content
stringlengths
5
1.05M
from moai.data.datasets.common import load_color_image from moai.utils.arguments import ensure_string_list import torch import glob import os import typing import logging __all__ = ["StructuredImages"] log = logging.getLogger(__name__) class StructuredImages(torch.utils.data.Dataset): def __init__(self, root: str='', **kwargs: typing.Mapping[str, typing.Mapping[str, typing.Any]], ): self.key_to_list = {} self.key_to_xform = {} for k, m in kwargs.items(): glob_list = ensure_string_list(m['glob']) files = [] for g in glob_list: files += glob.glob(os.path.join(root, g)) self.key_to_list[k] = list(map(lambda f: os.path.join(root, f), files)) self.key_to_xform[k] = m['output_space'] def __len__(self) -> int: return len(next(iter(self.key_to_list.values()))) def __getitem__(self, index: int) -> typing.Dict[str, torch.Tensor]: ret = { } for k, l in self.key_to_list.items(): ret[k] = load_color_image(l[index], self.key_to_xform[k]) return ret
class change_constraint: """ Generates a partial SQL command to change a foreign key in a table """ def __init__(self, constraint): self.constraint = constraint def apply_to_table(self, table): """ Changes the constraint in the table :param table: The table to change the constraint on :param type: mygrations.formats.mysql.definitions.table """ table.change_constraint(self.constraint) def __str__(self): return 'DROP FOREIGN KEY `%s`, ADD %s' % (self.constraint.name, str(self.constraint))
import matplotlib.pyplot as plt from hyperparameters import * import numpy as np from tqdm import tqdm from imutils import paths import tensorflow as tf from tensorflow import keras import tensorflow_datasets as tfds from tensorflow.keras.layers import * from tensorflow.keras.models import * from tensorflow.keras import layers from tensorflow.keras.layers.experimental import preprocessing class RandomColorAffine(layers.Layer): def __init__(self, brightness=0, jitter=0, **kwargs): super().__init__(**kwargs) self.brightness = brightness self.jitter = jitter def call(self, images, training=True): if training: batch_size = tf.shape(images)[0] brightness_scales = 1 + tf.random.uniform( (batch_size, 1, 1, 1), minval=-self.brightness, maxval=self.brightness ) jitter_matrices = tf.random.uniform( (batch_size, 1, 3, 3), minval=-self.jitter, maxval=self.jitter ) color_transforms = ( tf.eye(3, batch_shape=[batch_size, 1]) * brightness_scales ) images = tf.clip_by_value(tf.matmul(images, color_transforms), 0, 1) return images def get_augmenter(min_area, brightness, jitter): zoom_factor = 1.0 - tf.sqrt(min_area) return keras.Sequential( [ keras.Input(shape=(para_SSL['image_size'], para_SSL['image_size'], para_SSL['image_channels'])), preprocessing.RandomFlip("horizontal"), preprocessing.RandomTranslation(zoom_factor / 2, zoom_factor / 2), preprocessing.RandomZoom((-zoom_factor, 0.0), (-zoom_factor, 0.0)), RandomColorAffine(brightness, jitter), ] ) class ContrastiveModel(keras.Model): def __init__(self): super().__init__() self.temperature = para_SSL['temperature'] self.contrastive_augmenter = get_augmenter(**contrastive_augmentation) self.classification_augmenter = get_augmenter(**classification_augmentation) self.encoder = tf.keras.applications.ResNet50(include_top=True,weights=None, classes=1024, classifier_activation=None) self.encoder.trainable = True # Non-linear MLP as projection head self.projection_head = keras.Sequential( [ keras.Input(shape=(1024,)), layers.Dense(para_SSL['width'], activation="relu"), layers.Dense(para_SSL['width']), ], name="projection_head", ) def call(self, x, training=True): if training: augmented_images_1 = self.contrastive_augmenter(x) augmented_images_2 = self.contrastive_augmenter(x) features_1 = self.encoder(augmented_images_1) features_2 = self.encoder(augmented_images_2) project_1 = self.projection_head(features_1) project_2 = self.projection_head(features_2) return project_1, project_2 else: return self.encoder(x)
#This file handles the statistics portion of the game titles = [] stats_array = [] def save_stats(): f = open("statistics.csv", "w") write_str = "" for x in range(len(titles)): if x == len(titles) - 1: write_str = write_str + str(titles[x]) + "\n" break write_str = write_str + str(titles[x]) + "," f.write(write_str) for player in stats_array: write_str = "" for x in range(len(player)): if x == len(player) - 1: write_str = write_str + str(player[x]) + "\n" break write_str = write_str + str(player[x]) + "," f.write(write_str) f.close() def load_stats_file(): global titles, stats_array f = open("statistics.csv", "r") titles = f.readline().strip().split(',') for line in f: player_stats = line.strip().split(',') stats_array.append(player_stats) f.close() f = open("stats_old.csv", "w") write_str = "" for x in range(len(titles)): if x == len(titles) - 1: write_str = write_str + str(titles[x]) + "\n" break write_str = write_str + str(titles[x]) + "," f.write(write_str) for player in stats_array: write_str = "" for x in range(len(player)): if x == len(player) - 1: write_str = write_str + str(player[x]) + "\n" break write_str = write_str + str(player[x]) + "," f.write(write_str) f.close() print("Loaded the following stats: ") print(titles) def register_statistics(discord_handle): for player in stats_array: if player[0] == discord_handle: return True blank_stats = [] for _ in titles: blank_stats.append(0) blank_stats[0] = discord_handle stats_array.append(blank_stats) save_stats()
from django.db import models # Create your models here. class Item(models.Model): name = models.CharField(max_length=50, unique=True, null=False, blank=False) price = models.IntegerField(null=False, blank=False) def __str__(self): return self.name
import argparse import base64 import json from re import A import numpy as np from typing import Dict, Any import requests import grpc import tensorflow as tf from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc def read_text(text_file: str = "./text.txt") -> str: with open(text_file, "r") as f: text = f.read() return text def request_grpc( text: str, model_spec_name: str = "text", signature_name: str = "serving_default", address: str = "localhost", port: int = 8500, timeout_second: int = 5, ) -> str: serving_address = f"{address}:{port}" channel = grpc.insecure_channel(serving_address) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) request = predict_pb2.PredictRequest() request.model_spec.name = model_spec_name request.model_spec.signature_name = signature_name request.inputs["text"].CopyFrom(tf.make_tensor_proto([text])) response = stub.Predict(request, timeout_second) prediction = response.outputs["output_0"].string_val[0].decode("utf-8") return prediction def request_rest( text: str, model_spec_name: str = "text", signature_name: str = "serving_default", address: str = "localhost", port: int = 8501, timeout_second: int = 5, ): serving_address = f"http://{address}:{port}/v1/models/{model_spec_name}:predict" headers = {"Content-Type": "application/json"} request_dict = {"inputs": {"text": [text]}} response = requests.post( serving_address, json.dumps(request_dict), headers=headers, ) return dict(response.json())["outputs"][0] def main(): parser = argparse.ArgumentParser(description="request inception v3") parser.add_argument( "-f", "--format", default="GRPC", type=str, help="GRPC or REST request" ) parser.add_argument( "-i", "--text_file", default="./text.txt", type=str, help="input text file path", ) parser.add_argument( "-t", "--target", default="localhost", type=str, help="target address" ) parser.add_argument( "-s", "--timeout_second", default=5, type=int, help="timeout in second" ) parser.add_argument( "-m", "--model_spec_name", default="text", type=str, help="model spec name", ) parser.add_argument( "-n", "--signature_name", default="serving_default", type=str, help="model signature name", ) args = parser.parse_args() text = read_text(text_file=args.text_file) if args.format.upper() == "GRPC": prediction = request_grpc( text=text, model_spec_name=args.model_spec_name, signature_name=args.signature_name, address=args.target, port=8500, timeout_second=args.timeout_second, ) elif args.format.upper() == "REST": prediction = request_rest( text=text, model_spec_name=args.model_spec_name, signature_name=args.signature_name, address=args.target, port=8501, timeout_second=args.timeout_second, ) else: raise ValueError("Undefined format; should be GRPC or REST") print(prediction) if __name__ == "__main__": main()
""" zamień element pierwszy i ostatni w tablicy [1,2,3, 'wiadomo'] """ t = [1,2,3, 'wiadomo'] buff = t[0] t[0] = t[-1] t[-1] = buff print(t)
#!/usr/bin/python3 """ Test the main module. """ import pytest import ising.__main__ __ARGS = ["--length", "8"] def test_cback(): """ Test the C backend. """ assert all( map( lambda x: x is not None, ising.__main__.main(pass_args=__ARGS + ["--backend", "c"], test=True), ) ) def test_mcback(): """ Test the Monte-Carlo backend. """ assert all( map( lambda x: x is not None, ising.__main__.main( pass_args=__ARGS + ["--backend", "monte-carlo", "--depth", "10", "--mc-points", "100"], test=True, ), ) ) def test_fullback(): """ Test the Python backend. """ assert all( map( lambda x: x is not None, ising.__main__.main(pass_args=__ARGS + ["--backend", "python"], test=True), ) )
# ****************************************************************************** # Copyright 2017-2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** from ngraph.frontends.neon.aeon_shim import AeonDataLoader from ngraph.util.persist import get_data_cache_or_nothing ''' Contains the helper functions for video_c3d.py ''' def common_config(manifest_file, manifest_root, batch_size): ''' Common configuration file for aeon loader manifest_file(str): Name of the manifest file manifest_root(str): Path for the manifest file batch_size(int): Batch size used for training ''' cache_root = get_data_cache_or_nothing('ucf-cache/') video_config = {'type': "video", 'max_frame_count': 16, 'frame': {'height': 112, 'width': 112}} label_config = {'type': "label", 'binary': True} augmentation_config = {'type': 'image', 'scale': [0.875, 0.875]} configs = {'manifest_filename': manifest_file, 'manifest_root': manifest_root, 'batch_size': batch_size, 'block_size': 5000, 'augmentation': [augmentation_config], 'cache_directory': cache_root, 'etl': [video_config, label_config]} return configs def make_validation_loader(manifest_file, manifest_root, batch_size, subset_pct=100): ''' Validation data configuration for aeon loader. Returns the object to be used for getting validatin data. manifest_file(str): Name of the manifest file manifest_root(str): Path for the manifest file batch_size(int): Batch size used for training subset_pct(int): Percent data to be used for validation ''' aeon_config = common_config(manifest_file, manifest_root, batch_size) aeon_config['subset_fraction'] = float(subset_pct / 100.0) dl = AeonDataLoader(aeon_config) return dl def make_train_loader(manifest_file, manifest_root, batch_size, subset_pct=100, random_seed=0): ''' Training data configuration for aeon loader. Returns the object to be used for getting training data. manifest_file(str): Name of the manifest file manifest_root(str): Path for the manifest file batch_size(int): Batch size used for training subset_pct(int): Percent data to be used for training random_seed(int): Random number generator seed ''' aeon_config = common_config(manifest_file, manifest_root, batch_size) aeon_config['subset_fraction'] = float(subset_pct / 100.0) aeon_config['shuffle_manifest'] = True aeon_config['shuffle_enable'] = True aeon_config['random_seed'] = random_seed aeon_config['augmentation'][0]['center'] = False aeon_config['augmentation'][0]['flip_enable'] = True dl = AeonDataLoader(aeon_config) return dl
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ## ############################################### # Author: Santillan Garcia Josue # Codigo modificado de blink.py # Future imports (Python 2.7 compatibility) from __future__ import absolute_import from __future__ import division from __future__ import print_function # Import Raspberry Pi's GPIO control library import RPi.GPIO as GPIO # Initializes virtual board (comment out for hardware deploy) import virtualboard # importamos sleep from time import sleep # Disable warnings # GPIO.setwarnings(False) # Set up Rpi.GPIO library to use physical pin numbers GPIO.setmode(GPIO.BOARD) # Set up pin no. 32 as output and default it to low GPIO.setup(32, GPIO.OUT, initial=GPIO.LOW) # configuracion de los pines a utilizar GPIO.setup(26, GPIO.OUT, initial=GPIO.LOW) GPIO.setup(24, GPIO.OUT, initial=GPIO.LOW) GPIO.setup(22, GPIO.OUT, initial=GPIO.LOW) GPIO.setup(18, GPIO.OUT, initial=GPIO.LOW) GPIO.setup(16, GPIO.OUT, initial=GPIO.LOW) GPIO.setup(12, GPIO.OUT, initial=GPIO.LOW) GPIO.setup(10, GPIO.OUT, initial=GPIO.LOW) # Inicializacion del array de los pines pines = [32, 26, 24, 22, 18, 16, 12, 10] i = 0 # Indice para seleccionar un pin direccionIzquierda = True # Condicion para evaluar la direccion de los leds while True: sleep(0.5) # Esperamos 500 ms GPIO.output(pines[i], GPIO.HIGH) # Asignamos un 1 logico en el pin segun el valor del indice sleep(0.5) # Esperamos otros 500 ms GPIO.output(pines[i], GPIO.LOW) # Asignamos un 0 logico en el pin segun el valor del indice # Condicion para evaluar si el indice esta en los limites del arreglo de pines if i >= 7: direccionIzquierda = False elif i <= 0: direccionIzquierda = True # Condicion para evaluar si el conteo del indice debe ser positivo o negativo if direccionIzquierda: i += 1 else: i -= 1
from . import tic_tac_toe from . import connect_4 game_types = { str(i) : game_type for (i, game_type) in enumerate(( tic_tac_toe, connect_4, ))} STATE_PROPOSED = 0 STATE_ACTIVE = 1 STATE_COMPLETE = 2 STATE_FORFEIT = 3 STATE_CANCELLED = 4 STATES = [ STATE_PROPOSED, STATE_ACTIVE, STATE_COMPLETE, STATE_FORFEIT, STATE_CANCELLED, ]
import matplotlib matplotlib.use('Agg') import os import sys import numpy as np import json import matplotlib.pyplot as plt import caffe from caffe import layers as L from caffe import params as P from activity_data_provider_layer import ActivityDataProvider from build_val_model import act_proto, exp_proto import config def learning_params(param_list): param_dicts = [] for pl in param_list: param_dict = {} param_dict['lr_mult'] = pl[0] if len(pl) > 1: param_dict['decay_mult'] = pl[0] param_dicts.append(param_dict) return param_dicts fixed_weights = learning_params([[0, 0], [0, 0]]) fixed_weights_lstm = learning_params([[0, 0], [0, 0], [0, 0]]) def pj_x(mode, batchsize, exp_T, exp_vocab_size): n = caffe.NetSpec() mode_str = json.dumps({'mode':mode, 'batchsize':batchsize}) n.img_feature, n.label, n.exp, n.exp_out, n.exp_cont_1, n.exp_cont_2 = \ L.Python(module='activity_data_provider_layer', layer='ActivityDataProviderLayer', param_str=mode_str, ntop=6) # Attention n.att_conv1 = L.Convolution(n.img_feature, kernel_size=1, stride=1, num_output=512, pad=0, weight_filler=dict(type='xavier')) n.att_conv1_relu = L.ReLU(n.att_conv1) n.att_conv2 = L.Convolution(n.att_conv1_relu, kernel_size=1, stride=1, num_output=1, pad=0, weight_filler=dict(type='xavier')) n.att_reshaped = L.Reshape(n.att_conv2,reshape_param=dict(shape=dict(dim=[-1,1,14*14]))) n.att_softmax = L.Softmax(n.att_reshaped, axis=2) n.att_map = L.Reshape(n.att_softmax,reshape_param=dict(shape=dict(dim=[-1,1,14,14]))) dummy = L.DummyData(shape=dict(dim=[batchsize, 1]), data_filler=dict(type='constant', value=1), ntop=1) n.att_feature = L.SoftAttention(n.img_feature, n.att_map, dummy) n.att_feature_resh = L.Reshape(n.att_feature, reshape_param=dict(shape=dict(dim=[-1,2048]))) # Prediction n.prediction = L.InnerProduct(n.att_feature_resh, num_output=config.NUM_OUTPUT_UNITS, weight_filler=dict(type='xavier')) n.loss = L.SoftmaxWithLoss(n.prediction, n.label) n.accuracy = L.Accuracy(n.prediction, n.label) # Embed Activity GT answer during training n.exp_emb_ans = L.Embed(n.label, input_dim=config.NUM_OUTPUT_UNITS, num_output=300, \ weight_filler=dict(type='uniform', min=-0.08, max=0.08)) n.exp_emb_ans_tanh = L.TanH(n.exp_emb_ans) n.exp_emb_ans2 = L.InnerProduct(n.exp_emb_ans_tanh, num_output=2048, weight_filler=dict(type='xavier')) # merge activity answer and visual feature n.exp_emb_resh = L.Reshape(n.exp_emb_ans2, reshape_param=dict(shape=dict(dim=[-1,2048,1,1]))) n.exp_emb_tiled_1 = L.Tile(n.exp_emb_resh, axis=2, tiles=14) n.exp_emb_tiled = L.Tile(n.exp_emb_tiled_1, axis=3, tiles=14) n.img_embed = L.Convolution(n.img_feature, kernel_size=1, stride=1, num_output=2048, pad=0, weight_filler=dict(type='xavier')) n.exp_eltwise = L.Eltwise(n.img_embed, n.exp_emb_tiled, eltwise_param={'operation': P.Eltwise.PROD}) n.exp_eltwise_sqrt = L.SignedSqrt(n.exp_eltwise) n.exp_eltwise_l2 = L.L2Normalize(n.exp_eltwise_sqrt) n.exp_eltwise_drop = L.Dropout(n.exp_eltwise_l2, dropout_param={'dropout_ratio': 0.3}) # Attention for Explanation n.exp_att_conv1 = L.Convolution(n.exp_eltwise_drop, kernel_size=1, stride=1, num_output=512, pad=0, weight_filler=dict(type='xavier')) n.exp_att_conv1_relu = L.ReLU(n.exp_att_conv1) n.exp_att_conv2 = L.Convolution(n.exp_att_conv1_relu, kernel_size=1, stride=1, num_output=1, pad=0, weight_filler=dict(type='xavier')) n.exp_att_reshaped = L.Reshape(n.exp_att_conv2,reshape_param=dict(shape=dict(dim=[-1,1,14*14]))) n.exp_att_softmax = L.Softmax(n.exp_att_reshaped, axis=2) n.exp_att_map = L.Reshape(n.exp_att_softmax,reshape_param=dict(shape=dict(dim=[-1,1,14,14]))) exp_dummy = L.DummyData(shape=dict(dim=[batchsize, 1]), data_filler=dict(type='constant', value=1), ntop=1) n.exp_att_feature_prev = L.SoftAttention(n.img_feature, n.exp_att_map, exp_dummy) n.exp_att_feature_resh = L.Reshape(n.exp_att_feature_prev, reshape_param=dict(shape=dict(dim=[-1, 2048]))) n.exp_att_feature_embed = L.InnerProduct(n.exp_att_feature_resh, num_output=2048, weight_filler=dict(type='xavier')) n.exp_att_feature = L.Eltwise(n.exp_emb_ans2, n.exp_att_feature_embed, eltwise_param={'operation': P.Eltwise.PROD}) # Embed explanation n.exp_embed_ba = L.Embed(n.exp, input_dim=exp_vocab_size, num_output=300, \ weight_filler=dict(type='uniform', min=-0.08, max=0.08)) n.exp_embed = L.TanH(n.exp_embed_ba) # LSTM1 for Explanation n.exp_lstm1 = L.LSTM(\ n.exp_embed, n.exp_cont_1,\ recurrent_param=dict(\ num_output=2048,\ weight_filler=dict(type='uniform',min=-0.08,max=0.08),\ bias_filler=dict(type='constant',value=0))) n.exp_lstm1_dropped = L.Dropout(n.exp_lstm1,dropout_param={'dropout_ratio':0.3}) # merge with LSTM1 for explanation n.exp_att_resh = L.Reshape(n.exp_att_feature, reshape_param=dict(shape=dict(dim=[1, -1, 2048]))) n.exp_att_tiled = L.Tile(n.exp_att_resh, axis=0, tiles=exp_T) n.exp_eltwise_all = L.Eltwise(n.exp_lstm1_dropped, n.exp_att_tiled, eltwise_param={'operation': P.Eltwise.PROD}) n.exp_eltwise_all_l2 = L.L2Normalize(n.exp_eltwise_all) n.exp_eltwise_all_drop = L.Dropout(n.exp_eltwise_all_l2, dropout_param={'dropout_ratio': 0.3}) # LSTM2 for Explanation n.exp_lstm2 = L.LSTM(\ n.exp_eltwise_all_drop, n.exp_cont_2,\ recurrent_param=dict(\ num_output=1024,\ weight_filler=dict(type='uniform',min=-0.08,max=0.08),\ bias_filler=dict(type='constant',value=0))) n.exp_lstm2_dropped = L.Dropout(n.exp_lstm2,dropout_param={'dropout_ratio':0.3}) n.exp_prediction = L.InnerProduct(n.exp_lstm2_dropped, num_output=exp_vocab_size, weight_filler=dict(type='xavier'), axis=2) n.exp_loss = L.SoftmaxWithLoss(n.exp_prediction, n.exp_out, loss_param=dict(ignore_label=-1), softmax_param=dict(axis=2)) n.exp_accuracy = L.Accuracy(n.exp_prediction, n.exp_out, axis=2, ignore_label=-1) return n.to_proto() def make_answer_vocab(adic, vocab_size): """ Returns a dictionary that maps words to indices. """ adict = {} id = 0 for qid in adic.keys(): answer = adic[qid] if answer in adict: continue else: adict[answer] = id id +=1 return adict def make_exp_vocab(exp_dic): """ Returns a dictionary that maps words to indices. """ exp_vdict = {'<EOS>': 0} exp_vdict[''] = 1 exp_id = 2 for qid in exp_dic.keys(): exp_strings = exp_dic[qid] for exp_str in exp_strings: exp_list = ActivityDataProvider.seq_to_list(exp_str) for w in exp_list: if w not in exp_vdict: exp_vdict[w] = exp_id exp_id += 1 return exp_vdict def make_vocab_files(): """ Produce the answer and explanation vocabulary files. """ print('making answer vocab...', config.ANSWER_VOCAB_SPACE) _, adic, _ = ActivityDataProvider.load_data(config.ANSWER_VOCAB_SPACE) answer_vocab = make_answer_vocab(adic, config.NUM_OUTPUT_UNITS) print('making explanation vocab...', config.EXP_VOCAB_SPACE) _, _, expdic = ActivityDataProvider.load_data(config.EXP_VOCAB_SPACE) explanation_vocab = make_exp_vocab(expdic) return answer_vocab, explanation_vocab def reverse(dict): rev_dict = {} for k, v in dict.items(): rev_dict[v] = k return rev_dict def to_str(type, idxs, cont, r_adict, r_exp_vdict): if type == 'a': return r_adict[idxs] elif type == 'exp': words = [] for idx in idxs: if idx == 0: break words.append(r_exp_vdict[idx]) return ' '.join(words) def batch_to_str(type, batch_idx, batch_cont, r_adict, r_exp_vdict): converted = [] for idxs, cont in zip(batch_idx, batch_cont): converted.append(to_str(type, idxs, cont, r_adict, r_exp_vdict)) return converted def main(): if not os.path.exists('./model'): os.makedirs('./model') answer_vocab, explanation_vocab = {}, {} if os.path.exists('./model/adict.json') and os.path.exists('./model/exp_vdict.json'): print('restoring vocab') with open('./model/adict.json','r') as f: answer_vocab = json.load(f) with open('./model/exp_vdict.json','r') as f: exp_vocab = json.load(f) else: answer_vocab, exp_vocab = make_vocab_files() with open('./model/adict.json','w') as f: json.dump(answer_vocab, f) with open('./model/exp_vdict.json','w') as f: json.dump(exp_vocab, f) r_adict = reverse(answer_vocab) r_exp_vdict = reverse(exp_vocab) print('answer vocab size:', len(answer_vocab)) print('exp vocab size:', len(exp_vocab)) with open('./model/proto_train.prototxt', 'w') as f: f.write(str(pj_x(config.TRAIN_DATA_SPLITS, config.BATCH_SIZE, \ config.MAX_WORDS_IN_EXP, len(exp_vocab)))) with open('./model/act_proto_test_gt.prototxt', 'w') as f: f.write(str(act_proto('val', config.VAL_BATCH_SIZE, len(exp_vocab), use_gt=True))) with open('./model/act_proto_test_pred.prototxt', 'w') as f: f.write(str(act_proto('val', config.VAL_BATCH_SIZE, len(exp_vocab), use_gt=False))) with open('./model/exp_proto_test.prototxt', 'w') as f: f.write(str(exp_proto('val', config.VAL_BATCH_SIZE, 1, len(exp_vocab)))) caffe.set_device(config.GPU_ID) caffe.set_mode_gpu() solver = caffe.get_solver('./pj_x_solver.prototxt') train_loss = np.zeros(config.MAX_ITERATIONS) train_acc = np.zeros(config.MAX_ITERATIONS) train_loss_exp = np.zeros(config.MAX_ITERATIONS) train_acc_exp = np.zeros(config.MAX_ITERATIONS) results = [] for it in range(config.MAX_ITERATIONS): solver.step(1) # store the train loss train_loss[it] = solver.net.blobs['loss'].data train_acc[it] = solver.net.blobs['accuracy'].data train_loss_exp[it] = solver.net.blobs['exp_loss'].data train_acc_exp[it] = solver.net.blobs['exp_accuracy'].data if it != 0 and it % config.PRINT_INTERVAL == 0: print('Iteration:', it) c_mean_loss = train_loss[it-config.PRINT_INTERVAL:it].mean() c_mean_acc = train_acc[it-config.PRINT_INTERVAL:it].mean() c_mean_loss_exp = train_loss_exp[it-config.PRINT_INTERVAL:it].mean() c_mean_acc_exp = train_acc_exp[it-config.PRINT_INTERVAL:it].mean() print('Train loss for classification:', c_mean_loss) print('Train accuracy for classification:', c_mean_acc) print('Train loss for exp:', c_mean_loss_exp) print('Train accuracy for exp:', c_mean_acc_exp) predicted_ans = solver.net.blobs['prediction'].data predicted_ans = predicted_ans.argmax(axis=1) answers = solver.net.blobs['label'].data generated_exp = solver.net.blobs['exp_prediction'].data generated_exp = generated_exp.argmax(axis=2).transpose() target_exp = solver.net.blobs['exp_out'].data.transpose() exp_out_cont = solver.net.blobs['exp_cont_2'].data.transpose() predict_str = batch_to_str('a', predicted_ans, np.ones_like(predicted_ans), r_adict, r_exp_vdict) answers_str = batch_to_str('a', answers, np.ones_like(answers), r_adict, r_exp_vdict) generated_str = batch_to_str('exp', generated_exp, exp_out_cont, r_adict, r_exp_vdict) target_str = batch_to_str('exp', target_exp, exp_out_cont, r_adict, r_exp_vdict) count = 0 for pred, ans, exp, target in zip(predict_str, answers_str, generated_str, target_str): if count == 10: break print('Pred:', pred) print('A:', ans) print('Because...') print('\tgenerated:', exp) print('\ttarget:', target) count += 1 if __name__ == '__main__': main()
from unittest import TestCase from unittest.mock import patch from dd_import.environment import Environment class TestEnvironment(TestCase): def test_check_environment_reimport_findings_empty(self): with self.assertRaises(Exception) as cm: environment = Environment() environment.check_environment_reimport_findings() self.assertEqual('DD_URL is missing / DD_API_KEY is missing / DD_PRODUCT_TYPE_NAME is missing / DD_PRODUCT_NAME is missing / DD_ENGAGEMENT_NAME is missing / DD_TEST_NAME is missing / DD_TEST_TYPE_NAME is missing', str(cm.exception)) self.assertTrue(environment.active) self.assertTrue(environment.verified) self.assertFalse(environment.push_to_jira) self.assertTrue(environment.close_old_findings) @patch.dict('os.environ', {'DD_URL': 'url', 'DD_API_KEY': 'api_key', 'DD_PRODUCT_TYPE_NAME': 'product_type', 'DD_PRODUCT_NAME': 'product', 'DD_ENGAGEMENT_NAME': 'engagement', 'DD_TEST_NAME': 'test', 'DD_TEST_TYPE_NAME': 'test_type', 'DD_FILE_NAME': 'file_name', 'DD_ACTIVE': 'False', 'DD_VERIFIED': 'False', 'DD_MINIMUM_SEVERITY': 'minimum_severity', 'DD_PUSH_TO_JIRA': 'True', 'DD_CLOSE_OLD_FINDINGS': 'False', 'DD_VERSION': 'version', 'DD_ENDPOINT_ID': 'endpoint_id', 'DD_SERVICE': 'service', 'DD_BUILD_ID': 'build_id', 'DD_COMMIT_HASH': 'commit_hash', 'DD_BRANCH_TAG': 'branch_tag'}) def test_check_environment_reimport_findings_complete(self): environment = Environment() environment.check_environment_reimport_findings() self.assertEqual(environment.url, 'url') self.assertEqual(environment.api_key, 'api_key') self.assertEqual(environment.product_type_name, 'product_type') self.assertEqual(environment.product_name, 'product') self.assertEqual(environment.engagement_name, 'engagement') self.assertEqual(environment.test_name, 'test') self.assertEqual(environment.test_type_name, 'test_type') self.assertEqual(environment.file_name, 'file_name') self.assertEqual(environment.url, 'url') self.assertFalse(environment.active) self.assertFalse(environment.verified) self.assertEqual(environment.minimum_severity, 'minimum_severity') self.assertTrue(environment.push_to_jira) self.assertFalse(environment.close_old_findings) self.assertEqual(environment.version, 'version') self.assertEqual(environment.endpoint_id, 'endpoint_id') self.assertEqual(environment.service, 'service') self.assertEqual(environment.build_id, 'build_id') self.assertEqual(environment.commit_hash, 'commit_hash') self.assertEqual(environment.branch_tag, 'branch_tag') def test_check_environment_languages_empty(self): with self.assertRaises(Exception) as cm: environment = Environment() environment.check_environment_languages() self.assertEqual('DD_URL is missing / DD_API_KEY is missing / DD_PRODUCT_TYPE_NAME is missing / DD_PRODUCT_NAME is missing / DD_FILE_NAME is missing', str(cm.exception)) self.assertTrue(environment.active) self.assertTrue(environment.verified) self.assertFalse(environment.push_to_jira) self.assertTrue(environment.close_old_findings) @patch.dict('os.environ', {'DD_URL': 'url', 'DD_API_KEY': 'api_key', 'DD_PRODUCT_TYPE_NAME': 'product_type', 'DD_PRODUCT_NAME': 'product', 'DD_FILE_NAME': 'file_name'}) def test_check_environment_languages_complete(self): environment = Environment() environment.check_environment_languages() self.assertEqual(environment.url, 'url') self.assertEqual(environment.api_key, 'api_key') self.assertEqual(environment.product_type_name, 'product_type') self.assertEqual(environment.product_name, 'product') self.assertEqual(environment.file_name, 'file_name')
""" An interface to the python-swiftclient api through Django. """ from ._version import get_versions __version__ = get_versions()['version'] del get_versions
import json from difflib import get_close_matches dataset = json.load(open("data.json")) word = input("Enter the word: ") def translate(word): word = word.lower() # .lower() convert string to lowercase. if word in dataset: print("Meaning - ") meanings = dataset[word] for meaning in meanings: print("-> ",meaning) else: replacement = get_close_matches(word,dataset.keys(),n=1,cutoff=0.75) # "get_close_matches" is a function of difflib library that provides a close match available to a string with a defined ] # cutoff value(match-propability) if not replacement: print("Sorry! The word doesn't exist in dictonary.") else: response = input("Did you mean %s? If yes enter Y else N\n"% replacement[0]) response.lower() if response is "y": translate(replacement[0]) else: print("Sorry! The word doesn't exist in dictonary.") translate(word)
carro = int(input('Quantos anos tem o seu carro?')) if carro <=5: print('Seu carro é novo!') else: print('Seu carro é velho!') print('--FIM--') #TEMOS COMO DIMINUIR O CÓDIGO ASSIM!!! #carro = int(input('Quantos anos tem o seu carro?')) #print('Carro novo' if carro<=5 else 'Carro velho') #print('--FIM--')
#!/usr/bin/env python import os import sys import json import re from DIRAC import gLogger from DIRAC import S_OK, S_ERROR, exit from DIRAC.Core.Base import Script Script.setUsageMessage( """ Get and merge output files of the task Usage: %(script)s [options] TaskID Examples: # Download all output files in task 165 to the current directory %(script)s 165 # Download all output files in task 165 and merge all the files into larger ones, where the merged file size will not exceed 1GB %(script)s -g 1G 165 # Download all dst files in task 237 to directory "/some/dir" %(script)s -f '*.dst' -D /some/dir 237 # List all root file names in task 46. Do NOT download %(script)s -l -f '*.root' 46 # Download all root files in task 329 to directory "output" and merge to files smaller than 800MB, reserve the root files after merge %(script)s -g 800M -k -f '*.root' -D output 329 """ % {'script': Script.scriptName} ) Script.registerSwitch("m:", "method=", "Downloading method: local_rsync, dfc, cp, daemon_rsync") Script.registerSwitch("l", "list", "List all output files. Do NOT download") Script.registerSwitch("D:", "dir=", "Output directory") Script.registerSwitch("f:", "filter=", "Name pattern for filtering output file") Script.registerSwitch("r", "reload", "Redownload every file each time") Script.registerSwitch("u", "checksum", "Use checksum for file validation. Could be slow for some special situations") Script.registerSwitch("g:", "merge=", "Set max size for merged destination file (e.g., 500000, 2G, 700M)") Script.registerSwitch("k", "keep", "Keep downloaded output files after merge. Use with -g option") Script.parseCommandLine( ignoreErrors = False ) options = Script.getUnprocessedSwitches() args = Script.getPositionalArgs() from IHEPDIRAC.WorkloadManagementSystem.Client.TaskClient import TaskClient taskClient = TaskClient() from IHEPDIRAC.Badger.private.output.GetOutputHandler import GetOutputHandler downloadCounter = {'total': 0, 'ok': 0, 'error': 0, 'skip': 0, 'notexist': 0} downloadSpeed = {'size': 0, 'span': 0} mergeCounter = {'total': 0, 'ok': 0, 'error': 0} mergeSpeed = {'size': 0, 'span': 0} removeCounter = {'ok': 0, 'error': 0} def sizeConvert(sizeString): unitDict = {'K': 1024, 'M': 1024**2, 'G': 1024**3, 'T': 1024**4, 'P': 1024**5} size = -1 try: unit = sizeString[-1] if unit in unitDict: size = int(sizeString[:-1]) * unitDict[unit] else: size = int(sizeString) except: pass return size def getTaskOutput(taskID): lfnList = [] result = taskClient.getTaskJobs(taskID) if not result['OK']: gLogger.error(result['Message']) return lfnList jobIDs = result['Value'] outFields = ['Info'] result = taskClient.getJobs(jobIDs, outFields) if not result['OK']: gLogger.error(result['Message']) return lfnList jobsInfo = [json.loads(info[0]) for info in result['Value']] for jobInfo in jobsInfo: if 'OutputFileName' in jobInfo: lfnList += jobInfo['OutputFileName'] return lfnList def filterOutput(lfnList, pattern): newList = [] # convert wildcard to regular expression ptemp = pattern.replace('.', '\.') ptemp = ptemp.replace('?', '.') ptemp = ptemp.replace('*', '.*') ptemp = '^' + ptemp + '$' for lfn in lfnList: m = re.search(ptemp, lfn) if m: newList.append(lfn) return newList def listOutput(lfnList): for lfn in lfnList: print lfn def downloadCallback(lfn, result): status = result['status'] size = result['size'] if 'size' in result else 0 span = result['span'] if 'span' in result else 0 size /= (1024*1024.) speed = 0 if span != 0 and status == 'ok': speed = size / span downloadSpeed['size'] += size downloadSpeed['span'] += span if status not in downloadCounter: downloadCounter[status] = 0 downloadCounter[status] += 1 downloadCounter['total'] += 1 if status != 'skip': gLogger.always('[Downloaded] %-8s %9.2f MB %7.2f MB/s %s' % (status, size, speed, os.path.basename(lfn))) else: gLogger.debug('[Downloaded] %-8s %9.2f MB %7.2f MB/s %s' % (status, size, speed, os.path.basename(lfn))) def mergeCallback(fileList, mergePath, mergeSize, mergeSpan, ret): status = 'ok' if ret else 'error' size = mergeSize / (1024*1024.) if status not in mergeCounter: mergeCounter[status] = 0 mergeCounter[status] += 1 mergeCounter['total'] += 1 mergeSpeed['size'] += size mergeSpeed['span'] += mergeSpan gLogger.always('[Merged] %-8s %9.2f MB %6d files %s' % (status, size, len(fileList), mergePath)) def removeCallback(localPath): removeCounter['ok'] += 1 def main(): method = ['dfc', 'http', 'daemon_rsync', 'cp', 'local_rsync'] listFile = False localValidation = True outputDir = '.' pattern = None mergeMaxSize = 0 removeDownload = False useChecksum = False for option in options: (switch, val) = option if switch == 'm' or switch == 'method': method = val if switch == 'l' or switch == 'list': listFile = True if switch == 'D' or switch == 'dir': outputDir = val if switch == 'f' or switch == 'filter': pattern = val if switch == 'r' or switch == 'reload': localValidation = False if switch == 'u' or switch == 'checksum': useChecksum = True if switch == 'g' or switch == 'merge': mergeMaxSize = sizeConvert(val) if mergeMaxSize < 0: gLogger.error('Invalid merge size format: %s' % val) return 1 if switch == 'k' or switch == 'keep': removeDownload = False if len(args) != 1: gLogger.error('There must be one and only one task ID specified') return 1 try: taskID = int(args[0]) except: gLogger.error('Invalid task ID: %s' % args[0]) return 1 lfnList = getTaskOutput(taskID) if pattern is not None: lfnList = filterOutput(lfnList, pattern) lfnList = sorted(lfnList) if listFile: listOutput(lfnList) return 0 # lfnList is ready now taskFileNumber = len(lfnList) gLogger.always('- Files in the request :', taskFileNumber) if taskFileNumber == 0: return 0 try: handler = GetOutputHandler(lfnList, method, localValidation, useChecksum) except Exception, e: gLogger.error(' Could not initialize get output handler from:', method) return 1 realMethod = handler.getMethod() gLogger.info('- Using download method:', realMethod) gLogger.always('- Checking available files...') handler.checkRemote() remoteFileNumber = handler.getAvailNumber() gLogger.always('- Available files :', remoteFileNumber) gLogger.always('') if remoteFileNumber == 0: return 0 # Download and merge downloadDir = os.path.join(outputDir, 'output_task_%s/download' % taskID) if not os.path.exists(downloadDir): os.makedirs(downloadDir) if mergeMaxSize == 0: handler.download(downloadDir, downloadCallback) else: if remoteFileNumber < taskFileNumber: s = raw_input('- Task not finished, do you realy want to merge the output files? (y/N) ') if s != 'y' and s != 'Y': return 0 gLogger.always('') exts = set() for lfn in lfnList: exts.add(os.path.splitext(lfn)[1]) exts = list(exts) if len(exts) > 1: gLogger.error(' Can not merge! Different file types in output:', ', '.join(exts)) gLogger.error(' Use "-f" option to filter the output files') return 0 ext = exts[0] mergeDir = os.path.join(outputDir, 'output_task_%s/merge' % taskID) if not os.path.exists(mergeDir): os.makedirs(mergeDir) else: for f in os.listdir(mergeDir): if f.endswith(ext): os.remove(os.path.join(mergeDir, f)) handler.downloadAndMerge(downloadDir, mergeDir, 'task_%s_merge' % taskID, ext, mergeMaxSize, removeDownload, downloadCallback, mergeCallback, removeCallback) # Result gLogger.always('') gLogger.always('Total: %s' % taskFileNumber) gLogger.always('Available: %s' % remoteFileNumber) gLogger.always('') gLogger.always('Download: %s' % downloadCounter['total']) gLogger.always(' - OK: %s' % downloadCounter['ok']) gLogger.always(' - Skipped: %s' % downloadCounter['skip']) gLogger.always(' - Error: %s' % downloadCounter['error']) totalDownloadSpeed = downloadSpeed['size']/downloadSpeed['span'] if downloadSpeed['span'] != 0 else 0 gLogger.always('Average Speed: %.2f MB/s' % totalDownloadSpeed) gLogger.always('Files downloaded in:', downloadDir) if mergeMaxSize > 0: gLogger.always('') gLogger.always('Merge: %s' % mergeCounter['total']) gLogger.always(' - OK: %s' % mergeCounter['ok']) gLogger.always(' - Error: %s' % mergeCounter['error']) totalMergeSpeed = mergeSpeed['size']/mergeSpeed['span'] if mergeSpeed['span'] != 0 else 0 gLogger.always('Merge Speed: %.2f MB/s' % totalMergeSpeed) gLogger.always('Files merged in:', mergeDir) gLogger.debug('') gLogger.debug('Download counter:', downloadCounter) gLogger.debug('Merge counter:', mergeCounter) if removeCounter['ok'] > 0: gLogger.always('') gLogger.always('%s downloaded files removed from:'%removeCounter['ok'], downloadDir) return 0 if __name__ == '__main__': if main(): Script.showHelp()
from pynetest.lib.expectation import Expectation from pynetest.matchers import between class ToBeBetweenExpectation(Expectation): def __init__(self, lower, upper): self.lower = lower self.upper = upper super().__init__("to_be_between", between(lower, upper), self.message_format) def message_format(self, subject, params): lower, upper = params if subject < lower: return "Expected <{subject}> to be between <{0}> and <{1}> " \ "but it was less than or equal to <{0}>" else: return "Expected <{subject}> to be between <{0}> and <{1}> " \ "but it was greater than or equal to <{1}>"
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import pulumi import pulumi.runtime class CryptoKeyIAMMember(pulumi.CustomResource): """ Allows creation and management of a single member for a single binding within the IAM policy for an existing Google Cloud KMS crypto key. ~> **Note:** This resource _must not_ be used in conjunction with `google_kms_crypto_key_iam_policy` or they will fight over what your policy should be. Similarly, roles controlled by `google_kms_crypto_key_iam_binding` should not be assigned to using `google_kms_crypto_key_iam_member`. """ def __init__(__self__, __name__, __opts__=None, crypto_key_id=None, member=None, role=None): """Create a CryptoKeyIAMMember resource with the given unique name, props, and options.""" if not __name__: raise TypeError('Missing resource name argument (for URN creation)') if not isinstance(__name__, basestring): raise TypeError('Expected resource name to be a string') if __opts__ and not isinstance(__opts__, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') __props__ = dict() if not crypto_key_id: raise TypeError('Missing required property crypto_key_id') elif not isinstance(crypto_key_id, basestring): raise TypeError('Expected property crypto_key_id to be a basestring') __self__.crypto_key_id = crypto_key_id """ The key ring ID, in the form `{project_id}/{location_name}/{key_ring_name}/{crypto_key_name}` or `{location_name}/{key_ring_name}/{crypto_key_name}`. In the second form, the provider's project setting will be used as a fallback. """ __props__['cryptoKeyId'] = crypto_key_id if not member: raise TypeError('Missing required property member') elif not isinstance(member, basestring): raise TypeError('Expected property member to be a basestring') __self__.member = member """ The user that the role should apply to. """ __props__['member'] = member if not role: raise TypeError('Missing required property role') elif not isinstance(role, basestring): raise TypeError('Expected property role to be a basestring') __self__.role = role """ The role that should be applied. Note that custom roles must be of the format `[projects|organizations]/{parent-name}/roles/{role-name}`. """ __props__['role'] = role __self__.etag = pulumi.runtime.UNKNOWN """ (Computed) The etag of the project's IAM policy. """ super(CryptoKeyIAMMember, __self__).__init__( 'gcp:kms/cryptoKeyIAMMember:CryptoKeyIAMMember', __name__, __props__, __opts__) def set_outputs(self, outs): if 'cryptoKeyId' in outs: self.crypto_key_id = outs['cryptoKeyId'] if 'etag' in outs: self.etag = outs['etag'] if 'member' in outs: self.member = outs['member'] if 'role' in outs: self.role = outs['role']
from app.data_layer.datastore import Datastore class SongFacade: def __init__(self): self._datastore = Datastore() def create_song(self, song_name, song_artist, song_genre): """ :param str song_name: :param str song_artist: :param str song_genre: :rtype: dict """ return self._datastore.create_song(song_name, song_artist, song_genre) def delete_song(self, song_id): """ :param int song_id: """ self._datastore.delete_song(song_id) def get_song(self, song_id): """ :param int song_id: :rtype: dict """ return self._datastore.get_song(song_id) def list_songs(self): """ :rtype: dict """ return self._datastore.list_songs() def replace_song(self, song_id, song_name, song_artist, song_genre): """ :param int song_id: :param str song_name: :param str song_artist: :param str song_genre: :rtype: dict """ return self._datastore.replace_song(song_id, song_name, song_artist, song_genre)
from datahub.dataset.core.pagination import DatasetCursorPagination class TeamsDatasetViewCursorPagination(DatasetCursorPagination): """ Cursor Pagination for TeamsDatasetView """ ordering = ('id',)
# Fixed options _algorithms = ('Adaptive', 'Non-adaptive') _weighFuncs = ('Gaussian', 'Linear', 'JSD') _directions = ('Forward', 'Backward') _boostMethods = ('Sum similarity', 'Counts') _yesNo = ('Yes', 'No') def validatestr(value): '''Validate that given value is a non-empty string. Used to validate tracker parameters.''' try: s = str(value) return None if (len(s) == 0) else s except: raise ValueError def _isValidOption(value, options): '''Validate that given value is a string from a predetermined set. Used to validate tracker parameters.''' if value in options: return value else: raise ValueError def validAlgorithm(value): '''Validate algorithm -- in lower case''' return _isValidOption(value, _algorithms).lower() def validWeighting(value): '''Validate weighting function''' return _isValidOption(value, _weighFuncs) def validDirection(value): '''Validate direction is Forward (false means backward)''' return _isValidOption(value, _directions) == 'Forward' def sumSimilarity(value): '''Validate boost methods is Sum distances (false means Counts)''' return _isValidOption(value, _boostMethods) == 'Sum similarity' def validCleaning(value): return _isValidOption(value, _yesNo) == 'Yes'
import time import math maps = { 'costs': { ")": 3, "]": 57, "}": 1197, ">": 25137, }, 'autocomplete_costs': { ')': 1, ']': 2, '}': 3, '>': 4, }, 'opening': { "(": ")", "[": "]", "{": "}", "<": ">", }, 'closing': { ")": "(", "]": "[", "}": "{", ">": "<", } } def findCorruptedInLine(line): stack = [] for idx, i in enumerate(line): if i in maps['closing']: expecting = maps["closing"][i] curr = stack.pop() if expecting != curr: print(f"Invalid token \033[38;2;209;62;29m'{curr}'\033[0m expected \033[38;2;209;62;29m'{expecting}'\033[0m ") return maps["costs"][i], [] else: stack.append(i) return 0, [maps['opening'][i] for i in stack[::-1]] def part1(inputData): points = 0 for idx, instruction in enumerate(inputData): points += findCorruptedInLine(instruction)[0] return points def part2(inputData): points = [] incompleteLines = [j[1] for i in inputData if (j := findCorruptedInLine(i))[0] == 0] for idx, instruction in enumerate(incompleteLines): point = 0 for char in instruction: point = point * 5 + maps["autocomplete_costs"][char] points.append(point) points.sort() return points[len(points)//2] if __name__ == '__main__': with open("input.txt") as file: data = list(file.read().splitlines()) start_time = time.time_ns() print('\033[38;2;60;179;113mDay10 Part 1: {} \033[0m'.format(part1(data))) print('\033[38;2;60;179;113mDay10 Part 2: {} \033[0m'.format(part2(data))) end_time = time.time_ns() print(f'\033[38;2;60;179;113mDay10: {(end_time - start_time)/1000000} ms \033[0m')
# The MIT License (MIT) # # Copyright (c) 2019 Dan Halbert for Adafruit Industries # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """ :py:mod:`~adafruit_ble.services.standard.hid` ======================================================= BLE Human Interface Device (HID) * Author(s): Dan Halbert for Adafruit Industries """ import struct from micropython import const import _bleio from adafruit_ble.characteristics import Attribute from adafruit_ble.characteristics import Characteristic from adafruit_ble.characteristics.int import Uint8Characteristic from adafruit_ble.uuid import StandardUUID from .. import Service __version__ = "0.0.0-auto.0" __repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_BLE.git" _HID_SERVICE_UUID_NUM = const(0x1812) _REPORT_UUID_NUM = const(0x2A4D) _REPORT_MAP_UUID_NUM = const(0x2A4B) _HID_INFORMATION_UUID_NUM = const(0x2A4A) _HID_CONTROL_POINT_UUID_NUM = const(0x2A4C) _REPORT_REF_DESCR_UUID_NUM = const(0x2908) _REPORT_REF_DESCR_UUID = _bleio.UUID(_REPORT_REF_DESCR_UUID_NUM) _PROTOCOL_MODE_UUID_NUM = const(0x2A4E) _APPEARANCE_HID_KEYBOARD = const(961) _APPEARANCE_HID_MOUSE = const(962) _APPEARANCE_HID_JOYSTICK = const(963) _APPEARANCE_HID_GAMEPAD = const(964) # Boot keyboard and mouse not currently supported. _BOOT_KEYBOARD_INPUT_REPORT_UUID_NUM = const(0x2A22) _BOOT_KEYBOARD_OUTPUT_REPORT_UUID_NUM = const(0x2A32) _BOOT_MOUSE_INPUT_REPORT_UUID_NUM = const(0x2A33) # Output reports not currently implemented (e.g. LEDs on keyboard) _REPORT_TYPE_INPUT = const(1) _REPORT_TYPE_OUTPUT = const(2) # Boot Protocol mode not currently implemented _PROTOCOL_MODE_BOOT = b'\x00' _PROTOCOL_MODE_REPORT = b'\x01' class ReportIn: """A single HID report that transmits HID data into a client.""" uuid = StandardUUID(_REPORT_UUID_NUM) def __init__(self, service, report_id, usage_page, usage, *, max_length): self._characteristic = _bleio.Characteristic.add_to_service( service.bleio_service, self.uuid.bleio_uuid, properties=Characteristic.READ | Characteristic.NOTIFY, read_perm=Attribute.ENCRYPT_NO_MITM, write_perm=Attribute.NO_ACCESS, max_length=max_length, fixed_length=True) self._report_id = report_id self.usage_page = usage_page self.usage = usage _bleio.Descriptor.add_to_characteristic( self._characteristic, _REPORT_REF_DESCR_UUID, read_perm=Attribute.ENCRYPT_NO_MITM, write_perm=Attribute.NO_ACCESS, initial_value=struct.pack('<BB', self._report_id, _REPORT_TYPE_INPUT)) def send_report(self, report): """Send a report to the peers""" self._characteristic.value = report class ReportOut: """A single HID report that receives HID data from a client.""" # pylint: disable=too-few-public-methods uuid = StandardUUID(_REPORT_UUID_NUM) def __init__(self, service, report_id, usage_page, usage, *, max_length): self._characteristic = _bleio.Characteristic.add_to_service( service.bleio_service, self.uuid.bleio_uuid, max_length=max_length, fixed_length=True, properties=(Characteristic.READ | Characteristic.WRITE | Characteristic.WRITE_NO_RESPONSE), read_perm=Attribute.ENCRYPT_NO_MITM, write_perm=Attribute.ENCRYPT_NO_MITM ) self._report_id = report_id self.usage_page = usage_page self.usage = usage _bleio.Descriptor.add_to_characteristic( self._characteristic, _REPORT_REF_DESCR_UUID, read_perm=Attribute.ENCRYPT_NO_MITM, write_perm=Attribute.NO_ACCESS, initial_value=struct.pack('<BB', self._report_id, _REPORT_TYPE_OUTPUT)) _ITEM_TYPE_MAIN = const(0) _ITEM_TYPE_GLOBAL = const(1) _ITEM_TYPE_LOCAL = const(2) _MAIN_ITEM_TAG_START_COLLECTION = const(0b1010) _MAIN_ITEM_TAG_END_COLLECTION = const(0b1100) _MAIN_ITEM_TAG_INPUT = const(0b1000) _MAIN_ITEM_TAG_OUTPUT = const(0b1001) _MAIN_ITEM_TAG_FEATURE = const(0b1011) class HIDService(Service): """ Provide devices for HID over BLE. :param str hid_descriptor: USB HID descriptor that describes the structure of the reports. Known as the report map in BLE HID. Example:: from adafruit_ble.hid_server import HIDServer hid = HIDServer() """ uuid = StandardUUID(0x1812) boot_keyboard_in = Characteristic(uuid=StandardUUID(0x2A22), properties=(Characteristic.READ | Characteristic.NOTIFY), read_perm=Attribute.ENCRYPT_NO_MITM, write_perm=Attribute.NO_ACCESS, max_length=8, fixed_length=True) boot_keyboard_out = Characteristic(uuid=StandardUUID(0x2A32), properties=(Characteristic.READ | Characteristic.WRITE | Characteristic.WRITE_NO_RESPONSE), read_perm=Attribute.ENCRYPT_NO_MITM, write_perm=Attribute.ENCRYPT_NO_MITM, max_length=1, fixed_length=True) protocol_mode = Uint8Characteristic(uuid=StandardUUID(0x2A4E), properties=(Characteristic.READ | Characteristic.WRITE_NO_RESPONSE), read_perm=Attribute.OPEN, write_perm=Attribute.OPEN, initial_value=1, max_value=1) """Protocol mode: boot (0) or report (1)""" # bcdHID (version), bCountryCode (0 not localized), Flags: RemoteWake, NormallyConnectable # bcd1.1, country = 0, flag = normal connect # TODO: Make this a struct. hid_information = Characteristic(uuid=StandardUUID(0x2A4A), properties=Characteristic.READ, read_perm=Attribute.ENCRYPT_NO_MITM, write_perm=Attribute.NO_ACCESS, initial_value=b'\x01\x01\x00\x02') """Hid information including version, country code and flags.""" report_map = Characteristic(uuid=StandardUUID(0x2A4B), properties=Characteristic.READ, read_perm=Attribute.ENCRYPT_NO_MITM, write_perm=Attribute.NO_ACCESS, fixed_length=True) """This is the USB HID descriptor (not to be confused with a BLE Descriptor). It describes which report characteristic are what.""" suspended = Uint8Characteristic(uuid=StandardUUID(0x2A4C), properties=Characteristic.WRITE_NO_RESPONSE, read_perm=Attribute.NO_ACCESS, write_perm=Attribute.ENCRYPT_NO_MITM, max_value=1) """Controls whether the device should be suspended (0) or not (1).""" def __init__(self, hid_descriptor=None, service=None): super().__init__(report_map=hid_descriptor) if service: # TODO: Add support for connecting to a remote hid server. pass self._init_devices() def _init_devices(self): # pylint: disable=too-many-branches,too-many-statements,too-many-locals self.devices = [] hid_descriptor = self.report_map global_table = [None] * 10 local_table = [None] * 3 collections = [] top_level_collections = [] i = 0 while i < len(hid_descriptor): b = hid_descriptor[i] tag = (b & 0xf0) >> 4 _type = (b & 0b1100) >> 2 size = b & 0b11 size = 4 if size == 3 else size i += 1 data = hid_descriptor[i:i+size] if _type == _ITEM_TYPE_GLOBAL: global_table[tag] = data elif _type == _ITEM_TYPE_MAIN: if tag == _MAIN_ITEM_TAG_START_COLLECTION: collections.append({"type": data, "locals": list(local_table), "globals": list(global_table), "mains": []}) elif tag == _MAIN_ITEM_TAG_END_COLLECTION: collection = collections.pop() # This is a top level collection if the collections list is now empty. if not collections: top_level_collections.append(collection) else: collections[-1]["mains"].append(collection) elif tag == _MAIN_ITEM_TAG_INPUT: collections[-1]["mains"].append({"tag": "input", "locals": list(local_table), "globals": list(global_table)}) elif tag == _MAIN_ITEM_TAG_OUTPUT: collections[-1]["mains"].append({"tag": "output", "locals": list(local_table), "globals": list(global_table)}) else: raise RuntimeError("Unsupported main item in HID descriptor") local_table = [None] * 3 else: local_table[tag] = data i += size def get_report_info(collection, reports): """ Gets info about hid reports """ for main in collection["mains"]: if "type" in main: get_report_info(main, reports) else: report_size, report_id, report_count = [x[0] for x in main["globals"][7:10]] if report_id not in reports: reports[report_id] = {"input_size": 0, "output_size": 0} if main["tag"] == "input": reports[report_id]["input_size"] += report_size * report_count elif main["tag"] == "output": reports[report_id]["output_size"] += report_size * report_count for collection in top_level_collections: if collection["type"][0] != 1: raise NotImplementedError("Only Application top level collections supported.") usage_page = collection["globals"][0][0] usage = collection["locals"][0][0] reports = {} get_report_info(collection, reports) if len(reports) > 1: raise NotImplementedError("Only one report id per Application collection supported") report_id, report = list(reports.items())[0] output_size = report["output_size"] if output_size > 0: self.devices.append(ReportOut(self, report_id, usage_page, usage, max_length=output_size // 8)) input_size = reports[report_id]["input_size"] if input_size > 0: self.devices.append(ReportIn(self, report_id, usage_page, usage, max_length=input_size // 8))
import setuptools import os with open("README.md", "r") as f: long_description = f.read() setuptools.setup( name="cs-kit", version=os.environ.get("VERSION", "0.0.0"), author="Hank Doupe", author_email="henrymdoupe@gmail.com", description=("Developer tools for compute.studio."), long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/compute-studio-org/Compute-Studio-Toolkit", packages=setuptools.find_packages(), install_requires=["paramtools", "cs-storage", "fsspec", "pyyaml"], include_package_data=True, entry_points={ "console_scripts": [ "csk-init=cs_kit.cli:init", "csk-token=cs_kit.cli:cs_token", "csk=cs_kit.cli:cli", ] }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
#!/usr/bin/env python3 import json import logging import sys import click from habu.lib.host import gather_details @click.command() @click.option('-v', 'verbose', is_flag=True, default=False, help='Verbose output.') def cmd_host(verbose): """ Collect information about the host where habu is running. Example: \b $ habu.host { "kernel": [ "Linux", "demo123", "5.0.6-200.fc29.x86_64", "#1 SMP Wed Apr 3 15:09:51 UTC 2019", "x86_64", "x86_64" ], "distribution": [ "Fedora", "29", "Twenty Nine" ], "libc": [ "glibc", "2.2.5" ], "arch": "x86_64", "python_version": "3.7.3", "os_name": "Linux", "cpu": "x86_64", "static_hostname": "demo123", "fqdn": "demo123.lab.sierra" } """ if verbose: logging.basicConfig(level=logging.INFO, format='%(message)s') print("Gather information about the host...", file=sys.stderr) result = gather_details() if result: print(json.dumps(result, indent=4)) else: print("[X] Unable to gather information") return True if __name__ == '__main__': cmd_host()
import glob def get_patient_paths(data_path): patient_paths = glob.glob(data_path + "/*") return patient_paths def get_input_paths(patient_path): input_paths = glob.glob(patient_path + "/*CT*", recursive=True) return input_paths def get_label_paths(patient_path): label_paths = glob.glob(patient_path + "/*RS*", recursive=True) return label_paths def flatten_list(top_list): return [item for sublist in top_list for item in sublist]
from Functions.General_Functions import isNaN, getNContext, pad_array, candidateClsf, filterNumbers, filterNumbers_MaintainDistances from Method_Handler import MethodHandler import nltk import math import sklearn as sk import numpy as np import pandas as pd import statistics as stats import os from tempfile import mkdtemp from joblib import load, dump pd.options.mode.chained_assignment = None # default='warn' def preprocessBy(method='CV-TFIDF', *args): return preprocessHandler.execMethod(method, None, *args) def classifyWith(method='CV-SVM', *args): return classifHandler.execMethod(method, None, *args) def CV_TFIDF(data, k): test_list, train_list = kSplit(data, k) pre_test = [] pre_train = [] IDF_list = [] for i,t in enumerate(train_list): IDF = getIDF(t) if not os.path.isdir('Models'): os.mkdir('Models') path = os.path.abspath('Models') filename = os.path.join(path, 'IDFv6') + '_' + str(i) + '.joblib' dump(IDF, filename, compress=1) IDF_list.append(IDF) pre_train.append(transformSet(t, IDF)) pre_test.append(transformSet(test_list[i], IDF)) return IDF_list, pre_train, pre_test def kSplit(data, k): data = sk.utils.shuffle(data) #randomly shuffled data = data.reset_index(drop=True) test = [] train = [] l = len(data) n = math.floor(l/k) r = l % k index = 0 n += 1 for i in range(k): if r == 0: r = -1 n -= 1 test_split = data.loc[index:(index+n-1),:] test_split = test_split.reset_index(drop=True) train_split = data.loc[:index-1,:] train_split = train_split.append(data.loc[(index+n):,:], ignore_index=True) train_split = train_split.reset_index(drop=True) index += n if r > 0: r -= 1 test.append(test_split) train.append(train_split) return test, train def filterDotEmpty(token): return False if token in ['.', '','(',')','<','>',',',':',';','!','?','[',']','{','}','-','/','\\'] else True def splitToken(tk, splitList): stk = tk isFraction = False for symbol in splitList: if symbol in stk: stk = stk.split(symbol)[1] if isNaN(stk): stk = tk elif '/' in tk: isFraction = True return stk, isFraction def text2int(textnum, numwords={}): if not numwords: units = [ "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", ] tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"] scales = ["hundred", "thousand", "million", "billion", "trillion"] numwords["and"] = (1, 0) for idx, word in enumerate(units): numwords[word] = (1, idx) for idx, word in enumerate(tens): numwords[word] = (1, idx * 10) for idx, word in enumerate(scales): numwords[word] = (10 ** (idx * 3 or 2), 0) # ordinal_words = {'first':1, 'second':2, 'third':3, 'fifth':5, 'eighth':8, 'ninth':9, 'twelfth':12} # ordinal_endings = [('ieth', 'y'), ('th', '')] textnum = textnum.replace('-', ' ') current = result = 0 curstring = "" onnumber = False for i,word in enumerate(textnum.split()): # if word in ordinal_words: # scale, increment = (1, ordinal_words[word]) # current = current * scale + increment # if scale > 100: # result += current # current = 0 # onnumber = True # else: # for ending, replacement in ordinal_endings: # if word.endswith(ending): # word = "%s%s" % (word[:-len(ending)], replacement) if word not in numwords: if onnumber: if result == current == 0 and textnum.split()[i-1] == 'and': curstring += "and " else: curstring += repr(result + current) + " " curstring += word + " " result = current = 0 onnumber = False else: scale, increment = numwords[word] current = current * scale + increment if scale > 100: result += current current = 0 onnumber = True if onnumber: curstring += repr(result + current) return curstring def get_wordnet_pos(word): """Map POS tag to first character lemmatize() accepts""" tag = nltk.pos_tag([word])[0][1][0].upper() tag_dict = {"J": nltk.corpus.wordnet.ADJ, "N": nltk.corpus.wordnet.NOUN, "V": nltk.corpus.wordnet.VERB, "R": nltk.corpus.wordnet.ADV} return tag_dict.get(tag, nltk.corpus.wordnet.NOUN) def generateNumbersDataFrame(data): abstractList = data['Abstract'].to_list() for i, abstract in enumerate(abstractList): new_sentence = [] N_list = [] N_sentences_list = [] N_close_words_list = [] N_close_words_distances_list = [] N_isFraction_list = [] abstract = text2int(abstract) sentences = nltk.sent_tokenize(abstract) for sentence in sentences: #tokenize tokens = nltk.word_tokenize(sentence) #lemmatize lemmatizer = nltk.stem.WordNetLemmatizer() lemma_tokens = [lemmatizer.lemmatize(w, get_wordnet_pos(w)) for w in tokens] lemma_tokens, isFraction_list = filterTokens(lemma_tokens) #pos tagging pos_tokens = nltk.pos_tag(lemma_tokens) #chuncking grammar = r""" NP: # NP stage {(<DT>*)?(<CD>)*?(<RB>)?(<VBP>*)?(<JJ.*>*)?<NN.*>*(<VBP>*)?(<JJ.*>*)?(<NN.*>*)?} VP: {(<MD>)?(<TO>)?<VB.*>*(<RP>)?} """ chunk_parser = nltk.RegexpParser(grammar) sentence_tree = chunk_parser.parse(pos_tokens) #sentence_tree.draw() for j,token in enumerate(pos_tokens): if not isNaN(token[0]) and "." not in token[0] and float(token[0]) > 2: #token must be an integer number N_list.append(token[0]) N_sentences_list.append(filterNumbers(lemma_tokens)) #words, distances = getNContext(tokens, j, 3) method 1 words, distances = getNPfromNumber(sentence_tree, token[0], j) #method 2 N_close_words_list.append(words) N_close_words_distances_list.append(distances) N_isFraction_list.append(isFraction_list[j]) partial_data = pd.DataFrame(data={'PMID': [data['PMID'][i]]*len(N_list), 'N': N_list, 'N sentence words': N_sentences_list, 'N close words': N_close_words_list, 'N close words distances': N_close_words_distances_list, 'Is fraction': N_isFraction_list}) full_data = full_data.append(partial_data, ignore_index=True, sort=True) if 'full_data' in locals() else partial_data full_data = candidateClsf(full_data, data) return full_data def getNPfromNumber(sent_tree, number, index): a = q = -1 b = [] for tree in sent_tree: if isinstance(tree, tuple): tree = [tree] for word in tree: a += 1 if a == index: b = [w[0] for w in tree] c = [abs(index-q+i) for i,w in enumerate(tree)] return filterNumbers_MaintainDistances(b,c) q = a + 1 #indice inicio sub-arbol return [] def filterTokens(tokens): new_sentence = [] isFraction_list = [] tokens = list(filter(filterDotEmpty, tokens)) for token in tokens: token = token.replace(",", "") #Take out commas from numbers (english format) token, isFraction = splitToken(token, ['/', '-']) new_sentence.append(token) isFraction_list.append(isFraction) return new_sentence, isFraction_list def getIDF(train_set): #vocab = getVocab(train_set['N close words']) vect = sk.feature_extraction.text.TfidfVectorizer(max_features=None, use_idf=True, vocabulary=None, min_df=0.01) words = [] for i, doc in enumerate(train_set['N sentence words']): if train_set['Is Candidate'][i] == 1: words.append(' '.join(train_set['N close words'][i])) IDF = vect.fit(words) return IDF def getVocab(column): vocab = [] for word_bag in column: for word in word_bag: if word not in vocab and isNaN(word): vocab.append(word) return vocab def transformSet(dataset, IDF): close_words = [] for word_list in dataset['N close words']: close_words.append(' '.join(word_list)) X = IDF.transform(close_words) weights = [] means = [] for row in X: weights.append(row.toarray()) means.append(stats.mean(row.toarray()[0])) IDF_words = IDF.vocabulary_.keys() dataset['N close words weights'] = weights dataset['Weight means'] = means dataset = createWordColumns(dataset, IDF_words, True) return dataset def createWordColumns(df, words, use_distances=False): for i in df.index: l = len(df.index) weights = df['N close words weights'].iloc[i][0] distances = df['N close words distances'].iloc[i] for j, w in enumerate(words): if w not in df.columns: df[w] = pd.to_numeric([0.0]*l, downcast='float') df[str(w + ' dist')] = pd.to_numeric([50.0]*l, downcast='integer') #entendiendo 50 como una distancia muy grande if w in df.columns: df[w][i] = weights[j] if w in df['N close words'].iloc[i]: windex = df['N close words'].iloc[i].index(w) df[str(w + ' dist')][i] = distances[windex] return df def SVM(train, test, index, c, kernel, gamma, prob): classifier = sk.svm.SVC(C=c,kernel=kernel, gamma=gamma, class_weight='balanced', probability=prob) train_set = train.iloc[:,8:] train_set['Is fraction'] = train['Is fraction'] test_set = test.iloc[:,8:] test_set['Is fraction'] = test['Is fraction'] classifier.fit(np.matrix(train_set), train['Is Candidate']) class_results = classifier.predict(np.matrix(test_set)) class_prob = classifier.predict_proba(np.matrix(test_set)) if not os.path.isdir('Models'): os.mkdir('Models') path = os.path.abspath('Models') filename = os.path.join(path, 'SVMv8') if index != None and isinstance(index, int): dump(classifier, filename + '_' + str(index) + '.joblib', compress=1) else: dump(classifier, filename + '.joblib', compress=1) return class_results, class_prob def CV_SVM(train_list, test_list): true_class = [] predicted_class = [] true_class_probs = [] for i, t in enumerate(train_list): predictions, probs = classifyWith('SVM', t, test_list[i], i, 2, 'rbf', 'scale', True) true_class.extend(test_list[i]['Is Candidate']) predicted_class.extend(predictions) true_class_probs.extend(probs[:,1]) return true_class, predicted_class, true_class_probs def NN(train, test, index, *args): return 0 def CV_NN(train_list, test_list): true_class = [] predicted_class = [] true_class_probs = [] for i, t in enumerate(train_list): a = 0 return true_class, predicted_class, true_class_probs #PREPROCESS METHODS preProcessMethods = { "CV-TFIDF": CV_TFIDF } classifMethodDicc = { "SVM": SVM, "CV-SVM": CV_SVM, "NN": NN, "CV-NN": CV_NN } preprocessHandler = MethodHandler(preProcessMethods) classifHandler = MethodHandler(classifMethodDicc)
""" A Deep Q-learning agent implementation for the NetworkAttackSimulator Uses Experience Replay and a seperate Target Network along with the main DQN. """ from network_attack_simulator.agents.agent import Agent import random import numpy as np import time import math from keras.models import Sequential from keras.layers import Dense from keras.optimizers import RMSprop from keras import backend as K import tensorflow as tf def huber_loss(y_true, y_pred, loss_delta=1.0): err = y_true - y_pred cond = K.abs(err) < loss_delta L2 = 0.5 * K.square(err) L1 = loss_delta * (K.abs(err) - 0.5 * loss_delta) loss = tf.where(cond, L2, L1) output = K.mean(loss) return output class Brain: """ Fully connected single-layer neural network""" def __init__(self, state_size, num_actions, hidden_units, learning_rate): self.state_size = state_size self.num_actions = num_actions self.hidden_units = hidden_units self.learning_rate = learning_rate self.model = self._create_model() self.target_model = self._create_model() def _create_model(self): model = Sequential() model.add(Dense(self.hidden_units, activation='relu', input_dim=self.state_size)) model.add(Dense(self.num_actions, activation='linear')) opt = RMSprop(lr=self.learning_rate) model.compile(loss=huber_loss, optimizer=opt) return model def train(self, x, y, batch_size=64, epoch=1, verbose=0): self.model.fit(x, y, batch_size=batch_size, epochs=epoch, verbose=verbose) def predict(self, s, target=False): if target: return self.target_model.predict(s) return self.model.predict(s) def predictOne(self, s, target=False): return self.predict(s.reshape(1, self.state_size), target=target).flatten() def update_target_model(self): self.target_model.set_weights(self.model.get_weights()) def reset(self): self.model = self._create_model() self.target_model = self._create_model() class Memory: """Replay buffer""" def __init__(self, capacity): self.capacity = capacity self.samples = [] self.reset() def add(self, sample): self.samples.append(sample) if len(self.samples) > self.capacity: self.samples.pop(0) def sample(self, n): n = min(n, len(self.samples)) return random.sample(self.samples, n) def reset(self): self.samples = [] class DQNAgent(Agent): def __init__(self, state_size, num_actions, hidden_units=256, gamma=0.99, min_epsilon=0.05, max_epsilon=1.0, epsilon_decay_lambda=0.0001, learning_rate=0.00025, memory_capacity=10000, batch_size=32, update_target_freq=1000): """ Initialize a new Deep Q-network agent Parameters: int state_size : size of a state (i.e. input into network) int num_actions : size of action space (i.e. output of network) int hidden_units : number of hidden units of hidden Q-network layer float gamma : discount float min_epsilon : minimum exploration probability float max_epsilon : maximum exploration probability float epsilon_decay_lambda : lambda for exponential epsilon decay float learning_rate : RMSprop learning rate int memory_capacity : capacity of replay buffer int batch_size : Q-network training batch size int update_target_freq : target model update frequency in terms of number of steps """ self.state_size = state_size self.num_actions = num_actions self.gamma = gamma self.min_epsilon = min_epsilon self.max_epsilon = max_epsilon self.epsilon_decay_lambda = epsilon_decay_lambda self.epsilon = max_epsilon self.batch_size = batch_size self.update_target_freq = update_target_freq self.brain = Brain(state_size, num_actions, hidden_units, learning_rate) self.memory = Memory(memory_capacity) self.steps = 0 def train(self, env, num_episodes=100, max_steps=100, timeout=None, verbose=False, **kwargs): if "visualize_policy" in kwargs: visualize_policy = kwargs["visualize_policy"] else: visualize_policy = 0 self.print_message("Starting training for {} episodes".format(num_episodes), verbose) # stores timesteps and rewards for each episode episode_timesteps = [] episode_rewards = [] episode_times = [] training_start_time = time.time() steps_since_update = 0 reporting_window = min(num_episodes / 10, 100) for e in range(num_episodes): start_time = time.time() timesteps, reward = self._run_episode(env, max_steps) ep_time = time.time() - start_time episode_rewards.append(reward) episode_timesteps.append(timesteps) episode_times.append(ep_time) self.epsilon = self.epsilon_decay() steps_since_update += timesteps if steps_since_update > self.update_target_freq: self.brain.update_target_model() steps_since_update = 0 self.report_progress(e, reporting_window, episode_timesteps, verbose) if e > 0 and visualize_policy != 0 and e % visualize_policy == 0: gen_episode = self.generate_episode(env, max_steps) self.print_message("Visualizing current policy. Episode length = {0}" .format(len(gen_episode)), verbose) env.render_episode(gen_episode) if timeout is not None and time.time() - training_start_time > timeout: self.print_message("Timed out after {} sec on episode {:.2f}".format(timeout, e), verbose) break total_training_time = time.time() - training_start_time self.print_message("Training complete after {} episodes and {:.2f} sec" .format(e, total_training_time), verbose) return episode_timesteps, episode_rewards, episode_times def reset(self): self.brain.reset() self.memory.reset() self.epsilon = self.max_epsilon self.steps = 0 def _run_episode(self, env, max_steps): """ Train the agent for a single episode using Q-learning algorithm """ a_space = env.action_space s = self._process_state(env.reset()) ep_reward = 0 ep_timesteps = 0 for _ in range(max_steps): # interact with environment a = self.act(s) ns, r, done = env.step(a_space[a]) ns = self._process_state(ns) if done: ns = None # train agent self.observe((s, a, r, ns)) self.replay() s = ns ep_reward += r ep_timesteps += 1 self.steps += 1 if done: break return ep_timesteps, ep_reward def _process_state(self, s): """ Convert state into format that can be handled by NN""" return s.flatten() def act(self, s): """ Choose action using epsilon greedy action selection """ if random.random() < self.epsilon: return random.randint(0, self.num_actions-1) else: return np.argmax(self.brain.predictOne(s)) def _choose_greedy_action(self, state, action_space, epsilon=0.05): if random.random() < epsilon: return random.randint(0, self.num_actions-1) return np.argmax(self.brain.predictOne(self._process_state(state))) def observe(self, sample): """ Add an observation to replay memory and also adjust epsilon """ self.memory.add(sample) def epsilon_decay(self): """ Decay the epsilon value based on episode number """ # exponential decay by steps diff = self.max_epsilon - self.min_epsilon temp = diff * math.exp(-self.epsilon_decay_lambda * self.steps) return self.min_epsilon + temp def replay(self): """ Perform parameter updates """ # each sample is observation = (s, a, r, ns) tuple batch = self.memory.sample(self.batch_size) batch_len = len(batch) no_state = np.zeros(self.state_size) states = np.array([o[0] for o in batch]) next_states = np.array([(no_state if o[3] is None else o[3]) for o in batch]) p = self.brain.predict(states) next_p = self.brain.predict(next_states, target=True) x = np.zeros((batch_len, self.state_size)) y = np.zeros((batch_len, self.num_actions)) for i in range(batch_len): o = batch[i] s, a, r, ns = o # set target for given s, a, r, ns observation t = p[i] if ns is None: # terminal state t[a] = r else: t[a] = r + self.gamma * np.amax(next_p[i]) x[i] = s y[i] = t self.brain.train(x, y, self.batch_size) def print_message(self, message, verbose): if verbose: print("DQN Agent: {}".format(message)) def __str__(self): return "DQNAgent"
"""Back-end code to support the Prereg Challenge initiative Keeping the code together in this file should make it easier to remove the features added to the GakuNin RDM specifically to support this initiative in the future. Other resources that are a part of the Prereg Challenge: * website/static/js/pages/prereg-landing-page.js * website/static/css/prereg.css """ from flask import request from framework.auth import decorators from framework.auth.core import Auth from framework.utils import iso8601format from website.prereg import utils def prereg_landing_page(**kwargs): """Landing page for the prereg challenge""" auth = kwargs['auth'] = Auth.from_kwargs(request.args.to_dict(), kwargs) is_logged_in = kwargs['auth'].logged_in campaign = request.path.strip('/') or 'prereg' if is_logged_in: registerable_nodes = [ node for node in auth.user.contributor_to if node.has_permission(user=auth.user, permission='admin') ] has_projects = bool(registerable_nodes) has_draft_registrations = bool(utils.drafts_for_user(auth.user, campaign).count()) else: has_projects = False has_draft_registrations = False return { 'is_logged_in': is_logged_in, 'has_draft_registrations': has_draft_registrations, 'has_projects': has_projects, 'campaign_long': utils.PREREG_CAMPAIGNS[campaign], 'campaign_short': campaign } @decorators.must_be_logged_in def prereg_draft_registrations(auth, **kwargs): """API endpoint; returns prereg draft registrations the user can resume""" campaign = kwargs.get('campaign', 'prereg') drafts = utils.drafts_for_user(auth.user, campaign) return { 'draftRegistrations': [ { 'dateUpdated': iso8601format(draft.datetime_updated), 'dateInitiated': iso8601format(draft.datetime_initiated), 'node': { 'title': draft.branched_from.title, }, 'initiator': { 'name': draft.initiator.fullname, }, 'url': draft.branched_from.web_url_for( 'edit_draft_registration_page', draft_id=draft._id, ), } for draft in drafts ], }
# -*- coding: utf-8 -*- # Copyright 2015 Pietro Brunetti <pietro.brunetti@itb.cnr.it> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Selecting peptides using IF treshold values""" __authors__ = "Pietro Brunetti" import os import wx import wx.lib.agw.floatspin as FS import DialogCommons class Dialog(wx.Dialog): """ Dialog to set the threshold for selection""" def __init__( self, parent, ID, title, size=wx.DefaultSize, pos=wx.DefaultPosition, style=wx.DEFAULT_DIALOG_STYLE): sizer = DialogCommons.createMainSizer(self, parent, ID, title, pos, size, style) self._createSelBox(sizer) self._createPlotBox(sizer) DialogCommons.createBtnSizer(self, sizer, "The OK button to start the Selection") self.SetSizer(sizer) sizer.Fit(self) def _createSelBox(self, sizer): # setting default values """ Create a box that allows user to choose the select parameters """ self.protThr = 0.3 self.peptThr = 0.5 self._createSpinner(sizer, "Protein IF threshold ", self.protThr, "Protein identification frequency threshold", self.OnProtSpin) self._createSpinner(sizer, "Peptide IF threshold ", self.peptThr, "Peptide identification frequency threshold", self.OnPeptSpin) def _createSpinner(self, sizer, title, defaultValue, helptxt, fun): p_sizer = wx.BoxSizer(wx.HORIZONTAL) p_Stat = wx.StaticText(self, -1, title) p_Spin = FS.FloatSpin(self, -1, min_val=0, max_val=1, increment=0.1, value=defaultValue) # ,extrastyle=FS.FS_LEFT) p_Spin.SetDigits(1) p_Spin.SetHelpText(helptxt) p_Spin.Bind( FS.EVT_FLOATSPIN, fun) p_sizer.Add(p_Stat, 1) p_sizer.Add(p_Spin, 1) sizer.Add(p_sizer, 0, wx.GROW|wx.ALIGN_CENTER_VERTICAL|wx.RIGHT|wx.TOP, 5) def _createPlotBox(self, sizer): self.HaveHisto = None self._createCheck(sizer, " Histogramm", "Plot Peptide/Protein frequencies Histogram", self.OnHistos) self.HaveScatter = None self._createCheck(sizer, " Scatter Plot", "Plot Peptide/Protein frequencies Scatter Plot", self.OnScatter) def _createCheck(self, sizer, title, helptxt, funz): check = wx.CheckBox( self, -1, title, style = wx.ALIGN_RIGHT ) check.SetHelpText(helptxt,) check.Bind( wx.EVT_CHECKBOX, funz) sizer.Add(check, 0, wx.GROW|wx.ALIGN_CENTER_VERTICAL|wx.RIGHT|wx.TOP, 5) def OnProtSpin(self, e): """ Setting the Protein threshold""" floatspin = e.GetEventObject() self.protThr = floatspin.GetValue() txt = "Protein IF threshold: {0}\n".format(self.protThr) self.GetParent().SetStatusText(txt) def OnPeptSpin(self, e): """ Setting the Peptide threshold""" floatspin = e.GetEventObject() self.peptThr = floatspin.GetValue() txt = "Peptide IF threshold: {0}\n".format(self.peptThr) self.GetParent().SetStatusText(txt) def OnHistos(self, e): """ Make a histogram? """ self.HaveHisto = e.IsChecked() def OnScatter(self, e): """ Make a Scatter Plot?""" self.HaveScatter = e.IsChecked() def GetValue(self): return {"protThr": self.protThr, "peptThr": self.peptThr, "haveHisto": self.HaveHisto, "haveScatter": self.HaveScatter}
DATABASES = {'default': {'NAME': ':memory:', 'ENGINE': 'django.db.backends.sqlite3'}} SITE_ID = 1 STATIC_URL = '/static/' SECRET_KEY = 'secret-key' INSTALLED_APPS = [ 'django.contrib.sites', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.admin', 'django.contrib.auth', 'cv', # 'researchprojects', ]
# https://leetcode.com/problems/design-add-and-search-words-data-structure/ # Design a data structure that supports adding new words and finding if a string # matches any previously added string. # Implement the WordDictionary class: ################################################################################ from collections import defaultdict class TrieNode(): def __init__(self): self.children = defaultdict(TrieNode) self.is_word = False class WordDictionary: def __init__(self): """ Initialize your data structure here. """ self.root = TrieNode() def addWord(self, word: str) -> None: node = self.root for char in word: node = node.children[char] node.is_word = True def search(self, word: str) -> bool: return self.dfs(self.root, 0, word) def dfs(self, node, idx, word): if idx == len(word): return node.is_word char = word[idx] if char == ".": for child in node.children: if self.dfs(node.children[child], idx + 1, word): return True else: if char not in node.children: return False else: return self.dfs(node.children[char], idx + 1, word) # Your WordDictionary object will be instantiated and called as such: # obj = WordDictionary() # obj.addWord(word) # param_2 = obj.search(word)
#from OpenAttack.OpenAttack2.attack_assist.filter_words.protein import PROTEIN_FILTER_WORDS from .chinese import CHINESE_FILTER_WORDS from .english import ENGLISH_FILTER_WORDS from .protein import PROTEIN_FILTER_WORDS def get_default_filter_words(lang): from ...tags import TAG_Chinese, TAG_English,TAG_Protein if lang == TAG_Chinese: return CHINESE_FILTER_WORDS if lang == TAG_English: return ENGLISH_FILTER_WORDS if lang == TAG_Protein: return PROTEIN_FILTER_WORDS return PROTEIN_FILTER_WORDS
import socket import tokens import connection import io import os from PIL import Image from message.literalMessage import LiteralMessage from baseApplication import BaseApplication class ClientApplication(BaseApplication): def __init__(self, host, port): super().__init__(host, port, tokens.CLIENT_TOKEN) def show_image_file_from_storage(self): filename = input("Filename:") file = self.get_file(filename) img = Image.open(io.BytesIO(file)) img.show() def see_files_in_storage(self): files = self.get_files_from_storage() for filename in files: print(filename) def send_file_to_storage(self): filename = input("Filename:") self.send_file(filename) def send_job(self, token): filename = input("Filename:") dstfilename = input("Destination filename:") self.send_literal(token) self.send_literal(filename) self.send_literal(dstfilename) messageToken = self.receive_message().value message = self.receive_message().value if messageToken == tokens.INFO_MESSAGE or messageToken == tokens.ERROR_MESSAGE: print(message) def remove_file(self): filename = input("Filename:") self.send_literal(tokens.REMOVE_FILE) self.send_literal(filename) result = self.receive_message(True, 1.0) if result is not None: if result.value == tokens.ERROR_MESSAGE or result.value == tokens.INFO_MESSAGE: message = self.receive_message().value print(message) def see_a_logfile(self): files = [logfile for logfile in self.get_files_from_storage() if os.path.splitext(logfile)[1].lower() == '.log'] count = 0 for logfile in files: print('{} - {}'.format(count, logfile)) count += 1 index = int(input('Index:')) filename = files[index] file = self.get_file(filename) file = io.BytesIO(file).read() print('Log:') print(file.decode('UTF-8')) def print_commands(self): print('Commands:') print('0 - Exit') print('1 - Flip Image Horizontal') print('2 - Flip Image Vertical') print('3 - Rotate Image 90.') print('4 - Rotate Image 180.') print('5 - Rotate Image 270.') print('6 - See Files in Storage.') print('7 - Send File to Storage.') print('8 - Show Image File from Storage.') print('9 - Remove File from Storage.') print('10 - See a logfile.') def menu(self): while not self.is_closed(): self.print_commands() cmd = int(input("Cmd>")) if cmd == 0: self.close() elif cmd == 1: self.send_job(tokens.JOB_FLIP_HORIZONTAL) elif cmd == 2: self.send_job(tokens.JOB_FLIP_VERTICAL) elif cmd == 3: self.send_job(tokens.JOB_ROTATE_90) elif cmd == 4: self.send_job(tokens.JOB_ROTATE_180) elif cmd == 5: self.send_job(tokens.JOB_ROTATE_270) elif cmd == 6: self.see_files_in_storage() elif cmd == 7: self.send_file_to_storage() elif cmd == 8: self.show_image_file_from_storage() elif cmd == 9: self.remove_file() elif cmd == 10: self.see_a_logfile() host = input('Host: ') ClientApplication(host, 50007)
''' run_tests.py run unit test cases ''' import os import sys import subprocess as sp class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' test_dir = os.path.dirname(os.path.abspath("__file__")) sandbox = os.path.join(test_dir, 'sandbox') os.makedirs(sandbox, exist_ok=True) files = os.listdir(test_dir) files = [x for x in files if x.endswith('.py')] files = [x for x in files if not x.startswith('run_examples.py')] files = [x for x in files if not x.startswith('run_tests.py')] files = [x for x in files if not x.startswith('test_module.py')] files = [x for x in files if not x.startswith('test_memory.py')] for t in files: case = t[5:-3] d1 = os.path.join(sandbox, 's', case) d2 = os.path.join(sandbox, 'p', case) os.makedirs(d1, exist_ok=True) os.makedirs(d2, exist_ok=True) os.chdir(d1) print("#### running (serial): " + t) comm = [sys.executable, "../../../"+t] p = sp.Popen(comm, stdout=sp.PIPE, stderr=sp.STDOUT, stdin=sp.PIPE) lines, errs = p.communicate() print(lines.decode()) print(errs) os.chdir(d2) print("#### running (parallel): " + t) comm = [sys.executable, "../../../"+t, "-p"] p = sp.Popen(comm, stdout=sp.PIPE, stderr=sp.STDOUT, stdin=sp.PIPE) lines, errs = p.communicate() print(lines.decode()) print(errs)
#!/usr/bin/env python3 ########################################################################### # Bobbi June 2020 # # Alternative server for ADTPro's VEDRIVE.SYSTEM # Virtual Ethernet Drive for Apple II / ProDOS # # See https://www.adtpro.com/protocolv1.html # ########################################################################### pd25 = False # Default to old-style date/time --prodos25 to use new format file1 = "/home/pi/virtual-1.po" # Disk image drive 1 --disk1 to override file2 = "/home/pi/virtual-2.po" # Disk image drive 2 --disk2 to override ########################################################################### import socket import time import os import getopt import sys IP = "::" PORT = 6502 BLKSZ = 512 # vt100 colour codes for pretty printing BLK = '\033[90m' RED = '\033[91m' GRN = '\033[92m' YEL = '\033[93m' BLU = '\033[94m' MAG = '\033[95m' CYN = '\033[96m' WHT = '\033[97m' ENDC = '\033[0m' # Globals systemd = False # True if running under Systemd packet = 1 # Sent packet counter prevblk = -1 # Last block read/written prevdrv = -1 # Last drive read/written prevop = -1 # Last operation (read or write) prevcs = -1 # Previous checksum col = 0 # Used to control logging printout skip1 = 0 # Bytes to skip over header (Drive 1) skip2 = 0 # Bytes to skip over header (Drive 2) # # Get date/time bytes # def getDateTimeBytes(): global pd25 t = time.localtime() dt = [] if pd25: # ProDOS 2.5+ word1 = 2048 * t.tm_mday + 64 * t.tm_hour + t.tm_min word2 = 4096 * (t.tm_mon + 1) + t.tm_year else: # Legacy ProDOS <2.5 word1 = t.tm_mday + 32 * t.tm_mon + 512 * (t.tm_year - 2000) word2 = t.tm_min + 256 * t.tm_hour dt.append(word1 & 0xff) dt.append((word1 & 0xff00) >> 8) dt.append(word2 & 0xff) dt.append((word2 & 0xff00) >> 8) return dt # # Append byte b to list l, return updated checksum # def appendbyte(l, b, csin): l.append(b) return csin ^ b # # Pretty print info about each request # def printinfo(drv, blknum, isWrite, isError, cs): global systemd, prevblk, prevdrv, prevop, prevcs, col if drv != prevdrv: if systemd: print('\nDrive {}'.format(drv)) else: print('\n{}Drive {}{}'.format(BLU, drv, ENDC)) col = 0 e = '+' if ((blknum == prevblk) and (drv == prevdrv) and (isWrite == prevop) and (cs == prevcs)) else ' ' e = 'X' if isError else e if systemd: c = 'W' if isWrite else 'R' print(' {0}{1}{2:05d}'.format(e, c, blknum), end='', flush=True) else: c = RED if isWrite else GRN print('{0} {1}{2:05d}{3}'.format(c, e, blknum, ENDC), end='', flush=True) col += 1 if col == 8: print('') col = 0 prevblk = blknum prevdrv = drv prevop = isWrite prevcs = cs # # Read block with date/time update # def read3(sock, addr, d): global packet, skip if d[1] == 0x03: file = file1 drv = 1 skip = skip1 else: file = file2 drv = 2 skip = skip2 blknum = d[2] + 256 * d[3] err = False try: with open(file, 'rb') as f: b = blknum * BLKSZ + skip f.seek(b) block = f.read(BLKSZ) except: err = True dt = getDateTimeBytes() l = [] appendbyte(l, packet & 0xff, 0) # Packet number packet += 1 cs = appendbyte(l, 0xc5, 0) # "E" cs = appendbyte(l, d[1], cs) # 0x03 or 0x05 cs = appendbyte(l, d[2], cs) # Block num LSB cs = appendbyte(l, d[3], cs) # Block num MSB cs = appendbyte(l, dt[0], cs) # Time of day LSB cs = appendbyte(l, dt[1], cs) # Time of day MSB cs = appendbyte(l, dt[2], cs) # Date LSB cs = appendbyte(l, dt[3], cs) # Date MSB appendbyte(l, cs, cs) # Checksum for header # Signal read errors by responding with incorrect checksum if err: cs += 1 else: cs = 0 for i in range (0, BLKSZ): cs = appendbyte(l, block[i], cs) appendbyte(l, cs, cs) # Checksum for datablock printinfo(drv, blknum, False, err, cs) b = sock.sendto(bytearray(l), addr) #print('Sent {} bytes to {}'.format(b, addr)) # # Write block # def write(sock, addr, d): global packet if d[1] == 0x02: file = file1 drv = 1 skip = skip1 else: file = file2 drv = 2 skip = skip2 cs = 0 for i in range (0, BLKSZ): cs ^= d[i+5] blknum = d[2] + 256 * d[3] err = False if cs == d[517]: try: with open(file, 'r+b') as f: b = blknum * BLKSZ + skip f.seek(b) for i in range (0, BLKSZ): f.write(bytes([d[i+5]])) except: err = True # Write error else: err == True # Bad checksum # Signal write errors by responding with bad data checksum. # Use sender's checksum + 1, so there is never an inadvertent match. if err: cs = d[517] + 1 l = [] appendbyte(l, packet & 0xff, 0) # Packet number packet += 1 appendbyte(l, 0xc5, 0) # "E" appendbyte(l, d[1], 0) # 0x02 or 0x04 appendbyte(l, d[2], 0) # Block num LSB appendbyte(l, d[3], 0) # Block num MSB appendbyte(l, cs, 0) # Checksum of datablock printinfo(drv, blknum, True, err, cs) b = sock.sendto(bytearray(l), addr) #print('Sent {} bytes to {}'.format(b, addr)) # # See if file is a 2MG and, if so, that it contains .PO image # Returns bytes to skip over header # def check2MG(filename): try: with open(filename, 'rb') as f: hdr = f.read(16) except: return 0 if (hdr[0] == 0x32) and (hdr[1] == 0x49) and (hdr[2] == 0x4d) and (hdr[3] == 0x47): print('** ' + filename + ' is a 2MG file **') if hdr[0x0c] != 0x01: print('** Warning NOT in ProDOS order **') return 64 return 0 def usage(): print('usage: veserver [OPTION]...') print(' -h, --help Show this help'); print(' -p, --prodos25 Use ProDOS 2.5 date/time format'); print(' -1 FNAME, --disk1=FNAME Specify filename for disk 1 image'); print(' -2 FNAME, --disk2=FNAME Specify filename for disk 2 image'); # # Entry point # # Check whether we are running under Systemd or not if 'INVOCATION_ID' in os.environ: systemd = True short_opts = "hp1:2:" long_opts = ["help", "prodos25", "disk1=", "disk2="] try: args, vals = getopt.getopt(sys.argv[1:], short_opts, long_opts) except getopt.error as e: print (str(e)) usage() sys.exit(2) for a, v in args: if a in ('-h', '--help'): usage() sys.exit(0) elif a in ('-p', '--prodos25'): pd25 = True elif a in ('-1', '--disk1'): file1 = v elif a in ('-2', '--disk2'): file2 = v print("VEServer v1.0") if pd25: print("ProDOS 2.5+ Clock Driver") else: print("Legacy ProDOS Clock Driver") print("Disk 1: {}".format(file1)) skip1 = check2MG(file1) print("Disk 2: {}".format(file2)) skip2 = check2MG(file2) with socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) as s: s.bind((IP, PORT)) print("veserver - listening on UDP port {}".format(PORT)) while True: data, address = s.recvfrom(1024) #print('Received {} bytes from {}'.format(len(data), address)) if (data[0] == 0xc5): if (data[1] == 0x03) or (data[1] == 0x05): read3(s, address, data) elif (data[1] == 0x02) or (data[1] == 0x04): write(s, address, data)
class Solution: def canCross(self, stones: List[int]) -> bool: fail = set() stone_set = set(stones) stack = [] stack.append((0,0)) while stack: cur_pos, jump = stack.pop() for j in (jump-1, jump, jump+1): pos = cur_pos+j if pos > 0 and pos in stone_set and (pos, j) not in fail: if pos == stones[-1]: return True stack.append((pos, j)) fail.add((cur_pos, jump)) return False
# Imbalanced Classification from sklearn.datasets import make_blobs from sklearn.linear_model import LogisticRegression import numpy as np import matplotlib.pyplot as plt import imageio import os try: os.mkdir('./figures') except: pass images = [] for i,s in enumerate(np.linspace(2000,50,80)): features, label = make_blobs(n_samples=[2000,int(s)],\ n_features=2,\ centers=[(-5,5),(5,5)],\ random_state=47,cluster_std=3) if i==0: min1, max1 = features[:,0].min()-1,features[:,0].max()+1 min2, max2 = features[:,1].min()-1,features[:,1].max()+1 x1grid = np.arange(min1,max1,.1) x2grid = np.arange(min2,max2,.1) xx, yy = np.meshgrid(x1grid,x2grid) r1,r2 = xx.flatten(), yy.flatten() r1,r2 = r1.reshape((len(r1), 1)), r2.reshape((len(r2), 1)) grid = np.hstack((r1,r2)) model = LogisticRegression() model.fit(features,label) plt.figure(figsize=(6,3)) yp = model.predict(grid) zz = yp.reshape(xx.shape) plt.contourf(xx,yy,zz,cmap='Paired') for cv in range(2): row = np.where(label==cv) plt.scatter(features[row,0],features[row,1],cmap = 'Paired') plt.tight_layout() figname = './figures/Imbalanced_'+str(10+i)+'.png' plt.savefig(figname,dpi=300) plt.close() images.append(imageio.imread(figname)) # add images in reverse for i in range(80): images.append(images[79-i]) try: imageio.mimsave('Imbalanced_Classification.mp4', images) except: imageio.mimsave('Imbalanced_Classification.gif', images)
import inspect import tempfile import subprocess import shutil import os import sys import threading from itertools import chain def header(func): signature = inspect.signature(func) args = [str(k) if v.default is inspect.Parameter.empty else str(k) + "=" + str(v.default) for k, v in signature.parameters.items()] currentLine = func.__name__ + "(" lines = [] indent = " " * (len(func.__name__) + 1) separator = "" for arg in args: newLine = currentLine + separator + arg if len(newLine) > 80: lines.append(currentLine + separator) currentLine = indent + arg else: currentLine = newLine separator = ", " lines.append(currentLine + ")") return("\n".join(lines)) def printHeader(func): print(f"\n#### `{func.__name__}`") print(f"```\n{header(func)}\n```") def printHelp(x): print(inspect.getdoc(x)) def quotePosix(args): """ Given a list of command line arguments, quote them so they can be can be printed on POSIX """ def q(x): if " " in x: return "'" + x + "'" else: return x return [q(x) for x in args] def quoteWindows(args): """ Given a list of command line arguments, quote them so they can be can be printed in Windows CLI """ def q(x): if " " in x: return '"' + x + '"' else: return x return [q(x) for x in args] def panelizeAndDraw(name, command): dirname = tempfile.mkdtemp() output = os.path.join(dirname, "x.kicad_pcb") try: outimage = f"doc/resources/{name}.png" subprocess.run(command + [output], check=True, capture_output=True) r = subprocess.run(["pcbdraw", "plot", "--help"], capture_output=True) if r.returncode == 0: # We have a new PcbDraw r = subprocess.run(["pcbdraw", "plot", "--vcuts", "Cmts.User", "--silent", output, outimage], check=True, capture_output=True) else: # We have an old PcbDraw r = subprocess.run(["pcbdraw", "--vcuts", "--silent", output, outimage], check=True, capture_output=True) subprocess.run(["convert", outimage, "-define", "png:include-chunk=none", outimage], check=True, capture_output=True) except subprocess.CalledProcessError as e: print("Command: " + " ".join(e.cmd), file=sys.stderr) print("Stdout: " + e.stdout.decode("utf8"), file=sys.stderr) print("Stderr: " + e.stderr.decode("utf8"), file=sys.stderr) sys.exit(1) shutil.rmtree(dirname) runExampleThreads = [] def runBoardExample(name, args): """ Run kikit CLI command with args - omitting the output file name. Prints a markdown with the command and includes a generated board image. Generating images runs in parallel, so do not forget to invoke runBoardExampleJoin() at the end of your script. """ realArgs = ["python3", "-m", "kikit.ui"] + list(chain(*args)) # We print first, so in a case of failure we have the command in a nice # copy-paste-ready form args[0] = ["kikit"] + args[0] args[-1] = args[-1] + ["panel.kicad_pcb"] print("```") print("# Linux") for i, c in enumerate(args): if i != 0: print(" ", end="") end = "\n" if i + 1 == len(args) else " \\\n" print(" ".join(quotePosix(c)), end=end) print("\n# Windows") for i, c in enumerate(args): if i != 0: print(" ", end="") end = "\n" if i + 1 == len(args) else " ^\n" print(" ".join(quoteWindows(c)), end=end) print("```\n") print("![{0}](resources/{0}.png)".format(name)) t = threading.Thread(target=lambda: panelizeAndDraw(name, realArgs)) t.start() global runExampleThreads runExampleThreads.append(t) def runScriptingExample(name, args): """ Run a Python panelization script that takes the name of the output as a last argument and create a drawing of it. """ realArgs = ["python3"] + list(chain(*args)) print("```") for i, c in enumerate(args): if i != 0: print(" ", end="") end = "\n" if i + 1 == len(args) else " \\\n" print(" ".join(quote(c)), end=end) print("```\n") print("![{0}](resources/{0}.png)".format(name)) t = threading.Thread(target=lambda: panelizeAndDraw(name, realArgs)) t.start() global runExampleThreads runExampleThreads.append(t) def runExampleJoin(): for t in runExampleThreads: t.join()
class Solution: def findMin(self, nums: List[int]) -> int: i,j = 0,len(nums)-1 while i < j: m = (i+j)//2 if nums[m] > nums[j]: i = m+1 else: j = m return nums[i]
from i2 import Sig from meshed import DAG, FuncNode from meshed.base import _func_nodes_to_graph_dict from meshed.dag import _separate_func_nodes_and_var_nodes from meshed.itools import topological_sort # separate with comments lines def pairs(xs): if len(xs) <= 1: return xs else: pairs = list(zip(xs, xs[1:])) return pairs def mk_mock_funcnode(arg, out): @Sig(arg) def func(): pass # name = "_mock_" + str(arg) + "_" + str(out) # f-string name = f"_mock_{str(arg)}_{str(out)}" # f-string return FuncNode(func=func, out=out, name=name) def funcnodes_from_pairs(pairs): return list(map(mk_mock_funcnode_from_tuple, pairs)) def curry(func): def res(*args): return func(tuple(args)) return res def uncurry(func): def res(tup): return func(*tup) return res mk_mock_funcnode_from_tuple = uncurry(mk_mock_funcnode) def reorder_on_constraints(funcnodes, outs): extra_nodes = funcnodes_from_pairs(pairs(outs)) funcnodes += extra_nodes graph = _func_nodes_to_graph_dict(funcnodes) nodes = topological_sort(graph) print("after ordering:", nodes) ordered_nodes = [node for node in nodes if node not in extra_nodes] func_nodes, var_nodes = _separate_func_nodes_and_var_nodes(ordered_nodes) return func_nodes, var_nodes
import os import sys import yaml from pathlib import Path def GetFilesList(yaml_path): cfg_f = open(yaml_path,'r') cfg = yaml.load(cfg_f.read(),Loader=yaml.FullLoader) cwd = os.getcwd() # print(cfg) # key is output file name , value is the array of the amalgamated files. ret = dict() for key,value in cfg.items(): # Only the suffix of files name in suffix will be considered. ret[key] = [] suffix = [] if 'suffix' in value: suffix = value['suffix'] for root,_,files in os.walk(os.path.join(cwd,value['directory'])): for f in files: for suf in suffix: if f.endswith(suf): ret[key].append(os.path.join(root,f)) # print(ret) return ret class CFile: def __init__(self,file_path,output_filename,input_output): self.file_path = file_path self.file_name = Path(file_path).name self.file_handle = open(file_path,'r') self.output_filename = output_filename self.get_dependencies(input_output) def get_include_file_name(self,l): ret = None if '<' in l: ret = l[l.find('<')+1:l.find('>')] elif '\"' in l: ret = l[l.find('\"')+1:l.rfind('\"')] else: print('Unknown #include ?',l) return None if '/' in ret: ret = ret[ret.rfind('/')+1:] return ret def get_dependencies(self,input_output): # dependencies_in is this file depend on other files which will be amalgamated into the same file. # dependencies_out is this file depend on other files which will NOT be amalgamated into the same file. self.dependencies_in = set() self.dependencies_out = set() for l in self.file_handle: if l.startswith('#include'): dep_file_name = self.get_include_file_name(l) if dep_file_name in input_output: if input_output[dep_file_name] == self.output_filename: self.dependencies_in.add(dep_file_name) else: self.dependencies_out.add(dep_file_name) # f is the handle of output file ; # files2output is a dictionary, from input files name to themselves' output files. def write(self,f,input_output): self.file_handle.seek(0) f.write('\n/*** start of file {0} **/\n'.format(self.file_name)) for l in self.file_handle: if l.startswith('#include'): dep = self.get_include_file_name(l) if dep in self.dependencies_in : f.write('// ' + l) continue elif dep in self.dependencies_out : f.write('// ' + l) f.write('#include\"{0}\"\n'.format(input_output[dep])) else: f.write(l) else: f.write(l) f.write('\n/*** end of file {0} **/\n'.format(self.file_name)) #files from file name to CFile, all of them should have the same output file name. def get_handle_sequence(files:dict): in_degree = dict() re_dependencies = dict() queue = [] ret = [] unfinished = set() for key, value in files.items(): if len(value.dependencies_in) == 0: ret.append(key) queue.append(key) else: unfinished.add(key) in_degree[key] = len(value.dependencies_in) for tmp in value.dependencies_in: if tmp not in re_dependencies: re_dependencies[tmp] = [] re_dependencies[tmp].append(key) while len(queue) > 0: tmp = queue.pop() if tmp not in re_dependencies: continue for file_name in re_dependencies[tmp]: in_degree[file_name] -= 1 if in_degree[file_name] == 0: queue.append(file_name) unfinished.remove(file_name) ret.append(file_name) return ret if __name__ == '__main__': yaml_path = sys.argv[1] #input_output is from output(str) to input(list) #output_input is from input(str) to output(str) , and this only include the fils name. output_input = GetFilesList(yaml_path) input_output = dict() for key,value in output_input.items(): output_filename = Path(key).name for tmp in value: input_filename = Path(tmp).name input_output[input_filename] = output_filename # from output file name to an object { input file name : CFile } output_input_CFile = dict() for key,value in output_input.items(): output_filename = Path(key).name output_input_CFile[key] = dict() tmp_dic = output_input_CFile[output_filename] for tmp in value: input_filename = Path(tmp).name tmp_dic[input_filename] = CFile(tmp,output_filename,input_output) for key,value in output_input_CFile.items(): seq = get_handle_sequence(value) if len(seq) != len(value): print('Not allow files dependencies to each other') exit(0) f = open(key,'w+') for tmp in seq: value[tmp].write(f,input_output) f.close()
import scrapy class BlogSpider(scrapy.Spider): name = 'blogspider' start_urls = ['https://blog.scrapinghub.com'] def parse(self, response): for title in response.css('h2.entry-title'): yield {'title': title.css('a ::text').extract_first()} next_page = response.css('div.prev-post > a ::attr(href)').extract_first() if next_page: yield scrapy.Request(response.urljoin(next_page), callback=self.parse)
from boa3.builtin import public @public def Main() -> bytes: return (123).to_script_hash()
from pytest import mark from day_8 import ( parse, count_1_4_7_8, count_output, determine_1_4_7_8, decode_signals, main, ) def test_parse_data() -> None: parsed_data = parse("day_8_test.txt") assert parsed_data[0] == [ [ "be", "cfbegad", "cbdgef", "fgaecd", "cgeb", "fdcge", "agebfd", "fecdb", "fabcd", "edb", ], ["fdgacbe", "cefdb", "cefbgd", "gcbe"], ] def test_count_1_4_7_8() -> None: assert count_1_4_7_8(parse("day_8_test.txt")) == 26 @mark.parametrize( ["signals", "corresponding"], [ ( [ "acedgfb", "cdfbe", "gcdfa", "fbcad", "dab", "cefabd", "cdfgeb", "eafb", "cagedb", "ab", ], {1: "ab", 4: "abef", 7: "abd", 8: "abcdefg"}, ), ( [ "abc", "dabc", "ba", "gabcdef", ], {8: "abcdefg", 7: "abc", 4: "abcd", 1: "ab"}, ), ( [ "bae", "ecfd", "ga", "abcdefg", ], {8: "abcdefg", 7: "abe", 4: "cdef", 1: "ag"}, ), ], ) def test_determine_1_4_7_8(signals, corresponding) -> None: assert determine_1_4_7_8(signals) == corresponding @mark.parametrize( ["signals", "output_tuple"], [ ( [ [ "acedgfb", "cdfbe", "gcdfa", "fbcad", "dab", "cefabd", "cdfgeb", "eafb", "cagedb", "ab", ], ["cdfeb", "fcadb", "cdfeb", "cdbaf"], ], ( ["cdfeb", "fcadb", "cdfeb", "cdbaf"], { 8: "abcdefg", 7: "abd", 4: "abef", 1: "ab", 5: "bcdef", 2: "acdfg", 3: "abcdf", 9: "abcdef", 6: "bcdefg", 0: "abcdeg", }, ), ), ], ) def test_decode_signals(signals, output_tuple) -> None: assert decode_signals(signals) == output_tuple @mark.parametrize( ["output_signals", "decoded", "result"], [ ( ["cdfeb", "fcadb", "cdfeb", "cdbaf"], { 8: "acedgfb", 7: "dab", 4: "eafb", 1: "ab", 5: "bcdef", 2: "acdfg", 3: "abcdf", 9: "abcdef", 6: "bcdefg", 0: "abcdeg", }, 5353, ) ], ) def test_count_output(output_signals, decoded, result) -> None: assert count_output(output_signals, decoded) == result def test_main() -> None: list_of_signals = parse("day_8_test.txt") assert main(list_of_signals) == 61229
#!/usr/bin/env python # encoding: utf-8 import json import os import os.path import re import sys from collections import OrderedDict import copy from lxml import etree from lxml.etree import CDATA, SubElement, Element, ElementTree, ParseError, parse, strip_elements from common import utils, logger from common.exceptions import ApplicationException, InvalidModelException from CTDopts.CTDopts import _InFile, _OutFile, _OutPrefix, ParameterGroup, _Choices, _NumericRange, _FileFormat, ModelError, _Null # mapping to CTD types to Galaxy types TYPE_TO_GALAXY_TYPE = {int: 'integer', float: 'float', str: 'text', bool: 'boolean', _InFile: 'txt', _OutFile: 'txt', _Choices: 'select', _OutPrefix: 'output-prefix'} GALAXY_TYPE_TO_TYPE = dict() for k in TYPE_TO_GALAXY_TYPE: GALAXY_TYPE_TO_TYPE[TYPE_TO_GALAXY_TYPE[k]] = k STDIO_MACRO_NAME = "stdio" REQUIREMENTS_MACRO_NAME = "requirements" ADVANCED_OPTIONS_NAME = "adv_opts_" REQUIRED_MACROS = [REQUIREMENTS_MACRO_NAME, STDIO_MACRO_NAME, ADVANCED_OPTIONS_NAME + "macro"] class ExitCode: def __init__(self, code_range="", level="", description=None): self.range = code_range self.level = level self.description = description class DataType: def __init__(self, extension, galaxy_extension, composite=None): self.extension = extension self.galaxy_extension = galaxy_extension self.composite = composite def add_specific_args(parser): """ add command line arguments specific for galaxy tool generation @param parser an instance of ArgumentParser """ parser.add_argument("-f", "--formats-file", dest="formats_file", help="File containing the supported file formats. Run with '-h' or '--help' to see a " "brief example on the layout of this file.", default=None, required=False) parser.add_argument("-a", "--add-to-command-line", dest="add_to_command_line", help="Adds content to the command line", default="", required=False) parser.add_argument("-d", "--datatypes-destination", dest="data_types_destination", help="Specify the location of a datatypes_conf.xml to modify and add the registered " "data types. If the provided destination does not exist, a new file will be created.", default=None, required=False) parser.add_argument("-c", "--default-category", dest="default_category", default="DEFAULT", required=False, help="Default category to use for tools lacking a category when generating tool_conf.xml") parser.add_argument("-t", "--tool-conf-destination", dest="tool_conf_destination", default=None, required=False, help="Specify the location of an existing tool_conf.xml that will be modified to include " "the converted tools. If the provided destination does not exist, a new file will" "be created.") parser.add_argument("-g", "--galaxy-tool-path", dest="galaxy_tool_path", default=None, required=False, help="The path that will be prepended to the file names when generating tool_conf.xml") parser.add_argument("-r", "--required-tools", dest="required_tools_file", default=None, required=False, help="Each line of the file will be interpreted as a tool name that needs translation. " "Run with '-h' or '--help' to see a brief example on the format of this file.") parser.add_argument("-s", "--skip-tools", dest="skip_tools_file", default=None, required=False, help="File containing a list of tools for which a Galaxy stub will not be generated. " "Run with '-h' or '--help' to see a brief example on the format of this file.") parser.add_argument("-m", "--macros", dest="macros_files", default=[], nargs="*", action="append", required=None, help="Import the additional given file(s) as macros. " "The macros stdio, requirements and advanced_options are " "required. Please see galaxy/macros.xml for an example of a " "valid macros file. All defined macros will be imported.") parser.add_argument("--test-macros", dest="test_macros_files", default=[], nargs="*", action="append", required=None, help="Import tests from the files given file(s) as macros. " "The macro names must end with the id of the tools") parser.add_argument("--test-macros-prefix", dest="test_macros_prefix", default=[], nargs="*", action="append", required=None, help="The prefix of the macro name in the corresponding trest macros file") parser.add_argument("--test-test", dest="test_test", action='store_true', default=False, required=False, help="Generate a simple test for the internal unit tests.") parser.add_argument("--test-only", dest="test_only", action='store_true', default=False, required=False, help="Generate only the test section.") parser.add_argument("--test-unsniffable", dest="test_unsniffable", nargs="+", default=[], required=False, help="File extensions that can't be sniffed in Galaxy." "Needs to be the OpenMS extensions (1st column in --formats-file)." "For testdata with such extensions ftype will be set in the tes according to the file extension") parser.add_argument("--tool-version", dest="tool_version", required=False, default=None, help="Tool version to use (if not given its extracted from the CTD)") parser.add_argument("--tool-profile", dest="tool_profile", required=False, default=None, help="Tool profile version to use (if not given its not set)") parser.add_argument("--bump-file", dest="bump_file", required=False, default=None, help="json file defining tool versions." "tools not listed in the file default to 0." "if not given @GALAXY_VERSION@ is used") def modify_param_for_galaxy(param): """ some parameters need galaxy specific modifications """ if param.type is _InFile: # if file default is given (happens for external applications and # files for which the default is taken from share/OpenMS) set the # parm to not required and remove the default (external applications # need to be taken care by hardcoded values and the other cases # are chosen automatically if not specified on the command line) if param.required and not (param.default is None or type(param.default) is _Null): logger.warning("Data parameter %s with default (%s)" % (param.name, param.default), 1) param.required = False param.default = _Null() return param def convert_models(args, parsed_ctds): """ main conversion function @param args command line arguments @param parsed_ctds the ctds """ # validate and prepare the passed arguments validate_and_prepare_args(args, parsed_ctds[0].ctd_model) # parse the given supported file-formats file supported_file_formats = parse_file_formats(args.formats_file) # extract the names of the macros and check that we have found the ones we need macros_to_expand = parse_macros_files(args.macros_files, tool_version=args.tool_version, supported_file_types=supported_file_formats, required_macros=REQUIRED_MACROS, dont_expand=[ADVANCED_OPTIONS_NAME + "macro", "references", "list_string_val", "list_string_san", "list_float_valsan", "list_integer_valsan"]) bump = parse_bump_file(args.bump_file) check_test_macros(args.test_macros_files, args.test_macros_prefix, parsed_ctds) # parse the skip/required tools files skip_tools = parse_tools_list_file(args.skip_tools_file) required_tools = parse_tools_list_file(args.required_tools_file) _convert_internal(parsed_ctds, supported_file_formats=supported_file_formats, default_executable_path=args.default_executable_path, add_to_command_line=args.add_to_command_line, required_tools=required_tools, skip_tools=skip_tools, macros_file_names=args.macros_files, macros_to_expand=macros_to_expand, parameter_hardcoder=args.parameter_hardcoder, test_test=args.test_test, test_only=args.test_only, test_unsniffable=args.test_unsniffable, test_macros_file_names=args.test_macros_files, test_macros_prefix=args.test_macros_prefix, tool_version=args.tool_version, tool_profile=args.tool_profile, bump=bump) def parse_bump_file(bump_file): if bump_file is None: return None with open(bump_file) as fp: return json.load(fp) def parse_tools_list_file(tools_list_file): """ """ tools_list = None if tools_list_file is not None: tools_list = [] with open(tools_list_file) as f: for line in f: if line is None or not line.strip() or line.strip().startswith("#"): continue else: tools_list.append(line.strip()) return tools_list def parse_macros_files(macros_file_names, tool_version, supported_file_types, required_macros=[], dont_expand=[]): """ """ macros_to_expand = [] for macros_file_name in macros_file_names: try: macros_file = open(macros_file_name) logger.info("Loading macros from %s" % macros_file_name, 0) root = parse(macros_file).getroot() for xml_element in root.findall("xml"): name = xml_element.attrib["name"] if name in macros_to_expand: logger.warning("Macro %s has already been found. Duplicate found in file %s." % (name, macros_file_name), 0) continue logger.info("Macro %s found" % name, 1) macros_to_expand.append(name) except ParseError as e: raise ApplicationException("The macros file " + macros_file_name + " could not be parsed. Cause: " + str(e)) except IOError as e: raise ApplicationException("The macros file " + macros_file_name + " could not be opened. Cause: " + str(e)) else: macros_file.close() tool_ver_tk = root.find("token[@name='@TOOL_VERSION@']") galaxy_ver_tk = root.find("token[@name='@GALAXY_VERSION@']") if tool_ver_tk is None: tool_ver_tk = add_child_node(root, "token", OrderedDict([("name", "@TOOL_VERSION@")])) tool_ver_tk.text = tool_version if galaxy_ver_tk is not None: if tool_version == tool_ver_tk.text: galaxy_ver_tk.text = str(int(galaxy_ver_tk.text)) else: tool_ver_tk.text = tool_version galaxy_ver_tk.text = "0" ext_foo = root.find("token[@name='@EXT_FOO@']") if ext_foo is None: ext_foo = add_child_node(root, "token", OrderedDict([("name", "@EXT_FOO@")])) g2o, o2g = get_fileformat_maps(supported_file_types) # make sure that the backup data type is in the map if 'txt' not in g2o: g2o['txt'] = 'txt' ext_foo.text = CDATA("""#def oms2gxyext(o) #set m=%s #return m[o] #end def #def gxy2omsext(g) #set m=%s #return m[g] #end def """ % (str(o2g), str(g2o))) tree = ElementTree(root) tree.write(macros_file_name, encoding="UTF-8", xml_declaration=True, pretty_print=True) # with open(macros_file_name, "w") as macros_file: # tree = ElementTree(root) # tree.write(macros_file, encoding="UTF-8", xml_declaration=True, pretty_print=True) # we depend on "stdio", "requirements" and "advanced_options" to exist on all the given macros files missing_needed_macros = [] for required_macro in required_macros: if required_macro not in macros_to_expand: missing_needed_macros.append(required_macro) if missing_needed_macros: raise ApplicationException( "The following required macro(s) were not found in any of the given macros files: %s, " "see galaxy/macros.xml for an example of a valid macros file." % ", ".join(missing_needed_macros)) # remove macros that should not be expanded for m in dont_expand: try: idx = macros_to_expand.index(m) del macros_to_expand[idx] except ValueError: pass return macros_to_expand def check_test_macros(test_macros_files, test_macros_prefix, parsed_ctds): tool_ids = set() for parsed_ctd in parsed_ctds: model = parsed_ctd.ctd_model tool_ids.add(model.name.replace(" ", "_")) for mf, mp in zip(test_macros_files, test_macros_prefix): macro_ids = set() try: with open(mf) as macros_file: root = parse(macros_file).getroot() for xml_element in root.findall("xml"): name = xml_element.attrib["name"] if not name.startswith(mp): logger.warning("Testmacro with invalid prefix %s." % (mp), 0) continue name = name[len(mp):] macro_ids.add(name) except ParseError as e: raise ApplicationException("The macros file " + mf + " could not be parsed. Cause: " + str(e)) except IOError as e: raise ApplicationException("The macros file " + mf + " could not be opened. Cause: " + str(e)) for t in tool_ids - macro_ids: logger.error("missing %s" % t) add_child_node(root, "xml", OrderedDict([("name", mp + t)])) if len(macro_ids - tool_ids): logger.warning("Unnecessary macros in %s: %s" % (mf, macro_ids - tool_ids)) tree = ElementTree(root) tree.write(mf, encoding="UTF-8", xml_declaration=True, pretty_print=True) def parse_file_formats(formats_file): """ """ supported_formats = [] if formats_file is not None: line_number = 0 with open(formats_file) as f: for line in f: line_number += 1 if line is None or not line.strip() or line.strip().startswith("#"): # ignore (it'd be weird to have something like: # if line is not None and not (not line.strip()) ... continue parsed_formats = line.strip().split() # valid lines contain either one or two columns if len(parsed_formats) == 1: supported_formats.append(DataType(parsed_formats[0], parsed_formats[0])) elif len(parsed_formats) == 2: supported_formats.append(DataType(parsed_formats[0], parsed_formats[1])) elif len(parsed_formats) == 3: composite = [tuple(x.split(":")) for x in parsed_formats[2].split(",")] supported_formats.append(DataType(parsed_formats[0], parsed_formats[1], composite)) else: logger.warning("Invalid line at line number %d of the given formats file. Line will be ignored:\n%s" % (line_number, line), 0) return supported_formats def get_fileformat_maps(supported_formats): """ convenience functions to compute dictionaries mapping Galaxy data types <-> CTD formats """ o2g = {} g2o = {} for s in supported_formats: if s.extension not in o2g: o2g[s.extension] = s.galaxy_extension if s.galaxy_extension not in g2o: g2o[s.galaxy_extension] = s.extension return g2o, o2g def validate_and_prepare_args(args, model): """ check command line arguments @param args command line arguments @return None """ # check that only one of skip_tools_file and required_tools_file has been provided if args.skip_tools_file is not None and args.required_tools_file is not None: raise ApplicationException( "You have provided both a file with tools to ignore and a file with required tools.\n" "Only one of -s/--skip-tools, -r/--required-tools can be provided.") # flatten macros_files to make sure that we have a list containing file names and not a list of lists utils.flatten_list_of_lists(args, "macros_files") utils.flatten_list_of_lists(args, "test_macros_files") utils.flatten_list_of_lists(args, "test_macros_prefix") # check that the arguments point to a valid, existing path input_variables_to_check = ["skip_tools_file", "required_tools_file", "macros_files", "formats_file"] for variable_name in input_variables_to_check: utils.validate_argument_is_valid_path(args, variable_name) # check that the provided output files, if provided, contain a valid file path (i.e., not a folder) output_variables_to_check = ["data_types_destination", "tool_conf_destination"] for variable_name in output_variables_to_check: file_name = getattr(args, variable_name) if file_name is not None and os.path.isdir(file_name): raise ApplicationException("The provided output file name (%s) points to a directory." % file_name) if not args.macros_files: # list is empty, provide the default value logger.warning("Using default macros from galaxy/macros.xml", 0) args.macros_files = [os.path.dirname(os.path.abspath(__file__)) + "/macros.xml"] if args.tool_version is None: args.tool_version = model.version def get_preferred_file_extension(): """ get the file extension for the output files @return "xml" """ return "xml" def _convert_internal(parsed_ctds, **kwargs): """ parse all input files into models using CTDopts (via utils) @param parsed_ctds the ctds @param kwargs skip_tools, required_tools, and additional parameters for expand_macros, create_command, create_inputs, create_outputs @return a tuple containing the model, output destination, origin file """ parameter_hardcoder = kwargs["parameter_hardcoder"] for parsed_ctd in parsed_ctds: model = parsed_ctd.ctd_model if kwargs["skip_tools"] is not None and model.name in kwargs["skip_tools"]: logger.info("Skipping tool %s" % model.name, 0) continue elif kwargs["required_tools"] is not None and model.name not in kwargs["required_tools"]: logger.info("Tool %s is not required, skipping it" % model.name, 0) continue origin_file = parsed_ctd.input_file output_file = parsed_ctd.suggested_output_file # overwrite attributes of the parsed ctd parameters as specified in hardcoded parameterd json for param in utils.extract_and_flatten_parameters(model): hardcoded_attributes = parameter_hardcoder.get_hardcoded_attributes(utils.extract_param_name(param), model.name, 'CTD') if hardcoded_attributes is not None: for a in hardcoded_attributes: if not hasattr(param, a): continue if a == "type": try: t = GALAXY_TYPE_TO_TYPE[hardcoded_attributes[a]] except KeyError: logger.error("Could not set hardcoded attribute %s=%s for %s" % (a, hardcoded_attributes[a], param.name)) sys.exit(1) setattr(param, a, t) elif type(getattr(param, a)) is _FileFormat or (param.type in [_InFile, _OutFile, _OutPrefix] and a == "restrictions"): setattr(param, a, _FileFormat(str(hardcoded_attributes[a]))) elif type(getattr(param, a)) is _Choices: setattr(param, a, _Choices(str(hardcoded_attributes[a]))) elif type(getattr(param, a)) is _NumericRange: raise Exception("Overwriting of Numeric Range not implemented") else: setattr(param, a, hardcoded_attributes[a]) if "test_only" in kwargs and kwargs["test_only"]: test = create_test_only(parsed_ctd.ctd_model, **kwargs) tree = ElementTree(test) output_file = parsed_ctd.suggested_output_file logger.info("Writing to %s" % utils.get_filename(output_file), 1) tree.write(output_file, encoding="UTF-8", xml_declaration=False, pretty_print=True) continue logger.info("Converting %s (source %s)" % (model.name, utils.get_filename(origin_file)), 0) tool = create_tool(model, kwargs.get("tool_profile", None), kwargs.get("bump", None)) write_header(tool, model) create_description(tool, model) import_macros(tool, model, **kwargs) expand_macros(tool, kwargs["macros_to_expand"]) # command, inputs, outputs = create_cio(tool, model, **kwargs) create_command(tool, model, **kwargs) create_configfiles(tool, model, **kwargs) inputs = create_inputs(tool, model, **kwargs) outputs = create_outputs(tool, model, **kwargs) if kwargs["test_test"]: create_tests(tool, inputs=copy.deepcopy(inputs), outputs=copy.deepcopy(outputs)) if kwargs["test_macros_prefix"]: create_tests(tool, test_macros_prefix=kwargs['test_macros_prefix'], name=model.name) create_help(tool, model) # citations are required to be at the end expand_macro(tool, "references") # wrap our tool element into a tree to be able to serialize it tree = ElementTree(tool) logger.info("Writing to %s" % utils.get_filename(output_file), 1) tree.write(output_file, encoding="UTF-8", xml_declaration=True, pretty_print=True) def write_header(tool, model): """ add comments to the tool header @param tool the tool xml @param model the ctd model """ tool.addprevious(etree.Comment( "This is a configuration file for the integration of a tools into Galaxy (https://galaxyproject.org/). " "This file was automatically generated using CTDConverter.")) tool.addprevious(etree.Comment('Proposed Tool Section: [%s]' % model.opt_attribs.get("category", ""))) def create_tool(model, profile, bump): """ initialize the tool @param model the ctd model """ tool_id = model.name.replace(" ", "_") if bump is None: gxy_version = "@GALAXY_VERSION@" elif model.name in bump: gxy_version = str(bump[model.name]) elif tool_id in bump: gxy_version = str(bump[tool_id]) else: gxy_version = "@GALAXY_VERSION@" attrib = OrderedDict([("id", tool_id), ("name", model.name), ("version", "@TOOL_VERSION@+galaxy" + gxy_version)]) if profile is not None: attrib["profile"] = profile return Element("tool", attrib) def create_description(tool, model): """ add description to the tool @param tool the Galaxy tool @param model the ctd model """ if "description" in model.opt_attribs.keys() and model.opt_attribs["description"] is not None: description = SubElement(tool, "description") description.text = model.opt_attribs["description"] def create_configfiles(tool, model, **kwargs): """ create - <configfiles><inputs> - <configfiles><configfile> The former will create a json file containing the tool parameter values that can be accessed in cheetah with $args_json. Note that data_style="paths" (i.e. input data sets are included in the json) is set even if input files are given on the CLI. Reason is that in this way default values in the CTD can be restored for optional input files. The latter will contain hardcoded parameters. """ configfiles_node = add_child_node(tool, "configfiles") add_child_node(configfiles_node, "inputs", OrderedDict([("name", "args_json"), ("data_style", "paths")])) parameter_hardcoder = kwargs.get("parameter_hardcoder") hc_dict = dict() for param in utils.extract_and_flatten_parameters(model): hardcoded_value = parameter_hardcoder.get_hardcoded_value(utils.extract_param_name(param), model.name) if hardcoded_value is None: continue path = utils.extract_param_path(param) for i, v in enumerate(path[:-1]): try: utils.getFromDict(hc_dict, path[:i + 1]) except KeyError: utils.setInDict(hc_dict, path[:i + 1], {}) utils.setInDict(hc_dict, path, hardcoded_value) hc_node = add_child_node(configfiles_node, "configfile", OrderedDict([("name", "hardcoded_json")])) hc_node.text = CDATA(json.dumps(hc_dict).replace('$', r'\$')) # print(json.dumps(hc_dict)) def create_command(tool, model, **kwargs): """ @param tool the Galaxy tool @param model the ctd model @param kwargs """ # main command final_cmd = OrderedDict([('preprocessing', []), ('command', []), ('postprocessing', [])]) advanced_cmd = {'preprocessing': [], 'command': [], 'postprocessing': []} final_cmd['preprocessing'].extend(["@QUOTE_FOO@", "@EXT_FOO@", "#import re", "", "## Preprocessing"]) # - call the executable with -write_ctd to write the ctd file (with defaults) # - use fill_ctd.py to overwrite the defaults in the ctd file with the # Galaxy parameters in the JSON file (from inputs config file) # - feed the ctd file to the executable (with -ini) # note: input and output file parameters are still given on the command line # - output file parameters are not included in the JSON file # - input and output files are accessed through links / files that have the correct extension final_cmd['command'].extend(["", "## Main program call"]) final_cmd['command'].append(""" set -o pipefail && @EXECUTABLE@ -write_ctd ./ && python3 '$__tool_directory__/fill_ctd.py' '@EXECUTABLE@.ctd' '$args_json' '$hardcoded_json' && @EXECUTABLE@ -ini @EXECUTABLE@.ctd""") final_cmd['command'].extend(kwargs["add_to_command_line"]) final_cmd['postprocessing'].extend(["", "## Postprocessing"]) advanced_command_start = "#if ${aon}cond.{aon}selector=='advanced':".format(aon=ADVANCED_OPTIONS_NAME) advanced_command_end = "#end if" parameter_hardcoder = kwargs["parameter_hardcoder"] supported_file_formats = kwargs["supported_file_formats"] g2o, o2g = get_fileformat_maps(supported_file_formats) for param in utils.extract_and_flatten_parameters(model): param = modify_param_for_galaxy(param) param_cmd = {'preprocessing': [], 'command': [], 'postprocessing': []} command_line_prefix = utils.extract_command_line_prefix(param, model) # TODO use utils.extract_param_name(param).replace(":", "_")? Then hardcoding ctd variables (with :) and tool variables (with _) can be distinguished if parameter_hardcoder.get_blacklist(utils.extract_param_name(param), model.name): continue hardcoded_value = parameter_hardcoder.get_hardcoded_value(utils.extract_param_name(param), model.name) if hardcoded_value is not None: pass # TODO hardcoded values should go to <inputs> # param_cmd['command'].append("%s %s" % (command_line_prefix, hardcoded_value)) else: # in the else branch the parameter is neither blacklisted nor hardcoded... _actual_parameter = get_galaxy_parameter_path(param) actual_parameter = get_galaxy_parameter_path(param, fix_underscore=True) # all but bool params need the command line argument (bools have it already in the true/false value) if param.type is _OutFile or param.type is _OutPrefix or param.type is _InFile: param_cmd['command'].append(command_line_prefix) # preprocessing for file inputs: # - create a dir with name param.name # - create a link to id.ext in this directory # rationale: in the autogenerated tests the same file was used as input to multiple parameters # this leads to conflicts while linking... might also be better in general if param.type is _InFile: param_cmd['preprocessing'].append("mkdir %s &&" % actual_parameter) if param.is_list: param_cmd['preprocessing'].append("mkdir ${' '.join([\"'" + actual_parameter + "/%s'\" % (i) for i, f in enumerate($" + _actual_parameter + ") if f])} && ") param_cmd['preprocessing'].append("${' '.join([\"ln -s '%s' '" + actual_parameter + "/%s/%s.%s' && \" % (f, i, re.sub('[^\w\-_]', '_', f.element_identifier), $gxy2omsext(f.ext)) for i, f in enumerate($" + _actual_parameter + ") if f])}") param_cmd['command'].append("${' '.join([\"'" + actual_parameter + "/%s/%s.%s'\"%(i, re.sub('[^\w\-_]', '_', f.element_identifier), $gxy2omsext(f.ext)) for i, f in enumerate($" + _actual_parameter + ") if f])}") else: param_cmd['preprocessing'].append("ln -s '$" + _actual_parameter + "' '" + actual_parameter + "/${re.sub(\"[^\w\-_]\", \"_\", $" + _actual_parameter + ".element_identifier)}.$gxy2omsext($" + _actual_parameter + ".ext)' &&") param_cmd['command'].append("'" + actual_parameter + "/${re.sub(\"[^\w\-_]\", \"_\", $" + _actual_parameter + ".element_identifier)}.$gxy2omsext($" + _actual_parameter + ".ext)'") elif param.type is _OutPrefix: param_cmd['preprocessing'].append("mkdir %s &&" % actual_parameter) param_cmd['command'].append(actual_parameter + "/") elif param.type is _OutFile: _actual_parameter = get_galaxy_parameter_path(param, separator="_") actual_parameter = get_galaxy_parameter_path(param, separator="_", fix_underscore=True) # check if there is a parameter that sets the format # if so we add an extension to the generated files which will be used to # determine the format in the output tag # in all other cases (corresponding input / there is only one allowed format) # the format will be set in the output tag formats = get_galaxy_formats(param, model, o2g, TYPE_TO_GALAXY_TYPE[param.type]) type_param = get_out_type_param(param, model, parameter_hardcoder) corresponding_input, fmt_from_corresponding = get_corresponding_input(param, model) # print("ci %s ffc %s" % (corresponding_input.name, fmt_from_corresponding)) # print("formats %s" % (formats)) if corresponding_input is not None: actual_input_parameter = get_galaxy_parameter_path(corresponding_input) else: actual_input_parameter = None # print(len(formats) > 1, (corresponding_input is None or not # fmt_from_corresponding)) if type_param is not None: type_param_name = get_galaxy_parameter_path(type_param) elif len(formats) > 1 and (corresponding_input is None or not fmt_from_corresponding): # and not param.is_list: type_param_name = get_galaxy_parameter_path(param, suffix="type") else: type_param_name = None # print("tp %s" % type_param_name) param_cmd['preprocessing'].append("mkdir " + actual_parameter + " &&") # if there is only one format (the outoput node sets format using the format attribute of the data/discover node) # - single file: write to temp file with oms extension and move this to the actual result file # - lists: write to files with the oms extension and remove the extension afterwards (discovery with __name__) if len(formats) == 1: fmt = formats.pop() if param.is_list: logger.info("1 fmt + list %s -> %s" % (param.name, actual_input_parameter), 1) param_cmd['preprocessing'].append("mkdir ${' '.join([\"'" + actual_parameter + "/%s'\" % (i) for i, f in enumerate($" + actual_input_parameter + ") if f])} && ") param_cmd['command'].append("${' '.join([\"'" + actual_parameter + "/%s/%s.%s'\"%(i, re.sub('[^\w\-_]', '_', f.element_identifier), $gxy2omsext(\"" + fmt + "\")) for i, f in enumerate($" + actual_input_parameter + ") if f])}") param_cmd['postprocessing'].append("${' '.join([\"&& mv -n '" + actual_parameter + "/%(bn)s/%(id)s.%(gext)s' '" + _actual_parameter + "/%(bn)s/%(id)s'\"%{\"bn\": i, \"id\": re.sub('[^\w\-_]', '_', f.element_identifier), \"gext\": $gxy2omsext(\"" + fmt + "\")} for i, f in enumerate($" + actual_input_parameter + ") if f])}") else: logger.info("1 fmt + dataset %s" % param.name, 1) param_cmd['command'].append("'" + actual_parameter + "/output.${gxy2omsext(\"" + fmt + "\")}'") param_cmd['postprocessing'].append("&& mv '" + actual_parameter + "/output.${gxy2omsext(\"" + fmt + "\")}' '$" + _actual_parameter + "'") # if there is a type parameter then we use the type selected by the user # - single: write to temp file with the oms extension and mv it to the actual file output which is treated via change_format # - list: let the command create output files with the oms extensions, postprocessing renames them to the galaxy extensions, output is then discover + __name_and_ext__ elif type_param_name is not None: if param.is_list: logger.info("type + list %s" % param.name, 1) param_cmd['preprocessing'].append("mkdir ${' '.join([\"'" + actual_parameter + "/%s'\" % (i) for i, f in enumerate($" + actual_input_parameter + ") if f])} && ") param_cmd['command'].append("${' '.join([\"'" + actual_parameter + "/%s/%s.%s'\"%(i, re.sub('[^\w\-_]', '_', f.element_identifier), $" + type_param_name + ") for i, f in enumerate($" + actual_input_parameter + ") if f])}") param_cmd['postprocessing'].append("${' '.join([\"&& mv -n '" + actual_parameter + "/%(bn)s/%(id)s.%(omsext)s' '" + actual_parameter + "/%(bn)s/%(id)s.%(gext)s'\"%{\"bn\": i, \"id\": re.sub('[^\w\-_]', '_', f.element_identifier), \"omsext\":$" + type_param_name + ", \"gext\": $oms2gxyext(str($" + type_param_name + "))} for i, f in enumerate($" + actual_input_parameter + ") if f])}") else: logger.info("type + dataset %s" % param.name, 1) # 1st create file with openms extension (often required by openms) # then move it to the actual place specified by the parameter # the format is then set by the <data> tag using <change_format> param_cmd['command'].append("'" + actual_parameter + "/output.${" + type_param_name + "}'") param_cmd['postprocessing'].append("&& mv '" + actual_parameter + "/output.${" + type_param_name + "}' '$" + actual_parameter + "'") elif actual_input_parameter is not None: if param.is_list: logger.info("actual + list %s" % param.name, 1) param_cmd['preprocessing'].append("mkdir ${' '.join([\"'" + actual_parameter + "/%s'\" % (i) for i, f in enumerate($" + actual_input_parameter + ") if f])} && ") param_cmd['command'].append("${' '.join([\"'" + actual_parameter + "/%s/%s.%s'\"%(i, re.sub('[^\w\-_]', '_', f.element_identifier), f.ext) for i, f in enumerate($" + actual_input_parameter + ") if f])}") else: logger.info("actual + dataset %s %s %s" % (param.name, actual_input_parameter, corresponding_input.is_list), 1) if corresponding_input.is_list: param_cmd['command'].append("'" + actual_parameter + "/output.${" + actual_input_parameter + "[0].ext}'") param_cmd['postprocessing'].append("&& mv '" + actual_parameter + "/output.${" + actual_input_parameter + "[0].ext}' '$" + _actual_parameter + "'") else: param_cmd['command'].append("'" + actual_parameter + "/output.${" + actual_input_parameter + ".ext}'") param_cmd['postprocessing'].append("&& mv '" + actual_parameter + "/output.${" + actual_input_parameter + ".ext}' '$" + _actual_parameter + "'") else: if param.is_list: raise Exception("output parameter itemlist %s without corresponding input") else: logger.info("else + dataset %s" % param.name, 1) param_cmd['command'].append("'$" + _actual_parameter + "'") # # select with multiple = true # elif is_selection_parameter(param) and param.is_list: # param_cmd['command'].append("${' '.join(['\"%s\"'%str(_) for _ in str($" + actual_parameter + ").split(',')])}") # elif param.is_list: # param_cmd['command'].append("$quote($%s" % actual_parameter + ")") # #command += "${' '.join([\"'%s'\"%str(_) for _ in $" + actual_parameter + "])}\n" # elif is_boolean_parameter(param): # param_cmd['command'].append("$%s" % actual_parameter + "") # else: # param_cmd['command'].append('"$' + actual_parameter + '"') # add if statement for optional parameters and preprocessing # - for optional outputs (param_out_x) the presence of the parameter # depends on the additional input (param_x) -> need no if # - real string parameters (i.e. ctd type string wo restrictions) also # need no if (otherwise the empty string could not be provided) if not (param.required or is_boolean_parameter(param) or (param.type is str and param.restrictions is None)): # and not(param.type is _InFile and param.is_list): actual_parameter = get_galaxy_parameter_path(param, suffix="FLAG", fix_underscore=True) _actual_parameter = get_galaxy_parameter_path(param, suffix="FLAG") for stage in param_cmd: if len(param_cmd[stage]) == 0: continue # special case for optional itemlists: for those if no option is selected only the parameter must be specified if is_selection_parameter(param) and param.is_list and param.required is False: param_cmd[stage] = [param_cmd[stage][0]] + ["#if $" + _actual_parameter + ":"] + utils.indent(param_cmd[stage][1:]) + ["#end if"] elif is_selection_parameter(param) or param.type is _InFile: param_cmd[stage] = ["#if $" + _actual_parameter + ":"] + utils.indent(param_cmd[stage]) + ["#end if"] elif param.type is _OutFile or param.type is _OutPrefix: param_cmd[stage] = ["#if \"" + param.name + "_FLAG\" in str($OPTIONAL_OUTPUTS).split(',')"] + utils.indent(param_cmd[stage]) + ["#end if"] else: param_cmd[stage] = ["#if str($" + _actual_parameter + "):"] + utils.indent(param_cmd[stage]) + ["#end if"] for stage in param_cmd: if len(param_cmd[stage]) == 0: continue if param.advanced and hardcoded_value is None and not (param.type is _OutFile or param.type is _OutPrefix): advanced_cmd[stage].extend(param_cmd[stage]) else: final_cmd[stage].extend(param_cmd[stage]) for stage in advanced_cmd: if len(advanced_cmd[stage]) == 0: continue advanced_cmd[stage] = [advanced_command_start] + utils.indent(advanced_cmd[stage]) + [advanced_command_end] final_cmd[stage].extend(advanced_cmd[stage]) out, optout = all_outputs(model, parameter_hardcoder) if len(optout) > 0 or len(out) + len(optout) == 0: stdout = ["| tee '$stdout'"] if len(optout) > 0: stdout = ["#if len(str($OPTIONAL_OUTPUTS).split(',')) == 0"] + utils.indent(stdout) + ["#end if"] final_cmd['command'].extend(stdout) ctd_out = ["#if \"ctd_out_FLAG\" in $OPTIONAL_OUTPUTS"] + utils.indent(["&& mv '@EXECUTABLE@.ctd' '$ctd_out'"]) + ["#end if"] final_cmd['postprocessing'].extend(ctd_out) command_node = add_child_node(tool, "command") command_node.attrib["detect_errors"] = "exit_code" command_node.text = CDATA("\n".join(sum(final_cmd.values(), []))) def import_macros(tool, model, **kwargs): """ creates the xml elements needed to import the needed macros files @param tool the Galaxy tool @param model the ctd model @param kwargs """ macros_node = add_child_node(tool, "macros") token_node = add_child_node(macros_node, "token") token_node.attrib["name"] = "@EXECUTABLE@" token_node.text = utils.extract_tool_executable_path(model, kwargs["default_executable_path"]) # add <import> nodes for macro_file_name in kwargs["macros_file_names"] + kwargs["test_macros_file_names"]: macro_file = open(macro_file_name) import_node = add_child_node(macros_node, "import") # do not add the path of the file, rather, just its basename import_node.text = os.path.basename(macro_file.name) def expand_macro(node, macro): expand_node = add_child_node(node, "expand") expand_node.attrib["macro"] = macro return expand_node # and to "expand" the macros in a node def expand_macros(node, macros_to_expand): # add <expand> nodes for expand_macro in macros_to_expand: expand_node = add_child_node(node, "expand") expand_node.attrib["macro"] = expand_macro def get_galaxy_parameter_path(param, separator=".", suffix=None, fix_underscore=False): """ Get the complete path for a parameter as a string where the path components are joined by the given separator. A given suffix can be appended. """ p = get_galaxy_parameter_name(param, suffix, fix_underscore) path = utils.extract_param_path(param, fix_underscore) if len(path) > 1: return (separator.join(path[:-1]) + separator + p).replace("-", "_") elif param.advanced and (param.type is not _OutFile or suffix): return ADVANCED_OPTIONS_NAME + "cond." + p else: return p def get_galaxy_parameter_name(param, suffix=None, fix_underscore=False): """ get the name of the parameter used in the galaxy tool - replace : and - by _ - add suffix for output parameters if not None the idea of suffix is to be used for optional outputs (out_x) for which an additional boolean input (out_x_FLAG) exists @param param the parameter @param suffix suffix to append @return the name used for the parameter in the tool form """ p = param.name.replace("-", "_") if fix_underscore and p.startswith("_"): p = p[1:] if param.type is _OutFile and suffix is not None: return "%s_%s" % (p, suffix) else: return "%s" % p def get_out_type_param(out_param, model, parameter_hardcoder): """ check if there is a parameter that has the same name with appended _type and return it if present, otherwise return None """ if parameter_hardcoder.get_blacklist(out_param.name + "_type", model.name): return None for param in utils.extract_and_flatten_parameters(model): if param.name == out_param.name + "_type": return param return None def is_in_type_param(param, model): return is_type_param(param, model, [_InFile]) def is_out_type_param(param, model): """ check if the parameter is output_type parameter - the name ends with _type and there is an output parameter without this suffix and return True iff this is the case """ return is_type_param(param, model, [_OutFile, _OutPrefix]) def is_type_param(param, model, tpe): """ check if the parameter is _type parameter of an in/output - the name ends with _type and there is an output parameter without this suffix and return True iff this is the case """ if not param.name.endswith("_type"): return False for out_param in utils.extract_and_flatten_parameters(model): if out_param.type not in tpe: continue if param.name == out_param.name + "_type": return True return False def get_corresponding_input(out_param, model): """ get the input parameter corresponding to the given output 1st try to get the input with the type (single file/list) and same format restrictions if this fails get the input that has the same type in both cases there must be only one such input return the found input parameter and True iff the 1st case applied """ c = get_input_with_same_restrictions(out_param, model, True) if c is None: return (get_input_with_same_restrictions(out_param, model, False), False) else: return (c, True) def get_input_with_same_restrictions(out_param, model, check_formats): """ get the input parameter that has the same restrictions (ctd file_formats) - input and output must both be lists of both be simple parameters """ matching = [] for allow_different_type in [False, True]: for param in utils.extract_and_flatten_parameters(model): if param.type is not _InFile: continue # logger.error("%s %s %s %s %s %s" %(out_param.name, param.name, param.is_list, out_param.is_list, param.restrictions, out_param.restrictions)) if allow_different_type or param.is_list == out_param.is_list: if check_formats: if param.restrictions is None and out_param.restrictions is None: matching.append(param) elif param.restrictions is not None and out_param.restrictions is not None and param.restrictions.formats == out_param.restrictions.formats: matching.append(param) else: matching.append(param) # logger.error("match %s "%([_.name for _ in matching])) if len(matching) > 0: break if len(matching) == 1: return matching[0] else: return None def create_inputs(tool, model, **kwargs): """ create input section of the Galaxy tool @param tool the Galaxy tool @param model the ctd model @param kwargs @return inputs node """ inputs_node = SubElement(tool, "inputs") section_nodes = dict() section_params = dict() # some suites (such as OpenMS) need some advanced options when handling inputs advanced_node = Element("expand", OrderedDict([("macro", ADVANCED_OPTIONS_NAME + "macro")])) parameter_hardcoder = kwargs["parameter_hardcoder"] supported_file_formats = kwargs["supported_file_formats"] g2o, o2g = get_fileformat_maps(supported_file_formats) # treat all non output-file/advanced/blacklisted/hardcoded parameters as inputs for param in utils.extract_and_flatten_parameters(model, True): if type(param) is ParameterGroup: title, help_text = generate_label_and_help(param.description) section_params[utils.extract_param_name(param)] = param section_nodes[utils.extract_param_name(param)] = Element("section", OrderedDict([("name", param.name), ("title", title), ("help", help_text), ("expanded", "false")])) continue param = modify_param_for_galaxy(param) # no need to show hardcoded parameters hardcoded_value = parameter_hardcoder.get_hardcoded_value(utils.extract_param_name(param), model.name) if hardcoded_value is not None: continue if parameter_hardcoder.get_blacklist(utils.extract_param_name(param), model.name): continue # do not output file type parameters for inputs since file types are # known by Galaxy and set automatically by extension (which comes from # the Galaxy data type which is translated to OpenMS datatype as defined # in filetypes.txt ) if is_in_type_param(param, model): continue if utils.extract_param_name(param.parent) in section_nodes: parent_node = section_nodes[utils.extract_param_name(param.parent)] elif param.advanced: parent_node = advanced_node else: parent_node = inputs_node # sometimes special inputs are needed for outfiles: if param.type is _OutFile or param.type is _OutPrefix: # if there are multiple possible output formats, but no parameter to choose the type or a # corresponding input then add a selection parameter formats = get_galaxy_formats(param, model, o2g, TYPE_TO_GALAXY_TYPE[_OutFile]) type_param = get_out_type_param(param, model, parameter_hardcoder) corresponding_input, fmt_from_corresponding = get_corresponding_input(param, model) if len(formats) > 1 and type_param is None and (corresponding_input is None or not fmt_from_corresponding): # and not param.is_list: fmt_select = add_child_node(parent_node, "param", OrderedDict([("name", param.name + "_type"), ("type", "select"), ("optional", "false"), ("label", "File type of output %s (%s)" % (param.name, param.description))])) g2o, o2g = get_fileformat_maps(kwargs["supported_file_formats"]) # for f in formats: # option_node = add_child_node(fmt_select, "option", OrderedDict([("value", g2o[f])]), f) for choice in param.restrictions.formats: option_node = add_child_node(fmt_select, "option", OrderedDict([("value", str(choice))])) option_node.text = o2g[str(choice)] if choice.lower() != o2g[str(choice)]: option_node.text += " (%s)" % choice continue # create the actual param node and fill the attributes param_node = add_child_node(parent_node, "param") create_param_attribute_list(param_node, param, model, kwargs["supported_file_formats"]) hardcoded_attributes = parameter_hardcoder.get_hardcoded_attributes(param.name, model.name, 'XML') if hardcoded_attributes is not None: for a in hardcoded_attributes: param_node.attrib[a] = str(hardcoded_attributes[a]) section_parents = [utils.extract_param_name(section_params[sn].parent) for sn in section_nodes] for sn in section_nodes: if len(section_nodes[sn]) == 0 and sn not in section_parents: continue if utils.extract_param_name(section_params[sn].parent) in section_nodes: section_nodes[utils.extract_param_name(section_params[sn].parent)].append(section_nodes[sn]) else: inputs_node.append(section_nodes[sn]) # if there is an advanced section then append it at the end of the inputs inputs_node.append(advanced_node) # Add select for optional outputs out, optout = all_outputs(model, parameter_hardcoder) attrib = OrderedDict([("name", "OPTIONAL_OUTPUTS"), ("type", "select"), ("optional", "true"), ("multiple", "true"), ("label", "Optional outputs")]) # if len(out) == 0 and len(out) + len(optout) > 0: # attrib["optional"] = "false" # else: # attrib["optional"] = "true" param_node = add_child_node(inputs_node, "param", attrib) for o in optout: title, help_text = generate_label_and_help(o.description) option_node = add_child_node(param_node, "option", OrderedDict([("value", o.name + "_FLAG")]), text="%s (%s)" % (o.name, title)) option_node = add_child_node(param_node, "option", OrderedDict([("value", "ctd_out_FLAG")]), text="Output used ctd (ini) configuration file") return inputs_node def is_default(value, param): """ check if the value is the default of the param or if the value is in the defaults of param """ return param.default == value or (type(param.default) is list and value in param.default) def get_formats(param, model, o2g): """ determine format attribute from the CTD restictions (i.e. the OpenMS extensions) - also check if all listed possible formats are supported in Galaxy and warn if necessary """ if param.restrictions is None: return [] elif type(param.restrictions) is _FileFormat: choices = param.restrictions.formats elif is_out_type_param(param, model): choices = param.restrictions.choices else: raise InvalidModelException("Unrecognized restriction type [%(type)s] " "for [%(name)s]" % {"type": type(param.restrictions), "name": param.name}) # check if there are formats that have not been registered yet... formats = set() for format_name in choices: if format_name not in o2g: logger.warning("Ignoring unknown format %s for parameter %s" % (format_name, param.name), 1) else: formats.add(format_name) return sorted(formats) def get_galaxy_formats(param, model, o2g, default=None): """ determine galaxy formats for a parm (i.e. list of allowed Galaxy extensions) from the CTD restictions (i.e. the OpenMS extensions) - if there is a single one, then take this - if there is none than use given default """ formats = get_formats(param, model, o2g) gxy_formats = set([o2g[_] for _ in formats if _ in o2g]) if len(gxy_formats) == 0: if default is not None: gxy_formats.add(default) else: raise InvalidModelException("No supported formats [%(type)s] " "for [%(name)s]" % {"type": type(param.restrictions), "name": param.name}) return sorted(gxy_formats) def create_param_attribute_list(param_node, param, model, supported_file_formats): """ get the attributes of input parameters @param param_node the galaxy tool param node @param param the ctd parameter @param supported_file_formats """ g2o, o2g = get_fileformat_maps(supported_file_formats) # set the name, argument and a first guess for the type (which will be over written # in some cases .. see below) # even if the conversion relies on the fact that the param names are identical # to the ctd ITEM names we replace dashes by underscores because input and output # parameters need to be treated in cheetah. variable names are currently fixed back # to dashes in fill_ctd.py. currently there seems to be only a single tool # requiring this https://github.com/OpenMS/OpenMS/pull/4529 param_node.attrib["name"] = get_galaxy_parameter_name(param) param_node.attrib["argument"] = "-%s" % utils.extract_param_name(param) param_type = TYPE_TO_GALAXY_TYPE[param.type] if param_type is None: raise ModelError("Unrecognized parameter type %(type)s for parameter %(name)s" % {"type": param.type, "name": param.name}) # ITEMLIST is rendered as text field (even if its integers or floats), an # exception is files which are treated a bit below if param.is_list: param_type = "text" if is_selection_parameter(param): param_type = "select" if len(param.restrictions.choices) < 5 and not param.is_list: param_node.attrib["display"] = "radio" if param.is_list: param_node.attrib["multiple"] = "true" if is_boolean_parameter(param): param_type = "boolean" if param.type is _InFile: # assume it's just text unless restrictions are provided param_node.attrib["type"] = "data" param_node.attrib["format"] = ",".join(get_galaxy_formats(param, model, o2g, TYPE_TO_GALAXY_TYPE[_InFile])) # in the case of multiple input set multiple flag if param.is_list: param_node.attrib["multiple"] = "true" else: param_node.attrib["type"] = param_type if param_type == "select" and param.default in param.restrictions.choices: param_node.attrib["optional"] = "false" else: param_node.attrib["optional"] = str(not param.required).lower() # check for parameters with restricted values (which will correspond to a "select" in galaxy) if param.restrictions is not None or param_type == "boolean": # it could be either _Choices or _NumericRange, with special case for boolean types if param_type == "boolean": create_boolean_parameter(param_node, param) elif type(param.restrictions) is _Choices: # TODO if the parameter is used to select the output file type the # options need to be replaced with the Galaxy data types # if is_out_type_param(param, model): # param.restrictions.choices = get_supported_file_types(param.restrictions.choices, supported_file_formats) # add a nothing selected option to mandatory options w/o default if param.default is None or type(param.default) is _Null: if param_node.attrib["optional"] == "true": option_node = add_child_node(param_node, "option", OrderedDict([("value", "")]), text="default (nothing chosen)") # else: # option_node = add_child_node(param_node, "option", OrderedDict([("value", "")]), text="select a value") # create as many <option> elements as restriction values if is_out_type_param(param, model): logger.warning("%s %s" % (param.name, param.type)) formats = get_formats(param, model, o2g) for fmt in formats: option_node = add_child_node(param_node, "option", OrderedDict([("value", str(fmt))])) option_node.text = o2g[str(fmt)] if fmt.lower() != o2g[str(fmt)]: option_node.text += " (%s)" % fmt if is_default(fmt, param): option_node.attrib["selected"] = "true" else: for choice in param.restrictions.choices: option_node = add_child_node(param_node, "option", OrderedDict([("value", str(choice))]), text=str(choice)) if is_default(choice, param): option_node.attrib["selected"] = "true" # add validator to check that "nothing selected" is not seletcedto mandatory options w/o default if param_node.attrib["optional"] == "False" and (param.default is None or type(param.default) is _Null): validator_node = add_child_node(param_node, "validator", OrderedDict([("type", "expression"), ("message", "A value needs to be selected")])) validator_node.text = 'value != "select a value"' # numeric ranges (which appear for int and float ITEMS and ITEMLISTS) # these are reflected by min and max attributes # since item lists become text parameters + validator these don't need these attributes elif type(param.restrictions) is _NumericRange and param_type == "text": pass elif type(param.restrictions) is _NumericRange and param_type != "text": if param.type is not int and param.type is not float: raise InvalidModelException("Expected either 'int' or 'float' in the numeric range restriction for " "parameter [%(name)s], but instead got [%(type)s]" % {"name": param.name, "type": type(param.restrictions)}) # extract the min and max values and add them as attributes # validate the provided min and max values if param.restrictions.n_min is not None: param_node.attrib["min"] = str(param.restrictions.n_min) if param.restrictions.n_max is not None: param_node.attrib["max"] = str(param.restrictions.n_max) elif type(param.restrictions) is _FileFormat: # has already been handled pass else: raise InvalidModelException("Unrecognized restriction type [%(type)s] for parameter [%(name)s]" % {"type": type(param.restrictions), "name": param.name}) if param_type == "text": # for repeats (which are rendered as text field in the tool form) that are actually # integer/floats special validation is necessary (try to convert them and check if # in the min max range if a range is given) if TYPE_TO_GALAXY_TYPE[param.type] in ["integer", "float"]: valsan = expand_macro(param_node, "list_%s_valsan" % TYPE_TO_GALAXY_TYPE[param.type]) if type(param.restrictions) is _NumericRange and not (param.restrictions.n_min is None and param.restrictions.n_max is None): expression = "len(value.split(' ')) == len([_ for _ in value.split(' ') if " message = "a space separated list of %s values " % TYPE_TO_GALAXY_TYPE[param.type] if param.restrictions.n_min is not None and param.restrictions.n_max is not None: expression += " %s <= %s(_) <= %s" % (param.restrictions.n_min, param.type.__name__, param.restrictions.n_max) message += "in the range %s:%s " % (param.restrictions.n_min, param.restrictions.n_max) elif param.restrictions.n_min is not None: expression += " %s <= %s(_)" % (param.restrictions.n_min, param.type.__name__) message += "in the range %s: " % (param.restrictions.n_min) elif param.restrictions.n_max is not None: expression += " %s(_) <= %s" % (param.type.__name__, param.restrictions.n_max) message += "in the range :%s " % (param.restrictions.n_min) expression += "])\n" message += "is required" validator_node = SubElement(valsan, "validator", OrderedDict([("type", "expression"), ("message", message)])) validator_node.text = CDATA(expression) else: # add quotes to the default values (only if they include spaces .. then the UI looks nicer) if not (param.default is None or type(param.default) is _Null) and param.type is not _InFile: if type(param.default) is list: for i, d in enumerate(param.default): if " " in d: param.default[i] = '"%s"' % d # elif " " in param.default: # param.default = '"%s"' %param.default # add sanitizer nodes to # - text (only those that are not actually integer selects which are treated above) and # - select params, # this is needed for special character like "[" which are used for example by FeatureFinderMultiplex if ((param_type == "text" and not TYPE_TO_GALAXY_TYPE[param.type] in ["integer", "float"]) or is_selection_parameter(param)) and param.type is not _InFile: if param.is_list and not is_selection_parameter(param): valsan = expand_macro(param_node, "list_string_val") valsan = expand_macro(param_node, "list_string_san") # check for default value if not (param.default is None or type(param.default) is _Null): # defaults of selects are set via the selected attribute of the options (happens above) if param_type == "select": pass elif type(param.default) is list: # we ASSUME that a list of parameters looks like: # $ tool -ignore He Ar Xe # meaning, that, for example, Helium, Argon and Xenon will be ignored param_node.attrib["value"] = ' '.join(map(str, param.default)) elif param_type != "boolean": param_node.attrib["value"] = str(param.default) else: # simple boolean with a default if param.default is True: param_node.attrib["checked"] = "true" elif param.type is int or param.type is float or param.type is str: if param_type == "select": pass else: param_node.attrib["value"] = "" # add label, help, and argument label = "%s parameter" % param.name help_text = "" if param.description is not None: label, help_text = generate_label_and_help(param.description) if param.is_list and not is_selection_parameter(param) and param.type is not _InFile: help_text += " (space separated list, in order to allow for spaces in list items surround them by single quotes)" if param.type is _InFile: help_text += " select %s data sets(s)" % (",".join(get_galaxy_formats(param, model, o2g, TYPE_TO_GALAXY_TYPE[_InFile]))) param_node.attrib["label"] = label param_node.attrib["help"] = help_text def generate_label_and_help(desc): help_text = "" # This tag is found in some descriptions if not isinstance(desc, str): desc = str(desc) # desc = desc.encode("utf8") desc = desc.replace("#br#", ". ") # Get rid of dots in the end if desc.endswith("."): desc = desc.rstrip(".") # Check if first word is a normal word and make it uppercase if str(desc).find(" ") > -1: first_word, rest = str(desc).split(" ", 1) if str(first_word).islower(): # check if label has a quotient of the form a/b if first_word.find("/") != 1: first_word.capitalize() desc = first_word + " " + rest # label = desc.decode("utf8") label = desc # split delimiters ".,?!;(" if len(desc) > 50: m = re.search(r"([.?!] |e\.g\.|\(e\.g\.|i\.e\.|\(i\.e\.)", desc) if m is not None: label = desc[:m.start()].rstrip(".?!, ") help_text = desc[m.start():].lstrip(".?!, ") # # Try to split the label if it is too long # if len(desc) > 50: # # find an example and put everything before in the label and the e.g. in the help # if desc.find("e.g.") > 1 : # label, help_text = desc.split("e.g.",1) # help_text = "e.g." + help_text # else: # # find the end of the first sentence # # look for ". " because some labels contain .file or something similar # delimiter = "" # if desc.find(". ") > 1 and desc.find("? ") > 1: # if desc.find(". ") < desc.find("? "): # delimiter = ". " # else: # delimiter = "? " # elif desc.find(". ") > 1: # delimiter = ". " # elif desc.find("? ") > 1: # delimiter = "? " # if delimiter != "": # label, help_text = desc.split(delimiter, 1) # # # add the question mark back # if delimiter == "? ": # label += "? " # remove all linebreaks label = label.rstrip().rstrip('<br>').rstrip() return label, help_text def is_boolean_parameter(param): """ determines if the given choices are boolean (basically, if the possible values are true/false) @param param the ctd parameter @return True iff a boolean parameter """ # detect boolean selects of OpenMS if type(param.restrictions) is _Choices: return set(param.restrictions.choices) == set(["true", "false"]) else: return param.type is bool def is_selection_parameter(param): """ determines if there are choices for the parameter and its not bool @param param the ctd parameter @return True iff a selection parameter """ if type(param.restrictions) is _Choices: return set(param.restrictions.choices) != set(["true", "false"]) else: return False def get_lowercase_list(some_list): return [str(_).lower().strip() for _ in some_list] def create_boolean_parameter(param_node, param): """ creates a galaxy boolean parameter type this method assumes that param has restrictions, and that only two restictions are present (either yes/no or true/false) TODO: true and false values can be way more than 'true' and 'false' but for that we need CTD support """ # in ctd (1.6.2) bools are strings with restriction true,false # - if the default is false then they are flags # - otherwise the true or false value needs to be added (where the true case is unnecessary) # A special case are restrictions false,true which are not treated as flags if param.type == str: choices = get_lowercase_list(param.restrictions.choices) if set(choices) == set(["true", "false"]): param_node.attrib["truevalue"] = "true" param_node.attrib["falsevalue"] = "false" else: param_node.attrib["truevalue"] = choices[0] param_node.attrib["falsevalue"] = choices[1] # set the checked attribute if param.default is not None: checked_value = "false" default = param.default.lower().strip() if default == "yes" or default == "true": checked_value = "true" param_node.attrib["checked"] = checked_value else: param_node.attrib["truevalue"] = "true" param_node.attrib["falsevalue"] = "false" param_node.attrib["checked"] = str(param.default).lower() if "optional" in param_node.attrib: del param_node.attrib["optional"] def all_outputs(model, parameter_hardcoder): """ return lists of reqired and optional output parameters """ out = [] optout = [] for param in utils.extract_and_flatten_parameters(model): hardcoded_value = parameter_hardcoder.get_hardcoded_value(utils.extract_param_name(param), model.name) if parameter_hardcoder.get_blacklist(utils.extract_param_name(param), model.name) or hardcoded_value: # let's not use an extra level of indentation and use NOP continue if not (param.type is _OutFile or param.type is _OutPrefix): continue if not param.required: optout.append(param) else: out.append(param) return out, optout def output_filter_text(param): """ get the text or the filter for optional outputs """ return '"%s_FLAG" in OPTIONAL_OUTPUTS' % param.name def create_outputs(parent, model, **kwargs): """ create outputs section of the Galaxy tool @param tool the Galaxy tool @param model the ctd model @param kwargs - parameter_hardcoder and - supported_file_formats () """ outputs_node = add_child_node(parent, "outputs") parameter_hardcoder = kwargs["parameter_hardcoder"] for param in utils.extract_and_flatten_parameters(model): param = modify_param_for_galaxy(param) # no need to show hardcoded parameters hardcoded_value = parameter_hardcoder.get_hardcoded_value(utils.extract_param_name(param), model.name) if parameter_hardcoder.get_blacklist(utils.extract_param_name(param), model.name) or hardcoded_value: # let's not use an extra level of indentation and use NOP continue if param.type is not _OutFile and param.type is not _OutPrefix: continue create_output_node(outputs_node, param, model, kwargs["supported_file_formats"], parameter_hardcoder) # If there are no outputs defined in the ctd the node will have no children # and the stdout will be used as output out, optout = all_outputs(model, parameter_hardcoder) if len(out) == 0: stdout = add_child_node(outputs_node, "data", OrderedDict([("name", "stdout"), ("format", "txt"), ("label", "${tool.name} on ${on_string}: stdout"), ("format", "txt")])) add_child_node(stdout, "filter", text="OPTIONAL_OUTPUTS is None") # manually add output for the ctd file ctd_out = add_child_node(outputs_node, "data", OrderedDict([("name", "ctd_out"), ("format", "xml"), ("label", "${tool.name} on ${on_string}: ctd")])) add_child_node(ctd_out, "filter", text='OPTIONAL_OUTPUTS is not None and "ctd_out_FLAG" in OPTIONAL_OUTPUTS') return outputs_node def create_output_node(parent, param, model, supported_file_formats, parameter_hardcoder): g2o, o2g = get_fileformat_maps(supported_file_formats) # add a data node / collection + discover_datasets # in the former case we just set the discover_node equal to the data node # then we can just use this to set the common format attribute if not param.is_list and param.type is not _OutPrefix: data_node = add_child_node(parent, "data") discover_node = data_node else: data_node = add_child_node(parent, "collection") data_node.attrib["type"] = "list" discover_node = add_child_node(data_node, "discover_datasets", OrderedDict([("directory", get_galaxy_parameter_path(param, separator="_")), ("recurse", "true")])) data_node.attrib["name"] = get_galaxy_parameter_path(param, separator="_") data_node.attrib["label"] = "${tool.name} on ${on_string}: %s" % utils.extract_param_name(param) formats = get_galaxy_formats(param, model, o2g, TYPE_TO_GALAXY_TYPE[_OutFile]) type_param = get_out_type_param(param, model, parameter_hardcoder) corresponding_input, fmt_from_corresponding = get_corresponding_input(param, model) if type_param is not None: type_param_name = get_galaxy_parameter_path(type_param) type_param_choices = get_formats(param, model, o2g) # [_ for _ in type_param.restrictions.choices] elif len(formats) > 1 and (corresponding_input is None or not fmt_from_corresponding): # and not param.is_list: type_param_name = get_galaxy_parameter_path(param, suffix="type") type_param_choices = get_formats(param, model, o2g) else: type_param_name = None # if there is only a single possible output format we set this # logger.error("%s %s %s %s %s" %(param.name, formats, type_param, fmt_from_corresponding, corresponding_input)) if len(formats) == 1: logger.info("OUTPUT %s 1 fmt %s" % (param.name, formats), 1) discover_node.attrib["format"] = formats.pop() if param.is_list: discover_node.attrib["pattern"] = "__name__" elif param.type is _OutPrefix: discover_node.attrib["pattern"] = r"_?(?P<designation>.*)\.[^.]*" # if there is another parameter where the user selects the format # then this format was added as file extension on the CLI, now we can discover this elif type_param_name is not None: logger.info("OUTPUT %s type" % param.name, 1) if not param.is_list: if len(type_param_choices) > 1: change_node = add_child_node(data_node, "change_format") for i, r in enumerate(type_param_choices): f = o2g.get(r, None) # TODO this should not happen for fully specified fileformats file if f is None: f = r if i == 0: data_node.attrib["format"] = f else: add_child_node(change_node, "when", OrderedDict([("input", type_param_name), ("value", r), ("format", f)])) else: discover_node.attrib["pattern"] = "__name_and_ext__" elif corresponding_input is not None: logger.info("OUTPUT %s input %s" % (param.name, corresponding_input.name), 1) if param.is_list: discover_node.attrib["pattern"] = "__name_and_ext__" # data_node.attrib["structured_like"] = get_galaxy_parameter_name(corresponding_input) # data_node.attrib["inherit_format"] = "true" else: data_node.attrib["format_source"] = get_galaxy_parameter_path(corresponding_input) data_node.attrib["metadata_source"] = get_galaxy_parameter_path(corresponding_input) else: logger.info("OUTPUT %s else" % (param.name), 1) if not param.is_list: data_node.attrib["auto_format"] = "true" else: raise InvalidModelException("No way to know the format for" "for output [%(name)s]" % {"name": param.name}) # # data output has fomat (except if fromat_source has been added already) # # note .. collection output has no format # if not param.is_list and not "format_source" in data_node.attrib: # data_node.attrib["format"] = data_format # add filter for optional parameters if not param.required: filter_node = add_child_node(data_node, "filter") filter_node.text = "OPTIONAL_OUTPUTS is not None and " + output_filter_text(param) return data_node def get_supported_file_types(formats, supported_file_formats): r = set() for f in formats: if f in supported_file_formats: r.add(supported_file_formats[f].galaxy_extension) return r # print f, f in supported_file_formats, supported_file_formats[f].galaxy_extension # return set([supported_file_formats[_].galaxy_extension # for _ in formats if _ in supported_file_formats]) def create_change_format_node(parent, data_formats, input_ref): # <change_format> # <when input="secondary_structure" value="true" format="txt"/> # </change_format> change_format_node = add_child_node(parent, "change_format") for data_format in data_formats: add_child_node(change_format_node, "when", OrderedDict([("input", input_ref), ("value", data_format), ("format", data_format)])) def create_tests(parent, inputs=None, outputs=None, test_macros_prefix=None, name=None): """ create tests section of the Galaxy tool @param tool the Galaxy tool @param inputs a copy of the inputs """ tests_node = add_child_node(parent, "tests") if not (inputs is None or outputs is None): fidx = 0 test_node = add_child_node(tests_node, "test") strip_elements(inputs, "validator", "sanitizer") for node in inputs.iter(): if node.tag == "expand" and node.attrib["macro"] == ADVANCED_OPTIONS_NAME + "macro": node.tag = "conditional" node.attrib["name"] = ADVANCED_OPTIONS_NAME + "cond" add_child_node(node, "param", OrderedDict([("name", ADVANCED_OPTIONS_NAME + "selector"), ("value", "advanced")])) if "type" not in node.attrib: continue if (node.attrib["type"] == "select" and "true" in set([_.attrib.get("selected", "false") for _ in node])) or\ (node.attrib["type"] == "select" and node.attrib.get("value", "") != ""): node.tag = "delete_node" continue # TODO make this optional (ie add aparameter) if node.attrib.get("optional", None) == "true" and node.attrib["type"] != "boolean": node.tag = "delete_node" continue if node.attrib["type"] == "boolean": if node.attrib["checked"] == "true": node.attrib["value"] = "true" # node.attrib["truevalue"] else: node.attrib["value"] = "false" # node.attrib["falsevalue"] elif node.attrib["type"] == "text" and node.attrib["value"] == "": node.attrib["value"] = "1 2" # use a space separated list here to cover the repeat (int/float) case elif node.attrib["type"] == "integer" and node.attrib["value"] == "": node.attrib["value"] = "1" elif node.attrib["type"] == "float" and node.attrib["value"] == "": node.attrib["value"] = "1.0" elif node.attrib["type"] == "select": if node.attrib.get("display", None) == "radio" or node.attrib.get("multiple", "false") == "false": node.attrib["value"] = node[0].attrib["value"] elif node.attrib.get("multiple", None) == "true": node.attrib["value"] = ",".join([_.attrib["value"] for _ in node if "value" in _.attrib]) elif node.attrib["type"] == "data": node.attrib["ftype"] = node.attrib["format"].split(',')[0] if node.attrib.get("multiple", "false") == "true": node.attrib["value"] = "{fidx}test.ext,{fidx}test2.ext".format(fidx=fidx) else: node.attrib["value"] = "{fidx}test.ext".format(fidx=fidx) fidx += 1 for node in inputs.iter(): for a in set(node.attrib) - set(["name", "value", "ftype"]): del node.attrib[a] strip_elements(inputs, "delete_node", "option", "expand") for node in inputs: test_node.append(node) outputs_cnt = 0 for node in outputs.iter(): if node.tag == "data" or node.tag == "collection": # assuming that all filters avaluate to false has_filter = False for c in node: if c.tag == "filter": has_filter = True break if not has_filter: outputs_cnt += 1 else: node.tag = "delete_node" if node.tag == "data": node.tag = "output" try: node.attrib["ftype"] = node.attrib["format"] except KeyError: pass node.attrib["value"] = "outfile.txt" if node.tag == "collection": node.tag = "output_collection" if node.attrib.get("name", None) == "stdout": node.attrib["lines_diff"] = "2" for a in set(node.attrib) - set(["name", "value", "ftype", "lines_diff"]): del node.attrib[a] strip_elements(outputs, "delete_node", "discover_datasets", "filter", "change_format") for node in outputs: test_node.append(node) # if no optional output is selected the stdout is added as output if outputs_cnt == 0: outputs_cnt = 1 test_node.attrib["expect_num_outputs"] = str(outputs_cnt) elif not (test_macros_prefix is None or name is None): expand_macros(tests_node, [p + name for p in test_macros_prefix]) def create_test_only(model, **kwargs): parameter_hardcoder = kwargs["parameter_hardcoder"] unsniffable = kwargs["test_unsniffable"] supported_file_formats = kwargs["supported_file_formats"] g2o, o2g = get_fileformat_maps(supported_file_formats) section_nodes = dict() section_params = dict() test = Element("test") advanced = add_child_node(test, "conditional", OrderedDict([("name", "adv_opts_cond")])) add_child_node(advanced, "param", OrderedDict([("name", "adv_opts_selector"), ("value", "advanced")])) optout = ["ctd_out_FLAG"] outcnt = 1 for param in utils.extract_and_flatten_parameters(model, True): ext = None # no need to show hardcoded parameters # except for the test parameter hardcoded_value = parameter_hardcoder.get_hardcoded_value(utils.extract_param_name(param), model.name) if parameter_hardcoder.get_blacklist(utils.extract_param_name(param), model.name) or hardcoded_value is not None: if param.name != "test": continue if utils.extract_param_name(param.parent) in section_nodes: parent = section_nodes[utils.extract_param_name(param.parent)] elif type(param) is not ParameterGroup and param.advanced: parent = advanced else: parent = test if type(param) is ParameterGroup: section_params[utils.extract_param_name(param)] = param section_nodes[utils.extract_param_name(param)] = add_child_node(parent, "section", OrderedDict([("name", param.name)])) continue if param.type is _OutFile: given = type(param.default) is _OutFile or (type(param.default) is list) and len(param.default) > 0 if not param.required and given: optout.append("%s_FLAG" % param.name) if given: formats = get_galaxy_formats(param, model, o2g, TYPE_TO_GALAXY_TYPE[_OutFile]) type_param = get_out_type_param(param, model, parameter_hardcoder) corresponding_input, fmt_from_corresponding = get_corresponding_input(param, model) if type(param.default) is _OutFile: f = param.default elif type(param.default) is list: f = param.default[0] else: raise Exception("Outfile with non str or list default %s[%s]" % (param, type(param.default))) # get the file type from the longest possible extension that # matches the known extensions # longest: because e.g. pep.xml should be prefered over xml if f.endswith(".tmp"): f = f[:-4] splitted = f.split(".") ext = None for i in range(len(splitted)): check_ext = ".".join(splitted[i:]) if check_ext in o2g: ext = o2g[check_ext] break if ext not in formats: if ext == "txt" and "csv" in formats: ext = "csv" elif ext == "txt" and "tsv" in formats: ext = "tsv" elif len(formats) == 1: ext = formats[0] if len(formats) > 1 and (corresponding_input is None or not fmt_from_corresponding): # and not param.is_list: if type_param is None: try: print("%s -> %s" % (ext, g2o[ext])) attrib = OrderedDict([("name", param.name + "_type"), ("value", g2o[ext])]) add_child_node(parent, "param", attrib) except KeyError: raise Exception("parent %s name %s ext %s" % (parent, param.name, ext)) if type_param is not None and type(type_param.default) is _Null: if ext is not None: type_param.default = ext if param.required or given: outcnt += 1 # don't output empty values for bool, and data parameters if type(param.default) is _Null and not param.required: if is_boolean_parameter(param): continue elif param.type is _OutFile: continue elif param.type is _InFile: continue # lists need to be joined appropriately # - special care for outfile lists (ie collections): since we do not know (easily) the names of the collection elements we just use the count # exception of list parameters that are hardcoded to non-lists (the the default is still a list) if not param.is_list and type(param.default) is list: logger.info("Found non-list parameter %s with list default (hardcoded?). Using only first value/" % param.name, 0) try: param.default = param.default[0] except KeyError: param.default = _Null() if param.is_list and type(param.default) is not _Null: if param.type is _InFile: value = ','.join(map(str, param.default)) elif param.type is _OutFile: value = str(len(param.default)) elif param.type is str: if type(param.restrictions) is _Choices: value = ','.join(map(str, param.default)) else: value = '"' + '" "'.join(map(str, param.default)) + '"' else: value = ' '.join(map(str, param.default)) else: if type(param.default) is bool: value = str(param.default).lower() else: value = str(param.default) # use name where dashes are replaced by underscores # see also create inputs if param.type is _OutFile: name = get_galaxy_parameter_path(param, separator="_") if param.is_list: nd = add_child_node(test, "output_collection", OrderedDict([("name", name), ("count", value)])) else: # TODO use delta_frac https://github.com/galaxyproject/galaxy/pull/9425 nd = add_child_node(test, "output", OrderedDict([("name", name), ("file", value), ("compare", "sim_size"), ("delta", "5700")])) if ext: nd.attrib["ftype"] = ext elif param.type is _OutPrefix: # #for outprefix elements / count need to be added manually name = get_galaxy_parameter_path(param, separator="_") nd = add_child_node(test, "output_collection", OrderedDict([("name", name), ("count", "")])) else: name = get_galaxy_parameter_name(param) nd = add_child_node(parent, "param", OrderedDict([("name", name), ("value", value)])) # add format attribute for unsniffable extensions if param.type is _InFile: ext = os.path.splitext(value)[1][1:] if ext in unsniffable and ext in o2g: nd.attrib["ftype"] = o2g[ext] add_child_node(test, "param", OrderedDict([("name", "OPTIONAL_OUTPUTS"), ("value", ",".join(optout))])) ctd_out = add_child_node(test, "output", OrderedDict([("name", "ctd_out"), ("ftype", "xml")])) ctd_assert = add_child_node(ctd_out, "assert_contents") add_child_node(ctd_assert, "is_valid_xml") if outcnt == 0: outcnt += 1 nd = add_child_node(test, "output", OrderedDict([("name", "stdout"), ("value", "stdout.txt"), ("compare", "sim_size")])) test.attrib["expect_num_outputs"] = str(outcnt) # if all_optional_outputs(model, parameter_hardcoder): return test def create_help(tool, model): """ create help section of the Galaxy tool @param tool the Galaxy tool @param model the ctd model @param kwargs """ help_node = add_child_node(tool, "help") help_node.text = CDATA(utils.extract_tool_help_text(model)) def add_child_node(parent_node, child_node_name, attributes=OrderedDict([]), text=None): """ helper function to add a child node using the given name to the given parent node @param parent_node the parent @param child_node_name the desired name of the child @param attributes desired attributes of the child @return the created child node """ child_node = SubElement(parent_node, child_node_name, attributes) if text is not None: child_node.text = text return child_node
# -*- encoding: utf-8 -*- # Date: 16/Jan/2022 # Author: Steven Huang, Auckland, NZ # License: MIT License """ Description: Web Configuration class """ import os class Config: SECRET_KEY = 'e7c794326ea87a59b2cf616809e1efcd' # secrets.token_hex(16) SQLALCHEMY_DATABASE_URI = 'sqlite:///db/sqlite/website.db' # SQLALCHEMY_DATABASE_URI = 'postgresql://postgres:123@localhost/my_website' MAIL_SERVER = 'smtp.googlemail.com' MAIL_PORT = 587 MAIL_USE_TLS = True MAIL_USERNAME = os.environ.get('EMAIL_USER') MAIL_PASSWORD = os.environ.get('EMAIL_PASSWORD') # print('MAIL_USERNAME = ', MAIL_USERNAME) # print('MAIL_PASSWORD = ', MAIL_PASSWORD)
# # Example file for working with functions # # define a basic function def func1(): print("I am a function") # function that takes arguments def func2(arg1, arg2): print(arg1, " ", arg2) # function that returns a value def cube(x): return x * 9 # function with default value for an argument def power(num, x=1): result = 1 for i in range(x): result = result * num return result #function with variable number of arguments def multi_add(*args): result = 0 for x in args: result = result + x return result # func1() # print(func1()) # print(func1) # func2(10, 20) # print(func2(10, 20)) # print(cube(3)) # print(power(2)) # print(power(2, 3)) # print(power(x=3, num=2)) print(multi_add(2, 3, 4, 5, 6, 7, 8))
from firedrake import * from firedrake.petsc import PETSc from firedrake import COMM_WORLD try: import matplotlib.pyplot as plt plt.rcParams["contour.corner_mask"] = False plt.close("all") except: warning("Matplotlib not imported") nx, ny = 20, 20 Lx, Ly = 1.0, 1.0 quadrilateral = True mesh = RectangleMesh(nx, ny, Lx, Ly, quadrilateral=quadrilateral) plot(mesh) plt.axis("off") degree = 1 k_plus = 0 primal_family = "DG" tracer_family = "DGT" U = FunctionSpace(mesh, primal_family, degree + k_plus) V = VectorFunctionSpace(mesh, "CG", degree + k_plus) T = FunctionSpace(mesh, tracer_family, degree) W = U * T # Trial and test functions solution = Function(W) u, lambda_h = split(solution) v, mu_h = TestFunction(W) # Mesh entities n = FacetNormal(mesh) x, y = SpatialCoordinate(mesh) # Model parameters k = Constant(1.0) mu = Constant(1.0) rho = Constant(0.0) g = Constant((0.0, 0.0)) # Exact solution and source term projection p_exact = sin(2 * pi * x / Lx) * sin(2 * pi * y / Ly) sol_exact = Function(U).interpolate(p_exact) sol_exact.rename("Exact pressure", "label") sigma_e = Function(V, name="Exact velocity") sigma_e.project(-(k / mu) * grad(p_exact)) plot(sigma_e) source_expr = div(-(k / mu) * grad(p_exact)) f = Function(U).interpolate(source_expr) plot(sol_exact) plt.axis("off") # BCs p_boundaries = Constant(0.0) v_projected = sigma_e bc_multiplier = DirichletBC(W.sub(1), p_boundaries, "on_boundary") # DG parameter s = Constant(1.0) beta = Constant(32.0) h = CellDiameter(mesh) h_avg = avg(h) # Classical term a = dot(grad(u), grad(v)) * dx L = f * v * dx # DG terms a += s * (dot(jump(u, n), avg(grad(v))) - dot(jump(v, n), avg(grad(u)))) * dS a += (beta / h_avg) * dot(jump(u, n), jump(v, n)) * dS a += (beta / h) * u * v * ds # DG boundary condition terms L += ( s * dot(grad(v), n) * p_boundaries * ds + (beta / h) * p_boundaries * v * ds + v * dot(sigma_e, n) * ds ) # Hybridization terms # a += (-s * jump(grad(v), n) * (lambda_h('+') - avg(u)) + jump(grad(u), n) * (mu_h('+') - avg(v))) * dS a += ( -s * jump(grad(v), n) * (lambda_h("+") - u("+")) + jump(grad(u), n) * (mu_h("+") - v("+")) ) * dS # a += (4.0 * beta / h_avg) * (lambda_h('+') - avg(u)) * (mu_h('+') - avg(v)) * dS a += (4.0 * beta / h_avg) * (lambda_h("+") - u("+")) * (mu_h("+") - v("+")) * dS F = a - L # Solving SC below PETSc.Sys.Print("*******************************************\nSolving...\n") params = { "snes_type": "ksponly", "mat_type": "matfree", "pmat_type": "matfree", "ksp_type": "preonly", "pc_type": "python", # Use the static condensation PC for hybridized problems # and use a direct solve on the reduced system for lambda_h "pc_python_type": "firedrake.SCPC", "pc_sc_eliminate_fields": "0", "condensed_field": { "ksp_type": "preonly", "pc_type": "lu", "pc_factor_mat_solver_type": "mumps", }, } problem = NonlinearVariationalProblem(F, solution, bcs=bc_multiplier) solver = NonlinearVariationalSolver(problem, solver_parameters=params) solver.solve() # solve(F == 0, solution) PETSc.Sys.Print("Solver finished.\n") # Gathering solution u_h, lambda_h = solution.split() u_h.rename("Solution", "label") # Post-processing solution sigma_h = Function(V, name="Projected velocity") sigma_h.project(-(k / mu) * grad(u_h)) output = File("ldgd.pvd", project_output=True) output.write(u_h, sigma_h) plot(sigma_h) plot(u_h) plt.axis("off") plt.show() print("\n*** DoF = %i" % W.dim())
from flask import Response, request from db.models import Organism, SecondaryOrganism,Assembly from flask_restful import Resource from errors import NotFound,SchemaValidationError,RecordAlreadyExistError,TaxonNotFoundError from utils.utils import parse_sample_metadata from utils import ena_client from datetime import datetime from services import sample_service import services.submission_service as service from flask_jwt_extended import jwt_required from mongoengine.queryset.visitor import Q from flask import current_app as app from utils.constants import SamplePipeline import json #CRUD operations on sample class SamplesApi(Resource): def get(self,accession=None): sample = SecondaryOrganism.objects((Q(accession=accession) | Q(tube_or_well_id=accession))) if len(sample) > 0: result = sample.aggregate(*SamplePipeline).next() return Response(json.dumps(result),mimetype="application/json", status=200) else: raise NotFound @jwt_required() def delete(self): if 'ids' in request.args.keys() and len(request.args['ids'].split(',')) > 0: ids = request.args['ids'].split(',') resp = sample_service.delete_samples(ids) return Response(json.dumps(resp),mimetype="application/json", status=200) else: raise SchemaValidationError @jwt_required() def put(self,accession): data = request.json if request.is_json else request.form sample = SecondaryOrganism.objects((Q(accession=accession) | Q(tube_or_well_id=accession))).first() if not sample: raise NotFound elif not data: raise SchemaValidationError else: sample.update(**data) id = sample.tube_or_well_id return Response(json.dumps(f'sample with id {id} has been saved'),mimetype="application/json", status=204) #update sample @jwt_required() def post(self): data = request.json if request.is_json else request.form if 'taxid' in data.keys() and ('tube_or_well_id' in data.keys() or 'accession' in data.keys()): taxid = str(data['taxid']) id = data['tube_or_well_id'] if 'tube_or_well_id' in data.keys() else data['accession'] if len(SecondaryOrganism.objects(Q(tube_or_well_id=id) | Q(accession=id))) > 0: raise RecordAlreadyExistError else: #import data from accession number if 'accession' in data.keys(): metadata = parse_sample_metadata(data['characteristics']) metadata['accession'] = data['accession'] metadata['taxid'] = taxid sample = service.create_sample(metadata) sample_service.get_reads([sample]) assemblies = ena_client.parse_assemblies(sample.accession) if len(assemblies) > 0: existing_assemblies=Assembly.objects(accession__in=[ass['accession'] for ass in assemblies]) if len(existing_assemblies) > 0: assemblies= [ass for ass in assemblies if ass['accession'] not in [ex_as['accession'] for ex_as in existing_assemblies]] if len(assemblies) > 0: for ass in assemblies: if not 'sample_accession' in ass.keys(): ass['sample_accession'] = sample.accession app.logger.info(assemblies) assemblies = Assembly.objects.insert([Assembly(**ass) for ass in assemblies]) organism = Organism.objects(taxid=sample.taxid).first() if not organism: raise TaxonNotFoundError organism.assemblies.extend(assemblies) organism.save() sample.assemblies.extend(assemblies) sample.last_checked=datetime.utcnow() sample.save() else: #create local sample sample = service.create_sample(data) return Response(json.dumps(f'sample with id {id} has been saved'),mimetype="application/json", status=201) else: raise SchemaValidationError
from queue import Queue from functools import wraps class Async: '''Aync wrapper for all data''' def __init__(self, func, args): self.func = func self.args = args def inlined_async(func): @wraps(func) def wrapper(*args): f = func(*args) result_queue = Queue() result_queue.put(None) while True: result = result_queue.get() try: a = f.send(result) apply_async(a.func, a.args, callback=result_queue.put) except StopIteration: break return wrapper def apply_async(func, args, *, callback): result = func(*args) callback(result)
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ from mindspore import context, save_checkpoint, load_checkpoint, load_param_into_net from mindspore.nn import Softmax, SoftmaxCrossEntropyWithLogits from mindspore_xai.explanation import RISEPlus, OoDNet from common.dataset import load_dataset, load_image_tensor from common.resnet import resnet50 if __name__ == "__main__": # Preparing # only PYNATIVE_MODE is supported context.set_context(mode=context.PYNATIVE_MODE) num_classes = 20 # classifier training dataset train_ds = load_dataset('xai_examples_data/train').batch(4) # load the trained classifier net = resnet50(num_classes) param_dict = load_checkpoint('xai_examples_data/ckpt/resnet50.ckpt') load_param_into_net(net, param_dict) # Training OoDNet ood_net = OoDNet(underlying=net, num_classes=num_classes) # use SoftmaxCrossEntropyWithLogits as loss function if the activation function of # the classifier is Softmax, use BCEWithLogitsLoss if the activation function is Sigmod ood_net.train(train_ds, loss_fn=SoftmaxCrossEntropyWithLogits()) save_checkpoint(ood_net, 'ood_net.ckpt') # Using RISEPlus ood_net = OoDNet(underlying=resnet50(num_classes), num_classes=num_classes) param_dict = load_checkpoint('ood_net.ckpt') load_param_into_net(ood_net, param_dict) rise_plus = RISEPlus(ood_net=ood_net, network=net, activation_fn=Softmax()) boat_image = load_image_tensor("xai_examples_data/test/boat.jpg") saliency = rise_plus(boat_image, targets=5) print(f"saliency.shape:{saliency.shape}")
#!/usr/bin/env python2 from setuptools import setup setup( name="internalblue", version="0.4", description="A Bluetooth Experimentation Framework based on the Broadcom Bluetooth Controller Family.", url="http://github.com/seemoo-lab/internalblue", author="The InternalBlue Team", author_email="jiska@bluetooth.lol", license="MIT", packages=[ "internalblue", "internalblue/fw", "internalblue/objects", "internalblue/utils", ], python_requires='>=3.6', install_requires=["future", "cmd2", "pure-python-adb"], extras_require={"macoscore": ["pyobjc"], "binutils": ["pwntools>=4.0.1", "pyelftools"]}, tests_require=["nose", "pytest", "pwntools>=4.2.0.dev0"], entry_points={ "console_scripts": ["internalblue=internalblue.cli:internalblue_entry_point"] }, zip_safe=False, )
__author__ = 'Daniyar' import itertools from localsys.storage import db import math class score_model: def check_closest_competitor(self, usrid, your_score): value_risk = 0.0 value_cost = 0.0 value_risk_cost_contender = 2.0 value_cost_risk_contender = 1.0 prev_value_risk = 2.0 prev_value_cost = 1.0 next_value_risk = 2.0 next_value_cost = 1.0 prev_risk_rank = 0 next_risk_rank = 0 prev_cost_rank = 0 next_cost_rank = 0 next_value_risk_date = "2014-01-06" prev_value_risk_date = "2014-01-06" prev_value_cost_date = "2014-01-06" next_value_cost_date = "2014-01-06" date_risk = "2014-01-06" date_cost = "2014-01-06" checked = False u_rank_risk = 1 u_rank_cost = 1 users_risk = [] users_cost = [] risk_values = [] cost_values = [] contender_id_prev_risk = 1 contender_id_next_risk = 1 contender_id_prev_cost = 1 contender_id_next_cost = 1 scores_1, scores_2 = itertools.tee(your_score) for row in scores_1: if row.score_type == 1: if row.userid == usrid: if not checked: value_risk = row.score_value checked = True date_risk = row.date else: if not checked: if not row.userid in users_risk: if not float(row.score_value) in risk_values: risk_values.append(float(row.score_value)) u_rank_risk += 1 prev_value_risk = row.score_value prev_value_risk_date = row.date contender_id_prev_risk = row.userid users_risk.append(row.userid) else: if not row.userid in users_risk: next_value_risk = row.score_value next_value_risk_date = row.date contender_id_next_risk = row.userid break checked = False for row in scores_2: if row.score_type == 2: if row.userid == usrid: if not checked: value_cost = row.score_value checked = True date_cost = row.date else: if not checked: if not row.userid in users_cost: if not float(row.score_value) in cost_values: users_cost.append(row.userid) cost_values.append(float(row.score_value)) u_rank_cost += 1 prev_value_cost = row.score_value prev_value_cost_date = row.date contender_id_prev_cost = row.userid else: if not row.userid in users_cost: next_value_cost = row.score_value next_value_cost_date = row.date contender_id_next_cost = row.userid break u_rank_risk -= risk_values.count(float(value_risk)) u_rank_cost -= cost_values.count(float(value_cost)) prev_risk_rank = u_rank_risk - 1 if prev_risk_rank == 0: prev_value_risk = 9 prev_cost_rank = u_rank_cost - 1 if prev_cost_rank == 0: prev_value_cost = 9 if next_value_risk == value_risk: next_risk_rank = u_rank_risk else: next_risk_rank = u_rank_risk + 1 if next_value_cost == value_cost: next_cost_rank = u_rank_cost else: next_cost_rank = u_rank_cost + 1 if prev_value_risk == value_risk: prev_risk_rank = u_rank_risk if prev_value_cost == value_cost: prev_cost_rank = u_rank_cost if math.fabs(float(value_risk) - float(prev_value_risk)) <= math.fabs( float(next_value_risk) - float(value_risk)): closest_score_risk = prev_value_risk closest_ranking_risk = prev_risk_rank closest_date_risk = prev_value_risk_date contender_id_risk = contender_id_prev_risk else: closest_score_risk = next_value_risk closest_ranking_risk = next_risk_rank closest_date_risk = next_value_risk_date contender_id_risk = contender_id_next_risk if math.fabs(float(value_cost) - float(prev_value_cost)) <= math.fabs( float(next_value_cost) - float(value_cost)): closest_score_cost = prev_value_cost closest_ranking_cost = prev_cost_rank closest_date_cost = prev_value_cost_date contender_id_cost = contender_id_prev_cost else: closest_score_cost = next_value_cost closest_ranking_cost = next_cost_rank closest_date_cost = next_value_cost_date contender_id_cost = contender_id_next_cost value_risk_cost = db.select('scores', where="date=$date_risk&&score_type=2&&userid=$usrid", vars=locals())[0].score_value value_cost_risk = db.select('scores', where="date=$date_cost&&score_type=1&&userid=$usrid", vars=locals())[0].score_value res1 = db.select('scores', where="date=$closest_date_risk&&score_type=2&&userid=$contender_id_risk", vars=locals()) if len(res1) > 0: value_risk_cost_contender = res1[0].score_value res2 = db.select('scores', where="date=$closest_date_cost&&score_type=1&&userid=$contender_id_cost", vars=locals()) if len(res2) > 0: value_cost_risk_contender = res2[0].score_value return value_risk, value_risk_cost, date_risk, value_cost, value_cost_risk, date_cost, u_rank_risk, u_rank_cost, closest_score_risk, value_risk_cost_contender, \ closest_ranking_risk, closest_date_risk, closest_score_cost, value_cost_risk_contender, closest_ranking_cost, closest_date_cost def find_best(self, scores): date_risk = "N/A" value_risk = 0.0 date_cost = "N/A" value_cost = 0.0 id_risk = 1 id_cost = 1 scores_1, scores_2 = itertools.tee(scores) for row in scores_1: if row.score_type == 1: date_risk = row.date value_risk = row.score_value id_risk = row.userid break for row in scores_2: if row.score_type == 2: date_cost = row.date value_cost = row.score_value id_cost = row.userid break value_risk_cost = db.select('scores', where="date=$date_risk&&userid=$id_risk&&score_type=2", vars=locals())[0].score_value value_cost_risk = db.select('scores', where="date=$date_cost&&userid=$id_cost&&score_type=1", vars=locals())[0].score_value return value_risk, value_risk_cost, date_risk, value_cost, value_cost_risk, date_cost def find_avg(self): average_risk = db.query("SELECT AVG(score_value)as avg FROM scores WHERE score_type =1;")[0] average_cost = db.query("SELECT AVG(score_value)as avg FROM scores WHERE score_type =2;")[0] return average_risk.avg, average_cost.avg @classmethod def get_scores(cls, id_user): all_scores = db.select('scores', order="score_value ASC") length = len(all_scores) scores_1, scores_2, scores_3, scores_4 = itertools.tee(all_scores, 4) if len(all_scores) > 0: b_u_risk, b_u_risk_cost, b_u_risk_date, b_u_cost, b_u_cost_risk, b_u_cost_date, b_u_risk_rank, b_u_cost_rank,\ c_risk, c_risk_cost, c_risk_rank, c_risk_when, c_pc, c_pc_risk, c_pc_rank, c_pc_when = \ score_model().check_closest_competitor(id_user, scores_2) b_risk, b_risk_cost, b_risk_when, b_pc, b_pc_risk, b_pc_when = score_model().find_best(scores_3) avg_risk, avg_pc = score_model().find_avg() msg = { "b_u_risk": str(b_u_risk), "b_u_risk_cost": str(b_u_risk_cost), "b_u_risk_date": str(b_u_risk_date), "b_u_risk_rank": b_u_risk_rank, "b_u_cost": str(b_u_cost), "b_u_cost_risk": str(b_u_cost_risk), "b_u_cost_date": str(b_u_cost_date), "b_u_cost_rank": b_u_cost_rank, "c_risk": str(c_risk), "c_risk_cost": str(c_risk_cost), "c_risk_when": str(c_risk_when), "c_risk_rank": c_risk_rank, "c_pc": str(c_pc), "c_pc_risk": str(c_pc_risk), "c_pc_when": str(c_pc_when), "c_pc_rank": c_pc_rank, "b_risk": str(b_risk), "b_risk_cost": str(b_risk_cost), "b_risk_when": str(b_risk_when), "b_pc": str(b_pc), "b_pc_risk": str(b_pc_risk), "b_pc_when": str(b_pc_when), "avg_risk": str(avg_risk), "avg_pc": str(avg_pc) } return msg def multiple_score(self, policies): policy_costs_risks = [] sim = simulation() for policy_entry in policies: result_entry = {} for key in policy_entry: if key == "data": tmp_value = policy_entry[key] #sim.set_multi_policy(tmp_value) result_entry["risk"] = sim.calc_risk_prob(tmp_value) result_entry["cost"] = sim.calc_prod_cost(tmp_value) else: result_entry["id"] = policy_entry[key] policy_costs_risks.append(result_entry) # print('return cost '+ policy_costs_risks) return policy_costs_risks @classmethod def insert_score(self, user_id, score_type, score_value, date): db.insert('scores', userid=user_id, score_type=score_type, score_value=score_value, date=date)
import arcpy structures = "N:\ArcMap_Projects\NG911 Analysis\Gecoding4_7\Geocoding4_7.gdb\Address_Points_4_7" structureFields = [ "ADDRESS", "DIRPRE","ROADNAME","ROADTYPE","DIRSUF"] msag = "N:\ArcMap_Projects\NG911 Analysis\Gecoding4_7\Geocoding4_7.gdb\MSAG_4_3" msagFields = ["Low", "High", "O_E", "Dir", "Street","Community"] print "Building MSAG List" msagDict = {} ##msagDict Structures {"W MAIN ST":[[LOW,HIGH,oE],[LOW,HIGH,oE]]} with arcpy.da.SearchCursor(msag, msagFields) as msagSearchCursor: for row in msagSearchCursor: roadName = str(str(row[msagFields.index("Dir")].strip()) + " " + str(row[msagFields.index("Street")].strip())).strip() oE = row[msagFields.index("O_E")].strip() try: LOW = (int(row[msagFields.index("Low")])) except: LOW = None try: HIGH = (int(row[msagFields.index("High")])) except: HIGH = None if roadName in msagDict: msagDict[roadName].append([LOW, HIGH, oE]) else: msagDict[roadName] = [] msagDict[roadName].append([LOW, HIGH, oE]) print "Scanning Structures" totalStructures = arcpy.GetCount_management(structures).getOutput(0) with arcpy.da.SearchCursor(structures, structureFields) as structuresSearchCursor: unmatchedAddresses = [] for currentStructure in structuresSearchCursor: currentStructureRoadName = (currentStructure[structureFields.index("DIRPRE")].strip() + " " + currentStructure[structureFields.index("ROADNAME")].strip() + " " + currentStructure[structureFields.index("ROADTYPE")].strip() + " " + currentStructure[structureFields.index("DIRSUF")].strip()).strip() currentStructureNumber = currentStructure[structureFields.index("ADDRESS")].strip() try: currentStructureNumber = int(currentStructureNumber) if currentStructureNumber % 2 == 0: currentStructureNumberEO = "EVEN" else: currentStructureNumberEO = "ODD" except: currentStructureNumber = None currentStructureNumberEO = None if currentStructureNumber == None: continue addressFound = False if currentStructureRoadName in msagDict: for msagRow in msagDict[currentStructureRoadName]: if (currentStructureNumber >= msagRow[0] and currentStructureNumber <= msagRow[1]): if (msagRow[2] == "BOTH") or (msagRow[2] == currentStructureNumberEO): addressFound = True break if not addressFound: unmatchedAddresses.append((currentStructureNumber,currentStructureRoadName)) sortedAddresses = sorted(unmatchedAddresses,key=lambda x:(x[1],x[0])) for address in sortedAddresses: print str(address[0]) + " " + address[1] + " not found in MSAG" print "Done"
from django.middleware.common import MiddlewareMixin class ForceDefaultLanguageMiddleware(MiddlewareMixin): """ Ignore Accept-Language HTTP headers This will force the I18N machinery to always choose settings.LANGUAGE_CODE as the default initial language, unless another one is set via sessions or cookies Should be installed *before* any middleware that checks request.META['HTTP_ACCEPT_LANGUAGE'], namely django.middleware.locale.LocaleMiddleware """ def process_request(self, request): # request.META["HTTP_ACCEPT_LANGUAGE"] ="en-US,en;q=0.5" request.META["HTTP_ACCEPT_LANGUAGE"] ="ru-RU,ru;q=0.5"
""" Basic "generic IDL4" target. Not designed to inherit from anything. """ from magpie.targets import base from magpie.generator.v4generator import V4Generator class Generator(V4Generator): pass class Types(object): # Methods relating to type declaration, conversion, and marshalling types_cpp_define_int_constants = 'types/cpp_define_int_constants.template.c' # Given a type instance AST, output a declaration. types_declare = 'types/declare.template.c' types_declare_const = 'types/declare_const.template.c' # Given a type AST, output the name of the type. types_name = 'types/name.template.c' types_name_basic = 'types/name_basic.template.c' types_name_alias = 'types/name_alias.template.c' # Given a Python value, output a C constant representing that value. types_constant = 'types/constant.template.c' class SharedTemplates(object): basic_includes = 'v4_generic/basic_includes.template.c' clientservice_function_params_maker = 'v4_generic/function_params_maker.template.c' # Headers header_comments = 'v4_generic/headercomments.template.c' idl4_defines = 'v4_generic/idl4_defines.template.c' preamble = 'v4_generic/preamble.template.c' interface_wrapper = 'v4_generic/interface_wrapper.template.c' imports = 'v4_generic/import.template.c' language_specific_remapping = 'v4_generic/null_remapping.template.c' class ClientTemplates(object): client_function_wrapper = 'v4_generic/client_function_wrapper.template.c' client_function_body = 'v4_generic/client_function_body.template.c' client_function_body_pre_ipc_defs = 'helpers/null.template.c' client_function_body_pre_ipc = 'helpers/null.template.c' client_function_body_post_ipc = 'helpers/null.template.c' client_function_create_id = 'v4_generic/client_function_create_id.template.c' client_function_marshal = 'v4_generic/client_function_marshal.template.c' client = 'v4_generic/main_client.template.h' class ServiceTemplates(object): service_interface_wrapper = 'v4_generic/service_interface_wrapper.template.c' service_function = 'v4_generic/service_function.template.c' service_function_reply = 'v4_generic/service_function_reply.template.c' service = 'v4_generic/main_service.template.h' class ServiceTemplateTemplates(object): servicetemplate_create_getiid_func = 'v4_generic/servicetemplate_getiid.template.c' servicetemplate = 'v4_generic/main_servicetemplate.template.h' class ConstantTemplates(object): constants = 'v4_generic/main_constants.template.c' class Templates(base.Templates, SharedTemplates, ClientTemplates, ServiceTemplates, ServiceTemplateTemplates, ConstantTemplates, Types): MAPPING = 'CORBA C' types = 'v4_generic/main_types.template.h' public = ['client', 'service', 'servicetemplate', 'types'] class DataStorage(object): def __init__(self): self.data_dict = {}
# -*- encoding: utf-8 -*- from . import FixtureTest class ResidentialTest(FixtureTest): def test_z16(self): self._check(zoom=16, expect_surface='fine_gravel') def test_z15(self): self._check(zoom=15, expect_surface='fine_gravel') def test_z14(self): self._check(zoom=14, expect_surface='unpaved') def test_z13(self): self._check(zoom=13, expect_surface='unpaved') def test_z12(self): self._check(zoom=12, expect_surface='unpaved') def setUp(self): FixtureTest.setUp(self) import dsl z, x, y = (16, 0, 0) full_tags = { 'source': 'openstreetmap.org', 'highway': 'residential', 'surface': 'fine_gravel', } self.generate_fixtures( dsl.way(1, dsl.tile_diagonal(z, x, y), full_tags), ) def _check(self, zoom=16, expect_surface=None): self.assert_has_feature( zoom, 0, 0, 'roads', { 'id': 1, 'surface': expect_surface, }) class HighwayTest(FixtureTest): def test_z16(self): self._check(zoom=16, expect_surface='asphalt') def test_z15(self): self._check(zoom=15, expect_surface='asphalt') def test_z14(self): self._check(zoom=14, expect_surface='asphalt') def test_z13(self): self._check(zoom=13, expect_surface='asphalt') def test_z12(self): self._check(zoom=12, expect_surface='asphalt') def test_z11(self): self._check(zoom=11, expect_surface='asphalt') def test_z10(self): self._check(zoom=10, expect_surface='paved') def test_z09(self): self._check(zoom=9, expect_surface='paved') def test_z08(self): self._check(zoom=8, expect_surface='paved') def setUp(self): FixtureTest.setUp(self) import dsl z, x, y = (16, 0, 0) full_tags = { 'source': 'openstreetmap.org', 'highway': 'motorway', 'surface': 'asphalt', } self.generate_fixtures( dsl.way(1, dsl.tile_diagonal(z, x, y), full_tags), ) def _check(self, zoom=16, expect_surface=None): self.assert_has_feature( zoom, 0, 0, 'roads', { 'id': 1, 'surface': expect_surface, })
import os import numpy as np from keras.preprocessing.image import img_to_array, load_img def load_and_scale_images(img_dir_path, extension, img_width, img_height): images = [] for f in os.listdir(img_dir_path): filepath = os.path.join(img_dir_path, f) if os.path.isfile(filepath) and f.endswith(extension): image = img_to_array(load_img(filepath, target_size=(img_width, img_height))) image = (image.astype(np.float32) / 255) * 2 - 1 images.append(image) return np.array(images)
import logging from django.contrib import messages from django.core.exceptions import BadRequest from django.urls import reverse from django.http import HttpResponseRedirect from django.shortcuts import render, get_object_or_404 from dojo.models import Product, Objects_Product from dojo.forms import ObjectSettingsForm, DeleteObjectsSettingsForm from dojo.utils import Product_Tab from dojo.authorization.roles_permissions import Permissions from dojo.authorization.authorization_decorators import user_is_authorized logger = logging.getLogger(__name__) @user_is_authorized(Product, Permissions.Product_Tracking_Files_Add, 'pid') def new_object(request, pid): prod = get_object_or_404(Product, id=pid) if request.method == 'POST': tform = ObjectSettingsForm(request.POST) if tform.is_valid(): new_prod = tform.save(commit=False) new_prod.product = prod new_prod.save() messages.add_message(request, messages.SUCCESS, 'Added Tracked File to a Product', extra_tags='alert-success') return HttpResponseRedirect(reverse('view_objects', args=(pid,))) else: tform = ObjectSettingsForm() product_tab = Product_Tab(prod, title="Add Tracked Files to a Product", tab="settings") return render(request, 'dojo/new_object.html', {'tform': tform, 'product_tab': product_tab, 'pid': prod.id}) @user_is_authorized(Product, Permissions.Product_Tracking_Files_View, 'pid') def view_objects(request, pid): product = get_object_or_404(Product, id=pid) object_queryset = Objects_Product.objects.filter(product=pid).order_by('path', 'folder', 'artifact') product_tab = Product_Tab(product, title="Tracked Product Files, Paths and Artifacts", tab="settings") return render(request, 'dojo/view_objects.html', { 'object_queryset': object_queryset, 'product_tab': product_tab, 'product': product }) @user_is_authorized(Product, Permissions.Product_Tracking_Files_Edit, 'pid') def edit_object(request, pid, ttid): object = Objects_Product.objects.get(pk=ttid) product = get_object_or_404(Product, id=pid) if object.product != product: raise BadRequest(f'Product {pid} does not fit to product of Object {object.product.id}') if request.method == 'POST': tform = ObjectSettingsForm(request.POST, instance=object) if tform.is_valid(): tform.save() messages.add_message(request, messages.SUCCESS, 'Tool Product Configuration Successfully Updated.', extra_tags='alert-success') return HttpResponseRedirect(reverse('view_objects', args=(pid,))) else: tform = ObjectSettingsForm(instance=object) product_tab = Product_Tab(product, title="Edit Tracked Files", tab="settings") return render(request, 'dojo/edit_object.html', { 'tform': tform, 'product_tab': product_tab }) @user_is_authorized(Product, Permissions.Product_Tracking_Files_Delete, 'pid') def delete_object(request, pid, ttid): object = Objects_Product.objects.get(pk=ttid) product = get_object_or_404(Product, id=pid) if object.product != product: raise BadRequest(f'Product {pid} does not fit to product of Object {object.product.id}') if request.method == 'POST': tform = ObjectSettingsForm(request.POST, instance=object) object.delete() messages.add_message(request, messages.SUCCESS, 'Tracked Product Files Deleted.', extra_tags='alert-success') return HttpResponseRedirect(reverse('view_objects', args=(pid,))) else: tform = DeleteObjectsSettingsForm(instance=object) product_tab = Product_Tab(product, title="Delete Product Tool Configuration", tab="settings") return render(request, 'dojo/delete_object.html', { 'tform': tform, 'product_tab': product_tab })
#!/usr/bin/env python3 """Given a byte string, split it into rows.""" import os import sys def showUsage(msg): if msg is not None: print(msg) print("""Usage: split-bytes.py [options...] [infile] [outfile] options: -cN: split to N columns -dNN: byte NN (hex) ends a row (can be used multiple times) -h: show this message -n: do not add spaces If `infile` is missing or '-', read from stdin. If `outfile` is missing or '-', write to stdout. Non-hex digits are ignored. """) sys.exit(1 if msg is not None else 0) def main(): inFile, outFile = sys.stdin, sys.stdout rowLen, rowDelim, sep = None, set(), ' ' try: args = list(sys.argv[1:]) while len(args) > 0 and args[0].startswith('-') and len(args[0]) > 1: arg = args.pop(0) c = arg[1] if c == 'c': rowLen = int(arg[2:]) elif c == 'd': rowDelim.add(int(arg[2:], 16)) elif c == 'h': return showUsage(None) elif c == 'n': sep = '' else: return showUsage("Invalid option.") except Exception as ex: return showUsage("Invalid parameter.") if len(args) > 0: f = args.pop(0) if f != '-': inFile = open(f, 'rt') if len(args) > 0: f = args.pop(0) if f != '-': outFile = open(f, 'wt') byte = '' curLen = 0 while True: c = inFile.read(1) if len(c) == 0: break if c in '0123456789abcdefABCDEF': byte += c if len(byte) == 2: curLen += 1 val = int(byte, 16) el = sep if (val in rowDelim) or (curLen >= rowLen): el = '\n' curLen = 0 outFile.write(byte+el) byte = '' outFile.write('\n') if __name__ == '__main__': main()
import yfinance as yf import pandas as pd import pandas_datareader.data as web import datetime as dt import streamlit as st import pandas as pd from scipy import stats import numpy as np import matplotlib.pyplot as plt Symbol = ["AAPL", "MSFT","AMZN", "FB","GOOG", "GOOGL", "TSLA", "NVDA", "PYPL", "ASML","INTC","CMCSA","NFLX","ADBE","CSCO","PEP","AVGO","TXN","PDD","TMUS","BABA","CSIQ", "XWD.TO", "EEM","HBLK.TO","BND","HTWO.MI"] Names = ["APPLE","MICROSOFT","AMAZON","FACEBOOK","GOOGLE A","GOOGLE C","TESLA","NVIDIA","PAYPAL","ASML HOLDINGS","INTEL","COMCAST","NETFLIX","ADOBE","CISCO","PEPSI","BROADCOM","TEXAS INSTRUMENTS","PINDUODO","T-MOBILE US","ALIBABA","CANADIAN SOLAR", "ETF WORLD", "ETF EMERGENTI","ETF BLOCKCHAIN", "ETF BOND","ETF IDROGENO"] #TITLE OF THE WEB APP st.write(""" # Portfolio App This app returns the average P/E of your Portfolio! """) st.sidebar.header('Build your Portfolio') #SIDEBAR OF THE WEB APP. THIS TAKES THE INPUT OF THE USER(ETF AND WEIGHTS) First_etf = st.sidebar.selectbox( 'Select a stock', (Names) ) First_etf_money = st.sidebar.slider(First_etf, 0, 5000, 1) Second_etf = st.sidebar.selectbox( 'Select a stock', (Names[1:]) ) Second_etf_money = st.sidebar.slider(Second_etf, 0, 5000, 0) Third_etf = st.sidebar.selectbox( 'Select a stock', Names[2:] ) Third_etf_money = st.sidebar.slider(Third_etf, 0, 5000, 0) Fourth_etf = st.sidebar.selectbox( 'Select a stock', Names[3:] ) Fourth_etf_money = st.sidebar.slider(Fourth_etf, 0, 5000, 0) Fifth_etf = st.sidebar.selectbox( 'Select a stock', Names[4:] ) Fifth_etf_money = st.sidebar.slider(Fifth_etf, 0, 5000, 0) Sixth_etf = st.sidebar.selectbox( 'Select a stock', Names[5:] ) Sixth_etf_money = st.sidebar.slider(Sixth_etf, 0, 5000, 0) Seventh_etf = st.sidebar.selectbox( 'Select a stock', Names[6:] ) Seventh_etf_money = st.sidebar.slider(Seventh_etf, 0, 5000, 0) Eight_etf = st.sidebar.selectbox( 'Select a stock', Names[7:] ) Eight_etf_money = st.sidebar.slider(Eight_etf, 0, 5000, 0) Ninth_etf = st.sidebar.selectbox( 'Select a stock', Names[8:] ) Ninth_etf_money = st.sidebar.slider(Ninth_etf, 0, 5000, 0) Tenth_etf = st.sidebar.selectbox( 'Select a stock', Names[9:] ) Tenth_etf_money = st.sidebar.slider(Tenth_etf, 0, 5000, 0) Total_portfolio = First_etf_money+Second_etf_money+Third_etf_money+Fourth_etf_money+Fifth_etf_money+Sixth_etf_money+Seventh_etf_money+Eight_etf_money+Ninth_etf_money+Tenth_etf_money First_weight = First_etf_money/Total_portfolio*100 Second_weight = Second_etf_money/Total_portfolio*100 Third_weight = Third_etf_money/Total_portfolio*100 Fourth_weight = Fourth_etf_money/Total_portfolio*100 Fifth_weight = Fifth_etf_money/Total_portfolio*100 Sixth_weight = Sixth_etf_money/Total_portfolio*100 Seventh_weight = Seventh_etf_money/Total_portfolio*100 Eight_weight = Eight_etf_money/Total_portfolio*100 Ninth_weight = Ninth_etf_money/Total_portfolio*100 Tenth_weight = Tenth_etf_money/Total_portfolio*100 res = {} for key in Names: for value in Symbol: res[key] = value Symbol.remove(value) break Portfolio = [First_etf,Second_etf,Third_etf,Fourth_etf,Fifth_etf,Sixth_etf,Seventh_etf,Eight_etf,Ninth_etf,Tenth_etf] sizes = [First_weight,Second_weight,Third_weight,Fourth_weight,Fifth_weight,Sixth_weight,Seventh_weight,Eight_weight,Ninth_weight,Tenth_weight] fig = plt.figure(figsize =(10, 7)) plt.pie(sizes, labels = Portfolio) st.pyplot(fig) A1 = yf.Ticker(res[First_etf]) PE1 = (A1.info['trailingPE']) A2 = yf.Ticker(res[Second_etf]) PE2 = (A2.info['trailingPE']) A3 = yf.Ticker(res[Third_etf]) PE3 = (A3.info['trailingPE']) A4 = yf.Ticker(res[Fourth_etf]) PE4 = (A4.info['trailingPE']) A5 = yf.Ticker(res[Fifth_etf]) PE5 = (A5.info['trailingPE']) A6 = yf.Ticker(res[Sixth_etf]) PE6 = (A6.info['trailingPE']) A7 = yf.Ticker(res[Seventh_etf]) PE7 = (A7.info['trailingPE']) A8 = yf.Ticker(res[Eight_etf]) PE8 = (A8.info['trailingPE']) A9 = yf.Ticker(res[Ninth_etf]) PE9 = (A9.info['trailingPE']) A10 = yf.Ticker(res[Tenth_etf]) PE10 = (A10.info['trailingPE']) Average_PE = (PE1 * First_weight/100) +(PE2*Second_weight/100) +(PE3 * Third_weight/100) + (PE4*Fourth_weight/100) +(PE5*Fifth_weight/100) + (PE6*Sixth_weight/100) + (PE7*Seventh_weight/100) + (PE8*Eight_weight/100) + (PE9*Ninth_weight/100) + (PE10*Tenth_weight/100) st.write("Your average P/E is " + str(Average_PE)) st.write("The P/E of the SP500 is 15.98 ") st.write(PE1,PE2,PE3,PE4,PE5,PE6,PE7,PE8,PE9,PE10)
# See LICENSE for licensing information. # # Copyright (c) 2021 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. # """ Enum classes to represent cache policies are defined here. """ from enum import IntEnum class associativity(IntEnum): """ Enum class to represent associativity. """ DIRECT = 0 N_WAY = 1 FULLY = 2 def __str__(self): if self == associativity.DIRECT: return "Direct-mapped" if self == associativity.N_WAY: return "N-way Set Associative" if self == associativity.FULLY: return "Fully Associative" class replacement_policy(IntEnum): """ Enum class to represent replacement policies. """ NONE = 0 FIFO = 1 LRU = 2 RANDOM = 3 def __str__(self): return self.name.lower() def upper(self): return self.name def long_name(self): """ Get the long name of the replacement policy. """ if self == replacement_policy.NONE: return "None" if self == replacement_policy.FIFO: return "First In First Out" if self == replacement_policy.LRU: return "Least Recently Used" if self == replacement_policy.RANDOM: return "Random" def has_sram_array(self): """ Return True if the replacement policy needs a separate SRAM array. """ return self not in [ replacement_policy.NONE, replacement_policy.RANDOM ] @staticmethod def get_value(name): """ Get the replacement policy enum value. """ if name is None: return replacement_policy.NONE for k, v in replacement_policy.__members__.items(): if name.upper() == k: return v class write_policy(IntEnum): """ Enum class to represent write policies. """ WRITE_BACK = 0 WRITE_THROUGH = 1 def __str__(self): return self.name.lower() def upper(self): return self.name def long_name(self): """ Get the long name of the write policy. """ if self == write_policy.WRITE_BACK: return "Write-back" if self == write_policy.WRITE_THROUGH: return "Write-through" @staticmethod def get_value(name): """ Get the write policy enum value. """ if name is None or name == "write-back": return write_policy.WRITE_BACK if name == "write-through": return write_policy.WRITE_THROUGH
from PIL import Image import math def get_world_coord(img_depth, subj_coordinates, obj_coordinates): width, height = img_depth.size uo = width/2 vo = height/2 #FOV (90, 59) given by the depth camera settings a = 90*math.pi/180 b = 59*math.pi/180 fx = uo / math.tan(a/2) fy = vo / math.tan(b/2) #Get the pixel coordinates of the objects that we want to get their real world coords xs,ys = subj_coordinates xo,yo = obj_coordinates #Swift the 0,0 from top left corner to center of the picture (where the camera is) xss= xs - uo yss= ys -vo xoo= xo - uo yoo= yo - vo #Get depth of pixels Zs = img_depth.getpixel(subj_coordinates) Zo = img_depth.getpixel(obj_coordinates) #calculate real world coordinates Xs = (Zs*xss) / fx Ys = -(Zs*yss) / fy Xo = (Zo*xoo) / fx Yo = -(Zo*yoo) / fy #The final coords A = (Xs,Ys,Zs) B = (Xo,Yo,Zo) #Calculate the distance between the two points in the real world D = math.sqrt((Xs-Xo)**2 + (Ys-Yo)**2 + (Zs-Zo)**2) #This function returns Distance, Subject_coords, Object_coords return D , A, B #A function getting the depth value from the depthmap def get_Z(img_depth, coordinates): z = img_depth.getpixel(coordinates) return z
import logging import numpy from data_models.memory_data_models import Image, GainTable, Visibility, SkyModel from processing_library.image.operations import copy_image from workflows.serial.imaging.imaging_serial import predict_list_serial_workflow, invert_list_serial_workflow from wrappers.arlexecute.visibility.base import copy_visibility from wrappers.arlexecute.calibration.operations import apply_gaintable from wrappers.arlexecute.execution_support.arlexecute import arlexecute from wrappers.arlexecute.imaging.base import predict_skycomponent_visibility from wrappers.arlexecute.skycomponent.base import copy_skycomponent from wrappers.arlexecute.skycomponent.operations import apply_beam_to_skycomponent from wrappers.arlexecute.visibility.coalesce import convert_blockvisibility_to_visibility, \ convert_visibility_to_blockvisibility log = logging.getLogger(__name__) def predict_skymodel_list_arlexecute_workflow(obsvis, skymodel_list, context, vis_slices=1, facets=1, gcfcf=None, docal=False, **kwargs): """Predict from a list of skymodels, producing one visibility per skymodel :param obsvis: "Observed Visibility" :param skymodel_list: skymodel list :param vis_slices: Number of vis slices (w stack or timeslice) :param facets: Number of facets (per axis) :param context: Type of processing e.g. 2d, wstack, timeslice or facets :param gcfcg: tuple containing grid correction and convolution function :param docal: Apply calibration table in skymodel :param kwargs: Parameters for functions in components :return: List of vis_lists """ def ft_cal_sm(ov, sm): assert isinstance(ov, Visibility), ov assert isinstance(sm, SkyModel), sm v = copy_visibility(ov) v.data['vis'][...] = 0.0 + 0.0j if len(sm.components) > 0: if isinstance(sm.mask, Image): comps = copy_skycomponent(sm.components) comps = apply_beam_to_skycomponent(comps, sm.mask) v = predict_skycomponent_visibility(v, comps) else: v = predict_skycomponent_visibility(v, sm.components) if isinstance(sm.image, Image): if numpy.max(numpy.abs(sm.image.data)) > 0.0: if isinstance(sm.mask, Image): model = copy_image(sm.image) model.data *= sm.mask.data else: model = sm.image v = predict_list_serial_workflow([v], [model], context=context, vis_slices=vis_slices, facets=facets, gcfcf=gcfcf, **kwargs)[0] if docal and isinstance(sm.gaintable, GainTable): bv = convert_visibility_to_blockvisibility(v) bv = apply_gaintable(bv, sm.gaintable, inverse=True) v = convert_blockvisibility_to_visibility(bv) return v return [arlexecute.execute(ft_cal_sm, nout=1)(obsvis, sm) for sm in skymodel_list] def invert_skymodel_list_arlexecute_workflow(vis_list, skymodel_list, context, vis_slices=1, facets=1, gcfcf=None, docal=False, **kwargs): """Calibrate and invert from a skymodel, iterating over the skymodel The visibility and image are scattered, the visibility is predicted and calibrated on each part, and then the parts are assembled. The mask if present, is multiplied in at the end. :param vis_list: List of Visibility data models :param skymodel_list: skymodel list :param vis_slices: Number of vis slices (w stack or timeslice) :param facets: Number of facets (per axis) :param context: Type of processing e.g. 2d, wstack, timeslice or facets :param gcfcg: tuple containing grid correction and convolution function :param docal: Apply calibration table in skymodel :param kwargs: Parameters for functions in components :return: List of (image, weight) tuples) """ def ift_ical_sm(v, sm): assert isinstance(v, Visibility), v assert isinstance(sm.image, Image), sm.image if docal and isinstance(sm.gaintable, GainTable): bv = convert_visibility_to_blockvisibility(v) bv = apply_gaintable(bv, sm.gaintable) v = convert_blockvisibility_to_visibility(bv) result = invert_list_serial_workflow([v], [sm.image], context=context, vis_slices=vis_slices, facets=facets, gcfcf=gcfcf, **kwargs)[0] if isinstance(sm.mask, Image): result[0].data *= sm.mask.data return result return [arlexecute.execute(ift_ical_sm, nout=1)(vis_list[i], sm) for i, sm in enumerate(skymodel_list)] def crosssubtract_datamodels_skymodel_list_arlexecute_workflow(obsvis, modelvis_list): """Form data models by subtracting sum from the observed and adding back each model in turn vmodel[p] = vobs - sum(i!=p) modelvis[i] This is the E step in the Expectation-Maximisation algorithm. :param obsvis: "Observed" visibility :param modelvis_list: List of Visibility data model predictions :return: List of (image, weight) tuples) """ # Now do the meaty part. We probably want to refactor this for performance once it works. def vsum(ov, mv): # Observed vis minus the sum of all predictions verr = copy_visibility(ov) for m in mv: verr.data['vis'] -= m.data['vis'] # Now add back each model in turn result = list() for m in mv: vr = copy_visibility(verr) vr.data['vis'] += m.data['vis'] result.append(vr) assert len(result) == len(mv) return result return arlexecute.execute(vsum, nout=len(modelvis_list))(obsvis, modelvis_list) def convolve_skymodel_list_arlexecute_workflow(obsvis, skymodel_list, context, vis_slices=1, facets=1, gcfcf=None, **kwargs): """Form residual image from observed visibility and a set of skymodel without calibration This is similar to convolving the skymodel images with the PSF :param vis_list: List of Visibility data models :param skymodel_list: skymodel list :param vis_slices: Number of vis slices (w stack or timeslice) :param facets: Number of facets (per axis) :param context: Type of processing e.g. 2d, wstack, timeslice or facets :param gcfcg: tuple containing grid correction and convolution function :param docal: Apply calibration table in skymodel :param kwargs: Parameters for functions in components :return: List of (image, weight) tuples) """ def ft_ift_sm(ov, sm): assert isinstance(ov, Visibility), ov v = copy_visibility(ov) v.data['vis'][...] = 0.0 + 0.0j if len(sm.components) > 0: if isinstance(sm.mask, Image): comps = copy_skycomponent(sm.components) comps = apply_beam_to_skycomponent(comps, sm.mask) v = predict_skycomponent_visibility(v, comps) else: v = predict_skycomponent_visibility(v, sm.components) if isinstance(sm.image, Image): if numpy.max(numpy.abs(sm.image.data)) > 0.0: if isinstance(sm.mask, Image): model = copy_image(sm.image) model.data *= sm.mask.data else: model = sm.image v = predict_list_serial_workflow([v], [model], context=context, vis_slices=vis_slices, facets=facets, gcfcf=gcfcf, **kwargs)[0] assert isinstance(sm.image, Image), sm.image result = invert_list_serial_workflow([v], [sm.image], context=context, vis_slices=vis_slices, facets=facets, gcfcf=gcfcf, **kwargs)[0] if isinstance(sm.mask, Image): result[0].data *= sm.mask.data return result return [arlexecute.execute(ft_ift_sm, nout=len(skymodel_list))(obsvis, sm) for sm in skymodel_list]
# This file is part of the Reproducible and Reusable Data Analysis Workflow # Server (flowServ). # # Copyright (C) 2019-2021 NYU. # # flowServ is free software; you can redistribute it and/or modify it under the # terms of the MIT License; see LICENSE file for more details. """Helper method for creating database objects.""" from passlib.hash import pbkdf2_sha256 from typing import Tuple import os from flowserv.model.base import GroupObject, RunObject, User, WorkflowObject from flowserv.model.database import DB from flowserv.model.files.base import FileStore from flowserv.model.group import WorkflowGroupManager from flowserv.model.run import RunManager from flowserv.model.template.parameter import ParameterIndex import flowserv.model.workflow.state as st import flowserv.util as util def create_group(session, workflow_id, users): """Create a new workflow group in the database. Expects a workflow identifier and a list of user identifier. Returns the identifier for the created group. Parameters ---------- session: sqlalchemy.orm.session.Session Database session. workflow_id: string Unique workflow identifier. users: list List of unique user identifier. Returns ------- string """ group_id = util.get_unique_identifier() group = GroupObject( group_id=group_id, workflow_id=workflow_id, name=group_id, owner_id=users[0], parameters=ParameterIndex(), workflow_spec=dict() ) # Add users as group members. for user_id in users: user = session.query(User).filter(User.user_id == user_id).one() group.members.append(user) session.add(group) return group_id def create_run(session, workflow_id, group_id): """Create a new group run. Returns the run identifier. Parameters ---------- session: sqlalchemy.orm.session.Session Database session. workflow_id: string Unique workflow identifier. group_id: string Unique group identifier. Returns ------- string """ run_id = util.get_unique_identifier() run = RunObject( run_id=run_id, workflow_id=workflow_id, group_id=group_id, state_type=st.STATE_PENDING ) session.add(run) return run_id def create_user(session, active=True): """Create a new user in the database. User identifier, name and password are all the same UUID. Returns the user identifier. Parameters ---------- session: sqlalchemy.orm.session.Session Database session. active: bool, default=True User activation flag. Returns ------- string """ user_id = util.get_unique_identifier() user = User( user_id=user_id, name=user_id, secret=pbkdf2_sha256.hash(user_id), active=active ) session.add(user) return user_id def create_workflow(session, workflow_spec=dict(), result_schema=None): """Create a new workflow handle for a given workflow specification. Returns the workflow identifier. Parameters ---------- session: sqlalchemy.orm.session.Session Database session. workflow_spec: dict, default=dict() Optional workflow specification. result_schema: dict, default=None Optional result schema. Returns ------- string """ workflow_id = util.get_unique_identifier() workflow = WorkflowObject( workflow_id=workflow_id, name=workflow_id, workflow_spec=workflow_spec, result_schema=result_schema ) session.add(workflow) return workflow_id def success_run(database: DB, fs: FileStore, basedir: str) -> Tuple[str, str, str, str]: """Create a successful run with two result files: - A.json - run/results/B.json Returns the identifier of the created workflow, group, run, and user. """ # Setup temporary run folder. tmprundir = os.path.join(basedir, 'tmprun') tmpresultsdir = os.path.join(tmprundir, 'run', 'results') os.makedirs(tmprundir) os.makedirs(tmpresultsdir) f1 = os.path.join(tmprundir, 'A.json') util.write_object(f1, {'A': 1}) f2 = os.path.join(tmpresultsdir, 'B.json') util.write_object(f2, {'B': 1}) with database.session() as session: user_id = create_user(session, active=True) workflow_id = create_workflow(session) group_id = create_group(session, workflow_id, users=[user_id]) groups = WorkflowGroupManager(session=session, fs=fs) runs = RunManager(session=session, fs=fs) run = runs.create_run(group=groups.get_group(group_id)) run_id = run.run_id state = run.state() runs.update_run( run_id, state.start().success(files=['A.json', 'run/results/B.json']), rundir=tmprundir ) assert not os.path.exists(tmprundir) return workflow_id, group_id, run_id, user_id
__author__ = 'Serhii Sheiko' # MIT licence import subprocess import sys # vnstat -tr 3 -i eth0 base_command = ['vnstat'] def help_message(): help_msg = '''Interface usage plugin. Requirements: vnstat params: -i - interface -t - time for checking in seconds -rx - limitations for input trafic -tx - limitations for output trafic for limitations warning and critical edge sepatated by comma. ex: 10,20 example: iface_usage.py -i eth0 -t 3 -rx 10,20 -tx 10,20''' print() def get_parameters(): all_params = sys.argv run_params = [] check_params = {} pass_iteration = False for i in range(0, len(all_params)): if pass_iteration == True: pass_iteration = False continue if all_params[i] == '-i': #run_params.append('-i ' + all_params[i+1]) run_params.append('-i') run_params.append(all_params[i+1]) pass_iteration = True elif all_params[i] == '-t': #run_params.append('-tr ' + all_params[i+1]) run_params.append('-tr') run_params.append(all_params[i+1]) pass_iteration = True elif all_params[i] == '-rx': check_params['rx'] = all_params[i+1] pass_iteration = True elif all_params[i] == '-tx': check_params['tx'] = all_params[i+1] pass_iteration = True return run_params, check_params def get_output(run_params): run_command = base_command + run_params p = subprocess.Popen(run_command, stdin=subprocess.PIPE, stdout=subprocess.PIPE) out_data, out_err = p.communicate() if out_err is not None: print(out_err) sys.exit(128) splited_data = out_data.splitlines() result_data = {} for line in splited_data: if len(line.split())>1: if line.split()[0] == 'rx': if line.split()[2] == 'Mbit/s': result_data['rx'] = float(line.split()[1].replace(',', '.')) * 1024 else: result_data['rx'] = float(line.split()[1].replace(',', '.')) elif line.split()[0] == 'tx': if line.split()[2] == 'Mbit/s': result_data['tx'] = float(line.split()[1].replace(',', '.')) * 1024 else: result_data['tx'] = float(line.split()[1].replace(',', '.')) return result_data def check_data(params_in): run_params, check_params = params_in output_data = get_output(run_params) result_string = 'Bandwitch usage: ' error_code = 0 for c_param in check_params: if not output_data.has_key(c_param): result_string = result_string + c_param + ' is unknown parameter; ' continue control_data = check_params[c_param].split(',') warn_level = float(control_data[0]) critical_level = float(control_data[1]) result_data = float(output_data[c_param]) if result_data > warn_level and result_data < critical_level: result_string = result_string + c_param + ': ' + str(result_data) + ' kbit/s warning; ' if 1 > error_code: error_code = 1 elif result_data > critical_level: result_string = result_string + c_param + ': ' + str(result_data) + ' kbit/s critical; ' if 2 > error_code: error_code = 2 else: result_string = result_string + c_param + ': ' + str(result_data) + ' kbit/s OK; ' print(result_string) sys.exit(error_code) check_data(get_parameters())
# Copyright (c) 2012 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Common Google Storage interface library.""" from __future__ import print_function import base64 import errno import os import re from chromite.lib import cros_build_lib from chromite.lib import cros_logging as logging from chromite.lib import gs from chromite.lib import osutils from chromite.lib.paygen import filelib from chromite.lib.paygen import utils PROTOCOL = 'gs' RETRY_ATTEMPTS = 2 GS_LS_STATUS_RE = re.compile(r'status=(\d+)') # Gsutil is filled in by "FindGsUtil" on first invocation. GSUTIL = None def FindGsUtil(): """Find which gsutil executuable to use. This may download and cache the command if needed, and will return the version pinned by chromite for general use. Will cache the result after the first call. This function is multi-process safe, but NOT THREAD SAFE. If you need to use gsutil functionality in threads, call this function at least once before creating the threads. That way the value will be safely pre-cached. Returns: Full path to the gsutil command to use. """ # TODO(dgarrett): This is a hack. Merge chromite and crostools to fix. global GSUTIL # pylint: disable=global-statement if GSUTIL is None: GSUTIL = gs.GSContext.GetDefaultGSUtilBin() return GSUTIL class GsutilError(Exception): """Base exception for errors where gsutil cannot be used for any reason.""" class GsutilMissingError(GsutilError): """Returned when the gsutil utility is missing from PATH.""" def __init__(self, msg='The gsutil utility must be installed.'): GsutilError.__init__(self, msg) class GSLibError(Exception): """Raised when gsutil command runs but gives an error.""" class CopyFail(GSLibError): """Raised if Copy fails in any way.""" class MoveFail(GSLibError): """Raised if Move fails in any way.""" class RemoveFail(GSLibError): """Raised if Remove fails in any way.""" class CatFail(GSLibError): """Raised if Cat fails in any way.""" class StatFail(GSLibError): """Raised if Stat fails in any way.""" class URIError(GSLibError): """Raised when URI does not behave as expected.""" class ValidateGsutilFailure(GSLibError): """We are unable to validate that gsutil is working correctly.""" def RetryGSLib(func): """Decorator to retry function calls that throw an exception. If the decorated method throws a GSLibError exception, the exception will be thrown away and the function will be run again until all retries are exhausted. On the final attempt, the exception will be thrown normally. Three attempts in total will be made to run the function (one more than RETRY_ATTEMPTS). @RetryGSLib def MyFunctionHere(): pass """ def RetryHandler(*args, **kwargs): """Retry func with given args/kwargs RETRY_ATTEMPTS times.""" warning_msgs = [] for i in xrange(0, RETRY_ATTEMPTS + 1): try: return func(*args, **kwargs) except GSLibError as ex: # On the last try just pass the exception on up. if i >= RETRY_ATTEMPTS: raise error_msg = str(ex) RESUMABLE_ERROR_MESSAGE = ( gs.GSContext.RESUMABLE_DOWNLOAD_ERROR, gs.GSContext.RESUMABLE_UPLOAD_ERROR, 'ResumableUploadException', 'ResumableDownloadException', 'ssl.SSLError: The read operation timed out', ) if (func.__name__ == 'Copy' and any(x in error_msg for x in RESUMABLE_ERROR_MESSAGE)): logging.info( 'Resumable download/upload exception occured for %s', args[1]) # Pass the dest_path to get the tracker filename. tracker_filenames = gs.GSContext.GetTrackerFilenames(args[1]) # This part of the code is copied from chromite.lib.gs with # slight modifications. This is a temporary solution until # we can deprecate crostools.lib.gslib (crbug.com/322740). logging.info('Potential list of tracker files: %s', tracker_filenames) for tracker_filename in tracker_filenames: tracker_file_path = os.path.join( gs.GSContext.DEFAULT_GSUTIL_TRACKER_DIR, tracker_filename) if os.path.exists(tracker_file_path): logging.info('Deleting gsutil tracker file %s before retrying.', tracker_file_path) logging.info('The content of the tracker file: %s', osutils.ReadFile(tracker_file_path)) osutils.SafeUnlink(tracker_file_path) else: if 'AccessDeniedException' in str(ex) or 'NoSuchKey' in str(ex): raise # Record a warning message to be issued if a retry actually helps. warning_msgs.append('Try %d failed with error message:\n%s' % (i + 1, ex)) else: # If the func succeeded, then log any accumulated warning messages. if warning_msgs: logging.warning('Failed %s %d times before success:\n%s', func.__name__, len(warning_msgs), '\n'.join(warning_msgs)) RetryHandler.__module__ = func.__module__ RetryHandler.__name__ = func.__name__ RetryHandler.__doc__ = func.__doc__ return RetryHandler def RunGsutilCommand(args, redirect_stdout=True, redirect_stderr=True, failed_exception=GSLibError, generation=None, headers=None, get_headers_from_stdout=False, **kwargs): """Run gsutil with given args through RunCommand with given options. Generally this method is intended for use within this module, see the various command-specific wrappers provided for convenience. However, it can be called directly if 'gsutil' needs to be called in specific way. A few of the options for RunCommand have their default values switched for this function. Those options are called out explicitly as options here, while addition RunCommand options can be used through extra_run_command_opts. Args: args: List of arguments to use with 'gsutil'. redirect_stdout: Boolean option passed directly to RunCommand. redirect_stderr: Boolean option passed directly to RunCommand. failed_exception: Exception class to raise if CommandFailedException is caught. It should be GSLibError or a subclass. generation: Only run the specified command if the generation matches. (See "Conditional Updates Using Object Versioning" in the gsutil docs.) headers: Fill in this dictionary with header values captured from stderr. get_headers_from_stdout: Whether header information is to be parsed from stdout (default: stderr). kwargs: Additional options to pass directly to RunCommand, beyond the explicit ones above. See RunCommand itself. Returns: Anything that RunCommand returns, which should be a CommandResult object. Raises: GsutilMissingError is the gsutil utility cannot be found. GSLibError (or whatever is in failed_exception) if RunCommand failed (and error_code_ok was not True). """ # The -d flag causes gsutil to dump various metadata, including user # credentials. We therefore don't allow users to pass it in directly. assert '-d' not in args, 'Cannot pass in the -d flag directly' gsutil = FindGsUtil() if generation is not None: args = ['-h', 'x-goog-if-generation-match:%s' % generation] + args if headers is not None: args.insert(0, '-d') assert redirect_stderr cmd = [gsutil] + args run_opts = { 'redirect_stdout': redirect_stdout, 'redirect_stderr': redirect_stderr, } run_opts.update(kwargs) try: result = cros_build_lib.RunCommand(cmd, **run_opts) except OSError as e: if e.errno == errno.ENOENT: raise GsutilMissingError() raise except cros_build_lib.RunCommandError as e: # If headers is set, we have to hide the output here because it may contain # credentials that we don't want to show in buildbot logs. raise failed_exception('%r failed' % cmd if headers else e.result.error) if headers is not None and result is not None: assert redirect_stdout if get_headers_from_stdout else redirect_stderr # Parse headers that look like this: # header: x-goog-generation: 1359148994758000 # header: x-goog-metageneration: 1 headers_source = result.output if get_headers_from_stdout else result.error for line in headers_source.splitlines(): if line.startswith('header: '): header, _, value = line.partition(': ')[-1].partition(': ') headers[header.replace('x-goog-', '')] = value # Strip out stderr entirely to avoid showing credentials in logs; for # commands that dump credentials to stdout, clobber that as well. result.error = '<stripped>' if get_headers_from_stdout: result.output = '<stripped>' return result def ValidateGsutilWorking(bucket): """Validate that gsutil is working correctly. There is a failure mode for gsutil in which all operations fail, and this is indistinguishable from all gsutil ls operations matching nothing. We check that there is at least one file in the root of the bucket. Args: bucket: bucket we are about to test. Raises: ValidateGsutilFailure: If we are unable to find any files in the bucket. """ url = 'gs://%s/' % bucket if not List(url): raise ValidateGsutilFailure('Unable to find anything in: %s' % url) @RetryGSLib def MD5Sum(gs_uri): """Read the gsutil md5 sum from etag and gsutil ls -L. Note that because this relies on 'gsutil ls -L' it suffers from the eventual consistency issue, meaning this function could fail to find the MD5 value for a recently created file in Google Storage. Args: gs_uri: An absolute Google Storage URI that refers directly to an object. No globs are supported. Returns: A string that is an md5sum, or None if no object found. Raises: GSLibError if the gsutil command fails. If there is no object at that path that is not considered a failure. """ gs_md5_regex = re.compile(r'.*?Hash \(md5\):\s+(.*)', re.IGNORECASE) args = ['ls', '-L', gs_uri] result = RunGsutilCommand(args, error_code_ok=True) # If object was not found then output is completely empty. if not result.output: return None for line in result.output.splitlines(): match = gs_md5_regex.match(line) if match: # gsutil now prints the MD5 sum in base64, but we want it in hex. return base64.b16encode(base64.b64decode(match.group(1))).lower() # This means there was some actual failure in the command. raise GSLibError('Unable to determine MD5Sum for %r' % gs_uri) @RetryGSLib def Cmp(path1, path2): """Return True if paths hold identical files, according to MD5 sum. Note that this function relies on MD5Sum, which means it also can only promise eventual consistency. A recently uploaded file in Google Storage may behave badly in this comparison function. If either file is missing then always return False. Args: path1: URI to a file. Local paths also supported. path2: URI to a file. Local paths also supported. Returns: True if files are the same, False otherwise. """ md5_1 = MD5Sum(path1) if IsGsURI(path1) else filelib.MD5Sum(path1) if not md5_1: return False md5_2 = MD5Sum(path2) if IsGsURI(path2) else filelib.MD5Sum(path2) return md5_1 == md5_2 @RetryGSLib def Copy(src_path, dest_path, acl=None, **kwargs): """Run gsutil cp src_path dest_path supporting GS globs. e.g. gsutil cp /etc/* gs://etc/ where /etc/* is src_path with a glob and gs://etc is dest_path. This assumes that the src or dest path already exist. Args: src_path: The src of the path to copy, either a /unix/path or gs:// uri. dest_path: The dest of the path to copy, either a /unix/path or gs:// uri. acl: an ACL argument (predefined name or XML file) to pass to gsutil kwargs: Additional options to pass directly to RunGsutilCommand, beyond the explicit ones above. See RunGsutilCommand itself. Raises: CopyFail: If the copy fails for any reason. """ args = ['cp'] if acl: args += ['-a', acl] args += [src_path, dest_path] RunGsutilCommand(args, failed_exception=CopyFail, **kwargs) @RetryGSLib def Move(src_path, dest_path, **kwargs): """Run gsutil mv src_path dest_path supporting GS globs. Note that the created time is changed to now for the moved object(s). Args: src_path: The src of the path to move, either a /unix/path or gs:// uri. dest_path: The dest of the path to move, either a /unix/path or gs:// uri. kwargs: Additional options to pass directly to RunGsutilCommand, beyond the explicit ones above. See RunGsutilCommand itself. Raises: MoveFail: If the move fails for any reason. """ args = ['mv', src_path, dest_path] RunGsutilCommand(args, failed_exception=MoveFail, **kwargs) @RetryGSLib def Remove(*paths, **kwargs): # pylint: disable=docstring-misnamed-args """Run gsutil rm on path supporting GS globs. Args: paths: Local path or gs URI, or list of same. ignore_no_match: If True, then do not complain if anything was not removed because no URI match was found. Like rm -f. Defaults to False. recurse: Remove recursively starting at path. Same as rm -R. Defaults to False. kwargs: Additional options to pass directly to RunGsutilCommand, beyond the explicit ones above. See RunGsutilCommand itself. Raises: RemoveFail: If the remove fails for any reason. """ ignore_no_match = kwargs.pop('ignore_no_match', False) recurse = kwargs.pop('recurse', False) args = ['rm'] if recurse: args.append('-R') args.extend(paths) try: RunGsutilCommand(args, failed_exception=RemoveFail, **kwargs) except RemoveFail as e: should_raise = True msg = str(e.args[0]) # Sometimes Google Storage glitches and complains about failing to remove a # specific revision of the file. It ends up getting removed anyway, but it # throws a NotFoundException. if (ignore_no_match and (('No URLs matched' in msg) or ('NotFoundException:' in msg))): should_raise = False if should_raise: raise def RemoveDirContents(gs_dir_uri): """Remove all contents of a directory. Args: gs_dir_uri: directory to delete contents of. """ Remove(os.path.join(gs_dir_uri, '**'), ignore_no_match=True) def CreateWithContents(gs_uri, contents, **kwargs): """Creates the specified file with specified contents. Args: gs_uri: The URI of a file on Google Storage. contents: Contents to write to the file. kwargs: Additional options to pass directly to RunGsutilCommand, beyond the explicit ones above. See RunGsutilCommand itself. Raises: CopyFail: If it fails for any reason. """ with utils.CreateTempFileWithContents(contents) as content_file: Copy(content_file.name, gs_uri, **kwargs) @RetryGSLib def Cat(gs_uri, **kwargs): """Return the contents of a file at the given GS URI Args: gs_uri: The URI of a file on Google Storage. kwargs: Additional options to pass directly to RunGsutilCommand, beyond the explicit ones above. See RunGsutilCommand itself. Raises: CatFail: If the cat fails for any reason. """ args = ['cat', gs_uri] result = RunGsutilCommand(args, failed_exception=CatFail, **kwargs) return result.output def Stat(gs_uri, **kwargs): """Stats a file at the given GS URI (returns nothing). Args: gs_uri: The URI of a file on Google Storage. kwargs: Additional options to pass directly to RunGsutilCommand, beyond the explicit ones above. See RunGsutilCommand itself. Raises: StatFail: If the stat fails for any reason. """ args = ['stat', gs_uri] # IMPORTANT! With stat, header information is dumped to standard output, # rather than standard error, as with other gsutil commands. Hence, # get_headers_from_stdout must be True to ensure both correct parsing of # output and stripping of sensitive information. RunGsutilCommand(args, failed_exception=StatFail, get_headers_from_stdout=True, **kwargs) def IsGsURI(path): """Returns true if the path begins with gs:// Args: path: An absolute Google Storage URI. Returns: True if path is really a google storage uri that begins with gs:// False otherwise. """ return path and path.startswith(PROTOCOL + '://') # TODO(mtennant): Rename this "Size" for consistency. @RetryGSLib def FileSize(gs_uri, **kwargs): """Return the size of the given gsutil file in bytes. Args: gs_uri: Google Storage URI (beginning with 'gs://') pointing directly to a single file. kwargs: Additional options to pass directly to RunGsutilCommand, beyond the explicit ones above. See RunGsutilCommand itself. Returns: Size of file in bytes. Raises: URIError: Raised when URI is unknown to Google Storage or when URI matches more than one file. """ headers = {} try: Stat(gs_uri, headers=headers, **kwargs) except StatFail as e: raise URIError('Unable to stat file at URI %r: %s' % (gs_uri, e)) size_str = headers.get('stored-content-length') if size_str is None: raise URIError('Failed to get size of %r' % gs_uri) return int(size_str) def Exists(gs_uri, **kwargs): """Return True if object exists at given GS URI. Args: gs_uri: Google Storage URI. Must be a fully-specified URI with no glob expression. Even if a glob expression matches this method will return False. kwargs: Additional options to pass directly to RunGsutilCommand, beyond the explicit ones above. See RunGsutilCommand itself. Returns: True if gs_uri points to an existing object, and False otherwise. """ try: Stat(gs_uri, **kwargs) except StatFail: return False return True @RetryGSLib def List(root_uri, recurse=False, filepattern=None, sort=False): """Return list of file and directory paths under given root URI. Args: root_uri: e.g. gs://foo/bar recurse: Look in subdirectories, as well filepattern: glob pattern to match against basename of path sort: If True then do a default sort on paths Returns: List of GS URIs to paths that matched """ gs_uri = root_uri if recurse: # In gs file patterns '**' absorbs any number of directory names, # including none. gs_uri = gs_uri.rstrip('/') + '/**' # Now match the filename itself at the end of the URI. if filepattern: gs_uri = gs_uri.rstrip('/') + '/' + filepattern args = ['ls', gs_uri] try: result = RunGsutilCommand(args) paths = [path for path in result.output.splitlines() if path] if sort: paths = sorted(paths) return paths except GSLibError as e: # The ls command will fail under normal operation if there was just # nothing to be found. That shows up like this to stderr: # CommandException: One or more URLs matched no objects. if 'CommandException: One or more URLs matched no objects.' not in str(e): raise # Otherwise, assume a normal error. # TODO(mtennant): It would be more functionally correct to return this # if and only if the error is identified as a "file not found" error. # We simply have to determine how to do that reliably. return [] def ListFiles(root_uri, recurse=False, filepattern=None, sort=False): """Return list of file paths under given root URI. Directories are intentionally excluded. Args: root_uri: e.g. gs://foo/bar recurse: Look for files in subdirectories, as well filepattern: glob pattern to match against basename of file sort: If True then do a default sort on paths Returns: List of GS URIs to files that matched """ paths = List(root_uri, recurse=recurse, filepattern=filepattern, sort=sort) # Directory paths should be excluded from output, per ListFiles guarantee. return [path for path in paths if not path.endswith('/')]
import os from flask import send_from_directory from metric.app import ROOTPATH from metric.app.resource import Resource class Public(Resource): def get(self, d, f): """ ____This resource get will only get the public with 1 depth path only____ @param d: directory public you wanted to access @param f: the file you wanted to accessed @return: the file from directory """ return send_from_directory(os.path.join(ROOTPATH, 'public', d), f)
class Scope: def __init__ (self, parent=None): self.parent = parent self.elements = dict() def get_element (self, name, type, current=False): r = self.elements.get(type, None) if r != None: r = r.get(name, None) if r == None and self.parent != None and not current: return self.parent.get_element(name, type) else: return r def add_element (self, obj): _type = type(obj) if _type not in self.elements: self.elements[_type] = dict() self.elements[_type][obj.name] = obj def subscope (self): return Scope(self) def topscope (self): return self.parent
"""https://www.codewars.com/kata/576b93db1129fcf2200001e6""" def sum_array(arr): """Returns sum of list without highest and lowest vlues""" return 0 if arr is None or arr == [] else sum(sorted(arr)[1:-1]) def test_cases(): """Sample test cases""" assert sum_array(None) == 0 assert sum_array([]) == 0 assert sum_array([3]) == 0 assert sum_array([-3]) == 0 assert sum_array([ 3, 5]) == 0 assert sum_array([-3, -5]) == 0 assert sum_array([6, 2, 1, 8, 10]) == 16 assert sum_array([6, 0, 1, 10, 10]) == 17 assert sum_array([-6, -20, -1, -10, -12]) == -28 assert sum_array([-6, 20, -1, 10, -12]) == 3 print("Test Success!") test_cases()
import json from os import path from pathlib import Path class CommonPath: _instance = None def __init__(self): self.PROJECT_ABS_PATH = path.abspath(Path(__file__).parent.parent.absolute()) self.CONFIG_ABS_PATH = self.PROJECT_ABS_PATH + "/config.json" with open(self.CONFIG_ABS_PATH, "r") as json_file: content = json.load(json_file) self.DB_CONFIG_ABS_PATH = self.PROJECT_ABS_PATH + "/" + content["DB_CONFIG_PATH"] self.APP_CONFIG_ABS_PATH = self.PROJECT_ABS_PATH + "/" + content["APP_CONFIG_PATH"] self.UPLOAD_CONFIG_ABS_PATH = self.PROJECT_ABS_PATH + "/" + content["UPLOAD_CONFIG_PATH"] @classmethod def get_instance(cls): if not cls._instance: cls._instance = CommonPath() return cls._instance
"""Core feature extensions for the project related to Python packaging.""" from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals
#!/usr/bin/env python # -*- coding: utf-8 -*- # The MIT License (MIT) # # Copyright (c) 2015 Fredy Wijaya # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. __author__ = 'Fredy Wijaya' import argparse, shutil, sys, subprocess, os, zipfile # put your source packages here source_packages = [ ] # put your third party packages here third_party_packages = [ ] all_packages = third_party_packages + source_packages # put your test packages here test_packages = [ ] # any target compilation, leave it empty cross_compilations = [ ] # the name of the executable executables = [] # the release directory release_dir = '' # the release archive file release_file = '' files_to_remove = [ 'bin', 'pkg', release_dir, release_file, ] def parse_args(): parser = argparse.ArgumentParser( formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=80)) parser.add_argument('--clean', action='store_true', dest='clean', help='clean the project') parser.add_argument('--package', action='store_true', dest='package', help='create a package') parser.add_argument('--test', action='store_true', dest='test', help='run the tests') parser.add_argument('--test-package', type=str, dest='test_package', help='run a specific test package') parser.add_argument('--test-case', type=str, dest='test_case', help='run a specific test case') parser.add_argument('--cross-compile', action='store_true', dest='cross_compile', help='cross-compile the build') parser.add_argument('--no-govet', action='store_true', dest='no_govet', help='run go vet') parser.add_argument('--no-golint', action='store_true', dest='no_golint', help='run go lint') args = parser.parse_args() if args.test_package is not None: if not args.test: error_and_exit('--test option is required for --test-package option') if args.test_case is not None: if not args.test: error_and_exit('--test option is required for --test-case option') if args.test_package is None: error_and_exit('--test-package option is required for --test-case option') return args def error(msg): print 'Error:', msg def error_and_exit(msg): error(msg) sys.exit(1) def build_packages(args): for package in all_packages: # only do gofmt, golint, and govet on source packages env_vars = os.environ.copy() if 'GOPATH' in env_vars: env_vars['GOPATH'] = os.getcwd() + os.pathsep + env_vars['GOPATH'] else: env_vars['GOPATH'] = os.getcwd() if package in source_packages: gofmt(package, env_vars) if not args.no_golint: golint(package, env_vars) if not args.no_govet: govet(package, env_vars) cmd = ['go', 'install', package] cmd_str = ' '.join(cmd) if args.cross_compile: for cross_compilation in cross_compilations: env_vars['GOOS'] = cross_compilation[0] env_vars['GOARCH'] = cross_compilation[1] if subprocess.call(cmd, env=env_vars) != 0: error_and_exit('Got a non-zero exit code while executing ' + cmd_str) else: if subprocess.call(cmd, env=env_vars) != 0: error_and_exit('Got a non-zero exit code while executing ' + cmd_str) def run_tests(args): if args.test_package is not None: if args.test_case is not None: # run all tests in a particular test package cmd = ['go', 'test', args.test_package, '-run', args.test_case, '-v'] cmd_str = ' '.join(cmd) env_vars = os.environ.copy() env_vars['GOPATH'] = os.getcwd() if subprocess.call(cmd, env=env_vars) != 0: error_and_exit('Got a non-zero exit code while executing ' + cmd_str) else: # run a specific test case in a particular test package cmd = ['go', 'test', args.test_package, '-v'] cmd_str = ' '.join(cmd) env_vars = os.environ.copy() env_vars['GOPATH'] = os.getcwd() if subprocess.call(cmd, env=env_vars) != 0: error_and_exit('Got a non-zero exit code while executing ' + cmd_str) else: # run all tests in all test packages for test_package in test_packages: cmd = ['go', 'test', test_package, '-v'] cmd_str = ' '.join(cmd) env_vars = os.environ.copy() env_vars['GOPATH'] = os.getcwd() if subprocess.call(cmd, env=env_vars) != 0: error_and_exit('Got a non-zero exit code while executing ' + cmd_str) def clean(): for f in files_to_remove: if os.path.exists(f): if os.path.isdir(f): shutil.rmtree(f) else: os.remove(f) def create_package(): if not os.path.isdir(release_dir): os.makedirs(release_dir) execs = [] for root, dirs, files in os.walk('bin'): for f in files: for executable in executables: if f.startswith(executable): execs.append(os.path.join(root, f)) for exc in execs: shutil.copy2(exc, release_dir) with zipfile.ZipFile(release_file, 'w') as zf: for root, dirs, files in os.walk(release_dir): for f in files: zf.write(os.path.join(root, f)) def gofmt(pkg, env_vars): cmd = ['go', 'fmt', pkg] cmd_str = ' '.join(cmd) if subprocess.call(cmd, env=env_vars) != 0: error_and_exit('Got a non-zero exit code while executing ' + cmd_str) def govet(pkg, env_vars): cmd = ['go', 'vet', pkg] cmd_str = ' '.join(cmd) if subprocess.call(cmd, env=env_vars) != 0: error_and_exit('Got a non-zero exit code while executing ' + cmd_str) def golint(pkg, env_vars): cmd = ['golint', pkg] cmd_str = ' '.join(cmd) if subprocess.call(cmd, env=env_vars) != 0: error_and_exit('Got a non-zero exit code while executing ' + cmd_str) def main(args): if args.clean: clean() else: build_packages(args) if args.test: run_tests(args) if args.package: create_package() if __name__ == '__main__': args = parse_args() main(args)
from .chem_objects import ChemObject """ Lazy Classes to create useful organic compounds. """ class PrimaryAlcohol(ChemObject): """ Returns a straight chain alcohol. chain_length >= 1 TODO: Isn't working currently for some reason. Will fix later. """ def __init__(self, chain_length=1): compound = methyl + (chain_length-1)*methylene + "-OH" print(compound) ChemObject.__init__(self, compound) class SecondaryAlcohol(ChemObject): """ Use pos >= 2 and chain_length >= 3 for desired results. """ def __init__(self, pos=2, chain_length=3): ChemObject.__init__(self, methyl + (pos-1)*methylene + methine + "(-OH)" + (chain_length-pos-1)*methylene + methyl) class PrimaryAcid(ChemObject): """ Returns a straight chain carboxylic acid. chain_length >= 1 """ def __init__(self, chain_length=1): if chain_length == 1: ChemObject.__init__(self, "H[3]-C(-OH[5])=O") else: compound = methyl + (chain_length-2)*methylene + "-COOH" print(compound) ChemObject.__init__(self, compound) """ These are a few compounds that are very frequently used and so can be called directly, without having to write the long chemfig code again and again. Saves time, really. """ methyl = "[4]H-C(-[2]H)(-[6]H)" methylene = "-C(-[2]H)(-[6]H)" methine = "-C(-[2]H)" Phenol = "*6(-=-=(-OH)-=)" Water = "[5]H-\lewis{1:2:,O}-H[-1]" Ethanol = PrimaryAlcohol(2) Acetic_Acid = Ethanoic_Acid = PrimaryAcid(2) Benzene = "*6(-=-=-=)" Benzene_Diazonium_Chloride = BDC = "*6(-=-=(-\\chemabove{N_2}{\quad\scriptstyle+}\\chemabove{Cl}{\quad\scriptstyle-})-=-)" Aniline ="*6(-=-=(-NH2)-=-)" Carbon_Dioxide = CO2 = "[4]O=C=O"
from OpenGLCffi.GL import params @params(api='gl', prms=['n', 'states']) def glCreateStatesNV(n, states): pass @params(api='gl', prms=['n', 'states']) def glDeleteStatesNV(n, states): pass @params(api='gl', prms=['state']) def glIsStateNV(state): pass @params(api='gl', prms=['state', 'mode']) def glStateCaptureNV(state, mode): pass @params(api='gl', prms=['tokenID', 'size']) def glGetCommandHeaderNV(tokenID, size): pass @params(api='gl', prms=['shadertype']) def glGetStageIndexNV(shadertype): pass @params(api='gl', prms=['primitiveMode', 'buffer', 'indirects', 'sizes', 'count']) def glDrawCommandsNV(primitiveMode, buffer, indirects, sizes, count): pass @params(api='gl', prms=['primitiveMode', 'indirects', 'sizes', 'count']) def glDrawCommandsAddressNV(primitiveMode, indirects, sizes, count): pass @params(api='gl', prms=['buffer', 'indirects', 'sizes', 'states', 'fbos', 'count']) def glDrawCommandsStatesNV(buffer, indirects, sizes, states, fbos, count): pass @params(api='gl', prms=['indirects', 'sizes', 'states', 'fbos', 'count']) def glDrawCommandsStatesAddressNV(indirects, sizes, states, fbos, count): pass @params(api='gl', prms=['n', 'lists']) def glCreateCommandListsNV(n, lists): pass @params(api='gl', prms=['n', 'lists']) def glDeleteCommandListsNV(n, lists): pass @params(api='gl', prms=['list']) def glIsCommandListNV(list): pass @params(api='gl', prms=['list', 'segment', 'indirects', 'sizes', 'states', 'fbos', 'count']) def glListDrawCommandsStatesClientNV(list, segment, indirects, sizes, states, fbos, count): pass @params(api='gl', prms=['list', 'segments']) def glCommandListSegmentsNV(list, segments): pass @params(api='gl', prms=['list']) def glCompileCommandListNV(list): pass @params(api='gl', prms=['list']) def glCallCommandListNV(list): pass
"""Module for the Risk-Exploiting Graph Scenario with variable input parameters - Network of agents are to act as a connecition between origin and destination terminals of known (observed). - This is a simplified, surrogate scenario for the more complex communication relay scenario since would be expected to produce similar physical behavior of the network without adding the complexity of message passing to the action space - Agents can form links to other agents over small distances - Reward is received by all agents if the two fixed terminals are connected (identical_systemic_reward case) - An unobserved landmark in the environment is a hazard and can cause agents in its vicinity to be terminated with some probability. Surviving agents may observed terminated agents in order to deduce location of the hazard and avoid - Agents actions are their movements - Scenario is derived from simple_graph_small, simple_graph_large, and ergo_graph_large, making the following settable parameters instead of hard coded - number of agents - number of hazards (0,1) - whether rewards are shared or "local" - whether observations are direct per entity or histogram based - Hazard failure risk - Collision failure risk """ import numpy as np from bisect import bisect, insort from shapely.geometry import LineString, Point from multiagent.scenario import BaseScenario from multiagent.core import Landmark from particle_environments.mager.observation import format_observation, agent_histogram_observation from particle_environments.mager.world import SensingLimitedMortalAgent, MortalAgent, HazardousWorld, RiskRewardLandmark from particle_environments.common import is_collision, distance, delta_pos, delta_vel, nearest_point_on_line_segment_2d, check_2way_communicability from particle_environments.common import RadialPolynomialRewardFunction2D as RadialReward from particle_environments.common import RadialBernoulliRiskFunction2D as RadialRisk from particle_environments.common import linear_index_to_lower_triangular, SimpleNetwork, truncate_or_pad from rl_algorithms.scenariolearning import ScenarioHeuristicAgentTrainer # Scenario Parameters #_MAX_CONNECTION_DISTANCE = 0.60 # 4 agents _TERMINAL_DISTANCE = 2.0 _CONNECTION_MARGIN = 1.2 _MAX_OBSERVATION_DISTANCE = 1.0 _CONNECTION_REWARD = 1.0 _TERMINATION_REWARD = -0.0 _AGENT_SIZE = 0.01 _LANDMARK_SIZE = 0.025 _HAZARD_SIZE = 0.1 _N_RADIAL_BINS = 4 _N_ANGULAR_BINS = 8 _N_OBSERVED_TERMINATIONS = 5 _N_TERMINALS = 2 _ZERO_THRESHOLD = 1e-6 class Scenario(BaseScenario): def __init__(self, *, num_agents, num_hazards, identical_rewards, observation_type, hazard_risk=0.5, collision_risk=0.0): ''' Args: - num_agents [int] number of agents in scenario - num_hazards [int] number of hazards landmarks in the scenario - identical_rewards [bool] true if all agents receieve exact same reward, false if rewards are "local" to agents - observation_type [str] "direct" if observation directly of each entity, "histogram" if bin entities in spacial grid - hazard_risk [float] max probability of failure caused by hazard landmark - collision_risk [float] probability of failure caused by collision ''' # check inputs assert isinstance(num_agents, int); assert num_agents >= 1 assert isinstance(num_hazards, int); assert (num_hazards == 0 or num_hazards == 1) assert isinstance(identical_rewards, bool) assert (observation_type == "direct" or observation_type == "histogram") assert (hazard_risk >= 0.0 and hazard_risk <= 1.0) assert (collision_risk >= 0.0 and collision_risk <= 1.0) # set max connection distance such that there is a 5% probability of connection # between terminals given random placement of n agents # equation found emperically, see connection_probability_measurement.py if not np.isclose(_TERMINAL_DISTANCE, 2.0): raise Warning('Connection distance formula assumes distance between terminals of 2.0, received {}'.format(_TERMINAL_DISTANCE)) # c_1 = 1.6838; c_2 = 0.18367; c_3 = -0.5316 # 5% probability of connection with random placement # c_1 = 1.29428202; c_2 = 0.24156174; c_3 = -0.23681555 # 1% probability of connection with random placement c_1 = 0.9834973; c_2 = 0.34086771; c_3 = -0.01181418 # 0.1% probability of connection with random placement self.max_connection_distance = c_1 * num_agents**(-c_2) + c_3 assert self.max_connection_distance > 0.0 # set member vars self.num_agents = num_agents self.num_hazards = num_hazards self.identical_rewards = identical_rewards self.observation_type = observation_type self.hazard_risk = hazard_risk self.collision_risk = collision_risk def make_world(self): world = HazardousWorld() # set scenario-specific world parameters world.collaborative = True world.systemic_rewards = True world.identical_rewards = self.identical_rewards world.dim_c = 0 # observation-based communication world.connection_reward = _CONNECTION_REWARD world.termination_reward = _TERMINATION_REWARD world.render_connections = True # add landmarks. terminals first then hazards (if any) # world.origin_terminal_landmark = RiskRewardLandmark( risk_fn=None, reward_fn=RadialReward(1.0, 0.0)) # world.destination_terminal_landmark = RiskRewardLandmark( risk_fn=None, reward_fn=RadialReward(1.0, 0.0)) world.origin_terminal_landmark = Landmark() world.destination_terminal_landmark = Landmark() world.landmarks = [world.origin_terminal_landmark, world.destination_terminal_landmark] world.hazard_landmarks = [] for i in range(self.num_hazards): lm = RiskRewardLandmark( risk_fn=RadialRisk(_HAZARD_SIZE, self.hazard_risk), reward_fn=RadialReward(_HAZARD_SIZE, 0.0)) lm.silent = True lm.deaf = True lm.ignore_connection_rendering = True world.hazard_landmarks.append(lm) world.landmarks.append(lm) for i, landmark in enumerate(world.landmarks): landmark.name = 'landmark_%d' % i landmark.collide = False landmark.movable = False landmark.size = _LANDMARK_SIZE # properties for landmarks if isinstance(landmark, RiskRewardLandmark) and landmark.is_hazard: #TODO: make colors heatmap of risk probability over all bounds landmark.color = np.array([landmark.risk_fn.get_failure_probability(0,0) + .1, 0, 0]) else: landmark.color = np.array([0.25, 0.25, 0.25]) # make initial conditions self.reset_world(world) return world def reset_world(self, world): # random properties for agents # add agents world.agents = [SensingLimitedMortalAgent(_MAX_OBSERVATION_DISTANCE, self.max_connection_distance) for i in range(self.num_agents)] for i, agent in enumerate(world.agents): agent.name = 'agent_%d' % i agent.collide = True agent.blind = False agent.silent = False agent.deaf = False agent.terminated = False agent.size = _AGENT_SIZE agent.state.p_pos = np.random.uniform(-1, +1, world.dim_p) agent.state.p_vel = np.zeros(world.dim_p) agent.state.c = np.zeros(world.dim_c) agent.color = np.array([0.35, 0.35, 0.85]) agent.previous_observation = None # place landmarks for landmark in world.landmarks: # landmark.state.p_pos = np.random.uniform(-1, +1, world.dim_p) landmark.state.p_pos = np.zeros(world.dim_p) landmark.state.p_vel = np.zeros(world.dim_p) # randomize terminal locations, but regularize to ensure conistent distances origin_state, destination_state, hazard_states = self.spawn_landmarks(world) world.origin_terminal_landmark.state.p_pos = origin_state world.destination_terminal_landmark.state.p_pos = destination_state for i in range(self.num_hazards): world.hazard_landmarks[i].state.p_pos = hazard_states[i] def spawn_landmarks(self, world): ''' create communication terminals at random positions but regularized distance Notes: - regularizing the distance between terminals is important to ensure consistency in max rewards possible between different episodes ''' # angle of line connecting terminals th = np.random.uniform(0, 2.0*np.pi) # distance between terminals # d = np.random.normal(2.0, 0.1) d = _TERMINAL_DISTANCE dx = d/2.0*np.cos(th) dy = d/2.0*np.sin(th) # center of line connecting terminals xc = yc = 0.0 # hazard state position along connecting line hazard_states = [] for i in range(self.num_hazards): dh = np.random.uniform(-0.9*d/2.0, 0.9*d/2.0) dhx = dh*dx dhy = dh*dy hazard_states.append(np.array([xc+dhx, yc+dhy])) return (np.array([xc-dx, yc-dy]), np.array([xc+dx, yc+dy]), hazard_states) def benchmark_data(self, agent, world): collisions = 0 occupied_landmarks = 0 min_dists = 0 for l in world.landmarks: dists = [np.linalg.norm(a.state.p_pos - l.state.p_pos) for a in world.agents] min_dists += min(dists) if min(dists) < 0.1: occupied_landmarks += 1 if agent.collide: for a in world.agents: if is_collision(a, agent): collisions += 1 return (self.reward(agent, world), collisions, min_dists, occupied_landmarks) def done_callback(self, agent, world): ''' indicate a terminated agent as done (still being decided) Notes: - Even though terminated agent cannot take actions, it may be more appropriate to NOT set the agent is done in order to keep collecting data for training purposes ''' # if agent.terminated: # return True # else: # return False return False def reward(self, agent, world, systemic_call=False): if systemic_call: if self.identical_rewards and world.identical_rewards: return self._identical_systemic_reward(world) elif not self.identical_rewards and not world.identical_rewards: return self._local_systemic_reward(world) else: raise Exception( "Inconsistent reward options: self.identical_rewards={} world.identical_rewards={}".format( self.identical_rewards, world.identical_rewards)) else: return 0.0 def _local_systemic_reward(self, world): ''' reward agent if they are part of complete connection between terminals Notes: ''' assert self.identical_rewards == False assert world.identical_rewards == False comm_net = self._create_network(world) reward_n = [0.0]*self.num_agents node_count = 2 for i, a in enumerate(world.agents): if a.terminated: reward_n[i] = world.termination_reward else: # check ordering has stayed consistent in node list assert(a==comm_net.nodes[node_count]) reward_n[i] = world.connection_reward*( comm_net.breadth_first_connectivity_search(node_count, 0) and comm_net.breadth_first_connectivity_search(node_count, 1) ) node_count += 1 return reward_n def _identical_systemic_reward(self, world): ''' reward all agents the same if there is a complete connection between terminals Notes: ''' assert self.identical_rewards == True assert world.identical_rewards == True comm_net = self._create_network(world) reward_n = [comm_net.breadth_first_connectivity_search(0,1)]*self.num_agents return reward_n def _create_network(self, world): ''' Establish connectivity network at every time step ''' # define nodes in simple connectivity network # by construction, node 0 is origin landmark, node 1 is destination landmark # terminated agents are not part of network nodes = [world.origin_terminal_landmark, world.destination_terminal_landmark] nodes.extend([a for a in world.agents if not a.terminated]) n_nodes = len(nodes) comm_net = SimpleNetwork(nodes) # init list to hold direct communication distance values between agents # there is no direct communication between origin and destination n_pairs = int(n_nodes*(n_nodes+1)/2) # calculate direct communication resistance between agents for k in range(n_pairs): i,j = linear_index_to_lower_triangular(k) if i==1 and j==0: continue # enforce that origin & destination don't directly connect if check_2way_communicability(nodes[i], nodes[j]): comm_net.add_edge(i, j) # systemic reward is inverse of resistance (conductance) return comm_net def observation(self, agent, world): ''' call observation function based on type of observation function ''' if self.observation_type == "direct": return self._direct_observation(agent, world) elif self.observation_type == "histogram": return self._histogram_observation(agent, world) else: raise Exception("Unrecognized observation type: {}".format(self.observation_type)) def _direct_observation(self, agent, world): # get positions of all entities in this agent's reference frame def communications_observed(other_comm_node): ''' Communication between agents is just the conductance Notes: - inverse of comm resistance (i.e. conductance) used so that we can use zero for out of range comms - noisy measurement of heading - TODO: observation of failures ''' # check if node is terminated is_terminated = 0 if isinstance(other_comm_node, MortalAgent) and other_comm_node.terminated: is_terminated = 1 dx = dy = dvx = dvy = 0. if not is_terminated: dx, dy = delta_pos(other_comm_node, agent) dvx, dvy = delta_vel(other_comm_node, agent) comms = [is_terminated, dx, dy, dvx, dvy] # set comms to zero if out for range # if distance(agent, other_comm_node) > agent.max_observation_distance: if not check_2way_communicability(agent, other_comm_node): comms = [0] * len(comms) return comms # Observe communication terminals terminals = (world.origin_terminal_landmark.state.p_pos.tolist() + world.destination_terminal_landmark.state.p_pos.tolist()) # comm_nodes are origin and destination terminals and unterminated agents comm_nodes = [] comm_nodes.extend([a for a in world.agents if a is not agent]) communications = format_observation(observe = communications_observed, objects = comm_nodes, num_observations = self.num_agents-1, observation_size = 2*world.dim_p + 1) # package observation obs = np.asarray([agent.terminated] + agent.state.p_vel.tolist() + agent.state.p_pos.tolist() + terminals + communications) return obs def _histogram_observation(self, agent, world): # get positions of all entities in this agent's reference frame # Observe communication terminals terminals = (world.origin_terminal_landmark.state.p_pos.tolist() + world.destination_terminal_landmark.state.p_pos.tolist()) # get histogram of agent observations agent_histogram_2d, observed_terminations_2d = agent_histogram_observation( agent, world.agents, _MAX_OBSERVATION_DISTANCE, _N_RADIAL_BINS, _N_ANGULAR_BINS) # flatten histogram to 1d list agent_histogram = [val for sublist in agent_histogram_2d for val in sublist] # flatten, truncate/pad observed terminations to fixed length observed_terminations = [val for sublist in observed_terminations_2d for val in sublist] observed_terminations = truncate_or_pad(observed_terminations, 2*_N_OBSERVED_TERMINATIONS) # package new observation new_obs = np.asarray([agent.terminated] + agent.state.p_vel.tolist() + agent.state.p_pos.tolist() + terminals + agent_histogram + observed_terminations) # append previous observation for velocity estimation if agent.previous_observation is None: agent.previous_observation = 0.0*new_obs obs = np.append(new_obs, agent.previous_observation) agent.previous_observation = new_obs return obs class ScenarioHeuristicComputer(ScenarioHeuristicAgentTrainer): ''' representation of an individual agent's embedded processor and memory tailor Notes: - This is meant to be used as a scenario-specific alternative to the more general purpose, scenario-agnostic "trainers". It can hold an agents model of the world (transition and reward functions), policy, and learning process, if any. ''' def __init__(self, name, model, obs_shape_n, act_space_n, agent_index, args, **kwargs): ScenarioHeuristicAgentTrainer.__init__(self, name, model, obs_shape_n, act_space_n, agent_index, args) raise NotImplementedError() def get_initial_policy_distribution(self): ''' method for "jumpstarting" monte carlo group distribution ''' raise NotImplementedError() def action(self, obs): ''' maps observation array to action forces in x,y directions Notes: - Assumes observation array formated as: [0:2] = agent.state.p_vel.tolist() [2:4] = agent.state.p_pos.tolist() [4:8] = terminals [8:40] = agent_histogram + failures) ''' raise NotImplementedError() def experience(self, obs, act, rew, new_obs, done, terminal): ''' Monte Carlo learning only record cumulative reward ''' # record cumulative reward raise NotImplementedError() def preupdate(self): '''unused function handle compatibility with train.py ''' raise NotImplementedError() def update(self, agents, t): '''unused function handle compatibility with train.py ''' raise NotImplementedError() def group_policy_update(self, group_policy): '''update behavior parameters based on group policy ''' raise NotImplementedError()
import mysql.connector as conn import pandas as pd import datetime def show_books(roll,password): try: cnx=conn.connect(user='root',password='swapn',host='127.0.0.1',database='library') cur_book=cnx.cursor() cur_book.execute("select * from book order by course_id") temp=cur_book.fetchall() frame=pd.DataFrame(temp,columns=['BOOK-ID','BOOK-NAME','PRICE','AUTHOR','COURSE-ID']) print("Total list of books are given below") print(frame) cnx.close() except: pass def show_status(roll,password): try: cnx=conn.connect(user='root',password='swapn',host='127.0.0.1',database='library') cur_book_bank=cnx.cursor() cur_book=cnx.cursor() cur_book_bank.execute("select book_id,book_amt from book_bank") BookBank=cur_book_bank.fetchall() temp=[] for i in BookBank: cur_book.execute("select book_name from book where book_id=%s",(i[0],)) bookname=cur_book.fetchone()[0] a=[i[0],bookname,i[1]] temp.append(a) frame=pd.DataFrame(temp,columns=['BOOK-ID','BOOK-NAME','BOOK-AMT']) print(frame) cnx.close() except: pass def show_borrow(roll,password): try: cnx=conn.connect(user='root',password='swapn',host='127.0.0.1',database='library') cur_borrow=cnx.cursor() cur_book=cnx.cursor() cur_borrow.execute("select * from borrow") borrow=cur_borrow.fetchall() temp=[] for i in borrow: cur_book.execute("select book_name from book where book_id=%s",(i[1],)) bookname=cur_book.fetchone()[0] date=datetime.datetime.now() date1=datetime.date(date.year,date.month,date.day) date2=i[4] t=date1-date2 if t.days>0: late=t.days fine=late*5 else: late=0 fine=0 a=[i[0],bookname,i[2],i[4],late,fine,i[3]] temp.append(a) frame=pd.DataFrame(temp,columns=['BORROW-ID','BOOK-NAME','BORROW-DATE','RETURN-DATE','LATE','FINE','ROLL']) print(frame) cnx.close() except: pass def show_return(roll,password): try: cnx=conn.connect(user='root',password='swapn',host='127.0.0.1',database='library') cur_return=cnx.cursor() cur_book=cnx.cursor() cur_return.execute("select * from return_book") returnbook=cur_return.fetchall() temp=[] for i in returnbook: cur_book.execute("select book_name from book where book_id=%s",(i[1],)) bookname=cur_book.fetchone()[0] a=[i[0],bookname,i[2],i[3],i[4],i[5],i[6]] temp.append(a) frame=pd.DataFrame(temp,columns=['RETURN-ID','BOOK-NAME','DATE-BORROW','DATE-RETURN','LATE','FINE','ROLL']) print(frame) cnx.close() except: pass
import computer output = "" total = 0 x = 0 y = 0 def RecieveOutput(out): global output global total if(out == 0): output += "." return if(out == 1): output += "#" total += 1 return inputIndex = 0 def SendInput(): global inputIndex inputIndex += 1 if(inputIndex % 2 == 1): return x else: return y for X in range(200): for Y in range(200): x = X y = Y computer.Run(RecieveOutput, SendInput) output += "\n" print(output) print(total)
# -*- coding: utf-8 -*- import logging import os from unittest.mock import Mock, patch from django.test import TransactionTestCase from eventkit_cloud.utils.gpkg.sqlite_utils import get_database_connection, Table logger = logging.getLogger(__name__) class TestSqliteUtils(TransactionTestCase): def setUp(self): self.path = os.path.dirname(os.path.realpath(__file__)) @patch("eventkit_cloud.utils.gpkg.sqlite_utils.connect") def test_get_database_connection(self, connect): from sqlite3 import Row cursor_mock = Mock() cursor_mock.fetchone.return_value = "test" connect().__enter__().cursor.return_value = cursor_mock # Test that a connection object is returned with get_database_connection(self.path) as conn: self.assertEqual(conn.cursor().fetchone(), "test") # Test that the row_factory property is correctly set to sqlite3.Row self.assertEqual(get_database_connection(self.path).row_factory, Row) class TestTableQuery(TransactionTestCase): def setUp(self): self.path = os.path.dirname(os.path.realpath(__file__)) def test_get_table_query_validate(self): cursor_mock = Mock() def fill_cursor(*args): if args[1][0] in ["gpkg_contents"]: cursor_mock.fetchone.return_value = ("gpkg_contents",) else: cursor_mock.fetchone.return_value = tuple() cursor_mock.execute.side_effect = fill_cursor passed = True try: Table(cursor_mock, "gpkg_contents").validate() except ValueError: passed = False self.assertTrue(passed) self.assertRaises(ValueError, Table(cursor_mock, "gpkg_metadata").validate) try: Table(cursor_mock, "sqlite_master").validate() except ValueError: passed = False self.assertTrue(passed) class TestTable(TransactionTestCase): def setUp(self): self.path = os.path.dirname(os.path.realpath(__file__)) def test_get_table_exists(self): cursor_mock = Mock() def fill_cursor(*args): if args[1][0] in ["gpkg_contents", "other_table"]: cursor_mock.fetchone.return_value = ("gpkg_contents",) else: cursor_mock.fetchone.return_value = tuple() cursor_mock.execute.side_effect = fill_cursor self.assertTrue(Table.exists(cursor_mock, "gpkg_contents")) self.assertTrue(cursor_mock.execute.called_once) self.assertTrue(not Table.exists(cursor_mock, "gpkg_metadata")) self.assertTrue(Table.exists(cursor_mock, "other_table"))
import numpy as np from copy import copy from .base import Simplifier from ... import operations from ...analyzers import SplitAnalysis class ConvertBatchNorm(Simplifier): ANALYSES = {"is_split": SplitAnalysis} def visit_BatchNormalization(self, operation: operations.BatchNormalization): input_op = operation.x if ( isinstance(input_op, operations.Conv) and not self.analysis["is_split"][input_op] ): std = np.sqrt(operation.variance + operation.epsilon) a = operation.scale / std b = operation.bias - operation.scale * operation.mean / std weights = input_op.w a_w = a[:, None, None, None] weights = a_w * weights bias = input_op.b if bias is None: bias = np.zeros(weights.shape[0], dtype=weights.dtype) bias = a * bias + b new_operation = copy(input_op) new_operation.w = weights new_operation.b = bias return new_operation elif ( isinstance(input_op, operations.Gemm) and not self.analysis["is_split"][input_op] ): std = np.sqrt(operation.variance + operation.epsilon) a = operation.scale / std b = operation.bias - operation.mean * a return operations.Gemm(input_op, np.diag(a), b) elif isinstance(input_op, operations.Input): input_shape = input_op.shape input_dtype = input_op.dtype if len(input_shape) == 2: std = np.sqrt(operation.variance + operation.epsilon) a = operation.scale / std b = operation.bias - operation.mean * a return operations.Gemm(input_op, np.diag(a), b) elif len(input_shape) == 4: c = operation.mean.shape[0] std = np.sqrt(operation.variance + operation.epsilon) k = np.zeros( (c, c, 1, 1), dtype=input_dtype ) # identity kernel (H, W, inC, outC) for i in range(c): k[i, i, 0, 0] = 1 W = k * operation.scale / std b = operation.bias - operation.scale * operation.mean / std op = operations.Conv(input_op, W, b) return op # TODO : in what other scenarios can BatchNorm be converted? return operation
from optuna.logging import get_logger from optuna.study import Study from optuna.trial import TrialState from optuna.visualization._plotly_imports import _imports if _imports.is_successful(): from optuna.visualization._plotly_imports import go _logger = get_logger(__name__) def plot_intermediate_values(study: Study) -> "go.Figure": """Plot intermediate values of all trials in a study. Example: The following code snippet shows how to plot intermediate values. .. plotly:: import optuna def f(x): return (x - 2) ** 2 def df(x): return 2 * x - 4 def objective(trial): lr = trial.suggest_float("lr", 1e-5, 1e-1, log=True) x = 3 for step in range(128): y = f(x) trial.report(y, step=step) if trial.should_prune(): raise optuna.TrialPruned() gy = df(x) x -= gy * lr return y sampler = optuna.samplers.TPESampler(seed=10) study = optuna.create_study(sampler=sampler) study.optimize(objective, n_trials=16) optuna.visualization.plot_intermediate_values(study) Args: study: A :class:`~optuna.study.Study` object whose trials are plotted for their intermediate values. Returns: A :class:`plotly.graph_objs.Figure` object. """ _imports.check() return _get_intermediate_plot(study) def _get_intermediate_plot(study: Study) -> "go.Figure": layout = go.Layout( title="Intermediate Values Plot", xaxis={"title": "Step"}, yaxis={"title": "Intermediate Value"}, showlegend=False, ) target_state = [TrialState.PRUNED, TrialState.COMPLETE, TrialState.RUNNING] trials = [trial for trial in study.trials if trial.state in target_state] if len(trials) == 0: _logger.warning("Study instance does not contain trials.") return go.Figure(data=[], layout=layout) traces = [] for trial in trials: if trial.intermediate_values: sorted_intermediate_values = sorted(trial.intermediate_values.items()) trace = go.Scatter( x=tuple((x for x, _ in sorted_intermediate_values)), y=tuple((y for _, y in sorted_intermediate_values)), mode="lines+markers", marker={"maxdisplayed": 10}, name="Trial{}".format(trial.number), ) traces.append(trace) if not traces: _logger.warning( "You need to set up the pruning feature to utilize `plot_intermediate_values()`" ) return go.Figure(data=[], layout=layout) figure = go.Figure(data=traces, layout=layout) return figure
#!/usr/bin/env python # -*- coding: utf-8 -*- import unittest import sys import savReaderWriter as rw from py3k import isPy3k, isCPython class Test_spss2strDate(unittest.TestCase): def setUp(self): self.savFileName = 'test_data/test_dates.sav' self.reader = rw.SavReader(self.savFileName) self.convert = self.reader.spss2strDate def test_time(self): got = self.convert(1, "%H:%M:%S", None) self.assertEqual(b'00:00:01', got) got = self.convert(86399, "%H:%M:%S", None) self.assertEqual(b'23:59:59', got) def test_datetime(self): got = self.convert(11654150400.0, "%Y-%m-%d %H:%M:%S", None) self.assertEqual(b'1952-02-03 00:00:00', got) got = self.convert(11654150400.0, "%Y-%m-%d", None) self.assertEqual(b'1952-02-03', got) got = self.convert(11654150400.0, "%d-%m-%Y", None) self.assertEqual(b'03-02-1952', got) msg = "requires mx package (no Python 3 or Pypy)" @unittest.skipIf(isPy3k or not isCPython, msg) def test_datetime_pre1900(self): got = self.convert(0.0, "%Y-%m-%d %H:%M:%S", None) self.assertEqual(b'1582-10-14 00:00:00', got) def test_dtime(self): got = self.convert(256215.0, "%d %H:%M:%S", None) self.assertEqual(b'02 23:10:15', got) got = self.convert(13508553600, "%d %H:%M:%S", None) self.assertEqual(b'156349 00:00:00', got) def test_invalid_datetime(self): got = self.convert(b"invalid", "%Y-%m-%d %H:%M:%S", None) self.assertEqual(None, got) got = self.convert(b"invalid", "%Y-%m-%d %H:%M:%S", b"<invalid>") self.assertEqual(b"<invalid>", got) def tearDown(self): self.reader.close() if __name__ == "__main__": unittest.main()
# -*-coding: utf-8 - ''' @author: MD. Nazmuddoha Ansary ''' #-------------------- # imports #-------------------- import argparse import os import json import random import cv2 import pandas as pd import numpy as np import PIL import PIL.Image , PIL.ImageDraw , PIL.ImageFont from tqdm import tqdm from glob import glob from ast import literal_eval from coreLib.dataset import DataSet from coreLib.utils import create_dir,correctPadding,stripPads,LOG_INFO,lambda_paded_label from coreLib.words import single from coreLib.store import genTFRecords tqdm.pandas() #-------------------- # main #-------------------- def main(args): filename=[] labels =[] _path =[] data_path = args.data_path main_path = args.save_path img_height = int(args.img_height) img_width = int(args.img_width) nb_train = int(args.nb_train) max_word_length = int(args.max_word_length)+1 # dataset object ds=DataSet(data_path) main_path=create_dir(main_path,"moduled") # resources rec_path=create_dir( main_path,"tfrecords") # pairs save_path=create_dir(main_path,"bs") img_dir=create_dir(save_path,"images") tgt_dir=create_dir(save_path,"targets") map_dir=create_dir(save_path,"maps") # data df=ds.boise_state.df df["img_path"]=df.filename.progress_apply(lambda x: os.path.join(ds.boise_state.dir,x)) font_path =os.path.join(ds.bangla.fonts,"Bangla.ttf") # create font font=PIL.ImageFont.truetype(font_path, size=img_height) bs_skip=[] for idx in tqdm(range(len(df))): try: # extract img_path=df.iloc[idx,2] comps=df.iloc[idx,1] #----------------- # image #----------------- # image and label img=cv2.imread(img_path,0) # resize (heigh based) h,w=img.shape width= int(img_height* w/h) img=cv2.resize(img,(width,img_height),fx=0,fy=0, interpolation = cv2.INTER_NEAREST) #----------------- # target and map #----------------- # unique values vals=list(np.unique(img)) # construct target tgts=[] maps=[] # grapheme wise separation for v,comp in zip(vals,comps): if v!=0: idxs = np.where(img==v) y_min,y_max,x_min,x_max = np.min(idxs[0]), np.max(idxs[0]), np.min(idxs[1]), np.max(idxs[1]) # font h=y_max-y_min w=x_max-x_min min_offset=100 max_dim=h+w+min_offset # draw image = PIL.Image.new(mode='L', size=(max_dim,max_dim)) draw = PIL.ImageDraw.Draw(image) draw.text(xy=(0, 0), text=comp, fill=255, font=font) # create target tgt=np.array(image) tgt=stripPads(tgt,0) # resize width= int(img_height* w/h) tgt=cv2.resize(tgt,(width,img_height),fx=0,fy=0, interpolation = cv2.INTER_NEAREST) tgts.append(tgt) #-------------------------------- # maps #-------------------------------- h,w=tgt.shape map=np.zeros((h,w)) map[int(h/4):int(3*h/4),int(w/4):int(3*w/4)]=ds.vocab.index(comp) maps.append(map) tgt=np.concatenate(tgts,axis=1) map=np.concatenate(maps,axis=1) # resize h,w=img.shape tgt=cv2.resize(tgt,(w,h),fx=0,fy=0, interpolation = cv2.INTER_NEAREST) # revalue img[img<255]=0 tgt=255-tgt # pad correction img=correctPadding(img,dim=(img_height,img_width)) tgt=correctPadding(tgt,dim=(img_height,img_width)) map=correctPadding(map,dim=(img_height,img_width),pad_val=0) # save cv2.imwrite(os.path.join(img_dir,f"bs{idx}.png"),img) cv2.imwrite(os.path.join(tgt_dir,f"bs{idx}.png"),tgt) np.save(os.path.join(map_dir,f"bs{idx}.npy"),map) filename.append(f"bs{idx}") labels.append(comps) _path.append(os.path.join(img_dir,f"bs{idx}.png")) except Exception as e: #LOG_INFO(e) bs_skip.append(idx) LOG_INFO(f"skipped:{len(bs_skip)}") # pairs save_path=create_dir(main_path,"synth") img_dir=create_dir(save_path,"images") tgt_dir=create_dir(save_path,"targets") map_dir=create_dir(save_path,"maps") # create the images for i in tqdm(range(nb_train)): try: # selection comp_type =random.choice(["grapheme"]) use_dict =random.choice([True,False]) img,tgt,map,label=single(ds,comp_type,use_dict,(img_height,img_width)) # save cv2.imwrite(os.path.join(img_dir,f"synth{i}.png"),img) cv2.imwrite(os.path.join(tgt_dir,f"synth{i}.png"),tgt) np.save(os.path.join(map_dir,f"synth{i}.npy"),map) filename.append(f"synth{i}") labels.append(label) _path.append(os.path.join(img_dir,f"synth{i}.png")) except Exception as e: print(e) # create dataframe df_s=pd.DataFrame({"filename":filename,"labels":labels,"img_path":_path}) # length df_s["label_len"]=df_s.labels.progress_apply(lambda x:len(x)) # label_lenght correction df_s=df_s.loc[df_s.label_len<max_word_length] # encode df_s["encoded"]= df_s.labels.progress_apply(lambda x:[ds.vocab.index(i) for i in x]) df_s["glabel"] = df_s.encoded.progress_apply(lambda x:lambda_paded_label(x,max_word_length)) # save df_s.to_csv(os.path.join(main_path,"data.csv") ,index=False) df_s=df_s[["img_path","glabel"]] genTFRecords(df_s,rec_path) # config config={'img_height':img_height, 'img_width':img_width, 'nb_channels':3, 'vocab':ds.vocab, 'synthetic_data':nb_train, 'boise_state_data':len(df), 'max_word_len':max_word_length, 'map_size':int(img_height*img_width), 'seg_size':int(img_height//2*img_width//2) } config_json=os.path.join(main_path,"config.json") with open(config_json, 'w') as fp: json.dump(config, fp,sort_keys=True, indent=4,ensure_ascii=False) #----------------------------------------------------------------------------------- if __name__=="__main__": ''' parsing and execution ''' parser = argparse.ArgumentParser("BHOCR Pre-Training Dataset Creating Script") parser.add_argument("data_path", help="Path of the input data folder from ReadMe.md)") parser.add_argument("save_path", help="Path of the directory to save the dataset") parser.add_argument("--img_height",required=False,default=32,help ="height for each grapheme: default=32") parser.add_argument("--img_width",required=False,default=128,help ="width dimension of word images: default=128") parser.add_argument("--nb_train",required=False,default=50000,help ="number of images for training:default:50000") parser.add_argument("--max_word_length",required=False,default=10,help ="maximum word lenght data to keep:default:10") args = parser.parse_args() main(args)
import datetime import json from django.contrib.admin.templatetags.admin_list import ResultList, result_headers from django.contrib.admin.utils import ( display_for_field, display_for_value, lookup_field, ) from django.core.exceptions import ObjectDoesNotExist from django.db import models from django.forms.utils import flatatt from django.template import Library from django.template.loader import get_template from django.utils.encoding import force_str from django.utils.html import format_html from django.utils.safestring import mark_safe from django.utils.translation import gettext as _ register = Library() def items_for_result(view, result, request): """ Generates the actual list of data. """ modeladmin = view.model_admin for field_name in view.list_display: empty_value_display = modeladmin.get_empty_value_display(field_name) row_classes = ["field-%s" % field_name, "title"] try: f, attr, value = lookup_field(field_name, result, modeladmin) except ObjectDoesNotExist: result_repr = empty_value_display else: empty_value_display = getattr( attr, "empty_value_display", empty_value_display ) if f is None or f.auto_created: allow_tags = getattr(attr, "allow_tags", False) boolean = getattr(attr, "boolean", False) if boolean or not value: allow_tags = True result_repr = display_for_value(value, empty_value_display, boolean) # Strip HTML tags in the resulting text, except if the # function has an "allow_tags" attribute set to True. if allow_tags: result_repr = mark_safe(result_repr) if isinstance(value, (datetime.date, datetime.time)): row_classes.append("nowrap") else: if isinstance(f, models.ManyToOneRel): field_val = getattr(result, f.name) if field_val is None: result_repr = empty_value_display else: result_repr = field_val else: result_repr = display_for_field(value, f, empty_value_display) if isinstance( f, (models.DateField, models.TimeField, models.ForeignKey) ): row_classes.append("nowrap") if force_str(result_repr) == "": result_repr = mark_safe("&nbsp;") row_classes.extend( modeladmin.get_extra_class_names_for_field_col(result, field_name) ) row_attrs = modeladmin.get_extra_attrs_for_field_col(result, field_name) row_attrs["class"] = " ".join(row_classes) row_attrs_flat = flatatt(row_attrs) primary_button = None if field_name == modeladmin.get_list_display_add_buttons(request): primary_button = view.button_helper.get_primary_button(result) if primary_button is not None and primary_button.get("url"): yield format_html( '<td{}><div class="title-wrapper"><a href="{}" title="{}">{}</a></div></td>', row_attrs_flat, primary_button["url"], primary_button.get("title", ""), result_repr, ) else: yield format_html("<td{}>{}</td>", row_attrs_flat, result_repr) def results(view, object_list, request): for item in object_list: yield ResultList(None, items_for_result(view, item, request)) @register.inclusion_tag("modeladmin/includes/result_list.html", takes_context=True) def result_list(context): """ Displays the headers and data list together """ view = context["view"] object_list = context["object_list"] headers = list(result_headers(view)) num_sorted_fields = 0 for h in headers: if h["sortable"] and h["sorted"]: num_sorted_fields += 1 context.update( { "result_headers": headers, "num_sorted_fields": num_sorted_fields, "results": list(results(view, object_list, context["request"])), } ) return context @register.simple_tag def pagination_link_previous(current_page, view): if current_page.has_previous(): previous_page_number0 = current_page.previous_page_number() - 1 tpl = get_template("wagtailadmin/shared/icon.html") icon_svg = tpl.render({"name": "arrow-left", "class_name": "default"}) return format_html( '<li class="prev"><a href="{}">{} {}</a></li>', view.get_query_string({view.PAGE_VAR: previous_page_number0}), icon_svg, _("Previous"), ) return "" @register.simple_tag def pagination_link_next(current_page, view): if current_page.has_next(): next_page_number0 = current_page.next_page_number() - 1 tpl = get_template("wagtailadmin/shared/icon.html") icon_svg = tpl.render({"name": "arrow-right", "class_name": "default"}) return format_html( '<li class="next"><a href="{}">{} {}</a></li>', view.get_query_string({view.PAGE_VAR: next_page_number0}), _("Next"), icon_svg, ) return "" @register.inclusion_tag("modeladmin/includes/search_form.html", takes_context=True) def search_form(context): context.update({"search_var": context["view"].SEARCH_VAR}) return context @register.simple_tag def admin_list_filter(view, spec): template_name = spec.template if template_name == "admin/filter.html": template_name = "modeladmin/includes/filter.html" tpl = get_template(template_name) return tpl.render( { "title": spec.title, "choices": list(spec.choices(view)), "spec": spec, } ) @register.inclusion_tag("modeladmin/includes/result_row.html", takes_context=True) def result_row_display(context, index): obj = context["object_list"][index] view = context["view"] row_attrs_dict = view.model_admin.get_extra_attrs_for_row(obj, context) row_attrs_dict["data-object-pk"] = obj.pk odd_or_even = "odd" if (index % 2 == 0) else "even" if "class" in row_attrs_dict: row_attrs_dict["class"] += " %s" % odd_or_even else: row_attrs_dict["class"] = odd_or_even context.update( { "obj": obj, "row_attrs": mark_safe(flatatt(row_attrs_dict)), "action_buttons": view.get_buttons_for_obj(obj), } ) return context @register.inclusion_tag("modeladmin/includes/result_row_value.html", takes_context=True) def result_row_value_display(context, index): add_action_buttons = False item = context["item"] closing_tag = mark_safe(item[-5:]) request = context["request"] model_admin = context["view"].model_admin field_name = model_admin.get_list_display(request)[index] if field_name == model_admin.get_list_display_add_buttons(request): add_action_buttons = True item = mark_safe(item[0:-5]) context.update( { "item": item, "add_action_buttons": add_action_buttons, "closing_tag": closing_tag, } ) return context @register.filter def get_content_type_for_obj(obj): return obj.__class__._meta.verbose_name @register.inclusion_tag("modeladmin/prepopulated_slugs.html", takes_context=True) def prepopulated_slugs(context): """ Create a list of prepopulated_fields that should render Javascript for the prepopulated fields for modeladmin forms. """ prepopulated_fields = [] if "prepopulated_fields" in context: prepopulated_fields.extend(context["prepopulated_fields"]) prepopulated_fields_json = [] for field in prepopulated_fields: prepopulated_fields_json.append( { "id": "#%s" % field["field"].auto_id, "name": field["field"].name, "dependency_ids": [ "#%s" % dependency.auto_id for dependency in field["dependencies"] ], "dependency_list": [ dependency.name for dependency in field["dependencies"] ], "maxLength": field["field"].field.max_length or 50, "allowUnicode": getattr(field["field"].field, "allow_unicode", False), } ) context.update( { "prepopulated_fields": prepopulated_fields, "prepopulated_fields_json": json.dumps(prepopulated_fields_json), } ) return context
import json import hug from operator import itemgetter def return_json_file_contents(filename): """ Simple function for returning the contents of the input JSON file """ try: with open(filename) as json_data: return json.load(json_data) except IOError: print("File not found: "+filename) return None @hug.get(examples='api_key=API_KEY&project=project_name_string&top_k=10&sort_target=RAC') def get_top_users(api_key: hug.types.text, project: hug.types.string, top_k: hug.types.number, sort_target: hug.types.string, hug_timer=3): """Retrieve the kth largest active contributors to an individual BOINC project.""" if (api_key == api_auth_key) # Valid API key! supported_project_names = [] list_of_supported_projects = return_json_file_contents('./Config/init_projects.json') for supported_project in list_of_supported_projects: supported_project_names.append(supported_project['project_name']) if (top_k < 1 || top_k > 1000): # Invalid top_k value chosen! return {'success': False, 'api_key': True, 'error_message': 'Invalid top_k value chosen, please input a number between 1 and 1000.', 'took': float(hug_timer)} if sort_target not in ['expavg_credit', 'total_credit']: # sort target is invalid! return {'success': False, 'api_key': True, 'error_message': 'Invalid sort target chosen. Pick either "expavg_credit" or "total_credit"', 'took': float(hug_timer)} if project in supported_project_names: # Match - return the contents! # TODO: dict key sort based on RAC | TotalCredit! Allow the user to specify? unordered_results = return_json_file_contents("./STATS_DUMP/"+str(project)+".json") ordered_results = sorted(unordered_results, key=itemgetter(str(sort_target)), reverse=True) # Sort descending return {'success': True, 'result': ordered_results[:top_k], 'api_key': True, 'error_message': '', 'took': float(hug_timer)} else: # No match - return a rejection. return {'success': False, 'api_key': True, 'error_message': 'Invalid project name! Pick from: "{}"'.format(supported_project_names), 'took': float(hug_timer)} else: # Invalid API key! return {'success': False, 'api_key': False, 'error_message': 'Invalid API key!', 'took': float(hug_timer)}
import numpy as np import unittest import pytest from desc.grid import LinearGrid, Grid from desc.coils import CoilSet, FourierRZCoil, FourierXYZCoil, FourierPlanarCoil from desc.geometry import FourierRZCurve class TestCoil(unittest.TestCase): def test_biot_savart(self): R = 2 y = 1 I = 1 By_true = 1e-7 * 2 * np.pi * R ** 2 * I / (y ** 2 + R ** 2) ** (3 / 2) B_true = np.array([0, By_true, 0]) coil = FourierXYZCoil(I) coil.grid = LinearGrid(N=100, endpoint=True) assert coil.grid.num_nodes == 100 B_approx = coil.compute_magnetic_field(Grid([[10, y, 0]]), basis="xyz")[0] np.testing.assert_allclose(B_true, B_approx, rtol=1e-3, atol=1e-10) def test_properties(self): current = 4.34 coil = FourierPlanarCoil(current) assert coil.current == current new_current = 3.5 coil.current = new_current assert coil.current == new_current class TestCoilSet(unittest.TestCase): def test_linspaced_linear(self): """field from straight solenoid""" R = 10 z = np.linspace(0, 10, 10) I = 1 Bz_true = np.sum(1e-7 * 2 * np.pi * R ** 2 * I / (z ** 2 + R ** 2) ** (3 / 2)) B_true = np.array([0, 0, Bz_true]) coil = FourierRZCoil(0.1) coils = CoilSet.linspaced_linear( coil, displacement=[0, 0, 10], n=10, endpoint=True ) coils.current = I np.testing.assert_allclose(coils.current, I) coils.grid = 100 assert coils.grid.num_nodes == 100 B_approx = coils.compute_magnetic_field([0, 0, z[-1]], basis="xyz")[0] np.testing.assert_allclose(B_true, B_approx, rtol=1e-3, atol=1e-10) def test_linspaced_angular(self): """field from uniform toroidal solenoid""" R = 10 N = 50 I = 1 Bp_true = np.sum(1e-7 * 4 * np.pi * N * I / 2 / np.pi / R) B_true = np.array([0, Bp_true, 0]) coil = FourierPlanarCoil() coil.current = I coils = CoilSet.linspaced_angular(coil, n=N) coils.grid = 100 assert all([coil.grid.num_nodes == 100 for coil in coils]) B_approx = coils.compute_magnetic_field([10, 0, 0], basis="rpz")[0] np.testing.assert_allclose(B_true, B_approx, rtol=1e-3, atol=1e-10) def test_from_symmetry(self): """same as above, but different construction""" R = 10 N = 48 I = 1 Bp_true = np.sum(1e-7 * 4 * np.pi * N * I / 2 / np.pi / R) B_true = np.array([0, Bp_true, 0]) coil = FourierPlanarCoil() coils = CoilSet.linspaced_angular(coil, angle=np.pi / 2, n=N // 4) coils = CoilSet.from_symmetry(coils, NFP=4) coils.grid = 100 assert all([coil.grid.num_nodes == 100 for coil in coils]) B_approx = coils.compute_magnetic_field([10, 0, 0], basis="rpz")[0] np.testing.assert_allclose(B_true, B_approx, rtol=1e-3, atol=1e-10) # with stellarator symmetry NFP = 4 coil = FourierXYZCoil() coil.rotate(angle=np.pi / N) coils = CoilSet.linspaced_angular( coil, I, [0, 0, 1], np.pi / NFP, N // NFP // 2 ) coils.grid = 100 assert coils.grid.num_nodes == 100 coils2 = CoilSet.from_symmetry(coils, NFP, True) B_approx = coils2.compute_magnetic_field([10, 0, 0], basis="rpz")[0] np.testing.assert_allclose(B_true, B_approx, rtol=1e-3, atol=1e-10) def test_properties(self): coil = FourierPlanarCoil() coils = CoilSet.linspaced_linear(coil, n=4) coils.grid = np.array([[0.0, 0.0, 0.0]]) np.testing.assert_allclose( coils.compute_coordinates(), np.array( [ [12, 0, 0], [12.5, 0, 0], [13, 0, 0], [13.5, 0, 0], ] ).reshape((4, 1, 3)), ) np.testing.assert_allclose(coils.compute_curvature(), 1 / 2) np.testing.assert_allclose(coils.compute_torsion(), 0) TNB = coils.compute_frenet_frame(grid=np.array([[0.0, 0.0, 0.0]]), basis="xyz") T = [foo[0] for foo in TNB] N = [foo[1] for foo in TNB] B = [foo[2] for foo in TNB] np.testing.assert_allclose( T, np.array( [ [0, 0, -1], [0, 0, -1], [0, 0, -1], [0, 0, -1], ] ).reshape((4, 1, 3)), atol=1e-12, ) np.testing.assert_allclose( N, np.array( [ [-1, 0, 0], [-1, 0, 0], [-1, 0, 0], [-1, 0, 0], ] ).reshape((4, 1, 3)), atol=1e-12, ) np.testing.assert_allclose( B, np.array( [ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], ] ).reshape((4, 1, 3)), atol=1e-12, ) coils.grid = 100 np.testing.assert_allclose(coils.compute_length(), 2 * 2 * np.pi) coils.translate([1, 1, 1]) np.testing.assert_allclose(coils.compute_length(), 2 * 2 * np.pi) coils.flip([1, 0, 0]) coils.grid = np.array([[0.0, 0.0, 0.0]]) TNB = coils.compute_frenet_frame(grid=np.array([[0.0, 0.0, 0.0]]), basis="xyz") T = [foo[0] for foo in TNB] N = [foo[1] for foo in TNB] B = [foo[2] for foo in TNB] np.testing.assert_allclose( T, np.array( [ [0, 0, -1], [0, 0, -1], [0, 0, -1], [0, 0, -1], ] ).reshape((4, 1, 3)), atol=1e-12, ) np.testing.assert_allclose( N, np.array( [ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], ] ).reshape((4, 1, 3)), atol=1e-12, ) np.testing.assert_allclose( B, np.array( [ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], ] ).reshape((4, 1, 3)), atol=1e-12, ) def test_dunder_methods(self): coil1 = FourierXYZCoil() coils1 = CoilSet.from_symmetry(coil1, NFP=4) coil2 = FourierPlanarCoil() coils2 = coils1 + [coil2] assert coils2[-1] is coil2 coils2 = coils1 + CoilSet(coil2) assert coils2[-1] is coil2 with pytest.raises(TypeError): coils3 = coils1 + FourierRZCurve() with pytest.raises(TypeError): coils1[-1] = FourierRZCurve() coils1[-1] = coil2 assert coils1[-1] is coil2 coils1.insert(-1, coil2) with pytest.raises(TypeError): coils1.insert(-1, FourierRZCurve()) assert len(coils1) == 5 assert coils1[-1] is coil2 assert coils1[-2] is coil2 s = coils1[-2:] assert s[-1] is coil2 del coils1[-2] assert len(coils1) == 4 assert coils1[-1] is coil2 assert coils1[-2][0].__class__ is coil1.__class__ def test_repr(): coil = FourierRZCoil() assert "FourierRZCoil" in str(coil) assert "current=1" in str(coil) coils = CoilSet.linspaced_angular(coil, n=4) assert "CoilSet" in str(coils) assert "4 submembers" in str(coils) coils.name = "MyCoils" assert "MyCoils" in str(coils)
# -*- coding: utf-8 -*- __author__ = """Biagio Chirico""" __email__ = 'biagio.chirico.86@gmail.com' __version__ = '0.1.0' from pyscholar import Query, Crawler, Article, Parser
def color_add(): pass def color_delete(): pass def new(): pass
import os from time import time, sleep from queue import Queue from pathlib import Path from multiprocessing import Process from threading import Lock, Thread from tempfile import mkstemp from subprocess import run from datetime import datetime from json import dumps from bisect import insort from monitor_gui import CompressionMonitor def run_compression(in_paths, video_path, metadata_path, fps, delete_images, pix_fmt): """Run MP4 compression by calling FFmpeg. Parameters ---------- in_paths : list of pathlib.Path List of source images in the correct order. video_path : pathlib.Path Path to which the output video should be stored. metadata_path : pathlib.Path Path to which the newline-separated list of source image files should be stored. fps : float Frames per second to be written to the video file's metadata. delete_images : bool Whether or not source images should be deleted afterward. pix_fmt : str -pix_fmt flag used for the output file in the FFmpeg call. """ # Build temporary file containing list of images # see https://trac.ffmpeg.org/wiki/Concatenate for specs f, filelist_path = mkstemp(suffix='.txt', text=True) os.close(f) print(f' >>> running compression: {video_path.name}') lines = [f"file '{str(x.absolute())}'" for x in in_paths] with open(filelist_path, 'w') as f: f.write('\n'.join(lines)) # Call FFmpeg run(['ffmpeg', '-r', str(fps), '-loglevel', 'error', '-f', 'concat', '-safe', '0', '-i', str(filelist_path), '-pix_fmt', pix_fmt, str(video_path)], check=True) # Write matadata with open(metadata_path, 'w') as f: lines = [str(x.absolute()) for x in in_paths] f.write('\n'.join(lines)) # Clean up if delete_images: for img_file in in_paths: img_file.unlink() Path(filelist_path).unlink() def _guarded_print(lock, *args, **kwargs): lock.acquire() print(*args, **kwargs) lock.release() def _thread_worker(thread_id, cmpr): """Entry point for the worker threads""" while True: task_spec = cmpr.job_queue.get() if task_spec is None: break cam, args = task_spec _guarded_print( cmpr.log_lock, f'>>> Thread {thread_id} working on {str(args[1].name)}' ) cmpr.status_lock.acquire() cmpr.busy_workers += 1 cmpr.status_lock.release() # Actual invocation start_time = time() run_compression(*args) end_time = time() # Increment part count cmpr.status_lock.acquire() cmpr.parts_done[cam] += 1 cmpr.busy_workers -= 1 cmpr.last_job_walltime = end_time - start_time cmpr.status_lock.release() cmpr.job_queue.task_done() def _scan_files(cmpr): """Entry point for the scanner thread""" while True: cmpr.status_lock.acquire() all_done = cmpr.all_done cmpr.status_lock.release() if all_done: break cmpr.scan_lock.acquire() # Detect newly available files cmpr.add_new_files_to_pending_sets() # Move pending frames for cam in range(cmpr.num_cams): while len(cmpr.pending_frames[cam]) >= cmpr.frames_per_video: chunk = cmpr.pending_frames[cam].pop_chunk( cmpr.frames_per_video) cmpr.add_chunk_to_queue(cam, chunk) cmpr.scan_lock.release() sleep(cmpr.refresh_interval_secs) def _log_status(cmpr): """Entry point for the logger thread""" while True: cmpr.status_lock.acquire() all_done = cmpr.all_done cmpr.status_lock.release() if all_done: with open(cmpr.log_path, 'a+') as f: f.write('ALL DONE\n') break curr_time = time() # get all stats cmpr.status_lock.acquire() status = { 'timestamp': str(datetime.now()), 'refresh_interval': cmpr.refresh_interval_secs, 'num_cams': cmpr.num_cams, 'fps': cmpr.fps, 'nprocs': cmpr.num_procs, 'nprocs_running': cmpr.busy_workers, 'qsize': cmpr.job_queue.qsize(), 'last_job_walltime': cmpr.last_job_walltime, 'nvids_made': sum(cmpr.parts_done), 'frames_pending': [len(cmpr.pending_frames[cam]) for cam in range(cmpr.num_cams)] } cmpr.status_lock.release() # write to file with open(cmpr.log_path, 'a+') as f: f.write(dumps(status) + '\n') sleep(curr_time + cmpr.log_interval_secs - time()) class DanglingFrames: def __init__(self, camera, data_dir): self.camera = camera self.data_dir = data_dir self.frame_ids = [] self.frame_ids_set = set() # same as frame_ids, for easier search self.discard_frames_before = 0 def __len__(self): return len(self.frame_ids_set) def scan(self): files = (self.data_dir / 'images').glob(f'camera_{self.camera}*.jpg') for img_path in files: frame = int(img_path.name.replace('.jpg', '').split('_')[-1]) if frame < self.discard_frames_before: # arrived way too late, discard continue if frame not in self.frame_ids_set: insort(self.frame_ids, frame) self.frame_ids_set.add(frame) def pop_chunk(self, chunk_size, block_time_secs=1): if chunk_size == -1: chunk_size = len(self) if not chunk_size: return [] if ((len(self) < chunk_size) or (self.frame_ids[chunk_size - 1] - self.frame_ids[0] >= chunk_size)): # there are frames that haven't arrived yet, wait a bit sleep(block_time_secs) self.scan() chunk_ids = self.frame_ids[:chunk_size] self.frame_ids = self.frame_ids[chunk_size:] self.frame_ids_set -= set(chunk_ids) self.discard_frames_before = chunk_ids[-1] + 1 return [self.data_dir / f'images/camera_{self.camera}_img_{x}.jpg' for x in chunk_ids] class Mp4Compressor: """Manager of the background MP4 compression of camera data. One ``Mp4Compressor`` object should be associated with each recording. The user specifies, among other misc information, the intended length of each video part. This manager, in turn, binds the JPEGs into an MP4 every time a sufficient number of frames is available. The videos can be generated in parallel, allowing the user to generate videos using multiple CPU cores when recording with many cameras at high frame rates. Each compressor also spawns a simple GUI monior. Example ------- The external API of the compressor consists of the ``.start()`` and ``.stop()`` methods. >>> compressor = Mp4Compressor(...) >>> compressor.start() # this returns immediately >>> sleep(100) # compression runs in background >>> compressor.stop() # this blocks briefly Implementation -------------- There are two key data structures in this class: ``pending_frames`` and ``job_queue``. The "lifecycle" of data is as follows: - Calculate the intended number of frames per video part `N` (from the intended video part length and the FPS). - Once the monitor that a camera has written a frame to the file system, the frame is initially registered at ``pending_frames``. - The frame stays there until there are `N` frames from the camera in question in ``pending_frames``. - The earliest `N` frames are then removed from ``pending_frames``. A compression task (containing the list of input frames, output video path, etc) is specified for this batch of frames. The job spec is added to ``job_queue``. - Worker threads monitor the ``job_queue``, and execute the compression jobs that are in the queue. Each ``Mp4Compressor`` object manages M + 2 threads and up to M + 1 processes (`M` being ``num_procs``): - Scanner thread (x1): Scans the file system periodically and add newly arrived frames to ``pending_frames``. If ``pending_frames`` is long enough, make job specs and push the specs to ``job_queue``. Note that since this thread doesn't do any actual heavy-lifting, it should never block. - Worker threads (xM): Run the compression jobs posted on ``job_queue`` through systems calls to ``ffmpeg``, which are managed by ``subprocess.run``. - Logger thread (x1): Writes the current stats of the compressor to a log file, which can then be read from the GUI. - GUI process (x1): Displays the current status. It has to be a sepearate process becasue Tk doesn't support multithreading. - FFmpeg processes (x up to M): Spawned by worker threads. The log is a text file where each line is either: - a JSON string containing the status of the compressor (including a timestamp), OR - the literal string ``"ALL DONE"``, signaling termination. """ def __init__(self, fps, data_dir, num_cams, log_path, delete_images=True, pix_fmt='yuv420p', video_length_secs=300, refresh_interval_secs=1, num_procs=4, log_interval_secs=1): # Initialize static properties self.fps = fps self.data_dir = data_dir self.num_cams = num_cams self.delete_images = delete_images self.pix_fmt = pix_fmt self.video_length_secs = video_length_secs self.refresh_interval_secs = refresh_interval_secs self.frames_per_video = int(fps * video_length_secs) self.num_procs = num_procs self.log_path = log_path self.log_interval_secs = log_interval_secs # Initialize dynamic data structures and variables self.pending_frames = [DanglingFrames(cam, data_dir) for cam in range(num_cams)] self.job_queue = Queue() self.parts_done = [0] * num_cams self.parts_enqueued = [0] * num_cams self.latest_frame_per_cam = [-1] * num_cams self.busy_workers = 0 self.last_job_walltime = None self.all_done = False # Initialize parallelization setup self.status_lock = Lock() self.log_lock = Lock() self.scan_lock = Lock() self.worker_threads = [ Thread(target=_thread_worker, args=(i, self), daemon=True) for i in range(num_procs) ] self.scanner_thread = Thread(target=_scan_files, args=(self,), daemon=True) self.logger_thread = Thread(target=_log_status, args=(self,), daemon=True) def start(self): for thread in self.worker_threads: thread.start() self.scanner_thread.start() self.logger_thread.start() def stop(self): # ASSUME any delay in IO (eg camera grab/save) would be within 1s sleep(1) # Add remaining frames to queue self.scan_lock.acquire() self.add_new_files_to_pending_sets() for cam in range(self.num_cams): chunk = self.pending_frames[cam].pop_chunk(-1) if chunk: self.add_chunk_to_queue(cam, chunk) self.scan_lock.release() # Now we just wait for everything to finish. This is blocking. self.job_queue.join() self.status_lock.acquire() self.all_done = True self.status_lock.release() self.scanner_thread.join() for _ in range(self.num_procs): self.job_queue.put(None) for thread in self.worker_threads: thread.join() self.logger_thread.join() print('>>> All done!') def add_chunk_to_queue(self, cam, chunk): video_path = (self.data_dir / 'videos' / f'camera_{cam}_part_{self.parts_enqueued[cam]}.mp4') self.parts_enqueued[cam] += 1 metadata_path = Path(str(video_path).replace('.mp4', '.list')) args = (chunk, video_path, metadata_path, self.fps, self.delete_images, self.pix_fmt) self.job_queue.put((cam, args)) def add_new_files_to_pending_sets(self): for frames in self.pending_frames: frames.scan() def init_monitor_gui(log_path): monitor = CompressionMonitor(log_path) monitor.mainloop() if __name__ == '__main__': """The intent to create/destroy ``Mp4Compressor`` objects is communicated through a named pipe (via a FIFO file) from the C++ recording GUI. Each request takes one line (ends with \\n). The protocol is as follows: - ``"START,<data_dir>,<fps>,<num_cams>"`` This literal string (where the base data directory, FPS, number of cameras are substituted accordingly) signals the initiation of a compressor. - ``"STOP,<data_dir>"`` This signals the termination of a compressor. - ``"EXIT"`` This signals the termination of the program. """ FIFO_PATH = '/tmp/mp4CompressorComm.fifo' if os.path.exists(FIFO_PATH): os.unlink(FIFO_PATH) if not os.path.exists(FIFO_PATH): os.mkfifo(FIFO_PATH) compressors = {} monitor_processes = {} fifo = open(FIFO_PATH, 'r') while True: request = fifo.readline().strip() if not request: continue print(f'>>> Got request: "{request}"') cmd = request.split(',')[0] if cmd == 'START': # Parse command cmd, data_dir, fps, num_cams, video_length = request.split(',') fps = float(fps) data_dir = Path(data_dir) num_cams = int(num_cams) video_length = int(video_length) (data_dir / 'videos').mkdir(exist_ok=True) log_path = data_dir / 'compression_log.txt' compressors[str(data_dir)] = Mp4Compressor( fps, data_dir, num_cams, log_path, num_procs=7, delete_images=False, video_length_secs=video_length ) compressors[str(data_dir)].start() monitor_processes[str(data_dir)] = Process( target=init_monitor_gui, args=(log_path,), daemon=True ) monitor_processes[str(data_dir)].start() elif cmd == 'STOP': # Parse command cmd, data_dir = request.split(',') compressors[data_dir].stop() monitor_processes[data_dir].join() elif cmd == 'EXIT': break else: raise ValueError(f'Unrecognized command "{cmd}" from FIFO file')
# Copyright 2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nnabla_rl.builders.explorer_builder import ExplorerBuilder # noqa from nnabla_rl.builders.model_builder import ModelBuilder # noqa from nnabla_rl.builders.preprocessor_builder import PreprocessorBuilder # noqa from nnabla_rl.builders.replay_buffer_builder import ReplayBufferBuilder # noqa from nnabla_rl.builders.solver_builder import SolverBuilder # noqa
''' This is the main module that runs the api resources & models ''' ''' Its an improvement of REST_api_with_DB.py ''' from flask import Flask from flask_restful import Api from flask_jwt import JWT from security import authenticate, identity from resources.users import UserRegistration, UserCheck from resources.items import Item, Items from resources.stores import Store, Stores app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///test.db' app.config['SQLALCHEMY_TRACK_MODIFICATION'] = False #Turns off the flask_sqlalchemy obj tracker and leaves the sqlalchemy on app.secret_key = 'myveryfirstjwtsecuredapiwihadb' api = Api(app) ''' Using a flask decorator to ensure the db creation function runs before any request to the app ''' @app.before_first_request def setup_sqlite_dB(): db_obj.create_all() jwt = JWT(app, authenticate, identity) api.add_resource(Item, '/item/<string:name>') api.add_resource(Items, '/items') api.add_resource(Store, '/store/<string:name>') api.add_resource(Stores, '/stores') api.add_resource(UserRegistration, '/user_reg') api.add_resource(UserCheck, '/user/<string:name>') if __name__ == '__main__': from sqlalchemy_init import db_obj #Import here to avoid circular imports db_obj.init_app(app) app.run(debug=True)
# ***************************************************************************** # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # See NOTICE file for details. # # ***************************************************************************** import sys import jpype import common class ComparableTestCase(common.JPypeTestCase): def setUp(self): common.JPypeTestCase.setUp(self) def testComparable(self): a = jpype.java.time.Instant.ofEpochSecond(10000000) b = jpype.java.time.Instant.ofEpochSecond(10000001) self.assertFalse(a < a) self.assertFalse(a > a) self.assertTrue(a >= a) self.assertTrue(a <= a) self.assertTrue(a == a) self.assertFalse(a != a) self.assertTrue(a < b) self.assertFalse(a > b) self.assertFalse(a >= b) self.assertTrue(a <= b) self.assertFalse(a == b) self.assertTrue(a != b) def testComparableHash(self): i = jpype.java.math.BigInteger("1000000000000") self.assertIsInstance(hash(i), int) def testComparableNull(self): Instant = jpype.JClass("java.time.Instant") i1 = Instant.parse("1970-01-01T00:00:00Z") i3 = jpype.JObject(None, Instant) self.assertTrue(i1 == i1) self.assertFalse(i1 == i3) self.assertFalse(i3 == i1) self.assertTrue(i1 != i3) self.assertTrue(i3 != i1) with self.assertRaises(ValueError): print(i1 < i3) with self.assertRaises(ValueError): print(i1 <= i3) with self.assertRaises(ValueError): print(i1 > i3) with self.assertRaises(ValueError): print(i1 >= i3) with self.assertRaises(ValueError): print(i3 < i1) with self.assertRaises(ValueError): print(i3 <= i1) with self.assertRaises(ValueError): print(i3 > i1) with self.assertRaises(ValueError): print(i3 >= i1) with self.assertRaises(ValueError): print(i3 < i3) with self.assertRaises(ValueError): print(i3 <= i3) with self.assertRaises(ValueError): print(i3 > i3) with self.assertRaises(ValueError): print(i3 >= i3)
from django.db import models from django.contrib.auth.models import AbstractUser from tournament.models import Tournament class User(AbstractUser): is_tournament_manager = models.BooleanField(default=False) managed_tournaments = models.ManyToManyField(Tournament, blank=True)
# pacotes essenciais da V1 da API from rest_framework import generics from rest_framework.generics import get_object_or_404 from .models import Curso, Avaliacao from .serializers import CursoSerializer, AvaliacaoSerializer # pacotes essenciais da V2 da API from rest_framework import viewsets from rest_framework.decorators import action from rest_framework.response import Response from rest_framework import mixins from rest_framework import permissions from .permissions import IsSuperUser # Versão 1 # ---------------------------------------------------------------------------------------------------- class CursosAPIView(generics.ListCreateAPIView): queryset = Curso.objects.all() serializer_class = CursoSerializer class CursoAPIView(generics.RetrieveUpdateDestroyAPIView): queryset = Curso.objects.all() serializer_class = CursoSerializer class AvaliacoesAPIView(generics.ListCreateAPIView): queryset = Avaliacao.objects.all() serializer_class = AvaliacaoSerializer def get_queryset(self): if self.kwargs.get("curso_pk"): return self.queryset.filter(curso_id=self.kwargs.get("curso_pk")) return self.queryset.all() class AvaliacaoAPIView(generics.RetrieveUpdateDestroyAPIView): queryset = Avaliacao.objects.all() serializer_class = AvaliacaoSerializer def get_object(self): if self.kwargs.get("curso_pk"): return get_object_or_404(self.get_queryset(), curso_id=self.kwargs.get("curso_id"), pk=self.kwargs.get("avaliacao_pk")) return get_object_or_404(self.get_queryset(), pk=self.kwargs.get("avaliacao_pk")) # Versão 2 # ---------------------------------------------------------------------------------------------------- class CursoViewSet(viewsets.ModelViewSet): permission_classes = (IsSuperUser, permissions.DjangoModelPermissions, ) queryset = Curso.objects.all() serializer_class = CursoSerializer @action(detail=True, methods=['get']) def avaliacoes(self, request, pk=None): self.pagination_class.page_size = 1 avaliacoes = Avaliacao.objects.filter(curso_id=pk) page = self.paginate_queryset(avaliacoes) if page is not None: serializer = AvaliacaoSerializer(page, many=True) return self.get_paginated_response(serializer.data) serializer = AvaliacaoSerializer(avaliacoes, many=True) return Response(serializer.data) ''' comentado antigo código: class AvaliacaoViewSet(viewsets.ModelViewSet): queryset = Avaliacao.objects.all() serializer_class = AvaliacaoSerializer ''' class AvaliacaoViewSet(mixins.ListModelMixin, mixins.CreateModelMixin, mixins.RetrieveModelMixin, mixins.UpdateModelMixin, mixins.DestroyModelMixin, viewsets.GenericViewSet): queryset = Avaliacao.objects.all() serializer_class = AvaliacaoSerializer # ----------------------------------------------------------------------------------------------------
import os import django from celery import Celery, shared_task from celery.schedules import crontab from celery.signals import task_success from django.conf import settings from django.utils import timezone os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'django_celery_demo.settings') django.setup() app = Celery('django_celery_demo') app.config_from_object('django.conf:settings') # celery app 加载 settings中的配置 app.now = timezone.now # 设置时间时区和django一样 # 加载每个django app下的tasks.py中的task任务 app.autodiscover_tasks(lambda: settings.INSTALLED_APPS) # 这个是硬编码的定时任务 app.conf.beat_schedule = { 'aa': { 'task': 'add', 'schedule': crontab(minute="*/1"), 'args': (2, 4) }, } # 这个一个task @app.task(bind=True) def debug_task(self): print('Request: {0!r}'.format(self.request)) # 异步执行这个task debug_task.delay()
# MIT License # Copyright (c) 2017 Luca Angioloni and Francesco Pegoraro # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from PyQt5.QtCore import (Qt, QObject, pyqtSignal, QThread) import time import speech_recognition as sr from subprocess import call from Bot import Bot class Speech_DialogManager(QThread): """ Class that provides an interface for the dialog and actions components. Attributes: rec_on Qt signal emitted when the system is ready to listen and starts listening rec_off Qt signal emitted when the system stops listening updated Qt signal emitted when a new dialog line needs to be redered finished Qt signal emitted when the transaction with the user is over active Boolean status of the dialog process recognizer Recogniser object (from speech_recognition package) username current user username products vending machine products data bot Bot class object that manages the conversation """ rec_on = pyqtSignal() # in order to work it has to be defined out of the contructor rec_off = pyqtSignal() # in order to work it has to be defined out of the contructor updated = pyqtSignal(object, object) # in order to work it has to be defined out of the contructor finished = pyqtSignal() # in order to work it has to be defined out of the contructor def __init__(self): super().__init__() self.active = False self.recognizer = sr.Recognizer() self.recognizer.energy_threshold = 2000 self.username = '' def setProdData(self, products_data): """ Method to set the products data Args: products_data the data """ self.products = products_data def set_username(self, name): """ Method to set the current user name Args: name the user name """ self.username = name self.bot = Bot(self.products) self.bot.set_user_name(self.username) def record_and_understand(self): """Method called to listen, record and understand what users say""" with sr.Microphone() as source: print("Say something!") call(["python3", "bip.py"]) self.rec_on.emit() audio = self.recognizer.listen(source, timeout=6.0) print("stopped recording") self.rec_off.emit() # Speech recognition using Google Speech Recognition try: # for testing purposes, we're just using the default API key # to use another API key, use `r.recognize_google(audio, key="GOOGLE_SPEECH_RECOGNITION_API_KEY")` # instead of `r.recognize_google(audio)` said = self.recognizer.recognize_google(audio, language='it') print("You said: " + said) return said except sr.UnknownValueError: print("Google Speech Recognition could not understand audio") return 'impossibile capire' except sr.RequestError as e: print("Could not request results from Google Speech Recognition service; {0}".format(e)) return 'richieste speech-to-text terminate' def write(self): """Method called to input dialog sentences via terminal input (used for debugging)""" usersays = input("Say something!") return usersays def loop(self): """Method called to initialize and start the dialog Thread""" self.start() def deactivate(self): """Method called to stop and deactivate this Thread""" self.active = False self.quit() if self.isRunning(): self.quit() def sayhi(self, greetings): """ Method that starts the speak script to perform text to speech. Args: greetings the sentence to pass to the speak script """ call(["python3", "speak.py", greetings]) def run(self): """Main loop of this Thread""" self.active = True greetings = "Ciao "+str(self.username)+" cosa ti serve? Parla dopo il bip." self.updated.emit(greetings, 0) self.sayhi(greetings) while self.active: user_says = self.record_and_understand() # da sostituire con record_and_understand #user_says = self.write() # da sostituire con record_and_understand self.updated.emit(user_says.lower(), 0) val, reply, bill = self.bot.reply(user_says.lower()) self.updated.emit(reply, bill) call(["python3", "speak.py", reply]) if val is None: self.finished.emit() self.deactivate() else: if val: print("Qui usare API e fare addebito") self.finished.emit() self.deactivate()
# coding: utf-8 """ functools モジュールのサンプルです。 functools.lru_cache() について。 """ import functools from trypython.common.commoncls import SampleBase from trypython.common.commonfunc import pr class Sample(SampleBase): def exec(self): # -------------------------------------------------- # lru_cache() # --------------------------- # デコレータとして指定した関数をラップして # 指定された回数分のメモ化を行う。 # # キャッシュヒットした場合は、本来の処理に入らず # キャッシュから値を返すため、速い。 # # 元の関数オブジェクトには __wrapped__ でアクセス可能 # 現在のキャッシュ状態は、cache_info() で確認できる # キャッシュをクリアする場合は、cache_clear() を呼び出す # -------------------------------------------------- pr('functools.lru_cache()', type(self.my_sum)) pr('functools.lru_cache()', self.my_sum.__wrapped__) pr('functools.lru_cache()', self.my_sum.cache_info()) self.my_sum(1, 1) # no hit self.my_sum(1, 2) # no hit self.my_sum(1, 3) # no hit self.my_sum(1, 1) # hit pr('functools.lru_cache()', self.my_sum.cache_info()) self.my_sum(1, 2) # hit self.my_sum(1, 3) # hit self.my_sum(1, 4) # no hit pr('functools.lru_cache()', self.my_sum.cache_info()) self.my_sum(1, 2) # hit self.my_sum(1, 3) # hit self.my_sum(1, 4) # hit pr('functools.lru_cache()', self.my_sum.cache_info()) self.my_sum.cache_clear() pr('functools.lru_cache()', self.my_sum.cache_info()) @functools.lru_cache(maxsize=32) def my_sum(self, x, y): return x + y def go(): obj = Sample() obj.exec()
# vim:set tabstop=4 shiftwidth=4 expandtab: # Copyright (c) 2008, Humanized, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of Enso nor the names of its contributors may # be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY Humanized, Inc. ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL Humanized, Inc. BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- # # enso.contrib.websearch # # ---------------------------------------------------------------------------- """ An Enso plugin that makes the web search commands available. Commands support search suggestions if defined. """ # ---------------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------------- import locale import logging import threading import urllib import urllib2 import webbrowser from abc import ABCMeta from contextlib import closing from functools import partial try: import regex as re except ImportError: import re try: import ujson as jsonlib except ImportError as e: logging.warning( "Consider installing 'ujson' library for JSON parsing performance boost.") import json as jsonlib import enso.config from enso import selection from enso.commands import CommandManager from enso.commands.decorators import warn_overriding from enso.commands.factories import ArbitraryPostfixFactory from enso.commands.mixins import CommandParameterWebSuggestionsMixin from enso.contrib.scriptotron.tracebacks import safetyNetted from enso.messages import displayMessage from enso.utils import suppress from enso.utils.html_tools import strip_html_tags # Default suggestions polling interval in milliseconds (minimum allowed is 100) SUGGESTIONS_POLLING_INTERVAL = 100 # Default maximum length of query the site accepts # # Google limits their search requests to 2048 bytes, so let's be # nice and not send them anything longer than that. # # See this link for more information: # # http://code.google.com/apis/soapsearch/reference.html MAX_QUERY_LENGTH = 2048 HTTP_HEADERS = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/55.0.2883.87 Safari/537.36', #'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', } # ---------------------------------------------------------------------------- # The Google command # --------------------------------------------------------------------------- # Here we detect national TLD imposed by Google based on user's location. # This is used in suggestion-search. # It offers local suggestions and also speeds up the search. LOCAL_TLD = "com" def _get_google_local_domain(): global LOCAL_TLD try: with closing(urllib2.urlopen("http://www.google.com/", timeout=4)) as resp: # Get redirect URL redirected_url = resp.geturl() domain = urllib2.urlparse.urlsplit(redirected_url).netloc LOCAL_TLD = domain[domain.index("google.") + 7:] except Exception as e: logging.warning("Error parsing google.com redirect TLS: %s", e) else: logging.info("Google local domain has been set to .%s", LOCAL_TLD) t = threading.Thread(target=_get_google_local_domain) t.setDaemon(True) t.start() @warn_overriding class AbstractSearchCommandFactory(CommandParameterWebSuggestionsMixin, ArbitraryPostfixFactory): """ Implementation of the web-search command. """ __metaclass__ = ABCMeta def __init__(self, command_name, suggest, polling_interval): """ Initializes the web-search command. """ assert isinstance(command_name, basestring) assert len(command_name) > 0 super(AbstractSearchCommandFactory, self).__init__() # super() should call the mixin init properly # CommandParameterWebSuggestionsMixin.__init__(self) self.command_name = command_name self.parameter = None self.do_suggestions = suggest self.setSuggestionsPollingInterval(polling_interval) @safetyNetted def run(self): """ Runs the web-search command. """ if self.parameter is not None: text = self.parameter.decode() # '...' gets replaced with current selection if "..." in text: seldict = selection.get() to_replace = " %s " % seldict.get( "text", u"").strip().strip("\0") text = text.replace("...", to_replace) text = re.sub(r"\s+", " ", text) text = re.sub(r"\r\n", " ", text) text = re.sub(r"\n", " ", text) else: seldict = selection.get() text = seldict.get("text", u"") text = re.sub(r"\s+", " ", text) text = text.strip().strip("\0") if not text: displayMessage("<p>No text was selected.</p>") return if len(text) > MAX_QUERY_LENGTH: displayMessage("<p>Your query is too long.</p>") return # For compatibility with older core, use default locale if setting # is not used in the config... languageCode, _ = locale.getdefaultlocale() if languageCode: language = languageCode.split("_")[0] else: language = "en" # The following is standard convention for transmitting # unicode through a URL. text = urllib.quote_plus(text.encode("utf-8")) url = self.BASE_URL % { "local_tld": LOCAL_TLD, # Used just for Google services "langcode": language, "query": text, } # Catch exception, because webbrowser.open sometimes raises exception # without any reason try: webbrowser.open_new_tab(url) except Exception as e: logging.warning(e) def onSuggestQueryError(self, url_or_request, exception): pass def _generateCommandObj(self, parameter=None): self.parameter = parameter if self.parameter is not None: self.setDescription( u"Performs %s search for \u201c%s\u201d." % (self.command_name, self.parameter) ) else: self.setDescription( u"Performs %s search on the selected or typed text." % ( self.command_name) ) return self class ConfigurableSearchCommandFactory(AbstractSearchCommandFactory): remove_google_jsonp_wrapper = partial( re.compile(r"^(?:window.google.ac.h\()?(.*?)\)?$").sub, r"\1" ) def __init__( self, command_name, command_prefix, help_text, base_url, suggest, suggestions_url, parser, is_json, minimum_chars, polling_interval): super(ConfigurableSearchCommandFactory, self).__init__( command_name, suggest, polling_interval) self.HELP_TEXT = help_text self.PREFIX = command_prefix self.NAME = "%s{%s}" % (command_prefix, help_text) self.BASE_URL = base_url self.suggestions_url = suggestions_url self.parser = parser self.is_json = is_json self.minimum_chars = max(1, minimum_chars) self.setCacheId( "ConfigurableSearch%s" % re.sub( r"[^A-Za-z0-9]", "", command_prefix.strip() ).title() ) def getSuggestionsUrl(self, text): if not self.do_suggestions: return None if text is None or len(text.strip()) < self.minimum_chars: return None charset = "utf-8" query = urllib.quote_plus(text.encode(charset)) # For compatibility with older core, use default locale if setting # is not used in the config... languageCode, _ = locale.getdefaultlocale() if languageCode: language = languageCode.split("_")[0] else: language = "en" url = self.suggestions_url % { "query": query, "charset": charset, "local_tld": LOCAL_TLD, "langcode": language, } request = urllib2.Request(url, headers=HTTP_HEADERS) return request def decodeSuggestions(self, data, headers=None): suggestions = [] charset = "utf-8" if headers: with suppress(Exception): content_type = headers.get( "Content-Type", headers.get("content-type", "")).lower() if content_type and "charset=" in content_type: charset = content_type.split("charset=")[-1] try: decoded = data.decode(charset) except Exception as e: logging.error( "%s-suggest query unicode decoding failed: %s", self.name, e) else: try: # Optionally remove JSONP function wrapper (google searches) decoded = self.remove_google_jsonp_wrapper(decoded) json = jsonlib.loads(decoded) except Exception as e: logging.error( u"Error parsing JSON data: %s; data: '%s'", e, decoded) else: if json: suggestions = [strip_html_tags(s) for s in self.parser(json)][:10] # Limit number of suggestions return suggestions # ---------------------------------------------------------------------------- # Plugin initialization # --------------------------------------------------------------------------- def load(): PLUGIN_CONFIG_PREFIX = "PLUGIN_WEBSEARCH" RE_PLUGIN_CONFIG = re.compile(r"^%s_([a-zA-Z0-9]+)" % PLUGIN_CONFIG_PREFIX) for plugin_name in (RE_PLUGIN_CONFIG.sub(r"\1", e) for e in dir(enso.config) if RE_PLUGIN_CONFIG.match(e)): config_key = "%s_%s" % (PLUGIN_CONFIG_PREFIX, plugin_name) try: conf = getattr(enso.config, config_key) command = ConfigurableSearchCommandFactory( command_name=conf["name"], command_prefix=conf["prefix"], help_text=conf["argument"], base_url=conf["base_url"], suggest=conf["suggest"], suggestions_url=conf["suggestions_url"], parser=conf["result_parser"], is_json=conf["is_json"], minimum_chars=conf.get( "minimum_chars", 1), polling_interval=conf.get( "polling_interval", SUGGESTIONS_POLLING_INTERVAL), ) CommandManager.get().registerCommand( command.NAME, command ) if not conf["suggest"]: logging.info( "%s command search-suggestions are turned off. " "To turn it on, modify 'suggest' parameter of %s entry " "in your .ensorc configuration file." % (conf["name"], config_key) ) except Exception as e: logging.error( "Error parsing/registering websearch command from enso.config: %s; %s", config_key, e )