content
stringlengths
5
1.05M
#!/usr/bin/env python3 from gi.repository import Gtk import os import os.path from sys_handler import language_dictionary # Folder use for the installer. tmp = "/tmp/.gbi/" installer = "/usr/local/lib/gbi/" query = "sh /usr/local/lib/gbi/backend-query/" if not os.path.exists(tmp): os.makedirs(tmp) logo = "/usr/local/lib/gbi/logo.png" langfile = '%slanguage' % tmp lang_dictionary = language_dictionary() # Text to be replace be multiple language file. title = "Welcome To GhostBSD!" welltext = """Select the language you want to use with GhostBSD.""" class Language: # On selection it overwrite the delfaut language file. def Language_Selection(self, tree_selection): model, treeiter = tree_selection.get_selected() if treeiter is not None: value = model[treeiter][0] self.language = lang_dictionary[value] return def Language_Columns(self, treeView): cell = Gtk.CellRendererText() column = Gtk.TreeViewColumn(None, cell, text=0) column_header = Gtk.Label('Language') column_header.set_use_markup(True) column_header.show() column.set_widget(column_header) column.set_sort_column_id(0) treeView.append_column(column) return def save_selection(self): lang_file = open(langfile, 'w') lang_file.writelines(self.language) lang_file.close() return # Initial definition. def __init__(self): # Add a Default vertical box self.vbox1 = Gtk.VBox(False, 0) self.vbox1.show() # Add a second vertical box grid = Gtk.Grid() self.vbox1.pack_start(grid, True, True, 0) grid.set_row_spacing(10) grid.set_column_spacing(3) grid.set_column_homogeneous(True) grid.set_row_homogeneous(True) grid.set_margin_left(10) grid.set_margin_right(10) grid.set_margin_top(10) grid.set_margin_bottom(10) # Adding a Scrolling Window sw = Gtk.ScrolledWindow() sw.set_shadow_type(Gtk.ShadowType.ETCHED_IN) sw.set_policy(Gtk.PolicyType.AUTOMATIC, Gtk.PolicyType.AUTOMATIC) # Adding a treestore and store language in it. store = Gtk.TreeStore(str) for line in lang_dictionary: store.append(None, [line]) treeView = Gtk.TreeView(store) treeView.set_model(store) treeView.set_rules_hint(True) self.Language_Columns(treeView) tree_selection = treeView.get_selection() tree_selection.set_mode(Gtk.SelectionMode.SINGLE) tree_selection.connect("changed", self.Language_Selection) sw.add(treeView) sw.show() grid.attach(sw, 1, 2, 1, 9) # add text in a label. vhbox = Gtk.VBox(False, 0) vhbox.set_border_width(10) vhbox.show() self.wellcome = Gtk.Label('<span size="xx-large"><b>' + title + '</b></span>') self.wellcome.set_use_markup(True) self.wellcometext = Gtk.Label(welltext) self.wellcometext.set_use_markup(True) table = Gtk.Table() # table.attach(self.wellcome, 0, 1, 1, 2) # wall = Gtk.Label() # table.attach(wall, 0, 1, 2, 3) table.attach(self.wellcometext, 0, 1, 3, 4) vhbox.pack_start(table, False, False, 5) image = Gtk.Image() image.set_from_file(logo) image.show() grid.attach(self.wellcome, 1, 1, 3, 1) vhbox.pack_start(image, True, True, 5) grid.attach(vhbox, 2, 2, 2, 9) grid.show() return def get_model(self): return self.vbox1
import webbrowser import os import socket from urllib.parse import urlparse from plugin import plugin, alias, require FILE_PATH = os.path.abspath(os.path.dirname(__file__)) @require(network=True) @alias("open website") @plugin("website") class OpenWebsite: """ This plugin will open a website using some parameters. The user can open a simple website giving a complete link or inputting the name of the website like the examples: > open website www.google.com > open website github > open website github username You can find a csv file with a list of saved websites at: Jarvis/jarviscli/data/website.csv {Alternatively, you can also use only 'website' instead of 'open website'} """ def __call__(self, jarvis, link): inputs = link.split(' ') self.main_link = inputs[0] self.complement = False if len(inputs) > 1: self.complement = inputs[1] if self.has_on_saved_links(): webbrowser.open(self.main_link) elif self.verify_link(): webbrowser.open(self.main_link) else: jarvis.say("Sorry, I can't open this link.") def has_on_saved_links(self): websites_csv = \ open(os.path.join(FILE_PATH, "../data/websites.csv"), 'r') for website in websites_csv: website = website.rstrip() # remove newline information = website.split(',') if self.main_link == information[0]: if self.complement: if len(information) > 2: self.main_link = \ information[1] + information[2] + self.complement else: self.main_link = information[1] + self.complement else: self.main_link = information[1] return True return False def verify_link(self): self.fix_link() domain = urlparse(self.main_link).netloc try: socket.getaddrinfo(domain, 80) except socket.gaierror: return False return True def fix_link(self): if not self.main_link.startswith('http'): self.main_link = "https://" + self.main_link
from random import randint from PIL import Image,ImageDraw import sys PRE = "SHOW.png" if len(sys.argv) == 2: PRE = sys.argv[1] + ".png" WIDTH, HEIGHT = 1920,1080 COLOUR = (25,25,255) image = Image.new("RGB", (WIDTH, HEIGHT), (0,0,0)) pixels = image.load() pixels[randint(1,WIDTH-2),1] = COLOUR def check(x,y): if x < 1 or y < 1 or x > WIDTH-2 or y > HEIGHT-2: return False if pixels[x-1,y] == COLOUR: return True if pixels[x+1,y] == COLOUR: return True if pixels[x,y-1] == COLOUR: return True if pixels[x,y+1] == COLOUR: return True return False notComplete = True while notComplete: x,y = randint(0,WIDTH-1),HEIGHT-1 while not check(x,y): r = randint(0,2) if r == 0: x-=1 elif r == 1: x+=1 elif r == 2: y-=1 if x < 0 or x >= WIDTH or y < 0 or y >= HEIGHT: break if check(x,y): print "%s-> DOT: %d,%d"%(PRE,x,y) pixels[x,y] = COLOUR for i in xrange(WIDTH): if pixels[i,HEIGHT-2] == COLOUR: notComplete = False break if len(sys.argv) == 2: image.save(sys.argv[1] + ".png") else: image.show()
from .base import Base from deoplete.util import load_external_module load_external_module(__file__, 'source') from data import GREEK_DICT class Source(Base): def __init__(self, vim): super().__init__(vim) self.name = 'greek' self.mark = '[greek]' self.min_pattern_length = 1 def gather_candidates(self, context): return [{'word': k, 'kind': '{}'.format(v)} for (k, v) in GREEK_DICT.items()]
"""Pins views.""" # Django REST Framework from rest_framework import viewsets # from rest_framework.generics import get_object_or_404 # Model from pinterest.pin.models import Pin # Serializers from pinterest.pin.api.serializers import ( PinModelSerializer, CreateUpdatePinSerializer, ) # Permissions from rest_framework.permissions import IsAuthenticated # Actions / Utils from pinterest.utils import ( CustomCreateModelMixin, CustomRetrieveModelMixin, CustomListModelMixin, CustomUpdateModelMixin, CustomDestroyModelMixin ) from pinterest.utils.response import CustomActions class PinViewSet( CustomCreateModelMixin, CustomRetrieveModelMixin, CustomListModelMixin, CustomUpdateModelMixin, CustomDestroyModelMixin, viewsets.GenericViewSet): """Pin view set. Crud for a pins """ custom_actions = CustomActions() queryset = Pin.objects.all() serializer_class = PinModelSerializer def get_permissions(self): """Assign permission based on action.""" if self.action in ['create', 'update']: permissions = [IsAuthenticated] else: permissions = [] return [permission() for permission in permissions] def get_serializer_class(self): """Return serializer based on action.""" if self.action in ['create', 'update']: return CreateUpdatePinSerializer return PinModelSerializer def get_queryset(self): """Restrict list to public-only.""" if self.action == 'list': return self.queryset.filter(status='active') return self.queryset
class WellsAndCoppersmith: @staticmethod def mag_length_strike_slip(mag): """ Returns average rupture length for a given magnitude from Wells and Coppersmith Args: mag: magnitude Returns: rupture_legnth: average rupture length for a given magnitude in kilometers """ return 10**(-3.22+0.69*mag)
from django.http import HttpResponse from django.template import loader from django.views.decorators.cache import never_cache @never_cache def home(request): """ rendering ui by template for homepage this view never cache for delivering correct translation inside template """ template = loader.get_template('weather/home.html') return HttpResponse(template.render({}, request))
# Project # ----------------------------------------------------------------------------- # Title : Dynamic Programming for Optimal Speedrun Strategy Exploration # Author : [Twitter] @samuelladoco [Twitch] SLDCtwitch # Contents: Dynamic programming algorithm (Dijkstra's algorithm for DAG) # ----------------------------------------------------------------------------- # Import # ----------------------------------------------------------------------------- from __future__ import annotations import dataclasses import queue # from level import Level # ----------------------------------------------------------------------------- # Classes # ----------------------------------------------------------------------------- # ---------------------------------------------------------------------- @dataclasses.dataclass(frozen=True, order=True) class Vertex: """動的計画法の段階(グラフの頂点)""" level: Level cumlative_num_gems: int def __repr__(self) -> str: return f'({self.level.ep_pg}, {self.cumlative_num_gems})' # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- @dataclasses.dataclass(frozen=True) class Label: """動的計画法の段階(グラフの頂点)に付与されるラベル""" vertex_this: Vertex label_prev: Label | None cumulative_time: float def __repr_label_prev(self) -> str: return ( 'None' if self.label_prev is None else ( f'({self.label_prev.vertex_this}, ' + f'{self.label_prev.cumulative_time:.2f})' ) ) def __repr__(self) -> str: return ( f'vt={self.vertex_this}, ' + f'lp={self.__repr_label_prev()}, ' + f'ct={self.cumulative_time:.2f}' ) # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- @dataclasses.dataclass(frozen=True) class OptimizerByDynamicProgramming: """ 動的計画法(今回の場合、非巡回有向グラフに対するダイクストラ法)によるチャートの最適化 Parameters ---------- levels : list[Level] (手前の面から並んだ)面のリスト max_labels_per_vertex : int 求めたいチャートの個数( 第 1 最適 ~ 最大で 第 max_labels_per_vertex 最適 まで) max_required_gems : int 開放に必要なダイヤ数が最も多い面の必要ダイヤ数 """ levels: list[Level] max_labels_per_vertex: int max_required_gems: int = dataclasses.field(compare=False) __labels: dict[Vertex, list[Label]] = dataclasses.field( init=False, default_factory=dict, compare=False ) __q: queue.PriorityQueue[Vertex] =dataclasses.field( init=False, default_factory=queue.PriorityQueue, compare=False) def solve(self) -> list[tuple[list[Vertex], float]]: """チャートを求める""" # 最初に出発可能な頂点たち for num_gems, time in self.levels[0].times.items(): v_start: Vertex = Vertex(self.levels[0], num_gems) self.__labels[v_start] = [Label(v_start, None, time)] self.__q.put(v_start) del v_start del num_gems, time # (面, ダイヤ数) を辞書式の順番で探索 while self.__q.empty() is False: vertex_this: Vertex = self.__q.get() self.__generate_next(vertex_this) # (最終面, 最小必要ダイヤ数) の各ラベルからグラフを逆にたどってパスを構築 sols: list[tuple[list[Vertex], float]] = [] v_end: Vertex = Vertex(self.levels[-1], self.max_required_gems) for label_goal in self.__labels[v_end]: vs: list[Vertex] = [v_end] # label_this: Label = label_goal while label_this.label_prev is not None: label_this = label_this.label_prev vs.append(label_this.vertex_this) del label_this # vs.reverse() sols.append((vs, label_goal.cumulative_time)) del vs del label_goal return sols def __generate_next(self, vertex_this: Vertex) -> None: """動的計画法の vertex_this の段階(グラフの頂点) から次を生成する""" # この頂点の各ラベルについて for label_this in self.__labels[vertex_this]: # 次に移動できる面と移動時間について for level_next, time_move in vertex_this.level.get_next_levels_and_times().items(): # この頂点でのダイヤ数が足りず次に移動できる面を開放できない場合 if vertex_this.cumlative_num_gems < level_next.num_required_gems: continue # 次に移動した面で取得するダイヤ数とクリア時間について for num_gems_next, time_next in level_next.times.items(): # # ダイヤ数 = この頂点のダイヤ数 + 次に移動した面で取得するダイヤ数 n_g: int = vertex_this.cumlative_num_gems + num_gems_next # ダイヤ数を必要以上に取った場合 if n_g > self.max_required_gems: continue # # 時間 = この頂点までの累積時間 + 次に移動した面への移動時間 + 次に移動した面のクリア時間 t: float = label_this.cumulative_time + time_move + time_next # # (次に移動した面, ダイヤ数) の頂点 のラベルたちとの比較 vertex_next: Vertex = Vertex(level_next, n_g) # ラベルがない場合 if vertex_next not in self.__labels.keys(): self.__labels[vertex_next] = [ Label(vertex_next, label_this, t) ] self.__q.put(vertex_next) # ラベルがあるが最大数以下の個数しかない場合 elif len(self.__labels[vertex_next]) < self.max_labels_per_vertex: # 実装が面倒なので、計算量は無視して組み込みのソートで対応 self.__labels[vertex_next].append( Label(vertex_next, label_this, t) ) self.__labels[vertex_next].sort( key=lambda x:x.cumulative_time) # ラベルがあり最大個数に達している場合 else: # 時間 が累積時間が最も長いラベルの時間より短い場合 if t < self.__labels[vertex_next][-1].cumulative_time: # 実装が面倒なので、計算量は無視して組み込みのソートで対応 self.__labels[vertex_next][-1] = Label( vertex_next, label_this, t ) self.__labels[vertex_next].sort( key=lambda x:x.cumulative_time ) # そうでない場合 else: pass del n_g, t, vertex_next del num_gems_next, time_next del level_next, time_move del label_this return def __repr_labels(self, labels: list[Label]) -> str: return "', '".join([str(l) for l in labels]) def __repr__(self) -> str: s: str = '' s += f'levels=\n' s += f'\n'.join([str(l) for l in self.levels]) + '\n' s += f'mlpv={self.max_labels_per_vertex}\n' s += f'lables=' if len(self.__labels) > 0: s += '\n' + f'\n'.join( [f"{v}: ['{self.__repr_labels(ls)}']" for v, ls in self.__labels.items()] ) + '\n' else: s += '(Empty)' return s # ---------------------------------------------------------------------- # -----------------------------------------------------------------------------
from datetime import datetime def regularMonths(currMonth): splitted = currMonth.split('-') month = int(splitted[0]) year = int(splitted[1]) found = False while not found: month += 1 if month > 12: month = 1 year += 1 aux = datetime(year, month, 1) if aux.weekday() == 0: found = True return "{:02d}-{}".format(month, year)
''' Make sure the active directory is the directory of the repo when running the test in a IDE ''' from skimage.data import chelsea import matplotlib.pyplot as plt import MTM print( MTM.__version__ ) import numpy as np #%% Get image and templates by cropping image = chelsea() template = image[80:150, 130:210] listTemplates = [template] #%% Perform matching #listHit = MTM.findMatches(image, listTemplates) #listHit = MTM.findMatches(image, listTemplates, nObjects=1) # there should be 1 top hit per template finalHits = MTM.matchTemplates(image, listTemplates, score_threshold=0.6, maxOverlap=0, nObjects=10) print("Found {} detections".format(len(finalHits))) print (np.array(finalHits)) # better formatting with array #%% Display matches MTM.plotDetections(image, finalHits, showLegend = True)
# __BEGIN_LICENSE__ # Copyright (C) 2008-2010 United States Government as represented by # the Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # __END_LICENSE__ import django.views.generic.simple from django.conf.urls import * # pylint: disable=W0401 from django.views.generic import RedirectView urlpatterns = patterns('geocamTalk.views', url(r'^$', RedirectView.as_view(url='messages'), {'permanent': False}, name='geocamTalk_home'), url(r'^register$', 'register', name='geocamTalk_register_c2dm'), url(r'^unregister$', 'unregister', name='geocamTalk_unregister_c2dm'), url(r'^messages/create.json$', 'create_message_json', name='geocamTalk_create_message_json'), url(r'^messages/create$', 'create_message', name='geocamTalk_create_message'), url(r'^messages/clear$', 'clear_messages', name='geocamTalk_clear_messages'), url(r'^messages/details/(?P<message_id>\d+).json$', 'message_details_json', name="geocamTalk_message_details_json"), url(r'^messages/details/(?P<message_id>\d+)$', 'message_details', name="geocamTalk_message_details"), url(r'^messages/(?P<recipient_username>[^ ]+)/(?P<author_username>[^ ]+).json$', 'feed_messages', name="geocamTalk_message_list_to_from_json"), url(r'^messages/(?P<recipient_username>[^ ]+).json$', 'feed_messages', name="geocamTalk_message_list_author_json"), url(r'^messages.json$', 'feed_messages', name="geocamTalk_message_list_all_json"), url(r'^messages/(?P<recipient_username>[^ ]+)/(?P<author_username>[^ ]+)$', 'message_list', name="geocamTalk_message_list_to_from"), url(r'^messages/(?P<recipient_username>[^ ]+)$', 'message_list', name="geocamTalk_message_list_to"), url(r'^messages/(?P<recipient_username>[^ ]+)$', 'message_list', name="geocamTalk_message_list_author"), url(r'^messages$', 'message_list', name="geocamTalk_message_list_all"), url(r'^map$', 'message_map', name="geocamTalk_message_map"), url(r'^messages\.kml$', 'feed_messages_kml', {'readOnly': True}, name='geocamTalk_message_list_all_kml'), )
# Generated by Django 2.2.4 on 2019-09-05 22:55 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('inventory', '0001_initial'), ] operations = [ migrations.AddField( model_name='userpart', name='qty', field=models.PositiveIntegerField(default=0), ), ]
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-11-14 19:33 from __future__ import unicode_literals from django.db import migrations import location_field.models.spatial class Migration(migrations.Migration): dependencies = [ ('place', '0002_place_city'), ] operations = [ migrations.RemoveField( model_name='place', name='lat', ), migrations.RemoveField( model_name='place', name='lng', ), migrations.AddField( model_name='place', name='lat_lng', field=location_field.models.spatial.LocationField(null=True), preserve_default=False, ), ]
def key(arg): return arg
# -*- coding:utf-8 -*- """ @file interrupt.py @brief 中断检测传感器的运动,当传感器的运动强度超过阈值时,会在int1或 @n者int2产生中断脉冲信号(set_int1_event()函数或者set_int2_event函数选择引脚) @n在使用SPI时,片选引脚时可以通过改变RASPBERRY_PIN_CS的值修改 @copyright Copyright (c) 2010 DFRobot Co.Ltd (http://www.dfrobot.com) @licence The MIT License (MIT) @author [fengli](li.feng@dfrobot.com) @version V1.0 @date 2021-01-16 @get from https://www.dfrobot.com @https://github.com/DFRobot/DFRobot_IIS """ import sys sys.path.append("../") # set system path to top from DFRobot_IIS2ICLX import * import time INT1 = 26 #Interrupt pin,使用BCM编码方式,编码号为26,对应引脚GPIO25 int_pad_Flag = False #intPad flag def int_pad_callback(status): global int_pad_Flag print("Activity detected") int_pad_Flag = True #如果你想要用SPI驱动此模块,打开下面两行的注释,并通过SPI连接好模块和树莓派 #RASPBERRY_PIN_CS = 27 #Chip selection pin when SPI is selected,使用BCM编码方式,编码号为27,对应引脚GPIO2 #acce = DFRobot_IIS2ICLX_SPI(RASPBERRY_PIN_CS) #如果你想要应IIC驱动此模块,打开下面三行的注释,并通过I2C连接好模块和树莓派 I2C_BUS = 0x01 #default use I2C1 ADDRESS = 0x6B #传感器地址 acce = DFRobot_IIS2ICLX_I2C(I2C_BUS ,ADDRESS) # set int_Pad to input GPIO.setup(INT1, GPIO.IN) #set int_Pad interrupt callback GPIO.add_event_detect(INT1,GPIO.RISING,int_pad_callback) #Chip initialization acce.begin() acce.reset() #Get chip id print('chip id :%x'%acce.get_id()) ''' Set the sensor measurement range: RANGE_500MG #±500mg RANGE_3G #±3g RANGE_1G #±1g RANGE_2G #±2g ''' acce.set_range(acce.RANGE_2G) ''' Set the sensor data collection rate: 参数可取:RATE_0HZ //0hz RATE_12HZ5 //12.5hz RATE_26HZ //26hz RATE_52HZ //52hz RATE_104HZ //104hz RATE_208HZ //208hz RATE_416HZ //416hz RATE_833HZ //833hz ''' acce.set_data_rate(acce.RATE_833HZ) ''' 滤波方式选择 参数可取:HPF //滤波器选择为high-pass digital filter SLOPE //滤波器选择为slope filter ''' acce.set_filter_Path(acce.SLOPE) #使能传感器中断 acce.enable_interrupt(True) #设置运动检测阈值,单位为(g),数值是在量程之内 acce.set_wakeup_threshold(0.3) ''' 选择在中断1引脚产生的中断事件 参数可取:WAKEUP //wake up 事件 SINGLE_TAP //单击事件 DOUBLE_TAP //双击事件 MOTION //静止/运动检测 ''' acce.set_int1_event(acce.MOTION) #acce.set_int2_event(acce.MOTION) ''' 设置唤醒的持续时间,在此时间后,若两个方向的加速度数据小于 唤醒阈值,那么模块会进入睡眠状态 dur duration time 范围 0 ~ 15 time = dur * (512/rate)(unit:s) | 参数与时间之间的线性关系的示例 | |-----------------------------------------------------------------------------------------------------| | | | | | | Data rate | 12.5 Hz | 26 Hz | 52 Hz | |-----------------------------------------------------------------------------------------------------| | time |dur*(512s/12.5)=dur*40s |dur*(512s/26)=dur*20s | dur*(3512s/52)= dur*10ms | |---------------------------------------------------------------------------------------------------- | ''' acce.set_wake_up_dur(dur = 0) time.sleep(0.1) while True: if(int_pad_Flag == True): #Free fall event is detected time.sleep(0.01) free_fall = acce.act_detected() if free_fall == True: print("Activity detected") time.sleep(0.2) int_pad_Flag = False
#This program is an item counter def main(): #open the file user_file = open('filename.txt', 'r') count = 0 #This counts the number of items in the file for line in user_file: count += 1 user_file.close() print('The total number of items in the file =',count) main()
"""Tests for the Meteoclimatic component."""
# Generated by Django 3.1 on 2020-12-06 09:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('classes', '0006_auto_20201205_2224'), ] operations = [ migrations.RemoveField( model_name='classsyllabus', name='components', ), migrations.AddField( model_name='classsyllabus', name='assignment', field=models.BooleanField(default=False), ), migrations.AddField( model_name='classsyllabus', name='practical', field=models.BooleanField(default=False), ), migrations.AddField( model_name='classsyllabus', name='project', field=models.BooleanField(default=False), ), migrations.AddField( model_name='classsyllabus', name='theory', field=models.BooleanField(default=False), ), ]
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Feb 5 21:36:09 2018 Python2 code for Landscape Modeling class exercise 3 - Part 2 Finite difference method using forward in time and centered in space @author: nadine """ #%% PART 2 - FINITE DIFF SOLUTION import numpy as np import matplotlib.pyplot as plt import os degree = u"\u00b0" # unicode symbol for degree for labeling plots nicely #%% Try with explicit equation ## define variables - simply for starters #Qm = 45 * .001 # heat flux in W/m^2, mantle heat flux = bottom boundary condition #k = 2.5 # thermal conductivity in W/(m-K) #kappa = 1 * 1e-6 # thermal diffusivity in m^2/sec #period = 60*60*24*365.25 # one year of seconds # #dz = 0.1 # meter, try making this smaller #zmax = 1. # meters #z = np.arange(0.,zmax+dz,dz) # depth array in meters # #years = 1. # number of years to run for #dt = (period/365.)* .01 # one day of seconds #tmax = period * years # years #t = np.arange(0.,tmax+dt,dt) # time array in days # #T = np.ndarray(shape=(len(t),len(z)), dtype=float) # #plt.axvline(0,0,15,color='k',linestyle='--') # plot line at X = 0 ##plt.ylim(0,15) ##plt.xlim(-25,5,5) #plt.gca().invert_yaxis() # invert Y axis #plt.xlabel('Temperature ('+degree+'C)') #plt.ylabel('Depth (m)') # ## BOUNDARY CONDITIONS --> bottom Q and top T ## try smaller time steps ## is the indexing correct for plotting?? # #for n in range(len(t)-1): # for i in range(len(z)-1): # T[(n+1),i] = T[n,i] + (dt*kappa)*((T[n,(i+1)]-(2*T[n,i])+T[n,(i-1)])/(dz**2)) # if n % 10 == 0: # plt.plot(T[n,:],z,linewidth=0.5) #%% Try again with other method (dXdy arrays) # set variables years = 1 # number of years to run for plots = years*100 # plot every "plots" timestep geotherm k = 2.5 # thermal conductivity in W/(m-K) kappa = 1e-6 # thermal diffusivity in m^2/sec rhoc = k/kappa # calculate rho*c based on values of k and kappa period = 60*60*24*365.25 # one year of seconds Qm = 45 * .001 # heat flux in W/m^2, mantle heat flux = bottom boundary condition MAT = -10 # mean annual temp at the surface in celcius dT = 15 # annual +/- change in temp in celcius dt = (period / 365 ) * .01 # timestep: one day times a multiplier to keep dt small tmax = period * years # max time = 1 year * number of years set above t = np.arange(0,tmax,dt) # time array dz = 0.1 # depth step in meters zmax = 20.0 # max depth z = np.arange(0,zmax+dz,dz) # depth array #%% second try run loop with dXdy arrays os.system("rm tmp*.png") # remove any tmp.png files so don't get erroneous frames in our movie # initialize arrays Ts = np.zeros(len(t)) # surface temp array T = np.ndarray(shape=(len(z),len(t)), dtype=float) # temp/geotherm array Q = np.ndarray(shape=(len(z),len(t)), dtype=float) # Q / heat flux array dTdz = np.ndarray(shape=(len(z)-1,len(t)), dtype=float) dQdz = np.ndarray(shape=(len(z)-1,len(t)), dtype=float) dTdt = np.ndarray(shape=(len(z)-1,len(t)), dtype=float) Q[-1,:] = Qm # apply mantle heat flux (Qm) as bottom boundary condition for all time # set up plot for movie plt.axvline(0,0,15,color='k',linestyle='--') plt.ylim(0,20) plt.xlim(-25,5,5) plt.gca().invert_yaxis() plt.xlabel('Temperature ('+degree+'C)') plt.ylabel('Depth (m)') # finite diff loop through all time t for i in range(len(t)-1): Ts[i] = MAT + dT * np.sin(((2*np.pi*t[i]))/period) # calculate surface temperature (Ts) for time i T[0,i] = Ts[i] # apply surface temp as top boundary condition (z = 0) for time i dTdz[:,i] = np.diff(T[:,i]) / dz # calculate T gradient with depth Q[:-1,i] = -k * dTdz[:,i] # calculate heat content at every depth dQdz[:,i] = np.diff(Q[:,i]) / dz # heat flow gradient dTdt[:,i] = (-1/rhoc) * dQdz[:,i] # temp gradient with time T[1:,i+1] = T[1:,i] + (dTdt[:,i]*dt) # write T if i % plots == 0: # plot at every plots timestep plt.plot(T[:,i],z) # plot T for all depth at time i plt.text(-20, 12.5, 'time (days):'+ str((i/100))) # add label for total time = plt.savefig('tmp'+str(i/plots)+'.png',bbox_inches="tight",dpi=150) # save plot for movie # make a movie with ffmpeg! #fps = 35 #os.system("rm movie.mp4") # remove a previous movie.mp4 file so don't get overwrite problems #os.system("ffmpeg -r 35 -pattern_type sequence -i tmp'%d'.png -vcodec mpeg4 movie.mp4") #os.system("rm tmp*.png") #%% first try run loop with dXdy arrays # starts ok for first .01 of a year, then goes crazy #num = 50 #z = np.linspace(0,zmax+dz,num) z = np.arange(0,zmax+dz,dz) #Q = np.zeros(num) Q = np.zeros(len(z)) Q[-1] = Qm # bottom boundary condition, Qm = mantle heat flow dt = (period / 365 ) * .01 # timestep: one day times a multiplier to keep dt small tmax = period * years # max time = 1 year * number of years set above t = np.arange(0,0.01*tmax,dt) #T = np.ones(num) T = np.ones(len(z)) #T = np.ndarray(shape=(len(z),len(t)), dtype=float) #dTdz = np.zeros(num-1) #dQdz = np.zeros(num-1) #dTdt = np.zeros(num-1) dTdz = np.zeros(len(z)-1) dQdz = np.zeros(len(z)-1) dTdt = np.zeros(len(z)-1) for n in range(len(t)): for i in range(len(z)): Ts = MAT + dT * np.sin(((2*np.pi*t[n]))/period) # sinusoidal equation for surface temp T[0] = Ts # top boundary condition dTdz = np.diff(T) / dz Q[:-1] = -k * dTdz dQdz = np.diff(Q) / dz dTdt = -(1/rhoc) * dQdz T[1:] = T[1:] + (dTdt * dt) if n % 1000 == 0: plt.plot(T,z) plt.axvline(0,0,15,color='k',linestyle='--') plt.ylim(0,20) plt.xlim(-25,5,5) plt.gca().invert_yaxis() plt.xlabel('Temperature ('+degree+'C)') plt.ylabel('Depth (m)') plt.show() #%% Myelene's loop code #for i in range(0,len(time)-1): # T[0,i] = T_bound[i] # make boundary condition temperature surface temperature for time i # Q[-1,i] = 30e-3 # geothermal gradient in degrees C per meter # dTdz[:,i] = np.divide(np.diff(T[:,i]),dz) # calculate T gradient with depth # Q[:-1,i] = -k*dTdz[:,i] # calculate heat content at every depth # dQdz[:,i] = np.divide(np.diff(Q[:,i]),dz) # heat flow gradient # dTdt[:,i] = np.multiply(-1/(roh*c),dQdz[:,i]) # temp gradient with time # T[1:,i+1] = np.add(T[1:,i],dTdt[:,i]*dt) # write T
import logging import sys from collections import namedtuple from queue import Empty from time import sleep from types import GeneratorType from bonobo.config import create_container from bonobo.config.processors import ContextCurrifier from bonobo.constants import NOT_MODIFIED, BEGIN, END, TICK_PERIOD, Token, Flag, INHERIT from bonobo.errors import InactiveReadableError, UnrecoverableError, UnrecoverableTypeError from bonobo.execution.contexts.base import BaseContext from bonobo.structs.inputs import Input from bonobo.util import get_name, isconfigurabletype, ensure_tuple from bonobo.util.bags import BagType from bonobo.util.statistics import WithStatistics logger = logging.getLogger(__name__) UnboundArguments = namedtuple('UnboundArguments', ['args', 'kwargs']) class NodeExecutionContext(BaseContext, WithStatistics): def __init__(self, wrapped, *, parent=None, services=None, _input=None, _outputs=None): """ Node execution context has the responsibility fo storing the state of a transformation during its execution. :param wrapped: wrapped transformation :param parent: parent context, most probably a graph context :param services: dict-like collection of services :param _input: input queue (optional) :param _outputs: output queues (optional) """ BaseContext.__init__(self, wrapped, parent=parent) WithStatistics.__init__(self, 'in', 'out', 'err', 'warn') # Services: how we'll access external dependencies if services: if self.parent: raise RuntimeError( 'Having services defined both in GraphExecutionContext and child NodeExecutionContext is not supported, for now.' ) self.services = create_container(services) else: self.services = None # Input / Output: how the wrapped node will communicate self.input = _input or Input() self.outputs = _outputs or [] # Types self._input_type, self._input_length = None, None self._output_type = None # Stack: context decorators for the execution self._stack = None def __str__(self): return self.__name__ + self.get_statistics_as_string(prefix=' ') def __repr__(self): name, type_name = get_name(self), get_name(type(self)) return '<{}({}{}){}>'.format(type_name, self.status, name, self.get_statistics_as_string(prefix=' ')) def start(self): """ Starts this context, a.k.a the phase where you setup everything which will be necessary during the whole lifetime of a transformation. The "ContextCurrifier" is in charge of setting up a decorating stack, that includes both services and context processors, and will call the actual node callable with additional parameters. """ super().start() try: initial = self._get_initial_context() self._stack = ContextCurrifier(self.wrapped, *initial.args, **initial.kwargs) if isconfigurabletype(self.wrapped): # Not normal to have a partially configured object here, so let's warn the user instead of having get into # the hard trouble of understanding that by himself. raise TypeError( 'Configurables should be instanciated before execution starts.\nGot {!r}.\n'.format(self.wrapped) ) self._stack.setup(self) except Exception: # Set the logging level to the lowest possible, to avoid double log. self.fatal(sys.exc_info(), level=0) # We raise again, so the error is not ignored out of execution loops. raise def loop(self): """ The actual infinite loop for this transformation. """ logger.debug('Node loop starts for {!r}.'.format(self)) while self.should_loop: try: self.step() except InactiveReadableError: break except Empty: sleep(TICK_PERIOD) # XXX: How do we determine this constant? continue except ( NotImplementedError, UnrecoverableError, ): self.fatal(sys.exc_info()) # exit loop except Exception: # pylint: disable=broad-except self.error(sys.exc_info()) # does not exit loop except BaseException: self.fatal(sys.exc_info()) # exit loop logger.debug('Node loop ends for {!r}.'.format(self)) def step(self): """ A single step in the loop. Basically gets an input bag, send it to the node, interpret the results. """ # Pull and check data input_bag = self._get() # Sent through the stack results = self._stack(input_bag) # self._exec_time += timer.duration # Put data onto output channels if isinstance(results, GeneratorType): while True: try: # if kill flag was step, stop iterating. if self._killed: break result = next(results) except StopIteration: # That's not an error, we're just done. break else: # Push data (in case of an iterator) self._send(self._cast(input_bag, result)) elif results: # Push data (returned value) self._send(self._cast(input_bag, results)) else: # case with no result, an execution went through anyway, use for stats. # self._exec_count += 1 pass def stop(self): """ Cleanup the context, after the loop ended. """ if self._stack: try: self._stack.teardown() except: self.fatal(sys.exc_info()) super().stop() def send(self, *_output, _input=None): return self._send(self._cast(_input, _output)) ### Input type and fields @property def input_type(self): return self._input_type def set_input_type(self, input_type): if self._input_type is not None: raise RuntimeError('Cannot override input type, already have %r.', self._input_type) if type(input_type) is not type: raise UnrecoverableTypeError('Input types must be regular python types.') if not issubclass(input_type, tuple): raise UnrecoverableTypeError('Input types must be subclasses of tuple (and act as tuples).') self._input_type = input_type def get_input_fields(self): return self._input_type._fields if self._input_type and hasattr(self._input_type, '_fields') else None def set_input_fields(self, fields, typename='Bag'): self.set_input_type(BagType(typename, fields)) ### Output type and fields @property def output_type(self): return self._output_type def set_output_type(self, output_type): if self._output_type is not None: raise RuntimeError('Cannot override output type, already have %r.', self._output_type) if type(output_type) is not type: raise UnrecoverableTypeError('Output types must be regular python types.') if not issubclass(output_type, tuple): raise UnrecoverableTypeError('Output types must be subclasses of tuple (and act as tuples).') self._output_type = output_type def get_output_fields(self): return self._output_type._fields if self._output_type and hasattr(self._output_type, '_fields') else None def set_output_fields(self, fields, typename='Bag'): self.set_output_type(BagType(typename, fields)) ### Attributes def setdefault(self, attr, value): try: getattr(self, attr) except AttributeError: setattr(self, attr, value) def write(self, *messages): """ Push a message list to this context's input queue. :param mixed value: message """ for message in messages: if isinstance(message, Token): self.input.put(message) elif self._input_type: self.input.put(ensure_tuple(message, cls=self._input_type)) else: self.input.put(ensure_tuple(message)) def write_sync(self, *messages): self.write(BEGIN, *messages, END) for _ in messages: self.step() def error(self, exc_info, *, level=logging.ERROR): self.increment('err') super().error(exc_info, level=level) def fatal(self, exc_info, *, level=logging.CRITICAL): self.increment('err') super().fatal(exc_info, level=level) self.input.shutdown() def get_service(self, name): if self.parent: return self.parent.services.get(name) return self.services.get(name) def _get(self): """ Read from the input queue. If Queue raises (like Timeout or Empty), stat won't be changed. """ input_bag = self.input.get() # Store or check input type if self._input_type is None: self._input_type = type(input_bag) elif type(input_bag) is not self._input_type: raise UnrecoverableTypeError( 'Input type changed between calls to {!r}.\nGot {!r} which is not of type {!r}.'.format( self.wrapped, input_bag, self._input_type ) ) # Store or check input length, which is a soft fallback in case we're just using tuples if self._input_length is None: self._input_length = len(input_bag) elif len(input_bag) != self._input_length: raise UnrecoverableTypeError( 'Input length changed between calls to {!r}.\nExpected {} but got {}: {!r}.'.format( self.wrapped, self._input_length, len(input_bag), input_bag ) ) self.increment('in') # XXX should that go before type check ? return input_bag def _cast(self, _input, _output): """ Transforms a pair of input/output into the real slim output. :param _input: Bag :param _output: mixed :return: Bag """ tokens, _output = split_token(_output) if NOT_MODIFIED in tokens: return ensure_tuple(_input, cls=(self.output_type or tuple)) if INHERIT in tokens: if self._output_type is None: self._output_type = concat_types(self._input_type, self._input_length, self._output_type, len(_output)) _output = _input + ensure_tuple(_output) return ensure_tuple(_output, cls=(self._output_type or tuple)) def _send(self, value, _control=False): """ Sends a message to all of this context's outputs. :param mixed value: message :param _control: if true, won't count in statistics. """ if not _control: self.increment('out') for output in self.outputs: output.put(value) def _get_initial_context(self): if self.parent: return UnboundArguments((), self.parent.services.kwargs_for(self.wrapped)) if self.services: return UnboundArguments((), self.services.kwargs_for(self.wrapped)) return UnboundArguments((), {}) def isflag(param): return isinstance(param, Flag) def split_token(output): """ Split an output into token tuple, real output tuple. :param output: :return: tuple, tuple """ output = ensure_tuple(output) flags, i, len_output, data_allowed = set(), 0, len(output), True while i < len_output and isflag(output[i]): if output[i].must_be_first and i: raise ValueError('{} flag must be first.'.format(output[i])) if i and output[i - 1].must_be_last: raise ValueError('{} flag must be last.'.format(output[i - 1])) if output[i] in flags: raise ValueError('Duplicate flag {}.'.format(output[i])) flags.add(output[i]) data_allowed &= output[i].allows_data i += 1 output = output[i:] if not data_allowed and len(output): raise ValueError('Output data provided after a flag that does not allow data.') return flags, output def concat_types(t1, l1, t2, l2): t1, t2 = t1 or tuple, t2 or tuple if t1 == t2 == tuple: return tuple f1 = t1._fields if hasattr(t1, '_fields') else tuple(range(l1)) f2 = t2._fields if hasattr(t2, '_fields') else tuple(range(l2)) return BagType('Inherited', f1 + f2)
__author__="KOLANICH" __license__="Unlicense" __copyright__=r""" This is free and unencumbered software released into the public domain. Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright interest in the software to the public domain. We make this dedication for the benefit of the public at large and to the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in perpetuity of all present and future rights to this software under copyright law. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. For more information, please refer to <https://unlicense.org/> """ class SilentList(list): """A list automatically extending to fit the key. Behaves like a dict but is a list. Called silent because a usual list raises on out-of-bounds access.""" def __getitem__(self, key): if key < len(self): return super().__getitem__(key) else: return None def __setitem__(self, key, value): maxLenNeeded=key+1 count=maxLenNeeded-len(self) super().extend(count*[None]) return super().__setitem__(key, value) class CustomBaseList(SilentList): """A list which starting index is not zero.""" base=1 def idxSub(self, index, another): if isinstance(index, slice): start=index.start stop=index.stop step=index.step if start is None: start = self.base if stop is None: stop=-1 start=self.idxSub(start, another) stop=self.idxSub(stop, another) index=type(index)(start, stop, step) else: if index>0: index-=another return index def __getitem__(self, key): return super().__getitem__(self.idxSub(key, self.base)) def __setitem__(self, key, value): return super().__setitem__(self.idxSub(key, self.base), value) def __enumerate__(self): raise NotImplementedError()
# # Facharbeit2021WatchCat dies ist der Bot welcher die Alarmanlage Steuert und die Schnitstelle zwichen User und Programm darstellt # Also quasi DER rosa Elephant unter den Rosa Elephanten # # v3.2 # import discord # Wie immer die Discord Lib import asyncio # Für asyncrone Methoden import time # Für die Zeit import subprocess # Für Shell befehle import threading # Für parraleles ablaufen von Methoden import Facharbeit2021CaptureAndScan as coreprog # Der Core der Alarmanlage from multiprocessing import Process, Queue # Ähnlich threading wird ausschließlich bei record benutzt, da threading in der kombination nicht funktioniert core = coreprog.core() praefix = "/" cmdGetImg ="ffmpeg -loglevel fatal -rtsp_transport tcp -i \"rtsp://GpSJkxsh:A8CH8Q5ubY8S6FT3@192.168.178.111:554/live/ch1\" -r 1 -vframes 1 stream.png -y" streamChID = 898391213554663556 statusChID = 898994828271042631 runstream = False detec = 898190093804781589 # Channel ID everyoneID=898189948803481660 # ID der Rolle everyone pathToPrediction = "predictions.jpg" token = "TOKEN" # Bot token def getPassword(): pswd = open("passwd.txt" , "r") passwrd = pswd.readline().strip() pswd.close() return passwrd def setPassword(pPasswd): pswd = open("passwd.txt", "w") pswd.write(pPasswd) pswd.close() return async def cleanChannel(pCount, pChannel): async for message in pChannel.history(limit=pCount): if (message.id != 899046028085428224 and message.id != 898391768888909824): await message.delete() def handleRecord(pTime): # Das sind nicht die Jed-i ähhh die Methode die Sie suchen! p1 = Process(target=core.record)# Nein wirklich die Lösung ist einfach beschissen aber die beste die ich finden konnte p1.start() p2 = Process(target=timeToRecord, args=(pTime,)) p2.start() return def timeToRecord(pTime): time.sleep(pTime) core.stopRecord() def kill(): k = subprocess.Popen("pgrep vlc", stdout=subprocess.PIPE, shell=True) output, err = k.communicate() try: rip = subprocess.Popen("kill -9 " + str(int(output)), stdout=subprocess.PIPE, shell=True) rip.wait() except ValueError: pass k2 = subprocess.Popen("pgrep python3", stdout=subprocess.PIPE, shell=True) output, err = k2.communicate() processes = str(output).strip() processes = processes.replace("b","") processes = processes.replace("'","") processes = processes.split("\\n") i = len(processes)-1 while i >=0: try: rip2 = subprocess.Popen("kill -9 " + str(int(processes[i-1])), stdout=subprocess.PIPE, shell=True) rip2.wait() except ValueError: pass i=i-1 exit() #_____________________$$______# #__$s_______s$__________$$____# #_$$$_$$$_$$$$__________$$____# #_$$$O$$$$O$$$___________$$___# #_$$$$$=Y=$$$$___________$$___# #__$$$$$$$$$$____________$$___# #_____$$$$___$$$$$$$$$__$$____# #______$$$$$$$$$$$$$$$$$$_____# #____$$$$$$$$$$$$$$$$$$$______# #____$$_$$_$$$$$$_$$_$$_______# #__$$__$$_________$$__$$______# #(($$ ((($$$$___((($$$$_$$$$__# class MyBot(discord.Client): runstream == False queue = Queue() main = Process(target=core.main, args=[queue]) async def stream(self): while runstream == True: p = subprocess.Popen(cmdGetImg, stdout=subprocess.PIPE, shell=True) p.wait() streamCh = client.get_channel(streamChID) await streamCh.send(file=discord.File("stream.png")) async for oldmsg in streamCh.history(limit=3): if (oldmsg.id != 898391768888909824 and oldmsg != oldmsg.channel.last_message): await oldmsg.delete() return #TODO: möglichkeit für parraleles zu finden async def on_ready(self): print("Ich habe mich eingelogt. Beep bop bup.") statusCh = client.get_channel(statusChID) await cleanChannel(1, statusCh) await statusCh.send("```diff\nThe System is: \n+ active\n```") self.main.start() #startet das Core Programm async def on_message(self, message): global runstream global statusChID global everyoneID if (message.content.startswith(praefix+"help")): help1 = f"\ This is a list of all commands:\n\ + {praefix}help => Zeigt diese Hilfe Seite\n\ + {praefix}changePassword PASSWORD NEW_PASSWORD => Ändern des Passworts\n\ + {praefix}clean ANZAHL => Löcht die letzten ANZAHL Nachrichten in dem Channel der Nachricht\n\ + {praefix}start stream => Streamt live Bilder in den \#stream Channel\n\ + {praefix}stop stream => Stoppt den Livestream\n\ + {praefix}record TIME => Nimmt für TIME Minute ein Video auf und Speichert es auf dem Analyse-Pc\n\ + {praefix}disarm PASSWORD => Entschärft die Alarmanlage/stellt den Alarm aus\n\ + {praefix}arm PASSWORD => Schaltet die Alarmanlage scharf\n" await message.channel.send("```diff\n" + help1 + "```") help2 = f"\ ```fix\n\ O {praefix}restart PASSWORD => Startet die Anlage neu HANDLE_WITH_CARE\n\ ```" await message.channel.send(help2) help3 =f"\ - {praefix}start PASSWORD => Startet die Anlage ADMIN_USAGE_ONLY\n\ - {praefix}kill PASSWORD => Deaktiviert die Anlage kommplett ADMIN_USAGE_ONLY\n" await message.channel.send("```diff\n"+help3+"```") if (message.content.startswith(praefix+"changePassword "+getPassword())): input = message.content splitinput = input.split(" ") if (splitinput[1]==getPassword()): setPassword(splitinput[2]) await message.channel.send("New password is:" + getPassword() + "\nThis Chat will be deleted in 3 seconds") time.sleep(3) await cleanChannel(2, message.channel) elif (message.content == praefix+"changePassword".rstrip()): await message.channel.send("Please enter: old_password new_password\nTry again in 5 seconds") time.sleep(5) await cleanChannel(2, message.channel) elif(message.content.startswith(praefix+"changePassword ")): await message.channel.send("Something went wrong please try again\nThis Chat will be deleted in 3 seconds") time.sleep(3) await cleanChannel(2, message.channel) if(message.content.startswith(praefix+"clean ")): input = message.content splitinput = input.split(" ") await cleanChannel(int(splitinput[1].rstrip()), message.channel) if(message.content.startswith(praefix+"start ")): input = message.content splitinput = input.split(" ") if (splitinput[1]=="stream"): runstream= True s = threading.Thread(target=await self.stream()) # Führt die Methode stream() parrallel zum Rest aus s.deamon = True if(message.content.startswith(praefix+"stop ")): input = message.content splitinput = input.split(" ") if (splitinput[1]=="stream"): runstream = False if(message.content.startswith(praefix+"record ")): input = message.content splitinput = input.split(" ") handleRecord(int(splitinput[1])*60) if(message.content.startswith(praefix+"disarm " + getPassword())): await cleanChannel(1, message.channel) await message.channel.send("accepted!") time.sleep(1) await cleanChannel(1, message.channel) core.disarmAlarm(self.queue) #Teil disarm die Instanz mit in der der core Prozess läuft und die queue zur kommunikation statusCh = client.get_channel(statusChID) everyone = discord.utils.get(client.get_channel(detec).guild.roles, id=everyoneID) await cleanChannel(1, statusCh) await statusCh.send("```diff\nThe System is: \n- inactive\n```") if(message.content.startswith(praefix+"arm " + getPassword())): await cleanChannel(1, message.channel) await message.channel.send("accepted!") await message.channel.send("The System will be active again in 5 seconds") time.sleep(3) await cleanChannel(2, message.channel) core.armAlarm(self.queue) #Teil arm die Instanz mit in der der core Prozess läuft und die queue zur Kommunikation statusCh = client.get_channel(statusChID) await cleanChannel(1, statusCh) await statusCh.send("```diff\nThe System is: \n+ active\n```") if(message.content.startswith(praefix+"kill " + getPassword())): statusCh = client.get_channel(statusChID) everyone = discord.utils.get(client.get_channel(detec).guild.roles, id=everyoneID) await cleanChannel(1, statusCh) await cleanChannel(1, message.channel) await statusCh.send("```diff\nThe System is: \n- inactive\n```") kill() if __name__ == '__main__': logger = subprocess.Popen("python3 Logger.py", stdout=subprocess.PIPE, shell=True) client = MyBot() client.run(token)
from datetime import datetime from optparse import OptionParser import pymysql from dateutil.relativedelta import relativedelta def main(options): curr = datetime.now() print("Current time : ", curr) partitionQuery = "SELECT PARTITION_NAME FROM information_schema.partitions WHERE TABLE_SCHEMA = '{db}' " \ "AND TABLE_NAME = '{table}' AND PARTITION_NAME IS NOT NULL" removeQuery = "ALTER TABLE `{table}` DROP PARTITION `{part}`" addQuery = "ALTER TABLE `{table}` ADD PARTITION (PARTITION `{part}` VALUES LESS THAN ({func}('{dt}')))" db_conn = pymysql.connect(host=options.host, port=int(options.port), user=options.user, password=options.password, database=options.db) db_cur = db_conn.cursor(pymysql.cursors.DictCursor) sql = partitionQuery.format(db=options.db, table=options.table) db_cur.execute(sql) tbl_partitions = db_cur.fetchall() remove_partitions = [] add_partitions = [] if options.basis == "daily": if options.removePart: remove = datetime.now() - relativedelta(days=options.removePart, hour=0, minute=0, second=0) remove_partition = remove.strftime("p_%Y%m%d") for partition in tbl_partitions: if partition['PARTITION_NAME'] <= remove_partition: remove_partitions.append(partition['PARTITION_NAME']) for i in range(options.addPart): part_name = 'p_' + (datetime.now() + relativedelta(days=i + 1, hour=0, minute=0, second=0)).strftime( "%Y%m%d") time_lt = (datetime.now() + relativedelta(days=i + 2, hour=0, minute=0, second=0)).strftime("%Y-%m-%d") add_partitions.append((part_name, time_lt)) elif options.basis == "monthly": if options.removePart: remove = datetime.now() - relativedelta(months=options.removePart, day=1, hour=0, minute=0, second=0) remove_partition = remove.strftime("p_%Y%m%d") for partition in tbl_partitions: if partition['PARTITION_NAME'] <= remove_partition: remove_partitions.append(partition['PARTITION_NAME']) for i in range(options.addPart): part_name = 'p_' + (datetime.now() + relativedelta(months=i + 1, hour=0, minute=0, second=0)).strftime( "%Y%m%d") time_lt = (datetime.now() + relativedelta(months=i + 2, hour=0, minute=0, second=0)).strftime("%Y-%m-%d") add_partitions.append((part_name, time_lt)) else: return for remove in remove_partitions: sql = removeQuery.format(table=options.table, part=remove) db_cur.execute(sql) print("remove partition %s" % remove) for part_name, time_lt in add_partitions: sql = addQuery.format(table=options.table, func=options.func, part=part_name, dt=time_lt) db_cur.execute(sql) print("add partition %s" % part_name) db_cur.close() db_conn.close() print("Complete Work") if __name__ == '__main__': parser = OptionParser() parser.add_option("-H", "--host", action="store", type="string", dest="host", help="MySQL Server Address") parser.add_option("-P", "--port", action="store", type="string", dest="port", help="MySQL port") parser.add_option("-d", "--database", action="store", type="string", dest="db", help="MySQL database name") parser.add_option("-t", "--table", action="store", type="string", dest="table", help="MySQL Table") parser.add_option("-u", "--user", action="store", type="string", dest="user", help="MySQL User Name") parser.add_option("-p", "--password", action="store", type="string", dest="password", help="MySQL User Password") parser.add_option("-a", "--add", action="store", type="int", dest="addPart", help="a partition to be added ", default=0) parser.add_option("-r", "--remove", action="store", type="int", dest="removePart", help="a partition to be removed", default=0) parser.add_option("-f", "--func", action="store", type="choice", dest="func", default="TO_DAYS", choices=['TO_DAYS', 'UNIX_TIMESTAMP'], help="TO_DAYS: DATE, DATETIME, UNIX_TIMESTAMP: TIMESTAMP") parser.add_option("-b", "--basis", action="store", type="choice", dest="basis", default="daily", choices=['daily', 'monthly'], help="time basis") (args_options, _) = parser.parse_args() try: main(args_options) except Exception as e: print(e)
from ._version import get_versions from .base import Client from .config import Configuration from .exceptions import QuetzalAPIException __version__ = get_versions()['version'] del get_versions __all__ = ( '__version__', 'Client', 'Configuration', 'QuetzalAPIException', )
# Copyright (c) 2013 Shotgun Software Inc. # # CONFIDENTIAL AND PROPRIETARY # # This work is provided "AS IS" and subject to the Shotgun Pipeline Toolkit # Source Code License included in this distribution package. See LICENSE. # By accessing, using, copying or modifying this work you indicate your # agreement to the Shotgun Pipeline Toolkit Source Code License. All rights # not expressly granted therein are reserved by Shotgun Software Inc. import sys import os import shutil import tempfile from tank_test.tank_test_base import * import tank from tank.errors import TankError from tank.platform import application from tank.platform import constants from tank.template import Template from tank.deploy import descriptor class TestApplication(TankTestBase): """ General fixtures class for testing Toolkit apps """ def setUp(self): """ Fixtures setup """ super(TestApplication, self).setUp() self.setup_fixtures() # set up a path to the folder above the app folder # this is so that the breakdown and all its frameworks can be loaded in # it is assumed that you have all the dependent packages in a structure under this # root point, like this: # # bundle_root # | # |- tk-multi-breakdown # |- tk-framework-qtwidgets # \- tk-framework-shotgunutils # # os.environ["BUNDLE_ROOT"] = os.path.abspath(os.path.join( os.path.dirname(__file__), "..", "..")) # set up a standard sequence/shot/step and run folder creation self.seq = {"type": "Sequence", "id": 2, "code": "seq_code", "project": self.project} self.shot = {"type": "Shot", "id": 1, "code": "shot_code", "sg_sequence": self.seq, "project": self.project} self.step = {"type": "Step", "id": 3, "code": "step_code", "entity_type": "Shot", "short_name": "step_short_name"} self.task = {"type": "Task", "id": 23, "entity": self.shot, "step": self.step, "project": self.project} # Add these to mocked shotgun self.add_to_sg_mock_db([self.shot, self.seq, self.step, self.project, self.task]) # run folder creation for the shot self.tk.create_filesystem_structure(self.shot["type"], self.shot["id"]) # now make a context context = self.tk.context_from_entity(self.shot["type"], self.shot["id"]) # and start the engine self.engine = tank.platform.start_engine("test_engine", self.tk, context) def tearDown(self): """ Fixtures teardown """ # engine is held as global, so must be destroyed. cur_engine = tank.platform.current_engine() if cur_engine: cur_engine.destroy() # important to call base class so it can clean up memory super(TestApplication, self).tearDown() class TestApi(TestApplication): """ Tests for the Breakdown App's API interface """ def setUp(self): """ Fixtures setup """ super(TestApi, self).setUp() # short hand for the app self.app = self.engine.apps["tk-multi-breakdown"] # set up some test data self.test_path_1 = os.path.join(self.project_root, "sequences", self.seq["code"], self.shot["code"], self.step["short_name"], "publish", "foo.v003.ma") self.test_path_2 = os.path.join(self.project_root, "sequences", self.seq["code"], self.shot["code"], self.step["short_name"], "publish", "foo.v004.ma") fh = open(self.test_path_1, "wt") fh.write("hello") fh.close() fh = open(self.test_path_2, "wt") fh.write("hello") fh.close() # this will be read by our hook so push # it out into env vars... os.environ["TEST_PATH_1"] = self.test_path_1 os.environ["TEST_PATH_2"] = self.test_path_2 def test_analyze_scene(self): """ Tests the analyze_scene method """ scene_data = self.app.analyze_scene() self.assertEqual(len(scene_data), 1) item = scene_data[0] self.assertEqual(item["fields"], {'Shot': 'shot_code', 'name': 'foo', 'Sequence': 'seq_code', 'Step': 'step_short_name', 'version': 3, 'maya_extension': 'ma', 'eye': '%V'}) self.assertEqual(item["node_name"], "maya_publish") self.assertEqual(item["node_type"], "TestNode") self.assertEqual(item["template"], self.tk.templates["maya_shot_publish"]) self.assertEqual(item["sg_data"], None) def test_compute_highest_version(self): """ Tests the version computation logic """ scene_data = self.app.analyze_scene() item = scene_data[0] # test logic self.assertEqual(self.app.compute_highest_version(item["template"], item["fields"]), 4) # test bad data self.assertRaises(TankError, self.app.compute_highest_version, self.tk.templates["maya_asset_publish"], item["fields"]) def test_update(self): """ Test scene update """ scene_data = self.app.analyze_scene() item = scene_data[0] # increment version fields = item["fields"] fields["version"] = 4 # clear temp location where hook writes to tank._hook_items = None # execute hook self.app.update_item(item["node_type"], item["node_name"], item["template"], fields) # check result self.assertEqual(len(tank._hook_items), 1) self.assertEqual(tank._hook_items[0]["node"], "maya_publish") self.assertEqual(tank._hook_items[0]["path"], self.test_path_2) self.assertEqual(tank._hook_items[0]["type"], "TestNode")
from maneuvers.kit import * from maneuvers.strikes.dodge_strike import DodgeStrike class DodgeShot(DodgeStrike): max_base_height = 220 def intercept_predicate(self, car: Car, ball: Ball): max_height = align(car, ball, self.target) * 60 + self.max_base_height contact_ray = ball.wall_nearby(max_height) return ( norm(contact_ray.start) > 0 and ball.pos[2] < max_height + 50 and (Arena.inside(ball.pos, 100) or distance(ball, self.target) < 1000) and abs(car.pos[0]) < Arena.size[0] - 300 ) def configure(self, intercept: Intercept): super().configure(intercept) ball = intercept.ball target_direction = ground_direction(ball, self.target) hit_dir = ground_direction(ball.vel, target_direction * 4000) self.arrive.target = intercept.ground_pos - hit_dir * 100 self.arrive.target_direction = hit_dir
import _plotly_utils.basevalidators class HoveronValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name='hoveron', parent_name='parcats', **kwargs): super(HoveronValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'plot'), role=kwargs.pop('role', 'info'), values=kwargs.pop('values', ['category', 'color', 'dimension']), **kwargs )
# # PySNMP MIB module IB-DNSONE-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/IB-DNSONE-MIB # Produced by pysmi-0.3.4 at Wed May 1 13:50:37 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, ValueSizeConstraint, SingleValueConstraint, ConstraintsIntersection, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "ValueSizeConstraint", "SingleValueConstraint", "ConstraintsIntersection", "ConstraintsUnion") ibDNSOne, IbString = mibBuilder.importSymbols("IB-SMI-MIB", "ibDNSOne", "IbString") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") IpAddress, ObjectIdentity, MibIdentifier, Integer32, Unsigned32, enterprises, Gauge32, Counter32, Counter64, TimeTicks, NotificationType, ModuleIdentity, Bits, iso, MibScalar, MibTable, MibTableRow, MibTableColumn = mibBuilder.importSymbols("SNMPv2-SMI", "IpAddress", "ObjectIdentity", "MibIdentifier", "Integer32", "Unsigned32", "enterprises", "Gauge32", "Counter32", "Counter64", "TimeTicks", "NotificationType", "ModuleIdentity", "Bits", "iso", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") ibDnsModule = ModuleIdentity((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1)) ibDnsModule.setRevisions(('2010-03-23 00:00', '2005-06-09 00:00', '2005-01-10 00:00', '2004-05-21 00:00',)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): if mibBuilder.loadTexts: ibDnsModule.setRevisionsDescriptions(('Fixed smilint errors', 'DNS views', 'Added copyright', 'Creation of the MIB file',)) if mibBuilder.loadTexts: ibDnsModule.setLastUpdated('201003230000Z') if mibBuilder.loadTexts: ibDnsModule.setOrganization('Infoblox') if mibBuilder.loadTexts: ibDnsModule.setContactInfo('Please See IB-SMI-MIB.') if mibBuilder.loadTexts: ibDnsModule.setDescription('This file defines the Infoblox DNS One MIB.') ibZoneStatisticsTable = MibTable((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 1), ) if mibBuilder.loadTexts: ibZoneStatisticsTable.setStatus('current') if mibBuilder.loadTexts: ibZoneStatisticsTable.setDescription('A table of named ZONE statistics.') ibZoneStatisticsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 1, 1), ).setIndexNames((0, "IB-DNSONE-MIB", "ibBindZoneName")) if mibBuilder.loadTexts: ibZoneStatisticsEntry.setStatus('current') if mibBuilder.loadTexts: ibZoneStatisticsEntry.setDescription('A conceptual row of the ibZoneStatisticsEntry containing info about a particular zone in the default view.') ibBindZoneName = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 1, 1, 1), IbString()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZoneName.setStatus('current') if mibBuilder.loadTexts: ibBindZoneName.setDescription("DNS Zone name. The first one is global summary statistics. Index name for global statistics is 'summary'. All zones live in the default view.") ibBindZoneSuccess = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 1, 1, 2), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZoneSuccess.setStatus('current') if mibBuilder.loadTexts: ibBindZoneSuccess.setDescription('Number of Successful responses since DNS process started.') ibBindZoneReferral = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 1, 1, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZoneReferral.setStatus('current') if mibBuilder.loadTexts: ibBindZoneReferral.setDescription('Number of DNS referrals since DNS process started.') ibBindZoneNxRRset = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 1, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZoneNxRRset.setStatus('current') if mibBuilder.loadTexts: ibBindZoneNxRRset.setDescription('Number of DNS query received for non-existent record.') ibBindZoneNxDomain = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 1, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZoneNxDomain.setStatus('current') if mibBuilder.loadTexts: ibBindZoneNxDomain.setDescription('Number of DNS query received for non-existent domain.') ibBindZoneRecursion = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 1, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZoneRecursion.setStatus('current') if mibBuilder.loadTexts: ibBindZoneRecursion.setDescription('Number of Queries received using recursion since DNS process started.') ibBindZoneFailure = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 1, 1, 7), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZoneFailure.setStatus('current') if mibBuilder.loadTexts: ibBindZoneFailure.setDescription('Number of Failed queries since DNS process started.') ibZonePlusViewStatisticsTable = MibTable((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 2), ) if mibBuilder.loadTexts: ibZonePlusViewStatisticsTable.setStatus('current') if mibBuilder.loadTexts: ibZonePlusViewStatisticsTable.setDescription('A table of named ZONE+VIEW statistics.') ibZonePlusViewStatisticsEntry = MibTableRow((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 2, 1), ).setIndexNames((0, "IB-DNSONE-MIB", "ibBindViewName"), (0, "IB-DNSONE-MIB", "ibBindZonePlusViewName")) if mibBuilder.loadTexts: ibZonePlusViewStatisticsEntry.setStatus('current') if mibBuilder.loadTexts: ibZonePlusViewStatisticsEntry.setDescription('A conceptual row of the ibZonePlusViewStatisticsEntry containing info about a particular zone in a particular view.') ibBindZonePlusViewName = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 2, 1, 1), IbString()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZonePlusViewName.setStatus('current') if mibBuilder.loadTexts: ibBindZonePlusViewName.setDescription("DNS Zone name. The first one in the default view is the global summary statistics. Index name for global statistics is 'summary'.") ibBindZonePlusViewSuccess = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 2, 1, 2), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZonePlusViewSuccess.setStatus('current') if mibBuilder.loadTexts: ibBindZonePlusViewSuccess.setDescription('Number of Successful responses since DNS process started.') ibBindZonePlusViewReferral = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 2, 1, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZonePlusViewReferral.setStatus('current') if mibBuilder.loadTexts: ibBindZonePlusViewReferral.setDescription('Number of DNS referrals since DNS process started.') ibBindZonePlusViewNxRRset = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 2, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZonePlusViewNxRRset.setStatus('current') if mibBuilder.loadTexts: ibBindZonePlusViewNxRRset.setDescription('Number of DNS query received for non-existent record.') ibBindZonePlusViewNxDomain = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 2, 1, 5), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZonePlusViewNxDomain.setStatus('current') if mibBuilder.loadTexts: ibBindZonePlusViewNxDomain.setDescription('Number of DNS query received for non-existent domain.') ibBindZonePlusViewRecursion = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 2, 1, 6), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZonePlusViewRecursion.setStatus('current') if mibBuilder.loadTexts: ibBindZonePlusViewRecursion.setDescription('Number of Queries received using recursion since DNS process started.') ibBindZonePlusViewFailure = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 2, 1, 7), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZonePlusViewFailure.setStatus('current') if mibBuilder.loadTexts: ibBindZonePlusViewFailure.setDescription('Number of Failed queries since DNS process started.') ibBindViewName = MibTableColumn((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 2, 1, 8), IbString()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindViewName.setStatus('current') if mibBuilder.loadTexts: ibBindViewName.setDescription('DNS view name. Empty for default view and summary.') ibDDNSUpdateStatistics = MibIdentifier((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 3)) ibDDNSUpdateSuccess = MibScalar((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 3, 1), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibDDNSUpdateSuccess.setStatus('current') if mibBuilder.loadTexts: ibDDNSUpdateSuccess.setDescription('Number of successful dynamic DNS update.') ibDDNSUpdateFailure = MibScalar((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 3, 2), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibDDNSUpdateFailure.setStatus('current') if mibBuilder.loadTexts: ibDDNSUpdateFailure.setDescription('Number of failure dynamic DNS update.') ibDDNSUpdateReject = MibScalar((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 3, 3), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibDDNSUpdateReject.setStatus('current') if mibBuilder.loadTexts: ibDDNSUpdateReject.setDescription('Number of dynamic DNS update rejects maybe due to permission failure.') ibDDNSUpdatePrerequisiteReject = MibScalar((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 3, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibDDNSUpdatePrerequisiteReject.setStatus('current') if mibBuilder.loadTexts: ibDDNSUpdatePrerequisiteReject.setDescription('Number of dynamic DNS update rejects due to prerequisite failure.') ibBindZoneTransferCount = MibScalar((1, 3, 6, 1, 4, 1, 7779, 3, 1, 1, 3, 1, 4), Counter64()).setMaxAccess("readonly") if mibBuilder.loadTexts: ibBindZoneTransferCount.setStatus('current') if mibBuilder.loadTexts: ibBindZoneTransferCount.setDescription('Number of zone transfer.') mibBuilder.exportSymbols("IB-DNSONE-MIB", ibDnsModule=ibDnsModule, ibBindZonePlusViewRecursion=ibBindZonePlusViewRecursion, ibBindZoneNxDomain=ibBindZoneNxDomain, ibBindViewName=ibBindViewName, ibBindZonePlusViewNxRRset=ibBindZonePlusViewNxRRset, ibZoneStatisticsEntry=ibZoneStatisticsEntry, ibDDNSUpdateStatistics=ibDDNSUpdateStatistics, PYSNMP_MODULE_ID=ibDnsModule, ibBindZoneRecursion=ibBindZoneRecursion, ibZonePlusViewStatisticsEntry=ibZonePlusViewStatisticsEntry, ibBindZonePlusViewReferral=ibBindZonePlusViewReferral, ibZonePlusViewStatisticsTable=ibZonePlusViewStatisticsTable, ibBindZoneNxRRset=ibBindZoneNxRRset, ibDDNSUpdatePrerequisiteReject=ibDDNSUpdatePrerequisiteReject, ibDDNSUpdateSuccess=ibDDNSUpdateSuccess, ibBindZoneTransferCount=ibBindZoneTransferCount, ibBindZoneReferral=ibBindZoneReferral, ibBindZoneSuccess=ibBindZoneSuccess, ibBindZoneFailure=ibBindZoneFailure, ibBindZonePlusViewName=ibBindZonePlusViewName, ibBindZonePlusViewFailure=ibBindZonePlusViewFailure, ibDDNSUpdateFailure=ibDDNSUpdateFailure, ibBindZonePlusViewSuccess=ibBindZonePlusViewSuccess, ibBindZonePlusViewNxDomain=ibBindZonePlusViewNxDomain, ibDDNSUpdateReject=ibDDNSUpdateReject, ibZoneStatisticsTable=ibZoneStatisticsTable, ibBindZoneName=ibBindZoneName)
import torch from mobilenetv3 import MobileNetV3_forFPN, MobileNetV3, load_pretrained_fpn def test_loaded_weights(): torch.backends.cudnn.deterministic = True path = '/home/davidyuk/Projects/backbones/pytorch-mobilenet-v3/mobilenetv3_small_67.4.pth.tar' mn3_fpn = MobileNetV3_forFPN() mn3_fpn = load_pretrained_fpn(mn3_fpn, path) mobNetv3 = MobileNetV3(mode='small') state_dict = torch.load(path, map_location='cpu') mobNetv3.load_state_dict(state_dict) mobNetv3 = mobNetv3.features[:12] for param, base_param in zip(mn3_fpn.parameters(), mobNetv3.parameters()): assert ((param == base_param).all()), 'params differ' #print(len(tuple(mn3_fpn.parameters())),len(tuple(mobNetv3.parameters()))) # mobNetv3.eval() # mn3_fpn.eval() image = torch.rand(1, 3, 224, 224) with torch.no_grad(): output = mn3_fpn.forward(image) output1 = mobNetv3.forward(image) if (output == output1).all(): print('test passed') else: print('test failed') torch.backends.cudnn.deterministic = False def compare_output(model1, model2, tensor=torch.rand(1, 3, 64, 64), mode_train=True): if mode_train: model1.train(); model2.train() else: model1.eval(); model2.eval() with torch.no_grad(): output1 = model1.forward(tensor) output2 = model2.forward(tensor) return output1, output2
#!/usr/bin/env python # this scripts calculates the mean coverage and SD in a bam # USE: add_meanCov_SD.py # NOTE: change "my_dir" to the directory of interest # NOTE: elements of this script are ran in depth_TFPD_ins.py import os import re from subprocess import Popen, PIPE import statistics my_dir="/lscr2/andersenlab/kml436/round21_Aug19/round19_Aug13" means=[] SDs=[] ###CHANGE TO 1 through 8 run_list=[1,2,3,4,5,6,7,8] for i in run_list: print "Processing Run:" print i run="run_{i}".format(**locals()) bam_file="{my_dir}/{run}_N2/{run}_N2.sorted.bam".format(**locals()) result, err = Popen(["""samtools depth {bam_file}| datamash mean 3 sstdev 3""".format(**locals())], stdout=PIPE, stderr=PIPE, shell=True).communicate() result=result.split('\t') mean=float(result[0]) SD=float(result[1]) means.append(mean) SDs.append(SD) print mean print SD mean_of_means=statistics.mean(means) mean_of_SDs=statistics.mean(SDs) two_SDS=2*mean_of_SDs three_SDS=3*mean_of_SDs four_SDS=4*mean_of_SDs print mean_of_means print mean_of_SDs print two_SDS print three_SDS print four_SDS
import numpy as np from random import randrange, shuffle class LogisticRegression: @staticmethod def sigmoid(scores): return 1 / (1 + np.exp(-scores)) def __init__(self, learning_rate=1, regularization_loss_tradeoff=1): self.learning_rate = learning_rate self.regularization_loss_tradeoff = regularization_loss_tradeoff def train(self, train, labels, epochs): w = np.array([0 for _ in range(len(train[0]))]) for _ in range(epochs): [_, w] = self.train_one_epoch(train, labels, w) return w def train_one_epoch(self, train, labels, w): lr = self.learning_rate tradeoff = self.regularization_loss_tradeoff scores = np.dot(train, w) predictions = self.__class__.sigmoid(scores) size = len(labels) output_error_signal = labels - predictions gradient = np.dot(np.array(train).T, output_error_signal) / size w = w * (1 - lr) + gradient * lr * tradeoff return [0, w] @staticmethod def predict(x, w): x = np.array(x) if np.dot(x, w) < 0: return -1 else: return 1
from guillotina import configure from guillotina.db.interfaces import IDBTransactionStrategy from guillotina.db.interfaces import ITransaction from guillotina.db.strategies.simple import SimpleStrategy import logging logger = logging.getLogger("guillotina") @configure.adapter(for_=ITransaction, provides=IDBTransactionStrategy, name="dbresolve") class DBResolveStrategy(SimpleStrategy): """ Get us a transaction, but we don't care about voting """ async def tpc_vote(self): return True @configure.adapter(for_=ITransaction, provides=IDBTransactionStrategy, name="dbresolve_readcommitted") class DBResolveReadCommittedStrategy(DBResolveStrategy): """ Delay starting transaction to the commit phase so reads will be inconsistent. """ async def tpc_begin(self): pass async def tpc_commit(self): if self._transaction._tid in (-1, 1, None): await self.retrieve_tid() if self._transaction._db_txn is None: await self._storage.start_transaction(self._transaction)
import hashlib import execjs from common import http_util,MyLogger from concurrent.futures import ThreadPoolExecutor import socket log = MyLogger.Logger('all.log',level='info') socket.setdefaulttimeout(30) ''' avatar_url: "https://pic2.zhimg.com/50/8658418bc_720w.jpg?source=54b3c3a5" excerpt: "学科该词有以下两种含义:①相对独立的知识体系。人类所有的知识划分为五大门类:自然科学,农业科学,医药科学,工程与技术科学,人文与社会科学。②我国高等学校本科教育专业设置的学科分类,我国高等教育划分为13个学科门类:哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学。" id: "19618774" introduction: "学科该词有以下两种含义:①相对独立的知识体系。人类所有的知识划分为五大门类:自然科学,农业科学,医药科学,工程与技术科学,人文与社会科学。②我国高等学校本科教育专业设置的学科分类,我国高等教育划分为13个学科门类:哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学。" is_black: false is_super_topic_vote: true is_vote: false name: "学科" type: "topic" url: "http://www.zhihu.com/api/v3/topics/19618774" ''' with open('g_encrypt.js', 'r') as f: ctx1 = execjs.compile(f.read(), cwd='F:\\idea_workspace\\github\\python-course-master\\node_modules') def get_signature(id,limit,offset,cookie): f = '101_3_2.0+/api/v3/topics/%s/children?limit=%s&offset=%s+"%s"'%(id,limit,offset,http_util.parse_cookie(cookie).get('d_c0')) # f = '101_3_2.0+/api/v3/topics/%s/children+"%s"'%(id,http_util.parse_cookie(cookie).get('d_c0')) fmd5 = hashlib.new('md5', f.encode()).hexdigest() log.log(fmd5) encrypt_str = "2.0_%s" % ctx1.call('b', fmd5) log.log(encrypt_str) return encrypt_str from faker import Faker import requests import json import time from lxml import etree import threading from threading import Thread from pymongo import MongoClient # from hyper.contrib import HTTP20Adapter threadPool = ThreadPoolExecutor(max_workers=100) rlock = threading.RLock() def get_children(id,limit,offset,cookie): api_url='https://www.zhihu.com/api/v3/topics/%s/children?limit=%s&offset=%s' url=api_url%(id,limit,offset) headers = { 'user-agent': Faker().user_agent(), # 'user-agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.198 Safari/537.36', 'cookie':cookie, 'x-zse-93':'101_3_2.0', 'x-zse-96':get_signature(id,limit,offset,cookie), 'referer':'https://www.zhihu.com/topic/19776749/hot', 'sec-ch-ua':'"Google Chrome";v="95", "Chromium";v="95", ";Not A Brand";v="99"', 'sec-ch-ua-mobile':'?0', 'sec-ch-ua-platform':'"Windows"', 'sec-fetch-dest':'empty', 'sec-fetch-mode':'cors', 'sec-fetch-site':'same-origin', 'x-ab-param':'top_test_4_liguangyi=1;pf_adjust=0;zr_expslotpaid=1;se_ffzx_jushen1=0;tp_dingyue_video=0;qap_question_visitor= 0;qap_question_author=0;tp_zrec=0;tp_topic_style=0;tp_contents=2;pf_noti_entry_num=0;zr_slotpaidexp=1', 'x-ab-pb':'CtYBhAJDAKED4wR9AtgCVwQUBYsF4wUZBbULCgQzBOkEEgXMAowEfwUYBlYMMQYBC6IDNwWABZsLCwQ0BI0EBwxQA9oEQwVkBOAEUQUPC3UEKQVqAbIFQAY3DHQB8wPgCxEFOQZHADIDcgNFBJ4FTwNXA6ADMwX0C7QK3AsBBioGnwLXAtEE7ApgCzAGOwK5AlYFiQy0AEAB+AOMBRwGzwsbANYEFQVSBdgFUgv0A7EF1wu3Aw4F5AppAcIFFgamBOcFwQQKBkEG9gJCBD8AVQU/BjQMjAIyBRJrABgAAQAAAAAAAAADAAAAAAAAAAABAAAAAAACAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAQAAAAsAAAAAAAAACwAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA=', 'x-requested-with':'fetch' } # sessions=requests.session() # sessions.mount(url, HTTP20Adapter()) # response=sessions.get(url,headers=headers) res= {} try: response=requests.get(url=url,headers=headers) response.encoding = 'utf-8' res=response.text log.log(res) response.close() # time.sleep(1) if not res: return [] res=json.loads(res).get('data') ls=set_parent_id(id, res) # 异步写入Mongo threadPool.submit(batch_insert_to_mongo,list=res) del res return ls except Exception as e: log.log("Exception=%s"%e) return [] def get_all_children(id,limit,offset,cookie): # for child in child_list: # child['parentId']=id # log.log(child) log.log("get_all_children-id=%s"%id) res=[] child_list=get_children(id,limit,offset,cookie) while child_list and len(child_list)>0: res.extend(child_list) offset+=limit child_list=get_children(id,limit,offset,cookie) if res and len(res)>0: log.log('get_all_children-first:'+str(res[0])) log.log('get_all_children-last:'+str(res[-1])) return res def set_parent_id(id, res): ls=[] for c in res: c['parentId'] = str(id) ls.append(c['id']) return ls def batch_insert_to_mongo(list): for one in list: with rlock: insert_mongo(one) def load_children(id,limit,offset,cookie): log.log('load_children:id=%s'%id) child_list=get_all_children(id,limit,offset,cookie) # if len(child_list)==0: # return while len(child_list)>0: relist=[] # batch_insert_to_mongo(child_list) for child in child_list: if(str(child)=='19776751'): continue # load_children(id=child,limit=limit,offset=offset,cookie=cookie) # 获取某节点的下一级子列表 node_list=get_all_children(child,limit,offset,cookie) if len(node_list)>0: relist.extend(node_list) del child_list child_list=relist # task=threadPool.submit(load_children,id=child['id'],limit=limit,offset=offset,cookie=cookie) return def insert_mongo(data): client = MongoClient('mongodb://mozhu:123456@localhost:27017/admin') db = client.hyj.zhihu_topic5 if db.find_one({'id':data['id'],'parentId':data['parentId']}): # if db.find_one({'id':data['id']}): log.log('已存在') else: db.insert_one(data) log.log('插入成功') return def process(id,limit,offset,cookie): threadlist = [] # for i in range(number): # t = Thread(target=all_topic_urls, args=(cut_lists[i],)) # t.start() # threadlist.append(t) # for thd in threadlist: # thd.join() def start(id,limit, offset, cookie): child_list = get_all_children(id, limit, offset, cookie) # if len(child_list)==0: # pass # batch_insert_to_mongo(child_list) threadlist = [] relist = [] for child in child_list: if (str(child) == '19776751'): continue node_list = get_all_children(id, limit, offset, cookie) if len(node_list) > 0: relist.extend(node_list) log.log('relist:len=%s,data=%s' % (len(relist), relist)) for id in relist: load_children(id, limit, offset, cookie) t = Thread(target=load_children, args=(id, limit, offset, cookie)) t.start() threadlist.append(t) return threadlist # task=threadPool.submit(load_children,id=child['id'],limit=limit,offset=offset,cookie=cookie) if __name__ == '__main__': cookie='_zap=7c0c3042-fc21-40e8-ba21-43e86519000a; d_c0="AAARWzrPxhOPTskGcpEuVAsXuVwn2cynUow=|1632539393"; _9755xjdesxxd_=32; YD00517437729195%3AWM_TID=vzdptJ53pPlEAUBEEUM%2F8UOknqvlS0XD; _xsrf=146c7345-3f23-4693-ae0a-87f19399b85c; Hm_lvt_98beee57fd2ef70ccdd5ca52b9740c49=1636642498; Hm_lpvt_98beee57fd2ef70ccdd5ca52b9740c49=1636642498; captcha_session_v2="2|1:0|10:1636642499|18:captcha_session_v2|88:WnlramU4ZGlLRFd4Z2tHVmU3MXNtaE9ZTGNEK25WdS9ERzhoUkNSNkdkaGlOMExVTUROMEgzV1Z6U1Nxc2cveg==|0abacb7e93feff9bf8593008e1df7c8a92896607691f62031eeb0a123b69927f"; gdxidpyhxdE=c0DnZgtBbQxInClVjABCWPl1%5CG1krUPI%2Fr135s0I%2Bf1hKnNkae1zT8TUyimS6LqVjgcyOtaoNmQo8oOdul1IDmnkuZOu5wg%2BugqANWWpMaiZ4H6n5V9YbX%2FQc9d%2BCZHYrzOZBGhVjc0X0eMyiNTcb9Z81VirbyWhViNbjZ%2BxQ4ADISkW%3A1636643402352; YD00517437729195%3AWM_NI=FicaJGoVxfplYJa1HEiJYQuyIwotvFtc4d8Vhrcx%2FiUnLRNRxAtPcKRnzAMcLYm3HlbWgzVRZ2eFKXsMuPzTtRS3P6YPVXCVI4OPAWw2Vp3VDspKwA7DOShXkjyRKivaVVY%3D; YD00517437729195%3AWM_NIKE=9ca17ae2e6ffcda170e2e6eed1ee4b86edb9a3d941b6a88bb7c14b969f8f84ae3fb59cbbadaa63a7b2a9b8b82af0fea7c3b92a86b7ad82c94dad8ab887f3689b96afd2cb4fab9697b2f8738ba9a195f54eb8bdfc85bb5eacaead99ae6397b284b3cd5abc9fbcb1e24192b2b6a2d0699087a3d4cb68a289a99bd55a9aeeaba7ca54b193bbb1f960b88e9dd4d33e9b909ab9c25e8bec81b1c45db5ee9a91b25e88adc0acf64bf59c81b4eb54a9b6b7b3ca63b6bf9ab7dc37e2a3; KLBRSID=0a401b23e8a71b70de2f4b37f5b4e379|1636642512|1636642496' limit=10 offset=0 # 根话题id # id='19776749' # 「形而上」话题 # id='19778298' # load_children(id,limit,offset,cookie) relist=[] # for id in ['19778317','19580349','19550912','19778298']: for id in ['19778317']: threadlist=start(id,limit, offset, cookie) relist.extend(threadlist) for thd in relist: thd.join() log.log('done')
###################################################### # --- Day 20: Infinite Elves and Infinite Houses --- # ###################################################### import AOCUtils maxHouses = 1000000 ###################################################### presents = AOCUtils.loadInput(20) houses = dict() for elf in range(1, presents): limit = maxHouses for house in range(elf, limit, elf): if house not in houses: houses[house] = 0 houses[house] += 10 * elf if houses[elf] >= presents: print("Part 1: {}".format(elf)) break houses = dict() for elf in range(1, presents): limit = min(50 * elf, maxHouses) for house in range(elf, limit, elf): if house not in houses: houses[house] = 0 houses[house] += 11 * elf if houses[elf] >= presents: print("Part 2: {}".format(elf)) break AOCUtils.printTimeTaken()
""" Oscillators. """ import souffle.datatypes as dtt ##### Default constants ##### # Brusselator, unstable regime BRUSS_A = 1.0 BRUSS_B = 3.0 # Lotka-Volterra LOTKA_ALPHA = 1.5 LOTKA_BETA = 1.0 LOTKA_GAMMA = 2.0 LOTKA_DELTA = 1.0 # van der Pol oscillator VANDERPOL_MU = 5.0 VANDERPOL_OMEGA = 1.0 ############################# def brusselator(t, X, **kwargs): """ The Brusselator. @type t: number @param t: current time @type X: vector @param X: current state @rtype: vector @return: derivative """ x = X[0] y = X[1] if len(kwargs) == 0: x_dot = 1 - (BRUSS_B + 1) * x + BRUSS_A * x**2 * y y_dot = BRUSS_B * x - BRUSS_A * x**2 * y elif len(kwargs) != 2: raise ValueError("Bad kwargs; please provide all of the "\ "following parameters: a, b") else: x_dot = 1 - (kwargs["b"] + 1) * x + kwargs["a"] * x**2 * y y_dot = kwargs["b"] * x - kwargs["a"] * x**2 * y X_dot = [x_dot, y_dot] return dtt.Vector(X_dot) def lotka_volterra(t, X, **kwargs): """ The Lotka-Volterra ("predator-prey") equations. We define the following constants: alpha = growth rate of prey beta = rate at which predators consume prey gamma = death rate of predators delta = rate at which predators increase by consuming prey The prey population, x, increases at a rate of dx/dt = Ax, but is consumed by predators at a rate of dx/dt = -Bxy. The predator population, y, decreases at a rate of dy/dt = -Cy, but increases at a rate of dy/dt = Dxy. @type t: number @param t: current time @type X: vector @param X: current state @rtype: vector @return: derivative """ x = X[0] y = X[1] if len(kwargs) == 0: x_dot = x * (LOTKA_ALPHA - LOTKA_BETA * y) y_dot = - y * (LOTKA_GAMMA - LOTKA_DELTA * x) elif len(kwargs) != 4: raise ValueError("Bad kwargs; please provide all of the "\ "following parameters: alpha, beta, gamma, delta") else: x_dot = x * (kwargs["alpha"] - kwargs["beta"] * y) y_dot = - y * (kwargs["gamma"] - kwargs["delta"] * x) X_dot = [x_dot, y_dot] return dtt.Vector(X_dot) def vanderpol(t, X, **kwargs): """ The van der Pol oscillator. This is a non-conservative oscillator, with nonlinear damping, that shows up in laser physics and electronic circuits. The system is described by d^2x/dx^2 - mu * (1 - x^2) * dx/dt + omega * x = 0 where mu and omega are some constants. Applying the transformation y = dx/dt, we have the equations of motion y = dx/dt dv/dt = mu * (1 - x^2) * v - omega^2 * x @type t: number @param t: current time @type X: vector @param X: current state @rtype: vector @return: derivative """ x = X[0] y = X[1] if len(kwargs) == 0: x_dot = y y_dot = VANDERPOL_MU * (1 - x**2) * y - VANDERPOL_OMEGA**2 * x elif len(kwargs) != 2: raise ValueError("Bad kwargs; please provide all of the "\ "following parameters: mu, omega") else: x_dot = y y_dot = kwargs["mu"] * (1 - x**2) * y - kwargs["omega"]**2 * x X_dot = [x_dot, y_dot] return dtt.Vector(X_dot)
import pytest from anchore_engine.subsys import object_store from anchore_engine.subsys.object_store.config import ( DEFAULT_OBJECT_STORE_MANAGER_ID, ALT_OBJECT_STORE_CONFIG_KEY, ) from anchore_engine.subsys.object_store import migration from anchore_engine.subsys import logger from tests.fixtures import anchore_db from tests.integration.subsys.object_store.conftest import ( test_swift_container, test_swift_auth_url, test_swift_user, test_swift_key, test_s3_bucket, test_s3_region, test_s3_url, test_s3_key, test_s3_secret_key, ) logger.enable_test_logging() document_1 = b'{"document": {"user_id": "admin", "final_action_reason": "policy_evaluation", "matched_whitelisted_images_rule": "matched_blacklisted_images_rule": false}}' document_json = { "user_id": "admin", "final_action_reason": "policy_evaluation", "matched_whitelisted_images_rule": False, "created_at": 1522454550, "evaluation_problems": [], "last_modified": 1522454550, "final_action": "stop", "matched_mapping_rule": { "name": "default", "repository": "*", "image": {"type": "tag", "value": "*"}, "whitelist_ids": ["37fd763e-1765-11e8-add4-3b16c029ac5c"], "registry": "*", "id": "c4f9bf74-dc38-4ddf-b5cf-00e9c0074611", "policy_id": "48e6f7d6-1765-11e8-b5f9-8b6f228548b6", }, "matched_blacklisted_images_rule": False, } test_user_id = "testuser1" test_bucket_id = "testbucket1" def add_data(): logger.info("Adding data") mgr = object_store.get_manager() for i in range(0, 100): archiveId = "doc-{}".format(i) logger.info("Adding document: {}".format(archiveId)) mgr.put_document( userId="test1", bucket="testing", archiveId=archiveId, data="TESTINGBUCKETDATASMALL".join([str(x) for x in range(100)]), ) def flush_data(): logger.info("Flushing data") mgr = object_store.get_manager() for i in range(0, 100): archiveId = "doc-{}".format(i) logger.info("Deleting document: {}".format(archiveId)) mgr.delete_document(userId="test1", bucket="testing", archiveid=archiveId) def run_test(src_client_config, dest_client_config): """ Common test path for all configs to test against :return: """ logger.info( ( "Running migration test from {} to {}".format( src_client_config["name"], dest_client_config["name"] ) ) ) # config = {'services': {'catalog': {'archive': {'compression': {'enabled': False}, 'storage_driver': src_client_config}}}} config = {"archive": src_client_config} object_store.initialize( config, check_db=False, manager_id=DEFAULT_OBJECT_STORE_MANAGER_ID, config_keys=[DEFAULT_OBJECT_STORE_MANAGER_ID, ALT_OBJECT_STORE_CONFIG_KEY], allow_legacy_fallback=False, force=True, ) add_data() src_config = { "storage_driver": src_client_config, "compression": {"enabled": False}, } dest_config = { "storage_driver": dest_client_config, "compression": {"enabled": False}, } migration.initiate_migration( src_config, dest_config, remove_on_source=True, do_lock=False ) flush_data() def test_db_to_db2(anchore_db): from_config = {"name": "db", "config": {}} to_config = {"name": "db2", "config": {}} run_test(from_config, to_config) def test_db_to_s3(s3_bucket, anchore_db): from_config = {"name": "db", "config": {}} to_config = { "name": "s3", "config": { "access_key": test_s3_key, "secret_key": test_s3_secret_key, "url": test_s3_url, "region": test_s3_region, "bucket": test_s3_bucket, }, } run_test(from_config, to_config)
# Array operation # Type: list, map() call. This method requires allocation of # the same amount of memory as original array (to hold result # array). On the other hand, input array stays intact. import bench def test(num): for i in iter(range(num//10000)): arr = bytearray(b"\0" * 1000) arr2 = bytearray(map(lambda x: x + 1, arr)) bench.run(test)
from matplotlib import pyplot as plt import seaborn as sns import numpy as np from scipy.spatial.distance import cdist from scipy.special import comb import time import copy import itertools import imageio import heapq import pickle sns.set() __author__ = "Chana Ross, Yoel Ross" __copyright__ = "Copyright 2018" __credits__ = ["Yoel Ross", "Tamir Hazan", "Erez Karpas"] __version__ = "1.0" __maintainer__ = "Chana Ross" __email__ = "schanaby@campus.technion.ac.il" __status__ = "Thesis" # Class definitions class SearchState: def __init__(self, carPos, committedCars, eventPos, committedEventsIndex, committedEvents, eventStartTimes ,eventCloseTimes, eventReward, eventPenalty, eventsCanceled, eventsAnswered, heuristicVal, costVal, parent,hWeight): self.carPos = carPos self.committedCars = committedCars self.committedEventsIndex = committedEventsIndex self.hWeight = hWeight self.eventPos = eventPos self.committedEvents = committedEvents self.eventStartTimes = eventStartTimes self.eventCloseTimes = eventCloseTimes self.eventReward = eventReward self.eventPenalty = eventPenalty self.eventsCanceled = eventsCanceled # true if the event is opened, false if event closed or canceled. starts as true self.eventsAnswered = eventsAnswered # true if event is answered , false if event is canceled. starts as false self.time = parent.time+1 if parent is not None else 0 # time is one step ahead of parent self.hval = heuristicVal self.gval = costVal self.parent = parent # predecessor in graph self.root = parent is None # true of state is the root, false otherwise return def __lt__(self, other): # make sure comparison is to SearchState object try: assert (isinstance(other, SearchState)) except: raise TypeError("must compare to SearchState object.") # return lt check return self.getFval() < other.getFval() def __eq__(self, other): # make sure comparison is to SearchState object try: assert(isinstance(other, SearchState)) except: raise TypeError("must compare to SearchState object.") # check carEq = np.array_equal(self.carPos, other.carPos) carComEq = np.array_equal(self.committedCars,other.committedCars) eventComEq = np.array_equal(self.committedEvents,other.committedEvents) eveEq = np.array_equal(self.eventPos,other.eventPos) etmEq = np.array_equal(self.eventTimes,other.eventTimes) comEveIndex = np.array_equal(self.committedEventsIndex,other.committedEventsIndex) etcEq = np.array_equal(self.eventCloseTimes,other.eventCloseTimes) sttEq = np.array_equal(self.eventsCanceled, other.eventsCanceled) astEq = np.array_equal(self.eventsAnswered,other.eventsAnswered) timEq = self.time == other.time return carEq and eveEq and etcEq and etmEq and eventComEq and carComEq and sttEq and comEveIndex and astEq and timEq def __repr__(self): return "time: {0}, cost: {1}, heuristic: {2}, root: {3}, goal: {4}\n".format(self.time, self.gval, self.hval, self.root, self.goalCheck()) def __hash__(self): carPosVec = np.reshape(self.carPos, self.carPos.size) evePosVec = np.reshape(self.eventPos, self.eventPos.size) eveComVec = np.reshape(self.committedEvents, self.committedEvents.size) carComVec = np.reshape(self.committedCars,self.committedCars.size) comEveIndex = np.reshape(self.committedEventsIndex,self.committedEventsIndex.size) eveSttVec = self.eventsCanceled.astype(np.int32) eveAnStVec = self.eventsAnswered.astype(np.int32) stateTime = np.reshape(np.array(self.time), 1) hv = np.hstack([carPosVec , evePosVec , comEveIndex , eveSttVec ,eveAnStVec , stateTime, carComVec, eveComVec]) return hash(tuple(hv)) def goalCheck(self): # if all events have been answered or canceled, we have reached the goal return np.sum(np.logical_or(self.eventsAnswered,self.eventsCanceled)) == self.eventsAnswered.size def path(self): current = self p = [] while current is not None: if not current.root: p.append(current) current = current.parent else: p.append(current) p.reverse() return p def getFval(self): return self.hval*self.hWeight + self.gval class Heap(): def __init__(self): self.array = list() def __len__(self): return len(self.array) def insert(self, obj): heapq.heappush(self.array, obj) return def extractMin(self): return heapq.heappop(self.array) # get minimum from heap def empty(self): return len(self.array)==0 def heapify(self): heapq.heapify(self.array) return def updateStatusVectors(distanceMatrix,canceledEvents,answeredEvents,eventsCloseTime,eventsStartTime,epsilon = 0.01): eventsOpened = np.logical_and(eventsStartTime<=0, eventsCloseTime>=0) # convert distance matrix to boolean of approx zero (picked up events) step1 = np.sum((distanceMatrix <= epsilon), axis=0) >= 1 # condition on event being open step2 = np.logical_and(step1, eventsOpened) updatedEventsAnswered = np.copy(answeredEvents) # new possible events answered status updatedEventsAnswered[step2] = 1 updatedEventsAnswered.astype(np.bool_) numAnsweredEvents = np.sum(step2) # find canceled events and add to canceled vector step1Canceled = np.logical_and(np.logical_not(answeredEvents),eventsCloseTime<0) step2Canceled = np.logical_and(step1Canceled,np.logical_not(canceledEvents)) updatedEventsCanceled = np.copy(canceledEvents) updatedEventsCanceled[step2Canceled] = 1 updatedEventsCanceled.astype(np.bool_) numCanceledEvents = np.sum(step2Canceled) updatedEventsOpened = np.logical_and(np.logical_not(step1,eventsOpened)) numOpenedEvents = np.sum(updatedEventsOpened) return updatedEventsAnswered,updatedEventsCanceled,numAnsweredEvents,numCanceledEvents,numOpenedEvents def updateCommittedStatus(committedEvents,committedCars,committedEventIndex,canceledEvents,answeredEvents): eventClosed = np.logical_or(canceledEvents,answeredEvents) updatedCommittedCars = np.copy(committedCars) updatedCommittedCars[updatedCommittedCars>0] = np.logical_not(eventClosed[committedEventIndex>=0]) updatedCommittedEvents = np.copy(committedEvents) updatedCommittedEvents[eventClosed] = False updatedCommittedEventIndex = np.copy(committedEventIndex) updatedCommittedEventIndex[np.logical_not(updatedCommittedCars)] = -1 return updatedCommittedCars,updatedCommittedEvents,updatedCommittedEventIndex def createCommitMatrix(numCars,numEvents): if numEvents == 0: commitMat = np.zeros(shape=(numCars,1)).astype(np.bool_) else: numCases = 0 numOptionalCommits = np.min([numCars+1,numEvents+1]) numCasesPerCommitOptions = [] for i in range(np.min([numCars+1,numEvents+1])): numCasesPerCommitOptions.append(comb(numCars,i)*comb(numEvents,i)*math.factorial(i)) numCases = np.sum(numCasesPerCommitOptions) commitMat = np.zeros(shape = (int(numCases),numCars,numEvents)) k = 0 for i in range(numOptionalCommits): for carChoice in list(itertools.combinations(range(numCars),i)): for eventChoice in list(itertools.combinations(range(numEvents),i)): for eventChoicePermutations in list(itertools.permutations(eventChoice,len(eventChoice))): commitMat[k,carChoice,eventChoicePermutations] = True k += 1 return commitMat
import os from django.conf import settings from django.core.management.base import BaseCommand class Command(BaseCommand): """Command create .docker folder structure""" help = "Create .docker folder structure" def create(self, path: str): """Create path if not exist""" if not os.path.exists(path): os.makedirs(path) def handle(self, *args, **options): self.create(settings.DOCKER_DB_DIR) self.create(settings.DOCKER_STATIC_DIR) self.create(settings.DOCKER_LOG_DIR) self.create(settings.DOCKER_MEDIA_DIR)
from .swagger.models.answer import Answer as SwaggerAnswer from .swagger.models.question import Question as SwaggerQuestion from .swagger.models.quiz import Quiz as SwaggerQuiz class Answer(SwaggerAnswer): pass class Question(SwaggerQuestion): pass class Quiz(SwaggerQuiz): pass
import amulet from juju.client.connection import JujuData import logging import os import requests import subprocess import yaml log = logging.getLogger(__name__) def get_juju_credentials(): jujudata = JujuData() controller_name = jujudata.current_controller() controller = jujudata.controllers()[controller_name] endpoint = controller["api-endpoints"][0] models = jujudata.models()[controller_name] model_name = models["current-model"] model_uuid = models["models"][model_name]["uuid"] accounts = jujudata.accounts()[controller_name] username = accounts["user"] password = accounts.get("password") return { "endpoint": endpoint, "model_uuid": model_uuid, "username": username, "password": password } def _download_resource(url, target_path): r = requests.get(url, stream=True) r.raise_for_status() log.info("Downloading resource {} to {}".format(url, target_path)) with open(target_path, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) def _get_resource(app, resource, charm): env = "{}_RESOURCE_{}".format(app.upper(), resource.upper()) default_url = ("https://api.jujucharms.com/charmstore/v5/~elastisys/" "{}/resource/{}?channel=edge".format(charm, resource)) resource_path = os.getenv(env, default_url) if os.path.isfile(resource_path): return resource_path try: target_path = "/tmp/{}-{}.tar".format(app, resource) _download_resource(resource_path, target_path) return target_path except requests.exceptions.RequestException: message = "resource '{}' not found".format(resource_path) amulet.raise_status(amulet.FAIL, msg=message) def attach_resource(app, resource, charm): if not _has_resource(app, resource): resource_path = _get_resource(app, resource, charm) log.info("{} resource: {} = {}".format(app, resource, resource_path)) _attach_resource(app, resource, resource_path) # Creds to https://github.com/juju-solutions/bundle-canonical-kubernetes/blob/master/tests/amulet_utils.py # noqa def _attach_resource(app, resource, resource_path): ''' Upload a resource to a deployed model. :param: app - the application to attach the resource :param: resource - The charm's resouce key :param: resource_path - the path on disk to upload the resource''' # the primary reason for this method is to replace a shell # script in the $ROOT dir of the charm cmd = ['juju', 'attach', app, "{}={}".format(resource, resource_path)] subprocess.call(cmd) def _has_resource(app, resource): ''' Poll the controller to determine if we need to upload a resource ''' cmd = ['juju', 'resources', app, '--format=yaml'] output = subprocess.check_output(cmd) resource_list = yaml.safe_load(output) for resource in resource_list['resources']: # We can assume this is the correct resource if it has a filesize # matches the name of the resource in the charms resource stream if 'name' in resource and (app in resource['name'] and resource['size'] > 0): # Display the found resource print('Uploading {} for {}'.format(resource['name'], app)) return True return False
class DownloadProgressChangedEventArgs(ProgressChangedEventArgs): """ Provides data for the System.Net.WebClient.DownloadProgressChanged event of a System.Net.WebClient. """ BytesReceived=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the number of bytes received. Get: BytesReceived(self: DownloadProgressChangedEventArgs) -> Int64 """ TotalBytesToReceive=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the total number of bytes in a System.Net.WebClient data download operation. Get: TotalBytesToReceive(self: DownloadProgressChangedEventArgs) -> Int64 """
# encoding: utf-8 from sqlalchemy import * from migrate import * def upgrade(migrate_engine): metadata = MetaData() metadata.bind = migrate_engine migrate_engine.execute(''' CREATE TABLE user_following_dataset ( follower_id text NOT NULL, object_id text NOT NULL, datetime timestamp without time zone NOT NULL ); CREATE TABLE user_following_user ( follower_id text NOT NULL, object_id text NOT NULL, datetime timestamp without time zone NOT NULL ); ALTER TABLE user_following_dataset ADD CONSTRAINT user_following_dataset_pkey PRIMARY KEY (follower_id, object_id); ALTER TABLE user_following_user ADD CONSTRAINT user_following_user_pkey PRIMARY KEY (follower_id, object_id); ALTER TABLE user_following_dataset ADD CONSTRAINT user_following_dataset_follower_id_fkey FOREIGN KEY (follower_id) REFERENCES "user"(id) ON UPDATE CASCADE ON DELETE CASCADE; ALTER TABLE user_following_dataset ADD CONSTRAINT user_following_dataset_object_id_fkey FOREIGN KEY (object_id) REFERENCES package(id) ON UPDATE CASCADE ON DELETE CASCADE; ALTER TABLE user_following_user ADD CONSTRAINT user_following_user_follower_id_fkey FOREIGN KEY (follower_id) REFERENCES "user"(id) ON UPDATE CASCADE ON DELETE CASCADE; ALTER TABLE user_following_user ADD CONSTRAINT user_following_user_object_id_fkey FOREIGN KEY (object_id) REFERENCES "user"(id) ON UPDATE CASCADE ON DELETE CASCADE; ''')
def multi(l_st): output = 1 for x in l_st: output *= x return output def add(l_st): return sum(l_st) def reverse(string): return string[::-1]
from __future__ import absolute_import from .links import link_api, link_api_documentation tool_links = [link_api, link_api_documentation]
""" A hack to make pawt.swing point to the java swing library. This allows code which imports pawt.swing to work on both JDK1.1 and 1.2 """ swing = None try: import javax.swing.Icon from javax import swing except (ImportError, AttributeError): try: import java.awt.swing.Icon from java.awt import swing except (ImportError, AttributeError): try: import com.sun.java.swing.Icon from com.sun.java import swing except (ImportError, AttributeError): raise ImportError, 'swing not defined in javax.swing or java.awt.swing or com.sun.java.swing' import sys def test(panel, size=None, name='Swing Tester'): f = swing.JFrame(name, windowClosing=lambda event: sys.exit(0)) if hasattr(panel, 'init'): panel.init() f.contentPane.add(panel) f.pack() if size is not None: from java import awt f.setSize(apply(awt.Dimension, size)) f.setVisible(1) return f if swing is not None: import pawt, sys pawt.swing = swing sys.modules['pawt.swing'] = swing swing.__dict__['test'] = test #These two lines help out jythonc to figure out this very strange module swing.__dict__['__file__'] = __file__ swing.__dict__['__jpythonc_name__'] = 'pawt.swing'
from faker import Faker from nig.endpoints import INPUT_ROOT, OUTPUT_ROOT from nig.tests import create_test_env, delete_test_env from restapi.tests import API_URI, BaseTests, FlaskClient class TestApp(BaseTests): def test_api_study(self, client: FlaskClient, faker: Faker) -> None: # setup the test env ( admin_headers, uuid_group_A, user_A1_uuid, user_A1_headers, uuid_group_B, user_B1_uuid, user_B1_headers, user_B2_uuid, user_B2_headers, study1_uuid, study2_uuid, ) = create_test_env(client, faker, study=False) # create a new study for the group B random_name = faker.pystr() study1 = {"name": random_name, "description": faker.pystr()} r = client.post(f"{API_URI}/study", headers=user_B1_headers, data=study1) assert r.status_code == 200 study1_uuid = self.get_content(r) assert isinstance(study1_uuid, str) # create a new study for the group A random_name2 = faker.pystr() study2 = {"name": random_name2, "description": faker.pystr()} r = client.post(f"{API_URI}/study", headers=user_A1_headers, data=study2) assert r.status_code == 200 study2_uuid = self.get_content(r) assert isinstance(study2_uuid, str) # check the directory was created dir_path = INPUT_ROOT.joinpath(uuid_group_A, study2_uuid) assert dir_path.is_dir() # test study access # test study list response r = client.get(f"{API_URI}/study", headers=user_B1_headers) assert r.status_code == 200 response = self.get_content(r) assert isinstance(response, list) assert len(response) == 1 # test admin access r = client.get(f"{API_URI}/study/{study1_uuid}", headers=admin_headers) assert r.status_code == 200 # study owner r = client.get(f"{API_URI}/study/{study1_uuid}", headers=user_B1_headers) assert r.status_code == 200 # other component of the group r = client.get(f"{API_URI}/study/{study1_uuid}", headers=user_B2_headers) assert r.status_code == 200 # study own by an other group r = client.get(f"{API_URI}/study/{study1_uuid}", headers=user_A1_headers) assert r.status_code == 404 not_authorized_message = self.get_content(r) assert isinstance(not_authorized_message, str) # test study modification # modify a study you do not own r = client.put( f"{API_URI}/study/{study1_uuid}", headers=user_A1_headers, data={"description": faker.pystr()}, ) assert r.status_code == 404 # modify a study you own r = client.put( f"{API_URI}/study/{study1_uuid}", headers=user_B1_headers, data={"description": faker.pystr()}, ) assert r.status_code == 204 # delete a study # delete a study you do not own r = client.delete(f"{API_URI}/study/{study1_uuid}", headers=user_A1_headers) assert r.status_code == 404 # delete a study you own # create a new dataset to test if it's deleted with the study dataset = {"name": faker.pystr(), "description": faker.pystr()} r = client.post( f"{API_URI}/study/{study2_uuid}/datasets", headers=user_A1_headers, data=dataset, ) assert r.status_code == 200 dataset_uuid = self.get_content(r) assert isinstance(dataset_uuid, str) dataset_path = dir_path.joinpath(dataset_uuid) assert dataset_path.is_dir() # create a new file to test if it's deleted with the study filename = f"{faker.pystr()}_R1" file_data = { "name": f"{filename}.fastq.gz", "mimeType": "application/gzip", "size": faker.pyint(), "lastModified": faker.pyint(), } r = client.post( f"{API_URI}/dataset/{dataset_uuid}/files/upload", headers=user_A1_headers, data=file_data, ) assert r.status_code == 201 # get the file uuid r = client.get( f"{API_URI}/dataset/{dataset_uuid}/files", headers=user_A1_headers, ) assert r.status_code == 200 file_list = self.get_content(r) assert isinstance(file_list, list) file_uuid = file_list[0]["uuid"] # create a new technical to test if it's deleted with the study techmeta = {"name": faker.pystr()} r = client.post( f"{API_URI}/study/{study2_uuid}/technicals", headers=user_A1_headers, data=techmeta, ) assert r.status_code == 200 techmeta_uuid = self.get_content(r) assert isinstance(techmeta_uuid, str) # create a new phenotype to test if it's deleted with the study phenotype = {"name": faker.pystr(), "sex": "male"} r = client.post( f"{API_URI}/study/{study2_uuid}/phenotypes", headers=user_A1_headers, data=phenotype, ) assert r.status_code == 200 phenotype_uuid = self.get_content(r) assert isinstance(phenotype_uuid, str) # simulate the study has an output directory # create the output directory in the same way is created in launch pipeline task output_path = OUTPUT_ROOT.joinpath(dataset_path.relative_to(INPUT_ROOT)) output_path.mkdir(parents=True) assert output_path.is_dir() # delete the study r = client.delete(f"{API_URI}/study/{study2_uuid}", headers=user_A1_headers) assert r.status_code == 204 assert not dir_path.is_dir() assert not dataset_path.is_dir() # check the dataset was deleted r = client.get(f"{API_URI}/dataset/{dataset_uuid}", headers=user_A1_headers) assert r.status_code == 404 # check the file was deleted r = client.get(f"{API_URI}/file/{file_uuid}", headers=user_A1_headers) assert r.status_code == 404 # check the technical was deleted r = client.get(f"{API_URI}/technical/{techmeta_uuid}", headers=user_A1_headers) assert r.status_code == 404 # check the phenotype was deleted r = client.get(f"{API_URI}/phenotype/{phenotype_uuid}", headers=user_A1_headers) assert r.status_code == 404 # check the output dir was deleted assert not output_path.is_dir() # delete a study own by your group r = client.delete(f"{API_URI}/study/{study1_uuid}", headers=user_B2_headers) assert r.status_code == 204 # check study deletion r = client.get(f"{API_URI}/study/{study1_uuid}", headers=user_B1_headers) assert r.status_code == 404 not_existent_message = self.get_content(r) assert isinstance(not_existent_message, str) assert not_existent_message == not_authorized_message # delete all the elements used by the test delete_test_env( client, user_A1_headers, user_B1_headers, user_B1_uuid, user_B2_uuid, user_A1_uuid, uuid_group_A, uuid_group_B, )
import os def remove_files0(): root_dir = '/home/yche/mnt/wangyue-clu/csproject/biggraph/ywangby/yche/git-repos/SimRank/python_experiments/exp_results/varying_eps_exp' data_set = 'ca-GrQc' pair_num = 100000 eps_lst = list(([0.001 * (i + 1) for i in xrange(30)])) file_name_lst = ['reads-d-rand-bench.txt', 'reads-rq-rand-bench.txt'] for eps in eps_lst: read_d_file = os.sep.join(map(str, [root_dir, data_set, pair_num, eps, file_name_lst[0]])) read_rq_file = os.sep.join(map(str, [root_dir, data_set, pair_num, eps, file_name_lst[1]])) os.system('rm ' + read_d_file) os.system('rm ' + read_rq_file) if __name__ == '__main__': tag = 'exp_results' folder_name = 'varying_eps_for_topk_precision_exp' sample_num = str(10 ** 4) k = str(800) data_set_name_lst = [ 'ca-GrQc', 'ca-HepTh', 'p2p-Gnutella06', 'wiki-Vote' ] eps_lst = list(reversed([0.0001, 0.0004, 0.0016, 0.0064, 0.0256])) for algorithm in [ # 'reads-rq-rand-bench', 'reads-d-rand-bench', 'reads-d-rand-bench-gt']: for data_set_name in data_set_name_lst: for eps in eps_lst: statistics_dir = os.sep.join(map(str, [ '/home/yche/mnt/wangyue-clu/csproject/biggraph/ywangby/yche/git-repos/SimRank/python_experiments/', tag, folder_name, sample_num, k, data_set_name, eps])) statistics_file_path = statistics_dir + os.sep + algorithm + '.txt' os.system('rm ' + statistics_file_path)
import argparse import asyncio import json import aiohttp import aiohttp_jinja2 from aiohttp import web import jinja2 from typing import Dict from dataclasses import dataclass, field from pycards import game parser = argparse.ArgumentParser(description='dapai') parser.add_argument('--port') def json_dumps(content): return json.dumps(content, cls=game.ModelEncoder) async def spread_cards(game, sockets, cards): for i in range(cards): if not game.deck_count: break waitables = [] for name, ws in sockets.items(): cards = game.draw(name, 1) waitables.append(ws.send_json({ 'action': 'DRAWED', 'arg': cards, 'name': name, })) await asyncio.gather(*waitables) await asyncio.sleep(1) # things I need to in app context @dataclass class State(object): players: Dict[str, game.Player] = field(default_factory=dict) ws_by_name: Dict[str, object] = field(default_factory=dict) room: game.GameRoom = game.GameRoom() async def index(request): return web.FileResponse('static/index.html') async def ws_handler(request): ws_current = web.WebSocketResponse() ws_ready = ws_current.can_prepare(request) if not ws_ready.ok: return web.Response(status=400) # Does this means I have connected in js? await ws_current.prepare(request) state = request.app['state'] current_player = None while True: msg = await ws_current.receive() broadcast = {} reply_result = {} if msg.type == aiohttp.WSMsgType.text: try: parsed = json.loads(msg.data) new_name, action, arg = parsed.get('name'), parsed['action'], parsed['arg'] print(new_name, action, arg) if action == 'NEW_PLAYER': name = new_name state.ws_by_name[name] = ws_current if name in state.players: current_player = state.players[name] else: current_player = game.Player(name, 0) state.players[name] = current_player if current_player in state.room.players: if state.room.game: reply_result = { 'name': '', 'action': 'SET_STATE', 'arg': { 'hand': state.room.game.hand(name) } } else: if current_player not in state.room.observers: state.room.observers.append(current_player) broadcast = { 'name': '', 'action': 'SET_STATE', 'arg': { 'room': state.room, } } elif action == 'SPREAD_CARDS': count = int(arg) await spread_cards(state.room.game, state.ws_by_name, count) elif action == 'MESSAGE': broadcast['msg'] = arg else: assert new_name is None or current_player.name == new_name reply_result, broadcast = state.room.handle_command(current_player, action, arg) except ValueError as e: print(e) import traceback traceback.print_exc() await ws_current.send_json({'error': str(e)}) else: to_send = [] if broadcast: for ws in state.ws_by_name.values(): to_send.append(ws.send_json(broadcast, dumps=json_dumps)) if reply_result: to_send.append(ws_current.send_json(reply_result, dumps=json_dumps)) await asyncio.gather(*to_send) else: break if current_player is not None: state.room.leave_room(current_player) del state.ws_by_name[current_player.name] to_send = [] print('PLAYER_LEFT', current_player.name) for ws in state.ws_by_name.values(): to_send.append(ws.send_json({ 'name': current_player.name, 'action': 'PLAYER_LEFT', 'arg': '' })) await asyncio.gather(*to_send) return ws_current async def init_app(): app = web.Application() app['state'] = State() app.on_shutdown.append(shutdown) aiohttp_jinja2.setup( app, loader=jinja2.FileSystemLoader('templates')) # directories relative app.router.add_get('/', index) app.router.add_get('/ws', ws_handler) app.router.add_routes([web.static('/static', 'static')]) return app async def shutdown(app): for ws in app['state'].ws_by_name.values(): await ws.close() app['state'].ws_by_name.clear() def main(): app = init_app() args = parser.parse_args() web.run_app(app, port=args.port) if __name__ == '__main__': main()
from string import hexdigits from random import choice import aiohttp from type.credentials import GoogleCredentials, FirebaseCredentials from type.settings import FirebaseSettings from dataclasses import dataclass from typing import Optional @dataclass() class Installation: token: str iid: str class Firebase: @staticmethod async def _getInstallation(settings: FirebaseSettings) -> Optional[Installation]: url = f"https://firebaseinstallations.googleapis.com/v1/projects/{settings.appName}/installations" headers = {"Content-Type": "application/json", "x-goog-api-key": settings.publicKey} data = {"fid": "dIsVQ2QVRT-TW7L6VfeAMh", "appId": settings.appId, "authVersion": "FIS_v2", "sdkVersion": "a:16.3.3"} async with aiohttp.ClientSession() as session: r = await session.post(url, headers=headers, json=data) if r.status != 200: return info = await r.json() return Installation(token=info["authToken"]["token"], iid=info["fid"]) @staticmethod async def getCredentials(googleCr: GoogleCredentials, settings: FirebaseSettings) -> Optional[FirebaseCredentials]: installation = await Firebase._getInstallation(settings) url = "https://android.clients.google.com/c2dm/register3" headers = {"Authorization": f"AidLogin {googleCr.androidId}:{googleCr.securityToken}"} sender = settings.appId.split(":")[1] data = {"X-subtype": sender, "sender": sender, "X-appid": installation.iid, "X-Goog-Firebase-Installations-Auth": installation.token, "app": settings.appGroup, "device": googleCr.androidId} async with aiohttp.ClientSession() as session: r = await session.post(url=url, headers=headers, data=data) if r.status != 200: return pushToken = (await r.text()).replace("token=", "") deviceId = ''.join([choice(hexdigits) for _ in range(32)]).lower() return FirebaseCredentials(pushToken=pushToken, deviceId=deviceId) testSettings = FirebaseSettings(publicKey="AIzaSyAOaoKaLhW98vLuaCuBqFh8qtLnh5c51z0", appName="mcdonalds-70126", appId="1:654771087992:android:79237bff987a6465", appGroup="com.apegroup.mcdonaldrussia")
import json from setuptools import setup, find_packages with open('install.json', 'r') as fh: version = json.load(fh)['programVersion'] if not version: raise RuntimeError('Cannot find version information') setup( author='', description='Playbook app wrapper for TextBlob (https://github.com/sloria/TextBlob).', name='text_blob', packages=find_packages(), version=version )
#Loading dependencies import pandas as pd import sys from utils.GeneralSettings import * from Asset.AssetTypes.Bridge import Bridge from Asset.AssetTypes.Building import Building from Asset.Elements.BridgeElement import BridgeElement from Asset.Elements.ConditionRating.NBIRatingModified import NBI from Asset.Elements.Deterioration.IBMSSinha2009 import Markovian as MarkovianIBMS from Asset.Elements.Utility.BridgeElementsUtilityBai2013 import * from Asset.Elements.AgencyCost.AgencyCostSinha2009 import * from Asset.Elements.BuildingElement import BuildingElement from Asset.Elements.ConditionRating.PONTISRating import Pontis_CR from Asset.Elements.Deterioration.Markovian import Markovian from Asset.Elements.Utility.DummyBuildingUtility import DummyUtility from Asset.Elements.AgencyCost.DummyBuildingRetrofitCost import RetrofitCosts from Asset.Elements.SHMElement import SHMElement from Asset.HazardModels.HazardModel import HazardModel from Asset.HazardModels.Generator.PoissonProcess import PoissonProcess from Asset.HazardModels.Response.HazusBridgeResponse import HazusBridgeResponse from Asset.HazardModels.Loss.BridgeHazusLoss import BridgeHazusLoss from Asset.HazardModels.Recovery.SimpleRecovery import SimpleRecovery from Asset.HazardModels.Response.DummyBuildingResponse import DummyResponse from Asset.HazardModels.Loss.DummyBuildingLoss import DummyLoss from Asset.HazardModels.Recovery.DummyBuildingRecovery import DummyRecovery from Asset.MRRModels.MRRFourActions import MRRFourActions from Asset.MRRModels.MRRTwoActions import MRRTwoActions from Asset.MRRModels.SHMActions import SHMActions from Asset.MRRModels.EffectivenessModels.SimpleEffectiveness import SimpleEffectiveness from Asset.MRRModels.EffectivenessModels.DummyRetrofitEffectiveness import DummyEffectiveness from Asset.MRRModels.EffectivenessModels.SHMEffectiveness import SHMEffectiveness from Asset.UserCostModels.TexasDOTUserCost import TexasDOTUserCost from Asset.UserCostModels.TexasDOTUserCostWithVolatility import TexasDOTUserCostWithVolatility from Asset.UserCostModels.DummyBuildingUserCost import DummyUserCost from utils.AccumulatorThree import AccumulatorThree from utils.AccumulatorX import AccumulatorX from utils.PredictiveModels.Linear import Linear from utils.PredictiveModels.WienerDrift import WienerDrift from utils.PredictiveModels.GBM import GBM from utils.Distributions.LogNormal import LogNormal from utils.Distributions.Normal import Normal from utils.Distributions.Beta import Beta from utils.Distributions.Exponential import Exponential from utils.Distributions.Gamma import Gamma from utils.Distributions.Binomial import Binomial class BaseNetwork: def __init__(self, **params): super().__init__() '''Constructor of the base network''' self.file_name = params.pop('file_name', None) self.n_assets = params.pop('n_assets', 0) self.settings = params.pop('settings') if not self.file_name is None: dir = f'./Network/Networks/{self.file_name}.csv' self.assets_df = pd.read_csv(dir, index_col = 0).iloc[:self.n_assets, :] def load_asset(self, *args, **kwargs): raise NotImplementedError ("load_asset in Loader is not implemented yet") def set_network_mrr(self, network_mrr): '''Setting the mrr of the network to each asset''' for asset, mrr in zip (self.assets, network_mrr): asset.mrr_model.set_mrr(mrr) def load_network(self): '''Loading the network If the file_name is None, it is assumed that the network will be randomized Else, the netwotk will be loaded from a datafile ''' self.assets = [] if self.file_name is None: # For generated networks for i in range (self.n_assets): self.assets.append(self.load_asset()) else: for idx in self.assets_df.index: # For loding data from file self.assets.append(self.load_asset(idx)) return self.assets def set_current_budget_limit(self, val): '''Setting the current budget limit''' self.current_budget_limit = val def set_budget_limit_model(self, model): '''Setting the budget limit in time''' self.budget_model = model def set_npv_budget_limit(self, val): '''Set the npv of the budget limit''' self.npv_budget_limit = val def objective1(self): return np.random.random() def objective2(self): return np.random.random()
import random number = random.randint(1,10) user = 0 count = 0 while user != number and user != "exit": user = int(input("What's your guess? ")) if user == "exit": break count += 1 if user < number: print("Too low!") elif user > number: print("Too high!") else: print("You got it!") print("And it only took you",count,"tries!")
__title__ = 'glance-times' __description__ = 'Who will watch the watchman? Glance can.' __url__ = 'https://github.com/mrice88/glance' __download_url__ = 'https://github.com/mrice88/glance/archive/master.zip' __version__ = '0.3.6' __author__ = 'Mark Rice' __author_email__ = 'markricejr@gmail.com' __license__ = 'MIT' __copyright__ = 'Copyright 2019 Mark Rice'
#!/usr/bin/env python from __future__ import print_function import sys import time import array import os sys.path.append("shell") import swapforth class TetheredJ1a(swapforth.TetheredTarget): cellsize = 2 def open_ser(self, port, speed): try: import serial except: print("This tool needs PySerial, but it was not found") sys.exit(1) self.ser = serial.Serial(port, 38400, timeout=None, rtscts=0) def reset(self, fullreset = True): ser = self.ser ser.setDTR(1) if fullreset: ser.setRTS(1) ser.setRTS(0) ser.setDTR(0) def waitcr(): while ser.read(1) != chr(10): pass waitcr() ser.write(b'\r') waitcr() for c in ' 1 tth !': ser.write(c.encode('utf-8')) ser.flush() time.sleep(0.001) ser.flushInput() #print("In: ", c, "Out: ", repr(ser.read(ser.inWaiting()))) ser.write(b'\r') while 1: c = ser.read(1) # print(repr(c)) if c == b'\x1e': break def boot(self, bootfile = None): sys.stdout.write('Contacting... ') self.reset() print('established') def interrupt(self): self.reset(False) def serialize(self): l = self.command_response('0 here dump') lines = l.strip().replace('\r', '').split('\n') s = [] for l in lines: l = l.split() s += [int(b, 16) for b in l[1:17]] s = array.array('B', s).tostring().ljust(8192, chr(0xff)) return array.array('H', s) if __name__ == '__main__': swapforth.main(TetheredJ1a)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator 2.3.33.0 # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ApplicationRegistrationUpdateApiModel(Model): """Application registration update request. :param product_uri: Product uri :type product_uri: str :param application_name: Default name of the server or client. :type application_name: str :param locale: Locale of default name - defaults to "en" :type locale: str :param localized_names: Localized names keyed off locale id. To remove entry, set value for locale id to null. :type localized_names: dict[str, str] :param certificate: Application public cert :type certificate: bytearray :param capabilities: Capabilities of the application :type capabilities: list[str] :param discovery_urls: Discovery urls of the application :type discovery_urls: list[str] :param discovery_profile_uri: Discovery profile uri :type discovery_profile_uri: str :param gateway_server_uri: Gateway server uri :type gateway_server_uri: str """ _validation = { 'capabilities': {'unique': True}, 'discovery_urls': {'unique': True}, } _attribute_map = { 'product_uri': {'key': 'productUri', 'type': 'str'}, 'application_name': {'key': 'applicationName', 'type': 'str'}, 'locale': {'key': 'locale', 'type': 'str'}, 'localized_names': {'key': 'localizedNames', 'type': '{str}'}, 'certificate': {'key': 'certificate', 'type': 'bytearray'}, 'capabilities': {'key': 'capabilities', 'type': '[str]'}, 'discovery_urls': {'key': 'discoveryUrls', 'type': '[str]'}, 'discovery_profile_uri': {'key': 'discoveryProfileUri', 'type': 'str'}, 'gateway_server_uri': {'key': 'gatewayServerUri', 'type': 'str'}, } def __init__(self, product_uri=None, application_name=None, locale=None, localized_names=None, certificate=None, capabilities=None, discovery_urls=None, discovery_profile_uri=None, gateway_server_uri=None): super(ApplicationRegistrationUpdateApiModel, self).__init__() self.product_uri = product_uri self.application_name = application_name self.locale = locale self.localized_names = localized_names self.certificate = certificate self.capabilities = capabilities self.discovery_urls = discovery_urls self.discovery_profile_uri = discovery_profile_uri self.gateway_server_uri = gateway_server_uri
from cffi import FFI import os ffibuilder = FFI() # cdef() expects a single string declaring the C types, functions and # globals needed to use the shared object. It must be in valid C syntax. ffibuilder.cdef(""" typedef int Boolean; typedef int64_t ft_data_t; typedef struct { size_t length; size_t N0; ft_data_t* bit; ft_data_t (*op)(ft_data_t, ft_data_t); ft_data_t ide; } FenwickTree; void ft_add(FenwickTree* ft, size_t a, ft_data_t w); ft_data_t ft_sum(FenwickTree* ft, size_t a); FenwickTree* ft_init(ft_data_t* array, size_t length, ft_data_t (*op)(ft_data_t, ft_data_t), ft_data_t ide, Boolean construct); typedef struct { int length; int* table; int* n_members; } Dsu; Dsu *DsuInit(int length); int dsu_find(Dsu *dsu, int x); void dsu_union(Dsu *dsu, int x, int y); typedef struct { int length; int depth; int n; int64_t* q; } PriorityQueue; PriorityQueue *PriorityQueueInit(int _length); int pq_get_size(PriorityQueue *pq); int64_t pq_pop(PriorityQueue *pq); int64_t pq_top(PriorityQueue *pq); void pq_push(PriorityQueue *pq, int64_t x); typedef int64_t data_t; typedef struct { int n; int depth; data_t *segtree; data_t (*op)(data_t, data_t); data_t ide; } SegmentTree; SegmentTree* SegmentTreeInit(data_t *array, int _length, data_t (*op)(data_t, data_t), data_t ide); void st_add(SegmentTree *st, int a, data_t x); void st_subst(SegmentTree *st, int a, data_t x); data_t st_get_one(SegmentTree* st, int a); data_t st_get(SegmentTree* st, int l, int r); typedef struct set_node{ int key; int rank; int size; struct set_node *left, *right; } set_node; set_node* insert(set_node *x, int t); set_node* lt(set_node*x,int k); set_node* gt(set_node*x,int k); set_node* SetInit(); static int Scanner(void); static int* ScannerMulti(int n); static char* ScannerString(int n); static void Printer(int64_t x); static void PrinterOne(int64_t x); static void PrinterArray(int64_t *x, int n); data_t (*get_operator(const char *str)) (data_t, data_t); """) # set_source() gives the name of the python extension module to # produce, and some C source code as a string. This C code needs # to make the declarated functions, types and globals available, # so it is often just the "#include". ffibuilder.set_source("_compprog_cffi", """ #include "compprog.h" // the C header of the library """) if __name__ == "__main__": os.chdir("lib/") ffibuilder.compile(verbose=True)
import torch from torch import nn def expand_as_one_hot(input_, C, ignore_label=None): """ Converts NxSPATIAL label image to NxCxSPATIAL, where each label gets converted to its corresponding one-hot vector. NOTE: make sure that the input_ contains consecutive numbers starting from 0, otherwise the scatter_ function won't work. SPATIAL = DxHxW in case of 3D or SPATIAL = HxW in case of 2D :param input_: 3D or 4D label image (NxSPATIAL) :param C: number of channels/labels :param ignore_label: ignore index to be kept during the expansion :return: 4D or 5D output image (NxCxSPATIAL) """ assert input_.dim() in (3, 4), f"Unsupported input shape {input_.shape}" # expand the input_ tensor to Nx1xSPATIAL before scattering input_ = input_.unsqueeze(1) # create result tensor shape (NxCxSPATIAL) output_shape = list(input_.size()) output_shape[1] = C if ignore_label is not None: # create ignore_label mask for the result mask = input_.expand(output_shape) == ignore_label # clone the src tensor and zero out ignore_label in the input_ input_ = input_.clone() input_[input_ == ignore_label] = 0 # scatter to get the one-hot tensor result = torch.zeros(output_shape).to(input_.device).scatter_(1, input_, 1) # bring back the ignore_label in the result result[mask] = ignore_label return result else: # scatter to get the one-hot tensor return torch.zeros(output_shape).to(input_.device).scatter_(1, input_, 1) def check_consecutive(labels): """ Check that the input labels are consecutive and start at zero. """ diff = labels[1:] - labels[:-1] return (labels[0] == 0) and (diff == 1).all() class ContrastiveWeights(nn.Module): """ Implementation of contrastive loss defined in https://arxiv.org/pdf/1708.02551.pdf 'Semantic Instance Segmentation with a Discriminative Loss Function' This implementation expands all tensors to match the instance dimensions. This means that it's fast, but has high memory consumption. Also, the implementation does not support masking any instance labels in the loss. """ def __init__(self, delta_var, delta_dist, alpha=1., beta=1., gamma=0.001): super().__init__() self.delta_var = delta_var self.delta_dist = delta_dist self.alpha = alpha self.beta = beta self.gamma = gamma self.norm = 'fro' def dist(self, x, y, dim, kd=True): """implements cosine distance""" _x = x / (torch.norm(x, dim=dim, keepdim=True) + 1e-10) _y = y / (torch.norm(y, dim=dim, keepdim=True) + 1e-10) return 1.0 - (_x * _y).sum(dim=dim, keepdim=kd) # def dist(self, x, y, dim, kd=True): # return (x - y).norm(p=self.norm, dim=dim, keepdim=kd) def _compute_cluster_means(self, input_, target, ndim): dim_arg = (3, 4) if ndim == 2 else (3, 4, 5) embedding_dims = input_.size()[1] # expand target: NxCxSPATIAL -> # NxCx1xSPATIAL target = target.unsqueeze(2) # NOTE we could try to reuse this in '_compute_variance_term', # but it has another dimensionality, so we would need to drop one axis # get number of voxels in each cluster output: NxCx1(SPATIAL) num_voxels_per_instance = torch.sum(target, dim=dim_arg, keepdim=True) # expand target: NxCx1xSPATIAL -> # NxCxExSPATIAL shape = list(target.size()) shape[2] = embedding_dims target = target.expand(shape) # expand input_: NxExSPATIAL -> Nx1xExSPATIAL input_ = input_.unsqueeze(1) # sum embeddings in each instance (multiply first via broadcasting) output: NxCxEx1(SPATIAL) embeddings_per_instance = input_ * target num = torch.sum(embeddings_per_instance, dim=dim_arg, keepdim=True) # compute mean embeddings per instance NxCxEx1(SPATIAL) mean_embeddings = num / num_voxels_per_instance # return mean embeddings and additional tensors needed for further computations return mean_embeddings, embeddings_per_instance def _compute_variance_term(self, cluster_means, embeddings_per_instance, target, ndim): dim_arg = (2, 3) if ndim == 2 else (2, 3, 4) # compute the distance to cluster means, result:(NxCxSPATIAL) embedding_norms = self.dist(embeddings_per_instance, cluster_means, dim=2, kd=False) # get per instance distances (apply instance mask) embedding_norms = embedding_norms * target # zero out distances less than delta_var and sum to get the variance (NxC) embedding_variance = torch.clamp(embedding_norms - self.delta_var, min=0) ** 2 embedding_variance = torch.sum(embedding_variance, dim=dim_arg) # get number of voxels per instance (NxC) num_voxels_per_instance = torch.sum(target, dim=dim_arg) # normalize the variance term C = target.size()[1] variance_term = torch.sum(embedding_variance / num_voxels_per_instance, dim=1) / C return variance_term def _compute_distance_term(self, cluster_means, eid, ew, C, ndim): if C == 1: # just one cluster in the batch, so distance term does not contribute to the loss return 0. # squeeze space dims for _ in range(ndim): cluster_means = cluster_means.squeeze(-1) # expand cluster_means tensor in order to compute the pair-wise distance between cluster means cluster_means = cluster_means.unsqueeze(1) shape = list(cluster_means.size()) shape[1] = C # NxCxCxExSPATIAL(1) cm_matrix1 = cluster_means.expand(shape) # transpose the cluster_means matrix in order to compute pair-wise distances cm_matrix2 = cm_matrix1.permute(0, 2, 1, 3) # compute pair-wise distances (NxCxC) dist_matrix = self.dist(cm_matrix1, cm_matrix2, dim=3, kd=False) if ew is not None: dist_matrix[:, eid[0], eid[1]] = dist_matrix[:, eid[0], eid[1]] * ew dist_matrix[:, eid[1], eid[0]] = dist_matrix[:, eid[1], eid[0]] * ew # create matrix for the repulsion distance (i.e. cluster centers further apart than 2 * delta_dist # are not longer repulsed) repulsion_dist = 2 * self.delta_dist * (1 - torch.eye(C)) # 1xCxC repulsion_dist = repulsion_dist.unsqueeze(0).to(cluster_means.device) # zero out distances grater than 2*delta_dist (NxCxC) hinged_dist = torch.clamp(repulsion_dist - dist_matrix, min=0) ** 2 # sum all of the hinged pair-wise distances hinged_dist = torch.sum(hinged_dist, dim=(1, 2)) # normalized by the number of paris and return return hinged_dist / (C * (C - 1)) def _compute_regularizer_term(self, cluster_means, C, ndim): # squeeze space dims for _ in range(ndim): cluster_means = cluster_means.squeeze(-1) norms = torch.norm(cluster_means, p=self.norm, dim=2) assert norms.size()[1] == C # return the average norm per batch return torch.sum(norms, dim=1).div(C) def forward(self, input_, target, edge_ids=None, weights=None, *args, **kwargs): """ Args: input_ (torch.tensor): embeddings predicted by the network (NxExDxHxW) (E - embedding dims) expects float32 tensor target (torch.tensor): ground truth instance segmentation (NxDxHxW) expects int64 tensor Returns: Combined loss defined as: alpha * variance_term + beta * distance_term + gamma * regularization_term """ input_ = input_[:, :, None] n_batches = input_.shape[0] # compute the loss per each instance in the batch separately # and sum it up in the per_instance variable per_instance_loss = 0. for idx, (single_input, single_target), eid, ew in enumerate(zip(input_, target)): # add singleton batch dimension required for further computation if weights is None: ew = None eid = None else: ew = weights[idx] eid = edge_ids[idx] single_input = single_input.unsqueeze(0) single_target = single_target.unsqueeze(0) # get number of instances in the batch instance instances = torch.unique(single_target) assert check_consecutive(instances) C = instances.size()[0] # SPATIAL = D X H X W in 3d case, H X W in 2d case # expand each label as a one-hot vector: N x SPATIAL -> N x C x SPATIAL single_target = expand_as_one_hot(single_target, C) # compare spatial dimensions assert single_input.dim() in (4, 5) assert single_input.dim() == single_target.dim() assert single_input.size()[2:] == single_target.size()[2:] spatial_dims = single_input.dim() - 2 # compute mean embeddings and assign embeddings to instances cluster_means, embeddings_per_instance = self._compute_cluster_means(single_input, single_target, spatial_dims) variance_term = self._compute_variance_term(cluster_means, embeddings_per_instance, single_target, spatial_dims) distance_term = self._compute_distance_term(cluster_means, eid, ew, C, spatial_dims) # regularization_term = self._compute_regularizer_term(cluster_means, C, spatial_dims) # compute total loss and sum it up loss = self.alpha * variance_term + self.beta * distance_term # + self.gamma * regularization_term per_instance_loss += loss # reduce across the batch dimension return per_instance_loss.div(n_batches)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 5 11:36:51 2020 @author: cjburke """ import numpy as np import matplotlib.pyplot as plt import h5py from astropy.wcs import WCS from astropy.io import fits import glob import os import argparse try: import pyds9 as pd except ImportError: print('Warning: No pyds9 installed. No debugging with image display available') from astropy.wcs import WCS from astropy.io import fits from astropy import units as u from astropy.coordinates import SkyCoord from gwcs.wcstools import wcs_from_points from gwcs.wcs import WCS as WCS_gwcs from gwcs.coordinate_frames import * import os import glob from step1_get_refimg_ctrlpts import gdPRF_calc, idx_filter, ring_background import photutils.centroids as cent from tess_stars2px import tess_stars2px_reverse_function_entry def idx_filter(idx, *array_list): new_array_list = [] for array in array_list: new_array_list.append(array[idx]) return new_array_list def binmedian(xdata, ydata, nBins=30, xmin=None, xmax=None, showDetail=False): if xmin == None: xmin = xdata.min() if xmax == None: xmax = xdata.max() xedges = np.linspace(xmin, xmax, nBins+1) midx = xedges[:-1] + np.diff(xedges)/2.0 iargs = np.digitize(xdata, xedges) medata = np.zeros_like(midx) mndata = np.zeros_like(midx) stddata = np.zeros_like(midx) ndata = np.zeros_like(midx) for i in np.arange(0,nBins): iuse = np.where(iargs == i)[0] medata[i] = np.median(ydata[iuse]) mndata[i] = np.mean(ydata[iuse]) stddata[i] = np.std(ydata[iuse]) ndata[i] = len(ydata[iuse]) if showDetail: for i in np.arange(0,nBins): errmn = stddata[i]/np.sqrt(ndata[i]) sigmn = mndata[i] / errmn print('i: {0:d} med: {1:f} mn: {2:f} n: {3:f} errmn: {4:f} sigdif: {5:f} midx: {6:f}'.format(\ i, medata[i], mndata[i], ndata[i], errmn, sigmn, midx[i])) return medata, midx, mndata, stddata, ndata if __name__ == '__main__': refprefix = 'refout/refspocunidense_S29_' nTots = np.array([], dtype=np.int) nBrgts = np.array([], dtype=np.int) noises = np.array([], dtype=np.int) REFPIXCOL = 1024.0+45.0 REFPIXROW = 1024.0 PIX2DEG = 21.0/3600.0 # Turn pixels to degrees roughly SECTOR_WANT=29 fitDegree=6 colMin = 45 colMax = 2092 rowMin = 1 rowMax = 2048 for iCam in range(1,5): for iCcd in range(1,5): refh5 = '{0}{1:d}{2:d}.h5'.format(refprefix,iCam, iCcd) CAMERA_WANT=iCam CCD_WANT=iCcd # Load the reference position information fin = h5py.File(refh5, 'r') tics = np.array(fin['tics']) ras = np.array(fin['ras']) decs = np.array(fin['decs']) tmags = np.array(fin['tmags']) blkidxs = np.array(fin['blkidxs']) obscols = np.array(fin['obscols']) obsrows = np.array(fin['obsrows']) # From reference pixel coordinates get the estimated ra and dec of this point raproj, decproj, scinfo = tess_stars2px_reverse_function_entry(\ SECTOR_WANT, CAMERA_WANT, CCD_WANT, REFPIXCOL, REFPIXROW) proj_point = SkyCoord(raproj, decproj, frame = 'icrs', unit=(u.deg, u.deg)) # Reference subtracted pixel coordinates sclObsCols = (obscols - REFPIXCOL) * PIX2DEG sclObsRows = (obsrows - REFPIXROW) * PIX2DEG xy = (sclObsCols, sclObsRows) radec = (ras, decs) gwcs_obj = wcs_from_points(xy, radec, proj_point, degree=fitDegree) # Look for outliers to trim gwcs_pred_ras, gwcs_pred_decs = gwcs_obj(sclObsCols, sclObsRows) deg2Rad = np.pi/180.0 deltaRas = (gwcs_pred_ras - ras) *3600.0 * np.cos(decs*deg2Rad) deltaDecs = (gwcs_pred_decs - decs) *3600.0 deltaSeps = np.sqrt(deltaRas*deltaRas + deltaDecs*deltaDecs) c1 = 1.0/np.sqrt(2.0) idx = np.where(tmags<10.0)[0] std1 = np.std(deltaRas[idx]) std2 = np.std(deltaDecs[idx]) brightstd = np.sqrt(std1*std1+std2*std2)*c1 idx = np.where(tmags>10.0)[0] std1 = np.std(deltaRas[idx]) std2 = np.std(deltaDecs[idx]) faintstd = np.sqrt(std1*std1+std2*std2)*c1 std1 = np.std(deltaRas) std2 = np.std(deltaDecs) allstd = np.sqrt(std1*std1+std2*std2)*c1 nTots = np.append(nTots, len(tics)) nBrgts = np.append(nBrgts, len(np.where(tmags<10.0)[0])) noises = np.append(noises, brightstd) print('Cam: {0:d} Ccd:{1:d} TotN:{2:d} BrghtN:{3:d} Nose: {4:f}'.format(\ iCam, iCcd, len(tics), len(np.where(tmags<10.0)[0]),\ brightstd)) plt.plot(obscols, obsrows, '.') plt.axhline(rowMin, ls='-', color='k') plt.axhline(rowMax, ls='-', color='k') plt.axvline(colMin, ls='-', color='k') plt.axvline(colMax, ls='-', color='k') plt.xlabel('Column [pix]') plt.ylabel('Row [pix]') plt.show() plt.plot(nTots, noises, '.') plt.xlabel('N Reference Targs') plt.ylabel('Fit noise [arcsec]') plt.show() plt.plot(nBrgts, noises, '.') plt.xlabel('N Bright (Tm<10) Ref Targs') plt.ylabel('WCS Fit Resiudal [arcsec]') plt.show()
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'control_app.ui' # # Created by: PyQt4 UI code generator 4.11.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(958, 795) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(MainWindow.sizePolicy().hasHeightForWidth()) MainWindow.setSizePolicy(sizePolicy) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.gridLayout_3 = QtGui.QGridLayout(self.centralwidget) self.gridLayout_3.setObjectName(_fromUtf8("gridLayout_3")) self.centralGridLayout = QtGui.QGridLayout() self.centralGridLayout.setObjectName(_fromUtf8("centralGridLayout")) self.tabWidget = QtGui.QTabWidget(self.centralwidget) self.tabWidget.setObjectName(_fromUtf8("tabWidget")) self.tab_3 = QtGui.QWidget() self.tab_3.setObjectName(_fromUtf8("tab_3")) self.tabWidget.addTab(self.tab_3, _fromUtf8("")) self.visualizerTab = QtGui.QWidget() self.visualizerTab.setObjectName(_fromUtf8("visualizerTab")) self.gridLayout_2 = QtGui.QGridLayout(self.visualizerTab) self.gridLayout_2.setMargin(0) self.gridLayout_2.setObjectName(_fromUtf8("gridLayout_2")) self.visualizerVLayout = QtGui.QVBoxLayout() self.visualizerVLayout.setObjectName(_fromUtf8("visualizerVLayout")) self.soundDeviceSelectBox = QtGui.QComboBox(self.visualizerTab) self.soundDeviceSelectBox.setObjectName(_fromUtf8("soundDeviceSelectBox")) self.visualizerVLayout.addWidget(self.soundDeviceSelectBox) self.horizontalLayout = QtGui.QHBoxLayout() self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.visualizerStartBtn = QtGui.QPushButton(self.visualizerTab) self.visualizerStartBtn.setObjectName(_fromUtf8("visualizerStartBtn")) self.horizontalLayout.addWidget(self.visualizerStartBtn) self.visualizerStopBtn = QtGui.QPushButton(self.visualizerTab) self.visualizerStopBtn.setObjectName(_fromUtf8("visualizerStopBtn")) self.horizontalLayout.addWidget(self.visualizerStopBtn) self.visualizerVLayout.addLayout(self.horizontalLayout) self.gridLayout_2.addLayout(self.visualizerVLayout, 0, 0, 1, 1) self.tabWidget.addTab(self.visualizerTab, _fromUtf8("")) self.centralGridLayout.addWidget(self.tabWidget, 0, 0, 1, 1) self.gridLayout_3.addLayout(self.centralGridLayout, 0, 0, 1, 1) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtGui.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 958, 21)) self.menubar.setObjectName(_fromUtf8("menubar")) MainWindow.setMenuBar(self.menubar) self.statusbar = QtGui.QStatusBar(MainWindow) self.statusbar.setObjectName(_fromUtf8("statusbar")) MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) self.tabWidget.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "LED Control", None)) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_3), _translate("MainWindow", "Start", None)) self.visualizerStartBtn.setText(_translate("MainWindow", "Start", None)) self.visualizerStopBtn.setText(_translate("MainWindow", "Stop", None)) self.tabWidget.setTabText(self.tabWidget.indexOf(self.visualizerTab), _translate("MainWindow", "Tab 2", None))
# -*- coding: utf-8 -*- """ zeronimo.helpers ~~~~~~~~~~~~~~~~ Helper functions. :copyright: (c) 2013-2017 by Heungsub Lee :license: BSD, see LICENSE for more details. """ from errno import EINTR import zmq __all__ = ['FALSE_RETURNER', 'class_name', 'make_repr', 'socket_type_name', 'repr_socket', 'eintr_retry', 'eintr_retry_zmq'] #: A function which always returns ``False``. It is used for default of #: `Worker.reject_if` and `Fanout.drop_if`. FALSE_RETURNER = lambda *a, **k: False def class_name(obj): """Returns the class name of the object.""" return type(obj).__name__ def _repr_attr(obj, attr, data=None, reprs=None): val = getattr(obj, attr) if data is not None: val = data.get(attr, val) if reprs is None: repr_f = repr else: repr_f = reprs.get(attr, repr) return repr_f(val) def make_repr(obj, params=None, keywords=None, data=None, name=None, reprs=None): """Generates a string of object initialization code style. It is useful for custom __repr__ methods:: class Example(object): def __init__(self, param, keyword=None): self.param = param self.keyword = keyword def __repr__(self): return make_repr(self, ['param'], ['keyword']) See the representation of example object:: >>> Example('hello', keyword='world') Example('hello', keyword='world') """ opts = [] if params is not None: opts.append(', '.join( _repr_attr(obj, attr, data, reprs) for attr in params)) if keywords is not None: opts.append(', '.join( '%s=%s' % (attr, _repr_attr(obj, attr, data, reprs)) for attr in keywords)) if name is None: name = class_name(obj) return '%s(%s)' % (name, ', '.join(opts)) _socket_type_names = {} for name in ('PAIR PUB SUB REQ REP DEALER ROUTER PULL PUSH XPUB XSUB ' 'STREAM').split(): try: socket_type = getattr(zmq, name) except AttributeError: continue assert socket_type not in _socket_type_names _socket_type_names[socket_type] = name def socket_type_name(socket_type): """Gets the ZeroMQ socket type name.""" return _socket_type_names[socket_type] def repr_socket(socket): try: return '%s[%d]' % (socket_type_name(socket.type), socket.fd) except zmq.ZMQError as exc: return 'ERR[%d]' % exc.errno def eintr_retry(exc_type, f, *args, **kwargs): """Calls a function. If an error of the given exception type with interrupted system call (EINTR) occurs calls the function again. """ while True: try: return f(*args, **kwargs) except exc_type as exc: if exc.errno != EINTR: raise else: break def eintr_retry_zmq(f, *args, **kwargs): """The specialization of :func:`eintr_retry` by :exc:`zmq.ZMQError`.""" return eintr_retry(zmq.ZMQError, f, *args, **kwargs)
# Copyright (c) 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. '''A container for timeline-based events and traces and can handle importing raw event data from different sources. This model closely resembles that in the trace_viewer project: https://code.google.com/p/trace-viewer/ ''' # Register importers for data from telemetry.core.timeline import inspector_importer from telemetry.core.timeline.tracing import trace_event_importer _IMPORTERS = [ inspector_importer.InspectorTimelineImporter, trace_event_importer.TraceEventTimelineImporter ] class TimelineModel(object): def __init__(self, event_data=None, shift_world_to_zero=True): self._root_events = [] self._all_events = [] self._frozen = False self.import_errors = [] self.metadata = [] self._bounds = None if event_data is not None: self.ImportTraces([event_data], shift_world_to_zero=shift_world_to_zero) @property def min_timestamp(self): if self._bounds is None: self.UpdateBounds() return self._bounds[0] @property def max_timestamp(self): if self._bounds is None: self.UpdateBounds() return self._bounds[1] def AddEvent(self, event): if self._frozen: raise Exception("Cannot add events once recording is done") self._root_events.append(event) self._all_events.extend( event.GetAllChildrenRecursive(include_self=True)) def DidFinishRecording(self): self._frozen = True def ImportTraces(self, traces, shift_world_to_zero=True): if self._frozen: raise Exception("Cannot add events once recording is done") importers = [] for event_data in traces: importers.append(self._CreateImporter(event_data)) importers.sort(cmp=lambda x, y: x.import_priority - y.import_priority) for importer in importers: # TODO: catch exceptions here and add it to error list importer.ImportEvents() for importer in importers: importer.FinalizeImport() if shift_world_to_zero: self.ShiftWorldToZero() # Because of FinalizeImport, it would probably be a good idea # to prevent the timeline from from being modified. self.DidFinishRecording() def ShiftWorldToZero(self): if not len(self._root_events): return self.UpdateBounds() delta = min(self._root_events, key=lambda e: e.start).start for event in self._root_events: event.ShiftTimestampsForward(-delta) def UpdateBounds(self): if not len(self._root_events): self._bounds = (0, 0) return for e in self._root_events: e.UpdateBounds() first_event = min(self._root_events, key=lambda e: e.start) last_event = max(self._root_events, key=lambda e: e.end) self._bounds = (first_event.start, last_event.end) def GetRootEvents(self): return self._root_events def GetAllEvents(self): return self._all_events def GetAllEventsOfName(self, name): return [e for e in self._all_events if e.name == name] def _CreateImporter(self, event_data): for importer_class in _IMPORTERS: if importer_class.CanImport(event_data): return importer_class(self, event_data) raise ValueError("Could not find an importer for the provided event data")
try: from .KsDataReader import * except ImportError: pass
import os import json from multiplespawner.defaults import default_base_path from multiplespawner.util import load def get_spawner_template_path(path=None): if "MULTIPLE_SPAWNER_TEMPLATE_FILE" in os.environ: path = os.environ["MULTIPLE_SPAWNER_TEMPLATE_FILE"] else: # If no path is set programmatically if not path: path = os.path.join(default_base_path, "spawner_templates.json") return path def get_spawner_template(provider, resource_type, path=None): if not path: path = get_spawner_template_path(path=path) templates = load(path, handler=json) if not isinstance(templates, list): return None for template in templates: if ( template["resource_type"] == resource_type and provider in template["providers"] ): return template return None
from .sensitivity import solve_sensitivity from .monte_carlo import solve_monte_carlo from ..model_parser import ModelParser def solve_identifiability(model): method = model['options']['method'] if method == 'sensitivity': return solve_sensitivity(model, ModelParser) elif method == 'monte_carlo': return solve_monte_carlo(model)
""" GoPro splits long recordings out to multiple files (chapters). This library is for locating movies (from a GoPro memory card) in a directory and determining which movies belong to a sequence and merging them into a single movie file. >>> import gp_merge_clips >>> gp_merge_clips.merge_clips('/path/to/root/dir') Command line $ python -m gp_merge_clips /path/to/root/dir """ import os import shutil import argparse import tempfile from itertools import groupby from operator import itemgetter from subprocess import Popen _VERBOSE = True VALID = ('mp4', 'mov', 'avi') EXE = 'ffmpeg -f concat -safe 0 -i %(text)s -c:v copy %(output)s' def merge_clips(path, dryrun=False): """ Locate movie clips that are chapters of one recording and merge them to single movie file(s). :param path: root path to a directory containing the movie files :rtype: {} :returns: { <clip basename>: { 'clips': [<manifest of clips to be merged>, ...] 'command': <ffmpeg command that is generated> 'output': <merged movie file> } } """ mapping = _map_chapters(path) for key in mapping: clips = mapping[key]['clips'] if len(clips) < 2: continue clips.sort() mapping[key].update(_merge_clips(clips, dryrun)) key_path = os.path.join(path, key) if not os.path.exists(key_path): if dryrun: _print("DRYRUN: creating '%s'" % key_path) else: os.makedirs(key_path) for clip in clips: _move(clip, key_path, dryrun) _move(mapping[key]['output'], clips[0], dryrun) return mapping def _print(message): """ :param str message: """ global _VERBOSE if _VERBOSE: print(message) def _move(src, dst, dryun): """ :param str src: :param str dst: :param bool dryrun: """ if dryun: _print("Moving %s > %s" % (src, dst)) else: shutil.move(src, dst) def _merge_clips(clips, dryrun): """ ffmpeg plays nicely when the files that are to be concatenated are written to a text file, and the file is passed to ffmpeg the new file is written to temp :param [] clips: list of movie clips to be concatenated :param bool dryrun: :returns: { 'output': <concatenated file> 'command': <ffmpeg command executed> } """ text = [] for clip in clips: text.append("file '%s'" % clip) text = '\n'.join(text) tmp_text = tempfile.mktemp() if dryrun: _print("Writing:\n%s\n>>%s" % (text, tmp_text)) else: with open(tmp_text, 'w') as open_file: open_file.write(text) ext = os.path.splitext(clips[0])[-1] output = tempfile.mktemp(suffix=ext) command = EXE % { 'text': tmp_text, 'output': output } _print("Running: %s" % command) if not dryrun: proc = Popen(command, shell=True) proc.communicate() if proc.returncode != 0: raise RuntimeError("Failed to process '%s'" % command) os.remove(tmp_text) return {'output': output, 'command': command} def _sort_by_mtime(path, movies): """ Sort movies by the mtime, this gives us a list of movies that is not sorted by name. This will help distinguish clips that are chapters of a single shot :param str path: root path :param [] movies: movie file names :rtype: [<str>, <str>, ...] """ mtime_mapping = {} for movie in movies: full_path = os.path.join(path, movie) mtime_mapping[os.stat(full_path).st_mtime] = movie mtime = [*mtime_mapping.keys()] mtime.sort() return [mtime_mapping[x] for x in mtime] def _map_movies(movies): """ In order to sequentially sort the movie clips we have to strip the 'GH' prefix and extension and cast the rest of the filename to an integer input: ['GH010013.MP4', 'GH020013.MP4', 'GH030013.MP4'] output: {10013: 'GH010013.MP4', 20013: 'GH020013.MP4', 30013: 'GH030013.MP4'} :param [] movies: :rtype: {} """ mapped_movies = {} for movie in movies: basename = os.path.splitext(movie)[0] mapped_movies[int(basename[2:])] = movie return mapped_movies def _sort_sequential_movies(movies): """ The logic here will figure out the sequentially named files and return the correct sequences A list that looks like this: ['GH010013.MP4', 'GH010014.MP4', 'GH010015.MP4', 'GH010016.MP4', 'GH010017.MP4', 'GH010018.MP4', 'GH020013.MP4', 'GH020016.MP4', 'GH030013.MP4', 'GH030016.MP4', 'GH040016.MP4'] Should be sorted like this [['GH010013.MP4', 'GH010014.MP4', 'GH010015.MP4', 'GH010016.MP4', 'GH010017.MP4', 'GH010018.MP4'], ['GH020013.MP4'], ['GH020016.MP4'], ['GH030013.MP4'], ['GH030016.MP4'], ['GH040016.MP4']] The nested list that has the smallest number should be the list containing all movies that are first chapter or solo (un-chaptered). This is the list that should be returned ['GH010013.MP4', 'GH010014.MP4', 'GH010015.MP4', 'GH010016.MP4', 'GH010017.MP4', 'GH010018.MP4'] :param [] movies: movie movies :rtype: [] """ mapped_movies = _map_movies(movies) keys = [*mapped_movies] keys.sort() sequential_movies = [] for gb in groupby(enumerate(keys), lambda ix : ix[0] - ix[1]): grouped = list(map(itemgetter(1), gb[1])) sequential_movies.append([mapped_movies[x] for x in grouped]) sorted(sequential_movies, key=lambda x: x[0]) try: first_chapters = sequential_movies[0] except IndexError: first_chapters = [] return first_chapters def _map_chapters(path): """ Create a mapping table (dict) that associates chapters :param str path: :rtype: {} :returns: { <clip basename>: { 'clips': [<manifest of clips to be merged>, ...] 'command': <ffmpeg command that is generated> 'output': <merged movie file> } } """ movies = [] mapping = {} # locate all valid media files for movie in os.listdir(path): ext = os.path.splitext(movie)[-1] if ext[1:].lower() in VALID: movies.append(movie) # isolate sequential files, that should also be the first # chapter of a single shot sequential_movies = _sort_sequential_movies(movies) if not sequential_movies: return mapping # get movies sorted by their mtime (ignore sequential naming) sorted_by_mtime = _sort_by_mtime(path, movies) # here we create a diff of indices that will identify the # the sorted_by_mtime would look something like this # ['GH010013.MP4', 'GH020013.MP4', 'GH030013.MP4', 'GH010014.MP4', # 'GH010015.MP4', 'GH010016.MP4', 'GH020016.MP4', 'GH030016.MP4', # 'GH040016.MP4', 'GH010017.MP4', 'GH010018.MP4'] # the sequential nodes would look like this # ['GH010013.MP4', 'GH010014.MP4', 'GH010015.MP4', 'GH010016.MP4', # 'GH010017.MP4', 'GH010018.MP4'] # the diff would isolate the indices of the movies (first example) # that are missing from the second example. # [1, 2, 6, 7, 8] diff_movies = list(set(sorted_by_mtime) - set(sequential_movies)) diff_indices = [sorted_by_mtime.index(d) for d in diff_movies] diff_indices.sort() # now we group the indices to look like this # [[1, 2], [6, 7, 8]] # pulling the first and last index of each nested list we know the # index range of the chapters that belong to one shot for gb in groupby(enumerate(diff_indices), lambda ix : ix[0] - ix[1]): grouped_indices = list(map(itemgetter(1), gb[1])) grouped_movies = sorted_by_mtime[grouped_indices[0]-1: grouped_indices[-1]+1] key = os.path.splitext(grouped_movies[0])[0] mapping.setdefault(key, {'clips': [os.path.join(path, x) for x in grouped_movies], 'command': None, 'output': None}) return mapping def _main(): parser = argparse.ArgumentParser() parser.add_argument('path', nargs='?', default=os.getcwd()) parser.add_argument('-n', '--dryrun', action='store_true') args = parser.parse_args() merge_clips(args.path, dryrun=args.dryrun) if __name__ == '__main__': _main()
from django.db import models from slugify import slugify class Country(models.Model): """ Country's model """ name = models.CharField( verbose_name='Country name', max_length=255, ) slug = models.SlugField( unique=True, max_length=255, blank=True, editable=False ) class Meta: verbose_name = 'Country' verbose_name_plural = 'Countries' ordering = ('name',) def __str__(self) -> str: return f'{self.name}' def save(self, *args, **kwargs): self.slug = slugify(self.name) super(Country, self).save(*args, **kwargs) class City(models.Model): """ City's model """ country = models.ForeignKey( to=Country, on_delete=models.CASCADE, verbose_name='Country', related_name='cities' ) name = models.CharField( verbose_name='City name', max_length=255 ) slug = models.SlugField( unique=True, max_length=255, blank=True, editable=False, ) class Meta: verbose_name = 'City' verbose_name_plural = 'Cities' def __str__(self) -> str: return f'{self.name}' def save(self, *args, **kwargs): self.slug = slugify(self.name) super(City, self).save(*args, **kwargs)
from . import bit from .utils import Key, BaseUrl from .bit import capture, verify_images, verify, status, setup, BiTStatus
#!/usr/bin/env python """%(prog)s - run a command when a file is changed Usage: %(prog)s [-r] FILE COMMAND... %(prog)s [-r] FILE [FILE ...] -c COMMAND FILE can be a directory. Watch recursively with -r. Use %%f to pass the filename to the command. Copyright (c) 2011, Johannes H. Jensen. License: BSD, see LICENSE for more details. """ from __future__ import print_function import sys import os import re import pyinotify class WhenChanged(pyinotify.ProcessEvent): # Exclude Vim swap files, its file creation test file 4913 and backup files exclude = re.compile(r'^\..*\.sw[px]*$|^4913$|.~$') def __init__(self, files, command, recursive=False): self.files = files self.paths = {os.path.realpath(f): f for f in files} self.command = command self.recursive = recursive def run_command(self, file): os.system(self.command.replace('%f', file)) def is_interested(self, path): basename = os.path.basename(path) if self.exclude.match(basename): return False if path in self.paths: return True path = os.path.dirname(path) if path in self.paths: return True if self.recursive: while os.path.dirname(path) != path: path = os.path.dirname(path) if path in self.paths: return True return False def process_IN_CLOSE_WRITE(self, event): path = event.pathname if self.is_interested(path): self.run_command(path) def run(self): wm = pyinotify.WatchManager() notifier = pyinotify.Notifier(wm, self) # Add watches (IN_CREATE is required for auto_add) mask = pyinotify.IN_CLOSE_WRITE | pyinotify.IN_CREATE watched = set() for p in self.paths: if os.path.isdir(p) and not p in watched: # Add directory wdd = wm.add_watch(p, mask, rec=self.recursive, auto_add=self.recursive) else: # Add parent directory path = os.path.dirname(p) if not path in watched: wdd = wm.add_watch(path, mask) notifier.loop() def print_usage(prog): print(__doc__ % {'prog': prog}, end='') def main(): args = sys.argv prog = os.path.basename(args.pop(0)) if '-h' in args or '--help' in args: print_usage(prog) exit(0) files = [] command = [] recursive = False if args and args[0] == '-r': recursive = True args.pop(0) if '-c' in args: cpos = args.index('-c') files = args[:cpos] command = args[cpos+1:] elif len(args) >= 2: files = [args[0]] command = args[1:] if not files or not command: print_usage(prog) exit(1) command = ' '.join(command) # Tell the user what we're doing if len(files) > 1: l = ["'%s'" % f for f in files] s = ', '.join(l[:-1]) + ' or ' + l[-1] print("When %s changes, run '%s'" % (s, command)) else: print("When '%s' changes, run '%s'" % (files[0], command)) wc = WhenChanged(files, command, recursive) try: wc.run() except KeyboardInterrupt: print() exit(0)
from ..core import Niche from .model import Model, simulate from .env import minigridhard_custom, Env_config from collections import OrderedDict DEFAULT_ENV = Env_config( name='default_env', lava_prob=[0., 0.1], obstacle_lvl=[0., 1.], box_to_ball_prob=[0., 0.3], door_prob=[0., 0.3], wall_prob=[0., 0.3]) class MiniGridNiche(Niche): def __init__(self, env_configs, seed, init='random', stochastic=False): self.model = Model(minigridhard_custom) if not isinstance(env_configs, list): env_configs = [env_configs] self.env_configs = OrderedDict() for env in env_configs: self.env_configs[env.name] = env self.seed = seed self.stochastic = stochastic self.model.make_env(seed=seed, env_config=DEFAULT_ENV) self.init = init def __getstate__(self): return {"env_configs": self.env_configs, "seed": self.seed, "stochastic": self.stochastic, "init": self.init, } def __setstate__(self, state): self.model = Model(minigridhard_custom) self.env_configs = state["env_configs"] self.seed = state["seed"] self.stochastic = state["stochastic"] self.model.make_env(seed=self.seed, env_config=DEFAULT_ENV) self.init = state["init"] def add_env(self, env): env_name = env.name assert env_name not in self.env_configs.keys() self.env_configs[env_name] = env def delete_env(self, env_name): assert env_name in self.env_configs.keys() self.env_configs.pop(env_name) def initial_theta(self): if self.init == 'random': return self.model.get_random_model_params() elif self.init == 'zeros': import numpy as np return np.zeros(self.model.param_count) else: raise NotImplementedError( 'Undefined initialization scheme `{}`'.format(self.init)) def rollout(self, theta, random_state, eval=False): self.model.set_model_params(theta) total_returns = 0 total_length = 0 if self.stochastic: seed = random_state.randint(1000000) else: seed = self.seed #print('self.env_configs.values()', self.env_configs.values()) for env_config in self.env_configs.values(): returns, lengths = simulate( self.model, seed=seed, train_mode=not eval, num_episode=1, env_config_this_sim=env_config) total_returns += returns[0] total_length += lengths[0] return total_returns / len(self.env_configs), total_length
import xml.dom.minidom, sys """Para parsear el documento con muchas noticias (cada noticia entre <doc></doc>), necesitamos una metaetiqueta (en este ejemplo <docs>). """ def getKey(item): return item[0] def getText(nodelist): rc = [] for node in nodelist: if node.nodeType == node.TEXT_NODE: rc.append(node.data) return ''.join(rc) def handleReuse(docs): tuples=[] cases = docs.getElementsByTagName("reuse_case") for case in cases: a=handleCase(case) tuples.append(a[0]) tuples.append(a[1]) return tuples def handleCase(case): tuple=[[str(case.attributes['source_code1'].value),str(case.attributes['source_code2'].value)],[str(case.attributes['source_code2'].value),str(case.attributes['source_code1'].value)]] return tuple import sys if len(sys.argv) !=3: print "Number of arguments must be 2: QREL_FILE DETECTION_FILE" sys.exit() #print 'Number of arguments:', len(sys.argv), 'arguments.' #archivo= 'SOCO14-c.qrel' qrel_file=str(sys.argv[1]) det_file=str(sys.argv[2]) document = open(det_file, 'r').read() lines = [line.strip() for line in open(qrel_file)] qrel= [l.split() for l in lines] gs = [ [rj[1],rj[0]] for rj in qrel ] gold_standard = gs+qrel sorted(gold_standard, key=getKey) #Minidom parsea el texto dom = xml.dom.minidom.parseString(document) ######################################## #Iniciamos la extraccion of gold standard result=handleReuse(dom) relevant_documents= len(gold_standard) retrieved_documents= len(result) contados=[] intersection= 0 for i in result: if i in gold_standard and i not in contados and [i[1],i[0]] not in contados: intersection=intersection+1 contados=contados+[i] intersection=intersection*2 precision = intersection/float(retrieved_documents) recall = intersection/float(relevant_documents) f1= 2 * ((precision*recall)/(precision+recall)) #print "Precision = "+ str(intersection/2) + " / "+ str(retrieved_documents/2) + " = %.3f" % precision, #print "Recall = "+ str(intersection/2) + " / "+ str(relevant_documents/2) + " = %.3f" % recall, print "\tF1 = %.3f" % f1, print "\tPrec. = %.3f" % precision, print "\tRec. = %.3f" % recall
import numpy as np from hyperopt import hp, fmin, tpe, Trials binary_operators = ["*", "/", "+", "-"] unary_operators = ["sin", "cos", "exp", "log"] space = dict( # model_selection="best", model_selection=hp.choice("model_selection", ["accuracy"]), # binary_operators=None, binary_operators=hp.choice("binary_operators", [binary_operators]), # unary_operators=None, unary_operators=hp.choice("unary_operators", [unary_operators]), # populations=100, populations=hp.qloguniform("populations", np.log(10), np.log(1000), 1), # niterations=4, niterations=hp.choice( "niterations", [10000] ), # We will quit automatically based on a clock. # ncyclesperiteration=100, ncyclesperiteration=hp.qloguniform( "ncyclesperiteration", np.log(10), np.log(5000), 1 ), # alpha=0.1, alpha=hp.loguniform("alpha", np.log(0.0001), np.log(1000)), # annealing=False, annealing=hp.choice("annealing", [False, True]), # fraction_replaced=0.01, fraction_replaced=hp.loguniform("fraction_replaced", np.log(0.0001), np.log(0.5)), # fraction_replaced_hof=0.005, fraction_replaced_hof=hp.loguniform( "fraction_replaced_hof", np.log(0.0001), np.log(0.5) ), # population_size=100, population_size=hp.qloguniform("population_size", np.log(20), np.log(1000), 1), # parsimony=1e-4, parsimony=hp.loguniform("parsimony", np.log(0.0001), np.log(0.5)), # topn=10, topn=hp.qloguniform("topn", np.log(2), np.log(50), 1), # weight_add_node=1, weight_add_node=hp.loguniform("weight_add_node", np.log(0.0001), np.log(100)), # weight_insert_node=3, weight_insert_node=hp.loguniform("weight_insert_node", np.log(0.0001), np.log(100)), # weight_delete_node=3, weight_delete_node=hp.loguniform("weight_delete_node", np.log(0.0001), np.log(100)), # weight_do_nothing=1, weight_do_nothing=hp.loguniform("weight_do_nothing", np.log(0.0001), np.log(100)), # weight_mutate_constant=10, weight_mutate_constant=hp.loguniform( "weight_mutate_constant", np.log(0.0001), np.log(100) ), # weight_mutate_operator=1, weight_mutate_operator=hp.loguniform( "weight_mutate_operator", np.log(0.0001), np.log(100) ), # weight_randomize=1, weight_randomize=hp.loguniform("weight_randomize", np.log(0.0001), np.log(100)), # weight_simplify=0.002, weight_simplify=hp.choice("weight_simplify", [0.002]), # One of these is fixed. # crossover_probability=0.01, crossover_probability=hp.loguniform( "crossover_probability", np.log(0.00001), np.log(0.2) ), # perturbation_factor=1.0, perturbation_factor=hp.loguniform( "perturbation_factor", np.log(0.0001), np.log(100) ), # maxsize=20, maxsize=hp.choice("maxsize", [30]), # warmup_maxsize_by=0.0, warmup_maxsize_by=hp.uniform("warmup_maxsize_by", 0.0, 0.5), # use_frequency=True, use_frequency=hp.choice("use_frequency", [True, False]), # optimizer_nrestarts=3, optimizer_nrestarts=hp.quniform("optimizer_nrestarts", 1, 10, 1), # optimize_probability=1.0, optimize_probability=hp.uniform("optimize_probability", 0.0, 1.0), # optimizer_iterations=10, optimizer_iterations=hp.quniform("optimizer_iterations", 1, 10, 1), # tournament_selection_p=1.0, tournament_selection_p=hp.uniform("tournament_selection_p", 0.0, 1.0), )
import math import random import numpy as np class Register(object): def __init__(self, num_qubits, state): """Initialise quantum register A register can be in a measured state superposition of states e.g. if a Hadamard gate is applied to a 1-qubit system then the qubit would be in a superposition of being both 0 and 1 The state of the register must always follow this equation: Let a, b and c be complex numbers representing the quantum states of a 2-qubit system: |a|^2 + |b|^2 + |c|^2 + |d|^2 = 1 Arguments: num_qubits -- number of qubits in register e.g. 3 state -- column vector representing initial quantum state. Example: [ (0.0, 0.0i) # 0 0 (0.0, 0.0i) # 0 1 (1.0, 0.0i) # 1 0 (0.0, 0.0i) # 1 1 ] shows a 'collapsed quantum state' because 1 0 is the only state set to 1 """ num_bases = len(state) if num_bases != pow(2, num_qubits): raise Exception("Invalid number of bases vectors") eps = 0.0001 total = complex(0, 0) for val in state: total = total + pow(np.abs(val), 2) if(not (abs(total - (complex(1, 0))) < eps)): raise Exception("Quantum state is invalid") self.state = state self.num_qubits = num_qubits @staticmethod def generate_bases(num_qubits): """Generate bases vectors Arguments: num_qubits -- number of qubits in register e.g. 3 Example: [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]] for a 3-qubit system """ bases = [] num_vectors = pow(2, num_qubits) for idx in range(num_vectors): base = [] current_base = idx for _ in range(num_qubits): base.append(int(current_base % 2)) current_base = current_base / 2 base.reverse() bases.append(base) return bases @staticmethod def filter_bases(num_qubits, qubit_nums): """Filter bases Arguments: num_qubits -- number of qubits in register e.g. 3 qubit_nums -- the qubits to filter e.g. 0 and 2 Example: - Generate bases: [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1]] - Filter to qubits 0 and 2: [[0, 0], [0, 1], [0, 0], [0, 1], [1, 0], [1, 1], [1, 0], [1, 1]] """ bases = Register.generate_bases(num_qubits) for idx in range(len(bases)): bases_before_filter = bases[idx] bases[idx] = [] for qubit_position in qubit_nums: bases[idx].append(bases_before_filter[qubit_position]) return bases @staticmethod def dirac_to_column_vector(dirac): """Convert Dirac vector from to column vector form Arguments: dirac -- dirac vector to convert e.g. [0, 0] Example: [0, 0] (|00> in Dirac notation) returns [0, 0, 0, 1] """ binary_str = '' for val in dirac: binary_str = binary_str + str(int(val)) column_vector_len = pow(2, len(dirac)) one_position = column_vector_len - int(binary_str, 2) - 1 vector = [0] * column_vector_len vector[one_position] = 1 return vector @staticmethod def column_vector_to_possible_dirac_vectors(column): """Convert column vector to all possible Dirac vectors Arguments: column -- column vector to convert e.g. [0, 0, 0, 1] Examples: [0, 0, 0, 1] returns [0, 0] (or |00> in Dirac notation) [0, 0, 1/sqrt(2), 1/sqrt(2)] returns [0, 0] or [0, 1] (or |00> or |01> in Dirac notation) """ possibilities = [] len_column = len(column) num_qubits = int(math.sqrt(len_column)) bases = Register.generate_bases(num_qubits) for idx, number in enumerate(column): if number != 0: possibilities.append(bases[len_column - idx - 1]) return possibilities def __get_collapsed_qubit__(self, probabilities): """Get a random qubit to collapse to based on quantum state Arguments: probabilities -- probabilities of each state to be the collapse state e.g. [0.5, 0.5] """ r = random.uniform(0, 1) s = 0 for qubit, prob in enumerate(probabilities): s += probabilities[prob] if s >= r: return qubit return probabilities[-1] def measure(self): """Perform quantum measurement Collapses from quantum state to classical state """ current_state = np.squeeze(np.asarray(self.state)) probabilities = {} for idx, basis in enumerate(current_state): probabilities[idx] = pow(basis, 2) collapsed_qubit = self.__get_collapsed_qubit__(probabilities) for idx, basis in enumerate(current_state): current_state[idx] = 0 current_state[collapsed_qubit] = 1 self.state = np.asmatrix(current_state)
import tkinter as tk class Plot4Q(tk.Frame): DEFAULT_BG_COLOR = 'grey' DEFAULT_LINE_COLOR = '#39FF14' def __init__(self, master, x_pixels=200, y_pixels=200, xrange=1.0, yrange=1.0, grid=False, x_axis_label_str=None, y_axis_label_str=None): self.parent = master super().__init__(self.parent) self.width_px = x_pixels self.height_px = y_pixels self.x_per_pixel = xrange/x_pixels self.y_per_pixel = yrange/y_pixels self.grid = grid self.plot = tk.Canvas(self.parent, width=x_pixels, height=y_pixels, background=self.DEFAULT_BG_COLOR) self.plot.grid() self.draw_axes() self.draw_grid() self.label_x_axis(x_axis_label_str) self.label_y_axis(y_axis_label_str) self.plot_series_number = 0 self.current_points = {} def remove_points(self): self.plot.delete('data_point') def remove_lines(self): self.plot.delete('data_line') def draw_axes(self): # draw the primary axes x0, y0 = self.to_screen_coords(-self.width_px / 2, 0) x1, y1 = self.to_screen_coords(self.width_px / 2, 0) x_axis = self.plot.create_line(x0, y0, x1, y1, tag='x_axis') x0, y0 = self.to_screen_coords(0, self.height_px / 2) x1, y1 = self.to_screen_coords(0, -self.height_px / 2) y_axis = self.plot.create_line(x0, y0, x1, y1, tag='y-axis') def draw_grid(self): if self.grid: # create the grid x_grid_interval_px = self.width_px / 10 y_grid_interval_px = self.height_px / 10 dash_tuple = (1, 1) for i in range(4): # top to bottom lines, right quadrants grid_x = (i + 1) * x_grid_interval_px grid_y = self.height_px / 2 x1, y1 = self.to_screen_coords(grid_x, grid_y) x1, y2 = self.to_screen_coords(grid_x, -grid_y) self.plot.create_line(x1, y1, x1, y2, dash=dash_tuple, tag='grid') # top to bottom lines, left quadrants grid_x = -(i + 1) * x_grid_interval_px grid_y = self.height_px / 2 x1, y1 = self.to_screen_coords(grid_x, grid_y) x1, y2 = self.to_screen_coords(grid_x, -grid_y) self.plot.create_line(x1, y1, x1, y2, dash=dash_tuple, tag='grid') # left-to-right lines, upper quadrants grid_x = self.width_px / 2 grid_y = (i + 1) * y_grid_interval_px x1, y1 = self.to_screen_coords(grid_x, grid_y) x2, y1 = self.to_screen_coords(-grid_x, grid_y) self.plot.create_line(x1, y1, x2, y1, dash=dash_tuple, tag='grid') # left-to-right lines, lower quadrants grid_x = self.width_px / 2 grid_y = -(i + 1) * y_grid_interval_px x1, y1 = self.to_screen_coords(grid_x, grid_y) x2, y1 = self.to_screen_coords(-grid_x, grid_y) self.plot.create_line(x1, y1, x2, y1, dash=dash_tuple, tag='grid') def label_x_axis(self, label): if label: self.plot.create_text((self.width_px - 5, (self.height_px/2)+5), text=label, anchor=tk.NE, tag='x-axis-label') else: pass def label_y_axis(self, label): if label: self.plot.create_text((self.width_px/2 + 5, 5), text=label, anchor=tk.NW, tag='y-axis-label') else: pass def plot_line(self, first_point, second_point, point_format=None, fill=None, tag='data_line'): if not fill: fill = self.DEFAULT_LINE_COLOR x0, y0 = first_point x1, y1 = second_point if point_format != 'px': x0 /= self.x_per_pixel x1 /= self.x_per_pixel y0 /= self.y_per_pixel y1 /= self.y_per_pixel x0_screen, y0_screen = self.to_screen_coords(x0, y0) x1_screen, y1_screen = self.to_screen_coords(x1, y1) self.plot.create_line(x0_screen, y0_screen, x1_screen, y1_screen, fill=fill, width=3.0, tag=tag) def plot_point(self, point, fill='green', tag='data_point'): if not fill: fill = self.DEFAULT_LINE_COLOR # find the location of the point on the canvas x, y = point x /= self.x_per_pixel y /= self.y_per_pixel x_screen, y_screen = self.to_screen_coords(x, y) point_radius = 2 x0 = x_screen - point_radius y0 = y_screen - point_radius x1 = x_screen + point_radius y1 = y_screen + point_radius # if the tag exists, then move the point, else create the point point_ids = self.plot.find_withtag(tag) if point_ids != (): point_id = point_ids[0] location = self.plot.coords(point_id) current_x = (location[0] + location[2])/2 current_y = (location[1] + location[3])/2 move_x = x_screen - current_x move_y = y_screen - current_y self.plot.move(point_id, move_x, move_y) else: point = self.plot.create_oval(x0, y0, x1, y1, outline=fill, fill=fill, tag=tag) def scatter(self, list_of_points=[], color='#0000ff', tag='current'): """ create the new points then delete the old points """ num_of_points = len(list_of_points) for i, point in enumerate(list_of_points): new_tag = tag + str(i) self.plot_point(point, fill=color, tag=new_tag) self.current_points[tag] = list_of_points def remove_scatter(self, tag='current'): # if erase is True, then we will delete all tags containing the # prefix contained in 'tag'. For instance, if tag == 'current', # then we will delete 'current0', 'current1', ... del_list = [] for e in self.plot.find_all(): for item_tag in self.plot.gettags(e): if tag in item_tag and item_tag not in del_list: del_list.append(item_tag) for item_tag in del_list: self.plot.delete(item_tag) def to_screen_coords(self, x, y): new_x = x + self.width_px/2 new_y = self.height_px/2 - y return new_x, new_y if __name__ == "__main__": # initialize tk items for display root = tk.Tk() root.title("for(embed) - Curve Tracer Viewer") app = Plot4Q(root) points = [(0,0), (10,10), (20,20)] app.scatter(points) app.scatter() root.mainloop()
#BASIC IMAGE READING AND SAVING/COPYING # import cv2 as cv # import sys # img = cv.imread(cv.samples.findFile("dp2.jpg")) # if img is None: # sys.exit("Could not read the image.") # cv.imshow("A Human", img) # k = cv.waitKey(0) # if k == ord("s"): # cv.imwrite("dp3.png", img) #SIMPLE/GLOBAL THRESHOLDING # import cv2 # from matplotlib import pyplot as plt # img = cv2.imread("dp2.jpg") # img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) # ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV) # ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC) # ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO) # ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV) # titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV'] # images = [img, thresh1, thresh2, thresh3, thresh4, thresh5] # for i in range(6): # plt.subplot(2,3,i+1) # plt.imshow(images[i],'gray') # plt.title(titles[i]) # plt.xticks([]) # plt.yticks([]) # plt.show() # ADAPTIVE THRESHOLD # import cv2 # import numpy as np # from matplotlib import pyplot as plt # img = cv2.imread('bnw2.jpg',0) # img = cv2.medianBlur(img,5) # ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) # th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY,11,2) # th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY,11,2) # titles = ['Original Image', 'Global Thresholding (v = 127)', # 'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding'] # images = [img, th1, th2, th3] # for i in range(4): # plt.subplot(2,2,i+1),plt.imshow(images[i],'gray') # plt.title(titles[i]) # plt.xticks([]),plt.yticks([]) # plt.show() #OTSU THRSHOLDING # import cv2 # import numpy as np # from matplotlib import pyplot as plt # img = cv2.imread('ap.png',0) # # global thresholding # ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY) # # Otsu's thresholding # ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # # Otsu's thresholding after Gaussian filtering # blur = cv2.GaussianBlur(img,(5,5),0) # ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) # # plot all the images and their histograms # images = [img, 0, th1, # img, 0, th2, # blur, 0, th3] # titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)', # 'Original Noisy Image','Histogram',"Otsu's Thresholding", # 'Gaussian filtered Image','Histogram',"Otsu's Thresholding"] # for i in range(3): # plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray') # plt.title(titles[i*3]), plt.xticks([]), plt.yticks([]) # plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256) # plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([]) # plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray') # plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([]) # plt.show() #SEGMENTATION, RGB, BGR, HSV Patterns # import numpy as np # import cv2 # from matplotlib import pyplot as plt # from matplotlib import colors # from mpl_toolkits.mplot3d import Axes3D # from matplotlib import cm # dark = cv2.cvtColor(cv2.imread('dark.jpg'), cv2.COLOR_RGB2BGR) # hsv_dark = cv2.cvtColor(dark, cv2.COLOR_BGR2HSV) # h, s, v = cv2.split(hsv_dark) # fig = plt.figure() # axis = fig.add_subplot(1, 1, 1, projection="3d") # pixel_colors = dark.reshape((np.shape(dark)[0]*np.shape(dark)[1], 3)) # norm = colors.Normalize(vmin=-1.,vmax=1.) # norm.autoscale(pixel_colors) # pixel_colors = norm(pixel_colors).tolist() # axis.scatter(h.flatten(), s.flatten(), v.flatten(), facecolors=pixel_colors, marker=".") # axis.set_xlabel("Hue") # axis.set_ylabel("Saturation") # axis.set_zlabel("Value") # plt.show() # cv2.destroyAllWindows() #GEOMETRIC CHANGES #BLURRING # import cv2 # import numpy as np # from matplotlib import pyplot as plt # img = cv2.imread('as2.png') # n=10 # kernel = np.ones((n,n),np.float32)/(n*n) # dst = cv2.filter2D(img,-1,kernel) # plt.subplot(1,5,1),plt.imshow(img) # plt.xticks([]), plt.yticks([]) # plt.subplot(1,5,2),plt.imshow(dst) # plt.xticks([]), plt.yticks([]) # blur = cv2.GaussianBlur(img,(5,5),0) # median = cv2.medianBlur(img,5) # biblur = cv2.bilateralFilter(img,9,75,75) # izzz = [blur, median, biblur] # for i in range(3): # plt.subplot(1,5,i+3),plt.imshow(img) # plt.xticks([]), plt.yticks([]) # plt.show() #EDGE DETECTION # import cv2 # import numpy as np # from matplotlib import pyplot as plt # img = cv2.imread('sudoku.jpg',0) # laplacian = cv2.Laplacian(img,cv2.CV_64F) # sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=5) # sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=5) # plt.subplot(2,2,1) # plt.imshow(img,cmap = 'gray') # plt.title('Original'), plt.xticks([]), plt.yticks([]) # plt.subplot(2,2,2) # plt.imshow(laplacian,cmap = 'gray') # plt.title('Laplacian'), plt.xticks([]), plt.yticks([]) # plt.subplot(2,2,3) # plt.imshow(sobelx,cmap = 'gray') # plt.title('Sobel X'), plt.xticks([]), plt.yticks([]) # plt.subplot(2,2,4) # plt.imshow(sobely,cmap = 'gray') # plt.title('Sobel Y'), plt.xticks([]), plt.yticks([]) # plt.show() #CONTOURS # import numpy as np # import cv2 # from matplotlib import pyplot as plt # im = cv2.imread('dp2.jpg') # imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) # ret,thresh = cv2.threshold(imgray,127,255,0) # contours, h = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) # img = cv2.drawContours(imgray, contours, -1, (0,0,0), 3) # plt.imshow(img, 'gray') # plt.show() # cv2.destroyAllWindows() #HAAR CASCADES FACE AND EYE DETECTION #PIC DETECTION # import numpy as np # import cv2 # face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') # img = cv2.imread('dp2.jpg') # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # faces = face_cascade.detectMultiScale(gray, 1.3, 5) # for (x,y,w,h) in faces: # img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) # roi_gray = gray[y:y+h, x:x+w] # roi_color = img[y:y+h, x:x+w] # eyes = eye_cascade.detectMultiScale(roi_gray) # for (ex,ey,ew,eh) in eyes: # cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) # cv2.imshow('img',img) # cv2.waitKey(0) # cv2.destroyAllWindows() #LIVE DETECTION import numpy as np import cv2 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') capture = cv2.VideoCapture(0) while(True): ret, img = capture.read() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: img = cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) roi_gray = gray[y:y+h, x:x+w] roi_color = img[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) for (ex,ey,ew,eh) in eyes: cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) cv2.imshow('video', img) if cv2.waitKey(1) == 27: break capture.release()
# -*- coding: utf-8 -*- import pytest # TODO: implement all unit tests def test_fib(): assert True
from core.settings import settings from core.security import generate_confirmation_code from .sender import BaseMessage # To developers: KISS is much more important than DRY! # So do OOP-inheritance ONLY if your new classes has same validation fields, # same purpose AND MANY common logic. # If you have to do some same validation without any complexity, do it in # separate classes without inheritance, please. # The class is much more readable and error-resilient if it has smaller # inheritance chain. # This can be extended to other things, like pydantic models, email messages, etc. class ConfirmAccountMessage(BaseMessage): template_name = 'confirm.html' class validation(BaseMessage.validation): subject: str = 'Confirm registration' account_id: int def get_context(self) -> dict: code = generate_confirmation_code( account_id=self.schema.account_id ) return {'url': f'{settings.SERVER_DOMAIN}/webhooks/confirm/account?code={code}'} class ChangePasswordMessage(BaseMessage): template_name = 'forget_password.html' class validation(BaseMessage.validation): subject: str = 'Change password' account_id: int def get_context(self) -> dict: code = generate_confirmation_code( account_id=self.schema.account_id ) return {'url': f'{settings.SERVER_DOMAIN}/change-password?code={code}'} class PasswordWasChangedMessage(BaseMessage): template_name = 'changed_password.html' class validation(BaseMessage.validation): subject: str = 'Your password has been changed' class SuccessfulRegistrationMessage(BaseMessage): template_name = 'registration.html' class validation(BaseMessage.validation): subject: str = 'You have successfully registered' url: str = f'{settings.SERVER_DOMAIN}/personal_area' class ChangeBankCardMessage(BaseMessage): template_name = 'change_bank_card.html' class validation(BaseMessage.validation): subject: str = 'Failed to process payment' account_id: int def get_context(self) -> dict: account_id = self.schema.account_id return { 'url': f'{settings.API_URL}/payments/change_bank_card/{account_id}' }
from .download import start, get_pdf_list
import bpy from ... base_types import AnimationNode, VectorizedSocket class ReverseTextNode(bpy.types.Node, AnimationNode): bl_idname = "an_ReverseTextNode" bl_label = "Reverse Text" useList: VectorizedSocket.newProperty() def create(self): self.newInput(VectorizedSocket("Text", "useList", ("Text", "inText"), ("Texts", "inTexts"))) self.newOutput(VectorizedSocket("Text", "useList", ("Text", "outText"), ("Texts", "outTexts"))) def getExecutionCode(self, required): if self.useList: return "outTexts = [text[::-1] for text in inTexts]" else: return "outText = inText[::-1]"
from typing import Union, List, Optional from pyspark.sql.types import StructType, StructField, StringType, DataType # This file is auto-generated by generate_schema so do not edit it manually # noinspection PyPep8Naming class BinarySchema: """ A resource that represents the data of a single raw artifact as digital content accessible in its native format. A Binary resource can contain any content, whether text, image, pdf, zip archive, etc. """ # noinspection PyDefaultArgument @staticmethod def get_schema( max_nesting_depth: Optional[int] = 6, nesting_depth: int = 0, nesting_list: List[str] = [], max_recursion_limit: Optional[int] = 2, include_extension: Optional[bool] = False, extension_fields: Optional[List[str]] = None, extension_depth: int = 0, max_extension_depth: Optional[int] = 2, include_modifierExtension: Optional[bool] = False, use_date_for: Optional[List[str]] = None, parent_path: Optional[str] = "", ) -> Union[StructType, DataType]: """ A resource that represents the data of a single raw artifact as digital content accessible in its native format. A Binary resource can contain any content, whether text, image, pdf, zip archive, etc. resourceType: This is a Binary resource id: The logical id of the resource, as used in the URL for the resource. Once assigned, this value never changes. meta: The metadata about the resource. This is content that is maintained by the infrastructure. Changes to the content might not always be associated with version changes to the resource. implicitRules: A reference to a set of rules that were followed when the resource was constructed, and which must be understood when processing the content. Often, this is a reference to an implementation guide that defines the special rules along with other profiles etc. language: The base language in which the resource is written. contentType: MimeType of the binary content represented as a standard MimeType (BCP 13). securityContext: This element identifies another resource that can be used as a proxy of the security sensitivity to use when deciding and enforcing access control rules for the Binary resource. Given that the Binary resource contains very few elements that can be used to determine the sensitivity of the data and relationships to individuals, the referenced resource stands in as a proxy equivalent for this purpose. This referenced resource may be related to the Binary (e.g. Media, DocumentReference), or may be some non-related Resource purely as a security proxy. E.g. to identify that the binary resource relates to a patient, and access should only be granted to applications that have access to the patient. data: The actual content, base64 encoded. """ if extension_fields is None: extension_fields = [ "valueBoolean", "valueCode", "valueDate", "valueDateTime", "valueDecimal", "valueId", "valueInteger", "valuePositiveInt", "valueString", "valueTime", "valueUnsignedInt", "valueUri", "valueUrl", "valueReference", "valueCodeableConcept", "valueAddress", ] from spark_fhir_schemas.r4.simple_types.id import idSchema from spark_fhir_schemas.r4.complex_types.meta import MetaSchema from spark_fhir_schemas.r4.simple_types.uri import uriSchema from spark_fhir_schemas.r4.simple_types.code import codeSchema from spark_fhir_schemas.r4.complex_types.reference import ReferenceSchema from spark_fhir_schemas.r4.simple_types.base64binary import base64BinarySchema if ( max_recursion_limit and nesting_list.count("Binary") >= max_recursion_limit ) or (max_nesting_depth and nesting_depth >= max_nesting_depth): return StructType([StructField("id", StringType(), True)]) # add my name to recursion list for later my_nesting_list: List[str] = nesting_list + ["Binary"] my_parent_path = parent_path + ".binary" if parent_path else "binary" schema = StructType( [ # This is a Binary resource StructField("resourceType", StringType(), True), # The logical id of the resource, as used in the URL for the resource. Once # assigned, this value never changes. StructField( "id", idSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path + ".id", ), True, ), # The metadata about the resource. This is content that is maintained by the # infrastructure. Changes to the content might not always be associated with # version changes to the resource. StructField( "meta", MetaSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # A reference to a set of rules that were followed when the resource was # constructed, and which must be understood when processing the content. Often, # this is a reference to an implementation guide that defines the special rules # along with other profiles etc. StructField( "implicitRules", uriSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path + ".implicitrules", ), True, ), # The base language in which the resource is written. StructField( "language", codeSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path + ".language", ), True, ), # MimeType of the binary content represented as a standard MimeType (BCP 13). StructField( "contentType", codeSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path + ".contenttype", ), True, ), # This element identifies another resource that can be used as a proxy of the # security sensitivity to use when deciding and enforcing access control rules # for the Binary resource. Given that the Binary resource contains very few # elements that can be used to determine the sensitivity of the data and # relationships to individuals, the referenced resource stands in as a proxy # equivalent for this purpose. This referenced resource may be related to the # Binary (e.g. Media, DocumentReference), or may be some non-related Resource # purely as a security proxy. E.g. to identify that the binary resource relates # to a patient, and access should only be granted to applications that have # access to the patient. StructField( "securityContext", ReferenceSchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path, ), True, ), # The actual content, base64 encoded. StructField( "data", base64BinarySchema.get_schema( max_nesting_depth=max_nesting_depth, nesting_depth=nesting_depth + 1, nesting_list=my_nesting_list, max_recursion_limit=max_recursion_limit, include_extension=include_extension, extension_fields=extension_fields, extension_depth=extension_depth + 1, max_extension_depth=max_extension_depth, include_modifierExtension=include_modifierExtension, use_date_for=use_date_for, parent_path=my_parent_path + ".data", ), True, ), ] ) if not include_extension: schema.fields = [ c if c.name != "extension" else StructField("extension", StringType(), True) for c in schema.fields ] if not include_modifierExtension: schema.fields = [ c if c.name != "modifierExtension" else StructField("modifierExtension", StringType(), True) for c in schema.fields ] return schema
from PIL import Image, ImageDraw, ImageFont import matplotlib.pyplot as plt from skimage import io import numpy as np import argparse import datetime import pickle import time import cv2 import sys import os sys.path.append(os.path.abspath("..")) from src.runner import JestureSdkRunner from src.utils import load_image_with_alpha, overlay_alpha from src.utils import draw_text, draw_multiline_text, draw_skeleton from src.thread_camera_draw import ThreadCameraDraw print('cv2.__version__:', cv2.__version__) # 4.1.2 recommended # pasrse args parser = argparse.ArgumentParser(description='Collect hand keypoints data for gesture recognition model training.') parser.add_argument('--cam_id', type=int, default=0) args = parser.parse_args() # create the application window name = 'JestureSDK: Annotation Tool' width, height = (640, 480) cv2.namedWindow(name) # cv2.resizeWindow(name, (width, height)) cv2.startWindowThread() # set the data file data_dir = './out_data' os.makedirs(data_dir, exist_ok=True) now = datetime.datetime.now() dt = f'{now.day:02d}{now.month:02d}{now.year%100:02d}_{now.hour:02d}_{now.minute:02d}' data_file_name = f'{data_dir}/hand_keypoints_{dt}.pkl' # set the logo stuff logo_path = 'images/jesture_logo.png' logo_img, logo_alpha = load_image_with_alpha(logo_path, remove_borders=True) logo_loc = (10, 10) # set the gestures help stuff key_to_idx = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9} key_ords = [ord(x) for x in key_to_idx] idx_to_gesture = {0: 'no_gesture', 1: 'one', 2: 'two', 3: 'three', 4: 'four', 5: 'five', 6: 'fist', 7: 'peace', 8: 'love', 9: 'ok'} idx_to_count = {k: 0 for k in idx_to_gesture} # help_textlist = [f'{k}: {idx_to_gesture[key_to_idx[k]]} {idx_to_count[key_to_idx[k]]}' for k in key_to_idx] # help_textlist_str = '\n'.join(help_textlist) help_box_width = 175 help_box_tl = {'right': (10, height//5+10), 'left': (width-(help_box_width+10), height//5+10)} help_box_br = {'right': (20+help_box_width, len(key_to_idx)*35), 'left': (width, len(key_to_idx)*35)} help_text_loc = {'right': (help_box_tl['right'][0]+10, help_box_tl['right'][1]+10), 'left': (help_box_tl['left'][0]+10, help_box_tl['left'][1]+10)} help_font = ImageFont.truetype("fonts/Comfortaa-Light.ttf", 20) # set the scaled hands stuff mid_hand_box_tl = (width//3, height-height//5) mid_hand_box_br = (2*width//3, height) hand_box_tl = {'right': (2*width//3, height-height//5), 'left': (0, height-height//5)} hand_box_br = {'right': (width, height), 'left': (width//3, height)} # set the hand type stuff handtype_text = {"right": "Right hand capture (press L to change)", "left": "Left hand capture (press R to change)"} handtype_text_loc = (width//3, 25) # set the counter stuff count_text_loc = (width//3, 25) # set common font font = ImageFont.truetype("fonts/Comfortaa-Light.ttf", 24) handtype_font = ImageFont.truetype("fonts/Comfortaa-Light.ttf", 20) # variables used in the main loop pressed_duration = 0 pressed_text = '' selfie_mode = True hand_type = 'right' data_list = [] prev_k = '' i = 0 if __name__ == "__main__": # start Jesture SDK Python runner jesture_runner = JestureSdkRunner(cam_id=args.cam_id, use_tracking=True, use_static_gestures=False, use_dynamic_gestures=False) jesture_runner.start_recognition() # start reading frames to display in the application window cap = ThreadCameraDraw(jesture_runner, cam_id=args.cam_id, width=width, height=height, hand_box_tl=mid_hand_box_tl, hand_box_br=mid_hand_box_br, draw_hand_box=False) cap.start() # start the main loop while(True): if cap.frame is None: continue # get current webcam image with drawn hand skeletons frame = cap.frame[:,::-1,:] if selfie_mode else cap.frame # draw logo frame = overlay_alpha(logo_img[:,:,::-1], logo_alpha, frame, loc=logo_loc, alpha=1.0) # draw ui elements frame = Image.fromarray(frame if type(np.array([])) == type(frame) else frame.get()) draw = ImageDraw.Draw(frame, "RGBA") draw.rectangle((help_box_tl[hand_type], help_box_br[hand_type]), fill=(0, 0, 0, 127), outline=(235, 190, 63, 255)) # draw.rectangle((hand_box_tl, hand_box_br), fill=(0, 0, 0, 127), outline=(235, 190, 63, 255)) # draw text draw.multiline_text(handtype_text_loc, handtype_text[hand_type], font=handtype_font, fill=(255, 255, 255, 200)) help_textlist = [f'{idx_to_count[key_to_idx[k]]} | {k}: {idx_to_gesture[key_to_idx[k]]}' for k in key_to_idx] help_textlist_str = '\n'.join(help_textlist) draw.multiline_text(help_text_loc[hand_type], help_textlist_str, font=help_font, fill=(255, 255, 255)) # retrieve keyboard signal c = cv2.waitKey(1) % 256 if c == ord('q'): break if c == ord('l'): hand_type = 'left' if c == ord('r'): hand_type = 'right' # retrieve if gesture key is pressed if chr(c) in key_to_idx: k, v = chr(c), idx_to_gesture[key_to_idx[chr(c)]] pressed_text = f'{idx_to_count[key_to_idx[k]]} | {k}: {v}' idx_to_count[key_to_idx[k]] += 1 pressed_duration = 4 print(f"pressed {pressed_text}, shape: {frame.size}") data_list.append({ 'hand_type': hand_type, 'gesture_id': key_to_idx[k], 'gesture_name': v, 'pred_gesture_name': jesture_runner.get_gesture( f'{hand_type}_static'), 'keypoints': jesture_runner.get_hand_keypoints( f'{hand_type}_keypoints'), 'scaled_keypoints': jesture_runner.get_hand_keypoints( f'scaled_{hand_type}_keypoints'), }) # save current data to not to lose it # in case if the program accidentally exited if k != prev_k: with open(data_file_name, 'wb') as file: pickle.dump(data_list, file) prev_k = k # draw notification text if key was pressed less then 12 frames ago if pressed_duration > 0: notify_textlist_str = "\n".join( [x if x == pressed_text else "" for x in help_textlist]) draw.multiline_text(help_text_loc[hand_type], notify_textlist_str, font=help_font, fill=(235, 190, 63)) pressed_duration -= 1 frame = np.array(frame).astype(np.uint8) cv2.imshow(name, frame) i += 1 # save all the data collected with open(data_file_name, 'wb') as file: print(f'Dumping {len(data_list)} items to {data_file_name}...') pickle.dump(data_list, file) print(f'Dumped.') # finish and close all resources jesture_runner.stop_recognition() cap.stop() cv2.waitKey(1) cv2.destroyWindow(name) cv2.destroyAllWindows() cv2.waitKey(1)
"""Translation stats collection and reporting.""" import datetime import io import logging import traceback import texttable class TranslationStats(object): ROW_COUNT = 7 def __init__(self): self._locale_to_message = {} self._untranslated = {} self._stacktraces = [] self._untagged = {} # Default to info logging. self.log = logging.info self.datetime = datetime.datetime @property def messages(self): """All messages and counts.""" return self._locale_to_message @property def missing(self): """Messages that are untagged and untranslated during rendering.""" untagged_messages = set([msg for _, msg in self.untagged.items()]) tracking = {} for locale, messages in self._untranslated.items(): if locale not in tracking: tracking[locale] = {} for message in messages: if message in untagged_messages: tracking[locale][message] = self._locale_to_message[ locale][message] # Removing empty locales. blank_locales = [] for key in tracking: if not tracking[key]: blank_locales.append(key) for key in blank_locales: del tracking[key] return tracking @property def untagged(self): """Untagged messages by location.""" return self._untagged @property def untranslated(self): """Untranslated messages by locale.""" tracking = {} for locale, messages in self._untranslated.items(): if locale not in tracking: tracking[locale] = {} for message in messages: tracking[locale][message] = self._locale_to_message[ locale][message] return tracking @property def count_untranslated(self): """Max number of untranslated strings for any locale.""" untranslated_ids = set() for _, messages in self._untranslated.items(): for message in messages: untranslated_ids.add(message) return len(untranslated_ids) @property def stacktraces(self): return self._stacktraces @staticmethod def _simplify_traceback(tb): """Remove extra layers of the traceback to just get best bits.""" start = 0 end = len(tb) - 3 for i, item in enumerate(tb): if 'jinja' in item: start = i + 1 break return tb[start:end] def _get_message_locations(self, locale, message): """Get a list of the locations for a given locale and message.""" locations = set() for item in self.stacktraces: if item['locale'] != locale or item['id'] != message: continue if item['location']: locations.add(item['location']) return [(location, None) for location in locations] def add_untagged(self, paths_to_untagged): """Add untagged paths and strings.""" self._untagged = paths_to_untagged def export(self): """Export messages and untranslated strings.""" return { 'messages': self.messages, 'untranslated': self.untranslated, 'untagged': self.untagged, } def export_untranslated_catalogs(self, pod, dir_path=None): """Export the untranslated messages into catalogs based on locale.""" locale_to_catalog = {} for locale, messages in self.untranslated.items(): if locale not in locale_to_catalog: locale_to_catalog[locale] = pod.catalogs.get( locale, basename='untranslated.po', dir_path=dir_path) catalog = locale_to_catalog[locale] for message in messages: catalog.add(message, locations=self._get_message_locations( locale, message)) return locale_to_catalog def export_untranslated_tracebacks(self): """Export the untranslated tracebacks into a log file.""" width = 80 border_width = 3 border_char = '=' def _blank_line(): return '\n' def _solid_line(): return '{}\n'.format(border_char * width) def _text_line(text): text_width = width - (border_width + 1) * 2 return '{} {} {}\n'.format( border_char * border_width, text.center(text_width), border_char * border_width) with io.StringIO() as output: output.write(_solid_line()) output.write(_text_line('Untranslated Strings')) output.write(_solid_line()) output.write(_text_line( '{} occurrences of {} untranslated strings'.format( len(self.stacktraces), self.count_untranslated))) output.write(_text_line(str(self.datetime.now()))) output.write(_solid_line()) output.write(_blank_line()) if not self.stacktraces: output.write( _text_line('No untranslated strings found.')) return output.getvalue() for item in self.stacktraces: output.write('{} :: {}\n'.format(item['locale'], item['id'])) for line in item['tb']: output.write('{}'.format(line)) output.write(_blank_line()) return output.getvalue() def tick(self, message, locale, default_locale, location=None): """Count a translation.""" if not message: return if locale not in self._locale_to_message: self._locale_to_message[locale] = {} messages = self._locale_to_message[locale] if message.id not in messages: messages[message.id] = 0 messages[message.id] += 1 # Check for untranslated message. if not message.string and message.id.strip() and locale is not default_locale: if locale not in self._untranslated: self._untranslated[locale] = set() stack = traceback.format_stack() self._stacktraces.append({ 'locale': locale, 'location': location, 'id': message.id, 'tb': self._simplify_traceback(stack), }) self._untranslated[locale].add(message.id) def pretty_print(self, show_all=False): """Outputs the translation stats to a table formatted view.""" if not self.untranslated and not self.untagged: self.log('\nNo untranslated strings found.\n') return # Most frequent untranslated and untagged messages. if self.untagged: table = texttable.Texttable(max_width=120) table.set_deco(texttable.Texttable.HEADER) table.set_cols_dtype(['t', 'i', 't']) table.set_cols_align(['l', 'r', 'l']) rows = [] missing = self.missing for locale in missing: for message in missing[locale]: rows.append([str(locale), missing[locale][message], message]) rows = sorted(rows, key=lambda x: -x[1]) if not show_all: num_rows = len(rows) rows = rows[:self.ROW_COUNT] if num_rows > self.ROW_COUNT: rows.append(['', num_rows - self.ROW_COUNT, '+ Additional untranslated strings...']) table.add_rows( [['Locale', '#', 'Untagged and Untranslated Message']] + rows) self.log('\n' + table.draw() + '\n') # Most frequent untranslated messages. if self.untranslated: table = texttable.Texttable(max_width=120) table.set_deco(texttable.Texttable.HEADER) table.set_cols_dtype(['t', 'i', 't']) table.set_cols_align(['l', 'r', 'l']) rows = [] for locale in self.untranslated: for message in self.untranslated[locale]: rows.append([str(locale), self.untranslated[ locale][message], message]) rows = sorted(rows, key=lambda x: -x[1]) if not show_all: num_rows = len(rows) rows = rows[:self.ROW_COUNT] if num_rows > self.ROW_COUNT: rows.append(['', num_rows - self.ROW_COUNT, '+ Additional untranslated strings...']) table.add_rows([['Locale', '#', 'Untranslated Message']] + rows) self.log('\n' + table.draw() + '\n') # Untranslated messages per locale. table = texttable.Texttable(max_width=120) table.set_deco(texttable.Texttable.HEADER) table.set_cols_dtype(['t', 'i']) table.set_cols_align(['l', 'r']) rows = [] for locale in self.untranslated: rows.append([str(locale), len(self.untranslated[locale])]) rows = sorted(rows, key=lambda x: -x[1]) table.add_rows([['Locale', 'Untranslated']] + rows) self.log('\n' + table.draw() + '\n')
class GetSeries(object): def get_series(self, series): """ Returns a census series API handler. """ if series == "acs1": return self.census.acs1dp elif series == "acs5": return self.census.acs5 elif series == "sf1": return self.census.sf1 elif series == "sf3": return self.census.sf3 else: return None
#!/usr/bin/env python # -*- coding: utf-8 -*- def _cr2a(c1, r1, c2=None, r2=None): """ r1=1 c1=1 gives A1 etc. """ assert r1>0 and c1>0, "negative coordinates not allowed!" out=_n2x(c1)+str(r1) if c2 is not None: out +=':'+ _n2x(c2) + str(r2) return out def _a2cr(a,f4=False): """ B1 gives [1,2] B1:D3 gives [1,2,3,4] if f4==True, always return a 4-element list, so [1,2] becomes [1,2,1,2] """ if ':' in a: tl,br=a.split(':') out= _a2cr(tl)+_a2cr(br) if out[0]==0:out[0]=1 if out[1]==0:out[1]=1 if out[2]==0:out[2]=2**14 if out[3]==0:out[3]=2**20 return out else: c,r=_splitaddr(a) if f4: return [_x2n(c), r, _x2n(c), r] else: return [_x2n(c),r] def _n2x(n): """ convert decimal into base 26 number-character :param n: :return: """ numerals='ABCDEFGHIJKLMNOPQRSTUVWXYZ' b=26 if n<=b: return numerals[n-1] else: pre=_n2x((n-1)//b) return pre+numerals[n%b-1] def _x2n(x): """ converts base 26 number-char into decimal :param x: :return: """ numerals = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' b=26 n=0 for i,l in enumerate(reversed(x)): n+=(numerals.index(l)+1)*b**(i) return n def _splitaddr(addr): """ splits address into character and decimal :param addr: :return: """ col='';rown=0 for i in range(len(addr)): if addr[i].isdigit(): col = addr[:i] rown = int(addr[i:]) break elif i==len(addr)-1: col=addr return col,rown def _df2outline(df, outline_string): """ infer boundaries of a dataframe given an outline_string, to be fed into rng.outline(boundaries) :param df: :param outline_string: :return: """ from collections import OrderedDict out=OrderedDict() idx = list(zip(*df.index.values.tolist())) z=1 rf = 1 # this is just to avoid an exception if df has no index field named outline for lvl in range(len(idx)): for i, v, p in list(zip(list(range(1, len(idx[lvl]))), idx[lvl][1:], idx[lvl][:-1])): if p == outline_string: rf = i if (v == outline_string and p != outline_string) or i + 1 == len(idx[lvl]): rl = (i if i + 1 == len(idx[lvl]) else i - 1) out[z+rf-1]=[z+rf,z+rl] return out def _isrow(addr): if ':' in addr: coords=_a2cr(addr) return coords[2]-coords[0]==16383 else: return False def _iscol(addr): if ':' in addr: coords=_a2cr(addr) return coords[3]-coords[1]==1048575 else: return False def _isnumeric(x): ''' returns true if x can be cast to a numeric datatype ''' try: float(x) return True except (ValueError, TypeError): return False def _df_to_ll(df, header=True, index=True, index_label=None): """ transform DataFrame or Series object into a list of lists :param self: :param header: True/False :param index: True/False :param index_label: currently unused :return: """ if header: if df.columns.nlevels>1: if index: hdr = list(zip(*df.reset_index().columns.tolist())) else: hdr = list(zip(*df.columns.tolist())) else: if index: hdr = [df.reset_index().columns.tolist()] else: hdr = [df.columns.tolist()] else: hdr=[] if index: vals=df.reset_index().values.tolist() else: vals=df.values.tolist() return hdr + vals
import logging from flask import Blueprint, render_template import MySQLdb import MySQLdb.cursors from pprint import pprint import sys import json main = Blueprint('main', __name__) #@main.route('/') def index(): return "Main" @main.route('/') def display_books(): #import _mysql.cursors db=MySQLdb.connect(host="localhost", user="root", passwd="amsterdam678", db="dataloggerDB", cursorclass=MySQLdb.cursors.DictCursor) c = db.cursor() c.execute("SELECT id, logtime, sensorID,messwert FROM dataloggerDB.messwerteTBL WHERE 1") R = c.fetchall() #pprint(R) c.close() return render_template("home.html", the_data=list(R)) @main.route('api/data/') def get_sensordata(): dat= [] return dat
def exercise_log_op(is_magician = True, is_expert = False): #check if magician AND expert: "you are a master magician" #check if magician but not expert: "at least you're getting there" #if you're not magician: "you need magic powers" if is_magician and is_expert: print("you are a master magician") elif is_magician and not is_expert: print("at least you're getting there") else: print("you need magic powers") #another way to check if you're not magician #elif not is_magician: # print("you need magic powers")
# Generated by Django 3.1.2 on 2020-10-05 21:25 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import simple_history.models class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name="Status", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "name", models.CharField(max_length=30, unique=True, verbose_name="Cтатус"), ), ], options={"verbose_name": "Статус", "verbose_name_plural": "Статусы",}, ), migrations.CreateModel( name="Task", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=30, verbose_name="Название")), ( "description", models.TextField(max_length=250, verbose_name="Описание"), ), ( "creation_date", models.DateTimeField( auto_now_add=True, verbose_name="Дата создания" ), ), ( "end_date", models.DateTimeField( blank=True, null=True, verbose_name="Планируемая дата завершения", ), ), ( "owner", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL, ), ), ( "status", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, to="tasks.status", to_field="name", verbose_name="Статус", ), ), ], options={"verbose_name": "Задача", "verbose_name_plural": "Задачи",}, ), migrations.CreateModel( name="HistoricalTask", fields=[ ( "id", models.IntegerField( auto_created=True, blank=True, db_index=True, verbose_name="ID" ), ), ("name", models.CharField(max_length=30, verbose_name="Название")), ( "description", models.TextField(max_length=250, verbose_name="Описание"), ), ( "creation_date", models.DateTimeField( blank=True, editable=False, verbose_name="Дата создания" ), ), ( "end_date", models.DateTimeField( blank=True, null=True, verbose_name="Планируемая дата завершения", ), ), ("history_id", models.AutoField(primary_key=True, serialize=False)), ("history_date", models.DateTimeField()), ("history_change_reason", models.CharField(max_length=100, null=True)), ( "history_type", models.CharField( choices=[("+", "Created"), ("~", "Changed"), ("-", "Deleted")], max_length=1, ), ), ( "history_user", models.ForeignKey( null=True, on_delete=django.db.models.deletion.SET_NULL, related_name="+", to=settings.AUTH_USER_MODEL, ), ), ( "owner", models.ForeignKey( blank=True, db_constraint=False, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name="+", to=settings.AUTH_USER_MODEL, ), ), ( "status", models.ForeignKey( blank=True, db_constraint=False, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name="+", to="tasks.status", to_field="name", verbose_name="Статус", ), ), ], options={ "verbose_name": "historical Задача", "ordering": ("-history_date", "-history_id"), "get_latest_by": "history_date", }, bases=(simple_history.models.HistoricalChanges, models.Model), ), ]
import logging import threading import os import time from webcamlib.ConfigureLogging import logging_setup class myThread (threading.Thread): def __init__(self, threadID, name, delay): threading.Thread.__init__(self) self.logger = logging.getLogger("test-{}-{}".format(name, threadID)) self.threadID = threadID self.name = name self.delay = delay def run(self): self.logger.info("Starting " + self.name) for item in range(100000): self.logger.info("Test line {}".format(item)) time.sleep(self.delay) self.logger.info("Exiting " + self.name) """ Not really a unit test, but a test to test out logging configuration and log rotation. Ran into some errors when a log was to be rotated """ def main(): logging_setup("test.log", 'DEBUG', True, True) logger = logging.getLogger("main") logger.info("Starting Main Thread") threads = [] # Create new threads thread1 = myThread(1, "Thread-1", 0.1) thread2 = myThread(2, "Thread-2", 0.05) thread3 = myThread(3, "Thread-3", 0.2) # Start new Threads thread1.start() thread2.start() thread3.start() # Add threads to thread list threads.append(thread1) threads.append(thread2) threads.append(thread3) # Wait for all threads to complete for t in threads: t.join() logger.info("Exiting Main Thread") if __name__ == '__main__': main()
import os settings = {} def refresh(): """ Refresh environment.settings dict """ APP_DATA_DIR = os.environ.get('APP_DATA_DIR', os.getcwd()) settings.clear() settings.update({ 'APP_DATA_DIR': APP_DATA_DIR, 'LOG_DIR': os.path.join(APP_DATA_DIR, 'logs'), 'LOG_FILE': os.path.join(APP_DATA_DIR, 'logs', 'api.log'), 'CONTAINERS_DIR': os.path.join(APP_DATA_DIR, 'containers'), 'CONTAINERS_FILE': os.path.join( APP_DATA_DIR, 'containers', '_containers_create.json'), 'CALIBRATIONS_DIR': os.path.join(APP_DATA_DIR, 'calibrations'), 'CALIBRATIONS_FILE': os.path.join(APP_DATA_DIR, 'calibrations', 'calibrations.json'), 'APP_IS_ALIVE_URL': 'http://localhost:31950', 'APP_JUPYTER_UPLOAD_URL': 'http://localhost:31950/upload-jupyter', }) return settings def get_path(key): """ For a given key returns a full path and creates the path if missing. The caller is guaranteed the path exists if exception is not thrown. For *_DIR it will create a directory, for *_FILE it will create a directory tree to the file. Throws exception if neither. """ if key not in settings: raise ValueError( 'Key "{}" not found in environment settings'.format(key)) if key.endswith('_DIR'): path = settings[key] elif key.endswith('_FILE'): path, _ = os.path.split(settings[key]) else: raise ValueError( 'Expected key suffix as _DIR or _FILE. "{}" received'.format(key)) if not os.path.exists(path): os.makedirs(path) return settings[key] refresh()
""" API test example that tests various auths. """ from screenpy import Actor, given, then, when from screenpy.actions import AddHeader, See, SendGETRequest from screenpy.questions import StatusCodeOfTheLastResponse from screenpy.resolutions import IsEqualTo from ..urls import BASIC_AUTH_URL, BEARER_AUTH_URL def test_basic_auth(Perry: Actor) -> None: """Basic authentication is accepted by the basic auth endpoint.""" test_username = "USER" test_password = "PASS" when(Perry).attempts_to( SendGETRequest.to(f"{BASIC_AUTH_URL}/{test_username}/{test_password}").with_( auth=(test_username, test_password) ) ) then(Perry).should(See.the(StatusCodeOfTheLastResponse(), IsEqualTo(200))) def test_bearer_auth(Perry: Actor) -> None: """Bearer token authentication is accepted by the bearer auth endpoint.""" given(Perry).was_able_to(AddHeader(Authorization="Bearer 1234")) when(Perry).attempts_to(SendGETRequest.to(BEARER_AUTH_URL)) then(Perry).should(See.the(StatusCodeOfTheLastResponse(), IsEqualTo(200)))
import pandas as pd import numpy as np import sys # > > > Load Input Data [DYNAMIC INPUTS] < < < LoadData = pd.read_csv('C:/UMI/temp/Loads.csv') Output = LoadData #Reformatted Kuwait output to bypass the reformat section WeatherData = pd.read_csv('C:/UMI/temp/DryBulbData.csv') # > > > User-specified Parameters [DYNAMIC INPUTS] < < < Cost_Electricity = float(sys.argv[1]) #Generation cost per kWh Source: https://www.oxfordenergy.org/wpcms/wp-content/uploads/2014/04/MEP-9.pdf Price_NaturalGas = float(sys.argv[2]) #Dollars per kWh Emissions_ElectricGeneration = float(sys.argv[3]) #Metric ton CO2 per kWh produced Effic_PowerGen = float(sys.argv[6]) #Average thermal efficiency of electrical generation in Kuwait Losses_Transmission = float(sys.argv[4]) #Electrical transmission losses https://www.eia.gov/tools/faqs/faq.php?id=105&t=3 # ................................................................... # Internal Parameters kWhPerTherm = 29.3 #kwh/therm Emissions_NG_Combustion_therm = 0.005302 #Metric ton CO2 per therm of NG Emissions_NG_Combustion_kWh = Emissions_NG_Combustion_therm / kWhPerTherm FanPwrCoolRatio = 0 # 34.0/27.0 removed because assuming fan energy ~constant for all cases # Empirical heat pump model from Purdue for heating mode Size_HeatPump_Heating = 3.516825 #Nominal rated capacity of the heat pump in heating mode [kW] Power_Max_Heating = 2.164 #Max work by compressor in kW MinPLR_HP_Heating = 0.28 MinCOP_Heating = 0.0 THot_Heating = 308.15 #35C in Kelvin TCold_Heating = 253.15 #-20C in Kelvin MaxCOP_Heating = THot_Heating / (THot_Heating - TCold_Heating) # Heating-mode heat pump model coefficients a1 = 0.0914 a2 = 0.8033 a3 = 2.5976 a4 = -3.2925 a5 = -0.8678 a6 = 0.1902 a7 = 1.4833 # Heat Pump Model, Optimized cooling from Tea Zakula: Air-to-air heat pump with evaporator outlet at 12.5C saturated # Mitsubishi MUZ-A09NA-1 outdoor unit heat pump and a MSZ-A09NA Size_HeatPump_Cooling = 9 # Nominal rated capacity of the heat pump in cooling mode [kW] MinPLR_HP_Cooling = 0.1 # Set this to 0, because a min PLR of 10% results in odd behavior: 10% and 2C DB -> -799 for COP COP_Nominal_Cooling = 3.81 THot_Cooling = 313.15 #12.5C in Kelvin based on the assumption of the constant evaporator temperature at 12.5C from Tea's work TCold_Cooling = 285.65 #40C in Kelvin MinCOP_Cooling = 0.0 MaxCOP_Cooling = TCold_Cooling / (THot_Cooling - TCold_Cooling) c1_hp = 3.02E-3 c2_hp = -3.23E-1 c3_hp = 1.23E-2 c4_hp = 4.76E-1 c5_hp = -2.38E-4 c6_hp = -2.86E-4 c7_hp = -2.02E-1 c8_hp = 6.77E-4 c9_hp = 3.71E-5 c10_hp = 4.25E-6 # ................................................................... # Update Output dataframe Output['TotalHeating'] = Output['SDL/Heating'] + Output['SDL/Domestic Hot Water'] Output['Electricity'] = Output['SDL/Equipment'] + Output['SDL/Lighting'] Output = Output.join(WeatherData['DB'], on='Hour') # ................................................................... # Identify peak demands for cooling, heating, and electricity PeakCooling = Output.groupby('Hour')['SDL/Cooling'].sum() PeakCooling.sort_values(inplace=True, ascending=False) print '\n Peak Cooling Demand (kW):', PeakCooling[:1].round() PeakHeating = Output.groupby('Hour')['TotalHeating'].sum() PeakHeating.sort_values(inplace=True, ascending=False) print '\n Peak Heating Demand (kW):', PeakHeating[:1].round() PeakElectricity = Output.groupby('Hour')['Electricity'].sum() PeakElectricity.sort_values(inplace=True, ascending=False) print '\n Peak Non-HVAC Electricity Demand(kW):', PeakElectricity[:1].round() # ................................................................... # Identify peak demands for each building for cooling, heating, and electricity CoolingMax = Output.groupby('Building')['SDL/Cooling'].max() Output = Output.join(CoolingMax, on='Building', rsuffix='Max') print 'Cooling max :', CoolingMax[:1] HeatingMax = Output.groupby('Building')['TotalHeating'].max() Output = Output.join(HeatingMax, on='Building', rsuffix='Max') ElectricMax = Output.groupby('Building')['Electricity'].max() Output = Output.join(ElectricMax, on='Building', rsuffix='Max') # ................................................................... print "Scenario 01: Grid Supplied Electricity Satisfies All Heating, Cooling, and Electric loads" # Calculate total heating energy needed Output['NumHeatPumps_Heat'] = Output['TotalHeatingMax']/Size_HeatPump_Heating Output['NumHeatPumps_Heat'] = np.ceil(Output['NumHeatPumps_Heat']) Output['PLR_HeatPump_Heating'] = np.where(Output['TotalHeating']<=0, 0, (Output['TotalHeating']/Output['NumHeatPumps_Heat'])/Size_HeatPump_Heating) Output['PLR_HeatPump_Heating'] = np.where(Output['PLR_HeatPump_Heating']<=MinPLR_HP_Heating, MinPLR_HP_Heating, (Output['TotalHeating']/Output['NumHeatPumps_Heat'])/Size_HeatPump_Heating) Output['HP_Heat_Modifier'] = a1 + a2 * Output['PLR_HeatPump_Heating'] + a3 * Output['PLR_HeatPump_Heating']**2 + a4 * Output['PLR_HeatPump_Heating'] + a5 * Output['PLR_HeatPump_Heating']**3 + a6 * Output['PLR_HeatPump_Heating'] + a7 * Output['PLR_HeatPump_Heating'] Output['Energy_HeatPump_Heating'] = Output['HP_Heat_Modifier'] * Power_Max_Heating * Output['NumHeatPumps_Heat'] Output['COP_HeatPump_Heating'] = np.where(Output['Energy_HeatPump_Heating'] < MinCOP_Heating,MinCOP_Heating, Output['TotalHeating'] / Output['Energy_HeatPump_Heating']) Output['COP_HeatPump_Heating'] = np.where(Output['COP_HeatPump_Heating'] >MaxCOP_Heating, MaxCOP_Heating, Output['COP_HeatPump_Heating']) # ................................................................... # Calculate total cooling energy needed Output['NumHeatPumps_Cool'] = Output['SDL/CoolingMax']/Size_HeatPump_Cooling Output['NumHeatPumps_Cool'] = np.ceil(Output['NumHeatPumps_Cool']) Output['PLR_HeatPump_Cooling'] = np.where(Output['NumHeatPumps_Cool']<=0.0,0.0, Output['SDL/Cooling'] / (Output['NumHeatPumps_Cool']*Size_HeatPump_Cooling)) Output['PLR_HeatPump_Cooling'] = np.where(Output['PLR_HeatPump_Cooling'] < MinPLR_HP_Cooling, MinPLR_HP_Cooling, Output['PLR_HeatPump_Cooling']) Output['COP_HeatPump_Cooling'] = ((c1_hp + c2_hp*Output['PLR_HeatPump_Cooling'] + c3_hp*Output['DB'] + c4_hp*Output['PLR_HeatPump_Cooling']**2 + c5_hp*Output['PLR_HeatPump_Cooling']*Output['DB'] + c6_hp*Output['DB']**2 + c7_hp*Output['PLR_HeatPump_Cooling']**3 + c8_hp*Output['PLR_HeatPump_Cooling']**2*Output['DB'] + c9_hp*Output['PLR_HeatPump_Cooling']*Output['DB']**2 + c10_hp*Output['DB']**3)**-1) Output['COP_HeatPump_Cooling'] = np.where(Output['COP_HeatPump_Cooling']>MaxCOP_Cooling, MaxCOP_Cooling,Output['COP_HeatPump_Cooling']) Output['COP_HeatPump_Cooling'] = np.where(Output['COP_HeatPump_Cooling'] > MinCOP_Cooling, Output['COP_HeatPump_Cooling'], MinCOP_Cooling) # Added in v22 to set minimum COP to prevent negative values Output['Energy_HeatPump_Cooling'] = np.where(Output['COP_HeatPump_Cooling']<=0,0, Output['SDL/Cooling'] / Output['COP_HeatPump_Cooling']) Output['FanPowerSC01'] = Output['Energy_HeatPump_Cooling'] * FanPwrCoolRatio # ................................................................... NonHVAC_Electricity = Output['Electricity'] Load_CitySC01 = sum(NonHVAC_Electricity+Output['Energy_HeatPump_Heating']+Output['Energy_HeatPump_Cooling']+Output['FanPowerSC01'] ) Load_Grid_SC01 = Load_CitySC01 * (1 + Losses_Transmission) Energy_SC01 = Load_Grid_SC01/Effic_PowerGen SC01_NonHVACEnergy = sum(NonHVAC_Electricity) * (1+Losses_Transmission) / Effic_PowerGen SC01_HeatingEnergy = sum(Output['Energy_HeatPump_Heating']) * (1+Losses_Transmission) / Effic_PowerGen SC01_CoolingEnergy = sum(Output['Energy_HeatPump_Cooling']) * (1+Losses_Transmission) / Effic_PowerGen SC01_FanEnergy = sum(Output['FanPowerSC01']) * (1+Losses_Transmission) / Effic_PowerGen SC01_AvgCoolingCOP = sum(Output['SDL/Cooling']) / SC01_CoolingEnergy # This version of COP represents the true input energy needed to meet cooling demands SC01_AvgHeatingCOP = sum(Output['TotalHeating']) / SC01_HeatingEnergy print "Annual input energy for non-HVAC electricity loads:", SC01_NonHVACEnergy print "Annual input energy for heating:", SC01_HeatingEnergy print "Annual input energy for cooling:", SC01_CoolingEnergy print "Annual input energy required (kWh):", Energy_SC01 print "Average Cooling COP:", SC01_AvgCoolingCOP print "Average Heating COP:", SC01_AvgHeatingCOP # Cost to Generate Electricity Cost_SC01 = Load_Grid_SC01 * Cost_Electricity print "Annual cost of generating electricity for grid (USD):" , Cost_SC01 # Calculate CO2 Emissions Associated to Using Electricity from the Grid to Satisfy Loads Emissions_SC01 = Load_Grid_SC01 * Emissions_ElectricGeneration print "Annual carbon emissions (Metric Tons):", Emissions_SC01 Output['ElectricityConsumption'] = (NonHVAC_Electricity + Output['Energy_HeatPump_Heating'] + Output['Energy_HeatPump_Cooling']+Output['FanPowerSC01']) * (1 + Losses_Transmission) Output['NaturalGasConsumption'] = 0.0 Results = pd.DataFrame() Results['ElectricityConsumption'] = Output.groupby('Hour')['ElectricityConsumption'].sum() Results['NaturalGasConsumption'] = Output.groupby('Hour')['NaturalGasConsumption'].sum() # Results['Scenario01'] = SC01_NonHVACEnergy, SC01_HeatingEnergy, SC01_CoolingEnergy, Energy_SC01, SC01_AvgCoolingCOP, SC01_AvgHeatingCOP, Cost_SC01, Emissions_SC01 # ................................................................... # Export Data Output.to_csv('C:/UMI/temp/DHSimulationResults/SC01_Export_OutputDataFrame.csv') Results.to_csv('C:/UMI/temp/DHSimulationResults/SC01_Export_ResultsDataFrame.csv')
from theteller_api_sdk.checkout.checkout import Checkout import unittest from theteller_api_sdk.core.core import Client from theteller_api_sdk.core.environment import Environment from os import environ class TestCheckout(unittest.TestCase): def setUp(self) -> None: env= Environment("test") client = Client(merchant_id=environ.get("MERCHANT_ID"), api_key=environ.get("API_KEY"), apiuser=environ.get("API_USERNAME"), environment=env) self.checkout = Checkout(client) def test_checkout_creation(self): checkout = self.checkout.createCheckout("test checkout",10,"https://localhost:8000","oliverotchere4@gmail.com") self.assertIsNotNone(checkout.get("checkout_url"))
#!/usr/bin/env python3 import Constants as Constants import Solvers as Solvers import FunctionCallers as FunctionCallers def malthus(): return Solvers.rungeKutta4V1( FunctionCallers.callMalthus, Constants.INITIAL_NUMBER_OF_PREYS, 0, Constants.DURATION, Constants.STEP ) def verhulst(): return Solvers.rungeKutta4V1( FunctionCallers.callVerhulst, Constants.INITIAL_NUMBER_OF_PREYS, 0, Constants.DURATION, Constants.STEP ) def lotkaVolterraMalthus(): return Solvers.rungeKutta4V2( FunctionCallers.callLotkaVolterraPrey, FunctionCallers.callLotkaVolterraPredator, Constants.INITIAL_NUMBER_OF_PREYS, Constants.INITIAL_NUMBER_OF_PREDATORS, 0, Constants.DURATION, Constants.STEP ) def lotkaVolterraVerhulst(): return Solvers.rungeKutta4V2( FunctionCallers.callLotkaVolterraVerhulstPrey, FunctionCallers.callLotkaVolterraVerhulstPredator, Constants.INITIAL_NUMBER_OF_PREYS, Constants.INITIAL_NUMBER_OF_PREDATORS, 0, Constants.DURATION, Constants.STEP )
#this is an implementation of the FFT (fast fourier transform) in python from scratch from cmath import exp, pi, sin import matplotlib.pyplot as plt def fft(input): #seperate the input vector into even and odd indexes input_odd = input[1::2] input_even = input[0::2] #length of the input vector N = len(input) #print(N) if N == 1 : return input output = [0 for i in range(N)] #recursive implementation output_odd = fft(input_odd) output_even = fft(input_even) w = W_coef(N) #calculate the omega coeffecient for i in range(N//2): output[i] = output_even[i] + (w**i)*output_odd[i] output[i + N//2] = output_even[i] - (w**i)*output_odd[i] return output def W_coef(N): return exp(-1j*(2*pi)/N) #the number of element must be a power of to in order for the algorithm to work x = [ i*0.01 for i in range(1024)] y = [sin(i) for i in x] Y = fft(y) plt.plot(Y) plt.show()
# coding: utf-8 """ Execute Step Classes """ import tmt class Execute(tmt.steps.Step): """ Run the tests (using the specified framework and its settings) """ def __init__(self, data, plan): """ Initialize the execute step """ super(Execute, self).__init__(data, plan) if len(self.data) > 1: raise tmt.utils.SpecificationError( "Multiple execute steps defined in '{}'.".format(self.plan)) def show(self): """ Show execute details """ super(Execute, self).show(keys=['how', 'script', 'isolate'])
import socket import ssl from machine import Pin, Timer import network from utime import sleep from settings import wifi_name, wifi_pass, pushover_user, pushover_token PUSHOVER_HOST = 'api.pushover.net' PUSHOVER_PORT = 443 PUSHOVER_PATH = '/1/messages.json' SAFE_CHARS = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_.- ' ##################################### # SET THESE IN 'settings.py'! # ##################################### # WiFi Settings ssid = wifi_name netpass = wifi_pass # Pushover Settings user = pushover_user token = pushover_token ## Optional Settings beep_duration=1 # duration to beep for (secs); can be decimal, eg 0.5 alarm_frequency=10 # how often to beep (secs) when in an alert state net_frequency=1800 # how often to beep (secs) when network is disconencted restart_delay=30 # if in a failed state, wait this many seconds before starting back up connect_count=60 # How frequently (secs) to retry network connection if it's down (too frequent will interrupt in-flight attempts!) ##################################### # END # ##################################### ## Setup pins floatswitch = Pin(2, Pin.IN) ## Pulled high when OK. Goes low when water level too high (alert state) buzzer = Pin(4, Pin.OUT, value=False) ## Off by default powertail = Pin(18, Pin.OUT, value=True) ## On by default ### PINOUT: # Float1: GPIO_2 # Float2: 3.3v # # Buzzer+: GPIO_4 # Buzzer-: GND # # Powertail+: GPIO_18 # Powertail-: GND ## Initial State last_float_state=True ## True is healthy (water level OK) startup_message_sent=False send_alert_message=False sent_recovery_message=True net_timer=Timer(0) net_timer_init=True alarm_timer=Timer(1) alarm_timer_init=False def make_safe(string): r = [] for c in string: if c in SAFE_CHARS: r.append(c) else: r.append('%%%x' % ord(c)) return (''.join(r)).replace(' ', '+') def sendMessage(title, msg, highPriority=False): data = 'token=' + make_safe(token) data += '&user=' + make_safe(user) data += '&title=' + make_safe(title) data += '&message=' + make_safe(msg) if highPriority: data += '&priority=1' r = None s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: s.settimeout(10) addr = [(socket.getaddrinfo(PUSHOVER_HOST, PUSHOVER_PORT)[0][-1], PUSHOVER_HOST)] s.connect(addr[0][0]) s = ssl.wrap_socket(s) s.write('POST {} HTTP/1.0\r\n'.format(PUSHOVER_PATH).encode()) s.write('Host: {}\r\n'.format(addr[0][1]).encode()) s.write(b'Content-Type: application/x-www-form-urlencoded\r\n') s.write('Content-Length: {}\r\n'.format(len(data)).encode()) s.write(b'\r\n') s.write('{}\r\n\r\n'.format(data)) while s.readline() != b'\r\n': continue r = s.read() except Exception as e: print(e) finally: s.close() print("Response: {}".format(r)) ### Float switch connected 1. GND, 2. Pin2 def get_float_state(): value = floatswitch.value() # print("Float value: {}".format(value)) return floatswitch.value() def beep(): buzzer.value(True) sleep(beep_duration) buzzer.value(False) def pushover_alert(wlan): if wlan.isconnected(): try: print("Aquarium Float Trigger: ALERT") sendMessage("Aquarium Float Trigger: ALERT", "The float switch has triggered. Check overflow!", True) return True except Exception as err: print("Encountered error sending pushover message: {}".format(err)) return False else: print("No alert message sent; wifi not up") return False def pushover_recovery(wlan): if wlan.isconnected(): try: print("Aquarium Float Trigger: OK") sendMessage("Aquarium Float Trigger: OK", "The float switch state has been restored") return True except Exception as err: print("Encountered error sending pushover message: {}".format(err)) return False else: print("No recovery message sent; wifi not up") return False def pushover_started(wlan): if wlan.isconnected(): try: print("Aquarium Float Trigger: STARTED") sendMessage("Aquarium Float Trigger: Started", "The float switch service has started up") return True except Exception as err: print("Encountered error sending pushover message: {}".format(err)) return False else: print("No startup message sent; wifi not up") return False ## START # Connect to network wlan = network.WLAN(network.STA_IF) wlan.active(True) while True: # Send a startup message if not startup_message_sent: startup_message_sent = pushover_started(wlan) # Maintain network connection. Beep hourly if not connected. if not wlan.isconnected(): if not net_timer_init: net_timer.init(mode=Timer.PERIODIC, period=net_frequency*1000, callback=lambda t:beep()) # Beep every 1hr net_timer_init=True connect_count += 1 if connect_count > 60: connect_count = 0 print('Connecting to Wifi...') wlan.connect(ssid, netpass) # We don't block on this. else: if net_timer_init: connect_count = 0 net_timer.deinit() net_timer_init = False # monitor float switch (voltage_high when OK) current_float_state = get_float_state() # See if state has changed from last reading if current_float_state != last_float_state: print("State Change!: {} to {}".format(last_float_state, current_float_state)) last_float_state = current_float_state if current_float_state: # ensure pin0 (powertail) is high powertail.value(1) sent_alert_message = False sent_recovery_message = pushover_recovery(wlan) if alarm_timer_init: alarm_timer.deinit() else: # if float_switch == vlow: powertail.value(0) sent_recovery_message = False alarm_timer.init(mode=Timer.PERIODIC, period=alarm_frequency*1000, callback=lambda t:beep()) # Beep every 30s alarm_timer_init = True sent_alert_message = pushover_alert(wlan) ## Block further change state for 1minute to stop constant pump cycle loops print("Sleeping monitoring for {}s".format(restart_delay)) sleep(restart_delay) else: # Retry sending recovery messages if it failed previously if not current_float_state and not sent_alert_message: sent_alert_message = pushover_alert(wlan) if current_float_state and not sent_recovery_message: sent_recovery_message = pushover_recovery(wlan) sleep(1)
from pygal_maps_world.maps import World from pygal.style import NeonStyle wm = World(style=NeonStyle) wm.title = 'Populations of Countries in North America' wm.add('North America', {'ca': 34126000, 'us': 309349000, 'mx': 113423000}) wm.render_to_file('na_populations.svg')
# -*- coding: utf-8 -*- """ qiniusupport ~~~~~~~~~~~~~~ Qiniu client wrapper. https://developer.qiniu.com/kodo/sdk/1242/python :copyright: (c) 2018 by fengweimin. :date: 2018/3/21 """ import qiniu class QiniuSupport(object): def __init__(self, app=None): self.app = app self.auth = None self.bucket = None if app is not None: self.init_app(app) def init_app(self, app): self.app = app self.auth = qiniu.Auth(app.config['QINIU_AK'], app.config['QINIU_SK']) self.bucket = app.config['QINIU_BUCKET'] def token(self, policy=None): """ 生成token. """ # 上传策略, 可以设置持久化逻辑, 比如进行视频的预处理 # https://developer.qiniu.com/kodo/manual/1208/upload-token # 默认过期时间为3600秒 return self.auth.upload_token(self.bucket, policy=policy) def upload_data(self, key, data, **kwargs): """ 上传数据. 注: 七牛没有文件夹的概念, 其自身定位是对象存储, 所以只有key这个字段. """ ret, info = qiniu.put_data(self.token(), key, data, **kwargs) if ret: return self.url(ret['key']) else: self.app.logger.error('Failed when uploading data, error info %s' % info) return None def upload_stream(self, key, input_stream, file_name, data_size, **kwargs): """ 上传本地的文件. """ ret, info = qiniu.put_stream(self.token(), key, input_stream, file_name, data_size, **kwargs) if ret: return self.url(ret['key']) else: self.app.logger.error('Failed when uploading stream, error info %s' % info) return None def upload_file(self, key, file, **kwargs): """ 上传本地的文件. """ ret, info = qiniu.put_file(self.token(), key, file, **kwargs) if ret: return self.url(ret['key']) else: self.app.logger.error('Failed when uploading file, error info %s' % info) return None def url(self, key): """ 生成完整路径. """ return '%s/%s' % (self.app.config['QINIU_BASE_URL'], key)
from dataclasses import dataclass import numpy as np import pandas as pd from statsmodels.nonparametric import kernels from statsmodels.sandbox.nonparametric import kernels as sandbox_kernels from statsmodels.nonparametric import bandwidths import sys # MINIMUM_CONTI_BANDWIDTH = sys.float_info.min MINIMUM_CONTI_BANDWIDTH = 1e-100 def indicator_kernel(h: np.ndarray, Xi: np.ndarray, x: np.ndarray) -> np.ndarray: """The indicator kernel returning one if two elements are equal. Parameters: h : not used. This argument is left for compatibility. Xi : 1-D ndarray, shape (nobs, K). The value of the training set. x : 1-D ndarray, shape (K, 1). The value at which the kernel density is being estimated. Returns: ndarray of shape ``(n_obs, K)``: The kernel_value at each training point for each var. """ return (Xi - x) == 0 def epanechnikov(h: np.ndarray, Xi: np.ndarray, x: np.ndarray) -> np.ndarray: """Epanechnikov kernel. Parameters: h : bandwidth. Xi : 1-D ndarray, shape (nobs, 1). The value of the training set. x : 1-D ndarray, shape (1, nbatch). The value at which the kernel density is being estimated. Returns: ndarray of shape ``(n_obs, nbatch)``: The kernel_value at each training point for each var. """ u = (Xi - x) / h out = 3 / 4 * (1 - u**2) * (np.abs(u) <= 1) assert out.shape == (Xi.shape[0], x.shape[1]) return out def triweight(h: np.ndarray, Xi: np.ndarray, x: np.ndarray) -> np.ndarray: """Triweight kernel. Parameters: h : bandwidth. Xi : 1-D ndarray, shape (nobs, 1). The value of the training set. x : 1-D ndarray, shape (1, nbatch). The value at which the kernel density is being estimated. Returns: ndarray of shape ``(n_obs, nbatch)``: The kernel_value at each training point for each var. """ u = (Xi - x) / h out = 35 / 32 * (np.maximum(0, 1 - u**2)**3) assert out.shape == (Xi.shape[0], x.shape[1]) return out def biweight(h: np.ndarray, Xi: np.ndarray, x: np.ndarray) -> np.ndarray: """Biweight kernel. Parameters: h : bandwidth. Xi : 1-D ndarray, shape (nobs, 1). The value of the training set. x : 1-D ndarray, shape (1, nbatch). The value at which the kernel density is being estimated. Returns: ndarray of shape ``(n_obs, nbatch)``: The kernel_value at each training point for each var. """ u = (Xi - x) / h out = 15 / 16 * (np.maximum(0, 1 - u**2)**2) assert out.shape == (Xi.shape[0], x.shape[1]) return out def tricube(h: np.ndarray, Xi: np.ndarray, x: np.ndarray) -> np.ndarray: """Tricube kernel. Parameters: h : bandwidth. Xi : 1-D ndarray, shape (nobs, 1). The value of the training set. x : 1-D ndarray, shape (1, nbatch). The value at which the kernel density is being estimated. Returns: ndarray of shape ``(n_obs, nbatch)``: The kernel_value at each training point for each var. """ u = (Xi - x) / h out = 70 / 81 * (np.maximum(0, 1 - np.abs(u)**3)**3) assert out.shape == (Xi.shape[0], x.shape[1]) return out # https://github.com/statsmodels/statsmodels/blob/2a5a6ec3baf901f52008aee10f166ff6085d3ba5/statsmodels/nonparametric/_kernel_base.py # statsmodels.nonparametric.kernels: https://github.com/statsmodels/statsmodels/blob/2a5a6ec3baf901f52008aee10f166ff6085d3ba5/statsmodels/nonparametric/kernels.py kernel_func = dict( wangryzin=kernels.wang_ryzin, aitchisonaitken=kernels.aitchison_aitken, # https://tedboy.github.io/statsmodels_doc/_modules/statsmodels/nonparametric/kernels.html#gaussian gaussian=kernels.gaussian, aitchison_aitken_reg=kernels.aitchison_aitken_reg, wangryzin_reg=kernels.wang_ryzin_reg, gauss_convolution=kernels.gaussian_convolution, wangryzin_convolution=kernels.wang_ryzin_convolution, aitchisonaitken_convolution=kernels.aitchison_aitken_convolution, gaussian_cdf=kernels.gaussian_cdf, aitchisonaitken_cdf=kernels.aitchison_aitken_cdf, wangryzin_cdf=kernels.wang_ryzin_cdf, d_gaussian=kernels.d_gaussian, # tricube=kernels.tricube, tricube=tricube, # Following are added here: indicator=indicator_kernel, epanechnikov=epanechnikov, triweight=triweight, biweight=biweight, ) @dataclass class VanillaProductKernelConfig: """A configuration set used for product kernels. Parameters: conti_kertype : Default: 'gaussian'. ordered_kertype : statmodels' original default is 'wangryzin'. unordered_kertype : statmodels' original default is 'aitchisonaitken'. conti_bw_method : ordered_bw_method : unordered_bw_method : """ conti_kertype: str = 'gaussian' conti_bw_method: str = 'normal_reference' conti_bw_temperature: float = 1. ordered_kertype: str = 'indicator' ordered_bw_method: str = 'indicator' unordered_kertype: str = 'indicator' unordered_bw_method: str = 'indicator' def bw_normal_reference(x: np.ndarray, kernel=sandbox_kernels.Gaussian) -> float: """ Plug-in bandwidth with kernel specific constant based on normal reference. This bandwidth minimizes the mean integrated square error if the true distribution is the normal. This choice is an appropriate bandwidth for single peaked distributions that are similar to the normal distribution. Parameters ---------- x : array_like Array for which to get the bandwidth kernel : CustomKernel object Used to calculate the constant for the plug-in bandwidth. Returns ------- bw : float The estimate of the bandwidth Notes ----- Returns C * A * n ** (-1/5.) where :: A = min(std(x, ddof=1), IQR/1.349) IQR = np.subtract.reduce(np.percentile(x, [75,25])) C = constant from Hansen (2009) When using a Gaussian kernel this is equivalent to the 'scott' bandwidth up to two decimal places. This is the accuracy to which the 'scott' constant is specified. References ---------- Silverman, B.W. (1986) `Density Estimation.` Hansen, B.E. (2009) `Lecture Notes on Nonparametrics.` """ C = kernel().normal_reference_constant A = bandwidths._select_sigma(x) n = len(x) return C * A * n**(-0.2) class BandwidthNormalReference: """Class to propose the rule-of-thumb bandwidth.""" def __init__(self, coeff:float=1): """Constructor. Parameters: coeff : Coefficient to multiply the rule-of-thumb bandwidth. """ self.coeff = coeff def __call__(self, *args, **kwargs) -> float: """Compute the bandwidth. Returns: Computed bandwidth. """ return self.coeff * bw_normal_reference(*args, **kwargs) class VanillaProductKernel: """Product kernel object. Notes: Bandwidth methods: ``statsmodels.nonparametric.bandwidths``: https://www.statsmodels.org/devel/_modules/statsmodels/nonparametric/bandwidths.html """ BW_METHODS = { 'normal_reference': BandwidthNormalReference(), 'indicator': lambda x: None, } def __init__( self, data_ref: np.ndarray, vartypes: str, config: VanillaProductKernelConfig = VanillaProductKernelConfig()): """Constructor. Parameters: data_ref : Reference data points for which the kernel values are computed. vartypes : The variable type ('c': continuous, 'o': ordered, 'u': unordered). Example: ``'ccou'``. product_kernel_config : the configuration object. """ self.vartypes = vartypes self.kertypes = dict(c=config.conti_kertype, o=config.ordered_kertype, u=config.unordered_kertype) self.bw_methods = dict(c=config.conti_bw_method, o=config.ordered_bw_method, u=config.unordered_bw_method) self.conti_bw_temperature = config.conti_bw_temperature self._fit(data_ref) def _fit(self, data_ref: np.ndarray) -> None: """Fit the product kernel. Parameters: data_ref : ndarray of shape ``(n_obs, n_dim)`` the kernel centers. """ self.data_ref = data_ref self.bandwidths = [] for k, vtype in enumerate(self.vartypes): bw_method = self.bw_methods.get(vtype, lambda x: 'not implemented') if isinstance(bw_method, str): bw = self.BW_METHODS[bw_method](data_ref[:, k]) else: bw = bw_method(data_ref[:, k]) if vtype == 'c': bw = bw * self.conti_bw_temperature if bw == 0: # Error handling for the case that there is only one unique value for the variable in the data. bw = MINIMUM_CONTI_BANDWIDTH self.bandwidths.append(bw) def __call__(self, data: np.ndarray) -> np.ndarray: """Compute the kernel matrix ``(k(data_i, data_ref_j))_{ij}``. Parameters: data : ndarray of shape ``(n_data, n_dim)``. Returns: ndarray of shape ``(n_data, n_data_ref)``. """ gram_matrices = [] for k, vtype in enumerate(self.vartypes): func = kernel_func[self.kertypes[vtype]] gram_matrix = func(self.bandwidths[k], data[:, k][:, None], self.data_ref[:, k][None, :]) gram_matrices.append(gram_matrix) return np.array(gram_matrices).prod(axis=0)
#!/usr/bin/env python3 import os import sys import subprocess import string import random import re import subprocess media_re = '.(mp4|mov|wma)$' from_dir = "ready-for-glitch" overlay_dir = "overlays" dest_dir = "final" overlay_file = "tv-interference-overlay.mp4" # unlike on the command line, complicated cli options don't need # to be quoted when using subprocess options ffmpeg_opts = [ "-filter_complex", # "[1:0]scale=-1:480, crop=ih/3*4:ih, setdar=dar=1, format=rgba[a]; \ # [0:0]scale=-1:480, crop=ih/3*4:ih, setdar=dar=1, format=rgba[b]; \ # [b][a]blend=all_mode='overlay':all_opacity=0.8" # "[1]split[m][a]; \ # [a]geq='if(gt(lum(X,Y),16),255,0)',hue=s=0[al]; \ # [m][al]alphamerge[ovr]; \ # [0][ovr]overlay", # "[1]colorkey=0x000000:0.02:0.03[ckout]; \ # [ckout]scale=-1:480, crop=ih/3*4:ih[scaleout]; \ # [0][scaleout]overlay=154:170[out];" "[0:a]volume=1.0[a0]; \ [1:a]volume=0.2[a1]; \ [a0][a1]amix=inputs=2:duration=shortest; \ [0:v]scale=-1:480, crop=ih/3*4:ih[basevid]; \ [1:v]scale=-1:480, crop=ih/3*4:ih[overlay]; \ [overlay]colorkey=0x000000:0.2:0.2[keyout]; \ [basevid][keyout]overlay=shortest=1[out]", "-map", "[out]", # "-acodec", "copy", # this works but has hard edges around the key, and doesn't scale # "[1:v]colorkey=0x000000:0.1:0.1[ckout]; \ # [0:v][ckout]overlay[out]", # "-map", "[out]", # this works but the blend mode is not quite right # "[1:0]scale=-1:480, crop=ih/3*4:ih, format=rgba[a]; \ # [0:0]scale=-1:480, crop=ih/3*4:ih, format=rgba[b]; \ # [b][a]blend=all_mode='overlay':all_opacity=0.8", # glitch mods # "-x265-params", "b-frames=0", "-shortest", "-c:v", "libx264", "-preset", "medium", "-crf", "23", "-c:a", "aac", "-strict", "-2" ] media_dir_raw = input ("Enter media folder: ") media_dir_clean = re.sub('\\\\', '', media_dir_raw) # if media dir not found, bail # isdir() prefers either the escaped version, # or a fullpath in quotes. We'll use the latter. if os.path.isdir(f'"{media_dir_clean}"'): print(f"Folder not found: {media_dir_clean}") quit() else: print(f"Valid media folder: {media_dir_clean}") # if source dir not found, bail # again, isdir() prefers escapes or quoted, we use quotes if os.path.isdir(f'"{media_dir_clean}/{from_dir}"'): print(f"No folder \"{from_dir}\", recheck media folder.") quit() else: print(f"Folder \"{from_dir}\" found.") # if destination doesn't exist, create it # again, isdir() prefers escapes or quoted, we use quotes if os.path.isdir(f'"{media_dir_raw}/{dest_dir}"'): print(f"No destination folder \"{dest_dir}\" found, creating.") os.makedirs(f"{media_dir}/{dest_dir}") else: print(f"Destination folder \"{dest_dir}\" found.") print("Transcoding files") print("=================") full_src_dir = f"{media_dir_clean}/{from_dir}" full_over_dir = f"{media_dir_clean}/{overlay_dir}" full_dest_dir = f"{media_dir_clean}/{dest_dir}" filelist = [f for f in os.listdir(full_src_dir)] opt_str = " ".join(ffmpeg_opts) try: for file in filelist: if re.search(media_re, file): basename = os.path.splitext(file)[0] # Note source and dest dirs could have spaces and need to be quoted source = f"{full_src_dir}/{file}" overlay = f"{full_over_dir}/{overlay_file}" dest = f"{full_dest_dir}/{basename}.mp4" # unlike on the command line, complicated cli options don't need # to be quoted when using subprocess options # ffmpeg -i orig-vid.mp4 -i overlay.mp4 opts result.mp3 args = ["ffmpeg", "-i", f'{source}', "-i", f'{overlay}'] + ffmpeg_opts + [f'{dest}'] # print (args) if not os.path.isfile(dest): subprocess.call(args) else: print(f"File {file} already exists, skipping.") except: if dest: os.remove(dest) pass