content
stringlengths
5
1.05M
import unittest import pandas as pd from altcoin_max_price_prediction import preprocess_trade_data class PreprocessTradeDataTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.main_class = preprocess_trade_data.PreprocessTradeData() cls.main_class.history_size = 3 cls.main_class.future_size = 3 cls.sample_data_usd = [ {'id': 253, 'market_name': 'USDT-BTC', 'high': 5756.0, 'low': 5565.25000001, 'volume': 3142.91636975, 'last': 5709.62, 'base_volume': 17860090.630093, 'time_stamp': '2017-10-16 23:04:02', 'bid': 5709.62, 'ask': 5719.9, 'open_buy_orders': 7744, 'open_sell_orders': 3574, 'prev_day': 5745.0, 'created': '2015-12-11 06:31:40', 'updated_at': '2017-10-17 01:04:08'}, {'id': 515, 'market_name': 'USDT-BTC', 'high': 5756.0, 'low': 5565.25000001, 'volume': 3134.80686624, 'last': 5709.62, 'base_volume': 17813438.7573089, 'time_stamp': '2017-10-16 23:05:02', 'bid': 5705.00000002, 'ask': 5719.9, 'open_buy_orders': 7746, 'open_sell_orders': 3574, 'prev_day': 5748.0, 'created': '2015-12-11 06:31:40', 'updated_at': '2017-10-17 01:05:08'}, {'id': 777, 'market_name': 'USDT-BTC', 'high': 5756.0, 'low': 5565.25000001, 'volume': 3129.40685073, 'last': 5710.0, 'base_volume': 17782400.6018975, 'time_stamp': '2017-10-16 23:06:03', 'bid': 5713.0, 'ask': 5719.9, 'open_buy_orders': 7747, 'open_sell_orders': 3581, 'prev_day': 5722.03723499, 'created': '2015-12-11 06:31:40', 'updated_at': '2017-10-17 01:06:08'}, {'id': 1039, 'market_name': 'USDT-BTC', 'high': 5756.0, 'low': 5565.25000001, 'volume': 3126.59574809, 'last': 5719.0, 'base_volume': 17766282.7100516, 'time_stamp': '2017-10-16 23:07:03', 'bid': 5713.0, 'ask': 5719.0, 'open_buy_orders': 7752, 'open_sell_orders': 3583, 'prev_day': 5725.0, 'created': '2015-12-11 06:31:40', 'updated_at': '2017-10-17 01:07:08'}, {'id': 1301, 'market_name': 'USDT-BTC', 'high': 5756.0, 'low': 5565.25000001, 'volume': 3130.87751397, 'last': 5723.9, 'base_volume': 17790785.9523331, 'time_stamp': '2017-10-16 23:07:56', 'bid': 5713.0, 'ask': 5723.9, 'open_buy_orders': 7746, 'open_sell_orders': 3583, 'prev_day': 5722.00742303, 'created': '2015-12-11 06:31:40', 'updated_at': '2017-10-17 01:08:08'}, {'id': 1563, 'market_name': 'USDT-BTC', 'high': 5756.0, 'low': 5565.25000001, 'volume': 3131.2529282, 'last': 5723.9, 'base_volume': 17792925.8450579, 'time_stamp': '2017-10-16 23:08:56', 'bid': 5710.00000003, 'ask': 5723.9, 'open_buy_orders': 7748, 'open_sell_orders': 3586, 'prev_day': 5740.0, 'created': '2015-12-11 06:31:40', 'updated_at': '2017-10-17 01:09:08'}, {'id': 1825, 'market_name': 'USDT-BTC', 'high': 5756.0, 'low': 5565.25000001, 'volume': 3133.34108944, 'last': 5722.9, 'base_volume': 17804873.9598486, 'time_stamp': '2017-10-16 23:10:04', 'bid': 5715.0, 'ask': 5722.9, 'open_buy_orders': 7750, 'open_sell_orders': 3589, 'prev_day': 5722.00000001, 'created': '2015-12-11 06:31:40', 'updated_at': '2017-10-17 01:10:08'}, {'id': 2087, 'market_name': 'USDT-BTC', 'high': 5756.0, 'low': 5565.25000001, 'volume': 3136.80773744, 'last': 5723.9, 'base_volume': 17824697.2302864, 'time_stamp': '2017-10-16 23:11:05', 'bid': 5722.7, 'ask': 5723.9, 'open_buy_orders': 7750, 'open_sell_orders': 3585, 'prev_day': 5725.01, 'created': '2015-12-11 06:31:40', 'updated_at': '2017-10-17 01:11:08'}, {'id': 2349, 'market_name': 'USDT-BTC', 'high': 5756.0, 'low': 5565.25000001, 'volume': 3144.62472261, 'last': 5716.16200005, 'base_volume': 17869370.704901, 'time_stamp': '2017-10-16 23:12:08', 'bid': 5716.16200005, 'ask': 5725.0, 'open_buy_orders': 7751, 'open_sell_orders': 3573, 'prev_day': 5735.0, 'created': '2015-12-11 06:31:40', 'updated_at': '2017-10-17 01:12:08'}, {'id': 2611, 'market_name': 'USDT-BTC', 'high': 5756.0, 'low': 5565.25000001, 'volume': 3142.805971, 'last': 5735.0, 'base_volume': 17858922.0652518, 'time_stamp': '2017-10-16 23:13:07', 'bid': 5727.00000001, 'ask': 5735.0, 'open_buy_orders': 7753, 'open_sell_orders': 3561, 'prev_day': 5740.0, 'created': '2015-12-11 06:31:40', 'updated_at': '2017-10-17 01:13:08'}] cls.sample_data = [ {'id': 106, 'market_name': 'BTC-MUSIC', 'high': 3.74e-06, 'low': 3.21e-06, 'volume': 7769724.20671862, 'last': 3.32e-06, 'base_volume': 26.12908177, 'time_stamp': '2017-10-16 23:04:00', 'bid': 3.32e-06, 'ask': 3.33e-06, 'open_buy_orders': 257, 'open_sell_orders': 8848, 'prev_day': 3.74e-06, 'created': '2017-03-27 19:59:13', 'updated_at': '2017-10-17 01:04:08'}, {'id': 368, 'market_name': 'BTC-MUSIC', 'high': 3.71e-06, 'low': 3.21e-06, 'volume': 7767876.50128578, 'last': 3.34e-06, 'base_volume': 26.1216032, 'time_stamp': '2017-10-16 23:04:58', 'bid': 3.32e-06, 'ask': 3.34e-06, 'open_buy_orders': 257, 'open_sell_orders': 8824, 'prev_day': 3.71e-06, 'created': '2017-03-27 19:59:13', 'updated_at': '2017-10-17 01:05:08'}, {'id': 630, 'market_name': 'BTC-MUSIC', 'high': 3.71e-06, 'low': 3.21e-06, 'volume': 7761950.97742083, 'last': 3.38e-06, 'base_volume': 26.0989871, 'time_stamp': '2017-10-16 23:06:08', 'bid': 3.32e-06, 'ask': 3.38e-06, 'open_buy_orders': 258, 'open_sell_orders': 8845, 'prev_day': 3.71e-06, 'created': '2017-03-27 19:59:13', 'updated_at': '2017-10-17 01:06:08'}, {'id': 892, 'market_name': 'BTC-MUSIC', 'high': 3.71e-06, 'low': 3.21e-06, 'volume': 7761950.97742083, 'last': 3.38e-06, 'base_volume': 26.0989871, 'time_stamp': '2017-10-16 23:06:08', 'bid': 3.32e-06, 'ask': 3.38e-06, 'open_buy_orders': 258, 'open_sell_orders': 8845, 'prev_day': 3.71e-06, 'created': '2017-03-27 19:59:13', 'updated_at': '2017-10-17 01:07:08'}, {'id': 1154, 'market_name': 'BTC-MUSIC', 'high': 3.71e-06, 'low': 3.21e-06, 'volume': 7761950.97742083, 'last': 3.38e-06, 'base_volume': 26.0989871, 'time_stamp': '2017-10-16 23:07:47', 'bid': 3.33e-06, 'ask': 3.38e-06, 'open_buy_orders': 258, 'open_sell_orders': 8845, 'prev_day': 3.71e-06, 'created': '2017-03-27 19:59:13', 'updated_at': '2017-10-17 01:08:08'}, {'id': 1416, 'market_name': 'BTC-MUSIC', 'high': 3.71e-06, 'low': 3.21e-06, 'volume': 7761950.97742083, 'last': 3.38e-06, 'base_volume': 26.0989871, 'time_stamp': '2017-10-16 23:07:47', 'bid': 3.33e-06, 'ask': 3.38e-06, 'open_buy_orders': 258, 'open_sell_orders': 8845, 'prev_day': 3.71e-06, 'created': '2017-03-27 19:59:13', 'updated_at': '2017-10-17 01:09:08'}, {'id': 1678, 'market_name': 'BTC-MUSIC', 'high': 3.71e-06, 'low': 3.21e-06, 'volume': 7761950.97742083, 'last': 3.38e-06, 'base_volume': 26.0989871, 'time_stamp': '2017-10-16 23:07:47', 'bid': 3.33e-06, 'ask': 3.38e-06, 'open_buy_orders': 258, 'open_sell_orders': 8845, 'prev_day': 3.71e-06, 'created': '2017-03-27 19:59:13', 'updated_at': '2017-10-17 01:10:08'}, {'id': 1940, 'market_name': 'BTC-MUSIC', 'high': 3.71e-06, 'low': 3.21e-06, 'volume': 7761950.97742083, 'last': 3.38e-06, 'base_volume': 26.0989871, 'time_stamp': '2017-10-16 23:07:47', 'bid': 3.33e-06, 'ask': 3.38e-06, 'open_buy_orders': 258, 'open_sell_orders': 8845, 'prev_day': 3.71e-06, 'created': '2017-03-27 19:59:13', 'updated_at': '2017-10-17 01:11:08'}, {'id': 2202, 'market_name': 'BTC-MUSIC', 'high': 3.69e-06, 'low': 3.21e-06, 'volume': 7746010.66199945, 'last': 3.38e-06, 'base_volume': 26.04065161, 'time_stamp': '2017-10-16 23:11:26', 'bid': 3.33e-06, 'ask': 3.38e-06, 'open_buy_orders': 265, 'open_sell_orders': 8855, 'prev_day': 3.59e-06, 'created': '2017-03-27 19:59:13', 'updated_at': '2017-10-17 01:12:08'}, {'id': 2464, 'market_name': 'BTC-MUSIC', 'high': 3.69e-06, 'low': 3.21e-06, 'volume': 7746180.1648616, 'last': 3.33e-06, 'base_volume': 26.04121605, 'time_stamp': '2017-10-16 23:12:44', 'bid': 3.33e-06, 'ask': 3.37e-06, 'open_buy_orders': 263, 'open_sell_orders': 8856, 'prev_day': 3.59e-06, 'created': '2017-03-27 19:59:13', 'updated_at': '2017-10-17 01:13:08'}] def test_get_old(self): sample_df = pd.DataFrame(self.sample_data_usd) sample_df['usdt_btc_last'] = (1 / sample_df['last']).round(8) sample_df_with_old = self.main_class.get_old(sample_df,['usdt_btc_last']) self.assertEqual(sample_df_with_old['usdt_btc_last_old_1'].iloc[0], 1) def test_get_new(self): sample_df = pd.DataFrame(self.sample_data) sample_df_with_new = self.main_class.get_new(sample_df) self.assertEqual(sample_df_with_new['last_max'].iloc[0], 0.01807) def test_remove_no_calculated_old_and_new_data(self): sample_df = pd.DataFrame(self.sample_data) sample_df_with_new = self.main_class.remove_no_calculated_old_and_new_data(sample_df) self.assertEqual(sample_df_with_new.shape[0], 3) def test_ticker_merge_with_usd(self): sample_df_usd = pd.DataFrame(self.sample_data_usd) sample_df = pd.DataFrame(self.sample_data) sample_df_merge = self.main_class.ticker_merge_with_usd(sample_df, sample_df_usd) self.assertEqual(sample_df_merge.shape[0], 10) if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- import os from ..glue.datasets import GlueDataset from ..common import SentenceExample __all__ = ["AGNEWSDataset", "TRECDataset", "DBPEDIADataset", "YELPDataset"] class AGNEWSDataset(GlueDataset): def __init__(self, dara_dir): self.name = "agnews" self.data_dir = dara_dir self.trn_egs = self.get_split_examples("train_split") self.val_egs = self.get_split_examples("dev_split") self.tst_egs = self.get_split_examples("test_split") def get_split_examples(self, which_split): where_ = os.path.join(self.data_dir, "{}.tsv".format(which_split)) print("[INFO] {} is looking for {}".format(self.__class__.__name__, where_)) return self._create_examples(where_, which_split) def get_labels(self): return ["1", "2", "3", "4"] def _create_examples(self, input_file, which_split): """parse and convert raw string to SentencePairExample""" sentence_egs = [] with open(input_file, "r") as f: for idx, line in enumerate(f): line = line.strip().split("\t") label = line[0] assert int(label) in [1, 2, 3, 4] text_a = line[1] uid = "%s-%s" % (which_split, idx) sentence_egs.append( SentenceExample(uid=uid, text_a=text_a, label=label) ) return sentence_egs class TRECDataset(GlueDataset): def __init__(self, dara_dir): self.name = "trec" self.data_dir = dara_dir self.trn_egs = self.get_split_examples("train_split") self.val_egs = self.get_split_examples("dev_split") self.tst_egs = self.get_split_examples("test_split") def get_split_examples(self, which_split): where_ = os.path.join(self.data_dir, "{}.tsv".format(which_split)) print("[INFO] {} is looking for {}".format(self.__class__.__name__, where_)) return self._create_examples(where_, which_split) def get_labels(self): return ["DESC", "ENTY", "ABBR", "HUM", "NUM", "LOC"] def _create_examples(self, input_file, which_split): """parse and convert raw string to SentencePairExample""" sentence_egs = [] with open(input_file, "r") as f: for idx, line in enumerate(f): line = line.strip().split("\t") label = line[0] text_a = line[1] uid = "%s-%s" % (which_split, idx) sentence_egs.append( SentenceExample(uid=uid, text_a=text_a, label=label) ) return sentence_egs class DBPEDIADataset(GlueDataset): def __init__(self, dara_dir): self.name = "dbpedia" self.data_dir = dara_dir self.trn_egs = self.get_split_examples("train_split") self.val_egs = self.get_split_examples("dev_split") self.tst_egs = self.get_split_examples("test_split") def get_split_examples(self, which_split): where_ = os.path.join(self.data_dir, "{}.tsv".format(which_split)) print("[INFO] {} is looking for {}".format(self.__class__.__name__, where_)) return self._create_examples(where_, which_split) def get_labels(self): return [str(x) for x in range(1, 15)] def _create_examples(self, input_file, which_split): """parse and convert raw string to SentencePairExample""" sentence_egs = [] with open(input_file, "r") as f: for idx, line in enumerate(f): line = line.strip().split("\t") label = line[0] text_a = line[1] uid = "%s-%s" % (which_split, idx) sentence_egs.append( SentenceExample(uid=uid, text_a=text_a, label=label) ) return sentence_egs class YELPDataset(GlueDataset): def __init__(self, dara_dir): self.name = "yelp2" self.data_dir = dara_dir self.trn_egs = self.get_split_examples("train_split") self.val_egs = self.get_split_examples("dev_split") # self.tst_egs = self.get_split_examples("test_split") def get_split_examples(self, which_split): where_ = os.path.join(self.data_dir, "{}.tsv".format(which_split)) print("[INFO] {} is looking for {}".format(self.__class__.__name__, where_)) return self._create_examples(where_, which_split) def get_labels(self): return ["0", "1"] def _create_examples(self, input_file, which_split): """parse and convert raw string to SentencePairExample""" sentence_egs = [] with open(input_file, "r") as f: for idx, line in enumerate(f): line = line.strip().split("\t") label = line[0] text_a = line[1] uid = "%s-%s" % (which_split, idx) sentence_egs.append( SentenceExample(uid=uid, text_a=text_a, label=label) ) return sentence_egs
# Copyright 2018 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Input pipe for feeding examples to a Seq2Label model graph.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from google.protobuf import text_format from research.seq2species.protos import seq2label_pb2 from research.seq2species import seq2label_utils DNA_BASES = tuple('ACGT') NUM_DNA_BASES = len(DNA_BASES) # Possible FASTA characters/IUPAC ambiguity codes. # See https://en.wikipedia.org/wiki/Nucleic_acid_notation. AMBIGUITY_CODES = { 'K': 'GT', 'M': 'AC', 'R': 'AG', 'Y': 'CT', 'S': 'CG', 'W': 'AT', 'B': 'CGT', 'V': 'ACG', 'H': 'ACT', 'D': 'AGT', 'X': 'ACGT', 'N': 'ACGT' } def load_dataset_info(dataset_info_path): """Load a `Seq2LabelDatasetInfo` from a serialized text proto file.""" dataset_info = seq2label_pb2.Seq2LabelDatasetInfo() with tf.gfile.Open(dataset_info_path, 'r') as f: text_format.Parse(f.read(), dataset_info) return dataset_info class _InputEncoding(object): """A helper class providing the graph operations needed to encode input. Instantiation of an _InputEncoding will write on the default TF graph, so it should only be instantiated inside the `input_fn`. Attributes: mode: `tf.estimator.ModeKeys`; the execution mode {TRAIN, EVAL, INFER}. targets: list of strings; the names of the labels of interest (e.g. "species"). dna_bases: a tuple of the recognized DNA alphabet. n_bases: the size of the DNA alphabet. all_characters: list of recognized alphabet, including ambiguity codes. label_values: a tuple of strings, the possible label values of the prediction target. n_labels: the size of label_values fixed_read_length: an integer value of the statically-known read length, or None if the read length is to be determined dynamically. """ def __init__(self, dataset_info, mode, targets, noise_rate=0.0, fixed_read_length=None): self.mode = mode self.targets = targets self.dna_bases = DNA_BASES self.n_bases = NUM_DNA_BASES self.all_characters = list(DNA_BASES) + sorted(AMBIGUITY_CODES.keys()) self.character_encodings = np.concatenate( [[self._character_to_base_distribution(char)] for char in self.all_characters], axis=0) all_legal_label_values = seq2label_utils.get_all_label_values(dataset_info) # TF lookup tables. self.characters_table = tf.contrib.lookup.index_table_from_tensor( mapping=self.all_characters) self.label_tables = { target: tf.contrib.lookup.index_table_from_tensor( all_legal_label_values[target]) for target in targets } self.fixed_read_length = fixed_read_length self.noise_rate = noise_rate def _character_to_base_distribution(self, char): """Maps the given character to a probability distribution over DNA bases. Args: char: character to be encoded as a probability distribution over bases. Returns: Array of size (self.n_bases,) representing the identity of the given character as a distribution over the possible DNA bases, self.dna_bases. Raises: ValueError: if the given character is not contained in the recognized alphabet, self.all_characters. """ if char not in self.all_characters: raise ValueError( 'Base distribution requested for unrecognized character %s.' % char) possible_bases = AMBIGUITY_CODES[char] if char in AMBIGUITY_CODES else char base_indices = [self.dna_bases.index(base) for base in possible_bases] probability_weight = 1.0 / len(possible_bases) distribution = np.zeros((self.n_bases)) distribution[base_indices] = probability_weight return distribution def encode_read(self, string_seq): """Converts the input read sequence to one-hot encoding. Args: string_seq: tf.String; input read sequence. Returns: Input read sequence as a one-hot encoded Tensor, with depth and ordering of one-hot encoding determined by the given bases. Ambiguous characters such as "N" and "S" are encoded as a probability distribution over the possible bases they represent. """ with tf.variable_scope('encode_read'): read = tf.string_split([string_seq], delimiter='').values read = self.characters_table.lookup(read) read = tf.cast(tf.gather(self.character_encodings, read), tf.float32) if self.fixed_read_length: read = tf.reshape(read, (self.fixed_read_length, self.n_bases)) return read def encode_label(self, target, string_label): """Converts the label value to an integer encoding. Args: target: str; the target name. string_label: tf.String; value of the label for the current input read. Returns: Given label value as an index into the possible_target_values. """ with tf.variable_scope('encode_label/{}'.format(target)): return tf.cast(self.label_tables[target].lookup(string_label), tf.int32) def _empty_label(self): return tf.constant((), dtype=tf.int32, shape=()) def parse_single_tfexample(self, serialized_example): """Parses a tf.train.Example proto to a one-hot encoded read, label pair. Injects noise into the incoming tf.train.Example's read sequence when noise_rate is non-zero. Args: serialized_example: string; the serialized tf.train.Example proto containing the read sequence and label value of interest as tf.FixedLenFeatures. Returns: Tuple (features, labels) of dicts for the input features and prediction targets. """ with tf.variable_scope('parse_single_tfexample'): features_spec = {'sequence': tf.FixedLenFeature([], tf.string)} for target in self.targets: features_spec[target] = tf.FixedLenFeature([], tf.string) features = tf.parse_single_example( serialized_example, features=features_spec) if self.noise_rate > 0.0: read_sequence = tf.py_func(seq2label_utils.add_read_noise, [features['sequence'], self.noise_rate], (tf.string)) else: read_sequence = features['sequence'] read_sequence = self.encode_read(read_sequence) read_features = {'sequence': read_sequence} if self.mode in (tf.estimator.ModeKeys.TRAIN, tf.estimator.ModeKeys.EVAL): label = { target: self.encode_label(target, features[target]) for target in self.targets } else: label = {target: self._empty_label() for target in self.targets} return read_features, label class InputDataset(object): """A class providing access to input data for the Seq2Label model. Attributes: mode: `tf.estimator.ModeKeys`; the execution mode {TRAIN, EVAL, INFER}. targets: list of strings; the names of the labels of interest (e.g. "species"). dataset_info: a `Seq2LabelDatasetInfo` message reflecting the dataset metadata. initializer: the TF initializer op for the underlying iterator, which will rewind the iterator. is_train: Boolean indicating whether or not the execution mode is TRAIN. """ def __init__(self, mode, targets, dataset_info, train_epochs=None, noise_rate=0.0, random_seed=None, input_tfrecord_files=None, fixed_read_length=None, ensure_constant_batch_size=False, num_parallel_calls=32): """Constructor for InputDataset. Args: mode: `tf.estimator.ModeKeys`; the execution mode {TRAIN, EVAL, INFER}. targets: list of strings; the names of the labels of interest (e.g. "species"). dataset_info: a `Seq2LabelDatasetInfo` message reflecting the dataset metadata. train_epochs: the number of training epochs to perform, if mode==TRAIN. noise_rate: float [0.0, 1.0] specifying rate at which to inject base-flipping noise into the read sequences. random_seed: seed to be used for shuffling, if mode==TRAIN. input_tfrecord_files: a list of filenames for TFRecords of TF examples. fixed_read_length: an integer value of the statically-known read length, or None if the read length is to be determined dynamically. The read length must be known statically for TPU execution. ensure_constant_batch_size: ensure a constant batch size at the expense of discarding the last "short" batch. This also gives us a statically constant batch size, which is essential for e.g. the TPU platform. num_parallel_calls: the number of dataset elements to process in parallel. If None, elements will be processed sequentially. """ self.input_tfrecord_files = input_tfrecord_files self.mode = mode self.targets = targets self.dataset_info = dataset_info self._train_epochs = train_epochs self._noise_rate = noise_rate self._random_seed = random_seed if random_seed is not None: np.random.seed(random_seed) self._fixed_read_length = fixed_read_length self._ensure_constant_batch_size = ensure_constant_batch_size self._num_parallel_calls = num_parallel_calls @staticmethod def from_tfrecord_files(input_tfrecord_files, *args, **kwargs): return InputDataset( *args, input_tfrecord_files=input_tfrecord_files, **kwargs) @property def is_train(self): return self.mode == tf.estimator.ModeKeys.TRAIN def input_fn(self, params): """Supplies input for the model. This function supplies input to our model as a function of the mode. Args: params: a dictionary, containing: - params['batch_size']: the integer batch size. Returns: A tuple of two values as follows: 1) the *features* dict, containing a tensor value for keys as follows: - "sequence" - the encoded read input sequence. 2) the *labels* dict. containing a key for `target`, whose value is: - a string Tensor value (in TRAIN/EVAL mode), or - a blank Tensor (PREDICT mode). """ randomize_input = self.is_train batch_size = params['batch_size'] encoding = _InputEncoding( self.dataset_info, self.mode, self.targets, noise_rate=self._noise_rate, fixed_read_length=self._fixed_read_length) dataset = tf.data.TFRecordDataset(self.input_tfrecord_files) dataset = dataset.map( encoding.parse_single_tfexample, num_parallel_calls=self._num_parallel_calls) dataset = dataset.repeat(self._train_epochs if self.is_train else 1) if randomize_input: dataset = dataset.shuffle( buffer_size=max(1000, batch_size), seed=self._random_seed) if self._ensure_constant_batch_size: # Only take batches of *exactly* size batch_size; then we get a # statically knowable batch shape. dataset = dataset.apply( tf.contrib.data.batch_and_drop_remainder(batch_size)) else: dataset = dataset.batch(batch_size) # Prefetch to allow infeed to be in parallel with model computations. dataset = dataset.prefetch(2) # Use initializable iterator to support table lookups. iterator = dataset.make_initializable_iterator() self.initializer = iterator.initializer tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer) features, labels = iterator.get_next() return (features, labels)
def make_matrix(rows=0, columns=0, list_of_list=[[]]): ''' (int, int, list of list) -> list of list (i.e. matrix) Return a list of list (i.e. matrix) from "list_of_list" if given or if not given a "list_of_list" parameter, then prompt user to type in values for each row and return a matrix with dimentions: rows x columns. ''' if list_of_list == [[]]: matrix = make_matrix_manually(rows, columns) return matrix else: rows = size_of(list_of_list) columns = size_of(list_of_list[0]) for item in list_of_list: if size_of(item) != size_of(list_of_list[0]): print('The number of columns in every row should be equal, but isn\'t!') return None matrix = list_of_list return matrix def make_matrix_manually(rows=0, columns=0): ''' (int, int) -> list of list (i.e. matrix) Prompt user to type in values for each row and return a matrix with dimentions: rows x columns. ''' matrix = [] for i in range(rows): print('Type in values for ROW', i+1, 'seperated by commas: ', end='') current_row = convert_str_into_list(input()) matrix.append(current_row) if size_of(current_row) != columns: print('Number of values different then declared columns!') return None return matrix def make_Id_matrix(size=1): ''' (int) -> list of list (i.e. matrix) Return an Identity Matrix (1's across the diagonal and all other entries 0's) with dimentions: size x size. ''' Id_matrix = [] for i in range(1, size+1): current_row = convert_str_into_list('0,'*(i-1) + '1,' + '0,'*(size-i)) Id_matrix.append(current_row) return Id_matrix def convert_str_into_list(string): ''' (str)-> list of numbers Return a list of numbers from a string. Precondition: the string should consist of numbers separated by commas. ''' list = [] # step 1: remove all empty spaces. i = 0 length = len(string) while i <=(length-1): if string[i] == ' ': string = string[:i] + string[i+1:] length = len(string) else: i += 1 # (a += b) is equivalent to (a = a + b) # step 2: extract sections seperated by commas, turn them into floats # and append them to the list. j = 0 i = 0 for j in range(len(string)+1): if j==(len(string)) or string[j]==',': item = string[i:j] i = j+1 if item =='': pass else: list.append(float(item)) j = j + 1 return list # *values - means, that we do not know up front, what number of # parameters (atributes) we're going to pass to the function. def convert_into_list(*values): ''' (items separated by commas) -> list Return a list of values. (Return values in the form a variable of type LIST.) ''' list = [] for value in values: list.append(value) return list def size_of(list): ''' (list) -> int Return the number of entries (items) in a given list. ''' size = 0 for item in list: size = size+1 return size def add_matrix(matrix1, matrix2): ''' (list of list, list of list) -> list of list Return the result of addition of two matrices: matrix1 and matrix2. Precondition: matrix1 and matix2 have to have the same dimentions. ''' if size_of(matrix1) != size_of(matrix2): print('Error: matrices do not have the same dimentions (size)!') return None matrix_sum = [] for i in range(size_of(matrix1)): if size_of(matrix1[i]) != size_of(matrix2[i]): print('Error: matrices do not have the same dimentions (size)!') return None matrix_sum.append([]) for j in range(size_of(matrix1[i])): matrix_sum[i].append(matrix1[i][j] + matrix2[i][j]) return matrix_sum def neg_matrix(matrix1): ''' (list of list) -> list of list Return the result of the operation of negation on matrix1. ''' matrix_n = [] for i in range(size_of(matrix1)): matrix_n.append([]) for j in range(size_of(matrix1[i])): matrix_n[i].append(-matrix1[i][j]) return matrix_n def substract_matrix(matrix1, matrix2): ''' (list of list, list of list) -> list of list Return the result of substraction of two matrices: matrix1 and matrix2. Precondition: matrix1 and matix2 have to have the same dimentions. ''' sub_matrix = add_matrix(matrix1, neg_matrix(matrix2)) return sub_matrix def multiply_matrix_by_float(arg1, matrix1): ''' (number, list of list) -> list of list Return the result of multiplication of matrix1 by arg1. ''' matrix_new = [] for i in range(size_of(matrix1)): matrix_new.append([]) for j in range(size_of(matrix1[i])): matrix_new[i].append(arg1 * matrix1[i][j]) return matrix_new def multiply_matrix_by_matrix(matrix1, matrix2): ''' (list of list, list of list) -> list of list Return the result of multiplication of matrix1 by matrix2. ''' matrix_new = [] # # Checking if matrices can be multiplied. # # rows = matrix_and_list_functions.size_of(Matrix_name) # columns = matrix_and_list_functions.size_of(Matrix_name[0]) # if size_of(matrix1[0]) == size_of(matrix2): # # implementing Matrix multiplication here. # for i in range(size_of(matrix1)): matrix_new.append([]) for j in range(size_of(matrix2[0])): ABij = 0 for k in range(size_of(matrix1[0])): ABij = ABij + (matrix1[i][k]*matrix2[k][j]) matrix_new[i].append(ABij) return matrix_new else: print('Error: The number of columns in matrix1 has to be equal to the number of rows in matrix2!') return []
"""Classes for the configuration of hermes-audio-server.""" import json from pathlib import Path from hermes_audio_server.config.mqtt import MQTTConfig from hermes_audio_server.config.vad import VADConfig from hermes_audio_server.exceptions import ConfigurationFileNotFoundError # Default values DEFAULT_CONFIG = '/etc/hermes-audio-server.json' DEFAULT_SITE = 'default' # Keys in the JSON configuration file SITE = 'site' MQTT = 'mqtt' VAD = 'vad' # TODO: Define __str__() with explicit settings for debugging. class ServerConfig: """This class represents the configuration of a Hermes audio server. Attributes: site (str): The site ID of the audio server. mqtt (:class:`.MQTTConfig`): The MQTT options of the configuration. vad (:class:`.VADConfig`): The VAD options of the configuration. """ def __init__(self, site='default', mqtt=None, vad=None): """Initialize a :class:`.ServerConfig` object. Args: site (str): The site ID of the Hermes audio server. Defaults to 'default'. mqtt (:class:`.MQTTConfig`, optional): The MQTT connection settings. Defaults to a default :class:`.MQTTConfig` object. vad (:class:`.VADConfig`, optional): The VAD settings. Defaults to a default :class:`.VADConfig` object, which disables voice activity detection. """ if mqtt is None: self.mqtt = MQTTConfig() else: self.mqtt = mqtt if vad is None: self.vad = VADConfig() else: self.vad = vad self.site = site @classmethod def from_json_file(cls, filename=None): """Initialize a :class:`.ServerConfig` object with settings from a JSON file. Args: filename (str): The filename of a JSON file with the settings. Defaults to '/etc/hermes-audio-server'. Returns: :class:`.ServerConfig`: An object with the settings of the Hermes Audio Server. The :attr:`mqtt` attribute of the :class:`.ServerConfig` object is initialized with the MQTT connection settings from the configuration file, or the default values (hostname 'localhost' and port number 1883) if the settings are not specified. The :attr:`site` attribute of the :class:`.ServerConfig` object is initialized with the setting from the configuration file, or 'default' is the setting is not specified. The :attr:`vad` attribute of the :class:`.ServerConfig` object is initialized with the settings from the configuration file, or not enabled when not specified. Raises: :exc:`ConfigurationFileNotFoundError`: If :attr:`filename` doesn't exist. :exc:`PermissionError`: If we have no read permissions for :attr:`filename`. :exc:`JSONDecodeError`: If :attr:`filename` doesn't have a valid JSON syntax. The JSON file should have the following format: { "site": "default", "mqtt": { "host": "localhost", "port": 1883, "authentication": { "username": "foobar", "password": "secretpassword" }, "tls": { "ca_certificates": "", "client_certificate": "", "client_key": "" } }, "vad": { "mode": 0, "silence": 2, "status_messages": true } } """ if not filename: filename = DEFAULT_CONFIG try: with Path(filename).open('r') as json_file: configuration = json.load(json_file) except FileNotFoundError as error: raise ConfigurationFileNotFoundError(error.filename) return cls(site=configuration.get(SITE, DEFAULT_SITE), mqtt=MQTTConfig.from_json(configuration.get(MQTT)), vad=VADConfig.from_json(configuration.get(VAD)))
import tensorflow as tf import numpy as np import time import json import hparams as hp from model import transformer from optimizer import get_optimizer from preprocess import get_vocab from pathlib import Path from absl import app, flags # Training hparams hp.add("shuffle_buffer", 1, help="Shuffle buffer") hp.add("max_tokens", 100, help="Max tokens") hp.add("max_seq_len", 600, help="Max sequence len") def get_dataset(dataset_path: Path, max_tokens: int, max_seq_len: int, shuffle_buffer: int, skip: int = 0): def parse_json(json_string_tensor): encoded = json.loads(json_string_tensor.numpy())["encoded"] return tf.constant(encoded, dtype=tf.int64, shape=[len(encoded)]) def parse_json_fn(text): return tf.py_function(parse_json, inp=[text], Tout=tf.int64) boundaries = [i for i in range(1, max_seq_len + 1) if max_tokens % i == 0] batch_sizes = [int(max_tokens / i) for i in range(1, max_seq_len + 1) if max_tokens % i == 0] + [1] ds = tf.data.TextLineDataset(str(dataset_path)) ds = ds.map(parse_json_fn) ds = ds.apply(tf.data.experimental.bucket_by_sequence_length(lambda x: tf.shape(x), boundaries, batch_sizes, padded_shapes=[None])) ds = ds.shuffle(buffer_size=shuffle_buffer, seed=42) ds = ds.repeat() ds = ds.skip(skip) ds = ds.prefetch(100) return ds def train_loop(ds, transformer_decoder, global_step, num_examples_processed, ckpt_manager, optimizer, learning_rate, train_summary_writer, checkpoint_every, summarize_every, continuous=True): loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none') train_step_signature = [tf.TensorSpec(shape=(None, None), dtype=tf.int64)] def calculate_loss(real, pred): # Masks padded tokens from loss_object mask = tf.math.logical_not(tf.math.equal(real, 0)) loss_ = loss_object(real, pred) return tf.reduce_mean(tf.boolean_mask(loss_, mask)) @tf.function(input_signature=train_step_signature, experimental_relax_shapes=True) def train_step(batch): tar_inp = batch[:, :-1] tar_real = batch[:, 1:] mask = transformer.create_masks(tar_inp) with train_summary_writer.as_default(): with tf.summary.record_if(tf.math.equal(tf.math.mod(global_step, summarize_every), 0)): with tf.GradientTape() as tape: predictions, _ = transformer_decoder(tar_inp, True, mask) loss = calculate_loss(tar_real, predictions) vars = transformer_decoder.trainable_variables gradients = tape.gradient(loss, vars) optimizer.apply_gradients(zip(gradients, transformer_decoder.trainable_variables)) for i in range(len(vars)): tf.summary.scalar("gradient/" + vars[i].name, tf.linalg.norm(gradients[i])) tf.summary.scalar("loss", loss) tf.summary.scalar("gradient_norm", tf.linalg.global_norm(gradients)) tf.summary.scalar("learning_rate", learning_rate if type(learning_rate) is float else learning_rate(global_step)) return loss steps_start = time.time() for batch in ds: global_step.assign_add(1) num_examples_processed.assign_add(tf.cast(tf.shape(batch)[0], num_examples_processed.dtype)) tf.summary.experimental.set_step(global_step) # Take a gradient step loss = train_step(batch) if global_step.numpy() == 1: print("Number of trainable parameters: {}".format( np.sum([np.prod(v.get_shape().as_list()) for v in transformer_decoder.trainable_variables]))) # Print intermediate metrics if global_step.numpy() % 100 == 0: print('Step: {}\tLoss: {:.4f}\tNum examples: {}\tTime: {:.3f}s'.format( global_step.numpy(), loss, num_examples_processed.numpy(), time.time() - steps_start)) steps_start = time.time() # Checkpoint every X step if global_step.numpy() % checkpoint_every == 0: ckpt_save_path = ckpt_manager.save(checkpoint_number=global_step) print("Saving checkpoint at '{}'".format(ckpt_save_path)) if not continuous: break def main(argv): vocab_size = get_vocab(Path(flags.FLAGS.vocab)).vocab_size # Model transformer_decoder = transformer.TransformerOnlyDecoder(vocab_size) # Optimizer optimizer, learning_rate = get_optimizer() # Counters global_step = tf.Variable(0, name="global_step", trainable=False, dtype=tf.int64) num_examples_processed = tf.Variable(0, name="num_examples_processed", trainable=False, dtype=tf.int64) # Checkpointing checkpoint_path = Path(flags.FLAGS.checkpoint_path) ckpt = tf.train.Checkpoint(transformer_decoder=transformer_decoder, optimizer=optimizer, global_step=global_step, num_examples_processed=num_examples_processed) ckpt_manager = tf.train.CheckpointManager(ckpt, str(checkpoint_path), max_to_keep=5) if ckpt_manager.latest_checkpoint: ckpt.restore(ckpt_manager.latest_checkpoint) print("Restored checkpoint from: {}".format(ckpt_manager.latest_checkpoint)) # Tensorboard events train_log_dir = str(checkpoint_path / "events") train_summary_writer = tf.summary.create_file_writer(train_log_dir) # Training dataset ds = get_dataset(Path(flags.FLAGS.data), hp.get("max_tokens"), hp.get("max_seq_len"), hp.get("shuffle_buffer"), skip=global_step.numpy()) try: train_loop(ds, transformer_decoder, global_step, num_examples_processed, ckpt_manager, optimizer, learning_rate, train_summary_writer, flags.FLAGS.checkpoint_every, flags.FLAGS.summarize_every, flags.FLAGS.continuous) except KeyboardInterrupt: pass if __name__ == "__main__": flags.DEFINE_string("data", None, help="Training data tfrecord file") flags.DEFINE_string("vocab", None, help="Vocab file") flags.DEFINE_string("checkpoint_path", None, help="Checkpoint path") flags.DEFINE_integer("checkpoint_every", 1000, help="Checkpoint every X step") flags.DEFINE_boolean("continuous", True, help="Whether to continue training after checkpointing") flags.DEFINE_integer("summarize_every", 50, help="Summarize model stats every X step") flags.mark_flags_as_required(["data", "vocab", "checkpoint_path"]) app.run(main)
""" Django settings for rl_arena project. Generated by 'django-admin startproject' using Django 2.2.5. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ from core.settings import * INSTALLED_APPS = [ 'core.apps.Config', 'publisher.apps.Config', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', ]
# Copyright (c) 2014 University of California, Davis # # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. class BasicRelation: def __init__(self, name, latex, logic): self.latexSymbol = latex self.name = name self.logicSymbol = logic def __str__(self): return self.name class RelationSet: def __init__(self, name="", relations=[]): self.name = name self.relations = relations ## a list of basic relations class RCCType: def __init__(self, name="", relationSets=[]): self.name = "" self.relationSets = [] ## a list of relations sets, RCC5 would be a RCCType relationDict = {} relationDict["equals"] = BasicRelation("equals","$x \leftrightarrow $y","=") relationDict["includes"] = BasicRelation("includes","$y > $x","PPC") relationDict["is_included_in"] = BasicRelation("is_included_in","$x < $y","PP") relationDict["disjoint"] = BasicRelation("disjoint","$x ! $y","DC") relationDict["overlaps"] = BasicRelation("overlaps","$x \otimes $y","PO") #relationDict["overlaps includes is_included_in disjoint"] = BasicRelation("does_not_equal","$x != $y","-(all x ($x(x) <-> $y(x)))") #relationDict["equals includes"] = BasicRelation("isa", "$x \rightarrow $y","$y(x) -> $x(x)") #relationDict["equals is_included_in"] = BasicRelation("asi", "$y \rightarrow $x","$x(x) -> $y(x)") isa = RelationSet() isa.name = "is a" isa.relations = [relationDict["equals"], relationDict["is_included_in"]]
def display_menu(): print("The Book Catalog program") print() print("COMMAND MENU") print("show - Show book info") print("add - Add book") print("edit - Edit book") print("del - Delete book") print("exit - Exit program") def show_book(book_catalog): i = 1 for key, value in book_catalog.items(): print(f"{i}. {key}") i += 1 print() selected_book = int(input(f"Please select a book (1-{i - 1}): ")) - 1 selected_book_title = [key for key in book_catalog.keys()][selected_book] selected_book_author = book_catalog[selected_book_title]["author"] selected_book_year = book_catalog[selected_book_title]["pubyear"] print() # print(f"Book Name: {book_catalog[]}") print(f"Title: {selected_book_title}") print(f"Author: {selected_book_author}") print(f"Publication Year: {selected_book_year}") def add_edit_book(book_catalog, mode): if mode == "add": new_book_info = {} new_book_title = input("Enter book name: ") new_book_info["author"] = input("Enter book author: ") new_book_info["pubyear"] = input("Enter book publication year: ") book_catalog[new_book_title] = new_book_info if mode == "edit": i = 1 for key, value in book_catalog.items(): print(f"{i}. {key}") i += 1 print() selected_book = int(input(f"Please select a book (1-{i - 1}): ")) - 1 new_book_info = {} new_book_title = input("Enter book name: ") new_book_info["author"] = input("Enter book author: ") new_book_info["pubyear"] = input("Enter book publication year: ") [key for key in book_catalog.keys()][selected_book] = new_book_title book_catalog[new_book_title] = new_book_info def delete_book(book_catalog): i = 1 for key, value in book_catalog.items(): print(f"{i}. {key}") i += 1 print() selected_book = int(input(f"Please select a book (1-{i - 1}): ")) - 1 book_catalog.pop(selected_book) def main(): book_catalog = { "Moby Dick": {"author": "Herman Melville", "pubyear": "1851"}, "The Hobbit": {"author": "J. R. R. Tolkien", "pubyear": "1937"}, "Slaughterhouse Five": {"author": "Kurt Vonnegut", "pubyear": "1969"} } display_menu() while True: print() command = input("Command: ").lower() if command == "show": show_book(book_catalog) elif command == "add": add_edit_book(book_catalog, mode="add") elif command == "edit": add_edit_book(book_catalog, mode="edit") elif command == "del": delete_book(book_catalog) elif command == "exit": print("Bye!") break else: print("Unknown command. Please try again.") if __name__ == "__main__": main()
def foo(x: int): pass
from .GridEmitter import * from .ForceEmitter import * from .HardCodeEmitter import *
from time import sleep, strftime, time import matplotlib.pyplot as plt import numpy as np import board import busio import adafruit_ads1x15.ads1115 as ADS from adafruit_ads1x15.analog_in import AnalogIn # Create the I2C bus i2c = busio.I2C(board.SCL, board.SDA) #What Data Do We Need? Print = True#For Debugging and Calibration Chart = True#Calibration Chart voltOffset = 0# relayOffset = 0 ampsOffset = 20991#16750 #voltSlope #ampSlope # Create the ADC object using the I2C bus ads0 = ADS.ADS1115( i2c, address=0x4b )# Make Sure it's the right Address #ads1 = ADS.ADS1115( i2c, address=0x49 ) # Create single-ended input on each channel 0-3 chan0 = AnalogIn(ads0, ADS.P0) chan1 = AnalogIn(ads0, ADS.P1) chan2 = AnalogIn(ads0, ADS.P2) chan3 = AnalogIn(ads0, ADS.P3) # chan1 = AnalogIn(ads1, ADS.P1) #LOG Data to CSV def write_ADS(): with open("/home/pi/ADS1115/ADS1115_RAWdata.csv", "a") as log: #with open("/home/pi/ADS1115/ADS1115_VOLTdata.csv", "a") as log: log.write("{0},{1},{2},{3},{4}\n".format(strftime("%Y-%m-%d %H:%M:%S"),chan0.value, chan1.value, chan2.value, chan3.value)) #log.write("{0},{1},{2},{3},{4}\n".format(strftime("%Y-%m-%d %H:%M:%S"),chan0.voltage, chan1.voltage, chan2.voltage, chan3.voltage)) #log.write("{0},{1}\n".format(strftime("%Y-%m-%d %H:%M:%S"),str(temp3))) # Create differential input between channel 0 and 1 # chan = AnalogIn(ads, ADS.P0, ADS.P1) plt.ion() plt.figure(1) plt.figure("Relay") v0 = []#Array for A0 v1 = [] v2 = [] v3 = [] #y = [] x = [] a = [] v = [] def runningMeanFast(z, N): return np.convolve(z, np.ones((N,))/N)[(N-1):] def graph(): #amps = (chan2.voltage - 2.36) * 19.2 #volts = (chan1.voltage) * 186.5 #186.5 24.2v nightime, no solar #184.4#triggered at 23.3 amps = battamps volts = battvoltage a.append(amps)#AMPS - 24v v.append(volts)#VOLTS - 24v v0.append(chan0.value)#v0.append(chan0.voltage)# v1.append(chan1.value)#v1.append(chan0.voltage) v2.append(chan2.value)#v2.append(chan0.voltage) v3.append(chan3.voltage)#v3.append(chan0.value)#Fix Conditions Depending on Voltage Reading First x.append(time()) plt.clf() #glow plug amps is very Stable ~2.5v ~= 24v. MPPT turns on inverter @ 25V State of Charge #plt.plot(x,v0) #24v battery voltage plt.figure(1) plt.subplot(2,1,1) if amps > 5: plt.ylim(5,20) elif amps < 0.5 && amps > -0.5: plt.ylim(-5,10) elif amps < -0.5: plt.ylim(-5,0) elif amps < 2: plt.ylim(0,2) elif amps < 5: plt.ylim(0,5) plt.plot(x,a) plt.xlabel("Time") #b = np.smooth(a, window='flat', window_len=11) #plt.plot(x,b) #plt.plot(runningMeanFast(a,N)) #plt.plot(np.convolve(np.ones(200), np.ones(50)/50, mode='valid')); #plt.plot(x,cumsum) #plt.plot(x, cumsum) #plt.plot(x, moving_aves) plt.ylabel("Amps") #~2.50v ~= 0.5 Amps Charging, ~2.30v ~= 5A Dischargeing plt.subplot(2,1,2) if volts > 28: plt.ylim(28,30) elif volts < 24: plt.ylim(22,24) elif volts < 28: plt.ylim(22,28) plt.plot(x,v) plt.plot(x,v3) plt.ylabel("Battery Voltage") plt.xlabel("Time") #plt.subplot(2,1,3)#Didn't like this 3 #Relay Chart if Chart == True: plt.figure("Relay") plt.subplot(2,1,1) plt.plot(x,v0) plt.xlabel("Time") plt.ylabel("Amps-RAW") plt.subplot(2,1,2) plt.plot(x,v3) plt.xlabel("Time") #ylabel("Volts") plt.draw() if Print == True: print("{:>5}\t{:>5}{:>5}\t{:>5}{:>5}\t{:>5}{:>5}\t{:>5}".format('raw0', 'v0', 'raw1', 'v1', 'raw2', 'v2', 'raw3', 'v3')) while True: battvoltage = (chan1.value * .0234945045) - relayOffset #0.0234945045 = good while on Grid, Grid Relay on = 1453raw 0am #sleep(0.2) battamps = ((chan2.value - ampsOffset) * 0.0034638)#0.002986)#0.00272)#Needs to be slightly larger multiplyer 1/11/21 #jan10:offset:16884#attempt~offset:19050, new new offset: 17540, new offset:20103 multiplyer/slope:0.00272 #27.46 #13,884=2.35v??? # #battvoltage = (chan1.value * voltageSlope) - voltageOffset #battamps = ((chan2.value - ampOffset) * ampSlope) relayVoltage = chan3.value * 0.0007846528 relayCurrent = (chan0.value - 31163)#IF value is greater than 0, grid is off. else grid on if relayVoltage > 24: relayOffset = 10.1#Make this zero and correct multiplyer slope #battAmpsCoeff = 0.00272 ampsOffset = 20991#20668-20640->(Guessed with 0.5 inverter load, 0.5 solar for 0)#20991->(Recorded at night MPPT Load Disconnected) #voltageCurve = 0.0234945045 elif relayVoltage < 20: relayOffset = 0 voltageOffset = 0.0234945045#Original Slope ampsOffset = 20654##16800(OldValue)#20480(-0.5A Inverter Only) #battAmpsCoeff = 0.00349 #voltageCurve = 0.0234945045 #else: #print("Battery Within Window") write_ADS() graph() if Print == True: #print("{:>5}\t{:>5.3f}{:>5}\t{:>5.3f}{:>5}\t{:>5.3f}{:>5}\t{:>5.3f}".format(chan0.value, chan0.voltage, chan1.value, chan1.voltage, chan2.value, chan2.voltage, chan3.value, chan3.voltage)) print("{:.2f}"format(battvoltage), "{:2f}"format(battamps), chan1.value, chan2.value, "Amps:", chan0.value, "Volts:", chan3.value) #print("A0=RAW:",chan0.value,"A1=RAW:",chan1.value,"A2=RAW:",chan2.value,"A3=RAW:",chan3.value) #print(time()) if amps < 0.25 && amps > -0.25: plt.pause(60) else: plt.pause(0.3) #print("{:>5}\t{:>5.3f}".format(chan0.value, chan0.voltage)) #time.sleep(0.5) #print("{:>5}\t{:>5.3f}".format(chan1.value, chan1.voltage)) #time.sleep(0.5) #print("{:>5}\t{:>5.3f}".format(chan2.value, chan2.voltage)) #time.sleep(0.5) #print("{:>5}\t{:>5.3f}".format(chan3.value, chan3.voltage)) #time.sleep(0.5) #print("{:>5}\t{:>5.3f}".format(chan1.value, chan1.voltage))
from .imports import * class CubeVisualizer(Talker): ''' A tool for visualizing a squishable cube. ''' def __init__(self, cube=None): ''' Initialize a visualizer, and link it to a Squishable or Binned cube. ''' Talker.__init__(self) self.cube = cube @property def loupe(self): try: return self._loupe except AttributeError: self._loupe = loupe() return self._loupe def explore(self, image=None, key='raw_counts', star=None, vmin=None, vmax=None, **kw): ''' Visually explore the cube, displaying flux vs. time + wavelength. image = (ntimepoints x nwavelengths) image to visualize, by imshowing the 2D array, and showing slices of it along both the horizontal and vertical ''' color = self.cube.starcolor(self.cube.target) if image is None: # make sure a star is defined if star == None: star = self.cube.target # do different things for different keys if key in self.cube.cubekeys: z = self.cube.cubes[key][star] vmin, vmax = 0, np.nanpercentile(z, 99) if key == 'corrected': z = self.corrected() vmin, vmax = 0.979, 1.01 if key == 'wavelengthed': z = self.wavelengthed() vmin, vmax = 0.72, 1.1 else: z = image if vmin is None: vmin = np.nanpercentile(z, 1) if vmax is None: vmin = np.nanpercentile(z, 99) aspect_ratio = 6.0/4.0 tiny = 0.1 width_ratios = [1.0 - tiny, tiny] height_ratios = [tiny*aspect_ratio, 1.0 - tiny*aspect_ratio] space = 0.05 hspace = space*aspect_ratio wspace = space figsize= np.array([aspect_ratio, 1.0])*8 wavelength = self.cube.spectral['wavelength'] times = self.cube.temporal['bjd'] times -= np.min(times) try: ok = self.ok except AttributeError: ok = np.ones_like(z).astype(np.bool) self.loupe.setup(z, ok=ok, yaxis=wavelength, xaxis=times, aspect='auto', hspace=hspace, wspace=wspace, width_ratio=width_ratios, height_ratios=height_ratios, figsize=figsize, labelfontsize=None, datacolor=color, crosshaircolor=color, left=0.1, bottom=0.1, **kw) self.loupe.ax['2d'].set_xlabel('Time from Start of Observation (days)') self.loupe.ax['2d'].set_ylabel('Wavelength ($\AA$)') self.loupe.ax['slicey'].set_ylim(np.max(wavelength), np.min(wavelength)) # make the light curves into scattered points for thing in ['slicex', 'slicex_bad']: self.loupe.plotted[thing].set_marker('.') self.loupe.plotted[thing].set_linewidth(0) self.loupe.plotted['slicex_bad'].set_marker('x') #self.loupe.ax['slicex'].yaxis.tick_right() #self.loupe.ax['slicex'].yaxis.set_label_position('right') # make the lines thicker linewidth=3 for line in ['slicey', 'crossy', 'crossyextend', 'crossx', 'crossxextend']: self.loupe.plotted[line].set_linewidth(linewidth) self.loupe.set_limits(vmin, vmax) plt.draw() #self.loupe.run() def corrected(self, key='raw_counts'): # normalize along the wavelength axis star = self.cube.target self.speak('calculating [{}] for [{}], corrected by the mega-calibrator'.format(key, star)) target = self.cube.cubes[key][star] # KLUDGE!!! comparison = self.cube.cubes[key][self.cube.comparisons[0]] z = target/comparison oned = np.nanmedian(z, 0) z = z/oned[np.newaxis,:] return z def wavelengthed(self, key='raw_counts', star=None): if star == None: star = self.cube.target # normalize along the wavelength axis self.speak('calculating [{}] for [{}], normalized by its median spectrum'.format(key, star)) z = self.cube.cubes[key][star] oned = np.nanmedian(z, 0) return z/oned[np.newaxis,:] def overlayQuality(self, color='tomato'): ''' Plot the cosmic rays on top of the plot. ### KLUDGE -- test this; it's not clear it's working yet! ''' cmap = craftroom.cmaps.one2another(color, color, alphabottom=1.0, alphatop=0.0) a = self.loupe.ax['2d'] try: ok = self.ok except AttributeError: ok = self.cube.cubes['ok'][self.cube.target] self.overlay = a.imshow(ok.T, cmap=cmap, extent=self.loupe.extent, interpolation='nearest', zorder=5, origin='lower', aspect=self.loupe.ax['2d'].get_aspect() ) """ def zapCosmics(self, remake=False): # the cosmicfilename = os.path.join(self.cube.binneddirectory, 'cosmics.npy') try: notcosmics = np.load(cosmicfilename)[()] assert(remake == False) except (IOError, AssertionError): self.speak('trying to zap cosmics') z = self.corrected() filtered = scipy.signal.medfilt(z, (5, 15)) cosmics = z - filtered wavelengthstd = 1.48*np.nanmedian(np.abs(cosmics - np.nanmedian(cosmics, 0)[np.newaxis,:]), 0) #mad(cosmics, 0) normalized = cosmics/wavelengthstd[np.newaxis, :] notcosmics = np.abs(normalized) < 5 np.save(cosmicfilename, notcosmics) self.ok = notcosmics for star in self.cube.stars: self.cube.binned_cubes['ok'][star] *= self.ok """ def makeSliceMovies(self, keys=['wavelengthed', 'corrected', 'raw_counts'], remake=False, stride=1): ''' Make movies slicing through wavelength. ''' wavelength = self.cube.spectral['wavelength'] z = self.cube.cubes['raw_counts'][self.cube.target] spectrum = np.nanmedian(z, 0) for key in keys: if key == 'raw_counts': axislabel = 'Photons/$\AA$' else: axislabel = 'Relative\nFlux' self.explore(key=key) self.loupe.moveCrosshair(y=np.min(wavelength), x=None) self.loupe.plotted['slicey'].set_data(spectrum, wavelength) self.loupe.ax['slicey'].set_xlim(0, np.nanpercentile(spectrum, 99)*1.1) plt.setp(self.loupe.ax['slicey'].get_xticklabels(), visible=False) self.loupe.ax['slicex'].set_ylabel(axislabel) plotfilename = os.path.join(self.cube.directory, '{}.pdf'.format(key)) plt.savefig(plotfilename, dpi=1000) filename = os.path.join(self.cube.directory, '{}.mp4'.format(key)) self.speak('saving movie to {}'.format(filename)) self.loupe.movieSlice(direction='y', filename=filename, remake=remake, stride=stride)
import base64 import datetime import hashlib import hmac import json import requests # Update the customer ID to your Log Analytics workspace ID customer_id = "" # For the shared key, use either the primary or the secondary Connected Sources client authentication key shared_key = "" # The log type is the name of the event that is being submitted ##################### ######Functions###### ##################### # Build the API signature def build_signature( customer_id, shared_key, date, content_length, method, content_type, resource ): x_headers = "x-ms-date:" + date string_to_hash = ( method + "\n" + str(content_length) + "\n" + content_type + "\n" + x_headers + "\n" + resource ) bytes_to_hash = bytes(string_to_hash, encoding="utf-8") decoded_key = base64.b64decode(shared_key) encoded_hash = base64.b64encode( hmac.new(decoded_key, bytes_to_hash, digestmod=hashlib.sha256).digest() ).decode() authorization = "SharedKey {}:{}".format(customer_id, encoded_hash) return authorization # Build and send a request to the POST API def post_data(customer_id, shared_key, body, log_type): method = "POST" content_type = "application/json" resource = "/api/logs" rfc1123date = datetime.datetime.utcnow().strftime("%a, %d %b %Y %H:%M:%S GMT") content_length = len(body) signature = build_signature( customer_id, shared_key, rfc1123date, content_length, method, content_type, resource, ) uri = ( "https://" + customer_id + ".ods.opinsights.azure.com" + resource + "?api-version=2016-04-01" ) headers = { "content-type": content_type, "Authorization": signature, "Log-Type": log_type, "x-ms-date": rfc1123date, } response = requests.post(uri, data=body, headers=headers) if response.status_code >= 200 and response.status_code <= 299: print("Accepted") else: print("Response code: {}".format(response.status_code)) def post_to_log_aggregator(body, log_type): post_data(customer_id, shared_key, body, log_type)
class Solution: def longestPalindrome(self, s: str) -> str: if s==None or len(s)<1: return '' start, end = 0, 0 for i in range(len(s)): len1 = self.expandAroundCenter(s,i,i) len2 = self.expandAroundCenter(s,i,i+1) max_len = max(len1, len2) if max_len > (end-start): start = i - (max_len-1)//2 end = i + max_len//2 return s[start:end+1] def expandAroundCenter(self, s: str, left: int, right: int) -> int: l, r = left, right while (l>=0 and r<len(s) and s[l]==s[r]): l -= 1 r += 1 return r - l - 1
import os class BadConfigFile(Exception): pass class Config: ''' Configurations class for the server ''' def __init__(self, args, config_file='boring.config'): self.args = args self.file = config_file # self.load(config_file) self._options = {} def load(self): path = os.path.abspath(self.file) if not os.path.exists(path): raise BadConfigFile('path to config file not found %s' % path) try: config = open(self.file) except PermissionError as e: raise OSError('Failed to open config file [%s]' % e) while 1: line = config.readline() if not line: break if line.strip().startswith('#') or line.isspace(): continue try: key, value = line.split('=') except ValueError as e: raise BadConfigFile("Bad config file %s [%s]" % (line, e)) key = key.strip().rstrip() value = value.strip().rstrip('\n') self._options[key] = value def __getitem__(self, name): value = self._options.get(name) if not value: if not self.args: # the server is not started from command line return '' return getattr(self.args, name, '') return value def __setitem__(self, key, value): self._options[key] = value __getattr__ = __getitem__ def __bool__(self): return True class DummyConfig: # pylint: disable=unused-argument def __init__(self, *args): pass def __getitem__(self, name): return '' def __setitem__(self, *args): pass __getattr__ = __getitem__ def __bool__(self): return False
# # Example on the use of the CastImageFilter # import itk from sys import argv itk.auto_progress(2) dim = 2 IType = itk.Image[itk.US, dim] OIType = itk.Image[itk.UC, dim] reader = itk.ImageFileReader[IType].New( FileName=argv[1] ) filter = itk.CastImageFilter[IType, OIType].New( reader ) writer = itk.ImageFileWriter[OIType].New( filter, FileName=argv[2] ) writer.Update()
from __future__ import annotations from .basis import Basis, _gaps2x from . import grid from .util import roarray, input_as_list, compute_angles, qhull_interpolation_driver, _piece2bounds from .attrs import check_vectors_inv, convert_vectors_inv, convert_coordinates, check_coordinates, convert_values,\ check_values from .triangulation import unique_counts, simplex_volumes, Triangulation import numpy as np from numpy import ndarray from scipy.sparse import csr_matrix from scipy.spatial import KDTree, Delaunay from attr import attrs, attrib from typing import Union from functools import cached_property @attrs(frozen=True, eq=False) class Cell(Basis): """Describes a unit cell.""" coordinates = attrib(type=Union[ndarray, list, tuple], converter=convert_coordinates, validator=check_coordinates) values = attrib(type=Union[ndarray, list, tuple, str], converter=convert_values, validator=check_values) meta = attrib(type=dict, factory=dict, converter=dict) _vectors_inv = attrib(type=Union[ndarray, list, tuple], default=None, converter=convert_vectors_inv, validator=check_vectors_inv) @classmethod def from_cartesian(cls, vectors: Union[ndarray, Basis, list, tuple], cartesian: Union[ndarray, list, tuple], values: Union[ndarray, list, tuple, str], *args, proto: type = None, vectors_inv: ndarray = None, **kwargs) -> Cell: """ Constructs a cell using cartesian coordinates. Parameters ---------- vectors : ndarray Cell basis. cartesian : ndarray A 2D array with cartesian coordinates. values : ndarray An array with values per each coordinate. args Other arguments. proto : class Class of the returned object. vectors_inv : ndarray Basis inverse. kwargs Other keyword arguments. Returns ------- The resulting Cell. """ basis = Basis(vectors, vectors_inv=vectors_inv) if vectors_inv is None: vectors_inv = basis.vectors_inv if proto is None: proto = cls return proto(basis, basis.transform_from_cartesian(cartesian), values, *args, vectors_inv=vectors_inv, **kwargs) @classmethod def random(cls, density: float, atoms: dict, shape: str = "box") -> Cell: """ Prepares a cell with random coordinates. Parameters ---------- density : float Atomic density. atoms : dict A dictionary with specimen-count pairs. shape : {"box"} The shape of the resulting cell. Returns ------- result : Cell The resulting unit cell. """ n_atoms = sum(atoms.values()) coords = np.random.rand(n_atoms, 3) values = sum(([k] * v for k, v in atoms.items()), []) if shape == "box": a = (n_atoms / density) ** (1./3) return cls(np.eye(3) * a, coords, values) else: raise ValueError(f"Unknown shape={shape}") @cached_property def cartesian(self) -> ndarray: return roarray(self.transform_to_cartesian(self.coordinates)) @cached_property def size(self) -> int: return len(self.coordinates) @cached_property def values_uq(self) -> ndarray: values_uq, values_encoded = np.unique(self.values, return_inverse=True, axis=0) self.__dict__["values_encoded"] = roarray(values_encoded.astype(np.int32)) return roarray(values_uq) @cached_property def values_encoded(self) -> ndarray: _ = self.values_uq # trigger attribute which sets this as well return self.values_encoded # not a recursion @cached_property def values_lookup(self) -> dict: return dict(zip(self.values_uq, np.arange(len(self.values_uq)))) def __eq__(self, other): return super().__eq__(other) and np.array_equal(self.coordinates, other.coordinates) and \ np.array_equal(self.values, other.values) def normalized(self, left: float = 0, sort: Union[ndarray, str, int] = None) -> Cell: """ Puts all points inside box boundaries and returns a copy. Parameters ---------- left : float The left edge of the normalized box in cell coordinates. For example, ``left=-0.3`` stands for coordinates being placed in a ``[-0.3, 0.7)`` interval. sort : ndarray An optional vector to sort along. Also accepts integers corresponding indicating basis vectors or one of 'xyz' to sort along cartesian axes. Returns ------- result : Cell A copy of self with normalized coordinates. """ d = self.state_dict(mark_type=False) d["coordinates"] = new_coordinates = ((self.coordinates - left) % 1) + left if sort is not None: if isinstance(sort, int): sort = self.vectors[sort] elif sort in ('x', 'y', 'z'): _sort = np.zeros(3) _sort['xyz'.index(sort)] = 1 sort = _sort else: sort = np.asanyarray(sort) order = np.argsort(self.transform_to_cartesian(new_coordinates) @ sort) d["coordinates"] = d["coordinates"][order] d["values"] = d["values"][order] return self.copy(**d) @input_as_list def distances(self, ids: list, cutoff: float = None, other: Union[Cell, ndarray] = None) -> Union[ndarray, csr_matrix]: """ Computes distances between Cell points. Parameters ---------- ids : ndarray Specimen IDs to compute distances between. Several shapes are accepted: * *empty*: returns a 2D matrix of all possible distances * nx2 array of ints: returns n distances between each pair of [i, 0]-[i, 1] species; * 1D array of ints of length n: returns n-1 distances between each pair of [i-1]-[i] species; cutoff : float Cutoff for obtaining distances. Only if ids is empty. other : Cell Other cell to compute distances to. Returns ------- The resulting distance matrix in dense or sparse forms. """ this = self.cartesian if other is None: other = this elif isinstance(other, Cell): other = other.cartesian if len(ids) == 0: if cutoff is None: return np.linalg.norm(this[:, None] - other[None, :], axis=-1) else: return KDTree(this).sparse_distance_matrix(KDTree(other), max_distance=cutoff) ids = np.asanyarray(ids, dtype=int) if ids.ndim == 1: if ids.shape[0] < 2: raise ValueError(f"Only {len(ids)} points are found, at least 2 required") return np.linalg.norm(this[ids[:-1], :] - other[ids[1:], :], axis=1) elif ids.ndim == 2: if ids.shape[1] != 2: raise ValueError(f"ids.shape={ids.shape}, required (n, 2)") return np.linalg.norm(this[ids[:, 0], :] - other[ids[:, 1], :], axis=1) else: raise ValueError(f"ids.ndim={ids.ndim}, required 1 or 2") def cartesian_delta(self, other: Cell, pbc: bool = True) -> ndarray: """ Computes the distance between the corresponding pairs in two cells. Parameters ---------- other : Cell Other cell to compute distance to. pbc : bool Periodic boundary conditions. Returns ------- The resulting distances, one per pair. """ assert self.size == other.size n_dims = len(self.vectors) if pbc: this_cartesian = self.normalized(-.5).cartesian other_replica = other.repeated(*(3,) * n_dims) other_replica_cartesian = other_replica.normalized(-.5).cartesian return np.min(np.linalg.norm( this_cartesian[None, ...] - other_replica_cartesian.reshape((3 ** n_dims,) + other.cartesian.shape), axis=-1, ), axis=0) else: return np.linalg.norm(self.cartesian - other.cartesian, axis=-1) def cartesian_copy(self, **kwargs) -> Cell: """ Same as ``copy`` but accepts cartesian coordinates instead of crystal coordinates. Does exact same thing as ``copy`` if no arguments provided. Parameters ---------- kwargs Arguments to ``self.from_cartesian``. Returns ------- The resulting Cell. """ state_dict = self.state_dict(mark_type=False) del state_dict["coordinates"] state_dict["cartesian"] = self.cartesian return self.from_cartesian(**{**state_dict, **kwargs}) @input_as_list def angles(self, ids: ndarray) -> ndarray: """ Computes angles between points in this cell. Parameters ---------- ids : ndarray Point indexes to compute angles between. Several shapes are accepted: * nx3 array: computes n cosines of angles [i, 0]-[i, 1]-[i, 2]; * 1D array of length n: computes n-2 cosines of angles along the path ...-[i-1]-[i]-[i+1]-...; Returns ------- An array with cosines. Examples -------- >>> cell = UnitCell(Basis((1, 2, 3), kind="orthorhombic"), numpy.random.rand((4, 3)), numpy.arange(4)) >>> cell.angles((0, 1, 2)) # angle between vectors connecting {second and first} and {second and third} pts >>> cell.angles(0, 1, 2) # a simplified version of the above >>> cell.angles(0, 1, 3, 2) # two angles along path: 0-1-3 and 1-3-2 >>> cell.angles(tuple(0, 1, 3, 2)) # same as the above >>> cell.angles((0, 1, 3),(1, 3, 2)) # same as the above """ v = self.cartesian ids = np.asanyarray(ids, dtype=int) if len(ids.shape) == 1: if ids.shape[0] < 3: raise ValueError(f"Only {len(ids)} points are found, at least 3 required") vectors = v[ids[:-1], :] - v[ids[1:], :] nonzero = np.argwhere((vectors ** 2).sum(axis=1) > 0)[:, 0] if nonzero.shape[0] == 0: raise ValueError("All points coincide") vectors[:nonzero[0]] = vectors[nonzero[0]] vectors[nonzero[-1] + 1:] = vectors[nonzero[-1]] vectors_1 = vectors[:-1] vectors_2 = -vectors[1:] for i in range(nonzero.shape[0] - 1): vectors_1[nonzero[i] + 1:nonzero[i + 1]] = vectors_1[nonzero[i]] vectors_2[nonzero[i]:nonzero[i + 1] - 1] = vectors_2[nonzero[i + 1] - 1] elif len(ids.shape) == 2: if ids.shape[1] != 3: raise ValueError(f"ids.shape={ids.shape}, required (n, 3)") vectors_1 = v[ids[:, 0], :] - v[ids[:, 1], :] vectors_2 = v[ids[:, 2], :] - v[ids[:, 1], :] else: raise ValueError(f"ids.ndim={ids.ndim}, required 1 or 2") return compute_angles(vectors_1, vectors_2) def centered(self) -> Cell: """ Generates a new cell where all points are shifted to maximize margins. Returns ------- A new cell with centered coordinates. """ sorted_coordinates = np.sort(self.coordinates % 1, axis=0) gaps = sorted_coordinates - np.roll(sorted_coordinates, 1, axis=0) gaps[0] = 1 - gaps[0] max_gap = np.argmax(gaps, axis=0) r = np.arange(self.coordinates.shape[1]) gap_center = (self.coordinates[max_gap, r] + self.coordinates[max_gap - 1, r] + (max_gap == 0)) / 2 return self.copy(coordinates=(self.coordinates - gap_center[None, :]) % 1) def ws_packed(self) -> Cell: """ Generates a new cell where all points are replaced by their periodic images closest to the origin (i.e. appear inside Wigner-Seitz cell). Returns ------- A new cell with packed coordinates. """ result = self.normalized() cartesian = result.cartesian vertices = result.vertices d = cartesian[:, None, :] - vertices[None, :, :] d = (d ** 2).sum(axis=-1) d = np.argmin(d, axis=-1) return self.cartesian_copy(cartesian=cartesian - vertices[d, :]) @input_as_list def isolated(self, gaps: list, units="crystal") -> Cell: """ Isolates points from their images in this cell or grid by elongating basis vectors while keeping distances between the points fixed. Parameters ---------- gaps : list The elongation amount in cartesian or in crystal units. units : str Units of `gaps`: 'cartesian' or 'crystal'. Returns ------- A bigger cell where points are spatially isolated from their images. """ gaps = _gaps2x(self, gaps, units) vectors = self.vectors * gaps[..., None] coordinates = self.coordinates / gaps[None, ...] coordinates += (0.5 * (gaps - 1) / gaps)[None, ...] return self.copy(vectors=vectors, coordinates=coordinates) def isolated2(self, gap: float) -> Cell: """ Isolates points from their images in this cell by constructing a new larger orthorhombic cell. Parameters ---------- gap : float The minimal gap size between the cloud of points and its periodic images. Returns ------- An orthorhombic unit cell with the points. """ c = self.normalized() cartesian = c.cartesian + gap shape = np.amax(c.vertices, axis=0) + 2 * gap return self.cartesian_copy(vectors=Basis.orthorhombic(shape), cartesian=cartesian) @input_as_list def select(self, piece: list) -> ndarray: """ Selects points in this cell inside a box defined in the crystal basis. Images are not included. Parameters ---------- piece : list Box dimensions ``[x_from, y_from, ..., z_from, x_to, y_to, ..., z_to]``, where x, y, z are basis vectors. Returns ------- A numpy array with the selection mask. Examples -------- >>> cell = Cell(Basis((1, 2, 3), kind="orthorhombic"), np.random.rand((4, 3)), np.arange(4)) >>> cell.select((0,0,0,1,1,1)) # select all species with coordinates within (0,1) range >>> cell.select(0,0,0,1,1,1) # a simplified version of above >>> cell.select(0,0,0,0.5,1,1) # select the 'left' part >>> cell.select(0.5,0,0,1,1,1) # select the 'right' part """ p1, p2 = _piece2bounds(piece, len(self.vectors)) return np.all(self.coordinates < p2[None, :], axis=1) & np.all(self.coordinates >= p1[None, :], axis=1) @input_as_list def apply(self, selection: list) -> Cell: """ Applies a mask to this cell to keep a subset of points. Parameters ---------- selection A bool mask with selected species. Returns ------- The resulting cell. Examples -------- >>> cell = Cell(Basis((1, 2, 3), kind="orthorhombic"), np.random.rand((4, 3)), np.arange(4)) >>> selection = cell.select((0,0,0,0.5,1,1)) # Selects species in the 'left' part of the unit cell. >>> result = cell.apply(selection) # Applies selection. Species outside the 'left' part are discarded. """ selection = np.asanyarray(selection) return self.copy(coordinates=self.coordinates[selection, :], values=self.values[selection, ...]) @input_as_list def discard(self, selection: list) -> Cell: """ Discards points from this cell according to the mask specified. Complements ``self.apply``. Parameters ---------- selection Points to discard. Returns ------- The resulting cell. Examples -------- >>> cell = Cell(Basis.orthorhombic((1, 2, 3)), np.random.rand((4, 3)), np.arange(4)) >>> selection = cell.select((0,0,0,0.5,1,1)) # Selects species in the 'left' part of the unit cell. >>> result = cell.discard(selection) # Discards selection. Species inside the 'left' part are removed. """ return self.apply(~np.asanyarray(selection)) @input_as_list def cut(self, piece: list, selection: Union[ndarray, list, tuple] = None) -> Cell: """ Selects a box inside this cell grid and returns it in a smaller cell. Basis vectors of the resulting instance are collinear to those of `self`. Parameters ---------- piece Box dimensions ``[x_from, y_from, ..., z_from, x_to, y_to, ..., z_to]``, where x, y, z are basis vectors. selection A custom selection mask or None if all points in the selected box have to be included. Returns ------- A smaller instance with a subset of points. """ if selection is None: selection = self.select(piece) p1, p2 = _piece2bounds(piece, len(self.vectors)) vectors = self.vectors * (p2 - p1)[:, None] return self.cartesian_copy(vectors=vectors, cartesian=self.cartesian - p1 @ self.vectors).apply(selection) @input_as_list def merge(self, cells: list) -> Cell: """ Merges points from several unit cells with the same basis. Parameters ---------- cells : list Cells to be merged. Returns ------- A new unit cell with all points merged. """ c = [self.coordinates] v = [self.values] for cell in cells: if not np.all(cell.vectors == self.vectors): raise ValueError(f'basis mismatch: {self.vectors} != {cell.vectors}') c.append(cell.coordinates) v.append(cell.values) return self.copy(coordinates=np.concatenate(c, axis=0), values=np.concatenate(v, axis=0)) def stack(self, *cells: list, vector: int, **kwargs) -> Cell: """ Stack multiple cells along the provided vector. Parameters ---------- cells : list Cells and bases to stack. vector : int Basis vector to stack along. kwargs Other arguments to ``Basis.stack``. Returns ------- The resulting cells stacked. """ cells = (self, *cells) other_vectors = list(range(self.vectors.shape[0])) del other_vectors[vector] dims = self.vectors.shape[0] basis = Basis.stack(*cells, vector=vector, **kwargs) values = np.concatenate(tuple(cell.values for cell in cells if isinstance(cell, Cell)), axis=0) cartesian = [] shift = np.zeros(dims, dtype=float) for c in cells: if isinstance(c, Cell): # Fix for not-exactly-the-same vectors hvecs = c.vectors.copy() hvecs[other_vectors] = self.vectors[other_vectors] cartesian.append(Basis(hvecs).transform_to_cartesian(c.coordinates) + shift[None, :]) shift += c.vectors[vector, :] cartesian = np.concatenate(cartesian, axis=0) return self.cartesian_copy(vectors=basis, cartesian=cartesian, values=values) @input_as_list def supercell(self, vec: list) -> Cell: """ Produces a supercell from this cell. Parameters ---------- vec : ndarray New vectors expressed in this basis. Returns ------- A supercell. Examples -------- >>> cell = Cell(Basis.orthorhombic((1, 2, 3)), np.random.rand((4, 3)), np.arange(4)) >>> s_cell = cell.supercell(np.eye(cell.size)) # returns a copy >>> r_cell = cell.supercell(np.diag((1, 2, 3))) # same as cell.repeated(1, 2, 3) """ vec = np.array(vec, dtype=int) # integer-valued supercell vectors vec_inv = np.linalg.inv(vec) vec_det = int(abs(np.linalg.det(vec))) cofactor = (vec_inv * vec_det).astype(int) # integer-valued vector cofactor matrix gcd = np.array(list( np.gcd.reduce(i) for i in cofactor )) # greatest common divisor of cofactor vectors axes_steps = vec_det // gcd # diag(axes_steps) are (minimal) supercell "diagonal" vectors # compose the volume out of divisors of axes_steps volume = vec_det recipe = np.ones_like(axes_steps) for i, step in enumerate(axes_steps): g = np.gcd(volume, step) volume //= g recipe[i] = g if volume == 1: break else: raise RuntimeError("Failed to compose the equivalent diagonal supercell") return self.repeated(recipe).cartesian_copy(vectors=vec @ self.vectors).normalized() def species(self) -> dict: """ Counts atomic species. Returns ------- A dictionary with unique point values as keys and numbers of their occurrences as values. """ answer = {} for s in self.values: try: answer[s] += 1 except KeyError: answer[s] = 1 return answer @input_as_list def transpose_vectors(self, new: list) -> Cell: """ Reorders basis vectors without changing cartesian coordinates. Parameters ---------- new The new order as a list of integers. Returns ------- A new unit cell with reordered vectors. """ return self.copy(vectors=super().transpose_vectors(new), coordinates=self.coordinates[:, new]) def rounded(self, decimals: int = 8) -> Cell: """ Rounds this cell down to the provided number of decimals. Parameters ---------- decimals Decimals. Returns ------- A new Cell with rounded vectors. """ return self.copy(vectors=super().rounded(decimals), coordinates=np.around(self.coordinates, decimals=decimals)) def joggled(self, joggle_eps: float = 1e-5, vectors=True): """ Breaks possible symmetries in this cell by joggling coordinates and vectors. Parameters ---------- joggle_eps The amplitude of random displacements for breaking possible coordinate symmetries. vectors If True, adds a random displacement to vectors as well. Returns ------- result The resulting cell. """ joggle_c = joggle_eps * (np.random.rand(*self.coordinates.shape) - 0.5) if vectors: joggle_v = self.vectors_len[:, None] * (np.random.rand(*self.vectors.shape) - 0.5) * joggle_eps else: joggle_v = 0 return self.copy( vectors=self.vectors + joggle_v, coordinates=self.coordinates + joggle_c, ) def as_grid(self, fill: float = np.nan) -> grid.Grid: """ Converts this unit cell into a grid. Parameters ---------- fill The value to use for missing grid points. Returns ------- A grid with the data from this cell. """ # Convert coordinates coordinates = list( np.sort( np.unique(self.coordinates[:, i]) ) for i in range(self.coordinates.shape[1]) ) # A coordinates lookup table coord2index = list( dict(zip(a, range(a.size))) for a in coordinates ) # Convert values data = fill * np.ones(tuple(a.size for a in coordinates) + self.values.shape[1:], dtype=self.values.dtype) for c, v in zip(self.coordinates, self.values): indexes = tuple(coord2index[i][cc] for i, cc in enumerate(c)) data[indexes] = v return grid.Grid(self, coordinates, data) @input_as_list def interpolate(self, points: list, driver=None, periodic: bool = True, **kwargs) -> Cell: """ Interpolates values between points in this cell and returns the interpolated Cell. Parameters ---------- points : list Interpolation points in this basis. driver : Callable Interpolation driver. periodic : bool If True, interpolates data in periodic boundary conditions. kwargs Driver arguments. Returns ------- A new unit cell with the interpolated data. """ points = np.asanyarray(points, dtype=float) if driver is None: driver = qhull_interpolation_driver if periodic: # Avoid edge problems by creating copies of this cell supercell = self.repeated((3,) * self.vectors.shape[0]).normalized() data_points = supercell.cartesian data_values = supercell.values # Shift points to the central unit cell points_i = self.transform_to_cartesian(points % 1) + self.vectors.sum(axis=0)[None, :] else: data_points = self.cartesian data_values = self.values points_i = self.transform_to_cartesian(points) # Interpolate return self.copy(coordinates=points, values=driver(data_points, data_values, points_i, **kwargs)) def compute_embedding(self, size: int = 1) -> Cell: """ Computes embedding of this cell. Values are replaced by an array of indices enumerating cell points. `values[:, 0]` points to entries in this cell and `values[:, 1]` enumerates cell images with 0 being the middle cell embedded. Parameters ---------- size Embedding size in unit cells count. Returns ------- result The resulting cell. """ sc_size = 2 * size + 1 sc_offset = (sc_size ** self.ndim - 1) // 2 result = self.copy(values=np.empty((self.size, 0))).repeated([sc_size] * self.ndim) values = np.arange(result.size, dtype=np.int32) values_hi = values // self.size - sc_offset values_lo = values % self.size values = np.concatenate([values_lo[:, None], values_hi[:, None]], axis=1) return result.copy(values=values) def compute_triangulation(self, joggle_eps: float = 1e-5): """ Computes Delaunay triangulation. Parameters ---------- joggle_eps The amplitude of random displacements for breaking possible coordinate symmetries. Returns ------- result The resulting triangulation embedded in images of this cell. """ embedding = self.compute_embedding() embedding_j = self.joggled(joggle_eps, vectors=True).compute_embedding() ix_lo = embedding.values[:, 0] ix_hi = embedding.values[:, 1] tri = Delaunay(embedding_j.cartesian).simplices # Take only inside/boundary simplices tri_hi = ix_hi[tri] tri_relevant = np.any(tri_hi == 0, axis=1) tri = tri[tri_relevant, :] tri_hi = tri_hi[tri_relevant, :] weights = simplex_volumes(embedding.cartesian[tri, :]) / unique_counts(tri_hi) / self.volume return Triangulation( points=embedding.cartesian, points_i=ix_lo, simplices=tri, weights=weights, ) def tetrahedron_density(self, points: ndarray, resolved: bool = False, weights: ndarray = None, joggle_eps: float = 1e-5) -> Union[ndarray, tuple]: """ Computes the density of points' values (states). Modified tetrahedron method from PRB 49, 16223 by E. Blochl et al. 3D only. Parameters ---------- points Values to calculate density at. resolved If True, returns a higher-dimensional tensor with spatially- and index-resolved density. The dimensions of the returned array are `self.values.shape + points.shape`. weights Assigns weights to points before computing the density. Only for `resolved=False`. joggle_eps The amplitude of random displacements for breaking coordinate symmetries. Returns ------- density A 1D ``[n_points]`` or a 2D ``[n_tri, n_points]`` density array. triangulation For ``resolved=True`` returns triangulation. """ assert self.ndim == 3 tri = self.compute_triangulation(joggle_eps=joggle_eps) points = np.asanyarray(points, dtype=np.float64) values = self.values.reshape(self.size, -1) result = tri.compute_band_density(values, points, weights=weights, resolve_bands=False) if resolved: return tri, result else: return result.sum(axis=0)
#!/usr/bin/python # -*- coding: utf-8 -*- ''' This script allows controlling a P9813 light strip connected to the Raspberry device It listens to the STDIN stream and expect an array of values to apply [R, G, B, R, G, B ....] Note 1: You MUST enable SPI communication in your Raspberry, for example by executing the 'raspi-config' utility Note 2: You can easily adapted to any other light strip ''' from __future__ import division from signal import * # Import other modules import time import sys import math import json import atexit import sys # Import the P9813 module. import RPi.GPIO as GPIO import P9813 # LED strip configuration: LED_COUNT = int(sys.argv[1]) CLOCK_PIN = int(sys.argv[4]) DATA_PIN = int(sys.argv[5]) # Init GPI Pins GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(CLOCK_PIN, GPIO.OUT) GPIO.setup(DATA_PIN, GPIO.OUT) strip = P9813.P9813(CLOCK_PIN, DATA_PIN, LED_COUNT) def listen(): global strip try: while True: for line in iter(sys.stdin.readline, ''): colors = json.loads(line) for j in range(LED_COUNT): strip[j] = (int(colors[j][0]), int(colors[j][2]), int(colors[j][1])) strip.write() time.sleep(0.002) except KeyboardInterrupt: pass @atexit.register def clear(): global strip strip.fill((255,0,0)) strip.write() if __name__ == '__main__': for sig in (SIGABRT, SIGINT, SIGTERM): signal(sig, clear) try: clear() listen() except: pass
#!/us/bin/python impot sys if len(sys.agv)>=4: filetype = sys.agv[1] sub_filename = sys.agv[2] output_filename = sys.agv[3] else: pint("Remove ovelapping/complementay tails fom long eads, keep a single full pass of the inset sequence") pint("usage: ./RemoveBothTails.py filetype sub_file output_sub_filename") pint("o python RemoveBothTails.py filetype sub_file output_sub_filename") sys.exit(1) ################################################################################ def pocessls(d): esult_d = {} i=0 fo angex in d: ls = angex.split('_') L = int(ls[1]) -int(ls[0]) if i==0: ef_L = L ef_seq = d[angex] ef_ange = angex i+=1 continue if L >= ef_L : esult_d[angex]=d[angex] elif L < ef_L: esult_d[ef_ange]=ef_seq ef_L =L ef_seq = d[angex] ef_ange = angex etun esult_d ################################################################################ if (filetype == "fa" ): stat_cha = ">" else: stat_cha = "@" sub_file = open(sub_filename,'') output = open(output_filename,'w') intact_MS = open(output_filename+"_intact_MS",'w') TF = 0 sub_dt ={} while (Tue): line = sub_file.eadline() if (line == ""): beak if (line[0] == stat_cha): ls = (">" + line[1:]).stip().split('/') if ls[-1] == "ccs": output.wite(">" + line[1:]) TF = 1 else: sub_name = '/'.join(ls[0:-1])+ '/' if not sub_dt.has_key(sub_name): sub_dt[sub_name] = {} sub_dt[sub_name][ls[-1]] = "" TF = 0 continue if TF: output.wite(line) else: sub_dt[sub_name][ls[-1]] = sub_dt[sub_name][ls[-1]] + line.stip() if (filetype == "fq"): line = sub_file.eadline() # skip quality lines if (line[0] != "+"): pint "E in LR fastq file fomat" exit(1) line = sub_file.eadline() sub_file.close() fo sub_name in sub_dt: if len(sub_dt[sub_name])>2: intact_MS.wite( sub_name[1:] + '\t' + st(len(sub_dt[sub_name])) + '\n') if len(sub_dt[sub_name])==2: sub_dt[sub_name] = pocessls(sub_dt[sub_name]) elif len(sub_dt[sub_name])>2: sub_dt[sub_name] = pocessls(sub_dt[sub_name]) sub_dt[sub_name] = pocessls(sub_dt[sub_name]) fo angex in sub_dt[sub_name]: output.wite(sub_name+angex+'\n') output.wite(sub_dt[sub_name][angex]+'\n') output.close() intact_MS.close()
# -*- coding: utf-8 -*- from __future__ import unicode_literals from pokemongo_bot.constants import Constants from pokemongo_bot.step_walker import StepWalker from pokemongo_bot.worker_result import WorkerResult from pokemongo_bot.base_task import BaseTask from utils import distance, format_dist, fort_details class MoveToFort(BaseTask): SUPPORTED_TASK_API_VERSION = 1 def initialize(self): self.lure_distance = 0 self.lure_attraction = self.config.get("lure_attraction", True) self.lure_max_distance = self.config.get("lure_max_distance", 2000) self.ignore_item_count = self.config.get("ignore_item_count", False) def should_run(self): has_space_for_loot = self.bot.has_space_for_loot() if not has_space_for_loot: self.emit_event( 'inventory_full', formatted="Inventory is full. You might want to change your config to recycle more items if this message appears consistently." ) return has_space_for_loot or self.ignore_item_count or self.bot.softban def is_attracted(self): return (self.lure_distance > 0) def work(self): if not self.should_run(): return WorkerResult.SUCCESS nearest_fort = self.get_nearest_fort() if nearest_fort is None: return WorkerResult.SUCCESS lat = nearest_fort['latitude'] lng = nearest_fort['longitude'] fortID = nearest_fort['id'] details = fort_details(self.bot, fortID, lat, lng) fort_name = details.get('name', 'Unknown') unit = self.bot.config.distance_unit # Unit to use when printing formatted distance dist = distance( self.bot.position[0], self.bot.position[1], lat, lng ) if dist > Constants.MAX_DISTANCE_FORT_IS_REACHABLE: fort_event_data = { 'fort_name': u"{}".format(fort_name), 'distance': format_dist(dist, unit), } if self.is_attracted() > 0: fort_event_data.update(lure_distance=format_dist(self.lure_distance, unit)) self.emit_event( 'moving_to_lured_fort', formatted="Moving towards pokestop {fort_name} - {distance} (attraction of lure {lure_distance})", data=fort_event_data ) else: self.emit_event( 'moving_to_fort', formatted="Moving towards pokestop {fort_name} - {distance}", data=fort_event_data ) step_walker = StepWalker( self.bot, self.bot.config.walk, lat, lng ) if not step_walker.step(): return WorkerResult.RUNNING self.emit_event( 'arrived_at_fort', formatted='Arrived at fort.' ) return WorkerResult.SUCCESS def _get_nearest_fort_on_lure_way(self, forts): if not self.lure_attraction: return None, 0 lures = filter(lambda x: True if x.get('lure_info', None) != None else False, forts) if (len(lures)): dist_lure_me = distance(self.bot.position[0], self.bot.position[1], lures[0]['latitude'],lures[0]['longitude']) else: dist_lure_me = 0 if dist_lure_me > 0 and dist_lure_me < self.lure_max_distance: self.lure_distance = dist_lure_me for fort in forts: dist_lure_fort = distance( fort['latitude'], fort['longitude'], lures[0]['latitude'], lures[0]['longitude']) dist_fort_me = distance( fort['latitude'], fort['longitude'], self.bot.position[0], self.bot.position[1]) if dist_lure_fort < dist_lure_me and dist_lure_me > dist_fort_me: return fort, dist_lure_me if dist_fort_me > dist_lure_me: break return lures[0], dist_lure_me else: return None, 0 def get_nearest_fort(self): forts = self.bot.get_forts(order_by_distance=True) # Remove stops that are still on timeout forts = filter(lambda x: x["id"] not in self.bot.fort_timeouts, forts) next_attracted_pts, lure_distance = self._get_nearest_fort_on_lure_way(forts) # Remove all forts which were spun in the last ticks to avoid circles if set if self.bot.config.forts_avoid_circles: forts = filter(lambda x: x["id"] not in self.bot.recent_forts, forts) self.lure_distance = lure_distance if (lure_distance > 0): return next_attracted_pts if len(forts) > 0: return forts[0] else: return None
from pathlib import Path import sys import tokens def bytes_debug_explicit(b) : # variable passed was a single int : convert it to byte if isinstance(b, int): b = b.to_bytes(1, 'big') result = "" count = 0 for b_element in b: count+=1 result += format(b_element,'08b') + " " if (count % 8 == 0): result += "\n" return result.rstrip("\n") def bytes_debug_hex(b, groupby=1) : # variable passed was a single int : convert it to byte if isinstance(b, int): b = b.to_bytes(1, 'big') result = "" count = 0 for b_element in b: count+=1 result += '{:02x}'.format(b_element) if (count % groupby == 0): result += " " return result.rstrip("\n") def main() : if(len(sys.argv) < 2): print("Syntax: TI83toTXT.py (filename)") exit(1) print("Parsing", sys.argv[1]) data = Path(sys.argv[1]).read_bytes() checkFixedHeader(data) def checkFixedHeader(data): # First 11 bytes should read "**TI83F*" spec_b = data[0:11] if (spec_b == bytes.fromhex("2a2a54493833462a1a0a00")) : print("Header is **TI83F* 0x1a 0x0A 0x00") # Next 42 bytes are comment comment_b = data[11:52] # print(bytes_debug_explicit(comment_b)) # print(bytes_debug_hex(comment_b, groupby=2)) print("Comment is \"", str(comment_b.decode('utf-8')), "\"", sep="") if __name__ == "__main__": main()
from django.db import models from djgeojson.fields import PointField # Create your models here. class Generalenquiries(models.Model): contact_person= models.CharField(max_length=200, null=True, blank=True) contact_email = models.EmailField(max_length=200, null=True, blank=True) contact_telephone = models.CharField(max_length=200, null=True, blank=True) contact_fax = models.CharField(max_length=200, null=True, blank=True) created_at = models.DateTimeField(auto_now_add=True) class Meta: verbose_name_plural = "General Enquiries" def __str__(self): return self.contact_person + ' | ' + str (self.contact_email) + ' | ' + str (self.contact_telephone) + ' | ' + str (self.contact_fax) class Physicaladdress(models.Model): physical_address= models.TextField(max_length=2000, null=True, blank=True) class Meta: verbose_name_plural = "Physical Address" def __str__(self): return self.physical_address + ' | ' class Postaladdress(models.Model): postal_address= models.TextField(max_length=2000, null=True, blank=True) class Meta: verbose_name_plural = "Postal Address" def __str__(self): return self.postal_address + ' | ' class Place(models.Model): # model for sacema locations name = models.CharField(max_length=200) location = PointField() created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) class Meta: verbose_name_plural = "Sacema Locations" def __str__(self): return self.name
import sys, re, urllib.request, xmltv, xml.etree.ElementTree as ET from datetime import datetime, date, time, timedelta BASE_URL = "https://appletv.redbull.tv/products/tv" request = urllib.request.Request(BASE_URL, headers={"Accept" : "application/xml"}) response = urllib.request.urlopen(request) xml = ET.parse(response) items = xml.findall('.//twoLineMenuItem') w = xmltv.Writer() w.addChannel({'display-name': [(u'Red Bull TV', u'en')],'id': u'hls.redbulltv'}) for i, element in enumerate(items): programme = {"channel":'hls.redbulltv', "title":[], "sub-title":[], "desc":[], "start":'', "stop":''} label = u'' if element.find('.//label') is not None: label = element.find('.//label').text label2 = '' if element.find('.//label2') is not None: label2 = element.find('.//label2').text start = '' if element.find('.//rightLabel') is not None: start = element.find('.//rightLabel').text if start is not None: start = datetime.utcfromtimestamp(float(start)) else: start = datetime.utcnow()#.strftime('%Y%m%d%H%M%S%z') # Set end has start to calculate duration from end = '' if i < (len(items) - 1): #End this program at the start of the next program end = items[i + 1].find('.//rightLabel').text if end is not None: end = datetime.utcfromtimestamp(float(end)) else: end = datetime.utcnow() else: #This is the last program, so use duraction to calculate end if element.find('.//footnote') is not None: end = element.find('.//footnote').text if end is not None: duration = end.replace('Duration: ', '') duration = duration.split(',') totalDuration = start for i in duration: if 'hour' in i: totalDuration = totalDuration + timedelta(hours=int(re.sub(r' hours?', "",i))) elif 'minute' in i: totalDuration = totalDuration + timedelta(minutes=int(re.sub(r' minutes?', "", i))) elif 'second' in i: totalDuration = totalDuration + timedelta(seconds=int(re.sub(r' seconds?', "", i))) end = totalDuration summary = '' if element.find('.//summary') is not None: summary = element.find('.//summary').text programme["title"] = [(label, u'')] programme["sub-title"] = [(label2, u'')] programme["desc"] = [(summary, u'')] programme["start"] = start.strftime('%Y%m%d%H%M%S%z') programme["stop"] = end.strftime('%Y%m%d%H%M%S%z') # print(programme) w.addProgramme(programme) w.write('redbull.xml', pretty_print=True)
import pstats p=pstats.Stats("profile.stats") p.sort_stats("cumulative") #p.print_stats() #p.print_callers() p.print_callees()
#!/usr/bin/env python3 """ Bitmine Courier """ import requests import os import random import json import time url = os.environ.get('URL') mine_count = int(os.environ.get('MINE_COUNT')) def main(): for i in range(mine_count): headers = {"Ce-Id": f"{i}", "Ce-Specversion": "1.0", "Ce-Type": f"{random_type()}", "Ce-Source": "bitmine", "Content-Type": "application/json", } req = requests.post(url, data=bitmine_data_json(), headers=headers) print(req.text) time.sleep(1) def random_type(): return random.choice(["quarkers", "noders"]) def random_bitmine_type(): return random.choice(["Audamandium", "Aethez", "Karbonadium", "Uruu", "Vybranium", "Transformyum", "Dhiotimoline", "Cryptonite", "Katschin", "Enerqon"]) def random_bitmine_weight(): return round(random.uniform(0, 10), 2) def bitmine_data_json(): data = {} data["type"] = random_bitmine_type() data["weight"] = random_bitmine_weight() return json.dumps(data) if __name__ == "__main__": main()
'''conditional logit and nested conditional logit nested conditional logit is supposed to be the random utility version (RU2 and maybe RU1) References: ----------- currently based on: Greene, Econometric Analysis, 5th edition and draft (?) Hess, Florian, 2002, Structural Choice analysis with nested logit models, The Stats Journal 2(3) pp 227-252 not yet used: Silberhorn Nadja, Yasemin Boztug, Lutz Hildebrandt, 2008, Estimation with the nested logit model: specifications and software particularities, OR Spectrum Koppelman, Frank S., and Chandra Bhat with technical support from Vaneet Sethi, Sriram Subramanian, Vincent Bernardin and Jian Zhang, 2006, A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models Author: josef-pktd License: BSD (simplified) ''' from __future__ import print_function from statsmodels.compat.python import zip import numpy as np import numpy.lib.recfunctions as recf from scipy import optimize class TryCLogit(object): ''' Conditional Logit, data handling test Parameters ---------- endog : array (nobs,nchoices) dummy encoding of realized choices exog_bychoices : list of arrays explanatory variables, one array of exog for each choice. Variables with common coefficients have to be first in each array ncommon : int number of explanatory variables with common coefficients Notes ----- Utility for choice j is given by $V_j = X_j * beta + Z * gamma_j$ where X_j contains generic variables (terminology Hess) that have the same coefficient across choices, and Z are variables, like individual-specific variables that have different coefficients across variables. If there are choice specific constants, then they should be contained in Z. For identification, the constant of one choice should be dropped. ''' def __init__(self, endog, exog_bychoices, ncommon): self.endog = endog self.exog_bychoices = exog_bychoices self.ncommon = ncommon self.nobs, self.nchoices = endog.shape self.nchoices = len(exog_bychoices) #TODO: rename beta to params and include inclusive values for nested CL betaind = [exog_bychoices[ii].shape[1]-ncommon for ii in range(4)] zi = np.r_[[ncommon], ncommon + np.array(betaind).cumsum()] beta_indices = [np.r_[np.array([0, 1]),z[zi[ii]:zi[ii+1]]] for ii in range(len(zi)-1)] self.beta_indices = beta_indices #for testing only beta = np.arange(7) betaidx_bychoices = [beta[idx] for idx in beta_indices] def xbetas(self, params): '''these are the V_i ''' res = np.empty((self.nobs, self.nchoices)) for choiceind in range(self.nchoices): res[:,choiceind] = np.dot(self.exog_bychoices[choiceind], params[self.beta_indices[choiceind]]) return res def loglike(self, params): #normalization ? xb = self.xbetas(params) expxb = np.exp(xb) sumexpxb = expxb.sum(1)#[:,None] probs = expxb/expxb.sum(1)[:,None] #we don't really need this for all loglike = (self.endog * np.log(probs)).sum(1) #is this the same: YES #self.logliketest = (self.endog * xb).sum(1) - np.log(sumexpxb) #if self.endog where index then xb[self.endog] return -loglike.sum() #return sum for now not for each observation def fit(self, start_params=None): if start_params is None: start_params = np.zeros(6) # need better np.zeros(6) return optimize.fmin(self.loglike, start_params, maxfun=10000) class TryNCLogit(object): ''' Nested Conditional Logit (RUNMNL), data handling test unfinished, doesn't do anything yet ''' def __init__(self, endog, exog_bychoices, ncommon): self.endog = endog self.exog_bychoices = exog_bychoices self.ncommon = ncommon self.nobs, self.nchoices = endog.shape self.nchoices = len(exog_bychoices) #TODO rename beta to params and include inclusive values for nested CL betaind = [exog_bychoices[ii].shape[1]-ncommon for ii in range(4)] zi = np.r_[[ncommon], ncommon + np.array(betaind).cumsum()] beta_indices = [np.r_[np.array([0, 1]),z[zi[ii]:zi[ii+1]]] for ii in range(len(zi)-1)] self.beta_indices = beta_indices #for testing only beta = np.arange(7) betaidx_bychoices = [beta[idx] for idx in beta_indices] def xbetas(self, params): '''these are the V_i ''' res = np.empty((self.nobs, self.nchoices)) for choiceind in range(self.nchoices): res[:,choiceind] = np.dot(self.exog_bychoices[choiceind], params[self.beta_indices[choiceind]]) return res def loglike_leafbranch(self, params, tau): #normalization ? #check/change naming for tau xb = self.xbetas(params) expxb = np.exp(xb/tau) sumexpxb = expxb.sum(1)#[:,None] logsumexpxb = np.log(sumexpxb) #loglike = (self.endog * xb).sum(1) - logsumexpxb probs = expxb/sumexpxb[:,None] return probs, logsumexpxp #if self.endog where index then xb[self.endog] #return -loglike.sum() #return sum for now not for each observation def loglike_branch(self, params, tau): #not yet sure how to keep track of branches during walking of tree ivs = [] for b in branches: probs, iv = self.loglike_leafbranch(params, tau) ivs.append(iv) #ivs = np.array(ivs) #note ivs is (nobs,nbranchchoices) ivs = np.column_stack(ivs) # this way ? exptiv = np.exp(tau*ivs) sumexptiv = exptiv.sum(1) logsumexpxb = np.log(sumexpxb) probs = exptiv/sumexptiv[:,None] ####### obsolete version to try out attaching data, ####### new in treewalkerclass.py, copy new version to replace this ####### problem with bzr I will disconnect history when copying testxb = 0 #global to class class RU2NMNL(object): '''Nested Multinomial Logit with Random Utility 2 parameterization ''' def __init__(self, endog, exog, tree, paramsind): self.endog = endog self.datadict = exog self.tree = tree self.paramsind = paramsind self.branchsum = '' self.probs = {} def calc_prob(self, tree, keys=None): '''walking a tree bottom-up based on dictionary ''' endog = self.endog datadict = self.datadict paramsind = self.paramsind branchsum = self.branchsum if isinstance(tree, tuple): #assumes leaves are int for choice index name, subtree = tree print(name, datadict[name]) print('subtree', subtree) keys = [] if testxb: branchsum = datadict[name] else: branchsum = name #0 for b in subtree: print(b) #branchsum += branch2(b) branchsum = branchsum + self.calc_prob(b, keys) print('branchsum', branchsum, keys) for k in keys: self.probs[k] = self.probs[k] + ['*' + name + '-prob'] else: keys.append(tree) self.probs[tree] = [tree + '-prob' + '(%s)' % ', '.join(self.paramsind[tree])] if testxb: leavessum = sum((datadict[bi] for bi in tree)) print('final branch with', tree, ''.join(tree), leavessum) #sum(tree) return leavessum #sum(xb[tree]) else: return ''.join(tree) #sum(tree) print('working on branch', tree, branchsum) return branchsum #Trying out ways to handle data #------------------------------ #travel data from Greene dta = np.genfromtxt('TableF23-2.txt', skip_header=1, names='Mode Ttme Invc Invt GC Hinc PSize'.split()) endog = dta['Mode'].reshape(-1,4).copy() #I don't want a view nobs, nchoices = endog.shape datafloat = dta.view(float).reshape(-1,7) exog = datafloat[:,1:].reshape(-1,6*nchoices).copy() #I don't want a view print(endog.sum(0)) varnames = dta.dtype.names print(varnames[1:]) modes = ['Air', 'Train', 'Bus', 'Car'] print(exog.mean(0).reshape(nchoices, -1)) # Greene Table 23.23 #try dummy encoding for individual-specific variables exog_choice_names = ['GC', 'Ttme'] exog_choice = np.column_stack([dta[name] for name in exog_choice_names]) exog_choice = exog_choice.reshape(-1,len(exog_choice_names)*nchoices) exog_choice = np.c_[endog, exog_choice] # add constant dummy exog_individual = dta['Hinc'][:,None] #exog2 = np.c_[exog_choice, exog_individual*endog] # we can also overwrite and select in original datafloat # e.g. Hinc*endog{choice) choice_index = np.arange(dta.shape[0]) % nchoices hinca = dta['Hinc']*(choice_index==0) dta2=recf.append_fields(dta, ['Hinca'],[hinca], usemask=False) #another version xi = [] for ii in range(4): xi.append(datafloat[choice_index==ii]) #one more dta1 = recf.append_fields(dta, ['Const'],[np.ones(dta.shape[0])], usemask=False) xivar = [['GC', 'Ttme', 'Const', 'Hinc'], ['GC', 'Ttme', 'Const'], ['GC', 'Ttme', 'Const'], ['GC', 'Ttme']] #need to drop one constant xi = [] for ii in range(4): xi.append(dta1[xivar[ii]][choice_index==ii]) #this doesn't change sequence of columns, bug report by Skipper I think ncommon = 2 betaind = [len(xi[ii].dtype.names)-ncommon for ii in range(4)] zi=np.r_[[ncommon], ncommon+np.array(betaind).cumsum()] z=np.arange(7) #what is n? betaindices = [np.r_[np.array([0, 1]),z[zi[ii]:zi[ii+1]]] for ii in range(len(zi)-1)] beta = np.arange(7) betai = [beta[idx] for idx in betaindices] #examples for TryCLogit #---------------------- #get exogs as float xifloat = [xx.view(float).reshape(nobs,-1) for xx in xi] clogit = TryCLogit(endog, xifloat, 2) debug = 0 if debug: res = optimize.fmin(clogit.loglike, np.ones(6)) #estimated parameters from Greene: tab2324 = [-0.15501, -0.09612, 0.01329, 5.2074, 3.8690, 3.1632] if debug: res2 = optimize.fmin(clogit.loglike, tab2324) res3 = optimize.fmin(clogit.loglike, np.zeros(6),maxfun=10000) #this has same numbers as Greene table 23.24, but different sequence #coefficient on GC is exactly 10% of Greene's #TODO: get better starting values ''' Optimization terminated successfully. Current function value: 199.128369 Iterations: 957 Function evaluations: 1456 array([-0.0961246 , -0.0155019 , 0.01328757, 5.20741244, 3.86905293, 3.16319074]) ''' res3corr = res3[[1, 0, 2, 3, 4, 5]] res3corr[0] *= 10 print(res3corr - tab2324) # diff 1e-5 to 1e-6 #199.128369 - 199.1284 #llf same up to print(precision of Greene print(clogit.fit()) tree0 = ('top', [('Fly',['Air']), ('Ground', ['Train', 'Car', 'Bus']) ]) datadict = dict(zip(['Air', 'Train', 'Bus', 'Car'], [xifloat[i]for i in range(4)])) #for testing only (mock that returns it's own name datadict = dict(zip(['Air', 'Train', 'Bus', 'Car'], ['Airdata', 'Traindata', 'Busdata', 'Cardata'])) datadict.update({'top' : [], 'Fly' : [], 'Ground': []}) paramsind = {'top' : [], 'Fly' : [], 'Ground': [], 'Air' : ['GC', 'Ttme', 'ConstA', 'Hinc'], 'Train' : ['GC', 'Ttme', 'ConstT'], 'Bus' : ['GC', 'Ttme', 'ConstB'], 'Car' : ['GC', 'Ttme'] } modru = RU2NMNL(endog, datadict, tree0, paramsind) print(modru.calc_prob(modru.tree)) print('\nmodru.probs') print(modru.probs)
# -*- coding: utf-8 -*- """ @file @brief Module *code_beatrix*. .. faqref:: :title: Pourquoi Python? `Python <https://www.python.org/>`_ est un langage de programmation très répandu aujourd'hui qui fut choisi à l'`ENSAE <http://www.ensae.fr/ensae/fr/>`_ en 2005 pour remplacer le `C++ <https://fr.wikipedia.org/wiki/C%2B%2B>`_. Dès la première année, il est apparu que ce nouveau langage permettait aux étudiants de mettre leurs idées plus rapidement en forme. Les opinions ont commencé alors un peu à changer à propos de la programmation. Il est très rare maintenant qu'un étudiant quitte une grande école d'ingénieurs sans programmer. Il a été choisi pour trois raisons. La première est sa syntaxe car il oblige les dévelopeurs à aligner leurs instructions ce qui rend les programmes plus lisibles. La seconde parce que sa `grammaire <https://docs.python.org/3/reference/grammar.html>`_ est une des plus courte (voir aussi `The Python Language Reference <https://docs.python.org/3/reference/>`_). Enfin, beaucoup de librairies existantes mais codées en C++ étaient déjà disponibles à l'époque. 10 ans plus tard, le langage est quasi incontournable dès qu'on touche au traitement de données. """ import os __version__ = "0.6.674" __author__ = "Xavier Dupré" __github__ = "https://github.com/sdpython/code_beatrix" __url__ = "http://www.xavierdupre.fr/app/code_beatrix/helpsphinx/" __license__ = "MIT License" __blog__ = os.path.abspath( os.path.join(os.path.dirname(__file__), "rss_blog_list.xml")) def _setup_hook(add_print=False, unit_test=False): """ if this function is added to the module, the help automation and unit tests call it first before anything goes on as an initialization step. It should be run in a separate process. @param add_print print *Success: _setup_hook* @param unit_test used only for unit testing purpose """ # we can check many things, needed module # any others things before unit tests are started if add_print: print("Success: _setup_hook") def check(log=False, kind=None, fLOG=None): """ Checks the library is working. It raises an exception. @param log if True, display information, otherwise @param kind None or ``'scratch'`` or ``'video'`` @param fLOG logging function @return 0 or exception """ r = True if kind is None or kind == "scratch": from .scratchs import check as check_sc r &= check_sc() if kind is None or kind == "video": from .art.video import check as check_vid r &= check_vid(fLOG=fLOG) return r def load_ipython_extension(ip): """ to allow the call ``%load_ext code_beatrix`` @param ip from ``get_ipython()`` """ from .ipythonhelper.magic_scratch import register_scratch_magics register_scratch_magics(ip)
# # Copyright 2018 National Renewable Energy Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .iohandler import Output from .mbdyn_types import Vec3 from .mbdyn_types import StructuralNode from .mbdyn_types import Body from .mbdyn_types import Beam3 import numpy as np class BaseComponent(): """ BaseComponent is the super class from which all non-rotor components are created. It handles parsing the component dictionary and instantiating all subcomponents like Beam and StructuralNode. Finally, export routines for MBDyn input files are included here. """ def __init__(self, component_name, model_dict, interpolator, mbdyn_ref_index, primary_axis): """ inputs: component_name: str - a unique identifier for this component model_dict: dict - a description of this component as parsed from the input file; it should contain the following key-values: { "keypoint": Vec3, "element_end_nodes": [Vec3], "twist": [float], "component": [str], "point_mass": [float], "stiffness_matrix": [[float]], "mass_distribution": [[float]], "cm_offsets": [[float]], "inertias": [[float]] } interpolator: func - the function to use when interpolating values between node locations; this allows subclasses to determine on which axis to do interpolations mbdyn_ref_index: int - a value to use when identifying this component in mbdyn primary_axis: str - string representation of this component's primary axis; [x1 | x2 | x3] outputs: self: BaseComponent - an instantiated BaseComponent object """ # inputs self.component_name = component_name self.mbdyn_ref_index = mbdyn_ref_index # starting index for nodes, beams self.primary_axis = primary_axis # unpack the component dictionary self.mip = model_dict["keypoint"] self.coordinate_list = [] for n in model_dict["element_end_nodes"]: if self.primary_axis == "x1": node = Vec3(n, 0.0, 0.0) elif self.primary_axis == "x2": node = Vec3(0.0, n, 0.0) elif self.primary_axis == "x3": node = Vec3(0.0, 0.0, n) node += self.mip self.coordinate_list.append(node) self.twist = model_dict["twist"] self.component = model_dict["component"] self.point_mass = model_dict["point_mass"] self.stiffness_constant = model_dict["stiffness_constant"] self.stiffness_matrix = model_dict["stiffness_matrix"] self.mass_distribution = model_dict["mass_distribution"] self.cm_offset = model_dict["cm_offset"] self.inertias = model_dict["inertias"] self.interpolator = interpolator # sort coordinates and associated quantities in ascending order zipped = list(zip(self.coordinate_list, self.twist, self.component, self.point_mass, self.stiffness_matrix, self.mass_distribution, self.cm_offset, self.inertias ) ) if self.primary_axis == "x1": zipped.sort(key=lambda element: element[0].x1) elif self.primary_axis == "x2": zipped.sort(key=lambda element: element[0].x2) elif self.primary_axis == "x3": zipped.sort(key=lambda element: element[0].x3) unzipped = list(zip(*zipped)) # self.coordinate_list, # self.twist, # self.component, # self.point_mass, # self.stiffness_matrix, # self.mass_distribution, # self.cm_offset, # self.inertias = unzipped self.coordinate_list = unzipped[0] self.twist = unzipped[1] self.component = unzipped[2] self.point_mass = unzipped[3] self.stiffness_matrix = unzipped[4] self.mass_distribution = unzipped[5] self.cm_offset = unzipped[6] self.inertias = unzipped[7] self._preprocess() self._postprocess() # Store a local orientation with respect to the global reference frame # so that the beam can be defined appropriately # TODO: Make this permanent if self.primary_axis == "x1": self.local_orientation = "1, 1.0, 0.0, 0.0, 3, 0.0, 1.0, 0.0" elif self.primary_axis == "x2": self.local_orientation = "1, 0.0, 1.0, 0.0, 3, 0.0, 0.0, 1.0" elif self.primary_axis == "x3": self.local_orientation = "1, 0.0, 0.0, 1.0, 2, -1.0, 0.0, 0.0" def _preprocess(self): self.nodes, self.node_count = self._preprocess_nodes() self.bodies, self.body_count, self.beams, self.beam_count = self._preprocess_bodies_beams() def _postprocess(self): """ Calculates the mass and center of mass. component_mass: the total mass of this physical component only added_mass: the total mass of any additional point masses total_mass: the sum of component and added masses The component's mip is subtracted from the center of mass so the resulting CG is relative to the component. """ # sum the point masses to get total mass self.component_mass = sum([body.mass for body in self.bodies]) self.added_mass = sum([body.added_mass for body in self.bodies]) self.total_mass = self.component_mass + self.added_mass # place the point masses on the nodes and give the added nodes 0 point mass self.nodal_point_masses = [self.point_mass[0]] for i in range(1, len(self.point_mass)): self.nodal_point_masses.append(0.0) self.nodal_point_masses.append(self.point_mass[i]) # calculate the total center of mass cg = Vec3(0.0, 0.0, 0.0) for i, beam in enumerate(self.beams): body_index = i * 4 body1 = self.bodies[body_index] body2_1 = self.bodies[body_index + 1] body2_2 = self.bodies[body_index + 2] body3 = self.bodies[body_index + 3] cg += Vec3( body1.mass * beam.node_first.position.x1 + (body2_1.mass + body2_2.mass) * beam.node_mid.position.x1 + body3.mass * beam.node_last.position.x1, body1.mass * beam.node_first.position.x2 + (body2_1.mass + body2_2.mass) * beam.node_mid.position.x2 + body3.mass * beam.node_last.position.x2, body1.mass * beam.node_first.position.x3 + (body2_1.mass + body2_2.mass) * beam.node_mid.position.x3 + body3.mass * beam.node_last.position.x3 ) cg /= self.component_mass self.center_of_gravity = cg - self.mip def _preprocess_nodes(self): """ Builds the StructuralNodes for this component. The central nodes are added here by linearly interpolating the position. output: nodes: [StructuralNode] node_count: len(nodes) """ # add the midpoint nodes for the elements total_coords = [self.coordinate_list[0]] for i in range(1, len(self.coordinate_list)): prev = self.coordinate_list[i - 1] this = self.coordinate_list[i] total_coords.append((this + prev) / 2) total_coords.append(this) nodes = np.array([]) for i, c in enumerate(total_coords): nodes = np.append( nodes, StructuralNode( parent_component=self.component_name, root_offset_index=i, position=c ) ) return nodes, nodes.shape[0] def _preprocess_bodies_beams(self): """ Builds the Body and Beam3 for this component. The central node properties are computed here by linearly interpolating all properties. """ # add mid points for the masses total_masses = [self.mass_distribution[0]] for i in range(1, len(self.mass_distribution)): prev = self.mass_distribution[i - 1] this = self.mass_distribution[i] mid = (this + prev) / 2 total_masses.append(mid) total_masses.append(this) # populate the added mass array... # this does not require interpolation # but it does need to be the correct length total_added_mass = [self.point_mass[0]] for i in range(1, len(self.point_mass)): total_added_mass.append(0) total_added_mass.append(self.point_mass[i]) # add mid points for the cm_offsets total_cm_offsets = [self.cm_offset[0]] for i in range(1, len(self.cm_offset)): prev = self.cm_offset[i - 1] this = self.cm_offset[i] mid = [ (this[0] + prev[0]) / 2, (this[1] + prev[1]) / 2 ] total_cm_offsets.append(mid) total_cm_offsets.append(this) # add mid points for the inertias total_inertias = [self.inertias[0]] for i in range(1, len(self.inertias)): prev = self.inertias[i - 1] this = self.inertias[i] mid = [sum(x) / 2 for x in zip(prev, this)] total_inertias.append(mid) total_inertias.append(this) beams = [] beam_count = self.node_count // 2 bodies = [] body_count = beam_count * 4 for i in range(beam_count): # these are the physical nodes node1 = self.nodes[i * 2] node2 = self.nodes[i * 2 + 1] node3 = self.nodes[i * 2 + 2] mass1 = total_masses[i * 2] mass2 = total_masses[i * 2 + 1] mass3 = total_masses[i * 2 + 2] addedmass1 = total_added_mass[i * 2] addedmass2 = total_added_mass[i * 2 + 1] addedmass3 = total_added_mass[i * 2 + 2] inertia1 = total_inertias[i * 2] inertia2 = total_inertias[i * 2 + 1] inertia3 = total_inertias[i * 2 + 2] cm_offset1 = total_cm_offsets[i * 2] cm_offset2 = total_cm_offsets[i * 2 + 1] cm_offset3 = total_cm_offsets[i * 2 + 2] # these are at the gauss nodes twist1 = self.twist[i] twist2 = self.twist[i + 1] stiff1 = self.stiffness_matrix[i] stiff2 = self.stiffness_matrix[i + 1] beam_length = np.sqrt( np.power(node1.position.x1 - node3.position.x1, 2) + np.power(node1.position.x2 - node3.position.x2, 2) + np.power(node1.position.x3 - node3.position.x3, 2) ) unit_vector = Vec3( node3.position.x1 - node1.position.x1, node3.position.x2 - node1.position.x2, node3.position.x3 - node1.position.x3) / beam_length # gauss point locations gauss_first_displacement = (beam_length / 2.0) * (1 - 1 / np.sqrt(3)) gauss_last_displacement = (beam_length / 2.0) * (1 + 1 / np.sqrt(3)) gauss_first_point = (node1.position + gauss_first_displacement) * unit_vector gauss_last_point = (node1.position + gauss_last_displacement) * unit_vector # guass point twist gauss_first_twist = self.interpolator( node1.position, node3.position, twist1, twist2, gauss_first_point ) gauss_last_twist = self.interpolator( node1.position, node3.position, twist1, twist2, gauss_last_point ) # guass point stiffness gauss_first_stiffness, gauss_last_stiffness = [], [] for j in range(21): gauss_first_stiffness.append( self.interpolator( node1.position, node3.position, stiff1[j], stiff2[j], gauss_first_point ) ) gauss_last_stiffness.append( self.interpolator( node1.position, node3.position, stiff1[j], stiff2[j], gauss_last_point ) ) # lumped mass and inertia calculation if self.primary_axis == "x1": # global - local beam # x (x1) = x (x1) # y (x2) = y (x2) # z (x3) = z (x3) m1, cmx1, cmy1, cmz1, \ ixx1, iyy1, izz1, ixy1, ixz1, iyz1, \ m2_1, cmx2_1, cmy2_1, cmz2_1, \ ixx2_1, iyy2_1, izz2_1, ixy2_1, ixz2_1, iyz2_1 = self.mass_inertia_distribution( node1.position.x1, cm_offset1[0], cm_offset1[1], node2.position.x1, cm_offset2[0], cm_offset2[1], mass1, mass2, inertia1[0], inertia1[1], inertia1[2], inertia1[3], inertia1[4], inertia1[5], inertia2[0], inertia2[1], inertia2[2], inertia2[3], inertia2[4], inertia2[5] ) m2_2, cmx2_2, cmy2_2, cmz2_2, \ ixx2_2, iyy2_2, izz2_2, ixy2_2, ixz2_2, iyz2_2, \ m3, cmx3, cmy3, cmz3, ixx3, iyy3, izz3, ixy3, ixz3, iyz3 = self.mass_inertia_distribution( node2.position.x1, cm_offset2[0], cm_offset2[1], node3.position.x1, cm_offset3[0], cm_offset3[1], mass2, mass3, inertia2[0], inertia2[1], inertia2[2], inertia2[3], inertia2[4], inertia2[5], inertia3[0], inertia3[1], inertia3[2], inertia3[3], inertia3[4], inertia3[5] ) cmx1 -= node1.position.x1 cmx2_1 -= node2.position.x1 cmx2_2 -= node2.position.x1 cmx3 -= node3.position.x1 elif self.primary_axis == "x2": # permutate the indeces to pass the global coordinate into the beams reference frame # global - local beam # y (x2) = x (x1) # z (x3) = y (x2) # x (x1) = z (x3) # # in place of these => pass these # x y z => y z x # xy xz yz => yz xy xz m1, cmy1, cmz1, cmx1, \ iyy1, izz1, ixx1, iyz1, ixy1, ixz1, \ m2_1, cmy2_1, cmz2_1, cmx2_1, \ iyy2_1, izz2_1, ixx2_1, iyz2_1, ixy2_1, ixz2_1 = self.mass_inertia_distribution( node1.position.x2, cm_offset1[1], cm_offset1[0], node2.position.x2, cm_offset2[1], cm_offset2[0], mass1, mass2, inertia1[1], inertia1[2], inertia1[0], inertia1[5], inertia1[3], inertia1[4], inertia2[1], inertia2[2], inertia2[0], inertia2[5], inertia2[3], inertia2[4] ) m2_2, cmy2_2, cmz2_2, cmx2_2, \ iyy2_2, izz2_2, ixx2_2, iyz2_2, ixy2_2, ixz2_2, \ m3, cmy3, cmz3, cmx3, \ iyy3, izz3, ixx3, iyz3, ixy3, ixz3 = self.mass_inertia_distribution( node2.position.x2, cm_offset2[1], cm_offset2[0], node3.position.x2, cm_offset3[1], cm_offset3[0], mass2, mass3, inertia2[1], inertia2[2], inertia2[0], inertia2[5], inertia2[3], inertia2[4], inertia3[1], inertia3[2], inertia3[0], inertia3[5], inertia3[3], inertia3[4] ) cmy1 -= node1.position.x2 cmy2_1 -= node2.position.x2 cmy2_2 -= node2.position.x2 cmy3 -= node3.position.x2 elif self.primary_axis == "x3": # permutate the indeces to pass the global coordinate into the beams reference frame # global - local beam # z (x3) = x (x1) # x (x1) = y (x2) # y (x2) = z (x3) # # in place of these => pass these # x y z => z x y # xy xz yz => xz yz xy m1, cmz1, cmx1, cmy1, \ izz1, ixx1, iyy1, ixz1, iyz1, ixy1, \ m2_1, cmz2_1, cmx2_1, cmy2_1, \ izz2_1, ixx2_1, iyy2_1, ixz2_1, iyz2_1, ixy2_1 = self.mass_inertia_distribution( node1.position.x3, cm_offset1[0], cm_offset1[1], node2.position.x3, cm_offset2[0], cm_offset2[1], mass1, mass2, inertia1[2], inertia1[0], inertia1[1], inertia1[4], inertia1[5], inertia1[3], inertia2[2], inertia2[0], inertia2[1], inertia2[4], inertia2[5], inertia2[3] ) m2_2, cmz2_2, cmx2_2, cmy2_2, \ izz2_2, ixx2_2, iyy2_2, ixz2_2, iyz2_2, ixy2_2, \ m3, cmz3, cmx3, cmy3, \ izz3, ixx3, iyy3, ixz3, iyz3, ixy3 = self.mass_inertia_distribution( node2.position.x3, cm_offset2[0], cm_offset2[1], node3.position.x3, cm_offset3[0], cm_offset3[1], mass2, mass3, inertia2[2], inertia2[0], inertia2[1], inertia2[4], inertia2[5], inertia2[3], inertia3[2], inertia3[0], inertia3[1], inertia3[4], inertia3[5], inertia3[3] ) cmz1 -= node1.position.x3 cmz2_1 -= node2.position.x3 cmz2_2 -= node2.position.x3 cmz3 -= node3.position.x3 # create the Bodies and Beam3 id_base = self.component_name + "_beam + " index = 10 * i body1 = Body( id_base + str(index + 0), node1, m1, addedmass1, Vec3(cmx1, cmy1, cmz1), ixx1, iyy1, izz1, ixy1, ixz1, iyz1 ) body2_1 = Body( id_base + str(index + 1), node2, m2_1, addedmass2, # this is always 0 Vec3(cmx2_1, cmy2_1, cmz2_1), ixx2_1, iyy2_1, izz2_1, ixy2_1, ixz2_1, iyz2_1 ) body2_2 = Body( id_base + str(index + 2), node2, m2_2, addedmass2, # this is always 0 Vec3(cmx2_2, cmy2_2, cmz2_2), ixx2_2, iyy2_2, izz2_2, ixy2_2, ixz2_2, iyz2_2 ) body3 = Body( id_base + str(index + 3), node3, m3, addedmass3, Vec3(cmx3, cmy3, cmz3), ixx3, iyy3, izz3, ixy3, ixz3, iyz3 ) bodies += [body1, body2_1, body2_2, body3] this_beam = Beam3(id_base + str(index), node1, node2, node3, body1, body2_1, body2_2, body3, gauss_first_twist, gauss_last_twist, gauss_first_stiffness, gauss_last_stiffness) beams.append(this_beam) return bodies, body_count, beams, beam_count def mass_inertia_distribution(self, x1, yg1, zg1, x2, yg2, zg2, m1, m2, ixx1, iyy1, izz1, ixy1, ixz1, iyz1, ixx2, iyy2, izz2, ixy2, ixz2, iyz2): """ See the preprocessor documentation; in particular, section 0.5. inputs: x1: Float - location in the primary axis direction of the first node yg1: Float - center of mass offset in a secondary axis direction for the first node zg1: Float - center of mass offset in a secondary axis direction for the first node x2: Float - location in the primary axis direction of the second node yg2: Float - center of mass offset in a secondary axis direction for the second node zg2: Float - center of mass offset in a secondary axis direction for the second node m1: Float - mass per unit length of the first node m2: Float - mass per unit length of the second node ixx1: Float - inertia per unit length of the first node iyy1: Float - inertia per unit length of the first node izz1: Float - inertia per unit length of the first node ixy1: Float - inertia per unit length of the first node ixz1: Float - inertia per unit length of the first node iyz1: Float - inertia per unit length of the first node ixx2: Float - inertia per unit length of the second node iyy2: Float - inertia per unit length of the second node izz2: Float - inertia per unit length of the second node ixy2: Float - inertia per unit length of the second node ixz2: Float - inertia per unit length of the second node iyz2: Float - inertia per unit length of the second node outputs: M1: Float - lumped mass of the first node Xg: Float - center of mass in the primary axis direction of the first node Yg: Float - center of mass in the secondary axis direction of the first node Zg: Float - center of mass in the secondary axis direction of the first node Ixx1G: Float - lumped inertia of the first node Iyy1G: Float - lumped inertia of the first node Izz1G: Float - lumped inertia of the first node Ixy1G: Float - lumped inertia of the first node Ixz1G: Float - lumped inertia of the first node Iyz1G: Float - lumped inertia of the first node M2: Float - lumped mass of the second node Xg: Float - center of mass in the primary axis direction of the second node Yg: Float - center of mass in the secondary axis direction of the second node Zg: Float - center of mass in the secondary axis direction of the second node Ixx2G: Float - lumped inertia of the second node Iyy2G: Float - lumped inertia of the second node Izz2G: Float - lumped inertia of the second node Ixy2G: Float - lumped inertia of the second node Ixz2G: Float - lumped inertia of the second node Iyz2G: Float - lumped inertia of the second node """ Lb = x2 - x1 M = (m1 + m2) / 2.0 * Lb XgM = (Lb / 6.0) * ((2 * m2 + m1) * Lb + 3 * x1 * (m1 + m2)) YgM = (Lb / 6.0) * ((2 * m1 + m2) * yg1 + (2 * m2 + m1) * yg2) ZgM = (Lb / 6.0) * ((2 * m1 + m2) * zg1 + (2 * m2 + m1) * zg2) M1 = (3 * m1 + m2) / 8 * Lb M2 = M - M1 Ixx = (Lb / 12.0) \ * ( 6 * (ixx1 + ixx2) + m1 * (3 * yg1**2 + 2 * yg1 * yg2 + yg2**2 + 3 * zg1**2 + 2 * zg1 * zg2 + zg2**2) + m2 * (yg1**2 + 2 * yg1 * yg2 + 3 * yg2**2 + zg1**2 + 2 * zg1 * zg2 + 3 * zg2**2) ) Iyy = (Lb / 12.0) \ * ( 6 * (iyy1 + iyy2) + m1 * (Lb**2 + 4 * Lb * x1 + 6 * x1**2 + 3 * zg1**2 + 2 * zg1 * zg2 + zg2**2) + m2 * (3 * Lb**2 + 8 * Lb * x1 + 6 * x1**2 + zg1**2 + 2 * zg1 * zg2 + 3 * zg2**2) ) Izz = (Lb / 12.0) \ * ( 6 * (izz1 + izz2) + m1 * (Lb**2 + 4 * Lb * x1 + 6 * x1**2 + 3 * yg1**2 + 2 * yg1 * yg2 + yg2**2) + m2 * (3 * Lb**2 + 8 * Lb * x1 + 6 * x1**2 + yg1**2 + 2 * yg1 * yg2 + 3 * yg2**2) ) Ixy = (Lb / 12.0) \ * ( 6 * (ixy1 + ixy2) + m1 * (Lb * (yg1 + yg2) + 2 * x1 * (2 * yg1 + yg2)) + m2 * (Lb * (yg1 + 3 * yg2) + 2 * x1 * (yg1 + 2 * yg2)) ) Ixz = (Lb / 12.0) \ * ( 6 * (ixz1 + ixz2) + m1 * (Lb * (zg1 + zg2) + 2 * x1 * (2 * zg1 + zg2)) + m2 * (Lb * (zg1 + 3 * zg2) + 2 * x1 * (zg1 + 2 * zg2)) ) Iyz = (Lb / 12.0) \ * ( 6 * (iyz1 + iyz2) + m1 * (yg2 * (zg1 + zg2) + yg1 * (3 * zg1 + zg2)) + m2 * (yg1 * (zg1 + zg2) + yg2 * (zg1 + 3 * zg2)) ) Ixx1 = (Lb / 192.0) \ * ( 24 * (3 * ixx1 + ixx2) + m1 * (45 * yg1**2 + 22 * yg1 * yg2 + 5 * yg2**2 + 45 * zg1**2 + 22 * zg1 * zg2 + 5 * zg2**2) + m2 * (11 * yg1**2 + 10 * yg1 * yg2 + 3 * yg2**2 + 11 * zg1**2 + 10 * zg1 * zg2 + 3 * zg2**2) ) Iyy1 = (Lb / 192.0) \ * ( 24 * (3 * iyy1 + iyy2) + m1 * (5 * Lb**2 + 32 * Lb * x1 + 72 * x1**2 + 45 * zg1**2 + 22 * zg1 * zg2 + 5 * zg2**2) + m2 * (3 * Lb**2 + 16 * Lb * x1 + 24 * x1**2 + 11 * zg1**2 + 10 * zg1 * zg2 + 3 * zg2**2) ) Izz1 = (Lb / 192.0) \ * ( 24 * (3 * izz1 + izz2) + m1 * (5 * Lb**2 + 32 * Lb * x1 + 72 * x1**2 + 45 * yg1**2 + 22 * yg1 * yg2 + 5 * yg2**2) + m2 * (3 * Lb**2 + 16 * Lb * x1 + 24 * x1**2 + 11 * yg1**2 + 10 * yg1 * yg2 + 3 * yg2**2) ) Ixy1 = (Lb / 192.0) \ * ( 24 * (3 * ixy1 + ixy2) + m1 * (11 * Lb * yg1 + 56 * x1 * yg1 + 5 * Lb * yg2 + 16 * x1 * yg2) + m2 * (5 * Lb * yg1 + 16 * x1 * yg1 + 3 * Lb * yg2 + 8 * x1 * yg2) ) Ixz1 = (Lb / 192.0) \ * ( 24 * (3 * ixz1 + ixz2) + m1 * (11 * Lb * zg1 + 56 * x1 * zg1 + 5 * Lb * zg2 + 16 * x1 * zg2) + m2 * (5 * Lb * zg1 + 16 * x1 * zg1 + 3 * Lb * zg2 + 8 * x1 * zg2) ) Iyz1 = (Lb / 192.0) \ * ( 24 * (3 * iyz1 + iyz2) + m1 * (45 * yg1 * zg1 + 11 * yg2 * zg1 + 11 * yg1 * zg2 + 5 * yg2 * zg2) + m2 * (11 * yg1 * zg1 + 5 * yg2 * zg1 + 5 * yg1 * zg2 + 3 * yg2 * zg2) ) Xg = XgM / M Yg = YgM / M Zg = ZgM / M Xg_star = x1 + (Lb / 3.0) * (2 * m1 + m2) / (3 * m1 + m2) Yg_star = ((7 * m1 + 2 * m2) * yg1 + (2 * m1 + m2) * yg2) / (9 * m1 + 3 * m2) Zg_star = ((7 * m1 + 2 * m2) * zg1 + (2 * m1 + m2) * zg2) / (9 * m1 + 3 * m2) R = -1 * np.array([Xg, Yg, Zg]) R_star = -1 * np.array([Xg_star, Yg_star, Zg_star]) R_prime = np.array( [ Xg - Xg_star, Yg - Yg_star, Zg - Zg_star ] ) Ixx1G = Ixx1 + M1 \ * ( np.sum(R_prime**2) - np.sum(R_star**2) - (R_prime[0] * R_prime[0] - R_star[0] * R_star[0]) ) Iyy1G = Iyy1 + M1 \ * ( np.sum(R_prime**2) - np.sum(R_star**2) - (R_prime[1] * R_prime[1] - R_star[1] * R_star[1]) ) Izz1G = Izz1 + M1 \ * ( np.sum(R_prime**2) - np.sum(R_star**2) - (R_prime[2] * R_prime[2] - R_star[2] * R_star[2]) ) Ixy1G = Ixy1 + M1 \ * ( R_prime[0] * R_prime[1] - R_star[0] * R_star[1] ) Ixz1G = Ixz1 + M1 \ * ( R_prime[0] * R_prime[2] - R_star[0] * R_star[2] ) Iyz1G = Iyz1 + M1 \ * ( R_prime[1] * R_prime[2] - R_star[1] * R_star[2] ) Ixx2G = Ixx - Ixx1G - M * (np.sum(R**2) - R[0] * R[0]) Iyy2G = Iyy - Iyy1G - M * (np.sum(R**2) - R[1] * R[1]) Izz2G = Izz - Izz1G - M * (np.sum(R**2) - R[2] * R[2]) Ixy2G = Ixy - Ixy1G - M * (R[0] * R[1]) Ixz2G = Ixz - Ixz1G - M * (R[0] * R[2]) Iyz2G = Iyz - Iyz1G - M * (R[1] * R[2]) return M1, \ Xg, Yg, Zg, \ Ixx1G, Iyy1G, Izz1G, \ Ixy1G, Ixz1G, Iyz1G, \ M2, \ Xg, Yg, Zg, \ Ixx2G, Iyy2G, Izz2G, \ Ixy2G, Ixz2G, Iyz2G ### export routines ### def export_all(self, output_directory): self.export_node_file(output_directory) self.export_body_file(output_directory) self.export_beam_file(output_directory) self.export_element_file(output_directory) def export_node_file(self, output_directory): output = Output("{}/{}.nodes".format(output_directory, self.component_name)) output.write_line( "# Structural nodes for the {}".format(self.component_name)) output.write_empty_line() output.write_line("# *** nodes ***") for n in self.nodes: output.write_line(str(n)) output.write_empty_line() output.end() def export_element_file(self, output_directory): output = Output("{}/{}.structural".format(output_directory, self.component_name)) output.write_line("# Beam elements for the {}".format(self.component_name)) output.write_empty_line() output.write_line("set: integer {}_beam = {};".format(self.component_name, self.mbdyn_ref_index)) output.write_line("set: integer {}_body = {};".format(self.component_name, self.mbdyn_ref_index)) output.write_empty_line() output.write_line("# *** beam elements ***") for beam in self.beams: output.write_line(str(beam)) output.write_line( "include: \"{}.beam\";".format(self.component_name)) output.write_empty_line() output.end() def export_body_file(self, output_directory): output = Output("{}/{}.body".format(output_directory, self.component_name)) output.write_line("# Bodies for the {}".format(self.component_name)) output.write_empty_line() for body in self.bodies: output.write_line(str(body)) output.write_empty_line() output.end() def export_beam_file(self, output_directory): output = Output("{}/{}.beam".format(output_directory, self.component_name)) output.write_line("# Generic beam element properties for the beams") output.write_empty_line() output.write_line("# *** elastic properties ***") output.write_line("beam3: current_beam,") output.write_line(" beam_node1, reference, node, null,") output.write_line(" beam_node2, reference, node, null,") output.write_line(" beam_node3, reference, node, null,") output.write_line(" reference, mip_rf, {},".format(self.local_orientation)) output.write_line(" linear time variant viscoelastic generic, sym,") output.write_line(" k1_11, k1_12, k1_13, k1_14, k1_15, k1_16,") output.write_line(" k1_22, k1_23, k1_24, k1_25, k1_26,") output.write_line(" k1_33, k1_34, k1_35, k1_36,") output.write_line(" k1_44, k1_45, k1_46,") output.write_line(" k1_55, k1_56,") output.write_line(" k1_66,") output.write_line(" const, 1.0,") output.write_line(" proportional, {},".format(self.stiffness_constant)) output.write_line(" ramp, 1.0, 0.0, 1.0, 0.0,") output.write_line(" reference, mip_rf, {},".format(self.local_orientation)) output.write_line(" linear time variant viscoelastic generic, sym,") output.write_line(" k2_11, k2_12, k2_13, k2_14, k2_15, k2_16,") output.write_line(" k2_22, k2_23, k2_24, k2_25, k2_26,") output.write_line(" k2_33, k2_34, k2_35, k2_36,") output.write_line(" k2_44, k2_45, k2_46,") output.write_line(" k2_55, k2_56,") output.write_line(" k2_66,") output.write_line(" const, 1.0,") output.write_line(" proportional, {},".format(self.stiffness_constant)) output.write_line(" ramp, 1.0, 0.0, 1.0, 0.0;") output.end()
import unittest from robotide.controller.basecontroller import WithNamespace from robotide.namespace.namespace import Namespace from robotide.preferences.settings import Settings class TestWithNamespace(unittest.TestCase): def test_get_all_cached_library_names(self): with_namespace = WithNamespace() with_namespace._set_namespace(namespace=self._create_namespace()) print with_namespace.get_all_cached_library_names() def _create_namespace(self): settings = lambda:0 settings.get = lambda k, d: d settings.add_change_listener = lambda *args:0 namespace = Namespace(settings=settings) return namespace if __name__ == '__main__': unittest.main()
import unittest from pybox.containers.pqueue import PQueue class PQueueTest(unittest.TestCase): def setUp(self): self.q1 = PQueue() self.q2 = PQueue([('baz', 3), ('foo', 1)]) def tearDown(self): pass def test_init(self): self.assertEqual(len(self.q1), 0) self.assertEqual(len(self.q2), 2) def test_clear(self): self.q1.clear() self.q2.clear() self.assertEqual(len(self.q1), 0) self.assertEqual(len(self.q2), 0) def test_enqueue(self): self.q1.enqueue(('bar', 2)) self.q2.enqueue(('bar', 2)) self.assertEqual(len(self.q1), 1) self.assertEqual(len(self.q2), 3) def test_enqueueException(self): with self.assertRaises(Exception) as context: q3 = PQueue([('bar', 2), 'foo']) self.assertTrue('Element must be tuple, you entered: foo' in context.exception) def test_dequeue(self): q1Value = self.q1.dequeue() q2Value = self.q2.dequeue() self.assertEqual(q1Value, None) self.assertEqual(q2Value, ('foo', 1)) def test_enqueue_dequeue(self): q3 = PQueue() q3.enqueue(('bar', 2)) q3.enqueue(('baz', 3)) q3.enqueue(('foo', 1)) q3Value = q3.dequeue() self.assertEqual(q3Value, ('foo', 1)) self.assertEqual(len(q3), 2) def test_peek(self): self.assertEqual(self.q1.peek(), None) self.assertEqual(self.q2.peek(), ('foo', 1)) def test_isEmpty(self): self.assertTrue(self.q1.isEmpty()) self.assertFalse(self.q2.isEmpty()) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python3 # encoding: utf-8 import torch as th import torch.nn as nn default_act = 'relu' Act_REGISTER = {} Act_REGISTER[None] = lambda: lambda x: x Act_REGISTER['relu'] = nn.ReLU Act_REGISTER['elu'] = nn.ELU Act_REGISTER['gelu'] = nn.GELU Act_REGISTER['leakyrelu'] = nn.LeakyReLU Act_REGISTER['tanh'] = nn.Tanh Act_REGISTER['softplus'] = nn.Softplus Act_REGISTER['mish'] = nn.Mish Act_REGISTER['sigmoid'] = nn.Sigmoid Act_REGISTER['log_softmax'] = lambda: nn.LogSoftmax(-1) class Swish(nn.Module): """ https://arxiv.org/abs/1710.05941 """ def forward(self, inp: th.Tensor) -> th.Tensor: return inp * th.sigmoid(inp) Act_REGISTER['swish'] = Swish
# Used by other modules to determine if proxy will be # used instead of direct connection. proxy = None def set_proxy(ip): global proxy import re # I thinks tcp ports are around 65000? What do you think? m = re.match(r'^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}:\d{2,5}$', ip) if m: proxy = 'http://' + m.group() return True else: return False # Well just inform the client that nothing has been change.
# -*- coding: utf-8 -*- # # Copyright (c) 2013 Clione Software # Copyright (c) 2010-2013 Cidadania S. Coop. Galega # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.views.generic.list import ListView from django.views.generic.edit import UpdateView, DeleteView from django.views.generic.detail import DetailView from django.views.generic import FormView from django.shortcuts import get_object_or_404 from django.utils.translation import ugettext_lazy as _ from django.core.urlresolvers import reverse from django.core.exceptions import PermissionDenied from guardian.shortcuts import assign_perm from core.spaces import url_names as urln from core.spaces.models import Space, Event from core.spaces.forms import SpaceForm, EventForm from helpers.cache import get_or_insert_object_in_cache class AddEvent(FormView): """ Returns an empty MeetingForm to create a new Meeting. Space and author fields are automatically filled with the request data. :permissions required: admin_space, mod_space :rtype: HTML Form :context: form, get_place """ form_class = EventForm template_name = 'spaces/event_form.html' def dispatch(self, request, *args, **kwargs): space = get_object_or_404(Space, url=kwargs['space_url']) if (request.user.has_perm('admin_space', space) or request.user.has_perm('mod_space', space)): return super(AddEvent, self).dispatch(request, *args, **kwargs) else: raise PermissionDenied def get_success_url(self): space = self.kwargs['space_url'] return reverse(urln.SPACE_INDEX, kwargs={'space_url': space}) def form_valid(self, form): self.space = get_object_or_404(Space, url=self.kwargs['space_url']) form_uncommited = form.save(commit=False) form_uncommited.event_author = self.request.user form_uncommited.space = self.space form_uncommited.save() form.save_m2m() return super(AddEvent, self).form_valid(form) def get_context_data(self, **kwargs): context = super(AddEvent, self).get_context_data(**kwargs) place = get_object_or_404(Space, url=self.kwargs['space_url']) context['get_place'] = place return context class ViewEvent(DetailView): """ View the content of a event. :permissions required: view_space :rtype: Object :context: event, get_place """ context_object_name = 'event' template_name = 'spaces/event_detail.html' def dispatch(self, request, *args, **kwargs): space = get_object_or_404(Space, url=kwargs['space_url']) if request.user.has_perm('view_space', space): return super(ViewEvent, self).dispatch(request, *args, **kwargs) else: raise PermissionDenied def get_object(self): return get_object_or_404(Event, pk=self.kwargs['event_id']) def get_context_data(self, **kwargs): context = super(ViewEvent, self).get_context_data(**kwargs) context['get_place'] = get_object_or_404(Space, url=self.kwargs['space_url']) return context class EditEvent(UpdateView): """ Returns a MeetingForm filled with the current Meeting data to be edited. :permissions required: admin_space, admin_event, mod_space, change_event :rtype: HTML Form :context: event, get_place """ model = Event template_name = 'spaces/event_form.html' def dispatch(self, request, *args, **kwargs): space = get_object_or_404(Space, url=kwargs['space_url']) event = get_object_or_404(Event, pk=kwargs['event_id']) if (request.user.has_perm('admin_space', space) or request.user.has_perm('mod_space', space)): return super(EditEvent, self).dispatch(request, *args, **kwargs) else: raise PermissionDenied def get_object(self): cur_event = get_object_or_404(Event, pk=self.kwargs['event_id']) return cur_event def get_success_url(self): space = self.kwargs['space_url'] return reverse(urln.SPACE_INDEX, kwargs={'space_url': space}) def form_valid(self, form): form_uncommited = form.save(commit=False) form_uncommited.save() form.save_m2m() return super(EditEvent, self).form_valid(form) def get_context_data(self, **kwargs): context = super(EditEvent, self).get_context_data(**kwargs) space = get_object_or_404(Space, url=self.kwargs['space_url']) context['get_place'] = space return context class DeleteEvent(DeleteView): """ Returns a confirmation page before deleting the Meeting object. :permissions required: admin_space, mod_space, admin_event, delete_event :rtype: Confirmation :context: get_place """ def dispatch(self, request, *args, **kwargs): space = get_object_or_404(Space, url=kwargs['space_url']) event = get_object_or_404(Event, url=kwargs['event_id']) if (request.user.has_perm('admin_space', space) or request.user.has_perm('mod_space', space)): return super(DeleteEvent, self).dispatch(request, *args, **kwargs) else: raise PermissionDenied def get_object(self): return get_object_or_404(Event, pk=self.kwargs['event_id']) def get_success_url(self): space = self.kwargs['space_url'] return reverse(urln.SPACE_INDEX, kwargs={'space_url': space}) def get_context_data(self, **kwargs): context = super(DeleteEvent, self).get_context_data(**kwargs) context['get_place'] = get_object_or_404(Space, url=self.kwargs['space_url']) return context class ListEvents(ListView): """ List all the events attached to a space. :permissions required: view_space :rtype: Object list :context: event_list, get_place """ paginate_by = 25 context_object_name = 'event_list' def dispatch(self, request, *args, **kwargs): space = get_object_or_404(Space, url=kwargs['space_url']) if request.user.has_perm('view_space', space): return super(ListEvents, self).dispatch(request, *args, **kwargs) else: raise PermissionDenied def get_queryset(self): place = get_object_or_404(Space, url=self.kwargs['space_url']) objects = Event.objects.all().filter(space=place.id).order_by('event_date') return objects def get_context_data(self, **kwargs): context = super(ListEvents, self).get_context_data(**kwargs) context['get_place'] = get_object_or_404(Space, url=self.kwargs['space_url']) return context
from bs4 import BeautifulSoup from selenium import webdriver import requests def download_url(url, save_path, chunk_size=128): r = requests.get(url, stream=True) with open(save_path, 'wb') as fd: for chunk in r.iter_content(chunk_size=chunk_size): fd.write(chunk) class DownloaderBot(): def __init__(self, url): self.__url = url # Atributo privado que recebe a url contendo a lista de links de PDF para download print("Downloader object initialezed!") def set_url(self, value): self.__url = value def get_url(self): return self.__url def downloaderTceRS(self): # pdb.set_trace() cont = 0 driver = webdriver.Chrome() driver.get("http://dados.tce.rs.gov.br/dados/municipal/recebimentos/2018.html") page_source = driver.page_source print(page_source) soup = BeautifulSoup(page_source, "html.parser") print(soup) driver.quit() x2 = 0 for link in soup.findAll("a"): print(link.get('href')) if link.get("href").find("dados.tce.rs.gov.br/dados/municipal/balancete-despesa/2018/") > 0: if link.get("href").find(".csv") > 0: save_path = r"C:\Users\schmall\Documents\FGV\Tese\Balanços_RS\dados - despesas - 2018\\" + link.get('href').split('/')[7] download_url(link.get('href'), save_path, chunk_size=128) # options = webdriver.ChromeOptions() # # preferences = { # "download.default_directory": r"C:\Users\schmall\Documents\FGV\Tese\Balanços_RS\dados", # "download.prompt_for_download": False, # "download.directory_upgrade": True # } # options.add_experimental_option("prefs", preferences) # # driver3 = webdriver.Chrome(chrome_options=options) # driver3.get(link.get('href')) # # # time.sleep(5) # # url_do_pdf = driver3.current_url # pega a URL do PDF, que é o que queríamos desde o inicio! # # print(url_do_pdf) # # x1 = 0 # x2 = x2 + 1 # if x2 > 5: # while x1 == 0: # count = 0 # li = os.listdir(r"C:\Users\schmall\Documents\FGV\Tese\Balanços_RS\dados") # for x1 in li: # if x1.endswith(".crdownload"): # count = count + 1 # if count == 0: # x1 = 1 # x2 = 0 # else: # x1 = 0 # driver3.quit() # # # testa botao proximo APÓS baixar todos os PDFs da primeira página! # pagina_exibe_links_pdf_driver = webdriver.Chrome() # pagina_exibe_links_pdf_driver.get(self.__url) # # try: # botao_proximo = pagina_exibe_links_pdf_driver.find_element_by_link_text("Próximo →") # # Necessidade de fazer downloads nas próximas páginas # botao_proximo.click() # proxima_pagina = pagina_exibe_links_pdf_driver.current_url # self.__url = proxima_pagina # Atualiza a página do link dos downloads no objeto! # pagina_exibe_links_pdf_driver.quit() # Pode fechar o driver, pois já temos a proxima página para reiniciar o loop! # except NoSuchElementException as exception: # Atingiu a última página da navegação! Acabou o trabalho! # proxima_pagina_existe = False # Não entrará na próxima iteração do loop!
import numpy as np import pandas as pd from sklearn import ensemble import synthimpute as si def test_rf_quantile(): N = 1000 x = pd.DataFrame({"x1": np.random.randn(N), "x2": np.random.randn(N)}) # Construct example relationship. y = x.x1 + np.power(x.x2, 3) + np.random.randn(N) rf = ensemble.RandomForestRegressor(random_state=3) rf.fit(x, y) median_preds = si.rf_quantile(rf, x, 0.5) assert median_preds.size == N # Test multiple quantiles. quantiles = np.arange(N) / N multiple_q_preds = si.rf_quantile(rf, x, quantiles) assert multiple_q_preds.size == N
#!/usr/bin/python # -*- coding: utf-8 -*- # (c) 2021 Evgeni Golov # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' --- module: host_errata_info version_added: 2.1.0 short_description: Fetch information about Host Errata description: - Fetch information about Host Errata author: - "Evgeni Golov (@evgeni)" options: host: description: - Name of the host to fetch errata for. required: true type: str content_view: description: - Calculate Applicable Errata based on a particular Content View. - Required together with I(lifecycle_environment). - If this is set, I(organization) also needs to be set. required: false type: str lifecycle_environment: description: - Calculate Applicable Errata based on a particular Lifecycle Environment. - Required together with I(content_view). - If this is set, I(organization) also needs to be set. required: false type: str extends_documentation_fragment: - theforeman.foreman.foreman - theforeman.foreman.foreman.infomodulewithoutname ''' EXAMPLES = ''' - name: "List installable errata for host" theforeman.foreman.host_errata_info: username: "admin" password: "changeme" server_url: "https://foreman.example.com" host: "host.example.com" - name: "List applicable errata for host" theforeman.foreman.host_errata_info: username: "admin" password: "changeme" server_url: "https://foreman.example.com" organization: "Default Organization" host: "host.example.com" lifecycle_environment: "Library" content_view: "Default Organization View" ''' RETURN = ''' host_errata: description: List of all found errata for the host and their details returned: success type: list elements: dict ''' from ansible_collections.theforeman.foreman.plugins.module_utils.foreman_helper import ( ForemanInfoAnsibleModule ) class ForemanHostErrataInfo(ForemanInfoAnsibleModule): pass def main(): module = ForemanHostErrataInfo( foreman_spec=dict( name=dict(invisible=True), host=dict(type='entity', required=True), content_view=dict(type='entity', scope=['organization']), lifecycle_environment=dict(type='entity', flat_name='environment_id', scope=['organization']), ), entity_opts=dict( resource_type='host_errata', ), required_together=[ ('content_view', 'lifecycle_environment'), ], required_by={ 'content_view': 'organization', 'lifecycle_environment': 'organization', }, ) with module.api_connection(): module.run() if __name__ == '__main__': main()
"""Test logic blocks.""" from mpf.tests.MpfFakeGameTestCase import MpfFakeGameTestCase from mpf.tests.MpfTestCase import test_config_directory class TestLogicBlocks(MpfFakeGameTestCase): def get_config_file(self): return 'config.yaml' def get_machine_path(self): return 'tests/machine_files/logic_blocks/' def test_mode_selection_with_counters(self): self.mock_event("qualify_start_mode1") self.mock_event("qualify_start_mode2") self.start_game() self.start_mode("mode3") # advance both counters to 2/3 self.post_event("qualify1_count") self.post_event("qualify1_count") self.post_event("qualify2_count") self.post_event("qualify2_count") # post the final even for both of them self.machine.switch_controller.process_switch("s_qualify1", 1, True) self.machine.switch_controller.process_switch("s_qualify2", 1, True) self.advance_time_and_run() self.assertEventCalled("qualify_start_mode1") self.assertEventNotCalled("qualify_start_mode2") @test_config_directory("tests/machine_files/counters/") def test_subscription_on_counter_values(self): self.start_game() self.start_mode("mode1") self.assertLightColor("l_chest_matrix_green_2", "black") self.assertLightColor("l_chest_matrix_green_3", "black") self.assertLightColor("l_chest_matrix_green_4", "black") self.assertLightColor("l_chest_matrix_green_5", "black") self.post_event("count_up") self.advance_time_and_run(.1) self.assertLightColor("l_chest_matrix_green_2", "black") self.assertLightColor("l_chest_matrix_green_3", "black") self.assertLightColor("l_chest_matrix_green_4", "black") self.assertLightColor("l_chest_matrix_green_5", "green") self.post_event("count_up") self.advance_time_and_run(.1) self.assertLightColor("l_chest_matrix_green_2", "black") self.assertLightColor("l_chest_matrix_green_3", "black") self.assertLightColor("l_chest_matrix_green_4", "green") self.assertLightColor("l_chest_matrix_green_5", "green") self.post_event("count_up") self.advance_time_and_run(.1) self.assertLightColor("l_chest_matrix_green_2", "black") self.assertLightColor("l_chest_matrix_green_3", "green") self.assertLightColor("l_chest_matrix_green_4", "green") self.assertLightColor("l_chest_matrix_green_5", "green") self.post_event("count_up") self.advance_time_and_run(.1) self.assertLightColor("l_chest_matrix_green_2", "green") self.assertLightColor("l_chest_matrix_green_3", "green") self.assertLightColor("l_chest_matrix_green_4", "green") self.assertLightColor("l_chest_matrix_green_5", "green") self.drain_all_balls() self.advance_time_and_run() self.start_mode("mode1") self.assertLightColor("l_chest_matrix_green_2", "black") self.assertLightColor("l_chest_matrix_green_3", "black") self.assertLightColor("l_chest_matrix_green_4", "black") self.assertLightColor("l_chest_matrix_green_5", "black") def test_counter_with_lights(self): self.start_game() self.post_event("start_mode2") self.advance_time_and_run() self.assertLightColor("led1", "white") self.assertLightColor("led2", "black") self.assertLightColor("led3", "black") # nothing happens because it is disabled self.post_event("counter_with_lights_count") self.advance_time_and_run() self.assertLightColor("led1", "white") self.assertLightColor("led2", "black") self.assertLightColor("led3", "black") # advance self.post_event("counter_with_lights_enable") self.post_event("counter_with_lights_count") self.advance_time_and_run() self.assertLightColor("led1", "black") self.assertLightColor("led2", "white") self.assertLightColor("led3", "black") # stop mode self.post_event("stop_mode2") self.advance_time_and_run() # all off self.assertLightColor("led1", "black") self.assertLightColor("led2", "black") self.assertLightColor("led3", "black") # restart mode. should restore state self.post_event("start_mode2") self.advance_time_and_run() self.assertLightColor("led1", "black") self.assertLightColor("led2", "white") self.assertLightColor("led3", "black") # and complete self.post_event("counter_with_lights_count") self.advance_time_and_run() self.assertLightColor("led1", "black") self.assertLightColor("led2", "black") self.assertLightColor("led3", "white") def test_accrual_random_advance(self): self.start_game() self.mock_event("accrual1_complete1") # should do nothing self.post_event("accrual1_random_advance") self.assertEqual([False, False, False], self.machine.accruals["accrual1"].value) # enable accrual self.post_event("accrual1_enable") # complete one step self.post_event("accrual1_step1a") self.assertEqual([True, False, False], self.machine.accruals["accrual1"].value) # should advance one of the remaining steps self.post_event("accrual1_random_advance") # exactly two steps should be hit self.assertEqual(2, sum(self.machine.accruals["accrual1"].value)) self.assertEventNotCalled("accrual1_complete1") # should complete the accrual self.post_event("accrual1_random_advance") self.assertEventCalled("accrual1_complete1") def test_accruals_simple(self): self.start_game() self.mock_event("accrual1_complete1") self.mock_event("accrual1_hit") self.mock_event("accrual1_complete2") # accrual should not yet work self.post_event("accrual1_step1a") self.post_event("accrual1_step2b") self.post_event("accrual1_step3c") self.assertEqual(0, self._events["accrual1_complete1"]) self.assertEqual(0, self._events["accrual1_complete2"]) # enable accrual self.post_event("accrual1_enable") # step2 self.post_event("accrual1_step2a") self.assertEqual(0, self._events["accrual1_complete1"]) self.assertEqual(1, self._events["accrual1_hit"]) # step1 self.post_event("accrual1_step1c") self.post_event("accrual1_step1b") self.assertEqual(0, self._events["accrual1_complete1"]) self.assertEqual(2, self._events["accrual1_hit"]) # step 3 self.post_event("accrual1_step3c") # accrual should fire self.assertEqual(1, self._events["accrual1_complete1"]) self.assertEqual(1, self._events["accrual1_complete2"]) # should not work again self.post_event("accrual1_step1a") self.post_event("accrual1_step2a") self.post_event("accrual1_step3a") self.assertEqual(1, self._events["accrual1_complete1"]) self.assertEqual(1, self._events["accrual1_complete2"]) # reset but do not enable yet self.post_event("accrual1_reset") # nothing should happen self.post_event("accrual1_step1a") self.post_event("accrual1_step2a") self.post_event("accrual1_step3a") self.assertEqual(1, self._events["accrual1_complete1"]) self.assertEqual(1, self._events["accrual1_complete2"]) # enable for one step self.post_event("accrual1_enable") self.post_event("accrual1_step1a") # disable for next self.post_event("accrual1_disable") self.post_event("accrual1_step2a") # enable for third step self.post_event("accrual1_enable") self.post_event("accrual1_step3a") # should not complete yet self.assertEqual(1, self._events["accrual1_complete1"]) self.assertEqual(1, self._events["accrual1_complete2"]) self.post_event("accrual1_step2a") # but now self.assertEqual(2, self._events["accrual1_complete1"]) self.assertEqual(2, self._events["accrual1_complete2"]) def test_counter_simple_down(self): self.start_game() self.mock_event("logicblock_counter1_complete") self.mock_event("logicblock_counter1_hit") self.post_event("counter1_enable") for i in range(4): self.post_event("counter1_count") self.assertEqual(0, self._events["logicblock_counter1_complete"]) # nothing should happen when disabled self.post_event("counter1_disable") for i in range(10): self.post_event("counter1_count") self.assertEqual(0, self._events["logicblock_counter1_complete"]) self.post_event("counter1_enable") self.post_event("counter1_count") self.assertEqual(1, self._events["logicblock_counter1_complete"]) self.assertEqual(5, self._events["logicblock_counter1_hit"]) # it should disable self.post_event("counter1_count") self.assertEqual(1, self._events["logicblock_counter1_complete"]) self.assertEqual(5, self._events["logicblock_counter1_hit"]) self.post_event("counter1_restart") for i in range(4): self.post_event("counter1_count") # 4 more hits but not completed self.assertEqual(1, self._events["logicblock_counter1_complete"]) self.assertEqual(9, self._events["logicblock_counter1_hit"]) # reset self.post_event("counter1_reset") for i in range(4): self.post_event("counter1_count") # another 4 hits still not complete self.assertEqual(1, self._events["logicblock_counter1_complete"]) self.assertEqual(13, self._events["logicblock_counter1_hit"]) # and complete again self.post_event("counter1_count") self.assertEqual(2, self._events["logicblock_counter1_complete"]) self.assertEqual(14, self._events["logicblock_counter1_hit"]) def test_sequence_simple(self): self.start_game() self.mock_event("sequence1_complete") self.mock_event("logicblock_sequence1_hit") self.post_event("sequence1_enable") # wrong order self.post_event("sequence1_step3a") self.post_event("sequence1_step2a") self.post_event("sequence1_step1b") self.assertEqual(0, self._events["sequence1_complete"]) self.assertEqual(1, self._events["logicblock_sequence1_hit"]) # still not self.post_event("sequence1_step3b") self.post_event("sequence1_step1a") self.assertEqual(0, self._events["sequence1_complete"]) self.assertEqual(1, self._events["logicblock_sequence1_hit"]) # only 1 so far. now step2 self.post_event("sequence1_step2a") self.assertEqual(0, self._events["sequence1_complete"]) self.assertEqual(2, self._events["logicblock_sequence1_hit"]) # and step 3 self.post_event("sequence1_step3b") self.assertEqual(1, self._events["sequence1_complete"]) self.assertEqual(3, self._events["logicblock_sequence1_hit"]) # should be disabled self.post_event("sequence1_step1a") self.post_event("sequence1_step2a") self.post_event("sequence1_step3a") self.assertEqual(1, self._events["sequence1_complete"]) # enable and reset self.post_event("sequence1_enable") self.post_event("sequence1_reset") # reset inbetween self.post_event("sequence1_step1a") self.post_event("sequence1_step2a") self.post_event("sequence1_reset") self.post_event("sequence1_step3a") # nothing self.assertEqual(1, self._events["sequence1_complete"]) # again self.post_event("sequence1_step1a") self.assertEqual(1, self._events["sequence1_complete"]) self.post_event("sequence1_step2a") self.assertEqual(1, self._events["sequence1_complete"]) self.post_event("sequence1_step3a") self.assertEqual(2, self._events["sequence1_complete"]) def test_counter_in_mode(self): self.start_game() self.mock_event("counter2_complete") self.mock_event("counter2_hit") for i in range(10): self.post_event("counter2_count") self.assertEqual(0, self._events["counter2_complete"]) self.post_event("start_mode1") self.assertTrue("mode1" in self.machine.modes) for i in range(2): self.post_event("counter2_count") self.assertEqual(i + 1, self._events["counter2_hit"]) self.assertEqual(0, self._events["counter2_complete"]) self.assertEventCalledWith("counter2_hit", count=i + 1, remaining=2 - i, hits=i+1) self.post_event("counter2_count") self.assertEqual(1, self._events["counter2_complete"]) self.assertEventCalledWith("counter2_hit", count=3, hits=3, remaining=0) # should run again for i in range(2): self.post_event("counter2_count") self.assertEqual(i + 4, self._events["counter2_hit"]) self.assertEqual(1, self._events["counter2_complete"]) self.post_event("counter2_count") self.assertEqual(2, self._events["counter2_complete"]) # stop mode self.post_event("stop_mode1") # nothing should happen any more for i in range(10): self.post_event("counter2_count") self.assertEqual(2, self._events["counter2_complete"]) self.assertEqual(6, self._events["counter2_hit"]) def test_counter_control_events(self): ''' Tests the add, subtract, and set_value control events for the Counter class. ''' def reset_event_mocks(): # Reset mocks self.mock_event("counter6_complete") self.mock_event("counter6_hit") self.mock_event("counter7_complete") self.mock_event("counter7_hit") self.mock_event("logicblock_counter6_updated") self.mock_event("logicblock_counter7_updated") self.start_game() reset_event_mocks() # Start mode with control events and counter6 self.post_event("start_mode4") self.assertTrue("mode4" in self.machine.modes) # Adds zero to the counter 10 times, counter should not reach completion for i in range(10): self.post_event("increase_counter6_0") self.assertEventCalled("logicblock_counter6_updated") self.assertEqual(0, self._events["counter6_complete"]) reset_event_mocks() # Counts the counter once, and then adds 3 to it 3 times, # The last adding of three should cause the counter to complete once for i in range(0, 2): self.post_event("increase_counter6_3") self.assertEventCalled("logicblock_counter6_updated") self.assertEqual(0, self._events["counter6_complete"]) reset_event_mocks() self.post_event("counter6_count") self.assertEventCalledWith("counter6_hit", count=7, hits=7, remaining=3) self.post_event("increase_counter6_3") self.assertEventCalled("logicblock_counter6_updated") self.assertEqual(1, self._events["counter6_complete"]) # Test the adding of five to the counter reset_event_mocks() self.post_event("increase_counter6_5") self.assertEventCalled("logicblock_counter6_updated") self.assertEqual(0, self._events["counter6_complete"]) reset_event_mocks() self.post_event("increase_counter6_5") self.assertEventCalled("logicblock_counter6_updated") self.assertEqual(1, self._events["counter6_complete"]) # Test subtraction reset_event_mocks() self.post_event("counter6_count") self.assertEventCalledWith("counter6_hit", count=1, hits=1, remaining=9) self.post_event("reduce_counter6_5") self.assertEventCalled("logicblock_counter6_updated") reset_event_mocks() self.post_event("counter6_count") self.assertEventCalledWith("counter6_hit", count=-3, hits=-3, remaining=13) self.post_event("reduce_counter6_3") self.assertEventCalled("logicblock_counter6_updated") reset_event_mocks() self.post_event("counter6_count") self.assertEventCalledWith("counter6_hit", count=-5, hits=-5, remaining=15) self.post_event("reduce_counter6_0") self.assertEventCalled("logicblock_counter6_updated") self.post_event("counter6_count") self.assertEventCalledWith("counter6_hit", count=-4, hits=-4, remaining=14) # Test Setting the Counter to a value reset_event_mocks() # Make sure that the counter holds a nonzero value self.post_event("counter6_count") self.assertEventCalledWith("counter6_hit", count=-3, hits=-3, remaining=13) self.post_event("set_counter6_0") self.assertEventCalled("logicblock_counter6_updated") reset_event_mocks() self.post_event("counter6_count") self.assertEventCalledWith("counter6_hit", count=1, hits=1, remaining=9) # Set the counter to a value above the completion value self.assertEqual(0, self._events["counter6_complete"]) self.post_event("set_counter6_25") self.assertEventCalled("logicblock_counter6_updated") self.assertEqual(1, self._events["counter6_complete"]) # Test using counter with direction down # Test increasing and reducing reset_event_mocks() self.post_event("counter7_count") self.assertEventCalledWith("counter7_hit", count=4, hits=1, remaining=4) self.post_event("increase_counter7_5") self.assertEventCalled("logicblock_counter7_updated") reset_event_mocks() self.post_event("counter7_count") self.assertEventCalledWith("counter7_hit", count=8, hits=-3, remaining=8) self.post_event("reduce_counter7_5") self.assertEventCalled("logicblock_counter7_updated") reset_event_mocks() self.post_event("counter7_count") self.assertEventCalledWith("counter7_hit", count=2, hits=3, remaining=2) self.assertEqual(0, self._events["counter7_complete"]) self.post_event("reduce_counter7_3") self.assertEventCalled("logicblock_counter7_updated") self.assertEqual(1, self._events["counter7_complete"]) # Test setting the value with direction down counter reset_event_mocks() self.assertEqual(0, self._events["counter7_complete"]) self.post_event("set_counter7_negative25") self.assertEventCalled("logicblock_counter7_updated") self.assertEqual(1, self._events["counter7_complete"]) self.post_event("set_counter7_0") self.assertEqual(2, self._events["counter7_complete"]) reset_event_mocks() self.post_event("set_counter7_3") self.assertEventCalled("logicblock_counter7_updated") self.post_event("counter7_count") self.assertEventCalledWith("counter7_hit", count=2, hits=3, remaining=2) reset_event_mocks() self.assertPlaceholderEvaluates(2, "device.counters.counter7.value") # nothing happens because machine.test2 is undefined self.post_event("set_counter_placeholder") self.assertEventNotCalled("logicblock_counter7_updated") self.assertPlaceholderEvaluates(2, "device.counters.counter7.value") self.machine.variables.set_machine_var("test2", 4) self.post_event("set_counter_placeholder") self.assertEventCalled("logicblock_counter7_updated") self.assertPlaceholderEvaluates(4, "device.counters.counter7.value") reset_event_mocks() self.post_event("subtract_counter_placeholder") self.assertEventNotCalled("logicblock_counter7_updated") self.assertPlaceholderEvaluates(4, "device.counters.counter7.value") reset_event_mocks() self.machine.variables.set_machine_var("test3", 3) self.post_event("subtract_counter_placeholder") self.assertEventCalled("logicblock_counter7_updated") self.assertPlaceholderEvaluates(1, "device.counters.counter7.value") reset_event_mocks() self.post_event("add_counter_placeholder") self.assertEventNotCalled("logicblock_counter7_updated") self.assertPlaceholderEvaluates(1, "device.counters.counter7.value") reset_event_mocks() self.machine.variables.set_machine_var("test4", 1) self.post_event("add_counter_placeholder") self.assertEventCalled("logicblock_counter7_updated") self.assertPlaceholderEvaluates(2, "device.counters.counter7.value") def test_logic_block_outside_game(self): self.mock_event("logicblock_accrual2_complete") # should work before game self.post_event("accrual2_step1") self.post_event("accrual2_step2") self.assertEqual(1, self._events["logicblock_accrual2_complete"]) self.post_event("accrual2_restart") self.start_game() # should work during game self.post_event("accrual2_step1") self.post_event("accrual2_step2") self.assertEqual(2, self._events["logicblock_accrual2_complete"]) self.post_event("accrual2_restart") self.stop_game() # should work after game self.post_event("accrual2_step1") self.post_event("accrual2_step2") self.assertEqual(3, self._events["logicblock_accrual2_complete"]) def test_no_reset_on_complete(self): self.mock_event("logicblock_accrual3_complete") # start game self.start_game() # and enable self.post_event("accrual3_enable") # should work once self.post_event("accrual3_step1") self.post_event("accrual3_step2") self.assertEqual(1, self._events["logicblock_accrual3_complete"]) # but not a second time because it disabled self.post_event("accrual3_step1") self.post_event("accrual3_step2") self.assertEqual(1, self._events["logicblock_accrual3_complete"]) # enable again self.post_event("accrual3_enable") # still completed self.post_event("accrual3_step1") self.post_event("accrual3_step2") self.assertEqual(1, self._events["logicblock_accrual3_complete"]) # should work after reset self.post_event("accrual3_reset") self.post_event("accrual3_step1") self.post_event("accrual3_step2") self.assertEqual(2, self._events["logicblock_accrual3_complete"]) # disabled again self.post_event("accrual3_reset") self.post_event("accrual3_step1") self.post_event("accrual3_step2") self.assertEqual(2, self._events["logicblock_accrual3_complete"]) # works after enable self.post_event("accrual3_enable") self.post_event("accrual3_step1") self.post_event("accrual3_step2") self.assertEqual(3, self._events["logicblock_accrual3_complete"]) def test_no_reset_and_no_disable_on_complete(self): self.mock_event("logicblock_accrual4_complete") # start game self.start_game() # and enable self.post_event("accrual4_enable") self.assertPlaceholderEvaluates(True, "device.accruals.accrual4.enabled") self.assertPlaceholderEvaluates(False, "device.accruals.accrual4.completed") # should work once self.post_event("accrual4_step1") self.post_event("accrual4_step2") self.assertEqual(1, self._events["logicblock_accrual4_complete"]) self.assertPlaceholderEvaluates(True, "device.accruals.accrual4.enabled") self.assertPlaceholderEvaluates(True, "device.accruals.accrual4.completed") # enabled but still completed self.post_event("accrual4_step1") self.post_event("accrual4_step2") self.assertEqual(1, self._events["logicblock_accrual4_complete"]) self.assertPlaceholderEvaluates(True, "device.accruals.accrual4.enabled") self.assertPlaceholderEvaluates(True, "device.accruals.accrual4.completed") # should work after reset self.post_event("accrual4_reset") self.assertPlaceholderEvaluates(True, "device.accruals.accrual4.enabled") self.assertPlaceholderEvaluates(False, "device.accruals.accrual4.completed") self.post_event("accrual4_step1") self.post_event("accrual4_step2") self.assertEqual(2, self._events["logicblock_accrual4_complete"]) self.assertPlaceholderEvaluates(True, "device.accruals.accrual4.enabled") self.assertPlaceholderEvaluates(True, "device.accruals.accrual4.completed") def test_reset_and_no_disable_on_complete(self): self.mock_event("logicblock_accrual10_complete") # start game self.start_game() # and enable self.post_event("accrual10_enable") self.assertPlaceholderEvaluates(True, "device.accruals.accrual10.enabled") self.assertPlaceholderEvaluates(False, "device.accruals.accrual10.completed") # should work once self.post_event("accrual10_step1") self.post_event("accrual10_step2") self.assertEqual(1, self._events["logicblock_accrual10_complete"]) # and instantly reset and work again self.assertPlaceholderEvaluates(True, "device.accruals.accrual10.enabled") self.assertPlaceholderEvaluates(False, "device.accruals.accrual10.completed") self.post_event("accrual10_step1") self.post_event("accrual10_step2") self.assertEqual(2, self._events["logicblock_accrual10_complete"]) self.assertPlaceholderEvaluates(True, "device.accruals.accrual10.enabled") self.assertPlaceholderEvaluates(False, "device.accruals.accrual10.completed") def test_player_change(self): self.mock_event("logicblock_accrual5_complete") self.machine.config['game']['balls_per_game'] = self.machine.placeholder_manager.build_int_template(2) self.start_two_player_game() self.advance_time_and_run() self.post_event("start_mode1") self.advance_time_and_run(.1) # should work during game - player1 self.assertEqual(1, self.machine.game.player.number) self.post_event("accrual5_step1") self.post_event("accrual5_step2") self.assertEqual(1, self._events["logicblock_accrual5_complete"]) # player2 self.drain_all_balls() self.assertPlayerNumber(2) self.post_event("start_mode1") self.advance_time_and_run(.1) # not yet complete self.post_event("accrual5_step1") self.assertEqual(1, self._events["logicblock_accrual5_complete"]) # player1 again self.drain_all_balls() self.assertPlayerNumber(1) self.post_event("start_mode1") self.advance_time_and_run(.1) # nothing should happen because its disabled and completed for player1 self.post_event("accrual5_step1") self.post_event("accrual5_step2") self.assertEqual(1, self._events["logicblock_accrual5_complete"]) # player2 again self.drain_all_balls() self.assertPlayerNumber(2) self.post_event("start_mode1") self.advance_time_and_run(.1) # complete it self.post_event("accrual5_step2") self.assertEqual(2, self._events["logicblock_accrual5_complete"]) self.post_event("stop_mode1") self.stop_game() # does not work after game self.post_event("accrual5_step1") self.post_event("accrual5_step2") self.assertEqual(2, self._events["logicblock_accrual5_complete"]) def test_counter_hit_window(self): self.start_game() self.mock_event("logicblock_counter3_complete") self.mock_event("counter_counter3_hit") self.post_event("counter3_enable") for i in range(10): self.post_event("counter3_count") self.assertEqual(0, self._events["logicblock_counter3_complete"]) # inside same window. only one hit self.assertEqual(1, self._events["counter_counter3_hit"]) self.assertEqual(0, self._events["logicblock_counter3_complete"]) self.advance_time_and_run(1) for i in range(3): self.post_event("counter3_count") self.assertEqual(0, self._events["logicblock_counter3_complete"]) self.assertEqual(2 + i, self._events["counter_counter3_hit"]) self.advance_time_and_run(1) # it should complete self.post_event("counter3_count") self.assertEqual(1, self._events["logicblock_counter3_complete"]) self.assertEqual(5, self._events["counter_counter3_hit"]) def test_counter_template(self): self.start_game() self.mock_event("logicblock_counter4_complete") self.mock_event("counter_counter4_hit") self.machine.game.player.hits = 2 self.post_event("counter4_enable") for i in range(2): self.assertEqual(0, self._events["logicblock_counter4_complete"]) self.post_event("counter4_count") self.assertEqual(2, self._events["counter_counter4_hit"]) self.assertEqual(1, self._events["logicblock_counter4_complete"]) self.advance_time_and_run(1) self.machine.variables.set_machine_var("start", 1) self.machine.game.player.hits = 5 self.mock_event("logicblock_counter4_complete") self.mock_event("counter_counter4_hit") self.post_event("counter4_reset") self.post_event("counter4_enable") for i in range(4): self.assertEqual(0, self._events["logicblock_counter4_complete"]) self.post_event("counter4_count") # inside same window. only one hit self.assertEqual(4, self._events["counter_counter4_hit"]) self.assertEqual(1, self._events["logicblock_counter4_complete"]) self.advance_time_and_run(1) def test_counter_persist(self): self.mock_event("logicblock_counter_persist_complete") self.mock_event("counter_counter_persist_hit") self.start_two_player_game() self.post_event("start_mode1") self.assertTrue("mode1" in self.machine.modes) self.post_event("counter_persist_enable") for i in range(3): self.post_event("counter_persist_count") self.assertEqual(i + 1, self._events["counter_counter_persist_hit"]) self.assertEqual(0, self._events["logicblock_counter_persist_complete"]) self.drain_all_balls() self.assertPlayerNumber(2) for i in range(10): self.post_event("counter_persist_count") self.drain_all_balls() self.assertPlayerNumber(1) self.post_event("start_mode1") self.post_event("counter_persist_enable") self.assertEqual(0, self._events["logicblock_counter_persist_complete"]) for i in range(2): self.post_event("counter_persist_count") self.assertEqual(i + 4, self._events["counter_counter_persist_hit"]) self.assertEqual(1, self._events["logicblock_counter_persist_complete"]) def test_count_without_end(self): self.start_game() self.post_event("counter5_count") self.post_event("counter5_count") self.post_event("counter5_count") self.assertEqual(3, self.machine.counters["counter5"].value) def test_counter_delay_timeout(self): self.start_game() self.mock_event("logicblock_counter9_complete") self.mock_event("logicblock_counter9_hit") self.post_event("counter9_enable") for i in range(4): self.post_event("counter9_count") self.advance_time_and_run(.01) self.assertEqual(0, self._events["logicblock_counter9_complete"]) # post final event to complete self.post_event("counter9_count") self.assertEqual(1, self._events["logicblock_counter9_complete"]) self.assertEqual(5, self._events["logicblock_counter9_hit"]) #restart (reset and enable) self.post_event("counter9_restart") # 10 more hits with delay causing timeout for i in range(10): self.post_event("counter9_count") self.advance_time_and_run(1) self.assertEqual(1, self._events["logicblock_counter9_complete"]) self.assertEqual(15, self._events["logicblock_counter9_hit"]) def test_sequence_delay_timeout(self): self.start_game() self.mock_event("sequence2_complete") self.mock_event("logicblock_sequence2_hit") self.post_event("sequence2_enable") # no timer reset self.post_event("sequence2_step1a") self.post_event("sequence2_step2a") self.post_event("sequence2_step3a") self.assertEqual(1, self._events["sequence2_complete"]) self.assertEqual(3, self._events["logicblock_sequence2_hit"]) # enable and reset self.post_event("sequence2_enable") self.post_event("sequence2_reset") # timer expired self.post_event("sequence2_step1a") self.assertEqual(4, self._events["logicblock_sequence2_hit"]) self.advance_time_and_run(1) self.post_event("sequence2_step2a") self.post_event("sequence2_step3a") self.assertEqual(1, self._events["sequence2_complete"]) self.assertEqual(4, self._events["logicblock_sequence2_hit"]) #time expired and restart self.post_event("sequence2_step1a") self.advance_time_and_run(.1) self.post_event("sequence2_step1a") self.post_event("sequence2_step2a") self.advance_time_and_run(.01) self.post_event("sequence2_step3a") self.assertEqual(2, self._events["sequence2_complete"]) self.assertEqual(8, self._events["logicblock_sequence2_hit"]) def test_accruals_delay_timeout(self): self.start_game() self.mock_event("accrual7_complete") self.mock_event("accrual7_hit") # enable accrual self.post_event("accrual7_enable") # no timer reset self.post_event("accrual7_step1") self.post_event("accrual7_step2") self.post_event("accrual7_step3") self.assertEqual(1, self._events["accrual7_complete"]) self.assertEqual(3, self._events["accrual7_hit"]) # time advance after each step but under timeout self.post_event("accrual7_step1") self.advance_time_and_run(.01) self.post_event("accrual7_step2") self.advance_time_and_run(.01) self.post_event("accrual7_step3") self.assertEqual(2, self._events["accrual7_complete"]) self.assertEqual(6, self._events["accrual7_hit"]) # timer advance after each step over timeout self.post_event("accrual7_step1") self.advance_time_and_run(1) self.post_event("accrual7_step2") self.advance_time_and_run(1) self.post_event("accrual7_step3") self.assertEqual(2, self._events["accrual7_complete"]) self.assertEqual(9, self._events["accrual7_hit"]) #final two steps without additional time passed self.post_event("accrual7_step1") self.post_event("accrual7_step2") self.assertEqual(3, self._events["accrual7_complete"]) self.assertEqual(11, self._events["accrual7_hit"])
from os import environ as env import requests _DARKSKY_KEY = env['DARKSKY_KEY'] _URL = 'https://api.darksky.net/forecast' def _get_single_forecast(coord): lat, lng = coord url = '{url}/{key}/{lat},{lng}?exclude=minutely,hourly,daily,alerts,flags'.format(url=_URL, key=_DARKSKY_KEY, lat=lat, lng=lng) resp = requests.get(url) if resp.status_code >= 400: return {} return resp.json() def get_forecast(*coords): return [_get_single_forecast(coord) for coord in coords]
# ==================================================================================================================== # trainModel.py # ==================================================================================================================== ## AUTHOR: Vamsi Krishna Reddy Satti # This script trains a model having the performance of the bestModel on the data provided. # The training time does not exceed 3 hours. # Usage example: # python trainModel.py -modelName bestModel -data ../cs763-assign3/data.bin -target ../cs763-assign3/labels.bin import argparse import pickle import os import torch import torchfile from src import criterion, layers, model, optim, utils # Model training configuration of hyperparameters config = { 'lr': 6e-5, 'epochs': 200, 'batch_size': 256, } torch.set_default_dtype(torch.float64) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # GPU support if CUDA supported hardware is present # Parse the arguments parser = argparse.ArgumentParser(description="This script trains my best model") parser.add_argument("-modelName", dest="model_name", required=True, type=str, help="name of the model") parser.add_argument("-data", dest="train_data_path", required=True, type=str, help="location of the training data") parser.add_argument("-target", dest="train_labels_path", required=True, type=str, help="location of the training labels") args = parser.parse_args() # I'm using Windows, so since default of long in Windows is 4 bytes, need to force long as 8 bytes. X_train = torch.tensor(torchfile.load(args.train_data_path, force_8bytes_long=True), dtype=torch.float64).reshape(-1, 108*108).to(device) y_train = torch.tensor(torchfile.load(args.train_labels_path, force_8bytes_long=True), dtype=torch.float64).reshape(-1).long().to(device) # Model definition net = model.Model() net.add_layer(layers.Conv2d((108, 108), 1, 16, kernel_size=18, stride=2)) net.add_layer(layers.ReLU()) net.add_layer(layers.MaxPool2d(2)) net.add_layer(layers.BatchNorm2d(16)) net.add_layer(layers.Conv2d((23, 23), 16, 32, kernel_size=5, stride=2)) net.add_layer(layers.ReLU()) net.add_layer(layers.MaxPool2d(2)) net.add_layer(layers.BatchNorm2d(32)) net.add_layer(layers.Flatten()) net.add_layer(layers.Linear(5 * 5 * 32, 256)) net.add_layer(layers.ReLU()) net.add_layer(layers.BatchNorm1d(256)) net.add_layer(layers.Linear(256, 128)) net.add_layer(layers.ReLU()) net.add_layer(layers.BatchNorm1d(64)) net.add_layer(layers.Linear(128, 64)) net.add_layer(layers.ReLU()) net.add_layer(layers.BatchNorm1d(64)) net.add_layer(layers.Linear(64, 6)) net.to(device) net.train() # set model to train mode # Preprocess the data preprocess = {} preprocess['mean'] = X_train.mean(0, keepdim=True) preprocess['std'] = X_train.std(0, keepdim=True) X_train -= preprocess['mean'] X_train /= preprocess['std'] X_train = X_train.reshape(-1, 1, 108, 108) # Initialize the DataLoader dataloader_train = utils.DataLoader((X_train, y_train), batch_size=config['batch_size'], shuffle=True) # Loss function used is Cross Entropy Loss # Optimizer used is Stochastic Gradient Descent with Nesterov momentum loss_fn = criterion.CrossEntropyLoss() optimizer = optim.Adam(net, config['lr']) scheduler = optim.StepLR(optimizer, step_size=5, gamma=0.96) # Training of the model happens here... for epoch in range(config['epochs']): print(f"[Epoch] {epoch} starts...") scheduler.step() for X, y in dataloader_train: output = net(X) loss = loss_fn(output, y) net.zero_grad() grad = loss_fn.backward(output, y) net.backward(output, grad) optimizer.step() # Save the model to a file for key in preprocess: preprocess[key] = preprocess[key].cpu() state = { 'config': config, 'model': net.cpu(), 'preprocess': preprocess } model_file_path = f"./{args.model_name}/model.bin" os.makedirs(os.path.dirname(model_file_path), exist_ok=True) with open(model_file_path, 'w+b') as file: pickle.dump(state, file)
from deck_themer.helpers import * # Test for experimenting with HDP and with HDP hyperparameters. # The 'corpus' created below is necessary for both the lda_param_checker() method and the create_lda() method. The # 'decklists' created below is only used for the lda_param_checker(). decklists, corpus, df = corpus_maker('..\\CSV_files\\obfuscated_tdm.csv') # Deck files are somewhat proprietary, so you'll have to make your own. # Use this for getting a general feel for what the different hyperparameters do. lda_test_results = lda_param_checker(tw=tp.TermWeight.IDF, min_df_0=5, min_df_f=6, k_0=8, k_f=11, k_s=1, alpha_0=-1, alpha_f=1, eta_0=0, eta_f=2, corpus=corpus, word_list=decklists, to_excel=True, fname='..\\tests\\TestResults\\obfuscated_tdm_lda_param_checking_results_tw-IDF.xlsx') ## Use this for testing specific hyperparameters. # lda = create_lda(min_df=5, k=9, corpus=corpus)
from keras import models from keras import layers from keras import optimizers from matplotlib import pyplot as plt import pickle class NeuralNet: def __init__(self, x_train, y_train, lr=0.001): self.model = models.Sequential() self.x_train = x_train self.y_train = y_train self.partial_x_train = None self.partial_y_train = None self.x_val = None self.y_val = None self.lr = lr self.history = None def divide_data(self): self.x_val = self.x_train[:10000] self.y_val = self.y_train[:10000] self.partial_x_train = self.x_train[10000:] self.partial_y_train = self.y_train[10000:] def network(self): self.model.add(layers.Dense( 16, activation='relu', input_shape=(10000,))) self.model.add(layers.Dense(16, activation='relu')) self.model.add(layers.Dense(1, activation='sigmoid')) self.model.compile(optimizer=optimizers.RMSprop(self.lr), loss='binary_crossentropy', metrics=['accuracy']) def train_model(self): self.history = self.model.fit(self.partial_x_train, self.partial_y_train, epochs=20, batch_size=512, validation_data=(self.x_val, self.y_val)) self.save_model() with open("history.pkl", "wb") as file: pickle.dump(self.history.history, file) def save_model(self): model_json = self.model.to_json() with open("model.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 self.model.save_weights("model.h5") print("Saved model to disk") def load_model(self): json_file = open('model.json', 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) # load weights into new model loaded_model.load_weights("model.h5") print("Loaded model from disk")
try: while 1: T=input() if T!='END': print(T[::-1]) except: pass
from autorecon.plugins import ServiceScan class SMTPUserEnum(ServiceScan): def __init__(self): super().__init__() self.name = 'SMTP-User-Enum' self.tags = ['default', 'safe', 'smtp', 'email'] def configure(self): self.match_service_name('^smtp') async def run(self, service): await service.execute('hydra smtp-enum://{addressv6}:{port}/vrfy -L "' + self.get_global('username_wordlist', default='/usr/share/seclists/Usernames/top-usernames-shortlist.txt') + '" 2>&1', outfile='{protocol}_{port}_smtp_user-enum_hydra_vrfy.txt') await service.execute('hydra smtp-enum://{addressv6}:{port}/expn -L "' + self.get_global('username_wordlist', default='/usr/share/seclists/Usernames/top-usernames-shortlist.txt') + '" 2>&1', outfile='{protocol}_{port}_smtp_user-enum_hydra_expn.txt') def manual(self, service, plugin_was_run): service.add_manual_command('Try User Enumeration using "RCPT TO". Replace <TARGET-DOMAIN> with the target\'s domain name:', [ 'hydra smtp-enum://{addressv6}:{port}/rcpt -L "' + self.get_global('username_wordlist', default='/usr/share/seclists/Usernames/top-usernames-shortlist.txt') + '" -o "{scandir}/{protocol}_{port}_smtp_user-enum_hydra_rcpt.txt" -p <TARGET-DOMAIN>' ])
# -*- coding: UTF-8 -*- from SMInfoParser.StateMachineInfo import StateJumpInfo from SMInfoParser.StateMachineInfoParser import SMInfoParser from re import (findall, sub) class GraphvizSMInfoExtractor(SMInfoParser): """ State Machine information extractor, this class help extract information from graphviz graph """ def __init__(self): pass def get_sm_jump_info_list_from_file(self, file_path): """ Get state machine information from graphviz dot file. :param file_path: path to the file :return: """ state_machine_content_handler = self.__StateMachineContentHandler(file_path) return state_machine_content_handler.get_transition_list() class __StateMachineContentHandler(): __transition_list = None def __init__(self, file_path): if ".dot" not in file_path: raise RuntimeError("Please use '.dot' file") self.__update_transitions_list(file_path) self.__transition_list = self.__sort_list(self.__transition_list) pass def get_transition_list(self): return self.__transition_list def __update_transitions_list(self, file_path): state_name_dict = {} self.__transition_list = [] with open(file_path, 'r') as f: lines = f.readlines() for line in lines: # find state symbol-name pair # has label but no transition symbol, it's a state, get the name from it if '->' not in line and 'label' in line: state_symbol = line.split("[")[0] state_symbol = sub(r'\s', "", state_symbol) state_name = findall(r'label="[1-9|a-z|A-Z|_]+', line)[0] state_name = state_name.split('"')[1] state_name_dict[state_symbol] = state_name for line in lines: # find transition if '->' in line and 'label' in line: state_jump_info = StateJumpInfo() line = sub(r'\s', "", line) states = line.split('[')[0] from_state, to_state = states.split('->') transition = findall(r'label="[1-9|a-z|A-Z|_|\\n]+', line)[0] transition = transition.split('"')[1] state_jump_info.condition, state_jump_info.action = transition.split("\\n") state_jump_info.from_state = state_name_dict[from_state] state_jump_info.to_state = state_name_dict[to_state] self.__transition_list.append(state_jump_info) @staticmethod def __sort_list(st_list): ret_list = [] state_list = [] for item in st_list: if item.from_state not in state_list: state_list.append(item.from_state) state_list.sort(key=lambda x: findall(r'[0-9]+',x)[0]) for state in state_list: if "2WAIT_FOR_STATION_RES" in state: state = state state_st_list = [] for item in st_list: if item.from_state == state: print(item.from_state) print(item.condition) print(item.to_state) print("") state_st_list.append(item) state_st_list.sort(key=lambda x: int(findall(r'^[0-9]+',x.condition)[0])) for item in state_st_list: ret_list.append(item) return ret_list
from .entity import Entity class Player(Entity): pass class Gorilla(Player): type = 'gorilla'
"""Documentation related tests."""
# Copyright 2018 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.6+ and Openssl 1.0+ # from tests.tools import * from azurelinuxagent.common.exception import HttpError, ResourceGoneError from azurelinuxagent.common.future import httpclient from azurelinuxagent.common.utils.cryptutil import CryptUtil DATA_FILE = { "version_info": "wire/version_info.xml", "goal_state": "wire/goal_state.xml", "hosting_env": "wire/hosting_env.xml", "shared_config": "wire/shared_config.xml", "certs": "wire/certs.xml", "ext_conf": "wire/ext_conf.xml", "manifest": "wire/manifest.xml", "ga_manifest" : "wire/ga_manifest.xml", "trans_prv": "wire/trans_prv", "trans_cert": "wire/trans_cert", "test_ext": "ext/sample_ext-1.3.0.zip" } DATA_FILE_NO_EXT = DATA_FILE.copy() DATA_FILE_NO_EXT["goal_state"] = "wire/goal_state_no_ext.xml" DATA_FILE_EXT_NO_SETTINGS = DATA_FILE.copy() DATA_FILE_EXT_NO_SETTINGS["ext_conf"] = "wire/ext_conf_no_settings.xml" DATA_FILE_EXT_NO_PUBLIC = DATA_FILE.copy() DATA_FILE_EXT_NO_PUBLIC["ext_conf"] = "wire/ext_conf_no_public.xml" DATA_FILE_EXT_AUTOUPGRADE = DATA_FILE.copy() DATA_FILE_EXT_AUTOUPGRADE["ext_conf"] = "wire/ext_conf_autoupgrade.xml" DATA_FILE_EXT_INTERNALVERSION = DATA_FILE.copy() DATA_FILE_EXT_INTERNALVERSION["ext_conf"] = "wire/ext_conf_internalversion.xml" DATA_FILE_EXT_AUTOUPGRADE_INTERNALVERSION = DATA_FILE.copy() DATA_FILE_EXT_AUTOUPGRADE_INTERNALVERSION["ext_conf"] = "wire/ext_conf_autoupgrade_internalversion.xml" DATA_FILE_EXT_ROLLINGUPGRADE = DATA_FILE.copy() DATA_FILE_EXT_ROLLINGUPGRADE["ext_conf"] = "wire/ext_conf_upgradeguid.xml" DATA_FILE_EXT_SEQUENCING = DATA_FILE.copy() DATA_FILE_EXT_SEQUENCING["ext_conf"] = "wire/ext_conf_sequencing.xml" class WireProtocolData(object): def __init__(self, data_files=DATA_FILE): self.emulate_stale_goal_state = False self.call_counts = { "comp=versions" : 0, "/versions" : 0, "goalstate" : 0, "hostingenvuri" : 0, "sharedconfiguri" : 0, "certificatesuri" : 0, "extensionsconfiguri" : 0, "extensionArtifact" : 0, "manifest.xml" : 0, "manifest_of_ga.xml" : 0, "ExampleHandlerLinux" : 0 } self.version_info = load_data(data_files.get("version_info")) self.goal_state = load_data(data_files.get("goal_state")) self.hosting_env = load_data(data_files.get("hosting_env")) self.shared_config = load_data(data_files.get("shared_config")) self.certs = load_data(data_files.get("certs")) self.ext_conf = load_data(data_files.get("ext_conf")) self.manifest = load_data(data_files.get("manifest")) self.ga_manifest = load_data(data_files.get("ga_manifest")) self.trans_prv = load_data(data_files.get("trans_prv")) self.trans_cert = load_data(data_files.get("trans_cert")) self.ext = load_bin_data(data_files.get("test_ext")) def mock_http_get(self, url, *args, **kwargs): content = None resp = MagicMock() resp.status = httpclient.OK # wire server versions if "comp=versions" in url: content = self.version_info self.call_counts["comp=versions"] += 1 # HostPlugin versions elif "/versions" in url: content = '["2015-09-01"]' self.call_counts["/versions"] += 1 elif "goalstate" in url: content = self.goal_state self.call_counts["goalstate"] += 1 elif "hostingenvuri" in url: content = self.hosting_env self.call_counts["hostingenvuri"] += 1 elif "sharedconfiguri" in url: content = self.shared_config self.call_counts["sharedconfiguri"] += 1 elif "certificatesuri" in url: content = self.certs self.call_counts["certificatesuri"] += 1 elif "extensionsconfiguri" in url: content = self.ext_conf self.call_counts["extensionsconfiguri"] += 1 else: # A stale GoalState results in a 400 from the HostPlugin # for which the HTTP handler in restutil raises ResourceGoneError if self.emulate_stale_goal_state: if "extensionArtifact" in url: self.emulate_stale_goal_state = False self.call_counts["extensionArtifact"] += 1 raise ResourceGoneError() else: raise HttpError() # For HostPlugin requests, replace the URL with that passed # via the x-ms-artifact-location header if "extensionArtifact" in url: self.call_counts["extensionArtifact"] += 1 if "headers" not in kwargs or \ "x-ms-artifact-location" not in kwargs["headers"]: raise Exception("Bad HEADERS passed to HostPlugin: {0}", kwargs) url = kwargs["headers"]["x-ms-artifact-location"] if "manifest.xml" in url: content = self.manifest self.call_counts["manifest.xml"] += 1 elif "manifest_of_ga.xml" in url: content = self.ga_manifest self.call_counts["manifest_of_ga.xml"] += 1 elif "ExampleHandlerLinux" in url: content = self.ext self.call_counts["ExampleHandlerLinux"] += 1 resp.read = Mock(return_value=content) return resp else: raise Exception("Bad url {0}".format(url)) resp.read = Mock(return_value=content.encode("utf-8")) return resp def mock_crypt_util(self, *args, **kw): #Partially patch instance method of class CryptUtil cryptutil = CryptUtil(*args, **kw) cryptutil.gen_transport_cert = Mock(side_effect=self.mock_gen_trans_cert) return cryptutil def mock_gen_trans_cert(self, trans_prv_file, trans_cert_file): with open(trans_prv_file, 'w+') as prv_file: prv_file.write(self.trans_prv) with open(trans_cert_file, 'w+') as cert_file: cert_file.write(self.trans_cert)
import tkinter as tk import os, time from xml.dom.minidom import parse from awesometkinter.bidirender import add_bidi_support # https://github.com/Aboghazala/AwesomeTkinter import arabic_reshaper # https://github.com/mpcabd/python-arabic-reshaper import vlc # pip install python-vlc (https://github.com/oaubert/python-vlc) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) class FormSuraScrollable(tk.Frame): def __init__(self, sura): self.parent=tk.Toplevel() self.parent.wm_geometry("630x700") # width x height tk.Frame.__init__(self, self.parent) self.sura = sura self.parent.protocol("WM_DELETE_WINDOW", self.callback) #user quit the screen self.canvas = tk.Canvas(self, borderwidth=0, background="white") self.frame = tk.Frame(self.canvas, background="white") self.vsb = tk.Scrollbar(self, orient="vertical", command=self.canvas.yview) self.canvas.configure(yscrollcommand=self.vsb.set) self.vsb.pack(side="right", fill="y") self.canvas.pack(side="left", fill="both", expand=True) self.canvas.create_window((0,0), window=self.frame, anchor="nw",tags="self.frame") self.frame.bind("<Configure>", self.onFrameConfigure) self._init_widgets() def get_ayas(self): all_ayas = parse(os.path.join(BASE_DIR, 'static/quran-ayas.xml')) sura_ayas = all_ayas.getElementsByTagName('sura')[self.sura].getElementsByTagName('aya') return [aya_text.getAttribute('text') for aya_text in sura_ayas] def play_audio(self,fname): print(f'going to play {fname}') p=vlc.MediaPlayer(fname) p.play() time.sleep(0.5) # sleep because it needs time to start playing while p.is_playing(): time.sleep(0.5) # sleep to use less CPU def lbl_click(self,event,n,lbl): if event.num != 1: # if not left button clicked return lbl['fg']='red' self.frame.update() fname = os.path.join(BASE_DIR,'static','audio',f'S{self.sura+1}_{n+1}_') # f'S98_1_0.bin' if os.path.exists(f'{fname}0.bin'): print('only 1 file') self.play_audio(f'{fname}0.bin') elif os.path.exists(f'{fname}1.bin'): print('more than 1 file') # eg 5-2,6-2,8-3 for i in range(20): if os.path.exists(f'{fname}{i+1}.bin'): self.play_audio(f'{fname}{i+1}.bin') else: break else: print('file doesnt exists') lbl['fg']='black' def _init_widgets(self): for n,aya_text in enumerate(self.get_ayas()): # https://github.com/googlefonts/noto-fonts/tree/main/hinted/ttf/NotoSansArabic lbl = tk.Label(self.frame, anchor="e", width=35, font=("Noto Sans Arabic", 22), bg='white',pady=5, relief = 'ridge') # bold, lighter, lbl.grid(column = 0, row = n) ctxt=arabic_reshaper.reshape(aya_text) wrapped_text = '' for i in range(0,len(ctxt),40): wrapped_text+=f'{ctxt[i:i+40]}\n' # letter wrap add_bidi_support(lbl) lbl.set(f'({n+1}) {wrapped_text}') lbl.bind( "<Button>", lambda event, lbl_n=n, lbl=lbl: self.lbl_click(event, lbl_n, lbl)) def callback(self): print ('user exits the screen') self.parent.destroy() def onFrameConfigure(self, event): '''Reset the scroll region to encompass the inner frame''' self.canvas.configure(scrollregion=self.canvas.bbox("all"))
import os import PIL.Image import cv2 import numpy as np import pytest def test_opencv_avc1(): filename = 'test.mp4' if os.path.exists(filename): os.unlink(filename) width = height = 256 # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'avc1') out = cv2.VideoWriter(filename, fourcc, 20.0, (width, height)) assert os.path.exists(filename), 'No video file created' for frame in sorted(os.listdir("frames")): img = PIL.Image.open("frames/" + frame) tmp_img = cv2.cvtColor(np.asarray(img, dtype=np.uint8), cv2.COLOR_BGR2RGB) out.write(tmp_img) # Release everything if job is finished out.release() assert os.stat(filename).st_size > 0, 'Video file is empty' @pytest.mark.skip def test_opencv_mp4v(): filename = 'test.mp4' if os.path.exists(filename): os.unlink(filename) width = height = 256 # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'mp4v') out = cv2.VideoWriter(filename, fourcc, 20.0, (width, height)) assert os.path.exists(filename), 'No video file created' for frame in sorted(os.listdir("frames")): img = PIL.Image.open("frames/" + frame) tmp_img = cv2.cvtColor(np.asarray(img, dtype=np.uint8), cv2.COLOR_BGR2RGB) out.write(tmp_img) # Release everything if job is finished out.release() assert os.stat(filename).st_size > 0, 'Video file is empty' # import imageio # frame_arr = [] # for frame in sorted(os.listdir("frames")): # img = PIL.Image.open("frames/" + frame) # tmp_img = np.asarray(img, dtype=np.uint8) # frame_arr.append(tmp_img) # imageio.mimwrite('test.gif', frame_arr, "GIF", fps=60)
import sys, os myPath = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, myPath + '/../') import pytest from unittest import TestCase from src.builder import Builder # 暫時跳過 # @pytest.mark.skipif() class BuilderTest(TestCase): """測試 Builder""" def setUp(self): """測試前先建立好環境""" self.user = 'Oscar' self.keyword = '愛吃味' self.keyword_builder = Builder(self.keyword, self.user) self.song_url = 'https://www.youtube.com/watch?v=7M6nsbieMks' self.song_builder = Builder(self.song_url, self.user) self.song_list_url = 'https://www.youtube.com/playlist?list=PLRR3Za6-4AAL_VvOXL-eqPIWnFfB8QmD8' self.song_list_builder = Builder(self.song_list_url, self.user) def tearDown(self): """測試結束後收拾環境""" pass def test_keyword_builder(self): song = self.keyword_builder.get_item() self.assertEqual('7M6nsbieMks', song.info['id']) self.assertEqual( 'https://www.youtube.com/watch?v=7M6nsbieMks', song.info['url']) self.assertEqual( 'Trout Fresh/呂士軒 - 愛吃味 (Official Music Video)', song.info['title']) self.assertEqual(258, song.info['duration']) self.assertEqual('SmashRegz', song.info['uploader']) self.assertEqual(self.user, song.info['request']) # self.assertEqual('./downloads/7M6nsbieMks.mp3', song.file_locat) def test_song_builder(self): song = self.song_builder.get_item() self.assertEqual('7M6nsbieMks', song.info['id']) self.assertEqual( 'https://www.youtube.com/watch?v=7M6nsbieMks', song.info['url']) self.assertEqual( 'Trout Fresh/呂士軒 - 愛吃味 (Official Music Video)', song.info['title']) self.assertEqual(258, song.info['duration']) self.assertEqual('SmashRegz', song.info['uploader']) self.assertEqual(self.user, song.info['request']) # self.assertEqual('./downloads/7M6nsbieMks.mp3', song.file_locat) def test_song_list_builder(self): song_list = self.song_list_builder.get_item() self.assertEqual('TEST', song_list.info['title']) self.assertEqual(454, song_list.info['duration']) self.assertEqual('俊廷江', song_list.info['uploader']) it = iter(song_list) song = next(it) self.assertEqual( 'Snail\'s House - Grape Soda [Tasty Release]', song.info['title']) self.assertEqual(194, song.info['duration']) self.assertEqual('Tasty', song.info['uploader']) song = next(it) self.assertEqual( 'TheFatRat - Never Be Alone [Tasty Release]', song.info['title']) self.assertEqual(260, song.info['duration']) self.assertEqual('Tasty', song.info['uploader'])
from fjsp import Solver, Problem, Job, Operation, Machine, Task, Resource from typing import List, Tuple import numpy as np class Chromosome: def __init__(self, machine_selection: List[int], operation_sequence: List[int]): self.machine_selection = machine_selection self.operation_sequence = operation_sequence self.fitness = 0 def set_fitness(self, fitness): self.fitness = fitness def __str__(self) -> str: return "[" + (", ".join(str(i) for i in (self.machine_selection + self.operation_sequence))) + "]\n" def __repr__(self): return str(self) class ParentSelector: def __init__(self, name): self.name = name def select_parent(self, population: List[Chromosome]) -> Chromosome: pass class RoulleteWheel(ParentSelector): def __init__(self): super(RoulleteWheel, self).__init__("roullete_wheel") def select_parent(self, population: List[Chromosome]): total_fitness = np.sum([c.fitness for c in population]) p = np.random.rand() pointer = 0 for i, c in enumerate(population): r = c/total_fitness pointer += r if p < pointer: return i return len(population) - 1 class Tournament(ParentSelector): def __init__(self): super(Tournament, self).__init__("tournament") def select_parent(self, population: List[Chromosome], k=3): candidates = np.random.choice(len(population), size=3, replace=False) best_candidate = candidates[0] for i in candidates: if population[i].fitness > population[best_candidate].fitness: best_candidate = i return i class Crossover: def __init__(self, name: str): self.name = name def crossover(self, p1: List[int], p2: List[int]) -> Tuple[Chromosome, Chromosome]: pass class TwoPointCrossover(Crossover): def __init__(self): super(TwoPointCrossover, self).__init__("two_point") def crossover(self, p1: List[int], p2: List[int]) -> Tuple[List[int], List[int]]: points = np.random.choice(len(p1), size=2, replace=False) points.sort() ms1 = p1[:points[0]] + p2[points[0]:points[1]] + p1[points[1]:] ms2 = p2[:points[0]] + p1[points[0]:points[1]] + p2[points[1]:] return ms1, ms2 class UniformCrossover(Crossover): def __init__(self): super(UniformCrossover, self).__init__("uniform") def crossover(self, p1: List[int], p2: List[int]) -> Tuple[List[int], List[int]]: swap = np.random.randint(2, size=len(p1)) ms1 = np.copy(p1) ms2 = np.copy(p2) for i, j in enumerate(swap): if j == 1: temp = ms1[i] ms1[i] = ms2[i] ms1[i] = temp return ms1, ms2 class POXCrossover(Crossover): def __init__(self): super(POXCrossover, self).__init__("pox") def crossover(self, p1: List[int], p2: List[int]) -> Tuple[List[int], List[int]]: # generate sub-joint between p1 and p2 sub_joints = set() for i in p1: if i in p2: sub_joints.add(i) for i in p2: if i in p1: sub_joints.add(i) sub_joints = list(sub_joints) # divide into 2 parts np.random.shuffle(sub_joints) js1 = sub_joints[:len(sub_joints)//2] js2 = sub_joints[len(sub_joints)//2:] c1, c2 = [], [] j = 0 for i in p2: if i not in js1: c1.append(i) j += 1 while j < len(p1) and p1[j] in js1: c1.append(p1[j]) j += 1 j = 0 for i in p1: if i not in js2: c2.append(i) j += 1 while j < len(p2) and p2[j] in js2: c2.append(p2[j]) j += 1 return c1, c2 class Mutator: def __init__(self, name, p: float): self.name = name self.p = p def mutate(self, p: List[int]) -> List[int]: pass class MSMutator(Mutator): def __init__(self, p: float): super(MSMutator, self).__init__("ms", p) def mutate(self, p: List[int], problem: Problem) -> List[int]: pc = np.copy(p) for i, m in enumerate(p): prob = np.random.rand() if prob < self.p: opr = problem.get_operation_by_index(i) pc[i] = opr.get_lowest_machine() + 1 return pc class OSMutator(Mutator): def __init__(self, p: float): super(OSMutator, self).__init__("os", p) def mutate(self, p: List[int]) -> List[int]: prob = np.random.rand() pc = np.copy(p) if prob < self.p: np.random.shuffle(pc) return pc class GeneticAlgorithm(Solver): def __init__(self): super(GeneticAlgorithm, self).__init__("Genetic Algorithm") self.parent_selectors: List[ParentSelector] = [ RoulleteWheel(), Tournament() ] self.crossovers: List[Crossover] = [ TwoPointCrossover(), UniformCrossover(), POXCrossover() ] def get_parent_selector(self, selector) -> ParentSelector: for p in self.parent_selectors: if p.name == selector: return p raise ValueError(f"Parent selector {selector} is not defined") def get_crossover(self, crossover) -> Crossover: for c in self.crossovers: if c.name == crossover: return c raise ValueError(f"Crossover {crossover} is not defined") def global_selection(self) -> Chromosome: machine_selection = [] operation_sequence = [] # 1. Create a new array to record all machines’ processing time, initialize each element to 0; time_array = [0 for _ in range(self.problem.n_machine)] # 2. Select a job randomly and insure one job to be selected only once, then select the first operation of the job; ms_temp = [[] for _ in range(len(self.problem.jobs))] for job in self.problem.get_shuffled_job(): ms: List[int] = [] for operation in job.operations: # 3. Add the processing time of each machine in the available machines and the corresponding # machine’s time in the time array together added_time = [] for machine in operation.machines: added_time.append(time_array[machine.index] + machine.operation_time) # 4. Compare the added time to find the shortest time, then select the index k of the machine which has the shortest # time. If there is the same time among different machines, a machine is selected randomly among them; k = np.argmin(added_time) # 5. Set the allele which corresponds to the current operation in the MS part to k; ms.append(k + 1) # 6. Add the current selected machine’s processing time and its corresponding allele in the # time array together in order to update the time array; selected_machine = operation.machines[k] time_array[selected_machine.index] += selected_machine.operation_time # 7. Select the next operation of the current job, and execute # Step 3 to Step 6 until all operations of the current job are # selected, then go to Step 8; # 8. Go to step 2 until all jobs are all selected once # set the operation sequence allele operation_sequence.append(job.id) ms_temp[job.index] = ms for ms in ms_temp: for i in ms: machine_selection.append(i) np.random.shuffle(operation_sequence) return Chromosome(machine_selection, operation_sequence) def local_selection(self): machine_selection = [] operation_sequence = [] # 1. In order to record all machines’ processing time, create a # new array (called time array), the length equals to L, and # set each element 0; # 2. Select the first job, and its first operation; ms_temp = [[] for _ in range(len(self.problem.jobs))] for job in self.problem.get_shuffled_job(): time_array = [0 for _ in range(self.problem.L)] ms: List[int] = [] for operation in job.operations: # 3. Set each allele 0 in the array; # skip # 4. Add the processing time of each machine in the alternative # machine set and the corresponding machines’ time # in the array together; added_time = [] for machine in operation.machines: added_time.append(time_array[machine.index] + machine.operation_time) # 5. Compare the added time to find the shortest time, then select the index k of the machine which has the shortest # time. If there is the same time among different machines, a machine is selected randomly among them; k = np.argmin(added_time) # 6. Set the allele which corresponds to the current operation in the MS part to k; ms.append(k + 1) # 7. Add the current selected machine’s processing time and its corresponding allele in the # time array together in order to update the time array; selected_machine = operation.machines[k] time_array[selected_machine.index] += selected_machine.operation_time # 8. Select the next operation of the current job, and go to # Step 4 until all the operations of the current job are # selected, then go to Step 9; # 9. Select the next job, and select the first operation of the current job; # 10. Go to Step 3 until all jobs are selected once # set the operation sequence allele operation_sequence.append(job.id) ms_temp[job.index] = ms for ms in ms_temp: for i in ms: machine_selection.append(i) np.random.shuffle(operation_sequence) return Chromosome(machine_selection, operation_sequence) def random_selection(self): machine_selection = [] operation_sequence = [] for job in self.problem.jobs: for operation in job.operations: selected_machine_idx = operation.get_random_machine(return_index=True) machine_selection.append(selected_machine_idx + 1) operation_sequence.append(job.id) np.random.shuffle(operation_sequence) return Chromosome(machine_selection, operation_sequence) def init_population(self, population_amount, gs, ls, rs): assert gs + ls + rs != 1, "The initialization population fragment sum is not 1" self.population: List[Chromosome] = [] for _ in range(int(gs * population_amount)): chromosome = self.global_selection() self.population.append(chromosome) for _ in range(int(ls * population_amount)): chromosome = self.local_selection() self.population.append(chromosome) for _ in range(int(rs * population_amount)): chromosome = self.random_selection() self.population.append(chromosome) def is_valid_chromosome(self, chromosome: Chromosome) -> bool: for i, m in enumerate(chromosome.machine_selection): opr = self.problem.get_operation_by_index(i) if opr.get_machine_by_id(m) == None: return False return True def fix_chromosome(self, chromosome: Chromosome) -> Chromosome: for i, m in enumerate(chromosome.machine_selection): opr = self.problem.get_operation_by_index(i) chromosome.machine_selection[i] = np.min([m, len(opr.machines)]) return chromosome def decode_chromosome(self, chromosome: Chromosome): # 1. Convert machine selection to machine matrix and time matrix machine_matrix = [] time_matrix = [] i = 0 for job in self.problem.jobs: used_machine = [] used_time = [] for operation in job.operations: machine_idx = chromosome.machine_selection[i] used_machine.append(operation.machines[machine_idx - 1].id) used_time.append(operation.machines[machine_idx - 1].operation_time) i += 1 machine_matrix.append(used_machine) time_matrix.append(used_time) # 2. Decode operation sequence resources: List[Resource] = [Resource(i + 1) for i in range(self.problem.n_machine)] # variable to track current operation on job-n. Default is 1st operation current_job_operations = [1 for _ in range(len(self.problem.jobs))] for job_id in chromosome.operation_sequence: operation_id = current_job_operations[job_id - 1] job = self.problem.get_job_by_id(job_id) if job == None: raise ValueError(f"Job with id {job_id} is not found") operation = job.get_operation_by_id(operation_id) if operation == None: raise ValueError(f"Operation with id {operation_id} is not found") selected_machine_id = machine_matrix[job.index][operation.index] selected_machine = operation.get_machine_by_id(selected_machine_id) resource = resources[selected_machine.index] # find all idle time idle_times = resource.find_idle_time() # let's check if the operation can fit in the idle time # 1. select idle time that the start_time is >= last operation last_operation = job.get_operation_by_id(operation_id - 1) last_operation_time = 0 if last_operation != None: # there is last operation, it means this operation need to be inserted after the last operation last_operation_machine = machine_matrix[job.index][last_operation.index] last_machine = last_operation.get_machine_by_id(last_operation_machine) last_resource = resources[last_machine.index] last_task = last_resource.find_operation(job_id, last_operation.id) if last_task != None: last_operation_time = last_task.get_end() # start + duration # 2. check if the operation can fit in is_fit = False for (start, end) in idle_times: tb = np.max([start, last_operation_time]) if tb + selected_machine.operation_time <= end: # its fit :), lets put it in there # print('insert', (start, end), tb, selected_machine.operation_time) resource.add_task(operation, tb) is_fit = True break if not is_fit: # the operation is not fit in any idle time, so put it in the last operation last_resource_time = resource.get_last_operation_time() tb = np.max([last_resource_time, last_operation_time]) # print('add_last', job_id, operation_id, '=>', last_resource_time, last_operation_time) resource.add_task(operation, tb) # increment the operation id for next operation current_job_operations[job_id - 1] += 1 return resources def calculate_fitness(self, chromosome) -> int: resources = self.decode_chromosome(chromosome) makespan = 0 for resource in resources: makespan = np.max([resource.get_last_operation_time(), makespan]) return makespan def evaluate(self): for i in range(len(self.population)): fitness = self.calculate_fitness(self.population[i]) self.population[i].set_fitness(fitness) # sort population based on fitness sorted(self.population, key=lambda c: c.fitness) def solve(self, problem: Problem, population_amount=100, gs=.6, ls=.3, rs=.1, parent_selector='tournament', pm=.1, iter=100, selected_offspring=.5) -> List[Resource]: self.problem = problem # print(self.global_selection().machine_selection) self.init_population(population_amount, gs, ls, rs) self.evaluate() selector = self.get_parent_selector(parent_selector) two_point_crossover = self.get_crossover("two_point") uniform_crossover = self.get_crossover("uniform") pox_crossover = self.get_crossover("pox") os_mutator = OSMutator(pm) ms_mutator = MSMutator(pm) print("========== Before =============") top_3 = self.population[:3] for i, c in enumerate(top_3): print(f"Top {i+1}") print("Machine Selection:", c.machine_selection) print("Operation Sequence:", c.operation_sequence) print("Fitness/Makespan:", c.fitness) print("==========================================") new_population: List[Chromosome] = [] crossover_amount = 0 mutation_amount = 0 for i in range(iter): print("Generation", i+1) while (len(new_population) < population_amount): # select 2 parent p1_idx = selector.select_parent(self.population) p2_idx = selector.select_parent(self.population) p1 = self.population[p1_idx] p2 = self.population[p2_idx] if crossover_amount < 3: print("Before Crossover") print("Selected Parent 1:") print("Machine Selection:", p1.machine_selection) print("Operation Sequence:", p1.operation_sequence) print("Selected Parent 2:") print("Machine Selection:", p2.machine_selection) print("Operation Sequence:", p2.operation_sequence) if len(new_population) < population_amount // 2: ms1, ms2 = two_point_crossover.crossover(p1.machine_selection, p2.machine_selection) else: ms1, ms2 = uniform_crossover.crossover(p1.machine_selection, p2.machine_selection) os1, os2 = pox_crossover.crossover(p1.operation_sequence, p2.operation_sequence) c1 = Chromosome(ms1, os1) c2 = Chromosome(ms2, os2) c1 = self.fix_chromosome(c1) c2 = self.fix_chromosome(c2) new_population.append(c1) new_population.append(c2) if crossover_amount < 3: print("After Crossover") print("Offspring 1:") print("Machine Selection:", c1.machine_selection) print("Operation Sequence:", c2.operation_sequence) print("Offspring 2:") print("Machine Selection:", c1.machine_selection) print("Operation Sequence:", c2.operation_sequence) crossover_amount += 1 for i, c in enumerate(new_population): # do mutation if p < pm p = np.random.rand() if p < pm: if mutation_amount < 3: print("Before Mutation") print("Machine Selection:", c.machine_selection) print("Operation Sequence:", c.operation_sequence) ms = ms_mutator.mutate(c.machine_selection, self.problem) os = os_mutator.mutate(c.operation_sequence) new_population[i] = Chromosome(ms, os) if mutation_amount < 3: print("After Mutation") print("Machine Selection:", ms) print("Operation Sequence:", os) mutation_amount += 1 # self.population = new_population for i in range(len(new_population)): fitness = self.calculate_fitness(new_population[i]) new_population[i].set_fitness(fitness) sorted(new_population, key=lambda c: c.fitness) # set top-t% from new population t = int(selected_offspring*population_amount) self.population[-t:] = new_population[:t] # re-evaluate the new population self.evaluate() best_chromosome = self.population[0] print("Best fitness:", best_chromosome.fitness) print("========== After ============") # get the best chromosome top_3 = self.population[:3] for i, c in enumerate(top_3): print(f"Top {i+1}") print("Machine Selection:", c.machine_selection) print("Operation Sequence:", c.operation_sequence) print("Fitness/Makespan:", c.fitness) print("==========================================") resources = self.decode_chromosome(best_chromosome) return resources
import os from os.path import join import json def foo(dirname, fnames, outname): data = [] for fname in fnames: data.extend(json.load(open(join(dirname, fname)))) with open(join(dirname, outname), 'w') as f: f.write(json.dumps(data, indent=2)) dirname = 'ull_both_5_100' fnames = [ "gen_nucleus_test_1_0-125.json", "gen_nucleus_test_1_125-315.json", "gen_nucleus_test_1_315-500.json", ] outname = "gen_nucleus_test_1_0-500.json" foo(dirname, fnames, outname)
# ************ # File: vnnlib_parser.py # Top contributors (to current version): # Panagiotis Kouvaros (panagiotis.kouvaros@gmail.com) # This file is part of the Venus project. # Copyright: 2019-2021 by the authors listed in the AUTHORS file in the # top-level directory. # License: BSD 2-Clause (see the file LICENSE in the top-level directory). # Description: Parses a VNNLIB specification. # ************ import os import math import collections import torch import numpy as np from sly import Lexer from sly import Parser from venus.specification.formula import Formula, StateCoordinate, VarConstConstraint, VarVarConstraint, ConjFormula, \ DisjFormula, NAryConjFormula, NAryDisjFormula, NegationFormula from venus.specification.specification import Specification from venus.network.node import Input from venus.bounds.bounds import Bounds class VNNLIBParser: def __init__(self, pf, input_shape, config): self.pf = pf self.input_shape = input_shape self.X_SZ = np.prod(input_shape) self.config = config def parse(self): with open(self.pf, 'r') as f: string = f.read() lexer = VNNLexer() parser = VNNParser(self.X_SZ, self.config) i_b, o_f, i_cl = parser.parse(lexer.tokenize(string)) specs = [] if len(i_cl) == 0: bounds = Bounds( i_b[0].reshape(self.input_shape), i_b[1].reshape(self.input_shape) ) specs.append( Specification( Input(bounds, self.config), NegationFormula(o_f).to_NNF(), os.path.basename(self.pf)[1] ) ) else: for clause in i_cl: if not o_f is None and not clause[1] is None: f = ConjFormula(o_f, clause[1]) elif not o_f is None and clause[1] is None: f = o_f elif o_f is None and not clause[1] is None: f = clause[1] else: raise Exception('No output constraints found') specs.append( Specification( Input(clause[0][0], clause[0][1]), NegationFormula(f).to_NNF(), os.path.basename(self.pf)[1] ) ) return specs class VNNLexer(Lexer): tokens = { LE, GE, ASSERT, AND, OR, INPUT, OUTPUT, NUM, NUM, LPAR, RPAR, UNDERSCR, CONST, REAL} ignore = ' \t' LE = r'<=' GE = r'>=' ASSERT = r'assert' AND = r'and' OR = r'or' INPUT = r'X' OUTPUT = r'Y' LPAR = r'\(' RPAR = r'\)' UNDERSCR = r'_' CONST = 'declare-const' REAL = r'Real' # @_(r'[-+]?([0-9]*\.[0-9]+|[0-9]+)') @_(r'[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?') def NUM(self, t): t.value = float(t.value) return t @_(r';.*') def COMMENT(self, t): pass # newline tracking @_(r'\n+') def newline(self, t): self.lineno = t.value.count('\n') class VNNParser(Parser): tokens = VNNLexer.tokens TermTuple = collections.namedtuple('term_tuple', ['type', 'index', 'sense', 'bound']) def __init__(self, X_SZ, config): self.env = { } self.X_SZ = X_SZ self.config = config self.i_b = [ torch.ones( self.X_SZ, dtype=config.PRECISION, device=config.DEVICE ) * -math.inf, torch.ones( self.X_SZ, dtype=config.PRECISION, device=config.DEVICE ) * math.inf ] self.o_f = None self.i_cl = [] @_('statement') def statements(self, p): return self.i_b, self.o_f, self.i_cl @_('statement statements') def statements(self, p): return self.i_b, self.o_f, self.i_cl @_('input_statement') def statement(self, p): pass @_('output_statement') def statement(self, p): if self.o_f is None: self.o_f = p.output_statement else: self.o_f = ConjFormula(self.o_f, p.output_statement) @_('LPAR CONST input_id REAL RPAR') def statement(self, p): pass @_('LPAR CONST output_id REAL RPAR') def statement(self, p): pass @_('LPAR ASSERT input_term RPAR') def input_statement(self, p): pass @_('LPAR ASSERT LPAR OR input_and_clauses RPAR RPAR') def input_statement(self, p): self.i_cl = p.input_and_clauses @_('input_and_clause') def input_and_clauses(self, p): return [p.input_and_clause] @_('input_and_clause input_and_clauses') def input_and_clauses(self, p): return p.input_and_clauses + [p.input_and_clause] @_('LPAR AND iio_terms RPAR') def input_and_clause(self, p): i_b = [ torch.ones( self.X_SZ, dtype=self.config.PRECISION, device=self.config.DEVICE ) * -math.inf, torch.ones( self.X_SZ, dtype=self.config.PRECISION, device=self.config.DEVICE ) * math.inf ] o_f_terms = [] for term in p.iio_terms: if term.type == 'input': if term.sense == 'le': i_b[1][term.index] = term.bound elif term.sense == 'ge': i_b[0][term.index] = term.bound else: raise Exception(f'Unexpected term sense {term.sense}') elif term.type == 'output': if term.sense == 'le': constr = VarConstConstraint(term.index, Formula.Sense.LE, term.bound) elif term.sense == 'ge': constr = VarConstConstraint(term.index, Formula.Sense.GE, term.bound) else: raise Exception(f'Unexpected term sense {term.sense}') o_f_terms.append(constr) else: raise Exception(f'Unexpected term type {term.type}') o_f = None if len(o_f_terms) == 0 else NAryConjFormula(o_f_terms) return (i_b, o_f) @_('io_input_term io_terms') def iio_terms(self, p): return [p.io_input_term] + p.io_terms @_('io_term') def io_terms(self, p): return [p.io_term] @_('io_term io_terms') def io_terms(self, p): return [p.io_term] + p.io_terms @_('io_input_term') def io_term(self, p): return p.io_input_term @_('io_output_term') def io_term(self, p): return p.io_output_term @_('LPAR LE input_id NUM RPAR') def io_input_term(self, p): return VNNParser.TermTuple('input', p.input_id, 'le', p.NUM) @_('LPAR GE input_id NUM RPAR') def io_input_term(self, p): return VNNParser.TermTuple('input', p.input_id, 'ge', p.NUM) @_('LPAR LE output_id NUM RPAR') def io_output_term(self, p): return VNNParser.TermTuple('output', p.output_id, 'le', p.NUM) @_('LPAR GE output_id NUM RPAR') def io_output_term(self, p): return VNNParser.TermTuple('output', p.output_id, 'ge', p.NUM) @_('LPAR LE output_id output_id RPAR') def io_output_term(self, p): return VNNParser.TermTuple('output', p.output_id0, 'le', p.output_id1) @_('LPAR GE output_id output_id RPAR') def io_output_term(self, p): return VNNParser.TermTuple('output', p.output_id0, 'ge', p.output_id1) @_('LPAR LE input_id NUM RPAR') def input_term(self, p): self.i_b[1][p.input_id] = p.NUM @_('LPAR GE input_id NUM RPAR') def input_term(self, p): self.i_b[0][p.input_id] = p.NUM @_('INPUT UNDERSCR NUM') def input_id(self, p): return int(p.NUM) @_('LPAR ASSERT output_term RPAR') def output_statement(self, p): return p.output_term @_('LPAR ASSERT output_logic_clause RPAR') def output_statement(self, p): return p.output_logic_clause @_('output_and_clause') def output_logic_clause(self, p): return p.output_and_clause @_('output_or_clause') def output_logic_clause(self, p): return p.output_or_clause @_('output_logic_clause') def output_logic_clauses(self, p): return [p.output_logic_clause] @_('output_logic_clause output_logic_clauses') def output_logic_clauses(self, p): return p.output_logic_clauses + [p.output_logic_clause] @_('LPAR AND output_logic_clauses RPAR') def output_and_clause(self, p): if len(p.output_logic_clauses) == 1: return p.output_logic_clauses[0] elif len(p.output_logic_clauses) == 2: return ConjFormula(p.output_logic_clauses[0], p.output_logic_clauses[1]) else: return NAryConjFormula(p.output_logic_clauses) @_('LPAR AND output_terms RPAR') def output_and_clause(self, p): if len(p.output_terms) == 1: return p.output_terms[0] elif len(p.output_terms) == 2: return ConjFormula(p.output_terms[0], p.output_terms[1]) else: return NAryConjFormula(p.output_terms) @_('LPAR OR output_logic_clauses RPAR') def output_or_clause(self, p): if len(p.output_logic_clauses) == 1: return p.output_logic_clauses[0] elif len(p.output_logic_clauses) == 2: return DisjFormula(p.output_logic_clauses[0], p.output_logic_clauses[1]) else: return NAryDisjFormula(p.output_logic_clauses) @_('LPAR OR output_terms RPAR') def output_or_clause(self, p): if len(p.output_terms) == 1: return p.output_terms[0] elif len(p.output_terms) == 2: return DisjFormula(p.output_terms[0], p.output_terms[1]) else: return NAryDisjFormula(p.output_terms) @_('output_term output_terms') def output_terms(self, p): return p.output_terms + [p.output_term] @_('output_term') def output_terms(self, p): return [p.output_term] @_('LPAR LE output_id NUM RPAR') def output_term(self, p): return VarConstConstraint(p.output_id, Formula.Sense.LE, p.NUM) @_('LPAR GE output_id NUM RPAR') def output_term(self, p): return VarConstConstraint(p.output_id, Formula.Sense.GE, p.NUM) @_('LPAR LE output_id output_id RPAR') def output_term(self, p): return VarVarConstraint(p.output_id0, Formula.Sense.LE, p.output_id1) @_('LPAR GE output_id output_id RPAR') def output_term(self, p): return VarVarConstraint(p.output_id0, Formula.Sense.GE, p.output_id1) @_('OUTPUT UNDERSCR NUM') def output_id(self, p): return StateCoordinate(int(p.NUM))
# coding=utf-8 # noinspection PyUnresolvedReferences import maya.cmds as cmds # from LxBasic import bscMethods from LxPreset import prsConfigure # none = '' # def setOutProxy(fileString_, renderer, exportMode=0): temporaryFile = bscMethods.OsFile.temporaryName(fileString_) # Export if renderer == prsConfigure.Utility.DEF_value_renderer_arnold: setOutArnoldProxy(temporaryFile, exportMode) elif renderer == prsConfigure.Utility.DEF_value_renderer_redshift: setOutRedshiftProxy(temporaryFile, exportMode) # bscMethods.OsFile.copyTo(temporaryFile, fileString_) # def setOutArnoldProxy(fileString_, exportMode=0): option = '-mask 255;-lightLinks 1;-shadowLinks 1;' if exportMode == 0: cmds.file( fileString_, force=1, options=option, type='ASS Export', preserveReferences=0, constructionHistory=1, exportSelected=1 ) # elif exportMode == 1: cmds.file( fileString_, force=1, options=option, type='ASS Export', preserveReferences=0, constructionHistory=1, exportAll=1 ) # def setOutRedshiftProxy(fileString_, exportMode=0): option = 'exportConnectivity=1;enableCompression=1;' if exportMode == 0: cmds.file( fileString_, force=1, options=option, type='Redshift Proxy', preserveReferences=0, constructionHistory=1, exportSelected=1 ) # elif exportMode == 1: cmds.file( fileString_, force=1, options=option, type='Redshift Proxy', preserveReferences=0, constructionHistory=1, exportAll=1 ) # def getArnoldProxyFile(proxyNode): attr = proxyNode + '.dso' return cmds.getAttr(attr)
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import six from google.api_core.gapic_v2.dispatch import dispatch @pytest.mark.skipif(six.PY2, reason='dispatch only works on Python 3.') def test_dispatch(): class Foo(object): @dispatch def bar(self, number, letter): return 'Brought by the letter {} and the number {}.'.format( letter, number, ) @bar.register(str) def _bar_with_string(self, letter): return self.bar(11, letter) foo = Foo() assert foo.bar(8, 'L') == 'Brought by the letter L and the number 8.' assert foo.bar('Z') == 'Brought by the letter Z and the number 11.'
""" Tidy Scenario: A robot uses its hand to tidy up the table, pushing the objects into a bin/cart etc. EE = 'End Effector', which is the gripper / suction cup """ import torch import random import stillleben as sl from sl_cutscenes.constants import SCENARIO_DEFAULTS import sl_cutscenes.constants as CONSTANTS from sl_cutscenes.scenarios.scenario import Scenario class TidyScenario(Scenario): def __init__(self, cfg, scene): self.name = "Tidy" self.config = SCENARIO_DEFAULTS["scenes"]["tidy"] self.prep_time = 1.000 # during this time (in s), the scene will not be rendered self.remaining_pause = 0.000 # pause time remaining for the gripper self.allow_multiple_cameras = False self.max_waypoint_deviation = 0.02 # in m self.max_velocity = 0.5 # in m/s self.acceleration = 1.0 # in m/s² self.ee = None self.robot_sim = None super(TidyScenario, self).__init__(cfg, scene) # also calls reset_sim() @property def ee_pose(self): return self.ee.pose() @property def ee_t(self): return self.ee.pose()[:3, 3] def can_render(self): """ :return: True if scene has been prepared and can be rendered, False otherwise. """ return self.sim_t > self.prep_time and self.ee is not None def load_meshes_(self): """ SCENARIO-SPECIFIC """ self.mesh_loader.load_meshes(CONSTANTS.NO_POOL_TABLE) self.mesh_loader.load_meshes(CONSTANTS.YCBV_OBJECTS) self.mesh_loader.load_meshes(CONSTANTS.SUCTION_GRIPPER) def setup_objects_(self): """ SCENARIO-SPECIFIC """ table_info_mesh, ycbv_info_meshes, self.ee_mesh = self.mesh_loader.get_meshes() # place table table_mod = {"mod_pose": CONSTANTS.TABLE_POSE} self.table = self.add_object_to_scene(table_info_mesh, True, **table_mod) self.table = self.update_object_height(cur_obj=self.table) self.z_offset = self.table.pose()[2, -1] # drop 10 random YCB-Video objects onto the table for obj_info_mesh in random.choices(ycbv_info_meshes, k=3): print(" >>> trying to add object") mod_t = torch.tensor([ random.uniform(self.config["pos"]["x_min"], self.config["pos"]["x_max"]), random.uniform(self.config["pos"]["y_min"], self.config["pos"]["y_max"]), random.uniform(self.config["pos"]["z_min"], self.config["pos"]["z_max"]) ]) obj_mod = {"mod_t": mod_t} obj = self.add_object_to_scene(obj_info_mesh, False, **obj_mod) obj = self.update_object_height(cur_obj=obj, objs=[self.table]) # removing last object if colliding with anything else if self.is_there_collision(): print(" >>> object colliding!") self.remove_obj_from_scene(obj) def setup_robot_sim(self): if not self.objects_loaded: self.setup_objects() # set up end effector (ee) ee_pose = CONSTANTS.END_EFFECTOR_POSE init_z = random.uniform(self.config["endeffector_pos"]["z_min"], self.config["endeffector_pos"]["z_max"]) ee_t = torch.tensor([ self.config["endeffector_pos"]["x"], self.config["endeffector_pos"]["y_1"] if random.random() < 0.5 else self.config["endeffector_pos"]["y_2"], init_z ]) ee_pose[:3, 3] = ee_t ee_mod = {"mod_pose": ee_pose} self.start_ee_pose_ = ee_pose self.ee = self.add_object_to_scene(self.ee_mesh, is_static=False, **ee_mod) self.ee = self.update_object_height(cur_obj=self.ee, objs=[self.table]) self.table_height = self.ee.pose()[2, 3] - init_z self.ee_velocity = 0.0 # set up the waypoints the ee has to reach self.waypoints = [ torch.tensor([ random.uniform(self.config["waypoint_pos"]["x_min"], self.config["waypoint_pos"]["x_max"]), self.ee_t[1], random.uniform(self.config["waypoint_pos"]["z_min"], self.config["waypoint_pos"]["z_max"]) + self.table_height, ]), torch.tensor([ random.uniform(self.config["waypoint_pos"]["x_min"], self.config["waypoint_pos"]["x_max"]), self.ee_t[1] * -1, random.uniform(self.config["waypoint_pos"]["z_min"], self.config["waypoint_pos"]["z_max"]) + self.table_height, ]), ] # set up the robot simulation self.robot_sim = sl.ManipulationSim(self.scene, self.ee, self.start_ee_pose_) self.robot_sim.set_spring_parameters(3000.0, 10.0, 100.0) # stiffness, damping, force_limit def setup_cameras_(self): """ SCENARIO-SPECIFIC """ # TODO set camera to robot self.cameras = [ self.update_camera_height(camera=cam, objs=[self.table]) for cam in self.cameras ] def simulate(self): self.sim_t += self.sim_dt # add robot after preparation time to ensure that the objects are not falling anymore if self.sim_t > self.prep_time and self.ee is None: self.setup_robot_sim() # if paused or gripper is not set up or no waypoints remaining -> simulate object physics without gripper if self.ee is None or self.remaining_pause > 0 or len(self.waypoints) < 1: self.sim_step_() if self.remaining_pause > 0: self.remaining_pause -= self.sim_dt # if gripper is loaded and there is another unreached waypoint for it: move the robot else: cur_waypoint = self.waypoints[0] pose_delta = cur_waypoint - self.start_ee_pose_[:3, 3] pose_delta_norm = torch.linalg.norm(pose_delta) pose_delta_normalized = pose_delta / pose_delta_norm # reached current waypoint -> pop it and pause briefly if pose_delta_norm < self.max_waypoint_deviation: _ = self.waypoints.pop(0) self.ee_velocity = 0.0 self.remaining_pause += 0.300 # pause for a bit # else: adjust movement velocity according to distance to waypoint else: ideal_velocity = pose_delta_norm * 2.0 acceleration = self.acceleration * self.sim_dt if self.ee_velocity < ideal_velocity: self.ee_velocity = min(self.ee_velocity + acceleration, self.max_velocity) elif self.ee_velocity >= ideal_velocity: self.ee_velocity = max(self.ee_velocity - acceleration, 0.0) # calculate new gripper pose with calculated delta vector and velocity ee_pose = self.start_ee_pose_ ee_pose[:3, 3] += self.ee_velocity * self.sim_dt * pose_delta_normalized self.robot_sim.step(ee_pose, self.sim_dt) # TODO move to sim_step() self.start_ee_pose_ = ee_pose
from __future__ import print_function, division import torch import torch.nn as nn class ConvBlock(nn.Module): def __init__(self, inplanes, outplanes, name, nums=3, kernel_size=3, padding=1, stride=1): super(ConvBlock, self).__init__() self.nums = nums self.relu = nn.ReLU(True) if isinstance(name, str): self.name = name else: raise Exception("name should be str") for i in range(self.nums): self.add_module('conv' + self.name + "_" + str(i), nn.Conv2d(inplanes, outplanes, padding=padding, kernel_size=kernel_size, stride=stride)) self.add_module('conv' + self.name + "_" + str(i) + "_bn", nn.BatchNorm2d(outplanes)) inplanes = outplanes self.initial() def forward(self, x): net = x for i in range(self.nums): net = self._modules['conv' + self.name + "_" + str(i)](net) net = self._modules['conv' + self.name + "_" + str(i) + "_bn"](net) net = self.relu(net) return net def initial(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal(m.weight, mode='fan_out') if m.bias is not None: nn.init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant(m.weight, 1) nn.init.constant(m.bias, 0) class Decoder(nn.Module): def __init__(self, opt): super(Decoder, self).__init__() self.opt = opt self.relu = nn.ReLU() self.upsample = nn.Upsample(scale_factor=2, mode='bilinear') self.deconv1_1_new = nn.ConvTranspose2d(512, 512, (4, 4), 1, 0) self.deconv1_1_bn = nn.BatchNorm2d(512) self.convblock1 = ConvBlock(512, 512, "1", nums=2) self.convblock2 = ConvBlock(512, 512, "2", nums=3) self.convblock3 = ConvBlock(512, 256, "3", nums=4) self.convblock4 = ConvBlock(256 + 160, 256, "4", nums=4) self.convblock5 = ConvBlock(256, 128, "5", nums=3) self.convblock6 = ConvBlock(128, 64, "6", nums=2) self.conv7_1 = nn.ConvTranspose2d(64, 32, 3, 1, 1) self.conv7_1_bn = nn.BatchNorm2d(32) self.conv7_2 = nn.ConvTranspose2d(32, 3, 3, 1, 1) self.tanh = nn.Tanh() def forward(self, id_feature, mouth_feature): id_feature0 = id_feature[0].contiguous().view(-1, self.opt.feature_length, 1, 1) mouth_feature = mouth_feature.contiguous().view(-1, self.opt.feature_length, 1, 1) whole_feature = torch.cat((id_feature0, mouth_feature), dim=1) net = self.deconv1_1_new(whole_feature) net = self.relu(self.deconv1_1_bn(net)) for i in range(6): if i == 3: net = torch.cat((id_feature[i], net), 1) net = self._modules['convblock' + str(i + 1)](net) net = self.upsample(net) net = self.conv7_1(net) net = self.relu(self.conv7_1_bn(net)) net = self.conv7_2(net) net = self.tanh(net) net = (net + 1) / 2.0 return net
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import mxnet as mx import numpy as np import sklearn from mxnet import ndarray as nd sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'common')) import face_image def main(args): ctx = [] cvd = os.environ['CUDA_VISIBLE_DEVICES'].strip() if len(cvd) > 0: for i in range(len(cvd.split(','))): ctx.append(mx.gpu(i)) if len(ctx) == 0: ctx = [mx.cpu()] print('use cpu') else: print('gpu num:', len(ctx)) ctx_num = len(ctx) path_imgrec = os.path.join(args.input, 'train.rec') path_imgidx = os.path.join(args.input, 'train.idx') imgrec = mx.recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r') # pylint: disable=redefined-variable-type outf = open(os.path.join(args.input, 'c2c'), 'w') s = imgrec.read_idx(0) header, _ = mx.recordio.unpack(s) assert header.flag > 0 print('header0 label', header.label) header0 = (int(header.label[0]), int(header.label[1])) # assert(header.flag==1) imgidx = range(1, int(header.label[0])) id2range = {} seq_identity = range(int(header.label[0]), int(header.label[1])) for identity in seq_identity: s = imgrec.read_idx(identity) header, _ = mx.recordio.unpack(s) id2range[identity] = (int(header.label[0]), int(header.label[1])) print('id2range', len(id2range)) prop = face_image.load_property(args.input) image_size = prop.image_size print('image_size', image_size) vec = args.model.split(',') prefix = vec[0] epoch = int(vec[1]) print('loading', prefix, epoch) model = mx.mod.Module.load(prefix, epoch, context=ctx) model.bind(data_shapes=[('data', (args.batch_size, 3, image_size[0], image_size[1]))], label_shapes=[('softmax_label', (args.batch_size,))]) nrof_images = 0 nrof_removed = 0 idx = 1 id2label = {} pp = 0 for _id, v in id2range.iteritems(): pp += 1 if pp % 100 == 0: print('processing id', pp) _list = range(*v) ocontents = [] for i in range(len(_list)): _idx = _list[i] # print('_idx', _id, _idx) s = imgrec.read_idx(_idx) ocontents.append(s) # continue embeddings = None headers = [None] * len(ocontents) # print(len(ocontents)) ba = 0 while True: bb = min(ba + args.batch_size, len(ocontents)) if ba >= bb: break _batch_size = bb - ba _batch_size2 = max(_batch_size, ctx_num) data = nd.zeros((_batch_size2, 3, image_size[0], image_size[1])) label = nd.zeros((_batch_size2,)) count = bb - ba ii = 0 for i in range(ba, bb): header, img = mx.recordio.unpack(ocontents[i]) headers[i] = header img = mx.image.imdecode(img) img = nd.transpose(img, axes=(2, 0, 1)) data[ii][:] = img label[ii][:] = header.label[0] ii += 1 while ii < _batch_size2: data[ii][:] = data[0][:] label[ii][:] = label[0][:] ii += 1 db = mx.io.DataBatch(data=(data,), label=(label,)) model.forward(db, is_train=False) net_out = model.get_outputs() net_out = net_out[0].asnumpy() if embeddings is None: embeddings = np.zeros((len(ocontents), net_out.shape[1])) embeddings[ba:bb, :] = net_out[0:_batch_size, :] ba = bb embeddings = sklearn.preprocessing.normalize(embeddings) emb_mean = np.mean(embeddings, axis=0, keepdims=True) emb_mean = sklearn.preprocessing.normalize(emb_mean) sim = np.dot(embeddings, emb_mean.T) # print(sim.shape) sims = sim.flatten() assert len(_list) == len(sims) assert len(_list) == len(ocontents) for i in range(len(ocontents)): _sim = sims[i] _idx = _list[i] _header = headers[i] # TODO outf.write("%d,%f,%d\n" % (_idx, _sim, int(_header.label[1]))) outf.close() if __name__ == '__main__': parser = argparse.ArgumentParser(description='') # general parser.add_argument('--input', default='', type=str, help='') parser.add_argument('--model', default='../model/softmax,50', help='path to load model.') parser.add_argument('--batch-size', default=32, type=int, help='') args = parser.parse_args() main(args)
import click import sys def init_subroutine(): global subroutine_stack subroutine_stack = [] def push_subroutine(cmd_name: str): global subroutine_stack subroutine_stack.append(cmd_name) def pop_subroutine(): global subroutine_stack last = subroutine_stack[-1] subroutine_stack = subroutine_stack[:-1] return last def get_subroutine(): return subroutine_stack[-1] def _clog(message: str): click.echo(click.style(f"[{get_subroutine()}]", bg='magenta', fg='white'), nl=False) click.echo(message) def clog(*messages): val = '' for message in messages: val = val + ' ' + str(message) _clog(val) def cerr(message: str): click.echo(click.style(f"[{get_subroutine()}]", bg='magenta', fg='white'), nl=False) click.echo(click.style(f" {message}", fg = 'bright_red')) def csuccess(message: str): click.echo(click.style(f"[{get_subroutine()}]", bg='magenta', fg='white'), nl=False) click.echo(click.style(f" {message}", fg = 'green')) def cexit(message: str): cerr(f'{message}, exiting program.') sys.exit(1)
import pytest from arc import ARC @pytest.fixture(scope="module") def decomposition_samples() -> ARC: return ARC(idxs={8, 10, 16, 17, 30}) # NOTE: This test is a little ambiguous, as the red object # might reasonably be a rectangle missing 2 points, or a line trace. def test_8(decomposition_samples: ARC): board = decomposition_samples.tasks[8].cases[0].input board.decompose() child_names = sorted([kid.id for kid in board.rep.children]) assert child_names == [ "Cluster(2x4)@(2, 0, 2)", "Rect(14x9)@(0, 0, 0)", "Rect(2x2)@(10, 3, 8)", ] def test_10(decomposition_samples: ARC): board = decomposition_samples.tasks[10].cases[0].input board.decompose() child_names = sorted([kid.id for kid in board.rep.children]) assert child_names == [ "Line(3x1)@(6, 7, 5)", "Line(6x1)@(3, 3, 5)", "Line(8x1)@(1, 1, 5)", "Line(9x1)@(0, 5, 5)", "Rect(9x9)@(0, 0, 0)", ] def test_16(decomposition_samples: ARC): board = decomposition_samples.tasks[16].cases[0].input board.decompose() child_names = sorted([kid.id for kid in board.rep.children]) assert child_names == ["Cell(1x3)@(0, 0, 10)"] grandchild_names = sorted([kid.id for kid in board.rep.children[0]]) assert grandchild_names == [ "Dot@(0, 0, 3)", "Dot@(0, 1, 1)", "Dot@(0, 2, 2)", ] hier_repr = str(board).replace(" ", "").split("\n") assert hier_repr == [ "[Tile]Pattern(3x3)@(0,0,10)(1ch,9pts,15p)", "Generating(V:2)", "[Cell]Cell(1x3)@(0,0,10)(3ch,3pts,10p)", "Dot@(0,0,3)", "Dot@(0,1,1)", "Dot@(0,2,2)", ] # Repeating call with an empty processing queue should do nothing board.decompose() child_names = sorted([kid.id for kid in board.rep.children]) assert child_names == ["Cell(1x3)@(0, 0, 10)"] grandchild_names = sorted([kid.id for kid in board.rep.children[0]]) assert grandchild_names == [ "Dot@(0, 0, 3)", "Dot@(0, 1, 1)", "Dot@(0, 2, 2)", ] # Initializing and allowing no processes should leave the board in raw state board.decompose(characteristic="", init=True) assert board.current == "" assert board.proc_q == [""] # Only allowing Processes.Background gives a different result board.decompose(characteristic="B", init=True) child_names = sorted([kid.id for kid in board.rep.children]) assert child_names == [ "Line(3x1)@(0, 1, 1)", "Rect(3x2)@(0, 1, 2)", "Rect(3x3)@(0, 0, 3)", ] def test_17(decomposition_samples: ARC): board = decomposition_samples.tasks[17].cases[0].input board.decompose(max_iter=3) child_names = sorted([kid.id for kid in board.rep.children]) assert child_names == [ "Cluster(15x17)@(4, 3, 0)", "Pattern(21x21)@(0, 0, 10)", ] def test_30(decomposition_samples: ARC): board = decomposition_samples.tasks[30].cases[0].input board.decompose() child_names = sorted([kid.id for kid in board.rep.children]) assert child_names == [ "Rect(2x2)@(0, 1, 2)", "Rect(2x2)@(1, 7, 1)", "Rect(2x2)@(2, 4, 4)", "Rect(5x10)@(0, 0, 0)", ]
from airflow.contrib.kubernetes.kubernetes_request_factory.pod_request_factory import ( SimplePodRequestFactory as AirflowSimplePodRequestFactory, ) from airflow.contrib.kubernetes.secret import Secret class DbndPodRequestFactory(AirflowSimplePodRequestFactory): def create(self, pod): req = super(DbndPodRequestFactory, self).create(pod=pod) self.extact_extended_resources(pod, req) return req def extact_extended_resources(self, pod, req): # type: (Pod, Dict) -> None r = pod.resources if not r and not r.requests and not r.limits: return req["spec"]["containers"][0].setdefault("resources", {}) resources = req["spec"]["containers"][0]["resources"] if r.requests: resources.setdefault("requests", {}) resources["requests"].update(**r.requests) if r.limits: resources.setdefault("limits", {}) resources["limits"].update(**r.limits) def extract_node_affinity(self, pod, req): if not hasattr(pod, "node_affinity"): return nodeAffinity = req["spec"].setdefault("nodeSelector", {}) nodeAffinity.update(pod.node_affinity) def extract_volume_secrets(self, pod, req): vol_secrets = [s for s in pod.secrets if s.deploy_type == "volume"] if any(vol_secrets): req["spec"]["containers"][0]["volumeMounts"] = req["spec"]["containers"][ 0 ].get("volumeMounts", []) req["spec"]["volumes"] = req["spec"].get("volumes", []) for idx, vol in enumerate(vol_secrets): # type: Secret vol_id = "secretvol" + str(idx) volumeMount = { "mountPath": vol.deploy_target, "name": vol_id, "readOnly": True, } if vol.key: volumeMount["subPath"] = vol.key req["spec"]["containers"][0]["volumeMounts"].append(volumeMount) req["spec"]["volumes"].append( {"name": vol_id, "secret": {"secretName": vol.secret}} )
import logging import os import re from pathlib import Path from typing import Dict import anndata as ad import pandas as pd from sqlalchemy.orm import Session from histocat.core.acquisition import service as acquisition_service from histocat.core.dataset import service as dataset_service from histocat.core.dataset.dto import DatasetCreateDto, DatasetUpdateDto from histocat.core.dataset.models import CELL_FILENAME, DatasetModel from histocat.core.notifier import Message from histocat.core.project import service as project_service from histocat.core.redis_manager import UPDATES_CHANNEL_NAME, redis_manager from histocat.core.slide import service as slide_service from histocat.worker.io.utils import copy_file logger = logging.getLogger(__name__) PANEL_CSV_FILE = "panel.csv" def _report_error(project_id: int, message: str): """Log error message and send it to the client via websocket""" logger.warning(message) redis_manager.publish(UPDATES_CHANNEL_NAME, Message(project_id, "error", message)) def import_dataset( db: Session, input_folder: Path, project_id: int, masks_folder: str, regionprops_folder: str, intensities_folder: str, ): """Import dataset from the folder compatible with 'steinbock' format.""" # Validate data project = project_service.get(db, id=project_id) if not project: _report_error(project_id, f"Dataset Import Error: project [id: {project_id}] does not exist") return # Find data source folder where panel file resides src_folder = None for path in input_folder.rglob(PANEL_CSV_FILE): src_folder = path.parent break if src_folder is None: _report_error(project_id, f"Dataset Import Error: panel file is missing") return mask_files = sorted(Path(src_folder / masks_folder).rglob("*.tiff")) if len(mask_files) == 0: _report_error(project_id, f"Dataset Import Error: mask files are missing in folder '{masks_folder}'") return regionprops_files = sorted(Path(src_folder / regionprops_folder).rglob("*.csv")) if len(regionprops_files) == 0: _report_error( project_id, f"Dataset Import Error: regionprops files are missing in folder '{regionprops_folder}'" ) return intensities_files = sorted(Path(src_folder / intensities_folder).rglob("*.csv")) if len(intensities_files) == 0: _report_error( project_id, f"Dataset Import Error: intensities files are missing in folder '{intensities_folder}'" ) return # Postpone dataset db entry creation until input data validated create_params = DatasetCreateDto(project_id=project_id, origin="steinbock", status="pending") dataset = dataset_service.create(db, params=create_params) dst_folder = Path(dataset.location) os.makedirs(dst_folder, exist_ok=True) # Import panel data panel_df = _import_panel(os.path.join(src_folder, PANEL_CSV_FILE)) # Metadata dictionary meta = {} masks = {} acquisition_id_mapping = {} for mask_file in mask_files: result = _import_mask(db, mask_file, dataset) if result is not None: mask_meta, slide_name, acquisition_origin_id = result acquisition_id = mask_meta.get("acquisition").get("id") image_number = mask_meta.get("acquisition").get("origin_id") masks[acquisition_id] = mask_meta acquisition_id_mapping[f"{slide_name}_{image_number}"] = acquisition_id meta["masks"] = masks regionprops_df = pd.DataFrame() for regionprops_file in regionprops_files: slide_name, acquisition_origin_id, df = _import_regionprops(regionprops_file, acquisition_id_mapping) regionprops_df = regionprops_df.append(df) regionprops_df.reset_index(inplace=True, drop=True) regionprops_df["CellId"] = regionprops_df.index intensities_df = pd.DataFrame() for intensities_file in intensities_files: slide_name, acquisition_origin_id, df = _import_intensities(intensities_file, acquisition_id_mapping) intensities_df = intensities_df.append(df) intensities_df.reset_index(inplace=True, drop=True) intensities_df["CellId"] = regionprops_df.index var_names = [] x_df = pd.DataFrame() for index, row in panel_df.iterrows(): channel = row["channel"] name = row["name"] # TODO: check intensity x_df[channel] = intensities_df[name] var_names.append(channel) var = pd.DataFrame(index=var_names) var["Channel"] = var.index X_counts = x_df.to_numpy() adata = ad.AnnData(X_counts, obs=regionprops_df, var=var, dtype="float32") dst_uri = dst_folder / CELL_FILENAME adata.write_h5ad(dst_uri) acquisition_ids = sorted(list(masks.keys())) update_params = DatasetUpdateDto( name=f"Dataset {dataset.id}", status="ready", acquisition_ids=acquisition_ids, channels=var_names, meta=meta ) dataset = dataset_service.update(db, item=dataset, params=update_params) redis_manager.publish(UPDATES_CHANNEL_NAME, Message(project_id, "dataset_imported")) def _import_panel(path: str): panel_df = pd.read_csv(path) return panel_df def _import_mask(db: Session, filepath: Path, dataset: DatasetModel): p = re.compile("(?P<Name>.*)_(?P<AcquisitionID>[0-9]+).tiff") slide_name, acquisition_origin_id = p.findall(filepath.name)[0] slide = slide_service.get_by_name(db, project_id=dataset.project_id, name=slide_name) if slide is None: return None acquisition = acquisition_service.get_by_origin_id(db, slide_id=slide.id, origin_id=acquisition_origin_id) location = copy_file(str(filepath), dataset.location) meta = { "location": location, "slide": {"id": slide.id, "origin_id": slide.origin_id}, "acquisition": {"id": acquisition.id, "origin_id": acquisition.origin_id}, } return meta, slide_name, acquisition_origin_id def _import_regionprops(filepath: Path, acquisition_id_mapping: Dict[str, int]): p = re.compile("(?P<Name>.*)_(?P<AcquisitionID>[0-9]+).csv") slide_name, acquisition_origin_id = p.findall(filepath.name)[0] df = pd.read_csv(filepath) df.rename(columns={"Object": "ObjectNumber", "centroid-0": "CentroidY", "centroid-1": "CentroidX"}, inplace=True) df["ImageNumber"] = acquisition_origin_id df["AcquisitionId"] = acquisition_id_mapping.get(f"{slide_name}_{acquisition_origin_id}") return ( slide_name, acquisition_origin_id, df[["ObjectNumber", "ImageNumber", "AcquisitionId", "CentroidX", "CentroidY"]], ) def _import_intensities(filepath: Path, acquisition_id_mapping: Dict[str, int]): p = re.compile("(?P<Name>.*)_(?P<AcquisitionID>[0-9]+).csv") slide_name, acquisition_origin_id = p.findall(filepath.name)[0] df = pd.read_csv(filepath) df.rename(columns={"Object": "ObjectNumber"}, inplace=True) df["ImageNumber"] = acquisition_origin_id df["AcquisitionId"] = acquisition_id_mapping.get(f"{slide_name}_{acquisition_origin_id}") return slide_name, acquisition_origin_id, df
from transitions import Machine #from transitions.extensions import GraphMachine as Machine from utils import send_text_message from utils import send_image_url from utils import send_button_message from data import data class TocMachine(Machine): def __init__(self, **machine_configs): self.machine = Machine( model=self, **machine_configs ) def user_sent_something(self, event): return True def is_travelling_for_adventure(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'adventure' or text.lower() == '1' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'adventure' or text.lower() == '1' return False def is_travelling_for_historical(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'historical buildings' or text.lower() == '2' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'historical buildings' or text.lower() == '2' return False def is_travelling_for_naturals(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'naturals' or text.lower() == '3' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'naturals' or text.lower() == '3' return False def is_travelling_for_local_food(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'local food' or text.lower() == '4' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'local food' or text.lower() == '4' return False def on_enter_purpose(self, event): print("I'm entering purpose") sender_id = event['sender']['id'] responese = send_text_message(sender_id, data['text']) # response = send_image_url(sender_id, "./fsm.png", 'png') # send_button_message(sender_id, "select one", data['buttons']) # def on_exit_purpose(self): # print('Leaving purpose') def on_enter_adventure(self, event): print("I'm entering adventure") sender_id = event['sender']['id'] send_text_message(sender_id, data['Adventure']['text_to_send']) send_button_message(sender_id, data['Adventure']['text_button'], data['Adventure']['buttons']) # def on_exit_adventure(self): # print('Leaving adventure') def on_enter_historical(self, event): print("I'm entering historical") sender_id = event['sender']['id'] send_text_message(sender_id, data['Historical Buildings']['text_to_send']) send_button_message(sender_id, data['Historical Buildings']['text_button'], data['Historical Buildings']['buttons']) # def on_exit_historical(self): # print('Leaving historical') def on_enter_naturals(self, event): print("I'm entering naturals") sender_id = event['sender']['id'] send_text_message(sender_id, data['Naturals']['text_to_send']) send_button_message(sender_id, data['Naturals']['text_button'], data['Naturals']['buttons']) # def on_exit_naturals(self): # print('Leaving naturals') def on_enter_local_food(self, event): print("I'm entering local food") sender_id = event['sender']['id'] send_text_message(sender_id, data['Local Food']['text_to_send']) send_button_message(sender_id, data['Local Food']['text_button'], data['Local Food']['buttons']) # def on_exit_local_food(self): # print('Leaving local food') ######################################################################### def is_adventure_to_raja_ampat(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'raja ampat islands, west papua' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'raja ampat islands, west papua' return False def is_adventure_to_gili_island(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'gili islands, lombok' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'gili islands, lombok' return False def is_adventure_to_mount_bromo(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'mount bromo, east java' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'mount bromo, east java' return False def on_enter_raja_ampat(self, event): print("I'm entering raja ampat") sender_id = event['sender']['id'] send_text_message(sender_id, data['Adventure']['Raja Ampat Islands, West Papua']['text']) send_image_url(sender_id, data['Adventure']['Raja Ampat Islands, West Papua']['image'], data['Adventure']['Raja Ampat Islands, West Papua']['image_type']) send_button_message(sender_id, "quick options:", data['Adventure']['Raja Ampat Islands, West Papua']['buttons']) def on_enter_gili_island(self, event): print("I'm entering gili island") sender_id = event['sender']['id'] send_text_message(sender_id, data['Adventure']['Gili Islands, Lombok']['text']) send_image_url(sender_id, data['Adventure']['Gili Islands, Lombok']['image'], data['Adventure']['Gili Islands, Lombok']['image_type']) send_button_message(sender_id, "quick options:", data['Adventure']['Gili Islands, Lombok']['buttons']) def on_enter_mount_bromo(self, event): print("I'm entering mount_bromo") sender_id = event['sender']['id'] send_text_message(sender_id, data['Adventure']['Mount Bromo, East Java']['text']) send_image_url(sender_id, data['Adventure']['Mount Bromo, East Java']['image'], data['Adventure']['Mount Bromo, East Java']['image_type']) send_button_message(sender_id, "quick options:", data['Adventure']['Mount Bromo, East Java']['buttons']) ######################################################################### def is_historical_to_borobudur(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'borobudur temple, magelang' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'borobudur temple, magelang' return False def is_historical_to_prambanan(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'prambanan temple, yogyakarta' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'prambanan temple, yogyakarta' return False def is_historical_to_old_town(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'kota tua (old town), jakarta' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'kota tua (old town), jakarta' return False def on_enter_borobudur(self, event): print("I'm entering borobudur") sender_id = event['sender']['id'] send_text_message(sender_id, data['Historical Buildings']['Borobudur Temple, Magelang']['text']) send_image_url(sender_id, data['Historical Buildings']['Borobudur Temple, Magelang']['image'], data['Historical Buildings']['Borobudur Temple, Magelang']['image_type']) send_button_message(sender_id, "quick options:", data['Historical Buildings']['Borobudur Temple, Magelang']['buttons']) def on_enter_prambanan(self, event): print("I'm entering prambanan") sender_id = event['sender']['id'] send_text_message(sender_id, data['Historical Buildings']['Prambanan Temple, Yogyakarta']['text']) send_image_url(sender_id, data['Historical Buildings']['Prambanan Temple, Yogyakarta']['image'], data['Historical Buildings']['Prambanan Temple, Yogyakarta']['image_type']) send_button_message(sender_id, "quick options:", data['Historical Buildings']['Prambanan Temple, Yogyakarta']['buttons']) def on_enter_old_town(self, event): print("I'm entering old town") sender_id = event['sender']['id'] send_text_message(sender_id, data['Historical Buildings']['Kota Tua (Old Town), Jakarta']['text']) send_image_url(sender_id, data['Historical Buildings']['Kota Tua (Old Town), Jakarta']['image'], data['Historical Buildings']['Kota Tua (Old Town), Jakarta']['image_type']) send_button_message(sender_id, "quick options:", data['Historical Buildings']['Kota Tua (Old Town), Jakarta']['buttons']) ######################################################################### def is_naturals_in_bali(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'bali, the island of gods' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'bali, the island of gods' return False def is_naturals_in_lake_toba(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'lake toba, north sumatra' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'lake toba, north sumatra' return False def is_naturals_in_dieng_plateau(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'dieng plateau' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'dieng plateau' return False def on_enter_bali(self, event): print("I'm entering bali") sender_id = event['sender']['id'] send_text_message(sender_id, data['Naturals']['Bali, the Island of Gods']['text']) send_image_url(sender_id, data['Naturals']['Bali, the Island of Gods']['image'], data['Naturals']['Bali, the Island of Gods']['image_type']) send_button_message(sender_id, "quick options:", data['Naturals']['Bali, the Island of Gods']['buttons']) def on_enter_lake_toba(self, event): print("I'm entering lake toba") sender_id = event['sender']['id'] send_text_message(sender_id, data['Naturals']['Lake Toba, North Sumatra']['text']) send_image_url(sender_id, data['Naturals']['Lake Toba, North Sumatra']['image'], data['Naturals']['Lake Toba, North Sumatra']['image_type']) send_button_message(sender_id, "quick options:", data['Naturals']['Lake Toba, North Sumatra']['buttons']) def on_enter_dieng_plateau(self, event): print("I'm entering dieng plateau") sender_id = event['sender']['id'] send_text_message(sender_id, data['Naturals']['Dieng Plateau']['text']) send_image_url(sender_id, data['Naturals']['Dieng Plateau']['image'], data['Naturals']['Dieng Plateau']['image_type']) send_button_message(sender_id, "quick options:", data['Naturals']['Dieng Plateau']['buttons']) ######################################################################### def is_local_food_satay(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'satay' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'satay' return False def is_local_food_rendang(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'rendang' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'rendang' return False def is_local_food_fried_rice(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'fried rice' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'fried rice' return False def on_enter_satay(self, event): print("I'm entering satay") sender_id = event['sender']['id'] send_text_message(sender_id, data['Local Food']['Satay']['text']) send_image_url(sender_id, data['Local Food']['Satay']['image'], data['Local Food']['Satay']['image_type']) send_button_message(sender_id, "quick options:", data['Local Food']['Satay']['buttons']) def on_enter_rendang(self, event): print("I'm entering rendang") sender_id = event['sender']['id'] send_text_message(sender_id, data['Local Food']['Rendang']['text']) send_image_url(sender_id, data['Local Food']['Rendang']['image'], data['Local Food']['Rendang']['image_type']) send_button_message(sender_id, "quick options:", data['Local Food']['Rendang']['buttons']) def on_enter_fried_rice(self, event): print("I'm entering fried rice") sender_id = event['sender']['id'] send_text_message(sender_id, data['Local Food']['Fried Rice']['text']) send_image_url(sender_id, data['Local Food']['Fried Rice']['image'], data['Local Food']['Fried Rice']['image_type']) send_button_message(sender_id, "quick options:", data['Local Food']['Fried Rice']['buttons']) ############################################################ def is_next(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'see next recommended place' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'see next recommended place' return False def is_select_another_place(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'select another place' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'select another place' return False def is_change_travel_purpose(self, event): if event.get("message"): text = event['message']['text'] return text.lower() == 'change my travel purpose' elif (event.get("postback")): text = event['postback']['payload'] return text.lower() == 'change my travel purpose' return False
from pathlib import Path from fhir.resources.valueset import ValueSet as _ValueSet from oops_fhir.utils import ValueSet from oops_fhir.r4.code_system.v3_gtsabbreviation import ( v3GTSAbbreviation as v3GTSAbbreviation_, ) __all__ = ["v3GTSAbbreviation"] _resource = _ValueSet.parse_file(Path(__file__).with_suffix(".json")) class v3GTSAbbreviation(v3GTSAbbreviation_): """ v3 Code System GTSAbbreviation Open Issue: It appears that the printnames are suboptimal and should be improved for many of the existing codes. Status: active - Version: 2018-08-12 http://terminology.hl7.org/ValueSet/v3-GTSAbbreviation """ class Meta: resource = _resource
import unittest import pinocchio as pin pin.switchToNumpyMatrix() import numpy as np @unittest.skipUnless(pin.WITH_HPP_FCL,"Needs HPP-FCL") class TestGeometryObjectBindings(unittest.TestCase): def setUp(self): self.model = pin.buildSampleModelHumanoid() self.collision_model = pin.buildSampleGeometryModelHumanoid(self.model) def test_name_get_set(self): col = self.collision_model.geometryObjects[0] self.assertTrue(col.name == 'rleg_shoulder_object') col.name = 'new_collision_name' self.assertTrue(col.name == 'new_collision_name') def test_parent_get_set(self): col = self.collision_model.geometryObjects[0] self.assertTrue(col.parentJoint == 2) col.parentJoint = 3 self.assertTrue(col.parentJoint == 3) def test_placement_get_set(self): m = pin.SE3.Identity() new_m = pin.SE3.Random() col = self.collision_model.geometryObjects[0] self.assertTrue(np.allclose(col.placement.homogeneous,m.homogeneous)) col.placement = new_m self.assertTrue(np.allclose(col.placement.homogeneous , new_m.homogeneous)) def test_meshpath_get(self): col = self.collision_model.geometryObjects[0] self.assertTrue(col.meshPath is not None) def test_scale(self): scale = np.array([1.,2.,3.]) pin.setGeometryMeshScales(self.collision_model,scale) for obj in self.collision_model.geometryObjects: self.assertTrue(obj.meshScale[0] == scale[0]) self.assertTrue(obj.meshScale[1] == scale[1]) self.assertTrue(obj.meshScale[2] == scale[2]) def test_scalar_scale(self): scale = 2. vec = np.array([scale]*3) pin.setGeometryMeshScales(self.collision_model,scale) for obj in self.collision_model.geometryObjects: self.assertTrue(np.allclose(obj.meshScale, vec)) def test_create_data(self): collision_data = self.collision_model.createData() self.assertEqual(len(collision_data.oMg), self.collision_model.ngeoms) def test_create_datas(self): collision_data = self.collision_model.createData() self.assertEqual(len(collision_data.oMg), self.collision_model.ngeoms) data_2, collision_data_2 = pin.createDatas(self.model, self.collision_model) self.assertTrue(self.model.check(data_2)) self.assertEqual(len(collision_data_2.oMg), self.collision_model.ngeoms) def test_copy(self): collision_model_copy = self.collision_model.copy() self.assertEqual(self.collision_model.ngeoms,collision_model_copy.ngeoms) collision_data = self.collision_model.createData() collision_data_copy = collision_data.copy() self.assertEqual(len(collision_data.oMg),len(collision_data_copy.oMg)) if __name__ == '__main__': unittest.main()
from helper import * import math from queue import PriorityQueue #from path_finding import * class Node(): def __init__(self, x, y): self.coords = (x, y) self.estimate = 0 self.cost = 0 def __gt__(self, other): return self.estimate > other.estimate def __eq__(self, other): return self.estimate == other.estimate def manhattan(coord1, coord2): return abs(coord1[0]-coord2[0]) + abs(coord1[1]-coord2[1]) def normalize_tiles(gameMap, playerPos, housePos): tiles = gameMap.tiles max_x = 0 max_y = 0 for row in tiles: for tile in row: if tile.Position.x > max_x: max_x = tile.Position.x if tile.Position.y > max_y: max_y = tile.Position.y overflow_left = 0 overflow_up = 0 overflow_right = 0 overflow_down = 0 if playerPos.x - 10 < 0: overflow_left = abs(playerPos.x-10) if playerPos.y - 10 < 0: overflow_up = abs(playerPos.y-10) if playerPos.x + 10 > max_x: overflow_right = (playerPos.x+10) - max_x if playerPos.y + 10 > max_y: overflow_down = (playerPos.y+10) - max_y result = [[' ' for _ in range(255)] for _ in range(255)] for row in tiles: for tile in row: coord = tile.Position #if coord.x > max_x - overflow_left: # coord.x = 254 - (max_x - coord.x) #if coord.y > max_y - overflow_up: # coord.y = 254 - (max_y - coord.y) #if coord.y < overflow_down: # coord.y = max_y + coord.y + 1 #if coord.x < overflow_right: # coord.x = max_x + coord.x + 1 if tile.TileContent == TileContent.Empty: result[coord.y][coord.x] = ' ' if tile.TileContent == TileContent.Resource: result[coord.y][coord.x] = 'R' if tile.TileContent == TileContent.House: if housePos.x == coord.x and housePos.y == coord.y: result[coord.y][coord.x] = ' ' else: result[coord.y][coord.x] = '#' if tile.TileContent == TileContent.Wall: result[coord.y][coord.x] = 'T' if tile.TileContent == TileContent.Lava: result[coord.y][coord.x] = '#' if tile.TileContent == TileContent.Player: result[coord.y][coord.x] = 'P' if tile.TileContent == TileContent.Shop: result[coord.y][coord.x] = 'S' return result def print_view(maze): output = "" for row in maze: for col in row: output += col output += '\n' print(output) def reconstruct_path(maze, paths, node): result = [] while paths[node] != None: prev = paths[node] move = (node[0]-prev[0], node[1]-prev[1]) result.insert(0, move) node = prev return result def solve_path(maze, start, goal): #print_view(maze) costs = {start.coords: 0} paths = {start.coords: None} queue = PriorityQueue() queue.put(start) print(start.coords, goal.coords) while not queue.empty(): current_node = queue.get() #print(current_node.coords) #print(current_node.coords) if current_node.coords == goal.coords: return reconstruct_path(maze, paths, current_node.coords) neighbors = get_neighbors(maze, current_node, goal) for neighbor in neighbors: neighbor.cost = current_node.cost + cost(maze, current_node, neighbor) neighbor.estimate = neighbor.cost + cost_estimate(maze, neighbor, goal) if neighbor.coords not in costs or costs[neighbor.coords] > neighbor.cost: paths[neighbor.coords] = current_node.coords queue.put(neighbor) costs[neighbor.coords] = neighbor.cost return None def cost(maze, node, neighbor): return 1 def cost_estimate(maze, node, goal): return manhattan(node.coords, goal.coords) def get_neighbors(maze, node, goal): result = [] left = (node.coords[0]-1, node.coords[1]) up = (node.coords[0], node.coords[1]-1) right = (node.coords[0]+1, node.coords[1]) down = (node.coords[0], node.coords[1]+1) Positions = [up, right, down, left] for pos in Positions: #if pos[0] < 0: # pos[0] = 254 #if pos[1] < 0: # pos[1] = 254 #if pos[0] >= 255: # pos[0] = 0 #if pos[1] >= 255: # pos[1] = 0 if pos == goal.coords or maze[pos[1]][pos[0]] == ' ' or maze[pos[1]][pos[0]] == 'T': result.append(Node(pos[0], pos[1])) return result RESSOURCE_BY_BLOC = 1000 # guess RESSOURCE_BY_PLAYER = 10000 class Bot: def __init__(self): self.peace = 0 self.prev_score = 0 self.count = 1 pass def sortClosest(self, tiles, type): ressources = [] for row_index, row in enumerate(tiles): for col_index, tile in enumerate(row): #print(tile.TileContent) if tile.TileContent == type: ressources.append(Node(tile.Position.x, tile.Position.y)) nodeOwnPos = Node(self.PlayerInfo.Position.x, self.PlayerInfo.Position.y) ressources.sort(key=lambda x: manhattan(nodeOwnPos.coords, x.coords)) return ressources def evaluateRessource(self): return -math.inf closestRessource = self.sortClosest(self.gameMap.tiles, 4) for ressource in closestRessource: pos = Node(self.PlayerInfo.Position.x, self.PlayerInfo.Position.y) path = solve_path(self.gameMap._tiles, pos, ressource) if path != None: self.ressourcePath = path break if len(closestRessource) == 0: return -math.inf return RESSOURCE_BY_BLOC / len(path) def evaluatekill(self): closestplayer = self.sortClosest(self.gameMap.tiles, TileContent.Player)[1:] for player in closestplayer: pos = Node(self.PlayerInfo.Position.x, self.PlayerInfo.Position.y) path = solve_path(self.gameMap._tiles, pos, player) if path != None: self.killingPath = path break if len(closestplayer) == 0: print("wtf") return -math.inf print("test", len(path), RESSOURCE_BY_PLAYER / len(path)) return RESSOURCE_BY_PLAYER / len(path) def evaluateUpgrade(self): return -math.inf, UpgradeType.AttackPower essentialItems = ["Sword", "Shield", "Backpack"] totalRessources = self.PlayerInfo.totalRessources level = self.PlayerInfo.getUpgradeLevel(self, self.PlayerInfo.CarryingCapacity) priority = -math.inf, None if(level <= 3): if level == 1 and totalRessources >= 10000: priority = math.inf, UpgradeType.CarryingCapacity if level == 2 and totalRessources >= 15000: priority = math.inf, UpgradeType.CarryingCapacity if level == 3 and totalRessources >= 25000: priority = math.inf, UpgradeType.CarryingCapacity else: if all(i in essentialItems for i in self.playerInfo.carriedItems): if level == 4 and totalRessources >= 50000: priority = math.inf, UpgradeType.CarryingCapacity return priority def evaluatePurchase(self): return 0 def go_home(self, gameMap): return #tiles = normalize_tiles(gameMap, Point(self.ownPos.coords[0], self.ownPos.coords[1])) pos = self.PlayerInfo.Position pos = Node(pos.x, pos.y) house = self.PlayerInfo.HouseLocation house = Node(house.x, house.y) path = solve_path(tiles, pos, house) if path != None: point = Point(path[0][0], path[0][1]) return create_move_action(point) else: print("something bad happened") return create_move_action(Point(-1, 0)) def before_turn(self, playerInfo): """ Gets called before ExecuteTurn. This is where you get your bot's state. :param playerInfo: Your bot's current state. """ self.PlayerInfo = playerInfo def execute_turn(self, gameMap, visiblePlayers): """ This is where you decide what action to take. :param gameMap: The gamemap. :param visiblePlayers: The list of visible players. """ self.peace -= 1 if self.prev_score < self.PlayerInfo.Score: self.count += 1 self.prev_score = self.PlayerInfo.Score if self.count % 3 == 0: self.peace = 25 self.count = 2 try: pass #prev_score = int(StorageHelper.read("points")) #if prev_score < self.playerInfo.Score: # StorageHelper.write("peace", 10) except: pass #StorageHelper.write("points", self.PlayerInfo.Score) self.ownPos = Node(self.PlayerInfo.Position.x, self.PlayerInfo.Position.y) self.housePos = Node(self.PlayerInfo.HouseLocation.x, self.PlayerInfo.HouseLocation.y) self.gameMap = gameMap self.gameMap._tiles = normalize_tiles(self.gameMap, self.PlayerInfo.Position, self.PlayerInfo.HouseLocation) self.visiblePlayers = visiblePlayers # GO KILLING LEFT if len(self.sortClosest(self.gameMap.tiles, TileContent.Player)) == 1 or self.peace > 0: print("test") pos = Node(self.PlayerInfo.Position.x, self.PlayerInfo.Position.y) print("yMin: ", self.gameMap.yMin) yMin = self.gameMap.yMin xMin = self.gameMap.xMin if yMin < 0: yMin = 255 + yMin if xMin < 0: xMin = 255 + xMin Target = Node(xMin, self.PlayerInfo.Position.y) self.path = solve_path(self.gameMap._tiles, pos, Target) return self.move(self.path) #create_move_action(self.path[0]) Costs = {"ressource": -math.inf, "kill": -math.inf, "upgrade": -math.inf} Costs["getRessource"] = self.evaluateRessource() Costs["goKill"] = self.evaluatekill() Costs["goUpgrade"], item = self.evaluateUpgrade() print(Costs) nextPlan = max(Costs, key=Costs.get) print(nextPlan) # PLAN nextAction = "" if nextPlan == "getRessource": self.path = self.ressourcePath next_node = Node(self.path[0]+self.ownPos[0], self.path[1]+self.ownPos[1]) if len(self.path) < 2 and next_node.coords != self.housePos.coords: nextAction = "collect" else: nextAction = "move" elif nextPlan == "goKill": self.path = self.killingPath print(self.path) return self.move(self.path) elif nextPlan == "goUpgrade": self.path = self.upgradePath if len(self.path) < 2: nextAction = "upgrade" else: nextAction = "move" # ACTION if nextPlan == "move": return create_move_action(self.path[0]) elif nextAction == "collect": return create_collect_action(self.path[0]) elif nextAction == "attack": return create_attack_action(self.path[0]) elif nextAction == "purchase": return create_upgrade_action(item) else: return create_move_action(Point(-1, 0)) def after_turn(self): """ Gets called after executeTurn """ pass def move(self, path): next_node = Point(path[0][0]+self.ownPos.coords[0], path[0][1]+self.ownPos.coords[1]) if self.gameMap.getTileAt(next_node) == TileContent.Wall or self.gameMap.getTileAt(next_node) == TileContent.Player: return create_attack_action(Point(path[0][0], path[0][1])) else: return create_move_action(Point(path[0][0], path[0][1]))
from utipy.string.letter_strings import letter_strings def test_letter_strings(): # n: int, num_chars: Optional[int] = None, upper: bool = False, descending: bool = False assert letter_strings(n=3) == ["a", "b", "c"] # 2 chars ls = letter_strings(n=27) assert len(ls) == 27 assert ls[:3] == ["aa", "ab", "ac"] # Start with 1 chars, end with 2 ls = letter_strings(n=27, num_chars=1) assert len(ls) == 27 assert ls[:3] == ["a", "b", "c"] assert ls[-1] == "aa" # 3 chars ls = letter_strings(n=27, num_chars=3) assert len(ls) == 27 assert ls[:3] == ["aaa", "aab", "aac"] assert ls[-1] == "aba" # Uppercase ls = letter_strings(n=3, upper=True) assert ls == ["A", "B", "C"] # Descending ls = letter_strings(n=3, descending=True) assert ls == ["z", "y", "x"]
# coding: utf8 ''' LintCode:http://www.lintcode.com/zh-cn/problem/balanced-binary-tree/ 93. 平衡二叉树 给定一个二叉树,确定它是高度平衡的。对于这个问题,一棵高度平衡的二叉树的定义是:一棵二叉树中每个节点的两个子树的深度相差不会超过1。 样例 给出二叉树 A={3,9,20,#,#,15,7}, B={3,#,20,15,7} A) 3 B) 3 / \ \ 9 20 20 / \ / \ 15 7 15 7 二叉树A是高度平衡的二叉树,但是B不是 ''' # 这题跟求最大二叉树的深度类似, 采用递归的方式求树的深度, 终止条件可以加入一个判断, 如果在递归当中发现了左右子树的高度差超过了 1, 可以返回 -1 # 这样在后续的递归就可以不用再继续判断. 已经有了 -1 就已经知道这棵树不平衡 class TreeNode: def __init__(self, val): self.val = val self.left, self.right = None, None class Solution: """ @param root: The root of binary tree. @return: True if this Binary tree is Balanced, or false. """ def isBalanced(self, root): # write your code here return self.maxDepth(root) != -1 def maxDepth(self, node): if node == None: return 0 left_depth = self.maxDepth(node.left) right_depth = self.maxDepth(node.right) if left_depth == -1 or right_depth == -1 or abs(left_depth - right_depth) > 1: return -1 return max(left_depth, right_depth) + 1
# -*- coding: utf-8 -*- """ Created on Tue Feb 14 15:59:11 2017 @author: af5u13 """ #exec(open("/home/andi/dev/visr/src/python/scripts/testPanningCalculator.py").read()) import visr import panning import numpy as np; #conffile = """<?xml version=\"1.0\" encoding=\"utf-8\"?> #<panningConfiguration dimension=\"2\" infinite=\"false\"> # <outputEqConfiguration numberOfBiquads=\"1\" type=\"iir\"> # <filterSpec name=\"lowpass\"> # <biquad a1=\"-1.9688283\" a2=\"0.96907117\" b0=\"6.0729856e-05\" b1=\"0.00012145971\" b2=\"6.0729856e-05\"/> # </filterSpec> # <filterSpec name=\"highpass\"> # <biquad a1=\"-1.9688283\" a2=\"0.96907117\" b0=\"-0.98447486\" b1=\"1.9689497\" b2=\"-0.98447486\"/> # </filterSpec> # </outputEqConfiguration> # <loudspeaker channel=\"2\" delay=\"0\" eq=\"highpass\" gainDB=\"0\" id=\"T-030\"> # <cart x=\"2.17\" y=\"1.36\" z=\"0\"/> # </loudspeaker> # <loudspeaker channel=\"1\" delay=\"9.8764e-05\" eq=\"highpass\" gainDB=\"-0.35712\" id=\"T+030\"> # <cart x=\"2.15\" y=\"-1.22\" z=\"0.01\"/> # </loudspeaker> # <virtualspeaker eq=\"highpass\" id=\"3\"> # <cart x=\"-1\" y=\"0\" z=\"0\"/> # <route lspId=\"T-030\" gainDB=\"0\"/> # <route lspId=\"T+030\" gainDB=\"0\"/> # </virtualspeaker> # <subwoofer assignedLoudspeakers=\"T-030, T+030\" channel=\"3\" delay=\"0\" eq=\"lowpass\" gainDB=\"0\" weights=\"1.000000, 1.000000\"/> # <triplet l1=\"T+030\" l2=\"3\"/> # <triplet l1=\"T-030\" l2=\"T+030\"/> # <triplet l1=\"3\" l2=\"T-030\"/> #</panningConfiguration>""" filename = 'C:/Local/gc1y17/visr/config/isvr/audiolab_stereo_1sub_with_rerouting.xml' conffile = open(filename,'r') lc = panning.LoudspeakerArray(filename) #lc.loadXmlString(conffile) print("FILE", conffile.read()) numRegSpeakers = lc.numberOfRegularLoudspeakers numTotSpeakers = lc.totNumberOfLoudspeakers numSub = lc.numberOfSubwoofers numTrip = lc.numberOfTriplets is2D = lc.is2D print( '\n','GENERAL CONFIGURATION ') print('Number of regular speakers: ', numRegSpeakers) print('Number of virtual speakers: ', numTotSpeakers-numRegSpeakers) print('Total number speakers (virtual included): ',numTotSpeakers) print('Number of subwoofers: ', numSub) print('Number of triplets: ', numTrip) print('2D layout: ',is2D) print('Infinite distance: ', lc.isInfinite) print( '\n','LIST OF LOUDSPEAKER CHANNELS') print('Loudspeaker channel indices: ', lc.channelIndices()) print('Detail:') for idx in range(0,numRegSpeakers): # THE METHODS getSpeakerChannel and getSpeakerChannelIndex are redundant in the binding #print('Channel of loudspeaker at index ',idx,': ',lc.getSpeakerChannel(idx)) print('Channel index of loudspeaker at index ',idx,': ',lc.getSpeakerChannelIndex(idx)) print( '\n','LIST OF SUBWOOFER CHANNELS') print('Subwoofer indices: ',lc.subwooferChannelIndices()) print('Detail:') for idx in range(0,numSub): print('Channel index of subwoofer at index ',idx,': ',lc.subwooferChannelIndex(idx)) print( '\n','LIST OF TRIPLETS') for idx in range(0,numTrip): if is2D: print('Triplet at index ',idx,': ',lc.getTriplet(idx)[0:2]) else: print('Triplet at index ',idx,': ',lc.getTriplet(idx))
import math import matplotlib.pyplot as plt import numpy import pandas import scipy import numpy.linalg as linalg import sklearn.cluster as cluster import sklearn.neighbors as neighbors Spiral = pandas.read_csv('C:\\Users\\minlam\\Documents\\IIT\\Machine Learning\\Data\\jain.csv', delimiter=',') nObs = Spiral.shape[0] plt.scatter(Spiral['x'], Spiral['y'], c = Spiral['group']) plt.xlabel('x') plt.ylabel('y') plt.grid(True) plt.show() trainData = Spiral[['x','y']] kmeans = cluster.KMeans(n_clusters=2, random_state=0).fit(trainData) print("Cluster Centroids = \n", kmeans.cluster_centers_) Spiral['KMeanCluster'] = kmeans.labels_ for i in range(2): print("Cluster Label = ", i) print(Spiral.loc[Spiral['KMeanCluster'] == i]) plt.scatter(Spiral['x'], Spiral['y'], c = Spiral['KMeanCluster']) plt.xlabel('x') plt.ylabel('y') plt.grid(True) plt.show() # Fourteen nearest neighbors for numberOfNeighbors in numpy.arange(1, 20): trainData = Spiral[['x','y']] kNNSpec = neighbors.NearestNeighbors(n_neighbors = numberOfNeighbors, algorithm = 'brute', metric = 'euclidean') nbrs = kNNSpec.fit(trainData) d3, i3 = nbrs.kneighbors(trainData) # Retrieve the distances among the observations distObject = neighbors.DistanceMetric.get_metric('euclidean') distances = distObject.pairwise(trainData) # Create the Adjacency matrix Adjacency = numpy.zeros((nObs, nObs)) for i in range(nObs): for j in i3[i]: Adjacency[i,j] = math.exp(- (distances[i][j])**2 ) # Make the Adjacency matrix symmetric Adjacency = 0.5 * (Adjacency + Adjacency.transpose()) # Create the Degree matrix Degree = numpy.zeros((nObs, nObs)) for i in range(nObs): sum = 0 for j in range(nObs): sum += Adjacency[i,j] Degree[i,i] = sum # Create the Laplacian matrix Lmatrix = Degree - Adjacency # Obtain the eigenvalues and the eigenvectors of the Laplacian matrix evals, evecs = linalg.eigh(Lmatrix) # Part (d) averageTraceL = numpy.trace(Lmatrix) / nObs for i in range(numberOfNeighbors): threshEigenvalue = evals[i,] / averageTraceL print("i = %2d, Eigenvalue = %.14e %.14e" % (i, evals[i,], threshEigenvalue)) # Series plot of the smallest five eigenvalues to determine the number of clusters sequence = numpy.arange(1,(numberOfNeighbors+1),1) plt.plot(sequence, evals[0:numberOfNeighbors,], marker = "o") plt.xlabel('Sequence') plt.ylabel('Eigenvalue') plt.xticks(sequence) plt.grid("both") plt.show() Z = evecs[:,[0,1]] # Perform 2-cluster K-mean on the first two eigenvectors kmeans_spectral = cluster.KMeans(n_clusters = 2, random_state = 0).fit(Z) Spiral['SpectralCluster'] = kmeans_spectral.labels_ plt.scatter(Spiral['x'], Spiral['y'], c = Spiral['SpectralCluster']) plt.xlabel('x') plt.ylabel('y') plt.grid(True) plt.show()
#!/usr/bin/env python3 import asyncio from async_generator import aclosing from amqproto.adapters.asyncio_adapter import AsyncioConnection, run async def main(): try: async with AsyncioConnection(host='localhost') as connection: async with connection.get_channel() as channel: await channel.queue_declare('task_queue', durable=True) await channel.basic_qos(prefetch_count=1) await channel.basic_consume('task_queue') print(' [x] Waiting for messages. To exit press CTRL+C') async with aclosing(channel.delivered_messages()) as messages: async for message in messages: body = message.body.decode('utf-8') to_sleep = body.count('.') print(" [x] Received %r, sleeping for %d seconds" % ( body, to_sleep )) await asyncio.sleep(to_sleep) print(" [x] Done") await channel.basic_ack( delivery_tag=message.delivery_info.delivery_tag ) except asyncio.CancelledError: print(' [x] Bye!') run(main())
from normality import collapse_spaces, stringify from pprint import pprint # noqa from datetime import datetime from lxml import html from opensanctions import constants MAX_RESULTS = 160 SEEN = set() COUNTRIES_URL = "https://www.interpol.int/en/How-we-work/Notices/View-Red-Notices" SEXES = { "M": constants.MALE, "F": constants.FEMALE, } def parse_date(date): if date: try: date = datetime.strptime(date, "%Y/%m/%d") except ValueError: date = datetime.strptime(date, "%Y") return date.date() def get_value(el): if el is None: return text = stringify(el.get("value")) if text is not None: return collapse_spaces(text) def get_countries(context): res = context.http.get(COUNTRIES_URL) doc = html.fromstring(res.text) path = ".//select[@id='arrestWarrantCountryId']//option" options = doc.findall(path) return [get_value(el) for el in options] def crawl_notice(context, notice): url = notice.get("_links", {}).get("self", {}).get("href") if url in SEEN: return SEEN.add(url) res = context.http.get(url) # if res.status_code == 403: # context.log.warning("Blocked by INTERPOL", url=res.url, country=country) # return # if not res.from_cache: # time.sleep(0.5) notice = res.json() first_name = notice["forename"] or "" last_name = notice["name"] or "" dob = notice["date_of_birth"] warrants = [ (warrant["charge"], warrant["issuing_country_id"]) for warrant in notice["arrest_warrants"] # noqa ] entity = context.make("Person") entity.make_id("INTERPOL", notice.get("entity_id")) entity.add("name", first_name + " " + last_name) entity.add("firstName", first_name) entity.add("lastName", last_name) entity.add("nationality", notice.get("nationalities")) # TODO: make this a Sanction: for charge, country in warrants: entity.add("program", country) entity.add("summary", charge) entity.add("gender", SEXES.get(notice.get("sex_id"))) entity.add("birthPlace", notice.get("place_of_birth")) entity.add("birthDate", parse_date(dob)) entity.add("sourceUrl", url) # entity.add("keywords", "REDNOTICE") # entity.add("topics", "crime") context.emit(entity) def crawl_country(context, country, age_max=120, age_min=0): params = { "ageMin": int(age_min), "ageMax": int(age_max), "arrestWarrantCountryId": country, "resultPerPage": MAX_RESULTS, } res = context.http.get(context.dataset.data.url, params=params) # if res.status_code == 403: # context.log.warning("Blocked by INTERPOL", url=res.url, country=country) # return # if not res.from_cache: # time.sleep(0.5) data = res.json() notices = data.get("_embedded", {}).get("notices", []) for notice in notices: crawl_notice(context, notice) total = data.get("total") # pprint((country, total, age_max, age_min)) if total > MAX_RESULTS: age_range = age_max - age_min if age_range > 1: age_split = age_min + (age_range // 2) crawl_country(context, country, age_max, age_split) crawl_country(context, country, age_split, age_min) elif age_range == 1: crawl_country(context, country, age_max, age_max) crawl_country(context, country, age_min, age_min) def crawl(context): for country in get_countries(context): if country is not None: crawl_country(context, country)
"""Class for RESQML Earth Model Interpretation organizational objects.""" from ._utils import (equivalent_extra_metadata, extract_has_occurred_during, equivalent_chrono_pairs, create_xml_has_occurred_during) import resqpy.olio.uuid as bu import resqpy.olio.xml_et as rqet from resqpy.olio.base import BaseResqpy from resqpy.olio.xml_namespaces import curly_namespace as ns from .organization_feature import OrganizationFeature class EarthModelInterpretation(BaseResqpy): """Class for RESQML Earth Model Interpretation organizational objects.""" # TODO: add support for StratigraphicColumn reference and other optional references resqml_type = 'EarthModelInterpretation' valid_domains = ('depth', 'time', 'mixed') def __init__(self, parent_model, root_node = None, uuid = None, title = None, organization_feature = None, domain = 'depth', extra_metadata = None): """Initialises an earth model interpretation organisational object.""" self.domain = domain self.organization_feature = organization_feature # InterpretedFeature RESQML field self.feature_root = None if self.organization_feature is None else self.organization_feature.root self.has_occurred_during = (None, None) if (not title) and organization_feature is not None: title = organization_feature.feature_name super().__init__(model = parent_model, uuid = uuid, title = title, extra_metadata = extra_metadata, root_node = root_node) def _load_from_xml(self): self.domain = rqet.find_tag_text(self.root, 'Domain') interp_feature_ref_node = rqet.find_tag(self.root, 'InterpretedFeature') assert interp_feature_ref_node is not None self.feature_root = self.model.referenced_node(interp_feature_ref_node) if self.feature_root is not None: self.organization_feature = OrganizationFeature(self.model, uuid = self.feature_root.attrib['uuid'], feature_name = self.model.title_for_root(self.feature_root)) self.has_occurred_during = extract_has_occurred_during(self.root) def is_equivalent(self, other, check_extra_metadata = True): """Returns True if this interpretation is essentially the same as the other; otherwise False.""" if other is None or not isinstance(other, EarthModelInterpretation): return False if self is other or bu.matching_uuids(self.uuid, other.uuid): return True if self.organization_feature is not None: if not self.organization_feature.is_equivalent(other.organization_feature): return False elif other.organization_feature is not None: return False if self.root is not None and other.root is not None: if rqet.citation_title_for_node(self.root) != rqet.citation_title_for_node(other.root): return False elif self.root is not None or other.root is not None: return False if check_extra_metadata and not equivalent_extra_metadata(self, other): return False return self.domain == other.domain and equivalent_chrono_pairs(self.has_occurred_during, other.has_occurred_during) def create_xml(self, organization_feature_root = None, add_as_part = True, add_relationships = True, originator = None, title_suffix = None, reuse = True): """Creates an earth model interpretation organisational xml node from an earth model interpretation object.""" # note: related organization feature node should be created first and referenced here if not self.title: self.title = self.organization_feature.feature_name if title_suffix: self.title += ' ' + title_suffix if reuse and self.try_reuse(): return self.root emi = super().create_xml(add_as_part = False, originator = originator) if self.organization_feature is not None: of_root = self.organization_feature.root if of_root is not None: if organization_feature_root is None: organization_feature_root = of_root else: assert of_root is organization_feature_root, 'organization feature mismatch' assert organization_feature_root is not None, 'interpreted feature not established for model interpretation' assert self.domain in self.valid_domains, 'illegal domain value for earth model interpretation' dom_node = rqet.SubElement(emi, ns['resqml2'] + 'Domain') dom_node.set(ns['xsi'] + 'type', ns['resqml2'] + 'Domain') dom_node.text = self.domain self.model.create_ref_node('InterpretedFeature', self.model.title_for_root(organization_feature_root), organization_feature_root.attrib['uuid'], content_type = 'obj_OrganizationFeature', root = emi) create_xml_has_occurred_during(self.model, emi, self.has_occurred_during) if add_as_part: self.model.add_part('obj_EarthModelInterpretation', self.uuid, emi) if add_relationships: self.model.create_reciprocal_relationship(emi, 'destinationObject', organization_feature_root, 'sourceObject') return emi
# Introduction to Python In this second workshop we'll take our first look at programming in Python. We'll cover the key data types (including NumPy arrays), as well as functions, and control flow statements. You could do an entire course focused on learning Python as a general purpose programming languague. For our goal, we're going to focus on how to use Python and some of its key libraries for data science work. The language has been around since 1991 and is named in tribute to Monty Python... <center> ![monty_python_gif](images/tenor.gif) </center> There are a couple of really good introductory books on using Python for data science that I recommend. <center> [![wes_mckinney_book](images/python_data_analysis.jpg)](https://www.amazon.co.uk/Python-Data-Analysis-Wes-Mckinney-dp-1491957662/dp/1491957662/ref=dp_ob_title_bk) [![Jake VanderPlas_book](images/data_science_handbook.jpg)](https://www.amazon.co.uk/Python-Data-Science-Handbook-Techniques/dp/1491912057/ref=sr_1_1?crid=KFHZFNZYHQTL&dchild=1&keywords=python+data+science+handbook&qid=1619688682&s=books&sprefix=python+data+science+%2Cstripbooks%2C157&sr=1-1) </center> %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/i5NelhnFbrQ" frameborder="0" allowfullscreen></iframe> </div> ## Similarities Between Python and R Both Python and R are high-level interpreted languages - this means that Python and R scripts can only be run if you have a Python or R interpreter installed on the machine you’re using. Both Python and R are typically used with libraries or packages that can hugely expand the functionality of the basic language. When doing data science in R or Python, you’re likely using the base language plus packages such as `{dplyr}` and `{tidyr}` in R and libraries such as `numpy` and `pandas` in Python. Reproducibility is important so you need to keep track of the packages/libraries you’re using so that you can recreate your analysis at some future point (or so that someone else can recreate your analysis). ## Differences Between Python and R Python is a general purpose programming language, while R is a specialised statistical programming language (although it can sometimes be used for more general programming tasks). As a language, Python code is more readable than R code and there’s a consistency in the Python language that you don’t get in R (e.g., differences in base R vs. Tidyverse syntax vs. formula syntax). While R has backwards compatibility, Python does not (e.g., differences between Python 2.x and 3.x). Python is an object-oriented programming language and this gives you flexibility to use methods to work with new objects. You can do a lot more in Python than in R, but Python lacks some of the statistical model libraries that are present in R (although it has lots more machine learning libraries). ### Indendation Has Meaning In Python One of the biggest differences between Python and R, is that **in Python indentation has meaning** - in R indentation can make your scripts looks nice (but has no intrinsic meaning). In Python, indentation is used in place of { } in order to group together statements. Consider a for loop to print the numbers 1 to 10. In Python: for i in range(1,11): print(i) In R: for (i in 1:10) { print(i) } ### Python Uses Zero-Based Indexing In Python, indexing starts at 0 but in R indexing starts at 1. In practice, this means that if we want to reference an element in a list (for example) we need to remember the initial element is at position 0 in Python, but position 1 in R. So, to refer to the initial element `('apple')` we need to do the following: In Python: my_list = ['apple', 'banana', 'pear'] my_list[0] In R: my_list <- list('apple', 'banana', 'pear') my_list[1] In both these cases the output will be `apple`. %%HTML <div style="text-align: center"> <iframe width="250" height="250" src="https://giphy.com/embed/LmNwrBhejkK9EFP504" frameBorder="0" class="giphy-embed" allowFullScreen></iframe><p><a href="https://giphy.com/gifs/memecandy-LmNwrBhejkK9EFP504">via GIPHY</a></p> </div> ## Data Types and Variable Assignment %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/DxZ0eTWYmnE" frameborder="0" allowfullscreen></iframe> </div> We will be writing our code using a Jupyter Notebook. On macOS, you are going to be entering the commands below that start up a Jupyter Notebook using Terminal, and on Windows you will be using the Anaconda Prompt. Jupyter Notebooks allows us to write text in Markdown format (as I have written in this block), alongside the Python code and output. If you have completed the previous workshop, you should be able to launch a Jupyter Notebook on your own machine. Make sure you have a conda environment activated (type `conda activate` if you don't). Set up a new Notebook by typing `jupyter notebook` in a terminal window. This should launch Jupyter Notebooks running in your browser. conda activate jupyter notebook Start a new Python script in your `Python (data_science)` environment. ![](images/new_notebook.png) Some of the most common data types in Python are integer (`int`) and floating point (`float`) for representing numbers, and strings (`str`) for representing text. We can assign values to variables - the data type is dynamically inferred by Python (in contrast to other languages such as C++ where they have to be explicitly declared). You can check what type a variable is by using `type()`. Try running the following two lines of Python code in your Jupyter Notebook. my_name = 'Andrew' print(type(my_name)) In the output, you should see that the variable `my_name` has been identified as type `str` as it is contains text. Assigning values to variables is a key component in scripting/coding. You can use variables to store values that you need to be able to access later, and variables can be re-assigned as your script progresses (maybe you want to store temporary values in a variable). You can print the contents of a variable using the `print(variable_name)` function in Python. In the code below, we create two variables. The `print` function can take multiple arguments so we can print the values of the two variables with the line `print(first_variable_name, second_variable_name)`. my_favourite_number_text = 'My favourite number is:' my_favourite_number = 25 print(my_favourite_number_text, my_favourite_number) Modify the above code so that it displays the following: 25 is my favourite number. ```{admonition} Click the button to reveal answer :class: dropdown my_favourite_number = 25 my_favourite_number_text = "is my favourite number." print(my_favourite_number, my_favourite_number_text) ``` You might have come up with a slightly different solution. It's important to remember there are often several (sometimes many) ways to achieve the same task - even in quite simple cases. Let’s now assign a different number to the `my_favourite_number` variable and change the `my_favourite_number_text` back to what it was originally. my_favourite_number = 16 my_favourite_number_text = 'My favourite number is:' print(my_favourite_number_text, my_favourite_number) ## Lists %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/bINIwJnLAn4" frameborder="0" allowfullscreen></iframe> </div> Lists can be assigned to variables. In Python lists are indicated by square brackets, `[` and `]`, and contain elements - often of the same type - for example, lists of integers, strings etc. Lists can also contain a mix of elements of different types (but you may want to avoid this). The next bit of code creates a list called `my_numbers` that contains 4 integer elements. Remember, in contrast to R, Python uses zero-position indexing. So the first element in the list is at position 0, the second at position 1 etc. We can index an element in the list using square brackets. Let's index the second element... my_numbers = [10, 20, 30, 40] my_numbers[1] The next list is a list of strings. How would you go about indexing the fourth element? my_names = ['Andrew', 'Suzanne', 'Eliza', 'Seb'] ```{admonition} Click the button to reveal answer :class: dropdown my_names[3] ``` Elements in lists can be changed (i.e., lists are mutable): my_names[0] = 'Iggy Pop' print(my_names) Lists can be sliced using `:` The following will slice from the third element to the end of the list. my_names[2:] While the line below will slice from the start of the list up to (but *excluding*) the third element. my_names[:2] We can also specify the start and stop points of the slicing as follows. my_names[1:3] ## Tuples %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/i5FOo0LtT9M" frameborder="0" allowfullscreen></iframe> </div> Tuples are like lists, except they are *immutable* - in other words, their contents cannot be changed later. While lists are created using *square* brackets, tuples are created using *round* brackets. But like lists, you use *square* brackets to reference elements in a tuple. my_tuple = (10, 20, 30, 40) my_tuple[3] If you try to change an element in a tuple, an error will be generated. my_tuple[3] = 5 Tuples can be sliced too. The following will slice from the start up to (but excluding) the fourth element. my_tuple[:3] How would you slice `my_tuple` so that it contains only the second and third elements? :::{admonition} Click the button to reveal answer :class: dropdown my_tuple[1:3] ::: If you wanted to, you could map the above output onto a new variable called `my_sliced_tuple` and use the operator `==` (more on this later) to check that they are the same. my_sliced_tuple = my_tuple[:3] my_sliced_tuple == my_tuple[:3] ## Arrays %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/YvfGr8ZN5-k" frameborder="0" allowfullscreen></iframe> </div> An array is a data structure consisting of a collection of elements, each identified by at least one array index (or key). Arrays are core data structures in data science and machine learning. For example, you can store images as 2-dimensional arrays representing pixel brightness across the area of the image. Data frames and tibbles in R are types of 2-dimensional arrays - data stored in rectangular format with rows and columns. Arrays don’t have to just be in two dimensions but it can be tricky imagining more dimensions... NumPy arrays are better than inbuilt Python arrays in that they are more efficient as the arrays grow larger in size. In the code below we’re importing the `numpy` package as `np` (this is the conventional alias for this package). We then set our randomisation seed to ensure reproducibility. Remember, computers can't generate true random numbers so use an algorithm. We can fix the start of this algorithmic generation procedure to ensure that if we re-run our code we get the same random numbers. We then create an array of random integers from 0 (inclusively) and 10 (exclusively) that has 3 rows and 4 columns. We use the NumPy routine `random` and the operation `randint` to generate this array. We need to specify the low and high values of the range we're sampling from, and the shape of the array (number of rows by number of columns) we are wanting to generate. import numpy as np np.random.seed(1234) my_array = np.random.randint(low=0, high=10, size=(3, 4)) my_array We can then check the shape of the array using `.shape` my_array.shape ## Getting Help In your Jupyter Notebook you can type `help()` and put in the brackets the name of the module and function you want help with. Most help files are incredibly useful and will clearly describe what a function does, what it takes as its input parameters, and what it returns in its output. Below is what I get when I ask for help with the `shape` operation in `numpy`. help(np.shape) ## Variable Assignments are References (not Copies) %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/BnbjqxFZRlk" frameborder="0" allowfullscreen></iframe> </div> Assignment in Python involves creating bindings between a target and an object in computer memory - not just simple copying - this can easily trip you up if you assume that assignment creates a new **copy** of of the original object. my_old_names = ['Andrew', 'Suzanne', 'Eliza', 'Seb'] my_new_names = my_old_names print(my_new_names) my_old_names[0] = 'this is surprising' print(my_new_names) Note that in the above code we're changing the first element in the list `my_old_names` but keeping the variable `my_new_names` the same as it was (or so we think). But if we now print `my_new_names` we see that this list reflects the change we made to `my_old_names`. This will catch you out unless you realise that both variable names are pointing to the same contents in the computer's memory. ## Functions %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/zvIEzvX5zEU" frameborder="0" allowfullscreen></iframe> </div> Python has a number of built-in functions such as `print()`, `abs()`, `bin()` etc. You can see the full list [here](https://docs.python.org/3/library/functions.html). Generally, functions take an input, do something with the input, and then output the result. You can use the `help()` function to get help on other functions. help(print) ## User-Defined Functions If you find yourself writing the same chunk of code again and again, you might want to turn it into a function. For example, imagine I want to display someone’s BMI on the basis of knowing their height (in metres) and mass (in kg). The formula for BMI is: BMI = kg/m2. Let’s write a function that takes as its input someone’s weight and height, and then returns their BMI. We use `def` to define our function that we're calling `bmi`. It takes two parameters, `weight` and `height`. Inside the body of the function it creates a new variable called `bmi_value` which is `weight` divided by `height` squared. The function then returns this value. We can call the function to work out the bmi of someone with a weight of 87 kgs, and a height of 1.8 metres with with `bmi(87, 1.8)`. Note that in the code below we are using indentation for the body of the function. Indentation in Python is important and is meaningful (i.e., it's not an aesthetic decision). Indentation is used to indicate a block of code. The convention is to indent each line of a block by 4 spaces (don't use tab). def bmi(weight, height): bmi_value = weight/(height*height) return bmi_value bmi(87, 1.8) It is worth noting that functions don't have to take any input parameters. For example, in the trivial function below - which prints "Hello world!" - we can call the function with `hello_world()` def hello_world(): print('Hello world!') hello_world() Your challenge to write a function that calculates Cohen's d, a common measure of effect size, for an experiment given two means of 1020 and 1000, and a pooled standard deviation (SD) of 50. The equation for Cohen's d is: $$ Cohen's D = \frac{mean1 - mean2}{pooled\: SD} $$ Your function will need to take three arguments (the two means plus the pooled SD) and return the Cohen's d value. Try that now. :::{admonition} One possible solution is below. :class: dropdown def cohen_d(mean1, mean2, sd): effect_size = (mean1 - mean2) / sd return effect_size cohen_d(1020, 1000, 50) ::: ## Control Flow Statements - For Loops %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/vQrhJMd6Hb8" frameborder="0" allowfullscreen></iframe> </div> We can run the same command or chunk of code any number of times by placing it within a `for` loop. In the following, we print the phrase `Hello world!` five times. In Python, the code block within the loop that is to be repeated needs to indented. for i in range(0, 5): print('Hello world!') We can also iterate over elements in an array using a `for` loop. In the following example, we iterate through the elements in our list and print each element. my_names = ['Andrew', 'Suzanne', 'Eliza', 'Seb'] for element in my_names: print(element) ### Iterating Over an Array %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/Uu_jm-Ukp_U" frameborder="0" allowfullscreen></iframe> </div> In the same way we can iterate over lists, we can iterate over arrays row-by-row. Let’s create a 2-dimensional array called `vital_stats` with the weights and heights of three individuals. The first row of the array will be their weights, and the second row their heights. The third will be their names. weights = np.array([70, 60, 90]) heights = np.array([1.67, 1.77, 1.78]) names = np.array(['Iggy', 'David', 'Lou']) vital_stats = np.array((weights, heights, names)) print(vital_stats) We see that in a for loop we can iterate over the rows in our array. for index in vital_stats: print(index) What we really want to do is iterate over columns. Luckily there is a Transpose attribute built into NumPy arrays that produces the transposed array (i.e., columns and rows swapped). for index in vital_stats.T: print(index) We can cycle through the rows of this transposed array (with the rows now corresponding to the weight, height and name of each individual), and pass these values to the `bmi` function that we wrote. Each person’s weight is in column 0 of the array, and each person’s height in column 1. Their name is in column 2. The following loop cycles through our NumPy array person by person and calls the `bmi` function for each person in the array before printing out the result (rounded to zero decimal places using the `round` function). Note that the elements in the array we have created are all of type `str` as this is the only way to represent the elements as being of the same type (which is a requirement of NumPy arrays). We can convert each number that is currently of type `str` to a number with `float` so that we can pass it to the `bmi` function. for person in vital_stats.T: weight = float(person[0]) height = float(person[1]) print(person[2], 'has a BMI of', round(bmi(weight, height))) The following will be a group-based activity which you will do in class. Imagine three experiments. Each is a between participants design with two groups. For Experiments 1, 2, and 3 the mean of group 1 is always 500. For Experiments 1, 2, and 3 the means of group 2 are 485, 490, and 495 respectively. The pooled SD for all groups is 10. Write the code that will produce Cohen's d from a `numpy` array that contains the means and the pooled SD for each of the three experiments. :::{admonition} One possible solution is below. :class: dropdown experiment1 = np.array([500, 485, 10]) experiment2 = np.array([500, 490, 10]) experiment3 = np.array([500, 495, 10]) all_experiments = np.array((experiment1, experiment2, experiment3)) def cohen_d(mean1, mean2, sd): effect_size = (mean1-mean2)/sd return effect_size for experiment in all_experiments: mean1 = experiment[0] mean2 = experiment[1] sd = experiment[2] print("For a group one mean of", mean1, "and a group two mean of", mean2, "and a pooled sd of ", sd, "Cohen's d is", cohen_d(mean1, mean2, sd)) ::: ## Operators %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/2UphPf9kpew" frameborder="0" allowfullscreen></iframe> </div> The kinds of logical operators that you’ve come across in `R`, are also used in `Python`. They result in `True` or `False`. For example, for variables `a` and `b`: Equals: a == b Not Equals: a != b Less than: a < b Less than or equal to: a <= b Greater than: a > b Greater than or equal to: a >= b These expressions can be used in lots of contexts including in control flow statements where evaluation of an expression determines how the control flow statement is interpreted. In Python the logical operator AND is represented by `and`, OR by `or`, and NOT by `not`. a = 5 b = 6 a == b a != b a < b a <= b a > b a >= b You can also compare NumPy arrays element by element using logical operators as follows. a = np.array([1, 2, 3]) b = np.array([3, 2, 1]) a == b a < b You can also apply arithmetic operations to arrays on an element by element basis. a + b ## Control Flow Statements - While Loops %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/dmteK2wKjv4" frameborder="0" allowfullscreen></iframe> </div> Code inside a while loop runs as long as the while loop evaluates to `True`. For example, we set a counter, `i`, to equal zero. The code in the `while` loop will run as long as the counter, `i`, does not equal 2. Each time we run the code in the while loop, we increment `i` by 1. This means that this loop will run exactly twice, each time printing the `i`th element in the list. my_names = ['Andrew', 'Suzanne', 'Eliza', 'Seb'] i = 0 while i != 2: print(my_names[i]) i += 1 ## Control Flow Statements - Conditionals %%HTML <div style="text-align: center"> <iframe width="560" height="315" src="https://youtube.com/embed/WBDUYuQ-r7I" frameborder="0" allowfullscreen></iframe> </div> `If` statements (and the related `elif` and `else`) are conditional statements such that if they evaluate as `True` the associated code chunk is run, else some other code chunk is run. In the following example, the `else` statement catches any cases where neither the `if` nor `elif` statements evaluate as `True`. my_first_number = 5 my_second_number = 6 if my_first_number < my_second_number: print(my_first_number, 'is less than', my_second_number) elif my_first_number > my_second_number: print(my_first_number, 'is greater than', my_second_number) else: print(my_first_number, 'is equal to', my_second_number) What do you think will happen if you set the values of both numbers to be the same - and delete the last two lines of code (i.e., the line beginning `else:` and the following one)? ```{admonition} Click the button to reveal answer :class: dropdown Nothing happens. The `if` statement evaluates to False, not True, as does the `elif` statement. As nothing evaluates to True (and we didn't write any code that deals with other outcomes) nothing happens. ```
# -*- coding:utf-8 -*- # Created by Hans-Thomas on 2011-05-11. #============================================================================= # logger.py --- Logger meta class #============================================================================= import logging class MetaLogger(type): def __new__(self, classname, bases, classdict): classdict.setdefault('log', logging.getLogger('%s.%s' % (classdict['__module__'], classname))) return type.__new__(self, classname, bases, classdict) class Logger(object): __metaclass__ = MetaLogger #............................................................................. # logger.py
from typing import Any try: import cv2 import numpy as np except ImportError: raise ImportError( "cv2 is not installed. Please install it with `pip install opencv-python`." ) try: import mss except ImportError: raise ImportError("mss is not installed. Please install it with `pip install mss`.") try: import pyautogui except ImportError: raise ImportError( "pyautogui is not installed. Please install it with `pip install pyautogui`." ) from gurun.node import Node class ScreenshotPAG(Node): def run(self, filename: str = None, *args: Any, **kwargs: Any) -> np.ndarray: image = pyautogui.screenshot() if filename is not None: image.save(filename) return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) class ScreenshotMMS(Node): def __init__(self, monitor: int = 0, **kwargs: Any) -> None: super().__init__(**kwargs) self._monitor = monitor def run(self, filename: str = None, *args: Any, **kwargs: Any) -> np.ndarray: with mss.mss() as sct: output = np.array(sct.grab(sct.monitors[self._monitor]))[:, :, :3] if filename is not None: cv2.imwrite(filename, output) return output
import requests class Nacos: """ Nacos api """ def __init__(self, url, namespace): """ :param url: Nacos的地址 :param namespace: 应用的namespace """ self.url = url self.namespace = namespace def get_config(self, data_id, group="DEFAULT_GROUP"): """ 获取配置项的值 :param data_id: config的id :param group: 所属的group :return: 返回配置的值,如果此配置不存在就抛出ConfigNotFoundException """ params = {"tenant": self.namespace, "dataId": data_id, "group": group} headers = { 'User-Agent': 'User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)'} config_request = requests.get(url=f"{self.url}/nacos/v1/cs/configs", params=params, headers=headers) config_value = config_request.text if config_value == "config data not exist\n": raise ConfigNotFoundException(data_id) return config_value class ConfigNotFoundException(Exception): def __init__(self, config_name): self.config_name = config_name def __str__(self): return f"Error!!!Can't get {self.config_name} from Nacos Server,please check your dataId."
from typing import List from sqlalchemy.orm import Session from fastapi import APIRouter, Depends, status, Response from util.public import get_dirs_by_uid from schema import DirectoryOut, DirectoryBase, BookmarkOut from models import User, Directory from database import get_db from router.client.c_auth import get_current_user from util.public import get_dir_by_name_and_uid, get_dir_by_id from util import error router = APIRouter(prefix="/client/d", tags=["Client-Directory"]) @router.post("/", response_model=DirectoryOut) async def create_directory(payload: DirectoryBase, db: Session = Depends(get_db), c_user: User = Depends(get_current_user)): dir_in_db = await get_dir_by_name_and_uid(name=payload.name, uid=c_user.id, db=db) if dir_in_db: error.existed_error(f"directory '{payload.name}' existed") dir = Directory(name=payload.name, description=payload.description, user_id=c_user.id) db.add(dir) db.commit() res = await get_dir_by_name_and_uid(name=payload.name, uid=c_user.id, db=db) return res @router.delete("/{id}", status_code=status.HTTP_204_NO_CONTENT) async def delete_dir_by_id(id: str, c_user: User = Depends(get_current_user), db: Session = Depends(get_db)): dir_in_db: Directory = await get_dir_by_id(id=id, db=db) if not dir_in_db: error.notfound_error(f"not found directory '{id}'") if dir_in_db.user_id != c_user.id: error.auth_failed(f"permission denied") db.delete(dir_in_db) db.commit() return Response(status_code=status.HTTP_204_NO_CONTENT) @router.put("/{id}", response_model=DirectoryOut) async def update_directory(id: str, payload: DirectoryBase, c_user: User = Depends(get_current_user), db: Session = Depends(get_db)): dir_in_db: Directory = await get_dir_by_id(id=id, db=db) if not dir_in_db: error.notfound_error(f"not found directory '{id}'") if dir_in_db.user_id != c_user.id: error.auth_failed(f"permission denied") dup = await get_dir_by_name_and_uid(name=payload.name, uid=c_user.id, db=db) if dup and str(dup.id) != id: error.existed_error(f"directory '{payload.name}' existed") dir_in_db.name = payload.name dir_in_db.description = payload.description db.commit() return await get_dir_by_id(id=id, db=db) @router.get("/", response_model=List[DirectoryOut]) async def get_directories(c_user: User = Depends(get_current_user), db: Session = Depends(get_db)): return await get_dirs_by_uid(uid=c_user.id, db=db) @router.get("/{id}", response_model=List[BookmarkOut]) async def get_bookmarks_by_dir_id(id: str, db: Session = Depends(get_db), c_user: User = Depends(get_current_user)): dir_in_db: Directory = await get_dir_by_id(id=id, db=db) if not dir_in_db: error.notfound_error(f"not found directory '{id}'") if dir_in_db.user_id != c_user.id: error.auth_failed(f"permission denied") return dir_in_db.bookmarks
RSA_KEY_LEN = 512 AES_KEY_LEN = 32 # 暂定为32位 UPDATE_KEY_DURATION = 60 * 10 # 密钥更新时间间隔
from django.urls import path from . import views app_name = 'oidc_provider' urlpatterns = [ path('.well-known/<str:service>', views.well_known, name="_well_known"), path('registration', views.registration, name="registration"), path('registration_read', views.registration_read, name="registration_read"), path('authorization', views.authorization, name="authorization"), path('verify/oidc_user_login/', views.verify_user, name="verify_user"), path('token', views.token, name="token"), path('userinfo', views.userinfo, name="userinfo"), path('introspection', views.introspection, name="introspection"), path('check_session_iframe', views.check_session_iframe, name="check_session_iframe"), path('session', views.session_endpoint, name="session"), # logout path('verify_logout', views.verify_logout, name="verify_logout"), path('post_logout', views.post_logout, name="post_logout"), path('rp_logout', views.rp_logout, name="rp_logout"), ]
#!/usr/bin/env python3 """Simple example on how to move the robot.""" import json import sys import robot_fingers from rrc_iprl_package.example import move_up_and_down # Number of actions in one episode (1000 actions per second for two minutes) episode_length = 2 * 60 * 1000 def main(): # the difficulty level and the goal pose (as JSON string) are passed as # arguments difficulty = int(sys.argv[1]) goal_pose_json = sys.argv[2] goal = json.loads(goal_pose_json) print( "Goal: %s/%s (difficulty: %d)" % (goal["position"], goal["orientation"], difficulty) ) # create the robot frontend frontend = robot_fingers.TriFingerPlatformFrontend() # move the robot move_up_and_down(frontend, episode_length) # It is possible to create custom files in "/output" with open("/output/hello.txt", "w") as fh: fh.write("Hello there!\n") if __name__ == "__main__": main()
import os import re import pandas as pd import numpy as np import zipfile def strftime_to_re_pattern(strftime_format): """infer the regular expression pattern of a strftime format string Parameters ---------- strftime_format: str string with the strftime format of the whatsapp file Returns ------- re_pattern: str regular expression pattern """ re_pattern = strftime_format.replace('%d', '\\d\\d') re_pattern = re_pattern.replace('/', '\\/') re_pattern = re_pattern.replace('[', '\\[') re_pattern = re_pattern.replace(']', '\\]') re_pattern = re_pattern.replace('%m', '\\d\\d') re_pattern = re_pattern.replace('%b', '[A-Z][a-z]{2}') re_pattern = re_pattern.replace('%Y', '\\d\\d\\d\\d') re_pattern = re_pattern.replace('%y', '\\d\\d') re_pattern = re_pattern.replace('%H', '\\d\\d') re_pattern = re_pattern.replace('%M', '\\d\\d') re_pattern = re_pattern.replace('%S', '\\d\\d') re_pattern = '(' + re_pattern + ')' return re_pattern def read_whatsapp(whatsapp_file, datetime_pattern = None, user_sep=':', strftime_format = '[%d/%m/%Y, %H:%M:%S]', encoding="utf8", max_non_message_lines=5): """ read a whatsapp data file into a pandas dataframe Parameters ---------- whatsapp_file: str path of the exported data from Whatsapp, can be a .zip or .txt file datetime_pattern: str, optional regular expression to recognize datetime, if None datetime_pattern is inferred from strftime_format user_sep: str, optional the character between the user and the message in the whatsapp file strftime_format: str, optional the format of the date in the whatsapp file encoding: str, optional encoding of the whatsapp txt file max_non_message_lines: int, optional the number of non message lines at the beginning of the file. For example .. was added to the conversation \n Returns ------- time_user_df: pandas.DataFrame DataFrame with all the data from you whatsapp conversation """ #check file type if whatsapp_file.endswith('txt'): whatsapp_txt = whatsapp_file elif whatsapp_file.endswith('.zip'): whatsapp_txt = unzip_whatsapp_file(whatsapp_file) else: raise FileNotFoundError('could not open file: %s'%whatsapp_file) if datetime_pattern is None: datetime_pattern = strftime_to_re_pattern(strftime_format) re_datetime = re.compile(datetime_pattern) datetimeuser_pattern = datetime_pattern + '(.*?)' + user_sep re_datetimeuser = re.compile(datetimeuser_pattern) with open(whatsapp_txt, 'r', encoding=encoding) as fo: line = fo.readline() # filter weird intro line (without a user) intro_line = True counter = 0 while intro_line + (counter < max_non_message_lines) == 2: try: check_date_pattern(line, re_datetime) check_date_user_pattern(line, re_datetimeuser) intro_line = False except ValueError: line = fo.readline() counter += 1 # print error if patterns are not recognized if counter == 5: check_date_pattern(line, re_datetime) check_date_user_pattern(line, re_datetimeuser) # read intro lines empty, date, user, message = re_datetimeuser.split(line) datetime_list = [date] user_list = [user] message_list = [message] # loop over all other messages for line in fo: pattern_match = re_datetimeuser.search(line) if pattern_match: empty, date, user, message = re_datetimeuser.split(line) datetime_list.append(date) user_list.append(user) message_list.append(message) else: message_list[-1] = message_list[-1] + line time_user_df = pd.DataFrame(data={'datetime': datetime_list, 'user': user_list, 'text': message_list, 'message': [1] * len(user_list)}, ) time_user_df.index = pd.to_datetime(time_user_df.datetime, format=strftime_format, dayfirst=True) return time_user_df def check_date_pattern(line, re_datetime): """ Checks if the date pattern can be recognized in a string. If not a ValueError is raised. Parameters ---------- line: str line to check date pattern in re_datetime: _sre.SRE_Pattern datetime pattern as a compiled regular expression Returns ------- """ if re_datetime.search(line): print('date pattern recognized') else: raise ValueError('pattern not recgonized') def check_date_user_pattern(line, re_datetimeuser): """ Checks if the date user pattern can be recognized in a string. If not a ValueError is raised. Parameters ---------- line: str line to check date pattern in re_datetimeuser: _sre.SRE_Pattern datetimeuser pattern as a compiled regular expression Returns ------- """ if re_datetimeuser.search(line): print('user separator recognized') else: raise ValueError('pattern not recgonized') def check_anonymized_dataset(time_user_df): """ check if a pandas dataframe is an anonymized dataset. If so a KeyError is raised. Parameters ---------- time_user_df: pandas.DataFrame dataframe with the whatsapp data Returns ------- """ if 'text' not in time_user_df.columns: print('making a wordcload only works with a dataset in which the text is included.') print('Therefore it does not work on anonymized datasets') raise KeyError('working with anonymised dataset') def unzip_whatsapp_file(whatsapp_file): """ unzips a whatsapp .zip file and returns the path of the _chat.txt file that was extracted from the zip Parameters ---------- whatsapp_file: str path to a .zip file with the exported data from Whatsapp. Returns ------- str path to the _chat.txt file that was extracted from the .zip """ zip_ref = zipfile.ZipFile(whatsapp_file, 'r') txt_file = zip_ref.namelist()[0] zip_ref.extractall(os.path.split(whatsapp_file)[0]) zip_ref.close() zip_dir = os.path.split(whatsapp_file)[0] return os.path.join(zip_dir, txt_file)
# Copyright 2022 by Autodesk, Inc. # Permission to use, copy, modify, and distribute this software in object code form # for any purpose and without fee is hereby granted, provided that the above copyright # notice appears in all copies and that both that copyright notice and the limited # warranty and restricted rights notice below appear in all supporting documentation. # # AUTODESK PROVIDES THIS PROGRAM "AS IS" AND WITH ALL FAULTS. AUTODESK SPECIFICALLY # DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE. # AUTODESK, INC. DOES NOT WARRANT THAT THE OPERATION OF THE PROGRAM WILL BE # UNINTERRUPTED OR ERROR FREE. import os import adsk.core from .testUtils import run_test, get_test_base_dir from ... import config from ...lib import fusion360utils as futil app = adsk.core.Application.get() ui = app.userInterface CMD_NAME = 'Run Test' CMD_ID = f'{config.COMPANY_NAME}_{config.ADDIN_NAME}_run' CMD_Description = 'Run a Test Case' IS_PROMOTED = True # Global variables by referencing values from /config.py WORKSPACE_ID = config.design_workspace TAB_ID = config.design_tab_id TAB_NAME = config.design_tab_name PANEL_ID = config.test_panel_id PANEL_NAME = config.test_panel_name PANEL_AFTER = config.test_panel_after # Resource location for command icons, here we assume a sub folder in this directory named "resources". ICON_FOLDER = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'resources', 'run', '') # Holds references to event handlers local_handlers = [] # Executed when add-in is run. def start(): # ******************************** Create Command Definition ******************************** cmd_def = ui.commandDefinitions.addButtonDefinition(CMD_ID, CMD_NAME, CMD_Description, ICON_FOLDER) # Add command created handler. The function passed here will be executed when the command is executed. futil.add_handler(cmd_def.commandCreated, command_created) # ******************************** Create Command Control ******************************** # Get target workspace for the command. workspace = ui.workspaces.itemById(WORKSPACE_ID) # Get target toolbar tab for the command and create the tab if necessary. toolbar_tab = workspace.toolbarTabs.itemById(TAB_ID) if toolbar_tab is None: toolbar_tab = workspace.toolbarTabs.add(TAB_ID, TAB_NAME) # Get target panel for the command and and create the panel if necessary. panel = toolbar_tab.toolbarPanels.itemById(PANEL_ID) if panel is None: panel = toolbar_tab.toolbarPanels.add(PANEL_ID, PANEL_NAME, PANEL_AFTER, False) # Create the command control, i.e. a button in the UI. control = panel.controls.addCommand(cmd_def) # Now you can set various options on the control such as promoting it to always be shown. control.isPromoted = IS_PROMOTED # Executed when add-in is stopped. def stop(): # Get the various UI elements for this command workspace = ui.workspaces.itemById(WORKSPACE_ID) panel = workspace.toolbarPanels.itemById(PANEL_ID) toolbar_tab = workspace.toolbarTabs.itemById(TAB_ID) command_control = panel.controls.itemById(CMD_ID) command_definition = ui.commandDefinitions.itemById(CMD_ID) # Delete the button command control if command_control: command_control.deleteMe() # Delete the command definition if command_definition: command_definition.deleteMe() # Delete the panel if it is empty if panel.controls.count == 0: panel.deleteMe() # Delete the tab if it is empty if toolbar_tab.toolbarPanels.count == 0: toolbar_tab.deleteMe() # Function to be called when a user clicks the corresponding button in the UI. def command_created(args: adsk.core.CommandCreatedEventArgs): futil.log(f'{CMD_NAME} Command Created Event') inputs = args.command.commandInputs drop_style = adsk.core.DropDownStyles.TextListDropDownStyle drop_down_input = inputs.addDropDownCommandInput('test_name', 'Test Name', drop_style) test_base_dir = get_test_base_dir() last_time = 0 for file_name in os.listdir(test_base_dir): full_path = os.path.join(test_base_dir, file_name) if os.path.isdir(full_path): test_results = os.path.join(full_path, 'results.json') if os.path.exists(test_results): list_item = drop_down_input.listItems.add(file_name, False) this_m_time = os.path.getmtime(test_results) if this_m_time > last_time: list_item.isSelected = True last_time = this_m_time if drop_down_input.listItems.count == 0: drop_down_input.listItems.add(f'No Tests Found in: {test_base_dir}', True) args.command.isOKButtonVisible = False # Connect to the events that are needed by this command. futil.add_handler(args.command.execute, command_execute, local_handlers=local_handlers) futil.add_handler(args.command.destroy, command_destroy, local_handlers=local_handlers) # This function will be called when the user clicks the OK button in the command dialog. def command_execute(args: adsk.core.CommandEventArgs): futil.log(f'{CMD_NAME} Command Execute Event') inputs = args.command.commandInputs drop_down_input: adsk.core.DropDownCommandInput = inputs.itemById('test_name') test_name = drop_down_input.selectedItem.name run_test(test_name) # This function will be called when the user completes the command. def command_destroy(args: adsk.core.CommandEventArgs): global local_handlers local_handlers = [] futil.log(f'{CMD_NAME} Command Destroy Event')
from flask import Flask from flask import render_template from flask_sqlalchemy import SQLAlchemy from models.DB import db_session from flask_cors import CORS from models.objects import SystemUser app = Flask(__name__) #TODO- Generate new key ie: print(os.urandom(24)) app.config['SECRET_KEY'] = '\xf2K\xed\xa3\x80r\x03\xd0\xbbv\xbc\x86)7\xbc[#\xf1\xcbT;b\xd6\x82' db = SQLAlchemy(app) # CORS CORS(app) # API Blueprints from api.v1.reading import apiReading app.register_blueprint(apiReading) from api.v1.system_user import apiSystemUser app.register_blueprint(apiSystemUser) @app.route('/test') def test(): return '<h1>Flask is functioning.</h1>' @app.route('/testDB') def testDB(): user = db_session.query(SystemUser).filter(SystemUser.system_user_id == 1).one() if(user.system_user_id != None): return '<h1>DB Connected</h1>' else: return '<h2>Error connecting to database.</h2>'
""" Copyright 2018 InfAI (CC SES) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ try: import websockets from serial_gateway.logger import root_logger except ImportError as ex: exit("{} - {}".format(__name__, ex.msg)) from threading import Thread import asyncio, time from asyncio.subprocess import PIPE, STDOUT logger = root_logger.getChild(__name__) class WebsocketConsole(Thread): _source = None def __init__(self, main_loop): super().__init__() self._main_loop = main_loop self.start() @staticmethod def setSource(src): __class__._source = src async def send(self, websocket, path): while True: if __class__._source: file_to_tail = __class__._source __class__._source = None tail_process = await asyncio.create_subprocess_exec('tail', '-F', file_to_tail, stdout=PIPE, stderr=STDOUT, loop=self._event_loop) while True: try: line = await asyncio.wait_for(tail_process.stdout.readline(), timeout=0.4, loop=self._event_loop) if line and websocket.open: try: line = line.decode().replace('\n', '').replace('\r', '') await websocket.send(line) except Exception as ex: logger.error("could not send data - {}".format(ex)) break except (TimeoutError, asyncio.TimeoutError): pass except Exception as ex: logger.error(ex) try: await websocket.ping() except Exception as ex: if not any(code in str(ex) for code in ["1000", "1001"]): logger.error(ex) break tail_process.kill() await tail_process.wait() break else: try: await websocket.ping() await asyncio.sleep(1) except Exception as ex: if not any(code in str(ex) for code in ["1000", "1001"]): logger.error(ex) break def run(self): while not self._main_loop.is_running(): time.sleep(1) try: self._event_loop = asyncio.get_event_loop() except (RuntimeError, AssertionError): logger.debug("no event loop found") self._event_loop = asyncio.new_event_loop() asyncio.set_event_loop(self._event_loop) logger.debug("created new event loop") try: server = websockets.serve(self.send, '0.0.0.0', 5678) self._event_loop.run_until_complete(server) self._event_loop.run_forever() except Exception as ex: logger.error(ex) logger.error('websocket console exited')
import falcon import jwt import os from .dataset_fixtures import * def test_add_commit_info(client): ds_id = 'ds000001' file_data = 'Test annotating requests with user info' name = 'Test User' email = 'user@example.com' user = { 'name': name, 'email': email, 'sub': '123456', 'admin': False } jwt_secret = 'shhhhh' os.environ['JWT_SECRET'] = jwt_secret access_token = jwt.encode(user, jwt_secret).decode('utf-8') cookie = 'accessToken={}'.format(access_token) headers = { 'Cookie': cookie } response = client.simulate_post( '/datasets/{}/files/USER_ADDED_FILE'.format(ds_id), body=file_data, headers=headers) assert response.status == falcon.HTTP_OK response = client.simulate_post( '/datasets/{}/draft'.format(ds_id), body=file_data, headers=headers) assert response.status == falcon.HTTP_OK response_content = json.loads(response.content) assert response_content['name'] == name assert response_content['email'] == email def test_is_dirty(client, new_dataset): ds_id = os.path.basename(new_dataset.path) # Check if new_dataset is not dirty response = client.simulate_get( '/datasets/{}/draft'.format(ds_id)) assert response.status == falcon.HTTP_OK assert json.loads(response.content)['partial'] == False # Make the dataset dirty response = client.simulate_post( '/datasets/{}/files/NEW_FILE'.format(ds_id), body='some file data') assert response.status == falcon.HTTP_OK # Check if partial state is now true response = client.simulate_get( '/datasets/{}/draft'.format(ds_id)) assert response.status == falcon.HTTP_OK assert json.loads(response.content)['partial'] == True
import os import importlib import pytest def create_usage_test(dash_duo, filename, dir_name='usage'): app = importlib.import_module(filename).app dash_duo.start_server(app) dash_duo.wait_for_element_by_id("cytoscape", 20) directory_path = os.path.join( os.path.dirname(__file__), 'screenshots', dir_name ) # Create directory if it doesn't already exist if not os.path.exists(directory_path): os.makedirs(directory_path) dash_duo.driver.save_screenshot(os.path.join( os.path.dirname(__file__), 'screenshots', dir_name, filename + '.png' )) @pytest.mark.parametrize('name', [ 'usage-advanced', 'demos.usage-animated-bfs', 'demos.usage-breadthfirst-layout', 'demos.usage-compound-nodes', 'usage-events', 'usage-elements', 'demos.usage-pie-style', 'usage', 'usage-stylesheet', 'demos.usage-initialisation', 'demos.usage-linkout-example', 'demos.usage-image-export', 'demos.usage-responsive-graph', 'demos.usage-contextmenu', 'demos.usage-leaflet']) def test_cyug001_usage(name, dash_duo): create_usage_test(dash_duo, name)
from NetWork import NetWork import time ''' v0.1.1 ''' class MLManager: def __init__(self, hp) -> None: self.host = '127.0.0.1' self.port = hp pass def check(self) -> bool: # 暂时建议仅限测试使用 resp = NetWork.pureGet([self.port, "check"]) if resp == "okok": return True else: return False def push(self, channel, d) -> str: log = NetWork.loopPost([self.port, "push", channel], {'data': d}, loopFor=NetWork.NETERRorTO) return log def get(self, channel) -> str: resp = NetWork.loopGet([self.port, "get", channel], loopFor=NetWork.NETERRorTO) return resp[4:] def waitForServer(self) -> None: while not self.check(): print("服务器暂时未启动") time.sleep(0.1) pass def waitForSignal(self, sig, value) -> None: passReturn = "okok" + str(value) get = NetWork.loopGet([self.port, "getSignal", sig], loopFor=NetWork.ONLY4NETERR) while get != passReturn: time.sleep(0.05) get = NetWork.loopGet([self.port, "getSignal", sig], loopFor=NetWork.ONLY4NETERR) print("得到一个不行的", get) def setSignal(self, sig, value) -> str: log = NetWork.loopPost([self.port, "setSignal", sig], {'data': value}, loopFor=NetWork.ONLY4NETERR) return log # 用于发送get请求,而不是获得元素,内部方法 ''' 发送请求之后,没有回应 可能情况: 服务器未启动 -> 打印提示服务器疑似未启动,并且等待 服务器未响应 -> 等待响应 '''
import pandas as pd import numpy as np from scipy.stats import entropy import matplotlib.pyplot as plt from matplotlib.lines import Line2D import seaborn as sn import mdscaling as mds # Loading Directed Bipartite Twitter graphs DG={} for country in ['chile','france']: DG[country] = mds.DiBipartite('datasets/twitter_%s.csv'%country) # Computing Correspondance Analysis embedding for country in ['chile','france']: DG[country].CA() # Plotting embeddings for countries custom_legend=[Line2D([0], [0], color='red', marker='+', lw=0,alpha=1.0, label='MPs'), Line2D([0], [0], color='deepskyblue', lw=8,alpha=0.6, label='Followers'),] for country in ['chile','france']: g = sn.jointplot(x=1,y=0, data=DG[country].embedding[DG[country].embedding.index.isin(DG[country].bottom_nodes_list)], space=0, color="deepskyblue",kind='hex',ratio=10) cbar_ax = g.fig.add_axes() # x, y, width, height cbar_ax = g.fig.add_axes([0.15, .4, .05, .5]) # x, y, width, height plt.colorbar(cax=cbar_ax) # top g.ax_joint.plot(DG[country].embedding[DG[country].embedding.index.isin(DG[country].top_nodes_list)][1], DG[country].embedding[DG[country].embedding.index.isin(DG[country].top_nodes_list)][0], '+',color='r',mew=1.0,ms=7) g.ax_joint.legend(handles=custom_legend,loc='lower right',fontsize=12) g.ax_joint.set_xlabel('PC2') g.ax_joint.set_ylabel('PC1') g.ax_joint.set_title('Twitter (%s)'%country,fontsize=14) g.ax_joint.set_xlim((-3,3)) g.ax_joint.set_ylim((-3,3)) plt.tight_layout() plt.savefig('datasets/twitter_%s.pdf'%country) plt.clf() plt.close()
# -*- coding: utf-8 -*- description = 'common detector devices provided by QMesyDAQ' group = 'lowlevel' devices = dict( timer = device('nicos.devices.generic.VirtualTimer', description = 'QMesyDAQ timer', lowlevel = True, unit = 's', fmtstr = '%.1f', ), mon1 = device('nicos.devices.generic.VirtualCounter', description = 'QMesyDAQ monitor 1', type = 'monitor', lowlevel = True, fmtstr = '%d', ), # mon2 = device('nicos.devices.generic.VirtualCounter', # type = 'monitor', # lowlevel = True, # fmtstr = '%d', # ), det1 = device('nicos.devices.generic.VirtualCounter', type = 'counter', lowlevel = True, fmtstr = '%d', ), det2 = device('nicos.devices.generic.VirtualCounter', type = 'counter', lowlevel = True, fmtstr = '%d', ), det3 = device('nicos.devices.generic.VirtualCounter', type = 'counter', lowlevel = True, fmtstr = '%d', ), # det4 = device('nicos.devices.generic.VirtualCounter', # type = 'counter', # lowlevel = True, # fmtstr = '%d', # ), # det5 = device('nicos.devices.generic.VirtualCounter', # type = 'counter', # lowlevel = True, # fmtstr = '%d', # ), events = device('nicos.devices.generic.VirtualCounter', description = 'QMesyDAQ Events channel', type = 'counter', lowlevel = True, fmtstr = '%d', ), image = device('nicos.devices.generic.VirtualImage', description = 'QMesyDAQ Image', fmtstr = '%d', pollinterval = 86400, lowlevel = True, sizes = (1, 5), ), det = device('nicos.devices.generic.Detector', # description = 'Puma detector device (5 counters)', description = 'Puma detector QMesydaq device (3 counters)', timers = ['timer'], # monitors = ['mon1', 'mon2'], monitors = ['mon1'], # counters = ['det1', 'det2', 'det3', 'det4', 'det5'], counters = ['det1', 'det2', 'det3'], images = [], maxage = 1, pollinterval = 1, ), ) startupcode = ''' SetDetectors(det) '''
""" Application global configuration. """ from dataclasses import dataclass from .interfaces import IStdLibFilter class AppConfigurationAlreadySetException(Exception): """ Exception when you try to set app configuration twice. """ @dataclass(frozen=True) class AppConfiguration: """ Configuration define at application level (in general in main). """ std_lib_filter: IStdLibFilter class AppConfigurationSingleton: """ App configuration singleton """ _instance: AppConfiguration _already_set: bool = False @classmethod def define_app_configuration(cls, configuration: AppConfiguration) -> None: """ Define the application configuration to use during this run. Can only be called once. """ if cls._already_set: raise AppConfigurationAlreadySetException( "app configuration can be set once" ) cls._instance = configuration cls._already_set = True @classmethod def get_instance(cls) -> AppConfiguration: """ Get current app configuration instance. raise if not define. """ return cls._instance
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import print_function # This is the version of this source code. manual_verstr = "1.9" auto_build_num = "1" verstr = manual_verstr + "." + auto_build_num try: from pyutil.version_class import Version as pyutil_Version except (ImportError, ValueError): # pragma NO COVER # Maybe there is no pyutil installed. from distutils.version import LooseVersion as distutils_Version __version__ = distutils_Version(verstr) else: # pragma NO COVER __version__ = pyutil_Version(verstr)
# Copyright 2019 Matthew Treinish # Copyright (c) 2009 testtools developers. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import functools import os import sys import unittest import extras def filter_by_ids(suite_or_case, test_ids): """Remove tests from suite_or_case where their id is not in test_ids. :param suite_or_case: A test suite or test case. :param test_ids: Something that supports the __contains__ protocol. :return: suite_or_case, unless suite_or_case was a case that itself fails the predicate when it will return a new unittest.TestSuite with no contents. For subclasses of TestSuite, filtering is done by: - attempting to call suite.filter_by_ids(test_ids) - if there is no method, iterating the suite and identifying tests to remove, then removing them from _tests, manually recursing into each entry. For objects with an id() method - TestCases, filtering is done by: - attempting to return case.filter_by_ids(test_ids) - if there is no such method, checking for case.id() in test_ids and returning case if it is, or TestSuite() if it is not. For anything else, it is not filtered - it is returned as-is. To provide compatibility with this routine for a custom TestSuite, just define a filter_by_ids() method that will return a TestSuite equivalent to the original minus any tests not in test_ids. Similarly to provide compatibility for a custom TestCase that does something unusual define filter_by_ids to return a new TestCase object that will only run test_ids that are in the provided container. If none would run, return an empty TestSuite(). The contract for this function does not require mutation - each filtered object can choose to return a new object with the filtered tests. However because existing custom TestSuite classes in the wild do not have this method, we need a way to copy their state correctly which is tricky: thus the backwards-compatible code paths attempt to mutate in place rather than guessing how to reconstruct a new suite. """ # Compatible objects if extras.safe_hasattr(suite_or_case, 'filter_by_ids'): return suite_or_case.filter_by_ids(test_ids) # TestCase objects. if extras.safe_hasattr(suite_or_case, 'id'): if suite_or_case.id() in test_ids: return suite_or_case else: return unittest.TestSuite() # Standard TestSuites or derived classes [assumed to be mutable]. if isinstance(suite_or_case, unittest.TestSuite): filtered = [] for item in suite_or_case: filtered.append(filter_by_ids(item, test_ids)) suite_or_case._tests[:] = filtered # Everything else: return suite_or_case def iterate_tests(test_suite_or_case): """Iterate through all of the test cases in 'test_suite_or_case'.""" try: suite = iter(test_suite_or_case) except TypeError: yield test_suite_or_case else: for test in suite: for subtest in iterate_tests(test): yield subtest def list_test(test): """Return the test ids that would be run if test() was run. When things fail to import they can be represented as well, though we use an ugly hack (see http://bugs.python.org/issue19746 for details) to determine that. The difference matters because if a user is filtering tests to run on the returned ids, a failed import can reduce the visible tests but it can be impossible to tell that the selected test would have been one of the imported ones. :return: A tuple of test ids that would run and error strings describing things that failed to import. """ unittest_import_strs = { 'unittest2.loader.ModuleImportFailure.', 'unittest.loader.ModuleImportFailure.', 'discover.ModuleImportFailure.' } test_ids = [] errors = [] for test in iterate_tests(test): # Much ugly. for prefix in unittest_import_strs: if test.id().startswith(prefix): errors.append(test.id()[len(prefix):]) break else: test_ids.append(test.id()) return test_ids, errors class TestProgram(unittest.TestProgram): # defaults for testing module = None verbosity = 1 failfast = catchbreak = buffer = progName = None _discovery_parser = None def __init__(self, module='__main__', defaultTest=None, argv=None, testRunner=None, testLoader=unittest.defaultTestLoader, exit=False, verbosity=1, failfast=None, catchbreak=None, buffer=None, warnings=None, tb_locals=False): if isinstance(module, str): self.module = __import__(module) for part in module.split('.')[1:]: self.module = getattr(self.module, part) else: self.module = module if argv is None: argv = sys.argv self.exit = exit self.failfast = failfast self.catchbreak = catchbreak self.verbosity = verbosity self.buffer = buffer self.tb_locals = tb_locals if warnings is None and not sys.warnoptions: # even if DeprecationWarnings are ignored by default # print them anyway unless other warnings settings are # specified by the warnings arg or the -W python flag self.warnings = 'default' else: # here self.warnings is set either to the value passed # to the warnings args or to None. # If the user didn't pass a value self.warnings will # be None. This means that the behavior is unchanged # and depends on the values passed to -W. self.warnings = warnings self.defaultTest = defaultTest # XXX: Local edit (see http://bugs.python.org/issue22860) self.listtests = False self.load_list = None self.testRunner = testRunner self.testLoader = testLoader self.progName = os.path.basename(argv[0]) self.parseArgs(argv) # XXX: Local edit (see http://bugs.python.org/issue22860) if self.load_list: # TODO(mtreinish): preserve existing suites (like testresources # does in OptimisingTestSuite.add, but with a standard protocol). # This is needed because the load_tests hook allows arbitrary # suites, even if that is rarely used. source = open(self.load_list, 'rb') try: lines = source.readlines() finally: source.close() test_ids = {line.strip().decode('utf-8') for line in lines} self.test = filter_by_ids(self.test, test_ids) # XXX: Local edit (see http://bugs.python.org/issue22860) if not self.listtests: self.runTests() else: runner = self._get_runner() if extras.safe_hasattr(runner, 'list'): try: runner.list(self.test, loader=self.testLoader) except TypeError: runner.list(self.test) else: for test in iterate_tests(self.test): sys.stdout.write('%s\n' % test.id()) def _getParentArgParser(self): parser = super(TestProgram, self)._getParentArgParser() # XXX: Local edit (see http://bugs.python.org/issue22860) parser.add_argument( '-l', '--list', dest='listtests', default=False, action='store_true', help='List tests rather than executing them') parser.add_argument( '--load-list', dest='load_list', default=None, help='Specifies a file containing test ids, only tests matching ' 'those ids are executed') return parser def _get_runner(self): testRunner = self.testRunner try: testRunner = self.testRunner(failfast=self.failfast, tb_locals=self.tb_locals) except TypeError: testRunner = self.testRunner() # If for some reason we failed to initialize the runner initialize # with defaults if isinstance(testRunner, functools.partial): testRunner = self.testRunner() return testRunner def runTests(self): if self.catchbreak: unittest.installHandler() testRunner = self._get_runner() self.result = testRunner.run(self.test)
import requests import os switch = { 409: "User is not authorized to access Asset.", 404: "Asset not found." } def downloadPlace(placeID, auth): headers = { 'authority': 'assetdelivery.roblox.com', 'sec-ch-ua': '"(Not(A:Brand";v="8", "Chromium";v="99", "Google Chrome";v="99"', 'accept': 'application/json', 'x-requested-with': 'XMLHttpRequest', 'sec-ch-ua-mobile': '?0', 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36', 'sec-ch-ua-platform': '"macOS"', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'cors', 'sec-fetch-dest': 'empty', 'referer': 'https://assetdelivery.roblox.com/docs', 'accept-language': 'de-DE,de;q=0.9,en-US;q=0.8,en;q=0.7,ru;q=0.6', 'cookie': ".ROBLOSECURITY=" + auth, 'dnt': '1', 'sec-gpc': '1', } result = requests.get("https://assetdelivery.roblox.com/v1/assetId/" + placeID, headers=headers) if result.status_code == 200: url = result.json()["location"] result = requests.get(url) if result.status_code == 200: print("Downloading place: " + placeID) return result.content else: if result.status_code in switch: print(str(result.status_code) + " : " + switch[result.status_code]) else: print("Error: " + result.status_code) #save to file with open(os.getcwd() + '/.remodel/place.rbxl', 'wb') as file: file.write(downloadPlace(os.environ['ASSETID'], os.environ['ROBLOSECURITY']))
from abc import ABC, abstractmethod class ByteInterface(ABC): @abstractmethod def convert(self): pass
# @date 2020-10-03 # @author Frederic Scherma # @license Copyright (c) 2020 Dream Overflow # Volume Profile indicator and composite from strategy.indicator.indicator import Indicator from strategy.indicator.models import VolumeProfile from instrument.instrument import Instrument from database.database import Database from common.utils import truncate import numpy as np # @todo Support of evening session and overnight session. class BaseVolumeProfileIndicator(Indicator): """ Single or multiple Volume Profile indicator base model. """ __slots__ = '_length', '_sensibility', '_volume_area', '_size', '_vps', '_current', \ '_session_offset', '_price_precision', '_tick_size', '_range', '_bins' @classmethod def indicator_type(cls): return Indicator.TYPE_VOLUME @classmethod def indicator_class(cls): return Indicator.CLS_INDEX def __init__(self, name, timeframe, length=10, sensibility=10, volume_area=70): super().__init__(name, timeframe) self._compute_at_close = True # only at close self._length = length # number of volumes profiles to keep back self._sensibility = sensibility self._volume_area = volume_area self._session_offset = 0.0 self._price_precision = 1 self._tick_size = 1.0 self._range = (1.0, 1.0) self._bins = tuple() self._current = None self._vps = [] def setup(self, instrument): if instrument is None: return self._price_precision = instrument.price_precision or 8 self._tick_size = instrument.tick_price or 0.00000001 self._session_offset = instrument.session_offset def setup_range(self, instrument, min_price, max_price): self._range = (min_price, max_price) self._bins = tuple(instrument.adjust_price(price) for price in np.exp( np.arange(np.log(min_price), np.log(max_price), self._sensibility * 0.01))) @property def length(self): return self._length @length.setter def length(self, length): self._length = length @property def sensibility(self): return self._sensibility @property def range(self): return self._range @property def bins(self): return self._bins @property def current(self): return self._current @property def vps(self): return self._vps def finalize(self, vp): """ Finalize the computation of the last VP and push it. Does by update when the last trade timestamp open a new session. """ if vp is None: return vp.poc = BaseVolumeProfileIndicator.find_poc(vp) # volumes arranged by price volumes_by_price = BaseVolumeProfileIndicator.sort_volumes_by_price(vp) # find peaks and valley vp.peaks, vp.valleys = BaseVolumeProfileIndicator.basic_peaks_and_valleys_detection( self._bins, self._sensibility, vp) # # internal computing # def adjust_price(self, price): """ Format the price according to the precision. """ if price is None: price = 0.0 # adjusted price at precision and by step of pip meaning return truncate(round(price / self._tick_size) * self._tick_size, self._price_precision) def bin_lookup(self, price): # idx = int(np.log(price) * self._sensibility) # if 0 <= idx < len(self._bins): # return self._bins[idx] # else: # return None if price < self._bins[0]: # underflow return None prev = 0.0 for b in self._bins: if b > price >= prev: return prev prev = b # last bin or overflow return self._bins[-1] @staticmethod def find_poc(vp): """ Detect the price at the max volume. """ poc_price = 0.0 poc_vol = 0.0 for b, v in vp.volumes.items(): if v > poc_vol: poc_vol = v poc_price = b return poc_price @staticmethod def sort_volumes_by_price(vp): return sorted([(b, v) for b, v in vp.volumes.items()], key=lambda x: x[0]) @staticmethod def single_volume_area(vp, volumes_by_price, poc_price, volume_area): """ Simplest method to detect the volume area. Starting from the POC goes left and right until having the inner volume reached. Its not perfect because it could miss some peaks that will be important to have and sometime the best choice might not be try with centered algorithm. """ if not volumes_by_price or not poc_price: return 0.0, 0.0 index = -1 for i, bv in enumerate(volumes_by_price): if bv[0] == poc_price: index = i break if index < 0: return 0.0, 0.0 low_price = 0.0 high_price = 0.0 sum_vols = sum(vp.volumes.values()) in_area = sum_vols * volume_area * 0.01 out_area = 1.0 - in_area left = index right = index max_index = len(volumes_by_price)-1 summed = 0.0 while summed < in_area: if left >= 0: summed += volumes_by_price[left][1] low_price = volumes_by_price[left][0] left -= 1 if right < max_index: summed += volumes_by_price[right][1] right += 1 high_price = volumes_by_price[right][0] if left < 0 and right > max_index: break return low_price, high_price @staticmethod def basic_peaks_and_valleys_detection(src_bins, sensibility, vp): """ Simplest peaks and valleys detection algorithm. """ if not vp or not vp.volumes: return [], [] peaks = [] valleys = [] bins = np.array(src_bins) volumes = np.zeros(len(src_bins)) avg = np.average(list(vp.volumes.values())) for i, b in enumerate(src_bins): if b in vp.volumes: volumes[i] = vp.volumes[b] # @todo high_region, low_region detection sens = sensibility * 0.01 * 10 last_peak = -1 last_valley = -1 for i in range(1, len(volumes)-1): v = volumes[i] vl = v - v * sens vh = v + v * sens # peaks # if volumes[i] > avg and volumes[i-1] < volumes[i] and volumes[i+1] < volumes[i]: # peaks.append(bins[i]) if volumes[i-1] < vl and volumes[i+1] < vl and i - last_valley > 1 and i - last_peak > 2: peaks.append(bins[i]) last_peak = i # valleys # if volumes[i] < avg and volumes[i-1] > volumes[i] and (volumes[i+1] > volumes[i]):# or volumes[i+1] == 0.0): # valleys.append(bins[i]) if volumes[i-1] > vh and volumes[i+1] > vh and i - last_peak > 1 and i - last_valley > 2: valleys.append(bins[i]) last_valley = i return peaks, valleys # # cache management # def load(self, strategy_trader, base_timestamp, from_date, to_date=None): """ Load from DB a range of daily volume profile, inclusive. """ self._vps = Database.inst().get_cached_volume_profile( strategy_trader.trader().name, strategy_trader.instrument.market_id, strategy_trader.strategy.identifier, self._timeframe, from_date, to_date=to_date, sensibility=self._sensibility, volume_area=self._volume_area) if self._vps: if self._vps[-1].timestamp <= base_timestamp < self._vps[-1].timestamp + self._timeframe: # current detected self._current = self._vps.pop() class VolumeProfileIndicator(BaseVolumeProfileIndicator): """ Volume Profile indicator based on OHLCs list update. """ def __init__(self, timeframe, length=10, sensibility=10, volume_area=70): super().__init__("volumeprofile", timeframe, length, sensibility, volume_area) def compute(self, timestamp, timestamps, highs, lows, closes, volumes): # only update at close, no overwrite delta = min(int((timestamp - self._last_timestamp) / self._timeframe) + 1, len(timestamps)) # base index num = len(timestamps) for b in range(num-delta, num): # ignore non closed candles if timestamp < timestamps[b] + self._timeframe: break # for any new candles if self._current and timestamps[b] >= self._current.timestamp + self._timeframe: self.finalize(self._current) self._vps.append(self._current) self._current = None if self._current is None: basetime = Instrument.basetime(self._timeframe, timestamps[b]) self._current = VolumeProfile(basetime, self._timeframe) # avg price based on HLC3 hlc3 = (highs[b] + lows[b] + closes[b]) / 3 # round price to bin lbin = self.bin_lookup(hlc3) if lbin: if lbin not in self._current.volumes: # set volume to the bin self._current.volumes[lbin] = volumes[b] else: # or merge self._current.volumes[lbin] += volumes[b] self._last_timestamp = timestamp class TickVolumeProfileIndicator(BaseVolumeProfileIndicator): """ Volume Profile indicator based on tick or trade update. """ def __init__(self, timeframe, length=10, sensibility=10, volume_area=70): super().__init__("tickbar-volumeprofile", timeframe, length, sensibility, volume_area) @classmethod def indicator_base(cls): return Indicator.BASE_TICK def compute(self, timestamp, tick): # @todo session_offset, evening/overnight session if self._current and tick[0] >= self._current.timestamp + self._timeframe: self.finalize(self._current) self._vps.append(self._current) self._current = None if self._current is None: basetime = Instrument.basetime(self._timeframe, tick[0]) self._current = VolumeProfile(basetime, self._timeframe) # round price to bin lbin = self.bin_lookup(tick[3]) if lbin: if lbin not in self._current.volumes: # set volume to the bin self._current.volumes[lbin] = tick[4] else: # or merge self._current.volumes[lbin] += tick[4] self._last_timestamp = timestamp class CompositeVolumeProfile(object): """ Composite volume profile. The composite volume profile is managed by a volume profile indicator, automatically or manually. The timeframe is the base timeframe, not the cumulated duration. Then the cumulated duration is timeframe x length. """ __slots__ = '_timeframe', '_length', '_use_current', '_vp', '_volume_profile', \ '_last_timestamp', '_last_base_timestamp' def __init__(self, timeframe, length, volume_profile, use_current=True): self._timeframe = timeframe self._length = length self._use_current = use_current self._last_timestamp = 0.0 self._last_base_timestamp = 0.0 self._volume_profile = volume_profile self._vp = VolumeProfile(0, timeframe) @property def vp(self): return self._vp def is_update_needed(self, timestamp, partial_update=True): """ Returns True of the close timestamp was reached. @param timestamp Current timestamp. @param partial_update If True it will return True at each intermediate volume profile realized, else it will wait for the length of new volumes profiles completed. """ if partial_update: return timestamp >= self._last_base_timestamp + self._timeframe else: return timestamp >= self._last_base_timestamp + self._timeframe * self._length def composite(self, timestamp): """ Build a composite profile of length, eventually use the current volume profile in addiction. """ if self._volume_profile is None or not self._volume_profile.vps: return volume_profile = self._volume_profile base_index = max(-self._length, -len(volume_profile.vps)) base_timestamp = volume_profile.vps[base_index] cvp = VolumeProfile(Instrument.basetime(self._timeframe, base_timestamp), self._timeframe) for vp in volume_profile.vps[base_index:]: for b, v in vp.volumes.items(): if b not in cvp.volumes: cvp.volumes[b] = v else: cvp.volumes[b] += v self._last_base_timestamp = volume_profile.vps[-1].timestamp # append current VP if self._use_current and volume_profile.current: vp = volume_profile.current for b, v in vp.volumes.items(): if b not in cvp.volumes: cvp.volumes[b] = v else: cvp.volumes[b] += v self._last_base_timestamp = volume_profile.current.timestamp self._finalize(volume_profile, cvp) self._last_timestamp = timestamp return cvp # # internal methods # def _finalize(self, volume_profile, vp): """ Finalize the computation of the last VP and push it. Does by update when the last trade timestamp open a new session. """ if vp is None: return vp.poc = BaseVolumeProfileIndicator.find_poc(vp) # volumes arranged by price volumes_by_price = BaseVolumeProfileIndicator.sort_volumes_by_price(vp) # find peaks and valley vp.peaks, vp.valleys = BaseVolumeProfileIndicator.basic_peaks_and_valleys_detection( volume_profile.bins, volume_profile.sensibility, vp)
import unittest from translator import englishToFrench, frenchToEnglish class TestTranslateEnToFr(unittest.TestCase): """ Class to test the function englishToFrench """ def test1(self): """ Function to test the function englishToFrench """ self.assertIsNone(englishToFrench(None)) self.assertEqual(englishToFrench("Hello"), "Bonjour") self.assertNotEqual(englishToFrench("Bonjour"), "Hello") class TestTranslateFrToEn(unittest.TestCase): """ Class to test the function frenchToEnglish """ def test2(self): """ Function to test the function frenchToEnglish """ self.assertIsNone(frenchToEnglish(None)) self.assertEqual(frenchToEnglish("Bonjour"), "Hello") self.assertNotEqual(frenchToEnglish("Hello"), "Bonjour") unittest.main()
""" Get the county museum lists from wikipedia. Doing it this way, rather than cutting and pasting ensures that the same encoding is used as urllib2 uses.""" __author__ = "Joe Collins" __copyright__ = "Copyright (c) 2016 Black Radley Limited." import io import requests # for getting the pages from Wikipedia import helpers_list print '\nGet Wikipedia Data\n---' COUNTIES_ENGLAND_CEREMONIAL = helpers_list.get_counties_england_ceremonial() DATA = None HEADERS = {'User-Agent' : 'ProjectHeathMynd (+http://www.blackradley.com/contact-us/)'} for county in COUNTIES_ENGLAND_CEREMONIAL: url = 'https://en.wikipedia.org/wiki/List_of_museums_' + county print url response = requests.get(url) content = response.text county_museums_file_path = helpers_list.get_canonical_path_for( '../download/List_of_museums_' + county + '.htm') county_museums_file = io.open(county_museums_file_path, 'w', encoding='utf-8') county_museums_file.write(content) county_museums_file.close()
''' Exercício Python 086: Crie um programa que declare uma matriz de dimensão 3x3 e preencha com valores lidos pelo teclado. No final, mostre a matriz na tela, com a formatação correta. ''' ## VERSÃO GUANABARA: matriz = [[0,0,0],[0,0,0],[0,0,0]] for l in range(0,3): for c in range(0,3): matriz[l][c] = int(input(f'Digite um valor para [{l}, {c}]: ')) print("=-" * 30) for l in range(0,3): for c in range(0,3): print(f'[{matriz[l][c]:^5}]', end='') print() ## VERSÃO BRUNO matriz = [] for i in range(3): num = [] for c in range(3): num.append(int(input(f"Digite um valor para [{i}, {c}]: "))) matriz.append(num) print("=-" * 30) for i in range(len(matriz)): print("") for c in matriz[i]: print(f"[{c:^5}]", end=" ")