content
stringlengths
5
1.05M
from lib.base import BaseGithubAction from lib.formatters import repo_to_dict __all__ = [ 'GetRepoAction' ] class GetRepoAction(BaseGithubAction): def run(self, user, repo, base_url): if base_url == None: self._reset(user) else: self._reset(user+'|'+base_url) user = self._client.get_user(user) repo = user.get_repo(repo) result = repo_to_dict(repo=repo) return result
from unittest import TestCase from two_thinning.strategies.mean_thinning_strategy import MeanThinningStrategy class TestMeanThinningStrategy(TestCase): def __init__(self): super().__init__() self.strategy = MeanThinningStrategy(n=3, m=5) def test_decide(self): self.fail() def test_note(self): self.fail() def test_reset(self): self.fail()
from datetime import datetime import logging from django.conf import settings from django.core.cache import cache from django.http import JsonResponse from django.views.generic import TemplateView import pytz import requests log = logging.getLogger(__file__) class HomePageView(TemplateView): """ Handles the homepage view including querying meetup.com for upcoming events - Handles caching meetup API requests to meetup so we don't get rate limited """ cache_duration = 60 * 15 cache_key = "pythonsd.views.MeetupWidget" template_name = "pythonsd/index.html" def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context["upcoming_events"] = self.get_upcoming_events() return context def get_upcoming_events(self): events = cache.get(self.cache_key) if events: log.debug("Using Meetup.com events from cache") return events log.debug("Requesting upcoming events from Meetup.com") # https://www.meetup.com/meetup_api/docs/:urlname/events/ try: resp = requests.get( "https://api.meetup.com/pythonsd/events", params={"photo-host": "public", "page": "3"}, timeout=5, ) except Exception: return [] if resp.ok: # Transform from meetup's API format into our format events = [ { "link": e["link"], "name": e["name"], # Always show time in local San Diego time "datetime": datetime.utcfromtimestamp(e["time"] // 1000) .replace(tzinfo=pytz.utc) .astimezone(pytz.timezone(settings.TIME_ZONE)), "venue": e["venue"]["name"] if "venue" in e else None, } for e in resp.json() ] cache.set(self.cache_key, events, self.cache_duration) return events return []
import logging from flask import request, url_for from telegram import Update from backend import DEVELOPMENT_MODE, TELEGRAM_TOKEN, app, bot, update_queue LOG = logging.getLogger(__name__) last_update_id = 0 @app.route(f"/{TELEGRAM_TOKEN}/", methods=["POST"]) def telegram_webhook(): update = Update.de_json(request.get_json(force=True), bot) update_queue.put(update) return "success" @app.route("/set-telegram-webhook/") def set_telegram_webhook(): webhook_url = url_for(".telegram_webhook", _external=True) logging.info(f"Setting webhook to {webhook_url=}") result = bot.set_webhook(webhook_url) if not result: LOG.error("Telegram webhook setup failed!") return "failed" LOG.info("Telegram webhook setup success") return "success" if DEVELOPMENT_MODE: @app.route("/disable-telegram-webhook/") def disable_telegram_webhook(): logging.info(f"Disabling webhook") result = bot.set_webhook("") if not result: LOG.error("Telegram webhook disabling failed!") return "failed" LOG.info("Telegram webhook disabling success") return "success" @app.route("/process-last-message/") def process_last_message(): global last_update_id updates = bot.get_updates(offset=last_update_id, limit=1, timeout=1) if not updates: LOG.info(f"Empty updates; {updates=}; {last_update_id=}") return "empty" last_update_id = updates[-1].update_id + 1 LOG.info(f"Some updates; {len(updates)=}; {last_update_id=}") for update in updates: LOG.info(f"Enqueuing {update.update_id=}...") update_queue.put(update) return str(last_update_id)
from django.contrib.auth.models import User from django.test import TestCase from django.core.management import call_command from workflow.models import Country from factories.workflow_models import CountryFactory, UserFactory, TolaUserFactory, CountryAccess class TestUpdateUserPermissions (TestCase): def setUp(self): CountryFactory.create_batch(5) self.tola_user1 = TolaUserFactory() self.tola_user2 = TolaUserFactory() self.tola_user3 = TolaUserFactory() self.country_count = Country.objects.count() def test_single_user(self): call_command('update_user_permissions', self.tola_user1.user.email) self.assertEqual(self.tola_user1.countries.all().count(), self.country_count) self.assertEqual(self.tola_user2.countries.all().count(), 0) self.assertEqual(self.tola_user3.countries.all().count(), 0) def test_multi_user(self): call_command('update_user_permissions', self.tola_user1.user.email, self.tola_user2.user.email) self.assertEqual(self.tola_user1.countries.all().count(), self.country_count) self.assertEqual(self.tola_user2.countries.all().count(), self.country_count) self.assertEqual(self.tola_user3.countries.all().count(), 0) def test_existing_permission(self): primary_country = Country.objects.first() CountryAccess.objects.create(tolauser=self.tola_user1, country=primary_country, role='high') call_command('update_user_permissions', self.tola_user1.user.email) self.assertEqual(self.tola_user1.countries.all().count(), self.country_count) self.assertEqual(CountryAccess.objects.filter(tolauser=self.tola_user1, country=primary_country).count(), 1) self.assertEqual(CountryAccess.objects.get(tolauser=self.tola_user1, country=primary_country).role, 'high') non_primary_country_pks = Country.objects.exclude(pk=primary_country.pk).values_list('pk', flat=True) non_primary_country_roles = CountryAccess.objects\ .filter(country__in=non_primary_country_pks, tolauser=self.tola_user1)\ .values_list('role', flat=True) self.assertTrue(all([True if role == 'user' else False for role in non_primary_country_roles]))
from wifi import Cell, exceptions from time import sleep from sys import argv import sqlite3 import os EVIL_TWIN_DB = "src/python/evil_twin/evil_twin.db" def scan_for_evil_twin(time, adapter): conn = sqlite3.connect(EVIL_TWIN_DB) cursor = conn.cursor() cursor.execute("CREATE TABLE IF NOT EXISTS LOG (DUPLICATE TEXT NOT NULL, TIME TEXT NOT NULL)") conn.commit() conn.close() try: while True: duplicates = [] ssids = [] try: ssids = [cell.ssid for cell in Cell.all(adapter)] except exceptions.InterfaceError: # sometimes can't read, just skip sleep(1) continue for ssid in ssids: if ssids.count(ssid) > 1 and ssid not in duplicates and ssid != "": duplicates.append(ssid) for duplicate in duplicates: print("[Evil-Twin Detector]: Warning - Found multiple wifi networks with the same SSID: {}".format(duplicate)) conn = sqlite3.connect(EVIL_TWIN_DB) cursor = conn.cursor() cursor.execute("INSERT OR IGNORE INTO LOG VALUES (?, strftime('%Y-%m-%d %H:%M', 'now', 'localtime'))", (duplicate, )) conn.commit() conn.close() sleep(time) except KeyboardInterrupt: print("[Evil-Twin Detector]: Terminating") def get_log(): log = [] conn = sqlite3.connect(EVIL_TWIN_DB) cursor = conn.cursor() cursor.execute("SELECT * from LOG") result = cursor.fetchall() conn.close() for entry in result: log.append({"SSID": entry[0], "Time": entry[1]}) return {"result": log} def delete_log(): print(os.geteuid()) conn = sqlite3.connect(EVIL_TWIN_DB) cursor = conn.cursor() cursor.execute("DELETE FROM LOG") conn.commit() conn.close() return {"status": "success"} def main(): try: time = int(argv[1]) adapter = argv[2] except IndexError: print(""" Usage: evil_detector.py [time] [adapter] """) scan_for_evil_twin(time, adapter) if __name__ == "__main__": main()
from srcode import app import os, click def startup(app): @app.cli.group() def translate(): """Translation and localization commands for easier translations. Parent command that provides a base for other commands below""" pass @translate.command() @click.argument('lang') def update(): '''update all the languages''' if os.system('pybabel extract -F babel.cfg -k _l -o messages.pot .'): raise RuntimeError('extract command failed') if os.system('pybabel update -i messages.pot -d srcode/translations'): raise RuntimeError('update command failed') os.remove('messages.pot') @translate.command() def compile(): """Compile all languages.""" if os.system('pybabel compile -d srcode/translations'): raise RuntimeError('compile command failed') @translate.command() @click.argument('lang') def init(lang): """Initialize a new language.""" if os.system('pybabel extract -F babel.cfg -k _l -o messages.pot .'): raise RuntimeError('extract command failed') if os.system( 'pybabel init -i messages.pot -d srcode/translations -l ' + lang): raise RuntimeError('init command failed') os.remove('messages.pot')
"""Run a simple test of the Cusser class.""" import curses import sys from functools import reduce from ._misc import ( _SUPPORTED_ATTRIBUTE_TAGS, _SUPPORTED_COLOR_TAGS, _app, _clear_line, _clear_screen, _move, _step, ) if __name__ == "__main__": if len(sys.argv) < 2: print( f"usage: {sys.argv[0]} <example>, where <example> is one of: " "'attributes', 'colors', 'clear', 'cursor'" ) sys.exit(1) MESSAGE = "The quick brown fox jumps over the lazy dog" if sys.argv[1] == "attributes": text = reduce( lambda acc, attribute: acc + attribute(MESSAGE) + "\n", _SUPPORTED_ATTRIBUTE_TAGS, "", ) elif sys.argv[1] == "colors": text = reduce( lambda acc, color: acc + color(MESSAGE) + "\n", _SUPPORTED_COLOR_TAGS, "" ) elif sys.argv[1] == "clear": text = f"{MESSAGE}{_clear_screen}Screen cleared!\n{MESSAGE}{_clear_line}" elif sys.argv[1] == "cursor": text = f"{MESSAGE}{_move()}{_step(1, 1)}{MESSAGE}{_move(3, 3)}{MESSAGE}" else: raise ValueError( f"unknown example: {sys.argv[1]}, must be one of: " "'attributes', 'colors', 'clear', 'cursor'" ) curses.wrapper(lambda stdscr: _app(stdscr, text))
n, c = map(int, input().split()) array = [] for i in range(n): array.append(int(input())) array.sort() def binary_search(array, start, end): while start <= end: mid = (start + end) // 2 current = array[0] count = 1 for i in range(1, len(array)): if array[i] >= current + mid: count += 1 current = array[i] if count >= c: global answer start = mid + 1 answer = mid else: end = mid - 1 start = 1 end = array[-1] - array[0] answer = 0 binary_search(array, start, end) print(answer)
# -*- coding:utf-8 -*- # @Time: 2021/1/30 11:36 # @Author: Zhanyi Hou # @Email: 1295752786@qq.com # @File: pythonedit.py import logging import time import re from typing import Tuple, List, TYPE_CHECKING from qtpy.QtGui import QTextCursor, QMouseEvent, QKeyEvent, QTextBlock from qtpy.QtWidgets import QLabel, QListWidgetItem, QApplication from qtpy.QtCore import QPoint, QModelIndex, Signal from qtpyeditor.codeedit import PMBaseCodeEdit from qtpyeditor.highlighters import PythonHighlighter from qtpyeditor.Utilities import AutoCompThread logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) if TYPE_CHECKING: from jedi.api import Completion class PMPythonCodeEdit(PMBaseCodeEdit): def __init__(self, parent=None): super(PMPythonCodeEdit, self).__init__(parent) # self.setLineWrapMode(QPlainTextEdit.NoWrap) # self.doc_tab_widget: 'PMGPythonEditor' = parent # self.filename = '*' # self.path = '' # self.modified = True self.highlighter = PythonHighlighter(self.document()) self.setTabChangesFocus(False) self.autocomp_thread = AutoCompThread() self.autocomp_thread.trigger.connect(self.on_autocomp_signal_received) self.autocomp_thread.start() self.setMouseTracking(True) self.last_mouse_position: QPoint = None self.last_mouse_moved = time.time() self.hint_widget = QLabel('', parent=self) self.hint_widget.setVisible(False) def on_autocomp_signal_received(self, text_cursor_content: tuple, completions: List['jedi.api.Completion']): ''' 当收到自动补全提示信号时,执行的函数。 :param text_cursor_content:(row,col,hint_when_completion_triggered) :param completions: :return: ''' hint = self._get_hint() logger.debug('hint_when_completion_triggered:{0},current_hint:{1}'.format(text_cursor_content[2], hint)) if hint.startswith(text_cursor_content[2]): if len(completions) == 1: if completions[0].name == self._get_hint(): self.hide_autocomp() return self.autocomp_show(completions) else: self.hide_autocomp() def hide_autocomp(self): self.popup_hint_widget.hide_autocomp() def on_text_changed(self): super(PMPythonCodeEdit, self).on_text_changed() self._get_textcursor_pos() cursor_pos = self.cursorRect() self.popup_hint_widget.setGeometry( cursor_pos.x() + 5, cursor_pos.y() + 20, self.popup_hint_widget.sizeHint().width(), self.popup_hint_widget.sizeHint().height()) self._request_autocomp() def _insert_autocomp(self, e: QModelIndex = None): row = self.popup_hint_widget.currentRow() if 0 <= row < self.popup_hint_widget.count(): complete, word_type = self.popup_hint_widget.get_complete(row) word = self.popup_hint_widget.get_text(row) if not word.startswith(self._get_hint()): return comp = word[len(self._get_hint()):] self.insertPlainText(comp) textcursor: QTextCursor = self.textCursor() word = self.get_word(textcursor.blockNumber(), textcursor.columnNumber() - 1) if word_type == 'function': self.insertPlainText('()') tc = self.textCursor() tc.movePosition(QTextCursor.PreviousCharacter) self.setTextCursor(tc) elif word_type == 'keyword': self.insertPlainText(' ') self.popup_hint_widget.hide() def _get_nearby_text(self): block_text = self.textCursor().block().text() col = self.textCursor().columnNumber() return block_text[:col] def _get_hint(self): block_text = self.textCursor().block().text() if block_text.lstrip().startswith('#'): # 在注释中 return '' col = self.textCursor().columnNumber() nearby_text = block_text[:col] hint = re.split( '[.:;,?!\s \+ \- = \* \\ \/ \( \)\[\]\{\} ]', nearby_text)[-1] return hint def _request_autocomp(self): pos = self._get_textcursor_pos() nearby_text = self._get_nearby_text() hint = self._get_hint() if hint == '' and not nearby_text.endswith(('.', '\\\\', '/')): self.popup_hint_widget.hide_autocomp() return self.autocomp_thread.text_cursor_pos = (pos[0] + 1, pos[1]) self.autocomp_thread.text = self.toPlainText() def autocomp_show(self, completions: List['Completion']): l = [] if len(completions) != 0: self.popup_hint_widget.set_completions(completions) else: self.popup_hint_widget.hide() self.popup_hint_widget.autocomp_list = l def _get_textcursor_pos(self) -> Tuple[int, int]: return self.textCursor().blockNumber(), self.textCursor().columnNumber() def mousePressEvent(self, a0: QMouseEvent) -> None: # PluginInterface.show_tool_bar('code_editor_toolbar') if self.popup_hint_widget.isVisible(): self.popup_hint_widget.hide_autocomp() super().mousePressEvent(a0) def keyPressEvent(self, event: QKeyEvent) -> None: super().keyPressEvent(event) def on_back_tab(self): cursor = self.textCursor() if cursor.hasSelection(): self.editUnindent() else: cursor = self.textCursor() cursor.clearSelection() cursor.movePosition(QTextCursor.StartOfBlock) for i in range(4): cursor.movePosition(QTextCursor.NextCharacter, QTextCursor.KeepAnchor, 1) if not cursor.selectedText().endswith(' '): cursor.movePosition(QTextCursor.PreviousCharacter, QTextCursor.KeepAnchor, 1) break cursor.removeSelectedText() def on_tab(self): cursor = self.textCursor() if cursor.hasSelection(): self.editIndent() return else: nearby_text = self._get_nearby_text() hint = self._get_hint() if hint == '' and not nearby_text.endswith(('.', '\\\\', '/')): cursor = self.textCursor() cursor.insertText(" ") else: self._request_autocomp() def mouseMoveEvent(self, e: QMouseEvent): """ 鼠标移动 移动到marker上的时候,便弹出提示框。 :param e: :return: """ super(PMPythonCodeEdit, self).mouseMoveEvent(e) cursor: QTextCursor = self.cursorForPosition(e.pos()) if not self.should_check_code(): return line, col = cursor.blockNumber(), cursor.positionInBlock() flag = False text = '' if line in self.highlighter.highlight_marks: marker_propertys = self.highlighter.highlight_marks.get(line) for marker_property in marker_propertys: start = marker_property[0] if marker_property[1] == -1: end = len(cursor.block().text()) else: end = start + marker_property[1] if start <= col < end: flag = True text += marker_property[3] + '\n' break self.hint_widget.setGeometry(e.x() + 30, e.y(), self.hint_widget.sizeHint().width(), self.hint_widget.sizeHint().height()) self.hint_widget.setText(text.strip()) self.hint_widget.setVisible(flag) def should_check_code(self) -> bool: """ 返回是否会对代码做insight. :return: """ return len(self.toPlainText()) < 10000 * 120 if __name__ == '__main__': app = QApplication([]) e = PMPythonCodeEdit() e.show() app.exec_()
"""LintPlaybook version""" __version__ = '0.1.dev1'
import os.path from django import template from django.utils.html import format_html from django.template.defaultfilters import filesizeformat from django.template.loader import get_template register = template.Library() @register.filter def attachment_link(attachment): kwargs = { 'href': attachment.attachment.url, 'title': attachment.comment or attachment.attachment.url, 'label': attachment.label or attachment.attachment.name.split("/")[-1], } return format_html('<a target="_blank" href="{href}" title="{title}">{label}</a>', **kwargs) @register.filter def attachment_img(attachment): kwargs = { 'src': attachment.attachment.url, 'alt': attachment.comment or attachment.label or attachment.attachment.url, } return format_html('<img class="qa-image" src="{src}" alt="{alt}"/>', **kwargs) @register.filter def ti_attachment_img(attachment): context = { 'src': attachment.attachment.url, 'name': os.path.basename(attachment.attachment.name), 'size': filesizeformat(attachment.attachment.size), } return get_template("attachments/ti_img.html").render(context)
from .item import Item from .wall import Wall from .decoration import Decoration from .item_grid import ItemGrid from .player import Player from .person import Person from .enemy import Enemy from .door import Door from .item_weapon import ItemWeapon from .item_ammo import ItemAmmo from .item_score import ItemScore class Map2d(): def __init__(self, items: []): self.__grid = ItemGrid(items) self.__players = {item.player_id: item for item in items if isinstance(item, Player)} self.__persons = [item for item in items if isinstance(item, Person)] self.__doors = [item for item in items if isinstance(item, Door)] self.__enemies = [item for item in items if isinstance(item, Enemy)] @property def grid(self) -> Item: return self.__grid def update(self, delta_time: float): for player_id in self.__players: player = self.__players[player_id] player.update(delta_time, self.__grid) player.adjust_collision(self.__grid) player.cast(self.__grid) for door in self.__doors: door.update(delta_time, self.__persons) def get_player(self, player_id: str): return self.__players[player_id] @staticmethod def create_with_pattern(pattern: str): items = [] lines = pattern.splitlines() list_type_ids = [[s[n:n+2] for n in range(0, len(s), 2)] for s in lines] for block_y, type_ids in enumerate(list_type_ids): for block_x, type_id_hex in enumerate(type_ids): if type_id_hex.strip() == "": continue type_id = int(type_id_hex, 16) if type_id in type_ids_walls_solid: items.append(Wall(block_x, block_y, type_id)) elif type_id in type_ids_weapon: items.append(ItemWeapon(block_x + 0.5, block_y + 0.5, type_id, False)) elif type_id in type_ids_ammo: items.append(ItemAmmo(block_x + 0.5, block_y + 0.5, type_id, False)) elif type_id in type_ids_score: items.append(ItemScore(block_x + 0.5, block_y + 0.5, type_id, False)) elif type_id in type_ids_decorations_non_solid: items.append(Decoration(block_x + 0.5, block_y + 0.5, type_id, False)) elif type_id in type_ids_decorations_solid: items.append(Decoration(block_x + 0.5, block_y + 0.5, type_id, True)) elif type_id in type_ids_doors_horizontal: items.append(Door(block_x, block_y + 0.5, type_id, False)) elif type_id in type_ids_doors_vertical: items.append(Door(block_x + 0.5, block_y, type_id, True)) elif type_id in type_ids_enemies: items.append(Enemy.create(block_x + 0.5, block_y + 0.5, type_id)) elif type_id in type_ids_player: items.append(Player.create(block_x + 0.5, block_y + 0.5, type_id)) return Map2d(items) type_ids_decorations_solid = [57, 60, 61, 63, 65, 66, 68, 69, 70, 71, 74, 75, 76, 80, 93, 94, 95, 97] # type_ids_decorations_non_solid = [58, 62, 67, # 72, 73, 77, 81, 92, 96, 99, 100, 101, 102] type_ids_decorations_non_solid = [i for i in range(56,120) if i not in type_ids_decorations_solid] type_ids_walls_solid = list(range(48)) + [53, 54] type_ids_score = [ 87, 88, 89 ] type_ids_weapon = [ 85, 86 ] type_ids_ammo = [ 84 ] type_ids_doors_horizontal = [50] type_ids_doors_vertical = [49] type_ids_player = [255] type_ids_enemies = [130, 131]
#!/usr/bin/python38 import hashlib import lxml import re import requests from lxml import etree from libmysql_utils.mysql8 import mysqlHeader, mysqlBase from sqlalchemy import Column, String, Integer, Float, Date, Text from sqlalchemy.ext.declarative import declarative_base from libutils.log import Log __version__ = 2 article_base = declarative_base() class spider(object): def __init__(self): self.start_url = None def fetch_start_url(self, url): if re.match(r'(https?)://.', url): self.start_url = url else: raise Exception def query_url(self, url): # query whether url exists. return True class formArticle(article_base): __tablename__ = 'news' idx = Column(Integer) title = Column(String(50)) url = Column(String(50), primary_key=True) release_date = Column(Date) source = Column(String(10)) content = Column(Text) keyword = Column(Text) class news(object): def __init__(self, html: lxml.etree._Element): if not isinstance(html, lxml.etree._Element): raise TypeError('Article is not a lxml.etree._Element object.') self._html = html if self._html: self._title = "" self._get_title() self._author = "" self._content = "" self._get_text() self._date = "" self._get_date() self._source = "" self.url = "" def __str__(self): return f"《{self.title}》:{self.author}:{self.date}" @Log def _get_date(self): """ eld version: date_string = self._html.xpath("//div[@class='post_time_source']/text()") """ date_string = self._html.xpath("//div[@class='post_info']/text()") for s in date_string: result = re.search(r'\d{4}\-\d{2}\-\d{2}', s) if result: self._date = result.group() break else: self._date = '' @property def date(self) -> str: return self._date @Log def _get_title(self): result = self._html.xpath("//div/h1/text()") if result: self._title = result[0] else: self._title = "" @property def title(self) -> str: return self._title @property def source(self): article_source = self._html.xpath("//div[@class='ep-source cDGray']/span[@class='left']/text()") if article_source: result = re.split(r':', article_source[0]) self._source = result[1] else: self._source = "" return self._source @property def author(self): article_author = self._html.xpath("//span[@class='ep-editor']/text()") if article_author: result = re.split(r':', article_author[0]) self._author = result[1] else: self._author = "" return self._author @Log def _get_text(self): """ elder version: _text = self._html.xpath("//div[@class='post_text']/p") """ _text = self._html.xpath("//div[@class='post_body']/p") for line in _text: result = line.xpath( "./text()" "|.//*[name(.)='font' or name(.)='b' or name(.)='a']/text()") for subline in result: self._content += subline # remove space self._content.replace(' ', '') self._content.replace('\content', '') self._content.replace('\n', '') # remove \content \n etc. @property def text(self) -> str: return self._content if __name__ == "__main__": url = "https://money.163.com/21/0302/19/G43UHG4S00259DLP.html" text = requests.get(url) h = etree.HTML(text.text) art = article(h) art.url = url print("url", art.url) print("title", art.title) print("date", art.date) # print("text", art.text)
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # This script connects to the system vm socket and writes the # authorized_keys and cmdline data to it. The system VM then # reads it from /dev/vport0p1 in cloud_early_config # import argparse import os import socket SOCK_FILE = "/var/lib/libvirt/qemu/{name}.agent" PUB_KEY_FILE = "/root/.ssh/id_rsa.pub.cloud" MESSAGE = "pubkey:{key}\ncmdline:{cmdline}\n" def send_to_socket(sock_file, key_file, cmdline): if not os.path.exists(key_file): print("ERROR: ssh public key not found on host at {0}".format(key_file)) return 1 try: with open(key_file, "r") as f: pub_key = f.read() except IOError as e: print("ERROR: unable to open {0} - {1}".format(key_file, e.strerror)) return 1 # Keep old substitution from perl code: cmdline = cmdline.replace("%", " ") msg = MESSAGE.format(key=pub_key, cmdline=cmdline) if not os.path.exists(sock_file): print("ERROR: {0} socket not found".format(sock_file)) return 1 try: s = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) s.connect(sock_file) s.sendall(msg) s.close() except IOError as e: print("ERROR: unable to connect to {0} - {1}".format(sock_file, e.strerror)) return 1 return 0 # Success if __name__ == "__main__": parser = argparse.ArgumentParser(description="Send configuration to system VM socket") parser.add_argument("-n", "--name", required=True, help="Name of VM") parser.add_argument("-p", "--cmdline", required=True, help="Command line") arguments = parser.parse_args() socket_file = SOCK_FILE.format(name=arguments.name) exit(send_to_socket(socket_file, PUB_KEY_FILE, arguments.cmdline))
from preprocessing_utilities import create_and_save_uniques, load_uniques_create_dict_map from Scripts.utilities import start_correct_cluster, read_dataset, save_dataset, parse_args from preprocessing_utilities import dict_path, temp_output_path, dataset_path import numpy as np import dask import dask.dataframe as dd out_cols = ["number_of_photo", "number_of_gif", "number_of_video", 'presence_of_photo', 'presence_of_gif', 'presence_of_video'] out_frame_name = "mapped_media" def functional_map_media(media_series: dask.dataframe.Series) -> dask.dataframe.DataFrame: # Map the feature n_photo = media_series.str.count('Photo') n_gif = media_series.str.count('GIF') n_video = media_series.str.count('Video') out_media = dd.concat( [ n_photo.astype(np.uint8).to_frame(name='number_of_photo'), n_gif.astype(np.uint8).to_frame(name='number_of_gif'), n_video.astype(np.uint8).to_frame(name='number_of_video'), n_photo.astype(np.bool_).to_frame(name='presence_of_photo'), n_gif.astype(np.bool_).to_frame(name='presence_of_gif'), n_video.astype(np.bool_).to_frame(name='presence_of_video'), ], axis=1, ignore_unknown_divisions=True ) return out_media if __name__ == '__main__': generate_dict, is_test = parse_args() c = start_correct_cluster(is_test, use_processes=False) ### Map media # Load dataset df = read_dataset(dataset_path, ["raw_feature_tweet_media"]) # Do functional mapping media_df = functional_map_media(df["raw_feature_tweet_media"]) # Write the output dataset save_dataset(temp_output_path, media_df, out_frame_name)
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf import gin.tf slim = tf.contrib.slim gin.constant('networks.STACK_SIZE_1', 1) gin.constant('networks.STACK_SIZE_4', 4) gin.constant('networks.OBSERVATION_DTYPE_FLOAT32', tf.float32) def _atari_dqn_network(num_actions, num_sub_actions, state, use_dueling): del num_sub_actions net = tf.cast(state, tf.float32) net = tf.div(net, 255.) net = slim.conv2d(net, 32, [8, 8], stride=4) net = slim.conv2d(net, 64, [4, 4], stride=2) net = slim.conv2d(net, 64, [3, 3], stride=1) net = slim.flatten(net) if use_dueling: v_net = slim.fully_connected(net, 512) v_value = slim.fully_connected(v_net, 1, activation_fn=None) adv_net = slim.fully_connected(net, 512) adv_values = slim.fully_connected(adv_net, num_actions, activation_fn=None) adv_values -= tf.reduce_mean(adv_values, axis=1, keepdims=True) q_values = adv_values + v_value return q_values, v_value else: net = slim.fully_connected(net, 512) q_values = slim.fully_connected(net, num_actions, activation_fn=None) return q_values, None @gin.configurable def _atari_hgqn_network(num_actions, num_sub_actions, state, use_dueling, hyperedge_orders, mixer): assert num_sub_actions == [3,3,2] assert num_actions == np.prod(num_sub_actions) assert all(x in [1,2,3] for x in hyperedge_orders) ATARI_MIXER_NET_H = 25 n = len(num_sub_actions) num_heads = int(0) if 1 in hyperedge_orders: num_heads += int(n) if 2 in hyperedge_orders: num_heads += int(n*(n-1)/2) if 3 in hyperedge_orders: num_heads += int(1) if num_heads == 3: assert (hyperedge_orders == [1]) or (hyperedge_orders == [2]) LAYER_WIDTH = 172 elif num_heads == 6: assert hyperedge_orders == [1,2] LAYER_WIDTH = 86 elif num_heads == 4: assert (hyperedge_orders == [1,3]) or (hyperedge_orders == [2,3]) LAYER_WIDTH = 128 elif num_heads == 7: assert hyperedge_orders == [1,2,3] LAYER_WIDTH = 74 else: assert num_heads == 1 assert hyperedge_orders == [3] raise AssertionError('Use `atari_dqn_network` for [3].') net = tf.cast(state, tf.float32) net = tf.div(net, 255.) net = slim.conv2d(net, 32, [8, 8], stride=4) net = slim.conv2d(net, 64, [4, 4], stride=2) net = slim.conv2d(net, 64, [3, 3], stride=1) net = slim.flatten(net) if list(filter((3).__ne__, hyperedge_orders)) == [] or mixer == 'sum': order_1_values = 0.0 order_2_values = 0.0 order_3_values = 0.0 bq_values_orig = None p_bq_values_orig = None t_bq_values_orig = None if 1 in hyperedge_orders: bq_values = [] for num_sub_actions_dim in num_sub_actions: bnet = slim.fully_connected(net, LAYER_WIDTH) bq_values_dim = slim.fully_connected(bnet, num_sub_actions_dim, activation_fn=None) bq_values.append(bq_values_dim) bq_values_orig = bq_values if mixer == 'sum': from hyperdopamine.agents.utils import SUM_ORDER_1_MAP order_1_mapping_matrices = SUM_ORDER_1_MAP bq_values = tf.concat(bq_values, -1) order_1_mapping_matrices = tf.transpose(order_1_mapping_matrices) assert order_1_mapping_matrices.shape == (8, num_actions) order_1_values = tf.matmul(bq_values, order_1_mapping_matrices) assert order_1_values.shape == (state.shape[0], num_actions) if 2 in hyperedge_orders: p_bq_values = [] branch_pairs = [[0, 1], [0, 2], [1, 2]] assert len(branch_pairs) == int(n*(n-1)/2) for pair_of_branches,test in zip(branch_pairs,[9,6,6]): branch_i, branch_j = pair_of_branches pair_output_length = \ num_sub_actions[branch_i] * num_sub_actions[branch_j] assert pair_output_length == test p_bnet = slim.fully_connected(net, LAYER_WIDTH) p_bq_values_pair_of_dims = \ slim.fully_connected(p_bnet, pair_output_length, activation_fn=None) p_bq_values.append(p_bq_values_pair_of_dims) p_bq_values_orig = p_bq_values if mixer == 'sum': from hyperdopamine.agents.utils import SUM_ORDER_2_MAP order_2_mapping_matrices = SUM_ORDER_2_MAP p_bq_values = tf.concat(p_bq_values, -1) order_2_mapping_matrices = tf.transpose(order_2_mapping_matrices) assert order_2_mapping_matrices.shape == (21, num_actions) order_2_values = tf.matmul(p_bq_values, order_2_mapping_matrices) assert order_2_values.shape == (state.shape[0], num_actions) if 3 in hyperedge_orders: t_bnet = slim.fully_connected(net, LAYER_WIDTH) order_3_values = slim.fully_connected(t_bnet, num_actions, activation_fn=None) t_bq_values_orig = order_3_values assert order_3_values.shape == (state.shape[0], num_actions) if (list(filter((3).__ne__, hyperedge_orders)) != [] and mixer == 'universal'): initializer_W = slim.initializers.xavier_initializer() initializer_b = slim.init_ops.zeros_initializer() W1 = tf.get_variable('W1', shape=[num_heads, ATARI_MIXER_NET_H], initializer=initializer_W, dtype=tf.float32, trainable=True) b1 = tf.get_variable('b1', shape=[ATARI_MIXER_NET_H], initializer=initializer_b, dtype=tf.float32, trainable=True) W2 = tf.get_variable('W2', shape=[ATARI_MIXER_NET_H, 1], initializer=initializer_W, dtype=tf.float32, trainable=True) b2 = tf.get_variable('b2', shape=[1], initializer=initializer_b, dtype=tf.float32, trainable=True) if 1 in hyperedge_orders: from hyperdopamine.agents.utils import GENERAL_ORDER_1_MAP order_1_mapping_matrices = GENERAL_ORDER_1_MAP if 2 in hyperedge_orders: from hyperdopamine.agents.utils import GENERAL_ORDER_2_MAP order_2_mapping_matrices = GENERAL_ORDER_2_MAP all_values_per_action = [] for act in range(num_actions): values_to_mix_act = [] if 1 in hyperedge_orders: l1_per_composite = [] for bq,b2c in zip(bq_values, order_1_mapping_matrices[act]): b2c = tf.expand_dims(b2c, -1) out = tf.matmul(bq, b2c) out = tf.squeeze(out, -1) l1_per_composite.append(out) l1_per_composite = tf.stack(l1_per_composite, -1) values_to_mix_act.append(l1_per_composite) if 2 in hyperedge_orders: l2_per_composite = [] for pbq,pb2c in zip(p_bq_values, order_2_mapping_matrices[act]): pb2c = tf.expand_dims(pb2c, -1) out = tf.matmul(pbq, pb2c) out = tf.squeeze(out, -1) l2_per_composite.append(out) l2_per_composite = tf.stack(l2_per_composite, -1) values_to_mix_act.append(l2_per_composite) input_values = tf.concat(values_to_mix_act, -1) assert input_values.shape == (state.shape[0], num_heads - (1 if 3 in hyperedge_orders else 0)) all_values_per_action.append(input_values) all_values_per_action = tf.stack(all_values_per_action, -1) if 3 in hyperedge_orders: all_values_per_action = tf.concat([all_values_per_action, \ tf.reshape(order_3_values, [-1, 1, num_actions])], 1) assert all_values_per_action.shape == \ (state.shape[0], num_heads, num_actions) all_values_per_action = tf.transpose(all_values_per_action, perm=[2, 0, 1]) all_values_per_action = tf.reshape(all_values_per_action, [-1, num_heads]) q_values = tf.add(tf.matmul(all_values_per_action, W1), b1) q_values = tf.nn.relu(q_values) q_values = tf.add(tf.matmul(q_values, W2), b2) q_values = tf.reshape(q_values, [num_actions, -1]) q_values = tf.transpose(q_values) else: assert (list(filter((3).__ne__, hyperedge_orders)) == [] or mixer == 'sum') q_values = order_1_values + order_2_values + order_3_values assert q_values.shape == (state.shape[0], num_actions) if use_dueling: v_net = slim.fully_connected(net, 512) v_value = slim.fully_connected(v_net, 1, activation_fn=None) q_values -= tf.reduce_mean(q_values, axis=1, keepdims=True) q_values += v_value return q_values, v_value, bq_values_orig, p_bq_values_orig, \ t_bq_values_orig else: return q_values, None, bq_values_orig, p_bq_values_orig, \ t_bq_values_orig @gin.configurable def _hgqn_network(num_actions, num_sub_actions, state, use_dueling, hyperedge_orders, mixer): n = len(num_sub_actions) m = max(num_sub_actions) assert max(num_sub_actions) == min(num_sub_actions) assert num_actions == m**n possible_factors = \ list(filter((0).__ne__, range(-1,(n if n<4 else 4),1))) assert all(x in possible_factors for x in hyperedge_orders) MIXER_NET_H = 25 SHARED_NET_H1 = 600 SHARED_NET_H2 = 400 LAST_NET_H = 400 num_heads = int(0) if 1 in hyperedge_orders: num_heads += int(n) if 2 in hyperedge_orders: num_heads += int(n*(n-1)/2) if 3 in hyperedge_orders: num_heads += int(n*(n-1)*(n-2)/6) if -1 in hyperedge_orders: num_heads += int(1) from hyperdopamine.agents.utils import ceil_rounder LAYER_WIDTH = ceil_rounder(LAST_NET_H / num_heads) net = tf.cast(state, tf.float32) net = slim.flatten(net) if SHARED_NET_H1 is not None: net = slim.fully_connected(net, SHARED_NET_H1) if SHARED_NET_H2 is not None: net = slim.fully_connected(net, SHARED_NET_H2) if (list(filter((-1).__ne__, hyperedge_orders)) == [] or mixer == 'sum'): order_1_values = 0.0 order_2_values = 0.0 order_3_values = 0.0 order_Nv_values = 0.0 bq_values_orig = None p_bq_values_orig = None t_bq_values_orig = None n_bq_values_orig = None if 1 in hyperedge_orders: bq_values = [] for num_sub_actions_dim in num_sub_actions: bnet = slim.fully_connected(net, LAYER_WIDTH) bq_values_dim = slim.fully_connected(bnet, num_sub_actions_dim, activation_fn=None) bq_values.append(bq_values_dim) bq_values_orig = bq_values if mixer == 'sum': from hyperdopamine.agents.utils import create_sum_order_1_map order_1_mapping_matrices = create_sum_order_1_map( num_branches=n, num_sub_actions_per_branch=m) bq_values = tf.concat(bq_values, -1) order_1_mapping_matrices = tf.transpose(order_1_mapping_matrices) assert order_1_mapping_matrices.shape == (n*m, num_actions) order_1_values = tf.matmul(bq_values, order_1_mapping_matrices) assert order_1_values.shape == (state.shape[0], num_actions) if 2 in hyperedge_orders: p_bq_values = [] num_branch_pairs = int(n*(n-1)/2) for _ in range(num_branch_pairs): p_bnet = slim.fully_connected(net, LAYER_WIDTH) p_bq_values_pair_of_dims = \ slim.fully_connected(p_bnet, m**2, activation_fn=None) p_bq_values.append(p_bq_values_pair_of_dims) p_bq_values_orig = p_bq_values if mixer == 'sum': from hyperdopamine.agents.utils import create_sum_order_2_map order_2_mapping_matrices = create_sum_order_2_map( num_branches=n, num_sub_actions_per_branch=m) p_bq_values = tf.concat(p_bq_values, -1) order_2_mapping_matrices = tf.transpose(order_2_mapping_matrices) assert order_2_mapping_matrices.shape == (num_branch_pairs*m**2, num_actions) order_2_values = tf.matmul(p_bq_values, order_2_mapping_matrices) assert order_2_values.shape == (state.shape[0], num_actions) if 3 in hyperedge_orders: t_bq_values = [] num_branch_triplets = int(n*(n-1)*(n-2)/6) for _ in range(num_branch_triplets): t_bnet = slim.fully_connected(net, LAYER_WIDTH) t_bq_values_triplet_of_dims = \ slim.fully_connected(t_bnet, m**3, activation_fn=None) t_bq_values.append(t_bq_values_triplet_of_dims) t_bq_values_orig = t_bq_values if mixer == 'sum': from hyperdopamine.agents.utils import create_sum_order_3_map order_3_mapping_matrices = create_sum_order_3_map( num_branches=n, num_sub_actions_per_branch=m) t_bq_values = tf.concat(t_bq_values, -1) order_3_mapping_matrices = tf.transpose(order_3_mapping_matrices) assert order_3_mapping_matrices.shape == (num_branch_triplets*m**3, num_actions) order_3_values = tf.matmul(t_bq_values, order_3_mapping_matrices) assert order_3_values.shape == (state.shape[0], num_actions) if -1 in hyperedge_orders: n_bnet = slim.fully_connected(net, LAYER_WIDTH) order_Nv_values = slim.fully_connected(n_bnet, num_actions, activation_fn=None) n_bq_values_orig = order_Nv_values assert order_Nv_values.shape == (state.shape[0], num_actions) if (list(filter((-1).__ne__, hyperedge_orders)) != [] and mixer == 'universal'): initializer_W = slim.initializers.xavier_initializer() initializer_b = slim.init_ops.zeros_initializer() W1 = tf.get_variable('W1', shape=[num_heads, MIXER_NET_H], initializer=initializer_W, dtype=tf.float32, trainable=True) b1 = tf.get_variable('b1', shape=[MIXER_NET_H], initializer=initializer_b, dtype=tf.float32, trainable=True) W2 = tf.get_variable('W2', shape=[MIXER_NET_H, 1], initializer=initializer_W, dtype=tf.float32, trainable=True) b2 = tf.get_variable('b2', shape=[1], initializer=initializer_b, dtype=tf.float32, trainable=True) all_values = [] if 1 in hyperedge_orders: from hyperdopamine.agents.utils import create_general_order_1_map order_1_mapping_matrices = create_general_order_1_map( num_branches=n, num_sub_actions_per_branch=m) order_1_mapping_matrices = np.array(order_1_mapping_matrices) order_1_mapping_matrices = \ np.transpose(order_1_mapping_matrices, (1, 2, 0)) order_1_mapping_matrices = \ np.expand_dims(order_1_mapping_matrices, axis=0) assert order_1_mapping_matrices.shape == (1, n, m, num_actions) bq_values = tf.concat(bq_values, -1) bq_values = tf.reshape(bq_values, [-1, n, m]) bq_values = tf.expand_dims(bq_values, axis=-1) out_l1 = tf.multiply(bq_values, order_1_mapping_matrices) out_l1 = tf.reduce_sum(out_l1, axis=2) out_l1 = tf.transpose(out_l1, (0,2,1)) assert out_l1.shape == (state.shape[0], num_actions, n) all_values.append(out_l1) del order_1_mapping_matrices if 2 in hyperedge_orders: from hyperdopamine.agents.utils import create_general_order_2_map order_2_mapping_matrices = create_general_order_2_map( num_branches=n, num_sub_actions_per_branch=m) order_2_mapping_matrices = np.array(order_2_mapping_matrices) order_2_mapping_matrices = \ np.transpose(order_2_mapping_matrices, (1,2,0)) order_2_mapping_matrices = \ np.expand_dims(order_2_mapping_matrices, axis=0) assert order_2_mapping_matrices.shape == \ (1, n*(n-1)/2, m**2, num_actions) p_bq_values = tf.concat(p_bq_values, -1) p_bq_values = tf.reshape(p_bq_values, [-1, int(n*(n-1)/2), int(m**2)]) p_bq_values = tf.expand_dims(p_bq_values, axis=-1) out_l2 = tf.multiply(p_bq_values, order_2_mapping_matrices) out_l2 = tf.reduce_sum(out_l2, axis=2) out_l2 = tf.transpose(out_l2, (0,2,1)) assert out_l2.shape == (state.shape[0], num_actions, n*(n-1)/2) all_values.append(out_l2) del order_2_mapping_matrices if 3 in hyperedge_orders: from hyperdopamine.agents.utils import create_general_order_3_map order_3_mapping_matrices = create_general_order_3_map( num_branches=n, num_sub_actions_per_branch=m) order_3_mapping_matrices = np.array(order_3_mapping_matrices) order_3_mapping_matrices = \ np.transpose(order_3_mapping_matrices, (1,2,0)) order_3_mapping_matrices = \ np.expand_dims(order_3_mapping_matrices, axis=0) assert order_3_mapping_matrices.shape == \ (1, n*(n-1)*(n-2)/6, m**3, num_actions) t_bq_values = tf.concat(t_bq_values, -1) t_bq_values = tf.reshape(t_bq_values, [-1, n*(n-1)*(n-2)/6, m**3]) t_bq_values = tf.expand_dims(t_bq_values, axis=-1) out_l3 = tf.multiply(t_bq_values, order_3_mapping_matrices) out_l3 = tf.reduce_sum(out_l3, axis=2) out_l3 = tf.transpose(out_l3, (0,2,1)) assert out_l3.shape == \ (state.shape[0], num_actions, n*(n-1)*(n-2)/6) all_values.append(out_l3) del order_3_mapping_matrices if -1 in hyperedge_orders: out_ln = tf.expand_dims(order_Nv_values, axis=-1) all_values.append(out_ln) all_values_per_action = tf.concat(all_values, -1) all_values_per_action = \ tf.transpose(all_values_per_action, (1,0,2)) assert all_values_per_action.shape == \ (num_actions, state.shape[0], num_heads) all_values_per_action = tf.reshape(all_values_per_action, [-1, num_heads]) q_values = tf.add(tf.matmul(all_values_per_action, W1), b1) q_values = tf.nn.relu(q_values) q_values = tf.add(tf.matmul(q_values, W2), b2) q_values = tf.reshape(q_values, [num_actions, -1]) q_values = tf.transpose(q_values) del all_values_per_action else: assert (list(filter((-1).__ne__, hyperedge_orders)) == [] or mixer == 'sum') q_values = order_1_values + order_2_values + order_3_values + \ order_Nv_values assert q_values.shape == (state.shape[0], num_actions) if use_dueling: v_net = slim.fully_connected(net, LAST_NET_H) v_value = slim.fully_connected(v_net, 1, activation_fn=None) q_values -= tf.reduce_mean(q_values, axis=1, keepdims=True) q_values += v_value return q_values, v_value, bq_values_orig, p_bq_values_orig, \ t_bq_values_orig, n_bq_values_orig else: return q_values, None, bq_values_orig, p_bq_values_orig, \ t_bq_values_orig, n_bq_values_orig @gin.configurable def _branching_network(num_sub_actions, state, use_dueling): from hyperdopamine.agents.utils import ceil_rounder LAST_NET_H = 400 LAYER_WIDTH = ceil_rounder(LAST_NET_H / len(num_sub_actions)) net = tf.cast(state, tf.float32) net = slim.flatten(net) net = slim.fully_connected(net, 600) net = slim.fully_connected(net, 400) bq_values = [] for num_sub_actions_dim in num_sub_actions: bnet = slim.fully_connected(net, LAYER_WIDTH) bq_values_dim = \ slim.fully_connected(bnet, num_sub_actions_dim, activation_fn=None) if use_dueling: bq_values_dim -= tf.reduce_mean(bq_values_dim, axis=1, keepdims=True) bq_values.append(bq_values_dim) if use_dueling: v_net = slim.fully_connected(net, LAST_NET_H) v_value = slim.fully_connected(v_net, 1, activation_fn=None) return bq_values, v_value else: return bq_values, None @gin.configurable def atari_dqn_network(num_actions, num_sub_actions, network_type, state, **kwargs): assert kwargs['hyperedge_orders'] == None and kwargs['mixer'] == None q_values, v_value = _atari_dqn_network(num_actions, num_sub_actions, state, kwargs['use_dueling']) return network_type(q_values, v_value, None, None, None, None) @gin.configurable def atari_hgqn_network(num_actions, num_sub_actions, network_type, state, **kwargs): assert num_sub_actions == [3,3,2] if (kwargs['hyperedge_orders'] == None or not kwargs['hyperedge_orders']): raise ValueError('Unspecified hyperedge orders.') assert (kwargs['mixer'] == 'sum' or kwargs['mixer'] == 'universal' or (kwargs['mixer'] == None and kwargs['hyperedge_orders'] == [3])) q_values, v_value, bq_values, pbq_values, tbq_values = \ _atari_hgqn_network(num_actions, num_sub_actions, state, kwargs['use_dueling'], kwargs['hyperedge_orders'], kwargs['mixer']) return network_type(q_values, v_value, bq_values, pbq_values, tbq_values, None) @gin.configurable def hgqn_network(num_actions, num_sub_actions, network_type, state, **kwargs): assert num_sub_actions != int if (kwargs['hyperedge_orders'] == None or not kwargs['hyperedge_orders']): raise ValueError('Unspecified hyperedge orders.') assert (kwargs['mixer'] == 'sum' or kwargs['mixer'] == 'universal' or (kwargs['mixer'] == None and kwargs['hyperedge_orders'] == [-1])) q_values, v_value, bq_values, pbq_values, tbq_values, nbq_values = \ _hgqn_network(num_actions, num_sub_actions, state, kwargs['use_dueling'], kwargs['hyperedge_orders'], kwargs['mixer']) return network_type(q_values, v_value, bq_values, pbq_values, tbq_values, nbq_values) @gin.configurable def branching_network(num_sub_actions, network_type, state, **kwargs): assert num_sub_actions != int bq_values, v_value = _branching_network(num_sub_actions, state, kwargs['use_dueling']) return network_type(bq_values, v_value) @gin.configurable def sum_mixer(network_type, utils, **kwargs): net = tf.stack(utils, axis=1) assert net.shape[1] == len(utils) q_value = tf.reduce_sum(utils, axis=0) q_value = tf.expand_dims(q_value, axis=1) if kwargs['use_dueling']: assert q_value.shape == kwargs['v_value'].shape q_value += kwargs['v_value'] return network_type(q_value) @gin.configurable def monotonic_linear_mixer(network_type, utils, **kwargs): net = tf.stack(utils, axis=1) assert net.shape[1] == len(utils) W = tf.get_variable('W', shape=[len(utils), 1], dtype=tf.float32, trainable=True, initializer=slim.initializers.xavier_initializer()) b = tf.get_variable('b', shape=[1], dtype=tf.float32, trainable=True, initializer=slim.init_ops.zeros_initializer()) W = tf.abs(W) q_value = tf.add(tf.matmul(net, W), b) if kwargs['use_dueling']: assert q_value.shape == kwargs['v_value'].shape q_value += kwargs['v_value'] return network_type(q_value) @gin.configurable def monotonic_nonlinear_mixer(network_type, utils, **kwargs): net = tf.stack(utils, axis=1) assert net.shape[1] == len(utils) initializer_W = slim.initializers.xavier_initializer() initializer_b = slim.init_ops.zeros_initializer() MIXER_NET_H = 25 W1 = tf.get_variable('W1', shape=[len(utils), MIXER_NET_H], initializer=initializer_W, dtype=tf.float32, trainable=True) b1 = tf.get_variable('b1', shape=[MIXER_NET_H], initializer=initializer_b, dtype=tf.float32, trainable=True) W2 = tf.get_variable('W2', shape=[MIXER_NET_H, 1], initializer=initializer_W, dtype=tf.float32, trainable=True) b2 = tf.get_variable('b2', shape=[1], initializer=initializer_b, dtype=tf.float32, trainable=True) W1 = tf.abs(W1) W2 = tf.abs(W2) net = tf.add(tf.matmul(net, W1), b1) net = tf.nn.elu(net) # using ELU to maintain strict monotonicity q_value = tf.add(tf.matmul(net, W2), b2) if kwargs['use_dueling']: assert q_value.shape == kwargs['v_value'].shape q_value += kwargs['v_value'] return network_type(q_value)
"""Initial Build Revision ID: 34935013ab33 Revises: Create Date: 2020-03-10 23:05:03.634539 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "34935013ab33" down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "channel", sa.Column("id", sa.String(length=32), nullable=False), sa.Column("name", sa.String(length=128), nullable=True), sa.Column("active", sa.Boolean(), nullable=True), sa.Column("infos", sa.JSON(), nullable=True), sa.Column("hub_infos", sa.JSON(), nullable=True), sa.Column("subscribe_timestamp", sa.DateTime(), nullable=True), sa.Column("unsubscribe_timestamp", sa.DateTime(), nullable=True), sa.PrimaryKeyConstraint("id", name=op.f("pk_channel")), ) op.create_table( "user", sa.Column("username", sa.String(length=32), nullable=False), sa.Column("_password_hash", sa.LargeBinary(length=128), nullable=False), sa.Column("admin", sa.Boolean(), nullable=True), sa.Column("_pushover_key", sa.String(length=32), nullable=True), sa.Column("_youtube_credentials", sa.JSON(), nullable=True), sa.Column("_line_notify_credentials", sa.String(length=64), nullable=True), sa.Column("_dropbox_credentials", sa.JSON(), nullable=True), sa.PrimaryKeyConstraint("username", name=op.f("pk_user")), ) op.create_table( "notification", sa.Column("id", sa.Integer(), nullable=False), sa.Column("initiator", sa.String(length=16), nullable=False), sa.Column("username", sa.String(length=32), nullable=True), sa.Column( "service", sa.Enum("Pushover", "LineNotify", name="service"), nullable=True ), sa.Column("message", sa.Text(), nullable=True), sa.Column("kwargs", sa.JSON(), nullable=True), sa.Column("sent_timestamp", sa.DateTime(), nullable=True), sa.Column("response", sa.JSON(), nullable=True), sa.ForeignKeyConstraint( ["username"], ["user.username"], name=op.f("fk_notification_username_user") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_notification")), ) with op.batch_alter_table("notification", schema=None) as batch_op: batch_op.create_index( batch_op.f("ix_notification_sent_timestamp"), ["sent_timestamp"], unique=False, ) op.create_table( "subscription", sa.Column("username", sa.String(length=32), nullable=False), sa.Column("channel_id", sa.String(length=32), nullable=False), sa.Column("subscribe_timestamp", sa.DateTime(), nullable=True), sa.Column("unsubscribe_timestamp", sa.DateTime(), nullable=True), sa.ForeignKeyConstraint( ["channel_id"], ["channel.id"], name=op.f("fk_subscription_channel_id_channel"), ), sa.ForeignKeyConstraint( ["username"], ["user.username"], name=op.f("fk_subscription_username_user") ), sa.PrimaryKeyConstraint("username", "channel_id", name=op.f("pk_subscription")), sa.UniqueConstraint("channel_id", name=op.f("uq_subscription_channel_id")), sa.UniqueConstraint("username", name=op.f("uq_subscription_username")), ) op.create_table( "tag", sa.Column("id", sa.Integer(), nullable=False), sa.Column("name", sa.String(length=64), nullable=False), sa.Column("username", sa.String(length=32), nullable=True), sa.ForeignKeyConstraint( ["username"], ["user.username"], name=op.f("fk_tag_username_user") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_tag")), ) with op.batch_alter_table("tag", schema=None) as batch_op: batch_op.create_index(batch_op.f("ix_tag_name"), ["name"], unique=False) op.create_table( "video", sa.Column("id", sa.String(length=16), nullable=False), sa.Column("name", sa.String(length=128), nullable=True), sa.Column("channel_id", sa.String(length=32), nullable=True), sa.Column("uploaded_timestamp", sa.DateTime(), nullable=True), sa.Column("details", sa.JSON(), nullable=True), sa.ForeignKeyConstraint( ["channel_id"], ["channel.id"], name=op.f("fk_video_channel_id_channel") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_video")), ) op.create_table( "action", sa.Column("id", sa.Integer(), nullable=False), sa.Column("name", sa.String(length=32), nullable=False), sa.Column( "type", sa.Enum("Notification", "Playlist", "Download", name="actiontype"), nullable=False, ), sa.Column("details", sa.JSON(), nullable=True), sa.Column("username", sa.String(length=32), nullable=True), sa.Column("channel_id", sa.String(length=32), nullable=True), sa.ForeignKeyConstraint( ["channel_id"], ["subscription.channel_id"], name=op.f("fk_action_channel_id_subscription"), ), sa.ForeignKeyConstraint( ["username", "channel_id"], ["subscription.username", "subscription.channel_id"], name=op.f("fk_action_username_channel_id_subscription"), ), sa.ForeignKeyConstraint( ["username"], ["subscription.username"], name=op.f("fk_action_username_subscription"), ), sa.PrimaryKeyConstraint("id", name=op.f("pk_action")), ) op.create_table( "callback", sa.Column("id", sa.Integer(), nullable=False), sa.Column("type", sa.String(length=32), nullable=True), sa.Column("timestamp", sa.DateTime(), nullable=True), sa.Column("infos", sa.JSON(), nullable=True), sa.Column("channel_id", sa.String(length=32), nullable=True), sa.Column("video_id", sa.String(length=32), nullable=True), sa.ForeignKeyConstraint( ["channel_id"], ["channel.id"], name=op.f("fk_callback_channel_id_channel") ), sa.ForeignKeyConstraint( ["video_id"], ["video.id"], name=op.f("fk_callback_video_id_video") ), sa.PrimaryKeyConstraint("id", name=op.f("pk_callback")), ) with op.batch_alter_table("callback", schema=None) as batch_op: batch_op.create_index( batch_op.f("ix_callback_timestamp"), ["timestamp"], unique=False ) op.create_table( "subscription_tag", sa.Column("username", sa.String(length=32), nullable=False), sa.Column("channel_id", sa.String(length=32), nullable=False), sa.Column("tag_id", sa.Integer(), nullable=False), sa.ForeignKeyConstraint( ["channel_id"], ["subscription.channel_id"], name=op.f("fk_subscription_tag_channel_id_subscription"), ), sa.ForeignKeyConstraint( ["tag_id"], ["tag.id"], name=op.f("fk_subscription_tag_tag_id_tag") ), sa.ForeignKeyConstraint( ["username", "channel_id"], ["subscription.username", "subscription.channel_id"], name=op.f("fk_subscription_tag_username_channel_id_subscription"), ), sa.ForeignKeyConstraint( ["username"], ["subscription.username"], name=op.f("fk_subscription_tag_username_subscription"), ), sa.PrimaryKeyConstraint( "username", "channel_id", "tag_id", name=op.f("pk_subscription_tag") ), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("subscription_tag") with op.batch_alter_table("callback", schema=None) as batch_op: batch_op.drop_index(batch_op.f("ix_callback_timestamp")) op.drop_table("callback") op.drop_table("action") op.drop_table("video") with op.batch_alter_table("tag", schema=None) as batch_op: batch_op.drop_index(batch_op.f("ix_tag_name")) op.drop_table("tag") op.drop_table("subscription") with op.batch_alter_table("notification", schema=None) as batch_op: batch_op.drop_index(batch_op.f("ix_notification_sent_timestamp")) op.drop_table("notification") op.drop_table("user") op.drop_table("channel") # ### end Alembic commands ###
import re import PyPDF2 import pandas as pd """ """ # Setting the file path pdf_path = 'ED_8_PETROBRAS_PSP1_2021_RES_FINAL_OBJ_CONV_TITULOS.PDF' # Reading the PDF file with PyPDF2 with open(pdf_path, mode='rb') as f: reader = PyPDF2.PdfFileReader(f) # Getting the number of pages num_pages = reader.getNumPages() # Getting the document content pdf_content = '' for i in range(num_pages): page = reader.getPage(i) # Getting the page content text = page.extractText().replace('\n', '') # Removing the page number and adding it to the full content pdf_content += text[text.find(str(i + 1)) + len(str(i + 1)):] # Configuring regular expression to find titles pattern = r'ÊNFASE \d{1,2}([^a-z\d])+' matches = re.finditer(pattern, pdf_content) enfases = [] # Getting the name and position of titles for match in matches: i1 = match.start() i2 = match.end() name = match.group() if name[-2:] == ' R': name = name[:-2] enfase = { 'name': name.strip(), 'position': (i1, i2) } enfases.append(enfase) n_enfases = len(enfases) # Preparing the dataframe columns_resultados = ['Ênfase', 'Nº de inscrição', 'Nome do candidato', 'Nota final - Conhecimentos básicos', 'Nº acertos - Conhecimentos básicos', 'Nota final - Conhecimentos específicos', 'Nº acertos - Conhecimentos específicos', 'Nota final - Bloco 1', 'Nota final - Bloco 2', 'Nota final - Bloco 3', 'Nota final da prova'] df_enfases = [] for idx, enfase in enumerate(enfases): # Getting the content between titles to assign it to the top one i1 = enfase['position'][1] i2 = enfases[idx + 1]['position'][0] if idx != (n_enfases - 1) else -1 content = pdf_content[i1:i2] # Configuring regular expression to find candidate result information pattern = r'\d{8}([^/])+' candidates = [candidate.group() for candidate in re.finditer(pattern, content)] candidates_rows = [] for candidate in candidates: # Breaking the string and configuring the candidate row column_data = candidate.split(',') insc = int(column_data[0]) name = column_data[1].strip() nf1 = float(column_data[2]) a1 = int(column_data[3]) nf2 = float(column_data[4]) a2 = int(column_data[5]) bl1 = float(column_data[6]) bl2 = float(column_data[7]) bl3 = float(column_data[8]) # Getting the final result through regex because the end of last element doesn't always end in the score nf = float(re.search(r'\d{1,2}\.\d{2}', column_data[9]).group()) candidates_rows.append([enfase['name'], insc, name, nf1, a1, nf2, a2, bl1, bl2, bl3, nf]) # Creating the dataframe with the candidate results for the current enfase df_enfase = pd.DataFrame(columns=columns_resultados, data=candidates_rows) df_enfases.append(df_enfase) # Merging all dataframes into one df_final = pd.concat(df_enfases) # Saving the dataframe to a csv file df_final.to_csv('aprovados_petrobras_2022.csv', index=False)
# # All or portions of this file Copyright (c) Amazon.com, Inc. or its affiliates or # its licensors. # # For complete copyright and license terms please see the LICENSE at the root of this # distribution (the "License"). All use of this software is governed by the License, # or, if provided, by the license below or the license accompanying this file. Do not # remove or modify any license notices. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # import boto3 import service import cgf_lambda_settings import cgf_service_client import ban_handler import identity_validator @service.api def post(request, user = None): interface_url = cgf_lambda_settings.get_service_url("CloudGemPlayerAccount_banplayer_1_0_0") if not interface_url: return { "status": ban_handler.ban(user) } service_client = cgf_service_client.for_url(interface_url, verbose=True, session=boto3._get_default_session()) result = service_client.navigate('playerban').POST({"id": identity_validator.get_id_from_user(user)}) return result.DATA @service.api def delete(request, user = None): interface_url = cgf_lambda_settings.get_service_url( "CloudGemPlayerAccount_banplayer_1_0_0") if not interface_url: return { "status": ban_handler.lift_ban(user) } service_client = cgf_service_client.for_url( interface_url, verbose=True, session=boto3._get_default_session()) navigation = service_client.navigate('playerban') cog_id = identity_validator.get_id_from_user(user) result = navigation.DELETE( { "id": cog_id } ) return result.DATA
# Copyright Contributors to the Packit project. # SPDX-License-Identifier: MIT """ This file defines classes for job handlers specific for Testing farm """ import logging from datetime import datetime from typing import Optional from celery import signature from packit.config import JobConfig, JobType from packit.config.package_config import PackageConfig from packit_service.models import ( AbstractTriggerDbType, TFTTestRunModel, CoprBuildModel, TestingFarmResult, JobTriggerModel, ) from packit_service.worker.events import ( TestingFarmResultsEvent, PullRequestCommentGithubEvent, MergeRequestCommentGitlabEvent, PullRequestCommentPagureEvent, CheckRerunCommitEvent, CheckRerunPullRequestEvent, ) from packit_service.service.urls import ( get_testing_farm_info_url, get_copr_build_info_url, ) from packit_service.worker.handlers import JobHandler from packit_service.worker.handlers.abstract import ( TaskName, configured_as, reacts_to, run_for_comment, run_for_check_rerun, ) from packit_service.worker.reporting import StatusReporter, BaseCommitStatus from packit_service.worker.result import TaskResults from packit_service.worker.testing_farm import TestingFarmJobHelper from packit_service.constants import PG_COPR_BUILD_STATUS_SUCCESS from packit_service.utils import dump_job_config, dump_package_config logger = logging.getLogger(__name__) @run_for_comment(command="test") @run_for_check_rerun(prefix="testing-farm") @reacts_to(PullRequestCommentGithubEvent) @reacts_to(MergeRequestCommentGitlabEvent) @reacts_to(PullRequestCommentPagureEvent) @reacts_to(CheckRerunPullRequestEvent) @reacts_to(CheckRerunCommitEvent) @configured_as(job_type=JobType.tests) class TestingFarmHandler(JobHandler): """ The automatic matching is now used only for /packit test TODO: We can react directly to the finished Copr build. """ task_name = TaskName.testing_farm def __init__( self, package_config: PackageConfig, job_config: JobConfig, event: dict, chroot: Optional[str] = None, build_id: Optional[int] = None, ): super().__init__( package_config=package_config, job_config=job_config, event=event, ) self.chroot = chroot self.build_id = build_id self._db_trigger: Optional[AbstractTriggerDbType] = None @property def db_trigger(self) -> Optional[AbstractTriggerDbType]: if not self._db_trigger: # copr build end if self.build_id: build = CoprBuildModel.get_by_id(self.build_id) self._db_trigger = build.get_trigger_object() # '/packit test' comment else: self._db_trigger = self.data.db_trigger return self._db_trigger def run(self) -> TaskResults: # TODO: once we turn handlers into respective celery tasks, we should iterate # here over *all* matching jobs and do them all, not just the first one testing_farm_helper = TestingFarmJobHelper( service_config=self.service_config, package_config=self.package_config, project=self.project, metadata=self.data, db_trigger=self.db_trigger, job_config=self.job_config, targets_override={self.chroot} if self.chroot else self.data.targets_override, ) logger.debug(f"Test job config: {testing_farm_helper.job_tests}") targets = list(testing_farm_helper.tests_targets) logger.debug(f"Targets to run the tests: {targets}") targets_without_build = [] targets_with_builds = {} for target in targets: if self.build_id: copr_build = CoprBuildModel.get_by_id(self.build_id) else: copr_build = testing_farm_helper.get_latest_copr_build( target=target, commit_sha=self.data.commit_sha ) if copr_build: targets_with_builds[target] = copr_build else: targets_without_build.append(target) result_details = {} # Trigger copr build for targets missing build if targets_without_build: logger.info( f"Missing Copr build for targets {targets_without_build} in " f"{testing_farm_helper.job_owner}/{testing_farm_helper.job_project}" f" and commit:{self.data.commit_sha}, running a new Copr build." ) for missing_target in targets_without_build: testing_farm_helper.report_status_to_test_for_chroot( state=BaseCommitStatus.pending, description="Missing Copr build for this target, running a new Copr build.", url="", chroot=missing_target, ) # monitor queued builds for _ in range(len(targets_without_build)): self.pushgateway.copr_builds_queued.inc() event_data = self.data.get_dict() event_data["targets_override"] = targets_without_build signature( TaskName.copr_build.value, kwargs={ "package_config": dump_package_config(self.package_config), "job_config": dump_job_config(self.job_config), "event": event_data, }, ).apply_async() result_details[ "msg" ] = f"Build triggered for targets {targets_without_build} missing a Copr build. " failed = {} for target, copr_build in targets_with_builds.items(): if copr_build.status != PG_COPR_BUILD_STATUS_SUCCESS: logger.info( "The latest build was not successful, not running tests for it." ) testing_farm_helper.report_status_to_test_for_chroot( state=BaseCommitStatus.failure, description="The latest build was not successful, not running tests for it.", chroot=target, url=get_copr_build_info_url(copr_build.id), ) continue logger.info(f"Running testing farm for {copr_build}:{target}.") self.pushgateway.test_runs_queued.inc() result = testing_farm_helper.run_testing_farm( build=copr_build, chroot=target ) if not result["success"]: failed[target] = result.get("details") if not failed: return TaskResults(success=True, details=result_details) result_details["msg"] = ( result_details.setdefault("msg", "") + f"Failed testing farm targets: '{failed.keys()}'." ) result_details.update(failed) return TaskResults(success=False, details=result_details) @configured_as(job_type=JobType.tests) @reacts_to(event=TestingFarmResultsEvent) class TestingFarmResultsHandler(JobHandler): task_name = TaskName.testing_farm_results def __init__( self, package_config: PackageConfig, job_config: JobConfig, event: dict, ): super().__init__( package_config=package_config, job_config=job_config, event=event, ) self.result = ( TestingFarmResult(event.get("result")) if event.get("result") else None ) self.pipeline_id = event.get("pipeline_id") self.log_url = event.get("log_url") self.copr_chroot = event.get("copr_chroot") self.summary = event.get("summary") self._db_trigger: Optional[AbstractTriggerDbType] = None @property def db_trigger(self) -> Optional[AbstractTriggerDbType]: if not self._db_trigger: run_model = TFTTestRunModel.get_by_pipeline_id(pipeline_id=self.pipeline_id) if run_model: self._db_trigger = run_model.get_trigger_object() return self._db_trigger def run(self) -> TaskResults: logger.debug(f"Testing farm {self.pipeline_id} result:\n{self.result}") test_run_model = TFTTestRunModel.get_by_pipeline_id( pipeline_id=self.pipeline_id ) if not test_run_model: logger.warning( f"Unknown pipeline_id received from the testing-farm: " f"{self.pipeline_id}" ) if test_run_model: test_run_model.set_status(self.result) if self.result == TestingFarmResult.running: status = BaseCommitStatus.running summary = self.summary or "Tests are running ..." elif self.result == TestingFarmResult.passed: status = BaseCommitStatus.success summary = self.summary or "Tests passed ..." elif self.result == TestingFarmResult.error: status = BaseCommitStatus.error summary = self.summary or "Error ..." else: status = BaseCommitStatus.failure summary = self.summary or "Tests failed ..." if self.result == TestingFarmResult.running: self.pushgateway.test_runs_started.inc() else: self.pushgateway.test_runs_finished.inc() test_run_time = ( datetime.now() - test_run_model.submitted_time ).total_seconds() self.pushgateway.test_run_finished_time.observe(test_run_time) if test_run_model: test_run_model.set_web_url(self.log_url) trigger = JobTriggerModel.get_or_create( type=self.db_trigger.job_trigger_model_type, trigger_id=self.db_trigger.id, ) status_reporter = StatusReporter.get_instance( project=self.project, commit_sha=self.data.commit_sha, trigger_id=trigger.id if trigger else None, pr_id=self.data.pr_id, ) status_reporter.report( state=status, description=summary, url=get_testing_farm_info_url(test_run_model.id) if test_run_model else self.log_url, links_to_external_services={"Testing Farm": self.log_url}, check_names=TestingFarmJobHelper.get_test_check(self.copr_chroot), ) return TaskResults(success=True, details={})
from django.db import models class AnswerSetUniqueManager(models.Manager): def get_queryset(self): return super(AnswerSetUniqueManager, self).get_queryset().filter(is_duplicate=False)
from flask import Flask from flask_bootstrap import Bootstrap def create_app(): app = Flask(__name__) Bootstrap(app) return app app = create_app() app.config['WTF_CSRF_ENABLED'] = True from cantina import views
#!/usr/bin/env python import os import sys import gzip from Bio import SeqIO modified = [] with gzip.GzipFile( sys.argv[1] ) as fh: for record in SeqIO.parse( fh, "fasta" ): record.id += "|" + str( len( record ) ) modified.append( record ) for record in modified: record.name, record.description = "", "" newname = os.path.split( sys.argv[1] )[1].replace( ".ffn.m8.gz", ".v0.1.1.ffn.gz" ) with gzip.GzipFile( newname, "w" ) as fh: SeqIO.write( modified, fh, "fasta" )
""" Defines the ChacoShellError class. """ class ChacoShellError(RuntimeError): """ Error raised by the Chaco shell. """ pass # EOF
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2013-2015 clowwindy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from ssloop # https://github.com/clowwindy/ssloop from __future__ import absolute_import, division, print_function, \ with_statement import os import time import socket import select import errno import logging from collections import defaultdict from shadowsocks import shell __all__ = ['EventLoop', 'POLL_NULL', 'POLL_IN', 'POLL_OUT', 'POLL_ERR', 'POLL_HUP', 'POLL_NVAL', 'EVENT_NAMES'] POLL_NULL = 0x00 POLL_IN = 0x01 POLL_OUT = 0x04 POLL_ERR = 0x08 POLL_HUP = 0x10 POLL_NVAL = 0x20 EVENT_NAMES = { POLL_NULL: 'POLL_NULL', POLL_IN: 'POLL_IN', POLL_OUT: 'POLL_OUT', POLL_ERR: 'POLL_ERR', POLL_HUP: 'POLL_HUP', POLL_NVAL: 'POLL_NVAL', } # we check timeouts every TIMEOUT_PRECISION seconds TIMEOUT_PRECISION = 2 class KqueueLoop(object): MAX_EVENTS = 1024 def __init__(self): self._kqueue = select.kqueue() self._fds = {} def _control(self, fd, mode, flags): events = [] if mode & POLL_IN: events.append(select.kevent(fd, select.KQ_FILTER_READ, flags)) if mode & POLL_OUT: events.append(select.kevent(fd, select.KQ_FILTER_WRITE, flags)) for e in events: self._kqueue.control([e], 0) def poll(self, timeout): if timeout < 0: timeout = None # kqueue behaviour events = self._kqueue.control(None, KqueueLoop.MAX_EVENTS, timeout) results = defaultdict(lambda: POLL_NULL) for e in events: fd = e.ident if e.filter == select.KQ_FILTER_READ: results[fd] |= POLL_IN elif e.filter == select.KQ_FILTER_WRITE: results[fd] |= POLL_OUT return results.items() def register(self, fd, mode): self._fds[fd] = mode self._control(fd, mode, select.KQ_EV_ADD) def unregister(self, fd): self._control(fd, self._fds[fd], select.KQ_EV_DELETE) del self._fds[fd] def modify(self, fd, mode): self.unregister(fd) self.register(fd, mode) def close(self): self._kqueue.close() class SelectLoop(object): def __init__(self): self._r_list = set() self._w_list = set() self._x_list = set() def poll(self, timeout): r, w, x = select.select(self._r_list, self._w_list, self._x_list, timeout) results = defaultdict(lambda: POLL_NULL) for p in [(r, POLL_IN), (w, POLL_OUT), (x, POLL_ERR)]: for fd in p[0]: results[fd] |= p[1] return results.items() def register(self, fd, mode): if mode & POLL_IN: self._r_list.add(fd) if mode & POLL_OUT: self._w_list.add(fd) if mode & POLL_ERR: self._x_list.add(fd) def unregister(self, fd): if fd in self._r_list: self._r_list.remove(fd) if fd in self._w_list: self._w_list.remove(fd) if fd in self._x_list: self._x_list.remove(fd) def modify(self, fd, mode): self.unregister(fd) self.register(fd, mode) def close(self): pass class EventLoop(object): def __init__(self): if hasattr(select, 'epoll'): self._impl = select.epoll() model = 'epoll' elif hasattr(select, 'kqueue'): self._impl = KqueueLoop() model = 'kqueue' elif hasattr(select, 'select'): self._impl = SelectLoop() model = 'select' else: raise Exception('can not find any available functions in select ' 'package') self._fdmap = {} # (f, handler) self._last_time = time.time() self._periodic_callbacks = [] self._stopping = False logging.debug('using event model: %s', model) def poll(self, timeout=None): events = self._impl.poll(timeout) return [(self._fdmap[fd][0], fd, event) for fd, event in events] def add(self, f, mode, handler): fd = f.fileno() self._fdmap[fd] = (f, handler) self._impl.register(fd, mode) def remove(self, f): fd = f.fileno() del self._fdmap[fd] self._impl.unregister(fd) def removefd(self, fd): try: if fd in self._fdmap: del self._fdmap[fd] self._impl.unregister(fd) else: logging.error('mykeyerror:%s', fd) except Exception as e: logging.error(e) def add_periodic(self, callback): self._periodic_callbacks.append(callback) def remove_periodic(self, callback): self._periodic_callbacks.remove(callback) def modify(self, f, mode): fd = f.fileno() self._impl.modify(fd, mode) def stop(self): self._stopping = True def run(self): events = [] while not self._stopping: asap = False try: events = self.poll(TIMEOUT_PRECISION) except (OSError, IOError) as e: if errno_from_exception(e) in (errno.EPIPE, errno.EINTR): # EPIPE: Happens when the client closes the connection # EINTR: Happens when received a signal # handles them as soon as possible asap = True logging.debug('poll:%s', e) else: logging.error('poll:%s', e) import traceback traceback.print_exc() continue handle = False for sock, fd, event in events: handler = self._fdmap.get(fd, None) if handler is not None: handler = handler[1] try: handle = handler.handle_event(sock, fd, event) or handle except (OSError, IOError) as e: shell.print_exception(e) now = time.time() if asap or now - self._last_time >= TIMEOUT_PRECISION: for callback in self._periodic_callbacks: callback() self._last_time = now if events and not handle: time.sleep(0.001) def __del__(self): self._impl.close() # from tornado def errno_from_exception(e): """Provides the errno from an Exception object. There are cases that the errno attribute was not set so we pull the errno out of the args but if someone instatiates an Exception without any args you will get a tuple error. So this function abstracts all that behavior to give you a safe way to get the errno. """ if hasattr(e, 'errno'): return e.errno elif e.args: return e.args[0] else: return None # from tornado def get_sock_error(sock): error_number = sock.getsockopt(socket.SOL_SOCKET, socket.SO_ERROR) return socket.error(error_number, os.strerror(error_number))
""" Plugin for file-based transformers (bash and Docker transformers) NOTE: there are some semantic differences with executor.py of the bash- and docker-transformers for local job execution as implemented by Seamless itself. This is because in Jobless, we are dealing with buffers (potentially already in a file) and local job execution in Seamless deals with deserialized values (from Seamless pins) Probably keep the current code as the proper semantics, and adapt Seamless pin implementation (to provide buffers instead of values if so specified) """ import asyncio import json import traceback import os import shutil from . import TransformerPlugin, CacheMissError class FileTransformerPluginBase(TransformerPlugin): def __init__(self, *args, rewriter=None, **kwargs): self.rewriter = rewriter super().__init__(*args, **kwargs) REQUIRED_TRANSFORMER_PINS = [] # to be defined in subclass TRANSFORMER_CODE_CHECKSUMS = [] # to be defined in subclass def allowed_docker_image(self, docker_image): return False def allowed_powers(self, powers): return powers is None or len(powers) == 0 def required_pin_handler(self, pin, transformation): """Obtain the value of required pins (such as bashcode etc.) To be re-implemented by the subclass return tuple (skip, json_value_only, json_buffer, write_env) skip: if True, skip the pin altogether json_value_only: if True, the buffer must be interpreted as JSON, and does not need to be written to file json_buffer: if True, the buffer must be interpreted as JSON, then written to a new file. if False, an existing filename for the pin may be obtained from the database client and used; else, the buffer will be written as-is to a new file if None, the buffer (which must be in mixed format) will be checked for JSON content (pure-plain). write_env: if True, the content of the buffer will be UTF8-decoded, cast to string, and written as an environment variable of the same name as the pin. if None, the above will be done but only if the buffer has less than 1000 characters. """ raise NotImplementedError def can_accept_transformation(self, checksum, transformation): env = None if "__env__" in transformation: env_buf = self.database_client.get_buffer(transformation["__env__"]) if env_buf is None: return -1 try: env = json.loads(env_buf) except: return -1 powers = env.get("powers") if not self.allowed_powers(powers): return -1 docker_image = env.get("docker", {}).get("name") if docker_image is not None: if not self.allowed_docker_image(docker_image): return -1 for key in self.REQUIRED_TRANSFORMER_PINS: missed = True if isinstance(key, tuple): keylist = key else: keylist = (key,) for key in keylist: if key in transformation: missed = False break if missed: return -1 if not "code" in transformation: return -1 code = transformation["code"] if not isinstance(code, list) or len(code) != 3 or code[:2] != ['python', 'transformer']: return -1 code_checksum = code[-1] return code_checksum in self.TRANSFORMER_CODE_CHECKSUMS def prepare_transformation(self, checksum, transformation): tdict = {"__checksum__": checksum.hex()} if "__env__" in transformation: env_buf = self.database_client.get_buffer(transformation["__env__"]) env = json.loads(env_buf) tdict["__env__"] = env required_transformer_pins = [] for key in self.REQUIRED_TRANSFORMER_PINS: if isinstance(key, str): required_transformer_pins.append(key) else: required_transformer_pins += list(key) for pin in transformation: if pin == "code" or (pin.startswith("__") and pin.endswith("__")): continue celltype, subcelltype, pin_checksum = transformation[pin] json_value_only = False skip, json_buffer, write_env = None, None, None if pin in required_transformer_pins: skip, json_value_only, json_buffer, write_env = self.required_pin_handler(pin, transformation) elif celltype == "mixed": skip = False json_buffer = None write_env = None elif celltype == "plain": skip = False json_buffer = True write_env = None else: skip = False json_buffer = False write_env = None if skip: continue value = None pin_buf = None if json_buffer == False and write_env is None: pin_buf_len = self.database_client.get_buffer_length(pin_checksum) if pin_buf_len is not None: if pin_buf_len <= 1000: write_env = True else: write_env = False if (json_buffer is None or json_buffer == True) or \ (write_env is None or write_env == True) or json_value_only: pin_buf = self.database_client.get_buffer(pin_checksum) if pin_buf is None: raise CacheMissError(pin_checksum) if write_env is None: if len(pin_buf) <= 1000: write_env = True else: write_env = False if json_buffer is None: assert celltype == "mixed" json_buffer = is_json(pin_buf) if json_value_only: if celltype in ("plain", "mixed", "int", "float", "bool", "str"): value = json.loads(pin_buf) elif celltype in ("text", "python", "ipython", "cson", "yaml", "checksum"): value = pin_buf.decode() else: value = pin_buf elif json_buffer: if pin_buf[:1] == b'"' and pin_buf[-2:-1] == b'"': value = json.loads(pin_buf) json_value_only = True elif pin_buf[-1:] != b'\n': value = json.loads(pin_buf) json_value_only = True else: pass # we can use the buffer directly filename = None env_value = None if write_env: env_value = value if isinstance(env_value, (list, dict)): env_value = None elif env_value is None: env_value = pin_buf.decode() if json_buffer: env_value = json.loads(env_value) if isinstance(env_value, (list, dict)): env_value = None else: env_value = str(env_value).rstrip("\n") if not json_value_only: """ ### Disable this for now, for security reasons... filename = self.database_client.get_filename(pin_checksum) """ filename = None ### if filename is None: pin_buf = self.database_client.get_buffer(pin_checksum) if pin_buf is None: raise CacheMissError value = pin_buf elif self.rewriter is not None: pre, post = self.rewriter if filename.startswith(pre): tail = filename[len(pre):] filename = post + tail tdict[pin] = filename, value, env_value return tdict MAGIC_NUMPY = b"\x93NUMPY" MAGIC_SEAMLESS_MIXED = b'\x94SEAMLESS-MIXED' def is_json(data): """Poor man's version of mixed_deserialize + get_form Maybe use this in real bash transformers as well? """ assert isinstance(data, bytes) if data.startswith(MAGIC_NUMPY): return False elif data.startswith(MAGIC_SEAMLESS_MIXED): return False else: # pure json return True def write_files(prepared_transformation, env, support_symlinks): for pin in prepared_transformation: if pin in ("__checksum__", "__env__"): continue filename, value, env_value = prepared_transformation[pin] pinfile = "./" + pin if filename is not None: if support_symlinks: os.symlink(filename, pinfile) else: try: os.link(filename, pinfile) except Exception: shutil.copy(filename, pinfile) elif value is not None: if isinstance(value, bytes): with open(pinfile, "bw") as f: f.write(value) elif isinstance(value, str): with open(pinfile, "w") as f: f.write(value) f.write("\n") else: with open(pinfile, "w") as f: json.dump(value, f) f.write("\n") if env_value is not None: env[pin] = str(env_value)
#!/usr/bin/env python import pygame from sprite import * from megaman_object import * import universal_var import timer from mega_stack import Stack import projectile class Death_orb(projectile.Projectile): all_orbs_lst = [] all_orbs_stack = Stack() def __init__(self): x, y = 0, 0 width = 50 height = 50 display_layer = 4 is_active = False orb_animation = [universal_var.misc_images['explosion_1'], universal_var.misc_images['explosion_2'], universal_var.misc_images['explosion_3'], universal_var.misc_images['explosion_4'], universal_var.misc_images['explosion_5'], universal_var.misc_images['blank']] orb_sprite = Sprite(universal_var.main_sprite, x, y, width, height, [('orb', orb_animation, 20)]) super().__init__('Death_orb', x, y, [orb_sprite], None, is_active, width, height, display_layer) self.spawned = False self.vel = 0 self.all_timers = timer.Timer() self.all_timers.add_ID('start_time', 0) Death_orb.add_to_class_lst(self, Death_orb.all_orbs_lst, self.ID) Death_orb.all_orbs_stack.push(self) def update(self): if self.spawned == True and self.all_timers.is_finished('start_time'): self.set(self.x, self.y, self.vel, self.angle) self.spawned = False self.all_timers.replenish_timer('start_time') elif self.spawned == True: self.all_timers.countdown('start_time') elif self not in Death_orb.all_orbs_stack.lst: Death_orb.all_orbs_stack.push(self) projectile.Projectile.update(self) #----------------------------------------------------------------------- @staticmethod def init(amount=1): for i in range(amount): Death_orb() @classmethod def set_orb_active(cls, x, y, start_time, angle, vel): orb = cls.all_orbs_stack.pop() orb.x, orb.y = x, y orb.angle = angle orb.vel = vel orb.spawned = True orb.all_timers.replenish_timer('start_time', start_time) @classmethod def reset(cls): for orb in cls.all_orbs_lst: orb.is_active = False orb.launched = False orb.spawned = False sprite = orb.get_sprite(universal_var.main_sprite) sprite.current_frame = 0
"""! @author atomicfruitcake @date 2019 """
import argparse import multiprocessing from datetime import datetime from course_lib.Base.Evaluation.Evaluator import * from course_lib.Base.IR_feature_weighting import TF_IDF from course_lib.GraphBased.P3alphaRecommender import P3alphaRecommender from course_lib.GraphBased.RP3betaRecommender import RP3betaRecommender from course_lib.KNN.ItemKNNCBFRecommender import ItemKNNCBFRecommender from course_lib.KNN.ItemKNNCFRecommender import ItemKNNCFRecommender from course_lib.KNN.UserKNNCFRecommender import UserKNNCFRecommender from course_lib.MatrixFactorization.Cython.MatrixFactorization_Cython import MatrixFactorization_AsySVD_Cython from course_lib.MatrixFactorization.NMFRecommender import NMFRecommender from course_lib.SLIM_BPR.Cython.SLIM_BPR_Cython import SLIM_BPR_Cython from course_lib.SLIM_ElasticNet.SLIMElasticNetRecommender import SLIMElasticNetRecommender from scripts.scripts_utils import set_env_variables, read_split_load_data from src.data_management.New_DataSplitter_leave_k_out import * from src.data_management.data_reader import get_ICM_train_new, get_UCM_train_new, get_ignore_users from src.model.KNN.ItemKNNDotCFRecommender import ItemKNNDotCFRecommender from src.model.KNN.ItemKNNCBFCFRecommender import ItemKNNCBFCFRecommender from src.model.KNN.NewItemKNNCBFRecommender import NewItemKNNCBFRecommender from src.model.KNN.NewUserKNNCFRecommender import NewUserKNNCFRecommender from src.model.KNN.UserKNNCBFCFRecommender import UserKNNCBFCFRecommender from src.model.KNN.UserKNNCBFRecommender import UserKNNCBFRecommender from src.model.KNN.UserKNNDotCFRecommender import UserKNNDotCFRecommender from src.model.MatrixFactorization.FunkSVDRecommender import FunkSVDRecommender from src.model.MatrixFactorization.ImplicitALSRecommender import ImplicitALSRecommender from src.model.MatrixFactorization.LightFMRecommender import LightFMRecommender from src.model.MatrixFactorization.LogisticMFRecommender import LogisticMFRecommender from src.model.MatrixFactorization.MF_BPR_Recommender import MF_BPR_Recommender from src.model.MatrixFactorization.NewPureSVDRecommender import NewPureSVDRecommender from src.tuning.cross_validation.run_cv_parameter_search import run_cv_parameter_search from src.utils.general_utility_functions import get_split_seed, get_seed_lists, \ get_root_data_path, str2bool N_CASES = 100 N_RANDOM_STARTS = 40 CUTOFF = 10 N_FOLDS = 5 K_OUT = 1 ALLOW_COLD_USERS = False MIN_LOWER_THRESHOLD = -1 MAX_UPPER_THRESHOLD = 2 ** 16 - 1 IGNORE_NON_TARGET_USERS = True AGE_TO_KEEP = [] # Default [] SIDE_INFO_CLASS_DICT = { # Graph-Based "rp3beta_side": RP3betaRecommender, # ML-Based "pure_svd_side": NewPureSVDRecommender, "slim_side": SLIM_BPR_Cython, "ials_side": ImplicitALSRecommender } COLLABORATIVE_RECOMMENDER_CLASS_DICT = { # KNN "item_cf": ItemKNNCFRecommender, "user_cf": UserKNNCFRecommender, "new_user_cf": NewUserKNNCFRecommender, "user_dot_cf": UserKNNDotCFRecommender, "item_dot_cf": ItemKNNDotCFRecommender, # ML Item-Similarity Based "slim_bpr": SLIM_BPR_Cython, "slim_elastic": SLIMElasticNetRecommender, # Graph-based "p3alpha": P3alphaRecommender, "rp3beta": RP3betaRecommender, # Matrix Factorization "pure_svd": NewPureSVDRecommender, "light_fm": LightFMRecommender, "ials": ImplicitALSRecommender, "logistic_mf": LogisticMFRecommender, "mf_bpr": MF_BPR_Recommender, "funk_svd": FunkSVDRecommender, "asy_svd": MatrixFactorization_AsySVD_Cython, "nmf": NMFRecommender } CONTENT_RECOMMENDER_CLASS_DICT = { # Pure CBF KNN "new_item_cbf": NewItemKNNCBFRecommender, "item_cbf_cf": ItemKNNCBFCFRecommender, "item_cbf_all": ItemKNNCBFRecommender } DEMOGRAPHIC_RECOMMENDER_CLASS_DICT = { # Pure Demographic KNN "user_cbf": UserKNNCBFRecommender, "user_cbf_cf": UserKNNCBFCFRecommender } RECOMMENDER_CLASS_DICT = dict(**COLLABORATIVE_RECOMMENDER_CLASS_DICT, **CONTENT_RECOMMENDER_CLASS_DICT, **DEMOGRAPHIC_RECOMMENDER_CLASS_DICT, **SIDE_INFO_CLASS_DICT) def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument("-l", "--reader_path", default=get_root_data_path(), help="path to the root of data files") parser.add_argument("-r", "--recommender_name", required=True, help="recommender names should be one of: {}".format(list(RECOMMENDER_CLASS_DICT.keys()))) parser.add_argument("-n", "--n_cases", default=N_CASES, type=int, help="number of cases for hyper parameter tuning") parser.add_argument("-f", "--n_folds", default=N_FOLDS, type=int, help="number of folds for cross validation") parser.add_argument("-nr", "--n_random_starts", default=N_RANDOM_STARTS, type=int, help="number of random starts for hyper parameter tuning") parser.add_argument("-p", "--parallelize", default=1, type=str2bool, help="1 to parallelize the search, 0 otherwise") parser.add_argument("-ut", "--upper_threshold", default=MAX_UPPER_THRESHOLD, type=int, help="Upper threshold (included) of user profile length to validate") parser.add_argument("-lt", "--lower_threshold", default=MIN_LOWER_THRESHOLD, type=int, help="Lower threshold (included) of user profile length to validate") parser.add_argument("-acu", "--allow_cold_users", default=0, type=str2bool, help="1 to allow cold users," " 0 otherwise") parser.add_argument("-ent", "--exclude_non_target", default=1, type=str2bool, help="1 to exclude non-target users, 0 otherwise") parser.add_argument("-nj", "--n_jobs", default=multiprocessing.cpu_count(), help="Number of workers", type=int) parser.add_argument("--seed", default=get_split_seed(), help="seed for the experiment", type=int) # parser.add_argument("-a", "--age", default=-69420, help="Validate only on the users of this region", type=int) return parser.parse_args() def main(): set_env_variables() args = get_arguments() seeds = get_seed_lists(args.n_folds, get_split_seed()) # --------- DATA LOADING SECTION --------- # URM_train_list = [] ICM_train_list = [] UCM_train_list = [] evaluator_list = [] for fold_idx in range(args.n_folds): # Read and split data data_reader = read_split_load_data(K_OUT, args.allow_cold_users, seeds[fold_idx]) URM_train, URM_test = data_reader.get_holdout_split() ICM_train, item_feature2range = get_ICM_train_new(data_reader) UCM_train, user_feature2range = get_UCM_train_new(data_reader) # Ignore users and setting evaluator ignore_users = get_ignore_users(URM_train, data_reader.get_original_user_id_to_index_mapper(), args.lower_threshold, args.upper_threshold, ignore_non_target_users=args.exclude_non_target) # Ignore users by age # UCM_age = data_reader.get_UCM_from_name("UCM_age") # age_feature_to_id_mapper = data_reader.dataReader_object.get_UCM_feature_to_index_mapper_from_name("UCM_age") # age_demographic = get_user_demographic(UCM_age, age_feature_to_id_mapper, binned=True) # ignore_users = np.unique(np.concatenate((ignore_users, get_ignore_users_age(age_demographic, AGE_TO_KEEP)))) URM_train_list.append(URM_train) ICM_train_list.append(ICM_train) UCM_train_list.append(UCM_train) evaluator = EvaluatorHoldout(URM_test, cutoff_list=[CUTOFF], ignore_users=np.unique(ignore_users)) evaluator_list.append(evaluator) # --------- HYPER PARAMETERS TUNING SECTION --------- # print("Start tuning...") hp_tuning_path = "../../../report/hp_tuning/" + args.recommender_name + "/" date_string = datetime.now().strftime('%b%d_%H-%M-%S_k1_lt_{}/'.format(args.lower_threshold)) output_folder_path = hp_tuning_path + date_string if args.recommender_name in COLLABORATIVE_RECOMMENDER_CLASS_DICT.keys(): run_cv_parameter_search(URM_train_list=URM_train_list, recommender_class=RECOMMENDER_CLASS_DICT[args.recommender_name], evaluator_validation_list=evaluator_list, metric_to_optimize="MAP", output_folder_path=output_folder_path, parallelize_search=args.parallelize, n_jobs=args.n_jobs, n_cases=args.n_cases, n_random_starts=args.n_random_starts) elif args.recommender_name in CONTENT_RECOMMENDER_CLASS_DICT.keys(): run_cv_parameter_search(URM_train_list=URM_train_list, ICM_train_list=ICM_train_list, ICM_name="ICM_all", recommender_class=RECOMMENDER_CLASS_DICT[args.recommender_name], evaluator_validation_list=evaluator_list, metric_to_optimize="MAP", output_folder_path=output_folder_path, parallelize_search=args.parallelize, n_jobs=args.n_jobs, n_cases=args.n_cases, n_random_starts=args.n_random_starts) elif args.recommender_name in DEMOGRAPHIC_RECOMMENDER_CLASS_DICT.keys(): run_cv_parameter_search(URM_train_list=URM_train_list, UCM_train_list=UCM_train_list, UCM_name="UCM_all", recommender_class=RECOMMENDER_CLASS_DICT[args.recommender_name], evaluator_validation_list=evaluator_list, metric_to_optimize="MAP", output_folder_path=output_folder_path, parallelize_search=args.parallelize, n_jobs=args.n_jobs, n_cases=args.n_cases, n_random_starts=args.n_random_starts) elif args.recommender_name in SIDE_INFO_CLASS_DICT: temp_list = [] for i, URM in enumerate(URM_train_list): temp = sps.vstack([URM, ICM_train_list[i].T], format="csr") #temp = TF_IDF(temp).tocsr() temp_list.append(temp) run_cv_parameter_search(URM_train_list=temp_list, recommender_class=RECOMMENDER_CLASS_DICT[args.recommender_name], evaluator_validation_list=evaluator_list, metric_to_optimize="MAP", output_folder_path=output_folder_path, parallelize_search=args.parallelize, n_jobs=args.n_jobs, n_cases=args.n_cases, n_random_starts=args.n_random_starts) print("...tuning ended") if __name__ == '__main__': main()
# Generated by Django 2.0.13 on 2019-05-28 14:29 from django.db import migrations class Migration(migrations.Migration): dependencies = [("django_geosource", "0002_auto_20190524_1137")] operations = [ migrations.AlterModelOptions( name="source", options={"permissions": (("can_manage_sources", "Can manage sources"),)}, ) ]
from unittest import TestCase from main import strip_quotes class TestStripQuotes(TestCase): def test_strip_quotes_removes_quotes_from_string_margins(self): self.assertEqual('string_with quotes', strip_quotes('\'string_with quotes\'')) def test_strip_quotes_removes_double_quotes_from_string_edges(self): self.assertEqual('string', strip_quotes('"string"')) def test_strip_quotes_does_not_remove_from_center_of_string(self): self.assertEqual('string_""with_quotes', strip_quotes('string_""with_quotes')) def test_strip_quotes_returns_passed_string_if_no_quotes(self): self.assertEqual('string', strip_quotes('string'))
from sys import argv script, data, setor, tipo, usuario, descricao, finalizado = argv contador = open('contador.dat', 'r') contadorInt = int(contador.read()) contadorInt = contadorInt + 1 contadorStr = str(contadorInt) contadorUpt = open('contador.dat', 'w') contadorUpt.write(contadorStr) contadorUpt.close target = open('dados.dat', 'a') linha = (contadorStr + '|' + data + '|' + setor + '|' + tipo + '|' + usuario + '|' + descricao + '|' + finalizado.upper() + '\n') target.write(linha) target.close
import json import random import sys import numpy as np import torch import unidecode from tqdm import tqdm __all__ = [ "Dataloader", ] ENTITY_PAIR_TYPE_SET = set( [("Chemical", "Disease"), ("Chemical", "Gene"), ("Gene", "Disease")]) def map_index(chars, tokens): # position index mapping from character level offset to token level offset ind_map = {} i, k = 0, 0 # (character i to token k) len_char = len(chars) num_token = len(tokens) while k < num_token: if i < len_char and chars[i].strip() == "": ind_map[i] = k i += 1 continue token = tokens[k] if token[:2] == "##": token = token[2:] if token[:1] == "Ġ": token = token[1:] # assume that unk is always one character in the input text. if token != chars[i:(i+len(token))]: ind_map[i] = k i += 1 k += 1 else: for _ in range(len(token)): ind_map[i] = k i += 1 k += 1 return ind_map def preprocess(data_entry, tokenizer, max_text_length, relation_map, lower=True): """convert to index array, cut long sentences, cut long document, pad short sentences, pad short document""" cls_token = tokenizer.cls_token sep_token = tokenizer.sep_token padid = tokenizer.pad_token_id cls_token_length = len(cls_token) docid = data_entry["docid"] if "title" in data_entry and "abstract" in data_entry: text = data_entry["title"] + data_entry["abstract"] if lower == True: text = text.lower() else: text = data_entry["text"] if lower == True: text = text.lower() entities_info = data_entry["entity"] relations_info = data_entry["relation"] rel_vocab_size = len(relation_map) # tokenizer will automatically add cls and sep at the beginning and end of each sentence # [CLS] --> 101, [PAD] --> 0, [SEP] --> 102, [UNK] --> 100 text = unidecode.unidecode(text) tokens = tokenizer.tokenize(text)[:(max_text_length-2)] tokens = [cls_token] + tokens + [sep_token] token_wids = tokenizer.convert_tokens_to_ids(tokens) text = cls_token + " " + text + " " + sep_token input_array = np.ones(max_text_length, dtype=np.int) * int(padid) input_length = len(token_wids) input_array[0:len(token_wids)] = token_wids pad_array = np.array(input_array != padid, dtype=np.long) ind_map = map_index(text, tokens) sys.stdout.flush() entity_indicator = {} entity_type = {} entity_id_set = set([]) for entity in entities_info: # if entity mention is outside max_text_length, ignore. +6 indicates additional offset due to "[CLS] " entity_id_set.add(entity["id"]) entity_type[entity["id"]] = entity["type"] if entity["id"] not in entity_indicator: entity_indicator[entity["id"]] = np.zeros(max_text_length) if entity["start"] + cls_token_length in ind_map: startid = ind_map[entity["start"] + cls_token_length] else: startid = 0 if entity["end"] + cls_token_length in ind_map: endid = ind_map[entity["end"] + cls_token_length] endid += 1 else: endid = 0 if startid >= endid: endid = startid + 1 entity_indicator[entity["id"]][startid:endid] = 1 relations_vector = {} relations = {} for rel in relations_info: rel_type, e1, e2 = rel["type"], rel["subj"], rel["obj"] if e1 in entity_indicator and e2 in entity_indicator: if (e1, e2) not in relations_vector: relations_vector[(e1, e2)] = np.zeros(rel_vocab_size) if rel_type in relation_map: # NA should not be in the relation_map to generate all-zero vector. relations_vector[(e1, e2)][relation_map[rel_type]] = 1 if (e1, e2) not in relations: relations[(e1, e2)] = [] relations[(e1, e2)].append(rel_type) label_vectors = [] label_names = [] e1_indicators = [] e2_indicators = [] e1s, e2s = [], [] e1_types = [] e2_types = [] # in this mode, NA relation label occurs either when it is shown in the data, or there is no label between the pair for e1 in list(entity_id_set): for e2 in list(entity_id_set): if (entity_type[e1], entity_type[e2]) in ENTITY_PAIR_TYPE_SET and e1 != "-" and e2 != "-": e1s.append(e1) e2s.append(e2) e1_indicator, e2_indicator = entity_indicator[e1], entity_indicator[e2] if (e1, e2) in relations_vector: label_vector = relations_vector[(e1, e2)] else: label_vector = np.zeros(rel_vocab_size) # if len(label_vector) != 14: # print(label_vector) sys.stdout.flush() label_vectors.append(label_vector) if (e1, e2) in relations: label_name = relations[(e1, e2)] else: label_name = [] label_names.append(label_name) e1_indicators.append(e1_indicator) e2_indicators.append(e2_indicator) e1_types.append(entity_type[e1]) e2_types.append(entity_type[e2]) return {"input": input_array, "pad": pad_array, "docid": docid, "input_length": input_length, "label_vectors": label_vectors, "label_names": label_names, "e1_indicators": e1_indicators, "e2_indicators": e2_indicators, "e1s": e1s, "e2s": e2s, "e1_types": e1_types, "e2_types": e2_types } class Dataloader(object): """Dataloader""" def __init__(self, data_path, tokenizer, seed=0, max_text_length=512, training=False, logger=None, lowercase=True): # shape of input for each batch: (batchsize, max_text_length, max_sent_length) self.train = [] self.val = [] self.test_ctd = [] self.test_ds_ctd = [] self.test_anno_ctd = [] self.test_anno_all = [] self.tokenizer = tokenizer self.logger = logger self.relation_map = json.loads( open(data_path + "/relation_map.json").read()) self.relation_name = dict([(i, r) for r, i in self.relation_map.items()]) def calculate_stat(data): num_pos_rels = 0 num_neg_pairs = 0 num_pos_pairs = 0 per_rel_stat = {} entity_type_pair_stat = {} for d in data: for i, (rel_names, e1t, e2t) in enumerate(list(zip(d["label_names"], d["e1_types"], d["e2_types"]))): for rel_name in rel_names: if rel_name not in per_rel_stat: per_rel_stat[rel_name] = 0 if (e1t, e2t) not in entity_type_pair_stat: entity_type_pair_stat[(e1t, e2t)] = { "num_pos_pairs": 0, "num_neg_pairs": 0, "num_pos_rels": 0} num_pos_ = d["label_vectors"][i].sum() if num_pos_ == 0: num_neg_pairs += 1 entity_type_pair_stat[(e1t, e2t)]["num_neg_pairs"] += 1 else: num_pos_rels += num_pos_ num_pos_pairs += 1 entity_type_pair_stat[( e1t, e2t)]["num_pos_rels"] += num_pos_ entity_type_pair_stat[( e1t, e2t)]["num_pos_pairs"] += 1 for rel_name in rel_names: per_rel_stat[rel_name] += 1 return num_pos_rels, num_pos_pairs, num_neg_pairs, entity_type_pair_stat, per_rel_stat if training == True: with open(data_path + "/train.json") as f: # try: train_json = json.loads(f.read()) for data in tqdm(train_json[:]): processed_data = preprocess( data, tokenizer, max_text_length, self.relation_map, lowercase) # print(processed_data) sys.stdout.flush() if processed_data["label_vectors"] == []: continue self.train.append(processed_data) num_pos_rels, num_pos_pairs, num_neg_pairs, entity_type_pair_stat, per_rel_stat = calculate_stat( self.train) self.logger.info(f"=======================================") self.logger.info(f"Training: # of docs = {len(train_json)}") self.logger.info( f" # of positive pairs = {num_pos_pairs}") self.logger.info( f" # of positive labels = {num_pos_rels}") self.logger.info( f" # of negative pairs = {num_neg_pairs}") self.logger.info(f"---------------------------------------") for e1t, e2t in entity_type_pair_stat: self.logger.info( f" ({e1t}, {e2t}): # of positive pairs = {entity_type_pair_stat[(e1t, e2t)]['num_pos_pairs']}") self.logger.info( f" ({e1t}, {e2t}): # of positive labels = {entity_type_pair_stat[(e1t, e2t)]['num_pos_rels']}") self.logger.info( f" ({e1t}, {e2t}): # of negative pairs = {entity_type_pair_stat[(e1t, e2t)]['num_neg_pairs']}") self.logger.info(f"---------------------------------------") for rel_name in per_rel_stat: self.logger.info( f" {rel_name}: # of labels = {per_rel_stat[rel_name]}") self.logger.info(f"=======================================") with open(data_path + "/valid.json") as f: valid_json = json.loads(f.read()) for data in tqdm(valid_json[:]): processed_data = preprocess( data, tokenizer, max_text_length, self.relation_map, lowercase) if processed_data["label_vectors"] == []: continue self.val.append(processed_data) num_pos_rels, num_pos_pairs, num_neg_pairs, entity_type_pair_stat, per_rel_stat = calculate_stat( self.val) self.logger.info(f"=======================================") self.logger.info(f"Valid: # of docs = {len(valid_json)}") self.logger.info( f" # of positive pairs = {num_pos_pairs}") self.logger.info( f" # of positive labels = {num_pos_rels}") self.logger.info( f" # of negative pairs = {num_neg_pairs}") self.logger.info(f"---------------------------------------") for e1t, e2t in entity_type_pair_stat: self.logger.info( f" ({e1t}, {e2t}): # of positive pairs = {entity_type_pair_stat[(e1t, e2t)]['num_pos_pairs']}") self.logger.info( f" ({e1t}, {e2t}): # of positive labels = {entity_type_pair_stat[(e1t, e2t)]['num_pos_rels']}") self.logger.info( f" ({e1t}, {e2t}): # of negative pairs = {entity_type_pair_stat[(e1t, e2t)]['num_neg_pairs']}") self.logger.info(f"---------------------------------------") for rel_name in per_rel_stat: self.logger.info( f" {rel_name}: # of labels = {per_rel_stat[rel_name]}") self.logger.info(f"=======================================") with open(data_path + "/test.json") as f: test_json = json.loads(f.read()) for data in tqdm(test_json[:]): processed_data = preprocess( data, tokenizer, max_text_length, self.relation_map, lowercase) if processed_data["label_vectors"] == []: continue self.test_ctd.append(processed_data) num_pos_rels, num_pos_pairs, num_neg_pairs, entity_type_pair_stat, per_rel_stat = calculate_stat( self.test_ctd) self.logger.info(f"=======================================") self.logger.info(f"Test ctd: # of docs = {len(test_json)}") self.logger.info( f" # of positive pairs = {num_pos_pairs}") self.logger.info( f" # of positive labels = {num_pos_rels}") self.logger.info( f" # of negative pairs = {num_neg_pairs}") self.logger.info(f"---------------------------------------") for e1t, e2t in entity_type_pair_stat: self.logger.info( f" ({e1t}, {e2t}): # of positive pairs = {entity_type_pair_stat[(e1t, e2t)]['num_pos_pairs']}") self.logger.info( f" ({e1t}, {e2t}): # of positive labels = {entity_type_pair_stat[(e1t, e2t)]['num_pos_rels']}") self.logger.info( f" ({e1t}, {e2t}): # of negative pairs = {entity_type_pair_stat[(e1t, e2t)]['num_neg_pairs']}") self.logger.info(f"---------------------------------------") for rel_name in per_rel_stat: self.logger.info( f" {rel_name}: # of labels = {per_rel_stat[rel_name]}") self.logger.info(f"=======================================") with open(data_path + "/test.anno_ctd.json") as f: test_json = json.loads(f.read()) for data in tqdm(test_json[:]): processed_data = preprocess( data, tokenizer, max_text_length, self.relation_map, lowercase) if processed_data["label_vectors"] == []: continue self.test_anno_ctd.append(processed_data) num_pos_rels, num_pos_pairs, num_neg_pairs, entity_type_pair_stat, per_rel_stat = calculate_stat( self.test_anno_ctd) self.logger.info(f"=======================================") self.logger.info( f"Test annotated ctd: # of docs = {len(test_json)}") self.logger.info( f" # of positive pairs = {num_pos_pairs}") self.logger.info( f" # of positive labels = {num_pos_rels}") self.logger.info( f" # of negative pairs = {num_neg_pairs}") self.logger.info(f"---------------------------------------") for e1t, e2t in entity_type_pair_stat: self.logger.info( f" ({e1t}, {e2t}): # of positive pairs = {entity_type_pair_stat[(e1t, e2t)]['num_pos_pairs']}") self.logger.info( f" ({e1t}, {e2t}): # of positive labels = {entity_type_pair_stat[(e1t, e2t)]['num_pos_rels']}") self.logger.info( f" ({e1t}, {e2t}): # of negative pairs = {entity_type_pair_stat[(e1t, e2t)]['num_neg_pairs']}") self.logger.info(f"---------------------------------------") for rel_name in per_rel_stat: self.logger.info( f" {rel_name}: # of labels = {per_rel_stat[rel_name]}") self.logger.info(f"=======================================") with open(data_path + "/test.anno_all.json") as f: test_json = json.loads(f.read()) for data in tqdm(test_json[:]): processed_data = preprocess( data, tokenizer, max_text_length, self.relation_map, lowercase) if processed_data["label_vectors"] == []: continue self.test_anno_all.append(processed_data) num_pos_rels, num_pos_pairs, num_neg_pairs, entity_type_pair_stat, per_rel_stat = calculate_stat( self.test_anno_all) self.logger.info(f"=======================================") self.logger.info( f"Test annotated all: # of docs = {len(test_json)}") self.logger.info( f" # of positive pairs = {num_pos_pairs}") self.logger.info( f" # of positive labels = {num_pos_rels}") self.logger.info( f" # of negative pairs = {num_neg_pairs}") self.logger.info(f"---------------------------------------") for e1t, e2t in entity_type_pair_stat: self.logger.info( f" ({e1t}, {e2t}): # of positive pairs = {entity_type_pair_stat[(e1t, e2t)]['num_pos_pairs']}") self.logger.info( f" ({e1t}, {e2t}): # of positive labels = {entity_type_pair_stat[(e1t, e2t)]['num_pos_rels']}") self.logger.info( f" ({e1t}, {e2t}): # of negative pairs = {entity_type_pair_stat[(e1t, e2t)]['num_neg_pairs']}") self.logger.info(f"---------------------------------------") for rel_name in per_rel_stat: self.logger.info( f" {rel_name}: # of labels = {per_rel_stat[rel_name]}") self.logger.info(f"=======================================") self.max_text_length = max_text_length self._bz = 1 self._datasize = len(self.train) self._idx = 0 self.num_trained_data = 0 random.seed(seed) random.shuffle(self.train) def __len__(self): return self._datasize def __iter__(self): # {"input": input_array, "pad": pad_array, "docid": docid, "input_length": input_length, # "label_vectors": label_vectors, "label_names": label_names, # "e1_indicators": e1_indicators, "e2_indicators": e2_indicators, # "e1s": e1s, "e2s": e2s, "e1_types": e1_types, "e2_types": e2_types # } while True: if self._idx + self._bz > self._datasize: random.shuffle(self.train) self._idx = 0 data = self.train[self._idx:(self._idx+self._bz)][0] self._idx += self._bz input_array, pad_array, label_array, ep_masks, e1_indicators, e2_indicators = [ ], [], [], [], [], [] input_lengths = [] input_array.append(data["input"]) pad_array.append(data["pad"]) input_lengths.append(data["input_length"]) if len(data["label_vectors"]) > 100: shuffle_indexes = np.arange(len(data["label_vectors"])) np.random.shuffle(shuffle_indexes) shuffle_indexes = shuffle_indexes[:100] else: shuffle_indexes = np.arange(len(data["label_vectors"])) label_array_ = np.array(data["label_vectors"])[shuffle_indexes] label_array.append(label_array_) e1_indicators_ = np.array(data["e1_indicators"])[shuffle_indexes] e1_indicators.append(e1_indicators_) e2_indicators_ = np.array(data["e2_indicators"])[shuffle_indexes] e2_indicators.append(e2_indicators_) # (text_length, text_length) ep_masks_ = [] for e1_indicator, e2_indicator in list(zip(list(e1_indicators_), list(e2_indicators_))): ep_mask_ = np.full( (self.max_text_length, self.max_text_length), -1e20) ep_outer = 1 - np.outer(e1_indicator, e2_indicator) ep_mask_ = ep_mask_ * ep_outer ep_masks_.append(ep_mask_) ep_masks_ = np.array(ep_masks_) ep_masks.append(ep_masks_) max_length = int(np.max(input_lengths)) input_ids = torch.tensor(np.array(input_array)[ :, :max_length], dtype=torch.long) attention_mask = torch.tensor( np.array(pad_array)[:, :max_length], dtype=torch.long) label_array = torch.tensor( np.array(label_array), dtype=torch.float) ep_masks = torch.tensor( np.array(ep_masks)[:, :, :max_length, :max_length], dtype=torch.float) e1_indicators = np.array(e1_indicators) e2_indicators = np.array(e2_indicators) e1_indicators = torch.tensor(e1_indicators[ :, :, :max_length], dtype=torch.float) e2_indicators = torch.tensor(e2_indicators[ :, :, :max_length], dtype=torch.float) self.num_trained_data += self._bz return_data = (input_ids, attention_mask, ep_masks, e1_indicators, e2_indicators, label_array) yield self.num_trained_data, return_data
class Credentials(): # users list credentials_list = [] ''' initialize a class ''' def __init__(self,Fname,Sname,username,password,email): ''' users class 'blueprint' ''' self.Fname = Fname self.Sname = Sname self.username = username self.password = password self.email = email def saveCredentials(self): Credentials.credentials_list.append(self) def delete(self): Credentials.credentials_list.remove(self)
import sys SIX_TAB = { # six.moves: (py2, py3) "configparser": ("ConfigParser", "configparser"), "copyreg": ("copy_reg", "copyreg"), "cPickle": ("cPickle", "pickle"), "cStringIO": ("cStringIO", "io"), "dbm_gnu": ("gdbm", "dbm.gnu"), "_dummy_thread": ("dummy_thread", "_dummy_thread"), "email_mime_multipart": ("email.MIMEMultipart", "email.mime.multipart"), "email_mime_nonmultipart": ("email.MIMENonMultipart", "email.mime.nonmultipart"), "email_mime_text": ("email.MIMEText", "email.mime.text"), "email_mime_base": ("email.MIMEBase", "email.mime.base"), "filter": ("itertools", None), "filterfalse": ("itertools", "itertools"), "getcwd": ("os", "os"), "getcwdb": ("os", "os"), "http_cookiejar": ("cookielib", "http.cookiejar"), "http_cookies": ("Cookie", "http.cookies"), "html_entities": ("htmlentitydefs", "html.entities"), "html_parser": ("HTMLParser", "html.parser"), "http_client": ("httplib", "http.client"), "BaseHTTPServer": ("BaseHTTPServer", "http.server"), "CGIHTTPServer": ("CGIHTTPServer", "http.server"), "SimpleHTTPServer": ("SimpleHTTPServer", "http.server"), "intern": (None, "sys"), "map": ("itertools", None), "queue": ("Queue", "queue"), "reduce": (None, "functools"), "reload_module": (None, "importlib"), "reprlib": ("repr", "reprlib"), "shlex_quote": ("pipes", "shlex"), "socketserver": ("SocketServer", "socketserver"), "_thread": ("thread", "_thread"), "tkinter": ("Tkinter", "tkinter"), "tkinter_dialog": ("Dialog", "tkinter.dialog"), "tkinter_filedialog": ("FileDialog", "tkinter.FileDialog"), "tkinter_scrolledtext": ("ScrolledText", "tkinter.scrolledtext"), "tkinter_simpledialog": ("SimpleDialog", "tkinter.simpledialog"), "tkinter_ttk": ("ttk", "tkinter.ttk"), "tkinter_tix": ("Tix", "tkinter.tix"), "tkinter_constants": ("Tkconstants", "tkinter.constants"), "tkinter_dnd": ("Tkdnd", "tkinter.dnd"), "tkinter_colorchooser": ("tkColorChooser", "tkinter.colorchooser"), "tkinter_commondialog": ("tkCommonDialog", "tkinter.commondialog"), "tkinter_tkfiledialog": ("tkFileDialog", "tkinter.filedialog"), "tkinter_font": ("tkFont", "tkinter.font"), "tkinter_messagebox": ("tkMessageBox", "tkinter.messagebox"), "tkinter_tksimpledialog": ("tkSimpleDialog", "tkinter.simpledialog"), "urllib.robotparser": ("robotparser", "urllib.robotparser"), "urllib_robotparser": ("robotparser", "urllib.robotparser"), "UserDict": ("UserDict", "collections"), "UserList": ("UserList", "collections"), "UserString": ("UserString", "collections"), "winreg": ("_winreg", "winreg"), "xmlrpc_client": ("xmlrpclib", "xmlrpc.client"), "xmlrpc_server": ("SimpleXMLRPCServer", "xmlrpc.server"), "zip": ("itertools", None), "zip_longest": ("itertools", "itertools"), "urllib.parse": (("urlparse", "urllib"), "urllib.parse"), "urllib.error": (("urllib", "urllib2"), "urllib.error"), "urllib.request": (("urllib", "urllib2"), "urllib.request"), "urllib.response": ("urllib", "urllib.request"), } def check(cmd, mf): found = False six_moves = ["six.moves"] # A number of libraries contain a vendored version # of six. Automaticly detect those: for nm in mf.graph.node_list(): if not isinstance(nm, str): continue if nm.endswith(".six.moves"): six_moves.append(nm) for mod in six_moves: m = mf.findNode(mod) if m is None: continue # Some users of six use: # # import six # class foo (six.moves.some_module.SomeClass): pass # # This does not refer to six.moves submodules # in a way that modulegraph will recognize. Therefore # unconditionally include everything in the # table... for submod in SIX_TAB: if submod.startswith("tkinter"): # Don't autoproces tkinter, that results # in significantly larger bundles continue if sys.version_info[0] == 2: alt = SIX_TAB[submod][0] else: alt = SIX_TAB[submod][1] if alt is None: continue elif not isinstance(alt, tuple): alt = (alt,) for nm in alt: try: mf.import_hook(nm, m) found = True except ImportError: pass # Look for submodules that aren't automaticly # processed. for submod in SIX_TAB: if not submod.startswith("tkinter"): continue name = mod + "." + submod m = mf.findNode(name) if m is not None: if sys.version_info[0] == 2: alt = SIX_TAB[submod][0] else: alt = SIX_TAB[submod][1] if alt is None: continue elif not isinstance(alt, tuple): alt = (alt,) for nm in alt: mf.import_hook(nm, m) found = True if found: return {} else: return None
from functools import update_wrapper import typing as t import click from aprsd import config as aprsd_config from aprsd import log F = t.TypeVar("F", bound=t.Callable[..., t.Any]) common_options = [ click.option( "--loglevel", default="INFO", show_default=True, type=click.Choice( ["CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG"], case_sensitive=False, ), show_choices=True, help="The log level to use for aprsd.log", ), click.option( "-c", "--config", "config_file", show_default=True, default=aprsd_config.DEFAULT_CONFIG_FILE, help="The aprsd config file to use for options.", ), click.option( "--quiet", is_flag=True, default=False, help="Don't log to stdout", ), ] def add_options(options): def _add_options(func): for option in reversed(options): func = option(func) return func return _add_options def process_standard_options(f: F) -> F: def new_func(*args, **kwargs): ctx = args[0] ctx.ensure_object(dict) ctx.obj["loglevel"] = kwargs["loglevel"] ctx.obj["config_file"] = kwargs["config_file"] ctx.obj["quiet"] = kwargs["quiet"] ctx.obj["config"] = aprsd_config.parse_config(kwargs["config_file"]) log.setup_logging( ctx.obj["config"], ctx.obj["loglevel"], ctx.obj["quiet"], ) del kwargs["loglevel"] del kwargs["config_file"] del kwargs["quiet"] return f(*args, **kwargs) return update_wrapper(t.cast(F, new_func), f) def process_standard_options_no_config(f: F) -> F: """Use this as a decorator when config isn't needed.""" def new_func(*args, **kwargs): ctx = args[0] ctx.ensure_object(dict) ctx.obj["loglevel"] = kwargs["loglevel"] ctx.obj["config_file"] = kwargs["config_file"] ctx.obj["quiet"] = kwargs["quiet"] log.setup_logging_no_config( ctx.obj["loglevel"], ctx.obj["quiet"], ) del kwargs["loglevel"] del kwargs["config_file"] del kwargs["quiet"] return f(*args, **kwargs) return update_wrapper(t.cast(F, new_func), f)
# Generated by Django 3.2 on 2021-04-08 17:42 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('accounts', '0001_initial'), ('cadastres', '0001_initial'), ] operations = [ migrations.CreateModel( name='Property', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('external_id', models.TextField()), ('account', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='accounts.account')), ('cadastre', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='cadastres.cadastre')), ], options={ 'verbose_name_plural': 'Properties', 'unique_together': {('account', 'external_id')}, }, ), ]
from math import ceil, log #1 ip address ipAddress = input("Enter ip Address: ") #2 separated in 4 parts => string and binary firstPart, secondPart, thirdPart, fourthPart = ipAddress.split(".") ipAddressFourParts = [int(firstPart), int(secondPart), int(thirdPart), int(fourthPart)] binaryipAddressFourParts = list(map(lambda x: format(int(x),"08b") , ipAddressFourParts)) #3 Class of IP address if int(firstPart) <= 127: addressRange = "A" subnetMaskInitialPart = format(255,"b") elif 128 <= int(firstPart) <= 191: addressRange = "B" subnetMaskInitialPart = format(255,"b") + format(255,"b") elif 192 <= int(firstPart) <= 239: addressRange = "C" subnetMaskInitialPart = format(255,"b") + format(255,"b") + format(255,"b") print("Address class: ",addressRange) #4 Default subnet Mask formation = str("0"+str(32-len(subnetMaskInitialPart))+"b") tailingZeros = format(0,formation) defaultSubnetMaskBinary = subnetMaskInitialPart + tailingZeros defaultSubnetMaskWithDotsBinary = ''.join('.' * (n%8 == 0) + l for n, l in enumerate(defaultSubnetMaskBinary)) defaultSubnetMaskWithDotsBinary = defaultSubnetMaskWithDotsBinary[1:] #to remove . at start defaultSubnetMaskWithDotsDecFourParts = list(map(lambda x: int(x,2) , defaultSubnetMaskWithDotsBinary.split("."))) defaultSubnetMaskWithDotsDec = ".".join(str(x) for x in defaultSubnetMaskWithDotsDecFourParts) print("Default subnet mask in Binary: ", defaultSubnetMaskWithDotsBinary) print("Default subnet mask in Decimal: ", defaultSubnetMaskWithDotsDec) #5 Network Address networkAddressFourParts = list(map(lambda x: x[0] & x[1] , list(zip(ipAddressFourParts, defaultSubnetMaskWithDotsDecFourParts)))) networkAddressDotDec = ".".join(str(x) for x in networkAddressFourParts) print("Network Address in Decimal: ", networkAddressDotDec) binarynetworkAddressFourParts = list(map(lambda x: format(int(x),"08b") , networkAddressFourParts)) networkAddressBin = "".join(str(x) for x in binarynetworkAddressFourParts) networkAddressDotBin = ''.join('.' * (n%8 == 0) + l for n, l in enumerate(networkAddressBin)) networkAddressDotBin = networkAddressDotBin[1:] print("Network Address in Binary: ", networkAddressDotBin) networkAddressInitialPart = networkAddressBin[0:len(subnetMaskInitialPart)] #6 custom subnet mask & host choice = input("Which information do You have?\n1. CIDR\n2. No of subnet Bits\n3. No of total subnets\n4. No of total hosts\n5. No of usable hosts\nYour choice should be 1, 2, 3, 4 or 5: ") if choice == '1': CIDR = input("Enter CIDR value: ") CIDR = int(CIDR) subnetBitsCount = CIDR - len(subnetMaskInitialPart) hostsBitsCount = 32 - CIDR elif choice == '2': subnetBitsCount = input("Enter subnet *Bits* you want: ") subnetBitsCount = int(subnetBitsCount) hostsBitsCount = 32 - subnetBitsCount - len(subnetMaskInitialPart) elif choice == '3': totalSubnets = input("Enter total number of Subnets: ") totalSubnets = int(totalSubnets) subnetBitsCount = ceil(log(totalSubnets)/(log(2))) hostsBitsCount = 32 - subnetBitsCount - len(subnetMaskInitialPart) elif choice == '4': totalHosts = input("Enter total number of Hosts: ") totalHosts = int(totalHosts) hostsBitsCount = ceil(log(totalHosts)/(log(2))) subnetBitsCount = 32 - hostsBitsCount - len(subnetMaskInitialPart) elif choice == '5': usableHosts = input("Enter usableHosts value: ") usableHosts = int(usableHosts) usableHosts = usableHosts + 2 hostsBitsCount = ceil(log(usableHosts)/(log(2))) subnetBitsCount = 32 - hostsBitsCount - len(subnetMaskInitialPart) else: print("Please input correct choice from 1 to 4 only...") numberOfSubnets = (2**subnetBitsCount) numberOfHosts = (2**hostsBitsCount) print("Number of Subnet bits: ", subnetBitsCount) print("Total Number of subnets: ", numberOfSubnets) print("Number of host bits: ", hostsBitsCount) print("Total Number of Hosts: ", numberOfHosts) #7 CUSTOM subnet formation = str("0"+str(subnetBitsCount+len(subnetMaskInitialPart))+"b") customSubnet = format(2**(int(subnetBitsCount+len(subnetMaskInitialPart)))-1, formation) formation = str("0"+str(hostsBitsCount)+"b") customSubnetTrailingZero = format(0,formation) customSubnetMaskBinary = customSubnet + customSubnetTrailingZero customSubnetMaskWithDotsBinary = ''.join('.' * (n%8 == 0) + l for n, l in enumerate(customSubnetMaskBinary)) customSubnetMaskWithDotsBinary = customSubnetMaskWithDotsBinary[1:] #to remove . at start customSubnetMaskWithDotsDecFourParts = list(map(lambda x: int(x,2) , customSubnetMaskWithDotsBinary.split("."))) customSubnetMaskWithDotsDec = ".".join(str(x) for x in customSubnetMaskWithDotsDecFourParts) print("Custom subnet Mask in Binary: ", customSubnetMaskWithDotsBinary) print("Custom subnet Mask in Decimal: ", customSubnetMaskWithDotsDec) def my_function(initialPart): formation = str("0"+str(subnetBitsCount)+"b") subnetAddressBits = format(subnetNumber-1, formation) if len(subnetAddressBits) > subnetBitsCount: print("You cannot borrow more bits than available") formation = str("0"+str(hostsBitsCount)+"b") networkAddressHostBits = format(0, formation) networkAddressHostSubnet = subnetAddressBits + networkAddressHostBits networkAddress = initialPart + networkAddressHostSubnet networkAddressWithDotsBinary = ''.join('.' * (n%8 == 0) + l for n, l in enumerate(networkAddress)) networkAddressWithDotsBinary = networkAddressWithDotsBinary[1:] #to remove . at start networkAddressWithDotsDecFourParts = list(map(lambda x: int(x,2) , networkAddressWithDotsBinary.split("."))) networkAddressWithDotsDec = ".".join(str(x) for x in networkAddressWithDotsDecFourParts) broadcastAddressHostBits = format(2**(int(hostsBitsCount))-1, formation) broadcastAddressHostSubnet = subnetAddressBits + broadcastAddressHostBits broadcastAddress = initialPart + broadcastAddressHostSubnet broadcastAddressWithDotsBinary = ''.join('.' * (n%8 == 0) + l for n, l in enumerate(broadcastAddress)) broadcastAddressWithDotsBinary = broadcastAddressWithDotsBinary[1:] #to remove . at start broadcastAddressWithDotsDecFourParts = list(map(lambda x: int(x,2) , broadcastAddressWithDotsBinary.split("."))) broadcastAddressWithDotsDec = ".".join(str(x) for x in broadcastAddressWithDotsDecFourParts) print(networkAddressWithDotsDec ," to ", broadcastAddressWithDotsDec) print("In binary: ", networkAddressWithDotsBinary," to ", broadcastAddressWithDotsBinary) #8 Need information specific subnet while(True): subnetNumber = int(input("Enter subnet's number you want: ")) formation = str("0"+str(subnetBitsCount)+"b") subnetAddressBits = format(subnetNumber-1, formation) if len(subnetAddressBits) > subnetBitsCount: print("You cannot borrow more bits than available") continue print("You required of: ",subnetNumber) print("-"*80) print("Network Range: ", end="") my_function(networkAddressInitialPart) print("-"*80) print("Subnet Range: ", end="") my_function(subnetMaskInitialPart)
# Generated by Django 3.0.2 on 2020-06-29 23:19 from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): initial = True dependencies = [ ('leagues', '0002_auto_20200629_2319'), ('teams', '0001_initial'), ] operations = [ migrations.CreateModel( name='YahooMatchup', fields=[ ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False)), ('created_timestamp', models.DateTimeField(auto_now_add=True, verbose_name='Created At')), ('updated_timestamp', models.DateTimeField(auto_now=True, verbose_name='Updated At')), ('remote_id', models.CharField(blank=True, max_length=1024, null=True, unique=True, verbose_name='Remote Object Id')), ('home_win', models.IntegerField(default=0)), ('home_loss', models.IntegerField(default=0)), ('home_draw', models.IntegerField(default=0)), ('visitor_win', models.IntegerField(default=0)), ('visitor_loss', models.IntegerField(default=0)), ('visitor_draw', models.IntegerField(default=0)), ('home_team', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='matchups_as_home', to='teams.YahooTeam', verbose_name='Yahoo Home Team')), ('league', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='matchups', to='leagues.YahooLeague', verbose_name='Yahoo League')), ('visitor_team', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='matchups_as_visitors', to='teams.YahooTeam', verbose_name='Yahoo Visitor Team')), ('week', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='matchups', to='leagues.YahooLeagueWeeks', verbose_name='Yahoo Week')), ], options={ 'abstract': False, }, ), ]
from itertools import product a,b=map(int, input().split()) c=(list(map(int, input().split()))[1:] for _ in range(a)) r=map(lambda x: sum(i**2 for i in x) % b, product(*c)) print(max(r))
import logging import os import re from collections import Counter import numpy as np from data.data_iterator import ids2seq def load_file(path): """Load file formated with one sentence per line and tokens separated by spaces.""" with open(path, "r", encoding="utf8") as file: outputs = [line.strip().split() for line in file] return outputs def iob2iobes(iob): """Converts a list of IOB tags to IOBES scheme.""" iobes = [] tags = iob + ["O"] for i in range(len(tags) - 1): tag, next_tag = tags[i: i + 2] if tag == "O": iobes.append("O") else: if tag[0] == "B": if next_tag[0] in "OB" or not "-".join(next_tag.split("-")[1:]) == "-".join(tag.split("-")[1:]): iobes.append("S-" + "-".join(tag.split("-")[1:])) else: iobes.append(tag) elif tag[0] == "I": if next_tag[0] == "O" or not "-".join(next_tag.split("-")[1:]) == "-".join(tag.split("-")[1:]): iobes.append("E-" + "-".join(tag.split("-")[1:])) else: iobes.append(tag) return iobes def iobes2iob(iobes): """Converts a list of IOBES tags to IOB scheme.""" dico = {pfx: pfx for pfx in "IOB"} dico.update({"S": "B", "E": "I"}) return [dico[t[0]] + t[1:] if not t == "O" else "O" for t in iobes] def iob_scheme(tags, iobes=True): """ Transform tag sequence without any scheme into IOB or IOBES scheme """ iob = [] tags = ["O"] + tags + ["O"] for i in range(1, len(tags) - 1): prev_tag, tag, next_tag = tags[i - 1: i + 2] if not tag == "O": if tag not in [prev_tag, next_tag]: if iobes: iob.append("S-" + tag) else: iob.append("B-" + tag) elif not tag == prev_tag: iob.append("B-" + tag) elif not tag == next_tag: if iobes: iob.append("E-" + tag) else: iob.append("I-" + tag) else: iob.append("I-" + tag) else: iob.append("O") return iob def build_word_vocab(data_path, filenames, mincount=1, whole_dataset=False): """Computes word vocabulary of several files and save it to "vocab.words.txt". Args: data_path (str) : Path of the folder containing the sentence files named "[filename].words.txt" filenames (list) : list of filenames (ex : ["train"] if file is named "train.words.txt") mincount (int) : minimal number of occurences to consider (default:1) Returns: set of words kept """ word_counter = Counter() for fn in filenames: vocab = Counter() with open(data_path + fn + ".words.txt", "r", encoding="utf8") as file: for line in file: word_counter.update(line.strip().split()) vocab.update(line.strip().split()) vocab = {w for w, c in vocab.items() if c >= mincount} with open(data_path + "vocab.{}.words.txt".format(fn), "w", encoding="utf8") as file: for w in sorted(list(vocab)): file.write(w + "\n") word_vocab = {w for w, c in word_counter.items() if c >= mincount} if whole_dataset: with open(data_path + "vocab.words.txt", "w", encoding="utf8") as file: for w in sorted(list(word_vocab)): file.write(w + "\n") print('Word vocabulary built. Kept {} out of {}'.format(len(word_vocab), len(word_counter))) return word_vocab def build_char_vocab(word_vocab, data_path, save_file="vocab.chars.txt"): """Computes char vocabulary given a word vocabulary path and save it to "vocab.chars.txt". Args: word_vocab (set) : set of words in the vocabulary data_path (str) : Path of the folder containing "vocab.words.txt" Returns: set of chars """ char_vocab = set() for w in word_vocab: char_vocab.update(w) with open(os.path.join(data_path, save_file), "w", encoding="utf8") as file: for w in sorted(list(char_vocab)): file.write(w + "\n") print('Char vocabulary built. Found {} chars'.format(len(char_vocab))) return char_vocab def build_tag_vocab(data_path, filenames, iobes=True): """Computes tag vocabulary of several files and save it to "vocab.[scheme].txt". Args: data_path (str) : Path of the folder containing the tag files named "[filename].[scheme].txt" filenames (list) : list of filenames (ex : ["train"] if file is named "train.iobes.txt") iobes (bool) : whether to use IOBES scheme (default:True) else IOB scheme """ if iobes: ext = ".iobes.txt" else: ext = ".iob.txt" tag_vocab = set() for fn in filenames: with open(data_path + fn + ext, "r", encoding="utf8") as file: for line in file: tag_vocab.update(line.strip().split()) with open(data_path + "vocab" + ext, "w", encoding="utf8") as file: for t in sorted(list(tag_vocab)): file.write(t + "\n") print('Tag vocabulary built. Found {} tags'.format(len(tag_vocab))) def build_vocab(data_path, filenames=["train", "dev", "test"], mincount=1): """Build word, char and tag vocabulary in both IOB and IOBES.""" word_vocab = build_word_vocab(data_path, filenames, mincount, whole_dataset=True) build_char_vocab(word_vocab, data_path) train_word_vocab = build_word_vocab(data_path, ["train"], mincount) build_char_vocab(train_word_vocab, data_path, save_file="vocab.train.chars.txt") build_tag_vocab(data_path, filenames, iobes=True) build_tag_vocab(data_path, filenames, iobes=False) def extract_entities(words, iob_tags): """ Retrieve entities, types and spans given a tokenized sentence and IOB tags Args: words (list) : list of word strings iob_tags (list) : list of IOB tags Returns: entities (list) : list of words in the extracted entities types (list) : list of types of the extracted entities indices (list) : list of spans (begin idx, end idx) of the entities """ entities = [] types = [] indices = [] tmp_ent = None tmp_indices = None tmp_type = "O" for i, (w, t) in enumerate(zip(words, iob_tags)): if t[0] == "B": if tmp_ent is not None: entities.append(tmp_ent) indices.append(tmp_indices) types.append(tmp_type) tmp_ent = w tmp_type = "-".join(t.split("-")[1:]) tmp_indices = [i] elif t[0] == "O": if tmp_ent is not None: entities.append(tmp_ent) indices.append(tmp_indices) types.append(tmp_type) tmp_ent = None tmp_type = None tmp_indices = None elif t[0] == "I": if "-".join(t.split("-")[1:]) == tmp_type and i == tmp_indices[-1] + 1: tmp_ent += " " + w tmp_indices += [i] else: if tmp_ent is not None: entities.append(tmp_ent) indices.append(tmp_indices) types.append(tmp_type) tmp_ent = w tmp_type = "-".join(t.split("-")[1:]) tmp_indices = [i] if tmp_ent is not None: entities.append(tmp_ent) indices.append(tmp_indices) types.append(tmp_type) return list(zip(entities, types, indices)) def extract_iob(iob_tags): """ Retrieve types and spans given a tokenized sentence and IOB tags Args: iob_tags (list) : list of IOB tags Returns: types (list) : list of types of the extracted entities indices (list) : list of spans (begin idx, end idx) of the entities """ types = [] indices = [] tmp_indices = None tmp_type = "O" for i, t in enumerate(iob_tags): if t[0] == "B": if tmp_indices is not None: indices.append(tmp_indices) types.append(tmp_type) tmp_type = "-".join(t.split("-")[1:]) tmp_indices = [i] elif t[0] == "O": if tmp_indices is not None: indices.append(tmp_indices) types.append(tmp_type) tmp_type = None tmp_indices = None elif t[0] == "I": if "-".join(t.split("-")[1:]) == tmp_type and i == tmp_indices[-1] + 1: tmp_indices += [i] else: if tmp_indices is not None: indices.append(tmp_indices) types.append(tmp_type) tmp_type = "-".join(t.split("-")[1:]) tmp_indices = [i] if tmp_indices is not None: indices.append(tmp_indices) types.append(tmp_type) return list(zip(types, indices)) def extract_entities_corpus(data, unique=True): entities = {} if "words" in data.keys(): for w, t in zip(data["words"], data["tags"]): ents = extract_entities(w.split(), iobes2iob(t.split())) for e, t, s in ents: if not t in entities.keys(): entities[t] = [e] else: entities[t].append(e) if unique: for type in entities.keys(): entities[type] = set(entities[type]) else: for split in data.keys(): if not len(entities): entities = extract_entities_corpus(data[split]) else: to_append = extract_entities_corpus(data[split]) assert set(to_append.keys()) == set(entities.keys()) for k in entities.keys(): entities[k].extend(to_append[k]) return entities def partial_match(ent, entities, stop_words=None): word_set = set(np.concatenate([ent.split() for ent in set(entities)])) if stop_words is None: stop_words = set(". , : ; ? ! ( ) \" ' % - the on 's of a an".split()) else: stop_words = set(". , : ; ? ! ( ) \" ' % - the on 's of a an".split() + stop_words) for e in ent.split(): if e in word_set and not e.lower() in stop_words: return True return False def compute_overlap(words, tags, train_entities, stop_words=None, verbose=False): overlaps = [] splits = ["EXACT", "PARTIAL", "NEW"] overlap_count = {ent_type: {split: 0 for split in splits} for ent_type in train_entities.keys()} for i, (w, t) in enumerate(zip(words, tags)): t = iobes2iob(t.split()) w = w.split() entities = extract_entities(w, t) current_overlap = ["O"] * len(w) for ent, typ, span in entities: if ent in train_entities[typ]: for idx in span: current_overlap[idx] = "EXACT" overlap_count[typ]["EXACT"] += 1 elif partial_match(ent, train_entities[typ], stop_words=stop_words): for idx in span: current_overlap[idx] = "PARTIAL" overlap_count[typ]["PARTIAL"] += 1 else: for idx in span: current_overlap[idx] = "NEW" overlap_count[typ]["NEW"] += 1 overlaps.append(current_overlap) for ent_type in train_entities.keys(): n_mentions = sum([overlap_count[ent_type][split] for split in splits]) if verbose: logging.info(ent_type) logging.info("{} mentions".format(n_mentions)) logging.info("{} exact overlapping".format(overlap_count[ent_type]["EXACT"])) logging.info("{} %".format(100 * overlap_count[ent_type]["EXACT"] / n_mentions)) logging.info("{} partial overlapping".format(overlap_count[ent_type]["PARTIAL"])) logging.info("{} %".format(100 * overlap_count[ent_type]["PARTIAL"] / n_mentions)) logging.info("{} unseen".format(overlap_count[ent_type]["NEW"])) logging.info("{} %".format(100 * overlap_count[ent_type]["NEW"] / n_mentions)) logging.info("") return overlaps, overlap_count
import numpy as np def get_phaselc(t, p, data, v_num): return 1.+p.amp1[v_num]*np.cos(2.*np.pi*(t-p.theta1[v_num])/p.per[v_num]) + p.amp2[v_num]*np.cos(4.*np.pi*(t-p.theta2[v_num])/p.per[v_num])
from .LayoutManager import LayoutManager
""" """ import numpy as np from ..axis_ratio_model import monte_carlo_halo_shapes def _enforce_constraints(b_to_a, c_to_a, e, p): assert np.all(b_to_a > 0), "All elements of b_to_a must be strictly positive" assert np.all(c_to_a > 0), "All elements of c_to_a must be strictly positive" assert np.all(b_to_a <= 1), "No element of b_to_a can exceed unity" assert np.all(c_to_a <= 1), "No element of c_to_a can exceed unity" assert np.all(b_to_a >= c_to_a), "No element in c_to_a can exceed the corresponding b_to_a" assert np.all(e <= 0.5), "No element of ellipticity can exceed 0.5" assert np.all(p <= 0.5), "No element of prolaticity can exceed 0.5" assert np.all(e >= 0.), "ellipticity must be non-negative" assert np.all(p >= -0.25), "prolaticity cannot exceed -0.25" def test1(): """Enforce monte_carlo_halo_shapes doesn't crash when given crazy halo masses """ npts = int(1e5) logmhalo = np.linspace(-10, 20, npts) b_to_a, c_to_a, e, p = monte_carlo_halo_shapes(logmhalo) _enforce_constraints(b_to_a, c_to_a, e, p) def test2(): """Enforce expected scaling with halo mass """ npts = int(1e4) b_to_a, c_to_a, e, p = monte_carlo_halo_shapes(np.zeros(npts) + 11) b_to_a2, c_to_a2, e2, p2 = monte_carlo_halo_shapes(np.zeros(npts) + 15) assert e.mean() < e2.mean(), "Higher-mass halos should be more elliptical" assert p.mean() < p2.mean(), "Higher-mass halos should be more prolate" assert b_to_a.mean() > b_to_a2.mean(), "Higher-mass halos should have more elongated axes" assert c_to_a.mean() > c_to_a2.mean(), "Higher-mass halos should have more elongated axes" def test3(): """Enforce reasonable correlation coefficient between axis ratios and ellipticity and prolaticity """ npts = int(1e4) b_to_a, c_to_a, e, p = monte_carlo_halo_shapes(np.zeros(npts) + 11) r = np.corrcoef(b_to_a, c_to_a)[0, 1] assert r > 0.5, "b_to_a and c_to_a should be highly correlated" r = np.corrcoef(e, p)[0, 1] assert r > 0.5, "ellipticity and prolaticity should be highly correlated"
import os import json import numpy as np import cv2 import matplotlib.pyplot as plt root_dir = '../FS2K' root_dir_photo = os.path.join(root_dir, 'photo') root_dir_sketch = os.path.join(root_dir, 'sketch') photo_paths = [] for photo_dir in os.listdir(root_dir_photo): photo_dir = os.path.join(root_dir_photo, photo_dir) photo_paths += sorted(os.listdir(photo_dir)) json_file_train = os.path.join(root_dir, 'anno_train.json') json_file_test = os.path.join(root_dir, 'anno_test.json') with open(json_file_test, 'r') as f: json_data = json.loads(f.read()) attrs = {} for attr in json_data[0].keys(): attrs[attr] = [] for idx_fs, fs in enumerate(json_data): for attr in fs: attrs[attr].append(fs[attr]) for idx_image_name, image_name in enumerate(attrs['image_name']): if idx_image_name < 0: continue print('{}/{},'.format(idx_image_name+1, len(attrs['image_name'])), image_name) image_name += '.jpg' # Attributes if 'nan' in attrs['lip_color'][idx_image_name]: skin_color = 'nan' lip_color = 'nan' eye_color = 'nan' hair_color = 'nan' else: skin_color = np.array(attrs['skin_color'][idx_image_name]).astype(int).tolist() lip_color = np.array(attrs['lip_color'][idx_image_name]).astype(np.uint8) eye_color = np.array(attrs['eye_color'][idx_image_name]).astype(np.uint8) hair_color = np.array(attrs['hair_color'][idx_image_name]).astype(np.uint8) hair = int(attrs['hair'][idx_image_name]) gender = int(attrs['gender'][idx_image_name]) earring = int(attrs['earring'][idx_image_name]) smile = int(attrs['smile'][idx_image_name]) frontal_face = int(attrs['frontal_face'][idx_image_name]) style = int(attrs['style'][idx_image_name]) # Processing photo_path = os.path.join(root_dir, 'photo', image_name) photo = cv2.imread(photo_path) sketch_path = os.path.join(root_dir, 'photo', image_name).replace('photo', 'sketch').replace('image', 'sketch') sketch = cv2.imread(sketch_path) if sketch is None: sketch = cv2.imread(sketch_path.replace('.jpg', '.png')) if sketch is None: sketch = cv2.imread(sketch_path.replace('.png', '.jpg')) split_line = np.zeros((photo.shape[0], 10, 3), dtype=photo.dtype) if 'nan' not in attrs['lip_color'][idx_image_name]: cv2.rectangle(photo, (skin_color[0] - 10, skin_color[1] - 10), (skin_color[0] + 10, skin_color[1] + 10), (0, 0, 255), 1) lip_color_region = (np.zeros((photo.shape[0], 50, 3)) + lip_color[::-1]).astype(photo.dtype) eye_color_region = (np.zeros((photo.shape[0], 50, 3)) + eye_color[::-1]).astype(photo.dtype) # for i in [photo, split_line, sketch, split_line, lip_color_region, split_line, eye_color_region]: # print(i.shape) # comp = cv2.hconcat([photo, split_line, cv2.resize(sketch, photo.shape[:2][::-1], cv2.INTER_LINEAR), split_line, lip_color_region, split_line, eye_color_region]) comp = cv2.hconcat([photo, split_line, sketch, split_line, lip_color_region, split_line, eye_color_region]) plt.figure(figsize=(16, 10)) plt.imshow(cv2.cvtColor(comp, cv2.COLOR_BGR2RGB)) if hair == 0: hair = 'Yes' else: hair = 'No' if hair_color == 0: hair_color = 'Brown' elif hair_color == 1: hair_color = 'Black' elif hair_color == 2: hair_color = 'Red' elif hair_color == 3: hair_color = 'No' elif hair_color == 4: hair_color = 'Golden' if gender == 0: gender = 'Male' else: gender = 'Female' if earring == 0: earring = 'Yes' else: earring = 'No' if smile == 0: smile = 'No' else: smile = 'Yes' if frontal_face == 0: frontal_face = '<=30' else: frontal_face = '>30' style += 1 plt.title('{}\nskin color selection region={},\nlip color={} (1st color bar),\neye color={} (2nd color bar),\nhair={}, hair color={}, gender={}, earring={}, smile={}, frontal_face={}, style={}'.format( os.path.join('photo', image_name), skin_color, lip_color, eye_color, hair, hair_color, gender, earring, smile, frontal_face, style )) plt.show()
from tkinter import * class BillCalculator: def __init__(self): window = Tk() window.title("Bill Calculator") # input fields Label(window, text = "How much is the bill?").grid(row = 1,column = 1, sticky = W) Label(window, text = "How many people?").grid(row = 2, column = 1, sticky = W) Label(window, text = "How much % tip?").grid(row = 3, column = 1, sticky = W) Label(window, text = "Bill per person:").grid(row = 4, column = 1, sticky = W) # for taking inputs self.billVar = StringVar() Entry(window, textvariable = self.billVar, justify = RIGHT).grid(row = 1, column = 2) self.peopleVar = StringVar() Entry(window, textvariable = self.peopleVar, justify = RIGHT).grid(row = 2, column = 2) self.tipVar = StringVar() Entry(window, textvariable = self.tipVar, justify = RIGHT).grid(row = 3, column = 2) self.splitBillVar = StringVar() lblSplitBill = Label(window, textvariable = self.splitBillVar).grid(row = 4, column = 2, sticky = E) # calculate button button_calculate = Button(window, text = "Calculate", command = self.calculateBill).grid(row = 6, column = 2, sticky = E) window.mainloop() # Create an event loop # calculate total payment def calculateBill(self): splitBill = self.totalSum(float(self.billVar.get()), float(self.tipVar.get()), int(self.peopleVar.get())) self.splitBillVar.set(splitBill) def totalSum(self, bill, tip, people): splitBill = round(((bill + ((tip * bill) / 100)) / people), 2) return splitBill root = Tk() # create the widget # run the program BillCalculator()
import sys try: from io import StringIO from io import BytesIO except ImportError: from StringIO import StringIO as StringIO from StringIO import StringIO as BytesIO import unittest import mitogen.core from mitogen.core import b import testlib #### #### see also message_test.py / PickledTest #### class BlobTest(testlib.TestCase): klass = mitogen.core.Blob def make(self): return self.klass(b('x') * 128) def test_repr(self): blob = self.make() self.assertEqual('[blob: 128 bytes]', repr(blob)) def test_decays_on_constructor(self): blob = self.make() self.assertEqual(b('x') * 128, mitogen.core.BytesType(blob)) def test_decays_on_write(self): blob = self.make() io = BytesIO() io.write(blob) self.assertEqual(128, io.tell()) self.assertEqual(b('x') * 128, io.getvalue()) def test_message_roundtrip(self): blob = self.make() msg = mitogen.core.Message.pickled(blob) blob2 = msg.unpickle() self.assertEqual(type(blob), type(blob2)) self.assertEqual(repr(blob), repr(blob2)) self.assertEqual(mitogen.core.BytesType(blob), mitogen.core.BytesType(blob2)) class SecretTest(testlib.TestCase): klass = mitogen.core.Secret def make(self): return self.klass('password') def test_repr(self): secret = self.make() self.assertEqual('[secret]', repr(secret)) def test_decays_on_constructor(self): secret = self.make() self.assertEqual('password', mitogen.core.UnicodeType(secret)) def test_decays_on_write(self): secret = self.make() io = StringIO() io.write(secret) self.assertEqual(8, io.tell()) self.assertEqual('password', io.getvalue()) def test_message_roundtrip(self): secret = self.make() msg = mitogen.core.Message.pickled(secret) secret2 = msg.unpickle() self.assertEqual(type(secret), type(secret2)) self.assertEqual(repr(secret), repr(secret2)) self.assertEqual(mitogen.core.b(secret), mitogen.core.b(secret2)) class KwargsTest(testlib.TestCase): klass = mitogen.core.Kwargs def test_empty(self): kw = self.klass({}) self.assertEqual({}, kw) self.assertEqual('Kwargs({})', repr(kw)) klass, (dct,) = kw.__reduce__() self.assertTrue(klass is self.klass) self.assertTrue(type(dct) is dict) self.assertEqual({}, dct) @unittest.skipIf(condition=(sys.version_info >= (2, 6)), reason='py<2.6 only') def test_bytes_conversion(self): kw = self.klass({u'key': 123}) self.assertEqual({'key': 123}, kw) self.assertEqual("Kwargs({'key': 123})", repr(kw)) @unittest.skipIf(condition=not mitogen.core.PY3, reason='py3 only') def test_unicode_conversion(self): kw = self.klass({mitogen.core.b('key'): 123}) self.assertEqual({u'key': 123}, kw) self.assertEqual("Kwargs({'key': 123})", repr(kw)) klass, (dct,) = kw.__reduce__() self.assertTrue(klass is self.klass) self.assertTrue(type(dct) is dict) self.assertEqual({u'key': 123}, dct) key, = dct self.assertTrue(type(key) is mitogen.core.UnicodeType) class AdornedUnicode(mitogen.core.UnicodeType): pass class ToTextTest(testlib.TestCase): func = staticmethod(mitogen.core.to_text) def test_bytes(self): s = self.func(mitogen.core.b('bytes')) self.assertEqual(mitogen.core.UnicodeType, type(s)) self.assertEqual(s, u'bytes') def test_unicode(self): s = self.func(u'text') self.assertEqual(mitogen.core.UnicodeType, type(s)) self.assertEqual(s, u'text') def test_adorned_unicode(self): s = self.func(AdornedUnicode(u'text')) self.assertEqual(mitogen.core.UnicodeType, type(s)) self.assertEqual(s, u'text') def test_integer(self): s = self.func(123) self.assertEqual(mitogen.core.UnicodeType, type(s)) self.assertEqual(s, u'123')
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Messages used in the i18n_dashboard module.""" __author__ = [ 'johncox@google.com (John Cox)', ] SITE_SETTINGS_CACHE_TRANSLATIONS = """ If "True", translations are cached. During course development you should turn this setting to "False" so you can see your change instantaneously. Otherwise, keep this setting at "True" to maximize performance. """
# coding=UTF-8 # ex:ts=4:sw=4:et=on # Copyright (c) 2013, Mathijs Dumon # All rights reserved. # Complete license can be found in the LICENSE file. import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) from math import sqrt import numpy as np import scipy from deap import cma, base, creator, tools #@UnresolvedImport from pyxrd.refinement.refine_method import RefineMethod from pyxrd.refinement.refine_method_option import RefineMethodOption from pyxrd.refinement.refine_async_helper import RefineAsyncHelper from .deap_utils import pyxrd_array, PyXRDParetoFront, FitnessMin, result_func # Default settings: NGEN = 100 STAGN_NGEN = 10 STAGN_TOL = 0.001 class Strategy(cma.Strategy): """ This evolutionary strategy supports the hybrid PSO-CMA runs using the rotate_and_bias function (should be called after an update). """ def __init__(self, centroid, sigma, ranges, **kwargs): self.ranges = ranges super(Strategy, self).__init__(centroid, sigma, **kwargs) def update(self, population): """Update the current covariance matrix strategy from the *population*. :param population: A list of individuals from which to update the parameters. """ population.sort(key=lambda ind: ind.fitness, reverse=True) selected_pop = self._translate_external( np.array([ind.to_ndarray() for ind in population[0:self.mu]])) old_centroid = self._translate_external(self.centroid) centroid = np.dot(self.weights, selected_pop) c_diff = centroid - old_centroid # Cumulation : update evolution path self.ps = (1 - self.cs) * self.ps \ + sqrt(self.cs * (2 - self.cs) * self.mueff) / self.sigma \ * np.dot(self.B, (1. / self.diagD) \ * np.dot(self.B.T, c_diff)) hsig = float((np.linalg.norm(self.ps) / sqrt(1. - (1. - self.cs) ** (2. * (self.update_count + 1.))) / self.chiN < (1.4 + 2. / (self.dim + 1.)))) self.update_count += 1 self.pc = (1 - self.cc) * self.pc + hsig \ * sqrt(self.cc * (2 - self.cc) * self.mueff) / self.sigma \ * c_diff # Update covariance matrix artmp = selected_pop - old_centroid new_C = (1 - self.ccov1 - self.ccovmu + (1 - hsig) \ * self.ccov1 * self.cc * (2 - self.cc)) * self.C \ + self.ccov1 * np.outer(self.pc, self.pc) \ + self.ccovmu * np.dot((self.weights * artmp.T), artmp) \ / self.sigma ** 2 self.sigma *= np.exp((np.linalg.norm(self.ps) / self.chiN - 1.) \ * self.cs / self.damps) try: self.diagD, self.B = np.linalg.eigh(new_C) except np.linalg.LinAlgError: logger.warning( "LinAlgError occurred when calculating eigenvalues" \ " and vectors for matrix C!\n%r" % new_C ) else: self.C = new_C indx = np.argsort(self.diagD) self.cond = self.diagD[indx[-1]] / self.diagD[indx[0]] self.diagD = self.diagD ** 0.5 self.B = self.B[:, indx] self.BD = self.B * self.diagD self.centroid = self._translate_internal(centroid) def rotate_and_bias(self, global_best, tc=0.1, b=0.5, cp=0.5): """ Rotates the covariance matrix and biases the centroid of this CMA population towards a global mean. Can be used to implement a PSO-CMA hybrid algorithm. """ global_best = self._translate_external(global_best) centroid = self._translate_external(self.centroid) # Rotate towards global: pg = np.array(global_best) - np.array(centroid) Brot = self.__rotation_matrix(self.B[:, 0], pg) * self.B Crot = Brot * (self.diagD ** 2) * Brot.T self.C = cp * self.C + (1.0 - cp) * Crot # Bias our mean towards global best mean: npg = np.linalg.norm(pg) nsigma = np.amax(self.sigma) if nsigma < npg: if nsigma / npg <= tc * npg: bias = b * pg else: bias = nsigma / npg * pg else: bias = 0 centroid = centroid + bias self.centroid = self._translate_internal(centroid) pass def _translate_internal(self, solutions): # rule is: anything given as an argument in a public function or # available as a public property should be within the external boundaries return self.ranges[:, 0] + (self.ranges[:, 1] - self.ranges[:, 0]) * (1.0 - np.cos(solutions * np.pi)) / 2.0 def _translate_external(self, solutions): return np.arccos(1 - 2 * (solutions - self.ranges[:, 0]) / (self.ranges[:, 1] - self.ranges[:, 0])) / np.pi def generate(self, ind_init): """Generate a population from the current strategy using the centroid individual as parent. :param ind_init: A function object that is able to initialize an individual from a list. :returns: an iterator yielding the generated individuals. """ centroid = self._translate_external(self.centroid) arz = np.random.standard_normal((self.lambda_, self.dim)) #@UndefinedVariable arz = np.array(centroid) + self.sigma * np.dot(arz, self.BD.T) #@UndefinedVariable arz = self._translate_internal(arz) for arr in arz: yield ind_init(arr) def __rotation_matrix(self, vector, target): """ Rotation matrix from one vector to another target vector. The solution is not unique as any additional rotation perpendicular to the target vector will also yield a solution) However, the output is deterministic. """ R1 = self.__rotation_to_pole(target) R2 = self.__rotation_to_pole(vector) return np.dot(R1.T, R2) def __rotation_to_pole(self, target): """ Rotate to 1,0,0... """ n = len(target) working = target rm = np.eye(n) for i in range(1, n): angle = np.arctan2(working[0], working[i]) rm = np.dot(self.__rotation_matrix_inds(angle, n, 0, i), rm) working = np.dot(rm, target) return rm def __rotation_matrix_inds(self, angle, n, ax1, ax2): """ 'n'-dimensional rotation matrix 'angle' radians in coordinate plane with indices 'ax1' and 'ax2' """ s = np.sin(angle) c = np.cos(angle) i = np.eye(n) i[ax1, ax1] = s i[ax1, ax2] = c i[ax2, ax1] = c i[ax2, ax2] = -s return i pass #end of class class Algorithm(RefineAsyncHelper): """ This algorithm implements the ask-tell model proposed in [Colette2010]_, where ask is called `generate` and tell is called `update`. Modified (Mathijs Dumon) so it checks for stagnation. """ @property def ngen(self): return self._ngen @ngen.setter def ngen(self, value): self._ngen = value logger.info("Setting ngen to %d" % value) _ngen = 100 gen = -1 halloffame = None refiner = None toolbox = None stats = None stagn_ngen = None stagn_tol = None verbose = False #-------------------------------------------------------------------------- # Initialization #-------------------------------------------------------------------------- def __init__(self, toolbox, halloffame, stats, ngen=NGEN, verbose=__debug__, stagn_ngen=STAGN_NGEN, stagn_tol=STAGN_TOL, refiner=None, stop=None): """ :param toolbox: A :class:`~deap.base.Toolbox` that contains the evolution operators. :param ngen: The number of generations. :param halloffame: A :class:`~deap.tools.ParetoFront` object that will contain the best individuals. :param stats: A :class:`~deap.tools.Statistics` object that is updated inplace. :param verbose: Whether or not to log the statistics. :param stagn_gens: The minimum number of generations to wait before checking for stagnation :param stagn_tol: The stagnation tolerance. Higher values means a harsher tolerance, values should fall between 0 and 1 :param refiner: PyXRD refiner object :returns: The best individual and the final population. The toolbox should contain a reference to the generate and the update method of the chosen strategy. Call the run() method when the algorithm should be run. .. [Colette2010] Collette, Y., N. Hansen, G. Pujol, D. Salazar Aponte and R. Le Riche (2010). On Object-Oriented Programming of Optimizers - Examples in Scilab. In P. Breitkopf and R. F. Coelho, eds.: Multidisciplinary Design Optimization in Computational Mechanics, Wiley, pp. 527-565; """ self.stats = stats self.toolbox = toolbox self.ngen = ngen self.halloffame = halloffame self.verbose = verbose self.stagn_ngen = stagn_ngen self.stagn_tol = stagn_tol self.refiner = refiner self.gen = 0 self._stop = stop #-------------------------------------------------------------------------- # Run method: #-------------------------------------------------------------------------- def run(self): """Will run this algorithm""" if self.verbose: column_names = ["gen", "evals", "best"] if self.stats is not None: column_names += list(self.stats.functions.keys()) self.logbook = tools.Logbook() self.logbook.header = column_names for _ in range(self.ngen): # Check if the user has cancelled: if self._user_cancelled(): self.refiner.status.message = "Stopping..." logger.info("User cancelled execution, stopping ...") break #ASK: Generate a new population: population = self._ask() #TELL: Update the strategy with the evaluated individuals self._tell(population) #RECORD: For stagnation checking & logging: self._record(population) #CHECK: whether we are stagnating: if self._is_stagnating(): logging.info("CMA: stagnation detected!") break return self.refiner.history.best_solution, population #-------------------------------------------------------------------------- # Stagnation calls: #-------------------------------------------------------------------------- def _is_flat(self, yvals, xvals, slope_tolerance=0.001): slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(xvals, yvals) #@UndefinedVariable @UnusedVariable val = bool(abs(slope) <= slope_tolerance) return val def _is_stagnating(self): self.refiner.status.message = "Checking for stagnation" if self.gen >= self.stagn_ngen: # 10 std, best = self.logbook.select("std", "best") std = np.array(std)[:, 0] yvals1 = std[-(self.stagn_ngen - 1):] xvals1 = list(range(len(yvals1))) yvals2 = best[-(self.stagn_ngen - 1):] xvals2 = list(range(len(yvals2))) return self._is_flat(yvals1, xvals1, self.stagn_tol) and \ self._is_flat(yvals2, xvals2, self.stagn_tol) else: return False #-------------------------------------------------------------------------- # Ask, tell & record: #-------------------------------------------------------------------------- def _ask(self): self.gen += 1 self.refiner.status.message = "Creating generation #%d" % self.gen def result_f(*args): self.refiner.update(*args) result_func(*args) population = self.do_async_evaluation( self.toolbox.generate, result_func=result_f ) if self.halloffame is not None: self.halloffame.update(population) return population def _tell(self, population): self.refiner.status.message = "Updating strategy" self.toolbox.update(population) def _record(self, population): self.refiner.status.message = "Processing ..." # Get the best solution so far: best = self.halloffame.get_best() best_f = best.fitness.values[0] pop_size = len(population) # Calculate stats & print something if needed: record = self.stats.compile(population) if self.verbose: self.logbook.record(gen=self.gen, evals=pop_size, best=best_f, **record) print(self.logbook.stream) self.refiner.status.message = "Refiner update ..." # Update the refiner: self.refiner.update(best, iteration=self.gen, residual=best_f) pass #end of class class RefineCMAESRun(RefineMethod): """ The DEAP CMA-ES algorithm implementation with added stagnation thresholds """ name = "CMA-ES refinement" description = "This algorithm uses the CMA-ES refinement strategy as implemented by DEAP" index = 1 disabled = False ngen = RefineMethodOption('Maximum # of generations', NGEN, [1, 10000], int) stagn_ngen = RefineMethodOption('Minimum # of generations', STAGN_NGEN, [1, 10000], int) stagn_tol = RefineMethodOption('Fitness slope tolerance', STAGN_TOL, [0., 100.], float) def _individual_creator(self, refiner, bounds): creator.create( "Individual", pyxrd_array, fitness=FitnessMin, # @UndefinedVariable refiner=refiner, min_bounds=bounds[:, 0].copy(), max_bounds=bounds[:, 1].copy(), ) def create_individual(lst): arr = np.array(lst).clip(bounds[:, 0], bounds[:, 1]) #@UndefinedVariable return creator.Individual(arr) # @UndefinedVariable return create_individual def _create_stats(self): stats = tools.Statistics(lambda ind: ind.fitness.values) stats.register("avg", np.mean, axis=0) #@UndefinedVariable stats.register("std", np.std, axis=0) #@UndefinedVariable stats.register("min", np.min, axis=0) #@UndefinedVariable stats.register("max", np.max, axis=0) #@UndefinedVariable return stats _has_been_setup = False def _setup(self, refiner, ngen=NGEN, stagn_ngen=STAGN_NGEN, stagn_tol=STAGN_TOL, **kwargs): if not self._has_been_setup: logger.info("Setting up the DEAP CMA-ES refinement algorithm (ngen=%d)" % ngen) refiner.status.message = "Setting up algorithm..." # Process some general stuff: bounds = np.array(refiner.ranges) #@UndefinedVariable create_individual = self._individual_creator(refiner, bounds) # Setup strategy: centroid = create_individual(refiner.history.initial_solution) strat_kwargs = {} if "lambda_" in kwargs: strat_kwargs["lambda_"] = kwargs.pop("lambda_") strategy = Strategy( centroid=centroid, sigma=1.0 / 10.0, ranges=bounds, stop=self._stop, **strat_kwargs ) # Toolbox setup: toolbox = base.Toolbox() toolbox.register("generate", strategy.generate, create_individual) toolbox.register("update", strategy.update) # Hall of fame & stats: logger.info("Creating hall-off-fame and statistics") halloffame = PyXRDParetoFront(similar=lambda a1, a2: np.all(a1 == a2)) #@UndefinedVariable stats = self._create_stats() # Create algorithm self.algorithm = Algorithm( toolbox, halloffame, stats, ngen=ngen, stagn_ngen=stagn_ngen, stagn_tol=stagn_tol, refiner=refiner, stop=self._stop) self._has_been_setup = True return self.algorithm def run(self, refiner, **kwargs): logger.info("CMA-ES run invoked with %s" % kwargs) self._has_been_setup = False #clear this for a new refinement algorithm = self._setup(refiner, **kwargs) # Get this show on the road: logger.info("Running the CMA-ES algorithm...") algorithm.run() pass # end of class
from __future__ import print_function, division, absolute_import import functools import sys # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import PIL.Image import PIL.ImageOps import PIL.ImageEnhance import PIL.ImageFilter import imgaug as ia from imgaug import augmenters as iaa from imgaug import random as iarandom from imgaug.testutils import reseed def _test_shape_hw(func): img = np.arange(20*10).reshape((20, 10)).astype(np.uint8) observed = func(np.copy(img)) expected = func( np.tile(np.copy(img)[:, :, np.newaxis], (1, 1, 3)), )[:, :, 0] assert observed.dtype.name == "uint8" assert observed.shape == (20, 10) assert np.array_equal(observed, expected) def _test_shape_hw1(func): img = np.arange(20*10*1).reshape((20, 10, 1)).astype(np.uint8) observed = func(np.copy(img)) expected = func( np.tile(np.copy(img), (1, 1, 3)), )[:, :, 0:1] assert observed.dtype.name == "uint8" assert observed.shape == (20, 10, 1) assert np.array_equal(observed, expected) class Test_solarize_(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked_defaults(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.pillike.solarize_(arr) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is arr assert kwargs["threshold"] == 128 assert observed == "foo" @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.pillike.solarize_(arr, threshold=5) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is arr assert kwargs["threshold"] == 5 assert observed == "foo" def test_image_shape_hw(self): func = functools.partial(iaa.pillike.solarize_, threshold=5) _test_shape_hw(func) def test_image_shape_hw1(self): func = functools.partial(iaa.pillike.solarize_, threshold=5) _test_shape_hw1(func) class Test_solarize(unittest.TestCase): def test_compare_with_pil(self): def _solarize_pil(image, threshold): img = PIL.Image.fromarray(image) return np.asarray(PIL.ImageOps.solarize(img, threshold)) images = [ np.mod(np.arange(20*20*3), 255).astype(np.uint8)\ .reshape((20, 20, 3)), iarandom.RNG(0).integers(0, 256, size=(1, 1, 3), dtype="uint8"), iarandom.RNG(1).integers(0, 256, size=(20, 20, 3), dtype="uint8"), iarandom.RNG(2).integers(0, 256, size=(40, 40, 3), dtype="uint8"), iarandom.RNG(0).integers(0, 256, size=(20, 20), dtype="uint8") ] for image_idx, image in enumerate(images): for threshold in np.arange(256): with self.subTest(image_idx=image_idx, threshold=threshold): image_pil = _solarize_pil(image, threshold) image_iaa = iaa.pillike.solarize(image, threshold) assert np.array_equal(image_pil, image_iaa) def test_image_shape_hw(self): func = functools.partial(iaa.pillike.solarize, threshold=5) _test_shape_hw(func) def test_image_shape_hw1(self): func = functools.partial(iaa.pillike.solarize, threshold=5) _test_shape_hw1(func) class Test_posterize(unittest.TestCase): def test_by_comparison_with_pil(self): image = np.arange(64*64*3).reshape((64, 64, 3)) image = np.mod(image, 255).astype(np.uint8) for nb_bits in [1, 2, 3, 4, 5, 6, 7, 8]: image_iaa = iaa.pillike.posterize(np.copy(image), nb_bits) image_pil = np.asarray( PIL.ImageOps.posterize( PIL.Image.fromarray(image), nb_bits ) ) assert np.array_equal(image_iaa, image_pil) def test_image_shape_hw(self): func = functools.partial(iaa.pillike.posterize, bits=2) _test_shape_hw(func) def test_image_shape_hw1(self): func = functools.partial(iaa.pillike.posterize, bits=2) _test_shape_hw1(func) class Test_equalize(unittest.TestCase): def test_by_comparison_with_pil(self): shapes = [ (1, 1), (2, 1), (1, 2), (2, 2), (5, 5), (10, 5), (5, 10), (10, 10), (20, 20), (100, 100), (100, 200), (200, 100), (200, 200) ] shapes = shapes + [shape + (3,) for shape in shapes] rng = iarandom.RNG(0) images = [rng.integers(0, 255, size=shape).astype(np.uint8) for shape in shapes] images = images + [ np.full((10, 10), 0, dtype=np.uint8), np.full((10, 10), 128, dtype=np.uint8), np.full((10, 10), 255, dtype=np.uint8) ] for i, image in enumerate(images): mask_vals = [False, True] if image.size >= (100*100) else [False] for use_mask in mask_vals: with self.subTest(image_idx=i, shape=image.shape, use_mask=use_mask): mask_np = None mask_pil = None if use_mask: mask_np = np.zeros(image.shape[0:2], dtype=np.uint8) mask_np[25:75, 25:75] = 1 mask_pil = PIL.Image.fromarray(mask_np).convert("L") image_iaa = iaa.pillike.equalize(image, mask=mask_np) image_pil = np.asarray( PIL.ImageOps.equalize( PIL.Image.fromarray(image), mask=mask_pil ) ) assert np.array_equal(image_iaa, image_pil) def test_unusual_channel_numbers(self): nb_channels_lst = [1, 2, 4, 5, 512, 513] for nb_channels in nb_channels_lst: for size in [20, 100]: with self.subTest(nb_channels=nb_channels, size=size): shape = (size, size, nb_channels) image = iarandom.RNG(0).integers(50, 150, size=shape) image = image.astype(np.uint8) image_aug = iaa.pillike.equalize(image) if size > 1: channelwise_sums = np.sum(image_aug, axis=(0, 1)) assert np.all(channelwise_sums > 0) assert np.min(image_aug) < 50 assert np.max(image_aug) > 150 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_aug = iaa.pillike.equalize(image) assert image_aug.dtype.name == "uint8" assert image_aug.shape == shape def test_image_shape_hw(self): func = functools.partial(iaa.pillike.equalize) _test_shape_hw(func) # already covered by unusal channel numbers test, but we run this one here # anyways for consistency with other tests and because it works a bit # different def test_image_shape_hw1(self): func = functools.partial(iaa.pillike.equalize) _test_shape_hw1(func) class Test_autocontrast(unittest.TestCase): def test_by_comparison_with_pil(self): rng = iarandom.RNG(0) shapes = [ (1, 1), (10, 10), (1, 1, 3), (1, 2, 3), (2, 1, 3), (2, 2, 3), (5, 3, 3), (10, 5, 3), (5, 10, 3), (10, 10, 3), (20, 10, 3), (20, 40, 3), (50, 60, 3), (100, 100, 3), (200, 100, 3) ] images = [ rng.integers(0, 255, size=shape).astype(np.uint8) for shape in shapes ] images = ( images + [ np.full((1, 1, 3), 0, dtype=np.uint8), np.full((1, 1, 3), 255, dtype=np.uint8), np.full((20, 20, 3), 0, dtype=np.uint8), np.full((20, 20, 3), 255, dtype=np.uint8) ] ) cutoffs = [0, 1, 2, 10, 50, 90, 99, 100] ignores = [None, 0, 1, 100, 255, [0, 1], [5, 10, 50], [99, 100]] for cutoff in cutoffs: for ignore in ignores: for i, image in enumerate(images): with self.subTest(cutoff=cutoff, ignore=ignore, image_idx=i, image_shape=image.shape): result_pil = np.asarray( PIL.ImageOps.autocontrast( PIL.Image.fromarray(image), cutoff=cutoff, ignore=ignore ) ) result_iaa = iaa.pillike.autocontrast(image, cutoff=cutoff, ignore=ignore) assert np.array_equal(result_pil, result_iaa) def test_unusual_channel_numbers(self): nb_channels_lst = [1, 2, 4, 5, 512, 513] for nb_channels in nb_channels_lst: for size in [20]: for cutoff in [0, 1, 10]: with self.subTest(nb_channels=nb_channels, size=size, cutoff=cutoff): shape = (size, size, nb_channels) image = iarandom.RNG(0).integers(50, 150, size=shape) image = image.astype(np.uint8) image_aug = iaa.pillike.autocontrast(image, cutoff=cutoff) if size > 1: channelwise_sums = np.sum(image_aug, axis=(0, 1)) assert np.all(channelwise_sums > 0) assert np.min(image_aug) < 50 assert np.max(image_aug) > 150 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: for cutoff in [0, 1, 10]: for ignore in [None, 0, 1, [0, 1, 10]]: with self.subTest(shape=shape, cutoff=cutoff, ignore=ignore): image = np.zeros(shape, dtype=np.uint8) image_aug = iaa.pillike.autocontrast(image, cutoff=cutoff, ignore=ignore) assert image_aug.dtype.name == "uint8" assert image_aug.shape == shape def test_image_shape_hw(self): func = functools.partial(iaa.pillike.autocontrast) _test_shape_hw(func) # already covered by unusal channel numbers test, but we run this one here # anyways for consistency with other tests and because it works a bit # different def test_image_shape_hw1(self): func = functools.partial(iaa.pillike.autocontrast) _test_shape_hw1(func) # TODO add test for unusual channel numbers class _TestEnhanceFunc(unittest.TestCase): def _test_by_comparison_with_pil( self, func, cls, factors=(0.0, 0.01, 0.1, 0.5, 0.95, 0.99, 1.0, 1.05, 1.5, 2.0, 3.0)): shapes = [(224, 224, 3), (32, 32, 3), (16, 8, 3), (1, 1, 3), (32, 32, 4)] seeds = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for seed in seeds: for shape in shapes: for factor in factors: with self.subTest(shape=shape, seed=seed, factor=factor): image = iarandom.RNG(seed).integers( 0, 256, size=shape, dtype="uint8") image_iaa = func(image, factor) image_pil = np.asarray( cls( PIL.Image.fromarray(image) ).enhance(factor) ) assert np.array_equal(image_iaa, image_pil) def _test_zero_sized_axes(self, func, factors=(0.0, 0.4, 1.0)): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: for factor in factors: with self.subTest(shape=shape, factor=factor): image = np.zeros(shape, dtype=np.uint8) image_aug = func(image, factor=factor) assert image_aug.dtype.name == "uint8" assert image_aug.shape == shape @classmethod def _test_image_shape_hw(self, func): func = functools.partial(func, factor=0.2) _test_shape_hw(func) @classmethod def _test_image_shape_hw1(self, func): func = functools.partial(func, factor=0.2) _test_shape_hw1(func) class Test_enhance_color(_TestEnhanceFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.enhance_color, PIL.ImageEnhance.Color) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.enhance_color) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.enhance_color) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.enhance_color) class Test_enhance_contrast(_TestEnhanceFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.enhance_contrast, PIL.ImageEnhance.Contrast) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.enhance_contrast) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.enhance_contrast) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.enhance_contrast) class Test_enhance_brightness(_TestEnhanceFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.enhance_brightness, PIL.ImageEnhance.Brightness) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.enhance_brightness) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.enhance_brightness) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.enhance_brightness) class Test_enhance_sharpness(_TestEnhanceFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.enhance_sharpness, PIL.ImageEnhance.Sharpness) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.enhance_brightness, factors=[0.0, 0.4, 1.0, 1.5, 2.0]) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.enhance_sharpness) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.enhance_sharpness) class _TestFilterFunc(unittest.TestCase): def _test_by_comparison_with_pil(self, func, pil_kernel): shapes = [(224, 224, 3), (32, 32, 3), (16, 8, 3), (1, 1, 3), (32, 32, 4)] seeds = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] for seed in seeds: for shape in shapes: with self.subTest(shape=shape, seed=seed): image = iarandom.RNG(seed).integers( 0, 256, size=shape, dtype="uint8") image_iaa = func(image) image_pil = np.asarray( PIL.Image.fromarray(image).filter(pil_kernel) ) assert np.array_equal(image_iaa, image_pil) def _test_zero_sized_axes(self, func): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_aug = func(image) assert image_aug.dtype.name == "uint8" assert image_aug.shape == shape @classmethod def _test_image_shape_hw(self, func): _test_shape_hw(func) @classmethod def _test_image_shape_hw1(self, func): _test_shape_hw1(func) class Test_filter_blur(_TestFilterFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.filter_blur, PIL.ImageFilter.BLUR) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.filter_blur) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.filter_blur) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.filter_blur) class Test_filter_smooth(_TestFilterFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.filter_smooth, PIL.ImageFilter.SMOOTH) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.filter_smooth) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.filter_smooth) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.filter_smooth) class Test_filter_smooth_more(_TestFilterFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.filter_smooth_more, PIL.ImageFilter.SMOOTH_MORE) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.filter_smooth_more) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.filter_smooth_more) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.filter_smooth_more) class Test_filter_edge_enhance(_TestFilterFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.filter_edge_enhance, PIL.ImageFilter.EDGE_ENHANCE) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.filter_edge_enhance) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.filter_edge_enhance) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.filter_edge_enhance) class Test_filter_edge_enhance_more(_TestFilterFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.filter_edge_enhance_more, PIL.ImageFilter.EDGE_ENHANCE_MORE) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.filter_edge_enhance_more) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.filter_edge_enhance_more) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.filter_edge_enhance_more) class Test_filter_find_edges(_TestFilterFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.filter_find_edges, PIL.ImageFilter.FIND_EDGES) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.filter_find_edges) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.filter_find_edges) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.filter_find_edges) class Test_filter_contour(_TestFilterFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.filter_contour, PIL.ImageFilter.CONTOUR) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.filter_contour) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.filter_contour) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.filter_contour) class Test_filter_emboss(_TestFilterFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.filter_emboss, PIL.ImageFilter.EMBOSS) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.filter_emboss) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.filter_emboss) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.filter_emboss) class Test_filter_sharpen(_TestFilterFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.filter_sharpen, PIL.ImageFilter.SHARPEN) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.filter_sharpen) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.filter_sharpen) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.filter_sharpen) class Test_filter_detail(_TestFilterFunc): def test_by_comparison_with_pil(self): self._test_by_comparison_with_pil(iaa.pillike.filter_detail, PIL.ImageFilter.DETAIL) def test_zero_sized_axes(self): self._test_zero_sized_axes(iaa.pillike.filter_detail) def test_image_shape_hw(self): self._test_image_shape_hw(iaa.pillike.filter_detail) def test_image_shape_hw1(self): self._test_image_shape_hw1(iaa.pillike.filter_detail) class Test_warp_affine(unittest.TestCase): def _test_aff_by_comparison_with_pil(self, arg_name, arg_values, matrix_gen): shapes = [(64, 64, 3), (32, 32, 3), (16, 8, 3), (1, 1, 3), (32, 32, 4)] seeds = [1, 2, 3] fillcolors = [None, 0, 128, (0, 255, 0)] for shape in shapes: for seed in seeds: for fillcolor in fillcolors: for arg_value in arg_values: with self.subTest(shape=shape, seed=seed, fillcolor=fillcolor, **{arg_name: arg_value}): image = iarandom.RNG(seed).integers( 0, 256, size=shape, dtype="uint8") matrix = matrix_gen(arg_value) image_warped = iaa.pillike.warp_affine( image, fillcolor=fillcolor, center=(0.0, 0.0), **{arg_name: arg_value}) image_warped_exp = np.asarray( PIL.Image.fromarray( image ).transform(shape[0:2][::-1], PIL.Image.AFFINE, matrix[:2, :].flat, fillcolor=fillcolor) ) assert np.array_equal(image_warped, image_warped_exp) def test_scale_x_by_comparison_with_pil(self): def _matrix_gen(scale): return np.float32([ [1/scale, 0, 0], [0, 1, 0], [0, 0, 1] ]) self._test_aff_by_comparison_with_pil( "scale_x", [0.01, 0.1, 0.9, 1.0, 1.5, 3.0], _matrix_gen ) def test_scale_y_by_comparison_with_pil(self): def _matrix_gen(scale): return np.float32([ [1, 0, 0], [0, 1/scale, 0], [0, 0, 1] ]) self._test_aff_by_comparison_with_pil( "scale_y", [0.01, 0.1, 0.9, 1.0, 1.5, 3.0], _matrix_gen ) def test_translate_x_by_comparison_with_pil(self): def _matrix_gen(translate): return np.float32([ [1, 0, -translate], [0, 1, 0], [0, 0, 1] ]) self._test_aff_by_comparison_with_pil( "translate_x_px", [-50, -10, -1, 0, 1, 10, 50], _matrix_gen ) def test_translate_y_by_comparison_with_pil(self): def _matrix_gen(translate): return np.float32([ [1, 0, 0], [0, 1, -translate], [0, 0, 1] ]) self._test_aff_by_comparison_with_pil( "translate_y_px", [-50, -10, -1, 0, 1, 10, 50], _matrix_gen ) def test_rotate_by_comparison_with_pil(self): def _matrix_gen(rotate): r = np.deg2rad(rotate) return np.float32([ [np.cos(r), np.sin(r), 0], [-np.sin(r), np.cos(r), 0], [0, 0, 1] ]) self._test_aff_by_comparison_with_pil( "rotate_deg", [-50, -10, -1, 0, 1, 10, 50], _matrix_gen ) def test_shear_x_by_comparison_with_pil(self): def _matrix_gen(shear): s = (-1) * np.deg2rad(shear) return np.float32([ [1, np.tanh(s), 0], [0, 1, 0], [0, 0, 1] ]) self._test_aff_by_comparison_with_pil( "shear_x_deg", [-50, -10, -1, 0, 1, 10, 50], _matrix_gen ) def test_shear_y_by_comparison_with_pil(self): def _matrix_gen(shear): s = (-1) * np.deg2rad(shear) return np.float32([ [1, 0, 0], [np.tanh(s), 1, 0], [0, 0, 1] ]) self._test_aff_by_comparison_with_pil( "shear_y_deg", [-50, -10, -1, 0, 1, 10, 50], _matrix_gen ) def test_scale_x(self): image = np.zeros((100, 100, 3), dtype=np.uint8) image[50, 60] = 255 image_aug = iaa.pillike.warp_affine(image, scale_x=1.5) y, x = np.unravel_index(np.argmax(image_aug[..., 0]), image_aug.shape[0:2]) assert 50 - 1 <= y <= 50 + 1 assert x > 60 def test_scale_y(self): image = np.zeros((100, 100, 3), dtype=np.uint8) image[60, 50] = 255 image_aug = iaa.pillike.warp_affine(image, scale_y=1.5) y, x = np.unravel_index(np.argmax(image_aug[..., 0]), image_aug.shape[0:2]) assert 50 - 1 <= x <= 50 + 1 assert y > 60 def test_translate_x_px(self): image = np.zeros((20, 20, 3), dtype=np.uint8) image[10, 15] = 255 image_aug = iaa.pillike.warp_affine(image, translate_x_px=1) assert image_aug[10, 15, 0] == 0 assert image_aug[10, 16, 0] == 255 assert np.all(image_aug[0, :] == 0) def test_translate_y_px(self): image = np.zeros((20, 20, 3), dtype=np.uint8) image[15, 10] = 255 image_aug = iaa.pillike.warp_affine(image, translate_y_px=1) assert image_aug[15, 10, 0] == 0 assert image_aug[16, 10, 0] == 255 assert np.all(image_aug[:, 0] == 0) def test_rotate(self): image = np.zeros((20, 20, 3), dtype=np.uint8) image[0, 10] = 255 image_aug = iaa.pillike.warp_affine(image, rotate_deg=45, center=(0.0, 0.0)) assert image_aug[7, 7, 0] == 255 def test_shear_x(self): image = np.zeros((20, 20, 3), dtype=np.uint8) image[5, 10] = 255 image_aug = iaa.pillike.warp_affine(image, shear_x_deg=20, center=(0.0, 0.0)) y, x = np.unravel_index(np.argmax(image_aug[..., 0]), image_aug.shape[0:2]) assert y == 5 assert x > 10 def test_shear_y(self): image = np.zeros((20, 20, 3), dtype=np.uint8) image[10, 15] = 255 image_aug = iaa.pillike.warp_affine(image, shear_y_deg=20, center=(0.0, 0.0)) y, x = np.unravel_index(np.argmax(image_aug[..., 0]), image_aug.shape[0:2]) assert y > 10 assert x == 15 def test_fillcolor_is_none(self): image = np.ones((20, 20, 3), dtype=np.uint8) image_aug = iaa.pillike.warp_affine(image, translate_x_px=1, fillcolor=None) assert np.all(image_aug[:, :1, :] == 0) assert np.all(image_aug[:, 1:, :] == 1) def test_fillcolor_is_int(self): image = np.ones((20, 20, 3), dtype=np.uint8) image_aug = iaa.pillike.warp_affine(image, translate_x_px=1, fillcolor=128) assert np.all(image_aug[:, :1, 0] == 128) assert np.all(image_aug[:, :1, 1] == 0) assert np.all(image_aug[:, :1, 2] == 0) assert np.all(image_aug[:, 1:, :] == 1) def test_fillcolor_is_int_grayscale(self): image = np.ones((20, 20), dtype=np.uint8) image_aug = iaa.pillike.warp_affine(image, translate_x_px=1, fillcolor=128) assert np.all(image_aug[:, :1] == 128) assert np.all(image_aug[:, 1:] == 1) def test_fillcolor_is_tuple(self): image = np.ones((20, 20, 3), dtype=np.uint8) image_aug = iaa.pillike.warp_affine(image, translate_x_px=1, fillcolor=(2, 3, 4)) assert np.all(image_aug[:, :1, 0] == 2) assert np.all(image_aug[:, :1, 1] == 3) assert np.all(image_aug[:, :1, 2] == 4) assert np.all(image_aug[:, 1:, :] == 1) def test_fillcolor_is_tuple_more_values_than_channels(self): image = np.ones((20, 20, 3), dtype=np.uint8) image_aug = iaa.pillike.warp_affine(image, translate_x_px=1, fillcolor=(2, 3, 4, 5)) assert image_aug.shape == (20, 20, 3) assert np.all(image_aug[:, :1, 0] == 2) assert np.all(image_aug[:, :1, 1] == 3) assert np.all(image_aug[:, :1, 2] == 4) assert np.all(image_aug[:, 1:, :] == 1) def test_center(self): image = np.zeros((21, 21, 3), dtype=np.uint8) image[2, 10] = 255 image_aug = iaa.pillike.warp_affine(image, rotate_deg=90, center=(0.5, 0.5)) assert image_aug[10, 18, 0] == 255 def test_image_shape_hw(self): func = functools.partial(iaa.pillike.warp_affine, rotate_deg=90) _test_shape_hw(func) def test_image_shape_hw1(self): func = functools.partial(iaa.pillike.warp_affine, rotate_deg=90) _test_shape_hw1(func) class TestSolarize(unittest.TestCase): def setUp(self): reseed() def test_returns_correct_instance(self): aug = iaa.pillike.Solarize() assert isinstance(aug, iaa.Invert) assert aug.per_channel.value == 0 assert aug.min_value is None assert aug.max_value is None assert np.isclose(aug.threshold.value, 128) assert aug.invert_above_threshold.value == 1 class TestPosterize(unittest.TestCase): def setUp(self): reseed() def test_returns_posterize(self): aug = iaa.pillike.Posterize() assert isinstance(aug, iaa.Posterize) class TestEqualize(unittest.TestCase): def setUp(self): reseed() @mock.patch("imgaug.augmenters.pillike.equalize_") def test_mocked(self, mock_eq): image = np.arange(1*1*3).astype(np.uint8).reshape((1, 1, 3)) mock_eq.return_value = np.copy(image) aug = iaa.pillike.Equalize() _image_aug = aug(image=image) assert mock_eq.call_count == 1 assert np.array_equal(mock_eq.call_args_list[0][0][0], image) def test_integrationtest(self): rng = iarandom.RNG(0) for size in [20, 100]: shape = (size, size, 3) image = rng.integers(50, 150, size=shape) image = image.astype(np.uint8) aug = iaa.pillike.Equalize() image_aug = aug(image=image) if size > 1: channelwise_sums = np.sum(image_aug, axis=(0, 1)) assert np.all(channelwise_sums > 0) assert np.min(image_aug) < 50 assert np.max(image_aug) > 150 class TestAutocontrast(unittest.TestCase): def setUp(self): reseed() @mock.patch("imgaug.augmenters.pillike.autocontrast") def test_mocked(self, mock_auto): image = np.mod(np.arange(10*10*3), 255) image = image.reshape((10, 10, 3)).astype(np.uint8) mock_auto.return_value = image aug = iaa.pillike.Autocontrast(15) _image_aug = aug(image=image) assert np.array_equal(mock_auto.call_args_list[0][0][0], image) assert mock_auto.call_args_list[0][0][1] == 15 @mock.patch("imgaug.augmenters.pillike.autocontrast") def test_per_channel(self, mock_auto): image = np.mod(np.arange(10*10*1), 255) image = image.reshape((10, 10, 1)).astype(np.uint8) image = np.tile(image, (1, 1, 100)) mock_auto.return_value = image[..., 0] aug = iaa.pillike.Autocontrast((0, 30), per_channel=True) _image_aug = aug(image=image) assert mock_auto.call_count == 100 cutoffs = [] for i in np.arange(100): assert np.array_equal(mock_auto.call_args_list[i][0][0], image[..., i]) cutoffs.append(mock_auto.call_args_list[i][0][1]) assert len(set(cutoffs)) > 10 def test_integrationtest(self): image = iarandom.RNG(0).integers(50, 150, size=(100, 100, 3)) image = image.astype(np.uint8) aug = iaa.pillike.Autocontrast(10) image_aug = aug(image=image) assert np.min(image_aug) < 50 assert np.max(image_aug) > 150 def test_integrationtest_per_channel(self): image = iarandom.RNG(0).integers(50, 150, size=(100, 100, 50)) image = image.astype(np.uint8) aug = iaa.pillike.Autocontrast(10, per_channel=True) image_aug = aug(image=image) assert np.min(image_aug) < 50 assert np.max(image_aug) > 150 class TestEnhanceColor(unittest.TestCase): def setUp(self): reseed() def test___init___defaults(self): aug = iaa.pillike.EnhanceColor() assert np.isclose(aug.factor.a.value, 0.0) assert np.isclose(aug.factor.b.value, 3.0) def test___init___custom(self): aug = iaa.pillike.EnhanceColor(0.75) assert np.isclose(aug.factor.value, 0.75) @mock.patch("imgaug.augmenters.pillike.enhance_color") def test_mocked(self, mock_pilcol): aug = iaa.pillike.EnhanceColor(0.75) image = np.zeros((1, 1, 3), dtype=np.uint8) mock_pilcol.return_value = np.full((1, 1, 3), 128, dtype=np.uint8) image_aug = aug(image=image) assert mock_pilcol.call_count == 1 assert ia.is_np_array(mock_pilcol.call_args_list[0][0][0]) assert np.isclose(mock_pilcol.call_args_list[0][0][1], 0.75, rtol=0, atol=1e-4) assert np.all(image_aug == 128) def test_simple_image(self): aug = iaa.pillike.EnhanceColor(0.0) image = np.zeros((1, 1, 3), dtype=np.uint8) image[:, :, 0] = 255 image[:, :, 1] = 255 image_aug = aug(image=image) assert image_aug[:, :, 2] > 200 assert np.all(image_aug[:, :, 0] == image_aug[:, :, 1]) assert np.all(image_aug[:, :, 0] == image_aug[:, :, 2]) def test_batch_contains_no_images(self): aug = iaa.pillike.EnhanceColor(0.75) hm_arr = np.ones((3, 3, 1), dtype=np.float32) hm = ia.HeatmapsOnImage(hm_arr, shape=(3, 3, 3)) hm_aug = aug(heatmaps=hm) assert np.allclose(hm_aug.get_arr(), hm.get_arr()) def test_get_parameters(self): aug = iaa.pillike.EnhanceColor(0.75) params = aug.get_parameters() assert params[0] is aug.factor # we don't have to test very much here, because some functions of the base # class are already tested via EnhanceColor class TestEnhanceContrast(unittest.TestCase): def setUp(self): reseed() @mock.patch("imgaug.augmenters.pillike.enhance_contrast") def test_mocked(self, mock_pilco): aug = iaa.pillike.EnhanceContrast(0.75) image = np.zeros((1, 1, 3), dtype=np.uint8) mock_pilco.return_value = np.full((1, 1, 3), 128, dtype=np.uint8) image_aug = aug(image=image) assert mock_pilco.call_count == 1 assert ia.is_np_array(mock_pilco.call_args_list[0][0][0]) assert np.isclose(mock_pilco.call_args_list[0][0][1], 0.75, rtol=0, atol=1e-4) assert np.all(image_aug == 128) def test_simple_image(self): aug = iaa.pillike.EnhanceContrast(0.0) image = np.full((2, 2, 3), 128, dtype=np.uint8) image[0, :, :] = 200 image_aug = aug(image=image) diff_before = np.average(np.abs(image.astype(np.int32) - np.average(image))) diff_after = np.average(np.abs(image_aug.astype(np.int32) - np.average(image_aug))) assert diff_after < diff_before def test_batch_contains_no_images(self): aug = iaa.pillike.EnhanceContrast(0.75) hm_arr = np.ones((3, 3, 1), dtype=np.float32) hm = ia.HeatmapsOnImage(hm_arr, shape=(3, 3, 3)) hm_aug = aug(heatmaps=hm) assert np.allclose(hm_aug.get_arr(), hm.get_arr()) # we don't have to test very much here, because some functions of the base # class are already tested via EnhanceColor class TestEnhanceBrightness(unittest.TestCase): def setUp(self): reseed() @mock.patch("imgaug.augmenters.pillike.enhance_brightness") def test_mocked(self, mock_pilbr): aug = iaa.pillike.EnhanceBrightness(0.75) image = np.zeros((1, 1, 3), dtype=np.uint8) mock_pilbr.return_value = np.full((1, 1, 3), 128, dtype=np.uint8) image_aug = aug(image=image) assert mock_pilbr.call_count == 1 assert ia.is_np_array(mock_pilbr.call_args_list[0][0][0]) assert np.isclose(mock_pilbr.call_args_list[0][0][1], 0.75, rtol=0, atol=1e-4) assert np.all(image_aug == 128) def test_simple_image(self): aug = iaa.pillike.EnhanceBrightness(0.0) image = np.full((2, 2, 3), 255, dtype=np.uint8) image_aug = aug(image=image) assert np.all(image_aug < 255) def test_batch_contains_no_images(self): aug = iaa.pillike.EnhanceBrightness(0.75) hm_arr = np.ones((3, 3, 1), dtype=np.float32) hm = ia.HeatmapsOnImage(hm_arr, shape=(3, 3, 3)) hm_aug = aug(heatmaps=hm) assert np.allclose(hm_aug.get_arr(), hm.get_arr()) # we don't have to test very much here, because some functions of the base # class are already tested via EnhanceColor class TestEnhanceSharpness(unittest.TestCase): def setUp(self): reseed() @mock.patch("imgaug.augmenters.pillike.enhance_sharpness") def test_mocked(self, mock_pilsh): aug = iaa.pillike.EnhanceSharpness(0.75) image = np.zeros((3, 3, 3), dtype=np.uint8) mock_pilsh.return_value = np.full((3, 3, 3), 128, dtype=np.uint8) image_aug = aug(image=image) assert mock_pilsh.call_count == 1 assert ia.is_np_array(mock_pilsh.call_args_list[0][0][0]) assert np.isclose(mock_pilsh.call_args_list[0][0][1], 0.75, rtol=0, atol=1e-4) assert np.all(image_aug == 128) def test_simple_image(self): aug = iaa.pillike.EnhanceSharpness(2.0) image = np.full((3, 3, 3), 64, dtype=np.uint8) image[1, 1, :] = 128 image_aug = aug(image=image) assert np.all(image_aug[1, 1, :] > 128) def test_batch_contains_no_images(self): aug = iaa.pillike.EnhanceSharpness(0.75) hm_arr = np.ones((3, 3, 1), dtype=np.float32) hm = ia.HeatmapsOnImage(hm_arr, shape=(3, 3, 3)) hm_aug = aug(heatmaps=hm) assert np.allclose(hm_aug.get_arr(), hm.get_arr()) class _TestFilter(unittest.TestCase): def _test___init__(self, cls, func): aug = cls() assert aug.func is func def _test_image(self, cls, pil_kernel): image = ia.quokka(0.25) image_aug = cls()(image=image) image_aug_pil = PIL.Image.fromarray(image).filter(pil_kernel) assert np.array_equal(image_aug, image_aug_pil) class FilterBlur(_TestFilter): def test___init__(self): self._test___init__(iaa.pillike.FilterBlur, iaa.pillike.filter_blur) def test_image(self): self._test_image(iaa.pillike.FilterBlur, PIL.ImageFilter.BLUR) class FilterSmooth(_TestFilter): def test___init__(self): self._test___init__(iaa.pillike.FilterSmooth, iaa.pillike.filter_smooth) def test_image(self): self._test_image(iaa.pillike.FilterSmooth, PIL.ImageFilter.SMOOTH) class FilterSmoothMore(_TestFilter): def test___init__(self): self._test___init__(iaa.pillike.FilterSmoothMore, iaa.pillike.filter_smooth_more) def test_image(self): self._test_image(iaa.pillike.FilterSmoothMore, PIL.ImageFilter.SMOOTH_MORE) class FilterEdgeEnhance(_TestFilter): def test___init__(self): self._test___init__(iaa.pillike.FilterEdgeEnhance, iaa.pillike.filter_edge_enhance) def test_image(self): self._test_image(iaa.pillike.FilterEdgeEnhance, PIL.ImageFilter.EDGE_ENHANCE) class FilterEdgeEnhanceMore(_TestFilter): def test___init__(self): self._test___init__(iaa.pillike.FilterEdgeEnhanceMore, iaa.pillike.filter_edge_enhance_more) def test_image(self): self._test_image(iaa.pillike.FilterEdgeEnhanceMore, PIL.ImageFilter.EDGE_ENHANCE_MORE) class FilterFindEdges(_TestFilter): def test___init__(self): self._test___init__(iaa.pillike.FilterFindEdges, iaa.pillike.filter_find_edges) def test_image(self): self._test_image(iaa.pillike.FilterFindEdges, PIL.ImageFilter.FIND_EDGES) class FilterContour(_TestFilter): def test___init__(self): self._test___init__(iaa.pillike.FilterContour, iaa.pillike.filter_contour) def test_image(self): self._test_image(iaa.pillike.FilterContour, PIL.ImageFilter.CONTOUR) class FilterEmboss(_TestFilter): def test___init__(self): self._test___init__(iaa.pillike.FilterEmboss, iaa.pillike.filter_emboss) def test_image(self): self._test_image(iaa.pillike.FilterEmboss, PIL.ImageFilter.EMBOSS) class FilterSharpen(_TestFilter): def test___init__(self): self._test___init__(iaa.pillike.FilterSharpen, iaa.pillike.filter_sharpen) def test_image(self): self._test_image(iaa.pillike.FilterSharpen, PIL.ImageFilter.SHARPEN) class FilterDetail(_TestFilter): def test___init__(self): self._test___init__(iaa.pillike.FilterDetail, iaa.pillike.filter_detail) def test_image(self): self._test_image(iaa.pillike.FilterDetail, PIL.ImageFilter.DETAIL) class TestAffine(unittest.TestCase): def setUp(self): reseed() @mock.patch("imgaug.augmenters.pillike.warp_affine") def test_mocked(self, mock_pilaff): aug = iaa.pillike.Affine( scale={"x": 1.25, "y": 1.5}, translate_px={"x": 10, "y": 20}, rotate=30, shear={"x": 40, "y": 50}, fillcolor=100, center=(0.1, 0.2) ) image = np.zeros((3, 3, 3), dtype=np.uint8) mock_pilaff.return_value = np.full((3, 3, 3), 128, dtype=np.uint8) image_aug = aug(image=image) assert mock_pilaff.call_count == 1 args = mock_pilaff.call_args_list[0][0] assert np.all(args[0] == 128) # due to in-place change kwargs = mock_pilaff.call_args_list[0][1] assert np.isclose(kwargs["scale_x"], 1.25) assert np.isclose(kwargs["scale_y"], 1.5) assert np.isclose(kwargs["translate_x_px"], 10) assert np.isclose(kwargs["translate_y_px"], 20) assert np.isclose(kwargs["rotate_deg"], 30) assert np.isclose(kwargs["shear_x_deg"], 40) assert np.isclose(kwargs["shear_y_deg"], 50) assert np.isclose(kwargs["fillcolor"][0], 100) assert np.isclose(kwargs["fillcolor"][1], 100) assert np.isclose(kwargs["fillcolor"][2], 100) assert np.isclose(kwargs["center"][0], 0.1) assert np.isclose(kwargs["center"][1], 0.2) assert np.all(image_aug == 128) @mock.patch("imgaug.augmenters.pillike.warp_affine") def test_mocked_translate_percent(self, mock_pilaff): aug = iaa.pillike.Affine( translate_percent={"x": 1.2, "y": 1.5} ) image = np.zeros((20, 50, 3), dtype=np.uint8) mock_pilaff.return_value = np.full((20, 50, 3), 128, dtype=np.uint8) image_aug = aug(image=image) assert mock_pilaff.call_count == 1 args = mock_pilaff.call_args_list[0][0] assert np.all(args[0] == 128) # due to in-place change kwargs = mock_pilaff.call_args_list[0][1] assert np.isclose(kwargs["scale_x"], 1.0) assert np.isclose(kwargs["scale_y"], 1.0) assert np.isclose(kwargs["translate_x_px"], 50*1.2) assert np.isclose(kwargs["translate_y_px"], 20*1.5) assert np.isclose(kwargs["rotate_deg"], 0) assert np.isclose(kwargs["shear_x_deg"], 0) assert np.isclose(kwargs["shear_y_deg"], 0) assert np.isclose(kwargs["fillcolor"][0], 0) assert np.isclose(kwargs["fillcolor"][1], 0) assert np.isclose(kwargs["fillcolor"][2], 0) assert np.isclose(kwargs["center"][0], 0.5) assert np.isclose(kwargs["center"][1], 0.5) assert np.all(image_aug == 128) def test_parameters_affect_images(self): params = [ ("scale", {"x": 1.3}), ("scale", {"y": 1.5}), ("translate_px", {"x": 5}), ("translate_px", {"y": 10}), ("translate_percent", {"x": 0.3}), ("translate_percent", {"y": 0.4}), ("rotate", 10), ("shear", {"x": 20}), ("shear", {"y": 20}) ] image = ia.quokka_square((64, 64)) images_aug = [] for param_name, param_val in params: kwargs = {param_name: param_val} aug = iaa.pillike.Affine(**kwargs) image_aug = aug(image=image) images_aug.append(image_aug) for i, image_aug in enumerate(images_aug): assert not np.array_equal(image_aug, image) for j, other_image_aug in enumerate(images_aug): if i != j: assert not np.array_equal(image_aug, other_image_aug) def test_batch_contains_no_images(self): aug = iaa.pillike.Affine(translate_px={"x": 10}) hm_arr = np.ones((3, 3, 1), dtype=np.float32) hm = ia.HeatmapsOnImage(hm_arr, shape=(3, 3, 3)) with self.assertRaises(AssertionError): _hm_aug = aug(heatmaps=hm) def test_get_parameters(self): aug = iaa.pillike.Affine( scale={"x": 1.25, "y": 1.5}, translate_px={"x": 10, "y": 20}, rotate=30, shear={"x": 40, "y": 50}, fillcolor=100, center=(0.1, 0.2) ) params = aug.get_parameters() assert params[0] is aug.scale assert params[1] is aug.translate assert params[2] is aug.rotate assert params[3] is aug.shear assert params[4] is aug.cval assert params[5] is aug.center
from random import randint from forex_python.converter import CurrencyRates import datetime print('\nCONVERSOR "UNIVERSAL"\n') op = int(input('Escolha o que deseja fazer:\n' '1. TEXTO\n' '2. MEDIDAS\n' '3. MOEDAS\n' '4. FÓRMULAS\n' '5. NÚMEROS ALEATÓRIOS\n' '6. SAIR DO PROGRAMA\n' 'Digite uma opção: ')) if op == 1: print('*' * 20) print('\nCONVERSOR DE TEXTO') texto = str(input('Digite o texto para converter: ')) print(f'Seu texto é {texto}\n') optexto = int(input('Digite o que fazer com seu texto:\n' '1. MAIÚSCULO\n' '2. MINÚSCULO\n' '3. CAPITALIZAR (Primeira letra da frase MAIÚSCULA)\n' '4. TÍTULO (Primeira letra de cada palavra MAIÚSCULA)\n' '5. SAIR (Sair do programa)\n' 'Digite uma opção: ')) if optexto == 1: maiusculo = texto.upper() print(f'Seu texto em maiúsculo é: {maiusculo}\n') elif optexto == 2: minusculo = texto.lower() print(f'Seu texto em minúsculo é: {minusculo}\n') elif optexto == 3: capit = texto.capitalize() print(f'Seu texto capitalizado é: {capit}') elif optexto == 4: title = texto.title() print(f'Seu texto com iniciais maiúsculas fica: {title}') elif optexto == 5: print('Finalizando...') if op == 2: opmed = int(input('\nEscolha o que fazer:\n' '1. TEMPERATURA\n' '2. DISTÂNCIA\n' '3. TEMPO\n' '4. VOLUME\n' '5. SAIR\n' 'Escolha uma opção: ')) if opmed == 1: optemp = int(input('\nEscolha a temperatura inicial:\n' '1. CELSIUS\n' '2. FAHRENHEIT\n' '3. KELVIN\n' 'Digite uma opção: ')) temp = float(input('\nDigite a temperatura (°C / °F / K): ')) cf = (temp * 9 / 5) + 32 ck = temp + 273.15 kc = temp - 273.15 kf = (temp - 273.15) * 9/5 + 32 fc = (temp - 32) * 5/9 fk = (temp - 32) * 5/9 + 273.15 if optemp == 1: print(f'A temperatura {temp}°C convertida é\nKelvin = {ck} K\nFahrenheit = {cf}°F') if optemp == 2: print(f'A temperatura {temp}°F convertida é\nCelsius = {fc}°C\nKelvin = {fk} K') if optemp == 3: print(f'A temperatura {temp} K convertida é\nCelsius = {kc}°C\nFahrenheit = {kf}°F') if opmed == 2: m = float(input('Digite a distância em metros: ')) dm = m * 10 cm = m * 100 mm = m * 1000 dc = m / 10 hm = m / 100 km = m / 1000 print(f'O valor de {m}m equivale a \n' f'{dm} Decímetros\n' f'{cm} Centímetros\n' f'{mm} Milímetros\n' f'{dc} Decâmetros\n' f'{hm} Hectômetros\n' f'{km} Kilômetros\n') if opmed == 3: optempo1 = int(input('\nDigite a unidade que irá converter: \n' '1. SEGUNDOS\n' '2. MINUTOS\n' '3. HORAS\n' '4. DIA\n' 'Escolha uma opção: ')) optempo2 = int(input('\nDigite no que quer converter: \n' '1. MINUTOS\n' '2. HORAS\n' '3. DIA\n' 'Escolha uma opção: ')) # SEGUNDOS # Segundos para Minuto if optempo1 == 1 and optempo2 == 1: segundos = float(input('Digite a quantia em SEGUNDOS: ')) min = segundos / 60 print(f'\n{segundos} segundos = {min:.2f} minutos') # Segundos para Hora if optempo1 == 1 and optempo2 == 2: segundos = float(input('Digite a quantia em SEGUNDOS: ')) hrs = segundos / 3600 print(f'\n{segundos} segundos = {hrs:.2f} horas') # Segundos para Dia if optempo1 == 1 and optempo2 == 3: segundos = float(input('Digite a quantia em SEGUNDOS: ')) d = segundos / 86400 print(f'\n{segundos} segundos = {d:.2f} dias') # Minutos # Minutos para Segundos if optempo1 == 1 and optempo1 == 1: minutos = float(input('Digite a quantia em MINUTOS: ')) min = minutos * 60 print(f'\n{minutos} minutos = {min:.2f} segundos') # Minutos para Hora if optempo1 == 2 and optempo2 == 2: minutos = float(input('Digite a quantia em MINUTOS: ')) hrs = minutos / 60 print(f'\n{minutos} minutos = {hrs:.2f} hora(s)') # Minutos para Dia if optempo1 == 2 and optempo2 == 3: minutos = float(input('Digite a quantia em MINUTOS: ')) dia = minutos / 1440 print(f'\n{minutos} minutos = {dia:.2f} dia(s)') # Minutos para Semana if optempo1 == 2 and optempo2 == 4: minutos = float(input('Digite a quantia em MINUTOS: ')) semana = minutos / 10080 print(f'\n{minutos} minutos = {semana:.2f} semana(s)') # Minutos para Mês if optempo1 == 2 and optempo2 == 5: minutos = float(input('Digite a quantia em MINUTOS: ')) mes = minutos / 43800 print(f'\n{minutos} minutos = {mes:.2f} mês(es)') # Minutos para Ano if optempo1 == 2 and optempo2 == 6: minutos = float(input('Digite a quantia em MINUTOS: ')) ano = minutos / 525600 print(f'\n{minutos} minutos = {ano:.2f} ano(s)') # Horas # Horas para Minuto if optempo1 == 3 and optempo2 == 1: horas = float(input('Digite a quantia em HORAS: ')) minutos = horas / 60 print(f'\n{horas} hora(s) = {minutos:.2f} minutos') # Horas para Hora if optempo1 == 3 and optempo2 == 2: horas = float(input('Digite a quantia em HORAS: ')) horas = horas / 1 print(f'\n{horas} hora(s) = {horas:.2f} hora(s)') # Horas para Dia if optempo1 == 3 and optempo2 == 3: horas = float(input('Digite a quantia em HORAS: ')) dia = horas / 24 print(f'\n{horas} horas = {dia:.2f} dia(s)') # Dias # Dias para Segundos if optempo1 == 3 and optempo2 == 1: dia = float(input('Digite a quantia em DIAS: ')) segundos = dia * 86.400 print(f'\n{dia} dias = {segundos:.2f} segundos') # Dias em Minutos if optempo1 == 3 and optempo2 == 1: dia = float(input('Digite a quantia em DIAS: ')) minutos = dia * 1440 print(f'\n{dia} dias = {minutos:.2f} minutos') # Dias em Horas if optempo1 == 3 and optempo2 == 1: dia = float(input('Digite a quantia em DIAS: ')) horas = dia * 24 print(f'\n{dia} dias = {horas:.2f} horas') # Dias em Dias (?) if optempo1 == 3 and optempo2 == 1: dia = float(input('Digite a quantia em DIAS: ')) dias = dia / 1 print(f'\n{dia} dias = {dias:.2f} dias') if op == 3: mes = datetime.datetime.today().month ano = datetime.datetime.today().year print(f'NOTA: as contações são feitas em tempo-real\nPortanto, o ano é {ano} e o mês de número {mes} ') m = CurrencyRates() print('Conversor de moedas em tempo-real' '\nLista de moedas:' '\nBRL' '\nUSD...') moeda1 = input('Digite a primeira moeda: ').upper().strip() moeda2 = input('Em qual moeda ela será convertida? R:').upper().strip() quantia = int(input("Digite a quantia: ")) print(moeda1, 'Para', moeda2, quantia) result = m.convert(moeda1, moeda2, quantia) print(result) if op == 5: inicio = int(input('Em que número começar? R: ')) final = int(input('E até onde vai? R: ')) rand = randint(inicio, final) print(f'O intervalo vai de {inicio} até {final}.\nE o número aleatório foi {rand}.') if op == 6: print('\nFinalizando...')
import pytest from zeroae.rocksdb.c import db as rdb from zeroae.rocksdb.c import pinnableslice @pytest.fixture def db(rocksdb_db, rocksdb_writeoptions): rdb.put(rocksdb_db, rocksdb_writeoptions, "key", "value") yield rocksdb_db @pytest.fixture def slice(db, rocksdb_readoptions): rv = rdb.get_pinned(db, rocksdb_readoptions, "key") yield rv pinnableslice.destroy(rv) def test_fixture(slice): assert slice is not None def test_value(slice): rv = pinnableslice.value(slice) assert rv == "value"
"""Stream type classes for tap-smartsheet.""" from typing import Any, Dict, Optional, Union, List, Iterable from singer_sdk import typing as th # JSON Schema typing helpers from singer_sdk.plugin_base import PluginBase as TapBaseClass from singer.schema import Schema from singer_sdk.typing import JSONTypeHelper from re import sub from tap_smartsheet.client import SmartsheetStream def snake_case(s): """Converts a string to snake case. https://www.w3resource.com/python-exercises/string/python-data-type-string-exercise-97.php """ return "_".join( sub( "([A-Z][a-z]+)", r" \1", sub("([A-Z]+)", r" \1", s.replace("-", " ")) ).split() ).lower() class SheetStream(SmartsheetStream): """Define custom stream.""" def __init__( self, tap: TapBaseClass, sheet: Dict, name: Optional[str] = None, schema: Optional[Union[Dict[str, Any], Schema]] = None, path: Optional[str] = None, ) -> None: self.sheet_id = sheet["id"] name = "sheet_" + snake_case(sheet["name"]) columns = tap.smartsheet_client.Sheets.get_columns( self.sheet_id, include_all=True ).to_dict()["data"] schema = th.PropertiesList() self.column_id_name_mapping = {} for column in columns: self.column_id_name_mapping[column["id"]] = column["title"] schema.append( th.Property(column["title"], self.column_type_mapping(column["type"])) ) super().__init__(tap, schema.to_dict(), name) def column_type_mapping(self, s) -> JSONTypeHelper: """Maps for Smartsheet data types to SDK data types. https://smartsheet-platform.github.io/api-docs/#column-types""" return { "DATE": th.DateType, "DATETIME": th.DateTimeType, "ABSTRACT_DATETIME": th.DateTimeType, }.get(s, th.StringType) def get_records(self, context: Optional[dict]) -> Iterable[dict]: """Retrieve sheets from the API and yield a record for each row.""" sheet_rows = ( self._tap.smartsheet_client.Sheets.get_sheet(self.sheet_id) .to_dict() .get("rows", []) ) for row in sheet_rows: cells = row["cells"] yield { self.column_id_name_mapping[cell["columnId"]]: str(cell.get("value")) for cell in cells }
from django.conf.urls import patterns, include, url from django.contrib import admin import views urlpatterns = patterns('', url(r'^viewall_contest/(?P<group_id>\d+)/$', views.get_running_contest, name='viewall_contest'), url(r'^viewall_archive/(?P<group_id>\d+)/$', views.get_ended_contest, name='viewall_archive'), url(r'^viewall_announce/(?P<group_id>\d+)/$', views.get_all_announce, name='viewall_announce'), url(r'^list/$', views.list, name='list'), url(r'^my_list/$', views.my_list, name='my_list'), url(r'^detail/(?P<group_id>\d+)/$', views.detail, name='detail'), #Group Add/Delete/Edit Part url(r'^new/$', views.new, name='new'), url(r'^delete/(?P<group_id>\d+)/$', views.delete, name='delete'), url(r'^edit/(?P<group_id>\d+)/$', views.edit, name='edit'), #Announce Part url(r'^add_announce/(?P<group_id>\d+)/$', views.add_announce, name='add_announce'), url(r'^delete_announce/(?P<announce_id>\d+)/(?P<group_id>\d+)/(?P<redirect_page>\w+)/$', views.delete_announce, name='delete_announce'), url(r'^edit_announce/(?P<announce_id>\d+)/(?P<group_id>\d+)/(?P<redirect_page>\w+)/$', views.edit_announce, name='edit_announce'), #Member Part #url(r'^delete_member/(?P<group_id>\d+)/(?P<student_name>\w+)/$', views.delete_member, name='delete_member'), )
#!/user/bin/env python3 # -*- coding: utf-8 -*- import numpy as np from src.libraries.myMathLib import point_to_segment_distance, euclidean_distance_3d, lineseg_dist, distance_numpy def main(): expected = 5 a0 = np.array([3, 1, -1]) a1 = np.array([5, 2, 1]) c = np.array([0, 2, 3]) print(lineseg_dist(c, a0, a1), point_to_segment_distance(c, a0, a1), distance_numpy(c, a0, a1), expected) expected = 1 a0 = np.array([3, 2, 1]) a1 = np.array([4, 2, 1]) c = np.array([0, 2, 0]) print(lineseg_dist(c, a0, a1), point_to_segment_distance(c, a0, a1), distance_numpy(c, a0, a1), expected) if __name__ == '__main__': main()
from rest_framework import serializers from core_model.models import Appointment class AppointmentSerializer(serializers.ModelSerializer): class Meta: model = Appointment fields = '__all__' read_only_fields = ( 'id', 'end_date' )
from contextlib import AsyncExitStack, ExitStack from types import TracebackType from typing import Any, Dict, Optional, Type, Union from di._utils.scope_map import ScopeMap from di._utils.types import CacheKey, FusedContextManager from di.api.scopes import Scope class ContainerState: __slots__ = ("cached_values", "stacks") def __init__( self, cached_values: Optional[ScopeMap[CacheKey, Any]] = None, stacks: Optional[Dict[Scope, Union[AsyncExitStack, ExitStack]]] = None, ) -> None: self.cached_values = cached_values or ScopeMap() self.stacks = stacks or {} def enter_scope(self, scope: Scope) -> "FusedContextManager[ContainerState]": """Enter a scope and get back a new ContainerState object that you can use to execute dependencies.""" new = ContainerState( cached_values=ScopeMap(self.cached_values.copy()), stacks=self.stacks.copy(), ) return ScopeContext(new, scope) class ScopeContext(FusedContextManager[ContainerState]): __slots__ = ("state", "scope", "stack") stack: Union[AsyncExitStack, ExitStack] def __init__(self, state: ContainerState, scope: Scope) -> None: self.state = state self.scope = scope def __enter__(self) -> ContainerState: self.state.stacks[self.scope] = self.stack = ExitStack() self.state.cached_values.add_scope(self.scope) return self.state def __exit__( self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> Union[None, bool]: return self.stack.__exit__(exc_type, exc_value, traceback) # type: ignore[union-attr,no-any-return] async def __aenter__(self) -> ContainerState: self.state.stacks[self.scope] = self.stack = AsyncExitStack() self.state.cached_values.add_scope(self.scope) return self.state async def __aexit__( self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType], ) -> Union[None, bool]: return await self.stack.__aexit__(exc_type, exc_value, traceback) # type: ignore[union-attr,no-any-return]
#!/usr/bin/env python # Copyright (c) 2018 Trail of Bits, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import argparse import subprocess import time def main(): parser = argparse.ArgumentParser(description="Intelligently reduce test case") parser.add_argument( "binary", type=str, help="Path to the test binary to run.") parser.add_argument( "input_test", type=str, help="Path to test to reduce.") parser.add_argument( "output_test", type=str, help="Path for reduced test.") parser.add_argument( "--which_test", type=str, help="Which test to run (equivalent to --input_which_test).", default=None) parser.add_argument( "--criteria", type=str, help="String to search for in valid reduction outputs.", default=None) parser.add_argument( "--search", action="store_true", help="Allow initial test to not satisfy criteria (search for test).", default=None) parser.add_argument( "--timeout", type=int, help="After this amount of time (in seconds), give up on reduction.", default=1200) class TimeoutException(Exception): pass args = parser.parse_args() deepstate = args.binary test = args.input_test out = args.output_test checkString = args.criteria whichTest = args.which_test start = time.time() def runCandidate(candidate): if (time.time() - start) > args.timeout: raise TimeoutException with open(".reducer.out", 'w') as outf: cmd = [deepstate + " --input_test_file " + candidate + " --verbose_reads"] if whichTest is not None: cmd += ["--input_which_test", whichTest] subprocess.call(cmd, shell=True, stdout=outf, stderr=outf) result = [] with open(".reducer.out", 'r') as inf: for line in inf: result.append(line) return result def checks(result): for line in result: if checkString: if checkString in line: return True else: if "ERROR: Failed:" in line: return True if "ERROR: Crashed" in line: return True return False def writeAndRunCandidate(test): with open(".candidate.test", 'wb') as outf: outf.write(test) r = runCandidate(".candidate.test") return r def structure(result): OneOfs = [] currentOneOf = [] for line in result: if "STARTING OneOf CALL" in line: currentOneOf.append(-1) elif "Reading byte at" in line: lastRead = int(line.split()[-1]) if currentOneOf[-1] == -1: currentOneOf[-1] = lastRead elif "FINISHED OneOf CALL" in line: OneOfs.append((currentOneOf[-1], lastRead)) currentOneOf = currentOneOf[:-1] return (OneOfs, lastRead) initial = runCandidate(test) if (not args.search) and (not checks(initial)): print("STARTING TEST DOES NOT SATISFY REDUCTION CRITERIA") return 1 with open(test, 'rb') as test: currentTest = bytearray(test.read()) print("ORIGINAL TEST HAS", len(currentTest), "BYTES") s = structure(initial) if (s[1]+1) < len(currentTest): print("LAST BYTE READ IS", s[1]) print("SHRINKING TO IGNORE UNREAD BYTES") currentTest = currentTest[:s[1]+1] changed = True try: while changed: changed = False cuts = s[0] for c in cuts: newTest = currentTest[:c[0]] + currentTest[c[1]+1:] r = writeAndRunCandidate(newTest) if checks(r): print("ONEOF REMOVAL REDUCED TEST TO", len(newTest), "BYTES") changed = True break if not changed: for b in range(0, len(currentTest)): for v in range(b+1, len(currentTest)): newTest = currentTest[:b] + currentTest[v:] r = writeAndRunCandidate(newTest) if checks(r): print("BYTE RANGE REMOVAL REDUCED TEST TO", len(newTest), "BYTES") changed = True break if changed: break if not changed: for b in range(0, len(currentTest)): for v in range(0, currentTest[b]): newTest = bytearray(currentTest) newTest[b] = v r = writeAndRunCandidate(newTest) if checks(r): print("BYTE REDUCTION: BYTE", b, "FROM", currentTest[b], "TO", v) changed = True break if changed: break if not changed: for b in range(0, len(currentTest)): if currentTest[b] == 0: continue newTest = bytearray(currentTest) newTest[b] = currentTest[b]-1 newTest = newTest[:b+1] + newTest[b+2:] r = writeAndRunCandidate(newTest) if checks(r): print("BYTE REDUCE AND DELETE AT BYTE", b) changed = True break if not changed: for b1 in range(0, len(currentTest)-4): for b2 in range(b1+2, len(currentTest)-4): v1 = (currentTest[b1], currentTest[b1+1]) v2 = (currentTest[b2], currentTest[b2+1]) if (v1 == v2): ba = bytearray(v1) part1 = currentTest[:b1] part2 = currentTest[b1+2:b2] part3 = currentTest[b2+2:] banews = [] banews.append(ba[0:1]) banews.append(ba[1:2]) if ba[0] > 0: for v in range(0, ba[0]): banews.append(bytearray([v, ba[1]])) banews.append(bytearray([ba[0]-1])) if ba[1] > 0: for v in range(0, ba[1]): banews.append(bytearray([ba[0], v])) for banew in banews: newTest = part1 + banew + part2 + banew + part3 r = writeAndRunCandidate(newTest) if checks(r): print("BYTE PATTERN", tuple(ba), "AT", b1, "AND", b2, "CHANGED TO", tuple(banew)) changed = True break if changed: break if changed: break if changed: currentTest = newTest s = structure(r) else: print("NO (MORE) REDUCTIONS FOUND") except TimeoutException: print("REDUCTION TIMED OUT AFTER", args.timeout, "SECONDS") if (s[1] + 1) > len(currentTest): print("PADDING TEST WITH", (s[1] + 1) - len(currentTest), "ZEROS") padding = bytearray('\x00' * ((s[1] + 1) - len(currentTest))) currentTest = currentTest + padding print() print("WRITING REDUCED TEST WITH", len(currentTest), "BYTES TO", out) with open(out, 'wb') as outf: outf.write(currentTest) return 0 if "__main__" == __name__: exit(main())
"""Test cases for the location module.""" from pytest_mock import MockFixture from rdflib import Graph from rdflib.compare import graph_diff, isomorphic from skolemizer.testutils import skolemization from datacatalogtordf import Location def test_to_graph_should_return_identifier_set_at_constructor() -> None: """It returns a centroid graph isomorphic to spec.""" location = Location("http://example.com/locations/1") location.centroid = "POINT(4.88412 52.37509)" src = """ @prefix dct: <http://purl.org/dc/terms/> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix dcat: <http://www.w3.org/ns/dcat#> . @prefix locn: <http://www.w3.org/ns/locn#> . @prefix geosparql: <http://www.opengis.net/ont/geosparql#> . <http://example.com/locations/1> a dct:Location ; dcat:centroid "POINT(4.88412 52.37509)"^^geosparql:asWKT ; . """ g1 = Graph().parse(data=location.to_rdf(), format="turtle") g2 = Graph().parse(data=src, format="turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic def test_to_graph_should_return_location_skolemized(mocker: MockFixture) -> None: """It returns a title graph isomorphic to spec.""" location = Location() location.geometry = """POLYGON (( 4.8842353 52.375108 , 4.884276 52.375153 , 4.8842567 52.375159 , 4.883981 52.375254 , 4.8838502 52.375109 , 4.883819 52.375075 , 4.8841037 52.374979 , 4.884143 52.374965 , 4.8842069 52.375035 , 4.884263 52.375016 , 4.8843200 52.374996 , 4.884255 52.374926 , 4.8843289 52.374901 , 4.884451 52.375034 , 4.8842353 52.375108 ))""" src = """ @prefix dct: <http://purl.org/dc/terms/> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix dcat: <http://www.w3.org/ns/dcat#> . @prefix locn: <http://www.w3.org/ns/locn#> . @prefix geosparql: <http://www.opengis.net/ont/geosparql#> . <http://wwww.digdir.no/.well-known/skolem/284db4d2-80c2-11eb-82c3-83e80baa2f94> a dct:Location ; locn:geometry \"\"\"POLYGON (( 4.8842353 52.375108 , 4.884276 52.375153 , 4.8842567 52.375159 , 4.883981 52.375254 , 4.8838502 52.375109 , 4.883819 52.375075 , 4.8841037 52.374979 , 4.884143 52.374965 , 4.8842069 52.375035 , 4.884263 52.375016 , 4.8843200 52.374996 , 4.884255 52.374926 , 4.8843289 52.374901 , 4.884451 52.375034 , 4.8842353 52.375108 ))\"\"\"^^geosparql:asWKT ; . """ mocker.patch( "skolemizer.Skolemizer.add_skolemization", return_value=skolemization, ) g1 = Graph().parse(data=location.to_rdf(), format="turtle") g2 = Graph().parse(data=src, format="turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic def test_to_graph_should_return_geometry_as_graph() -> None: """It returns a title graph isomorphic to spec.""" location = Location() location.identifier = "http://example.com/locations/1" location.geometry = """POLYGON (( 4.8842353 52.375108 , 4.884276 52.375153 , 4.8842567 52.375159 , 4.883981 52.375254 , 4.8838502 52.375109 , 4.883819 52.375075 , 4.8841037 52.374979 , 4.884143 52.374965 , 4.8842069 52.375035 , 4.884263 52.375016 , 4.8843200 52.374996 , 4.884255 52.374926 , 4.8843289 52.374901 , 4.884451 52.375034 , 4.8842353 52.375108 ))""" src = """ @prefix dct: <http://purl.org/dc/terms/> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix dcat: <http://www.w3.org/ns/dcat#> . @prefix locn: <http://www.w3.org/ns/locn#> . @prefix geosparql: <http://www.opengis.net/ont/geosparql#> . <http://example.com/locations/1> a dct:Location ; locn:geometry \"\"\"POLYGON (( 4.8842353 52.375108 , 4.884276 52.375153 , 4.8842567 52.375159 , 4.883981 52.375254 , 4.8838502 52.375109 , 4.883819 52.375075 , 4.8841037 52.374979 , 4.884143 52.374965 , 4.8842069 52.375035 , 4.884263 52.375016 , 4.8843200 52.374996 , 4.884255 52.374926 , 4.8843289 52.374901 , 4.884451 52.375034 , 4.8842353 52.375108 ))\"\"\"^^geosparql:asWKT ; . """ g1 = Graph().parse(data=location.to_rdf(), format="turtle") g2 = Graph().parse(data=src, format="turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic def test_to_graph_should_return_bounding_box_as_graph() -> None: """It returns a bounding box graph isomorphic to spec.""" location = Location() location.identifier = "http://example.com/locations/1" location.bounding_box = """POLYGON (( 3.053 47.975 , 7.24 47.975 , 7.24 53.504 , 3.053 53.504 , 3.053 47.975 ))""" src = """ @prefix dct: <http://purl.org/dc/terms/> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix dcat: <http://www.w3.org/ns/dcat#> . @prefix locn: <http://www.w3.org/ns/locn#> . @prefix geosparql: <http://www.opengis.net/ont/geosparql#> . <http://example.com/locations/1> a dct:Location ; dcat:bbox \"\"\"POLYGON (( 3.053 47.975 , 7.24 47.975 , 7.24 53.504 , 3.053 53.504 , 3.053 47.975 ))\"\"\"^^geosparql:asWKT ; . """ g1 = Graph().parse(data=location.to_rdf(), format="turtle") g2 = Graph().parse(data=src, format="turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic def test_to_graph_should_return_centroid_as_graph() -> None: """It returns a centroid graph isomorphic to spec.""" location = Location() location.identifier = "http://example.com/locations/1" location.centroid = "POINT(4.88412 52.37509)" src = """ @prefix dct: <http://purl.org/dc/terms/> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . @prefix dcat: <http://www.w3.org/ns/dcat#> . @prefix locn: <http://www.w3.org/ns/locn#> . @prefix geosparql: <http://www.opengis.net/ont/geosparql#> . <http://example.com/locations/1> a dct:Location ; dcat:centroid \"POINT(4.88412 52.37509)\"^^geosparql:asWKT ; . """ g1 = Graph().parse(data=location.to_rdf(), format="turtle") g2 = Graph().parse(data=src, format="turtle") _isomorphic = isomorphic(g1, g2) if not _isomorphic: _dump_diff(g1, g2) pass assert _isomorphic # ---------------------------------------------------------------------- # # Utils for displaying debug information def _dump_diff(g1: Graph, g2: Graph) -> None: in_both, in_first, in_second = graph_diff(g1, g2) print("\nin both:") _dump_turtle(in_both) print("\nin first:") _dump_turtle(in_first) print("\nin second:") _dump_turtle(in_second) def _dump_turtle(g: Graph) -> None: for _l in g.serialize(format="turtle").splitlines(): if _l: print(_l)
# -*- coding: utf8 -*- # Copyright 2019 JSALT2019 Distant Supervision Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import torch import torch.nn as nn import torch.nn.functional as F from distsup import utils from distsup.logger import DefaultTensorLogger from distsup.modules import convolutional, wavenet from distsup.models.adversarial import Adversarial from distsup.models.base import Model from distsup.models.streamtokenizer import StreamTokenizerNet from distsup.modules.aux_modules import attach_auxiliary from distsup.modules.bottlenecks import VQBottleneck from distsup.modules.predictors import FramewisePredictor, GlobalPredictor from distsup.modules.conditioning import CondNorm2d logger = DefaultTensorLogger() def vqvae_nanxin(input_height=28, codebook_size=50, **kwargs): encoder = [ dict(in_channels=1, out_channels=256, padding=1, kernel_size=3, stride=2, bias=False), dict(in_channels=256, out_channels=256, kernel_size=3, padding=1, stride=2, bias=False), dict(in_channels=256, out_channels=64, padding=2, kernel_size=5, bias=True), ] decoder = [ dict(in_channels=64, out_channels=256, padding=2, kernel_size=5, bias=False), dict(in_channels=256, out_channels=256, kernel_size=3, padding=1, stride=2, bias=False), dict(in_channels=256, out_channels=1, kernel_size=3, stride=2, output_padding=1, bias=True), ] return VQVAE(encoder, decoder, input_height=input_height, aggreg_stride=1, codebook_size=codebook_size, **kwargs) class VQVAE(StreamTokenizerNet): """ An image encoder-decoder model with a quantized bottleneck. Args: encoder (list of dicts): specification of convolutions for the encoder. BNs and ReLUs are added automatically except for the next layer. decoder (list of dicts): specification of convolutions for the decoder. BNs and ReLUs are added automatically except for the next layer. ConvTranspose2d are used. aggreg (int): how many spatial cells to aggregate as input for the quantization layer. Right now this has to be a multiple of the height of the latent variable since we have temporal models in mind, but this could be relaxed. codebook_size (int): how many quantized codes are learnable aggreg_stride (int or None): stride when aggregating cells in the width dimension. If set to None, they will be aggregated in non overlapping windows. """ def __init__(self, encoder, decoder, codebook_size, input_height, aggreg_stride=1, adversarial_size=0, adv_penalty=1e-9, with_framewise_probe=False, adv_class_embedding_size=128, **kwargs): super(VQVAE, self).__init__(**kwargs) self.stride = aggreg_stride self.adv_penalty = adv_penalty self.indices = None self.encoder = [] for conv in encoder[:-1]: self.encoder += [ nn.Conv2d(**conv), nn.BatchNorm2d(conv['out_channels']), nn.ReLU(inplace=True) ] self.encoder.append(nn.Conv2d(**encoder[-1])) self.encoder = nn.Sequential(*self.encoder) self._compute_align_params() assert input_height % self.align_upsampling == 0, ( "The height of the input image ({}) must be divisible by {}" ).format(input_height, self.align_upsampling) hidden_height = input_height // self.align_upsampling d = self.encoder[-1].out_channels * aggreg_stride * hidden_height self.vq = VQBottleneck(d, d, codebook_size, dim=1) self.char_pred = None if with_framewise_probe: self.char_pred = attach_auxiliary( self.vq, FramewisePredictor(d, len(self.dataset.alphabet), aggreg=2), bp_to_main=False) self.adversarial = None if adversarial_size != 0: self.adversarial = Adversarial( GlobalPredictor( self.encoder[-1].out_channels * hidden_height, adversarial_size, time_reduce='max', aggreg=5), mode='reverse') self.align_upsampling *= aggreg_stride self.embs = nn.Embedding(len(self.dataset.alphabet), adv_class_embedding_size) self.decoder = [] for conv in decoder[:-1]: self.decoder += [ nn.ConvTranspose2d(**conv), CondNorm2d(conv['out_channels'], adv_class_embedding_size), nn.ReLU(inplace=True) ] self.decoder.append(nn.ConvTranspose2d(**decoder[-1])) self.decoder.append(nn.Sigmoid()) self.decoder = nn.ModuleList(self.decoder) self.add_probes() self.apply(utils.conv_weights_xavier_init) def _compute_align_params(self): self.align_upsampling = 1 self.align_offset = 0 for module in self.encoder.children(): if isinstance(module, nn.Conv2d): self.align_offset += (module.kernel_size[-1] - 1) // 2 - module.padding[1] self.align_upsampling *= module.stride[1] elif isinstance(module, (nn.BatchNorm2d, nn.ReLU)): logging.debug(f'Layer of type {module.__class__.__name__} ' f'is assumed not to change the data rate.') else: raise NotImplementedError(f'The rate handling of module {module.__class__.__name__} ' f'has not been implemented.' f'If this module affects the data rate, ' f'handle the way in which the alignment changes.' f'If not, add it to the previous case of this if statement.') return def encode(self, x): return self.encoder(x) def decode(self, z, y): y_emb = self.embs(y) for m in self.decoder: if isinstance(m, CondNorm2d): z = m(z, y_emb) else: z = m(z) return z def forward(self, x, y): z = self.encode(x) aggreg_width = self.stride b, zc, zh, zw = z.shape z = F.unfold(z, (zh, aggreg_width), stride=(1, self.stride or aggreg_width)) if self.adversarial is not None: self.adversarial(z) zq, _, details = self.vq(z) self.indices = details['indices'] zq = F.fold(zq, output_size=(zh, zw), kernel_size=(zh, aggreg_width), stride=(1, self.stride or aggreg_width)) x2 = self.decode(zq, y) return x2, details['indices'] def align_tokens_to_features(self, batch, tokens): token2 = tokens.repeat_interleave(self.align_upsampling, dim=1) token2 = token2[:, :batch['features'].shape[1]] return token2 def minibatch_loss_and_tokens(self, batch): x = batch['features'] x = x.permute(0, 3, 2, 1) mask = utils.get_mask2d(batch['features_len'], x) if x.shape[3] % self.align_upsampling != 0: os = torch.zeros( *x.shape[0:3], self.align_upsampling - x.shape[3] % self.align_upsampling, device=x.device) x = torch.cat([x, os], dim=3) mask = torch.cat([mask, os], dim=3) if 'adversarial' in batch: x2, indices = self(x * 2 - 1, batch['adversarial']) else: x2, indices = self(x * 2 - 1, torch.zeros(x.shape[0], device=x.device).long()) logger.log_images('orig', x[:3]) logger.log_images('recs', x2[:3]) main_loss = self.loss(x, x2, mask) details = { 'recon_loss': main_loss, } if self.char_pred is not None and 'alignment' in batch: char_loss, char_details = self.char_pred.loss(x, batch['alignment']) details['char_loss'] = char_loss details['char_acc'] = char_details['acc'] main_loss += char_loss if self.adversarial is not None and 'adversarial' in batch: friend_loss, advloss, adv_details = self.adversarial.loss(batch['adversarial']) main_loss = main_loss + friend_loss + self.adv_penalty * advloss details['adversarial_loss'] = advloss details['adversarial_friendly_loss'] = friend_loss details['adversarial_acc'] = adv_details['acc'] return main_loss, details, indices def loss(self, x, x2, mask): recon = F.l1_loss(x2 * mask, x) return recon
from bench import bench print(bench(10, '', ''' s = [] for i in range(100000): s.append(i) for _ in range(100000): s.pop() '''))
import os import numpy as np from skimage.io import imread from skimage.exposure import adjust_gamma class DataGenerator(): """Reads dataset files (images & annotations) and prepare training & validation batches""" def __init__(self, batch_size, validation_size, directory, train_test='train'): """Load dataset into RAM & prepare train/validation split Reads train_%d.bmp & train_%d_anno.bmp files in directory and randomly set aside validation_size images from the dataset for validation. """ self.batch_size = batch_size self.validation_size = validation_size self.directory = directory nPerSet = {'train': 85, 'testA': 60, 'testB': 20} self.image_files = [os.path.join(self.directory, f'{train_test}_{i}.bmp') for i in range(1, nPerSet[train_test]+1)] self.annotation_files = [os.path.join(self.directory, f'{train_test}_{i}_anno.bmp') for i in range(1, nPerSet[train_test]+1)] # Pre-load all images in RAM self.full_images = [imread(f)/255 for f in self.image_files] self.full_annotations = [imread(f) for f in self.annotation_files] # Train/Validation split self.idxs = np.arange(len(self.image_files)) np.random.seed(1) np.random.shuffle(self.idxs) self.val_idxs = self.idxs[:self.validation_size] self.train_idxs = self.idxs[self.validation_size:] @staticmethod def _augment(batch_x, batch_y): """Basic data augmentation: Horizontal/Vertical symmetry Random noise Gamma correction""" # Vertical symmetry if( np.random.random()<0.5 ): batch_x = batch_x[:,::-1,:,:] batch_y = batch_y[:,::-1,:] # Horizontal symmetry if( np.random.random()<0.5 ): batch_x = batch_x[:,:,::-1,:] batch_y = batch_y[:,:,::-1] # Gamma (before random noise because input values must be between [0,1]) gamma = (np.random.random()-0.5)*2 if gamma < 0: gamma=1/(1-gamma) else: gamma=1+gamma batch_x_ = batch_x.copy() for i in range(len(batch_x)): batch_x_[i] = adjust_gamma(batch_x[i], gamma=gamma) # Random noise batch_x_ += np.random.normal(0, 0.02, size=batch_x.shape) return batch_x_,batch_y
''' ------------------------------------------------------------------------ Household functions for taxes in the steady state and along the transition path.. This file calls the following files: tax.py ------------------------------------------------------------------------ ''' # Packages import numpy as np from ogusa import tax, utils ''' ------------------------------------------------------------------------ Functions ------------------------------------------------------------------------ ''' def marg_ut_cons(c, sigma): ''' Computation of marginal utility of consumption. Inputs: c = [T,S,J] array, household consumption sigma = scalar, coefficient of relative risk aversion Functions called: None Objects in function: output = [T,S,J] array, marginal utility of consumption Returns: output ''' if np.ndim(c) == 0: c = np.array([c]) epsilon = 0.003 cvec_cnstr = c < epsilon MU_c = np.zeros(c.shape) MU_c[~cvec_cnstr] = c[~cvec_cnstr] ** (-sigma) b2 = (-sigma * (epsilon ** (-sigma - 1))) / 2 b1 = (epsilon ** (-sigma)) - 2 * b2 * epsilon MU_c[cvec_cnstr] = 2 * b2 * c[cvec_cnstr] + b1 output = MU_c output = np.squeeze(output) return output def marg_ut_labor(n, chi_n, p): ''' Computation of marginal disutility of labor. Inputs: n = [T,S,J] array, household labor supply params = length 4 tuple (b_ellipse, upsilon, ltilde, chi_n) b_ellipse = scalar, scaling parameter in elliptical utility function upsilon = curvature parameter in elliptical utility function ltilde = scalar, upper bound of household labor supply chi_n = [S,] vector, utility weights on disutility of labor Functions called: None Objects in function: output = [T,S,J] array, marginal disutility of labor supply Returns: output ''' nvec = n if np.ndim(nvec) == 0: nvec = np.array([nvec]) eps_low = 0.000001 eps_high = p.ltilde - 0.000001 nvec_low = nvec < eps_low nvec_high = nvec > eps_high nvec_uncstr = np.logical_and(~nvec_low, ~nvec_high) MDU_n = np.zeros(nvec.shape) MDU_n[nvec_uncstr] = ( (p.b_ellipse / p.ltilde) * ((nvec[nvec_uncstr] / p.ltilde) ** (p.upsilon - 1)) * ((1 - ((nvec[nvec_uncstr] / p.ltilde) ** p.upsilon)) ** ((1 - p.upsilon) / p.upsilon))) b2 = (0.5 * p.b_ellipse * (p.ltilde ** (-p.upsilon)) * (p.upsilon - 1) * (eps_low ** (p.upsilon - 2)) * ((1 - ((eps_low / p.ltilde) ** p.upsilon)) ** ((1 - p.upsilon) / p.upsilon)) * (1 + ((eps_low / p.ltilde) ** p.upsilon) * ((1 - ((eps_low / p.ltilde) ** p.upsilon)) ** (-1)))) b1 = ((p.b_ellipse / p.ltilde) * ((eps_low / p.ltilde) ** (p.upsilon - 1)) * ((1 - ((eps_low / p.ltilde) ** p.upsilon)) ** ((1 - p.upsilon) / p.upsilon)) - (2 * b2 * eps_low)) MDU_n[nvec_low] = 2 * b2 * nvec[nvec_low] + b1 d2 = (0.5 * p.b_ellipse * (p.ltilde ** (-p.upsilon)) * (p.upsilon - 1) * (eps_high ** (p.upsilon - 2)) * ((1 - ((eps_high / p.ltilde) ** p.upsilon)) ** ((1 - p.upsilon) / p.upsilon)) * (1 + ((eps_high / p.ltilde) ** p.upsilon) * ((1 - ((eps_high / p.ltilde) ** p.upsilon)) ** (-1)))) d1 = ((p.b_ellipse / p.ltilde) * ((eps_high / p.ltilde) ** (p.upsilon - 1)) * ((1 - ((eps_high / p.ltilde) ** p.upsilon)) ** ((1 - p.upsilon) / p.upsilon)) - (2 * d2 * eps_high)) MDU_n[nvec_high] = 2 * d2 * nvec[nvec_high] + d1 output = MDU_n * np.squeeze(chi_n) output = np.squeeze(output) return output def get_bq(BQ, j, p, method): ''' Calculation of bequests to each lifetime income group. Inputs: r = [T,] vector, interest rates b_splus1 = [T,S,J] array, distribution of wealth/capital holdings one period ahead params = length 5 tuple, (omega, lambdas, rho, g_n, method) omega = [S,T] array, population weights lambdas = [J,] vector, fraction in each lifetime income group rho = [S,] vector, mortality rates g_n = scalar, population growth rate method = string, 'SS' or 'TPI' Functions called: None Objects in function: BQ_presum = [T,S,J] array, weighted distribution of wealth/capital holdings one period ahead BQ = [T,J] array, aggregate bequests by lifetime income group Returns: BQ ''' if p.use_zeta: if j is not None: if method == 'SS': bq = (p.zeta[:, j] * BQ) / (p.lambdas[j] * p.omega_SS) else: len_T = BQ.shape[0] bq = ((np.reshape(p.zeta[:, j], (1, p.S)) * BQ.reshape((len_T, 1))) / (p.lambdas[j] * p.omega[:len_T, :])) else: if method == 'SS': bq = ((p.zeta * BQ) / (p.lambdas.reshape((1, p.J)) * p.omega_SS.reshape((p.S, 1)))) else: len_T = BQ.shape[0] bq = ((np.reshape(p.zeta, (1, p.S, p.J)) * utils.to_timepath_shape(BQ, p)) / (p.lambdas.reshape((1, 1, p.J)) * p.omega[:len_T, :].reshape((len_T, p.S, 1)))) else: if j is not None: if method == 'SS': bq = np.tile(BQ[j], p.S) / p.lambdas[j] if method == 'TPI': len_T = BQ.shape[0] bq = np.tile(np.reshape(BQ[:, j] / p.lambdas[j], (len_T, 1)), (1, p.S)) else: if method == 'SS': BQ_per = BQ / np.squeeze(p.lambdas) bq = np.tile(np.reshape(BQ_per, (1, p.J)), (p.S, 1)) if method == 'TPI': len_T = BQ.shape[0] BQ_per = BQ / p.lambdas.reshape(1, p.J) bq = np.tile(np.reshape(BQ_per, (len_T, 1, p.J)), (1, p.S, 1)) return bq def get_cons(r, w, b, b_splus1, n, bq, net_tax, e, tau_c, p): ''' Calculation of household consumption. Inputs: r = [T,] vector, interest rates w = [T,] vector, wage rates b = [T,S,J] array, distribution of wealth/capital b_splus1 = [T,S,J] array, distribution of wealth/capital, one period ahead n = [T,S,J] array, distribution of labor supply BQ = [T,J] array, bequests by lifetime income group net_tax = [T,S,J] array, distribution of net taxes params = length 3 tuple (e, lambdas, g_y) e = [S,J] array, effective labor units by age and lifetime income group lambdas = [S,] vector, fraction of population in each lifetime income group g_y = scalar, exogenous labor augmenting technological growth Functions called: None Objects in function: cons = [T,S,J] array, household consumption Returns: cons ''' cons = ((1 + r) * b + w * e * n + bq - b_splus1 * np.exp(p.g_y) - net_tax) / (1 + tau_c) return cons def FOC_savings(r, w, b, b_splus1, n, bq, factor, T_H, theta, e, rho, tau_c, etr_params, mtry_params, t, j, p, method): ''' Computes Euler errors for the FOC for savings in the steady state. This function is usually looped through over J, so it does one lifetime income group at a time. Inputs: r = scalar, interest rate w = scalar, wage rate b = [S,J] array, distribution of wealth/capital b_splus1 = [S,J] array, distribution of wealth/capital, one period ahead b_splus2 = [S,J] array, distribution of wealth/capital, two periods ahead n = [S,J] array, distribution of labor supply BQ = [J,] vector, aggregate bequests by lifetime income group factor = scalar, scaling factor to convert model income to dollars T_H = scalar, lump sum transfer params = length 18 tuple (e, sigma, beta, g_y, chi_b, theta, tau_bq, rho, lambdas, J, S, etr_params, mtry_params, h_wealth, p_wealth, m_wealth, tau_payroll, tau_bq) e = [S,J] array, effective labor units sigma = scalar, coefficient of relative risk aversion beta = scalar, discount factor g_y = scalar, exogenous labor augmenting technological growth chi_b = [J,] vector, utility weight on bequests for each lifetime income group theta = [J,] vector, replacement rate for each lifetime income group tau_bq = scalar, bequest tax rate (scalar) rho = [S,] vector, mortality rates lambdas = [J,] vector, ability weights J = integer, number of lifetime income groups S = integer, number of economically active periods in lifetime etr_params = [S,12] array, parameters of effective income tax rate function mtry_params = [S,12] array, parameters of marginal tax rate on capital income function h_wealth = scalar, parameter in wealth tax function p_wealth = scalar, parameter in wealth tax function m_wealth = scalar, parameter in wealth tax function tau_payroll = scalar, payroll tax rate tau_bq = scalar, bequest tax rate Functions called: get_cons marg_ut_cons tax.total_taxes tax.MTR_income Objects in function: tax1 = [S,J] array, net taxes in the current period tax2 = [S,J] array, net taxes one period ahead cons1 = [S,J] array, consumption in the current period cons2 = [S,J] array, consumption one period ahead deriv = [S,J] array, after-tax return on capital savings_ut = [S,J] array, marginal utility from savings euler = [S,J] array, Euler error from FOC for savings Returns: euler ''' if j is not None: chi_b = p.chi_b[j] else: chi_b = p.chi_b if method == 'TPI': r = utils.to_timepath_shape(r, p) w = utils.to_timepath_shape(w, p) T_H = utils.to_timepath_shape(T_H, p) taxes = tax.total_taxes(r, w, b, n, bq, factor, T_H, theta, t, j, False, method, e, etr_params, p) cons = get_cons(r, w, b, b_splus1, n, bq, taxes, e, tau_c, p) deriv = ((1 + r) - r * (tax.MTR_income(r, w, b, n, factor, True, e, etr_params, mtry_params, p))) savings_ut = (rho * np.exp(-p.sigma * p.g_y) * chi_b * b_splus1 ** (-p.sigma)) euler_error = np.zeros_like(n) if n.shape[0] > 1: euler_error[:-1] = (marg_ut_cons(cons[:-1], p.sigma) * (1 / (1 + tau_c[:-1])) - p.beta * (1 - rho[:-1]) * deriv[1:] * marg_ut_cons(cons[1:], p.sigma) * (1 / (1 + tau_c[1:])) * np.exp(-p.sigma * p.g_y) - savings_ut[:-1]) euler_error[-1] = (marg_ut_cons(cons[-1], p.sigma) * (1 / (1 + tau_c[-1])) - savings_ut[-1]) else: euler_error[-1] = (marg_ut_cons(cons[-1], p.sigma) * (1 / (1 + tau_c[-1])) - savings_ut[-1]) return euler_error def FOC_labor(r, w, b, b_splus1, n, bq, factor, T_H, theta, chi_n, e, tau_c, etr_params, mtrx_params, t, j, p, method): ''' Computes Euler errors for the FOC for labor supply in the steady state. This function is usually looped through over J, so it does one lifetime income group at a time. Inputs: r = scalar, interest rate w = scalar, wage rate b = [S,J] array, distribution of wealth/capital holdings b_splus1 = [S,J] array, distribution of wealth/capital holdings one period ahead n = [S,J] array, distribution of labor supply BQ = [J,] vector, aggregate bequests by lifetime income group factor = scalar, scaling factor to convert model income to dollars T_H = scalar, lump sum transfer params = length 19 tuple (e, sigma, g_y, theta, b_ellipse, upsilon, ltilde, chi_n, tau_bq, lambdas, J, S, etr_params, mtrx_params, h_wealth, p_wealth, m_wealth, tau_payroll, tau_bq) e = [S,J] array, effective labor units sigma = scalar, coefficient of relative risk aversion g_y = scalar, exogenous labor augmenting technological growth theta = [J,] vector, replacement rate for each lifetime income group b_ellipse = scalar, scaling parameter in elliptical utility function upsilon = curvature parameter in elliptical utility function chi_n = [S,] vector, utility weights on disutility of labor ltilde = scalar, upper bound of household labor supply tau_bq = scalar, bequest tax rate (scalar) lambdas = [J,] vector, ability weights J = integer, number of lifetime income groups S = integer, number of economically active periods in lifetime etr_params = [S,10] array, parameters of effective income tax rate function mtrx_params = [S,10] array, parameters of marginal tax rate on labor income function h_wealth = scalar, parameter in wealth tax function p_wealth = scalar, parameter in wealth tax function m_wealth = scalar, parameter in wealth tax function tau_payroll = scalar, payroll tax rate tau_bq = scalar, bequest tax rate Functions called: get_cons marg_ut_cons marg_ut_labor tax.total_taxes tax.MTR_income Objects in function: tax = [S,J] array, net taxes in the current period cons = [S,J] array, consumption in the current period deriv = [S,J] array, net of tax share of labor income euler = [S,J] array, Euler error from FOC for labor supply Returns: euler if j is not None: chi_b = p.chi_b[j] if method == 'TPI': r = r.reshape(r.shape[0], 1) w = w.reshape(w.shape[0], 1) T_H = T_H.reshape(T_H.shape[0], 1) else: chi_b = p.chi_b if method == 'TPI': r = utils.to_timepath_shape(r, p) w = utils.to_timepath_shape(w, p) T_H = utils.to_timepath_shape(T_H, p) ''' if method == 'SS': tau_payroll = p.tau_payroll[-1] elif method == 'TPI_scalar': # for 1st donut ring onlye tau_payroll = p.tau_payroll[0] else: length = r.shape[0] tau_payroll = p.tau_payroll[t:t + length] if method == 'TPI': if b.ndim == 2: r = r.reshape(r.shape[0], 1) w = w.reshape(w.shape[0], 1) T_H = T_H.reshape(T_H.shape[0], 1) tau_payroll = tau_payroll.reshape(tau_payroll.shape[0], 1) elif b.ndim == 3: r = utils.to_timepath_shape(r, p) w = utils.to_timepath_shape(w, p) T_H = utils.to_timepath_shape(T_H, p) tau_payroll = utils.to_timepath_shape(tau_payroll, p) taxes = tax.total_taxes(r, w, b, n, bq, factor, T_H, theta, t, j, False, method, e, etr_params, p) cons = get_cons(r, w, b, b_splus1, n, bq, taxes, e, tau_c, p) deriv = (1 - tau_payroll - tax.MTR_income(r, w, b, n, factor, False, e, etr_params, mtrx_params, p)) FOC_error = (marg_ut_cons(cons, p.sigma) * (1 / (1 + tau_c)) * w * deriv * e - marg_ut_labor(n, chi_n, p)) return FOC_error def constraint_checker_SS(bssmat, nssmat, cssmat, ltilde): ''' Checks constraints on consumption, savings, and labor supply in the steady state. Inputs: bssmat = [S,J] array, steady state distribution of capital nssmat = [S,J] array, steady state distribution of labor cssmat = [S,J] array, steady state distribution of consumption ltilde = scalar, upper bound of household labor supply Functions called: None Objects in function: flag2 = boolean, indicates if labor supply constraints violated (=False if not) Returns: # Prints warnings for violations of capital, labor, and consumption constraints. ''' print('Checking constraints on capital, labor, and consumption.') if (bssmat < 0).any(): print('\tWARNING: There is negative capital stock') flag2 = False if (nssmat < 0).any(): print('\tWARNING: Labor supply violates nonnegativity ', 'constraints.') flag2 = True if (nssmat > ltilde).any(): print('\tWARNING: Labor suppy violates the ltilde constraint.') flag2 = True if flag2 is False: print('\tThere were no violations of the constraints on labor', ' supply.') if (cssmat < 0).any(): print('\tWARNING: Consumption violates nonnegativity', ' constraints.') else: print('\tThere were no violations of the constraints on', ' consumption.') def constraint_checker_TPI(b_dist, n_dist, c_dist, t, ltilde): ''' Checks constraints on consumption, savings, and labor supply along the transition path. Does this for each period t separately. Inputs: b_dist = [S,J] array, distribution of capital n_dist = [S,J] array, distribution of labor c_dist = [S,J] array, distribution of consumption t = integer, time period ltilde = scalar, upper bound of household labor supply Functions called: None Objects in function: None Returns: # Prints warnings for violations of capital, labor, and consumption constraints. ''' if (b_dist <= 0).any(): print('\tWARNING: Aggregate capital is less than or equal to ', 'zero in period %.f.' % t) if (n_dist < 0).any(): print('\tWARNING: Labor supply violates nonnegativity', ' constraints in period %.f.' % t) if (n_dist > ltilde).any(): print('\tWARNING: Labor suppy violates the ltilde constraint', ' in period %.f.' % t) if (c_dist < 0).any(): print('\tWARNING: Consumption violates nonnegativity', ' constraints in period %.f.' % t)
from .extension import *
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import sortedm2m.fields class Migration(migrations.Migration): dependencies = [ ('photologue', '0006_auto_20141028_2005'), ] operations = [ migrations.AlterField( model_name='gallery', name='photos', field=sortedm2m.fields.SortedManyToManyField(help_text=None, related_name='galleries', verbose_name='photos', to='photologue.Photo', blank=True), ), migrations.AlterField( model_name='gallery', name='sites', field=models.ManyToManyField(to='sites.Site', verbose_name='sites', blank=True), ), migrations.AlterField( model_name='photo', name='sites', field=models.ManyToManyField(to='sites.Site', verbose_name='sites', blank=True), ), ]
# -*- coding: utf-8 -*- # # Copyright (c) 2020~2999 - Cologler <skyoflw@gmail.com> # ---------- # # ---------- from typing import * import os import sys import traceback import re import click from click_anno import click_app from click_anno.types import flag from fsoopify import NodeInfo, NodeType, FileInfo, DirectoryInfo, SerializeError from alive_progress import alive_bar EXTENSION_NAME = '.hash' ACCEPT_HASH_TYPES = ('sha1', 'md5', 'crc32', 'sha256') class IHashAccessor: def can_read(self, f: FileInfo) -> bool: raise NotImplementedError def read(self, f: FileInfo) -> Optional[Dict[str, str]]: raise NotImplementedError def write(self, f: FileInfo, h: Dict[str, str]): raise NotImplementedError class HashFileHashAccessor(IHashAccessor): @staticmethod def _get_checksum_file(f: FileInfo): return FileInfo(f.path + EXTENSION_NAME) def can_read(self, f: FileInfo) -> bool: return self._get_checksum_file(f).is_file() def read(self, f: FileInfo) -> Optional[Dict[str, str]]: hash_file = self._get_checksum_file(f) try: data = hash_file.load('json') except (SerializeError, IOError): return None else: if isinstance(data, dict): return data return None def write(self, f: FileInfo, h: Dict[str, str]): hash_file = self._get_checksum_file(f) hash_file.dump(h, 'json') class Crc32SuffixHashAccessor(IHashAccessor): REGEX = re.compile(r'\((?P<crc32>[0-9a-f]{8})\)$', re.I) @classmethod def _try_read_crc32(cls, f: FileInfo) -> Optional[str]: pure_name = str(f.path.name.pure_name) match = cls.REGEX.search(pure_name) if match: return match.group('crc32') def can_read(self, f: FileInfo) -> bool: return self._try_read_crc32(f) def read(self, f: FileInfo) -> Optional[Dict[str, str]]: crc32 = self._try_read_crc32(f) return dict(crc32=crc32) def write(self, f: FileInfo, h: Dict[str, str]): raise NotImplementedError def _get_hash_value(f: FileInfo, hash_names: List[str]) -> Dict[str, str]: r = {} with f.get_hasher(*hash_names) as hasher: with alive_bar(manual=True) as bar: while hasher.read_block(): bar(hasher.progress) for name, val in zip(hash_names, hasher.result): r[name] = val return r def _norm_hashvalue(val): if isinstance(val, str): return val.lower() return None def verify_file(f: FileInfo, accessor: Optional[IHashAccessor]): if accessor is None: def iter_accessors(): yield HashFileHashAccessor() yield Crc32SuffixHashAccessor() accessors = iter_accessors() else: accessors = (accessor, ) data = None for accessor in accessors: data = accessor.read(f) if data is not None: break if data is None: if f.path.name.ext != EXTENSION_NAME: click.echo('Ignore {} by checksum not found.'.format( click.style(str(f.path), fg='blue') )) return # find hash type: hash_names = [] saved_hash_value = {} for hash_name in ACCEPT_HASH_TYPES: if hash_name in data: hash_names.append(hash_name) saved_hash_value[hash_name] = _norm_hashvalue(data[hash_name]) if not hash_names: click.echo('Ignore {} by no known algorithms.'.format( click.style(str(f.path), fg='blue') )) return click.echo('Verifing {}... '.format( click.style(str(f.path), fg='blue') )) actual_hash_value = _get_hash_value(f, hash_names) click.echo('Result : ', nl=False) if actual_hash_value == saved_hash_value: click.echo(click.style("Ok", fg="green") + '.') else: click.echo(click.style("Failed", fg="red") + '!') def create_checksum_file(f: FileInfo, skip_exists: bool, accessor: IHashAccessor): if skip_exists and accessor.can_read(f): click.echo('Skiped {} by checksum exists.'.format( click.style(str(f.path), fg='bright_blue') ), nl=True) return hash_name = ACCEPT_HASH_TYPES[0] click.echo('Computing checksum for {}...'.format( click.style(str(f.path), fg='bright_blue') ), nl=True) hash_values = _get_hash_value(f, [hash_name]) data = {} data[hash_name] = hash_values[hash_name] accessor.write(f, data) def _collect_files(paths: list, skip_hash_file: bool) -> List[FileInfo]: ''' collect a files list ''' collected_files: List[FileInfo] = [] def collect_from_dir(d: DirectoryInfo): for item in d.list_items(): if item.node_type == NodeType.file: collected_files.append(item) elif item.node_type == NodeType.dir: collect_from_dir(item) if paths: for path in paths: node = NodeInfo.from_path(path) if node is not None: if node.node_type == NodeType.file: collected_files.append(node) elif node.node_type == NodeType.dir: collect_from_dir(node) else: click.echo(f'Ignore {path} which is not a file or dir') # ignore *.hash file if skip_hash_file: collected_files = [f for f in collected_files if f.path.name.ext != EXTENSION_NAME] if collected_files: click.echo('Found {} files.'.format( click.style(str(len(collected_files)), fg='bright_blue') )) else: click.echo(click.style("Path is required", fg="yellow")) else: click.echo(click.style("Path is required", fg="red")) return collected_files def make_hash(*paths, skip_exists: flag=True, skip_hash_file: flag=True): 'create *.hash files' collected_files = _collect_files(paths, skip_hash_file) accessor = HashFileHashAccessor() if collected_files: for f in collected_files: create_checksum_file(f, skip_exists=skip_exists, accessor=accessor) def verify_hash(*paths, skip_hash_file: flag=True): 'verify with *.hash files' collected_files = _collect_files(paths, skip_hash_file) accessor = None # HashFileHashAccessor() if collected_files: for f in collected_files: verify_file(f, accessor=accessor) @click_app class App: def make(self, *paths, skip_exists: flag=True, skip_hash_file: flag=True): 'create *.hash files' make_hash(*paths, skip_exists, skip_hash_file) def verify(self, *paths, skip_hash_file: flag=True): 'verify with *.hash files' verify_hash(*paths, skip_hash_file) def main(argv=None): if argv is None: argv = sys.argv try: App()(argv[1:]) except Exception: # pylint: disable=W0703 traceback.print_exc() if __name__ == '__main__': main()
from yacs.config import CfgNode as CN _C = CN() _C.DEVICE = 'cuda' _C.MODEL = CN() _C.MODEL.SCALE_FACTOR = 1 _C.MODEL.DETECTOR_TYPE = 'u-net16' # 'PSPNet' _C.MODEL.SR = 'DBPN' _C.MODEL.UP_SAMPLE_METHOD = "deconv" # "pixel_shuffle" _C.MODEL.DETECTOR_DBPN_NUM_STAGES = 4 _C.MODEL.OPTIMIZER = 'Adam' # SGD _C.MODEL.NUM_CLASSES = 1 _C.MODEL.NUM_STAGES = 6 _C.MODEL.SR_SEG_INV = False _C.MODEL.JOINT_LEARNING = True _C.SOLVER = CN() _C.SOLVER.MAX_ITER = 100000 _C.SOLVER.TRAIN_DATASET_RATIO = 0.95 _C.SOLVER.SR_PRETRAIN_ITER = 0 _C.SOLVER.SEG_PRETRAIN_ITER = 0 _C.SOLVER.BATCH_SIZE = 8 # default 16 _C.SOLVER.TASK_LOSS_WEIGHT = 0.5 _C.SOLVER.SEG_LOSS_FUNC = "Dice" # Dice or BCE or WeightedBCE or Boundary or WBCE&Dice or GDC_Boundary _C.SOLVER.BOUNDARY_DEC_RATIO = 1.0 _C.SOLVER.SR_LOSS_FUNC = "L1" # L1 or Boundary _C.SOLVER.WB_AND_D_WEIGHT = [6, 1] # [WBCE ratio, Dice ratio] _C.SOLVER.BCELOSS_WEIGHT = [20, 1] # [True ratio, False ratio] _C.SOLVER.ALPHA_MIN = 0.01 _C.SOLVER.DECREASE_RATIO = 1.0 _C.SOLVER.SYNC_BATCHNORM = True _C.SOLVER.NORM_SR_OUTPUT = "all" _C.SOLVER.LR = 1e-3 _C.SOLVER.LR_STEPS = [] _C.SOLVER.GAMMA = 0.1 _C.SOLVER.WARMUP_FACTOR = 1.0/6 _C.SOLVER.WARMUP_ITERS = 5000 _C.INPUT = CN() _C.INPUT.IMAGE_SIZE = [448, 448] # H x W _C.INPUT.MEAN = [0.4741, 0.4937, 0.5048] _C.INPUT.STD = [0.1621, 0.1532, 0.1523] _C.DATASET = CN() _C.DATASET.TRAIN_IMAGE_DIR = 'datasets/crack_segmentation_dataset/train/images' _C.DATASET.TRAIN_MASK_DIR = 'datasets/crack_segmentation_dataset/train/masks' _C.DATASET.TEST_IMAGE_DIR = 'datasets/crack_segmentation_dataset/test/images' _C.DATASET.TEST_MASK_DIR = 'datasets/crack_segmentation_dataset/test/masks' _C.OUTPUT_DIR = 'output/CSSR_SR-SS' _C.SEED = 123 _C.BASE_NET = 'weights/vgg16_reducedfc.pth'
import streamlit as st from streamlit_option_menu import option_menu from prediction import show_predict_page from explore import show_explore_page from PIL import Image st.set_page_config( page_title="Predict Heart Disease", ) with st.sidebar: page = option_menu("", ["Facts and figures", 'Predict'], icons=['card-image', 'eyeglasses'], menu_icon="cast", default_index=1) if page == "Predict": show_predict_page() elif page == "Facts and figures": show_explore_page() else: st.write("UNKNOWN ERROR OCCURRED !!") # image = Image.open('heart.png') # st.image(image, caption='heart')
from config.settings.base import * # install gdal in virtualenv: VIRTUAL_ENV = os.environ["VIRTUAL_ENV"] OSGEO_VENV = os.path.join(VIRTUAL_ENV, "Lib/site-packages/osgeo") GEOS_LIBRARY_PATH = os.path.join(OSGEO_VENV, "geos_c.dll") GDAL_LIBRARY_PATH = os.path.join(OSGEO_VENV, "gdal302.dll") PROJ_LIB = os.path.join(VIRTUAL_ENV, "Lib/site-packages/osgeo/data/proj") os.environ["GDAL_DATA"] = os.path.join(VIRTUAL_ENV, "Lib/site-packages/osgeo/data/gdal") os.environ["PROJ_LIB"] = PROJ_LIB os.environ["PATH"] += os.pathsep + str(OSGEO_VENV) if not os.path.exists(OSGEO_VENV): print("Unable to find OSGEO_VENV at {}".format(OSGEO_VENV)) if not os.path.exists(GEOS_LIBRARY_PATH): print("Unable to find GEOS_LIBRARY_PATH at {}".format(GEOS_LIBRARY_PATH)) if not os.path.exists(GDAL_LIBRARY_PATH): print("Unable to find GDAL_LIBRARY_PATH at {}".format(GDAL_LIBRARY_PATH)) if not os.path.exists(PROJ_LIB): print("Unable to find PROJ_LIB at {}".format(PROJ_LIB)) # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True INTERNAL_IPS = ("127.0.0.1",) MIDDLEWARE = ["debug_toolbar.middleware.DebugToolbarMiddleware"] + MIDDLEWARE ALLOWED_HOSTS = ["localhost", "127.0.0.1", "192.168.1.167"] # ALLOWED_HOSTS = ['*'] INSTALLED_APPS += ["debug_toolbar", "django_extensions"] SECRET_KEY = os.environ.get("SECRET_KEY", "secret") DATABASES = { "default": { "ENGINE": "django.contrib.gis.db.backends.postgis", "NAME": "fsdviz", "USER": get_env_variable("PGUSER"), "PASSWORD": get_env_variable("PGPASSWORD"), "HOST": "localhost", } } # CORS_ORIGIN_WHITELIST += [ # "localhost:3000", # ]
#!/usr/bin/env python3 # Copyright 2020 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Test program for tiny_par_unittest.py.""" import sys def main(): if len(sys.argv) > 2: print(' '.join(sys.argv[2:])) if len(sys.argv) > 1: sys.exit(int(sys.argv[1])) if __name__ == '__main__': main()
from django.db.models.signals import pre_save,post_save from django.dispatch import receiver import geoLocApp.models import geoLocApp.distance @receiver(pre_save,sender=geoLocApp.models.Coordonnee,dispatch_uid="only_before_registered") def setDistance(sender, **kwargs): coordonnee = kwargs["instance"] position = coordonnee.position coordonnee.distance = geoLocApp.distance.distance(coordonnee.latitude,position.latitude,coordonnee.longitude,position.longitude) @receiver(post_save,sender=geoLocApp.models.Position,dispatch_uid="new_position_added") def new_position(sender,**kwargs): if kwargs['created']==True: return ['intance'] else: return 0
import numpy as np from torch import nn from torch.nn import functional as F from model.utils.bbox_tools import generate_anchor_base from model.utils.creator_tool import ProposalCreator def normal_init(m, mean, stddev): m.weight.data.normal_(mean, stddev) m.bias.data.zero_() # Region Proposal Network structure class RegionProposalNetwork(nn.Module): def __init__(self, in_channels=512, mid_channels=512, ratios=[0.5, 1, 2], anchor_scales=[8, 16, 32], feat_stride=16, proposal_creator_params=dict()): super(RegionProposalNetwork, self).__init__() self.anchor_base = generate_anchor_base(anchor_scales=anchor_scales, ratios=ratios) self.feat_stride = feat_stride self.proposal_layer = ProposalCreator(self, **proposal_creator_params) n_anchor = self.anchor_base.shape[0] self.conv1 = nn.Conv2d(in_channels, mid_channels, 3, 1, 1) self.score = nn.Conv2d(mid_channels, n_anchor*2, 1, 1, 0) self.loc = nn.Conv2d(mid_channels, n_anchor*4, 1, 1, 0) normal_init(self.conv1, 0, 0.01) normal_init(self.score, 0, 0.01) normal_init(self.loc, 0, 0.01) def forward(self, x, img_size, scale=1.): n, _, height, width = x.shape rois = list() roi_indices = list() anchor = _enumerate_shifted_anchor(np.array(self.anchor_base), self.feat_stride, height, width) n_anchor = anchor.shape[0]//(height*width) x = self.conv1(x) h = F.leaky_relu(x) rpn_locs = self.loc(h) rpn_scores = self.score(h) rpn_locs = rpn_locs.permute(0, 2, 3, 1).contiguous().view(n, -1, 4) rpn_scores = rpn_scores.permute(0, 2, 3, 1).contiguous().view(n, -1, 2) rpn_softmax_scores = F.softmax(rpn_scores.view(n, height, width, n_anchor, 2), dim=4) rpn_fg_scores = rpn_softmax_scores[:, :, :, :, 1].contiguous().view(n, -1) for i in range(n): roi = self.proposal_layer(rpn_locs[i].cpu().data.numpy(), rpn_fg_scores[i].cpu().data.numpy(), anchor, img_size, scale=scale) batch_index = i * np.ones((len(roi),), dtype=np.int32) rois.append(roi) roi_indices.append(batch_index) rois = np.concatenate(rois, axis=0) roi_indices = np.concatenate(roi_indices, axis=0) return rpn_locs, rpn_scores, rois, roi_indices, anchor def _enumerate_shifted_anchor(anchor_base, feat_stride, height, width): shift_x = np.arange(0, width*feat_stride, feat_stride) shift_y = np.arange(0, height*feat_stride, feat_stride) shift_x, shift_y = np.meshgrid(shift_x, shift_y) shift = np.stack((shift_y.ravel(), shift_x.ravel(), shift_y.ravel(), shift_x.ravel()), axis=1) # Get shifted anchors A = anchor_base.shape[0] K = shift.shape[0] anchor = anchor_base.reshape((1, A, 4)) + shift.reshape((1, K, 4)).transpose((1, 0, 2)) anchor = anchor.reshape((K * A, 4)).astype(np.float32) return anchor
import numpy as np from patsy import dmatrix from pywt import wavedec, waverec, dwt_max_level from ..blocks import block_apply from ...channel_map import ChannelMap from ...devices.electrode_pinouts import get_electrode_map def poly_residual(field: np.ndarray, channel_map: ChannelMap, mu: bool=False, order: int=2): """ Subtract a polynomial spatial trend from an array recording. Parameters ---------- field: channel_map: mu: order: Returns ------- resid: np.ndarray Residual (field minus trend) """ ii, jj = channel_map.to_mat() u = np.ones_like(ii) X = u[:, np.newaxis] if order > 0: X = np.c_[u, ii, jj] if order > 1: X = np.c_[X, ii * jj, ii ** 2, jj ** 2] beta = np.linalg.lstsq(X, field, rcond=None)[0] if mu: return np.dot(X, beta) return field - np.dot(X, beta) def despeckle_fields(field: np.ndarray, channel_map: ChannelMap, pin_code: np.ndarray, trend_order: int=2, board_code: np.ndarray=None, return_design: bool=False): """ Subtract offsets common to pinout groups that can appear as "speckling" in array images (depending on how the pins map to electrode sites). The pin groups may also be nested in a second level of grouping that corresponds to multiple acquisition boards. Parameters ---------- field : channel_map : pin_code : trend_order : board_code : return_design : Returns ------- """ pin_code = np.asarray(pin_code) factors = dict(pins=pin_code > 0) if board_code is not None: board_code = np.asarray(board_code) factors['board'] = board_code dm = dmatrix('~0 + C(pins):C(board)', factors) else: dm = dmatrix('~0 + C(pins)', factors) if return_design: return dm p_resid = poly_residual(field, channel_map, order=trend_order) poly = field - p_resid rho = np.linalg.lstsq(dm, p_resid, rcond=None)[0] p_resid -= np.dot(dm, rho) return poly + p_resid def despeckle_recording(field: np.ndarray, channel_map: ChannelMap, map_lookup: tuple=(), pin_info: tuple=(), wavelet: str='haar', block_size: int=10000, trend_order: int=2): # method 1) lookup the pinout codes from channel map name and other info if map_lookup: map_name, map_mask, map_connectors = map_lookup pin_code, board_code = get_electrode_map(map_name, connectors=map_connectors, pin_codes=True)[-2:] if map_mask is not None: pin_code = np.asarray(pin_code)[map_mask] if board_code is not None: board_code = np.asarray(board_code)[map_mask] elif pin_info: pin_code, board_code = pin_info else: raise ValueError('Need either map info or pin info to determine pin coding') def despeckle_block(block): n = block.shape[1] if wavelet: levels = dwt_max_level(n, wavelet) block_coefs = wavedec(block, wavelet, level=levels - 3) else: block_coefs = [block] corrected = list() for b in block_coefs: c = despeckle_fields(b, channel_map, pin_code, board_code=board_code, trend_order=trend_order) corrected.append(c) if wavelet: corrected = waverec(corrected, wavelet) else: corrected = corrected[0] return corrected return block_apply(despeckle_block, block_size, (field,))
"""Clean processed folder. Usage: clean [--output_dir=<output_dir>] [<directory>] """ import argparse import pathlib import shutil import os def main(source_dir): if source_dir.exists(): shutil.rmtree(source_dir) zip_path = source_dir.parent / "manuscript.zip" if zip_path.exists(): os.remove(zip_path) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Clean processed folder.') parser.add_argument( '--dir', type=str, default=pathlib.Path(__file__).parent.parent / 'condensed' ) args = parser.parse_args() main(args.dir)
# This filter procedurally generates 4 structures within the selection box within defined limits # This filter: mcgreentn@gmail.com (mikecgreen.com) import time # for timing from math import sqrt, tan, sin, cos, pi, ceil, floor, acos, atan, asin, degrees, radians, log, atan2, acos, asin from random import * from numpy import * from pymclevel import alphaMaterials, MCSchematic, MCLevel, BoundingBox from mcplatform import * import utilityFunctions as utilityFunctions #inputs are taken from the user. Here I've just showing labels, as well as letting the user define # what the main creation material for the structures is inputs = ( ("Cellular Automata SG Example", "label"), ("Material", alphaMaterials.Cobblestone), # the material we want to use to build the mass of the structures ("Creator: Michael Green", "label"), ) # MAIN SECTION # # Every agent must have a "perform" function, which has three parameters # 1: the level (aka the minecraft world). 2: the selected box from mcedit. 3: User defined inputs from mcedit def perform(level, box, options): yards = binaryPartition(box) # for each quadrant for yard in yards: buildFence(level, yard) buildStructure(level, yard, options) #splits the given box into 4 unequal areas def binaryPartition(box): partitions = [] # create a queue which holds the next areas to be partitioned queue = [] queue.append(box) # for as long as the queue still has boxes to partition... count = 0 while len(queue) > 0: count += 1 splitMe = queue.pop(0) (width, height, depth) = utilityFunctions.getBoxSize(splitMe) # print "Current partition width,depth",width,depth centre = 0 # this bool lets me know which dimension I will be splitting on. It matters when we create the new outer bound size isWidth = False # find the larger dimension and divide in half # if the larger dimension is < 10, then block this from being partitioned minSize = 12 if width > depth: # roll a random die, 1% change we stop anyways chance = random.randint(100) if depth < minSize or chance == 1: partitions.append(splitMe) continue isWidth = True centre = width / 2 else: chance = random.randint(10) if width < minSize or chance == 1: partitions.append(splitMe) continue centre = depth / 2 # a random modifier for binary splitting which is somewhere between 0 and 1/16 the total box side length randomPartition = random.randint(0, (centre / 8) + 1) # creating the new bound newBound = centre + randomPartition #creating the outer edge bounds outsideNewBounds = 0 if isWidth: outsideNewBound = width - newBound - 1 else: outsideNewBound = depth - newBound - 1 # creating the bounding boxes # NOTE: BoundingBoxes are objects contained within pymclevel and can be instantiated as follows # BoundingBox((x,y,z), (sizex, sizey, sizez)) # in this instance, you specifiy which corner to start, and then the size of the box dimensions # this is an if statement to separate out binary partitions by dimension (x and z) if isWidth: queue.append(BoundingBox((splitMe.minx, splitMe.miny, splitMe.minz), (newBound-1, 256, depth))) queue.append(BoundingBox((splitMe.minx + newBound + 1, splitMe.miny, splitMe.minz), (outsideNewBound - 1, 256, depth))) else: queue.append(BoundingBox((splitMe.minx, splitMe.miny, splitMe.minz), (width, 256, newBound - 1))) queue.append(BoundingBox((splitMe.minx, splitMe.miny, splitMe.minz + newBound + 1), (width, 256, outsideNewBound - 1))) return partitions # builds a wooden fence around the perimeter of this box, like this photo # Top - zmax # ---------------- # | | # | | # | | # Left | | Right # xmin | | xmax # | | # | | # ---------------- # Bottom - zmin def buildFence(level, box): # side by side, go row/column by row/column, and move down the pillar in the y axis starting from the top # look for the first non-air tile (id != 0). The tile above this will be a fence tile # add top fence blocks for x in range(box.minx, box.maxx): for y in xrange(box.maxy, box.miny, -1): # get this block tempBlock = level.blockAt(x, y, box.maxz) if tempBlock != 0: newValue = 0 utilityFunctions.setBlock(level, (85, newValue), x, y+1, box.maxz) break; # add bottom fence blocks (don't double count corner) for x in range(box.minx, box.maxx): for y in xrange(box.maxy, box.miny, -1): # get this block tempBlock = level.blockAt(x, y, box.minz) if tempBlock != 0: newValue = 0 utilityFunctions.setBlock(level, (85, newValue), x, y+1, box.minz) break; # add left fence blocks (don't double count corner) for z in range(box.minz+1, box.maxz): for y in xrange(box.maxy, box.miny, -1): # get this block tempBlock = level.blockAt(box.minx, y, z) if tempBlock != 0: newValue = 0 utilityFunctions.setBlock(level, (85, newValue), box.minx, y+1, z) break; # add right fence blocks for z in range(box.minz, box.maxz+1): for y in xrange(box.maxy, box.miny, -1): # get this block tempBlock = level.blockAt(box.maxx, y, z) if tempBlock != 0: newValue = 0 utilityFunctions.setBlock(level, (85, newValue), box.maxx, y+1, z) break; # builds a structure (the material of which is specified by user in inputs) within the given box # 4 steps: # 1. decide the floor plan, map out the foundations of the building, build floor # 2. create corner pillars # 3. between each pair of pillars, use Cellular Automata to build a wall # 4. create celing at the ceiling level def buildStructure(level, box, options): floor = makeFloorPlan(level, box) buildingHeightInfo = createPillars(level, floor, options) generateWalls(level, floor, buildingHeightInfo, options) generateCeiling(level, floor, buildingHeightInfo, options) def makeFloorPlan(level, box): # we have to first figure out where in the box this is going to be # find the box dimensions (width, height, depth) = utilityFunctions.getBoxSize(box) # get sixths fractionWidth = width / 6 fractionDepth = depth / 6 # create the box boundaries randFracx = random.randint(0, fractionWidth+1) randFracz = random.randint(0, fractionDepth+1) xstart = box.minx + randFracx + 2 zstart = box.minz + randFracz + 2 xsize = width * 0.6 - randFracx zsize = depth * 0.6 - randFracz floorplan = BoundingBox((xstart, box.miny, zstart), (xsize, box.maxy, zsize)) return floorplan # we need to create the corners for the walls. #Every building needs corners for stability...unless you are inventive... :) def createPillars(level, floor, options): cornerBlockStarts = [] ycoords = [] # similarly to fences, we need to countdown on each of the four corners and find the block where the ground starts, then start building pillars above that height midpointFloorHeight = 0 for y in xrange(floor.maxy, floor.miny, -1): # get this block tempBlock = level.blockAt(floor.minx, y, floor.minz) if tempBlock != 0: cornerBlockStarts.append((floor.minx, y+1, floor.minz)) break; for y in xrange(floor.maxy, floor.miny, -1): # get this block tempBlock = level.blockAt(floor.minx, y, floor.maxz) if tempBlock != 0: cornerBlockStarts.append((floor.minx, y+1, floor.maxz)) break; for y in xrange(floor.maxy, floor.miny, -1): # get this block tempBlock = level.blockAt(floor.maxx, y, floor.minz) if tempBlock != 0: cornerBlockStarts.append((floor.maxx, y+1, floor.minz)) break; for y in xrange(floor.maxy, floor.miny, -1): # get this block tempBlock = level.blockAt(floor.maxx, y, floor.maxz) if tempBlock != 0: cornerBlockStarts.append((floor.maxx, y+1, floor.maxz)) break; # now we have all four corners. for each, pick a random y value between 5 and 45, and build up using stone ystartCoordMax = -10000 for cornerstone in cornerBlockStarts: midpointFloorHeight += cornerstone[1] if(cornerstone[1] > ystartCoordMax): ystartCoordMax = cornerstone[1] pillarheight = random.randint(5, 45) for y in range(0, pillarheight): utilityFunctions.setBlock(level, (options["Material"].ID,0), cornerstone[0], cornerstone[1]+y, cornerstone[2]) if(y==pillarheight-1): # add y to our y coords, which will be used to determine building height for the roof ycoords.append(y) allYs = 0 for ycoord in ycoords: allYs += ycoord yavg = allYs / 4 midpointFloorHeight = midpointFloorHeight / 4 # print("Average pillar height: ", yavg) return (yavg, ystartCoordMax, midpointFloorHeight) # the walls of the building are generated each using independent ceullular automata. We look at the immediate neighborhood and take action # cellular automata is done in 3 easy steps # 1. intitialize with random block placement in the space # 2. evaluate each cell, checking its neighbors to gauge changes # 3. repeat 2 until satisfied def generateWalls(level, floor, buildingHeightInfo, options): print "Generating walls" # actual automata is going to be simulated in a matrix (it's much faster than rendering it in minecraft) # first we should define the matrix properties (i.e. width and height) (width, boxheight, depth) = utilityFunctions.getBoxSize(floor) height = buildingHeightInfo[0] print "X walls" for k in range(2): # we have our matrix for CA, now lets do CA matrix = [[0 for x in range(width)] for y in range(height)] matrixnew = randomlyAssign(matrix, width, height) # do 3 generations for gen in range(0,2): # print "Generation ", gen matrixnew = cellularAutomataGeneration(matrixnew, width, height) #after generation is over, place the walls according to the wall matrix, starting at the floor for y in range(height): for x in range(1,width): if k==1: # print "boom 1" if matrixnew[y][x] == 1: utilityFunctions.setBlock(level, (options["Material"].ID, 0), floor.minx+x, buildingHeightInfo[2] + y, floor.minz) else: utilityFunctions.setBlock(level, (20, 0), floor.minx+x, buildingHeightInfo[2] + y, floor.minz) else: # print "boom 2" if matrixnew[y][x] == 1: utilityFunctions.setBlock(level, (options["Material"].ID, 0), floor.minx+x, buildingHeightInfo[2] + y, floor.maxz) else: utilityFunctions.setBlock(level, (20, 0), floor.minx+x, buildingHeightInfo[2] + y, floor.maxz) print "Z Walls" for k in range(2): # we have our matrix for CA, now lets do CA matrix = [[0 for x in range(depth)] for y in range(height)] matrixnew = randomlyAssign(matrix, depth, height) # do 25 generations for gen in range(0,25): print "Generation ", gen matrixnew = cellularAutomataGeneration(matrixnew, depth, height) #after generation is over, place the walls according to the wall matrix, starting at the floor for y in range(height): for z in range(1,depth): if k==1: # print "boom 3" if matrixnew[y][z] == 1: utilityFunctions.setBlock(level, (options["Material"].ID, 0), floor.minx, buildingHeightInfo[2] + y, floor.minz+z) else: utilityFunctions.setBlock(level, (20, 0), floor.minx, buildingHeightInfo[2] + y, floor.minz+z) else: # print "boom 4" if matrixnew[y][z] == 1: utilityFunctions.setBlock(level, (options["Material"].ID, 0), floor.maxx, buildingHeightInfo[2] + y, floor.minz+z) else: utilityFunctions.setBlock(level, (20, 0), floor.maxx, buildingHeightInfo[2] + y, floor.minz+z) def randomlyAssign(matrix, width, height): print 'randomly assigning to matrix' for j in range(height): for i in range(width): # print j,i matrix[j][i] = random.randint(0,2) return matrix def cellularAutomataGeneration(matrix, width, height): for j in range(height): for i in range(width): # print j,i if j == 0 : #special case for bottom matrix[j][i] = decideCell(1, matrix[j+1][i]) elif j == height-1 : #special case for top matrix[j][i] = decideCell(matrix[j-1][i], 1) else: matrix[j][i] = decideCell(matrix[j-1][i], matrix[j+1][i]) return matrix # the rules for cellular automata are as follows: # look above and below me. # If one of my neighbors is 0, I have a 50% chance to be 0 # If both of my neighbors are 0, I am a 1 # If both of my neighbors are 1, I am a 0 def decideCell(top, bottom): if top + bottom == 1: chance = random.randint(0, 100) if chance < 50: return 0 else: return 1 elif top + bottom == 0: return 1 elif top + bottom == 2: return 0 # puts a cap on the building in question # uses the floor to determine the celing size, and the buildingHeightInfo tuple # to place it at the right level def generateCeiling(level, floor, buildingHeightInfo, options): print "generating ceiling" for x in range(floor.minx, floor.maxx+1): for z in range(floor.minz, floor.maxz+1): utilityFunctions.setBlock(level, (options["Material"].ID, 0), x, buildingHeightInfo[2] + buildingHeightInfo[0], z) # scan all the blocks above me and make them air (all the way to maxy) for y in range(buildingHeightInfo[2] + buildingHeightInfo[0] + 1, 256): utilityFunctions.setBlock(level, (0, 0), x, y, z)
"""Basic toolkit for asynchronous task communication / management using friendly threaded queues.""" # USE EXAMPLES & TESTING TO BE COMPLETED. from threading import Thread from multiprocessing import Pool, Process from multiprocessing.context import TimeoutError as TimesUpPencilsDown from multiprocessing import Queue as MultiQueue from queue import Queue from queue import Empty as EmptyQueue from constants import KILL, DONE, CZEC def clear_and_close_queues(*queues): """ Close an arbitrary-length tuple of multiprocessing and queue lib queue(s). :Parameters: :param queues: queue.Queues and/or multiprocessing.Queues to be cleared and closed. :rtype: None :return: None """ for queue in queues: clear_queues(queue) try: queue.close() except AttributeError: with queue.mutex: queue.queue.clear() def clear_queues(*queues): """ Remove remaining items in an arbitrary-length tuple of multiprocessing and queue lib queue(s). :Parameters: :param queues: queue.Queues and/or multiprocessing.Queues to be cleared. :rtype: None :return: None """ for queue in queues: try: while not queue.empty(): _ = queue.get() except OSError: pass class ProcessHost(object): """ Multiprocessing/threading object which can be accessed directly within libraries like Tkinter. Send a target function to an instance of this class during __init__ or make_single_process_handler, and it will ensure the process completes, and pass any queue return messages to the function provided in message_callback during __init__. """ def __init__(self, root, message_callback, process_target=None, *process_args, message_check_delay=1000, running_check_delay=10000, run_process=True, host_to_process_signals=None, finished_signal=DONE, kill_signal=KILL, check_signal=CZEC, **process_kwarg_dict): """Create private inter-process communication for a potentially newly started process. :Parameters: :param Tkinter.Tk root: root / object with .after(delay, callback) used for scheduling. :param function message_callback: function / method used to process a message if received. :param function process_target: function / method to be run asynchronously. :param process_args: positional arguments to be passed to process_target. :param int message_check_delay: how often message checks are scheduled using root. :param int running_check_delay: how often checks on whether the subprocess is running are run. :param bool run_process: determines whether to run the process_target immediately after __init__. :param set host_to_process_signals: messages for the asynchronous process which may be sent to the handler. :param str finished_signal: message to be used to indicate that the asynchronous process finished. :param str kill_signal: message to be used to finish the asynchronous process early. :param str check_signal: message to be used to check if the asynchronous process is still alive. :param process_kwarg_dict: dictionary to be passed to process_target. :rtype: None :return: None """ self.root = root self.message_check_rate = message_check_delay self.running_check_delay = running_check_delay self.message_callback = message_callback self._to_host_queue = Queue() # Please respect the privacy of these attributes. Altering them without self._to_handler_queue = MultiQueue() # consideration for processes relying on their private state can have self.kill_signal = kill_signal # unintended process opening / closing, especially with reuse. self.finished_signal = finished_signal self.check_signal = check_signal self.is_running = False self._continue_running = run_process self._current_processor = None assert (self.kill_signal != self.finished_signal != self.check_signal != self.kill_signal), "Use unique built-in queue signals." self.process_end_signals = {self.kill_signal, self.finished_signal, self.check_signal} if process_target is not None and run_process: self.make_single_process_handler(process_target, *process_args, host_to_process_signals=host_to_process_signals, **process_kwarg_dict) def make_single_process_handler(self, process_target, *process_args, host_to_process_signals=None, **process_kwarg_dict): """ Create a process handler and Tkinter threads for process callbacks. :Parameters: :param function process_target: function / method to be run asynchronously. :param process_args: positional arguments to be passed to process_target. :param set host_to_process_signals: messages for the asynchronous process which may be sent to the handler. :param process_kwarg_dict: dictionary to be passed to process_target. :rtype: None :return: None """ assert not self.is_running, ("Please create a new SingleProcessHandler to start another process while this one " "is still running.") _handler_to_process_queue = MultiQueue() if host_to_process_signals else None self._continue_running = True self.is_running = True self._current_processor = SingleProcessHandler(process_target, self._to_handler_queue, self._to_host_queue, *process_args, handler_to_process_queue=_handler_to_process_queue, finished_signal=self.finished_signal, kill_signal=self.kill_signal, check_signal=self.check_signal, host_to_process_signals=host_to_process_signals, **process_kwarg_dict) self._current_processor.start() self.root.after(self.message_check_rate, self.check_message) self.root.after(self.running_check_delay, self.check_running) def send_signal(self, signal): """ Send signal to other process. :Parameters: :param signal: pickle-able object sent to subprocess. :rtype: None :return: None """ self._to_handler_queue.put(signal) def check_message(self, *, message_callback=None): """ Initiate callbacks from inter-process communication. :Parameters: :param function message_callback: function / method used to process a message if received. Currently determines if check_message is subsequently called as well. If intending to check for a message independent of the auto-check (and not intending to start another check_message thread chain) pass self.message_callback or any other function as a parameter to prevent the check_message chain. :rtype: None :return: None """ if message_callback is None: say_check_one_more_time = self._continue_running message_callback = self.message_callback else: say_check_one_more_time = False try: if not self._to_host_queue.empty(): try: msg = self._to_host_queue.get_nowait() except EmptyQueue: pass else: if isinstance(msg, str): # print("{} for host.".format(msg)) if msg in self.process_end_signals: say_check_one_more_time = False self.kill_process(need_to_signal=False) message_callback(msg) finally: if say_check_one_more_time: self.root.after(self.message_check_rate, self.check_message) elif say_check_one_more_time: self.root.after(self.message_check_rate, self.check_message) except AttributeError: self.kill_process() def kill_process(self, *, need_to_signal=True): """ End current process / clear queues. :Parameters: :param bool need_to_signal: determines if a signal is sent to the process handler to end. Needs to be True unless a signal has already been sent to the process handler. :rtype: None :return: None """ self._continue_running = False if (self._current_processor is not None and self._current_processor.is_alive()): if need_to_signal: self._to_handler_queue.put(self.kill_signal) clear_queues(self._to_host_queue) self._current_processor.join() clear_queues(self._to_host_queue, self._to_handler_queue) self._current_processor = None self.is_running = False def check_running(self): """ Maintain communication with subprocess to ensure it's running. :rtype: None :return: None """ if (self._continue_running and self._current_processor is not None and self._current_processor.is_alive()): self._to_handler_queue.put(self.check_signal) self.root.after(self.running_check_delay, self.check_running) class GreedyProcessHost(ProcessHost): """ Multiprocessing/threading object which can be accessed directly within libraries like Tkinter. Send a target function to an instance of this class during __init__ or make_single_process_handler, and it will ensure the process completes, and pass the most recent queue return messages to the function provided in message_callback during __init__ - while keeping the rest to itself. (Rude.) """ def __init__(self, *args, **kwargs): """Create private inter-process communication for a potentially newly started process. :Parameters: :param Tkinter.Tk root: root / object with .after(delay, callback) used for scheduling. :param function message_callback: function / method used to process the most recent message if received. :param function process_target: function / method to be run asynchronously. :param process_args: positional arguments to be passed to process_target. :param int message_check_delay: how often message checks are scheduled using root. :param int running_check_delay: how often checks on whether the subprocess is running are run. :param bool run_process: determines whether to run the process_target immediately after __init__. :param set host_to_process_signals: messages for the asynchronous process which may be sent to the handler. :param str finished_signal: message to be used to indicate that the asynchronous process finished. :param str kill_signal: message to be used to finish the asynchronous process early. :param str check_signal: message to be used to check if the asynchronous process is still alive. :param process_kwarg_dict: dictionary to be passed to process_target. :rtype: None :return: None """ super(GreedyProcessHost, self).__init__(*args, **kwargs) def check_message(self, *, message_callback=None): """ Initiate callbacks from inter-process communication. Overwrites the original check_message method in order to only pull the most recent queue item. :Parameters: :param function message_callback: function / method used to process a message if received. Currently determines if check_message is subsequently called as well. If intending to check for a message independent of the auto-check (and not intending to start another check_message thread chain) pass self.message_callback or any other function as a parameter to prevent the check_message chain. :rtype: None :return: None """ if message_callback is None: say_check_one_more_time = self._continue_running message_callback = self.message_callback else: say_check_one_more_time = False try: if not self._to_host_queue.empty(): msg = None try: while not self._to_host_queue.empty(): msg = self._to_host_queue.get_nowait() except EmptyQueue: pass else: if isinstance(msg, str): # print("{} for greedy host.".format(msg)) if msg in self.process_end_signals: say_check_one_more_time = False self.kill_process(need_to_signal=False) message_callback(msg) finally: if say_check_one_more_time: self.root.after(self.message_check_rate, self.check_message) elif say_check_one_more_time: self.root.after(self.message_check_rate, self.check_message) except AttributeError: self.kill_process() class SingleProcessHandler(Thread): """Manages single asynchronous processes - nothing in this object should be interacted with directly.""" def __init__(self, process_target, to_handler_queue, handler_to_host_queue, *process_args, handler_to_process_queue=None, finished_signal=DONE, kill_signal=KILL, check_signal=CZEC, host_to_process_signals=None, **process_kwarg_dict): """ Set runtime attributes for multi-process communication / management. :Parameters: :param function process_target: function / method to be run asynchronously. :param multiprocessing.Queue to_handler_queue: queue for all communications sent to this class instance. :param queue.Queue handler_to_host_queue: queue for communications to the host process from this instance. :param process_args: positional arguments to be passed to process_target. :param multiprocessing.Queue handler_to_process_queue: queue for communications from the host process to the running asynchronous process_target. :param str finished_signal: message to be used to indicate that the asynchronous process finished. :param str kill_signal: message to be used to finish the asynchronous process early. :param str check_signal: message to be used to check if the asynchronous process is still alive. :param set host_to_process_signals: messages for the asynchronous process which may be sent to the handler. :param process_kwarg_dict: dictionary to be passed to process_target. :rtype: None :return: None """ Thread.__init__(self) self.host_to_process_signals = host_to_process_signals if host_to_process_signals else {} self.kill_signal = kill_signal self.finished_signal = finished_signal self.check_signal = check_signal assert (self.kill_signal != self.finished_signal != self.check_signal != self.kill_signal), "Use unique built-in queue signals." self.end_sigs = {self.kill_signal, self.finished_signal} self.handler_to_host_queue = handler_to_host_queue self.handler_to_process_queue = handler_to_process_queue self.to_handler_queue = to_handler_queue self.process_target = process_target self.process_args = None self._import_process_args(process_args, process_kwarg_dict) self.handled_process = None def _import_process_args(self, process_args=None, process_kwarg_dict=None): """ Create the tuple of process args needed for multiprocessing.Process. :Parameters: :param process_args: positional arguments to be passed to process_target. :param process_kwarg_dict: dictionary to be passed to process_target. :rtype: None :return: None """ if process_args and process_kwarg_dict: self.process_args = process_args + (process_kwarg_dict,) elif process_args: self.process_args = process_args elif process_kwarg_dict: self.process_args = (process_kwarg_dict,) if self.handler_to_process_queue: if self.process_args: self.process_args = (self.to_handler_queue, self.handler_to_process_queue) + self.process_args else: self.process_args = (self.to_handler_queue, self.handler_to_process_queue) elif self.process_args: self.process_args = (self.to_handler_queue,) + self.process_args else: self.process_args = (self.to_handler_queue,) def run(self): """ Start / maintain process communication. :rtype: None :return: None """ self.handled_process = Process(target=self.process_target, args=self.process_args) self.handled_process.start() should_run = True while should_run: should_run = self._process_queues() def _process_queues(self): """ Transmit / interpret signals between processes. :rtype: bool :return bool should_run: determine whether the run() loop should continue. """ should_run = True msg = self.to_handler_queue.get() if isinstance(msg, str): # print("{} for handler.".format(msg)) if msg in self.end_sigs: self._kill_process() self.handler_to_host_queue.put(msg) should_run = False elif msg == self.check_signal: if not self.handled_process.is_alive(): self.handler_to_host_queue.put(msg) should_run = False elif msg in self.host_to_process_signals: self.handler_to_process_queue.put(msg) else: self.handler_to_host_queue.put(msg) else: self.handler_to_host_queue.put(msg) return should_run def _kill_process(self): """ Handle queue / process cleanup for end-process signals. :rtype: None :return: None """ if self.handled_process is not None: if self.handler_to_process_queue: self._okay_maybe_some_tears_but_be_quick() else: self._shh_no_more_tears(self.handled_process, self.to_handler_queue) self.handled_process = None def _okay_maybe_some_tears_but_be_quick(self): """ Close process while allowing for one to-process-queue signal for cleanup. :rtype: None :return: None """ self.handler_to_process_queue.put(self.kill_signal) self.handler_to_process_queue = None while True: msg = self.to_handler_queue.get() if isinstance(msg, self.finished_signal.__class__): if msg == self.finished_signal: break self._shh_no_more_tears(self.handled_process, self.to_handler_queue) @classmethod def _shh_no_more_tears(cls, process, queue_process_populates): """ Close process without queue signal for cleanup. :rtype: None :return: None """ if process.is_alive(): process.terminate() clear_and_close_queues(queue_process_populates) process.join() class PoolProcessHandler(Thread): """Manages pool'd asynchronous processes.""" def __init__(self, run_target, return_queue, pool_args, *, pool_size=4, time_limit=15): """ Set runtime attributes for a pooled multiprocessing application. :Parameters: :param function run_target: function / method to be run asynchronously - called once per pool_arg. :param queue.Queue return_queue: queue to return the results of run_target(s). :param list pool_args: list of objects to be mapped to run_target instances. :param int or None pool_size: number of sub-processes to be mapped to run_target. :param int or None time_limit: amount of time to await the results of run_target. :rtype: None :return: None """ Thread.__init__(self) self.run_target = run_target self.return_queue = return_queue self.pool_args = pool_args self.time_limit = time_limit self.pool_size = pool_size def run(self): """ Start pool'd process and return results using queue from __init__. :rtype: None :return: None """ with Pool(self.pool_size) as pool: result = pool.map_async(self.run_target, self.pool_args) try: results_list = result.get(timeout=self.time_limit) except TimesUpPencilsDown: results_list = None self.return_queue.put(results_list)
import numpy as np import pandas as pd import pytest from pyabc.storage.dataframe_bytes_storage import df_from_bytes, df_to_bytes @pytest.fixture( params=[ "empty", "int", "float", "non_numeric_str", "numeric_str", "int-float-numeric_str", "int-float-non_numeric_str-str_ind", "int-float-numeric_str-str_ind", ] ) def df(request): par = request.param if par == "empty": return pd.DataFrame() if par == "int": return pd.DataFrame( { "a": np.random.randint(-20, 20, 100), "b": np.random.randint(-20, 20, 100), } ) if par == "float": return pd.DataFrame( {"a": np.random.randn(100), "b": np.random.randn(100)} ) if par == "non_numeric_str": return pd.DataFrame({"a": ["foo", "bar"], "b": ["bar", "foo"]}) if par == "numeric_str": return pd.DataFrame( { "a": list(map(str, np.random.randn(100))), "b": list(map(str, np.random.randint(-20, 20, 100))), } ) if par == "int-float-numeric_str": return pd.DataFrame( { "a": np.random.randint(-20, 20, 100), "b": np.random.randn(100), "c": list(map(str, np.random.randint(-20, 20, 100))), } ) if par == "int-float-non_numeric_str-str_ind": return pd.DataFrame( {"a": [1, 2], "b": [1.1, 2.2], "c": ["foo", "bar"]}, index=["first", "second"], ) if par == "int-float-numeric_str-str_ind": return pd.DataFrame( {"a": [1, 2], "b": [1.1, 2.2], "c": ["1", "2"]}, index=["first", "second"], ) raise Exception("Invalid Test DataFrame Type") def test_serialize(df): serial = df_to_bytes(df) assert isinstance(serial, bytes) rebuilt = df_from_bytes(serial) assert (df == rebuilt).all().all()
""" Provide a sphinx extension to generate widgets from code: ada. A role :code-config: must be seen before parsing the first code: block, for instance :code-config:`run_button=True;prove_button=False;accumulate_code=True` See doc in the function codeconfig. Code accumulation: cancel it with an empty :code-config: directive This plugin interprets the folloging parameters to the code:: directive: * no_button - removes all buttons * <X>_button - forces the existence of a button for mode X. Modes are defined in the MODES variable in editors.js. these override the code-config setting. The code inside code:: directives is extracted into a list of files. The files are extracted the following way: - for valid Ada code, 'gnatchop' is run on the entirety of the snippet - for C code, the files should be named explicitely, with a marker of the form !<basename> placed at the beginning of each file in the snippet. This mechanism is also activated if the argument manual_chop is passed to the code:: directive. For instance: .. code:: prove_button manual_chop !main.c int main(void); !t.ads package T is end T; """ import codecs import os import re import shutil import subprocess import tempfile from docutils import nodes from docutils.parsers.rst import Directive, directives from xml.sax.saxutils import escape WIDGETS_SERVER_URL = os.environ.get( "CODE_SERVER_URL", "https://cloudchecker-staging.r53.adacore.com") template = u""" <div class="widget_editor" example_server="{server_url}" {extra_attribs} inline="true"> {files_divs} {shadow_files_divs} </div> """ NAME_REGEX = re.compile('(lab|project)=(\S+)') LAB_IO_START_REGEX = re.compile("-- START LAB IO BLOCK") LAB_IO_END_REGEX = re.compile("-- END LAB IO BLOCK") LABIO_FILENAME = "lab_io.txt" codeconfig_found = False # A safeguard against documents not defining code-config. Is it needed? # These are configured via the "code-config" role, see doc in the # function codeconfig below. class Config(object): buttons = set() # The list of active buttons. Strings of the form 'xxx_button'. accumulate_code = False reset_accumulator = False config = Config() accumulated_files = {} # The accumulated files. Key: basename, value: lastest content seen def c_chop(lines): """Chops the text, counting on filenames being given in the form !<filename> as the first line of each file. Returns a list of tuples of the form (basename, contents) """ results = [] current_filename = None current_contents = [] for j in lines: if j.startswith('!'): if current_filename: results.append((current_filename, '\n'.join(current_contents))) current_contents = [] current_filename = j[1:] else: current_contents.append(j) if current_filename: results.append((current_filename, '\n'.join(current_contents))) return results def cheapo_gnatchop(lines): """Performs a cheapo gnatchop on the given text. lines is a list of strings Returns a list of tuples of the form (basename, contents) """ results = [] current_basename = 'invalid.ads' current_contents = [] body = re.compile("^(procedure|package body) ([^ ]+)") spec = re.compile("^(package) ([^ ]+)") end = re.compile("^end") text_found = False def to_base_filename(g): return g.lower().replace('.', '-') for j in lines: # Append the lines to the current contents except if it's a blank # line before anything is found if not j and not text_found: continue text_found = True current_contents.append(j) match = body.match(j) if match: current_basename = to_base_filename(match.group(2)) + ".adb" else: match = spec.match(j) if match: current_basename = to_base_filename(match.group(2)) + ".ads" else: if end.match(j): results.append((current_basename, '\n'.join(current_contents))) current_contents = [] text_found = False if current_contents: results.append((current_basename, '\n'.join(current_contents))) return results def real_gnatchop(lines): """Same API as cheapo_gnatchop, but launch a real gnatchop""" wd = tempfile.mkdtemp() try: gnatchop_file = os.path.join(wd, 'internal_gnatchop.txt') with codecs.open(gnatchop_file, 'wb', encoding='utf-8') as f: f.write('\n'.join(lines)) cmd = ['gnatchop', gnatchop_file] output = subprocess.check_output(cmd, cwd=wd) files = [os.path.join(wd, f.decode("utf-8").strip()) for f in output.splitlines() if not f.startswith(b'splitting ')] os.remove(gnatchop_file) results = [] for file in files: with codecs.open(file, 'rb', encoding='utf-8') as f: results.append((os.path.basename(file), f.read().strip())) return results finally: shutil.rmtree(wd) class WidgetCodeDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 1 final_argument_whitespace = True option_spec = { 'class': directives.class_option, 'name': directives.unchanged, } def run(self): shadow_files_divs = "" extra_attribs = "" argument_list = [] force_no_buttons = False is_lab = False def get_shadow_div(basename, content): return (u'<div class="shadow_file"' 'style="display:none" basename="{}">' '{}</div>').format(basename, escape(content)) if self.arguments: argument_list = self.arguments[0].split(' ') if 'no_button' in argument_list or ( 'class' in self.options and ( 'ada-nocheck' in self.options['class'] or 'ada-syntax-only' in self.options['class'])): force_no_buttons = True # look for (lab|project)=my_name name_matches = [NAME_REGEX.match(line) for line in argument_list if NAME_REGEX.match(line)] if len(name_matches) == 1: if name_matches[0].group(1) == "lab": extra_attribs += ' lab="True"' is_lab = True extra_attribs += ' name={}'.format(name_matches[0].group(2)) elif len(name_matches) > 1: raise self.error("malformed widget directive") # Make sure code-config exists in the document if not codeconfig_found: print (self.lineno, dir(self)) raise self.error("you need to add a :code-config: role") if is_lab: # look for lab io start block io_start_matches = [i for i, line in enumerate(self.content) if LAB_IO_START_REGEX.match(line)] # look for lab io end block io_end_matches = [i for i, line in enumerate(self.content) if LAB_IO_END_REGEX.match(line)] # check for correct formation of lab io block if len(io_start_matches) == 1 and len(io_end_matches) == 1 and io_start_matches[0] < io_end_matches[0]: io_content = self.content[io_start_matches[0] + 1 : io_end_matches[0]] # create shadow file from io blocks new_file = "\n".join(io_content) shadow_files_divs += get_shadow_div(LABIO_FILENAME, new_file) # remove io block lines from self.content # The following does not work for some odd reason so we will have to copy the list # del self.content[io_start_matches[0] : (io_end_matches[0] + 1)] chop_contents = self.content[:io_start_matches[0]] + self.content[io_end_matches[0] + 1:] else: raise self.error("malformed lab io block: io_start={} io_end={}".format(io_start_matches, io_end_matches)) else: chop_contents = self.content # chop contents into files try: # chop source files if 'manual_chop' in argument_list: files = c_chop(chop_contents) elif 'c' in argument_list: files = c_chop(chop_contents) else: files = real_gnatchop(chop_contents) except subprocess.CalledProcessError: raise self.error("could not gnatchop example") if config.accumulate_code: # We are accumulating code: store the new code in the # accumulated_files global accumulated_files for f in files: accumulated_files[f[0]] = f[1] try: if config.accumulate_code: editor_files = set([f[0] for f in files]) for k, v in accumulated_files.items(): if k not in editor_files: shadow_files_divs += get_shadow_div(k, v) divs = "\n".join( [u'<div class="file" basename="{}">{}</div>'.format( f[0], escape(f[1])) for f in files] ) nodes_latex = [] # Attemping to detect HTML or Latex output by checking for 'html' in tags if 'html' not in self.state.state_machine.document.settings.env.app.tags.tags: for f in files: # Based on sphinx/directives/code.py container_node = nodes.container( '', literal_block=True, classes=['literal-block-wrapper']) literal = nodes.literal_block('', f[1], format='latex') literal['language'] = self.arguments[0].split(' ')[0] literal['linenos'] = 'linenos' in self.options or \ 'lineno-start' in self.options literal['source'] = f[0] caption = nodes.caption('', f[0]) caption.source = literal.source caption.line = literal.line # container_node += caption container_node += literal nodes_latex.append(container_node) except Exception: # If we have an exception here, it's probably a codec error print (files) raise if not force_no_buttons: for x in (config.buttons | set(filter(lambda y: y.endswith('_button'), argument_list))): extra_attribs += ' {}="True"'.format(x) return [ nodes.raw('', template.format(server_url=WIDGETS_SERVER_URL, files_divs=divs, shadow_files_divs=shadow_files_divs, extra_attribs=extra_attribs), format='html') ] + nodes_latex def codeconfig(typ, rawtext, text, lineno, inliner, options={}, content=[]): """Support the code-config role. This role contains a set of directives separated by ";". See below for the list of directives. """ global codeconfig_found, config, accumulated_files codeconfig_found = True # When we encounter this directive, empty the accumulated_files directives = text.split(';') for d in directives: key, value = d.strip().split('=') if key.endswith('_button'): if value.lower() == "true": config.buttons.add(key) else: if key in config.buttons: config.buttons.remove(key) else: if not hasattr(config, key): raise inliner.error( "wrong key for code-config: {}".format(key)) setattr(config, key, value.lower() == "true") if config.reset_accumulator: accumulated_files = {} config.reset_accumulator = False return [], [] def on_builder_inited(app): # Connect to the "code" directive app.add_directive('code', WidgetCodeDirective, override=True) def setup(app): app.add_config_value('insert_widgets', True, 'html') app.add_role('code-config', codeconfig) app.connect('builder-inited', on_builder_inited) return {'version': '0.1'}
r""" Wrapper class for abelian groups This class is intended as a template for anything in Sage that needs the functionality of abelian groups. One can create an AdditiveAbelianGroupWrapper object from any given set of elements in some given parent, as long as an ``_add_`` method has been defined. EXAMPLES: We create a toy example based on the Mordell-Weil group of an elliptic curve over `\QQ`:: sage: E = EllipticCurve('30a2') sage: pts = [E(4,-7,1), E(7/4, -11/8, 1), E(3, -2, 1)] sage: M = AdditiveAbelianGroupWrapper(pts[0].parent(), pts, [3, 2, 2]) sage: M Additive abelian group isomorphic to Z/3 + Z/2 + Z/2 embedded in Abelian group of points on Elliptic Curve defined by y^2 + x*y + y = x^3 - 19*x + 26 over Rational Field sage: M.gens() ((4 : -7 : 1), (7/4 : -11/8 : 1), (3 : -2 : 1)) sage: 3*M.0 (0 : 1 : 0) sage: 3000000000000001 * M.0 (4 : -7 : 1) sage: M == loads(dumps(M)) # known bug, see https://trac.sagemath.org/sage_trac/ticket/11599#comment:7 True TESTS: We check that ridiculous operations are being avoided:: sage: from sage.misc.verbose import set_verbose sage: set_verbose(2, 'additive_abelian_wrapper.py') sage: 300001 * M.0 verbose 1 (...: additive_abelian_wrapper.py, discrete_exp) Calling discrete exp on (1, 0, 0) (4 : -7 : 1) sage: set_verbose(0, 'additive_abelian_wrapper.py') .. TODO:: - Think about subgroups and quotients, which probably won't work in the current implementation -- some fiddly adjustments will be needed in order to be able to pass extra arguments to the subquotient's init method. AUTHORS: - David Loeffler (2010) - Lorenz Panny (2017): :meth:`AdditiveAbelianGroupWrapper.discrete_log` """ # **************************************************************************** # Copyright (C) 2010 David Loeffler # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # https://www.gnu.org/licenses/ # **************************************************************************** from . import additive_abelian_group as addgp from sage.rings.integer_ring import ZZ from sage.categories.morphism import Morphism from sage.structure.element import parent from sage.modules.free_module_element import vector from sage.misc.superseded import deprecated_function_alias class UnwrappingMorphism(Morphism): r""" The embedding into the ambient group. Used by the coercion framework. """ def __init__(self, domain): r""" EXAMPLES:: sage: G = AdditiveAbelianGroupWrapper(QQbar, [sqrt(QQbar(2)), sqrt(QQbar(3))], [0, 0]) sage: F = QQbar.coerce_map_from(G); F Generic morphism: From: Additive abelian group isomorphic to Z + Z embedded in Algebraic Field To: Algebraic Field sage: type(F) <class 'sage.groups.additive_abelian.additive_abelian_wrapper.UnwrappingMorphism'> """ Morphism.__init__(self, domain.Hom(domain.universe())) def _call_(self, x): r""" TESTS:: sage: E = EllipticCurve("65a1") sage: G = E.torsion_subgroup() sage: isinstance(G, sage.groups.additive_abelian.additive_abelian_wrapper.AdditiveAbelianGroupWrapper) True sage: P1 = E([1,-1,1]) sage: P2 = E([0,1,0]) sage: P1 in G # indirect doctest False sage: P2 in G True sage: (G(P2) + P1) in G False sage: (G(P2) + P1).parent() Abelian group of points on Elliptic Curve defined by y^2 + x*y = x^3 - x over Rational Field """ return self.codomain()(x.element()) class AdditiveAbelianGroupWrapperElement(addgp.AdditiveAbelianGroupElement): """ An element of an :class:`AdditiveAbelianGroupWrapper`. """ def __init__(self, parent, vector, element=None, check=False): r""" EXAMPLES:: sage: from sage.groups.additive_abelian.additive_abelian_wrapper import AdditiveAbelianGroupWrapper sage: G = AdditiveAbelianGroupWrapper(QQbar, [sqrt(QQbar(2)), sqrt(QQbar(3))], [0, 0]) sage: G.0 # indirect doctest 1.414213562373095? """ addgp.AdditiveAbelianGroupElement.__init__(self, parent, vector, check) if element is not None: element = self.parent().universe()(element) self._element = element def element(self): r""" Return the underlying object that this element wraps. EXAMPLES:: sage: T = EllipticCurve('65a').torsion_subgroup().gen(0) sage: T; type(T) (0 : 0 : 1) <class 'sage.schemes.elliptic_curves.ell_torsion.EllipticCurveTorsionSubgroup_with_category.element_class'> sage: T.element(); type(T.element()) (0 : 0 : 1) <class 'sage.schemes.elliptic_curves.ell_point.EllipticCurvePoint_number_field'> """ if self._element is None: self._element = self.parent().discrete_exp(self._hermite_lift()) return self._element def _repr_(self): r""" String representation of self. EXAMPLES:: sage: T = EllipticCurve('65a').torsion_subgroup().gen(0) sage: repr(T) # indirect doctest '(0 : 0 : 1)' """ return repr(self.element()) class AdditiveAbelianGroupWrapper(addgp.AdditiveAbelianGroup_fixed_gens): """ This class is used to wrap a subgroup of an existing additive abelian group as a new additive abelian group. EXAMPLES:: sage: G2 = AdditiveAbelianGroupWrapper(Zmod(42), [2], [21]); G2 Additive abelian group isomorphic to Z/21 embedded in Ring of integers modulo 42 sage: G6 = AdditiveAbelianGroupWrapper(Zmod(42), [6], [7]); G6 Additive abelian group isomorphic to Z/7 embedded in Ring of integers modulo 42 sage: G = AdditiveAbelianGroupWrapper(Zmod(42), [21,14,6], [2,3,7]); G Additive abelian group isomorphic to Z/2 + Z/3 + Z/7 embedded in Ring of integers modulo 42 sage: G.invariants() (42,) :: sage: AdditiveAbelianGroupWrapper(QQbar, [sqrt(2), sqrt(3)], [0, 0]) Additive abelian group isomorphic to Z + Z embedded in Algebraic Field :: sage: EllipticCurve(GF(419**2), [1,0]).abelian_group() # indirect doctest Additive abelian group isomorphic to Z/420 + Z/420 embedded in Abelian group of points on Elliptic Curve defined by y^2 = x^3 + x over Finite Field in z2 of size 419^2 """ Element = AdditiveAbelianGroupWrapperElement def __init__(self, universe, gens, invariants): r""" EXAMPLES:: sage: AdditiveAbelianGroupWrapper(QQbar, [sqrt(QQbar(2)), sqrt(QQbar(3))], [0, 0]) # indirect doctest Additive abelian group isomorphic to Z + Z embedded in Algebraic Field """ self._universe = universe self._gen_elements = tuple(universe(x) for x in gens) self._gen_orders = invariants cover,rels = addgp.cover_and_relations_from_invariants(invariants) addgp.AdditiveAbelianGroup_fixed_gens.__init__(self, cover, rels, cover.gens()) self._unset_coercions_used() self.register_embedding(UnwrappingMorphism(self)) def universe(self): r""" The ambient group in which this abelian group lives. EXAMPLES:: sage: G = AdditiveAbelianGroupWrapper(QQbar, [sqrt(QQbar(2)), sqrt(QQbar(3))], [0, 0]) sage: G.universe() Algebraic Field """ return self._universe def generator_orders(self): r""" The orders of the generators with which this group was initialised. (Note that these are not necessarily a minimal set of generators.) Generators of infinite order are returned as 0. Compare ``self.invariants()``, which returns the orders of a minimal set of generators. EXAMPLES:: sage: V = Zmod(6)**2 sage: G = AdditiveAbelianGroupWrapper(V, [2*V.0, 3*V.1], [3, 2]) sage: G.generator_orders() (3, 2) sage: G.invariants() (6,) """ return tuple(self._gen_orders) def _repr_(self): r""" EXAMPLES:: sage: G = AdditiveAbelianGroupWrapper(QQbar, [sqrt(QQbar(2)), sqrt(QQbar(3))], [0, 0]) sage: repr(G) # indirect doctest 'Additive abelian group isomorphic to Z + Z embedded in Algebraic Field' """ return addgp.AdditiveAbelianGroup_fixed_gens._repr_(self) + " embedded in " + self.universe()._repr_() def discrete_exp(self, v): r""" Given a list (or other iterable) of length equal to the number of generators of this group, compute the element of the ambient group with those exponents in terms of the generators of self. EXAMPLES:: sage: G = AdditiveAbelianGroupWrapper(QQbar, [sqrt(QQbar(2)), -1], [0, 0]) sage: v = G.discrete_exp([3, 5]); v -0.7573593128807148? sage: v.parent() is QQbar True This method is an inverse of :meth:`discrete_log`:: sage: orders = [2, 2*3, 2*3*5, 2*3*5*7, 2*3*5*7*11] sage: G = AdditiveAbelianGroup(orders) sage: A = AdditiveAbelianGroupWrapper(G.0.parent(), G.gens(), orders) sage: el = A.random_element() sage: A.discrete_exp(A.discrete_log(el)) == el True TESTS: Check that :meth:`_discrete_exp` still works (for now):: sage: A._discrete_exp(list(range(1,6))) doctest:warning ... DeprecationWarning: _discrete_exp is deprecated. ... (1, 2, 3, 4, 5) """ from sage.misc.verbose import verbose v = self.V()(v) verbose("Calling discrete exp on %s" % v) # DUMB IMPLEMENTATION! return sum([self._gen_elements[i] * ZZ(v[i]) for i in range(len(v))], self.universe()(0)) _discrete_exp = deprecated_function_alias(32384, discrete_exp) def discrete_log(self, x, gens=None): r""" Given an element of the ambient group, attempt to express it in terms of the generators of this group or the given generators of a subgroup. ALGORITHM: This reduces to p-groups, then calls :func:`_discrete_log_pgroup` which implements a basic version of the recursive algorithm from [Suth2008]_. AUTHORS: - Lorenz Panny (2017) EXAMPLES:: sage: G = AdditiveAbelianGroup([2, 2*3, 2*3*5, 2*3*5*7, 2*3*5*7*11]) sage: A = AdditiveAbelianGroupWrapper(G.0.parent(), G.gens(), [g.order() for g in G.gens()]) sage: A.discrete_log(A.discrete_exp([1,5,23,127,539])) (1, 5, 23, 127, 539) :: sage: F.<t> = GF(1009**2, modulus=x**2+11); E = EllipticCurve(j=F(940)) sage: P, Q = E(900*t + 228, 974*t + 185), E(1007*t + 214, 865*t + 802) sage: E.abelian_group().discrete_log(123 * P + 777 * Q, [P, Q]) (123, 777) :: sage: V = Zmod(8)**2 sage: G = AdditiveAbelianGroupWrapper(V, [[2,2],[4,0]], [4, 2]) sage: G.discrete_log(V([6, 2])) (1, 1) sage: G.discrete_log(V([6, 4])) Traceback (most recent call last): ... TypeError: Not in group :: sage: G = AdditiveAbelianGroupWrapper(QQbar, [sqrt(2)], [0]) sage: G.discrete_log(QQbar(2*sqrt(2))) Traceback (most recent call last): ... NotImplementedError: No black-box discrete log for infinite abelian groups TESTS: Check that :meth:`_discrete_log` still works (for now):: sage: orders = [2, 2*3, 2*3*5, 2*3*5*7, 2*3*5*7*11] sage: G = AdditiveAbelianGroup(orders) sage: A = AdditiveAbelianGroupWrapper(G.0.parent(), G.gens(), orders) sage: A._discrete_log(sum(i*g for i,g in enumerate(G.gens(),1))) doctest:warning ... DeprecationWarning: _discrete_log is deprecated. ... (1, 2, 3, 4, 5) """ from sage.arith.misc import CRT_list from sage.rings.infinity import Infinity if self.order() == Infinity: raise NotImplementedError("No black-box discrete log for infinite abelian groups") if gens is None: gens = self.gens() ords = self.generator_orders() else: ords = [g.order() for g in gens] gens = [self._universe(g.element() if parent(g) is self else g) for g in gens] x = self._universe(x.element() if parent(x) is self else x) crt_data = [[] for _ in gens] for p in self.exponent().prime_factors(): cofactor = self.exponent().prime_to_m_part(p) pgens = [cofactor * g for g in gens] y = cofactor * x pvals = [o.valuation(p) for o in ords] plog = _discrete_log_pgroup(p, pvals, pgens, y) for i, (r, v) in enumerate(zip(plog, pvals)): crt_data[i].append((r, p**v)) res = vector(CRT_list(*map(list, zip(*l))) for l in crt_data) assert x == sum(r * g for r, g in zip(res, gens)) return res _discrete_log = deprecated_function_alias(32384, discrete_log) def torsion_subgroup(self, n=None): r""" Return the `n`-torsion subgroup of this additive abelian group when `n` is given, and the torsion subgroup otherwise. The [`n`-]torsion subgroup consists of all elements whose order is finite [and divides `n`]. EXAMPLES:: sage: ords = [2, 2*3, 2*3*5, 0, 2*3*5*7, 2*3*5*7*11] sage: G = AdditiveAbelianGroup(ords) sage: A = AdditiveAbelianGroupWrapper(G.0.parent(), G.gens(), ords) sage: T = A.torsion_subgroup(5) sage: T Additive abelian group isomorphic to Z/5 + Z/5 + Z/5 embedded in Additive abelian group isomorphic to Z/2 + Z/6 + Z/30 + Z + Z/210 + Z/2310 sage: T.gens() ((0, 0, 6, 0, 0, 0), (0, 0, 0, 0, 42, 0), (0, 0, 0, 0, 0, 462)) :: sage: E = EllipticCurve(GF(487^2), [311,205]) sage: T = E.abelian_group().torsion_subgroup(42) sage: T Additive abelian group isomorphic to Z/42 + Z/6 embedded in Abelian group of points on Elliptic Curve defined by y^2 = x^3 + 311*x + 205 over Finite Field in z2 of size 487^2 sage: [P.order() for P in T.gens()] [42, 6] :: sage: E = EllipticCurve('574i1') sage: pts = [E(103,172), E(61,18)] sage: assert pts[0].order() == 7 and pts[1].order() == infinity sage: M = AdditiveAbelianGroupWrapper(pts[0].parent(), pts, [7,0]) sage: M Additive abelian group isomorphic to Z/7 + Z embedded in Abelian group of points on Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 19353*x + 958713 over Rational Field sage: M.torsion_subgroup() Additive abelian group isomorphic to Z/7 embedded in Abelian group of points on Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 19353*x + 958713 over Rational Field sage: M.torsion_subgroup(7) Additive abelian group isomorphic to Z/7 embedded in Abelian group of points on Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 19353*x + 958713 over Rational Field sage: M.torsion_subgroup(5) Trivial group embedded in Abelian group of points on Elliptic Curve defined by y^2 + x*y + y = x^3 - x^2 - 19353*x + 958713 over Rational Field AUTHORS: - Lorenz Panny (2022) """ genords = zip(self._gen_elements, self._gen_orders) if n is None: gens, ords = zip(*(t for t in genords if t[1])) else: n = ZZ(n) if n <= 0: raise ValueError('n must be a positive integer') gens, ords = [], [] for g,o in genords: if not o: continue d = n.gcd(o) if d == 1: continue gens.append(o//d * g) ords.append(d) return AdditiveAbelianGroupWrapper(self.universe(), gens, ords) def _element_constructor_(self, x, check=False): r""" Create an element from x. This may be either an element of self, an element of the ambient group, or an iterable (in which case the result is the corresponding product of the generators of self). EXAMPLES:: sage: V = Zmod(8)**2 sage: G = AdditiveAbelianGroupWrapper(V, [[2,2],[4,0]], [4, 2]) sage: G(V([6,2])) (6, 2) sage: G([1,1]) (6, 2) sage: G(G([1,1])) (6, 2) """ if parent(x) is self.universe(): return self.element_class(self, self.discrete_log(x), element = x) return addgp.AdditiveAbelianGroup_fixed_gens._element_constructor_(self, x, check) def _discrete_log_pgroup(p, vals, aa, b): r""" Attempt to express an element of p-power order in terms of generators of a p-subgroup of this group. Used as a subroutine in :meth:`discrete_log`. ALGORITHM: This implements a basic version of the recursive algorithm from [Suth2008]_. The base cases are handled using a variant of Shanks' baby-step giant-step algorithm for products of cyclic groups. EXAMPLES:: sage: G = AdditiveAbelianGroup([5, 5**2, 5**4, 5**4]) sage: (a, b, c, d) = gs = G.gens() sage: A = AdditiveAbelianGroupWrapper(a.parent(), gs, [g.order() for g in gs]) sage: from sage.groups.additive_abelian.additive_abelian_wrapper import _discrete_log_pgroup sage: _discrete_log_pgroup(5, [1,2,4,4], gs, a + 17*b + 123*c + 456*d) (1, 17, 123, 456) """ from itertools import product as iproduct qq = lambda j, k: vector(p ** (j + max(0, v - k)) for a, v in zip(aa, vals)) subbasis = lambda j, k: [q * a for q, a in zip(qq(j, k), aa)] dotprod = lambda xs, ys: sum(x * y for x, y in zip(xs, ys)) def _base(j, k, c): assert k - j == 1 aajk = subbasis(j, k) assert not any(p*a for a in aajk) # orders are in {1,p} idxs = [i for i, a in enumerate(aajk) if a] rs = [([0], [0]) for i in range(len(aajk))] for i in range(len(idxs)): rs[idxs[i]] = (range(p), [0]) if i % 2 else ([0], range(p)) if len(idxs) % 2: m = p.isqrt() + 1 # hence m^2 >= p rs[idxs[-1]] = range(0, p, m), range(m) tab = {} for x in iproduct(*(r for r, _ in rs)): key = dotprod(x, aajk) if hasattr(key, 'set_immutable'): key.set_immutable() tab[key] = vector(x) for y in iproduct(*(r for _, r in rs)): key = c - dotprod(y, aajk) if hasattr(key, 'set_immutable'): key.set_immutable() if key in tab: return tab[key] + vector(y) raise TypeError('Not in group') def _rec(j, k, c): assert 0 <= j < k if k - j <= 1: # base case return _base(j, k, c) w = 2 js = list(range(j, k, (k-j+w-1) // w)) + [k] assert len(js) == w + 1 x = vector([0] * len(aa)) for i in reversed(range(w)): gamma = p ** (js[i] - j) * c - dotprod(x, subbasis(js[i], k)) v = _rec(js[i], js[i+1], gamma) assert not any(q1 % q2 for q1, q2 in zip(qq(js[i], js[i+1]), qq(js[i], k))) x += vector(q1 // q2 * r for q1, q2, r in zip(qq(js[i], js[i+1]), qq(js[i], k), v)) return x return _rec(0, max(vals), b)
#!/usr/bin/env python3 """ An autogenerated testfile for python. """ import unittest from unittest.mock import patch from io import StringIO import re import os import sys from unittest import TextTestRunner from examiner import ExamTestCase, ExamTestResult, tags from examiner import import_module, find_path_to_assignment FILE_DIR = os.path.dirname(os.path.realpath(__file__)) REPO_PATH = find_path_to_assignment(FILE_DIR) if REPO_PATH not in sys.path: sys.path.insert(0, REPO_PATH) # Path to file and basename of the file to import main = import_module(REPO_PATH, 'main') marvin = import_module(REPO_PATH, 'marvin') class Test3Marvin2Extra(ExamTestCase): """ Each assignment has 1 testcase with multiple asserts. The different asserts https://docs.python.org/3.6/library/unittest.html#test-cases """ @classmethod def setUpClass(cls): """ To find all relative files that are read or written to. """ os.chdir(REPO_PATH) def check_print_contain(self, inp, correct, func): """ One function for testing print input functions. """ with patch("builtins.input", side_effect=inp): with patch("sys.stdout", new=StringIO()) as fake_out: func() str_data = fake_out.getvalue() for val in correct: self.assertIn(val, str_data) @tags("b1") def test_points_to_grade_menu(self): """ Testar att anropa menyval b1 via main funktionen i main.py. Använder följande som input: {arguments} Förväntar att följande skrivs ut : {correct} Fick följande: {student} """ self._multi_arguments = ["b1", "100", "59", "", "q"] self.check_print_contain(self._multi_arguments, ["score: F"], main.main) @tags("b1") def test_points_to_grade_func(self): """ Testar att anropa points_to_grade i marvin.py. Använder följande som argument: {arguments} Förväntar att följande sträng returneras: {correct} Fick följande: {student} """ self._multi_arguments = ["70", "50"] self.assertEqual( marvin.points_to_grade(*self._multi_arguments), "score: C" ) @tags("b2") def test_has_strings_menu(self): """ Testar att anropa menyval b2 via main funktionen i main.py. Använder följande som input: {arguments} Förväntar att följande sträng finns med i utskriften: {correct} Fick följande: {student} """ self._multi_arguments = ["b2", "anagram", "ana", "agr", "am", "", "q"] self.check_print_contain(self._multi_arguments, ["Match"], main.main) @tags("b2") def test_has_strings_func(self): """ Testar att anropa has_strings i marvin.py. Använder följande som argument: {arguments} Förväntar att följande sträng returneras: {correct} Fick följande: {student} """ self._multi_arguments = ["Palindrom", "par", "ind", "rom" ] self.assertEqual( marvin.has_strings(*self._multi_arguments), "No match" ) if __name__ == '__main__': runner = TextTestRunner(resultclass=ExamTestResult, verbosity=2) unittest.main(testRunner=runner, exit=False)
# Copyright (c) 2013, 2017 ARM Limited # All rights reserved. # # The license below extends only to copyright in the software and shall # not be construed as granting a license to any other intellectual # property including but not limited to intellectual property relating # to a hardware implementation of the functionality of the software # licensed hereunder. You may use the software subject to the license # terms below provided that you ensure that this notice is replicated # unmodified and in its entirety in all distributions of the software, # modified or unmodified, in source code or in binary form. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Authors: Andreas Sandberg # Andreas Hansson from __future__ import print_function from __future__ import absolute_import import m5.objects import inspect import sys from textwrap import TextWrapper from . import HMC # Dictionary of mapping names of real memory controller models to # classes. _mem_classes = {} def is_mem_class(cls): """Determine if a class is a memory controller that can be instantiated""" # We can't use the normal inspect.isclass because the ParamFactory # and ProxyFactory classes have a tendency to confuse it. try: return issubclass(cls, m5.objects.AbstractMemory) and \ not cls.abstract except TypeError: return False def get(name): """Get a memory class from a user provided class name.""" try: mem_class = _mem_classes[name] return mem_class except KeyError: print("%s is not a valid memory controller." % (name,)) sys.exit(1) def print_mem_list(): """Print a list of available memory classes.""" print("Available memory classes:") doc_wrapper = TextWrapper(initial_indent="\t\t", subsequent_indent="\t\t") for name, cls in _mem_classes.items(): print("\t%s" % name) # Try to extract the class documentation from the class help # string. doc = inspect.getdoc(cls) if doc: for line in doc_wrapper.wrap(doc): print(line) def mem_names(): """Return a list of valid memory names.""" return list(_mem_classes.keys()) # Add all memory controllers in the object hierarchy. for name, cls in inspect.getmembers(m5.objects, is_mem_class): _mem_classes[name] = cls def create_mem_ctrl(cls, r, i, nbr_mem_ctrls, intlv_bits, intlv_size): """ Helper function for creating a single memoy controller from the given options. This function is invoked multiple times in config_mem function to create an array of controllers. """ import math intlv_low_bit = int(math.log(intlv_size, 2)) # Use basic hashing for the channel selection, and preferably use # the lower tag bits from the last level cache. As we do not know # the details of the caches here, make an educated guess. 4 MByte # 4-way associative with 64 byte cache lines is 6 offset bits and # 14 index bits. xor_low_bit = 20 # Create an instance so we can figure out the address # mapping and row-buffer size ctrl = cls() # Only do this for DRAMs if issubclass(cls, m5.objects.DRAMCtrl): # Inform each controller how many channels to account # for ctrl.channels = nbr_mem_ctrls # If the channel bits are appearing after the column # bits, we need to add the appropriate number of bits # for the row buffer size if ctrl.addr_mapping.value == 'RoRaBaChCo': # This computation only really needs to happen # once, but as we rely on having an instance we # end up having to repeat it for each and every # one rowbuffer_size = ctrl.device_rowbuffer_size.value * \ ctrl.devices_per_rank.value intlv_low_bit = int(math.log(rowbuffer_size, 2)) # We got all we need to configure the appropriate address # range ctrl.range = m5.objects.AddrRange(r.start, size = r.size(), intlvHighBit = \ intlv_low_bit + intlv_bits - 1, xorHighBit = \ xor_low_bit + intlv_bits - 1, intlvBits = intlv_bits, intlvMatch = i) return ctrl def config_ori_mem(options, system): """ Create the memory controllers based on the options and attach them. If requested, we make a multi-channel configuration of the selected memory controller class by creating multiple instances of the specific class. The individual controllers have their parameters set such that the address range is interleaved between them. """ # Mandatory options opt_mem_type = options.mem_type opt_mem_channels = options.mem_channels # Optional options opt_tlm_memory = getattr(options, "tlm_memory", None) opt_external_memory_system = getattr(options, "external_memory_system", None) opt_elastic_trace_en = getattr(options, "elastic_trace_en", False) opt_mem_ranks = getattr(options, "mem_ranks", None) if opt_mem_type == "HMC_2500_1x32": HMChost = HMC.config_hmc_host_ctrl(options, system) HMC.config_hmc_dev(options, system, HMChost.hmc_host) subsystem = system.hmc_dev xbar = system.hmc_dev.xbar else: subsystem = system xbar = system.membus if opt_tlm_memory: system.external_memory = m5.objects.ExternalSlave( port_type="tlm_slave", port_data=opt_tlm_memory, port=system.membus.master, addr_ranges=system.mem_ranges) system.kernel_addr_check = False return if opt_external_memory_system: subsystem.external_memory = m5.objects.ExternalSlave( port_type=opt_external_memory_system, port_data="init_mem0", port=xbar.master, addr_ranges=system.mem_ranges) subsystem.kernel_addr_check = False return nbr_mem_ctrls = opt_mem_channels import math from m5.util import fatal intlv_bits = int(math.log(nbr_mem_ctrls, 2)) if 2 ** intlv_bits != nbr_mem_ctrls: fatal("Number of memory channels must be a power of 2") cls = get(opt_mem_type) mem_ctrls = [] if opt_elastic_trace_en and not issubclass(cls, m5.objects.SimpleMemory): fatal("When elastic trace is enabled, configure mem-type as " "simple-mem.") # The default behaviour is to interleave memory channels on 128 # byte granularity, or cache line granularity if larger than 128 # byte. This value is based on the locality seen across a large # range of workloads. intlv_size = max(128, system.cache_line_size.value) # For every range (most systems will only have one), create an # array of controllers and set their parameters to match their # address mapping in the case of a DRAM for r in system.mem_ranges: for i in range(nbr_mem_ctrls): mem_ctrl = create_mem_ctrl(cls, r, i, nbr_mem_ctrls, intlv_bits, intlv_size) # Set the number of ranks based on the command-line # options if it was explicitly set if issubclass(cls, m5.objects.DRAMCtrl) and opt_mem_ranks: mem_ctrl.ranks_per_channel = opt_mem_ranks # Enable low-power DRAM states if option is set if issubclass(cls, m5.objects.DRAMCtrl): mem_ctrl.enable_dram_powerdown = \ options.enable_dram_powerdown if opt_elastic_trace_en: mem_ctrl.latency = '1ns' print("For elastic trace, over-riding Simple Memory " "latency to 1ns.") mem_ctrls.append(mem_ctrl) subsystem.mem_ctrls = mem_ctrls # Connect the controllers to the membus for i in range(len(subsystem.mem_ctrls)): if opt_mem_type == "HMC_2500_1x32": subsystem.mem_ctrls[i].port = xbar[i/4].master # Set memory device size. There is an independent controller for # each vault. All vaults are same size. subsystem.mem_ctrls[i].device_size = options.hmc_dev_vault_size else: subsystem.mem_ctrls[i].port = xbar.master def valid_size_of(container): import math if container is None: return -1 else: return len(container) def create_addr_alignment_mapper(addr_base, original_ranges): from m5.util import convert from m5.objects import AddrRange, CowardAddrMapper remapped_ranges = [] next_base = addr_base assert(valid_size_of(original_ranges) > 0) for rg in original_ranges: remapped_ranges.append(AddrRange(next_base, size = rg.size())) next_base = next_base + rg.size() assert(valid_size_of(original_ranges) == valid_size_of(remapped_ranges)) return CowardAddrMapper(original_ranges = original_ranges, \ remapped_ranges = remapped_ranges) def create_home_agent(phys_ranges): from m5.util import convert from m5.objects import AddrRange, HomeAgent mem_ranges = [] next_base = convert.toMemorySize('0') assert(valid_size_of(phys_ranges) > 0) for rg in phys_ranges: mem_ranges.append(AddrRange(next_base, size = rg.size())) next_base = next_base + rg.size() assert(valid_size_of(phys_ranges) == valid_size_of(mem_ranges)) return HomeAgent(phys_ranges = phys_ranges, mem_ranges = mem_ranges) def create_mem_subsystem(options, system, intlv_size, disable_kvm_map): import math from m5.util import fatal, convert from m5.objects import Addr, AddrRange from m5.objects import FlexMem, HybridMem, PortForwarder, SimpleMemory if options.mem_type != "MemSubsystem": fatal("options.mem_type != 'MemSubsystem'") if getattr(options, "tlm_memory", None): fatal("tlm_memory") if getattr(options, "external_memory_system", None): fatal("external_memory_system") if getattr(options, "elastic_trace_en", False): fatal("elastic_trace_en") if options.mem_channels != 1: fatal("options.mem_channels != 1") if options.num_dirs != 1: fatal("options.num_dirs != 1") if getattr(options, "mem_ranks", None): fatal("mem_ranks") split_char = ';' channel_forwarder = PortForwarder() channel_ranges = [] channel_sizes = options.channel_sizes.split(split_char) channel_types = options.channel_types.split(split_char) to_channel_addr = [] mem_ctrls = [] phys_data = [] balance_interval = options.balance_interval warmup_interval = options.time_warmup mem_space_size = convert.toMemorySize('0') assert(valid_size_of(channel_sizes) > 0) for sz in [convert.toMemorySize(x) for x in channel_sizes]: channel_ranges.append(AddrRange(mem_space_size, size = sz)) mem_space_size = mem_space_size + sz assert(mem_space_size >= (sum(rg.size() for rg in system.mem_ranges))) assert(valid_size_of(channel_types) > 0) for tp in channel_types: assert(issubclass(get(tp), m5.objects.DRAMCtrl)) assert(tp != "HMC_2500_1x32") assert(valid_size_of(channel_types) == valid_size_of(channel_ranges)) assert(valid_size_of(channel_ranges) > 0) for idx in range(len(channel_ranges)): mapper = create_addr_alignment_mapper( \ convert.toMemorySize('0'), [channel_ranges[idx]]) assert(valid_size_of(mapper.remapped_ranges) == 1) mem_ctrl = create_mem_ctrl(get(channel_types[idx]), \ mapper.remapped_ranges[0], 0, 1, 0, intlv_size) mem_ctrl.in_addr_map = False mem_ctrl.kvm_map = False channel_forwarder.master = mapper.slave mapper.master = mem_ctrl.port to_channel_addr.append(mapper) mem_ctrls.append(mem_ctrl) assert(valid_size_of(system.mem_ranges) > 0) for rg in system.mem_ranges: data = SimpleMemory(range = rg) if disable_kvm_map: data.kvm_map = False phys_data.append(data) home_agent = create_home_agent(system.mem_ranges) if convert.toMemorySize(options.channel_intlv_size) == 0: hybrid_mem = HybridMem(phys_ranges = home_agent.phys_ranges, \ mem_ranges = home_agent.mem_ranges, \ channel_ranges=channel_ranges, \ time_interval=balance_interval, \ time_warmup=warmup_interval) home_agent.master = hybrid_mem.slave hybrid_mem.master = channel_forwarder.slave system.hybrid_mem = hybrid_mem elif convert.toMemorySize(options.channel_intlv_size) > 0: flex_mem = FlexMem(mem_ranges = home_agent.mem_ranges, \ channel_ranges = channel_ranges, \ intlv_size = options.channel_intlv_size) home_agent.master = flex_mem.slave flex_mem.master = channel_forwarder.slave system.flex_mem = flex_mem else: fatal("impossible") system.mem_subsystem = home_agent system.channel_forwarder = channel_forwarder system.to_channel_addr = to_channel_addr system.mem_ctrls = mem_ctrls system.phys_data = phys_data system.mmap_using_noreserve = True return system.mem_subsystem def config_mem_subsystem(options, system): import math from m5.objects import CowardAddrMapper, PortForwarder intlv_size = max(128, system.cache_line_size.value) system_mem_range_port = [] mem_subsystem_forwarder = PortForwarder() mem_subsystem = create_mem_subsystem(options, system, intlv_size, False) mem_subsystem_forwarder.master = mem_subsystem.slave for rg in system.mem_ranges: range_port = CowardAddrMapper( \ original_ranges = rg, remapped_ranges = rg) system.membus.master = range_port.slave range_port.master = mem_subsystem_forwarder.slave system_mem_range_port.append(range_port) system.system_mem_range_port = system_mem_range_port system.mem_subsystem_forwarder = mem_subsystem_forwarder def config_mem(options, system): if options.mem_type == "MemSubsystem": config_mem_subsystem(options, system) else: config_ori_mem(options, system)
#!/usr/bin/env python # coding: utf-8 class Default(object): def __init__(self): import re self.__pattern = re.compile('\s+') def segment(self, text): from salada import language sequence = self.__pattern.split(text) last_index = len(sequence) - 1 segments = [ language.Segment( s, i == 0, i == last_index, ) for i, s in enumerate(sequence) ] return segments
import re, json, io thesaurus = [] with open('th_en_US_v2.dat') as fp: encoding = fp.readline().rstrip('\n') lineNumber = 1 numberOfMeanings = 0 for line in fp: lineNumber += 1 line = line.rstrip('\n').split("|") if len(line) == 2 and not (line[0].startswith("(") and line[0].endswith(")")): word = line[0] if numberOfMeanings != 0: print "Unexpected error E at line {}".format(lineNumber) numberOfMeanings = int(line[1]) # thesaurusWord = {"word": word, "numberOfMeanings": numberOfMeanings, "meanings": []} thesaurusWord = {"word": word, "numberOfSynonyms": 0, "synonyms": []} elif len(line) == 1: print "Unexpected error A at line {}".format(lineNumber) word = "?" if numberOfMeanings != 0: print "Unexpected error F at line {}".format(lineNumber) numberOfMeanings = int(line[0]) else: numberOfMeanings -= 1 if numberOfMeanings < 0: # more number of meanings than expected print "Unexpected error D at line {}".format(lineNumber) else: # meaning = { # "partOfSpeech": "", # "synonyms": [], # "genericTerms": [], # "relatedTerms": [], # "similarTerms": [], # "antonyms": [] # } for item in line: if item.startswith("(") and item.endswith(")"): partOfSpeech = item[1:-1] # meaning["partOfSpeech"] = partOfSpeech continue special = re.compile("(.+) \((generic term|related term|similar term|antonym)\)").split(item) special = filter(None,special) if len(special) == 0: # probably encountered "||" print "Unexpected error B at line {}".format(lineNumber) continue elif len(special) == 1: synonym = item # meaning["synonyms"].append(synonym) if thesaurusWord["word"] != synonym and synonym not in thesaurusWord["synonyms"]: thesaurusWord["numberOfSynonyms"] += 1 thesaurusWord["synonyms"].append(synonym) elif len(special) == 2: synonym = special[0] synonymType = special[1] # if synonymType == "generic term": # meaning["genericTerms"].append(synonym) # elif synonymType == "related term": # meaning["relatedTerms"].append(synonym) # elif synonymType == "similar term": # meaning["similarTerms"].append(synonym) # elif synonymType == "antonym": # meaning["antonyms"].append(synonym) # else: # print "Unexpected error G at line {}".format(lineNumber) else: # probably encountered "((", "))", or something unexpected print "Unexpected error C at line {}".format(lineNumber) # thesaurusWord["meanings"].append(meaning) if numberOfMeanings == 0: thesaurus.append(thesaurusWord) with open('thesaurus.json', 'w') as outfile: json.dump(thesaurus, outfile)
# Author: Trevor Perrin # See the LICENSE file for legal information regarding use of this file. """Pure-Python RSA implementation.""" from .cryptomath import * from .asn1parser import ASN1Parser from .rsakey import * from .pem import * class Python_RSAKey(RSAKey): def __init__(self, n=0, e=0, d=0, p=0, q=0, dP=0, dQ=0, qInv=0): if (n and not e) or (e and not n): raise AssertionError() self.n = n self.e = e self.d = d self.p = p self.q = q self.dP = dP self.dQ = dQ self.qInv = qInv self.blinder = 0 self.unblinder = 0 def hasPrivateKey(self): return self.d != 0 def _rawPrivateKeyOp(self, m): #Create blinding values, on the first pass: if not self.blinder: self.unblinder = getRandomNumber(2, self.n) self.blinder = powMod(invMod(self.unblinder, self.n), self.e, self.n) #Blind the input m = (m * self.blinder) % self.n #Perform the RSA operation c = self._rawPrivateKeyOpHelper(m) #Unblind the output c = (c * self.unblinder) % self.n #Update blinding values self.blinder = (self.blinder * self.blinder) % self.n self.unblinder = (self.unblinder * self.unblinder) % self.n #Return the output return c def _rawPrivateKeyOpHelper(self, m): #Non-CRT version #c = powMod(m, self.d, self.n) #CRT version (~3x faster) s1 = powMod(m, self.dP, self.p) s2 = powMod(m, self.dQ, self.q) h = ((s1 - s2) * self.qInv) % self.p c = s2 + self.q * h return c def _rawPublicKeyOp(self, c): m = powMod(c, self.e, self.n) return m def acceptsPassword(self): return False def generate(bits): key = Python_RSAKey() p = getRandomPrime(bits//2, False) q = getRandomPrime(bits//2, False) t = lcm(p-1, q-1) key.n = p * q key.e = 65537 key.d = invMod(key.e, t) key.p = p key.q = q key.dP = key.d % (p-1) key.dQ = key.d % (q-1) key.qInv = invMod(q, p) return key generate = staticmethod(generate) def parsePEM(s, passwordCallback=None): """Parse a string containing a PEM-encoded <privateKey>.""" if pemSniff(s, "PRIVATE KEY"): bytes = dePem(s, "PRIVATE KEY") return Python_RSAKey._parsePKCS8(bytes) elif pemSniff(s, "RSA PRIVATE KEY"): bytes = dePem(s, "RSA PRIVATE KEY") return Python_RSAKey._parseSSLeay(bytes) else: raise SyntaxError("Not a PEM private key file") parsePEM = staticmethod(parsePEM) def _parsePKCS8(bytes): p = ASN1Parser(bytes) # first element in PrivateKeyInfo is an INTEGER version = p.getChild(0).value if bytesToNumber(version) != 0: raise SyntaxError("Unrecognized PKCS8 version") # second element in PrivateKeyInfo is a SEQUENCE of type # AlgorithmIdentifier algIdent = p.getChild(1) seqLen = algIdent.getChildCount() # first item of AlgorithmIdentifier is an OBJECT (OID) oid = algIdent.getChild(0) if list(oid.value) == [42, 134, 72, 134, 247, 13, 1, 1, 1]: keyType = "rsa" elif list(oid.value) == [42, 134, 72, 134, 247, 13, 1, 1, 10]: keyType = "rsa-pss" else: raise SyntaxError("Unrecognized AlgorithmIdentifier: {0}" .format(list(oid.value))) # second item of AlgorithmIdentifier are parameters (defined by # above algorithm) if keyType == "rsa": if seqLen != 2: raise SyntaxError("Missing parameters for RSA algorithm ID") parameters = algIdent.getChild(1) if parameters.value != bytearray(0): raise SyntaxError("RSA parameters are not NULL") else: # rsa-pss pass # ignore parameters - don't apply restrictions if seqLen > 2: raise SyntaxError("Invalid encoding of AlgorithmIdentifier") #Get the privateKey privateKeyP = p.getChild(2) #Adjust for OCTET STRING encapsulation privateKeyP = ASN1Parser(privateKeyP.value) return Python_RSAKey._parseASN1PrivateKey(privateKeyP) _parsePKCS8 = staticmethod(_parsePKCS8) def _parseSSLeay(bytes): privateKeyP = ASN1Parser(bytes) return Python_RSAKey._parseASN1PrivateKey(privateKeyP) _parseSSLeay = staticmethod(_parseSSLeay) def _parseASN1PrivateKey(privateKeyP): version = privateKeyP.getChild(0).value[0] if version != 0: raise SyntaxError("Unrecognized RSAPrivateKey version") n = bytesToNumber(privateKeyP.getChild(1).value) e = bytesToNumber(privateKeyP.getChild(2).value) d = bytesToNumber(privateKeyP.getChild(3).value) p = bytesToNumber(privateKeyP.getChild(4).value) q = bytesToNumber(privateKeyP.getChild(5).value) dP = bytesToNumber(privateKeyP.getChild(6).value) dQ = bytesToNumber(privateKeyP.getChild(7).value) qInv = bytesToNumber(privateKeyP.getChild(8).value) return Python_RSAKey(n, e, d, p, q, dP, dQ, qInv) _parseASN1PrivateKey = staticmethod(_parseASN1PrivateKey)
from flask import Flask, render_template, request, redirect from flask_sqlalchemy import SQLAlchemy from datetime import datetime app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///posts.db' db = SQLAlchemy(app) class BlogPost(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(100), nullable=False) content = db.Column(db.Text, nullable=False) author = db.Column(db.String(20), nullable=False, default='N/A') date_posted = db.Column(db.DateTime, nullable=False, default=datetime.utcnow) def __repr__(self): return 'Blog post ' + str(self.id) @app.route('/') def index(): return render_template('index.html') @app.route('/posts', methods=['GET', 'POST']) def posts(): if request.method == 'POST': post_title = request.form['title'] post_content = request.form['content'] post_author = request.form['author'] new_post = BlogPost(title=post_title, content=post_content, author=post_author) db.session.add(new_post) db.session.commit() return redirect('/posts') else: all_posts = BlogPost.query.order_by(BlogPost.date_posted).all() return render_template('posts.html', posts=all_posts) @app.route('/posts/delete/<int:id>') def delete(id): post = BlogPost.query.get_or_404(id) db.session.delete(post) db.session.commit() return redirect('/posts') @app.route('/posts/edit/<int:id>', methods=['GET', 'POST']) def edit(id): post = BlogPost.query.get_or_404(id) if request.method == 'POST': post.title = request.form['title'] post.author = request.form['author'] post.content = request.form['content'] db.session.commit() return redirect('/posts') else: return render_template('edit.html', post=post) @app.route('/posts/new', methods=['GET', 'POST']) def new_post(): if request.method == 'POST': post.title = request.form['title'] post.author = request.form['author'] post.content = request.form['content'] new_post = BlogPost(title=post_title, content=post_content, author=post_author) db.session.add(new_post) db.session.commit() return redirect('/posts') else: return render_template('new_post.html') if __name__ == "__main__": app.run(debug=True)
import unittest from main import parse_data from models import Marker class TestParseData(unittest.TestCase): def setUp(self): self.marker_dummy = dict(type=1, title="test title", description="test description", latitude=1, longitude=1) self.bad_marker_dummy = dict(type=1, title="No properties") def tearDown(self): self.marker_dummy = None self.bad_marker_dummy = None def test_data_null(self): self.assertIsNone(parse_data(Marker, None)) def test_bad_data(self): self.assertIsNone(parse_data(Marker, self.bad_marker_dummy)) def test_parse_marker(self): marker = parse_data(Marker, self.marker_dummy) for key, value in self.marker_dummy.iteritems(): self.assertEqual(getattr(marker, key), value) if __name__ == '__main__': unittest.main() suite = unittest.TestLoader().loadTestsFromTestCase(TestParseData) unittest.TextTestRunner(verbosity=2).run(suite)
# Create your views here. from django.http import HttpResponse, HttpResponseNotFound from django.shortcuts import render from django.shortcuts import redirect from OctaHomeDeviceInput.models import * from OctaHomeCore.views.base import * from OctaHomeCore.models import * from OctaHomeLights.models import * from OctaHomeTempControl.models import * class handleHomeStatsView(viewRequestHandler): def getViewParameters(self): allDevices = Device.getDevices() lights = LightDevice.getDevices() fans = Fan.getDevices() numDevices = len(allDevices) numLights = len(lights) numFans = len(fans) devicesOn = 0 lightsOn = 0 for light in lights: if light.IsOn: lightsOn = lightsOn + 1 devicesOn = devicesOn + 1 fansOn = 0 for fan in fans: if fan.MaxFanSpeed > 0: fansOn = fansOn + 1 devicesOn = devicesOn + 1 stats = { 'numDevices':numDevices, 'numLights':numLights, 'numFans':numFans, 'devicesOn':devicesOn, 'lightsOn':lightsOn, 'fansOn':fansOn, } paramerters = {'Stats':stats} return paramerters return None def getTemplate(self): return 'OctaHomeHomeStats/HomeStats' def getSidebarUrlName(self): return 'Home'
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' main.py Main script for AsyncioProp. usage: python3 main.py [-h] [-s SERVER] [-p PORT] [-d] [-l LOGGER] optional arguments: -h, --help show this help message and exit -s SERVER, --server SERVER change MQTT server host -p PORT, --port PORT change MQTT server port -d, --debug set DEBUG log level -l LOGGER, --logger LOGGER use logging config file To switch MQTT broker, kill the program and start again with new arguments. ''' import asyncio import os import platform import signal import sys import uuid import paho.mqtt.client as mqtt os.chdir(os.path.dirname(os.path.abspath(__file__))) from constants import * try: PYPROPS_CORELIBPATH sys.path.append(PYPROPS_CORELIBPATH) except NameError: pass from CryingDollApp import CryingDollApp from Singleton import Singleton, SingletonException me = None try: me = Singleton() except SingletonException: sys.exit(-1) except BaseException as e: print(e) if USE_GPIO and os.path.isfile('/opt/vc/include/bcm_host.h'): import RPi.GPIO as GPIO GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) mqtt_client = mqtt.Client(uuid.uuid4().urn, clean_session=True, userdata=None) app = CryingDollApp(sys.argv, mqtt_client, debugging_mqtt=False) loop = asyncio.get_event_loop() app.withEventLoop(loop) # Assign handler for process exit (shows not effect on Windows in debug here) signal.signal(signal.SIGTERM, loop.stop) signal.signal(signal.SIGINT, loop.stop) if platform.system() != 'Windows': signal.signal(signal.SIGHUP, loop.stop) signal.signal(signal.SIGQUIT, loop.stop) loop.run_forever() loop.close() if USE_GPIO and os.path.isfile('/opt/vc/include/bcm_host.h'): GPIO.cleanup() try: mqtt_client.disconnect() mqtt_client.loop_stop() except: pass del (me) sys.exit(0)
import sc2 from sc2.ids.unit_typeid import UnitTypeId from sc2.units import Units from sc2.position import Point2 class WorkerRushBot(sc2.BotAI): """ - Worker Rush """ def __init__(self): super()._initialize_variables() self.close_to_enemies_base = False self.all_retreat = False self.last_probe_moved = False self.low_health_amount = 0 self.low_health_probe: Units = [] self.base_mineral = [] async def on_step(self, iteration): if iteration == 0: for w in self.workers: w.move(self.enemy_start_locations[0]) self.townhalls.ready[0].train(UnitTypeId.PROBE) self.base_mineral = self.mineral_field.closest_to( self.townhalls.ready[0] ) if self.units: distance_to_enemies_base = self.units.closest_distance_to( self.enemy_start_locations[0] ) else: distance_to_enemies_base = 1000 if ( distance_to_enemies_base < 20 and not self.close_to_enemies_base ): self.close_to_enemies_base = True if iteration > 10: probes = self.units(UnitTypeId.PROBE).collecting # probes = self.units(UnitTypeId.PROBE).closest_to(self.base_mineral) [p.move(self.enemy_start_locations[0]) for p in probes] if not self.units: await self.client.leave() await self.probes_micro_control() async def on_end(self, game_result): print(f"on_end() was called with result: {game_result}") async def probes_micro_control(self): enemies = self.enemy_units enemies_can_attack = enemies.filter( lambda u: u.can_attack_ground ) if ( enemies and self.close_to_enemies_base ): for p in self.units(UnitTypeId.PROBE).filter( lambda p: p not in self.low_health_probe ): close_enemies = enemies_can_attack.filter( lambda u: u.distance_to(u) < 5 ) # probe's health is too low, retreat # if p.shield_percentage < 1 / 10: # if close_enemies: # p.gather(self.base_mineral) # self.low_health_amount += 1 # self.low_health_probe.append(p) # continue # probe is ready to attack, shoot nearest ground unit enemies_to_attack = enemies.filter( lambda u: u.distance_to(p) <= 2 and not u.is_flying ) if p.weapon_cooldown == 0 and enemies_to_attack: focus_enemey = self.focus_enemy(p, enemies_to_attack) if focus_enemey: p.attack(focus_enemey) continue def focus_enemy(self, unit, enemies_in_range): if enemies_in_range: target = min( enemies_in_range, key=lambda e: (e.health + e.shield) / unit.calculate_dps_vs_target(e) ) return target else: return None
class Node: def __init__(self, value): self.value = value self.next = None def add(self, value): self.next = Node(value) def reverse(self): cur = self new = cur.next cur.next = None # new tail? while new is not None: prev = cur cur = new new = cur.next cur.next = prev return cur root = Node(3) cur = root cur.add(4) cur = cur.next cur.add(5) cur = cur.next cur.add(6) cur = cur.next cur = root while cur: print(cur.value) cur = cur.next print("-----") cur = root.reverse() while cur: print(cur.value) cur = cur.next
#!/bin/python import unittest from types import SimpleNamespace from sap import get_logger import sap.errors import sap.adt from mock import Connection, Response from fixtures_adt_package import GET_PACKAGE_ADT_XML from fixtures_adt_repository import (PACKAGE_ROOT_NODESTRUCTURE_OK_RESPONSE, PACKAGE_ROOT_REQUEST_XML, PACKAGE_SOURCE_LIBRARY_NODESTRUCUTRE_OK_RESPONSE, PACKAGE_SOURCE_LIBRARY_REQUEST_XML, PACKAGE_EMPTY_NODESTRUCTURE_OK_RESPONSE, PACKAGE_ENVELOPE_NODESTRUCTURE_OK_RESPONSE, PACKAGE_WITHOUT_SUBPKG_NODESTRUCTURE_OK_RESPONSE) FIXTURE_PACKAGE_XML="""<?xml version="1.0" encoding="UTF-8"?> <pak:package xmlns:pak="http://www.sap.com/adt/packages" xmlns:adtcore="http://www.sap.com/adt/core" adtcore:type="DEVC/K" adtcore:description="description" adtcore:language="EN" adtcore:name="$TEST" adtcore:masterLanguage="EN" adtcore:masterSystem="NPL" adtcore:responsible="FILAK" adtcore:version="active"> <adtcore:packageRef adtcore:name="$TEST"/> <pak:attributes pak:packageType="development"/> <pak:superPackage adtcore:name="$MASTER"/> <pak:applicationComponent pak:name="PPM"/> <pak:transport> <pak:softwareComponent pak:name="LOCAL"/> <pak:transportLayer pak:name="HOME"/> </pak:transport> <pak:translation/> <pak:useAccesses/> <pak:packageInterfaces/> <pak:subPackages/> </pak:package>""" class TestADTPackage(unittest.TestCase): def test_init(self): conn = Connection(collections={'/sap/bc/adt/packages': ['application/vnd.sap.adt.packages.v1+xml']}) metadata = sap.adt.ADTCoreData(language='EN', master_language='EN', master_system='NPL', responsible='FILAK') package = sap.adt.Package(conn, '$TEST', metadata=metadata) package.description = 'description' package.set_package_type('development') package.set_software_component('LOCAL') package.set_transport_layer('HOME') package.set_app_component('PPM') package.super_package.name = '$MASTER' package.create() self.assertEqual(len(conn.execs), 1) self.assertEqual(conn.execs[0][0], 'POST') self.assertEqual(conn.execs[0][1], '/sap/bc/adt/packages') self.assertEqual(conn.execs[0][2], {'Content-Type': 'application/vnd.sap.adt.packages.v1+xml'}) self.maxDiff = None self.assertEqual(conn.execs[0][3], FIXTURE_PACKAGE_XML) def test_package_serialization_v2(self): conn = Connection() metadata = sap.adt.ADTCoreData(language='EN', master_language='EN', master_system='NPL', responsible='FILAK') package = sap.adt.Package(conn, '$TEST', metadata=metadata) package.description = 'description' package.set_package_type('development') package.set_software_component('LOCAL') package.set_transport_layer('HOME') package.set_app_component('PPM') package.super_package.name = '$MASTER' package.create() self.assertEqual(conn.execs[0][2], {'Content-Type': 'application/vnd.sap.adt.packages.v2+xml'}) self.maxDiff = None self.assertEqual(conn.execs[0][3], FIXTURE_PACKAGE_XML) def test_adt_package_fetch(self): conn = Connection([Response(text=GET_PACKAGE_ADT_XML, status_code=200, headers={'Content-Type': 'application/vnd.sap.adt.packages.v1+xml; charset=utf-8'})]) package = sap.adt.Package(conn, '$IAMTHEKING') package.fetch() self.assertEqual(len(conn.execs), 1) self.assertEqual(conn.mock_methods(), [('GET', '/sap/bc/adt/packages/%24iamtheking')]) self.maxDiff = None self.assertEqual(package.description, 'This is a package') class TestADTPackageWalk(unittest.TestCase): def test_with_empty_subpackage(self): connection = Connection([PACKAGE_ROOT_NODESTRUCTURE_OK_RESPONSE, PACKAGE_SOURCE_LIBRARY_NODESTRUCUTRE_OK_RESPONSE, PACKAGE_EMPTY_NODESTRUCTURE_OK_RESPONSE]) walk_iter = sap.adt.package.walk(sap.adt.Package(connection, '$VICTORY')) root_path, subpackages, objects = next(walk_iter) self.assertEqual(connection.execs[0].adt_uri, '/sap/bc/adt/repository/nodestructure') self.assertEqual(connection.execs[0].params['parent_name'], '$VICTORY') self.assertEqual(connection.execs[0].body, PACKAGE_ROOT_REQUEST_XML) self.assertEqual(connection.execs[1].adt_uri, '/sap/bc/adt/repository/nodestructure') self.assertEqual(connection.execs[1].params['parent_name'], '$VICTORY') self.assertEqual(connection.execs[1].body, PACKAGE_SOURCE_LIBRARY_REQUEST_XML) self.assertEqual(root_path, []) self.assertEqual(subpackages, ['$VICTORY_TESTS']) self.assertEqual(objects, [SimpleNamespace(typ='CLAS/OC', name='ZCL_HELLO_WORLD', uri='/sap/bc/adt/oo/classes/zcl_hello_world'), SimpleNamespace(typ='INTF/OI', name='ZIF_HELLO_WORLD', uri='/sap/bc/adt/oo/interfaces/zif_hello_world'), SimpleNamespace(typ='PROG/P', name='Z_HELLO_WORLD', uri='/sap/bc/adt/programs/programs/z_hello_world')]) root_path, subpackages, objects = next(walk_iter) self.assertEqual(connection.execs[2].adt_uri, '/sap/bc/adt/repository/nodestructure') self.assertEqual(connection.execs[2].params['parent_name'], '$VICTORY_TESTS') self.assertEqual(connection.execs[2].body, PACKAGE_ROOT_REQUEST_XML) self.assertEqual(len(connection.execs), 3) self.assertEqual(root_path, ['$VICTORY_TESTS']) self.assertEqual(subpackages, []) self.assertEqual(objects, []) def test_with_envelope_root(self): connection = Connection([PACKAGE_ENVELOPE_NODESTRUCTURE_OK_RESPONSE, PACKAGE_WITHOUT_SUBPKG_NODESTRUCTURE_OK_RESPONSE, PACKAGE_SOURCE_LIBRARY_NODESTRUCUTRE_OK_RESPONSE]) walk_iter = sap.adt.package.walk(sap.adt.Package(connection, '$VICTORY')) root_path, subpackages, objects = next(walk_iter) self.assertEqual(connection.execs[0].adt_uri, '/sap/bc/adt/repository/nodestructure') self.assertEqual(connection.execs[0].params['parent_name'], '$VICTORY') self.assertEqual(connection.execs[0].body, PACKAGE_ROOT_REQUEST_XML) self.assertEqual(root_path, []) self.assertEqual(subpackages, ['$VICTORY_TESTS']) self.assertEqual(objects, []) self.assertEqual(len(connection.execs), 1) root_path, subpackages, objects = next(walk_iter) self.assertEqual(connection.execs[1].adt_uri, '/sap/bc/adt/repository/nodestructure') self.assertEqual(connection.execs[1].params['parent_name'], '$VICTORY_TESTS') self.assertEqual(connection.execs[1].body, PACKAGE_ROOT_REQUEST_XML) self.assertEqual(connection.execs[2].adt_uri, '/sap/bc/adt/repository/nodestructure') self.assertEqual(connection.execs[2].params['parent_name'], '$VICTORY_TESTS') self.assertEqual(connection.execs[2].body, PACKAGE_SOURCE_LIBRARY_REQUEST_XML) self.assertEqual(len(connection.execs), 3) self.assertEqual(root_path, ['$VICTORY_TESTS']) self.assertEqual(subpackages, []) self.assertEqual(objects, [SimpleNamespace(typ='CLAS/OC', name='ZCL_HELLO_WORLD', uri='/sap/bc/adt/oo/classes/zcl_hello_world'), SimpleNamespace(typ='INTF/OI', name='ZIF_HELLO_WORLD', uri='/sap/bc/adt/oo/interfaces/zif_hello_world'), SimpleNamespace(typ='PROG/P', name='Z_HELLO_WORLD', uri='/sap/bc/adt/programs/programs/z_hello_world')]) if __name__ == '__main__': unittest.main()
import json # DB->db.json内にあるデータベースへのログインデータの読み込みを行う from peewee import * #データベースの操作に必要 def db_login(): with open('./DB/db.json', 'r', encoding='utf-8') as f: db_set = json.load(f) db = MySQLDatabase( host=db_set['mariadb']['host'], port=db_set['mariadb']['port'], user=db_set['mariadb']['user'], password=db_set['mariadb']['password'], database=db_set['mariadb']['dbname'], ) return db
#!/usr/bin/env python # -*- encoding: utf-8 -*- ''' @File : regression03.py @Time : 2019/07/15 20:47:44 @Author : xiao ming @Version : 1.0 @Contact : xiaoming3526@gmail.com @Desc : 岭回归以及逐步线性回归 @github : https://github.com/aimi-cn/AILearners ''' # here put the import lib from matplotlib.font_manager import FontProperties import matplotlib.pyplot as plt import numpy as np ''' @description: 加载数据 @param: fileName - 文件名 @return: xArr - x数据集 yArr - y数据集 ''' def loadDataSet(fileName): numFeat = len(open(fileName).readline().split('\t')) - 1 xArr = []; yArr = [] fr = open(fileName) for line in fr.readlines(): lineArr =[] curLine = line.strip().split('\t') for i in range(numFeat): lineArr.append(float(curLine[i])) xArr.append(lineArr) yArr.append(float(curLine[-1])) return xArr, yArr ''' @description: 数据标准化 @param: xMat - x数据集 yMat - y数据集 @return: inxMat - 标准化后的x数据集 inyMat - 标准化后的y数据集 ''' def regularize(xMat, yMat): inxMat = xMat.copy() #数据拷贝 inyMat = yMat.copy() yMean = np.mean(yMat, 0) #行与行操作,求均值 inyMat = yMat - yMean #数据减去均值 inMeans = np.mean(inxMat, 0) #行与行操作,求均值 inVar = np.var(inxMat, 0) #行与行操作,求方差 inxMat = (inxMat - inMeans) / inVar #数据减去均值除以方差实现标准化 return inxMat, inyMat ''' @description: 计算平方误差 @param:yArr - 预测值 yHatArr - 真实值 @return: 平方误差 ''' def rssError(yArr,yHatArr): return ((yArr-yHatArr)**2).sum() ''' @description: 前向逐步线性回归 @param: xArr - x输入数据 yArr - y预测数据 eps - 每次迭代需要调整的步长 numIt - 迭代次数 @return: returnMat - numIt次迭代的回归系数矩阵 ''' def stageWise(xArr, yArr, eps = 0.01, numIt = 100): xMat = np.mat(xArr); yMat = np.mat(yArr).T #数据集 xMat, yMat = regularize(xMat, yMat) #数据标准化 m, n = np.shape(xMat) returnMat = np.zeros((numIt, n)) #初始化numIt次迭代的回归系数矩阵 ws = np.zeros((n, 1)) #初始化回归系数矩阵 wsTest = ws.copy() wsMax = ws.copy() for i in range(numIt): #迭代numIt次 # print(ws.T) #打印当前回归系数矩阵 lowestError = float('inf'); #正无穷 for j in range(n): #遍历每个特征的回归系数 for sign in [-1, 1]: wsTest = ws.copy() wsTest[j] += eps * sign #微调回归系数 yTest = xMat * wsTest #计算预测值 rssE = rssError(yMat.A, yTest.A) #计算平方误差 if rssE < lowestError: #如果误差更小,则更新当前的最佳回归系数 lowestError = rssE wsMax = wsTest ws = wsMax.copy() returnMat[i,:] = ws.T #记录numIt次迭代的回归系数矩阵 return returnMat ''' @description: 绘制岭回归系数矩阵 @param:None @return: None ''' def plotstageWiseMat(): font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14) xArr, yArr = loadDataSet('D:/python/AILearners/data/ml/jqxxsz/8.Regression/abalone.txt') returnMat = stageWise(xArr, yArr, 0.005, 1000) fig = plt.figure() ax = fig.add_subplot(111) ax.plot(returnMat) ax_title_text = ax.set_title(u'前向逐步回归:迭代次数与回归系数的关系', FontProperties = font) ax_xlabel_text = ax.set_xlabel(u'迭代次数', FontProperties = font) ax_ylabel_text = ax.set_ylabel(u'回归系数', FontProperties = font) plt.setp(ax_title_text, size = 15, weight = 'bold', color = 'red') plt.setp(ax_xlabel_text, size = 10, weight = 'bold', color = 'black') plt.setp(ax_ylabel_text, size = 10, weight = 'bold', color = 'black') plt.show() if __name__ == '__main__': plotstageWiseMat()
# Django from django.contrib import admin # Circle from circles.models import Circle @admin.register(Circle) class CircleAdmin(admin.ModelAdmin): list_display = ('slug_name', 'name', 'is_public', 'verified', 'is_limited', 'members_limit') search_fields = ('slug_name', 'name') list_filter = ('is_public', 'verified', 'is_limited') actions = ['verify', 'deverify'] def verify(self, request, queryset): queryset.update(verified=True) def deverify(self, request, queryset): queryset.update(verified=False)
from geode import * from numpy import * def test_sse(): random.seed(3871) for i in xrange(10): x = random.randn(2) assert all(x==sse_pack_unpack(x))
""" Party endpoints """ from flask import Flask, make_response, abort, jsonify, Blueprint,request from app.api.v2.models import party_model from app.api.v2.models import user_model from app.api.v2 import database from app.api.v2.utils.verify import verify_tokens from app.api.v2.utils.validator import validate_party_json_keys, return_error, validate_string, strip_whitespace, check_duplication, validate_ints PARTY = party_model.Party() USER = user_model.User() party_route = Blueprint('party',__name__,url_prefix='/api/v2') @party_route.route('/parties',methods=['POST']) def save(): """ Save a party into the database method: POST """ # check if is admin user_email, user_id = verify_tokens() if(USER.check_if_admin(user_id) == False): return return_error(401,"Must be an admin to add party") #validate json keys json_key_errors = validate_party_json_keys(request) if json_key_errors: return return_error(400, "missing keys {}".format(json_key_errors)) try: data = request.get_json(force=True) except: return make_response(jsonify({ "status":400, "error":"Ensure your content type is application/json" })),400 name = data["name"] hqaddress = data["hqaddress"] logoUrl = data["logoUrl"] if(validate_string(name) == False): return return_error(400, "Name must be of type string") if(validate_string(hqaddress) == False): return return_error(400, "Hqaddress must be of type string") if(validate_string(logoUrl) == False): return return_error(400, "LogoUrl must be of type string") if(name == ""): return return_error(400,"Name cannot be empty") if(hqaddress == ""): return return_error(400,"Hqaddress cannot be empty") if(logoUrl == ""): return return_error(400,"LogoUrl cannot be empty") name = name.replace("","") hqaddress = hqaddress.strip() logoUrl = logoUrl.strip() if(name == ""): return return_error(400,"Name cannot be empty") if(hqaddress == ""): return return_error(400,"Hqaddress cannot be empty") if(logoUrl == ""): return return_error(400,"LogoUrl cannot be empty") name = strip_whitespace(name) hqaddress = strip_whitespace(hqaddress) logoUrl = strip_whitespace(logoUrl) #check if party with same name exists, if true, abort check_duplication("name","parties", name) PARTY.save(name, hqaddress,logoUrl) return make_response(jsonify({ "status": 201, "party": { "name":name, "hqaddress": hqaddress, "logoUrl": logoUrl } }), 201) @party_route.route('parties/<int:party_id>',methods=['DELETE']) def delete(party_id): """ Delete a political party :params: party id """ # check if is admin user_email, user_id = verify_tokens() if(USER.check_if_admin(user_id) == False): return return_error(401,"Must be an admin to delete party") if(validate_ints(party_id) == False): return return_error(400, "Wrong parameters party id {}").format(party_id) query = """SELECT * FROM parties WHERE party_id = {} """.format(party_id) party = database.select_from_db(query) if not party: return make_response(jsonify({ "message": "Party with id {} does not exist".format(party_id) }), 404) PARTY.delete(party_id) return make_response(jsonify({ "status":200, "message": "Party deleted successfully" }), 200) @party_route.route('parties',methods=['GET']) def get_parties(): """ return all registered parties """ parties = party_model.Party() all_parties = parties.fetch_all_parties() if not all_parties: return make_response(jsonify({ 'status':404, 'error':'There are no registered parties yet' }),404) response = jsonify({ 'status': 200, 'data': all_parties }) response.status_code = 200 return response @party_route.route('parties/<int:party_id>',methods=['GET']) def get_specific_party(party_id): """ Get a specific political party by id """ query = """SELECT * FROM parties WHERE party_id = '{}'""".format(party_id) party = database.select_from_db(query) if not party: return make_response(jsonify({ "status": 404, "error": "Party with id {} is not available".format(party_id), }), 404) return make_response(jsonify({ "status": 200, "data": party }), 200) @party_route.route('parties/<int:party_id>',methods=['PUT']) def update(party_id): """ candidate can update a party """ # check if is admin user_email, user_id = verify_tokens() if(USER.check_if_admin(user_id) == False): return return_error(401,"Must be an admin to update party") #validate json keys json_key_errors = validate_party_json_keys(request) if json_key_errors: return return_error(400, "Missing keys {}".format(json_key_errors)) try: data = request.get_json(force=True) except: return make_response(jsonify({ 'status':400, 'error':'Data should be in json format' }),400) id=party_id name = data["name"] hqaddress = data["hqaddress"] logoUrl = data["logoUrl"] if(validate_string(name) == False): return return_error(400, "Name must be of type string") if(validate_string(hqaddress) == False): return return_error(400, "Hqaddress must be of type string") if(validate_string(logoUrl) == False): return return_error(400, "LogoUrl must be of type string") if(name == ""): return return_error(400,"Name cannot be empty") if(hqaddress == ""): return return_error(400,"Hqaddress cannot be empty") if(logoUrl == ""): return return_error(400,"LogoUrl cannot be empty") name = strip_whitespace(name) hqaddress = strip_whitespace(hqaddress) logoUrl = strip_whitespace(logoUrl) #check if party with same name exists, if true, abort check_duplication("name","parties", name) check_duplication("logoUrl","parties", logoUrl) check_duplication("hqaddress","parties", hqaddress) PARTY.update(id, name, hqaddress, logoUrl) return make_response(jsonify({ "status": 200, "data": { "name":name, "hqaddress": hqaddress, "logoUrl": logoUrl } }), 200)
import tkinter, passwd, _thread class Interface(): def __init__(self, name, size): self.Generator = passwd.Password() self.size = size self.root = tkinter.Tk() self.root.title(name) self.winfo_screen = [self.root.winfo_screenwidth()//2, self.root.winfo_screenheight()//2] self.root.geometry(f'{size[0]}x{size[1]}+{self.winfo_screen[0]-size[0]//2}+{self.winfo_screen[1]-size[1]//2}') self.root.minsize(size[0], size[1]) self.root.maxsize(size[0], size[1]) self.layout() def generate(self, values): _thread.start_new_thread(self.Generator.generate, (values, self.listbox)) def layout(self): #Espace tkinter.Frame(self.root, height=10).pack() #Frame options self.frame_options = tkinter.Frame(self.root, width=self.size[0]-100, height=100, relief=tkinter.SUNKEN, bd=1) self.frame_options.pack() #Itens Frame Options self.var_checkbox = [tkinter.IntVar() for _ in range(0, 4)] text = ('Capital letters', 'Small letters', 'Numbers', 'Symbols') self.checkbox = [tkinter.Checkbutton(self.frame_options, text=x, variable=self.var_checkbox[text.index(x)]) for x in text] [x.select() for x in self.checkbox] self.checkbox[0].place(x=5, y=10) self.checkbox[1].place(x=150, y=10) self.checkbox[2].place(x=5, y=40) self.checkbox[3].place(x=150, y=40) tkinter.Label(self.frame_options, text='Digits:').place(x=10, y=70) self.entry_digits = tkinter.Entry(self.frame_options, width=5) self.entry_digits.place(x=65, y=70) self.button_generate = tkinter.Button(self.frame_options, text="Generate", command=lambda *args: self.generate((self.var_checkbox, self.entry_digits))) self.button_clean = tkinter.Button(self.frame_options, text="Clean", command=lambda *args: self.listbox.delete(0, tkinter.END)) self.button_generate.place(x=140, y=65) self.button_clean.place(x=230, y=65) #Bind self.entry_digits.bind("<Return>", lambda *args: self.generate((self.var_checkbox, self.entry_digits))) self.button_generate.bind("<Return>", lambda *args: self.generate((self.var_checkbox, self.entry_digits))) self.button_generate.bind("<Enter>", lambda *args: self.button_generate.focus_force()) self.button_generate.bind_all("<Alt-KeyPress-g>", lambda *args: self.generate((self.var_checkbox, self.entry_digits))) self.button_clean.bind("<Return>", lambda *args: self.listbox.delete(0, tkinter.END)) self.button_clean.bind_all("<Alt-KeyPress-c>", lambda *args: self.listbox.delete(0, tkinter.END)) #Espace tkinter.Frame(self.root, height=10).pack() #Frame ListBox self.frame_listbox = tkinter.Frame(self.root, relief=tkinter.SUNKEN, bd=1) self.frame_listbox.pack() scrollbar = [tkinter.Scrollbar(self.frame_listbox, orient=x) for x in ('vertical', 'horizontal')] self.listbox = tkinter.Listbox(self.frame_listbox, width=37, height=20, selectmode=tkinter.EXTENDED, yscrollcommand=scrollbar[0].set, xscrollcommand=scrollbar[1].set) scrollbar[0].config(command=self.listbox.yview) scrollbar[1].config(command=self.listbox.xview) scrollbar[0].pack(side="right", fill="y") scrollbar[1].pack(side="bottom", fill="x") self.listbox.pack() def run(self): self.root.mainloop()
""" Youtube Tag --------- This implements a Liquid-style youtube tag for Pelican, based on the jekyll / octopress youtube tag [1]_ Syntax ------ {% youtube id [width height] %} Example ------- {% youtube dQw4w9WgXcQ 640 480 %} Output ------ <span class="videobox"> <iframe width="640" height="480" src="https://www.youtube.com/embed/dQw4w9WgXcQ" frameborder="0" webkitAllowFullScreen mozallowfullscreen allowFullScreen> </iframe> </span> [1] https://gist.github.com/jamieowen/2063748 """ import re from .mdx_liquid_tags import LiquidTags SYNTAX = "{% youtube id [width height] %}" YOUTUBE = re.compile(r'([\S]+)(\s+([\d%]+)\s([\d%]+))?') @LiquidTags.register('youtube') def youtube(preprocessor, tag, markup): width = 640 height = 390 youtube_id = None config_thumb_only = preprocessor.configs.getConfig('YOUTUBE_THUMB_ONLY') config_thumb_size = preprocessor.configs.getConfig('YOUTUBE_THUMB_SIZE') thumb_sizes = { 'maxres': [1280, 720], 'sd': [640, 480], 'hq': [480, 360], 'mq': [320, 180] } if config_thumb_only: if not config_thumb_size: config_thumb_size = 'sd' try: width = thumb_sizes[config_thumb_size][0] height = thumb_sizes[config_thumb_size][1] except KeyError: pass match = YOUTUBE.search(markup) if match: groups = match.groups() youtube_id = groups[0] width = groups[2] or width height = groups[3] or height if youtube_id: if config_thumb_only: thumb_url = 'https://img.youtube.com/vi/{youtube_id}'.format( youtube_id=youtube_id) youtube_out = """<a href="https://www.youtube.com/watch?v={youtube_id}" class="youtube_video" alt="YouTube Video" title="Click to view on YouTube"> <img width="{width}" height="{height}" src="{thumb_url}/{size}default.jpg"> </a>""".format(width=width, height=height, youtube_id=youtube_id, size=config_thumb_size, thumb_url=thumb_url) else: youtube_out = """ <span class="videobox"> <iframe width="{width}" height="{height}" src='https://www.youtube.com/embed/{youtube_id}' frameborder='0' webkitAllowFullScreen mozallowfullscreen allowFullScreen> </iframe> </span> """.format(width=width, height=height, youtube_id=youtube_id).strip() else: raise ValueError("Error processing input, " "expected syntax: {0}".format(SYNTAX)) return youtube_out # --------------------------------------------------- # This import allows youtube tag to be a Pelican plugin from liquid_tags import register # noqa
""" https://fe8ebede-836e-432b-ad74-af1265de3de2.mock.pstmn.io/rangos1 <ConsultaRangosResult> <Mensaje>OK</Mensaje> <Rangos> <Rango> <Desde>501</Desde> <Hasta>540</Hasta> </Rango> <Rango> <Desde>551</Desde> <Hasta>600</Hasta> </Rango> </Rangos> </ConsultaRangosResult> [{'desde': 501, 'hasta': 540}, {'desde': 551, 'hasta': 600}] """ import requests r = requests.get( 'https://fe8ebede-836e-432b-ad74-af1265de3de2.mock.pstmn.io/rangos1') response = r.text mylista = [] r = response.splitlines() le = len(r) for i in range(le): if '<Rango>' in r[i]: dic = dict() if '<Desde>' in r[i+1]: dic['Desde'] = r[i+1].split('<Desde>') e = r[i+1].split('<Desde>') f = e[1].split('</Desde>') dic['Desde'] = f[0] if '<Hasta>' in r[i+2]: dic['Hasta'] = r[i+2].split('<Hasta>') e = r[i+2].split('<Hasta>') f = e[1].split('</Hasta>') dic['Hasta'] = f[0] mylista.append(dic) print(mylista)