content
stringlengths
5
1.05M
import pytest from pathlib import Path import os pai = os.path.dirname(__file__ ) examples_path = pai +'/examples' @pytest.fixture def example(): return lambda p: open(examples_path+ "/" + p).read()
#!/usr/bin/python # -*- coding: UTF-8 -*- from keras.preprocessing.image import img_to_array import imutils import cv2 from keras.models import load_model import numpy as np import datetime # parameters for loading data and images detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' emotion_model_path = 'models/_mini_XCEPTION.102-0.66.hdf5' # hyper-parameters for bounding boxes shape # loading models face_detection = cv2.CascadeClassifier(detection_model_path) emotion_classifier = load_model(emotion_model_path, compile=False) EMOTIONS = ["angry" ,"disgust","scared", "happy", "sad", "surprised","neutral"] #EMOTIONS = ["生气", "反感", "害怕", "开心", "悲伤", "惊讶", "平静"] feelings_faces = [] for index, emotion in enumerate(EMOTIONS): feelings_faces.append(imutils.resize(cv2.imread('emojis/' + emotion + '.png', -1),height=60,width=60)) # starting video streaming #cv2.namedWindow('test') imagepath = "./test_pic/happy.jpg" image = cv2.imread(imagepath) image = imutils.resize(image,width=300) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_detection.detectMultiScale(gray,scaleFactor=1.1,minNeighbors=5,minSize=(30,30),flags=cv2.CASCADE_SCALE_IMAGE) print faces canvas = np.zeros((250, 300, 3), dtype="uint8") frameClone = image.copy() if len(faces) > 0: faces = sorted(faces, reverse=True, key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0] (fX, fY, fW, fH) = faces # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare # the ROI for classification via the CNN roi = gray[fY:fY + fH, fX:fX + fW] roi = cv2.resize(roi, (64, 64)) roi = roi.astype("float") / 255.0 roi = img_to_array(roi) roi = np.expand_dims(roi, axis=0) starttime = datetime.datetime.now() preds = emotion_classifier.predict(roi)[0] endtime = datetime.datetime.now() delta = (endtime - starttime).microseconds/1000.0 emotion_probability = np.max(preds) label = EMOTIONS[preds.argmax()] print preds for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)): # construct the label text text = "{}: {:.2f}%".format(emotion, prob * 100) emoji_face = feelings_faces[np.argmax(preds)] w = int(prob * 300) cv2.rectangle(canvas, (7, (i * 35) + 5), (w, (i * 35) + 35), (0, 0, 255), -1) cv2.putText(canvas, text, (10, (i * 35) + 23), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (255, 255, 255), 2) cv2.putText(frameClone, label, (fX, fY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH), (0, 0, 255), 2) for c in range(0, 3): frameClone[10:70, 240:300, c] = emoji_face[:, :, c] * \ (emoji_face[:, :, 3] / 255.0) + frameClone[10:70, 240:300, c] * (1.0 - emoji_face[:, :, 3] / 255.0) cv2.imshow("The result box. cost time: %s ms" % delta, frameClone) print "The emotion is %s, and prob is %s" % (label, emotion_probability) print "The processing cost time: %s ms" % delta cv2.imshow("Probabilities", canvas) cv2.waitKey(0)
import pandas from classification.Classification import Classification from experiment.configuration import Parameters from loader.PreprocessedDataLoader import PreprocessedDataLoader from plot.Ploter import plot_pie, plot_box from vectorization.BagOfWordsModel import BagOfWordsModel from vectorization.Doc2VecModel import Doc2VecModel from vectorization.TdIdfModel import TfIdfModel all_data = { "arline": PreprocessedDataLoader('processed/arline.csv'), "review": PreprocessedDataLoader('processed/review.csv'), "amazon": PreprocessedDataLoader('processed/amazon.csv') } model = 'Naive Bayes' def load_data(data_loader, plot=False): data_loader.load() data = data_loader.get_data() data['sentiment'] = data['sentiment'].apply(lambda x: 0 if x == 'negative' else 1) if plot: plot_pie(data, data_loader.labels) plot_box(data) return data def predict(vectorizer): result_dict = {} for name, loader in all_data.items(): print("Start processing for {} and {} ...".format(name, vectorizer.model_name())) loaded_data = load_data(loader) print("Data length: {}".format(len(loaded_data))) print("Class number:") print(loaded_data['sentiment'].value_counts()) classification = Classification(folds=5, score='f1') train = loaded_data.text train_labels = loaded_data.sentiment train_data = vectorizer.fit_transform(train) print("Train size {}".format(train_data.shape)) result = classification.fit(model, train_data, train_labels, Parameters.classification) result_dict['model'] = vectorizer.model_name() result_dict["{} precision".format(name)] = result.precision result_dict["{} recall".format(name)] = result.recall result_dict["{} f1".format(name)] = result.f1 result_dict["{} accuracy".format(name)] = result.accuracy result_dict['execution_time'] = result.execution_time params = {'{} {}'.format(name, k): v for k, v in result.best_param.items()} result_dict.update(params) vectorizer.clean() print("Train time {} s".format(round(result.execution_time, 2))) print("Finish processing for {} and {} ... \n".format(name, vectorizer.model_name())) return pandas.DataFrame(data=result_dict, index=[0]) uni_gram_bow = predict(BagOfWordsModel(n=1)) bi_gram_bow = predict(BagOfWordsModel(n=2, min_frequent=1)) tri_gram_bow = predict(BagOfWordsModel(n=3, min_frequent=1)) uni_gram_td_idf = predict(TfIdfModel(n=1)) bi_gram_td_idf = predict(TfIdfModel(n=2, min_frequent=1)) tri_gram_td_idf = predict(TfIdfModel(n=3, min_frequent=1)) doc_2_vec_dm = predict(Doc2VecModel(dm=1, size=300)) doc_2_vec_dbow = predict(Doc2VecModel(dm=0, size=300)) frames = [ uni_gram_bow, bi_gram_bow, tri_gram_bow, uni_gram_td_idf, bi_gram_td_idf, tri_gram_td_idf, doc_2_vec_dm, doc_2_vec_dbow ] file_name = model.lower().replace(" ", "_") final_frame = pandas.concat(frames) final_frame.to_csv('results/{}.csv'.format(file_name), encoding='utf-8') print("Final execution time for all models {} s\n".format(final_frame['execution_time'].sum()))
from datetime import datetime from app import db, create_uuid from app.dao.dao_utils import transactional, version_class from app.models import ServiceCallbackApi from app.models import DELIVERY_STATUS_CALLBACK_TYPE, COMPLAINT_CALLBACK_TYPE @transactional @version_class(ServiceCallbackApi) def save_service_callback_api(service_callback_api): service_callback_api.id = create_uuid() service_callback_api.created_at = datetime.utcnow() db.session.add(service_callback_api) @transactional @version_class(ServiceCallbackApi) def reset_service_callback_api(service_callback_api, updated_by_id, url=None, bearer_token=None): if url: service_callback_api.url = url if bearer_token: service_callback_api.bearer_token = bearer_token service_callback_api.updated_by_id = updated_by_id service_callback_api.updated_at = datetime.utcnow() db.session.add(service_callback_api) def get_service_callback_api(service_callback_api_id, service_id): return ServiceCallbackApi.query.filter_by(id=service_callback_api_id, service_id=service_id).first() def get_service_delivery_status_callback_api_for_service(service_id): return ServiceCallbackApi.query.filter_by( service_id=service_id, callback_type=DELIVERY_STATUS_CALLBACK_TYPE ).first() def get_service_complaint_callback_api_for_service(service_id): return ServiceCallbackApi.query.filter_by( service_id=service_id, callback_type=COMPLAINT_CALLBACK_TYPE ).first() @transactional def delete_service_callback_api(service_callback_api): db.session.delete(service_callback_api)
import os import shutil import string import random import sqlite3 from functools import partial from threading import Thread from kivy.utils import platform from kivy.uix.screenmanager import Screen from kivy.properties import StringProperty from kivy.animation import Animation from kivy.core.clipboard import Clipboard from kivymd.uix.list import ( OneLineIconListItem, OneLineListItem, TwoLineListItem, OneLineAvatarIconListItem, ILeftBodyTouch, IRightBodyTouch, ContainerSupport, ) from kivymd.uix.selectioncontrol import MDCheckbox, MDSwitch from kivymd.uix.dialog import MDDialog from kivymd.uix.boxlayout import MDBoxLayout from kivymd.uix.button import MDFlatButton, MDRaisedButton from kivymd.uix.filemanager import MDFileManager from kivymd.toast import toast from kivymd.theming import ThemeManager class CustomOneLineIconListItem(OneLineIconListItem): icon = StringProperty() class OptionsScreen(Screen): def __init__(self, **kwargs): super().__init__(name=kwargs.get("name")) self.initUI() def initUI(self): data = [ ("Appearance", "format-paint"), ("Database", "database"), ("Security", "security"), ("Password Suggestion", "key"), ("About", "information-outline"), ] for text, icon in data: self.ids.container.add_widget( CustomOneLineIconListItem(text=text, icon=icon, on_press=self.optionBtn) ) def optionBtn(self, button): text = button.text if text == "Appearance": self.manager.setAppearanceOptionsScreen() elif text == "Database": self.manager.setDatabaseOptionsScreen() elif text == "Security": self.manager.setSecurityOptionsScreen() elif text == "Password Suggestion": self.manager.setPasswordSuggestionOptionsScreen() elif text == "About": toast("Created by Ibrahim Cetin") def goBackBtn(self): self.manager.setMainScreen() class SortSelectionItem(OneLineAvatarIconListItem): divider = None screen = None def __init__(self, **kwargs): super().__init__() self.text = kwargs.get("text") self.ids.check.active = kwargs.get("active") class LeftCheckbox(MDCheckbox, ILeftBodyTouch): pass class SubtitlesSelectionItem(OneLineAvatarIconListItem): def __init__(self, **kwargs): super().__init__() self.text = kwargs.get("text") self.ids.check.active = kwargs.get("active") class AppearanceOptionsScreen(Screen): sort_options = { "a_to_z": "Alphabetically (A to Z)", "z_to_a": "Alphabetically (Z to A)", "first_to_last": "Date (First to Last)", "last_to_first": "Date (Last to First)", } dialog = None sort_by = None list_subtitles_options = None def __init__(self, **kwargs): super().__init__(name=kwargs.get("name")) self.con = kwargs.get("con") self.cursor = kwargs.get("cursor") self.theme_cls = ThemeManager() self.getOptions() self.setOptions() def getOptions(self): self.cursor.execute( "SELECT sort_by, list_subtitles, animation_options FROM options" ) options = self.cursor.fetchall()[0] self.sort_by = options[0] self.list_subtitles_options = [bool(int(o)) for o in options[1].split(",")] self.animation_options = [bool(int(o)) for o in options[2].split(",")] def setOptions(self): self.ids.sort_by_item.secondary_text = self.sort_options.get(self.sort_by) self.setListSubtitlesText() self.ids.transition_animation_switch.active = self.animation_options[0] self.ids.bottomsheet_animation_switch.active = self.animation_options[1] def sortByButton(self): def is_current(code): return code == self.sort_by items = [] SortSelectionItem.screen = self for code, text in self.sort_options.items(): items.append(SortSelectionItem(text=text, active=is_current(code))) self.dialog = MDDialog( title="Sort By", type="confirmation", items=items, buttons=[ MDFlatButton( text="Cancel", text_color=self.theme_cls.primary_color, on_press=self.closeDialog, ), ], ) self.dialog.open() def setSortByOption(self, text): self.sort_by = list(self.sort_options.keys())[ list(self.sort_options.values()).index(text) ] self.cursor.execute("UPDATE options SET sort_by = ?", (self.sort_by,)) self.con.commit() self.ids.sort_by_item.secondary_text = text self.closeDialog() def listSubtitlesButton(self): self.dialog = MDDialog( title="List Subtitles", type="confirmation", items=[ SubtitlesSelectionItem( text="EMail", active=self.list_subtitles_options[0] ), SubtitlesSelectionItem( text="Username", active=self.list_subtitles_options[1] ), ], buttons=[ MDFlatButton( text="Cancel", text_color=self.theme_cls.primary_color, on_press=self.closeDialog, ), MDRaisedButton(text="Okay", on_press=self.getChecked), ], ) self.dialog.open() def getChecked(self, button): self.list_subtitles_options = [ item.ids.check.active for item in self.dialog.items ] new_status = ",".join([str(int(b)) for b in self.list_subtitles_options]) self.cursor.execute("UPDATE options SET list_subtitles = ?", (new_status,)) self.con.commit() self.setListSubtitlesText() self.closeDialog() def setListSubtitlesText(self): if all(self.list_subtitles_options): text = "EMail and Username" elif self.list_subtitles_options[0]: text = "EMail" elif self.list_subtitles_options[1]: text = "Username" else: text = "No" self.ids.list_subtitles_item.secondary_text = text def animationFunctions(self): options = [] options.append("1" if self.ids.transition_animation_switch.active else "0") options.append("1" if self.ids.bottomsheet_animation_switch.active else "0") o = ",".join(options) self.cursor.execute("UPDATE options SET animation_options = ?", (o,)) self.con.commit() def closeDialog(self, button=None): self.dialog.dismiss() def goBackBtn(self): self.manager.setOptionsScreen() class TwoLineListItemWithContainer(ContainerSupport, TwoLineListItem): def start_ripple(self): # disable ripple behavior pass class RightSwitch(MDSwitch, IRightBodyTouch): pass class RemoteDatabaseDialogContent(MDBoxLayout): pass class DatabasePasswordDialogContent(MDBoxLayout): hint_text = StringProperty() def showPasswordButton(self, button, field): if button.icon == "eye-outline": field.password = False button.icon = "eye-off-outline" elif button.icon == "eye-off-outline": field.password = True button.icon = "eye-outline" class DatabaseOptionsScreen(Screen): def __init__(self, **kwargs): super().__init__(name=kwargs.get("name")) self.con = kwargs.get("con") self.cursor = kwargs.get("cursor") self.getOptions() self.setOptions() self.initUI() def getOptions(self): self.cursor.execute( "SELECT auto_backup, auto_backup_location, remote_database, db_pass, db_user, db_name, db_port, db_host FROM options" ) options = self.cursor.fetchall()[0] self.auto_backup = bool(options[0]) self.auto_backup_location = options[1] self.remote_database = bool(options[2]) self.pg_info = options[3:] def setOptions(self): self.ids.switch.active = self.auto_backup self.ids.location_list_item.secondary_text = self.auto_backup_location self.file_manager_start_path = self.auto_backup_location self.ids.remote_database_switch.active = self.remote_database if all(self.pg_info): for list_item, description in zip( self.ids.remote_database_list.children, self.pg_info ): list_item.secondary_text = ( description if list_item.text != "Password" else "**********" ) def initUI(self): data = [ ("Backup Database", "Backup encrypted database"), ("Restore Database", "Restore encrypted database"), ] for text, description in data: self.ids.database_container.add_widget( TwoLineListItem( text=text, secondary_text=description, on_press=self.checkPlatform ) ) def checkPlatform(self, button): if platform == "android": from android.permissions import ( check_permission, request_permissions, Permission, ) if check_permission("android.permission.WRITE_EXTERNAL_STORAGE"): if isinstance(button, MDSwitch): self.autoBackupFunction(active=button.active) else: self.databaseFunctions(text=button.text) else: if isinstance(button, MDSwitch): if button.active: # request_permissions only run when switch active request_permissions( [ Permission.READ_EXTERNAL_STORAGE, Permission.WRITE_EXTERNAL_STORAGE, ], partial(self.autoBackupFunction, active=button.active), ) else: request_permissions( [ Permission.READ_EXTERNAL_STORAGE, Permission.WRITE_EXTERNAL_STORAGE, ], partial(self.databaseFunctions, text=button.text), ) else: if isinstance(button, MDSwitch): self.autoBackupFunction(active=button.active) else: self.databaseFunctions(text=button.text) def autoBackupFunction( self, permissions=None, grant_result=[True, True], active=False ): if not grant_result == [True, True]: self.auto_backup = 0 self.ids.switch.active = False # this line run switch's on_active method # that's why if request_permissions is not run only while switch is active, # request_permissions are run twice self.cursor.execute("UPDATE options SET auto_backup = 0") self.con.commit() toast("Please, Allow Storage Permission") return self.auto_backup = 1 if active else 0 self.cursor.execute("UPDATE options SET auto_backup = ?", (self.auto_backup,)) self.con.commit() if self.auto_backup == 1: shutil.copy2("pass.db", self.auto_backup_location) def autoBackupLocationFunction(self): self.file_manager = MDFileManager( exit_manager=self.exit_manager, select_path=self.auto_backup_location_select_path, search="dirs", ) self.file_manager.show(self.file_manager_start_path) self.manager.file_manager_open = True def auto_backup_location_select_path(self, path): if os.path.isdir(path): self.exit_manager() shutil.copy2("pass.db", path) self.cursor.execute("UPDATE options SET auto_backup_location = ?", (path,)) self.con.commit() self.getOptions() self.setOptions() else: toast("Please Select a Directory") def databaseFunctions(self, permissions=None, grant_result=[True, True], text=None): if not grant_result == [True, True]: toast("Please, Allow Storage Permission") return if text == "Backup Database": self.file_manager = MDFileManager( exit_manager=self.exit_manager, select_path=self.backup_select_path, search="dirs", ) self.file_manager.show(self.file_manager_start_path) self.manager.file_manager_open = True elif text == "Restore Database": self.file_manager = MDFileManager( exit_manager=self.exit_manager, select_path=self.restore_select_path, ext=[".db"], ) self.file_manager.show(self.file_manager_start_path) self.manager.file_manager_open = True def backup_select_path(self, path): self.exit_manager() shutil.copy2("pass.db", path) toast("Database Backup was Successfully Created") def restore_select_path(self, path): self.openRestoreDatabaseDialog(path) def openRestoreDatabaseDialog(self, path): self.dialog = MDDialog( title="Password of the Database Backup", type="custom", content_cls=DatabasePasswordDialogContent( hint_text="Password of the Database Backup" ), buttons=[ MDFlatButton(text="Cancel", on_press=self.dismiss_dialog), MDFlatButton( text="Okay", on_press=lambda x: self.checkBackupPassword( self.dialog.content_cls.ids.password_field.text, path ), ), ], ) self.dialog.open() def checkBackupPassword(self, password, path): backup_con = sqlite3.connect(path) backup_cursor = backup_con.cursor() backup_cursor.execute("SELECT master_password, salt FROM options") encrypted, salt = map(bytes.fromhex, backup_cursor.fetchone()) cipher = self.manager.createCipher(password, salt) try: result = cipher.decrypt(encrypted[:16], encrypted[16:], None) if result.decode() == password: restore = True except: restore = False if restore: self.exit_manager() self.dismiss_dialog() shutil.copy2(path, "pass.db") self.manager.cipher = cipher self.getOptions() self.setOptions() toast("Database Successfully Restored") else: toast("Wrong Password") def remoteDatabaseSwitch(self, switch): self.cursor.execute( "UPDATE options SET remote_database = ?", (int(switch.active),) ) self.con.commit() def remoteDatabaseDialog(self, list_item): content = RemoteDatabaseDialogContent() content.ids.text_field.hint_text = list_item.text self.dialog = MDDialog( title=f"{list_item.text}:", type="custom", content_cls=content, buttons=[ MDFlatButton(text="Cancel", on_press=self.dismiss_dialog), MDRaisedButton( text="Okay", on_press=lambda btn: self.updateRemoteDatabaseOption( list_item, content.ids.text_field.text ), ), ], ) self.dialog.open() def updateRemoteDatabaseOption(self, list_item, value): if value.isspace() or value == "": pass else: list_item.secondary_text = ( value if list_item.text != "Password" else "**********" ) text = list_item.text if text == "Database Name": variable_name = "db_name" elif text == "Password": variable_name = "db_pass" else: variable_name = f"db_{text.lower()}" query = f"UPDATE options SET {variable_name} = '{value}'" self.cursor.execute(query) self.con.commit() self.dialog.dismiss() def syncDatabaseButton(self): if self.manager.pg_con is None: self.cursor.execute( "SELECT remote_database, db_name, db_user, db_pass, db_host, db_port FROM options" ) pg_data = self.cursor.fetchone() self.manager.connectRemoteDatabase(pg_data) pg_con = self.manager.pg_con pg_cursor = self.manager.pg_cursor if pg_con is None: toast("Something went wrong") return pg_cursor.execute("SELECT * FROM accounts") remote_data = pg_cursor.fetchall() self.cursor.execute("SELECT * FROM accounts") local_data = self.cursor.fetchall() pg_cursor.execute("SELECT master_password, salt FROM options") remote_options = pg_cursor.fetchone() self.cursor.execute("SELECT master_password, salt FROM options") local_options = self.cursor.fetchone() if remote_data and local_data: toast("Please, Delete 'accounts' table in the PostgreSQL database") # TODO user can select remote or local database for sync elif local_data: def insert_data_to_remote_database(): pg_cursor.execute("INSERT INTO options VALUES(%s, %s)", local_options) for account in local_data: pg_cursor.execute( "INSERT INTO accounts VALUES(%s, %s, %s, %s, %s)", account ) pg_con.commit() toast("Sync Completed") toast("Please wait until Sync is Complete") Thread(target=insert_data_to_remote_database).start() elif remote_data: def syncWithRemoteDatabase(password): encrypted, salt = map(bytes.fromhex, remote_options) cipher = self.manager.createCipher(password, salt) try: result = cipher.decrypt(encrypted[:16], encrypted[16:], None) if result.decode() == password: sync = True except: sync = False if sync: dialog.dismiss() toast("Please wait until Sync is Complete") self.cursor.execute( "UPDATE options SET master_password = ?, salt = ? WHERE master_password = ? AND salt = ?", (*remote_options, *local_options), ) for account in remote_data: self.cursor.execute( "INSERT INTO accounts VALUES(?,?,?,?,?)", account ) self.con.commit() self.manager.cipher = cipher toast("Sync Completed") else: toast("Wrong Password") dialog = MDDialog( title="Password of the Remote Backup", type="custom", content_cls=DatabasePasswordDialogContent( hint_text="Password of the Remote Backup" ), buttons=[ MDFlatButton(text="Cancel", on_press=lambda x: dialog.dismiss()), MDFlatButton( text="Okay", on_press=lambda x: syncWithRemoteDatabase( dialog.content_cls.ids.password_field.text ), ), ], ) dialog.open() def exit_manager(self, *args): self.file_manager.close() self.manager.file_manager_open = False def dismiss_dialog(self, btn=None): self.dialog.dismiss() def goBackBtn(self): self.manager.setOptionsScreen() class OneLineListItemWithContainer(ContainerSupport, OneLineListItem): def start_ripple(self): # disable ripple behavior pass class SecurityOptionsScreen(Screen): def __init__(self, **kwargs): super().__init__(name=kwargs.get("name")) self.con = kwargs.get("con") self.cursor = kwargs.get("cursor") self.theme_cls = ThemeManager() self.getOptions() self.setOptions() def getOptions(self): self.cursor.execute("SELECT fast_login, auto_exit FROM options") options = self.cursor.fetchone() self.fast_login = bool(options[0]) self.auto_exit = bool(options[1]) def setOptions(self): self.ids.fast_login_switch.active = self.fast_login self.ids.auto_exit_switch.active = self.auto_exit def fastLoginFunction(self, active): status = 1 if active else 0 self.cursor.execute("UPDATE options SET fast_login = ?", (status,)) self.con.commit() def autoExitFunction(self, active): status = 1 if active else 0 self.cursor.execute("UPDATE options SET auto_exit = ?", (status,)) self.con.commit() def goBackBtn(self): self.manager.setOptionsScreen() class ChangeMasterPasswordScreen(Screen): def __init__(self, **kwargs): super().__init__(name=kwargs.get("name")) self.con = kwargs.get("con") self.cursor = kwargs.get("cursor") self.cipher = kwargs.get("cipher") self.getOptions() def getOptions(self): self.cursor.execute("SELECT master_password, remote_database FROM options") data = self.cursor.fetchone() encrypted = bytes.fromhex(data[0]) self.password = self.cipher.decrypt( encrypted[:16], encrypted[16:], None ).decode() self.remote_database = data[1] def initCipher(self, password): salt = os.urandom(32) cipher = self.manager.createCipher(password, salt) nonce = os.urandom(16) encrypted = nonce + cipher.encrypt(nonce, password.encode(), None) return encrypted, salt def recryptPasswords(self): old_cipher = self.cipher new_cipher = self.manager.cipher self.cursor.execute("SELECT id, password FROM accounts") accounts = self.cursor.fetchall() for account in accounts: old_encrypted = bytes.fromhex(account[1]) password = old_cipher.decrypt( old_encrypted[:16], old_encrypted[16:], None ).decode() nonce = os.urandom(16) new_encrypted = nonce + new_cipher.encrypt(nonce, password.encode(), None) self.cursor.execute( "UPDATE accounts SET password = ? WHERE id = ?", (new_encrypted.hex(), account[0]), ) self.con.commit() self.cipher = new_cipher def updateButton(self, current_password, new_password, confirm_new_password): if current_password == self.password: if self.password == new_password == confirm_new_password: toast("Current password and new password cannot be same!") elif new_password == confirm_new_password: encrypted, salt = self.initCipher(new_password) self.cursor.execute( "UPDATE options SET master_password = ?, salt = ?", (encrypted.hex(), salt.hex()), ) self.con.commit() self.manager.createCipher(new_password, salt) self.recryptPasswords() self.manager.setSecurityOptionsScreen() toast("Master Password Successfully Changed") if self.remote_database: query = "UPDATE options SET master_password = {}, salt = {}".format( repr(encrypted.hex), repr(salt.hex()) ) self.manager.runRemoteDatabaseQuery(query) else: instance = self.ids.confirm_new_password_field self.initFieldError(instance) else: instance = self.ids.current_password_field self.initFieldError(instance) def showPasswordBtn(self): button = self.ids.show_password_button field_1 = self.ids.current_password_field field_2 = self.ids.new_password_field field_3 = self.ids.confirm_new_password_field if button.icon == "eye-outline": field_1.password = False field_2.password = False field_3.password = False button.icon = "eye-off-outline" elif button.icon == "eye-off-outline": field_1.password = True field_2.password = True field_3.password = True button.icon = "eye-outline" def checkField(self, instance, text): if not text: return else: self.closeFieldError(instance) def checkConfirmField(self, instance, text): if not text: return if text != self.ids.new_password_field.text: self.initFieldError(instance) else: self.closeFieldError(instance) def goBackBtn(self): self.manager.setSecurityOptionsScreen() def initFieldError(self, instance): instance.error = True Animation(duration=0.2, _current_error_color=instance.error_color).start( instance ) Animation( _current_right_lbl_color=instance.error_color, _current_hint_text_color=instance.error_color, _current_line_color=instance.error_color, _line_width=instance.width, duration=0.2, t="out_quad", ).start(instance) def closeFieldError(self, instance): Animation(duration=0.2, _current_error_color=(0, 0, 0, 0)).start(instance) Animation( duration=0.2, _current_line_color=instance.line_color_focus, _current_hint_text_color=instance.line_color_focus, _current_right_lbl_color=instance.line_color_focus, ).start(instance) instance.error = False class RightCheckbox(IRightBodyTouch, MDCheckbox): pass class PasswordSuggestionOptionsScreen(Screen): def __init__(self, **kwargs): super().__init__(name=kwargs.get("name")) self.con = kwargs.get("con") self.cursor = kwargs.get("cursor") self.getOptions() self.setOptions() def getOptions(self): self.cursor.execute( "SELECT password_length, password_suggestion_options FROM options" ) options = self.cursor.fetchone() self.password_length = options[0] self.password_suggestion_options = [bool(int(o)) for o in options[1].split(",")] def setOptions(self): self.ids.slider.value = self.password_length self.ids.lowercase_checkbox.active = self.password_suggestion_options[0] self.ids.uppercase_checkbox.active = self.password_suggestion_options[1] self.ids.digits_checkbox.active = self.password_suggestion_options[2] self.ids.symbols_checkbox.active = self.password_suggestion_options[3] def sliderFunction(self, slider): value = int(slider.value) if value != self.password_length: self.password_length = value self.cursor.execute("UPDATE options SET password_length = ?", (value,)) self.con.commit() def checkboxFunction(self, checkbox): checkbox_status = [] for widget in self.ids.values(): if isinstance(widget, RightCheckbox): checkbox_status.append(widget.active) if any(checkbox_status): options = ",".join([str(int(i)) for i in checkbox_status]) self.cursor.execute( "UPDATE options SET password_suggestion_options = ?", (options,) ) self.con.commit() else: checkbox.active = True toast("You must choose at least one!") def suggestPasswordButton(self): self.getOptions() options = self.password_suggestion_options chars = "" if options[0]: chars += string.ascii_lowercase if options[1]: chars += string.ascii_uppercase if options[2]: chars += string.digits if options[3]: chars += string.punctuation password = "".join(random.choices(chars, k=self.password_length)) Clipboard.copy(password) toast(f"{password} Copied") def goBackBtn(self): self.manager.setOptionsScreen()
""" Process all the SdA homogeneity test .npy files, combine into a dataframe """ import sys, re, os import numpy as np import pandas as pd # Extract the model name from each filename. def extract_model(regex,filename): match = regex.match(filename) if match is not None: return match.groups()[0] input_dir = '/data/sda_output_data/homogeneity' # compile a regex to extract the model from a given filename model_and_param = re.compile("^([\d_]+)") # Store the contents of each file as a DataFrame, add it to the hyperparam_dfs list. data_files = [] print "...Processing files" currdir = os.getcwd() # for each file: for layers in ["3_layers","4_layers"]: for dimension in ["10","20","30","40","50"]: # read a list of all files in the directory that match model output files os.chdir(os.path.join(input_dir,layers,dimension)) model_files = os.listdir(".") for f in model_files: if not f.endswith(".npy"): continue f_model = extract_model(model_and_param, f) infile = open(f, 'r') homog_results = np.load(f) infile.close() # build the one line df, store in list f_dict = {"Model": [f_model], "Layers": [layers], "Dimension": [dimension], "Homogeneity": [homog_results.mean()]} data_files.append(pd.DataFrame(data=f_dict)) print "...Done" print "...rbinding DataFrames" master_df = data_files[0] for i in xrange(1,len(data_files)): master_df = master_df.append(data_files[i]) print "...Done" os.chdir(input_dir) master_df.to_csv(path_or_buf="all_sda_models.csv",index=False)
import torch import flowlib def test_invertible_conv_forward() -> None: model = flowlib.InvertibleConv(in_channels=3) x = torch.randn(4, 3, 8, 8) z, logdet = model(x) assert z.size() == x.size() assert not torch.isnan(z).any() assert logdet.size(), (1,) def test_invertible_conv_inverse() -> None: model = flowlib.InvertibleConv(in_channels=3) z = torch.randn(4, 3, 8, 8) x = model.inverse(z) assert x.size() == z.size() assert not torch.isnan(x).any() def test_invertible_convlu_forward() -> None: model = flowlib.InvertibleConvLU(in_channels=3) x = torch.randn(4, 3, 8, 8) z, logdet = model(x) assert z.size() == x.size() assert not torch.isnan(z).any() assert logdet.size() == (1,) def test_invertible_convlu_inverse() -> None: model = flowlib.InvertibleConvLU(in_channels=3) z = torch.randn(4, 3, 8, 8) x = model.inverse(z) assert x.size() == z.size() assert not torch.isnan(x).any()
""" tool to run fastqc on FASTQ/SAM/BAM files from HTS experiments """ import subprocess from bipy.utils import flatten, remove_suffix, is_pair from bcbio.utils import safe_makedir, file_exists import os import logging import abc from mako.template import Template from bipy.toolbox.reporting import LatexReport, safe_latex import sh import zipfile from bipy.pipeline.stages import AbstractStage from bcbio.log import logger, setup_local_logging from bcbio.provenance import do _FASTQ_RANGES = {"sanger": [33, 73], "solexa": [59, 104], "illumina_1.3+": [64, 104], "illumina_1.5+": [66, 104], "illumina_1.8+": [33, 74]} def detect_fastq_format(in_file, MAX_RECORDS=1000000): """ detects the format of a fastq file will return multiple formats if it could be more than one """ logger.info("Detecting FASTQ format on %s." % (in_file)) kept = list(_FASTQ_RANGES.keys()) with open(in_file) as in_handle: records_read = 0 for i, line in enumerate(in_handle): # get the quality line if records_read >= MAX_RECORDS: break if i % 4 is 3: records_read += 1 for c in line: formats = kept if len(formats) == 1: return formats for form in formats: if (_FASTQ_RANGES[form][0] > ord(c) or _FASTQ_RANGES[form][1] < ord(c)): kept.remove(form) return formats # list of module names for parsing the output files from fastqc MODULE_NAMES = ["Basic Statistics", "Per base sequence quality", "Per sequence quality scores", "Per base sequence content", "Per base GC content", "Per sequence GC content", "Per base N content", "Sequence Length Distribution", "Overrepresented sequences"] def _make_outdir(config): """ make the output directory "fastqc" where the data files live """ outdir = os.path.join(config["dir"]["results"], "fastqc") safe_makedir(outdir) return outdir def _make_outfile(input_file, config): outdir = _make_outdir(config) #outfile = "".join([os.path.basename(input_file), "_fastqc.zip"]) base, ext = os.path.splitext(os.path.basename(input_file)) # fastqc does not handle the .fq extension correctly if ext == ".fq": outfile = os.path.join(outdir, base + ext + "_fastqc.zip") else: outfile = os.path.join(outdir, base + "_fastqc.zip") return outfile def _build_command(input_file, fastqc_config, config): program = fastqc_config["program"] options = map(str, list(flatten(fastqc_config["options"]))) outdir = _make_outdir(config) options += ["--outdir", outdir, "--kmers", "6"] cmd = list(flatten([program, options, input_file])) return cmd def run(input_file, fastqc_config, config): outfile = _make_outfile(input_file, config) # if it is already done skip it if os.path.exists(outfile): return outfile cmd = _build_command(input_file, fastqc_config, config) do.run(cmd, "Running FastQC on %s" % (input_file), None) return outfile class FastQCParser(object): """ Parses the directory of FastQC output to prepare a report for output. Mostly lifted from Brad Chapman (bcbio). """ GRAPHS = (("per_base_quality.png", "", 1.0), ("per_base_sequence_content.png", "", 0.85), ("per_sequence_gc_content.png", "", 0.85), ("kmer_profiles.png", "", 0.85), ("duplication_levels.png", "", 0.85), ("per_bases_n_content.png", "", 0.85), ("per_sequence_quality.png", "", 1.0), ("sequence_length_distribution.png", "", 1.0)) def __init__(self, base_dir): (base, ext) = os.path.splitext(base_dir) if ext == ".zip": with zipfile.ZipFile(base_dir) as zip_handle: zip_handle.extractall(os.path.dirname(base)) base_dir = base self._dir = base_dir self._max_seq_size = 45 self._max_overrep = 20 def get_fastqc_graphs(self): final_graphs = [] for f, caption, size in self.GRAPHS: full_f = os.path.join(self._dir, "Images", f) if os.path.exists(full_f): final_graphs.append((full_f, caption, size)) return final_graphs def get_fastqc_summary(self): stats = {} for stat_line in self._fastqc_data_section("Basic Statistics")[1:]: k, v = [safe_latex(x) for x in stat_line.split("\t")[:2]] stats[k] = v over_rep = [] for line in self._fastqc_data_section("Overrepresented sequences")[1:]: parts = [safe_latex(x) for x in line.split("\t")] over_rep.append(parts) over_rep[-1][0] = self._splitseq(over_rep[-1][0]) return stats, over_rep[:self._max_overrep] pieces = [] cur_piece = [] for s in seq: if len(cur_piece) >= self._max_seq_size: pieces.append("".join(cur_piece)) cur_piece = [] cur_piece.append(s) pieces.append("".join(cur_piece)) return " ".join(pieces) def _fastqc_data_section(self, section_name): out = [] in_section = False data_file = os.path.join(self._dir, "fastqc_data.txt") if os.path.exists(data_file): with open(data_file) as in_handle: for line in in_handle: if line.startswith(">>%s" % section_name): in_section = True elif in_section: if line.startswith(">>END"): break out.append(line.rstrip("\r\n")) return out def report(base_dir, report_type=None): REPORT_LOOKUP = {"rnaseq": RNASeqFastQCReport} parser = FastQCParser(base_dir) graphs = parser.get_fastqc_graphs() (stats, overrep) = parser.get_fastqc_summary() name = os.path.basename(base_dir) report_handler = REPORT_LOOKUP.get(report_type, FastQCReport) return report_handler.generate_report(name, summary=stats, figures=graphs, overrep=overrep) class FastQCReport(LatexReport): CAPTIONS = {"per_base_quality.png": "", "per_base_sequence_content.png": "", "per_sequence_gc_content.png": "", "kmer_profiles.png": "", "duplication_levels.png": "", "per_bases_n_content.png": "", "per_sequence_quality.png": "", "sequence_length_distribution.png": ""} def template(self): return self._template def _add_captions(self, figures): new_figures = [] for figure in figures: filename = os.path.basename(figure) caption = self.CAPTIONS.get(filename, "") new_figures.append((figure[0], caption, figure[2])) return new_figures @classmethod def generate_report(self, name=None, summary=None, figures=None, overrep=None): template = Template(self._template) safe_name = safe_latex(name) section = template.render(name=safe_name, summary=summary, summary_table=summary, figures=figures, overrep=overrep) return section _template = r""" \subsection*{FastQC report for ${name}} % if summary: \begin{table}[h] \centering \begin{tabular}{|l|r|} \hline % for k, v in summary.items(): ${k} & ${v} \\\ % endfor \hline \end{tabular} \caption{Summary of lane results} \end{table} % endif % if figures: % for i, (figure, caption, size) in enumerate(figures): \begin{figure}[htbp] \centering \includegraphics[width=${size}\linewidth] {${figure}} \caption{${caption}} \end{figure} % endfor % endif % if overrep: % if len(overrep) > 0: \begin{table}[htbp] \centering \begin{tabular}{|p{8cm}rrp{4cm}|} \hline Sequence & Count & Percent & Match \\\ \hline % for seq, count, percent, match in overrep: \texttt{${seq}} & ${count} & ${"%.2f" % float(percent)} & ${match} \\\ % endfor \hline \end{tabular} \caption{Overrepresented read sequences} \end{table} % endif % endif """ class RNASeqFastQCReport(FastQCReport): """FastQCreport class for outputting information from RNASeq experiments""" CAPTIONS = {"per_base_quality.png": "", "per_base_sequence_content.png": "", "per_sequence_gc_content.png": "", "kmer_profiles.png": "", "duplication_levels.png": "", "per_bases_n_content.png": "", "per_sequence_quality.png": "", "sequence_length_distribution.png": ""} class FastQC(AbstractStage): stage = "fastqc" def __init__(self, config): self.config = config super(FastQC, self).__init__(self.config) self.stage_config = config["stage"][self.stage] def _start_message(self, in_file): logger.info("Starting %s on %s" % (self.stage, in_file)) def _end_message(self, in_file, out_file): logger.info("%s complete on %s and stored as %s." % (self.stage, in_file, out_file)) def _memoized_message(self, in_file, out_file): logger.info("%s already run on %s and stored as %s, skipping." % (self.stage, in_file, out_file)) def _check_run(self, in_file): if not file_exists(in_file): raise IOError('%s not found.' % (in_file)) def __call__(self, in_file): self._start_message(in_file) if is_pair(in_file): out_file = [run(x, self.stage_config, self.config) for x in in_file] else: out_file = run(in_file, self.stage_config, self.config) self._end_message(in_file, out_file) return out_file
#! /usr/bin/env python import glob import numpy from setuptools import setup, find_packages, Extension from Cython.Build import cythonize setup( name="simtrie", version="0.8.0", description="An efficient data structure for fast string similarity searches", author='Bernhard Liebl', author_email='poke1024@gmx.de', url='https://github.com/poke1024/minitrie/', packages=find_packages(), ext_modules=cythonize([ Extension( name="simtrie", sources=['simtrie/simtrie.pyx', 'mman/mman.c'], extra_compile_args=["-O3", "-std=c++14"], include_dirs=['lib', numpy.get_include()], language="c++", ) ]), install_requires=[ "numpy>=1.15.0", "msgpack>=0.6.1", "tqdm>=4.31.0" ], python_requires=">=3.7", classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Programming Language :: Cython', 'Programming Language :: Python', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: Implementation :: CPython', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Scientific/Engineering :: Information Analysis', 'Topic :: Text Processing :: Linguistic', ], )
from celery import Celery from demo import predict import urllib.request import shutil import os import requests import json app = Celery('gaitlab', broker='redis://redis:6379/0') @app.task(name='gaitlab.cp') def cp(args): path = "/gaitlab/input/input.mp4" # remove the old file os.system('rm {}'.format(path)) # save the new file url = args["video_url"] with urllib.request.urlopen(url) as response, open(path, 'wb') as out_file: shutil.copyfileobj(response, out_file) # run predictions result, video = predict(path) files = {'file': video} # store results r = requests.post("http://www/annotation/{}/".format(args["annotation_id"]), files = files, data = {"result": json.dumps(result)}) return None
class AuthError(Exception): pass class DatabaseError(Exception): pass class GitHubError(Exception): pass class NCBIError(Exception): pass class ProxyError(Exception): pass
#!/user/bin/python # coding: utf8 class Warrior(Ant): """docstring for Warrior""" def __init__(self, arg): super().__init__(arg) self.arg = arg
# Copyright 2020-2022 OpenDR European Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import matplotlib import os import argparse from SyntheticDataGeneration import MultiviewDataGeneration from algorithm.DDFA.utils.ddfa import str2bool matplotlib.use('Agg') __all__ = ['torch'] if __name__ == '__main__': print("\n\n**********************************\nTEST Multiview Data Generation Learner\n" "**********************************") parser = argparse.ArgumentParser() parser.add_argument("-device", default="cuda", type=str, help="choose between cuda or cpu ") parser.add_argument("-path_in", default=os.path.join("opendr_internal", "projects", "data_generation", "", "demos", "imgs_input"), type=str, help='Give the path of image folder') parser.add_argument('-path_3ddfa', default=os.path.join("opendr_internal", "projects", "data_generation", "", "algorithm", "DDFA"), type=str, help='Give the path of DDFA folder') parser.add_argument('-save_path', default=os.path.join("opendr_internal", "projects", "data_generation", "", "results"), type=str, help='Give the path of results folder') parser.add_argument('-val_yaw', default="10 20", nargs='+', type=str, help='yaw poses list between [-90,90] ') parser.add_argument('-val_pitch', default="30 40", nargs='+', type=str, help='pitch poses list between [-90,90] ') parser.add_argument('-f', '--files', nargs='+', help='image files paths fed into network, single or multiple images') parser.add_argument('--show_flg', default='false', type=str2bool, help='whether show the visualization result') parser.add_argument('--dump_res', default='true', type=str2bool, help='whether write out the visualization image') parser.add_argument('--dump_vertex', default='false', type=str2bool, help='whether write out the dense face vertices to mat') parser.add_argument('--dump_ply', default='true', type=str2bool) parser.add_argument('--dump_pts', default='true', type=str2bool) parser.add_argument('--dump_roi_box', default='false', type=str2bool) parser.add_argument('--dump_pose', default='true', type=str2bool) parser.add_argument('--dump_depth', default='true', type=str2bool) parser.add_argument('--dump_pncc', default='true', type=str2bool) parser.add_argument('--dump_paf', default='true', type=str2bool) parser.add_argument('--paf_size', default=3, type=int, help='PAF feature kernel size') parser.add_argument('--dump_obj', default='true', type=str2bool) parser.add_argument('--dlib_bbox', default='true', type=str2bool, help='whether use dlib to predict bbox') parser.add_argument('--dlib_landmark', default='true', type=str2bool, help='whether use dlib landmark to crop image') parser.add_argument('-m', '--mode', default='gpu', type=str, help='gpu or cpu mode') parser.add_argument('--bbox_init', default='two', type=str, help='one|two: one-step bbox initialization or two-step') parser.add_argument('--dump_2d_img', default='true', type=str2bool, help='whether to save 3d rendered image') parser.add_argument('--dump_param', default='true', type=str2bool, help='whether to save param') parser.add_argument('--dump_lmk', default='true', type=str2bool, help='whether to save landmarks') parser.add_argument('--save_dir', default='./algorithm/DDFA/results', type=str, help='dir to save result') parser.add_argument('--save_lmk_dir', default='./example', type=str, help='dir to save landmark result') parser.add_argument('--img_list', default='./txt_name_batch.txt', type=str, help='test image list file') parser.add_argument('--rank', default=0, type=int, help='used when parallel run') parser.add_argument('--world_size', default=1, type=int, help='used when parallel run') parser.add_argument('--resume_idx', default=0, type=int) args = parser.parse_args() synthetic = MultiviewDataGeneration(args) synthetic.eval()
from click.testing import CliRunner from pathlib import Path from tag.cli import cli import os import unittest class CommandTest(unittest.TestCase): def run_command_test(self, command, touch = [], assert_exist = [], assert_not_exist = [], output = '', debug = False ): runner = CliRunner() with runner.isolated_filesystem(): for path in touch: parent = os.path.split(path)[0] if parent: os.makedirs(parent, exist_ok=True) Path(path).touch() if debug: print('\nCommand: ' + command) print('Before:') print(os.system('tree -a')) result = runner.invoke(cli, command) if debug: print('After:') print(os.system('tree -a')) self.assertEqual(result.exit_code, 0, result.output) cwd = os.getcwd() self.assertEqual(result.output, output.replace('@cwd', cwd)) for path in assert_exist: self.assertTrue(Path(path).is_file(), f'file should exist: {path}') for path in assert_not_exist: self.assertFalse(Path(path).is_file(), f'file should not exist: {path}')
from urllib.error import HTTPError import pytest from tests import api from .constants import ( VALID_STORE, VALID_PRODUCT, INVALID_PRODUCT_ID, INVALID_STORE_ID ) def test_inventories_without_args(): resp = api.inventories() assert resp['status'] == 200 assert 'result' in resp res = resp['result'] assert isinstance(res, list) assert len(res) == resp['pager']['records_per_page'] def test_inventories_with_store_id(): resp = api.inventories(VALID_STORE['id']) assert resp['status'] == 200 assert 'pager' in resp assert 'result' in resp assert 'store' in resp store = resp['store'] assert store['id'] == VALID_STORE['id'] assert store['name'] == VALID_STORE['name'] res = resp['result'] assert len(res) == resp['pager']['records_per_page'] def test_inventories_with_store_id_and_product_id(): resp = api.inventories(VALID_STORE['id'], VALID_PRODUCT['id']) assert resp['status'] == 200 assert 'pager' not in resp assert 'result' in resp def test_inventories_with_params(): per_page = 100 resp = api.inventories(per_page=per_page) assert resp['status'] == 200 assert 'pager' in resp assert resp['pager']['records_per_page'] == per_page assert 'result' in resp assert len(resp['result']) == per_page def test_inventories_with_invalid_store_id(): with pytest.raises(HTTPError): api.inventories(store_id=INVALID_STORE_ID) def test_inventories_with_invalid_product_id(): with pytest.raises(HTTPError): api.inventories(product_id=INVALID_PRODUCT_ID) def test_inventories_with_store_id_and_invalid_product_id(): with pytest.raises(HTTPError): api.inventories(VALID_STORE['id'], INVALID_PRODUCT_ID) def test_inventories_with_invalid_store_id_and_valid_product_id(): with pytest.raises(HTTPError): api.inventories(INVALID_STORE_ID, VALID_PRODUCT['id'])
import pytest from unittest import TestCase from pyflamegpu import * from random import randint import time # Global vars needed in several classes sleepDurationMilliseconds = 500 tracked_err_ct = 0; tracked_runs_ct = 0; class simulateInit(pyflamegpu.HostFunctionCallback): # Init should always be 0th iteration/step def __init__(self): super().__init__() def run(self, FLAMEGPU): # Generate a basic pop POPULATION_TO_GENERATE = FLAMEGPU.environment.getPropertyUInt("POPULATION_TO_GENERATE") agent = FLAMEGPU.agent("Agent") for i in range(POPULATION_TO_GENERATE): agent.newAgent().setVariableUInt("counter", 0) class simulateExit(pyflamegpu.HostFunctionCallback): def __init__(self): super().__init__() def run(self, FLAMEGPU): totalCounters = FLAMEGPU.agent("Agent").sumUInt("counter") # Add to the file scoped atomic sum of sums. @todo # testSimulateSumOfSums += totalCounters class elapsedInit(pyflamegpu.HostFunctionCallback): # Init should always be 0th iteration/step def __init__(self): super().__init__() def run(self, FLAMEGPU): # Generate a basic pop POPULATION_TO_GENERATE = FLAMEGPU.environment.getPropertyUInt("POPULATION_TO_GENERATE") agent = FLAMEGPU.agent("Agent") for i in range(POPULATION_TO_GENERATE): agent.newAgent().setVariableUInt("counter", 0) class elapsedStep(pyflamegpu.HostFunctionCallback): def __init__(self): super().__init__() def run(self, FLAMEGPU): # Sleep each thread for a duration of time. seconds = sleepDurationMilliseconds / 1000.0 time.sleep(seconds) class throwException(pyflamegpu.HostFunctionCallback): i = 0; def __init__(self): super().__init__() self.i = 0; def run(self, FLAMEGPU): global tracked_runs_ct global tracked_err_ct tracked_runs_ct += 1; self.i+=1; if (self.i % 2 == 0): tracked_err_ct += 1; FLAMEGPU.agent("does not exist"); # Just cause a failure class TestCUDAEnsemble(TestCase): def test_constructor(self): # Create a model model = pyflamegpu.ModelDescription("test") # Declare a pointer ensemble = None # Use the ctor # explicit CUDAEnsemble(const ModelDescription& model, int argc = 0, const char** argv = None) ensemble = pyflamegpu.CUDAEnsemble(model, []) assert ensemble != None # Check a property assert ensemble.Config().timing == False # Run the destructor ~CUDAEnsemble ensemble = None # Check with simple argparsing. argv = ["ensemble.exe", "--timing"] ensemble = pyflamegpu.CUDAEnsemble(model, argv) assert ensemble.Config().timing == True ensemble = None def test_EnsembleConfig(self): # Create a model model = pyflamegpu.ModelDescription("test") # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Verify that the getConfig method doesn't exist, as it is ignored. with pytest.raises(AttributeError): ensemble.getConfig() # Get a config object. # EnsembleConfig &Config() ensemble.Config() mutableConfig = ensemble.Config() # Check the default values are correct. assert mutableConfig.out_directory == "" assert mutableConfig.out_format == "json" assert mutableConfig.concurrent_runs == 4 # assert mutableConfig.devices == std::set<int>() # @todo - this will need to change assert mutableConfig.quiet == False assert mutableConfig.timing == False # Mutate the configuration mutableConfig.out_directory = "test" mutableConfig.out_format = "xml" mutableConfig.concurrent_runs = 1 # mutableConfig.devices = std::set<int>({0}) # @todo - this will need to change. mutableConfig.quiet = True mutableConfig.timing = True # Check via the const ref, this should show the same value as config was a reference, not a copy. assert mutableConfig.out_directory == "test" assert mutableConfig.out_format == "xml" assert mutableConfig.concurrent_runs == 1 # assert mutableConfig.devices == std::set<int>({0}) # @todo - this will need to change assert mutableConfig.quiet == True assert mutableConfig.timing == True @pytest.mark.skip(reason="--help cannot be tested due to exit()") def test_initialise_help(self): # Create a model model = pyflamegpu.ModelDescription("test") # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Call initialise with differnt cli arguments, which will mutate values. Check they have the new value. argv = ["ensemble.exe", "--help"] ensemble.initialise(argv) def test_initialise_out(self): # Create a model model = pyflamegpu.ModelDescription("test") # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Call initialise with differnt cli arguments, which will mutate values. Check they have the new value. assert ensemble.Config().out_directory == "" assert ensemble.Config().out_format == "json" argv = ["ensemble.exe", "--out", "test", "xml"] ensemble.initialise(argv) assert ensemble.Config().out_directory == "test" assert ensemble.Config().out_format == "xml" def test_initialise_concurrent_runs(self): # Create a model model = pyflamegpu.ModelDescription("test") # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Call initialise with differnt cli arguments, which will mutate values. Check they have the new value. assert ensemble.Config().concurrent_runs == 4 argv = ["ensemble.exe", "--concurrent", "2"] ensemble.initialise(argv) assert ensemble.Config().concurrent_runs == 2 @pytest.mark.skip(reason="EnsembleConfig::devices is not currently swig-usable") def test_initialise_devices(self): # Create a model model = pyflamegpu.ModelDescription("test") # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Call initialise with differnt cli arguments, which will mutate values. Check they have the new value. assert ensemble.Config().devices == () # @todo argv = ["ensemble.exe", "--devices", "0"] ensemble.initialise(argv) assert ensemble.Config().devices == (0) # @todo def test_initialise_quiet(self): # Create a model model = pyflamegpu.ModelDescription("test") # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Call initialise with differnt cli arguments, which will mutate values. Check they have the new value. assert ensemble.Config().quiet == False argv = ["ensemble.exe", "--quiet"] ensemble.initialise(argv) assert ensemble.Config().quiet == True def test_initialise_timing(self): # Create a model model = pyflamegpu.ModelDescription("test") # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Call initialise with differnt cli arguments, which will mutate values. Check they have the new value. assert ensemble.Config().timing == False argv = ["ensemble.exe", "--timing"] ensemble.initialise(argv) assert ensemble.Config().timing == True def test_initialise_error_level(self): # Create a model model = pyflamegpu.ModelDescription("test") # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Call initialise with differnt cli arguments, which will mutate values. Check they have the new value. assert ensemble.Config().error_level == pyflamegpu.CUDAEnsembleConfig.Slow argv = ["ensemble.exe", "-e", "0"] ensemble.initialise(argv) assert ensemble.Config().error_level == pyflamegpu.CUDAEnsembleConfig.Off argv = ["ensemble.exe", "--error", "1"] ensemble.initialise(argv) assert ensemble.Config().error_level == pyflamegpu.CUDAEnsembleConfig.Slow argv = ["ensemble.exe", "-e", "2"] ensemble.initialise(argv) assert ensemble.Config().error_level == pyflamegpu.CUDAEnsembleConfig.Fast argv = ["ensemble.exe", "--error", "Off"] ensemble.initialise(argv) assert ensemble.Config().error_level == pyflamegpu.CUDAEnsembleConfig.Off argv = ["ensemble.exe", "-e", "SLOW"] ensemble.initialise(argv) assert ensemble.Config().error_level == pyflamegpu.CUDAEnsembleConfig.Slow argv = ["ensemble.exe", "--error", "fast"] ensemble.initialise(argv) assert ensemble.Config().error_level == pyflamegpu.CUDAEnsembleConfig.Fast # Agent function used to check the ensemble runs. simulateAgentFn = """ FLAMEGPU_AGENT_FUNCTION(simulateAgentFn, flamegpu::MessageNone, flamegpu::MessageNone) { // Increment agent's counter by 1. FLAMEGPU->setVariable<int>("counter", FLAMEGPU->getVariable<int>("counter") + 1); return flamegpu::ALIVE; } """ def test_simulate(self): # Number of simulations to run. planCount = 2 populationSize = 32 # Create a model containing atleast one agent type and function. model = pyflamegpu.ModelDescription("test") # Environmental constant for initial population model.Environment().newPropertyUInt("POPULATION_TO_GENERATE", populationSize, True) # Agent(s) agent = model.newAgent("Agent") agent.newVariableUInt("counter", 0) afn = agent.newRTCFunction("simulateAgentFn", self.simulateAgentFn) # Control flow model.newLayer().addAgentFunction(afn) init = simulateInit() model.addInitFunctionCallback(init) exitfn = simulateExit() model.addExitFunctionCallback(exitfn) # Crete a small runplan, using a different number of steps per sim. expectedResult = 0 plans = pyflamegpu.RunPlanVector(model, planCount) for idx in range(plans.size()): plan = plans[idx] plan.setSteps(idx + 1) # Can't have 0 steps without exit condition # Increment the expected result based on the number of steps. expectedResult += (idx + 1) * populationSize # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Make it quiet to avoid outputting during the test suite ensemble.Config().quiet = True ensemble.Config().out_format = "" # Suppress warning # Simulate the ensemble, ensemble.simulate(plans) # @todo - actually check the simulations did execute. Can't abuse atomics like in c++. # An exception should be thrown if the Plan and Ensemble are for different models. modelTwo = pyflamegpu.ModelDescription("two") modelTwoPlans = pyflamegpu.RunPlanVector(modelTwo, 1) with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: ensemble.simulate(modelTwoPlans) assert e.value.type() == "InvalidArgument" # Exceptions can also be thrown if output_directory cannot be created, but I'm unsure how to reliably test this cross platform. # Logging is more thoroughly tested in Logging. Here just make sure the methods work def test_setStepLog(self): # Create a model containing atleast one agent type and function. model = pyflamegpu.ModelDescription("test") # Environmental constant for initial population model.Environment().newPropertyFloat("f", 0) # Add an agent so that the simulation can be ran, to check for presence of logs agent = model.newAgent("Agent") agent.newVariableUInt("counter", 0) # Define the logging configuraiton. lcfg = pyflamegpu.LoggingConfig(model) lcfg.logEnvironment("f") slcfg = pyflamegpu.StepLoggingConfig(lcfg) slcfg.setFrequency(1) # Create a single run. plans = pyflamegpu.RunPlanVector(model, 1) plans[0].setSteps(1) # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Make it quiet to avoid outputting during the test suite ensemble.Config().quiet = True ensemble.Config().out_format = "" # Suppress warning # Set the StepLog config. ensemble.setStepLog(slcfg) # Run the ensemble, generating logs ensemble.simulate(plans) # Get the logs, checking the correct number are present. runLogs = ensemble.getLogs() assert runLogs.size() == plans.size() for log in runLogs: stepLogs = log.getStepLog() assert stepLogs.size() == 1 + 1 # This is 1 + 1 due to the always present init log. expectedStepCount = 0 for stepLog in stepLogs: assert stepLog.getStepCount() == expectedStepCount expectedStepCount += 1 # An exception will be thrown if the step log config is for a different model. modelTwo = pyflamegpu.ModelDescription("two") lcfgTwo = pyflamegpu.LoggingConfig(modelTwo) slcfgTwo = pyflamegpu.StepLoggingConfig(lcfgTwo) slcfgTwo.setFrequency(1) modelTwoPlans = pyflamegpu.RunPlanVector(modelTwo, 1) with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: ensemble.setStepLog(slcfgTwo) assert e.value.type() == "InvalidArgument" def test_setExitLog(self): # Create a model containing at least one agent type and function. model = pyflamegpu.ModelDescription("test") # Environmental constant for initial population model.Environment().newPropertyFloat("f", 0) # Add an agent so that the simulation can be ran, to check for presence of logs agent = model.newAgent("Agent") agent.newVariableUInt("counter", 0) # Define the logging configuration. lcfg = pyflamegpu.LoggingConfig(model) lcfg.logEnvironment("f") # Create a single run. plans = pyflamegpu.RunPlanVector(model, 1) plans[0].setSteps(1) # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Make it quiet to avoid outputting during the test suite ensemble.Config().quiet = True ensemble.Config().out_format = "" # Suppress warning # Set the StepLog config. ensemble.setExitLog(lcfg) # Run the ensemble, generating logs ensemble.simulate(plans) # Get the logs, checking the correct number are present. runLogs = ensemble.getLogs() assert runLogs.size() == plans.size() for log in runLogs: exitLog = log.getExitLog() assert exitLog.getStepCount() == 1 # An exception will be thrown if the step log config is for a different model. modelTwo = pyflamegpu.ModelDescription("two") lcfgTwo = pyflamegpu.LoggingConfig(modelTwo) modelTwoPlans = pyflamegpu.RunPlanVector(modelTwo, 1) with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: ensemble.setExitLog(lcfgTwo) assert e.value.type() == "InvalidArgument" def test_getLogs(self): # Create an ensemble with no logging enabled, but call getLogs # Create a model containing atleast one agent type and function. model = pyflamegpu.ModelDescription("test") plans = pyflamegpu.RunPlanVector(model, 1) plans[0].setSteps(1) # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) ensemble.getLogs() runLogs = ensemble.getLogs() assert runLogs.size() == 0 # Agent function used to check the ensemble runs. elapsedAgentFn = """ FLAMEGPU_AGENT_FUNCTION(elapsedAgentFn, flamegpu::MessageNone, flamegpu::MessageNone) { // Increment agent's counter by 1. FLAMEGPU->setVariable<int>("counter", FLAMEGPU->getVariable<int>("counter") + 1); return flamegpu::ALIVE; } """ def test_getEnsembleElapsedTime(self): # Create a model containing at least one agent type and function. model = pyflamegpu.ModelDescription("test") # Environmental constant for initial population model.Environment().newPropertyUInt("POPULATION_TO_GENERATE", 1, True) # Agent(s) agent = model.newAgent("Agent") agent.newVariableUInt("counter", 0) afn = agent.newRTCFunction("elapsedAgentFn", self.elapsedAgentFn) # Control flow model.newLayer().addAgentFunction(afn) init = elapsedInit() model.addInitFunctionCallback(init) step = elapsedStep() model.addStepFunctionCallback(step) # Create a single run. plans = pyflamegpu.RunPlanVector(model, 1) plans[0].setSteps(1) # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Make it quiet to avoid outputting during the test suite ensemble.Config().quiet = True ensemble.Config().out_format = "" # Suppress warning # Get the elapsed seconds before the sim has been executed ensemble.getEnsembleElapsedTime() # Assert that it is LE zero. assert ensemble.getEnsembleElapsedTime() <= 0. # Simulate the ensemble, ensemble.simulate(plans) # Get the elapsed seconds before the sim has been executed elapsedSeconds = ensemble.getEnsembleElapsedTime() # Ensure the elapsedMillis is larger than a threshold. # Sleep accuracy via callback seems very poor. assert elapsedSeconds > 0.0 def test_ErrorOff(self): global tracked_runs_ct global tracked_err_ct tracked_runs_ct = 0 tracked_err_ct = 0 # Create a model containing at least one agent type and function. model = pyflamegpu.ModelDescription("test") # Environmental constant for initial population model.Environment().newPropertyUInt("POPULATION_TO_GENERATE", 1, True) # Agent(s) agent = model.newAgent("Agent") agent.newVariableUInt("counter", 0) init = elapsedInit() model.addInitFunctionCallback(init) step = throwException() model.addStepFunctionCallback(step) # Create a set of 10 Run plans ENSEMBLE_COUNT = 10 plans = pyflamegpu.RunPlanVector(model, ENSEMBLE_COUNT) plans.setSteps(1) # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Make it quiet to avoid outputting during the test suite ensemble.Config().quiet = True ensemble.Config().out_format = "" # Suppress warning ensemble.Config().error_level = pyflamegpu.CUDAEnsembleConfig.Off ensemble.Config().concurrent_runs = 1 # Single device/no concurrency to ensure we get consistent data ensemble.Config().devices = pyflamegpu.IntSet([0]) reported_err_ct = 0; # Simulate the ensemble, reported_err_ct = ensemble.simulate(plans) # Check correct number of fails is reported assert reported_err_ct == ENSEMBLE_COUNT / 2 assert tracked_err_ct == ENSEMBLE_COUNT / 2 assert tracked_runs_ct == ENSEMBLE_COUNT def test_ErrorSlow(self): global tracked_runs_ct global tracked_err_ct tracked_runs_ct = 0 tracked_err_ct = 0 # Create a model containing at least one agent type and function. model = pyflamegpu.ModelDescription("test") # Environmental constant for initial population model.Environment().newPropertyUInt("POPULATION_TO_GENERATE", 1, True) # Agent(s) agent = model.newAgent("Agent") agent.newVariableUInt("counter", 0) init = elapsedInit() model.addInitFunctionCallback(init) step = throwException() model.addStepFunctionCallback(step) # Create a set of 10 Run plans ENSEMBLE_COUNT = 10 plans = pyflamegpu.RunPlanVector(model, ENSEMBLE_COUNT) plans.setSteps(1) # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Make it quiet to avoid outputting during the test suite ensemble.Config().quiet = True ensemble.Config().out_format = "" # Suppress warning ensemble.Config().error_level = pyflamegpu.CUDAEnsembleConfig.Slow ensemble.Config().concurrent_runs = 1 # Single device/no concurrency to ensure we get consistent data ensemble.Config().devices = pyflamegpu.IntSet([0]) reported_err_ct = 0; # Simulate the ensemble, with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: ensemble.simulate(plans) assert e.value.type() == "EnsembleError" # Check correct number of fails is reported assert tracked_err_ct == ENSEMBLE_COUNT / 2 assert tracked_runs_ct == ENSEMBLE_COUNT def test_ErrorSlow(self): global tracked_runs_ct global tracked_err_ct tracked_runs_ct = 0 tracked_err_ct = 0 # Create a model containing at least one agent type and function. model = pyflamegpu.ModelDescription("test") # Environmental constant for initial population model.Environment().newPropertyUInt("POPULATION_TO_GENERATE", 1, True) # Agent(s) agent = model.newAgent("Agent") agent.newVariableUInt("counter", 0) init = elapsedInit() model.addInitFunctionCallback(init) step = throwException() model.addStepFunctionCallback(step) # Create a set of 10 Run plans ENSEMBLE_COUNT = 10 plans = pyflamegpu.RunPlanVector(model, ENSEMBLE_COUNT) plans.setSteps(1) # Create an ensemble ensemble = pyflamegpu.CUDAEnsemble(model) # Make it quiet to avoid outputting during the test suite ensemble.Config().quiet = True ensemble.Config().out_format = "" # Suppress warning ensemble.Config().error_level = pyflamegpu.CUDAEnsembleConfig.Fast ensemble.Config().concurrent_runs = 1 # Single device/no concurrency to ensure we get consistent data ensemble.Config().devices = pyflamegpu.IntSet([0]) reported_err_ct = 0; # Simulate the ensemble, with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: ensemble.simulate(plans) assert e.value.type() == "EnsembleError" # Check correct number of fails is reported assert tracked_err_ct == 1 # The first run does not throw assert tracked_runs_ct == 2
from flask import Flask, request,send_from_directory from flask_cors import CORS import os from Models.ArimaModel import ArimaModel from Models.ExponentialSmootheningModel import ExponentialSmootheningModel from Models.ProphetModel import ProphetModel from Models.LstmModel import LstmModel import tensorflow as tf import pandas as pd import dataset as datasetMaker import sys physical_devices = tf.config.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0],True) app = Flask(__name__) cors = CORS(app, resources={r"*": {"origins": "*"}}) app.config['CORS_HEADERS'] = 'Content-Type' dir = os.path.dirname(__file__) @app.route('/predictions', methods = ['GET']) def country_csv_prediction(): countries = request.args.get('country').split(",") time = request.args.get('days') field = request.args.get('field') data = datasetMaker.create_dataset(countries) dataset_to_use = data[ [field+x for x in countries] ] dataset_to_send = pd.DataFrame() model1 = ArimaModel() model2 = ExponentialSmootheningModel() model3 = ProphetModel() model4 = LstmModel(lag=5) for i in countries: new_data1 = model1.predict_with_arima(dataset_to_use,i,field,int(time)) new_data2 = model2.predict_with_exp(dataset_to_use,i,field,int(time)) new_data3 = model3.predict_with_prophet(dataset_to_use,i,field,int(time)) new_data4 = model4.predict_with_lstm(dataset_to_use,i,field,int(time)) dataset_to_send = pd.concat([dataset_to_send, new_data1, new_data2, new_data3, new_data4], axis=1, sort=False) datasetMaker.write_to_csv(dataset_to_send, "tmp") return send_from_directory(".","tmp.csv", as_attachment=True) @app.route('/predictions_based_on', methods = ['GET']) def country_based_on(): base = request.args.get('base') target = request.args.get('target') field = request.args.get('field') train_data = datasetMaker.create_dataset([base]) train_data = train_data[[field+base]] predi_data = datasetMaker.create_dataset([target]) predi_data = predi_data[[field+target]] lstm = LstmModel(lag=5) fake_data = lstm.predict_dataset(train_data,predi_data, field, target) datasetMaker.write_to_csv(fake_data, "tmpOn") return send_from_directory(".","tmpOn.csv", as_attachment=True) app.run(debug=True, port=5000)
# # Copyright (c) SAS Institute Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import inspect, itertools, re, time from conary import trove, versions from conary.build import defaultrecipes, use from conary.build import lookaside from conary.build.errors import CookError from conary.build.grouprecipe import _BaseGroupRecipe, _SingleGroup from conary.conaryclient.cmdline import parseTroveSpec from conary.conaryclient import cml, modelgraph, troveset from conary.conaryclient.resolve import PythonDependencyChecker from conary.lib import log from conary.local import deptable from conary.repository import errors, netclient, searchsource from conary.deps import deps def findRecipeLineNumber(): line = None for frame in inspect.stack(): if frame[1].endswith('.recipe'): line = frame[2] break return line class GroupSetTroveCache(object): def __init__(self, groupRecipe, cache): self.cache = cache self.groupRecipe = groupRecipe self.depCache = {} def __getattr__(self, name): return getattr(self.cache, name) def _cached(self, troveTupList, troveList): # this avoids the call to recursively get children # GroupSet.TroveCache needs pass def getRepos(self): return self.cache.troveSource def cacheTroves(self, troveList): return self.cache.cacheTroves(troveList, _cached = self._cached) def getTrove(self, n, v, f, withFiles = False): raise NotImplementedError def getTroves(self, troveList, withFiles = False): return self.cache.getTroves(troveList, _cached = self._cached, withFiles = withFiles) def iterTroveList(self, troveTup, strongRefs=False, weakRefs=False): raise NotImplementedError def iterTroveListInfo(self, troveTup): if isinstance(troveTup[1], versions.NewVersion): sg = self.groupRecipe._getGroup(troveTup[0]) for x in sg.iterTroveListInfo(): yield (x[0], x[2], x[1]) for name, byDefault, explicit in sg.iterNewGroupList(): yield (name, versions.NewVersion(), self.groupRecipe.flavor), byDefault, explicit else: for x in self.cache.iterTroveListInfo(troveTup): yield x def troveReferencesTrove(self, troveTup, troveRef): if isinstance(troveTup[1], versions.NewVersion): sg = self.groupRecipe._getGroup(troveTup[0]) return sg.hasTrove(*troveRef) return self.cache.troveReferencesTrove(troveTup, troveRef) class GroupActionData(troveset.ActionData): def __init__(self, troveCache, groupRecipe): troveset.ActionData.__init__(self, troveCache, groupRecipe.flavor) self.groupRecipe = groupRecipe class GroupTupleSetMethods(object): # used mainly in a TroveSet context, so document it there from user POV ''' NAME ==== B{C{TroveSet}} - collection of trove references DESCRIPTION =========== A B{TroveSet} is an immutable collection of references to specific troves from a Conary repository, and set operations on those collections. Each trove reference in a TroveSet is a three-tuple of B{name}, B{version}, B{flavor}, along with an attribute, C{isInstalled}, that describes whether the trove is considered B{installed} or B{optional}. Each TroveSet is immutable. TroveSet operations return new TroveSets; they do not modify existing TroveSets. METHODS ======= The following methods are available in C{TroveSet} objects: - L{components} : Recursively search for components - L{createGroup} : Create a binary group - L{depsNeeded} : Get troves satisfying dependencies - L{difference} : Subtract one TroveSet from another (C{-}) - L{dump} : Debugging: print the contents of the TroveSet - L{find} : Search the TroveSet for specified troves - L{findByName} : Find troves by regular expression - L{findBySourceName} : Find troves by the name of the source package from which they were built - L{flatten} : Resolve trove references recursively - L{getInstall} : Get only install troves from set - L{getOptional} : Get only optional troves from set - L{isEmpty} : Assert that the TroveSet is entirely empty - L{isNotEmpty} : Assert that the TroveSet contains something - L{makeInstall} : Make all troves install, or add all provided troves as install troves - L{makeOptional} : Make all troves optional, or add all provided troves as optional troves - L{members} : Resolve exactly one level of trove references, return only those resolved references - L{packages} : Resolve trove references recursively, return packages - L{patch} : Replace troves in the TroveSet with matching-named troves from the replacement set - L{union} : Get the union of all provided TroveSets (C{|}, C{+}) - L{update} : Replace troves in the TroveSet with all troves from the replacement set Except for C{dump}, which prints debugging information, each of these methods returns a new TroveSet. ''' _explainObjectName = 'TroveSet' def depsNeeded(self, resolveSource = None, failOnUnresolved = True): """ NAME ==== B{C{TroveSet.depsNeeded}} - Get troves satisfying dependencies SYNOPSIS ======== C{troveset.depsNeeded(resolveSource=None, failOnUnresolved=True)} DESCRIPTION =========== Looks for unresolved dependencies in the trove set. Those unmet dependencies (and their dependencies, recursively) are sought in the C{resolveSource}, which must be a C{TroveSet}, C{Repository}, or C{SearchPath}. If there are unresolvable dependencies, it raises an error unless C{failOnUnresolved=False}. Returns a troveset containing the troves that were used to resolve the dependencies. This is not a union operation; the contents of the returned troveset do not include the contents of the original troveset. If no C{resolveSource} is provided, then depsNeeded asserts that there are no unresolved dependencies. PARAMETERS ========== - L{resolveSource} : Source against which to resolve dependencies, or None to assert that all dependencies are met. - L{failOnUnresolved} (C{True}) : Whether to fail if not all dependencies can be resolved. EXAMPLES ======== There are several significant use cases for C{depsNeeded}. The first use case is perhaps the most obvious; creating a group that is dependency-complete: mygrp = repos['group-standard'] + repos['other-package'] mygrp += mygrp.depsNeeded(repos) groupStandard = mygrp.createGroup('group-standard') A second use case is to enforce that dependencies can be resolved. If C{failOnUnresolved} is left to the default C{True} and the resulting troveset is not used, this becomes an assertion that all the dependencies for the original troveset not provided within the original troveset can be found within the specified search path. std = repos['group-standard'] mygrp = std + myrepos['mypackage'] # mypackage has added only dependencies resolved in group-packages mygrp.depsNeeded(repos['group-packages']) groupStandard = mygrp.createGroup('group-standard') A third use case is partial dependency closure. The C{failOnUnresolved} option can be set if you want to resolve all the dependencies possible, with the understanding that other dependencies will be resolved in another context. This is normally useful only when that other context is outside of the current group cook. """ fetched = self._action(ActionClass = troveset.FetchAction) if resolveSource: if isinstance(resolveSource, troveset.SearchPathTroveSet): resolveSource = resolveSource._action( ActionClass = GroupSearchPathFetch) elif isinstance(resolveSource, troveset.DelayedTupleSet): resolveSource = resolveSource._action( ActionClass = troveset.FetchAction) return fetched._action(resolveSource, failOnUnresolved = failOnUnresolved, ActionClass = DepsNeededAction) def difference(self, other): """ NAME ==== B{C{TroveSet.difference}} - Subtract one TroveSet from another (C{-}) SYNOPSIS ======== C{troveset.difference(other)} C{troveset - other} DESCRIPTION =========== Returns a new troveset which includes the members of the original set which are not in the troveset C{other}. The isInstall values of the troves in troveset C{other} are ignored when deciding if those troves should be included in the result. """ if type(other) == str: findSet = self.find(other) return self._action(findSet, ActionClass = GroupDifferenceAction, edgeList = [ None, '-' ] ) return self._action(other, ActionClass = GroupDifferenceAction) __sub__ = difference remove = difference def find(self, *troveSpecs): """ NAME ==== B{C{TroveSet.find}} - Search the TroveSet for specified troves SYNOPSIS ======== C{troveset.find('troveSpec1', 'troveSpec2', ..., 'troveSpecN')} C{troveset['troveSpec']} DESCRIPTION =========== Returns a new C{troveset} containing all troves from the original troveset which match the given C{troveSpec}(s). The original troveset's isInstall settings are preserved for each returned trove. The contents of the TroveSet are sought recursively. EXAMPLES ======== C{groupOS = repos['group-os']} C{allGlibcVersions = groupOS.find('glibc')} C{compatGlibc = groupOS['glibc=@rpl:1-compat']} This sets C{groupOS} to be a TroveSet containing the version of C{group-os} found on the default label for Repository C{repos}. It then finds all versions/flavors of glibc referenced (there could be more than one) and creates an C{allGlibcVersions} TroveSet that contains references to all of them, and another C{compatGlibc} that contains refernces to all flavors of glibc that are on a label matching C{@rpl:1-compat}. """ return self._action(ActionClass = GroupTroveSetFindAction, *troveSpecs) def findByName(self, namePattern, emptyOkay = False): """ NAME ==== B{C{TroveSet.findByName}} - Find troves by regular expression SYNOPSIS ======== C{troveset.findByName(nameRegularExpression, emptyOkay = False)} DESCRIPTION =========== The original troveset is searched for troves whose names match C{nameRegularExpression}, and matching troves are returned in a new troveset. The isInstall value is preserved from the original troveset being searched. Unlike C{find}, the original troveset is not searched recursively; use C{troveset.flatten()} explicitly if you need to search recursively. PARAMETERS ========== - L{emptyOkay} : Unless set to C{True}, raise an exception if no troves are found. EXAMPLES ======== C{allGnomePackages = allPackages.findByName('^gnome-')} Returns a troveset containing all troves in the troveset C{allPackages} with a name starting with C{gnome-} C{allTroves = repos['group-os'].flatten()} C{allGroups = allTroves.findByName('^group-')} C{allOtherTroves = allTroves - allGroups} """ return self._action(namePattern, emptyOkay = emptyOkay, ActionClass = FindByNameAction) def findBySourceName(self, sourceName): """ NAME ==== B{C{TroveSet.findBySourceName}} - Find troves by the name of the source package from which they were built SYNOPSIS ======== C{troveset.findBySourceName(sourceName)} DESCRIPTION =========== The original troveset is searched for troves which were built from source trove called C{sourceName}, and all matching troves are returned in a new troveset. The isInstall value is preserved from the original troveset being searched. Unlike C{find}, the original troveset is not searched recursively; use C{troveset.flatten()} explicitly if you need to search recursively. EXAMPLES ======== C{allTroves = repos['group-os'].flatten()} C{allPGPackages = allTroves.findBySourceName('postgresql')} Returns a troveset containing all troves in the troveset C{allTroves} that were built from C{postgresql:source} """ return self._action(sourceName, ActionClass = FindBySourceNameAction) __getitem__ = find def components(self, *componentList): """ NAME ==== B{C{TroveSet.components}} - Returns named components included in all members of the troveset. SYNOPSIS ======== C{troveset.components(I{componentName1}, I{componentName2}, ...)} DESCRIPTION =========== Returns components included in all members of the troveset, found recursively, where the component name (C{runtime}, C{lib}, C{data}, etc.) matches one of the component names provided. The C{isInstalled} setting for each component in the returned troveset is determined only by whether the component is installed or optional in the package that contains it. This does not implicitly recurse, so to find components of packages in a group, use C{flatten()} EXAMPLES ======== C{groupOs = repos['group-os'].flatten()} C{allDebugInfo = groupOs.components('debuginfo')} Returns a TroveSet referencing all the C{debuginfo} components of all packages referenced in C{group-os} as found in the C{repos} object. C{groupDist = repos['group-dist'].flatten()} C{docTroves = groupDist.components('doc', 'supdoc')} Returns a TroveSet referencing all the C{doc} and C{supdoc} components of all packages referenced in C{group-dist} as found in the C{repos} object. """ return self._action(ActionClass = ComponentsAction, *componentList) def flatten(self): """ NAME ==== B{C{TroveSet.flatten}} - Returns all troves, recursively SYNOPSIS ======== C{troveset.flatten()} DESCRIPTION =========== The troveset returned consists of any existing trove referenced by the original troveset, directly or indirectly via groups. The C{isInstall} setting for each troves is inherited from the original troveset, not from the troves referenced. (The only troves that will not be returned are references to binary groups being built out of the recipe, as returned by the C{TroveSet.createGroup()} method.) This is useful for creating flattened groups (removing group structure present in upstream groups but not desired in the groups being built) and for creating trovesets to use to look up specific troves (for example, C{find} and C{findByName}). EXAMPLES ======== C{platGrp = repos['group-appliance-platform'].flatten()} Returns all the non-group troves included directly in group-appliance-platform, as well as those included only within group-core (included in group-appliance-platform), and those included only within group-bootable, included only because it is included within group-core. Does not include any of those groups; only the members of the groups. """ return self._action(ActionClass = FlattenAction) def getInstall(self): """ NAME ==== B{C{TroveSet.getInstall}} - Returns only install members SYNOPSIS ======== C{troveset.getInstall()} DESCRIPTION =========== Returns a new troveset which includes only the members of this troveset which are marked as install; optional members are omitted. All members of the returned set are marked as install. """ return self._action(ActionClass = GetInstalledAction) def getOptional(self): """ NAME ==== B{C{TroveSet.getOptional}} - Returns only optional members SYNOPSIS ======== C{troveset.getOptional()} DESCRIPTION =========== Returns a new troveset which includes only the members of this troveset which are marked as optional; install members are omitted. All members of the returned set are marked as optional. """ return self._action(ActionClass = GetOptionalAction) def isEmpty(self): """ NAME ==== B{C{TroveSet.isEmpty}} - Assert that troveset is empty SYNOPSIS ======== C{troveset.isEmpty()} DESCRIPTION =========== Raises an exception is raised if the troveset contains any members. Otherwise, returns an identical (empty) troveset that may be ignored. """ return self._action(ActionClass = IsEmptyAction) def isNotEmpty(self): """ NAME ==== B{C{TroveSet.isNotEmpty}} - Assert that troveset is not empty SYNOPSIS ======== C{troveset.isNotEmpty()} DESCRIPTION =========== Raises an exception is raised if the troveset contains no members. Otherwise, returns an identical troveset that may be ignored. """ return self._action(ActionClass = IsNotEmptyAction) def makeInstall(self, installTroveSet = None): """ NAME ==== B{C{TroveSet.makeInstall}} - Make all troves install, or add all provided troves as install troves SYNOPSIS ======== C{troveset.makeInstall(installTroveSet = None)} DESCRIPTION =========== If C{installTroveSet} troveset is provided as an argument, all members of that other troveset are included in the result as install members. Any members of the original troveset which are optional, and are not in C{installTroveSet}, are also optional in the result. If C{installTroveSet} is not provided, the troveset returned includes all members of the original troveset as install members. PARAMETERS ========== - L{installTroveSet} : TroveSet providing all its members as install """ return self._action(ActionClass = MakeInstallAction, installTroveSet = installTroveSet) def makeOptional(self, optionalTroveSet = None): """ NAME ==== B{C{TroveSet.makeOptional}} - Make all troves optional, or add all provided troves as optional troves SYNOPSIS ======== C{troveset.makeOptional(optionalTroveSet = None)} DESCRIPTION =========== If C{optionalTroveSet} troveset is provided as an argument, all members of that other troveset are included in the result as optional members. Any members of the original troveset which are install troves, and are not in C{optionalTroveSet}, are also install troves in the returned troveset. If C{optionalTroveSet} is not provided, the troveset returned includes all members of the original troveset as optional members. PARAMETERS ========== - L{optionalTroveSet} : TroveSet providing all its members as optional """ return self._action(ActionClass = MakeOptionalAction, optionalTroveSet = optionalTroveSet) def members(self): """ NAME ==== B{C{TroveSet.members}} - Returns all members of the troveset SYNOPSIS ======== C{troveset.members()} DESCRIPTION =========== All troves directly included by the troves in this troveset are returned as a new troveset. They are optional in the result only if they are optional in every member of this troveset which includes them. """ return self._action(ActionClass = MembersAction) def packages(self, *packageList): """ NAME ==== B{C{TroveSet.packages}} - Return recursively-search package references SYNOPSIS ======== C{troveset.packages()} DESCRIPTION =========== Return all packages and filesets referenced directly or indirectly by this troveset. They are optional in the result only if they are optional in every member of this troveset which includes them. """ return self._action(ActionClass = PackagesAction, *packageList) def scripts(self): """ NAME ==== B{C{TroveSet.scripts}} - Return scripts for a trove SYNOPSIS ======== C{troveset.scripts()} DESCRIPTION =========== Returns a Scripts object which includes all of the scripts for the trove included in this TroveSet. If this TroveSet is empty or contains multiple troves, an exception is raised. EXAMPLES ======== This creates a new group which includes the scripts from a group which is already in the repository. existingGrp = repos['group-standard'] thisGrpContents = repos['pkg'] r.Group(thisGrpContents, scripts = existingGrp.scripts() """ stubTroveSet = self._action(ActionClass = ScriptsAction) return stubTroveSet.groupScripts def union(self, *troveSetList): """ NAME ==== B{C{TroveSet.union}} - Get the union of all provided TroveSets (C{|}, C{+}) SYNOPSIS ======== C{troveset.union(other1, other2, ..., otherN)} C{troveset + other1 + other2} C{troveset | other1 | other2} DESCRIPTION =========== Return a troveset which includes all of the members of this trove as well as all of the members of the arguments. Troves are optional only if they are optional in all the trovesets they are part of. """ return self._action(ActionClass = GroupUnionAction, *troveSetList) def patch(self, patchSet): """ NAME ==== B{C{TroveSet.patch}} - Replace troves with matching-name troves SYNOPSIS ======== C{troveset.patch(patchSet)} DESCRIPTION =========== Look (recursively) for items in this troveset which can reasonably be replaced by members found in the patchSet. The isInstall values are inherited from the original troveset. Any items in patchSet which do not appear to replace members of this troveset are included as optional in the result. Members of the original troveset which are outdated by members of the patchSet are also included as optional in the returned troveset, to prevent them from inadvertently showing up as install troves due to other operations. This is a recursive union operation in which only troves which are installed in the original set are installed in the resulting set, and all other troves are available. The difference between C{TroveSet.update} and C{TroveSet.patch} is how new troves introduced in C{patchSet} but not present in the original set are handled. With C{TroveSet.patch}, the new troves from C{patchSet} are not installed in the result; with C{TroveSet.update}, the new troves are installed in the result if they are installed in the C{updateSet}. PARAMETERS ========== - L{patchSet} : TroveSet containing potential replacements EXAMPLES ======== This operation is intended to implement the appropriate behavior for applying a group specifying a set of updated packages. For example, if only the postgresql client is in the current install set, and group-CVE-2015-1234 contains both the postgresql client and server in different packages, then the patch operation will mark the existing postgresql client as optional, add the new postgresql client as install, and add the new postgresql server as optional in the returned troveSet. base = repos['group-standard'] update = base.patch(repos['group-CVE-2015-1234']) groupStandard = update.createGroup('group-standard') """ return self._action(patchSet, ActionClass = GroupPatchAction) def update(self, updateSet): """ NAME ==== B{C{TroveSet.update}} - Replace troves in the TroveSet with all troves from the replacement set SYNOPSIS ======== C{troveset.update(updateSet)} DESCRIPTION =========== Returns a troveset that is a recusive union of the original troveset and C{updateSet}, except that only where the names of troves overlap, the versions from C{updateSet} are used, though the choice of isInstall is honored from the original set. The difference between C{TroveSet.update} and C{TroveSet.patch} is how new troves introduced in C{updateSet} but not present in the original set are handled. With C{TroveSet.patch}, the new troves from C{patchSet} are not installed in the result; with C{TroveSet.update}, the new troves are installed in the result if they are installed in the C{updateSet}. PARAMETERS ========== - L{updateSet} : TroveSet providing all its contents EXAMPLES ======== This is commonly used to update to new package versions while preserving the semantics of a source group. This might be used to apply a "hotfix". So if you are building a group based on a specific version of a platform, and do not wish to move to a new version of the platform, except that you want to inclue a specific new package that implements a necessary fix, this is most likely the correct operation. base = repos['group-standard'] # Use latest conary to resolve CNY-98765 until resolved update = base.update(repos['conary=centos.rpath.com@rpath:centos-5']) groupStandard = update.createGroup('group-standard') """ return self._action(updateSet, ActionClass = GroupUpdateAction) def createGroup(self, name, checkPathConflicts = True, scripts = None, imageGroup = False): """ NAME ==== B{C{TroveSet.createGroup}} - Create a binary group SYNOPSIS ======== C{troveset.createGroup(name, checkPathConflicts=True, scripts=None)} DESCRIPTION =========== Create a new group whose members are defined by this troveset, and call it C{name} (which must begin with "C{group-}"). Returns a troveset which references this newly created group, which allows it to be included in other trovesets, and hence, other groups. PARAMETERS ========== - C{checkPathConflicts} : Raise an error if any paths overlap (C{True}) - C{imageGroup} : (False) Designate that this group is a image group. Image Group policies will be executed separately on this group. - C{scripts} : Attach one or more scripts specified by a C{Scripts} object (C{None}) """ return self._action(name, checkPathConflicts = checkPathConflicts, ActionClass = CreateNewGroupAction, imageGroup = imageGroup, scripts = scripts) def _createGroup(self, name, checkPathConflicts = True, scripts = None, imageGroup = False): return self._action(name, ActionClass = CreateGroupAction, checkPathConflicts = checkPathConflicts, imageGroup = imageGroup, scripts = scripts) __add__ = union __or__ = union class GroupDelayedTroveTupleSet(GroupTupleSetMethods, troveset.DelayedTupleSet): def __init__(self, *args, **kwargs): self._dump = False self._lineNumStr = '' index = findRecipeLineNumber() if index is not None: kwargs['index'] = index self._lineNumStr = ':' + str(index) troveset.DelayedTupleSet.__init__(self, *args, **kwargs) def beenRealized(self, data): def display(tupleSet): if not tupleSet: log.info("\t\t(empty)") return for (name, version, flavor) in sorted(tupleSet): if isinstance(version, versions.NewVersion): log.info("\t\t%s (newly created)" % name) else: log.info("\t\t%s=%s/%s[%s]" % (name, version.trailingLabel(), version.trailingRevision(), flavor)) troveset.DelayedTupleSet.beenRealized(self, data) if self._dump or data.groupRecipe._dumpAll: log.info("TroveSet contents for action %s" % str(self.action) + self._lineNumStr) log.info("\tInstall") display(self._getInstallSet()) log.info("\tOptional") display(self._getOptionalSet()) if data.groupRecipe._trackDict: matches = [] foundMatch = False try: matches = self._findTroves(data.groupRecipe._trackDict.keys()) except errors.TroveNotFound: matches = {} if matches: log.info("Tracking matches found in results for action %s" % str(self.action) + self._lineNumStr) for (parsedSpec, matchList) in matches.iteritems(): log.info("\tMatches for %s" % data.groupRecipe._trackDict[parsedSpec]) display(matchList) def dump(self): self._dump = True return self class GroupLoggingDelayedTroveTupleSet(GroupDelayedTroveTupleSet): def realize(self, *args): mark = time.time() if isinstance(self.action, GroupIncludeAction): log.info("Including %s" % " ".join( "%s=%s[%s]" % nvf for nvf in self.action.includeSet._getInstallSet())) else: log.info("Running action %s" % str(self.action) + self._lineNumStr) GroupDelayedTroveTupleSet.realize(self, *args) runtime = time.time() - mark if runtime > 0.1: if isinstance(self.action, GroupIncludeAction): log.info("\tinclude processing took %.1fs" % runtime) else: log.info("\ttook %.1fs" % runtime) class GroupSearchPathTroveSet(troveset.SearchPathTroveSet): ''' NAME ==== B{C{SearchPath}} - Collection of troves in which to search SYNOPSIS ======== C{sp = r.SearchPath(TroveSet | Repository, ...)} DESCRIPTION =========== An object which searches multiple C{TroveSet} or C{Repository} objects in the order specified. Troves can be looked up in that C{SearchPath} object with the C{find} method, and the C{SearchPath} object can also be used for resolving dependencies. METHODS ======= - L{find} : Search the SearchPath for specified troves ''' _explainObjectName = 'SearchPath' def find(self, *troveSpecs): ''' NAME ==== B{C{SearchPath.find}} - Search the SearchPath for specified troves SYNOPSIS ======== C{searchpath.find('troveSpec1', 'troveSpec2', ..., 'troveSpecN')} C{searchpath['troveSpec']} DESCRIPTION =========== The B{SearchPath} is searched for troves which match the given troveSpecs. All matches are included as installed in the returned C{TroveSet}. Each C{troveSpec} has the same format as a trove referenced on the command line: C{name=version[flavor]} - L{name} : Required: the full name of the trove - L{version} : Optional: Any legal full or partial version, with or without a full or partial label. - L{flavor} : Optional: The flavor to match, composed with the Repository flavor and the build configuration flavor. ''' return self._action(ActionClass = GroupFindAction, *troveSpecs) __getitem__ = find class GroupSearchSourceTroveSet(troveset.SearchSourceTroveSet): # This is really GroupSetRecipe.Repository, documented here # for the benefit of Repository.find and Repository.latestPackages # Specifically, the synopsis describes GroupSetRecipe.Repository, # not this underlying object. ''' NAME ==== B{C{Repository}} - Source of trove references SYNOPSIS ======== C{r.Repository(defaultLabelList, baseFlavor)} DESCRIPTION =========== A B{Repository} object is used to look troves up in a repository, and provide references to those troves as B{TroveSet} objects. It has a list of default labels (or a single default label) and a default flavor; these are used when no label or flavor is provided to the B{find} method. METHODS ======= - L{find} : Search the repository for specified troves - L{latestPackages} : All the latest normal packages on the default label(s) ''' _explainObjectName = 'Repository' def find(self, *troveSpecs): ''' NAME ==== B{C{Repository.find}} - Search the Repository for specified troves SYNOPSIS ======== C{repos.find('troveSpec1', 'troveSpec2', ..., 'troveSpecN')} C{repos['troveSpec']} DESCRIPTION =========== The B{Repository} is searched for troves which match the given troveSpecs. All matches are included as installed in the returned C{TroveSet}. Each C{troveSpec} has the same format as a trove referenced on the command line: C{name=version[flavor]} - L{name} : Required: the full name of the trove - L{version} : Optional: Any legal full or partial version, with or without a full or partial label. - L{flavor} : Optional: The flavor to match, composed with the Repository flavor and the build configuration flavor. ''' return self._action(ActionClass = GroupFindAction, *troveSpecs) __getitem__ = find def latestPackages(self): ''' NAME ==== B{C{Repository.latestPackages}} - Get latest normal packages of the default flavor on the default label SYNOPSIS ======== C{repos.latestPackages()} DESCRIPTION =========== Returns a B{TroveSet} consisting of the latest packages and filesets on the default search label. The troves returned are those which best match the default flavor. Any troves which have a redirect as their latest version are not included in the returned TroveSet, nor are groups or components. A package is considered latest only if it is built from the latest source from which some binaries have been built. So if the C{foo:source} package previously built both the C{foo} and C{bar} packages, but the most recent binary version of the C{bar} package is built from a C{foo:source} that did not build a C{bar} package, the C{bar} package previously built from C{foo:source} will not be considered latest. (Thus, a redirect from C{bar} to nothing is not required here.) ''' return self._action(ActionClass = LatestPackagesFromSearchSourceAction) class GroupFindAction(troveset.FindAction): resultClass = GroupDelayedTroveTupleSet class GroupDelayedTupleSetAction(troveset.DelayedTupleSetAction): resultClass = GroupDelayedTroveTupleSet class GroupDifferenceAction(troveset.DifferenceAction): resultClass = GroupDelayedTroveTupleSet class GroupUnionAction(troveset.UnionAction): resultClass = GroupDelayedTroveTupleSet class GroupPatchAction(troveset.PatchAction): resultClass = GroupDelayedTroveTupleSet class GroupUpdateAction(troveset.UpdateAction): resultClass = GroupDelayedTroveTupleSet class ComponentsAction(GroupDelayedTupleSetAction): def __init__(self, primaryTroveSet, *componentNames): GroupDelayedTupleSetAction.__init__(self, primaryTroveSet) self.componentNames = set(componentNames) def componentsAction(self, data): installSet = set() optionalSet = set() for (troveTup), inInstall, explicit in \ self.primaryTroveSet._walk(data.troveCache): if not trove.troveIsComponent(troveTup[0]): continue componentName = troveTup[0].split(':')[1] if componentName in self.componentNames: if inInstall: installSet.add(troveTup) else: optionalSet.add(troveTup) self.outSet._setInstall(installSet) self.outSet._setOptional(optionalSet) return True __call__ = componentsAction class CopyAction(GroupDelayedTupleSetAction): def copyAction(self, data): self.outSet._setInstall(self.primaryTroveSet._getInstallSet()) self.outSet._setOptional(self.primaryTroveSet._getOptionalSet()) return True __call__ = copyAction class CreateGroupAction(GroupDelayedTupleSetAction): prefilter = troveset.FetchAction def __init__(self, primaryTroveSet, name, checkPathConflicts = True, imageGroup = False, scripts = None): if hasattr(scripts, "ts"): GroupDelayedTupleSetAction.__init__(self, primaryTroveSet, scripts.ts) else: GroupDelayedTupleSetAction.__init__(self, primaryTroveSet) self.name = name self.checkPathConflicts = checkPathConflicts self.imageGroup = imageGroup self.scripts = scripts def createGroupAction(self, data): grp = SG(data.groupRecipe.name, checkPathConflicts = self.checkPathConflicts, imageGroup = self.imageGroup) data.groupRecipe._addGroup(self.name, grp) data.groupRecipe._setDefaultGroup(grp) self._create(data.groupRecipe.defaultGroup, self.primaryTroveSet, self.outSet, data) return True __call__ = createGroupAction def _create(self, sg, ts, outSet, data): if self.scripts is not None: for script, scriptName in self.scripts.iterScripts(): sg.addScript(scriptName, script.contents, script.fromClass) sg.populate(ts, data.troveCache) outSet._setInstall([ (sg.name, versions.NewVersion(), data.groupRecipe.flavor) ]) outSet.realized = True def __str__(self): return self.name class CreateNewGroupAction(CreateGroupAction): resultClass = GroupLoggingDelayedTroveTupleSet def __init__(self, primaryTroveSet, name, checkPathConflicts = True, scripts = None, imageGroup = False): CreateGroupAction.__init__(self, primaryTroveSet, name, checkPathConflicts = checkPathConflicts, imageGroup = imageGroup, scripts = scripts) def createNewGroupAction(self, data): newGroup = SG(self.name, checkPathConflicts = self.checkPathConflicts, imageGroup = self.imageGroup) data.groupRecipe._addGroup(self.name, newGroup) self._create(newGroup, self.primaryTroveSet, self.outSet, data) return True __call__ = createNewGroupAction class DelayedSearchPathTroveSet(GroupSearchPathTroveSet): def __init__(self, troveSetList = None, graph = None, index = None, action = None): troveset.SearchPathTroveSet.__init__(self, troveSetList = troveSetList, graph = graph, index = index) self.action = action assert(not self.troveSetList) def realize(self, data): result = self.action(data) self.realized = True return True class GroupSearchPathFetch(troveset.DelayedTupleSetAction): resultClass = DelayedSearchPathTroveSet def __init__(self, *args, **kwargs): troveset.DelayedTupleSetAction.__init__(self, *args, **kwargs) def groupSearchPathFetch(self, data): actionList = [] needed = self.primaryTroveSet.troveSetList[:] while needed: ts = needed.pop(0) if isinstance(ts, troveset.TroveTupleSet): f = troveset.FetchAction(ts) actionList.append(f) elif isinstance(ts, troveset.SearchPathTroveSet): needed += ts.troveSetList troveset.FetchAction._fetch(actionList, data) self.outSet.setTroveSetList(self.primaryTroveSet.troveSetList) return True __call__ = groupSearchPathFetch class DepsNeededAction(GroupDelayedTupleSetAction): resultClass = GroupLoggingDelayedTroveTupleSet def __init__(self, primaryTroveSet, resolveTroveSet, failOnUnresolved = True): GroupDelayedTupleSetAction.__init__(self, primaryTroveSet, resolveTroveSet) self.failOnUnresolved = failOnUnresolved self.resolveTroveSet = resolveTroveSet def depsNeededAction(self, data): checker = PythonDependencyChecker( data.troveCache, ignoreDepClasses = [ deps.AbiDependency, deps.RpmLibDependencies ]) troveList = [] for (troveTuple, isInstall, isExplicit) in \ self.primaryTroveSet._walk(data.troveCache, newGroups = False, recurse = True): if isInstall: troveList.append(troveTuple) jobSet = [ (n, (None, None), (v, f), False) for (n,v,f) in troveList ] checker.addJobs(jobSet) if self.resolveTroveSet: # might be nice to share a single depDb across all instances # of this class? resolveMethod = (self.resolveTroveSet._getResolveSource( depDb = deptable.DependencyDatabase()). getResolveMethod()) else: resolveMethod = None failedDeps, suggMap = checker.resolve(resolveMethod) if self.failOnUnresolved and failedDeps: raise CookError("Unresolved Deps:\n" + "\n".join( [ "\t%s=%s[%s] requires %s" % (name, version, flavor, dep) for ((name, version, flavor), dep) in failedDeps ])) installSet = set() for requiredBy, requiredSet in suggMap.iteritems(): installSet.update(requiredSet) self.outSet._setInstall(installSet) return True __call__ = depsNeededAction class GetInstalledAction(GroupDelayedTupleSetAction): def getInstalledAction(self, data): self.outSet._setInstall(self.primaryTroveSet._getInstallSet()) return True __call__= getInstalledAction class GetOptionalAction(GroupDelayedTupleSetAction): def getOptionalAction(self, data): self.outSet._setOptional(self.primaryTroveSet._getOptionalSet()) return True __call__= getOptionalAction class FindByNameAction(GroupDelayedTupleSetAction): def __init__(self, primaryTroveSet, namePattern, emptyOkay = False): GroupDelayedTupleSetAction.__init__(self, primaryTroveSet) self.namePattern = namePattern self.emptyOkay = emptyOkay def findByNameAction(self, data): def _gather(troveTupleSet, nameRegex): s = set() for troveTup in troveTupleSet: if nameRegex.match(troveTup[0]): s.add(troveTup) return s r = re.compile(self.namePattern + '\\Z') install = _gather(self.primaryTroveSet._getInstallSet(), r) self.outSet._setInstall(install) optional = _gather(self.primaryTroveSet._getOptionalSet(), r) self.outSet._setOptional(optional) if (not self.emptyOkay and not install and not optional): raise CookError("findByName() matched no trove names") return True __call__= findByNameAction class FindBySourceNameAction(GroupDelayedTupleSetAction): def __init__(self, primaryTroveSet, sourceName): GroupDelayedTupleSetAction.__init__(self, primaryTroveSet) self.sourceName = sourceName def findBySourceNameAction(self, data): troveTuples = ( list(itertools.izip(itertools.repeat(True), self.primaryTroveSet._getInstallSet())) + list(itertools.izip(itertools.repeat(False), self.primaryTroveSet._getOptionalSet())) ) sourceNames = data.troveCache.getTroveInfo( trove._TROVEINFO_TAG_SOURCENAME, [ x[1] for x in troveTuples ]) installs = [] optional = [] for (isInstallSet, troveTup), sourceName in \ itertools.izip(troveTuples, sourceNames): if sourceName() != self.sourceName: continue if isInstallSet: installs.append(troveTup) else: optional.append(troveTup) self.outSet._setInstall(installs) self.outSet._setOptional(optional) if (not installs and not optional): raise CookError("findBySourceName() matched no trove names") return True __call__ = findBySourceNameAction class IsEmptyAction(GroupDelayedTupleSetAction): def isEmptyAction(self, data): if (self.primaryTroveSet._getInstallSet() or self.primaryTroveSet._getOptionalSet()): raise CookError("Trove set is not empty") # self.outSet is already empty return True __call__ = isEmptyAction class IsNotEmptyAction(GroupDelayedTupleSetAction): def isNotEmptyAction(self, data): if (not self.primaryTroveSet._getInstallSet() and not self.primaryTroveSet._getOptionalSet()): raise CookError("Trove set is empty") self.outSet._setInstall(self.primaryTroveSet._getInstallSet()) self.outSet._setOptional(self.primaryTroveSet._getOptionalSet()) return True __call__ = isNotEmptyAction class GroupIncludeAction(troveset.IncludeAction): resultClass = GroupLoggingDelayedTroveTupleSet class LatestPackagesFromSearchSourceAction(GroupDelayedTupleSetAction): resultClass = GroupLoggingDelayedTroveTupleSet def latestPackageFromSearchSourceAction(self, data): troveSource = self.primaryTroveSet.searchSource.getTroveSource() # data hiding? what's that flavor = self.primaryTroveSet.searchSource.flavor labelList = self.primaryTroveSet.searchSource.installLabelPath d = { None : {} } for label in labelList: d[None][label] = [ flavor ] matches = troveSource.getTroveLatestByLabel(d, troveTypes=netclient.TROVE_QUERY_PRESENT, bestFlavor=True) fullTupList = [] for name in matches: if not (trove.troveIsPackage(name) or trove.troveIsFileSet(name)): continue for version in matches[name]: for flavor in matches[name][version]: fullTupList.append( (name, version, flavor) ) sourceNames = data.troveCache.getTroveInfo( trove._TROVEINFO_TAG_SOURCENAME, fullTupList) bySource = {} for sourceName, troveTup in itertools.izip(sourceNames, fullTupList): bySource.setdefault(sourceName(), []).append(troveTup) resultTupList = [] for sourceName, tupList in bySource.iteritems(): if len(sourceName) > 2: mostRecent = sorted([ x[1] for x in tupList ])[-1] resultTupList += [ x for x in tupList if x[1] == mostRecent ] else: resultTupList += tupList self.outSet._setInstall(resultTupList) return True __call__ = latestPackageFromSearchSourceAction class MakeInstallAction(GroupDelayedTupleSetAction): def __init__(self, primaryTroveSet, installTroveSet = None): GroupDelayedTupleSetAction.__init__(self, primaryTroveSet, installTroveSet) self.installTroveSet = installTroveSet def makeInstallAction(self, data): if self.installTroveSet: self.outSet._setOptional(self.primaryTroveSet._getOptionalSet()) self.outSet._setInstall( (self.installTroveSet._getInstallSet() | self.installTroveSet._getOptionalSet())) else: self.outSet._setInstall(self.primaryTroveSet._getInstallSet() | self.primaryTroveSet._getOptionalSet()) return True __call__ = makeInstallAction class MakeOptionalAction(GroupDelayedTupleSetAction): def __init__(self, primaryTroveSet, optionalTroveSet = None): GroupDelayedTupleSetAction.__init__(self, primaryTroveSet, optionalTroveSet) self.optionalTroveSet = optionalTroveSet def makeOptionalAction(self, data): if self.optionalTroveSet: self.outSet._setInstall(self.primaryTroveSet._getInstallSet()) self.outSet._setOptional( (self.optionalTroveSet._getInstallSet() | self.optionalTroveSet._getOptionalSet() | self.primaryTroveSet._getOptionalSet())) else: self.outSet._setOptional(self.primaryTroveSet._getInstallSet() | self.primaryTroveSet._getOptionalSet()) return True __call__ = makeOptionalAction class MembersAction(GroupDelayedTupleSetAction): prefilter = troveset.FetchAction justStrong = True includeTop = False def membersAction(self, data): for (troveTuple, installSet) in itertools.chain( itertools.izip(self.primaryTroveSet._getInstallSet(), itertools.repeat(True)), itertools.izip(self.primaryTroveSet._getOptionalSet(), itertools.repeat(False))): installs = [] available = [] if self.includeTop: if installSet: installs.append(troveTuple) else: available.append(troveTuple) for (refTrove, byDefault, isStrong) in \ data.troveCache.iterTroveListInfo(troveTuple): if self.justStrong and not isStrong: continue if byDefault: installs.append(refTrove) else: available.append(refTrove) self.outSet._setInstall(installs) self.outSet._setOptional(available) return True __call__ = membersAction class FlattenAction(MembersAction): justStrong = False includeTop = True @classmethod def Create(klass, primaryTroveSet): if hasattr(primaryTroveSet, "_flattened"): return primaryTroveSet._flattened resultSet = super(FlattenAction, klass).Create(primaryTroveSet) primaryTroveSet._flattened = resultSet return resultSet class GroupTroveSetFindAction(troveset.FindAction): prefilter = FlattenAction resultClass = GroupDelayedTroveTupleSet def _applyFilters(self, l): assert(len(l) == 1) if hasattr(l[0], "_flattened"): return [ l[0]._flattened ] result = troveset.FindAction._applyFilters(self, l) l[0]._flattened = result[0] return result class PackagesAction(GroupDelayedTupleSetAction): prefilter = troveset.FetchAction def __init__(self, primaryTroveSet): GroupDelayedTupleSetAction.__init__(self, primaryTroveSet) def packagesAction(self, data): installSet = set() optionalSet = set() for (troveTup), inInstall, explicit in \ self.primaryTroveSet._walk(data.troveCache, newGroups = False, recurse = True): if (not trove.troveIsPackage(troveTup[0]) and not trove.troveIsFileSet(troveTup[0])): continue if inInstall: installSet.add(troveTup) else: optionalSet.add(troveTup) self.outSet._setInstall(installSet) self.outSet._setOptional(optionalSet) return True return True __call__ = packagesAction class ScriptsAction(GroupDelayedTupleSetAction): prefilter = troveset.FetchAction def __init__(self, *args, **kwargs): GroupDelayedTupleSetAction.__init__(self, *args, **kwargs) def getResultTupleSet(self, *args, **kwargs): ts = GroupDelayedTupleSetAction.getResultTupleSet(self, *args, **kwargs) ts.groupScripts = GroupScripts() # this loop is gross. we use it to get the right dependencies on things # which use the scripts though ts.groupScripts.ts = ts return ts def scriptsAction(self, data): totalSet = (self.primaryTroveSet._getInstallSet() | self.primaryTroveSet._getOptionalSet()) if not totalSet: raise CookError("Empty trove set for scripts()") elif len(totalSet) > 1: raise CookError("Multiple troves in trove set for scripts()") troveTup = list(totalSet)[0] trv = data.troveCache.getTroves([ troveTup ])[0] groupScripts = self.outSet.groupScripts for scriptName in GroupScripts._scriptNames: trvScript = getattr(trv.troveInfo.scripts, scriptName[:-7]) if not trvScript.script(): continue selfScript = getattr(groupScripts, scriptName[:-7]) selfScript.set(trvScript.script()) return True __call__ = scriptsAction class SG(_SingleGroup): def __init__(self, *args, **kwargs): _SingleGroup.__init__(self, *args, **kwargs) self.autoResolve = False self.depCheck = False def populate(self, troveSet, troveCache): seen = set() for troveTup, byDefault, explicit in troveSet._walk(troveCache): if not explicit: continue seen.add(troveTup) if isinstance(troveTup[1], versions.NewVersion): self.addNewGroup(troveTup[0], byDefault = byDefault, explicit = True) else: self.addTrove(troveTup, explicit = True, byDefault = byDefault, components = []) for troveTup, byDefault, explicit in troveSet._walk(troveCache, recurse = True): if troveTup in seen: # if it's explicit, it's already been seen continue seen.add(troveTup) if isinstance(troveTup[1], versions.NewVersion): self.addNewGroup(troveTup[0], byDefault = byDefault, explicit = False) else: self.addTrove(troveTup, explicit = False, byDefault = byDefault, components = []) def iterAddSpecs(self): return [] def iterAddAllSpecs(self): return [] def iterReplaceSpecs(self): return [] def iterDifferenceSpecs(self): return [] def iterNewGroupDifferenceList(self): return [] def iterCopiedFrom(self): return [] def getComponentsToMove(self): return [] def getRequires(self): return deps.DependencySet() class ModelCompiler(modelgraph.AbstractModelCompiler): SearchPathTroveSet = GroupSearchPathTroveSet FlattenAction = FlattenAction IncludeAction = GroupIncludeAction class GroupScript(object): ''' NAME ==== B{C{Script}} - Specify script contents and compatibility class SYNOPSIS ======== C{scriptObj = r.Script('#!/bin/sh...'I{, [fromClass = 1]})} DESCRIPTION =========== A B{C{Script}} object holds the contents, and optionally the compatibility class, of a script that can then be attached to one or more groups. The C{Scripts} object associates the script with the type, and C{Group} and C{TroveSet.createGroup} each take an optional C{scripts=} parameter to associate a C{Scripts} object with a group being created. EXAMPLE ======= Create a script that attaches to multiple groups as multiple types:: myTroves = repos.find(...) fixup = r.Script("""#!/bin/sh [ -x /opt/me/fixme ] && /opt/me/fixme""") fixscripts = r.Scripts(preUpdate=fixup, preRollback=fixup) r.Group(myTroves, scripts=fixscripts) ''' _explainObjectName = 'Script' def __init__(self, contents, fromClass = None): self.contents = contents self.fromClass = fromClass def set(self, contents, fromClass = None): self.contents = contents self.fromClass = fromClass class GroupScripts(object): ''' NAME ==== B{C{Scripts}} - Associate scripts with types SYNOPSIS ======== C{scripts = r.Scripts(postInstall = script, preRollback = script, ...)} DESCRIPTION =========== A C{Script} object holds the contents, and optionally the compatibility class, of a script that can then be attached to one or more groups. The B{C{Scripts}} object associates the script with the type, and C{Group} and C{TroveSet.createGroup} each take an optional C{scripts=} parameter to associate a C{Scripts} object with a group being created. PARAMETERS ========== Each of the parameters specifies a script type and takes a C{Script} to associate with that script type. - C{postInstall} : Specifies a script to run after the installation of any group to which this script is attached. - C{preRollback} : Specifies a script to run before the rollback of any group to which this script is attached. - C{postRollback} : Specifies a script to run after the rollback of any group to which this script is attached. - C{preUpdate} : Specifies a script to run before the update of any group to which this script is attached. - C{postUpdate} : Specifies a script to run after the update of any group to which this script is attached. EXAMPLE ======= Create a script that attaches to multiple groups as multiple types:: innerTroves = repos.find(...) myTroves = repos.find(...) fixup = r.Script("""#!/bin/sh [ -x /opt/me/fixme ] && /opt/me/fixme""") fixscripts = r.Scripts(preUpdate=fixup, preRollback=fixup) innerGroup = innerTroves.createGroup('group-inner', scripts=fixscripts) r.Group(myTroves + innerGroup, scripts=fixscripts) In general, you will not want to attach the same script to multiple groups that will be updated at the same time. Conary will not "de-duplicate" the scripts, and they will be run more than once if you do so. ''' _explainObjectName = 'Scripts' _scriptNames = ('postInstallScripts', 'preRollbackScripts', 'postRollbackScripts', 'preUpdateScripts', 'postUpdateScripts') def __init__(self, **kwargs): for scriptName in self._scriptNames: contents = kwargs.pop(scriptName[:-7], None) if contents is None: contents = GroupScript(None) setattr(self, scriptName[:-7], contents) if kwargs: raise TypeError("GroupScripts() got an unexpected keyword " "argument '%s'" % kwargs.keys()[0]) def iterScripts(self): for scriptName in self._scriptNames: script = getattr(self, scriptName[:-7]) if script is not None and script.contents is not None: yield script, scriptName class _GroupSetRecipe(_BaseGroupRecipe): Flags = use.LocalFlags internalAbstractBaseClass = 1 def __init__(self, repos, cfg, label, flavor, laReposCache, srcdirs=None, extraMacros={}, lightInstance = False): klass = self._getParentClass('_BaseGroupRecipe') klass.__init__(self, laReposCache = laReposCache, srcdirs = srcdirs, lightInstance = lightInstance, cfg = cfg) self.troveSource = repos self.repos = repos self.Script = GroupScript self.Scripts = GroupScripts self.labelPath = [ label ] self.buildLabel = label self.flavor = flavor self.searchSource = searchsource.NetworkSearchSource( repos, self.labelPath, flavor) self.g = troveset.OperationGraph() self.world = GroupSearchSourceTroveSet(self.searchSource, graph = self.g) self.fileFinder = lookaside.FileFinder(self.name, self.laReposCache, localDirs=self.srcdirs, multiurlMap=self.multiurlMap, mirrorDirs=cfg.mirrorDirs, cfg=cfg) self._dumpAll = False self._trackDict = {} for key in cfg.macros: self.macros._override(key, cfg['macros'][key]) self.macros.name = self.name self.macros.version = self.version if '.' in self.version: self.macros.major_version = '.'.join(self.version.split('.')[0:2]) else: self.macros.major_version = self.version if extraMacros: self.macros.update(extraMacros) def _findSources(self, *args, **kwargs): # GroupSetRecipe does not implement recursive builds, so just # return an empty list -- this allows rmake builds of # GroupSetRecipe groups to work. return [] def _realizeGraph(self, cache, callback): data = GroupActionData(troveCache = GroupSetTroveCache(self, cache), groupRecipe = self) self.g.realize(data) ordering = self.g.getTotalOrdering() nv = versions.NewVersion() allTroveTups = set() for node in ordering: if not isinstance(node, troveset.TroveTupleSet): continue allTroveTups.update(node._getInstallSet()) allTroveTups.update(node._getOptionalSet()) for outerName in self.getGroupNames(): allTroveTups.remove( (outerName, nv, self.flavor) ) for outerName in self.getPrimaryGroupNames(): grp = self._getGroup(outerName) grp.setBuildRefs(allTroveTups - set(grp.iterTroveList(strongRefs = True, weakRefs = True)) - set((x, nv, self.flavor) for x in grp.iterNewGroupList())) def dumpAll(self): ''' NAME ==== B{C{dumpAll}} - Display copious output describing each action. SYNOPSYS ======== C{r.dumpAll()} DESCRIPTION =========== Causes a GroupSetRecipe to print a textual listing of the entire contents of each TroveSet as it is populated. C{dumpAll} is a debugging tool and does not return a TroveSet. ''' self._dumpAll = True def getLabelPath(self): return self.labelPath def getSearchFlavor(self): return self.flavor def iterReplaceSpecs(self): return [] def getResolveTroveSpecs(self): return [] def getChildGroups(self, groupName = None): return [] def getGroupMap(self, groupName = None): return {} def _getSearchSource(self): return self.troveSource def getSearchPath(self): return [ ] def writeDotGraph(self, path): ''' NAME ==== B{C{GroupSetRecipe.writeDotGraph}} - write "dot" graph for recipe SYNOPSIS ======== C{r.writeDotGraph('path')} DESCRIPTION =========== Writes a description of the internal graph represenstation of the elements of the GroupSetRecipe in C{dot} format. This graph can be converted to SVG format using the dot command: C{dot -Tsvg outputfile > outputfile.svg} The resulting SVG file may be viewed in any tool capable of displaying SVG files, including many Web browsers. C{writeDotGraph} is a debugging tool and does not return a TroveSet. ''' self.g.generateDotFile(path, edgeFormatFn = lambda a,b,c: c) def Group(self, ts, checkPathConflicts = True, scripts = None, imageGroup = False): ''' NAME ==== B{C{GroupSetRecipe.Group}} - Create primary group object SYNOPSIS ======== C{r.Group(troveSet, checkPathConflicts=True, scripts=None)} DESCRIPTION =========== Set the passed B{TroveSet} as the contents of the primary group being built; the group that has the same name as the source component. The return value is a troveset which references the newly-created primary group. This returned TroveSet can be used to create other groups which reference the primary group. PARAMETERS ========== - C{checkPathConflicts} : Raise an error if any paths overlap (C{True}) - C{imageGroup} : (False) Designate that this group is a image group. Image Group policies will be executed separately on this group. - C{scripts} : Attach one or more scripts specified by a C{Scripts} object (C{None}) ''' return ts._createGroup(self.name, checkPathConflicts = checkPathConflicts, scripts = scripts, imageGroup = imageGroup) def Repository(self, labelList, flavor): # Documented in GroupSearchSourceTroveSet as "Repository" so that # Repository.find and Repository.latestPackages documentation # shows up in cvc explain ''' See Repository. ''' if type(labelList) == tuple: labelList = list(tuple) elif type(labelList) != list: labelList = [ labelList ] for i, label in enumerate(labelList): if type(label) == str: labelList[i] = versions.Label(label) elif not isinstance(label, versions.Label): raise CookError('String label or Label object expected, got %r'% label) if type(flavor) == str: flavor = deps.parseFlavor(flavor) searchSource = searchsource.NetworkSearchSource( self.repos, labelList, flavor) return GroupSearchSourceTroveSet(searchSource, graph = self.g) def SearchPath(self, *troveSets): # Documented in GroupSearchPathTroveSet as "SearchPath" so that # SearchPath.find documentation shows up in cvc explain ''' See SearchPath. ''' notTroveSets = [repr(x) for x in troveSets if not isinstance(x, troveset.TroveSet)] if notTroveSets: raise CookError('Invalid arguments %s: SearchPath arguments must be' ' Repository or TroveSet' %', '.join(notTroveSets)) return GroupSearchPathTroveSet(troveSets, graph = self.g) def CML(self, modelText, searchPath = None): """ NAME ==== B{C{GroupSetRecipe.CML}} - Build TroveSet from CML specification SYNOPSIS ======== C{r.CML(modelText, searchPath=None)} DESCRIPTION =========== Builds a TroveSet from a specification in Conary Modelling Lanuage (CML). The optional C{searchPath} initializes the search path; search lines from the system model are prepended to any provided C{searchPath}. Returns a standard troveset with an extra attribute called C{searchPath}, which is a TroveSet representing the final SearchPath from the model. This search path is normally used for dependency resolution. PARAMETERS ========== - C{modelText} (Required) : the text of the model in CML - C{searchPath} (Optional) : an initial search path, a fallback sought after any items provided in the model. EXAMPLE ======= To build a group from a system defined in CML, provide the contents of the /etc/conary/system-model file as the C{modelText}. This may be completely literal (leading white space is ignored in CML):: ts = r.CML(''' search group-os=conary.rpath.com@rpl:2/2.0.1-0.9-30 install group-appliance-platform install httpd install mod_ssl ''') needed = ts.depsNeeded(ts.searchPath) finalSet = ts + needed If you are using a product definition and want to use the search path it provides as the context for the model, it might look like this:: repo = r.Repository('conary.rpath.com@rpl:2', r.flavor) # Fetch latest packages on build label first searchPathList = [ r.Repository(r.macros.buildlabel, r.flavor) ] if 'productDefinitionSearchPath' in r.macros: # proper build with product definition searchPathList.extend([repo[x] for x in r.macros.productDefinitionSearchPath.split('\\\\n')]) else: # local test build against specific version searchPathList.extend( repo['group-os=conary.rpath.com@rpl:2/2.0.1-0.9-30']) searchPath = r.SearchPath(*searchPathList) ts = r.CML(''' install group-appliance-platform install httpd install mod_ssl ''', searchPath=searchPath) needed = ts.depsNeeded(ts.searchPath) finalSet = ts + needed """ if searchPath is None: searchSource = searchsource.NetworkSearchSource( self.repos, [], self.flavor) searchPath = GroupSearchSourceTroveSet(searchSource, graph = self.g) model = cml.CML(None) lineNum = findRecipeLineNumber() if isinstance(modelText, str): modelText = modelText.split('\n') model.parse(modelText, context = '(recipe):%d' % lineNum) comp = ModelCompiler(self.flavor, self.repos, self.g, searchPath, None) sysModelSet = comp.build(model) result = sysModelSet._action(ActionClass = CopyAction) result.searchPath = sysModelSet.searchPath return result def track(self, troveSpec): ''' NAME ==== B{C{GroupSetRecipe.track}} SYNOPSIS ======== C{r.track('troveSpec')} DESCRIPTION =========== Prints out actions that match the provided C{troveSpec}. Usually used when a trove is unexpectedly present or missing in one or more TroveSets (or their resulting groups), in order to learn why the trove is present or missing. C{track} is a debugging tool and does not return a TroveSet. ''' self._trackDict[parseTroveSpec(troveSpec)] = troveSpec from conary.build.packagerecipe import BaseRequiresRecipe exec defaultrecipes.GroupSetRecipe
# -*- coding: utf-8 -*- from numpy import insert from SciDataTool import DataFreq from pyleecan.Functions.Electrical.dqh_transformation import dqh2n_DataTime def store(self, out_dict, out_dict_harm): """Store the standard outputs of Electrical that are temporarily in out_dict as arrays into OutElec as Data object Parameters ---------- self : OutElec the OutElec object to update out_dict : dict Dict containing all electrical quantities that have been calculated in EEC out_dict_harm : dict Dict containing harmonic quantities that have been calculated in EEC """ # Store Id, Iq, Ud, Uq self.OP.Id_ref = out_dict["Id"] self.OP.Iq_ref = out_dict["Iq"] self.OP.Ud_ref = out_dict["Ud"] self.OP.Uq_ref = out_dict["Uq"] # Compute currents self.Is = None self.Is = self.get_Is() # Compute voltage self.Us = None self.Us = self.get_Us() self.Pj_losses = out_dict["Pj_losses"] self.Tem_av_ref = out_dict["Tem_av_ref"] self.Pem_av_ref = out_dict["Pem_av_ref"] if "Is_harm" in out_dict_harm: # Create Data object # Add f=0Hz out_dict_harm["axes_list"][0].initial = 0 out_dict_harm["axes_list"][0].number += 1 values = insert(out_dict_harm["Is_harm"], 0, 0, axis=0) Is_dqh = DataFreq( name="Harmonic stator current", unit="A", symbol="I_s^{harm}", axes=out_dict_harm["axes_list"], values=values, ) # ifft Is_dqh_time = Is_dqh.freq_to_time() qs = self.parent.simu.machine.stator.winding.qs # back to ABC Is_abc = dqh2n_DataTime( Is_dqh_time, qs, is_n_rms=True, phase_dir=self.phase_dir ) self.Is_harm = Is_abc.time_to_freq()
from django.contrib import admin from .models import Membership, UserMembership, Subcription admin.site.register(Membership) admin.site.register(UserMembership) admin.site.register(Subcription)
from Expresion.Binaria import Binaria from Expresion.Aritmetica import Aritmetica from Expresion.Unaria import Unaria from Expresion.Aritmetica import Aritmetica from Expresion.Logica import Logica from Expresion.FuncionesNativas import FuncionesNativas from Entorno import Entorno from Tipo import Tipo from Expresion.Terminal import Terminal from tkinter import * from Expresion.variablesestaticas import * from reportes import * class Relacional(Binaria): def __init__(self, exp1, exp2, operador): 'Se usan los valores de las clases padres' Binaria.__init__(self, exp1, exp2, operador) def getval(self,entorno): if isinstance(self.exp1,Terminal) and isinstance(self.exp2,Terminal): if (self.exp1.tipo.tipo == 'identificador' or self.exp2.tipo.tipo == 'identificador'): return self valizq=self.exp1.getval(entorno); valder=self.exp2.getval(entorno); valizq=valizq.valor valder=valder.valor try: if self.operador == '>': self.valor = valizq > valder; elif self.operador == '<': self.valor = valizq < valder; elif self.operador == '>=': self.valor = valizq >= valder; elif self.operador == '<=': self.valor = valizq <= valder; elif self.operador == '<>': self.valor = valizq != valder; elif self.operador == '=': self.valor = valizq == valder; self.tipo = 'boolean' return self except : reporteerrores.append(Lerrores("Error Semantico", 'Los tipos que se estan comparando no coinciden', 0, 0)) variables.consola.insert(INSERT, 'Los tipos que se estan comparando no coinciden\n') return
def dostuff(): print("stuff happens here")
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ wlanpi_webui ~~~~~~~~~~~~ a custom WebUI made to run locally on the WLAN Pi """ import logging from logging.handlers import RotatingFileHandler from wlanpi_webui.app import create_app if __name__ == "__main__": app = create_app() log_filename = "app.log" logging.basicConfig( filename=log_filename, level=logging.DEBUG, format=f"%(asctime)s %(levelname)s %(name)s %(threadName)s : %(message)s", ) handler = RotatingFileHandler(log_filename, maxBytes=10000, backupCount=2) handler.setLevel(logging.DEBUG) app.logger.addHandler(handler) app.run(host="0.0.0.0", port="5000", debug=True)
from unittest.mock import patch from django.contrib.auth import get_user_model from django.core.files.uploadedfile import SimpleUploadedFile from django.db.models.fields.files import FieldFile from django.test import TestCase from django.urls import resolve from django.utils import timezone from apps.core.constants import MAX_DATASET_SIZE from ..forms import CreateExperimentForm from ..models import Experiment from ..views import CreateExperimentView, MainExperimentView UserModel = get_user_model() class CreateExperimentViewTest(TestCase): @classmethod def setUpTestData(cls): cls.user = UserModel.objects.create_user(username='guest', email="guest@guest.gr") cls.url = '/experiments/create/' def setUp(self): self.client.force_login(self.user) def tearDown(self): """ To delete all dummy csv files from disk """ for experiment in Experiment.objects.all(): experiment.delete() super().tearDown() def test_expriment_url_resolves_to_CreateExperimentView(self): found = resolve(self.url) self.assertEqual(found.func.__name__, CreateExperimentView.as_view().__name__) def test_methods_allowed(self): response = self.client.options(self.url) self.assertEqual(response['allow'], 'GET, POST') def test_GET_template(self): response = self.client.get(self.url) self.assertTemplateUsed(response, 'experiments/create_experiment.html') def test_GET_has_CreateExperimentForm(self): response = self.client.get(self.url) self.assertIsInstance(response.context['form'], CreateExperimentForm) def test_unauthorized_user_redirect(self): self.client.logout() response = self.client.options(self.url) self.assertEqual(response.status_code, 302) def test_unauthorized_user_redirect_page(self): self.client.logout() response = self.client.options(self.url) self.assertRedirects(response, '/accounts/login/?next=/experiments/create/') def test_POST_success_creates_new_experiment(self): self.client.post( self.url, data={ "name": "test_demo", "dataset": SimpleUploadedFile("demo_file.csv", b"Dummy"), }, ) self.assertEqual(Experiment.objects.count(), 1) self.assertEqual(Experiment.objects.first().name, "test_demo") def test_POST_success_creates_saves_dataset(self): self.client.post( self.url, data={ "name": "test_demo", "dataset": SimpleUploadedFile("demo_file.csv", b"Dummy"), }, ) self.assertEqual( Experiment.objects.first().dataset.url, f"/datasets/{self.user.username}/{timezone.now().date().strftime('%Y/%m')}/" f"{Experiment.objects.first().id}.csv", ) def test_POST_success_redirects_to_homepage(self): response = self.client.post( self.url, data={ "name": "test_demo", "dataset": SimpleUploadedFile("demo_file.csv", b"Dummy"), }, ) self.assertEqual(response.status_code, 302) self.assertRedirects(response, f"/experiments/{Experiment.objects.first().id}/main/") self.assertEqual(response['location'], f"/experiments/{Experiment.objects.first().id}/main/") def test_POST_success_saves_description(self): self.client.post( self.url, data={ "name": "test_demo", "description": "Dummy", "dataset": SimpleUploadedFile("demo_file.csv", b"Dummy"), }, ) self.assertEqual(Experiment.objects.first().description, "Dummy") def test_POST_success_saves_experiment_to_correct_user(self): another_user = UserModel.objects.create_user(username='guest2', email="guest2@guest.gr") self.client.post( self.url, data={ "name": "test_demo", "description": "Dummy", "dataset": SimpleUploadedFile("demo_file.csv", b"Dummy"), }, ) self.assertEqual(Experiment.objects.filter(experimenter=self.user).count(), 1) self.assertEqual(Experiment.objects.filter(experimenter=another_user).count(), 0) def test_POST_validation_error_required_fields(self): response = self.client.post(self.url, data={}) self.assertEqual(response.status_code, 200) self.assertEqual(Experiment.objects.count(), 0) self.assertTrue('required' in response.context['form'].errors['name'][0]) self.assertTrue('required' in response.context['form'].errors['dataset'][0]) def test_POST_validation_error_file_extension(self): response = self.client.post( self.url, data={ "name": "test_demo", "description": "Dummy", "dataset": SimpleUploadedFile("demo_file.txt", b"Dummy"), }, ) self.assertEqual(response.status_code, 200) self.assertEqual(Experiment.objects.count(), 0) self.assertTrue('File extension “txt” is not allowed.' in response.context['form'].errors['dataset'][0]) def test_POST_validation_error_big_file(self): with patch.object(FieldFile, 'size', MAX_DATASET_SIZE + 1): response = self.client.post( self.url, data={ "name": "test_demo", "description": "Dummy", "dataset": SimpleUploadedFile("demo_file.csv", b"Dummy"), }, ) self.assertEqual(response.status_code, 200) self.assertEqual(Experiment.objects.count(), 0) self.assertTrue('demo_file.csv must be less than 1MB' in response.context['form'].errors['dataset'][0]) class MainExperimentViewTest(TestCase): @classmethod def setUpTestData(cls): cls.user = UserModel.objects.create_user(username='guest', email="guest@guest.gr") cls.experiment = Experiment.objects.create( experimenter=cls.user, name="test_demo", dataset=SimpleUploadedFile("demo_file.csv", b"Dummy") ) cls.url = f"/experiments/{cls.experiment.id}/main/" def setUp(self): self.client.force_login(self.user) @classmethod def tearDownClass(cls): cls.experiment.delete() super().tearDownClass() def test_expriment_url_resolves_to_MainExperimentView(self): found = resolve(self.url) self.assertEqual(found.func.__name__, MainExperimentView.as_view().__name__) def test_methods_allowed(self): response = self.client.options(self.url) self.assertEqual(response['allow'], 'GET') def test_GET_template(self): response = self.client.get(self.url) self.assertTemplateUsed(response, 'experiments/main_experiment.html') def test_unauthorized_user_redirect(self): self.client.logout() response = self.client.get(self.url) self.assertEqual(response.status_code, 302) def test_unauthorized_user_redirect_page(self): self.client.logout() response = self.client.get(self.url) self.assertRedirects(response, f"/accounts/login/?next=/experiments/{self.experiment.id}/main/") def test_object_in_context_data(self): response = self.client.get(self.url) self.assertEqual(response.context['object'].name, self.experiment.name) def test_only_the_experiments_owner_can_see_the_main_page(self): self.client.logout() another_user = UserModel.objects.create_user(username='guest2', email="guest2@guest.gr") self.client.force_login(another_user) response = self.client.get(self.url) self.assertEqual(response.status_code, 403)
# Hacked from winnt.h DELETE = (65536) READ_CONTROL = (131072) WRITE_DAC = (262144) WRITE_OWNER = (524288) SYNCHRONIZE = (1048576) STANDARD_RIGHTS_REQUIRED = (983040) STANDARD_RIGHTS_READ = (READ_CONTROL) STANDARD_RIGHTS_WRITE = (READ_CONTROL) STANDARD_RIGHTS_EXECUTE = (READ_CONTROL) STANDARD_RIGHTS_ALL = (2031616) SPECIFIC_RIGHTS_ALL = (65535) ACCESS_SYSTEM_SECURITY = (16777216) MAXIMUM_ALLOWED = (33554432) GENERIC_READ = (-2147483648) GENERIC_WRITE = (1073741824) GENERIC_EXECUTE = (536870912) GENERIC_ALL = (268435456) # file security permissions FILE_READ_DATA= ( 1 ) FILE_LIST_DIRECTORY= ( 1 ) FILE_WRITE_DATA= ( 2 ) FILE_ADD_FILE= ( 2 ) FILE_APPEND_DATA= ( 4 ) FILE_ADD_SUBDIRECTORY= ( 4 ) FILE_CREATE_PIPE_INSTANCE= ( 4 ) FILE_READ_EA= ( 8 ) FILE_WRITE_EA= ( 16 ) FILE_EXECUTE= ( 32 ) FILE_TRAVERSE= ( 32 ) FILE_DELETE_CHILD= ( 64 ) FILE_READ_ATTRIBUTES= ( 128 ) FILE_WRITE_ATTRIBUTES= ( 256 ) FILE_ALL_ACCESS= (STANDARD_RIGHTS_REQUIRED | SYNCHRONIZE | 511) FILE_GENERIC_READ= (STANDARD_RIGHTS_READ | FILE_READ_DATA | FILE_READ_ATTRIBUTES | FILE_READ_EA | SYNCHRONIZE) FILE_GENERIC_WRITE= (STANDARD_RIGHTS_WRITE | FILE_WRITE_DATA | FILE_WRITE_ATTRIBUTES | FILE_WRITE_EA | FILE_APPEND_DATA | SYNCHRONIZE) FILE_GENERIC_EXECUTE= (STANDARD_RIGHTS_EXECUTE | FILE_READ_ATTRIBUTES | FILE_EXECUTE | SYNCHRONIZE) SECURITY_NULL_SID_AUTHORITY = (0,0,0,0,0,0) SECURITY_WORLD_SID_AUTHORITY = (0,0,0,0,0,1) SECURITY_LOCAL_SID_AUTHORITY = (0,0,0,0,0,2) SECURITY_CREATOR_SID_AUTHORITY = (0,0,0,0,0,3) SECURITY_NON_UNIQUE_AUTHORITY = (0,0,0,0,0,4) SECURITY_RESOURCE_MANAGER_AUTHORITY = (0,0,0,0,0,9) SECURITY_NULL_RID = 0 SECURITY_WORLD_RID = 0 SECURITY_LOCAL_RID = 0X00000000 SECURITY_CREATOR_OWNER_RID = 0 SECURITY_CREATOR_GROUP_RID = 1 SECURITY_CREATOR_OWNER_SERVER_RID = 2 SECURITY_CREATOR_GROUP_SERVER_RID = 3 SECURITY_CREATOR_OWNER_RIGHTS_RID = 4 # NT well-known SIDs SECURITY_NT_AUTHORITY = (0,0,0,0,0,5) SECURITY_DIALUP_RID = 1 SECURITY_NETWORK_RID = 2 SECURITY_BATCH_RID = 3 SECURITY_INTERACTIVE_RID = 4 SECURITY_SERVICE_RID = 6 SECURITY_ANONYMOUS_LOGON_RID = 7 SECURITY_PROXY_RID = 8 SECURITY_SERVER_LOGON_RID = 9 SECURITY_LOGON_IDS_RID = 5 SECURITY_LOGON_IDS_RID_COUNT = 3 SECURITY_LOCAL_SYSTEM_RID = 18 SECURITY_NT_NON_UNIQUE = 21 SECURITY_BUILTIN_DOMAIN_RID = 32 # well-known domain relative sub-authority values (RIDs)... DOMAIN_USER_RID_ADMIN = 500 DOMAIN_USER_RID_GUEST = 501 DOMAIN_USER_RID_KRBTGT = 502 DOMAIN_USER_RID_MAX = 999 # well-known groups ... DOMAIN_GROUP_RID_ADMINS = 512 DOMAIN_GROUP_RID_USERS = 513 DOMAIN_GROUP_RID_GUESTS = 514 DOMAIN_GROUP_RID_COMPUTERS = 515 DOMAIN_GROUP_RID_CONTROLLERS = 516 DOMAIN_GROUP_RID_CERT_ADMINS = 517 DOMAIN_GROUP_RID_SCHEMA_ADMINS = 518 DOMAIN_GROUP_RID_ENTERPRISE_ADMINS = 519 DOMAIN_GROUP_RID_POLICY_ADMINS = 520 DOMAIN_GROUP_RID_READONLY_CONTROLLERS = 521 # well-known aliases ... DOMAIN_ALIAS_RID_ADMINS = 544 DOMAIN_ALIAS_RID_USERS = 545 DOMAIN_ALIAS_RID_GUESTS = 546 DOMAIN_ALIAS_RID_POWER_USERS = 547 DOMAIN_ALIAS_RID_ACCOUNT_OPS = 548 DOMAIN_ALIAS_RID_SYSTEM_OPS = 549 DOMAIN_ALIAS_RID_PRINT_OPS = 550 DOMAIN_ALIAS_RID_BACKUP_OPS = 551 DOMAIN_ALIAS_RID_REPLICATOR = 552 DOMAIN_ALIAS_RID_RAS_SERVERS = 553 DOMAIN_ALIAS_RID_PREW2KCOMPACCESS = 554 DOMAIN_ALIAS_RID_REMOTE_DESKTOP_USERS = 555 DOMAIN_ALIAS_RID_NETWORK_CONFIGURATION_OPS = 556 DOMAIN_ALIAS_RID_INCOMING_FOREST_TRUST_BUILDERS = 557 DOMAIN_ALIAS_RID_MONITORING_USERS = 558 DOMAIN_ALIAS_RID_LOGGING_USERS = 559 DOMAIN_ALIAS_RID_AUTHORIZATIONACCESS = 560 DOMAIN_ALIAS_RID_TS_LICENSE_SERVERS = 561 DOMAIN_ALIAS_RID_DCOM_USERS = 562 DOMAIN_ALIAS_RID_IUSERS = 568 DOMAIN_ALIAS_RID_CRYPTO_OPERATORS = 569 DOMAIN_ALIAS_RID_CACHEABLE_PRINCIPALS_GROUP = 571 DOMAIN_ALIAS_RID_NON_CACHEABLE_PRINCIPALS_GROUP = 572 DOMAIN_ALIAS_RID_EVENT_LOG_READERS_GROUP = 573 SECURITY_MANDATORY_LABEL_AUTHORITY = (0,0,0,0,0,16) SECURITY_MANDATORY_UNTRUSTED_RID = 0x00000000 SECURITY_MANDATORY_LOW_RID = 0x00001000 SECURITY_MANDATORY_MEDIUM_RID = 0x00002000 SECURITY_MANDATORY_HIGH_RID = 0x00003000 SECURITY_MANDATORY_SYSTEM_RID = 0x00004000 SECURITY_MANDATORY_PROTECTED_PROCESS_RID = 0x00005000 SECURITY_MANDATORY_MAXIMUM_USER_RID = SECURITY_MANDATORY_SYSTEM_RID SYSTEM_LUID = (999, 0) ANONYMOUS_LOGON_LUID = (998, 0) LOCALSERVICE_LUID = (997, 0) NETWORKSERVICE_LUID = (996, 0) IUSER_LUID = (995, 0) # Group attributes SE_GROUP_MANDATORY = 1 SE_GROUP_ENABLED_BY_DEFAULT = 2 SE_GROUP_ENABLED = 4 SE_GROUP_OWNER = 8 SE_GROUP_USE_FOR_DENY_ONLY = 16 SE_GROUP_INTEGRITY = 32 SE_GROUP_INTEGRITY_ENABLED = 64 SE_GROUP_RESOURCE = 536870912 SE_GROUP_LOGON_ID = -1073741824 # User attributes # (None yet defined.) # ACE types ACCESS_MIN_MS_ACE_TYPE = (0) ACCESS_ALLOWED_ACE_TYPE = (0) ACCESS_DENIED_ACE_TYPE = (1) SYSTEM_AUDIT_ACE_TYPE = (2) SYSTEM_ALARM_ACE_TYPE = (3) ACCESS_MAX_MS_V2_ACE_TYPE = (3) ACCESS_ALLOWED_COMPOUND_ACE_TYPE = (4) ACCESS_MAX_MS_V3_ACE_TYPE = (4) ACCESS_MIN_MS_OBJECT_ACE_TYPE = (5) ACCESS_ALLOWED_OBJECT_ACE_TYPE = (5) ACCESS_DENIED_OBJECT_ACE_TYPE = (6) SYSTEM_AUDIT_OBJECT_ACE_TYPE = (7) SYSTEM_ALARM_OBJECT_ACE_TYPE = (8) ACCESS_MAX_MS_OBJECT_ACE_TYPE = (8) ACCESS_MAX_MS_V4_ACE_TYPE = (8) ACCESS_MAX_MS_ACE_TYPE = (8) ACCESS_ALLOWED_CALLBACK_ACE_TYPE = 9 ACCESS_DENIED_CALLBACK_ACE_TYPE = 10 ACCESS_ALLOWED_CALLBACK_OBJECT_ACE_TYPE = 11 ACCESS_DENIED_CALLBACK_OBJECT_ACE_TYPE = 12 SYSTEM_AUDIT_CALLBACK_ACE_TYPE = 13 SYSTEM_ALARM_CALLBACK_ACE_TYPE = 14 SYSTEM_AUDIT_CALLBACK_OBJECT_ACE_TYPE = 15 SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE = 16 SYSTEM_MANDATORY_LABEL_ACE_TYPE = 17 ACCESS_MAX_MS_V5_ACE_TYPE = 17 # The following are the inherit flags that go into the AceFlags field # of an Ace header. OBJECT_INHERIT_ACE = 1 CONTAINER_INHERIT_ACE = 2 NO_PROPAGATE_INHERIT_ACE = 4 INHERIT_ONLY_ACE = 8 VALID_INHERIT_FLAGS = 15 SUCCESSFUL_ACCESS_ACE_FLAG = 64 FAILED_ACCESS_ACE_FLAG = 128 SE_OWNER_DEFAULTED = 1 SE_GROUP_DEFAULTED = 2 SE_DACL_PRESENT = 4 SE_DACL_DEFAULTED = 8 SE_SACL_PRESENT = 16 SE_SACL_DEFAULTED = 32 SE_SELF_RELATIVE = 32768 SE_PRIVILEGE_ENABLED_BY_DEFAULT = 1 SE_PRIVILEGE_ENABLED = 2 SE_PRIVILEGE_USED_FOR_ACCESS = -2147483648 PRIVILEGE_SET_ALL_NECESSARY = 1 # NT Defined Privileges SE_CREATE_TOKEN_NAME = "SeCreateTokenPrivilege" SE_ASSIGNPRIMARYTOKEN_NAME = "SeAssignPrimaryTokenPrivilege" SE_LOCK_MEMORY_NAME = "SeLockMemoryPrivilege" SE_INCREASE_QUOTA_NAME = "SeIncreaseQuotaPrivilege" SE_UNSOLICITED_INPUT_NAME = "SeUnsolicitedInputPrivilege" SE_MACHINE_ACCOUNT_NAME = "SeMachineAccountPrivilege" SE_TCB_NAME = "SeTcbPrivilege" SE_SECURITY_NAME = "SeSecurityPrivilege" SE_TAKE_OWNERSHIP_NAME = "SeTakeOwnershipPrivilege" SE_LOAD_DRIVER_NAME = "SeLoadDriverPrivilege" SE_SYSTEM_PROFILE_NAME = "SeSystemProfilePrivilege" SE_SYSTEMTIME_NAME = "SeSystemtimePrivilege" SE_PROF_SINGLE_PROCESS_NAME = "SeProfileSingleProcessPrivilege" SE_INC_BASE_PRIORITY_NAME = "SeIncreaseBasePriorityPrivilege" SE_CREATE_PAGEFILE_NAME = "SeCreatePagefilePrivilege" SE_CREATE_PERMANENT_NAME = "SeCreatePermanentPrivilege" SE_BACKUP_NAME = "SeBackupPrivilege" SE_RESTORE_NAME = "SeRestorePrivilege" SE_SHUTDOWN_NAME = "SeShutdownPrivilege" SE_DEBUG_NAME = "SeDebugPrivilege" SE_AUDIT_NAME = "SeAuditPrivilege" SE_SYSTEM_ENVIRONMENT_NAME = "SeSystemEnvironmentPrivilege" SE_CHANGE_NOTIFY_NAME = "SeChangeNotifyPrivilege" SE_REMOTE_SHUTDOWN_NAME = "SeRemoteShutdownPrivilege" # Enum SECURITY_IMPERSONATION_LEVEL: SecurityAnonymous = 0 SecurityIdentification = 1 SecurityImpersonation = 2 SecurityDelegation = 3 SECURITY_MAX_IMPERSONATION_LEVEL = SecurityDelegation DEFAULT_IMPERSONATION_LEVEL = SecurityImpersonation TOKEN_ASSIGN_PRIMARY = 1 TOKEN_DUPLICATE = 2 TOKEN_IMPERSONATE = 4 TOKEN_QUERY = 8 TOKEN_QUERY_SOURCE = 16 TOKEN_ADJUST_PRIVILEGES = 32 TOKEN_ADJUST_GROUPS = 64 TOKEN_ADJUST_DEFAULT = 128 TOKEN_ALL_ACCESS = (STANDARD_RIGHTS_REQUIRED |\ TOKEN_ASSIGN_PRIMARY |\ TOKEN_DUPLICATE |\ TOKEN_IMPERSONATE |\ TOKEN_QUERY |\ TOKEN_QUERY_SOURCE |\ TOKEN_ADJUST_PRIVILEGES |\ TOKEN_ADJUST_GROUPS |\ TOKEN_ADJUST_DEFAULT) TOKEN_READ = (STANDARD_RIGHTS_READ |\ TOKEN_QUERY) TOKEN_WRITE = (STANDARD_RIGHTS_WRITE |\ TOKEN_ADJUST_PRIVILEGES |\ TOKEN_ADJUST_GROUPS |\ TOKEN_ADJUST_DEFAULT) TOKEN_EXECUTE = (STANDARD_RIGHTS_EXECUTE) SidTypeUser = 1 SidTypeGroup = 2 SidTypeDomain =3 SidTypeAlias = 4 SidTypeWellKnownGroup = 5 SidTypeDeletedAccount = 6 SidTypeInvalid = 7 SidTypeUnknown = 8 SidTypeComputer = 9 SidTypeLabel = 10 # Token types TokenPrimary = 1 TokenImpersonation = 2 # TOKEN_INFORMATION_CLASS, used with Get/SetTokenInformation TokenUser = 1 TokenGroups = 2 TokenPrivileges = 3 TokenOwner = 4 TokenPrimaryGroup = 5 TokenDefaultDacl = 6 TokenSource = 7 TokenType = 8 TokenImpersonationLevel = 9 TokenStatistics = 10 TokenRestrictedSids = 11 TokenSessionId = 12 TokenGroupsAndPrivileges = 13 TokenSessionReference = 14 TokenSandBoxInert = 15 TokenAuditPolicy = 16 TokenOrigin = 17 TokenElevationType = 18 TokenLinkedToken = 19 TokenElevation = 20 TokenHasRestrictions = 21 TokenAccessInformation = 22 TokenVirtualizationAllowed = 23 TokenVirtualizationEnabled = 24 TokenIntegrityLevel = 25 TokenUIAccess = 26 TokenMandatoryPolicy = 27 TokenLogonSid = 28 # DirectoryService related constants. # Generated by h2py from NtDsAPI.h DS_BEHAVIOR_WIN2000 = 0 DS_BEHAVIOR_WIN2003_WITH_MIXED_DOMAINS = 1 DS_BEHAVIOR_WIN2003 = 2 DS_SYNCED_EVENT_NAME = "NTDSInitialSyncsCompleted" ACTRL_DS_OPEN = 0x00000000 ACTRL_DS_CREATE_CHILD = 0x00000001 ACTRL_DS_DELETE_CHILD = 0x00000002 ACTRL_DS_LIST = 0x00000004 ACTRL_DS_SELF = 0x00000008 ACTRL_DS_READ_PROP = 0x00000010 ACTRL_DS_WRITE_PROP = 0x00000020 ACTRL_DS_DELETE_TREE = 0x00000040 ACTRL_DS_LIST_OBJECT = 0x00000080 ACTRL_DS_CONTROL_ACCESS = 0x00000100 NTDSAPI_BIND_ALLOW_DELEGATION = (0x00000001) DS_REPSYNC_ASYNCHRONOUS_OPERATION = 0x00000001 DS_REPSYNC_WRITEABLE = 0x00000002 DS_REPSYNC_PERIODIC = 0x00000004 DS_REPSYNC_INTERSITE_MESSAGING = 0x00000008 DS_REPSYNC_ALL_SOURCES = 0x00000010 DS_REPSYNC_FULL = 0x00000020 DS_REPSYNC_URGENT = 0x00000040 DS_REPSYNC_NO_DISCARD = 0x00000080 DS_REPSYNC_FORCE = 0x00000100 DS_REPSYNC_ADD_REFERENCE = 0x00000200 DS_REPSYNC_NEVER_COMPLETED = 0x00000400 DS_REPSYNC_TWO_WAY = 0x00000800 DS_REPSYNC_NEVER_NOTIFY = 0x00001000 DS_REPSYNC_INITIAL = 0x00002000 DS_REPSYNC_USE_COMPRESSION = 0x00004000 DS_REPSYNC_ABANDONED = 0x00008000 DS_REPSYNC_INITIAL_IN_PROGRESS = 0x00010000 DS_REPSYNC_PARTIAL_ATTRIBUTE_SET = 0x00020000 DS_REPSYNC_REQUEUE = 0x00040000 DS_REPSYNC_NOTIFICATION = 0x00080000 DS_REPSYNC_ASYNCHRONOUS_REPLICA = 0x00100000 DS_REPSYNC_CRITICAL = 0x00200000 DS_REPSYNC_FULL_IN_PROGRESS = 0x00400000 DS_REPSYNC_PREEMPTED = 0x00800000 DS_REPADD_ASYNCHRONOUS_OPERATION = 0x00000001 DS_REPADD_WRITEABLE = 0x00000002 DS_REPADD_INITIAL = 0x00000004 DS_REPADD_PERIODIC = 0x00000008 DS_REPADD_INTERSITE_MESSAGING = 0x00000010 DS_REPADD_ASYNCHRONOUS_REPLICA = 0x00000020 DS_REPADD_DISABLE_NOTIFICATION = 0x00000040 DS_REPADD_DISABLE_PERIODIC = 0x00000080 DS_REPADD_USE_COMPRESSION = 0x00000100 DS_REPADD_NEVER_NOTIFY = 0x00000200 DS_REPADD_TWO_WAY = 0x00000400 DS_REPADD_CRITICAL = 0x00000800 DS_REPDEL_ASYNCHRONOUS_OPERATION = 0x00000001 DS_REPDEL_WRITEABLE = 0x00000002 DS_REPDEL_INTERSITE_MESSAGING = 0x00000004 DS_REPDEL_IGNORE_ERRORS = 0x00000008 DS_REPDEL_LOCAL_ONLY = 0x00000010 DS_REPDEL_NO_SOURCE = 0x00000020 DS_REPDEL_REF_OK = 0x00000040 DS_REPMOD_ASYNCHRONOUS_OPERATION = 0x00000001 DS_REPMOD_WRITEABLE = 0x00000002 DS_REPMOD_UPDATE_FLAGS = 0x00000001 DS_REPMOD_UPDATE_ADDRESS = 0x00000002 DS_REPMOD_UPDATE_SCHEDULE = 0x00000004 DS_REPMOD_UPDATE_RESULT = 0x00000008 DS_REPMOD_UPDATE_TRANSPORT = 0x00000010 DS_REPUPD_ASYNCHRONOUS_OPERATION = 0x00000001 DS_REPUPD_WRITEABLE = 0x00000002 DS_REPUPD_ADD_REFERENCE = 0x00000004 DS_REPUPD_DELETE_REFERENCE = 0x00000008 DS_INSTANCETYPE_IS_NC_HEAD = 0x00000001 DS_INSTANCETYPE_NC_IS_WRITEABLE = 0x00000004 DS_INSTANCETYPE_NC_COMING = 0x00000010 DS_INSTANCETYPE_NC_GOING = 0x00000020 NTDSDSA_OPT_IS_GC = ( 1 << 0 ) NTDSDSA_OPT_DISABLE_INBOUND_REPL = ( 1 << 1 ) NTDSDSA_OPT_DISABLE_OUTBOUND_REPL = ( 1 << 2 ) NTDSDSA_OPT_DISABLE_NTDSCONN_XLATE = ( 1 << 3 ) NTDSCONN_OPT_IS_GENERATED = ( 1 << 0 ) NTDSCONN_OPT_TWOWAY_SYNC = ( 1 << 1 ) NTDSCONN_OPT_OVERRIDE_NOTIFY_DEFAULT = (1 << 2 ) NTDSCONN_OPT_USE_NOTIFY = (1 << 3) NTDSCONN_OPT_DISABLE_INTERSITE_COMPRESSION = (1 << 4) NTDSCONN_OPT_USER_OWNED_SCHEDULE = (1 << 5) NTDSCONN_KCC_NO_REASON = ( 0 ) NTDSCONN_KCC_GC_TOPOLOGY = ( 1 << 0 ) NTDSCONN_KCC_RING_TOPOLOGY = ( 1 << 1 ) NTDSCONN_KCC_MINIMIZE_HOPS_TOPOLOGY = ( 1 << 2 ) NTDSCONN_KCC_STALE_SERVERS_TOPOLOGY = ( 1 << 3 ) NTDSCONN_KCC_OSCILLATING_CONNECTION_TOPOLOGY = ( 1 << 4 ) NTDSCONN_KCC_INTERSITE_GC_TOPOLOGY = (1 << 5) NTDSCONN_KCC_INTERSITE_TOPOLOGY = (1 << 6) NTDSCONN_KCC_SERVER_FAILOVER_TOPOLOGY = (1 << 7) NTDSCONN_KCC_SITE_FAILOVER_TOPOLOGY = (1 << 8) NTDSCONN_KCC_REDUNDANT_SERVER_TOPOLOGY = (1 << 9) FRSCONN_PRIORITY_MASK = 0x70000000 FRSCONN_MAX_PRIORITY = 0x8 NTDSCONN_OPT_IGNORE_SCHEDULE_MASK = (-2147483648) NTDSSETTINGS_OPT_IS_AUTO_TOPOLOGY_DISABLED = ( 1 << 0 ) NTDSSETTINGS_OPT_IS_TOPL_CLEANUP_DISABLED = ( 1 << 1 ) NTDSSETTINGS_OPT_IS_TOPL_MIN_HOPS_DISABLED = ( 1 << 2 ) NTDSSETTINGS_OPT_IS_TOPL_DETECT_STALE_DISABLED = ( 1 << 3 ) NTDSSETTINGS_OPT_IS_INTER_SITE_AUTO_TOPOLOGY_DISABLED = ( 1 << 4 ) NTDSSETTINGS_OPT_IS_GROUP_CACHING_ENABLED = ( 1 << 5 ) NTDSSETTINGS_OPT_FORCE_KCC_WHISTLER_BEHAVIOR = ( 1 << 6 ) NTDSSETTINGS_OPT_FORCE_KCC_W2K_ELECTION = ( 1 << 7 ) NTDSSETTINGS_OPT_IS_RAND_BH_SELECTION_DISABLED = ( 1 << 8 ) NTDSSETTINGS_OPT_IS_SCHEDULE_HASHING_ENABLED = ( 1 << 9 ) NTDSSETTINGS_OPT_IS_REDUNDANT_SERVER_TOPOLOGY_ENABLED = ( 1 << 10 ) NTDSSETTINGS_DEFAULT_SERVER_REDUNDANCY = 2 NTDSTRANSPORT_OPT_IGNORE_SCHEDULES = ( 1 << 0 ) NTDSTRANSPORT_OPT_BRIDGES_REQUIRED = (1 << 1 ) NTDSSITECONN_OPT_USE_NOTIFY = ( 1 << 0 ) NTDSSITECONN_OPT_TWOWAY_SYNC = ( 1 << 1 ) NTDSSITECONN_OPT_DISABLE_COMPRESSION = ( 1 << 2 ) NTDSSITELINK_OPT_USE_NOTIFY = ( 1 << 0 ) NTDSSITELINK_OPT_TWOWAY_SYNC = ( 1 << 1 ) NTDSSITELINK_OPT_DISABLE_COMPRESSION = ( 1 << 2 ) GUID_USERS_CONTAINER_A = "a9d1ca15768811d1aded00c04fd8d5cd" GUID_COMPUTRS_CONTAINER_A = "aa312825768811d1aded00c04fd8d5cd" GUID_SYSTEMS_CONTAINER_A = "ab1d30f3768811d1aded00c04fd8d5cd" GUID_DOMAIN_CONTROLLERS_CONTAINER_A = "a361b2ffffd211d1aa4b00c04fd7d83a" GUID_INFRASTRUCTURE_CONTAINER_A = "2fbac1870ade11d297c400c04fd8d5cd" GUID_DELETED_OBJECTS_CONTAINER_A = "18e2ea80684f11d2b9aa00c04f79f805" GUID_LOSTANDFOUND_CONTAINER_A = "ab8153b7768811d1aded00c04fd8d5cd" GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_A = "22b70c67d56e4efb91e9300fca3dc1aa" GUID_PROGRAM_DATA_CONTAINER_A = "09460c08ae1e4a4ea0f64aee7daa1e5a" GUID_MICROSOFT_PROGRAM_DATA_CONTAINER_A = "f4be92a4c777485e878e9421d53087db" GUID_NTDS_QUOTAS_CONTAINER_A = "6227f0af1fc2410d8e3bb10615bb5b0f" GUID_USERS_CONTAINER_BYTE = "\xa9\xd1\xca\x15\x76\x88\x11\xd1\xad\xed\x00\xc0\x4f\xd8\xd5\xcd" GUID_COMPUTRS_CONTAINER_BYTE = "\xaa\x31\x28\x25\x76\x88\x11\xd1\xad\xed\x00\xc0\x4f\xd8\xd5\xcd" GUID_SYSTEMS_CONTAINER_BYTE = "\xab\x1d\x30\xf3\x76\x88\x11\xd1\xad\xed\x00\xc0\x4f\xd8\xd5\xcd" GUID_DOMAIN_CONTROLLERS_CONTAINER_BYTE = "\xa3\x61\xb2\xff\xff\xd2\x11\xd1\xaa\x4b\x00\xc0\x4f\xd7\xd8\x3a" GUID_INFRASTRUCTURE_CONTAINER_BYTE = "\x2f\xba\xc1\x87\x0a\xde\x11\xd2\x97\xc4\x00\xc0\x4f\xd8\xd5\xcd" GUID_DELETED_OBJECTS_CONTAINER_BYTE = "\x18\xe2\xea\x80\x68\x4f\x11\xd2\xb9\xaa\x00\xc0\x4f\x79\xf8\x05" GUID_LOSTANDFOUND_CONTAINER_BYTE = "\xab\x81\x53\xb7\x76\x88\x11\xd1\xad\xed\x00\xc0\x4f\xd8\xd5\xcd" GUID_FOREIGNSECURITYPRINCIPALS_CONTAINER_BYTE = "\x22\xb7\x0c\x67\xd5\x6e\x4e\xfb\x91\xe9\x30\x0f\xca\x3d\xc1\xaa" GUID_PROGRAM_DATA_CONTAINER_BYTE = "\x09\x46\x0c\x08\xae\x1e\x4a\x4e\xa0\xf6\x4a\xee\x7d\xaa\x1e\x5a" GUID_MICROSOFT_PROGRAM_DATA_CONTAINER_BYTE = "\xf4\xbe\x92\xa4\xc7\x77\x48\x5e\x87\x8e\x94\x21\xd5\x30\x87\xdb" GUID_NTDS_QUOTAS_CONTAINER_BYTE = "\x62\x27\xf0\xaf\x1f\xc2\x41\x0d\x8e\x3b\xb1\x06\x15\xbb\x5b\x0f" DS_REPSYNCALL_NO_OPTIONS = 0x00000000 DS_REPSYNCALL_ABORT_IF_SERVER_UNAVAILABLE = 0x00000001 DS_REPSYNCALL_SYNC_ADJACENT_SERVERS_ONLY = 0x00000002 DS_REPSYNCALL_ID_SERVERS_BY_DN = 0x00000004 DS_REPSYNCALL_DO_NOT_SYNC = 0x00000008 DS_REPSYNCALL_SKIP_INITIAL_CHECK = 0x00000010 DS_REPSYNCALL_PUSH_CHANGES_OUTWARD = 0x00000020 DS_REPSYNCALL_CROSS_SITE_BOUNDARIES = 0x00000040 DS_LIST_DSA_OBJECT_FOR_SERVER = 0 DS_LIST_DNS_HOST_NAME_FOR_SERVER = 1 DS_LIST_ACCOUNT_OBJECT_FOR_SERVER = 2 DS_ROLE_SCHEMA_OWNER = 0 DS_ROLE_DOMAIN_OWNER = 1 DS_ROLE_PDC_OWNER = 2 DS_ROLE_RID_OWNER = 3 DS_ROLE_INFRASTRUCTURE_OWNER = 4 DS_SCHEMA_GUID_NOT_FOUND = 0 DS_SCHEMA_GUID_ATTR = 1 DS_SCHEMA_GUID_ATTR_SET = 2 DS_SCHEMA_GUID_CLASS = 3 DS_SCHEMA_GUID_CONTROL_RIGHT = 4 DS_KCC_FLAG_ASYNC_OP = (1 << 0) DS_KCC_FLAG_DAMPED = (1 << 1) DS_EXIST_ADVISORY_MODE = (0x1) DS_REPL_INFO_FLAG_IMPROVE_LINKED_ATTRS = (0x00000001) DS_REPL_NBR_WRITEABLE = (0x00000010) DS_REPL_NBR_SYNC_ON_STARTUP = (0x00000020) DS_REPL_NBR_DO_SCHEDULED_SYNCS = (0x00000040) DS_REPL_NBR_USE_ASYNC_INTERSITE_TRANSPORT = (0x00000080) DS_REPL_NBR_TWO_WAY_SYNC = (0x00000200) DS_REPL_NBR_RETURN_OBJECT_PARENTS = (0x00000800) DS_REPL_NBR_FULL_SYNC_IN_PROGRESS = (0x00010000) DS_REPL_NBR_FULL_SYNC_NEXT_PACKET = (0x00020000) DS_REPL_NBR_NEVER_SYNCED = (0x00200000) DS_REPL_NBR_PREEMPTED = (0x01000000) DS_REPL_NBR_IGNORE_CHANGE_NOTIFICATIONS = (0x04000000) DS_REPL_NBR_DISABLE_SCHEDULED_SYNC = (0x08000000) DS_REPL_NBR_COMPRESS_CHANGES = (0x10000000) DS_REPL_NBR_NO_CHANGE_NOTIFICATIONS = (0x20000000) DS_REPL_NBR_PARTIAL_ATTRIBUTE_SET = (0x40000000) DS_REPL_NBR_MODIFIABLE_MASK = \ ( \ DS_REPL_NBR_SYNC_ON_STARTUP | \ DS_REPL_NBR_DO_SCHEDULED_SYNCS | \ DS_REPL_NBR_TWO_WAY_SYNC | \ DS_REPL_NBR_IGNORE_CHANGE_NOTIFICATIONS | \ DS_REPL_NBR_DISABLE_SCHEDULED_SYNC | \ DS_REPL_NBR_COMPRESS_CHANGES | \ DS_REPL_NBR_NO_CHANGE_NOTIFICATIONS \ ) # from enum DS_NAME_FORMAT DS_UNKNOWN_NAME = 0 DS_FQDN_1779_NAME = 1 DS_NT4_ACCOUNT_NAME = 2 DS_DISPLAY_NAME = 3 DS_UNIQUE_ID_NAME = 6 DS_CANONICAL_NAME = 7 DS_USER_PRINCIPAL_NAME = 8 DS_CANONICAL_NAME_EX = 9 DS_SERVICE_PRINCIPAL_NAME = 10 DS_SID_OR_SID_HISTORY_NAME = 11 DS_DNS_DOMAIN_NAME = 12 DS_DOMAIN_SIMPLE_NAME = DS_USER_PRINCIPAL_NAME DS_ENTERPRISE_SIMPLE_NAME = DS_USER_PRINCIPAL_NAME # from enum DS_NAME_FLAGS DS_NAME_NO_FLAGS = 0x0 DS_NAME_FLAG_SYNTACTICAL_ONLY = 0x1 DS_NAME_FLAG_EVAL_AT_DC = 0x2 DS_NAME_FLAG_GCVERIFY = 0x4 DS_NAME_FLAG_TRUST_REFERRAL = 0x8 # from enum DS_NAME_ERROR DS_NAME_NO_ERROR = 0 DS_NAME_ERROR_RESOLVING = 1 DS_NAME_ERROR_NOT_FOUND = 2 DS_NAME_ERROR_NOT_UNIQUE = 3 DS_NAME_ERROR_NO_MAPPING = 4 DS_NAME_ERROR_DOMAIN_ONLY = 5 DS_NAME_ERROR_NO_SYNTACTICAL_MAPPING = 6 DS_NAME_ERROR_TRUST_REFERRAL = 7 # from enum DS_SPN_NAME_TYPE DS_SPN_DNS_HOST = 0 DS_SPN_DN_HOST = 1 DS_SPN_NB_HOST = 2 DS_SPN_DOMAIN = 3 DS_SPN_NB_DOMAIN = 4 DS_SPN_SERVICE = 5 # from enum DS_SPN_WRITE_OP DS_SPN_ADD_SPN_OP = 0 DS_SPN_REPLACE_SPN_OP = 1 DS_SPN_DELETE_SPN_OP = 2 # Generated by h2py from DsGetDC.h DS_FORCE_REDISCOVERY = 0x00000001 DS_DIRECTORY_SERVICE_REQUIRED = 0x00000010 DS_DIRECTORY_SERVICE_PREFERRED = 0x00000020 DS_GC_SERVER_REQUIRED = 0x00000040 DS_PDC_REQUIRED = 0x00000080 DS_BACKGROUND_ONLY = 0x00000100 DS_IP_REQUIRED = 0x00000200 DS_KDC_REQUIRED = 0x00000400 DS_TIMESERV_REQUIRED = 0x00000800 DS_WRITABLE_REQUIRED = 0x00001000 DS_GOOD_TIMESERV_PREFERRED = 0x00002000 DS_AVOID_SELF = 0x00004000 DS_ONLY_LDAP_NEEDED = 0x00008000 DS_IS_FLAT_NAME = 0x00010000 DS_IS_DNS_NAME = 0x00020000 DS_RETURN_DNS_NAME = 0x40000000 DS_RETURN_FLAT_NAME = (-2147483648) DSGETDC_VALID_FLAGS = ( \ DS_FORCE_REDISCOVERY | \ DS_DIRECTORY_SERVICE_REQUIRED | \ DS_DIRECTORY_SERVICE_PREFERRED | \ DS_GC_SERVER_REQUIRED | \ DS_PDC_REQUIRED | \ DS_BACKGROUND_ONLY | \ DS_IP_REQUIRED | \ DS_KDC_REQUIRED | \ DS_TIMESERV_REQUIRED | \ DS_WRITABLE_REQUIRED | \ DS_GOOD_TIMESERV_PREFERRED | \ DS_AVOID_SELF | \ DS_ONLY_LDAP_NEEDED | \ DS_IS_FLAT_NAME | \ DS_IS_DNS_NAME | \ DS_RETURN_FLAT_NAME | \ DS_RETURN_DNS_NAME ) DS_INET_ADDRESS = 1 DS_NETBIOS_ADDRESS = 2 DS_PDC_FLAG = 0x00000001 DS_GC_FLAG = 0x00000004 DS_LDAP_FLAG = 0x00000008 DS_DS_FLAG = 0x00000010 DS_KDC_FLAG = 0x00000020 DS_TIMESERV_FLAG = 0x00000040 DS_CLOSEST_FLAG = 0x00000080 DS_WRITABLE_FLAG = 0x00000100 DS_GOOD_TIMESERV_FLAG = 0x00000200 DS_NDNC_FLAG = 0x00000400 DS_PING_FLAGS = 0x0000FFFF DS_DNS_CONTROLLER_FLAG = 0x20000000 DS_DNS_DOMAIN_FLAG = 0x40000000 DS_DNS_FOREST_FLAG = (-2147483648) DS_DOMAIN_IN_FOREST = 0x0001 DS_DOMAIN_DIRECT_OUTBOUND = 0x0002 DS_DOMAIN_TREE_ROOT = 0x0004 DS_DOMAIN_PRIMARY = 0x0008 DS_DOMAIN_NATIVE_MODE = 0x0010 DS_DOMAIN_DIRECT_INBOUND = 0x0020 DS_DOMAIN_VALID_FLAGS = ( \ DS_DOMAIN_IN_FOREST | \ DS_DOMAIN_DIRECT_OUTBOUND | \ DS_DOMAIN_TREE_ROOT | \ DS_DOMAIN_PRIMARY | \ DS_DOMAIN_NATIVE_MODE | \ DS_DOMAIN_DIRECT_INBOUND ) DS_GFTI_UPDATE_TDO = 0x1 DS_GFTI_VALID_FLAGS = 0x1 DS_ONLY_DO_SITE_NAME = 0x01 DS_NOTIFY_AFTER_SITE_RECORDS = 0x02 DS_OPEN_VALID_OPTION_FLAGS = ( DS_ONLY_DO_SITE_NAME | DS_NOTIFY_AFTER_SITE_RECORDS ) DS_OPEN_VALID_FLAGS = ( \ DS_FORCE_REDISCOVERY | \ DS_ONLY_LDAP_NEEDED | \ DS_KDC_REQUIRED | \ DS_PDC_REQUIRED | \ DS_GC_SERVER_REQUIRED | \ DS_WRITABLE_REQUIRED ) ## from aclui.h # SI_OBJECT_INFO.dwFlags SI_EDIT_PERMS = 0x00000000 SI_EDIT_OWNER = 0x00000001 SI_EDIT_AUDITS = 0x00000002 SI_CONTAINER = 0x00000004 SI_READONLY = 0x00000008 SI_ADVANCED = 0x00000010 SI_RESET = 0x00000020 SI_OWNER_READONLY = 0x00000040 SI_EDIT_PROPERTIES = 0x00000080 SI_OWNER_RECURSE = 0x00000100 SI_NO_ACL_PROTECT = 0x00000200 SI_NO_TREE_APPLY = 0x00000400 SI_PAGE_TITLE = 0x00000800 SI_SERVER_IS_DC = 0x00001000 SI_RESET_DACL_TREE = 0x00004000 SI_RESET_SACL_TREE = 0x00008000 SI_OBJECT_GUID = 0x00010000 SI_EDIT_EFFECTIVE = 0x00020000 SI_RESET_DACL = 0x00040000 SI_RESET_SACL = 0x00080000 SI_RESET_OWNER = 0x00100000 SI_NO_ADDITIONAL_PERMISSION = 0x00200000 SI_MAY_WRITE = 0x10000000 SI_EDIT_ALL = (SI_EDIT_PERMS | SI_EDIT_OWNER | SI_EDIT_AUDITS) SI_AUDITS_ELEVATION_REQUIRED = 0x02000000 SI_VIEW_ONLY = 0x00400000 SI_OWNER_ELEVATION_REQUIRED = 0x04000000 SI_PERMS_ELEVATION_REQUIRED = 0x01000000 # SI_ACCESS.dwFlags SI_ACCESS_SPECIFIC = 0x00010000 SI_ACCESS_GENERAL = 0x00020000 SI_ACCESS_CONTAINER = 0x00040000 SI_ACCESS_PROPERTY = 0x00080000 # SI_PAGE_TYPE enum SI_PAGE_PERM = 0 SI_PAGE_ADVPERM = 1 SI_PAGE_AUDIT = 2 SI_PAGE_OWNER = 3 SI_PAGE_EFFECTIVE =4 CFSTR_ACLUI_SID_INFO_LIST = "CFSTR_ACLUI_SID_INFO_LIST" PSPCB_SI_INITDIALOG = 1025 ## WM_USER+1
from django.core.management.base import BaseCommand from django.conf import settings from django.apps import apps import os import sys import multiprocessing root = os.getcwd() django_project = os.path.basename(root) class Command(BaseCommand): help = "Runs this project as a uWSGI application. Requires the uwsgi binary in system path." http_port = os.getenv('PORT', '8000') # for heroku socket_addr = None def handle(self, *args, **options): for arg in args: k, v = arg.split('=') if k == 'http': if self.http_port: self.http_port = v elif k == 'socket': self.http_port = None self.socket_addr = v # load the Django WSGI handler os.environ['UWSGI_MODULE'] = '%s.wsgi' % django_project # DJANGO settings if options['settings']: os.environ['DJANGO_SETTINGS_MODULE'] = options['settings'] else: os.environ['DJANGO_SETTINGS_MODULE'] = '%s.settings' % django_project # set protocol as uwsgi os.environ['UWSGI_PROTOCOL'] = 'uwsgi' # bind the http server to the default port if self.http_port: os.environ['UWSGI_HTTP_SOCKET'] = ':%s' % self.http_port elif self.socket_addr: os.environ['UWSGI_UWSGI_SOCKET'] = self.socket_addr os.environ['UWSGI_CHMOD_SOCKET'] = '664' # set process names os.environ['UWSGI_AUTO_PROCNAME'] = 'true' os.environ['UWSGI_PROCNAME_PREFIX_SPACED'] = '[uWSGI %s]' % django_project # remove sockets/pidfile at exit os.environ['UWSGI_VACUUM'] = 'true' # retrieve/set the PythonHome os.environ['UWSGI_VIRTUALENV'] = sys.prefix # add project to python path os.environ['UWSGI_PP'] = root os.environ['UWSGI_POST_BUFFERING'] = '1048576' os.environ['UWSGI_RELOAD_ON_RSS'] = '300' # increase buffer size a bit os.environ['UWSGI_BUFFER_SIZE'] = '65535' # some additions required by newrelic os.environ['UWSGI_ENABLE_THREADS'] = 'true' os.environ['UWSGI_LAZY_APPS'] = 'true' os.environ['UWSGI_SINGLE_INTERPRETER'] = 'true' os.environ['UWSGI_AUTOLOAD'] = 'true' # set 12 workers and cheaper to number of cpus os.environ['UWSGI_WORKERS'] = '12' os.environ['UWSGI_CHEAPER'] = str(multiprocessing.cpu_count()) # enable the master process os.environ['UWSGI_MASTER'] = 'true' os.environ['UWSGI_NO_ORPHANS'] = 'true' os.environ['UWSGI_MEMORY_REPORT'] = 'true' os.environ['UWSGI_DISABLE_LOGGING'] = 'true' # set harakiri os.environ['UWSGI_HARAKIRI'] = '60' os.environ['UWSGI_HARAKIRI_VERBOSE'] = 'true' # set uid and gid os.environ['UWSGI_UID'] = str(os.getuid()) os.environ['UWSGI_GID'] = str(os.getgid()) # TODO: Figure out cache os.environ['UWSGI_CACHE2'] = 'name=%s,items=20000,keysize=128,blocksize=4096' % django_project if settings.DEBUG: if apps.is_installed('configurations'): os.environ.setdefault('DJANGO_CONFIGURATION', 'Development') import configurations configurations.setup() # map and serve static files os.environ['UWSGI_STATIC_MAP'] = '%s=%s' % (settings.STATIC_URL, settings.STATIC_ROOT) os.environ['UWSGI_PY_AUTORELOAD'] = '2' # run spooler for mail task if 'django_uwsgi' in settings.EMAIL_BACKEND: os.environ['UWSGI_SPOOLER'] = '/tmp' os.environ['UWSGI_SPOOLER_IMPORT'] = 'django_uwsgi.task' # exec the uwsgi binary if apps.ready: os.execvp('uwsgi', ('uwsgi',)) def usage(self, subcomand): return r""" run this project on the uWSGI server http=PORT run the embedded http server on port PORT socket=ADDR bind the uwsgi server on address ADDR (this will disable the http server) """
# An array A consists of n integers in locations A[0], A[1] ....A[n-1]. # It is required to shift the elements of the array cyclically to the left by k places, where 1 <= k <= (n-1). def rotate(ar, k): n = min = len(ar) i = 0 while i<min: temp = ar[i] j = i while j!= ((n+i-k) %n): ar[j] = ar[(j+k)%n] j = (j+k)%n if j<min: min = j a = (n+i-k) %n ar[(n+i-k)%n] = temp i += 1 print(ar) ar = [0,1,2,3,4,5,6,7] rotate(ar, 3)
# Python Native import time # 3rdparty import sensor_harm start = time.time() safel1c = '/path/to/S2/L1C.SAFE' sr_dir = '/path/to/S2/SR/images/' #can also use L2A.SAFE dir target_dir = '/path/to/output/NBAR/' sensor_harm.sentinel_harmonize(safel1c, sr_dir, target_dir, apply_bandpass=True) end = time.time() print(f'Duration time: {end - start}')
'''Neopixel wrapper that supports simulation. This module supports 4 modes of operation: - Running on a Raspberry PI via the Adafruit blinka library. - Running on a Circuit Python board using the Adafruit Neopixel library. - Running using ../circuitpy_sim, which uses tkinter to draw simulated graphical LEDs on a Linux workstation - Running with simulation=True passed to the constructor, which is "headless" (i.e. no LED or graphical output). You can set() and get() colors for testing, but that's about it. Installing dependencies: - Raspberry PI: (https://learn.adafruit.com/neopixels-on-raspberry-pi/python-usage) # sudo pip3 install rpi_ws281x adafruit-circuitpython-neopixel # (not needed?) sudo python3 -m pip install --force-reinstall adafruit-blinka - TODO: other modes... Various pieces copied from Adafruit's libraries. Thanks Adafruit! ''' # ---------- color def constants AMBER = (255, 100, 0) AQUA = (50, 255, 255) BLACK = (0, 0, 0) BLUE = (0, 0, 255) CYAN = (0, 255, 255) GOLD = (255, 222, 30) GREEN = (0, 255, 0) JADE = (0, 255, 40) MAGENTA = (255, 0, 20) OFF = (0, 0, 0) ORANGE = (255, 40, 0) PINK = (242, 90, 255) PURPLE = (180, 0, 255) RED = (255, 0, 0) TEAL = (0, 255, 120) WHITE = (255, 255, 255) YELLOW = (255, 150, 0) RGBW_WHITE_RGB = (255, 255, 255, 0) RGBW_WHITE_RGBW = (255, 255, 255, 255) RGBW_WHITE_W = (0, 0, 0, 255) # ---------- color mapping functions # map circuit python pixel API into rpi_ws281x python API # (based on http://circuitpython.readthedocs.io/projects/neopixel/en/latest/_modules/neopixel.html) def wheel(pos): '''Takes an int between 0 and 255, returns a color tuple r->g->b->r...''' if pos < 85: return (int(pos*3), int(255 - (pos*3)), 0) elif pos < 170: pos -= 85 return (int(255 - (pos*3)), 0, int(pos*3)) else: pos -= 170 return (0, int(pos*3), int(255 - pos*3)) def color_to_rgb(color): '''Takes a color number (e.g. 0x123456) and returns an RGB tuple (e.g. (0x12, 0x34, 0x56))''' store = [] for i in range(3): element = color & 0xff store.append(element) color = color >> 8 tmp = store[::-1] # reverses list order return tuple(i for i in tmp) def rgb_to_color(rgb): '''Takes a rgb tuple and returns a merged color number.''' color = 0 for i in rgb: color = (color << 8) + int(i) return color # ---------- Neopixel abstraction class Neo(object): '''Object oriented abstraction for Adafruit Neopixels. n is the number of chained neopixels. RPi in non-simulation mode: - MUST BE RUN BY ROOT - Allowed pins: GPIO10(doesn't work?), GPIO12, GPIO18, or GPIO21 - will autoselect D18 (Adafruit's default) if not otherwise specified. reverse_rg is used for cases where the hardware has red and green LEDs in reverse order (i.e. if you ask for red and get green, set this). include_w is for RGBW leds.''' # ---------- general API def __init__(self, n=1, pin=None, brightness=1.0, auto_write=True, simulation=False, reverse_rg=False, include_w=False): self._auto_write = auto_write self._brightness = brightness self._n = n self._vals = [0] * n if simulation: self._strip = None return import neopixel if include_w: order = neopixel.RGBW if reverse_rg else neopixel.GRBW else: order = neopixel.RGB if reverse_rg else neopixel.GRB if not pin: import board pin = board.D18 self._strip = neopixel.NeoPixel(pin, n, brightness=brightness, auto_write=auto_write, pixel_order=order) def get(self, index): if index >= self._n or index < 0: raise IndexError return self._vals[index] def set(self, index, value): if index < 0: index += len(self) if index >= self._n or index < 0: raise IndexError self._vals[index] = value # Raw value, without brightness applied. if self._strip: self._strip[index] = value @property def brightness(self): return self._brightness @brightness.setter def brightness(self, brightness): self._brightness = min(max(brightness, 0.0), 1.0) if self._strip: self._strip.brightness = self._brightness def redraw(self): for i in range(self._n): self.set(i, self._vals[i]) if not self._auto_write: self.show() def show(self): if self._strip: self._strip.show() # ----- helpers to set multiple LEDs def black(self): self.fill(0) if not self._auto_write: self.show() def fill(self, color): for i in range(self._n): self.set(i, color) if not self._auto_write: self.show() def fill_wheel(self): for i in range(self._n): wheel_pos = int(255.0 * i / self._n) self.set(i, wheel(wheel_pos)) if not self._auto_write: self.show() def wipe(self): self.black() # ---------- internals def __getitem__(self, index): return self._vals[index] # basically just a wrapper around set() that supports slices. def __setitem__(self, index, val): if isinstance(index, slice): for index, val_i in enumerate(range(index.start, index.stop + 1, index.step or 1)): v = val[index] if isinstance(val, list) else val self.set(val_i, v) else: self.set(index, val)
# ------------------------------------------------------------------------------- # Name: Linguistics corpora construction # Purpose: NLP use # # Author: Mohammed Belkacem # # Created: 10/12/2021 # Copyright: (c) Mohammed Belkacem 2021 # Licence: CCO # ------------------------------------------------------------------------------- ## This script creates text file for each article ## Files are utf-8 encoded ## This script is for nlp use only ## This script can't be used on other websites. If this website is updated, it may not work ## Dont forget to cite me from requests_html import HTMLSession import re import os import urllib3 import time urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) categories = ['regions','sport', 'societe', 'culture', 'sante-science-technologie','algerie', 'economie', 'monde'] taille = [192, 166, 144, 162, 138, 710, 232, 207] # Nmber of all pages. Please look at the number dispyed on the web site at # https://www.depechedekabylie.com/ddk-tamazight/ if the max pages is 690; please change it above to 684 all_pages = 684 # number of retrieved pages. Please change it. Note that it takes a lot of time to fetch articles max_pages = 3 # construct pages urls def retreive_pages(categories, taille): pages = [] for i in categories: #print(taille[categories.index(i)] * 10) for j in range(taille[categories.index(i)]): pages.append('https://www.aps.dz/tamazight-tal/' + i + "?start=" + str(j * 10)) # first page print(pages) #exit() return pages # remove html tags from content def remove_tags(text, TAG_RE): return TAG_RE.sub('', text) # create articles retreived from a page def create_article(article, a): TAG_RE = re.compile(r'<[^>]+>') session = HTMLSession() article = 'https://www.aps.dz' + article print (article) time.sleep(10) try: if not os.path.isfile(str(a) + ".txt"): r = session.get(article, verify=False,proxies={"http": "http://111.233.225.166:1234"}) about = r.html.find('p') g = open(str(a) + ".txt", "w+", encoding='utf-8') for i in about: #print (remove_tags(i.html, TAG_RE)) g.write(remove_tags(i.html, TAG_RE) + '\n') g.close() except: print(article) def fetch_pages(max_pages, all_pages, categories, taille): articles = [] nb_page = 0 session = HTMLSession() a = 0 for page in retreive_pages(categories, taille): time.sleep(10) try: r = session.get(page, verify=False,proxies={"http": "http://111.233.225.166:1234"}) about = r.html.find('a') for i in about: if i.html.find('href="/tamazight-tal/algerie/') > 0 \ or i.html.find('href="/tamazight-tal/economie/') > 0 \ or i.html.find('href="/tamazight-tal/monde/') > 0 \ or i.html.find('href="/tamazight-tal/sport/') > 0 \ or i.html.find('href="/tamazight-tal/societe/') > 0 \ or i.html.find('href="/tamazight-tal/culture/') > 0 \ or i.html.find('href="/tamazight-tal/regions/') > 0 \ or i.html.find('href="/tamazight-tal/sante-science-technologie/') > 0: # and #i.html.find('rel="bookmark" class="td-image-wrap"') > 0: j = i.html.split(' ')[1].split('"')[1] if j not in articles: articles.append(j) create_article(j, a) a = a + 1 nb_page = nb_page + 1 except: print(page) fetch_pages(max_pages, all_pages, categories, taille)
# Coded by : Pasan Manula Bandara - UofM # Date : 31/01/2020 # Deep Learning Assingment 1 - Question 3 - Part C import numpy as np import cPickle from numpy import linalg as LA from PIL import Image # Global Variable Input_Training_Rows = 10000 def initialize_weights(): Weight_init = np.random.uniform(0,1,size = (1,1025)) # Weight_init = np.random.randn(1,1025) W = Weight_init[0,0:1024] b= Weight_init[0,1024] W=W.reshape(1024,1) return W, b def sigmoid(w_sig,x_sig,b_sig,rows_x_sig,col_w_sig): temp = np.array(np.add(np.dot(x_sig,w_sig),np.full((rows_x_sig, col_w_sig), b_sig))) #x.w+b # print(w_sig) out = 1/(1 + np.exp(-temp)) #overflow encountered in exp # print(out) # print(np.shape(out)) return out def unpickle(cifar10_dataset_folder_path, batch_id): with open(cifar10_dataset_folder_path + '/data_batch_' + str(batch_id), mode='rb') as file: batch = cPickle.load(file) features = batch['data'] labels = batch['labels'] return features, labels def unpickle_test(cifar10_dataset_folder_path): with open(cifar10_dataset_folder_path + '/test_batch', mode='rb') as file: batch = cPickle.load(file) features = batch['data'] labels = batch['labels'] return features, labels def reconstruct_class(lables,priority): for check_class in range(Input_Training_Rows): if lables[check_class] != priority: #e.g., If the image is an airplane --> class is 1 otherwise 0 lables[check_class] = 0 else: lables[check_class] = 1 #Airplane return lables def rgb2gray(rgb_img): red_channel = rgb_img[:,0:1024] green_channel = rgb_img[:,1024:2048] blue_channel = rgb_img[:,2048:3072] gray_img =np.dot(0.2125,red_channel) + np.dot(0.7154,green_channel) + np.dot(0.0721,blue_channel) return gray_img def run_learn(X,Y,W,b): alpha = 0.001 threshold = 0.0001 noofepoch = 1 marix_norm = [1] combine_bias = np.full((1, Input_Training_Rows), 1) for epoch in range(noofepoch): if marix_norm < threshold: break else: sig_return = sigmoid(W,X,b,Input_Training_Rows,1) minus = Y.transpose() - sig_return final_gradient = -(np.dot(X.transpose(),minus))/Input_Training_Rows final_gradient_B = -(np.dot(combine_bias,minus))/Input_Training_Rows norm_calc = np.append(final_gradient,final_gradient_B,axis =0) marix_norm = LA.norm(norm_calc, axis=0) W = W - (alpha*final_gradient) b = b - (alpha*final_gradient_B) return W, b def main(): file_path = '/home/pasan/Documents/PythonCode/cifar-10-python/cifar-10-batches-py' #replace with your path file_path_airplane = '/home/pasan/Documents/PythonCode/cifar-10-python/cifar-10-batches-py/airplane' #replace with your path # airplane : 0 automobile : 1 bird : 2 cat : 3 deer : 4 dog : 5 frog : 6 horse : 7 ship : 8 truck : 9 Input_Test_Rows = 1000 classes = [0,1,2,3,4,5,6,7,8] batch_number = [1,2,3,4,5] weight_tensor = np.ndarray((len(classes),1024,1)) bias_tensor = np.ndarray((len(classes),1,1)) Y_hat_matrix = np.ndarray((Input_Test_Rows,len(classes))) Y_hat_matrix = [] # Y_hat = np.ndarray((len(classes),Input_Test_Rows,1)) W,b = initialize_weights() for class_id in classes: for batch_id in batch_number: print("Serving Now : Class ID :"+ str(class_id) + " Batch ID :" + str(batch_id)) batch_features,batch_class = unpickle(file_path,batch_id) reconstruct_class_re = reconstruct_class(batch_class,class_id) Gray = rgb2gray(batch_features) X = np.divide(Gray, 255) #Image Downscale Y = np.matrix(reconstruct_class_re) W,b = run_learn(X,Y,W,b) weight_tensor[class_id][:][:] = W bias_tensor[class_id][:][:] = b print("All Tensors DIM: Weight Tensor") print(np.shape(weight_tensor)) print("All Tensors DIM: Bias Tensor") print(np.shape(bias_tensor)) print("***Testing has been started!***") #Forward Pass for classifier in classes: trained_w = weight_tensor[classifier][:][:] trained_b = bias_tensor[classifier][:][:] batch_features,batch_class = unpickle_test(file_path_airplane) reconstruct_class_re = reconstruct_class(batch_class,classifier) Gray = rgb2gray(batch_features) X_input = np.divide(Gray, 255) #Image Downscale # Y_real = np.matrix(reconstruct_class_re) classi_out = sigmoid(trained_w,X_input,trained_b,Input_Test_Rows,1) if classifier != 0: Y_hat_matrix = np.append(Y_hat_matrix,classi_out,axis =1) else: Y_hat_matrix = classi_out Y_argmax = np.empty([Input_Test_Rows, 1]) for i in range(Input_Test_Rows): Y_argmax[i] = Y_hat_matrix[i,:].argmax() arg_count = Y_argmax.reshape(Input_Test_Rows).astype(np.int64) frequency = np.bincount(arg_count) class_identifier = np.nonzero(frequency)[0] print("NOTE :-> airplane : 0 automobile : 1 bird : 2 cat : 3 deer : 4 dog : 5 frog : 6 horse : 7 ship : 8 truck : 9") print(zip(class_identifier,frequency[class_identifier])) if __name__== "__main__": main()
import numpy as np def fcann2_trainer(x, y_, param_niter=1e4, param_delta=1e-3, param_lambda=1e-5, hidden_layer_dim=5, parameters=None): n, d = x.shape c = np.max(y_) + 1 y_one_hot = np.zeros((len(y_), c)) y_one_hot[np.arange(len(y_)), y_] = 1 if parameters is not None: w1, b1, w2, b2 = parameters else: w1 = np.random.randn(hidden_layer_dim, c) b1 = np.random.randn(hidden_layer_dim, 1) w2 = np.random.randn(c, hidden_layer_dim) b2 = np.random.randn(c, 1) for it in range(int(param_niter) + 1): p = fcann2_classifier(x, (w1, b1, w2, b2)) loss = -np.mean(np.log(np.sum(p * y_one_hot, axis=1))) if it % 1000 == 0: print("iteration: #{}, loss: {}".format(it, loss)) s1, h1, s2 = calculate_layers(w1, b1, w2, b2, x) diff_p_y_ = p - y_one_hot dw2 = np.dot(diff_p_y_.transpose(), h1) / n db2 = np.mean(diff_p_y_, axis=0).reshape(-1, 1) w2 -= param_delta * dw2 - param_lambda * w2 b2 -= param_delta * db2 diff_p_y__w2 = np.dot(diff_p_y_, w2) diag_s1 = np.array([np.diag(s_ > 0) for s_ in s1]) diff_p_y__w2_diag_s1 = np.einsum('ij,ijk->ij', diff_p_y__w2, diag_s1) dw1 = np.dot(diff_p_y__w2_diag_s1.transpose(), x) / n db1 = np.mean(diff_p_y__w2_diag_s1, axis=0).reshape(-1, 1) w1 -= param_delta * dw1 - param_lambda * w1 b1 -= param_delta * db1 return w1, b1, w2, b2 def fcann2_classifier(x, parameters): w1, b1, w2, b2 = parameters s1, h1, s2 = calculate_layers(w1, b1, w2, b2, x) return np.apply_along_axis(soft_max, 1, s2) def calculate_layers(w1, b1, w2, b2, x): s1 = np.dot(np.array([x]), w1.transpose())[0] + b1.transpose() h1 = np.maximum(0, s1) s2 = np.dot(np.array([h1]), w2.transpose())[0] + b2.transpose() return s1, h1, s2 def fcann2_single_classifier(x, parameters): w1, b1, w2, b2 = parameters s1 = np.dot(w1.transpose(), x) + b1 h1 = np.maximum(0, s1) s2 = np.dot(w2.transpose(), h1) + b2 return soft_max(s2) def divide_large(a, b): if np.isinf(b): if np.isinf(a): return 1. else: return 0. else: return a / b def soft_max(s): exp_s = np.exp(s - np.max(s)) return exp_s / np.sum(exp_s)
import random from datetime import datetime from sqlalchemy import or_, select from app.middleware.Jwt import UserToken from app.middleware.RedisManager import RedisHelper from app.models import Session, async_session from app.models.user import User from app.utils.logger import Log class UserDao(object): log = Log("UserDao") @staticmethod def register_for_github(username, name, email, avatar): try: with Session() as session: user = session.query(User).filter(or_(User.username == username, User.email == email)).first() if user: # 如果存在,则给用户更新信息 user.last_login_at = datetime.now() user.name = name user.avatar = avatar else: random_pwd = random.randint(100000, 999999) user = User(username, name, UserToken.add_salt(str(random_pwd)), email, avatar) session.add(user) session.commit() session.refresh(user) return user except Exception as e: UserDao.log.error(f"Github用户登录失败: {str(e)}") raise Exception("登录失败") @staticmethod def register_user(username, name, password, email): """ :param username: 用户名 :param name: 姓名 :param password: 密码 :param email: 邮箱 :return: """ try: with Session() as session: users = session.query(User).filter(or_(User.username == username, User.email == email)).all() if users: raise Exception("用户名或邮箱已存在") # 注册的时候给密码加盐 pwd = UserToken.add_salt(password) user = User(username, name, pwd, email) session.add(user) session.commit() except Exception as e: UserDao.log.error(f"用户注册失败: {str(e)}") return str(e) return None @staticmethod def login(username, password): try: pwd = UserToken.add_salt(password) with Session() as session: # 查询用户名/密码匹配且没有被删除的用户 user = session.query(User).filter_by(username=username, password=pwd, deleted_at=None).first() if user is None: return None, "用户名或密码错误" # 更新用户的最后登录时间 user.last_login_at = datetime.now() session.commit() session.refresh(user) return user, None except Exception as e: UserDao.log.error(f"用户{username}登录失败: {str(e)}") return None, str(e) @staticmethod @RedisHelper.cache("user_list", 3 * 3600, True) def list_users(): try: with Session() as session: return session.query(User).filter_by(deleted_at=None).all() except Exception as e: UserDao.log.error(f"获取用户列表失败: {str(e)}") raise Exception("获取用户列表失败") @staticmethod @RedisHelper.cache("query_user", 72 * 3600) async def query_user(id: int): async with async_session() as session: query = await session.execute(select(User).where(User.id == id)) result = query.scalars().first() if result is None: return "unknown" return result.name @staticmethod @RedisHelper.cache("user_email", 3600) async def list_user_email(*user): try: if not user: return [] async with async_session() as session: query = await session.execute(select(User).where(User.id.in_(user), User.deleted_at == None)) return [q.email for q in query.scalars().all()] except Exception as e: UserDao.log.error(f"获取用户邮箱失败: {str(e)}") raise Exception(f"获取用户邮箱失败: {e}")
#!/usr/bin/env python3 # # Copyright 2022 Graviti. Licensed under MIT License. # """The implementation of the Graviti Series.""" from itertools import islice from typing import Any, Dict, Iterable, List, Optional, Sequence, Union, overload from graviti.dataframe.column.indexing import ColumnSeriesILocIndexer, ColumnSeriesLocIndexer from graviti.utility import MAX_REPR_ROWS class Series: """One-dimensional array. Arguments: data: The data that needs to be stored in Series. Could be ndarray or Iterable. schema: Data type to force. If None, will be inferred from ``data``. name: The name to the Series. index: Index of the data, must have the same length as ``data``. Examples: Constructing Series from a list. >>> d = [1,2,3,4] >>> series = Series(data=d) >>> series 0 1 1 2 2 3 3 4 """ _indices_data: Optional[Dict[int, int]] _indices: Optional[List[int]] def __init__( self, data: Sequence[Any], schema: Any = None, name: Union[str, int, None] = None, index: Optional[Iterable[int]] = None, ) -> None: if schema is not None: # TODO: missing schema processing pass self._data = data self.name = name if index is None: self._indices_data = index self._indices = index else: self._indices_data = {raw_index: location for location, raw_index in enumerate(index)} self._indices = list(index) # @overload # def __getitem__(self, key: slice) -> "Series": # ... @overload def __getitem__(self, key: int) -> Any: ... @overload def __getitem__(self, key: Iterable[int]) -> "Series": ... def __getitem__(self, key: Union[int, Iterable[int]]) -> Any: integer_location = self._get_location_by_index(key) if isinstance(integer_location, list): # https://github.com/PyCQA/pylint/issues/3105 new_data = [ self._data[location] for location in integer_location # pylint: disable=not-an-iterable ] return Series(new_data, name=self.name, index=integer_location) return self._data[integer_location] @overload def __setitem__(self, key: slice, value: Iterable[Any]) -> None: ... @overload def __setitem__(self, key: int, value: Any) -> None: ... def __setitem__( self, key: Union[int, slice], value: Union[Iterable[Any], Any], ) -> None: pass def __len__(self) -> int: return self._data.__len__() def __repr__(self) -> str: indices = list(self._get_repr_indices()) indice_width = len(str(max(indices))) body = [] body_item_width = 0 for i in indices: item = self.loc[i] name = item._repr_folding() if hasattr(item, "_repr_folding") else str(item) body.append(name) body_item_width = max(len(name), body_item_width) lines = [] for indice, value in zip(indices, body): lines.append(f"{indice:<{indice_width+2}}{value:<{body_item_width+2}}") if self.__len__() > MAX_REPR_ROWS: lines.append(f"...({self.__len__()})") if self.name: lines.append(f"Name: {self.name}") return "\n".join(lines) def _get_repr_indices(self) -> Iterable[int]: length = self.__len__() # pylint: disable=protected-access if self._indices is None: return range(min(length, MAX_REPR_ROWS)) if length >= MAX_REPR_ROWS: return islice(self._indices, MAX_REPR_ROWS) return self._indices @overload def _get_location_by_index(self, key: Iterable[int]) -> List[int]: ... @overload def _get_location_by_index(self, key: int) -> int: ... def _get_location_by_index(self, key: Union[int, Iterable[int]]) -> Union[int, List[int]]: if self._indices_data is None: if isinstance(key, Iterable): return list(key) return key if isinstance(key, Iterable): return [self._indices_data[index] for index in key] return self._indices_data[key] # @overload # def _getitem_by_location(self, key: slice) -> "Series": # ... @overload def _getitem_by_location(self, key: int) -> Any: ... @overload def _getitem_by_location(self, key: Iterable[int]) -> "Series": ... def _getitem_by_location(self, key: Union[int, Iterable[int]]) -> Any: if isinstance(key, int): return self._data[key] if self._indices is None: indices = list(key) else: indices = [self._indices[index] for index in key] new_data = [self._data[index] for index in key] return Series(new_data, name=self.name, index=indices) @property def iloc(self) -> ColumnSeriesILocIndexer: """Purely integer-location based indexing for selection by position. Allowed inputs are: - An integer, e.g. ``5``. - A list or array of integers, e.g. ``[4, 3, 0]``. - A slice object with ints, e.g. ``1:7``. - A boolean array of the same length as the axis being sliced. Returns: The instance of the ILocIndexer. Examples: >>> series = Series([1, 2, 3]) >>> series.loc[0] 1 >>> df.loc[[0]] 0 1 dtype: int64 """ return ColumnSeriesILocIndexer(self) @property def loc(self) -> ColumnSeriesLocIndexer: """Access a group of rows and columns by indexes or a boolean array. Allowed inputs are: - A single index, e.g. ``5``. - A list or array of indexes, e.g. ``[4, 3, 0]``. - A slice object with indexes, e.g. ``1:7``. - A boolean array of the same length as the axis being sliced. Returns: The instance of the LocIndexer. Examples: >>> series = Series([1, 2, 3]) >>> series.loc[0] 1 >>> df.loc[[0]] 0 1 dtype: int64 """ return ColumnSeriesLocIndexer(self)
import math import jarray from ij import WindowManager, IJ, ImageStack, ImagePlus from ij.measure import ResultsTable from org.apache.commons.math3.ml.clustering import DoublePoint from itertools import groupby from operator import itemgetter def main(action,tableName1,tableName2,moreArgs): if action == "DistanceMatrix": calculateDistanceMatrix(tableName1,tableName2) if action == "CumulatedNeighbors": calculateCumulatedNeighbors(tableName1,tableName2) if action == "PlotDistanceDistribution": plotDistanceDistribution(tableName1,tableName2,moreArgs) if action == "CountCloserNeighbors": countCloserNeighbors(tableName1,tableName2,moreArgs) if action == "GetCloserPairs": getCloseCoordPairs(tableName1,tableName2,moreArgs) if action == "GetNearestNeighbors": getNearestNeighbors(tableName1,tableName2) if action == "GetMeanDistances": getMeanDistances(tableName1,tableName2) def calculateDistanceMatrix(tableName1,tableName2): pointsA = pointList3DFromRT(tableName1) pointsB = pointList3DFromRT(tableName2) matrix = getDistanceMatrix(pointsA,pointsB) copyMatrixToImage2D(matrix,"Distance Matrix",len(matrix),len(matrix[0])) copyMatrixToRt2D(matrix,"Distance Matrix") def calculateCumulatedNeighbors(tableName1,tableName2): xShift = [-15,16,1] yShift = [-15,16,1] zShift = [-4 ,5 ,1] cumulatedNeighbors, _ = getNeighborsWhileShifting(tableName1,tableName2,xShift,yShift,zShift,-1) copyMatrixToImage3D(cumulatedNeighbors,"Cumulated Neighbors Distance") def countCloserNeighbors(tableName1,tableName2,threshold): if threshold != "": distanceThreshold = float(threshold) else: distanceThreshold = 1 xShift = [-15,16,1] yShift = [-15,16,1] zShift = [-4 ,5 ,1] _, closeNeighborsCount = getNeighborsWhileShifting(tableName1,tableName2,xShift,yShift,zShift,distanceThreshold) copyMatrixToImage3D(closeNeighborsCount,"Neighbors Count with distance <"+str(distanceThreshold)) def getCloseCoordPairs(tableName1,tableName2,threshold): IJ.log("Entering Get Close Pairs") if threshold != "": distanceThreshold = float(threshold) else: distanceThreshold = 1 pointsA = pointList3DFromRT(tableName1) pointsB = pointList3DFromRT(tableName2) neighborsDistancesA, neighborsDistancesB, idNearestA, idNearestB = calculateNearestNeighbors(pointsA,pointsB) pairs = getPairsCloserThan(distanceThreshold,neighborsDistancesA,idNearestA)+getPairsCloserThan(distanceThreshold,neighborsDistancesB,idNearestB,True) pairsCoords = getCoordsOfPairs(pointsA,pointsB,pairs) copyMatrixToRt2D(pairsCoords,"Pairs Coords",useFirstRowAsHeader=True) def getNearestNeighbors(tableName1,tableName2): neighborsDistancesA, neighborsDistancesB, idNearestA, idNearestB = calculateNearestNeighborsFromRT(tableName1,tableName2) nearestNeighborsA = [] nearestNeighborsA.append(("Distance",)) nearestNeighborsA.append(("ID Neighbor",)) nearestNeighborsA[0]=(nearestNeighborsA[0]+tuple(neighborsDistancesA)) nearestNeighborsA[1]=(nearestNeighborsA[1]+tuple(idNearestA)) copyMatrixToRt2D(nearestNeighborsA,"Nearest Neighbors "+tableName1+">"+tableName2,useFirstRowAsHeader=True) nearestNeighborsB = [] nearestNeighborsB.append(("Distance",)) nearestNeighborsB.append(("ID Neighbor",)) nearestNeighborsB[0]=(nearestNeighborsB[0]+tuple(neighborsDistancesB)) nearestNeighborsB[1]=(nearestNeighborsB[1]+tuple(idNearestB)) copyMatrixToRt2D(nearestNeighborsB,"Nearest Neighbors "+tableName2+">"+tableName1,useFirstRowAsHeader=True) return nearestNeighborsA,nearestNeighborsB def calculateNearestNeighborsFromRT(tableName1,tableName2): pointsA = pointList3DFromRT(tableName1) pointsB = pointList3DFromRT(tableName2) return calculateNearestNeighbors(pointsA,pointsB) def getMeanDistances(tableName1,tableName2): neighborsDistancesA, neighborsDistancesB, idNearestA, idNearestB = calculateNearestNeighborsFromRT(tableName1,tableName2) minA, maxA, sumA, meanA, varianceA, stdDevA = getStatistics(neighborsDistancesA) IJ.log("Statistics Distances from "+tableName1+">"+tableName2) IJ.log("Min ="+str(minA)) IJ.log("Max ="+str(maxA)) IJ.log("Sum ="+str(sumA)) IJ.log("Mean ="+str(meanA)) IJ.log("Variance ="+str(varianceA)) IJ.log("Std Dev ="+str(stdDevA)) IJ.log(" ") minA, maxA, sumA, meanA, varianceA, stdDevA = getStatistics(neighborsDistancesB) IJ.log("Statistics Distances from "+tableName2+">"+tableName1) IJ.log("Min ="+str(minA)) IJ.log("Max ="+str(maxA)) IJ.log("Sum ="+str(sumA)) IJ.log("Mean ="+str(meanA)) IJ.log("Variance ="+str(varianceA)) IJ.log("Std Dev ="+str(stdDevA)) def getStatistics(dataset): min = dataset[0] max = dataset[0] sum = 0 for d in dataset: sum += d if d < min: min = d if d > max: max = d mean = sum / len(dataset) sumOfSquare = 0 for d in dataset: sumOfSquare += (d - mean)**2 variance = sumOfSquare / len(dataset)-1 stdDev = math.sqrt(variance) return min, max, sum, mean, variance, stdDev def plotDistanceDistribution(tableName1,tableName2,nbCategories): if nbCategories != "": histogramSize = int(nbCategories) else: histogramSize = 256 neighborsDistancesA, neighborsDistancesB, idNearestA, idNearestB = calculateNearestNeighborsFromRT(tableName1,tableName2) histo1 = makeHistogram(neighborsDistancesA,histogramSize) copyMatrixToRt2D(histo1,"Distance Distribution "+tableName1+">"+tableName2,useFirstRowAsHeader=True) histo2 = makeHistogram(neighborsDistancesB,histogramSize) copyMatrixToRt2D(histo2,"Distance Distribution "+tableName2+">"+tableName1,useFirstRowAsHeader=True) def makeHistogram(neighborsDistances,nbCategories): count = [0] * nbCategories matrix = [] matrix.append(("Values",)) matrix.append(("Count",)) matrix.append(("Probability",)) minD,maxD = getMinMax(neighborsDistances) stepD = (maxD - minD)/nbCategories for d in neighborsDistances: correctI = (d - minD)/stepD count[int(correctI-1)]+=1 for i in range(nbCategories): val = minD + stepD * i matrix[0]=(matrix[0]+(val,)) matrix[1]=(matrix[1]+(count[i],)) proba = float(count[i])/float(len(neighborsDistances)) matrix[2]=(matrix[2]+(proba,)) return matrix def getMinMax(distribution): minD = distribution[0] maxD = distribution[0] for d in distribution: if d > maxD: maxD = d if d < minD: minD = d return minD,maxD def getNeighborsWhileShifting(tableName1,tableName2,xShift,yShift,zShift,distanceThreshold): minModifierX = xShift[0] maxModifierX = xShift[1] stpModifierX = xShift[2] minModifierY = yShift[0] maxModifierY = yShift[1] stpModifierY = yShift[2] minModifierZ = zShift[0] maxModifierZ = zShift[1] stpModifierZ = zShift[2] cumulatedNeighbors = [] closeNeighbors = [] for modifierX in range(minModifierX,maxModifierX,stpModifierX): idX = (modifierX - minModifierX)/stpModifierX cumulatedNeighbors.append([]) closeNeighbors.append([]) for modifierY in range(minModifierY,maxModifierY,stpModifierY): idY = (modifierY - minModifierY)/stpModifierY cumulatedNeighbors[idX].append([]) closeNeighbors[idX].append([]) for modifierZ in range(minModifierZ,maxModifierZ,stpModifierZ): idZ = (modifierZ - minModifierZ)/stpModifierZ pointsA = pointList3DFromRT(tableName1,modifierX,modifierY,modifierZ) pointsB = pointList3DFromRT(tableName2) neighborsDistancesA, neighborsDistancesB, idNearestA, idNearestB = calculateNearestNeighbors(pointsA,pointsB) #Cumulated Neighbors distanceA = sum(neighborsDistancesA) distanceB = sum(neighborsDistancesB) cumulatedNearestDistance = (distanceA+distanceB) cumulatedNeighbors[idX][idY].append(cumulatedNearestDistance) #Count neighbor close to each other closeNeighbors[idX][idY].append(countNeighborCloserThan(distanceThreshold,neighborsDistancesA)+countNeighborCloserThan(distanceThreshold,neighborsDistancesB)) return cumulatedNeighbors, closeNeighbors def getCoordsOfPairs(pointsA,pointsB,pairs): coords = [] coords.append(("xA",)) coords.append(("yA",)) coords.append(("zA",)) coords.append(("xB",)) coords.append(("yB",)) coords.append(("zB",)) coords.append(("Dist",)) for indexP in range(len(pairs)): indexA = pairs[indexP][0] indexB = pairs[indexP][1] coordsA = pointsA[indexA].getPoint() coordsB = pointsB[indexB].getPoint() coords[0]=(coords[0]+(coordsA[0],)) coords[1]=(coords[1]+(coordsA[1],)) coords[2]=(coords[2]+(coordsA[2],)) coords[3]=(coords[3]+(coordsB[0],)) coords[4]=(coords[4]+(coordsB[1],)) coords[5]=(coords[5]+(coordsB[2],)) coords[6]=(coords[6]+(pairs[indexP][2],)) #coords.append([coordsA[0],coordsA[1],coordsA[2],coordsB[0],coordsB[1],coordsB[2],pairs[indexP][2]]) return coords def countNeighborCloserThan(value,neighborsDistances): count = 0 neighbors = sorted(neighborsDistances) for i in neighbors: if i < value: count+=1 else: break return count def getPairsCloserThan(threshold,neighborsDistances,idNearest,reverseOrder=False): pairs = [] for i in range(len(neighborsDistances)): # IJ.log(str(neighborsDistances[i])+"<"+str(threshold)+" ?") if neighborsDistances[i] < threshold: # IJ.log("Small enough") if reverseOrder: pairs.append([idNearest[i],i,neighborsDistances[i]]) else: pairs.append([i,idNearest[i],neighborsDistances[i]]) return pairs def calculateNearestNeighbors(pointsA,pointsB): nearestDistancesA = [10000 for i in range(len(pointsA))] nearestDistancesB = [10000 for i in range(len(pointsB))] idNearestA = [-1 for i in range(len(pointsA))] idNearestB = [-1 for i in range(len(pointsB))] for indexA in range(len(pointsA)): for indexB in range(len(pointsB)): dist = getDistance(pointsA[indexA],pointsB[indexB]) if nearestDistancesA[indexA]>dist : nearestDistancesA[indexA] = dist idNearestA[indexA] = indexB #IJ.log("Current closer iA A"+str(indexA)+" > B"+str(indexB)+" with dist = "+str(dist)) if nearestDistancesB[indexB]>dist : nearestDistancesB[indexB] = dist idNearestB[indexB] = indexA #IJ.log("Current closer iB B"+str(indexB)+" > A"+str(indexA)+" with dist = "+str(dist)) #IJ.log("Distance between"+str(pointsA[indexA])+"and"+str(pointsB[indexB])+"="+str(dist)) return nearestDistancesA, nearestDistancesB, idNearestA, idNearestB def getDistanceMatrix(pointsA,pointsB): matrix = [] for indexA in range(len(pointsA)): matrix.append([]) for indexB in range(len(pointsB)): dist = getDistance(pointsA[indexA],pointsB[indexB]) matrix[indexA].append(dist) return matrix def getDistance(pointA,pointB): dist = 0 pA = pointA.getPoint() pB = pointB.getPoint() for dim in range(len(pA)): dist += (pA[dim]-pB[dim])**2 #dist += math.fabs(pA[dim]-pB[dim]) dist=math.sqrt(dist) return dist def copyMatrixToRt2D(matrix,tableName="Results",sizeX=-1,sizeY=-1,useFirstRowAsHeader=False): if sizeX == -1: sizeX = len(matrix) if sizeY == -1: sizeY = len(matrix[0]) table = ResultsTable() for indexX in range(sizeX): for indexY in range(sizeY): if useFirstRowAsHeader: if indexY == 0: continue table.setValue(str(matrix[indexX][0]),indexY-1,matrix[indexX][indexY]) else: table.setValue(indexX,indexY,matrix[indexX][indexY]) table.show(tableName) def copyMatrixToImage2D(matrix,imageName,sizeX = -1,sizeY = -1): if sizeX == -1: sizeX = len(matrix) if sizeY == -1: sizeY = len(matrix[0]) imp = ImageStack.create(sizeX, sizeY, 1,16) processor = imp.getProcessor(1) for indexX in range(sizeX): for indexY in range(sizeY): processor.set(indexX,indexY,int(matrix[indexX][indexY])) ImagePlus(imageName, imp).show() def copyMatrixToImage3D(matrix,imageName,sizeX = -1,sizeY = -1,sizeZ = -1): if sizeX == -1: sizeX = len(matrix) if sizeY == -1: sizeY = len(matrix[0]) if sizeZ == -1: sizeZ = len(matrix[0][0]) imp = ImageStack.create(sizeX, sizeY, sizeZ,16) for indexZ in range(sizeZ): processor = imp.getProcessor(indexZ+1) for indexX in range(sizeX): for indexY in range(sizeY): processor.set(indexX,indexY,int(matrix[indexX][indexY][indexZ])) ImagePlus(imageName, imp).show() def pointList3DFromRT(tableName,modifierX = 0,modifierY = 0,modifierZ = 0, XColumn='X (microns)', YColumn='Y (microns)', ZColumn='Z (microns)'): win = WindowManager.getWindow(tableName) rt = win.getResultsTable() X = rt.getColumn(rt.getColumnIndex(XColumn)) Y = rt.getColumn(rt.getColumnIndex(YColumn)) Z = rt.getColumn(rt.getColumnIndex(ZColumn)) # X = rt.getColumn(XColumn) # Y = rt.getColumn(YColumn) # Z = rt.getColumn(ZColumn) dplist = [] for x, y, z in zip(X, Y, Z): array = [] array.append(x+modifierX) array.append(y+modifierY) array.append(z+modifierZ) jArray = jarray.array(array, 'd') dp = DoublePoint(jArray) dplist.append(dp) return dplist XColumn = 'X' YColumn = 'Y' ZColumn = 'Z' if 'getArgument' in globals(): if not hasattr(zip, '__call__'): del zip # the python function zip got overriden by java.util.zip, so it must be deleted to get the zip-function to work. parameter = getArgument() args = parameter.split(",") action = args[0].split("=")[1] tableA = args[1].split("=")[1] tableB = args[2].split("=")[1] moreArgs = args[3].split("=")[1] main(action,tableA, tableB, moreArgs)
class Solution: def reverse(self, x: int) -> int: ans = 0 remainder = 0 isNegative = x < 0 if isNegative: x = x * -1 while x > 0: remainder = x % 10 x = x // 10 ans = (ans * 10) + remainder if isNegative: ans = ans * -1 if -2 ** 31 > ans or ans > 2 ** 31: return 0 return ans
""" ========================================================================== map_helper.py ========================================================================== Helper map and functions to get corresponding functional unit and ctrl. Author : Cheng Tan Date : Feb 22, 2020 """ from .opt_type import * from ..fu.single.AdderRTL import AdderRTL from ..fu.single.ShifterRTL import ShifterRTL from ..fu.single.LogicRTL import LogicRTL from ..fu.single.MulRTL import MulRTL from ..fu.single.MemUnitRTL import MemUnitRTL from ..fu.single.CompRTL import CompRTL from ..fu.single.PhiRTL import PhiRTL from ..fu.single.RetRTL import RetRTL from ..fu.single.BranchRTL import BranchRTL from ..fu.single.SelRTL import SelRTL # ----------------------------------------------------------------------- # Global dictionary for UnitType and OptType # ----------------------------------------------------------------------- unit_map = { "Adder" : AdderRTL, "Mul" : MulRTL, "Phi" : PhiRTL, "Comp" : CompRTL, "Branch" : BranchRTL, "Ret" : RetRTL, "Logic" : LogicRTL, "Shifter" : ShifterRTL, "Selecter" : SelRTL, "MemUnit" : MemUnitRTL } opt_map = { "OPT_START" : OPT_START, "OPT_NAH" : OPT_NAH, "OPT_ADD" : OPT_ADD, "OPT_ADD_CONST" : OPT_ADD_CONST, "OPT_INC" : OPT_INC, "OPT_SUB" : OPT_SUB, "OPT_LLS" : OPT_LLS, "OPT_LRS" : OPT_LRS, "OPT_MUL" : OPT_MUL, "OPT_OR" : OPT_OR, "OPT_XOR" : OPT_XOR, "OPT_AND" : OPT_AND, "OPT_NOT" : OPT_NOT, "OPT_LD" : OPT_LD, "OPT_STR" : OPT_STR, "OPT_EQ" : OPT_EQ, "OPT_EQ_CONST" : OPT_EQ_CONST, "OPT_LE" : OPT_LE, "OPT_RET" : OPT_RET, "OPT_BRH" : OPT_BRH, "OPT_BRH_START" : OPT_BRH_START, "OPT_PHI" : OPT_PHI, "OPT_PHI_CONST" : OPT_PHI_CONST, "OPT_MUL_ADD" : OPT_MUL_ADD, "OPT_MUL_SUB" : OPT_MUL_SUB, "OPT_MUL_LLS" : OPT_MUL_LLS, "OPT_MUL_LRS" : OPT_MUL_LRS, "OPT_MUL_ADD_LLS" : OPT_MUL_ADD_LLS, "OPT_MUL_SUB_LLS" : OPT_MUL_SUB_LLS, "OPT_MUL_SUB_LRS" : OPT_MUL_SUB_LRS } def getUnitType( fu_name ): return unit_map[ fu_name ] def getOptType( opt_name ): return opt_map[ opt_name ]
from maju.log import LoggerManager from maju.utils.deezer import DeezerSearch from maju.utils.spotify import SpotifySearch from maju.utils.weather import Weather from maju.config import read_config from werkzeug.exceptions import BadRequest, Unauthorized, UnprocessableEntity class PlaylistServices: def __init__(self, city_name): self._city_name = city_name.lower() self._provider = None self._city_temper = None self._provider_response = None self._weather_response = None self._uf = None def get_city_temper(self): try: weather_response = Weather().get_weather(self._city_name) if weather_response.get('by') == "city_name": self._city_temper = weather_response.get('results').get('temp') self._uf = weather_response.get('results').get('city').split(',')[1].strip() self._weather_response = weather_response response = {'status': True, 'temp': self._city_temper} else: response = {'status': False, 'message': 'City not found.'} self._weather_response = response return response except Exception as e: print( f"Error in function get_city_temper in class PlaylistServices - msg: '{self._weather_response.get('message')}' - err: {str(e)}") self._weather_response = Weather().get_weather(self._city_name) return {'status': False, 'temp': self._weather_response.get('message'), 'err': str(e)} def parser_temp_to_gender(self): get_temper = self.get_city_temper() temp = get_temper.get('temp') gender = None if get_temper.get('status'): gender = 'classic' if temp >= 10 and temp <= 25: gender = 'rock' elif temp > 25: gender = 'pop' return gender def get_playlist(self): gender = self.parser_temp_to_gender() errors = [] playlist = [] count = 0 try: while playlist == []: count += 1 musics = SpotifySearch().get_playlist(gender) if musics.get('status'): self._provider_response = musics self._provider = 'Spotify' playlist = musics.get('playlist') break else: errors.append({'Spotify': {'attempt': count, 'err': musics.get('err')}}) self._provider_response = errors musics = DeezerSearch().get_playlist(gender) if musics.get('status'): self._provider_response = musics self._provider = 'Deezer' playlist = musics.get('playlist') break else: errors.append({'Deezer': {'attempt': count, 'err': musics.get('err')}}) self._provider_response = errors if count == 5: break if playlist == []: LoggerManager(city_name=self._city_name, uf=self._uf, temp=self._city_temper, gender=gender, provider=self._provider, provider_response=self._provider_response, weather_response=self._weather_response, status='filed').save_log() return "Oh no.. ): Something went wrong, please try again later." LoggerManager(city_name=self._city_name, uf=self._uf, temp=self._city_temper, gender=gender, provider=self._provider, provider_response=self._provider_response, weather_response=self._weather_response).save_log() return playlist except Exception as e: print(f"Error in function get_playlist in class PlaylistServices - {str(e)}") LoggerManager(city_name=self._city_name, uf=self._uf, temp=self._city_temper, gender=gender, provider=self._provider, provider_response=self._provider_response, weather_response=self._weather_response, status='filed').save_log() return {'status': False, 'err': str(e)}
import json import requests from PIL import Image from vk_api import bot_longpoll, VkUpload from .BasePlug import BasePlug class KonachanPlug(BasePlug): name = "Konachan" description = "Присылает арты с konachan.net" keywords = ('konachan', 'коначан') def __init__(self, bot): super(KonachanPlug, self).__init__(bot) def on_start(self): pass def work(self, peer_id: int, msg: str, event: bot_longpoll.VkBotEvent): limit = msg.split(maxsplit=1)[1] try: if limit is None or int(limit) <= 1: limit = 1 except ValueError: self.bot.send_message(peer_id, "Самый умный?") return if event.message["from_id"] not in self.bot.admins and int(limit) >= 3: limit = 5 r = requests.get(f"https://konachan.net/post.json?limit={limit}&tags=order%3Arandom") json_parsed = json.loads(r.text) attachments = [] self.bot.send_message(peer_id, "Начинаю выкачку...") for i, jsonx in enumerate(json_parsed): img_r = requests.get(jsonx["file_url"], stream=True) img_r.raw.decode_content = True img: Image = Image.open(img_r.raw) img.save(f"/tmp/foo{i}.png", "PNG") # logging.info(msg) upload = VkUpload(self.bot.vk) photo = upload.photo_messages(f"/tmp/foo{i}.png")[0] attachments.append(f"photo{photo['owner_id']}_{photo['id']},") attachment_str = "" for attachment in attachments: attachment_str += attachment self.bot.send_message(peer_id=peer_id, msg=None, attachment=attachment_str) return
#!/usr/bin/env python3 """ Created on 17 Jun 2019 @author: Bruno Beloff (bruno.beloff@southcoastscience.com) """ from scs_core.data.json import JSONify from scs_host.sys.nmcli import NMCLi # -------------------------------------------------------------------------------------------------------------------- response = [ 'eth0: connected to Wired connection 1', ' "TP-LINK USB 10/100/1000 LAN"', ' ethernet (r8152), 98:DE:D0:04:9B:CC, hw, mtu 1500', ' ip4 default', ' inet4 192.168.1.88/24', ' inet6 fe80::131d:325a:f7bd:e3e/64', '', 'wlan0: connected to TP-Link_0F04', ' "Broadcom "', ' wifi (brcmfmac), B8:27:EB:56:50:8F, hw, mtu 1500', ' inet4 192.168.1.122/24', ' inet6 fe80::212a:9d31:4b3e:59c/64', '', 'lo: unmanaged', ' loopback (unknown), 00:00:00:00:00:00, sw, mtu 65536'] conns = NMCLi.parse(response) print(conns) print("-") nmcli = NMCLi(conns) print(nmcli) print("-") print(JSONify.dumps(nmcli)) print("-") print("find...") nmcli = NMCLi.find() print(nmcli)
from core.entities import make_user def build_add_user(insert_user): def add_user(first_name, last_name, phone, email, password, birthday, gender) -> bool: user = make_user(first_name, last_name, phone, email, password, None, birthday, gender) return insert_user(user) return add_user
from PIL import Image def photoFlip(img): (w, h) = img.size mw = img.width // 2 a = img.crop((0, 0, mw, h)) b = img.crop((mw, 0, w, h)) flip = Image.new(img.mode, img.size) flip.paste(b, (0, 0)) flip.paste(a, (mw, 0)) return flip from sys import argv for fname in argv[1:]: photoFlip(Image.open(fname)).save(f"flip_{fname}")
""" run with python setup.py install; nosetests -v --nocapture tests/cm_cloud/test_limits.py:Test_limits.test_001 nosetests -v --nocapture tests/test_limits.py or nosetests -v tests/test_limits.py """ from cloudmesh_client.common.ConfigDict import ConfigDict from cloudmesh_client.common.Shell import Shell from cloudmesh_client.common.dotdict import dotdict from cloudmesh_client.common.util import HEADING from cloudmesh_client.common.util import banner from cloudmesh_client.default import Default # noinspection PyPep8Naming class Test_limits: """ This class tests the LimitsCommand """ data = dotdict({ "cloud": Default.cloud, "wrong_cloud": "no_cloud", "tenant": "TBD", "format": 'table' }) config = ConfigDict("cloudmesh.yaml") credentials = config["cloudmesh"]["clouds"][data.cloud]["credentials"] data.tenant = credentials.get("OS_TENANT_NAME") or credentials.get("OS_TENANT_ID") def run(self, command): command = command.format(**self.data) banner(command, c="-") print(command) parameter = command.split(" ") shell_command = parameter[0] args = parameter[1:] result = Shell.execute(shell_command, args) print(result) return result def setup(self): pass # noinspection PyPep8Naming def tearDown(self): pass def test_001(self): HEADING("test limits list") result = self.run("cm limits list --cloud={cloud}") assert "Name" in result def test_002(self): HEADING("test limits list with csv output") result = self.run("cm limits list --format={format}").split('\n') assert "maxTotalFloatingIps" in str(result) def test_003(self): HEADING("test limits class where cloud doesnt exist") result = self.run("cm limits list --cloud={wrong_cloud}") assert "ERROR" in str(result) # --tenant= # not allowed on chameleon cloud, so we outcomment. # # def test_004(self): # HEADING("test limits class with unauthorised access") # result = self.run("cm limits list --tenant={tenant}") # assert "Not authorized" in str(result)
# Copyright 2015 Cisco Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from ..models import Experiment, Component from toposort import toposort_flatten from rest_framework import viewsets from django.http import HttpResponse from django.conf import settings from django.core import serializers from collections import defaultdict # TODO: [refactor] this import statement should specify some file instead of '*' from pandas import * import redis import threading import json CACHE = {} class storm_client (threading.Thread): def __init__(self, thread_id, name, experiment, component_id, max_results, cache_results): threading.Thread.__init__(self) self.threadID = thread_id self.name = name self.experiment = experiment self.comp_id = component_id self.result = {} self.max_results = max_results self.cache_results = cache_results print "Submitting topology to storm. End component", self.comp_id exp = Experiment.objects.get(pk=self.experiment) graph = exp.workflow.graph_data graph_data = {} print graph tmp = graph.split(',') for elem in tmp: first_node = elem.split(":")[0] second_node = elem.split(":")[1] if second_node in graph_data: depend_nodes = graph_data[second_node] depend_nodes.add(first_node) else: graph_data[second_node] = set() graph_data[second_node].add(first_node) topological_graph = toposort_flatten(graph_data) print "Graph after topological sort", topological_graph message = { 'exp_id': self.experiment, 'result': self.comp_id, 'graph': topological_graph, 'components': defaultdict()} for data in topological_graph: component_id = int(data) comp = Component.objects.get(pk=component_id) if comp.operation_type.function_type == 'Create': if comp.operation_type.function_arg == 'Table': filename = comp.operation_type.function_subtype_arg input_data = read_csv(filename) message['input'] = {} for elem in list(input_data.columns): message['input'][elem] = list(input_data[elem]) message['cols'] = list(input_data.columns) # message['input'] = input_data.to_dict() serialized_obj = serializers.serialize('json', [comp.operation_type, ]) print "Component_id", component_id, " ", comp.operation_type message['components'][data] = serialized_obj print "Message ", message r = redis.StrictRedis(host=settings.REDIS_HOST, port=settings.REDIS_PORT, db=0) self.pubsub = r.pubsub(ignore_subscribe_messages=True) self.pubsub.subscribe("Exp " + str(self.experiment)) ret = r.publish('workflow', json.dumps(message)) print "return", ret def run(self): print "Listening for results" for message in self.pubsub.listen(): self.result = json.loads(message['data']) print self.result break self.pubsub.unsubscribe() self.pubsub.close() class ResultViewSet(viewsets.ViewSet): def list(self, request): exp_id = int(request.GET.get('experiment', '')) component_id = int(request.GET.get('component_id', '')) print "Experiment ", exp_id try: client_thread = storm_client(1, "WorkFlow Thread", exp_id, component_id, 10, False) client_thread.start() client_thread.join() except Exception, e: print "Exception Raised during storm cluster connection", str(e) client_thread.result = {'status': 'failed', 'message': str(e)} print "Client thread status ", client_thread.result return HttpResponse(json.dumps(client_thread.result), content_type="application/json")
import pyautogui pyautogui.PAUSE = 0.2 import os import sys class Screen(): def setMousePositions(self): file = open("mouse_positions.txt", "w") file.write("mouseX_enumerator,mouseY_enumerator=") pyautogui.alert("Posicione o mouse sobre o enumerador do Word.") mouseX_enumerator, mouseY_enumerator = pyautogui.position() file.write(f"({mouseX_enumerator},{mouseY_enumerator})\n") file.write("mouseX_boxFont,mouseY_boxFont=") pyautogui.alert("Posicione o mouse sobre a caixa de fonte.") mouseX_boxFont, mouseY_boxFont = pyautogui.position() file.write(f"({mouseX_boxFont},{mouseY_boxFont})\n") file.write("mouseX_boxFontSize,mouseY_boxFontSize=") pyautogui.alert("Posicione o mouse sobre a caixa de tamanho da fonte.") mouseX_boxFontSize, mouseY_boxFontSize = pyautogui.position() file.write(f"({mouseX_boxFontSize},{mouseY_boxFontSize})\n") file.write("mouseX_sectionInsert,mouseY_sectionInsert=") pyautogui.alert("Posicione o mouse sobre a seção 'Inserir' no topo do documento.") mouseX_sectionInsert, mouseY_sectionInsert = pyautogui.position() file.write(f"({mouseX_sectionInsert},{mouseY_sectionInsert})\n") file.write("mouseX_optionTabela,mouseY_optionTabela=") pyautogui.alert("Clique na seção 'Inserir' e posicione o mouse sobre a opção 'Tabela'.") mouseX_optionTabela, mouseY_optionTabela = pyautogui.position() file.write(f"({mouseX_optionTabela},{mouseY_optionTabela})\n") file.write("mouseX_createTabela,mouseY_createTabela=") pyautogui.alert("Clique na opção 'Tabela' e posicione o mouse sobre o primeiro quadrado à esquerda para a criação de uma tabela 1x1.") mouseX_createTabela, mouseY_createTabela = pyautogui.position() file.write(f"({mouseX_createTabela},{mouseY_createTabela})\n") file.write("mouseX_sectionPagInitial,mouseY_sectionPagInitial=") pyautogui.alert("Posicione o mouse sobre a seção 'Página Inicial' no topo do documento.") mouseX_sectionPagInitial, mouseY_sectionPagInitial = pyautogui.position() file.write(f"({mouseX_sectionPagInitial},{mouseY_sectionPagInitial})") file.close() self.getMousePositions() def getMousePositions(self): isEmpty = os.stat("mouse_positions.txt").st_size==0 if (isEmpty): setMousePositions = pyautogui.confirm(text="Antes de utilizar a aplicação é necessário setar algumas configurações de tela. Deseja fazer isso?", title="Configurações", buttons=["Sim", "Não"]) if (setMousePositions[0].lower()=="s"): self.setMousePositions() else: pyautogui.alert("Não será possível utilizar a aplicação.") sys.exit() else: file = open("mouse_positions.txt", "r") reading = file.readlines() self.mouse_positions = [] # REF: https://pt.stackoverflow.com/questions/521595/pegar-trecho-de-uma-string-entre-dois-caracteres for line in reading: position = line.split('(')[1].split(')')[0].split(',') self.mouse_positions.append(position) file.close() def __init__(self): self.getMousePositions() self.mouseX_enumerator, self.mouseY_enumerator = (int(self.mouse_positions[0][0]), int(self.mouse_positions[0][1])) self.mouseX_boxFont, self.mouseY_boxFont = (int(self.mouse_positions[1][0]), int(self.mouse_positions[1][1])) self.mouseX_boxFontSize, self.mouseY_boxFontSize = (int(self.mouse_positions[2][0]), int(self.mouse_positions[2][1])) self.mouseX_sectionInserir, self.mouseY_sectionInserir = (int(self.mouse_positions[3][0]), int(self.mouse_positions[3][1])) self.mouseX_optionTabela, self.mouseY_optionTabela = (int(self.mouse_positions[4][0]), int(self.mouse_positions[4][1])) self.mouseX_createTabela, self.mouseY_createTabela = (int(self.mouse_positions[5][0]), int(self.mouse_positions[5][1])) self.mouseX_sectionPagInitial, self.mouseY_sectionPagInitial = (int(self.mouse_positions[6][0]), int(self.mouse_positions[6][1]))
# -------------- # import the libraries import numpy as np import pandas as pd import seaborn as sns from sklearn.model_selection import train_test_split import warnings warnings.filterwarnings('ignore') # Code starts here df= pd.read_csv(path) df.head(5) X= df[['age','sex','bmi','children','smoker','region','charges']] y=df['insuranceclaim'] X_train,X_test,y_train,y_test= train_test_split(X,y, test_size=0.2, random_state=6) # Code ends here # -------------- import matplotlib.pyplot as plt # Code starts here plt.figure(figsize=(10,5)) plt.boxplot(X_train['bmi']) plt.title("Box Plot") q_value= np.quantile(X_train['bmi'],0.95) y_train.value_counts() # Code ends here # -------------- # Code starts here import seaborn as sns relation= X_train.corr() print("Correlation between the features is: \n", relation) sns.pairplot(X_train) # Code ends here # -------------- import seaborn as sns import matplotlib.pyplot as plt # Code starts here cols=['children','sex','region','smoker'] fig, axes= plt.subplots(nrows = 2 , ncols = 2, figsize=(10,10)) for i in range(0,2): for j in range(0,2): col= cols[i*2+j] sns.countplot(x=X_train[col],hue= y_train, ax=axes[i,j]) # Code ends here # -------------- from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # parameters for grid search parameters = {'C':[0.1,0.5,1,5]} # Code starts here lr= LogisticRegression(random_state=9) grid=GridSearchCV(estimator=lr, param_grid= parameters) grid.fit(X_train,y_train) y_pred= grid.predict(X_test) accuracy= accuracy_score(y_test,y_pred) print("accuracy of the grid: \n", accuracy) # Code ends here # -------------- from sklearn.metrics import roc_auc_score from sklearn import metrics # Code starts here score= roc_auc_score(y_test,y_pred) y_pred_proba= grid.predict_proba(X_test)[:,1] fpr, tpr,_=metrics.roc_curve(y_test,y_pred) roc_auc= roc_auc_score(y_test,y_pred_proba) plt.plot(fpr,tpr,label="Logistic model, auc="+str(roc_auc)) # Code ends here
from cfp.resolver_factories.parameter_store_resolver_factory import ( ParameterStoreResolverFactory, ) from cfp.resolver_factories.resolver_factory import AnyResolverFactory, ResolverFactory from cfp.resolver_factories.string_resolver_factory import StringResolverFactory from cfp.resolver_factories.use_previous_resolver_factory import ( UsePreviousValueResolverFactory, ) __all__ = [ "AnyResolverFactory", "ParameterStoreResolverFactory", "ResolverFactory", "StringResolverFactory", "UsePreviousValueResolverFactory", ]
''' Check if a given number is prime ''' from math import sqrt def isPrime(num): if num < 0: raise ValueError if num < 2: return False if num < 4: return True # Check if the number is dividing by 2 if num % 2 == 0: return False # Check if the number is dividable by odd numbers only # This, in theory, should reduce operation time since only half the numbers in the range is tested for divisor in range(3, int(sqrt(num)), 2): if num % divisor == 0: return False return True print('N = ', end='') try: result = isPrime(int(input())) print('Output =', 'True' if result else 'False') except ValueError: print('Only positive numbers are supported')
from math import sqrt from jmetal.algorithm.multiobjective.nsgaii import NSGAII from jmetal.operator import PolynomialMutation, SBXCrossover from jmetal.problem import ZDT1 from jmetal.util.observer import ProgressBarObserver, VisualizerObserver from jmetal.util.termination_criterion import StoppingByEvaluations class ZDT1Modified(ZDT1): """ Problem ZDT1. .. note:: Version including a loop for increasing the computing time of the evaluation functions. """ def evaluate(self, solution): g = self.__eval_g(solution) h = self.__eval_h(solution.variables[0], g) solution.objectives[0] = solution.variables[0] solution.objectives[1] = h * g s: float = 0.0 for i in range(5000000): s += i * 0.235 / 1.234 return solution def __eval_g(self, solution): g = sum(solution.variables) - solution.variables[0] constant = 9.0 / (solution.number_of_variables - 1) g = constant * g g = g + 1.0 return g def __eval_h(self, f: float, g: float) -> float: return 1.0 - sqrt(f / g) def get_name(self): return 'ZDT1m' if __name__ == '__main__': # creates the problem problem = ZDT1Modified() # creates the algorithm max_evaluations = 25000 algorithm = NSGAII( problem=problem, population_size=100, offspring_population_size=100, mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20), crossover=SBXCrossover(probability=1.0, distribution_index=20), termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations) ) algorithm.observable.register(observer=ProgressBarObserver(max=max_evaluations)) algorithm.observable.register(observer=VisualizerObserver()) algorithm.run() front = algorithm.get_result() print('Computing time: ' + str(algorithm.total_computing_time))
import pandas as pd import yaml import os import argparse from imblearn.over_sampling import RandomOverSampler def read_params(config_path): with open(config_path) as yaml_file: config = yaml.safe_load(yaml_file) return config def balance(config_path): config = read_params(config_path) train_class_path=config["balanced_data"]["train_class"] train_label_path=config["balanced_data"]["train_label"] test_class_path=config["balanced_data"]["test_class"] test_label_path=config["balanced_data"]["test_label"] train_processed_path =config["processed"]["train_path"] test_processed_path =config["processed"]["test_path"] train_data=pd.read_csv(train_processed_path) test_data=pd.read_csv(test_processed_path) train_class=train_data["Class"].copy() train_label=train_data.drop('Class',axis=1).copy() test_class=test_data["Class"].copy() test_label=test_data.drop('Class',axis=1).copy() test_label.to_csv(test_label_path,index=False) test_class.to_csv(test_class_path,index=False) ros=RandomOverSampler(sampling_strategy='all') X_train_res,y_train_res=ros.fit_resample(train_label,train_class) X_train_res.to_csv(train_label_path,index=False) y_train_res.to_csv(train_class_path,index=False) if __name__=="__main__": args = argparse.ArgumentParser() args.add_argument("--config", default="params.yaml") parsed_args = args.parse_args() data = balance(config_path=parsed_args.config)
# Copyright 2015 Ufora Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ufora.FORA.python.ParseException as ParseException import ufora.FORA.python.ForaValue as ForaValue import ufora.native.FORA as ForaNative def freshVarname(startingName, namesUsed): """pick a variant on 'startingName' that's not in namesUsed""" if startingName not in namesUsed: return startingName ix = 1 while True: name = startingName + "_" + str(ix) if name not in namesUsed: return name ix = ix + 1 class NameExistsButDoesntParseException(object): def __init__(self, projectNode, name): self.projectNode = projectNode self.name = name @property def childrenWhoDontParse(self): return self.projectNode.childrenWhoDontParse class Expression(object): """Represents a FORA expression.""" def __init__(self, nativeExpression, codeDefinitionPoint): assert isinstance(nativeExpression, ForaNative.Expression) self.nativeExpression_ = nativeExpression self.codeDefinitionPoint_ = codeDefinitionPoint #returns a list of variables that are 'free' in the expression freeVariables = property(lambda self: self.nativeExpression_.freeVariables) #returns a list of variables that are mentioned anywhere in the expression mentionedVariables = property(lambda self: self.nativeExpression_.mentionedVariables) #returns a list of free variables that are assigned to by the expression assignedVariables = property(lambda self: self.nativeExpression_.assignedVariables) #returns a list of pairs of strings representing expressions like "x.y" #where "x" is a free variable and "y" is a member. used to rebind things in #the expression freeVariableMemberAccesses = property(lambda self: self.nativeExpression_.freeVariableMemberAccesses) def packAssignedVarsIntoTuple(self): """Return an expression that returns the value of the expression and also any assigned variables. If 'self' is 'e', this expression returns (e, (a1, a2, ...)) where the a's are assigned variables in the environment sorted alphabetically. If the expression throws an exception/stacktrace pair, the new expression throws (exception, (a1, a2, ...)) from the same stacktrace. This function may not be called on an expression with return statements in it. """ return Expression(self.nativeExpression_.packAssignedVarsIntoTuple(), self.codeDefinitionPoint_) def freeVariableUsePoints(self, varname): """return a list of CodeLocations where 'varname' is free""" return self.nativeExpression_.getFreeVariableRanges(varname) def getReturnStatementPoints(self): """return a list of CodeLocations where the expression has a 'return' statement""" return self.nativeExpression_.getReturnStatementRanges() def assignedVariableUsePoints(self, varname): """return a list of CodeLocations where a free variable 'varname' is assigned to""" return self.nativeExpression_.getAssignedVariableRanges(varname) def toFunction(self): """convert to a function with one argument per free variable""" return ForaValue.FORAValue(self.nativeExpression_.toFunctionImplval(False)) def toFunctionAsImplval(self): """convert to a function with one argument per free variable""" return self.nativeExpression_.toFunctionImplval(False) def toFunctionAsImplvalWithPassthroughArgument(self): """convert to a function with one argument per free variable, plus an extra argument that gets added to the final result as a tuple.""" return self.nativeExpression_.toFunctionImplvalWithPassthroughArgument(False) def rebindFreeVariableMemberAccess(self, varname, memberName, newName): """convert expressions like 'x.y' where 'x' is free to a new free variable""" return Expression( self.nativeExpression_.rebindFreeVariableMemberAccess( varname, memberName, newName ), self.codeDefinitionPoint_ ) def raiseParseException_(self, functionParseError): raise ParseException.ParseException( functionParseError, self.codeDefinitionPoint_ ) def raiseIfUsesUndefinedVariables(self, knownVariables): for variable in self.assignedVariables: self.checkVariableInKnownVariables(variable, knownVariables) def checkVariableInKnownVariables(self, variable, knownVariables): if variable not in knownVariables: assignmentLocations = self.assignedVariableUsePoints(variable) assert assignmentLocations, "Can't find assignment point for %s in '%s'." % (variable, str(self)) self.raiseParseException_( ForaNative.FunctionParseError( "can't assign to free variable " + variable, assignmentLocations[0].range ) ) def raiseParseErrorIfHasReturnStatements(self): getReturnStatementPoints = self.getReturnStatementPoints() if getReturnStatementPoints: self.raiseParseException_( ForaNative.FunctionParseError( "can't use a return statement in a command-line expression", getReturnStatementPoints[0].range ) ) def specializeFreeVariableMapping(self, freeVariableMapping, specializationFunc, lookupFunc, finalVariableValueValidator ): """Allow an expression containing expressions like 'm.x' to be specialized. If we know what 'm' binds to, and specializationFunc(freeVariableMapping[m], 'x') produces a non-null value, we rebind the free variable to a new name with the result of specialzationFunc. Finally, we call 'finalVariableValueValidator' with the value each variable chain has been resolved to, along with a string of dot-separated identifiers. This function should return an error string if the intermediate value that has been bound is invalid. """ done = False checkedNames = set() expr = self dotSequences = {} # Search through all the free variables and look up their values using the given lookup # function. for varname in self.freeVariables: dotSequences[varname] = varname if varname not in freeVariableMapping: varValue = lookupFunc(varname) if varValue is None: codeLocations = self.freeVariableUsePoints(varname) raise ParseException.ParseException( ForaNative.FunctionParseError( "Couldn't resolve free variable '%s'" % (varname,), codeLocations[0].range ), self.codeDefinitionPoint_ ) elif isinstance(varValue, NameExistsButDoesntParseException): raise ParseException.ParseException( ForaNative.FunctionParseError( "Some modules did not parse correctly.", self.freeVariableUsePoints(varname)[0].range ), self.codeDefinitionPoint_ ) freeVariableMapping[varname] = varValue while not done: done = True #freeVariables = expr.freeVariables freeVariablesBound = expr.freeVariableMemberAccesses for varname, memberName in freeVariablesBound: if varname not in freeVariableMapping: freeVariableMapping[varname] = lookupFunc(varname) mapsTo = freeVariableMapping[varname] if (mapsTo is not None and varname not in checkedNames): subNode = specializationFunc(mapsTo, memberName) if subNode is not None: #we can bind this value to the node newName = freshVarname(varname + "_" + memberName, set(expr.mentionedVariables)) dotSequences[newName] = dotSequences[varname] + "." + memberName expr = expr.rebindFreeVariableMemberAccess(varname, memberName, newName) freeVariableMapping[newName] = subNode done = False else: checkedNames.add(varname) for var in expr.freeVariables: errString = finalVariableValueValidator(freeVariableMapping[var], dotSequences[var]) if errString is not None: raise ParseException.ParseException( ForaNative.FunctionParseError( errString, expr.freeVariableUsePoints(var)[0].range ), self.codeDefinitionPoint_ ) return expr def returnFreeVariableValues(self, locals, importFunction): """Return arguments for the free variables in expression. importFunction = a function to call with free symbols that aren't in locals to look them up """ boundVariables = [] for freeVariable in self.freeVariables: if freeVariable in locals: boundVariables += [locals[freeVariable]] else: binding = importFunction(freeVariable) if binding is None: raise ParseException.ParseException( ForaNative.FunctionParseError( "Couldn't resolve free variable '%s'" % freeVariable, self.freeVariableUsePoints(freeVariable)[0].range ), self.codeDefinitionPoint_ ) else: boundVariables += [binding] return boundVariables @staticmethod def parse(textToParse, codeDefinitionPoint = None, nameScope = "<eval>", parseAsModule=False): """parse a string to an Expression object or throw a FunctionParseError. textToParse - a string containing the FORA expression parsePath - a list of strings containing the path to the code being parsed. this will show up in any stacktraces thrown by this expression or by code called by this expression nameScope - the name that functions and objects should descend from. If the expression is a simple 'fun' or 'object', this will be its name """ if codeDefinitionPoint is None: codeDefinitionPoint = \ ForaNative.CodeDefinitionPoint.ExternalFromStringList( [nameScope] ) if parseAsModule: nativeExpressionOrParseError = \ ForaNative.parseObjectDefinitionBodyToExpression( textToParse, ["Tsunami", nameScope + ".fora"], False, nameScope, nameScope ) else: nativeExpressionOrParseError = \ ForaNative.parseStringToExpression( textToParse, codeDefinitionPoint, nameScope ) if isinstance(nativeExpressionOrParseError, ForaNative.FunctionParseError): raise ParseException.ParseException( nativeExpressionOrParseError, codeDefinitionPoint ) return Expression(nativeExpressionOrParseError, codeDefinitionPoint) def __str__(self): return str(self.nativeExpression_)
import json, boto3, uuid def save(event, context): print("Event: %s" % json.dumps(event)) holidays = event['holidays'] client = boto3.resource('dynamodb') table = client.Table('Holidays') for holiday in holidays: response = table.put_item( Item={ 'id' : str(uuid.uuid4()), 'name': holiday['name'], 'date': holiday['date'], 'country': holiday['country'] } ) print(response) return { 'statusCode': 201, 'body': 'Holidays added' }
import git,os,tempfile,fnmatch,argparse,sys,shutil,stat,github from github import Github from subprocess import call def RepoDuplicate(username,password,input_repo_url,output_repo_name): tempdir,path,flag = clone_repo(input_repo_url) if flag == 1: #error in cloning shutil.rmtree(tempdir,ignore_errors=True) sys.exit(1) flag = delete_files(path) if flag == 1: #error deleting readme and license files sys.exit(1) #print("Removing branches and all history....") flag = delete_git_file(path) if flag == 1: #print("Error deleting history and branches.") sys.exit(1) elif flag == 0: #print("Done") pass flag = git_operations(username,password,output_repo_name,path) if flag == 1: #print("Reverting changes") delete_git_file(path) shutil.rmtree(tempdir,ignore_errors=True) return 1 elif flag == 0: #print("Deleting local clone...") delete_git_file(path) shutil.rmtree(tempdir,ignore_errors=True) #print("Done") return 0 def clone_repo(input_repo_url): try: tempdir = tempfile.mkdtemp(prefix="",suffix="") predictable_filename = 'clonedfile' saved_umask = os.umask(0o077) path = os.path.join(tempdir,predictable_filename) #Splitting the input url. url_user = input_repo_url.split('/')[3] url_repo = input_repo_url.split('/')[4] #print("Begining tasks...") #Cloning a public repository to a temporary local directory #print("Cloning the repository at "+path) #Check if repository is public else stop execution repo = git.Repo.clone_from(f'https://github.com/{url_user}/{url_repo}.git',path, branch="master",depth=1) #print("Done") return tempdir,path,0 except git.exc.GitError as err: #If there's an error cloning the repository #print(f'ERROR! : https://github.com/{url_user}/{url_repo}.git maybe not a public repository,\n check url format [-h].') #print(err) return tempdir,path,1 def delete_files(path): pattern1="LICENSE*" pattern2="README*" #Removing README and LICENSE files from the cloned repository #print("Deleting README and LICENSE files....") try: for roots,dirs,files in os.walk(os.path.join(path,'')): for file in fnmatch.filter(files,pattern1): os.remove(os.path.join(roots,file)) for file in fnmatch.filter(files,pattern2): os.remove(os.path.join(roots,file)) except Exception as err: #print("Error in deleting file:"+os.path.join(roots,file)) #print(err) return 1 #print("Done") return 0 def git_operations(username,password,output_repo_name,path): #Fetching the github user account and creating a github empty repository try: g = Github(username,password) user = g.get_user() repo1 = user.create_repo(output_repo_name) #creating target url to push cloned local repo using username and output_repo_name target_url = f'https://github.com/{username}/{output_repo_name}.git' #print("Pushing the cloned repository to: "+target_url) #initialize the repo after deleting .git directory new_repo = git.Repo.init(path) new_repo.git.add(A=True) new_repo.create_remote("new",url=target_url) new_repo.git.commit(m='initial commit') new_repo.git.push('new','master') except github.GithubException as err: #print(err) return 1 except Exception as err: #delete repository if pushing fails repo1.delete() #print(err) return 1 #print("Git operations done.") return 0 def delete_git_file(path): def on_rm_error(func, dir, exc_info): os.chmod(dir, stat.S_IWRITE) os.unlink(dir) try: for i in os.listdir(path): if i.endswith('git'): tmp = os.path.join(path, i) # We want to unhide the .git folder before unlinking it. while True: call(['attrib', '-H', tmp]) break shutil.rmtree(tmp, onerror=on_rm_error) except Exception as err: #print(err) return 1 return 0
import copy import logging import os logger = logging.getLogger(__name__) class Context(): ENV_VARIABLE = 'DAISY_CONTEXT' def __init__(self, **kwargs): self.__dict = dict(**kwargs) def copy(self): return copy.deepcopy(self) def to_env(self): return ':'.join('%s=%s' % (k, v) for k, v in self.__dict.items()) def __setitem__(self, k, v): k = str(k) v = str(v) if '=' in k or ':' in k: raise RuntimeError("Context variables must not contain = or :.") if '=' in v or ':' in v: raise RuntimeError("Context values must not contain = or :.") self.__dict[k] = v def __getitem__(self, k): return self.__dict[k] def get(self, k, v=None): return self.__dict.get(k, v) def __repr__(self): return self.to_env() @staticmethod def from_env(): try: tokens = os.environ[Context.ENV_VARIABLE].split(':') except KeyError: logger.error( "%s environment variable not found!", Context.ENV_VARIABLE) raise context = Context() for token in tokens: k, v = token.split('=') context[k] = v return context
from ipykernel.kernelbase import Kernel import subprocess import json import tempfile class CbshKernel(Kernel): implementation = 'Couchbase Shell' implementation_version = '1.0' language = 'no-op' language_version = '0.1' language_info = { 'name': 'Any text', 'mimetype': 'text/plain', 'file_extension': '.txt', } banner = "Couchbase Shell - shell yeah!" def do_execute(self, code, silent, store_history=True, user_expressions=None, allow_stdin=False): if not silent: temp = tempfile.NamedTemporaryFile(suffix=".nu") for line in code.splitlines(): line = line + " | to html\n" temp.write(line.encode('utf-8')) temp.flush() command = 'cbsh --script ' + temp.name p = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) (output, err) = p.communicate() p_status = p.wait() output = output.decode('utf-8') err = err.decode() if err: display_data = { 'data': { "text/plain": err, }, 'metadata': {}, } self.send_response(self.iopub_socket, 'display_data', display_data) else: display_data = { 'data': { "text/html": output, }, 'metadata': {}, } self.send_response(self.iopub_socket, 'display_data', display_data) temp.close() return {'status': 'ok', # The base class increments the execution count 'execution_count': self.execution_count, 'payload': [], 'user_expressions': {}, } if __name__ == '__main__': from ipykernel.kernelapp import IPKernelApp IPKernelApp.launch_instance(kernel_class=CbshKernel)
import pandas as pd from db_connector import FixturesDB from db_connector import LeagueDB from db_connector import PlayersDB from db_connector import TeamsDB class DataInit(): def __init__(self, league='EN_PR', season='2019'): self.league = league self.season = season @staticmethod def to_df(query): return pd.DataFrame.from_dict(query) def team_standing(self): """Returns all documents with a t_id key""" db = TeamsDB(self.league, self.season) query = db.get_teams_standing() df = self.to_df(query) df = df.drop('_id', 1) return df def team_names(self): """Returns all the unique team names""" db = LeagueDB(self.league, self.season) query = db.get_league_teams() df = self.to_df({'teams': query}) return df def league_standings(self): """Returns the league standings""" db = LeagueDB(self.league, self.season) query = db.get_league_standings_overall() df = self.to_df(query) cols = df.columns.tolist() cols = cols[1:2] + cols[0:1] + cols[2:] df = df[cols] df = df.rename(columns={'team_shortName': 'Club', 'position': 'Position', 'overall_played': 'Played', 'overall_won': 'W','overall_draw': 'D', 'overall_lost': 'L', 'overall_goalsFor': 'GF', 'overall_goalsAgainst':'GA', 'overall_goalsDifference': 'GD', 'overall_points': 'Points'}) return df def fixture_form_decending(self, team_shortName: str, limit=5): """Return the latest five games for a team, Args: team_shortName: A teams shortname limit: The number of latest games """ db = TeamsDB(self.league, self.season) query = db.get_latest_fixtures(team_shortName, limit) df = self.to_df(query) cols = df.columns.tolist() cols = cols[4:5] + cols[0:1] + cols[2:4]+ cols[1:2] + cols[5:] df = df[cols] return df if __name__ == '__main__': init = DataInit() print(init.fixture_form_decending('Arsenal'))
import argparse import textwrap from inspera import InsperaReader if __name__ == '__main__': parser = argparse.ArgumentParser( prog='InsperaReader', epilog=textwrap.dedent('''\ Info: - For each candidate given in the source data, a data field of each response is made, with the following fields: - question id -> int - response (raw) -> str - response (parsed) -> str - grading -> list[int] - max_score -> int - duration -> int ''') ) file_help = 'The path for the .json file from Inspera' parser.add_argument('-f', '--file', required=True, type=str, help=file_help) args = parser.parse_args() reader = InsperaReader(args.file)
from .gcn import GCN, DenseGCN from .gat import GAT from .clustergcn import ClusterGCN from .fastgcn import FastGCN from .dagnn import DAGNN from .pairnorm import * from .simpgcn import SimPGCN from .mlp import MLP from .tagcn import TAGCN from .appnp import APPNP, PPNP # experimantal model from .experimental.median_gcn import MedianGCN from .experimental.trimmed_gcn import TrimmedGCN
import setuptools with open("description", "r") as fh: long_description = fh.read() setuptools.setup( name='Fugue-generator', author="Adam Bradley", author_email='adam_bradley@brown.edu', description='', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/brown-university-library/fugue', version='0.9a1', packages=setuptools.find_packages(), install_requires=[ "certifi>=2018.8.24", "Click>=7.0", "lxml>=4.1.0", "markdown2==2.3.8", "pytidylib>=0.3.2", "PyYAML>=5.1", "urllib3>=1.25.3", ], package_data={ # Include mimetypes data. '': ['mime.types'], }, entry_points=''' [console_scripts] fugue=fugue:fugue ''', classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Development Status :: 5 - Production/Stable", "Environment :: Console", "Topic :: Text Processing :: Markup :: HTML", "Topic :: Text Processing :: Markup :: XML", ], python_requires='>=3.6', )
""" - INFO_VERSION: 1 """ import functools import hashlib import inspect from typing import Dict import omegaconf from pydantic import validate_arguments from gdsfactory.component import Component, clean_dict from gdsfactory.name import MAX_NAME_LENGTH, clean_name, clean_value CACHE: Dict[str, Component] = {} INFO_VERSION = 1 class CellReturnTypeError(ValueError): pass def clear_cache() -> None: """Clears the cache of components.""" global CACHE CACHE = {} def print_cache(): for k in CACHE: print(k) def clean_doc(name: str) -> str: """Returns a clean docstring""" # replace_map = { # " ": " ", # " ": " ", # " ": " ", # " ": ",", # " ": " ", # "\n": " ", # "\n\n": " ", # } # for k, v in list(replace_map.items()): # name = name.replace(k, v) # name = ",".join(name.split('\n')) # name = " ".join(name.split()) return name def cell_without_validator(func): """Cell Decorator. Args: autoname (bool): renames Component by with Keyword arguments name (str): Optional (ignored when autoname=True) uid (bool): adds a unique id to the name cache (bool): get component from the cache if it already exists Implements a cache so that if a component has already been build it will return the component from the cache. This avoids 2 exact cells that are not references of the same cell You can always over-ride this with `cache = False`. .. plot:: :include-source: import gdsfactory as gf @gf.cell def rectangle(size=(4,2), layer=0)->gf.Component: c = gf.Component() w, h = size points = [[w, h], [w, 0], [0, 0], [0, h]] c.add_polygon(points, layer=layer) return c c = rectangle(layer=(1,0)) c.plot() """ @functools.wraps(func) def _cell(*args, **kwargs): prefix = kwargs.pop("prefix", func.__name__) autoname = kwargs.pop("autoname", True) cache = kwargs.pop("cache", True) info = kwargs.pop("info", omegaconf.DictConfig({})) sig = inspect.signature(func) args_as_kwargs = dict(zip(sig.parameters.keys(), args)) args_as_kwargs.update(**kwargs) args_as_kwargs_string_list = [ f"{key}={clean_value(args_as_kwargs[key])}" for key in sorted(args_as_kwargs.keys()) ] arguments = "_".join(args_as_kwargs_string_list) arguments_hash = hashlib.md5(arguments.encode()).hexdigest()[:8] name_long = name = ( clean_name(f"{prefix}_{arguments_hash}") if arguments else prefix ) decorator = kwargs.pop("decorator", None) if len(name) > MAX_NAME_LENGTH: name_hash = hashlib.md5(name.encode()).hexdigest()[:8] name = f"{name[:(MAX_NAME_LENGTH - 9)]}_{name_hash}" name_component = kwargs.pop("name", name) if ( "args" not in sig.parameters and "kwargs" not in sig.parameters and "settings" not in sig.parameters ): for key in kwargs.keys(): if key not in sig.parameters.keys(): raise TypeError( f"{func.__name__}() got invalid argument `{key}`\n" f"valid arguments are {list(sig.parameters.keys())}" ) if cache and name in CACHE: # print(f"CACHE {func.__name__}({kwargs_repr})") return CACHE[name] else: # print(f"BUILD {name} {func.__name__}({arguments})") # print(f"BUILD {name}, {name_long}") assert callable( func ), f"{func} got decorated with @cell! @cell decorator is only for functions" component = func(*args, **kwargs) if decorator: assert callable( decorator ), f"decorator = {type(decorator)} needs to be callable" decorator(component) if not isinstance(component, Component): raise CellReturnTypeError( f"function `{func.__name__}` return type = `{type(component)}`", "make sure that functions with @cell decorator return a Component", ) if autoname and getattr(component, "_autoname", True): component.name = name_component # docstring = func.__doc__ if hasattr(func, "__doc__") else func.func.__doc__ # component.info.doc = docstring component.info.module = func.__module__ component.info.function_name = func.__name__ component.info.info_version = INFO_VERSION component.info.name_long = name_long component.info.name = component.name component.info.update(**info) default = { p.name: p.default for p in sig.parameters.values() if not callable(p.default) } full = default.copy() full.update(**args_as_kwargs) changed = args_as_kwargs.copy() clean_dict(full) clean_dict(default) clean_dict(changed) component.info.changed = changed component.info.default = default component.info.full = full CACHE[name] = component return component return return _cell def cell(func, *args, **kwargs): return cell_without_validator(validate_arguments(func), *args, **kwargs) @cell def wg(length: int = 3, width: float = 0.5) -> Component: from gdsfactory.component import Component c = Component("straight") w = width / 2 layer = (1, 0) c.add_polygon([(0, -w), (length, -w), (length, w), (0, w)], layer=layer) c.add_port(name="o1", midpoint=[0, 0], width=width, orientation=180, layer=layer) c.add_port(name="o2", midpoint=[length, 0], width=width, orientation=0, layer=layer) return c def test_autoname_true() -> None: c = wg(length=3) # assert c.name == "wg_length3", c.name assert c.name == "wg_2dcab9f2", c.name def test_autoname_false() -> None: c = wg(length=3.32, autoname=False) assert c.name == "straight", c.name def test_set_name() -> None: c = wg(length=3, name="hi_there") assert c.name == "hi_there", c.name @cell def _dummy(length: int = 3, wg_width: float = 0.5) -> Component: """Dummy cell""" c = Component() w = length h = wg_width points = [ [-w / 2.0, -h / 2.0], [-w / 2.0, h / 2], [w / 2, h / 2], [w / 2, -h / 2.0], ] c.add_polygon(points) return c def test_autoname() -> None: name_base = _dummy().name assert name_base == "_dummy", name_base name_int = _dummy(length=3).name assert name_int == "_dummy_2dcab9f2", name_int dummy2 = functools.partial(_dummy, length=3) component_int = dummy2(length=3) name_int = component_int.name assert name_int == "_dummy_2dcab9f2", name_int # assert component_int.info.doc == "Dummy cell" name_float = _dummy(wg_width=0.5).name assert name_float == "_dummy_b78ec006", name_float name_length_first = _dummy(length=3, wg_width=0.5).name name_width_first = _dummy(wg_width=0.5, length=3).name assert ( name_length_first == name_width_first ), f"{name_length_first} != {name_width_first}" name_args = _dummy(3).name assert name_int == "_dummy_2dcab9f2", name_int name_with_prefix = _dummy(prefix="hi").name assert name_with_prefix == "hi", name_with_prefix name_args = _dummy(3).name name_kwargs = _dummy(length=3).name assert name_args == name_kwargs, name_with_prefix if __name__ == "__main__": # dummy2 = functools.partial(_dummy, length=3) # c = dummy2() # c = _dummy() # test_raise_error_args() # c = gf.components.straight() # test_autoname_false() # test_autoname_true() # test_autoname() # test_set_name() # c = wg(length=3) # c = wg(length=3, autoname=False) import gdsfactory as gf info = dict(polarization="te") c = gf.components.straight() c = gf.components.straight(info=info) # c = gf.components.straight(length=3, info=info) print(c.info.polarization) # print(c.settings.info.doc) # c = gf.components.spiral_inner_io(length=1e3) # c = gf.components.straight(length=3) # print(c.name) # c.show() # D = gf.Component() # arc = D << gf.components.bend_circular( # radius=10, width=0.5, angle=90, layer=(1, 0), info=dict(polarization="te") # ) # arc.rotate(90) # rect = D << gf.components.bbox(bbox=arc.bbox, layer=(0, 0))
from settings import * DEBUG = True TEMPLATE_DEBUG = DEBUG SESSION_COOKIE_SECURE = False # Allows you to run Kitsune without running Celery---all tasks # will be done synchronously. CELERY_ALWAYS_EAGER = True # Allows you to specify waffle settings in the querystring. WAFFLE_OVERRIDE = True # Change this to True if you're going to be doing search-related # work. ES_LIVE_INDEXING = False # Basic cache configuration for development. CACHES = { 'default': { 'BACKEND': 'caching.backends.memcached.CacheClass', 'LOCATION': 'localhost:11211', 'PREFIX': 'sumo:', } } # Basic database configuration for development. DATABASES = { 'default': { 'NAME': 'kitsune', 'ENGINE': 'django.db.backends.mysql', 'HOST': 'localhost', 'USER': 'kitsune', 'PASSWORD': '', 'OPTIONS': {'init_command': 'SET storage_engine=InnoDB'}, 'TEST_CHARSET': 'utf8', 'TEST_COLLATION': 'utf8_unicode_ci', }, } LESS_PREPROCESS = True LESS_BIN = '/usr/bin/lessc'
from django.conf.urls import include, url from django.contrib import admin from django.core.urlresolvers import reverse_lazy from django.contrib.auth.views import login from django.contrib.auth.views import logout from django.contrib.auth.decorators import user_passes_test from soal.admin import admin_site_tu # create forbidden page # --------------------- # login page automatic redirect after user login. # login page can't accessing user after login. # this lamdba function to checking anonymous user, # if user is anonymous, login page can access by user. login_forbidden = user_passes_test(lambda u: u.is_anonymous(), '/') urlpatterns = [ # localhost/admin url(r'^admin/', include(admin.site.urls)), # localhost/tu url(r'tu/', include(admin_site_tu.urls)), # localhost url(r'', include('soal.urls', namespace='soal')), # localhost/login url( r'^login/', login_forbidden(login), kwargs = { 'template_name':'soal/login.html', }, name='login' ), # localhost/logout url(r'^logout/', 'django.contrib.auth.views.logout', kwargs={ 'next_page':reverse_lazy('login') }, name='logout') ] handler404 = 'errorhandling.views.custom_page_not_found'
import os,subprocess from shlex import quote from ehive.runnable.IGFBaseProcess import IGFBaseProcess from igf_data.utils.fileutils import get_temp_dir, remove_dir from igf_data.utils.fileutils import copy_remote_file from igf_data.utils.project_status_utils import Project_status class UpdateProjectStatus(IGFBaseProcess): ''' An ehive runnable class for updating data for project info page ''' def param_defaults(self): params_dict=super(UpdateProjectStatus,self).param_defaults() params_dict.update({ 'remote_project_path':None, 'remote_user':None, 'remote_host':None, 'status_data_json':'status_data.json', 'demultiplexing_pipeline_name':None, 'analysis_pipeline_name':None, 'sample_igf_id':None, 'use_ephemeral_space':0, }) return params_dict def run(self): try: project_igf_id = self.param_required('project_igf_id') sample_igf_id = self.param_required('sample_igf_id') remote_project_path = self.param_required('remote_project_path') igf_session_class = self.param_required('igf_session_class') remote_user = self.param_required('remote_user') remote_host = self.param_required('remote_host') status_data_json = self.param('status_data_json') demultiplexing_pipeline_name = self.param_required('demultiplexing_pipeline_name') analysis_pipeline_name = self.param_required('analysis_pipeline_name') use_ephemeral_space = self.param('use_ephemeral_space') temp_work_dir = get_temp_dir(use_ephemeral_space=use_ephemeral_space) # get a temp dir ps = \ Project_status(\ igf_session_class=igf_session_class, project_igf_id=project_igf_id) temp_status_output = \ os.path.join(\ temp_work_dir, status_data_json) # get path for temp status file remote_project_dir = \ os.path.join(\ remote_project_path, project_igf_id) # get remote project directory path ps.generate_gviz_json_file(\ output_file=temp_status_output, demultiplexing_pipeline=demultiplexing_pipeline_name, analysis_pipeline=analysis_pipeline_name) # write data to output json file remote_file_path = \ os.path.join(\ remote_project_dir, status_data_json) self._check_and_copy_remote_file(\ remote_user=remote_user, remote_host=remote_host, source_file=temp_status_output, remote_file=remote_file_path) # copy file to remote self.param('dataflow_params', {'remote_project_info':'done'}) remove_dir(temp_work_dir) # remove temp dir except Exception as e: message = \ 'project: {2}, sample:{3}, Error in {0}: {1}'.\ format(\ self.__class__.__name__, e, project_igf_id, sample_igf_id) self.warning(message) self.post_message_to_slack(message,reaction='fail') # post msg to slack for failed jobs self.post_message_to_ms_team( message=message, reaction='fail') raise @staticmethod def _check_and_copy_remote_file(remote_user,remote_host, source_file,remote_file): ''' An internal static method for copying files to remote path :param remote_user: Username for the remote server :param remote_host: Hostname for the remote server :param source_file: Source filepath :param remote_file: Remote filepath ''' try: if not os.path.exists(source_file): raise IOError('Source file {0} not found for copy'.\ format(source_file)) remote_config='{0}@{1}'.format(remote_user,remote_host) os.chmod(source_file, mode=0o754) copy_remote_file(\ source_path=source_file, destination_path=remote_file, destination_address=remote_config) # create dir and copy file to remote except: raise
""" 34. Find First and Last Position of Element in Sorted Array Given an array of integers nums sorted in ascending order, find the starting and ending position of a given target value. If target is not found in the array, return [-1, -1]. Follow up: Could you write an algorithm with O(log n) runtime complexity? Example 1: Input: nums = [5,7,7,8,8,10], target = 8 Output: [3,4] Example 2: Input: nums = [5,7,7,8,8,10], target = 6 Output: [-1,-1] Example 3: Input: nums = [], target = 0 Output: [-1,-1] Constraints: 0 <= nums.length <= 105 -109 <= nums[i] <= 109 nums is a non-decreasing array. -109 <= target <= 109 """ from typing import List class Solution: def searchRange(self, nums: List[int], target: int) -> List[int]: Hash = [] for i in range(len(nums)): if nums[i] == target: Hash.append(i) if len(Hash) == 0: return [-1 ,-1] return [min(Hash) ,max(Hash)]
from random import sample N, S, E, W, V = 1, 2, 4, 8, 16 opposite = {N:S, S:N, E:W, W:E} move = {N: lambda x, y: (x, y-1), S: lambda x, y: (x, y+1), E: lambda x, y: (x+1, y), W: lambda x, y: (x-1, y)} directions = lambda: sample((N, S, E, W), 4) def maze_generation(width, height): maze = [[0] * width for i in range(height)] total_cells = width * height x, y = 0, 0 while total_cells > 1: for direction in directions(): nx, ny = move[direction](x, y) if not 0 <= nx < width or not 0 <= ny < height: continue elif maze[ny][nx] == 0: maze[y][x] |= direction maze[ny][nx] |= opposite[direction] x, y = nx, ny break else: for direction in directions(): nx, ny = move[direction](x, y) if (not 0 <= nx < width or not 0 <= ny < height or not maze[ny][nx] & V == 0): continue elif not maze[ny][nx] & opposite[direction] == 0: maze[y][x] |= V total_cells -= 1 x, y = nx, ny break return maze def draw_maze(maze): #print(maze) start = False finish = False width = len(maze[0]) height = len(maze) with open('Tanks_new/Maps/level_1.goose', 'w') as f: f.truncate(0) print('1' * (width*2+1), file=f) for i in range(height*2): line = ['1'] for j in range(width*2): if i % 2 == 0 and j % 2 == 0: if start == False: line.append('3') start = True else: line.append('0') elif i % 2 == 0 and j % 2 != 0: if not maze[i//2][j//2] & E == 0: line.append('0') else: line.append('1') elif i % 2 != 0 and j % 2 == 0: if not maze[i//2][j//2] & S == 0: line.append('0') else: line.append('1') else: line.append('0') print(''.join(line),file=f) print('1'*12+'0'*2+'2', file=f) # Edit the values to change the height and width of the labyrinth #draw_maze(maze_generation(8,6))
# -*- coding: utf-8 -*- from .IsobarImg import * __version__ = '0.4.2'
from socket import * import sys, time if len(sys.argv) <= 1: print 'Usage: "python proxy.py server_ip"\n[server_ip : It is the IP Address of the Proxy Server' sys.exit(2) # Create a server socket, bind it to a port and start listening tcpSERVERPort = 8080 tcpSERVERSock = socket(AF_INET, SOCK_STREAM) fp = open('log.txt','w') # Prepare a server socket tcpSERVERSock.bind((sys.argv[1], tcpSERVERPort)) tcpSERVERSock.listen(5) while True: # Start receiving data from the client print 'Ready to serve...' tcpCLIENTSock, addr = tcpSERVERSock.accept() print 'Received a connection from: ', addr t = time.time() message = tcpCLIENTSock.recv(4096) print "message= Hello ",message fp.write(message) a = len(message) print 'number of bytes sent =',a # Extract the filename from the given message if message == '': print "No data" else: print "m2=::::",message.split()[1] filename = message.split()[1].partition("/")[2] print "filename = ",filename fileExist = "false" filetouse = "/" + filename print "filetouse= :",filetouse try: # Check whether the file exists in the cache f = open(filetouse[1:], "r") outputdata = f.readlines() b = len(outputdata) print "bytes received from server = ",b print "outputdata = ",outputdata fileExist = "true" print 'File Exists!' # ProxyServer finds a cache hit and generates a response message tcpCLIENTSock.send("HTTP/1.0 200 OK\r\n") print "HTTP/1.0 200 OK\r\n" tcpCLIENTSock.send("Content-Type:text/html\r\n") # Send the content of the requested file to the client for i in range(0, len(outputdata)): tcpCLIENTSock.send(outputdata[i]) print 'Read from cache' # Error handling for file not found in cache except IOError: print 'File Exist: ', fileExist if fileExist == "false": # Create a socket on the proxyserver print 'Creating socket on proxyserver' c = socket(AF_INET, SOCK_STREAM) hostn = filename.replace("www.", "", 1) print 'Host Name: ', hostn try: # Connect to the socket to port 80 c.connect((hostn, 80)) print 'Socket connected to port 80 of the host' # Create a temporary file on this socket and ask port 80 # for the file requested by the client fileobj = c.makefile('r', 0) fileobj.write("GET " + "http://" + filename + " HTTP/1.0\n\n") # Read the response into buffer buffer = fileobj.readlines() b = len(buffer) print 'bytes received =' ,b #resp = c.recv(4096) #response = "" #while resp: #response += resp # Create a new file in the cache for the requested file. # Also send the response in the buffer to client socket # and the corresponding file in the cache tempFile = open("./" + filename, "wb") #tempFile.write(response) #tempFile.close() #tcpcLIENTsock.send(response) for i in range(0, len(buffer)): tempFile.write(buffer[i]) tcpCLIENTSock.send(buffer[i]) except: print 'illegal request' else: # HTTP response message for file not found print 'File Not Found...' elap = time.time() diff = elap - t # Close the socket and the server sockets tcpCLIENTSock.close() fp.write("\n time taken =" + str(diff)) fp.write("\n bytes sent =" + str(a)) fp.write("\n bytes received =" + str(b)) fp.write("\n") fp.close() print "Closing the server connection" tcpSERVERSock.close()
from PIL import Image import torch.nn as nn from torch.autograd import Variable import torch import numpy as np from data import CreateTrgDataSSLLoader from model import CreateSSLModel import os from options.test_options import TestOptions import scipy.io as sio import gzip # to compresss numpy files so that less cache space is required #####This is the optimized pseudo label generation file which takes at max 12 gb CPU RAM and 3 GB GPU ram.##### def main(): opt = TestOptions() args = opt.initialize() os.environ["CUDA_VISIBLE_DEVICES"] = args.GPU if not os.path.exists(args.save): os.makedirs(args.save) args.restore_from = args.restore_opt1 model1 = CreateSSLModel(args) model1.eval() model1.cuda() args.restore_from = args.restore_opt2 model2 = CreateSSLModel(args) model2.eval() model2.cuda() args.restore_from = args.restore_opt3 model3 = CreateSSLModel(args) model3.eval() model3.cuda() targetloader = CreateTrgDataSSLLoader(args) # change the mean for different dataset IMG_MEAN = np.array((104.00698793, 116.66876762, 122.67891434), dtype=np.float32) IMG_MEAN = torch.reshape( torch.from_numpy(IMG_MEAN), (1,3,1,1) ) mean_img = torch.zeros(1, 1) image_name = [] x = [None]*19 # x values for all 19 classes cachepath = "../cache" # Directory to save the numpy files as cache. with torch.no_grad(): for index, batch in enumerate(targetloader): if index % 1 == 0: print( '%d processd' % index ) image, _, name = batch if mean_img.shape[-1] < 2: B, C, H, W = image.shape mean_img = IMG_MEAN.repeat(B,1,H,W) image = image.clone() - mean_img image = Variable(image).cuda() # forward output1 = model1(image) output1 = nn.functional.softmax(output1, dim=1) output2 = model2(image) output2 = nn.functional.softmax(output2, dim=1) output3 = model3(image) output3 = nn.functional.softmax(output3, dim=1) a, b = 0.3333, 0.3333 output = a*output1 + b*output2 + (1.0-a-b)*output3 output = nn.functional.interpolate(output, (512, 1024), mode='bilinear', align_corners=True).cpu().data[0].numpy() output = output.transpose(1,2,0) label, prob = np.argmax(output, axis=2), np.max(output, axis=2) # Saving the prob and label files for each index seperately so that while loading the whole array need not be loaded in turn saving a lot of CPU ram. f1 = gzip.GzipFile(os.path.join(cachepath, "label_" + str(index))+'.npy.gz', "w") f2 = gzip.GzipFile(os.path.join(cachepath, "prob_" + str(index))+'.npy.gz', "w") np.save(f1,label) np.save(f2, prob) f1.close() f2.close() for i in range(19): d = prob[label==i] if(len(d)==0): continue if x[i] is None: x[i]=d else: x[i]= np.concatenate((x[i],d)) image_name.append(name[0]) thres = [] thres = [] for i in range(19): if x[i] is None: thres.append(0) <<<<<<< HEAD continue temp=x[i] temp=np.sort(temp) print("temp[np.int(np.round(len(temp*0.66))]", temp[np.int(np.round(len(temp)*0.66))]) thres.append(temp[np.int(np.round(len(temp)*0.66))].item()) # print(thres) ======= continue x = np.sort(x) thres.append(x[np.int(np.round(len(x)*0.66))]) # paper mentions taking top 66% or 0.9 as threshold print( thres ) >>>>>>> upstream/master thres = np.array(thres) thres[thres > 0.9] = 0.9 print("Cuda", thres) for index in range(len(targetloader)): name = image_name[index] #Loading the prob and label files for each index. f3 = gzip.GzipFile(os.path.join(cachepath, "label_" + str(index))+'.npy.gz', "r") f4 = gzip.GzipFile(os.path.join(cachepath, "prob_" + str(index))+'.npy.gz', "r") label = np.load(f3) prob = np.load(f4) for i in range(19): label[ (prob<thres[i]) * (label==i) ] = 255 output = np.asarray(label, dtype=np.uint8) output = Image.fromarray(output) name = name.split('/')[-1] #Deleting the prob and label files to clear the cache space. os.remove(os.path.join(cachepath,"label_"+str(index)+".npy.gz")) os.remove(os.path.join(cachepath,"prob_"+str(index)+".npy.gz")) output.save('%s/%s' % (args.save, name)) if __name__ == '__main__': main()
from __future__ import print_function, absolute_import, division import KratosMultiphysics as KM import KratosMultiphysics.MappingApplication as KratosMapping import KratosMultiphysics.KratosUnittest as KratosUnittest ''' This test is a fast test for testing the mappers, WORKS ONLY IN SERIAL It stems from the patch tests in the StructuralMechanicsApplication It covers only 2D! Setup: ModelPart Origin: x-----x-----x---x Modelpart Destination: x--x--x----x---x ''' class TestPatchTestMappers(KratosUnittest.TestCase): def setUp(self): self.test_model = KM.Model() self.mp_origin = self.test_model.CreateModelPart("origin_part") self.mp_destination = self.test_model.CreateModelPart("destination_part") self._add_variables() self._create_nodes() self._create_elements() def _add_variables(self): self.mp_origin.AddNodalSolutionStepVariable(KM.PRESSURE) self.mp_origin.AddNodalSolutionStepVariable(KM.FORCE) self.mp_destination.AddNodalSolutionStepVariable(KM.TEMPERATURE) self.mp_destination.AddNodalSolutionStepVariable(KM.VELOCITY) def _create_nodes(self): self.mp_origin.CreateNewNode(1, -5.0, 0.0, 0.0) self.mp_origin.CreateNewNode(2, 0.0, 0.0, 0.0) self.mp_origin.CreateNewNode(3, 5.0, 0.0, 0.0) self.mp_origin.CreateNewNode(4, 8.0, 0.0, 0.0) self.mp_destination.CreateNewNode(1, -5.0, 0.0, 0.0) self.mp_destination.CreateNewNode(2, -3.0, 0.0, 0.0) self.mp_destination.CreateNewNode(3, -1.0, 0.0, 0.0) self.mp_destination.CreateNewNode(4, 3.0, 0.0, 0.0) self.mp_destination.CreateNewNode(5, 6.0, 0.0, 0.0) def _create_elements(self): element_name = "Element2D2N" # This seems to create properties on the fly props =self. mp_origin.GetProperties()[1] self.mp_origin.CreateNewElement(element_name, 1, [1,2], props) self.mp_origin.CreateNewElement(element_name, 2, [2,3], props) self.mp_origin.CreateNewElement(element_name, 3, [3,4], props) props =self. mp_destination.GetProperties()[1] self.mp_destination.CreateNewElement(element_name, 1, [1,2], props) self.mp_destination.CreateNewElement(element_name, 2, [2,3], props) self.mp_destination.CreateNewElement(element_name, 3, [3,4], props) self.mp_destination.CreateNewElement(element_name, 4, [4,5], props) def _set_values_origin(self): value = 0 for node in self.mp_origin.Nodes: node.SetSolutionStepValue(KM.PRESSURE, value+0.2) node.SetSolutionStepValue(KM.FORCE, [value, value+0.1, value-0.3]) value += 1 def _set_values_destination(self): value = 0 for node in self.mp_destination.Nodes: node.SetSolutionStepValue(KM.TEMPERATURE, value-0.3) node.SetSolutionStepValue(KM.VELOCITY, [value, value-0.1, value+0.4]) value += 1 def _set_values_mp_const(self, mp, variable, value): for node in mp.Nodes: node.SetSolutionStepValue(variable, value) def _create_mapper(self, mapper_name): mapper_settings = KM.Parameters("""{ "mapper_type" : \"""" + mapper_name + """\" }""") self.mapper = KratosMapping.MapperFactory.CreateMapper(self.mp_origin, self.mp_destination, mapper_settings) def _check_results_scalar(self, mp, results, variable): if len(results) != mp.NumberOfNodes(): raise RuntimeError("Number of results does not match number of Nodes!") for index, node in enumerate(mp.Nodes): self.assertAlmostEqual(node.GetSolutionStepValue(variable), results[index], 10) def _check_results_vector(self, mp, results, variable): if len(results) != mp.NumberOfNodes(): raise RuntimeError("Number of results does not match number of Nodes!") for index, node in enumerate(mp.Nodes): self.assertAlmostEqual(node.GetSolutionStepValue(variable)[0], results[index][0], 10) self.assertAlmostEqual(node.GetSolutionStepValue(variable)[1], results[index][1], 10) self.assertAlmostEqual(node.GetSolutionStepValue(variable)[2], results[index][2], 10) def _check_results_scalar_const(self, mp, value, variable): for node in mp.Nodes: self.assertAlmostEqual(node.GetSolutionStepValue(variable), value) def _check_results_vector_const(self, mp, value, variable): for node in mp.Nodes: self.assertAlmostEqual(node.GetSolutionStepValue(variable)[0], value[0]) self.assertAlmostEqual(node.GetSolutionStepValue(variable)[1], value[1]) self.assertAlmostEqual(node.GetSolutionStepValue(variable)[2], value[2]) def _execute_constant_value_test(self): # Check mapping of a constant field and the basic functionalities ### Map ### # Scalar Mapping mapping_value = 1.33 self._set_values_mp_const(self.mp_origin, KM.PRESSURE, mapping_value) self.mapper.Map(KM.PRESSURE, KM.TEMPERATURE) self._check_results_scalar_const(self.mp_destination, mapping_value, KM.TEMPERATURE) self.mapper.UpdateInterface() self.mapper.Map(KM.PRESSURE, KM.TEMPERATURE, KratosMapping.Mapper.ADD_VALUES) self._check_results_scalar_const(self.mp_destination, 2*mapping_value, KM.TEMPERATURE) self.mapper.Map(KM.PRESSURE, KM.TEMPERATURE, KratosMapping.Mapper.ADD_VALUES | KratosMapping.Mapper.SWAP_SIGN) self._check_results_scalar_const(self.mp_destination, mapping_value, KM.TEMPERATURE) # Vector Mapping mapping_value = [1.443, -5.874, 7.99] self._set_values_mp_const(self.mp_origin, KM.FORCE, mapping_value) self.mapper.Map(KM.FORCE, KM.VELOCITY) self._check_results_vector_const(self.mp_destination, mapping_value, KM.VELOCITY) self.mapper.Map(KM.FORCE, KM.VELOCITY, KratosMapping.Mapper.ADD_VALUES) self._check_results_vector_const(self.mp_destination, [2*x for x in mapping_value], KM.VELOCITY) self.mapper.Map(KM.FORCE, KM.VELOCITY, KratosMapping.Mapper.ADD_VALUES | KratosMapping.Mapper.SWAP_SIGN) self._check_results_vector_const(self.mp_destination, mapping_value, KM.VELOCITY) ### InverseMap ### # Scalar Mapping mapping_value = -71.33 self._set_values_mp_const(self.mp_destination, KM.TEMPERATURE, mapping_value) self.mapper.InverseMap(KM.PRESSURE, KM.TEMPERATURE) self._check_results_scalar_const(self.mp_origin, mapping_value, KM.PRESSURE) self.mapper.InverseMap(KM.PRESSURE, KM.TEMPERATURE, KratosMapping.Mapper.ADD_VALUES) self._check_results_scalar_const(self.mp_origin, 2*mapping_value, KM.PRESSURE) self.mapper.InverseMap(KM.PRESSURE, KM.TEMPERATURE, KratosMapping.Mapper.ADD_VALUES | KratosMapping.Mapper.SWAP_SIGN) self._check_results_scalar_const(self.mp_origin, mapping_value, KM.PRESSURE) # Vector Mapping mapping_value = [-5.443, 44.874, -7.9779] self._set_values_mp_const(self.mp_destination, KM.VELOCITY, mapping_value) self.mapper.InverseMap(KM.FORCE, KM.VELOCITY) self._check_results_vector_const(self.mp_origin, mapping_value, KM.FORCE) self.mapper.UpdateInterface(KratosMapping.Mapper.REMESHED) self.mapper.InverseMap(KM.FORCE, KM.VELOCITY, KratosMapping.Mapper.ADD_VALUES) self._check_results_vector_const(self.mp_origin, [2*x for x in mapping_value], KM.FORCE) self.mapper.InverseMap(KM.FORCE, KM.VELOCITY, KratosMapping.Mapper.ADD_VALUES | KratosMapping.Mapper.SWAP_SIGN) self._check_results_vector_const(self.mp_origin, mapping_value, KM.FORCE) def _execute_non_constant_value_test(self, results, use_transpose=False): # Check mapping of a non-constant field if use_transpose: mapper_flag = KratosMapping.Mapper.USE_TRANSPOSE else: mapper_flag=KM.Flags() ### Map ### # Scalar Mapping self._set_values_origin() self.mapper.Map(KM.PRESSURE, KM.TEMPERATURE, mapper_flag) self._check_results_scalar(self.mp_destination, results[0], KM.TEMPERATURE) if use_transpose: self.__CheckValuesSum(self.mp_origin, self.mp_destination, KM.PRESSURE, KM.TEMPERATURE, True) # Vector Mapping self.mapper.Map(KM.FORCE, KM.VELOCITY, mapper_flag) self._check_results_vector(self.mp_destination, results[1], KM.VELOCITY) if use_transpose: self.__CheckValuesSum(self.mp_origin, self.mp_destination, KM.FORCE, KM.VELOCITY, True) ### InverseMap ### # Scalar Mapping self._set_values_destination() self.mapper.InverseMap(KM.PRESSURE, KM.TEMPERATURE, mapper_flag) self._check_results_scalar(self.mp_origin, results[2], KM.PRESSURE) if use_transpose: self.__CheckValuesSum(self.mp_origin, self.mp_destination, KM.PRESSURE, KM.TEMPERATURE, True) # Vector Mapping self.mapper.InverseMap(KM.FORCE, KM.VELOCITY, mapper_flag) self._check_results_vector(self.mp_origin, results[3], KM.FORCE) if use_transpose: self.__CheckValuesSum(self.mp_origin, self.mp_destination, KM.FORCE, KM.VELOCITY, True) def test_nearest_neighbor_mapper(self): mapper_name = "nearest_neighbor" map_results_scalar = [0.2, 0.2, 1.2, 2.2, 2.2] map_results_vector = [[0.0,0.1,-0.3], [0.0,0.1,-0.3], [1.0,1.1,0.7], [2.0,2.1,1.7], [2.0,2.1,1.7]] inverse_map_results_scalar = [-0.3, 1.7, 3.7, 3.7] inverse_map_results_vector = [[0.0,-0.1,0.4], [2.0,1.9,2.4], [4.0,3.9,4.4], [4.0,3.9,4.4]] map_results_scalar_conservative = [0.2, 0.0, 1.2, 0.0, 5.4] map_results_vector_conservative = [[0.0,0.1,-0.3], [0.0,0.0,0.0], [1.0,1.1,0.7], [0.0,0.0,0.0], [5.0,5.2,4.4]] inverse_map_results_scalar_conservative = [0.4, 1.7, 6.4, 0.0] inverse_map_results_vector_conservative = [[1.0,0.8,1.8], [2.0,1.9,2.4], [7.0,6.8,7.8], [0.0,0.0,0.0]] results = [map_results_scalar, map_results_vector] results.extend([inverse_map_results_scalar, inverse_map_results_vector]) results_conservative = [map_results_scalar_conservative, map_results_vector_conservative] results_conservative.extend([inverse_map_results_scalar_conservative, inverse_map_results_vector_conservative]) self._create_mapper(mapper_name) self._execute_constant_value_test() self._execute_non_constant_value_test(results) # Test Mapping with transpose self._execute_non_constant_value_test(results_conservative, True) def test_nearest_element_mapper(self): mapper_name = "nearest_element" map_results_scalar = [0.2, 0.6, 1.0, 1.8, 7.6/3] map_results_vector = [[0.0,0.1,-0.3], [0.4,0.5,0.1], [0.8,0.9,0.5], [1.6,1.7,1.3], [7/3,7.3/3,6.1/3]] inverse_map_results_scalar = [-0.3, 1.95, 10.1/3, 3.7] inverse_map_results_vector = [[0.0,-0.1,0.4], [2.25,2.15,2.65], [11/3,10.7/3,12.2/3], [4.0,3.9,4.4]] map_results_scalar_conservative = [0.2, 0.0, 0.9, 1.033333333333337, 14/3] map_results_vector_conservative = [[0.0,0.1,-0.3], [0.0,0.0,0.0], [0.75,0.825,0.525], [0.0,0.0,0.0], [1.6+7/3,1.7+7.3/3,1.3+6.1/3]] inverse_map_results_scalar_conservative = [999, 1.95, 999, 0.0] inverse_map_results_vector_conservative = [[999,999,999], [2.25,2.15,2.65], [999,999,999], [0.0,0.0,0.0]] results = [map_results_scalar, map_results_vector] results.extend([inverse_map_results_scalar, inverse_map_results_vector]) results_conservative = [map_results_scalar_conservative, map_results_vector_conservative] results_conservative.extend([inverse_map_results_scalar_conservative, inverse_map_results_vector_conservative]) self._create_mapper(mapper_name) self._execute_constant_value_test() self._execute_non_constant_value_test(results) # # Test conservative Mapping self._execute_non_constant_value_test(results_conservative, True) # TODO check the values! def __CheckValuesSum(self, mp1, mp2, var1, var2, value_is_historical=True): var_type = KM.KratosGlobals.GetVariableType(var1.Name()) if var_type != KM.KratosGlobals.GetVariableType(var2.Name()): raise TypeError("Variable types-mismatch!") if value_is_historical: if var_type == "Double": val_1 = KM.VariableUtils().SumHistoricalNodeScalarVariable(var1, mp1, 0) val_2 = KM.VariableUtils().SumHistoricalNodeScalarVariable(var2, mp2, 0) self.assertAlmostEqual(val_1, val_2) else: val_1 = KM.VariableUtils().SumHistoricalNodeVectorVariable(var1, mp1, 0) val_2 = KM.VariableUtils().SumHistoricalNodeVectorVariable(var2, mp2, 0) self.assertAlmostEqual(val_1[0], val_2[0]) self.assertAlmostEqual(val_1[1], val_2[1]) self.assertAlmostEqual(val_1[2], val_2[2]) else: if var_type == "Double": val_1 = KM.VariableUtils().SumNonHistoricalNodeScalarVariable(var1, mp1) val_2 = KM.VariableUtils().SumNonHistoricalNodeScalarVariable(var2, mp2) self.assertAlmostEqual(val_1, val_2) else: val_1 = KM.VariableUtils().SumNonHistoricalNodeVectorVariable(var1, mp1) val_2 = KM.VariableUtils().SumNonHistoricalNodeVectorVariable(var2, mp2) self.assertAlmostEqual(val_1[0], val_2[0]) self.assertAlmostEqual(val_1[1], val_2[1]) self.assertAlmostEqual(val_1[2], val_2[2]) if __name__ == '__main__': KratosUnittest.main()
# Copyright 2021 Ginkgo Bioworks # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test Input/Output capabilities.""" import os import pytest import geckopy def test_read_geckopy_from_file(path_ecoli_core): """Read model directly from file.""" model = geckopy.io.read_sbml_ec_model(path_ecoli_core) assert len(model.proteins) == 55 def test_copy_geckopy(ec_model_core): """Check that deepcopy works.""" copied = ec_model_core.copy() assert len(copied.proteins) == len(ec_model_core.proteins) assert len(copied.reactions) == len(ec_model_core.reactions) assert len(copied.metabolites) == len(ec_model_core.metabolites) def test_parsing_captures_naming_convention(dummy_ec_model): """Check proteins rely on the naming convention prot_UNIPROT are parsed.""" assert dummy_ec_model.proteins.query("prot_P0A805") def test_parsing_captures_protein_group(dummy_ec_model): """Check members of Protein group are parsed as proteins.""" assert dummy_ec_model.groups.query("Protein") assert dummy_ec_model.proteins.query("prot_P0A825") assert dummy_ec_model.proteins.query("dummy_prot") def test_protein_parsing_does_not_get_normal_metabolites(dummy_ec_model): """Check normal metabolites are not parsed as proteins.""" assert not dummy_ec_model.proteins.query("normal_met") assert dummy_ec_model.metabolites.query("normal_met") mets = set(dummy_ec_model.metabolites) prots = set(dummy_ec_model.proteins) assert mets ^ prots == mets | prots def test_serialized_model_grows(slim_solution_core, ec_model_core): """Check that deserialized model grows at the same rate.""" geckopy.io.write_sbml_ec_model(ec_model_core, "_tmpfull.xml") redeserialized = geckopy.io.read_sbml_ec_model( "_tmpfull.xml", hardcoded_rev_reactions=False ) assert pytest.approx(redeserialized.slim_optimize()) == pytest.approx( slim_solution_core ) os.remove("_tmpfull.xml") def test_serialized_model_has_concentrations(dummy_ec_model): """Check that concentrations are properly saved on SBML serialization.""" dummy_ec_model.proteins.prot_P0A825.concentration = 123 geckopy.io.write_sbml_ec_model(dummy_ec_model, "_tmp.xml") redeserialized = geckopy.io.read_sbml_ec_model( "_tmp.xml", hardcoded_rev_reactions=False ) assert redeserialized.proteins.prot_P0A825.concentration == 123 os.remove("_tmp.xml") def test_proteins_are_grouped_on_write(dummy_ec_model): """Check that grouped proteins not following naming are properly handled.""" dummy_ec_model.add_proteins([geckopy.Protein("my_unconventional_protein")]) assert ( dummy_ec_model.proteins.prot_P0A805 not in dummy_ec_model.groups.get_by_id("Protein").members ) geckopy.io.write_sbml_ec_model( dummy_ec_model, "_tmp_auto_grouping.xml", group_untyped_proteins=True # default ) # proteins that were not grouped but follow the conventions are not grouped assert ( dummy_ec_model.proteins.prot_P0A805 not in dummy_ec_model.groups.get_by_id("Protein").members ) redeserialized = geckopy.io.read_sbml_ec_model( "_tmp_auto_grouping.xml", hardcoded_rev_reactions=False ) assert ( redeserialized.proteins.my_unconventional_protein.id == "my_unconventional_protein" ) os.remove("_tmp_auto_grouping.xml") def test_grouped_proteins_are_correctly_deserialized(ec_model_core): """Check that deepcopy works.""" copied = ec_model_core.copy() copied.reactions.NH4t.add_protein("W", 60) geckopy.io.write_sbml_ec_model( copied, "_tmp_with_prot.xml", group_untyped_proteins=True # default ) model = geckopy.io.read_sbml_ec_model("_tmp_with_prot.xml") assert pytest.approx(model.proteins.W.kcats["NH4t"]) == 60 os.remove("_tmp_with_prot.xml") def test_gene_and_proteins_point_to_each_other(ec_model_core): """Check that annotating genes and proteins point to each other.""" geckopy.io.standard.annotate_gene_protein_rules(ec_model_core) assert ec_model_core.genes.get_by_id( "b1241" ).protein == ec_model_core.proteins.get_by_id("prot_P0A9Q7") assert ( ec_model_core.proteins.get_by_id("prot_P0A9Q7") == ec_model_core.genes.get_by_id("b1241").protein ) # all proteins in the EC core model are in a gene assert sum(gene.protein is not None for gene in ec_model_core.genes) == len( ec_model_core.proteins )
# Copyright (C) 2017-2021 ycmd contributors # # This file is part of ycmd. # # ycmd is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # ycmd is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ycmd. If not, see <http://www.gnu.org/licenses/>. from unittest.mock import patch from unittest import TestCase from hamcrest import ( all_of, assert_that, calling, empty, ends_with, equal_to, contains_exactly, has_entries, has_entry, has_items, has_key, is_not, raises ) from ycmd.completers import completer from ycmd.completers.language_server import language_server_completer as lsc from ycmd.completers.language_server.language_server_completer import ( NoHoverInfoException, NO_HOVER_INFORMATION ) from ycmd.completers.language_server import language_server_protocol as lsp from ycmd.tests.language_server import MockConnection from ycmd.request_wrap import RequestWrap from ycmd.tests.test_utils import ( BuildRequest, ChunkMatcher, DummyCompleter, LocationMatcher, RangeMatcher ) from ycmd.tests.language_server import IsolatedYcmd, PathToTestFile from ycmd import handlers, utils, responses import os class MockCompleter( lsc.LanguageServerCompleter, DummyCompleter ): def __init__( self, custom_options = {} ): user_options = handlers._server_state._user_options.copy() user_options.update( custom_options ) super().__init__( user_options ) self._connection = MockConnection( lambda request: self.WorkspaceConfigurationResponse( request ) ) self._started = False def Language( self ): return 'foo' def StartServer( self, request_data, **kwargs ): self._started = True self._project_directory = self.GetProjectDirectory( request_data ) return True def GetConnection( self ): return self._connection def HandleServerCommand( self, request_data, command ): return super().HandleServerCommand( request_data, command ) def ServerIsHealthy( self ): return self._started def GetCommandLine( self ): return [ 'server' ] def GetServerName( self ): return 'mock_completer' def _TupleToLSPRange( tuple ): return { 'line': tuple[ 0 ], 'character': tuple[ 1 ] } def _Check_Distance( point, start, end, expected ): point = _TupleToLSPRange( point ) start = _TupleToLSPRange( start ) end = _TupleToLSPRange( end ) range = { 'start': start, 'end': end } result = lsc._DistanceOfPointToRange( point, range ) assert_that( result, equal_to( expected ) ) class LanguageServerCompleterTest( TestCase ): @IsolatedYcmd( { 'global_ycm_extra_conf': PathToTestFile( 'extra_confs', 'settings_extra_conf.py' ) } ) def test_LanguageServerCompleter_ExtraConf_ServerReset( self, app ): filepath = PathToTestFile( 'extra_confs', 'foo' ) app.post_json( '/event_notification', BuildRequest( filepath = filepath, filetype = 'foo', contents = '', event_name = 'FileReadyToParse' ) ) request_data = RequestWrap( BuildRequest() ) completer = MockCompleter() assert_that( None, equal_to( completer._project_directory ) ) completer.OnFileReadyToParse( request_data ) assert_that( completer._project_directory, is_not( None ) ) assert_that( completer._settings.get( 'ls', {} ), is_not( empty() ) ) completer.ServerReset() assert_that( completer._settings.get( 'ls', {} ), empty() ) assert_that( None, equal_to( completer._project_directory ) ) @IsolatedYcmd( { 'global_ycm_extra_conf': PathToTestFile( 'extra_confs', 'empty_extra_conf.py' ) } ) def test_LanguageServerCompleter_ExtraConf_FileEmpty( self, app ): filepath = PathToTestFile( 'extra_confs', 'foo' ) completer = MockCompleter() request_data = RequestWrap( BuildRequest( filepath = filepath, filetype = 'ycmtest', contents = '' ) ) completer.OnFileReadyToParse( request_data ) assert_that( {}, equal_to( completer._settings.get( 'ls', {} ) ) ) # Simulate receipt of response and initialization complete initialize_response = { 'result': { 'capabilities': {} } } completer._HandleInitializeInPollThread( initialize_response ) assert_that( {}, equal_to( completer._settings.get( 'ls', {} ) ) ) # We shouldn't have used the extra_conf path for the project directory, but # that _also_ happens to be the path of the file we opened. assert_that( PathToTestFile( 'extra_confs' ), equal_to( completer._project_directory ) ) @IsolatedYcmd( { 'global_ycm_extra_conf': PathToTestFile( 'extra_confs', 'settings_none_extra_conf.py' ) } ) def test_LanguageServerCompleter_ExtraConf_SettingsReturnsNone( self, app ): filepath = PathToTestFile( 'extra_confs', 'foo' ) completer = MockCompleter() request_data = RequestWrap( BuildRequest( filepath = filepath, filetype = 'ycmtest', contents = '' ) ) completer.OnFileReadyToParse( request_data ) assert_that( {}, equal_to( completer._settings.get( 'ls', {} ) ) ) # We shouldn't have used the extra_conf path for the project directory, but # that _also_ happens to be the path of the file we opened. assert_that( PathToTestFile( 'extra_confs' ), equal_to( completer._project_directory ) ) @IsolatedYcmd( { 'global_ycm_extra_conf': PathToTestFile( 'extra_confs', 'settings_extra_conf.py' ) } ) def test_LanguageServerCompleter_ExtraConf_SettingValid( self, app ): filepath = PathToTestFile( 'extra_confs', 'foo' ) completer = MockCompleter() request_data = RequestWrap( BuildRequest( filepath = filepath, filetype = 'ycmtest', working_dir = PathToTestFile(), contents = '' ) ) assert_that( {}, equal_to( completer._settings.get( 'ls', {} ) ) ) completer.OnFileReadyToParse( request_data ) assert_that( { 'java.rename.enabled' : False }, equal_to( completer._settings.get( 'ls', {} ) ) ) # We use the working_dir not the path to the global extra conf (which is # ignored) assert_that( PathToTestFile(), equal_to( completer._project_directory ) ) @IsolatedYcmd( { 'extra_conf_globlist': [ '!*' ] } ) def test_LanguageServerCompleter_ExtraConf_NoExtraConf( self, app ): filepath = PathToTestFile( 'extra_confs', 'foo' ) completer = MockCompleter() request_data = RequestWrap( BuildRequest( filepath = filepath, filetype = 'ycmtest', working_dir = PathToTestFile(), contents = '' ) ) assert_that( {}, equal_to( completer._settings.get( 'ls', {} ) ) ) completer.OnFileReadyToParse( request_data ) assert_that( {}, equal_to( completer._settings.get( 'ls', {} ) ) ) # Simulate receipt of response and initialization complete initialize_response = { 'result': { 'capabilities': {} } } completer._HandleInitializeInPollThread( initialize_response ) assert_that( {}, equal_to( completer._settings.get( 'ls', {} ) ) ) # We use the client working directory assert_that( PathToTestFile(), equal_to( completer._project_directory ) ) @IsolatedYcmd( { 'extra_conf_globlist': [ '*' ] } ) def test_LanguageServerCompleter_ExtraConf_NonGlobal( self, app ): filepath = PathToTestFile( 'project', 'settings_extra_conf', 'foo' ) completer = MockCompleter() request_data = RequestWrap( BuildRequest( filepath = filepath, filetype = 'ycmtest', # ignored; ycm conf path used working_dir = 'ignore_this', contents = '' ) ) assert_that( {}, equal_to( completer._settings.get( 'ls', {} ) ) ) completer.OnFileReadyToParse( request_data ) assert_that( { 'java.rename.enabled' : False }, equal_to( completer._settings.get( 'ls', {} ) ) ) # Simulate receipt of response and initialization complete initialize_response = { 'result': { 'capabilities': {} } } completer._HandleInitializeInPollThread( initialize_response ) assert_that( PathToTestFile( 'project', 'settings_extra_conf' ), equal_to( completer._project_directory ) ) @IsolatedYcmd() def test_LanguageServerCompleter_Initialise_Aborted( self, app ): completer = MockCompleter() request_data = RequestWrap( BuildRequest() ) with patch.object( completer.GetConnection(), 'ReadData', side_effect = RuntimeError ): assert_that( completer.ServerIsReady(), equal_to( False ) ) completer.OnFileReadyToParse( request_data ) with patch.object( completer, '_HandleInitializeInPollThread' ) as handler: completer.GetConnection().run() handler.assert_not_called() assert_that( completer._initialize_event.is_set(), equal_to( False ) ) assert_that( completer.ServerIsReady(), equal_to( False ) ) with patch.object( completer, 'ServerIsHealthy', return_value = False ): assert_that( completer.ServerIsReady(), equal_to( False ) ) @IsolatedYcmd() def test_LanguageServerCompleter_Initialise_Shutdown( self, app ): completer = MockCompleter() request_data = RequestWrap( BuildRequest() ) with patch.object( completer.GetConnection(), 'ReadData', side_effect = lsc.LanguageServerConnectionStopped ): assert_that( completer.ServerIsReady(), equal_to( False ) ) completer.OnFileReadyToParse( request_data ) with patch.object( completer, '_HandleInitializeInPollThread' ) as handler: completer.GetConnection().run() handler.assert_not_called() assert_that( completer._initialize_event.is_set(), equal_to( False ) ) assert_that( completer.ServerIsReady(), equal_to( False ) ) with patch.object( completer, 'ServerIsHealthy', return_value = False ): assert_that( completer.ServerIsReady(), equal_to( False ) ) @IsolatedYcmd() def test_LanguageServerCompleter_GoTo( self, app ): if utils.OnWindows(): filepath = 'C:\\test.test' uri = 'file:///c:/test.test' else: filepath = '/test.test' uri = 'file:/test.test' contents = 'line1\nline2\nline3' completer = MockCompleter() # LSP server supports all code navigation features. completer._server_capabilities = { 'definitionProvider': True, 'declarationProvider': True, 'typeDefinitionProvider': True, 'implementationProvider': True, 'referencesProvider': True } request_data = RequestWrap( BuildRequest( filetype = 'ycmtest', filepath = filepath, contents = contents, line_num = 2, column_num = 3 ) ) @patch.object( completer, '_ServerIsInitialized', return_value = True ) def Test( responses, command, exception, throws, *args ): with patch.object( completer.GetConnection(), 'GetResponse', side_effect = responses ): if throws: assert_that( calling( completer.OnUserCommand ).with_args( [ command ], request_data ), raises( exception ) ) else: result = completer.OnUserCommand( [ command ], request_data ) print( f'Result: { result }' ) assert_that( result, exception ) location = { 'uri': uri, 'range': { 'start': { 'line': 0, 'character': 0 }, 'end': { 'line': 0, 'character': 0 }, } } goto_response = has_entries( { 'filepath': filepath, 'column_num': 1, 'line_num': 1, 'description': 'line1' } ) cases = [ ( [ { 'result': None } ], 'GoToDefinition', RuntimeError, True ), ( [ { 'result': location } ], 'GoToDeclaration', goto_response, False ), ( [ { 'result': {} } ], 'GoToType', RuntimeError, True ), ( [ { 'result': [] } ], 'GoToImplementation', RuntimeError, True ), ( [ { 'result': [ location ] } ], 'GoToReferences', goto_response, False ), ( [ { 'result': [ location, location ] } ], 'GoToReferences', contains_exactly( goto_response, goto_response ), False ), ] for response, goto_handlers, exception, throws in cases: Test( response, goto_handlers, exception, throws ) # All requests return an invalid URI. with patch( 'ycmd.completers.language_server.language_server_protocol.UriToFilePath', side_effect = lsp.InvalidUriException ): Test( [ { 'result': { 'uri': uri, 'range': { 'start': { 'line': 0, 'character': 0 }, 'end': { 'line': 0, 'character': 0 } } } } ], 'GoTo', LocationMatcher( '', 1, 1 ), False ) with patch( 'ycmd.completers.completer_utils.GetFileContents', side_effect = IOError ): Test( [ { 'result': { 'uri': uri, 'range': { 'start': { 'line': 0, 'character': 0 }, 'end': { 'line': 0, 'character': 0 } } } } ], 'GoToDefinition', LocationMatcher( filepath, 1, 1 ), False ) # Both requests return the location where the cursor is. Test( [ { 'result': { 'uri': uri, 'range': { 'start': { 'line': 1, 'character': 0 }, 'end': { 'line': 1, 'character': 4 } } } }, { 'result': { 'uri': uri, 'range': { 'start': { 'line': 1, 'character': 0 }, 'end': { 'line': 1, 'character': 4 }, } } } ], 'GoTo', LocationMatcher( filepath, 2, 1 ), False ) # First request returns two locations. Test( [ { 'result': [ { 'uri': uri, 'range': { 'start': { 'line': 0, 'character': 0 }, 'end': { 'line': 0, 'character': 4 } } }, { 'uri': uri, 'range': { 'start': { 'line': 1, 'character': 0 }, 'end': { 'line': 1, 'character': 4 }, } } ], } ], 'GoTo', contains_exactly( LocationMatcher( filepath, 1, 1 ), LocationMatcher( filepath, 2, 1 ) ), False ) # First request returns the location where the cursor is and second request # returns a different URI. if utils.OnWindows(): other_filepath = 'C:\\another.test' other_uri = 'file:///c:/another.test' else: other_filepath = '/another.test' other_uri = 'file:/another.test' Test( [ { 'result': { 'uri': uri, 'range': { 'start': { 'line': 1, 'character': 0 }, 'end': { 'line': 1, 'character': 4 } } } }, { 'result': { 'uri': other_uri, 'range': { 'start': { 'line': 1, 'character': 0 }, 'end': { 'line': 1, 'character': 4 }, } } } ], 'GoTo', LocationMatcher( other_filepath, 2, 1 ), False ) # First request returns a location before the cursor. Test( [ { 'result': { 'uri': uri, 'range': { 'start': { 'line': 0, 'character': 1 }, 'end': { 'line': 1, 'character': 1 } } } } ], 'GoTo', LocationMatcher( filepath, 1, 2 ), False ) # First request returns a location after the cursor. Test( [ { 'result': { 'uri': uri, 'range': { 'start': { 'line': 1, 'character': 3 }, 'end': { 'line': 2, 'character': 3 } } } } ], 'GoTo', LocationMatcher( filepath, 2, 4 ), False ) def test_GetCompletions_RejectInvalid( self ): if utils.OnWindows(): filepath = 'C:\\test.test' else: filepath = '/test.test' contents = 'line1.\nline2.\nline3.' request_data = RequestWrap( BuildRequest( filetype = 'ycmtest', filepath = filepath, contents = contents, line_num = 1, column_num = 7 ) ) text_edit = { 'newText': 'blah', 'range': { 'start': { 'line': 0, 'character': 6 }, 'end': { 'line': 0, 'character': 6 }, } } assert_that( lsc._GetCompletionItemStartCodepointOrReject( text_edit, request_data ), equal_to( 7 ) ) text_edit = { 'newText': 'blah', 'range': { 'start': { 'line': 0, 'character': 6 }, 'end': { 'line': 1, 'character': 6 }, } } assert_that( calling( lsc._GetCompletionItemStartCodepointOrReject ).with_args( text_edit, request_data ), raises( lsc.IncompatibleCompletionException ) ) text_edit = { 'newText': 'blah', 'range': { 'start': { 'line': 0, 'character': 20 }, 'end': { 'line': 0, 'character': 20 }, } } assert_that( lsc._GetCompletionItemStartCodepointOrReject( text_edit, request_data ), equal_to( 7 ) ) text_edit = { 'newText': 'blah', 'range': { 'start': { 'line': 0, 'character': 6 }, 'end': { 'line': 0, 'character': 5 }, } } assert_that( lsc._GetCompletionItemStartCodepointOrReject( text_edit, request_data ), equal_to( 7 ) ) def test_WorkspaceEditToFixIt( self ): if utils.OnWindows(): filepath = 'C:\\test.test' uri = 'file:///c:/test.test' else: filepath = '/test.test' uri = 'file:/test.test' contents = 'line1\nline2\nline3' request_data = RequestWrap( BuildRequest( filetype = 'ycmtest', filepath = filepath, contents = contents ) ) # Null response to textDocument/codeActions is valid assert_that( lsc.WorkspaceEditToFixIt( request_data, None ), equal_to( None ) ) # Empty WorkspaceEdit is not explicitly forbidden assert_that( lsc.WorkspaceEditToFixIt( request_data, {} ), equal_to( None ) ) # We don't support versioned documentChanges workspace_edit = { 'documentChanges': [ { 'textDocument': { 'version': 1, 'uri': uri }, 'edits': [ { 'newText': 'blah', 'range': { 'start': { 'line': 0, 'character': 5 }, 'end': { 'line': 0, 'character': 5 }, } } ] } ] } response = responses.BuildFixItResponse( [ lsc.WorkspaceEditToFixIt( request_data, workspace_edit, 'test' ) ] ) print( f'Response: { response }' ) assert_that( response, has_entries( { 'fixits': contains_exactly( has_entries( { 'text': 'test', 'chunks': contains_exactly( ChunkMatcher( 'blah', LocationMatcher( filepath, 1, 6 ), LocationMatcher( filepath, 1, 6 ) ) ) } ) ) } ) ) workspace_edit = { 'changes': { uri: [ { 'newText': 'blah', 'range': { 'start': { 'line': 0, 'character': 5 }, 'end': { 'line': 0, 'character': 5 }, } }, ] } } response = responses.BuildFixItResponse( [ lsc.WorkspaceEditToFixIt( request_data, workspace_edit, 'test' ) ] ) print( f'Response: { response }' ) print( f'Type Response: { type( response ) }' ) assert_that( response, has_entries( { 'fixits': contains_exactly( has_entries( { 'text': 'test', 'chunks': contains_exactly( ChunkMatcher( 'blah', LocationMatcher( filepath, 1, 6 ), LocationMatcher( filepath, 1, 6 ) ) ) } ) ) } ) ) @IsolatedYcmd( { 'extra_conf_globlist': [ '!*' ] } ) def test_LanguageServerCompleter_DelayedInitialization( self, app ): completer = MockCompleter() request_data = RequestWrap( BuildRequest( filepath = 'Test.ycmtest' ) ) with patch.object( completer, '_UpdateServerWithFileContents' ) as update: with patch.object( completer, '_PurgeFileFromServer' ) as purge: completer.OnFileReadyToParse( request_data ) completer.OnBufferUnload( request_data ) update.assert_not_called() purge.assert_not_called() # Simulate receipt of response and initialization complete initialize_response = { 'result': { 'capabilities': {} } } completer._HandleInitializeInPollThread( initialize_response ) update.assert_called_with( request_data ) purge.assert_called_with( 'Test.ycmtest' ) @IsolatedYcmd() def test_LanguageServerCompleter_RejectWorkspaceConfigurationRequest( self, app ): completer = MockCompleter() notification = { 'jsonrpc': '2.0', 'method': 'workspace/configuration', 'id': 1234, 'params': { 'items': [ { 'section': 'whatever' } ] } } with patch( 'ycmd.completers.language_server.' 'language_server_protocol.Reject' ) as reject: completer.GetConnection()._DispatchMessage( notification ) reject.assert_called_with( notification, lsp.Errors.MethodNotFound ) @IsolatedYcmd() def test_LanguageServerCompleter_ShowMessage( self, app ): completer = MockCompleter() request_data = RequestWrap( BuildRequest() ) notification = { 'method': 'window/showMessage', 'params': { 'message': 'this is a test' } } assert_that( completer.ConvertNotificationToMessage( request_data, notification ), has_entries( { 'message': 'this is a test' } ) ) @IsolatedYcmd() def test_LanguageServerCompleter_GetCompletions_List( self, app ): completer = MockCompleter() request_data = RequestWrap( BuildRequest() ) completion_response = { 'result': [ { 'label': 'test' } ] } resolve_responses = [ { 'result': { 'label': 'test' } }, ] with patch.object( completer, '_is_completion_provider', True ): with patch.object( completer.GetConnection(), 'GetResponse', side_effect = [ completion_response ] + resolve_responses ): assert_that( completer.ComputeCandidatesInner( request_data, 1 ), contains_exactly( has_items( has_entries( { 'insertion_text': 'test' } ) ), False ) ) @IsolatedYcmd() def test_LanguageServerCompleter_GetCompletions_UnsupportedKinds( self, app ): completer = MockCompleter() request_data = RequestWrap( BuildRequest() ) completion_response = { 'result': [ { 'label': 'test', 'kind': len( lsp.ITEM_KIND ) + 1 } ] } resolve_responses = [ { 'result': { 'label': 'test' } }, ] with patch.object( completer, '_is_completion_provider', True ): with patch.object( completer.GetConnection(), 'GetResponse', side_effect = [ completion_response ] + resolve_responses ): assert_that( completer.ComputeCandidatesInner( request_data, 1 ), contains_exactly( has_items( all_of( has_entry( 'insertion_text', 'test' ), is_not( has_key( 'kind' ) ) ) ), False ) ) @IsolatedYcmd() def test_LanguageServerCompleter_GetCompletions_NullNoError( self, app ): completer = MockCompleter() request_data = RequestWrap( BuildRequest() ) complete_response = { 'result': None } resolve_responses = [] with patch.object( completer, '_ServerIsInitialized', return_value = True ): with patch.object( completer, '_is_completion_provider', return_value = True ): with patch.object( completer.GetConnection(), 'GetResponse', side_effect = [ complete_response ] + resolve_responses ): assert_that( completer.ComputeCandidatesInner( request_data, 1 ), contains_exactly( empty(), False ) ) @IsolatedYcmd() def test_LanguageServerCompleter_GetCompletions_CompleteOnStartColumn( self, app ): completer = MockCompleter() completer._resolve_completion_items = False complete_response = { 'result': { 'items': [ { 'label': 'aa' }, { 'label': 'ac' }, { 'label': 'ab' } ], 'isIncomplete': False } } with patch.object( completer, '_is_completion_provider', True ): request_data = RequestWrap( BuildRequest( column_num = 2, contents = 'a', force_semantic = True ) ) with patch.object( completer.GetConnection(), 'GetResponse', return_value = complete_response ) as response: assert_that( completer.ComputeCandidates( request_data ), contains_exactly( has_entry( 'insertion_text', 'aa' ), has_entry( 'insertion_text', 'ab' ), has_entry( 'insertion_text', 'ac' ) ) ) # Nothing cached yet. assert_that( response.call_count, equal_to( 1 ) ) request_data = RequestWrap( BuildRequest( column_num = 3, contents = 'ab', force_semantic = True ) ) with patch.object( completer.GetConnection(), 'GetResponse', return_value = complete_response ) as response: assert_that( completer.ComputeCandidates( request_data ), contains_exactly( has_entry( 'insertion_text', 'ab' ) ) ) # Since the server returned a complete list of completions on the # starting column, no request should be sent to the server and the # cache should be used instead. assert_that( response.call_count, equal_to( 0 ) ) @IsolatedYcmd() def test_LanguageServerCompleter_GetCompletions_CompleteOnCurrentColumn( self, app ): completer = MockCompleter() completer._resolve_completion_items = False a_response = { 'result': { 'items': [ { 'label': 'aba' }, { 'label': 'aab' }, { 'label': 'aaa' } ], 'isIncomplete': True } } aa_response = { 'result': { 'items': [ { 'label': 'aab' }, { 'label': 'aaa' } ], 'isIncomplete': False } } aaa_response = { 'result': { 'items': [ { 'label': 'aaa' } ], 'isIncomplete': False } } ab_response = { 'result': { 'items': [ { 'label': 'abb' }, { 'label': 'aba' } ], 'isIncomplete': False } } with patch.object( completer, '_is_completion_provider', True ): # User starts by typing the character "a". request_data = RequestWrap( BuildRequest( column_num = 2, contents = 'a', force_semantic = True ) ) with patch.object( completer.GetConnection(), 'GetResponse', return_value = a_response ) as response: assert_that( completer.ComputeCandidates( request_data ), contains_exactly( has_entry( 'insertion_text', 'aaa' ), has_entry( 'insertion_text', 'aab' ), has_entry( 'insertion_text', 'aba' ) ) ) # Nothing cached yet. assert_that( response.call_count, equal_to( 1 ) ) # User types again the character "a". request_data = RequestWrap( BuildRequest( column_num = 3, contents = 'aa', force_semantic = True ) ) with patch.object( completer.GetConnection(), 'GetResponse', return_value = aa_response ) as response: assert_that( completer.ComputeCandidates( request_data ), contains_exactly( has_entry( 'insertion_text', 'aaa' ), has_entry( 'insertion_text', 'aab' ) ) ) # The server returned an incomplete list of completions the first time # so a new completion request should have been sent. assert_that( response.call_count, equal_to( 1 ) ) # User types the character "a" a third time. request_data = RequestWrap( BuildRequest( column_num = 4, contents = 'aaa', force_semantic = True ) ) with patch.object( completer.GetConnection(), 'GetResponse', return_value = aaa_response ) as response: assert_that( completer.ComputeCandidates( request_data ), contains_exactly( has_entry( 'insertion_text', 'aaa' ) ) ) # The server returned a complete list of completions the second time # and the new query is a prefix of the cached one ("aa" is a prefix of # "aaa") so the cache should be used. assert_that( response.call_count, equal_to( 0 ) ) # User deletes the third character. request_data = RequestWrap( BuildRequest( column_num = 3, contents = 'aa', force_semantic = True ) ) with patch.object( completer.GetConnection(), 'GetResponse', return_value = aa_response ) as response: assert_that( completer.ComputeCandidates( request_data ), contains_exactly( has_entry( 'insertion_text', 'aaa' ), has_entry( 'insertion_text', 'aab' ) ) ) # The new query is still a prefix of the cached one ("aa" is a prefix of # "aa") so the cache should again be used. assert_that( response.call_count, equal_to( 0 ) ) # User deletes the second character. request_data = RequestWrap( BuildRequest( column_num = 2, contents = 'a', force_semantic = True ) ) with patch.object( completer.GetConnection(), 'GetResponse', return_value = a_response ) as response: assert_that( completer.ComputeCandidates( request_data ), contains_exactly( has_entry( 'insertion_text', 'aaa' ), has_entry( 'insertion_text', 'aab' ), has_entry( 'insertion_text', 'aba' ) ) ) # The new query is not anymore a prefix of the cached one ("aa" is not a # prefix of "a") so the cache is invalidated and a new request is sent. assert_that( response.call_count, equal_to( 1 ) ) # Finally, user inserts the "b" character. request_data = RequestWrap( BuildRequest( column_num = 3, contents = 'ab', force_semantic = True ) ) with patch.object( completer.GetConnection(), 'GetResponse', return_value = ab_response ) as response: assert_that( completer.ComputeCandidates( request_data ), contains_exactly( has_entry( 'insertion_text', 'aba' ), has_entry( 'insertion_text', 'abb' ) ) ) # Last response was incomplete so the cache should not be used. assert_that( response.call_count, equal_to( 1 ) ) def test_FindOverlapLength( self ): for line, text, overlap in [ ( '', '', 0 ), ( 'a', 'a', 1 ), ( 'a', 'b', 0 ), ( 'abcdef', 'abcdefg', 6 ), ( 'abcdefg', 'abcdef', 0 ), ( 'aaab', 'aaab', 4 ), ( 'abab', 'ab', 2 ), ( 'aab', 'caab', 0 ), ( 'abab', 'abababab', 4 ), ( 'aaab', 'baaa', 1 ), ( 'test.', 'test.test', 5 ), ( 'test.', 'test', 0 ), ( 'test', 'testtest', 4 ), ( '', 'testtest', 0 ), ( 'test', '', 0 ), ( 'Some CoCo', 'CoCo Beans', 4 ), ( 'Have some CoCo and CoCo', 'CoCo and CoCo is here.', 13 ), ( 'TEST xyAzA', 'xyAzA test', 5 ), ]: with self.subTest( line = line, text = text, overlap = overlap ): assert_that( lsc.FindOverlapLength( line, text ), equal_to( overlap ) ) @IsolatedYcmd() def test_LanguageServerCompleter_GetCodeActions_CursorOnEmptyLine( self, app ): completer = MockCompleter() request_data = RequestWrap( BuildRequest( line_num = 1, column_num = 1, contents = '' ) ) fixit_response = { 'result': [] } with patch.object( completer, '_ServerIsInitialized', return_value = True ): with patch.object( completer.GetConnection(), 'GetResponse', side_effect = [ fixit_response ] ): with patch( 'ycmd.completers.language_server.language_server_protocol.' 'CodeAction' ) as code_action: assert_that( completer.GetCodeActions( request_data ), has_entry( 'fixits', empty() ) ) assert_that( # Range passed to lsp.CodeAction. # LSP requires to use the start of the next line as the end position # for a range that ends with a newline. code_action.call_args[ 0 ][ 2 ], has_entries( { 'start': has_entries( { 'line': 0, 'character': 0 } ), 'end': has_entries( { 'line': 1, 'character': 0 } ) } ) ) @IsolatedYcmd() def test_LanguageServerCompleter_Diagnostics_MaxDiagnosticsNumberExceeded( self, app ): completer = MockCompleter( { 'max_diagnostics_to_display': 1 } ) filepath = os.path.realpath( '/foo' ) uri = lsp.FilePathToUri( filepath ) request_data = RequestWrap( BuildRequest( line_num = 1, column_num = 1, filepath = filepath, contents = '' ) ) notification = { 'jsonrpc': '2.0', 'method': 'textDocument/publishDiagnostics', 'params': { 'uri': uri, 'diagnostics': [ { 'range': { 'start': { 'line': 3, 'character': 10 }, 'end': { 'line': 3, 'character': 11 } }, 'severity': 1, 'message': 'First error' }, { 'range': { 'start': { 'line': 4, 'character': 7 }, 'end': { 'line': 4, 'character': 13 } }, 'severity': 1, 'message': 'Second error [8]' } ] } } completer.GetConnection()._notifications.put( notification ) completer.HandleNotificationInPollThread( notification ) with patch.object( completer, '_ServerIsInitialized', return_value = True ): completer.OnFileReadyToParse( request_data ) # Simulate receipt of response and initialization complete initialize_response = { 'result': { 'capabilities': {} } } completer._HandleInitializeInPollThread( initialize_response ) diagnostics = contains_exactly( has_entries( { 'kind': equal_to( 'ERROR' ), 'location': LocationMatcher( filepath, 4, 11 ), 'location_extent': RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ), 'ranges': contains_exactly( RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ) ), 'text': equal_to( 'First error' ), 'fixit_available': False } ), has_entries( { 'kind': equal_to( 'ERROR' ), 'location': LocationMatcher( filepath, 1, 1 ), 'location_extent': RangeMatcher( filepath, ( 1, 1 ), ( 1, 1 ) ), 'ranges': contains_exactly( RangeMatcher( filepath, ( 1, 1 ), ( 1, 1 ) ) ), 'text': equal_to( 'Maximum number of diagnostics exceeded.' ), 'fixit_available': False } ) ) assert_that( completer.OnFileReadyToParse( request_data ), diagnostics ) assert_that( completer.PollForMessages( request_data ), contains_exactly( has_entries( { 'diagnostics': diagnostics, 'filepath': filepath } ) ) ) @IsolatedYcmd() def test_LanguageServerCompleter_Diagnostics_NoLimitToNumberOfDiagnostics( self, app ): completer = MockCompleter( { 'max_diagnostics_to_display': 0 } ) filepath = os.path.realpath( '/foo' ) uri = lsp.FilePathToUri( filepath ) request_data = RequestWrap( BuildRequest( line_num = 1, column_num = 1, filepath = filepath, contents = '' ) ) notification = { 'jsonrpc': '2.0', 'method': 'textDocument/publishDiagnostics', 'params': { 'uri': uri, 'diagnostics': [ { 'range': { 'start': { 'line': 3, 'character': 10 }, 'end': { 'line': 3, 'character': 11 } }, 'severity': 1, 'message': 'First error' }, { 'range': { 'start': { 'line': 4, 'character': 7 }, 'end': { 'line': 4, 'character': 13 } }, 'severity': 1, 'message': 'Second error' } ] } } completer.GetConnection()._notifications.put( notification ) completer.HandleNotificationInPollThread( notification ) with patch.object( completer, '_ServerIsInitialized', return_value = True ): completer.OnFileReadyToParse( request_data ) # Simulate receipt of response and initialization complete initialize_response = { 'result': { 'capabilities': {} } } completer._HandleInitializeInPollThread( initialize_response ) diagnostics = contains_exactly( has_entries( { 'kind': equal_to( 'ERROR' ), 'location': LocationMatcher( filepath, 4, 11 ), 'location_extent': RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ), 'ranges': contains_exactly( RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ) ), 'text': equal_to( 'First error' ), 'fixit_available': False } ), has_entries( { 'kind': equal_to( 'ERROR' ), 'location': LocationMatcher( filepath, 5, 8 ), 'location_extent': RangeMatcher( filepath, ( 5, 8 ), ( 5, 14 ) ), 'ranges': contains_exactly( RangeMatcher( filepath, ( 5, 8 ), ( 5, 14 ) ) ), 'text': equal_to( 'Second error' ), 'fixit_available': False } ) ) assert_that( completer.OnFileReadyToParse( request_data ), diagnostics ) assert_that( completer.PollForMessages( request_data ), contains_exactly( has_entries( { 'diagnostics': diagnostics, 'filepath': filepath } ) ) ) @IsolatedYcmd() def test_LanguageServerCompleter_GetHoverResponse( self, app ): completer = MockCompleter() request_data = RequestWrap( BuildRequest( line_num = 1, column_num = 1, contents = '' ) ) with patch.object( completer, '_ServerIsInitialized', return_value = True ): with patch.object( completer.GetConnection(), 'GetResponse', side_effect = [ { 'result': None } ] ): assert_that( calling( completer.GetHoverResponse ).with_args( request_data ), raises( NoHoverInfoException, NO_HOVER_INFORMATION ) ) with patch.object( completer.GetConnection(), 'GetResponse', side_effect = [ { 'result': { 'contents': 'test' } } ] ): assert_that( completer.GetHoverResponse( request_data ), equal_to( 'test' ) ) @IsolatedYcmd() def test_LanguageServerCompleter_Diagnostics_Code( self, app ): completer = MockCompleter() filepath = os.path.realpath( '/foo.cpp' ) uri = lsp.FilePathToUri( filepath ) request_data = RequestWrap( BuildRequest( line_num = 1, column_num = 1, filepath = filepath, contents = '' ) ) notification = { 'jsonrpc': '2.0', 'method': 'textDocument/publishDiagnostics', 'params': { 'uri': uri, 'diagnostics': [ { 'range': { 'start': { 'line': 3, 'character': 10 }, 'end': { 'line': 3, 'character': 11 } }, 'severity': 1, 'message': 'First error', 'code': 'random_error' }, { 'range': { 'start': { 'line': 3, 'character': 10 }, 'end': { 'line': 3, 'character': 11 } }, 'severity': 1, 'message': 'Second error', 'code': 8 }, { 'range': { 'start': { 'line': 3, 'character': 10 }, 'end': { 'line': 3, 'character': 11 } }, 'severity': 1, 'message': 'Third error', 'code': '8' } ] } } completer.GetConnection()._notifications.put( notification ) completer.HandleNotificationInPollThread( notification ) with patch.object( completer, 'ServerIsReady', return_value = True ): completer.OnFileReadyToParse( request_data ) # Simulate receipt of response and initialization complete initialize_response = { 'result': { 'capabilities': {} } } completer._HandleInitializeInPollThread( initialize_response ) diagnostics = contains_exactly( has_entries( { 'kind': equal_to( 'ERROR' ), 'location': LocationMatcher( filepath, 4, 11 ), 'location_extent': RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ), 'ranges': contains_exactly( RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ) ), 'text': equal_to( 'First error [random_error]' ), 'fixit_available': False } ), has_entries( { 'kind': equal_to( 'ERROR' ), 'location': LocationMatcher( filepath, 4, 11 ), 'location_extent': RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ), 'ranges': contains_exactly( RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ) ), 'text': equal_to( 'Second error [8]' ), 'fixit_available': False } ), has_entries( { 'kind': equal_to( 'ERROR' ), 'location': LocationMatcher( filepath, 4, 11 ), 'location_extent': RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ), 'ranges': contains_exactly( RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ) ), 'text': equal_to( 'Third error [8]' ), 'fixit_available': False } ) ) assert_that( completer.OnFileReadyToParse( request_data ), diagnostics ) assert_that( completer.PollForMessages( request_data ), contains_exactly( has_entries( { 'diagnostics': diagnostics, 'filepath': filepath } ) ) ) @IsolatedYcmd() def test_LanguageServerCompleter_Diagnostics_PercentEncodeCannonical( self, app ): completer = MockCompleter() filepath = os.path.realpath( '/foo?' ) uri = lsp.FilePathToUri( filepath ) assert_that( uri, ends_with( '%3F' ) ) request_data = RequestWrap( BuildRequest( line_num = 1, column_num = 1, filepath = filepath, contents = '' ) ) notification = { 'jsonrpc': '2.0', 'method': 'textDocument/publishDiagnostics', 'params': { 'uri': uri.replace( '%3F', '%3f' ), 'diagnostics': [ { 'range': { 'start': { 'line': 3, 'character': 10 }, 'end': { 'line': 3, 'character': 11 } }, 'severity': 1, 'message': 'First error' } ] } } completer.GetConnection()._notifications.put( notification ) completer.HandleNotificationInPollThread( notification ) with patch.object( completer, '_ServerIsInitialized', return_value = True ): completer.OnFileReadyToParse( request_data ) # Simulate receipt of response and initialization complete initialize_response = { 'result': { 'capabilities': {} } } completer._HandleInitializeInPollThread( initialize_response ) diagnostics = contains_exactly( has_entries( { 'kind': equal_to( 'ERROR' ), 'location': LocationMatcher( filepath, 4, 11 ), 'location_extent': RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ), 'ranges': contains_exactly( RangeMatcher( filepath, ( 4, 11 ), ( 4, 12 ) ) ), 'text': equal_to( 'First error' ), 'fixit_available': False } ) ) assert_that( completer.OnFileReadyToParse( request_data ), diagnostics ) assert_that( completer.PollForMessages( request_data ), contains_exactly( has_entries( { 'diagnostics': diagnostics, 'filepath': filepath } ) ) ) @IsolatedYcmd() @patch.object( completer, 'MESSAGE_POLL_TIMEOUT', 0.01 ) def test_LanguageServerCompleter_PollForMessages_ServerNotStarted( self, app ): server = MockCompleter() request_data = RequestWrap( BuildRequest() ) assert_that( server.PollForMessages( request_data ), equal_to( True ) ) @IsolatedYcmd() def test_LanguageServerCompleter_OnFileSave_BeforeServerReady( self, app ): completer = MockCompleter() request_data = RequestWrap( BuildRequest() ) with patch.object( completer, 'ServerIsReady', return_value = False ): with patch.object( completer.GetConnection(), 'SendNotification' ) as send_notification: completer.OnFileSave( request_data ) send_notification.assert_not_called() @IsolatedYcmd() def test_LanguageServerCompleter_OnFileReadyToParse_InvalidURI( self, app ): completer = MockCompleter() filepath = os.path.realpath( '/foo?' ) uri = lsp.FilePathToUri( filepath ) request_data = RequestWrap( BuildRequest( line_num = 1, column_num = 1, filepath = filepath, contents = '' ) ) notification = { 'jsonrpc': '2.0', 'method': 'textDocument/publishDiagnostics', 'params': { 'uri': uri, 'diagnostics': [ { 'range': { 'start': { 'line': 3, 'character': 10 }, 'end': { 'line': 3, 'character': 11 } }, 'severity': 1, 'message': 'First error' } ] } } completer.GetConnection()._notifications.put( notification ) completer.HandleNotificationInPollThread( notification ) with patch.object( completer, '_ServerIsInitialized', return_value = True ): completer.OnFileReadyToParse( request_data ) # Simulate receipt of response and initialization complete initialize_response = { 'result': { 'capabilities': {} } } completer._HandleInitializeInPollThread( initialize_response ) diagnostics = contains_exactly( has_entries( { 'kind': equal_to( 'ERROR' ), 'location': LocationMatcher( '', 4, 11 ), 'location_extent': RangeMatcher( '', ( 4, 11 ), ( 4, 12 ) ), 'ranges': contains_exactly( RangeMatcher( '', ( 4, 11 ), ( 4, 12 ) ) ), 'text': equal_to( 'First error' ), 'fixit_available': False } ) ) with patch( 'ycmd.completers.language_server.language_server_protocol.' 'UriToFilePath', side_effect = lsp.InvalidUriException ) as \ uri_to_filepath: assert_that( completer.OnFileReadyToParse( request_data ), diagnostics ) uri_to_filepath.assert_called() def test_LanguageServerCompleter_DistanceOfPointToRange_SingleLineRange( self ): # Point to the left of range. _Check_Distance( ( 0, 0 ), ( 0, 2 ), ( 0, 5 ) , 2 ) # Point inside range. _Check_Distance( ( 0, 4 ), ( 0, 2 ), ( 0, 5 ) , 0 ) # Point to the right of range. _Check_Distance( ( 0, 8 ), ( 0, 2 ), ( 0, 5 ) , 3 ) def test_LanguageServerCompleter_DistanceOfPointToRange_MultiLineRange( self ): # Point to the left of range. _Check_Distance( ( 0, 0 ), ( 0, 2 ), ( 3, 5 ) , 2 ) # Point inside range. _Check_Distance( ( 1, 4 ), ( 0, 2 ), ( 3, 5 ) , 0 ) # Point to the right of range. _Check_Distance( ( 3, 8 ), ( 0, 2 ), ( 3, 5 ) , 3 )
''' Created on August 2nd, 2018 Created By: Brandon Robinson (brobinson2111) ''' import logging """ Sets the provided logger for the application. :logger The logger object to be configured. """ def set(logger): logger.setLevel(logging.DEBUG) # create file handler which logs even debug messages file_handler = logging.FileHandler('application.log') file_handler.setLevel(logging.DEBUG) # create console handler with a debug level console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG) # create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') file_handler.setFormatter(formatter) console_handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(file_handler) logger.addHandler(console_handler)
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import calendar import logging import struct from datetime import datetime from google.appengine.ext import ndb from .testname import TestName from .jsonresults import JsonResults class StepResult(ndb.Model): """Stores results for a single buildbot step (e.g, browser_tests). The results for all test cases included in the step are stored in a bit-packed blob, for compactness. The TestName class maintains a global dict of all known test names, mapped to integer keys; this class stores the integer keys rather than test name strings. The layout of a test result entry in the packed struct is: test name key: unsigned integer, 4 bytes test run time: float, 4 bytes expected result: unsigned integer, 1 byte number of actual results: unsigned integer, 1 byte actual results: array of 1-byte unsigned integers """ # Test status constants (PASS, FAIL, SKIP, NOTRUN, CRASH, TIMEOUT, MISSING, LEAK, SLOW, TEXT, AUDIO, IMAGE, IMAGETEXT, REBASELINE, NEEDSREBASELINE, NEEDSMANUALREBASELINE) = range(16) STR2RESULT = { 'PASS': PASS, 'FAIL': FAIL, 'SKIP': SKIP, 'NOTRUN': NOTRUN, 'CRASH': CRASH, 'TIMEOUT': TIMEOUT, 'MISSING': MISSING, 'LEAK': LEAK, 'SLOW': SLOW, 'TEXT': TEXT, 'AUDIO': AUDIO, 'IMAGE': IMAGE, 'IMAGETEXT': IMAGETEXT, 'REBASELINE': REBASELINE, 'NEEDSREBASELINE': NEEDSREBASELINE, 'NEEDSMANUALREBASELINE': NEEDSMANUALREBASELINE, } RESULT2STR = [ 'PASS', 'FAIL', 'SKIP', 'NOTRUN', 'CRASH', 'TIMEOUT', 'MISSING', 'LEAK', 'SLOW', 'TEXT', 'AUDIO', 'IMAGE', 'IMAGETEXT', 'REBASELINE', 'NEEDSREBASELINE', 'NEEDSMANUALREBASELINE', ] # This is used as an argument to struct.pack to implement the first four # fields in the struct layout described above (up to number of actual # results). The array of actual results is append with a format of # '<n>B', where <n> is the number of actual results. TEST_PACK_FORMAT = '>IfBB' TEST_PACK_FORMAT_SIZE = struct.calcsize(TEST_PACK_FORMAT) master = ndb.StringProperty('m') builder_name = ndb.StringProperty('b') build_number = ndb.IntegerProperty('n') test_type = ndb.StringProperty('tp') blink_revision = ndb.StringProperty('br') chromium_revision = ndb.StringProperty('cr') version = ndb.IntegerProperty('v') time = ndb.DateTimeProperty('t') tests = ndb.BlobProperty('r') @classmethod def _encodeTests(cls, test_json): result = '' for test_name, test_result in test_json.iteritems(): try: test_name_key = TestName.getKey(test_name) except: # pragma: no cover logging.error('Could not get global key for test name %s', test_name) raise try: expected = cls.STR2RESULT[test_result['expected']] actual = tuple( [cls.STR2RESULT[a] for a in test_result['actual'].split()][:255]) elapsed = float(test_result['time']) except: # pragma: no cover logging.error('Could not parse numeric values from test result json') raise try: result += struct.pack( cls.TEST_PACK_FORMAT, test_name_key, elapsed, expected, len(actual)) result += struct.pack('%dB' % len(actual), *actual) except: # pragma: no cover logging.error('Could not struct pack test result') raise return result def _decodeTests(self): results = {} failures = [0] * len(self.RESULT2STR) i = 0 while i + self.TEST_PACK_FORMAT_SIZE < len(self.tests): test_name_key, elapsed, expected, num_actual = struct.unpack( self.TEST_PACK_FORMAT, self.tests[i:i+self.TEST_PACK_FORMAT_SIZE]) i += self.TEST_PACK_FORMAT_SIZE assert i + num_actual <= len(self.tests) test_name = TestName.getTestName(test_name_key) actual = struct.unpack('%dB' % num_actual, self.tests[i:i+num_actual]) i += num_actual for a in actual: failures[a] += 1 results[str(test_name)] = { 'expected': self.RESULT2STR[expected], 'actual': ' '.join([self.RESULT2STR[a] for a in actual]), 'time': str(elapsed) } assert i == len(self.tests) return results, failures @classmethod def fromJson(cls, master, test_type, data): """Instantiate a new StepResult from parsed json. The expected json schema is what full-results.json contains. Note that the returned StepResult instance has NOT been saved to the datastore. """ return cls( master=master, builder_name=data['builder_name'], build_number=int(data['build_number']), test_type=test_type, blink_revision=data['blink_revision'], chromium_revision=data['chromium_revision'], version=int(data['version']), time=datetime.utcfromtimestamp(float(data['seconds_since_epoch'])), tests=cls._encodeTests(data['tests']), ) def toJson(self): """Convert a StepResult object to parsed json. The json schema is the same as what full-results.json contains. """ tests, failures = self._decodeTests() failures = dict(zip(self.RESULT2STR, failures)) data = { 'builder_name': self.builder_name, 'build_number': str(self.build_number), 'blink_revision': self.blink_revision, 'chromium_revision': self.chromium_revision, 'version': str(self.version), 'seconds_since_epoch': str(calendar.timegm(self.time.utctimetuple())), 'tests': tests, 'num_failures_by_type': failures } return (self.master, self.test_type, data) @classmethod def fromTestFile(cls, test_file): """Convert a TestFile object to a StepResult object. The returned StepResult has NOT been saved to the datastore. """ if not test_file.data: test_file.load_data() # pragma: no cover j = JsonResults.load_json(test_file.data) return cls.fromJson(test_file.master, test_file.test_type, j)
#!python # Author: Chris Huskey """ Module of functions for working with our AWS S3 buckets for video storage. """ # Import libraries we will use: import boto3 # boto3 is AWS's Python SDK, by AWS from botocore.exceptions import ClientError from dotenv import load_dotenv import json import logging import os # ------------------------------------------------------------------------- # SETUP: # Get access info from .env file: load_dotenv() AWS_ACCESS_KEY_ID =os.getenv("AWS_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") AWS_DEFAULT_REGION = os.getenv("AWS_DEFAULT_REGION") # os.environ['AWS_DEFAULT_REGION'] = AWS_DEFAULT_REGION S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") # Create an S3 Service Resource: s3 = boto3.resource('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_DEFAULT_REGION ) # Make an S3 client with boto3: s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_DEFAULT_REGION ) # ------------------------------------------------------------------------- # Function that uploads the specified file to the specified S3 bucket: def s3_download_file(bucket, filename, key=None): """ Download the specified file from the specified S3 bucket. Parameters: bucket: Name of the bucket to get the file from filename: File to download key: S3 key of the file to download Returns: True if file was downloaded, else False. """ # If S3 key and/or object_name were not specified, fill in based on filename: if key is None: key = 'videos/' + filename # Upload the file to the specified S3 bucket: try: response = s3_client.download_file(Bucket=bucket, Filename=filename, Key=key) except ClientError as e: logging.error(e) return False return True # ------------------------------------------------------------------------- # Function that uploads the specified file to the specified S3 bucket: def s3_upload_file(bucket, filename, key=None): """ Upload a file to an S3 bucket. Parameters: bucket: Name of the bucket to upload to filename: File to upload key: S3 key to upload the file as (e.g., 'videos/<file-name>') Returns: True if file was uploaded, else False. """ # If S3 key and/or object_name were not specified, fill in based on filename: if key is None: key = 'videos/' + filename # Upload the file to the specified S3 bucket: try: response = s3_client.upload_file(Bucket=bucket, Filename=filename, Key=key) except ClientError as e: logging.error(e) return False return True
IBBQ_MAC = "4C:24:98:D0:xx:xx" influx_host = "influx.mycooldomain.com" influx_db = "annoying_internet_devices"
from profess.Profess import * from profess.JSONparser import * #domain = "http://localhost:8080/v1/" domain = "http://192.168.99.100:8080/v1/" dummyInputData = open('inputData.json').read() jsonInputDataFile=json.loads(dummyInputData) IEEE13=open("IEEE13_changed.json").read() jsonIEEE = json.loads(IEEE13) modelDataFile = open('model.json').read() #p1 = Profess("http://localhost:8080/v1/", dummyInputData) p1 = Profess(domain) dummyprofile= [3] * 24 dummyLoads=[] dummyPrice=[] dummyPV=[] p1.json_parser.set_topology(jsonIEEE) dummyPVdict=[] print("p1.json_parser.get_node_name_list(): " + str(p1.json_parser.get_node_name_list())) for element in p1.json_parser.get_node_name_list(): dummyDict={element:{element+".1": copy.deepcopy(dummyprofile),element+".2": copy.deepcopy(dummyprofile),element+".3": copy.deepcopy(dummyprofile)}} dummyLoads.append(dummyDict) dummyPVdict={element:{element+".1.2.3": copy.deepcopy(dummyprofile)}} dummyPV.append(dummyPVdict) dummyPrice = copy.deepcopy(dummyprofile) element="671" dummyDict = {element: [{element + ".1.2.3": copy.deepcopy(dummyprofile)}]} print("dummyDict: " + str(dummyDict)) print("dummyLoads " + str(dummyLoads)) print("dummyPV " + str(dummyPV)) print("dummyPrice " + str(dummyPrice)) print("dummyLoads[1] " + str(dummyLoads[1])) print("dummyLoads len: " + str(len(dummyLoads))) dummyLoads[1]= dummyDict dummyGESSCON=[{'633': {'633.1.2.3': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}}, {'671': {'671.1.2.3': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]}}] #print(dummyLoads) #print(dummyPV) #print(dummyPrice) #print(p1.json_parser.get_node_element_list()) p1.set_up_profess(jsonIEEE, dummyLoads, dummyPV, dummyPrice, dummyGESSCON) #print(p1.json_parser.get_node_element_list()) p1.start_all() #print(p1.dataList) print(p1.wait_and_get_output()) soc_list=[{"633":{"SoC":0.5}},{"671":{"SoC":0.4}},{"634":{"SoC":0.2}}] p1.update(dummyLoads, dummyPV, dummyPrice,soc_list,dummyGESSCON) print(p1.dataList) #print(sorted(test)) #p1.translate_output(test)
import subprocess import os import argparse import pipes # Use this script to download files from ftp links. # It contains a dictionary {ID: ftp_path} from Metabolights and # Metabolomics Workbench, so you only have to specify # an id. # Otherwise you can to specify an http or ftp link yourself # User defined variables s3_path = "s3://almlab.bucket/isaac/revo_healthcare_data/" def download_data(ftp_path, study, cwd, s3_path=None, to_s3=False): ''' GOAL - Given an {ftp_path} and unique {study_name}, download all files associated with that ftp path to {cwd}. If you want, send those files to s3 ({to_s3}=True) ''' directory = '{cwd}/{study}/'.format(cwd=cwd, study=study) if to_s3: # check to see if already downloaded # prompt if they want to download it. ls_s3 = 'nohup aws s3 ls {s3_path}{study} &'.format(s3_path=s3_path, study=study) check_bucket = subprocess.call(ls_s3, shell=True) if check_bucket == 0: # aws returns 1 if error, zero otherwise response = raw_input('Bucket for {study} already exists.' 'Do you want to overwrite it? (y/n):'.format( study=study)) if response == 'y': pass if response == 'n': print 'Ending script' return os.mkdir(directory) # Recursively download all files from ftp path into your directory # pipes.quote puts quotes around a path so that bash will # play nicely with whitespace and weird characters ik '()' # cut-dirs removes parts of the ftp url that would otherwise # be assigned to directories (very annoying) # Always three entries when split [ftp:, '', 'hostname'] # that we handle with -nH, ftp://hostname.org/path/to/things/* # Note that we also have a /*, so we exclude the last / when counting # directorystructures to ignore url_dirs_to_cut = len(ftp_path.split('/')[3:-1]) print url_dirs_to_cut wget_command = 'nohup wget -r -nH --cut-dirs={cut} '\ '{ftp} -P {dir} --no-verbose &'.format( ftp=ftp_path, dir=pipes.quote(directory), cut=url_dirs_to_cut) subprocess.call(wget_command, shell=True) if to_s3: send_s3 = 'nohup aws s3 sync {dir} {s3_path}{study}'.format( dir=pipes.quote(directory), s3_path=s3_path, study=study) subprocess.call(send_s3, shell=True) parser = argparse.ArgumentParser() parser.add_argument('-s', '--study', help='Required. Name of the study, i.e. MTBLS315, ' 'or ST000392') parser.add_argument('-p', '--path', help='Optional. Base directory Where you want to download' 'files to.' '(default is current directory). Will make a new directory') parser.add_argument('-s3', help='Optional. Path to an s3 storage bucket ' 'where you want files deposited') parser.add_argument('-ftp', help='Optional. Path to an ftp link.' 'All files will be downloaded from that link') args = parser.parse_args() print args.study print args.path print args.s3 print args.ftp # Make a dictionary of ftp links to download # These are the directory names and paths to download # Unzipped files, copy all of them lights = 'ftp://ftp.ebi.ac.uk/pub/databases/metabolights/studies/public/' bench = 'ftp://www.metabolomicsworkbench.org/Studies/' studies = {'MTBLS200': lights+'MTBLS200/*', 'ST000392': bench+'ST000392.zip', 'MTBLS191': lights+'MTBLS191/*', 'ST000383': bench+'ST000383.zip', 'MTBLS105': lights+'MTBLS105/*', 'ST000397': bench + 'ST000397.7z', 'ST000368': bench + 'ST000368.zip', 'ST000369': bench + 'ST000369.zip', 'ST000385': bench + 'ST000385.zip', 'ST000386': bench + 'ST000386.zip', 'ST000062': bench + 'ST000062.zip', 'ST000063': bench + 'ST000063.zip', 'ST000396': bench + 'ST000396.7z', 'ST000381': bench + 'ST000381.zip', 'ST000382': bench + 'ST000382.zip', 'ST000329': bench + 'ST000329.zip', 'ST000388': bench + 'ST000388.zip', 'ST000389': bench + 'ST000389.zip', 'MTBLS72': lights + 'MTBLS72/*', 'MTBLS124': lights + 'MTBLS124/*', 'ST000421': bench + 'ST000421.zip', 'ST000422': bench + 'ST000422.zip', 'ST000578': bench + 'ST000578.zip', 'ST000041': bench + 'ST000041.zip', 'MTBLS146': lights + 'MTBLS146/*', 'MTBLS266': lights + 'MTBLS266/*', 'MTBLS264': lights + 'MTBLS264/*', 'ST000355': bench + 'ST000355.zip', 'ST000356': bench + 'ST000356.zip', 'MTBLS92': lights + 'MTBLS92/*', 'MTBLS90': lights + 'MTBLS90/*', 'MTBLS93': lights + 'MTBLS93/*', 'ST000284': bench + 'ST000284.zip', 'MTBLS253': lights + 'MTBLS253/*', 'MTBLS280': lights + 'MTBLS280/*', 'MTBLS279': lights + 'MTBLS279/*', 'MTBLS19': lights + 'MTBLS19/*', 'MTBLS17': lights + 'MTBLS17/*', 'MTBLS218': lights + 'MTBLS218/*', 'MTBLS20': lights + 'MTBLS20/*', 'MTBLS404': lights + 'MTBLS404/*', 'MTBLS148': lights + 'MTBLS148/*', 'ST000450': bench + 'ST000450.zip', 'MTBLS364': lights + 'MTBLS364/*', 'MTBLS315': lights + 'MTBLS315/*', 'ST000608': bench + 'ST000608.zip', 'MTBLS352': lights + 'MTBLS352/*', 'MTBLS358': lights + 'MTBLS358/*', 'ST000284': bench + 'ST000284.zip', 'ST000405': bench + 'ST000405.zip', 'MTBLS354': lights + 'MTBLS354/*', 'MTBLS28': lights + 'MTBLS28/*', 'MTBLS427': lights + 'MTBLS427/*', 'ST000291': bench + 'ST000291.zip', 'ST000292': bench + 'ST000292.zip', 'ST000046': bench + 'ST000046.7z', 'ST000091': bench + 'ST000091.zip', 'ST000045': bench + 'ST000045.7z', } # If they're giving you a study name, but not an ftp address, and you can't # find the name in your dictionary, raise an error if (args.study is not None) and \ (args.study not in studies.keys()) \ and (not args.ftp): raise NameError("Couldn't find the study you were looking for. Add it to " "the dictionary, or specify your own ftp link") # If they gave an ftp link, use it. If not, find it in the {studies} dict if args.ftp: ftp_path = args.ftp else: ftp_path = studies[args.study] if args.path: cwd = args.path else: cwd = os.getcwd() print cwd # If you gave an s3 path, send the data to s3 as well if args.s3: download_data(ftp_path, args.study, cwd, args.s3, to_s3=True) else: download_data(ftp_path, args.study, cwd)
from unicodedata import normalize, category def strip_tones(w): """Removes tones form a word.""" s = normalize("NFD", w) return "".join(c for c in s if category(c) != "Mn")
#!/usr/bin/env python3 import sys, csv, argparse def read_csv(f): with open(f) as fd: content = fd.readlines()[1:] return list(csv.DictReader(content)) def analyze_file(f, potential_errors=False): """Analyze result file {f} (which should be a .csv file). Print per-solver analysis, and errors which happen quickly (true errors, not timeouts). """ print(f"## analyze `{f}`") table = read_csv(f) print(f"read {len(table)} records") if not table: return provers = [x for x in table[0].keys() if ".time" not in x and x != "problem"] print(f"provers: {provers}") sat = {} unsat = {} unknown = {} error = {} if potential_errors: quick_errors = [] for row in table: for prover in provers: res = row[prover] if res == 'unsat': unsat[prover] = 1 + unsat.get(prover, 0) elif res == 'sat': sat[prover] = 1 + sat.get(prover, 0) elif res == 'unknown': unknown[prover] = 1 + unknown.get(prover, 0) elif res == 'error': error[prover] = 1 + error.get(prover, 0) time = float(row[prover + '.time']) if potential_errors and time < 5: quick_errors.append((prover, row['problem'], time)) else: print(f"unknown result for {prover} on {row}: {res}") for prover in provers: print(f"{prover:{12}}: sat {sat.get(prover,0):6}" \ f" | unsat {unsat.get(prover,0):6}" \ f" | solved {sat.get(prover,0)+unsat.get(prover,0):6}" \ f" | unknown {unknown.get(prover,0):6}" \ f" | error {error.get(prover,0):6}") if potential_errors: for (prover,filename,time) in quick_errors: print(f"potential error: {prover} on `{filename}` after {time}") def main(files, potential_errors=False) -> (): for f in files: analyze_file(f, potential_errors=potential_errors) if __name__ == "__main__": p = argparse.ArgumentParser('analyze result files') p.add_argument('files', nargs='+', help='files to analyze') p.add_argument('--errors', dest='potential_errors', \ action='store_true', help='detect potential errors') args = p.parse_args() main(files=args.files, potential_errors=args.potential_errors)
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Optional import numpy as np import omegaconf import torch import transformers import wandb from hydra.utils import instantiate from omegaconf import DictConfig from pytorch_lightning import Trainer from pytorch_lightning.loggers import WandbLogger from torch import nn from torch.nn import functional as F from transformers import AlbertTokenizer from nemo.collections.tts.helpers.helpers import ( binarize_attention_parallel, get_mask_from_lengths, plot_pitch_to_numpy, plot_spectrogram_to_numpy, ) from nemo.collections.tts.losses.aligner_loss import BinLoss, ForwardSumLoss from nemo.collections.tts.models.base import SpectrogramGenerator from nemo.collections.tts.modules.fastpitch import average_pitch, regulate_len from nemo.collections.tts.torch.tts_tokenizers import EnglishCharsTokenizer, EnglishPhonemesTokenizer from nemo.core import Exportable from nemo.core.classes.common import PretrainedModelInfo, typecheck from nemo.core.neural_types.elements import ( LengthsType, LogprobsType, MelSpectrogramType, ProbsType, RegressionValuesType, TokenDurationType, TokenIndex, TokenLogDurationType, ) from nemo.core.neural_types.neural_type import NeuralType from nemo.utils import logging, model_utils class MixerTTSModel(SpectrogramGenerator, Exportable): """Mixer-TTS and Mixer-TTS-X models (https://arxiv.org/abs/2110.03584) that is used to generate mel spectrogram from text.""" def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None): # Convert to Hydra 1.0 compatible DictConfig cfg = model_utils.convert_model_config_to_dict_config(cfg) cfg = model_utils.maybe_update_config_version(cfg) # Setup normalizer self.normalizer = None self.text_normalizer_call = None self.text_normalizer_call_kwargs = {} self._setup_normalizer(cfg) # Setup tokenizer self.tokenizer = None self._setup_tokenizer(cfg) assert self.tokenizer is not None num_tokens = len(self.tokenizer.tokens) self.tokenizer_pad = self.tokenizer.pad self.tokenizer_unk = self.tokenizer.oov super().__init__(cfg=cfg, trainer=trainer) self.pitch_loss_scale = cfg.pitch_loss_scale self.durs_loss_scale = cfg.durs_loss_scale self.mel_loss_scale = cfg.mel_loss_scale self.aligner = instantiate(cfg.alignment_module) self.forward_sum_loss = ForwardSumLoss() self.bin_loss = BinLoss() self.add_bin_loss = False self.bin_loss_scale = 0.0 self.bin_loss_start_ratio = cfg.bin_loss_start_ratio self.bin_loss_warmup_epochs = cfg.bin_loss_warmup_epochs self.cond_on_lm_embeddings = cfg.get("cond_on_lm_embeddings", False) if self.cond_on_lm_embeddings: self.lm_padding_value = ( self._train_dl.dataset.lm_padding_value if self._train_dl is not None else self._get_lm_padding_value(cfg.lm_model) ) self.lm_embeddings = self._get_lm_embeddings(cfg.lm_model) self.lm_embeddings.weight.requires_grad = False self.self_attention_module = instantiate( cfg.self_attention_module, n_lm_tokens_channels=self.lm_embeddings.weight.shape[1] ) self.encoder = instantiate(cfg.encoder, num_tokens=num_tokens, padding_idx=self.tokenizer_pad) self.symbol_emb = self.encoder.to_embed self.duration_predictor = instantiate(cfg.duration_predictor) self.pitch_mean, self.pitch_std = float(cfg.pitch_mean), float(cfg.pitch_std) self.pitch_predictor = instantiate(cfg.pitch_predictor) self.pitch_emb = instantiate(cfg.pitch_emb) self.preprocessor = instantiate(cfg.preprocessor) self.decoder = instantiate(cfg.decoder) self.proj = nn.Linear(self.decoder.d_model, cfg.n_mel_channels) def _setup_normalizer(self, cfg): if "text_normalizer" in cfg: normalizer_kwargs = {} if "whitelist" in cfg.text_normalizer: normalizer_kwargs["whitelist"] = self.register_artifact( 'text_normalizer.whitelist', cfg.text_normalizer.whitelist ) self.normalizer = instantiate(cfg.text_normalizer, **normalizer_kwargs) self.text_normalizer_call = self.normalizer.normalize if "text_normalizer_call_kwargs" in cfg: self.text_normalizer_call_kwargs = cfg.text_normalizer_call_kwargs def _setup_tokenizer(self, cfg): text_tokenizer_kwargs = {} if "g2p" in cfg.text_tokenizer: g2p_kwargs = {} if "phoneme_dict" in cfg.text_tokenizer.g2p: g2p_kwargs["phoneme_dict"] = self.register_artifact( 'text_tokenizer.g2p.phoneme_dict', cfg.text_tokenizer.g2p.phoneme_dict, ) if "heteronyms" in cfg.text_tokenizer.g2p: g2p_kwargs["heteronyms"] = self.register_artifact( 'text_tokenizer.g2p.heteronyms', cfg.text_tokenizer.g2p.heteronyms, ) text_tokenizer_kwargs["g2p"] = instantiate(cfg.text_tokenizer.g2p, **g2p_kwargs) self.tokenizer = instantiate(cfg.text_tokenizer, **text_tokenizer_kwargs) def _get_lm_model_tokenizer(self, lm_model="albert"): if getattr(self, "_lm_model_tokenizer", None) is not None: return self._lm_model_tokenizer if self._train_dl is not None and self._train_dl.dataset is not None: self._lm_model_tokenizer = self._train_dl.dataset.lm_model_tokenizer if lm_model == "albert": self._lm_model_tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') else: raise NotImplementedError( f"{lm_model} lm model is not supported. Only albert is supported at this moment." ) return self._lm_model_tokenizer def _get_lm_embeddings(self, lm_model="albert"): if lm_model == "albert": return transformers.AlbertModel.from_pretrained('albert-base-v2').embeddings.word_embeddings else: raise NotImplementedError( f"{lm_model} lm model is not supported. Only albert is supported at this moment." ) def _get_lm_padding_value(self, lm_model="albert"): if lm_model == "albert": return transformers.AlbertTokenizer.from_pretrained('albert-base-v2')._convert_token_to_id('<pad>') else: raise NotImplementedError( f"{lm_model} lm model is not supported. Only albert is supported at this moment." ) def _metrics( self, true_durs, true_text_len, pred_durs, true_pitch, pred_pitch, true_spect=None, pred_spect=None, true_spect_len=None, attn_logprob=None, attn_soft=None, attn_hard=None, attn_hard_dur=None, ): text_mask = get_mask_from_lengths(true_text_len) mel_mask = get_mask_from_lengths(true_spect_len) loss = 0.0 # Dur loss and metrics durs_loss = F.mse_loss(pred_durs, (true_durs + 1).float().log(), reduction='none') durs_loss = durs_loss * text_mask.float() durs_loss = durs_loss.sum() / text_mask.sum() durs_pred = pred_durs.exp() - 1 durs_pred = torch.clamp_min(durs_pred, min=0) durs_pred = durs_pred.round().long() acc = ((true_durs == durs_pred) * text_mask).sum().float() / text_mask.sum() * 100 acc_dist_1 = (((true_durs - durs_pred).abs() <= 1) * text_mask).sum().float() / text_mask.sum() * 100 acc_dist_3 = (((true_durs - durs_pred).abs() <= 3) * text_mask).sum().float() / text_mask.sum() * 100 pred_spect = pred_spect.transpose(1, 2) # Mel loss mel_loss = F.mse_loss(pred_spect, true_spect, reduction='none').mean(dim=-2) mel_loss = mel_loss * mel_mask.float() mel_loss = mel_loss.sum() / mel_mask.sum() loss = loss + self.durs_loss_scale * durs_loss + self.mel_loss_scale * mel_loss # Aligner loss bin_loss, ctc_loss = None, None ctc_loss = self.forward_sum_loss(attn_logprob=attn_logprob, in_lens=true_text_len, out_lens=true_spect_len) loss = loss + ctc_loss if self.add_bin_loss: bin_loss = self.bin_loss(hard_attention=attn_hard, soft_attention=attn_soft) loss = loss + self.bin_loss_scale * bin_loss true_avg_pitch = average_pitch(true_pitch.unsqueeze(1), attn_hard_dur).squeeze(1) # Pitch loss pitch_loss = F.mse_loss(pred_pitch, true_avg_pitch, reduction='none') # noqa pitch_loss = (pitch_loss * text_mask).sum() / text_mask.sum() loss = loss + self.pitch_loss_scale * pitch_loss return loss, durs_loss, acc, acc_dist_1, acc_dist_3, pitch_loss, mel_loss, ctc_loss, bin_loss @torch.jit.unused def run_aligner(self, text, text_len, text_mask, spect, spect_len, attn_prior): text_emb = self.symbol_emb(text) attn_soft, attn_logprob = self.aligner( spect, text_emb.permute(0, 2, 1), mask=text_mask == 0, attn_prior=attn_prior, ) attn_hard = binarize_attention_parallel(attn_soft, text_len, spect_len) attn_hard_dur = attn_hard.sum(2)[:, 0, :] assert torch.all(torch.eq(attn_hard_dur.sum(dim=1), spect_len)) return attn_soft, attn_logprob, attn_hard, attn_hard_dur @typecheck( input_types={ "text": NeuralType(('B', 'T_text'), TokenIndex()), "text_len": NeuralType(('B',), LengthsType()), "pitch": NeuralType(('B', 'T_audio'), RegressionValuesType(), optional=True), "spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType(), optional=True), "spect_len": NeuralType(('B',), LengthsType(), optional=True), "attn_prior": NeuralType(('B', 'T_spec', 'T_text'), ProbsType(), optional=True), "lm_tokens": NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True), }, output_types={ "pred_spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()), "durs_predicted": NeuralType(('B', 'T_text'), TokenDurationType()), "log_durs_predicted": NeuralType(('B', 'T_text'), TokenLogDurationType()), "pitch_predicted": NeuralType(('B', 'T_text'), RegressionValuesType()), "attn_soft": NeuralType(('B', 'S', 'T_spec', 'T_text'), ProbsType()), "attn_logprob": NeuralType(('B', 'S', 'T_spec', 'T_text'), LogprobsType()), "attn_hard": NeuralType(('B', 'S', 'T_spec', 'T_text'), ProbsType()), "attn_hard_dur": NeuralType(('B', 'T_text'), TokenDurationType()), }, ) def forward(self, text, text_len, pitch=None, spect=None, spect_len=None, attn_prior=None, lm_tokens=None): if self.training: assert pitch is not None text_mask = get_mask_from_lengths(text_len).unsqueeze(2) enc_out, enc_mask = self.encoder(text, text_mask) # Aligner attn_soft, attn_logprob, attn_hard, attn_hard_dur = None, None, None, None if spect is not None: attn_soft, attn_logprob, attn_hard, attn_hard_dur = self.run_aligner( text, text_len, text_mask, spect, spect_len, attn_prior ) if self.cond_on_lm_embeddings: lm_emb = self.lm_embeddings(lm_tokens) lm_features = self.self_attention_module( enc_out, lm_emb, lm_emb, q_mask=enc_mask.squeeze(2), kv_mask=lm_tokens != self.lm_padding_value ) # Duration predictor log_durs_predicted = self.duration_predictor(enc_out, enc_mask) durs_predicted = torch.clamp(log_durs_predicted.exp() - 1, 0) # Pitch predictor pitch_predicted = self.pitch_predictor(enc_out, enc_mask) # Avg pitch, add pitch_emb if not self.training: if pitch is not None: pitch = average_pitch(pitch.unsqueeze(1), attn_hard_dur).squeeze(1) pitch_emb = self.pitch_emb(pitch.unsqueeze(1)) else: pitch_emb = self.pitch_emb(pitch_predicted.unsqueeze(1)) else: pitch = average_pitch(pitch.unsqueeze(1), attn_hard_dur).squeeze(1) pitch_emb = self.pitch_emb(pitch.unsqueeze(1)) enc_out = enc_out + pitch_emb.transpose(1, 2) if self.cond_on_lm_embeddings: enc_out = enc_out + lm_features # Regulate length len_regulated_enc_out, dec_lens = regulate_len(attn_hard_dur, enc_out) dec_out, dec_lens = self.decoder(len_regulated_enc_out, get_mask_from_lengths(dec_lens).unsqueeze(2)) pred_spect = self.proj(dec_out) return ( pred_spect, durs_predicted, log_durs_predicted, pitch_predicted, attn_soft, attn_logprob, attn_hard, attn_hard_dur, ) def infer( self, text, text_len=None, text_mask=None, spect=None, spect_len=None, attn_prior=None, use_gt_durs=False, lm_tokens=None, pitch=None, ): if text_mask is None: text_mask = get_mask_from_lengths(text_len).unsqueeze(2) enc_out, enc_mask = self.encoder(text, text_mask) # Aligner attn_hard_dur = None if use_gt_durs: attn_soft, attn_logprob, attn_hard, attn_hard_dur = self.run_aligner( text, text_len, text_mask, spect, spect_len, attn_prior ) if self.cond_on_lm_embeddings: lm_emb = self.lm_embeddings(lm_tokens) lm_features = self.self_attention_module( enc_out, lm_emb, lm_emb, q_mask=enc_mask.squeeze(2), kv_mask=lm_tokens != self.lm_padding_value ) # Duration predictor log_durs_predicted = self.duration_predictor(enc_out, enc_mask) durs_predicted = torch.clamp(log_durs_predicted.exp() - 1, 0) # Avg pitch, pitch predictor if use_gt_durs and pitch is not None: pitch = average_pitch(pitch.unsqueeze(1), attn_hard_dur).squeeze(1) pitch_emb = self.pitch_emb(pitch.unsqueeze(1)) else: pitch_predicted = self.pitch_predictor(enc_out, enc_mask) pitch_emb = self.pitch_emb(pitch_predicted.unsqueeze(1)) # Add pitch emb enc_out = enc_out + pitch_emb.transpose(1, 2) if self.cond_on_lm_embeddings: enc_out = enc_out + lm_features if use_gt_durs: if attn_hard_dur is not None: len_regulated_enc_out, dec_lens = regulate_len(attn_hard_dur, enc_out) else: raise NotImplementedError else: len_regulated_enc_out, dec_lens = regulate_len(durs_predicted, enc_out) dec_out, _ = self.decoder(len_regulated_enc_out, get_mask_from_lengths(dec_lens).unsqueeze(2)) pred_spect = self.proj(dec_out) return pred_spect def on_train_epoch_start(self): bin_loss_start_epoch = np.ceil(self.bin_loss_start_ratio * self._trainer.max_epochs) # Add bin loss when current_epoch >= bin_start_epoch if not self.add_bin_loss and self.current_epoch >= bin_loss_start_epoch: logging.info(f"Using hard attentions after epoch: {self.current_epoch}") self.add_bin_loss = True if self.add_bin_loss: self.bin_loss_scale = min((self.current_epoch - bin_loss_start_epoch) / self.bin_loss_warmup_epochs, 1.0) def training_step(self, batch, batch_idx): attn_prior, lm_tokens = None, None if self.cond_on_lm_embeddings: audio, audio_len, text, text_len, attn_prior, pitch, _, lm_tokens = batch else: audio, audio_len, text, text_len, attn_prior, pitch, _ = batch spect, spect_len = self.preprocessor(input_signal=audio, length=audio_len) # pitch normalization zero_pitch_idx = pitch == 0 pitch = (pitch - self.pitch_mean) / self.pitch_std pitch[zero_pitch_idx] = 0.0 (pred_spect, _, pred_log_durs, pred_pitch, attn_soft, attn_logprob, attn_hard, attn_hard_dur,) = self( text=text, text_len=text_len, pitch=pitch, spect=spect, spect_len=spect_len, attn_prior=attn_prior, lm_tokens=lm_tokens, ) (loss, durs_loss, acc, acc_dist_1, acc_dist_3, pitch_loss, mel_loss, ctc_loss, bin_loss,) = self._metrics( pred_durs=pred_log_durs, pred_pitch=pred_pitch, true_durs=attn_hard_dur, true_text_len=text_len, true_pitch=pitch, true_spect=spect, pred_spect=pred_spect, true_spect_len=spect_len, attn_logprob=attn_logprob, attn_soft=attn_soft, attn_hard=attn_hard, attn_hard_dur=attn_hard_dur, ) train_log = { 'train_loss': loss, 'train_durs_loss': durs_loss, 'train_pitch_loss': torch.tensor(1.0).to(durs_loss.device) if pitch_loss is None else pitch_loss, 'train_mel_loss': mel_loss, 'train_durs_acc': acc, 'train_durs_acc_dist_3': acc_dist_3, 'train_ctc_loss': torch.tensor(1.0).to(durs_loss.device) if ctc_loss is None else ctc_loss, 'train_bin_loss': torch.tensor(1.0).to(durs_loss.device) if bin_loss is None else bin_loss, } return {'loss': loss, 'progress_bar': {k: v.detach() for k, v in train_log.items()}, 'log': train_log} def validation_step(self, batch, batch_idx): attn_prior, lm_tokens = None, None if self.cond_on_lm_embeddings: audio, audio_len, text, text_len, attn_prior, pitch, _, lm_tokens = batch else: audio, audio_len, text, text_len, attn_prior, pitch, _ = batch spect, spect_len = self.preprocessor(input_signal=audio, length=audio_len) # pitch normalization zero_pitch_idx = pitch == 0 pitch = (pitch - self.pitch_mean) / self.pitch_std pitch[zero_pitch_idx] = 0.0 (pred_spect, _, pred_log_durs, pred_pitch, attn_soft, attn_logprob, attn_hard, attn_hard_dur,) = self( text=text, text_len=text_len, pitch=pitch, spect=spect, spect_len=spect_len, attn_prior=attn_prior, lm_tokens=lm_tokens, ) (loss, durs_loss, acc, acc_dist_1, acc_dist_3, pitch_loss, mel_loss, ctc_loss, bin_loss,) = self._metrics( pred_durs=pred_log_durs, pred_pitch=pred_pitch, true_durs=attn_hard_dur, true_text_len=text_len, true_pitch=pitch, true_spect=spect, pred_spect=pred_spect, true_spect_len=spect_len, attn_logprob=attn_logprob, attn_soft=attn_soft, attn_hard=attn_hard, attn_hard_dur=attn_hard_dur, ) # without ground truth internal features except for durations pred_spect, _, pred_log_durs, pred_pitch, attn_soft, attn_logprob, attn_hard, attn_hard_dur = self( text=text, text_len=text_len, pitch=None, spect=spect, spect_len=spect_len, attn_prior=attn_prior, lm_tokens=lm_tokens, ) *_, with_pred_features_mel_loss, _, _ = self._metrics( pred_durs=pred_log_durs, pred_pitch=pred_pitch, true_durs=attn_hard_dur, true_text_len=text_len, true_pitch=pitch, true_spect=spect, pred_spect=pred_spect, true_spect_len=spect_len, attn_logprob=attn_logprob, attn_soft=attn_soft, attn_hard=attn_hard, attn_hard_dur=attn_hard_dur, ) val_log = { 'val_loss': loss, 'val_durs_loss': durs_loss, 'val_pitch_loss': torch.tensor(1.0).to(durs_loss.device) if pitch_loss is None else pitch_loss, 'val_mel_loss': mel_loss, 'val_with_pred_features_mel_loss': with_pred_features_mel_loss, 'val_durs_acc': acc, 'val_durs_acc_dist_3': acc_dist_3, 'val_ctc_loss': torch.tensor(1.0).to(durs_loss.device) if ctc_loss is None else ctc_loss, 'val_bin_loss': torch.tensor(1.0).to(durs_loss.device) if bin_loss is None else bin_loss, } self.log_dict(val_log, prog_bar=False, on_epoch=True, logger=True, sync_dist=True) if batch_idx == 0 and self.current_epoch % 5 == 0 and isinstance(self.logger, WandbLogger): specs = [] pitches = [] for i in range(min(3, spect.shape[0])): specs += [ wandb.Image( plot_spectrogram_to_numpy(spect[i, :, : spect_len[i]].data.cpu().numpy()), caption=f"gt mel {i}", ), wandb.Image( plot_spectrogram_to_numpy(pred_spect.transpose(1, 2)[i, :, : spect_len[i]].data.cpu().numpy()), caption=f"pred mel {i}", ), ] pitches += [ wandb.Image( plot_pitch_to_numpy( average_pitch(pitch.unsqueeze(1), attn_hard_dur) .squeeze(1)[i, : text_len[i]] .data.cpu() .numpy(), ylim_range=[-2.5, 2.5], ), caption=f"gt pitch {i}", ), ] pitches += [ wandb.Image( plot_pitch_to_numpy(pred_pitch[i, : text_len[i]].data.cpu().numpy(), ylim_range=[-2.5, 2.5]), caption=f"pred pitch {i}", ), ] self.logger.experiment.log({"specs": specs, "pitches": pitches}) @typecheck( input_types={ "tokens": NeuralType(('B', 'T_text'), TokenIndex(), optional=True), "tokens_len": NeuralType(('B'), LengthsType(), optional=True), "lm_tokens": NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True), "raw_texts": [NeuralType(optional=True)], "lm_model": NeuralType(optional=True), }, output_types={"spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()),}, ) def generate_spectrogram( self, tokens: Optional[torch.Tensor] = None, tokens_len: Optional[torch.Tensor] = None, lm_tokens: Optional[torch.Tensor] = None, raw_texts: Optional[List[str]] = None, norm_text_for_lm_model: bool = True, lm_model: str = "albert", ): if tokens is not None: if tokens_len is None: # It is assumed that padding is consecutive and only at the end tokens_len = (tokens != self.tokenizer.pad).sum(dim=-1) else: if raw_texts is None: raise ValueError("raw_texts must be specified if tokens is None") t_seqs = [self.tokenizer(t) for t in raw_texts] tokens = torch.nn.utils.rnn.pad_sequence( sequences=[torch.tensor(t, dtype=torch.long, device=self.device) for t in t_seqs], batch_first=True, padding_value=self.tokenizer.pad, ) tokens_len = torch.tensor([len(t) for t in t_seqs], dtype=torch.long, device=tokens.device) if self.cond_on_lm_embeddings and lm_tokens is None: if raw_texts is None: raise ValueError("raw_texts must be specified if lm_tokens is None") lm_model_tokenizer = self._get_lm_model_tokenizer(lm_model) lm_padding_value = lm_model_tokenizer._convert_token_to_id('<pad>') lm_space_value = lm_model_tokenizer._convert_token_to_id('▁') assert isinstance(self.tokenizer, EnglishCharsTokenizer) or isinstance( self.tokenizer, EnglishPhonemesTokenizer ) if norm_text_for_lm_model and self.text_normalizer_call is not None: raw_texts = [self.text_normalizer_call(t, **self.text_normalizer_call_kwargs) for t in raw_texts] preprocess_texts_as_tts_input = [self.tokenizer.text_preprocessing_func(t) for t in raw_texts] lm_tokens_as_ids_list = [ lm_model_tokenizer.encode(t, add_special_tokens=False) for t in preprocess_texts_as_tts_input ] if self.tokenizer.pad_with_space: lm_tokens_as_ids_list = [[lm_space_value] + t + [lm_space_value] for t in lm_tokens_as_ids_list] lm_tokens = torch.full( (len(lm_tokens_as_ids_list), max([len(t) for t in lm_tokens_as_ids_list])), fill_value=lm_padding_value, device=tokens.device, ) for i, lm_tokens_i in enumerate(lm_tokens_as_ids_list): lm_tokens[i, : len(lm_tokens_i)] = torch.tensor(lm_tokens_i, device=tokens.device) pred_spect = self.infer(tokens, tokens_len, lm_tokens=lm_tokens).transpose(1, 2) return pred_spect def parse(self, text: str, normalize=True) -> torch.Tensor: if self.training: logging.warning("parse() is meant to be called in eval mode.") if normalize and self.text_normalizer_call is not None: text = self.text_normalizer_call(text, **self.text_normalizer_call_kwargs) with self.tokenizer.set_phone_prob(prob=1.0): tokens = self.tokenizer.encode(text) return torch.tensor(tokens).long().unsqueeze(0).to(self.device) def _loader(self, cfg): try: _ = cfg.dataset.manifest_filepath except omegaconf.errors.MissingMandatoryValue: logging.warning("manifest_filepath was skipped. No dataset for this model.") return None dataset = instantiate( cfg.dataset, text_normalizer=self.normalizer, text_normalizer_call_kwargs=self.text_normalizer_call_kwargs, text_tokenizer=self.tokenizer, ) return torch.utils.data.DataLoader( # noqa dataset=dataset, collate_fn=dataset.collate_fn, **cfg.dataloader_params, ) def setup_training_data(self, cfg): self._train_dl = self._loader(cfg) def setup_validation_data(self, cfg): self._validation_dl = self._loader(cfg) def setup_test_data(self, cfg): """Omitted.""" pass @classmethod def list_available_models(cls) -> 'List[PretrainedModelInfo]': """ This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud. Returns: List of available pre-trained models. """ list_of_models = [] model = PretrainedModelInfo( pretrained_model_name="tts_en_lj_mixertts", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_mixertts/versions/1.6.0/files/tts_en_lj_mixertts.nemo", description="This model is trained on LJSpeech sampled at 22050Hz with and can be used to generate female English voices with an American accent.", class_=cls, # noqa ) list_of_models.append(model) model = PretrainedModelInfo( pretrained_model_name="tts_en_lj_mixerttsx", location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_lj_mixerttsx/versions/1.6.0/files/tts_en_lj_mixerttsx.nemo", description="This model is trained on LJSpeech sampled at 22050Hz with and can be used to generate female English voices with an American accent.", class_=cls, # noqa ) list_of_models.append(model) return list_of_models # Methods for model exportability @property def input_types(self): return { "text": NeuralType(('B', 'T_text'), TokenIndex()), "lm_tokens": NeuralType(('B', 'T_lm_tokens'), TokenIndex(), optional=True), } @property def output_types(self): return { "spect": NeuralType(('B', 'D', 'T_spec'), MelSpectrogramType()), } def input_example(self, max_text_len=10, max_lm_tokens_len=10): text = torch.randint( low=0, high=len(self.tokenizer.tokens), size=(1, max_text_len), device=self.device, dtype=torch.long, ) inputs = {'text': text} if self.cond_on_lm_embeddings: inputs['lm_tokens'] = torch.randint( low=0, high=self.lm_embeddings.weight.shape[0], size=(1, max_lm_tokens_len), device=self.device, dtype=torch.long, ) return (inputs,) def forward_for_export(self, text, lm_tokens=None): text_mask = (text != self.tokenizer_pad).unsqueeze(2) spect = self.infer(text=text, text_mask=text_mask, lm_tokens=lm_tokens).transpose(1, 2) return spect.to(torch.float)
""" Test script using pytest for make_dict Author: Varisht Ghedia """ from make_dict import make_dict def test_same_size(): """ Test that it can make dictionaries from lists of same size. """ list1 = ['a', 'b', 'c'] list2 = [1,3,3] assert make_dict(list1, list2) == {'a': 1, 'b': 3, 'c': 3} def test_large_list2(): """ Test that it can make dictionaries when list of values is larger than list of keys. """ list1 = ['a', 'b', 'c'] list2 = [1,3,3,4] assert make_dict(list1, list2) == {'a': 1, 'b': 3, 'c': 3} def test_large_list1(): """ Test that it can make dictionaries when list of keys is larger than list of values. """ list1 = ['a', 'b', 'c', 'd'] list2 = [1,3,4] assert make_dict(list1, list2) == {'a': 1, 'b': 3, 'c': 4, 'd': None}
from gql import Client from gql.transport.local_schema import LocalSchemaTransport from . import custom_scalars, graphql_server class LocalSchemaTest: async def asyncSetUp(self): transport = LocalSchemaTransport(schema=graphql_server.schema._schema) self.client = Client( transport=transport, fetch_schema_from_transport=True, parse_results=True, serialize_variables=True, ) async with self.client: custom_scalars.register_parsers(self.client.schema)
from . import db, User, Message PER_PAGE = 30 class Timeline: def __init__(self, messages, type, user=None): self.messages = messages self.type = type self.user = user def to_dict(self): return { 'messages': [msg.to_dict() for msg in self.messages], 'type': self.type, 'user': self.user.to_dict() if self.user else None, } @classmethod def public(cls): messages = db.query(''' SELECT messages.*, users.name, users.email FROM messages JOIN users ON messages.user_id = users.id ORDER BY messages.pub_date DESC LIMIT %s''', [PER_PAGE]) return cls(list(map(cls.format_message, messages)), 'public') @classmethod def user(cls, user): messages = db.query(''' SELECT messages.*, users.name, users.email FROM messages JOIN users ON users.id = messages.user_id WHERE users.id = %s ORDER BY messages.pub_date DESC LIMIT %s''', [user.id, PER_PAGE]) return cls(list(map(cls.format_message, messages)), 'user', user) @classmethod def following(cls, user): messages = db.query(''' SELECT messages.*, users.name, users.email FROM messages JOIN users ON messages.user_id = users.id WHERE users.id = %s OR users.id IN (SELECT whom_id FROM followers WHERE who_id = %s) ORDER BY messages.pub_date DESC LIMIT %s''', [user.id, user.id, PER_PAGE]) return cls(list(map(cls.format_message, messages)), 'following', user) @staticmethod def format_message(message): user = { 'id': message['user_id'], 'name': message['name'], 'email': message['email'], } message = { 'id': message['id'], 'user_id': message['user_id'], 'text': message['text'], 'pub_date': message['pub_date'], } return Message(message, User(user))
#!/usr/bin/env python # coding: utf-8 # In[1]: # Code is based on examples from https://realpython.com/pysimplegui-python/ import PySimpleGUI as sg import cv2 import numpy as np import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'qt') # Create the setup def main(): sg.theme("LightBlue6") # Define the window layout layout = [ [sg.Image(filename="", key="-IMAGE-")], [ sg.Button("LOG", size=(10, 1)), sg.Slider( (-10, 10), 0, 0.1, orientation="h", size=(40, 10), key="-LOG SLIDER-", ), sg.Button("GAMMA", size=(10, 1)), sg.Slider( (0, 25), 1, 0.1, orientation="h", size=(40, 10), key="-GAMMA SLIDER-", ), ], [ sg.Button("AVERAGE", size=(10, 1)), sg.Slider( (1, 21), 3, 1, orientation="h", size=(40, 10), key="-BLUR SLIDER-", ), sg.Button("MEDIAN", size=(10, 1)), sg.Slider( (1, 21), 3, 1, orientation="h", size=(40, 10), key="-MEDIAN SLIDER-", ), ], [ sg.Button("HSV_THS", size=(10, 1)), sg.Text('H low'), sg.Slider( (0, 179), 90, 1, orientation="h", size=(15, 10), key="-HSV SLIDER H LOW-", ), sg.Text('H high'), sg.Slider( (0, 179), 179, 1, orientation="h", size=(15, 10), key="-HSV SLIDER H HIGH-", ), sg.Text('S Low'), sg.Slider( (0, 255), 125, 1, orientation="h", size=(18, 10), key="-HSV SLIDER S LOW-", ), sg.Text('S High'), sg.Slider( (0, 255), 255, 1, orientation="h", size=(18, 10), key="-HSV SLIDER S HIGH-", ), sg.Text('V Low'), sg.Slider( (0, 255), 125, 1, orientation="h", size=(18, 10), key="-HSV SLIDER V LOW-", ), sg.Text('V High'), sg.Slider( (0, 255), 255, 1, orientation="h", size=(18, 10), key="-HSV SLIDER V HIGH-", ), ], [ sg.Button("ERODE", size=(10, 1)), sg.Slider( (1, 15), 3, 1, orientation="h", size=(40, 10), key="-ERODE SLIDER-", ), sg.Button("DILATE", size=(10, 1)), sg.Slider( (1, 15), 3, 1, orientation="h", size=(40, 10), key="-DILATE SLIDER-", ), ], [sg.Button("Reset changes", size=(12, 1)),sg.Button("Histogram", size=(10, 1)),sg.Button("Outline", size=(10, 1)),sg.Button("Exit", size=(10, 1))], ] # Create the window window = sg.Window("Bacteria detection", layout, location=(800, 400))# 800,400 - default img = cv2.imread('test3.jpg')# Change the file here by typing the filename img = cv2.resize(img, (800, 600)) #(M, N, channels) = img.shape # can be used to check whether the image is read or not #print(M, N) image = img.copy() img_tmp = img.copy() frame = np.concatenate((img_tmp, image), axis=1) # Create event loop while True: event, values = window.read(timeout=200) if event == "Exit" or event == sg.WIN_CLOSED: print("exit") break elif event == "Reset changes": img_tmp = img.copy() frame = np.concatenate((img_tmp, image), axis=1) print('ResetRGB') # Image restoration filters elif event == "AVERAGE": b_val = int(values["-BLUR SLIDER-"]) if (b_val % 2) == 0: b_val = b_val+1 img_tmp = cv2.blur(img_tmp, (b_val, b_val), ) frame = np.concatenate((img_tmp, image), axis=1) print('average') elif event == "MEDIAN": m_val = int(values["-MEDIAN SLIDER-"]) if (m_val % 2) == 0: m_val = m_val+1 img_tmp = cv2.medianBlur(img_tmp, m_val) frame = np.concatenate((img_tmp, image), axis=1) print('median') #Thresholding elif event == "HSV_THS": img_hsv = cv2.cvtColor(img_tmp,cv2.COLOR_BGR2HSV) lower = np.array([int(values["-HSV SLIDER H LOW-"]),int(values["-HSV SLIDER S LOW-"]),int(values["-HSV SLIDER V LOW-"])]) upper = np.array([int(values["-HSV SLIDER H HIGH-"]),int(values["-HSV SLIDER S HIGH-"]),int(values["-HSV SLIDER V HIGH-"])]) mask = cv2.inRange(img_hsv,lower,upper) # You can leave the thresholded image in black and white #img_tmp = cv2.cvtColor(mask,cv2.COLOR_GRAY2BGR) # Initially, the thresholded mask is applied to image allowing the preservation of bacteria colour masked_img = cv2.bitwise_and(img_hsv, img_hsv, mask = mask) img_tmp = cv2.cvtColor(masked_img,cv2.COLOR_HSV2BGR) frame = np.concatenate((img_tmp, image), axis=1) print('HSV_THS') # Image enhancement functions elif event == "ERODE": e_val = int(values["-ERODE SLIDER-"]) kernel = np.ones((e_val,e_val),np.uint8) img_tmp = cv2.erode(img_tmp,kernel,iterations = 1) frame = np.concatenate((img_tmp, image), axis=1) print('erode') elif event == "DILATE": d_val = int(values["-DILATE SLIDER-"]) kernel = np.ones((d_val,d_val),np.uint8) img_tmp = cv2.dilate(img_tmp,kernel,iterations = 1) frame = np.concatenate((img_tmp, image), axis=1) print('dilate') # Image transformations functions elif event == "LOG": const = values["-LOG SLIDER-"] # For a gray-scale logarithmic transformation #img_tmp = cv2.cvtColor(img_tmp,cv2.COLOR_BGR2GRAY) img_tmp = img_tmp.astype('float') img_tmp = ((const * (np.log10(img_tmp + 1)))*255).astype("uint8") #img_tmp = cv2.cvtColor(img_tmp,cv2.COLOR_GRAY2BGR) frame = np.concatenate((img_tmp, image), axis=1) print('log') elif event == "GAMMA": c = 1.0 gamma = values["-GAMMA SLIDER-"] print(gamma) img_tmp = (c*((img_tmp/ 255.0)**gamma)*255).astype("uint8") frame = np.concatenate((img_tmp, image), axis=1) print('gamma') #Draw and display detected bacteria outline elif event == "Outline": contours, hier = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) img_tmp = cv2.drawContours(img_tmp, contours, -1, (180,130,70),2) frame = np.concatenate((img_tmp, image), axis=1) print('outline') #Display statistics about bacteria area (pixel count) as a histogram (x axis - area, y axis bacteria count) elif event == "Histogram": contours, hier = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) areas=np.empty([0, 0]) for contour in range(0,len(contours)): areas = np.append(areas,round(cv2.contourArea(contours[contour]),2)) # If one wants to check the existed areas to choose the best x limit range, then this line can be uncommented: #print('Areas:',areas) hist, bins = np.histogram(areas,range(0,len(areas))) plt.hist(hist, bins, histtype = 'stepfilled') plt.xlabel("area") # The limit can be changed by user plt.xlim(-10,100) plt.ylabel("number of cells") plt.title("Histogram") plt.show() print('hist') imgbytes = cv2.imencode(".png", frame)[1].tobytes() window["-IMAGE-"].update(data=imgbytes) window.close() main()
from recipe_scrapers.cookstr import Cookstr from tests import ScraperTest class TestCookstrScraper(ScraperTest): scraper_class = Cookstr def test_host(self): self.assertEqual("cookstr.com", self.harvester_class.host()) def test_canonical_url(self): self.assertEqual( "https://www.Cookstr.com/recipes/chocolate-cake-nicole-axworthy", self.harvester_class.canonical_url(), ) def test_title(self): self.assertEqual(self.harvester_class.title(), "Chocolate Cake") def test_total_time(self): self.assertEqual(60, self.harvester_class.total_time()) def test_total_yields(self): self.harvester_class.exception_handling = True self.assertEqual("", self.harvester_class.yields()) def test_ingredients(self): self.assertCountEqual( [ "1 recipe Chocolate Cake Mix", "1/2 cup coffee or water", "1/2 cup almond or soy milk (vanilla flavor preferred)", "1/2 cup canola oil", "1/2 cup pure maple syrup", "2 tablespoons apple cider vinegar", ], self.harvester_class.ingredients(), ) def test_instructions(self): return self.assertEqual( "Preheat the oven to 350°F. Lightly grease a 9-inch cake pan with coconut oil or line a 12-cup muffin tin with paper liners.\nIn a large bowl, sift the dry cake mix ingredients using a fine-mesh sieve.\nIn a medium bowl, mix together the coffee, almond milk, oil, maple syrup, and vinegar.\nAdd the liquid ingredients to the bowl with the cake mix and whisk gently until there are no large clumps remaining.\nPour the batter into the prepared pan. Bake for 22 to 27 minutes in the cake pan or 20 to 25 minutes in the muffin tin. The cake/cupcakes can be stored in an airtight container in the fridge for up to 5 days or frozen for 2 to 3 months.", self.harvester_class.instructions(), )
dic2 = {"name":"홍길동", "job":"도둑", "address":["울릉도", "제주도", "함경도"]} # 딕셔너리 전체 출력 print(dic2) # 주소만 출력 print(dic2["address"]) # 제주도만 출력 print(dic2["address"][1]) dic2["age"] = 33 print(dic2) dic2["name"] = "전우치" print(dic2) del dic2["job"] # dic2에서 "job"이라는 키를 가진 데이터 삭제 print(dic2) # {'name': '전우치', 'address': ['울릉도', '제주도', '함경도'], 'age': 33} # del dic2["job"] # 존재하지 않는 키를 삭제할 경우 KeyError 발생 # dic2에 "address"라는 키가 존재하는지 검사 후 존재하면 그 값을 출력 # 존재하지 않으면 "존재하지 않는 키입니다."라고 출력 if "address" in dic2 : print(dic2["address"]) else : print("존재하지 않는 키입니다.") # 3항 연산자 print(dic2["job"] if "job" in dic2 else "존재하지 않는 키입니다.") print(dic2.get("job")) #위와 같은 기능을 in 이 아닌 get() 함수로 작업 # if dic2.get("address") is not None : if dic2.get("address") != None : print(dic2["address"]) else : print("존재하지 않는 키입니다.") print("-----------------------") for key in dic2 : print(key, ":", dic2[key]) lst = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k"] print("-----------------------") # 리스트 전체 출력 : index 0 ~ lst length -1 for i in range(len(lst)) : print(lst[i]) # a b c d e f g h i j k print("-----------------------") # 리스트 c부터 h까지 출력 : index 2 ~ lst length -3 for i in range(2, len(lst) - 3) : print(lst[i]) # c d e f g h print("-----------------------") # 리스트 a부터 2씩 증가하여 마지막까지 출력 : index 0, 2, 4, .. , lst length -1 for i in range(0, len(lst), 2) : print(lst[i]) # a c e g i k print("-----------------------") # 리스트 k부터 a까지 역순으로 출력 for i in range(len(lst), 0, -1) : print(lst[i - 1]) # k j i h g f e d c b a print("-----------------------") for i in reversed(range(len(lst))) : print(lst[i]) # k j i h g f e d c b a print("-----------------------") import datetime now = datetime.datetime.now() print(now) print(type(now)) print(now.year, "년", type(now.year)) print(now.month, "월", type(now.month)) print(now.day, "일", type(now.day)) print(now.hour, "시", type(now.hour)) print(now.minute, "분", type(now.minute)) print(now.second, "초", type(now.second)) print(now.microsecond, "마이크로초", type(now.microsecond)) # 12, 1, 2월은 "겨울" / 3, 4 ,5 월은 "봄" / 6, 7, 8 월은 "여름" / 9, 10, 11월은 "가을" # 오늘 날자를 기준으로 계절을 출력 now = datetime.datetime.now() month = now.month #if month == 12 or (1 <= month <= 2) : # 요래짜니 가독성이 안좋음 # print("겨울") #elif 3 <= month <= 5 : if 3 <= month <= 5 : print("봄") elif 6 <= month <= 8 : print("여름") elif 9 <= month <= 11 : print("가을") else : print("겨울") i = 0 while i < 10 : print("{}번째 반복".format(i)) i += 1 # 0번째 반복 .. 9번째 반복 lst = [1, 2, 1, 2, 3, 4] val = 2 while val in lst : lst.remove(val) # remove() 함수로 val을 삭제하여 루프문을 빠져나옴 print(lst) # [1, 1, 3, 4] import time print(time.time()) cnt = 0 target = time.time() + 2 #while time.time() < target : # cnt += 1 print("2초 동안 {}번 반복".format(cnt)) # 무한루프\ ''' i = 1 while True : print("{}번째 반복".format(i)) i += 1 ipt = input("> 종료하시겠습니까? y/n :") if ipt.lower() == "y" : print("반복 종료") break ''' lst = [1, 3, 12, 15, 4, 55, 9] # lst안의 값들 중 10보다 큰 값만 출력 for item in lst : if item > 10 : print(item) print("-----------------------") # continue 활용 for item in lst : if item < 10 : continue print(item) print("-----------------------") # 100 이하의 자연수 중에서 5와 7의 최소공배수를 구하여 출력 for i in range(1, 100) : if i % 5 == 0 and i % 7 == 0 : print(i) break print("-----------------------") # 100 이하의 자연수 중에서 9의 배수들의 합을 출력 ret = 0 i = 0 while i <= 100 : ret += i i += 9 print(ret) print("-----------------------") # 1000이하의 자연수 중 8이 들어가는 수의 개수 cnt = 0 for i in range(1001) : if str(i).find("8") != -1 : cnt += 1 print(cnt) print("-----------------------") lst = [112, 20, 4, 34, 56] print(min(lst)) print(max(lst)) print(sum(lst)) lst_r = reversed(lst) print(lst_r) print(list(lst_r)) print(enumerate(lst)) print(list(enumerate(lst))) for i, val in enumerate(lst) : print(i, ":", val) print(dic2.items()) for key, val in dic2.items() : print(key, ":", val) s = "::".join(["ab", "cd", "ef", "gh", "ij"]) print(s) # ab::cd::ef::gh::ij
# CAN controls for MQB platform Volkswagen, Audi, Skoda and SEAT. # PQ35/PQ46/NMS, and any future MLB, to come later. def create_mqb_steering_control(packer, bus, apply_steer, idx, lkas_enabled): values = { "SET_ME_0X3": 0x3, "Assist_Torque": abs(apply_steer), "Assist_Requested": lkas_enabled, "Assist_VZ": 1 if apply_steer < 0 else 0, "HCA_Available": 1, "HCA_Standby": not lkas_enabled, "HCA_Active": lkas_enabled, "SET_ME_0XFE": 0xFE, "SET_ME_0X07": 0x07, } return packer.make_can_msg("HCA_01", bus, values, idx) def create_mqb_hud_control(packer, bus, enabled, steering_pressed, hud_alert, left_lane_visible, right_lane_visible, ldw_lane_warning_left, ldw_lane_warning_right, ldw_side_dlc_tlc, ldw_dlc, ldw_tlc, standstill, left_lane_depart, right_lane_depart): # Lane color reference: # 0 (LKAS disabled) - off # 1 (LKAS enabled, no lane detected) - dark gray # 2 (LKAS enabled, lane detected) - light gray on VW, green or white on Audi depending on year or virtual cockpit. On a color MFD on a 2015 A3 TDI it is white, virtual cockpit on a 2018 A3 e-Tron its green. # 3 (LKAS enabled, lane departure detected) - white on VW, red on Audi values = { "LDW_Status_LED_gelb": 1 if enabled and steering_pressed else 0, "LDW_Status_LED_gruen": 1 if enabled and not steering_pressed else 0, "LDW_Lernmodus_links": 3 if enabled and left_lane_visible else 1 + left_lane_visible, "LDW_Lernmodus_rechts": 3 if enabled and right_lane_visible else 1 + right_lane_visible, "LDW_Texte": hud_alert, "LDW_SW_Warnung_links": ldw_lane_warning_left, "LDW_SW_Warnung_rechts": ldw_lane_warning_right, "LDW_Seite_DLCTLC": ldw_side_dlc_tlc, "LDW_DLC": ldw_dlc, "LDW_TLC": ldw_tlc } return packer.make_can_msg("LDW_02", bus, values) def create_mqb_acc_buttons_control(packer, bus, buttonStatesToSend, CS, idx): values = { "GRA_Hauptschalter": CS.graHauptschalter, "GRA_Abbrechen": buttonStatesToSend["cancel"], "GRA_Tip_Setzen": buttonStatesToSend["setCruise"], "GRA_Tip_Hoch": buttonStatesToSend["accelCruise"], "GRA_Tip_Runter": buttonStatesToSend["decelCruise"], "GRA_Tip_Wiederaufnahme": buttonStatesToSend["resumeCruise"], "GRA_Verstellung_Zeitluecke": 3 if buttonStatesToSend["gapAdjustCruise"] else 0, "GRA_Typ_Hauptschalter": CS.graTypHauptschalter, "GRA_Codierung": 2, "GRA_Tip_Stufe_2": CS.graTipStufe2, "GRA_ButtonTypeInfo": CS.graButtonTypeInfo } return packer.make_can_msg("GRA_ACC_01", bus, values, idx)
''' Description: Reverse a singly linked list. Example: Input: 1->2->3->4->5->NULL Output: 5->4->3->2->1->NULL Follow up: A linked list can be reversed either iteratively or recursively. Could you implement both? ''' # Definition for singly-linked list. class ListNode: def __init__(self, x): self.val = x self.next = None class Solution: def helper(self, prev, cur): if cur: # locate next hopping node next_hop = cur.next # reverse direction cur.next = prev return self.helper( cur, next_hop) else: # new head of reverse linked list return prev def reverseList(self, head: ListNode) -> ListNode: return self.helper( None, head) # n : the length of linked list ## Time Complexity: O( n ) # # The overhead in time is the call depth of recursion, which is of O( n ) ## Space Complexity: O( n ) # # The overhead in space is to maintain call stack for recursion, which is of O( n ) def traverse( node ): while node: print( node.val, end = ' ') node = node.next return def test_bench(): ''' 1 -> 2 -> 3 -> 4 -> 5 ''' head = ListNode(1) head.next = ListNode(2) head.next.next = ListNode(3) head.next.next.next = ListNode(4) head.next.next.next.next = ListNode(5) head_of_reverse = Solution().reverseList( head ) # expected output: ''' 5 4 3 2 1 ''' traverse( head_of_reverse) return if __name__ == '__main__': test_bench()
from core import constants from core.entities.movable import Movable from core.entities.particles.projectile import Projectile from core.texture_manager import TextureManager class Tank(Movable): """ A class representing a tank in the game world. """ def __init__(self, **kwargs): self.texture1 = TextureManager.tank_player_1 # Movement animation frames self.texture2 = TextureManager.tank_player_2 super().__init__(img=self.texture1, **kwargs) self.speed = constants.TANK_SPEED self.move_skip = constants.TANK_MOVE_SKIP self.scale = constants.TANK_SCALE # For 16x16 pixel textures self.health = constants.TANK_HEALTH self.fire_cooldown = 0 self.last_fired_bullet = None self.bullet_spawn_position = { (-1, 0): (0, self.rect.height // 2), (1, 0): (self.rect.width, self.rect.height // 2), (0, 1): (self.rect.width // 2, self.rect.height), (0, -1): (self.rect.width // 2, 0) } self.track_anim = False def logic_update(self, game, tick): super().logic_update(game, tick) # Movement direction rotation super().resolve_rotation_4_axis() # Fire cooldown if self.fire_cooldown > 0: self.fire_cooldown -= 1 # Animation if self.move_dir[0] != 0 or self.move_dir[1] != 0: if tick % constants.TANK_TRACK_ANIM_DURATION == 0: self.track_anim = not self.track_anim if self.track_anim: self.image = self.texture1 else: self.image = self.texture2 def shoot(self, game, player_invoked=False) -> None: """ Makes the tank shoot by creating a projectile entity. Each tank can only fire a single projectile at a time and it can't shoot again until the projectile it previously fired has been destroyed (by hitting something or its lifetime ending). Also there is a short minimum fire cooldown in place. """ if self.can_shoot(): spawn_position = self.bullet_spawn_position[self.facing_direction] new_bullet = Projectile(self, x=self.rect.x + spawn_position[0], y=self.rect.y + spawn_position[1], batch=game.batch) new_bullet.move_dir = self.facing_direction new_bullet.player_owned = player_invoked game.entity_manager.add_entity(new_bullet) self.last_fired_bullet = new_bullet self.fire_cooldown = constants.TANK_MIN_FIRE_COOLDOWN def can_shoot(self) -> bool: """ Determines whether the tank can currently shoot a new projectile. """ return self.last_fired_bullet is None or self.last_fired_bullet.to_remove and self.fire_cooldown <= 0 def damage(self, game, other_entity=None) -> bool: """ Applies damage to this tank or destroys it, deleting the entity. """ self.health -= 1 if self.health <= 0: game.entity_manager.remove_entity(self) return False
#--------------------------- # organize imports #--------------------------- import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import random import os import warnings from sklearn.datasets import load_boston from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.linear_model import LinearRegression from sklearn.linear_model import Lasso from sklearn.linear_model import ElasticNet from sklearn.tree import DecisionTreeRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.metrics import mean_squared_error #--------------------------- # library specific options #--------------------------- pd.options.display.float_format = '{:,.2f}'.format sns.set(color_codes=True) def warn(*args, **kwargs): pass warnings.warn = warn warnings.filterwarnings("ignore", category=FutureWarning) #--------------------------- # analyze the dataset #--------------------------- def analyze_dataset(dataset): print("[INFO] keys : {}".format(dataset.keys())) print("[INFO] features shape : {}".format(dataset.data.shape)) print("[INFO] target shape : {}".format(dataset.target.shape)) print("[INFO] feature names") print(dataset.feature_names) print("[INFO] dataset summary") print(dataset.DESCR) df = pd.DataFrame(dataset.data) print("[INFO] df type : {}".format(type(df))) print("[INFO] df shape: {}".format(df.shape)) print(df.head()) df.columns = dataset.feature_names print(df.head()) df["PRICE"] = dataset.target print(df.head()) print("[INFO] dataset datatypes") print(df.dtypes) print("[INFO] dataset statistical summary") print(df.describe()) # correlation between attributes print("PEARSON CORRELATION") print(df.corr(method="pearson")) sns.heatmap(df.corr(method="pearson")) plt.savefig("heatmap_pearson.png") plt.clf() plt.close() print("SPEARMAN CORRELATION") print(df.corr(method="spearman")) sns.heatmap(df.corr(method="spearman")) plt.savefig("heatmap_spearman.png") plt.clf() plt.close() print("KENDALL CORRELATION") print(df.corr(method="kendall")) sns.heatmap(df.corr(method="kendall")) plt.savefig("heatmap_kendall.png") plt.clf() plt.close() # show missing values print(pd.isnull(df).any()) file_report = "boston_housing.txt" with open(file_report, "w") as f: f.write("Features shape : {}".format(df.drop("PRICE", axis=1).shape)) f.write("\n") f.write("Target shape : {}".format(df["PRICE"].shape)) f.write("\n") f.write("\nColumn names") f.write("\n") f.write(str(df.columns)) f.write("\n") f.write("\nStatistical summary") f.write("\n") f.write(str(df.describe())) f.write("\n") f.write("\nDatatypes") f.write("\n") f.write(str(df.dtypes)) f.write("\n") f.write("\nPEARSON correlation") f.write("\n") f.write(str(df.corr(method="pearson"))) f.write("\n") f.write("\nSPEARMAN correlation") f.write("\n") f.write(str(df.corr(method="spearman"))) f.write("\n") f.write("\nKENDALL correlation") f.write("\n") f.write(str(df.corr(method="kendall"))) f.write("\nMissing Values") f.write("\n") f.write(str(pd.isnull(df).any())) return df #--------------------------- # visualize the dataset #--------------------------- def visualize_dataset(df): colors = ["y", "b", "g", "r"] cols = list(df.columns.values) if not os.path.exists("plots/univariate/box"): os.makedirs("plots/univariate/box") if not os.path.exists("plots/univariate/density"): os.makedirs("plots/univariate/density") # draw a boxplot with vertical orientation for i, col in enumerate(cols): sns.boxplot(df[col], color=random.choice(colors), orient="v") plt.savefig("plots/univariate/box/box_" + str(i) + ".png") plt.clf() plt.close() # draw a histogram and fit a kernel density estimate (KDE) for i, col in enumerate(cols): sns.distplot(df[col], color=random.choice(colors)) plt.savefig("plots/univariate/density/density_" + str(i) + ".png") plt.clf() plt.close() if not os.path.exists("plots/multivariate"): os.makedirs("plots/multivariate") # bivariate plot between target and feature for i, col in enumerate(cols): if (i == len(cols) - 1): pass else: sns.jointplot(x=col, y="PRICE", data=df); plt.savefig("plots/multivariate/target_vs_" + str(i) + ".png") plt.clf() plt.close() # pairplot sns.pairplot(df) plt.savefig("plots/pairplot.png") plt.clf() plt.close() #--------------------------- # train the model #--------------------------- def train_model(df, dataset): X = df.drop("PRICE", axis=1) Y = df["PRICE"] print(X.shape) print(Y.shape) scaler = MinMaxScaler().fit(X) scaled_X = scaler.transform(X) seed = 9 test_size = 0.20 X_train, X_test, Y_train, Y_test = train_test_split(scaled_X, Y, test_size = test_size, random_state = seed) print(X_train.shape) print(X_test.shape) print(Y_train.shape) print(Y_test.shape) # user variables to tune folds = 10 metric = "neg_mean_squared_error" # hold different regression models in a single dictionary models = {} models["Linear"] = LinearRegression() models["Lasso"] = Lasso() models["ElasticNet"] = ElasticNet() models["KNN"] = KNeighborsRegressor() models["DecisionTree"] = DecisionTreeRegressor() models["SVR"] = SVR() models["AdaBoost"] = AdaBoostRegressor() models["GradientBoost"] = GradientBoostingRegressor() models["RandomForest"] = RandomForestRegressor() models["ExtraTrees"] = ExtraTreesRegressor() # 10-fold cross validation for each model model_results = [] model_names = [] for model_name in models: model = models[model_name] k_fold = KFold(n_splits=folds, random_state=seed) results = cross_val_score(model, X_train, Y_train, cv=k_fold, scoring=metric) model_results.append(results) model_names.append(model_name) print("{}: {}, {}".format(model_name, round(results.mean(), 3), round(results.std(), 3))) # box-whisker plot to compare regression models figure = plt.figure() figure.suptitle('Regression models comparison') axis = figure.add_subplot(111) plt.boxplot(model_results) axis.set_xticklabels(model_names, rotation = 45, ha="right") axis.set_ylabel("Mean Squared Error (MSE)") plt.margins(0.05, 0.1) plt.savefig("model_mse_scores.png") plt.clf() plt.close() # create and fit the best regression model best_model = GradientBoostingRegressor(random_state=seed) best_model.fit(X_train, Y_train) # make predictions using the model predictions = best_model.predict(X_test) print("[INFO] MSE : {}".format(round(mean_squared_error(Y_test, predictions), 3))) # plot between predictions and Y_test x_axis = np.array(range(0, predictions.shape[0])) plt.plot(x_axis, predictions, linestyle="--", marker="o", alpha=0.7, color='r', label="predictions") plt.plot(x_axis, Y_test, linestyle="--", marker="o", alpha=0.7, color='g', label="Y_test") plt.xlabel('Row number') plt.ylabel('PRICE') plt.title('Predictions vs Y_test') plt.legend(loc='lower right') plt.savefig("predictions_vs_ytest.png") plt.clf() plt.close() # plot model's feature importance feature_importance = best_model.feature_importances_ feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, dataset.feature_names[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.savefig("feature_importance.png") plt.clf() plt.close() #-------------------------- # MAIN FUNCTION #-------------------------- if __name__ == '__main__': dataset = load_boston() df = analyze_dataset(dataset) visualize_dataset(df) train_model(df, dataset)
__author__ = 'NovikovII' #!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' Считать отдельными операторами целочисленные ширину и высоту прямоугольника, создать функцию (def), принимающую в качестве параметров ширину и высоту фигуры. Внутри функции создать две вложенные функции (lambda) по подсчету площади и периметра фигуры. Вывести одной строкой через пробел площадь и периметр, разделенные пробелом (например '38 90'). ''' def rectangle(a, b, name='perimeter'): f = [lambda a, b: (a + b) * 2, lambda a, b: a * b] s = {'3': lambda a, b: (a + b) * 2, '4': lambda a, b: a * b} if name == 'perimeter': return f[0](a,b) else: return s['4'](a,b) #a = int(input()) #b = int(input()) a = 5 b = 6 print(rectangle(a, b, name=''), rectangle(a, b, name='perimeter'))
""" File that contains the Python code to be executed in "group_by_tag" Notebook. """ TAG_TABLE_HEADER = """\ <table> <tr> <td colspan="3" class="group_by_header"> Tag i </td> </tr> """ # 21/09/2018 16h57m :)
"""JSON serializers and deserializers for common datatypes.""" import datetime as dt def numpy_encode(obj): """Encode a numpy array.""" return obj.tolist() def numpy_decode(obj): """Decode a numpy array.""" import numpy # noqa return numpy.array(obj) def datetime_encode(obj): """Encode a datetime.""" return obj.isoformat() def datetime_decode(obj): """Decode a datetime.""" return dt.datetime.fromisoformat(obj)
# -*- coding: utf-8 -*- from copy import copy from reportlab.platypus import (SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle) #from reportlab.lib import colors from reportlab.lib.pagesizes import letter from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib.units import inch from .personal import address_paragraph PAGE_HEIGHT = 792.0 PAGE_WIDTH = 612.0 stylesheet = getSampleStyleSheet() TABLE_STYLE = TableStyle([ ('ALIGN', (2,0), (-1,-1), 'RIGHT'), ('VALIGN', (0,0), (-1,-1), 'TOP'), ]) #('LINEABOVE', (0,0), (-1,0), 2, colors.green), #('LINEABOVE', (0,1), (-1,-1), 0.25, colors.black), #('LINEBELOW', (0,-1), (-1,-1), 2, colors.green), class Layout(object): def __init__(self, title): self.title = title def myFirstPage(self, canvas, doc): canvas.saveState() canvas.setFont('Times-Bold',16) canvas.drawCentredString(PAGE_WIDTH/2.0, PAGE_HEIGHT-108, self.title) canvas.setFont('Times-Roman',9) canvas.drawString(inch, 0.75 * inch, "Invoice page %d" % (doc.page,)) canvas.restoreState() def myLaterPages(self, canvas, doc): canvas.saveState() canvas.setFont('Times-Roman',9) canvas.drawString(inch, 0.75 * inch, "Invoice page %d" % (doc.page,)) canvas.restoreState() def format_invoice(title, entries): doc = SimpleDocTemplate('invoice.pdf', pagesize=letter) style = stylesheet["Normal"] times = copy(style) times.fontName = 'Times-Roman' times.fontSize = 12 times.leading = 14 story = [Spacer(1,0.75*inch), Paragraph(address_paragraph, times)] entries = sorted(entries, key=lambda entry: entry.start) data = [[u'', u'', u'Time', u'Rate', u'Total']] for i, entry in enumerate(entries): d0 = entry.start.date() d1 = entry.end.date() if d0 == d1: dates = '{:%B %d}'.format(d0).replace(u' 0', u' ') else: dates = u'{:%b %d} – {:%b %d}'.format(d0, d1).replace(u' 0', u' ') h, m = divmod(entry.minutes, 60) elapsed = u'{}:{:02}'.format(int(h), int(m)) p = Paragraph(entry.description, style) #story.append(p) #story.append(Spacer(1,0.2*inch)) dollar = u'' if i else u'$' data.append([dates, p, elapsed, u'{} {:,}'.format(dollar, entry.rate), u'{} {:,}'.format(dollar, entry.amount)]) total_amount = sum(entry.amount for entry in entries) total_elapsed = sum(entry.minutes for entry in entries) data.append([u'', u'Total ' + '.' * 80, u'{}:{:02}'.format(*divmod(total_elapsed, 60)), u'', u'$ {:,}'.format(total_amount)]) table = Table(data, colWidths=[84.0, 260.0, 36.0, 30.0, 40.0], style=TABLE_STYLE) story.append(table) layout = Layout(title) doc.build( story, onFirstPage=layout.myFirstPage, onLaterPages=layout.myLaterPages, )
import sys sys.path.append("python") from PIL import Image from PIL import ImageCms import os from CompareOverHtml import createCompareHtml rootpath = "./greyramp-fulltv" if not os.path.exists(rootpath): os.makedirs(rootpath) colwidth = 4 height = 150 width = 256*colwidth img = Image.new( mode = "RGB", size = (width, height) ) for icol in range(0, 256): imgpaste = Image.new( mode = "RGB", size = (colwidth, height), color=(icol, icol, icol) ) img.paste(imgpaste, box=(icol*colwidth, 0)) source_image = os.path.join(rootpath, "greyscale-raw.png") img.save(source_image) #source_image = os.path.join(rootpath, "greyscale-srgb-photoshop.png") listimages = [] # Now lets make the mp4's. listimages.append({'id': 'none', 'label': 'Test-1: Greyramp'}) listimages.append({'id': 'greyramppng', 'label': 'Source png file', 'description': '', 'image': os.path.join("..", source_image)}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range={outrange}:out_color_matrix=bt709" -c:v libx264 -t 5 -pix_fmt yuv420p -qscale:v 1 -color_range 1 -colorspace 1 -color_primaries 1 -color_trc 13 {rootpath}/greyscale-{fileext}.mp4'.format(outrange="tv", source_image=source_image, fileext="tv", rootpath=rootpath) os.system(cmd) listimages.append({'id': 'greytv', 'label': 'Normal encode', 'video': "greyscale-tv.mp4", 'description': 'Using the PNG greyramp, with the normal "TV" out range of 16-235, and using yuv420p encoding. ', 'cmd': cmd}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range={outrange}:out_color_matrix=bt709" -c:v libx264 -t 5 -pix_fmt yuv420p -qscale:v 1 -color_range 2 -colorspace 1 -color_primaries 1 -color_trc 13 {rootpath}/greyscale-{fileext}.mp4'.format(outrange="full", source_image=source_image, fileext="full", rootpath=rootpath) os.system(cmd) listimages.append({'id': 'greyfull', 'label': 'Full range encoding.', 'description': 'Greyramp encoded using out_range=full yuv420p encoding, here we also set color_range=2 to let the decoder know to process it correctly.', 'video': "greyscale-full.mp4", 'cmd': cmd}) source_image = "../sourceimages/radialgrad.png" listimages.append({'id': 'none', 'label': 'Test-2: Radial gradent'}) listimages.append({'id': 'radialgradpng', 'label': 'Source png file', 'description': 'This is a less forgiving test image', 'image': os.path.join("..", source_image)}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range={outrange}:out_color_matrix=bt709" -c:v libx264 -t 5 -pix_fmt yuv420p -qscale:v 1 -color_range 1 -colorspace 1 -color_primaries 1 -color_trc 13 {rootpath}/radialgrad-{fileext}.mp4'.format(outrange="tv", source_image=source_image, fileext="tv", rootpath=rootpath) os.system(cmd) listimages.append({'id': 'radialgradtv', 'label': 'Normal encode', 'description': 'Using the radial gradent with normal yuv420p encoding and yuv420p.', 'video': "radialgrad-tv.mp4", 'cmd': cmd}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range={outrange}:out_color_matrix=bt709" -c:v libx264 -t 5 -pix_fmt yuv420p -qscale:v 1 -color_range 2 -colorspace 1 -color_primaries 1 -color_trc 13 {rootpath}/radialgrad-{fileext}.mp4'.format(outrange="full", source_image=source_image, fileext="full", rootpath=rootpath) os.system(cmd) listimages.append({'id': 'radialgradfull', 'label': 'Full range encoding.', 'description': 'Using the full range yuv420p encoding with color_range=2', 'video': "radialgrad-full.mp4", 'cmd': cmd}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range={outrange}:out_color_matrix=bt709" -c:v libx264 -t 5 -pix_fmt yuvj420p -qscale:v 1 -color_range 2 -colorspace 1 -color_primaries 1 -color_trc 13 {rootpath}/radialgrad-{fileext}.mp4'.format(outrange="full", source_image=source_image, fileext="fullj", rootpath=rootpath) os.system(cmd) listimages.append({'id': 'radialgradfullj', 'label': 'Alternate full range encoding', 'description': 'This is an older alternative to full-range encoding, that ffmpeg is currently deprecating. ', 'video': "radialgrad-fullj.mp4", 'cmd': cmd}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range={outrange}:out_color_matrix=bt709" -c:v libx264 -t 5 -pix_fmt yuv420p -qscale:v 1 -color_range 0 -colorspace 1 -color_primaries 1 -color_trc 13 {rootpath}/radialgrad-{fileext}.mp4'.format(outrange="full", source_image=source_image, fileext="full0", rootpath=rootpath) os.system(cmd) listimages.append({'id': 'radialgradfull0', 'label': 'Using full range without color_range flag', 'description': 'This is what happens if you specify full range without the color_range flag (color_range=0). DONT DO THIS!', 'video': "radialgrad-full0.mp4", 'cmd': cmd}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range={outrange}:out_color_matrix=bt709" -c:v libx264 -t 5 -pix_fmt yuv444p -qscale:v 1 -color_range 2 -colorspace 1 -color_primaries 1 -color_trc 13 {rootpath}/radialgrad-{fileext}.mp4'.format(outrange="full", source_image=source_image, fileext="full444", rootpath=rootpath) os.system(cmd) listimages.append({'id': 'radialgradfull444', 'label': 'Full range with yuv444 (chrome only)', 'description': 'This is testing yuv444p but still 8-bit, this will only work on chrome.', 'video': "radialgrad-full444.mp4", 'cmd': cmd}) #cmd = 'ffmpeg -y -loop 1 -i {source_image} -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range={outrange}:out_color_matrix=bt709" -c:v libx265 -t 5 -pix_fmt yuv420p -qscale:v 1 -color_range 2 -colorspace 1 -color_primaries 1 -color_trc 13 {rootpath}/radialgrad-{fileext}.mp4'.format(outrange="full", source_image=source_image, fileext="h265", rootpath=rootpath) #os.system(cmd) #listimages.append({'id': 'radialgradh265', 'label': 'Full range with yuv420 h265', 'description': 'This is testing yuv444p but still 8-bit, this will only work on chrome.', 'video': "radialgrad-h265.mp4", 'cmd': cmd}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -c:v libx264 -t 5 -preset placebo -qp 0 -x264-params "keyint=15:no-deblock=1" -pix_fmt yuv444p10le -sws_flags spline+accurate_rnd+full_chroma_int -vf "colorspace=bt709:iall=bt601-6-625:fast=1" {rootpath}/radialgrad-raw-10bit.mp4'.format(source_image=source_image, rootpath=rootpath) os.system(cmd) listimages.append({'id': 'radialgradtv10', 'label': '10-bit encoding, tv-range (chrome only)', 'description': 'This is testing 10-bit encoding, yuv444p10le', 'video': "radialgrad-raw-10bit.mp4", 'cmd': cmd}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -c:v libx264rgb -t 5 -preset placebo -qp 0 -x264-params "keyint=15:no-deblock=1" {rootpath}/radialgrad-raw-rgb.mp4'.format(source_image=source_image, rootpath=rootpath) os.system(cmd) listimages.append({'id': 'radialgradrgb', 'label': 'This is using RGB encoding', 'description': 'libx264rgb 8-bit mp4 (not supported)', 'video': "radialgrad-raw-rgb.mp4", 'cmd': cmd}) source_image = "../sourceimages/Digital_LAD_raw.png" listimages.append({'id': 'none', 'label': 'Test-3: Marcie'}) listimages.append({'id': 'marcieraw', 'label': 'Source png file', 'image': os.path.join("..", source_image), 'cmd': cmd}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range={outrange}:out_color_matrix=bt709" -c:v libx264 -t 5 -pix_fmt yuv420p -qscale:v 1 -color_range 1 -colorspace 1 -color_primaries 1 -color_trc 13 {rootpath}/marcie-{fileext}.mp4'.format(outrange="tv", source_image=source_image, fileext="tv", rootpath=rootpath) os.system(cmd) listimages.append({'id': 'marcietv', 'label': 'Normal encoding', 'description': 'marcie out_range=tv -pix_fmt yuv420p 16-235 range', 'video': "marcie-tv.mp4", 'cmd': cmd}) cmd = 'ffmpeg -y -loop 1 -i {source_image} -sws_flags spline+accurate_rnd+full_chroma_int -vf "scale=in_range=full:in_color_matrix=bt709:out_range={outrange}:out_color_matrix=bt709" -c:v libx264 -t 5 -pix_fmt yuv420p -qscale:v 1 -color_range 2 -colorspace 1 -color_primaries 1 -color_trc 13 {rootpath}/marcie-{fileext}.mp4'.format(outrange="full", source_image=source_image, fileext="full", rootpath=rootpath) os.system(cmd) listimages.append({'id': 'marciefull', 'label': 'Full Range', 'video': "marcie-full.mp4", 'cmd': cmd}) createCompareHtml(outputpath=rootpath+"/compare.html", listimages=listimages, introduction="<H1>Full range vs TV Range</H1><p> Comparing full range encoding vs. tv range, but also yuv420p vs. yuvj420p. We believe that this is well supported on web browsers, and dont see a downside to it. There may be cases where other applications do not read it. The code to generate these files is <a href='../%s'>here</a>. </p>" % os.path.basename(__file__), videohtml = ' width=920 ')
""" This is custom bot class """ import json import aiohttp from discord.ext import commands import motor.motor_asyncio #check discord.py rewrite documentation for why AutoShardedBot was used. class Bot(commands.AutoShardedBot): """ This is a custom object which extends default commands.Bot class and provides a configuration handler and a common aiohttp ClientSession. """ def __init__(self, *args, **kwargs): """`config_file`: A string representing name of .json file which contains configurations for bot. Can be anything but will default to `config.json` Instance variables: `session` - An `aiohttp.ClientSession` used for performing API hooks. `config` - A `dictionary` containing key value pairs represnting bot configs. """ #pass arguments to constructor of parent class super().__init__(*args, **kwargs) self.config = {} #in case I ever forget why kwargs.get method is used(god help me), just google it self.config_file = kwargs.get("config_file","config.json") #also apparently you can do Bot.loop, did not knew this. self.session = aiohttp.ClientSession(loop = self.loop) #create mongoDB client. MongoDB database server must be running in background self.DBClient = motor.motor_asyncio.AsyncIOMotorClient() #create Bot databsase self.db = self.DBClient.RoboX86 #get settings of all of which bot is part. it's basically a collection #self.guildSettings = self.db.guilds #get collection containing details of all users subscribed to one piece updates self.onePieceCollection = self.db.onePieceCollection #get collection containing details of all users subscribed to unOrdinary updates self.unOrdinaryCollection = self.db.unOrdinaryCollection def load_config(self, filename: str=None): """ Load congig from a .JSON file. If not specified will default to `Bot.config_file`. """ if not filename: filename = self.config_file #pro tip: google difference between json `load,dump` and `loads,dumps`. with open(filename) as file_object: config = json.load(file_object) #also google `isinstance` vs `type`. Hint: `isinstance` is better. if isinstance(config,dict): for key,value in config.items(): self.config[key] = value def save_config(self, filename:str=None): """save config to a .JSON file. Defaults to `Bot.config_file`.""" if not filename: filename = self.config_file with open(filename,'w') as file_object: json.dump(self.config_file, file_object, indent=4, sort_keys=True) #add database connection..
import logging import copy import glob import math import os import numpy as np import tqdm import pickle from util import io_util from info import data_info, hardware_info from data_class import global_model_data, grouped_op_unit_data import global_model_config from type import OpUnit, ConcurrentCountingMode, Target, ExecutionFeature def get_data(input_path, mini_model_map, model_results_path, warmup_period, use_query_predict_cache, add_noise, ee_sample_interval, txn_sample_interval, network_sample_interval): """Get the data for the global models Read from the cache if exists, otherwise save the constructed data to the cache. :param input_path: input data file path :param mini_model_map: mini models used for prediction :param model_results_path: directory path to log the result information :param warmup_period: warmup period for pipeline data :param use_query_predict_cache: whether cache the prediction result based on the query for acceleration :param add_noise: whether to add noise to the cardinality estimations :param ee_sample_interval: sampling interval for the EE OUs :param txn_sample_interval: sampling interval for the transaction OUs :param network_sample_interval: sampling interval for the network OUs :return: (GlobalResourceData list, GlobalImpactData list) """ cache_file = input_path + '/global_model_data.pickle' headers_file = input_path + '/global_model_headers.pickle' if os.path.exists(cache_file): with open(cache_file, 'rb') as pickle_file: resource_data_list, impact_data_list, data_info.RAW_FEATURES_CSV_INDEX, data_info.RAW_TARGET_CSV_INDEX, data_info.INPUT_CSV_INDEX, data_info.TARGET_CSV_INDEX = pickle.load(pickle_file) else: data_list = _get_grouped_opunit_data_with_prediction(input_path, mini_model_map, model_results_path, warmup_period, use_query_predict_cache, add_noise, ee_sample_interval, txn_sample_interval, network_sample_interval) resource_data_list, impact_data_list = _construct_interval_based_global_model_data(data_list, model_results_path) with open(cache_file, 'wb') as file: pickle.dump((resource_data_list, impact_data_list, data_info.RAW_FEATURES_CSV_INDEX, data_info.RAW_TARGET_CSV_INDEX, data_info.INPUT_CSV_INDEX, data_info.TARGET_CSV_INDEX), file) return resource_data_list, impact_data_list def _get_grouped_opunit_data_with_prediction(input_path, mini_model_map, model_results_path, warmup_period, use_query_predict_cache, add_noise, ee_sample_interval, txn_sample_interval, network_sample_interval): """Get the grouped opunit data with the predicted metrics and elapsed time :param input_path: input data file path :param mini_model_map: mini models used for prediction :param model_results_path: directory path to log the result information :param warmup_period: warmup period for pipeline data :return: The list of the GroupedOpUnitData objects """ data_list = _get_data_list(input_path, warmup_period, ee_sample_interval, txn_sample_interval, network_sample_interval) _predict_grouped_opunit_data(data_list, mini_model_map, model_results_path, use_query_predict_cache, add_noise) logging.info("Finished GroupedOpUnitData prediction with the mini models") return data_list def _construct_interval_based_global_model_data(data_list, model_results_path): """Construct the GlobalImpactData used for the global model training :param data_list: The list of GroupedOpUnitData objects :param model_results_path: directory path to log the result information :return: (GlobalResourceData list, GlobalImpactData list) """ prediction_path = "{}/global_resource_data.csv".format(model_results_path) io_util.create_csv_file(prediction_path, ["Elapsed us", "# Concurrent OpUnit Groups"]) start_time_list = sorted([d.get_start_time(ConcurrentCountingMode.INTERVAL) for d in data_list]) rounded_start_time_list = [_round_to_second(start_time_list[0])] # Map from interval start time to the data in this interval interval_data_map = {rounded_start_time_list[0]: []} # Get all the interval start times and initialize the map for t in start_time_list: rounded_time = _round_to_second(t) if rounded_time > rounded_start_time_list[-1]: rounded_start_time_list.append(rounded_time) interval_data_map[rounded_time] = [] for data in tqdm.tqdm(data_list, desc="Find Interval Data"): # For each data, find the intervals that might overlap with it interval_start_time = _round_to_second(data.get_start_time(ConcurrentCountingMode.EXACT) - global_model_config.INTERVAL_SIZE + global_model_config.INTERVAL_SEGMENT) while interval_start_time <= data.get_end_time(ConcurrentCountingMode.ESTIMATED): if interval_start_time in interval_data_map: interval_data_map[interval_start_time].append(data) interval_start_time += global_model_config.INTERVAL_SEGMENT # Get the global resource data resource_data_map = {} for start_time in tqdm.tqdm(rounded_start_time_list, desc="Construct GlobalResourceData"): resource_data_map[start_time] = _get_global_resource_data(start_time, interval_data_map[start_time], prediction_path) # Now construct the global impact data impact_data_list = [] for data in data_list: interval_start_time = _round_to_second(data.get_start_time(ConcurrentCountingMode.INTERVAL)) resource_data_list = [] while interval_start_time <= data.get_end_time(ConcurrentCountingMode.ESTIMATED): if interval_start_time in resource_data_map: resource_data_list.append(resource_data_map[interval_start_time]) interval_start_time += global_model_config.INTERVAL_SIZE impact_data_list.append(global_model_data.GlobalImpactData(data, resource_data_list)) return list(resource_data_map.values()), impact_data_list def _round_to_second(time): """ :param time: in us :return: time in us rounded to the earliest second """ return time - time % 1000000 def _get_global_resource_data(start_time, concurrent_data_list, log_path): """Get the input feature and the target output for the global resource utilization metrics during an interval The calculation is adjusted by the overlapping ratio between the opunit groups and the time range. :param start_time: of the interval :param concurrent_data_list: the concurrent running opunit groups :param log_path: the file path to log the data construction results :return: (the input feature, the resource utilization on the other logical core of the same physical core, the output resource targets) """ # Define a secondary_counting_mode corresponding to the concurrent_counting_mode to derive the concurrent operations # in different scenarios end_time = start_time + global_model_config.INTERVAL_SIZE - 1 elapsed_us = global_model_config.INTERVAL_SIZE # The adjusted resource metrics per logical core. # TODO: Assuming each physical core has two logical cores via hyper threading for now. Can extend to other scenarios physical_core_num = hardware_info.PHYSICAL_CORE_NUM adjusted_x_list = [0] * 2 * physical_core_num adjusted_y = 0 logging.debug(concurrent_data_list) logging.debug("{} {}".format(start_time, end_time)) for data in concurrent_data_list: data_start_time = data.get_start_time(ConcurrentCountingMode.ESTIMATED) data_end_time = data.get_end_time(ConcurrentCountingMode.ESTIMATED) ratio = _calculate_range_overlap(start_time, end_time, data_start_time, data_end_time) / (data_end_time - data_start_time + 2) #print(start_time, end_time, data_start_time, data_end_time, data_end_time - data_start_time + 1) sample_interval = data.sample_interval logging.debug("{} {} {}".format(data_start_time, data_end_time, ratio)) logging.debug("{} {}".format(data.y, data.y_pred)) logging.debug("Sampling interval: {}".format(sample_interval)) # Multiply the resource metrics based on the sampling interval adjusted_y += data.y * ratio * (sample_interval + 1) cpu_id = data.cpu_id if cpu_id > physical_core_num: cpu_id -= physical_core_num # Multiply the mini-model predictions based on the sampling interval adjusted_x_list[cpu_id] += data.y_pred * ratio * (sample_interval + 1) # change the number to per time unit (us) utilization for x in adjusted_x_list: x /= elapsed_us adjusted_y /= elapsed_us sum_adjusted_x = np.sum(adjusted_x_list, axis=0) std_adjusted_x = np.std(adjusted_x_list, axis=0) ratio_error = abs(adjusted_y - sum_adjusted_x) / (adjusted_y + 1e-6) logging.debug(sum_adjusted_x) logging.debug(adjusted_y) logging.debug("") io_util.write_csv_result(log_path, elapsed_us, [len(concurrent_data_list)] + list(sum_adjusted_x) + [""] + list(adjusted_y) + [""] + list(ratio_error)) adjusted_x = np.concatenate((sum_adjusted_x, std_adjusted_x)) return global_model_data.GlobalResourceData(start_time, adjusted_x_list, adjusted_x, adjusted_y) def _calculate_range_overlap(start_timel, end_timel, start_timer, end_timer): return min(end_timel, end_timer) - max(start_timel, start_timer) + 1 def _get_data_list(input_path, warmup_period, ee_sample_interval, txn_sample_interval, network_sample_interval): """Get the list of all the operating units (or groups of operating units) stored in GlobalData objects :param input_path: input data file path :param warmup_period: warmup period for pipeline data :return: the list of all the operating units (or groups of operating units) stored in GlobalData objects """ data_list = [] # First get the data for all mini runners for filename in glob.glob(os.path.join(input_path, '*.csv')): data_list += grouped_op_unit_data.get_grouped_op_unit_data(filename, warmup_period, ee_sample_interval, txn_sample_interval, network_sample_interval) logging.info("Loaded file: {}".format(filename)) return data_list def _add_estimation_noise(opunit, x): """Add estimation noise to the OUs that may use the cardinality estimation """ if opunit not in data_info.OUS_USING_CAR_EST: return tuple_num_index = data_info.INPUT_CSV_INDEX[ExecutionFeature.NUM_ROWS] cardinality_index = data_info.INPUT_CSV_INDEX[ExecutionFeature.EST_CARDINALITIES] tuple_num = x[tuple_num_index] cardinality = x[cardinality_index] if tuple_num > 1000: logging.debug("Adding noise to tuple num (%)".format(tuple_num)) x[tuple_num_index] += np.random.normal(0, tuple_num * 0.3) x[tuple_num_index] = max(1, x[tuple_num_index]) if cardinality > 1000: logging.debug("Adding noise to cardinality (%)".format(x[cardinality_index])) x[cardinality_index] += np.random.normal(0, cardinality * 0.3) x[cardinality_index] = max(1, x[cardinality_index]) def _predict_grouped_opunit_data(data_list, mini_model_map, model_results_path, use_query_predict_cache, add_noise): """Use the mini-runner to predict the resource consumptions for all the GlobalData, and record the prediction result in place :param data_list: The list of the GroupedOpUnitData objects :param mini_model_map: The trained mini models :param model_results_path: file path to log the prediction results :param use_query_predict_cache: whether cache the prediction result based on the query for acceleration :param add_noise: whether to add noise to the cardinality estimations """ prediction_path = "{}/grouped_opunit_prediction.csv".format(model_results_path) pipeline_path = "{}/grouped_pipeline.csv".format(model_results_path) io_util.create_csv_file(prediction_path, ["Pipeline", "", "Actual", "", "Predicted", "", "Ratio Error"]) io_util.create_csv_file(pipeline_path, ["Number", "Percentage", "Pipeline", "Actual Us", "Predicted Us", "Us Error", "Absolute Us", "Absolute Us %"]) # Track pipeline cumulative numbers num_pipelines = 0 total_actual = None total_predicted = [] actual_pipelines = {} predicted_pipelines = {} count_pipelines = {} query_prediction_path = "{}/grouped_query_prediction.csv".format(model_results_path) io_util.create_csv_file(query_prediction_path, ["Query", "", "Actual", "", "Predicted", "", "Ratio Error"]) current_query_id = None query_y = None query_y_pred = None # Have to use a prediction cache when having lots of global data... prediction_cache = {} # use a prediction cache based on queries to accelerate query_prediction_cache = {} # First run a prediction on the global running data with the mini model results for i, data in enumerate(tqdm.tqdm(data_list, desc="Predict GroupedOpUnitData")): y = data.y if data.name[0] != 'q' or (data.name not in query_prediction_cache) or not use_query_predict_cache: logging.debug("{} pipeline elapsed time: {}".format(data.name, y[-1])) pipeline_y_pred = 0 for opunit_feature in data.opunit_features: opunit = opunit_feature[0] opunit_model = mini_model_map[opunit] x = np.array(opunit_feature[1]).reshape(1, -1) if add_noise: _add_estimation_noise(opunit, x[0]) key = (opunit, x.tobytes()) if key not in prediction_cache: y_pred = opunit_model.predict(x) y_pred = np.clip(y_pred, 0, None) prediction_cache[key] = y_pred else: y_pred = prediction_cache[key] logging.debug("Predicted {} elapsed time with feature {}: {}".format(opunit_feature[0].name, x[0], y_pred[0, -1])) if opunit in data_info.MEM_ADJUST_OPUNITS: # Compute the number of "slots" (based on row feature or cardinality feature num_tuple = opunit_feature[1][data_info.INPUT_CSV_INDEX[ExecutionFeature.NUM_ROWS]] if opunit == OpUnit.AGG_BUILD: num_tuple = opunit_feature[1][data_info.INPUT_CSV_INDEX[ExecutionFeature.EST_CARDINALITIES]] # SORT/AGG/HASHJOIN_BUILD all allocate a "pointer" buffer # that contains the first pow2 larger than num_tuple entries pow_high = 2 ** math.ceil(math.log(num_tuple, 2)) buffer_size = pow_high * data_info.POINTER_SIZE if opunit == OpUnit.AGG_BUILD and num_tuple <= 256: # For AGG_BUILD, if slots <= AggregationHashTable::K_DEFAULT_INITIAL_TABLE_SIZE # the buffer is not recorded as part of the pipeline buffer_size = 0 pred_mem = y_pred[0][data_info.TARGET_CSV_INDEX[Target.MEMORY_B]] if pred_mem <= buffer_size: logging.debug("{} feature {} {} with prediction {} exceeds buffer {}" .format(data.name, opunit_feature, opunit_feature[1], y_pred[0], buffer_size)) # For hashjoin_build, there is still some inaccuracy due to the # fact that we do not know about the hash table's load factor. scale = data_info.INPUT_CSV_INDEX[ExecutionFeature.MEM_FACTOR] adj_mem = (pred_mem - buffer_size) * opunit_feature[1][scale] + buffer_size # Don't modify prediction cache y_pred = copy.deepcopy(y_pred) y_pred[0][data_info.TARGET_CSV_INDEX[Target.MEMORY_B]] = adj_mem pipeline_y_pred += y_pred[0] pipeline_y = copy.deepcopy(pipeline_y_pred) query_prediction_cache[data.name] = pipeline_y else: pipeline_y_pred = query_prediction_cache[data.name] pipeline_y = copy.deepcopy(pipeline_y_pred) # Grouping when we're predicting queries if data.name[0] == 'q': query_id = data.name[1:data.name.rfind(" p")] if query_id != current_query_id: if current_query_id is not None: io_util.write_csv_result(query_prediction_path, current_query_id, [""] + list(query_y) + [""] + list(query_y_pred) + [""] + list(abs(query_y - query_y_pred) / (query_y + 1))) current_query_id = query_id query_y = copy.deepcopy(y) query_y_pred = copy.deepcopy(pipeline_y_pred) else: query_y += y query_y_pred += pipeline_y_pred data.y_pred = pipeline_y logging.debug("{} pipeline prediction: {}".format(data.name, pipeline_y)) logging.debug("{} pipeline predicted time: {}".format(data.name, pipeline_y[-1])) ratio_error = abs(y - pipeline_y) / (y + 1) logging.debug("|Actual - Predict| / Actual: {}".format(ratio_error[-1])) io_util.write_csv_result(prediction_path, data.name, [""] + list(y) + [""] + list(pipeline_y) + [""] + list(ratio_error)) logging.debug("") # Record cumulative numbers if data.name not in actual_pipelines: actual_pipelines[data.name] = copy.deepcopy(y) predicted_pipelines[data.name] = copy.deepcopy(pipeline_y) count_pipelines[data.name] = 1 else: actual_pipelines[data.name] += y predicted_pipelines[data.name] += pipeline_y count_pipelines[data.name] += 1 # Update totals if total_actual is None: total_actual = copy.deepcopy(y) total_predicted = copy.deepcopy(pipeline_y) else: total_actual += y total_predicted += pipeline_y num_pipelines += 1 total_elapsed_err = 0 for pipeline in actual_pipelines: actual = actual_pipelines[pipeline] predicted = predicted_pipelines[pipeline] total_elapsed_err = total_elapsed_err + (abs(actual - predicted))[-1] for pipeline in actual_pipelines: actual = actual_pipelines[pipeline] predicted = predicted_pipelines[pipeline] num = count_pipelines[pipeline] ratio_error = abs(actual - predicted) / (actual + 1) abs_error = abs(actual - predicted)[-1] pabs_error = abs_error / total_elapsed_err io_util.write_csv_result(pipeline_path, pipeline, [num, num*1.0/num_pipelines, actual[-1], predicted[-1], ratio_error[-1], abs_error, pabs_error] + [""] + list(actual) + [""] + list(predicted) + [""] + list(ratio_error)) ratio_error = abs(total_actual - total_predicted) / (total_actual + 1) io_util.write_csv_result(pipeline_path, "Total Pipeline", [num_pipelines, 1, total_actual[-1], total_predicted[-1], ratio_error[-1], total_elapsed_err, 1] + [""] + list(total_actual) + [""] + list(total_predicted) + [""] + list(ratio_error))
""" Pre-processing of the page metadata before rendering. """ from datetime import datetime import subprocess def process_info(info, site): """ Alter the page metadata before rendering. """ # Urubu doesn't split the 'tags' into multiple strings if "tags" in info: if isinstance(info["tags"], str): info["tags"] = info["tags"].split(", ") # Identify to which folder the item belongs (paper, blog, etc) if "type" not in info: info["type"] = "/{}".format(info["id"].split("/")[1]) # Add the current date to the site metadata if "now" not in site: site["now"] = datetime.utcnow() # Add the last git commit hash to the site metadata if "commit" not in site: completed = subprocess.run( ["git", "rev-parse", "--short", "HEAD"], capture_output=True, text=True ) site["commit"] = completed.stdout.strip()
# 获取文件夹中的文件路径 import os def get_filePathList(dirPath, partOfFileName=''): allFileName_list = list(os.walk(dirPath))[0][2] fileName_list = [k for k in allFileName_list if partOfFileName in k] filePath_list = [os.path.join(dirPath, k) for k in fileName_list] return filePath_list # 修改文件夹中的单个xml文件 import xml.etree.ElementTree as ET def single_xmlCompress(old_xmlFilePath, new_xmlFilePath, new_size): new_width, new_height = new_size with open(old_xmlFilePath) as file: fileContent = file.read() root = ET.XML(fileContent) # 获得图片宽度变化倍数,并改变xml文件中width节点的值 width = root.find('size').find('width') old_width = int(width.text) width_times = new_width / old_width width.text = str(new_width) # 获得图片高度变化倍数,并改变xml文件中height节点的值 height = root.find('size').find('height') old_height = int(height.text) height_times = new_height / old_height height.text = str(new_height) # 获取标记物体的列表,修改其中xmin,ymin,xmax,ymax这4个节点的值 object_list = root.findall('object') for object_item in object_list: bndbox = object_item.find('bndbox') xmin = bndbox.find('xmin') xminValue = int(xmin.text) xmin.text = str(int(xminValue * width_times)) ymin = bndbox.find('ymin') yminValue = int(ymin.text) ymin.text = str(int(yminValue * height_times)) xmax = bndbox.find('xmax') xmaxValue = int(xmax.text) xmax.text = str(int(xmaxValue * width_times)) ymax = bndbox.find('ymax') ymaxValue = int(ymax.text) ymax.text = str(int(ymaxValue * height_times)) tree = ET.ElementTree(root) tree.write(new_xmlFilePath) # 修改文件夹中的若干xml文件 def batch_xmlCompress(old_dirPath, new_dirPath, new_size): xmlFilePath_list = get_filePathList(old_dirPath, '.xml') for xmlFilePath in xmlFilePath_list: old_xmlFilePath = xmlFilePath xmlFileName = os.path.split(old_xmlFilePath)[1] new_xmlFilePath = os.path.join(new_dirPath, xmlFileName) single_xmlCompress(xmlFilePath, new_xmlFilePath, new_size) #修改文件夹中的单个jpg文件 from PIL import Image def single_imageCompress(old_imageFilePath, new_imageFilePath, new_size): old_image = Image.open(old_imageFilePath) new_image = old_image.resize(new_size, Image.ANTIALIAS) new_image.save(new_imageFilePath) # 修改文件夹中的若干jpg文件 def batch_imageCompress(old_dirPath, new_dirPath, new_size, suffix): if not os.path.isdir(new_dirPath): os.makedirs(new_dirPath) imageFilePath_list = get_filePathList(old_dirPath, suffix) for imageFilePath in imageFilePath_list: old_imageFilePath = imageFilePath jpgFileName = os.path.split(old_imageFilePath)[1] new_imageFilePath = os.path.join(new_dirPath, jpgFileName) single_imageCompress(old_imageFilePath, new_imageFilePath, new_size) # 解析运行代码文件时传入的参数 import argparse def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-d', '--dirPath', type=str, help='文件夹路径', default='../resources/selected_images') parser.add_argument('-w', '--width', type=int, default=416) parser.add_argument('-he', '--height', type=int, default=416) parser.add_argument('-s', '--suffix', type=str, default='.jpg') argument_namespace = parser.parse_args() return argument_namespace # 主函数 if __name__ == '__main__': argument_namespace = parse_args() old_dirPath = argument_namespace.dirPath assert os.path.exists(old_dirPath), 'not exists this path: %s' %old_dirPath width = argument_namespace.width height = argument_namespace.height new_size = (width, height) new_dirPath = '../resources/images_%sx%s' %(str(width), str(height)) suffix = argument_namespace.suffix batch_imageCompress(old_dirPath, new_dirPath, new_size, suffix) print('所有图片文件都已经完成压缩') batch_xmlCompress(old_dirPath, new_dirPath, new_size) print('所有xml文件都已经完成压缩')
"""Tests for tools for manipulation of expressions using paths. """ from sympy.simplify.epathtools import epath, EPath from sympy.testing.pytest import raises from sympy import sin, cos, E from sympy.abc import x, y, z, t def test_epath_select(): expr = [((x, 1, t), 2), ((3, y, 4), z)] assert epath("/*", expr) == [((x, 1, t), 2), ((3, y, 4), z)] assert epath("/*/*", expr) == [(x, 1, t), 2, (3, y, 4), z] assert epath("/*/*/*", expr) == [x, 1, t, 3, y, 4] assert epath("/*/*/*/*", expr) == [] assert epath("/[:]", expr) == [((x, 1, t), 2), ((3, y, 4), z)] assert epath("/[:]/[:]", expr) == [(x, 1, t), 2, (3, y, 4), z] assert epath("/[:]/[:]/[:]", expr) == [x, 1, t, 3, y, 4] assert epath("/[:]/[:]/[:]/[:]", expr) == [] assert epath("/*/[:]", expr) == [(x, 1, t), 2, (3, y, 4), z] assert epath("/*/[0]", expr) == [(x, 1, t), (3, y, 4)] assert epath("/*/[1]", expr) == [2, z] assert epath("/*/[2]", expr) == [] assert epath("/*/int", expr) == [2] assert epath("/*/Symbol", expr) == [z] assert epath("/*/tuple", expr) == [(x, 1, t), (3, y, 4)] assert epath("/*/__iter__?", expr) == [(x, 1, t), (3, y, 4)] assert epath("/*/int|tuple", expr) == [(x, 1, t), 2, (3, y, 4)] assert epath("/*/Symbol|tuple", expr) == [(x, 1, t), (3, y, 4), z] assert epath("/*/int|Symbol|tuple", expr) == [(x, 1, t), 2, (3, y, 4), z] assert epath("/*/int|__iter__?", expr) == [(x, 1, t), 2, (3, y, 4)] assert epath("/*/Symbol|__iter__?", expr) == [(x, 1, t), (3, y, 4), z] assert epath( "/*/int|Symbol|__iter__?", expr) == [(x, 1, t), 2, (3, y, 4), z] assert epath("/*/[0]/int", expr) == [1, 3, 4] assert epath("/*/[0]/Symbol", expr) == [x, t, y] assert epath("/*/[0]/int[1:]", expr) == [1, 4] assert epath("/*/[0]/Symbol[1:]", expr) == [t, y] assert epath("/Symbol", x + y + z + 1) == [x, y, z] assert epath("/*/*/Symbol", t + sin(x + 1) + cos(x + y + E)) == [x, x, y] def test_epath_apply(): expr = [((x, 1, t), 2), ((3, y, 4), z)] func = lambda expr: expr**2 assert epath("/*", expr, list) == [[(x, 1, t), 2], [(3, y, 4), z]] assert epath("/*/[0]", expr, list) == [([x, 1, t], 2), ([3, y, 4], z)] assert epath("/*/[1]", expr, func) == [((x, 1, t), 4), ((3, y, 4), z**2)] assert epath("/*/[2]", expr, list) == expr assert epath("/*/[0]/int", expr, func) == [((x, 1, t), 2), ((9, y, 16), z)] assert epath("/*/[0]/Symbol", expr, func) == [((x**2, 1, t**2), 2), ((3, y**2, 4), z)] assert epath( "/*/[0]/int[1:]", expr, func) == [((x, 1, t), 2), ((3, y, 16), z)] assert epath("/*/[0]/Symbol[1:]", expr, func) == [((x, 1, t**2), 2), ((3, y**2, 4), z)] assert epath("/Symbol", x + y + z + 1, func) == x**2 + y**2 + z**2 + 1 assert epath("/*/*/Symbol", t + sin(x + 1) + cos(x + y + E), func) == \ t + sin(x**2 + 1) + cos(x**2 + y**2 + E) def test_EPath(): assert EPath("/*/[0]")._path == "/*/[0]" assert EPath(EPath("/*/[0]"))._path == "/*/[0]" assert isinstance(epath("/*/[0]"), EPath) is True assert repr(EPath("/*/[0]")) == "EPath('/*/[0]')" raises(ValueError, lambda: EPath("")) raises(ValueError, lambda: EPath("/")) raises(ValueError, lambda: EPath("/|x")) raises(ValueError, lambda: EPath("/[")) raises(ValueError, lambda: EPath("/[0]%")) raises(NotImplementedError, lambda: EPath("Symbol"))