifetime = storms.shape[0] total_storms = len(np.unique(storms)) # initialize an array to store our result, but of type object to allow us to store an array in each cell result = np.zeros((lifetime, total_storms)).astype(object) # create arrays of x, y, and z values for the cartesian grid in R3 # create an array to hold each central location as we calculate it central_location = np.empty(2) for time_index in range(lifetime): # find the unique labels labels = np.unique(storms[time_index]) for label in labels: # if the storm exists in this time slice if label: # find the sum of the precipitation values belonging to the storm sum_precipitation = np.sum(np.where(storms[time_index] == label, precip[time_index], 0)) # and its intensity weighted centroid x_avg = np.sum(np.where(storms[time_index] == label, ((lon_array * precip[time_index]) / sum_precipitation), 0)) y_avg = np.sum(np.where(storms[time_index] == label, ((lat_array * precip[time_index]) / sum_precipitation), 0)) # get the corresponding lat and lon data central_location[0] = x_avg central_location[1] = y_avg # and we place it in the appropriate spot in the array result[time_index][label] = central_location # reset the central location - this seems to be necessary here central_location = np.zeros(2) return result if __name__ == "__main__": # define save location save_loc = "hourly_catalog" make_folder(save_loc) # load tracking data tracked_storm_loc = "storm_tracking_results/tracking_array.npy" track_storms = np.load(tracked_storm_loc, allow_pickle=True) # load precipitation data raw_data_folder = "era5_data" mtpr_xarray = xr.open_dataset(raw_data_folder + "\\" + "ERA5_hourly_mtpr_processed_2019_2019_1_2.nc") # load evaporation data mer_xarray = xr.open_dataset(raw_data_folder + "\\" + "ERA5_hourly_mer_processed_2019_2019_1_2.nc") # load divergence data mvimd_xarray = xr.open_dataset(raw_data_folder + "\\" + "ERA5_hourly_mvimd_processed_2019_2019_1_2.nc") # load time derivative data dwdt_xarray = xr.open_dataset(raw_data_folder + "\\" + "ERA5_hourly_dwdt_processed_2019_2019_1_2.nc") # set parameters year = 2019 low_threshold = 0.03 conus_boundary = np.load("boundary_files/conus_boundary.npy") build_storm_catalog(year, low_threshold, track_storms, mtpr_xarray, mer_xarray, mvimd_xarray, dwdt_xarray, conus_boundary, save_loc)
import InvenTree.fields from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('company', '0033_auto_20210410_1528'), ] operations = [ migrations.CreateModel( name='ManufacturerPart', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('MPN', models.CharField(help_text='Manufacturer Part Number', max_length=100, null=True, verbose_name='MPN')), ('link', InvenTree.fields.InvenTreeURLField(blank=True, help_text='URL for external manufacturer part link', null=True, verbose_name='Link')), ('description', models.CharField(blank=True, help_text='Manufacturer part description', max_length=250, null=True, verbose_name='Description')), ('manufacturer', models.ForeignKey(help_text='Select manufacturer', limit_choices_to={'is_manufacturer': True}, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='manufactured_parts', to='company.Company', verbose_name='Manufacturer')), ('part', models.ForeignKey(help_text='Select part', limit_choices_to={'purchaseable': True}, on_delete=django.db.models.deletion.CASCADE, related_name='manufacturer_parts', to='part.Part', verbose_name='Base Part')), ], options={ 'unique_together': {('part', 'manufacturer', 'MPN')}, }, ), ]
import boto3 import os import subprocess import configparser import pymailer import tarfile from hdfs.ext.kerberos import KerberosClient from logger_setting import * from datetime import datetime, date, timedelta py_logger=logging.getLogger('py_logger') try: #Your certificate location os.environ["REQUESTS_CA_BUNDLE"]="/etc/security/rootCA.pem" config_path = '/edgenode/s3/download/s3_config.conf' configuration_file = configparser.ConfigParser() config = configuration_file.read_file(open(config_path)) access_key_id = configuration_file.get('config', 'aws_access_key_id') secret_access_key = configuration_file.get('config', 'aws_secret_access_key') s3_folder_name = configuration_file.get('config', 's3_folder_name') bucket_name = configuration_file.get('config', 'bucket_name') hive_script_name = configuration_file.get('config', 'hive_script_name') hdfs_url = configuration_file.get('config', 'hdfs_url') source_directory = configuration_file.get('config', 'source_directory') log_file_path = configuration_file.get('config', 'log_file_path') hive_db_a = configuration_file.get('config', 'hive_db_a') hive_db_b = configuration_file.get('config', 'hive_db_b') session = boto3.Session( aws_access_key_id=access_key_id, aws_secret_access_key=secret_access_key, ) py_logger.info("hive execution started") file_list = subprocess.check_output([hive_script_name,hive_db_a,hive_db_b]) file_list_arr = file_list.split(' ') py_logger.info("hive execution completed") client = KerberosClient(hdfs_url) s3 = session.client('s3',use_ssl=False, verify=False) counter = 0 for file_path in file_list_arr: file_path = source_directory + file_path file_name = os.path.basename(file_path) key_name = s3_folder_name + file_name with client.write(file_path) as f: s3.download_fileobj(bucket_name, key_name, f) counter = counter + 1 py_logger.info("File: " + file_path + " downloaded from s3 bucket") py_logger.info("S3 script execution completed. No.of Files downloaded: " + str(counter)) #Compresses the log files which are greater than 30 days today = date.today() current_day = datetime.now().strftime('%d') log_directory = log_file_path.rpartition('/')[0] + log_file_path.rpartition('/')[1] tarFileName = log_directory + today.strftime("%d-%m-%Y") + '.tar.gz' if current_day == "30": # writing files to a compressed file with tarfile.open(tarFileName, "w:gz") as tar: # writing each file one by one for folderName, subfolders, filenames in os.walk(log_directory): for filename in filenames: # create complete filepath of file in directory filePath = os.path.join(folderName, filename) to_date = (datetime.now() - timedelta(1)).strftime('%Y-%m-%d') modTimesinceEpoc = os.path.getmtime(filePath) modificationTime = datetime.fromtimestamp(modTimesinceEpoc).strftime('%Y-%m-%d') if (modificationTime <= to_date): # add the file to tar.gz tar.add(filePath) # remove the file from directory os.remove(filePath) except Exception as e: py_logger.error(e) pymailer.send_mail(str(e))
# Generated by Django 3.0.7 on 2020-07-27 20:37 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('forum', '0008_auto_20200718_1621'), ] operations = [ migrations.AlterModelOptions( name='threadlike', options={'verbose_name': 'мнение', 'verbose_name_plural': 'мнения'}, ), ]
# Parts or the whole documentation of this module # are copied from the respective module: # libcloud/compute/drivers/dreamhost.py # see also: # https://github.com/apache/libcloud/tree/trunk/libcloud/compute/drivers/dreamhost.py # # Apache Libcloud is licensed under the Apache 2.0 license. # For more information, please see LICENSE and NOTICE file or: # http://www.apache.org/licenses/LICENSE-2.0 from javaimpl.compute.ComputeContextImpl import ComputeContextImpl from javaimpl.compute.utils import none_check, wrap_listing, wrap_exception, jlist_str_to_pylist from javaimpl.compute.utils import jlist_obj_to_pylist, get_property, get_property_list from javaimpl.compute.utils import jmap_to_pymap, jlist_map_to_pylist_map from org.askalon.jlibcloud.compute.driverSpecific.dreamhost import DreamhostNodeTemplateImpl from javaimpl.compute.base.NodeImpl import NodeImpl from org.askalon.jlibcloud.compute.driverSpecific.dreamhost import DreamhostComputeContext class DreamhostComputeContextImpl(ComputeContextImpl, DreamhostComputeContext): def __init__(self, builder): ComputeContext.__init__(self, builder) def createNode(self, node_temp): """Create a new Dreamhost node @inherits: :class:`NodeDriver.create_node` :keyword ex_movedata: Copy all your existing users to this new PS :type ex_movedata: ``str`` """ try: kwargs = self._eval_template(node_temp) kwargs = self._parse_dreamhost_template(node_temp, kwargs) return wrap_listing(self.conn.create_node(**kwargs), NodeImpl) except Exception, ex: raise wrap_exception(ex) def deployNode(self, node_temp): try: kwargs = self._eval_template(node_temp) kwargs = self._eval_deploy_template(node_temp, kwargs) kwargs = self._parse_dreamhost_template(node_temp, kwargs) return wrap_listing(self.conn.deploy_node(**kwargs), NodeImpl) except Exception, ex: raise wrap_exception(ex) def _parse_dreamhost_template(self, node_temp, kwargs): ex_movedata = node_temp.getExMovedata() kwargs = get_property(self, ex_movedata, 'ex_movedata', kwargs,lambda x : x) return kwargs def getTemplateBuilder(self): return DreamhostNodeTemplateImpl.newBuilder()
# -*- coding: utf-8 -*- pytest_plugins = [ u'ckanext.cloudstorage.tests.ckan_setup', u'ckanext.cloudstorage.tests.fixtures', ]
""" The :mod:`pure_sklearn.tree` module implements a variety of tree models """ from ._classes import ( DecisionTreeClassifierPure, ExtraTreeClassifierPure, DecisionTreeRegressorPure, ExtraTreeRegressorPure, ) __all__ = [ "DecisionTreeClassifierPure", "ExtraTreeClassifierPure", "DecisionTreeRegressorPure", "ExtraTreeRegressorPure", ]
import config def clean_image(image): image[config.WATERMARK_THRESHOLD_LOW < image ] = 255 return image
from unittest import TestCase from neo.VM.InteropService import StackItem, Array, Map from neo.VM.ExecutionEngine import ExecutionEngine from neo.VM.ExecutionEngine import ExecutionContext from neo.VM.Script import Script from neo.SmartContract.Iterable import KeysWrapper, ValuesWrapper from neo.SmartContract.Iterable.Wrapper import ArrayWrapper, MapWrapper from neo.SmartContract.Iterable.ConcatenatedEnumerator import ConcatenatedEnumerator from neo.SmartContract.StateMachine import StateMachine class InteropSerializeDeserializeTestCase(TestCase): def setUp(self): self.engine = ExecutionEngine() self.econtext = ExecutionContext(Script(self.engine.Crypto, b''), 0) self.engine.InvocationStack.PushT(self.econtext) self.service = StateMachine(None, None) def test_iter_array(self): my_array = Array([StackItem.New(12), StackItem.New(b'Hello World'), StackItem.New(True), Array([StackItem.New(113442), StackItem.New(2), StackItem.New(3)]) ]) self.econtext.EvaluationStack.PushT(my_array) self.engine.InvocationStack.PushT(self.econtext) self.service.Enumerator_Create(self.engine) iterable = self.econtext.EvaluationStack.Peek(0).GetInterface() self.assertIsInstance(iterable, ArrayWrapper) keys = [] values = [] while iterable.Next(): currentKey = iterable.Key() keys.append(currentKey.GetBigInteger()) values.append(iterable.Value()) self.assertEqual(keys, [0, 1, 2, 3]) self.assertEqual(values, my_array.GetArray()) def test_iter_map(self): my_map = Map( { StackItem.New('a'): StackItem.New(1), StackItem.New('b'): StackItem.New(3), StackItem.New('d'): StackItem.New(432) } ) self.econtext.EvaluationStack.PushT(my_map) self.engine.InvocationStack.PushT(self.econtext) self.service.Iterator_Create(self.engine) iterable = self.econtext.EvaluationStack.Peek(0).GetInterface() self.assertIsInstance(iterable, MapWrapper) keys = [] values = [] while iterable.Next(): keys.append(iterable.Key()) values.append(iterable.Value()) self.assertEqual(keys, [StackItem.New('a'), StackItem.New('b'), StackItem.New('d')]) self.assertEqual(keys, my_map.Keys) self.assertEqual(values, [StackItem.New(1), StackItem.New(3), StackItem.New(432)]) self.assertEqual(values, my_map.Values) def test_iter_array_keys(self): my_array = Array([StackItem.New(12), StackItem.New(b'Hello World'), StackItem.New(True), Array([StackItem.New(113442), StackItem.New(2), StackItem.New(3)]) ]) self.econtext.EvaluationStack.PushT(my_array) self.engine.InvocationStack.PushT(self.econtext) self.service.Enumerator_Create(self.engine) create_iterkeys = self.service.Iterator_Keys(self.engine) self.assertEqual(create_iterkeys, True) iterkeys = self.econtext.EvaluationStack.Peek(0).GetInterface() self.assertIsInstance(iterkeys, KeysWrapper) keys = [] while iterkeys.Next(): keys.append(iterkeys.Value().GetBigInteger()) self.assertEqual(keys, [0, 1, 2, 3]) def test_iter_array_values(self): my_array = Array([StackItem.New(12), StackItem.New(b'Hello World'), StackItem.New(True), Array([StackItem.New(113442), StackItem.New(2), StackItem.New(3)]) ]) self.econtext.EvaluationStack.PushT(my_array) self.engine.InvocationStack.PushT(self.econtext) self.service.Enumerator_Create(self.engine) create_itervalues = self.service.Iterator_Values(self.engine) self.assertEqual(create_itervalues, True) itervals = self.econtext.EvaluationStack.Peek(0).GetInterface() self.assertIsInstance(itervals, ValuesWrapper) values = [] while itervals.Next(): values.append(itervals.Value()) self.assertEqual(values, my_array.GetArray()) def test_iter_concat(self): my_array = Array([StackItem.New(12), StackItem.New(b'Hello World'), StackItem.New(True), Array([StackItem.New(113442), StackItem.New(2), StackItem.New(3)]) ]) my_array2 = Array([StackItem.New(b'a'), StackItem.New(b'b'), StackItem.New(4), StackItem.New(100)]) self.econtext.EvaluationStack.PushT(my_array2) self.engine.InvocationStack.PushT(self.econtext) self.service.Enumerator_Create(self.engine) self.econtext.EvaluationStack.PushT(my_array) self.service.Enumerator_Create(self.engine) result = self.service.Enumerator_Concat(self.engine) self.assertEqual(result, True) concatted_enum = self.econtext.EvaluationStack.Peek().GetInterface() self.assertIsInstance(concatted_enum, ConcatenatedEnumerator) values = [] count = 0 while concatted_enum.Next(): count += 1 values.append(concatted_enum.Value()) self.assertEqual(count, 8) self.assertEqual(values, my_array.GetArray() + my_array2.GetArray()) def test_iter_array_bad(self): my_item = StackItem.New(12) self.econtext.EvaluationStack.PushT(my_item) self.engine.InvocationStack.PushT(self.econtext) result = self.service.Enumerator_Create(self.engine) self.assertEqual(result, False) self.assertEqual(self.econtext.EvaluationStack.Count, 0) def test_iter_map_bad(self): my_item = StackItem.New(12) self.econtext.EvaluationStack.PushT(my_item) self.engine.InvocationStack.PushT(self.econtext) result = self.service.Iterator_Create(self.engine) self.assertEqual(result, False) self.assertEqual(self.econtext.EvaluationStack.Count, 0) def test_iter_array_key_bad(self): my_item = StackItem.New(12) self.econtext.EvaluationStack.PushT(my_item) self.engine.InvocationStack.PushT(self.econtext) result = self.service.Iterator_Key(self.engine) self.assertEqual(result, False) self.assertEqual(self.econtext.EvaluationStack.Count, 0) def test_iter_array_values_bad(self): my_item = StackItem.New(12) self.econtext.EvaluationStack.PushT(my_item) self.engine.InvocationStack.PushT(self.econtext) result = self.service.Iterator_Values(self.engine) self.assertEqual(result, False) self.assertEqual(self.econtext.EvaluationStack.Count, 0) def test_iter_array_keys_bad(self): my_item = StackItem.New(12) self.econtext.EvaluationStack.PushT(my_item) self.engine.InvocationStack.PushT(self.econtext) result = self.service.Iterator_Keys(self.engine) self.assertEqual(result, False) self.assertEqual(self.econtext.EvaluationStack.Count, 0)
# ---------------------------------------------------------------------- # | # | __main__.py # | # | David Brownell <db@DavidBrownell.com> # | 2020-07-16 17:02:19 # | # ---------------------------------------------------------------------- # | # | Copyright David Brownell 2020-21 # | Distributed under the Boost Software License, Version 1.0. See # | accompanying file LICENSE_1_0.txt or copy at # | http://www.boost.org/LICENSE_1_0.txt. # | # ---------------------------------------------------------------------- """Generates HTTP-based code from provided information""" import importlib import itertools import os import re import sys import textwrap import yaml from collections import namedtuple, OrderedDict import six import CommonEnvironment from CommonEnvironment.CallOnExit import CallOnExit from CommonEnvironment import CommandLine from CommonEnvironmentEx.CompilerImpl.GeneratorPluginFrameworkImpl import GeneratorFactory from CommonEnvironmentEx.Package import InitRelativeImports # ---------------------------------------------------------------------- _script_fullpath = CommonEnvironment.ThisFullpath() _script_dir, _script_name = os.path.split(_script_fullpath) # ---------------------------------------------------------------------- with InitRelativeImports(): from .Plugin import Plugin # ---------------------------------------------------------------------- # | Load the input parsers InputParserInfo = namedtuple( "InputParserInfo", [ "Mod", "DeserializeFunc", ], ) INPUT_PARSERS = OrderedDict() for parser, file_extensions in [ ("Json", [".json"]), ("Xml", [".xml"]), ("Yaml", [".yaml", ".yml"]), ]: generated_filename = os.path.join( _script_dir, "SimpleSchema", "GeneratedCode", "Python{}".format(parser), "Python{parser}_Python{parser}Serialization.py".format( parser=parser, ), ) assert os.path.isfile(generated_filename), generated_filename dirname, basename = os.path.split(generated_filename) basename = os.path.splitext(basename)[0] sys.path.insert(0, dirname) with CallOnExit(lambda: sys.path.pop(0)): mod = importlib.import_module(basename) assert mod deserialize_func = getattr(mod, "Deserialize") assert deserialize_func INPUT_PARSERS[tuple(file_extensions)] = InputParserInfo(mod, deserialize_func) # ---------------------------------------------------------------------- PLUGINS = GeneratorFactory.CreatePluginMap("DEVELOPMENT_ENVIRONMENT_HTTP_GENERATOR_PLUGINS", os.path.join(_script_dir, "Plugins"), sys.stdout) _PluginTypeInfo = CommandLine.EnumTypeInfo(list(six.iterkeys(PLUGINS))) # ---------------------------------------------------------------------- def _GetOptionalMetadata(*args, **kwargs): return __GetOptionalMetadata(*args, **kwargs) def _CreateContext(*args, **kwargs): return __CreateContext(*args, **kwargs) def _Invoke(*args, **kwargs): return __Invoke(*args, **kwargs) CodeGenerator = GeneratorFactory.CodeGeneratorFactory( PLUGINS, "HttpGenerator", __doc__.replace("\n", ""), r".+({})".format( "|".join(itertools.chain(*INPUT_PARSERS.keys())) ), _GetOptionalMetadata, _CreateContext, _Invoke, requires_output_name=False, ) # ---------------------------------------------------------------------- @CommandLine.EntryPoint( plugin=CommandLine.EntryPoint.Parameter("Name of plugin used for generation"), output_dir=CommandLine.EntryPoint.Parameter("Output directory used during generation; the way in which this value impacts generated output varies from plugin to plugin"), input=CommandLine.EntryPoint.Parameter("Input filename or a directory containing input files"), content_type_include=CommandLine.EntryPoint.Parameter("Http content type to include in generation"), content_type_exclude=CommandLine.EntryPoint.Parameter("Http content type to exclude from generation"), verb_include=CommandLine.EntryPoint.Parameter("Http verb to include in generation"), verb_exclude=CommandLine.EntryPoint.Parameter("Http verb to exclude from generation"), output_data_filename_prefix=CommandLine.EntryPoint.Parameter( "Prefix used by the code generation implementation; provide this value to generated content from multiple plugins in the same output directory", ), plugin_arg=CommandLine.EntryPoint.Parameter("Argument passed directly to the plugin"), force=CommandLine.EntryPoint.Parameter("Force generation"), verbose=CommandLine.EntryPoint.Parameter("Produce verbose output during generation"), ) @CommandLine.Constraints( plugin=_PluginTypeInfo, output_dir=CommandLine.DirectoryTypeInfo( ensure_exists=False, ), input=CommandLine.FilenameTypeInfo( match_any=True, arity="*", ), content_type_include=CommandLine.StringTypeInfo( arity="*", ), content_type_exclude=CommandLine.StringTypeInfo( arity="*", ), verb_include=CommandLine.StringTypeInfo( arity="*", ), verb_exclude=CommandLine.StringTypeInfo( arity="*", ), output_data_filename_prefix=CommandLine.StringTypeInfo( arity="?", ), plugin_arg=CommandLine.DictTypeInfo( require_exact_match=False, arity="*", ), output_stream=None, ) def Generate( plugin, output_dir, input, content_type_include=None, content_type_exclude=None, verb_include=None, verb_exclude=None, output_data_filename_prefix=None, plugin_arg=None, force=False, output_stream=sys.stdout, verbose=False, ): """Generates HTTP content using the given plugin""" return GeneratorFactory.CommandLineGenerate( CodeGenerator, input, output_stream, verbose, force=force, plugin_name=plugin, output_dir=output_dir, content_type_includes=content_type_include, content_type_excludes=content_type_exclude, verb_includes=verb_include, verb_excludes=verb_exclude, plugin_settings=plugin_arg, output_data_filename_prefix=output_data_filename_prefix, ) # ---------------------------------------------------------------------- @CommandLine.EntryPoint( output_dir=CommandLine.EntryPoint.Parameter("Output directory previously generated"), ) @CommandLine.Constraints( output_dir=CommandLine.DirectoryTypeInfo(), output_stream=None, ) def Clean( output_dir, output_stream=sys.stdout, ): """Cleans content previously generated""" return GeneratorFactory.CommandLineClean(output_dir, output_stream) # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- def CommandLineSuffix(): return textwrap.dedent( """\ Where <plugin> can be one of the following: {} """, ).format( "\n".join([" - {0:<30} {1}".format("{}:".format(pi.Plugin.Name), pi.Plugin.Description) for pi in six.itervalues(PLUGINS)]) ) # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- def __GetOptionalMetadata(): return [ ("content_type_includes", []), ("content_type_excludes", []), ("verb_includes", []), ("verb_excludes", []), ("output_data_filename_prefix", None), ] # ---------------------------------------------------------------------- def __CreateContext(context, plugin): # Read all the endpoint info roots = OrderedDict() for input_filename in context["inputs"]: ext = os.path.splitext(input_filename)[1] for extensions, input_parser_info in six.iteritems(INPUT_PARSERS): if ext not in extensions: continue try: root = input_parser_info.DeserializeFunc( input_filename, always_include_optional=True, ) roots[input_filename] = root break except Exception as ex: # Augment the exception with stack information args = list(ex.args) args[0] = textwrap.dedent( """\ {} {} [{}] """, ).format( args[0], input_filename, " > ".join(getattr(ex, "stack", [])), ) ex.args = tuple(args) raise ex from None # Validate the endpoint info endpoint_stack = [] # ---------------------------------------------------------------------- def Validate(input_filename, endpoint): nonlocal endpoint_stack endpoint_stack.append(endpoint) with CallOnExit(endpoint_stack.pop): try: # Ensure that all parameters in the uri are defined in variables and vice versa uri_variables = set() for match in Plugin.URI_PARAMETER_REGEX.finditer(endpoint.uri): name = match.group("name") if name in uri_variables: raise Exception("The uri variable '{}' has already been defined".format(name)) uri_variables.add(name) for variable in endpoint.variables: if variable.name not in uri_variables: raise Exception("The uri variable '{}' was not found in the uri '{}'".format(variable.name, endpoint.uri)) uri_variables.remove(variable.name) if uri_variables: raise Exception("The uri variables {} were not defined".format(", ".join(["'{}'".format(variable) for variable in uri_variables]))) # Ensure that the uri variables don't overlap with parent variables all_variables = set() for e in endpoint_stack: for variable in e.variables: if variable.name in all_variables: raise Exception("The variable '{}' has already been defined".format(variable.name)) all_variables.add(variable.name) # Handle content that is mutually exclusive for method in endpoint.methods: if method.default_request and method.requests: raise Exception("'default_request' and 'requests' are mutually exclusive and cannot both be provided ({})".format(method.verb)) for response in method.responses: if response.default_content and response.contents: raise Exception("'default_content' and 'contents' are mutually exclusive and cannot both be provided ({}, {})".format(method.verb, response.code)) # Validate the children for child in endpoint.children: Validate(input_filename, child) except Exception as ex: # Augment the exception with stack information args = list(ex.args) args[0] = textwrap.dedent( """\ {} {} [{}] """, ).format( args[0], input_filename, "".join([e.uri for e in endpoint_stack]), ) ex.args = tuple(args) raise ex from None # ---------------------------------------------------------------------- for input_filename, root in six.iteritems(roots): for endpoint in root.endpoints: Validate(input_filename, endpoint) # Filter the content if ( context["content_type_includes"] or context["content_type_excludes"] or context["verb_includes"] or context["verb_excludes"] ): if context["content_type_excludes"]: content_type_excludes_regexes = [re.compile(value) for value in context["content_type_excludes"]] content_type_exclude_func = lambda rar: any(regex for regex in content_type_excludes_regexes if regex.match(rar.content_type)) else: content_type_exclude_func = lambda rar: False if context["content_type_includes"]: content_type_include_regexes = [re.compile(value) for value in context["content_type_includes"]] content_type_include_func = lambda rar: any(regex for regex in content_type_include_regexes if regex.match(rar.content_type)) else: content_type_include_func = lambda rar: True verb_includes = set([value.upper() for value in context["verb_includes"]]) verb_excludes = set([value.upper() for value in context["verb_excludes"]]) # ---------------------------------------------------------------------- def Filter(endpoint): method_index = 0 while method_index < len(endpoint.methods): method = endpoint.methods[method_index] # Process the requests request_index = 0 while request_index < len(method.requests): if ( content_type_exclude_func(method.requests[request_index].content_type) or not content_type_include_func(method.request[request_index].content_type) ): del method.requests[request_index] else: request_index += 1 # Process the responses response_index = 0 while response_index < len(method.responses): response = method.responses[response_index] content_index = 0 while content_index < len(response.contents): if ( content_type_exclude_func(response.contents[content_index].content_type) or not content_type_include_func(response.contents[content_index].content_type) ): del response.responses[content_index] else: content_index += 1 if not response.default_content and not response.contents: del method.responses[response_index] else: response_index += 1 if ( not method.default_request and not method.requests and not method.responses ): del endpoint.methods[method_index] else: method_index += 1 child_index = 0 while child_index < len(endpoint.children): child = endpoint.children[child_index] Filter(child) if not child.methods and not child.children: del endpoint.children[child_index] else: child_index += 1 # ---------------------------------------------------------------------- for input_filename, root in list(six.iteritems(roots)): endpoint_index = 0 while endpoint_index < len(root.endpoints): endpoint = root.endpoints[endpoint_index] Filter(endpoint) if not root.endpoint.methods and not endpoint.children: del root.endpoints[endpoint_index] else: endpoint_index += 1 if not root.endpoints: del roots[input_filename] # Here we have all the endpoints and need to assign them to the context. # However, the context will be compared with previous context to see if # a new generation is required. To make this work as expected, we need to # compare the data within the endpoints and not the endpoints themselves. context["persisted_roots"] = yaml.dump(roots) return context # ---------------------------------------------------------------------- def __Invoke( code_generator, invoke_reason, context, status_stream, verbose_stream, verbose, plugin, ): roots = yaml.load( context["persisted_roots"], Loader=yaml.FullLoader, ) # ---------------------------------------------------------------------- def Postprocess(endpoint, uris): uris.append(endpoint.uri) with CallOnExit(uris.pop): endpoint.full_uri = ''.join(uris).replace("//", "/") endpoint.unique_name = endpoint.full_uri.replace("/", ".").replace("{", "__").replace("}", "__") for child in endpoint.children: Postprocess(child, uris) # ---------------------------------------------------------------------- for root in six.itervalues(roots): for endpoint in root.endpoints: Postprocess(endpoint, []) return plugin.Generate( code_generator, invoke_reason, context["output_dir"], roots, status_stream, verbose_stream, verbose, **context["plugin_settings"], ) # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- if __name__ == "__main__": try: sys.exit( CommandLine.Main() ) except KeyboardInterrupt: pass
import requests from bs4 import BeautifulSoup from tqdm import tqdm import pickle import pkg_resources knowledge_base_path = pkg_resources.resource_filename(__name__, 'KB.p') class Helppy: def __init__(self, kb=None): self.default_repo = 'https://github.com/vvaezian/Data-Science-Fundamentals' self.kb = kb self.load_KB() class Topic: def __init__(self, title=None, body='', header_size=None): self.title = title self.body = body self.header_size = header_size self.is_sub_topic = False self.sub_topics = [] def add_to_body(self, line): self.body += line def load_KB(self): '''load the pre-built knowledge-base''' self.kb = pickle.load(open(knowledge_base_path, 'rb')) def save_KB(self, kb_name='KB.p'): '''Save the KB to the current directory''' pickle.dump(self.kb, open(kb_name, 'wb')) def refresh_KB(self, new_repo=None, replace_default_repo=True, extensions=['.md']): '''reload the topics of the knowledge-base in case there have been some changes. Can also add a new repository to the knowledge-base by passing the new repo url and setting 'replace_default_repo=False'. ''' repository = new_repo if new_repo else self.default_repo searchTerms_and_links = self.get_searchTerms_and_links(repository, extensions=extensions) kb = {} if replace_default_repo else self.kb for item in tqdm(searchTerms_and_links): search_terms, page_url = item topics, page_body = self.process_page(self.get_raw_url(page_url)) if topics != [] or page_body != '': kb[(page_url, search_terms)] = (topics, page_body.lower()) self.kb = kb def find(self, header_keyword=None, page_path_keyword=None, page_body_keyword=None, results_cap=3): '''Search the knowledge-base by providing a keyword that appears in the header of the section, or search by providing a keyword that appears in the page. In either case, you can optionally provide a keyword for page name (page_path_keyword) to limit the search to those pages. ''' if (header_keyword is None and page_body_keyword is None) or (header_keyword and page_body_keyword): print("One of 'header_keyword' or 'page_body_keyword' arguments must to be provided.") return counter = 0 if header_keyword: for (url, page_path_keywords), (topics, page_body) in self.kb.items(): if not page_path_keyword or page_path_keyword.lower() in page_path_keywords: # filter the results by page_path_keyword for topic in topics: if header_keyword.lower() in topic.title.lower(): counter += 1 # print the topic print(url + '#' + topic.title.replace(':', '').replace(' ','-') + '\n' + '#' * topic.header_size + ' ' + topic.title + '\n' + topic.body) # print the sub-topics of the current topic (if any) for sub_topic in topic.sub_topics: print(url + '#' + sub_topic.title.replace(':', '').replace(' ','-') + '\n' + '#' * sub_topic.header_size + ' ' + sub_topic.title + '\n' + sub_topic.body) if results_cap != 0 and counter >= results_cap: print("\nBy default at most three results are shown. You can change it by passing a different number to the 'results_cap' parameter (pass 0 for no cap).") break else: # page_body_keyword is provided instead of header_keyword for (url, page_path_keywords), (topics, page_body) in self.kb.items(): if not page_path_keyword or page_path_keyword.lower() in page_path_keywords: # filter the results by page_path_keyword if page_body_keyword.lower() in page_body: print(url) def get_searchTerms_and_links(self, url, extensions, all_page_links=None): '''recursively search through the repository and find links to pages that have the provided extensions, ignoring the README.md files''' if all_page_links is None: all_page_links = [] res = requests.get(url) soup = BeautifulSoup(res.text, features="html.parser") rows = soup.findAll('div', {'role':'rowheader'}) links = [ row.select('a')[0]['href'] for row in rows ] dir_links = [ 'https://github.com' + link for link in links if '/tree/' in link ] page_links = [] for link in links: for extension in extensions: if link.endswith(extension) and not link.lower().endswith('readme.md'): sections_split = link.split('/') # links have this format :/[user]/[repo-name]/blob/master/[directory]/[file] sections = sections_split[2].lower().replace('-', ' ') + '/' + '/'.join(sections_split[5:]).lower().rstrip(extension).replace('-', ' ').replace('%20', ' ') page_links.append( (sections, 'https://github.com' + link) ) all_page_links.extend(page_links) for url in dir_links: self.get_searchTerms_and_links(url, extensions, all_page_links) return all_page_links @staticmethod def get_raw_url(url): sections = url.replace('/blob/', '/').split('/') return 'https://raw.githubusercontent.com/' + '/'.join(sections[3:]) def process_page(self, url): res = requests.get(url).text res_lines = res.split('\n') topics = [] any_header_detected_sofar = False code_section = False for line in res_lines: if line.startswith('```'): # it is start or end of a code section # toggle the code_section flag code_section = not code_section if line.startswith('#') and not code_section: # new header if any_header_detected_sofar: # add the previous topic to topics topics.append(topic) # create a new tipic topic = self.Topic() # set the title properties of the topic topic.header_size = len(line) - len(line.lstrip('#')) topic.title = line.strip('#').strip(' ') any_header_detected_sofar = True continue # create the body of the topic, line by line if any_header_detected_sofar: topic.add_to_body(line.strip(' ') + '\n') # adding the last section if any_header_detected_sofar: topics.append(topic) # handling the parent-child relationships if len(topics) > 1: prev_topic = topics[0] for cur_topic in topics[1:]: if cur_topic.header_size < prev_topic.header_size: prev_topic.sub_topics.append(cur_topic) cur_topic.is_sub_topic = True # currently this feature is not used. # since it was a sub-topic we don't change the prev_topic variable else: prev_topic = cur_topic return topics, res
import unittest from sprial import spiral class TestSpiralMethods(unittest.TestCase): def test_spiral(self): funcs = [spiral] for func in funcs: self.assertEqual(func(3), [[1,2,3], [8,9,4], [7,6,5]]) if __name__ == '__main__': unittest.main()
import cv2 import numpy as np import time # Creating a VideoCapture object cap = cv2.VideoCapture(0) # Give some time for the camera to warm-up! time.sleep(3) background=0 for i in range(30): avl,background = cap.read() if avl==True: # Laterally invert the image / flip the image. background = np.flip(background,axis=1) while cap.isOpened(): # Capturing the live frame avl, img = cap.read() if ret == True: # Laterally invert the image / flip the image img = np.flip(imgaxis=1) # converting from BGR to HSV color space hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) # Range for lower red lower_red = np.array([0,120,70]) upper_red = np.array([10,255,255]) mask1 = cv2.inRange(hsv, lower_red, upper_red) # Range for upper range lower_red = np.array([170,120,70]) upper_red = np.array([180,255,255]) mask2 = cv2.inRange(hsv,lower_red,upper_red) # Generating the final mask to detect red color mask1 = mask1+mask2 mask1 = cv2.morphologyEx(mask, cv2.MORPH_OPEN, np.ones((3,3),np.uint8)) mask1 = cv2.morphologyEx(mask, cv2.MORPH_DILATE, np.ones((3,3),np.uint8)) #creating an inverted mask to segment out the cloth from the frame mask2 = cv2.bitwise_not(mask1) #Segmenting the cloth out of the frame using bitwise and with the inverted mask res1 = cv2.bitwise_and(img,img,mask=mask2) # creating image showing static background frame pixels only for the masked region res2 = cv2.bitwise_and(background, background, mask = mask1) #Generating the final output final_output = cv2.addWeighted(res1,1,res2,1,0) imshow("invcloak",final_output) else : break if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() cap.release()
cash = float(input("Quanto de dinheiro você te na carteira?")) dol = cash * 5.46 eur = cash * 6.33 print(" Com o valor total da sua carteira {:.2f} é possivél comprar USA {:.2f} e EUR {:.2f}".format(cash, dol, eur))
from robodkdriver import RoboDK, RobotSerial import struct import numpy as np import numpy as np motor_reductions = np.array([[1/48., 0, 0, 0, 0, 0], [0, 1/48., 1/48., 0, 0, 0], [0, 0, 1/48., 0, 0, 0], [0, 0, 0, 1/24., -1/28.8, 1/24.], [0, 0, 0, 0, 1/28.8, -1/48.], [0, 0, 0, 0, 0, 1/24.]]) motor_sprs = np.array([200, 200, 200, 200, 200, 200]).T radians_per_step = (360. / motor_sprs) * motor_reductions.T def generate_step_instructions(delta_theta, dps = [9, 9, 9, 9, 9, 9]): assert((np.sign(delta_theta) == np.sign(dps)).all()) delta_theta = np.array(delta_theta) dps = np.array(dps) instructions = [] for _ in range(6): min_travel_time = np.inf for i in range(6): travel_time = 0 if delta_theta[i] != 0: if travel_time < min_travel_time: min_travel_time = travel_time else: dps[i] = 0 if min_travel_time == np.inf: break steps_per_second = np.linalg.solve(radians_per_step, dps) # Compute which Joint to a complete first and then re-calculate motor speeds steps_to_take = min_travel_time * steps_per_second steps_to_take = steps_to_take.astype(int) sub_delta_theta = np.dot(steps_to_take, radians_per_step.T) delta_theta = delta_theta - sub_delta_theta instructions.append((steps_to_take.tolist(), steps_per_second.tolist())) return instructions print(*generate_step_instructions([90, 90, 90, -90, 90, 90], [1, 1, 1, -3, 1, 1]),sep="\n") class MerlinRobot(RobotSerial): def run_command(self, cmd, args): RoboDK.update_status('working') if cmd == 'CONNECT': connected = self._connect(port=args[0], baud_rate=int(args[1])) if not connected: return 'connection_problems' return 'ready' if cmd == 'DISCONNECT' or cmd == 'STOP': disconnected = self._disconnect() if disconnected: return 'disconnected' return 'ready' if cmd == 'MOVJ': self._send_message('M') for i in range(6): self._serial.write(bytearray(struct.pack("f", float(args[i])))) if self._get_message('DONE'): return 'ready' return 'error' if cmd == "MOVL": pass # Use the move group planner to figure out joint trajectory if cmd == 'CJNT': self._send_message("C") joints = self._get_message() RoboDK.update_status(joints) return 'ready' if __name__ == '__main__': RoboDK(MerlinRobot()).run_driver()
from __future__ import print_function from distutils.spawn import find_executable def cmd_exists(name): """Check whether `name` is an executable on PATH.""" return find_executable(name) is not None def attr(obj, *path, **kwargs): """Safely get a nested attribute from an dictionary""" default = kwargs.get('default') if obj is None: return default res = obj for p in path: if p not in res: return default res = res[p] return res
import reapy from reapy import reascript_api as RPR from reapy.core import ReapyObject from reapy.tools import Program class Marker(ReapyObject): _class_name = "Marker" def __init__( self, parent_project=None, index=None, parent_project_id=None ): if parent_project_id is None: message = ( "One of `parent_project` or `parent_project_id` must be " "specified." ) assert parent_project is not None, message parent_project_id = parent_project.id self.project_id = parent_project_id self.index = index def _get_enum_index(self): """ Return marker index as needed by RPR.EnumProjectMarkers2. """ code = """ index = [ i for i, m in enumerate(project.markers) if m.index == marker.index ][0] """ index = Program(code, "index").run( marker=self, project=reapy.Project(self.project_id) )[0] return index @property def _kwargs(self): return { "index": self.index, "parent_project_id": self.project_id } def delete(self): """ Delete marker. """ RPR.DeleteProjectMarker(self.project_id, self.index, False) @property def position(self): """ Return marker position. Returns ------- position : float Marker position in seconds. """ code = """ index = marker._get_enum_index() position = RPR.EnumProjectMarkers2( marker.project_id, index, 0, 0, 0, 0, 0 )[4] """ position = Program(code, "position").run(marker=self)[0] return position @position.setter def position(self, position): """ Set marker position. Parameters ---------- position : float Marker position in seconds. """ RPR.SetProjectMarker2( self.project_id, self.index, False, position, 0, "" )
# Centralized location for extracting data information from a THREAD_ID # These functions can be shared between the different visualization apps # MINT API ingestion from __future__ import print_function import time import solutioncatalog from solutioncatalog.rest import ApiException from pprint import pprint from solutioncatalog.download import download_files from pathlib import Path from osgeo import gdal import pandas as pd # GET Data from MINT API usint scenario_id, subgoal_id and THREAD_ID api_instance = solutioncatalog.ResultsApi(solutioncatalog.ApiClient()) def get_MINT_data(scenario_id, subgoal_id, thread_id): try: # Get the results of a thread api_response = api_instance.results_scenario_id_subgoal_id_thread_id_get(scenario_id, subgoal_id, thread_id) resultsdf = pd.DataFrame(columns=['model', 'output','url']) results = api_response['thread']['results'] for model in results.keys(): for runs in results[model]: for output in runs['has_output']: resultsdf = resultsdf.append({'model': model, 'output': output, 'url': runs['has_output'][output]['url']}, ignore_index=True) return resultsdf # except: # return {'Result':'No data found in Solutions Catalog for this thread'} except ApiException as e: print("Exception when calling ResultsApi->results_scenario_id_subgoal_id_thread_id_get: %s\n" % e) # Geto geospatial extent info from a geotiff def get_geotiff_details(geotiff): details ={ "center": [0,0], "bounds": [(0,0),(0,0)] } data = gdal.Open(geotiff, gdal.GA_ReadOnly) geoTransform = data.GetGeoTransform() if geoTransform is not None: minx = geoTransform[0] maxy = geoTransform[3] maxx = minx + geoTransform[1] * data.RasterXSize miny = maxy + geoTransform[5] * data.RasterYSize details['center'] = [(miny + maxy)/2, (minx + maxx)/2] details['bounds'] = [(miny, minx), (maxy, maxx)] return details
import sys import sc2 from sc2 import Difficulty, Race from sc2.player import Bot, Computer from __init__ import run_ladder_game # Load bot from SunshineBot import SunshineBot bot = Bot(Race.Terran, SunshineBot()) # Start game if __name__ == "__main__": if "--LadderServer" in sys.argv: # Ladder game started by LadderManager print("Starting ladder game...") run_ladder_game(bot) else: # Local game print("Starting local game...") sc2.run_game( sc2.maps.get("Abyssal Reef LE"), [bot, Computer(Race.Protoss, Difficulty.VeryHard)], realtime=False )
"""Base classes for actions. Actions do something with the payload produced from either message processors or formatters.""" from typing import Any from homebot.models import Context from homebot.utils import AutoStrMixin, LogMixin from homebot.validator import TypeGuardMeta class Action(AutoStrMixin, LogMixin, metaclass=TypeGuardMeta): """Action base class. Provides the interface to respect.""" async def __call__(self, ctx: Context, payload: Any) -> None: """Performs the action.""" raise NotImplementedError() # pragma: no cover class Console(Action): """Simply logs the payload to the console.""" async def __call__(self, ctx: Context, payload: Any) -> None: """Performs the action: Simply print the payload to the console via print.""" print("Context:", ctx, "\nPayload:", payload) # pragma: no cover
""" This module defines data types in Taichi: - primitive: int, float, etc. - compound: matrix, vector, struct. - template: for reference types. - ndarray: for arbitrary arrays. - quantized: for quantized types, see "https://yuanming.taichi.graphics/publication/2021-quantaichi/quantaichi.pdf" """ from taichi.types import quantized_types as quant from taichi.types.annotations import * from taichi.types.compound_types import * from taichi.types.ndarray_type import * from taichi.types.primitive_types import * from taichi.types.utils import *
import torch from torch import nn import torch.nn.functional as F import models from torch.utils.data import DataLoader import os.path as osp from tqdm import tqdm from torch.autograd import Variable import numpy as np from utils.logger import AverageMeter as meter from data_loader import Visda_Dataset, Office_Dataset, Home_Dataset, Visda18_Dataset from utils.loss import FocalLoss from models.component import Discriminator class ModelTrainer(): def __init__(self, args, data, step=0, label_flag=None, v=None, logger=None): self.args = args self.batch_size = args.batch_size self.data_workers = 6 self.step = step self.data = data self.label_flag = label_flag self.num_class = data.num_class self.num_task = args.batch_size self.num_to_select = 0 self.model = models.create(args.arch, args) self.model = nn.DataParallel(self.model).cuda() #GNN self.gnnModel = models.create('gnn', args) self.gnnModel = nn.DataParallel(self.gnnModel).cuda() self.meter = meter(args.num_class) self.v = v # CE for node classification if args.loss == 'focal': self.criterionCE = FocalLoss().cuda() elif args.loss == 'nll': self.criterionCE = nn.NLLLoss(reduction='mean').cuda() # BCE for edge self.criterion = nn.BCELoss(reduction='mean').cuda() self.global_step = 0 self.logger = logger self.val_acc = 0 self.threshold = args.threshold if self.args.discriminator: self.discriminator = Discriminator(self.args.in_features) self.discriminator = nn.DataParallel(self.discriminator).cuda() def get_dataloader(self, dataset, training=False): if self.args.visualization: data_loader = DataLoader(dataset, batch_size=self.batch_size, num_workers=self.data_workers, shuffle=training, pin_memory=True, drop_last=True) return data_loader data_loader = DataLoader(dataset, batch_size=self.batch_size, num_workers=self.data_workers, shuffle=training, pin_memory=True, drop_last=training) return data_loader def adjust_lr(self, epoch, step_size): lr = self.args.lr / (2 ** (epoch // step_size)) for g in self.optimizer.param_groups: g['lr'] = lr * g.get('lr_mult', 1) if epoch % step_size == 0: print("Epoch {}, current lr {}".format(epoch, lr)) def label2edge(self, targets): batch_size, num_sample = targets.size() target_node_mask = torch.eq(targets, self.num_class).type(torch.bool).cuda() source_node_mask = ~target_node_mask & ~torch.eq(targets, self.num_class - 1).type(torch.bool) label_i = targets.unsqueeze(-1).repeat(1, 1, num_sample) label_j = label_i.transpose(1, 2) edge = torch.eq(label_i, label_j).float().cuda() target_edge_mask = (torch.eq(label_i, self.num_class) + torch.eq(label_j, self.num_class)).type(torch.bool).cuda() source_edge_mask = ~target_edge_mask init_edge = edge*source_edge_mask.float() return init_edge, target_edge_mask, source_edge_mask, target_node_mask, source_node_mask def transform_shape(self, tensor): batch_size, num_class, other_dim = tensor.shape tensor = tensor.view(1, batch_size * num_class, other_dim) return tensor def train(self, step, epochs=70, step_size=55): args = self.args train_loader = self.get_dataloader(self.data, training=True) # initialize model # change the learning rate if args.arch == 'res': if args.dataset == 'visda' or args.dataset == 'office' or args.dataset == 'visda18': param_groups = [ {'params': self.model.module.CNN.parameters(), 'lr_mult': 0.01}, {'params': self.gnnModel.parameters(), 'lr_mult': 0.1}, ] if self.args.discriminator: param_groups.append({'params': self.discriminator.parameters(), 'lr_mult': 0.1}) else: param_groups = [ {'params': self.model.module.CNN.parameters(), 'lr_mult': 0.05}, {'params': self.gnnModel.parameters(), 'lr_mult': 0.8}, ] if self.args.discriminator: param_groups.append({'params': self.discriminator.parameters(), 'lr_mult': 0.8}) args.in_features = 2048 elif args.arch == 'vgg': param_groups = [ {'params': self.model.module.extractor.parameters(), 'lr_mult': 1}, {'params': self.gnnModel.parameters(), 'lr_mult': 1}, ] args.in_features = 4096 self.optimizer = torch.optim.Adam(params=param_groups, lr=args.lr, weight_decay=args.weight_decay) self.model.train() self.gnnModel.train() self.meter.reset() for epoch in range(epochs): self.adjust_lr(epoch, step_size) with tqdm(total=len(train_loader)) as pbar: for i, inputs in enumerate(train_loader): images = Variable(inputs[0], requires_grad=False).cuda() targets = Variable(inputs[1]).cuda() targets_DT = targets[:, args.num_class - 1:].reshape(-1) if self.args.discriminator: domain_label = Variable(inputs[3].float()).cuda() targets = self.transform_shape(targets.unsqueeze(-1)).squeeze(-1) init_edge, target_edge_mask, source_edge_mask, target_node_mask, source_node_mask = self.label2edge(targets) # extract backbone features features = self.model(images) features = self.transform_shape(features) # feed into graph networks edge_logits, node_logits = self.gnnModel(init_node_feat=features, init_edge_feat=init_edge, target_mask=target_edge_mask) # compute edge loss full_edge_loss = [self.criterion(edge_logit.masked_select(source_edge_mask), init_edge.masked_select(source_edge_mask)) for edge_logit in edge_logits] norm_node_logits = F.softmax(node_logits[-1], dim=-1) if args.loss == 'nll': source_node_loss = self.criterionCE(torch.log(norm_node_logits[source_node_mask, :] + 1e-5), targets.masked_select(source_node_mask)) elif args.loss == 'focal': source_node_loss = self.criterionCE(norm_node_logits[source_node_mask, :], targets.masked_select(source_node_mask)) edge_loss = 0 for l in range(args.num_layers - 1): edge_loss += full_edge_loss[l] * 0.5 edge_loss += full_edge_loss[-1] * 1 loss = 1 * edge_loss + args.node_loss* source_node_loss if self.args.discriminator: unk_label_mask = torch.eq(targets, args.num_class-1).squeeze() domain_pred = self.discriminator(features) temp = domain_pred.view(-1)[~unk_label_mask] domain_loss = self.criterion(temp, domain_label.view(-1)[~unk_label_mask]) #(targets.size(1) / temp.size(0)) * loss = loss + args.adv_coeff * domain_loss node_pred = norm_node_logits[source_node_mask, :].detach().cpu().max(1)[1] node_prec = node_pred.eq(targets.masked_select(source_node_mask).detach().cpu()).double().mean() # Only for debugging target_labels = Variable(inputs[2]).cuda() target_labels = self.transform_shape(target_labels.unsqueeze(-1)).view(-1) if target_node_mask.any(): target_pred = norm_node_logits[target_node_mask, :].max(1)[1] # <unlabeled> data mask pseudo_label_mask = ~torch.eq(targets_DT, args.num_class).detach().cpu() # remove unk for calculation unk_label_mask = torch.eq(target_labels[~pseudo_label_mask], args.num_class - 1).detach().cpu() # only predict on <unlabeled> data target_prec = target_pred.eq(target_labels[~pseudo_label_mask]).double().data.cpu() # update prec calculation on <unlabeled> data self.meter.update(target_labels[~pseudo_label_mask].detach().cpu().view(-1).numpy(), target_prec.numpy()) # For pseudo_labeled data, remove unk data for prec calculation pseudo_unk_mask = torch.eq(target_labels[pseudo_label_mask], args.num_class - 1).detach().cpu() pseudo_prec = torch.eq(target_labels[pseudo_label_mask], targets_DT[pseudo_label_mask]).double() if True in pseudo_unk_mask: self.meter.update(target_labels[pseudo_label_mask].detach().cpu().masked_select(~pseudo_unk_mask).view(-1).numpy(), pseudo_prec.detach().cpu().masked_select(~pseudo_unk_mask).view(-1).numpy()) self.optimizer.zero_grad() loss.backward() self.optimizer.step() self.logger.global_step += 1 if self.args.discriminator: self.logger.log_scalar('train/domain_loss', domain_loss, self.logger.global_step) self.logger.log_scalar('train/node_prec', node_prec, self.logger.global_step) self.logger.log_scalar('train/edge_loss', edge_loss, self.logger.global_step) self.logger.log_scalar('train/OS_star', self.meter.avg[:-1].mean(), self.logger.global_step) self.logger.log_scalar('train/OS', self.meter.avg.mean(), self.logger.global_step) pbar.update() if i > 150: break if (epoch + 1) % args.log_epoch == 0: print('---- Start Epoch {} Training --------'.format(epoch)) for k in range(args.num_class - 1): print('Target {} Precision: {:.3f}'.format(args.class_name[k], self.meter.avg[k])) print('Step: {} | {}; Epoch: {}\t' 'Training Loss {:.3f}\t' 'Training Prec {:.3%}\t' 'Target Prec {:.3%}\t' .format(self.logger.global_step, len(train_loader), epoch, loss.data.cpu().numpy(), node_prec.data.cpu().numpy(), self.meter.avg[:-1].mean())) self.meter.reset() # save model states = {'model': self.model.state_dict(), 'graph': self.gnnModel.state_dict(), 'iteration': self.logger.global_step, 'val_acc': node_prec, 'optimizer': self.optimizer.state_dict()} torch.save(states, osp.join(args.checkpoints_dir, '{}_step_{}.pth.tar'.format(args.experiment, step))) self.meter.reset() def estimate_label(self): args = self.args print('label estimation...') if args.dataset == 'visda': test_data = Visda_Dataset(root=args.data_dir, partition='test', label_flag=self.label_flag, target_ratio=self.step * args.EF / 100) elif args.dataset == 'office': test_data = Office_Dataset(root=args.data_dir, partition='test', label_flag=self.label_flag, source=args.source_name, target=args.target_name, target_ratio=self.step * args.EF / 100) elif args.dataset == 'home': test_data = Home_Dataset(root=args.data_dir, partition='test', label_flag=self.label_flag, source=args.source_name, target=args.target_name, target_ratio=self.step * args.EF / 100) elif args.dataset == 'visda18': test_data = Visda18_Dataset(root=args.data_dir, partition='test', label_flag=self.label_flag, target_ratio=self.step * args.EF / 100) self.meter.reset() # append labels and scores for target samples pred_labels = [] pred_scores = [] real_labels = [] target_loader = self.get_dataloader(test_data, training=False) self.model.eval() self.gnnModel.eval() with tqdm(total=len(target_loader)) as pbar: for i, (images, targets, target_labels, _, split) in enumerate(target_loader): images = Variable(images, requires_grad=False).cuda() targets = Variable(targets).cuda() targets = self.transform_shape(targets.unsqueeze(-1)).squeeze(-1) init_edge, target_edge_mask, source_edge_mask, target_node_mask, source_node_mask = self.label2edge(targets) # extract backbone features features = self.model(images) features = self.transform_shape(features) torch.cuda.empty_cache() # feed into graph networks edge_logits, node_logits = self.gnnModel(init_node_feat=features, init_edge_feat=init_edge, target_mask=target_edge_mask) del features norm_node_logits = F.softmax(node_logits[-1], dim=-1) target_score, target_pred = norm_node_logits[target_node_mask, :].max(1) # only for debugging target_labels = Variable(target_labels).cuda() target_labels = self.transform_shape(target_labels.unsqueeze(-1)).view(-1) pred = target_pred.detach().cpu() target_prec = pred.eq(target_labels.detach().cpu()).double() self.meter.update( target_labels.detach().cpu().view(-1).data.cpu().numpy(), target_prec.numpy()) pred_labels.append(target_pred.cpu().detach()) pred_scores.append(target_score.cpu().detach()) real_labels.append(target_labels.cpu().detach()) if i % self.args.log_step == 0: print('Step: {} | {}; \t' 'OS Prec {:.3%}\t' .format(i, len(target_loader), self.meter.avg.mean())) pbar.update() pred_labels = torch.cat(pred_labels) pred_scores = torch.cat(pred_scores) real_labels = torch.cat(real_labels) self.model.train() self.gnnModel.train() self.num_to_select = int(len(target_loader) * self.args.batch_size * (self.args.num_class - 1) * self.args.EF / 100) return pred_labels.data.cpu().numpy(), pred_scores.data.cpu().numpy(), real_labels.data.cpu().numpy() def select_top_data(self, pred_score): # remark samples if needs pseudo labels based on classification confidence if self.v is None: self.v = np.zeros(len(pred_score)) unselected_idx = np.where(self.v == 0)[0] if len(unselected_idx) < self.num_to_select: self.num_to_select = len(unselected_idx) index = np.argsort(-pred_score[unselected_idx]) index_orig = unselected_idx[index] num_pos = int(self.num_to_select * self.threshold) num_neg = self.num_to_select - num_pos for i in range(num_pos): self.v[index_orig[i]] = 1 for i in range(num_neg): self.v[index_orig[-i]] = -1 return self.v def generate_new_train_data(self, sel_idx, pred_y, real_label): # create the new dataset merged with pseudo labels assert len(sel_idx) == len(pred_y) new_label_flag = [] pos_correct, pos_total, neg_correct, neg_total = 0, 0, 0, 0 for i, flag in enumerate(sel_idx): if i >= len(real_label): break if flag > 0: new_label_flag.append(pred_y[i]) pos_total += 1 if real_label[i] == pred_y[i]: pos_correct += 1 elif flag < 0: # assign the <unk> pseudo label new_label_flag.append(self.args.num_class - 1) pred_y[i] = self.args.num_class - 1 neg_total += 1 if real_label[i] == self.args.num_class - 1: neg_correct += 1 else: new_label_flag.append(self.args.num_class) self.meter.reset() self.meter.update(real_label, (pred_y == real_label).astype(int)) for k in range(self.args.num_class): print('Target {} Precision: {:.3f}'.format(self.args.class_name[k], self.meter.avg[k])) for k in range(self.num_class): self.logger.log_scalar('test/' + self.args.class_name[k], self.meter.avg[k], self.step) self.logger.log_scalar('test/ALL', self.meter.sum.sum() / self.meter.count.sum(), self.step) self.logger.log_scalar('test/OS_star', self.meter.avg[:-1].mean(), self.step) self.logger.log_scalar('test/OS', self.meter.avg.mean(), self.step) print('Node predictions: OS accuracy = {:0.4f}, OS* accuracy = {:0.4f}'.format(self.meter.avg.mean(), self.meter.avg[:-1].mean())) correct = pos_correct + neg_correct total = pos_total + neg_total acc = correct / total pos_acc = pos_correct / pos_total neg_acc = neg_correct / neg_total new_label_flag = torch.tensor(new_label_flag) # update source data if self.args.dataset == 'visda': new_data = Visda_Dataset(root=self.args.data_dir, partition='train', label_flag=new_label_flag, target_ratio=(self.step + 1) * self.args.EF / 100) elif self.args.dataset == 'office': new_data = Office_Dataset(root=self.args.data_dir, partition='train', label_flag=new_label_flag, source=self.args.source_name, target=self.args.target_name, target_ratio=(self.step + 1) * self.args.EF / 100) elif self.args.dataset == 'home': new_data = Home_Dataset(root=self.args.data_dir, partition='train', label_flag=new_label_flag, source=self.args.source_name, target=self.args.target_name, target_ratio=(self.step + 1) * self.args.EF / 100) elif self.args.dataset == 'visda18': new_data = Visda18_Dataset(root=self.args.data_dir, partition='train', label_flag=new_label_flag, target_ratio=(self.step + 1) * self.args.EF / 100) print('selected pseudo-labeled data: {} of {} is correct, accuracy: {:0.4f}'.format(correct, total, acc)) print('positive data: {} of {} is correct, accuracy: {:0.4f}'.format(pos_correct, pos_total, pos_acc)) print('negative data: {} of {} is correct, accuracy: {:0.4f}'.format(neg_correct, neg_total, neg_acc)) return new_label_flag, new_data def one_hot_encode(self, num_classes, class_idx): return torch.eye(num_classes, dtype=torch.long)[class_idx] def load_model_weight(self, path): print('loading weight') state = torch.load(path) self.model.load_state_dict(state['model']) self.gnnModel.load_state_dict(state['graph']) def label2edge_gt(self, targets): ''' creat initial edge map and edge mask for unlabeled targets ''' batch_size, num_sample = targets.size() target_node_mask = torch.eq(targets, self.num_class).type(torch.bool).cuda() source_node_mask = ~target_node_mask & ~torch.eq(targets, self.num_class - 1).type(torch.bool) label_i = targets.unsqueeze(-1).repeat(1, 1, num_sample) label_j = label_i.transpose(1, 2) edge = torch.eq(label_i, label_j).float().cuda() target_edge_mask = (torch.eq(label_i, self.num_class) + torch.eq(label_j, self.num_class)).type( torch.bool).cuda() source_edge_mask = ~target_edge_mask # unlabeled flag return (edge*source_edge_mask.float()) def extract_feature(self): print('Feature extracting...') self.meter.reset() # append labels and scores for target samples vgg_features_target = [] node_features_target = [] labels = [] overall_split = [] target_loader = self.get_dataloader(self.data, training=False) self.model.eval() self.gnnModel.eval() num_correct = 0 skip_flag = self.args.visualization with tqdm(total=len(target_loader)) as pbar: for i, (images, targets, target_labels, _, split) in enumerate(target_loader): # for debugging # if i > 100: # break images = Variable(images, requires_grad=False).cuda() targets = Variable(targets).cuda() # only for debugging # target_labels = Variable(target_labels).cuda() targets = self.transform_shape(targets.unsqueeze(-1)).squeeze(-1) target_labels = self.transform_shape(target_labels.unsqueeze(-1)).squeeze(-1).cuda() init_edge, target_edge_mask, source_edge_mask, target_node_mask, source_node_mask = self.label2edge(targets) # gt_edge = self.label2edge_gt(target_labels) # extract backbone features features = self.model(images) features = self.transform_shape(features) # feed into graph networks edge_logits, node_feat = self.gnnModel(init_node_feat=features, init_edge_feat=init_edge, target_mask=target_edge_mask) vgg_features_target.append(features.data.cpu()) #####heat map only # temp = np.array(edge_logits[0].data.cpu()) * 4 # ax = sns.heatmap(temp.squeeze(), vmax=1)# # cbar = ax.collections[0].colorbar # # here set the labelsize by 20 # cbar.ax.tick_params(labelsize=17) # plt.savefig('heat/' + str(i) + '.png') # plt.close() ########### node_features_target.append(node_feat[-1].data.cpu()) labels.append(target_labels.data.cpu()) overall_split.append(split) if skip_flag and i > 50: break pbar.update() return vgg_features_target, node_features_target, labels, overall_split
# Generated by Django 3.2.5 on 2021-07-22 08:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('alumni', '0002_auto_20210721_2315'), ] operations = [ migrations.AlterModelOptions( name='studentsheet', options={'verbose_name': '学生表单', 'verbose_name_plural': '导入学生表单'}, ), migrations.AddField( model_name='studentsheet', name='hasBeenProceeded', field=models.BooleanField(default=False), ), ]
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """Handle cancel and help intents.""" from botbuilder.core import BotTelemetryClient, NullTelemetryClient from botbuilder.dialogs import ( ComponentDialog, DialogContext, DialogTurnResult, DialogTurnStatus, ) from botbuilder.schema import ActivityTypes class CancelAndHelpDialog(ComponentDialog): """Implementation of handling cancel and help.""" def __init__( self, dialog_id: str, telemetry_client: BotTelemetryClient = NullTelemetryClient(), ): super(CancelAndHelpDialog, self).__init__(dialog_id) self.telemetry_client = telemetry_client async def on_begin_dialog( self, inner_dc: DialogContext, options: object ) -> DialogTurnResult: result = await self.interrupt(inner_dc) if result is not None: return result return await super(CancelAndHelpDialog, self).on_begin_dialog(inner_dc, options) async def on_continue_dialog(self, inner_dc: DialogContext) -> DialogTurnResult: result = await self.interrupt(inner_dc) if result is not None: return result return await super(CancelAndHelpDialog, self).on_continue_dialog(inner_dc) async def interrupt(self, inner_dc: DialogContext) -> DialogTurnResult: """Detect interruptions.""" if inner_dc.context.activity.type == ActivityTypes.message: text = inner_dc.context.activity.text.lower() if text in ("help", "?"): await inner_dc.context.send_activity("Show Help...") return DialogTurnResult(DialogTurnStatus.Waiting) if text in ("cancel", "quit"): await inner_dc.context.send_activity("Cancelling") return await inner_dc.cancel_all_dialogs() return None
import unittest from lexer.token import Token, TokenType, TokenError class TestToken(unittest.TestCase): def test_identifier_token_creation(self): token_inputs = (TokenType.IDENTIFIER, 'ID', '[a-zA-Z_][a-zA-Z0-9_]*') token = Token(*token_inputs) self._test_token_creation(token, token_inputs) def test_keyword_token_creation(self): token_inputs = (TokenType.KEYWORD, 'FUNCTION', 'function') token = Token(*token_inputs) self._test_token_creation(token, token_inputs) def test_separator_token_creation(self): token_inputs = (TokenType.SEPARATOR, 'LPAREN', '(') token = Token(*token_inputs) self._test_token_creation(token, token_inputs) def test_operator_token_creation(self): token_inputs = (TokenType.OPERATOR, 'PLUS', '+') token = Token(*token_inputs) self._test_token_creation(token, token_inputs) def test_string_literal_token_creation(self): token_inputs = (TokenType.LITERAL, 'STRING', '[a-zA-Z_][a-zA-Z0-9_]*') token = Token(*token_inputs) self._test_token_creation(token, token_inputs) def test_numeric_literal_token_creation(self): token_inputs = (TokenType.LITERAL, 'NUMBER', '\d+') token = Token(*token_inputs) self._test_token_creation(token, token_inputs) def test_token_creation_with_invalid_token_type(self): with self.assertRaises(TokenError): Token(123, 'ID', 'something') def test_token_creation_with_empty_token_type(self): with self.assertRaises(TokenError): Token(None, 'ID', 'something') def test_token_creation_with_empty_name(self): with self.assertRaises(TokenError): Token(TokenType.LITERAL, None, 'something') def test_token_creation_with_empty_value(self): with self.assertRaises(TokenError): Token(TokenType.LITERAL, 'ID', None) def _test_token_creation(self, token, token_inputs): (token_type, name, value) = token_inputs self.assertEqual(token.token_type, token_type) self.assertEqual(token.name, name) self.assertEqual(token.value, value) self.assertEqual(str(token), f'{name}:{token_type.name}="{value}"')
""" pyProm: Copyright 2018. This software is distributed under a license that is described in the LICENSE file that accompanies it. """ from pyprom.lib.containers.multipoint import MultiPoint from pyprom.lib.locations.saddle import Saddle def generate_MultiPoint(x, y, xSpan, ySpan, datamap, elevation, excludeBGPC=[]): """ Generate a rectangular MultiPoint, with the ability to exclude points. :param x: upper x coordinate :param y: upper y coordinate :param xSpan: span on x axis :param ySpan: span on y axis :param datamap: :class:`Datamap` :param elevation: elevation :param excludeBGPC: [BaseGridPointContainer, BaseGridPointContainer...] points to remove from MultiPoint :return: :class:`MultiPoint` """ mpBlock = [] for xx in range(x, x + xSpan): for yy in range(y, y + ySpan): # leave these ones out, they're our islands. mpBlock.append((xx, yy)) mp = MultiPoint(mpBlock, elevation, datamap) for excluded in excludeBGPC: for point in excluded.points: mp.points.remove(point.to_tuple()) return mp def generate_multipoint_saddle(x, y, xSpan, ySpan, datamap, elevation, islands=[], perimeterHighNeighborhoods=1): """ Generate a rectangular MultiPoint Saddle, with the ability to exclude points (islands). and generate highPerimeterNeighborhoods on the Perimeter. :param x: upper x coordinate :param y: upper y coordinate :param xSpan: span on x axis :param ySpan: span on y axis :param datamap: :class:`Datamap` :param elevation: elevation :param islands: [BaseGridPointContainer, BaseGridPointContainer...] islands to remove from multipoint. islands will be elevation of mp +1 DO NOT MAKE AN ISLAND MORE THAN 2 POINTS WIDE. This function is not designed to be smart in any way. :param perimeterHighNeighborhoods: number of perimeter highPerimeterNeighborhoods to make up. :return: :class:`MultiPoint` """ mp = generate_MultiPoint(x, y, xSpan, ySpan, datamap, elevation, excludeBGPC=islands) saddle = Saddle(x, y, elevation) saddle.multipoint = mp islandGPCs = [] for island in islands: islandGridPoints = [] for islandPoint in island: islandGridPoints.append((islandPoint.x, islandPoint.y, elevation + 1)) islandGPCs.append(islandGridPoints) highPerimeter = [] # Dumb highPerimeterNeighborhood generator. One point along y axis. Since # this is for testing, make sure not to set `perimeterHighNeighborhoods` # to more than the ySpan + 2. Again, this is dumb. for highPerimeterNeighborhoodIdx in range(perimeterHighNeighborhoods): hs = (x - 1, y - 1 + highPerimeterNeighborhoodIdx, elevation + 1) highPerimeter.append([hs]) saddle.highPerimeterNeighborhoods = islandGPCs + highPerimeter return saddle
from __future__ import unicode_literals from ..elements.elementbase import LogicElement, Attribute from ..filter import MoyaFilter, MoyaFilterExpression class Filter(LogicElement): """ Define a [i]filter[/i], which may be used in expressions. Here's an example of a filter: [code xml] <filter name="repeat"> <return-str>${str:value * count}</return-str> </filter> [/code] And here is how you might use it in an expression: [code xml] <echo>${"beetlejuice "|repeat(count=3)}</echo> [/code] """ class Help: synopsis = "define a filter" name = Attribute("Filter name", required=True) value = Attribute("Value name", default="value", required=False) expression = Attribute("Expression", type="function", required=False, default=None) missing = Attribute( "Allow missing values?", type="boolean", default=False, required=False ) def lib_finalize(self, context): validator = None for signature in self.children("signature"): validator = signature.get_validator(context) expression = self.expression(context) value_name = self.value(context) allow_missing = self.missing(context) if expression is not None: _filter = MoyaFilterExpression( expression, value_name, allow_missing=allow_missing ) else: _filter = MoyaFilter( self.lib, self.libid, value_name, allow_missing=allow_missing, validator=validator, ) self.lib.register_filter(self.name(context), _filter)
# # C O N S T A N T S # # Various constants # This is just the text that will be placed on the visible treatment plan SPRAYER_NAME = "" # Names for the attributes # Some of these are a bit redundant and are there for backwards compatibility NAME_AREA = "area" NAME_TYPE = "type" NAME_LOCATION = "location" NAME_CENTER = "center" NAME_CONTOUR = "contour" NAME_SHAPE_INDEX = "shape_index" NAME_RATIO = "lw_ratio" NAME_IMAGE = "image" NAME_REASON = "reason" NAME_SIZE_RATIO = "size_ratio" NAME_BLUE = "blue" NAME_DISTANCE = "distance" NAME_DISTANCE_NORMALIZED = "normalized_distance" NAME_NAME = "name" NAME_NUMBER = "number" NAME_HEIGHT = "height" NAME_NEIGHBOR_COUNT = "neighbors" NAME_HUE = "hue" NAME_HUE_MEAN = "hue_mean" NAME_HUE_STDDEV = "hue_stddev" NAME_SATURATION = "saturation_mean" NAME_SATURATION_STDEV = "saturation_stddev" NAME_I_YIQ = "in_phase" NAME_I_MEAN = "in_phase_mean" NAME_I_STDDEV = "in_phase_stddev" NAME_Q_MEAN = "quadrature_mean" NAME_Q_STDDEV = "quadrature_stddev" NAME_BLUE_DIFFERENCE = "cb_mean" NAME_BLUE_DIFFERENCE_MEAN = "cb_mean" NAME_BLUE_DIFFERENCE_STDEV = "cb_stddev" NAME_RED_DIFFERENCE_MEAN = "cr_mean" NAME_RED_DIFFERENCE_STDEV = "cr_stddev" NAME_COMPACTNESS = "compactness" NAME_ELONGATION = "elongation" NAME_ECCENTRICITY = "eccentricity" NAME_ROUNDNESS = "roundness" NAME_CONVEXITY = "convexity" NAME_SOLIDITY = "solidity" # Temporary NAME_CROP_SCORE = "score" # A shortcut used for the command line NAME_ALL = "all" NAME_NONE = "none" names = [NAME_AREA, NAME_TYPE, NAME_LOCATION, NAME_CENTER, NAME_CONTOUR, NAME_SHAPE_INDEX, NAME_RATIO, NAME_IMAGE, NAME_REASON, NAME_HUE_MEAN, NAME_SATURATION] # REASONS why things were scored the way they were REASON_UNKNOWN = 0 REASON_AT_EDGE = 1 REASON_SIZE_RATIO = 2 REASON_LOGISTIC_REGRESSION = 3 REASON_KNN = 4 REASON_DECISION_TREE = 5 REASON_RANDOM_FOREST = 6 REASON_GRADIENT = 7 REASONS = ["Unknown", "At Edge", "Size", "Logistic", "KNN", "Decision Tree", "Random Forest", "Gradient"] # TYPES of vegetation TYPE_DESIRED = 0 TYPE_UNDESIRED = 1 TYPE_UNTREATED = 2 TYPE_IGNORED = 3 TYPE_UNKNOWN = 4 TYPES = ["Desired", "Undesired", "Untreated", "Ignored", "Unknown"] # Items contained in performance csv for analysis PERF_ANGLES = "angles" PERF_ACQUIRE = "acquire" PERF_CLASSIFY = "classify" PERF_CONTOURS = "contours" PERF_INDEX = "index" PERF_LW_RATIO = "LWRatio" PERF_OVERLAP = "overlap" PERF_REGRESSION = "regression" PERF_SHAPES = "shapes" PERF_TREATMENT = "treatment" PERF_COLORS = "colors" PERF_HSI = "hsi" PERF_HSV = "hsv" PERF_YIQ = "yiq" PERF_YCC = "ycc" PERF_MEAN = "mean" PERF_STDDEV = "stddev" PERF_COMPACTNESS= "compactness" PERF_TITLE_ACTIVITY = "activity" PERF_TITLE_MILLISECONDS = "milliseconds" COLOR_TREATMENT_GRID = (0,255,0) COLOR_TREATMENT_WEED = (0,0,255) SIZE_TREATMENT_LINE = 4 # Properties PROPERTY_PIXELS_PER_MM = "PIXELS-PER-MM"
#import numpy as np import neworder as no print(no.__version__) no.verbose() class Test(no.Model): def __init__(_self, timeline): super().__init__(timeline, no.MonteCarlo.deterministic_identical_stream) m = no.Model(no.NoTimeline(), no.MonteCarlo.deterministic_identical_stream) t = no.NoTimeline() print(t) print(m.timeline) # base class print(m.mc) print(m.mc.ustream(10)) #m = Test() no.run(m)
from rest_framework.serializers import ModelSerializer from watch.models import Score class ScoreSerializer(ModelSerializer): class Meta: model = Score fields = "__all__"
import logging import os,site,importlib, inspect from flare.config import conf from flare.views.view import View sitepackagespath = site.getsitepackages()[0] def generateView( view:View, moduleName, actionName, name = None, data = () ): instView = view() instView.params = { "moduleName":moduleName, "actionName":actionName, "data":data } if name: instView.name = name else: instView.name = moduleName + actionName return instView def addView(view:View,name=None): ''' add a View and make it available ''' logging.debug("addView: %r, %r", view, name) instView = view() if not name: name = instView.name conf["views_registered"].update({name:instView}) def updateDefaultView(name): conf[ "views_default" ] = name def removeView(name,targetView=None): #try: del conf[ "views_registered" ][name] if not targetView: targetView = conf["views_default"] conf[ "views_state" ].updateState( "activeView", targetView ) #switch to default View #except:pass def registerViews(path): ''' add all Views in a folder ''' rootModule = path.replace(sitepackagespath,"").replace("/",".")[1:] for viewFile in os.listdir(path): logging.debug("found view_ %r", viewFile) if viewFile == "__init__.py" or not viewFile.endswith( ".py" ): continue viewFile = viewFile[:-3] if viewFile in conf["views_blacklist"]: continue try: _import = importlib.import_module("%s.%s"%(rootModule,viewFile)) for _name in dir( _import ): if _name.startswith( "_" ): continue _symbol = getattr( _import, _name ) if inspect.isclass(_symbol) and issubclass(_symbol,View) and _name != View.__name__: addView(_symbol) except Exception as err: logging.error( "Unable to import View from '%s'" % viewFile ) logging.exception(err) raise
import pytest @pytest.mark.asyncio async def test_video_info(client): video = await client.video("fLAcgHX160k") assert video.title == "The Advent of Omegaα"
from napari.plugins.io import read_data_with_plugins def read_image(imagefile): data, _ = read_data_with_plugins(imagefile) return data data = read_image("/Users/cjw/Desktop/RGB11/MeOH-QS-002.tif") data2 = read_image("Data/test.nd2") print(data[0][0].shape, data[0][0].mean(axis=(1,2))) print(data2[0][0].shape, data2[0][0].mean(axis=(1,2)))
""" Note: Implemented with old implementation of remove_outliers. """ # packages import sys import os import numpy as np sys.path.insert(0, os.path.abspath("../src/ssh-kd")) from plugin.seg import remove_outliers, helper_object_points from utils.data_prep import read_file, get_outliers # hidding the warnings import warnings warnings.filterwarnings('ignore') # Clustering from sklearn.cluster import DBSCAN import matplotlib.pyplot as plt def plot_g(x,y,xlim,ylim,filename,c=False,centroid=False): """ Plot the points using matplotlib. params: x = x points y = y points xlim = (x_max,x_min) xrange limits for plots ylim = (y_max,y_min) yrange limits for plots c = colors if avaliable else False centroid = centre point (lidar position) return: plot is plotted """ fig = plt.figure(figsize=(20, 20), dpi= 80, facecolor='w', edgecolor='k') ax = fig.gca() if c: plt.scatter(x, y, s=4, c=c) else: plt.scatter(x, y, s=4) if centroid: plt.scatter(0, 0, s=400, c="red") plt.grid() plt.xlim(xlim[0], xlim[1]) plt.ylim(ylim[0], ylim[1]) # plt.show() plt.savefig(filename) def _cluster(X_): """ cluster using dbscan. params: X_ = list of x,y point return: lables """ clustering = DBSCAN(eps=1, min_samples=8).fit(X_) labels = clustering.labels_ return labels def format_data(df): """ format data for cluster input. params: df = dataframe with transform _x,_y return: numpy array of x,y point """ return np.array(list(zip(np.array(df["_x"]),np.array(df["_y"])))) def normalize(df): """ Normalize the point using min_max normalizer. params: df = dataframe with transform _x,_y return: df with normalized _x,_y points """ df['_x'] = (df['_x']-df['_x'].min())/(df['_x'].max()-df['_x'].min()) df['_y'] = (df['_y']-df['_y'].min())/(df['_y'].max()-df['_y'].min()) return df def project(df, d, view): """ Project with prespective projections. formula: x' = x*d/z y' = y*d/z params: df = dataframe with with x,y,z points d = distance of prespective projection view = w.r.t X , w.r.t Z return: df with transformed _x,_y points in df """ v= "X" if view == "X" else "Z" z= "X" if view == "Z" else "Z" df['_x'] = ((df[z]/df[v])*d) df['_y'] = ((df['Y']/df[v])*d) return df def get_data(object_type,object,num_scenes): """ Load the data from dataset and apply ground removal and outlinear removal. params: object_type = train or test object = Name of the object return: dataframe of the data """ dataset_dir = "../src/dataset/train" # Create the outliers get_outliers(dataset_dir) # Creating the path for the object object_path = "../{}/{}/in.csv".format("src/dataset/{}".format(object_type), object) # read in the object of choice dataframes = read_file(object_path, num_scenes) # remove the outliers no_outliers = remove_outliers(dataframes, num_scenes, '../src/ssh-kd/data/outliers.pkl') # get the object points return no_outliers if __name__=="__main__": for dir_ in os.listdir('../src/dataset/train): # Experimenting with train data' no_outliers = get_data("train",dir_, num_scenes=50) for each_scn in range(len(no_outliers)): # Get Each scene and work on it, scene selected 6 scene_df = helper_object_points(no_outliers[each_scn], 4) # Apply projection proj_df = project(scene_df, 5,view="Z") # Apply normalization proj_df = normalize(proj_df) # Plot the transformation try: os.makedirs('../src/projection/'+dir_+'/') except: pass plot_g(7*proj_df['_x'],3*proj_df['_y'],(-35,35),(-15,15),'../src/projection/'+dir_+'/'+str(each_scn)+'.png')
# -*- coding: utf-8 -*- # ========================================================================== # Copyright (C) since 2020 All rights reserved. # # filename : hello_world.py # author : chendian / okcd00@qq.com # date : 2020-05-16 # desc : # ========================================================================== print("hello world.")
import elbus_async import asyncio async def main(): name = 'test.client.python.async_sender' bus = elbus_async.client.Client('/tmp/elbus.sock', name) await bus.connect() # send a regular message result = await bus.send('test.client.python.async', elbus_async.client.Frame('hello')) print(hex(await result.wait_completed())) # send a broadcast message result = await bus.send( 'test.*', elbus_async.client.Frame('hello everyone', tp=elbus_async.client.OP_BROADCAST)) print(hex(await result.wait_completed())) # publish to a topic with zero QoS (no confirmation required) await bus.send( 'test/topic', elbus_async.client.Frame('something', tp=elbus_async.client.OP_PUBLISH, qos=0)) asyncio.run(main())
# weight/forms.py # Jake Malley # 03/02/15 """ Defines the forms used in the weight blueprint. """ # Imports from flask_wtf import Form from wtforms import DecimalField from wtforms.validators import DataRequired, NumberRange class AddWeightForm(Form): """ Form for users to add weight. """ # Decimal field for the weight. weight = DecimalField('weight', validators=[DataRequired(), NumberRange(min=0,max=200)])
print(min(a, b, c))
import mock from datetime import timedelta from tornado import gen from tornado.testing import gen_test from microproxy.test.utils import ProxyAsyncTestCase from microproxy.protocol.http2 import Connection from microproxy.context import HttpRequest, HttpResponse, HttpHeaders class TestConnection(ProxyAsyncTestCase): def setUp(self): super(TestConnection, self).setUp() self.asyncSetUp() self.request = None self.response = None self.settings = None self.window_updates = None self.priority_updates = None self.push = None self.reset = None @gen_test def asyncSetUp(self): self.client_stream, self.server_stream = yield self.create_iostream_pair() self.addCleanup(self.client_stream.close) self.addCleanup(self.server_stream.close) def on_request(self, stream_id, request, priority_updated): self.request = (stream_id, request) def on_response(self, stream_id, response): self.response = (stream_id, response) def on_settings(self, settings): self.settings = settings def on_window_updates(self, stream_id, delta): self.window_updates = (stream_id, delta) def on_priority_updates(self, stream_id, depends_on, weight, exclusive): self.priority_updates = dict( stream_id=stream_id, depends_on=depends_on, weight=weight, exclusive=exclusive) def on_push(self, pushed_stream_id, parent_stream_id, request): self.push = dict( pushed_stream_id=pushed_stream_id, parent_stream_id=parent_stream_id, request=request) def on_reset(self, stream_id, error_code): self.reset = (stream_id, error_code) @gen_test def test_on_request(self): client_conn = Connection(self.client_stream, client_side=True) client_conn.initiate_connection() client_conn.send_request( client_conn.get_next_available_stream_id(), HttpRequest(headers=[ (":method", "GET"), (":path", "/"), ("aaa", "bbb")])) server_conn = Connection( self.server_stream, client_side=False, on_request=self.on_request, on_settings=self.on_settings) server_conn.initiate_connection() yield server_conn.read_bytes() self.assertIsNotNone(self.request) _, request = self.request self.assertEqual(request.headers, HttpHeaders([ (":method", "GET"), (":path", "/"), ("aaa", "bbb")])) self.assertEqual(request.method, "GET") self.assertEqual(request.path, "/") self.assertEqual(request.version, "HTTP/2") @gen_test def test_on_response(self): client_conn = Connection( self.client_stream, client_side=True, on_response=self.on_response, on_unhandled=mock.Mock()) client_conn.initiate_connection() client_conn.send_request( client_conn.get_next_available_stream_id(), HttpRequest(headers=[ (":method", "GET"), (":path", "/"), ("aaa", "bbb")])) server_conn = Connection( self.server_stream, client_side=False, on_request=self.on_request, on_unhandled=mock.Mock()) server_conn.initiate_connection() yield server_conn.read_bytes() server_conn.send_response( self.request[0], HttpResponse( headers=[(":status", "200"), ("aaa", "bbb")], body=b"ccc")) yield client_conn.read_bytes() self.assertIsNotNone(self.response) _, response = self.response self.assertEqual(response.headers, HttpHeaders([ (":status", "200"), ("aaa", "bbb")])) self.assertEqual(response.code, "200") self.assertEqual(response.version, "HTTP/2") @gen_test def test_on_settings(self): client_conn = Connection( self.client_stream, client_side=True, on_unhandled=mock.Mock()) client_conn.initiate_connection() server_conn = Connection( self.server_stream, client_side=False, on_settings=self.on_settings) server_conn.initiate_connection() yield server_conn.read_bytes() # NOTE: h11 initiate_connection will send default settings self.assertIsNotNone(self.settings) self.settings = None client_conn.send_update_settings({ 4: 11111, 5: 22222}) yield server_conn.read_bytes() self.assertIsNotNone(self.settings) new_settings = {id: cs.new_value for (id, cs) in self.settings.iteritems()} self.assertEqual(new_settings, {4: 11111, 5: 22222}) @gen_test def test_on_window_updates(self): client_conn = Connection( self.client_stream, client_side=True, on_unhandled=mock.Mock()) client_conn.initiate_connection() client_conn.send_window_updates( 0, 100) server_conn = Connection( self.server_stream, client_side=False, on_settings=self.on_settings, on_window_updates=self.on_window_updates) server_conn.initiate_connection() yield server_conn.read_bytes() self.assertIsNotNone(self.window_updates) self.assertEqual(self.window_updates, (0, 100)) @gen_test def test_on_priority_updates(self): client_conn = Connection( self.client_stream, client_side=True, on_unhandled=mock.Mock()) client_conn.initiate_connection() stream_id = client_conn.get_next_available_stream_id() client_conn.send_request( stream_id, HttpRequest(headers=[ (":method", "GET"), (":path", "/"), ("aaa", "bbb")])) client_conn.send_priority_updates( stream_id, 0, 10, False) server_conn = Connection( self.server_stream, client_side=False, on_priority_updates=self.on_priority_updates, on_unhandled=mock.Mock()) server_conn.initiate_connection() yield server_conn.read_bytes() self.assertIsNotNone(self.priority_updates) self.assertEqual( self.priority_updates, dict(stream_id=stream_id, depends_on=0, weight=10, exclusive=False)) @gen_test def test_on_pushed_stream(self): client_conn = Connection( self.client_stream, client_side=True, on_push=self.on_push, on_unhandled=mock.Mock()) client_conn.initiate_connection() client_conn.send_request( client_conn.get_next_available_stream_id(), HttpRequest(headers=[ (":method", "GET"), (":path", "/")])) server_conn = Connection( self.server_stream, client_side=False, on_request=self.on_request, on_unhandled=mock.Mock()) server_conn.initiate_connection() yield server_conn.read_bytes() stream_id, _ = self.request server_conn.send_pushed_stream( stream_id, 2, HttpRequest(headers=[ (":method", "GET"), (":path", "/resource")])) yield client_conn.read_bytes() self.assertIsNotNone(self.push) self.assertEqual(self.push["parent_stream_id"], 1) self.assertEqual(self.push["pushed_stream_id"], 2) self.assertEqual( self.push["request"].headers, HttpHeaders([ (":method", "GET"), (":path", "/resource")])) @gen_test def test_on_reset(self): client_conn = Connection( self.client_stream, client_side=True, on_reset=self.on_reset, on_unhandled=mock.Mock()) client_conn.initiate_connection() client_conn.send_request( client_conn.get_next_available_stream_id(), HttpRequest(headers=[ (":method", "GET"), (":path", "/")])) server_conn = Connection( self.server_stream, client_side=False, on_request=self.on_request, on_unhandled=mock.Mock()) yield server_conn.read_bytes() stream_id, _ = self.request server_conn.send_reset(stream_id, 2) yield client_conn.read_bytes() self.assertIsNotNone(self.reset) self.assertEqual(self.reset, (stream_id, 2)) @gen_test def test_on_terminate(self): client_conn = Connection( self.client_stream, client_side=True, on_unhandled=mock.Mock()) client_conn.initiate_connection() on_terminate = mock.Mock() server_conn = Connection( self.server_stream, client_side=False, on_terminate=on_terminate, on_unhandled=mock.Mock()) server_conn.initiate_connection() yield server_conn.read_bytes() client_conn.send_terminate() yield server_conn.read_bytes() on_terminate.assert_called_with(None, 0, 0) @gen_test def test_on_post_request(self): client_conn = Connection(self.client_stream, client_side=True) client_conn.initiate_connection() client_conn.send_request( client_conn.get_next_available_stream_id(), HttpRequest(headers=[ (":method", "POST"), (":path", "/"), ("aaa", "bbb")], body=b"aaaa")) server_conn = Connection( self.server_stream, client_side=False, on_request=self.on_request, on_settings=self.on_settings) server_conn.initiate_connection() yield server_conn.read_bytes() self.assertIsNotNone(self.request) _, request = self.request self.assertEqual(request.headers, HttpHeaders([ (":method", "POST"), (":path", "/"), ("aaa", "bbb")])) self.assertEqual(request.method, "POST") self.assertEqual(request.path, "/") self.assertEqual(request.version, "HTTP/2") self.assertEqual(request.body, b"aaaa") @gen_test def test_readonly(self): client_conn = Connection(self.client_stream, client_side=True, readonly=True) client_conn.initiate_connection() client_conn.send_request( client_conn.get_next_available_stream_id(), HttpRequest(headers=[ (":method", "GET"), (":path", "/"), ("aaa", "bbb")])) with self.assertRaises(gen.TimeoutError): yield gen.with_timeout( timedelta(milliseconds=100), self.server_stream.read_bytes(1)) def tearDown(self): self.client_stream.close() self.server_stream.close()
import pandas as __pd import datetime as __dt from seffaflik.__ortak.__araclar import make_requests as __make_requests from seffaflik.__ortak import __dogrulama as __dogrulama __first_part_url = "market/" def smf(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığı için saatlik sistem marjinal fiyatını (SMF) ve sistem yönünü vermektedir. Parametreler ---------- baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ------ Sistem Marjinal Fiyatı, Sistem Yönü """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = \ __first_part_url + "smp" + "?startDate=" + baslangic_tarihi + "&endDate=" + bitis_tarihi json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["smpList"]) df["Saat"] = df["date"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["date"].apply(lambda d: d[:10])) df.rename(index=str, columns={"price": "SMF", "smpDirection": "Sistem Yönü"}, inplace=True) df = df[["Tarih", "Saat", "SMF", "Sistem Yönü"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df def hacim(baslangic_tarihi=__dt.datetime.today().strftime("%Y-%m-%d"), bitis_tarihi=__dt.datetime.today().strftime("%Y-%m-%d")): """ İlgili tarih aralığı için dengeleme güç piyasası YAL/YAT talimat miktar bilgilerini vermektedir. Parametreler ---------- baslangic_tarihi : %YYYY-%AA-%GG formatında başlangıç tarihi (Varsayılan: bugün) bitis_tarihi : %YYYY-%AA-%GG formatında bitiş tarihi (Varsayılan: bugün) Geri Dönüş Değeri ------ YAL/YAT Talimat Miktarları (MWh) """ if __dogrulama.__baslangic_bitis_tarih_dogrulama(baslangic_tarihi, bitis_tarihi): try: particular_url = \ __first_part_url + "bpm-order-summary" + "?startDate=" + baslangic_tarihi + "&endDate=" + bitis_tarihi json = __make_requests(particular_url) df = __pd.DataFrame(json["body"]["bpmorderSummaryList"]) df["Saat"] = df["date"].apply(lambda h: int(h[11:13])) df["Tarih"] = __pd.to_datetime(df["date"].apply(lambda d: d[:10])) df.rename(index=str, columns={"net": "Net", "upRegulationZeroCoded": "YAL (0)", "upRegulationOneCoded": "YAL (1)", "upRegulationTwoCoded": "YAL (2)", "downRegulationZeroCoded": "YAT (0)", "downRegulationOneCoded": "YAT (1)", "downRegulationTwoCoded": "YAT (2)", "upRegulationDelivered": "Teslim Edilen YAL", "downRegulationDelivered": "Teslim Edilen YAT", "direction": "Sistem Yönü"}, inplace=True) df["Sistem Yönü"] = df["Sistem Yönü"].map( {"IN_BALANCE": "Dengede", "ENERGY_SURPLUS": "Enerji Fazlası", "ENERGY_DEFICIT": "Enerji Açığı"}) df = df[ ["Tarih", "Saat", "Net", "YAL (0)", "YAL (1)", "YAL (2)", "Teslim Edilen YAL", "YAT (0)", "YAT (1)", "YAT (2)", "Teslim Edilen YAT", "Sistem Yönü"]] except (KeyError, TypeError): return __pd.DataFrame() else: return df
# coding: utf8 import requests import json if __name__ == "__main__": # 指定用于匹配的文本并生成字典{"text_1": [text_a1, text_a2, ... ] # "text_2": [text_b1, text_b2, ... ]} text = { "text_1": ["这道题太难了", "这道题太难了", "这道题太难了"], "text_2": ["这道题是上一年的考题", "这道题不简单", "这道题很有意思"] } # 指定匹配方法为simnet_bow并发送post请求 url = "http://127.0.0.1:8866/predict/text/simnet_bow" r = requests.post(url=url, data=text) # 打印匹配结果 print(json.dumps(r.json(), indent=4, ensure_ascii=False))
import pandas as pd import numpy as np import math import random from keras.models import Sequential from keras.layers.core import Dense, Activation from keras.layers.recurrent import LSTM #% matplotlib inline import matplotlib.pyplot as plt random.seed(0) # 乱数の係数 random_factor = 0.05 # サイクルあたりのステップ数 steps_per_cycle = 80 # 生成するサイクル数 number_of_cycles = 50 # 入力の長さ length_of_sequences = 100 # 入力値・出力値の次元の大きさ in_out_neurons = 1 # 隠れ要素のニューロン数 hidden_neurons = 300 np_ary = np.arange(steps_per_cycle * number_of_cycles + 1); data = np.load(input("「株価データ.npy」を入力 : ")) arg_data = data[1:] / data[:len(data)-1] - 1 df = pd.DataFrame(arg_data, columns=["stock"]) #df = pd.DataFrame(np_ary, columns=["x"]) #pi_t = 2 * math.pi / steps_per_cycle #df["sin(x)"] = df.x.apply(lambda t: math.sin(t * pi_t + random.uniform(-1.0, +1.0) * random_factor)) df[["stock"]].head(steps_per_cycle * 2).plot() ################################################################ def Input_Ans_Extract(data, input_num = 100): InputList, AnsList = [], [] for i in range(len(data) - input_num): InputData = data.iloc[i:i+input_num].as_matrix() AnsData = data.iloc[i+input_num].as_matrix() InputList.append(InputData) AnsList.append(AnsData) InputList_np = np.array(InputList) AnsList_np = np.array(AnsList) return InputList_np, AnsList_np def Data_Split(df, test_size=0.1, input_num = 100): train_size = round(len(df) * (1 - test_size)) train_size = int(train_size) Input_train, Ans_train = Input_Ans_Extract(df.iloc[0:train_size], input_num) Input_test, Ans_test = Input_Ans_Extract(df.iloc[train_size:], input_num) return (Input_train, Ans_train), (Input_test, Ans_test) (Input_train, Ans_train), (Input_test, Ans_test) = Data_Split(df[["stock"]], input_num = length_of_sequences) ################################################################ model = Sequential() model.add(LSTM(hidden_neurons, batch_input_shape=(None, length_of_sequences, in_out_neurons), return_sequences=False)) model.add(Dense(in_out_neurons)) model.add(Activation("linear")) model.compile(loss="mean_squared_error", optimizer="rmsprop") model.fit(Input_train, Ans_train, batch_size=60, nb_epoch=3, validation_split=0.05) ################################################################ predicted = model.predict(Input_test) ################################################################ dataf = pd.DataFrame(predicted[:200]) dataf.columns = ["predict"] dataf.plot() dataf["answer"] = Ans_test[:200] dataf.plot() plt.show()
from numpy import inf, nan from sklearn.decomposition import TruncatedSVD as Op from lale.docstrings import set_docstrings from lale.operators import make_operator class _TruncatedSVDImpl: def __init__(self, **hyperparams): self._hyperparams = hyperparams self._wrapped_model = Op(**self._hyperparams) def fit(self, X, y=None): if y is not None: self._wrapped_model.fit(X, y) else: self._wrapped_model.fit(X) return self def transform(self, X): return self._wrapped_model.transform(X) _hyperparams_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "inherited docstring for TruncatedSVD Dimensionality reduction using truncated SVD (aka LSA).", "allOf": [ { "type": "object", "required": ["n_components", "algorithm", "n_iter", "random_state", "tol"], "relevantToOptimizer": ["n_components", "algorithm", "n_iter", "tol"], "additionalProperties": False, "properties": { "n_components": { "type": "integer", "minimumForOptimizer": 2, "maximumForOptimizer": 256, "distribution": "uniform", "default": 2, "description": "Desired dimensionality of output data", }, "algorithm": { "enum": ["arpack", "randomized"], "default": "randomized", "description": "SVD solver to use", }, "n_iter": { "type": "integer", "minimumForOptimizer": 5, "maximumForOptimizer": 1000, "distribution": "uniform", "default": 5, "description": "Number of iterations for randomized SVD solver", }, "random_state": { "anyOf": [ {"type": "integer"}, {"laleType": "numpy.random.RandomState"}, {"enum": [None]}, ], "default": None, "description": "If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`.", }, "tol": { "type": "number", "minimumForOptimizer": 1e-08, "maximumForOptimizer": 0.01, "distribution": "loguniform", "default": 0.0, "description": "Tolerance for ARPACK", }, }, } ], } _input_fit_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Fit LSI model on training data X.", "type": "object", "required": ["X", "y"], "properties": { "X": { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, "description": "Training data.", }, "y": {}, }, } _input_transform_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Perform dimensionality reduction on X.", "type": "object", "required": ["X"], "properties": { "X": { "type": "array", "items": {"type": "array", "items": {"type": "number"}}, "description": "New data.", } }, } _output_transform_schema = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Reduced version of X", "type": "array", "items": {"type": "array", "items": {"type": "number"}}, } _combined_schemas = { "$schema": "http://json-schema.org/draft-04/schema#", "description": "Combined schema for expected data and hyperparameters.", "documentation_url": "https://scikit-learn.org/0.20/modules/generated/sklearn.decomposition.TruncatedSVD#sklearn-decomposition-truncatedsvd", "import_from": "sklearn.decomposition", "type": "object", "tags": {"pre": [], "op": ["transformer"], "post": []}, "properties": { "hyperparams": _hyperparams_schema, "input_fit": _input_fit_schema, "input_transform": _input_transform_schema, "output_transform": _output_transform_schema, }, } TruncatedSVD = make_operator(_TruncatedSVDImpl, _combined_schemas) set_docstrings(TruncatedSVD)
config = dict( SUPPORTED_LANGUAGES = [ "de", "en", "fr", "it", "es", "ar", "tr", "el", "ru", "uk", "pl"], RECORDING_DURATION = 8.0, # not used SPEAKING_ANSWER_TIMEOUT = 2, #PRINTED_LANGUAGES = ["en", "de", "el", "tr", "ar"], SERIAL_PORT = "/dev/ttyACM0", API_ADRESS = "http://localhost:3030" )
import html with open('./app/app.py', 'r') as f: source = f.read() with open('./app/files/source.html', 'w') as f: f.write('<html><body><code><pre>' + html.escape(source) + '</pre></code></body></html>')
from django.contrib.auth.mixins import (UserPassesTestMixin, LoginRequiredMixin, PermissionRequiredMixin) from django.http import HttpResponse from django.shortcuts import redirect import re from design import models as design_model class PageableMixin(object): def get_context_data(self, **kwargs): context = super(PageableMixin, self).get_context_data(**kwargs) paginator = context['paginator'] context['page_all_count'] = paginator.count page_numbers_range = 5 # Display only 5 page numbers max_index = paginator.page_range[-1] page = self.request.GET.get('page') current_page = int(page) if page else 1 start_index = int((current_page - 1) / page_numbers_range) * page_numbers_range end_index = start_index + page_numbers_range if end_index >= max_index: end_index = max_index page_range = paginator.page_range[start_index:end_index] context['page_range'] = page_range return context class DataSearchFormMixin(object): def get_context_data(self, **kwargs): context = super(DataSearchFormMixin, self).get_context_data(**kwargs) context['data_search_form'] = self.data_search_form( q=self.request.GET.get('q') if self.request.GET.get('q') else '' ) if self.request.GET.get('q'): context['q'] = self.request.GET.get('q') return context class UserIsStaffMixin(UserPassesTestMixin): def test_func(self): return self.request.user.is_staff def dispatch(self, request, *args, **kwargs): if not self.request.user.is_staff: return redirect('design:home') user_test_result = self.get_test_func()() if not user_test_result: return HttpResponse('Wemix 관리자가 아닌 경우 접근을 불허합니다.') return super(UserPassesTestMixin, self).dispatch(request, *args, **kwargs) class DeliveryMixin(object): def check(self, request, serializer): # count 반드시 return delivery = 0 count = 1 price_d = 0 try: size = serializer.data['size'] paper = serializer.data['paper'] side = serializer.data['side'] deal = serializer.data['deal'].replace(',', '') amount = int(serializer.data['amount']) item = request.META['HTTP_REFERER'].split('/?item=')[-1] except: size = serializer['size'] paper = serializer['paper'] side = serializer['side'] deal = serializer['deal'].replace(',', '') amount = int(serializer['amount']) item = serializer['kind'] try: i = int(re.findall('\d+', deal)[-1]) except: i = None del_model = design_model.DeliveryPrice.objects.filter(kind=item) if del_model: if 'flyer' in item: count = i * amount if 'A' in size: price_d = del_model.get(size__icontains='A').sell delivery = round(float(price_d)* i * amount * 1.1) elif 'B' in size: price_d = del_model.get(size__icontains='B').sell delivery = round(float(price_d) * i * amount * 1.1) elif 'card' in item: price_d = del_model.get(kind='card').sell i = int(re.findall('\d+', deal)[-1])*amount if i <= 10500: delivery = round(float(price_d)*1.1) elif i <= 26000: count = 2 delivery = round(float(price_d)*count*1.1) else: count = 3 delivery = round(float(price_d)*count*1.1) return delivery, count, price_d
#!/usr/bin/env python """ Created by howie.hu at 2021/1/6. """ import ruia BANNER = f""" ✨ Write less, run faster({ruia.__version__}). __________ .__ .__ .__ .__ \______ \__ __|__|____ _____| |__ ____ | | | | | _/ | \ \__ \ / ___/ | \_/ __ \| | | | | | \ | / |/ __ \_ \___ \| Y \ ___/| |_| |__ |____|_ /____/|__(____ / /____ >___| /\___ >____/____/ \/ \/ \/ \/ \/ Available Objects : response : ruia.Response request : ruia.Request Available Functions : attr_field : Extract attribute elements by using css selector or xpath text_field : Extract text elements by using css selector or xpath fetch : Fetch a URL or ruia.Request """ # spider : ruia.Spider # r_help() : Tips for use
def estimate_home_value(size_in_sqft, number_of_bedrooms): #Assume all homes are worth at least $50,000 value = 50000 #adjust value estimate based on the size of the house value += (size_in_sqft*92) #Adjust the value estimate based on the number of bedrooms value += number_of_bedrooms*10000 return value # Estimate the value of our house: # - 5 bedrooms # - 3800 sqft # Actual value: $450,000 value = estimate_home_value(3800, 5) print("Estimated value:") print(value)
D=int(input()) print("Christmas"+" Eve"*(25-D))
# Kількість паліндромів # # Назвемо число паліндромом, якщо воно не змінюється при перестановці його цифр у зворотному порядку. Напишіть програму, яка за заданою кількістю K виводить кількість натуральних палиндромiв, що не перевищують K. # # ## Формат введення # # Визнач однина K (1≤K≤100000). # # ## Формат виведення # # Необхідно вивести кількість натуральних палиндромiв, що не перевищують K. # # ## Приклади # # ```bash # Тест 1 # Вхідні дані: # 1 # Виведення програми: # 1 # # Тест 2 # Вхідні дані: # 100 # Виведення програми: # 18 # # Тест 3 # Вхідні дані: # 10 # Виведення програми: # 9 # ``` # # ## Розв'язання k = int(input()) i = 1 ii = 0 while i <= k: a = i n = 0 while a > 0: z = a % 10 a //= 10 n *= 10 n += z if n == i: ii += 1 i += 1 print(ii)
import numpy as np from collections import defaultdict def pairwise_view(target_station, next_station, mismatch='error'): if target_station is None or next_station is None: return ValueError("The data is empty.") if target_station.shape != next_station.shape: return None # ValueError("Paired station mismatched") return ViewDefinition(y=target_station, x=next_station) def multipair_view(target_station, stations): """ Args: target_station: stations: Returns: """ assert all(target_station.shape == n_station.shape for n_station in stations) dt = np.hstack(stations) return ViewDefinition(y=target_station, x=dt) class View(object): def __init__(self): self.X = None self.y = None self.label = None self.view_metadata = defaultdict() def make_view(self, target_station, k_stations): return NotImplementedError def to_json(self): return NotImplementedError @classmethod def from_json(cls, json_file): return NotImplementedError class ViewDefinition: """ View definition format. """ def __init__(self, name=None, label=None, x=None, y=None): self.name = name self.label = label if isinstance(x, np.ndarray) and isinstance(y, np.ndarray): self.x = x self.y = y class ViewFactory: @staticmethod def get_view(view_type): if view_type == 'PairwiseView': return PairwiseView() class PairwiseView(View): def __init__(self, variable=None): self.__name__ = "PairwiseView" super(PairwiseView, self).__init__() self.variable = variable def make_view(self, target_station, k_stations): len_series = target_station.shape[0] # Check dimension mismatch. if not all([len_series == value.shape[0] for value in k_stations.values()]): raise ValueError("Dimension mismatch b/n target station and one of the k stations") tuples_list = [target_station] + list(k_stations.values()) dt = np.hstack(tuples_list) vw = ViewDefinition(name=self.__name__, label=k_stations.keys(), x=dt[:, 1:], y=dt[:, 0:1]) return vw def to_json(self): view_config = {"variable": self.variable} return view_config def from_json(cls, json_file): variable = json_file["variable"] pwv = PairwiseView(variable=variable) return pwv
from Jumpscale import j try: from mongoengine import connect except: j.builders.runtimes.python3.pip_package_install("mongoengine") from mongoengine import connect JSConfigClient = j.baseclasses.object_config class MongoEngineClient(JSConfigClient): _SCHEMATEXT = """ @url = jumpscale.MongoEngine.client name** = "default" (S) host = "localhost" (S) port = 27017 (ipport) username = "" (S) password_ = "" (S) alias = "" (S) db = "" (S) authentication_source = "" (S) authentication_mechanism = "" (S) ssl = False (B) replicaset = "" (S) """ def _init(self, **kwargs): kwargs = {} connect(**kwargs)
# Copyright 2016 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from typing import List from pants_test.backend.jvm.tasks.jvm_compile.base_compile_integration_test import BaseCompileIT from pants_test.backend.jvm.tasks.jvm_compile.zinc.zinc_compile_integration_base import ( BaseZincCompileIntegrationTest, ) class ZincCompileIntegration(BaseCompileIT, BaseZincCompileIntegrationTest): _EXTRA_TASK_ARGS: List[str] = []
"""Cirlces URLs""" # django from django.db import router from django.urls import path from django.urls.conf import include # Django REST framework from rest_framework.routers import DefaultRouter # views from .views import circles as circle_views from .views import memberships as membership_views router = DefaultRouter() router.register(r'circles',circle_views.CircleViewSet,basename='circles') router.register( r'circles/(?P<slug_name>[-a-zA-z0-0_]+)/members',membership_views.MembershipViewSet,basename='memberships' ) urlpatterns=[ path('',include(router.urls)) ]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2020/11/14 10:51 PM @Author : Caroline @File : 单机estimator实现 @Description : """ import tensorflow as tf from tensorflow import feature_column # from tensorflow.keras import layers # 1.15版本 # from tensorflow.python.feature_column import feature_column_v2 as fc # tf_single.enable_eager_execution() columns = [ 'id', 'click', 'hour', 'C1', 'banner_pos', 'site_id', 'site_domain', 'site_category', 'app_id', 'app_domain', 'app_category', 'device_id', 'device_ip', 'device_model', 'device_type', 'device_conn_type', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19', 'C20', 'C21', ] def fc_column(feature_name, hash_bucket_size, dtype=tf.string): f = feature_column.categorical_column_with_hash_bucket(feature_name, hash_bucket_size=hash_bucket_size, dtype=dtype) f1 = feature_column.embedding_column(f, 10) return f1 def fc_transform(feature_name, hash_bucket_size, dtype=tf.string): f = feature_column.categorical_column_with_hash_bucket(feature_name, hash_bucket_size=hash_bucket_size, dtype=dtype) f1 = feature_column.embedding_column(f, 4) feature_layer = tf.keras.layers.DenseFeatures([f1]) # feature_layer = tf.keras.layers.DenseFeatures([fc_column(feature_name, hash_bucket_size, dtype)]) return feature_layer feature_columns = [fc_column('device_ip', 100), fc_column('C1', 100, dtype=tf.int64)] ### Tensorflow have three levels of API: # Low level API: tf.reduce_sum, tf.matmul # Mid level API: layers, tf.keras.layers. ps: Dense, Concatenate, Customize a keras layers # 极大地解放了生产力,不用写底层算子操作 # High level API: Estimator. ps: Session and Graph # session: 拿到当前tennsorflow计算的session去跑op # tensorflow需要做图冻结,冻结完之后才开始计算 # Adavantages: without session, you can focus on model logic # Disadvantages: you have loss control with the model, Hooks--到达固定步数的时候做一些操作 # loss、auc等用低阶API,模型具体网络结构用中阶API # 返回一个函数 def input_fn(file_path): dataset = tf.data.experimental.make_csv_dataset(file_path, batch_size=8, column_names=columns, label_name='click', na_value="?", num_epochs=1) dataset = dataset.shuffle(500) # 打散数据集,参数越大混乱程度也越大 return dataset.make_one_shot_iterator().get_next() # 每次返回一个 batch size # canned estimator tf.logging.set_verbosity(tf.logging.INFO) # 打日志: DEBUG, INFO, WARN, ERROR, FATAL # estimator = tf.estimator.LinearClassifier(feature_columns=feature_columns) # estimator.train(input_fn=lambda: input_fn("../data/avazu-ctr-prediction/train"), steps=2000) # customized estimator自定义Estimator: # model_fn: 模型主体部分,定义了模型的三个部分 # features: dict of tensors # labels: tensor # mode: three modes. 模型训练的三个阶段 # params: 把一些参数放到模型里面去用,为了解耦 # model_dir: 模型训练结果存放的位置,包括event、checkpoint数据 # Event:给Tensorboard用的,用来画模型的相关指标 # Checkpoint:tensorflow的数据结构,指定模型全部的数据 # 正向传播有params # 反向传导有gradients,供模型计算的时候使用 # SavedModel:只保留params,供线上serving的时候使用 # 每次会检测是否有model_dir,检测是否有checkponts,如果有会load # load successful:模型一致才可 # load failure # config: 用RunConfig声明分布式的东西、checkpoint的一些逻辑等 # params: 写一些参数透传到model_fn def model_fn(features, labels, mode, params): # API拿到global_step值,单机无所谓,分布式有一些特殊逻辑的时候需要,比如,打一些日志 global_step = tf.train.get_global_step() device_ip = fc_transform('device_ip', 100)(features) C1 = fc_transform('C1', 100, dtype=tf.int32)(features) # C14 = fc_transform('C1', 100, dtype=tf_single.int32)(features) # 定义模型结构 with tf.variable_scope("ctr"): t1 = tf.keras.layers.Concatenate(axis=-1)([device_ip, C1]) t2 = tf.keras.layers.Dense(4, activation='relu')(t1) ctr_logits = tf.keras.layers.Dense(1)(t2) ctr_predicted_logit = tf.nn.sigmoid(ctr_logits) # Three Modes (Train, Eval, Predict) # Predict Spec, 3个mode共用的EstimatorSpec,根据需要返回什么往里填 # 做predict的时候不传label,也不需要label if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions={'ctr': ctr_predicted_logit}) # Eval Spec,定义一些评估指标 # estimator会自动的把summary merge到一起,在tensorboard展示 with tf.name_scope('loss'): # 计算 logits 与 label 的交叉熵 loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.cast(labels, tf.float32), logits=tf.squeeze(ctr_logits))) tf.summary.scalar('loss', loss) with tf.name_scope('accuracy'): ctr_acc = tf.metrics.accuracy(labels=labels, predictions=ctr_predicted_logit, name='ctr_acc') tf.summary.scalar('accuracy', ctr_acc[1]) with tf.name_scope('auc'): ctr_auc = tf.metrics.auc(labels=labels, predictions=ctr_predicted_logit, name='ctr_auc') tf.summary.scalar('auc', ctr_auc[1]) if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops={'accuracy/accuracy': ctr_acc}, evaluation_hooks=None) # 拿什么做eval_metric_ops,也会打到tensorboard # Train Spec: 涉及到模型更新操作 if params['optimizer'] == 'adadelta': optimizer = tf.train.AdadeltaOptimizer() else: optimizer = tf.train.AdamOptimizer() train_op = optimizer.minimize(loss, global_step=global_step) # Create a hook to print acc, loss & global step every 100 iter. train_hook_list = [] train_tensors_log = {'ctr_auc': ctr_auc[1], 'loss': loss, 'global_step': global_step} train_hook_list.append( tf.estimator.CheckpointSaverHook(save_steps=1000, checkpoint_dir="../model_dir/single_estimator")) train_hook_list.append(tf.train.LoggingTensorHook(tensors=train_tensors_log, every_n_iter=10)) # train_op实现真正的训练 if mode == tf.estimator.ModeKeys.TRAIN: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, training_hooks=[]) # 中间需要做什么操作的时候塞到training_hooks ### ESSM 模型结构 def model_fn_essm(features, labels, mode, params): # API拿到global_step值,单机无所谓,分布式有一些特殊逻辑的时候需要,比如,打一些日志 global_step = tf.train.get_global_step() device_ip = fc_transform('device_ip', 100)(features) C1 = fc_transform('C1', 100, dtype=tf.int32)(features) # C14 = fc_transform('C1', 100, dtype=tf_single.int32)(features) # 定义模型结构 with tf.variable_scope("ctr"): t1 = tf.keras.layers.Concatenate(axis=-1)([device_ip, C1]) t2 = tf.keras.layers.Dense(4, activation='relu')(t1) ctr_logits = tf.keras.layers.Dense(1)(t2) with tf.variable_scope("cvr"): t3 = tf.keras.layers.Concatenate(axis=-1)([device_ip, C1]) t4 = tf.keras.layers.Dense(4, activation='relu')(t3) cvr_logits = tf.keras.layers.Dense(1)(t4) ctr_predicted_logit = tf.nn.sigmoid(ctr_logits) cvr_predicted_logit = tf.nn.sigmoid(cvr_logits) # Three Modes (Train, Eval, Predict) # Predict Spec, 3个mode共用的EstimatorSpec,根据需要返回什么往里填 # 做predict的时候不传label,也不需要label if mode == tf.estimator.ModeKeys.PREDICT: return tf.estimator.EstimatorSpec(mode=mode, predictions={'cvr': cvr_predicted_logit}) # Eval Spec,定义一些评估指标 # estimator会自动的把summary merge到一起,在tensorboard展示 with tf.name_scope('loss'): # labels是个tensor,计算 logits 与 label 的交叉熵 ctr_cross_entropy = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.cast(labels[:, 0], tf.float32), logits=tf.squeeze(ctr_logits))) # 因为预测的 ctcvr = ctr * cvr,但是计算loss是在logits的基础、而不是prediction的基础上算的 ctcvr_cross_entropy = tf.keras.backend.binary_crossentropy(ctr_predicted_logit*cvr_predicted_logit, tf.cast(labels[:, 1], tf.float32)) loss = 1.0 * ctr_cross_entropy + 1.0 * ctcvr_cross_entropy # 权重相加 tf.summary.scalar('loss', loss) with tf.name_scope('accuracy'): ctr_acc = tf.metrics.accuracy(labels=labels[:, 0], predictions=ctr_predicted_logit, name='ctr_acc') tf.summary.scalar('ctr_acc', ctr_acc[1]) cvr_acc = tf.metrics.accuracy(labels=labels[:, 1], predictions=cvr_predicted_logit, name='cvr_acc') tf.summary.scalar('cvr_acc', cvr_acc[1]) with tf.name_scope('auc'): ctr_auc = tf.metrics.auc(labels=labels, predictions=ctr_predicted_logit, name='ctr_auc') tf.summary.scalar('ctr_auc', ctr_auc[1]) cvr_auc = tf.metrics.auc(labels=labels, predictions=cvr_predicted_logit, name='cvr_auc') tf.summary.scalar('cvr_auc', cvr_auc[1]) if mode == tf.estimator.ModeKeys.EVAL: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops={'accuracy/ctr_acc': ctr_acc, 'accuracy/cvr_acc': cvr_acc}, evaluation_hooks=None) # 拿什么做eval_metric_ops,也会达到tensorboard # Train Spec: 涉及到模型更新操作 if params['optimizer'] == 'adadelta': optimizer = tf.train.AdadeltaOptimizer() else: optimizer = tf.train.AdamOptimizer() train_op = optimizer.minimize(loss, global_step=global_step) # Create a hook to print acc, loss & global step every 100 iter. train_hook_list = [] train_tensors_log = {'ctr_auc': ctr_auc[1], 'cvr_auc': cvr_auc[1], 'loss': loss, 'global_step': global_step} train_hook_list.append( tf.estimator.CheckpointSaverHook(save_steps=1000, checkpoint_dir="../model_dir/single_estimator")) train_hook_list.append(tf.train.LoggingTensorHook(tensors=train_tensors_log, every_n_iter=10)) # train_op实现真正的训练 if mode == tf.estimator.ModeKeys.TRAIN: return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, training_hooks=[]) # 中间需要做什么操作的时候塞到training_hooks # Checkpoints # Need to talk three points: # 1, checkpoints structure; # 2, reload from a checkpoint as latest; # 3, checkpoints must share the same network structure # RunConfig:运行的时候的一些参数 # model_dir # save_summary_steps:summary writer往里面写summary,给Estimator使用 # save_checkpoints_secs:多少秒做一次checkpoint # save_checkpoints_steps:多少步做一次checkpoint,与上面只有一个生效 # keep_checkpoint_max:保留最近N个checkpoint # keep_checkpoint_every_n_hours:最近多少步保留checkpoint # log_step_count_steps:多少步打一次log # train_distribute:分布式相关 # eval_distribute:分布式相关 checkpointing_config = tf.estimator.RunConfig( save_checkpoints_secs=5, # Save checkpoints every * secs. keep_checkpoint_max=5, # Retain the 10 most recent checkpoints. ) estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir="../model_dir/single_estimator", config=checkpointing_config, params={'optimizer': 'estimator'}) # estimator.train(input_fn=lambda: input_fn("../data/avazu-ctr-prediction/train"), max_steps=20000) ### evaluate # metrics = estimator.evaluate(input_fn=lambda: input_fn("avazu-ctr-prediction/train", 10)) ### Now serving # 作为一个模型,什么时候生产出一个model # 训练阶段很多指标metrics是不准的,所以要做evaluation,模型是在evaluation阶段生成的 feature_spec = tf.feature_column.make_parse_example_spec(feature_columns) serving_input_receiver_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec) # Another way # def serving_input_receiver_fn(): # receiver_tensors = { # 'device_ip': tf.placeholder(tf.string, [None, 1]), # 'C1': tf.placeholder(tf.int64, [None, 1]), # } # # # Convert give inputs to adjust to the model. # # features = {"examples": tf_single.concat([receiver_tensors['device_ip'], receiver_tensors['C1']], axis=1)} # return tf.estimator.export.ServingInputReceiver(receiver_tensors=receiver_tensors, features=receiver_tensors) # EvalSpec: # eval和test数据集不一样 # throttle_secs 距离上一次evaluate间隔多久,单位s # exporters 生成一个模型的exporter best_exporter = tf.estimator.BestExporter(serving_input_receiver_fn=serving_input_receiver_fn, exports_to_keep=1) exporters = [best_exporter] # 调用serving_input_receiver_fn转成exporters存进去 tf.estimator.train_and_evaluate(estimator, train_spec=tf.estimator.TrainSpec( input_fn=lambda: input_fn("../data/avazu-ctr-prediction/train"), max_steps=10000), eval_spec=tf.estimator.EvalSpec( input_fn=lambda: input_fn("../data/avazu-ctr-prediction/train"), exporters=exporters, throttle_secs=10) ) ### another type to define serving,把模型读进来,放进到固定目录下 export_dir = estimator.export_savedmodel('../model_dir/single_estimator', serving_input_receiver_fn) # 用下面的命令检视模型,会声明inputs、outputs # saved_model_cli show --dir ./model_dir/single_estimator/1611506615 --tag_set serve --signature_def serving_default # saved_model_cli run --dir ./model_dir/single_estimator/1611506615 --tag_set serve --signature_def serving_default --input_examples 'examples=[{"C1":[12344],"device_ip":[b"1"]}]' import pandas as pd # Test inputs represented by Pandas DataFrame. inputs = pd.DataFrame({ 'device_ip': [b"12312342", b"12312343"], 'C1': [122, 145], }) # Convert input data into serialized Example strings. examples = [] for index, row in inputs.iterrows(): feature = {} for col, value in row.iteritems(): if col == "device_ip": feature[col] = tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) if col == "C1": feature[col] = tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) example = tf.train.Example(features=tf.train.Features(feature=feature)) examples.append(example.SerializeToString()) ### 实现线上serving # 把模型加载到内存 predict_fn = tf.contrib.predictor.from_saved_model(export_dir) # Make predictions. predictions = predict_fn({'examples': examples}) print(predictions) # docker run -t --rm -p 8501:8501 \ # -v "/Users/sierra/兼职/July/项目/avazu/model_dir/1588011605:/models/half_plus_two" \ # -e MODEL_NAME=half_plus_two \ # tensorflow/serving & # saved_model_cli show --dir ./model_dir/1589123597 --all # curl http://$(docker-machine ip default):8501/v1/models/half_plus_two/metadata # curl -d '{"instances":[{"C1": [12344], "device_ip":["1"]}]}' -X POST http://$(docker-machine ip default):8501/v1/models/half_plus_two:predict # curl -d '{"inputs":{"C1": [[12345]], "device_ip":[["2"]]}}' -X POST http://$(docker-machine ip default):8501/v1/models/half_plus_two:predict
from rest_framework import serializers from rest_framework.serializers import ModelSerializer, Serializer from django.contrib.auth import get_user_model User = get_user_model() class RegisterUserSerializer(ModelSerializer): class Meta: model = User fields = ["email", "username", "first_name", "last_name", "password"] extra_kwargs = { 'password': {'write_only': True} } def create(self, validated_data): user = User.objects.create_user(**validated_data) return user class UpdateUserProfileSerializer(ModelSerializer): class Meta: model = User fields = ["email", "username", "first_name", "last_name"] class PasswordChangeSerializer(Serializer): old_password = serializers.CharField(required=True) new_password = serializers.CharField(required=True)
import os from app import create_app config_name = os.getenv('APP_SETTINGS') app = create_app(config_name="development") if __name__ == '__main__': app.run()
#!/usr/bin/env python import argparse import base64 import hashlib import json import os import shutil import sys import time try: from urllib.request import urlopen, Request, HTTPError except ImportError: # python 2 from urllib2 import urlopen, Request, HTTPError _USER_CREDS = os.environ.get("READWRITE_USER", "") _KEY_CREDS = os.environ.get("READWRITE_API_KEY", "") BASE64_ENCODED_CREDENTIALS = base64.b64encode("{}:{}".format(_USER_CREDS, _KEY_CREDS).encode()).decode() _ARTIFACT_HOST_URL = "https://oss.sonatype.org/service/local/staging" _GROUP_ID = "io.envoyproxy.envoymobile" _ARTIFACT_ID = "envoy" _LOCAL_INSTALL_PATH = os.path.expanduser("~/.m2/repository/{directory}/envoy".format( directory=_GROUP_ID.replace(".", "/"), artifact_id=_ARTIFACT_ID)) def _resolve_name(file): file_name, file_extension = os.path.splitext(file) extension = file_extension[1:] if extension == "asc" or extension == "sha256": if file_name.endswith("pom.xml"): return ".pom", extension elif file_name.endswith("javadoc.jar"): return "-javadoc.jar", extension elif file_name.endswith("sources.jar"): return "-sources.jar", extension elif file_name.endswith(".aar"): return ".aar", extension elif file_name.endswith(".jar"): return ".jar", extension else: if file_name.endswith("pom"): return "", "pom" elif file_name.endswith("javadoc"): return "-javadoc", extension elif file_name.endswith("sources"): return "-sources", extension else: return "", extension def _install_locally(version, files): path = "{}/{}".format(_LOCAL_INSTALL_PATH, version) if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) for file in files: suffix, file_extension = _resolve_name(file) basename = "{name}-{version}{suffix}.{extension}".format( name=_ARTIFACT_ID, version=version, suffix=suffix, extension=file_extension ) shutil.copyfile(file, os.path.join(path, basename)) print("{file_name}\n{sha}\n".format(file_name=file, sha=_sha256(file))) def _urlopen_retried(request, max_retries=500, attempt=1, delay_sec=1): """ Retries a request via recursion. Retries happen after the provided delay. We do not exponentially back off. :param request: the request to be made :param max_retries: Number of retries to use, default is 500. The reason we are using such a high retry is because sonatype fails quite frequently :param attempt: The current attempt number for the request :param delay_sec: The delay before making a retried request :return: the response if successful, raises error otherwise """ try: return urlopen(request) except HTTPError as e: if max_retries > attempt and e.code >= 500: print( "[{retry_attempt}/{max_retries} Retry attempt] Retrying request after {delay}s." " Received error code {code}" .format( retry_attempt=attempt, max_retries=max_retries, delay=delay_sec, code=e.code )) time.sleep(delay_sec) return _urlopen_retried(request, max_retries, attempt + 1) elif max_retries <= attempt: print("Retry limit reached. Will not continue to retry. Received error code {}".format(e.code)) raise e else: raise e def _create_staging_repository(profile_id): try: url = os.path.join(_ARTIFACT_HOST_URL, "profiles/{}/start".format(profile_id)) data = { 'data': { 'description': '' } } request = Request(url) request.add_header("Authorization", "Basic {}".format(BASE64_ENCODED_CREDENTIALS)) request.add_header("Content-Type", "application/json") request.get_method = lambda: "POST" request.add_data(json.dumps(data)) response = json.load(_urlopen_retried(request)) staging_id = response["data"]["stagedRepositoryId"] print("staging id {} was created".format(staging_id)) return staging_id except Exception as e: raise e def _upload_files(staging_id, version, files, ascs, sha256): uploaded_file_count = 0 # aggregate all the files for uploading all_files = files + ascs + sha256 for file in all_files: # This will output "envoy", ".aar" for "envoy.aar print("Uploading file {}".format(file)) suffix, file_extension = _resolve_name(file) basename = "{name}-{version}{suffix}.{extension}".format( name=_ARTIFACT_ID, version=version, suffix=suffix, extension=file_extension ) artifact_url = os.path.join( _ARTIFACT_HOST_URL, "deployByRepositoryId/{}".format(staging_id), _GROUP_ID.replace('.', "/"), _ARTIFACT_ID, version, basename ) try: with open(file, "rb") as f: request = Request(artifact_url, f.read()) request.add_header("Authorization", "Basic {}".format(BASE64_ENCODED_CREDENTIALS)) request.add_header("Content-Type", "application/x-{extension}".format(extension=file_extension)) request.get_method = lambda: "PUT" _urlopen_retried(request) uploaded_file_count = uploaded_file_count + 1 except HTTPError as e: if e.code == 403: # Don't need to pipe to error since we are ignoring duplicated uploads print("Ignoring duplicate upload for {}".format(artifact_url)) else: raise e except Exception as e: raise e return uploaded_file_count def _close_staging_repository(profile_id, staging_id): url = os.path.join(_ARTIFACT_HOST_URL, "profiles/{}/finish".format(profile_id)) data = { 'data': { 'stagedRepositoryId': staging_id, 'description': '' } } try: request = Request(url) request.add_header("Authorization", "Basic {}".format(BASE64_ENCODED_CREDENTIALS)) request.add_header("Content-Type", "application/json") request.add_data(json.dumps(data)) request.get_method = lambda: "POST" _urlopen_retried(request) except Exception as e: raise e def _drop_staging_repository(staging_id, message): url = os.path.join(_ARTIFACT_HOST_URL, "bulk/drop") data = { 'data': { 'stagedRepositoryIds': [staging_id], 'description': message } } try: request = Request(url) request.add_header("Authorization", "Basic {}".format(BASE64_ENCODED_CREDENTIALS)) request.add_header("Content-Type", "application/json") request.add_data(json.dumps(data)) request.get_method = lambda: "POST" _urlopen_retried(request) except Exception as e: raise e def _release_staging_repository(staging_id): url = os.path.join(_ARTIFACT_HOST_URL, "bulk/promote") data = { 'data': { 'stagedRepositoryIds': [staging_id], 'description': '' } } try: request = Request(url) request.add_header("Authorization", "Basic {}".format(BASE64_ENCODED_CREDENTIALS)) request.add_header("Content-Type", "application/json") request.add_data(json.dumps(data)) request.get_method = lambda: "POST" _urlopen_retried(request) except Exception as e: raise e def _create_sha256_files(files): sha256_files = [] for file in files: sha256_file_name = "{}.sha256".format(file) sha256 = _sha256(file) sha256_file = open(sha256_file_name, 'w+') sha256_file.write(sha256) sha256_file.close() sha256_files.append(sha256_file_name) return sha256_files def _sha256(file_name): sha256 = hashlib.sha256() with open(file_name, 'rb') as file: for line in file.readlines(): sha256.update(line) return sha256.hexdigest() def _build_parser(): parser = argparse.ArgumentParser() parser.add_argument("--profile_id", required=False, help=""" The staging profile id of the sonatype repository target. This is the id in the sonatype web ui. The REST api is: curl -u {usr}:{psswrd} -H "Accept: application/json" https://oss.sonatype.org//nexus/service/local/staging/profile_repositories """) parser.add_argument("--version", default="LOCAL-SNAPSHOT", help=""" The version of the artifact to be published. `LOCAL-SNAPSHOT` is defaulted if the version is not set. This version should be consistent with the pom.xml provided. """) parser.add_argument("--local", nargs='?', const=True, default=False, help=""" For installing artifacts into local maven. For now, we only support installing to the path `~/.m2/repository/io/envoyproxy/envoymobile/` """) parser.add_argument("--files", nargs="+", required=True, help=""" Files to upload The checklist for Envoy Mobile files are: envoy.aar envoy-pom.xml envoy-sources.jar envoy-javadoc.jar """) parser.add_argument("--signed_files", nargs="+", required=False, help=""" Files to upload. Sonatype requires uploaded artifacts to be gpg signed GPG signed: envoy.aar.asc envoy-pom.xml.asc envoy-sources.jar.asc envoy-javadoc.jar.asc """) return parser if __name__ == "__main__": args = _build_parser().parse_args() version = args.version if args.local: _install_locally(version, args.files) else: staging_id = "" try: staging_id = _create_staging_repository(args.profile_id) except: sys.exit("Unable to create staging id") # Upload files using the staging_id, close the staging repository, and release # If an error occurs, we will attempt to drop the repository. The script will # need to be re-run to initiate another upload attempt try: print("Uploading files...") sha256_files = _create_sha256_files(args.files) uploaded_file_count = _upload_files(staging_id, version, args.files, args.signed_files, sha256_files) if uploaded_file_count > 0: print("Uploading files complete!") print("Closing staging repository...") _close_staging_repository(args.profile_id, staging_id) print("Closing staging complete!") print("Releasing artifact {}...".format(version)) _release_staging_repository(staging_id) print("Release complete!") else: print("No files were uploaded. Dropping staging repository...") _drop_staging_repository(staging_id, "droppng release due to no uploaded files") print("Dropping staging id {} complete!".format(staging_id)) except Exception as e: print(e) print("Unable to complete file upload. Will attempt to drop staging id: [{}]".format(staging_id)) try: _drop_staging_repository(staging_id, "droppng release due to error") sys.exit("Dropping staging id: [{}] successful.".format(staging_id)) except Exception as e: print(e) sys.exit("Dropping staging id: [{}] failed.".format(staging_id))
__version__ = "1.2" __author__ = "Chris Rae" __all__ = ["upload"] from upload import upload
import os import extenteten as ex import qnd import tensorflow as tf def def_ar_lm(): qnd.add_flag('cell_size', type=int, default=128) qnd.add_flag('num_unroll', type=int, default=16) qnd.add_flag('batch_size', type=int, default=64) qnd.add_flag('num_batch_threads', type=int, default=os.cpu_count()) qnd.add_flag('batch_queue_capacity', type=int, default=1024) def ar_lm(key, sentence, labels, *, char_embeddings): cell = tf.contrib.rnn.LayerNormBasicLSTMCell(qnd.FLAGS.cell_size) batch = tf.contrib.training.batch_sequences_with_states( key, input_sequences={ 'sentence': tf.gather(char_embeddings, sentence), 'labels': labels, }, input_context={}, input_length=None, initial_states={ 'c': tf.zeros([cell.state_size.c], tf.float32), 'h': tf.zeros([cell.state_size.h], tf.float32), }, num_unroll=qnd.FLAGS.num_unroll, batch_size=qnd.FLAGS.batch_size, num_threads=qnd.FLAGS.num_batch_threads, capacity=qnd.FLAGS.batch_queue_capacity) outputs, _ = tf.nn.state_saving_rnn( cell, tf.unstack(batch.sequences['sentence'], axis=1), sequence_length=batch.length, state_saver=batch, state_name=('c', 'h')) logits = batch_linear(outputs, ex.static_shape(char_embeddings)[0]) labels = batch.sequences['labels'] loss = sequence_labeling_loss(logits, labels, batch.length) return ( { 'key': key, 'labels': (tf.argmax(logits, axis=2) * tf.sequence_mask(batch.length, dtype=tf.int64)), }, loss, ex.minimize(loss), ) return ar_lm def batch_linear(h, output_size): assert ex.static_rank(h) == 3 shape = ex.static_shape(h) return ( tf.batch_matmul( h, tf.tile(tf.expand_dims(ex.variable([shape[2], output_size]), 0), [shape[0], 1, 1])) + ex.variable([output_size])) def sequence_labeling_loss(logits, labels, sequence_length=None): assert ex.static_rank(logits) == 3 assert ex.static_rank(labels) == 2 losses = tf.reshape( tf.nn.sparse_softmax_cross_entropy_with_logits( tf.reshape(logits, [-1, ex.static_shape(logits)[-1]]), tf.reshape(labels, [-1])), [-1, *ex.static_shape(labels)[1:]]) if sequence_length == None: return tf.reduce_mean(losses) mask = tf.sequence_mask(sequence_length, dtype=losses.dtype) return tf.reduce_sum(losses * mask) / tf.reduce_sum(mask)
# -*- coding: utf-8 -*- # # Copyright (c) 2012 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ''' A helper class to create an single instance of the redhat_support_lib API object. ''' from redhat_support_lib.api import API import redhat_support_tool.helpers.confighelper as confighelper import redhat_support_tool.helpers.version as version import logging __author__ = 'Keith Robertson <kroberts@redhat.com>' USER_AGENT = 'redhat-support-tool-%s' % (version.version) _api = None logger = logging.getLogger("redhat_support_tool.plugins.list_cases") def _make_api(): cfg = confighelper.get_config_helper() logger.log(logging.DEBUG, 'user(%s)' % cfg.get(option='user')) logger.log(logging.DEBUG, 'proxy_url(%s)' % cfg.get(option='proxy_url')) logger.log(logging.DEBUG, 'proxy_user(%s)' % cfg.get(option='proxy_user')) ''' logger.log(logging.DEBUG, 'password(%s)' % cfg.pw_decode(cfg.get(option='password'), cfg.get(option='user'))) logger.log(logging.DEBUG, 'proxy_password(%s)' % cfg.pw_decode( cfg.get(option='proxy_password'), cfg.get(option='proxy_user'))) ''' global _api if not _api: try: url = cfg.get(option='url') user = cfg.get(option='user') passwd = cfg.pw_decode(cfg.get(option='password'), cfg.get(option='user')) # ensure we have a userid if user == None or user == '': user = cfg.prompt_for_user() # ensure we have a password if passwd == None or passwd == '': passwd = cfg.prompt_for_password() if cfg.get(option='no_verify_ssl'): no_verify_ssl = True else: no_verify_ssl = False ssl_ca = cfg.get(option='ssl_ca') if url: _api = API(username=cfg.get(option='user'), password=cfg.pw_decode(cfg.get(option='password'), cfg.get(option='user')), url=url, proxy_url=cfg.get(option='proxy_url'), proxy_user=cfg.get(option='proxy_user'), proxy_pass=cfg.pw_decode(cfg.get(option='proxy_password'), cfg.get(option='proxy_user')), userAgent=USER_AGENT, no_verify_ssl=no_verify_ssl, ssl_ca=ssl_ca) else: _api = API(username=cfg.get(option='user'), password=cfg.pw_decode(cfg.get(option='password'), cfg.get(option='user')), proxy_url=cfg.get(option='proxy_url'), proxy_user=cfg.get(option='proxy_user'), proxy_pass=cfg.pw_decode(cfg.get(option='proxy_password'), cfg.get(option='proxy_user')), userAgent=USER_AGENT, no_verify_ssl=no_verify_ssl, ssl_ca=ssl_ca) except: # Ideally we could just get rid of this try: except: block as it # does absolutely nothing! raise return _api def get_api(): ''' A helper method to get the API object. ''' # Tell python we want the *global* version and not a # function local version. Sheesh. :( global _api if not _api: _api = _make_api() return _api def disconnect_api(): ''' Gracefully shutdown the API. ''' global _api if _api: _api.disconnect() _api = None
import win32api import win32gui import win32con import time import random from control.base_control import BaseControl import common.screen as screen RIGHT = 0 DOWN = 1 LEFT = 2 class ReplyMapCommon(BaseControl): _scranDirection = 0 # 0 → 1 ↓ 2← _nextScranDirection = 0 _isScranMap = False _need2FireBoss=False _isCenerBoss=True team1BattleMaxCount = 5 team2BattleMaxCount = 0 _useGameSelfAuto=True def __init__(self, interval): self.interval = interval _enemys = [ "enemy\\ship_z21_45_15_55_25.png", "enemy\\ship_z22_45_15_52_25.png", "enemy\\ship_z22_45_15_55_25.png", "enemy\\ship_z23_45_55_55_65.png", "enemy\\ship_z24_45_15_52_25.png", "enemy\\ship_z25_45_75_55_85.png", "enemy\\ship_z26_45_55_55_65.png", "enemy\\ship_z27_45_75_55_85.png", "enemy\\ship_z28_45_65_55_75.png", "enemy\\ship_z29_45_15_52_25.png", "enemy\\ship_z201_45_15_55_25.png", "enemy\\ship_h1_45_45_55_55.png", "enemy\\ship_h2_45_45_55_55.png", "enemy\\ship_h3_47_47_54_54.png", "enemy\\ship_q1_45_45_55_55.png", "enemy\\ship_q2_45_45_55_55.png", "enemy\\ship_q3_47_47_54_54.png", "enemy\\ship_q4_46_46_53_53.png", "enemy\\ship_q5_46_46_53_53.png", "enemy\\ship_y1_46_46_53_53.png", "enemy\\ship_y2_46_46_53_53.png", "enemy\\ship_y3_46_46_53_53.png", "enemy\\ship_y4_45_45_55_55.png", "enemy\\ship_y5_45_45_53_53.png", "enemy\\ship_z1_45_45_55_55.png", "enemy\\ship_z2_45_45_55_55.png", "enemy\\ship_z3_45_45_55_55.png", "enemy\\ship_z4_46_46_53_53.png", "enemy\\ship_z4_47_47_54_54.png", "enemy\\ship_z5_46_46_53_53.png", "enemy\\ship_z5_47_47_54_54.png", "enemy\\ship_z6_46_46_53_53.png", "enemy\\ship_z6_47_47_54_54.png", ] _boss = ["enemy\\boss_48_45_52_55.png", "enemy\\boss1_47_47_54_54.png", "enemy\\boss2_47_47_54_54.png", "enemy\\boss3_47_47_52_52.png", "enemy\\boss4_46_46_50_52.png", ] _exEnemys = [ ] _needRandomEnemyLocation=False def getEnemyLocation(self): imgs = self._exEnemys + self._enemys if self._needRandomEnemyLocation: random.shuffle(imgs) for i in range(len(imgs)): xylist = screen.matchResImgInWindow( self.getHandle(), imgs[i], 0.7) if len(xylist) > 0: print("getEnemyLocation",imgs[i]) return xylist return [] def getBossLocation(self): imgs = self._boss random.shuffle(imgs) for i in range(len(imgs)): xylist = screen.matchResImgInWindow( self.getHandle(), imgs[i], 0.7) if len(xylist) > 0: return xylist return [] def dragPerLeft(self): self.dragPer(10, 50, 80, 50) def dragPerRight(self): self.dragPer(80, 50, 10, 50) def dragPerUp(self): self.dragPer(50, 20, 50, 70) def dragPerLeftUp(self): self.dragPer(10, 20, 80, 70) def dragPerLeftDown(self): self.dragPer(10, 70, 80, 20) def dragPerRightUp(self): self.dragPer(80, 20, 10, 70) def dragPerRightDown(self): self.dragPer(80, 70, 10, 20) def dragPerDown(self): self.dragPer(50, 70, 50, 20) def resetMapPosition(self): if not self._isScranMap: winHash = "" while not screen.alikeHash(winHash, screen.winScreenHash(self.getHandle()), 0.8): winHash = screen.winScreenHash(self.getHandle()) self.dragPerLeftUp() self._needResetMap = False self._scranMapEnd = False self._scranDirection = 0 def setTeamPositionToSave(self): return True def onCanNotMove(self): self.scranDragMap() # self.scranDragMap() def scranDragMap(self): # 全图扫描 winHash = screen.winScreenHash(self.getHandle()) self._isScranMap = True if self._scranDirection == RIGHT: self.dragPerRight() if screen.alikeHash(winHash, screen.winScreenHash(self.getHandle()), 0.8): self._nextScranDirection = LEFT self._scranDirection = DOWN return return if self._scranDirection == DOWN: self.dragPerDown() # 换方向左右 if screen.alikeHash(winHash, screen.winScreenHash(self.getHandle()), 0.8): self._isScranMap = False # 扫完全图 return self._scranDirection = self._nextScranDirection return if self._scranDirection == LEFT: self.dragPerLeft() if screen.alikeHash(winHash, screen.winScreenHash(self.getHandle()), 0.8): self._nextScranDirection = RIGHT # 左边到尽头 下去后往右 self._scranDirection = DOWN return return _findEnemysMode=0 #0 点击 1拖拽 def setFindEnemysMode(self,val): self._findEnemysMode=val def findAndBattle(self): if self._teamNum == 1: self._need2FireBoss=True if self._team1BattleCount < self.team1BattleMaxCount: xylist = self.getEnemyLocation() minX = self.getPosX(15) # maxY=self.getPosY(80) resList = [] for point in xylist: if point[0] >= minX: resList.append(point) if len(resList) > 0 and not self.isSameWin(): x, y = resList[0] if self._findEnemysMode==0: self.leftClick(x, y) if self._findEnemysMode==1: cx = self.getPosX(50) cy = self.getPosY(50) self.drag(x, y, cx, cy) # 拖动不是一比一 大概是一半 time.sleep(2) self.drag(x, y, cx, cy) self.leftClick(cx, cy) time.sleep(5) else: if self.isSameWin(): self.onCanNotMove() self.resetMapPosition() self.scranDragMap() else: time.sleep(10) if self.setTeamPositionToSave(): self.switchTeam() self._teamNum = 2 if self._teamNum == 2: if self._team2BattleCount < self.team2BattleMaxCount: self._need2FireBoss=True xylist = self.getEnemyLocation() minX = self.getPosX(15) # maxY=self.getPosY(80) resList = [] for point in xylist: if point[0] >= minX: resList.append(point) if len(resList) > 0 and not self.isSameWin(): x, y = resList[0] if self._findEnemysMode==0: self.leftClick(x, y) if self._findEnemysMode==1: cx = self.getPosX(50) cy = self.getPosY(50) self.drag(x, y, cx, cy) # 拖动不是一比一 大概是一半 time.sleep(2) self.drag(x, y, cx, cy) self.leftClick(cx, cy) time.sleep(5) else: self.resetMapPosition() self.scranDragMap() else: if self._isCenerBoss and self._need2FireBoss: time.sleep(2) self.leftClickPer(50, 50) self._need2FireBoss=False xylist = self.getBossLocation() minX = self.getPosX(15) # maxY=self.getPosY(80) resList = [] for point in xylist: if point[0] >= minX: resList.append(point) if len(resList) > 0 :#and not self.isSameWin(): x, y = resList[0] self.leftClick(x, y) time.sleep(5) else: self.resetMapPosition() self.scranDragMap() def clickMap(self): pass def intoMap(self): pass def isAtHome(self): return False def isAtInMapReady(self): return self.clickMacthImg("onSelectTeam.png") _isNeedKeyMap=False def needUseKey(self): return self.matchResImgInWindow("usekey.png") def useKey(self): screen.setForegroundWindow(self.getHandle()) self.leftClickPer(65,70) _mapPoints = [ "map7/point_45_45_55_55.png", "map7/point2_45_45_55_55.png", "map7/point_45_38_55_55.png", ] def clickPoint(self): imgs = self._mapPoints for i in range(len(imgs)): xylist = screen.matchResImgInWindow( self.getHandle(), imgs[i], 0.8) if len(xylist) > 0: x, y = xylist[0] self.leftClick(x, y) time.sleep(10) if self.onGetItems(): # 防止点错 self.battleContinue() time.sleep(4) def run(self): self._team1BattleCount = 0 self._team2BattleCount = 0 self._team1MoveCount = 0 self._team2MoveCount = 0 self._teamNum = 1 win32gui.SetForegroundWindow(self.getHandle()) while self._isRun: if self._pause: time.sleep(3) continue # 底部菜单hash self.resetCusor() if self.isAtHome(): print("isAtHome") # self._team1BattleCount = 0 # self._team2BattleCount = 0 # self._team1MoveCount = 0 # self._team2MoveCount = 0 # self._teamNum = 1 self.clickMap() time.sleep(2) if self.isAtInMapReady(): print("isAtInMapReady True") self._team1BattleCount = 0 self._team2BattleCount = 0 self._team1MoveCount = 0 self._team2MoveCount = 0 self._teamNum = 1 self.intoMap() time.sleep(2) if self.onSelectTeam(): self.clickNeedLeaderCat() time.sleep(2) self.atTeamIntoMap() time.sleep(2) if self._isNeedKeyMap and self.needUseKey(): self.useKey() time.sleep(10) self.commonAction() if self.isInMap() and self._useGameSelfAuto: print("isInMap") self.clickPoint() self.findAndBattle() time.sleep(self.interval)
import unreal import re selected_assets = unreal.EditorUtilityLibrary.get_selected_assets() for sa in selected_assets: if sa.get_class().get_name() == "Material": textures = unreal.MaterialEditingLibrary.get_used_textures(sa) x = [] y = [] for texture in textures: sizeX = unreal.Texture2D.blueprint_get_size_x(texture) x.append(sizeX) sizeY = unreal.Texture2D.blueprint_get_size_y(texture) y.append(sizeY) texture_path = re.match(r"<Object ('.*?')", str(texture)).group(1) texture_name = texture_path.split("/")[-1].split(".")[-1].strip("'") print(f"{texture_name}: {sizeX}x{sizeY}") final_sizeX = sum(x) final_sizeY = sum(y) print(f"Total texture size: {final_sizeX}x{final_sizeY}")
# coding: utf-8 import logging from requests import exceptions, get from config import BASE_URL, HEADERS, TIMEOUT from config import GENERALES_SERVICE, COMUNA_SERVICE from config import PRODUCTION, Paso2015 # For testing with simulated data import json import io from config import SIMULATE, JSON_EXAMPLE_PATH log = logging.getLogger('paso.%s' % (__name__)) def get_data_API(url=None, fname=None): if PRODUCTION or not SIMULATE: log.debug("Get url %s" % (url)) try: response = get(url, headers=HEADERS, timeout=TIMEOUT, verify=False) except exceptions.RequestException, e: log.error("Exception in requests get %s. Reason %s" % (url, str(e))) raise Paso2015(__name__) if response.status_code == 200: return response.json() else: log.error("API responded with code %s" % (response.status_code)) raise Paso2015(__name__) else: log.warning('Simulating API data for url %s' % (url)) try: with io.open('%s/%s.json' % (JSON_EXAMPLE_PATH, fname), 'r') as f: j = json.loads(f.read(), encoding='utf8') return j except (IOError): log.error("Did not find JSON example file") raise Paso2015(__name__) def get_results_API(o_l=None): '''Loop to get all the needed results from the API''' # Loop through the needed API services by section for i in range(0, 16): # Get the results by section if not i: suffix = GENERALES_SERVICE else: suffix = COMUNA_SERVICE + "?id=%s" % (i) url = BASE_URL + suffix r = get_data_API(url, 'comuna%d' % (i)) o_l.append(r)
# -*- coding: utf-8 -*- print """<!DOCTYPE html> <html> <head> <title>TEST</title> </head> <body> <table width="100%" cellspacing="0" cellpadding="5" border="0"> <form method="GET" action="enviar" name="TheForm" > <tbody><tr> <td width="100%" bgcolor="#BDCBE4" align="center"> <table width="100%" cellspacing="0" cellpadding="3" bordercolor="#6379A8" border="1"> <tbody><tr> <td width="100%" bgcolor="#D7DFEE"><b><font size="2" face="Verdana"><i>&nbsp; <font color="#313E57">SELECCIONE UN ART�STA:</font></i></font></b> <table width="100%" cellspacing="0" cellpadding="2" border="0"> <tbody><tr> <td width="5%" align="left"><input value="1" name="encuesta" id="1" type="radio"></td> <td width="95%" align="left"><label for="1"><font size="2" face="Verdana">30 SECONDS TO MARS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="2" name="encuesta" id="2" type="radio"></td> <td width="95%" align="left"><label for="2"><font size="2" face="Verdana">5NFUSION</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="3" name="encuesta" id="3" type="radio"></td> <td width="95%" align="left"><label for="3"><font size="2" face="Verdana">A DISTANCIA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="4" name="encuesta" id="4" type="radio"></td> <td width="95%" align="left"><label for="4"><font size="2" face="Verdana">AB</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="5" name="encuesta" id="5" type="radio"></td> <td width="95%" align="left"><label for="5"><font size="2" face="Verdana">ABBEL EL BRILLANTE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="6" name="encuesta" id="6" type="radio"></td> <td width="95%" align="left"><label for="6"><font size="2" face="Verdana">ADELE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="7" name="encuesta" id="7" type="radio"></td> <td width="95%" align="left"><label for="7"><font size="2" face="Verdana">AGENTE REX</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="8" name="encuesta" id="8" type="radio"></td> <td width="95%" align="left"><label for="8"><font size="2" face="Verdana">AHMED Y ONYX</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="9" name="encuesta" id="9" type="radio"></td> <td width="95%" align="left"><label for="9"><font size="2" face="Verdana">ALAN WALKER</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="10" name="encuesta" id="10" type="radio"></td> <td width="95%" align="left"><label for="10"><font size="2" face="Verdana">ALDO ARMAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="11" name="encuesta" id="11" type="radio"></td> <td width="95%" align="left"><label for="11"><font size="2" face="Verdana">ALDREY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="12" name="encuesta" id="12" type="radio"></td> <td width="95%" align="left"><label for="12"><font size="2" face="Verdana">ALEJANDRO SANZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="13" name="encuesta" id="13" type="radio"></td> <td width="95%" align="left"><label for="13"><font size="2" face="Verdana">ALESSIA CARA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="14" name="encuesta" id="14" type="radio"></td> <td width="95%" align="left"><label for="14"><font size="2" face="Verdana">ALESSO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="15" name="encuesta" id="15" type="radio"></td> <td width="95%" align="left"><label for="15"><font size="2" face="Verdana">ALEXIS Y FIDO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="16" name="encuesta" id="16" type="radio"></td> <td width="95%" align="left"><label for="16"><font size="2" face="Verdana">ALFONSO TERAN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="17" name="encuesta" id="17" type="radio"></td> <td width="95%" align="left"><label for="17"><font size="2" face="Verdana">ALICIA KEYS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="18" name="encuesta" id="18" type="radio"></td> <td width="95%" align="left"><label for="18"><font size="2" face="Verdana">ALKILADOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="19" name="encuesta" id="19" type="radio"></td> <td width="95%" align="left"><label for="19"><font size="2" face="Verdana">ALLIAN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="20" name="encuesta" id="20" type="radio"></td> <td width="95%" align="left"><label for="20"><font size="2" face="Verdana">ALTA TENSION</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="21" name="encuesta" id="21" type="radio"></td> <td width="95%" align="left"><label for="21"><font size="2" face="Verdana">AMERICAN AUTHORS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="22" name="encuesta" id="22" type="radio"></td> <td width="95%" align="left"><label for="22"><font size="2" face="Verdana">AMIGOS INVISIBLES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="23" name="encuesta" id="23" type="radio"></td> <td width="95%" align="left"><label for="23"><font size="2" face="Verdana">ANDY GRAMMER</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="24" name="encuesta" id="24" type="radio"></td> <td width="95%" align="left"><label for="24"><font size="2" face="Verdana">ANDY NG</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="25" name="encuesta" id="25" type="radio"></td> <td width="95%" align="left"><label for="25"><font size="2" face="Verdana">ANGEL LAEZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="26" name="encuesta" id="26" type="radio"></td> <td width="95%" align="left"><label for="26"><font size="2" face="Verdana">ANGEL RAFAEL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="27" name="encuesta" id="27" type="radio"></td> <td width="95%" align="left"><label for="27"><font size="2" face="Verdana">ANITA MORILLO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="28" name="encuesta" id="28" type="radio"></td> <td width="95%" align="left"><label for="28"><font size="2" face="Verdana">ANNE MARIE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="29" name="encuesta" id="29" type="radio"></td> <td width="95%" align="left"><label for="29"><font size="2" face="Verdana">ARAFA Y JSIERRA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="30" name="encuesta" id="30" type="radio"></td> <td width="95%" align="left"><label for="30"><font size="2" face="Verdana">ARAN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="31" name="encuesta" id="31" type="radio"></td> <td width="95%" align="left"><label for="31"><font size="2" face="Verdana">ARIANA GRANDE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="32" name="encuesta" id="32" type="radio"></td> <td width="95%" align="left"><label for="32"><font size="2" face="Verdana">ARMANDO MARTINEZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="33" name="encuesta" id="33" type="radio"></td> <td width="95%" align="left"><label for="33"><font size="2" face="Verdana">ARVELAIZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="34" name="encuesta" id="34" type="radio"></td> <td width="95%" align="left"><label for="34"><font size="2" face="Verdana">AYAMAN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="35" name="encuesta" id="35" type="radio"></td> <td width="95%" align="left"><label for="35"><font size="2" face="Verdana">BABY RASTA Y GRINGO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="36" name="encuesta" id="36" type="radio"></td> <td width="95%" align="left"><label for="36"><font size="2" face="Verdana">BACANOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="37" name="encuesta" id="37" type="radio"></td> <td width="95%" align="left"><label for="37"><font size="2" face="Verdana">BALMORE Y ROMING</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="38" name="encuesta" id="38" type="radio"></td> <td width="95%" align="left"><label for="38"><font size="2" face="Verdana">BE AND BEAT</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="39" name="encuesta" id="39" type="radio"></td> <td width="95%" align="left"><label for="39"><font size="2" face="Verdana">BELANOVA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="40" name="encuesta" id="40" type="radio"></td> <td width="95%" align="left"><label for="40"><font size="2" face="Verdana">BENAVIDES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="41" name="encuesta" id="41" type="radio"></td> <td width="95%" align="left"><label for="41"><font size="2" face="Verdana">BITOQUEAO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="42" name="encuesta" id="42" type="radio"></td> <td width="95%" align="left"><label for="42"><font size="2" face="Verdana">BONI Y KELLY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="43" name="encuesta" id="43" type="radio"></td> <td width="95%" align="left"><label for="43"><font size="2" face="Verdana">BRUNO MARS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="44" name="encuesta" id="44" type="radio"></td> <td width="95%" align="left"><label for="44"><font size="2" face="Verdana">BUDU</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="45" name="encuesta" id="45" type="radio"></td> <td width="95%" align="left"><label for="45"><font size="2" face="Verdana">CAIBO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="46" name="encuesta" id="46" type="radio"></td> <td width="95%" align="left"><label for="46"><font size="2" face="Verdana">CALI Y EL DANDEE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="47" name="encuesta" id="47" type="radio"></td> <td width="95%" align="left"><label for="47"><font size="2" face="Verdana">CALLE CIEGA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="48" name="encuesta" id="48" type="radio"></td> <td width="95%" align="left"><label for="48"><font size="2" face="Verdana">CALVIN HARRIS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="49" name="encuesta" id="49" type="radio"></td> <td width="95%" align="left"><label for="49"><font size="2" face="Verdana">CANDY 66</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="50" name="encuesta" id="50" type="radio"></td> <td width="95%" align="left"><label for="50"><font size="2" face="Verdana">CARAMELOS DE CIANURO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="51" name="encuesta" id="51" type="radio"></td> <td width="95%" align="left"><label for="51"><font size="2" face="Verdana">CARLOS BAUTE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="52" name="encuesta" id="52" type="radio"></td> <td width="95%" align="left"><label for="52"><font size="2" face="Verdana">CARLOS VIVES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="53" name="encuesta" id="53" type="radio"></td> <td width="95%" align="left"><label for="53"><font size="2" face="Verdana">CASEROLOOPS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="54" name="encuesta" id="54" type="radio"></td> <td width="95%" align="left"><label for="54"><font size="2" face="Verdana">CBK</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="55" name="encuesta" id="55" type="radio"></td> <td width="95%" align="left"><label for="55"><font size="2" face="Verdana">CHARLI XCX</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="56" name="encuesta" id="56" type="radio"></td> <td width="95%" align="left"><label for="56"><font size="2" face="Verdana">CHARLIE PUTH</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="57" name="encuesta" id="57" type="radio"></td> <td width="95%" align="left"><label for="57"><font size="2" face="Verdana">CHAYANNE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="58" name="encuesta" id="58" type="radio"></td> <td width="95%" align="left"><label for="58"><font size="2" face="Verdana">CHICHO SUNSHINE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="59" name="encuesta" id="59" type="radio"></td> <td width="95%" align="left"><label for="59"><font size="2" face="Verdana">CHINO Y NACHO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="60" name="encuesta" id="60" type="radio"></td> <td width="95%" align="left"><label for="60"><font size="2" face="Verdana">CHOCQUIBTOWN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="61" name="encuesta" id="61" type="radio"></td> <td width="95%" align="left"><label for="61"><font size="2" face="Verdana">CHRIS CORNELL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="62" name="encuesta" id="62" type="radio"></td> <td width="95%" align="left"><label for="62"><font size="2" face="Verdana">CHRISTIAN DANIEL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="63" name="encuesta" id="63" type="radio"></td> <td width="95%" align="left"><label for="63"><font size="2" face="Verdana">CHUCHUGUAZA STYLE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="64" name="encuesta" id="64" type="radio"></td> <td width="95%" align="left"><label for="64"><font size="2" face="Verdana">CLEAN BANDIT </font></label></td> </tr> <tr> <td width="5%" align="left"><input value="65" name="encuesta" id="65" type="radio"></td> <td width="95%" align="left"><label for="65"><font size="2" face="Verdana">CLIO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="66" name="encuesta" id="66" type="radio"></td> <td width="95%" align="left"><label for="66"><font size="2" face="Verdana">CNCO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="67" name="encuesta" id="67" type="radio"></td> <td width="95%" align="left"><label for="67"><font size="2" face="Verdana">COLDPLAY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="68" name="encuesta" id="68" type="radio"></td> <td width="95%" align="left"><label for="68"><font size="2" face="Verdana">CORINA SMITH</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="69" name="encuesta" id="69" type="radio"></td> <td width="95%" align="left"><label for="69"><font size="2" face="Verdana">CRUZ TENEPE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="70" name="encuesta" id="70" type="radio"></td> <td width="95%" align="left"><label for="70"><font size="2" face="Verdana">D TOTAL ZULIANIDAD</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="71" name="encuesta" id="71" type="radio"></td> <td width="95%" align="left"><label for="71"><font size="2" face="Verdana">D VEGA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="72" name="encuesta" id="72" type="radio"></td> <td width="95%" align="left"><label for="72"><font size="2" face="Verdana">DAIQUIRI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="73" name="encuesta" id="73" type="radio"></td> <td width="95%" align="left"><label for="73"><font size="2" face="Verdana">DANI BARON</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="74" name="encuesta" id="74" type="radio"></td> <td width="95%" align="left"><label for="74"><font size="2" face="Verdana">DANIEL ELBITTAR</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="75" name="encuesta" id="75" type="radio"></td> <td width="95%" align="left"><label for="75"><font size="2" face="Verdana">DANIEL HUEN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="76" name="encuesta" id="76" type="radio"></td> <td width="95%" align="left"><label for="76"><font size="2" face="Verdana">DAVID GUETTA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="77" name="encuesta" id="77" type="radio"></td> <td width="95%" align="left"><label for="77"><font size="2" face="Verdana">DAYA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="78" name="encuesta" id="78" type="radio"></td> <td width="95%" align="left"><label for="78"><font size="2" face="Verdana">DEBORAH ANDRADE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="79" name="encuesta" id="79" type="radio"></td> <td width="95%" align="left"><label for="79"><font size="2" face="Verdana">DEFTONES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="80" name="encuesta" id="80" type="radio"></td> <td width="95%" align="left"><label for="80"><font size="2" face="Verdana">DEMI LOVATO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="81" name="encuesta" id="81" type="radio"></td> <td width="95%" align="left"><label for="81"><font size="2" face="Verdana">DERECK</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="82" name="encuesta" id="82" type="radio"></td> <td width="95%" align="left"><label for="82"><font size="2" face="Verdana">DESAKATAOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="83" name="encuesta" id="83" type="radio"></td> <td width="95%" align="left"><label for="83"><font size="2" face="Verdana">DESORDEN PUBLICO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="84" name="encuesta" id="84" type="radio"></td> <td width="95%" align="left"><label for="84"><font size="2" face="Verdana">DIMENSION LATINA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="85" name="encuesta" id="85" type="radio"></td> <td width="95%" align="left"><label for="85"><font size="2" face="Verdana">DJ SNAKE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="86" name="encuesta" id="86" type="radio"></td> <td width="95%" align="left"><label for="86"><font size="2" face="Verdana">DNCE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="87" name="encuesta" id="87" type="radio"></td> <td width="95%" align="left"><label for="87"><font size="2" face="Verdana">DRAKE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="88" name="encuesta" id="88" type="radio"></td> <td width="95%" align="left"><label for="88"><font size="2" face="Verdana">DUA LIPA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="89" name="encuesta" id="89" type="radio"></td> <td width="95%" align="left"><label for="89"><font size="2" face="Verdana">DUO ANONIMO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="90" name="encuesta" id="90" type="radio"></td> <td width="95%" align="left"><label for="90"><font size="2" face="Verdana">EA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="91" name="encuesta" id="91" type="radio"></td> <td width="95%" align="left"><label for="91"><font size="2" face="Verdana">ED SHEERAN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="92" name="encuesta" id="92" type="radio"></td> <td width="95%" align="left"><label for="92"><font size="2" face="Verdana">EDDY LOVER</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="93" name="encuesta" id="93" type="radio"></td> <td width="95%" align="left"><label for="93"><font size="2" face="Verdana">EJ LA MELODIA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="94" name="encuesta" id="94" type="radio"></td> <td width="95%" align="left"><label for="94"><font size="2" face="Verdana">EL DUKE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="269" name="encuesta" id="269" type="radio"></td> <td width="95%" align="left"><label for="269"><font size="2" face="Verdana">EL POLLO BRITO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="95" name="encuesta" id="95" type="radio"></td> <td width="95%" align="left"><label for="95"><font size="2" face="Verdana">EL POTRO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="96" name="encuesta" id="96" type="radio"></td> <td width="95%" align="left"><label for="96"><font size="2" face="Verdana">EL TREN GAITERO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="97" name="encuesta" id="97" type="radio"></td> <td width="95%" align="left"><label for="97"><font size="2" face="Verdana">EL XAVI MUSICAL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="98" name="encuesta" id="98" type="radio"></td> <td width="95%" align="left"><label for="98"><font size="2" face="Verdana">ELIU RAMOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="99" name="encuesta" id="99" type="radio"></td> <td width="95%" align="left"><label for="99"><font size="2" face="Verdana">ELLIE GOULDING</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="100" name="encuesta" id="100" type="radio"></td> <td width="95%" align="left"><label for="100"><font size="2" face="Verdana">EMIG LA VOZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="101" name="encuesta" id="101" type="radio"></td> <td width="95%" align="left"><label for="101"><font size="2" face="Verdana">ENIO Y SUNDIN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="102" name="encuesta" id="102" type="radio"></td> <td width="95%" align="left"><label for="102"><font size="2" face="Verdana">ENRIQUE IGLESIAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="103" name="encuesta" id="103" type="radio"></td> <td width="95%" align="left"><label for="103"><font size="2" face="Verdana">ESTEPHY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="104" name="encuesta" id="104" type="radio"></td> <td width="95%" align="left"><label for="104"><font size="2" face="Verdana">FABIO ADAMI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="105" name="encuesta" id="105" type="radio"></td> <td width="95%" align="left"><label for="105"><font size="2" face="Verdana">FARRUKO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="106" name="encuesta" id="106" type="radio"></td> <td width="95%" align="left"><label for="106"><font size="2" face="Verdana">FEID</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="107" name="encuesta" id="107" type="radio"></td> <td width="95%" align="left"><label for="107"><font size="2" face="Verdana">FELIPE SANTOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="108" name="encuesta" id="108" type="radio"></td> <td width="95%" align="left"><label for="108"><font size="2" face="Verdana">FERGIE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="109" name="encuesta" id="109" type="radio"></td> <td width="95%" align="left"><label for="109"><font size="2" face="Verdana">FIFTH HARMONY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="110" name="encuesta" id="110" type="radio"></td> <td width="95%" align="left"><label for="110"><font size="2" face="Verdana">FLO RIDA Y ROBIN THI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="111" name="encuesta" id="111" type="radio"></td> <td width="95%" align="left"><label for="111"><font size="2" face="Verdana">FONSECA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="112" name="encuesta" id="112" type="radio"></td> <td width="95%" align="left"><label for="112"><font size="2" face="Verdana">FOO FIGHTERS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="113" name="encuesta" id="113" type="radio"></td> <td width="95%" align="left"><label for="113"><font size="2" face="Verdana">FRANCISCO LEON</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="114" name="encuesta" id="114" type="radio"></td> <td width="95%" align="left"><label for="114"><font size="2" face="Verdana">FRANCO DE VITA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="115" name="encuesta" id="115" type="radio"></td> <td width="95%" align="left"><label for="115"><font size="2" face="Verdana">FRANCO T</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="116" name="encuesta" id="116" type="radio"></td> <td width="95%" align="left"><label for="116"><font size="2" face="Verdana">FRANGEL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="117" name="encuesta" id="117" type="radio"></td> <td width="95%" align="left"><label for="117"><font size="2" face="Verdana">FRANGEL RAMOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="118" name="encuesta" id="118" type="radio"></td> <td width="95%" align="left"><label for="118"><font size="2" face="Verdana">FRANK QUINTERO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="119" name="encuesta" id="119" type="radio"></td> <td width="95%" align="left"><label for="119"><font size="2" face="Verdana">FUEGO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="120" name="encuesta" id="120" type="radio"></td> <td width="95%" align="left"><label for="120"><font size="2" face="Verdana">GABRIEL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="121" name="encuesta" id="121" type="radio"></td> <td width="95%" align="left"><label for="121"><font size="2" face="Verdana">GABRIEL PARISI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="122" name="encuesta" id="122" type="radio"></td> <td width="95%" align="left"><label for="122"><font size="2" face="Verdana">GABY NOYA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="123" name="encuesta" id="123" type="radio"></td> <td width="95%" align="left"><label for="123"><font size="2" face="Verdana">GALANTIS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="124" name="encuesta" id="124" type="radio"></td> <td width="95%" align="left"><label for="124"><font size="2" face="Verdana">GENTE DE ZONA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="125" name="encuesta" id="125" type="radio"></td> <td width="95%" align="left"><label for="125"><font size="2" face="Verdana">GLORIA TREVI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="126" name="encuesta" id="126" type="radio"></td> <td width="95%" align="left"><label for="126"><font size="2" face="Verdana">GONZO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="127" name="encuesta" id="127" type="radio"></td> <td width="95%" align="left"><label for="127"><font size="2" face="Verdana">GRAN COQUIVACOA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="128" name="encuesta" id="128" type="radio"></td> <td width="95%" align="left"><label for="128"><font size="2" face="Verdana">GUACO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="129" name="encuesta" id="129" type="radio"></td> <td width="95%" align="left"><label for="129"><font size="2" face="Verdana">GUSTAVO ELIS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="130" name="encuesta" id="130" type="radio"></td> <td width="95%" align="left"><label for="130"><font size="2" face="Verdana">GWEN STEPHANI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="131" name="encuesta" id="131" type="radio"></td> <td width="95%" align="left"><label for="131"><font size="2" face="Verdana">HECTOR</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="132" name="encuesta" id="132" type="radio"></td> <td width="95%" align="left"><label for="132"><font size="2" face="Verdana">IGGY AZALEA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="133" name="encuesta" id="133" type="radio"></td> <td width="95%" align="left"><label for="133"><font size="2" face="Verdana">IGNACIO RONDON</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="134" name="encuesta" id="134" type="radio"></td> <td width="95%" align="left"><label for="134"><font size="2" face="Verdana">ILEGALES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="135" name="encuesta" id="135" type="radio"></td> <td width="95%" align="left"><label for="135"><font size="2" face="Verdana">IRVING MANUEL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="136" name="encuesta" id="136" type="radio"></td> <td width="95%" align="left"><label for="136"><font size="2" face="Verdana">IZAAK</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="137" name="encuesta" id="137" type="radio"></td> <td width="95%" align="left"><label for="137"><font size="2" face="Verdana">J ALVAREZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="138" name="encuesta" id="138" type="radio"></td> <td width="95%" align="left"><label for="138"><font size="2" face="Verdana">JASON DERULO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="139" name="encuesta" id="139" type="radio"></td> <td width="95%" align="left"><label for="139"><font size="2" face="Verdana">JAVO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="140" name="encuesta" id="140" type="radio"></td> <td width="95%" align="left"><label for="140"><font size="2" face="Verdana">JAY SANTOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="141" name="encuesta" id="141" type="radio"></td> <td width="95%" align="left"><label for="141"><font size="2" face="Verdana">JEANCE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="142" name="encuesta" id="142" type="radio"></td> <td width="95%" align="left"><label for="142"><font size="2" face="Verdana">JELOZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="143" name="encuesta" id="143" type="radio"></td> <td width="95%" align="left"><label for="143"><font size="2" face="Verdana">JENNIFER LOPEZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="144" name="encuesta" id="144" type="radio"></td> <td width="95%" align="left"><label for="144"><font size="2" face="Verdana">JEREMIAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="145" name="encuesta" id="145" type="radio"></td> <td width="95%" align="left"><label for="145"><font size="2" face="Verdana">JERRY RIVERA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="146" name="encuesta" id="146" type="radio"></td> <td width="95%" align="left"><label for="146"><font size="2" face="Verdana">JESSICA QUIJADA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="147" name="encuesta" id="147" type="radio"></td> <td width="95%" align="left"><label for="147"><font size="2" face="Verdana">JESUS CHINO MIRANDA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="148" name="encuesta" id="148" type="radio"></td> <td width="95%" align="left"><label for="148"><font size="2" face="Verdana">JESUS Y YORKY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="149" name="encuesta" id="149" type="radio"></td> <td width="95%" align="left"><label for="149"><font size="2" face="Verdana">JHEY SOSA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="150" name="encuesta" id="150" type="radio"></td> <td width="95%" align="left"><label for="150"><font size="2" face="Verdana">JOEY MONTANA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="151" name="encuesta" id="151" type="radio"></td> <td width="95%" align="left"><label for="151"><font size="2" face="Verdana">JONAS BLUE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="152" name="encuesta" id="152" type="radio"></td> <td width="95%" align="left"><label for="152"><font size="2" face="Verdana">JONATHAN MOLY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="153" name="encuesta" id="153" type="radio"></td> <td width="95%" align="left"><label for="153"><font size="2" face="Verdana">JORGE CELEDON</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="154" name="encuesta" id="154" type="radio"></td> <td width="95%" align="left"><label for="154"><font size="2" face="Verdana">JORGE LUIS CHACIN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="155" name="encuesta" id="155" type="radio"></td> <td width="95%" align="left"><label for="155"><font size="2" face="Verdana">JORGE TYLKI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="156" name="encuesta" id="156" type="radio"></td> <td width="95%" align="left"><label for="156"><font size="2" face="Verdana">JOSE ARCANGEL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="157" name="encuesta" id="157" type="radio"></td> <td width="95%" align="left"><label for="157"><font size="2" face="Verdana">JUAMPI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="158" name="encuesta" id="158" type="radio"></td> <td width="95%" align="left"><label for="158"><font size="2" face="Verdana">JUAN CARLOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="159" name="encuesta" id="159" type="radio"></td> <td width="95%" align="left"><label for="159"><font size="2" face="Verdana">JUAN CARLOS SALAZAR</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="160" name="encuesta" id="160" type="radio"></td> <td width="95%" align="left"><label for="160"><font size="2" face="Verdana">JUAN GABRIEL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="161" name="encuesta" id="161" type="radio"></td> <td width="95%" align="left"><label for="161"><font size="2" face="Verdana">JUAN MIGUEL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="162" name="encuesta" id="162" type="radio"></td> <td width="95%" align="left"><label for="162"><font size="2" face="Verdana">JULIETA VENEGAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="163" name="encuesta" id="163" type="radio"></td> <td width="95%" align="left"><label for="163"><font size="2" face="Verdana">JUNIOR</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="164" name="encuesta" id="164" type="radio"></td> <td width="95%" align="left"><label for="164"><font size="2" face="Verdana">JUSTIN BIEBER</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="165" name="encuesta" id="165" type="radio"></td> <td width="95%" align="left"><label for="165"><font size="2" face="Verdana">JUSTIN TIMBERLAKE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="166" name="encuesta" id="166" type="radio"></td> <td width="95%" align="left"><label for="166"><font size="2" face="Verdana">K5</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="167" name="encuesta" id="167" type="radio"></td> <td width="95%" align="left"><label for="167"><font size="2" face="Verdana">KAMAL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="168" name="encuesta" id="168" type="radio"></td> <td width="95%" align="left"><label for="168"><font size="2" face="Verdana">KANYE WEST</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="169" name="encuesta" id="169" type="radio"></td> <td width="95%" align="left"><label for="169"><font size="2" face="Verdana">KAREN MARTELLO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="170" name="encuesta" id="170" type="radio"></td> <td width="95%" align="left"><label for="170"><font size="2" face="Verdana">KATY PERRY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="171" name="encuesta" id="171" type="radio"></td> <td width="95%" align="left"><label for="171"><font size="2" face="Verdana">KENT JONES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="172" name="encuesta" id="172" type="radio"></td> <td width="95%" align="left"><label for="172"><font size="2" face="Verdana">KRIS FERRER</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="173" name="encuesta" id="173" type="radio"></td> <td width="95%" align="left"><label for="173"><font size="2" face="Verdana">KUMBA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="174" name="encuesta" id="174" type="radio"></td> <td width="95%" align="left"><label for="174"><font size="2" face="Verdana">KUNGS VS COOKIN ON 3</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="175" name="encuesta" id="175" type="radio"></td> <td width="95%" align="left"><label for="175"><font size="2" face="Verdana">KYGO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="176" name="encuesta" id="176" type="radio"></td> <td width="95%" align="left"><label for="176"><font size="2" face="Verdana">LA KLAVE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="177" name="encuesta" id="177" type="radio"></td> <td width="95%" align="left"><label for="177"><font size="2" face="Verdana">LA MARCHA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="178" name="encuesta" id="178" type="radio"></td> <td width="95%" align="left"><label for="178"><font size="2" face="Verdana">LA MATERIALISTA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="179" name="encuesta" id="179" type="radio"></td> <td width="95%" align="left"><label for="179"><font size="2" face="Verdana">LA PAGANA TRINIDAD</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="180" name="encuesta" id="180" type="radio"></td> <td width="95%" align="left"><label for="180"><font size="2" face="Verdana">LADY GAGA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="181" name="encuesta" id="181" type="radio"></td> <td width="95%" align="left"><label for="181"><font size="2" face="Verdana">LASSO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="182" name="encuesta" id="182" type="radio"></td> <td width="95%" align="left"><label for="182"><font size="2" face="Verdana">LENIN MACIAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="183" name="encuesta" id="183" type="radio"></td> <td width="95%" align="left"><label for="183"><font size="2" face="Verdana">LENNY TAVAREZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="184" name="encuesta" id="184" type="radio"></td> <td width="95%" align="left"><label for="184"><font size="2" face="Verdana">LESS Y CHRISS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="185" name="encuesta" id="185" type="radio"></td> <td width="95%" align="left"><label for="185"><font size="2" face="Verdana">LIL WAYNE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="186" name="encuesta" id="186" type="radio"></td> <td width="95%" align="left"><label for="186"><font size="2" face="Verdana">LION</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="187" name="encuesta" id="187" type="radio"></td> <td width="95%" align="left"><label for="187"><font size="2" face="Verdana">LORDE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="188" name="encuesta" id="188" type="radio"></td> <td width="95%" align="left"><label for="188"><font size="2" face="Verdana">LOS ADOLESCENTES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="189" name="encuesta" id="189" type="radio"></td> <td width="95%" align="left"><label for="189"><font size="2" face="Verdana">LOS AVIADORES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="190" name="encuesta" id="190" type="radio"></td> <td width="95%" align="left"><label for="190"><font size="2" face="Verdana">LOS CADILLACS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="191" name="encuesta" id="191" type="radio"></td> <td width="95%" align="left"><label for="191"><font size="2" face="Verdana">LOS DALTONICOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="192" name="encuesta" id="192" type="radio"></td> <td width="95%" align="left"><label for="192"><font size="2" face="Verdana">LOS HABIBI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="193" name="encuesta" id="193" type="radio"></td> <td width="95%" align="left"><label for="193"><font size="2" face="Verdana">LOS MESONEROS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="194" name="encuesta" id="194" type="radio"></td> <td width="95%" align="left"><label for="194"><font size="2" face="Verdana">LOS MUCHACHOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="195" name="encuesta" id="195" type="radio"></td> <td width="95%" align="left"><label for="195"><font size="2" face="Verdana">LOS NENE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="196" name="encuesta" id="196" type="radio"></td> <td width="95%" align="left"><label for="196"><font size="2" face="Verdana">LOS PARANOIAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="197" name="encuesta" id="197" type="radio"></td> <td width="95%" align="left"><label for="197"><font size="2" face="Verdana">LOS PELAOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="198" name="encuesta" id="198" type="radio"></td> <td width="95%" align="left"><label for="198"><font size="2" face="Verdana">LOS3</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="199" name="encuesta" id="199" type="radio"></td> <td width="95%" align="left"><label for="199"><font size="2" face="Verdana">LOSH</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="200" name="encuesta" id="200" type="radio"></td> <td width="95%" align="left"><label for="200"><font size="2" face="Verdana">LUAR</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="201" name="encuesta" id="201" type="radio"></td> <td width="95%" align="left"><label for="201"><font size="2" face="Verdana">LUIS IRAN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="202" name="encuesta" id="202" type="radio"></td> <td width="95%" align="left"><label for="202"><font size="2" face="Verdana">LUKAS GRAHAM</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="203" name="encuesta" id="203" type="radio"></td> <td width="95%" align="left"><label for="203"><font size="2" face="Verdana">LUNY TUNES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="204" name="encuesta" id="204" type="radio"></td> <td width="95%" align="left"><label for="204"><font size="2" face="Verdana">LYU Y FRANJO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="205" name="encuesta" id="205" type="radio"></td> <td width="95%" align="left"><label for="205"><font size="2" face="Verdana">MACKLEMORE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="206" name="encuesta" id="206" type="radio"></td> <td width="95%" align="left"><label for="206"><font size="2" face="Verdana">MAELO RUIZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="207" name="encuesta" id="207" type="radio"></td> <td width="95%" align="left"><label for="207"><font size="2" face="Verdana">MAGIC</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="208" name="encuesta" id="208" type="radio"></td> <td width="95%" align="left"><label for="208"><font size="2" face="Verdana">MAJARETE SOUND MACHINE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="209" name="encuesta" id="209" type="radio"></td> <td width="95%" align="left"><label for="209"><font size="2" face="Verdana">MAJOR LAZER</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="210" name="encuesta" id="210" type="radio"></td> <td width="95%" align="left"><label for="210"><font size="2" face="Verdana">MALEH Y SAMY HAWK</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="211" name="encuesta" id="211" type="radio"></td> <td width="95%" align="left"><label for="211"><font size="2" face="Verdana">MALUMA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="212" name="encuesta" id="212" type="radio"></td> <td width="95%" align="left"><label for="212"><font size="2" face="Verdana">MANA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="213" name="encuesta" id="213" type="radio"></td> <td width="95%" align="left"><label for="213"><font size="2" face="Verdana">MANUEL GUERRA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="214" name="encuesta" id="214" type="radio"></td> <td width="95%" align="left"><label for="214"><font size="2" face="Verdana">MANUEL LARRAD</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="215" name="encuesta" id="215" type="radio"></td> <td width="95%" align="left"><label for="215"><font size="2" face="Verdana">MANUEL PETIT</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="216" name="encuesta" id="216" type="radio"></td> <td width="95%" align="left"><label for="216"><font size="2" face="Verdana">MANUEL ZABALA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="217" name="encuesta" id="217" type="radio"></td> <td width="95%" align="left"><label for="217"><font size="2" face="Verdana">MARC ANTHONY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="218" name="encuesta" id="218" type="radio"></td> <td width="95%" align="left"><label for="218"><font size="2" face="Verdana">MARIA LAURA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="219" name="encuesta" id="219" type="radio"></td> <td width="95%" align="left"><label for="219"><font size="2" face="Verdana">MARIANA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="220" name="encuesta" id="220" type="radio"></td> <td width="95%" align="left"><label for="220"><font size="2" face="Verdana">MARIANA VEGA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="221" name="encuesta" id="221" type="radio"></td> <td width="95%" align="left"><label for="221"><font size="2" face="Verdana">MARIELLE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="222" name="encuesta" id="222" type="radio"></td> <td width="95%" align="left"><label for="222"><font size="2" face="Verdana">MARLO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="223" name="encuesta" id="223" type="radio"></td> <td width="95%" align="left"><label for="223"><font size="2" face="Verdana">MAROON 5</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="224" name="encuesta" id="224" type="radio"></td> <td width="95%" align="left"><label for="224"><font size="2" face="Verdana">MARTIN GARRIX</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="225" name="encuesta" id="225" type="radio"></td> <td width="95%" align="left"><label for="225"><font size="2" face="Verdana">MATEO CARVAJAL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="226" name="encuesta" id="226" type="radio"></td> <td width="95%" align="left"><label for="226"><font size="2" face="Verdana">MATT SIMONS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="227" name="encuesta" id="227" type="radio"></td> <td width="95%" align="left"><label for="227"><font size="2" face="Verdana">MAURO Y JOTA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="228" name="encuesta" id="228" type="radio"></td> <td width="95%" align="left"><label for="228"><font size="2" face="Verdana">MAX PIZZOLANTE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="229" name="encuesta" id="229" type="radio"></td> <td width="95%" align="left"><label for="229"><font size="2" face="Verdana">MEGHAN TRAINOR</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="230" name="encuesta" id="230" type="radio"></td> <td width="95%" align="left"><label for="230"><font size="2" face="Verdana">MELODIA PERFECTA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="231" name="encuesta" id="231" type="radio"></td> <td width="95%" align="left"><label for="231"><font size="2" face="Verdana">METALLICA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="232" name="encuesta" id="232" type="radio"></td> <td width="95%" align="left"><label for="232"><font size="2" face="Verdana">MIA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="233" name="encuesta" id="233" type="radio"></td> <td width="95%" align="left"><label for="233"><font size="2" face="Verdana">MICKEY TAVERAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="234" name="encuesta" id="234" type="radio"></td> <td width="95%" align="left"><label for="234"><font size="2" face="Verdana">MIKE BAHIA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="235" name="encuesta" id="235" type="radio"></td> <td width="95%" align="left"><label for="235"><font size="2" face="Verdana">MIKE POSNER</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="236" name="encuesta" id="236" type="radio"></td> <td width="95%" align="left"><label for="236"><font size="2" face="Verdana">MILKY CHANCE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="237" name="encuesta" id="237" type="radio"></td> <td width="95%" align="left"><label for="237"><font size="2" face="Verdana">MIRELLA CESA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="238" name="encuesta" id="238" type="radio"></td> <td width="95%" align="left"><label for="238"><font size="2" face="Verdana">MOZART LA PARA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="239" name="encuesta" id="239" type="radio"></td> <td width="95%" align="left"><label for="239"><font size="2" face="Verdana">NACHO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="240" name="encuesta" id="240" type="radio"></td> <td width="95%" align="left"><label for="240"><font size="2" face="Verdana">NELSON ARRIETA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="241" name="encuesta" id="241" type="radio"></td> <td width="95%" align="left"><label for="241"><font size="2" face="Verdana">NICK JONAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="242" name="encuesta" id="242" type="radio"></td> <td width="95%" align="left"><label for="242"><font size="2" face="Verdana">NICKI MINAJ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="243" name="encuesta" id="243" type="radio"></td> <td width="95%" align="left"><label for="243"><font size="2" face="Verdana">NICKY JAM</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="244" name="encuesta" id="244" type="radio"></td> <td width="95%" align="left"><label for="244"><font size="2" face="Verdana">NICO Y VINZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="245" name="encuesta" id="245" type="radio"></td> <td width="95%" align="left"><label for="245"><font size="2" face="Verdana">OFFSPRING</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="246" name="encuesta" id="246" type="radio"></td> <td width="95%" align="left"><label for="246"><font size="2" face="Verdana">OKILLS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="247" name="encuesta" id="247" type="radio"></td> <td width="95%" align="left"><label for="247"><font size="2" face="Verdana">OLGA TAÐON</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="248" name="encuesta" id="248" type="radio"></td> <td width="95%" align="left"><label for="248"><font size="2" face="Verdana">OMAR ACEDO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="249" name="encuesta" id="249" type="radio"></td> <td width="95%" align="left"><label for="249"><font size="2" face="Verdana">OMAR ENRIQUE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="250" name="encuesta" id="250" type="radio"></td> <td width="95%" align="left"><label for="250"><font size="2" face="Verdana">OMAR KOONZE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="251" name="encuesta" id="251" type="radio"></td> <td width="95%" align="left"><label for="251"><font size="2" face="Verdana">OMI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="252" name="encuesta" id="252" type="radio"></td> <td width="95%" align="left"><label for="252"><font size="2" face="Verdana">ONE DIRECTION</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="253" name="encuesta" id="253" type="radio"></td> <td width="95%" align="left"><label for="253"><font size="2" face="Verdana">ONE REPUBLIC</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="254" name="encuesta" id="254" type="radio"></td> <td width="95%" align="left"><label for="254"><font size="2" face="Verdana">OSCARCITO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="255" name="encuesta" id="255" type="radio"></td> <td width="95%" align="left"><label for="255"><font size="2" face="Verdana">PARAMORE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="256" name="encuesta" id="256" type="radio"></td> <td width="95%" align="left"><label for="256"><font size="2" face="Verdana">PASABORDO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="257" name="encuesta" id="257" type="radio"></td> <td width="95%" align="left"><label for="257"><font size="2" face="Verdana">PEDRO ALONSO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="258" name="encuesta" id="258" type="radio"></td> <td width="95%" align="left"><label for="258"><font size="2" face="Verdana">PEDRO LEAL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="259" name="encuesta" id="259" type="radio"></td> <td width="95%" align="left"><label for="259"><font size="2" face="Verdana">PHARRELL WILLIAMS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="260" name="encuesta" id="260" type="radio"></td> <td width="95%" align="left"><label for="260"><font size="2" face="Verdana">PINK</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="261" name="encuesta" id="261" type="radio"></td> <td width="95%" align="left"><label for="261"><font size="2" face="Verdana">PITBULL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="262" name="encuesta" id="262" type="radio"></td> <td width="95%" align="left"><label for="262"><font size="2" face="Verdana">PIWAITI PUCHO Y TUCUTU</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="263" name="encuesta" id="263" type="radio"></td> <td width="95%" align="left"><label for="263"><font size="2" face="Verdana">PORFI BALOA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="264" name="encuesta" id="264" type="radio"></td> <td width="95%" align="left"><label for="264"><font size="2" face="Verdana">PRIMERA FILA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="265" name="encuesta" id="265" type="radio"></td> <td width="95%" align="left"><label for="265"><font size="2" face="Verdana">PRINCE ROYCE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="266" name="encuesta" id="266" type="radio"></td> <td width="95%" align="left"><label for="266"><font size="2" face="Verdana">PSY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="267" name="encuesta" id="267" type="radio"></td> <td width="95%" align="left"><label for="267"><font size="2" face="Verdana">RABANES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="268" name="encuesta" id="268" type="radio"></td> <td width="95%" align="left"><label for="268"><font size="2" face="Verdana">RADIOHEAD</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="270" name="encuesta" id="270" type="radio"></td> <td width="95%" align="left"><label for="270"><font size="2" face="Verdana">RAUL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="271" name="encuesta" id="271" type="radio"></td> <td width="95%" align="left"><label for="271"><font size="2" face="Verdana">RAUL EL LEON</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="272" name="encuesta" id="272" type="radio"></td> <td width="95%" align="left"><label for="272"><font size="2" face="Verdana">RAY RICHARDSON</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="273" name="encuesta" id="273" type="radio"></td> <td width="95%" align="left"><label for="273"><font size="2" face="Verdana">RED HOT CHILI PEPPERS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="274" name="encuesta" id="274" type="radio"></td> <td width="95%" align="left"><label for="274"><font size="2" face="Verdana">RENNY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="275" name="encuesta" id="275" type="radio"></td> <td width="95%" align="left"><label for="275"><font size="2" face="Verdana">REYKON</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="276" name="encuesta" id="276" type="radio"></td> <td width="95%" align="left"><label for="276"><font size="2" face="Verdana">RICARDO ARJONA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="277" name="encuesta" id="277" type="radio"></td> <td width="95%" align="left"><label for="277"><font size="2" face="Verdana">RICARDO LOPEZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="278" name="encuesta" id="278" type="radio"></td> <td width="95%" align="left"><label for="278"><font size="2" face="Verdana">RICKY MARTIN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="279" name="encuesta" id="279" type="radio"></td> <td width="95%" align="left"><label for="279"><font size="2" face="Verdana">RIGU</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="280" name="encuesta" id="280" type="radio"></td> <td width="95%" align="left"><label for="280"><font size="2" face="Verdana">RIHANNA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="281" name="encuesta" id="281" type="radio"></td> <td width="95%" align="left"><label for="281"><font size="2" face="Verdana">RIXTON</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="282" name="encuesta" id="282" type="radio"></td> <td width="95%" align="left"><label for="282"><font size="2" face="Verdana">RM</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="283" name="encuesta" id="283" type="radio"></td> <td width="95%" align="left"><label for="283"><font size="2" face="Verdana">ROBERT VOGU</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="284" name="encuesta" id="284" type="radio"></td> <td width="95%" align="left"><label for="284"><font size="2" face="Verdana">ROBIN SCHULZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="285" name="encuesta" id="285" type="radio"></td> <td width="95%" align="left"><label for="285"><font size="2" face="Verdana">ROGERS SKY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="286" name="encuesta" id="286" type="radio"></td> <td width="95%" align="left"><label for="286"><font size="2" face="Verdana">ROMAN EL RO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="287" name="encuesta" id="287" type="radio"></td> <td width="95%" align="left"><label for="287"><font size="2" face="Verdana">ROMEO SANTOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="288" name="encuesta" id="288" type="radio"></td> <td width="95%" align="left"><label for="288"><font size="2" face="Verdana">ROMINA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="289" name="encuesta" id="289" type="radio"></td> <td width="95%" align="left"><label for="289"><font size="2" face="Verdana">ROMINA PALMISANO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="290" name="encuesta" id="290" type="radio"></td> <td width="95%" align="left"><label for="290"><font size="2" face="Verdana">RONALD BORJAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="291" name="encuesta" id="291" type="radio"></td> <td width="95%" align="left"><label for="291"><font size="2" face="Verdana">RUBBY PEREZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="292" name="encuesta" id="292" type="radio"></td> <td width="95%" align="left"><label for="292"><font size="2" face="Verdana">RUMMY OLIVO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="293" name="encuesta" id="293" type="radio"></td> <td width="95%" align="left"><label for="293"><font size="2" face="Verdana">SAMIR BAZZI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="294" name="encuesta" id="294" type="radio"></td> <td width="95%" align="left"><label for="294"><font size="2" face="Verdana">SAMY HAWK</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="295" name="encuesta" id="295" type="radio"></td> <td width="95%" align="left"><label for="295"><font size="2" face="Verdana">SANLUIS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="296" name="encuesta" id="296" type="radio"></td> <td width="95%" align="left"><label for="296"><font size="2" face="Verdana">SARA GOMEZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="297" name="encuesta" id="297" type="radio"></td> <td width="95%" align="left"><label for="297"><font size="2" face="Verdana">SCARLETT LINARES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="307" name="encuesta" id="307" type="radio"></td> <td width="95%" align="left"><label for="307"><font size="2" face="Verdana">SEAN PAUL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="298" name="encuesta" id="298" type="radio"></td> <td width="95%" align="left"><label for="298"><font size="2" face="Verdana">SEBASTIAN YATRA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="299" name="encuesta" id="299" type="radio"></td> <td width="95%" align="left"><label for="299"><font size="2" face="Verdana">SELENA GOMEZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="300" name="encuesta" id="300" type="radio"></td> <td width="95%" align="left"><label for="300"><font size="2" face="Verdana">SELENIA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="301" name="encuesta" id="301" type="radio"></td> <td width="95%" align="left"><label for="301"><font size="2" face="Verdana">SERGIOANDRE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="302" name="encuesta" id="302" type="radio"></td> <td width="95%" align="left"><label for="302"><font size="2" face="Verdana">SHAKIRA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="303" name="encuesta" id="303" type="radio"></td> <td width="95%" align="left"><label for="303"><font size="2" face="Verdana">SHARLENE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="304" name="encuesta" id="304" type="radio"></td> <td width="95%" align="left"><label for="304"><font size="2" face="Verdana">SHAWN HOOK</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="305" name="encuesta" id="305" type="radio"></td> <td width="95%" align="left"><label for="305"><font size="2" face="Verdana">SHAWN MENDES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="306" name="encuesta" id="306" type="radio"></td> <td width="95%" align="left"><label for="306"><font size="2" face="Verdana">SIA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="308" name="encuesta" id="308" type="radio"></td> <td width="95%" align="left"><label for="308"><font size="2" face="Verdana">SIETE BONCHONES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="309" name="encuesta" id="309" type="radio"></td> <td width="95%" align="left"><label for="309"><font size="2" face="Verdana">SIGALA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="310" name="encuesta" id="310" type="radio"></td> <td width="95%" align="left"><label for="310"><font size="2" face="Verdana">SIGILOSO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="311" name="encuesta" id="311" type="radio"></td> <td width="95%" align="left"><label for="311"><font size="2" face="Verdana">SILVER Y DOUGLAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="312" name="encuesta" id="312" type="radio"></td> <td width="95%" align="left"><label for="312"><font size="2" face="Verdana">SILVESTRE DANGOND</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="313" name="encuesta" id="313" type="radio"></td> <td width="95%" align="left"><label for="313"><font size="2" face="Verdana">SIMPLE PLAN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="314" name="encuesta" id="314" type="radio"></td> <td width="95%" align="left"><label for="314"><font size="2" face="Verdana">SIN BANDERA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="315" name="encuesta" id="315" type="radio"></td> <td width="95%" align="left"><label for="315"><font size="2" face="Verdana">SIXTO REIN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="316" name="encuesta" id="316" type="radio"></td> <td width="95%" align="left"><label for="316"><font size="2" face="Verdana">SNAKEHIPS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="317" name="encuesta" id="317" type="radio"></td> <td width="95%" align="left"><label for="317"><font size="2" face="Verdana">SOCIOO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="318" name="encuesta" id="318" type="radio"></td> <td width="95%" align="left"><label for="318"><font size="2" face="Verdana">STEFAN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="319" name="encuesta" id="319" type="radio"></td> <td width="95%" align="left"><label for="319"><font size="2" face="Verdana">SUM 41</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="320" name="encuesta" id="320" type="radio"></td> <td width="95%" align="left"><label for="320"><font size="2" face="Verdana">TAYLOR SWIFT</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="321" name="encuesta" id="321" type="radio"></td> <td width="95%" align="left"><label for="321"><font size="2" face="Verdana">TECUPAE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="322" name="encuesta" id="322" type="radio"></td> <td width="95%" align="left"><label for="322"><font size="2" face="Verdana">TEO GALINDEZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="323" name="encuesta" id="323" type="radio"></td> <td width="95%" align="left"><label for="323"><font size="2" face="Verdana">THALIA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="324" name="encuesta" id="324" type="radio"></td> <td width="95%" align="left"><label for="324"><font size="2" face="Verdana">THE CHAINSMOKERS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="325" name="encuesta" id="325" type="radio"></td> <td width="95%" align="left"><label for="325"><font size="2" face="Verdana">THE FRAY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="326" name="encuesta" id="326" type="radio"></td> <td width="95%" align="left"><label for="326"><font size="2" face="Verdana">THE WEEKND</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="327" name="encuesta" id="327" type="radio"></td> <td width="95%" align="left"><label for="327"><font size="2" face="Verdana">TICO Y JAVI</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="328" name="encuesta" id="328" type="radio"></td> <td width="95%" align="left"><label for="328"><font size="2" face="Verdana">TIMBALAND</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="329" name="encuesta" id="329" type="radio"></td> <td width="95%" align="left"><label for="329"><font size="2" face="Verdana">TIMEFLIES</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="330" name="encuesta" id="330" type="radio"></td> <td width="95%" align="left"><label for="330"><font size="2" face="Verdana">TOMAS THE LATIN BOY</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="331" name="encuesta" id="331" type="radio"></td> <td width="95%" align="left"><label for="331"><font size="2" face="Verdana">TOMATES FRITOS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="332" name="encuesta" id="332" type="radio"></td> <td width="95%" align="left"><label for="332"><font size="2" face="Verdana">TOMMY DRACO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="333" name="encuesta" id="333" type="radio"></td> <td width="95%" align="left"><label for="333"><font size="2" face="Verdana">TOVE LO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="334" name="encuesta" id="334" type="radio"></td> <td width="95%" align="left"><label for="334"><font size="2" face="Verdana">TREO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="335" name="encuesta" id="335" type="radio"></td> <td width="95%" align="left"><label for="335"><font size="2" face="Verdana">TRINA MEDINA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="336" name="encuesta" id="336" type="radio"></td> <td width="95%" align="left"><label for="336"><font size="2" face="Verdana">TRIPLAND</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="337" name="encuesta" id="337" type="radio"></td> <td width="95%" align="left"><label for="337"><font size="2" face="Verdana">TWENTY ONE PILOTS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="338" name="encuesta" id="338" type="radio"></td> <td width="95%" align="left"><label for="338"><font size="2" face="Verdana">VARGAS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="339" name="encuesta" id="339" type="radio"></td> <td width="95%" align="left"><label for="339"><font size="2" face="Verdana">VICTOR CARRUYO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="340" name="encuesta" id="340" type="radio"></td> <td width="95%" align="left"><label for="340"><font size="2" face="Verdana">VICTOR DAVID</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="341" name="encuesta" id="341" type="radio"></td> <td width="95%" align="left"><label for="341"><font size="2" face="Verdana">VICTOR DRIJA</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="342" name="encuesta" id="342" type="radio"></td> <td width="95%" align="left"><label for="342"><font size="2" face="Verdana">VICTOR MANUELLE</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="343" name="encuesta" id="343" type="radio"></td> <td width="95%" align="left"><label for="343"><font size="2" face="Verdana">VICTOR MUÐOZ </font></label></td> </tr> <tr> <td width="5%" align="left"><input value="344" name="encuesta" id="344" type="radio"></td> <td width="95%" align="left"><label for="344"><font size="2" face="Verdana">VINILOVERSUS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="345" name="encuesta" id="345" type="radio"></td> <td width="95%" align="left"><label for="345"><font size="2" face="Verdana">VLADI RAMIREZ</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="346" name="encuesta" id="346" type="radio"></td> <td width="95%" align="left"><label for="346"><font size="2" face="Verdana">VOCAL SONG</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="347" name="encuesta" id="347" type="radio"></td> <td width="95%" align="left"><label for="347"><font size="2" face="Verdana">WISIN</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="348" name="encuesta" id="348" type="radio"></td> <td width="95%" align="left"><label for="348"><font size="2" face="Verdana">X AMBASSADORS</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="349" name="encuesta" id="349" type="radio"></td> <td width="95%" align="left"><label for="349"><font size="2" face="Verdana">YANDEL</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="350" name="encuesta" id="350" type="radio"></td> <td width="95%" align="left"><label for="350"><font size="2" face="Verdana">YESY MILANO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="351" name="encuesta" id="351" type="radio"></td> <td width="95%" align="left"><label for="351"><font size="2" face="Verdana">YORDANO</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="352" name="encuesta" id="352" type="radio"></td> <td width="95%" align="left"><label for="352"><font size="2" face="Verdana">ZARA LARSSON</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="353" name="encuesta" id="353" type="radio"></td> <td width="95%" align="left"><label for="353"><font size="2" face="Verdana">ZAYN MALIK</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="354" name="encuesta" id="354" type="radio"></td> <td width="95%" align="left"><label for="354"><font size="2" face="Verdana">ZEDD</font></label></td> </tr> <tr> <td width="5%" align="left"><input value="355" name="encuesta" id="355" type="radio"></td> <td width="95%" align="left"><label for="355"><font size="2" face="Verdana">ZOE</font></label></td> </tr> </tbody></table> </td> </tr> </tbody></table> <br> <table width="400" cellspacing="0" cellpadding="3" bordercolor="#6379A8" border="1"> <tbody><tr> <td width="400" bgcolor="#D7DFEE"> <table width="100%" cellspacing="0" cellpadding="2" border="0"> <tbody><tr> <td width="100%" align="center"><input src="boton-enviar.gif" type="submit" name="" width="250" type="image" height="22" border="0"></td> </tr> </tbody></table> </td> </tr> </tbody> </form> </table> </td> </tr> </tbody></table> </body> </html>"""
import torch from torch.utils.data import Dataset from keras.datasets import imdb from keras.preprocessing.sequence import pad_sequences class imdbTrainDataset(Dataset): def __init__(self, vocab_size=20000, maxlen=250): train, _ = imdb.load_data(num_words=vocab_size, maxlen=maxlen) self.data = train[0] self.labels = train[1] self.data = torch.from_numpy(pad_sequences(self.data, maxlen=250)) # self.data = self.data.flatten() self.labels = torch.from_numpy(self.labels.flatten()) def __len__(self): return len(self.data) def __getitem__(self, item): return self.data[item], self.labels[item] class imdbTestDataset(Dataset): def __init__(self, vocab_size=20000, maxlen=250): _, test = imdb.load_data(num_words=vocab_size, maxlen=maxlen) self.data = test[0] self.labels = test[1] self.data = torch.from_numpy(pad_sequences(self.data, maxlen=250)) # self.data = self.data.flatten() self.labels = torch.from_numpy(self.labels) def __len__(self): return len(self.data) def __getitem__(self, item): return self.data[item], self.labels[item] # train_data = imdbTrainDataset() # test_data = imdbTestDataset()
#!/usr/bin/env python # -*- coding: utf-8 -*- """makeTextFile.py -- create text file """ import os ls = os.linesep fname = '' # get filename while True: fname = raw_input('Input filename: ') if os.path.exists(fname): print "ERROR: '%s' already exists" % fname else: break # get file content (text) lines allContent = [] print "\nEnter lines ('.' by itself quit).\n" # loop until user terminates input while True: entry = raw_input('> ') if entry == '.': break else: allContent.append(entry) # write lines to file with proper line-endling fobj = open(fname, 'w') fobj.writelines(['%s%s' % (x, ls) for x in allContent]) fobj.close() print 'DONE!'
from little_notes.ext.auth import login_manager from little_notes.ext.db.models import User @login_manager.user_loader def load_user(user_id: int): return User.query.get(int(user_id))
# ---------------------------------------------------------------------------- # pyglet # Copyright (c) 2006-2008 Alex Holkner # Copyright (c) 2008-2021 pyglet contributors # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of pyglet nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- """Event dispatch framework. All objects that produce events in pyglet implement :py:class:`~pyglet.event.EventDispatcher`, providing a consistent interface for registering and manipulating event handlers. A commonly used event dispatcher is `pyglet.window.Window`. Event types =========== For each event dispatcher there is a set of events that it dispatches; these correspond with the type of event handlers you can attach. Event types are identified by their name, for example, ''on_resize''. If you are creating a new class which implements :py:class:`~pyglet.event.EventDispatcher`, or want to add new events to an existing dispatcher, you must call `EventDispatcher.register_event_type` for each event type: class MyDispatcher(pyglet.event.EventDispatcher): # ... MyDispatcher.register_event_type('on_resize') Attaching event handlers ======================== An event handler is simply a function or method, that is called when system or program event happens. There are several ways to add a handler for an event. When the dispatcher object is available as a global variable, it is convenient to use the `event` decorator: @window.event def on_resize(width, height): # ... Here `window` is a variable containing an instance of `pyglet.window.Window`, which inherits from `EventDispatcher` class. This decorator assumes that the function is named after the event. To use the decorator with a function with another name, pass the name of the event as the argument for the decorator: @window.event('on_resize') def my_resize_handler(width, height); # ... The most universal way to add an event handler is to call the `push_handlers` method on the dispatcher object: window.push_handlers(on_resize) window.push_handlers(on_resize=my_handler) window.push_handlers(on_resize=obj.my_handler) window.push_handlers(obj) This methods accepts both positional and keyword parameters. In case of keyword arguments, the name of the event matches the name of the argument. Otherwise, the name of the passed function or method is used as the event name. If an object is passed as a positional argument, all its methods that match the names of registered events are added as handlers. For example: class MyDispatcher(pyglet.event.EventDispatcher): # ... MyDispatcher.register_event_type('on_resize') MyDispatcher.register_event_type('on_keypress') class Listener(object): def on_resize(self, w, h): # ... def on_keypress(self, key): # ... def other_method(self): # ... dispatcher = MyDispatcher() listener = Listener() dispatcher.push_handlers(listener) In this example both `listener.on_resize` and `listener.on_keypress` are registered as handlers for respective events, but `listener.other_method` is not affected, because it doesn't correspond to a registered event type. Finally, yet another option is to subclass the dispatcher and override the event handler methods:: class MyDispatcher(pyglet.event.EventDispatcher): def on_resize(self, width, height): # ... If both a parent class and the child class have a handler for the same event, only the child's version of the method is invoked. If both event handlers are needed, the child's handler must explicitly call the parent's handler: class ParentDispatcher(pyglet.event.EventDispatcher): def on_resize(self, w, h); # ... class ChildDispatcher(ParentDispatcher): def on_resize(self, w, h): super().on_resize(w, h) # ... Multiple handlers for an event ============================== A single event can be handled by multiple handlers. The handlers are invoked in the order opposite to the order of their registration. So, the handler registered last will be the first to be invoke when the event is fired. An event handler can return the value `pyglet.event.EVENT_HANDLED` to prevent running the subsequent handlers. Alternatively if the handle returns `pyglet.event.EVENT_UNHANDLED` or doesn't return an explicit value, the next event handler will be called (if there is one). Stopping the event propagation is useful to prevent a single user action from being handled by two unrelated systems. For instance, in game using WASD keys for movement, should suppress movement when a chat window is opened: the "keypress" event should be handled by the chat or by the character movement system, but not both. The order of execution of event handlers can be changed by assigning them priority. Default priority for all handlers is 0. If handler needs to be run before other handlers even though it was added early, it can be assigned priority 1. Conversely, a handler added late can be assigned priority -1 to be run late. Priority can be assigned by passing the `priority` named parameter to `push_handlers` method: window.push_handlers(on_resize, priority=-1) It can also be specified by using the `@priority` decorators on handler functions and methods: @pyglet.event.priority(1) def on_resize(w, h): # ... class Listener(object): @pyglet.event.priority(-1) def on_resize(self, w, h): # ... listener = Listener() dispatcher.push_handlers(on_resize, listener) Removing event handlers ======================= In most cases it is not necessary to remove event handlers manually. When the handler is an object method, the event dispatcher keeps only a weak reference to it. It means, that the dispatcher will not prevent the object from being deleted when it goes out of scope. In that case the handler will be silently removed from the list of handlers. .. note:: This means the following example will not work, because the pushed object will fall out of scope and be collected:: dispatcher.push_handlers(MyHandlerClass()) Instead, you must make sure to keep a reference to the object before pushing it. For example:: my_handler_instance = MyHandlerClass() dispatcher.push_handlers(my_handler_instance) When explicit removal of handlers is required, the method `remove_handlers` can be used. Its arguments are the same as the arguments of `push_handlers`: dispatcher.remove_handlers(on_resize) dispatcher.remove_handlers(on_resize=my_handler) dispatcher.remove_handlers(on_resize=obj.my_handler) dispatcher.remove_handlers(obj) When an object is passed as a positional parameter to `remove_handlers`, all its methods are removed from the handlers, regardless of their names. Dispatching events ================== pyglet uses a single-threaded model for all application code. Normally event handlers are invoked while running an event loop by calling pyglet.app.run() or event_loop = pyglet.app.EventLoop() event_loop.run() Application code can invoke events directly by calling the method `dispatch_event` of `EventDispatcher`: dispatcher.dispatch_event('on_resize', 640, 480) The first argument of this method is the event name, that has to be previously registered using `register_event_type` class method. The rest of the arguments are pass to event handlers. The handlers of an event fired by calling `dispatch_event` are called directly from this method. If any of the handlers returns `EVENT_HANDLED`, then `dispatch_event` also returns `EVENT_HANDLED` otherwise (or if there weren't any handlers for a given event) it returns `EVENT_UNHANDLED`. """ import inspect from functools import partial from weakref import WeakMethod EVENT_HANDLED = True EVENT_UNHANDLED = None class EventException(Exception): """An exception raised when an event handler could not be attached. """ pass def priority(prio=0): """A decorator to set priority on handler functions and handlers. Default priority is 0. Handlers with higher priority are invoked first. Recommended priority values are 1 and -1. In most cases more than 3 priority classes are not required. """ def wrap(func): func.__priority = prio return func return wrap class EventDispatcher(object): """Generic event dispatcher interface. See the module docstring for usage. """ # This field will contain the queues of event handlers for every supported # event type. It is lazily initialized when the first event handler is added # to the class. After that it contains a dictionary of lists, in which # handlers are sorted according to their priority: # {'on_event': [(priority1, handler1), # (priority2, handler2)]} # Handlers are invoked until any one of them returns EVENT_HANDLED _handlers = None @classmethod def register_event_type(cls, name): """Registers an event type with the dispatcher. Registering event types allows the dispatcher to validate event handler names as they are attached, and to search attached objects for suitable handlers. :Parameters: `name` : str Name of the event to register. """ if not hasattr(cls, 'event_types'): cls.event_types = [] cls.event_types.append(name) def _get_names_from_handler(self, handler): """Yields event names handled by a handler function, method or object. """ if callable(handler) and hasattr(handler, '__name__'): # Take the name of a function or a method. yield handler.__name__ else: # Iterate through all the methods of an object and yield those that # match registered events. for name in dir(handler): if (name in self.event_types and callable(getattr(handler, name))): yield name def _finalize_weak_method(self, name, weak_method): """Called to remove dead WeakMethods from handlers.""" handlers = self._handlers[name] i = 0 # This is not the most efficient way of removing several elements from # an array, but in almost all cases only one element has to be removed. while i < len(handlers): if handlers[i][1] is weak_method: del handlers[i] else: i += 1 def _remove_handler_from_queue(self, handlers_queue, handler): """Remove all instances of a handler from a queue for a single event. If `handler` is an object, then all the methods bound to this object will be removed from the queue. """ i = 0 # This is not the most efficient way of removing several elements from # an array, but in almost all cases only one element has to be removed. while i < len(handlers_queue): _, registered_handler = handlers_queue[i] if isinstance(registered_handler, WeakMethod): # Wrapped in WeakMethod in `push_handler`. registered_handler = registered_handler() if (registered_handler is handler or getattr(registered_handler, '__self__', None) is handler): del handlers_queue[i] else: i += 1 def push_handler(self, name, handler, priority=None): """Adds a single event handler. If the `handler` parameter is callable, it will be registered directly. Otherwise it's expected to be an object having a method with a name matching the name of the event. If the `priority` parameter is not None, it is used as a priotity. Otherwise, the value specified by the @priority decorator is used. If neither is specified the default value of 0 is used. """ if not hasattr(self.__class__, 'event_types'): self.__class__.event_types = [] if name not in self.event_types: raise EventException('Unknown event "{}"'.format(name)) if not callable(handler): # If handler is not callable, search for in it for a method with # a name matching the name of the event. if hasattr(handler, name): method = getattr(handler, name) if not callable(method): raise EventException( 'Field {} on "{}" is not callable'.format( name, repr(handler))) handler = method else: raise EventException( '"{}" is not callable and doesn\'t have ' 'a method "{}"'.format(repr(handler), name)) # Determine priority if priority is None: priority = getattr(handler, '__priority', 0) # A hack for the case when handler is a MagicMock. if type(priority) not in (int, float): priority = int(priority) # Wrap methods in weak references. if inspect.ismethod(handler): handler = WeakMethod(handler, partial( self._finalize_weak_method, name)) # Create handler queues if necessary. if self._handlers is None: self._handlers = {} self.push_handlers(self) if name not in self._handlers: self._handlers[name] = [] handlers = self._handlers[name] # Finding the place to insert the new handler. All the previous handlers # have to have strictly higher priority. # # A binary search would theoretically be faster, but a) there's # usually just a handful of handlers, b) we are going to shift # the elements in the list anyway, which will take O(n), c) we are # doing this only during handler registration, and we are more # conserned in the efficiency of dispatching event. i = 0 while i < len(handlers) and handlers[i][0] > priority: i += 1 handlers.insert(i, (priority, handler)) def push_handlers(self, *args, priority=None, **kwargs): """Adds new handlers to registered events. Multiple positional and keyword arguments can be provided. For a keyword argument, the name of the event is taken from the name of the argument. If the argument is callable, it is used as a handler directly. If the argument is an object, it is searched for a method with the name matching the name of the event/argument. When a callable named object (usually a function or a method) is passed as a positional argument, its name is used as the event name. When an object is passed as a positional argument, it is scanned for methods with names that match the names of registered events. These methods are added as handlers for the respective events. An optional argument priority can be used to override the priority for all the added handlers. Default priority is 0, and handlers with higher priority will be invoked first. The priority specified in the call will take precedence of priority, specified in @priority decorator. EventException is raised if the event name is not registered. """ if not hasattr(self.__class__, 'event_types'): self.__class__.event_types = [] for handler in args: for name in self._get_names_from_handler(handler): self.push_handler(name, handler, priority=priority) for name, handler in kwargs.items(): self.push_handler(name, handler, priority) def remove_handler(self, name_or_handler=None, handler=None, name=None): """Removes a single event handler. Can be called in one of the following ways: dispatcher.remove_handler(my_handler) dispatcher.remove_handler(handler=my_handler) dispatcher.remove_handler("event_name", my_handler) dispatcher.remove_handler(name="event_name", handler=my_handler) If the event name is specified, only the queue of handlers for that event is scanned, and the handler is removed from it. Otherwise all handler queues are scanned and the handler is removed from all of them. If the handler is an object, then all the registered handlers that are bound to this object are removed. Unlike `push_handler`, the method names in the class are not taken into account. No error is raised if the event handler is not set. """ if handler is None: # Called with one positional argument (example #1) assert name is None assert name_or_handler is not None handler = name_or_handler elif name is not None: # Called with keyword arguments for handler and name (example #4) assert name_or_handler is None else: # Called with two positional arguments, or only with handler as # a keyword argument (examples #2, #3) name = name_or_handler if name is not None: if name in self._handlers: self._remove_handler_from_queue(self._handlers[name], handler) else: for handlers_queue in self._handlers.values(): self._remove_handler_from_queue(handlers_queue, handler) def remove_handlers(self, *args, **kwargs): """Removes event handlers from the event handlers queue. See :py:meth:`~pyglet.event.EventDispatcher.push_handlers` for the accepted argument types. Handlers, passed as positional arguments are removed from all events, regardless of their names. No error is raised if any handler does not appear among the registered handlers. """ for handler in args: self.remove_handler(None, handler) for name, handler in kwargs.items(): self.remove_handler(name, handler) def dispatch_event(self, event_type, *args): """Dispatch a single event to the attached handlers. The event is propagated to all handlers from from the top of the stack until one returns `EVENT_HANDLED`. This method should be used only by :py:class:`~pyglet.event.EventDispatcher` implementors; applications should call the ``dispatch_events`` method. Since pyglet 1.2, the method returns `EVENT_HANDLED` if an event handler returned `EVENT_HANDLED` or `EVENT_UNHANDLED` if all events returned `EVENT_UNHANDLED`. If no matching event handlers are in the stack, ``False`` is returned. :Parameters: `event_type` : str Name of the event. `args` : sequence Arguments to pass to the event handler. :rtype: bool or None :return: (Since pyglet 1.2) `EVENT_HANDLED` if an event handler returned `EVENT_HANDLED`; `EVENT_UNHANDLED` if one or more event handlers were invoked but returned only `EVENT_UNHANDLED`; otherwise ``False``. In pyglet 1.1 and earlier, the return value is always ``None``. """ if not hasattr(self.__class__, 'event_types'): self.__class__.event_types = [] if event_type not in self.event_types: raise EventException( 'Attempted to dispatch an event of unknown event type "{}". ' 'Event types have to be registered by calling ' 'DispatcherClass.register_event_type({})'.format( event_type, repr(event_type))) if self._handlers is None: # Initialize the handlers with the object itself. self._handlers = {} self.push_handlers(self) handlers_queue = self._handlers.get(event_type, ()) for _, handler in handlers_queue: if isinstance(handler, WeakMethod): handler = handler() assert handler is not None try: if handler(*args): return EVENT_HANDLED except TypeError as exception: self._raise_dispatch_exception( event_type, args, handler, exception) return EVENT_UNHANDLED @staticmethod def _raise_dispatch_exception(event_type, args, handler, exception): # A common problem in applications is having the wrong number of # arguments in an event handler. This is caught as a TypeError in # dispatch_event but the error message is obfuscated. # # Here we check if there is indeed a mismatch in argument count, # and construct a more useful exception message if so. If this method # doesn't find a problem with the number of arguments, the error # is re-raised as if we weren't here. n_args = len(args) # Inspect the handler argspecs = inspect.getfullargspec(handler) handler_args = argspecs.args handler_varargs = argspecs.varargs handler_defaults = argspecs.defaults n_handler_args = len(handler_args) # Remove "self" arg from handler if it's a bound method if inspect.ismethod(handler) and handler.__self__: n_handler_args -= 1 # Allow *args varargs to overspecify arguments if handler_varargs: n_handler_args = max(n_handler_args, n_args) # Allow default values to overspecify arguments if (n_handler_args > n_args and handler_defaults and n_handler_args - len(handler_defaults) <= n_args): n_handler_args = n_args if n_handler_args != n_args: if inspect.isfunction(handler) or inspect.ismethod(handler): descr = f"'{handler.__name__}' at {handler.__code__.co_filename}:{handler.__code__.co_firstlineno}" else: descr = repr(handler) raise TypeError("The '{0}' event was dispatched with {1} arguments, " "but your handler {2} accepts only {3} arguments.".format( event_type, len(args), descr, len(handler_args))) else: raise exception def event(self, *args): """Function decorator for an event handler. Usage:: win = window.Window() @win.event def on_resize(self, width, height): # ... or:: @win.event('on_resize') def foo(self, width, height): # ... """ if len(args) == 0: # @window.event() def decorator(func): name = func.__name__ self.push_handler(name, func) return func return decorator elif inspect.isroutine(args[0]): # @window.event func = args[0] name = func.__name__ self.push_handler(name, func) return args[0] elif isinstance(args[0], str): # @window.event('on_resize') name = args[0] def decorator(func): self.push_handler(name, func) return func return decorator
import os import re import torch import matplotlib.pyplot as plt from src.loader import load_dataset """ 模型效果测试类 """ # 支持中文 plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 class EvalData: def __init__(self, model, config, logger): self.config = config self.model = model self.logger = logger self.test_data = load_dataset(config, shuffle=False) self.list_data = self.test_data.dataset.list_data self.rel_schema = self.test_data.dataset.rel_schema self.index_to_label = dict((y, x) for x, y in self.rel_schema.items()) def eval(self, epoch): self.logger.info('测试第%d轮模型效果:' % epoch) self.pre_dict = {'o1_acc': 0, 'rel_acc': 0, 'o2_acc': 0, 'full_match_acc': 0} self.model.eval() for index, batch_data in enumerate(self.test_data): text_data = self.list_data[index * self.config['batch_size']: (index + 1) * self.config['batch_size']] if torch.cuda.is_available(): batch_data = [d.cuda() for d in batch_data] input_id = batch_data[0] with torch.no_grad(): rel_pred, bio_pred = self.model(input_id) # 不输入labels,使用模型当前参数进行预测 self.get_result(rel_pred, bio_pred, text_data) self.show_result() return self.pre_dict def get_result(self, rel_pred, bio_pred, text_data): rel_pred = torch.argmax(rel_pred, dim=-1) bio_pred = torch.argmax(bio_pred, dim=-1) for rel_pred, bio_pred, info in zip(rel_pred, bio_pred, text_data): o1, o2, rel, sentence = info bio_pred = bio_pred.cpu().detach().tolist() pred_o1, pred_o2 = self.decode(bio_pred, sentence) pred_rel = self.index_to_label[int(rel_pred)] self.pre_dict['o1_acc'] += int(pred_o1 == o1) self.pre_dict['rel_acc'] += int(pred_rel == rel) self.pre_dict['o2_acc'] += int(pred_o2 == o2) if pred_o1 == o1 and pred_rel == rel and pred_o2 == o2: self.pre_dict['full_match_acc'] += 1 def decode(self, pred_label, context): pred_label = "".join([str(i) for i in pred_label]) pred_obj = self.seek_pattern('01*', pred_label, context) pred_value = self.seek_pattern('23*', pred_label, context) return pred_obj, pred_value def seek_pattern(self, pattern, pred_label, context): pred_obj = re.search(pattern, pred_label) if pred_obj: s, e = pred_obj.span() pred_obj = context[s:e] else: pred_obj = "" return pred_obj def show_result(self): for key, value in self.pre_dict.items(): self.logger.info("%s : %s " % (key, value / len(self.list_data))) self.pre_dict[key] = value / len(self.list_data) self.logger.info('--------------------') return def plot_and_save(self, epoch, o1_accs, rel_accs, losses, full_accs): best_f1 = max(full_accs) pic_path = os.path.join(self.config['model_path']) x = range(epoch) fig = plt.figure() plt.plot(x, o1_accs, label='o1_num') plt.plot(x, rel_accs, label='rel_num') plt.plot(x, losses, label='train loss') plt.plot(x, full_accs, label='full_num') plt.xlabel('epoch') plt.ylabel('num') plt.title('训练曲线 best full num=%f' % best_f1) plt.legend() plt.savefig(os.path.join(pic_path, "report-%s-%s-%s-%f.png" % ( self.config['model_type'], self.config['learning_rate'], self.config['rel_loss_ratio'], best_f1)))
from typing import List, Any from talipp.indicators.Indicator import Indicator from talipp.indicators.EMA import EMA class TEMA(Indicator): """ Triple Exponential Moving Average Output: a list of floats """ def __init__(self, period: int, input_values: List[float] = None, input_indicator: Indicator = None): super().__init__() self.period = period self.ema = EMA(period) self.add_sub_indicator(self.ema) self.ema_ema = EMA(period) self.ema_ema_ema = EMA(period) self.add_managed_sequence(self.ema_ema) self.add_managed_sequence(self.ema_ema_ema) self.initialize(input_values, input_indicator) def _calculate_new_value(self) -> Any: if not self.ema.has_output_value(): return None self.ema_ema.add_input_value(self.ema[-1]) if not self.ema_ema.has_output_value(): return None self.ema_ema_ema.add_input_value(self.ema_ema[-1]) if not self.ema_ema_ema.has_output_value(): return None return 3.0 * self.ema[-1] - 3.0 * self.ema_ema[-1] + self.ema_ema_ema[-1]
#!/usr/bin/env python import os, subprocess, signal train_dir = os.path.dirname(os.path.realpath(__file__)) enclosed_dir = os.path.normpath(os.path.join(train_dir, '../')) caffe_dir = os.path.abspath(os.path.join(train_dir, '../../../deps/simnets')) subprocess.check_call('%s/generate_blob.py' % enclosed_dir, shell=True) try: signal.signal(signal.SIGINT, signal.SIG_IGN) subprocess.check_call('%s/tools/extra/hyper_train.py %s/net.prototmp %s/train_plan.json --gpu all' % (caffe_dir, train_dir,train_dir), shell=True, cwd=enclosed_dir) except: print 'Error calling hyper_train script'
def default_newrepr(self): return f'Instance of {self.__class__.__name__}, vars = {vars(self)}' def betterrepr(newstr=None, newrepr=default_newrepr): def wrapped(cls): if newstr is not None: cls.__str__ = newstr cls.__repr__ = newrepr return cls return wrapped
#!/usr/bin/env python # -*- coding: utf8 -*- import os from time import sleep from random import randint # lock categories RWLOCK = 'rwlock' # exclusive lock #TODO shared lock: READLOCK = 'readlock' def lock(filename, lockcat, max_attempts=10, max_wait_ms=200): for i in range(0, max_attempts): success = attempt_lock(filename, lockcat) if success: assert is_locked(filename, lockcat) assert os.path.isfile(pid_filename(filename, lockcat)) return # wait before another attempt wait_ms = randint(0, max_wait_ms) wait_seconds = wait_ms / 1000.0 sleep(wait_seconds) raise Exception("couldn't lock '%s' with lock category %s in %s attempts" % (filename, lockcat, max_attempts)) def release(filename, lockcat): if not is_locked(filename, lockcat): return # remove the pid file, then remove the lock directory os.unlink(pid_filename(filename, lockcat)) os.rmdir(lockdir_name(filename, lockcat)) return def attempt_lock(filename, lockcat): '''Tries to lock the file. Returns True if successul, False if unsuccessful. ''' try: os.mkdir(lockdir_name(filename, lockcat)) except OSError: # couldn't lock return False # locked successfully; put a file with my PID into the lock directory pid = os.getpid() with open(pid_filename(filename, lockcat), 'w') as f: f.write('%d' % pid) return True def lockdir_name(filename, lockcat): '''return the name of the lock directory for the file''' return filename + '_' + lockcat def pid_filename(filename, lockcat): '''return the name of the lock pid file for the file''' return os.path.join(lockdir_name(filename, lockcat), 'pid') def is_locked(filename, lockcat): return os.path.isdir(lockdir_name(filename, lockcat)) def pid_of_lock(filename, lockcat): '''return the pid of the process that has the file locked''' if not is_locked(filename, lockcat): return None with open(pid_filename(filename, lockcat), 'r') as f: pid = int(f.read()) return pid
import classad import htcondor import os import time from PersonalCondor import PersonalCondor from Utils import Utils JOB_SUCCESS = 0 JOB_FAILURE = 1 class CondorJob(object): def __init__(self, job_args): self._job_args = job_args def Submit(self, wait=True): # Submit the job defined by submit_args Utils.TLog("Running job with arguments: " + str(self._job_args)) schedd = htcondor.Schedd() submit = htcondor.Submit(self._job_args) try: with schedd.transaction() as txn: self._cluster_id = submit.queue(txn) except: print("Job submission failed for an unknown error") return JOB_FAILURE Utils.TLog("Job running on cluster " + str(self._cluster_id)) # Wait until job has finished running? if wait is True: self.WaitForFinish() # If we got this far, we assume the job succeeded. return JOB_SUCCESS def WaitForFinish(self, timeout=240): schedd = htcondor.Schedd() for i in range(timeout): ads = schedd.query("ClusterId == %d" % self._cluster_id, ["JobStatus"]) Utils.TLog("Ads = " + str(ads)) # When the job is complete, ads will be empty if len(ads) == 0: break else: status = ads[0]["JobStatus"] if status == 5: Utils.TLog("Job was placed on hold. Aborting.") return JOB_FAILURE time.sleep(1)
import numpy as np from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score from ml import model_evaluation def best_estimator(estimator, X_train, y_train, cv, param_grid, scoring='accuracy', n_jobs=-1, verbose=1): """ Hyperparameters optimization: finds optimal hyperparameters combination using CV """ grid = GridSearchCV(estimator=estimator, param_grid=param_grid, scoring=scoring, n_jobs=n_jobs, cv=cv, verbose=verbose) grid.fit(X_train, y_train) print('# Best estimator stats optimized for', scoring, ':') print() print('Best index:', grid.best_index_) print() print('CV scores for each search done:', grid.cv_results_['mean_test_score']) print() print("CV score for the best estimator found: %0.5f (std %0.5f)" % (grid.best_score_, grid.cv_results_['std_test_score'][grid.best_index_])) print() print('Best params found:', grid.best_params_) return grid def plot_grid_search(cv_results, grid_param_1, grid_param_2, name_param_1, name_param_2): # Get Test Scores Mean and std for each grid search scores_mean = cv_results['mean_test_score'] scores_mean = np.array(scores_mean).reshape(len(grid_param_2),len(grid_param_1)) scores_sd = cv_results['std_test_score'] scores_sd = np.array(scores_sd).reshape(len(grid_param_2),len(grid_param_1)) # Plot Grid search scores _, ax = plt.subplots(1,1) # Param1 is the X-axis, Param 2 is represented as a different curve (color line) for idx, val in enumerate(grid_param_2): ax.plot(grid_param_1, scores_mean[idx,:], '-o', label= name_param_2 + ': ' + str(val)) ax.set_title("Grid Search Scores", fontsize=20, fontweight='bold') ax.set_xlabel(name_param_1, fontsize=16) ax.set_ylabel('CV Average Score', fontsize=16) ax.legend(loc="best", fontsize=15) ax.grid('on') return plt def nested_cv(estimator, X, y, param_grid, scoring='accuracy', inner_cv=2, outer_cv=5, n_jobs=-1, verbose=1): """ Returns average cross-validation accuracy. This gives us a good estimate of what to expect if we tune the hyperparameters of the estimator and then use it on unseen data. """ grid = GridSearchCV(estimator=estimator, param_grid=param_grid, scoring=scoring, cv=inner_cv, verbose=verbose) scores = cross_val_score(grid, X, y, scoring=scoring, cv=outer_cv) return np.mean(scores), np.std(scores)
import datetime from django.utils import timezone from test_plus.test import TestCase from .factories import AnnouncementFactory class TestAnnouncementFeed(TestCase): def test_ok(self): announcement = AnnouncementFactory() response = self.get("announcements:feed") self.assertResponseContains(announcement.title, response, html=False) self.assertResponseContains(announcement.description, response, html=False) def test_limit_items(self): """A limited number of items is in the feed.""" AnnouncementFactory( title="Not going to be there", expires_at=timezone.now() - datetime.timedelta(days=1), ) for i in range(5): AnnouncementFactory() response = self.get("announcements:feed") assert "Not going to be there" not in response.content.decode()
from display.display import ClockDisplay
# coding: utf-8 from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import cv2 import random import numpy as np import traceback import tensorflow as tf from . import dataset_util from ...file.file_operate import FilesOp from ...file.parse_annotation import Anno_OP from .data_provider import tf_noise_padd import imagedt os.environ['CUDA_VISIBLE_DEVICES'] = '0' class ImageReader(object): """Helper class that provides TensorFlow image coding utilities.""" def __init__(self): # Initializes function that decodes RGB JPEG data. self._decode_jpeg_data = tf.placeholder(dtype=tf.string) self._decode_jpeg = tf.image.decode_jpeg(self._decode_jpeg_data, channels=3) def read_image_dims(self, sess, image_data): image = self.decode_jpeg(sess, image_data) return image.shape[0], image.shape[1] def decode_jpeg(self, sess, image_data): image = sess.run(self._decode_jpeg, feed_dict={self._decode_jpeg_data: image_data}) assert len(image.shape) == 3 assert image.shape[2] == 3 return image class Record_Writer(ImageReader): """docstring for RecordWriter""" def __init__(self): super(Record_Writer, self).__init__() self.error_images = [] def image_to_tfexample(self, image_data, image_format, height, width, class_id): return tf.train.Example(features=tf.train.Features( feature={'image/encoded': dataset_util.bytes_feature(image_data), 'image/format': dataset_util.bytes_feature(image_format), 'image/class/label': dataset_util.int64_feature(class_id), 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), })) def convert_to_tfrecord(self, f_lines, svae_dir, dataset_type='train'): """Converts a file to TFRecords.""" print('Generating TFRecords......' ) with tf.Session() as sess: piece_count = 50000 num_pieces = int(len(f_lines) / piece_count + 1) for num_piece in range(num_pieces): start_id, end_id = num_piece*piece_count, min(len(f_lines), (num_piece+1)*piece_count) output_file = os.path.join(svae_dir, dataset_type + str(num_piece+1).zfill(6) + '.tfrecord') with tf.python_io.TFRecordWriter(output_file) as record_writer: for index in range(start_id, end_id): try: img = cv2.imread(f_lines[index][0]) height, width, chanel = img.shape encoded_image = cv2.imencode('.png', img)[1].tostring() # encoded_image = tf.gfile.FastGFile(f_lines[index][0], 'rb').read() except Exception as e: traceback.print_exc(file=sys.stdout) print("error image file {0}...".format(os.path.basename(f_lines[index][0]))) self.error_images.append(os.path.basename(f_lines[index][0])) continue # tf example format: NCHW image_format = os.path.basename(f_lines[index][0]).split('.')[-1].encode() example = self.image_to_tfexample(encoded_image, image_format, height, width, int(f_lines[index][1])) record_writer.write(example.SerializeToString()) print("finished: ", index + 1, '/', len(f_lines), "; image height: {0}, width: {1}".format(height, width)) sys.stdout.write('\n') sys.stdout.flush() def map_int(self, m_list): return np.array(map(int, map(float, m_list))) def create_tf_example(self, sess, jpg_path, anno_infos): with tf.gfile.GFile(jpg_path, 'rb') as fid: encoded_image = fid.read() # get infos chanel = 3 # now set 3 height, width = self.read_image_dims(sess, encoded_image) image_type = os.path.basename(jpg_path).split('.')[-1] image_format = image_type.encode() # convert infos anno_infos = np.array(anno_infos) xmins = self.map_int(anno_infos[:, 0]) / float(width) # List of normalized left x coordinates in bounding box (1 per box) ymins = self.map_int(anno_infos[:, 1]) / float(height) # List of normalized top y coordinates in bounding box (1 per box) xmaxs = self.map_int(anno_infos[:, 2]) / float(width) # List of normalized right x coordinates in bounding box # (1 per box) ymaxs = self.map_int(anno_infos[:, 3]) / float(height) # List of normalized bottom y coordinates in bounding box # (1 per box) classes = self.map_int(anno_infos[:, 4]) # List of integer class id of bounding box (1 per box) classes_text = anno_infos[:, 5] # List of string class name of bounding box (1 per box) assert len(xmins) == len(ymins) == len(xmaxs) == len(ymaxs) == len(classes) == len(classes_text) filename = jpg_path.encode() # Filename of the image. Empty if image is not from file tf_example = tf.train.Example(features=tf.train.Features( feature={'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/channels': dataset_util.int64_feature(chanel), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_image), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def write_cls_records(self, train_images_file, save_dir, test_ratio=0): with open(train_images_file, 'r') as f: all_files = [item.strip().split('\t') for item in f.readlines()] # save images file in tfrecord dir imagedt.file.write_csv(all_files, os.path.join(save_dir,'image_files.txt')) # shuffle all the files random.shuffle(all_files) sample_count = len(all_files) # read file, write to tfrecords test_count = int(sample_count * test_ratio) if test_count: test_samples = all_files[-test_count:] self.convert_to_tfrecord(test_samples, save_dir, dataset_type='validation_') # save error images imagedt.file.write_txt(self.error_images, os.path.join(save_dir,'test_error_images.txt')) train_samples = all_files[:sample_count-test_count] self.convert_to_tfrecord(all_files, save_dir, dataset_type='train_') # save error images imagedt.file.write_txt(self.error_images, os.path.join(save_dir,'train_error_images.txt')) def converte_anno_info(self, data_dir, det_cls_name='3488'): data_pairs = FilesOp.get_jpg_xml_pairs(data_dir) examples = {} for index, data_pair in enumerate(data_pairs): jpg_path, xml_path = data_pair anno_infos = Anno_OP.parse_lab_xml(xml_path) # add default class and class_name anno_infos = [item+['3488']*2 for item in anno_infos] examples[jpg_path] = anno_infos print("Read image pairs: ", len(examples)) return examples def write_detect_records(self, data_dir, save_dir, record_name='traning_detect.tfrecord'): examples = self.converte_anno_info(data_dir) record_name = os.path.join(save_dir, record_name) writer = tf.python_io.TFRecordWriter(record_name) with tf.Session() as sess: for index, key_path in enumerate(examples): tf_example = self.create_tf_example(sess, key_path, examples[key_path]) writer.write(tf_example.SerializeToString()) print("write record files: {0}/{1} ".format(index+1, len(examples))) writer.close() print("All class: 3488, class_name 3488, records save dir {}".format(save_dir)) RecordWriter = Record_Writer() from tensorflow.python.platform import gfile def write_pbmodel_summery(tf_pbmodel, log_dir): with tf.Session() as sess: model_filename =tf_pbmodel with gfile.FastGFile(model_filename, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) g_in = tf.import_graph_def(graph_def) train_writer = tf.summary.FileWriter(log_dir) train_writer.add_graph(sess.graph)
from __future__ import absolute_import, print_function from sage.all import matrix __all__ = ["dim_affine_hull"] def dim_affine_hull(points): """Return dimension of affine hull of given collection of points.""" return matrix([p - points[0] for p in points[1:]]).rank()
import os import json from datetime import datetime, date import dataclasses from typing import List, Optional, Callable, Sequence, Any import click @click.group() @click.option( "--verbose/--quiet", default=None, is_flag=True, show_default=True, help="Change default log level", ) def main(verbose: Optional[bool]) -> None: """ Parse a google takeout! """ import logging from . import log if verbose is not None: if verbose: log.logger = log.setup(level=logging.DEBUG) else: log.logger = log.setup(level=logging.ERROR) SHARED = [ click.option("--cache/--no-cache", default=False, show_default=True), click.option( "-a", "--action", type=click.Choice(["repl", "summary", "json"]), default="repl", help="What to do with the parsed result", show_default=True, ), ] # decorator to apply shared arguments to inspect/merge def shared_options(func: Callable[..., None]) -> Callable[..., None]: for decorator in SHARED: func = decorator(func) return func def _serialize_default(obj: Any) -> Any: if isinstance(obj, Exception): return {"type": type(obj).__name__, "value": str(obj)} elif dataclasses.is_dataclass(obj): d = dataclasses.asdict(obj) assert "type" not in d d["type"] = type(obj).__name__ return d elif isinstance(obj, datetime): return str(obj) elif isinstance(obj, date): return str(obj) raise TypeError(f"No known way to serialize {type(obj)} '{obj}'") def _handle_action(res: List[Any], action: str) -> None: if action == "repl": import IPython # type: ignore[import] click.echo(f"Interact with the export using {click.style('res', 'green')}") IPython.embed() elif action == "json": click.echo(json.dumps(res, default=_serialize_default)) else: from collections import Counter from pprint import pformat click.echo(pformat(Counter([type(t).__name__ for t in res]))) @main.command(short_help="parse a takeout directory") @shared_options @click.argument("TAKEOUT_DIR", type=click.Path(exists=True), required=True) def parse(cache: bool, action: str, takeout_dir: str) -> None: """ Parse a takeout directory takeout """ from .common import Res from .models import BaseEvent from .path_dispatch import TakeoutParser tp = TakeoutParser(takeout_dir, error_policy="drop") # note: actually no exceptions since since they're dropped res: List[Res[BaseEvent]] = list(tp.parse(cache=cache)) _handle_action(res, action) @main.command(short_help="merge multiple takeout directories") @shared_options @click.argument("TAKEOUT_DIR", type=click.Path(exists=True), nargs=-1, required=True) def merge(cache: bool, action: str, takeout_dir: Sequence[str]) -> None: """ Parse and merge multiple takeout directories """ from .path_dispatch import TakeoutParser from .merge import cached_merge_takeouts, merge_events from .models import DEFAULT_MODEL_TYPE res: List[DEFAULT_MODEL_TYPE] = [] if cache: res = list(cached_merge_takeouts(list(takeout_dir))) else: res = list(merge_events(*iter([TakeoutParser(p).parse(cache=False) for p in takeout_dir]))) # type: ignore[arg-type] _handle_action(res, action) @main.group( name="cache_dir", invoke_without_command=True, short_help="interact with cache dir" ) @click.pass_context def cache_dir(ctx: click.Context) -> None: """ Print location of cache dir """ from .cache import takeout_cache_path if ctx.invoked_subcommand is None: click.echo(str(takeout_cache_path.absolute())) @cache_dir.command(name="clear") def cache_dir_remove() -> None: """ Remove the cache directory """ import shutil from .cache import takeout_cache_path click.echo(str(takeout_cache_path)) click.echo("Contents:") for f in takeout_cache_path.rglob("*"): print(f"\t{str(f)}") if click.confirm("Really remove this directory?"): shutil.rmtree(str(takeout_cache_path)) @main.command(name="move", short_help="move new google takeouts") @click.option( "--from", "from_", required=True, help="Google takeout zip file", type=click.Path(exists=True, file_okay=True, dir_okay=False), ) @click.option( "--to-dir", required=True, type=click.Path(file_okay=False, dir_okay=True, exists=True), help="Directory which contains your Takeout files", ) @click.option( "--extract/--no-extract", required=False, default=True, help="Whether or not to extract the zipfile", ) def move(from_: str, to_dir: str, extract: bool) -> None: """ Utility command to help move/extract takeouts into the correct location """ import time import tempfile import zipfile ts = int(time.time()) target = f"{to_dir}/Takeout-{ts}" if not extract: target += ".zip" _safe_shutil_mv(from_, target) else: assert from_.endswith("zip") zf = zipfile.ZipFile(from_) with tempfile.TemporaryDirectory() as td: click.echo(f"Extracting {from_} to {td}") zf.extractall(path=td) top_level = [f for f in os.listdir(td) if not f.startswith(".")] if len(top_level) == 1 and top_level[0].lower().startswith("takeout"): from_ = os.path.join(td, top_level[0]) _safe_shutil_mv(from_, target) else: raise RuntimeError( f"Expected top-level 'Takeout' folder in extracted folder, contents are {top_level}" ) def _safe_shutil_mv(from_: str, to: str) -> None: import shutil click.echo(f"Moving {from_} to {to}") assert os.path.exists(from_) assert not os.path.exists(to) shutil.move(from_, to) if __name__ == "__main__": main(prog_name="google_takeout_parser")
# See license.txt for license details. # Copyright (c) 2020-2021, Chris Withers import os from setuptools import setup, find_packages base_dir = os.path.dirname(__file__) setup( name='giterator', version='0.2.0', author='Chris Withers', author_email='chris@withers.org', license='MIT', description=( "Python tools for doing git things." ), long_description=open('README.rst').read(), url='https://github.com/simplistix/giterator', classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.9', ], packages=find_packages(exclude=["tests"]), zip_safe=False, include_package_data=True, extras_require=dict( test=[ 'pytest', 'pytest-cov', 'sybil', 'testfixtures', ], build=['furo', 'sphinx', 'setuptools-git', 'twine', 'wheel'] ), entry_points={ 'console_scripts': ['giterator=giterator.cli:main'], } )
import tensorflow as tf from MetReg.base.base_model import BaseModel from tensorflow.keras import models, Model from tensorflow.keras import layers class DNNRegressor(Model): def __init__(self, activation='relu',): super().__init__() self.regressor = None self.dense1 = layers.Dense(16) self.dense2 = layers.Dense(8) self.dense3 = layers.Dense(1) def call(self, inputs): x = self.dense1(inputs) x = self.dense2(x) x = self.dense3(x) return x
import matplotlib.pyplot as plt import networkx as nx import numpy as np import dgl def vis_graph(g, title="", save_name=None): if isinstance(g, nx.Graph): pass elif isinstance(g, np.ndarray): g = nx.DiGraph(g) elif isinstance(g, dgl.DGLGraph): g = g.to_networkx() else: raise NameError('unknow format of input graph') g = nx.Graph(g) g = nx.DiGraph(g) g = nx.to_numpy_matrix(g) np.fill_diagonal(g, 0.0) g = nx.DiGraph(g) # g.remove_edges_from(g.selfloop_edges()) g.remove_nodes_from(list(nx.isolates(g))) nx.draw_networkx(g, arrows=False, with_labels=False, node_color="#fbb034", node_size=450, width=4.5) # networkx draw() plt.draw() # pyplot draw() plt.title(title) plt.axis('off') if save_name is not None: plt.savefig(f"{save_name}.png", dpi=1000, bbox_inches='tight') else: plt.show() plt.close() def plot(x=None, y=None): if x is None: plt.plot(y) else: plt.plot(x, y) plt.show() plt.close()
r""" ############################################################################### :mod:`OpenPNM.Algorithms` -- Algorithms on Networks ############################################################################### Contents -------- This submodule contains algorithms for performing simulations on pore networks Classes ------- .. autoclass:: GenericAlgorithm :members: .. autoclass:: Drainage :members: .. autoclass:: InvasionPercolation :members: .. autoclass:: FickianDiffusion :members: .. autoclass:: StokesFlow :members: .. autoclass:: OhmicConduction :members: .. autoclass:: FourierConduction :members: """ from .__GenericAlgorithm__ import GenericAlgorithm from .__GenericLinearTransport__ import GenericLinearTransport from .__FickianDiffusion__ import FickianDiffusion from .__FourierConduction__ import FourierConduction from .__OhmicConduction__ import OhmicConduction from .__StokesFlow__ import StokesFlow from .__OrdinaryPercolation__ import OrdinaryPercolation from .__InvasionPercolation__ import InvasionPercolation from .__Drainage__ import Drainage
import os from pathlib import Path from qtpy import QtWidgets, QtCore, QtGui from pyqtgraph.parametertree.Parameter import ParameterItem from pyqtgraph.parametertree.parameterTypes.basetypes import WidgetParameterItem from pyqtgraph.parametertree import Parameter class FileDirWidget(QtWidgets.QWidget): """ ================ ========================= **Attributes** **Type** *value_changed* instance of pyqt Signal *path* string ================ ========================= See Also -------- browse_path """ value_changed = QtCore.Signal(str) def __init__(self, init_path='D:/Data', file_type=False): super().__init__() self.filetype = file_type self.path = init_path self.initUI() self.base_path_browse_pb.clicked.connect(self.browse_path) def browse_path(self): """ Browse the path attribute if exist. See Also -------- set_path """ if self.filetype is True: folder_name = QtWidgets.QFileDialog.getOpenFileName(None, 'Choose File', os.path.split(self.path)[0])[0] elif self.filetype is False: folder_name = QtWidgets.QFileDialog.getExistingDirectory(None, 'Choose Folder', self.path) elif self.filetype == "save": folder_name = QtWidgets.QFileDialog.getSaveFileName(None, 'Enter a Filename', os.path.split(self.path)[0])[ 0] if not (not(folder_name)): # execute if the user didn't cancel the file selection self.set_path(folder_name) self.value_changed.emit(folder_name) def set_path(self, path_file): """ Set the base path attribute with the given path_file. =============== =========== =========================== **Parameters** **Type** **Description** *path_file* string the pathname of the file =============== =========== =========================== """ if isinstance(path_file, Path): path_file = str(path_file) self.base_path_edit.setPlainText(path_file) self.path = path_file def get_value(self): """ Get the value of the base_path_edit attribute. Returns ------- string the path name """ return self.base_path_edit.toPlainText() def initUI(self): """ Init the User Interface. """ self.hor_layout = QtWidgets.QHBoxLayout() self.base_path_edit = QtWidgets.QPlainTextEdit(self.path) self.base_path_edit.setMaximumHeight(50) self.base_path_browse_pb = QtWidgets.QPushButton() self.base_path_browse_pb.setText("") icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap(":/icons/Icon_Library/Browse_Dir_Path.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.base_path_browse_pb.setIcon(icon3) self.hor_layout.addWidget(self.base_path_edit) verlayout = QtWidgets.QVBoxLayout() verlayout.addWidget(self.base_path_browse_pb) verlayout.addStretch() self.hor_layout.addLayout(verlayout) self.hor_layout.setSpacing(0) self.setLayout(self.hor_layout) class FileDirParameterItem(WidgetParameterItem): def makeWidget(self): """ Make an initialized file_browser object with parameter options dictionnary ('readonly' key)0 Returns ------- w : filebrowser The initialized file browser. See Also -------- file_browser """ self.asSubItem = True self.hideWidget = False if 'filetype' in self.param.opts: self.filetype = self.param.opts['filetype'] else: self.filetype = True self.w = FileDirWidget(self.param.value(), file_type=self.filetype) # if 'tip' in self.param.opts: # self.w.setToolTip(self.param.opts['tip']) self.w.base_path_edit.setReadOnly(self.param.opts['readonly']) self.w.value = self.w.get_value self.w.setValue = self.w.set_path self.w.sigChanged = self.w.value_changed return self.w class FileDirParameter(Parameter): """ Editable string; displayed as large text box in the tree. See Also -------- file_browserParameterItem """ itemClass = FileDirParameterItem
from server import Server import os def install_apt_packages(server): print("installing apt packages") server.update_apt_packages() server.install_apt_package("python3-pip") packages = server.get_installed_apt_packages() assert "python3-pip" in packages def install_pip3_packages(server): version = server.get_pip3_version() assert version.startswith("20.") assert version.endswith("3.8") server.install_pip3_package("dataset") server.install_pip3_package("bottle") packages = server.get_installed_pip3_packages() assert "dataset" in packages assert "bottle" in packages if __name__ == "__main__": server = Server(host = "3.129.67.194", user="ubuntu", key_filename="/Users/greg/.ssh/lightsail-ohio-gsd.pem") #install_apt_packages(server) install_pip3_packages(server) print("done.")
#from tensorflow import keras from tensorflow.keras.layers import Conv2D, MaxPooling2D, ZeroPadding2D from tensorflow.keras.layers import Dense, Activation, Dropout, Flatten from tensorflow.keras import optimizers from tensorflow.keras.models import Sequential img_width = 150 img_height = 150 def load_model(MODEL_2): model =Sequential() model.add(Conv2D(32,(3,3), input_shape=(img_width, img_height, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Conv2D(32,(3,3), input_shape=(img_width, img_height, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Conv2D(64,(3,3), input_shape=(img_width, img_height, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2,2))) model.add(Flatten()) model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) model.load_weights(MODEL_2) return model
import random import time import itertools from time import sleep import numpy as np from operator import itemgetter import operator from ..util import get_direction, get_random_direction, AStarGraph, AStarSearch, get_closest, get_closest_astar import matplotlib.pyplot as plt import matplotlib.ticker as ticker # cool_list structure # { # 'x_in': 1, # 'y_in': 2, # 'x_ut': 3, # 'y_ut': 4 # } class Webjocke_Custom(object): def __init__(self): ############################################################################### # # Config Variables # ############################################################################### self.max_diamonds = 3 # Larger is heavy'er on the CPU self.min_path_cost = 50 #plt.ion() #lt.show() def get_next_step(self, start, end, enemies, portals): from_ = start to_ = end #print ("Me: ", from_) #print ("Goal: ", to_) graph = AStarGraph(enemies) best_result = None best_cost = None # Without teleporters best_result, best_cost = AStarSearch(from_, to_, graph) # With teleportes, one way result, tempstep = AStarSearch(from_, portals[0], graph) tempstep += AStarSearch(portals[1], to_, graph)[1] if tempstep < best_cost: best_cost = tempstep best_result = result print("Portal is shorter one way!") #print(tempstep) # With teleportes, other way result, tempstep = AStarSearch(from_, portals[1], graph) tempstep += AStarSearch(portals[0], to_, graph)[1] if tempstep < best_cost: best_cost = tempstep best_result = result print("Portal is shorter other way!") #print(tempstep) #print ("Best Route: ", result) #print ("Steps to goal position: ", cost) try: return list(best_result[1]), best_result, graph except: return [4,4], [(4,4), (4,4)], graph def create_full_list(self, combos, diamonds, my_pos, my_home): #print("Lenght of combos: "+str(len(combos))) #print("Diamonds: "+str(diamonds)) #print("========FUN STARTS?=======") big_list = [] for path in combos: temp = [] temp.append(my_pos) for obj in path: temp.append(diamonds[obj]) temp.append(my_home) #print(temp) big_list.append(temp) return big_list #print("========FUN ENDING?=======") def get_shortest_path(self, big_list, enemies, portals): graph = AStarGraph(enemies) lowest_steps = None best_path = None for path in big_list: steps = 0 for index, obj in enumerate(path): if index != len(path)-1: think_cost = 0 # Without teleporters result, cost = AStarSearch(path[index], path[index+1], graph) think_cost = cost #print(think_cost) # With teleportes, one way tempstep = AStarSearch(path[index], portals[0], graph)[1] tempstep += AStarSearch(portals[1], path[index+1], graph)[1] if tempstep < think_cost: think_cost = tempstep print("Portal is shorter one way!") #print(tempstep) # With teleportes, other way tempstep = AStarSearch(path[index], portals[1], graph)[1] tempstep += AStarSearch(portals[0], path[index+1], graph)[1] if tempstep < think_cost: think_cost = tempstep print("Portal is shorter other way!") #print(tempstep) #print("===============") steps += think_cost if best_path == None or steps < lowest_steps: lowest_steps = steps best_path = path return best_path, lowest_steps # Get distance between all the objects in the current order def get_distance(self, cool_path): distance = 0 lenth = len(cool_path)-1 for index, obj in enumerate(cool_path): if index == lenth: break else: x_dist = abs(obj["x_out"] - cool_path[index+1]["x_in"]) y_dist = abs(obj["y_out"] - cool_path[index+1]["y_in"]) distance += x_dist+y_dist return distance def create_cool_list(self, combos, diamonds, teleporters, my_home, my_pos, length, my_dias): new_list = [] for path in combos: # Add two different, because of teleporters can go two ways # 1 new_path = [] amount_of_tele = 0 # NEW teleporter_number = 99#length-1 teleporter_number_2 = 98#length-2 # NEW #print("==================================") #print("Path: "+str(path)) #print("Diamonds: "+str(diamonds)) #print("Teleport Number 1: "+str(teleporter_number)) # NEW #print("Teleport Number 2: "+str(teleporter_number_2)) # NEW # add player_pos new_path.append({"x_out":my_pos["x"], "x_in":my_pos["x"], "y_out":my_pos["y"], "y_in":my_pos["y"]}) # Add all the diamonds and check for the teleporter for objecttt in path: #print("Objectt = "+str(objecttt)) if objecttt == teleporter_number: #print("Was Teleport 1") amount_of_tele += 1 new_path.append({"x_out":teleporters[1]["position"]["x"], "x_in":teleporters[0]["position"]["x"], "y_out":teleporters[1]["position"]["y"], "y_in":teleporters[0]["position"]["y"]}) elif objecttt == teleporter_number_2: # NEW #print("Was Teleport 2") amount_of_tele += 1 new_path.append({"x_out":teleporters[0]["position"]["x"], "x_in":teleporters[1]["position"]["x"], "y_out":teleporters[0]["position"]["y"], "y_in":teleporters[1]["position"]["y"]}) # NEW else: #print("Was A Diamond") new_path.append({"x_out":diamonds[objecttt]["x"], "x_in":diamonds[objecttt]["x"], "y_out":diamonds[objecttt]["y"], "y_in":diamonds[objecttt]["y"]}) if len(new_path)+1 == 5-my_dias+amount_of_tele: break # Add Home Path new_path.append({"x_out":my_home["x"], "x_in":my_home["x"], "y_out":my_home["y"], "y_in":my_home["y"]}) new_list.append(new_path) #print("==================================") ''' # 2 new_path = [] teleporter_number = len(combos) # add player_pos new_path.append({"x_out":my_pos["x"], "x_in":my_pos["x"], "y_out":my_pos["y"], "y_in":my_pos["y"]}) # Add all the diamonds and check for the teleporter for objecttt in path: if objecttt == teleporter_number: new_path.append({"x_out":teleporters[0]["position"]["x"], "x_in":teleporters[1]["position"]["x"], "y_out":teleporters[0]["position"]["y"], "y_in":teleporters[1]["position"]["y"]}) else: new_path.append({"x_out":diamonds[objecttt]["x"], "x_in":diamonds[objecttt]["x"], "y_out":diamonds[objecttt]["y"], "y_in":diamonds[objecttt]["y"]}) if len(new_path) == 5: break # Add Home Path new_path.append({"x_out":my_home["x"], "x_in":my_home["x"], "y_out":my_home["y"], "y_in":my_home["y"]}) new_list.append(new_path) ''' return new_list def get_all_combos(self, nice_list, my_dias): lench_of_comb = 5-my_dias if len(nice_list) < lench_of_comb: lench_of_comb = len(nice_list) return [list(x) for x in itertools.permutations(nice_list, lench_of_comb)] def get_random_direction(self, bots): new_cords = () my_random = random.randint(1, 4) if my_random == 1: new_cords = (-1, 0) elif my_random == 2: new_cords = (1, 0) elif my_random == 3: new_cords = (0, -1) elif my_random == 4: new_cords = (0, 1) return new_cords def get_8_closest_diamonds(self, diamonds, my_pos, my_home, enemies, portals): unsorted_diamonds = [] graph = AStarGraph(enemies) for dia in diamonds: # Without teleporters cost = AStarSearch(my_home, dia, graph)[1] # With teleportes, one way tempstep = AStarSearch(my_pos, portals[0], graph)[1] tempstep += AStarSearch(portals[1], dia, graph)[1] if tempstep < cost: cost = tempstep print("Portal is shorter one way!") #print(tempstep) # With teleportes, other way tempstep = AStarSearch(my_pos, portals[1], graph)[1] tempstep += AStarSearch(portals[0], dia, graph)[1] if tempstep < cost: cost = tempstep print("Portal is shorter other way!") #print(tempstep) unsorted_diamonds.append([dia, cost]) sorted_8_diamonds_with_costs = sorted(unsorted_diamonds, key=itemgetter(1))[:self.max_diamonds] sorted_8_diamonds_without_cost = [] for dia in sorted_8_diamonds_with_costs: sorted_8_diamonds_without_cost.append(dia[0]) return sorted_8_diamonds_without_cost def get_all_possible_paths(self, potensial_diamonds, my_pos, my_home, my_diamonds): lench_of_comb = 5-my_diamonds if len(potensial_diamonds) < lench_of_comb: lench_of_comb = len(potensial_diamonds) paths = [list(x) for x in itertools.permutations(potensial_diamonds, lench_of_comb)] for path in paths: path.insert(0, my_pos) path.append(my_home) return paths def diamonds_weight_method(self, board, diamonds): awesome_list = [] ''' List with all players and their paths and costs to all diamonds [ ["botname", { # dia cost path 1: (4, [(3,5), (2,6), (2,6)]), 2: (4, [(3,5), (2,6), (2,6)]) }] ] ''' all_players = board.bots for player in all_players: if player["diamonds"] == 5: continue player_pos = (player["position"]["x"], player["position"]["y"]) cool_list = [] cool_list.append(player["name"]) cool_list.append({}) for index, dia in enumerate(diamonds): graph = AStarGraph(all_players+board.gameObjects) best_result, best_cost = AStarSearch(player_pos, dia, graph) cool_list[1][index] = (best_cost, best_result) awesome_list.append(cool_list) # List of all diamonds and their weight diamonds_weight = {} ''' { # dia_index, weight 1: 37, 2: 37 } ''' # Fill with all the diamonds for index, dia in enumerate(diamonds): diamonds_weight[index] = 0 # Modify the weight variable for player_info in awesome_list: multiplyer = -1 if player_info[0] == "webjocke": multiplyer = 1 for index, dia in enumerate(diamonds_weight): diamonds_weight[index] += multiplyer / (1+player_info[1][index][0]) return diamonds_weight def other_players_closest(self, players, diamonds, enemies, portals): cool_lst = [] for player in players: #cool_lst.append(get_closest_astar(diamonds, player, enemies, portals)[0]) cool_lst.append(get_closest(diamonds, player)) #print(cool_lst) return cool_lst def next_move(self, board_bot, board): # === Variables === diamonds = [] # [(x,y),(x,y),(x,y)] for dia in board.diamonds: diamonds.append((dia["x"], dia["y"])) teleporters = [] # [(x,y),(x,y)] for obj in board.gameObjects: teleporters.append((obj["position"]["x"], obj["position"]["y"])) my_diamonds = board_bot["diamonds"] # [{'x': 5, 'y': 6}, {'x': 5, 'y': 6}] my_pos = (board_bot["position"]["x"], board_bot["position"]["y"]) # (x,y) my_home = (board_bot["base"]["x"], board_bot["base"]["y"]) # (x,y) max_diamonds = self.max_diamonds # larger is more heavy on the cpu goal_position = None # {'x': 5, 'y': 6} enemies = [] players = [] portals = [] for bad in board.bots: if bad["name"] != "webjocke": enemies.append((bad["position"]["x"], bad["position"]["y"])) players.append((bad["position"]["x"], bad["position"]["y"])) for bad in board.gameObjects: enemies.append((bad["position"]["x"], bad["position"]["y"])) portals.append((bad["position"]["x"], bad["position"]["y"])) ############################################################################### # # Diamond Weight Method # ############################################################################### #diamonds_weight = self.diamonds_weight_method(board, diamonds) #sorted_list = sorted(diamonds_weight.items(), key=operator.itemgetter(1), reverse=True) #goal_diamonds_index = sorted_list[0][0] ############################################################################### # # Get closest if not other players is closer - Method # ############################################################################### #not_to_go_to = self.other_players_closest(players, diamonds, enemies, portals) #my_closest = get_closest_astar(diamonds, my_pos, enemies, portals)[0] #while my_closest in not_to_go_to: # diamonds.remove(my_closest) # my_closest = get_closest_astar(diamonds, my_pos, enemies, portals)[0] # #print("Someone else is closer then me...") #if my_closest != None: # goal_diamonds_index = my_closest #else: # goal_diamonds_index = my_home ############################################################################### # # First Diamond Method # ############################################################################### goal_diamonds_index = get_closest_astar(diamonds, my_pos, enemies, portals)[0] ############################################################################### # # First. Let's check if we gott full bag and need to return to home # ############################################################################### if my_diamonds == 5: goal_position = my_home #elif my_diamonds == 0: # goal_position = get_closest_astar(diamonds, my_pos, enemies, portals) else: # If diamonds is to far away, go home instead #if get_closest_astar([goal_diamonds_index], my_pos, enemies, portals)[1] > 10 and len(players) > 2 and len(diamonds) < 3: # goal_position = my_home # print("To Long Away, going home") #else: goal_position = goal_diamonds_index #goal_position = get_closest_astar(diamonds, my_pos, enemies, portals) next_step, result, graph = self.get_next_step((my_pos[0], my_pos[1]), (goal_position[0], goal_position[1]), enemies, portals) ############################################################################### # # Show the plot # ############################################################################### ''' list_to_show = [] for row in range(0,10): col_list = [] for col in range(0, 10): col_list.append((0,0,0)) list_to_show.append(col_list) list_to_show[my_pos[1]][my_pos[0]] = (255,255,0) list_to_show[my_home[1]][my_home[0]] = (255,255,255) list_to_show[goal_position[1]][goal_position[0]] = (0,0,255) for index, dia in enumerate(diamonds): list_to_show[dia[1]][dia[0]] = (0,max(10, int(100+diamonds_weight[index]*155)),0) for dia in enemies: list_to_show[dia[1]][dia[0]] = (255,0,0) ''' ############################################################################### # # Teleporter check # ############################################################################### ''' list_to_show = [] for row in range(0,10): col_list = [] for col in range(0, 10): cord = (col, row) cost = get_closest_astar([cord], my_pos, [], portals)[1] col_list.append((0,255-cost*12,0)) list_to_show.append(col_list) list_to_show[portals[0][1]][portals[0][0]] = (0,0,255) list_to_show[portals[1][1]][portals[1][0]] = (0,0,255) list_to_show[my_pos[1]][my_pos[0]] = (255,255,0) plt.clf() plt.imshow(np.array(list_to_show)) plt.xlim(-0.5,9.5) plt.ylim(9.5,-0.5) plt.draw() plt.pause(0.001) ''' return get_direction(my_pos[0], my_pos[1], next_step[0], next_step[1]) #else: ''' elif my_diamonds >= 2: # Sorting out the closest 8 potensial_diamonds = self.get_8_closest_diamonds(diamonds, my_pos, my_home, enemies, portals) # Get all combos of the diamonds, and add my position and the home position all_paths = self.get_all_possible_paths(potensial_diamonds, my_pos, my_home, my_diamonds) # Get shortest paths of them path_to_take, cost = self.get_shortest_path(all_paths, enemies, portals) #print(path_to_take, cost) goal_position = path_to_take[1] #goal_position = get_closest_astar(diamonds, my_pos, enemies) ''' ############################################################################### # # Let's figure out what diamond to hunt # ############################################################################### ############################################################################### # # Let's generate a list of all combinations of paths between diamonds # ############################################################################### # Create list with all combos of 5 diamonds (using <=19 dia) #lengh_of_diamonds = len(diamonds) #+2 # +1 to have space for one teleporter <------------------- #if lengh_of_diamonds > max_diamonds: <------------------- # lengh_of_diamonds = max_diamonds <------------------- #list_of_diamond_indexes = range(0, lengh_of_diamonds) <------------------- #combos = self.get_all_combos(list_of_diamond_indexes, my_diamonds) <------------------- #print("==== Creating Combos =====") #print(combos) #print("Amount of combos: "+str(len(combos))) #print("Total Diamonds: "+str(len(diamonds))) #print("Only using "+str(self.max_diamonds)+" Diamonds") ############################################################################### # # Insert diamond cordinates into list and add me_pos and_home pos for each path # ############################################################################### # Generates big list, with me pos, home pos and all the diamonds pos #big_list = self.create_full_list(combos, diamonds, my_pos, my_home) <------------------- #print("==== Creating Big List =====") #print("Amount of combos: "+str(len(big_list))) #print(big_list) ''' elif my_diamonds == 0: players_and_shortest = [] for player in players: if(len(players) < len(diamonds)): players_and_shortest.append(get_closest_astar(diamonds, player, enemies)) for dia in players_and_shortest: if dia in diamonds: diamonds.remove(dia) goal_position = get_closest_astar(diamonds, my_pos, enemies)''' ############################################################################### # # Let's calculate the shortest path of them all # ############################################################################### #shortest_path, steps = self.get_shortest_path(big_list, enemies) <------------------- #print("==== Getting the shortest path =====") #print("Amount of Steps: "+str(steps)) #print(shortest_path) ############################################################################### # # Run to the first obj on the shortest path # ############################################################################### #goal_position = shortest_path[1] <------------------- ''' Skipping cool_list # Create the cool list using create_cool_list() cool_list = self.create_cool_list(combos, diamonds, teleporters, my_home, my_pos, lengh_of_diamonds, board_bot["diamonds"]) #print("==== cool_list =====") #print(cool_list) #print(len(cool_list)) #print("==== cool_list =====") # Move towards the next object in the perfect path on the board self.goal_position = {"x":best_path[1]["x_in"], "y":best_path[1]["y_in"]} if best_path[1]["x_in"] != best_path[1]["x_out"] or best_path[1]["y_in"] != best_path[1]["y_out"]: self.is_teleporter = True END COMMENT''' #temp = get_closest(board.diamonds, board_bot["position"]) #board.diamonds[0] #goal_position = (temp["x"], temp["y"]) #print("Closest Diamonds: "+str(goal_position)) ############################################################################### # # Let's figure out the shortest path to that goal_position (usually a diamond) # ############################################################################### # Calculate move according to goal position #delta_x, delta_y = get_direction(my_pos[0], my_pos[1], goal_position[0], goal_position[1]) #going_to = {"x":current_position["x"]+delta_x,"y":current_position["y"]+delta_y} #first_going_to = {"x":current_position["x"]+delta_x,"y":current_position["y"]+delta_y} #temp_going_to = {"x":current_position["x"]+delta_x,"y":current_position["y"]+delta_y} ### TODO # Fixa så att man går ett random håll ifall man fastnar vid en annan bot --- Förbättra! # Unvida Portaler (ifall man inte vill gå in i dem just i detta steg) # Räkna ms ifrån start på mainloopen och kör sen direkt ifall det har gått minUpdateTime eller något
from rest_framework.decorators import api_view, permission_classes from rest_framework.response import Response from rest_framework.permissions import AllowAny from django.http import HttpResponse from rest_framework import status @api_view() @permission_classes([AllowAny,]) def HealthCheckView(request): return Response(data=None, status=status.HTTP_200_OK)
import logging import sys from common.io.net import NetReader from core.exceptions.config_exceptions import ConfigNoFileNameGivenException from core.io.config import ConfigReader from core.io.lines import LineReader from core.io.periodic_ean import PeriodicEANReader, PeriodicEANWriter from core.io.ptn import PTNReader from core.model.impl.simple_dict_graph import SimpleDictGraph from core.util.config import Config from common.util.line_reconstructor import reconstruct_lines from read_timetable.util.timetable_reconstructor import reconstruct_timetable if __name__ == '__main__': logger = logging.getLogger(__name__) if len(sys.argv) < 2: raise ConfigNoFileNameGivenException() ConfigReader.read(sys.argv[1]) logger.info("Begin reading configuration") timetable_file_name = Config.getStringValueStatic("filename_visum_timetable_file") period_length = Config.getIntegerValueStatic("period_length") time_units_per_minute = Config.getIntegerValueStatic("time_units_per_minute") logger.info("Finished reading configuration") logger.info("Begin reading input data") timetable_net = NetReader.parse_file(timetable_file_name) ptn = PTNReader.read(ptn=SimpleDictGraph()) line_concept = LineReader.read(ptn) ean = PeriodicEANReader.read(periodic_ean=SimpleDictGraph())[0] logger.info("Finished reading input data") logger.info("Begin reconstructing timetable data") line_dict = reconstruct_lines(line_concept, ptn, timetable_net) reconstruct_timetable(line_dict, timetable_net, ean, ptn, period_length, time_units_per_minute) logger.info("Finished reconstructing timetable data") logger.info("Begin writing output data") PeriodicEANWriter.write(ean, write_events=False, write_activities=False, write_timetable=True) logger.info("Finished writing output data")
import asyncio from collections import defaultdict import contextlib import hashlib import io import os from pathlib import Path import subprocess import textwrap import unittest import peru.async as async import peru.plugin as plugin import shared from shared import SvnRepo, GitRepo, HgRepo, assert_contents class TestDisplayHandle(io.StringIO): def __enter__(self): return self def __exit__(self, *args): pass def test_plugin_fetch(context, type, fields, dest): handle = TestDisplayHandle() async.run_task( plugin.plugin_fetch(context, type, fields, dest, handle)) return handle.getvalue() def test_plugin_get_reup_fields(context, type, fields): handle = TestDisplayHandle() return async.run_task( plugin.plugin_get_reup_fields(context, type, fields, handle)) class PluginsTest(shared.PeruTest): def setUp(self): self.content = {"some": "stuff", "foo/bar": "baz"} self.content_dir = shared.create_dir(self.content) self.cache_root = shared.create_dir() self.plugin_context = plugin.PluginContext( cwd='.', plugin_cache_root=self.cache_root, parallelism_semaphore=asyncio.BoundedSemaphore( plugin.DEFAULT_PARALLEL_FETCH_LIMIT), plugin_cache_locks=defaultdict(asyncio.Lock), tmp_root=shared.create_dir()) plugin.debug_assert_clean_parallel_count() def tearDown(self): plugin.debug_assert_clean_parallel_count() def do_plugin_test(self, type, plugin_fields, expected_content, *, fetch_dir=None): fetch_dir = fetch_dir or shared.create_dir() output = test_plugin_fetch( self.plugin_context, type, plugin_fields, fetch_dir) assert_contents(fetch_dir, expected_content) return output def test_git_plugin(self): GitRepo(self.content_dir) self.do_plugin_test("git", {"url": self.content_dir}, self.content) def test_empty_git_rev(self): empty_dir = shared.create_dir() GitRepo(empty_dir) self.do_plugin_test('git', {'url': empty_dir}, {}) def test_hg_plugin(self): HgRepo(self.content_dir) self.do_plugin_test("hg", {"url": self.content_dir}, self.content) def test_svn_plugin(self): repo = SvnRepo(self.content_dir) self.do_plugin_test('svn', {'url': repo.url}, self.content) def test_svn_plugin_reup(self): repo = SvnRepo(self.content_dir) plugin_fields = {'url': repo.url} output = test_plugin_get_reup_fields( self.plugin_context, 'svn', plugin_fields) self.assertDictEqual({'rev': '1'}, output) def test_git_plugin_with_submodule(self): content_repo = GitRepo(self.content_dir) # Git has a small bug: The .gitmodules file is always created with "\n" # line endings, even on Windows. With core.autocrlf turned on, that # causes a warning when the file is added/committed, because those line # endings would get replaced with "\r\n" when the file was checked out. # We can just turn autocrlf off for this test to silence the warning. content_repo.run('git', 'config', 'core.autocrlf', 'false') submodule_dir = shared.create_dir({'another': 'file'}) submodule_repo = GitRepo(submodule_dir) content_repo.run( 'git', 'submodule', 'add', '-q', submodule_dir, 'subdir/') content_repo.run('git', 'commit', '-m', 'submodule commit') expected_content = self.content.copy() expected_content['subdir/another'] = 'file' with open(os.path.join(self.content_dir, '.gitmodules')) as f: expected_content['.gitmodules'] = f.read() self.do_plugin_test('git', {'url': self.content_dir}, expected_content) # Now move the submodule forward. Make sure it gets fetched again. shared.write_files(submodule_dir, {'more': 'stuff'}) submodule_repo.run('git', 'add', '-A') submodule_repo.run('git', 'commit', '-m', 'more stuff') subprocess.check_output( ['git', 'pull', '-q'], cwd=os.path.join(self.content_dir, 'subdir')) content_repo.run('git', 'commit', '-am', 'submodule update') expected_content['subdir/more'] = 'stuff' self.do_plugin_test('git', {'url': self.content_dir}, expected_content) def test_git_plugin_multiple_fetches(self): content_repo = GitRepo(self.content_dir) head = content_repo.run('git', 'rev-parse', 'HEAD') plugin_fields = {"url": self.content_dir, "rev": head} output = self.do_plugin_test("git", plugin_fields, self.content) self.assertEqual(output.count("git clone"), 1) self.assertEqual(output.count("git fetch"), 0) # Add a new file to the directory and commit it. shared.write_files(self.content_dir, {'another': 'file'}) content_repo.run('git', 'add', '-A') content_repo.run('git', 'commit', '-m', 'committing another file') # Refetch the original rev. Git should not do a git-fetch. output = self.do_plugin_test("git", plugin_fields, self.content) self.assertEqual(output.count("git clone"), 0) self.assertEqual(output.count("git fetch"), 0) # Not delete the rev field. Git should default to master and fetch. del plugin_fields["rev"] self.content["another"] = "file" output = self.do_plugin_test("git", plugin_fields, self.content) self.assertEqual(output.count("git clone"), 0) self.assertEqual(output.count("git fetch"), 1) def test_hg_plugin_multiple_fetches(self): content_repo = HgRepo(self.content_dir) head = content_repo.run( 'hg', 'identify', '--debug', '-r', '.' ).split()[0] plugin_fields = {'url': self.content_dir, 'rev': head} output = self.do_plugin_test('hg', plugin_fields, self.content) self.assertEqual(output.count('hg clone'), 1) self.assertEqual(output.count('hg pull'), 0) # Add a new file to the directory and commit it. shared.write_files(self.content_dir, {'another': 'file'}) content_repo.run('hg', 'commit', '-A', '-m', 'committing another file') # Refetch the original rev. Hg should not do a pull. output = self.do_plugin_test('hg', plugin_fields, self.content) self.assertEqual(output.count('hg clone'), 0) self.assertEqual(output.count('hg pull'), 0) # Not delete the rev field. Git should default to master and fetch. del plugin_fields['rev'] self.content['another'] = 'file' output = self.do_plugin_test('hg', plugin_fields, self.content) self.assertEqual(output.count('hg clone'), 0) self.assertEqual(output.count('hg pull'), 1) def test_git_plugin_reup(self): repo = GitRepo(self.content_dir) master_head = repo.run('git', 'rev-parse', 'master') plugin_fields = {'url': self.content_dir} # By default, the git plugin should reup from master. expected_output = {'rev': master_head} output = test_plugin_get_reup_fields( self.plugin_context, 'git', plugin_fields) self.assertDictEqual(expected_output, output) # Add some new commits and make sure master gets fetched properly. repo.run('git', 'commit', '--allow-empty', '-m', 'junk') repo.run('git', 'checkout', '-q', '-b', 'newbranch') repo.run('git', 'commit', '--allow-empty', '-m', 'more junk') new_master_head = repo.run('git', 'rev-parse', 'master') expected_output['rev'] = new_master_head output = test_plugin_get_reup_fields( self.plugin_context, 'git', plugin_fields) self.assertDictEqual(expected_output, output) # Now specify the reup target explicitly. newbranch_head = repo.run('git', 'rev-parse', 'newbranch') plugin_fields['reup'] = 'newbranch' expected_output['rev'] = newbranch_head output = test_plugin_get_reup_fields( self.plugin_context, 'git', plugin_fields) self.assertDictEqual(expected_output, output) def test_hg_plugin_reup(self): repo = HgRepo(self.content_dir) default_tip = repo.run( 'hg', 'identify', '--debug', '-r', 'default' ).split()[0] plugin_fields = {'url': self.content_dir} # By default, the hg plugin should reup from default. expected_output = {'rev': default_tip} output = test_plugin_get_reup_fields( self.plugin_context, 'hg', plugin_fields) self.assertDictEqual(expected_output, output) # Add some new commits and make sure master gets fetched properly. shared.write_files(self.content_dir, { 'randomfile': "hg doesn't like empty commits"}) repo.run('hg', 'commit', '-A', '-m', 'junk') shared.write_files(self.content_dir, { 'randomfile': "hg still doesn't like empty commits"}) repo.run('hg', 'branch', 'newbranch') repo.run('hg', 'commit', '-A', '-m', 'more junk') new_default_tip = repo.run( 'hg', 'identify', '--debug', '-r', 'default' ).split()[0] expected_output['rev'] = new_default_tip output = test_plugin_get_reup_fields( self.plugin_context, 'hg', plugin_fields) self.assertDictEqual(expected_output, output) # Now specify the reup target explicitly. newbranch_tip = repo.run( 'hg', 'identify', '--debug', '-r', 'tip' ).split()[0] plugin_fields['reup'] = 'newbranch' expected_output['rev'] = newbranch_tip output = test_plugin_get_reup_fields( self.plugin_context, 'hg', plugin_fields) self.assertDictEqual(expected_output, output) def test_curl_plugin_fetch(self): curl_content = {'myfile': 'content'} test_dir = shared.create_dir(curl_content) test_url = (Path(test_dir) / 'myfile').as_uri() fields = {'url': test_url} self.do_plugin_test('curl', fields, curl_content) # Run the test again with an explicit hash and an explicit filename. digest = hashlib.sha1() digest.update(b'content') real_hash = digest.hexdigest() fields['sha1'] = real_hash fields['filename'] = 'newname' self.do_plugin_test('curl', fields, {'newname': 'content'}) # Now run it with the wrong hash, and confirm that there's an error. fields['sha1'] = 'wrong hash' with self.assertRaises(plugin.PluginRuntimeError): self.do_plugin_test('curl', fields, {'newname': 'content'}) def test_curl_plugin_fetch_archives(self): for type in 'zip', 'tar': fields = { 'url': (shared.test_resources / ('with_exe.' + type)).as_uri(), 'unpack': type, } fetch_dir = shared.create_dir() self.do_plugin_test('curl', fields, { 'not_exe.txt': 'Not executable.\n', 'exe.sh': 'echo Executable.\n', }, fetch_dir=fetch_dir) shared.assert_not_executable( os.path.join(fetch_dir, 'not_exe.txt')) shared.assert_executable(os.path.join(fetch_dir, 'exe.sh')) def test_curl_plugin_fetch_evil_archive(self): # There are several evil archives checked in under tests/resources. The # others are checked directly as part of test_curl_plugin.py. fields = { 'url': (shared.test_resources / '.tar').as_uri(), 'unpack': 'tar', } with self.assertRaises(plugin.PluginRuntimeError): self.do_plugin_test('curl', fields, {}) def test_curl_plugin_reup(self): curl_content = {'myfile': 'content'} test_dir = shared.create_dir(curl_content) test_url = (Path(test_dir) / 'myfile').as_uri() digest = hashlib.sha1() digest.update(b'content') real_hash = digest.hexdigest() fields = {'url': test_url} output = test_plugin_get_reup_fields( self.plugin_context, 'curl', fields) self.assertDictEqual({'sha1': real_hash}, output) # Confirm that we get the same thing with a preexisting hash. fields['sha1'] = 'preexisting junk' output = test_plugin_get_reup_fields( self.plugin_context, 'curl', fields) self.assertDictEqual({'sha1': real_hash}, output) def test_cp_plugin(self): self.do_plugin_test("cp", {"path": self.content_dir}, self.content) @unittest.skipIf(os.name == 'nt', 'the rsync plugin is written in bash') def test_rsync_plugin(self): self.do_plugin_test("rsync", {"path": self.content_dir}, self.content) def test_empty_plugin(self): self.do_plugin_test("empty", {}, {}) def test_missing_required_field(self): # The 'url' field is required for git. try: self.do_plugin_test('git', {}, self.content) except plugin.PluginModuleFieldError as e: assert 'url' in e.message, 'message should mention missing field' else: assert False, 'should throw PluginModuleFieldError' def test_unknown_field(self): # The 'junk' field isn't valid for git. bad_fields = {'url': self.content_dir, 'junk': 'junk'} try: self.do_plugin_test('git', bad_fields, self.content) except plugin.PluginModuleFieldError as e: assert 'junk' in e.message, 'message should mention bad field' else: assert False, 'should throw PluginModuleFieldError' def test_user_defined_plugin(self): plugin_prefix = 'peru/plugins/footype/' fetch_file = plugin_prefix + 'fetch.py' reup_file = plugin_prefix + 'reup.py' plugin_yaml_file = plugin_prefix + 'plugin.yaml' fake_config_dir = shared.create_dir({ fetch_file: '#! /usr/bin/env python3\nprint("hey there!")\n', reup_file: textwrap.dedent('''\ #! /usr/bin/env python3 import os outfile = os.environ['PERU_REUP_OUTPUT'] print("name: val", file=open(outfile, 'w')) '''), plugin_yaml_file: textwrap.dedent('''\ sync exe: fetch.py reup exe: reup.py required fields: [] ''')}) os.chmod(os.path.join(fake_config_dir, fetch_file), 0o755) os.chmod(os.path.join(fake_config_dir, reup_file), 0o755) fetch_dir = shared.create_dir() # We need to trick peru into loading plugins from the fake config dir # dir. We do this by setting an env var, which depends on the platform. if os.name == 'nt': # Windows config_path_variable = 'LOCALAPPDATA' else: # non-Windows config_path_variable = 'XDG_CONFIG_HOME' with temporary_environment(config_path_variable, fake_config_dir): output = test_plugin_fetch( self.plugin_context, 'footype', {}, fetch_dir) self.assertEqual('hey there!\n', output) output = test_plugin_get_reup_fields( self.plugin_context, 'footype', {}) self.assertDictEqual({'name': 'val'}, output) def test_no_such_plugin(self): with self.assertRaises(plugin.PluginCandidateError): test_plugin_fetch( self.plugin_context, 'nosuchtype!', {}, os.devnull) @contextlib.contextmanager def temporary_environment(name, value): NOT_SET = object() old_value = os.environ.get(name, NOT_SET) os.environ[name] = value try: yield finally: if old_value is NOT_SET: del os.environ[name] else: os.environ[name] = old_value
from django import ( forms, ) from django.conf import ( settings, ) from django.contrib import ( admin, ) from django.db import ( models, ) from adminsortable2.admin import ( SortableAdminMixin, SortableInlineAdminMixin, ) from django_simple_file_handler.file_types import ( CHECK_DOC, CHECK_WEB_IMAGE, ) from django_simple_file_handler.validators import ( CheckExtMIME, ) from .models import ( BulkEmail, EmailDocument, EmailImage, MonthlyStat, SiteProfile, Subscriber, Subscription, ) class BaseAdmin(admin.ModelAdmin): actions = None readonly_fields = [ 'created', 'updated', ] bottom_fieldsets = [ ( 'Date and time information', { 'fields': [ 'created', 'updated', ], 'classes': [ 'collapse', ], } ), ] fieldsets = bottom_fieldsets list_per_page = 20 class SiteProfileAdmin(BaseAdmin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.top_fieldsets = [ ( None, { 'fields': [ 'protocol', 'domain', 'name', ] } ), ] self.fieldsets = self.top_fieldsets + self.bottom_fieldsets search_fields = [ 'protocol', 'domain', 'name', ] list_display = [ 'name', 'domain', ] ordering = [ 'name', ] admin.site.register( SiteProfile, SiteProfileAdmin, ) class SubscriptionAdmin(SortableAdminMixin, BaseAdmin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.readonly_fields = [ 'subscriber_count', 'secret_key', ] + self.readonly_fields self.top_fieldsets = [ ( None, { 'fields': [ 'list_name', 'descriptive_text', 'publicly_visible', 'use_pages', 'subscriber_count', ] } ), ( 'MailChimp sync', { 'fields': [ 'mc_sync', 'mc_user', 'mc_api', 'mc_list', 'secret_key', ], 'classes': [ 'collapse', ] } ), ( 'Advanced settings', { 'fields': [ 'email_directory', 'page_directory', 'associated_model', ], 'classes': [ 'collapse', ] } ), ] self.fieldsets = self.top_fieldsets + self.bottom_fieldsets search_fields = [ 'list_name', ] list_display = [ 'list_name', 'subscriber_count', 'publicly_visible', 'list_link', ] admin.site.register( Subscription, SubscriptionAdmin, ) class SubscriberAdminForm(forms.ModelForm): subscriptions = forms.ModelMultipleChoiceField( queryset=Subscription.objects.order_by( 'list_name', ), label='Subscriptions', required=False, widget=admin.widgets.FilteredSelectMultiple( 'subscriptions', False, ) ) class Meta: model = Subscriber exclude = [ 'subscriber_key', 'mc_email', 'mc_synced', ] class SubscriberAdmin(BaseAdmin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.readonly_fields = [ 'subscription_lists', ] + self.readonly_fields self.top_fieldsets = [ ( None, { 'fields': [ 'first_name', 'last_name', 'subscriber_email', 'subscriptions', ] } ), ] self.fieldsets = self.top_fieldsets + self.bottom_fieldsets def get_form(self, request, obj=None, **kwargs): if obj and not self.has_change_permission(request, obj): return super().get_form(request, obj, **kwargs) return SubscriberAdminForm search_fields = [ 'first_name', 'last_name', 'subscriber_email', ] list_display = [ 'subscriber_email', 'first_name', 'last_name', 'subscription_lists', ] ordering = [ 'subscriber_email', ] admin.site.register( Subscriber, SubscriberAdmin, ) def get_image_widths(): try: width_choices = settings.EMAILER_IMAGE_WIDTHS except AttributeError: width_choices = [ (1200, 'Banner'), (900, 'Large'), (600, 'Medium'), (300, 'Small'), ] return width_choices class EmailImageInlineForm(forms.ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['saved_file'].validators.append(CheckExtMIME(allowed_attributes=CHECK_WEB_IMAGE)) image_width = forms.ChoiceField( label='Image size', choices=get_image_widths(), ) class Meta: exclude = [] class EmailImageInline(admin.StackedInline): form = EmailImageInlineForm model = EmailImage fieldsets = [ ( None, { 'fields': [ 'image_width', 'description', 'caption', 'saved_file', ] } ), ] formfield_overrides = { models.CharField: { 'widget': forms.TextInput( attrs={ 'size': '95', }, ), }, models.TextField: { 'widget': forms.Textarea( attrs={ 'rows': 3, 'cols': 95, }, ), }, } extra = 0 max_num = 1 class EmailDocumentInlineForm(forms.ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['saved_file'].validators.append(CheckExtMIME(allowed_attributes=CHECK_DOC)) class Meta: exclude = [] class EmailDocumentInline(SortableInlineAdminMixin, admin.TabularInline): form = EmailDocumentInlineForm model = EmailDocument fieldsets = [ ( None, { 'fields': [ 'title', 'extra_text', 'saved_file', 'sort_order', ] } ), ] formfield_overrides = { models.TextField: { 'widget': forms.Textarea( attrs={ 'rows': 1, }, ), }, } extra = 0 class BulkEmailAdminForm(forms.ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.fields['subscription_list'].queryset = Subscription.objects.filter( associated_model__contains=self.instance.__module__, ).filter( associated_model__contains=self.instance.__class__.__name__, ) self.fields['subscription_list'].empty_label = None class Meta: model = BulkEmail exclude = [ 'sendable', 'sending', 'sent', 'send_history', ] widgets = { 'headline': forms.TextInput( attrs={ 'size': '95', }, ), 'secondary_headline': forms.Textarea( attrs={ 'rows': 3, 'cols': 95, }, ), 'update_text': forms.Textarea( attrs={ 'rows': 3, 'cols': 95, }, ), 'publication_date': admin.widgets.AdminDateWidget, 'deletion_date': admin.widgets.AdminDateWidget, } class BulkEmailAdmin(BaseAdmin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.readonly_fields = [ 'subscription_name', 'short_headline', 'page_preview', 'email_preview', ] + self.readonly_fields self.top_fieldsets = [ ( None, { 'fields': [ 'subscription_list', 'headline', 'secondary_headline', 'update_text', 'body_text', ] } ), ] self.middle_fieldsets = [ ( None, { 'fields': [ 'published', 'publication_date', 'deletion_date', ] } ), ] self.fieldsets = self.top_fieldsets + self.middle_fieldsets + self.bottom_fieldsets def get_form(self, request, obj=None, **kwargs): if obj and not self.has_change_permission(request, obj): return super().get_form(request, obj, **kwargs) return BulkEmailAdminForm inlines = [ EmailImageInline, EmailDocumentInline, ] search_fields = [ 'headline', 'body_text', ] list_display = [ 'short_headline', 'email_preview', 'sent', 'page_preview', 'published', 'subscription_name', 'publication_date', 'deletion_date', ] ordering = [ '-publication_date', '-created', ] admin.site.register( BulkEmail, BulkEmailAdmin, ) class MonthlyStatAdmin(BaseAdmin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.readonly_fields = [ 'month_and_year', 'stat_table', ] + self.readonly_fields self.top_fieldsets = [ ( None, { 'fields': [ 'month_and_year', 'stat_table', ] } ), ] self.fieldsets = self.top_fieldsets + self.bottom_fieldsets list_display = [ 'month_and_year', ] ordering = [ '-year_int', '-month_int', ] def has_add_permission(self, request, obj=None): return False def has_change_permission(self, request, obj=None): return False def has_delete_permission(self, request, obj=None): return False class Media: css = { 'all': ('admin/css/django_simple_bulk_emailer.css',) } admin.site.register( MonthlyStat, MonthlyStatAdmin, )
try: import openbayestool except ImportError: openbayestool = None else: from openbayestool import log_param, log_metric, clear_metric if openbayestool: def log_train_acc(acc): log_metric('train acc max', max(acc)) log_metric('train acc new', acc[-1]) def log_test_acc(acc): log_metric('test acc max', max(acc)) log_metric('test acc new', acc[-1]) def log_args(param): log_param('epoch', param.epoch) log_param('n-way', param.n_way) log_param('k-spt', param.k_spt) log_param('k-qry', param.k_qry) log_param('img size', param.imgsz) log_param('img classes', param.imgc) log_param('task num', param.task_num) log_param('meta learning rate', param.meta_lr) log_param('update learning rate', param.update_lr) log_param('update step', param.update_step) log_param('update_step_test', param.update_step_test) log_param('data', param.data) else: def log_train_acc(acc): pass def log_test_acc(acc): pass def log_param(param): pass