content
stringlengths
5
1.05M
#!/usr/bin/env python3 from subprocess import Popen, DEVNULL import os import pandas import time import matplotlib.pyplot as plt DSTAT_FNAME = "dstat.csv" if os.path.exists(DSTAT_FNAME): os.remove(DSTAT_FNAME) #dstat appends by default dstat = Popen(["dstat", "--output="+DSTAT_FNAME], stdout=DEVNULL) print("Dstat initialized.") time.sleep(20) # run for 20 seconds dstat.kill() dstat_file = pandas.read_csv(DSTAT_FNAME, header=5) print(len(dstat_file)) plt.plot(range(0,len(dstat_file)), dstat_file['recv'] / (1024*1024), label="Network receive") plt.xlabel("Time in s") plt.ylabel("Data recvd over network in MB") # plt.show() plt.plot(range(0,len(dstat_file)), dstat_file['send'] / (1024*1024), label="Network send") plt.xlabel("Time in s") plt.ylabel("Data recvd over network in MB") plt.show()
def solve(n, a): total = 0 currA = a for i in range(1, n + 1): total += i * currA currA *= a return total if __name__ == '__main__': print solve(3, 3) print solve(4, 4) print solve(150, 15)
from flask import render_template, session, redirect, url_for, request, \ current_app, flash from . import main from .forms import PostForm, CommentForm from .. import db from ..models import User, Post, Comment from ..decorators import admin_required from flask_login import current_user @main.route('/') def index(): page = request.args.get('page', 1, type=int) pagination = Post.query.order_by(Post.timestamp.desc()).paginate(page, per_page=current_app.config['GRITY_POSTS_PER_PAGE'], error_out=False) posts = pagination.items return render_template('index.html', posts=posts, pagination=pagination) @main.route('/archives') def achives(): user = User.query.filter_by(is_administrator=True).first() if user is None: abort(404) posts = user.posts.order_by(Post.timestamp.desc()).all() return render_template('archives.html', posts=posts) @admin_required @main.route('/write', methods=['GET', 'POST']) def write(): form = PostForm() if form.validate_on_submit(): post = Post(title=form.title.data, summary=form.summary.data, content=form.content.data, author_id= \ current_user._get_current_object().id) db.session.add(post) return redirect(url_for('.index')) return render_template('write.html', form=form) @main.route('/post/<int:id>', methods=['GET', 'POST']) def post(id): post = Post.query.get_or_404(id) form = CommentForm() if form.validate_on_submit(): comment = Comment(username=form.name.data, email=form.email.data, content=form.content.data, post=post) db.session.add(comment) flash('Your comment has been published.') return redirect(url_for('.post', id=post.id)) comments = post.comments.order_by(Comment.timestamp.asc()).all() return render_template('post.html', posts=[post], form=form, comments=comments) @admin_required @main.route('/comment/moderate/<id>') def comment_moderate(id): comment = Comment.query.get_or_404(id) comment.disabled = False if comment.disabled else True db.session.add(comment) return redirect(url_for('.post', id=comment.post_id)) @admin_required @main.route('/edit/<int:id>', methods=['GET', 'POST']) def edit(id): post = Post.query.get_or_404(id) form = PostForm() if form.validate_on_submit(): post.title = form.title.data post.summary = form.summary.data post.content = form.content.data db.session.add(post) flash('The post has been updated.') return redirect(url_for('.post', id=post.id)) form.title.data = post.title form.summary.data = post.summary form.content.data = post.content return render_template('edit_post.html', form=form)
from ps.routes.api.v1.psone_router import endpoints
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Portforwarded' db.create_table(u'portforwarding_portforwarded', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('server_host', self.gf('django.db.models.fields.related.ForeignKey')(related_name='portstoforward', to=orm['servers.Server'])), ('server_to', self.gf('django.db.models.fields.related.ForeignKey')(related_name='portsforwared', to=orm['servers.Server'])), ('port_from', self.gf('django.db.models.fields.IntegerField')()), ('port_to', self.gf('django.db.models.fields.IntegerField')()), ('protocol', self.gf('django.db.models.fields.CharField')(max_length=7)), )) db.send_create_signal(u'portforwarding', ['Portforwarded']) def backwards(self, orm): # Deleting model 'Portforwarded' db.delete_table(u'portforwarding_portforwarded') models = { u'portforwarding.portforwarded': { 'Meta': {'object_name': 'Portforwarded'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'port_from': ('django.db.models.fields.IntegerField', [], {}), 'port_to': ('django.db.models.fields.IntegerField', [], {}), 'protocol': ('django.db.models.fields.CharField', [], {'max_length': '7'}), 'server_host': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'portstoforward'", 'to': u"orm['servers.Server']"}), 'server_to': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'portsforwared'", 'to': u"orm['servers.Server']"}) }, u'servers.server': { 'Meta': {'object_name': 'Server'}, 'external_ip': ('django.db.models.fields.IPAddressField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'internal_ip': ('django.db.models.fields.IPAddressField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}), 'is_vm': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'keymanger_name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '255'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'ssh_connection_string': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'vm_host': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['servers.Server']", 'null': 'True', 'blank': 'True'}) } } complete_apps = ['portforwarding']
import asyncio import fractions import logging import threading import time import av from av import AudioFrame, VideoFrame from ..mediastreams import AUDIO_PTIME, MediaStreamError, MediaStreamTrack logger = logging.getLogger('media') REAL_TIME_FORMATS = [ 'alsa', 'android_camera', 'avfoundation', 'bktr', 'decklink', 'dshow', 'fbdev', 'gdigrab', 'iec61883', 'jack', 'kmsgrab', 'openal', 'oss', 'pulse', 'sndio', 'rtsp', 'v4l2', 'vfwcap', 'x11grab', ] async def blackhole_consume(track): while True: try: await track.recv() except MediaStreamError: return class MediaBlackhole: """ A media sink that consumes and discards all media. """ def __init__(self): self.__tracks = {} def addTrack(self, track): """ Add a track whose media should be discarded. :param: track: An :class:`aiortc.AudioStreamTrack` or :class:`aiortc.VideoStreamTrack`. """ if track not in self.__tracks: self.__tracks[track] = None async def start(self): """ Start discarding media. """ for track, task in self.__tracks.items(): if task is None: self.__tracks[track] = asyncio.ensure_future(blackhole_consume(track)) async def stop(self): """ Stop discarding media. """ for task in self.__tracks.values(): if task is not None: task.cancel() self.__tracks = {} def player_worker(loop, container, streams, audio_track, video_track, quit_event, throttle_playback): audio_fifo = av.AudioFifo() audio_format_name = 's16' audio_layout_name = 'stereo' audio_sample_rate = 48000 audio_samples = 0 audio_samples_per_frame = int(audio_sample_rate * AUDIO_PTIME) audio_resampler = av.AudioResampler( format=audio_format_name, layout=audio_layout_name, rate=audio_sample_rate) video_first_pts = None frame_time = None start_time = time.time() while not quit_event.is_set(): try: frame = next(container.decode(*streams)) except (av.AVError, StopIteration): if audio_track: asyncio.run_coroutine_threadsafe(audio_track._queue.put(None), loop) if video_track: asyncio.run_coroutine_threadsafe(video_track._queue.put(None), loop) break # read up to 1 second ahead if throttle_playback: elapsed_time = (time.time() - start_time) if frame_time and frame_time > elapsed_time + 1: time.sleep(0.1) if isinstance(frame, AudioFrame) and audio_track: if (frame.format.name != audio_format_name or frame.layout.name != audio_layout_name or frame.sample_rate != audio_sample_rate): frame.pts = None frame = audio_resampler.resample(frame) # fix timestamps frame.pts = audio_samples frame.time_base = fractions.Fraction(1, audio_sample_rate) audio_samples += frame.samples audio_fifo.write(frame) while True: frame = audio_fifo.read(audio_samples_per_frame) if frame: frame_time = frame.time asyncio.run_coroutine_threadsafe(audio_track._queue.put(frame), loop) else: break elif isinstance(frame, VideoFrame) and video_track: if frame.pts is None: # pragma: no cover logger.warning('Skipping video frame with no pts') continue # video from a webcam doesn't start at pts 0, cancel out offset if video_first_pts is None: video_first_pts = frame.pts frame.pts -= video_first_pts frame_time = frame.time asyncio.run_coroutine_threadsafe(video_track._queue.put(frame), loop) class PlayerStreamTrack(MediaStreamTrack): def __init__(self, player, kind): super().__init__() self.kind = kind self._player = player self._queue = asyncio.Queue() self._start = None async def recv(self): if self.readyState != 'live': raise MediaStreamError self._player._start(self) frame = await self._queue.get() if frame is None: self.stop() raise MediaStreamError frame_time = frame.time # control playback rate if self._player._throttle_playback and frame_time is not None: if self._start is None: self._start = time.time() - frame_time else: wait = self._start + frame_time - time.time() await asyncio.sleep(wait) return frame def stop(self): super().stop() if self._player is not None: self._player._stop(self) self._player = None class MediaPlayer: """ A media source that reads audio and/or video from a file. Examples: .. code-block:: python # Open a video file. player = MediaPlayer('/path/to/some.mp4') # Open an HTTP stream. player = MediaPlayer( 'http://download.tsi.telecom-paristech.fr/' 'gpac/dataset/dash/uhd/mux_sources/hevcds_720p30_2M.mp4') # Open webcam on Linux. player = MediaPlayer('/dev/video0', format='v4l2', options={ 'video_size': '640x480' }) # Open webcam on OS X. player = MediaPlayer('default:none', format='avfoundation', options={ 'video_size': '640x480' }) :param: file: The path to a file, or a file-like object. :param: format: The format to use, defaults to autodect. :param: options: Additional options to pass to FFmpeg. """ def __init__(self, file, format=None, options={}): self.__container = av.open(file=file, format=format, mode='r', options=options) self.__thread = None self.__thread_quit = None # examine streams self.__started = set() self.__streams = [] self.__audio = None self.__video = None for stream in self.__container.streams: if stream.type == 'audio' and not self.__audio: self.__audio = PlayerStreamTrack(self, kind='audio') self.__streams.append(stream) elif stream.type == 'video' and not self.__video: self.__video = PlayerStreamTrack(self, kind='video') self.__streams.append(stream) # check whether we need to throttle playback container_format = set(self.__container.format.name.split(',')) self._throttle_playback = not container_format.intersection(REAL_TIME_FORMATS) @property def audio(self): """ An :class:`aiortc.AudioStreamTrack` instance if the file contains audio. """ return self.__audio @property def video(self): """ A :class:`aiortc.VideoStreamTrack` instance if the file contains video. """ return self.__video def _start(self, track): self.__started.add(track) if self.__thread is None: self.__log_debug('Starting worker thread') self.__thread_quit = threading.Event() self.__thread = threading.Thread( name='media-player', target=player_worker, args=( asyncio.get_event_loop(), self.__container, self.__streams, self.__audio, self.__video, self.__thread_quit, self._throttle_playback)) self.__thread.start() def _stop(self, track): self.__started.discard(track) if not self.__started and self.__thread is not None: self.__log_debug('Stopping worker thread') self.__thread_quit.set() self.__thread.join() self.__thread = None def __log_debug(self, msg, *args): logger.debug('player(%s) ' + msg, self.__container.name, *args) class MediaRecorderContext: def __init__(self, stream): self.stream = stream self.task = None class MediaRecorder: """ A media sink that writes audio and/or video to a file. Examples: .. code-block:: python # Write to a video file. player = MediaRecorder('/path/to/file.mp4') # Write to a set of images. player = MediaRecorder('/path/to/file-%3d.png') :param: file: The path to a file, or a file-like object. :param: format: The format to use, defaults to autodect. :param: options: Additional options to pass to FFmpeg. """ def __init__(self, file, format=None, options={}): self.__container = av.open(file=file, format=format, mode='w', options=options) self.__tracks = {} def addTrack(self, track): """ Add a track to be recorded. :param: track: An :class:`aiortc.AudioStreamTrack` or :class:`aiortc.VideoStreamTrack`. """ if track.kind == 'audio': if self.__container.format.name == 'wav': codec_name = 'pcm_s16le' elif self.__container.format.name == 'mp3': codec_name = 'mp3' else: codec_name = 'aac' stream = self.__container.add_stream(codec_name) else: if self.__container.format.name == 'image2': stream = self.__container.add_stream('png', rate=30) stream.pix_fmt = 'rgb24' else: stream = self.__container.add_stream('libx264', rate=30) stream.pix_fmt = 'yuv420p' self.__tracks[track] = MediaRecorderContext(stream) async def start(self): """ Start recording. """ for track, context in self.__tracks.items(): if context.task is None: context.task = asyncio.ensure_future(self.__run_track(track, context)) async def stop(self): """ Stop recording. """ if self.__container: for track, context in self.__tracks.items(): if context.task is not None: context.task.cancel() context.task = None for packet in context.stream.encode(None): self.__container.mux(packet) self.__tracks = {} if self.__container: self.__container.close() self.__container = None async def __run_track(self, track, context): while True: try: frame = await track.recv() except MediaStreamError: return for packet in context.stream.encode(frame): self.__container.mux(packet)
# Imports import click import numpy as np from tqdm import tqdm def encode(to_encode, unique_to_index, train_ord): to_ret = np.zeros(len(to_encode), dtype=np.int64) p_bar = tqdm(np.ndenumerate(to_encode), desc='Encoding', total=len(to_encode)) for idx, obj in p_bar: try: to_ret[idx] = train_ord[unique_to_index[obj]] except KeyError: to_ret[idx] = len(unique_to_index) return to_ret @click.command() @click.option('--dataset-dir', required=True) def preproc_ord_norm(dataset_dir): # Load data data = np.load(f'{dataset_dir}/deltas_split.npz') train = data['train'] dev = data['dev'] test = data['test'] # Ordinal encoding train_unique, train_index, train_ord = np.unique(train, return_index=True, return_inverse=True) unique_to_index = dict(np.stack((train_unique, train_index)).T) dev_ord = encode(dev, unique_to_index, train_ord) test_ord = encode(test, unique_to_index, train_ord) # Normalization train_norm = train_ord / len(train_unique) dev_norm = dev_ord / len(train_unique) test_norm = test_ord / len(train_unique) # Store np.savez_compressed( f'{dataset_dir}/deltas_ord_norm.npz', train_ord=train_ord, dev_ord=dev_ord, test_ord=test_ord, train_norm=train_norm.astype(np.float32), dev_norm=dev_norm.astype(np.float32), test_norm=test_norm.astype(np.float32), train_unique=train_unique, ) if __name__ == '__main__': preproc_ord_norm() # pylint: disable=no-value-for-parameter
from __future__ import print_function import sys, argparse, os.path, fnmatch import xlrd from openpyxl import Workbook def create_csvs( filename ) : workbook = xlrd.open_workbook( filename ) wb = Workbook() worksheet_all = wb.create_sheet() worksheet_all.title = "All" sheet_count = 1 row_count_all = 1 # different libraries use different start values... while sheet_count <= 81 : sheet_name = "Sheet" + str(sheet_count) worksheet = None try: worksheet = workbook.sheet_by_name( sheet_name ) except xlrd.biffh.XLRDError: pass if worksheet is None : print( "Can't find worksheet '" + sheet_name ) # # Open CSV writer # if worksheet is not None : for row in xrange( 0, worksheet.nrows ): for col in xrange( 0, worksheet.ncols ): print( row_count_all, row, col ) value = worksheet.cell_value( row, col ) #type = worksheet.cell_type(row, col ) #print( type, value ) cell_to = worksheet_all.cell( row_count_all, col+1 ) cell_to.value = value row_count_all += 1 print ("Extracted " + str(worksheet.nrows) + " rows from worksheet " + sheet_name ) sheet_count += 1 wb.save( "combined.xlsx") if __name__ == "__main__": create_csvs( "md-aihs.xlsx" )
login_query = \ """ SELECT * FROM user_info WHERE user_email=(%s) AND user_password=(%s) """ user_details_query = \ """ SELECT * FROM user_info WHERE user_id=(%s) """ admin_details = \ """ SELECT * FROM admin WHERE user_id=(%s) """ prof_details = \ """ SELECT * FROM professor WHERE user_id=(%s) """ student_details = \ """ SELECT * FROM student WHERE user_id=(%s) """ university_details_query = \ """ SELECT * FROM university WHERE university_id=(%s) """ registered_courses_student = \ """ SELECT course_id, course_name FROM Course WHERE course_id in ( SELECT course_id FROM registered WHERE user_id=(%s) ) AND is_active=(%s) """ update_course_status = \ """ """ courses_prof = \ """ SELECT course_id, course_name FROM Course WHERE course_id in ( SELECT course_id FROM course_prof WHERE user_id=(%s) ) AND is_active=(%s) """ courses_ta = \ """ SELECT course_id, course_name FROM Course WHERE course_id in ( SELECT course_id FROM assists WHERE user_id=(%s) ) AND is_active=(%s) """ prof_of_course = \ """ SELECT * FROM course_prof WHERE course_id=(%s) AND user_id=(%s) """ ta_of_course = \ """ SELECT * FROM assists WHERE course_id=(%s) AND user_id=(%s) """ student_of_course = \ """ SELECT * FROM registered WHERE course_id=(%s) AND user_id=(%s) """ prof_of_course_details = \ """ SELECT * FROM ( SELECT * FROM course_prof WHERE course_id=(%s)) P JOIN (SELECT * FROM user_info) U ON (P.user_id=U.user_id) """ ta_of_course_details = \ """ SELECT * FROM ( SELECT * FROM assists WHERE course_id=(%s)) T JOIN (SELECT * FROM user_info) U ON (T.user_id=U.user_id) """ student_of_course_details = \ """ SELECT * FROM ( SELECT * FROM registered WHERE course_id=(%s)) S JOIN (SELECT * FROM user_info) U ON (S.user_id=U.user_id) """ get_course_details = \ """ SELECT course_id, course_name, user_description, course_credits, course_year, course_semester, venue_id, course_time_slot, is_course_online, is_active, university_id FROM Course WHERE course_id=(%s) """ get_course_details_all = \ """ SELECT * FROM Course WHERE university_id=(%s) """ get_student_details_all = \ """ SELECT * FROM (SELECT * FROM Student) S JOIN ( SELECT * FROM user_info WHERE university_id=(%s) ) U ON (S.user_id=U.user_id) """ get_professor_details_all = \ """ SELECT * FROM (SELECT * FROM Professor) S JOIN ( SELECT * FROM user_info WHERE university_id=(%s) ) U ON (S.user_id=U.user_id) """ get_student_details_all_not_registered_and_not_ta_in_course = \ """ SELECT * FROM (SELECT * FROM Student WHERE user_id NOT IN (SELECT user_id FROM registered WHERE course_id=(%s)) AND user_id NOT IN (SELECT user_id FROM assists WHERE course_id=(%s))) S JOIN ( SELECT * FROM user_info WHERE university_id=(%s) ) U ON (S.user_id=U.user_id) """ get_professor_details_all_not_in_course = \ """ SELECT * FROM (SELECT * FROM Professor WHERE user_id NOT IN (SELECT user_id FROM course_prof WHERE course_id=(%s))) S JOIN ( SELECT * FROM user_info WHERE university_id=(%s) ) U ON (S.user_id=U.user_id) """ get_venue_details_all = \ """ SELECT * FROM venue WHERE university_id=(%s) """ get_course_assignments = \ """ SELECT assignment_id, assignment_name, TO_CHAR(assignment_posted_date, 'DD MON, HH:MI') assignment_posted_date, TO_CHAR(assignment_due_date, 'DD MON, HH:MI') assignment_due_date, total_marks FROM Assignment WHERE course_id=(%s) """ get_assignment_data = \ """ SELECT * FROM Assignment WHERE assignment_id=(%s) """ get_venue = \ """ SELECT * FROM Venue WHERE university_id=(%s) """ get_venue_by_venue_id = \ """ SELECT * FROM Venue WHERE venue_id=(%s) """ get_assignment_submission_data = \ """ SELECT * FROM( SELECT * FROM Submits WHERE assignment_id = (%s) AND user_id = (%s) ) S JOIN ( SELECT * FROM Assignment ) A ON S.assignment_id=A.assignment_id """ get_assignment_submission_statistics = \ """ SELECT MAX(S.marks_obtained) AS max, MIN(S.marks_obtained) AS min, AVG(S.marks_obtained) AS avg FROM( (SELECT * FROM Registered WHERE course_id IN ( SELECT course_id FROM Assignment WHERE assignment_id = (%s))) R JOIN (SELECT * from submits WHERE assignment_id = (%s)) S ON (R.user_id=S.user_id) ) """ get_assignment_submission_data_all = \ """ SELECT *, R.user_id as user_id FROM( SELECT * FROM Registered WHERE course_id IN ( SELECT course_id FROM Assignment WHERE assignment_id = (%s) )) R JOIN ( SELECT * FROM user_info ) U ON R.user_id=U.user_id LEFT JOIN ( SELECT * FROM submits WHERE assignment_id=(%s) ) S ON (R.user_id=S.user_id) """ create_assignment_query = \ """ INSERT INTO Assignment VALUES ((%s), (%s), (%s), (%s), (%s), (%s)); """ create_admin_query = \ """ INSERT INTO user_info VALUES ((%s), (%s), (%s), (%s), (%s), (%s)); INSERT INTO admin VALUES ((%s), (%s)); """ create_uni_query = \ """ INSERT INTO university VALUES ((%s), (%s), (%s), (%s), (%s), (%s), (%s)); """ create_course_query = \ """ INSERT INTO course VALUES ((%s), (%s), (%s), (%s), (%s), (%s), (%s), (%s), (%s), (%s), (%s)) """ create_student_query = \ """ INSERT INTO user_info VALUES ((%s), (%s), (%s), (%s), (%s), (%s)); INSERT INTO student VALUES ((%s), (%s), (%s)); """ create_professor_query = \ """ INSERT INTO user_info VALUES ((%s), (%s), (%s), (%s), (%s), (%s)); INSERT INTO professor VALUES ((%s), (%s)); """ create_venue_query = \ """ INSERT INTO venue VALUES ((%s), (%s), (%s), (%s)); """ delete_assignment_query = \ """ DELETE FROM Assignment WHERE assignment_id=(%s); """ delete_course_query = \ """ DELETE FROM Course WHERE course_id=(%s); """ delete_university_query = \ """ DELETE FROM university WHERE university_id=(%s); """ delete_user_query = \ """ DELETE FROM user_info WHERE user_id=(%s); """ delete_venue_query = \ """ DELETE FROM venue WHERE venue_id=(%s); """ submit_assignment_material_first = \ """ INSERT INTO Submits VALUES ((%s), (%s), (%s)); """ submit_assignment_material_update = \ """ UPDATE Submits SET submitted_material = (%s) WHERE assignment_id = (%s) AND user_id = (%s); """ give_assignment_marks_first = \ """ INSERT INTO Submits VALUES ((%s), (%s), (%s), (%s)); """ add_course_profs = \ """ INSERT INTO course_prof VALUES ((%s), (%s)); """ add_course_students = \ """ INSERT INTO registered VALUES ((%s), (%s)); """ add_course_tas = \ """ INSERT INTO assists VALUES ((%s), (%s)); """ remove_course_profs = \ """ DELETE FROM course_prof WHERE course_id=(%s) AND user_id= (%s); """ remove_course_students = \ """ DELETE FROM registered WHERE course_id=(%s) AND user_id= (%s); """ remove_course_tas = \ """ DELETE FROM assists WHERE course_id=(%s) AND user_id= (%s); """ give_assignment_marks_update = \ """ UPDATE Submits SET marks_obtained = (%s) WHERE assignment_id = (%s) AND user_id = (%s); """ update_user_query = \ """ UPDATE user_info SET (user_first_name, user_last_name, user_password) = ((%s), (%s), (%s)) WHERE user_id = (%s); """ update_course_query = \ """ UPDATE course SET (course_name, user_description, course_credits, is_active, course_year, course_semester, venue_id, course_time_slot, is_course_online)=((%s), (%s), (%s), (%s), (%s), (%s), (%s), (%s), (%s)) WHERE course_id=(%s); """ update_university_query = \ """ UPDATE university SET (university_city, university_state, university_address, university_pincode, university_establishment_date) = ((%s), (%s), (%s), (%s), (%s)) WHERE university_id = (%s); """ update_venue_query = \ """ UPDATE venue SET (venue_building, venue_class_number)=((%s), (%s)) WHERE venue_id=(%s); """ update_assignment_query = \ """ UPDATE assignment SET (assignment_name, assignment_posted_date, assignment_due_date, total_marks)=((%s), (%s), (%s), (%s)) WHERE assignment_id=(%s); """ get_current_credits_per_sem = \ """ SELECT SUM(course_credits) AS credits_already_registered FROM course WHERE (course_semester, course_year) in (SELECT course_semester, course_year FROM course WHERE course_id='418757') AND course_id IN (SELECT course_id FROM registered WHERE user_id='23980') """
def fatorial(número, show=0): """ --> Calcula o fatorial de um número :param número: O número a ser calculado :param show: Mostra o cálculo do fatorial """ resultado = 1 if show == True: if número == 0: print("0! = 1",end='') if número == 1: print("1! = 1") else: print(f"{número}! = ", end='') for c in range(número,0,-1): resultado *= c if c > 1: print(f"{c} x ", end="") else: print(f"{c} = {resultado}") elif show == False: print(f"{número}! = ", end='') for c in range(número, 0, -1): resultado *= c print(resultado) fatorial(int(input("Número para fatorial: ")),show=True)
from abc import ABC, abstractmethod import numpy as np class StochasticProcess(ABC): """ ABC for stochastic process generators """ def __init__(self, t_init, x_init, random_state): self.rs = np.random.RandomState(random_state) self.x = np.copy(x_init) self.t = t_init def sample(self): """ Draw next sample """ self.t += 1 return self._sample() @abstractmethod def _sample(self): """ Implementation """ class GaussianWhiteNoiseProcess(StochasticProcess): """ Generate Gaussian white noise samples """ def __init__(self, mu, sigma, random_state=None): """ Params ====== mu (float or array): process mean sigma (float or array): process std_dev random_state (None, int, array_like, RandomState): (optional) random state """ self.mu = np.array(mu) self.sigma = np.array(sigma) super().__init__(t_init=0, x_init=mu, random_state=random_state) def _sample(self): """Draw next sample""" self.x = self.rs.normal(self.mu, self.sigma) return np.copy(self.x) class OUProcess(StochasticProcess): """ Generate samples from an OU process""" def __init__(self, x_inf, time_const, std_dev, x_init=None, random_state=None): """ Params ====== x_inf (float or ndarray): Value to mean revert to. Also determines dimensions of noise (multi-dimensional process always uncorrelated) time_const (float): Mean reversion time constant, i.e. 1/theta, determines length of auto-correlation of process std_dev (float): Long-term process standard deviation, i.e. std_dev = sigma / sqrt(2*theta) x_init (float or ndarray): (optional) current value of process. Defaults to x_inf. random_state (None, int, array_like, RandomState): (optional) random state """ if x_init is None: x_init = x_inf super().__init__(0, x_init, random_state) self.x_inf = x_inf self.time_const = time_const if isinstance(std_dev, (int, float)): std_dev_const = std_dev std_dev = lambda t: std_dev_const # allow for time-dependency self.std_dev = std_dev def _sample(self): """ Draw next sample """ theta = 1. / self.time_const sigma = self.std_dev(self.t) * np.sqrt(2. * theta) dw = self.rs.normal(size=self.x.shape) dx = - theta * (self.x - self.x_inf) + sigma * dw self.x += dx return np.copy(self.x) class Scrambler(ABC): """ ABC for classes that scramble actions by adding random noise """ @abstractmethod def __call__(self, actions): """ Implement to scramble actions """ class AdditiveNoiseScrambler(Scrambler): """ Class that adds a stochastic process to (continuous-valued) action vectors and then clips output between `lb` and `ub`. """ def __init__(self, process, lb=-1., ub=1.): self.process = process self.lb = lb self.ub = ub def __call__(self, actions): actions += self.process.sample() actions = actions.clip(self.lb, self.ub) return actions def _required_shape(self, num_agents, action_size): return (num_agents, action_size) class OUScrambler(AdditiveNoiseScrambler): def __init__(self, num_agents, action_size, time_const, std_dev, lb=-1., ub=1., random_state=None): x_inf = np.zeros(self._required_shape(num_agents, action_size)) process = OUProcess(x_inf, time_const, std_dev, random_state=random_state) super().__init__(process, lb, ub) class GaussianWhiteNoiseScrambler(AdditiveNoiseScrambler): def __init__(self, num_agents, action_size, std_dev, lb=-1., ub=1., random_state=None): shape = self._required_shape(num_agents, action_size) mu = np.zeros(shape) sigma = std_dev * np.ones(shape) process = GaussianWhiteNoiseProcess(mu, sigma, random_state) super().__init__(process, lb, ub)
# This sample tests the alternative syntax for unions as # documented in PEP 604. from typing import Callable, Generic, TypeVar, Union def foo2(a: int | str): if isinstance(a, int): return 1 else: return 2 B = bytes | None | Callable[[], None] A = int | str | B def foo3(a: A) -> B: if a == 3 or a is None: return b"" elif not isinstance(a, (int, str, bytes)): a() def foo4(A: "int | str"): return 1 T = TypeVar("T") def foo5(a: str): def helper(value: T) -> T | None: ... class Baz(Generic[T]): qux: T | None reveal_type(helper(a), expected_text="str | None") reveal_type(Baz[str].qux, expected_text="str | None") T = TypeVar("T") TT = TypeVar("TT", bound=type) def decorator1(value: type[T]) -> type[T]: ... def decorator2(value: TT) -> TT: ... class ClassA: class ClassA_A: pass @decorator1 class ClassA_B: pass @decorator2 class ClassA_C: pass a_or_str: "ClassA.ClassA_A | str" b_or_str: "ClassA.ClassA_B | str" b_or_str_Union: Union[ClassA.ClassA_B, str] c_or_str: "ClassA.ClassA_C | str"
from kivy.app import App from controller.game import Game from controller.actor import Local, AI class GameApp(App): def build(self): game = Game() game.actors = [ Local(game=game, name='player1'), AI(game=game, name='player2'), ] view = game.actors[0].view game.setup() return view if __name__ == '__main__': GameApp().run()
from sys import byteorder class Datagram: def __init__(self): self.head = bytes(10) self.payload = bytes(0) self.EOP = bytes(4) def set_head( self, message_type, message_id, num_payloads, payload_index, payload_size, error_type, restart_index ): self.head = ( int(message_type).to_bytes(1, byteorder) + int(message_id).to_bytes(1, byteorder) + int(num_payloads).to_bytes(2, byteorder) + int(payload_index).to_bytes(2, byteorder) + int(payload_size).to_bytes(1, byteorder) + int(error_type).to_bytes(1, byteorder) + int(restart_index).to_bytes(2, byteorder) ) def set_payload(self, payload): self.payload = payload def set_EOP(self, eop=0): self.EOP = (eop).to_bytes(4, byteorder) def get_datagram(self): return self.head+self.payload+self.EOP """ HEAD: { Message type: 1 Byte Message id: 1 Byte Num payloads: 2 Bytes Payload index: 2 Bytes Payload size: 1 Byte Error type: 1 Byte Where to Restart: 2 Bytes } """
from aoc2015.day15 import (Ingredient, parse, cookie_vals, partition, highest_score) def test_parse(): a = ('Butterscotch: capacity -1, durability -2, flavor 6, ' 'texture 3, calories 8') assert parse(a) == Ingredient('Butterscotch', -1, -2, 6, 3, 8) def test_cookie_vals(): ingredients = [Ingredient('Butterscotch', -1, -2, 6, 3, 8), Ingredient('Butterscotch', 2, 3, -2, -1, 3)] quantities = (44, 56) assert cookie_vals(ingredients, quantities) == (62842880, 520) def test_partition(): p2_2 = list(partition(2, 2)) assert p2_2 == [(1, 1)] p10_2 = list(partition(10, 2)) assert p10_2 == [(9, 1), (8, 2), (7, 3), (6, 4), (5, 5)] p10_2_7 = list(partition(10, 2, maximum=7)) assert p10_2_7 == [(7, 3), (6, 4), (5, 5)] p4_2 = list(partition(4, 2)) assert p4_2 == [(3, 1), (2, 2)] p5_2 = list(partition(5, 2)) assert p5_2 == [(4, 1), (3, 2)] p3_3 = list(partition(3, 3)) assert p3_3 == [(1, 1, 1)] p4_3 = list(partition(4, 3)) assert p4_3 == [(2, 1, 1)] p5_3 = list(partition(5, 3)) assert p5_3 == [(3, 1, 1), (2, 2, 1)] p10_4 = list(partition(10, 4)) assert p10_4 == [(7, 1, 1, 1), (6, 2, 1, 1), (5, 3, 1, 1), (5, 2, 2, 1), (4, 4, 1, 1), (4, 3, 2, 1), (4, 2, 2, 2), (3, 3, 3, 1), (3, 3, 2, 2)] def test_highest_score(): ingredients = [Ingredient('Butterscotch', -1, -2, 6, 3, 8), Ingredient('Butterscotch', 2, 3, -2, -1, 3)] assert highest_score(ingredients, 100) == 62842880 assert highest_score(ingredients, 100, target=500) == 57600000
from django.core.management.base import BaseCommand, CommandError from udc.models import Concept class Command(BaseCommand): args = '<filename>' help = 'Updates UDC concepts' def handle(self, *args, **options): if len(args) != 1: raise CommandError(u'Please specify udc.rdf file path') source_file = args[0] try: Concept.load(source_file) except (IOError, ), e: raise CommandError(e)
# -*- coding: utf-8 -*- # Generated by Django 1.10.4 on 2017-08-27 15:17 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('account', '0007_auto_20170825_2201'), ] operations = [ migrations.AlterModelOptions( name='user', options={'ordering': ['-score']}, ), migrations.AddField( model_name='user', name='score', field=models.FloatField(default=0), ), ]
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2022 Milan Ondrašovič <milan.ondrasovic@gmail.com> # # MIT License # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE import torch from PIL import Image from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from torchvision import datasets, transforms def make_transform(cfg, *, is_train=True): transform = [] if is_train: color_jitter_transform = transforms.ColorJitter( brightness=cfg.DATASET.AUG.BRIGHTNESS, contrast=cfg.DATASET.AUG.CONTRAST, saturation=cfg.DATASET.AUG.SATURATION, hue=cfg.DATASET.AUG.HUE ) transform.append(color_jitter_transform) horizontal_flip = cfg.DATASET.AUG.HORIZONTAL_FLIP if horizontal_flip: horizontal_flip_transform = transforms.RandomHorizontalFlip( horizontal_flip ) transform.append(horizontal_flip_transform) resize_transform = transforms.Resize( size=cfg.DATASET.AUG.SIZE, interpolation=Image.BICUBIC ) transform.append(resize_transform) to_tensor_transform = transforms.ToTensor() transform.append(to_tensor_transform) normalize_transform = transforms.Normalize( mean=cfg.DATASET.AUG.NORM_MEAN, std=cfg.DATASET.AUG.NORM_STD ) transform.append(normalize_transform) transform = transforms.Compose(transform) return transform def make_dataset(cfg, transform, *, is_train=True): dataset = datasets.CIFAR100( root=cfg.DATASET.ROOT_PATH, train=is_train, transform=transform, download=cfg.DATASET.DOWNLOAD ) return dataset def make_data_loader(cfg, dataset, sampler=None, *, is_train=True): # If sampler is provided, then the shuffle parameter has to be avoided. shuffle = is_train if sampler is None else None pin_memory = torch.cuda.is_available() data_loader = DataLoader( dataset=dataset, sampler=sampler, batch_size=cfg.DATA_LOADER.BATCH_SIZE, shuffle=shuffle, num_workers=cfg.DATA_LOADER.N_WORKERS, pin_memory=pin_memory, drop_last=True ) return data_loader def make_data_loader_pack(cfg, *, is_train=True, is_distributed=False): transform = make_transform(cfg, is_train=is_train) dataset = make_dataset(cfg, transform, is_train=is_train) if is_distributed: sampler = DistributedSampler(dataset, shuffle=is_train) else: sampler = None data_loader = make_data_loader(cfg, dataset, sampler, is_train=is_train) return data_loader
#!/usr/bin/env python """ This code holds the solution for part 1 of day 8 of the Advent of Code for 2017. """ import sys def check_register(register): if register not in registers: registers[register] = 0 def perform_check(register, test, test_value): register_value = registers[register] if test == "<": return register_value < test_value if test == ">": return register_value > test_value if test == "==": return register_value == test_value if test == "!=": return register_value != test_value if test == "<=": return register_value <= test_value if test == ">=": return register_value >= test_value return False def perform_instruction(register, instruction, value): if instruction == "inc": registers[register] += value if instruction == "dec": registers[register] -= value def process_line(line): parts = line.split(" ") check_register(parts[0]) instruction = parts[1] amount = int(parts[2]) check_register(parts[4]) test = parts[5] test_value = int(parts[6]) if perform_check(parts[4], test, test_value): perform_instruction(parts[0], instruction, amount) registers = {} with open("test_input.txt", "r") as f: for line in f.readlines(): process_line(line) max = 0 first = True for r in registers: if first: max = registers[r] first = False else: if registers[r] > max: max = registers[r] if max != 1: print "Incorrect test value seen." sys.exit(-1) print "Test passed." # If we get here then all of our tests passed. registers = {} with open("input.txt", "r") as f: for line in f.readlines(): process_line(line) max = 0 first = True for r in registers: if first: max = registers[r] first = False else: if registers[r] > max: max = registers[r] print "Max value: {0}".format(max)
import sys import typing def action_sanitize(): ''' Make action suitable for use as a Pose Library ''' pass def apply_pose(pose_index: int = -1): ''' Apply specified Pose Library pose to the rig :param pose_index: Pose, Index of the pose to apply (-2 for no change to pose, -1 for poselib active pose) :type pose_index: int ''' pass def browse_interactive(pose_index: int = -1): ''' Interactively browse poses in 3D-View :param pose_index: Pose, Index of the pose to apply (-2 for no change to pose, -1 for poselib active pose) :type pose_index: int ''' pass def new(): ''' Add New Pose Library to active Object ''' pass def pose_add(frame: int = 1, name: str = "Pose"): ''' Add the current Pose to the active Pose Library :param frame: Frame, Frame to store pose on :type frame: int :param name: Pose Name, Name of newly added Pose :type name: str ''' pass def pose_move(pose: typing.Union[str, int] = '', direction: typing.Union[str, int] = 'UP'): ''' Move the pose up or down in the active Pose Library :param pose: Pose, The pose to move :type pose: typing.Union[str, int] :param direction: Direction, Direction to move the chosen pose towards :type direction: typing.Union[str, int] ''' pass def pose_remove(pose: typing.Union[str, int] = ''): ''' Remove nth pose from the active Pose Library :param pose: Pose, The pose to remove :type pose: typing.Union[str, int] ''' pass def pose_rename(name: str = "RenamedPose", pose: typing.Union[str, int] = ''): ''' Rename specified pose from the active Pose Library :param name: New Pose Name, New name for pose :type name: str :param pose: Pose, The pose to rename :type pose: typing.Union[str, int] ''' pass def unlink(): ''' Remove Pose Library from active Object ''' pass
""" Implements the template loading functionality. Loads template files and replaces all placeholders. """ from pathlib import Path import logging import typing import re import json import yaml # type: ignore import toml # type: ignore LOGGER = logging.getLogger(__name__) class BadFormatError(json.JSONDecodeError, yaml.YAMLError, toml.TomlDecodeError): """ Common error class for decoding errors of the supported file types. """ def load_dict(path: Path, placeholder_marker_left: str = '${', placeholder_marker_right: str = '}', safe=True, **replacements: typing.Union[str, bool, int, float]) -> dict: """ Loads a template file from multiple possible formats while replacing placeholders. :param path: Path to the template file :param placeholder_marker_left: Left char/string that indicates a beginning placeholder :param placeholder_marker_right: Right char/string that indicates an ending placeholder :param safe: If True, placeholders that have no fitting replacement are ignored, else an error is raised :param replacements: Replacement of placeholders specified as keyword-args :return: Python dict-representation of the loaded template. """ data = load(path, placeholder_marker_left, placeholder_marker_right, safe, **replacements) if isinstance(data, list): LOGGER.error('Expected to find a dictionary-style formatted file!') raise TypeError return data def load_list(path: Path, placeholder_marker_left: str = '${', placeholder_marker_right: str = '}', safe=True, **replacements: typing.Union[str, bool, int, float]) -> list: """ Loads a template file from multiple possible formats while replacing placeholders. :param path: Path to the template file :param placeholder_marker_left: Left char/string that indicates a beginning placeholder :param placeholder_marker_right: Right char/string that indicates an ending placeholder :param safe: If True, placeholders that have no fitting replacement are ignored, else an error is raised :param replacements: Replacement of placeholders specified as keyword-args :return: Python list-representation of the loaded template. """ if path.suffix == '.toml': LOGGER.error('Toml files do not support list-only content!') raise NotImplementedError data = load(path, placeholder_marker_left, placeholder_marker_right, safe, **replacements) if isinstance(data, dict): LOGGER.error('Expected to find a dictionary-style formatted file!') raise TypeError return data def load(path: Path, placeholder_marker_left: str = '${', placeholder_marker_right: str = '}', safe=True, **replacements: typing.Union[str, bool, int, float]) \ -> typing.Union[list, dict]: """ Loads a template file from multiple possible formats while replacing placeholders. :param path: Path to the template file :param placeholder_marker_left: Left char/string that indicates a beginning placeholder :param placeholder_marker_right: Right char/string that indicates an ending placeholder :param safe: If True, placeholders that have no fitting replacement are ignored, else an error is raised :param replacements: Replacement of placeholders specified as keyword-args :return: Python representation of the loaded template. """ try: with open(path) as template: text = template.read() template.close() except OSError as error: LOGGER.error('Could not read from file %s', path) LOGGER.error( 'Make sure the file exists and you have the appropriate rights to read from it') raise error if replacements: # pylint: disable=C0321 def replacer(match): return func_replacer(match, safe, **replacements) pattern = build_pattern(placeholder_marker_left, placeholder_marker_right) text = re.sub(pattern, replacer, text) try: if path.suffix == '.json': data = json.loads(text) elif path.suffix == '.yaml': data = yaml.safe_load(text) elif path.suffix == '.toml': data = toml.loads(text) else: raise NotImplementedError('Cannot handle templates of Type %s' % path.suffix) return data except (json.JSONDecodeError, yaml.YAMLError, toml.TomlDecodeError) as error: LOGGER.error('Could not decode file %s', path) LOGGER.error('Make sure it is formatted accordingly to the %s standard', path.suffix[1:]) raise BadFormatError from error def build_pattern(placeholder_marker_left: str, placeholder_marker_right: str) -> re.Pattern[str]: """ Creates the pattern used to match the placeholders. :param placeholder_marker_left: Marks the beginning of placeholders - internally is escaped with re.escape :param placeholder_marker_right: Marks the ending of placeholders - internally is escaped with re.escape :return: Created pattern, that matches the placeholders as specified and optionally surrounding quotes with the following groups: # group 'prefix_quote': optional leading quote # group 'placeholder': everything in between left and right marker (smallest possible match only) # group 'prefix_quote': optional leading quote """ left_marker = re.escape(placeholder_marker_left) right_marker = re.escape(placeholder_marker_right) prefix_quote = r'(?P<prefix_quote>"?)' suffix_quote = r'(?P<suffix_quote>"?)' placeholder = r'(?P<placeholder>.+?)' # regex matches everything between left and right marker, optionally in between quotes # see https://regex101.com/r/zEwq7N/1 return re.compile(prefix_quote + left_marker + placeholder + right_marker + suffix_quote) def func_replacer(match: re.Match, safe: bool, **replacements: typing.Union[str, bool, int, float]) -> str: """ Replaces given match with desired replacement. Preserves format of placeholders inside longer strings while transforming placeholders to replacement format when possible. :param match: Match in which the placeholder is to be replaced :param safe: If true, missing replacements for existing placeholders are ignored, if not raises a KeyError :param replacements: Keyword-style replacements in the format <placeholder='replacement'> :return: Text with performed replacement """ prefix_quote = match.group('prefix_quote') placeholder = match.group('placeholder') suffix_quote = match.group('suffix_quote') try: # replace correctly so strings are not broken but non-strings are not converted to strings if prefix_quote and not suffix_quote: return prefix_quote + str(replacements[placeholder]) if suffix_quote and not prefix_quote: return str(replacements[placeholder]) + suffix_quote if prefix_quote and suffix_quote: if not isinstance(replacements[placeholder], str): return str(replacements[placeholder]) return prefix_quote + str(replacements[placeholder]) + suffix_quote return str(replacements[placeholder]) except KeyError as error: if safe: return match.group(0) raise KeyError(f'Missing replacement for placeholder {placeholder}!') from error
# Rotating Cube, by Al Sweigart al@inventwithpython.com import math, time, random, sys, os if len(sys.argv) == 3: # Set size based on command line arguments: WIDTH = int(sys.argv[1]) HEIGHT = int(sys.argv[2]) else: WIDTH, HEIGHT = 80, 50 DEFAULT_SCALEX = (WIDTH - 4) // 8 DEFAULT_SCALEY = (HEIGHT - 4) // 4 # Text cells are twice as tall as they are wide, so set scaley accordingly. DEFAULT_TRANSLATEX = (WIDTH - 4) // 2 DEFAULT_TRANSLATEY = (HEIGHT - 4) // 2 def line(x1, y1, x2, y2): """Returns a generator that produces all of the points in a line between `x1`, `y1` and `x2`, `y2`. Uses the Bresenham line algorithm.""" isSteep = abs(y2-y1) > abs(x2-x1) if isSteep: x1, y1 = y1, x1 x2, y2 = y2, x2 isReversed = x1 > x2 if isReversed: x1, x2 = x2, x1 y1, y2 = y2, y1 deltax = x2 - x1 deltay = abs(y2-y1) error = int(deltax / 2) y = y2 ystep = None if y1 < y2: ystep = 1 else: ystep = -1 for x in range(x2, x1 - 1, -1): if isSteep: yield (y, x) else: yield (x, y) error -= deltay if error <= 0: y -= ystep error += deltax else: deltax = x2 - x1 deltay = abs(y2-y1) error = int(deltax / 2) y = y1 ystep = None if y1 < y2: ystep = 1 else: ystep = -1 for x in range(x1, x2 + 1): if isSteep: yield (y, x) else: yield (x, y) error -= deltay if error < 0: y += ystep error += deltax def rotateXYZ(x, y, z, ax, ay, az): # NOTE: Rotates around the origin (0, 0, 0) # Rotate along x axis: rotatedX = x rotatedY = (y * math.cos(ax)) - (z * math.sin(ax)) rotatedZ = (y * math.sin(ax)) + (z * math.cos(ax)) x, y, z = rotatedX, rotatedY, rotatedZ # Rotate along y axis: rotatedX = (z * math.sin(ay)) + (x * math.cos(ay)) rotatedY = y rotatedZ = (z * math.cos(ay)) - (x * math.sin(ay)) x, y, z = rotatedX, rotatedY, rotatedZ # Rotate along z axis: rotatedX = (x * math.cos(az)) - (y * math.sin(az)) rotatedY = (x * math.sin(az)) + (y * math.cos(az)) rotatedZ = z return (rotatedX, rotatedY, rotatedZ) def transformPoint(point1, point2, scalex=None, scaley=None, translatex=None, translatey=None): if scalex is None: scalex = DEFAULT_SCALEX if scaley is None: scaley = DEFAULT_SCALEY if translatex is None: translatex = DEFAULT_TRANSLATEX if translatey is None: translatey = DEFAULT_TRANSLATEY return (int(point1[0] * scalex + translatex), int(point1[1] * scaley + translatey), int(point2[0] * scalex + translatex), int(point2[1] * scaley + translatey)) # Set up the points of the cube: ''' Cube points: 0+-----+1 / /| / / | -y 2+-----+3 | | | 4+ | +5 +-- +x | | / / | |/ +z 6+-----+7 ''' points = [[-1, -1, -1], [ 1, -1, -1], [-1, -1, 1], [ 1, -1, 1], [-1, 1, -1], [ 1, 1, -1], [-1, 1, 1], [ 1, 1, 1]] rotatedPoints = [None] * len(points) rx = ry = rz = 0 # Rotation amounts for each axis. try: while True: # Rotate the cube: rx += 0.03 + random.randint(1, 20) / 100 ry += 0.08 + random.randint(1, 20) / 100 rz += 0.13 + random.randint(1, 20) / 100 for i in range(len(points)): rotatedPoints[i] = rotateXYZ(*points[i], rx, ry, rz) # Get the points of the cube lines: cubePoints = [] cubePoints.extend(line(*transformPoint(rotatedPoints[0], rotatedPoints[1]))) cubePoints.extend(line(*transformPoint(rotatedPoints[1], rotatedPoints[3]))) cubePoints.extend(line(*transformPoint(rotatedPoints[3], rotatedPoints[2]))) cubePoints.extend(line(*transformPoint(rotatedPoints[2], rotatedPoints[0]))) cubePoints.extend(line(*transformPoint(rotatedPoints[0], rotatedPoints[4]))) cubePoints.extend(line(*transformPoint(rotatedPoints[1], rotatedPoints[5]))) cubePoints.extend(line(*transformPoint(rotatedPoints[2], rotatedPoints[6]))) cubePoints.extend(line(*transformPoint(rotatedPoints[3], rotatedPoints[7]))) cubePoints.extend(line(*transformPoint(rotatedPoints[4], rotatedPoints[5]))) cubePoints.extend(line(*transformPoint(rotatedPoints[5], rotatedPoints[7]))) cubePoints.extend(line(*transformPoint(rotatedPoints[7], rotatedPoints[6]))) cubePoints.extend(line(*transformPoint(rotatedPoints[6], rotatedPoints[4]))) cubePoints = tuple(frozenset(cubePoints)) # Get rid of duplicate points. # Draw the cube: for y in range(0, HEIGHT, 2): for x in range(WIDTH): if (x, y) in cubePoints and (x, y + 1) in cubePoints: print(chr(9608), end='', flush=False) # Draw full block. elif (x, y) in cubePoints and (x, y + 1) not in cubePoints: print(chr(9600), end='', flush=False) # Draw top half of block. elif not (x, y) in cubePoints and (x, y + 1) in cubePoints: print(chr(9604), end='', flush=False) # Draw bottom half of block. else: print(' ', end='', flush=False) # Draw empty space. print(flush=False) print('Press Ctrl-C or Ctrl-D to quit.', end='', flush=True) time.sleep(0.1) # Pause for a bit. # Erase the screen: if sys.platform == 'win32': os.system('cls') else: os.system('clear') except KeyboardInterrupt: pass # When Ctrl-C is pressed, stop looping.
from pyvod.channel_collections import MovieTrailers, FeatureFilmsPicfixer, \ FeatureFilms query = "grindhouse" print("Searching Feature Films Picfixer for: ", query, "\n") for movie, score in FeatureFilmsPicfixer.search(query): print(movie, score) print("\nSearching Feature Films for: ", query, "\n") for movie, score in FeatureFilms.search(query): print(movie, score) print(movie.data["tags"]) query = "Frankenstein" print("\nSearching Media Trailers for: ", query, "\n") for movie, score in MovieTrailers.search(query): print(movie, score)
"""Test the Basic ICN Layer implementation""" import multiprocessing import time import unittest from PiCN.Layers.ICNLayer import BasicICNLayer from PiCN.Layers.ICNLayer.ContentStore import ContentStoreMemoryExact from PiCN.Layers.ICNLayer.ForwardingInformationBase import ForwardingInformationBaseMemoryPrefix from PiCN.Layers.ICNLayer.PendingInterestTable import PendingInterstTableMemoryExact from PiCN.Packets import Name, Interest, Content, Nack, NackReason from PiCN.Processes import PiCNSyncDataStructFactory class test_BasicICNLayer(unittest.TestCase): """Test the Basic ICN Layer implementation""" def setUp(self): #setup icn_layer self.icn_layer = BasicICNLayer(log_level=255) synced_data_struct_factory = PiCNSyncDataStructFactory() synced_data_struct_factory.register("cs", ContentStoreMemoryExact) synced_data_struct_factory.register("fib", ForwardingInformationBaseMemoryPrefix) synced_data_struct_factory.register("pit", PendingInterstTableMemoryExact) synced_data_struct_factory.create_manager() cs = synced_data_struct_factory.manager.cs() fib = synced_data_struct_factory.manager.fib() pit = synced_data_struct_factory.manager.pit() cs.set_cs_timeout(2) pit.set_pit_timeout(2) pit.set_pit_retransmits(2) self.icn_layer.cs = cs self.icn_layer.fib = fib self.icn_layer.pit = pit #setup queues icn_routing layer self.queue1_icn_routing_up = multiprocessing.Queue() self.queue1_icn_routing_down = multiprocessing.Queue() #add queues to ICN layer self.icn_layer.queue_from_lower = self.queue1_icn_routing_up self.icn_layer.queue_to_lower = self.queue1_icn_routing_down def tearDown(self): self.icn_layer.stop_process() def test_ICNLayer_interest_forward_basic(self): """Test ICN layer with no CS and PIT entry""" self.icn_layer.start_process() to_faceid = 1 from_faceid = 2 #Add entry to the fib name = Name("/test/data") interest = Interest("/test/data") self.icn_layer.fib.add_fib_entry(name, [to_faceid], static=True) #forward entry self.queue1_icn_routing_up.put([from_faceid, interest]) try: faceid, data = self.queue1_icn_routing_down.get(timeout=2.0) except: self.fail() #check output self.assertEqual(faceid, to_faceid) self.assertEqual(data, interest) #check data structures self.assertEqual(self.icn_layer.cs.get_container_size(), 0) self.assertEqual(self.icn_layer.fib.get_container_size(), 1) self.assertEqual(self.icn_layer.pit.get_container_size(), 1) self.assertEqual(self.icn_layer.fib.find_fib_entry(name).faceid, [to_faceid]) self.assertEqual(self.icn_layer.fib.find_fib_entry(name).name, name) self.assertEqual(self.icn_layer.pit.find_pit_entry(name).faceids[0], from_faceid) self.assertEqual(self.icn_layer.pit.find_pit_entry(name).name, name) def test_ICNLayer_interest_forward_longest_match(self): """Test ICN layer with no CS and no PIT entry and longest match""" self.icn_layer.start_process() to_face_id = 1 from_face_id = 2 #Add entry to the fib name = Name("/test") interest = Interest("/test/data") self.icn_layer.fib.add_fib_entry(name, [to_face_id], static=True) #forward entry self.queue1_icn_routing_up.put([from_face_id, interest]) try: face_id, data = self.queue1_icn_routing_down.get(timeout=2.0) except: self.fail() #check output self.assertEqual(face_id, to_face_id) self.assertEqual(data, interest) #check data structures self.assertEqual(self.icn_layer.cs.get_container_size(), 0) self.assertEqual(self.icn_layer.fib.get_container_size(), 1) self.assertEqual(self.icn_layer.pit.get_container_size(), 1) self.assertEqual(self.icn_layer.fib.find_fib_entry(name).faceid, [to_face_id]) self.assertEqual(self.icn_layer.fib.find_fib_entry(name).name, name) self.assertEqual(self.icn_layer.pit.find_pit_entry(interest.name).faceids[0], from_face_id) self.assertEqual(self.icn_layer.pit.find_pit_entry(interest.name).name, interest.name) def test_ICNLayer_interest_forward_deduplication(self): """Test ICN layer with no CS and no PIT entry and deduplication""" self.icn_layer.start_process() to_face_id = 1 from_face_id_1 = 2 from_face_id_2 = 3 # Add entry to the fib name = Name("/test") interest1 = Interest("/test/data") interest2 = Interest("/test/data") self.icn_layer.fib.add_fib_entry(name, [to_face_id]) # forward entry self.queue1_icn_routing_up.put([from_face_id_1, interest1]) try: face_id, data = self.queue1_icn_routing_down.get(timeout=2.0) except: self.fail() self.queue1_icn_routing_up.put([from_face_id_2, interest2], block=True) self.assertTrue(self.queue1_icn_routing_down.empty()) time.sleep(3) # check output self.assertEqual(face_id, to_face_id) self.assertEqual(data, interest1) time.sleep(0.3) # sleep required, since there is no blocking get before the checks # check data structures self.assertEqual(self.icn_layer.cs.get_container_size(), 0) self.assertEqual(self.icn_layer.fib.get_container_size(), 1) self.assertEqual(self.icn_layer.pit.get_container_size(), 1) self.assertEqual(self.icn_layer.fib.find_fib_entry(name).faceid, [to_face_id]) self.assertEqual(self.icn_layer.fib.find_fib_entry(name).name, name) self.assertEqual(len(self.icn_layer.pit.find_pit_entry(interest1.name).faceids), 2) self.assertEqual(self.icn_layer.pit.find_pit_entry(interest1.name).faceids, [from_face_id_1, from_face_id_2]) self.assertEqual(self.icn_layer.pit.find_pit_entry(interest1.name).name, interest1.name) def test_ICNLayer_interest_forward_content_match(self): """Test ICN layer with CS entry matching""" self.icn_layer.start_process() from_face_id = 2 interest = Interest("/test/data") #add content content = Content("/test/data") self.icn_layer.cs.add_content_object(content) #request content self.queue1_icn_routing_up.put([from_face_id, interest]) #get content try: face_id, data = self.queue1_icn_routing_down.get(timeout=2.0) except: self.fail() self.assertEqual(data, content) self.assertEqual(face_id, from_face_id) def test_ICNLayer_interest_forward_content_no_match(self): """Test ICN layer with CS entry no match""" self.icn_layer.start_process() to_face_id = 1 from_face_id = 2 interest = Interest("/test/data/bla") name = Name("/test/data") self.icn_layer.fib.add_fib_entry(name, [to_face_id], static=True) #add content content = Content("/test/data") self.icn_layer.cs.add_content_object(content) #request content self.queue1_icn_routing_up.put([from_face_id, interest]) #get data from fib try: face_id, data = self.queue1_icn_routing_down.get(timeout=2.0) except: self.fail() self.assertTrue(data, interest) self.assertTrue(face_id, to_face_id) self.assertTrue(self.queue1_icn_routing_up.empty()) self.assertEqual(self.icn_layer.pit.get_container_size(), 1) self.assertEqual(self.icn_layer.pit.find_pit_entry(interest.name).name, interest.name) def test_ICNLayer_content_no_pit(self): """Test receiving a content object with no PIT entry""" self.icn_layer.start_process() from_face_id = 2 content = Content("/test/data") self.queue1_icn_routing_up.put([from_face_id, content]) self.assertTrue(self.queue1_icn_routing_down.empty()) def test_ICNLayer_content_pit(self): """Test receiving a content object with PIT entry""" self.icn_layer.start_process() content_in_face_id = 1 from_face_id = 2 name = Name("/test/data") content = Content("/test/data") self.icn_layer.pit.add_pit_entry(name, from_face_id, content_in_face_id, None, None) self.queue1_icn_routing_up.put([content_in_face_id, content]) try: face_id, data = self.queue1_icn_routing_down.get(timeout=2.0) except: self.fail() self.assertEqual(face_id, from_face_id) self.assertEqual(data, content) def test_ICNLayer_content_two_pit_entries(self): """Test receiving a content object with two PIT entries""" self.icn_layer.start_process() content_in_face_id = 1 from_face_id_1 = 2 from_face_id_2 = 3 name = Name("/test/data") content = Content("/test/data") self.icn_layer.pit.add_pit_entry(name, from_face_id_1, content_in_face_id, None, False) self.icn_layer.pit.add_pit_entry(name, from_face_id_2, content_in_face_id, None, False) self.queue1_icn_routing_up.put([content_in_face_id, content]) try: face_id_1, data1 = self.queue1_icn_routing_down.get(timeout=2.0) except: self.fail() self.assertEqual(face_id_1, from_face_id_1) self.assertEqual(data1, content) face_id_2, data2 = self.queue1_icn_routing_down.get() self.assertEqual(face_id_2, from_face_id_2) self.assertEqual(data2, content) def test_ICNLayer_ageing_pit(self): """Test PIT ageing""" self.icn_layer.start_process() from_face_id_1 = 1 to_face_id = 2 name = Name("/test/data") interest = Interest(name) self.icn_layer.fib.add_fib_entry(name, [to_face_id]) self.icn_layer.pit.add_pit_entry(name, from_face_id_1, to_face_id, interest, False) self.assertEqual(self.icn_layer.pit.get_container_size(), 1) self.assertEqual(self.icn_layer.pit.find_pit_entry(name).name, name) # test retransmit 1 self.icn_layer.ageing() time.sleep(0.1) self.assertFalse(self.icn_layer.queue_to_lower.empty()) try: rface_id, rinterest = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() self.assertEqual(self.icn_layer.pit.get_container_size(), 1) self.assertEqual(rface_id, to_face_id) self.assertEqual(rinterest, interest) # test retransmit 2 self.icn_layer.ageing() time.sleep(0.1) self.assertFalse(self.icn_layer.queue_to_lower.empty()) try: rface_id, rinterest = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() self.assertEqual(self.icn_layer.pit.get_container_size(), 1) self.assertEqual(rface_id, to_face_id) self.assertEqual(rinterest, interest) # Wait for timeout time.sleep(2) # test retransmit 3 to get number of retransmit self.icn_layer.ageing() time.sleep(0.1) self.assertFalse(self.icn_layer.queue_to_lower.empty()) try: rface_id, rinterest = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() self.assertEqual(self.icn_layer.pit.get_container_size(), 1) self.assertEqual(rface_id, to_face_id) self.assertEqual(rinterest, interest) # test remove pit entry self.icn_layer.ageing() # nack = self.icn_layer.queue_to_lower.get(timeout=8.0) # invalid, no PIT Timeout Nack anymore # self.assertEqual(nack, [1, Nack(rinterest.name, NackReason.PIT_TIMEOUT, rinterest)]) self.assertTrue(self.icn_layer.queue_to_lower.empty()) self.assertEqual(self.icn_layer.pit.get_container_size(), 0) def test_ICNLayer_ageing_cs(self): """Test CS ageing and static entries""" self.icn_layer.start_process() name1 = Name("/test/data") content1 = Content(name1, "HelloWorld") name2 = Name("/data/test") content2 = Content(name2, "Goodbye") self.icn_layer.cs.add_content_object(content1) self.icn_layer.cs.add_content_object(content2, static=True) self.assertEqual(self.icn_layer.cs.get_container_size(), 2) self.assertEqual(self.icn_layer.cs.find_content_object(name1).content, content1) self.assertEqual(self.icn_layer.cs.find_content_object(name2).content, content2) #Test aging 1 self.icn_layer.ageing() self.assertEqual(self.icn_layer.cs.get_container_size(), 2) self.assertEqual(self.icn_layer.cs.find_content_object(name1).content, content1) self.assertEqual(self.icn_layer.cs.find_content_object(name2).content, content2) time.sleep(2) # Test aging 2 self.icn_layer.ageing() self.assertEqual(self.icn_layer.cs.get_container_size(), 1) self.assertEqual(self.icn_layer.cs.find_content_object(name2).content, content2) def test_ICNLayer_content_from_app_layer_no_pit(self): """get content from app layer when there is no pit entry available""" queue_to_higher = multiprocessing.Queue() queue_from_higher = multiprocessing.Queue() self.icn_layer.queue_to_higher = queue_to_higher self.icn_layer.queue_from_higher = queue_from_higher self.icn_layer.start_process() n = Name("/test/data") c = Content(n, "HelloWorld") self.icn_layer.queue_from_higher.put([0, c]) time.sleep(1) self.assertTrue(self.queue1_icn_routing_down.empty()) def test_ICNLayer_content_from_app_layer(self): """get content from app layer when there is a pit entry available""" queue_to_higher = multiprocessing.Queue() queue_from_higher = multiprocessing.Queue() self.icn_layer.queue_to_higher = queue_to_higher self.icn_layer.queue_from_higher = queue_from_higher self.icn_layer.start_process() face_id = 1 n = Name("/test/data") self.icn_layer.pit.add_pit_entry(n, face_id, -1) self.assertEqual(self.icn_layer.pit.get_container_size(), 1) c = Content(n, "HelloWorld") self.icn_layer.queue_from_higher.put([0, c]) try: data = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() self.assertEqual(data, [face_id, c]) def test_ICNLayer_content_to_app_layer_no_pit(self): """get content to app layer no pit""" queue_to_higher = multiprocessing.Queue() queue_from_higher = multiprocessing.Queue() self.icn_layer.queue_to_higher = queue_to_higher self.icn_layer.queue_from_higher = queue_from_higher self.icn_layer.start_process() from_face_id = 1 n = Name("/test/data") c = Content(n, "HelloWorld") self.icn_layer.queue_from_lower.put([from_face_id, c]) time.sleep(1) self.assertTrue(self.icn_layer.queue_to_higher.empty()) def test_ICNLayer_content_to_app_layer(self): """get content to app layer""" queue_to_higher = multiprocessing.Queue() queue_from_higher = multiprocessing.Queue() self.icn_layer.queue_to_higher = queue_to_higher self.icn_layer.queue_from_higher = queue_from_higher self.icn_layer.start_process() face_id = -1 from_face_id = 1 n = Name("/test/data") self.icn_layer.pit.add_pit_entry(n, face_id, -1, interest=None, local_app=True) self.assertEqual(self.icn_layer.pit.get_container_size(), 1) c = Content(n, "HelloWorld") self.icn_layer.queue_from_lower.put([from_face_id, c]) try: data = self.icn_layer.queue_to_higher.get(timeout=2.0) except: self.fail() self.assertEqual(data, [1, c]) def test_ICNLayer_interest_from_app_layer_no_pit(self): """Test sending and interest message from APP with no PIT entry""" queue_to_higher = multiprocessing.Queue() queue_from_higher = multiprocessing.Queue() self.icn_layer.queue_to_higher = queue_to_higher self.icn_layer.queue_from_higher = queue_from_higher self.icn_layer._interest_to_app=True self.icn_layer.start_process() face_id = 1 n = Name("/test/data") i = Interest(n) self.icn_layer.fib.add_fib_entry(n, [face_id], True) self.icn_layer.queue_from_higher.put([0, i]) try: to_faceid, data = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() self.assertEqual(to_faceid, face_id) self.assertEqual(i, data) self.assertEqual(self.icn_layer.pit.find_pit_entry(n).interest, i) self.assertTrue(self.icn_layer.pit.find_pit_entry(n).local_app[0]) def test_ICNLayer_interest_from_app_layer_pit(self): """Test sending and interest message from APP with a PIT entry --> interest not for higher layer""" queue_to_higher = multiprocessing.Queue() queue_from_higher = multiprocessing.Queue() self.icn_layer.queue_to_higher = queue_to_higher self.icn_layer.queue_from_higher = queue_from_higher self.icn_layer._interest_to_app=True self.icn_layer.start_process() face_id = 1 from_face_id = 2 n = Name("/test/data") i = Interest(n) self.icn_layer.fib.add_fib_entry(n, [face_id], True) self.icn_layer.pit.add_pit_entry(n, from_face_id, face_id, i, local_app=False) self.assertFalse(self.icn_layer.pit.find_pit_entry(n).local_app[0]) self.icn_layer.queue_from_higher.put([0, i]) try: to_face_id, data = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() self.assertEqual(to_face_id, face_id) self.assertEqual(i, data) self.assertEqual(self.icn_layer.pit.find_pit_entry(n).interest, i) self.assertFalse(self.icn_layer.pit.find_pit_entry(n).local_app[0]) #Just forward, not from local app def test_ICNLayer_interest_to_app_layer_no_pit(self): """Test sending and interest message from APP with no PIT entry""" queue_to_higher = multiprocessing.Queue() queue_from_higher = multiprocessing.Queue() self.icn_layer.queue_to_higher = queue_to_higher self.icn_layer.queue_from_higher = queue_from_higher self.icn_layer._interest_to_app = True self.icn_layer.start_process() face_id = 1 from_face_id = 2 n = Name("/test/data") i = Interest(n) self.icn_layer.fib.add_fib_entry(n, [face_id], True) self.icn_layer.queue_from_lower.put([from_face_id, i]) try: data = self.icn_layer.queue_to_higher.get(timeout=2.0) except: self.fail() self.assertEqual(data[1], i) self.assertEqual(self.icn_layer.pit.find_pit_entry(n).interest, i) def test_ICNLayer_interest_to_app_layer_pit(self): """Test sending and interest message from APP with a PIT entry""" queue_to_higher = multiprocessing.Queue() queue_from_higher = multiprocessing.Queue() self.icn_layer.queue_to_higher = queue_to_higher self.icn_layer.queue_from_higher = queue_from_higher self.icn_layer._interest_to_app = True self.icn_layer.start_process() face_id = [1] from_face_id = 2 n = Name("/test/data") i = Interest(n) self.icn_layer.fib.add_fib_entry(n, face_id, True) self.icn_layer.pit.add_pit_entry(n, from_face_id, face_id[0], i, local_app=False) self.icn_layer.queue_from_lower.put([from_face_id, i]) time.sleep(1) self.assertTrue(self.icn_layer.queue_to_higher.empty()) #--> deduplication by pit entry def test_ICNLayer_interest_to_app_layer_cs(self): """Test sending and interest message from APP with a CS entry""" queue_to_higher = multiprocessing.Queue() queue_from_higher = multiprocessing.Queue() self.icn_layer.queue_to_higher = queue_to_higher self.icn_layer.queue_from_higher = queue_from_higher self.icn_layer._interest_to_app = True self.icn_layer.start_process() face_id = 1 from_face_id = 2 n = Name("/test/data") i = Interest(n) c = Content(n, "Hello World") self.icn_layer.fib.add_fib_entry(n, [face_id], True) self.icn_layer.cs.add_content_object(c) self.icn_layer.queue_from_lower.put([from_face_id, i]) try: to_face_id, data = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() self.assertEqual(to_face_id, from_face_id) self.assertEqual(data, c) self.assertTrue(self.icn_layer.queue_to_higher.empty()) # --> was answered by using Content from cache def test_ICNLayer_issue_nack_no_content_no_fib_from_lower(self): """Test if ICN Layer issues Nack if no content and no fib entry is available from lower""" self.icn_layer.start_process() interest = Interest("/test/data") nack = Nack(interest.name, NackReason.NO_ROUTE, interest=interest) self.icn_layer.queue_from_lower.put([1, interest]) try: data = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() fid = data[0] packet = data[1] self.assertEqual(fid, 1) self.assertEqual(packet, nack) def test_ICNLayer_issue_nack_no_content_no_fib_from_higher(self): """Test if ICN Layer issues Nack if no content and no fib entry is available from higher""" queue_to_higher = multiprocessing.Queue() queue_from_higher = multiprocessing.Queue() self.icn_layer.queue_to_higher = queue_to_higher self.icn_layer.queue_from_higher = queue_from_higher self.icn_layer.start_process() interest = Interest("/test/data") nack = Nack(interest.name, NackReason.NO_ROUTE, interest=interest) self.icn_layer.queue_from_higher.put([1, interest]) try: data = self.icn_layer.queue_to_higher.get(timeout=2.0) except: self.fail() fid = data[0] packet = data[1] self.assertEqual(fid, 1) self.assertEqual(packet, nack) #TODO CHECK def test_ICNLayer_handling_nack_no_fib(self): """Test if ICN Layer handles a Nack correctly if no fib entry is available""" self.icn_layer.start_process() n1 = Name("/test/data") i1 = Interest(n1) fid_1 = 1 nack_1 = Nack(n1, NackReason.NO_ROUTE, interest=i1) self.icn_layer.pit.add_pit_entry(n1, fid_1, -1, i1, False) self.icn_layer.queue_from_lower.put([2, nack_1]) try: data = self.icn_layer.queue_to_lower.get(timeout=2.0) print(data) except: self.fail() self.assertEqual(data[0], fid_1) self.assertEqual(data[1], nack_1) #TODO Fix the error def test_ICNLayer_handling_nack_next_fib(self): """Test if ICN Layer handles a Nack correctly if further fib entry is available""" self.icn_layer.start_process() n1 = Name("/test/data/d1") i1 = Interest(n1) from_fid = 1 to_fib1 = 2 to_fib2 = 3 to_fib3 = 4 nack_1 = Nack(n1, NackReason.NO_ROUTE, interest=i1) self.icn_layer.pit.add_pit_entry(n1, from_fid, to_fib3, i1, None) self.icn_layer.pit.add_used_fib_face(n1, [to_fib3]) self.icn_layer.fib.add_fib_entry(Name("/test"), [to_fib1]) self.icn_layer.fib.add_fib_entry(Name("/test/data"), [to_fib2]) self.icn_layer.fib.add_fib_entry(Name("/test/data/d1"), [to_fib3]) #assuming this entry was used first and is active when nack arrives self.icn_layer.queue_from_lower.put([to_fib3, nack_1]) try: data = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() self.assertEqual(data[0], to_fib2) self.assertEqual(data[1], i1) #check testing second path self.icn_layer.queue_from_lower.put([to_fib2, nack_1]) try: data = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() self.assertEqual(data[0], to_fib1) self.assertEqual(data[1], i1) #check no path left self.icn_layer.queue_from_lower.put([to_fib1, nack_1]) try: data = self.icn_layer.queue_to_lower.get(timeout=2.0) except: self.fail() self.assertEqual(data[0], from_fid) self.assertEqual(data[1], nack_1) def test_multicast_and_nack_handling(self): """Test if a multicast works, and if the nack counter for the multicast works""" i1 = Interest("/test/data") n1 = Nack(i1.name, NackReason.NO_CONTENT, i1) self.icn_layer.start_process() self.icn_layer.fib.add_fib_entry(i1.name, [2,3,4]) self.icn_layer.queue_from_lower.put([1, i1]) d1 = self.icn_layer.queue_to_lower.get(timeout=2.0) self.assertEqual([2, i1], d1) self.assertTrue(self.icn_layer.queue_to_lower.empty()) self.icn_layer.queue_from_lower.put([2, n1]) d2 = self.icn_layer.queue_to_lower.get(timeout=4.0) print(d2) self.assertEqual([3, i1], d2) self.assertTrue(self.icn_layer.queue_to_lower.empty()) self.icn_layer.queue_from_lower.put([3, n1]) try: d3 = self.icn_layer.queue_to_lower.get(timeout=4.0) except: self.fail() print(d3) self.assertEqual([4, i1], d3) ## # # # self.assertTrue(self.icn_layer.queue_to_lower.empty()) # # self.icn_layer.queue_from_lower.put([2, n1]) # d3 = self.icn_layer.queue_to_lower.get(timeout=2.0) # self.assertEqual([1, n1], d3) def test_communicating_vessels_forwarding_strategy(self): """This function test the whole idea of forwarding strategy with multiple PIT entries and multiple FIB entries with multiple matches in PIT and FIB and also it checks the NACK handler in case of one face was nacked in a fib entry or all faces of a fib entry was nacked""" ab_name = Name("/a/b") i1 = Interest("/a/b/x") i2 = Interest("/a/b/y") i3 = Interest("/a/b/z") i4 = Interest("/a/b/w") i5 = Interest("/a/b/k") i6 = Interest("/x/y") i7 = Interest("/x") i8 = Interest("/m/n") i9 = Interest("/o/p") n1 = Nack(i1.name, NackReason.NO_CONTENT, i1) self.icn_layer.start_process() self.icn_layer.fib.add_fib_entry(ab_name, [1, 2, 3]) # here the fib table has many entries which contains the prefix of ab_name self.icn_layer.fib.add_fib_entry(i6.name, [1, 4]) self.icn_layer.fib.add_fib_entry(i7.name, [2, 3]) self.icn_layer.fib.add_fib_entry(i8.name, [1, 5]) self.icn_layer.fib.add_fib_entry(i9.name, [5, 3]) #send the first interest ("/a/b/x") with no matching PIT entry. The outgoing face should be "1" #as it is the first Interest and there is no pending Interests to affect the decision self.icn_layer.queue_from_lower.put([10, i1]) d1 = self.icn_layer.queue_to_lower.get(timeout=2.0) pit_entry = self.icn_layer.pit.find_pit_entry(i1.name) self.assertEqual([1], pit_entry.outgoing_faces) #send the second Interest ("/a/b/y") while the PIT entry of ("a/b/x") was not removed yet from the PIT #The interest should be sent to face "2" as the occupancy of face "1" is higher than the occupancy of "2" and "3" self.icn_layer.queue_from_lower.put([10, i2]) d1 = self.icn_layer.queue_to_lower.get(timeout=2.0) pit_entry = self.icn_layer.pit.find_pit_entry(i2.name) self.assertEqual([2], pit_entry.outgoing_faces) #send bunch of Interests which are ("/x/y"), ("/x"), ("/m/n"),("/o/p"). In this case and because there is no matching entry in PIT for any of them. # each one will be sent to the first avaialble face in FIB. So i6 will be sent to 1. i7 will be sent to 2... self.icn_layer.queue_from_lower.put([10, i6]) d1 = self.icn_layer.queue_to_lower.get(timeout=2.0) self.icn_layer.queue_from_lower.put([10, i7]) d1 = self.icn_layer.queue_to_lower.get(timeout=2.0) self.icn_layer.queue_from_lower.put([10, i8]) d1 = self.icn_layer.queue_to_lower.get(timeout=2.0) self.icn_layer.queue_from_lower.put([10, i9]) d1 = self.icn_layer.queue_to_lower.get(timeout=2.0) # send the second Interest i3 ("/a/b/z") while the PIT entry of ("a/b/x") and ("a/b/y") was not removed yet from the PIT # The interest should be sent to face "3" as the occupancy of face "1" and face "2" is higher than the occupancy of "3" self.icn_layer.queue_from_lower.put([10, i3]) d1 = self.icn_layer.queue_to_lower.get(timeout=2.0) pit_entry = self.icn_layer.pit.find_pit_entry(i3.name) self.assertEqual([3], pit_entry.outgoing_faces) # now send an interest i4 (("/a/b/w") while the previous three matching interests still exist in PIT. All faces have equal capacity so it will be sent to the first one. self.icn_layer.queue_from_lower.put([10, i4]) d1 = self.icn_layer.queue_to_lower.get(timeout=2.0) pit_entry = self.icn_layer.pit.find_pit_entry(i4.name) self.assertEqual([1], pit_entry.outgoing_faces) # we are removing i4 and i1 from the PIT table self.icn_layer.pit.remove_pit_entry(i4.name) self.icn_layer.pit.remove_pit_entry(i1.name) # senf=d i5 while i2 and i3 still exist in PIT and they match i5. So the interest will be sent to face 1 because i2 is sent to 2 and i3 is sent to 3 so 2,3 have higher occupancy than 1 self.icn_layer.queue_from_lower.put([10, i5]) d1 = self.icn_layer.queue_to_lower.get(timeout=2.0) pit_entry = self.icn_layer.pit.find_pit_entry(i5.name) self.assertEqual([1], pit_entry.outgoing_faces)
from datetime import datetime import hashlib class ServerHelper(object): def __init__(self): pass @staticmethod def get_secret(args: list): m = hashlib.md5() message = "".join(args) m.update(message.encode()) return m.hexdigest() def check_secret(self, secret, args): hash = self.get_secret(args) return True if hash == secret else False
class AuthenticationFailed(Exception): """Custom exception for authentication errors on web API level (i.e. when hitting a Flask server endpoint). """ def __init__(self, error, status_code): self.error = error self.status_code = status_code # Custom exceptions to be raised in GraphQL resolver functions # cf. https://github.com/mirumee/ariadne/issues/339#issuecomment-604380881 # Re-use error codes proposed by Apollo-Server # cf. https://www.apollographql.com/docs/apollo-server/data/errors/#error-codes class UnknownResource(Exception): extensions = { "code": "INTERNAL_SERVER_ERROR", "description": "This resource is not known", } class Forbidden(Exception): def __init__(self, resource, value, user, *args, **kwargs): self.extensions = { "code": "FORBIDDEN", "description": "You don't have access to the resource " f"{resource}={value}", "user": user, } super().__init__(*args, **kwargs) class RequestedResourceNotFound(Exception): extensions = { "code": "BAD_USER_INPUT", "description": "The requested resource does not exist in the database.", }
import matplotlib.pyplot as plt def plot_test_result(test): sorted_x = sorted(test, key=lambda kv: kv[0]) x = list(range(50)) y = list(k[1] for k in sorted_x) print(sorted_x) sorted_k = sorted(test, key=lambda kv: kv[1]) print(sorted_k) plt.plot(x, y) plt.xlabel('epoch num') plt.ylabel('domain mAP') plt.title('test_result') plt.show() test = [(0, 0.49189779300424646), (1, 0.5138904387583882), (2, 0.536334691286777), (4, 0.5645421289016331), (3, 0.5658359516156337), (5, 0.5707727279143228), (6, 0.5729809018775144), (8, 0.5871151999965678), (7, 0.5907337688146128), (9, 0.5968492444634648), (10, 0.6080814978271548), (11, 0.6241844130311393), (12, 0.6284854817365658), (13, 0.6302649758341037), (16, 0.6397864472691053), (15, 0.6399975535300045), (18, 0.6405742179835137), (17, 0.6486698072446467), (14, 0.6534752561987729), (22, 0.6661780391057547), (42, 0.6673500216433375), (33, 0.6674027973738966), (23, 0.6674991527421578), (48, 0.6685768313347468), (19, 0.6690256113493928), (31, 0.6701044096424472), (47, 0.6702893382117315), (21, 0.6721327301262641), (34, 0.6722607267611632), (39, 0.6731835836014719), (28, 0.6732898732535876), (29, 0.6738632378669075), (27, 0.6738644463650251), (26, 0.6747462409127245), (45, 0.675343059268252), (46, 0.6754493009323576), (35, 0.6762345281109167), (20, 0.6762805875922873), (30, 0.6767393006679027), (44, 0.6768907584798227), (37, 0.677008915501073), (24, 0.6778242119082827), (49, 0.6787143534135133), (38, 0.6791027570047017), (36, 0.6795088227915387), (40, 0.6800957925286214), (25, 0.6817012226743485), (32, 0.6823109049155595), (43, 0.6844323451182417), (41, 0.6874981196941213)] plot_test_result(test)
import torch import numpy as np def get_pad_mask(inputs): """Used to zero embeddings corresponding to [PAD] tokens before pooling BERT embeddings""" inputs = inputs.tolist() mask = np.ones_like(inputs) for i in range(len(inputs)): for j in range(len(inputs[i])): if inputs[i][j] == 0: mask[i][j] = 0 return torch.tensor(mask, dtype=torch.float)
from flask import Flask app = Flask(__name__) @app.route('/users/<string:username>') def hello_world(username='MyName'): return("Hello {}!".format(username)) if __name__ == '__main__': app.run()
import os __all__ = [ 'list_all_py_files', ] _excludes = [ 'tensorlayer/db.py', ] def _list_py_files(root): for root, _dirs, files in os.walk(root): if root.find('third_party') != -1: continue for file in files: if file.endswith('.py'): yield os.path.join(root, file) def list_all_py_files(): dirs = ['tensorlayer', 'tests', 'example'] for d in dirs: for filename in _list_py_files(d): if filename not in _excludes: yield filename
from django.urls import path from shiny_sheep.chat.api.views import RoomCreateView, RoomView urlpatterns = [ path('', RoomCreateView.as_view()), path('/<int:pk>/', RoomView.as_view()), ]
class Solution: def makeLargestSpecial(self, S: str) -> str: count = i = 0 res = [] for j, v in enumerate(S): count = count + 1 if v=='1' else count - 1 if count == 0: res.append('1' + self.makeLargestSpecial(S[i + 1:j]) + '0') i = j + 1 return ''.join(sorted(res)[::-1])
############################################################# ##### Simulates a pseudo-Premier League season ##### Scoring controlled by 3 ratings per team ##### Home team advantage not instituted ############################################################# import sys import numpy as np import pandas as pd import random import matplotlib.pyplot as plt # random.seed(a=3) # For testing reproducability from operator import itemgetter from scipy.optimize import curve_fit ##### Set up arrays for stats, etc. # Fill all the initial ratings for teams, and their names nteams = 20 teams = ("Powderdamp", "Loudemouth", "Borussia Albion", "Chumley United", "Aberabbit", "Hilary", "Unicorn Castle", "Neverborough", "Baconbury", "Sputterstead Village", "Moncester City", "Spleenwich", "Blokeham City", "Blokeham FC", "Geordie Abbey", "Umbridge", "Kiddingshire Cold Pudding", "Bangerford", "North Chop United", "Hopechester Munters") abbrs = ("POW", "LOU", "BA", "CU", "ABE", "HIL", "UC", "NEV", "BAC", "SV", "MON", "SPL", "BC", "BFC", "GA", "UMB", "KCP", "BAN", "NCU", "HM") realt = ("ARS", "BOU", "BHA", "BUR", "CAR", "CHE", "CP", "EVE", "FUL", "HUD", "LC", "LIV", "MC", "MU", "NEW", "SOU", "TOT", "WAT", "WHU", "WOL") tcount = list(range(nteams)) tcolor1 = ("#C81B17", "#EF0107", "#0057B8", "#6C1D45", "#0070B5", "#034694", "#1B458F", "#003399", "#CC0000", "#0E63AD", "#003090", "#C8102E", "#6CABDD", "#DA291C", "#241F20", "#130C0E", "#132257", "#FBEE23", "#7A263A", "#FDB913") tcolor2 = ("#EFDBB2", "#DB0007", "#EEEEEE", "#99D6EA", "#D11524", "#D1D3D4", "#C4122E", "#003399", "#000000", "#FFFFFF", "#FDBE11", "#FFFFFF", "#1C2C5B", "#FBE122", "#41B6E6", "#D71920", "#FFFFFF", "#ED2127", "#1BB1E7", "#231F20") orate = (1, 2, 2, 3, 3, 1, 2, 3, 3, 3, 2, 1, 1, 2, 2, 2, 1, 2, 3, 2) drate = (1, 3, 3, 3, 3, 1, 2, 1, 2, 3, 2, 1, 1, 1, 2, 3, 1, 3, 2, 3) krate = (3, 2, 2, 1, 3, 2, 2, 2, 2, 3, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2) # Probabilities for scoring shotp = (0.33, 0.37, 0.42, 0.49, 0.59) # index is (drate - orate + 2) targp = (0.29, 0.33, 0.38) # index is (3 - orate) keepp = (0.24, 0.31, 0.36) # index is (krate - 1) pertmag = 0.06 # Allows for drift over time # Function fit thru probabilities y = a - b*(1-exp(-k*x)) def func_epl(x, a, b, k): return a - b/k * (1 - np.exp(-k * x)) xdata = (0.0, 1.0, 2.0, 3.0, 4.0) popt, pcov = curve_fit(func_epl, xdata, shotp) co_shot = popt # a, b and k to best match shotp xdata = (0.0, 1.0, 2.0) popt, pcov = curve_fit(func_epl, xdata, targp) co_targ = popt # a, b and k to best match targp xdata = (0.0, 1.0, 2.0) popt, pcov = curve_fit(func_epl, xdata, keepp) co_keep = popt # a, b and k to best match keepp #print(popt) #bestfit = [0] * 3 #for i in range(0,3): # bestfit[i] = func_epl(i, *popt) #print(bestfit) #sys.exit() # Set up perturbations to team ratings that can evolve # in a random Brownian manner thru the season opert = [0] * 20 dpert = [0] * 20 kpert = [0] * 20 ##### Generate schedule array # Create empty arrays to house schedule weeks = (nteams-1) * 2 games = int(nteams/2) week_home = [[0] * games for i in range(weeks)] week_away = [[0] * games for i in range(weeks)] # Set up first week of pattern week_home[0] = list(range(0, games)) week_away[0] = list(range(nteams-1, games-1, -1)) #print("Week: 1") #print(week_home[0]) #print(week_away[0]) #print(" --- ") # Loop thru weeks, keep team 0 in same slot, rotate others thru for week in range(0, weeks-1): # print(" ".join(["Week:",str(week + 2)])) # Clear out the week's lists of teams new_home, new_away = [], [] # new_away = [] # Set up the teams in each game by moving slots from previous week # Game #1 new_home.append(week_home[week][0]) new_away.append(week_home[week][1]) # Games #2-#9 for game in range(1, games-1): new_home.append(week_home[week][game+1]) new_away.append(week_away[week][game-1]) # Game #10 new_home.append(week_away[week][9]) new_away.append(week_away[week][8]) # print(new_home) # print(new_away) # print(" --- ") # Place new week's pairings into the schedule matrix week_home[week+1] = new_home week_away[week+1] = new_away # print(week_home) # Invert home and away slots every other week for week in range(0, weeks): if week % 2 == 0: new_away = week_home[week] week_home[week] = week_away[week] week_away[week] = new_away ##### Keep track of stats and standings # Set up table table_w = [0] * nteams table_d = [0] * nteams table_l = [0] * nteams table_gf = [0] * nteams table_ga = [0] * nteams table_gd = [0] * nteams table_pts = [0] * nteams table_rank = [0] * nteams # Keep track of evolution of stats through season for each team weekly_rank = [[0] * nteams for i in range(weeks)] weekly_pts = [[0] * nteams for i in range(weeks)] last_five = [""] * nteams ################################################################ # Game play # 30 3-minute intervals (15 per half) # Each interval has a shot probability (shotp) # If there is a shot, it has an on-target prob (targp) # If shot is on goal, it has prob to get past the keeper (keepp) print(" ") # Loop through weeks for week in range(0, weeks): print("Week: ",int(week+1)) # Update perturbed ratings ocafe = [sum(i) for i in zip(orate,opert)] dcafe = [sum(i) for i in zip(drate,dpert)] kcafe = [sum(i) for i in zip(krate,kpert)] # Loop through games # Shuffle sequence for fun gseq = [i for i in range(games)] random.shuffle(gseq) for game in range(0, games): # Set up bookkeeping for game home_team = week_home[week][gseq[game]] away_team = week_away[week][gseq[game]] # home_shotp = shotp[int(drate[away_team]-orate[home_team]+2)] home_shotp = func_epl(dcafe[away_team]-ocafe[home_team]+2, *co_shot) # home_targp = targp[int(3-orate[home_team])] home_targp = func_epl(3-ocafe[home_team], *co_targ) # home_keepp = keepp[krate[away_team]-1] home_keepp = func_epl(kcafe[away_team]-1, *co_keep) # away_shotp = shotp[int(drate[home_team]-orate[away_team]+2)] away_shotp = func_epl(dcafe[home_team]-ocafe[away_team]+2, *co_shot) # away_targp = targp[int(3-orate[away_team])] away_targp = func_epl(3-ocafe[away_team], *co_targ) # away_keepp = keepp[krate[home_team]-1] away_keepp = func_epl(kcafe[home_team]-1, *co_keep) home_goals_string = abbrs[home_team] + ":" away_goals_string = abbrs[away_team] + ":" home_shotc, home_targc, home_score = 0, 0, 0 away_shotc, away_targc, away_score = 0, 0, 0 print(" ") print("Game",int(game+1),"-",teams[home_team],"vs",teams[away_team]) # Loop through the time intervals for interval in range(0, 30): cheer = 0 # Does home team score? (Having first chance is home field advantage) if (random.random() < home_shotp): home_shotc += 1 if (random.random() < home_targp): home_targc += 1 if (random.random() < home_keepp): home_score += 1 cheer = 1 goal_time = int(random.uniform(0,3))+interval*3+1 home_goals_string += " " + str(goal_time) + "'" # print(f"{teams[home_team]} @ {goal_time}'") # If not, does away team score? if (random.random() < away_shotp) and (cheer == 0): away_shotc += 1 if (random.random() < away_targp): away_targc += 1 if (random.random() < away_keepp): away_score += 1 goal_time = int(random.uniform(0,3))+interval*3+1 away_goals_string += " " + str(goal_time) + "'" # print(f"{teams[away_team]} @ {goal_time}'") print("FT:",teams[home_team],home_score,"-",away_score,teams[away_team]) if (home_score > 0): if (away_score > 0): print("> " + home_goals_string + "; " + away_goals_string) else: print("> " + home_goals_string) else: if (away_score > 0): print("> " + away_goals_string) else: print("> ") ##### Match over - update table stats if (home_score > away_score): table_w[home_team] += 1 last_five[home_team] = "W" + last_five[home_team] if (len(last_five[home_team]) > 5): last_five[home_team] = last_five[home_team][:5] table_l[away_team] += 1 last_five[away_team] = "L" + last_five[away_team] if (len(last_five[away_team]) > 5): last_five[away_team] = last_five[away_team][:5] elif (home_score < away_score): table_w[away_team] += 1 last_five[away_team] = "W" + last_five[away_team] if (len(last_five[away_team]) > 5): last_five[away_team] = last_five[away_team][:5] table_l[home_team] += 1 last_five[home_team] = "L" + last_five[home_team] if (len(last_five[home_team]) > 5): last_five[home_team] = last_five[home_team][:5] else: table_d[home_team] += 1 last_five[home_team] = "D" + last_five[home_team] if (len(last_five[home_team]) > 5): last_five[home_team] = last_five[home_team][:5] table_d[away_team] += 1 last_five[away_team] = "D" + last_five[away_team] if (len(last_five[away_team]) > 5): last_five[away_team] = last_five[away_team][:5] table_gf[home_team] += home_score table_ga[away_team] += home_score table_gf[away_team] += away_score table_ga[home_team] += away_score table_gd[home_team] = table_gf[home_team] - table_ga[home_team] table_gd[away_team] = table_gf[away_team] - table_ga[away_team] table_pts[home_team] = 3 * table_w[home_team] + table_d[home_team] table_pts[away_team] = 3 * table_w[away_team] + table_d[away_team] print(" ") print("-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-") ############################################################# ##### Week over - updated the table and print table_tup = zip(teams,table_w,table_d,table_l,table_pts,table_gd,last_five,tcount) # Do a complex sort, pts, gd s = sorted(table_tup, key=itemgetter(5), reverse=True) table_sort = sorted(s, key=itemgetter(4), reverse=True) t_team,t_win,t_draw,t_loss,t_pts,t_gd,t_l5,t_tc = zip(*table_sort) # Print table print(" ") print(" Team W D L Pts Dif") for x in range(0, nteams): print("{0:2} {1:25} {2:2d} {3:2d} {4:2d} {5:3d} {6:+3d} {7}".format(x+1,t_team[x],t_win[x],t_draw[x],t_loss[x],t_pts[x],t_gd[x], t_l5[x])) weekly_rank[week][t_tc[x]] = x+1 weekly_pts[week][t_tc[x]] = t_pts[x] print(" ") # print(weekly_rank[week]) # dummy = input(" ") # Update perturbations to team ratings for x in range(0, nteams): opert[x] += random.uniform(-pertmag,pertmag) dpert[x] += random.uniform(-pertmag,pertmag) kpert[x] += random.uniform(-pertmag,pertmag) # # sys.exit() print(" ") ##### Plot a graph of season's week-by-week team performance pmax = max(weekly_pts[37]) vtint = 0.05 * (pmax - 25) plt.xlim((0, 38.5)) plt.ylim((-2, pmax+4)) plt.tick_params(axis='y',left='on',right='on',labelleft='on',labelright='on') plt.xticks([1, 5, 10, 15, 20, 25, 30, 35, 38]) plt.vlines(19.5,-2,pmax+4,colors="#404040") for t in range(0, nteams): pseries = [x[t] for x in weekly_pts] df=pd.DataFrame({'x': range(1,39), 'y': pseries }) plt.plot('x','y',data=df,color=tcolor2[t],linestyle='-',linewidth=3) plt.plot('x','y',data=df,color=tcolor1[t],linestyle='--',linewidth=2) plt.text(3.26,pmax-0.04-vtint*(weekly_rank[37][t]-1),abbrs[t],verticalalignment='center',horizontalalignment='right',fontsize=11,color=tcolor2[t],weight='normal') plt.text(3.3,pmax-vtint*(weekly_rank[37][t]-1),abbrs[t],verticalalignment='center',horizontalalignment='right',fontsize=11,color=tcolor1[t],weight='normal') plt.text(6.96,pmax-0.04-vtint*(weekly_rank[37][t]-1),table_pts[t],verticalalignment='center',horizontalalignment='left',fontsize=11,color=tcolor2[t],weight='normal') plt.text(7.0,pmax-vtint*(weekly_rank[37][t]-1),table_pts[t],verticalalignment='center',horizontalalignment='left',fontsize=11,color=tcolor1[t],weight='normal') plt.plot([4.00,6.33],[pmax-vtint*(weekly_rank[37][t]-1),pmax-vtint*(weekly_rank[37][t]-1)],color=tcolor2[t],linestyle='-',linewidth=3) plt.plot([4.00,6.33],[pmax-vtint*(weekly_rank[37][t]-1),pmax-vtint*(weekly_rank[37][t]-1)],color=tcolor1[t],linestyle='--',linewidth=2) plt.ylabel('Points') plt.xlabel('Week') plt.title('Week-by-Week Progression') # plt.legend() # plt.figure(figsize=(11,8.5)) plt.show()
#!/usr/bin/env python3 # Copyright (C) 2019 Canonical Ltd. import nagios_plugin3 import yaml from subprocess import check_output snap_resources = ['kubectl', 'kubelet', 'kube-proxy'] def check_snaps_installed(): """Confirm the snaps are installed, raise an error if not""" for snap_name in snap_resources: cmd = ['snap', 'list', snap_name] try: check_output(cmd).decode('UTF-8') except Exception: msg = '{} snap is not installed'.format(snap_name) raise nagios_plugin3.CriticalError(msg) def check_node(node): checks = [{'name': 'MemoryPressure', 'expected': 'False', 'type': 'warn', 'error': 'Memory Pressure'}, {'name': 'DiskPressure', 'expected': 'False', 'type': 'warn', 'error': 'Disk Pressure'}, {'name': 'PIDPressure', 'expected': 'False', 'type': 'warn', 'error': 'PID Pressure'}, {'name': 'Ready', 'expected': 'True', 'type': 'error', 'error': 'Node Not Ready'}] msg = [] error = False for check in checks: # find the status that matches for s in node['status']['conditions']: if s['type'] == check['name']: # does it match expectations? If not, toss it on the list # of errors so we don't show the first issue, but all. if s['status'].lower() != check['expected'].lower(): msg.append(check['error']) if check['type'] == 'error': error = True else: break else: err_msg = 'Unable to find status for {}'.format(check['error']) raise nagios_plugin3.CriticalError(err_msg) if msg: if error: raise nagios_plugin3.CriticalError(msg) else: raise nagios_plugin3.WarnError(msg) def verify_node_registered_and_ready(): try: cmd = "/snap/bin/kubectl --kubeconfig /var/lib/nagios/.kube/config" \ " get no -o=yaml" y = yaml.load(check_output(cmd.split())) except Exception: raise nagios_plugin3.CriticalError("Unable to run kubectl " "and parse output") for node in y['items']: if node['metadata']['name'] == '{{node_name}}': check_node(node) return else: raise nagios_plugin3.CriticalError("Unable to find " "node registered on API server") def main(): nagios_plugin3.try_check(check_snaps_installed) nagios_plugin3.try_check(verify_node_registered_and_ready) print("OK - No memory, disk, or PID pressure. Registered with API server") if __name__ == "__main__": main()
#! /usr/bin/python import sys import common def init_file(prefix): if not prefix: return out_fd = open(prefix + ".h", "wt") out_fd.write("#ifndef " + "_" + common.cmn_trans_underline(prefix).upper() + "_" + "\n") out_fd.write("#define " + "_" + common.cmn_trans_underline(prefix).upper() + "_" + "\n") out_fd.write("\n") out_fd.write("#include <stdio.h>\n") out_fd.write("\n") out_fd.close()
import torch from torch import nn, optim import torchsolver as ts class Discriminator(nn.Module): def __init__(self, in_c=784, channels=(200,), leaky=0.02, layer_norm=nn.LayerNorm): super(Discriminator, self).__init__() layers = [] for out_c in channels: layers.append(nn.Linear(in_c, out_c)) layers.append(nn.LeakyReLU(leaky)) if layer_norm is not None: layers.append(layer_norm(out_c)) in_c = out_c self.layers = nn.Sequential(*layers) self.fc = nn.Linear(in_c, 1) def forward(self, x): x = self.layers(x) x = self.fc(x) return torch.sigmoid(x) class Generator(nn.Module): def __init__(self, z_dim=100, out_c=784, channels=(200,), leaky=0.02, layer_norm=nn.LayerNorm): super(Generator, self).__init__() layers = [] for in_c in channels: layers.append(nn.Linear(z_dim, in_c)) layers.append(nn.LeakyReLU(leaky)) if layer_norm is not None: layers.append(layer_norm(in_c)) z_dim = in_c self.layers = nn.Sequential(*layers) self.fc = nn.Linear(z_dim, out_c) def forward(self, x): x = self.layers(x) x = self.fc(x) return torch.tanh(x) class GANNet(ts.GANModule): def __init__(self, z_dim=100, out_c=784, d_channels=(200,), g_channels=(200,), **kwargs): super(GANNet, self).__init__(**kwargs) self.z_dim = z_dim self.g_net = Generator(z_dim=z_dim, out_c=out_c, channels=g_channels) self.d_net = Discriminator(in_c=out_c, channels=d_channels) self.loss = nn.BCELoss() self.g_optimizer = optim.Adam(self.g_net.parameters()) self.d_optimizer = optim.Adam(self.d_net.parameters()) def forward_d(self, img, label): N = img.size(0) real_label = torch.ones(N, 1, device=self.device) fake_label = torch.zeros(N, 1, device=self.device) # compute loss of real_img real_out = self.d_net(img.flatten(1)) loss_real = self.loss(real_out, real_label) real_score = (real_out > 0.5).float() # compute loss of fake_img z = torch.randn(N, self.z_dim, device=self.device) fake_img = self.g_net(z) fake_out = self.d_net(fake_img) loss_fake = self.loss(fake_out, fake_label) fake_score = (fake_out < 0.5).float() d_loss = loss_real + loss_fake d_score = torch.cat([real_score, fake_score], dim=0).mean() return d_loss, {"d_loss": float(d_loss), "d_score": float(d_score)} def forward_g(self, img, label): N = img.size(0) real_label = torch.ones(N, 1, device=self.device) # compute loss of fake_img z = torch.randn(N, self.z_dim, device=self.device) fake_img = self.g_net(z) fake_out = self.d_net(fake_img) g_loss = self.loss(fake_out, real_label) g_score = (fake_out > 0.5).float().mean() return g_loss, {"g_loss": float(g_loss), "g_score": float(g_score)} @torch.no_grad() def sample(self, n, img_size=(1, 28, 28)): z = torch.randn(n, self.z_dim, device=self.device) img = self.g_net(z) img = (img + 1) / 2. img = torch.clamp(img, 0, 1) return img.view(img.size(0), *img_size) def val_epoch(self, epoch, *args): img = self.sample(32) self.logger.add_images("val/sample", img, global_step=epoch) self.logger.flush()
''' afhsb_csv.py creates CSV files filled_00to13.csv, filled_13to17.csv and simple_DMISID_FY2018.csv which will be later used to create MYSQL data tables. Several intermediate files will be created, including: 00to13.pickle 13to17.pickle 00to13.csv 13to17.csv Required source files: ili_1_2000_5_2013_new.sas7bdat and ili_1_2013_11_2017_new.sas7bdat under SOURCE_DIR country_codes.csv and DMISID_FY2018.csv under TARGET_DIR All intermediate files and final csv files will be stored in TARGET_DIR ''' import csv import os import sas7bdat import pickle import epiweeks as epi DATAPATH = '/home/automation/afhsb_data' SOURCE_DIR = DATAPATH TARGET_DIR = DATAPATH INVALID_DMISIDS = set() def get_flu_cat(dx): # flu1 (influenza) if (len(dx) == 0): return None dx = dx.capitalize() if (dx.isnumeric()): for prefix in ["487", "488"]: if (dx.startswith(prefix)): return 1 for i in range(0, 7): prefix = str(480 + i) if (dx.startswith(prefix)): return 2 for i in range(0, 7): prefix = str(460 + i) if (dx.startswith(prefix)): return 3 for prefix in ["07999", "3829", "7806", "7862"]: if (dx.startswith(prefix)): return 3 elif (dx[0].isalpha() and dx[1:].isnumeric()): for prefix in ["J09", "J10", "J11"]: if (dx.startswith(prefix)): return 1 for i in range(12, 19): prefix = "J{}".format(i) if (dx.startswith(prefix)): return 2 for i in range(0, 7): prefix = "J0{}".format(i) if (dx.startswith(prefix)): return 3 for i in range(20, 23): prefix = "J{}".format(i) if (dx.startswith(prefix)): return 3 for prefix in ["J40", "R05", "H669", "R509", "B9789"]: if (dx.startswith(prefix)): return 3 else: return None def aggregate_data(sourcefile, targetfile): reader = sas7bdat.SAS7BDAT(os.path.join(SOURCE_DIR, sourcefile), skip_header=True) # map column names to column indices COL2IDX = {column.name.decode('utf-8'): column.col_id for column in reader.columns} def get_field(row, column): return row[COL2IDX[column]] def row2flu(row): for i in range(1, 9): dx = get_field(row, "dx{}".format(i)) flu_cat = get_flu_cat(dx) if (flu_cat != None): return flu_cat return 0 def row2epiweek(row): date = get_field(row, 'd_event') year, month, day = date.year, date.month, date.day week_tuple = epi.Week.fromdate(year, month, day).weektuple() year, week_num = week_tuple[0], week_tuple[1] return year, week_num results_dict = dict() for r, row in enumerate(reader): # if (r >= 1000000): break if (get_field(row, 'type') != "Outpt"): continue year, week_num = row2epiweek(row) dmisid = get_field(row, 'DMISID') flu_cat = row2flu(row) key_list = [year, week_num, dmisid, flu_cat] curr_dict = results_dict for i, key in enumerate(key_list): if (i == len(key_list) - 1): if (not key in curr_dict): curr_dict[key] = 0 curr_dict[key] += 1 else: if (not key in curr_dict): curr_dict[key] = dict() curr_dict = curr_dict[key] results_path = os.path.join(TARGET_DIR, targetfile) with open(results_path, 'wb') as f: pickle.dump(results_dict, f, pickle.HIGHEST_PROTOCOL) return ################# Functions for geographical information #################### def get_country_mapping(): filename = "country_codes.csv" mapping = dict() with open(os.path.join(TARGET_DIR, filename), "r") as csvfile: reader = csv.DictReader(csvfile) for row in reader: print(row.keys()) alpha2 = row['alpha-2'] alpha3 = row['alpha-3'] mapping[alpha2] = alpha3 return mapping def format_dmisid_csv(filename, target_name): src_path = os.path.join(TARGET_DIR, "{}.csv".format(filename)) dst_path = os.path.join(TARGET_DIR, target_name) src_csv = open(src_path, "r", encoding='utf-8-sig') reader = csv.DictReader(src_csv) dst_csv = open(dst_path, "w") fieldnames = ['dmisid', 'country', 'state', 'zip5'] writer = csv.DictWriter(dst_csv, fieldnames=fieldnames) writer.writeheader() country_mapping = get_country_mapping() for row in reader: country2 = row['Facility ISO Country Code'] if (country2 == ""): country3 = "" elif (not country2 in country_mapping): for key in row.keys(): print(key, row[key]) continue else: country3 = country_mapping[country2] new_row = {'dmisid': row['DMIS ID'], 'country': country3, 'state': row['Facility State Code'], 'zip5': row['Facility 5-Digit ZIP Code']} writer.writerow(new_row) def dmisid(): filename = 'DMISID_FY2018' target_name = "simple_DMISID_FY2018.csv" format_dmisid_csv(filename, target_name) cen2states = {'cen1': {'CT', 'ME', 'MA', 'NH', 'RI', 'VT'}, 'cen2': {'NJ', 'NY', 'PA'}, 'cen3': {'IL', 'IN', 'MI', 'OH', 'WI'}, 'cen4': {'IA', 'KS', 'MN', 'MO', 'NE', 'ND', 'SD'}, 'cen5': {'DE', 'DC', 'FL', 'GA', 'MD', 'NC', 'SC', 'VA', 'WV'}, 'cen6': {'AL', 'KY', 'MS', 'TN'}, 'cen7': {'AR', 'LA', 'OK', 'TX'}, 'cen8': {'AZ', 'CO', 'ID', 'MT', 'NV', 'NM', 'UT', 'WY'}, 'cen9': {'AK', 'CA', 'HI', 'OR', 'WA'}} hhs2states = {'hhs1': {'VT', 'CT', 'ME', 'MA', 'NH', 'RI'}, 'hhs2': {'NJ', 'NY'}, 'hhs3': {'DE', 'DC', 'MD', 'PA', 'VA', 'WV'}, 'hhs4': {'AL', 'FL', 'GA', 'KY', 'MS', 'NC', 'TN', 'SC'}, 'hhs5': {'IL', 'IN', 'MI', 'MN', 'OH', 'WI'}, 'hhs6': {'AR', 'LA', 'NM', 'OK', 'TX'}, 'hhs7': {'IA', 'KS', 'MO', 'NE'}, 'hhs8': {'CO', 'MT', 'ND', 'SD', 'UT', 'WY'}, 'hhs9': {'AZ', 'CA', 'HI', 'NV'}, 'hhs10': {'AK', 'ID', 'OR', 'WA'}} def state2region(D): results = dict() for region in D.keys(): states = D[region] for state in states: assert(not state in results) results[state] = region return results def state2region_csv(): to_hhs = state2region(hhs2states) to_cen = state2region(cen2states) states = to_hhs.keys() target_name = "state2region.csv" fieldnames = ['state', 'hhs', 'cen'] with open(target_name, "w") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() for state in states: content = {"state": state, "hhs": to_hhs[state], "cen": to_cen[state]} writer.writerow(content) ################# Functions for geographical information #################### ######################### Functions for AFHSB data ########################## def write_afhsb_csv(period): flu_mapping = {0: "ili-flu3", 1: "flu1", 2:"flu2-flu1", 3: "flu3-flu2"} results_dict = pickle.load(open(os.path.join(TARGET_DIR, "{}.pickle".format(period)), 'rb')) fieldnames = ["id", "epiweek", "dmisid", "flu_type", "visit_sum"] with open(os.path.join(TARGET_DIR, "{}.csv".format(period)), 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writeheader() i = 0 for year in sorted(results_dict.keys()): year_dict = results_dict[year] for week in sorted(year_dict.keys()): week_dict = year_dict[week] for dmisid in sorted(week_dict.keys()): dmisid_dict = week_dict[dmisid] for flu in sorted(dmisid_dict.keys()): visit_sum = dmisid_dict[flu] i += 1 epiweek = int("{}{:02d}".format(year, week)) flu_type = flu_mapping[flu] row = {"epiweek": epiweek, "dmisid": None if (not dmisid.isnumeric()) else dmisid, "flu_type": flu_type, "visit_sum": visit_sum, "id": i} writer.writerow(row) if (i % 100000 == 0): print(row) def dmisid_start_time_from_file(filename): starttime_record = dict() with open(filename, 'r') as csvfile: reader = csv.DictReader(csvfile) for row in reader: dmisid = row['dmisid'] epiweek = int(row['epiweek']) if (not dmisid in starttime_record): starttime_record[dmisid] = epiweek else: starttime_record[dmisid] = min(epiweek, starttime_record[dmisid]) return starttime_record def dmisid_start_time(): record1 = dmisid_start_time_from_file(os.path.join(TARGET_DIR, "00to13.csv")) record2 = dmisid_start_time_from_file(os.path.join(TARGET_DIR, "13to17.csv")) record = record1 for dmisid, epiweek in record2.items(): if (dmisid in record): record[dmisid] = min(record[dmisid], epiweek) else: record[dmisid] = epiweek return record def fillin_zero_to_csv(period, dmisid_start_record): src_path = os.path.join(TARGET_DIR, "{}.csv".format(period)) dst_path = os.path.join(TARGET_DIR, "filled_{}.csv".format(period)) # Load data into a dictionary src_csv = open(src_path, "r") reader = csv.DictReader(src_csv) results_dict = dict() # epiweek -> dmisid -> flu_type: visit_sum for i, row in enumerate(reader): epiweek = int(row['epiweek']) dmisid = row['dmisid'] flu_type = row['flu_type'] visit_sum = row['visit_sum'] if (not epiweek in results_dict): results_dict[epiweek] = dict() week_dict = results_dict[epiweek] if (not dmisid in week_dict): week_dict[dmisid] = dict() dmisid_dict = week_dict[dmisid] dmisid_dict[flu_type] = visit_sum # Fill in zero count records dmisid_group = dmisid_start_record.keys() flutype_group = ["ili-flu3", "flu1", "flu2-flu1", "flu3-flu2"] for epiweek in results_dict.keys(): week_dict = results_dict[epiweek] for dmisid in dmisid_group: start_week = dmisid_start_record[dmisid] if (start_week > epiweek): continue if (not dmisid in week_dict): week_dict[dmisid] = dict() dmisid_dict = week_dict[dmisid] for flutype in flutype_group: if (not flutype in dmisid_dict): dmisid_dict[flutype] = 0 # Write to csv files dst_csv = open(dst_path, "w") fieldnames = ["id", "epiweek", "dmisid", "flu_type", "visit_sum"] writer = csv.DictWriter(dst_csv, fieldnames=fieldnames) writer.writeheader() i = 1 for epiweek in results_dict: for dmisid in results_dict[epiweek]: for flutype in results_dict[epiweek][dmisid]: visit_sum = results_dict[epiweek][dmisid][flutype] row = {"id": i, "epiweek": epiweek, "dmisid": dmisid, "flu_type": flutype, "visit_sum": visit_sum} writer.writerow(row) if (i % 100000 == 0): print(row) i += 1 print("Wrote {} rows".format(i)) ######################### Functions for AFHSB data ########################## def main(): # Build tables containing geographical information state2region_csv() dmisid() # Aggregate raw data into pickle files aggregate_data("ili_1_2000_5_2013_new.sas7bdat", "00to13.pickle") aggregate_data("ili_1_2013_11_2017_new.sas7bdat", "13to17.pickle") # write pickle content to csv files write_afhsb_csv("00to13") write_afhsb_csv("13to17") # Fill in zero count records dmisid_start_record = dmisid_start_time() fillin_zero_to_csv("00to13", dmisid_start_record) fillin_zero_to_csv("13to17", dmisid_start_record) if __name__ == '__main__': main()
import os import numpy as np import cv2 from Lane import Line import parameter import helper import matplotlib.pyplot as plt from moviepy.editor import VideoFileClip def find_lane_pixels(binary_warped): global LeftLane, RightLane # Identify the x and y positions of all nonzero pixels in the image nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) out_img = np.dstack((binary_warped, binary_warped, binary_warped)) if not LeftLane.detected or not RightLane.detected: print("using hist method") # Take a histogram of the bottom half of the image size = binary_warped.shape histogram = np.sum(binary_warped[binary_warped.shape[0] // 2:, :], axis=0) # Create an output image to draw on and visualize the result midpoint = np.int(histogram.shape[0] // 2) # Set height of windows - based on nwindows above and image shape window_height = np.int(binary_warped.shape[0] // parameter.nwindows) # Visualize the resulting histogram #plt.plot(histogram) #plt.show() # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint # Current positions to be updated later for each window in nwindows leftx_current = leftx_base rightx_current = rightx_base # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] # Step through the windows one by one for window in range(parameter.nwindows): # Identify window boundaries in x and y (and right and left) win_y_low = binary_warped.shape[0] - (window + 1) * window_height win_y_high = binary_warped.shape[0] - window * window_height if not LeftLane.detected: win_xleft_low = leftx_current - parameter.margin win_xleft_high = leftx_current + parameter.margin # Draw the windows on the visualization image cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0, 255, 0), 2) # Identify the nonzero pixels in x and y within the window ### good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] # Append these indices to the lists left_lane_inds.append(good_left_inds) if len(good_left_inds) > parameter.minpix: leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if not RightLane.detected: win_xright_low = rightx_current - parameter.margin win_xright_high = rightx_current + parameter.margin cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0, 255, 0), 2) good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] right_lane_inds.append(good_right_inds) if len(good_right_inds) > parameter.minpix: rightx_current = np.int(np.mean(nonzerox[good_right_inds])) # Concatenate the arrays of indices (previously was a list of lists of pixels) try: left_lane_inds = np.concatenate(left_lane_inds) except ValueError: # Avoids an error if the above is not implemented fully pass try: right_lane_inds = np.concatenate(right_lane_inds) except ValueError: # Avoids an error if the above is not implemented fully pass if LeftLane.detected: print("leftlane detected") left_fit = LeftLane.best_fit # Set the area of search based on activated x-values # # within the +/- margin of our polynomial function # left_lane_inds = ((nonzerox > (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] - parameter.margin)) & (nonzerox < (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] + parameter.margin))) if RightLane.detected: print("rightlane detected") right_fit = RightLane.best_fit right_lane_inds = ((nonzerox > (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] - parameter.margin)) & (nonzerox < (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] + parameter.margin))) # Extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] LeftLane.allx = leftx LeftLane.ally = lefty return leftx, lefty, rightx, righty, out_img def fit_polynomial(binary_warped): # Find our lane pixels first leftx, lefty, rightx, righty, out_img = find_lane_pixels(binary_warped) # Fit a second order polynomial to each using `np.polyfit` ### left_fit = None right_fit = None if len(leftx) > 0 and len(lefty) > 0: left_fit = np.polyfit(lefty, leftx, 2) if len(rightx) > 0 and len(righty) > 0: right_fit = np.polyfit(righty, rightx, 2) LeftLane.update_best_fit(left_fit) RightLane.update_best_fit(right_fit) if LeftLane.best_fit is None or RightLane.best_fit is None: print("retry to find lane pixels") # Find our lane pixels first leftx, lefty, rightx, righty, out_img = find_lane_pixels(binary_warped) # Fit a second order polynomial to each using `np.polyfit` # left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) LeftLane.update_best_fit(left_fit) RightLane.update_best_fit(right_fit) # Generate x and y values for plotting ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0]) try: left_fitx = LeftLane.best_fit[0] * ploty ** 2 + LeftLane.best_fit[1] * ploty + LeftLane.best_fit[2] right_fitx = RightLane.best_fit[0] * ploty ** 2 + RightLane.best_fit[1] * ploty + RightLane.best_fit[2] except TypeError: # Avoids an error if `left` and `right_fit` are still none or incorrect print('The function failed to fit a line!') left_fitx = 1 * ploty ** 2 + 1 * ploty right_fitx = 1 * ploty ** 2 + 1 * ploty # # Visualization # # # Colors in the left and right lane regions # window_img = np.zeros_like(out_img) # out_img[lefty, leftx] = [255, 0, 0] # out_img[righty, rightx] = [0, 0, 255] # # # Plots the left and right polynomials on the lane lines # plt.plot(left_fitx, ploty, color='yellow') # plt.plot(right_fitx, ploty, color='yellow') # # # Visualization for search from prior# # # Generate a polygon to illustrate the search window area # # And recast the x and y points into usable format for cv2.fillPoly() # left_line_window1 = np.array([np.transpose(np.vstack([left_fitx - parameter.margin, ploty]))]) # left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx + parameter.margin, # ploty])))]) # left_line_pts = np.hstack((left_line_window1, left_line_window2)) # right_line_window1 = np.array([np.transpose(np.vstack([right_fitx - parameter.margin, ploty]))]) # right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx + parameter.margin, # ploty])))]) # right_line_pts = np.hstack((right_line_window1, right_line_window2)) # # # Draw the lane onto the warped blank image # cv2.fillPoly(window_img, np.int_([left_line_pts]), (0, 255, 0)) # cv2.fillPoly(window_img, np.int_([right_line_pts]), (0, 255, 0)) # result = cv2.addWeighted(out_img, 1, window_img, 0.0, 0) # # # # # Plot the polynomial lines onto the image # plt.plot(left_fitx, ploty, color='yellow') # plt.plot(right_fitx, ploty, color='yellow') # plt.imshow(out_img) # plt.show() # # End visualization for search from prior # # todo plausibility check #LeftLane.detected = True #RightLane.detected = True return left_fitx, right_fitx, ploty def create_combined_binary(img, s_thresh=(170, 255)): global count img = np.copy(img) r_channel = img[:, :, 0] # Convert to HLS color space and separate the V channel hls = cv2.cvtColor(img, cv2.COLOR_BGR2HLS) l_channel = hls[:, :, 1] s_channel = hls[:, :, 2] imgHLS = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) yellow_low = np.array([0, 100, 100]) yellow_high = np.array([50, 255, 255]) yellow_binary_output = np.zeros((img.shape[0], img.shape[1])) yellow_binary_output[(imgHLS[:, :, 0] >= yellow_low[0]) & (imgHLS[:, :, 0] <= yellow_high[0]) & (imgHLS[:, :, 1] >= yellow_low[1]) & ( imgHLS[:, :, 1] <= yellow_high[1]) & (imgHLS[:, :, 2] >= yellow_low[2]) & ( imgHLS[:, :, 2] <= yellow_high[2])] = 1 ksize =11 gradx = helper.abs_sobel_thresh(l_channel, orient='x', sobel_kernel=ksize, thresh=(2, 50)) grady = helper.abs_sobel_thresh(l_channel, orient='y', sobel_kernel=ksize, thresh=(2, 50)) mag_binary = helper.mag_thresh(l_channel, sobel_kernel=ksize, mag_thresh=(20, 100)) dir_binary = helper.dir_threshold(l_channel, sobel_kernel=ksize, thresh=(0.5, 1.0)) # Threshold color channel s_binary2 = np.zeros_like(s_channel) s_binary2[(s_channel >= s_thresh[0]) & (s_channel <= s_thresh[1])] = 1 r_binarymax = np.zeros_like(r_channel) r_binarymax[(r_channel >= 220) & (r_channel <= 255)] = 1 r_binarymin = np.zeros_like(r_channel) r_binarymin[(r_channel >= 10) & (r_channel <= 255)] = 1 combined = np.zeros_like(dir_binary) combined2 = np.zeros_like(dir_binary) combined[(((gradx == 1) & (grady == 1) & (dir_binary == 1) & (mag_binary == 1) & (r_binarymin == 1) & (s_binary2 == 1)) | (r_binarymax == 1) | (yellow_binary_output == 1))] = 255 combined2[((gradx == 1) & (grady == 1) & (dir_binary == 1) & (mag_binary == 1) & (r_binarymin == 1)& (s_binary2 == 1))] = 255 # combined[(((gradx == 1) & (grady == 1) & (dir_binary == 1)) | ((mag_binary == 1) & (dir_binary == 1))) | ( # (s_binary2 == 1) | (r_binarymax == 1))] = 255 # combined[(((gradx == 1) & (grady == 1) & (dir_binary == 1) & (r_binary2 == 1)) # | ((s_binary2 == 1) & (dir_binary == 1)))] = 255 #cv2.imshow("r2", combined2) #cv2.waitKey(0) # Stack each channel # binary_combined = np.dstack((combined, combined, combined)) * 255 #cv2.imwrite("output_images_project/r_binarymax" + str(count) + ".jpg", r_binarymax*255) #cv2.imwrite("output_images_project/r_channel" + str(count) +".jpg", r_channel) #cv2.imwrite("output_images_project/s_channel" + str(count) +".jpg", s_channel) #cv2.imwrite("output_images_project/l_channel" + str(count) +".jpg", l_channel) return combined def process_image(image): global mtx, dist, M, Minv, count print("processing: "+str(count)+"\n") undist = cv2.undistort(image, mtx, dist, None, mtx) binary_combined = create_combined_binary(undist) combined = np.zeros_like(binary_combined).astype(np.uint8) binary_combined2 = np.dstack((binary_combined* 255, binary_combined* 255, binary_combined* 255)).astype(np.uint8) imshape = image.shape p1x = 0 p1y = int(imshape[0]) p2x = int(imshape[1] / 2) p2y = int(0.55 * imshape[0]) p3x = imshape[1] p3y = imshape[0] vertices = np.array([[(p1x, p1y), (p2x, p2y), (p3x, p3y)]], dtype=np.int32) binary_combined_roi = helper.region_of_interest(binary_combined, vertices) warped = cv2.warpPerspective(binary_combined_roi, M, image.shape[1::-1], flags=cv2.INTER_LINEAR) left_fitx, right_fitx, ploty = fit_polynomial(warped) #cv2.imshow("warped", warped*255) #cv2.waitKey() warp_zero = np.zeros_like(warped).astype(np.uint8) color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) # Recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane onto the warped blank image cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0)) warped3 = np.dstack((warped, warped, warped)).astype(np.uint8) warped3_result = cv2.addWeighted(warped3, 1, color_warp, 0.3, 0) # Warp the blank back to original image space using inverse perspective matrix (Minv) newwarp = cv2.warpPerspective(color_warp, Minv, (warped.shape[1], warped.shape[0])) # Combine the result with the original image result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0) count = count +1 cv2.imwrite("output_images_project/binary" + str(count) +".jpg", binary_combined*255) #cv2.imwrite("output_images_project/binary_warped" + str(count) +".jpg", warped*255) center_offset = (((LeftLane.best_fit[0] * 720 ** 2 + LeftLane.best_fit[1] * 720 + LeftLane.best_fit[2]) + ( RightLane.best_fit[0] * 720 ** 2 + RightLane.best_fit[1] * 720 + RightLane.best_fit[2])) / 2 - 640) * parameter.xm_per_pix # Create merged output image ## This layout was introduces in https://chatbotslife.com/advanced-lane-line-project-7635ddca1960 img_out = np.zeros((576, 1280, 3), dtype=np.uint8) img_out[0:576, 0:1024, :] = cv2.resize(result, (1024, 576)) # combined binary image img_out[0:288, 1024:1280, 0] = cv2.resize(binary_combined * 255, (256, 288)) img_out[0:288, 1024:1280, 1] = cv2.resize(binary_combined * 255, (256, 288)) img_out[0:288, 1024:1280, 2] = cv2.resize(binary_combined * 255, (256, 288)) # warped bird eye view img_out[310:576, 1024:1280, :] = cv2.resize(warped3_result, (256, 266)) # Write curvature and center in image TextLeft = "Left curv: " + str(int(LeftLane.radius_of_curvature)) + " m" TextRight = "Right curv: " + str(int(RightLane.radius_of_curvature)) + " m" TextCenter = "Center offset: " + str(round(center_offset, 2)) + "m" fontScale = 1 thickness = 2 fontFace = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img_out, TextLeft, (130, 40), fontFace, fontScale, (255, 255, 255), thickness, lineType=cv2.LINE_AA) cv2.putText(img_out, TextRight, (130, 70), fontFace, fontScale, (255, 255, 255), thickness, lineType=cv2.LINE_AA) cv2.putText(img_out, TextCenter, (130, 100), fontFace, fontScale, (255, 255, 255), thickness, lineType=cv2.LINE_AA) return img_out mtx = [] dist = [] M = [] Minv = [] LeftLane = Line() RightLane = Line() center_offset = 0 count = 0 # main function for processing videos def main(): global mtx, dist, M, Minv mtx, dist = helper.calibrate_camera() M, Minv = helper.calculate_warp_parameter() output = 'test_videos_output/project_video_v2.mp4' clip1 = VideoFileClip("project_video.mp4")#.subclip(22, 30) white_clip = clip1.fl_image(process_image) white_clip.write_videofile(output, audio=False) # #main function for processing test images # def main(): # global mtx, dist, M, Minv # mtx, dist = calibrate_camera() # M, Minv = calculate_warp_parameter() # # test_images = os.listdir("test_images/") # for fname in test_images: # print(fname) # img1 = cv2.imread("test_images/"+fname) # undist = cv2.undistort(img1, mtx, dist, None, mtx) # cv2.imwrite("output_images_test/" + fname + "_undist.jpg", undist) # undist_warped = cv2.warpPerspective(undist, M, img1.shape[1::-1], flags=cv2.INTER_LINEAR) # cv2.imwrite("output_images_test/" + fname + "_undist_warped.jpg", undist_warped) # binary_combined = create_combined_binary(undist) # cv2.imwrite("output_images_test/" + fname + "_binary.jpg", binary_combined) # # binary_combined_warped = cv2.warpPerspective(binary_combined, M, img1.shape[1::-1], flags=cv2.INTER_LINEAR) # cv2.imwrite("output_images_test/" + fname + "_binary_warped.jpg", binary_combined_warped) # # left_fitx, right_fitx, ploty = fit_polynomial(binary_combined_warped) # # warp_zero = np.zeros_like(binary_combined_warped).astype(np.uint8) # color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) # # # Recast the x and y points into usable format for cv2.fillPoly() # pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) # pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) # pts = np.hstack((pts_left, pts_right)) # # Draw the lane onto the warped blank image # cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0)) # # # Warp the blank back to original image space using inverse perspective matrix (Minv) # newwarp = cv2.warpPerspective(color_warp, Minv, (binary_combined_warped.shape[1], binary_combined_warped.shape[0])) # # Combine the result with the original image # result = cv2.addWeighted(undist, 1, newwarp, 0.3, 0) # # plt.imshow(binary_combined_warped) # plt.show() # cv2.imwrite("output_images_test/" + fname + "_final.jpg", result) # # cv2.imshow("afterwarp", result3) if __name__ == "__main__": main()
import sys import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes try: dataFileName = sys.argv[1] except IndexError: print("USAGE: python plotEnergies.py 'filename'") sys.exit(0) HFEnergy3 = 3.161921401722216 HFEnergy6 = 20.71924844033019 numParticles = \ int(dataFileName[dataFileName.find('N')+1:dataFileName.find('E')-1]) hfenergyFound = False if (numParticles == 2): HFEnergy = 3.161921401722216 hfenergyFound = True elif (numParticles == 6): HFEnergy = 20.71924844033019 hfenergyFound = True else: hfenergyFound = False data = np.loadtxt(dataFileName, dtype=np.float64) data[:,1] = np.sqrt(data[:,1]) n = len(data[:,0]) x = np.arange(0,n) fig = plt.figure() if (hfenergyFound): yline = np.zeros(n) yline.fill(HFEnergy) plt.plot(x, yline, 'r--', label="HF Energy") msize = 1.0 ax = fig.add_subplot(111) plt.errorbar(x, data[:,0], yerr=data[:,1], fmt='bo', markersize=msize, label="VMC Energy") plt.fill_between(x, data[:,0]-data[:,1], data[:,0]+data[:,1]) plt.xlim(0,n) plt.xlabel('Iteration') plt.ylabel('$E_0[a.u]$') plt.legend(loc='best') minSub = 80 maxSub = 120 inset_axes(ax, width="50%", height=1.0, loc='right') plt.errorbar(x[minSub:maxSub], data[minSub:maxSub,0], yerr=data[minSub:maxSub,1], fmt='bo', markersize=msize, label="VMC " "Energy") plt.plot(x[minSub:maxSub], yline[minSub:maxSub], 'r--', label="HF Energy") plt.show()
"""Test script for Time Predictor Network (TPN). Once you have trained your model with train_time.py, you can use this script to test the model. It will load a saved model from --checkpoints_dir and print out the results. It first creates model and dataset given the option. It will hard-code some parameters. It then runs inference for --num_test images and prints out the results. Example (You need to train models first: Test a TimePredictoNetwork model: python test_time.py --dataroot #DATASET_LOCATION# --name #EXP_NAME# --model time_predictor --netD time_input --direction AtoB See options/base_options.py and options/test_options.py for more test options. See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md """ import os from options.test_options import TestOptions from data.data_loader import CreateDataLoader from models.models import create_model from util.visualizer import Visualizer #from util.visualizer import save_images from util import html import torch def predict_time(opt=None, dataset=None, model=None): if dataset == None: dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options if model == None: model = create_model(opt) # create a model given opt.model and other options model.setup(opt) # regular setup: load and print networks; create schedulers # Create matrix to hold predictions: predictions = torch.zeros(min(opt.num_test, len(dataset))) true_times = torch.zeros(len(predictions)) for i, data in enumerate(dataset): if i >= opt.num_test: # only apply our model to opt.num_test images. break model.set_input(data) # unpack data from data loader model.test() # run inference predictions[i] = torch.mean(model.prediction).item() true_times[i] = model.true_time L1 = torch.nn.L1Loss() MSE = torch.nn.MSELoss() loss_l1 = L1(predictions, true_times) loss_mse = MSE(predictions, true_times) print("Loss for {} set: L1: {}, MSE: {}".format(opt.phase, loss_l1, loss_mse)) return predictions, true_times if __name__ == '__main__': opt = TestOptions().parse() # get test options # hard-code some parameters for test opt.num_threads = 0 # test code only supports num_threads = 1 opt.batch_size = 1 # test code only supports batch_size = 1 opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. opt.no_flip = True # no flip; comment this line if results on flipped images are needed. opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. predictions, true_times = predict_time(opt) for i, (pred, true_t) in enumerate(zip(predictions, true_times)): print("Image {}: Predicted {}, True time {}".format(i, pred, true_t))
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import numpy as np import tensorflow as tf tf.get_logger().setLevel('INFO') tf.compat.v1.enable_eager_execution() import argparse import matplotlib.pyplot as plt from ptfrenderer import utils from ptfrenderer import camera from ptfrenderer import uv _shape = utils._shape _broadcast = utils._broadcast # inputs parser = argparse.ArgumentParser() parser.add_argument('-save_dir', default=None) parser.add_argument('-res', default=128, type=int) parser.add_argument('-meshres', default=128, type=int) parser.add_argument('-nviews', default=1000, type=int) parser.add_argument('-margin', default=1., type=float) parser.add_argument('-blur_mesh', default=2.0, type=float) parser.add_argument('-batch_size', default=100, type=int) parser.add_argument('-epochs', default=15, type=int) parser.add_argument('-lrate', default=0.01, type=float) args = parser.parse_args() # model rgbres = args.res meshres = args.meshres bcgres = args.res*3 # rendering imres = args.res angle_range = [[-60., -90., 0.], [60., 90., 0.]] fow = 10.*np.pi/180. margin = args.margin # visualize result grid_size = [5, 7] def load_im(path): im = np.asarray(plt.imread(path)) im = im.astype(np.float32) / 255. return im def save_im(im, path): im = np.array(tf.cast(tf.clip_by_value(im, 0., 1.)*255., tf.uint8)) plt.imsave(path, im) return class Scene(tf.keras.Model): def __init__(self, xyz, rgb, bcg, meshres, imres, angle_range, fow, margin, blur_mesh=2.0, isgt=False): super(Scene, self).__init__() self.xyz = tf.Variable(xyz) self.rgb = tf.Variable(rgb) self.bcg = tf.Variable(bcg) self.vertuv, self.triangles = uv.sphere([meshres, meshres]) self.imsize = tf.constant([imres, imres]) self.angle_range = tf.constant(angle_range) * np.pi/180. self.fow = tf.constant(fow) self.margin = tf.constant(margin) self.blur_mesh = blur_mesh self.isgt = isgt def get_xyz(self): if self.isgt: return self.xyz xyz = utils.gaussian_blur(self.xyz, self.blur_mesh) # blurring is necessary because of the uv sampling and stability of training return xyz def get_cam_params(self, angles): K, T = camera.look_at_origin(self.fow) angles_cam = angles * (self.angle_range[1]-self.angle_range[0]) + self.angle_range[0] R = camera.euler(angles_cam) R, T = _broadcast(R, T) P = tf.matmul(camera.hom(T,'P'), camera.hom(R,'R'))[:,:3,:] return K, P def get_bcg_cropped(self, angles): # simulates bcg at infinity somewhat bcg, angles = _broadcast(self.bcg, angles) B, H, W, _ = _shape(bcg) rh = tf.cast(imres, tf.float32) / tf.cast(H, tf.float32) rw = tf.cast(imres, tf.float32) / tf.cast(W, tf.float32) y1 = (1.-rh)*angles[:,0] x1 = (1.-rw)*angles[:,1] boxes = tf.stack([y1, x1, y1+rh, x1+rw], -1) bcg = tf.image.crop_and_resize(bcg, boxes, tf.range(B), self.imsize) bcg = tf.pad(bcg, [[0,0],[0,0],[0,0],[0,1]], constant_values=1.) return bcg def call(self, angles, isnorm=False): # renders the scene form the specified angles xyz = self.get_xyz() def l2_normalize(ima): im = tf.math.l2_normalize(ima[...,:-1], -1) a = ima[...,-1:] ima = tf.concat([(im+1.)/2., a], -1) return ima if isnorm: attr = uv.normals(xyz) bcg = 1. margin = 0. postfun = l2_normalize else: attr = self.rgb bcg = self.get_bcg_cropped(angles) margin = self.margin postfun = lambda x: x K, P = self.get_cam_params(angles) ima = uv.render(xyz, attr, self.vertuv, self.triangles, K, P, self.imsize, bcg=bcg, margin=margin) ima = postfun(ima) return ima[...,:3] # ignore alpha # ground truth scene def deformed_sphere(): xyz = uv.sphere_init([rgbres, rgbres]) x = xyz[:,:,:,0]; y = -xyz[:,:,:,1]; z = -xyz[:,:,:,2] xt = tf.minimum(tf.maximum(2*x,-2),2) + 0.5*tf.sin(x) + 0.2*tf.cos(5*y) + 0.5*z*z yt = 2*y + 0.5*tf.sin(x+2*y) + 0.2*tf.cos(5*z) - 0.3*x*z zt = 2*z + 0.5*tf.sin(z-3*x) + 0.2*tf.cos(15*y+6*z) + 0.3*y*x xyz = 0.25 * tf.stack([xt,-yt,-zt],axis=-1) return xyz xyz = deformed_sphere() rgb = load_im("assets/fish.jpg") rgb = tf.image.resize(rgb[tf.newaxis,...,:3], [rgbres, rgbres]) bcg = load_im("assets/lake.jpg") bcg = tf.image.resize(bcg[tf.newaxis,...,:3], [bcgres, bcgres]) ground_truth = Scene(xyz, rgb, bcg, meshres, imres, angle_range, fow, margin, isgt=True) # ground truth data print("Generate training data ...") angles_train = tf.random.uniform([args.nviews, 3]) # ima_train = ground_truth(angles_train) # this might not fit into memory ima_train = tf.concat([ground_truth(angles_train[i:i+1]) for i in range(args.nviews)], 0) print("done.") # estimated scene xyz = 0.5 * uv.sphere_init([rgbres, rgbres]) rgb = 0.5 + tf.zeros([1, rgbres, rgbres, 3]) bcg = 0.5 + tf.zeros([1, bcgres, bcgres, 3]) model = Scene(xyz, rgb, bcg, meshres, imres, angle_range, fow, margin, blur_mesh=args.blur_mesh) def loss_l2(ypred, y): return tf.reduce_mean((ypred-y)**2, axis=[1,2,3]) print("Train model ...") print("image resolution: {} x {}".format(imres, imres)) print("number of vertices: {}".format(_shape(model.vertuv)[-2])) print("number of triangles: {}".format(_shape(model.triangles)[-2])) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=args.lrate, beta_1=0.9, beta_2=0.999), loss=loss_l2) model.fit(x=angles_train, y=ima_train, batch_size=args.batch_size, epochs=args.epochs) print("done.") print("Evaluate model ...") angles_test = utils.grid_angles(grid_size) im_test = tf.concat([ground_truth(angles_test[i:i+1]) for i in range(tf.reduce_prod(grid_size))], 0) model.evaluate(angles_test, im_test, verbose=2) print("done.") print("Visualize results ...") im_test = utils.stack_images(im_test, grid_size) norm_test = tf.concat([ground_truth(angles_test[i:i+1], isnorm=True) for i in range(tf.reduce_prod(grid_size))], 0) norm_test = utils.stack_images(norm_test, grid_size) im_pred = tf.concat([model(angles_test[i:i+1]) for i in range(tf.reduce_prod(grid_size))], 0) im_pred = utils.stack_images(im_pred, grid_size) norm_pred = tf.concat([model(angles_test[i:i+1], isnorm=True) for i in range(tf.reduce_prod(grid_size))], 0) norm_pred = utils.stack_images(norm_pred, grid_size) if args.save_dir is None: plt.figure(1); plt.imshow(im_pred, interpolation='nearest') plt.figure(2); plt.imshow(norm_pred, interpolation='nearest') plt.figure(3); plt.imshow(im_test, interpolation='nearest') plt.figure(4); plt.imshow(norm_test, interpolation='nearest') plt.show() else: save_dir = os.path.join(args.save_dir, "imres={} margin={}".format(imres, margin)) os.makedirs(save_dir, exist_ok=True) save_im(im_pred, os.path.join(save_dir, 'im_pred.png')) save_im(norm_pred, os.path.join(save_dir, 'norm_pred.png')) save_im(im_test, os.path.join(save_dir, 'im_test.png')) save_im(norm_test, os.path.join(save_dir, 'norm_test.png')) print("done.")
import itertools import json from unittest.mock import patch from tornado import testing, web from jsonrpcclient.clients.tornado_client import TornadoClient from jsonrpcclient.request import Request class EchoHandler(web.RequestHandler): def data_received(self, chunk): pass def post(self): self.finish( { "id": 1, "jsonrpc": "2.0", "result": [1, [2], {"3": 4, "5": True, "6": None}], } ) class FailureHandler(web.RequestHandler): def data_received(self, chunk): pass def post(self): request = json.loads(self.request.body.decode()) raise web.HTTPError(request["params"]["code"]) class Test(testing.AsyncHTTPTestCase): def setup_method(self, *_): # Patch Request.id_generator to ensure the id is always 1 Request.id_generator = itertools.count(1) def get_app(self): return web.Application([("/echo", EchoHandler), ("/fail", FailureHandler)]) @patch("jsonrpcclient.client.request_log") @patch("jsonrpcclient.client.response_log") @testing.gen_test def test_request(self, *_): response = yield TornadoClient(self.get_url("/echo")).request( "foo", 1, [2], {"3": 4, "5": True, "6": None} ) assert response.data.result == [1, [2], {"3": 4, "6": None, "5": True}] @patch("jsonrpcclient.client.request_log") @patch("jsonrpcclient.client.response_log") @testing.gen_test def test_custom_headers(self, *_): response = yield TornadoClient(self.get_url("/echo")).send( Request("foo", 1, [2], {"3": 4, "5": True, "6": None}), headers={"foo": "bar"}, ) assert response.data.result == [1, [2], {"3": 4, "6": None, "5": True}]
from csaf_f16.models.waypoint import * def model_init(model): """load trained model""" model.parameters['auto'] = None def get_auto(model, f16_state): if model.auto is None: model.parameters['auto'] = WaypointAutopilot(model.waypoints, airspeed_callable=model.airspeed) return model.auto def model_output(model, time_t, state_controller, input_f16): # NOTE: not using llc input_f16 = input_f16[:13] + [0.0, 0.0, 0.0] + input_f16[13:] + [0.0, 0.0, 0.0] auto = get_auto(model, input_f16) return auto.get_u_ref(time_t, input_f16)[:4] def model_state_update(model, time_t, state_controller, input_f16): # NOTE: not using llc input_f16 = input_f16[:13] + [0.0, 0.0, 0.0] + input_f16[13:] + [0.0, 0.0, 0.0] auto = get_auto(model, input_f16) return [auto.advance_discrete_mode(time_t, input_f16)]
from typing import List class Solution: def oddCells(self, n: int, m: int, indices: List[List[int]]) -> int: matrix = [[0 for i in range(m)] for i in range(n)] for i in range(len(indices)): for j in range(n): matrix[j][indices[i][1]] += 1 for j in range(m): matrix[indices[i][0]][j] += 1 count = 0 for i in range(n): for j in range(m): if matrix[i][j] % 2 != 0: count += 1 return count
from django.urls import path from . import views urlpatterns = [ path('hands', views.HandListCreateApiView.as_view(), name='hands_view'), ]
from pypinyin import pinyin as to_pinyin from pypinyin import Style as style tone_styles = [style.TONE, style.TONE2, style.TONE3] def char_to_pinyin(char: str, tone_style: int) -> str: """Converts a single character to pinyin # TODO support heteronyms? Parameters ---------- char : String A single chinese character tone_style : int an integeter representing the tone style to use. 0 is "zhong", 1 is "zhōng", 2 is "zho1ng" Returns ------- String The pinyin representing the single chinese character """ # Is created as a list of lists, so return as just string return to_pinyin(char, style=tone_styles[tone_style], heteronyms=False)[0][0] def chars_to_pinyin(chars: str, tone_style: int, as_list=True) -> [str]: """Converts a series characters in a single str into a list of pinyin representing those characters Parameters ---------- chars : str A string representing a series of characters tone_style : int The tone style to use in the pinyin as_list : bool, optional If the result should be returned as a list , or as a space separated string Returns ------- [str] [description] """ chars_list = to_pinyin(chars, style=tone_styles[tone_style]) chars_list = [char[0] for char in chars_list if char[0] != " "] if as_list: return chars_list # Return as space separated sentence return " ".join(chars_list)
from netlds.models import * from netlds.generative import * from netlds.inference import * from data.sim_data import build_model import os try: # set simulation parameters num_time_pts = 20 dim_obs = 50 dim_latent = 2 obs_noise = 'poisson' results_dir = '/home/mattw/results/tmp/' # for storing simulation params # build simulation model = build_model( num_time_pts, dim_obs, dim_latent, num_layers=2, np_seed=1, obs_noise=obs_noise) # checkpoint model so we can restore parameters and sample checkpoint_file = results_dir + 'true_model.ckpt' model.checkpoint_model(checkpoint_file=checkpoint_file, save_filepath=True) y, z = model.sample(num_samples=128, seed=123) # specify inference network for approximate posterior inf_network = SmoothingLDS inf_network_params = { 'dim_input': dim_obs, 'dim_latent': dim_latent, 'num_mc_samples': 4, 'num_time_pts': num_time_pts} # specify probabilistic model gen_model = FLDS noise_dist = obs_noise gen_model_params = { 'dim_obs': dim_obs, 'dim_latent': dim_latent, 'num_time_pts': num_time_pts, 'noise_dist': noise_dist, 'nn_params': [{'units': 15}, {'units': 15}, {}], # 3 layer nn to output 'gen_params': None} # initialize model models = LDSModel( inf_network=inf_network, inf_network_params=inf_network_params, gen_model=gen_model, gen_model_params=gen_model_params, np_seed=1, tf_seed=1) # set optimization parameters adam = {'learning_rate': 1e-3} opt_params = { 'learning_alg': 'adam', 'adam': adam, 'epochs_training': 10, # max iterations 'epochs_display': None, # output to notebook 'epochs_ckpt': None, # checkpoint model parameters (inf=last epoch) 'epochs_summary': None, # output to tensorboard 'batch_size': 4, 'use_gpu': True, 'run_diagnostics': False} # memory/compute time in tensorboard data_dict = {'observations': y, 'inf_input': y} model.train(data=data_dict, opt_params=opt_params) os.remove(checkpoint_file) print('test successful') except: print('test error')
from trapcards import JustMathGenius a = [1,2,3] b = [1,1,1] print(JustMathGenius.weightedAvg(a,b))
from collections import defaultdict import sys mapped = defaultdict(int) with open(sys.argv[1], 'r') as samfile: for line in samfile: if (line[0] != '@') & (line.split('\t')[2] != '*'): mapped[line.split('\t')[0]] = 1 print(len(mapped)) seqs = defaultdict(str) outfile = open(sys.argv[3], 'w') with open(sys.argv[2], 'r') as fastafile: for line in fastafile: if line[0] == '>': curRead = line.split(' ')[0][1:] elif (mapped[curRead] != 1): outfile.write(">" + curRead + '\n' + line + '\n') outfile.close()
# ------------------------------ # 497. Random Point in Non-overlapping Rectangles # # Description: # Given a list of non-overlapping axis-aligned rectangles rects, write a function pick which # randomly and uniformily picks an integer point in the space covered by the rectangles. # # Note: # # An integer point is a point that has integer coordinates. # A point on the perimeter of a rectangle is included in the space covered by the rectangles. # ith rectangle = rects[i] = [x1,y1,x2,y2], where [x1, y1] are the integer coordinates of the # bottom-left corner, and [x2, y2] are the integer coordinates of the top-right corner. # length and width of each rectangle does not exceed 2000. # 1 <= rects.length <= 100 # pick return a point as an array of integer coordinates [p_x, p_y] # pick is called at most 10000 times. # # Example 1: # Input: # ["Solution","pick","pick","pick"] # [[[[1,1,5,5]]],[],[],[]] # Output: # [null,[4,1],[4,1],[3,3]] # # Example 2: # Input: # ["Solution","pick","pick","pick","pick","pick"] # [[[[-2,-2,-1,-1],[1,0,3,0]]],[],[],[],[],[]] # Output: # [null,[-1,-2],[2,0],[-2,-1],[3,0],[-2,-2]] # Explanation of Input Syntax: # # The input is two lists: the subroutines called and their arguments. Solution's constructor # has one argument, the array of rectangles rects. pick has no arguments. Arguments are always # wrapped with a list, even if there aren't any. # # Version: 1.0 # 10/25/19 by Jianfa # ------------------------------ class Solution(object): def __init__(self, rects): """ :type rects: List[List[int]] """ self.rects = rects self.range = [0] # Add 0 at first is to make pick() easier self.summ = 0 for rect in rects: self.summ += (rect[2] - rect[0] + 1) * (rect[3] - rect[1] + 1) # Keep adding new result to make a new range self.range.append(self.summ) def pick(self): """ :rtype: List[int] """ n = random.randint(0, self.summ - 1) i = bisect.bisect(self.range, n) rect = self.rects[i-1] # A 0 is at the begining of self.range, so i will be starting 1, then i - 1 is the correct index of rect n -= self.range[i-1] # Here is the reason why a 0 should be added at the begining of self.range x = rect[0] + n % (rect[2] - rect[0] + 1) y = rect[1] + n / (rect[2] - rect[0] + 1) return [x, y] # Your Solution object will be instantiated and called as such: # obj = Solution(rects) # param_1 = obj.pick() # Used for testing if __name__ == "__main__": test = Solution() # ------------------------------ # Summary: # Idea from https://leetcode.com/problems/random-point-in-non-overlapping-rectangles/discuss/154147/Python-weighted-probability-solution/160274 # First populate the sum of each rectangle to a range list, then randomly pick a number # from this range. # Manage to get x, y from just one-time random # # O(n) time, O(n) space
''' Created on Mar 26, 2015 @author: jpenamar ''' import unittest from mytree import Tree class TreeTestCase(unittest.TestCase): """Test the methods of the class Tree.""" def setUp(self): self.tree = Tree('D', 'D data') self.tree.insert('Q', 'Q data') # Insert in right node. self.tree.insert('A', 'A data') # Insert in left node. def test_init(self): """Verify attributes are initialized as expected.""" t = Tree('D', 'D data') self.assertEqual(t.key, 'D') self.assertEqual(t.data, 'D data') self.assertTrue(t.left == t.right == None) def test_insert(self): """Verify subtrees are inserted as expected.""" t = self.tree # Test right subtree. self.assertEqual(t.right.key, 'Q') self.assertEqual(t.right.data, 'Q data') # Test left subtree. self.assertEqual(t.left.key, 'A') self.assertEqual(t.left.data, 'A data') # Test duplicates. self.assertRaises(ValueError, t.insert, 'Q', 'Q data') self.assertRaises(ValueError, t.insert, 'A', 'A data') def test_walk(self): """Verify keys, data are returned from tree in order, sorted by key.""" t = self.tree.walk() for kv in [('A', 'A data'), ('D', 'D data'), ('Q', 'Q data')]: self.assertEqual(kv, next(t)) def test_find(self): """Verify find() returns the correct data or raises KeyError.""" t = self.tree self.assertEqual(t.find('Q'), 'Q data') self.assertEqual(t.find('A'), 'A data') self.assertRaises(KeyError, t.find, 'I') if __name__ == '__main__': unittest.main()
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import imp import os.path import sys import unittest def _GetDirAbove(dirname): """Returns the directory "above" this file containing |dirname| (which must also be "above" this file).""" path = os.path.abspath(__file__) while True: path, tail = os.path.split(path) assert tail if tail == dirname: return path try: imp.find_module("mojom") except ImportError: sys.path.append(os.path.join(_GetDirAbove("pylib"), "pylib")) from mojom.generate import data from mojom.generate import module as mojom class DataTest(unittest.TestCase): def testStructDataConversion(self): """Tests that a struct can be converted from data.""" module = mojom.Module('test_module', 'test_namespace') struct_data = { 'name': 'SomeStruct', 'enums': [], 'constants': [], 'fields': [ {'name': 'field1', 'kind': 'i32'}, {'name': 'field2', 'kind': 'i32', 'ordinal': 10}, {'name': 'field3', 'kind': 'i32', 'default': 15}]} struct = data.StructFromData(module, struct_data) struct.fields = map(lambda field: data.FieldFromData(module, field, struct), struct.fields_data) self.assertEquals(struct_data, data.StructToData(struct)) def testUnionDataConversion(self): """Tests that a union can be converted from data.""" module = mojom.Module('test_module', 'test_namespace') union_data = { 'name': 'SomeUnion', 'fields': [ {'name': 'field1', 'kind': 'i32'}, {'name': 'field2', 'kind': 'i32', 'ordinal': 10}]} union = data.UnionFromData(module, union_data) union.fields = map(lambda field: data.FieldFromData(module, field, union), union.fields_data) self.assertEquals(union_data, data.UnionToData(union)) def testImportFromDataNoMissingImports(self): """Tests that unions, structs, interfaces and enums are imported.""" module = mojom.Module('test_module', 'test_namespace') imported_module = mojom.Module('import_module', 'import_namespace') #TODO(azani): Init values in module.py. #TODO(azani): Test that values are imported. imported_module.values = {} imported_data = {'module' : imported_module} struct = mojom.Struct('TestStruct', module=module) imported_module.kinds[struct.spec] = struct union = mojom.Union('TestUnion', module=module) imported_module.kinds[union.spec] = union interface = mojom.Interface('TestInterface', module=module) imported_module.kinds[interface.spec] = interface enum = mojom.Enum('TestEnum', module=module) imported_module.kinds[enum.spec] = enum data.ImportFromData(module, imported_data) # Test that the kind was imported. self.assertIn(struct.spec, module.kinds) self.assertEquals(struct.name, module.kinds[struct.spec].name) self.assertIn(union.spec, module.kinds) self.assertEquals(union.name, module.kinds[union.spec].name) self.assertIn(interface.spec, module.kinds) self.assertEquals(interface.name, module.kinds[interface.spec].name) self.assertIn(enum.spec, module.kinds) self.assertEquals(enum.name, module.kinds[enum.spec].name) # Test that the imported kind is a copy and not the original. self.assertIsNot(struct, module.kinds[struct.spec]) self.assertIsNot(union, module.kinds[union.spec]) self.assertIsNot(interface, module.kinds[interface.spec]) self.assertIsNot(enum, module.kinds[enum.spec]) def testImportFromDataNoExtraneousImports(self): """Tests that arrays, maps and interface requests are not imported.""" module = mojom.Module('test_module', 'test_namespace') imported_module = mojom.Module('import_module', 'import_namespace') #TODO(azani): Init values in module.py. imported_module.values = {} imported_data = {'module' : imported_module} array = mojom.Array(mojom.INT16, length=20) imported_module.kinds[array.spec] = array map_kind = mojom.Map(mojom.INT16, mojom.INT16) imported_module.kinds[map_kind.spec] = map_kind interface = mojom.Interface('TestInterface', module=module) imported_module.kinds[interface.spec] = interface interface_req = mojom.InterfaceRequest(interface) imported_module.kinds[interface_req.spec] = interface_req data.ImportFromData(module, imported_data) self.assertNotIn(array.spec, module.kinds) self.assertNotIn(map_kind.spec, module.kinds) self.assertNotIn(interface_req.spec, module.kinds) def testNonInterfaceAsInterfaceRequest(self): """Tests that a non-interface cannot be used for interface requests.""" module = mojom.Module('test_module', 'test_namespace') interface = mojom.Interface('TestInterface', module=module) method_dict = { 'name': 'Foo', 'parameters': [{'name': 'foo', 'kind': 'r:i32'}], } with self.assertRaises(Exception) as e: data.MethodFromData(module, method_dict, interface) self.assertEquals(e.exception.__str__(), 'Interface request requires \'i32\' to be an interface.')
import numpy import torch def image_to_text(captions, images, npts=None, verbose=False): """ Images->Text (Image Annotation) Images: (5N, K) matrix of images Captions: (5N, K) matrix of captions """ if npts == None: npts = images.size()[0] / 5 npts = int(npts) ranks = numpy.zeros(npts) for index in range(npts): # Get query image im = images[5 * index].unsqueeze(0) # Compute scores d = torch.mm(im, captions.t()) d_sorted, inds = torch.sort(d, descending=True) inds = inds.data.squeeze(0).cpu().numpy() # Score rank = 1e20 # find the highest ranking for i in range(5*index, 5*index + 5, 1): tmp = numpy.where(inds == i)[0][0] if tmp < rank: rank = tmp ranks[index] = rank # Compute metrics r1 = 100.0 * len(numpy.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(numpy.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(numpy.where(ranks < 10)[0]) / len(ranks) medr = numpy.floor(numpy.median(ranks)) + 1 if verbose: print(" * Image to text scores: R@1: %.1f, R@5: %.1f, R@10: %.1f, Medr: %.1f" % (r1, r5, r10, medr)) return r1+r5+r10, (r1, r5, r10, medr) def text_to_image(captions, images, npts=None, verbose=False): if npts == None: npts = images.size()[0] / 5 npts = int(npts) ims = torch.cat([images[i].unsqueeze(0) for i in range(0, len(images), 5)]) ranks = numpy.zeros(5 * npts) for index in range(npts): # Get query captions queries = captions[5*index : 5*index + 5] # Compute scores d = torch.mm(queries, ims.t()) for i in range(d.size()[0]): d_sorted, inds = torch.sort(d[i], descending=True) inds = inds.data.squeeze(0).cpu().numpy() ranks[5 * index + i] = numpy.where(inds == index)[0][0] # Compute metrics r1 = 100.0 * len(numpy.where(ranks < 1)[0]) / len(ranks) r5 = 100.0 * len(numpy.where(ranks < 5)[0]) / len(ranks) r10 = 100.0 * len(numpy.where(ranks < 10)[0]) / len(ranks) medr = numpy.floor(numpy.median(ranks)) + 1 if verbose: print(" * Text to image scores: R@1: %.1f, R@5: %.1f, R@10: %.1f, Medr: %.1f" % (r1, r5, r10, medr)) return r1+r5+r10, (r1, r5, r10, medr)
num = int(input('Digite um número de 4 algarismos: ')) centena = num // 100 if centena % 4 == 0: print(f'({centena}) é multiplo de 4') else: print(f'({centena}) não é multiplo de 4'')
# from pyclics.api import Clics # flake8: noqa __version__ = "3.0.3.dev0"
def add_binary(a,b):
""" Copyright 2021 Max-Planck-Gesellschaft Code author: Jan Achterhold, jan.achterhold@tuebingen.mpg.de Embodied Vision Group, Max Planck Institute for Intelligent Systems, Tübingen This source code is licensed under the MIT license found in the LICENSE.md file in the root directory of this source tree or at https://opensource.org/licenses/MIT. """ import itertools COMMENT_PREFIX = "cr" # named_config, optional: env_name ENV_NAMES = { "asq1": ["action_squash", "action_squash_1"], "asq1_noisefree": ["action_squash", "action_squash_1_noisefree"], "asq2": ["action_squash", "action_squash_2"], "asq2_noisefree": ["action_squash", "action_squash_2_noisefree"], "mountaincar": ["mountaincar", "mountaincar"], "pendulum_bd": ["pendulum_bd", "pendulum_quadrantactionfactorar2bd"], } NP_KL_WEIGHT = [ 5, ] SEED = [1, 2, 3] POSWEIGHTS = [False, "relu"] commands = [] for ( environment_name, np_kl_weight, pos_weights, seed, ) in itertools.product(ENV_NAMES.keys(), NP_KL_WEIGHT, POSWEIGHTS, SEED): if environment_name.startswith("asq") and not pos_weights: continue pos_weights_cfg = {False: "no_positive_weights", "relu": ""}[pos_weights] pos_weights_str = {False: "False", "relu": "relu"}[pos_weights] command = ( f"python -m context_exploration.train_model " f"--comment={COMMENT_PREFIX}_" f"s{seed}_" f"{environment_name}_" f"posweights_{pos_weights_str}_" f"npklw{np_kl_weight} " f"with " f"{ENV_NAMES[environment_name][0]}_cfg " f"env_name={ENV_NAMES[environment_name][1]} " f"{pos_weights_cfg} " f"kl_np_weight={np_kl_weight} " f"seed={seed}\n" ) commands.append(command) # write commands to job file with open(f"jobs_training_{COMMENT_PREFIX}.txt", "w") as handle: handle.writelines(commands)
# -*-coding:utf-8-*- from random import random import requests import re import time import pandas as pd import xlrd from xlutils.copy import copy from lxml import etree # xpath user_agent = [ "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50", "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50", "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:38.0) Gecko/20100101 Firefox/38.0", "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; .NET4.0C; .NET4.0E; .NET CLR 2.0.50727; .NET CLR 3.0.30729; .NET CLR 3.5.30729; InfoPath.3; rv:11.0) like Gecko", "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)", "Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)", "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6; rv:2.0.1) Gecko/20100101 Firefox/4.0.1", "Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1", "Opera/9.80 (Macintosh; Intel Mac OS X 10.6.8; U; en) Presto/2.8.131 Version/11.11", "Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11", "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Maxthon 2.0)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; TencentTraveler 4.0)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; The World)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SE 2.X MetaSr 1.0; SE 2.X MetaSr 1.0; .NET CLR 2.0.50727; SE 2.X MetaSr 1.0)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; 360SE)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Avant Browser)", "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)", "Mozilla/5.0 (iPhone; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5", "Mozilla/5.0 (iPod; U; CPU iPhone OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5", "Mozilla/5.0 (iPad; U; CPU OS 4_3_3 like Mac OS X; en-us) AppleWebKit/533.17.9 (KHTML, like Gecko) Version/5.0.2 Mobile/8J2 Safari/6533.18.5", "Mozilla/5.0 (Linux; U; Android 2.3.7; en-us; Nexus One Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1", "MQQBrowser/26 Mozilla/5.0 (Linux; U; Android 2.3.7; zh-cn; MB200 Build/GRJ22; CyanogenMod-7) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile Safari/533.1", "Opera/9.80 (Android 2.3.4; Linux; Opera Mobi/build-1107180945; U; en-GB) Presto/2.8.149 Version/11.10", "Mozilla/5.0 (Linux; U; Android 3.0; en-us; Xoom Build/HRI39) AppleWebKit/534.13 (KHTML, like Gecko) Version/4.0 Safari/534.13", "Mozilla/5.0 (BlackBerry; U; BlackBerry 9800; en) AppleWebKit/534.1+ (KHTML, like Gecko) Version/6.0.0.337 Mobile Safari/534.1+", "Mozilla/5.0 (hp-tablet; Linux; hpwOS/3.0.0; U; en-US) AppleWebKit/534.6 (KHTML, like Gecko) wOSBrowser/233.70 Safari/534.6 TouchPad/1.0", "Mozilla/5.0 (SymbianOS/9.4; Series60/5.0 NokiaN97-1/20.0.019; Profile/MIDP-2.1 Configuration/CLDC-1.1) AppleWebKit/525 (KHTML, like Gecko) BrowserNG/7.1.18124", "Mozilla/5.0 (compatible; MSIE 9.0; Windows Phone OS 7.5; Trident/5.0; IEMobile/9.0; HTC; Titan)", "UCWEB7.0.2.37/28/999", "NOKIA5700/ UCWEB7.0.2.37/28/999", "Openwave/ UCWEB7.0.2.37/28/999", "Mozilla/4.0 (compatible; MSIE 6.0; ) Opera/UCWEB7.0.2.37/28/999", "Mozilla/6.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X) AppleWebKit/536.26 (KHTML, like Gecko) Version/8.0 Mobile/10A5376e Safari/8536.25", ] headers = { 'Referer': 'https://music.163.com', 'User-Agent': random.choice(user_agent) } def get_page(url): index = 0 res = requests.get(url, headers=headers) data = re.findall('<a title="(.*?)" href="/playlist\?id=(\d+)" class="msk"></a>', res.text) for item in data: index = get_songs(item, index) return index def get_songs(data, index): playlist_url = 'https://music.163.com/playlist?id=%s' % data[1] res = requests.get(playlist_url, headers=headers) obj_nodes = etree.HTML(res.text) node_texts = obj_nodes.xpath('//div[@id="song-list-pre-cache"]//a/@href') if len(node_texts) > 0: for nodeText in node_texts: re.findall(r'id=(\d+)', nodeText) if 'id=' in nodeText: temp_text = nodeText.split('id=') if temp_text[1] not in list: download_mp3(data, temp_text[1], index) index += 1 return index def get_music_info(song_id, index, num): music_url = 'https://music.163.com/song?id=%s' % song_id res = requests.get(music_url, headers=headers) obj_nodes = etree.HTML(res.text) img = obj_nodes.xpath('//img/@data-src') title = obj_nodes.xpath('//em[@class="f-ff2"]/text()') author = obj_nodes.xpath('//div[@class="cnt"]//span/@title') lrc = obj_nodes.xpath('//div[@id="lyric-content"]/text()') print('当前id:%s,歌曲是:%s的%s,他的图片是%s' % (song_id, author, title, img)) xlsx = xlrd.open_workbook(r'../excel/music.xls', formatting_info=True) wb = copy(xlsx) ws = wb.get_sheet(num) ws.write(index, 0, song_id) ws.write(index, 1, title) ws.write(index, 2, author) ws.write(index, 3, img) ws.write(index, 4, lrc) wb.save("fomatting.xlsx") def read_excel(): dfxm = pd.read_excel(r'songId.xlsx') df = dfxm['song_id'].astype(str) list = [] for i in df: list.append(i) return list def download_mp3(data, song_id, index): download_url = "http://music.163.com/song/media/outer/url?id=%s" % song_id try: print("正在下载%s:%s下的歌曲:%s,第%s首歌" % (data[1], data[0], song_id, index)) with open('G:\\MP3\\yueyu\\' + song_id + '.mp3', 'wb') as f: f.write(requests.get(download_url, headers=headers).content) except FileNotFoundError: pass except OSError: pass if __name__ == '__main__': startTime = time.time() limit = 35 for num in range(0, 38): offset = num * limit hot_url = 'https://music.163.com/discover/playlist/?order=粤语&cat=全部&limit=%s&offset=%s' % (limit, offset) get_page(hot_url, num) time.time() - startTime print("爬取数据成功,用时%s" % (time.time() - startTime))
from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import os import sys import numpy as np import argparse import pprint import pdb import time import cv2 import cPickle import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms from roi_data_layer.roidb import combined_roidb from roi_data_layer.roibatchLoader import roibatchLoader from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir # from model.faster_rcnn.faster_rcnn_cascade import _fasterRCNN from model.rpn.bbox_transform import clip_boxes from model.nms.nms_wrapper import nms from model.co_nms.co_nms_wrapper import co_nms # from model.fast_rcnn.nms_wrapper import nms from model.rpn.bbox_transform import bbox_transform_inv from model.utils.network import save_net, load_net, vis_detections, vis_det_att, vis_relations, vis_gt_relations, eval_relations_recall from model.repn.bbox_transform import combine_box_pairs def vis_dets(img, im_info, rois, bbox_pred, obj_cls_prob, imdb): pdb.set_trace() im2show = img.data.permute(2, 3, 1, 0).squeeze().cpu().numpy() im2show += cfg.PIXEL_MEANS thresh = 0.01 boxes = rois[:, :, 1:5] if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() box_deltas = box_deltas.view(1, -1, 4) pred_boxes = bbox_transform_inv(boxes, box_deltas, 1) pred_boxes = clip_boxes(pred_boxes, im_info.data, 1) obj_scores = obj_cls_prob.squeeze() pred_boxes = pred_boxes.squeeze() for j in xrange(1, len(imdb._classes)): inds = torch.nonzero(obj_scores[:,j] > thresh).view(-1) # if there is det if inds.numel() > 0: obj_cls_scores = obj_scores[:,j][inds] _, order = torch.sort(obj_cls_scores, 0, True) cls_boxes = pred_boxes[inds, :] cls_dets = torch.cat((cls_boxes, obj_cls_scores), 1) cls_dets = cls_dets[order] keep = nms(cls_dets, cfg.TEST.NMS) cls_dets = cls_dets[keep.view(-1).long()] im2show = vis_detections(im2show, imdb._classes[j], cls_dets.cpu().numpy(), 0.2) # save image to disk cv2.imwrite("detections.jpg", im2show)
from QCGym.hamiltonians.int_cross_resonance import InteractiveCrossResonance from QCGym.fidelities.trace_fidelity import TraceFidelity import gym import numpy as np from gym import spaces from scipy.linalg import expm import logging logger = logging.getLogger(__name__) CNOT = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) # We use natural units H_CROSS = 1 class InteractiveEnv(gym.Env): """ Interactive Gym Environment for Quantum Control. Parameters ---------- max_timesteps : int How many nanoseconds to run for target : ndarray of shape(4,4) Target Unitary we want to acheive hamiltonian : Hamiltonian The Hamiltonian to be used fidelity : Fidelity Fidelity to be used to calculate reward dt : double Timestep_size/mesh """ metadata = {'render.modes': ['human']} observation_space = spaces.Tuple((spaces.Box(low=-np.inf, high=np.inf, shape=(4, 4)), spaces.Box( low=-np.inf, high=np.inf, shape=(4, 4)), spaces.Discrete(1000))) reward_range = (float(0), float(1)) def __init__(self, max_timesteps=30, target=CNOT, hamiltonian=InteractiveCrossResonance(), fidelity=TraceFidelity(), dt=0.1): self.max_timesteps = max_timesteps self.target = target self.hamiltonian = hamiltonian self.fidelity = fidelity self.dt = dt self.U = np.eye(4) self.name = f"IntEnv-{max_timesteps}-{CNOT}-{hamiltonian}-{fidelity}-{dt}" logger.info(self.name) self.action_space = self.hamiltonian.action_space self.actions_so_far = [] def __str__(self): return self.name def step(self, action): """ Take one action for one timestep Parameters ---------- action : ActionSpace Object in Hamiltonian.action_space Returns ------- observation : ndarray(shape=(4,4)),ndarray(shape=(4,4)),int Real part of state, Imag part of state, Number of timesteps done reward : double Returns fidelity on final timestep, zero otherwise done : boolean Returns true of episode is finished info : dict Additional debugging Info """ self.actions_so_far.append(action) logger.info(f"Action#{len(self.actions_so_far)}={action}") done = len(self.actions_so_far) == self.max_timesteps H = np.sum(self.hamiltonian(action, done=done), axis=0) if not np.all(H == np.conjugate(H).T): logger.error( f"{H} is not Hermitian with actions as {np.array(self.actions_so_far)}") self.U = expm(-1j*self.dt*H/H_CROSS) @ self.U if not np.allclose(np.matmul(self.U, np.conjugate(self.U.T)), np.eye(4)): logger.error( f"Unitary Invalid-Difference is{np.matmul(self.U,self.U.T)-np.eye(4)}") if not np.isclose(np.abs(np.linalg.det(self.U)), 1): logger.error(f"Det Invalid-{np.abs(np.linalg.det(self.U))}") if done: reward = self.fidelity(self.U, self.target) else: reward = 0 return (np.real(self.U), np.imag(self.U), len(self.actions_so_far)), reward, done, {} def reset(self): self.actions_so_far = [] self.U = np.eye(4) self.hamiltonian.reset() logger.info("IntEnv Reset") return (np.eye(4), np.zeros((4, 4)), 0) def render(self, mode='human'): pass def close(self): pass
import matplotlib.pyplot as plt import numpy as np import seaborn as sns from symfit import Parameter, Variable, Fit, GradientModel from symfit.distributions import Gaussian palette = sns.color_palette() x = Variable('x') y = Variable('y') A = Parameter('A') sig = Parameter(name='sig', value=1.4, min=1.0, max=2.0) x0 = Parameter(name='x0', value=15.0, min=0.0) # Gaussian distribution model = GradientModel({y: A*Gaussian(x, x0, sig)}) # Sample 10000 points from a N(15.0, 1.5) distrubution np.random.seed(seed=123456789) sample = np.random.normal(loc=15.0, scale=1.5, size=(10000,)) ydata, bin_edges = np.histogram(sample, 100) xdata = (bin_edges[1:] + bin_edges[:-1])/2 fit = Fit(model, xdata, ydata) fit_result = fit.execute() y, = model(x=xdata, **fit_result.params) sns.regplot(xdata, ydata, fit_reg=False) plt.plot(xdata, y, color=palette[2]) plt.ylim(0, 400) plt.show()
import argparse from app import db from app.models import Node, Post all_posts = Post.query.all() all_nodes = Node.query.all() for i in all_posts: db.session.delete(i) db.session.commit() for i in all_nodes: db.session.delete(i) db.session.commit() # for u in users: # if u.email == 'None': # db.session.delete(u) # db.session.commit() # elif u.email == args.email: # db.session.delete(u) # db.session.commit() # # users = User.query.all() # print users # # # # for p in posts: # print user.username, ':', p.message
from pyneuroml.neuron import export_to_neuroml2 import sys import os os.chdir("../NEURON/test") sys.path.append(".") export_to_neuroml2("load_l23.hoc", "../NeuroML2/L23_morph.cell.nml", includeBiophysicalProperties=False, known_rev_potentials={"na":60,"k":-90,"ca":140})
import torch import torch.nn as nn from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from .crf import CRF class BiLSTMCRF(nn.Module): def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim, pre_word_embed=None, num_rnn_layers=1): super(BiLSTMCRF, self).__init__() self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.vocab_size = vocab_size self.tag_to_ix = tag_to_ix self.word_embedding = nn.Embedding(vocab_size, embedding_dim) if pre_word_embed is not None: self.pre_word_embed = True self.word_embedding.weight = nn.Parameter(torch.FloatTensor(pre_word_embed)) self.bilstm = nn.LSTM(embedding_dim, hidden_dim // 2, num_layers=num_rnn_layers, bidirectional=True, batch_first=True) self.crf = CRF(hidden_dim, self.tag_to_ix) def __build_features(self, sentences): masks = sentences.gt(0) embeds = self.word_embedding(sentences.long()) seq_length = masks.sum(1) sorted_seq_length, perm_idx = seq_length.sort(descending=True) embeds = embeds[perm_idx, :] pack_sequence = pack_padded_sequence(embeds, lengths=sorted_seq_length, batch_first=True) packed_output, _ = self.bilstm(pack_sequence) lstm_out, _ = pad_packed_sequence(packed_output, batch_first=True) _, unperm_idx = perm_idx.sort() lstm_out = lstm_out[unperm_idx, :] return lstm_out, masks def loss(self, xs, tags): features, masks = self.__build_features(xs) loss = self.crf.loss(features, tags, masks=masks) return loss def forward(self, xs): # Get the emission scores from the BiLSTM features, masks = self.__build_features(xs) scores, tag_seq, probs = self.crf(features, masks) return scores, tag_seq, probs
import numpy as np import logging import torch def seq_to_array(fp, max_len=15): with open(fp) as f: data = [x for x in f.read().split("\n") if x != ""] new_list = [] for seq in data: arr = seq.split(",") new_list.append(np.array([int(w) for w in arr] + [0] * (max_len - len(arr)))) return np.vstack(new_list) def seq_match(r, s): l_r = len(r) l_s = len(s) for i in range(l_r - l_s + 1): if np.dot(r[i:i+l_s] - s, s) == 0: return True return False class Agent: def __init__(self): pass def human_label(self, X): labels = np.zeros(X.shape[0]) for r in X: if seq_match(r, np.array([1, 0, 5])): pass if __name__ == "__main__": # print(seq_to_array("sequences-1-test.txt")) r = np.array([5, 7, 3, 4, 6, 3, 2, 5, 2, 3, 1, 2, 3, 4]) s = np.array([0, 2, 3])
import tensorflow as tf class DCGAN2(object): def __init__(self, name, data_shape, noise_shape, discriminator, generator): self.name = name if self.name is not None: with tf.variable_scope(self.name) as scope: self._build_graph(data_shape, noise_shape, discriminator, generator) else: self._build_graph(data_shape, noise_shape, discriminator, generator) self._init_loss() self._init_trainable_vars() self._init_update_ops() def _build_graph(self, data_shape, noise_shape, discriminator, generator): self.noise = tf.placeholder(tf.float32, [None] + noise_shape) self.gen_train_flag = tf.placeholder(tf.bool) self.data = tf.placeholder(tf.float32, [None] + data_shape) self.label = tf.placeholder(tf.float32, [None] + [1, 1, 1]) self.disc_train_flag = tf.placeholder(tf.bool) self.gen = generator('gen', self.noise, self.gen_train_flag) self.disc = discriminator('disc', self.data, self.label, self.disc_train_flag) self.gen_raw_out = self.gen.outputs[0] self.disc_raw_out = self.disc.outputs[0] def _init_loss(self): self.loss_gen = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( logits=self.disc.raw_out, labels=tf.ones_like(self.disc_raw_out))) self.loss_disc = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( logits=self.disc_raw_out, labels=self.label)) def _init_trainable_vars(self): if not self.name: self.vars_disc = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.disc.name) self.vars_gen = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.gen.name) else: self.vars_disc = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.name + '/' + self.disc.name) self.vars_gen = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, self.name + '/' + self.gen.name) def _init_update_ops(self): if not self.name: self.ops_disc = tf.get_collection(tf.GraphKeys.UPDATE_OPS, self.disc_real.name) self.ops_gen = tf.get_collection(tf.GraphKeys.UPDATE_OPS, self.gen.name) else: self.ops_disc = tf.get_collection(tf.GraphKeys.UPDATE_OPS, self.name + '/' + self.disc_real.name) self.ops_gen = tf.get_collection(tf.GraphKeys.UPDATE_OPS, self.name + '/' + self.gen.name) self.ops_all = self.ops_disc + self.ops_gen
import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from tensorflow.examples.tutorials.mnist import input_data import numpy as np class ProcesssData(object): def __init__(self, config): self.batch_size = config["model"]["batch_size"] self.data = input_data.read_data_sets(config["global"]["train_data_file_path"], one_hot=True) def __call__(self, batch_size): batch_imgs, y = self.data.train.next_batch(batch_size) size = 28 channel = 1 batch_imgs = np.reshape(batch_imgs, (self.batch_size, size, size, channel)) return batch_imgs, y def data2fig(self, samples): fig = plt.figure(figsize=(4, 4)) gs = gridspec.GridSpec(4, 4) gs.update(wspace=0.05, hspace=0.05) size = 32 for i, sample in enumerate(samples): ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(sample.reshape(size,size), cmap='Greys_r') return fig
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. import os import shutil import mock import unittest from ebcli.core import fileoperations from ebcli.core.ebcore import EB from ebcli.core.ebpcore import EBP from ebcli.controllers.platform import initialize from ebcli.lib import aws from ebcli.objects.platform import PlatformVersion class TestInitialize(unittest.TestCase): platform = PlatformVersion( 'arn:aws:elasticbeanstalk:us-west-2::platform/PHP 7.1 running on 64bit Amazon Linux/2.6.5' ) def setUp(self): self.root_dir = os.getcwd() if not os.path.exists('testDir'): os.mkdir('testDir') aws.set_region(None) os.chdir('testDir') def tearDown(self): os.chdir(self.root_dir) shutil.rmtree('testDir', ignore_errors=True) class TestEBPlatform(TestInitialize): def test_init__attempt_to_init_inside_application_workspace(self): fileoperations.create_config_file( 'my-application', 'us-west-2', 'php', ) app = EB(argv=['platform', 'init']) app.setup() with self.assertRaises(EnvironmentError) as context_manager: app.run() self.assertEqual( 'This directory is already initialized with an application workspace.', str(context_manager.exception) ) @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region_from_inputs') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') def test_init__non_interactive_mode( self, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_from_inputs_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_from_inputs_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', None) set_up_credentials_mock.return_value = 'us-west-2' app = EB(argv=['platform', 'init', 'my-custom-platform']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', False) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version=None, workspace_type='Platform' ) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with(None) set_workspace_to_latest_mock.assert_called_once_with() @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region_from_inputs') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') def test_init__non_interactive_mode__keyname_specified( self, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_from_inputs_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_from_inputs_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', '1.0.3') set_up_credentials_mock.return_value = 'us-west-2' app = EB(argv=['platform', 'init', 'my-custom-platform', '-k', 'keyname']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', False) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version='1.0.3', workspace_type='Platform' ) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with('keyname') set_workspace_to_latest_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') @mock.patch('ebcli.controllers.platform.initialize.get_keyname') def test_init__force_interactive_mode_by_not_specifying_the_platform( self, get_keyname_mock, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', '1.0.3') set_up_credentials_mock.return_value = 'us-west-2' get_keyname_mock.return_value = 'keyname' app = EB(argv=['platform', 'init']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', True) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version='1.0.3', workspace_type='Platform' ) get_region_mock.assert_called_once_with(None, True) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with('keyname') set_workspace_to_latest_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') @mock.patch('ebcli.controllers.platform.initialize.get_keyname') def test_init__force_interactive_mode_by_passing_interactive_argument( self, get_keyname_mock, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', '1.0.3') set_up_credentials_mock.return_value = 'us-west-2' get_keyname_mock.return_value = 'keyname' app = EB(argv=['platform', 'init', 'my-custom-platform', '-i']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', True) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version='1.0.3', workspace_type='Platform' ) get_region_mock.assert_called_once_with(None, True) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with('keyname') set_workspace_to_latest_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') @mock.patch('ebcli.controllers.platform.initialize.get_keyname') def test_init__force_interactive_mode_by_passing_interactive_argument_and_omitting_platform_argument( self, get_keyname_mock, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', '1.0.3') set_up_credentials_mock.return_value = 'us-west-2' get_keyname_mock.return_value = 'keyname' app = EB(argv=['platform', 'init', '-i']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', True) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version='1.0.3', workspace_type='Platform' ) get_region_mock.assert_called_once_with(None, True) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with('keyname') set_workspace_to_latest_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') @mock.patch('ebcli.controllers.platform.initialize.get_keyname') def test_init__interactive_mode__pass_keyname_in_interactive( self, get_keyname_mock, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', '1.0.3') set_up_credentials_mock.return_value = 'us-west-2' app = EB(argv=['platform', 'init', '-k', 'keyname']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', True) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version='1.0.3', workspace_type='Platform' ) get_region_mock.assert_called_once_with(None, True) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with('keyname') set_workspace_to_latest_mock.assert_not_called() get_keyname_mock.assert_not_called() class TestEBP(TestInitialize): def test_init__attempt_to_init_inside_application_workspace(self): fileoperations.create_config_file( 'my-application', 'us-west-2', 'php', ) app = EB(argv=['platform', 'init']) app.setup() with self.assertRaises(EnvironmentError) as context_manager: app.run() self.assertEqual( 'This directory is already initialized with an application workspace.', str(context_manager.exception) ) @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region_from_inputs') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') def test_init__non_interactive_mode( self, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_from_inputs_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_from_inputs_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', None) set_up_credentials_mock.return_value = 'us-west-2' app = EBP(argv=['init', 'my-custom-platform']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', False) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version=None, workspace_type='Platform' ) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with(None) set_workspace_to_latest_mock.assert_called_once_with() @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region_from_inputs') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') def test_init__non_interactive_mode__keyname_specified( self, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_from_inputs_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_from_inputs_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', '1.0.3') set_up_credentials_mock.return_value = 'us-west-2' app = EBP(argv=['init', 'my-custom-platform', '-k', 'keyname']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', False) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version='1.0.3', workspace_type='Platform' ) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with('keyname') set_workspace_to_latest_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') @mock.patch('ebcli.controllers.platform.initialize.get_keyname') def test_init__force_interactive_mode_by_not_specifying_the_platform( self, get_keyname_mock, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', '1.0.3') set_up_credentials_mock.return_value = 'us-west-2' get_keyname_mock.return_value = 'keyname' app = EBP(argv=['init']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', True) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version='1.0.3', workspace_type='Platform' ) get_region_mock.assert_called_once_with(None, True) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with('keyname') set_workspace_to_latest_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') @mock.patch('ebcli.controllers.platform.initialize.get_keyname') def test_init__force_interactive_mode_by_passing_interactive_argument( self, get_keyname_mock, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', '1.0.3') set_up_credentials_mock.return_value = 'us-west-2' get_keyname_mock.return_value = 'keyname' app = EBP(argv=['init', 'my-custom-platform', '-i']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', True) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version='1.0.3', workspace_type='Platform' ) get_region_mock.assert_called_once_with(None, True) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with('keyname') set_workspace_to_latest_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') @mock.patch('ebcli.controllers.platform.initialize.get_keyname') def test_init__force_interactive_mode_by_passing_interactive_argument_and_omitting_platform_argument( self, get_keyname_mock, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', '1.0.3') set_up_credentials_mock.return_value = 'us-west-2' get_keyname_mock.return_value = 'keyname' app = EBP(argv=['init', '-i']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', True) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version='1.0.3', workspace_type='Platform' ) get_region_mock.assert_called_once_with(None, True) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with('keyname') set_workspace_to_latest_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.platformops.set_workspace_to_latest') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.write_keyname') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.touch_config_folder') @mock.patch('ebcli.controllers.platform.initialize.commonops.get_region') @mock.patch('ebcli.controllers.platform.initialize.commonops.set_up_credentials') @mock.patch('ebcli.controllers.platform.initialize.aws.set_region') @mock.patch('ebcli.controllers.platform.initialize.initializeops.setup') @mock.patch('ebcli.controllers.platform.initialize.get_platform_name_and_version') @mock.patch('ebcli.controllers.platform.initialize.get_keyname') def test_init__interactive_mode__pass_keyname_in_interactive( self, get_keyname_mock, get_platform_name_and_version_mock, setup_mock, set_region_mock, set_up_credentials_mock, get_region_mock, touch_config_folder_mock, write_keyname_mock, set_workspace_to_latest_mock ): get_region_mock.return_value = 'us-west-2' get_platform_name_and_version_mock.return_value = ('my-custom-platform', '1.0.3') set_up_credentials_mock.return_value = 'us-west-2' app = EBP(argv=['init', '-k', 'keyname']) app.setup() app.run() set_region_mock.assert_has_calls([mock.call(None), mock.call('us-west-2')]) set_up_credentials_mock.assert_called_once_with(None, 'us-west-2', True) setup_mock.assert_called_once_with( 'Custom Platform Builder', 'us-west-2', None, platform_name='my-custom-platform', platform_version='1.0.3', workspace_type='Platform' ) get_region_mock.assert_called_once_with(None, True) touch_config_folder_mock.assert_called_once_with() write_keyname_mock.assert_called_once_with('keyname') set_workspace_to_latest_mock.assert_not_called() get_keyname_mock.assert_not_called() class TestGenericPlatformInitController(unittest.TestCase): @mock.patch('ebcli.controllers.platform.initialize.commonops.get_default_keyname') @mock.patch('ebcli.controllers.platform.initialize.sshops.prompt_for_ec2_keyname') def test_get_keyname__found_default_keyname( self, prompt_for_ec2_keyname_mock, get_default_keyname_mock ): get_default_keyname_mock.return_value = 'keyname' self.assertEqual( 'keyname', initialize.get_keyname() ) prompt_for_ec2_keyname_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.commonops.get_default_keyname') @mock.patch('ebcli.controllers.platform.initialize.sshops.prompt_for_ec2_keyname') def test_get_keyname__could_not_find_default_keyname( self, prompt_for_ec2_keyname_mock, get_default_keyname_mock ): get_default_keyname_mock.return_value = None prompt_for_ec2_keyname_mock.return_value = 'keyname' self.assertEqual( 'keyname', initialize.get_keyname() ) prompt_for_ec2_keyname_mock.assert_called_once_with( message='Would you like to be able to log into your platform packer environment?' ) @mock.patch('ebcli.controllers.platform.initialize.platformops.get_platform_name_and_version_interactive') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.get_platform_name') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.get_platform_version') def test_get_platform_name_and_version__platform_name_specified__non_interactive_flow( self, get_platform_version_mock, get_platform_name_mock, get_platform_name_and_version_interactive_mock ): self.assertEqual( ('my-custom-platform', None), initialize.get_platform_name_and_version('my-custom-platform') ) get_platform_version_mock.assert_not_called() get_platform_name_mock.assert_not_called() get_platform_name_and_version_interactive_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.platformops.get_platform_name_and_version_interactive') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.get_platform_name') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.get_platform_version') def test_get_platform_name_and_version__platform_name_not_specified__force_interactive_flow__default_platform_found( self, get_platform_version_mock, get_platform_name_mock, get_platform_name_and_version_interactive_mock ): get_platform_name_mock.return_value = 'my-custom-platform' get_platform_version_mock.return_value = '1.0.3' self.assertEqual( ('my-custom-platform', '1.0.3'), initialize.get_platform_name_and_version(None) ) get_platform_name_mock.assert_called_once_with(default=None) get_platform_version_mock.assert_called_once_with() get_platform_name_and_version_interactive_mock.assert_not_called() @mock.patch('ebcli.controllers.platform.initialize.platformops.get_platform_name_and_version_interactive') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.get_platform_name') @mock.patch('ebcli.controllers.platform.initialize.fileoperations.get_platform_version') def test_get_platform_name_and_version__platform_name_not_specified__default_platform_not_found__customer_prompted_for_paltform_name( self, get_platform_version_mock, get_platform_name_mock, get_platform_name_and_version_interactive_mock ): get_platform_name_mock.side_effect = initialize.NotInitializedError get_platform_name_and_version_interactive_mock.return_value = ('my-custom-platform', '1.0.3') self.assertEqual( ('my-custom-platform', '1.0.3'), initialize.get_platform_name_and_version(None) ) get_platform_name_mock.assert_called_once_with(default=None) get_platform_version_mock.assert_not_called() get_platform_name_and_version_interactive_mock.assert_called_once_with()
from pprint import pprint import logging from .shared import get_model from hubit import clear_hubit_cache # logging.basicConfig(level=logging.INFO) def model_0(): """Send entire car object to worker""" print(f"\n***MODEL 0***") hmodel = get_model("model0.yml") query = ["cars[0].price", "cars[1].price", "cars[2].price"] response = hmodel.get(query, use_multi_processing=False) print(response) print(hmodel.get_results().as_dict()) def model_1(): """Run model 1 and illustrate worker-level caching input.yml shows that cars[0] and cars[2] are identical so the effect of worker caching on the execution time can be seen. The execution time with worker caching is expected to be ~2/3 of the execution time without worker chaching (the calculation for one car can be reused). """ print(f"\n***MODEL 1***") hmodel = get_model("model1.yml") query = ["cars[0].price", "cars[1].price", "cars[2].price"] # With worker caching hmodel.set_component_caching(True) response = hmodel.get(query, use_multi_processing=False) # Without worker caching hmodel.set_component_caching(False) response = hmodel.get(query, use_multi_processing=False) results = hmodel.get_results() print("results", results) results_dict = results.as_dict() print("results_dict", results_dict) results_inflated = results.inflate() print("results_inflated", results_inflated) print(response) elapsed_times = hmodel.log().get_all("elapsed_time") print(f"Time WITH worker caching: {elapsed_times[1]:.1f} s. ") print(f"Time WITHOUT worker caching: {elapsed_times[0]:.1f} s. ") print(hmodel.log()) def model_2(): """Run model 2 and illustrate model-level caching""" print(f"\n***MODEL 2***") model_caching_mode = "after_execution" # model_caching_mode = "incremental" # model_caching_mode = "never" clear_hubit_cache() hmodel = get_model("model2.yml") hmodel.set_model_caching(model_caching_mode) query = [ "cars[:].parts[:].price", # price for all components for all cars "cars[:].price", # price for all cars ] response = hmodel.get(query, use_results="cached") response = hmodel.get(query, use_results="cached") pprint(response) elapsed_times = hmodel.log().get_all("elapsed_time") print(f"\nTime WITHOUT cached results on model: {elapsed_times[1]:.1f} s.") print(f"Time WITH cached results on model: {elapsed_times[0]:.1f} s.") print(hmodel.log()) def model_3(): """Run model 3""" print(f"\n***MODEL 3***") hmodel = get_model("model3.yml") query = ["cars[:].price"] # price for all cars response = hmodel.get(query) print(f"{response}") print(hmodel.log()) def model_2_component_cache(): """Run model 2 and illustrate model-level caching""" print(f"\n***MODEL 2***") use_multi_processing = False hmodel = get_model("model2.yml") query = [ "cars[:].parts[:].price", # price for all components for all cars "cars[:].price", # price for all cars ] component_caching_levels = False, True for component_caching in component_caching_levels: hmodel.set_component_caching(component_caching) hmodel.get(query, use_multi_processing=use_multi_processing) elapsed_times = reversed(hmodel.log().get_all("elapsed_time")) for elapsed_time, component_caching in zip(elapsed_times, component_caching_levels): print(f"Component caching is {component_caching}: {elapsed_time:.1f} s.") print(hmodel.log()) model_0() model_1() model_2() model_3() model_2_component_cache()
import tensorrt as trt import torch from torch2trt_dynamic.module_test import add_module_test from torch2trt_dynamic.plugins import create_adaptivepool_plugin from torch2trt_dynamic.torch2trt_dynamic import (get_arg, tensorrt_converter, trt_) @tensorrt_converter('torch.nn.functional.adaptive_max_pool2d') def convert_adaptive_max_pool2d(ctx): input = ctx.method_args[0] output_size = get_arg(ctx, 'output_size', pos=1, default=0) output = ctx.method_return input_trt = trt_(ctx.network, input) if isinstance(output_size, int): output_size = (output_size, output_size) output_size = tuple([-1 if not o else o for o in output_size]) if output_size[0] == 1 and output_size[1] == 1: # use reduce as max pool2d shape_length = len(input.shape) axes = (1 << (shape_length - 1)) + (1 << (shape_length - 2)) keepdim = True layer = ctx.network.add_reduce(input_trt, trt.ReduceOperation.MAX, axes, keepdim) output._trt = layer.get_output(0) else: plugin = create_adaptivepool_plugin( 'adaptive_max_pool2d_' + str(id(input)), output_size=output_size, pooling_type=trt.PoolingType.MAX) layer = ctx.network.add_plugin_v2(inputs=[input_trt], plugin=plugin) output._trt = layer.get_output(0) @add_module_test(torch.float32, torch.device('cuda'), [(1, 3, 224, 224)]) def test_adaptive_max_pool2d_1x1(): return torch.nn.AdaptiveMaxPool2d((1, 1)) @add_module_test(torch.float32, torch.device('cuda'), [(1, 3, 224, 224)]) def test_adaptive_max_pool2d_2x2(): return torch.nn.AdaptiveMaxPool2d((2, 2)) @add_module_test(torch.float32, torch.device('cuda'), [(1, 3, 224, 224)]) def test_adaptive_max_pool2d_3x3(): return torch.nn.AdaptiveMaxPool2d((3, 3))
#!/usr/bin/env python3 # coding:utf-8 profit = int(input("Please enter current month profit: ")) bonus = 0 gear1 = 100000 * 0.1 # 第 1 档,10w 以内最高奖金 gear2 = gear1 + ( 200000-100000) * 0.075 # 第 2 档,20w 以内最高奖金 gear3 = gear2 + ( 400000-200000) * 0.05 # 第 3 档,40w 以内最高奖金 gear4 = gear3 + ( 600000-400000) * 0.03 # 第 4 档,60w 以内最高奖金 gear5 = gear4 + (1000000-600000) * 0.015 # 第 5 档,100w 以内最高奖金 if profit > 1000000: bonus += gear5 + (profit-1000000) * 0.01 elif profit > 600000: bonus += gear4 + (profit- 600000) * 0.015 elif profit > 400000: bonus += gear3 + (profit- 400000) * 0.03 elif profit > 200000: bonus += gear2 + (profit- 200000) * 0.05 elif profit > 100000: bonus += gear1 + (profit- 100000) * 0.075 elif profit > 0: bonus += (profit-100000) * 0.1 else: print("Input error, please input again.") print("\nbonus = {}".format(bonus))
# Python - 3.6.0 Test.it('Basic tests') Test.assert_equals(solve([3, 4, 4, 3, 6, 3]), [4, 6, 3]) Test.assert_equals(solve([1, 2, 1, 2, 1, 2, 3]), [1, 2, 3]) Test.assert_equals(solve([1, 2, 3, 4]), [1, 2, 3, 4]) Test.assert_equals(solve([1, 1, 4, 5, 1, 2, 1]), [4, 5, 2, 1])
from django.apps import AppConfig class TractebelConfig(AppConfig): name = 'tractebel'
#!/usr/bin/env python3 # Copyright 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Implementation of the RNN based DrQA reader.""" import ipdb import torch import torch.nn as nn from torch.nn import functional as F from . import layers #import layers # ------------------------------------------------------------------------------ # Network # ------------------------------------------------------------------------------ class RnnDocReader(nn.Module): RNN_TYPES = {'lstm': nn.LSTM, 'gru': nn.GRU, 'rnn': nn.RNN} def __init__(self, args, normalize=True): super(RnnDocReader, self).__init__() # Store config self.args = args self.char_embedding = nn.Embedding(args.char_vocab_size, 50, padding_idx=0) self.pos_embedding = nn.Embedding(args.pos_vocab_size, 50, padding_idx=0) self.ner_embedding = nn.Embedding(args.ner_vocab_size, 20, padding_idx=0) args.char_emb = 50 self.emb_rnn = nn.GRU(args.char_emb, args.char_emb, batch_first=True, bidirectional=True) # Word embeddings (+1 for padding) self.embedding = nn.Embedding(args.vocab_size, args.embedding_dim, padding_idx=0) self.embedding.weight.requires_grad=False self.emb_attn = layers.SeqAttnMatch(args.embedding_dim) # Input size to RNN: word emb + question emb + manual features # RNN document encoder pdim = args.embedding_dim * 2 + 50 * 2 + 50 + 20 qdim = args.embedding_dim + 50 * 2 + 50 + 20 #self.emb_hw = layers.Highway( 2, dim, gate_bias=-2) self.enc_rnn_p = layers.StackedBRNN( input_size=pdim, hidden_size=128, num_layers=2, dropout_rate=0, dropout_output=False, concat_layers=True, rnn_type=nn.GRU, padding=True, ) self.enc_rnn_q = layers.StackedBRNN( input_size=qdim, hidden_size=128, num_layers=2, dropout_rate=0, dropout_output=False, concat_layers=True, rnn_type=nn.GRU, padding=True, ) self.enc_rnn_qu = layers.StackedBRNN( input_size=512, hidden_size=128, num_layers=1, dropout_rate=0.2, dropout_output=True, concat_layers=False, rnn_type=nn.GRU, padding=True, ) full_size = 300 + 100 + 256 + 256 hidden_size = 256 * 3 num_level = 3 self.full_attn = layers.FullAttention(full_size, hidden_size, num_level) self.enc_rnn_fusion = layers.StackedBRNN( input_size=256 * 5, hidden_size=128, num_layers=1, dropout_rate=0.2, dropout_output=True, concat_layers=False, rnn_type=nn.GRU, padding=True, ) full_size = 300 + 100 + 256 * 2 + 256 * 3 + 256 hidden_size = 256 num_level = 1 self.self_full_attn = layers.FullAttention(full_size, hidden_size, num_level) self.enc_rnn_final = layers.StackedBRNN( input_size=256 * 2, hidden_size=128, num_layers=1, dropout_rate=0.2, dropout_output=True, concat_layers=False, rnn_type=nn.GRU, padding=True, ) self.q_agg = layers.LinearSeqAttn(256) self.start_attn = layers.BilinearSeqAttn(256) self.end_attn = layers.BilinearSeqAttn(256) def forward( self, x1, x1_pos, x1_ner, x1_c, x1_mask, x2, x2_pos, x2_ner, x2_c, x2_mask, x1_f ): """ Args: x1 = document word indices [batch * len_d] x1_p = document pos indices [batch * len_d] x1_e = document ner indices [batch * len_d] x1_c = document char indices [batch * len_d * word_len] x1_f = document features [batch * len_d * num_features] x1_mask = document padding mask [batch * len_d] x2 = question word indices [batch * len_q] x2_p = question pos indices [batch * len_q] x2_e = question ner indices [batch * len_q] x2_c = question char indices [batch * len_q * word_len] x2_mask = question padding mask [batch * len_q] """ # Embed char of doc and question b, sl, wl = x1_c.size() x1_c_emb = self.char_embedding(x1_c.view(b * sl, wl)) _ , x1_c_emb = self.emb_rnn(x1_c_emb) x1_c_emb = torch.cat(list(x1_c_emb), dim=1).view(b, sl, -1) b, sl, wl = x2_c.size() x2_c_emb = self.char_embedding(x2_c.view(b*sl, wl)) _, x2_c_emb = self.emb_rnn(x2_c_emb) x2_c_emb = torch.cat(list(x2_c_emb), dim=1).view(b, sl, -1) # Embed both document and question x1_emb = self.embedding(x1) x2_emb = self.embedding(x2) # Embed pos and ner x1_pos_emb = self.pos_embedding(x1_pos) x2_pos_emb = self.pos_embedding(x2_pos) x1_ner_emb = self.ner_embedding(x1_ner) x2_ner_emb = self.ner_embedding(x2_ner) x1_attn_emb = self.emb_attn(x1_emb, x2_emb, x2_mask) # concatenate the embedding from char and word x1 = torch.cat([x1_c_emb, x1_emb, x1_pos_emb, x1_ner_emb, x1_attn_emb], dim=2) x2 = torch.cat([x2_c_emb, x2_emb, x2_pos_emb, x2_ner_emb], dim=2) # Drop word #x1 = F.dropout2d(x1.unsqueeze(3), p=0.1, training=self.training).squeeze(3) #x2 = F.dropout2d(x2.unsqueeze(3), p=0.1, training=self.training).squeeze(3) # Drop some dimension in word dim x1 = layers.dropout( x1, p=0.2, training=self.training) x2 = layers.dropout( x2, p=0.2, training=self.training) # preprocess x1_h = self.enc_rnn_p(x1, x1_mask) x2_h = self.enc_rnn_q(x2, x2_mask) x1_h = layers.dropout( x1_h, p=0.2, training=self.training) x2_h = layers.dropout( x2_h, p=0.2, training=self.training) # preprocess x2_u = self.enc_rnn_qu(x2_h, x2_mask) x2_u = layers.dropout(x2_u, p=0.2, training=self.training) # inter-attention x1_HoW = torch.cat([x1_emb, x1_c_emb, x1_h], dim=2) x2_HoW = torch.cat([x2_emb, x2_c_emb, x2_h], dim=2) # dropout x1_HoW = layers.dropout(x1_HoW, p=0.2, training=self.training) x2_HoW = layers.dropout(x2_HoW, p=0.2, training=self.training) x2_value = torch.cat([x2_h, x2_u], dim=2) x1_attn = self.full_attn(x1_HoW, x2_HoW, x2_value, x2_mask) # preprocess x1_v = self.enc_rnn_fusion(torch.cat([x1_h,x1_attn], dim=2), x1_mask) # intra-attention X1_HoW_self = torch.cat([x1_emb, x1_c_emb, x1_h, x1_attn, x1_v], dim=2) x1_attn_self = self.self_full_attn(X1_HoW_self, X1_HoW_self, x1_v, x1_mask) x1_u = self.enc_rnn_final(torch.cat([x1_v, x1_attn_self], dim=2), x1_mask) x2_vec = self.q_agg(x2_u,x2_mask) start_scores = self.start_attn(x1_u, x2_vec, x1_mask) end_scores = self.end_attn(x1_u, x2_vec, x1_mask) return start_scores, end_scores
from turtle import * def turtle_controller(do, val): do = do.upper() if do == 'F': forward(val) elif do == 'B': backward(val) elif do == 'R': right(val) elif do == 'L': left(val) elif do == 'U': penup() elif do == 'D': pendown() elif do == 'N': reset() else: print('Command unrecognized:', do) def string_artist(program): cmd_list = program.split('-') for command in cmd_list: cmd_len = len(command) if cmd_len == 0: continue cmd_type = command[0] num = 0 if cmd_len > 1: num_string = command[1:] num = int(num_string) print(command, ':', cmd_type, num) turtle_controller(cmd_type, num) instructions = '''Enter a program for the turtle: e.g. N-F100-R45-F100-L45-D-F100-R90-B50 N = New drawing U/D = Pen up/down F100 = Forward 100 B50 = Backwards 50 R90 = Right turn 90 Deg L45 = Left turn 90 Deg''' screen = getscreen() while True: t_program = screen.textinput('Drawing Machine', instructions) print(t_program) if t_program == None or t_program.upper() == 'END': quit() string_artist(t_program)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ (c) 2017 Brant Faircloth || http://faircloth-lab.org/ All rights reserved. This code is distributed under a 3-clause BSD license. Please see LICENSE.txt for more information. Created on 17 March 2017 15:15 CDT (-0500) """ import pdb import sys import gzip import argparse from Bio import SeqIO from collections import Counter def get_args(): parser = argparse.ArgumentParser(description='Parse fastqs from input based on tag sequence') parser.add_argument('--input', nargs='?', default=sys.stdin) parser.add_argument('--tag', required = True, dest = 'tag') parser.add_argument('--output', nargs='?', default=sys.stdout) return parser.parse_args() def main(): args = get_args() count = 0 with gzip.open(args.output, 'wb') as outfile: with gzip.open(args.input, 'rb') as infile: fastqs = SeqIO.parse(infile, 'fastq') for read in fastqs: read_tag = read.description.split(' ')[1].split(":")[-1] if read_tag == args.tag: outfile.write(read.format('fastq')) count += 1 if count%1000000 == 0: print count #pdb.set_trace() if __name__ == '__main__': main()
from datetime import timedelta import logging from homeassistant.components.switch import SwitchEntity from homeassistant.const import STATE_UNAVAILABLE from .entity import PanasonicBaseEntity from .const import ( DOMAIN, DEVICE_TYPE_AC, DATA_CLIENT, DATA_COORDINATOR, DEVICE_CLASS_SWITCH, LABEL_NANOE, LABEL_ECONAVI, LABEL_BUZZER, LABEL_TURBO, LABEL_CLIMATE_DRYER, LABEL_CLIMATE_SLEEP, LABEL_CLIMATE_CLEAN, ICON_NANOE, ICON_ECONAVI, ICON_BUZZER, ICON_TURBO, ICON_SLEEP, ICON_DRYER, ICON_CLEAN, ) _LOGGER = logging.getLogger(__package__) async def async_setup_entry(hass, entry, async_add_entities) -> bool: client = hass.data[DOMAIN][entry.entry_id][DATA_CLIENT] coordinator = hass.data[DOMAIN][entry.entry_id][DATA_COORDINATOR] devices = coordinator.data commands = client.get_commands() switches = [] for index, device in enumerate(devices): device_type = int(device.get("DeviceType")) current_device_commands = [ command for command in commands if command["ModelType"] == device.get("ModelType") ][0]["JSON"][0]["list"] command_types = list( map(lambda c: c["CommandType"].lower(), current_device_commands) ) if device_type == DEVICE_TYPE_AC: if "0x08" in command_types: switches.append( PanasonicACNanoe( coordinator, index, client, device, ) ) if "0x1b" in command_types: switches.append( PanasonicACEconavi( coordinator, index, client, device, ) ) if "0x1e" in command_types: switches.append( PanasonicACBuzzer( coordinator, index, client, device, ) ) if "0x1a" in command_types: switches.append( PanasonicACTurbo( coordinator, index, client, device, ) ) if "0x05" in command_types: switches.append( PanasonicACSleepMode( coordinator, index, client, device, ) ) if "0x17" in command_types: switches.append( PanasonicACDryer( coordinator, index, client, device, ) ) if "0x18" in command_types: switches.append( PanasonicACSelfClean( coordinator, index, client, device, ) ) async_add_entities(switches, True) return True class PanasonicACNanoe(PanasonicBaseEntity, SwitchEntity): """ Panasonic AC nanoe switch """ @property def available(self) -> bool: status = self.coordinator.data[self.index]["status"] _is_on_status = bool(int(status.get("0x00", 0))) return _is_on_status @property def label(self): return f"{self.nickname} {LABEL_NANOE}" @property def icon(self) -> str: return ICON_NANOE @property def device_class(self) -> str: return DEVICE_CLASS_SWITCH @property def is_on(self) -> int: status = self.coordinator.data[self.index]["status"] _nanoe_status = status.get("0x08") if _nanoe_status == None: return STATE_UNAVAILABLE _is_on = bool(int(_nanoe_status)) _LOGGER.debug(f"[{self.label}] is_on: {_is_on}") return _is_on async def async_turn_on(self) -> None: _LOGGER.debug(f"[{self.label}] Turning on nanoe") await self.client.set_command(self.auth, 136, 1) await self.coordinator.async_request_refresh() async def async_turn_off(self) -> None: _LOGGER.debug(f"[{self.label}] Turning off nanoe") await self.client.set_command(self.auth, 136, 0) await self.coordinator.async_request_refresh() class PanasonicACEconavi(PanasonicBaseEntity, SwitchEntity): """ Panasonic AC ECONAVI switch """ @property def available(self) -> bool: status = self.coordinator.data[self.index]["status"] _is_on_status = bool(int(status.get("0x00", 0))) return _is_on_status @property def label(self): return f"{self.nickname} {LABEL_ECONAVI}" @property def icon(self) -> str: return ICON_ECONAVI @property def device_class(self) -> str: return DEVICE_CLASS_SWITCH @property def is_on(self) -> int: status = self.coordinator.data[self.index]["status"] _nanoe_status = status.get("0x1B") if _nanoe_status == None: return STATE_UNAVAILABLE _is_on = bool(int(_nanoe_status)) _LOGGER.debug(f"[{self.label}] is_on: {_is_on}") return _is_on async def async_turn_on(self) -> None: _LOGGER.debug(f"[{self.label}] Turning on ECONAVI") await self.client.set_command(self.auth, 155, 1) await self.coordinator.async_request_refresh() async def async_turn_off(self) -> None: _LOGGER.debug(f"[{self.label}] Turning off ECONAVI") await self.client.set_command(self.auth, 155, 0) await self.coordinator.async_request_refresh() class PanasonicACBuzzer(PanasonicBaseEntity, SwitchEntity): """ Panasonic AC buzzer switch """ @property def available(self) -> bool: status = self.coordinator.data[self.index]["status"] _is_on_status = bool(int(status.get("0x00", 0))) return _is_on_status @property def label(self): return f"{self.nickname} {LABEL_BUZZER}" @property def icon(self) -> str: return ICON_BUZZER @property def device_class(self) -> str: return DEVICE_CLASS_SWITCH @property def is_on(self) -> int: status = self.coordinator.data[self.index]["status"] _buzzer_status = status.get("0x1E") if _buzzer_status == None: return STATE_UNAVAILABLE _is_on = not bool(int(_buzzer_status)) _LOGGER.debug(f"[{self.label}] is_on: {_is_on}") return _is_on async def async_turn_on(self) -> None: _LOGGER.debug(f"[{self.label}] Turning on buzzer") await self.client.set_command(self.auth, 30, 0) await self.coordinator.async_request_refresh() async def async_turn_off(self) -> None: _LOGGER.debug(f"[{self.label}] Turning off buzzer") await self.client.set_command(self.auth, 30, 1) await self.coordinator.async_request_refresh() class PanasonicACTurbo(PanasonicBaseEntity, SwitchEntity): """ Panasonic AC turbo switch """ @property def available(self) -> bool: status = self.coordinator.data[self.index]["status"] _is_on_status = bool(int(status.get("0x00", 0))) return _is_on_status @property def label(self): return f"{self.nickname} {LABEL_TURBO}" @property def icon(self) -> str: return ICON_TURBO @property def device_class(self) -> str: return DEVICE_CLASS_SWITCH @property def is_on(self) -> int: status = self.coordinator.data[self.index]["status"] _turbo_status = status.get("0x1A", None) if _turbo_status == None: return STATE_UNAVAILABLE _is_on = bool(int(_turbo_status)) _LOGGER.debug(f"[{self.label}] is_on: {_is_on}") return _is_on async def async_turn_on(self) -> None: _LOGGER.debug(f"[{self.label}] Turning on turbo mode") await self.client.set_command(self.auth, 154, 1) await self.coordinator.async_request_refresh() async def async_turn_off(self) -> None: _LOGGER.debug(f"[{self.label}] Turning off turbo mode") await self.client.set_command(self.auth, 154, 0) await self.coordinator.async_request_refresh() class PanasonicACSleepMode(PanasonicBaseEntity, SwitchEntity): """ Panasonic AC sleep mode switch """ @property def available(self) -> bool: status = self.coordinator.data[self.index]["status"] _is_on_status = bool(int(status.get("0x00", 0))) return _is_on_status @property def label(self): return f"{self.nickname} {LABEL_CLIMATE_SLEEP}" @property def icon(self) -> str: return ICON_SLEEP @property def device_class(self) -> str: return DEVICE_CLASS_SWITCH @property def is_on(self) -> int: status = self.coordinator.data[self.index]["status"] _sleep_mode_status = status.get("0x05") if _sleep_mode_status == None: return STATE_UNAVAILABLE _is_on = bool(int(_sleep_mode_status)) _LOGGER.debug(f"[{self.label}] is_on: {_is_on}") return _is_on async def async_turn_on(self) -> None: _LOGGER.debug(f"[{self.label}] Turning on sleep mode") await self.client.set_command(self.auth, 5, 1) await self.coordinator.async_request_refresh() async def async_turn_off(self) -> None: _LOGGER.debug(f"[{self.label}] Turning off sleep mode") await self.client.set_command(self.auth, 5, 0) await self.coordinator.async_request_refresh() class PanasonicACDryer(PanasonicBaseEntity, SwitchEntity): """ Panasonic AC dryer switch """ @property def available(self) -> bool: status = self.coordinator.data[self.index]["status"] _is_on_status = bool(int(status.get("0x00", 0))) return _is_on_status @property def label(self): return f"{self.nickname} {LABEL_CLIMATE_DRYER}" @property def icon(self) -> str: return ICON_DRYER @property def device_class(self) -> str: return DEVICE_CLASS_SWITCH @property def is_on(self) -> int: status = self.coordinator.data[self.index]["status"] _dryer_status = status.get("0x17") if _dryer_status == None: return STATE_UNAVAILABLE _is_on = bool(int(_dryer_status)) _LOGGER.debug(f"[{self.label}] is_on: {_is_on}") return _is_on async def async_turn_on(self) -> None: _LOGGER.debug(f"[{self.label}] Turning on dryer") await self.client.set_command(self.auth, 23, 1) await self.coordinator.async_request_refresh() async def async_turn_off(self) -> None: _LOGGER.debug(f"[{self.label}] Turning off dryer") await self.client.set_command(self.auth, 23, 0) await self.coordinator.async_request_refresh() class PanasonicACSelfClean(PanasonicBaseEntity, SwitchEntity): """ Panasonic AC self clean switch """ @property def available(self) -> bool: status = self.coordinator.data[self.index]["status"] _is_on_status = bool(int(status.get("0x00", 0))) return _is_on_status @property def label(self): return f"{self.nickname} {LABEL_CLIMATE_CLEAN}" @property def icon(self) -> str: return ICON_CLEAN @property def device_class(self) -> str: return DEVICE_CLASS_SWITCH @property def is_on(self) -> int: status = self.coordinator.data[self.index]["status"] _self_clean_status = status.get("0x18") if _self_clean_status == None: return STATE_UNAVAILABLE _is_on = bool(int(_self_clean_status)) _LOGGER.debug(f"[{self.label}] is_on: {_is_on}") return _is_on async def async_turn_on(self) -> None: _LOGGER.debug(f"[{self.label}] Turning on self clean") await self.client.set_command(self.auth, 24, 1) await self.coordinator.async_request_refresh() async def async_turn_off(self) -> None: _LOGGER.debug(f"[{self.label}] Turning off self clean") await self.client.set_command(self.auth, 24, 0) await self.coordinator.async_request_refresh()
''' File name : rdf_FZUplace.py Author : Jinwook Jung Created on : Wed 14 Aug 2019 12:08:23 AM EDT Last modified : 2020-03-30 22:54:26 Description : ''' import subprocess, os, sys, random, yaml, time from subprocess import Popen, PIPE, CalledProcessError # FIXME sys.path.insert(0, '../../../src/stage.py') from stage import * def run(config, stage_dir, prev_out_dir, user_parms, write_run_scripts): print("-"*79) print("Running FZUplace...") print("-"*79) print("Job directory: {}".format(stage_dir)) print("Previous stage outputs: {}".format(prev_out_dir)) fzu = FZUplaceRunner(config, stage_dir, prev_out_dir, user_parms) fzu.write_run_scripts() if not write_run_scripts: fzu.run() print("Done.") print("") class FZUplaceRunner(Stage): def __init__(self, config, stage_dir, prev_out_dir, user_parms): super().__init__(config, stage_dir, prev_out_dir, user_parms) self.lef_mod = "{}/merged_padded_spacing.lef".format(self.lib_dir) # FIXME self.bookshelf = "bookshelf.aux" def write_run_scripts(self): cmds = list() # FZUplace assumes bookshelf is stored at the directory under run directory. cmd = "mkdir {}/bookshelf".format(self.stage_dir) cmds.append(cmd) # Write bookshelf cmd = "cd {}/bookshelf && {}/src/util/bookshelf_writer".format(self.stage_dir, self.rdf_path) cmd += " --lef {}".format(self.lef_mod) cmd += " --def {}".format(self.in_def) cmd += " --bookshelf bookshelf" cmds.append(cmd) # Run cmd = "cd {} && {}/bin/global_place/FZUplace/FZUplace".format(self.stage_dir, self.rdf_path) cmd += " -aux bookshelf/{}".format(self.bookshelf) if "target_density" in self.user_parms.keys(): cmd += " -util {}".format(float(self.user_parms["target_density"])) cmd += " -nolegal -nodetail" cmds.append(cmd) # Write DEF cmd = "cd {} && {}/src/util/place_updater".format(self.stage_dir, self.rdf_path) cmd += " --lef {}".format(self.lef_mod) cmd += " --def {}".format(self.in_def) cmd += " --pl {}/output/bookshelf/bookshelf.pl".format(self.stage_dir) cmds.append(cmd) # Copy cmd = "ln -s {0}/out.def {0}/out/{1}.def" \ .format(self.stage_dir, self.design_name) cmds.append(cmd) # Copy previous verilog file cmd = "ln -s {0}/{1}.v {2}/out/{1}.v" \ .format(self.prev_out_dir, self.design_name, self.stage_dir) cmds.append(cmd) self.create_run_script_template() with open("{}/run.sh".format(self.stage_dir), 'a') as f: [f.write("{}\n".format(_)) for _ in cmds] def run(self): print("Hello FZUplace...") self._write_bookshelf() self._run_fzu_place() self._write_def() self._copy_final_output() def _write_bookshelf(self): # FZUplace assumes bookshelf is stored at the directory under run directory. os.mkdir("{}/bookshelf".format(self.stage_dir)) cmd = "cd {}/bookshelf && {}/src/util/lefdef_util/bookshelf_writer/bookshelf_writer".format(self.stage_dir, self.rdf_path) cmd += " --lef {}".format(self.lef_mod) cmd += " --def {}".format(self.in_def) cmd += " --bookshelf bookshelf" print(cmd) with open("{}/out/{}.log".format(self.stage_dir, self.design_name), 'a') as f: f.write("\n") f.write("# Command: {}\n".format(cmd)) f.write("\n") run_shell_cmd(cmd, f) def _run_fzu_place(self): cmd = "cd {} && {}/bin/global_place/FZUplace/FZUplace".format(self.stage_dir, self.rdf_path) cmd += " -aux bookshelf/{}".format(self.bookshelf) if "target_density" in self.user_parms.keys(): cmd += " -util {}".format(float(self.user_parms["target_density"])) cmd += " -nolegal -nodetail" print(cmd) with open("{}/out/{}.log".format(self.stage_dir, self.design_name), 'a') as f: f.write("\n") f.write("# Command: {}\n".format(cmd)) f.write("\n") run_shell_cmd(cmd, f) def _write_def(self): cmd = "cd {} && {}/src/util/lefdef_util/place_updater/place_updater".format(self.stage_dir, self.rdf_path) cmd += " --lef {}".format(self.lef_mod) cmd += " --def {}".format(self.in_def) cmd += " --pl {}/output/bookshelf/bookshelf.pl".format(self.stage_dir) print(cmd) with open("{}/out/{}.log".format(self.stage_dir, self.design_name), 'a') as f: f.write("\n") f.write("# Command: {}\n".format(cmd)) f.write("\n") run_shell_cmd(cmd, f) def _copy_final_output(self): cmd = "ln -s {0}/out.def {0}/out/{1}.def" \ .format(self.stage_dir, self.design_name) run_shell_cmd(cmd) # Copy previous verilog file cmd = "ln -s {0}/{1}.v {2}/out/{1}.v" \ .format(self.prev_out_dir, self.design_name, self.stage_dir) run_shell_cmd(cmd)
__doc__ = """ Main module for running BRISE configuration balancing.""" import itertools import datetime import socket from sys import argv from warnings import filterwarnings filterwarnings("ignore") # disable warnings for demonstration. from WSClient import WSClient from model.model_selection import get_model from repeater.repeater_selection import get_repeater from tools.initial_config import initialize_config from tools.features_tools import split_features_and_labels from tools.write_results import write_results from selection.selection_algorithms import get_selector def run(io=None): time_started = datetime.datetime.now() # argv is a run parameters for main - using for configuration global_config, task_config = initialize_config(argv) # Generate whole search space for regression. search_space = list(itertools.product(*task_config["DomainDescription"]["AllConfigurations"])) if io: # APPI_QUEUE.put({"global_config": global_config, "task": task_config}) temp = {"global_config": global_config, "task": task_config} io.emit('main_config', temp) # Creating instance of selector based on selection type and # task data for further uniformly distributed data points generation. selector = get_selector(selection_algorithm_config=task_config["SelectionAlgorithm"], search_space=task_config["DomainDescription"]["AllConfigurations"]) # Instantiate client for Worker Service, establish connection. WS = WSClient(task_config=task_config, ws_addr=global_config["WorkerService"]["Address"], logfile='%s%s_WSClient.csv' % (global_config['results_storage'], task_config["ExperimentsConfiguration"]["FileToRead"])) # Creating runner for experiments that will repeat task running for avoiding fluctuations. repeater = get_repeater("default", WS, task_config["ExperimentsConfiguration"]) print("Measuring default configuration that we will used in regression to evaluate solution... ") default_result = repeater.measure_task([task_config["DomainDescription"]["DefaultConfiguration"]], io) #change it to switch inside and devide to default_features, default_value = split_features_and_labels(default_result, task_config["ModelCreation"]["FeaturesLabelsStructure"]) print(default_value) if io: temp = {'conf': default_features, "result": default_value} io.emit('default conf', temp) # APPI_QUEUE.put({"default configuration": {'configuration': default_features, "result": default_value}}) print("Measuring initial number experiments, while it is no sense in trying to create model" "\n(because there is no data)...") initial_task = [selector.get_next_point() for x in range(task_config["SelectionAlgorithm"]["NumberOfInitialExperiments"])] repeater = get_repeater(repeater_type=task_config["ExperimentsConfiguration"]["RepeaterDecisionFunction"], WS=WS, experiments_configuration=task_config["ExperimentsConfiguration"]) results = repeater.measure_task(initial_task, io, default_point=default_result[0]) features, labels = split_features_and_labels(results, task_config["ModelCreation"]["FeaturesLabelsStructure"]) print("Results got. Building model..") # The main effort does here. # 1. Loading and building model. # 2. If model built - validation of model. # 3. If model is valid - prediction solution and verification it by measuring. # 4. If solution is OK - reporting and terminating. If not - add it to all data set and go to 1. # 5. Get new point from selection algorithm, measure it, check if termination needed and go to 1. # finish = False while not finish: model = get_model(model_creation_config=task_config["ModelCreation"], log_file_name="%s%s%s_model.txt" % (global_config['results_storage'], task_config["ExperimentsConfiguration"]["FileToRead"], task_config["ModelCreation"]["ModelType"]), features=features, labels=labels) model_built = model.build_model(score_min=task_config["ModelCreation"]["MinimumAccuracy"]) if model_built: model_validated = model.validate_model(io=io, search_space=search_space) if model_validated: predicted_labels, predicted_features = model.predict_solution(io=io, search_space=search_space) print("Predicted solution features:%s, labels:%s." %(str(predicted_features), str(predicted_labels))) validated_labels, finish = model.validate_solution(io=io, task_config=task_config["ModelCreation"], repeater=repeater, default_value=default_value, predicted_features=predicted_features) features += [predicted_features] labels += [validated_labels] if finish: optimal_result, optimal_config = model.get_result(repeater, features, labels, io=io) write_results(global_config, task_config, time_started, features, labels, repeater.performed_measurements, optimal_config, optimal_result, default_features, default_value) return optimal_result, optimal_config else: continue print("New data point needed to continue process of balancing. " "Number of data points retrieved from the selection algorithm: %s" % str(selector.numOfGeneratedPoints)) print('='*120) cur_task = [selector.get_next_point() for x in range(task_config["SelectionAlgorithm"]["Step"])] results = repeater.measure_task(cur_task, io=io, default_point=default_result[0]) new_feature, new_label = split_features_and_labels(results, task_config["ModelCreation"]["FeaturesLabelsStructure"]) features += new_feature labels += new_label # If BRISE cannot finish his work properly - terminate it. if len(features) > len(search_space): print("Unable to finish normally, terminating with best of measured results.") optimal_result, optimal_config = model.get_result(repeater, features, labels, io=io) write_results(global_config, task_config, time_started, features, labels, repeater.performed_measurements, optimal_config, optimal_result, default_features, default_value) return optimal_result, optimal_config if __name__ == "__main__": run()
from . tga import *
from django.urls import path, include from rest_framework.routers import DefaultRouter from profiles_api import views router = DefaultRouter() router.register('hello-viewset', views.HelloViewSet, base_name='hello-viewset') router.register('profile', views.UserProfileViewSet) router.register('feed', views.UserProfileFeedViewSet) #(name of url, view, retrieving URLs in our router) #Api Root page will only show routes registered via DefaultRouter(). #Only need to specify the base_name if the ViewSet doesn't have a queryset. #Django takes queryset as basename otherwise. urlpatterns = [ path('hello-view/', views.HelloApiView.as_view()), path('login/', views.UserLoginApiView.as_view()), path('', include(router.urls)) ]
PAIRWISE_DRIVER_EXCEPTIONS = { 'verstappen': 'max_verstappen', 'magnussen': 'kevin_magnussen' } def initials_for_driver(name): new_name = '' if ((name) and (len(name) > 2)): new_name = name[0:3].upper() return new_name def rename_drivers(name): new_name = name.lower() new_name = PAIRWISE_DRIVER_EXCEPTIONS.get( new_name, new_name) return new_name
from django.contrib.auth.models import AbstractUser from social.invites.models import Invite from . import constants class User(AbstractUser): """A custom user for extension""" @property def remaining_connections(self): """Get the number of remaining available connections.""" return ( constants.MAX_USER_CONNECTIONS - Invite.objects.filter(from_user=self) .exclude(status=Invite.InviteStatus.ACCEPTED) .count() )
r"""The real valued VGG model. Adapted from https://github.com/kuangliu/pytorch-cifar/blob/master/models/vgg.py https://github.com/anokland/local-loss/blob/master/train.py """ import torch # var-dropout from cplxmodule.nn.relevance import LinearVD from cplxmodule.nn.relevance import Conv2dVD # automatic relevance determination from cplxmodule.nn.relevance import LinearARD from cplxmodule.nn.relevance import Conv2dARD from cplxmodule.nn.masked import Conv2dMasked, LinearMasked from ....musicnet.models.real.base import Flatten cfg = { # 'VGG6a' : [ 128, 'M', 256, 'M', 512, 'M', 512 ], # 'VGG6b' : [ 128, 'M', 256, 'M', 512, 'M', 512, 'M' ], 'VGG8' : [ 64, 'M', 128, 'M', 256, 'M', 512, 'M', 512, 'M'], # 'VGG8a' : [ 128, 256, 'M', 256, 512, 'M', 512, 'M', 512 ], # 'VGG8b' : [ 128, 256, 'M', 256, 512, 'M', 512, 'M', 512, 'M' ], # 'VGG11b' : [ 128, 128, 128, 256, 'M', 256, 512, 'M', 512, 512, 'M', 512, 'M' ], 'VGG11' : [ 64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG13' : [ 64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'VGG16' : [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'VGG19' : [ 64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } class VGG(torch.nn.Module): Linear = torch.nn.Linear Conv2d = torch.nn.Conv2d def __new__(cls, vgg_name='VGG16', n_outputs=10, n_channels=3, double=False): layers = [] for x in cfg[vgg_name]: if x == 'M': layers.append(torch.nn.MaxPool2d(kernel_size=2, stride=2)) else: x = (x * 2) if double else x layers.extend([ cls.Conv2d(n_channels, x, kernel_size=3, padding=1), torch.nn.BatchNorm2d(x), torch.nn.ReLU(), ]) n_channels = x return torch.nn.Sequential( *layers, Flatten(-3, -1), cls.Linear(1024 if double else 512, n_outputs) ) class VGGVD(VGG): Linear = LinearVD Conv2d = Conv2dVD class VGGARD(VGG): Linear = LinearARD Conv2d = Conv2dARD class VGGMasked(VGG): Linear = LinearMasked Conv2d = Conv2dMasked
import sqlite3 conn = sqlite3.connect('ej.db') c = conn.cursor() f = open("data.txt","w") ##crear archivo de texto para el regresor logístico for row in c.execute('SELECT ancho, alto, clase FROM features'): # mostrar base de datos print(row) f.write(' '.join(str(s) for s in row) + '\n') #escribimos el archivo de texto con los datos de la bd conn.close() f.close()
import numpy as np import os import skimage.io as io import skimage.transform as trans from keras.models import * from keras.layers import * from keras.optimizers import * from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras import backend as keras def unet(pretrained_weights = None, input_size = (256,256, 1)): inputs = Input(input_size) #keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), # padding='valid', data_format=None, # dilation_rate=(1, 1), activation=None, # use_bias=True, kernel_initializer='glorot_uniform', # bias_initializer='zeros', kernel_regularizer=None, # bias_regularizer=None, activity_regularizer=None, # kernel_constraint=None, bias_constraint=None) # Rangkaian Extraction 1 conv1 = Conv2D(64, 3 , activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs) pool1 = MaxPooling2D(pool_size = (2,2))(conv1) # Rangkaian Extraction 2 conv2 = Conv2D(128, 3 , activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1) pool2 = MaxPooling2D(pool_size = (2,2))(conv2) # Rangkaian Extraction 3 conv3 = Conv2D(256, 3 , activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2) pool3 = MaxPooling2D(pool_size = (2,2))(conv3) # Rangkaian Extraction 4 conv4 = Conv2D(512, 3 , activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size = (2,2))(drop4) # Rangkaian Extraction 5 conv5 = Conv2D(1024, 3 , activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4) drop5 = Dropout(0.5)(conv5) # Rangkaian Expansion 1 up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) merge6 = concatenate([drop4, up6], axis = 3) conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6) # Rangkaian Expansion 2 up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) merge7 = concatenate([conv3, up7], axis = 3) conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7) # Rangkaian Expansion 3 up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7)) merge8 = concatenate([conv2, up8], axis = 3) conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8) # Rangkaian Expansion 4 up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) merge9 = concatenate([conv1, up9], axis = 3) conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9) # Rangkaian Expansion 5 conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9) # Membuat Model model = Model(input = inputs, output = conv10) model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy']) model.summary() if(pretrained_weights): model.load_weights(pretrained_weights) return model
import globals from globals import get_soup, job_insert from job import Job # Upward Bound House organization = "Upward Bound House" url = 'https://upwardboundhouse.org/about-us/careers/' organization_id= 60 def run(url): soup = get_soup(url) jobs_div = soup.find('h1', text='Careers').parent job_class= Job(organization, "") job_class.organization_id= organization_id insert_count= 0 for job_listing in jobs_div.find_all('a'): job_class.title = job_listing.text job_class.info_link = job_listing['href'] insert_count+= job_insert(job_class) return insert_count
# Copyright (C) 2020 Red Hat, Inc. # SPDX-License-Identifier: MIT # # pylint: disable=invalid-name,missing-function-docstring """double-quote-strings-if-needed test cases. """ from . import common as C class TestCase(C.YamlLintTestCase): """ double-quote-strings-if-needed test cases. """ tcase = "double-quote-strings-if-needed" # vim:sw=4:ts=4:et:
import sys import os from Algorithmia.errors import AlgorithmException import Algorithmia # look in ../ BEFORE trying to import Algorithmia. If you append to the # you will load the version installed on the computer. sys.path = ['../'] + sys.path import unittest if sys.version_info.major >= 3: class AlgoDummyTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.client = Algorithmia.client(api_address="http://localhost:8080", api_key="simabcd123") def test_call_customCert(self): result = self.client.algo('util/echo').pipe(bytearray('foo', 'utf-8')) self.assertEquals('binary', result.metadata.content_type) self.assertEquals(bytearray('foo', 'utf-8'), result.result) def test_normal_call(self): result = self.client.algo('util/echo').pipe("foo") self.assertEquals("text", result.metadata.content_type) self.assertEquals("foo", result.result) def test_dict_call(self): result = self.client.algo('util/echo').pipe({"foo": "bar"}) self.assertEquals("json", result.metadata.content_type) self.assertEquals({"foo": "bar"}, result.result) def test_text_unicode(self): telephone = u"\u260E" # Unicode input to pipe() result1 = self.client.algo('util/Echo').pipe(telephone) self.assertEquals('text', result1.metadata.content_type) self.assertEquals(telephone, result1.result) # Unicode return in .result result2 = self.client.algo('util/Echo').pipe(result1.result) self.assertEquals('text', result2.metadata.content_type) self.assertEquals(telephone, result2.result) def test_get_build_by_id(self): result = self.client.algo("J_bragg/Echo").get_build("1a392e2c-b09f-4bae-a616-56c0830ac8e5") self.assertTrue(result.build_id is not None) def test_get_build_logs(self): result = self.client.algo("J_bragg/Echo").get_build_logs("1a392e2c-b09f-4bae-a616-56c0830ac8e5") self.assertTrue(result.logs is not None) def test_get_scm_status(self): result = self.client.algo("J_bragg/Echo").get_scm_status() self.assertTrue(result.scm_connection_status is not None) def test_exception_ipa_algo(self): try: result = self.client.algo('zeryx/raise_exception').pipe("") except AlgorithmException as e: self.assertEqual(e.message, "This is an exception") else: class AlgoTest(unittest.TestCase): def setUp(self): self.client = Algorithmia.client() def test_call_customCert(self): open("./test.pem", 'w') c = Algorithmia.client(ca_cert="./test.pem") result = c.algo('util/Echo').pipe(bytearray('foo', 'utf-8')) self.assertEquals('binary', result.metadata.content_type) self.assertEquals(bytearray('foo', 'utf-8'), result.result) try: os.remove("./test.pem") except OSError as e: print(e) def test_call_binary(self): result = self.client.algo('util/Echo').pipe(bytearray('foo', 'utf-8')) self.assertEquals('binary', result.metadata.content_type) self.assertEquals(bytearray('foo', 'utf-8'), result.result) def test_text_unicode(self): telephone = u"\u260E" # Unicode input to pipe() result1 = self.client.algo('util/Echo').pipe(telephone) self.assertEquals('text', result1.metadata.content_type) self.assertEquals(telephone, result1.result) # Unicode return in .result result2 = self.client.algo('util/Echo').pipe(result1.result) self.assertEquals('text', result2.metadata.content_type) self.assertEquals(telephone, result2.result) def test_get_build_by_id(self): result = self.client.algo("J_bragg/Echo").get_build("1a392e2c-b09f-4bae-a616-56c0830ac8e5") self.assertTrue(result.build_id is not None) def test_get_build_logs(self): result = self.client.algo("J_bragg/Echo").get_build_logs("1a392e2c-b09f-4bae-a616-56c0830ac8e5") self.assertTrue(result.logs is not None) def test_get_scm_status(self): result = self.client.algo("J_bragg/Echo").get_scm_status() self.assertTrue(result.scm_connection_status is not None) def test_exception_ipa_algo(self): try: result = self.client.algo('zeryx/raise_exception').pipe("") except AlgorithmException as e: self.assertEqual(e.message, "This is an exception") if __name__ == '__main__': unittest.main()
#Report Memory ''' Reset reason: RTC WDT reset uPY stack: 19456 bytes uPY heap: 512256/6240/506016 bytes (in SPIRAM using malloc) ''' import gc import micropython #gc.collect() micropython.mem_info() print('-----------------------------') print('Initial free: {} allocated: {}'.format(gc.mem_free(), gc.mem_alloc())) micropython.mem_info() dir(gc) dir(micropython)
''' DATASET'S AND DATALOADER'S AUTHOR - shyamgupta196 PYTHON - 3.8.3 ''' ON HOLD import torch from torch.utils.data import DataLoader,Dataset from torchvision import datasets from torchvision.io import read_image from torchvision.transforms import ToTensor, Lambda import matplotlib.pyplot as plt from pytorch4 import Transform import torch.nn as nn from torchvision import transforms # Transforms = nn.Sequential( # transforms.CenterCrop(10), # transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) # ) training_data = datasets.FashionMNIST( root="../data", train=True, download=True, transform=Transform ) test_data = datasets.FashionMNIST( root="../data", train=False, download=True, transform=ToTensor() ) labels_map = { 0: "T-Shirt", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle Boot", } figure = plt.figure(figsize=(8, 8)) cols, rows = 3, 3 for i in range(1, cols * rows + 1): sample_idx = torch.randint(len(training_data), size=(1,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off") plt.imshow(img, cmap="gray") plt.show() import pandas as pd import os # class CustomDataSet(Dataset): # def __init__(self,annotations,root_dir,transform): # self.data = pd.read_csv(annotations) # self.root_dir = root_dir # self.transform = transform # def __len__(self): # return len(self.data) # def __getitem__(self,idx): # image_path = os.path.join(self.root_dir,self.data.iloc[idx,0]) # image = read_image(image_path) # label = self.data.iloc[idx,1] # if transform: # image = self.transform(image) # sample = {'image':image,'label':labels_map.get(label)} # return image,label train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True) test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True) # Display image and label. train_features, train_labels = next(iter(train_dataloader)) print(f"Feature batch shape: {train_features.size()}") print(f"Labels batch shape: {train_labels.size()}") img = train_features[10].squeeze() # I MAPPED THE LABELS ADDITIONALY label = labels_map.get(int(train_labels[10])) plt.imshow(img, cmap="gray") plt.show() print(f"Label: {label}")
from __future__ import unicode_literals import re def camelToSnake(s): """ https://gist.github.com/jaytaylor/3660565 Is it ironic that this function is written in camel case, yet it converts to snake case? hmm.. """ _underscorer1 = re.compile(r'(.)([A-Z][a-z]+)') _underscorer2 = re.compile('([a-z0-9])([A-Z])') subbed = _underscorer1.sub(r'\1_\2', s) return _underscorer2.sub(r'\1_\2', subbed).lower()
import logging from pathlib import Path from typing import Any, Dict, Mapping, Optional, cast log = logging.getLogger(__name__) try: import message_data except ImportError: log.warning("message_data is not installed or cannot be imported") MESSAGE_DATA_PATH: Optional[Path] = None else: # pragma: no cover (needs message_data) # Root directory of the message_data repository. MESSAGE_DATA_PATH = Path(message_data.__file__).parents[1] # Directory containing message_ix_models.__init__ MESSAGE_MODELS_PATH = Path(__file__).parents[1] #: Package data already loaded with :func:`load_package_data`. PACKAGE_DATA: Dict[str, Any] = dict() #: Data already loaded with :func:`load_private_data`. PRIVATE_DATA: Dict[str, Any] = dict() def _load( var: Dict, base_path: Path, *parts: str, default_suffix: Optional[str] = None ) -> Any: """Helper for :func:`.load_package_data` and :func:`.load_private_data`.""" key = " ".join(parts) if key in var: log.debug(f"{repr(key)} already loaded; skip") return var[key] path = _make_path(base_path, *parts, default_suffix=default_suffix) if path.suffix == ".yaml": import yaml with open(path, encoding="utf-8") as f: var[key] = yaml.safe_load(f) else: raise ValueError(path.suffix) return var[key] def _make_path( base_path: Path, *parts: str, default_suffix: Optional[str] = None ) -> Path: p = base_path.joinpath(*parts) return p.with_suffix(p.suffix or default_suffix) if default_suffix else p def load_package_data(*parts: str, suffix: Optional[str] = ".yaml") -> Any: """Load a :mod:`message_ix_models` package data file and return its contents. Data is re-used if already loaded. Example ------- The single call: >>> info = load_package_data("node", "R11") 1. loads the metadata file :file:`data/node/R11.yaml`, parsing its contents, 2. stores those values at ``PACKAGE_DATA["node R11"]`` for use by other code, and 3. returns the loaded values. Parameters ---------- parts : iterable of str Used to construct a path under :file:`message_ix_models/data/`. suffix : str, optional File name suffix, including, the ".", e.g. :file:`.yaml`. Returns ------- dict Configuration values that were loaded. """ return _load( PACKAGE_DATA, MESSAGE_MODELS_PATH / "data", *parts, default_suffix=suffix, ) def load_private_data(*parts: str) -> Mapping: # pragma: no cover (needs message_data) """Load a private data file from :mod:`message_data` and return its contents. Analogous to :mod:`load_package_data`, but for non-public data. Parameters ---------- parts : iterable of str Used to construct a path under :file:`data/` in the :mod:`message_data` repository. Returns ------- dict Configuration values that were loaded. Raises ------ RuntimeError if :mod:`message_data` is not installed. """ if MESSAGE_DATA_PATH is None: raise RuntimeError("message_data is not installed") return _load(PRIVATE_DATA, MESSAGE_DATA_PATH / "data", *parts) def package_data_path(*parts) -> Path: """Construct a path to a file under :file:`message_ix_models/data/`.""" return _make_path(MESSAGE_MODELS_PATH / "data", *parts) def private_data_path(*parts) -> Path: # pragma: no cover (needs message_data) """Construct a path to a file under :file:`data/` in :mod:`message_data`.""" return _make_path(cast(Path, MESSAGE_DATA_PATH) / "data", *parts)
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- # pylint: disable=too-many-lines from knack.help_files import helps helps['stack-hci'] = ''' type: group short-summary: Manage Azure Stack HCI ''' helps['stack-hci arc-setting'] = """ type: group short-summary: Manage arc setting with stack hci """ helps['stack-hci arc-setting list'] = """ type: command short-summary: "Get ArcSetting resources of HCI Cluster." examples: - name: List ArcSetting resources by HCI Cluster text: |- az stack-hci arc-setting list --cluster-name "myCluster" --resource-group "test-rg" """ helps['stack-hci arc-setting show'] = """ type: command short-summary: "Get ArcSetting resource details of HCI Cluster." examples: - name: Get ArcSetting text: |- az stack-hci arc-setting show --name "default" --cluster-name "myCluster" --resource-group "test-rg" """ helps['stack-hci arc-setting create'] = """ type: command short-summary: "Create ArcSetting for HCI cluster." examples: - name: Create ArcSetting text: |- az stack-hci arc-setting create --name "default" --cluster-name "myCluster" --resource-group "test-rg" """ helps['stack-hci arc-setting delete'] = """ type: command short-summary: "Delete ArcSetting resource details of HCI Cluster." examples: - name: Delete ArcSetting text: |- az stack-hci arc-setting delete --name "default" --cluster-name "myCluster" --resource-group "test-rg" """ helps['stack-hci arc-setting wait'] = """ type: command short-summary: Place the CLI in a waiting state until a condition of the stack-hci arc-setting is met. examples: - name: Pause executing next line of CLI script until the stack-hci arc-setting is successfully deleted. text: |- az stack-hci arc-setting wait --name "default" --cluster-name "myCluster" --resource-group "test-rg" \ --deleted """ helps['stack-hci cluster'] = """ type: group short-summary: Manage cluster with stack hci """ helps['stack-hci cluster list'] = """ type: command short-summary: "List all HCI clusters in a resource group. And List all HCI clusters in a subscription." examples: - name: List clusters in a given resource group text: |- az stack-hci cluster list --resource-group "test-rg" - name: List clusters in a given subscription text: |- az stack-hci cluster list """ helps['stack-hci cluster show'] = """ type: command short-summary: "Get HCI cluster." examples: - name: Get cluster text: |- az stack-hci cluster show --name "myCluster" --resource-group "test-rg" """ helps['stack-hci cluster create'] = """ type: command short-summary: "Create an HCI cluster." parameters: - name: --desired-properties short-summary: "Desired properties of the cluster." long-summary: | Usage: --desired-properties windows-server-subscription=XX diagnostic-level=XX windows-server-subscription: Desired state of Windows Server Subscription. diagnostic-level: Desired level of diagnostic data emitted by the cluster. examples: - name: Create cluster text: |- az stack-hci cluster create --location "East US" --aad-client-id "24a6e53d-04e5-44d2-b7cc-1b732a847dfc" \ --aad-tenant-id "7e589cc1-a8b6-4dff-91bd-5ec0fa18db94" --endpoint "https://98294836-31be-4668-aeae-698667faf99b.waconaz\ ure.com" --name "myCluster" --resource-group "test-rg" """ helps['stack-hci cluster update'] = """ type: command short-summary: "Update an HCI cluster." parameters: - name: --desired-properties short-summary: "Desired properties of the cluster." long-summary: | Usage: --desired-properties windows-server-subscription=XX diagnostic-level=XX windows-server-subscription: Desired state of Windows Server Subscription. diagnostic-level: Desired level of diagnostic data emitted by the cluster. examples: - name: Update cluster text: |- az stack-hci cluster update --endpoint "https://98294836-31be-4668-aeae-698667faf99b.waconazure.com" \ --desired-properties diagnostic-level="Basic" windows-server-subscription="Enabled" --tags tag1="value1" tag2="value2" \ --name "myCluster" --resource-group "test-rg" """ helps['stack-hci cluster delete'] = """ type: command short-summary: "Delete an HCI cluster." examples: - name: Delete cluster text: |- az stack-hci cluster delete --name "myCluster" --resource-group "test-rg" """ helps['stack-hci extension'] = """ type: group short-summary: Manage extension with stack hci """ helps['stack-hci extension list'] = """ type: command short-summary: "List all Extensions under ArcSetting resource." examples: - name: List Extensions under ArcSetting resource text: |- az stack-hci extension list --arc-setting-name "default" --cluster-name "myCluster" --resource-group \ "test-rg" """ helps['stack-hci extension show'] = """ type: command short-summary: "Get particular Arc Extension of HCI Cluster." examples: - name: Get ArcSettings Extension text: |- az stack-hci extension show --arc-setting-name "default" --cluster-name "myCluster" --name \ "MicrosoftMonitoringAgent" --resource-group "test-rg" """ helps['stack-hci extension create'] = """ type: command short-summary: "Create Extension for HCI cluster." examples: - name: Create Arc Extension text: |- az stack-hci extension create --arc-setting-name "default" --cluster-name "myCluster" --type \ "MicrosoftMonitoringAgent" --protected-settings "{\\"workspaceKey\\":\\"xx\\"}" --publisher "Microsoft.Compute" \ --settings "{\\"workspaceId\\":\\"xx\\"}" --type-handler-version "1.10" --name "MicrosoftMonitoringAgent" \ --resource-group "test-rg" """ helps['stack-hci extension delete'] = """ type: command short-summary: "Delete particular Arc Extension of HCI Cluster." examples: - name: Delete Arc Extension text: |- az stack-hci extension delete --arc-setting-name "default" --cluster-name "myCluster" --name \ "MicrosoftMonitoringAgent" --resource-group "test-rg" """ helps['stack-hci extension wait'] = """ type: command short-summary: Place the CLI in a waiting state until a condition of the stack-hci extension is met. examples: - name: Pause executing next line of CLI script until the stack-hci extension is successfully created. text: |- az stack-hci extension wait --arc-setting-name "default" --cluster-name "myCluster" --name \ "MicrosoftMonitoringAgent" --resource-group "test-rg" --created - name: Pause executing next line of CLI script until the stack-hci extension is successfully updated. text: |- az stack-hci extension wait --arc-setting-name "default" --cluster-name "myCluster" --name \ "MicrosoftMonitoringAgent" --resource-group "test-rg" --updated - name: Pause executing next line of CLI script until the stack-hci extension is successfully deleted. text: |- az stack-hci extension wait --arc-setting-name "default" --cluster-name "myCluster" --name \ "MicrosoftMonitoringAgent" --resource-group "test-rg" --deleted """
# -*- coding: utf-8 -*- # Generated by Django 1.9.12 on 2017-01-30 14:30 from __future__ import unicode_literals import enum from django.db import migrations import enumfields.fields class TrxType(enum.Enum): FINALIZED = 0 PENDING = 1 CANCELLATION = 2 class TrxStatus(enum.Enum): PENDING = 0 FINALIZED = 1 REJECTED = 2 CANCELED = 3 class Migration(migrations.Migration): dependencies = [ ('wallet', '0005_auto_20160309_1722'), ] operations = [ migrations.AlterField( model_name='wallettransaction', name='trx_status', field=enumfields.fields.EnumIntegerField(default=1, enum=TrxStatus), ), migrations.AlterField( model_name='wallettransaction', name='trx_type', field=enumfields.fields.EnumIntegerField(default=0, enum=TrxType), ), ]
# Setup CA Firebase Project, and then create a mapping of the codes to their profile details. # Ideally we should only need the users thingy from firebase_admin import firestore import json from dateutil.parser import parse from time import time import firebase_admin from firebase_admin import credentials import pathlib this_folder = pathlib.Path(__file__).parent.absolute() parent_folder = this_folder.parent FIREBASE_CA_SA_KEY = this_folder / 'serviceAccountKeyCA.json' print('[INFO] Authenticating CA...') ca_cred = credentials.Certificate(FIREBASE_CA_SA_KEY) ca_app = firebase_admin.initialize_app(ca_cred, name='CA') ca_client = firestore.client(ca_app) import re REGEX = re.compile('[\n\r\t,]') def escape(string): if isinstance(string, str): a = REGEX.sub('_', string) else: a = str(string) a = a.encode('ascii', 'ignore') a = a.decode() return a cas = {} print('[INFO] Writing JSON Document...') with open(parent_folder / f'cas.json', 'w', encoding="utf-8") as f: print('[INFO] Fetching Registrations...') snapshots = list(ca_client.collection('users').get()) print('[INFO] Registraions Fetched') for snapshot in snapshots: cas[snapshot.id] = snapshot.to_dict() f.write(json.dumps(cas, indent=4)) # f.write(json.dumps(k)) print('[INFO] Finished Writing JSON Document') cac = {} with open(parent_folder / f'cas-registrations.json', 'w', encoding="utf-8") as f: snapshots = list(ca_client.collection('ca_code').get()) for snapshot in snapshots: cac[snapshot.id] = snapshot.to_dict() f.write(json.dumps(cac, indent=4)) _LINE = "user_id, ca_code, first_name, last_name, phone, city, college_name, address, country, about, tasks_completed, registrations" with open(parent_folder / f'cas.csv', 'w', encoding="utf-8") as f: f.write(_LINE + '\n') for [key, value] in cas.items(): code = key[:7] if code in cac: registrations = cac[code]['number_of_regis'] else: registrations = 0 count = 0 for [_key, _value] in value['task_complition_data'].items(): if _value: count += 1 f.write(f"{key},{key[:7]}, {escape(value['first_name'])}, {escape(value['last_name'])}, {escape(value['phone'])}, {escape(value['city'])}, {escape(value['college_name'])}, {escape(value['address'])}, {value['country']}, {escape(value['about'])}, {count}, {registrations}\n") # We can now convert this to a csv file. # IDK if we should have the task thingy. I am going to just use the
#some code codeChanged = True;
def test_placeholder(): # Sample test added to make pytest happy :) pass
# # wayne_django_rest copyright © 2020 - all rights reserved # Created at: 26/10/2020 # By: mauromarini # License: MIT # Repository: https://github.com/marinimau/wayne_django_rest # Credits: @marinimau (https://github.com/marinimau) # from django.contrib.auth.models import User from django.db import models from django.utils.translation import gettext_lazy as _ # ---------------------------------------------------------------------------------------------------------------------- # Config # # This model is used to store the user preferences for his client. # The model has the following attributes: # # - Country : enum (store the current country) # - Language : enum (store the language to use in the client app) # - UIMode : enum (store the theme to use in the client app) # ---------------------------------------------------------------------------------------------------------------------- class Config(models.Model): class Country(models.TextChoices): IT = 'IT', _('Italy') US = 'US', _('United States') FR = 'FR', _('France') class Language(models.TextChoices): IT = 'IT', _('Italy') EN = 'EN', _('English') class UIMode(models.TextChoices): L = 'L', _('Light') D = 'D', _('Dark') A = 'A', _('Auto') user = models.OneToOneField(User, on_delete=models.CASCADE, related_name='config', primary_key=True) country = models.CharField(null=False, max_length=2, choices=Country.choices, default=Country.IT) language = models.CharField(null=False, max_length=2, choices=Language.choices, default=Language.EN) ui_pref = models.CharField(null=False, max_length=1, choices=UIMode.choices, default=UIMode.A)
import logging import sys from time import sleep root = logging.getLogger(__name__) root.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stderr) handler.setLevel(logging.DEBUG) log_format = '%(name)s - %(levelname)s - %(message)s' formatter = logging.Formatter(log_format) handler.setFormatter(formatter) root.addHandler(handler) while (True): Root.info("Writes to stderr by default") Root.warning("Faut faire gaffe") Root.error("Trop tard") Root.critical("C'est tout cassé") sleep (1)