content
stringlengths
5
1.05M
""" This script displays the Trace image and the traces in an RC Ginga window. .. include common links, assuming primary doc root is up one directory .. include:: ../include/links.rst """ from pypeit.scripts import scriptbase class ChkAlignments(scriptbase.ScriptBase): @classmethod def get_parser(cls, width=None): from pypeit.spectrographs import available_spectrographs parser = super().get_parser(description='Display MasterAlignment image and the trace data', width=width) parser.add_argument('master_file', type=str, default = None, help='PypeIt Master Alignment file [e.g. MasterAlignment_A_1_01.fits]') parser.add_argument('--chname', default='Alignments', type=str, help='Channel name for image in Ginga') return parser @staticmethod def main(pargs): from pypeit import alignframe # Load alignments = alignframe.Alignments.from_file(pargs.master_file) # Show alignments.show()
# -*- coding: utf-8 -*- import random import string import time from datetime import datetime from apps.database.session import db from config import JsonConfig def get_model(model): if JsonConfig.get_data('TESTING'): return model.test_model return model def get_token(): random_string = string.ascii_lowercase + string.digits + string.ascii_uppercase timestamp = str(time.mktime(datetime.today().timetuple())) return ''.join(random.choice(random_string) for _ in range(28)) + timestamp class CinemaMixin: id = db.Column(db.Integer, primary_key=True, autoincrement=True) title = db.Column(db.String(30)) image_url = db.Column(db.Text()) address = db.Column(db.String(50)) detail_address = db.Column(db.String(30)) def __init__(self, title=None, image_url=None, address=None, detail_address=None): self.title = title self.image_url = image_url self.address = address self.detail_address = detail_address class TestCinemaModel(CinemaMixin, db.Model): __tablename__ = 'test_cinemas' __table_args__ = {'extend_existing': True} class CinemaModel(CinemaMixin, db.Model): __tablename__ = 'cinemas' __table_args__ = {'extend_existing': True} test_model = TestCinemaModel Cinema = get_model(CinemaModel) class MovieMixin: id = db.Column(db.Integer, primary_key=True, autoincrement=True) title = db.Column(db.String(120)) director = db.Column(db.String(20)) description = db.Column(db.Text) poster_url = db.Column(db.Text) running_time = db.Column(db.Integer) age_rating = db.Column(db.Integer) def __init__(self, title=None, director=None, description=None, poster_url=None, running_time=None, age_rating=None): self.title = title self.director = director self.description = description self.poster_url = poster_url self.running_time = running_time self.age_rating = age_rating class TestMovieModel(MovieMixin, db.Model): __tablename__ = 'test_movies' __table_args__ = {'extend_existing': True} showtimes = db.relationship('TestShowtimeModel') class MovieModel(MovieMixin, db.Model): __tablename__ = 'movies' __table_args__ = {'extend_existing': True} test_model = TestMovieModel showtimes = db.relationship('ShowtimeModel') Movie = get_model(MovieModel) class ShowtimeMixin: id = db.Column(db.Integer, primary_key=True, autoincrement=True) cinema_id = db.Column(db.Integer) start_time = db.Column(db.DateTime) end_time = db.Column(db.DateTime) def __init__(self, movie_id=None, cinema_id=None, theater_id=None, start_time=None, end_time=None): self.movie_id = movie_id self.cinema_id = cinema_id self.theater_id = theater_id self.start_time = start_time self.end_time = end_time class TestShowtimeModel(ShowtimeMixin, db.Model): __tablename__ = 'test_showtimes' __table_args__ = {'extend_existing': True} movie_id = db.Column(db.Integer, db.ForeignKey('test_movies.id')) theater_id = db.Column(db.Integer, db.ForeignKey('test_theaters.id')) theater = db.relationship('TestTheaterModel') class ShowtimeModel(ShowtimeMixin, db.Model): __tablename__ = 'showtimes' __table_args__ = {'extend_existing': True} test_model = TestShowtimeModel movie_id = db.Column(db.Integer, db.ForeignKey('movies.id')) theater_id = db.Column(db.Integer, db.ForeignKey('theaters.id')) theater = db.relationship('TheaterModel') Showtime = get_model(ShowtimeModel) class Test(db.Model): __tablename__ = 'tests' __table_args__ = {'extend_existing': True} id = db.Column(db.Integer, primary_key=True, autoincrement=True) message = db.Column(db.String(120)) def __init__(self, message=None): self.message = message class TheaterTicketMixin: id = db.Column(db.Integer, primary_key=True, autoincrement=True) showtime_id = db.Column(db.Integer()) x = db.Column(db.Integer()) y = db.Column(db.Integer()) def __init__(self, theater_id=None, showtime_id=None, x=None, y=None): self.theater_id = theater_id self.showtime_id = showtime_id self.x = x self.y = y class TestTheaterTicketModel(TheaterTicketMixin, db.Model): __tablename__ = 'test_theater_tickets' __table_args__ = {'extend_existing': True} theater_id = db.Column(db.Integer(), db.ForeignKey('test_theaters.id')) class TheaterTicketModel(TheaterTicketMixin, db.Model): __tablename__ = 'theater_tickets' __table_args__ = {'extend_existing': True} test_model = TestTheaterTicketModel theater_id = db.Column(db.Integer(), db.ForeignKey('theaters.id')) TheaterTicket = get_model(TheaterTicketModel) class TheaterMixin: id = db.Column(db.Integer, primary_key=True, autoincrement=True) cinema_id = db.Column(db.Integer()) title = db.Column(db.String(10)) seat = db.Column(db.Integer()) def __init__(self, cinema_id=None, title=None, seat=None): self.cinema_id = cinema_id self.title = title self.seat = seat class TestTheaterModel(TheaterMixin, db.Model): __tablename__ = 'test_theaters' __table_args__ = {'extend_existing': True} theater_tickets = db.relationship('TestTheaterTicketModel') class TheaterModel(TheaterMixin, db.Model): __tablename__ = 'theaters' __table_args__ = {'extend_existing': True} test_model = TestTheaterModel theater_tickets = db.relationship('TheaterTicketModel') Theater = get_model(TheaterModel) class UserMixin: id = db.Column(db.Integer, primary_key=True, autoincrement=True) email = db.Column(db.String(120), unique=True) nickname = db.Column(db.String(20), unique=True) password = db.Column(db.String(255)) phone_number = db.Column(db.String(20)) age = db.Column(db.Integer) profile_url = db.Column(db.Text) token = db.Column(db.String(40), unique=True, default=get_token()) def __init__(self, email=None, nickname=None, password=None, phone_number=None, age=None, profile_url=None, token=None): self.email = email self.nickname = nickname self.password = password self.phone_number = phone_number self.age = age self.profile_url = profile_url self.token = token class TestUserModel(UserMixin, db.Model): __tablename__ = 'test_users' __table_args__ = {'extend_existing': True} class UserModel(UserMixin, db.Model): __tablename__ = 'users' __table_args__ = {'extend_existing': True} test_model = TestUserModel User = get_model(UserModel)
import json import os import pymzml import pandas as pd import numpy as np from tqdm import tqdm from matchms.importing import load_from_mgf from pyteomics import mzxml, mzml import logging logger = logging.getLogger('msql_fileloading') def load_data(input_filename, cache=False): """ Loading data generically Args: input_filename ([type]): [description] cache (bool, optional): [description]. Defaults to False. Returns: [type]: [description] """ if cache: ms1_filename = input_filename + "_ms1.msql.feather" ms2_filename = input_filename + "_ms2.msql.feather" if os.path.exists(ms1_filename) or os.path.exists(ms2_filename): try: ms1_df = pd.read_feather(ms1_filename) except: ms1_df = pd.DataFrame() try: ms2_df = pd.read_feather(ms2_filename) except: ms2_df = pd.DataFrame() return ms1_df, ms2_df # Actually loading if input_filename[-5:].lower() == ".mzml": #ms1_df, ms2_df = _load_data_mzML(input_filename) #ms1_df, ms2_df = _load_data_mzML2(input_filename) # Faster version using pymzML ms1_df, ms2_df = _load_data_mzML_pyteomics(input_filename) # Faster version using pymzML elif input_filename[-6:].lower() == ".mzxml": ms1_df, ms2_df = _load_data_mzXML(input_filename) elif input_filename[-5:] == ".json": ms1_df, ms2_df = _load_data_gnps_json(input_filename) elif input_filename[-4:].lower() == ".mgf": ms1_df, ms2_df = _load_data_mgf(input_filename) elif input_filename[-4:].lower() == ".txt" or input_filename[-4:].lower() == ".dat": ms1_df, ms2_df = _load_data_txt(input_filename) else: print("Cannot Load File Extension") raise Exception("File Format Not Supported") # Saving Cache if cache: ms1_filename = input_filename + "_ms1.msql.feather" ms2_filename = input_filename + "_ms2.msql.feather" if not (os.path.exists(ms1_filename) or os.path.exists(ms2_filename)): try: ms1_df.to_feather(ms1_filename) except: pass try: ms2_df.to_feather(ms2_filename) except: pass return ms1_df, ms2_df def _load_data_mgf(input_filename): file = load_from_mgf(input_filename) ms2mz_list = [] for i, spectrum in enumerate(file): if len(spectrum.peaks.mz) == 0: continue mz_list = list(spectrum.peaks.mz) i_list = list(spectrum.peaks.intensities) i_max = max(i_list) i_sum = sum(i_list) for i in range(len(mz_list)): if i_list[i] == 0: continue peak_dict = {} peak_dict["i"] = i_list[i] peak_dict["i_norm"] = i_list[i] / i_max peak_dict["i_tic_norm"] = i_list[i] / i_sum peak_dict["mz"] = mz_list[i] # Handling malformed mgf files try: peak_dict["scan"] = spectrum.metadata["scans"] except: peak_dict["scan"] = i + 1 try: peak_dict["rt"] = float(spectrum.metadata["rtinseconds"]) / 60 except: peak_dict["rt"] = 0 try: peak_dict["precmz"] = float(spectrum.metadata["pepmass"][0]) except: peak_dict["precmz"] = 0 peak_dict["ms1scan"] = 0 peak_dict["charge"] = 1 # TODO: Add Charge Correctly here peak_dict["polarity"] = 1 # TODO: Add Polarity Correctly here ms2mz_list.append(peak_dict) # Turning into pandas data frames ms1_df = pd.DataFrame([peak_dict]) ms2_df = pd.DataFrame(ms2mz_list) return ms1_df, ms2_df def _load_data_gnps_json(input_filename): all_spectra = json.loads(open(input_filename).read()) ms1_df_list = [] ms2_df_list = [] for spectrum in tqdm(all_spectra): # Skipping spectra bigger than 1MB of peaks if len(spectrum["peaks_json"]) > 1000000: continue peaks = json.loads(spectrum["peaks_json"]) peaks = [peak for peak in peaks if peak[1] > 0] if len(peaks) == 0: continue i_max = max([peak[1] for peak in peaks]) i_sum = sum([peak[1] for peak in peaks]) if i_max == 0: continue ms2mz_list = [] for peak in peaks: peak_dict = {} peak_dict["i"] = peak[1] peak_dict["i_norm"] = peak[1] / i_max peak_dict["i_tic_norm"] = peak[1] / i_sum peak_dict["mz"] = peak[0] peak_dict["scan"] = spectrum["spectrum_id"] peak_dict["rt"] = 0 peak_dict["precmz"] = float(spectrum["Precursor_MZ"]) peak_dict["ms1scan"] = 0 peak_dict["charge"] = 1 # TODO: Add Charge Correctly here peak_dict["polarity"] = 1 # TODO: Add Polarity Correctly here ms2mz_list.append(peak_dict) # Turning into pandas data frames if len(ms2mz_list) > 0: ms2_df = pd.DataFrame(ms2mz_list) ms2_df_list.append(ms2_df) ms1_df = pd.DataFrame([peak_dict]) ms1_df_list.append(ms1_df) # Merging ms1_df = pd.concat(ms1_df_list).reset_index() ms2_df = pd.concat(ms2_df_list).reset_index() return ms1_df, ms2_df def _load_data_mzXML(input_filename): ms1mz_list = [] ms2mz_list = [] previous_ms1_scan = 0 with mzxml.read(input_filename) as reader: for spectrum in tqdm(reader): if len(spectrum["intensity array"]) == 0: continue if not "m/z array" in spectrum: # This is not a mass spectrum continue mz_list = list(spectrum["m/z array"]) i_list = list(spectrum["intensity array"]) i_max = max(i_list) i_sum = sum(i_list) mslevel = spectrum["msLevel"] if mslevel == 1: for i in range(len(mz_list)): peak_dict = {} peak_dict["i"] = i_list[i] peak_dict["i_norm"] = i_list[i] / i_max peak_dict["i_tic_norm"] = i_list[i] / i_sum peak_dict["mz"] = mz_list[i] peak_dict["scan"] = spectrum["id"] peak_dict["rt"] = spectrum["retentionTime"] peak_dict["polarity"] = _determine_scan_polarity_mzXML(spectrum) ms1mz_list.append(peak_dict) previous_ms1_scan = spectrum["id"] if mslevel == 2: msn_mz = spectrum["precursorMz"][0]["precursorMz"] msn_charge = 0 if "precursorCharge" in spectrum["precursorMz"][0]: msn_charge = spectrum["precursorMz"][0]["precursorCharge"] for i in range(len(mz_list)): peak_dict = {} peak_dict["i"] = i_list[i] peak_dict["i_norm"] = i_list[i] / i_max peak_dict["i_tic_norm"] = i_list[i] / i_sum peak_dict["mz"] = mz_list[i] peak_dict["scan"] = spectrum["id"] peak_dict["rt"] = spectrum["retentionTime"] peak_dict["precmz"] = msn_mz peak_dict["ms1scan"] = previous_ms1_scan peak_dict["charge"] = msn_charge peak_dict["polarity"] = _determine_scan_polarity_mzXML(spectrum) ms2mz_list.append(peak_dict) # Turning into pandas data frames ms1_df = pd.DataFrame(ms1mz_list) ms2_df = pd.DataFrame(ms2mz_list) return ms1_df, ms2_df def _determine_scan_polarity_mzML(spec): """ Gets an enum for positive and negative polarity, for pymzml Args: spec ([type]): [description] Returns: [type]: [description] """ polarity = 0 negative_polarity = spec["negative scan"] if negative_polarity is True: polarity = 2 positive_polarity = spec["positive scan"] if positive_polarity is True: polarity = 1 return polarity def _determine_scan_polarity_pyteomics_mzML(spec): """ Gets an enum for positive and negative polarity, for pyteomics Args: spec ([type]): [description] Returns: [type]: [description] """ polarity = 0 if "negative scan" in spec: polarity = 2 if "positive scan" in spec: polarity = 1 return polarity def _determine_scan_polarity_mzXML(spec): polarity = 0 if spec["polarity"] == "+": polarity = 1 if spec["polarity"] == "-": polarity = 2 return polarity def _load_data_mzML_pyteomics(input_filename): """ This is a loading operation using pyteomics to help with loading mzML files with ion mobility Args: input_filename ([type]): [description] """ previous_ms1_scan = 0 # MS1 all_mz = [] all_rt = [] all_polarity = [] all_i = [] all_i_norm = [] all_i_tic_norm = [] all_scan = [] # MS2 all_msn_mz = [] all_msn_rt = [] all_msn_polarity = [] all_msn_i = [] all_msn_i_norm = [] all_msn_i_tic_norm = [] all_msn_scan = [] all_msn_precmz = [] all_msn_ms1scan = [] all_msn_charge = [] all_msn_mobility = [] with mzml.read(input_filename) as reader: for spectrum in tqdm(reader): if len(spectrum["intensity array"]) == 0: continue # Getting the RT try: rt = spectrum["scanList"]["scan"][0]["scan start time"] except: rt = 0 # Correcting the unit try: if spectrum["scanList"]["scan"][0]["scan start time"].unit_info == "second": rt = rt / 60 except: pass scan = int(spectrum["id"].replace("scanId=", "").split("scan=")[-1]) if not "m/z array" in spectrum: # This is not a mass spectrum continue mz = spectrum["m/z array"] intensity = spectrum["intensity array"] i_max = max(intensity) i_sum = sum(intensity) # If there is no ms level, its likely an UV/VIS spectrum and we can skip if not "ms level" in spectrum: continue mslevel = spectrum["ms level"] if mslevel == 1: all_mz += list(mz) all_i += list(intensity) all_i_norm += list(intensity / i_max) all_i_tic_norm += list(intensity / i_sum) all_rt += len(mz) * [rt] all_scan += len(mz) * [scan] all_polarity += len(mz) * [_determine_scan_polarity_pyteomics_mzML(spectrum)] previous_ms1_scan = scan if mslevel == 2: msn_mz = spectrum["precursorList"]["precursor"][0]["selectedIonList"]["selectedIon"][0]["selected ion m/z"] msn_charge = 0 if "charge state" in spectrum["precursorList"]["precursor"][0]["selectedIonList"]["selectedIon"][0]: msn_charge = int(spectrum["precursorList"]["precursor"][0]["selectedIonList"]["selectedIon"][0]["charge state"]) all_msn_mz += list(mz) all_msn_i += list(intensity) all_msn_i_norm += list(intensity / i_max) all_msn_i_tic_norm += list(intensity / i_sum) all_msn_rt += len(mz) * [rt] all_msn_scan += len(mz) * [scan] all_msn_polarity += len(mz) * [_determine_scan_polarity_pyteomics_mzML(spectrum)] all_msn_precmz += len(mz) * [msn_mz] all_msn_ms1scan += len(mz) * [previous_ms1_scan] all_msn_charge += len(mz) * [msn_charge] if "product ion mobility" in spectrum["precursorList"]["precursor"][0]["selectedIonList"]["selectedIon"][0]: mobility = spectrum["precursorList"]["precursor"][0]["selectedIonList"]["selectedIon"][0]["product ion mobility"] all_msn_mobility += len(mz) * [mobility] ms1_df = pd.DataFrame() if len(all_mz) > 0: ms1_df['i'] = all_i ms1_df['i_norm'] = all_i_norm ms1_df['i_tic_norm'] = all_i_tic_norm ms1_df['mz'] = all_mz ms1_df['scan'] = all_scan ms1_df['rt'] = all_rt ms1_df['polarity'] = all_polarity ms2_df = pd.DataFrame() if len(all_msn_mz) > 0: ms2_df['i'] = all_msn_i ms2_df['i_norm'] = all_msn_i_norm ms2_df['i_tic_norm'] = all_msn_i_tic_norm ms2_df['mz'] = all_msn_mz ms2_df['scan'] = all_msn_scan ms2_df['rt'] = all_msn_rt ms2_df["polarity"] = all_msn_polarity ms2_df["precmz"] = all_msn_precmz ms2_df["ms1scan"] = all_msn_ms1scan ms2_df["charge"] = all_msn_charge if len(all_msn_mobility) == len(all_msn_i): ms2_df["mobility"] = all_msn_mobility return ms1_df, ms2_df def _load_data_mzML2(input_filename): """This is a faster loading version, but a bit more memory intensive Args: input_filename ([type]): [description] Returns: [type]: [description] """ MS_precisions = { 1: 5e-6, 2: 20e-6, 3: 20e-6, 4: 20e-6, 5: 20e-6, 6: 20e-6, 7: 20e-6, } run = pymzml.run.Reader(input_filename, MS_precisions=MS_precisions) previous_ms1_scan = 0 # MS1 all_mz = [] all_rt = [] all_polarity = [] all_i = [] all_i_norm = [] all_i_tic_norm = [] all_scan = [] # MS2 all_msn_mz = [] all_msn_rt = [] all_msn_polarity = [] all_msn_i = [] all_msn_i_norm = [] all_msn_i_tic_norm = [] all_msn_scan = [] all_msn_precmz = [] all_msn_ms1scan = [] all_msn_charge = [] for i, spec in tqdm(enumerate(run)): # Getting RT rt = spec.scan_time_in_minutes() # Getting peaks peaks = spec.peaks("raw") # Filtering out zero rows peaks = peaks[~np.any(peaks < 1.0, axis=1)] if spec.ms_level == 2: if len(peaks) > 1000: # Sorting by intensity peaks = peaks[peaks[:,1].argsort()] # Getting top 1000 peaks = peaks[-1000:] if len(peaks) == 0: continue mz, intensity = zip(*peaks) i_max = max(intensity) i_sum = sum(intensity) if spec.ms_level == 1: all_mz += list(mz) all_i += list(intensity) all_i_norm += list(intensity / i_max) all_i_tic_norm += list(intensity / i_sum) all_rt += len(mz) * [rt] all_scan += len(mz) * [spec.ID] all_polarity += len(mz) * [_determine_scan_polarity_mzML(spec)] previous_ms1_scan = spec.ID if spec.ms_level == 2: msn_mz = spec.selected_precursors[0]["mz"] charge = 0 if "charge" in spec.selected_precursors[0]: charge = spec.selected_precursors[0]["charge"] all_msn_mz += list(mz) all_msn_i += list(intensity) all_msn_i_norm += list(intensity / i_max) all_msn_i_tic_norm += list(intensity / i_sum) all_msn_rt += len(mz) * [rt] all_msn_scan += len(mz) * [spec.ID] all_msn_polarity += len(mz) * [_determine_scan_polarity_mzML(spec)] all_msn_precmz += len(mz) * [msn_mz] all_msn_ms1scan += len(mz) * [previous_ms1_scan] all_msn_charge += len(mz) * [charge] ms1_df = pd.DataFrame() if len(all_mz) > 0: ms1_df['i'] = all_i ms1_df['i_norm'] = all_i_norm ms1_df['i_tic_norm'] = all_i_tic_norm ms1_df['mz'] = all_mz ms1_df['scan'] = all_scan ms1_df['rt'] = all_rt ms1_df['polarity'] = all_polarity ms2_df = pd.DataFrame() if len(all_msn_mz) > 0: ms2_df['i'] = all_msn_i ms2_df['i_norm'] = all_msn_i_norm ms2_df['i_tic_norm'] = all_msn_i_tic_norm ms2_df['mz'] = all_msn_mz ms2_df['scan'] = all_msn_scan ms2_df['rt'] = all_msn_rt ms2_df["polarity"] = all_msn_polarity ms2_df["precmz"] = all_msn_precmz ms2_df["ms1scan"] = all_msn_ms1scan ms2_df["charge"] = all_msn_charge return ms1_df, ms2_df def _load_data_mzML(input_filename): MS_precisions = { 1: 5e-6, 2: 20e-6, 3: 20e-6, 4: 20e-6, 5: 20e-6, 6: 20e-6, 7: 20e-6, } run = pymzml.run.Reader(input_filename, MS_precisions=MS_precisions) ms1_df_list = [] ms2_df_list = [] previous_ms1_scan = 0 for i, spec in tqdm(enumerate(run)): ms1_df = pd.DataFrame() ms2_df = pd.DataFrame() # Getting RT rt = spec.scan_time_in_minutes() # Getting peaks peaks = spec.peaks("raw") # Filtering out zero rows peaks = peaks[~np.any(peaks < 1.0, axis=1)] # Sorting by intensity peaks = peaks[peaks[:, 1].argsort()] if spec.ms_level == 2: # Getting top 1000 peaks = peaks[-1000:] if len(peaks) == 0: continue mz, intensity = zip(*peaks) i_max = max(intensity) i_sum = sum(intensity) if spec.ms_level == 1: ms1_df['i'] = intensity ms1_df['i_norm'] = intensity / i_max ms1_df['i_tic_norm'] = intensity / i_sum ms1_df['mz'] = mz ms1_df['scan'] = spec.ID ms1_df['rt'] = rt ms1_df['polarity'] = _determine_scan_polarity_mzML(spec) previous_ms1_scan = spec.ID if spec.ms_level == 2: msn_mz = spec.selected_precursors[0]["mz"] charge = 0 if "charge" in spec.selected_precursors[0]: charge = spec.selected_precursors[0]["charge"] ms2_df['i'] = intensity ms2_df['i_norm'] = intensity / i_max ms2_df['i_tic_norm'] = intensity / i_sum ms2_df['mz'] = mz ms2_df['scan'] = spec.ID ms2_df['rt'] = rt ms2_df["polarity"] = _determine_scan_polarity_mzML(spec) ms2_df["precmz"] = msn_mz ms2_df["ms1scan"] = previous_ms1_scan ms2_df["charge"] = charge # Turning into pandas data frames if len(ms1_df) > 0: ms1_df_list.append(ms1_df) if len(ms2_df) > 0: ms2_df_list.append(ms2_df) if len(ms1_df_list) > 0: ms1_df = pd.concat(ms1_df_list).reset_index() else: ms1_df = pd.DataFrame() if len(ms2_df_list) > 0: ms2_df = pd.concat(ms2_df_list).reset_index() else: ms2_df = pd.DataFrame() return ms1_df, ms2_df def _load_data_txt(input_filename): # We are assuming whitespace separated columns, first is mz, second is intensity, and will be marked as MS1 mz_list = [] i_list = [] for line in open(input_filename): cleaned_line = line.rstrip() if len(cleaned_line) == 0: continue mz, i = cleaned_line.split() mz_list.append(float(mz)) i_list.append(float(i)) ms1_df = pd.DataFrame() ms1_df['mz'] = mz_list ms1_df['i'] = i_list ms1_df['i_norm'] = ms1_df['i'] / max(ms1_df['i']) ms1_df['i_tic_norm'] = ms1_df['i'] / sum(ms1_df['i']) ms1_df['scan'] = 1 ms1_df['rt'] = 0 ms1_df['polarity'] = "Positive" print(ms1_df) return ms1_df, pd.DataFrame()
# -*- coding: utf-8 -*- # Copyright 2021 Cohesity Inc. import cohesity_management_sdk.models.site_backup_file import cohesity_management_sdk.models.site_info class SiteBackupStatus(object): """Implementation of the 'SiteBackupStatus' model. Attributes: backup_file_vec (list of SiteBackupFile): List of backuped files. Its PnP package and any other files required to recover the site. option_flags (int): Actual options with which this site was backed up (BackupSiteArg.BackupSiteOptionFlags). site_info (SiteInfo): This site info is used during recovery to recover a full site. warning_vec (list of string): Backup succeeded, but there were some warnings for user. For example we could not backup term store due to lack of permissions. """ # Create a mapping from Model property names to API property names _names = { "backup_file_vec":'backupFileVec', "option_flags":'optionFlags', "site_info":'siteInfo', "warning_vec":'ipmiUsername' } def __init__(self, backup_file_vec=None, option_flags=None, site_info=None, warning_vec=None): """Constructor for the SiteBackupStatus class""" # Initialize members of the class self.backup_file_vec = backup_file_vec self.option_flags = option_flags self.site_info = site_info self.warning_vec = warning_vec @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary backup_file_vec = None if dictionary.get('backupFileVec') != None: backup_file_vec = list() for structure in dictionary.get('backupFileVec'): backup_file_vec.append(cohesity_management_sdk.models.site_backup_file.SiteBackupFile.from_dictionary(structure)) option_flags = dictionary.get('optionFlags') site_info = cohesity_management_sdk.models.site_info.SiteInfo.from_dictionary(dictionary.get('siteInfo')) if dictionary.get('siteInfo') else None warning_vec = dictionary.get('ipmiUsername') # Return an object of this model return cls(backup_file_vec, option_flags, site_info, warning_vec)
""" Language resources are defined separately from :class:`Intent` and :class:`Entity` classes. They are stored as plain YAML files in a `language/` folder, aside Agent Python modules; this is to be flexible in the relationship with designers and translators, as well as to allow some degree of automation when downloading cloud changes back to the local Agent definition (this feature is currently not implemented). Your `language/` folder will contain one subfloder per language (i.e. `language/en/`, `language/it/`, ...); each of these will contain * one YAML file per Intent (e.g. `my_module.my_intent_class.yaml`). Intent language resources are specified in :mod:`intents.language.intent_language` * one YAML file per entity (e.g. `ENTITY_MyEntityClass.yaml`). Entity language resources are specified in :mod:`intents.language.entity_language` .. tip:: It may be useful to look at The Example Agent code and language resources (https://github.com/dariowho/intents/tree/master/example_agent/language) to get more insight on the format and naming conventions of language files. """ from intents.language_codes import LanguageCode, LANGUAGE_CODES, ensure_language_code from intents.language.agent_language import agent_language_folder, agent_supported_languages, match_agent_language from intents.language.intent_language import intent_language_data, IntentResponseGroup, IntentResponseDict, IntentResponse, TextIntentResponse, ImageIntentResponse, QuickRepliesIntentResponse, CardIntentResponse, CustomPayloadIntentResponse, IntentLanguageData, ExampleUtterance, UtteranceChunk, TextUtteranceChunk, EntityUtteranceChunk from intents.language.entity_language import entity_language_data, EntityEntry
def intro(): print("*********************************************") print("* Friends of Seaview Pier *") print("*********************************************") print() def capture_new_member_details(volunteer_locations): member_details = [] firstname = "" lastname = "" volunteer = False volunteer_area = "none" joining_date = 0 joining_fee_paid = False member_details.append(input("What is your first name? ")) member_details.append(input("What is your last name? ")) volunteer_choice = input("Do you wish to work as a volunteer (y/n)? ").lower() if volunteer_choice in ["y", "yes", "yeah", "yep", "indeed"]: volunteer = True volunteer_area = capture_volunteer_area(volunteer_locations) member_details.append(volunteer) member_details.append(volunteer_area) member_details.append(capture_joining_date()) joining_fee = input("Have you paid the joining fee (y/n)? ").lower() if joining_fee in ["y", "yes", "yeah", "yep", "indeed"]: joining_fee_paid = True member_details.append(joining_fee_paid) return member_details def capture_volunteer_area(volunteer_locations): print("Here are the volunteering areas:") for key, value in volunteer_locations.items(): print(key, value) print() area_choice = int(input("Please choose an area to volunteer (1, 2 or 3): ")) while area_choice not in [1, 2, 3]: area_choice = input("That is not a valid choice, please choose 1, 2 or 3: ") volunteer_area = volunteer_locations[area_choice] return volunteer_area def capture_joining_date(): joining_date = input("Please enter the date you joined, using the form dd.mm.yyyy: ") return joining_date def print_members(members): print("Register of members:") print() for member in members: print(f" First name: {member[0]}") print(f" Last name: {member[1]}") print(f" Is volunteer: {member[2]}") if member[2]: print(f" Volunteer area: {member[3]}") print(f" Joining date: {member[4]}") print(f"Joining fee paid: {member[5]}") print() def main(): volunteer_locations = {1: 'pier entrance gate', 2: 'gift shop', 3: 'painting and decorating'} members = [] intro() while True: register_member = input("Would you like to register a new member (y/n)? ") if register_member.lower() not in ["y", "yes", "yep", "indeed"]: break print() members.append(capture_new_member_details(volunteer_locations)) print() print_members(members) main()
#!/usr/bin/env python # # test_fnirt.py - # # Author: Paul McCarthy <pauldmccarthy@gmail.com> # import os.path as op import itertools as it import numpy as np import nibabel as nib import pytest import fsl.data.image as fslimage import fsl.utils.tempdir as tempdir import fsl.data.constants as constants import fsl.transform.affine as affine import fsl.transform.nonlinear as nonlinear import fsl.transform.fnirt as fnirt from .test_nonlinear import _random_affine_field datadir = op.join(op.dirname(__file__), 'testdata', 'nonlinear') def test_readFnirt(): src = op.join(datadir, 'src') ref = op.join(datadir, 'ref') coef = op.join(datadir, 'coefficientfield') disp = op.join(datadir, 'displacementfield') src = fslimage.Image(src) ref = fslimage.Image(ref) coef = fnirt.readFnirt(coef, src, ref) disp = fnirt.readFnirt(disp, src, ref) with pytest.raises(ValueError): fnirt.readFnirt(src, src, ref) assert isinstance(coef, nonlinear.CoefficientField) assert isinstance(disp, nonlinear.DeformationField) assert coef.src.sameSpace(src) assert coef.ref.sameSpace(ref) assert disp.src.sameSpace(src) assert disp.ref.sameSpace(ref) assert coef.srcSpace == 'fsl' assert coef.refSpace == 'fsl' assert disp.srcSpace == 'fsl' assert disp.refSpace == 'fsl' def test_readFnirt_defType_intent(): src = op.join(datadir, 'src.nii.gz') ref = op.join(datadir, 'ref.nii.gz') coef = op.join(datadir, 'coefficientfield.nii.gz') disp = op.join(datadir, 'displacementfield.nii.gz') src = fslimage.Image(src) ref = fslimage.Image(ref) field = fnirt.readFnirt(disp, src, ref, defType='absolute') assert field.deformationType == 'absolute' field = fnirt.readFnirt(disp, src, ref, defType='relative') assert field.deformationType == 'relative' img = nib.load(coef) img.header['intent_code'] = 0 with tempdir.tempdir(): img.to_filename('field.nii.gz') with pytest.raises(ValueError): fnirt.readFnirt('field', src, ref) field = fnirt.readFnirt( 'field', src, ref, intent=constants.FSL_CUBIC_SPLINE_COEFFICIENTS) assert isinstance(field, nonlinear.CoefficientField) field = fnirt.readFnirt( 'field', src, ref, intent=constants.FSL_FNIRT_DISPLACEMENT_FIELD) assert isinstance(field, nonlinear.DeformationField) def test_toFnirt(): def check(got, exp): tol = dict(atol=1e-5, rtol=1e-5) assert np.all(np.isclose(got.data, exp.data, **tol)) assert got.src.sameSpace(exp.src) assert got.ref.sameSpace(exp.ref) assert got.srcSpace == 'fsl' assert got.refSpace == 'fsl' basefield, xform = _random_affine_field() src = basefield.src ref = basefield.ref spaces = it.permutations(('voxel', 'fsl', 'world'), 2) for from_, to in spaces: field = nonlinear.convertDeformationSpace(basefield, from_, to) got = fnirt.toFnirt(field) check(got, basefield) src = fslimage.Image(op.join(datadir, 'src')) ref = fslimage.Image(op.join(datadir, 'ref')) coef = fnirt.readFnirt(op.join(datadir, 'coefficientfield'), src, ref) got = fnirt.toFnirt(coef) check(got, coef) def test_fromFnirt(): basefield, basexform = _random_affine_field() src = basefield.src ref = basefield.ref spaces = list(it.permutations(('voxel', 'fsl', 'world'), 2)) for from_, to in spaces: got = fnirt.fromFnirt(basefield, from_, to) assert got.srcSpace == to assert got.refSpace == from_ coords = [np.random.randint(0, basefield.shape[0], 5), np.random.randint(0, basefield.shape[1], 5), np.random.randint(0, basefield.shape[2], 5)] coords = np.array(coords).T coords = affine.transform(coords, ref.getAffine('voxel', from_)) aff = affine.concat(src.getAffine('fsl', to), basexform, ref.getAffine(from_, 'fsl')) got = got.transform(coords) exp = affine.transform(coords, aff) enan = np.isnan(exp) gnan = np.isnan(got) assert np.all(np.isclose(enan, gnan)) assert np.all(np.isclose(exp[~enan], got[~gnan])) # Converting from a FNIRT coefficient field src = fslimage.Image(op.join(datadir, 'src')) ref = fslimage.Image(op.join(datadir, 'ref')) coef = fnirt.readFnirt(op.join(datadir, 'coefficientfield'), src, ref) disp = fnirt.readFnirt(op.join(datadir, 'displacementfield'), src, ref) for from_, to in spaces: cnv = fnirt.fromFnirt(coef, from_, to) exp = nonlinear.convertDeformationSpace(disp, from_, to) tol = dict(atol=1e-5, rtol=1e-5) assert np.all(np.isclose(cnv.data, exp.data, **tol))
import torch from torch.nn import init import torch.nn as nn # ============================================================================= # ============================================================================= # This is a Pytorch implementation of Star Topology Convolution. # ============================================================================= # ============================================================================= # # Copyright (c) 2020, Chong WU & Zhenan FENG All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # # Neither the name of City University of Hong Kong nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # ============================================================================= # ============================================================================= # Please cite our paper if you use this code in your own work: # Wu, Chong; Feng, Zhenan; Zheng, Jiangbin; Zhang, Houwang; Cao, Jiawang; YAN, Hong (2020): Star Topology Convolution for Graph Representation Learning. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.12805799.v4 # ============================================================================= # ============================================================================= class STC_decoder(nn.Module): """ The decoder for classification """ def __init__(self, num_classes, STC_encoder, device): super(STC_decoder, self).__init__() self.STC_encoder = STC_encoder self.device = device self.xent_loss = nn.CrossEntropyLoss() self.weight = nn.Parameter(torch.FloatTensor(STC_encoder.embedding_dim, num_classes)) init.xavier_uniform_(self.weight) def forward(self, nodes): embeddings = self.STC_encoder(nodes) output = embeddings.mm(self.weight) return output def loss(self, nodes, labels): output = self.forward(nodes) return self.xent_loss(output, labels.squeeze().to(self.device)) class STC_decoderM(nn.Module): """ The decoder for multi-label classification """ def __init__(self, num_classes, STC_encoder, device): super(STC_decoderM, self).__init__() self.STC_encoder = STC_encoder self.device = device self.xent_loss = nn.BCEWithLogitsLoss() self.weight = nn.Parameter(torch.FloatTensor(STC_encoder.embedding_dim, num_classes)) init.xavier_uniform_(self.weight) def forward(self, nodes): embeddings = self.STC_encoder(nodes) output = embeddings.mm(self.weight) return output def loss(self, nodes, labels): output = self.forward(nodes) return self.xent_loss(output, labels.squeeze().to(self.device))
import boto3 import json import time import os cf = boto3.client('cloudformation') sns = boto3.client('sns') waiter = cf.get_waiter('stack_create_complete') def sendnotification(appname, nonprod_acc, message): env_name = appname.lower() sns_arn = "arn:aws:sns:us-east-1:" + nonprod_acc + ":ECSNotifications-" + env_name print sns_arn sns_message = message subject = "CloudFormation StackSet Completed" response = sns.publish(TopicArn=sns_arn, Message=sns_message, Subject=subject) print response def lambda_handler(event, context): # TODO implement print context print event nonprod_acc = os.environ['NONPROD_ACC'] eventName = event['detail']['eventName'] if eventName == 'CreateStackSet': stackSetName = event['detail']['requestParameters']['stackSetName'] stackSetId = event['detail']['responseElements']['stackSetId'] print stackSetId print "StackSet is being Created for " + stackSetName if eventName == 'DeleteStackSet': stackSetName = event['detail']['requestParameters']['stackSetName'] stackSetId = event['detail']['responseElements']['stackSetId'] print stackSetId print "StackSet is being Deleted for " + stackSetName if eventName == 'CreateStackInstances': stackSetName = event['detail']['requestParameters']['stackSetName'] operationId = event['detail']['responseElements']['operationId'] response = cf.describe_stack_set_operation(StackSetName=stackSetName, OperationId=operationId) status = response['StackSetOperation']['Status'] while status == 'RUNNING': time.sleep(10) response = cf.describe_stack_set_operation(StackSetName=stackSetName, OperationId=operationId) status = response['StackSetOperation']['Status'] if status == 'SUCCEEDED': dev_endpoint = "https://" + stackSetName + ".dkr.dev.dot-nonprod.corppvt.cloud" qa_endpoint = "https://" + stackSetName + ".dkr.qa.dot-nonprod.corppvt.cloud" stage_endpoint = "https://" + stackSetName + ".dkr.stage.dot-nonprod.corppvt.cloud" prodblue_endpoint = "https://" + stackSetName + ".dkr.prod-blue.dot-nonprod.corppvt.cloud" prod_endpoint = "https://" + stackSetName + ".dkr.prod.dot-nonprod.corppvt.cloud" message = "StackSet Creation for Application " + stackSetName + " completed successfully \n Application Name: " + stackSetNamae + "\n ECR Name: " + stackSetName.lower() + "\n DEV Endpoint: " + dev_endpoint + "\n QA Endpoint: " + qa_endpoint + "\n STAGE Endpoint: " + stage_endpoint + "\n PROD_BLUE Endpoint: " + prodblue_endpoint + "\n PROD Endpoint: " + prod_endpoint print message sendnotification(stackSetName, nonprod_acc, message) elif status == 'FAILED': message = "StackSet Creation for Application " + stackSetName + " Failed" print message else: message = "StackSet Creation for Application " + stackSetName + " is been Stopped" print message
import torch import torch.nn as nn from models.AttnLayers import Attention class AttnDecoder(nn.Module): def __init__(self, hidden_size, output_size=1, use_attention=True, attention='tanh'): super(AttnDecoder, self).__init__() self.hidden_size = hidden_size self.output_size = output_size self.linear_1 = nn.Linear(hidden_size*2, output_size) self.attention = Attention(hidden_size) self.use_attention = use_attention def decode(self, predict) : predict = self.linear_1(predict) return predict def forward(self, data, z, last, lengths=None, masks=None): if self.use_attention: attn = self.attention(z, masks) context = (attn.unsqueeze(-1) * z).sum(1) else: attn = None context = last predict = self.decode(context) return predict, attn class FrozenAttnDecoder(AttnDecoder): def generate_frozen_uniform_attn(self, data, lengths, masks): attn = torch.zeros((len(data), torch.max(lengths))) inv_l = 1. / (lengths - 2) attn += inv_l[:, None] attn = attn.cuda() attn.masked_fill_(masks, 0) return attn def forward(self, data, z, last, lengths=None, masks=None): if self.use_attention: attn = self.generate_frozen_uniform_attn(data, lengths, masks) context = (attn.unsqueeze(-1) * z).sum(1) else: attn = None context = last predict = self.decode(context) return predict, attn class PretrainedWeightsDecoder(AttnDecoder) : def forward(self, data) : if self.use_attention : output = data.hidden attn = data.target_attn context = (attn.unsqueeze(-1) * output).sum(1) data.attn = attn else : context = data.last_hidden predict = self.decode(context) data.predict = predict
from typing import List import re def valid_line(line: str) -> bool: """ 行バリデーション Parameters ---------- line: str 行テキスト Returns ------- valid: bool validであるフラグ """ lstriped = line.lstrip() if len(lstriped) == 0: return False if lstriped[0] == '#': return False if lstriped[0] == '/': return False return True def get_key(line: str) -> str: """ キー取得 Parameters ---------- line: str 行テキスト Returns ------- key: str キー """ reg_dq = r'"(.*?)(?<!\\)" *:' reg_sq = r"'(.*?)(?<!\\)' *:" reg_nq = r"(.*?) *:" stripped = line.strip() matched = re.match(reg_dq, stripped) if matched: return matched.group()[:-1].strip()[1:-1].replace('\\"', '"') matched = re.match(reg_sq, stripped) if matched: return matched.group()[:-1].strip()[1:-1].replace("\\'", "'") matched = re.match(reg_nq, stripped) if matched: return matched.group()[:-1].strip() return '' def seek_key(lines: List[str], index: int) -> str: """ キー階層シーク Parameters ---------- lines: List[str] テキスト index: int 探索行インデックス Returns ------- key: str 該当キー """ ret: str = '.' current_indent: int = 10000 # 十分に大きなインデントを初期値としておく for line in lines[:index + 1][::-1]: if not valid_line(line): continue indent = len(line) - len(line.lstrip()) if indent >= current_indent: continue current_key = get_key(line) if not current_key: continue ret = '.' + current_key + ret current_indent = indent if current_indent == 0: break # . が余分に付くので削除 return ret[1:-1] def dig_key(lines: List[str], key: str) -> [int, int, str]: """ キー掘り下げ Parameters ---------- lines: List[str] テキスト key: str 探索キー Returns ------- row_index: int 該当キーの行、ヒットしなければ最も近い階層の行 column_index: int テキスト開始列 hit_key: str ヒットしたキー、対象なしなら空文字 """ splited_key: List[str] = key.split('.') current_key_index: int = 0 row_index: int = -1 current_indent: int = -1 last_hit_row_index: int = -1 for line in lines: row_index += 1 if not valid_line(line): continue indent = len(line) - len(line.lstrip()) if indent <= current_indent: continue current_key = get_key(line) if not current_key: continue if current_key == splited_key[current_key_index]: current_key_index += 1 current_indent = indent last_hit_row_index = row_index if current_key_index == len(splited_key): break return [last_hit_row_index, current_indent, '.'.join(splited_key[:current_key_index])]
# Copyright 2012 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from django.forms import ValidationError # noqa from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import forms from horizon.forms import fields from horizon import messages from horizon_bsn.api import neutron import logging from openstack_dashboard.api import neutron as osneutron import ast import re LOG = logging.getLogger(__name__) NEW_LINES = re.compile(r"\r|\n") EXPECTATION_CHOICES = [('default', _('--- Select Result ---')), ('dropped by route', _('dropped by route')), ('dropped by policy', _('dropped by policy')), ('not permitted by security groups', _('not permitted by security groups')), ('dropped due to private segment', _('dropped due to private segment')), ('dropped due to loop', _('dropped due to loop')), ('packet in', _('packet in')), ('forwarded', _('forwarded')), ('dropped', _('dropped')), ('unspecified source', _('unspecified source')), ('unsupported', _('unsupported')), ('invalid input', _('invalid input')), ('inconsistent status', _('inconsistent status')), ('no traffic detected', _('no traffic detected'))] def extract_src_tenant_and_segment(obj): """Extract src_tenant and src_segment from obj :param obj: an object that contains src_tenant and src_segment string eg. obj['src_tenant']\ =u"{'tenant_id': u'tenant_id', 'tenant_name': u'tenant_name'}" obj['src_segment']\ =u"{'segment_id': u'segment_id', 'segment_name': u'segment_name'}" :return: this operates on the original object tenant and segment info will be extracted from the obj src_tenant and src_segment are deleted after the operation eg. obj{ ...#other attr 'src_tenant_id'=u'tenant_id', 'src_tenant_name'=u'tenant_name', 'src_segment_id'=u'segment_id', 'src_segment_name'=u'segment_name' } """ if obj.get('src_tenant'): src_tenant = ast.literal_eval(obj['src_tenant']) obj['src_tenant_id'] = src_tenant.get('tenant_id') obj['src_tenant_name'] = src_tenant.get('tenant_name') del(obj['src_tenant']) if obj.get('src_segment'): src_segment = ast.literal_eval(obj['src_segment']) obj['src_segment_id'] = src_segment.get('segment_id') obj['src_segment_name'] = src_segment.get('segment_name') del(obj['src_segment']) def populate_tenant_choices(request): """Returns a list of tenant info tuple for creating select options This only creates 1 option, which is user's current tenant/project :param request: object that contents tenant info - request.user.tenant_name - request.user.tenant_id :return: [(tenant_obj, tenant_display_string)] eg. [{'tenant_id':u'tenant_id', 'tenant_name': u'tenant_name'}, u'tenant_name (tenant_id)'] """ # tenant_name (tenant_id) display = '%s (%s)' % (request.user.tenant_name, request.user.tenant_id) value = {'tenant_name': request.user.tenant_name, 'tenant_id': request.user.tenant_id} return [(value, display)] def populate_segment_choices(request): """Returns a list of segment info tuples for creating select options This creates the list based on current project :param request: request info - request.user.project_id :return: [(segment_obj, segment_display_string)] eg1. Has a segment name [{'segment_id':u'tenant_id', 'segment_name': u'segment_name'}, u'segment_name (segment_id)'] eg2. No segment name [{'segment_id':u'tenant_id', 'segment_name': u'segment_name'}, u'segment_name (segment_id)'] """ networks = osneutron.network_list(request, tenant_id=request.user.project_id, shared=False) segment_list = [] for network in networks: value = {'segment_id': network.id, 'segment_name': network.name} if network.name: # segment_name (segment_id) display = '%s (%s)' % (network.name, network.id) else: # (segment_id) display = '(%s)' % network.id segment_list.append((value, display)) if segment_list: segment_list.insert(0, ("", _("Select a Segment"))) else: segment_list.insert(0, ("", _("No segments available"))) return segment_list class CreateReachabilityTest(forms.SelfHandlingForm): name = forms.CharField(max_length="64", label=_("Name"), required=True) src_tenant = forms.ChoiceField( label=_("Source Tenant"), help_text=_("Test reachability for current tenant only.")) src_segment = forms.ChoiceField( label=_("Source Segment"), help_text=_("Select a source segment.")) def __init__(self, request, *args, **kwargs): super(CreateReachabilityTest, self).__init__(request, *args, **kwargs) self.fields['src_tenant'].choices = populate_tenant_choices(request) self.fields['src_tenant'].widget.attrs['readonly'] = True self.fields['src_segment'].choices = populate_segment_choices(request) src_ip = fields.IPField( label=_("Source IP Address"), required=True, initial="0.0.0.0") dst_ip = fields.IPField( label=_("Destination IP Address"), required=True, initial="0.0.0.0") expected_result = forms.ChoiceField( label=_('Expected Connection Results'), required=True, choices=EXPECTATION_CHOICES, widget=forms.Select( attrs={'class': 'switchable', 'data-slug': 'expected_result'})) def clean(self): cleaned_data = super(CreateReachabilityTest, self).clean() def update_cleaned_data(key, value): cleaned_data[key] = value self.errors.pop(key, None) expected_result = cleaned_data.get('expected_result') if expected_result == 'default': msg = _('A expected connection result must be selected.') raise ValidationError(msg) return cleaned_data def handle(self, request, data): try: extract_src_tenant_and_segment(data) reachabilitytest = neutron.reachabilitytest_create(request, **data) msg = _("Reachability Test %s was successfully created") \ % data['name'] LOG.debug(msg) messages.success(request, msg) return reachabilitytest except Exception as e: exceptions.handle(request, _("Failed to create reachability test. Info: " "%s") % e.message) class UpdateForm(CreateReachabilityTest): id = forms.CharField(max_length="36", widget=forms.HiddenInput()) def __init__(self, request, *args, **kwargs): CreateReachabilityTest.__init__(self, request, *args, **kwargs) # set src_segment initial # if segment id/name is missing, this won't select the correct choice # user needs to reselect the segment if kwargs.get('initial') and kwargs.get('initial').get('src_segment'): src_seg = kwargs.get('initial').get('src_segment') for choice in self.fields['src_segment'].choices: if src_seg in choice: self.initial['src_segment'] = str(choice[0]) break def clean(self): cleaned_data = super(UpdateForm, self).clean() def update_cleaned_data(key, value): cleaned_data[key] = value self.errors.pop(key, None) expected_result = cleaned_data.get('expected_result') if expected_result == 'default': msg = _('A expected connection result must be selected.') raise ValidationError(msg) return cleaned_data def handle(self, request, data): try: extract_src_tenant_and_segment(data) id = data['id'] reachabilitytest = neutron \ .reachabilitytest_update(request, id, **data) msg = _("Reachability Test %s was successfully updated") \ % data['name'] LOG.debug(msg) messages.success(request, msg) return reachabilitytest except Exception as e: exceptions.handle(request, _("Failed to update reachability test. Info: " "%s") % e.message) class RunQuickTestForm(forms.SelfHandlingForm): src_tenant = forms.ChoiceField( label=_("Source Tenant"), help_text=_("Test reachability for current tenant only.")) src_segment = forms.ChoiceField( label=_("Source Segment"), help_text=_("Select a source segment.")) def __init__(self, request, *args, **kwargs): super(RunQuickTestForm, self).__init__(request, *args, **kwargs) self.fields['src_tenant'].choices = populate_tenant_choices(request) self.fields['src_tenant'].widget.attrs['readonly'] = True self.fields['src_segment'].choices = populate_segment_choices(request) src_ip = fields.IPField( label=_("Source IP Address"), required=True, initial="0.0.0.0") dst_ip = fields.IPField( label=_("Destination IP Address"), required=True, initial="0.0.0.0") expected_result = forms.ChoiceField( label=_('Expected Connection Results'), required=True, choices=EXPECTATION_CHOICES, widget=forms.Select( attrs={'class': 'switchable', 'data-slug': 'expected_connection'})) def clean(self): cleaned_data = super(RunQuickTestForm, self).clean() def update_cleaned_data(key, value): cleaned_data[key] = value self.errors.pop(key, None) expected_result = cleaned_data.get('expected_result') if expected_result == 'default': msg = _('A expected connection result must be selected.') raise ValidationError(msg) return cleaned_data def handle(self, request, data): data['name'] = "quicktest_" + str(request.user.project_id) try: extract_src_tenant_and_segment(data) reachabilityquicktest = neutron \ .reachabilityquicktest_get(request, request.user.project_id) # update with new fields neutron.reachabilityquicktest_update( request, request.user.project_id, **data) except Exception: # test doesn't exist, create reachabilityquicktest = neutron.reachabilityquicktest_create( request, **data) # clear dict data = {} # set run_test to true and update test to get results data['run_test'] = True reachabilityquicktest = neutron.reachabilityquicktest_update( request, reachabilityquicktest.id, **data) return reachabilityquicktest class SaveQuickTestForm(forms.SelfHandlingForm): name = forms.CharField(max_length="255", label=_("Name"), required=True) def clean(self): cleaned_data = super(SaveQuickTestForm, self).clean() def update_cleaned_data(key, value): cleaned_data[key] = value self.errors.pop(key, None) return cleaned_data def handle(self, request, data): try: extract_src_tenant_and_segment(data) data['save_test'] = True reachabilityquicktest = neutron.reachabilityquicktest_update( request, request.user.project_id, **data) messages.success( request, _('Successfully saved quicktest %s') % data['name']) return reachabilityquicktest except Exception as e: messages.error( request, _('Failed to save quicktest %(name)s. Info: %(msg)s') % {'name': data['name'], 'msg': e.message})
## ========================================================================= ## ## Copyright (c) 2019 Agustin Durand Diaz. ## ## This code is licensed under the MIT license. ## ## utils.py ## ## ========================================================================= ## import pygame import pickle from pathlib import Path from tkinter import Tk from tkinter.filedialog import askopenfilename from tkinter.filedialog import asksaveasfilename def existsFile(path): my_file = Path(path) if my_file.is_file(): # file exists return True return False def existsDir(path): my_file = Path(path) if my_file.is_dir(): # dir exists return True return False def getPathWithoutExtension(path): my_file = Path(path) res = path if my_file.is_file(): suffix = my_file.suffix res = str(path).replace(suffix,'') return res def getImageSize(path): image = pygame.image.load(path) rect = image.get_rect() return (rect[2], rect[3]) def loadPickle(defaultPath): Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing filename = askopenfilename(filetypes=[("Pkl files", "*.pkl")]) # show an "Open" dialog box and return the path to the selected file if len(filename) == 0: filename = defaultPath if filename: return filename, pickle.load(open(filename, 'rb')) return filename, None def savePickle(obj, defaultPath): Tk().withdraw() filename = asksaveasfilename(filetypes=[("Pkl files", "*.pkl")]) file_path = Path(filename) file_path = file_path.with_suffix('.pkl') filename = file_path.as_posix() if len(filename) == 0: filename = defaultPath if filename: pickle.dump(obj, open(filename, 'wb')) return filename import neat import neat_utils.visualize # Use this way: # generatePickleGraph(defaultPath='../pkl_files/winner_neat_dip.pkl', configFile='../config_files/config_neat_dip') def generatePickleGraph(defaultPath, configFile): pickleBundle = loadPickle(defaultPath=defaultPaht) config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction, neat.DefaultSpeciesSet, neat.DefaultStagnation, '../config_files/config_neat_dip') path = getPathWithoutExtension(pickleBundle[0]) node_names = {-1:'a1', -2: 'a1\'',-3:'a2', -4: 'a2\'',-5:'a0', -6: 'a0\'', 0:'u'} neat_utils.visualize.draw_net(config, pickleBundle[1], False, filename=path, fmt="png", node_names=node_names)
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import copy import warnings from .utils import * def abs(input, *, out=None): return paddle.abs(input) def add(input, other, *, out=None): return paddle.add(input, other) def arange(start, end, step=1, *, out=None, dtype=None, layout=None, device=None, requires_grad=False): if requires_grad: return paddle.arange(start, end, step, dtype).requires_grad_(True) else: return paddle.arange(start, end, step, dtype) def clip(input, min, max, *, out=None): return paddle.clip(input, min, max) def concat(tensors, dim=0): x = tensors last_index = -1 for ele in x: t = str(ele.dtype).lower().strip().split(".")[-1] if t in TYPE_MAPPER: t = TYPE_MAPPER[t] index = TYPE_ORDER.index(t) if last_index < index: last_index = index real_type = TYPE_ORDER[last_index] x = list(x) for i in range(len(x)): x[i] = x[i].cast(real_type) return paddle.concat(x, dim) def create_tensor(*size): if len(size) > 1: return paddle.zeros(size, dtype="float32") else: return paddle.to_tensor(size[0]) def create_float32_tensor(*size): if len(size) > 1: return paddle.zeros(size, dtype="float32") else: out = paddle.to_tensor(size[0]) out = paddle.cast(out, "float32") return out def create_uint8_tensor(*size): if len(size) > 1: return paddle.zeros(size, dtype="uint8") else: out = paddle.to_tensor(size[0]) out = paddle.cast(out, "uint8") return out def exp(input, *, out=None): return paddle.exp(input) def full(size, fill_value, *, out=None, dtype=None, layout=None, device=None, requires_grad=False): if requires_grad: return paddle.full(size, fill_value, dtype).requires_grad_(True) else: return paddle.full(size, fill_value, dtype) def full_like(input, fill_value, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=None): if requires_grad: return paddle.full_like(input, fill_value, dtype).requires_grad_(True) else: return paddle.full_like(input, fill_value, dtype) def linspace(start, end, steps, out=None, dtype=None, layout=None, device=None, requires_grad=False): if requires_grad: return paddle.linspace(start, end, step, dtype).requires_grad_(True) else: return paddle.linspace(start, end, step, dtype) def load(f, map_location=None, pickle_module=None, **pickle_load_args): return paddle.load(f) def load_state_dict_from_url(url, model_dir=None, map_location=None, progress=True, check_hash=False, file_name=None): return paddle.load(url) def load_url(url, model_dir=None, map_location=None, progress=True, check_hash=False, file_name=None): return paddle.load(url) def log(input, *, out=None): return paddle.log(input) def logical_and(input, other, *, out=None): return paddle.logical_and(input, other, out) def logical_not(input, *, out=None): return paddle.logical_not(input, out) def logical_or(input, other, *, out=None): return paddle.logical_or(input, other, out) def logical_xor(input, other, *, out=None): return paddle.logical_xor(input, other, out) def matmul(input, other, *, out=None): return paddle.matmul(input, other) def mul(input, other, *, out=None): return paddle.multiply(input, other) def max(input, dim_other=None, keepdim=False, *, out=None): if dim_other is None: return paddle.max(input) elif isinstance(dim_other, paddle.Tensor): return paddle.maximum(input, dim_other) else: return paddle.max(input, axis=dim_other, keepdim=keepdim) def mean(input, dim=None, keepdim=False, *, out=None): if dim is None: warnings.warn('The output of paddle.mean is not scalar!') return paddle.mean(input) else: return paddle.mean(input, axis=dim, keepdim=keepdim) def min(input, dim_other=None, keepdim=False, *, out=None): if dim_other is None: return paddle.min(input) elif isinstance(dim_other, paddle.Tensor): return paddle.minimum(input, dim_other) else: return paddle.min(input, axis=dim_other, keepdim=keepdim) def ones(*size, out=None, dtype=None, layout=None, device=None, requires_grad=False): if len(size) == 1 and isinstance(size[0], (tuple, list)): shape = size[0] else: shape = size if requires_grad: return paddle.ones(shape, dtype).requires_grad_(True) else: return paddle.ones(shape, dtype) def ones_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=None): if requires_grad: return paddle.ones_like(input, dtype).requires_grad_(True) else: return paddle.ones_like(input, dtype) def set_cuda_device(device): if isinstance(device, int): return paddle.set_device("gpu:{}".format(device)) else: return paddle.set_device("gpu") def rand(*size, out=None, dtype=None, layout=None, device=None, requires_grad=False): if len(size) == 1 and isinstance(size[0], (tuple, list)): shape = size[0] else: shape = size if requires_grad: return paddle.rand(shape, dtype).requires_grad_(True) else: return paddle.rand(shape, dtype) def randn(*size, out=None, dtype=None, layout=None, device=None, requires_grad=False): if len(size) == 1 and isinstance(size[0], (tuple, list)): shape = size[0] else: shape = size if requires_grad: return paddle.randn(shape, dtype).requires_grad_(True) else: return paddle.randn(shape, dtype) def randn_like(input, dtype=None, layout=None, device=None, requires_grad=False, memory_format=None): shape = input.shape if requires_grad: return paddle.randn(shape, dtype).requires_grad_(True) else: return paddle.randn(shape, dtype) def randperm(n, *, generator=None, out=None, dtype="int64", layout=None, device=None, requires_grad=False, pin_memory=False): if requires_grad: return paddle.randperm(n, dtype).requires_grad_(True) else: return paddle.randperm(n, dtype) def save(obj, f, pickle_module=None, pickle_protocol=2): return paddle.save(obj, f, pickle_protocol=pickle_protocol) def split(tensor, split_size_or_sections, dim=0): return paddle.split(tensor, split_size_or_sections, dim) def sqrt(input, *, out=None): return paddle.sqrt(input) def stack(tensors, dim=0, *, out=None): return paddle.stack(tensors, dim) def sum(input, dim=None, keepdim=False, *, out=None): if dim is None: warnings.warn('The output of paddle.sum is not scalar!') return paddle.sum(input) else: return paddle.sum(input, axis=dim, keepdim=keepdim) def unsqueeze(input, dim): return paddle.squeeze(input, dim) def zeros(*size, out=None, dtype=None, layout=None, device=None, requires_grad=False): if len(size) == 1 and isinstance(size[0], (tuple, list)): shape = size[0] else: shape = size if requires_grad: return paddle.zeros(shape, dtype).requires_grad_(True) else: return paddle.zeros(shape, dtype) def zeros_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=None): if requires_grad: return paddle.zeros_like(input, dtype).requires_grad_(True) else: return paddle.zeros_like(input, dtype) class DataParallel(paddle.DataParallel): def __init__(self, module, device_ids=None, output_device=None, dim=0): super().__init__(module) def invalid(*args, **kwargs): return None
numbers = [int(x) for x in input().split()] print(sorted(numbers))
import os, sys import cv2 import numpy as np import pandas as pd import string import mediapipe as mp import pickle from zipfile import ZipFile from utils import StaticSignProcessor, mp_process_image, generate_dataframe, annotate_image, pred_class_to_letter # load the model with open('saved_model.pkl', 'rb') as f: model = pickle.load(f) # TODO change to generic video src handler class VideoHandler(): def __init__(self, vid_src=0): self.cap = cv2.VideoCapture(vid_src) self.processor = StaticSignProcessor((126,)) self.timestamps = [] self.hand_results = [] self.pose_results = [] self.framecount = 0 self.prediction = 'Neutral' self.score = '' self.pred_thresh = 0.7 # self.colormap = {'No hands detected': (0,0,255), 'Neutral': (255,0,0)} def load_source(self, vid_src): self.cap.release() self.cap = cv2.VideoCapture(vid_src) def generate_buffer(self, frame, buffer_size=10, sliding_window=1, callback=None): ''' Generates a buffer of fixed length from a live video stream to be processed and passed into the recognition model. Returns: A dict containing timestamps, hand_results, and pose_results if the buffer condition is met ''' assert buffer_size > 0, 'Buffer size must be a positive number' assert sliding_window > 0, 'Sliding window size must be a positive number' assert buffer_size > sliding_window, 'Sliding window must be smaller than buffer' hand_result, pose_result = mp_process_image(frame) if not hand_result.multi_handedness: self.timestamps = [] self.hand_results = [] self.pose_results = [] self.framecount = 0 return # time is a construct self.timestamps.append(0.0) self.hand_results.append(hand_result) self.pose_results.append(pose_result) self.framecount += 1 if (self.framecount % buffer_size == 0) or \ (self.framecount % sliding_window == 0 and self.framecount > buffer_size): buf = {'timestamps': self.timestamps, 'hand_results': self.hand_results, 'pose_results': self.pose_results} self.timestamps = self.timestamps[sliding_window:] self.hand_results = self.hand_results[sliding_window:] self.pose_results = self.pose_results[sliding_window:] if callback: callback(buf) return buf def get_next_frame(self): ''' Reads the next frame from the webcam and makes a prediction when applicable. Returns: - None if webcam feed is closed or can't read feed - annotated image if feed is open - annotated image, prediction, score if feed is open and buffer condition is met ''' if not self.cap.isOpened(): return success, image = self.cap.read() if not success: return buf = self.generate_buffer(image, buffer_size=10, sliding_window=1, callback=self.predict) # if blur: # image = cv2.blur(image, (25,25)) if self.hand_results: image = annotate_image(image, self.hand_results[-1], self.pose_results[-1]) else: self.prediction = 'No hands detected' self.score = '' image = cv2.flip(image, 1) if self.prediction: if self.prediction == 'No hands detected': color = (0,0,255) elif self.prediction == 'Neutral': color = (255,0,0) else: color = (0,150,0) cv2.putText(image, self.prediction + ' ' + self.score, (50,80), cv2.FONT_HERSHEY_SIMPLEX, 2, color, 4) return image, self.prediction, self.score def predict(self, buf): # Make a prediction on the generated buffer df = generate_dataframe(buf) data = self.processor.process(df) pred_prob = model.predict_proba([data])[0] pred_class = list(pred_prob).index(max(pred_prob)) if max(pred_prob) < self.pred_thresh: self.prediction = 'Neutral' self.score = '' else: self.prediction = pred_class_to_letter(pred_class)[0] self.score = str(round(max(pred_prob),2)) def get_frame(self): if self.cap.isOpened(): success, frame = self.cap.read() return frame def stream_webcam(self): ''' A helper function to demonstrate the VideoHandler's functionality. Note that this is a blocking function: it will keep running until the webcam feed is closed. ''' while self.cap.isOpened(): image,_,_ = self.get_next_frame() cv2.imshow('webcam', image) if cv2.waitKey(5) & 0xFF == 27: print('esc') break # out = self.get_next_frame() # while out: # image,_,_ = out # cv2.imshow('webcam', image) # out = self.get_next_frame() # if cv2.waitKey(5) & 0xFF == 27: # print('esc') # break def evaluate_model(self, show=False): ''' A helper function for evaluating the recognition model's performance. It uses pre-recorded videos in test_webcam_data to test each letter. The videos in the test data were not used to train the model. ''' if not os.path.isdir('test_webcam_data'): print('Unzipping test data...') with ZipFile('test_webcam_data.zip','r') as zipobj: zipobj.extractall() accuracy = 0 for i in string.ascii_uppercase: print('input:', i) tmp = [] vid_src = f"test_webcam_data/{i}.mp4" self.cap = cv2.VideoCapture(vid_src) while self.cap.isOpened(): try: image, pred, score = self.get_next_frame() if pred not in ('Neutral','No hands detected'): tmp.append(pred.replace('LETTER-','')) if show: cv2.imshow('webcam', image) if cv2.waitKey(5) & 0xFF == 27: print('esc') break except: break final_pred = max(set(tmp), key = tmp.count) print('prediction:', final_pred) if i == final_pred: print('CORRECT') accuracy += 1 else: print('INCORRECT') print('\n\nFinal Accuracy: {}/26 ({}%)'.format(str(accuracy), round(accuracy/26, 2))) if __name__ == "__main__": webcam = VideoHandler() # webcam.stream_webcam() webcam.evaluate_model(show=(len(sys.argv) > 1 and sys.argv[1] == '--show'))
""" Asyncio pydispatch (Signal Manager) This is based on [pyDispatcher](http://pydispatcher.sourceforge.net/) reference [Django Signals](https://docs.djangoproject.com/en/4.0/topics/signals/) and reference [scrapy SignalManager](https://docs.scrapy.org/en/latest/topics/signals.html) implementation on [Asyncio](https://docs.python.org/3/library/asyncio.html) """ import asyncio import functools import logging import threading import weakref from collections.abc import Awaitable from typing import Any, Callable, TypeVar, Union from aio_pydispatch.utils import func_accepts_kwargs, id_maker, safe_ref T = TypeVar('T') # pylint: disable=invalid-name Receiver = Callable[..., Union[T, Awaitable]] logger = logging.getLogger(__name__) class _IgnoredException(Exception): """ Ignore exception. """ class Signal: """ Signal, or event. example: import asyncio from aio_pydispatch import Signal server_start = Signal() server_stop = Signal() def ppp(value: str, **kwargs) -> None: print(value, kwargs) async def main(): server_start.connect(ppp, sender='loading config') server_stop.connect(ppp) await server_start.send(sender='loading config', value='foo') await asyncio.sleep(1) await server_stop.send(value='foo') if __name__ == '__main__': asyncio.run(main()) """ def __init__(self): """Signal, or event.""" self.__lock = threading.Lock() self.__clean_receiver = False self._all_receivers: dict[int, dict[int, Any]] = {} @property def receivers(self): """Receivers.""" return self._all_receivers def connect( self, receiver: Receiver, sender: Any = None, weak=True, ): """ Connect a receiver on this signal. :param receiver: :param sender: :param weak: :return: """ assert callable(receiver), "Signal receivers must be callable." if not func_accepts_kwargs(receiver): raise ValueError("Signal receivers must accept keyword arguments (**kwargs).") sender_key = id_maker(sender) receiver_key = id_maker(receiver) if weak: receiver = safe_ref(receiver, self._enable_clean_receiver) with self.__lock: self._clean_dead_receivers() receivers = self._all_receivers.get(sender_key, {}) receivers.setdefault(receiver_key, receiver) self._all_receivers.update({sender_key: receivers}) async def send(self, *, sender: Any = None, **kwargs) -> list[tuple[Any, Any]]: """Send signal, touch off all registered function.""" _dont_log = kwargs.pop('_ignored_exception', _IgnoredException) responses = [] loop = asyncio.get_running_loop() for receiver in self.live_receivers(sender): func = functools.partial( receiver, **kwargs ) try: if asyncio.iscoroutinefunction(receiver): response = await func() else: response = await loop.run_in_executor(None, func) except _dont_log as ex: response = ex except Exception as ex: # pylint: disable=broad-except response = ex logger.error('Caught an error on %s', receiver, exc_info=True) responses.append((receiver, response)) return responses def sync_send(self, *, sender: None = None, **kwargs) -> list[tuple[Any, Any]]: """ Can only trigger sync func. If func is coroutine function, it will return awaitable object :param sender: :param kwargs: :return: """ _dont_log = kwargs.pop('_ignored_exception', _IgnoredException) responses = [] for receiver in self.live_receivers(sender): try: if asyncio.iscoroutinefunction(receiver): logger.warning('%s is coroutine, but it not awaited', receiver) response = receiver(**kwargs) except _dont_log as ex: response = ex except Exception as ex: # pylint: disable=broad-except response = ex logger.error('Caught an error on %s', receiver, exc_info=True) responses.append((receiver, response)) return responses def live_receivers(self, sender: None = None) -> list[Receiver]: """Get all live receiver.""" with self.__lock: self._clean_dead_receivers() receivers: dict[int, Any] = self._all_receivers.get(id_maker(sender), {}) real_receivers = [] has_dead = False for receiver_key, receiver in receivers.copy().items(): if isinstance(receiver, weakref.ReferenceType): real_receiver: Callable = receiver() if real_receiver: real_receivers.append(real_receiver) else: # receiver is dead has_dead = True receivers.pop(receiver_key) else: # not use weak for receiver real_receivers.append(receiver) # update cleaned sender of receiver to all receivers if has_dead: self._all_receivers.update({id_maker(sender): receivers}) return real_receivers def _enable_clean_receiver(self) -> None: """Register to the receiver weakerf finalize callback.""" self.__clean_receiver = True def _clean_dead_receivers(self) -> None: if self.__clean_receiver: self.__clean_receiver = False for receivers in self._all_receivers.values(): for receiver_key, receiver in receivers.copy().items(): if isinstance(receiver, weakref.ReferenceType) and receiver() is None: receivers.pop(receiver_key) def disconnect(self, receiver: Receiver, sender: Any = None) -> None: """Clean receivers of a sender.""" lookup_key = id_maker(sender) receiver_key = id_maker(receiver) with self.__lock: receivers: dict[int, Any] = self._all_receivers.get(lookup_key) receiver_ref = receivers.pop(receiver_key) if receivers and receiver_ref: self._all_receivers.update({lookup_key: receivers}) def disconnect_all(self) -> None: """Clean all receiver.""" self._all_receivers.clear() def connect(signal: Signal, sender: Any = None, weak=True): """ Connect decorator. :param signal: :param sender: :param weak: :return: """ def _decorator(func): if isinstance(signal, Signal): signal.connect(receiver=func, sender=sender, weak=weak) return func return _decorator
# By manish.17, contest: ITMO Academy. Двоичный поиск - 2, problem: (D) Children Holiday # https://codeforces.com/profile/manish.17 m, n = map(int, input().split()) if m == 0: print(0) print(*[0]*n) quit() a = [] for i in range(n): t, z, y = map(int, input().split()) a += [[t, z, y]] alpha, omega = 1, 10**18 while alpha < omega: mid = (alpha + omega) // 2 ans = 0 for t,z,y in a:ans += z*(mid//(t*z + y)) + min(z,(mid % (t*z + y))//t) if ans >= m: omega = mid else: alpha = mid + 1 print(omega) b = [z*(omega//(t*z + y)) + min(z,(omega % (t*z + y))//t) for t, z, y in a] total = 0 for i in range(n): b[i] = min(b[i], m - total) total += b[i] print(*b)
# coding: utf-8 # # created on April Fool's Day 2018 # In[1]: import os from pymatgen.io.vasp.sets import MPRelaxSet from pymatgen import Structure from Utilities import get_time_str, get_current_firework_from_cal_loc # In[2]: def Write_Vasp_POTCAR(cal_loc, structure_filename, workflow): """ Write POTCAR in folder cal_loc as follows: If POTCAR is missing, write POTCAR using pymatgen.io.vasp.sets.MPRelaxSet Input arguments: cal_loc (str): the absolute path structure_filename (str): the file from which the structure is read using pymatgen.Structure.from_file workflow """ firework = get_current_firework_from_cal_loc(cal_loc, workflow) log_txt_loc, firework_name = os.path.split(cal_loc) log_txt = os.path.join(log_txt_loc, "log.txt") if not os.path.isfile(os.path.join(cal_loc, "POTCAR")): structure = Structure.from_file(os.path.join(cal_loc, structure_filename)) vis = MPRelaxSet(structure=structure) vis.potcar.write_file(filename=os.path.join(cal_loc, "POTCAR")) write_INCAR = True with open(log_txt, "a") as f: f.write("{} INFO: no POTCAR in {}\n".format(get_time_str(), firework_name)) f.write("\t\t\tuse pymatgen.io.vasp.sets.MPRelaxSet to write POTCAR\n")
from django.contrib.auth.models import AbstractBaseUser, BaseUserManager from django.db import models class Organization(models.Model): name = models.CharField(max_length=255) class CustomUserWithM2MManager(BaseUserManager): def create_superuser(self, username, orgs, password): user = self.model(username=username) user.set_password(password) user.save(using=self._db) user.orgs.add(*orgs) return user class CustomUserWithM2M(AbstractBaseUser): username = models.CharField(max_length=30, unique=True) orgs = models.ManyToManyField(Organization) custom_objects = CustomUserWithM2MManager() USERNAME_FIELD = "username" REQUIRED_FIELDS = ["orgs"] class CustomUserWithM2MThrough(AbstractBaseUser): username = models.CharField(max_length=30, unique=True) orgs = models.ManyToManyField(Organization, through="Membership") custom_objects = CustomUserWithM2MManager() USERNAME_FIELD = "username" REQUIRED_FIELDS = ["orgs"] class Membership(models.Model): user = models.ForeignKey(CustomUserWithM2MThrough, on_delete=models.CASCADE) organization = models.ForeignKey(Organization, on_delete=models.CASCADE)
import os from setuptools import setup def read(filename): return open(os.path.join(os.path.dirname(__file__), filename)).read() setup( name="unitable", version="0.0.2", author="Mark Howison", author_email="mark@howison.org", url="https://github.com/mhowison/unitable", keywords=["data", "data analysis", "data frame", "data science"], description="A data analysis environment that unites the best features of pandas, R, Stata, and others.", long_description=read("README.md"), long_description_content_type="text/markdown", license="BSD", classifiers=[ "Development Status :: 3 - Alpha", "License :: OSI Approved :: BSD License", "Intended Audience :: Science/Research", "Natural Language :: English", "Programming Language :: Python :: 3", "Topic :: Scientific/Engineering" ], provides=["unitable"], packages=["unitable"], install_requires=["pandas"] )
from ferrisnose import AppEngineWebTest from ferris.core.controller import Controller from ferris.core.messages import Messaging from ferris.core.ndb import Model, ndb import json class Person(Model): title = ndb.StringProperty(required=True) content = ndb.TextProperty() class People(Controller): class Meta: Model = Person components = (Messaging,) prefixes = ('api',) def api_list(self): self.context['data'] = Person.query() def api_view(self, key): self.context['data'] = self.util.decode_key(key).get() def api_add(self): result = self.parse_request() if result.validate(): item = result.update(Person) item.put() self.context['data'] = item else: self.context['errors'] = result.errors return 400 def api_edit(self, key): item = self.util.decode_key(key).get() result = self.parse_request() if item and result.validate(): item = result.update(item) item.put() self.context['data'] = item else: self.context['errors'] = result.errors return 400 class MessagingTest(AppEngineWebTest): def setUp(self): super(MessagingTest, self).setUp() People._build_routes(self.testapp.app.router) self._createData() def _createData(self): Person(title='The Doctor', content='Time Lord').put() Person(title='Rose Tyler', content='Companion').put() Person(title='Clara Oswald', content='Mystery').put() def testList(self): response = self.testapp.get('/api/people') assert response.content_type == 'application/json' data = json.loads(response.body) assert 'items' in data assert len(data['items']) == Person.query().count() assert 'title' in data['items'][0] assert 'content' in data['items'][0] assert 'key' in data['items'][0] def testView(self): item = Person.query().get() response = self.testapp.get('/api/people/:%s' % item.key.urlsafe()) assert response.content_type == 'application/json' data = json.loads(response.body) assert data['title'] == item.title assert data['content'] == item.content assert data['key']['urlsafe'] == item.key.urlsafe() def testAdd(self): data = json.dumps({'title': 'Dalek', 'content': 'Exterminate!'}) response = self.testapp.post('/api/people', data, content_type='application/json') assert response.content_type == 'application/json' data = json.loads(response.body) assert data['title'] == 'Dalek' item = ndb.Key(urlsafe=data['key']['urlsafe']).get() assert item assert item.title == data['title'] assert item.content == data['content'] def testEdit(self): item = Person.query().get() data = json.dumps({'title': 'Captain Jack'}) response = self.testapp.put('/api/people/:%s' % item.key.urlsafe(), data, content_type='application/json') assert response.content_type == 'application/json' data = json.loads(response.body) new_item = ndb.Key(urlsafe=data['key']['urlsafe']).get() assert new_item assert new_item.key == item.key assert new_item.content == item.content assert new_item.title == 'Captain Jack' def testErrors(self): data = json.dumps({'title': 'Dalek', 'content': 12346}) r = self.testapp.post('/api/people', data, status=400, content_type='application/json') assert len(r.json['errors']) == 1
import soba.visualization.ramen.mapGenerator as ramen import soba.run from collections import OrderedDict from model import SEBAModel from time import time import os import signal from unittest import TestCase import json, requests from jsonschema import validate import socket import unittest import listener import sys from PyUnitReport import HTMLTestRunner ## Rest Service variables ## ipServer = socket.gethostbyname(socket.gethostname()) port = "10000" URLBASE = "http://127.0.0.1:" + port URISOBA = "/api/v1/occupants" URISEBA = "/api/v1/occupants" URIFIRE = "/api/v1/fire" stringTemplate = {"type": "string"} numberTemplate = {"type": "number"} global modelSto modelSto = None ## Test Class ## class test(TestCase): ## Test methods ## model = False occupantTest0 = True occupantTest1 = True occupantTest2 = True def setUp(self): global modelSto self.model = modelSto self.N = 1 self.model.updateOccupancyInfo() self.occupantTest0 = self.model.getOccupantId(0) self.occupantTest1 = self.model.getOccupantId(1) self.occupantTest2 = self.model.getOccupantId(2) def test01_ListOccupants(self): print(str('Testing {}').format('GET /api/v1/occupants')) occupantsId = [0, 1, 2] occupantsIdSim = [] for o in self.model.occupants: occupantsIdSim.append(o.unique_id) self.model.updateOccupancyInfo() url = URLBASE + URISOBA data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson['occupants'] self.assertCountEqual(occupantsIdSim, occupantsId) self.assertCountEqual(APIResponse, occupantsIdSim) def test02_PositionsOccupants(self): print(str('Testing {}').format('GET /api/v1/occupants/positions')) self.occupantTest0 = self.model.getOccupantId(0) self.occupantTest1 = self.model.getOccupantId(1) self.occupantTest2 = self.model.getOccupantId(2) pos0 = (6, 7) pos1 = (3, 8) pos2 = (5, 4) self.model.grid.move_agent(self.occupantTest0, pos0) self.model.grid.move_agent(self.occupantTest1, pos1) self.model.grid.move_agent(self.occupantTest2, pos2) self.model.updateOccupancyInfo() occupantsPos = { '0': {'y': 7, 'x': 6}, '1': {'y': 8, 'x': 3}, '2': {'y': 4, 'x': 5}, } pos0Sim = self.occupantTest0.pos pos1Sim = self.occupantTest1.pos pos2Sim = self.occupantTest2.pos x0, y0 = pos0Sim x1, y1 = pos1Sim x2, y2 = pos2Sim occupantsPosSim = { '0': {'y': y0, 'x': x0}, '1': {'y': y1, 'x': x1}, '2': {'y': y2, 'x': x2}, } url = URLBASE + URISOBA + "/positions" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantsPosSim, occupantsPos) self.assertDictContainsSubset(APIResponse, occupantsPosSim) def test03_StatesOccupants(self): print(str('Testing {}').format('GET /api/v1/occupants/states')) state1 = 'testState1' state2 = 'testState2' occupantsSta1 = { '0': 'testState1', '1': 'testState1', '2': 'testState1', } occupantsStaSim1 = { '0': self.occupantTest0.state, '1': self.occupantTest1.state, '2': self.occupantTest2.state, } url = URLBASE + URISOBA + "/states" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantsStaSim1, occupantsSta1) self.assertDictContainsSubset(APIResponse, occupantsStaSim1) self.occupantTest0.state = state2 self.occupantTest1.state = state2 self.occupantTest2.state = state2 self.model.updateOccupancyInfo() occupantsSta2 = { '0': 'testState2', '1': 'testState2', '2': 'testState2', } occupantsStaSim2 = { '0': self.occupantTest0.state, '1': self.occupantTest1.state, '2': self.occupantTest2.state, } url = URLBASE + URISOBA + "/states" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantsStaSim2, occupantsSta2) self.assertDictContainsSubset(APIResponse, occupantsStaSim2) def test04_MovementsOccupants(self): print(str('Testing {}').format('GET /api/v1/occupants/movements')) occupantsMov = { '0': {'orientation': 'out', 'speed': 0.71428}, '1': {'orientation': 'out', 'speed': 0.71428}, '2': {'orientation': 'out', 'speed': 0.71428}, } speed0Sim = self.occupantTest0.movement['speed'] speed1Sim = self.occupantTest1.movement['speed'] speed2Sim = self.occupantTest2.movement['speed'] orientation0Sim = self.occupantTest0.movement['orientation'] orientation1Sim = self.occupantTest1.movement['orientation'] orientation2Sim = self.occupantTest2.movement['orientation'] occupantsMovSim = { '0': {'orientation': orientation0Sim, 'speed': speed0Sim}, '1': {'orientation': orientation1Sim, 'speed': speed1Sim}, '2': {'orientation': orientation2Sim, 'speed': speed2Sim}, } url = URLBASE + URISOBA + "/movements" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantsMovSim, occupantsMov) self.assertDictContainsSubset(APIResponse, occupantsMovSim) self.occupantTest0.movement = {'orientation': 'E', 'speed': 1} self.occupantTest1.movement = {'orientation': 'S', 'speed': 1} self.occupantTest2.movement = {'orientation': 'N', 'speed': 1} self.model.updateOccupancyInfo() occupantsMov = { '0': {'orientation': 'E', 'speed': 1}, '1': {'orientation': 'S', 'speed': 1}, '2': {'orientation': 'N', 'speed': 1}, } speed0Sim = self.occupantTest0.movement['speed'] speed1Sim = self.occupantTest1.movement['speed'] speed2Sim = self.occupantTest2.movement['speed'] orientation0Sim = self.occupantTest0.movement['orientation'] orientation1Sim = self.occupantTest1.movement['orientation'] orientation2Sim = self.occupantTest2.movement['orientation'] occupantsMovSim = { '0': {'orientation': orientation0Sim, 'speed': speed0Sim}, '1': {'orientation': orientation1Sim, 'speed': speed1Sim}, '2': {'orientation': orientation2Sim, 'speed': speed2Sim}, } url = URLBASE + URISOBA + "/movements" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantsMovSim, occupantsMov) self.assertDictContainsSubset(APIResponse, occupantsMovSim) def test05_InformationOccupant(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}')) occupantInfo = { "occupant": { "movement": {"orientation": "E", "speed": 1}, "unique_id": "0", "position":{"x": 6,"y": 7}, "fov":[], "state": "testState2" } } occupantInfoSim = { "occupant": { "movement": self.occupantTest0.movement, "unique_id": str(self.occupantTest0.unique_id), "position":{"x": self.occupantTest0.pos[0],"y": self.occupantTest0.pos[1]}, "fov": self.occupantTest0.fov, "state": self.occupantTest0.state } } self.occupantTest0.movement = {'orientation': 'E', 'speed': 1} idOc0 = self.occupantTest0.unique_id url = URLBASE + URISOBA + "/" + str(idOc0) data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantInfoSim, occupantInfo) self.assertDictContainsSubset(APIResponse, occupantInfoSim) def test06_MovementOccupant(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/movement')) occupantMov = { "movement": {'orientation': "E", 'speed': 1} } speed0Sim = self.occupantTest0.movement['speed'] orientation0Sim = self.occupantTest0.movement['orientation'] occupantMovSim = { "movement": {'orientation': orientation0Sim, 'speed': speed0Sim} } idOc0 = self.occupantTest0.unique_id url = URLBASE + URISOBA + "/" + str(idOc0) + "/movement" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantMovSim, occupantMov) self.assertDictContainsSubset(APIResponse, occupantMovSim) def test07_PositionOccupant(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/position')) occupantPos = { 'position': {'y': 7, 'x': 6} } occupantPosSim = { 'position': {'y': self.occupantTest0.pos[1], 'x': self.occupantTest0.pos[0]} } idOc0 = self.occupantTest0.unique_id url = URLBASE + URISOBA + "/" + str(idOc0) + "/position" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantPosSim, occupantPos) self.assertDictContainsSubset(APIResponse, occupantPosSim) def test08_StateOccupant(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/state')) idOc0 = self.occupantTest0.unique_id occupantState2 = { 'state': 'testState2' } occupantStateSim2 = { 'state': self.occupantTest0.state } url = URLBASE + URISOBA + "/" + str(idOc0) + "/state" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantStateSim2, occupantState2) self.assertDictContainsSubset(APIResponse, occupantStateSim2) def test09_FovOccupant(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/fov')) idOc0 = self.occupantTest0.unique_id occupantFov = {"fov": []} occupantFovSim = {"fov": self.occupantTest0.fov} url = URLBASE + URISOBA + "/" + str(idOc0) + "/fov" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantFovSim, occupantFov) self.assertDictContainsSubset(APIResponse, occupantFovSim) self.occupantTest0.getFOV() self.model.updateOccupancyInfo() fovKnonwn = [(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0), (8, 0), (9, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (0, 2), (1, 2), (2, 2), (3, 2), (4, 2), (5, 2), (6, 2), (7, 2), (8, 2), (9, 2), (0, 3), (1, 3), (2, 3), (3, 3), (4, 3), (5, 3), (6, 3), (7, 3), (8, 3), (9, 3), (0, 4), (1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4), (7, 4), (8, 4), (9, 4), (0, 5), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5), (6, 5), (7, 5), (8, 5), (9, 5), (0, 6), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6), (7, 6), (8, 6), (9, 6), (0, 7), (1, 7), (2, 7), (3, 7), (4, 7), (5, 7), (7, 7), (8, 7), (9, 7), (0, 8), (1, 8), (2, 8), (3, 8), (4, 8), (5, 8), (6, 8), (7, 8), (8, 8), (9, 8), (0, 9), (1, 9), (2, 9), (3, 9), (4, 9), (5, 9), (6, 9), (7, 9), (8, 9), (9, 9), (0, 10), (1, 10), (2, 10), (3, 10), (4, 10), (5, 10), (6, 10), (7, 10), (8, 10), (9, 10), (10, 10), (8, 11), (9, 11), (10, 11), (11, 11), (9, 12), (10, 12), (11, 12), (12, 12), (9, 13), (10, 13), (11, 13), (12, 13), (13, 13), (10, 14), (11, 14), (12, 14), (13, 14), (14, 14), (10, 15), (11, 15), (12, 15), (13, 15), (14, 15), (15, 15), (11, 16), (12, 16), (13, 16), (14, 16), (15, 16), (16, 16), (12, 17), (13, 17), (14, 17), (15, 17), (16, 17), (17, 17), (12, 18), (13, 18), (14, 18), (15, 18), (16, 18), (17, 18), (18, 18)] fovDicts = [] for pos in fovKnonwn: fovDicts.append({"x": pos[0], "y": pos[1]}) fovDictsSim = [] for pos in self.occupantTest0.fov: fovDictsSim.append({"x": pos[0], "y": pos[1]}) occupantFov = { "fov": fovDicts } occupantFovSim = { "fov": fovDictsSim } url = URLBASE + URISOBA + "/" + str(idOc0) + "/fov" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantFovSim, occupantFov) self.assertDictContainsSubset(APIResponse, occupantFovSim) def test10_CreateSobaAvatar(self): print(str('Testing {}').format('PUT /api/v1/occupants/{id}')) idAvCreation = 1 avatarXPos = 3 avatarYPos = 6 idAvCreationResponse = idAvCreation + 100000 avatarCreation = { 'avatar': { 'position': {'y': avatarYPos, 'x': avatarXPos}, 'id': idAvCreationResponse}} dataBody = {"x": avatarXPos, "y": avatarYPos} url = URLBASE + URISOBA + "/" + str(idAvCreation) data = requests.put(url, json=dataBody, headers={'Content-Type': "application/json", 'Accept': "application/json"}) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(APIResponse, avatarCreation) self.model.updateOccupancyInfo() avatarTestSOBA = self.model.getOccupantId(idAvCreationResponse) avatarPos = {'position': {'y': 6, 'x': 3}} avatarPosSim = {'position': {'y': avatarTestSOBA.pos[1], 'x': avatarTestSOBA.pos[0]}} url = URLBASE + URISOBA + "/" + str(idAvCreationResponse) + "/position" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(avatarPosSim, avatarPos) self.assertDictContainsSubset(APIResponse, avatarPosSim) def test11_MoveAvatar(self): print(str('Testing {}').format('POST /api/v1/occupants/{id}/position')) idAvCreation = 1 idAvCreationResponse = idAvCreation + 100000 avatarXPos = 5 avatarYPos = 8 avatarTestSOBA = self.model.getOccupantId(idAvCreationResponse) avatarMove = { 'avatar': { 'position': {'y': avatarYPos, 'x': avatarXPos}, 'id': idAvCreationResponse}} dataBody = {"x": avatarXPos, "y": avatarYPos} url = URLBASE + URISOBA + "/" + str(idAvCreationResponse) + "/position" data = requests.post(url, json=dataBody, headers={'Content-Type': "application/json", 'Accept': "application/json"}) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(APIResponse, avatarMove) self.model.updateOccupancyInfo() avatarTestSOBA = self.model.getOccupantId(idAvCreationResponse) avatarPos = { 'position': {'y': avatarYPos, 'x': avatarXPos}} avatarPosSim = {'position': {'y': avatarTestSOBA.pos[1], 'x': avatarTestSOBA.pos[0]}} url = URLBASE + URISOBA + "/" + str(idAvCreationResponse) + "/position" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(avatarPosSim, avatarPos) self.assertDictContainsSubset(APIResponse, avatarPosSim) def test12_RouteOccupant(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/route/{route_id}')) occupantRoute = { "positions": [{'x': 4, 'y': 8}, {'x': 3, 'y': 8}, {'x': 2, 'y': 7}, {'x': 1, 'y': 6}, {'x': 0, 'y': 6}]} idAvCreation = 1 idAvCreationResponse = idAvCreation + 100000 avatarTestSOBA = self.model.getOccupantId(idAvCreationResponse) url = URLBASE + URISEBA + "/" + str(idAvCreationResponse) + "/route/1" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(APIResponse, occupantRoute) self.model.updateOccupancyInfo() lastPosRouteDict = occupantRoute["positions"][-1] lastPosRouteX = lastPosRouteDict["x"] lastPosRouteY = lastPosRouteDict["y"] lastPosRoute = (lastPosRouteX, lastPosRouteY) lastPosRouteSim = avatarTestSOBA.pos_to_go print(str('Testing {}').format('GET /api/v1/occupants/{id}/route/{route_id}')) print("Pos_to_go", lastPosRoute) self.assertCountEqual(lastPosRoute, lastPosRouteSim) def test13_CreateSebaAvatar(self): print(str('Testing {}').format('PUT /api/v1/occupants/{id}')) idAvCreation = 2 avatarXPos = 3 avatarYPos = 6 idAvCreationResponse = idAvCreation + 100000 avatarCreation = { 'avatar': { 'position': {'y': avatarYPos, 'x': avatarXPos}, 'id': idAvCreationResponse}} dataBody = {"x": avatarXPos, "y": avatarYPos} url = URLBASE + URISEBA + "/" + str(idAvCreation) data = requests.put(url, json=dataBody, headers={'Content-Type': "application/json", 'Accept': "application/json"}) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(APIResponse, avatarCreation) self.model.updateOccupancyInfo() avatarTestSEBA = self.model.getOccupantId(idAvCreationResponse) avatarPos = {'position': {'y': 6, 'x': 3}} avatarPosSim = {'position': {'y': avatarTestSEBA.pos[1], 'x': avatarTestSEBA.pos[0]}} url = URLBASE + URISOBA + "/" + str(idAvCreationResponse) + "/position" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(avatarPosSim, avatarPos) self.assertDictContainsSubset(APIResponse, avatarPosSim) def test14_FireInFovOccupant(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/fire')) idAvCreation = 2 idAvCreationResponse = idAvCreation + 100000 posFire1 = (5, 2) posFire2 = (7, 4) self.model.createFire(posFire1) self.model.FireControl.createFirePos(posFire2) idAvSEBA = idAvCreationResponse avatarTestSEBA = self.model.getOccupantId(idAvCreationResponse) occupantFireSimAux = avatarTestSEBA.getPosFireFOV() occupantFireSimPos = [] for pos in occupantFireSimAux: occupantFireSimPos.append({'x': pos[0],'y': pos[1]}) occupantFire = {"positions": [{'y': posFire1[1], 'x': posFire1[0]}, {'y': posFire2[1], 'x': posFire2[0]}]} occupantFireSim = {"positions": occupantFireSimPos} url = URLBASE + URISEBA + "/" + str(idAvSEBA) + "/fire" data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(occupantFireSim, occupantFire) self.assertDictContainsSubset(APIResponse, occupantFireSim) def test15_FirePositions(self): print(str('Testing {}').format('GET /api/v1/fire')) posFire1 = (5, 2) posFire2 = (7, 4) FirePosAux = [] for pos in self.model.FireControl.fireMovements: FirePosAux.append({'x': pos[0],'y': pos[1]}) firePos = {"positions": [{'y': posFire1[1], 'x': posFire1[0]}, {'y': posFire2[1], 'x': posFire2[0]}]} firePosSim = {"positions": FirePosAux} url = URLBASE + URIFIRE data = requests.get(url) datajson = data.json() print("Response: ", datajson) APIResponse = datajson self.assertDictContainsSubset(firePosSim, firePos) self.assertDictContainsSubset(APIResponse, firePosSim) ## Running the test to evaluate the values of the model## def test16_ListOccupantsSchema(self): print(str('Testing {}').format('GET /api/v1/occupants')) template = { "type": "object", "properties": { "occupants": { "type": "array" } }, "required": ["occupants"] } for i in range(self.N): url = URLBASE + URISOBA data = requests.get(url) datajson = data.json() print("Response: ", datajson) validate(datajson, template) for o in datajson["occupants"]: validate(o, numberTemplate) def test17_PositionsOccupantsSchema(self): print(str('Testing {}').format('GET /api/v1/occupants/movements')) template = { "type": "object", "properties": { "orientation": { "type": "string" }, "speed": { "type": "number" } }, "required": ["orientation", "speed"] } template2 = { "type": "object" } for i in range(self.N): url = URLBASE + URISOBA + "/movements" data = requests.get(url) datajson = data.json() print("Response: ", datajson) validate(datajson, template2) for k, v in datajson.items(): validate(k, stringTemplate) validate(int(k), numberTemplate) validate(v, template) def test18_StatesOccupantsSchema(self): print(str('Testing {}').format('GET /api/v1/occupants/positions')) template = { "type": "object", "properties": { "x": { "type": "number" }, "y": { "type": "number" } }, "required": ["x", "y"] } for i in range(self.N): url = URLBASE + URISOBA + "/positions" data = requests.get(url) datajson = data.json() print("Response: ", datajson) for k, v in datajson.items(): validate(k, stringTemplate) validate(int(k), numberTemplate) validate(v, template) def test19_MovementsOccupantsSchema(self): print(str('Testing {}').format('GET /api/v1/occupants/states')) for i in range(self.N): url = URLBASE + URISOBA + "/states" data = requests.get(url) datajson = data.json() print("Response: ", datajson) for k,v in datajson.items(): validate(v, stringTemplate) validate(k, stringTemplate) validate(int(k), numberTemplate) def test20_InformationOccupantSchema(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}')) template = { "type": "object", "properties": { "occupant":{ "type": "object", "properties": { "state":{ "type": "string" }, "fov": { "type": "array" }, "unique_id":{ "type": "string" }, "movement": { "type": "object", "properties": { "orientation":{ "type": "string" }, "speed":{ "type": "number" }, }, "required": ["orientation", "speed"] }, "position": { "type": "object", "properties": { "x":{ "type": "number" }, "y":{ "type": "number" } }, "required": ["x", "y"] } }, "required": ["state", "fov", "unique_id", "movement", "position"] } }, "required": ["occupant"] } template2 = { "type": "object", "properties": { "x": { "type": "number" }, "y": { "type": "number" } }, "required": ["x", "y"] } for i in range(self.N): url = URLBASE + URISOBA + "/" + str(0) data = requests.get(url) datajson = data.json() print("Response: ", datajson) validate(datajson, template) validate(int(datajson['occupant']['unique_id']), numberTemplate) print(template) for p in datajson['occupant']['fov']: validate(p, template2) def test21_MovementOccupantSchema(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/movement')) template = { "type": "object", "properties": { "movement":{ "type": "object", "properties": { "orientation": { "type": "string" }, "speed": { "type": "number" } }, "required": ["orientation", "speed"] } }, "required": ["movement"] } for i in range(self.N): url = URLBASE + URISOBA + "/" + str(0) + "/movement" data = requests.get(url) datajson = data.json() print("Response: ", datajson) validate(datajson, template) def test22_PositionOccupantSchema(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/position')) template = { "type": "object", "properties": { "position":{ "type": "object", "properties": { "x": { "type": "number" }, "y": { "type": "number" } }, "required": ["x", "y"] } }, "required": ["position"] } for i in range(self.N): url = URLBASE + URISOBA + "/" + str(0) + "/position" data = requests.get(url) datajson = data.json() print("Response: ", datajson) validate(datajson, template) def test23_StateOccupantSchema(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/state')) template = { "type": "object", "properties":{ "state": { "type": "string" } }, "required": ["state"] } for i in range(self.N): url = URLBASE + URISOBA + "/" + str(0) + "/state" data = requests.get(url) datajson = data.json() print("Response: ", datajson) validate(datajson, template) def test24_FovOccupantSchema(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/fov')) template = { "type": "object", "properties": { "fov": { "type": "array" } }, "required": ["fov"] } template2 = { "type": "object", "properties": { "x": { "type": "number" }, "y": { "type": "number" } }, "required": ["x", "y"] } for i in range(self.N): url = URLBASE + URISOBA + "/" + str(0) + "/fov" data = requests.get(url) datajson = data.json() print("Response: ", datajson) validate(datajson, template) for p in datajson['fov']: validate(p, template2) def test25_CreateSobaAvatarSchema(self): print(str('Testing {}').format('PUT /api/v1/occupants/{id}')) template = { "type": "object", "properties": { "avatar":{ "type": "object", "properties": { "position":{ "type": "object", "properties": { "x": { "type": "number", }, "y": { "type": "number" } }, "required": ["x", "y"] }, "id":{ "type": "number" } }, "required": ["position", "id"] } }, "required": ["avatar"] } dataBody = {"x": 10, "y": 10} for i in range(self.N): url = URLBASE + URISOBA + "/" + str(0) data = requests.put(url, json=dataBody, headers={'Content-Type': "application/json", 'Accept': "application/json"}) datajson = data.json() print("Response: ", datajson) validate(datajson, template) def test26_MoveAvatarSchema(self): print(str('Testing {}').format('POST /api/v1/occupants/{id}/position')) template = { "type": "object", "properties": { "avatar":{ "type": "object", "properties": { "position":{ "type": "object", "properties": { "x": { "type": "number", }, "y": { "type": "number" } }, "required": ["x", "y"] }, "id":{ "type": "number" } }, "required": ["position", "id"] } }, "required": ["avatar"] } dataBody = {"x": 11, "y": 11} for i in range(self.N): url = URLBASE + URISOBA + "/" + str(100000) + "/position" data = requests.post(url, json=dataBody, headers={'Content-Type': "application/json", 'Accept': "application/json"}) datajson = data.json() print("Response: ", datajson) validate(datajson, template) def test27_RouteOccupantSchema(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/route/{route_id}')) template = { "type": "object", "properties": { "positions": { "type": "array" } } } template2 = { "type": "object", "properties": { "x": { "type": "number" }, "y": { "type": "number" } }, "required": ["x", "y"] } for i in range(self.N): url = URLBASE + URISEBA + "/" + str(100000) + "/route/1" data = requests.get(url) datajson = data.json() print("Response: ", datajson) validate(datajson, template) for m in datajson["positions"]: validate(m, template2) def test28_CreateSebaAvatarSchema(self): print(str('Testing {}').format('PUT /api/v1/occupants/{id}')) template = { "type": "object", "properties": { "avatar": { "type": "object", "properties":{ "position":{ "type": "object", "properties":{ "x": { "type": "number" }, "y": { "type": "number" } }, "required": ["x", "y"] }, "id": { "type": "number" } }, "required": ["position", "id"] } }, "required": ["avatar"] } dataBody = {"x": 13, "y": 13} for i in range(self.N): url = URLBASE + URISEBA + "/" + str(1) data = requests.put(url, json=dataBody, headers={'Content-Type': "application/json", 'Accept': "application/json"}) datajson = data.json() print("Response: ", datajson) validate(datajson, template) def test29_FireInFovOccupantSchema(self): print(str('Testing {}').format('GET /api/v1/occupants/{id}/fire')) template = { "type": "object", "properties": { "positions": { "type": "array" } }, "required": ["positions"] } template2 = { "type": "object", "properties": { "x": { "type": "number" }, "y": { "type": "number" } }, "required": ["x", "y"] } for i in range(self.N): url = URLBASE + URISEBA + "/" + str(100000) + "/fire" data = requests.get(url) datajson = data.json() print("Response: ", datajson) validate(datajson, template) for m in datajson["positions"]: validate(m, template2) def test30_FirePositionsSchema(self): print(str('Testing {}').format('GET /api/v1/fire')) template = { "type": "object", "properties": { "positions": { "type": "array" } }, "required": ["positions"] } template2 = { "type": "object", "properties": { "x": { "type": "number" }, "y": { "type": "number" } }, "required": ["x", "y"] } for i in range(self.N): url = URLBASE + URIFIRE data = requests.get(url) datajson = data.json() print("Response: ", datajson) validate(datajson, template) for m in datajson["positions"]: validate(m, template2) def setDown(self): print("Testing finished.") os.system("kill -9 %d"%(os.getpid())) os.killpg(os.getpgid(os.getpid()), signal.SIGTERM) ## Defining the Test Model and running the test ## class SebaApiTest(SEBAModel): def __init__(self, width, height, jsonMap, jsonsOccupants, sebaConfiguration, seed): super().__init__(width, height, jsonMap, jsonsOccupants, sebaConfiguration, seed) sys.argv = [sys.argv[0]] global modelSto modelSto = self unittest.TestLoader.sortTestMethodsUsing = None unittest.main(testRunner=HTMLTestRunner(output='APIRest_test'), failfast=True) sys.argv.append('-b') sys.argv.append('-s') strategy = 'nearest' N = 3 states = OrderedDict([('testState1','out')]) json = [{'type': 'regular' , 'N': N, 'states': states , 'schedule': {}, 'variation': {}, 'markovActivity': {}, 'timeActivity': {}, 'timeActivityVariation': {}, 'strategy': strategy, 'speedEmergency': 1}] conf = {'families': [], 'hazard': "10:00:00"} with open('auxiliarFiles/labgsi.blueprint3d') as data_file: jsonMap = ramen.returnMap(data_file, offsety = 9, offsetx = 0) fixed_params = {"width": 20, "height": 20, "jsonMap": jsonMap, "jsonsOccupants": json, 'sebaConfiguration': conf} variable_params = {"seed": range(10, 500, 10)} soba.run.run(SebaApiTest, fixed_params, variable_params)
from rest_framework import viewsets from rest_framework import permissions from rest_framework.response import Response from newsfeed.models import Entry from .renderers import MongoDBJSONRenderer from .mixins import MongoDBPaginationMixin class NewsfeedViewset(MongoDBPaginationMixin, viewsets.ViewSet): renderer_classes = (MongoDBJSONRenderer,) def public_newsfeed(self, request): data = Entry.objects.get_public_newsfeed( **self.get_pagination_context()) return Response(self.get_paginated_response(data)) def private_newsfeed(self, request): data = Entry.objects.get_private_newsfeed( user=self.request.user, **self.get_pagination_context()) return Response(self.get_paginated_response(data)) public_newsfeed = NewsfeedViewset.as_view( {'get': 'public_newsfeed'} ) private_newsfeed = NewsfeedViewset.as_view( {'get': 'private_newsfeed'}, permission_classes=(permissions.IsAuthenticated,) )
"""Tic Tac Toe game using Min-Max algorithm""" from copy import deepcopy from tkinter import Button, Tk from tkinter.font import Font class Board: """Tic Tac Toe Game Board""" def __init__(self, other=None): self.player = "X" self.opponent = "O" self.empty = "-" self.size = 3 self.fields = {} for y in range(self.size): for x in range(self.size): self.fields[x, y] = self.empty # copy constructor if other: self.__dict__ = deepcopy(other.__dict__) def move(self, x, y): """Move one step""" board = Board(self) board.fields[x, y] = board.player (board.player, board.opponent) = (board.opponent, board.player) return board def __minimax(self, player): """Min Max algorithm""" if self.won(): if player: return (-1, None) else: return (+1, None) elif self.tied(): return (0, None) elif player: best = (-2, None) for x, y in self.fields: if self.fields[x, y] == self.empty: value = self.move(x, y).__minimax(not player)[0] if value > best[0]: best = (value, (x, y)) return best else: best = (+2, None) for x, y in self.fields: if self.fields[x, y] == self.empty: value = self.move(x, y).__minimax(not player)[0] if value < best[0]: best = (value, (x, y)) return best def best(self): """Return best move available""" return self.__minimax(True)[1] def tied(self): """Game Tie State""" for (x, y) in self.fields: if self.fields[x, y] == self.empty: return False return True def won(self): """Game Win State""" # horizontal for y in range(self.size): winning = [] for x in range(self.size): if self.fields[x, y] == self.opponent: winning.append((x, y)) if len(winning) == self.size: return winning # vertical for x in range(self.size): winning = [] for y in range(self.size): if self.fields[x, y] == self.opponent: winning.append((x, y)) if len(winning) == self.size: return winning # diagonal winning = [] for y in range(self.size): x = y if self.fields[x, y] == self.opponent: winning.append((x, y)) if len(winning) == self.size: return winning # other diagonal winning = [] for y in range(self.size): x = self.size - 1 - y if self.fields[x, y] == self.opponent: winning.append((x, y)) if len(winning) == self.size: return winning # default return None def __str__(self): string = "" for y in range(self.size): for x in range(self.size): string += self.fields[x, y] string += "\n" return string class GUI: """TkInter GUI App""" def __init__(self): self.app = Tk() self.app.title("Tic-Tac-Toe") self.app.resizable(width=True, height=True) self.board = Board() self.font = Font(family="Ubuntu Mono", size=32) self.buttons = {} self.reset_btn = None for x, y in self.board.fields: handler = lambda x=x, y=y: self.move(x, y) # noqa button = Button( self.app, command=handler, font=self.font, width=2, height=1 ) button.grid(row=y, column=x) self.buttons[x, y] = button handler = lambda: self.reset() # noqa button = Button(self.app, text="Reset", command=handler) button.grid( row=self.board.size + 1, column=0, columnspan=self.board.size, sticky="WE", ) self.reset_btn = button self.update() def reset(self): self.board = Board() self.update() def move(self, x, y): self.app.config(cursor="watch") self.app.update() self.board = self.board.move(x, y) self.update() move = self.board.best() if move: self.board = self.board.move(*move) self.update() self.app.config(cursor="") def update(self): for (x, y) in self.board.fields: text = self.board.fields[x, y] self.buttons[x, y]["text"] = text self.buttons[x, y]["disabledforeground"] = "black" if text == self.board.empty: self.buttons[x, y]["state"] = "normal" else: self.buttons[x, y]["state"] = "disabled" self.reset_btn["text"] = "Reset" winning = self.board.won() if winning: winner = "" for x, y in winning: self.buttons[x, y]["disabledforeground"] = "red" winner = self.buttons[x, y]["text"] for x, y in self.buttons: self.buttons[x, y]["state"] = "disabled" self.reset_btn["text"] = f"'{winner}' won! Click to reset." for (x, y) in self.board.fields: self.buttons[x, y].update() def mainloop(self): self.app.mainloop() if __name__ == "__main__": GUI().mainloop()
# coding: utf-8 from common.np import * # import numpy as np from common.layers import Softmax class WeightSum: ''' Encoderの全系列の隠れ状態hs(N, T, H)と 系列ごとの重みを示すアライメントa(N, T)から積和を取り、 現系列の変換に必要な情報を含むコンテキストベクトルc(N, H)を 出力するレイヤ ''' def __init__(self): self.params, self.grads = [], [] self.cache = None def forward(self, hs, a): ''' 重み係数aをnp.repeatで(N, T, H)に拡張し、 hsとのアダマール積を取って時系列について総和を取ることで コンテキストベクトルc(N, H)を得る Parameters ---------- hs : np.ndarray(N, T, H) Encoderの全系列の隠れ状態 a : np.ndarray(N, T) 系列ごとの重みを示すアライメント Returns ------- np.ndarray(N, H) コンテキストベクトル ''' N, T, H = hs.shape ar = a.reshape(N, T, 1)#.repeat(H, axis=2) t = hs * ar c = t.sum(axis=1) # (N, H) self.cache = (hs, ar) return c def backward(self, dc): ''' sumの逆伝播はrepeat repeatの逆伝播はsum Parameters ---------- dc : np.ndarray(N, H) コンテキストベクトルの勾配 Returns ------- dhs, da : np.ndarray(N, T, H), np.ndarray(N, T) 全系列の隠れ状態hsの勾配と系列の重み係数aの勾配 ''' hs, ar = self.cache N, T, H = hs.shape # sumの逆伝播 dt = dc.reshape(N, 1, H).repeat(T, axis=1) # (N, T, H) dhs = dt * ar dar = dt * hs # repeatの逆伝播 da = dar.sum(axis=2) # (N, T) return dhs, da class AttentionWeight: ''' Encoderの全系列の隠れ状態hs(N, T, H)と Decoderの現系列の隠れ状態h(N, H)とのドット積をとり、 softmax関数にかけることで系列ごとのアライメントa(N, T)を 出力するレイヤ ''' def __init__(self): self.params, self.grads = [], [] self.softmax = Softmax() self.cache = None def forward(self, hs, h): ''' Decoderの隠れ状態h(N, H)をnp.repeatで(N, T, H)に拡張し、 hsとのアダマール積を取ってHについて総和を取り、 Softmax関数で正規化してアライメントa(N, T)を得る Parameters ---------- hs : np.ndarray(N, T, H) Encoderの全系列の隠れ状態 h : np.ndarray(N, H) Decoderの現系列の隠れ状態 Returns ------- np.ndarray(N, T) hsに対し、系列ごとの重みを示すアライメント ''' N, T, H = hs.shape hr = h.reshape(N, 1, H)#.repeat(T, axis=1) t = hs * hr # (N, T, H) s = t.sum(axis=2) a = self.softmax.forward(s) # (N, T) self.cache = (hs, hr) return a def backward(self, da): ''' sumの逆伝播はrepeat repeatの逆伝播はsum Parameters ---------- da : np.ndarray(N, T) アライメントの勾配 Returns ------- dhs, dh : np.ndarray(N, T, H), np.ndarray(N, H) 全系列の隠れ状態hsの勾配と系列の隠れ状態hの勾配 ''' hs, hr = self.cache N, T, H = hs.shape ds = self.softmax.backward(da) dt = ds.reshape(N, T, 1).repeat(H, axis=2) dhs = dt * hr # (N, T, H) dhr = dt * hs # (N, T, H) dh = dhr.sum(axis=1) # (N, H) return dhs, dh class Attention: ''' Attentionレイヤ in - AttentionWeight - WeightSum - out Input ------- hs, h : np.ndarray(N, T, H), np.ndarray(N, H) Encoderの全系列の隠れ状態, Decoderの現系列隠れ状態 Output ------- c : np.ndarray(N, H) 現系列の変換に必要な情報を含むコンテキストベクトル ''' def __init__(self): self.params, self.grads = [], [] self.attention_weight_layer = AttentionWeight() self.weight_sum_layer = WeightSum() # 外から各系列の重みを参照できるようにする self.__attention_weight = None @property def attention_weight(self): return self.__attention_weight def forward(self, hs, h): a = self.attention_weight_layer.forward(hs, h) c = self.weight_sum_layer.forward(hs, a) self.__attention_weight = a return c def backward(self, dc): dhs0, da = self.weight_sum_layer.backward(dc) dhs1, dh = self.attention_weight_layer.backward(da) dhs = dhs0 + dhs1 return dhs, dh class TimeAttention: ''' Attentionレイヤの全系列バージョン Input ------- hs_enc, hs_dec : np.ndarray(N, T, H), np.ndarray(N, T, H) Encoderの全系列の隠れ状態, Decoderの全系列の隠れ状態 Output ------- cs : np.ndarray(N, T, H) 変換に必要な情報を含むコンテキストベクトルの全系列分 ''' def __init__(self): self.params, self.grads = [], [] self.layers = None self.attention_weights = None def forward(self, hs_enc, hs_dec): N, T, H = hs_dec.shape out = np.empty_like(hs_dec) self.layers = [] self.attention_weights = [] for t in range(T): layer = Attention() out[:, t, :] = layer.forward(hs_enc, hs_dec[:, t, :]) self.layers.append(layer) self.attention_weights.append(layer.attention_weight) return out def backward(self, dout): dhs_enc = 0 dhs_dec = np.empty_like(dout) for t, layer in enumerate(self.layers): dhs, dh = layer.backward(dout[:, t, :]) dhs_enc += dhs dhs_dec[:, t, :] = dh return dhs_enc, dhs_dec
import argparse from itertools import chain import logging import pickle from multiprocessing import Pool from collections import defaultdict from gilda.grounder import load_gilda_models from indra_db_lite import get_plaintexts_for_text_ref_ids from indra_db_lite import get_text_ref_ids_for_agent_text from .cases import get_training_cases_for_grounding logger = logging.getLogger(__file__) def get_test_cases_for_model(model): assert len(model.shortforms) == 1 agent_text = model.shortforms[0] test_trids = get_text_ref_ids_for_agent_text(agent_text) test_texts = get_plaintexts_for_text_ref_ids(test_trids) if not test_texts: return [] preds = model.predict(test_texts) test_data_dict = defaultdict(dict) for trid, pred in zip(test_trids, preds): test_data_dict[pred].update({trid: None}) result = [] for curie in model.estimator.classes_: namespace, identifier = curie.split(":", maxsplit=1) train_info = get_training_cases_for_grounding(namespace, identifier) if train_info is None: continue result.append( ( agent_text, [agent_text], curie, train_info["mesh_terms"], train_info["num_entrez"], train_info["num_mesh"], train_info["train_trids"], test_data_dict[curie], ) ) return result if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('outpath') parser.add_argument('--n_jobs', type=int, default=1) args = parser.parse_args() outpath = args.outpath models = load_gilda_models() n_jobs = args.n_jobs with Pool(n_jobs) as pool: result = pool.map(get_test_cases_for_model, models.values()) result = list(chain(*result)) with open(outpath, 'wb') as f: pickle.dump(result, f, protocol=pickle.HIGHEST_PROTOCOL)
import cv2 as cv import numpy as np from time import gmtime, strftime, sleep, time import logging import math # NVIDIA jetson ues the gstreamer pipeline for getting it's data def gstreamer_pipeline (capture_width=800, capture_height=640, display_width=800, display_height=640, framerate=60, flip_method=0) : return ('nvarguscamerasrc ! ' 'video/x-raw(memory:NVMM), ' 'width=(int)%d, height=(int)%d, ' 'format=(string)NV12, framerate=(fraction)%d/1 ! ' 'nvvidconv flip-method=%d ! ' 'video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx ! ' 'videoconvert ! ' 'video/x-raw, format=(string)BGR ! appsink' % (capture_width,capture_height,framerate,flip_method,display_width,display_height)) def draw_lines(img, lines, color=[255, 0, 0], thickness=3): # If there are no lines to draw, exit. if lines is None: return # Make a copy of the original image. img = np.copy(img) # Create a blank image that matches the original in size. line_img = np.zeros( ( img.shape[0], img.shape[1], 3 ), dtype=np.uint8, ) # Loop over all lines and draw them on the blank image. for line in lines: for x1, y1, x2, y2 in line: cv.line(line_img, (x1, y1), (x2, y2), color, thickness) # Merge the image with the lines onto the original. img = cv.addWeighted(img, 0.8, line_img, 1.0, 0.0) # Return the modified image. return img def weighted_img(img, initial_img, α=0.8, β=1., λ=0.): """ `img` is the output of the hough_lines(), An image with lines drawn on it. Should be a blank image (all black) with lines drawn on it. `initial_img` should be the image before any processing. The result image is computed as follows: initial_img * α + img * β + λ NOTE: initial_img and img must be the same shape! """ return cv.addWeighted(initial_img, α, img, β, λ) def detect_line_segments(cropped_edges): # tuning min_threshold, minLineLength, maxLineGap is a trial and error process by hand rho = 1 # distance precision in pixel, i.e. 1 pixel angle = np.pi / 180 # angular precision in radian, i.e. 1 degree min_threshold = 10 # minimal of votes line_segments = cv.HoughLinesP(cropped_edges, rho, angle, min_threshold, np.array([]), minLineLength=10, maxLineGap=15) return line_segments def make_points(frame, line): height, width, _ = frame.shape slope, intercept = line y1 = height # bottom of the frame y2 = int(y1 * 1 / 2) # make points from middle of the frame down # bound the coordinates within the frame x1 = max(-width, min(2 * width, int((y1 - intercept) / slope))) x2 = max(-width, min(2 * width, int((y2 - intercept) / slope))) return [[x1, y1, x2, y2]] def average_slope_intercept(frame, line_segments): """ This function combines line segments into one or two lane lines If all line slopes are < 0: then we only have detected left lane If all line slopes are > 0: then we only have detected right lane """ lane_lines = [] if line_segments is None: logging.info('No line_segment segments detected') return lane_lines height, width, _ = frame.shape left_fit = [] right_fit = [] boundary = 1/3 left_region_boundary = width * (1 - boundary) # left lane line segment should be on left 2/3 of the screen right_region_boundary = width * boundary # right lane line segment should be on left 2/3 of the screen for line_segment in line_segments: for x1, y1, x2, y2 in line_segment: if x1 == x2: logging.info('skipping vertical line segment (slope=inf): %s' % line_segment) continue fit = np.polyfit((x1, x2), (y1, y2), 1) slope = fit[0] intercept = fit[1] if slope < 0: if x1 < left_region_boundary and x2 < left_region_boundary: left_fit.append((slope, intercept)) else: if x1 > right_region_boundary and x2 > right_region_boundary: right_fit.append((slope, intercept)) left_fit_average = np.average(left_fit, axis=0) if len(left_fit) > 0: lane_lines.append(make_points(frame, left_fit_average)) right_fit_average = np.average(right_fit, axis=0) if len(right_fit) > 0: lane_lines.append(make_points(frame, right_fit_average)) logging.debug('lane lines: %s' % lane_lines) # [[[316, 720, 484, 432]], [[1009, 720, 718, 432]]] return lane_lines def display_lines(frame, lines, line_color=(0, 255, 255), line_width=2): line_image = np.zeros_like(frame) if lines is not None: for line in lines: for x1, y1, x2, y2 in line: cv.line(line_image, (x1, y1), (x2, y2), line_color, line_width) line_image = cv.addWeighted(frame, 0.8, line_image, 1, 1) return line_image def region_of_interest(edges): height, width = edges.shape mask = np.zeros_like(edges) # only focus bottom half of the screen polygon = np.array([[ (0, height * 1 / 5), (width, height * 1 / 5), (width, height), (0, height), ]], np.int32) cv.fillPoly(mask, polygon, 255) cropped_edges = cv.bitwise_and(edges, mask) return cropped_edges # define a range of black color in HSV lower_black = np.array([0, 0, 0]) upper_black = np.array([227, 100, 70]) # Rectangular Kernel rectKernel = cv.getStructuringElement(cv.MORPH_RECT,(7,7)) if __name__=='__main__': # capture the video stream data capture = cv.VideoCapture(gstreamer_pipeline(flip_method=0, framerate=60), cv.CAP_GSTREAMER) if not capture.isOpened: print('Unable to open: Camera interface') exit(0) print('Started') print ("Beginning Transmitting to channel: Happy_Robots") now = time() # commencing subtraction while True: try: # fetching each frame ret, frame = capture.read() if frame is None: break # apply some gaussian blur to the image kenerl_size = (3, 3) gauss_image = cv.GaussianBlur(frame, kenerl_size, 0) #gauss_image = cv.bilateralFilter(frame,9,75,75) # here we convert to the HSV colorspace hsv_image = cv.cvtColor(gauss_image, cv.COLOR_BGR2HSV) # apply color threshold to the HSV image to get only black colors thres_1 = cv.inRange(hsv_image, lower_black, upper_black) # dilate the the threshold image thresh = cv.dilate(thres_1, rectKernel, iterations=1) # apply canny edge detection low_threshold = 200 high_threshold = 400 canny_edges = cv.Canny(gauss_image, low_threshold, high_threshold) roi_image = region_of_interest(canny_edges) # here we use hough transform to detect line segments # works but not averaging the lines lines = detect_line_segments(roi_image) #line_img = np.zeros((roi_image.shape[0], roi_image.shape[1], 3), dtype=np.uint8) #draw_lines(line_img, lines) #result = weighted_img(line_img, frame) #line_segments = detect_line_segments(roi_image) #lane_lines = average_slope_intercept(frame, line_segments) #line_image = display_lines(frame, lane_lines) left_line_x = [] left_line_y = [] right_line_x = [] right_line_y = [] for line in lines: for x1, y1, x2, y2 in line: slope = (y2 - y1) / (x2 - x1) # <-- Calculating the slope. #if math.fabs(slope) < 0.5: # <-- Only consider extreme slope # continue if slope <= 0: # <-- If the slope is negative, left group. left_line_x.extend([x1, x2]) left_line_y.extend([y1, y2]) else: # <-- Otherwise, right group. right_line_x.extend([x1, x2]) right_line_y.extend([y1, y2]) min_y = int(frame.shape[0] * (3 / 5)) # <-- Just below the horizon max_y = frame.shape[0] # <-- The bottom of the image poly_left = np.poly1d(np.polyfit( left_line_y, left_line_x, deg=1 )) left_x_start = int(poly_left(max_y)) left_x_end = int(poly_left(min_y)) poly_right = np.poly1d(np.polyfit( right_line_y, right_line_x, deg=1 )) right_x_start = int(poly_right(max_y)) right_x_end = int(poly_right(min_y)) line_image = draw_lines( frame, [[ [left_x_start, max_y, left_x_end, min_y], [right_x_start, max_y, right_x_end, min_y], ]], thickness=5, ) # display both the current frame and the fg masks cv.imshow('Frame', frame) cv.imshow('New Image', roi_image) cv.imshow('Line Image', line_image) keyboard = cv.waitKey(30) if keyboard == 'q' or keyboard == 27: break except KeyboardInterrupt: break # cleanup capture.release() cv.destroyAllWindows() del capture print('Stopped')
#!/usr/bin/python3 import pytest from brownie.convert import to_bytes def test_type_bounds(): with pytest.raises(ValueError): to_bytes("0x00", "bytes0") with pytest.raises(ValueError): to_bytes("0x00", "bytes33") def test_length_bounds(): for i in range(1, 33): type_ = "bytes" + str(i) to_bytes("0x" + "ff" * i, type_) with pytest.raises(OverflowError): to_bytes("0x" + "ff" * (i + 1), type_) def test_string_raises(): with pytest.raises(ValueError): to_bytes("abcdefg") def test_hexstring(): assert to_bytes("0xffff", "bytes") == b"\xff\xff" assert to_bytes("0xffff", "bytes2") == b"\xff\xff" assert to_bytes("0xffff", "bytes4") == b"\x00\x00\xff\xff" assert to_bytes("abcdef") def test_left_pad(): for i in range(1, 33): type_ = "bytes" + str(i) assert to_bytes("0xff", type_).hex() == (i - 1) * "00" + "ff" def test_int_bounds(): for i in range(1, 33): type_ = "bytes" + str(i) assert to_bytes(2 ** (i * 8) - 1, type_).hex() == "ff" * i with pytest.raises(OverflowError): to_bytes(2 ** (i * 8), type_) def test_byte_is_bytes1(): assert to_bytes(42, "byte") == to_bytes(42, "bytes1") def test_zero_value(): assert to_bytes("", "bytes1").hex() == "00" assert to_bytes("0x", "bytes1").hex() == "00" assert to_bytes(0, "bytes1").hex() == "00" def test_invalid_type(): with pytest.raises(TypeError): to_bytes(None) with pytest.raises(TypeError): to_bytes(3.1337) with pytest.raises(TypeError): to_bytes(True)
# -*- coding: utf-8 -*- import os import sys import threading import time sys.path.append(os.path.join(os.getcwd(), "Lib")) from Lib.OCC import BRepPrimAPI from Lib.aocxchange import step_ocaf from Lib.OCC.gp import gp_Pnt from agent import Agent def __createBlock__(color, step_exporter, position): agent_box_shape = BRepPrimAPI.BRepPrimAPI_MakeBox( gp_Pnt(position["x"], position["y"], position["z"]), 1, 1, 1).Shape() if color == "red": step_exporter.set_color(r=1, g=0, b=0) # red step_exporter.set_layer('red') else: step_exporter.set_color(r=0, g=0, b=0) # black step_exporter.set_layer('black') step_exporter.add_shape(agent_box_shape) class multiAgent(object): def __init__(self): self.agents = [] for i in range(50): self.agents.append(Agent()) exportThreads = [] for j in range(5): for x in range(50): threads = [] for agent in self.agents: t = threading.Thread(target=agent.doStep) threads += [t] t.start() for t in threads: t.join() print "loop:" + str(x) self.agents[0].removeVaporatedPheromones() exportThread = threading.Thread(target=self.__exportToStepFile__()).start() exportThreads += [exportThread] for thread in exportThreads: thread.join() def __exportToStepFile__(self): # Create empty export file destinationFolder = os.path.join(os.curdir, "STEPExport") destinationFileName = os.path.join(destinationFolder, time.strftime("%Y.%m.%d %H-%M-%S.stp", time.localtime())) if not os.path.exists(destinationFolder): os.mkdir(destinationFolder) while os.path.exists(destinationFileName): return step_exporter = step_ocaf.StepOcafExporter(destinationFileName) for agent in self.agents: __createBlock__("red", step_exporter, agent.position) for block in self.agents[0].blocks: __createBlock__("black", step_exporter, block.position) # Draw green initial pheromone sphere_shape = BRepPrimAPI.BRepPrimAPI_MakeSphere(10).Shape() step_exporter.set_color(r=0, g=1, b=0) # green step_exporter.set_layer('green') step_exporter.add_shape(sphere_shape) step_exporter.write_file() def main(): multiAgent() if __name__ == "__main__": main()
# Copyright (2017-2021) # The Wormnet project # Mathias Lechner (mlechner@ist.ac.at) import numpy as np import torch.nn as nn import kerasncp as kncp from kerasncp.torch import LTCCell import pytorch_lightning as pl import torch import torch.utils.data as data # nn.Module that unfolds a RNN cell into a sequence class RNNSequence(nn.Module): def __init__( self, rnn_cell, ): super(RNNSequence, self).__init__() self.rnn_cell = rnn_cell def forward(self, x): device = x.device batch_size = x.size(0) seq_len = x.size(1) hidden_state = torch.zeros( (batch_size, self.rnn_cell.state_size), device=device ) outputs = [] for t in range(seq_len): inputs = x[:, t] new_output, hidden_state = self.rnn_cell.forward(inputs, hidden_state) outputs.append(new_output) outputs = torch.stack(outputs, dim=1) # return entire sequence return outputs # LightningModule for training a RNNSequence module class SequenceLearner(pl.LightningModule): def __init__(self, model, lr=0.005): super().__init__() self.model = model self.lr = lr def training_step(self, batch, batch_idx): x, y = batch y_hat = self.model.forward(x) y_hat = y_hat.view_as(y) loss = nn.MSELoss()(y_hat, y) self.log("train_loss", loss, prog_bar=True) return {"loss": loss} def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.model.forward(x) y_hat = y_hat.view_as(y) loss = nn.MSELoss()(y_hat, y) self.log("val_loss", loss, prog_bar=True) return loss def test_step(self, batch, batch_idx): # Here we just reuse the validation_step for testing return self.validation_step(batch, batch_idx) def configure_optimizers(self): return torch.optim.Adam(self.model.parameters(), lr=self.lr) def optimizer_step( self, current_epoch, batch_nb, optimizer, optimizer_idx, closure, on_tpu=False, using_native_amp=False, using_lbfgs=False, ): optimizer.optimizer.step(closure=closure) # Apply weight constraints self.model.rnn_cell.apply_weight_constraints() in_features = 2 out_features = 1 N = 48 # Length of the time-series # Input feature is a sine and a cosine wave data_x = np.stack( [np.sin(np.linspace(0, 3 * np.pi, N)), np.cos(np.linspace(0, 3 * np.pi, N))], axis=1 ) data_x = np.expand_dims(data_x, axis=0).astype(np.float32) # Add batch dimension # Target output is a sine with double the frequency of the input signal data_y = np.sin(np.linspace(0, 6 * np.pi, N)).reshape([1, N, 1]).astype(np.float32) data_x = torch.Tensor(data_x) data_y = torch.Tensor(data_y) print("data_y.shape: ", str(data_y.shape)) wiring = kncp.wirings.FullyConnected(8, out_features) # 16 units, 8 motor neurons ltc_cell = LTCCell(wiring, in_features) dataloader = data.DataLoader( data.TensorDataset(data_x, data_y), batch_size=1, shuffle=True, num_workers=4 ) ltc_sequence = RNNSequence( ltc_cell, ) learn = SequenceLearner(ltc_sequence, lr=0.01) trainer = pl.Trainer( logger=pl.loggers.CSVLogger("log"), max_epochs=400, progress_bar_refresh_rate=1, gradient_clip_val=1, # Clip gradient to stabilize training gpus=0, ) trainer.fit(learn, dataloader) results = trainer.test(learn, dataloader)
from __future__ import absolute_import from .DatabaseConnection import DatabaseConnection
import numpy from matplotlib import pyplot from matplotlib import colors from analytic_covariance import calculate_sky_power_spectrum from analytic_covariance import calculate_beam_power_spectrum_averaged from analytic_covariance import calculate_beam_power_spectrum from analytic_covariance import calculate_total_power_spectrum from Plot_Calibrated_Error_Comparison import plot_power_spectrum from analytic_covariance import plot_PS def main(labelfontsize = 12, ticksize= 11): k_perp_range = numpy.array([1e-4, 1.1e-1]) u_range = numpy.logspace(-1, numpy.log10(200), 100) frequency_range = numpy.linspace(135, 165, 251) * 1e6 eta, sky_power_spectrum = calculate_sky_power_spectrum(u_range, frequency_range) #eta, beam_power_spectrum_averaged = calculate_beam_power_spectrum_averaged(u_range, frequency_range) eta, beam_power_spectrum_1direction = calculate_beam_power_spectrum(u_range, frequency_range) eta, total_power_spectrum_1 = calculate_total_power_spectrum(u_range, frequency_range) #eta, total_power_spectrum_total_2 = calculate_total_power_spectrum(u_range, frequency_range) figure, axes = pyplot.subplots(1, 3, figsize = (15, 5)) ps_norm = colors.LogNorm(vmin=1e3, vmax = 1e15) plot_power_spectrum(u_range, eta, frequency_range, sky_power_spectrum, title="Sky Noise", axes=axes[0], axes_label_font=labelfontsize, tickfontsize=ticksize, colorbar_show=True, xlabel_show=True, norm = ps_norm, x_range=k_perp_range) beamnorm = colors.SymLogNorm(linthresh=1e7, linscale = 1, vmin = -1e14, vmax = 1e14) plot_power_spectrum(u_range, eta, frequency_range, total_power_spectrum_1 - sky_power_spectrum, title="Beam Noise", axes=axes[1], axes_label_font=labelfontsize, tickfontsize=ticksize, colorbar_show=True, xlabel_show=True, norm=beamnorm, diff=True, colormap='coolwarm', x_range=k_perp_range) # plot_PS(u_range, eta, frequency_range, total_power_spectrum_1, cosmological=True) plot_power_spectrum(u_range, eta, frequency_range, total_power_spectrum_1 , title="Total Noise", axes=axes[2], axes_label_font=labelfontsize, tickfontsize=ticksize, colorbar_show=True, xlabel_show=True, norm = ps_norm, x_range=k_perp_range) figure.tight_layout() pyplot.show() return if __name__ == "__main__": main()
from __future__ import division, print_function, absolute_import import numpy from rep.estimators import XGBoostClassifier, XGBoostRegressor from rep.test.test_estimators import check_classifier, check_regression, generate_classification_data __author__ = 'Alex Rogozhnikov' def very_basic_xgboost_test(): X, y, w = generate_classification_data(n_classes=2) clf = XGBoostClassifier(n_estimators=10).fit(X, y) clf.predict(X) clf.predict_proba(X) # testing that returned features in importances are correct and in the same order assert numpy.all(clf.features == clf.get_feature_importances().index) def test_xgboost(): check_classifier(XGBoostClassifier(n_estimators=20), n_classes=2) check_classifier(XGBoostClassifier(n_estimators=20), n_classes=4) check_regression(XGBoostRegressor(n_estimators=20))
""" Make Catch pig with two agents. forked from: https://github.com/Bigpig4396/Multi-Agent-Reinforcement-Learning-Environment/ tree/master/env_CatchPigs Thanks to their authors. """ # pylint: disable-all # flake8: noqa # noqa import random import matplotlib.pyplot as plt import numpy as np from matplotlib.gridspec import GridSpec import cv2 class EnvCatchPigs(object): def __init__(self, size, if_PO): assert self.check_size(size) self.if_PO = if_PO self.map_size = size self.occupancy = np.zeros((self.map_size, self.map_size)) for i in range(self.map_size): self.occupancy[0][i] = 1 self.occupancy[1][i] = 1 self.occupancy[self.map_size - 2][i] = 1 self.occupancy[self.map_size - 1][i] = 1 self.occupancy[i][0] = 1 self.occupancy[i][1] = 1 self.occupancy[i][self.map_size - 2] = 1 self.occupancy[i][self.map_size - 1] = 1 for i in range(3, self.map_size - 3, 2): for j in range(3, self.map_size - 3, 2): self.occupancy[i][j] = 1 self.raw_occupancy = np.zeros((self.map_size, self.map_size)) for i in range(self.map_size): self.raw_occupancy[0][i] = 1 self.raw_occupancy[1][i] = 1 self.raw_occupancy[self.map_size - 2][i] = 1 self.raw_occupancy[self.map_size - 1][i] = 1 self.raw_occupancy[i][0] = 1 self.raw_occupancy[i][1] = 1 self.raw_occupancy[i][self.map_size - 2] = 1 self.raw_occupancy[i][self.map_size - 1] = 1 for i in range(3, self.map_size - 3, 2): for j in range(3, self.map_size - 3, 2): self.raw_occupancy[i][j] = 1 # initialize agent 1 self.agt1_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] while self.occupancy[self.agt1_pos[0]][self.agt1_pos[1]] == 1: self.agt1_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] self.occupancy[self.agt1_pos[0]][self.agt1_pos[1]] = 1 self.agt1_ori = random.randint(0, 3) # initialize agent 2 self.agt2_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] while self.occupancy[self.agt2_pos[0]][self.agt2_pos[1]] == 1: self.agt2_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] self.occupancy[self.agt2_pos[0]][self.agt2_pos[1]] = 1 self.agt2_ori = random.randint(0, 3) # initialize pig self.pig_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] while self.occupancy[self.pig_pos[0]][self.pig_pos[1]] == 1: self.pig_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] self.occupancy[self.pig_pos[0]][self.pig_pos[1]] = 1 self.pig_ori = random.randint(0, 3) self.if_agt1_catches = False self.if_agt2_catches = False def check_size(self, size): print("size of map should be an odd integer no smaller than 7") if (size % 2) == 1 and size >= 7: return True else: return False def reset(self): self.occupancy = np.zeros((self.map_size, self.map_size)) for i in range(self.map_size): self.occupancy[0][i] = 1 self.occupancy[1][i] = 1 self.occupancy[self.map_size - 2][i] = 1 self.occupancy[self.map_size - 1][i] = 1 self.occupancy[i][0] = 1 self.occupancy[i][1] = 1 self.occupancy[i][self.map_size - 2] = 1 self.occupancy[i][self.map_size - 1] = 1 for i in range(3, self.map_size - 3, 2): for j in range(3, self.map_size - 3, 2): self.occupancy[i][j] = 1 # initialize agent 1 self.agt1_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] while self.occupancy[self.agt1_pos[0]][self.agt1_pos[1]] == 1: self.agt1_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] self.occupancy[self.agt1_pos[0]][self.agt1_pos[1]] = 1 self.agt1_ori = random.randint(0, 3) # initialize agent 2 self.agt2_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] while self.occupancy[self.agt2_pos[0]][self.agt2_pos[1]] == 1: self.agt2_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] self.occupancy[self.agt2_pos[0]][self.agt2_pos[1]] = 1 self.agt2_ori = random.randint(0, 3) # initialize pig self.pig_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] while self.occupancy[self.pig_pos[0]][self.pig_pos[1]] == 1: self.pig_pos = [ random.randint(2, self.map_size - 3), random.randint(2, self.map_size - 3), ] self.occupancy[self.pig_pos[0]][self.pig_pos[1]] = 1 self.pig_ori = random.randint(0, 3) self.if_agt1_catches = False self.if_agt2_catches = False def list_add(self, a, b): c = [a[i] + b[i] for i in range(min(len(a), len(b)))] return c def paint_block(self, obs, i, j): new_obs = obs for row in range(3): for col in range(3): new_obs[i * 3 + row, j * 3 + col, 0] = 0.0 new_obs[i * 3 + row, j * 3 + col, 1] = 0.0 new_obs[i * 3 + row, j * 3 + col, 2] = 0.0 return new_obs def paint_agt1(self, obs, i, j, ori): new_obs = obs if ori == 0: new_obs[i * 3, j * 3, 0] = 1.0 new_obs[i * 3, j * 3, 1] = 0.0 new_obs[i * 3, j * 3, 2] = 0.0 new_obs[i * 3 + 1, j * 3, 0] = 1.0 new_obs[i * 3 + 1, j * 3, 1] = 0.0 new_obs[i * 3 + 1, j * 3, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 0] = 1.0 new_obs[i * 3 + 1, j * 3 + 2, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 2] = 0.0 new_obs[i * 3 + 2, j * 3, 0] = 1.0 new_obs[i * 3 + 2, j * 3, 1] = 0.0 new_obs[i * 3 + 2, j * 3, 2] = 0.0 elif ori == 1: new_obs[i * 3, j * 3, 0] = 1.0 new_obs[i * 3, j * 3, 1] = 0.0 new_obs[i * 3, j * 3, 2] = 0.0 new_obs[i * 3, j * 3 + 1, 0] = 1.0 new_obs[i * 3, j * 3 + 1, 1] = 0.0 new_obs[i * 3, j * 3 + 1, 2] = 0.0 new_obs[i * 3, j * 3 + 2, 0] = 1.0 new_obs[i * 3, j * 3 + 2, 1] = 0.0 new_obs[i * 3, j * 3 + 2, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 0] = 1.0 new_obs[i * 3 + 2, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 2] = 0.0 elif ori == 2: new_obs[i * 3, j * 3 + 2, 0] = 1.0 new_obs[i * 3, j * 3 + 2, 1] = 0.0 new_obs[i * 3, j * 3 + 2, 2] = 0.0 new_obs[i * 3 + 1, j * 3, 0] = 1.0 new_obs[i * 3 + 1, j * 3, 1] = 0.0 new_obs[i * 3 + 1, j * 3, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 0] = 1.0 new_obs[i * 3 + 1, j * 3 + 2, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 2] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 0] = 1.0 new_obs[i * 3 + 2, j * 3 + 2, 1] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 2] = 0.0 elif ori == 3: new_obs[i * 3, j * 3 + 1, 0] = 1.0 new_obs[i * 3, j * 3 + 1, 1] = 0.0 new_obs[i * 3, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 2, j * 3, 0] = 1.0 new_obs[i * 3 + 2, j * 3, 1] = 0.0 new_obs[i * 3 + 2, j * 3, 2] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 0] = 1.0 new_obs[i * 3 + 2, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 0] = 1.0 new_obs[i * 3 + 2, j * 3 + 2, 1] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 2] = 0.0 return new_obs def paint_agt2(self, obs, i, j, ori): new_obs = obs if ori == 0: new_obs[i * 3, j * 3, 0] = 0.0 new_obs[i * 3, j * 3, 1] = 0.0 new_obs[i * 3, j * 3, 2] = 1.0 new_obs[i * 3 + 1, j * 3, 0] = 0.0 new_obs[i * 3 + 1, j * 3, 1] = 0.0 new_obs[i * 3 + 1, j * 3, 2] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 1.0 new_obs[i * 3 + 1, j * 3 + 2, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 2] = 1.0 new_obs[i * 3 + 2, j * 3, 0] = 0.0 new_obs[i * 3 + 2, j * 3, 1] = 0.0 new_obs[i * 3 + 2, j * 3, 2] = 1.0 elif ori == 1: new_obs[i * 3, j * 3, 0] = 0.0 new_obs[i * 3, j * 3, 1] = 0.0 new_obs[i * 3, j * 3, 2] = 1.0 new_obs[i * 3, j * 3 + 1, 0] = 0.0 new_obs[i * 3, j * 3 + 1, 1] = 0.0 new_obs[i * 3, j * 3 + 1, 2] = 1.0 new_obs[i * 3, j * 3 + 2, 0] = 0.0 new_obs[i * 3, j * 3 + 2, 1] = 0.0 new_obs[i * 3, j * 3 + 2, 2] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 1.0 new_obs[i * 3 + 2, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 2] = 1.0 elif ori == 2: new_obs[i * 3, j * 3 + 2, 0] = 0.0 new_obs[i * 3, j * 3 + 2, 1] = 0.0 new_obs[i * 3, j * 3 + 2, 2] = 1.0 new_obs[i * 3 + 1, j * 3, 0] = 0.0 new_obs[i * 3 + 1, j * 3, 1] = 0.0 new_obs[i * 3 + 1, j * 3, 2] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 1.0 new_obs[i * 3 + 1, j * 3 + 2, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 2] = 1.0 new_obs[i * 3 + 2, j * 3 + 2, 0] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 1] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 2] = 1.0 elif ori == 3: new_obs[i * 3, j * 3 + 1, 0] = 0.0 new_obs[i * 3, j * 3 + 1, 1] = 0.0 new_obs[i * 3, j * 3 + 1, 2] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 1.0 new_obs[i * 3 + 2, j * 3, 0] = 0.0 new_obs[i * 3 + 2, j * 3, 1] = 0.0 new_obs[i * 3 + 2, j * 3, 2] = 1.0 new_obs[i * 3 + 2, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 1] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 2] = 1.0 new_obs[i * 3 + 2, j * 3 + 2, 0] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 1] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 2] = 1.0 return new_obs def paint_pig(self, obs, i, j, ori): new_obs = obs if ori == 0: new_obs[i * 3, j * 3, 0] = 0.0 new_obs[i * 3, j * 3, 1] = 1.0 new_obs[i * 3, j * 3, 2] = 0.0 new_obs[i * 3 + 1, j * 3, 0] = 0.0 new_obs[i * 3 + 1, j * 3, 1] = 1.0 new_obs[i * 3 + 1, j * 3, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 1] = 1.0 new_obs[i * 3 + 1, j * 3 + 2, 2] = 0.0 new_obs[i * 3 + 2, j * 3, 0] = 0.0 new_obs[i * 3 + 2, j * 3, 1] = 1.0 new_obs[i * 3 + 2, j * 3, 2] = 0.0 elif ori == 1: new_obs[i * 3, j * 3, 0] = 0.0 new_obs[i * 3, j * 3, 1] = 1.0 new_obs[i * 3, j * 3, 2] = 0.0 new_obs[i * 3, j * 3 + 1, 0] = 0.0 new_obs[i * 3, j * 3 + 1, 1] = 1.0 new_obs[i * 3, j * 3 + 1, 2] = 0.0 new_obs[i * 3, j * 3 + 2, 0] = 0.0 new_obs[i * 3, j * 3 + 2, 1] = 1.0 new_obs[i * 3, j * 3 + 2, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 1] = 1.0 new_obs[i * 3 + 2, j * 3 + 1, 2] = 0.0 elif ori == 2: new_obs[i * 3, j * 3 + 2, 0] = 0.0 new_obs[i * 3, j * 3 + 2, 1] = 1.0 new_obs[i * 3, j * 3 + 2, 2] = 0.0 new_obs[i * 3 + 1, j * 3, 0] = 0.0 new_obs[i * 3 + 1, j * 3, 1] = 1.0 new_obs[i * 3 + 1, j * 3, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 2, 1] = 1.0 new_obs[i * 3 + 1, j * 3 + 2, 2] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 0] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 1] = 1.0 new_obs[i * 3 + 2, j * 3 + 2, 2] = 0.0 elif ori == 3: new_obs[i * 3, j * 3 + 1, 0] = 0.0 new_obs[i * 3, j * 3 + 1, 1] = 1.0 new_obs[i * 3, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 1, j * 3 + 1, 1] = 1.0 new_obs[i * 3 + 1, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 2, j * 3, 0] = 0.0 new_obs[i * 3 + 2, j * 3, 1] = 1.0 new_obs[i * 3 + 2, j * 3, 2] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 0] = 0.0 new_obs[i * 3 + 2, j * 3 + 1, 1] = 1.0 new_obs[i * 3 + 2, j * 3 + 1, 2] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 0] = 0.0 new_obs[i * 3 + 2, j * 3 + 2, 1] = 1.0 new_obs[i * 3 + 2, j * 3 + 2, 2] = 0.0 return new_obs def get_agt1_obs(self): obs = [] if not self.if_PO: obs = self.get_global_obs() else: obs = np.zeros((5 * 3, 5 * 3, 3)) for i in range(5 * 3): for j in range(5 * 3): obs[i, j, 0] = 1.0 obs[i, j, 1] = 1.0 obs[i, j, 2] = 1.0 for k in range(5): if (self.raw_occupancy[self.agt1_pos[0] - 2][self.agt1_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 0) if (self.raw_occupancy[self.agt1_pos[0] - 1][self.agt1_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 1) if self.raw_occupancy[self.agt1_pos[0]][self.agt1_pos[1] + k - 2] == 1: self.paint_block(obs, 4 - k, 2) if (self.raw_occupancy[self.agt1_pos[0] + 1][self.agt1_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 3) if (self.raw_occupancy[self.agt1_pos[0] + 2][self.agt1_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 4) # detect self self.paint_agt1(obs, 2, 2, self.agt1_ori) # detect agent2 for k in range(5): if self.agt2_pos == self.list_add(self.agt1_pos, [-2 + k, 2]): self.paint_agt2(obs, 0, k, self.agt2_ori) if self.agt2_pos == self.list_add(self.agt1_pos, [-2 + k, 1]): self.paint_agt2(obs, 1, k, self.agt2_ori) if self.agt2_pos == self.list_add(self.agt1_pos, [-2 + k, 0]): self.paint_agt2(obs, 2, k, self.agt2_ori) if self.agt2_pos == self.list_add(self.agt1_pos, [-2 + k, -1]): self.paint_agt2(obs, 3, k, self.agt2_ori) if self.agt2_pos == self.list_add(self.agt1_pos, [-2 + k, -2]): self.paint_agt2(obs, 4, k, self.agt2_ori) # detect pig for k in range(5): if self.pig_pos == self.list_add(self.agt1_pos, [-2 + k, 2]): self.paint_pig(obs, 0, k, self.pig_ori) if self.pig_pos == self.list_add(self.agt1_pos, [-2 + k, 1]): self.paint_pig(obs, 1, k, self.pig_ori) if self.pig_pos == self.list_add(self.agt1_pos, [-2 + k, 0]): self.paint_pig(obs, 2, k, self.pig_ori) if self.pig_pos == self.list_add(self.agt1_pos, [-2 + k, -1]): self.paint_pig(obs, 3, k, self.pig_ori) if self.pig_pos == self.list_add(self.agt1_pos, [-2 + k, -2]): self.paint_pig(obs, 4, k, self.pig_ori) # add fog if self.agt1_ori == 0: for i in range(5 * 3): for j in range(2 * 3): obs[i, 14 - j, 0] = 0.5 obs[i, 14 - j, 1] = 0.5 obs[i, 14 - j, 2] = 0.5 if self.agt1_ori == 1: for i in range(5 * 3): for j in range(2 * 3): obs[14 - j, i, 0] = 0.5 obs[14 - j, i, 1] = 0.5 obs[14 - j, i, 2] = 0.5 if self.agt1_ori == 2: for i in range(5 * 3): for j in range(2 * 3): obs[i, j, 0] = 0.5 obs[i, j, 1] = 0.5 obs[i, j, 2] = 0.5 if self.agt1_ori == 3: for i in range(5 * 3): for j in range(2 * 3): obs[j, i, 0] = 0.5 obs[j, i, 1] = 0.5 obs[j, i, 2] = 0.5 return obs def get_agt2_obs(self): obs = [] if not self.if_PO: obs = self.get_global_obs() else: obs = np.zeros((5 * 3, 5 * 3, 3)) for i in range(5 * 3): for j in range(5 * 3): obs[i, j, 0] = 1.0 obs[i, j, 1] = 1.0 obs[i, j, 2] = 1.0 for k in range(5): if (self.raw_occupancy[self.agt2_pos[0] - 2][self.agt2_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 0) if (self.raw_occupancy[self.agt2_pos[0] - 1][self.agt2_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 1) if self.raw_occupancy[self.agt2_pos[0]][self.agt2_pos[1] + k - 2] == 1: self.paint_block(obs, 4 - k, 2) if (self.raw_occupancy[self.agt2_pos[0] + 1][self.agt2_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 3) if (self.raw_occupancy[self.agt2_pos[0] + 2][self.agt2_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 4) # detect self self.paint_agt2(obs, 2, 2, self.agt2_ori) # detect agent1 for k in range(5): if self.agt1_pos == self.list_add(self.agt2_pos, [-2 + k, 2]): self.paint_agt1(obs, 0, k, self.agt1_ori) if self.agt1_pos == self.list_add(self.agt2_pos, [-2 + k, 1]): self.paint_agt1(obs, 1, k, self.agt1_ori) if self.agt1_pos == self.list_add(self.agt2_pos, [-2 + k, 0]): self.paint_agt1(obs, 2, k, self.agt1_ori) if self.agt1_pos == self.list_add(self.agt2_pos, [-2 + k, -1]): self.paint_agt1(obs, 3, k, self.agt1_ori) if self.agt1_pos == self.list_add(self.agt2_pos, [-2 + k, -2]): self.paint_agt1(obs, 4, k, self.agt1_ori) # detect pig for k in range(5): if self.pig_pos == self.list_add(self.agt2_pos, [-2 + k, 2]): self.paint_pig(obs, 0, k, self.pig_ori) if self.pig_pos == self.list_add(self.agt2_pos, [-2 + k, 1]): self.paint_pig(obs, 1, k, self.pig_ori) if self.pig_pos == self.list_add(self.agt2_pos, [-2 + k, 0]): self.paint_pig(obs, 2, k, self.pig_ori) if self.pig_pos == self.list_add(self.agt2_pos, [-2 + k, -1]): self.paint_pig(obs, 3, k, self.pig_ori) if self.pig_pos == self.list_add(self.agt2_pos, [-2 + k, -2]): self.paint_pig(obs, 4, k, self.pig_ori) # add fog if self.agt2_ori == 0: for i in range(5 * 3): for j in range(2 * 3): obs[i, 14 - j, 0] = 0.5 obs[i, 14 - j, 1] = 0.5 obs[i, 14 - j, 2] = 0.5 if self.agt2_ori == 1: for i in range(5 * 3): for j in range(2 * 3): obs[14 - j, i, 0] = 0.5 obs[14 - j, i, 1] = 0.5 obs[14 - j, i, 2] = 0.5 if self.agt2_ori == 2: for i in range(5 * 3): for j in range(2 * 3): obs[i, j, 0] = 0.5 obs[i, j, 1] = 0.5 obs[i, j, 2] = 0.5 if self.agt2_ori == 3: for i in range(5 * 3): for j in range(2 * 3): obs[j, i, 0] = 0.5 obs[j, i, 1] = 0.5 obs[j, i, 2] = 0.5 return obs def get_pig_obs(self): obs = [] if not self.if_PO: obs = self.get_global_obs() else: obs = np.zeros((5 * 3, 5 * 3, 3)) for i in range(5 * 3): for j in range(5 * 3): obs[i, j, 0] = 1.0 obs[i, j, 1] = 1.0 obs[i, j, 2] = 1.0 for k in range(5): if (self.raw_occupancy[self.pig_pos[0] - 2][self.pig_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 0) if (self.raw_occupancy[self.pig_pos[0] - 1][self.pig_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 1) if self.raw_occupancy[self.pig_pos[0]][self.pig_pos[1] + k - 2] == 1: self.paint_block(obs, 4 - k, 2) if (self.raw_occupancy[self.pig_pos[0] + 1][self.pig_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 3) if (self.raw_occupancy[self.pig_pos[0] + 2][self.pig_pos[1] + k - 2] == 1): self.paint_block(obs, 4 - k, 4) # detect self self.paint_pig(obs, 2, 2, self.pig_ori) # detect agent1 for k in range(5): if self.agt1_pos == self.list_add(self.pig_pos, [-2 + k, 2]): self.paint_agt1(obs, 0, k, self.agt1_ori) if self.agt1_pos == self.list_add(self.pig_pos, [-2 + k, 1]): self.paint_agt1(obs, 1, k, self.agt1_ori) if self.agt1_pos == self.list_add(self.pig_pos, [-2 + k, 0]): self.paint_agt1(obs, 2, k, self.agt1_ori) if self.agt1_pos == self.list_add(self.pig_pos, [-2 + k, -1]): self.paint_agt1(obs, 3, k, self.agt1_ori) if self.agt1_pos == self.list_add(self.pig_pos, [-2 + k, -2]): self.paint_agt1(obs, 4, k, self.agt1_ori) # detect agent2 for k in range(5): if self.agt2_pos == self.list_add(self.pig_pos, [-2 + k, 2]): self.paint_agt2(obs, 0, k, self.agt2_ori) if self.agt2_pos == self.list_add(self.pig_pos, [-2 + k, 1]): self.paint_agt2(obs, 1, k, self.agt2_ori) if self.agt2_pos == self.list_add(self.pig_pos, [-2 + k, 0]): self.paint_agt2(obs, 2, k, self.agt2_ori) if self.agt2_pos == self.list_add(self.pig_pos, [-2 + k, -1]): self.paint_agt2(obs, 3, k, self.agt2_ori) if self.agt2_pos == self.list_add(self.pig_pos, [-2 + k, -2]): self.paint_agt2(obs, 4, k, self.agt2_ori) # add fog if self.pig_ori == 0: for i in range(5 * 3): for j in range(2 * 3): obs[i, 14 - j, 0] = 0.5 obs[i, 14 - j, 1] = 0.5 obs[i, 14 - j, 2] = 0.5 if self.pig_ori == 1: for i in range(5 * 3): for j in range(2 * 3): obs[14 - j, i, 0] = 0.5 obs[14 - j, i, 1] = 0.5 obs[14 - j, i, 2] = 0.5 if self.pig_ori == 2: for i in range(5 * 3): for j in range(2 * 3): obs[i, j, 0] = 0.5 obs[i, j, 1] = 0.5 obs[i, j, 2] = 0.5 if self.pig_ori == 3: for i in range(5 * 3): for j in range(2 * 3): obs[j, i, 0] = 0.5 obs[j, i, 1] = 0.5 obs[j, i, 2] = 0.5 return obs def get_obs(self): return [self.get_agt1_obs(), self.get_agt2_obs()] def get_full_obs(self): obs = np.zeros((self.map_size * 3, self.map_size * 3, 3)) for i in range(self.map_size * 3): for j in range(self.map_size * 3): obs[i, j, 0] = 1.0 obs[i, j, 1] = 1.0 obs[i, j, 2] = 1.0 for i in range(self.map_size): for j in range(self.map_size): if self.raw_occupancy[i][j] == 1: self.paint_block(obs, i, j) self.paint_agt1(obs, self.map_size - self.agt1_pos[1] - 1, self.agt1_pos[0], self.agt1_ori) self.paint_agt2(obs, self.map_size - self.agt2_pos[1] - 1, self.agt2_pos[0], self.agt2_ori) self.paint_pig(obs, self.map_size - self.pig_pos[1] - 1, self.pig_pos[0], self.pig_ori) return obs def step(self, action_list): reward_1 = 0 reward_2 = 0 reward_pig = 0 # agent1 move if action_list[0] == 0: # turn left reward_1 = reward_1 - 1 if self.agt1_ori == 0: self.agt1_ori = 3 elif self.agt1_ori == 1: self.agt1_ori = 0 elif self.agt1_ori == 2: self.agt1_ori = 1 elif self.agt1_ori == 3: self.agt1_ori = 2 elif action_list[0] == 1: # turn right reward_1 = reward_1 - 1 if self.agt1_ori == 0: self.agt1_ori = 1 elif self.agt1_ori == 1: self.agt1_ori = 2 elif self.agt1_ori == 2: self.agt1_ori = 3 elif self.agt1_ori == 3: self.agt1_ori = 0 elif action_list[0] == 2: # move reward_1 = reward_1 - 1 if self.agt1_ori == 0: if (self.occupancy[self.agt1_pos[0] - 1][self.agt1_pos[1]] != 1): # if can move self.agt1_pos[0] = self.agt1_pos[0] - 1 self.occupancy[self.agt1_pos[0] + 1][self.agt1_pos[1]] = 0 self.occupancy[self.agt1_pos[0]][self.agt1_pos[1]] = 1 else: reward_1 = reward_1 - 20 elif self.agt1_ori == 1: if (self.occupancy[self.agt1_pos[0]][self.agt1_pos[1] + 1] != 1): # if can move self.agt1_pos[1] = self.agt1_pos[1] + 1 self.occupancy[self.agt1_pos[0]][self.agt1_pos[1] - 1] = 0 self.occupancy[self.agt1_pos[0]][self.agt1_pos[1]] = 1 else: reward_1 = reward_1 - 20 elif self.agt1_ori == 2: if (self.occupancy[self.agt1_pos[0] + 1][self.agt1_pos[1]] != 1): # if can move self.agt1_pos[0] = self.agt1_pos[0] + 1 self.occupancy[self.agt1_pos[0] - 1][self.agt1_pos[1]] = 0 self.occupancy[self.agt1_pos[0]][self.agt1_pos[1]] = 1 else: reward_1 = reward_1 - 20 elif self.agt1_ori == 3: if (self.occupancy[self.agt1_pos[0]][self.agt1_pos[1] - 1] != 1): # if can move self.agt1_pos[1] = self.agt1_pos[1] - 1 self.occupancy[self.agt1_pos[0]][self.agt1_pos[1] + 1] = 0 self.occupancy[self.agt1_pos[0]][self.agt1_pos[1]] = 1 else: reward_1 = reward_1 - 20 elif action_list[0] == 3: # catch reward_1 = reward_1 - 1 if self.agt1_ori == 0: if self.pig_pos[0] == self.agt1_pos[0] - 1: if self.pig_pos[1] == self.agt1_pos[1]: self.if_agt1_catches = True elif self.agt1_ori == 1: if self.pig_pos[1] == self.agt1_pos[1] + 1: if self.pig_pos[0] == self.agt1_pos[0]: self.if_agt1_catches = True elif self.agt1_ori == 2: if self.pig_pos[0] == self.agt1_pos[0] + 1: if self.pig_pos[1] == self.agt1_pos[1]: self.if_agt1_catches = True elif self.agt1_ori == 3: if self.pig_pos[1] == self.agt1_pos[1] - 1: if self.pig_pos[0] == self.agt1_pos[0]: self.if_agt1_catches = True # agent2 move if action_list[1] == 0: # turn left reward_2 = reward_2 - 1 if self.agt2_ori == 0: self.agt2_ori = 3 elif self.agt2_ori == 1: self.agt2_ori = 0 elif self.agt2_ori == 2: self.agt2_ori = 1 elif self.agt2_ori == 3: self.agt2_ori = 2 elif action_list[1] == 1: # turn right reward_2 = reward_2 - 1 if self.agt2_ori == 0: self.agt2_ori = 1 elif self.agt2_ori == 1: self.agt2_ori = 2 elif self.agt2_ori == 2: self.agt2_ori = 3 elif self.agt2_ori == 3: self.agt2_ori = 0 elif action_list[1] == 2: # move reward_2 = reward_2 - 1 if self.agt2_ori == 0: if (self.occupancy[self.agt2_pos[0] - 1][self.agt2_pos[1]] != 1): # if can move self.agt2_pos[0] = self.agt2_pos[0] - 1 self.occupancy[self.agt2_pos[0] + 1][self.agt2_pos[1]] = 0 self.occupancy[self.agt2_pos[0]][self.agt2_pos[1]] = 1 else: reward_2 = reward_2 - 20 elif self.agt2_ori == 1: if (self.occupancy[self.agt2_pos[0]][self.agt2_pos[1] + 1] != 1): # if can move self.agt2_pos[1] = self.agt2_pos[1] + 1 self.occupancy[self.agt2_pos[0]][self.agt2_pos[1] - 1] = 0 self.occupancy[self.agt2_pos[0]][self.agt2_pos[1]] = 1 else: reward_2 = reward_2 - 20 elif self.agt2_ori == 2: if (self.occupancy[self.agt2_pos[0] + 1][self.agt2_pos[1]] != 1): # if can move self.agt2_pos[0] = self.agt2_pos[0] + 1 self.occupancy[self.agt2_pos[0] - 1][self.agt2_pos[1]] = 0 self.occupancy[self.agt2_pos[0]][self.agt2_pos[1]] = 1 else: reward_2 = reward_2 - 20 elif self.agt2_ori == 3: if (self.occupancy[self.agt2_pos[0]][self.agt2_pos[1] - 1] != 1): # if can move self.agt2_pos[1] = self.agt2_pos[1] - 1 self.occupancy[self.agt2_pos[0]][self.agt2_pos[1] + 1] = 0 self.occupancy[self.agt2_pos[0]][self.agt2_pos[1]] = 1 else: reward_2 = reward_2 - 20 elif action_list[1] == 3: # catch reward_2 = reward_2 - 1 if self.agt2_ori == 0: if self.pig_pos[0] == self.agt2_pos[0] - 1: if self.pig_pos[1] == self.agt2_pos[1]: self.if_agt2_catches = True elif self.agt2_ori == 1: if self.pig_pos[1] == self.agt2_pos[1] + 1: if self.pig_pos[0] == self.agt2_pos[0]: self.if_agt2_catches = True elif self.agt2_ori == 2: if self.pig_pos[0] == self.agt2_pos[0] + 1: if self.pig_pos[1] == self.agt2_pos[1]: self.if_agt2_catches = True elif self.agt2_ori == 3: if self.pig_pos[1] == self.agt2_pos[1] - 1: if self.pig_pos[0] == self.agt2_pos[0]: self.if_agt2_catches = True # pig move action_pig = random.randint(0, 3) if action_pig == 0: # turn left reward_pig = reward_pig - 1 if self.pig_ori == 0: self.pig_ori = 3 elif self.pig_ori == 1: self.pig_ori = 0 elif self.pig_ori == 2: self.pig_ori = 1 elif self.pig_ori == 3: self.pig_ori = 2 elif action_pig == 1: # turn right reward_pig = reward_pig - 1 if self.pig_ori == 0: self.pig_ori = 1 elif self.pig_ori == 1: self.pig_ori = 2 elif self.pig_ori == 2: self.pig_ori = 3 elif self.pig_ori == 3: self.pig_ori = 0 elif action_pig == 2: # move reward_pig = reward_pig - 1 if self.pig_ori == 0: if (self.occupancy[self.pig_pos[0] - 1][self.pig_pos[1]] != 1): # if can move self.pig_pos[0] = self.pig_pos[0] - 1 self.occupancy[self.pig_pos[0] + 1][self.pig_pos[1]] = 0 self.occupancy[self.pig_pos[0]][self.pig_pos[1]] = 1 self.if_agt1_catches = False self.if_agt2_catches = False else: reward_pig = reward_pig - 20 elif self.pig_ori == 1: if (self.occupancy[self.pig_pos[0]][self.pig_pos[1] + 1] != 1): # if can move self.pig_pos[1] = self.pig_pos[1] + 1 self.occupancy[self.pig_pos[0]][self.pig_pos[1] - 1] = 0 self.occupancy[self.pig_pos[0]][self.pig_pos[1]] = 1 self.if_agt1_catches = False self.if_agt2_catches = False else: reward_pig = reward_pig - 20 elif self.pig_ori == 2: if (self.occupancy[self.pig_pos[0] + 1][self.pig_pos[1]] != 1): # if can move self.pig_pos[0] = self.pig_pos[0] + 1 self.occupancy[self.pig_pos[0] - 1][self.pig_pos[1]] = 0 self.occupancy[self.pig_pos[0]][self.pig_pos[1]] = 1 self.if_agt1_catches = False self.if_agt2_catches = False else: reward_pig = reward_pig - 20 elif self.pig_ori == 3: if (self.occupancy[self.pig_pos[0]][self.pig_pos[1] - 1] != 1): # if can move self.pig_pos[1] = self.pig_pos[1] - 1 self.occupancy[self.pig_pos[0]][self.pig_pos[1] + 1] = 0 self.occupancy[self.pig_pos[0]][self.pig_pos[1]] = 1 self.if_agt1_catches = False self.if_agt2_catches = False else: reward_pig = reward_pig - 20 # check if caught if (self.if_agt1_catches) and (self.if_agt2_catches): reward_1 = reward_1 + 500 reward_2 = reward_2 + 500 reward_pig = reward_pig - 500 self.reset() else: if action_list[1] == 3: reward_2 = reward_2 - 50 if action_list[0] == 3: reward_1 = reward_1 - 50 self.if_agt1_catches = False self.if_agt2_catches = False done = False if reward_1 > 0: done = True # reward shape if done: reward_1 = 1.0 reward_2 = 1.0 else: reward_1 = -0.001 reward_2 = -0.001 return [reward_1, reward_2], done def plot_scene(self): fig = plt.figure(figsize=(5, 5)) gs = GridSpec(3, 3, figure=fig) ax1 = fig.add_subplot(gs[0:2, 0:3]) plt.xticks([]) plt.yticks([]) ax2 = fig.add_subplot(gs[2, 0:1]) plt.xticks([]) plt.yticks([]) ax3 = fig.add_subplot(gs[2, 1:2]) plt.xticks([]) plt.yticks([]) ax4 = fig.add_subplot(gs[2, 2:3]) plt.xticks([]) plt.yticks([]) ax1.imshow(self.get_full_obs()) ax2.imshow(self.get_agt1_obs()) ax3.imshow(self.get_agt2_obs()) ax4.imshow(self.get_pig_obs()) plt.show() def set_agt1_at(self, tgt_pos, tgt_ori): if self.occupancy[tgt_pos[0]][tgt_pos[1]] == 0: # free space self.occupancy[self.agt1_pos[0]][self.agt1_pos[1]] = 0 self.agt1_pos = tgt_pos self.occupancy[self.agt1_pos[0]][self.agt1_pos[1]] = 1 self.agt1_ori = tgt_ori def set_agt2_at(self, tgt_pos, tgt_ori): if self.occupancy[tgt_pos[0]][tgt_pos[1]] == 0: # free space self.occupancy[self.agt2_pos[0]][self.agt2_pos[1]] = 0 self.agt2_pos = tgt_pos self.occupancy[self.agt2_pos[0]][self.agt2_pos[1]] = 1 self.agt2_ori = tgt_ori def set_pig_at(self, tgt_pos, tgt_ori): if self.occupancy[tgt_pos[0]][tgt_pos[1]] == 0: # free space self.occupancy[self.pig_pos[0]][self.pig_pos[1]] = 0 self.pig_pos = tgt_pos self.occupancy[self.pig_pos[0]][self.pig_pos[1]] = 1 self.pig_ori = tgt_ori def render(self): obs = np.ones((self.map_size * 21, self.map_size * 21, 3)) for i in range(self.map_size): for j in range(self.map_size): if self.raw_occupancy[i, j] == 1: cv2.rectangle(obs, (i * 21, j * 21), (i * 21 + 21, j * 21 + 21), (0, 0, 0), -1) # plot agent1 temp_x = self.agt1_pos[0] temp_y = self.map_size - self.agt1_pos[1] - 1 if self.agt1_ori == 0: cv2.rectangle( obs, (temp_x * 21, temp_y * 21), (temp_x * 21 + 7, temp_y * 21 + 21), (0, 0, 255), -1, ) cv2.rectangle( obs, (temp_x * 21 + 7, temp_y * 21 + 7), (temp_x * 21 + 21, temp_y * 21 + 14), (0, 0, 255), -1, ) elif self.agt1_ori == 1: cv2.rectangle( obs, (temp_x * 21, temp_y * 21), (temp_x * 21 + 21, temp_y * 21 + 7), (0, 0, 255), -1, ) cv2.rectangle( obs, (temp_x * 21 + 7, temp_y * 21 + 7), (temp_x * 21 + 14, temp_y * 21 + 21), (0, 0, 255), -1, ) elif self.agt1_ori == 2: cv2.rectangle( obs, (temp_x * 21, temp_y * 21 + 7), (temp_x * 21 + 14, temp_y * 21 + 14), (0, 0, 255), -1, ) cv2.rectangle( obs, (temp_x * 21 + 14, temp_y * 21), (temp_x * 21 + 21, temp_y * 21 + 21), (0, 0, 255), -1, ) else: cv2.rectangle( obs, (temp_x * 21, temp_y * 21 + 14), (temp_x * 21 + 21, temp_y * 21 + 21), (0, 0, 255), -1, ) cv2.rectangle( obs, (temp_x * 21 + 7, temp_y * 21), (temp_x * 21 + 14, temp_y * 21 + 14), (0, 0, 255), -1, ) # plot agent2 temp_x = self.agt2_pos[0] temp_y = self.map_size - self.agt2_pos[1] - 1 if self.agt2_ori == 0: cv2.rectangle( obs, (temp_x * 21, temp_y * 21), (temp_x * 21 + 7, temp_y * 21 + 21), (255, 0, 0), -1, ) cv2.rectangle( obs, (temp_x * 21 + 7, temp_y * 21 + 7), (temp_x * 21 + 21, temp_y * 21 + 14), (255, 0, 0), -1, ) elif self.agt2_ori == 1: cv2.rectangle( obs, (temp_x * 21, temp_y * 21), (temp_x * 21 + 21, temp_y * 21 + 7), (255, 0, 0), -1, ) cv2.rectangle( obs, (temp_x * 21 + 7, temp_y * 21 + 7), (temp_x * 21 + 14, temp_y * 21 + 21), (255, 0, 0), -1, ) elif self.agt2_ori == 2: cv2.rectangle( obs, (temp_x * 21, temp_y * 21 + 7), (temp_x * 21 + 14, temp_y * 21 + 14), (255, 0, 0), -1, ) cv2.rectangle( obs, (temp_x * 21 + 14, temp_y * 21), (temp_x * 21 + 21, temp_y * 21 + 21), (255, 0, 0), -1, ) else: cv2.rectangle( obs, (temp_x * 21, temp_y * 21 + 14), (temp_x * 21 + 21, temp_y * 21 + 21), (255, 0, 0), -1, ) cv2.rectangle( obs, (temp_x * 21 + 7, temp_y * 21), (temp_x * 21 + 14, temp_y * 21 + 14), (255, 0, 0), -1, ) # plot pig temp_x = self.pig_pos[0] temp_y = self.map_size - self.pig_pos[1] - 1 if self.pig_ori == 0: cv2.rectangle( obs, (temp_x * 21, temp_y * 21), (temp_x * 21 + 7, temp_y * 21 + 21), (0, 255, 0), -1, ) cv2.rectangle( obs, (temp_x * 21 + 7, temp_y * 21 + 7), (temp_x * 21 + 21, temp_y * 21 + 14), (0, 255, 0), -1, ) elif self.pig_ori == 1: cv2.rectangle( obs, (temp_x * 21, temp_y * 21), (temp_x * 21 + 21, temp_y * 21 + 7), (0, 255, 0), -1, ) cv2.rectangle( obs, (temp_x * 21 + 7, temp_y * 21 + 7), (temp_x * 21 + 14, temp_y * 21 + 21), (0, 255, 0), -1, ) elif self.pig_ori == 2: cv2.rectangle( obs, (temp_x * 21, temp_y * 21 + 7), (temp_x * 21 + 14, temp_y * 21 + 14), (0, 255, 0), -1, ) cv2.rectangle( obs, (temp_x * 21 + 14, temp_y * 21), (temp_x * 21 + 21, temp_y * 21 + 21), (0, 255, 0), -1, ) else: cv2.rectangle( obs, (temp_x * 21, temp_y * 21 + 14), (temp_x * 21 + 21, temp_y * 21 + 21), (0, 255, 0), -1, ) cv2.rectangle( obs, (temp_x * 21 + 7, temp_y * 21), (temp_x * 21 + 14, temp_y * 21 + 14), (0, 255, 0), -1, ) cv2.imshow("image", obs) cv2.waitKey(10)
# # ISC License # # Copyright (C) 2021 DS-Homebrew # Copyright (C) 2021-present lifehackerhansol # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. # import discord from discord.ext import commands from settings import auto_role class Newcomers(commands.Cog): """ Automatic roles! """ def __init__(self, bot): self.bot = bot @commands.Cog.listener() async def on_member_join(self, member): role = discord.utils.get(member.guild.roles, name=auto_role) await member.add_roles(role) def setup(bot): bot.add_cog(Newcomers(bot))
"""Test for my functions.""" from functions import * def test_string_concatenator(): assert string_concatenator('abc', 'def') == 'abcdef' def test_DNA_to_mRNA_List(): assert DNA_to_mRNA_List('CTGATCG') == ['G', 'A', 'C', 'U', 'A', 'G', 'C'] def test_DNA_to_mRNA(): assert DNA_to_mRNA('CTGATCG', '-') == 'GAC-UAG-C' def test_DNA_to_tRNA_List(): assert DNA_to_tRNA_List('CTGATCG') == ['C', 'U', 'G', 'A', 'U', 'C', 'G'] def test_DNA_to_tRNA(): assert DNA_to_tRNA('CTGATCG', '-') == 'CUG-AUC-G'
from __future__ import absolute_import from django.conf import settings MEDIA_URL = getattr(settings, "MEDIA_URL", "/media/") ADMIN_URL = getattr(settings, "ADMIN_URL", "/admin/") STATIC_URL = getattr(settings, "STATIC_URL", "/static/")
# Copyright (c) 2001-2004 Twisted Matrix Laboratories. # See LICENSE for details. # from twisted.conch.error import ConchError from twisted.conch.ssh import channel, connection from twisted.internet import defer, protocol, reactor from twisted.python import log from twisted.spread import banana import os, stat, pickle import types # this is for evil class SSHUnixClientFactory(protocol.ClientFactory): # noisy = 1 def __init__(self, d, options, userAuthObject): self.d = d self.options = options self.userAuthObject = userAuthObject def clientConnectionLost(self, connector, reason): if self.options['reconnect']: connector.connect() #log.err(reason) if not self.d: return d = self.d self.d = None d.errback(reason) def clientConnectionFailed(self, connector, reason): #try: # os.unlink(connector.transport.addr) #except: # pass #log.err(reason) if not self.d: return d = self.d self.d = None d.errback(reason) #reactor.connectTCP(options['host'], options['port'], SSHClientFactory()) def startedConnecting(self, connector): fd = connector.transport.fileno() stats = os.fstat(fd) try: filestats = os.stat(connector.transport.addr) except: connector.stopConnecting() return if stat.S_IMODE(filestats[0]) != 0600: log.msg("socket mode is not 0600: %s" % oct(stat.S_IMODE(stats[0]))) elif filestats[4] != os.getuid(): log.msg("socket not owned by us: %s" % stats[4]) elif filestats[5] != os.getgid(): log.msg("socket not owned by our group: %s" % stats[5]) # XXX reenable this when i can fix it for cygwin #elif filestats[-3:] != stats[-3:]: # log.msg("socket doesn't have same create times") else: log.msg('conecting OK') return connector.stopConnecting() def buildProtocol(self, addr): # here comes the EVIL obj = self.userAuthObject.instance bases = [] for base in obj.__class__.__bases__: if base == connection.SSHConnection: bases.append(SSHUnixClientProtocol) else: bases.append(base) newClass = types.ClassType(obj.__class__.__name__, tuple(bases), obj.__class__.__dict__) obj.__class__ = newClass SSHUnixClientProtocol.__init__(obj) log.msg('returning %s' % obj) if self.d: d = self.d self.d = None d.callback(None) return obj class SSHUnixServerFactory(protocol.Factory): def __init__(self, conn): self.conn = conn def buildProtocol(self, addr): return SSHUnixServerProtocol(self.conn) class SSHUnixProtocol(banana.Banana): knownDialects = ['none'] def __init__(self): banana.Banana.__init__(self) self.deferredQueue = [] self.deferreds = {} self.deferredID = 0 def connectionMade(self): log.msg('connection made %s' % self) banana.Banana.connectionMade(self) def expressionReceived(self, lst): vocabName = lst[0] fn = "msg_%s" % vocabName func = getattr(self, fn) func(lst[1:]) def sendMessage(self, vocabName, *tup): self.sendEncoded([vocabName] + list(tup)) def returnDeferredLocal(self): d = defer.Deferred() self.deferredQueue.append(d) return d def returnDeferredWire(self, d): di = self.deferredID self.deferredID += 1 self.sendMessage('returnDeferred', di) d.addCallback(self._cbDeferred, di) d.addErrback(self._ebDeferred, di) def _cbDeferred(self, result, di): self.sendMessage('callbackDeferred', di, pickle.dumps(result)) def _ebDeferred(self, reason, di): self.sendMessage('errbackDeferred', di, pickle.dumps(reason)) def msg_returnDeferred(self, lst): deferredID = lst[0] self.deferreds[deferredID] = self.deferredQueue.pop(0) def msg_callbackDeferred(self, lst): deferredID, result = lst d = self.deferreds[deferredID] del self.deferreds[deferredID] d.callback(pickle.loads(result)) def msg_errbackDeferred(self, lst): deferredID, result = lst d = self.deferreds[deferredID] del self.deferreds[deferredID] d.errback(pickle.loads(result)) class SSHUnixClientProtocol(SSHUnixProtocol): def __init__(self): SSHUnixProtocol.__init__(self) self.isClient = 1 self.channelQueue = [] self.channels = {} def logPrefix(self): return "SSHUnixClientProtocol (%i) on %s" % (id(self), self.transport.logPrefix()) def connectionReady(self): log.msg('connection ready') self.serviceStarted() def connectionLost(self, reason): self.serviceStopped() def requestRemoteForwarding(self, remotePort, hostport): self.sendMessage('requestRemoteForwarding', remotePort, hostport) def cancelRemoteForwarding(self, remotePort): self.sendMessage('cancelRemoteForwarding', remotePort) def sendGlobalRequest(self, request, data, wantReply = 0): self.sendMessage('sendGlobalRequest', request, data, wantReply) if wantReply: return self.returnDeferredLocal() def openChannel(self, channel, extra = ''): self.channelQueue.append(channel) channel.conn = self self.sendMessage('openChannel', channel.name, channel.localWindowSize, channel.localMaxPacket, extra) def sendRequest(self, channel, requestType, data, wantReply = 0): self.sendMessage('sendRequest', channel.id, requestType, data, wantReply) if wantReply: return self.returnDeferredLocal() def adjustWindow(self, channel, bytesToAdd): self.sendMessage('adjustWindow', channel.id, bytesToAdd) def sendData(self, channel, data): self.sendMessage('sendData', channel.id, data) def sendExtendedData(self, channel, dataType, data): self.sendMessage('sendExtendedData', channel.id, data) def sendEOF(self, channel): self.sendMessage('sendEOF', channel.id) def sendClose(self, channel): self.sendMessage('sendClose', channel.id) def msg_channelID(self, lst): channelID = lst[0] self.channels[channelID] = self.channelQueue.pop(0) self.channels[channelID].id = channelID def msg_channelOpen(self, lst): channelID, remoteWindow, remoteMax, specificData = lst channel = self.channels[channelID] channel.remoteWindowLeft = remoteWindow channel.remoteMaxPacket = remoteMax channel.channelOpen(specificData) def msg_openFailed(self, lst): channelID, reason = lst self.channels[channelID].openFailed(pickle.loads(reason)) del self.channels[channelID] def msg_addWindowBytes(self, lst): channelID, bytes = lst self.channels[channelID].addWindowBytes(bytes) def msg_requestReceived(self, lst): channelID, requestType, data = lst d = defer.maybeDeferred(self.channels[channelID].requestReceived, requestType, data) self.returnDeferredWire(d) def msg_dataReceived(self, lst): channelID, data = lst self.channels[channelID].dataReceived(data) def msg_extReceived(self, lst): channelID, dataType, data = lst self.channels[channelID].extReceived(dataType, data) def msg_eofReceived(self, lst): channelID = lst[0] self.channels[channelID].eofReceived() def msg_closeReceived(self, lst): channelID = lst[0] channel = self.channels[channelID] channel.remoteClosed = 1 channel.closeReceived() def msg_closed(self, lst): channelID = lst[0] channel = self.channels[channelID] self.channelClosed(channel) def channelClosed(self, channel): channel.localClosed = channel.remoteClosed = 1 del self.channels[channel.id] log.callWithLogger(channel, channel.closed) # just in case the user doesn't override def serviceStarted(self): pass def serviceStopped(self): pass class SSHUnixServerProtocol(SSHUnixProtocol): def __init__(self, conn): SSHUnixProtocol.__init__(self) self.isClient = 0 self.conn = conn def connectionLost(self, reason): for channel in self.conn.channels.values(): if isinstance(channel, SSHUnixChannel) and channel.unix == self: log.msg('forcibly closing %s' % channel) try: self.conn.sendClose(channel) except: pass def haveChannel(self, channelID): return self.conn.channels.has_key(channelID) def getChannel(self, channelID): channel = self.conn.channels[channelID] if not isinstance(channel, SSHUnixChannel): raise ConchError('nice try bub') return channel def msg_requestRemoteForwarding(self, lst): remotePort, hostport = lst hostport = tuple(hostport) self.conn.requestRemoteForwarding(remotePort, hostport) def msg_cancelRemoteForwarding(self, lst): [remotePort] = lst self.conn.cancelRemoteForwarding(remotePort) def msg_sendGlobalRequest(self, lst): requestName, data, wantReply = lst d = self.conn.sendGlobalRequest(requestName, data, wantReply) if wantReply: self.returnDeferredWire(d) def msg_openChannel(self, lst): name, windowSize, maxPacket, extra = lst channel = SSHUnixChannel(self, name, windowSize, maxPacket) self.conn.openChannel(channel, extra) self.sendMessage('channelID', channel.id) def msg_sendRequest(self, lst): cn, requestType, data, wantReply = lst if not self.haveChannel(cn): if wantReply: self.returnDeferredWire(defer.fail(ConchError("no channel"))) channel = self.getChannel(cn) d = self.conn.sendRequest(channel, requestType, data, wantReply) if wantReply: self.returnDeferredWire(d) def msg_adjustWindow(self, lst): cn, bytesToAdd = lst if not self.haveChannel(cn): return channel = self.getChannel(cn) self.conn.adjustWindow(channel, bytesToAdd) def msg_sendData(self, lst): cn, data = lst if not self.haveChannel(cn): return channel = self.getChannel(cn) self.conn.sendData(channel, data) def msg_sendExtended(self, lst): cn, dataType, data = lst if not self.haveChannel(cn): return channel = self.getChannel(cn) self.conn.sendExtendedData(channel, dataType, data) def msg_sendEOF(self, lst): (cn, ) = lst if not self.haveChannel(cn): return channel = self.getChannel(cn) self.conn.sendEOF(channel) def msg_sendClose(self, lst): (cn, ) = lst if not self.haveChannel(cn): return channel = self.getChannel(cn) self.conn.sendClose(channel) class SSHUnixChannel(channel.SSHChannel): def __init__(self, unix, name, windowSize, maxPacket): channel.SSHChannel.__init__(self, windowSize, maxPacket, conn = unix.conn) self.unix = unix self.name = name def channelOpen(self, specificData): self.unix.sendMessage('channelOpen', self.id, self.remoteWindowLeft, self.remoteMaxPacket, specificData) def openFailed(self, reason): self.unix.sendMessage('openFailed', self.id, pickle.dumps(reason)) def addWindowBytes(self, bytes): self.unix.sendMessage('addWindowBytes', self.id, bytes) def dataReceived(self, data): self.unix.sendMessage('dataReceived', self.id, data) def requestReceived(self, reqType, data): self.unix.sendMessage('requestReceived', self.id, reqType, data) return self.unix.returnDeferredLocal() def extReceived(self, dataType, data): self.unix.sendMessage('extReceived', self.id, dataType, data) def eofReceived(self): self.unix.sendMessage('eofReceived', self.id) def closeReceived(self): self.unix.sendMessage('closeReceived', self.id) def closed(self): self.unix.sendMessage('closed', self.id) def connect(host, port, options, verifyHostKey, userAuthObject): if options['nocache']: return defer.fail(ConchError('not using connection caching')) d = defer.Deferred() filename = os.path.expanduser("~/.conch-%s-%s-%i" % (userAuthObject.user, host, port)) factory = SSHUnixClientFactory(d, options, userAuthObject) reactor.connectUNIX(filename, factory, timeout=2, checkPID=1) return d
import re ''' Step 1: Clean the triple file. In the dbpedia case, we just need the part of resource URI that indicate entity/type/predicate names. ''' fileName = []#List of triple files to be process notRdf = open('./notRdf.txt','w')#Record the lines that refers to a type but not rdf:type for index2,fname in enumerate(fileName): f = open('./'+fname) triple = open('output triple files here','w') prefix_f = open('output prefix files here','w')# save the prefix in files in case of it may be useful in the future. i = 0 count = 0 prefix_set = set() for line in f: if line[0] != '<': print(i) i = i + 1 count += 1 continue line = line[:-3].replace('> <','>$-$-$<').replace('> "','>$-$-$"') line = line.split('$-$-$') if i==0: i += 1 continue new_line=[] if "type>" in line[1]: if "rdf" not in line[1]: notRdf.write(str(line)+'\n') continue for index,item in enumerate(line): if not item: count +=1 break if item[0]=='<': pos = item.rfind('/') word = item[pos+1:-1].split("#") if len(word)<2: new_line.append('<'+word[0]+'>') else: new_line.append('<'+word[1]+'>') if index == 1: tmp = new_line[1][1:len(new_line[1])-1] pos2 = line[1].rfind(tmp) prefix = line[1][1:pos2-1] prefix_set.add(tmp + '^^^'+prefix+'\n') continue elif item.count('"') >=2: item = item.split('^^')[0].split('@')[0] pattern = re.compile('"(.*)"') word = '"'+''.join(pattern.findall(item))+'"' new_line.append(word) continue else: print(i) i += 1 #print('\t'.join(new_line)) if i%1000000==0: print("%d:%d"%(8,i)) triple.write('\t'.join(new_line)+'\n') for item in prefix_set: prefix_f.write(item) f.close() triple.close() prefix_f.close()
import netlink import pprint import cStringIO def get_family(): con = netlink.new_generic() hdr = netlink.new_genlmsg( { "cmd": netlink.CTRL_CMD_GETFAMILY, "version": 0, "reserved": 0 } ) payload = netlink.generic_id_ctrl(hdr,0x12345) con.send(payload) msgs = [] goout = False while True: d = con.recv(65533) b = cStringIO.StringIO(d) while True: if b.tell() >= len(d): break msg = netlink.parse_nlmsg(b) if msg["type"] == netlink.DONE: goout = True break elif msg["type"] == netlink.ERROR: raise ValueError(msg) mlen = b.tell() - 16 + msg["len"] payload = netlink.parse_genlmsg(b) attrs = netlink.parse_attrs(b, mlen) msgs.append({ "msg": msg, "payload": payload, "attrs": attrs }) if goout: break b.close() return msgs pprint.pprint(get_family())
## Created by C. Cesarotti (ccesarotti@g.harvard.edu) 04/2019 ## Last updated: 04/24/20 ## ## Calculates the event isotropy for ring configurations with ## random orientations. ## ############################# # import sys import time import warnings import numpy as np import matplotlib.pylab as plt import random from eventIsotropy.cylGen import ringGen, ringGenShift from eventIsotropy.emdVar import _cdist_phicos, emd_Calc from matplotlib import rc from mpl_toolkits.mplot3d import Axes3D rc('text', usetex=True) from prettytable import PrettyTable ############################## # First, generate rings and pT lists nList=[4,8,16,32,64] ringSample = np.array([ringGen(nList[i]) for i in range(5)]) # THESE ARE THE PHI VALUES OF THE PARTICLES ringPtSample=np.array([np.full(len(ringSample[i]), 1.) for i in range(5)]) # THE UNORMALIZED WEIGHT: ALL OF EQUAL PT. NORMALIZATION IN EMD CALC for i in range(5): ringPoints1 = ringSample[i] ringPT1 = ringPtSample[i] for j in range(5): emdSpec=[] # SET THE SECOND EVENT WITH j ringPT2 = ringPtSample[j] for num in range(1000): ringPoints2 = ringGenShift(nList[j]) # The shift just randomly orients the ring, doesn't change particle spacing M = _cdist_phicos(ringPoints1,ringPoints2) # M is distance in phi according to 1 - cos phi metric emdval = emd_Calc(ringPT1, ringPT2, M) emdSpec.append(emdval) f= open("emdRingtoRing"+str(i)+"_"+str(j)+".dat","w+") for emdVal in emdSpec: f.write(str(emdVal)+ ' ') f.close()
from pymongo import MongoClient import json client = MongoClient('localhost', 27017) db = client['pymongo_test'] cursor = db.pymongo_test posts = db.posts # post_data = { # 'Name': 'Milk', # 'Quantity': '1', # 'Expiration Date': '4/03/20' # } # result = posts.insert_one(post_data) # print('One post: {0}'.format(result.inserted_id)) # # post_1 = { # 'title': 'PyMongo!!!', # 'content': 'PyMongo is fun, you guys', # 'author': 'Scott' # } # post_2 = { # 'title': 'Virtual Environments', # 'content': 'Use virtual environments, you guys', # 'author': 'Scott' # } # post_3 = { # 'title': 'Learning Python', # 'content': 'Learn Python, it is easy', # 'author': 'Bill' # } # new_result = posts.insert_many([post_1, post_2, post_3]) # print('Multiple posts: {0}'.format(new_result.inserted_ids)) #d = dict((db, [collection for collection in client[db].list_collection_names()]) for db in client.list_database_names()) #print(json.dumps(d)) for document in posts.find(): print(document)
import os.path import logging import shutil import pandas as pd import numpy as np import ada.utils.experimentation as xp class XpResults: @staticmethod def from_file(metrics, filepath): if os.path.exists(filepath): df = pd.read_csv(filepath, index_col=0) time_str = xp.create_timestamp_string() backup_file = f"{filepath}.{time_str}.bak" logging.info(f"Copying {filepath} to {backup_file}") shutil.copyfile(filepath, backup_file) return XpResults(metrics, df) else: return XpResults(metrics) def __init__(self, metrics, df=None): """ Args: metrics (list of string): Which metrics to record. df (pandas.DataFrame, optional): columns are: metrics + [seed, method, split]. Defaults to None. """ self._metrics = metrics[:] if df is None: self._df = pd.DataFrame(columns=metrics + ["seed", "method", "split"]) else: self._df = df.copy() def __len__(self): return len(self._df) def already_computed(self, method_name, seed): if len(self._df) == 0: return False ms_df = self._df.query(f"method == '{method_name}' and seed == '{seed}'") if len(ms_df) == 0: return False for m in self._metrics: if m not in ms_df.columns: return False return True def remove(self, method_names): print(method_names) self._df = self._df[~self._df["method"].isin(method_names)] def update(self, is_validation, method_name, seed, metric_values): split, prefix = ("Validation", "V") if is_validation else ("Test", "Te") results = pd.DataFrame( { k: metric_values.get(f"{prefix}_{k.replace(' ', '_')}", None) for k in self._metrics }, index=[0], ) results["seed"] = seed results["method"] = method_name results["split"] = split self._df = self._df.append(results, ignore_index=True) def get_data(self): return self._df def get_best_archi_seed(self): return ( self._df.sort_values(by=self._metrics, ascending=False) .head(1) .seed.values[0] ) def get_last_seed(self): return self._df.tail(1).seed.values[0] def get_mean_seed(self, mean_metric): if mean_metric not in self._metrics: raise ValueError(f"Unknown metric: {mean_metric}") all_res_valid = self._df.query("split=='Validation'").dropna() if all_res_valid.empty: all_res_valid = self._df.query("split=='Test'").dropna() all_res_valid[mean_metric] = all_res_valid[mean_metric].astype(np.float) tres_means = all_res_valid.groupby("method").mean()[mean_metric] all_seed_res = all_res_valid.pivot( index="seed", columns="method", values=mean_metric ) def dist_to_mean(row): return np.mean((row - tres_means) ** 2) all_seed_res["dist"] = all_seed_res.apply(dist_to_mean, axis=1) return all_seed_res.sort_values(by="dist", ascending=True).head(1).index[0] def to_csv(self, filepath): self._df.to_csv(filepath) def print_scores( self, method_name, split="Validation", stdout=True, fdout=None, print_func=print, file_format="markdown", ): mres = self._df.query(f"method == '{method_name}' and split == '{split}'") nsamples = len(mres) mmres = [ (mres[m].mean(), mres[m].std() / np.sqrt(nsamples)) for m in self._metrics ] if stdout: print_func(split, end=" ") print_func(method_name, end="") print_func(" " * (10 - len(method_name)), end="") print_func( "\t\t".join( ( f"{m * 100:.1f}% +- {1.96 * s * 100:.2f} ({nsamples} runs)" for m, s in mmres ) ) ) if fdout is not None: if file_format == "markdown": fdout.write(f"|{method_name}|") fdout.write( "|".join( (f"{m * 100:.1f}% +- {1.96 * s * 100:.2f}" for m, s in mmres) ) ) fdout.write("|\n") else: fdout.write(method_name) fdout.write(" " * (10 - len(method_name))) fdout.write( "\t\t".join( (f"{m * 100:.1f}% +- {1.96 * s * 100:.2f}" for m, s in mmres) ) ) fdout.write(f" ({split})") fdout.write("\n") def append_to_txt(self, filepath, test_params, nseeds, splits=None): if splits is None: splits = ["Validation", "Test"] with open(filepath, "a") as fd: fd.write(xp.param_to_str(test_params)) fd.write("\n") print(" " * 10, "\t\t".join(self._metrics)) fd.write("nseeds = ") fd.write(str(nseeds)) fd.write("\n") fd.write("method\t") fd.write("\t\t".join(self._metrics)) fd.write("\n") for name in self._df.method.unique(): for split in splits: self.print_scores( method_name=name, split=split, stdout=True, fdout=fd, file_format="text", ) fd.write("\n") def append_to_markdown(self, filepath, test_params, nseeds, splits=None): if splits is None: splits = ["Validation", "Test"] with open(filepath, "a") as fd: fd.write(xp.param_to_str(test_params)) fd.write("\n") print(" " * 10, "\t\t".join(self._metrics)) fd.write("nseeds = ") fd.write(str(nseeds)) fd.write("\n") fd.write(f"|Method|{'|'.join(self._metrics)}|\n") fd.write("|:----|") for i in range(len(self._metrics)): fd.write(":---:|") fd.write("\n") for name in self._df.method.unique(): for split in splits: self.print_scores( method_name=name, split=split, stdout=True, fdout=fd ) fd.write("\n")
import torch from models.vae import VAE # lambda_d, lambda_od = 100, 10 def matrix_diag(diagonal): N = diagonal.shape[-1] shape = diagonal.shape[:-1] + (N, N) device, dtype = diagonal.device, diagonal.dtype result = torch.zeros(shape, dtype=dtype, device=device) indices = torch.arange(result.numel(), device=device).reshape(shape) indices = indices.diagonal(dim1=-2, dim2=-1) result.view(-1)[indices] = diagonal return result def dip_vae_i_loss(mu, lambda_d, lambda_od): exp_mu = mu.mean(0) exp_mu_mu_t = (mu.unsqueeze(1) * mu.unsqueeze(2)).mean(0) cov = exp_mu_mu_t - exp_mu.unsqueeze(0) * exp_mu.unsqueeze(1) diag = torch.diagonal(cov, dim1=-2, dim2=-1) off_diag = cov - matrix_diag(diag) regulariser_od = lambda_od * (off_diag**2).sum() regulariser_d = lambda_d * ((diag-1)**2).sum() return regulariser_od + regulariser_d def dip_vae_ii_loss(mu, lv, lambda_d, lambda_od): sigma = matrix_diag(lv.exp()) exp_cov = sigma.mean(0) exp_mu = mu.mean(0) exp_mu_mu_t = (mu.unsqueeze(1) * mu.unsqueeze(2)).mean(0) cov_exp = exp_mu_mu_t - exp_mu.unsqueeze(0) * exp_mu.unsqueeze(1) cov_z = cov_exp + exp_cov diag = torch.diagonal(cov_z, dim1=-2, dim2=-1) off_diag = cov_z - matrix_diag(diag) regulariser_od = lambda_od * off_diag.pow(2).sum() regulariser_d = lambda_d * (diag - 1).pow(2).sum() return regulariser_d + regulariser_od class DipVAE(VAE): def __init__(self, encoder, decoder, beta, lambda_d, lambda_od, dip_type='ii', max_capacity=None, capacity_leadin=None, xav_init=False): super().__init__(encoder, decoder, beta, max_capacity, capacity_leadin) self.type = dip_type if self.type == 'dip_vae_i': self.dip_loss = lambda mu, lv: dip_vae_i_loss(mu, lambda_d, lambda_od) else: self.dip_loss = lambda mu, lv: dip_vae_ii_loss(mu, lv, lambda_d, lambda_od) if xav_init: for p in self.encoder.modules(): if isinstance(p, nn.Conv2d) or isinstance(p, nn.Linear) or \ isinstance(p, nn.ConvTranspose2d): torch.nn.init.xavier_uniform_(p.weight) for p in self.decoder.modules(): if isinstance(p, nn.Conv2d) or isinstance(p, nn.Linear) or \ isinstance(p, nn.ConvTranspose2d): torch.nn.init.xavier_uniform_(p.weight) def main_step(self, batch, batch_nb, loss_fn): out = super().main_step(batch, batch_nb, loss_fn) state = out['state'] x, y, mu, lv, z, x_hat = state['x'], state['y'], state['mu'], state['lv'], state['z'], state['x_hat'] dip_loss = self.dip_loss(mu, lv) vae_loss = out['loss'] self.global_step += 1 tensorboard_logs = out['out'] tensorboard_logs['metric/dip_loss'] = dip_loss.detach() return {'loss': vae_loss + dip_loss, 'out': tensorboard_logs, 'state': state} def dip_vae(args): if args.dataset == 'forward': from models.forward_vae import ForwardDecoder, ForwardEncoder encoder, decoder = ForwardEncoder(args.latents), ForwardDecoder(args.latents) else: from models.beta import beta_shape_encoder, beta_shapes_decoder encoder, decoder = beta_shape_encoder(args), beta_shapes_decoder(args) dip_type = args.base_model if args.model in ['rl_group_vae'] else args.model return DipVAE(encoder, decoder, args.beta, args.lambda_d, args.lambda_od, dip_type, args.capacity, args.capacity_leadin, args.xav_init) def dip_conv_vae(args): from models.beta import beta_celeb_encoder, beta_celeb_decoder encoder, decoder = beta_celeb_encoder(args), beta_celeb_decoder(args) dip_type = 'dip_vae_i' if args.model == 'dip_conv_vae_i' else 'dip_vae_ii' return DipVAE(encoder, decoder, args.beta, args.lambda_d, args.lambda_od, dip_type, args.capacity, args.capacity_leadin, args.xav_init)
import numpy as np import re, collections def get_vocab(filename): vocab = collections.defaultdict(int) try: with open(filename, 'r', encoding='utf-8') as fhand: for line in fhand: words = line.strip().split() for word in words: vocab[' '.join(list(word)) + ' </w>'] += 1 except OSError: print('error') words = filename.strip().split() for word in words: vocab[' '.join(list(word)) + ' </w>'] += 1 return vocab def merge_vocab(pair, v_in): v_out = {} bigram = re.escape(' '.join(pair)) p = re.compile(r'(?<!\S)' + bigram + r'(?!\S)') for word in v_in: w_out = p.sub(''.join(pair), word) v_out[w_out] = v_in[word] return v_out def get_stats(vocab): pairs = collections.defaultdict(int) for word, freq in vocab.items(): symbols = word.split() for i in range(len(symbols)-1): pairs[symbols[i],symbols[i+1]] += freq return pairs def get_tokens_from_vocab(vocab): tokens_frequencies = collections.defaultdict(int) vocab_tokenization = {} for word, freq in vocab.items(): word_tokens = word.split() for token in word_tokens: tokens_frequencies[token] += freq vocab_tokenization[''.join(word_tokens)] = word_tokens return tokens_frequencies, vocab_tokenization def measure_token_length(token): if token[-4:] == '</w>': return len(token[:-4]) + 1 else: return len(token) def tokenize_word(string, sorted_tokens, unknown_token='</u>'): if string == '': return [] if sorted_tokens == []: return [unknown_token] string_tokens = [] for i in range(len(sorted_tokens)): token = sorted_tokens[i] token_reg = re.escape(token.replace('.', '[.]')) matched_positions = [(m.start(0), m.end(0)) for m in re.finditer(token_reg, string)] if len(matched_positions) == 0: continue substring_end_positions = [matched_position[0] for matched_position in matched_positions] substring_start_position = 0 for substring_end_position in substring_end_positions: substring = string[substring_start_position:substring_end_position] string_tokens += tokenize_word(string=substring, sorted_tokens=sorted_tokens[i+1:], unknown_token=unknown_token) string_tokens += [token] substring_start_position = substring_end_position + len(token) remaining_substring = string[substring_start_position:] string_tokens += tokenize_word(string=remaining_substring, sorted_tokens=sorted_tokens[i+1:], unknown_token=unknown_token) break return string_tokens vocab = get_vocab('oscar/oscar.test.raw') print('==========') print('Tokens Before BPE') tokens_frequencies, vocab_tokenization = get_tokens_from_vocab(vocab) print('Number of tokens: {}'.format(len(tokens_frequencies.keys()))) print('==========') import json num_merges = 55000 for i in range(num_merges): pairs = get_stats(vocab) if not pairs: break best = max(pairs, key=pairs.get) vocab = merge_vocab(best, vocab) print('Iter: {}'.format(i)) print('Best pair: {}'.format(best)) tokens_frequencies, vocab_tokenization = get_tokens_from_vocab(vocab) print('Number of tokens: {}'.format(len(tokens_frequencies.keys()))) print('==========') with open("vocab_tweets.txt","w") as F: json.dump(tokens_frequencies,F)
# # Pyserini: Reproducible IR research with sparse and dense representations # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from ._base import FeatureExtractor, BM25Stat, LmDirStat, DfrGl2Stat, DfrInExpB2Stat, DphStat, Proximity, TpScore, TpDist,\ DocSize, MatchingTermCount, QueryLength, SCS, SumMatchingTF, UniqueTermCount, QueryCoverageRatio, \ UnorderedSequentialPairs, OrderedSequentialPairs, UnorderedQueryPairs, OrderedQueryPairs, \ AvgPooler, SumPooler, MedianPooler, MinPooler, MaxPooler, VarPooler, TfStat, TfIdfStat, NormalizedTfStat, \ IdfStat, IcTfStat, ConfidencePooler, MaxMinRatioPooler, \ NormalizedTfIdf, ProbalitySum, RunList, IbmModel1, SpacyTextParser from ._search_msmarco import MsmarcoLtrSearcher __all__ = ['FeatureExtractor', 'BM25Stat', 'LmDirStat', 'DfrGl2Stat', 'DfrInExpB2Stat', 'DphStat', 'Proximity', 'TpScore', 'TpDist', 'DocSize', 'MatchingTermCount', 'QueryLength', 'SCS', 'SumMatchingTF', 'UniqueTermCount', 'QueryCoverageRatio', 'UnorderedSequentialPairs', 'OrderedSequentialPairs', 'UnorderedQueryPairs', 'OrderedQueryPairs', 'AvgPooler', 'SumPooler', 'MedianPooler', 'MinPooler', 'MaxPooler', 'VarPooler', 'TfStat', 'TfIdfStat', 'NormalizedTfStat','IdfStat', 'IcTfStat', 'ConfidencePooler', 'MaxMinRatioPooler','NormalizedTfIdf', 'ProbalitySum', 'RunList', 'IbmModel1', 'MsmarcoLtrSearcher','SpacyTextParser']
import xml.sax from hashlib import md5 def func1(): test_digest = md5("test string").digest() return test_digest def func2(): # double vulnerability test_digesta, test_digestb = md5("test string").digest(), md5("test string2").digest() return test_digesta, test_digestb def func3(val): assert 0 != val return val / 3
# !/usr/bin/python # -*- coding: UTF-8 -*- from svg.path.path import * def get_quadratic_coordinate_with_time(t:float, /, *, p0:complex, p1:complex, p2:complex): if t < 0 or t > 1: return points = [p0, p1, p2] polynomials = [eval("(1-t)**2"), eval("2*t*(1-t)"), eval("t**2")] return sum([prod * points[index] for index, prod in enumerate(polynomials)]) def get_quadratic_arc_length(n:int = 40, /, *, P0:complex, P1:complex, P2:complex): """ Get the arc length of a quadratc bezier curve ------------- Formelae: (i=1 Σ n) ||f(i/n) - f((i-1)/n)|| """ if n < 1: return return sum([abs(get_quadratic_coordinate_with_time((side_count + 1) / n, p0=P0, p1=P1, p2=P2) - get_quadratic_coordinate_with_time(side_count / n, p0=P0, p1=P1, p2=P2)) for side_count in range(n)]) def get_cubic_coordinate_with_time(t:float, /, *, p0:complex, p1:complex, p2:complex, p3:complex): if t < 0 or t > 1: return points = [p0, p1, p2, p3] polynomials = [eval("-t**3 + 3*t**2 -3*t + 1"), eval("3*t**3 - 6*t**2 + 3*t"), eval("-3*t**3 + 3*t**2"), eval("t**3")] return sum([prod * points[index] for index, prod in enumerate(polynomials)]) def get_cubic_arc_length(n:int = 40, /, *, P0:complex, P1:complex, P2:complex, P3:complex): """ Get the arc length of a cubic bezier curve ------------- (i=1 Σ n) ||f(i/n) - f((i-1)/n)|| """ if n < 1: return return sum([abs(get_cubic_coordinate_with_time((side_count + 1) / n, p0=P0, p1=P1, p2=P2, p3=P3) - get_cubic_coordinate_with_time(side_count / n, p0=P0, p1=P1, p2=P2, p3=P3)) for side_count in range(n)]) # "linear" beziers def get_linear_coordinate_with_time(t:float, /, *, start:complex, end:complex): if t < 0 or t > 1: return return (1-t)*start + t*end def get_linear_length(*, start:complex, end:complex): return abs(end - start) def point_from_proportion(t:float, elements:dict): if t < 0 or t > 1: return for index, key in enumerate(elements): if key >= t: #The point is on this element element = elements[key] element_end = list(elements)[index] if index: element_start = list(elements)[index-1] else: element_start = 0 break #find proportion of the point on element element_end -= element_start t -= element_start alpha = t / element_end #different kind of elements if isinstance(element, Line): return get_linear_coordinate_with_time(alpha, start=element.start, end=element.end) elif isinstance(element, QuadraticBezier): return get_quadratic_coordinate_with_time(alpha, p0=element.start, p1=element.control, p2=element.end) elif isinstance(element, CubicBezier): return get_cubic_coordinate_with_time(alpha, p0=element.start, p1=element.control1, p2=element.control2, p3=element.end) elif isinstance(element, Arc): return element.point(alpha) else: raise NotImplementedError(f"Element type \"{type(element)}\" is not implemented yet")
import numpy as np import os import sys import tensorflow as tf from model import CVAE import matplotlib.pyplot as plt import streamlit as st @st.cache(allow_output_mutation=True) def load_model(PATH): model = CVAE(2, 128) # Restore the weights model.load_weights(PATH) return model def main(): st.title('Generate Synthetic Handwriting Digits') st.sidebar.title('MNIST') digit = st.sidebar.selectbox('Pick a digit from 0~9', range(0,10)) num_examples_to_generate = st.sidebar.selectbox('Pick the number of generated images', (4, 8, 16)) model = load_model('saved_model/my_checkpoint') random_vector_for_generation = tf.random.normal(shape=[num_examples_to_generate, model.latent_dim]) y = np.zeros(shape=(10)) np.put(y, digit, 1) y = np.array(num_examples_to_generate*[y]) pred = model.sample(random_vector_for_generation, tf.convert_to_tensor(y)) all_y = [pred[i, :, :, 0].numpy() for i in range(num_examples_to_generate)] for i in range(int(num_examples_to_generate / 4)): st.image(image=all_y[i*4 : (i+1)*4], width=64) st.markdown('[Project Page](https://github.com/HongleiXie/demo-CVAE)') if __name__ == '__main__': main()
import os import requests from dotenv import load_dotenv from fastapi import APIRouter, Depends import sqlalchemy from pydantic import BaseModel, SecretStr from app import config router = APIRouter() headers = {'x-rapidapi-key': os.getenv('api_key'), 'x-rapidapi-host': os.getenv('host') } class RentalList(BaseModel): api_key: SecretStr = config.settings.api_key city: str = "New York" state: str = "NY" prop_type: str = "condo" limit: int = 5 @router.get('/for_rent_list_base') async def for_rent_list_base(rentallist: RentalList): """ Parameters: api_key city: str state: str prop_type: str ('condo', 'single_family', 'multi_family') limit: int number of results to populate Returns: information about properties for rent """ url = os.getenv('url_list_for_rent') querystring = {"city": rentallist.city, "state_code": rentallist.state, "limit": rentallist.limit, "offset": "0", "sort":"relevance", "prop_type": rentallist.prop_type} response_for_rent = requests.request("GET", url, params = querystring, headers = headers,) return response_for_rent.json()
import random import time import my_set import sys class Element: def __init__(self, val: int): self.val = val def __hash__(self) -> int: return self.val def time_fct(l1, l2, fct): start = time.time() output = fct(l1, l2) # output = timeout(fct, args=(l1, l2), timeout_duration=10) diff = time.time() - start if output is None: return float('inf') return diff def run(size, fct): l1 = [random.randint(0, size) for i in range(size)] l2 = [random.randint(0, size) for i in range(size)] return time_fct(l1, l2, fct) # from https://stackoverflow.com/a/13821695/10203321 def timeout(func, args=(), kwargs={}, timeout_duration=1, default=None): import signal class TimeoutError(Exception): pass def handler(signum, frame): raise TimeoutError() # set the timeout handler signal.signal(signal.SIGALRM, handler) signal.alarm(timeout_duration) try: result = func(*args, **kwargs) except TimeoutError as exc: result = default finally: signal.alarm(0) return result print(run(10000, my_set.intersection))
# -*- coding: utf-8 -*- from __future__ import print_function from __future__ import unicode_literals import requests import getpass from .utils import MyAdapter from .utils import make_response try: r_input = raw_input except NameError: r_input = input DEFAULT_BASE_URL = "https://127.0.0.1:5000/api/v1.0" FUNC_KEYS = ('name', 'invoked', 'timestamp', 'author', 'udef', 'description', 'args') class Client(object): """Function evaluation API client for Unicorn service. """ __jsonheader = {'content-type': 'application/json'} def __init__(self, base_url=None): self._url_config = [DEFAULT_BASE_URL, '/functions'] self.url = base_url self._session = requests.Session() self._session.mount(self.url, MyAdapter()) @property def url(self): """Base URL. """ return ''.join(self._url_config) @url.setter def url(self, u): if u is None: self._url_config[0] = DEFAULT_BASE_URL else: self._url_config[0] = u def __repr__(self): return "[Function API] Unicorn Service on: '{url}'.".format(url=self.url) def get(self, name, **kws): """Get evaluation result from function defined by *name*, key-value pairs as function's input parameters. """ url = '/'.join([self.url, name]) r = self._session.get(url, params=kws, verify=False) return make_response(r) if __name__ == "__main__": client = Client() print(client.get('f1', x=1, y=2))
from .db import schemas from typing import List, Optional from pydantic import BaseModel class EnrichedUrl(BaseModel): url: Optional[schemas.Url] = None stats: List class RequestMetadata: def __init__( self, referer: str = "", os: str = "", browser: str = "", device: str = "" ): self.referer = referer self.os = os self.browser = browser self.device = device
from util import * import yaml import sys from connect import create_service # If modifying these scopes, delete the file token.json. SCOPES = ['https://www.googleapis.com/auth/gmail.compose'] def main(): if sys.argv[1] == None: print('To create and send email, include details in YAML file and specify it as an argument') exit(0) with open(sys.argv[1], 'r') as f: email = yaml.load(f, Loader=yaml.FullLoader) service = create_gmail_service() message = create_message(email["sender"], email["to"], email["subject"], email["message_text"]) send_message(service, 'me', message) if __name__ == '__main__': main()
from __future__ import absolute_import from bokeh.util.dependencies import import_required pd = import_required('pandas', 'glucose sample data requires Pandas (http://pandas.pydata.org) to be installed') from os.path import join from . import _data_dir data_dir = _data_dir() data = pd.read_csv( join(data_dir, 'CGM.csv'), sep=',', parse_dates=[1], index_col=1 )
#!/usr/bin/python # Copyright (C) Vladimir Prus 2003. Permission to copy, use, modify, sell and # distribute this software is granted provided this copyright notice appears in # all copies. This software is provided "as is" without express or implied # warranty, and with no claim as to its suitability for any purpose. from BoostBuild import Tester, List t = Tester() # Attempt to declare a generator for creating OBJ from RC files. # That generator should be considered together with standard # CPP->OBJ generators and successfully create the target. # Since we don't have RC compiler everywhere, we fake the action. # The resulting OBJ will be unusable, but it must be created. t.write("project-root.jam", """ import rcc ; """) t.write("rcc.jam", """ import type ; import generators ; import print ; # Use 'RCC' to avoid conflicts with definitions in # the standard rc.jam and msvc.jam type.register RCC : rcc ; rule resource-compile ( targets * : sources * : properties * ) { print.output $(targets[1]) ; print.text "rc-object" ; } generators.register-standard rcc.resource-compile : RCC : OBJ ; """) t.write("Jamfile", """ obj r : r.rcc ; """) t.write("r.rcc", """ """) t.run_build_system() t.expect_content("bin/$toolset/debug/r.obj", "rc-object\n") t.cleanup()
def max_word(filename): """Return the most frequent word in the file filename.""" freq = {} for piece in open(filename, encoding = 'UTF-8').read().lower().split(): # is "piece" a line? # only consider alphabetic characters within this piece word = ''.join(c for c in piece if c.isalpha()) if word: freq[word] = 1 + freq.get(word, 0) # word goes in as the key, # value is freq which is incremented # if word was already in dict. # Else 0 is the default freq max_word = '' max_count = 0 for (w, c) in freq.items(): # (key, value) tuples represent (word, count) if c > max_count: max_word = w max_count = c print(f"The most frequent word is '{max_word}'") print(f"{max_word} occurs '{max_count}' times") return (max_word, max_count) filename = 'sherlock_holmes.txt' max_word(filename)
import argparse import subprocess import sys from typing import Optional from .containerization import CAN_RUN_NATIVELY, DockerContainer, DockerRun from .plugins import Command class PolyBuild(Command): name = "build" help = "runs `polybuild`: clang with PolyTracker instrumentation enabled" _container: Optional[DockerContainer] = None def __init_arguments__(self, parser: argparse.ArgumentParser): parser.add_argument("--c++", action="store_true", help="run polybuild++ in C++ mode") parser.add_argument("args", nargs=argparse.REMAINDER) def run(self, args: argparse.Namespace): if getattr(args, "c++", False): cmd = "polybuild_script++" else: cmd = "polybuild_script" # Are we trying to compile C++ code without using `polybuild++`? if sys.stderr.isatty() and sys.stdin.isatty() and any( arg.strip()[-4:].lower() in (".cpp", ".cxx", ".c++") for arg in args.args ): # one of the arguments ends in .cpp, .cxx, or .c++ sys.stderr.write("It looks like you are trying to compile C++ code.\n" "This requires `polybuild++`, not `polybuild`!\n") while True: sys.stderr.write(f"Would you like to run with `polybuild++` instead? [Yn] ") try: choice = input().lower() except KeyboardInterrupt: exit(1) if choice == "n": break elif choice == "y" or choice == "": cmd = "polybuild_script++" break args = [cmd] + args.args if CAN_RUN_NATIVELY: return subprocess.call(args) # type: ignore else: if self._container is None: self._container = DockerContainer() return DockerRun.run_on(self._container, args, interactive=False) class PolyInst(Command): name = "lower" help = "runs `polybuild` --lower-bitcode" _container: Optional[DockerContainer] = None def __init_arguments__(self, parser: argparse.ArgumentParser): parser.add_argument("--input-file", type=str, help="input bitcode file") parser.add_argument("--output-file", type=str, help="output bitcode file") def run(self, args: argparse.Namespace): cmd = "polybuild_script" items = [cmd] + ["--lower-bitcode", "-i", args.input_file, "-o", args.output_file] if CAN_RUN_NATIVELY: return subprocess.call(items) else: if self._container is None: self._container = DockerContainer() return DockerRun.run_on(self._container, items, interactive=False) def main(): PolyBuild(argparse.ArgumentParser(add_help=False)).run(argparse.Namespace(args=sys.argv[1:], **{"c++": False})) def main_plus_plus(): PolyBuild(argparse.ArgumentParser(add_help=False)).run(argparse.Namespace(args=sys.argv[1:], **{"c++": True}))
#!/usr/bin/python # The usual preamble import numpy as np import pandas as pd import time # Get data (NYC 311 service request dataset) and start cleanup data = pd.read_csv('data/us_cities_states_counties.csv', delimiter='|') data.dropna(inplace=True) print "Done reading input file..." start = time.time() # Get all city information with total population greater than 500,000 data_big_cities = data[data["Total population"] > 500000] # Compute "crime index" proportional to # (Total population + 2*(Total adult population) - 2000*(Number of robberies)) / 100000 data_big_cities_stats = data_big_cities[ ["Total population", "Total adult population", "Number of robberies"]].values predictions = np.dot(data_big_cities_stats, np.array( [1.0, 2.0, -2000.0])) / 100000.0 data_big_cities["Crime index"] = predictions # Aggregate "crime index" scores by state data_big_cities["Crime index"][data_big_cities["Crime index"] >= 0.02] = 0.032 data_big_cities["Crime index"][data_big_cities["Crime index"] < 0.01] = 0.005 print data_big_cities["Crime index"].sum() end = time.time() print "Total end-to-end time: %.2f" % (end - start)
#!/usr/bin/python # -*- coding: utf-8 -*- """ Created on Mon Dec 12, 2011 @author:Isabel Restrepo A script to run (fast) k-means on the set of means found for each category """ import os; import dbrec3d_batch import multiprocessing import Queue import time import random import optparse import sys from math import log, ceil from xml.etree.ElementTree import ElementTree import glob #time.sleep(30); class dbvalue: def __init__(self, index, type): self.id = index # unsigned integer self.type = type # string class bof_job(): def __init__(self, cm_i_file, CM_set, max_it, fm_i_file): self.cm_i_file = cm_i_file; self.CM_set = CM_set; self.max_it = max_it; self.fm_i_file = fm_i_file; def execute_bof_jobs(jobs, num_procs=4): work_queue=multiprocessing.Queue(); result_queue=multiprocessing.Queue(); for job in jobs: work_queue.put(job) for i in range(num_procs): worker= bof_worker(work_queue,result_queue) worker.start(); print("worker with name ",worker.name," started!") class bof_worker(multiprocessing.Process): def __init__(self,work_queue,result_queue): # base class initialization multiprocessing.Process.__init__(self) # job management stuff self.work_queue = work_queue self.result_queue = result_queue self.kill_received = False def run(self): while not self.kill_received: # get a task try: job = self.work_queue.get_nowait() except Queue.Empty: break start_time = time.time(); dbrec3d_batch.set_stdout('logs/log_' + str(os.getpid())+ ".txt"); dbrec3d_batch.init_process("bofKMeansOnVectorProcess"); dbrec3d_batch.set_input_string(0, job.cm_i_file); dbrec3d_batch.set_input_from_db(1, job.CM_set); dbrec3d_batch.set_input_unsigned(2, job.max_it); dbrec3d_batch.set_input_string(3, job.fm_i_file); dbrec3d_batch.run_process(); dbrec3d_batch.reset_stdout(); dbrec3d_batch.clear(); # print ("Runing time for worker:", self.name) # print(time.time() - start_time); #*******************The Main Algorithm ************************# if __name__=="__main__": dbrec3d_batch.register_processes(); dbrec3d_batch.register_datatypes(); #Parse inputs parser = optparse.OptionParser(description='bof Statistics Pass 0'); parser.add_option('--k_means_dir', action="store", dest="k_means_dir"); parser.add_option('--num_cores', action="store", dest="num_cores", type="int", default=4); parser.add_option('--max_it', action="store", dest="max_it", type="int", default=100); parser.add_option('--nclasses', action="store", dest="nclasses", type="int", default=5); options, args = parser.parse_args() k_means_dir = options.k_means_dir; #path where all CM_i means are saved and where the ouput FM_i will be written to num_cores = options.num_cores; max_it = options.max_it; nclasses = options.nclasses; if not os.path.isdir(k_means_dir +"/"): print "Invalid k_means Dir" sys.exit(-1); FM_path = k_means_dir + "/FM"; if not os.path.isdir(FM_path +"/"): os.mkdir(FM_path +"/"); start_time = time.time(); #Combine all CM_i means into one set CM to be passed for k-means mean_file_sfx = k_means_dir + "/class" ; dbrec3d_batch.init_process("bof_combine_category_means_process"); dbrec3d_batch.set_input_string(0, mean_file_sfx); dbrec3d_batch.set_input_unsigned(1, nclasses); dbrec3d_batch.run_process(); (id, type) = dbrec3d_batch.commit_output(0); CM_set= dbvalue(id, type); saveout = sys.stdout # save initial state of stdout #Begin multiprocessing job_list=[]; #Enqueue jobs for class_id in range (0, nclasses): cm_file = mean_file_sfx + str(class_id) + "/lowest_sse_means.txt"; fm_file = FM_path + "/FM_means_class" + str(class_id) + ".txt"; current_job = bof_job(cm_file, CM_set, max_it, fm_file); job_list.append(current_job); execute_bof_jobs(job_list, num_cores); sys.stdout = saveout print ("Pass 0 done") print ("Total running time: "); print(time.time() - start_time);
import tweepy #library for building apps for twitter import time #library for controling the sleep of the message CONSUMER_KEY ="Enter your api key" CONSUMER_SECRET = "Enter your api secret key" ACCESS_KEY ="Enter your access key" ACCESS_SECRET="Enter your access secret key" auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(ACCESS_KEY, ACCESS_SECRET) api = tweepy.API(auth) file = "last_tweet_id.txt" #linking the file which stores the last tweet id def read_last_id(file): file_read = open(file,'r') last_id = file_read.read() file_read.close() return int(last_id) def write_last_id(file,last_tweet_id): file_write=open(file,'w') file_write.write(last_tweet_id) file_write.close() return def reply_to_tweets(): print("rerieving and replting to the tweets......",flush=True) last_tweet_id=read_last_id(file) mentions =api.mentions_timeline(last_tweet_id,tweetmode="extended",flush=True) for mention in reversed(mentions): print(str(mention.id)+" "+mention.text,flush=True) last_tweet_id=str(mention.id) write_last_id(file,last_tweet_id) if "#helloworld" in mention.text.lower(): print("found Hello world!\nWaving you back user ......",flush=True) api.update_status("@"+mention.user.screen_name+" "+"Hello world waving back to you !",mention.id) if "#hello" in mention.text.lower(): print("found hello \nWaving you back user ......",flush=True) api.update_status("@"+mention.user.screen_name+" "+"Hello buddy waving back you !",mention.id) if "#test" in mention.text.lower(): print("matching content found \nWaving you back user ......",flush=True) api.update_status("@"+mention.user.screen_name+" "+"this is a bot replyed to the tweet successfully",mention.id) while True: #infinite loop reply_to_tweets() time.sleep(6)
def get_maintenance_cost( mean, remainder, factor=40, decimal_places=3 ): expected_value_variable_squared = mean + (mean ** 2) return round( remainder + (expected_value_variable_squared * factor), decimal_places ) a_mean, b_mean = map(float, input().split()) print( get_maintenance_cost(a_mean, 160, 40) ) print( get_maintenance_cost(b_mean, 128, 40) )
#!/usr/bin/env python3 import sys import os import time import serial # This is a quick and dirty control program for the Kenwood TM-271A and TM-281A # transceiver to allow remote base like operations for use with Allstar or # other digital modes. It is primarily targeted at the Raspberry Pi but being # in Python allows it to be built and run on multiple platforms including # Windows and Linux. # # This is targeting Python3 and you must install the pyserial libraries by # issuing "pip3 install pyserial" ### Some global variables most for configuration and operation modes usage = """ Arguments passed in can be: ser xxx Where xxx is the name for the serial port appropriate for the OS. For example "ser COM3" for Windows or "ser /dev/tty0" for linux. NOTE - must be first argument if used. Environment variable "TM271Aser" or "TM281Aser: is read if it exists as the default port to use. mem xxx Where xxx is up to a 3 digit memory number vfo xxxxxxxxxx{-|+} Where xxxxxxxxxx is the 10 digit frequency in Hz. If the leading character is not "1" a zero is appended as the GHz value. If 10 digits is not supplied, "0"s are appended to the end to 13 digits. Thus you can enter 0147330000 or 14733 for the same thing. The optional + or - sets the offset This command clears any tone setting, set desired tone afterwards tone {x}xx.x Where {x}xx.x is a 2 or 3 digit whole number followed by a decimal. For example tone 141.3 Note these must match exactly the standard tones ctcss {x}xx.x Where {x}xx.x is a 2 or 3 digit whole number followed by a decimal. For example tone 141.3 Note these must match exactly the standard tones pow [h|l] Set transmit power to high or low (h or l) freq Read frequency from display suitable for use with TTS. Multiple arguments can be passed like "mem 33 freq" to change to a memory and read back what the frequency is. Or "vfo 147330+ tone 100.0". """ serialName=os.getenv("TM271Aser") if serialName is None: serialName=os.getenv("TM281Aser") if serialName is None: serialName = "/dev/ttyUSB0" verbose=0 radioID = "" CTCSS_Tones = { # dictionary for tone to control number for the radio "67.0" : "00", "69.3" : "01", "71.9" : "02", "74.4" : "03", "77.0" : "04", "79.7" : "05", "82.5" : "06", "85.4" : "07", "88.5" : "08", "91.5" : "09", "94.8" : "10", "97.4" : "11", "100.0" : "12", "103.5" : "13", "107.2" : "14", "110.9" : "15", "114.8" : "16", "118.8" : "17", "123.0" : "18", "127.3" : "19", "131.8" : "20", "136.5" : "21", "141.3" : "22", "146.2" : "23", "151.4" : "24", "156.7" : "25", "162.2" : "26", "167.9" : "27", "173.8" : "28", "179.9" : "29", "186.2" : "30", "192.8" : "31", "203.5" : "32", "206.5" : "33", "210.7" : "34", "218.1" : "35", "225.7" : "36", "229.1" : "37", "233.6" : "38", "241.8" : "39", "250.3" : "40", "254.1" : "41" } ### Some functions we'll use # Send and check for same thing to echo, try to resync if needed. def sendAndWait(data): cnt = 50 while 1: if cnt == 0: return "ERR" cnt -= 1 ser.read(1000) ser.write((data + "\r").encode()) rtn = ser.readline().decode() if rtn[0:2] == data[0:2]: break # Sometimes the radio gets out of sync and will return ?, E or the tail of something else... # It has not taken the command if it doesn't echo it back. if verbose >= 2: print("Retrying - Sent: " + data + " Got: " + rtn) # time.sleep(0.25) ser.write(("\r").encode()) ser.read(1000) # force timeout to flush buffers ser.read(1000) # force timeout to flush buffers if verbose >= 2: print(rtn) return rtn # Select a memory channel. Should be 3 digits but will fix it up if not def memorySelect(mem): data = "VM 1" sendAndWait(data) if len(mem) > 3: # sanity check in case more digits passed in than radio can handled mem = mem[-3] while len(mem) < 3: # radio requires 3 digit memory numbers mem = "0" + mem data="MR " + mem sendAndWait(data) return # Select and set the vfo frequency passed in as string. # freq should be 10 digits as Hz. as in 0147330000 # An appended + or - is used to signify offset # VF format: (spaces only to align with description, omit when sending to radio) # 3 14 16 18 20 22 24 26 29 32 36 45 47 # VF 0147330000, 0, 0, 0, 1, 0, 0, 13, 13,056,00600000,0 ,0 # freq,step,shift,reverse,Tone,CTCSS,DCS,ENC,DEC,DCS,Offset ,Narrow,BeatShift def vfoSelect(freq): data = "VM 0" sendAndWait(data) current = sendAndWait("VF") if current[-1] == "\r": current = current[0:-1] if freq[-1] == "-": shift = "2" freq=freq[0:-1] elif freq[-1] == "+": shift = "1" freq=freq[0:-1] else: shift = "0" if freq[0] != "0": freq = "0" + freq if len(freq) > 10: freq = freq[0:10] while len(freq) < 10: freq = freq + "0" data = current[0:3] + freq + ",0," + shift + current[17:20] + "0,0,0" + current[25:] sendAndWait(data) return # Set the tone parameters for the current VFO setting. Reads what is in the radio, # makes the changes, then writes it back. # VF format: (spaces only to align with description, omit when sending to radio) # 3 14 16 18 20 22 24 26 29 32 36 45 47 # VF 0147330000, 0, 0, 0, 1, 0, 0, 13, 13,056,00600000,0 ,0 # freq,step,shift,reverse,Tone,CTCSS,DCS,ENC,DEC,DCS,Offset ,Narrow,BeatShift def vfoTone(toneFreq, tx, rx): if rx == 1: #there can only be one tx = 0 current = sendAndWait("VF") if current[-1] == "\r": current = current[0:-1] if toneFreq == "0": #tone of zero to turn off tone tx=0 rx=0 theToneNumber = "00" else: theToneNumber = CTCSS_Tones[toneFreq] if verbose >= 2: print( "Tone set to: " + theToneNumber) data = current[0:20] + str(tx) + "," + str(rx) + ",0," + theToneNumber + "," + theToneNumber + current[31:] if verbose >= 2: print("Setting: " + data) sendAndWait(data) return def powerSelect(pow): pow = pow.lower()[0:1] if pow == "h": sendAndWait("PC 0") elif pow == "l": sendAndWait("PC 2") return # Read radio frequency def getFreq(): rtn = sendAndWait("FQ") # rtn will be "FQ 0147330000,0" mhz = rtn[4:7] khz = rtn[7:13] print(mhz + "." + khz) # Initialize the serial port as global variable ser def serialInit(serPort): ser = serial.Serial( port= serPort, #Replace ttyS0 with ttyAM0 for Pi1,Pi2,Pi0 baudrate = 9600, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, rtscts=False, timeout=0.100 ) time.sleep(0.5) # mostly needed on Windows to allow port to settle in background return ser #### Start of exectution i=1 ser = None if (len(sys.argv) > i) and ((sys.argv[i].lower())[0:2] == "-v"): # verbose must be first verbose = len(sys.argv[i]) - 1 i += 1 print ("Verbose: " + str(verbose)) try: # serial init must happen first or second if (len(sys.argv) > i) and (sys.argv[i].lower() == "ser"): serialName = sys.argv[i+1] i += 2 ser = serialInit(serialName) radioID = sendAndWait("ID") except: print("Could not open: " + serialName) sys.exit(1) while i < len(sys.argv): if sys.argv[i].lower() == "mem": memorySelect(sys.argv[i+1]) i += 2 elif sys.argv[i].lower() == "vfo": vfoSelect(sys.argv[i+1]) i += 2 elif sys.argv[i].lower() == "tone": vfoTone(sys.argv[i+1], 1, 0) i += 2 elif sys.argv[i].lower() == "ctcss": vfoTone(sys.argv[i+1], 0, 1) i += 2 elif sys.argv[i].lower()[0:3] == "pow": powerSelect(sys.argv[i+1]) i += 2 elif sys.argv[i].lower()[0:4] == "freq": getFreq() i += 1 elif sys.argv[i].lower() == "help": print(usage) break else: print ("Error input:" + sys.argv[i]) break # while if ser is not None: ser.close()
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/12/19 9:27 # @Author : NingAnMe <ninganme@qq.com> import argparse from dateutil.relativedelta import relativedelta import time from datetime import datetime import os import requests from lib.lib_cimiss import get_cimiss_ssi_ssh_tem_data from config import DATA_OBS_DIR def download_cimiss(ymd): print(f"({datetime.now()})开始下载CIMISS数据: {ymd}") out_dir = os.path.join(DATA_OBS_DIR, ymd) if not os.path.isdir(out_dir): print(f"创建文件夹: {out_dir}") os.makedirs(out_dir) elif len(os.listdir(out_dir)) >= 2000: print(f"文件数量超过2000个,不再重新下载: {out_dir}") return True else: print(f"文件数量少于2000个,删除原文件后重新下载: {out_dir}") os.system("rm -rf {}".format(os.path.join(DATA_OBS_DIR, ymd))) success = False try_download = 0 while not success: try_download += 1 print(f"尝试第 {try_download} 次下载") try: success = get_cimiss_ssi_ssh_tem_data(ymd, out_dir, copy_file=False) except requests.exceptions.ReadTimeout as why: print(why) pass if try_download >= 3: os.system("rm -rf {}".format(os.path.join(DATA_OBS_DIR, ymd))) print(f"({datetime.now()})尝试下载CIMISS失败: {ymd}") break if success: print(f"({datetime.now()})成功下载CIMISS: {out_dir}") return success def download_yesterday(): print(f"({datetime.now()})启动CIMISS实时下载") while True: date_now = datetime.now() - relativedelta(days=1) ymd_now = date_now.strftime("%Y%m%d") if date_now.minute % 15 == 5: try: os.system("rm -rf {}".format(os.path.join(DATA_OBS_DIR, ymd_now))) success = download_cimiss(ymd_now) if success: time.sleep(60) except Exception as why: print(why) else: time.sleep(60) def download_today(): print(f"({datetime.now()})启动CIMISS实时下载") tmp_minute = -1 tmp_hour = -1 while True: date_now = datetime.now() ymd_now = date_now.strftime("%Y%m%d") if date_now.minute % 20 == 5 and date_now.minute != tmp_minute: try: tmp_minute = date_now.minute os.system("rm -rf {}".format(os.path.join(DATA_OBS_DIR, ymd_now))) success = download_cimiss(ymd_now) if success: time.sleep(60) except Exception as why: print(why) else: time.sleep(20) date_now = datetime.now() - relativedelta(days=1) ymd_now = date_now.strftime("%Y%m%d") hours = {5, 6, 7} if date_now.hour in hours and date_now.hour != tmp_hour: try: tmp_hour = date_now.hour os.system("rm -rf {}".format(os.path.join(DATA_OBS_DIR, ymd_now))) success = download_cimiss(ymd_now) if success: time.sleep(60) except Exception as why: print(why) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Download CIMISS') parser.add_argument('--datetime_start', '-s', help='开始时间,YYYYmmddHHMMSS(20190101000000)') parser.add_argument('--datetime_end', '-e', help='结束时间,YYYYmmddHHMMSS(20190101235959)') args = parser.parse_args() if args.datetime_start is not None and args.datetime_end is not None: datetime_start = datetime.strptime(args.datetime_start, "%Y%m%d%H%M%S") datetime_end = datetime.strptime(args.datetime_end, "%Y%m%d%H%M%S") datetime_now = datetime_start while datetime_now <= datetime_end: download_cimiss(datetime_now.strftime("%Y%m%d")) datetime_now += relativedelta(days=1) else: download_today()
#!/usr/bin/python from __future__ import with_statement import sys import os default_path = '/usr/local/id/streaming_pb_downloader/current/configs' default_filename = 'event_name_list.txt' if len(sys.argv) > 2: print('Usage:\n{0}\nor\n{0} output_path'.format(sys.argv[0])) sys.exit(0) if len(sys.argv) == 2: default_path=sys.argv[1] output_file = os.path.join(os.path.normpath(default_path), default_filename) with open(output_file, 'w') as fileobj: fileobj.write('ID-MOTION\nID-TAMPERING\nID-DI-ON\nID-DI-OFF\nID-SYS\nID-VLOSS\n') print 'The default event name list is generated in ', output_file
from jinja2 import Environment, FileSystemLoader def main(frank, output_dir): print "Executing python codegen: main()", frank # load up the jinja template # env = Environment(loader=FileSystemLoader("")) env = Environment(loader=FileSystemLoader(__path__)) client = env.get_template("client.jinja") rendered_client = client.render(frank=frank) # copy frankdux.types over # the client is going to reuse all our metaclass stuff loc = "{}/client.py".format(output_dir) fp = open(loc, 'w') fp.write(rendered_client) fp.write("\n") fp.close() # setup.py setup = env.get_template("setup.jinja") rendered_setup = setup.render(frank=frank) loc = "{}/setup.py".format(output_dir) fp = open(loc, 'w') fp.write(rendered_client) fp.write("\n") fp.close() # make sure we've got an empty __init__ so it's a real package loc = "{}/__init__.py".format(output_dir) open(loc, 'w').close()
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """MongoDB storage backend""" from oslo_log import log import pymongo from panko import storage from panko.storage.mongo import utils as pymongo_utils from panko.storage import pymongo_base LOG = log.getLogger(__name__) class Connection(pymongo_base.Connection): """Put the event data into a MongoDB database.""" CONNECTION_POOL = pymongo_utils.ConnectionPool() def __init__(self, url, conf): # NOTE(jd) Use our own connection pooling on top of the Pymongo one. # We need that otherwise we overflow the MongoDB instance with new # connection since we instantiate a Pymongo client each time someone # requires a new storage connection. self.conn = self.CONNECTION_POOL.connect( url, conf.database.max_retries, conf.database.retry_interval) # Require MongoDB 2.4 to use $setOnInsert if self.conn.server_info()['versionArray'] < [2, 4]: raise storage.StorageBadVersion("Need at least MongoDB 2.4") connection_options = pymongo.uri_parser.parse_uri(url) self.db = getattr(self.conn, connection_options['database']) if connection_options.get('username'): self.db.authenticate(connection_options['username'], connection_options['password']) # NOTE(jd) Upgrading is just about creating index, so let's do this # on connection to be sure at least the TTL is correctly updated if # needed. self.upgrade() @staticmethod def update_ttl(ttl, ttl_index_name, index_field, coll): """Update or create time_to_live indexes. :param ttl: time to live in seconds. :param ttl_index_name: name of the index we want to update or create. :param index_field: field with the index that we need to update. :param coll: collection which indexes need to be updated. """ indexes = coll.index_information() if ttl <= 0: if ttl_index_name in indexes: coll.drop_index(ttl_index_name) return if ttl_index_name in indexes: return coll.database.command( 'collMod', coll.name, index={'keyPattern': {index_field: pymongo.ASCENDING}, 'expireAfterSeconds': ttl}) coll.create_index([(index_field, pymongo.ASCENDING)], expireAfterSeconds=ttl, name=ttl_index_name) def upgrade(self): # create collection if not present if 'event' not in self.db.conn.collection_names(): self.db.conn.create_collection('event') # Establish indexes # NOTE(idegtiarov): This indexes cover get_events, get_event_types, and # get_trait_types requests based on event_type and timestamp fields. self.db.event.create_index( [('event_type', pymongo.ASCENDING), ('timestamp', pymongo.ASCENDING)], name='event_type_idx' ) def clear(self): self.conn.drop_database(self.db.name) # Connection will be reopened automatically if needed self.conn.close() def clear_expired_data(self, ttl): """Clear expired data from the backend storage system. Clearing occurs according to the time-to-live. :param ttl: Number of seconds to keep records for. """ self.update_ttl(ttl, 'event_ttl', 'timestamp', self.db.event) LOG.info("Clearing expired event data is based on native " "MongoDB time to live feature and going in background.")
from functools import lru_cache from typing import Tuple, List, Dict import math from .RayInfluenceModel import RayGridInfluenceModel, Ray class WideRayGridInfluenceModel(RayGridInfluenceModel): """ Calculates the weights of the grid cells by calculating the distance of the center of the cell to the ray. """ max_distance = 1.0 @lru_cache(maxsize=512) def getInfluencesForRay(self, ray: Ray) -> List[Tuple[Tuple[int, int], float]]: # find relevant x coordinates start_x = ray.start_x end_x = ray.end_x if ray.dx < 0: start_x += self.max_distance end_x -= self.max_distance else: start_x -= self.max_distance end_x += self.max_distance start_i = self.gridDefinition.getIatX(start_x) end_i = self.gridDefinition.getIatX(end_x) values: List[Tuple[Tuple[int, int], float]] = [] c = ray.c # direction in which to count idir = int(math.copysign(1, end_i-start_i)) # including end for i in range(start_i, end_i+idir, idir): x = self.gridDefinition.getXatI(i) start_y = self.gridDefinition.startY end_y = self.gridDefinition.endY if abs(ray.dx) > 0: start_y = max( self.gridDefinition.startY, min( self.gridDefinition.endY, (self.max_distance * ray.length - c - ray.dy*x) / -ray.dx)) end_y = max( self.gridDefinition.startY, min( self.gridDefinition.endY, (- self.max_distance * ray.length - c - ray.dy*x) / -ray.dx)) start_j = self.gridDefinition.getJatY(start_y) end_j = self.gridDefinition.getJatY(end_y) jdir = int(math.copysign(1, end_j-start_j)) for j in range(start_j, end_j+jdir, jdir): y = self.gridDefinition.getYatJ(j) p = ray.closest_point_on_line(x, y) dx = abs(p[0]-x) dy = abs(p[1]-y) dl = ray.distance_of_point_along_ray(p, relative=True) # limit ray to from LED to sensor if not 0 < dl < 1: continue influence = self.getInfluenceFromDistance(dx, dy, dl, ray) values.append(((i, j), influence)) return values def getInfluenceFromDistance(self, dx: float, dy: float, dl: float, ray: Ray) -> float: """ Returns the influence of a cell given the minimal distance to the direct ray dx and dy as separate parameters so possible non-square grids can be handled (if the grid-size is relevant to the influence function) :param dx: x distance to ray :param dy: y distance to ray :param dl: position along the ray; 0.0 = led; 1.0 = sensor :param ray: the ray currently in question :return: intensity """ return 1/(1 + 0.1 * ((dx**2 + dy**2)*100)**1.5) / ray.length
# Generated by Django 2.2.5 on 2019-09-06 16:28 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('search', '0001_initial'), ('team', '0001_initial'), ] operations = [ migrations.AddField( model_name='wordmodel', name='related_team', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='team.TeamModel'), ), migrations.AddField( model_name='newsmodel', name='contain_words', field=models.ManyToManyField(through='search.FreqModel', to='search.WordModel'), ), migrations.AddField( model_name='newsmodel', name='related_teams', field=models.ManyToManyField(through='team.RelationModel', to='team.TeamModel'), ), migrations.AddField( model_name='freqmodel', name='news', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='search.NewsModel'), ), migrations.AddField( model_name='freqmodel', name='word', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='search.WordModel'), ), ]
import re import itertools regex = r"<x=(-*\d+),\sy=(-*\d+),\sz=(-*\d+)>" p = re.compile(regex) def moon(p_x, p_y, p_z, v_x, v_y, v_z): return {"pos": {"x": p_x, "y": p_y, "z": p_z}, "vel": {"x": v_x, "y": v_y, "z": v_z}} a = [] for line in open('day12-2019.txt').read().split('\n'): x, y, z = p.match(line).groups() a.append(moon(int(x), int(y), int(z), 0, 0, 0)) def simulate_one_step(moons): for i in range(len(moons)): for j in range(i + 1, len(moons)): moon = moons[i] other = moons[j] updated_moon, updated_other = apply_gravity( moon, other) moons[i] = updated_moon moons[j] = updated_other for i in range(len(moons)): moons[i] = apply_velocity(moons[i]) def apply_gravity(one, another): return (moon(one["pos"]["x"], one["pos"]["y"], one["pos"]["z"], one["vel"]["x"] + gravity(one["pos"]["x"], another["pos"]["x"]), one["vel"]["y"] + gravity(one["pos"]["y"], another["pos"]["y"]), one["vel"]["z"] + gravity(one["pos"]["z"], another["pos"]["z"])), moon(another["pos"]["x"], another["pos"]["y"], another["pos"]["z"], another["vel"]["x"] + gravity(another["pos"]["x"], one["pos"]["x"]), another["vel"]["y"] + gravity(another["pos"]["y"], one["pos"]["y"]), another["vel"]["z"] + gravity(another["pos"]["z"], one["pos"]["z"])) ) def apply_velocity(m): return moon(m["pos"]["x"] + m["vel"]["x"], m["pos"]["y"] + m["vel"]["y"], m["pos"]["z"] + m["vel"]["z"], m["vel"]["x"], m["vel"]["y"], m["vel"]["z"], ) def gravity(a, b): if a < b: return 1 elif a == b: return 0 else: return -1 for i in range(1000): simulate_one_step(a) def total_energy(m): return (abs(m["pos"]["x"]) + abs(m["pos"]["y"]) + abs(m["pos"]["z"])) * \ (abs(m["vel"]["x"]) + abs(m["vel"]["y"]) + abs(m["vel"]["z"])) print(sum(map(total_energy, a)))
from . import * from ..fetchers import OAIFetcher from ..parsers import OAIParser class OAIController(CorpusController): '''CorpusController designed for the OAI database ''' # Default start date for batch retrieval DATE_FROM = datetime.date(2010, 1, 1) # Default time window for batch retrieval DATE_INCR = datetime.timedelta(days=1) def batch(self, date_from=None, date_incr=DATE_INCR, **kwargs): '''Retrieve, parse, and push a batch of documents. Args: date_from (datetime.date): Start date date_incr (datetime.timedelta): Time window kwargs: Optional OAI parameters ''' #TODO: save kwargs to query metadata # Get start date if not date_from: date_from = self.database.last_date_range('oai')[0]['until'] + \ datetime.timedelta(days=1) # Get end date if date_incr: date_until = date_from + date_incr else: date_until = None # Fetch batch of articles #fetcher = fetchers.OAIFetcher.OAIFetcher() fetcher = OAIFetcher.OAIFetcher() doc_batches = fetcher.fetch_batch(date_from, date_until, **kwargs) # Initialize parser parser = OAIParser.OAIParser() #parser = parsers.OAIParser() # Loop over batches of articles for doc_batch in doc_batches: # Loop over articles in batch for doc in doc_batch: # Parse document parsed_docs = parser.parse_document(doc) # Send parsed articles to DB for doc in parsed_docs: self.database.add_or_update(doc) # Update date range self.database.add_date_range('oai', date_from, date_until)
# Backward compatibility with Python 2. from __future__ import print_function, absolute_import, division # Suppress all warnings. import warnings warnings.filterwarnings('ignore') import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.contrib import legacy_seq2seq import numpy as np class Model: """Multi-layer Recurrent Neural Networks (LSTM, RNN) for character-level language models. To learn more about character-rnn, Visit Andrej Karpathy's [char-rnn](https://github.com/karpathy/char-rnn). Arguments: args {argparse.ArgumentParser} -- Command line arguments from train.py Keyword Arguments: training {bool} -- Training mode. (default: {True}) Raises: ValueError -- Model type not supported. Supported types include: RNN, LSTM, GRU and NAS. """ def __init__(self, args, training=True): self.args = args # Set batch size & sequence length to 1 if not in training mode. if not training: args.batch_size = 1 args.seq_length = 1 # Recurrent Architecture. if args.model.lower() == 'rnn': cell_fn = rnn.BasicRNNCell elif args.model.lower() == 'lstm': cell_fn = rnn.BasicLSTMCell elif args.model.lower() == 'gru': cell_fn = rnn.GRUCell elif args.model.lower() == 'nas': cell_fn = rnn.NASCell else: raise ValueError("Model type not supported.") # Construct the hidden layers' cell. cell = None cells = [] for _ in range(args.num_layers): cell = cell_fn(args.rnn_size) # Add dropout only during training. if training and (args.input_keep_prob < 1.0 or args.output_keep_prob < 1.0): cell = rnn.DropoutWrapper(cell, input_keep_prob=args.input_keep_prob, output_keep_prob=args.output_keep_prob) # Append the hidden cell. cells.append(cell) # Recurrent Cell. self.cell = rnn.MultiRNNCell(cells=cells, state_is_tuple=True) # Model placeholders. self.input_data = tf.placeholder(dtype=tf.int32, shape=[args.batch_size, args.seq_length], name="input_data") self.targets = tf.placeholder(dtype=tf.int32, shape=[args.batch_size, args.seq_length], name="targets") self.initial_state = cell.zero_state(batch_size=args.batch_size, dtype=tf.float32) # Recurrent Neural Net Language Modelling. with tf.variable_scope('rnnlm'): softmax_W = tf.get_variable(name='softmax_W', shape=[args.rnn_size, args.vocab_size]) softmax_b = tf.get_variable(name='softmax_b', shape=[args.vocab_size]) # Embeddings. embedding = tf.get_variable('embedding', shape=[args.vocab_size, args.rnn_size]) inputs = tf.nn.embedding_lookup(embedding, self.input_data) # Dropout input embeddings. if training: inputs = tf.nn.dropout(inputs, keep_prob=args.input_keep_prob) # Split & reshape inputs. inputs = tf.split(value=inputs, num_or_size_splits=args.seq_length, axis=1) inputs = [tf.squeeze(input_, axis=[1]) for input_ in inputs] def loop(prev, _): """Function to be performed at each recurrent layer. This function will be applied to the i-th output in order to generate the i+1-st input, and decoder_inputs will be ignored, except for the first element ("GO" symbol). This can be used for decoding, but also for training to emulate http://arxiv.org/abs/1506.03099. Signature -- loop_function(prev, i) = next * prev is a 2D Tensor of shape [batch_size x output_size], * i is an integer, the step number (when advanced control is needed), * next is a 2D Tensor of shape [batch_size x input_size]. scope: VariableScope for the created subgraph; defaults to "rnn_decoder". Arguments: prev {tf.Tensor} -- prev is a 2D Tensor of shape [batch_size x output_size]. _ {tf.Tensor} -- i is an integer, the step number (when advanced control is needed). Returns: {tf.Tensor} -- A 2D Tensor of shape [batch_size, input_size] which represents the embedding matrix of the predicted next character. """ prev = tf.matmul(prev, softmax_W) + softmax_b prev_symbol = tf.stop_gradient(input=tf.arg_max(prev, dimension=1)) return tf.embedding_lookup(embedding, prev_symbol) # Decoder. outputs, prev_state = legacy_seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if not training else None, scope='rnnlm') outputs = tf.reshape(tf.concat(outputs, axis=1), shape=[-1, args.rnn_size]) # Fully connected & softmax layer. self.logits = tf.matmul(outputs, softmax_W) + softmax_b self.probs = tf.nn.softmax(self.logits, name="probs") # Loss function. with tf.variable_scope('loss'): seq_loss = legacy_seq2seq.sequence_loss_by_example( logits=[self.logits], targets=[tf.reshape(self.targets, shape=[-1])], weights=[tf.ones(shape=[args.batch_size * args.seq_length])]) self.loss = tf.reduce_sum(seq_loss) / args.batch_size / args.seq_length self.final_state = prev_state self.lr = tf.Variable(0.0, trainable=False, name="learning_rate") # Trainable variables & gradient clipping. tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(t_list=tf.gradients(self.loss, tvars), clip_norm=args.grad_clip) # Optimizer. with tf.variable_scope("optimizer"): self.global_step = tf.Variable(0, trainable=False, name="global_step") optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate) # Train ops. self.train_op = optimizer.apply_gradients(grads_and_vars=zip(grads, tvars), global_step=self.global_step, name="train_op") # Tensorboard. tf.summary.histogram('logits', self.logits) tf.summary.histogram('seq_loss', seq_loss) tf.summary.scalar('loss', self.loss) def sample(self, sess: tf.Session, chars: tuple, vocab: dict, num: int = 200, prime: str = 'The', sampling_type: int = 1): """Sample from the prediction probability one character at a time. Arguments: sess {tf.Session} -- Session containing the default graph. chars {tuple} -- List of characters in the vocab. vocab {dict} -- Mapping from character to id. Dictionary containing characters & corresponding numeric value. Keyword Arguments: num {int} -- Number of character to predict. (default: {200}) prime {str} -- Beginning of prediction sequence. (default: {'The'}) sampling_type {int} -- Description of how to choose the top most likely character. Options are 1, 2, & 3. (default: {1}) Returns: ret {str} -- Sequence containing the prediction of the `num` characters. """ # Initial cell state. TODO: Change dtype=tf.float32 # Predict final state given input data & prev state. state = sess.run(self.cell.zero_state(batch_size=1, dtype=tf.float32)) for char in prime[:-1]: # Input data: one char at a time. x = np.zeros(shape=(1, 1)) x[0, 0] = vocab[char] # Given input data & initial state, predict final state. feed_dict = {self.input_data: x, self.initial_state: state} [state] = sess.run([self.final_state], feed_dict=feed_dict) def weighted_pick(weights): c = np.cumsum(weights) s = np.sum(weights) return int(np.searchsorted(c, np.random.rand(1) * s)) # Initial character. ret = prime char = prime[-1] # Prediction loop. for i in range(num): x = np.zeros(shape=(1, 1)) x[0, 0] = vocab[char] # Predict probability of next word & prev state. feed_dict = {self.input_data: x, self.initial_state: state} [probs, state] = sess.run([self.probs, self.final_state], feed_dict=feed_dict) p = probs[0] if sampling_type == 0: sample = np.argmax(p) elif sampling_type == 2: if char == ' ': sample = weighted_pick(p) else: sample = np.argmax(p) else: # Sampling type = 1 (default) sample = weighted_pick(p) # Get the character representation of sampled character. pred = chars[sample] ret += pred char = pred return ret
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponseRedirect, HttpResponse, JsonResponse from django.contrib.auth.decorators import login_required from django.urls import reverse from django.db.models import Q from django.views.decorators.csrf import csrf_exempt from django.forms.models import modelformset_factory from leads.models import Lead from contacts.forms import ContactForm from common.models import User, Address, Comment, Team from common.utils import LEAD_STATUS, LEAD_SOURCE, INDCHOICES, TYPECHOICES, COUNTRIES from leads.forms import LeadCommentForm, LeadForm from accounts.forms import AccountForm from common.forms import BillingAddressForm from accounts.models import Account from planner.models import Event, Reminder from planner.forms import ReminderForm # CRUD Operations Start @login_required def leads_list(request): lead_obj = Lead.objects.all() page = request.POST.get('per_page') first_name = request.POST.get('first_name') last_name = request.POST.get('last_name') city = request.POST.get('city') email = request.POST.get('email') if first_name: lead_obj = Lead.objects.filter(first_name__icontains=first_name) if last_name: lead_obj = Lead.objects.filter(last_name__icontains=last_name) if city: lead_obj = Lead.objects.filter(address=Address.objects.filter (city__icontains=city)) if email: lead_obj = Lead.objects.filter(email__icontains=email) return render(request, 'leads/leads.html', { 'lead_obj': lead_obj, 'per_page': page}) @login_required def add_lead(request): accounts = Account.objects.all() users = User.objects.filter(is_active=True).order_by('email') teams = Team.objects.all() assignedto_list = request.POST.getlist('assigned_to') teams_list = request.POST.getlist('teams') lead_account = request.POST.get('account_name') lead_email = request.POST.get('email') lead_phone = request.POST.get('phone') form = LeadForm(assigned_to=users) address_form = BillingAddressForm() if request.method == 'POST': form = LeadForm(request.POST, assigned_to=users) address_form = BillingAddressForm(request.POST) if form.is_valid() and address_form.is_valid(): lead_obj = form.save(commit=False) address_object = address_form.save() lead_obj.address = address_object lead_obj.created_by = request.user lead_obj.save() lead_obj.assigned_to.add(*assignedto_list) lead_obj.teams.add(*teams_list) if request.POST.get('status') == "converted": Account.objects.create( created_by=request.user, name=lead_account, email=lead_email, phone=lead_phone ) if request.POST.get("savenewform"): return HttpResponseRedirect(reverse("leads:add_lead")) else: return HttpResponseRedirect(reverse('leads:list')) else: return render(request, 'leads/create_lead.html', { 'lead_form': form, 'address_form': address_form, 'accounts': accounts, 'countries': COUNTRIES, 'teams': teams, 'users': users, 'status': LEAD_STATUS, 'source': LEAD_SOURCE, 'assignedto_list': assignedto_list, 'teams_list': teams_list}) else: return render(request, 'leads/create_lead.html', { 'lead_form': form, 'address_form': address_form, 'accounts': accounts, 'countries': COUNTRIES, 'teams': teams, 'users': users, 'status': LEAD_STATUS, 'source': LEAD_SOURCE, 'assignedto_list': assignedto_list, 'teams_list': teams_list}) @login_required @csrf_exempt def view_lead(request, lead_id): lead_record = get_object_or_404(Lead, id=lead_id) comments = Comment.objects.filter(lead__id=lead_id).order_by('-id') meetings = Event.objects.filter(Q(created_by=request.user) | Q(updated_by=request.user), event_type='Meeting', attendees_leads=lead_record).order_by('-id') calls = Event.objects.filter(Q(created_by=request.user) | Q(updated_by=request.user), event_type='Call', attendees_leads=lead_record).order_by('-id') RemindersFormSet = modelformset_factory(Reminder, form=ReminderForm, can_delete=True) data = { 'form-TOTAL_FORMS': '1', 'form-INITIAL_FORMS': '0', 'form-MAX_NUM_FORMS': '10', } reminder_form_set = RemindersFormSet(data) return render(request, "leads/view_leads.html", { "lead_record": lead_record, 'status': LEAD_STATUS, 'countries': COUNTRIES, 'comments': comments, 'reminder_form_set': reminder_form_set, 'meetings': meetings, 'calls': calls }) @login_required def edit_lead(request, lead_id): lead_obj = get_object_or_404(Lead, id=lead_id) address_obj = get_object_or_404(Address, id=lead_obj.address.id) accounts = Account.objects.all() users = User.objects.filter().order_by('email') form = LeadForm(instance=lead_obj, assigned_to=users) address_form = BillingAddressForm(instance=address_obj) assignedto_list = request.POST.getlist('assigned_to') teams_list = request.POST.getlist('teams') lead_account = request.POST.get('account_name') lead_email = request.POST.get('email') lead_phone = request.POST.get('phone') teams = Team.objects.all() if request.method == 'POST': form = LeadForm(request.POST, instance=lead_obj, assigned_to=users) address_form = BillingAddressForm(request.POST, instance=address_obj) if request.POST.get('status') == "converted": form.fields['account_name'].required = True else: form.fields['account_name'].required = False if form.is_valid() and address_form.is_valid(): dis_address_obj = address_form.save() lead_obj = form.save(commit=False) lead_obj.address = dis_address_obj lead_obj.created_by = request.user lead_obj.save() lead_obj.assigned_to.clear() lead_obj.assigned_to.add(*assignedto_list) lead_obj.teams.clear() lead_obj.teams.add(*teams_list) if request.POST.get('status') == "converted": Account.objects.create( created_by=request.user, name=lead_account, email=lead_email, phone=lead_phone ) return HttpResponseRedirect(reverse('leads:list')) else: return render(request, 'leads/create_lead.html', { 'lead_obj': lead_obj, 'lead_form': form, 'address_form': address_form, 'accounts': accounts, 'countries': COUNTRIES, 'teams': teams, 'users': users, 'status': LEAD_STATUS, 'source': LEAD_SOURCE, 'assignedto_list': assignedto_list, 'teams_list': teams_list}) else: return render(request, 'leads/create_lead.html', { 'lead_form': form, 'address_form': address_form, 'lead_obj': lead_obj, 'address_obj': address_obj, 'accounts': accounts, 'countries': COUNTRIES, 'teams': teams, 'users': users, 'status': LEAD_STATUS, 'source': LEAD_SOURCE, 'assignedto_list': assignedto_list, 'teams_list': teams_list}) @login_required def remove_lead(request, lead_id): lead_obj = get_object_or_404(Lead, id=lead_id) lead_obj.delete() return HttpResponseRedirect(reverse('leads:list')) # CRUD Operations Ends # Leads Conversion Functionality Starts # The Below View Should be Discussed for Functionality @login_required def leads_convert(request, pk): account_form = AccountForm() billing_form = BillingAddressForm() shipping_form = ShippingAddressForm(prefix='ship') lead_objects = Lead.objects.all() lead_obj = Lead.objects.get(id=pk) accounts = Account.objects.all() contact_form = ContactForm() opportunity_form = OpportunityForm() teams = Team.objects.all() if request.method == "POST": if request.POST.get('accountname') == "on": account_form = AccountForm(request.POST) billing_form = BillingAddressForm(request.POST) shipping_form = ShippingAddressForm(request.POST, prefix='ship') if account_form.is_valid() and billing_form.is_valid() and shipping_form.is_valid(): billing_object = billing_form.save() shipping_object = shipping_form.save() account_object = account_form.save(commit=False) account_object.billing_address = billing_object account_object.shipping_address = shipping_object account_object.created_by = request.user account_object.save() lead_obj.delete() return HttpResponseRedirect(reverse('leads:list')) else: street1 = request.POST.get('street') city1 = request.POST.get('city') state1 = request.POST.get('state') postcode1 = request.POST.get('postcode') country1 = request.POST.get('country') shipdata = {'street1': street1, 'city1': city1, 'state1': state1, 'postcode1': postcode1, 'country1': country1} return render(request, 'leads/checkbox.html', { 'account_form': account_form, 'form1': billing_form, 'form2': shipping_form, 'form5': COUNTRIES, 'stages': STAGES, 'acc_error': account_form.errors, 'shipdata': shipdata, 'sources': LEAD_SOURCE, 'industries': INDCHOICES, 'teams': teams, 'task': lead_objects, 'post': lead_obj, 'accounts': accounts, 'counties': COUNTRIES}) if request.POST.get('contactname') == "on": contact_form = ContactForm(request.POST) address_form = BillingAddressForm(request.POST) if contact_form.is_valid() and address_form.is_valid(): address_obj = address_form.save() contact_obj = contact_form.save(commit=False) contact_obj.address = address_obj contact_obj.created_by = request.user contact_obj.save() return HttpResponseRedirect(reverse('contacts:list')) else: return render(request, 'leads/checkbox.html', { 'post': lead_obj, 'accounts': accounts, 'teams': teams, 'contact_form': contact_form, 'address_form': address_form}) if request.POST.get('opportunityname') == "on": opportunity_form = OpportunityForm(request.POST) if opportunity_form.is_valid(): opportunity_form.save() return HttpResponseRedirect(reverse('opportunities:list')) else: return render(request, 'leads/checkbox.html', { 'post': lead_obj, 'accounts': accounts, 'sources': LEAD_SOURCE, 'teams': teams, 'stages': STAGES, 'opportunity_form': opportunity_form}) else: return render(request, 'leads/checkbox.html', { 'form': account_form, 'form1': billing_form, 'form2': shipping_form, 'form5': COUNTRIES, 'industries': INDCHOICES, 'teams': teams, 'task': lead_objects, 'counties': COUNTRIES, 'post': lead_obj, 'accounts': accounts}) # Leads Conversion Functionality Ends # Comments Section Start @login_required def add_comment(request): if request.method == 'POST': lead = get_object_or_404(Lead, id=request.POST.get('leadid')) if request.user in lead.assigned_to.all() or request.user == lead.created_by: form = LeadCommentForm(request.POST) if form.is_valid(): lead_comment = form.save(commit=False) lead_comment.comment = request.POST.get('comment') lead_comment.commented_by = request.user lead_comment.lead = lead lead_comment.save() data = { "comment_id": lead_comment.id, "comment": lead_comment.comment, "commented_on": lead_comment.commented_on, "commented_by": lead_comment.commented_by.email } return JsonResponse(data) else: return JsonResponse({"error": form['comment'].errors}) else: data = {'error': "You Dont Have permissions to Comment"} return JsonResponse(data) @login_required def edit_comment(request): if request.method == "POST": comment = request.POST.get('comment') comment_id = request.POST.get("commentid") lead_comment = get_object_or_404(Comment, id=comment_id) form = LeadCommentForm(request.POST) if request.user == lead_comment.commented_by: if form.is_valid(): lead_comment.comment = comment lead_comment.save() data = {"comment": lead_comment.comment, "commentid": comment_id} return JsonResponse(data) else: return JsonResponse({"error": form['comment'].errors}) else: return JsonResponse({"error": "You dont have authentication to edit"}) else: return render(request, "404.html") @login_required def remove_comment(request): if request.method == 'POST': comment_id = request.POST.get('comment_id') comment = get_object_or_404(Comment, id=comment_id) if request.user == comment.commented_by: comment.delete() data = {"cid": comment_id} return JsonResponse(data) else: return JsonResponse({"error": "You Dont have permisions to delete"}) else: return HttpResponse("Something Went Wrong") # Comments Section End # Other Views @login_required def get_leads(request): if request.method == 'GET': leads = Lead.objects.all() return render(request, 'leads/leads_list.html', {'leads': leads}) else: return HttpResponse('Invalid Method or No Authanticated in load_calls')
import logging import inspect from ..core.memory import MemoryException, FileMap, AnonMap from .helpers import issymbolic ###################################################################### # Abstract classes for capstone/unicorn based cpus # no emulator by default from unicorn import * from unicorn.x86_const import * from unicorn.arm_const import * from capstone import * from capstone.arm import * from capstone.x86 import * logger = logging.getLogger("EMULATOR") class UnicornEmulator(object): ''' Helper class to emulate a single instruction via Unicorn. ''' def __init__(self, cpu): self._cpu = cpu text = cpu.memory.map_containing(cpu.PC) # Keep track of all memory mappings. We start with just the text section self._should_be_mapped = { text.start: (len(text), UC_PROT_READ | UC_PROT_EXEC) } # Keep track of all the memory Unicorn needs while executing this # instruction self._should_be_written = {} def reset(self): self._emu = self._unicorn() self._to_raise = None def _unicorn(self): if self._cpu.arch == CS_ARCH_ARM: return Uc(UC_ARCH_ARM, UC_MODE_ARM) elif self._cpu.arch == CS_ARCH_X86: if self._cpu.mode == CS_MODE_32: return Uc(UC_ARCH_X86, UC_MODE_32) elif self._cpu.mode == CS_MODE_64: return Uc(UC_ARCH_X86, UC_MODE_64) raise RuntimeError("Unsupported architecture") def _create_emulated_mapping(self, uc, address): ''' Create a mapping in Unicorn and note that we'll need it if we retry. :param uc: The Unicorn instance. :param address: The address which is contained by the mapping. :rtype Map ''' m = self._cpu.memory.map_containing(address) permissions = UC_PROT_NONE if 'r' in m.perms: permissions |= UC_PROT_READ if 'w' in m.perms: permissions |= UC_PROT_WRITE if 'x' in m.perms: permissions |= UC_PROT_EXEC uc.mem_map(m.start, len(m), permissions) self._should_be_mapped[m.start] = (len(m), permissions) return m def get_unicorn_pc(self): if self._cpu.arch == CS_ARCH_ARM: return self._emu.reg_read(UC_ARM_REG_R15) elif self._cpu.arch == CS_ARCH_X86: if self._cpu.mode == CS_MODE_32: return self._emu.reg_read(UC_X86_REG_EIP) elif self._cpu.mode == CS_MODE_64: return self._emu.reg_read(UC_X86_REG_RIP) def _hook_xfer_mem(self, uc, access, address, size, value, data): ''' Handle memory operations from unicorn. ''' assert access in (UC_MEM_WRITE, UC_MEM_READ, UC_MEM_FETCH) if access == UC_MEM_WRITE: self._cpu.write_int(address, value, size*8) # If client code is attempting to read a value, we need to bring it # in from Manticore state. If we try to mem_write it here, Unicorn # will segfault. We add the value to a list of things that need to # be written, and ask to restart the emulation. elif access == UC_MEM_READ: value = self._cpu.read_bytes(address, size) if address in self._should_be_written: return True self._should_be_written[address] = value self._should_try_again = True return False return True def _hook_unmapped(self, uc, access, address, size, value, data): ''' We hit an unmapped region; map it into unicorn. ''' try: m = self._create_emulated_mapping(uc, address) except MemoryException as e: self._to_raise = e self._should_try_again = False return False self._should_try_again = True return False def _interrupt(self, uc, number, data): ''' Handle software interrupt (SVC/INT) ''' from ..core.cpu.abstractcpu import Interruption self._to_raise = Interruption(number) return True def _to_unicorn_id(self, reg_name): # TODO(felipe, yan): Register naming is broken in current unicorn # packages, but works on unicorn git's master. We leave this hack # in until unicorn gets updated. if unicorn.__version__ <= '1.0.0' and reg_name == 'APSR': reg_name = 'CPSR' if self._cpu.arch == CS_ARCH_ARM: return globals()['UC_ARM_REG_' + reg_name] elif self._cpu.arch == CS_ARCH_X86: # TODO(yan): This needs to handle AF register return globals()['UC_X86_REG_' + reg_name] else: # TODO(yan): raise a more appropriate exception raise TypeError def emulate(self, instruction): ''' Emulate a single instruction. ''' # The emulation might restart if Unicorn needs to bring in a memory map # or bring a value from Manticore state. while True: self.reset() # Establish Manticore state, potentially from past emulation # attempts for base in self._should_be_mapped: size, perms = self._should_be_mapped[base] self._emu.mem_map(base, size, perms) for address, values in self._should_be_written.items(): for offset, byte in enumerate(values, start=address): if issymbolic(byte): from ..core.cpu.abstractcpu import ConcretizeMemory raise ConcretizeMemory(offset, 8, "Concretizing for emulation") self._emu.mem_write(address, ''.join(values)) # Try emulation self._should_try_again = False self._step(instruction) if not self._should_try_again: break def _step(self, instruction): ''' A single attempt at executing an instruction. ''' registers = set(self._cpu.canonical_registers) # Refer to EFLAGS instead of individual flags for x86 if self._cpu.arch == CS_ARCH_X86: # The last 8 canonical registers of x86 are individual flags; replace # with the eflags registers -= set(['CF','PF','AF','ZF','SF','IF','DF','OF']) registers.add('EFLAGS') # XXX(yan): This concretizes the entire register state. This is overly # aggressive. Once capstone adds consistent support for accessing # referred registers, make this only concretize those registers being # read from. for reg in registers: val = self._cpu.read_register(reg) if issymbolic(val): from ..core.cpu.abstractcpu import ConcretizeRegister raise ConcretizeRegister(reg, "Concretizing for emulation.", policy='ONE') self._emu.reg_write(self._to_unicorn_id(reg), val) # Bring in the instruction itself text_bytes = self._cpu.read_bytes(self._cpu.PC, instruction.size) self._emu.mem_write(self._cpu.PC, ''.join(text_bytes)) self._emu.hook_add(UC_HOOK_MEM_READ_UNMAPPED, self._hook_unmapped) self._emu.hook_add(UC_HOOK_MEM_WRITE_UNMAPPED, self._hook_unmapped) self._emu.hook_add(UC_HOOK_MEM_FETCH_UNMAPPED, self._hook_unmapped) self._emu.hook_add(UC_HOOK_MEM_READ, self._hook_xfer_mem) self._emu.hook_add(UC_HOOK_MEM_WRITE, self._hook_xfer_mem) self._emu.hook_add(UC_HOOK_INTR, self._interrupt) saved_PC = self._cpu.PC try: self._emu.emu_start(self._cpu.PC, self._cpu.PC+instruction.size, count=1) except UcError as e: # We request re-execution by signaling error; if we we didn't set # _should_try_again, it was likely an actual error if not self._should_try_again: raise if self._should_try_again: return if logger.isEnabledFor(logging.DEBUG): logger.debug("="*10) for register in self._cpu.canonical_registers: logger.debug("Register % 3s Manticore: %08x, Unicorn %08x", register, self._cpu.read_register(register), self._emu.reg_read(self._to_unicorn_id(register)) ) logger.debug(">"*10) # Bring back Unicorn registers to Manticore for reg in registers: val = self._emu.reg_read(self._to_unicorn_id(reg)) self._cpu.write_register(reg, val) #Unicorn hack. On single step unicorn wont advance the PC register mu_pc = self.get_unicorn_pc() if saved_PC == mu_pc: self._cpu.PC = saved_PC + instruction.size # Raise the exception from a hook that Unicorn would have eaten if self._to_raise: raise self._to_raise return
#!/usr/bin/env python3 import os import matplotlib import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib.animation as animation from mpl_toolkits.mplot3d import Axes3D import numpy as np from tqdm import tqdm from util.constants import PLEARN_ACTIONS, plearn_action_to_text from mivp_agent.util.data_structures import LimitedHistory def plot_rewards(reward_function, defender=False): # Init lists to graph x_pos = [] y_pos = [] v_pos = [] for x in tqdm(range(-85, 85, 4)): for y in range(-115, 20, 4): # Find the max value across all headings max_value = None for action in PLEARN_ACTIONS: fake_state = { 'NAV_X': x, 'NAV_Y': y, 'NAV_HEADING': PLEARN_ACTIONS[action]['course'], 'TAGGED': False, 'NODE_REPORTS': { 'evan': { 'NAV_X': 200, 'NAV_Y': 200, 'NAV_HEADING': 200, } } } value = reward_function(fake_state) if max_value is None or value > max_value: max_value = value v_pos.append(max_value.item(0)) x_pos.append(x) y_pos.append(y) fig = plt.figure() ax = plt.axes(projection='3d') # Do the plotting ax.plot([56,-83,-53,82,56], [16,-49,-114,-56,16], 'red', linewidth=4) ax.plot_trisurf(x_pos, y_pos, v_pos) plt.show() class TestGrapher: def __init__(self, save_dir=None): # Parse args self.save_dir = save_dir # Setup matplotlib matplotlib.use('TkAgg') plt.ion() # Configure axes self.fig, self.axs = plt.subplots(2,2) self.axs[0, 0].set_title("Success Precent") self.success, = self.axs[0,0].plot([], [], '-go') self.axs[0,0].set_ylim(-5,100) self.axs[0, 1].set_title("Min Dist to Flag") self.min_dist, = self.axs[0,1].plot([], [], '-bo') self.axs[1, 0].set_title("Avg Durration") self.avg_duration, = self.axs[1,0].plot([], [], '-mo') self.axs[1,0].set_ylim(0,100) self.other, = self.axs[1,1].plot([], [], '-ro') # Stylisitic details self.fig.tight_layout(pad=2.0) self.fig.set_size_inches(8, 7) self.fig.canvas.manager.set_window_title('pLearn Tester') # Create data structures self.iters = [] self.success_data = [] self.min_dist_data = [] self.avg_duration_data = [] self.other_data = [] self.max_iter = -1 # Show graph just for the nice-ness factor :) self._plot() def add_iteration(self, iter, success_pcnt, min_dist, avg_duration, other, plot=True): self.iters.append(iter) self.success_data.append(success_pcnt) self.min_dist_data.append(min_dist) self.avg_duration_data.append(avg_duration) self.other_data.append(other) if iter > self.max_iter: self.max_iter = iter if plot: self._plot() def _plot(self): right_bound = max(self.max_iter, 1) # So matplotlib doesn yell about set_xlim(0,0) self.success.set_data(self.iters, self.success_data) self.axs[0,0].set_xlim(0, right_bound) self.min_dist.set_data(self.iters, self.min_dist_data) self.axs[0,1].relim() self.axs[0,1].set_xlim(0, right_bound) self.axs[0,1].autoscale() self.avg_duration.set_data(self.iters, self.avg_duration_data) self.axs[1,0].set_xlim(0, right_bound) self.other.set_data(self.iters, self.other_data) self.axs[1,1].relim() self.axs[1,1].set_xlim(0, right_bound) self.axs[1,1].autoscale() self.fig.canvas.draw() self.fig.canvas.flush_events() if self.save_dir != None: plt.savefig(os.path.join(self.save_dir, 'test_graph.png')) class DebugGrapher: FRAME_SIZE = 25 def __init__(self, save_dir=None): # Parse args self.save_dir = save_dir # Setup matplotlib matplotlib.use('TkAgg') plt.ion() # Create data structures self.data_entries = len(PLEARN_ACTIONS) + 2 # 2 for iters and td_data self.history = LimitedHistory(self.FRAME_SIZE, self.data_entries) self.episode_iters = [] self.expected_reward = [] # Configure figure # Gridspec reference: https://matplotlib.org/stable/tutorials/intermediate/gridspec.html self.fig = plt.figure(constrained_layout=True) gs = self.fig.add_gridspec(2, 2) self.ax1 = self.fig.add_subplot(gs[0,:]) # First row all columns self.ax2 = self.fig.add_subplot(gs[1,0]) self.ax3 = self.fig.add_subplot(gs[1,1]) # Stylisitic details self.fig.tight_layout(pad=2.0) self.fig.set_size_inches(8, 7) self.fig.canvas.manager.set_window_title('pLearn Debugging Charts') # Setup lines self.ax1.set_title("~Relative~ Action Value") self.action_lines = {} self.action_labels = {} for a in PLEARN_ACTIONS: self.action_lines[a], = self.ax1.plot([], []) self.action_labels[a] = self.ax1.text(0, 0, "") self.ax2.set_title("Expected Reward") self.reward, = self.ax2.plot(self.episode_iters, self.expected_reward) self.ax3.set_title("Loop Time (in seconds)") self.td, = self.ax3.plot([], [],) # Show graph just for the nice-ness factor :) self._plot() def add_iteration(self, iter, action_values, episode_iters, expected_reward, td, plot=True): # Store reward info self.episode_iters = episode_iters self.expected_reward = expected_reward # Construct data frame frame_data = [iter, td] for a in PLEARN_ACTIONS: frame_data.append(action_values[a]) # Push to history self.history.push_frame(np.array(frame_data)) # Plot if plot: self._plot() def _plot(self): # Get data from history iters = self.history.entry_history(0) td = self.history.entry_history(1) a_values = self.history.select_history([2,3,4,5,6,7], scale=1.0) for i, a in enumerate(PLEARN_ACTIONS): # Set line data if a_values is not None: self.action_lines[a].set_data(iters, a_values[:,i]) # Reset labels self.action_labels[a].set_visible(False) self.action_labels[a] = self.ax1.text( iters[0]+3, # X position a_values[:,i][0], # Y position f'{plearn_action_to_text(a)} {a}') self.reward.set_data(self.episode_iters, self.expected_reward) self.td.set_data(iters, td) # Rescale x_min = 0 x_max = 1 try: x_min = iters.min() x_max = iters.max()+35 except ValueError: pass self.ax1.relim() self.ax1.autoscale() self.ax1.set_xlim(x_min, x_max) self.ax2.relim() self.ax2.autoscale() self.ax3.relim() self.ax3.autoscale() self.fig.canvas.draw() self.fig.canvas.flush_events() if self.save_dir != None: plt.savefig(os.path.join(self.save_dir, 'debug_graph.png')) ''' # Update the value for each action for a in PLEARN_ACTIONS: # Normalize the data between 0 and 1 self.action_lines[a].set_data(self.iters, self.action_data[a]) # Update the action plot window self.axs[0].relim() self.axs[0].set_yscale('log') self.axs[0].autoscale() self.td.set_data(self.iters, self.td_data) self.axs[1].relim() self.axs[1].autoscale()'''
from collections import Counter from bs4 import BeautifulSoup from bs4.dammit import EncodingDetector from sparkcc import CCIndexWarcSparkJob from word_count import WordCountJob class CCIndexWordCountJob(CCIndexWarcSparkJob, WordCountJob): """ Word count (frequency list) from WARC records matching a SQL query on the columnar URL index """ name = "CCIndexWordCount" records_parsing_failed = None records_non_html = None def init_accumulators(self, sc): super(CCIndexWordCountJob, self).init_accumulators(sc) self.records_parsing_failed = sc.accumulator(0) self.records_non_html = sc.accumulator(0) def log_aggregators(self, sc): super(CCIndexWordCountJob, self).log_aggregators(sc) self.log_aggregator(sc, self.records_parsing_failed, 'records failed to parse = {}') self.log_aggregator(sc, self.records_non_html, 'records not HTML = {}') @staticmethod def reduce_by_key_func(a, b): # sum values of tuple <term_frequency, document_frequency> return ((a[0] + b[0]), (a[1] + b[1])) def html_to_text(self, page, record): try: encoding = record.rec_headers['WARC-Identified-Content-Charset'] if not encoding: for encoding in EncodingDetector(page, is_html=True).encodings: # take the first detected encoding break soup = BeautifulSoup(page, 'lxml', from_encoding=encoding) for script in soup(['script', 'style']): script.extract() return soup.get_text(' ', strip=True) except Exception as e: self.get_logger().error("Error converting HTML to text for {}: {}", record.rec_headers['WARC-Target-URI'], e) self.records_parsing_failed.add(1) return '' def process_record(self, record): if record.rec_type != 'response': # skip over WARC request or metadata records return if not self.is_html(record): self.records_non_html.add(1) return page = record.content_stream().read() text = self.html_to_text(page, record) words = map(lambda w: w.lower(), WordCountJob.word_pattern.findall(text)) for word, count in Counter(words).items(): yield word, (count, 1) if __name__ == '__main__': job = CCIndexWordCountJob() job.run()
import pytest import pathlib from align.schema.subcircuit import SubCircuit from align.schema.parser import SpiceParser # WARNING: Parser capitalizes everything internally as SPICE is case-insensitive # Please formulate tests accordingly @pytest.fixture def setup_basic(): return 'X1 a b testdev x=1f y=0.1' @pytest.fixture def setup_multiline(): return ''' X1 a b testdev x =1f y= 0.1 X2 a b testdev x = {capval*2} ''' @pytest.fixture def setup_realistic(): return ''' R1 vcc outplus 1e4 R2 vcc outminus 1e4 M1 outplus inplus src 0 NMOS l=0.014u nfin=2 M2 outminus inminus src 0 NMOS l=0.014u nfin=2 C1 outplus 0 1e-12 C2 outminus 0 1e-12 ''' @pytest.fixture def setup_annotation(): return ''' .subckt diffamp vcc outplus outminus inplus src 0 inminus * This is one awesome diffamp * Subcircuit constraints can be directly specified here * @: Order(instances=['R2', 'M1'], direction='left_to_right') * @: Order(instances=['M1', 'M2'], direction='left_to_right') R1 vcc outplus 1e4; Or even here! Amazing ! R2 vcc outminus 1e4; @: Order(instances=['R1', 'R2'], direction='left_to_right') M1 outplus inplus src 0 NMOS l=0.014u nfin=2 M2 outminus inminus src 0 NMOS l=0.014u nfin=2 .ends ''' @pytest.fixture def parser(): parser = SpiceParser() return parser def test_lexer_basic(setup_basic): str_ = setup_basic types = ['NAME', 'NAME', 'NAME', 'NAME', 'NAME', 'EQUALS', 'NUMBER', 'NAME', 'EQUALS', 'NUMBER'] assert [tok.type for tok in SpiceParser._generate_tokens(str_)] == types def test_lexer_with_comments1(setup_basic): str_ = '''* Some comment here X1 a b testdev; COMMENT ABOUT M1 pins ; SOME MORE COMMENTS ABOUT PARAMETERS + x=1f y=0.1; AND A FW MORE FOR GOOD MEASURE ''' tokens = list(SpiceParser._generate_tokens(str_)) assert tokens.pop(0).type == 'NEWL' assert all(tok1.type == tok2.type and tok1.value == tok2.value for tok1, tok2 in zip(tokens, SpiceParser._generate_tokens(setup_basic))), tokens def test_lexer_with_comments2(setup_basic): str_ = '''; Some comment here X1 a b testdev; COMMENT ABOUT M1 pins * SOME MORE COMMENTS ABOUT PARAMETERS + x=1f y=0.1; AND A FW MORE FOR GOOD MEASURE ''' tokens = list(SpiceParser._generate_tokens(str_)) assert tokens.pop(0).type == 'NEWL' assert all(tok1.type == tok2.type and tok1.value == tok2.value for tok1, tok2 in zip(tokens, SpiceParser._generate_tokens(setup_basic))), tokens def test_lexer_multiline(setup_multiline): str_ = setup_multiline types = ['NEWL', 'NAME', 'NAME', 'NAME', 'NAME', 'NAME', 'EQUALS', 'NUMBER', 'NAME', 'EQUALS', 'NUMBER', 'NEWL', 'NAME', 'NAME', 'NAME', 'NAME', 'NAME', 'EQUALS', 'EXPR', 'NEWL'] assert [tok.type for tok in SpiceParser._generate_tokens(str_)] == types def test_lexer_annotation(setup_annotation): str_ = setup_annotation types = ['NEWL', 'DECL', 'NAME', 'NAME', 'NAME', 'NAME', 'NAME', 'NAME', 'NUMBER', 'NAME', 'ANNOTATION', 'ANNOTATION', 'NEWL', 'NAME', 'NAME', 'NAME', 'NUMBER', 'NEWL', 'NAME', 'NAME', 'NAME', 'NUMBER', 'ANNOTATION', 'NEWL', 'NAME', 'NAME', 'NAME', 'NAME', 'NUMBER', 'NAME', 'NAME', 'EQUALS', 'NUMBER', 'NAME', 'EQUALS', 'NUMBER', 'NEWL', 'NAME', 'NAME', 'NAME', 'NAME', 'NUMBER', 'NAME', 'NAME', 'EQUALS', 'NUMBER', 'NAME', 'EQUALS', 'NUMBER', 'NEWL', 'DECL', 'NEWL'] assert [tok.type for tok in SpiceParser._generate_tokens(str_)] == types def test_lexer_realistic(setup_realistic): str_ = setup_realistic types = ['NEWL', 'NAME', 'NAME', 'NAME', 'NUMBER', 'NEWL', 'NAME', 'NAME', 'NAME', 'NUMBER', 'NEWL', 'NAME', 'NAME', 'NAME', 'NAME', 'NUMBER', 'NAME', 'NAME', 'EQUALS', 'NUMBER', 'NAME', 'EQUALS', 'NUMBER', 'NEWL', 'NAME', 'NAME', 'NAME', 'NAME', 'NUMBER', 'NAME', 'NAME', 'EQUALS', 'NUMBER', 'NAME', 'EQUALS', 'NUMBER', 'NEWL', 'NAME', 'NAME', 'NUMBER', 'NUMBER', 'NEWL', 'NAME', 'NAME', 'NUMBER', 'NUMBER', 'NEWL'] assert [tok.type for tok in SpiceParser._generate_tokens(str_)] == types def test_parser_basic(setup_basic, parser): parser.library['TESTDEV'] = SubCircuit(name='TESTDEV', pins=['+', '-'], parameters={'X':'1F', 'Y':'0.1'}) parser.parse(setup_basic) assert len(parser.circuit.elements) == 1 assert parser.circuit.elements[0].name == 'X1' assert parser.circuit.elements[0].model.name == 'TESTDEV' assert parser.circuit.nets == ['A', 'B'] def test_parser_multiline(setup_multiline, parser): parser.library['TESTDEV'] = SubCircuit(name='TESTDEV', pins=['+', '-'], parameters={'X':'1F', 'Y':'0.1'}) parser.parse(setup_multiline) assert len(parser.circuit.elements) == 2 assert parser.circuit.elements[0].name == 'X1' assert parser.circuit.elements[1].name == 'X2' assert parser.circuit.elements[0].model.name == 'TESTDEV' assert parser.circuit.elements[1].model.name == 'TESTDEV' assert parser.circuit.nets == ['A', 'B'] def test_parser_realistic(setup_realistic, parser): parser.parse(setup_realistic) assert len(parser.circuit.elements) == 6, parser.circuit.elements assert [x.name for x in parser.circuit.elements] == ['R1', 'R2', 'M1', 'M2', 'C1', 'C2'], parser.circuit.elements assert len(parser.circuit.nets) == 7, parser.circuit.nets assert parser.circuit.nets == ['VCC', 'OUTPLUS', 'OUTMINUS', 'INPLUS', 'SRC', '0', 'INMINUS'], parser.circuit.nets def test_parser_annotation(setup_annotation, parser): parser.parse(setup_annotation) assert 'DIFFAMP' in parser.library assert len(parser.library['DIFFAMP'].elements) == 4 assert [x.name for x in parser.library['DIFFAMP'].elements] == ['R1', 'R2', 'M1', 'M2'], parser.library['DIFFAMP'].elements assert len(parser.library['DIFFAMP'].nets) == 7, parser.library['DIFFAMP'].nets assert parser.library['DIFFAMP'].nets == ['VCC', 'OUTPLUS', 'OUTMINUS', 'INPLUS', 'SRC', '0', 'INMINUS'], parser.circuit.nets assert len(parser.library['DIFFAMP'].constraints) == 3 def test_subckt_decl(setup_realistic, parser): parser.parse(f''' .subckt diffamp vcc outplus outminus inplus src 0 inminus .param res = 100 {setup_realistic} .ends X1 vcc outplus outminus inplus src 0 inminus diffamp res=200 ''') assert 'DIFFAMP' in parser.library assert len(parser.library['DIFFAMP'].elements) == 6 assert len(parser.circuit.elements) == 1 assert parser.circuit.elements[0].model.name == 'DIFFAMP' def test_model(parser): parser.parse('.MODEL nmos_rvt nmos KP=0.5M VT0=2') assert 'NMOS_RVT' in parser.library assert list(parser.library['NMOS_RVT'].parameters.keys()) == ['W', 'L', 'NFIN', 'KP', 'VT0'] def test_ota_cir_parsing(parser): with open((pathlib.Path(__file__).parent.parent / 'files' / 'ota.cir').resolve()) as fp: parser.parse(fp.read()) assert 'OTA' in parser.library assert len(parser.library['OTA'].elements) == 10 def test_ota_sp_parsing(parser): with open((pathlib.Path(__file__).parent.parent / 'files' / 'ota.sp').resolve()) as fp: parser.parse(fp.read()) assert 'OTA' in parser.library assert len(parser.library['OTA'].elements) == 10 def test_basic_template_parsing(parser): libsize = len(parser.library) with open((pathlib.Path(__file__).parent.parent / 'files' / 'basic_template.sp').resolve()) as fp: parser.parse(fp.read()) assert len(parser.library) - libsize == 31
import torch import torch.nn as nn from torch.nn import LSTM, LSTMCell, Linear, Parameter class InteractorwoLSTM(nn.Module): def __init__(self, hidden_size_textual: int, hidden_size_visual: int, hidden_size_ilstm: int): """ :param input_size: :param hidden_size: """ super(InteractorwoLSTM, self).__init__() # represented by W_S, W_R, W_V with bias b self.projection_S = Linear(hidden_size_textual, hidden_size_ilstm, bias=True) self.projection_V = Linear(hidden_size_visual, hidden_size_ilstm, bias=True) #self.projection_R = Linear(hidden_size_ilstm, hidden_size_ilstm, bias=True) # parameter w with bias c self.projection_w = Linear(hidden_size_ilstm, 1, bias=True) self.hidden_size_textual = hidden_size_textual self.hidden_size_visual = hidden_size_visual self.hidden_size_ilstm = hidden_size_ilstm # self.iLSTM = LSTMCell(input_size=hidden_size_textual, # hidden_size=hidden_size_ilstm) def get_mask_from_sequence_lengths(self, sequence_lengths: torch.Tensor, max_length: int): ones = sequence_lengths.new_ones(sequence_lengths.size(0), max_length) range_tensor = ones.cumsum(dim=1) return (sequence_lengths.unsqueeze(1) >= range_tensor).long() def masked_softmax(self, vector: torch.Tensor, mask: torch.Tensor, dim: int = -1, memory_efficient: bool = False, mask_fill_value: float = -1e32): if mask is None: result = torch.nn.functional.softmax(vector, dim=dim) else: mask = mask.float() while mask.dim() < vector.dim(): mask = mask.unsqueeze(1) if not memory_efficient: # To limit numerical errors from large vector elements outside the mask, we zero these out. result = torch.nn.functional.softmax(vector * mask, dim=dim) result = result * mask result = result / (result.sum(dim=dim, keepdim=True) + 1e-13) else: masked_vector = vector.masked_fill((1 - mask).byte(), mask_fill_value) result = torch.nn.functional.softmax(masked_vector, dim=dim) return result + 1e-13 def forward(self, h_s: torch.Tensor, h_v: torch.Tensor, lengths=None,): """ :param h_v: with shape (n_batch, T, hidden_size_visual) :param h_s: with shape (n_batch, N, hidden_size_textual) :return: outputs of the iLSTM with shape (n_batch, T, hidden_size_ilstm) """ n_batch, T, N = h_v.shape[0], h_v.shape[1], h_s.shape[1] # h_r_{t-1} in the paper # h_r_prev = torch.zeros([n_batch, self.hidden_size_ilstm], device=self.device) # c_r_prev = torch.zeros([n_batch, self.hidden_size_ilstm], device=self.device) token_mask = self.get_mask_from_sequence_lengths(lengths,N) #(n_batch, N) outputs = [] attention_weights = [] for t in range(T): beta_t = self.projection_w(torch.tanh(self.projection_S(h_s) + self.projection_V(h_v[:, t, :]).unsqueeze(dim=1)) ).squeeze(dim=2) # shape (n_batch, N) # alpha_t = torch.softmax(beta_t, dim=1) # shape: (n_batch, N) alpha_t = self.masked_softmax(beta_t,token_mask,dim=1) # computing H_t_s with shape (n_batch, hidden_size_textual) H_t_s = torch.bmm(h_s.permute(0, 2, 1), alpha_t.unsqueeze(dim=2)).squeeze(dim=2) #r_t = torch.cat([h_v[:, t, :], H_t_s], dim=1) # shape (n_batch, hidden_size_textual+hidden_size_visual) # r_t = h_v[:, t, :] - H_t_s # computing h_r_new and c_r_new with shape (n_batch, hidden_size_ilstm) # h_r_new, c_r_new = self.iLSTM(r_t, (h_r_prev, c_r_prev)) outputs.append(H_t_s.unsqueeze(dim=1)) # h_r_prev, c_r_prev = h_r_new, c_r_new # attention_weights.append(alpha_t.unsqueeze(dim=1)) return torch.cat(outputs, dim=1) @property def device(self) -> torch.device: """ Determine which device to place the Tensors upon, CPU or GPU. """ return self.projection_S.weight.device
from flask import Flask from flask import request app = Flask(__name__) # level 0 @app.route('/') def home_page(): html = """ <head> <title>我的网站</title> </head> <body> 这是我的网站 </body> """ return html # level 1 @app.route('/<name>') def sayhello(name): html = f""" <h3>hello, {name}</h3> """ return html from flask import redirect @app.route('/baidu') def tobaidu(): return redirect('http://www.baidu.com') from flask import render_template @app.route('/render') def render(): data = {'Name': "Mory", 'Age': 24} return render_template('mysite.html', **data) @app.route('/renderlist') def renderlist(): data = "Ann Mory Jenny".split() return render_template('mysitelist.html', names=data) if __name__ == '__main__': app.run(host='localhost', port=8000, debug=True)
#2 step process take image of background and select a colour for the cloth. #code for image of the background import cv2 #This is my webcam cap = cv2.VideoCapture(0) #back is what camera is reading while cap.isOpened(): ret,back=cap.read() #Here i am simply reading from my webcam if ret: #same as writing if ret == True cv2.imshow("image",back) if cv2.waitKey(5)==ord('q'):#ord is giving unicode value of q ie when q is cv2.imwrite('image.jpg',back)#pressed on keypad capture and save the image break cap.release() cap.destroyAllWindows()
# -*- coding: utf-8 -*- # Inspired by: # https://github.com/lingdb/CoBL/issues/223#issuecomment-256815113 from __future__ import unicode_literals, print_function from django.db import migrations from cobl.source_scripts.handle_duplicate_sources import handle_sources, \ sourcesExist sources_changes = {'merge': {}, 'delete': [], 'deprecate': [35, 191, 139, 362] } def forwards_func(apps, schema_editor): Source = apps.get_model('lexicon', 'Source') if sourcesExist(sources_changes, Source): handle_sources(sources_changes) def reverse_func(apps, schema_editor): print('Reverse of 306_0131_deprecate_sources does nothing.') class Migration(migrations.Migration): dependencies = [('lexicon', '306_0130_auto_20161104_1721')] operations = [ migrations.RunPython(forwards_func, reverse_func), ]
import pandas as pd def load_data(portfolio_data_absolute_path="/home/chris/Dropbox/Finance/data/portfolio_trades.ods", stock_data_absolute_path="/home/chris/Dropbox/Finance/data/stock_trades.ods", income_data_absolute_path="/home/chris/Dropbox/Finance/data/income.ods", etf_master_data_absolute_path="/home/chris/Dropbox/Finance/data/generated/master_data_stocks.ods", stock_price_data_absolute_path="/home/chris/Dropbox/Finance/data/generated/stock_prices.ods", cashflow_path = "/home/chris/Dropbox/Finance/data/data_cashflow/bilanz_full.csv", crypto_path = "/home/chris/Dropbox/Finance/data/crypto/crypto_trades_manual.ods", include_speculation=False): """ Needs odfpy library to load .ods files! Loads all necessary data sources of the given portfolio: ETF savings portfolio data, speculation data (stocks, cryptos, etc). :param order_data__absolute_path: path to source data for ETF portfolio (filetype: .ods) :param etf_master_data_absolute_path: path to master data of ETFs (filetype: .ods) :param stock_price_data_absolute_path: path to price data of ETFs (filetype: .ods) :param include_speculation: Whether orders of speculation portfolio should be included in output :param cashflow_path: csv file of cashflow data :return: tupel of pd.DataFrames with portfolio transactions and master data """ orders_portfolio = pd.read_excel(portfolio_data_absolute_path, engine="odf", sheet_name="Buys") dividends_portfolio = pd.read_excel(portfolio_data_absolute_path, engine="odf", sheet_name="Dividends") orders_speculation = pd.read_excel(stock_data_absolute_path, engine="odf", sheet_name="Buys") income = pd.read_excel(income_data_absolute_path, engine="odf") stock_prices = pd.read_csv(stock_price_data_absolute_path) etf_master = pd.read_csv(etf_master_data_absolute_path) cashflow_init = pd.read_csv(cashflow_path) df_crypto_deposits = pd.read_excel(crypto_path, engine="odf", sheet_name="Deposits", skiprows=2, usecols="A:G") df_crypto_trades = pd.read_excel(crypto_path, engine="odf", sheet_name="Trades", skiprows=1) if include_speculation == True: return ((etf_master, orders_portfolio, dividends_portfolio, income, stock_prices, cashflow_init, orders_speculation, df_crypto_deposits, df_crypto_trades)) else: return ((etf_master, orders_portfolio, dividends_portfolio, income, stock_prices, cashflow_init, None, df_crypto_deposits, df_crypto_trades)) def cleaning_cashflow(df_input: pd.DataFrame) -> pd.DataFrame: """ Data cleaning and preprocessing of cashflow data. :param df_input: Multiple toshl monthly-exports appended into a single dataframe :return: preprocessed dataframe """ import numpy as np assert df_input.drop("Description", axis=1).isna().sum().sum() == 0, \ f"There are NaN values in inputfile: {path_data}{filename_cashflow}" ### Data cleaning df_init = df_input.copy() df_init['Date'] = pd.to_datetime(df_init['Date'], format='%m/%d/%y') df_init.drop(columns=['Account', 'Currency', 'Main currency', 'Description'], inplace=True) df_init['Expense amount'] = df_init['Expense amount'].str.replace(',', '') df_init['Income amount'] = df_init['Income amount'].str.replace(',', '').astype(np.float64) df_init['In main currency'] = df_init['In main currency'].str.replace(',', '') df_init['Expense amount'] = df_init['Expense amount'].astype(np.float64) df_init['In main currency'] = df_init['In main currency'].astype(np.float64) ### Preprocessing of cashflow amounts df_init['Amount'] = pd.Series([-y if x > 0. else y for x, y in zip(df_init['Expense amount'], df_init['In main currency'] ) ] ) assert df_init[(~df_init["Income amount"].isin(["0.0", "0"])) & (df_init["In main currency"] != df_init["Amount"]) ].count().sum() == 0, "Income amount does not match with main currency amount!" assert df_init[(~df_init["Expense amount"].isin(["0.0", "0"])) & (-df_init["In main currency"] != df_init["Amount"]) ].count().sum() == 0, "Expense amount does not match with main currency amount!" ### Remap all tags with category "Urlaub" to "old-tag, Urlaub" and map afterwards all double-tags ### containing "Urlaub" to the Urlaub tag df_init.loc[df_init["Category"] == "Urlaub", "Tags"] = df_init["Tags"].apply(lambda tag: tag + ", Urlaub") df_init["split_tags"] = df_init["Tags"].apply(lambda x: x.split(",")) assert df_init[df_init["split_tags"].apply(len) > 1]["split_tags"].apply(lambda x: \ "Urlaub" in [s.strip() for s in x] ).all() == True,\ 'Some entries with multiple tags do not contain "Urlaub"! Mapping not possible!' df_init.loc[df_init["split_tags"].apply(len) > 1, "Tags"] = "Urlaub" df_init = df_init[["Date", "Category", "Tags", "Amount"]] return(df_init) def split_cashflow_data(df_cleaned: pd.DataFrame) -> pd.DataFrame: """ Splits whole cashflow data into incomes and expenses and groups it monthly and sums amounts per tag :param df_cleaned: Cleaned dataframe of cashflow :return: Tuple of dataframes holding incomes and expenses, each grouped by month """ needed_columns = ["Tags", "Date", "Amount"] assert set(needed_columns).intersection(set(df_cleaned.columns)) == set(needed_columns), \ "Columns missing! Need: {0}, Have: {1}".format(needed_columns, list(df_cleaned.columns)) df_grouped = df_cleaned.groupby([pd.Grouper(key='Date', freq='1M'), 'Tags']).sum() incomes = df_grouped[df_grouped["Amount"] > 0.].copy() expenses = df_grouped[df_grouped["Amount"] <= 0.].copy() return((incomes, expenses)) def preprocess_cashflow(df: pd.DataFrame) -> pd.DataFrame: """ Remap tags of input data to custom categories, and change the format of the dataframe in order to easily to computations and plots of the cashflow data. :param df: Dataframe, holding either incomes or expenses (cleaned) and grouped by month (tags as rows) :return: dataframe, where each row consists of cashflow data of of a month, each column represents a custom category """ assert isinstance(df.index, pd.core.indexes.multi.MultiIndex) and \ set(df.index.names) == set(["Date", "Tags"]) and \ list(df.columns) == ["Amount"], "Dataframe is not grouped by month!" ### Define custom categories for all tags of Toshl: Make sure category names differ from tag-names, ### otherwise column is dropped and aggregate is wrong category_dict = { "home": ['rent', 'insurance', 'Miete'], "food_healthy": ['restaurants', 'Lebensmittel', 'groceries', 'Restaurants', 'Restaurant Mittag'], "food_unhealthy": ['Fast Food', 'Süßigkeiten'], "alcoholic_drinks": ['alcohol', 'Alkohol'], "non-alcoholic_drinks": ['Kaffee und Tee', 'Erfrischungsgetränke', 'coffee & tea', 'soft drinks'], "travel_vacation": ['sightseeing', 'Sightseeing', 'Beherbergung', 'accommodation', 'Urlaub'], "transportation": ['bus', 'Bus', 'taxi', 'Taxi', 'metro', 'Metro', 'Eisenbahn', 'train', 'car', 'Auto', 'parking', 'airplane', 'fuel', 'Flugzeug'], "sports": ['training', 'Training', 'MoTu', 'Turnier', 'sport equipment', 'Billard', 'Konsum Training'], "events_leisure_books_abos": ['events', 'Events', 'adult fun', 'Spaß für Erwachsene', 'games', 'sport venues', 'membership fees', 'apps', 'music', 'books'], "clothes_medicine": ['clothes', 'accessories', 'cosmetics', 'medicine', 'hairdresser', 'medical services', 'medical servies', "shoes"], "private_devices": ['devices', 'bike', 'bicycle', 'movies & TV', 'mobile phone', 'home improvement', 'internet', 'landline phone', 'furniture'], "presents": ['birthday', 'X-Mas'], "other": ['wechsel', 'income tax', 'tuition', 'publications', 'Spende'], "stocks": ['equity purchase'], #### Income categories "compensation_caution": ["Entschädigung"], "salary": ["Salary", "Gehalt Vorschuss"], "present": ["Geschenk"], "tax_compensation": ["Kirchensteuer Erstattung", "Steuerausgleich"], "investment_profit": ["Investing"] } from functools import reduce category_list = reduce(lambda x, y: x + y, category_dict.values()) ### Need another format of the table, fill NaNs with zero and drop level 0 index "Amount" pivot_init = df.unstack() pivot_init.fillna(0, inplace=True) pivot_init.columns = pivot_init.columns.droplevel() #### Extract expenses and incomes from building-upkeep (caution) when switching flats if 'building upkeep' in pivot_init.columns: building_upkeep = pivot_init['building upkeep'] pivot_init.drop(columns=['building upkeep'], inplace=True) elif 'Wechsel' in pivot_init.columns: building_upkeep = pivot_init['Wechsel'] pivot_init.drop(columns=['Wechsel'], inplace=True) else: building_upkeep = None ### Apply custom category definition to dataframe not_categorized = [tag for tag in pivot_init.columns if tag not in category_list] assert len(not_categorized) == 0, "There are some tags, which are not yet categorized: {}".format(not_categorized) pivot = pivot_init.copy() for category, tag_list in category_dict.items(): tag_list_in_data = list(set(tag_list).intersection(set(pivot.columns))) pivot[category] = pivot[tag_list_in_data].sum(axis=1) pivot.drop(columns=tag_list_in_data, inplace=True) ### Keep only categories with non-zero total amount in dataframe category_sum = pivot.sum().reset_index() nonzero_categories = list(category_sum[category_sum[0] != 0.]["Tags"]) pivot = pivot[nonzero_categories] return((building_upkeep, pivot)) def combine_incomes(toshl_income, excel_income): """ Combines two data sources of incomes: toshl incomes and incomes from cashflow excel. :param toshl_income: Preprocessed dataframe of toshl incomes (after cleaning and splitting) :param excel_income: Raw excel income data :return: Total income data """ df_in = toshl_income.reset_index().copy() df_in["Tags"] = df_in["Tags"].apply(lambda x: "Salary" if x in ["Privat", "NHK", "OL"] else x) df_in2 = excel_income.copy() df_in2 = df_in2[["Datum", "Art", "Betrag"]].rename(columns={"Datum": "Date", "Art": "Tags", "Betrag": "Amount"}).dropna() df_in2["Date"] = pd.to_datetime(df_in2["Date"], format="%d.%m.%Y") df_in2["Tags"] = df_in2["Tags"].apply(lambda x: "Salary" if x in ["Gehalt", "Sodexo"] else x) df_income = pd.concat([df_in, df_in2], ignore_index=True) assert df_income.count()[0] == df_in.count()[0] + df_in2.count()[0], "Some income rows were lost!" df_income = df_income.groupby([pd.Grouper(key='Date', freq='1M'), 'Tags']).sum() return(df_income) def preprocess_prices(df_prices: pd.DataFrame) -> pd.DataFrame: """ Preprocessing of price dataframe. Get latest available price. :param df_prices: Needed columns: ISIN, Price, Datum, Currency :return: dataframe containing prices of stocks defined by ISIN on latest available date """ dfp = df_prices.copy() assert dfp["Currency"].drop_duplicates().count() == 1, "Multiple currencies used for price data!" assert dfp["Currency"].iloc[0] == "EUR", "Currency is not Euro!" dfp["Date"] = pd.to_datetime(dfp["Date"], format="%d.%m.%Y") latest_date = dfp["Date"].max() df_current_prices = dfp[dfp["Date"] == latest_date].reset_index(drop=True) return(df_current_prices) def preprocess_orders(df_orders: pd.DataFrame) -> pd.DataFrame: """ Set datatypes of columns and split input into dividends transactions and savings-plan transactions. :param df_orders: Includes all transaction data of the portfolio, all columns in list portfolio_columns need to be present, Kommentar column needs to be either "monatlich" (transaction of the savings plan, an ETF is bought) or "Dividende" (income) :return: tuple of orders- and dividend transaction entries """ orders_portfolio = df_orders.copy() portfolio_columns = ["Index", "Datum", "Kurs", "Betrag", "Kosten", "Anbieter", "Name", "ISIN"] new_portfolio_columns = ["Index", "Date", "Price", "Investment", "Ordercost", "Depotprovider", "Name", "ISIN"] rename_columns = {key: value for key, value in zip(portfolio_columns, new_portfolio_columns)} orders_portfolio = orders_portfolio.rename(columns=rename_columns) assert set(orders_portfolio.columns).intersection(set(new_portfolio_columns)) == set(new_portfolio_columns), \ "Some necessary columns are missing in the input dataframe!" ### Keep only valid entries orders_portfolio = orders_portfolio[~orders_portfolio["Investment"].isna()] orders_portfolio = orders_portfolio[orders_portfolio["Art"] == "ETF Sparplan"] orders_portfolio = orders_portfolio[new_portfolio_columns] orders_portfolio = orders_portfolio[~orders_portfolio["Date"].isna()] orders_portfolio["Date"] = pd.to_datetime(orders_portfolio["Date"], format="%d.%m.%Y") orders_portfolio["Index"] = orders_portfolio["Index"].astype(int) assert (orders_portfolio[orders_portfolio["Investment"] > 0.].count() != 0).any() == False, \ "Positive Einträge im Orderportfolio!" orders_portfolio["Investment"] = -orders_portfolio["Investment"] orders_portfolio["Ordercost"] = -orders_portfolio["Ordercost"] return (orders_portfolio) def preprocess_etf_masterdata(df_master: pd.DataFrame) -> pd.DataFrame: """ Convert columns "physical" and "Acc" to booleans and map all entries in "Region" containing "Emerging" to "Emerging" :param df_master: Master data of all ETFs, columns in etf_columns are required :return: preprocessed dataframe """ etf_master = df_master.copy() etf_columns = ["Type", "Name", "ISIN", "Region", "Replikationsmethode", "Ausschüttung", "TER%"] new_etf_columns = ["Type", "Name", "ISIN", "Region", "Replicationmethod", "Distributing", "TER%"] etf_master = etf_master.rename(columns={key: value for key, value in zip(etf_columns, new_etf_columns)}) assert set(etf_master.columns).intersection(set(new_etf_columns)) == set(new_etf_columns), \ "Some necessary columns are missing in the input dataframe!" etf_master = etf_master[new_etf_columns] etf_master["Replicationmethod"] = etf_master["Replicationmethod"].map(lambda x: "Physical" \ if x[:8] == "Physisch" else "Synthetic") etf_master["Distributing"] = etf_master["Distributing"].map(lambda x: "Distributing" \ if x == "Ausschüttend" else "Accumulating") etf_master["Region"] = etf_master["Region"].fillna("").map(lambda x: "Emerging" if "Emerging" in x else x) return (etf_master) def preprocess_crypto_data(df_deposits, df_trades_init): """ Preprocessing of crypto deposits and trade history. Check if trade data is consistent. :param df_deposits: Holds all deposits of cryptocurrencies. :param df_trades_init: Table of all trades between different cryptocurrencies. :return: tuple of cleaned deposits and trade overview dataframes """ df_deposits["date"] = pd.to_datetime(df_deposits["date"]) df_deposits = df_deposits[~df_deposits["currency"].isna()] price_tolerance = 1e-8 for idx in df_trades_init.index: if df_trades_init["exchange 1"].iloc[idx] != df_trades_init["exchange 2"].iloc[idx]: if abs(df_trades_init["amount_spent"].iloc[idx] - df_trades_init["amount_gained"].iloc[idx] - df_trades_init["fee"].iloc[idx]) > price_tolerance: print("Error in data! Amount spent does not equal gained with fees!") gain_columns = { "date": "date", "amount_gained": "amount", "currency gained": "currency", "exchange 2": "exchange" } spent_columns = { "date": "date", "amount_spent": "amount", "currency spent": "currency", "exchange 1": "exchange" } df_trades_cleaned = df_trades_init[gain_columns.keys()].rename(columns=gain_columns) df_spent = df_trades_init[spent_columns.keys()].rename(columns=spent_columns) df_spent["amount"] *= -1 df_trades = df_trades_cleaned.append(df_spent, ignore_index=True) return((df_deposits, df_trades)) def compute_crypto_portfolio(df_deposits_init, df_trades_init): """ Combines deposits and trades into a single dataframe and compute portfolio of currencies. :param df_deposits: preprocessed deposits of cryptocurrencies :param df_trades: preprocessed trades of cryptocurrencies :return: portfolio of cryptocurrencies: exchange, currency, amount """ df_deposits = df_deposits_init[["exchange", "currency", "amount"]].copy() df_trades = df_trades_init[["exchange", "currency", "amount"]].copy() df_all = df_deposits.append(df_trades, ignore_index=True) crypto_portfolio = df_all.groupby(["exchange", "currency"]).sum().reset_index() return(crypto_portfolio) def compute_crypto_portfolio_value(portfolio: pd.DataFrame, prices: pd.DataFrame) -> pd.DataFrame: """ Combines current crypto-price data with portfolio and computes value per exchange/currency. Adds the overall portfolio value with exchange-name "Overall" to the data. :param portfolio: Holds crypto portfolio data (exchange, currency, amount) :param prices: Holds prices and masterdata of cryptos (name, symbol, price) :return: Value of portfolio per cryptocurrency """ portfolio_all = portfolio.merge(prices, left_on="currency", right_on="symbol").copy() portfolio_all = portfolio_all[["exchange", "currency", "name", "amount", "price"]] portfolio_all.loc[:, "value"] = round(portfolio_all["amount"] * portfolio_all["price"], 3) portfolio_all = portfolio_all.drop("price", axis=1) portfolio_overall = portfolio_all.groupby(["currency", "name"]).sum().reset_index() portfolio_overall["exchange"] = "Overall" portfolio_value = portfolio_all.append(portfolio_overall, ignore_index=True, sort=False) return(portfolio_value) def enrich_orders(df_orders, df_etf): """ Join ETF master data to transaction data of ETFs. :param df_orders: ETF transaction data :param df_etf: ETF master data :return: """ join_columns_etf_master = ["ISIN", "Type", "Region", "Replicationmethod", "Distributing", "TER%"] orders_etf = df_orders.merge(df_etf[join_columns_etf_master].drop_duplicates(), how="inner", left_on="ISIN", right_on="ISIN").copy() assert (orders_etf[orders_etf["Region"].isna()][["ISIN", "Name"]].drop_duplicates().count() > 0).any() == False, \ "No ETF master data!" return (orders_etf) def get_current_portfolio(df_orders: pd.DataFrame) -> pd.DataFrame: """ Gets transactions of latest executed monthly savings plan of ETF portfolio. :param df_orders: ETF transaction data :return: """ portfolio = df_orders.copy() last_execution_index = portfolio["Index"].max() portfolio = portfolio[portfolio["Index"] == last_execution_index].reset_index(drop=True).drop("Index", axis=1) return (portfolio) def compute_percentage_per_group(df: pd.DataFrame, group_names: list, compute_columns:list, agg_functions:list) -> list: """ Computes len(group_names) aggregations of input dataframe df according to the given agg_functions wrt to the specified columns in compute_columns. These three lists need to have the same length! Currently only sum() as aggregate function is available. :param df: pd.DataFrame, that needs to have all columns specified in group_names, compute_columns :param group_names: list of grouping columns :param compute_columns: list of columns along which groupby computation should be done :param agg_functions: list of aggregate functions, which are applied to compute_columns :return result_list: list of resulting dataframes after groupby aggregation """ all_columns = set(df.columns) all_needed_columns = set(group_names).union(set(compute_columns)) assert all_columns.intersection(all_needed_columns) == all_needed_columns, "Columns not present!" assert len(group_names) == len(compute_columns), "Number of grouping columns does not match compute columns!" assert len(group_names) == len( agg_functions), "Number of grouping columns does not match number of aggregate functions!" df_copy = df.copy() result_list = [] for idx, group in enumerate(group_names): compute_col = compute_columns[idx] agg_func = agg_functions[idx] if agg_func == "sum": df_grouped = df_copy[[group, compute_col]].groupby([group]).sum() total_sum = df_copy[compute_col].sum() df_grouped["Percentage"] = round(df_grouped[compute_col] / total_sum, 3) * 100 result_list.append(df_grouped.reset_index()) return (result_list) def get_portfolio_value(df_trx: pd.DataFrame, df_prices: pd.DataFrame) -> pd.DataFrame: """ Computes the current value of each stock given in the transaction list by using most recent price data. :param df_trx: dataframe containing all transactions :param df_prices: dataframe containing historic price data :return: """ if (df_trx.isna().sum()>0).any(): print("Some entries contain NaN values! The statistics might be wrong!") print(df_trx.isna().sum()) needed_columns_trx = set(["Investment", "Price", "ISIN"]) needed_columns_prices = set(["Price", "ISIN"]) assert needed_columns_trx.intersection(set(df_trx.columns)) == needed_columns_trx, \ "One of the following columns are missing in df_trx: {}".format(needed_columns_trx) assert needed_columns_prices.intersection(set(df_prices.columns)) == needed_columns_prices, \ "One of the following columns are missing in df_prices: {}".format(needed_columns_prices) df = df_trx.copy() dfp = df_prices.copy() ### Compute amount of stocks bought df["Amount"] = df["Investment"] / df["Price"] ### Drop price of orderdata, which is the price at which a stock was bought --> here we use the current price df = df.drop("Price", axis=1) df_portfolio = df.merge(dfp, how="left", left_on="ISIN", right_on="ISIN", suffixes=["", "_y"])\ .rename(columns={"Date_y": "last_price_update"}) assert (df_portfolio["Price"].isna().sum()>0).any() == False, "Prices are missing for a transaction!" df_portfolio["Value"] = round(df_portfolio["Amount"] * df_portfolio["Price"], 2) return (df_portfolio) def filter_portfolio_date(portfolio: pd.DataFrame, offset_months: int) -> pd.DataFrame: """ Filters the dataframe, portfolio, to all entries that occur after today's date minus offset_months. :param portfolio: Needs column Date :param offset_months: Offset of how many months into the past the output of the dataframe should contain. :return: dataframe filtered up to offset_months into the past """ from datetime import date assert "Date" in portfolio.columns, 'Column "Date" is missing in input dataframe!' date_today = pd.Timestamp(date.today()) if offset_months == -1: return(portfolio) else: date_offset = pd.DateOffset(months=offset_months) portfolio_date_filtered = portfolio[portfolio["Date"] >= date_today - date_offset] return(portfolio_date_filtered) def filter_portfolio_stock(portfolio: pd.DataFrame, stock_name: str) -> pd.DataFrame: """ Filters the dataframe, portfolio, to the given stock_name. :param portfolio: Dataframe holding transactions :param stock_name: Name of the stock, to which the dataframe should be filtered. :return: dataframe filtered on the specified stock name """ assert "Name" in portfolio.columns, 'Column "Name" is missing in input dataframe!' return(portfolio[portfolio["Name"] == stock_name]) def prepare_orderAmounts_prices(orders: pd.DataFrame): """ Extracts a dataframe of buy-prices for each stock at each date. Additionally prepare order-dataframe with amount of stocks at each date. :param orders: Holds price and investmentamount data for each stock at every date. :return: Tuple of orders (including amount of stocks) and prices. """ prices = orders[["Date", "Name", "Price"]] necessary_columns = ["Date", "Name", "Investment", "Ordercost", "Amount"] df_orders = orders.drop_duplicates().copy() df_orders["Amount"] = df_orders["Investment"] / df_orders["Price"] df_orders = df_orders[necessary_columns] return((df_orders, prices)) def prepare_timeseries(orders: pd.DataFrame): """ Computes timeseries chart (value/investment vs date) for all stocks in the portfolio. Computes timeseries chart for overall portfolio (sum of all stock values at given date) and adds it to the dataframe. :param orders: dataframe, containing Investmentamount, ordercost and price for each stock per transactiondate :return: """ necessary_columns = ["Date", "Name", "Investment", "Price", "Ordercost"] assert set(orders.columns).intersection(set(necessary_columns)) == set(necessary_columns), \ "Necessary columns missing in order data for timeseries preparation!" orders["Amount"] = orders["Investment"]/orders["Price"] ### Map each transaction-date to the beginning of the month for easier comparison orders["Date"] = orders["Date"].apply(lambda date: pd.offsets.MonthBegin().rollback(date)) ### Prepare master data of all stocks and dates in order history ### TODO: Refine all data preprocessing to just once define master data for all needed tasks all_stocks = pd.DataFrame(orders["Name"].drop_duplicates()).copy() all_stocks["key"] = 0 all_dates = pd.DataFrame(orders["Date"].drop_duplicates()).copy() all_dates["key"] = 0 all_combinations = pd.merge(all_dates, all_stocks, on='key').drop("key", axis=1) ### Prepare dataframe, that gets converted to a timeseries, it has entries of all stocks, that were ### bought in the past at each transaction-date (stock data for stocks, which were not bought at that date, ### is filled with 0 to enable correct computation of cumsum() group_columns = ["Investment", "Ordercost", "Amount"] df_init = all_combinations.merge(orders[["Date", "Name"] + group_columns], how="left", left_on=["Date", "Name"], right_on=["Date", "Name"] ).fillna(0).copy() price_lookup = orders[["Date", "Name", "Price"]].copy() ### Compute cumsum() per stockgroup and rejoin date df_grouped = df_init.sort_values("Date").groupby("Name").cumsum() df_grouped_all = df_init.merge(df_grouped, how="left", left_index=True, right_index=True, suffixes=["_init", None] ) df_grouped_all = df_grouped_all.drop(["Investment_init", "Ordercost_init", "Amount_init"], axis=1) ### Rejoin prices and compute values for each stock at each date, fill values of stocks, which were not ### bought at that date again with 0s df_grouped_all = df_grouped_all.merge(price_lookup, how="left", left_on=["Date", "Name"], right_on=["Date", "Name"], suffixes=[None, "_y"] ) df_grouped_all["Value"] = df_grouped_all["Amount"] * df_grouped_all["Price"] df_grouped_all = df_grouped_all.drop(["Amount", "Price"], axis=1)#.fillna(0) ### Finally sum over stock values at each date to arrive at timeseries format df_overall = df_grouped_all.sort_values("Date").set_index("Date")\ .drop(["Name"], axis=1)\ .groupby("Date").sum() \ .reset_index() df_overall["Name"] = "Overall Portfolio" df_timeseries = pd.concat([df_grouped_all, df_overall], ignore_index=True, sort=False) return(df_timeseries)
import os from PyQt4.QtCore import QDir, QFile, QSettings from whoosh import fields __appname__ = 'mikidown' __version__ = '0.3.1' class Setting(): def __init__(self, notebooks): # Index directory of whoosh, located in notebookPath. self.schema = fields.Schema( path = fields.TEXT(stored=True), title = fields.TEXT(stored=True), content = fields.TEXT(stored=True)) self.notebookName = notebooks[0][0] self.notebookPath = notebooks[0][1] self.notePath = os.path.join(self.notebookPath, "notes") self.htmlPath = os.path.join(self.notebookPath, "html", "notes") self.indexdir = os.path.join(self.notePath, ".indexdir") self.attachmentPath = os.path.join(self.notebookPath, "attachments") self.configfile = os.path.join(self.notebookPath, "notebook.conf") cssPath = os.path.join(self.notebookPath, "css") self.cssfile = os.path.join(cssPath, "notebook.css") self.qsettings = QSettings(self.configfile, QSettings.NativeFormat) if os.path.exists(self.configfile): self.extensions = readListFromSettings(self.qsettings, "extensions") self.fileExt = self.qsettings.value("fileExt") self.attachmentImage = self.qsettings.value("attachmentImage") self.attachmentDocument = self.qsettings.value("attachmentDocument") self.version = self.qsettings.value("version") self.geometry = self.qsettings.value("geometry") self.windowstate = self.qsettings.value("windowstate") else: self.extensions = [] self.fileExt = "" self.attachmentImage = [] self.attachmentDocument = [] self.version = None self.geometry = None self.windowstate = None # Default enabled python-markdown extensions. # http://pythonhosted.org/Markdown/extensions/index.html if not self.extensions: self.extensions = [ 'nl2br' # newline to break , 'strkundr' # bold-italics-underline-delete style , 'codehilite' # code syntax highlight , 'fenced_code' # code block , 'headerid' # add id to headers , 'headerlink' # add anchor to headers , 'footnotes' ] writeListToSettings(self.qsettings, "extensions", self.extensions) # Default file extension name if not self.fileExt: self.fileExt = ".md" self.qsettings.setValue("fileExt", self.fileExt) # Image file types that will be copied to attachmentDir # Inserted as image link if not self.attachmentImage: self.attachmentImage = [".jpg", ".jpeg", ".png", ".gif", ".svg"] self.qsettings.setValue("attachmentImage", self.attachmentImage) # Document file types that will be copied to attachmentDir # Inserted as link if not self.attachmentDocument: self.attachmentDocument = [".pdf", ".doc", ".odt"] self.qsettings.setValue("attachmentDocument", self.attachmentDocument) # Migrate notebookPath to v0.3.0 folder structure if not self.version: notebookDir = QDir(self.notebookPath) # move all markdown files to notes/ dirList = notebookDir.entryList(QDir.Dirs | QDir.NoDotAndDotDot) if 'css' in dirList: dirList.remove('css') fileList = notebookDir.entryList(['*.md', '*.mkd', '*.markdown']) notebookDir.mkdir('notes') for d in dirList + fileList: notebookDir.rename(d, os.path.join('notes', d)) # remove .indexdir folder oldIndexDir = QDir(os.path.join(self.notebookPath, '.indexdir')) indexFileList = oldIndexDir.entryList() for f in indexFileList: oldIndexDir.remove(f) notebookDir.rmdir('.indexdir') # rename notes.css to css/notebook.css oldCssFile = os.path.join(self.notebookPath, 'notes.css') QDir().mkpath(cssPath) if os.path.exists(oldCssFile): QFile.rename(oldCssFile, self.cssfile) self.version = '0' def saveGeometry(self, geometry): self.qsettings.setValue("geometry", geometry) def saveWindowState(self, state): self.qsettings.setValue("windowstate", state) def recentViewedNotes(self): return readListFromSettings(self.qsettings, "recentViewedNoteList") def updateRecentViewedNotes(self, notesList): writeListToSettings(self.qsettings, "recentViewedNoteList", notesList) def readListFromSettings(settings, key): if not settings.contains(key): return [] value = settings.value(key) if isinstance(value, str): return [value] else: return value def writeListToSettings(settings, key, value): if len(value) >= 1: settings.setValue(key, value) else: settings.remove(key)
import asyncio from perftests.helpers import Time, client print('Running rest_implementation benchmark with async_v20 version', client.version) async def rest_implementation(repeats): for _ in range(repeats): account = await client.account() account.json() loop = asyncio.get_event_loop() with Time() as t: loop.run_until_complete(rest_implementation(1000))
#!/usr/bin/env python3 import sys, getopt, os from shutil import copyfile def main(argv): if os.environ['NEWT_TEMPLATE_PATH'] == '': template_path = "/opt/newt/templates" else: template_path = os.environ['NEWT_TEMPLATE_PATH'] template = '' filename = '' EXECUTABLE = False try: opts, args = getopt.getopt(argv,"ht:xo:",["template=","output="]) except getopt.GetoptError: print('newt -t <template> [-o <outputfile>] [-x]') sys.exit(2) for opt, arg in opts: if opt == '-h': print('newt -t <template> [-o <outputfile>] [-x]') sys.exit() elif opt in ("-t", "--template"): template = arg elif opt in ("-o", "--output"): filename = arg elif opt in ("-x"): EXECUTABLE = True if template == '': print('newt -t <template> [-o <outputfile>] [-x]') sys.exit(2) if filename == '': filename = template available_templates = { 'c':'.c', 'python2':'.py', 'python3':'.py', 'bash':'.sh' } if template not in available_templates: print("ERROR: Template not found.") sys.exit(2) try: #tf = open(template_path+"/"+template+".template","r") full_template_filename = template_path+"/"+template+".template" extension = available_templates[template] copyfile(full_template_filename,filename+extension) if EXECUTABLE: os.chmod(filename+extension,0o755) except: print("ERROR: Could not access "+full_template_file) sys.exit(2) if __name__ == "__main__": main(sys.argv[1:])
def cci_parens(n): ls = [['(',1,0]] while(True): if(len(ls) == 0): break new_ls = [] for elem in ls: l = elem[1] r = elem[2] comb = elem[0] if(l == n): print(comb + (')'*(l-r))) continue if(r < l): new_ls.append([comb+')',l,r+1]) new_ls.append([comb+'(',l+1,r]) del ls ls = new_ls cci_parens(3)
import os import json import time import pandas as pd from haystack import Label, MultiLabel, Answer from haystack.utils import launch_es, fetch_archive_from_http, print_answers from haystack.document_stores import ElasticsearchDocumentStore from haystack import Document, Pipeline from haystack.nodes.retriever import EmbeddingRetriever from haystack.nodes import TableReader, FARMReader, RouteDocuments, JoinAnswers, ParsrConverter def tutorial15_tableqa(): # Recommended: Start Elasticsearch using Docker via the Haystack utility function launch_es() ## Connect to Elasticsearch document_store = ElasticsearchDocumentStore(host="localhost", username="", password="", index="document") ## Add Tables to DocumentStore # Let's first fetch some tables that we want to query # Here: 1000 tables + texts doc_dir = "data/tutorial15" s3_url = "https://s3.eu-central-1.amazonaws.com/deepset.ai-farm-qa/datasets/documents/table_text_dataset.zip" fetch_archive_from_http(url=s3_url, output_dir=doc_dir) # Add the tables to the DocumentStore def read_tables(filename): processed_tables = [] with open(filename) as tables: tables = json.load(tables) for key, table in tables.items(): current_columns = table["header"] current_rows = table["data"] current_df = pd.DataFrame(columns=current_columns, data=current_rows) document = Document(content=current_df, content_type="table", id=key) processed_tables.append(document) return processed_tables tables = read_tables(f"{doc_dir}/tables.json") document_store.write_documents(tables, index="document") ### Retriever # Retrievers help narrowing down the scope for the Reader to a subset of tables where a given question could be answered. # They use some simple but fast algorithm. # # **Here:** We use the EmbeddingRetriever capable of retrieving relevant content among a database # of texts and tables using dense embeddings. retriever = EmbeddingRetriever( document_store=document_store, embedding_model="deepset/all-mpnet-base-v2-table", model_format="sentence_transformers", ) # Add table embeddings to the tables in DocumentStore document_store.update_embeddings(retriever=retriever) ## Alternative: BM25Retriever # from haystack.nodes.retriever import BM25Retriever # retriever = BM25Retriever(document_store=document_store) # Try the Retriever from haystack.utils import print_documents retrieved_tables = retriever.retrieve("Who won the Super Bowl?", top_k=5) # Get highest scored table print(retrieved_tables[0].content) ### Reader # The TableReader is based on TaPas, a transformer-based language model capable of grasping the two-dimensional structure of a table. # It scans the tables returned by the retriever and extracts the anser. # The available TableReader models can be found [here](https://huggingface.co/models?pipeline_tag=table-question-answering&sort=downloads). # # **Notice**: The TableReader will return an answer for each table, even if the query cannot be answered by the table. # Furthermore, the confidence scores are not useful as of now, given that they will *always* be very high (i.e. 1 or close to 1). reader = TableReader(model_name_or_path="google/tapas-base-finetuned-wtq", max_seq_len=512) # Try the TableReader on one Table table_doc = document_store.get_document_by_id("36964e90-3735-4ba1-8e6a-bec236e88bb2") print(table_doc.content) prediction = reader.predict(query="Who played Gregory House in the series House?", documents=[table_doc]) print_answers(prediction, details="minimum") ### Pipeline # The Retriever and the Reader can be sticked together to a pipeline in order to first retrieve relevant tables # and then extract the answer. # # **Notice**: Given that the `TableReader` does not provide useful confidence scores and returns an answer # for each of the tables, the sorting of the answers might be not helpful. table_qa_pipeline = Pipeline() table_qa_pipeline.add_node(component=retriever, name="EmbeddingRetriever", inputs=["Query"]) table_qa_pipeline.add_node(component=reader, name="TableReader", inputs=["EmbeddingRetriever"]) prediction = table_qa_pipeline.run("When was Guilty Gear Xrd : Sign released?") print_answers(prediction, details="minimum") ### Pipeline for QA on Combination of Text and Tables # We are using one node for retrieving both texts and tables, the EmbeddingRetriever. # In order to do question-answering on the Documents coming from the EmbeddingRetriever, we need to route # Documents of type "text" to a FARMReader ( or alternatively TransformersReader) and Documents of type # "table" to a TableReader. text_reader = FARMReader("deepset/roberta-base-squad2") # In order to get meaningful scores from the TableReader, use "deepset/tapas-large-nq-hn-reader" or # "deepset/tapas-large-nq-reader" as TableReader models. The disadvantage of these models is, however, # that they are not capable of doing aggregations over multiple table cells. table_reader = TableReader("deepset/tapas-large-nq-hn-reader") route_documents = RouteDocuments() join_answers = JoinAnswers() text_table_qa_pipeline = Pipeline() text_table_qa_pipeline.add_node(component=retriever, name="EmbeddingRetriever", inputs=["Query"]) text_table_qa_pipeline.add_node(component=route_documents, name="RouteDocuments", inputs=["EmbeddingRetriever"]) text_table_qa_pipeline.add_node(component=text_reader, name="TextReader", inputs=["RouteDocuments.output_1"]) text_table_qa_pipeline.add_node(component=table_reader, name="TableReader", inputs=["RouteDocuments.output_2"]) text_table_qa_pipeline.add_node(component=join_answers, name="JoinAnswers", inputs=["TextReader", "TableReader"]) # Add texts to the document store def read_texts(filename): processed_passages = [] with open(filename) as passages: passages = json.load(passages) for key, content in passages.items(): document = Document(content=content, content_type="text", id=key) processed_passages.append(document) return processed_passages passages = read_texts(f"{doc_dir}/texts.json") document_store.write_documents(passages) # Example query whose answer resides in a text passage predictions = text_table_qa_pipeline.run(query="Which country does the film Macaroni come from?") # We can see both text passages and tables as contexts of the predicted answers. print_answers(predictions, details="minimum") # Example query whose answer resides in a table predictions = text_table_qa_pipeline.run(query="Who was Thomas Alva Edison?") # We can see both text passages and tables as contexts of the predicted answers. print_answers(predictions, details="minimum") ### Evaluation # To evaluate our pipeline, we can use haystack's evaluation feature. We just need to convert our labels into `MultiLabel` objects and the `eval` method will do the rest. def read_labels(filename, tables): processed_labels = [] with open(filename) as labels: labels = json.load(labels) for table in tables: if table.id not in labels: continue label = labels[table.id] label = Label( query=label["query"], document=table, is_correct_answer=True, is_correct_document=True, answer=Answer(answer=label["answer"]), origin="gold-label", ) processed_labels.append(MultiLabel(labels=[label])) return processed_labels table_labels = read_labels(f"{doc_dir}/labels.json", tables) passage_labels = read_labels(f"{doc_dir}/labels.json", passages) eval_results = text_table_qa_pipeline.eval(table_labels + passage_labels, params={"top_k": 10}) # Calculating and printing the evaluation metrics print(eval_results.calculate_metrics()) ## Adding tables from PDFs # It can sometimes be hard to provide your data in form of a pandas DataFrame. # For this case, we provide the `ParsrConverter` wrapper that can help you to convert, for example, a PDF file into a document that you can index. os.system("docker run -d -p 3001:3001 axarev/parsr") time.sleep(30) os.system("wget https://www.w3.org/WAI/WCAG21/working-examples/pdf-table/table.pdf") converter = ParsrConverter() docs = converter.convert("table.pdf") tables = [doc for doc in docs if doc.content_type == "table"] print(tables) if __name__ == "__main__": tutorial15_tableqa() # This Haystack script was made with love by deepset in Berlin, Germany # Haystack: https://github.com/deepset-ai/haystack # deepset: https://deepset.ai/
from setuptools import find_packages, setup with open("README.md", "r") as fh: long_description = fh.read() setup( name="gpu_slic", version="0.0.1a3", python_requires=">=3.6", package_dir={"": "src"}, packages=find_packages(where="src"), include_package_data=True, install_requires=[ "numpy", "jinja2", "scikit-image", "cupy>=7.0.0,<8.0.0", ], # metadata to display on PyPI author="Omar Elamin", author_email="omar.elamin@diamond.ac.uk", description="CUDA implementation of the SLIC segmentaion algorithm.", keywords="segmentation fast cuda slic clustering kmeans", url="https://gitlab.stfc.ac.uk/RosalindFranklinInstitute/cuda-slic", # project home page, if any classifiers=[ "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", ], options={"bdist_wheel": {"universal": "1"}}, # could also include long_description, download_url, etc. long_description=long_description, long_description_content_type="text/markdown", )
from typing import List, Tuple, Union import numpy as np from pgdrive.component.lane.circular_lane import CircularLane from pgdrive.component.lane.straight_lane import StraightLane from pgdrive.constants import LineType from pgdrive.utils.utils import import_pygame PositionType = Union[Tuple[float, float], np.ndarray] pygame = import_pygame() COLOR_BLACK = pygame.Color("black") class ObservationWindow: def __init__(self, max_range, resolution): self.max_range = max_range self.resolution = resolution self.receptive_field = None self.receptive_field_double = None self.canvas_rotate = None self.canvas_uncropped = pygame.Surface( (int(self.resolution[0] * np.sqrt(2)) + 1, int(self.resolution[1] * np.sqrt(2)) + 1) ) self.canvas_display = pygame.Surface(self.resolution) self.canvas_display.fill(COLOR_BLACK) def reset(self, canvas_runtime): canvas_runtime.fill(COLOR_BLACK) # Assume max_range is only the radius! self.receptive_field_double = ( int(canvas_runtime.pix(self.max_range[0] * np.sqrt(2))) * 2, int(canvas_runtime.pix(self.max_range[1] * np.sqrt(2))) * 2 ) self.receptive_field = ( int(canvas_runtime.pix(self.max_range[0])) * 2, int(canvas_runtime.pix(self.max_range[1])) * 2 ) self.canvas_rotate = pygame.Surface(self.receptive_field_double) self.canvas_rotate.fill(COLOR_BLACK) self.canvas_display.fill(COLOR_BLACK) self.canvas_uncropped.fill(COLOR_BLACK) def _blit(self, canvas, position): self.canvas_rotate.blit( canvas, (0, 0), ( position[0] - self.receptive_field_double[0] / 2, position[1] - self.receptive_field_double[1] / 2, self.receptive_field_double[0], self.receptive_field_double[1] ) ) def _rotate(self, heading): rotation = np.rad2deg(heading) + 90 scale = self.canvas_uncropped.get_size()[0] / self.canvas_rotate.get_size()[0] return pygame.transform.rotozoom(self.canvas_rotate, rotation, scale) def _crop(self, new_canvas): size = self.canvas_display.get_size() self.canvas_display.blit( new_canvas, (0, 0), ( new_canvas.get_size()[0] / 2 - size[0] / 2, # Left new_canvas.get_size()[1] / 2 - size[1] / 2, # Top size[0], # Width size[1] # Height ) ) def render(self, canvas, position, heading): # Prepare a runtime canvas for rotation. Assume max_range is only the radius, not diameter! self._blit(canvas, position) # Rotate the image so that ego is always heading top new_canvas = self._rotate(heading) # Crop the rotated image and then resize to the desired resolution self._crop(new_canvas) return self.canvas_display def get_observation_window(self): return self.canvas_display def get_size(self): assert self.canvas_rotate is not None return self.canvas_rotate.get_size() def get_screen_window(self): return self.get_observation_window() class WorldSurface(pygame.Surface): """ A pygame Surface implementing a local coordinate system so that we can move and zoom in the displayed area. From highway-env, See more information on its Github page: https://github.com/eleurent/highway-env. """ BLACK = (0, 0, 0) GREY = (100, 100, 100) GREEN = (50, 200, 0) YELLOW = (200, 200, 0) WHITE = (255, 255, 255) INITIAL_SCALING = 5.5 INITIAL_CENTERING = [0.5, 0.5] SCALING_FACTOR = 1.3 MOVING_FACTOR = 0.1 LANE_LINE_COLOR = (35, 35, 35) def __init__(self, size: Tuple[int, int], flags: object, surf: pygame.SurfaceType) -> None: surf.fill(pygame.Color("Black")) super().__init__(size, flags, surf) self.raw_size = size self.raw_flags = flags self.raw_surface = surf self.origin = np.array([0, 0]) self.scaling = self.INITIAL_SCALING self.centering_position = self.INITIAL_CENTERING self.fill(self.BLACK) def pix(self, length: float) -> int: """ Convert a distance [m] to pixels [px]. :param length: the input distance [m] :return: the corresponding size [px] """ return int(length * self.scaling) def pos2pix(self, x: float, y: float) -> Tuple[int, int]: """ Convert two world coordinates [m] into a position in the surface [px] :param x: x world coordinate [m] :param y: y world coordinate [m] :return: the coordinates of the corresponding pixel [px] """ return self.pix(x - self.origin[0]), self.pix(y - self.origin[1]) def vec2pix(self, vec: PositionType) -> Tuple[int, int]: """ Convert a world position [m] into a position in the surface [px]. :param vec: a world position [m] :return: the coordinates of the corresponding pixel [px] """ return self.pos2pix(vec[0], vec[1]) def is_visible(self, vec: PositionType, margin: int = 50) -> bool: """ Is a position visible in the surface? :param vec: a position :param margin: margins around the frame to test for visibility :return: whether the position is visible """ x, y = self.vec2pix(vec) return -margin < x < self.get_width() + margin and -margin < y < self.get_height() + margin def move_display_window_to(self, position: PositionType) -> None: """ Set the origin of the displayed area to center on a given world position. :param position: a world position [m] """ self.origin = position - np.array( [ self.centering_position[0] * self.get_width() / self.scaling, self.centering_position[1] * self.get_height() / self.scaling ] ) def handle_event(self, event: pygame.event.EventType) -> None: """ Handle pygame events for moving and zooming in the displayed area. :param event: a pygame event """ if event.type == pygame.KEYDOWN: if event.key == pygame.K_l: self.scaling *= 1 / self.SCALING_FACTOR if event.key == pygame.K_o: self.scaling *= self.SCALING_FACTOR if event.key == pygame.K_m: self.centering_position[0] -= self.MOVING_FACTOR if event.key == pygame.K_k: self.centering_position[0] += self.MOVING_FACTOR def copy(self): ret = WorldSurface(size=self.raw_size, flags=self.raw_flags, surf=self.raw_surface) ret.origin = self.origin ret.scaling = self.scaling ret.centering_position = self.centering_position ret.blit(self, (0, 0)) return ret class VehicleGraphics: RED = (255, 100, 100) GREEN = (50, 200, 0) BLUE = (100, 200, 255) YELLOW = (200, 200, 0) BLACK = (60, 60, 60) PURPLE = (200, 0, 150) DEFAULT_COLOR = YELLOW EGO_COLOR = GREEN font = None @classmethod def display( cls, vehicle, surface, color, heading, label: bool = False, draw_countour=False, contour_width=1 ) -> None: """ Display a vehicle on a pygame surface. The vehicle is represented as a colored rotated rectangle. :param vehicle: the vehicle to be drawn :param surface: the surface to draw the vehicle on :param label: whether a text label should be rendered """ if not surface.is_visible(vehicle.position): return w = surface.pix(vehicle.WIDTH) h = surface.pix(vehicle.LENGTH) position = [*surface.pos2pix(vehicle.position[0], vehicle.position[1])] angle = np.rad2deg(heading) box = [pygame.math.Vector2(p) for p in [(-h / 2, -w / 2), (-h / 2, w / 2), (h / 2, w / 2), (h / 2, -w / 2)]] box_rotate = [p.rotate(angle) + position for p in box] pygame.draw.polygon(surface, color=color, points=box_rotate) if draw_countour: pygame.draw.polygon(surface, cls.BLACK, box_rotate, width=contour_width) # , 1) # Label if label: if cls.font is None: cls.font = pygame.font.Font(None, 15) text = "#{}".format(id(vehicle) % 1000) text = cls.font.render(text, 1, (10, 10, 10), (255, 255, 255)) surface.blit(text, position) @classmethod def get_color(cls, vehicle) -> Tuple[int]: if vehicle.crashed: color = cls.RED else: color = cls.BLUE return color class LaneGraphics: """A visualization of a lane.""" STRIPE_SPACING: float = 5 """ Offset between stripes [m]""" STRIPE_LENGTH: float = 3 """ Length of a stripe [m]""" STRIPE_WIDTH: float = 0.3 """ Width of a stripe [m]""" LANE_LINE_WIDTH: float = 1 @classmethod def display(cls, lane, surface, two_side=True, color=None) -> None: """ Display a lane on a surface. :param lane: the lane to be displayed :param surface: the pygame surface :param two_side: draw two sides of the lane, or only one side """ side = 2 if two_side else 1 stripes_count = int(2 * (surface.get_height() + surface.get_width()) / (cls.STRIPE_SPACING * surface.scaling)) s_origin, _ = lane.local_coordinates(surface.origin) s0 = (int(s_origin) // cls.STRIPE_SPACING - stripes_count // 2) * cls.STRIPE_SPACING for side in range(side): if lane.line_types[side] == LineType.BROKEN: cls.striped_line(lane, surface, stripes_count, s0, side, color=color) # circular side or continuous, it is same now elif lane.line_types[side] == LineType.CONTINUOUS and isinstance(lane, CircularLane): cls.continuous_curve(lane, surface, stripes_count, s0, side, color=color) elif lane.line_types[side] == LineType.SIDE and isinstance(lane, CircularLane): cls.continuous_curve(lane, surface, stripes_count, s0, side, color=color) # the line of continuous straight and side straight is same now elif (lane.line_types[side] == LineType.CONTINUOUS) and isinstance(lane, StraightLane): cls.continuous_line(lane, surface, stripes_count, s0, side, color=color) elif (lane.line_types[side] == LineType.SIDE) and isinstance(lane, StraightLane): cls.continuous_line(lane, surface, stripes_count, s0, side, color=color) # special case elif lane.line_types[side] == LineType.NONE: continue else: raise ValueError("I don't know how to draw this line type: {}".format(lane.line_types[side])) @classmethod def striped_line(cls, lane, surface, stripes_count: int, longitudinal: float, side: int, color=None) -> None: """ Draw a striped line on one side of a lane, on a surface. :param lane: the lane :param surface: the pygame surface :param stripes_count: the number of stripes to draw :param longitudinal: the longitudinal position of the first stripe [m] :param side: which side of the road to draw [0:left, 1:right] """ starts = longitudinal + np.arange(stripes_count) * cls.STRIPE_SPACING ends = longitudinal + np.arange(stripes_count) * cls.STRIPE_SPACING + cls.STRIPE_LENGTH lats = [(side - 0.5) * lane.width_at(s) for s in starts] cls.draw_stripes(lane, surface, starts, ends, lats, color=color) @classmethod def continuous_curve(cls, lane, surface, stripes_count: int, longitudinal: float, side: int, color=None) -> None: """ Draw a striped line on one side of a lane, on a surface. :param lane: the lane :param surface: the pygame surface :param stripes_count: the number of stripes to draw :param longitudinal: the longitudinal position of the first stripe [m] :param side: which side of the road to draw [0:left, 1:right] """ starts = longitudinal + np.arange(stripes_count) * cls.STRIPE_SPACING ends = longitudinal + np.arange(stripes_count) * cls.STRIPE_SPACING + cls.STRIPE_SPACING lats = [(side - 0.5) * lane.width_at(s) for s in starts] cls.draw_stripes(lane, surface, starts, ends, lats, color=color) @classmethod def continuous_line(cls, lane, surface, stripes_count: int, longitudinal: float, side: int, color=None) -> None: """ Draw a continuous line on one side of a lane, on a surface. :param lane: the lane :param surface: the pygame surface :param stripes_count: the number of stripes that would be drawn if the line was striped :param longitudinal: the longitudinal position of the start of the line [m] :param side: which side of the road to draw [0:left, 1:right] """ starts = [longitudinal + 0 * cls.STRIPE_SPACING] ends = [longitudinal + stripes_count * cls.STRIPE_SPACING + cls.STRIPE_LENGTH] lats = [(side - 0.5) * lane.width_at(s) for s in starts] cls.draw_stripes(lane, surface, starts, ends, lats, color=color) @classmethod def draw_stripes(cls, lane, surface, starts: List[float], ends: List[float], lats: List[float], color=None) -> None: """ Draw a set of stripes along a lane. :param lane: the lane :param surface: the surface to draw on :param starts: a list of starting longitudinal positions for each stripe [m] :param ends: a list of ending longitudinal positions for each stripe [m] :param lats: a list of lateral positions for each stripe [m] """ if color is None: color = surface.LANE_LINE_COLOR starts = np.clip(starts, 0, lane.length) ends = np.clip(ends, 0, lane.length) for k, _ in enumerate(starts): if abs(starts[k] - ends[k]) > 0.5 * cls.STRIPE_LENGTH: pygame.draw.line( surface, color, (surface.vec2pix(lane.position(starts[k], lats[k]))), (surface.vec2pix(lane.position(ends[k], lats[k]))), max(surface.pix(cls.STRIPE_WIDTH), surface.pix(cls.LANE_LINE_WIDTH)) ) @classmethod def simple_draw(cls, lane, surface, color=(255, 255, 255)): from pgdrive.component.blocks.pg_block import PGBlock segment_num = int(lane.length / PGBlock.CIRCULAR_SEGMENT_LENGTH) width = lane.width for segment in range(segment_num): p_1 = lane.position(segment * PGBlock.CIRCULAR_SEGMENT_LENGTH, -width / 2) p_2 = lane.position(segment * PGBlock.CIRCULAR_SEGMENT_LENGTH, width / 2) p_3 = lane.position((segment + 1) * PGBlock.CIRCULAR_SEGMENT_LENGTH, width / 2) p_4 = lane.position((segment + 1) * PGBlock.CIRCULAR_SEGMENT_LENGTH, -width / 2) pygame.draw.polygon( surface, color, [surface.pos2pix(*p_1), surface.pos2pix(*p_2), surface.pos2pix(*p_3), surface.pos2pix(*p_4)] ) # # for last part p_1 = lane.position(segment_num * PGBlock.CIRCULAR_SEGMENT_LENGTH, -width / 2) p_2 = lane.position(segment_num * PGBlock.CIRCULAR_SEGMENT_LENGTH, width / 2) p_3 = lane.position(lane.length, width / 2) p_4 = lane.position(lane.length, -width / 2) pygame.draw.polygon( surface, color, [surface.pos2pix(*p_1), surface.pos2pix(*p_2), surface.pos2pix(*p_3), surface.pos2pix(*p_4)] ) class ObservationWindowMultiChannel: CHANNEL_NAMES = ["road_network", "traffic_flow", "target_vehicle", "past_pos"] def __init__(self, names, max_range, resolution): assert isinstance(names, list) assert set(self.CHANNEL_NAMES) self.sub_observations = { k: ObservationWindow(max_range=max_range, resolution=resolution) for k in ["traffic_flow", "target_vehicle"] } self.sub_observations["road_network"] = ObservationWindow( max_range=max_range, resolution=(resolution[0] * 2, resolution[1] * 2) # max_range=max_range, resolution=resolution ) self.resolution = (resolution[0] * 2, resolution[1] * 2) self.canvas_display = None def get_canvas_display(self): if self.canvas_display is None: self.canvas_display = pygame.Surface(self.resolution) self.canvas_display.fill(COLOR_BLACK) return self.canvas_display def reset(self, canvas_runtime): for k, sub in self.sub_observations.items(): sub.reset(canvas_runtime) def render(self, canvas_dict, position, heading): assert isinstance(canvas_dict, dict) assert set(canvas_dict.keys()) == set(self.sub_observations.keys()) ret = dict() for k, canvas in canvas_dict.items(): ret[k] = self.sub_observations[k].render(canvas, position, heading) return self.get_observation_window(ret) def get_observation_window(self, canvas_dict=None): if canvas_dict is None: canvas_dict = {k: v.get_observation_window() for k, v in self.sub_observations.items()} return canvas_dict def get_size(self): return next(iter(self.sub_observations.values())).get_size() def get_screen_window(self): canvas = self.get_canvas_display() ret = self.get_observation_window() for k in ret.keys(): if k == "road_network": continue ret[k] = pygame.transform.scale2x(ret[k]) def _draw(canvas, key, color): mask = pygame.mask.from_threshold(ret[key], (0, 0, 0, 0), (10, 10, 10, 255)) mask.to_surface(canvas, setcolor=None, unsetcolor=color) _draw(canvas, "navigation", pygame.Color("Blue")) _draw(canvas, "road_network", pygame.Color("White")) _draw(canvas, "traffic_flow", pygame.Color("Red")) _draw(canvas, "target_vehicle", pygame.Color("Green")) return canvas
""" A Python wrapper for Transmission's RPC interface. >>> from transmission import Transmission >>> client = Transmission() >>> client('torrent-get', ids=range(1,11), fields=['name']) {u'torrents': [ {u'name': u'Elvis spotted in Florida.mov'}, {u'name': u'Bigfoot sings the hits'}, # ... {u'name': u'a-song-of-ice-and-fire_final-chapter.txt'} ]} """ __version__ = '0.7-dev' import json import requests from .json_utils import (TransmissionJSONEncoder, TransmissionJSONDecoder) CSRF_ERROR_CODE = 409 UNAUTHORIZED_ERROR_CODE = 401 CSRF_HEADER = 'X-Transmission-Session-Id' class BadRequest(Exception): pass class Unauthorized(Exception): pass class Transmission(object): def __init__(self, host='localhost', port=9091, path='/transmission/rpc', username=None, password=None, ssl=False, timeout=None): """ Initialize the Transmission client. The default host, port and path are all set to Transmission's default. """ self.url = "http://%s:%d%s" % (host, port, path) if ssl: self.url = "https://%s:%d%s" % (host, port, path) self.headers = {} self.tag = 0 self.timeout = timeout self.auth = None if username or password: self.auth = (username, password) def __call__(self, method, **kwargs): """ Send request to Transmission's RPC interface. """ response = self._make_request(method, **kwargs) return self._deserialize_response(response) def _make_request(self, method, **kwargs): body = json.dumps(self._format_request_body(method, **kwargs), cls=TransmissionJSONEncoder) response = requests.post(self.url, data=body, headers=self.headers, auth=self.auth, verify=False, timeout=self.timeout) if response.status_code == CSRF_ERROR_CODE: self.headers[CSRF_HEADER] = response.headers[CSRF_HEADER] return self._make_request(method, **kwargs) elif response.status_code == UNAUTHORIZED_ERROR_CODE: raise Unauthorized("Check Username and Password") return response def _format_request_body(self, method, **kwargs): """ Create a request object to be serialized and sent to Transmission. """ fixed = {} # As Python can't accept dashes in kwargs keys, replace any # underscores with them here. for k, v in kwargs.items(): fixed[k.replace('_', '-')] = v return {"method": method, "tag": self.tag, "arguments": fixed} def _deserialize_response(self, response): """ Return the response generated by the request object, raising BadRequest if there were any problems. """ doc = json.loads(response.text, cls=TransmissionJSONDecoder) if doc['result'] != 'success': raise BadRequest("Request failed: '%s'" % doc['result']) if doc['tag'] != self.tag: raise BadRequest("Tag mismatch: (got %d, expected %d)" % (doc['tag'], self.tag)) else: self.tag += 1 if 'arguments' in doc: return doc['arguments'] or None return None
import collections import json import random import string import urllib.request from datetime import datetime, timedelta from os import urandom from pathlib import Path from flask import Flask, jsonify, request from flask_marshmallow import Marshmallow from flask_sharded_sqlalchemy import BindKeyPattern from flask_sharded_sqlalchemy import ShardedSQLAlchemy as SQLAlchemy from osnk.http.auth import EmailAuthentication, TokenAuthentication from osnk.validations import requires def post(url, **kwargs): headers = {'User-Agent': 'Kyak/0.0.0'} if 'json' in kwargs: data = json.dumps(kwargs['json']).encode() headers['Content-Type'] = 'application/json' elif 'data' in kwargs: data = kwargs['data'] else: data = None req = urllib.request.Request(url, data, headers, method='POST') urllib.request.urlopen(req) def tree(keytree, value, dict_class=dict): try: k = next(keytree) except StopIteration: return value else: return dict_class({k: tree(keytree, value)}) def merge(a, b, dict_class=dict, inplace=False): if not inplace: a = a.copy() for k, v in b.items(): if isinstance(v, dict): a[k] = merge(a.get(k, dict_class()), v, dict_class, inplace=True) else: a[k] = v return a def update(d, u): for k, v in u.items(): if isinstance(v, collections.Mapping): d[k] = update(d.get(k, {}), v) else: d[k] = v return d def normalize(d, dict_class=dict): if isinstance(d, dict): if all(x.isdigit() for x in d.keys()): return [normalize(v, dict_class) for k, v in d.items()] else: return dict_class({k: normalize(v, dict_class) for k, v in d.items()}) return d def load(f, dict_class=dict): loaded = dict_class() for line in f: s = line.split('#', 1)[0] if s: kv = s.split(' ', 1) if len(kv) == 2: k, v = [x.strip() for x in kv] t = tree(iter(k.split('.')), v, dict_class) merge(loaded, t, dict_class, inplace=True) return normalize(loaded, dict_class) def config(path, dict_class=dict): with open(path) as f: return load(f, dict_class) class AttrDict(dict): def __init__(self, *args, **kwargs): super(AttrDict, self).__init__(*args, **kwargs) self.__dict__ = self def rand16hex(): return urandom(16).hex() conf = config(Path.home() / '.kyak', dict_class=AttrDict) binds = {} for k, v in conf.databases.items(): if isinstance(v, list): binds.update({':'.join([k, str(i)]): bind for i, bind in enumerate(v)}) else: binds.update({k + ':0': v}) app = Flask(__name__) app.config['SQLALCHEMY_BINDS'] = binds app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SQLALCHEMY_ECHO'] = app.debug db = SQLAlchemy(app) ma = Marshmallow(app) class Account(db.Model): __tablename__ = 'accounts' __bind_key__ = BindKeyPattern(r'accounts:\d+') id = db.Column(db.String(16), primary_key=True) type = db.Column(db.String(16), nullable=False, default='personal') name = db.Column(db.String(), nullable=False) email = db.Column(db.String(), nullable=True) address = db.Column(db.String(), nullable=True) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class Access(db.Model): __tablename__ = 'accesses' __bind_key__ = BindKeyPattern(r'accounts:\d+') account_id = db.Column(db.String(16), primary_key=True) owner = db.Column(db.String(16), primary_key=True) access = db.Column(db.String(), nullable=False) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class Hook(db.Model): __tablename__ = 'hooks' __bind_key__ = BindKeyPattern(r'accounts:\d+') account_id = db.Column(db.String(16), primary_key=True) type = db.Column(db.String(16), primary_key=True) url = db.Column(db.String(), unique=True, nullable=False) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class Offer(db.Model): __tablename__ = 'offers' __bind_key__ = BindKeyPattern(r'accounts:\d+') account_id = db.Column(db.String(16), primary_key=True) offeror = db.Column(db.String(16), primary_key=True) c = db.Column(db.String(32), primary_key=True, default=rand16hex) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class Contract(db.Model): __tablename__ = 'contracts' __bind_key__ = BindKeyPattern(r'accounts:\d+') account_id = db.Column(db.String(16), primary_key=True) contractor = db.Column(db.String(16), primary_key=True) contractee = db.Column(db.String(16), primary_key=True) c = db.Column(db.String(32), primary_key=True, default=rand16hex) type = db.Column(db.String(16), nullable=False) since = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) until = db.Column(db.DateTime, nullable=True) payment_terms = db.Column(db.String(), nullable=True) deposit = db.Column(db.Integer, nullable=True) contractor_signed = db.Column(db.DateTime, nullable=True) contractee_signed = db.Column(db.DateTime, nullable=True) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class Term(db.Model): __tablename__ = 'terms' __bind_key__ = BindKeyPattern(r'accounts:\d+') account_id = db.Column(db.String(16), primary_key=True) contractor = db.Column(db.String(16), primary_key=True) contractee = db.Column(db.String(16), primary_key=True) c = db.Column(db.String(32), primary_key=True, default=rand16hex) cc = db.Column(db.String(32), primary_key=True, default=rand16hex) order = db.Column(db.Integer, nullable=False) title = db.Column(db.String(), nullable=False) description = db.Column(db.String(), nullable=False) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class TimeAndMaterialsPrice(db.Model): __tablename__ = 'time_and_materials_prices' __bind_key__ = BindKeyPattern(r'accounts:\d+') account_id = db.Column(db.String(16), primary_key=True) contractor = db.Column(db.String(16), primary_key=True) contractee = db.Column(db.String(16), primary_key=True) c = db.Column(db.String(32), primary_key=True, default=rand16hex) cc = db.Column(db.String(32), primary_key=True, default=rand16hex) until = db.Column(db.Float, nullable=False) price = db.Column(db.Float, nullable=False, default=0) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class TimeAndMaterialsActivity(db.Model): __tablename__ = 'time_and_materials_activities' __bind_key__ = BindKeyPattern(r'accounts:\d+') account_id = db.Column(db.String(16), primary_key=True) contractor = db.Column(db.String(16), primary_key=True) contractee = db.Column(db.String(16), primary_key=True) c = db.Column(db.String(32), primary_key=True, default=rand16hex) cc = db.Column(db.String(32), primary_key=True, default=rand16hex) day = db.Column(db.Integer, nullable=False) since = db.Column(db.DateTime, nullable=True) until = db.Column(db.DateTime, nullable=True) description = db.Column(db.String(), nullable=True) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class Payment(db.Model): __tablename__ = 'payments' __bind_key__ = BindKeyPattern(r'accounts:\d+') account_id = db.Column(db.String(16), primary_key=True) contractor = db.Column(db.String(16), primary_key=True) contractee = db.Column(db.String(16), primary_key=True) c = db.Column(db.String(32), primary_key=True, default=rand16hex) amount = db.Column(db.Float, nullable=False) tax = db.Column(db.Float, nullable=False) requested = db.Column(db.DateTime, nullable=True) paid = db.Column(db.DateTime, nullable=True) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class ContractTemplates(db.Model): __tablename__ = 'contract_templates' __bind_key__ = BindKeyPattern(r'accounts:\d+') account_id = db.Column(db.String(16), primary_key=True) contractor = db.Column(db.String(16), primary_key=True) contractee = db.Column(db.String(16), primary_key=True) c = db.Column(db.String(32), primary_key=True, default=rand16hex) cc = db.Column(db.String(32), primary_key=True, default=rand16hex) title = db.Column(db.String(), nullable=False) description = db.Column(db.String(), nullable=False) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class TermTemplates(db.Model): __tablename__ = 'term_templates' __bind_key__ = BindKeyPattern(r'accounts:\d+') account_id = db.Column(db.String(16), primary_key=True) contractor = db.Column(db.String(16), primary_key=True) contractee = db.Column(db.String(16), primary_key=True) c = db.Column(db.String(32), primary_key=True, default=rand16hex) cc = db.Column(db.String(32), primary_key=True, default=rand16hex) title = db.Column(db.String(), nullable=False) description = db.Column(db.String(), nullable=False) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class Alias(db.Model): __tablename__ = 'aliases' __bind_key__ = BindKeyPattern(r'aliases:\d+') id = db.Column(db.String(16), primary_key=True) account_id = db.Column(db.String(16), nullable=False) created = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) updated = db.Column(db.DateTime, nullable=True) @classmethod def __hash_id__(cls, ident): return ord(ident[0][0]) class AccountSchema(ma.ModelSchema): class Meta: model = Account def get_system_contracts(*, contractors=None, when=datetime.now()): return None @app.before_first_request def init(): db.create_all() @app.route('/') def index(): return Path('index.html').read_text().replace('{{ title }}', conf.title) secret = conf.secret.encode() auth = EmailAuthentication(secret, scheme='Hook') hook_token = TokenAuthentication(secret) account_token = TokenAuthentication(secret) @auth.authorization @hook_token.authorization @account_token.authorization def authorization(header): return request.headers.get(header) @auth.authenticate @hook_token.authenticate @account_token.authenticate def authenticate(header, scheme): return jsonify('Unauthorized'), 401, {header: scheme} @hook_token.payload_from_bytes @account_token.payload_from_bytes def token_payload_from_bytes(b): return json.loads(b.decode()) @hook_token.payload_to_bytes @account_token.payload_to_bytes def token_payload_to_bytes(payload): return json.dumps(payload).encode() @hook_token.confirm def hook_token_confirm(payload): return 'hook' in payload @account_token.confirm def account_token_confirm(payload): return 'account' in payload @app.route('/auth', methods=['POST']) def post_auth(): expires = datetime.now() + timedelta(hours=1) aid_or_hook = request.form['id'] if aid_or_hook.startswith('http'): url = aid_or_hook hook = Hook.query.filter_by(url=url).first() if hook: payload = {'account': hook.account_id} else: payload = {'hook': url} else: aid = aid_or_hook hook = Hook.query.filter_by(account_id=aid, type='auth').first() payload = {'account': hook.account_id} url = hook.url s = string.ascii_uppercase + string.digits password = ''.join(random.choices(s, k=8)) encoded = json.dumps(payload).encode() hint = auth.hint([(aid_or_hook, password)], expires, encoded) post(url, json={'text': password}) return jsonify(hint) @app.route('/token', methods=['GET']) @requires(auth) def get_token(): expires = datetime.now() + timedelta(hours=1) payload = json.loads(auth.payload) if hook_token_confirm(payload): t, token = 'hook', hook_token else: t, token = 'account', account_token return jsonify(type=t, value=token.build(expires, payload)) @app.route('/accounts', methods=['POST']) @requires(hook_token | account_token) def post_accounts(passed): aid = request.form['id'] if aid == 'me': return jsonify('Bad Request', 400) account = Account() account.id = aid account.name = request.form['name'] if hook_token in passed: hook = Hook() hook.account_id = account.id hook.type = 'auth' hook.url = hook_token.payload['hook'] db.session.add(hook) else: account.type = 'corporate' access = Access() access.account_id = account.id access.owner = account_token.payload['account'] access.access = 'Allow full access' db.session.add(access) account.email = request.form.get('email') account.address = request.form.get('address') db.session.add(account) db.session.commit() return jsonify(AccountSchema().dump(account).data) @app.route('/accounts/<aid>') @requires(account_token) def get_accounts(aid): if aid == 'me': account = Account.query.get(account_token.payload['account']) else: account = Account.query.get(aid) return jsonify(AccountSchema().dump(account).data) @app.route('/accounts/<aid>', methods=['DELETE']) @requires(account_token) def delete_accounts(aid): if aid != account_token.payload['account']: return jsonify('Forbidden'), 403 account = Account.query.get(aid) db.session.delete(account) db.session.commit() return jsonify(AccountSchema().dump(account).data)
#!/usr/bin/python3 #basic class will be imported from here import astm_file2mysql_general as astmg import sys, logging, time #For mysql password sys.path.append('/var/gmcs_config') import astm_var log=1 my_host='127.0.0.1' my_user=astm_var.my_user my_pass=astm_var.my_pass my_db='biochemistry' inbox='/root/ashish.data/' archived='/root/ashish.arch/' log_filename='/var/log/ashish.log' logging.basicConfig(filename=log_filename,level=logging.DEBUG) if log==0: logging.disable(logging.CRITICAL) class old_LIS(astmg.astm_file): def send_to_mysql(self): print(m.final_data) while True: m=old_LIS(inbox,archived) if(m.get_first_file()): m.analyse_file() #print(m.relevant_data) m.mk_tuple() m.send_to_mysql() time.sleep(1)
from itertools import groupby class Solution: def countAndSay(self, n): def gen(s): return "".join(str(len(list(g))) + k for k, g in groupby(s)) s, i = "1", 1 while i < n: s = gen(s) i += 1 return s
import json history_path = 'outputs/ResUNet.json' history_file = open(history_path, "r") history = history_file.read() history_file.close() history = json.loads(history) import matplotlib.pyplot as plt plt.plot(history['train']) plt.plot(history['valid']) plt.legend(['train loss', 'valid loss']) plt.show()
from selenium import webdriver from PIL import Image from io import BytesIO import time import re import argparse import os import json from utils import generate_img_filename from templates import template_path def get_args(): example_text = ''' examples: python openassessit/%(capture_element_pic)s --input-file="/abs/path/to/lighthouse-report.json" --assets-dir="/abs/path/to/assets" --sleep=1 --driver=firefox ''' % {'capture_element_pic': os.path.basename(__file__)} parser = argparse.ArgumentParser(epilog=example_text, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-i', '--input-file', help='Use absolute path to the lighthouse json report') parser.add_argument('-a', '--assets-dir', help='Use absolute path to /assets dir') parser.add_argument('-s', '--sleep', type=float, help='Number of seconds to wait before taking screenshots') parser.add_argument('-d', '--driver', choices=['firefox', 'chrome'], help='Name of the webdriver.') return parser.parse_args() def get_firefox_driver(): options = webdriver.FirefoxOptions() options.add_argument('--headless') return webdriver.Firefox(firefox_options=options) def get_chrome_driver(): options = webdriver.ChromeOptions() options.add_argument('--headless') return webdriver.Chrome(chrome_options=options) def capture_screenshot(assets_dir, url, sleep, driver): driver.get(url) time.sleep(sleep) driver.set_window_size(1400, 700) Image.open(BytesIO(driver.get_screenshot_as_png())).save(os.path.join(assets_dir,'screenshot.png')) print(os.path.join(assets_dir,'screenshot.png')) def capture_element_pic(input_file, assets_dir, url, elem_identifier, sleep, driver): driver.get(url) time.sleep(sleep) # wait for page to load a bit driver.set_window_size(1400, driver.execute_script("return document.body.parentNode.scrollHeight")) try: elem = driver.find_element_by_css_selector(elem_identifier) # find element location = elem.location size = elem.size im = Image.open(BytesIO(driver.get_screenshot_as_png())) # uses PIL library to open image in memory im = im.crop((location['x'] -25, location['y'], location['x'] + size['width'] + 25, location['y'] + size['height'] )) elem_image_name = generate_img_filename(url, elem_identifier) im.save(os.path.join(assets_dir,elem_image_name)) # saves new cropped image print(os.path.join(assets_dir,elem_image_name)) except Exception as ex: print(ex) def identifier_generator(data, *auditref_whitelist): for sel in auditref_whitelist: audit = data.get('audits', {}).get(sel) if audit is None: print("Invalid audit id: %s" % sel) continue for item in audit.get('details', {}).get('items', []): if item['node']['selector'] == ':root': print('Selector returned as ":root", no image will be created.') # If Axe returns ":root" it does not create a helpful screenshot else: yield item['node']['selector'] def main(): args = get_args() input_file = args.input_file assets_dir = args.assets_dir sleep = args.sleep if args.driver == 'firefox': driver = get_firefox_driver() elif args.driver == 'chrome': driver = get_chrome_driver() else: raise ValueError("Driver must be one of: firefox, chrome") try: with open(input_file) as json_file: data = json.load(json_file) capture_screenshot(assets_dir, data['finalUrl'], sleep, driver) for sel in identifier_generator(data, 'color-contrast', 'link-name', 'button-name', 'image-alt', 'input-image-alt', 'label', 'accesskeys', 'frame-title'): capture_element_pic(input_file, assets_dir, data['finalUrl'], sel, sleep, driver) finally: driver.quit() if __name__ == '__main__': main()
from electrum_ltc.i18n import _ fullname = _('Satochip 2FA') description = ' '.join([ _("This plugin allows the use of a second factor to authorize transactions on a Satochip hardware wallet."), _("It sends and receives transaction challenge and response."), _("Data is encrypted and stored on a remote server.") ]) available_for = ['qt']
from django.db import models from django.utils.timezone import now class Company(models.Model): class CompanyStatus(models.TextChoices): LAYOFFS = "Layoffs" HIRING_FREEZE = "Hiring Freeze" HIRING = "Hiring" name = models.CharField(max_length=30, unique=True) status = models.CharField(choices=CompanyStatus.choices, default=CompanyStatus.HIRING, max_length=30) last_update = models.DateTimeField(default=now, editable=True) application_link = models.URLField(blank=True) notes = models.CharField(max_length=100, blank=True) def __str__(self): return self.name
from unittest import TestCase from mock import Mock, patch class TestAPIConnection(TestCase): def setUp(self): self._requests_patcher = patch('broadstreetads.requests') self.requests = self._requests_patcher.start() def tearDown(self): self._requests_patcher.stop() def one(self, access_token='123', host='api.broadstreetads.com'): from broadstreetads import APIConnection return APIConnection('123') def test_5XX_get(self): from broadstreetads import APIServerError api = self.one() self.requests.get().status_code = 504 self.assertRaises(APIServerError, api.get, '/whatever') def test_5XX_post(self): from broadstreetads import APIServerError api = self.one() self.requests.post().status_code = 504 self.assertRaises(APIServerError, api.post, '/whatever', {}) def test_5XX_delete(self): from broadstreetads import APIServerError api = self.one() self.requests.delete().status_code = 504 self.assertRaises(APIServerError, api.delete, '/whatever') def test_5XX_patch(self): from broadstreetads import APIServerError api = self.one() self.requests.patch().status_code = 504 self.assertRaises(APIServerError, api.patch, '/whatever', {})
import plato_fit_integrals.initialise.create_ecurve_workflows as ecurves import matplotlib.pyplot as plt def plotFittedIntsVsInitial(integInfo,coeffsToTablesObj): initInts = coeffsToTablesObj._integHolder.getIntegTableFromInfoObj(integInfo,inclCorrs=False).integrals fitInts = coeffsToTablesObj._integHolder.getIntegTableFromInfoObj(integInfo,inclCorrs=True).integrals figA = plt.figure() axA = figA.add_subplot(1,1,1) axA.plot(initInts[:,0],initInts[:,1]) axA.plot(fitInts[:,0],fitInts[:,1]) return figA def plotDissocCurvesInitVsFinal(structList, initEnergies, finalEnergies): xData = _getDistsFromUCellStructsList(structList) figA = plt.figure() axA = figA.add_subplot(1,1,1) axA.scatter(xData,initEnergies) axA.scatter(xData,finalEnergies) return figA def _getDistsFromUCellStructsList(structList): allDists = list() for x in structList: assert len(x.cartCoords)==2, "Only dimers are supported" currDist = ecurves.getSepTwoAtomsInUnitCellStruct(x) allDists.append(currDist) return allDists