content
stringlengths
5
1.05M
# # gtksel.py -- select version of Gtk to use # # Eric Jeschke (eric@naoj.org) # import ginga.toolkit toolkit = ginga.toolkit.toolkit have_gtk3 = False have_gtk2 = False # For now, Gtk 2 has preference if toolkit in ('gtk2', 'choose'): try: import pygtk pygtk.require('2.0') have_gtk2 = True except ImportError: pass if toolkit in ('gtk3', 'choose') and (not have_gtk2): try: # Try to import Gtk 2->3 compatibility layer from gi import pygtkcompat from gi.repository import GdkPixbuf pygtkcompat.enable() pygtkcompat.enable_gtk(version='3.0') have_gtk3 = True except ImportError: pass import gtk import gobject if have_gtk3: # TEMP: until this is fixed or some other acceptable workaround # there is no good way to run on Gtk3 raise Exception("Cairo.ImageSurface.create_for_data is not yet implemented in Gtk3") ginga.toolkit.use('gtk3') def pixbuf_new_from_xpm_data(xpm_data): xpm_data = bytes('\n'.join(xpm_data)) return GdkPixbuf.Pixbuf.new_from_xpm_data(xpm_data) def pixbuf_new_from_array(data, rgbtype, bpp): # Seems Gtk3 Pixbufs do not have the new_from_array() method! #return GdkPixbuf.Pixbuf.new_from_array(data, rgbtype, bpp) daht, dawd, depth = data.shape stride = dawd * 4 * bpp rgb_buf = data.tostring(order='C') hasAlpha = False rgbtype = GdkPixbuf.Colorspace.RGB return GdkPixbuf.Pixbuf.new_from_data(rgb_buf, rgbtype, hasAlpha, 8, dawd, daht, stride, None, None) def pixbuf_new_from_data(rgb_buf, rgbtype, hasAlpha, bpp, dawd, daht, stride): return GdkPixbuf.Pixbuf.new_from_data(rgb_buf, rgbtype, hasAlpha, bpp, dawd, daht, stride, None, None) def pixbuf_new_from_file_at_size(foldericon, width, height): return GdkPixbuf.Pixbuf.new_from_file_at_size(foldericon, width, height) def make_cursor(widget, iconpath, x, y): image = gtk.Image() image.set_from_file(iconpath) pixbuf = image.get_pixbuf() screen = widget.get_screen() display = screen.get_display() return gtk.gdk.Cursor(display, pixbuf, x, y) elif have_gtk2: ginga.toolkit.use('gtk2') def pixbuf_new_from_xpm_data(xpm_data): return gtk.gdk.pixbuf_new_from_xpm_data(xpm_data) def pixbuf_new_from_array(data, rgbtype, bpp): return gtk.gdk.pixbuf_new_from_array(data, rgbtype, bpp) def pixbuf_new_from_data(rgb_buf, rgbtype, hasAlpha, bpp, dawd, daht, stride): return gtk.gdk.pixbuf_new_from_data(rgb_buf, rgbtype, hasAlpha, bpp, dawd, daht, stride) def pixbuf_new_from_file_at_size(foldericon, width, height): return gtk.gdk.pixbuf_new_from_file_at_size(foldericon, width, height) def make_cursor(widget, iconpath, x, y): pixbuf = gtk.gdk.pixbuf_new_from_file(iconpath) screen = widget.get_screen() display = screen.get_display() return gtk.gdk.Cursor(display, pixbuf, x, y) else: raise ImportError("Failed to import gtk. There may be an issue with the toolkit module or it is not installed") #END
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-03-22 18:45 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('topics', '0007_auto_20170322_1054'), ('topics', '0006_auto_20170319_1524'), ] operations = [ ]
from .initialize import * from scipy import stats from ..utils.tools import drop_nan, splat_teff_to_spt,kernel_density from tqdm import tqdm import splat.simulate as spsim import splat.evolve as spev import splat.empirical as spe import wisps #import pymc3 as pm from scipy.interpolate import griddata #import theano.tensor as tt #from theano.compile.ops import as_op import astropy.units as u import numba BINARY_TABLE=pd.read_pickle(DATA_FOLDER+'/binary_lookup_table.pkl.gz') BINARY_TABLE_SYS=(BINARY_TABLE['sys']).values BINARY_TABLE_PRIM=(BINARY_TABLE['prim']).values BINARY_TABLE_SEC=(BINARY_TABLE['sec']).values def log_mass_function(m, alpha): """ Power law mass function """ return np.log(m**-alpha) def log_mass_ratio(q, gamma): """ Power law mass ratio m1 is primary mass m2 is secondary mass """ return np.log(q**gamma) def total_likelihood(m1, q, alpha, gamma): return log_mass_function(m1, alpha)+log_mass_ratio(q, gamma) def simulate_binary(nstuff, mass_range, age_range): """ Simulate a distribution of binaries from simple assumptions This is much faster than splat """ gamma=4 with pm.Model() as model: alpha=0.6 prim=pm.Uniform('m1', lower=mass_range[0], upper=mass_range[1]) #primaries q=pm.Uniform('q', lower=.1, upper=1.) sec=pm.Deterministic('m2', prim*q) age=pm.Uniform('t', lower=age_range[0], upper=age_range[-1]) #system age like = pm.Potential('likelihood', total_likelihood(prim, q, alpha, gamma)) trace = pm.sample(draws=nstuff, cores=4, tune=int(nstuff/20), init='advi') return [trace.m1, trace.m2, trace.t] def get_system_type(pr, sc): """ use the lookup table to get a spectral type for the binary using a linear interpolation to avoid nans """ #where secondary are nans set to primaries sc[np.isnan(sc)]=pr[np.isnan(sc)] interpoints=np.array([BINARY_TABLE_PRIM, BINARY_TABLE_SEC ]).T comb=griddata(interpoints, BINARY_TABLE_SYS , (pr, sc), method='linear') return comb def evolutionary_model_interpolator(mass, age, model): """ My own evolutionary model interpolator, Hoping to make it faster than splat because I'm impatient input: mass, age model: model name """ model_filename=EVOL_MODELS_FOLDER+'//'+model.lower()+'.csv' evolutiomodel=pd.read_csv( model_filename) #use the full cloud treatment for saumon models if model=='saumon2008': evolutiomodel=evolutiomodel[evolutiomodel.cloud=='hybrid'] #make age, teff, mass logarithm scale valuest=np.log10(evolutiomodel.temperature.values) valueslogg=evolutiomodel.gravity.values valueslumn=evolutiomodel.luminosity.values valuesm=np.log10(evolutiomodel.mass.values) valuesag=np.log10(evolutiomodel.age.values) evolpoints=np.array([valuesm, valuesag ]).T teffs=griddata(evolpoints, valuest , (np.log10(mass), np.log10(age)), method='linear') lumn=griddata(evolpoints, valueslumn , (np.log10(mass), np.log10(age)), method='linear') return {'mass': mass*u.Msun, 'age': age*u.Gyr, 'temperature': 10**teffs*u.Kelvin, 'luminosity': lumn*u.Lsun} def simulate_spts(**kwargs): """ Simulate parameters from mass function, mass ratio distribution and age distribution """ recompute=kwargs.get('recompute', False) model_name=kwargs.get('name','baraffe2003') #use hybrid models that predit the T dwarf bump for Saumon Models if model_name=='saumon2008': cloud='hybrid' else: cloud=False #automatically set maxima and minima to avoid having too many nans #mass age and age, min, max #all masses should be 0.01 acceptable_values={'baraffe2003': [0.01, 0.1, 0.001, 8.0], 'marley2019': [0.01, 0.08, 0.001, 8.0], 'saumon2008':[0.01, 0.09, 0.003, 8.0], 'phillips2020':[0.01, 0.075, 0.001, 8.0 ], 'burrows2001':[0.01, 0.1, 0.001, 8.0]} if recompute: nsim = kwargs.get('nsample', 1e5) ranges=acceptable_values[model_name] # masses for singles [this can be done with pymc but nvm] m_singles = spsim.simulateMasses(nsim,range=[ranges[0], ranges[1]],distribution='power-law',alpha=0.6) #ages for singles ages_singles= spsim.simulateAges(nsim,range=[ranges[2], ranges[3]], distribution='uniform') #parameters for binaries #binrs=simulate_binary(int(nsim), [ranges[0], ranges[1]], [ranges[2], ranges[3]]) qs=spsim.simulateMassRatios(nsim,distribution='power-law',q_range=[0.1,1.0],gamma=4) m_prims = spsim.simulateMasses(nsim,range=[ranges[0], ranges[1]],distribution='power-law',alpha=0.6) m_sec=m_prims*qs ages_bin= spsim.simulateAges(nsim,range=[ranges[2], ranges[3]], distribution='uniform') #single_evol=spev.modelParameters(mass=m_singles,age=ages_singles, set=model_name, cloud=cloud) single_evol=evolutionary_model_interpolator(m_singles, ages_singles, model_name) #primary_evol=spev.modelParameters(mass=binrs[0],age=binrs[-1], set=model_name, cloud=cloud) primary_evol=evolutionary_model_interpolator(m_prims,ages_bin, model_name) #secondary_evol=spev.modelParameters(mass=binrs[1],age=binrs[-1], set=model_name, cloud=cloud) secondary_evol=evolutionary_model_interpolator(m_sec,ages_bin, model_name) #save luminosities #temperatures teffs_singl =single_evol['temperature'].value teffs_primar=primary_evol['temperature'].value teffs_second=secondary_evol['temperature'].value #spectraltypes spts_singl =splat_teff_to_spt(teffs_singl) #the singles will be fine, remove nans from systems spt_primar=splat_teff_to_spt(teffs_primar) spt_second=splat_teff_to_spt(teffs_second) #remove nans print ('MAX AGES', np.nanmax(ages_singles)) #print ('MAX AGES', np.nanmax()) xy=np.vstack([np.round(np.array(spt_primar), decimals=0), np.round(np.array(spt_second), decimals=0)]).T spt_binr=get_system_type(xy[:,0], xy[:,1]) values={ 'sing_evol': single_evol, 'sing_spt':spts_singl, 'prim_evol': primary_evol, 'prim_spt':spt_primar, 'sec_evol': secondary_evol, 'sec_spt': spt_second, 'binary_spt': spt_binr } import pickle with open(wisps.OUTPUT_FILES+'/mass_age_spcts_with_bin{}.pkl'.format(model_name), 'wb') as file: pickle.dump(values,file) else: values=pd.read_pickle(wisps.OUTPUT_FILES+'/mass_age_spcts_with_bin{}.pkl'.format(model_name)) return values def make_systems(**kwargs): """ choose a random sets of primaries and secondaries and a sample of single systems based off a preccomputed-evolutionary model grid and an unresolved binary fraction """ #recompute for different evolutionary models model=kwargs.get('model_name', 'baraffe2003') binary_fraction=kwargs.get('bfraction', 0.2) model_vals=simulate_spts(name=model, **kwargs) #nbin= int(len(model_vals['sing_spt'])*binary_fraction) #number of binaries ndraw= int(len(model_vals['sing_spt'])/(1-binary_fraction))-int(len(model_vals['sing_spt'])) nans=np.isnan(model_vals['binary_spt']) bins={'spt': np.random.choice(model_vals['binary_spt'][~nans], ndraw), 'teff': np.random.choice(model_vals['prim_evol']['temperature'].value[~nans], ndraw), 'age': np.random.choice(model_vals['prim_evol']['age'].value[~nans],ndraw), 'mass': np.random.choice(model_vals['prim_evol']['mass'].value[~nans]+model_vals['prim_evol']['mass'].value[~nans],ndraw)} vs={'system_spts': np.concatenate([model_vals['sing_spt'], choices['spt']]), 'system_teff': np.concatenate([(model_vals['sing_evol']['temperature']).value, choices['teff']]), 'system_age': np.concatenate([(model_vals['sing_evol']['age']).value, choices['age']]), 'system_mass': np.concatenate([(model_vals['sing_evol']['mass']).value, choices['mass']])} return vs
from sqlalchemy import Column, String, Integer from .. import Base from .base_model import BaseModel class Item(Base, BaseModel): __tablename__ = 'items' id = Column(Integer, primary_key=True, autoincrement=True) name = Column(String, nullable=False) category = Column(String, nullable=True) count = Column(Integer, default=0) def __init__(self, name: str, category: str, count=0): self.name = name.strip() self.category = category.strip() self.count = count def __repr__(self): return f"<Item(id={self.id}, name={self.name})>"
class Results(object): """ MIOSQP Results """ def __init__(self, x, upper_glob, run_time, status, osqp_solve_time, osqp_iter_avg): self.x = x self.upper_glob = upper_glob self.run_time = run_time self.status = status self.osqp_solve_time = osqp_solve_time self.osqp_iter_avg = osqp_iter_avg
import struct from enum import IntEnum from spherov2.commands import Commands from spherov2.helper import to_bytes, to_int from spherov2.listeners.system_info import Version, LastErrorInfo, ConfigBlock, ManufacturingDate, EventLogStatus class SosMessages(IntEnum): UNKNOWN = 0 SUBPROCESSOR_CRASHED = 1 class BootReasons(IntEnum): COLD_BOOT = 0 UNEXPECTED_RESET = 1 APPLICATION_RESET_DUE_TO_ERROR = 2 APPLICATION_RESET_FOR_A_FIRMWARE_UPDATE = 3 PROCESSOR_IS_BOOTING_FROM_SLEEP = 4 PROCESSOR_IS_RESETTING_FOR_SOME_NON_ERROR_REASON = 5 class SystemInfo(Commands): _did = 17 @staticmethod def get_main_app_version(toy, proc=None): return Version(*struct.unpack('>3H', toy._execute(SystemInfo._encode(toy, 0, proc)).data)) @staticmethod def get_bootloader_version(toy, proc=None): return Version(*struct.unpack('>3H', toy._execute(SystemInfo._encode(toy, 1, proc)).data)) @staticmethod def get_board_revision(toy, proc=None): return toy._execute(SystemInfo._encode(toy, 3, proc)).data[0] @staticmethod def get_mac_address(toy, proc=None): return toy._execute(SystemInfo._encode(toy, 6, proc)).data @staticmethod def get_stats_id(toy, proc=None): return toy._execute(SystemInfo._encode(toy, 19, proc)).data @staticmethod def get_secondary_main_app_version(toy, proc=None): toy._execute(SystemInfo._encode(toy, 23, proc)) return Version( *struct.unpack('>3H', toy._wait_packet(SystemInfo.secondary_main_app_version_notify).data)) secondary_main_app_version_notify = (17, 24, 0xff) @staticmethod def get_processor_name(toy, proc=None): return toy._execute(SystemInfo._encode(toy, 31, proc)).data.rstrip(b'\0') @staticmethod def get_boot_reason(toy, proc=None): return BootReasons(toy._execute(SystemInfo._encode(toy, 32, proc)).data[0]) @staticmethod def get_last_error_info(toy, proc=None): return LastErrorInfo( *struct.unpack('>32sH12s', toy._execute(SystemInfo._encode(toy, 33, proc)).data)) @staticmethod def get_secondary_mcu_bootloader_version(toy, proc=None): toy._execute(SystemInfo._encode(toy, 36, proc)) return Version(*struct.unpack('>3H', toy._wait_packet(SystemInfo.secondary_mcu_bootloader_version_notify).data)) secondary_mcu_bootloader_version_notify = (17, 37, 0xff) @staticmethod def get_three_character_sku(toy, proc=None): return toy._execute(SystemInfo._encode(toy, 40, proc)).data @staticmethod def write_config_block(toy, proc=None): toy._execute(SystemInfo._encode(toy, 43, proc)) @staticmethod def get_config_block(toy, proc=None): data = toy._execute(SystemInfo.get_config_block(SystemInfo._encode(toy, 44, proc).data)) return ConfigBlock(*struct.unpack('>2I', data[:8]), data[8:]) @staticmethod def set_config_block(toy, metadata_version, config_block_version, application_data, proc=None): toy._execute(SystemInfo._encode( 45, proc, [*to_bytes(metadata_version, 4), *to_bytes(config_block_version, 4), *application_data])) @staticmethod def erase_config_block(toy, j, proc=None): toy._execute(SystemInfo._encode(toy, 46, proc, to_bytes(j, 4))) @staticmethod def get_swd_locking_status(toy, proc=None): return bool(toy._execute(SystemInfo._encode(toy, 48, proc)).data[0]) @staticmethod def get_manufacturing_date(toy, proc=None): return ManufacturingDate( *struct.unpack('>HBB', toy._execute(SystemInfo._encode(toy, 51, proc)).data)) @staticmethod def get_sku(toy, proc=None): return toy._execute(SystemInfo._encode(toy, 56, proc)).data.rstrip(b'\0') @staticmethod def get_core_up_time_in_milliseconds(toy, proc=None): return to_int(toy._execute(SystemInfo._encode(toy, 57, proc)).data) @staticmethod def get_event_log_status(toy, proc=None): return EventLogStatus(*struct.unpack('>3I', toy._execute(SystemInfo._encode(toy, 58, proc)).data)) @staticmethod def get_event_log_data(toy, j, j2, proc=None): # unknown name return toy._execute(SystemInfo._encode(toy, 59, proc, to_bytes(j, 4) + to_bytes(j2, 4))).data @staticmethod def clear_event_log(toy, proc=None): toy._execute(SystemInfo._encode(toy, 60, proc)) @staticmethod def enable_sos_message_notify(toy, enable: bool, proc=None): toy._execute(SystemInfo._encode(toy, 61, proc, [int(enable)])) sos_message_notify = (17, 62, 0xff), lambda listener, p: listener(SosMessages(p.data[0])) @staticmethod def get_sos_message(toy, proc=None): toy._execute(SystemInfo._encode(toy, 63, proc)) @staticmethod def clear_sos_message(toy, proc=None): toy._execute(SystemInfo._encode(toy, 68, proc))
# ------------------------------ # 154. Find Minimum in Rotated Sorted Array II # # Description: # Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. # # (i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]). # # Find the minimum element. # # The array may contain duplicates. # # Example 1: # Input: [1,3,5] # Output: 1 # # Example 2: # Input: [2,2,2,0,1] # Output: 0 # # Note: # This is a follow up problem to Find Minimum in Rotated Sorted Array. # Would allow duplicates affect the run-time complexity? How and why? # # Version: 1.0 # 10/30/19 by Jianfa # ------------------------------ class Solution: def findMin(self, nums: List[int]) -> int: low = 0 high = len(nums) - 1 while low < high: mid = (low + high) // 2 if nums[mid] > nums[high]: low = mid + 1 elif nums[mid] < nums[high]: high = mid else: # nums[mid] == nums[high] # not sure where the minimum is high -= 1 return nums[low] # Used for testing if __name__ == "__main__": test = Solution() # ------------------------------ # Summary: # Idea from: https://leetcode.com/problems/find-minimum-in-rotated-sorted-array-ii/discuss/48808/My-pretty-simple-code-to-solve-it # corner case: [3, 1, 3]
from selenium import webdriver from selenium.webdriver.common.keys import Keys import sys import os import time import math class Message(): def __init__(self, user, message): self.user = user self.message = message def __eq__(self, other): return self.message == other.message if os.name == "nt": driverPath = "driver/chromedriver_2.24.exe" dataPath = "Data" else: driverPath = "driver/chromedriver" dataPath = "Data/ChatBot" options = webdriver.ChromeOptions() options.add_argument("--user-data-dir=" + dataPath) driver = webdriver.Chrome(chrome_options=options, executable_path=driverPath) driver.get('https://web.whatsapp.com') driver.execute_script("window.open('','_blank');") driver.switch_to_window(driver.window_handles[0]) driver.switch_to_window(driver.window_handles[1]) driver.get('http://www.square-bear.co.uk/mitsuku/nfchat.htm') driver.switch_to_window(driver.window_handles[0]) input("Choose a chat on whatsapp and press enter : ") chatHistory = [] replyQueue = [] firstRun = True print("Starting...") while True: try: driver.switch_to_window(driver.window_handles[0]) usersDiv = driver.find_element_by_id("side") messageDiv = driver.find_element_by_id("main") messageList = messageDiv.find_element_by_class_name("message-list") messageList = messageList.find_elements_by_class_name("msg") newMessages = [] for message in reversed(messageList): bubbleText = None try: bubbleText = message.find_element_by_class_name( "message-chat").find_element_by_class_name("bubble") except: pass if bubbleText is not None: author = "Unknown" msgObj = None if "has-author" in bubbleText.get_attribute("class"): try: author = bubbleText.find_element_by_class_name( "message-author").find_element_by_class_name("emojitext").text except Exception as e: pass elif "msg-group" in message.get_attribute("class"): author = "Akshay Aradhya" try: text_message = bubbleText.find_element_by_class_name( "message-text").find_element_by_class_name("emojitext").text if len(text_message) > 0: msgObj = Message(author, text_message) except Exception as e: pass if len(chatHistory) > 0 and (msgObj is not None) and msgObj == chatHistory[-1]: break elif msgObj is not None: newMessages.append(msgObj) # print("New Messages : ", len(newMessages)) for message in reversed(newMessages): chatHistory.append(message) # Update Unknown Users for i in range(len(chatHistory)): if i > 0 and chatHistory[i].user == "Unknown": chatHistory[i].user = chatHistory[i - 1].user for message in reversed(newMessages): if message.message[0] == "$" and firstRun == False: replyQueue.append(message) # print("Querries =", len(replyQueue)) firstRun = False if len(replyQueue) == 0: continue # Switch tabs and get Response driver.switch_to_window(driver.window_handles[1]) driver.switch_to_default_content() driver.switch_to.frame('input') textField = driver.find_elements_by_tag_name("input")[1] responses = [] for message in replyQueue: textField.send_keys(message.message[1:] + Keys.ENTER) responseBody = None fontTags = driver.find_elements_by_tag_name("font") for tag in fontTags: if tag.get_attribute("face") == "Trebuchet MS,Arial" and tag.get_attribute("color") == "#000000": responseBody = tag break start = responseBody.text.find("Mitsuku") end = responseBody.text.find("You", 4) firstName = message.user.split(' ')[0] resp = responseBody.text[start + 10:end - 2] print(start, end, repr(resp)) responses.append("@" + firstName + " : " + resp) replyQueue = [] # Switch tabs and reply on whatsapp driver.switch_to_window(driver.window_handles[0]) inputMessage = messageDiv.find_element_by_class_name('input') for response in responses: lines = response.split('\n') for line in lines: inputMessage.send_keys(line) inputMessage.send_keys(Keys.SHIFT, Keys.ENTER) print("SE") inputMessage.send_keys(Keys.ENTER) print("E") except Exception as e: exc_type, exc_obj, exc_tb = sys.exc_info() fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1] print(exc_type, fname, exc_tb.tb_lineno)
import os class Logger(object): def __init__(self): pass @staticmethod def LogDebug(msg): Logger._Log('[D] ' + msg) @staticmethod def LogInformation(msg): Logger._Log('[I] ' + msg) @staticmethod def LogWarning(msg): Logger._Log('[W] ' + msg) @staticmethod def LogError(msg): Logger._Log('[E] ' + msg) @staticmethod def _Log(msg): print(msg)
# 779. K-th Symbol in Grammar """ We build a table of n rows (1-indexed). We start by writing 0 in the 1st row. Now in every subsequent row, we look at the previous row and replace each occurrence of 0 with 01, and each occurrence of 1 with 10. For example, for n = 3, the 1st row is 0, the 2nd row is 01, and the 3rd row is 0110. Given two integer n and k, return the kth (1-indexed) symbol in the nth row of a table of n rows. Input: n = 4, k = 6 Output: 0 Explanation: row 1: 0 row 2: 01 row 3: 0110 row 4: 01101001 """ import math class Solution: def kthGrammar(self, N: int, K: int) -> int: # Base condition if N == 1: return 0 parent = self.kthGrammar(N - 1, math.ceil(K / 2)) isEven = K % 2 == 0 if parent == 1: return 0 if isEven else 1 else: return 1 if isEven else 0 # Tried creating all values, exceeds recursion branching # def kthGrammar(n, k, values): # def insert_helper(values): # print(len(values)) # if len(values) == 0: # return values # temp = values[-1] # values.pop() # insert_helper(values) # if temp == 0: # values.append(0) # values.append(1) # else: # values.append(1) # values.append(0) # def helper(n, values): # if n == 1: # values.append(0) # return values # helper(n - 1, values) # insert_helper(values) # helper(n, values) # values = [] # kthGrammar(12, 1, values) # print(len(values))
from camp.timepix.run import TimePixRun from camp.timepix.vmi import VmiImage run_number = 178 # short run timepix_run = TimePixRun(run_number) # extract data timepix_dict = timepix_run.get_events('centroided', ['x', 'y'], fragment='fragments,test_ion') x, y = timepix_dict['x'], timepix_dict['y'] # show VMI image vmi_image = VmiImage(x, y) vmi_image.show() # zoom in VMI image x_start, x_end = 120, 130 y_start, y_end = 60, 70 vmi_image.zoom_in(x_start, x_end, y_start, y_end) # radial averaging x_center, y_center = 130, 110 ## optional for circle/ ring sectors start_angle, end_angle = -45, 45 # degrees start_radius, end_radius = 20, 100 # pixel radial_average = VmiImage(x, y).create_radial_average((x_center, y_center), angles=(start_angle, end_angle), radii=(start_radius, end_radius))
from collections import defaultdict, Counter from itertools import product, permutations from glob import glob import json import os from pathlib import Path import pickle import sqlite3 import string import sys import time import matplotlib as mpl from matplotlib import colors from matplotlib import pyplot as plt from matplotlib.gridspec import GridSpec from matplotlib.lines import Line2D import matplotlib.patches as mpatches from multiprocessing import Pool import numpy as np import pandas as pd from palettable.colorbrewer.qualitative import Paired_12 from palettable.colorbrewer.diverging import PuOr_5, RdYlGn_6, PuOr_10, RdBu_10 from palettable.scientific.diverging import Cork_10 from scipy.spatial import distance_matrix, ConvexHull, convex_hull_plot_2d from scipy.stats import linregress, pearsonr, lognorm import seaborn as sns import svgutils.compose as sc import asym_io from asym_io import PATH_BASE, PATH_ASYM, PATH_ASYM_DATA import asym_utils as utils import folding_rate import paper_figs import structure PATH_FIG = PATH_ASYM.joinpath("Figures") PATH_FIG_DATA = PATH_FIG.joinpath("Data") custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] #################################################################### ### SI Figures #################################################################### ### FIG 1 def fig1(df, nx=3, ny=3, N=50): fig, ax = plt.subplots(nx,ny, figsize=(12,12)) ax = ax.reshape(ax.size) fig.subplots_adjust(hspace=.5) lbls = ['Helix', 'Sheet', 'Coil', 'Disorder'] cat = 'HS.D' scop_desc = {row[1]:row[2] for row in pd.read_csv(PATH_BASE.joinpath('SCOP/scop-des-latest.txt')).itertuples()} CF_count = sorted(df.CF.value_counts().items(), key=lambda x:x[1], reverse=True)[1:] bold_idx = [0, 1, 2, 6, 8] for i in range(nx*ny): cf_id, count = CF_count[i] countN, countC = utils.pdb_end_stats_disorder_N_C(df.loc[df.CF==cf_id], N=N, s1='SEQ_PDB2', s2='SS_PDB2') base = np.zeros(len(countN['S']), dtype=float) Yt = np.array([[sum(p.values()) for p in countN[s]] for s in cat]).sum(axis=0) X = np.arange(base.size) for j, s in enumerate(cat): YN = np.array([sum(p.values()) for p in countN[s]]) YC = np.array([sum(p.values()) for p in countC[s]]) ax[i].plot(YN/Yt, '-', c=col[j], label=f"{s} N") ax[i].plot(YC/Yt, ':', c=col[j], label=f"{s} C") if i in bold_idx: ax[i].set_title(f"{scop_desc[int(cf_id)][:40]}\nTotal sequences: {count}", fontweight='bold') else: ax[i].set_title(f"{scop_desc[int(cf_id)][:40]}\nTotal sequences: {count}") ax[i].set_xlabel('Sequence distance from ends') if not i%3: ax[i].set_ylabel('Secondary\nstructure\nprobability') handles = [Line2D([0], [0], ls=ls, c=c, label=l) for ls, c, l in zip(['-', '--'], ['k']*2, ['N', 'C'])] + \ [Line2D([0], [0], ls='-', c=c, label=l) for l, c in zip(lbls, col)] ax[1].legend(handles=handles, bbox_to_anchor=(1.40, 1.45), frameon=False, ncol=6, columnspacing=1.5, handlelength=2.0) fig.savefig(PATH_FIG.joinpath("si1.pdf"), bbox_inches='tight') #################################################################### ### FIG 2 def fig2(): pfdb = asym_io.load_pfdb() fig, ax = plt.subplots(1,2, figsize=(10,5)) fig.subplots_adjust(wspace=0.3) X1 = np.log10(pfdb.loc[pfdb.use, 'L']) X2 = np.log10(pfdb.loc[pfdb.use, 'CO']) Y = pfdb.loc[pfdb.use, 'log_kf'] sns.regplot(X1, Y, ax=ax[0]) sns.regplot(X2, Y, ax=ax[1]) print(pearsonr(X1, Y)) print(pearsonr(X2, Y)) ax[0].set_ylabel(r'$\log_{10} k_f$') ax[1].set_ylabel(r'$\log_{10} k_f$') ax[0].set_xlabel(r'$\log_{10}$ Sequence Length') ax[1].set_xlabel(r'$\log_{10}$ Contact Order') fs = 14 for i, b in zip([0,1], list('ABCDEFGHI')): ax[i].text( -0.10, 1.05, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si2.pdf"), bbox_inches='tight') #################################################################### ### FIG 3 def fig3(pdb, Y='S_ASYM'): LO = folding_rate.get_folding_translation_rates(pdb.copy(), which='lo') HI = folding_rate.get_folding_translation_rates(pdb.copy(), which='hi') fig, ax = plt.subplots() lbls = ['Fit', r"$95\% CI$", r"$95\% CI$"] for i, d in enumerate([pdb, LO, HI]): print(f"{i}: frac R less than 0 = {utils.R_frac_1(d)}") print(f"{i}: Euk frac (.1 < R < 10) = {utils.R_frac_2(d, k=5)}") print(f"{i}: Prok frac (.1 < R < 10) = {utils.R_frac_2(d, k=10)}") print(f"{i}: frac R faster than 'speed-limit' = {utils.R_frac_3(d)}") print(f"{i}: frac R slower than 20 minutes = {utils.R_frac_4(d)}") print() sns.distplot(d['REL_RATE'], label=lbls[i], color=col[i]) ax.legend(loc='best', frameon=False) ax.set_xlim(-6, 6) ax.set_xlabel(r'$\log_{10}R$') ax.set_ylabel('Density') fig.savefig(PATH_FIG.joinpath("si3.pdf"), bbox_inches='tight') #################################################################### ### FIG 4 def fig4(pdb, Y='S_ASYM'): LO = folding_rate.get_folding_translation_rates(pdb.copy(), which='lo') HI = folding_rate.get_folding_translation_rates(pdb.copy(), which='hi') # For the results using only 2-state proteins... # HI = folding_rate.get_folding_translation_rates(pdb.copy(), which='best', only2s=True) fig = plt.figure(figsize=(8,10.5)) gs = GridSpec(5,12, wspace=0.5, hspace=0.0, height_ratios=[1,0.5,1,0.5,1.5]) ax = [fig.add_subplot(gs[i*2,j*4:(j+1)*4]) for i in [0,1] for j in [0,1,2]] + \ [fig.add_subplot(gs[4,:5]), fig.add_subplot(gs[4,7:])] X = np.arange(10) width = .35 ttls = [r'$\alpha$ Helix', r'$\beta$ Sheet'] lbls = [r'$E_{\alpha}$', r'$E_{\beta}$'] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[0] c_sheet = custom_cmap[12] col = [c_helix, c_sheet] bins = np.linspace(-0.20, 0.20, 80) width = np.diff(bins[:2]) X = bins[:-1] + width * 0.5 mid = 39 sep = 0.05 for k, pdb in enumerate([LO, HI]): quantiles = pdb['REL_RATE'].quantile(np.arange(0,1.1,.1)).values pdb['quant'] = pdb['REL_RATE'].apply(lambda x: utils.assign_quantile(x, quantiles)) enrich_data = pickle.load(open(PATH_FIG_DATA.joinpath("fig3_enrich.pickle"), 'rb')) for i, Y in enumerate(['H_ASYM', 'S_ASYM']): for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[pdb.quant==j, Y], bins=bins) hist = hist / hist.sum() if i: ax[k*3+i].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[k*3+i].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color=col[i], alpha=.5) else: ax[k*3+i].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color=col[i], alpha=.5) ax[k*3+i].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[k*3+i].plot(X[:mid], (hist/hist.sum()+sep*j)[:mid], '-', c='k', alpha=.5) ax[k*3+i].plot(X[-mid:], (hist/hist.sum()+sep*j)[-mid:], '-', c='k', alpha=.5) mean = np.mean(enrich_data[Y[0]], axis=0) lo = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.025, axis=0)) hi = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.975, axis=0)) ax[k*3+2].barh([sep*j+(i+.7)*sep/3 for j in range(10)], mean, sep/3, xerr=(lo, hi), color=col[i], ec='k', alpha=.5, label=lbls[i], error_kw={'lw':.8}) ax[k*3+2].plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) for i in [0,2]: ax[k*3+i].set_yticks(np.arange(len(quantiles))*sep) ax[k*3+i].set_yticklabels([round(x,1) for x in quantiles]) for i in range(2): ax[k*3+i].spines['top'].set_visible(False) ax[k*3+i].spines['right'].set_visible(False) for i in range(1,3): ax[k*3+i].spines['left'].set_visible(False) ax[k*3+i].spines['top'].set_visible(False) for i in range(3): ax[k*3+i].set_ylim(0-sep/4, (0.5+sep/4)*1.05) ax[k*3+1].set_yticks([]) ax[k*3+2].yaxis.set_label_position('right') ax[k*3+2].yaxis.tick_right() ax[k*3+0].set_xlabel(r"asym$_{\alpha}$") ax[k*3+1].set_xlabel(r"asym$_{\beta}$") ax[k*3+0].set_ylabel(r'$\log_{10}R$') ax[k*3+2].set_xlabel('N terminal\nEnrichment') plot_metric_space(fig, ax[6:]) fs = 14 for i, b in zip([0,3,6], list('ABCDEFGHI')): ax[i].text( -0.20, 1.05, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si4.pdf"), bbox_inches='tight') def get_ci_index(X, Y): xlo = np.quantile(X, 0.025) xhi = np.quantile(X, 0.975) ylo = np.quantile(Y, 0.025) yhi = np.quantile(Y, 0.975) return np.where((X>=xlo)&(X<=xhi)&(Y>=ylo)&(Y<=yhi))[0] def plot_hull(boot_fit, patt, ax='', c='k', lw=1): idx = get_ci_index(*boot_fit[:,:2].T) tmp = boot_fit[idx].copy() hull = ConvexHull(np.array([boot_fit[idx,1], boot_fit[idx, 0]]).T) for simplex in hull.simplices: if not isinstance(ax, str): ax.plot(tmp[simplex, 1], tmp[simplex, 0], patt, c=c, lw=lw) else: plt.plot(tmp[simplex, 1], tmp[simplex, 0], patt, c=c, lw=lw) def plot_metric_space(fig, ax): fit = pickle.load(open(PATH_FIG_DATA.joinpath("boot_fit_met.pickle"), 'rb'))['AA'] boot_fit = pickle.load(open(PATH_FIG_DATA.joinpath("boot_fit_param.pickle"), 'rb')) boot_fit_0 = pickle.load(open(PATH_FIG_DATA.joinpath("boot_fit_param_useall.pickle"), 'rb')) X, Y = np.meshgrid(fit["c1"], fit["c2"]) cmap = colors.ListedColormap(sns.diverging_palette(230, 22, s=100, l=47, n=8)) bounds = np.linspace(-2, 2, 9) norm = colors.BoundaryNorm(bounds, cmap.N) im = [] ttls = ['Helices', 'Sheets'] for i in range(2): im = ax[i].contourf(X, Y, fit['met'][:,:,i], bounds, cmap=cmap, vmin=-2, vmax=2, norm=norm) cbar = fig.colorbar(im, ax=ax[i], fraction=0.046, pad=0.04, norm=norm, boundaries=bounds, ticks=bounds) cbar.set_label(r"$R_{\mathregular{max}}$", labelpad=-5) ax[i].set_xlabel('A') ax[i].set_xlim(X.min(), X.max()) ax[i].set_ylabel('B') ax[i].set_ylim(Y.max(), Y.min()) ax[i].invert_yaxis() ax[i].set_aspect((np.max(X)-np.min(X))/(np.max(Y)-np.min(Y))) ax[i].set_title(ttls[i]) col = ['k', '#79C726'] for i, boofi in enumerate([boot_fit, boot_fit_0]): for j in range(2): for bf, p in zip(boofi, ['-', ':']): plot_hull(bf, p, ax[j], c=col[i]) c1 = [13.77, -6.07] c1a = [11.36553036, -4.87716477] c1b = [16.17819934, -7.27168306] patt = ['*', 'o', 'o'] lbls = ['Fit', r"$95\% CI$", r"$95\% CI$"] col = "#CB7CE6" for i in range(2): for coef, p, l in zip([c1, c1a, c1b], patt, lbls): ax[i].plot([coef[0]], [coef[1]], p, label=l, fillstyle='none', ms=10, c=col, mew=2) ax[i].legend(loc='best', frameon=False) #################################################################### ### FIG 5 def fig5(): fig, ax = plt.subplots(2,1) fig.subplots_adjust(hspace=0.3) bins = np.arange(0,620,20) X = [bins[:-1] + np.diff(bins[:2])] bins = np.arange(0,61,2.0) X.append(bins[:-1] + np.diff(bins[:2])) yellows = sns.diverging_palette(5, 55, s=95, l=77, n=13) pinks = sns.diverging_palette(5, 55, s=70, l=52, n=13) col = [yellows[12], pinks[0]] col2 = [yellows[10], pinks[3]] data = [pickle.load(open(PATH_FIG_DATA.joinpath(f"dom_{x}_dist_boot.pickle"), 'rb')) for x in ['aa', 'smco']] for j in range(2): for i in [1,2]: MEAN, LO, HI = [np.array(x) for x in data[j][f"pos{i}"]] ax[j].plot(X[j], MEAN, '--', c=col[i-1], label=f'position {i}') ax[j].fill_between(X[j], LO, HI, color=col2[i-1], alpha=0.5) ax[0].set_xlabel('Sequence Length') ax[1].set_xlabel('Contact Order') ax[0].set_ylabel('Density') ax[1].set_ylabel('Density') ax[0].legend(loc='upper right', frameon=False) fig.savefig(PATH_FIG.joinpath("si5.pdf"), bbox_inches='tight') #################################################################### ### FIG 6 def fig6(X='REL_RATE', Y='S_ASYM'): fig, ax = plt.subplots(1,2, figsize=(10,4)) fig.subplots_adjust(hspace=0.7, wspace=0.3) sep = 0.40 col = Paired_12.hex_colors[5] ttls = [f"Position {i}" for i in range(1,3)] dom_pos_boot = pickle.load(open(PATH_FIG_DATA.joinpath("dom_pos_boot.pickle"), 'rb')) custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[11] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] # ttls = ["Two-domain", "Three-domain"] xlbls = [r'$E_{\alpha}$', r'$E_{\beta}$'] for i in range(2): for j, (pos, dat) in enumerate(dom_pos_boot[2].items()): quantiles = dat[0].mean(axis=0) mean = dat[1][:,i,:].mean(axis=0) lo = np.abs(np.quantile(dat[1][:,i,:], 0.025, axis=0) - mean) hi = np.abs(np.quantile(dat[1][:,i,:], 0.975, axis=0) - mean) ax[j].bar(np.arange(10)+(i+1)*sep, mean, sep, yerr=(lo, hi), color=col[i], label=xlbls[i], alpha=0.7, error_kw={'lw':.8}) ax[j].set_xticks(np.arange(len(quantiles))) ax[j].set_xticklabels(np.round(quantiles, 1), rotation=90) ax[i].spines['top'].set_visible(False) ax[i].spines['right'].set_visible(False) ax[i].set_title(ttls[i], loc='left') ax[i].set_xlabel(r'$\log_{10}R$') # ax[i,k].set_ylabel('N terminal\nEnrichment') ax[i].set_ylabel("N Terminal Enrichment") ax[0].legend(bbox_to_anchor=(1.17, 1.12), frameon=False, ncol=3) fig.savefig(PATH_FIG.joinpath("si6.pdf"), bbox_inches='tight') #################################################################### ### FIG 7 def fig7(pdb, Y='D_ASYM'): fig, ax = plt.subplots(3,3, figsize=(12,8)) fig.subplots_adjust(hspace=0.5, wspace=0.5) sep = 0.05 col = Paired_12.hex_colors[7] xlbls = [r'$\log_{10} R$', 'Sequence Length', 'Contact Order'] ttls = ['Full sample', 'Eukaryotes', 'Prokaryotes'] for k, df in enumerate([pdb, pdb.loc[pdb.k_trans==5], pdb.loc[pdb.k_trans==10]]): for i, X in enumerate(['REL_RATE', 'AA_PDB', 'CO']): quantiles = df[X].quantile(np.arange(0,1.1,.1)).values df['quant'] = df[X].apply(lambda x: utils.assign_quantile(x, quantiles)) ratio = [] for j in range(len(quantiles)-1): left = len(df.loc[(df.quant==j)&(df[Y]<0)]) / max(1, len(df.loc[(df.quant==j)])) right = len(df.loc[(df.quant==j)&(df[Y]>0)]) / max(1, len(df.loc[(df.quant==j)])) ratio.append((right - left)) # print(ratio) ax[i,k].bar([sep*j+sep/2 for j in range(10)], ratio, sep/2, color=[col if r > 0 else 'grey' for r in ratio], alpha=.5) ax[i,k].set_xticks(np.arange(len(quantiles))*sep) if i == 1: ax[i,k].set_xticklabels([int(x) for x in quantiles], rotation=90) else: ax[i,k].set_xticklabels([round(x,1) for x in quantiles], rotation=90) ax[i,k].set_xlabel(xlbls[i]) ax[i,k].set_ylabel('N terminal\nEnrichment') ax[0,k].set_title(ttls[k]) fig.savefig(PATH_FIG.joinpath("si7.pdf"), bbox_inches='tight') #################################################################### ### FIG 8 def fig8(df_pdb): fig = plt.figure() gs = GridSpec(2,1, wspace=0.0, height_ratios=[.5,1]) ax = [fig.add_subplot(gs[1,0]), fig.add_subplot(gs[0,0])] X = np.arange(-3, 3, 0.01) Y = np.array([(10**x + 1)/max(10**x, 1) for x in X]) Y2 = (1+10**X) / np.array([max(1, 10**x+30./100.) for x in X]) ax[0].plot(X, Y, '-', label=r"$\tau_{ribo}=0$") ax[0].plot(X, Y2, ':', label=r"$\tau_{ribo}=0.3\tau_{trans}$") lbls = ['1ILO', '2OT2', '3BID'] patt = ['o', 's', '^'] for l, p in zip(lbls, patt): X, Y = np.load(PATH_FIG_DATA.joinpath(f"{l}.npy")) ax[0].plot(X, Y, p, label=l, alpha=0.5, mec='k', ms=7) ax[0].set_xlim(-2.3, 2.3) ax[0].set_ylim(1, 2.05) ax[0].set_xlabel(r'$\log_{10} R$') ax[0].set_ylabel("Speed-up") ax[0].spines['top'].set_visible(False) ax[0].spines['right'].set_visible(False) ax[0].legend(loc='upper right', frameon=False, bbox_to_anchor=(1.05, 1.00), ncol=1, labelspacing=.1) fig8a(df_pdb, ax[1]) fig.savefig(PATH_FIG.joinpath("si8.pdf"), bbox_inches='tight') def fig8a(df_pdb, ax): lbls = ['2OT2', '1ILO', '3BID'] idx = [98212, 19922, 127370] SS = df_pdb.loc[idx, 'SS_PDB2'].values custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) col_key = {'.':'grey', 'D':'grey', 'H':custom_cmap[3], 'S':custom_cmap[9]} ec_key = {'.':'grey', 'D':'grey', 'H':custom_cmap[1], 'S':custom_cmap[11]} wid_key = {'.':0.1, 'D':0.1, 'H':0.3, 'S':0.3} lw_key = {'.':0.7, 'D':0.7, 'H':1.5, 'S':1.5} for i, ss in enumerate(SS): left = 0. for j, strand in enumerate(new_figs.generate_strand(ss)): s = strand[0] ax.barh([i], [len(strand)], wid_key[s], left=[left], color=col_key[s], ec=ec_key[s], linewidth=lw_key[s]) left += len(strand) + 0.20 ax.annotate("N", xy=(-0.01, 1.0), xycoords='axes fraction') ax.annotate("C", xy=(0.59, 1.0), xycoords='axes fraction') for pos in ['left', 'right', 'top', 'bottom']: ax.spines[pos].set_visible(False) col = np.array(custom_cmap)[[3,9,1,11]] ax.legend(handles=[mpatches.Patch(fc=c1, ec=c2, label=l) for c1, c2, l in zip(col[:2], col[2:], ['Helix', 'Sheet'])], loc='upper right', frameon=False, ncol=1, bbox_to_anchor=(0.95, 1.10)) ax.set_xticks([]) ax.set_yticks(range(3)) ax.set_yticklabels(lbls) ax.tick_params(axis='y', which='major', length=0, pad=10) #################################################################### ### FIG 9 def fig9(pdb, s='S'): pdb = pdb.loc[(pdb.USE_RSA)] pdb = pdb.loc[(pdb.SS_PDB2.str.len()==pdb.RSA.apply(len))] path = PATH_FIG_DATA.joinpath("RSA_quantiles.pickle") if path.exists(): quantiles, euk_quantiles, prok_quantiles = pickle.load(open(path, 'rb')) else: quantiles = [np.quantile([x for y in pdb['RSA'] for x in y if np.isfinite(x)], x/3) for x in range(1,4)] euk_quantiles = [np.quantile([x for y in pdb.loc[pdb.k_trans==5, 'RSA'] for x in y if np.isfinite(x)], x/3) for x in range(1,4)] prok_quantiles = [np.quantile([x for y in pdb.loc[pdb.k_trans==10, 'RSA'] for x in y if np.isfinite(x)], x/3) for x in range(1,4)] pickle.dump([quantiles, euk_quantiles, prok_quantiles], open(path, 'wb')) print(quantiles) # fig, ax = plt.subplots(4,3, figsize=(8,8)) # fig.subplots_adjust(wspace=0.5) fig = plt.figure(figsize=(12,9)) gs = GridSpec(5,3, wspace=0.3, height_ratios=[1,1,1,1,1]) ax = [fig.add_subplot(gs[j,i]) for i in range(3) for j in [0,1]] + \ [fig.add_subplot(gs[j,i]) for i in range(3) for j in [3,4]] print("All proteins, all SS") fig9a(pdb['RSA'], pdb['SS_PDB2'], quantiles, ax[:2], s='SH.D') print("euk proteins, all ss") fig9a(pdb.loc[pdb.k_trans==5, 'RSA'], pdb.loc[pdb.k_trans==5, 'SS_PDB2'], euk_quantiles, ax[2:4], s='SH.D') print("Prok proteins, all SS") fig9a(pdb.loc[pdb.k_trans==10, 'RSA'], pdb.loc[pdb.k_trans==10, 'SS_PDB2'], prok_quantiles, ax[4:6], s='SH.D') print("Euk proteins, only SHC") fig9a(pdb.loc[pdb.k_trans==5, 'RSA'], pdb.loc[pdb.k_trans==5, 'SS_PDB2'], euk_quantiles, ax[6:8], s='SH.') print("Euk proteins, only S") fig9a(pdb.loc[pdb.k_trans==5, 'RSA'], pdb.loc[pdb.k_trans==5, 'SS_PDB2'], euk_quantiles, ax[8:10], s='S') print("Prok proteins, only S") fig9a(pdb.loc[pdb.k_trans==10, 'RSA'], pdb.loc[pdb.k_trans==10, 'SS_PDB2'], prok_quantiles, ax[10:12], s='S') ttls = ['All proteins\nAll residues', 'Eukaryotic proteins\nAll residues', 'Prokaryotic proteins\nAll residues', 'Eukaryotic proteins\nHelix, sheet and coil', 'Eukaryotic proteins\nOnly Sheets', 'Prokaryotic proteins\nOnly Sheets'] col = np.array(list(Paired_12.hex_colors))[[0,2,4,6]] lbls = ['Buried', 'Middle', 'Exposed'] ax[0].set_ylabel('Solvent accessibility\nprobability') ax[1].set_ylabel('Solvent accessibility\nasymmetry\n$\\log_2 (N / C)$') ax[6].set_ylabel('Solvent accessibility\nprobability') ax[7].set_ylabel('Solvent accessibility\nasymmetry\n$\\log_2 (N / C)$') handles = [Line2D([0], [0], ls=ls, c=c, label=l) for ls, c, l in zip(['-', '--'], ['k']*2, ['N', 'C'])] + \ [Line2D([0], [0], ls='-', c=c, label=l) for l, c in zip(lbls, col)] ax[8].legend(handles=handles, bbox_to_anchor=(1.30, 1.85), frameon=False, ncol=5, columnspacing=1.5, handlelength=2.0, labelspacing=2.0) for i, a in enumerate(ax): if i % 2: ax[i].set_xticks(range(0, 60, 10)) ax[i].set_xlabel('Sequence distance from ends') else: ax[i].set_xticks([]) ax[i].set_title(ttls[i//2]) ax[i].set_xlim(0, 50) fig.savefig(PATH_FIG.joinpath("si9.pdf"), bbox_inches='tight') def fig9a(rsa_list, ss_list, quantiles, ax, s='S'): cat = 'BME' countN, countC = utils.sheets_rsa_seq_dist(rsa_list, ss_list, quantiles, ss_key=s) col = np.array(list(Paired_12.hex_colors))[[0,2,4,6]] base = np.zeros(len(countN[cat[0]]), dtype=float) YtN = np.array(list(countN.values())).sum(axis=0) YtC = np.array(list(countC.values())).sum(axis=0) X = np.arange(base.size) for i, s in enumerate(cat): YN = countN[s] YC = countC[s] ax[0].plot(YN/YtN, '-', c=col[i], label=f"{s} N") ax[0].plot(YC/YtC, ':', c=col[i], label=f"{s} C") ax[1].plot(np.log2(YN/YC*YtC/YtN), '-', c=col[i], label=f"{s}") print(s, np.round((np.sum(YN[:20]) / np.sum(YtN[:20])) / (np.sum(YC[:20]) / np.sum(YtC[:20])), 2)) ax[1].plot([0]*base.size, ':', c='k') ax[0].set_ylim(0,1) ax[1].set_ylim(-1,1) for a in ax: a.set_xlim(X[0], X[-1]) #################################################################### ### FIG 10 def fig10(pdb): pfdb = asym_io.load_pfdb() acpro = asym_io.load_acpro() fig = plt.figure(figsize=(12,9)) gs = GridSpec(3,7, wspace=0.0, width_ratios=[5,0.2,5,0.4,3,1.0,6], height_ratios=[1,.3,1]) ax = [fig.add_subplot(gs[2,i*2]) for i in range(4)] + \ [fig.add_subplot(gs[0,0:3]), fig.add_subplot(gs[0,5:])] # sns.distplot(pdb.ln_kf, ax=ax[5], label='PDB - PFDB fit', hist=False) pdb = pdb.copy() coef = folding_rate.linear_fit(np.log10(acpro['L']), acpro['log_kf']).params pdb['ln_kf'] = folding_rate.pred_fold(np.log10(pdb.AA_PDB), coef) pdb = utils.get_rel_rate(pdb) fig10a(fig, ax[4]) fig10b(fig, ax[:4], pdb) # sns.distplot(pdb.ln_kf, ax=ax[5], label='PDB - ACPro fit', hist=False) # sns.distplot(pfdb.log_kf, ax=ax[5], label='PFDB data', kde=False, norm_hist=True) # sns.distplot(acpro["ln kf"], ax=ax[5], label='KDB data', kde=False, norm_hist=True) sns.regplot(np.log10(acpro['L']), acpro['log_kf'], label='ACPro data', scatter_kws={"alpha":0.5}) sns.regplot(np.log10(pfdb.loc[pfdb.use, 'L']), pfdb.loc[pfdb.use, 'log_kf'], label='PFDB data', scatter_kws={"alpha":0.5}) ax[5].legend(loc='best', frameon=False) ax[5].set_xlabel(r"$\log_{10}L$") ax[5].set_ylabel(r"$\log_{10}k_f$") fs = 14 for i, b in zip([4,5,0,2,3], list('ABCDEFGHI')): ax[i].text( -0.20, 1.16, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si10.pdf"), bbox_inches='tight') def fig10a(fig, ax): Rdist_data = pickle.load(open(PATH_FIG_DATA.joinpath("R_dist_acpro.pickle"), 'rb')) custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] lbls = ['All', 'Prokaryotes', 'Eukaryotes'] for i, k in enumerate(['All', 'Prok', 'Euk']): ax.plot(Rdist_data['grid'], Rdist_data[k][0], '-', c=col[i], label=lbls[i]) ax.fill_between(Rdist_data['grid'], Rdist_data[k][1], Rdist_data[k][2], color=col[i], alpha=0.5) ax.plot([0,0], [0, 0.60], ':', c='k', alpha=0.7) ax.set_xlabel(r'$\log_{10} R$') ax.set_ylabel('Density') ax.set_xticks(np.arange(-6, 5, 2)) ax.set_xlim(-7, 2) ax.set_ylim(0, 0.60) ax.legend(loc='upper center', bbox_to_anchor=(0.55, 1.17), frameon=False, ncol=3, columnspacing=2) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) def fig10b(fig, ax, pdb, Y='S_ASYM'): ft = 12 X = np.arange(10) width = .35 ttls = [r'$\alpha$ Helix', r'$\beta$ Sheet'] lbls = [r'$E_{\alpha}$', r'$E_{\beta}$'] # col = np.array(Paired_12.hex_colors)[[1,5]] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[0] c_sheet = custom_cmap[12] col = [c_helix, c_sheet] bins = np.linspace(-0.20, 0.20, 80) width = np.diff(bins[:2]) X = bins[:-1] + width * 0.5 mid = 39 sep = 0.05 enrich_data = pickle.load(open(PATH_FIG_DATA.joinpath("fig3_enrich_acpro.pickle"), 'rb')) quantiles = enrich_data['edges'].mean(axis=0) for i, Y in enumerate(['H_ASYM', 'S_ASYM']): for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[pdb.quant==j, Y], bins=bins) hist = hist / hist.sum() # total = len(pdb)/10 # left = len(pdb.loc[(pdb.quant==j)&(pdb[Y]<0)]) / total # right = len(pdb.loc[(pdb.quant==j)&(pdb[Y]>0)]) / total # print(Y, j, ''.join([f"{x:6.3f}" for x in [left, right, left/right, right / left]])) if i: ax[i].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[i].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color=col[i], alpha=.5) else: ax[i].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color=col[i], alpha=.5) ax[i].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[i].plot(X[:mid], (hist/hist.sum()+sep*j)[:mid], '-', c='k', alpha=.5) ax[i].plot(X[-mid:], (hist/hist.sum()+sep*j)[-mid:], '-', c='k', alpha=.5) mean = np.mean(enrich_data[Y[0]], axis=0) lo = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.025, axis=0)) hi = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.975, axis=0)) ax[2].barh([sep*j+(i+.7)*sep/3 for j in range(10)], mean, sep/3, xerr=(lo, hi), color=col[i], ec='k', alpha=.5, label=lbls[i], error_kw={'lw':.8}) ax[2].plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) ax[0].set_yticks(np.arange(len(quantiles))*sep) ax[0].set_yticklabels([round(x,1) for x in quantiles]) ax[2].legend(loc='upper center', ncol=2, columnspacing=1.5, frameon=False, bbox_to_anchor=(0.52, 1.15)) for i, t in zip([0,1], ttls): ax[i].set_title(t) ax[i].set_xlim(-.15, .15) ax[i].set_xticks([-.1, 0, .1]) for i in range(3): ax[i].spines['top'].set_visible(False) ax[i].spines['right'].set_visible(False) ax[i].set_ylim(0-sep/4, 0.5+sep) for i in [1,2]: ax[i].spines['left'].set_visible(False) ax[i].set_yticks([]) ax[0].set_xlabel(r"asym$_{\alpha}$") ax[1].set_xlabel(r"asym$_{\beta}$") ax[0].set_ylabel(r'$\log_{10}R$') ax[2].set_xlabel('N terminal\nEnrichment') pdb = pdb.loc[pdb.OC!='Viruses'] X = np.arange(10) X = np.array([sep*j+(i+.7)*sep/3 for j in range(10)]) width = .175 ttls = ['Eukaryote ', 'Prokaryote '] lbls = [r'$E_{\alpha}$', r'$E_{\beta}$'] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) col = [custom_cmap[i] for i in [3, 9, 0, 12]] paths = [f"fig3_enrich_{a}_acpro.pickle" for a in ['eukaryote', 'prokaryote']] for i, path in enumerate(paths): enrich_data = pickle.load(open(PATH_FIG_DATA.joinpath(path), 'rb')) for j, Y in enumerate(['H_ASYM', 'S_ASYM']): # adjust = (j - 1 + i*2)*width adjust = (j*2 - 4.0 + i)*(sep/5) mean = np.mean(enrich_data[Y[0]], axis=0) lo = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.025, axis=0)) hi = np.abs(mean - np.quantile(enrich_data[Y[0]], 0.975, axis=0)) print(i, Y, max(np.abs(mean))) ax[3].barh(X+adjust, mean, sep/5.0, ec='k', xerr=(lo, hi), color=col[i*2+j], label=ttls[i]+lbls[j], lw=0.001, error_kw={'lw':.2}) ax[3].plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) ax[3].set_yticks(np.arange(len(quantiles))*sep) ax[3].set_ylabel(r'$\log_{10} R$') ax[3].set_yticklabels([round(x,1) for x in quantiles]) ax[3].set_xlabel('N terminal\nEnrichment') ax[3].set_xlim(-.42, .42) ax[3].set_ylim(0-sep/4, 0.5+sep) ax[3].spines['top'].set_visible(False) ax[3].spines['left'].set_visible(False) handles = [mpatches.Patch([], [], color=col[j*2+i], label=ttls[j]+lbls[i]) for i in [0,1] for j in [1,0]] ax[3].legend(handles=handles, bbox_to_anchor=(1.05, 1.25), frameon=False, loc='upper right', ncol=2, columnspacing=1.0, handlelength=1.5) ax[3].yaxis.set_label_position('right') ax[3].yaxis.tick_right() #################################################################### ### FIG 11 def fig11(pdb, X='AA_PDB', Y='CO', w=.1, ax='', fig=''): if isinstance(ax, str): fig, ax = plt.subplots(4,2, figsize=(9,12)) fig.subplots_adjust(wspace=0.0, hspace=0.65) # ax = ax.reshape(ax.size) pdb_CO = np.load(PATH_FIG_DATA.joinpath("pdb_config_CO.npy"))[:,:,0] df = pdb.copy() q = np.arange(w,1+w,w) lbls = ['Helix', 'Sheet'] # cb_lbl = [r"$E_{\alpha}$", r"$E_{\beta}$"] cb_lbl = [r"$asym_{\alpha}$", r"$asym_{\beta}$"] vmax = 0.03 vmin = -vmax for j, co in enumerate(pdb_CO.T): df['CO'] = co quant1 = [df[X].min()] + list(df[X].quantile(q).values) quant2 = [df[Y].min()] + list(df[Y].quantile(q).values) for i, Z in enumerate(['H_ASYM', 'S_ASYM']): mean = [] for l1, h1 in zip(quant1[:-1], quant1[1:]): for l2, h2 in zip(quant2[:-1], quant2[1:]): samp = df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2), Z] mean.append(samp.mean()) # left = len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)&(df[Z]<0)]) # right = len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)&(df[Z]>0)]) # tot = max(len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)]), 1) # mean.append((right - left)/tot) cmap = sns.diverging_palette(230, 22, s=100, l=47, as_cmap=True) norm = colors.BoundaryNorm([vmin, vmax], cmap.N) bounds = np.linspace(vmin, vmax, 3) im = ax[j,i].imshow(np.array(mean).reshape(q.size, q.size).T, cmap=cmap, vmin=vmin, vmax=vmax) cbar = fig.colorbar(im, cmap=cmap, ticks=bounds, ax=ax[j,i], fraction=0.046, pad=0.04) cbar.set_label(cb_lbl[i], labelpad=-5) ax[j,i].set_title(lbls[i]) ax[j,i].set_xticks(np.arange(q.size+1)-0.5) ax[j,i].set_yticks(np.arange(q.size+1)-0.5) ax[j,i].set_xticklabels([int(x) for x in quant1], rotation=90) ax[j,i].set_yticklabels([int(round(x,0)) for x in quant2]) for a in ax.ravel(): a.invert_yaxis() a.set_xlabel('Sequence Length') a.set_ylabel('Contact Order') a.tick_params(axis='both', which='major', direction='in') fs = 14 for i, b in zip(range(4), list('ABCDEFGHI')): ax[i,0].text( -0.20, 1.16, b, transform=ax[i,0].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si11.pdf"), bbox_inches='tight') def fig12(pdb, X='REL_RATE', Y='S_ASYM', w=0.1): fig = plt.figure(figsize=(8,12)) gs = GridSpec(3,2, wspace=0.4, hspace=0.5, width_ratios=[1,1]) ax_all = [[fig.add_subplot(gs[j,i]) for i in [0,1]] for j in range(3)] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet] bins = np.linspace(-0.20, 0.20, 80) width = np.diff(bins[:2]) mid = 39 sep = 0.05 lbls = ['Sheet', 'Helix'] quantiles = pdb[X].quantile(np.arange(0,1+w,w)).values # print(np.round(quantiles, 2)) pdb['quant'] = pdb[X].apply(lambda x: utils.assign_quantile(x, quantiles)) # pdb['quant'] = np.random.choice(pdb['quant'], len(pdb), replace=False) for ax, threshold in zip(ax_all, [0, 0.025, 0.05]): print(f"threshold = {threshold}") for i, Y in enumerate(['S_ASYM', 'H_ASYM']): ratio1 = [] ratio2 = [] lefts = [] rights = [] for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[pdb.quant==j, Y], bins=bins) hist = hist / hist.sum() left = len(pdb.loc[(pdb.quant==j)&(pdb[Y]<-threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) right = len(pdb.loc[(pdb.quant==j)&(pdb[Y]>threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) lefts.append(left) rights.append(right) ratio1.append((right - left)) ratio2.append(np.log2(right / left)) print(Y, j, left, right) xgrid = [sep*j+(i+1.0)*sep/3 for j in range(len(quantiles)-1)] ax[0].barh(xgrid, ratio1, sep/3, color=col[i], alpha=.5) ax[1].barh(xgrid, ratio2, sep/3, color=col[i], alpha=.5) ax[0].set_xticks(np.arange(-0.3, 0.4, 0.1)) for a in ax: a.set_yticks(np.arange(len(quantiles))*sep) a.set_yticklabels([round(x,1) for x in quantiles]) a.plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) a.spines['top'].set_visible(False) a.spines['right'].set_visible(False) a.set_ylim(0, 0.5) a.set_ylabel(r'$\log_{10}R$') ax[0].set_xlim(-0.35, 0.35) ax[1].set_xlim(-1.50, 1.50) ax[0].set_xlabel(r'$P(\mathregular{{asym}} \geq {0}) - P(\mathregular{{asym}} \leq -{0})$'.format(*[threshold]*2)) ax[1].set_xlabel(r'$\log_{{2}} \frac{{P(\mathregular{{asym}} \geq {0})}}{{P(\mathregular{{asym}} \leq -{0})}} $'.format(*[threshold]*2)) fig.savefig(PATH_FIG.joinpath("si12.pdf"), bbox_inches='tight') def fig13(df, X='AA_PDB', Y='CO', w=.1, ax='', fig=''): if isinstance(ax, str): fig, ax = plt.subplots(1,3, figsize=(15,4)) fig.subplots_adjust(wspace=0.5) q = np.arange(w,1+w,w) quant1 = [df[X].min()] + list(df[X].quantile(q).values) quant2 = [df[Y].min()] + list(df[Y].quantile(q).values) lbls = ['Helix', 'Sheet'] cb_lbl = [r"$asym_{\alpha}$", r"$asym_{\beta}$"] vmax = 0.03 vmin = -vmax count = [] for i, Z in enumerate(['H_ASYM', 'S_ASYM']): mean = [] for l1, h1 in zip(quant1[:-1], quant1[1:]): for l2, h2 in zip(quant2[:-1], quant2[1:]): samp = df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2), Z] mean.append(samp.mean()) # left = len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)&(df[Z]<0)]) # right = len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)&(df[Z]>0)]) # tot = max(len(df.loc[(df[X]>=l1)&(df[X]<h1)&(df[Y]>=l2)&(df[Y]<h2)]), 1) # mean.append((right - left)/tot) if not i: count.append(len(samp)) # print(len(samp)) mean = np.array(mean).reshape(q.size, q.size) count = np.array(count).reshape(q.size, q.size) cmap = sns.diverging_palette(230, 22, s=100, l=47, as_cmap=True) norm = colors.BoundaryNorm([vmin, vmax], cmap.N) bounds = np.linspace(vmin, vmax, 3) im = ax[i].imshow(mean.T, cmap=cmap, vmin=vmin, vmax=vmax) cbar = fig.colorbar(im, cmap=cmap, ticks=bounds, ax=ax[i], fraction=0.046, pad=0.04) cbar.set_label(cb_lbl[i], labelpad=-5) ax[i].set_title(lbls[i]) ax[i].set_xticks(np.arange(q.size+1)-0.5) ax[i].set_yticks(np.arange(q.size+1)-0.5) ax[i].set_xticklabels([int(x) for x in quant1], rotation=90) ax[i].set_yticklabels([int(round(x,0)) for x in quant2]) for i in [2]: cmap = plt.cm.Greys # norm = colors.BoundaryNorm([-.04, .04], cmap.N) # bounds = np.linspace(-.04, .04, 5) im = ax[i].imshow(np.array(count).reshape(q.size, q.size).T, cmap=cmap, vmin=0) cbar = fig.colorbar(im, cmap=cmap, ax=ax[i], fraction=0.046, pad=0.04) cbar.set_label('Count') ax[i].set_title('Distribution') ax[i].set_xticks(np.arange(q.size+1)-0.5) ax[i].set_yticks(np.arange(q.size+1)-0.5) ax[i].set_xticklabels([int(x) for x in quant1], rotation=90) ax[i].set_yticklabels([int(round(x,0)) for x in quant2]) for a in ax: a.invert_yaxis() a.set_xlabel('Sequence Length') a.set_ylabel('Contact Order') a.tick_params(axis='both', which='major', direction='in') fs = 14 for i, b in zip([0,1,2], list('ABCDEFGHI')): ax[i].text( -0.20, 1.05, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si13.pdf"), bbox_inches='tight') def scop_ss(): fig, ax = plt.subplots(2,1) cat = 'HS.D' N = 50 X = np.arange(50) Nboot, Cboot, asym, enrich_edges, enrich_vals = pickle.load(open(PATH_FIG_DATA.joinpath(f"pdb_scop_indep.pickle"), 'rb')) data = [Nboot, Cboot, asym] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] lbls = ['Helix', 'Sheet', 'Coil', 'Disorder'] for j, s in enumerate(cat): ax[0].plot(X, data[0][s]['mean']/4, '-', c=col[j], label=f"{s} N") ax[0].fill_between(X, data[0][s]['hi']/4, data[0][s]['lo']/4, color="grey", label=f"{s} N", alpha=0.5) ax[0].plot(X, data[1][s]['mean']/4, '--', c=col[j], label=f"{s} N") ax[0].fill_between(X, data[1][s]['hi']/4, data[1][s]['lo']/4, color="grey", label=f"{s} N", alpha=0.2) print(s, round(np.mean(data[2][s]['mean']), 2), round(np.mean(data[2][s]['mean'][:20]), 2), round(np.mean(data[2][s]['mean'][20:]), 2)) ax[1].plot(X, np.log2(data[2][s]['mean']), '-', c=col[j], label=lbls[j]) ax[1].fill_between(X, np.log2(data[2][s]['hi']), np.log2(data[2][s]['lo']), color="grey", label=f"{s} N", alpha=0.2) ax[1].set_ylim(-1, 1.3) ax[1].plot([0]*50, '-', c='k') ax[1].set_yticks(np.arange(-1,1.5,0.5)) ax[0].set_ylim(0, 0.6) ax[1].set_xlabel('Sequence distance from ends') ax[0].set_ylabel('Secondary structure\nprobability') ax[1].set_ylabel('Structural asymmetry\n$\\log_2 (N / C)$') fs = 14 for i, b in zip([0,1], list('ABCDEFGHI')): ax[i].text( -0.10, 1.05, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si14.pdf"), bbox_inches='tight') def percentage_asym(x): return np.sign(x) * 100*2**(abs(x)) - np.sign(x) * 100 def fig15(): fig, ax = plt.subplots(3,1, figsize=(10,10)) cat = 'HS.D' N = 100 X = np.arange(N) Nboot, Cboot, asym, = pickle.load(open(PATH_FIG_DATA.joinpath(f"pdb_ss_max_asym.pickle"), 'rb')) data = [Nboot, Cboot, asym] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet, "#CB7CE6", "#79C726"] lbls = ['Helix', 'Sheet', 'Coil', 'Disorder'] X2 = np.arange(5) for j, s in enumerate(cat): ax[0].plot(X, data[0][s]['mean']/2, '-', c=col[j], label=f"{s} N") ax[0].fill_between(X, data[0][s]['hi']/2, data[0][s]['lo']/2, color="grey", label=f"{s} N", alpha=0.5) ax[0].plot(X, data[1][s]['mean']/2, '--', c=col[j], label=f"{s} N") ax[0].fill_between(X, data[1][s]['hi']/2, data[1][s]['lo']/2, color="grey", label=f"{s} N", alpha=0.2) for k in range(5): print(s, round(np.mean(data[2][s]['mean']), 2), round(np.mean(data[2][s]['mean'][k*20:(k+1)*20]), 2)) ax[1].plot(X, np.log2(data[2][s]['mean']), '-', c=col[j], label=lbls[j]) ax[1].fill_between(X, np.log2(data[2][s]['hi']), np.log2(data[2][s]['lo']), color="grey", label=f"{s} N", alpha=0.2) if s in 'HS': Y2 = [percentage_asym(np.log2(data[2][s]['mean'])[k*20:(k+1)*20].mean()) for k in range(5)] ax[2].bar(X2, Y2, 0.5, color=col[j], label=lbls[j], ec='k') ax[1].set_ylim(-1.5, 2.0) ax[1].plot([0]*100, '-', c='k') ax[2].plot([0]*5, '-', c='k') ax[1].set_yticks(np.arange(-1,2.5,0.5)) ax[0].set_ylim(0, 0.6) ax[2].set_xticks(np.arange(5)) ax[2].set_xticklabels([f"{i*20} - {(i+1)*20}" for i in range(5)]) ax[0].set_xlabel('Sequence distance from ends') ax[1].set_xlabel('Sequence distance from ends') ax[2].set_xlabel('Sequence distance from ends') ax[0].set_ylabel('Secondary structure\nprobability') ax[1].set_ylabel('Structural asymmetry\n$\\log_2 (N / C)$') ax[2].set_ylabel('Percentage asymmetry') fs = 14 for i, b in zip([0,1,2], list('ABCDEFGHI')): ax[i].text( -0.10, 1.05, b, transform=ax[i].transAxes, fontsize=fs) fig.savefig(PATH_FIG.joinpath("si15.pdf"), bbox_inches='tight') def oligomer(pdb, X='REL_RATE', Y='S_ASYM', w=0.1): pdb = pdb.copy() fig = plt.figure(figsize=(8,8)) gs = GridSpec(2,2, wspace=0.4, hspace=0.5, width_ratios=[1,1]) ax_all = [[fig.add_subplot(gs[j,i]) for i in [0,1]] for j in range(2)] custom_cmap = sns.diverging_palette(230, 22, s=100, l=47, n=13) c_helix = custom_cmap[2] c_sheet = custom_cmap[10] col = [c_helix, c_sheet] bins = np.linspace(-0.20, 0.20, 80) width = np.diff(bins[:2]) mid = 39 sep = 0.05 threshold = 0 lbls = [r'$E_{\beta}$', r'$E_{\alpha}$'] ttls = ['Monomers', 'Oligomers'] for ax, idx, ttl in zip(ax_all, [pdb.NPROT==1, pdb.NPROT>1], ttls): quantiles = pdb.loc[idx, X].quantile(np.arange(0,1+w,w)).values pdb['quant'] = pdb.loc[idx, X].apply(lambda x: utils.assign_quantile(x, quantiles)) for i, Y in enumerate(['S_ASYM', 'H_ASYM']): ratio1 = [] ratio2 = [] lefts = [] rights = [] for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[(idx)&(pdb.quant==j), Y], bins=bins) hist = hist / hist.sum() left = len(pdb.loc[(idx)&(pdb.quant==j)&(pdb[Y]<-threshold)]) / max(len(pdb.loc[(idx)&(pdb.quant==j)]), 1) right = len(pdb.loc[(idx)&(pdb.quant==j)&(pdb[Y]>threshold)]) / max(len(pdb.loc[(idx)&(pdb.quant==j)]), 1) lefts.append(left) rights.append(right) ratio1.append((right - left)) ratio2.append(np.log2(right / left)) xgrid = [sep*j+(i+1.0)*sep/3 for j in range(len(quantiles)-1)] ax[0].barh(xgrid, ratio1, sep/3, color=col[i], alpha=.5, label=lbls[i]) ax[1].barh(xgrid, ratio2, sep/3, color=col[i], alpha=.5) ax[0].set_xticks(np.arange(-0.3, 0.4, 0.1)) for a in ax: a.set_yticks(np.arange(len(quantiles))*sep) a.set_yticklabels([round(x,1) for x in quantiles]) a.plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) a.spines['top'].set_visible(False) a.spines['right'].set_visible(False) a.set_ylim(0, 0.5) a.set_ylabel(r'$\log_{10}R$') a.set_title(f"{ttl}, N={np.sum(idx)}") ax[0].set_xlim(-0.35, 0.35) ax[1].set_xlim(-1.50, 1.50) ax[0].set_xlabel(r'$P(\mathregular{{asym}} \geq {0}) - P(\mathregular{{asym}} \leq -{0})$'.format(*[threshold]*2)) ax[1].set_xlabel(r'$\log_{{2}} \frac{{P(\mathregular{{asym}} \geq {0})}}{{P(\mathregular{{asym}} \leq -{0})}} $'.format(*[threshold]*2)) ax[0].legend(loc='upper center', ncol=2, columnspacing=3, frameon=False, bbox_to_anchor=(1.20, 1.20)) fig.savefig(PATH_FIG.joinpath("si16.pdf"), bbox_inches='tight') fig.savefig(PATH_FIG.joinpath("oligomers.png"), bbox_inches='tight') def scop2(X='REL_RATE', Y='S_ASYM', w=0.1): fig, ax = plt.subplots(figsize=(10,6)) edges, data = pickle.load(open(PATH_FIG_DATA.joinpath("pdb_scop_indep.pickle"), 'rb'))[3:] edges = edges[0] sep = 0.05 lbls = [r'$E_{\alpha}$', r'$E_{\beta}$'] for i, Y in enumerate(['H_ASYM', 'S_ASYM']): mean = np.mean(data[:,i], axis=0) lo = np.abs(mean - np.quantile(data[:,i], 0.025, axis=0)) hi = np.abs(mean - np.quantile(data[:,i], 0.975, axis=0)) ax.barh([sep*j+(i+.7)*sep/3 for j in range(10)], mean, sep/3, xerr=(lo, hi), color=col[i], ec='k', alpha=.5, label=lbls[i], error_kw={'lw':.8}) ax.plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) ax.set_yticks(np.arange(len(edges))*sep) ax.set_yticklabels([round(x,1) for x in edges]) ax.legend(loc='upper center', ncol=2, columnspacing=3, frameon=False, bbox_to_anchor=(0.52, 1.06)) ax.set_xlim(-.38, .38) ax.set_xticks(np.arange(-.3, .4, .1)) # To create this figure, you need to download the complete # Human and E. coli proteomes at: # https://alphafold.ebi.ac.uk/download # and then change the code so that "base" points to the # folder that contains the downloaded ".pdb" files def disorder_proteome(N=100): fig, ax = plt.subplots(1,2, figsize=(12,4)) lbls = ["Human", "Ecoli"] ttls = ["Human", "E. coli"] for i, l in enumerate(lbls): path = PATH_FIG_DATA.joinpath(f"alphafold_{l}.npy") if not path.exists(): base = PATH_BASE.joinpath(f"AlphaFold/{l}") countN = np.zeros(N, float) countC = np.zeros(N, float) tot = np.zeros(N, float) with Pool(50) as pool: dis = list(pool.imap_unordered(utils.get_disorder_from_conf, base.glob("*pdb"), 10)) for d in dis: n = min(int(len(d)/2), N) countN[:n] = countN[:n] + d[:n] countC[:n] = countC[:n] + d[-n:][::-1] tot[:n] = tot[:n] + 1 fracN = countN / tot fracC = countC / tot np.save(path, np.array([fracN, fracC])) else: fracN, fracC = np.load(path) ax[i].plot(np.arange(N)+1, fracN, '-', label='N') ax[i].plot(np.arange(N)+1, fracC, '--', label='C') ax[i].set_title(ttls[i]) ax[i].set_xlabel("Sequence distance from ends") ax[i].set_ylabel("Disorder probability") ax[i].set_ylim(0, 1) ax[i].legend(loc='best', frameon=False) fig.savefig(PATH_FIG.joinpath("si17.pdf"), bbox_inches='tight') def kfold_vs_ss(): pfdb = asym_io.load_pfdb() fig, ax = plt.subplots(figsize=(8,8)) for c in pfdb.Class.unique(): X = np.log10(pfdb.loc[pfdb.Class==c, 'L']) Y = pfdb.loc[pfdb.Class==c, 'log_kf'] sns.regplot(X, Y, label=c) ax.set_xlabel(r"$\log_{10}$ Sequence Length") ax.set_ylabel(r"$\log_{10} k_f$") ax.legend(loc='best', frameon=False) fig.savefig(PATH_FIG.joinpath("si18.pdf"), bbox_inches='tight') def hbond_asym(pdb, Xl='REL_RATE', Y='hb_asym', w=0.1): fig = plt.figure(figsize=(9,6)) gs = GridSpec(1,2, wspace=0.2, hspace=0.0, width_ratios=[1,.3]) ax = [fig.add_subplot(gs[i]) for i in [0,1]] col = np.array(Paired_12.hex_colors)[[1,3]] bins = np.linspace(-0.20, 0.20, 80) width = np.diff(bins[:2]) X = bins[:-1] + width * 0.5 mid = 39 sep = 0.05 quantiles = pdb[Xl].quantile(np.arange(0,1+w,w)).values ratio = [] lefts = [] rights = [] threshold = 0.00 for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[pdb.quant==j, Y], bins=bins) hist = hist / hist.sum() left = len(pdb.loc[(pdb.quant==j)&(pdb[Y]<-threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) right = len(pdb.loc[(pdb.quant==j)&(pdb[Y]>threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) lefts.append(left) rights.append(right) ratio.append((right - left)) ax[0].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[0].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color=col[0], alpha=.5) ax[0].plot(X[:mid], (hist/hist.sum()+sep*j)[:mid], '-', c='k', alpha=.5) ax[0].plot(X[-mid:], (hist/hist.sum()+sep*j)[-mid:], '-', c='k', alpha=.5) ax[0].set_yticks(np.arange(len(quantiles))*sep) ax[0].set_yticklabels([round(x,1) for x in quantiles]) ax[1].barh([sep*j+sep/2 for j in range(len(quantiles)-1)], ratio, sep/2, color=[col[0] if r > 0 else 'grey' for r in ratio], alpha=.5) ax[1].plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) ax[0].spines['top'].set_visible(False) ax[0].spines['right'].set_visible(False) ax[1].spines['top'].set_visible(False) ax[1].spines['right'].set_visible(False) ax[1].spines['left'].set_visible(False) ax[1].set_yticks([]) for a in ax: a.set_ylim(0, 0.60) ax[0].set_xlabel('Asymmetry in mean hydrogen bond length') ax[0].set_ylabel(r'$\log_{10}R$') ax[1].set_xlabel('N terminal enrichment') fig.savefig(PATH_FIG.joinpath("si19.pdf"), bbox_inches='tight') def hyd_asym(pdb, Xl='REL_RATE', Y='hyd_asym', w=0.1): fig = plt.figure(figsize=(9,6)) gs = GridSpec(1,2, wspace=0.2, hspace=0.0, width_ratios=[1,.3]) ax = [fig.add_subplot(gs[i]) for i in [0,1]] col = np.array(Paired_12.hex_colors)[[1,3]] bins = np.linspace(-4.5, 4.5, 80) width = np.diff(bins[:2]) X = bins[:-1] + width * 0.5 mid = 39 sep = 0.05 quantiles = pdb[Xl].quantile(np.arange(0,1+w,w)).values ratio = [] lefts = [] rights = [] threshold = 0.00 for j in range(len(quantiles)-1): hist, bins = np.histogram(pdb.loc[pdb.quant==j, Y], bins=bins) hist = hist / hist.sum() left = len(pdb.loc[(pdb.quant==j)&(pdb[Y]<-threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) right = len(pdb.loc[(pdb.quant==j)&(pdb[Y]>threshold)]) / max(len(pdb.loc[(pdb.quant==j)]), 1) lefts.append(left) rights.append(right) ratio.append((right - left)) ax[0].bar(X[:mid], (hist/hist.sum())[:mid], width, bottom=[sep*j]*mid, color='grey', alpha=.5) ax[0].bar(X[-mid:], (hist/hist.sum())[-mid:], width, bottom=[sep*j]*mid, color=col[0], alpha=.5) ax[0].plot(X[:mid], (hist/hist.sum()+sep*j)[:mid], '-', c='k', alpha=.5) ax[0].plot(X[-mid:], (hist/hist.sum()+sep*j)[-mid:], '-', c='k', alpha=.5) ax[0].set_yticks(np.arange(len(quantiles))*sep) ax[0].set_yticklabels([round(x,1) for x in quantiles]) ax[1].barh([sep*j+sep/2 for j in range(len(quantiles)-1)], ratio, sep/2, color=[col[0] if r > 0 else 'grey' for r in ratio], alpha=.5) ax[1].plot([0,0], [-0.05, 0.5], '-', c='k', lw=.1) ax[0].spines['top'].set_visible(False) ax[0].spines['right'].set_visible(False) ax[1].spines['top'].set_visible(False) ax[1].spines['right'].set_visible(False) ax[1].spines['left'].set_visible(False) ax[1].set_yticks([]) for a in ax: a.set_ylim(0, 0.60) ax[0].set_xlabel('Asymmetry in mean hydrophobicity') ax[0].set_ylabel(r'$\log_{10}R$') ax[1].set_xlabel('N terminal enrichment') fig.savefig(PATH_FIG.joinpath("si20.pdf"), bbox_inches='tight')
# Generated by Django 2.2.7 on 2019-12-04 20:58 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('post', '0002_remove_comment_liked'), ] operations = [ migrations.AddField( model_name='post', name='parent', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='post.Post'), ), ]
import pandas as pd # 1.1 Understanding the dataset # =================================================================================== # - Import the dataset into a pandas dataframe using the read_table method. # Because this is a tab separated dataset we will be using '\t' as the value # for the 'sep' argument which specifies this format. # - Also, rename the column names by specifying a list ['label, 'sms_message'] # to the 'names' argument of read_table(). # - Print the first five values of the dataframe with the new column names. # =================================================================================== # Read from spam collection file df = pd.read_table('smsspamcollection/SMSSpamCollection', sep = '\t', header = None, names = ['label', 'sms_messages']) # Take a look # print(df.head()) # 1.2 Preprocessing # =================================================================================== # - Convert the values in the 'label' colum to numerical values using map # method as follows: {'ham':0, 'spam':1} This maps the 'ham' value to 0 and # the 'spam' value to 1. # - Also, to get an idea of the size of the dataset we are dealing with, print # out number of rows and columns using 'shape'. # =================================================================================== # Convert labels to [0, 1] # Define mapping mapping = {'ham' : 0, 'spam': 1} # Apply mapping df.label = df.label.map(mapping) # Get an understanding of the size # print(df.shape) # 2.1 Bag of Worms (Sklearn) # =================================================================================== # Describes bag of worms, no code # =================================================================================== # 2.2 Bag of Worms (from scratch) # =================================================================================== # The example goes on a slight tangent using a smaller documents array # I attempt this with the imported data # =================================================================================== # 2.2.1 Convert all strings to lower case # =================================================================================== # - Convert all the strings in the documents set to their lower case. # Save them into a list called 'lower_case_documents'. You can convert # strings to their lower case in python by using the lower() method. # =================================================================================== lower_case_documents = df.sms_messages.apply(lambda x: str.lower(x)); # print(lower_case_documents) # 2.2.2 Remove all punctuation # =================================================================================== # - Remove all punctuation from the strings in the document set. Save # them into a list called 'sans_punctuation_documents'. # =================================================================================== # Regex function def removePunctuation(s) : import re, string regex = re.compile('[%s]+' % re.escape(string.punctuation)) return regex.sub("", s) sans_punctuation_documents = lower_case_documents.apply(lambda x: removePunctuation(x)) # print(sans_punctuation_documents) # 2.2.3 Tokenization # =================================================================================== # - Tokenize the strings stored in 'sans_punctuation_documents' using the split() # method. and store the final document set in a list called # 'preprocessed_documents'. # =================================================================================== preprocessed_documents = sans_punctuation_documents.apply(lambda x: str.split(x)) # print(preprocessed_documents) # 2.2.4 Count frequency # =================================================================================== # - Using the Counter() method and preprocessed_documents as the input, create a # dictionary with the keys being each word in each document and the corresponding # values being the frequncy of occurrence of that word. Save each Counter dictionary # an item in a list called 'frequency_list'. # =================================================================================== from collections import Counter frequency_list = preprocessed_documents.apply(lambda x: Counter(x)) # print(frequency_list) # 2.3 BoW with Sklearn # =================================================================================== # As in 2.2, I attempt this with the imported dataset instead of a small list # =================================================================================== # 2.3.1 Importing # =================================================================================== # - Import the sklearn.feature_extraction.text.CountVectorizer # method and create an instance of it called 'count_vector'. # =================================================================================== from sklearn.feature_extraction.text import CountVectorizer count_vector = CountVectorizer() # 2.3.2 Using the CountVectorizer # =================================================================================== # - Fit your document dataset to the CountVectorizer object you have created # using fit(), and get the list of words which have been categorized as # features using the get_feature_names() method. # =================================================================================== count_vector.fit(df.sms_messages) # print(count_vector.get_feature_names()) # 2.3.3 Create the count frequency matrix # =================================================================================== # Create a matrix with the rows being each of the 4 documents, and the columns # being each word. The corresponding (row, column) value is the frequency of # occurrance of that word(in the column) in a particular document(in the row). # You can do this using the transform() method and passing in the document data # set as the argument. The transform() method returns a matrix of numpy integers, # you can convert this to an array using toarray(). Call the array 'doc_array' # =================================================================================== doc_array = count_vector.transform(df.sms_messages).toarray() # print(doc_array) # 2.3.4 Convert Frequency Matrix to Dataframe # =================================================================================== # Convert the array we obtained, loaded into 'doc_array', into a dataframe and # set the column names to the word names(which you computed earlier using # get_feature_names(). Call the dataframe 'frequency_matrix'. # =================================================================================== columns = count_vector.get_feature_names() frequency_matrix = pd.DataFrame(doc_array, columns = columns) # print(frequency_matrix.head()) # 3.1 Training and testing sets # =================================================================================== # - Split the dataset into a training and testing set by using the train_test_split # method in sklearn. Split the data using the following variables: # X_train is our training data for the 'sms_message' column. # y_train is our training data for the 'label' column # X_test is our testing data for the 'sms_message' column. # y_test is our testing data for the 'label' column # - Print out the number of rows we have in each our training and testing data. # =================================================================================== from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(df.sms_messages, df.label) # print("Num rows in x_train: " + str(x_train.size)) # print("Num rows in x_test: " + str(x_test.size)) # print("Num rows in y_train: " + str(y_train.size)) # print("Num rows in y_test: " + str(y_test.size)) # print("Total num rows: " + str(len(df))) # 3.2 Applying BoW to our dataset # =================================================================================== # - Firstly, we have to fit our training data (X_train) into CountVectorizer() # and return the matrix. # - Secondly, we have to transform our testing data (X_test) to return the matrix. # =================================================================================== cv = CountVectorizer() training_data = cv.fit_transform(x_train) testing_data = cv.transform(x_test) # 4.1 Bayes Theorem From Scratch # =================================================================================== # Let us implement the Bayes Theorem from scratch using a simple example. # Let's say we are trying to find the odds of an individual having diabetes, # given that he or she was tested for it and got a positive result. # In the medical field, such probabilies play a very important role as it usually # deals with life and death situatuations. # P(D) is the probability of a person having Diabetes. # It's value is 0.01 or in other words, 1% of the general population has diabetes. # P(Pos) is the probability of getting a positive test result. # P(Neg) is the probability of getting a negative test result. # P(Pos|D) is the probability of getting a positive result on a test done for detecting # diabetes, given that you have diabetes. This has a value 0.9. (Sensitivity) # P(Neg|~D) is the probability of getting a negative result on a test done for detecting # diabetes, given that you do not have diabetes. This also has a value of 0.9. # (Specificity) # Putting our values into the formula for Bayes theorem we get: # P(D|Pos) = (P(D) * P(Pos|D)) / P(Pos) # P(Pos) = [P(D) * Sensitivity] + [P(~D) * (1-Specificity))] # =================================================================================== # 4.1.1 # =================================================================================== # Calculate probability of getting a positive test result, P(Pos) # =================================================================================== # P(D) p_diabetes = 0.01 # P(~D) p_no_diabetes = 0.99 # Sensitivity P(pos|D) p_sens = 0.9 # Specificity P(neg|~D) p_spec = 0.9 p_pos = (p_diabetes * p_sens) + (p_no_diabetes * (1-p_spec)) # 10.8% # print("The probabilitiy of getting a positive test result is: " + str(p_pos * 100) + "%") # 4.1.2 # =================================================================================== # Compute the probability of an individual having diabetes, given that, that individual # got a positive test result. In other words, compute P(D|Pos). # =================================================================================== p_diabetes_given_pos = (p_diabetes * p_sens) / p_pos # 8.3% # print("The probability of having diabetes given a positive test result is: " # + str(p_diabetes_given_pos * 100) + "%") # 4.1.3 # =================================================================================== # Compute the probability of an individual not having diabetes, given that, that individual # got a positive test result. In other words, compute P(~D|Pos). # P(~D|Pos) = (P(~D) * P(Pos|~D)) / P(Pos) # =================================================================================== p_pos_no_diabetes = 1 - p_spec # P(Pos|~D) = 1 - P(Neg|~D) p_no_diabetes_given_pos = p_no_diabetes * p_pos_no_diabetes / p_pos # 91.67% # print("The proability of not having diabetes given a positive test result is: " # + str(p_no_diabetes_given_pos * 100) + "%") # 4.2 Naive Bayes From Scratch # =================================================================================== # Now that you have understood the ins and outs of Bayes Theorem, we will extend it # to consider cases where we have more than feature. # # Let's say that we have two political parties' candidates, 'Jill Stein' of the # Green Party and 'Gary Johnson' of the Libertarian Party and we have the probabilities # of each of these candidates saying the words 'freedom', 'immigration' and 'environment' # when they give a speech: # Probability that Jill Stein says 'freedom': 0.1 ---------> P(F|J) # Probability that Jill Stein says 'immigration': 0.1 -----> P(I|J) # Probability that Jill Stein says 'environment': 0.8 -----> P(E|J) # Probability that Gary Johnson says 'freedom': 0.7 -------> P(F|G) # Probability that Gary Johnson says 'immigration': 0.2 ---> P(I|G) # Probability that Gary Johnson says 'environment': 0.1 ---> P(E|G) # And let us also assume that the probablility of Jill Stein giving a speech, # P(J) is 0.5 and the same for Gary Johnson, P(G) = 0.5. # # The Naive Bayes formula is P(y|x1,...,xn) = (P(Y) * P(x1,...,xn|y)) / P(x1,...,xn) # =================================================================================== # 4.2.1 Compute P(F,I) # =================================================================================== # Compute the probability of the words 'freedom' and 'immigration' being said in a # speech, or P(F,I). # # The first step is multiplying the probabilities of Jill Stein giving a speech with her # individual probabilities of saying the words 'freedom' and 'immigration'. Store this # in a variable called p_j_text # # The second step is multiplying the probabilities of Gary Johnson giving a speech with # his individual probabilities of saying the words 'freedom' and 'immigration'. Store # this in a variable called p_g_text # # The third step is to add both of these probabilities and you will get P(F,I). # =================================================================================== # P(J) = P(G) = 0.5 p_jill = p_gary = 0.5 # P(F|J) p_j_f = 0.1 # P(I|J) p_j_i = 0.1 # P(F|G) p_g_f = 0.7 # P(I|G) p_g_i = 0.2 p_j_text = p_jill * p_j_f * p_j_i p_g_text = p_gary * p_g_f * p_g_i # P(F,I) p_f_i = p_j_text + p_g_text # 7.5% # print("P(F, I) = " + str(p_f_i)) # 4.2.2 Compute P(J|F,I) # =================================================================================== # Compute P(J|F,I) using the formula P(J|F,I) = (P(J) * P(F|J) * P(I|J)) / P(F,I) # and store it in a variable p_j_fi # =================================================================================== p_j_fi = p_j_text / p_f_i # 6.67% # print("The probability of the speaker being Jill, given the words 'Freedom' and 'Immigration' \ # were said is: " + str(p_j_fi * 100) + "%") # 4.2.3 Compute P(G|F,I) # =================================================================================== # Compute P(G|F,I) using the formula P(G|F,I) = (P(G) * P(F|G) * P(I|G)) / P(F,I) # and store it in a variable p_g_fi # =================================================================================== p_g_fi = p_g_text / p_f_i # 93.33% # print("The probability of the speaker being Gary, given the words 'Freedom' and 'Immigration' \ # were said is: " + str(p_g_fi * 100) + "%") # 5 Naive Bayes w/ Scikit-Learn # =================================================================================== # (Back to spam detection) # We have loaded the training data into the variable 'training_data' and the testing # data into the variable 'testing_data'. # # Thankfully, sklearn has several Naive Bayes implementations that we can use and so # we do not have to do the math from scratch. We will be using sklearns # sklearn.naive_bayes method to make predictions on our dataset. # # Specifically, we will be using the multinomial Naive Bayes implementation. This # particular classifier is suitable for classification with discrete features # (such as in our case, word counts for text classification). It takes in integer # word counts as its input. On the other hand Gaussian Naive Bayes is better suited # for continuous data as it assumes that the input data has a Gaussian(normal) distribution. # =================================================================================== # 5.1 Training # =================================================================================== # Import the MultinomialNB classifier and fit the training data into the classifier # using fit(). Name your classifier 'naive_bayes'. You will be training the classifier # using 'training_data' and y_train' from our split earlier. # =================================================================================== from sklearn.naive_bayes import MultinomialNB clf = MultinomialNB() clf.fit(training_data, y_train) # 5.2 Predict # =================================================================================== # Now that our algorithm has been trained using the training data set we can now make # some predictions on the test data stored in 'testing_data' using predict(). # Save your predictions into the 'predictions' variable. # =================================================================================== predictions = clf.predict(testing_data) # 6 Evaluating Our Model # =================================================================================== # Now that we have made predictions on our test set, our next goal is to evaluate how # well our model is doing. There are various mechanisms for doing so, but first let's # do quick recap of them. # # Accuracy measures how often the classifier makes the correct prediction. It’s the # ratio of the number of correct predictions to the total number of predictions # (the number of test data points). # # Precision tells us what proportion of messages we classified as spam, actually were # spam. It is a ratio of true positives(words classified as spam, and which are # actually spam) to all positives(all words classified as spam, irrespective of whether # that was the correct classificatio), in other words it is the ratio of # [True Positives/(True Positives + False Positives)] # # Recall(sensitivity) tells us what proportion of messages that actually were spam # were classified by us as spam. It is a ratio of true positives(words classified as # spam, and which are actually spam) to all the words that were actually spam, # in other words it is the ratio of # [True Positives/(True Positives + False Negatives)] # # The Precision and REcall can be combined to get the F1 score, which is the weighted # average of the precision and recall scores. It ranges from 0 to 1 with 1 being the # best score # =================================================================================== # 6.1 Computing accuracy, precision, recall, F1 # =================================================================================== # Compute the accuracy, precision, recall and F1 scores of your model using your # test data 'y_test' and the predictions you made earlier stored in the 'predictions' # variable. # =================================================================================== fp = tp = fn = tn = 0 for i in range(0, predictions.size): pi = predictions[i] yi = y_test.data[i] if (pi == yi): if (pi == 0): # True negative tn += 1 else: # True positive tp += 1 else: if (pi == 0): # False negative fn += 1 else: # False positive fp += 1 accuracy = (tn + tp) / predictions.size precision = tp / (tp + fp) recall = tp / (tp + fn) f1 = 2 * (precision * recall)/(precision + recall) # As stated on wikipedia print("My attempt at manually calculating: ") print("\tAccuracy is: " + str(accuracy)) print("\tPrecision is: " + str(precision)) print("\tRecall is: " + str(recall)) print("\tF1 score is: " + str(f1)) from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score print("SKlearn metrics: ") print("\tAccuracy is: " + str(accuracy_score(y_test, predictions))) print("\tPrecision is: " + str(precision_score(y_test, predictions))) print("\tRecall is: " + str(recall_score(y_test, predictions))) print("\tF1 score is: " + str(f1_score(y_test, predictions)))
icon_player = 0 icon_player_horseman = 1 icon_gray_knight = 2 icon_vaegir_knight = 3 icon_flagbearer_a = 4 icon_flagbearer_b = 5 icon_peasant = 6 icon_khergit = 7 icon_khergit_horseman_b = 8 icon_axeman = 9 icon_woman = 10 icon_woman_b = 11 icon_town = 12 icon_town_steppe = 13 icon_village_a = 14 icon_village_burnt_a = 15 icon_village_deserted_a = 16 icon_village_snow_a = 17 icon_village_snow_burnt_a = 18 icon_village_snow_deserted_a = 19 icon_camp = 20 icon_ship = 21 icon_ship_on_land = 22 icon_castle_a = 23 icon_mule = 24 icon_cattle = 25 icon_training_ground = 26 icon_bridge_a = 27 icon_bridge_b = 28 icon_mansion = 29 icon_temple = 30 icon_custom_banner_01 = 31 icon_custom_banner_02 = 32 icon_custom_banner_03 = 33 icon_banner_01 = 34 icon_banner_02 = 35 icon_banner_03 = 36 icon_banner_04 = 37 icon_banner_05 = 38 icon_banner_06 = 39 icon_banner_07 = 40 icon_banner_08 = 41 icon_banner_09 = 42 icon_banner_10 = 43 icon_banner_11 = 44 icon_banner_12 = 45 icon_banner_13 = 46 icon_banner_14 = 47 icon_banner_15 = 48 icon_banner_16 = 49 icon_banner_17 = 50 icon_banner_18 = 51 icon_banner_19 = 52 icon_banner_20 = 53 icon_banner_21 = 54 icon_banner_22 = 55 icon_banner_23 = 56 icon_banner_24 = 57 icon_banner_25 = 58 icon_banner_26 = 59 icon_banner_27 = 60 icon_banner_28 = 61 icon_banner_29 = 62 icon_banner_30 = 63 icon_banner_31 = 64 icon_banner_32 = 65 icon_banner_33 = 66 icon_banner_34 = 67 icon_banner_35 = 68 icon_banner_36 = 69 icon_banner_37 = 70 icon_banner_38 = 71 icon_banner_39 = 72 icon_banner_40 = 73 icon_banner_41 = 74 icon_banner_42 = 75 icon_banner_43 = 76 icon_banner_44 = 77 icon_banner_45 = 78 icon_banner_46 = 79 icon_banner_47 = 80 icon_banner_48 = 81 icon_banner_49 = 82 icon_banner_50 = 83 icon_banner_51 = 84 icon_banner_52 = 85 icon_banner_53 = 86 icon_banner_54 = 87 icon_banner_55 = 88 icon_banner_56 = 89 icon_banner_57 = 90 icon_banner_58 = 91 icon_banner_59 = 92 icon_banner_60 = 93 icon_banner_61 = 94 icon_banner_62 = 95 icon_banner_63 = 96 icon_banner_64 = 97 icon_banner_65 = 98 icon_banner_66 = 99 icon_banner_67 = 100 icon_banner_68 = 101 icon_banner_69 = 102 icon_banner_70 = 103 icon_banner_71 = 104 icon_banner_72 = 105 icon_banner_73 = 106 icon_banner_74 = 107 icon_banner_75 = 108 icon_banner_76 = 109 icon_banner_77 = 110 icon_banner_78 = 111 icon_banner_79 = 112 icon_banner_80 = 113 icon_banner_81 = 114 icon_banner_82 = 115 icon_banner_83 = 116 icon_banner_84 = 117 icon_banner_85 = 118 icon_banner_86 = 119 icon_banner_87 = 120 icon_banner_88 = 121 icon_banner_89 = 122 icon_banner_90 = 123 icon_banner_91 = 124 icon_banner_92 = 125 icon_banner_93 = 126 icon_banner_94 = 127 icon_banner_95 = 128 icon_banner_96 = 129 icon_banner_97 = 130 icon_banner_98 = 131 icon_banner_99 = 132 icon_banner_100 = 133 icon_banner_101 = 134 icon_banner_102 = 135 icon_banner_103 = 136 icon_banner_104 = 137 icon_banner_105 = 138 icon_banner_106 = 139 icon_banner_107 = 140 icon_banner_108 = 141 icon_banner_109 = 142 icon_banner_110 = 143 icon_banner_111 = 144 icon_banner_112 = 145 icon_banner_113 = 146 icon_banner_114 = 147 icon_banner_115 = 148 icon_banner_116 = 149 icon_banner_117 = 150 icon_banner_118 = 151 icon_banner_119 = 152 icon_banner_120 = 153 icon_banner_121 = 154 icon_banner_122 = 155 icon_banner_123 = 156 icon_banner_124 = 157 icon_banner_125 = 158 icon_banner_126 = 159 icon_banner_127 = 160 icon_banner_128 = 161 icon_banner_129 = 162 icon_banner_130 = 163 icon_banner_131 = 164 icon_banner_132 = 165 icon_banner_133 = 166 icon_banner_134 = 167 icon_banner_135 = 168 icon_banner_137 = 169 icon_banner_138 = 170 icon_banner_139 = 171 icon_banner_140 = 172 icon_banner_141 = 173 icon_banner_142 = 174 icon_banner_143 = 175 icon_banner_144 = 176 icon_banner_145 = 177 icon_banner_146 = 178 icon_banner_147 = 179 icon_banner_148 = 180 icon_banner_149 = 181 icon_banner_150 = 182 icon_banner_151 = 183 icon_banner_152 = 184 icon_banner_153 = 185 icon_banner_154 = 186 icon_banner_155 = 187 icon_banner_156 = 188 icon_banner_157 = 189 icon_banner_158 = 190 icon_banner_159 = 191 icon_banner_160 = 192 icon_banner_161 = 193 icon_banner_162 = 194 icon_banner_163 = 195 icon_banner_164 = 196 icon_banner_165 = 197 icon_banner_166 = 198 icon_banner_167 = 199 icon_banner_168 = 200 icon_banner_169 = 201 icon_banner_170 = 202 icon_banner_171 = 203 icon_banner_172 = 204 icon_banner_173 = 205 icon_banner_175 = 206 icon_banner_176 = 207 icon_banner_177 = 208 icon_banner_178 = 209 icon_banner_179 = 210 icon_banner_180 = 211 icon_banner_181 = 212 icon_banner_182 = 213 icon_banner_183 = 214 icon_banner_184 = 215 icon_banner_185 = 216 icon_banner_186 = 217 icon_banner_187 = 218 icon_banner_188 = 219 icon_banner_189 = 220 icon_banner_190 = 221 icon_banner_191 = 222 icon_banner_192 = 223 icon_banner_193 = 224 icon_banner_194 = 225 icon_banner_195 = 226 icon_banner_196 = 227 icon_banner_136 = 228 icon_bandit_lair = 229
#!/usr/bin/python3 # -*- coding: utf-8 -*- import json from os import ( listdir, getcwd, makedirs, rename, ) from os.path import ( isfile, isdir, join, splitext, basename, ) from threading import Thread from time import sleep from urllib import error as request_error from urllib.request import urlopen import hashlib from requests import Session from argparse import ArgumentParser _args = ArgumentParser() _args.add_argument('-m', help='Method', type=str, required=False, default='') _args.add_argument('--hide', help='Hidden', action='store_const', required=False, const=True, default=False) # _args.add_argument('-f', help='File', type=str, required=False, default='tts.txt') args = _args.parse_args() configFile = './vk_key.json' apiVersion = '5.65' oauthUrl = 'https://oauth.vk.com/authorize?client_id={}&display=page&redirect_uri=https://oauth.vk.com/blank.html&response_type=token&v={}&scope={}' apiUrl = 'https://api.vk.com/method/{}?v={}&access_token={}&{}' access = ( #notify 1 #friends + 2 #protos + 4 #audio + 8 #video + 16 #pages + 128 #status + 1024 #notes # -- messages # + 4096 #offline + 65536 #docs + 131072 #groups + 262144 ) try: with open(configFile, 'rb') as _config: vk_config = json.loads(_config.read().decode('utf-8')) except Exception: print('Error. No config file!') exit(1) if not ( isinstance(vk_config, object) ): print('error parse config') exit(1) secretKey = vk_config['secret_key'] serviceKey = vk_config['service_key'] appId = vk_config['app_id'] token = vk_config['token'] uploadAlbumId = vk_config['album'] user = vk_config['user_id'] #int(input("Input you user id: \n")) if not user or int(user) < 0: print('Error!') exit(1) if token == '': code = oauthUrl.format(appId, apiVersion, access,) token = input("Please, go to {} and paste code here\n".format(code,)) if token == '': print('token is empty!') exit(1) data = { "app_id": appId, "secret_key": secretKey, "service_key": serviceKey, "user_id": user, "album": uploadAlbumId, "token": token } _ = open(configFile, 'wb') _.write(json.dumps(data).encode()) _.close() def _safe_downloader(url, file_name): while True: try: response = urlopen(url) out_file = open(file_name, 'wb') out_file.write(response.read()) return True except request_error.HTTPError: return False except request_error.URLError: sleep(1) pass def request(method: str, more: str = ""): url = apiUrl.format(method, apiVersion, token, more) r = urlopen(url) return r.read().decode('utf-8') if not args.hide: print("User: {}\nToken: {}\nUserId: {}\n".format(id, 'secret', user,)) class MultiThreads: threads = [] def __init__(self): self.threads = [] def addThread(self, target: callable, args: tuple): self.threads.append(Thread(target=target, args=args)) def startAll(self): for t in self.threads: # starting all threads t.start() for t in self.threads: # joining all threads t.join() self.threads = [] class User: albums = dict() def _upload(self, url: str, files): headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 5.1; rv:20.0) Gecko/20100101 Firefox/20.0', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate', 'Connection': 'keep-alive' } # url = 'http://httpbin.org/post'; p = Session() q = p.request('POST', url, files=files, headers=headers) if q.status_code == 200: j = q.json() server = str(j['server']) aid = str(j['aid']) hash = str(j['hash']) photos_list = str(bytearray(j['photos_list'], 'utf-8').decode('unicode_escape')) params = 'server=' + server + '&album_id=' + aid + '&hash=' + hash + '&photos_list=' + photos_list request('photos.save', params) def downloadPhotos(self, album: str = '', offset: int = 0): if album == '': album = '-1_wall' owner_id, album_id = album.split('_') if album.find('_') > 0 else ['', ''] path = join(getcwd(), 'vk_download_files') if not isdir(path): return False if album_id == '' or owner_id == '': print('Album or Owner is empty!') print('Please, paste of format <owner>_<album>. Example:' + ' https://vk.com/album5962770_24571412 =>' + ' (5962770_24571412 or -5962770_24571412 from groups)') return False if album_id == '000': album_id = 'saved' if album_id == '00': album_id = 'wall' if album_id == '0': album_id = 'profile' _ = 'owner_id={}&album_id={}&photo_sizes=1&offset={}&count=1000' response = request('photos.get', _.format(owner_id,album_id,str(offset),)) response = json.loads(response) if 'response' not in response or 'count' not in response.get('response'): print('response error') return False response = response.get('response') count = response.get('count') if not args.hide: print('Find ' + str(count) + ' photos') if count < 1: return False items = response.get('items') # images = map(lambda x: x.get('sizes')[-1], items) i = 1 _items = [{'items': len(items)}] threads = MultiThreads() dn = join(path, owner_id, album_id) if not isdir(dn) and not (makedirs(dn, 0o777, True) or isdir(dn)): print('mkdir {} error!'.format(dn)) exit(1) for f in items: src = f.get('sizes')[-1].get('src') m = hashlib.sha256() m.update(src.encode()) h = m.hexdigest() _items.append({'src': h}) _ = join(dn, h + '.' + src.split('.')[-1]) if isfile(_): i += 1 if not args.hide: print('Skip {}'.format(_)) continue if not args.hide: print('Downloading photo # {}/{} ({})'.format((i+offset), count, src,)) threads.addThread(_safe_downloader, (src, _)) i += 1 if i % 50 == 0: threads.startAll() threads.startAll() with open('{}/_{}'.format(dn, offset), 'w') as it: it.write(json.dumps(_items)) if len(items) > 999: self.downloadPhotos(album, (offset + len(items))) def photosGetAlbums(self, owner_id: str = 0): data = request('photos.getAlbums', 'owner_id=' + owner_id) self.albums = json.loads(data) return data def photos(self): if not (isinstance(self.albums, object) and 'response' in self.albums and 'items' in self.albums.get('response')): return False url = ','.join(map(lambda a: str(a.get('id'))+':6000', self.albums.get('response').get('items'))) print(url) exit() data = request('execute.getAllUserPhotos', '') return data def _movePhotos(self, to, items): def _(_ids): if not len(_ids): return None return request('execute.photosMove', 'photos={}&to={}&owner_id={}'.format(','.join(_ids), to, user)) ids = [] for i, j in enumerate(items): if i and i % 25 == 0: sleep(2) _(ids) print('sleep 2sec. loop %d' % i) ids = [] if j: ids.append('%d' % j) sleep(2) _(ids) def _deletePhotos(self, items): def _(_ids): if not len(_ids): return None return request('execute.deletePhotos', 'photos={}&owner={}'.format(','.join(_ids), user)) ids = [] for i, j in enumerate(items): if i and i % 25 == 0: sleep(2) _(ids) print('sleep 2sec. loop %d' % i) ids = [] ids.append('%d' % j) sleep(3) _(ids) def _copyPhotos(self, items, owner): from captcha_decoder import decoder def _(_ids): if not len(_ids): return [] return request('execute.photosCopy', 'photos={}&owner_id={}'.format(','.join(_ids), owner)) _items = [] ids = [] print('Count items: %d' % len(items)) _captcha_img = '/tmp/__vk_captcha_img.png' for i, j in enumerate(items): if i and i % 25 == 0: print('Sleeping 10 sec') sleep(10) __ = json.loads(_(ids)) error = __.get('error', '') _ERR = __.get('execute_errors', [{}])[0].get('error_msg', '') if _ERR: print(_ERR) # exit() if error: # __ = json.loads(_(ids)) print(error['error_msg']) if error.get('error_code') == 14: __n = 0 while True: print('try solving') captcha_sid = error.get('captcha_sid') captcha_img = error.get('captcha_img') _safe_downloader(captcha_img, _captcha_img) solved = decoder(_captcha_img) print(solved) if __n > 10 or not len(solved): solved = input('\nNot solved. Need manual!\nSee {}\n'.format(_captcha_img)) __ = json.loads(request('execute.photosCopy', 'photos={}&owner_id={}&captcha_sid={}&captcha_key={}'.format( ','.join(ids), owner, captcha_sid, solved ))) __n += 1 if not __.get('error'): break sleep(1) sleep(1) _items += __.get('response', []) print('sleep 2sec. loop %d' % i) ids = [] ids.append('%d' % j) sleep(2) __ = json.loads(_(ids)) error = __.get('error', '') if error: print(error) _items += __.get('response', []) # print(_items) # exit() return _items def movePhotos(self, ids=None): to = '249795469' data = json.loads(request('execute.getAllUserPhotos', 'user={}&albums=saved:6000'.format(user))) if data: self._movePhotos(to, data['response']) def uploadPhotos(self): if uploadAlbumId == '': print('upload_album_id is empty') return False # if need delete old uploaded photos # delete album here data = json.loads(request('photos.getUploadServer', 'album_id=' + str(uploadAlbumId))) if not data.get('response', False) or not data.get('response').get('upload_url', False): return False url = data.get('response').get('upload_url') path = join(getcwd(), 'vk_upload_files') if not isdir(path): return False uploadedPath = join(path, 'uploaded') if not isdir(uploadedPath): makedirs(uploadedPath, 0o777, True) _files = [f for f in listdir(path) if isfile(join(path, f))] files = [] for f in _files: _, ext = splitext(f) if ext in ['.jpeg', '.jpg', '.png']: files.append(f) i = 0 n = 0 countFiles = len(files) _list = [] _move = [] if countFiles > 0: if not args.hide: print('uploading start') for f in files: if i == 5: n += 5 self._upload(url, _list) sleep(1) # на всякий случай for _ in _move: _[1].close() rename(_[0], join(uploadedPath, basename(_[0]))) print('uploaded ' + str(n) + '/' + str(countFiles)) i = 0 _list = [] _move = [] index = 'file' + str(i+1) fileName = join(path, f) d = open(fileName, 'rb') _list.append((index, ('image.png', d,))) _move.append((fileName, d,)) i += 1 if i != 5: self._upload(url, _list) for _ in _move: _[1].close() rename(_[0], join(uploadedPath, basename(_[0]))) if not args.hide: print('uploaded finish') def summary(self): print(json.loads(request('execute.getSummaryData', ''))) def copyPhotos(self): to = '249798346' album_id = 'wall' owner = '-127518015' items = json.loads(request('execute.photosGetIds', 'owner=%s&album=%s' % (owner, album_id))).get('response', []) # items = items[0:2] moved_photos = self._copyPhotos(items, owner) print(len(moved_photos)) exit() if len(items): self._movePhotos(to, moved_photos) def deleteSavedPhotos(self): items = json.loads(request('execute.photosGetIds', 'owner=%s&album=%s' % (user, 'saved'))).get('response', []) self._deletePhotos(items) newUser = User() # newUser.photosGetAlbums() # newUser.photos() # newUser.uploadPhotos() # newUser.downloadPhotos(input("Paste album number\n")) # exit() if args.m: method = args.m else: method = input("Method: \n") # moreParams = input("More params: \n") if method == '-1': newUser.downloadPhotos(input("Paste album number\n")) if method == '-2': owner_id = input("Paste owner id\n") newUser.photosGetAlbums(owner_id) for i in newUser.albums['response']['items']: print(owner_id + '_' + str(i['id'])) if method == '-3': newUser.movePhotos() if method == '-4': newUser.copyPhotos() if method == '-5': newUser.summary() if method == '-6': newUser.deleteSavedPhotos() exit() m = getattr(newUser, method) print(json.dumps(json.loads(m()), sort_keys=True, indent=4))
# (C) Copyright 2019-2022 Hewlett Packard Enterprise Development LP. # Apache License 2.0 from pyaoscx.exceptions.generic_op_error import GenericOperationError class ListDescriptor(list): """ Attribute descriptor class to keep track of a list that contains pyaoscx_module objects simulating a Reference to a resource. If the list changes, then every pyaoscx_module object has to be changed. """ def __init__( self, name, ): self.name = name def __get__(self, instance, owner): """ Method called when current attribute is used. :param instance: Instance of the current Object """ return instance.__dict__[self.name] def __set__(self, instance, new_list): """ Method called when current attribute is set. :param instance: Instance of the current Object. :param new_list: new list being set to current attribute object. """ new_list = ReferenceList(new_list) prev_list = ( instance.__dict__[self.name] if self.name in instance.__dict__ else None ) # Update value inside the instance dictionary instance.__dict__[self.name] = new_list # Check changes and delete if prev_list is not None and prev_list != new_list: # Reflect changes made inside the list for element in prev_list: if element not in new_list: # Delete element reference try: element.delete() except AttributeError: # Ignore pass class ReferenceList(list): """ Wrapper class for a Python List object. Modifies remove() method to use the pyaoscx.pyaoscx_module.delete() method when using remove on this special type list. """ def __init__(self, value): list.__init__(self, value) def __setitem__(self, key, value): """ Intercept the l[key]=value operations. Also covers slice assignment. """ try: _ = self.__getitem__(key) except KeyError: list.__setitem__(self, key, value) else: list.__setitem__(self, key, value) def __delitem__(self, key): """ Delete self.key. """ _ = list.__getitem__(self, key) list.__delitem__(self, key) def pop(self): """ Remove and return item at index (default last). """ oldvalue = list.pop(self) return oldvalue def extend(self, newvalue): """ Extend list by appending elements from iterable. """ list.extend(self, newvalue) def insert(self, i, element): """ Insert object before index. """ list.insert(self, i, element) def remove(self, element): """ Remove first occurrence of value. """ _ = list.index(self, element) list.remove(self, element) try: # Delete element with a DELETE request element.delete() # If delete fails because table entry # is already deleted: IGNORE except GenericOperationError as error: # In case error is not 404, raise if error.response_code != 404: raise error def reverse(self): """ Reverse *IN PLACE*. """ list.reverse(self) def sort(self, cmpfunc=None): """ Stable sort *IN PLACE*. """ _ = self[:] list.sort(self, cmpfunc)
# coding:utf-8 # # The MIT License (MIT) # # Copyright (c) 2018-2020 azai/Rgveda mods with yutiansut/QUANTAXIS # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.optimize as sco try: import talib except: print('PLEASE run "pip install TALIB" to call these modules') pass import QUANTAXIS as QA try: import QUANTAXIS as QA from QUANTAXIS.QAUtil.QAParameter import ORDER_DIRECTION from QUANTAXIS.QAData.QADataStruct import ( QA_DataStruct_Index_min, QA_DataStruct_Index_day, QA_DataStruct_Stock_day, QA_DataStruct_Stock_min, QA_DataStruct_CryptoCurrency_day, QA_DataStruct_CryptoCurrency_min, ) from QUANTAXIS.QAIndicator.talib_numpy import * from QUANTAXIS.QAUtil.QADate_Adv import ( QA_util_timestamp_to_str, QA_util_datetime_to_Unix_timestamp, QA_util_print_timestamp ) from QUANTAXIS.QAUtil.QALogs import ( QA_util_log_info, QA_util_log_debug, QA_util_log_expection ) except: print('PLEASE run "pip install QUANTAXIS" before call GolemQ.cli.portfolio modules') pass from GolemQ.indices.indices import * from GolemQ.cli.show_number import ( position, ) def show_verbose(opt_res, obj, rm, no_print=False): """ 解读资产配置优化结果 """ if (obj == 'Sharpe'): obj_name = '夏普率' elif (obj == 'Sortino'): obj_name = 'Sortino Ratio' elif (obj == 'MinRisk'): obj_name = '最小风险' if (rm == 'MV'): rm_name = '均衡收益' elif (rm == 'WR'): rm_name = '最坏可能性' else: rm_name = 'CVaR风险最低' res_weights = pd.DataFrame(opt_res, columns=['code', 'name', 'weights']) ret_verbose = '按{}{}化计算有推荐仓位的股票:\n{}'.format(obj_name, rm_name, res_weights[res_weights['weights'].gt(0.001)]) ret_verbose = '{}\n{}'.format(ret_verbose, '剩下都是没有推荐仓位(牌面)的:\n{}'.format(res_weights.loc[res_weights['weights'].lt(0.001), ['code', 'name']].values)) if (no_print == False): print(ret_verbose) return ret_verbose def portfolio_optimizer(rm='CVaR', alpha=0.1, risk_free=0.02, strategy='sharpe_scale_patterns_day',): pd.options.display.float_format = '{:.1%}'.format # 股票代码,我直接用我的选股程序获取选股列表。 position_signals = position(portfolio=strategy, frequency='day', market_type=QA.MARKET_TYPE.STOCK_CN, verbose=False) if (position_signals is not None) and \ (len(position_signals) > 0): datestamp = position_signals.index[0][0] position_signals_best = position_signals.loc[position_signals[FLD.LEVERAGE_ONHOLD].gt(0.99), :] if (len(position_signals_best) > 20): position_signals = position_signals_best else: pass codelist = position_signals.index.get_level_values(level=1).to_list() # 获取股票中文名称,只是为了看得方便,交易策略并不需要股票中文名称 stock_names = QA.QA_fetch_stock_name(codelist) codename = [stock_names.at[code, 'name'] for code in codelist] codename_T = {codename[i]:codelist[i] for i in range(len(codelist))} data_day = QA.QA_fetch_stock_day_adv(codelist, start='2014-01-01', end='{}'.format(datetime.date.today())).to_qfq() # 收益率序列 rets_jotion = data_day.add_func(kline_returns_func) returns = pd.DataFrame(columns=codelist, index=sorted(data_day.data.index.get_level_values(level=0).unique())) for code in codelist: returns[code] = rets_jotion.loc[(slice(None), code), :].reset_index(level=[1], drop=True) returns = returns.fillna(0) returns = returns.rename(columns={codelist[i]:codename[i] for i in range(len(codelist))}) import riskfolio.Portfolio as pf # Building the portfolio object port = pf.Portfolio(returns=returns) # Calculating optimum portfolio # Select method and estimate input parameters: method_mu = 'hist' # Method to estimate expected returns based on historical data. method_cov = 'hist' # Method to estimate covariance matrix based on historical data. port.assets_stats(method_mu=method_mu, method_cov=method_cov, d=0.94) ## Estimate optimal portfolio: model = 'Classic' # Could be Classic (historical), BL (Black Litterman) or FM (Factor Model) obj = 'Sharpe' # Objective function, could be MinRisk, MaxRet, Utility or Sharpe hist = True # Use historical scenarios for risk measures that depend on scenarios rf = risk_free / 365 # Risk free rate l = 0 # Risk aversion factor, only useful when obj is 'Utility' port.alpha = alpha # 暗色主题 plt.style.use('Solarize_Light2') # 正常显示中文字体 plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] import riskfolio.PlotFunctions as plf # Plotting the composition of the portfolio w = port.optimization(model=model, rm=rm, obj=obj, rf=rf, l=l, hist=hist) opt_weights = w.copy() opt_weights['code'] = opt_weights.apply(lambda x: codename_T[x.name], axis=1) opt_weights['name'] = opt_weights.apply(lambda x: x.name, axis=1) opt_weights = opt_weights.set_index(['code'], drop=False) print(u'交易日', datestamp) show_verbose(opt_weights, obj, rm) if (rm == 'CVaR'): # Risk measure CVaR title = 'Sharpe Mean CVaR' elif (rm == 'MV'): # Risk measure used, this time will be variance title = 'Sharpe Mean Variance' elif (rm == 'WR'): title = 'Sharpe Mean WR' elif (rm == 'Sortino'): title = 'Sortino Mean WR' else: rm = 'CVaR' title = 'Sharpe Mean CVaR' ax = plf.plot_pie(w=w, title=title, others=0.05, nrow=25, cmap = "tab20", height=6, width=10, ax=None) plt.show() ## Plotting efficient frontier composition #points = 10 # Number of points of the frontier #frontier = port.efficient_frontier(model=model, rm=rm, points=points, #rf=rf, hist=hist) ##print(frontier.T.head()) #ax = plf.plot_frontier_area(w_frontier=frontier, cmap="tab20", #height=6, #width=10, ax=None) #plt.show() else: print(u'没有可用的选股数据。') if __name__ == '__main__': pass
from datetime import timedelta from django.test import TestCase from django.utils import timezone from .. import exceptions from ..models import Expense, Project, Timesheet class ProjectTestCase(TestCase): def test_str(self): project = Project(name="test") self.assertEqual(str(project), "test") class ExpenseTestCase(TestCase): def test_str(self): expense = Expense(name="test") self.assertEqual(str(expense), "test") class TimesheetTestCase(TestCase): def test_str(self): timesheet = Timesheet(label="test") self.assertEqual(str(timesheet), "test") def test_diff(self): date_start = timezone.now() date_end = date_start + timedelta(hours=1) timesheet = Timesheet(date_start=date_start, date_end=date_end) self.assertEqual(timesheet.diff, date_end - date_start) def test_diff_return_none_with_no_date_end(self): date_start = timezone.now() timesheet = Timesheet(date_start=date_start, date_end=None) self.assertEqual(timesheet.diff, None) def test_diff_humanize(self): date_start = timezone.now() date_end = date_start + timedelta(hours=1) timesheet = Timesheet(date_start=date_start, date_end=date_end) self.assertEqual(timesheet.diff_humanize, "1 hour") def test_diff_humanize_return_empty_string_with_no_date_end(self): date_start = timezone.now() timesheet = Timesheet(date_start=date_start, date_end=None) self.assertEqual(timesheet.diff_humanize, "") def test_finish(self): timesheet = Timesheet.objects.create(is_active=True) self.assertIsNone(timesheet.date_end) timesheet.finish() self.assertIsNotNone(timesheet.date_end) self.assertFalse(timesheet.is_active) def test_clock_in(self): qs = Timesheet.objects.filter(is_active=True) self.assertEqual(qs.count(), 0) Timesheet.clock_in() self.assertEqual(qs.count(), 1) def test_clock_in_raise_error_when_an_active_timesheet_exists(self): qs = Timesheet.objects.filter(is_active=True) Timesheet.objects.create(is_active=True) self.assertEqual(qs.count(), 1) with self.assertRaises(exceptions.ActiveTimesheetExists): Timesheet.clock_in() self.assertEqual(qs.count(), 1) def test_clock_out(self): Timesheet.objects.create(is_active=True) qs = Timesheet.objects.filter(is_active=True) self.assertEqual(qs.count(), 1) Timesheet.clock_out() self.assertEqual(qs.count(), 0) def test_clock_out_raise_error_when_there_is_no_active_timesheet(self): qs = Timesheet.objects.filter(is_active=True) self.assertEqual(qs.count(), 0) with self.assertRaises(exceptions.ActiveTimesheetDoesNotExist): Timesheet.clock_out() self.assertEqual(qs.count(), 0)
# -*- coding: utf-8 -*- """ """ from collections import OrderedDict import os import subprocess import librosa import numpy as np import pandas as pd import sklearn as sk import sklearn.model_selection import skimage as skim import skimage.measure import skimage.morphology import skimage.restoration from tqdm import tqdm import xml.etree.ElementTree from echonet.datasets.dataset import Dataset from echonet.utils.generics import generate_delta, load_audio, to_one_hot from IPython.core.debugger import Tracer class BirdCLEF2016(Dataset): """ """ def __init__(self, data_dir, work_dir, downsample=True): super().__init__(data_dir, work_dir) self.DOWNSAMPLE = downsample self.SEGMENT_LENGTH = 500 self.BANDS = 180 self.WITH_DELTA = False self.FMAX = 16000 self.FFT = 2205 self.HOP = 441 self._resample_recordings() self._parse_recordings() self._generate_spectrograms() if self.DOWNSAMPLE: self.SEGMENT_LENGTH //= 2 self.BANDS //= 3 self.class_count = len(self.encoder.classes_) self._split_dataset() self.train_meta = self.meta[self.meta['fold'] == 'train'] self.validation_data.meta = self.meta[self.meta['fold'] == 'validation'] self.test_data.meta = self.meta[self.meta['fold'] == 'test'] self._train_size = len(self.recordings[self.recordings['fold'] == 'train']) self._validation_size = len(self.recordings[self.recordings['fold'] == 'validation']) self._test_size = len(self.recordings[self.recordings['fold'] == 'test']) self._populate(self.validation_data) self._populate(self.test_data) def _resample_recordings(self): src_dir = self.data_dir + 'TrainingSet/wav/' for recording in tqdm(sorted(os.listdir(src_dir))): if os.path.isfile(src_dir + recording): wav_in = src_dir + recording wav_out = self.work_dir + recording if not os.path.isfile(wav_out): subprocess.call(['sox', '-S', wav_in, '-r', '44100', '-b', '16', wav_out]) def _parse_recordings(self): if os.path.isfile(self.work_dir + 'BirdCLEF2016.csv'): self.recordings = pd.read_csv(self.work_dir + 'BirdCLEF2016.csv') self.encoder = sk.preprocessing.LabelEncoder() self.encoder.fit(self.recordings['birdclass'].values) else: self.recordings = [] src_dir = self.data_dir + 'TrainingSet/xml/' for recording in tqdm(sorted(os.listdir(src_dir))): root = xml.etree.ElementTree.parse(src_dir + recording).getroot() data = { 'filename': recording[:-4] + '.wav', 'birdclass': root.find('ClassId').text, 'species': root.find('Species').text, 'genus': root.find('Genus').text, 'family': root.find('Family').text, 'background': root.find('BackgroundSpecies').text } if data['background'] is None: data['background'] = '' columns = ['filename', 'birdclass', 'species', 'genus', 'family', 'background'] row = pd.DataFrame(data, columns=columns, index=[0]) self.recordings.append(row) self.recordings = pd.concat(self.recordings, ignore_index=True) self.encoder = sk.preprocessing.LabelEncoder() self.encoder.fit(self.recordings['birdclass'].values) self.recordings['target'] = self.encoder.transform(self.recordings['birdclass'].values) self.recordings.to_csv(self.work_dir + 'BirdCLEF2016.csv', index=False) def _generate_spectrograms(self): if os.path.isfile(self.work_dir + 'BirdCLEF2016-clips.csv'): self.meta = pd.read_csv(self.work_dir + 'BirdCLEF2016-clips.csv') else: self.meta = [] for row in tqdm(self.recordings.itertuples(), total=len(self.recordings)): self.meta.extend(self._split_recording(row)) self.meta = pd.concat(self.meta, ignore_index=True) self.meta.to_csv(self.work_dir + 'BirdCLEF2016-clips.csv', index=False) def _split_recording(self, row): audio = load_audio(self.work_dir + row.filename, 44100) spec = librosa.feature.melspectrogram(audio, sr=44100, n_fft=self.FFT, fmax=self.FMAX, hop_length=self.HOP, n_mels=self.BANDS) freqs = librosa.core.mel_frequencies(n_mels=self.BANDS, fmax=self.FMAX) spec = librosa.core.perceptual_weighting(spec, freqs, ref_power=np.max) spec = self._enhance_spectrogram(spec) mask = skim.morphology.dilation(spec, selem=np.ones((3, 40))) > 0 mask[:10, :] = False clip_list = [] counter = 0 current = [] window_size = 25 w = 0 while w * window_size < np.shape(spec)[1]: window = slice(w * window_size, (w + 1) * window_size) if np.any(mask[:, window]): current.append(spec[:, window]) elif len(current): clip_list.append(self._save(np.concatenate(current, axis=1), row, counter)) counter += 1 current = [] w += 1 if len(current): clip_list.append(self._save(np.concatenate(current, axis=1), row, counter)) return clip_list def _enhance_spectrogram(self, spec): spec = (spec + 60.0) / 15.0 # quasi-normalization np.clip(spec, 0, 5, out=spec) spec = (spec ** 2 - 6.0) / 6.0 spec = skim.restoration.denoise_tv_chambolle(spec, weight=0.1) spec = ((spec - np.min(spec)) / np.max(spec - np.min(spec)) - 0.5) * 2.0 spec += 0.5 spec[spec > 0] *= 2 spec = ((spec - np.min(spec)) / np.max(spec - np.min(spec)) - 0.5) * 2.0 return spec def _save(self, clip, row, counter): reduced_clip = skim.measure.block_reduce(clip, block_size=(3, 2), func=np.mean) np.save(self.work_dir + row.filename + '.spec{}.npy'.format(counter), clip.astype('float16'), allow_pickle=False) np.save(self.work_dir + row.filename + '.spec{}.ds.npy'.format(counter), reduced_clip.astype('float16'), allow_pickle=False) data = OrderedDict([ ('filename', row.filename + '.spec{}.npy'.format(counter)), ('target', row.target), ('recording', row.filename), ('birdclass', row.birdclass), ('species', row.species), ('genus', row.genus), ('family', row.family), ('background', '' if pd.isnull(row.background) else row.background) ]) return pd.DataFrame(data, columns=data.keys(), index=[0]) def _split_dataset(self): """Splits the dataset into training/validation/testing folds Stratified split with shuffling: - 75% of recordings go to training - 12.5% validation - 12.5% testing """ splitter = sklearn.model_selection.StratifiedShuffleSplit quarter = splitter(n_splits=1, test_size=0.25, random_state=20161013) half = splitter(n_splits=1, test_size=0.5, random_state=20161013) train_split = quarter.split(self.recordings['filename'], self.recordings['target']) train_idx, holdout_idx = list(train_split)[0] holdout_split = half.split(self.recordings.loc[holdout_idx, 'filename'], self.recordings.loc[holdout_idx, 'target']) validation_idx, test_idx = list(holdout_split)[0] self.recordings.loc[train_idx, 'fold'] = 'train' self.recordings.loc[holdout_idx[validation_idx], 'fold'] = 'validation' self.recordings.loc[holdout_idx[test_idx], 'fold'] = 'test' right = self.recordings[['filename', 'fold']].rename(columns={'filename': 'recording'}) self.meta = pd.merge(self.meta, right, on='recording') @property def input_shape(self): return 1 + self.WITH_DELTA, self.BANDS, self.SEGMENT_LENGTH @property def train_size(self): return self._train_size @property def train_segments(self): return len(self.train_meta) @property def validation_size(self): return self._validation_size @property def validation_segments(self): return len(self.validation_data.meta) @property def test_size(self): return self._test_size @property def test_segments(self): return len(self.test_data.meta) def to_categories(self, targets): return self.encoder.classes_[targets] def to_targets(self, categories): return self.encoder.transform(categories) def test(self, model): return self._score(model, self.test_data) def validate(self, model): return self._score(model, self.validation_data) def _populate(self, data): X, y, meta = [], [], [] for row in tqdm(data.meta.itertuples(), total=len(data.meta)): values = dict(zip(row._fields[1:], row[1:])) columns = row._fields[1:] rows = [] for _ in range(2): # multiply segment variants for prediction X.append(self._extract_segment(row.filename)) y.append(row.target) rows.append(pd.DataFrame(values, columns=columns, index=[0])) meta.extend(rows) X = np.stack(X) y = to_one_hot(np.array(y), self.class_count) meta = pd.concat(meta, ignore_index=True) if self.data_mean is None: self.data_mean = np.mean(X) self.data_std = np.std(X) X -= self.data_mean X /= self.data_std data.X = X data.y = y data.meta = meta def iterbatches(self, batch_size): itrain = super()._iterrows(self.train_meta) while True: X, y = [], [] for i in range(batch_size): row = next(itrain) X.append(self._extract_segment(row.filename)) y.append(row.target) X = np.stack(X) y = to_one_hot(np.array(y), self.class_count) X -= self.data_mean X /= self.data_std yield X, y def _extract_segment(self, filename): if self.DOWNSAMPLE: spec = np.load(self.work_dir + filename[:-4] + '.ds.npy').astype('float32') else: spec = np.load(self.work_dir + filename).astype('float32') spec = spec[:, :-1] # trim border artifacts if np.shape(spec)[1] >= self.SEGMENT_LENGTH: offset = self.RandomState.randint(0, np.shape(spec)[1] - self.SEGMENT_LENGTH + 1) spec = spec[:, offset:offset + self.SEGMENT_LENGTH] else: offset = self.RandomState.randint(0, self.SEGMENT_LENGTH - np.shape(spec)[1] + 1) overlay = np.zeros((self.BANDS, self.SEGMENT_LENGTH)) - 1.0 overlay[:, offset:offset + np.shape(spec)[1]] = spec spec = overlay if self.WITH_DELTA: delta = generate_delta(spec) return np.stack([spec, delta]) else: return np.stack([spec]) def _score(self, model, data): predictions = pd.DataFrame(model.predict(data.X)) results = pd.concat([data.meta[['recording', 'target']], predictions], axis=1) results = results.groupby('recording').aggregate('mean').reset_index() results['predicted'] = np.argmax(results.iloc[:, 2:].values, axis=1) return np.sum(results['predicted'] == results['target']) / len(results)
# coding: utf-8 from typing import List from ...shared.data.shared_data import BaseData from ...shared.data.from_import import FromImport from .items.data_item import DataItem class Data(BaseData): flags: bool allow_db: bool quote: List[str] typings: List[str] requires_typing: bool from_imports: List[FromImport] from_imports_typing: List[FromImport] items: List[DataItem] @property def fullname(self) -> str: return self.namespace + "." + self.name
import datetime import typing as T from pqcli import random def format_float(num: float) -> str: ret = f"{num:.01f}" if ret.endswith("0"): ret = ret[:-2] return ret def format_timespan(timespan: datetime.timedelta) -> str: num = timespan.total_seconds() if num < 60.0: return f"~{int(num)}s" num /= 60 if num < 60.0: return f"~{int(num)}m" num /= 60 if num < 24.0: return f"~{format_float(num)}h" num /= 24 return f"~{format_float(num)}d" def generate_name() -> str: parts = [ "br|cr|dr|fr|gr|j|kr|l|m|n|pr||||r|sh|tr|v|wh|x|y|z".split("|"), "a|a|e|e|i|i|o|o|u|u|ae|ie|oo|ou".split("|"), "b|ck|d|g|k|m|n|p|t|v|x|z".split("|"), ] result = "" for i in range(6): result += random.choice(parts[i % 3]) return result.title() def to_roman(num: int) -> str: if not num: return "N" ret = "" def _rome(dn: int, ds: str) -> bool: nonlocal num, ret if num >= dn: num -= dn ret += ds return True return False if num < 0: ret = "-" num = -num while _rome(1000, "M"): pass _rome(900, "CM") _rome(500, "D") _rome(400, "CD") while _rome(100, "C"): pass _rome(90, "XC") _rome(50, "L") _rome(40, "XL") while _rome(10, "X"): pass _rome(9, "IX") _rome(5, "V") _rome(4, "IV") while _rome(1, "I"): pass return ret def act_name(act: int) -> str: if act == 0: return "Prologue" return f"Act {to_roman(act)}" def plural(subject: str) -> str: if subject.endswith("y"): return subject[:-1] + "ies" if subject.endswith("us"): return subject[:-2] + "i" if subject.endswith(("ch", "x", "s", "sh")): return subject + "es" if subject.endswith("f"): return subject[:-1] + "ves" if subject.endswith(("man", "Man")): return subject[:-2] + "en" return subject + "s" def indefinite(subject: str, qty: int) -> str: if qty == 1: if subject.startswith(tuple("AEIOU?aeiou?")): return "an " + subject return "a " + subject return str(qty) + " " + plural(subject) def definite(subject: str, qty: int) -> str: if qty > 1: subject = plural(subject) return "the " + subject def prefix(a: T.List[str], m: int, subject: str, sep: str = " ") -> str: m = abs(m) if m < 1 or m > len(a): return subject return a[m - 1] + sep + subject def sick(m: int, subject: str) -> str: m = 6 - abs(m) return prefix( ["dead", "comatose", "crippled", "sick", "undernourished"], m, subject ) def young(m: int, subject: str) -> str: m = 6 - abs(m) return prefix( ["foetal", "baby", "preadolescent", "teenage", "underage"], m, subject ) def big(m: int, subject: str) -> str: return prefix( ["greater", "massive", "enormous", "giant", "titanic"], m, subject ) def special(m: int, subject: str) -> str: if " " in subject: return prefix( ["veteran", "cursed", "warrior", "undead", "demon"], m, subject ) return prefix( ["Battle-", "cursed ", "Were-", "undead ", "demon "], m, subject, "" ) def terminate_message(player_name: str) -> str: adjective = random.choice(["faithful", "noble", "loyal", "brave"]) return f"Terminate {adjective} {player_name}?"
''' A positive integer m is a sum of squares if it can be written as k + l where k > 0, l > 0 and both k and l are perfect squares. Write a Python function sumofsquares(m) that takes an integer m returns True if m is a sum of squares and False otherwise. (If m is not positive, your function should return False.) Here are some examples to show how your function should work. >>> sumofsquares(41) True >>> sumofsquares(30) False >>> sumofsquares(17) True ''' import math def sumofsquares(m): d = range((int(math.sqrt(m / 2))), (int(math.sqrt(m - 1)) + 2)) s = [1] for x in d: s.append(x*x) print(m, d, s) z = 0 while z < len(s): for y in s[z:]: if y + s[z] == m: return True z += 1 return False print(sumofsquares(17))
import bokeh.model import bokeh.core.properties import bokeh.util.callback_manager class Collection(bokeh.model.Model): objects = bokeh.core.properties.Dict(bokeh.core.properties.String, bokeh.core.properties.Instance(bokeh.model.Model)) def on_change(self, attr, *callbacks): bokeh.util.callback_manager.PropertyCallbackManager.on_change(self, attr, *callbacks) def __setattr__(self, name, value): if name.startswith("_"): bokeh.model.Model.__setattr__(self, name, value) else: old = self.objects.get(name, None) self.objects[name] = value self.trigger(name, old, value) def __getattr__(self, name): if name.startswith("_"): return super(Collection, self).__getattribute__(name) return super(Collection, self).__getattribute__("objects")[name]
""" Aggregating results into DataPoints Copyright 2015 BlazeMeter Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import collections import copy import difflib import logging import re from abc import abstractmethod from collections import Counter import yaml from yaml.representer import SafeRepresenter from __init__ import TaurusInternalException, TaurusConfigError from engine import Aggregator from six import iteritems, PY3 from utils import dehumanize_time, JSONConvertible from hdrpy import HdrHistogram class RespTimesCounter(JSONConvertible): def __init__(self, low, high, sign_figures): super(RespTimesCounter, self).__init__() self.low = low self.high = high self.sign_figures = sign_figures self.histogram = HdrHistogram(low, high, sign_figures) self._cached_perc = None self._cached_stdev = None def __deepcopy__(self, memo): new = RespTimesCounter(self.low, self.high, self.sign_figures) new._cached_perc = self._cached_perc new._cached_stdev = self._cached_stdev # TODO: maybe hdrpy can encapsulate this itself new.histogram.counts = copy.deepcopy(self.histogram.counts, memo) new.histogram.total_count = self.histogram.total_count new.histogram.min_value = self.histogram.min_value new.histogram.max_value= self.histogram.max_value return new def __bool__(self): return len(self) > 0 def __len__(self): return self.histogram.total_count def add(self, item, count=1): item = round(item * 1000.0, 3) self._cached_perc = None self._cached_stdev = None self.histogram.record_value(item, count) def merge(self, other): self._cached_perc = None self._cached_stdev = None self.histogram.add(other.histogram) def get_percentiles_dict(self, percentiles): if self._cached_perc is None or set(self._cached_perc.keys()) != set(percentiles): self._cached_perc = self.histogram.get_percentile_to_value_dict(percentiles) return self._cached_perc def get_counts(self): return self.histogram.get_value_counts() def get_stdev(self, mean): if self._cached_stdev is None: self._cached_stdev = self.histogram.get_stddev(mean) / 1000.0 # is this correct to divide? return self._cached_stdev def __json__(self): return { rt / 1000.0: int(count) # because hdrpy returns int64, which is unrecognized by json serializer for rt, count in iteritems(self.get_counts()) } class KPISet(dict): """ Main entity in results, contains all KPIs for single label, capable of merging other KPISet's into it to compose cumulative results """ ERRORS = "errors" SAMPLE_COUNT = "throughput" CONCURRENCY = "concurrency" SUCCESSES = "succ" FAILURES = "fail" BYTE_COUNT = "bytes" RESP_TIMES = "rt" AVG_RESP_TIME = "avg_rt" STDEV_RESP_TIME = "stdev_rt" AVG_LATENCY = "avg_lt" AVG_CONN_TIME = "avg_ct" PERCENTILES = "perc" RESP_CODES = "rc" ERRTYPE_ERROR = 0 ERRTYPE_ASSERT = 1 ERRTYPE_SUBSAMPLE = 2 def __init__(self, perc_levels=(), rt_dist_maxlen=None): super(KPISet, self).__init__() self.sum_rt = 0 self.sum_lt = 0 self.sum_cn = 0 self.perc_levels = perc_levels self.rtimes_len = rt_dist_maxlen self._concurrencies = Counter() # scalars self[KPISet.SAMPLE_COUNT] = 0 self[KPISet.CONCURRENCY] = 0 self[KPISet.SUCCESSES] = 0 self[KPISet.FAILURES] = 0 self[KPISet.AVG_RESP_TIME] = 0 self[KPISet.STDEV_RESP_TIME] = 0 self[KPISet.AVG_LATENCY] = 0 self[KPISet.AVG_CONN_TIME] = 0 self[KPISet.BYTE_COUNT] = 0 # vectors self[KPISet.ERRORS] = [] self[KPISet.RESP_TIMES] = RespTimesCounter(1, 60 * 30 * 1000, 3) # is maximum value of 30 minutes enough? self[KPISet.RESP_CODES] = Counter() self[KPISet.PERCENTILES] = {} def __deepcopy__(self, memo): mycopy = KPISet(self.perc_levels) mycopy.sum_rt = self.sum_rt mycopy.sum_lt = self.sum_lt mycopy.sum_cn = self.sum_cn mycopy.rtimes_len = self.rtimes_len mycopy.perc_levels = self.perc_levels mycopy._concurrencies = copy.deepcopy(self._concurrencies, memo) for key in self: mycopy[key] = copy.deepcopy(self.get(key, no_recalc=True), memo) return mycopy @staticmethod def error_item_skel(error, ret_c, cnt, errtype, urls, tag): """ :type error: str :type ret_c: str :type tag: str :type cnt: int :type errtype: int :type urls: collections.Counter :rtype: dict """ assert isinstance(urls, collections.Counter) return { "cnt": cnt, "msg": error, "tag": tag, # just one more string qualifier "rc": ret_c, "type": errtype, "urls": urls, } def add_sample(self, sample): """ Add sample, consisting of: cnc, rt, cn, lt, rc, error, trname, byte_count :type sample: tuple """ # TODO: introduce a flag to not count failed in resp times? or offer it always? cnc, r_time, con_time, latency, r_code, error, trname, byte_count = sample self[self.SAMPLE_COUNT] += 1 if cnc: self._concurrencies[trname] = cnc if r_code is not None: self[self.RESP_CODES][r_code] += 1 # count times only if we have RCs if con_time: self.sum_cn += con_time self.sum_lt += latency self.sum_rt += r_time if error is not None: self[self.FAILURES] += 1 item = self.error_item_skel(error, r_code, 1, KPISet.ERRTYPE_ERROR, Counter(), None) self.inc_list(self[self.ERRORS], ("msg", error), item) else: self[self.SUCCESSES] += 1 self[self.RESP_TIMES].add(r_time, 1) if byte_count is not None: self[self.BYTE_COUNT] += byte_count # TODO: max/min rt? there is percentiles... # TODO: throughput if interval is not 1s @staticmethod def inc_list(values, selector, value): """ Increment list item, based on selector criteria :param values: list to update :param selector: tuple of 2 values, field name and value to match :param value: dict to put into list :type values: list[dict] :type selector: tuple :type value: dict """ found = False for item in values: if item[selector[0]] == selector[1]: item['cnt'] += value['cnt'] item['urls'] += value['urls'] found = True break if not found: values.append(copy.deepcopy(value)) def __getitem__(self, key): rtimes = self.get(self.RESP_TIMES, no_recalc=True) if key != self.RESP_TIMES and rtimes: if key == self.STDEV_RESP_TIME: self[self.STDEV_RESP_TIME] = rtimes.get_stdev(self.get(self.AVG_RESP_TIME, no_recalc=True)) elif key == self.PERCENTILES: percs = {str(float(perc)): value / 1000.0 for perc, value in iteritems(rtimes.get_percentiles_dict(self.perc_levels))} self[self.PERCENTILES] = percs return super(KPISet, self).__getitem__(key) def get(self, k, no_recalc=False): if no_recalc: return super(KPISet, self).get(k) else: return self.__getitem__(k) def items(self): for item in super(KPISet, self).items(): yield (item[0], self.__getitem__(item[0])) def iteritems(self): if PY3: raise TaurusInternalException("Invalid call") for item in super(KPISet, self).iteritems(): yield (item[0], self.__getitem__(item[0])) def viewitems(self): if PY3: raise TaurusInternalException("Invalid call") for item in super(KPISet, self).viewitems(): yield (item[0], self.__getitem__(item[0])) def viewvalues(self): raise TaurusInternalException("Invalid call") def values(self): raise TaurusInternalException("Invalid call") def recalculate(self): # FIXME: get rid of it at all? """ Recalculate averages, stdev and percentiles :return: """ if self[self.SAMPLE_COUNT]: self[self.AVG_CONN_TIME] = self.sum_cn / self[self.SAMPLE_COUNT] self[self.AVG_LATENCY] = self.sum_lt / self[self.SAMPLE_COUNT] self[self.AVG_RESP_TIME] = self.sum_rt / self[self.SAMPLE_COUNT] if len(self._concurrencies): self[self.CONCURRENCY] = sum(self._concurrencies.values()) return self def merge_kpis(self, src, sid=None): """ Merge other instance into self :param sid: source ID to use when suming up concurrency :type src: KPISet :return: """ src.recalculate() # TODO: could be not resource efficient strat self.sum_cn += src.sum_cn self.sum_lt += src.sum_lt self.sum_rt += src.sum_rt self[self.SAMPLE_COUNT] += src[self.SAMPLE_COUNT] self[self.SUCCESSES] += src[self.SUCCESSES] self[self.FAILURES] += src[self.FAILURES] self[self.BYTE_COUNT] += src[self.BYTE_COUNT] # NOTE: should it be average? mind the timestamp gaps if src[self.CONCURRENCY]: self._concurrencies[sid] = src[self.CONCURRENCY] if src[self.RESP_TIMES]: self[self.RESP_TIMES].merge(src[self.RESP_TIMES]) elif not self[self.PERCENTILES]: # using existing percentiles, in case we have no source data to recalculate them # TODO: it's not valid to overwrite, better take average self[self.PERCENTILES] = copy.deepcopy(src[self.PERCENTILES]) self[self.RESP_CODES].update(src[self.RESP_CODES]) for src_item in src[self.ERRORS]: self.inc_list(self[self.ERRORS], ('msg', src_item['msg']), src_item) @staticmethod def from_dict(obj): """ :type obj: dict :rtype: KPISet """ inst = KPISet() assert inst.PERCENTILES in obj inst.perc_levels = [float(x) for x in obj[inst.PERCENTILES].keys()] for key, val in iteritems(obj): if key == inst.RESP_TIMES: if isinstance(val, dict): for value, count in iteritems(val): inst[inst.RESP_TIMES].add(value, count) else: inst[key] = val inst.sum_cn = obj[inst.AVG_CONN_TIME] * obj[inst.SAMPLE_COUNT] inst.sum_lt = obj[inst.AVG_LATENCY] * obj[inst.SAMPLE_COUNT] inst.sum_rt = obj[inst.AVG_RESP_TIME] * obj[inst.SAMPLE_COUNT] for error in inst[KPISet.ERRORS]: error['urls'] = Counter(error['urls']) return inst class DataPoint(dict): """ Represents an aggregate data point :param ts: timestamp of this point """ SOURCE_ID = 'id' TIMESTAMP = "ts" CURRENT = "current" CUMULATIVE = "cumulative" SUBRESULTS = "subresults" def __init__(self, ts, perc_levels=()): """ :type ts: int :type perc_levels: list[float] """ super(DataPoint, self).__init__() self.perc_levels = perc_levels self[self.SOURCE_ID] = None self[self.TIMESTAMP] = ts self[self.CUMULATIVE] = {} self[self.CURRENT] = {} self[self.SUBRESULTS] = [] def __deepcopy__(self, memo): new = DataPoint(self[self.TIMESTAMP], self.perc_levels) for key in self.keys(): new[key] = copy.deepcopy(self[key], memo) return new def __merge_kpis(self, src, dst, sid): """ :param src: KPISet :param dst: KPISet :param sid: int :return: """ for label, val in iteritems(src): dest = dst.setdefault(label, KPISet(self.perc_levels)) if not isinstance(val, KPISet): val = KPISet.from_dict(val) val.perc_levels = self.perc_levels dest.merge_kpis(val, sid) def recalculate(self): """ Recalculate all KPISet's """ for val in self[self.CURRENT].values(): val.recalculate() for val in self[self.CUMULATIVE].values(): val.recalculate() def merge_point(self, src, do_recalculate=True): """ :type src: DataPoint """ if self[self.TIMESTAMP] != src[self.TIMESTAMP]: msg = "Cannot merge different timestamps (%s and %s)" raise TaurusInternalException(msg % (self[self.TIMESTAMP], src[self.TIMESTAMP])) self[DataPoint.SUBRESULTS].append(src) self.__merge_kpis(src[self.CURRENT], self[self.CURRENT], src[DataPoint.SOURCE_ID]) self.__merge_kpis(src[self.CUMULATIVE], self[self.CUMULATIVE], src[DataPoint.SOURCE_ID]) if do_recalculate: self.recalculate() yaml.add_representer(KPISet, SafeRepresenter.represent_dict) yaml.add_representer(DataPoint, SafeRepresenter.represent_dict) class ResultsProvider(object): """ :type listeners: list[AggregatorListener] """ def __init__(self): super(ResultsProvider, self).__init__() self.cumulative = {} self.track_percentiles = [0.0, 50.0, 90.0, 95.0, 99.0, 99.9, 100.0] self.listeners = [] self.buffer_len = 2 self.min_buffer_len = 2 self.max_buffer_len = float('inf') self.buffer_multiplier = 2 self.buffer_scale_idx = None self.rtimes_len = None self.known_errors = set() self.max_error_count = 100 def _fold_error(self, error): if not error or error in self.known_errors or self.max_error_count <= 0: return error size = len(self.known_errors) threshold = (size / float(self.max_error_count)) ** 2 matches = difflib.get_close_matches(error, self.known_errors, 1, 1 - threshold) if matches: error = matches[0] self.known_errors.add(error) return error def add_listener(self, listener): """ Add aggregate results listener :type listener: AggregatorListener """ self.listeners.append(listener) def __merge_to_cumulative(self, current): """ Merge current KPISet to cumulative :param current: KPISet """ for label, data in iteritems(current): cumul = self.cumulative.setdefault(label, KPISet(self.track_percentiles, self.rtimes_len)) cumul.merge_kpis(data) cumul.recalculate() def datapoints(self, final_pass=False): """ Generator object that returns datapoints from the reader :type final_pass: bool """ for datapoint in self._calculate_datapoints(final_pass): current = datapoint[DataPoint.CURRENT] self.__merge_to_cumulative(current) datapoint[DataPoint.CUMULATIVE] = copy.deepcopy(self.cumulative) datapoint.recalculate() for listener in self.listeners: listener.aggregated_second(datapoint) yield datapoint @abstractmethod def _calculate_datapoints(self, final_pass=False): """ :rtype : list[DataPoint] """ yield class ResultsReader(ResultsProvider): """ Aggregator that reads samples one by one, supposed to be attached to every executor """ label_generalize_regexps = [ (re.compile(r"\b[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}\b"), "U"), (re.compile(r"\b[0-9a-fA-F]{2,}\b"), "U"), # (re.compile(r"\b[0-9a-fA-F]{32}\b"), "U"), # implied by previous, maybe prev is too wide (re.compile(r"\b\d{2,}\b"), "N") ] def __init__(self, perc_levels=None): super(ResultsReader, self).__init__() self.generalize_labels = False self.ignored_labels = [] self.log = logging.getLogger(self.__class__.__name__) self.buffer = {} self.min_timestamp = 0 if perc_levels is not None: self.track_percentiles = perc_levels def __process_readers(self, final_pass=False): """ :param final_pass: True if in post-process stage :return: """ for result in self._read(final_pass): if result is None: self.log.debug("No data from reader") break elif isinstance(result, list) or isinstance(result, tuple): t_stamp, label, conc, r_time, con_time, latency, r_code, error, trname, byte_count = result if label in self.ignored_labels: continue if t_stamp < self.min_timestamp: self.log.debug("Putting sample %s into %s", t_stamp, self.min_timestamp) t_stamp = self.min_timestamp if r_time < 0: self.log.warning("Negative response time reported by tool, resetting it to zero") r_time = 0 if t_stamp not in self.buffer: self.buffer[t_stamp] = [] error = self._fold_error(error) self.buffer[t_stamp].append((label, conc, r_time, con_time, latency, r_code, error, trname, byte_count)) else: raise TaurusInternalException("Unsupported results from %s reader: %s" % (self, result)) def __aggregate_current(self, datapoint, samples): """ :param datapoint: DataPoint :param samples: list of samples :return: """ current = datapoint[DataPoint.CURRENT] for sample in samples: label, r_time, concur, con_time, latency, r_code, error, trname, byte_count = sample if label == '': label = '[empty]' if self.generalize_labels: label = self.__generalize_label(label) label = current.setdefault(label, KPISet(self.track_percentiles)) # empty means overall label.add_sample((r_time, concur, con_time, latency, r_code, error, trname, byte_count)) overall = KPISet(self.track_percentiles) for label in current.values(): overall.merge_kpis(label, datapoint[DataPoint.SOURCE_ID]) current[''] = overall return current def _calculate_datapoints(self, final_pass=False): """ A generator to read available datapoints :type final_pass: bool :rtype: DataPoint """ self.__process_readers(final_pass) self.log.debug("Buffer len: %s; Known errors count: %s", len(self.buffer), len(self.known_errors)) if not self.buffer: return if self.cumulative and self.track_percentiles and self.buffer_scale_idx is not None: old_len = self.buffer_len chosen_timing = self.cumulative[''][KPISet.PERCENTILES][self.buffer_scale_idx] self.buffer_len = round(chosen_timing * self.buffer_multiplier) self.buffer_len = max(self.min_buffer_len, self.buffer_len) self.buffer_len = min(self.max_buffer_len, self.buffer_len) if self.buffer_len != old_len: self.log.info("Changed data analysis delay to %ds", self.buffer_len) timestamps = sorted(self.buffer.keys()) while final_pass or (timestamps[-1] >= (timestamps[0] + self.buffer_len)): timestamp = timestamps.pop(0) self.min_timestamp = timestamp + 1 self.log.debug("Aggregating: %s", timestamp) samples = self.buffer.pop(timestamp) datapoint = self.__get_new_datapoint(timestamp) self.__aggregate_current(datapoint, samples) yield datapoint if not timestamps: break def __get_new_datapoint(self, timestamp): """ :rtype: DataPoint """ point = DataPoint(timestamp, self.track_percentiles) point[DataPoint.SOURCE_ID] = id(self) return point @abstractmethod def _read(self, final_pass=False): """ :param final_pass: True if called from post-process stage, when reader should report possible rests of results :rtype: list :return: timestamp, label, concurrency, rt, latency, rc, error """ yield def __generalize_label(self, label): for regexp, replacement in self.label_generalize_regexps: label = regexp.sub(replacement, label) return label class ConsolidatingAggregator(Aggregator, ResultsProvider): """ :type underlings: list[bzt.modules.aggregator.ResultsProvider] """ # TODO: switch to underling-count-based completeness criteria def __init__(self): Aggregator.__init__(self, is_functional=False) ResultsProvider.__init__(self) self.generalize_labels = False self.ignored_labels = ["ignore"] self.underlings = [] self.buffer = {} self.rtimes_len = 1000 def prepare(self): """ Read aggregation options """ super(ConsolidatingAggregator, self).prepare() # make unique & sort self.track_percentiles = self.settings.get("percentiles", self.track_percentiles) self.track_percentiles = list(set(self.track_percentiles)) self.track_percentiles.sort() self.settings["percentiles"] = self.track_percentiles self.ignored_labels = self.settings.get("ignore-labels", self.ignored_labels) self.generalize_labels = self.settings.get("generalize-labels", self.generalize_labels) self.min_buffer_len = dehumanize_time(self.settings.get("min-buffer-len", self.min_buffer_len)) max_buffer_len = self.settings.get("max-buffer-len", self.max_buffer_len) try: self.max_buffer_len = dehumanize_time(max_buffer_len) except TaurusInternalException as exc: self.log.debug("Exception in dehumanize_time(%s): %s", max_buffer_len, exc) raise TaurusConfigError("Wrong 'max-buffer-len' value: %s" % max_buffer_len) self.buffer_multiplier = self.settings.get("buffer-multiplier", self.buffer_multiplier) count = len(self.track_percentiles) if count == 1: self.buffer_scale_idx = str(float(self.track_percentiles[0])) if count > 1: percentile = self.settings.get("buffer-scale-choice", 0.5) percentiles = [i / (count - 1.0) for i in range(count)] distances = [abs(percentile - percentiles[i]) for i in range(count)] index_position = distances.index(min(distances)) self.buffer_scale_idx = str(float(self.track_percentiles[index_position])) debug_str = 'Buffer scaling setup: percentile %s from %s selected' self.log.debug(debug_str, self.buffer_scale_idx, self.track_percentiles) self.rtimes_len = self.settings.get("rtimes-len", self.rtimes_len) self.max_error_count = self.settings.get("max-error-variety", self.max_error_count) def add_underling(self, underling): """ Add source for aggregating :type underling: ResultsProvider """ underling.track_percentiles = self.track_percentiles if isinstance(underling, ResultsReader): underling.ignored_labels = self.ignored_labels underling.generalize_labels = self.generalize_labels underling.min_buffer_len = self.min_buffer_len underling.max_buffer_len = self.max_buffer_len underling.buffer_multiplier = self.buffer_multiplier underling.buffer_scale_idx = self.buffer_scale_idx underling.rtimes_len = self.rtimes_len underling.max_error_count = self.max_error_count underling.known_errors = self.known_errors # share error set between underlings self.underlings.append(underling) def check(self): """ Check if there is next aggregate data present :rtype: bool """ for point in self.datapoints(): self.log.debug("Processed datapoint: %s/%s", point[DataPoint.TIMESTAMP], point[DataPoint.SOURCE_ID]) return super(ConsolidatingAggregator, self).check() def post_process(self): """ Process all remaining aggregate data """ super(ConsolidatingAggregator, self).post_process() for point in self.datapoints(True): self.log.debug("Processed datapoint: %s/%s", point[DataPoint.TIMESTAMP], point[DataPoint.SOURCE_ID]) def _process_underlings(self, final_pass): for underling in self.underlings: for data in underling.datapoints(final_pass): tstamp = data[DataPoint.TIMESTAMP] if self.buffer: mints = min(self.buffer.keys()) if tstamp < mints: self.log.debug("Putting datapoint %s into %s", tstamp, mints) data[DataPoint.TIMESTAMP] = mints tstamp = mints self.buffer.setdefault(tstamp, []).append(data) def _calculate_datapoints(self, final_pass=False): """ Override ResultsProvider._calculate_datapoints """ self._process_underlings(final_pass) self.log.debug("Consolidator buffer[%s]: %s", len(self.buffer), self.buffer.keys()) if not self.buffer: return timestamps = sorted(self.buffer.keys()) while timestamps and (final_pass or (timestamps[-1] >= timestamps[0] + self.buffer_len)): tstamp = timestamps.pop(0) self.log.debug("Merging into %s", tstamp) points_to_consolidate = self.buffer.pop(tstamp) point = DataPoint(tstamp, self.track_percentiles) for subresult in points_to_consolidate: self.log.debug("Merging %s", subresult[DataPoint.TIMESTAMP]) point.merge_point(subresult) point.recalculate() yield point class NoneAggregator(Aggregator, ResultsProvider): """ Dummy aggregator """ def __init__(self): Aggregator.__init__(self, is_functional=False) ResultsProvider.__init__(self) def _calculate_datapoints(self, final_pass=False): pass class AggregatorListener(object): """ Mixin for listeners of aggregator data """ @abstractmethod def aggregated_second(self, data): """ Notification about new data point :param data: bzt.modules.reporting.DataPoint """ pass def finalize(self): """ This method is called at the end of run to close open file descriptors etc. """ pass
from abstract_rl.src.data_structures.temporal_difference_data.trajectory_collection import TrajectoryCollection class TrajectoryOperator: """ A simple evaluation operator interface. """ def transform(self, trajectory): """ Transform a trajectory with the current instance of the evaluation operator. :param trajectory: trajectory to transform. """ raise NotImplementedError def transform_all(self, trajectories): """ Transform a trajectory with the current instance of the evaluation operator. :param trajectories: trajectories to transform. """ if isinstance(trajectories, TrajectoryCollection): trajectories = trajectories.trajectories() for trajectory in trajectories: self.transform(trajectory)
#!/usr/bin/env python3.5 import sys import re import os import csv def read_file(fname): f = open(fname, 'r') csv_reader = csv.reader(f, delimiter='~') no_rows = 0 for row in csv_reader: no_rows += 1 no_cols = len(row) print("Row %d: columns = %d" % (no_rows, no_cols)) f.close() print(".........") print("Number of records in csv file: %d" % no_rows) if __name__ == '__main__': args = sys.argv[1:] for fl in args: print("File : %s" % fl) print("..................................") read_file(fl)
import talker.base import talker.server from talker.mesh import PeerObserver, LOG, PeerClient class TopoMixin: def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.register_command("/peers", TopoMixin.command_peers) self.register_command("/peer-listen", TopoMixin.command_peer_listen) self.register_command("/peer-connect", TopoMixin.command_peer_connect) self.register_command("/peer-kill", TopoMixin.command_peer_kill) self.register_command("/broadcast", TopoMixin.command_broadcast) self.register_command("/reachable", TopoMixin.command_reachable) def command_reachable(self): helper = self.server.observer(TopologyObserver) reachable = helper.reachable() self.output_line("There are {} reachable peers:".format(len(reachable))) for node in reachable: self.output_line(node) def command_peers(self): peers = self.server.list_peers() self.output_line("There are {} peers directly connected".format(len(peers))) for peer in peers: self.output_line(str(peer)) def command_peer_listen(self, host, port): port = int(port) LOG.info("Adding PeerServer at %s %d", host, port) s = self.server.make_server_socket(host, port) peer_server = talker.base.ServerSocket(server=self.server, socket=s, client_factory=PeerClient) self.server.add_socket(peer_server) def command_peer_connect(self, host, port): port = int(port) LOG.info("Adding PeerClient at %s %d", host, port) peer = PeerClient.connect(self.server, host, port) self.server.add_socket(peer) def command_peer_kill(self, host, port): port = int(port) LOG.info("Killing PeerClient at %s %d", host, port) for peer in self.server.list_peers(): if peer.addr == (host, port): self.output_line("Shutting down {}".format(peer)) peer.close() def command_broadcast(self, *args): message = ' '.join(args) LOG.info("Broadcasting message: %s", message) self.server.peer_broadcast(message) # This is a more complicated observer of peer-to-peer messages. # As servers are connected to and disconnected from each other, each node # broadcasts across the network the latest version of its connectivity # information. TopologyObservers on each server collate this information # and use it to form an up-to-date map of who is connected to whom. class TopologyObserver(PeerObserver): I_AM = 'i-am' I_SEE = 'i-see' def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.register_method(TopologyObserver.I_AM, self.recv_i_am) self.register_method(TopologyObserver.I_SEE, self.recv_i_see) # We track all the peers we know about, keeping track of who they # are directly connected to, and the most recent update we have received from them. self.peer_ids = {} self.topology = {self.server.peer_id: (0, set())} self.calculate_reachable_peers() def peer_added(self, peer): LOG.debug('New peer detected by %s: %s', self, peer) self.unicast(peer, TopologyObserver.I_AM) def peer_removed(self, peer): LOG.debug('Peer removed: %s', peer) if peer in self.peer_ids: del self.peer_ids[peer] self.broadcast_new_neighbours() def broadcast_new_neighbours(self): self.broadcast(TopologyObserver.I_SEE, ';'.join(self.peer_ids.values())) def recv_i_am(self, peer, source, id, args): self.peer_ids[peer] = source self.broadcast_new_neighbours() def recv_i_see(self, peer, source, id, args): if args == '': neighbours = set() else: neighbours = set(args.split(';')) if source not in self.topology: self.topology[source] = (id, neighbours) self.calculate_reachable_peers() # We've just heard about a new server joining the network, so let them know about us. self.broadcast_new_neighbours() elif self.topology[source][0] < id: old_neighbours = self.topology[source][1] self.topology[source] = (id, neighbours) if old_neighbours != neighbours: self.calculate_reachable_peers() def calculate_reachable_peers(self): LOG.debug('Calculating reachability from topology, initial is %s', self.topology) # Start with ourselves, work out who is reachable on the current network reachable = set() new = {self.server.peer_id} while len(new) != 0: reachable.update(new) added = new new = set() for node in added: if node in self.topology: new.update(self.topology[node][1]) new.difference_update(reachable) LOG.debug('Calculated reachable peers: %s', reachable) for node in set(self.topology): if node not in reachable: LOG.debug(' deleting node %s', node) del self.topology[node] LOG.debug('Final topology is %s', self.topology) def reachable(self): return set(self.topology)
from math import hypot cat_opo = int(input("Digite a medida do cateto oposto: ")) cat_adj = int(input("Digite a medida do cateto adjacente: ")) hipotenusa = hypot(cat_adj, cat_adj) print(hipotenusa)
"""add_agent_external_url_to_streamsets Revision ID: 9d3d42cad294 Revises: 507ccc9cb1a6 Create Date: 2020-11-13 13:05:40.922113 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '9d3d42cad294' down_revision = '507ccc9cb1a6' branch_labels = None depends_on = None def upgrade(): op.add_column('streamsets', sa.Column('agent_external_url', sa.String, nullable=False)) def downgrade(): op.drop_column('streamsets', 'agent_external_url')
from mendeleev.fetch import fetch_table from mendeleev import element ptable = fetch_table('elements') def nombre_atomico(simbolo): return element(simbolo).name def estados_oxidacion(simbolo): return element(simbolo).oxistates def numero_atomico(simbolo): ''' regresa el numero atomico. Uso: num_at(string) string -> simbolo, eg. 'H','K','Be' ''' num_at = ptable[ptable.symbol==simbolo]['atomic_number'].to_list()[0] return num_at def simbolo_atomico(simbolo): ''' Regresa el simbolo atomico. Uso: simbolo_atomico(string) string -> simbolo, eg. 'H','K','Be' ''' sim_at = ptable[ptable.symbol==simbolo]['symbol'].to_list()[0] return sim_at def peso_atomico(simbolo): ''' Regresa el peso atomico. Uso: peso_atomico(string) string -> simbolo, eg. 'H','K','Be' ''' peso_at = ptable[ptable.symbol==simbolo]['atomic_weight'].to_list()[0] return peso_at def conf_electronica(simbolo): ''' Regresa la configuracion electronica del elemento Uso: conf_electronica(string) string -> simbolo, eg. 'H','K','Be' ''' conf_el = ptable[ptable.symbol==simbolo]['electronic_configuration'].to_list()[0] return conf_el def info_elemento(simbolo): ''' Funcion para escribir informacion sobre un elemento quimico. Regresa -Numero atomico -Simbolo -Peso atomico -Configuracion electronica Uso: info_elemento(string) string -> simbolo, eg. 'H','K','Be' ''' print('Numero Atomico = '+ str(numero_atomico(simbolo))) print('Simbolo = '+simbolo_atomico(simbolo)) print('Peso atomico = ' + str(peso_atomico(simbolo))) print('Configuracion electronica = '+conf_electronica(simbolo))
""" Non-negative 1-sparse recovery problem. This algorithm assumes we have a non negative dynamic stream. Given a stream of tuples, where each tuple contains a number and a sign (+/-), it check if the stream is 1-sparse, meaning if the elements in the stream cancel eacheother out in such a way that ther is only a unique number at the end. Examples: #1 Input: [(4,'+'), (2,'+'),(2,'-'),(4,'+'),(3,'+'),(3,'-')], Output: 4 Comment: Since 2 and 3 gets removed. #2 Input: [(2,'+'),(2,'+'),(2,'+'),(2,'+'),(2,'+'),(2,'+'),(2,'+')] Output: 2 Comment: No other numbers present #3 Input: [(2,'+'),(2,'+'),(2,'+'),(2,'+'),(2,'+'),(2,'+'),(1,'+')] Output: None Comment: Not 1-sparse """ def one_sparse(array): """1-sparse algorithm Keyword arguments: array -- stream of tuples """ sum_signs = 0 bitsum = [0]*32 sum_values = 0 for val,sign in array: if sign == "+": sum_signs += 1 sum_values += val else: sum_signs -= 1 sum_values -= val _get_bit_sum(bitsum,val,sign) if sum_signs > 0 and _check_every_number_in_bitsum(bitsum,sum_signs): return int(sum_values/sum_signs) else: return None #Helper function to check that every entry in the list is either 0 or the same as the #sum of signs def _check_every_number_in_bitsum(bitsum,sum_signs): for val in bitsum: if val != 0 and val != sum_signs : return False return True # Adds bit representation value to bitsum array def _get_bit_sum(bitsum,val,sign): i = 0 if sign == "+": while val: bitsum[i] += val & 1 i +=1 val >>=1 else : while val: bitsum[i] -= val & 1 i +=1 val >>=1
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Created on Fri Mar 26 15:14:34 2021 # Copyright © Enrico Gandini <enricogandini93@gmail.com> # # Distributed under terms of the MIT License. """Utils necessary to store data generated by 'Molecular Similarity Survey' web app into an SQL database. """ from sqlalchemy import Column, Integer, String, Date, Boolean, ForeignKey from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine from sqlalchemy.orm import relationship from sqlalchemy.orm import sessionmaker HexUUID = String(32) Base = declarative_base() class MolecularPair(Base): __tablename__ = "MolecularPairs" id = Column(Integer, primary_key=True) answers = relationship("Answer") class User(Base): __tablename__ = "Users" id = Column(HexUUID, primary_key=True) date = Column(Date, nullable=False) status = Column(String, default="Captcha") display_above = Column(String) experience = Column(String) answers = relationship("Answer", back_populates="user") class Answer(Base): __tablename__ = "Answers" id = Column(Integer, primary_key=True) id_user = Column(HexUUID, ForeignKey("Users.id")) id_pair = Column(Integer, ForeignKey("MolecularPairs.id"), nullable=False) similar = Column(String, nullable=False) user = relationship("User", back_populates="answers") def create_db_engine_and_session(db_objects: dict): """Add an `Engine` and a `Session` to a dictionary that stores database properties. Using this dictionary is important for the survey app: the dictionary is globally accessible by all functions in the async loop of the app.""" db_objects["engine"] = create_engine(db_objects["url"]) Session = sessionmaker() Session.configure(bind=db_objects["engine"]) db_objects["session"] = Session()
s1 = ' \n' print(s1.isspace()) # -- SP1 s2 = ' b ' print(s2.isspace()) # -- SP2 s3 = ' ' print(s3.isspace()) # -- SP3 s4 = ' \t' print(s4.isspace()) # -- SP4 s5 = '10+3 = 13 ' print(s5.isspace()) # -- SP5 s6 = ' \f' print(s6.isspace()) # -- SP6
import numpy as np import xarray as xr from itertools import combinations import dask.array as dsa from ..core import calc_cape from ..core import calc_srh from .fixtures import empty_dask_array, dataset_soundings import pytest @pytest.fixture(scope='module') def p_t_td_1d(nlevs=20): p = np.random.rand(nlevs) t = np.random.rand(nlevs) td = np.random.rand(nlevs) return p, t, td @pytest.fixture(scope='module') def p_t_td_3d(nlevs=20, nx=10, ny=5): p = np.random.rand(nlevs, ny, nx) t = np.random.rand(nlevs, ny, nx) td = np.random.rand(nlevs, ny, nx) return p, t, td @pytest.fixture(scope='module') def p_t_td_surface(nx=10, ny=5): ps = np.random.rand(ny, nx) ts = np.random.rand(ny, nx) tds = np.random.rand(ny, nx) return ps, ts, tds # surface mode returns cape, cin # most-unstable mode returns cape, cin, mulev, zmulev @pytest.mark.parametrize('sourcein,n_returns', [('surface', 2), ('most-unstable', 4)]) def test_calc_cape_shape_3d(p_t_td_3d, p_t_td_surface, sourcein, n_returns): p, t, td = p_t_td_3d ps, ts, tds = p_t_td_surface result = calc_cape(p, t, td, ps, ts, tds, source=sourcein, method='dummy') assert len(result) == n_returns for data in result: assert data.shape == (1, p.shape[1], p.shape[2]) # tolerance for tests decimal_cape = 0 decimal_cin = 0 decimal_mulv = 0 decimal_zmulv = 0 def test_calc_surface_cape_model_lev(dataset_soundings): """Test Surface Cape based on previously calculated using George Bryans code""" ds = dataset_soundings cape, cin = calc_cape(ds.pressure.values[1:], ds.temperature.values[1:], ds.dewpoint.values[1:], ds.pressure.values[0], ds.temperature.values[0], ds.dewpoint.values[0], source='surface', ml_depth=500., adiabat='pseudo-liquid', pinc=100., method='fortran', vertical_lev='sigma', pres_lev_pos=1) np.testing.assert_almost_equal(cape[0], ds.SB_CAPE_pinc100.values, decimal_cape) np.testing.assert_almost_equal(cin[0], ds.SB_CIN_pinc100.values, decimal_cin) def test_calc_most_unstable_cape_model_lev(dataset_soundings): """Test Surface Cape based on previously calculated using George Bryans code""" ds = dataset_soundings # in real data, the surface values will come in separate variables cape, cin, mulv, zmulv = calc_cape(ds.pressure.values[1:], ds.temperature.values[1:], ds.dewpoint.values[1:], ds.pressure.values[0], ds.temperature.values[0], ds.dewpoint.values[0], source='most-unstable', ml_depth=500., adiabat='pseudo-liquid', pinc=100., method='fortran', vertical_lev='sigma', pres_lev_pos=1) np.testing.assert_almost_equal(cape[0], ds.MU_CAPE_pinc100.values, decimal_cape) np.testing.assert_almost_equal(cin[0], ds.MU_CIN_pinc100.values, decimal_cin) np.testing.assert_almost_equal(mulv[0], ds.MU_lv_pinc100.values.astype('int32'), decimal_mulv) np.testing.assert_almost_equal(zmulv[0], ds.MU_z_pinc100.values, decimal_zmulv) def test_calc_mixed_layer_cape_model_lev(dataset_soundings): """Test Surface Cape based on previously calculated using George Bryans code""" ds = dataset_soundings cape, cin = calc_cape(ds.pressure.values[1:], ds.temperature.values[1:], ds.dewpoint.values[1:], ds.pressure.values[0], ds.temperature.values[0], ds.dewpoint.values[0], source='mixed-layer', ml_depth=500., adiabat='pseudo-liquid', pinc=1000., method='fortran', vertical_lev='sigma', pres_lev_pos=1) np.testing.assert_almost_equal(cape[0], ds.ML_CAPE_pinc1000_mldepth500.values, decimal_cape) np.testing.assert_almost_equal(cin[0], ds.ML_CIN_pinc1000_mldepth500.values, decimal_cin) def test_calc_surface_cape_pressure_lev(dataset_soundings): """Test Surface Cape based on previously calculated using George Bryans code""" ds = dataset_soundings cape, cin = calc_cape(ds.pressure.values[1:], ds.temperature.values[1:], ds.dewpoint.values[1:], ds.pressure.values[0], ds.temperature.values[0], ds.dewpoint.values[0], source='surface', ml_depth=500., adiabat='pseudo-liquid', pinc=100., method='fortran', vertical_lev='pressure', pres_lev_pos=ds.pressure.values[0]*0+1) np.testing.assert_almost_equal(cape[0], ds.SB_CAPE_pinc100.values, decimal_cape) np.testing.assert_almost_equal(cin[0], ds.SB_CIN_pinc100.values, decimal_cin) def test_calc_most_unstable_cape_pressure_lev(dataset_soundings): """Test Surface Cape based on previously calculated using George Bryans code""" ds = dataset_soundings # in real data, the surface values will come in separate variables cape, cin, mulv, zmulv = calc_cape(ds.pressure.values[1:], ds.temperature.values[1:], ds.dewpoint.values[1:], ds.pressure.values[0], ds.temperature.values[0], ds.dewpoint.values[0], source='most-unstable', ml_depth=500., adiabat='pseudo-liquid', pinc=100., method='fortran', vertical_lev='pressure', pres_lev_pos=ds.pressure.values[0]*0+1) np.testing.assert_almost_equal(cape[0], ds.MU_CAPE_pinc100.values, decimal_cape) np.testing.assert_almost_equal(cin[0], ds.MU_CIN_pinc100.values, decimal_cin) np.testing.assert_almost_equal(mulv[0], ds.MU_lv_pinc100.values.astype('int32'), decimal_mulv) np.testing.assert_almost_equal(zmulv[0], ds.MU_z_pinc100.values, decimal_zmulv) def test_calc_mixed_layer_cape_pressure_lev(dataset_soundings): """Test Surface Cape based on previously calculated using George Bryans code""" ds = dataset_soundings cape, cin = calc_cape(ds.pressure.values[1:], ds.temperature.values[1:], ds.dewpoint.values[1:], ds.pressure.values[0], ds.temperature.values[0], ds.dewpoint.values[0], source='mixed-layer', ml_depth=500., adiabat='pseudo-liquid', pinc=1000., method='fortran', vertical_lev='pressure', pres_lev_pos=ds.pressure.values[0]*0+1) np.testing.assert_almost_equal(cape[0], ds.ML_CAPE_pinc1000_mldepth500.values, decimal_cape) np.testing.assert_almost_equal(cin[0], ds.ML_CIN_pinc1000_mldepth500.values, decimal_cin) def test_calc_srh_model_lev(dataset_soundings): """Test SRH code""" ds = dataset_soundings srh, rm, lm, mean_6km = calc_srh(ds.pressure.values[1:], ds.temperature.values[1:], ds.dewpoint.values[1:], ds.u_wind_ms.values[1:], ds.v_wind_ms.values[1:], ds.pressure.values[0], ds.temperature.values[0], ds.dewpoint.values[0], ds.u_wind_ms.values[0], ds.v_wind_ms.values[0], depth = 3000, vertical_lev='sigma', pres_lev_pos=1, output_var='all') srh2 = calc_srh(ds.pressure.values[1:], ds.temperature.values[1:], ds.dewpoint.values[1:], ds.u_wind_ms.values[1:], ds.v_wind_ms.values[1:], ds.pressure.values[0], ds.temperature.values[0], ds.dewpoint.values[0], ds.u_wind_ms.values[0], ds.v_wind_ms.values[0], depth = 3000, vertical_lev='sigma', pres_lev_pos=1, output_var='srh') np.testing.assert_almost_equal(srh[0], ds.SRH03_model_lev.values, 5) np.testing.assert_almost_equal(srh2[0], ds.SRH03_model_lev.values, 5) def test_calc_srh_pressure_lev(dataset_soundings): """Test SRH code""" ds = dataset_soundings srh, rm, lm, mean_6km = calc_srh(ds.pressure.values[1:], ds.temperature.values[1:], ds.dewpoint.values[1:], ds.u_wind_ms.values[1:], ds.v_wind_ms.values[1:], ds.pressure.values[0], ds.temperature.values[0], ds.dewpoint.values[0], ds.u_wind_ms.values[0], ds.v_wind_ms.values[0], depth = 3000, vertical_lev='pressure', pres_lev_pos=ds.pressure.values[0]*0+1, output_var='all') srh2 = calc_srh(ds.pressure.values[1:], ds.temperature.values[1:], ds.dewpoint.values[1:], ds.u_wind_ms.values[1:], ds.v_wind_ms.values[1:], ds.pressure.values[0], ds.temperature.values[0], ds.dewpoint.values[0], ds.u_wind_ms.values[0], ds.v_wind_ms.values[0], depth = 3000, vertical_lev='pressure', pres_lev_pos=ds.pressure.values[0]*0+1, output_var='srh') np.testing.assert_almost_equal(srh[0], ds.SRH03_pressure_lev.values, 5) np.testing.assert_almost_equal(srh2[0], ds.SRH03_pressure_lev.values, 5)
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-08-06 15:45 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('fileupload', '0002_auto_20170726_2027'), ] operations = [ migrations.AddField( model_name='picture', name='file_type', field=models.CharField(default='pas', max_length=3), preserve_default=False, ), ]
#!/usr/bin/env python # -*- coding: utf-8 -*- import os from pyfdm import fdmexec JSBSIM_ROOT = os.path.abspath('./data/jsbsim_data') + os.sep print('JSBSIM_PATH : ' + JSBSIM_ROOT) #Load fdm = fdmexec.FGFDMExec(root_dir=JSBSIM_ROOT) fdm.load_model("f16") fdm.print_property_catalog()
import numpy as np import math import matplotlib.pyplot as plt #### 11 July 13: E-M Coin Toss Example as given in Stanford EM tutorial* #### # * http://algorithmicalley.com/archive/2013/03/29/the-expectation-maximization-algorithm.aspx def get_mn_log_likelihood(obs,probs): """ Return the (log)likelihood of obs, given the probs""" # Multinomial Distribution Log PDF # ln (pdf) = multinomial coeff * product of probabilities # ln[f(x|n, p)] = [ln(n!) - (ln(x1!)+ln(x2!)+...+ln(xk!))] + [x1*ln(p1)+x2*ln(p2)+...+xk*ln(pk)] multinomial_coeff_denom= 0 prod_probs = 0 for x in range(0,len(obs)): # loop through state counts in each observation multinomial_coeff_denom = multinomial_coeff_denom + math.log(math.factorial(obs[x])) prod_probs = prod_probs + obs[x]*math.log(probs[x]) multinomial_coeff = math.log(math.factorial(sum(obs))) - multinomial_coeff_denom likelihood = multinomial_coeff + prod_probs return likelihood # The real situation for the 5 experiments which individually comprise 10 tosses with the corresponding coins (A or B) # 1st: Coin B, {HTTTHHTHTH}, 5H,5T # 2nd: Coin A, {HHHHTHHHHH}, 9H,1T # 3rd: Coin A, {HTHHHHHTHH}, 8H,2T # 4th: Coin B, {HTHTTTHHTT}, 4H,6T # 5th: Coin A, {THHHTHHHTH}, 7H,3T # so, from MLE: pA(heads) = 0.80 and pB(heads)=0.45 # represent the experiments head_counts = np.array([5,9,8,4,7]) tail_counts = 10-head_counts experiments = zip(head_counts,tail_counts) # initialise the pA(heads) and pB(heads) pA_heads = np.zeros(100); pA_heads[0] = 0.60 pB_heads = np.zeros(100); pB_heads[0] = 0.50 # E-M begins! delta = 0.001 j = 0 # iteration counter improvement = float('inf') while (improvement>delta): # expactations with coins A and B with the initial pA_heads and pB_heads parameters expectation_A = np.zeros((5,2), dtype=float) expectation_B = np.zeros((5,2), dtype=float) for i in range(0,len(experiments)): e = experiments[i] # i'th experiment ll_A = get_mn_log_likelihood(e,np.array([pA_heads[j],1-pA_heads[j]])) # loglikelihood of e given coin A ll_B = get_mn_log_likelihood(e,np.array([pB_heads[j],1-pB_heads[j]])) # loglikelihood of e given coin B weightA = math.exp(ll_A) / ( math.exp(ll_A) + math.exp(ll_B) ) # corresponding weight of A proportional to likelihood of A weightB = math.exp(ll_B) / ( math.exp(ll_A) + math.exp(ll_B) ) # corresponding weight of B proportional to likelihood of B # Find Expectations of coins A and B for the i'th experiment expectation_A[i] = np.dot(weightA, e) # weightA * e does not work. expectation_B[i] = np.dot(weightB, e) # Find the parameters that maximise the accumulated (sum) expectations of A and B # (through counting, i.e. MLE of pA_heads and pB_heads for multinomial distributions) pA_heads[j+1] = sum(expectation_A)[0] / sum(sum(expectation_A)); pB_heads[j+1] = sum(expectation_B)[0] / sum(sum(expectation_B)); improvement = max( abs(np.array([pA_heads[j+1],pB_heads[j+1]]) - np.array([pA_heads[j],pB_heads[j]]) )) j = j+1 plt.figure(); plt.plot(range(0,j),pA_heads[0:j], 'r--') plt.plot(range(0,j),pB_heads[0:j]) plt.show()
import pysam import csv import sys import collections class Variant(object): def __init__(self, original, new, refdict): self.original = original self.new = new self.chrom = self.original['CHROM'] self.position = int(self.original['POS']) self.coordinates = (self.chrom, self.position) self.original_ref = self.original['REF'] self.new_ref = self.new['REF'] self.original_alt = self.original['ALT'] self.new_alt = self.new['ALT'] # Needed to remove these since this is a run with no filtering, meaning we # don't know what is the real base # self.real_reference_base = refdict[self.coordinates].reference # self.real_alternate_base = refdict[self.coordinates].alternate self.cutoffs = cos # cos is a global variable defined in the combine_snps function def __repr__(self): return 'Variant(original={}, new={})'.format(self.original, self.new) def get_coverage_cutoffs(csv): with open(csv, 'rb') as cf: cutoff_reader = csv.reader(cf, delimiter=',') next(cutoff_reader) # remove header cutoffs = {int(row[0]): int(row[1]) for row in cutoff_reader} return cutoffs def get_new_row(self, orig_bam, new_bam): start_pos = self.position - 1 end_pos = self.position if not (self.original_ref == self.new_alt and self.original_alt == self.new_ref): return orig_refList = [] orig_altList = [] # These will correspond to the *real* reference and alternate bases, # not the reversed ones in the new bam new_refList = [] new_altList = [] orig_sam = pysam.Samfile(orig_bam, 'rb') new_sam = pysam.Samfile(new_bam, 'rb') for pileupcolumn in orig_sam.pileup(reference=self.chrom, start=start_pos, end=end_pos): if pileupcolumn.pos == start_pos: count = 0 bases = set() for read in pileupcolumn.pileups: if read.alignment.overlap(start_pos, end_pos) == 1: count += 1 bases.add(read.alignment.seq[read.qpos]) quality = ord(read.alignment.qqual[read.qpos]) - 33 if read.alignment.seq[read.qpos] == self.original_ref and quality >= 20: orig_refList.append(read.alignment.qname) elif read.alignment.seq[read.qpos] == self.original_alt and quality >= 20: orig_altList.append(read.alignment.qname) # Check for three state SNPs if len(bases) > 2: return # Check coverage cutoff = self.cutoffs.get(count, 24) if count >= 15 and len(orig_refList) >= cutoff and len(orig_altList) >= cutoff: pass else: return for pileupcolumn in new_sam.pileup(reference=self.chrom, start=start_pos, end=end_pos): if pileupcolumn.pos == start_pos: count = 0 bases = set() for read in pileupcolumn.pileups: if read.alignment.overlap(start_pos, end_pos) == 1: count += 1 bases.add(read.alignment.seq[read.qpos]) quality = ord(read.alignment.qqual[read.qpos]) - 33 if read.alignment.seq[read.qpos] == self.new_ref and quality >= 20: new_altList.append(read.alignment.qname) elif read.alignment.seq[read.qpos] == self.new_alt and quality >= 20: new_refList.append(read.alignment.qname) # Check for three state SNPs if len(bases) > 2: return # Check coverage cutoff = self.cutoffs.get(count, 24) if count >= 15 and len(new_refList) >= cutoff and len(new_altList) >= cutoff: pass else: return orig_sam.close() new_sam.close() reference_depth = len(set(orig_refList + new_refList)) alternate_depth = len(set(orig_altList + new_altList)) newrow = {'CHROM': self.chrom, 'POS': self.position, 'REF': self.original_ref, 'ALT': self.original_alt, 'R_Depth': reference_depth, 'A_Depth': alternate_depth} # print 'orig_refList:', orig_refList # print 'orig_altList:', orig_altList # print 'new_refList:', new_refList # print 'new_altList:', new_altList return newrow def combine_SNPs(orig_f, new_f, orig_bam, new_bam, ref_vcf, output_f, cutoff_table): def get_coverage_cutoffs(cutoff_table): with open(cutoff_table, 'rb') as cf: cutoff_reader = csv.reader(cf, delimiter=',') next(cutoff_reader) # remove header cutoffs = {int(row[0]): int(row[1]) for row in cutoff_reader} return cutoffs global cos cos = get_coverage_cutoffs(cutoff_table) with open(ref_vcf, 'rb') as ref_vcf: ref_reader = csv.reader(ref_vcf, delimiter='\t') def get_single_base_positions(reader): for row in reader: if len(row[3]) == 1 and len(row[4]) == 1: yield [row[0], int(row[1]), row[3], row[4]] # chrom, pos, ref, alt else: # if len(row[3]) == len(row[4]): position = int(row[1]) for refbase, altbase in zip(row[3], row[4]): yield [row[0], position, refbase, altbase] position += 1 Ref_tup = collections.namedtuple('Ref_tup', ['reference', 'alternate']) # Dictionary containing the coordinates and the ref and alt bases from the reference vcf, # the known SNPs file for filtering. ref_dict = {(row[0], row[1]): Ref_tup(row[2], row[3]) for row in get_single_base_positions(ref_reader)} with open(orig_f, 'rb') as of, open(new_f, 'rb') as nf: fields = ('CHROM', 'POS', 'REF', 'ALT', 'RD', 'AD', 'gene_id', 'exon_number', 'gene_name') oreader = csv.DictReader(of, fields, delimiter='\t') nreader = csv.DictReader(nf, fields, delimiter='\t') orig_row_holder = {(row['CHROM'], row['POS']): row for row in oreader} new_row_holder = {(row['CHROM'], row['POS']): row for row in nreader} variants = [] for coord in orig_row_holder: if coord in new_row_holder: v = Variant(original=orig_row_holder[coord], new=new_row_holder[coord], refdict=ref_dict) variants.append(v) with open(output_f, 'wb') as fout: fields = ('CHROM', 'POS', 'REF', 'ALT', 'R_Depth', 'A_Depth') writer = csv.DictWriter(fout, fields, delimiter='\t', lineterminator='\n') writer.writerow({field: field for field in fields}) for count, var in enumerate(variants, 1): if count % 10000 == 0: print 'rows examined:', count newrow = var.get_new_row(orig_bam, new_bam) if newrow: writer.writerow(newrow) # orig_f = '/scratch/Drew/testdir/original/16_A12_pUn_down/16_A12_pUn_down_INTER_py.csv' # new_f = '/scratch/Drew/testdir/alternate/16_A12_pUn_down/16_A12_pUn_down_INTER_py.csv' # output_f = 'snpstest.csv' # orig_bam = '/scratch/Drew/testdir/original/16_A12_pUn_down/16_A12_pUn_down_thout/filter.bam' # alt_bam = '/scratch/Drew/testdir/alternate/16_A12_pUn_down/16_A12_pUn_down_thout/filter.bam' # combine_SNPs(orig_f, new_f, orig_bam, alt_bam, output_f) def quick_mean_propR(input_f): with open(input_f, 'rb') as f: reader = csv.DictReader(f, delimiter='\t') propRs = [] for i, row in enumerate(reader, 1): ref_depth = float(row['R_Depth']) alt_depth = float(row['A_Depth']) if ref_depth != 0 and alt_depth != 0: propR = ref_depth/(ref_depth + alt_depth) propRs.append(propR) mean_propR = sum(propRs)/len(propRs) return (mean_propR, i) # quick_mean_propR('snps.vcf') # i = 0 # printcount = 0 # while True and printcount < 2: # row = variants[i].get_new_row(orig_bam, new_bam) # if row: # print variants[i] # print row # print i # printcount += 1 # i += 1 # sys.exit(0)
# coding=utf-8 from requests import Response from monitorrent.plugins.status import Status from monitorrent.plugins.trackers import TrackerSettings from monitorrent.plugins.trackers.rutor import RutorOrgPlugin, RutorOrgTopic from tests import use_vcr, DbTestCase class RutorTrackerPluginTest(DbTestCase): def setUp(self): self.tracker_settings = TrackerSettings(10, None) def test_can_parse_url(self): tracker = RutorOrgPlugin() tracker.tracker_settings = self.tracker_settings self.assertTrue(tracker.can_parse_url('http://rutor.info/torrent/442959')) self.assertTrue(tracker.can_parse_url('http://www.rutor.info/torrent/442959')) self.assertTrue(tracker.can_parse_url('http://d.rutor.info/torrent/442959')) @use_vcr def test_parse_url(self): plugin = RutorOrgPlugin() plugin.init(self.tracker_settings) original_name = u'Время приключений с Финном и Джейком / Adventure Time with Finn & Jake [S01-06] (2010-2015) WEB-DL 720p | Cartoon Network, Зебуро' urls = ['http://rutor.info/torrent/466037', 'http://www.rutor.info/torrent/466037'] for url in urls: result = plugin.parse_url(url) self.assertIsNotNone(result, 'Can\'t parse url={}'.format(url)) self.assertTrue('original_name' in result, 'Can\'t find original_name for url={}'.format(url)) self.assertEqual(original_name, result['original_name']) def test_parse_url_with_full_cover(self): plugin = RutorOrgPlugin() plugin.init(self.tracker_settings) urls = ['http://www.notrutor.info/torrent/442959', 'http://www.rutor.info/not-match-url/442959', 'http://rutor.info/search/'] for url in urls: self.assertIsNone(plugin.parse_url(url)) def test_prepare_request(self): plugin = RutorOrgPlugin() plugin.init(self.tracker_settings) urls = ['http://rutor.info/torrent/442959', 'http://www.rutor.info/torrent/442959', 'http://rutor.info/torrent/442959/rjej-donovan_ray-donovan-03h01-04-iz-12-2015-hdtvrip-720r-newstudio', 'http://www.rutor.info/torrent/442959/rjej-donovan_ray-donovan-03h01-04-iz-12-2015-hdtvrip-720r-newstud'] for url in urls: topic = RutorOrgTopic(url=url) self.assertEqual('http://rutor.info/download/442959', plugin._prepare_request(topic)) def test_check_download(self): plugin = RutorOrgPlugin() plugin.init(self.tracker_settings) response = Response() response.status_code = 200 response.headers['Content-Type'] = 'application/bittorrent' self.assertEqual(plugin.check_download(response), Status.Ok) response = Response() response.status_code = 200 response.url = 'http://rutor.info/d.php' self.assertEqual(plugin.check_download(response), Status.NotFound) response = Response() response.status_code = 500 response.url = 'http://rutor.info/d.php' self.assertEqual(plugin.check_download(response), Status.Error)
#! /usr/bin/env python """ This script allows for the search of Sentinel-1 data on scihub. Based on some search parameters the script will create a query on www.scihub.copernicus.eu and return the results either as shapefile, sqlite, or PostGreSQL database. """ # import modules import getpass import os import logging try: import ogr except ModuleNotFoundError as e: from osgeo import ogr except ModuleNotFoundError: raise e import psycopg2 as pg from ost.helpers.vector import get_proj4, reproject_geometry logger = logging.getLogger(__name__) # see if the pg-file is there def pgHandler(dbConnectFile = '{}/.phiSAR/pgdb'.format(os.getenv("HOME"))): """ This function connects to an existing PostGreSQL database, with the access parameters stored in the dbConnectFile as follows: "database name" "database user" "database password" "database host" "database port" :param dbConnectFile: path to the connect file :return: the psycopg2 database connection object """ try: f = open(dbConnectFile) except (FileNotFoundError, IOError): logger.info('ERROR: No PostGreSQL connection established. Make sure to configure a connection to phiSAR.') # read out dbname, username lines = f.read().splitlines() dbname = lines[0] uname = lines[1] pwDb = lines[2] host = lines[3] port = lines[4] logger.info('Connecting to PostGreSQL database: {}'.format(dbname)) dbConnect = pgConnect(uname, pwDb, dbname, host, port) return dbConnect class pgConnect: def __init__(self, uname=None, pword=None, dbname='sat', host='localhost', port='5432'): """ Establish a connection to the Scihub-catalogue db """ # ask for username and password in case you have not defined as command line options if uname == None: uname = input(' Your PostGreSQL database username:') if pword == None: pword = getpass.getpass(' Your PostGreSQL database password:') # try connecting try: self.connection = pg.connect( dbname=dbname, user=uname, host=host, password=pword, port=port) self.connection.autocommit = True self.cursor = self.connection.cursor() except: logger.info('Cannot connect to database') def pgCreateS1(self, tablename): f_list = ('id serial PRIMARY KEY, identifier varchar(100), \ polarisation varchar(100), orbitdirection varchar(12), \ acquisitiondate date, relativeorbit smallint, \ orbitnumber integer, producttype varchar(4), \ slicenumber smallint, size varchar(12), \ beginposition timestamp, endposition timestamp, \ lastrelativeorbitnumber smallint, lastorbitnumber int, \ uuid varchar(40), platformidentifier varchar(10), \ missiondatatakeid integer, swathidentifer varchar(21), \ ingestiondate timestamp, sensoroperationalmode varchar(3), \ geometry geometry') sql_cmd = 'CREATE TABLE {} ({})'.format(tablename, f_list) self.cursor.execute(sql_cmd) def pgGetUUID(self, sceneID, tablename): sql_cmd = 'SELECT uuid FROM {} WHERE identifier = \'{}\''.format(tablename, sceneID) self.cursor.execute(sql_cmd) uuid = self.cursor.fetchall()[0][0] return uuid def pgDrop(self, tablename): sql_cmd = 'DROP TABLE {}'.format(tablename) self.cursor.execute(sql_cmd) def pgInsert(self, tablename, values): """ This function inserts a table into the connected database object. """ sql_cmd = 'INSERT INTO {} VALUES {}'.format(tablename, values) self.cursor.execute(sql_cmd) def pgSQL(self, sql): """ This is a wrapper for a sql input that does get all responses. """ self.cursor.execute(sql) return self.cursor.fetchall() def pgSQLnoResp(self, sql): """ This is a wrapper for a sql input that does not get any response. """ self.cursor.execute(sql) def shpGeom2pg(self, aoi, tablename): """ This function is a wrapper to import a shapefile geometry to a PostGreSQL database """ sqlCmd = 'DROP TABLE IF EXISTS {}'.format(tablename) self.cursor.execute(sqlCmd) fList = 'id smallint, geometry geometry' sqlCmd = 'CREATE TABLE {} ({})'.format(tablename, fList) self.cursor.execute(sqlCmd) prjFile = '{}.prj'.format(aoi[:-4]) inProj4 = get_proj4(prjFile) sf = ogr.Open(aoi) layer = sf.GetLayer(0) for i in range(layer.GetFeatureCount()): feature = layer.GetFeature(i) wkt = feature.GetGeometryRef().ExportToWkt() if inProj4 != '+proj=longlat +datum=WGS84 +no_defs': wkt = reproject_geometry(wkt, inProj4, 4326) wkt = 'St_GeomFromText(\'{}\', 4326)'.format(wkt) values = '(\'{}\', {})'.format(i, wkt) sql_cmd = 'INSERT INTO {} VALUES {}'.format(tablename, values) self.cursor.execute(sql_cmd) def pgDateline(self, tablename, uuid): """ This function splits the acquisition footprint into a geometry collection if it crosses the dateline """ # edited after https://www.mundialis.de/update-for-our-maps-mundialis-application-solves-dateline-wrap/ sql_cmd = 'UPDATE {} SET (geometry) = \ (SELECT \ ST_SetSRID( \ ST_CollectionExtract( \ ST_AsText( \ ST_Split( \ ST_ShiftLongitude(geometry), \ ST_SetSRID( \ ST_MakeLine( \ ST_MakePoint(180,-90), \ ST_MakePoint(180,90) \ ), \ 4326 \ ) \ ) \ ), \ 3 \ ), \ 4326 \ ) geometry \ FROM {} \ WHERE uuid = \'{}\' \ ) \ WHERE uuid = \'{}\' \ AND ( \ ST_Intersects( \ geometry, \ ST_SetSRID( \ ST_MakeLine( \ ST_MakePoint(-90,-90), \ ST_MakePoint(-90,90) \ ), \ 4326 \ ) \ ) \ AND \ ST_Intersects( \ geometry, \ ST_SetSRID( \ ST_MakeLine( \ ST_MakePoint(90,-90), \ ST_MakePoint(90,90) \ ), \ 4326 \ ) \ ) \ ) \ AND \ geometry IS NOT NULL'.format(tablename, tablename, uuid, uuid) self.cursor.execute(sql_cmd)
from cowsay_app.models import message from django.shortcuts import render from cowsay_app.models import message from cowsay_app.form import addmessageForm import subprocess # Create your views here. def index_view(request): if request.method == 'POST': form = addmessageForm(request.POST) if form.is_valid(): data = form.cleaned_data message.objects.create(text=data['text']) messages = subprocess.check_output(['cowsay', data['text']], universal_newlines=True) return render(request, 'index.html', {'messages': messages, 'form': form}) form = addmessageForm() return render(request, 'index.html', {'form': form}) def history(request): latest_messages = message.objects.all().order_by('-id')[:10] return render(request, 'history.html', {'latest_messages':latest_messages})
from glob import glob from pbr import util from setuptools import setup cfg = util.cfg_to_args() cfg.update({ 'data_files': [ ('docs', glob('docs/*.rst')) ], # 'pbr': True, }) setup( **cfg )
#!/usr/bin/env python3 import os import subprocess from benchmark_main import maybe_via_docker PWD = os.getcwd() TESTDATA_ROOT = os.path.join(PWD, "test_data") LONG_SBP = os.path.join(TESTDATA_ROOT, "benchmark.sbp") CMD = ['./rust/bin/sbp2json'] subprocess.run( maybe_via_docker(PWD, "haskell-sbp2json", CMD), stdin=open(LONG_SBP, 'rb'), stdout=subprocess.DEVNULL, check=True)
#!/usr/bin/env python # coding: utf-8 # In[ ]: """ LICENSE MIT 2020 Guillaume Rozier Website : http://www.covidtracker.fr Mail : guillaume.rozier@telecomnancy.net README: This file contains scripts that download data from data.gouv.fr and then process it to build many graphes. I'm currently cleaning the code, please ask me if something is not clear enough. The charts are exported to 'charts/images/france'. Data is download to/imported from 'data/france'. Requirements: please see the imports below (use pip3 to install them). """ # In[1]: import pandas as pd import plotly.graph_objects as go import france_data_management as data from datetime import datetime from datetime import timedelta from plotly.subplots import make_subplots import plotly import math import os import json PATH = "../../" PATH_STATS = "../../data/france/stats/" import locale locale.setlocale(locale.LC_ALL, 'fr_FR.UTF-8') # In[ ]: def import_df_age(): df = pd.read_csv(PATH+"data/france/vaccin/vacsi-a-fra.csv", sep=";") return df # In[10]: df_new = pd.read_csv(PATH+"data/france/donnes-hospitalieres-covid19-nouveaux.csv", sep=";") df_clage = pd.read_csv(PATH+"data/france/donnes-hospitalieres-clage-covid19.csv", sep=";") # In[9]: df_new_france = df_new.groupby("jour").sum() df_new_france.sum() # In[32]: df_clage_france = df_clage.groupby(["jour", "cl_age90"]).sum().reset_index() df_clage_france[df_clage_france.jour=="2021-04-12"] # In[66]: df = import_df_age() df["n_dose1"] = df["n_dose1"].replace({",": ""}, regex=True).astype("int") df = df.groupby(["clage_vacsi"]).sum()/100 df = df[1:] df["n_dose1_pourcent"] = round(df.n_dose1/df.n_dose1.sum()*100, 1) clage_vacsi = [24, 29, 39, 49, 59, 64, 69, 74, 79, 80] nb_pop = [5236809, 3593713, 8034961, 8316050, 8494520, 3979481, 3801413, 3404034, 2165960, 4081928] df_age = pd.DataFrame() df_age["clage_vacsi"]=clage_vacsi df_age["nb_pop"]=nb_pop df = df.merge(df_age, left_on="clage_vacsi", right_on="clage_vacsi") df["pop_vac"] = df["n_dose1"]/df["nb_pop"]*100 df # In[73]: fig = go.Figure() fig.add_trace(go.Bar( x=[str(age) + " ans" for age in df.clage_vacsi[:-1]]+["+ 80 ans"], y=df.pop_vac, text=[str(round(prct, 2)) + " %" for prct in df.pop_vac], textposition='auto',)) fig.update_layout( title={ 'text': "% de population ayant reçu au moins 1 dose de vaccin", 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, titlefont = dict( size=20), annotations = [ dict( x=0, y=1.07, xref='paper', yref='paper', font=dict(size=14), text='{}. Données : Santé publique France. Auteur : <b>@GuillaumeRozier - covidtracker.fr.</b>'.format(datetime.strptime("2021-01-27", '%Y-%m-%d').strftime('%d %b')), showarrow = False ), ] ) fig.update_yaxes(range=[0, 100]) fig.show() # In[63]: fig = go.Figure() fig.add_trace(go.Pie( labels=[str(age) + " ans" for age in df.index[:-1]]+["+ 80 ans"], values=df.n_dose1_pourcent, text=[str(prct) + "" for prct in df.n_dose1], textposition='auto',)) fig.update_layout( title={ 'text': "Nombre de vaccinés par tranche d'âge", 'y':0.95, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, titlefont = dict( size=20), annotations = [ dict( x=0, y=1.07, xref='paper', yref='paper', font=dict(size=14), text='{}. Données : Santé publique France. Auteur : <b>@GuillaumeRozier - covidtracker.fr.</b>'.format(datetime.strptime("2021-01-27", '%Y-%m-%d').strftime('%d %b')), showarrow = False ), ] ) fig.show() # In[6]: #locale.setlocale(locale.LC_ALL, 'fr_FR.UTF-8') import random import numpy as np n_sain = 20000 x_sain = np.random.rand(1, n_sain)[0]*100 values_sain = np.random.rand(1, n_sain)[0]*100 x_az = np.random.rand(1,30)[0]*100 values_az = np.random.rand(1,30)[0]*100 fig = go.Figure() for idx in range(len(x_sain)): fig.add_trace(go.Scatter( x=[x_sain[idx]], y=[values_sain[idx]], mode="markers", showlegend=False, marker_color="rgba(14, 201, 4, 0.5)", #"rgba(0, 0, 0, 0.5)", marker_size=2)) fig.add_trace(go.Scatter( x=x_az, y=values_az, mode="markers", showlegend=False, marker_color="rgba(201, 4, 4,0.5)", #"rgba(0, 0, 0, 0.5)", marker_size=2)) fig.update_yaxes(range=[0, 100], visible=False) fig.update_xaxes(range=[0, 100], nticks=10) fig.update_layout( plot_bgcolor='rgb(255,255,255)', title={ 'text': "Admissions en réanimation pour Covid19", 'y':0.90, 'x':0.5, 'xanchor': 'center', 'yanchor': 'top'}, titlefont = dict( size=20), annotations = [ dict( x=0.5, y=1.2, xref='paper', yref='paper', text='Auteur : covidtracker.fr.'.format(), showarrow = False )] ) fig.write_image(PATH + "images/charts/france/points_astrazeneca.jpeg", scale=4, width=800, height=350) # In[18]: import numpy as np np.random.rand(1,20000000)
from half_tones.check_range import * def FloydSteinberg(img, error: int, x, y, z): if checkRange(x + 1, y, img): img[x+1][y][z] = img[x+1][y][z] + (7/16) * error if checkRange(x, y + 1, img): img[x][y+1][z] = img[x][y+1][z] + (5/16) * error if checkRange(x + 1, y + 1, img): img[x+1][y+1][z] = img[x+1][y+1][z] + (1/16) * error if checkRange(x - 1, y + 1, img): img[x-1][y+1][z] = img[x-1][y+1][z] + (3/16) * error
from jackutil.containerutil import containerChecksum,featuresFromContainer,projectContainer from jackutil.configuration import configuration from jackutil.microfunc import shortnames,rename_columns from tqdm.auto import tqdm from backtest import tradesim_store from backtest.tradesim_util import build_simulator,account_profit_summary,summary_extractor,feature_extractor import pandas as pd import numpy as np from pprint import pprint def main(): # ----------------------------------------------------------------------------- import demo1_cfg as cfg store = tradesim_store.TradesimStore("pickle_jar") # ----------------------------------------------------------------------------- # -- # -- run single without cache # -- delta = cfg.test1 basespec = projectContainer(cfg.basespec,cfg.n100spec) cfg_acc_pairs = runBacktestsWithCache(basespec=basespec,delta=delta,cache=store) features = set( featuresFromContainer(delta) ) summary = summary_extractor( cfg_acc_pairs=cfg_acc_pairs, cfg_extractor=feature_extractor(features), acc_extractor=account_profit_summary, ) colnames = shortnames(*features)+['profit'] summary = rename_columns(summary,colnames) pprint(summary) def runBacktestsWithCache(*,basespec,delta,cache,loadCache=True): all_rtcfg = configuration(basespec=basespec,variations=delta).all_configurations() result = [] for rtcfg in tqdm(all_rtcfg,leave=None,desc='rtcfg'): (account,d0,universe,simulator) = runBacktestWithCache(rtspec=rtcfg,cache=cache,loadCache=loadCache) result.append( (rtcfg,account) ) return result def runBacktestWithCache(*,rtspec,cache,loadCache=True): has = np.array( cache.has(rtspec=rtspec) ) has = has[has !=None] if(has.all()): print('.', end="") if(loadCache): return cache.load(rtspec=rtspec)[0:3]+(None,) else: return (None,None,None,None) # -- (account,d0,universe,simulator) = runBacktest(rtcfg=rtspec) cache.store(rtspec,account=account,d0=d0,universe=universe) return (account,d0,universe,simulator) def runBacktest(rtcfg): simulator = build_simulator(rtcfg) (account,d0,universe) = simulator.runBacktest() return (account,d0,universe,simulator) # -- # -- ====================================== # -- print(__name__) if(__name__=="__main__"): main()
import csv import datetime from typing import List from typing import Any from typing import Dict import json import os import urllib import urllib.request import matplotlib import matplotlib.pyplot as plt from InstagramAPI import InstagramAPI from .instagram.instagram_key import InstagramKey from .api_interface import ApiInterface matplotlib.use('TkAgg') # Precision to truncate on a datetime object, down to the minute DATETIME_MINUTE_PRECISION = 16 class _InstagramUser: """ Stores a user defined by the InstagramAPI user JSON """ def __init__(self, user: Dict[str, Any]) -> None: self.uid = int(user['pk']) self.username = str(user['username']) self.full_name = str(user['full_name']) self.profile_pic_url = str(user['profile_pic_url']) self.is_private = bool(user['is_private']) self.is_verified = bool(user['is_verified']) self.is_anon = bool(user['has_anonymous_profile_picture']) class Instagram(ApiInterface): """ Wrapper for accessing the instagram API """ def __init__(self) -> None: # Store keys and api info self.keys = InstagramKey() self.api = InstagramAPI(self.keys.username, self.keys.password) self.api.login() # Store the authenticated user's Instagram UID self.uid = self.api.username_id # Memoize follower and following information for the authenticated user self.followers: List[_InstagramUser] = self._user_follower_info() self.followings: List[_InstagramUser] = self._user_following_info() # Specify the output graphfile for follower/time graphing self.graphfile = os.path.join('postr', 'instagram', 'instagram_graphing.csv') if not os.path.isfile(self.graphfile): self.setup_csv() def post_text(self, text: str) -> bool: """ Not an operation that this platform has. """ return False def post_video(self, url: str, text: str) -> bool: """ Not an operations that the Instagram API allows. """ return False def post_photo(self, url: str, text: str) -> bool: self.api.uploadPhoto(photo=url, caption=text) return False def get_user_likes(self) -> int: """ Not supported by the API """ return -1 def get_user_followers(self, text: str) -> List[str]: """ Gets the names of all users followers """ # Get all follower information followers: List[_InstagramUser] = self._user_follower_info() # Convert each folllower to just their name names: List[str] = list([x.username for x in followers]) return names def remove_post(self, post_id: str) -> bool: """ Removes a post, prints an exception if the post doesn't exist """ try: self.api.deleteMedia(mediaId=post_id) return True except BaseException as e: print('Error on data %s' % str(e)) return False def refresh(self) -> None: """ Updates the stored contents for a user's followers and followings """ self.followers = self._user_follower_info() self.followings = self._user_following_info() @staticmethod def direct_share(media_id: str, recipients: List[int], message: str = '') -> None: """ Shares media to a list of recipients via a direct message mediaID: The id of the media to share recipients: A list of the user ids to share media with mesage: The message to go along with the media share """ InstagramAPI.direct_share(media_id, recipients, message) def spam_follower_ratio(self, uid: int = 0) -> float: """ Determines the ratio of spam followers on a given user. Assumption: A spam account is an account with a default profile picture, as well as a 10x or greater following/follower ratio """ # If no uid was specified, use the authenticated user's uid if uid == 0: uid = self.uid # Get the followers for the given uid followers: List[_InstagramUser] = self._user_follower_info(uid) # Filter the followers based on default profile picture default_profile_followers = list([x for x in followers if not x.is_anon]) # Filter the followers again based on if the remaining are likely to be spam accounts spam_default_profiles = list([x for x in default_profile_followers if self._has_following_ratio_of(x, 10)]) return len(spam_default_profiles) / len(followers) def username_to_id(self, username: str) -> int: """ Converts a username to its associated id Unfortunately this isn't built in from the InstagramAPI (they wanted to decrease bot usage) so I had to build this myself. This function has a small chance of error, as documented in the _username_to_profile() function """ profile_json = self._username_to_profile(username) user = Instagram._profile_to_InstagramUser(profile_json) return user.uid def follow_by_id(self, uid: int) -> None: """ Follows a user based off of their uid """ self.api.follow(uid) def unsafe_follow_by_username(self, username: str) -> None: """ Follows a user based off their username See the _username_to_profile() function for correctness concerns """ uid = self.username_to_id(username) self.api.follow(uid) def block_by_id(self, uid: int) -> None: """ Blocks a user based off their uid """ self.api.block(uid) def unsafe_block_by_username(self, username: str) -> None: """ Blocks a user based off their username Seee the _username_to_profile() function for correctness concerns """ uid = InstagramAPI.username_to_id(username) self.api.block(uid) def setup_csv(self) -> None: """ Initializes a csv file for the time series graphing """ csvData = ['Followers', 'Time'] # Create our CSV file header with open(self.graphfile, 'w') as csvFile: writer = csv.writer(csvFile) writer.writerow(csvData) csvFile.close() def log_followers(self) -> None: """ Logs follower information to the graph file """ with open(self.graphfile, 'a') as gf: writer = csv.writer(gf) follower_count = len(self.get_user_followers('')) date = datetime.datetime.now() # Append the current date and follower count to the file writer.writerow([date, follower_count]) gf.close() @staticmethod def _read_csv_col(colNum: int, filename: str) -> List[str]: """ Reads a specific column by index in the graph csv""" col = [] with open(filename, 'r') as rf: reader = csv.reader(rf, delimiter=',') for row in reader: col.append(str(row[colNum])) return col[1::] # Ignore the csv header def graph_followers(self) -> None: """ Graphs a blob file for twitter sentiment """ dates = Instagram._read_csv_col(0, self.graphfile) # Truncate the datetime object to the minute precision dates = [d[:DATETIME_MINUTE_PRECISION] for d in dates] followers = [int(f) for f in Instagram._read_csv_col(1, self.graphfile)] # Get the global maximum follower value and its index max_val = max(followers) max_index = followers.index(max_val) # Plot followers vs. time plt.plot( dates, followers, ) plt.ylabel('Follower count') plt.xlabel('Time') # Annotate the plot with the global max plt.annotate( 'Absolute max', xy=(max_index, max_val), xytext=(max_index, max_val + 1), arrowprops=dict(facecolor='black', shrink=0.05), ) # beautify the x-labels plt.gcf().autofmt_xdate() # Set our y-range to be the max value plus a few more, to show the annotation plt.ylim(-1, max_val + 3) plt.show() @staticmethod def _profile_to_InstagramUser(profile: Dict[str, Any]) -> _InstagramUser: """ Given a user profile JSON, builds an InstagramUser """ # Navigate to the user JSON that is coincidentally used by the provided API methods user = profile['users'][0]['user'] # Simply build our InstagramUser, as the user JSON is the same return _InstagramUser(user) def _username_to_profile(self, username: str) -> Dict[str, Any]: """ Creates a json out of a user's profile info given their username If the username contains any special characters, or just by random chance, Instagram will not return the correct user. Instead, it seems to return any user whose name is relatively similar to the given username. Is this a fuzzy matching error? I'm not the first to discover this flaw. https://stackoverflow.com/a/13586797 Hopefully Instagram fixes this flaw. """ base_url = self.keys.pre_profile + username + self.keys.rank_token + self.keys.post_profile # Build the page source url for the given user's account con = urllib.request.urlopen(base_url) user_profile = con.read().decode('utf-8') # Convert the webpage to a profile JSON profile: dict = json.loads(str(user_profile)) return profile def _has_following_ratio_of(self, user: _InstagramUser, ratio: float) -> bool: """ Determines if a user has a following/follower ratio greater than a threshold """ follower_count = len(self._user_follower_info(uid=user.uid)) following_count = len(self._user_following_info(uid=user.uid)) if follower_count == 0: return True return (following_count / follower_count) > ratio def _user_follower_info(self, uid: int = 0) -> List[_InstagramUser]: """ Gets info about followers rtype: List of JSON representing users """ # If no uid was specified, use the authenticated user's uid if uid == 0: uid = self.uid followers: List[Dict[str, Any]] = self.api.getTotalFollowers(uid) user_followers = list([_InstagramUser(x) for x in followers]) return user_followers def _user_following_info(self, uid: int = 0) -> List[_InstagramUser]: """ Gets info about followings rtype: List of JSON representing users """ # If no uid was specified, use the authenticated user's uid if uid == 0: uid = self.uid followings: List[Dict[str, Any]] = self.api.getTotalFollowings(uid) user_followings = list([_InstagramUser(x) for x in followings]) return user_followings def example_graphing(self) -> None: """ Example method demonstrating graphing """ # Log the current amount of followers to our history of followers self.log_followers() # Graphs all followers / time self.graph_followers()
#! /usr/bin/env python3 a = 1 if a == 1: pass else: print("Hello")
""" Module: 'inisetup' on esp8266 v1.9.3 """ # MCU: (sysname='esp8266', nodename='esp8266', release='2.0.0(5a875ba)', version='v1.9.3-8-g63826ac5c on 2017-11-01', machine='ESP module with ESP8266') # Stubber: 1.1.2 - updated from typing import Any bdev = None def check_bootsec(): pass def fs_corrupted(): pass network = None def setup(): pass uos = None def wifi(): pass
#!/usr/bin/env python import os import sys for i in xrange(1,len(sys.argv)): tmp1 = sys.argv[i].split('s') tmp2 = tmp1[1].split('.') out = tmp2[0] + '.dat' print sys.argv[i],out command = 'mv '+sys.argv[i]+' '+out os.system(command)
from titan.react_view_pkg import accountmenu from . import accountmenu, formsmodule, formview, router, router_and_module, view modules = [ accountmenu, formsmodule, formview, router, router_and_module, view, ]
import unittest from unittest.mock import patch, MagicMock from botocore.exceptions import UnknownServiceError from mypy_boto3_builder.parsers.shape_parser import ShapeParser # pylint: disable=protected-access class ShapeParserTestCase(unittest.TestCase): def test_init(self) -> None: session_mock = MagicMock() service_name_mock = MagicMock() shape_parser = ShapeParser(session_mock, service_name_mock) self.assertEqual(shape_parser.service_name, service_name_mock) session_mock._loader.load_service_model.side_effect = UnknownServiceError( service_name="service_name", known_service_names="known_service_names", ) ShapeParser(session_mock, service_name_mock) def test_get_paginator_names(self) -> None: session_mock = MagicMock() service_name_mock = MagicMock() session_mock._loader.load_service_model.return_value = { "pagination": ["c", "a", "b"] } shape_parser = ShapeParser(session_mock, service_name_mock) self.assertEqual(shape_parser.get_paginator_names(), ["a", "b", "c"]) session_mock._loader.load_service_model.return_value = { "paginations": ["c", "a", "b"] } shape_parser = ShapeParser(session_mock, service_name_mock) self.assertEqual(shape_parser.get_paginator_names(), []) @patch("mypy_boto3_builder.parsers.shape_parser.ServiceModel") def test_get_client_method_map(self, ServiceModelMock: MagicMock) -> None: session_mock = MagicMock() service_name_mock = MagicMock() ServiceModelMock().operation_names = ["my_operation"] session_mock._loader.load_service_model.return_value = { "resources": ["c", "a", "b"] } shape_parser = ShapeParser(session_mock, service_name_mock) result = shape_parser.get_client_method_map() self.assertIn("can_paginate", result) self.assertIn("generate_presigned_url", result) @patch("mypy_boto3_builder.parsers.shape_parser.ServiceModel") def test_get_paginate_method(self, ServiceModelMock: MagicMock) -> None: session_mock = MagicMock() service_name_mock = MagicMock() operation_model_mock = MagicMock() required_arg_shape_mock = MagicMock() optional_arg_shape_mock = MagicMock() operation_model_mock.input_shape.members.items.return_value = [ ("required_arg", required_arg_shape_mock,), ("optional_arg", optional_arg_shape_mock,), ("InputToken", optional_arg_shape_mock,), ("skip_arg", optional_arg_shape_mock,), ] ServiceModelMock().operation_names = ["my_paginator"] ServiceModelMock().operation_model.return_value = operation_model_mock session_mock._loader.load_service_model.return_value = { "pagination": { "my_paginator": {"input_token": "InputToken", "limit_key": "skip_arg"} }, "resources": [], } shape_parser = ShapeParser(session_mock, service_name_mock) result = shape_parser.get_paginate_method("my_paginator") self.assertEqual(result.name, "paginate") self.assertEqual(len(result.arguments), 4) self.assertEqual(result.arguments[0].name, "self") self.assertEqual(result.arguments[1].name, "required_arg") self.assertEqual(result.arguments[2].name, "optional_arg") self.assertEqual(result.arguments[3].name, "PaginationConfig") @patch("mypy_boto3_builder.parsers.shape_parser.ServiceModel") def test_get_collection_filter_method(self, ServiceModelMock: MagicMock) -> None: session_mock = MagicMock() service_name_mock = MagicMock() operation_model_mock = MagicMock() required_arg_shape_mock = MagicMock() optional_arg_shape_mock = MagicMock() operation_model_mock.input_shape.required_members = ["required_arg"] operation_model_mock.input_shape.members.items.return_value = [ ("required_arg", required_arg_shape_mock,), ("optional_arg", optional_arg_shape_mock,), ("InputToken", optional_arg_shape_mock,), ] ServiceModelMock().operation_names = ["my_operation"] ServiceModelMock().operation_model.return_value = operation_model_mock collection_mock = MagicMock() collection_mock.request.operation = "my_operation" shape_parser = ShapeParser(session_mock, service_name_mock) result = shape_parser.get_collection_filter_method( "MyCollection", collection_mock ) self.assertEqual(result.name, "filter") self.assertEqual(len(result.decorators), 1) self.assertEqual(len(result.arguments), 3) self.assertEqual(result.arguments[0].name, "cls") self.assertEqual(result.arguments[1].name, "optional_arg") self.assertEqual(result.arguments[2].name, "InputToken")
# coding: utf-8 from __future__ import division, print_function import os, sys import tensorflow as tf import time import cv2 import numpy as np from utils import plot_one_box os.environ["CUDA_VISIBLE_DEVICES"] = '0' color_table = [[0, 255, 0], [255, 0, 0], [0, 0, 255]] classes = ['face', 'mask', 'glasses'] def letterbox_resize(img, new_width, new_height, interp=0): ''' Letterbox resize. keep the original aspect ratio in the resized image. ''' ori_height, ori_width = img.shape[:2] resize_ratio = min(new_width / ori_width, new_height / ori_height) resize_w = int(resize_ratio * ori_width) resize_h = int(resize_ratio * ori_height) img = cv2.resize(img, (resize_w, resize_h), interpolation=interp) image_padded = np.full((new_height, new_width, 3), 128, np.uint8) dw = int((new_width - resize_w) / 2) dh = int((new_height - resize_h) / 2) image_padded[dh: resize_h + dh, dw: resize_w + dw, :] = img return image_padded, resize_ratio, dw, dh def get_img_list(img_path, exts=['jpg', 'png', 'jpeg', 'JPG']): img_list = os.listdir(img_path) new_list = [] for img_name in img_list: for ext in exts: if img_name.endswith(ext): new_list.append(img_name) break return new_list def inference(img_dir, out_dir): config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: with tf.gfile.FastGFile('./sur/sur0228/yolov3_tiny_sur.pb', 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) sess.graph.as_default() tf.import_graph_def(graph_def, name='')# sess.run(tf.global_variables_initializer()) input_data = sess.graph.get_tensor_by_name('input_data:0') labels = sess.graph.get_tensor_by_name('labels:0') scores = sess.graph.get_tensor_by_name('scores:0') boxes = sess.graph.get_tensor_by_name('boxes:0') img_names = os.listdir(img_dir) count = 0 times = [] area_thresh = 0.6 for img_name in img_names: img_ori = cv2.imread(os.path.join(img_dir, img_name)) #img_ori = cv2.imread(img_name) start = time.time() img, resize_ratio, dw, dh = letterbox_resize(img_ori, 416, 416) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) "img = img[np.newaxis, :]" boxes_, scores_, labels_ = sess.run([boxes, scores, labels], feed_dict={input_data: img}) print(20 * "--", boxes_, labels_ ) boxes_[:, [0, 2]] = (boxes_[:, [0, 2]] - dw) / resize_ratio boxes_[:, [1, 3]] = (boxes_[:, [1, 3]] - dh) / resize_ratio "----------------------------------------------------------" labels_ = np.reshape(labels_, [-1, 1]) scores_ = np.reshape(scores_, [-1, 1]) result = np.concatenate([boxes_, scores_, labels_], axis=1) #result = tf.concat([boxes_, scores_, labels_], axis=-1) print(20 * "--", result) "split result to two matrix, glasses and face " mask_glasses = np.equal(result[:, 5], 2) mask_face = np.not_equal(result[:, 5], 2) result_glasses = result[mask_glasses] result_face = result[mask_face] boxes_glasses, scores_glasses, label_glasses = result_glasses[:, 0:4], result_glasses[:, 4:5], result_glasses[:, 5:6] boxes_face, scores_face, label_face = result_face[:, 0:4], result_face[:, 4:5], result_face[:, 5:6] # print(20 * "--", label_face.get_shape().as_list()) new_label = np.zeros((len(label_face), 1)) label_face = np.c_[label_face, new_label] print(20 * "-*-", label_face) if label_glasses.shape[0] != 0: x1, y1, x2, y2 = boxes_glasses[:, 0], boxes_glasses[:, 1], boxes_glasses[:, 2], boxes_glasses[:, 3] areas = (x2 - x1 + 1) * (y2 - y1 + 1) "for each glasses, caculate iou with face or face_mask, and label on face" for i in range(scores_glasses.shape[0]): xx1 = np.maximum(x1[i], boxes_face[:, 0]) yy1 = np.maximum(y1[i], boxes_face[:, 1]) xx2 = np.minimum(x2[i], boxes_face[:, 2]) yy2 = np.minimum(y2[i], boxes_face[:, 3]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / areas[i] inds = np.where(ovr >= area_thresh) print(20 * "--*", inds) label_face[inds, 1] = 1 #label_face[inds] = 1 print(20 * "--*", boxes_face, scores_face, label_face) end = time.time() print(20 * "--", img_name) for i in range(len(boxes_face)): x0, y0, x1, y1 = boxes_face[i] if label_face[i][1] == 0: print("no glasses") else: print("glasses") # plot_one_box(img_ori, [x0, y0, x1, y1], label=classes[label_face[i][0]]+',{:.2f}'.format(scores_face[i]), color=color_table[label_face[i][0]]) img_name = os.path.basename(img_name) cv2.imwrite(os.path.join(out_dir, img_name), img_ori) count += 1 print('No.{}, img:{}, time:{:.4f}'.format(count, img_name, end-start)) if count > 1: times.append(end-start) print('Total:{}, avg time:{:.4f}'.format(count, np.mean(times))) if __name__ == '__main__': os.environ["CUDA_VISIBLE_DEVICES"] = '1' img_dir = './data/test' out_dir = './data/test_out' inference(img_dir, out_dir)
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayPcreditHuabeiSceneprodBenefitSendResponse(AlipayResponse): def __init__(self): super(AlipayPcreditHuabeiSceneprodBenefitSendResponse, self).__init__() self._retry = None self._send_id = None self._status = None @property def retry(self): return self._retry @retry.setter def retry(self, value): self._retry = value @property def send_id(self): return self._send_id @send_id.setter def send_id(self, value): self._send_id = value @property def status(self): return self._status @status.setter def status(self, value): self._status = value def parse_response_content(self, response_content): response = super(AlipayPcreditHuabeiSceneprodBenefitSendResponse, self).parse_response_content(response_content) if 'retry' in response: self.retry = response['retry'] if 'send_id' in response: self.send_id = response['send_id'] if 'status' in response: self.status = response['status']
"""Test cases for the aioswitcher.schedules module.""" # fmt: off from asyncio import AbstractEventLoop, wait from binascii import unhexlify from pytest import fail, mark, raises from aioswitcher.consts import (HANDLED_EXCEPTIONS, SCHEDULE_DUE_ANOTHER_DAY_FORMAT, SCHEDULE_DUE_TODAY_FORMAT, SCHEDULE_DUE_TOMMOROW_FORMAT) from aioswitcher.schedules import (SwitcherV2Schedule, calc_next_run_for_schedule) from .asserters import assert_lists_equal from .consts import (DUMMY_FULL_RECCURING_DAYS_LIST, DUMMY_FULL_RECCURING_DURATION, DUMMY_FULL_RECCURING_END_TIME, DUMMY_FULL_RECCURING_SCHEDULE_DATA, DUMMY_FULL_RECCURING_SCHEDULE_DATA_BYTES, DUMMY_FULL_RECCURING_SCHEDULE_ID, DUMMY_FULL_RECCURING_START_TIME, DUMMY_NON_RECCURING_DAYS_LIST, DUMMY_NON_RECCURING_DURATION, DUMMY_NON_RECCURING_END_TIME, DUMMY_NON_RECCURING_SCHEDULE_DATA, DUMMY_NON_RECCURING_SCHEDULE_DATA_BYTES, DUMMY_NON_RECCURING_SCHEDULE_ID, DUMMY_NON_RECCURING_START_TIME, DUMMY_SELECTIVE_RECCURING_DAYS_LIST, DUMMY_SELECTIVE_RECCURING_DURATION, DUMMY_SELECTIVE_RECCURING_END_TIME, DUMMY_SELECTIVE_RECCURING_SCHEDULE_DATA, DUMMY_SELECTIVE_RECCURING_SCHEDULE_DATA_BYTES, DUMMY_SELECTIVE_RECCURING_SCHEDULE_ID, DUMMY_SELECTIVE_RECCURING_START_TIME) # fmt: on @mark.asyncio async def test_recurring_schedule_next_runtime_tommorow( event_loop: AbstractEventLoop, recurring_tommorow_schedule: SwitcherV2Schedule, ) -> None: """Test the calc_next_run_for_schedule tool.""" try: result = await calc_next_run_for_schedule( event_loop, recurring_tommorow_schedule ) assert ( SCHEDULE_DUE_TOMMOROW_FORMAT.format( recurring_tommorow_schedule.start_time ) == result ) except HANDLED_EXCEPTIONS as exc: fail(exc) @mark.asyncio async def test_recurring_schedule_next_runtime_another_day( event_loop: AbstractEventLoop, recurring_another_day_schedule: SwitcherV2Schedule, ) -> None: """Test the calc_next_run_for_schedule tool.""" try: result = await calc_next_run_for_schedule( event_loop, recurring_another_day_schedule ) assert ( SCHEDULE_DUE_ANOTHER_DAY_FORMAT.format( recurring_another_day_schedule.days[0], recurring_another_day_schedule.start_time, ) == result ) except HANDLED_EXCEPTIONS as exc: fail(exc) @mark.asyncio async def test_non_recurring_schedule_next_runtime_calc( event_loop: AbstractEventLoop, non_recurring_in_30_minutes_schedule: SwitcherV2Schedule, ) -> None: """Test the calc_next_run_for_schedule tool.""" try: result = await calc_next_run_for_schedule( event_loop, non_recurring_in_30_minutes_schedule ) assert ( SCHEDULE_DUE_TODAY_FORMAT.format( non_recurring_in_30_minutes_schedule.start_time ) == result ) except HANDLED_EXCEPTIONS as exc: fail(exc) @mark.asyncio async def test_setters_and_getters_schedule( event_loop: AbstractEventLoop ) -> None: """Test setters of SwitcherV2Schedule object.""" schedule = SwitcherV2Schedule( event_loop, 0, [unhexlify(DUMMY_SELECTIVE_RECCURING_SCHEDULE_DATA)] ) await wait([schedule.init_future]) assert schedule.enabled assert ( schedule.schedule_data == DUMMY_SELECTIVE_RECCURING_SCHEDULE_DATA_BYTES ) with raises(TypeError) as exc_info_enable: schedule.enabled = "not_bool" # type: ignore assert exc_info_enable.type is TypeError with raises(TypeError) as exc_info_data: schedule.schedule_data = 0 # type: ignore assert exc_info_data.type is TypeError schedule.enabled = False assert not schedule.as_dict().get("_enabled") schedule.schedule_data = b"4855f34ca8c58d6f1453" assert schedule.as_dict().get("_schedule_data") == b"4855f34ca8c58d6f1453" @mark.asyncio async def test_selective_recurring_schedule( event_loop: AbstractEventLoop ) -> None: """Test selective recurring SwitcherV2Schedule object.""" schedule = SwitcherV2Schedule( event_loop, 0, [unhexlify(DUMMY_SELECTIVE_RECCURING_SCHEDULE_DATA)] ) await wait([schedule.init_future]) assert schedule.schedule_id == DUMMY_SELECTIVE_RECCURING_SCHEDULE_ID assert schedule.enabled assert schedule.recurring await assert_lists_equal( schedule.days, DUMMY_SELECTIVE_RECCURING_DAYS_LIST ) assert schedule.start_time == DUMMY_SELECTIVE_RECCURING_START_TIME assert schedule.end_time == DUMMY_SELECTIVE_RECCURING_END_TIME assert schedule.duration == DUMMY_SELECTIVE_RECCURING_DURATION assert ( schedule.schedule_data == DUMMY_SELECTIVE_RECCURING_SCHEDULE_DATA_BYTES ) @mark.asyncio async def test_full_recurring_schedule(event_loop: AbstractEventLoop) -> None: """Test full recurring SwitcherV2Schedule object.""" schedule = SwitcherV2Schedule( event_loop, 0, [unhexlify(DUMMY_FULL_RECCURING_SCHEDULE_DATA)] ) await wait([schedule.init_future]) assert schedule.schedule_id == DUMMY_FULL_RECCURING_SCHEDULE_ID assert schedule.enabled assert schedule.recurring await assert_lists_equal(schedule.days, DUMMY_FULL_RECCURING_DAYS_LIST) assert schedule.start_time == DUMMY_FULL_RECCURING_START_TIME assert schedule.end_time == DUMMY_FULL_RECCURING_END_TIME assert schedule.duration == DUMMY_FULL_RECCURING_DURATION assert schedule.schedule_data == DUMMY_FULL_RECCURING_SCHEDULE_DATA_BYTES @mark.asyncio async def test_non_recurring_schedule(event_loop: AbstractEventLoop) -> None: """Test non-recurring SwitcherV2Schedule object.""" schedule = SwitcherV2Schedule( event_loop, 0, [unhexlify(DUMMY_NON_RECCURING_SCHEDULE_DATA)] ) await wait([schedule.init_future]) assert schedule.schedule_id == DUMMY_NON_RECCURING_SCHEDULE_ID assert schedule.enabled # TODO this should return False, fix dummy packet! assert schedule.recurring await assert_lists_equal(schedule.days, DUMMY_NON_RECCURING_DAYS_LIST) assert schedule.start_time == DUMMY_NON_RECCURING_START_TIME assert schedule.end_time == DUMMY_NON_RECCURING_END_TIME assert schedule.duration == DUMMY_NON_RECCURING_DURATION assert schedule.schedule_data == DUMMY_NON_RECCURING_SCHEDULE_DATA_BYTES
#!/usr/bin/env python3 import sys sys.path.insert( 0, '..' ) # this will later be a session multiplexer object in a module abstraction library from Engines.POF_com import Session as POFSession def Main(): config = POFSession.Config("config.ini") testSession = POFSession(config) testSession.login() users = testSession.searchUsers(config, 5, online_only=True) print("Total Users Found: {0}".format( len(users) ) ) testSession.broadcastMessage(users, "hey whats up") if __name__ == '__main__': Main()
import os import sys import shutil import multiprocessing from robosat_pink.tools import cover from robosat_pink.geoc import config as CONFIG, params, utils multiprocessing.set_start_method('spawn', True) def main(dsPath,geojson,out): params_cover = params.Cover( dir=dsPath, bbox=None, geojson=geojson, cover=None, raster=None, sql=None, pg=None, no_xyz=None, zoom=18, extent=None, splits=None, out=out) cover.main(params_cover) return True # 2 mins
from setuptools import setup, find_packages setup( name="workflowy.automation", packages=find_packages(), author="Luke Merrett", description="Scripts for automating Workflowy tasks using Selenium", license="MIT", url="https://github.com/lukemerrett/Workflowy-Automation", install_requires=['selenium'] )
#!/usr/bin/python """ Overview: http://fabric.readthedocs.org/en/1.0.0/tutorial.html Execution: http://fabric.readthedocs.org/en/1.0.0/usage/execution.html Author(s): Prateek Gupta (prateek@bloomreach.com) """ import os import os.path import tempfile import yaml import sys import time import traceback from fabric.api import * from fabric.tasks import * from fabric.decorators import * from fabric.colors import * from fabric.contrib.files import exists import fabric.exceptions sys.path.append("..") from utils import deployments """ env variables """ # Global dictionary containing map of roles to hosts. # A role provided as an argument to a task must be part of this list; # otherwise fabric will throw an error saying that role(s) do not exist. env.roledefs = { } #environment variable definitions env.user='ubuntu' env.use_ssh_config = True env.s3_bucket = 's3://brp-admin/config/' env.root = "/mnt" #env.project = "cassandra" #env.project_root = os.path.join(env.root, env.project) env.tmp_dir = "/mnt/tmp" env.cassandra_dir = os.path.join(env.root, "cassandra") env.cassandra_installed_dir = os.path.join(env.root, "cassandra_latest") env.cassandra_bin = os.path.join(env.cassandra_installed_dir, "bin") env.restart = os.path.join(env.cassandra_bin, "restart.sh") env.nodetool = os.path.join(env.cassandra_bin, "nodetool") env.logs_dir = os.path.join(env.cassandra_dir, "logs") env.conf_dir = os.path.join(env.cassandra_installed_dir, "conf") env.cassandra_tar = "s3://br-resources/cassandra/apache-cassandra-2.0.4-SNAPSHOT-20140620-bin.tar.gz" env.cassandra_local_tar = "apache-cassandra-2.0.4-SNAPSHOT-20140117-bin.tar.gz" env.cassandra_ver = "apache-cassandra-2.0.4-SNAPSHOT" BR_TOP = "$dist/../../../.." env.bstore_tools = "$BR_TOP/work/src/bstore/tools" env.bstore_scripts = os.path.join(env.bstore_tools, "scripts") env.src_topology = "conf/prod-cassandra-topology.properties" azs = { 'us-east-1' : ['us-east-1c', 'us-east-1d', 'us-east-1e'], 'us-west-1' : ['us-west-1a', 'us-west-1b', 'us-west-1c'] } datacenter_ganglia_ports = { 'bstore_staging' : '8662', 'bstore_stagingfrontend' : '8663', 'pagedb-backend' : '8664', 'pagedb-frontend' : '8665', 'userdb-stagingfrontend' : '8666', 'userdb-stagingbackend' : '8666', 'userdb-frontend' : '8667', 'userdb-backend' : '8667' } @task def realm(deploy_realm): """ Set the realm for deployment """ assert deploy_realm env.deploy_realm = deploy_realm @task def role(deploy_role, regions=None, zones=None, instances=None): """ Set the role for deployment. Must be non empty """ assert deploy_role env.deploy_role = deploy_role # This allows fabric to generate hostlist from role env.roledefs[deploy_role] = deployments._get_hosts(deploy_role) env.roles = [deploy_role] env.deploy_regions = regions env.deploy_zones = zones env.deploy_instances = instances @task def project(deploy_project): """ Set the project used for deployment """ assert deploy_project env.deploy_project = deploy_project @task def region(deploy_region): """ Set the region used for deployment """ assert deploy_region env.deploy_region = deploy_region @task def push_s3cfg(): """ Push local s3cfg file to remote host """ env.user = "ubuntu" deployments._push_s3cfg() @task def deploy_s3cmd(): """ Install s3cmd and push s3cfg config to local host """ deployments._bootstrap_s3cmd() @task def deploy_dist(): """ Push backend dist """ deployments._deploy_dist() @task def deploy_scripts(): """ Push production scripts """ deployments._deploy_scripts() @task def deploy_monitor(): """ Deploy monitoring """ _deploy_monitor() @task def enable_root_login(): """ Copy ssh authorized_keys to enable root login """ deployments._enable_root_login() def _deploy_monitor(): """ Deploy monitoring """ deployments._deploy_munin() deployments._rsync("../../scripts/ops-tools/monitoring/nrpe-ub.cfg", "/tmp") deployments._rsync("../../scripts/ops-tools/monitoring/server-configs/nagios-plugins/lib/", "/tmp/nagios_plugins") deployments._rsync("../../scripts/ops-tools/monitoring/server-configs/nagios-plugins/config/", "/tmp/nagios_config") deployments._install_nagios() @task def push_topology_file(src_topology=env.src_topology): """ Push topology file to nodes. $ fab -H ip1,ip2,ip3,ip4,ip5 push_topology_file It can be combined with print_hosts command, for example $ fab -P print_hosts:datacenter=bstore_staging push_topology_file """ sudo("chown -R ubuntu:ubuntu %(root)s" % env) run("mkdir -p %(tmp_dir)s" % env) run("cp %(conf_dir)s/cassandra-topology.properties %(tmp_dir)s" % env) deployments._rsync(src_topology, "%(conf_dir)s/cassandra-topology.properties" % env) @task def push_tools(): """ Push customed tools to cassandra_bin. """ sudo("chown -R ubuntu:ubuntu %(root)s" % env) run("mkdir -p %(tmp_dir)s" % env) assert exists(env.cassandra_bin), "Cannot find cassandra bin folder!" deployments._rsync(env.bstore_scripts, env.tmp_dir) sudo("chmod 755 %(tmp_dir)s/scripts/*" % env) run("mv %(tmp_dir)s/scripts/* %(cassandra_bin)s" % env) @task def create_placement_group(name, region="us-east-1"): """ Create placement group, for example $ fab create_placement_group:name='prod.bstore.backend.us-east' """ deployments._create_placement_group(name=name, region=region) print yellow("Placement group '%s' created in region %s." % (name, region)) @task def launch_cassandra_node(deploy_name, region = "us-east-1", az = "us-east-1c", project = "bloomstore", roleval = "backend", placement_group = None, security_group="BloomStore"): """ Launch new instance and deploy queryserver """ assert deploy_name if region == None: if hasattr(env, 'deploy_region') and env.deploy_region != None: region = env.deploy_region else: region = "us-east-1" roleval = "" if hasattr(env, 'deploy_role') and env.deploy_role != None: roleval == env.deploy_role tags = { "Name" : deploy_name, "Project" : project, "Role" : roleval } try: instance = deployments._launch_ec2_server(region=region, az=az, instance_type="i2.xlarge", tags=tags, security_groups=[security_group], ami="ami-dc0625b4", placement_group=placement_group) except: time.sleep(10) instance = deployments._launch_ec2_server(region=region, az=az, instance_type="i2.xlarge", tags=tags, security_groups=[security_group], ami="ami-dc0625b4", placement_group=placement_group) return instance @task def launch_and_add_cassandra_node(datacenter, deploy_name, seed=None, region="us-east-1", az="us-east-1c", project="bloomstore", roleval="backend", placement_group=None, maintenance_time=(0,0)): """ Launch new instance and add node to cassandra cluster """ instance = launch_cassandra_node(deploy_name = deploy_name, region = region, az = az, project = project, roleval = roleval, placement_group = placement_group) print yellow("Waiting to connect to instance "), instance.public_dns_name if seed == None: seed = instance.private_ip_address print yellow("Launching cassandra node with seed "), seed wait_for_node(instance.public_dns_name) try: with settings(host_string=instance.public_dns_name, user="ubuntu"): add_cassandra_node(datacenter, seed, project, roleval, maintenance_time) except SystemExit: # Retry in case of error print red("There was an error in deploying cassandra node. Retrying...") time.sleep(120) with settings(host_string=instance.public_dns_name, user="ubuntu"): add_cassandra_node(datacenter, seed, project, roleval, maintenance_time) pass @task def launch_cassandra_cluster(datacenter, num_hosts, region="us-east-1", num_azs = 1, initial_seeds="", realm="test", project = "bloomstore", roleval = "backend", security_group="BloomStore"): """ Launch a new cassandra cluster with given nodes """ # Adjust topology file according to different realm. if realm != 'prod': env.src_topology = 'conf/%s-cassandra-topology.properties' % (realm,) instances = [] seeds = initial_seeds.strip().split() j = int(num_hosts)/int(num_azs) print j print ",".join(seeds) print len(seeds) with open(env.src_topology, "a") as f: for i in range(0, int(num_hosts)): az_id = i / j index = i % j az = azs[region][int(az_id)] placement_group = '{0}.{1}.{2}.{3}.{4}'.format(realm, az, project, roleval, datacenter) create_placement_group(placement_group, region) name = '{0}.{1}.{2}.cassandra.{3}.bloomreach.com'.format(index,az,realm, datacenter) print yellow("Launching instance %s in zone %s" %(name, az)) instance = launch_cassandra_node(name, region, az, project, roleval, placement_group, security_group) instances.append(instance) if len(seeds) == 0 and i == 0: seeds.append(instance.private_ip_address) print green("Successfully launched instance %s" %name ) line = '{0}={1}:{2}\n'.format(instance.private_ip_address,datacenter,az) f.write(line) env.hosts = [instance.public_dns_name for instance in instances] execute("initialize_cassandra_cluster", datacenter, ' '.join(seeds), project, roleval) def _get_evenly_distributed_maintence_hours(hosts, this_host): """ Get evenly distributed maintenance hours. For example, if we have 3 nodes, then their maintenance hour should be (sun, 0:00), (tue, 8:00), and (thu, 16:00) :rtype tuple :return (week, hour) """ DAY_HOURS = 24 WEEK_HOURS = 7 * DAY_HOURS index = hosts.index(this_host) cron_job_time = (index * WEEK_HOURS / len(hosts)) week = cron_job_time / DAY_HOURS hour = cron_job_time % DAY_HOURS return week, hour @task @parallel def initialize_cassandra_cluster(datacenter, seeds, project, roleval): wait_for_node(env.host) seed=seeds.split(" ") seed_list=",".join(seed) print yellow("seed list:" + seed_list) # equally distributing the maintenance hours maintenance_time = _get_evenly_distributed_maintence_hours(env.hosts, env.host_string) print yellow("maintenance time: %d, %d" % maintenance_time) try: with settings(user="ubuntu"): add_cassandra_node(datacenter, seed_list, project, roleval, maintenance_time) except Exception, e: # Retry in case of error print red("There was an error in deploying cassandra node. Retrying..." + repr(e)) traceback.print_exc() time.sleep(120) with settings(user="ubuntu"): add_cassandra_node(datacenter, seed_list, project, roleval, maintenance_time) @task def push_cassandra_config(pagedb_hosts, seed, project, roleval): """ Generates yaml configuration and pushes to each node. Assumes cassandra is already installed on each node """ hosts = pagedb_hosts.split(";") i = 0 num = len(hosts) print hosts, num for host in hosts: # token range for Murmur3Partitioner is [-2**63, 2**63-1] # token = (i * (2**64) / num) - (2**63) # i = i + 1 with settings(host_string=host, user="ubuntu"): with settings(warn_only=True): r = deployments.pkill('CassandraDaemon',30) if r != 0: raise Exception("could not kill existing CassandraDaemon") _push_cassandra_config(seed, project, roleval) _start_cassandra() print green("Waiting 2 min after starting cassandra node %s" % str(host)) time.sleep(120) pass @task def add_cassandra_node(datacenter, seed, project, roleval='backend', maintenance_time=(0,0)): """ Add new node to existing cassandra cluster """ _bootstrap_basic() _setup_filesystem("/dev/xvdb") push_s3cfg() _install_java7() _install_cassandra() _modify_ulimit() _set_swap() _push_restart_script() push_tools() _setup_cassandra(datacenter, seed, project, roleval) _start_cassandra() _setup_maintenace_cronjobs(*maintenance_time) with settings(warn_only=True): _deploy_monitor() def _bootstrap_basic(): """ Perform basic operations on the AMI (e.g. import security keys, configure timezone) """ # https://forums.aws.amazon.com/thread.jspa?messageID=341020 sudo("gpg --keyserver keyserver.ubuntu.com --recv-key 40976EAF437D05B5") sudo("gpg -a --export 40976EAF437D05B5 | apt-key add -") sudo("apt-get update") # fix timezone sudo("echo UTC | tee /etc/timezone") sudo("dpkg-reconfigure --frontend noninteractive tzdata") sudo("apt-get install -y --force-yes ntp cronolog dstat htop unzip nmap apache2-utils siege logtail s3cmd") sudo("apt-get install -y --force-yes python-pip libxml2-dev libxslt-dev python-dev python-protobuf") sudo("pip install simplejson pycassa lxml cssselect beautifulsoup4 fabric boto pytz") def _install_java7(): """ Install Orcale JDK 7 and set it as default http://www.webupd8.org/2012/01/install-oracle-java-jdk-7-in-ubuntu-via.html """ print yellow("Installing java 7 ...") sudo("add-apt-repository ppa:webupd8team/java -y") sudo("apt-get update") sudo("echo oracle-java7-installer shared/accepted-oracle-license-v1-1 select true | /usr/bin/debconf-set-selections") sudo("apt-get install oracle-java7-installer -y --force-yes") sudo("apt-get install oracle-java7-set-default -y --force-yes") def _setup_filesystem(*drives): fsDrive = "/dev/md0" if len(drives) > 1: """ Multiple drives available, we should setup a raid0 config for this case """ sudo("apt-get install mdadm --no-install-recommends") for drive in drives: with settings(warn_only=True): sudo("umount %s " % drive) sudo("""echo -e "n\np\n1\n \n \nt\nfd\nw" | fdisk %s""" % drive) # remove the drive from /etc/fstab # we have to escape / in drive, driveEscaped = drive.replace("/","\/"); sudo("sed -i \'/%s/d\' /etc/fstab" % driveEscaped) pass sudo("/usr/bin/yes | mdadm --create --verbose --auto=yes %s --level=0 --raid-devices=%d %s" % (fsDrive, len(drives), " ".join(drives) )) sudo("echo DEVICE %s | tee /etc/mdadm/mdadm.conf" % " ".join(drives)) sudo("mdadm --detail --scan | tee -a /etc/mdadm/mdadm.conf") else: fsDrive=drives[0] sudo("mke2fs -t ext4 %s" %fsDrive) sudo("""echo "%s /mnt ext4 defaults,nobootwait,noatime 0 2" | tee -a /etc/fstab""" %fsDrive) sudo("update-initramfs -u") sudo("mount %s /mnt" %fsDrive) sudo("chown -R ubuntu:ubuntu /mnt") def _install_cassandra(): with cd("%(root)s" % env): run("s3cmd get --force %(cassandra_tar)s" % env) run("tar xvzf %(cassandra_local_tar)s; rm %(cassandra_local_tar)s" % env) run("ln -s %(cassandra_ver)s cassandra_latest" % env) run("mkdir -p %(cassandra_dir)s" % env) def _setup_maintenace_cronjobs(week=0, hour=0): assert hour < 24 assert week < 7 # 0: sunday, 1: monday, ..., 6: saturday bindings = dict(env) bindings['hour'] = hour bindings['week'] = week run('crontab -l | { cat; echo "0 %(hour)d * * %(week)d %(nodetool)s repair"; } | crontab -' % bindings) def _set_swap(): sudo("dd if=/dev/zero of=/mnt/swap bs=1M count=12288") sudo("chmod 600 /mnt/swap") sudo("mkswap /mnt/swap") sudo("swapon /mnt/swap") def _modify_ulimit(): sudo("""echo "* soft nofile 200000" | sudo tee -a /etc/security/limits.conf""") sudo("""echo "* hard nofile 200000" | sudo tee -a /etc/security/limits.conf""") sudo("""echo "root soft nofile 200000" | sudo tee -a /etc/security/limits.conf""") sudo("""echo "root hard nofile 200000" | sudo tee -a /etc/security/limits.conf""") sudo("""echo "* soft memlock 4194304" |sudo tee -a /etc/security/limits.conf""") sudo("""echo "* hard memlock 4194304" |sudo tee -a /etc/security/limits.conf""") sudo("""echo "root soft memlock 4194304" |sudo tee -a /etc/security/limits.conf""") sudo("""echo "root hard memlock 4194304" |sudo tee -a /etc/security/limits.conf""") sudo("""echo "* soft as unlimited" |sudo tee -a /etc/security/limits.conf""") sudo("""echo "* hard as unlimited " |sudo tee -a /etc/security/limits.conf""") sudo("""echo "root soft as unlimited" |sudo tee -a /etc/security/limits.conf""") sudo("""echo "root hard as unlimited " |sudo tee -a /etc/security/limits.conf""") sudo("sysctl -w vm.max_map_count=131072") def _generate_cassandra_yaml(seed, project, roleval): local_ip_addr = run("curl 169.254.169.254/latest/meta-data/local-ipv4") local_ip = str(local_ip_addr) public_ip_addr = run("curl 169.254.169.254/latest/meta-data/public-ipv4") public_ip = str(public_ip_addr) template = yaml.safe_load(open("conf/"+project+"_"+roleval+".yaml", "r")) template["listen_address"] = local_ip template["broadcast_address"] = local_ip if seed != None: template["seed_provider"][0]["parameters"][0]["seeds"] = seed template["num_tokens"] = 32 template["endpoint_snitch"] = "PropertyFileSnitch" _, f = tempfile.mkstemp(prefix="cassandra-"+ local_ip +"-", suffix=".yaml") with open(f, "w") as fd: yaml.safe_dump(template, fd, default_flow_style=False) print "yaml file:", f return f def _push_cassandra_config(seed, project, roleval, installed_dir=env.cassandra_installed_dir): """ Initialize and push cassandra config for node """ deployments._rsync("conf/cassandra-env.sh", "%s/conf/cassandra-env.sh" % installed_dir) f = _generate_cassandra_yaml(seed, project, roleval) print "yaml file:", f put(f, "%s/conf/cassandra.yaml" % installed_dir) deployments._rsync("conf/log4j-server.properties", "%s/conf/log4j-server.properties" % installed_dir) deployments._rsync(env.src_topology, "%s/conf/cassandra-topology.properties" % installed_dir) def _push_restart_script(): """ Push the restart script to the cassandra node at /mnt location """ deployments._rsync("./restart.sh", "/mnt/cassandra_latest/bin/") deployments._rsync("./stop.sh", "/mnt/cassandra_latest/bin/") @task def start_cassandra(host, user='ubuntu'): with settings(host_string=host, user=user): _start_cassandra() def _start_cassandra(): with settings(warn_only=True): r = deployments.pkill('CassandraDaemon', 30) if r != 0: raise Exception("could not kill existing CassandraDaemon") run("nohup /mnt/cassandra_latest/bin/cassandra > /dev/null &", pty=False) @task def print_hosts(datacenter, realm='*', region="us-east-1", instance_type='*', private_ip=False, verbose=False): """ print all ips given realm and datacenter. """ hosts = deployments._get_relevant_hosts(datacenter, realm, region, instance_type, private_ip, verbose) print green(",".join(hosts)) env.hosts = hosts @task @runs_once def cssh(): """ Should be concatenated with print_hosts $ fab print_hosts:datacenter=pagedb-frontend,instance_type='i2.xlarge' cssh """ hosts = ' '.join(env.hosts) with settings(warn_only=True): if local('cssh --username ubuntu %s' % hosts).failed: local('csshx --login ubuntu %s' % hosts) def _setup_cassandra(datacenter, seed, project, roleval, installed_dir=env.cassandra_installed_dir): # push cassandra related configs _push_cassandra_config(seed, project, roleval, installed_dir) # setup ganglia setup_ganglia(datacenter, installed_dir) def _deploy_cassandra_build(bin, cassandra_local_tar, cassandra_version, datacenter, realm='*', region="us-east-1", seeds='', verbose=False, project = "bloomstore", roleval = "backend"): """ Deploy the customed built cassandra binary to a temp folder. """ sudo("chown -R ubuntu:ubuntu %(root)s" % env) tmp_folder = env.tmp_dir run("mkdir -p %(tmp_folder)s" % locals()) print green("Downloading the build %(bin)s..." % locals()) run("s3cmd get --force %(bin)s %(tmp_folder)s/%(cassandra_local_tar)s" % locals(), quiet=True) run("tar xvzf %(tmp_folder)s/%(cassandra_local_tar)s -C %(tmp_folder)s; rm %(tmp_folder)s/%(cassandra_local_tar)s" % locals(), quiet=True) deployments._rsync("conf/cassandra-env.sh", "%(tmp_folder)s/%(cassandra_version)s/conf/cassandra-env.sh" % locals()) # if the client does not specify the seeds, it will try to figure it out from datacenter and realm if not seeds: seeds = ','.join(deployments._get_relevant_hosts(datacenter=datacenter, realm=realm, region=region, private_ip=True)) print green("Seeds: " + seeds) installed_dir = "%(tmp_folder)s/%(cassandra_version)s" % locals() _setup_cassandra(datacenter, seeds, project, roleval, installed_dir) return installed_dir def _start_cassandra_process(): """ Restarting the node """ print green("Restarting CassandraDaemon") run(env.restart, pty=False) def _switch_cassandra_running_build(casssandra_target_running_build): """ 'Hot switch' the cassandra running build with a replaced build. Steps: 1. Terminate CassandraDaemon 2. Relink cassandra_latest to deployed build 3. Restart CassandraDaemon """ print yellow("Switching to build: " + casssandra_target_running_build) print green("Terminating CassandraDaemon") r = deployments.pkill('CassandraDaemon', 30, wait_secs=30) if r != 0: raise Exception("could not kill existing CassandraDaemon") with cd("%(root)s" % env): run("unlink cassandra_latest") run("ln -s %(casssandra_target_running_build)s cassandra_latest" % locals()) run("mkdir -p %(cassandra_dir)s" % env) _start_cassandra_process() def _wait_until_cassandra_is_up(host, timeout=180): """ Use telnet localhost 9160 to see if CassandraDaemon is up and running. """ print green("Waiting for CassandraDaemon at %(host)s to be up" % locals()) timeout = int(timeout) while run("exec 6<>/dev/tcp/localhost/9160", warn_only=True, quiet=True).failed: # sleep for a while and try again. run("sleep 1", quiet=True) timeout -= 1 sys.stdout.write('.') sys.stdout.flush() if timeout <= 0: print red("\nWARNING: CassandraDaemon at %(host)s is not restarted, please fix it ASAP" % locals()) raise fabric.exceptions.CommandTimeout("CassandraDaemon at %(host)s is not restarted, please fix it ASAP" % locals()) print green("\nCassandraDaemon at %(host)s is UP." % locals()) def _move_deployed_build_to_root(deployed_build_folder): """ Move deployed build folder to root aka /mnt """ basename = os.path.basename(deployed_build_folder) root = env.root today = time.strftime('%Y%m%dZ%H%M') casssandra_build_destination = "%(root)s/%(basename)s-d%(today)s" % locals() run("mv %(deployed_build_folder)s %(casssandra_build_destination)s" % locals()) return casssandra_build_destination @task def stop_cassandra_process(): """ Stop the protocol listeners for gossip, thrift and binary Stop any compaction and index building Stop backups Now drain Should be safe to kill now Kill the process of CassandraDaemon assuming there is the process """ run("%(nodetool)s disablebinary" % env) run("%(nodetool)s disablethrift" % env) run("%(nodetool)s disablegossip" % env) run("%(nodetool)s disablebackup" % env) run("%(nodetool)s stop compaction" % env) run("%(nodetool)s stop index_build" % env) run("%(nodetool)s drain" % env) r = deployments.pkill('CassandraDaemon', 30, wait_secs=30) if r != 0: raise Exception("could not kill existing CassandraDaemon") @task def start_cassandra_process(): """ Start cassandra process and wait until the server is up and running assuming there is no cassandra process running """ _start_cassandra_process() _wait_until_cassandra_is_up(host=env.host) @task def restart_cassandra_process(): """ Restart cassandra process, esp useful when combined with print_hosts. Example: # Do a rolling restart for frontend cluster $ fab print_hosts:datacenter=pagedb-frontend restart_cassandra_process """ stop_cassandra_process() start_cassandra_process() @task def wait_until_cassandra_is_up(timeout=180): """ Wait for CassandraDaemon to be up and running. """ _wait_until_cassandra_is_up(host=env.host, timeout=timeout) @task def switch_cassandra_running_build(casssandra_target_running_build='/mnt/apache-cassandra-2.0.1'): """ This command will terminate CassandraDaemon, relink cassandra_latest, and restart cassandra """ _switch_cassandra_running_build(casssandra_target_running_build) _wait_until_cassandra_is_up(host=env.host) @task def recover_bad_node(force=False): """ Recover the bad node assuming it is in a bad state. """ if not force and not run("exec 6<>/dev/tcp/localhost/9160", warn_only=True, quiet=True).failed: print green("Your cassandra process is fine, we don't need to recover it.") return # If it is in a bad state, restart it. stop_cassandra_process() start_cassandra_process() @task def deploy_cassandra_build(bin, datacenter, realm='*', region="us-east-1", seeds='', timeout=300, verbose=False, project = "bloomstore", roleval = "backend"): """ Deploy the cassandra customed build binary to one node. """ cassandra_local_tar = os.path.basename(bin) cassandra_version = '-'.join(cassandra_local_tar.split('-')[:4]) if realm != 'prod': env.src_topology = 'conf/%s-cassandra-topology.properties' % (realm,) cassandra_tmp_folder = _deploy_cassandra_build(bin, cassandra_local_tar, cassandra_version, datacenter, realm=realm, region=region, seeds=seeds, verbose=verbose, project = project, roleval = roleval) serving_folder = _move_deployed_build_to_root(cassandra_tmp_folder) _switch_cassandra_running_build(serving_folder) _wait_until_cassandra_is_up(env.host, timeout=timeout) @task def wait_for_node(host): while True: try: with settings(host_string=host, warn_only=True): print yellow("checking "+host+" ...") echo_command_output = run("echo check") if echo_command_output.find("check") >= 0: print green(host + " UP") return True except: print yellow(host + "...offline") time.sleep(1) @task def setup_ganglia(datacenter, installed_dir=env.cassandra_installed_dir): """ Install ganglia monitoring for Cassandra staging backend: port 8662 staging frontend: port 8663 prod backend: port 8664 prod frontend: port 8665 """ try: ganglia_port = datacenter_ganglia_ports[datacenter] except KeyError as err: print red("Cannot find matching ganglia port: {}".format(err)) return print yellow("Installing ganglia monitoring using port " + ganglia_port + "...") lib_dir = os.path.join(installed_dir, "lib") conf_dir = os.path.join(installed_dir, "conf") sudo("apt-get update") with settings(warn_only=True): sudo("apt-get install -y --force-yes ganglia-monitor") deployments._rsync("$BR_TOP/tools/3rd_party_libs/cassandra/jmxetric-1.0.4.jar", "%s/" % lib_dir) deployments._rsync("$BR_TOP/tools/3rd_party_libs/cassandra/gmetric4j-1.0.3.jar", "%s/" % lib_dir) deployments._rsync("$BR_TOP/tools/3rd_party_libs/cassandra/oncrpc-1.0.7.jar", "%s/" % lib_dir) deployments._rsync("conf/cassandra-env.sh", "%s/cassandra-env.sh" % env.tmp_dir) deployments._rsync("conf/jmxetric.xml", "%s/jmxetric.xml" % env.tmp_dir) deployments._rsync("conf/ganglia/gmond.conf", "%s/gmond.conf" % env.tmp_dir) deployments._rsync("conf/ganglia/conf.d/modpython.conf", "%s/modpython.conf" % env.tmp_dir) deployments._rsync("conf/ganglia/conf.d/simple_diskstats.conf", "%s/simple_diskstats.conf" % env.tmp_dir) deployments._rsync("conf/ganglia/python_modules/simple_diskstats.py", "%s/simple_diskstats.py" % env.tmp_dir) sudo("mv %s/cassandra-env.sh %s/cassandra-env.sh" % (env.tmp_dir, conf_dir)) sudo("mv %s/jmxetric.xml %s/jmxetric.xml" % (env.tmp_dir, conf_dir)) sudo("mv %s/gmond.conf /etc/ganglia/gmond.conf" % env.tmp_dir) sudo("mkdir -p /etc/ganglia/conf.d 1>/dev/null") sudo("mv %s/modpython.conf /etc/ganglia/conf.d/modpython.conf" % env.tmp_dir) sudo("mv %s/simple_diskstats.conf /etc/ganglia/conf.d/simple_diskstats.conf" % env.tmp_dir) sudo("mkdir -p /usr/lib/ganglia/python_modules 1>/dev/null") sudo("mv %s/simple_diskstats.py /usr/lib/ganglia/python_modules/simple_diskstats.py" % env.tmp_dir) sudo("sed -i -e s/'<SEND_PORT>'/" + ganglia_port + "/g %s/cassandra-env.sh" % conf_dir) sudo("sed -i -e s/'<SEND_PORT>'/" + ganglia_port + "/g %s/jmxetric.xml" % conf_dir) sudo("sed -i -e s/'<SEND_PORT>'/" + ganglia_port + "/g /etc/ganglia/gmond.conf") sudo("sed -i -e s/'<HOST_LOCATION>'/" + env.host + "/g /etc/ganglia/gmond.conf") sudo("sudo /etc/init.d/ganglia-monitor restart") @task def launch_ratelimiter_node(deploy_name, region = "us-east-1", az = "us-east-1c", project = "bloomstore", roleval = "backend"): """ Launch new rate limiter node. """ assert deploy_name tags = { "Name" : deploy_name, "Project" : project, "Role" : roleval } try: instance = deployments._launch_ec2_server(region=region, az=az, instance_type="c3.large", tags=tags, security_groups=["BloomStore"], key_name = "gsg-keypair", ami="ami-dc0625b4") except: time.sleep(10) instance = deployments._launch_ec2_server(region=region, az=az, instance_type="c3.large", tags=tags, security_groups=["BloomStore"], key_name = "gsg-keypair", ami="ami-dc0625b4") env.hosts = [instance.public_dns_name] return instance @task def setup_ratelimiter(): ''' Setup the machine of rate limiter. ''' sudo('apt-get update') run('s3cmd get -f s3://br-software/redis-2.6.17.tar.gz') run('tar xvfz redis-2.6.17.tar.gz') sudo('apt-get -y --force-yes install python-software-properties') sudo('add-apt-repository ppa:chris-lea/node.js -y') sudo('apt-get update') sudo('apt-get -y --force-yes install make') sudo('apt-get -y --force-yes install nginx') sudo('apt-get -y --force-yes install nodejs') sudo('cd redis-2.6.17 && make') sudo('npm install redis --global') sudo('npm install forever --global') sudo('npm install socket.io --global') sudo("""echo "* soft nofile 200000" | sudo tee -a /etc/security/limits.conf""") sudo("""echo "* hard nofile 200000" | sudo tee -a /etc/security/limits.conf""") # setup PATH run("echo PATH=$PATH:/home/ubuntu/redis-2.6.17/src >> ~/.bashrc") # setup folders sudo('chown ubuntu:ubuntu /mnt') #run('mkdir -p /mnt/node') run('mkdir -p /mnt/logs') run('mkdir -p /mnt/logs/redis') run('mkdir -p /mnt/redis') # setup redis put('ratelimiter/*', '/mnt/') run('ln -s /mnt/bps-rate-limiter /mnt/node') run('mkdir -p /mnt/node/logs') run('mv /mnt/redis.conf /home/ubuntu/redis-2.6.17/redis.conf') run('/home/ubuntu/redis-2.6.17/src/redis-server /home/ubuntu/redis-2.6.17/redis.conf') with cd("/mnt/node"): sudo('npm install connect') sudo('npm install connect-route') sudo('npm install ejs') sudo('npm install express') sudo('chmod +x /mnt/node/*') run('/mnt/node/init_redis') run('/mnt/node/restore_redis') run('/mnt/node/reset_node') # setup app.js run("""echo '''#!/bin/sh -e set -e DAEMON=/mnt/node/app.js FOREVER_LOG=/mnt/node/logs/forever.log STDOUT_LOG=/mnt/node/logs/stdout.log STDERR_LOG=/mnt/node/logs/stderr.log DEFAULT_PORT=8080 case "$1" in start) forever -l $FOREVER_LOG -o $STDOUT_LOG -e $STDERR_LOG -a start $DAEMON $DEFAULT_PORT;; stop) forever stop $DAEMON ;; force-reload|restart) forever restart $DAEMON ;; *) echo "Usage: /etc/init.d/node {start|stop|restart|force-reload}" exit 1 ;; esac exit 0''' > ~/node""") sudo('chown root:root ~/node') sudo('mv ~/node /etc/init.d/node') sudo('chmod 755 /etc/init.d/node') sudo('/etc/init.d/node start') # setup nginx run("""echo '''upstream nodes { server localhost:8080; server localhost:8081; } server { listen 80; server_name ratelimiter.bloomreach.com; root /mnt/node/public; location / { proxy_pass http://nodes; proxy_redirect off; proxy_set_header Host $host; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; } }''' > ~/node.conf""") sudo('chown root:root ~/node.conf') sudo('mv ~/node.conf /etc/nginx/sites-available/') sudo('rm /etc/nginx/sites-enabled/default') sudo('ln -s /etc/nginx/sites-available/node.conf /etc/nginx/sites-enabled/default') sudo('service nginx restart')
# -*- coding: utf-8 -*- """ 数据库相关函数 """ import pickle import sqlite3 from gensim.models import KeyedVectors from .log import get_logger class Word2VecDb: def __init__(self, db_path): print("Use: `{}`".format(db_path)) self.db = sqlite3.connect(db_path) self.cur = self.db.cursor() def get_vec(self, key): """ 获取key对应的向量 Args: key -- 词汇,如"我" Returns: vector -- 如果key存在,则返回对应的向量numpy.array(dim), 否则返回None """ self.cur.execute("SELECT * FROM `model` WHERE `word`=?", (key, )) result = self.cur.fetchone() if result: return pickle.loads(result[1]) else: return None def get_vec_batch(self, keys): """ 获取key对应的向量 Args: keys -- 词汇列表,如["我", "来自", "广州"] Returns: vector list -- 如果keys存在,则返回对应的向量列表[numpy.array(dim),...], 否则返回None """ try: if keys: self.cur.execute("SELECT * FROM `model` WHERE `word` IN ({})".\ format("'" + "','".join([k.replace("'", "''") for k in keys]) + "'")) res = [pickle.loads(d[1]) for d in self.cur.fetchall()] res = res if res else None else: res = None except Exception as er: print("Error: {}".format(er)) res = None return res def insert_vec(self, key, val): try: self.cur.execute("INSERT INTO `model` VALUES (?, ?)", (key, pickle.dumps(val))) self.db.commit() except Exception as er: print("Key: `{}`, Value: `{}`\nError: {}!".format(key, val, er)) def insert_vec_batch(self, table_name, iter_obj, batch): """ Args: table_name -- 数据表名 iter_obj -- 数据对象,格式:[(?, ?, ..., ?), (), ..., ()] batch -- 每批数量 """ each_len = len(iter_obj[0]) place_holder = ", ".join(["?"] * each_len) sql_text = "INSERT INTO %s VALUES (%s)" % (table_name, place_holder) for i in range(0, len(iter_obj), batch): try: print("==>>[{},{})".format(i, i + batch)) self.cur.executemany(sql_text, iter_obj[i : i + batch]) self.db.commit() except Exception as er: print("[{},{})\nError: {}!".format(i, i + batch, er)) def create(self): sql = """ CREATE TABLE IF NOT EXISTS `model` ( `word` VARCHAR(128) NOT NULL, `value` BLOB NOT NULL, PRIMARY KEY (`word`) ) """ self.cur.execute(sql) self.db.commit() def drop(self): sql = "DROP TABLE IF EXISTS `model`;" self.cur.execute(sql) self.db.commit() def get_size(self): self.cur.execute("SELECT COUNT(*) FROM `model`;") return self.cur.fetchone() def destroy(self): self.cur.close() self.db.close() def vec_to_db(vec_path, db_path, binary=True, table_name="model", batch=10000): logger = get_logger(name="vec2db_log", level="debug") logger.info("====[init sqlite]====") db = Word2VecDb(db_path=vec_path) db.drop() db.create() logger.info("====[load vector]====") model = KeyedVectors.load_word2vec_format(vec_path, binary=binary) logger.info("====[insert to the db]====") iter_obj = [(w, pickle.dumps(model[w])) for w in model.vocab] del model db.insert_vec_batch(table_name, iter_obj, batch=batch) db.destroy() logger.info("====[update `%s`]====" % db_path)
def initialise_rankings(input_text): """ Initialises the rankings with each player and a score of 0 :param input_text: A multi-line string containing player names :return: A multi-line string containing all rankings """ player_list = input_text.split('\n') # delete last empty line del player_list[-1] output_text = '' for player in player_list: output_text += f'{player}\t0\n' return output_text def update_score(score_text, who_won): """ Update the score based on who won :param score_text: the text of the current score :param who_won: a String of who won this round :return: output_text for the score """ red, black, score_list = get_players_and_score(score_text) # Add scores based on Crokinole rules if who_won == 'RED': score_list[0] = score_list[0] + 2 elif who_won == 'DRAW': score_list[0] = score_list[0] + 1 score_list[1] = score_list[1] + 1 elif who_won == 'BLACK': score_list[1] = score_list[1] + 2 # Format the text to original layout output_text = f'Red - Black\n{red} - {black}\n{score_list[0]} - {score_list[1]}' return output_text def update_rankings(rankings_text, score_text): """ Update the rankings based on the score :param rankings_text: multiline string to update :param score_text: multiline string to get score from :return: new updated rankings_text """ rankings_list = rankings_text.split('\n') red, black, score_list = get_players_and_score(score_text) if score_list[0] > score_list[1]: _update_rankings_list(rankings_list, red) elif score_list[0] < score_list[1]: _update_rankings_list(rankings_list, black) output_text = '' for ranking in rankings_list: output_text += f'{ranking}\n' return output_text def get_players_and_score(score_text): """ Get the players and the score from the score_text :param score_text: multiline string :return: red player name, black player name, score list """ # Red player red = score_text.split('\n')[1].split(' - ')[0] # Black player black = score_text.split('\n')[1].split(' - ')[1] # Get scores red - black score_list = score_text.split('\n')[2].split(' - ') # Convert to int score_list = list(map(int, score_list)) return red, black, score_list def _update_rankings_list(rankings_list, winner): """ Update the rankings list with new score :param rankings_list: list of rankings :param winner: player to update score to """ counter = 0 for ranking in rankings_list: if winner in ranking: player = ranking.split('\t')[0] score = int(ranking.split('\t')[1]) ranking = f'{player}\t{score + 1}' rankings_list[counter] = ranking counter += 1
# https://app.codesignal.com/arcade/intro/level-6/6cmcmszJQr6GQzRwW def evenDigitsOnly(n): # Return if all digits on a number are even. For this convert the # number into a string so its individual digits can be itere return all([int(digit) % 2 == 0 for digit in str(n)])
from codecs import decode from os import link from pathlib import Path from subprocess import Popen, PIPE, STDOUT, call def __base_cond(path: Path): """ Base condition for all link operations. :param path: the base file/dir path :return: True if the base file/dir name passed the base condition check """ return path.name.lower() not in ( '.git', '.gitignore', '.gitkeep', '.directory', '.gitmodules', '.github', '.travis.yml' ) def shell_command(cmd: str, print_output=True): """ Run a shell command and prints its output to stdout :param cmd: the shell command :param print_output: if True this will print the output, if false this will yield the output """ process = Popen(cmd, stdout=PIPE, stderr=STDOUT, shell=True) lines = [] for line in process.stdout: res = decode(line) if print_output: print(res) else: lines.append(res) return lines def create_link(src: Path, dest: Path): """ Create a link from the src file to the dest directory :param src: the src file path :param dest: the dest dir path. """ if not dest.parent.is_dir(): dest.parent.mkdir(parents=True, exist_ok=True) assert src.is_file() assert dest.parent.is_dir() assert not dest.is_dir() if dest.exists(): dest.unlink() link(src.absolute(), dest.absolute()) dest.resolve() def __link_all(src: Path, dest: Path): """ Recursively link all files under a the root path to the dest path :param src: the source path :param dest: the dest path """ if __base_cond(src): if src.is_file(): print('Linking {} to {}'.format(src, dest)) create_link(src, dest) elif src.is_dir(): for sub in src.iterdir(): __link_all(src.joinpath(sub), dest.joinpath(sub.name)) def link_all(src: Path, dest: Path): """ Link all your dot files from source to dest :param src: the source path :param dest: the dest path """ __link_all(src, dest) print('Done!')
#!/usr/bin/env python3 """ Advent of Code 2015: Day # """ import os import hashlib SECRET_KEY = 'iwrupvqb' def make_byte_string(n): return "{}{}".format(SECRET_KEY, n).encode() def first_half(): """ first half solver: find MD5 hashes which, in hexadecimal, start with at least five zeroes. iwrupvqb followed by a number in decimal. To mine AdventCoins, you must find Santa the lowest positive number that produces such a hash. """ n = 1 while n: new_bytes = make_byte_string(n) hash_to_check = hashlib.md5(new_bytes).hexdigest() if hash_to_check[:5] == '00000': return n n += 1 def second_half(): """ second half solver: """ n = 346386 while n: new_bytes = make_byte_string(n) hash_to_check = hashlib.md5(new_bytes).hexdigest() if hash_to_check[:6] == '000000': return n n += 1 def app(): """ runs day application """ half_one = first_half() half_two = second_half() print(half_one, half_two) if __name__ == "__main__": """ MAIN APP """ app()
#desafio31. maneira 1. desenvolva um progama que pergunte a distancia de uma viagem em km. # calcule o preço da passagem cobrando R$0.50 por km para viagens de até 200 km e R$0.45 para viagens mais longas. entrada = float(input('Qual é a distancia da sua viagem? ')) if entrada >= 1 and entrada <= 200 : preco = entrada * 0.50 print('Você está prestes a começar uma viagem de {:.1f}Km.'.format(entrada)) print('e o preço de sua passagem será de R${:.2f}'.format(preco)) elif entrada > 200: preco = entrada * 0.45 print('Você está prestes a começar uma viagem de {:.1f}Km'.format(entrada)) print('E o preço de sua passagem será de R${:.2f}'.format(preco))
#!/usr/bin/env python3 import argparse import sys import contextlib import importlib def run(code, files=None, filter_=None, begin=None, end=None, imports=None): if files is None: files = [sys.stdin] if imports is not None: for imp in imports: locals()[imp] = importlib.import_module(imp) if begin is not None: exec(begin) if filter_ is not None: filter_ = compile(filter_, "<string>", "eval") code = f"({code},)[-1]" code = compile(code, "<string>", "eval") for file in files: for i, line in enumerate(file): line = line.rstrip("\n") x = l = line if filter_ is not None and not eval(filter_): continue res = eval(code) if res is not None: print(res) if end is not None: exec(end) def main(): parser = argparse.ArgumentParser(prog="pyl") parser.add_argument("-b", "-H", "--begin", help="code to run at the beginning") parser.add_argument("-e", "--end", help="code to run at the end") parser.add_argument("-f", "--filter", help="code to filter lines to run") parser.add_argument( "-i", "--import", dest="imports", help="modules to import before running code" ) parser.add_argument("code", nargs="?", help="code to run per line") parser.add_argument("files", nargs="*", default=["-"], help="list of files") args = parser.parse_args() if args.imports is None: imports = [] else: imports = [imp.strip() for imp in args.imports.split(",")] if args.code is None: if args.filter is not None: args.code = "l" else: parser.error("At least one of code or filter must be provided") with contextlib.ExitStack() as stack: files = [ stack.enter_context(open(file)) if file != "-" else sys.stdin for file in args.files ] run(args.code, files, args.filter, args.begin, args.end, imports) if __name__ == "__main__": main()
#!/usr/bin/python """ recall.py: version 0.1.0 History: 2017/06/19: Initial version converted to a class """ # import some useful function import numpy as np import random # Define a class that will handle remembering features and # steering angles to be learn by the model. class Recall: def __init__(self, maxmem=1000, width=320, height=160): # initialize the recall class with empty storage self.maxmem = maxmem self.X = [] self.y = [] self.width = width self.height = height self.input_size = width*height*3 # store additional information for later retrieval def remember(self, X, y): self.X.append(X) self.y.append(y) if len(self.X) > self.maxmem: self.X = self.X[1:] self.y = self.y[1:] # forget half (first half - FIFO) of what we collected def forget(self): self.X = self.X[len(self.X)//2:] self.y = self.y[len(self.y)//2:] # the batch generator used by the fit generator def batchgen(self, batch_size=1): while 1: i = int(random.random()*len(self.X)) image = self.X[i][None, :, :, :] y = np.array([self.y[i]]) yield image, y
import re import os import glob import json import hashlib import operator import itertools import subprocess from collections import defaultdict import tabulate import pydot import pysolr import markdown from bs4 import BeautifulSoup from flask import Flask, send_file, render_template, abort, url_for, request, send_from_directory app = Flask(__name__) base = '/IFC/RELEASE/IFC4x3/HTML' def make_url(fragment): return base + '/' + fragment entity_to_package = json.load(open("entity_to_package.json", encoding="utf-8")) entity_supertype = json.load(open("entity_supertype.json", encoding="utf-8")) concepts = json.load(open("concepts.json", encoding="utf-8")) navigation_entries = [ ("Cover", "Contents", "Foreword", "Introduction"), ("Scope", "Normative references", "Terms, definitions, and abbreviated terms", "Fundamental concepts and assumptions"), ("Core data schemas", "Shared element data schemas", "Domain specific data schemas", "Resource definition data schemas"), ("Computer interpretable listings", "Alphabetical listings", "Inheritance listings", "Diagrams"), ("Examples", "Change logs", "Bibliography", "Index") ] content_names = ['scope','normative_references','terms_and_definitions','concepts'] content_names_2 = ['cover','foreword','introduction','bibliography'] def to_dict(x): if isinstance(x, (list, tuple)): return type(x)(map(to_dict, x)) else: return {"title": x} def make_entries(x): md_root = "../docs/schemas" categories = [d for d in os.listdir(md_root) if os.path.isdir(os.path.join(md_root, d))] if isinstance(x, (list, tuple)): return type(x)(map(make_entries, x)) elif x['title'] == 'Alphabetical listings': url = make_url('listing') elif x['title'] == 'Contents': url = make_url('toc.html') elif type(x['number']) == int: if x['number'] >= 5: url = make_url('chapter-%d/' % x['number']) else: url = make_url('content/' + content_names[x['number'] - 1] + '.htm') elif x['number'] in {'A', 'C', 'D', 'E'}: url = make_url('annex-%s.html' % x['number'].lower()) elif x['title'].lower() in content_names_2: url = make_url('content/' + x['title'].lower() + '.htm') else: url = '#' return dict(**x, url=url) def make_counter(start=0): n = start def counter(): nonlocal n n += 1 if n > 14: return None if n > 8: return chr(ord('A') + n - 9) elif n >= 1: return n return counter section_counter = make_counter(-4) def number_entries(x): if isinstance(x, (list, tuple)) and set(map(type, x)) == {dict}: return type(x)(dict(**di, number=section_counter()) for i, di in enumerate(x)) else: return type(x)(map(number_entries, x)) navigation_entries = make_entries(number_entries(to_dict(navigation_entries))) def chapter_lookup(number=None, cat=None): def do_chapter_lookup(x): if isinstance(x, (list, tuple)): return next((v for v in map(do_chapter_lookup, x) if v is not None), None) if number is not None and x['number'] == number: return x if cat is not None and x['title'].split(" ")[0].lower() == cat: return x return do_chapter_lookup(navigation_entries) hierarchy = json.load(open("hierarchy.json")) entity_names = sorted(sum([schema.get('Entities', []) for _, cat in hierarchy for __, schema in cat], [])) type_names = sorted(sum([schema.get('Types', []) for _, cat in hierarchy for __, schema in cat], [])) name_to_number = {} for i, (cat, schemas) in enumerate(hierarchy, start=5): for j, (schema_name, members) in enumerate(schemas, start=1): for k, ke in enumerate(["Types", "Entities"], start=2): for l, name in enumerate(members.get(ke, ()), start=1): name_to_number[name] = ".".join(map(str, (i,j,k,l))) def generate_inheritance_graph(current_entity): i = current_entity g = pydot.Graph('dot_inheritance', graph_type='graph') di = { 'rankdir': 'BT', 'ranksep': 0.2 } for kv in di.items(): g.set(*kv) previous = None while i: n = pydot.Node(i) di = { 'color':'black', 'fillcolor':'grey43', 'fontcolor':'white', 'fontsize': '10', 'height':'0.2', 'shape':'rectangle', 'style':'filled', 'width':'3', } for kv in di.items(): n.set(*kv) g.add_node(n) if previous: g.add_edge(pydot.Edge(previous, n)) previous = n i = entity_supertype.get(i) return g.to_string() def get_node_colour(n): try: i = S.declaration_by_name(n) except: return 'gray' def is_relationship(n): while n: if n.name() == 'IfcRelationship': return True n = n.supertype() return 'yellow' if is_relationship(i) else 'dodgerblue' def transform_graph(current_entity, graph_data, only_urls=False): graphs = pydot.graph_from_dot_data(graph_data) graph = graphs[0] all_nodes = [] if len(graph.get_subgraphs()): for subgraph in graph.get_subgraphs(): for node in subgraph.get_nodes(): all_nodes.append(node) elif len(graph.get_nodes()): for node in graph.get_nodes(): all_nodes.append(node) for n in all_nodes: if not only_urls: n.set('fillcolor', get_node_colour(n.get_name())) if n.get_name() == current_entity: n.set('color', 'red') n.set('shape', 'box') n.set('style', 'filled') n.set('URL', url_for('resource', resource=n.get_name(), _external=True)) return graph.to_string() def process_graphviz(current_entity, md): def is_figure(s): if 'dot_figure' in s: return 1 elif 'dot_inheritance' in s: return 2 else: return 0 graphviz_code = filter(is_figure, re.findall('```(.*?)```', md, re.S)) for c in graphviz_code: hash = hashlib.sha256(c.encode('utf-8')).hexdigest() fn = os.path.join('svgs', current_entity + "_" + hash+'.dot') c2 = transform_graph(current_entity, c, only_urls=is_figure(c) == 2) with open(fn, "w") as f: f.write(c2) md = md.replace("```%s```" % c, '![](/svgs/%s_%s.svg)' % (current_entity, hash)) subprocess.call(["dot", "-O", "-Tsvg", fn]) return md """ @app.route('/svgs/<entity>/<hash>.svg') def get_svg(entity, hash): return send_from_directory('svgs', entity + "_" + hash + '.dot.svg'); """ @app.route(make_url('figures/<fig>')) def get_figure(fig): return send_from_directory('../docs/figures', fig) @app.route(make_url('lexical/<resource>.htm')) def resource(resource): try: idx = name_to_number[resource] except: abort(404) """ package = entity_to_package.get(resource) if not package: abort(404) """ md = None md_root = "../docs/schemas" # for category in os.listdir(md_root): # for module in os.listdir(os.path.join(md_root, category)): # if module == package: md = os.path.join("../docs/schemas", "*", "*", "*", resource + ".md") html = '' if glob.glob(md): md = glob.glob(md)[0] with open(md, 'r', encoding='utf-8') as f: mdc = f.read() if "Entities" in md: try: # @todo we still need to properly implement inheritance based on XMI mdc += '\n\n' + idx + '.2 Entity inheritance\n===========\n\n```' + generate_inheritance_graph(resource) + '```' except: pass html = markdown.markdown( process_graphviz(resource, mdc), extensions=['tables', 'fenced_code']) soup = BeautifulSoup(html) # First h1 is handled by the template try: soup.find('h1').decompose() except: # only entities have H1? pass hs = [] # Renumber the headings for i in list(range(7))[::-1]: for h in soup.findAll('h%d' % i): h.name = 'h%d' % (i + 2) hs.append(h) # Change svg img references to embedded svg # because otherwise URLS are not interactive for img in soup.findAll("img"): if img['src'].endswith('.svg'): print(img['src'].split('/')[-1].split('.')[0]) entity, hash = img['src'].split('/')[-1].split('.')[0].split('_') svg = BeautifulSoup(open(os.path.join('svgs', entity + "_" + hash + '.dot.svg'))) img.replaceWith(svg.find('svg')) else: img['src'] = img['src'][9:] html = str(soup) if "Entities" in md: ty = resource dicts = [] while ty is not None: dicts.append(concepts.get(ty, {})) ty = entity_supertype.get(ty) usage = {} # in reverse so that the most-specialized are retained for d in reversed(dicts): usage.update(d) if usage: html += "<h3>" + idx + ".3 Definitions applying to General Usage</h3>" for n, (concept, data) in enumerate(sorted(usage.items()), start=1): html += "<h4>" + idx + ".3.%d " % n + concept + "</h4>" html += data['definition'].replace("../../", "") keys = set() for d in dicts: keys |= d.get(concept, {}).get('parameters', {}).keys() params = defaultdict(list) for d in dicts: for k in keys: params[k] += d.get(concept, {}).get('parameters', {}).get(k, []) print(params) # transpose vals = list(map(list, itertools.zip_longest(*params.values()))) html += tabulate.tabulate(vals, headers=params.keys(), tablefmt='html') # html += "<pre>" + data['rules'] + "</pre>" return render_template('entity.html', navigation=navigation_entries, content=html, number=idx, entity=resource, path=md[3:]) @app.route(make_url('listing')) def listing(): items = [{'number': name_to_number[n], 'url': url_for('resource', resource=n), 'title': n} for n in sorted(entity_names + type_names)] return render_template('list.html', navigation=navigation_entries, items=items) @app.route(make_url('chapter-<n>/')) def chapter(n): try: n = int(n) except: pass md_root = "../docs/schemas" chp = chapter_lookup(number=n) t = chp.get('title') cat = t.split(" ")[0].lower() fn = os.path.join(md_root, cat, "README.md") if os.path.exists(fn): html = markdown.markdown(open(fn).read()) soup = BeautifulSoup(html) # First h1 is handled by the template soup.find('h1').decompose() html = str(soup) else: html = '' subs = [itms for t, itms in hierarchy if t == chp.get('title')][0] subs = list(map(operator.itemgetter(0), subs)) return render_template('chapter.html', navigation=navigation_entries, content=html, path=fn[3:], title=t, number=n, subs=subs) @app.route('/') @app.route(make_url('content/<s>.htm')) def content(s='cover'): fn = "../content" fn = os.path.join(fn, s + ".md") if not os.path.exists(fn): abort(404) try: i = content_names.index(s) number = i + 1 title = navigation_entries[1][i]['title'] except: try: i = content_names_2.index(s) number = "" title = s[0].upper() + s[1:] except: abort(404) html = markdown.markdown(open(fn).read()) return render_template('chapter.html', navigation=navigation_entries, content=html, path=fn[3:], title=title, number=number, subs=[]) @app.route(make_url('annex-a.html')) def annex_a(): url = "https://github.com/buildingSMART/IFC4.3.x-output/blob/master/IFC.exp" html = "<h2>Computer interpretable listings</h2>" + \ "<p>This annex contains a listing of the complete schema combining all definitions of clauses 5, 6, 7, and 8 without comments " + \ "or other explanatory text. These listings are available in computer-interpretable form that may be parsed by computer.</p>" + \ "<p>Official schema publications for this release are at the following URLs:</p>" + \ (tabulate.tabulate([["IFC EXPRESS long form schema", '%s']], headers=["Format", "URL"], tablefmt='html') % \ ("<a href='%(url)s'>%(url)s</a>" % locals())) return render_template('chapter.html', navigation=navigation_entries, content=html, path=None, title="Annex A", number="", subs=[]) @app.route(make_url('toc.html')) def toc(): subs = [(x['title'], []) for x in navigation_entries[1]] + hierarchy return render_template('chapter.html', navigation=navigation_entries, content='', path=None, title="Contents", number="", subs=subs, toc=True) @app.route(make_url('annex-c.html')) def annex_c(): html = "<h2>Inheritance listings</h2>" + \ "<p>This annex contains listings of entity definitions organized by inheritance.</p>" def transform(s): s = s.strip('\n') padding = s.count(' ') entity = "".join([c for c in s if c != ' ']) return '<tr><td>' + '&nbsp;' * padding * 4 + "<a href='" + url_for('resource', resource=entity) + "'>" + entity + "</a> </td><td>" + name_to_number[entity] + "</td>" html += "<table style='width:fit-content'>" + "".join(map(transform, open("inheritance_listing.txt"))) + "</table>" return render_template('chapter.html', navigation=navigation_entries, content=html, path=None, title="Annex C", number="", subs=[]) @app.route(make_url('annex-d.html')) def annex_d(): subs = map(os.path.basename, glob.glob("../output/IFC.xml/*.png")) subs = sorted(s[:-4] + ":" + url_for('annex_d_diagram_page', s=s[:-4]) for s in subs) return render_template('chapter.html', navigation=navigation_entries, content='<h2>Diagrams</h2>', path=None, title="Annex D", number="", subs=subs) @app.route(make_url('annex_d/<s>.html')) def annex_d_diagram_page(s): img = "<h2>" + s + " diagram</h2><img src='"+s+".png'/>" return render_template('chapter.html', navigation=navigation_entries, content=img, path=None, title="Annex D", number="", subs=[]) @app.route(make_url('annex_d/<s>.png')) def annex_d_diagram(s): return send_from_directory("../output/IFC.xml", s + ".png") @app.route(make_url('annex-e.html')) def annex_e(): subs = map(os.path.basename, filter(os.path.isdir, glob.glob("../../examples/IFC 4.3/*"))) subs = sorted(s + ":" + url_for('annex_e_example_page', s=s) for s in subs) return render_template('chapter.html', navigation=navigation_entries, content='<h2>Examples</h2>', path=None, title="Annex E", number="", subs=subs) @app.route(make_url('annex_e/<s>.html')) def annex_e_example_page(s): subs = map(os.path.basename, filter(os.path.isdir, glob.glob("../../examples/IFC 4.3/*"))) if s not in subs: abort(404) fn = glob.glob(os.path.join("../../examples/IFC 4.3", s, "*.md"))[0] html = '<p></p>' + markdown.markdown(open(fn).read(), extensions=['tables', 'fenced_code']) code = open(glob.glob(os.path.join("../../examples/IFC 4.3", s, "*.ifc"))[0]).read() html += "<h2>Source</h2>" html += "<pre>" + code + "</pre>" path_repo = 'buildingSMART/Sample-Test-Files' path = fn[15:] return render_template('chapter.html', navigation=navigation_entries, content=html, path=path, title="Annex E", number="", subs=[], repo=path_repo) @app.route(make_url('<name>/content.html')) def schema(name): md_root = "../docs/schemas" cat_full, schemas = [(t, itms) for t, itms in hierarchy if name in [i[0].lower() for i in itms]][0] cat = cat_full.split(" ")[0].lower() t, subs = [x for x in schemas if x[0].lower() == name][0] chp = chapter_lookup(cat=cat) n1 = chp.get('number') n2 = [s[0] for s in schemas].index(t) + 1 n = "%d.%d" % (n1, n2) fn = os.path.join(md_root, cat, t, "README.md") if os.path.exists(fn): html = markdown.markdown(open(fn).read(), extensions=['sane_lists']) soup = BeautifulSoup(html) # First h1 is handled by the template soup.find('h1').decompose() html = "<h2>" + n + ".1 Schema Definition</h2>" + str(soup) else: html = '' order = ["Types", "Entities"] subs = sorted(subs.items(), key=lambda tup: order.index(tup[0])) return render_template('chapter.html', navigation=navigation_entries, content=html, path=fn[5:], title=t, number=n, subs=subs) @app.route('/search', methods=['GET', 'POST']) def search(): matches = [] query = '' if request.method == 'POST' and request.form['query']: solr = pysolr.Solr('http://localhost:8983/solr/ifc') query = request.form['query'] results = solr.search('body:(%s)' % query, **{'hl':'on', 'hl.fl':'body'}) h = results.highlighting def format(s): return re.sub(r'[^\w\s<>/]', '', s) matches = [{ 'url': url_for('resource', resource=r['title'][0]), 'match': format(h[r['id']]['body'][0]), 'title': r['title'][0] } for r in list(results)[0:10]] return render_template('search.html', navigation=navigation_entries, matches=matches, query=query)
import sys import os import subprocess import matplotlib import unittest matplotlib.use('Agg') script_dir = os.path.sep.join( os.path.abspath(__file__).split(os.path.sep)[:-2] + ['examples'] ) def test_scripts(script_dir=script_dir): passing = [] for dirname, _, filenames in os.walk(script_dir): for filename in filenames: if filename.endswith(".py"): testme = dirname + os.path.sep + filename print("\n------ Testing {} --------- \n".format(filename)) try: exc = subprocess.check_call(['python', testme]) print(" ... {} Passed \n".format(filename)) passing += [True] except subprocess.CalledProcessError as exc: passing += [False] msg = "\n ... {} FAILED \n".format(filename) traceback = """ ----------------- >> begin Traceback << ----------------- \n {}\n{}\n \n----------------- >> end Traceback << -----------------\n """.format( exc.returncode, exc.output ) print(u"{}".format(msg + traceback)) assert all(passing) # tests = TestScripts(directory=script_dir) # print(Test._script_path) # TestScripts = Test.get_tests() # tests.run_tests() # unittest.main()
import numpy as np from ..local_interpolation import ThirdOrderHermitePolynomialInterpolation from .runge_kutta import AbstractESDIRK, ButcherTableau # This γ notation is from the original paper. All the coefficients are described in # terms of it. γ = 0.43586652150 a21 = γ a31 = (-4 * γ**2 + 6 * γ - 1) / (4 * γ) a32 = (-2 * γ + 1) / (4 * γ) a41 = (6 * γ - 1) / (12 * γ) a42 = -1 / ((24 * γ - 12) * γ) a43 = (-6 * γ**2 + 6 * γ - 1) / (6 * γ - 3) # See /devdocs/predictor_dirk.md θ = 1 / (2 * γ) α21 = 1.0 α31 = 1.0 - θ α32 = θ α41 = a31 α42 = a32 α43 = γ _kvaerno3_tableau = ButcherTableau( a_lower=( np.array([a21]), np.array([a31, a32]), np.array([a41, a42, a43]), ), a_predictor=(np.array([α21]), np.array([α31, α32]), np.array([α41, α42, α43])), a_diagonal=np.array([0, γ, γ, γ]), b_sol=np.array([a41, a42, a43, γ]), b_error=np.array([a41 - a31, a42 - a32, a43 - γ, γ]), c=np.array([2 * γ, 1.0, 1.0]), ) class Kvaerno3(AbstractESDIRK): r"""Kvaerno's 3/2 method. A-L stable stiffly accurate 3rd order ESDIRK method. Has an embedded 2nd order method for adaptive step sizing. Uses 4 stages. ??? cite "Reference" ```bibtex @article{kvaerno2004singly, title={Singly diagonally implicit Runge--Kutta methods with an explicit first stage}, author={Kv{\ae}rn{\o}, Anne}, journal={BIT Numerical Mathematics}, volume={44}, number={3}, pages={489--502}, year={2004}, publisher={Springer} } ``` """ tableau = _kvaerno3_tableau interpolation_cls = ThirdOrderHermitePolynomialInterpolation.from_k def order(self, terms): return 3
import numpy as np def si_sdr(reference, estimation): """ Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) Args: reference: numpy.ndarray, [..., T] estimation: numpy.ndarray, [..., T] Returns: SI-SDR [1] SDR– Half- Baked or Well Done? http://www.merl.com/publications/docs/TR2019-013.pdf >>> np.random.seed(0) >>> reference = np.random.randn(100) >>> si_sdr(reference, reference) inf >>> si_sdr(reference, reference * 2) inf >>> si_sdr(reference, np.flip(reference)) -25.127672346460717 >>> si_sdr(reference, reference + np.flip(reference)) 0.481070445785553 >>> si_sdr(reference, reference + 0.5) 6.3704606032577304 >>> si_sdr(reference, reference * 2 + 1) 6.3704606032577304 >>> si_sdr([1., 0], [0., 0]) # never predict only zeros nan >>> si_sdr([reference, reference], [reference * 2 + 1, reference * 1 + 0.5]) array([6.3704606, 6.3704606]) """ estimation, reference = np.broadcast_arrays(estimation, reference) assert reference.dtype == np.float64, reference.dtype assert estimation.dtype == np.float64, estimation.dtype reference_energy = np.sum(reference ** 2, axis=-1, keepdims=True) # This is $\alpha$ after Equation (3) in [1]. optimal_scaling = np.sum(reference * estimation, axis=-1, keepdims=True) \ / reference_energy # This is $e_{\text{target}}$ in Equation (4) in [1]. projection = optimal_scaling * reference # This is $e_{\text{res}}$ in Equation (4) in [1]. noise = estimation - projection ratio = np.sum(projection ** 2, axis=-1) / np.sum(noise ** 2, axis=-1) return 10 * np.log10(ratio)
import argparse import logging import sys from block_server_subscriber.subscriber import Subscriber from block_server_subscriber.databaseImp import DatabaseImp from block_server_subscriber.event_handling import EventHandler LOGGER = logging.getLogger(__name__) def parse_args(args): parser = argparse.ArgumentParser(add_help=False) parser = argparse.ArgumentParser(add_help=False) parser.add_argument( '-v', '--verbose', action='count', default=0, help='Increase output sent to stderr') parser.add_argument( '-C', '--connect', help='The url of the validator to subscribe to', default='tcp://localhost:4004') parser.add_argument( '--url', type=str, help='specify URL of REST API', default='http://127.0.0.1:8008') parser.add_argument( '--uri', type=str, help='database URI', default='mongodb://127.0.0.1:27017/') return parser.parse_args(args) def init_logger(level): logger = logging.getLogger() logger.addHandler(logging.StreamHandler()) if level == 1: logger.setLevel(logging.INFO) elif level > 1: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.WARN) def do_subscribe(opts): LOGGER.info('Starting block server...') subscriber = Subscriber(opts.connect) eventHandler = EventHandler(opts.url) subscriber.add_handler(eventHandler.get_events_handler()) subscriber.listen_to_event() def main(): opts = parse_args(sys.argv[1:]) init_logger(opts.verbose) try: LOGGER.warning("## initialize db ##") DatabaseImp.initialize(opts.uri) do_subscribe(opts) except KeyboardInterrupt: pass main()
from bbdata.base import * from bbdata.uid import * CONNECTIONSTATE_TYPE = [ CONTEXT_UID_SENSORDATAFACTORY, 64, 1, 0 ] class ConnectionState(BBCompound): def __init__(self, name='connectionstate'): super(BBCompound, self).__init__(name) self.name = ShortString('name') self.state = Int('state') self.message = LongString('message') self.error = ErrorInfo('error') self.retry = Time('retry') #@classmethod def type(self): return CONNECTIONSTATE_TYPE type=classmethod(type) ConnectionState.add_to_factory()
import mimetypes import os import time import warnings from typing import ( overload, TYPE_CHECKING, Optional, Union, Iterator, Generator, Iterable, Dict, ) from urllib.parse import urlparse if TYPE_CHECKING: import numpy as np from docarray import DocumentArray, Document class Client: def __init__(self, server: str): """Create a Clip client object that connects to the Clip server. Server scheme is in the format of `scheme://netloc:port`, where - scheme: one of grpc, websocket, http, grpcs, websockets, https - netloc: the server ip address or hostname - port: the public port of the server :param server: the server URI """ try: r = urlparse(server) _port = r.port _scheme = r.scheme if not _scheme: raise except: raise ValueError(f'{server} is not a valid scheme') _tls = False if _scheme in ('grpcs', 'https', 'wss'): _scheme = _scheme[:-1] _tls = True if _scheme == 'ws': _scheme = 'websocket' # temp fix for the core if _scheme in ('grpc', 'http', 'websocket'): _kwargs = dict(host=r.hostname, port=_port, protocol=_scheme, tls=_tls) from jina import Client self._client = Client(**_kwargs) self._async_client = Client(**_kwargs, asyncio=True) else: raise ValueError(f'{server} is not a valid scheme') @overload def encode( self, content: Iterable[str], *, batch_size: Optional[int] = None, show_progress: bool = False, ) -> 'np.ndarray': """Encode images and texts into embeddings where the input is an iterable of raw strings. Each image and text must be represented as a string. The following strings are acceptable: - local image filepath, will be considered as an image - remote image http/https, will be considered as an image - a dataURI, will be considered as an image - plain text, will be considered as a sentence :param content: an iterator of image URIs or sentences, each element is an image or a text sentence as a string. :param batch_size: the number of elements in each request when sending ``content`` :param show_progress: if set, show a progress bar :return: the embedding in a numpy ndarray with shape ``[N, D]``. ``N`` is in the same length of ``content`` """ ... @overload def encode( self, content: Union['DocumentArray', Iterable['Document']], *, batch_size: Optional[int] = None, show_progress: bool = False, ) -> 'DocumentArray': """Encode images and texts into embeddings where the input is an iterable of :class:`docarray.Document`. :param content: an iterable of :class:`docarray.Document`, each Document must be filled with `.uri`, `.text` or `.blob`. :param batch_size: the number of elements in each request when sending ``content`` :param show_progress: if set, show a progress bar :return: the embedding in a numpy ndarray with shape ``[N, D]``. ``N`` is in the same length of ``content`` """ ... def encode(self, content, **kwargs): if isinstance(content, str): raise TypeError( f'content must be an Iterable of [str, Document], try `.encode(["{content}"])` instead' ) self._prepare_streaming( not kwargs.get('show_progress'), total=len(content) if hasattr(content, '__len__') else None, ) with self._pbar: self._client.post( **self._get_post_payload(content, kwargs), on_done=self._gather_result ) return self._unboxed_result def _gather_result(self, r): from rich import filesize if not self._results: self._pbar.start_task(self._r_task) r = r.data.docs self._results.extend(r) self._pbar.update( self._r_task, advance=len(r), total_size=str( filesize.decimal(int(os.environ.get('JINA_GRPC_RECV_BYTES', '0'))) ), ) @property def _unboxed_result(self): if self._results.embeddings is None: raise ValueError( 'empty embedding returned from the server. ' 'This often due to a mis-config of the server, ' 'restarting the server or changing the serving port number often solves the problem' ) return self._results.embeddings if self._return_plain else self._results def _iter_doc(self, content) -> Generator['Document', None, None]: from rich import filesize from docarray import Document self._return_plain = True if hasattr(self, '_pbar'): self._pbar.start_task(self._s_task) for c in content: if isinstance(c, str): self._return_plain = True _mime = mimetypes.guess_type(c)[0] if _mime and _mime.startswith('image'): yield Document(uri=c).load_uri_to_blob() else: yield Document(text=c) elif isinstance(c, Document): if c.content_type in ('text', 'blob'): self._return_plain = False yield c elif not c.blob and c.uri: c.load_uri_to_blob() self._return_plain = False yield c elif c.tensor is not None: yield c else: raise TypeError(f'unsupported input type {c!r} {c.content_type}') else: raise TypeError(f'unsupported input type {c!r}') if hasattr(self, '_pbar'): self._pbar.update( self._s_task, advance=1, total_size=str( filesize.decimal( int(os.environ.get('JINA_GRPC_SEND_BYTES', '0')) ) ), ) def _get_post_payload(self, content, kwargs): return dict( on='/', inputs=self._iter_doc(content), request_size=kwargs.get('batch_size', 8), total_docs=len(content) if hasattr(content, '__len__') else None, ) def profile(self, content: Optional[str] = '') -> Dict[str, float]: """Profiling a single query's roundtrip including network and computation latency. Results is summarized in a table. :param content: the content to be sent for profiling. By default it sends an empty Document that helps you understand the network latency. :return: the latency report in a dict. """ st = time.perf_counter() r = self._client.post('/', self._iter_doc([content]), return_responses=True) ed = (time.perf_counter() - st) * 1000 route = r[0].routes gateway_time = ( route[0].end_time.ToMilliseconds() - route[0].start_time.ToMilliseconds() ) clip_time = ( route[1].end_time.ToMilliseconds() - route[1].start_time.ToMilliseconds() ) network_time = ed - gateway_time server_network = gateway_time - clip_time from rich.table import Table def make_table(_title, _time, _percent): table = Table(show_header=False, box=None) table.add_row( _title, f'[b]{_time:.0f}[/b]ms', f'[dim]{_percent * 100:.0f}%[/dim]' ) return table from rich.tree import Tree t = Tree(make_table('Roundtrip', ed, 1)) t.add(make_table('Client-server network', network_time, network_time / ed)) t2 = t.add(make_table('Server', gateway_time, gateway_time / ed)) t2.add( make_table( 'Gateway-CLIP network', server_network, server_network / gateway_time ) ) t2.add(make_table('CLIP model', clip_time, clip_time / gateway_time)) from rich import print print(t) return { 'Roundtrip': ed, 'Client-server network': network_time, 'Server': gateway_time, 'Gateway-CLIP network': server_network, 'CLIP model': clip_time, } @overload async def aencode( self, content: Iterator[str], *, batch_size: Optional[int] = None, show_progress: bool = False, ) -> 'np.ndarray': ... @overload async def aencode( self, content: Union['DocumentArray', Iterable['Document']], *, batch_size: Optional[int] = None, show_progress: bool = False, ) -> 'DocumentArray': ... async def aencode(self, content, **kwargs): from rich import filesize self._prepare_streaming( not kwargs.get('show_progress'), total=len(content) if hasattr(content, '__len__') else None, ) async for da in self._async_client.post( **self._get_post_payload(content, kwargs) ): if not self._results: self._pbar.start_task(self._r_task) self._results.extend(da) self._pbar.update( self._r_task, advance=len(da), total_size=str( filesize.decimal(int(os.environ.get('JINA_GRPC_RECV_BYTES', '0'))) ), ) return self._unboxed_result def _prepare_streaming(self, disable, total): if total is None: total = 500 warnings.warn( 'the length of the input is unknown, the progressbar would not be accurate.' ) from docarray.array.mixins.io.pbar import get_pbar self._pbar = get_pbar(disable) os.environ['JINA_GRPC_SEND_BYTES'] = '0' os.environ['JINA_GRPC_RECV_BYTES'] = '0' self._s_task = self._pbar.add_task( ':arrow_up: Send', total=total, total_size=0, start=False ) self._r_task = self._pbar.add_task( ':arrow_down: Recv', total=total, total_size=0, start=False ) from docarray import DocumentArray self._results = DocumentArray() @staticmethod def _prepare_single_doc(d: 'Document'): if d.content_type in ('text', 'blob'): return d elif not d.blob and d.uri: d.load_uri_to_blob() return d elif d.tensor is not None: return d else: raise TypeError(f'unsupported input type {d!r} {d.content_type}') @staticmethod def _prepare_rank_doc(d: 'Document', _source: str = 'matches'): _get = lambda d: getattr(d, _source) if not _get(d): raise ValueError(f'`.rank()` requires every doc to have `.{_source}`') d = Client._prepare_single_doc(d) setattr(d, _source, [Client._prepare_single_doc(c) for c in _get(d)]) return d def _iter_rank_docs( self, content, _source='matches' ) -> Generator['Document', None, None]: from rich import filesize from docarray import Document self._return_plain = True if hasattr(self, '_pbar'): self._pbar.start_task(self._s_task) for c in content: if isinstance(c, Document): yield self._prepare_rank_doc(c, _source) else: raise TypeError(f'unsupported input type {c!r}') if hasattr(self, '_pbar'): self._pbar.update( self._s_task, advance=1, total_size=str( filesize.decimal( int(os.environ.get('JINA_GRPC_SEND_BYTES', '0')) ) ), ) def _get_rank_payload(self, content, kwargs): return dict( on='/rank', inputs=self._iter_rank_docs( content, _source=kwargs.get('source', 'matches') ), request_size=kwargs.get('batch_size', 8), total_docs=len(content) if hasattr(content, '__len__') else None, ) def rank(self, docs: Iterable['Document'], **kwargs) -> 'DocumentArray': """Rank image-text matches according to the server CLIP model. Given a Document with nested matches, where the root is image/text and the matches is in another modality, i.e. text/image; this method ranks the matches according to the CLIP model. Each match now has a new score inside ``clip_score`` and matches are sorted descendingly according to this score. More details can be found in: https://github.com/openai/CLIP#usage :param docs: the input Documents :return: the ranked Documents in a DocumentArray. """ self._prepare_streaming( not kwargs.get('show_progress'), total=len(docs), ) with self._pbar: self._client.post( **self._get_rank_payload(docs, kwargs), on_done=self._gather_result ) return self._results async def arank(self, docs: Iterable['Document'], **kwargs) -> 'DocumentArray': from rich import filesize self._prepare_streaming( not kwargs.get('show_progress'), total=len(docs), ) async for da in self._async_client.post(**self._get_rank_payload(docs, kwargs)): if not self._results: self._pbar.start_task(self._r_task) self._results.extend(da) self._pbar.update( self._r_task, advance=len(da), total_size=str( filesize.decimal(int(os.environ.get('JINA_GRPC_RECV_BYTES', '0'))) ), ) return self._results
"""Test the popular tags API.""" from typing import List from rest_framework.test import APITestCase from blog.factories import PostFactory from tests.decorators import authenticated _TAG_FIELDS = {"id", "name", "post_count"} @authenticated class PopularTagTest(APITestCase): """Test the popular tags endpoint.""" def setUp(self): posts = [ PostFactory.create(tags=["python", "docker"]), PostFactory.create(tags=["python"]), PostFactory.create(tags=["aws"]), PostFactory.create(), ] for post in posts: post.publish() def perform(self, **params) -> List[dict]: response = self.client.get("/api/popular-tags/", params) self.assertEqual(response.status_code, 200) return response.data def test_list(self): tags = self.perform() self.assertEqual(len(tags), 3) def test_returns_expected_fields(self): tags = self.perform() expected = _TAG_FIELDS self.assertSetEqual(expected, set(tags[0])) def test_is_ordered_by_decreasing_post_count(self): tags = self.perform() sorted_by_post_count_desc = sorted( tags, key=lambda tag: tag["post_count"], reverse=True ) actual = [tag["name"] for tag in tags] expected = [tag["name"] for tag in sorted_by_post_count_desc] self.assertListEqual(actual, expected) def test_limit_query_parameter_limits_amount_of_returned_values(self): tags = self.perform(limit=1) self.assertEqual(len(tags), 1) with_most_posts = "python" self.assertEqual(tags[0]["name"], with_most_posts) def test_does_not_include_drafts(self): PostFactory.create(tags=["angular"]) # not published tags = self.perform() self.assertNotIn("angular", map(lambda tag: tag["name"], tags)) def test_equal_count_tags_sorted_in_alphabetical_order(self): tags = self.perform() self.assertEqual("aws", tags[1]["name"]) self.assertEqual("docker", tags[2]["name"])
#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse import copy import os import time from contextlib import contextmanager import numpy as np import tensorflow as tf from tensorflow.python.compiler.tensorrt import trt_convert as trt from tensorflow.python.compiler.tensorrt.trt_convert import \ DEFAULT_TRT_MAX_WORKSPACE_SIZE_BYTES from tensorflow.python.framework import convert_to_constants from tensorflow.python.saved_model import tag_constants from tensorflow.python.saved_model.signature_constants import \ DEFAULT_SERVING_SIGNATURE_DEF_KEY def _print_dict(input_dict, prefix=' ', postfix=''): for k, v in sorted(input_dict.items()): print('{prefix}{arg_name}: {value}{postfix}'.format( prefix=prefix, arg_name=k, value='%.1f' % v if isinstance(v, float) else v, postfix=postfix )) @contextmanager def timed_section(msg): print('\n[START] {}'.format(msg)) start_time = time.time() yield print("[END] Duration: {:.1f}s".format(time.time() - start_time)) print("=" * 80, "\n") class BaseCommandLineAPI(object): ALLOWED_TFTRT_PRECISION_MODES = ['FP32', 'FP16', 'INT8'] SAMPLES_IN_VALIDATION_SET = None def __init__(self): self._parser = argparse.ArgumentParser(description='tftrt_benchmark') # ======================= SavedModel Directories ===================== # self._parser.add_argument('--input_saved_model_dir', type=str, default=None, help='Directory containing the input saved ' 'model.') self._parser.add_argument('--output_saved_model_dir', type=str, default=None, help='Directory in which the converted model ' 'will be saved') # ======================== Dataset Directories ======================= # self._parser.add_argument('--calib_data_dir', type=str, help='Directory containing the dataset used ' 'for INT8 calibration.') self._parser.add_argument('--data_dir', type=str, default=None, help='Directory containing the dataset used ' 'for model validation.') # ======================= Generic Runtime Flags ====================== # self._parser.add_argument('--batch_size', type=int, default=8, help='Number of images per batch.') self._parser.add_argument('--display_every', type=int, default=100, help='Number of iterations executed between' 'two consecutive display of metrics') self._parser.add_argument('--gpu_mem_cap', type=int, default=0, help='Upper bound for GPU memory in MB. ' 'Default is 0 which means allow_growth ' 'will be used.') default_sign_key = DEFAULT_SERVING_SIGNATURE_DEF_KEY self._parser.add_argument('--input_signature_key', type=str, default=default_sign_key, help='SavedModel signature to use for ' 'inference, defaults to: %s' % ( default_sign_key )) self._parser.add_argument('--num_iterations', type=int, default=None, help='How many iterations(batches) to ' 'evaluate. If not supplied, the whole ' 'set will be evaluated.') self._parser.add_argument('--num_warmup_iterations', type=int, default=50, help='Number of initial iterations skipped ' 'from timing') self._add_bool_argument( name="skip_accuracy_testing", default=False, required=False, help='If set to True, accuracy calculation will be skipped.' ) self._add_bool_argument( name="use_synthetic_data", default=False, required=False, help='If set to True, one unique batch of random batch of data is ' 'generated and used at every iteration.' ) # =========================== TF-TRT Flags ========================== # self._add_bool_argument( name="use_tftrt", default=False, required=False, help='If set to True, the inference graph will be converted using ' 'TF-TRT graph converter.' ) self._add_bool_argument( name="allow_build_at_runtime", default=False, required=False, help="Whether to build TensorRT engines during runtime." ) self._parser.add_argument('--max_workspace_size', type=int, default=DEFAULT_TRT_MAX_WORKSPACE_SIZE_BYTES, help='The maximum GPU temporary memory which ' 'the TRT engine can use at execution ' 'time.') self._parser.add_argument('--minimum_segment_size', type=int, default=5, help='Minimum number of TensorFlow ops in a ' 'TRT engine.') self._parser.add_argument('--num_calib_inputs', type=int, default=500, help='Number of inputs (e.g. images) used ' 'for calibration (last batch is skipped ' 'in case it is not full)') self._add_bool_argument( name="optimize_offline", default=False, required=False, help='If set to True, TensorRT engines are built before runtime.' ) self._parser.add_argument('--precision', type=str, choices=self.ALLOWED_TFTRT_PRECISION_MODES, default='FP32', help='Precision mode to use. FP16 and INT8 ' 'modes only works if --use_tftrt is ' 'used.') self._add_bool_argument( name="use_dynamic_shape", default=False, required=False, help='Whether to use implicit batch mode or dynamic shape mode.' ) def _add_bool_argument(self, name=None, default=False, required=False, help=None): if not isinstance(default, bool): raise ValueError() feature_parser = self._parser.add_mutually_exclusive_group(\ required=required ) feature_parser.add_argument('--' + name, dest=name, action='store_true', help=help, default=default) feature_parser.add_argument('--no' + name, dest=name, action='store_false') feature_parser.set_defaults(name=default) def _validate_args(self, args): if args.data_dir is None: raise ValueError("--data_dir is required") elif not os.path.isdir(args.data_dir): raise RuntimeError("The path --data_dir=`{}` doesn't exist or is " "not a directory".format(args.data_dir)) if ( args.num_iterations is not None and args.num_iterations <= args.num_warmup_iterations ): raise ValueError( '--num_iterations must be larger than --num_warmup_iterations ' '({} <= {})'.format(args.num_iterations, args.num_warmup_iterations)) if not args.use_tftrt: if args.use_dynamic_shape: raise ValueError('TensorRT must be enabled for Dynamic Shape ' 'support to be enabled (--use_tftrt).') if args.precision != 'FP32': raise ValueError('TensorRT must be enabled for FP16' 'or INT8 modes (--use_tftrt).') else: if args.precision not in self.ALLOWED_TFTRT_PRECISION_MODES: raise ValueError("The received --precision={} is not supported." " Allowed: {}".format( args.precision, self.ALLOWED_TFTRT_PRECISION_MODES )) if args.precision == 'INT8': if not args.calib_data_dir: raise ValueError('--calib_data_dir is required for INT8 ' 'precision mode') elif not os.path.isdir(args.calib_data_dir): raise RuntimeError("The path --calib_data_dir=`{}` doesn't " "exist or is not a directory".format( args.calib_data_dir)) if args.use_dynamic_shape: raise ValueError('TF-TRT does not support dynamic shape ' 'mode with INT8 calibration.') if args.num_calib_inputs <= args.batch_size: raise ValueError( '--num_calib_inputs must not be smaller than ' '--batch_size ({} <= {})'.format( args.num_calib_inputs, args.batch_size)) def _post_process_args(self, args): if args.num_iterations is None: args.num_iterations = ( self.SAMPLES_IN_VALIDATION_SET // args.batch_size ) return args def parse_args(self): args = self._parser.parse_args() args = self._post_process_args(args) self._validate_args(args) print('\nBenchmark arguments:') _print_dict(vars(args)) return args def config_gpu_memory(gpu_mem_cap): gpus = tf.config.experimental.list_physical_devices('GPU') if not gpus: raise RuntimeError("No GPUs has been found.") print('Found the following GPUs:') for gpu in gpus: print(' ', gpu) for gpu in gpus: try: if not gpu_mem_cap: tf.config.experimental.set_memory_growth(gpu, True) else: tf.config.experimental.set_virtual_device_configuration( gpu, [tf.config.experimental.VirtualDeviceConfiguration( memory_limit=gpu_mem_cap)]) except RuntimeError as e: print('Can not set GPU memory config', e) def get_graph_func( input_saved_model_dir, output_saved_model_dir, allow_build_at_runtime=False, calibration_input_fn=None, input_signature_key=DEFAULT_SERVING_SIGNATURE_DEF_KEY, max_workspace_size_bytes=DEFAULT_TRT_MAX_WORKSPACE_SIZE_BYTES, minimum_segment_size=5, num_calib_inputs=None, optimize_offline=False, optimize_offline_input_fn=None, precision_mode=None, use_dynamic_shape=False, use_tftrt=False): """Retreives a frozen SavedModel and applies TF-TRT use_tftrt: bool, if true use TensorRT precision: str, floating point precision (FP32, FP16, or INT8) returns: TF function that is ready to run for inference """ if not use_tftrt: with timed_section('Loading TensorFlow native model...'): saved_model_loaded = tf.saved_model.load( input_saved_model_dir, tags=[tag_constants.SERVING] ) graph_func = saved_model_loaded.signatures[input_signature_key] graph_func = convert_to_constants.convert_variables_to_constants_v2( graph_func ) else: def get_trt_conversion_params( allow_build_at_runtime, max_workspace_size_bytes, precision_mode, minimum_segment_size): params = copy.deepcopy(trt.DEFAULT_TRT_CONVERSION_PARAMS) def get_trt_precision(): if precision_mode == "FP32": return trt.TrtPrecisionMode.FP32 elif precision_mode == "FP16": return trt.TrtPrecisionMode.FP16 elif precision_mode == "INT8": return trt.TrtPrecisionMode.INT8 else: raise RuntimeError("Unknown precision received: `{}`. Expected: " "FP32, FP16 or INT8".format(precision)) params = params._replace( allow_build_at_runtime=allow_build_at_runtime, max_workspace_size_bytes=max_workspace_size_bytes, minimum_segment_size=minimum_segment_size, precision_mode=get_trt_precision(), use_calibration=precision_mode == "INT8" ) print('\nTensorRT Conversion Params:') _print_dict(dict(params._asdict())) return params conversion_params = get_trt_conversion_params( allow_build_at_runtime=allow_build_at_runtime, max_workspace_size_bytes=max_workspace_size_bytes, precision_mode=precision_mode, minimum_segment_size=minimum_segment_size ) converter = trt.TrtGraphConverterV2( input_saved_model_dir=input_saved_model_dir, conversion_params=conversion_params, input_saved_model_signature_key=input_signature_key, use_dynamic_shape=use_dynamic_shape ) def _check_input_fn(func, name): if func is None: raise ValueError("The function `{}` is None.".format(name)) if not callable(func): raise ValueError("The argument `{}` is not a function.".format( name)) if conversion_params.precision_mode == 'INT8': _check_input_fn(calibration_input_fn, "calibration_input_fn") with timed_section('TF-TRT graph conversion and INT8 ' 'calibration ...'): graph_func = converter.convert( calibration_input_fn=tf.autograph.experimental.do_not_convert( calibration_input_fn ) ) else: with timed_section('TF-TRT graph conversion ...'): graph_func = converter.convert() if optimize_offline or use_dynamic_shape: _check_input_fn( optimize_offline_input_fn, "optimize_offline_input_fn" ) with timed_section('Building TensorRT engines...'): converter.build(input_fn=tf.autograph.experimental.do_not_convert( optimize_offline_input_fn )) if output_saved_model_dir is not None: with timed_section('Saving converted graph with TF-TRT ...'): converter.save(output_saved_model_dir) print("Converted graph saved to `{}`".format( output_saved_model_dir)) return graph_func
import os from os import path, system import convert def main(): folder = input( 'Enter the directory path containing SUMMARY.md or other *.md files:\n') try: c = convert.MdToPdf(folder) p = path.abspath(c.output) print(60 * '-') print('Successfully converted!') print(p) except Exception as e: print(60 * '-') print(e) system("PAUSE") if __name__ == '__main__': main()
"""import libraries""" import os from ibm_watson import LanguageTranslatorV3 #from IBM from ibm_cloud_sdk_core.authenticators import IAMAuthenticator#authenticator from dotenv import load_dotenv load_dotenv() apikey = os.environ['apikey'] url = os.environ['url'] authenticator = IAMAuthenticator('rThbq2SZ8s2Re6QBulyKfSmjrjD31b4uQKnzIO2N1vT_') language_translator = LanguageTranslatorV3( version='2018-05-01', authenticator=authenticator) """Watson language translator URL""" language_translator.set_service_url( 'https://api.us-south.language-translator.watson.cloud.ibm.com/instances/e279067d-1540-4b78-aa82-94651eb0d368') def english_to_french(english_text): """function to translate eng to french""" translation = language_translator.translate(text=english_text, model_id='en-fr').get_result() french_text = translation['translations'][0]['translation'] return french_text def french_to_english(french_text): """function to translate french to eng""" translation = language_translator.translate(text=french_text, model_id='fr-en').get_result() english_text = translation['translations'][0]['translation'] return english_text
# -*- coding: utf-8; -*- # # @file customglyph.py # @brief Compatibility with others glyphs enums. # @author Frédéric SCHERMA (INRA UMR1095) # @date 2017-10-16 # @copyright Copyright (c) 2015 INRA # @license MIT (see LICENSE file) # @details class CustomGlyph(object): def __init__(self, prefix, name, opts=None): self._prefix = prefix self._name = name self._opts = opts @property def value(self): if type(self._name) is tuple or type(self._name) is list: return " ".join("%s-%s" % (self._prefix, self._name)) else: return "%s-%s" % (self._prefix, self._name) @property def opts(self): if self._opts is None: return if type(self._opts) is tuple or type(self._opts) is list: return " ".join("%s-%s" % (self._prefix, self._opts)) else: return "%s-%s" % (self._prefix, self._opts) def __str__(self): return self.value def __repr__(self): return self.value class FaGlyph(CustomGlyph): """ Font awesome glyphicons. Helper to add glyphicons from font awesome into the menu. @todo Stacked icons doesn't looks good in menu because of an additional useless left offset. @todo Stocked icons options need more complexes compositions. How to ? """ FA_FW = "fa-fw" FA_LG = "fa-lg" FA_2X = "fa-2x" FA_3X = "fa-3x" FA_4X = "fa-4x" FA_5X = "fa-5x" def __init__(self, name, stack=False, rotate=False, pulse=False, opts=None): super().__init__('fa', name, opts=opts) self._stack = stack self._rotate = rotate self._pulse = pulse @property def html(self): if self._stack: if self._opts: classes = 'fa-stack ' + self.opts else: classes = 'fa-stack' result = '<span class="%s">' % classes if type(self._name) is tuple or type(self._name) is list: for i in self._name: result += '<i class="fa fa-%s fa-stack-1x"></i>' % i else: result += '<i class="fa fa-%s fa-stack-1x"></i>' % self._name result += '</span>' return result else: lopts = "" if self._rotate: lopts = 'fa-spin' elif self._pulse: lopts = 'fa-pulse' if self._opts: lopts += self.opts if lopts: return '<i class="fa %s %s"></i>' % (self.value, lopts) else: return '<i class="fa %s"></i>' % self.value
from bluesky.magics import BlueskyMagics from .startup import sd from .detectors import * from .endstation import * from .accelerator import * from .optics import * from .tardis import * # # Setup of sup. data for plans # sd.monitors = [] sd.flyers = [] sd.baseline = [theta, delta, gamma, muR, sx, say, saz, cryoangle, sy, sz, epu1, epu2, slt1, slt2, slt3, m1a, m3a, #nanop, tardis, tardis, stemp, pgm, inout, es_diag1_y, diag6_pid] #bec.disable_baseline() #no print to CLI, just save to datastore sclr.names.read_attrs=['name1','name2','name3','name4','name5','name6'] # TODO WHAT IS THIS??? - Dan Allan sclr.channels.read_attrs=['chan1','chan2','chan3','chan4','chan5','chan6'] # Old-style hints config is replaced by the new 'kind' feature # sclr.hints = {'fields': ['sclr_ch2', 'sclr_ch3', 'sclr_ch6']} for i in [2, 3, 4, 5]: getattr(sclr.channels, f'chan{i}').kind = 'hinted' # getattr(sclr.channels, f'chan{i}').kind = 'normal' will remove the # hinted fields from LivePlot and LiveTable. def relabel_fig(fig, new_label): fig.set_label(new_label) fig.canvas.manager.set_window_title(fig.get_label()) # fccd.hints = {'fields': ['fccd_stats1_total']} for i in [1, 2, 3, 4, 5]: getattr(fccd, f'stats{i}').total.kind = 'hinted' # dif_beam.hints = {'fields' : ['dif_beam_stats3_total','dif_beam_stats1_total']} for i in [1, 3]: getattr(dif_beam, f'stats{i}').total.kind = 'hinted' ## 20180726 needed to comment due to IOC1 problems #cube_beam.hints = {'fields': ['cube_beam_stats2_total', 'cube_beam_stats1_total']} #for i in [1, 2]: # getattr(cube_beam, f'stats{i}').total.kind = 'hinted' # This was imported in 00-startup.py # used to generate the list: [thing.name for thing in get_all_positioners()] """ BlueskyMagics.positioners = [ cryoangle, delta, diag2_y, diag3_y, diag5_y, diag6_pid, diag6_y, epu1.gap, epu1.phase, epu2.gap, epu2.phase, es_diag1_y, eta, gamma, m1a.z, m1a.y, m1a.x, m1a.pit, m1a.yaw, m1a.rol, m3a.x, m3a.pit, m3a.bdr, # muR, # TODO turn this back on when safe # muT, # TODO turn this back on when safe #nanop.tx, #nanop.ty, #nanop.tz, #nanop.bx, #nanop.by, #nanop.bz, say, saz, slt1.xg, slt1.xc, slt1.yg, slt1.yc, slt2.xg, slt2.xc, slt2.yg, slt2.yc, slt3.x, slt3.y, sx, sy, sz, tardis.h, tardis.k, tardis.l, tardis.theta, tardis.mu, tardis.chi, tardis.phi, tardis.delta, tardis.gamma, theta, ] """
''' A python script to compute bandgap in zinc oxide Requires 1 argument in command line: doscar file. Example, python compute_bandgap doscar 0 10 Created by: Shiva Bhusal, Aneer Lamichhane. ''' import sys ''' Function to convert numbers in E+ and E- exponential format to normal floating point numbers. ''' def stringToFloat(myStr): if 'E+' in myStr: myStr=myStr.split('E+') return float(myStr[0])*pow(10,float(myStr[1])) elif 'E-' in myStr: myStr=myStr.split('E-') return float(myStr[0])* pow(10,float(myStr[1])*-1) else: return float(myStr) doscarFile=open(sys.argv[1]) seriesList=[] # List to keep the series of values in each Gaps. is_zero=False ''' Reads each lines from the Doscar file, filtres out the lines with first column in the range -3 to 3. For each of these lines, finds the first occurance of 0 in the 2nd column Appends the result until it finds the first occurance of non-zero. Appends the first first occurance of non-zero. The loop stops. ''' tempSeries=[] for lines in doscarFile: lines=lines.strip().split(' ') # Two spaces. if stringToFloat(lines[1])==0: tempSeries.append([stringToFloat(lines[0]),stringToFloat(lines[1])]) is_zero=True if is_zero==True: if stringToFloat(lines[1])!=0: tempSeries.append([stringToFloat(lines[0]),stringToFloat(lines[1])]) seriesList.append(tempSeries) tempSeries=[] is_zero=False doscarFile.close() print("Total Gaps:" +str(len(seriesList))) gapList=[] for series in seriesList: start=series[0][0] end=series[len(series)-1][0] gap=end-start gapList.append(gap) #In case, list is needed in the future. print('Start:' +str(start)+' End:'+str(end)+' Gap:'+str(gap))
from datetime import date from django.db import models from groups.models import Student from subjects.models import Lesson, Task class Attendance(models.Model): visit = models.BooleanField(default=False) lesson = models.ForeignKey(Lesson, on_delete=models.CASCADE) student = models.ForeignKey(Student, on_delete=models.CASCADE) class Result(models.Model): rating = models.FloatField(default=0) task = models.ForeignKey(Task, on_delete=models.CASCADE) student = models.ForeignKey(Student, on_delete=models.CASCADE) date = models.DateField(default=date.today)
from . import UserTestCase, HTTPTestMixin class LoginTest(UserTestCase, HTTPTestMixin): def test_get_login(self): response = self.anon_user.get('login') data = self.assert200(response) def test_login_valid(self): response = self.anon_user.post('/login', data={ 'password': 'password', 'email': 'bob@example.com' }) self.assert302(response) def test_login_invalid(self): response = self.anon_user.post('/login', data={ 'password': 'notthepassword', 'email': 'bob@example.com', }) self.assert401(response) def test_login_unknown_user(self): response = self.anon_user.post('/login', data={ 'password': 'notthepassword', 'email': 'anna@example.com', }) self.assert401(response) def test_logout(self): response = self.admin_user.get('/logout') self.assert302(response)
from TradingGym.OrderBook import OrderBook class Strategy: """ Implements base strategy which holds constant orders """ def __init__(self): self.sleep = 100 # ms def action(self, position, history, old_book, market_book): """Override this method in subclasses""" new_book = OrderBook() new_book.book = (old_book.book[0].copy(), old_book.book[1].copy()) return new_book, self.sleep # order-book held by our strategy and time until next rebalancing class SpreadStrategy(Strategy): """ Implements strategy which places orders on best bid-ask prices """ def __init__(self, value = 10, offset = 10): super().__init__() self.value = value self.offset = offset def action(self, position, history, old_book, market_book): new_book = OrderBook() new_book.book[0][max(market_book.book[0].keys()) - self.offset] = self.value new_book.book[1][min(market_book.book[1].keys()) + self.offset] = self.value return new_book, self.sleep
import sys import numpy as np #import matplotlib.pyplot as plt #NOTES FROM ROSS - 9/9/15 #NOTE: W should be 42x7 #NOTE: Bias should be 1x7 #for linear regression - #loss = 0.5*sum((scores-targets)^2) #scores = Wx + b #dL/dW = dL/dscores * dscores/dW #dL/dscores = (score - y) #dscores/dW = X #so #dL/dW = (score - y) * X #you can then update the weights with this gradient #read the data file dataFilename = "../mocap_test/labelled_data.txt" if(len(sys.argv) > 1): dataFilename = sys.argv[1] txtfile = open(dataFilename) lines = txtfile.read().split("\n") #remove the field names fieldnames = lines.pop(0).strip().split("\t") #remove fieldnames of frame, time and valid fieldnames.pop(0) fieldnames.pop(0) fieldnames.pop() data = [] labels = [] for line in lines: fields = line.strip().split("\t") if(len(fields) != len(fieldnames) + 3): continue #take out frame num fields.pop(0) #take out time fields.pop(0) #now take out the last column - it is the valid indicator fields.pop() data.append(fields[:len(fields) - 7]) labels.append(fields[len(fields) - 7:]) N = len(data) #number of training examples - around 4K D = len(data[0]) #dimensionality - around 42 K = 1 #there are no classes as this is regression LABEL_DIM = 7 X = np.zeros((N*K,D)) y = np.zeros((N*K,LABEL_DIM)) #copy data into X for row in range(N): for column in range(D): X[row, column] = float(data[row][column]) #Slow way #copy labels into Y for row in range(N): for column in range(LABEL_DIM): y[row, column] = float(labels[row][column]) #Slow way print "done importing data" #NOTE: I manually checked parsing... it is correct. #Train a Linear Classifier # initialize parameters randomly W = 0.01 * np.random.randn(D,LABEL_DIM) #This is 42 weights... looks right(?) b = np.zeros((1,LABEL_DIM)) #Just one bias # some hyperparameters step_size = 1e-5 reg = 1e-3 # regularization strength # gradient descent loop num_examples = X.shape[0] for i in xrange(50000): # evaluate class scores, [N x K] scores = np.dot(X, W) + b #compute the L2 loss score_diff = np.subtract(scores, y) L2_loss = 0.5 * np.sum(np.multiply(score_diff,score_diff)) data_loss = L2_loss reg_loss = 0.5*reg*np.sum(W*W) #this stays the same loss = data_loss + reg_loss #this stays the same if i % 100 == 0: print "iteration %d: loss %f" % (i, loss) # compute the gradient on scores dscores = score_diff # backpropate the gradient to the parameters (W,b) dW = np.dot(X.T, dscores) db = np.sum(dscores, axis=0, keepdims=True) dW += reg*W # regularization gradient # perform a parameter update W += -step_size * dW # evaluate training set accuracy scores = np.dot(X, W) + b score_diff = np.subtract(scores,y) distances = np.sqrt(np.multiply(score_diff, score_diff)) avg_distance = np.sum(distances)/num_examples #predicted_class = np.argmax(scores, axis=1) print 'training accuracy (distance): %.2f meters' % avg_distance # data units are in meters.. although we mixed in a quaternion
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Apache Beam SDK version information and utilities.""" import re __version__ = '0.6.0' # The following utilities are legacy code from the Maven integration; # see BEAM-378 for further details. # Reads the actual version from pom.xml file, def get_version_from_pom(): with open('pom.xml', 'r') as f: pom = f.read() regex = (r'.*<parent>\s*' r'<groupId>[a-z\.]+</groupId>\s*' r'<artifactId>[a-z\-]+</artifactId>\s*' r'<version>([0-9a-zA-Z\.\-]+)</version>.*') pattern = re.compile(str(regex)) search = pattern.search(pom) version = search.group(1) version = version.replace("-SNAPSHOT", ".dev") return version # Synchronizes apache_beam.__version__ field for later usage def sync_version(version): init_path = 'apache_beam/__init__.py' regex = r'^__version__\s*=\s*".*"' with open(init_path, "r") as f: lines = f.readlines() with open(init_path, "w") as f: for line in lines: if re.search(regex, line): f.write(re.sub(regex, '__version__ = "%s"' % version, line)) else: f.write(line)
from concurrent.futures import ThreadPoolExecutor from concurrent.futures._base import TimeoutError import datetime import shutil import time import pytest import requests from .test_utils import * from glide import * def test_placeholder_node(rootdir): nodes = PlaceholderNode("extract") | CSVLoad("load") glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider["extract"] = CSVExtract("extract") with open(outfile, "w") as f: glider.consume([infile], extract=dict(chunksize=10, nrows=20), load=dict(f=f)) def test_profiler_node(rootdir): nodes = Profile("profile") | CSVExtract("extract") | CSVLoad("load") glider, infile, outfile = file_glider(rootdir, "csv", nodes) with open(outfile, "w") as f: glider.consume([infile], extract=dict(chunksize=10, nrows=20), load=dict(f=f)) def test_filter_node(rootdir): nodes = ( CSVExtract("extract") | Filter("filter", func=lambda n, d: len(d) == 5) | Reduce("reduce", flatten=True) | LenPrint("len") | CSVLoad("load") | AssertFunc("length_check", func=lambda n, d: len(d) == 5) ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) with open(outfile, "w") as f: glider.consume([infile], extract=dict(chunksize=10, nrows=15), load=dict(f=f)) def test_assert_node(rootdir): nodes = ( CSVExtract("extract", chunksize=10, nrows=20) | AssertFunc("length_check", func=lambda node, data: len(data) == 10) | CSVLoad("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) with open(outfile, "w") as f: glider.consume([infile], load=dict(f=f)) def parity_zip_router(row): if int(row["Zip_Code"]) % 2 == 0: return "even" return "odd" def threshold_zip_router(row): zipcode = int(row["Zip_Code"]) prepend = "odd" if zipcode % 2 == 0: prepend = "even" if zipcode >= 1020: return "%s_large" % prepend return "%s_small" % prepend def test_router_function(rootdir): nodes = ( CSVExtract("extract", nrows=20) | IterPush("iter") | [parity_zip_router, Print("even"), Print("odd")] ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) def test_window_push(rootdir): nodes = ( CSVExtract("extract", nrows=5) | WindowPush("window", size=3) | Print("print") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) def test_window_reduce(rootdir): nodes = ( CSVExtract("extract", nrows=5) | IterPush("iter") | WindowReduce("window", size=3) | Print("print") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) class ZipGroupByDMA(GroupByNode): def key(self, row): key = row["DMA_Description"] return key def run(self, batch): self.push({batch[0]["DMA_Description"]: [z["Zip_Code"] for z in batch]}) def test_group_by_node(rootdir): nodes = ( CSVExtract("extract", nrows=20) | IterPush("iter") | ZipGroupByDMA("group") | Print("print") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) def test_complex_pipeline(rootdir): nodes = ( CSVExtract("extract", nrows=40) | IterPush("iter") | [ parity_zip_router, ( Print("even") | [threshold_zip_router, Print("even_large"), Print("even_small")] ), ( Print("odd") | [threshold_zip_router, Print("odd_large"), Print("odd_small")] ), ] ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) large = Print("large") small = Print("small") reducer = Reduce("reduce") combined = LenPrint("combined") large.add_downstream(reducer) small.add_downstream(reducer) reducer.add_downstream(combined) glider["even_large"].add_downstream(large) glider["odd_large"].add_downstream(large) glider["even_small"].add_downstream(small) glider["odd_small"].add_downstream(small) glider.consume([infile]) if shutil.which("dot"): filename = "%s/pipeline_plot.png" % test_config["OutputDirectory"] print("Found dot package, printing pipeline graph to %s" % filename) glider.plot(filename) def test_map(rootdir): nodes = ( CSVExtract("extract", nrows=10) | Map("transform", func=row_lower, as_list=True) | CSVLoad("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) with open(outfile, "w") as f: glider.consume([infile], load=dict(f=f)) def test_func(rootdir): nodes = ( CSVExtract("extract", nrows=10) | Func("transform", func=lower_rows) | Print("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) def test_dict_key_transform(rootdir): nodes = ( CSVExtract("extract", nrows=10) | DictKeyTransform( "transform", **{"zip code": lambda x: x["Zip_Code"]}, drop=["Zip_Code"] ) | PrettyPrint("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) def test_hash_key(rootdir): nodes = CSVExtract("extract", nrows=10) | HashKey("transform") | PrettyPrint("load") glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) def get_json_helper(url, **kwargs): resp = requests.get(url, **kwargs) return resp.json() def test_poll_func(rootdir): glider = Glider( PollFunc( "poll", func=get_json_helper, result_param="id", result_value=1, data_param="title", ) | Print("print") ) glider.consume(["https://jsonplaceholder.typicode.com/todos/1"]) def test_process_pool_submit(rootdir): nodes = ( CSVExtract("extract", nrows=100) | ProcessPoolSubmit("transform", push_type=PushTypes.Result) | CSVLoad("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) with open(outfile, "w") as f: glider.consume([infile], transform=dict(func=lower_rows), load=dict(f=f)) def test_process_pool_reducer(rootdir): nodes = ( CSVExtract("extract", nrows=10) | ProcessPoolSubmit("transform") | FuturesReduce("reducer", flatten=True) | Print("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile], transform=dict(func=lower_rows)) def test_thread_pool_submit(rootdir): nodes = ( CSVExtract("extract", nrows=10) | ThreadPoolSubmit( "transform", push_type=PushTypes.Result, executor_kwargs=dict(max_workers=4) ) | Print("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile], transform=dict(func=lower_rows)) def test_pool_submit_executor_param(rootdir): nodes = ( CSVExtract("extract", nrows=10) | ThreadPoolSubmit( "transform", push_type=PushTypes.Result, executor_kwargs=dict(max_workers=4) ) | Print("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) with ThreadPoolExecutor(max_workers=4) as executor, open(outfile, "w") as f: glider.consume([infile], transform=dict(func=lower_rows, executor=executor)) def sleep2(x): time.sleep(1) def test_pool_timeout(rootdir): nodes = ( CSVExtract("extract", nrows=10) | ProcessPoolSubmit( "transform", push_type=PushTypes.Result, executor_kwargs=dict(max_workers=4), timeout=0.5, ) | Print("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) with pytest.raises(TimeoutError), open(outfile, "w") as f: glider.consume([infile], transform=dict(func=sleep2)) def test_flatten(rootdir): nodes = ( CSVExtract("extract", nrows=10) | ProcessPoolSubmit("transform") | FuturesReduce("reducer", flatten=False) | Flatten("flatten") | Print("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile], transform=dict(func=lower_rows)) def test_update_downstream_context(rootdir): nodes = CSVExtract("extract", nrows=10) | [ FormatPrint("print1"), FormatPrint("print2"), ] glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider["extract"].update_downstream_context(dict(indent=2)) glider.consume([infile]) class UpdateRequiredContextTest(Node): def run(self, data, outfile=None): with open(outfile, "w") as f: self.update_downstream_context(dict(f=f)) self.push(data) def test_update_downstream_context_required_arg(rootdir): nodes = ( CSVExtract("extract", nrows=10) | PlaceholderNode("context") | CSVLoad("load") ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider["context"] = UpdateRequiredContextTest("context", outfile=outfile) glider.consume([infile]) def test_context_push_node(rootdir): nodes = ( CSVExtract("extract", nrows=10) | ContextPush("context", func=lambda node, data: dict(indent=4)) | [FormatPrint("print1"), FormatPrint("print2")] ) glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) def test_config_context_json(rootdir): nodes = CSVExtract( "extract", nrows=ConfigContext("config_context.json", key="nrows") ) | LenPrint("print") glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) def test_config_context_yaml(rootdir): nodes = CSVExtract( "extract", nrows=ConfigContext("config_context.yaml", key="nrows") ) | LenPrint("print") glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) def test_config_context_ini(rootdir): nodes = CSVExtract( "extract", nrows=ConfigContext( "config_context.ini", key=lambda x: int(x["TEST"]["nrows"]) ), ) | LenPrint("print") glider, infile, outfile = file_glider(rootdir, "csv", nodes) glider.consume([infile]) def test_datetime_window_push(): nodes = DateTimeWindowPush("windows") | PrettyPrint("print") glider = Glider(nodes) today = datetime.date.today() glider.consume( None, windows=dict( start_date=today - datetime.timedelta(days=3), end_date=today, num_windows=2 ), ) def test_date_window_push(): nodes = DateWindowPush("windows") | PrettyPrint("print") glider = Glider(nodes) today = datetime.date.today() now = datetime.datetime.now() glider.consume( None, windows=dict( start_date=datetime.datetime(2019, 10, 25, 3, 2, 1), end_date=datetime.datetime(2019, 10, 28, 3, 2, 1), ), )
from boa3.builtin import public @public def main(value: str, some_bytes: bytes) -> bool: return value not in some_bytes
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Dict, List, Optional from botorch.models.gp_regression import FixedNoiseGP from botorch.models.kernels.contextual_lcea import LCEAKernel from botorch.models.kernels.contextual_sac import SACKernel from torch import Tensor class SACGP(FixedNoiseGP): """The GP uses Structural Additive Contextual(SAC) kernel. Args: train_X: (n x d) X training data. train_Y: (n x 1) Y training data. train_Yvar: (n x 1) Noise variances of each training Y. decomposition: Keys are context names. Values are the indexes of parameters belong to the context. The parameter indexes are in the same order across contexts. """ def __init__( self, train_X: Tensor, train_Y: Tensor, train_Yvar: Tensor, decomposition: Dict[str, List[int]], ) -> None: super().__init__(train_X=train_X, train_Y=train_Y, train_Yvar=train_Yvar) self.covar_module = SACKernel( decomposition=decomposition, batch_shape=self._aug_batch_shape, device=train_X.device, ) self.decomposition = decomposition self.to(train_X) class LCEAGP(FixedNoiseGP): r"""The GP with Latent Context Embedding Additive (LCE-A) Kernel. Note that the model does not support batch training. Input training data sets should have dim = 2. Args: train_X: (n x d) X training data. train_Y: (n x 1) Y training data. train_Yvar: (n x 1) Noise variance of Y. decomposition: Keys are context names. Values are the indexes of parameters belong to the context. The parameter indexes are in the same order across contexts. cat_feature_dict: Keys are context names and values are list of categorical features i.e. {"context_name" : [cat_0, ..., cat_k]}. k equals to number of categorical variables. If None, we use context names in the decomposition as the only categorical feature i.e. k = 1 embs_feature_dict: Pre-trained continuous embedding features of each context. embs_dim_list: Embedding dimension for each categorical variable. The length equals to num of categorical features k. If None, emb dim is set to 1 for each categorical variable. context_weight_dict: Known population Weights of each context. """ def __init__( self, train_X: Tensor, train_Y: Tensor, train_Yvar: Tensor, decomposition: Dict[str, List[int]], train_embedding: bool = True, cat_feature_dict: Optional[Dict] = None, embs_feature_dict: Optional[Dict] = None, embs_dim_list: Optional[List[int]] = None, context_weight_dict: Optional[Dict] = None, ) -> None: super().__init__(train_X=train_X, train_Y=train_Y, train_Yvar=train_Yvar) self.covar_module = LCEAKernel( decomposition=decomposition, batch_shape=self._aug_batch_shape, train_embedding=train_embedding, cat_feature_dict=cat_feature_dict, embs_feature_dict=embs_feature_dict, embs_dim_list=embs_dim_list, context_weight_dict=context_weight_dict, device=train_X.device, ) self.decomposition = decomposition self.to(train_X)
import unittest from poker.card import Card from poker.hand import Hand from poker.validators import PairValidator class HandTest(unittest.TestCase): def test_starts_out_with_no_cards(self): hand = Hand() self.assertEqual(hand.cards, []) def test_shows_all_its_cards_in_technical_representation(self): cards = [ Card(rank = "Ace", suit = "Diamonds"), Card(rank = "7", suit = "Clubs") ] hand = Hand() hand.add_cards(cards) self.assertEqual( repr(hand), "7 of Clubs, Ace of Diamonds" ) def test_receives_and_stores_cards(self): ace_of_spades = Card(rank = "Ace", suit = "Spades") six_of_clubs = Card(rank = "6", suit = "Clubs") cards = [ ace_of_spades, six_of_clubs ] hand = Hand() hand.add_cards(cards) self.assertEqual( hand.cards, [ six_of_clubs, ace_of_spades ] ) def test_interacts_with_validator_to_get_winning_hand(self): class HandWithOneValidator(Hand): VALIDATORS = (PairValidator,) ace_of_hearts = Card(rank = "Ace", suit = "Hearts") ace_of_spades = Card(rank = "Ace", suit = "Spades") cards = [ace_of_hearts, ace_of_spades] hand = HandWithOneValidator() hand.add_cards(cards = cards) self.assertEqual( hand.best_rank(), (0, "Pair", [ace_of_hearts, ace_of_spades]) )
from django.contrib import admin from . import models from apps.common.utils import register class UserGroupAdmin(admin.ModelAdmin): list_display = ('id', 'name', 'type', 'app') admin.site.register(models.UserGroup, UserGroupAdmin) register('user_group')
from datetime import timedelta from beanie import DeleteRules from fastapi import APIRouter, Depends, Response from fastapi.logger import logger from awesome_sso.exceptions import BadRequest, HTTPException, InternalServerError from awesome_sso.service.depends import get_sso_user_id, sso_registration, sso_user from awesome_sso.service.settings import Settings from awesome_sso.service.user.schema import AccessToken, AwesomeUserType, RegisterModel from awesome_sso.util.jwt import SYMMETRIC_ALGORITHM, create_token router = APIRouter(tags=["sso"]) @router.get("/health_check") def health_check(): return ["OK"] @router.post("/register", summary="register user") async def register(register_model: RegisterModel = Depends(sso_registration)): try: user = await Settings[AwesomeUserType]().user_model.find_one( # type: ignore Settings[AwesomeUserType]().user_model.email == register_model.email # type: ignore ) if user is None: user = await Settings[AwesomeUserType]().user_model.register(register_model) # type: ignore else: raise BadRequest(message="user email %s taken" % register_model.email) except HTTPException as e: logger.warning(str(e)) raise e except Exception as e: logger.warning(str(e)) raise InternalServerError(message=str(e)) return user @router.post("/login", summary="get login access token", response_model=AccessToken) async def login(user: AwesomeUserType = Depends(sso_user)): jwt_payload = {"sso_user_id": str(user.sso_user_id)} token = create_token( jwt_payload, Settings.symmetric_key, SYMMETRIC_ALGORITHM, expires_delta=timedelta(days=7), ) return AccessToken(access_token=token) @router.post("/unregister") async def unregister(sso_user_id: str = Depends(get_sso_user_id)): user = await Settings[AwesomeUserType]().user_model.find_one( # type: ignore Settings[AwesomeUserType]().user_model.sso_user_id == sso_user_id # type: ignore ) if user is None: return Response(status_code=200, content="requested user not exist") else: await user.delete_data() await user.delete(link_rule=DeleteRules.DELETE_LINKS) return Response(status_code=200, content="user unregistered")
import asyncio import logging import sys import pickle from typing import Dict, Tuple SEPARATOR = b'salih' class MessageObject: def __init__(self, function_name: str, message_id: int, *args, result=None, **kwargs): self._function_name = function_name self._message_id = message_id self._args = args self._kwargs = kwargs self._result = result self._error = False @property def function_name(self): return self._function_name @property def message_id(self) -> int: return self._message_id @property def result(self): return self._result @result.setter def result(self, result): self._result = result @property def args(self) -> Tuple: return self._args @property def kwargs(self) -> Dict: return self._kwargs @property def error(self) -> bool: return self._error @error.setter def error(self, error: bool): self._error = error class AsyncIPyCLink: """Represents an abstracted async socket connection that handles communication between a :class:`AsyncIPyCHost` and a :class:`AsyncIPyCClient` This class is internally managed and typically should not be instantiated on its own. Parameters ----------- reader: :class:`asyncio.StreamReader` The managed inbound data reader. writer: :class:`asyncio.StreamWriter` The managed outbound data writer client: Union[:class:`AsyncIPyCHost`, :class:`AsyncIPyCClient`] The communication object that is responsible for managing this connection. """ def __init__(self, reader: asyncio.StreamReader, writer: asyncio.StreamWriter, client): self._reader = reader self._writer = writer self._logger = logging.getLogger(self.__class__.__name__) self._logger.debug(f"Established link") self._active = True self._client = client self._tasks: [Dict, asyncio.Future] = {} async def close(self): """|coro| Closes all communication channels with a peer and attempts to send them EOF. Informs the parent :class:`AsyncIPyCHost` or :class:`AsyncIPyCClient` of the closed connection. """ self._logger.debug(f"Beginning to close link") self._reader = None if self._writer.can_write_eof(): self._writer.write_eof() try: await self._writer.drain() except ConnectionAbortedError: pass self._writer.close() if sys.version_info >= (3, 7): await self._writer.wait_closed() self._writer = None self._active = False self._client.connections.remove(self) self._logger.debug(f"Closed link") def is_active(self): """:class:`bool`: Indicates if the communication channels are closed, at EOF, or no longer viable.""" # Quickly check if the state of the reader changed from the remote if not self._reader or self._reader.at_eof() or not self._writer: self._active = False return self._active async def send(self, message_object: MessageObject, drain_immediately=True): """|coro| Send a serializable object to the receiving end. If the object is not a custom serializable object, python's builtins will be used. If the object is a custom serializable, the receiving end must also have this object in their list of custom deserializers. .. warning:: After the result of serialization, either via custom or builtin, the bytes ``0x01`` and ``0x02`` must not appear anywhere. If your payload does contain these bytes or chars, you must substitute them prior to this function call. Parameters ------------ message_object: :class:`object` The object to be sent to the receiving end. drain_immediately: Optional[:class:`bool`] Whether to flush the output buffer right now or not. Defaults to ``True``. """ if not self.is_active(): self._logger.debug(f"Attempted to send data when the writer or link is closed! Ignoring.") return self._writer.write(serialize(message_object)) if drain_immediately: self._logger.debug(f"Draining the writer") await self._writer.drain() task = asyncio.Future() self._tasks[message_object.message_id] = task return await task async def start_listening(self): while self.is_active(): await self.receive() async def receive(self): """|coro| Receive a serializable object from the other end. If the object is not a custom serializable object, python's builtins will be used, otherwise the custom defined deserializer will be used. Returns -------- Optional[:class:`object`] The object that was sent from the sending end. If the deserialization was not successful and ``return_on_error`` was set to ``True``, or EOF was encountered resulting in a closed connection, ``None`` is returned. """ if not self.is_active(): self._logger.debug(f"Attempted to read data when the writer or link is closed! Returning nothing.") return self._logger.debug(f"Waiting for communication from the other side") try: data = await self._reader.readuntil(separator=SEPARATOR) except ConnectionAbortedError: self._logger.debug(f"The downstream connection was aborted") await self.close() return except asyncio.exceptions.IncompleteReadError: self._logger.debug(f'Read canceled for incomplete read error') await self.close() return message_object = deserialize(data) if not isinstance(message_object, MessageObject): raise Exception("None Message Object Received") if self._reader.at_eof(): self._logger.debug(f"The downstream writer closed the connection") await self.close() return None if self._client.__class__.__name__ == "AsyncIPyCHost": result = None try: func = getattr(self._client.klass, message_object.function_name) result = await func(*message_object.args, **message_object.kwargs) if asyncio.iscoroutinefunction(func)\ else func(*message_object.args, **message_object.kwargs) except Exception as e: result = e message_object.error = True finally: message_object.result = result self._writer.write(serialize(message_object)) else: task = self._tasks.pop(message_object.message_id) if message_object.error: task.set_exception(message_object.result) else: task.set_result(message_object.result) def serialize(message_object: MessageObject) -> bytes: return pickle.dumps(message_object) + SEPARATOR def deserialize(data: bytes) -> MessageObject: return pickle.loads(data[:-len(SEPARATOR)])
"""Overview of lists.""" from functions import demo, placeholders, getinput, Status, Demo index = placeholders('index') item = placeholders('item') lst = placeholders('filled_list') slice2 = placeholders('slice2') slice3 = placeholders('slice3') # A list is, well, a list of things. They are similar to # arrays in other programming languages. # They can contain any data type and hold any number of # items (to an extent). # Syntax for lists: empty_list = [] filled_list = [1, 'Hello', 3.75] # Lists use square brackets [] with comma-separated values inside # List methods: # add an item to the end of a list lst.append(item) # remove the first occurence of an item lst.remove(item) # remove an item by index lst.pop(index) # add an item at the index given lst.insert(index, item) # join 2 lists together lst.extend(lst) # count the number of times an item appears in the list lst.count(item) # get the number of items in the list len(lst) # get an item by its index in the list - the first item # has an index of 0. The last item in the list can be # retreived using -1 as the index. The index of the last # item is 1 less than the list's length lst[index] lst[1] # 2nd item in list lst[-2] # 2nd from last item # get a portion of items out of a list using a slice: # the 1st is the starting index and the 2nd is the ending # index which is not included. So a slice of 1:4 will return # items at index 1, 2, 3 (but not 4). lst[slice2] lst[0:3] lst[:3] # omitting 1st value means it starts at the start lst[2:] # omitting 2nd value means it finishes at the end # A third parameter can be given which denotes the 'step' rate. # A step of 2 means it will return the items but skip every other item lst[slice3] lst[0:4:2] # the indexes 0, 2 are returned lst[1::3] # the indexes 1, 4, 7, etc... are returned until the end # of the list as the end parameter is omitted demo('List of Numbers') numbers = Demo('numbers') results = Demo('result') numbers.demo = [1, 2, 3, 4, 5, 6, 7, 8] numbers('create a list of numbers from 1 to 8') numbers.demo.append(9) numbers('add 9 to the end of the list') numbers.demo.insert(0, 0) # index^ ^item numbers('add number 0 to the start') results.demo = numbers.demo[3] results('retreive index 3 from the list') results.demo = numbers.demo[4:7] results('get items 4-7 (excluding 7) from the list') results.demo = numbers.demo[:8:3] results('get every 3rd item up to, but not including, 8')
# Networked Tecnology # * ______________ networking ______________ # * | application | <==> | application | # * -------------- -------------- # the <========> is called 'socket' (TCP connections) # internet can be a socket # A 'port' is an application-specific software communications endpoint (TCP connections) # é tipo as portas do Monstros SA # python como sempre ja ajuda nois, ele ja tem um suporte pra TCP sockets import socket mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) mysock.connect(('data.pr4e.org', 80)) # host: data.pr4e.org # port: 80 # até o momeento apenas foi efetuada a conexão entre as duas aplicações # p/ garantir q a comunicação seja padronizada e eficiente há protocolos # ! HTTP (Hypertext Transfer Protocol) # A set of protocols/rules that all the communications uses # vamos pra um programa mais real # * ______________ socket ,_________________ # * | my computer |================(Port 80) www.py4e.com | # * -------------- '----------------- import socket mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) mysock.connect(('data.pr4e.org', 80)) cmd = 'GET http://data.pr4e.org/romeo.txt HTTP/1.0\r\n\r\n'.encode() mysock.send(cmd) while True: data = mysock.recv(512) if (len(data) < 1): # EOF break print(data.decode()) mysock.close() # we kinda send a request of some data, than when we recieve we print it # PLUS: HOW INTERNET WORKS < http://www.net-intro.com/ >
#!/usr/bin/python # -*- coding: utf-8 -*- import numpy as np import sys def get_xi_2d(quadrilateral,p): [p0, p1, p2, p3] = quadrilateral xp1 = p[0] xp2 = p[1] xp3 = p[2] x11 = p0[0] x12 = p0[1] x13 = p0[2] x21 = p1[0] x22 = p1[1] x23 = p1[2] x31 = p2[0] x32 = p2[1] x33 = p2[2] x41 = p3[0] x42 = p3[1] x43 = p3[2] xi1 = (2*x11*x32 - x11*x42 - 2*x12*x31 + x12*x41 - x21*x32 + x22*x31 + xp1*(x12 - x22 - x32 + x42) + xp2*(-x11 + x21 + x31 - x41) + np.sqrt(x11**2*x42**2 - 2*x11**2*x42*xp2 + x11**2*xp2**2 - 2*x11*x12*x41*x42 + 2*x11*x12*x41*xp2 + 2*x11*x12*x42*xp1 - 2*x11*x12*xp1*xp2 - 2*x11*x21*x32*x42 + 2*x11*x21*x32*xp2 + 2*x11*x21*x42*xp2 - 2*x11*x21*xp2**2 - 2*x11*x22*x31*x42 + 2*x11*x22*x31*xp2 + 4*x11*x22*x32*x41 - 4*x11*x22*x32*xp1 - 4*x11*x22*x41*xp2 + 2*x11*x22*x42*xp1 + 2*x11*x22*xp1*xp2 + 2*x11*x31*x42*xp2 - 2*x11*x31*xp2**2 - 4*x11*x32*x41*xp2 + 2*x11*x32*x42*xp1 + 2*x11*x32*xp1*xp2 + 2*x11*x41*x42*xp2 + 2*x11*x41*xp2**2 - 2*x11*x42**2*xp1 - 2*x11*x42*xp1*xp2 + x12**2*x41**2 - 2*x12**2*x41*xp1 + x12**2*xp1**2 + 4*x12*x21*x31*x42 - 4*x12*x21*x31*xp2 - 2*x12*x21*x32*x41 + 2*x12*x21*x32*xp1 + 2*x12*x21*x41*xp2 - 4*x12*x21*x42*xp1 + 2*x12*x21*xp1*xp2 - 2*x12*x22*x31*x41 + 2*x12*x22*x31*xp1 + 2*x12*x22*x41*xp1 - 2*x12*x22*xp1**2 + 2*x12*x31*x41*xp2 - 4*x12*x31*x42*xp1 + 2*x12*x31*xp1*xp2 + 2*x12*x32*x41*xp1 - 2*x12*x32*xp1**2 - 2*x12*x41**2*xp2 + 2*x12*x41*x42*xp1 - 2*x12*x41*xp1*xp2 + 2*x12*x42*xp1**2 + x21**2*x32**2 - 2*x21**2*x32*xp2 + x21**2*xp2**2 - 2*x21*x22*x31*x32 + 2*x21*x22*x31*xp2 + 2*x21*x22*x32*xp1 - 2*x21*x22*xp1*xp2 + 2*x21*x31*x32*xp2 - 4*x21*x31*x42*xp2 + 2*x21*x31*xp2**2 - 2*x21*x32**2*xp1 + 2*x21*x32*x41*xp2 + 2*x21*x32*x42*xp1 - 2*x21*x32*xp1*xp2 - 2*x21*x41*xp2**2 + 2*x21*x42*xp1*xp2 + x22**2*x31**2 - 2*x22**2*x31*xp1 + x22**2*xp1**2 - 2*x22*x31**2*xp2 + 2*x22*x31*x32*xp1 + 2*x22*x31*x41*xp2 + 2*x22*x31*x42*xp1 - 2*x22*x31*xp1*xp2 - 4*x22*x32*x41*xp1 + 2*x22*x32*xp1**2 + 2*x22*x41*xp1*xp2 - 2*x22*x42*xp1**2 + x31**2*xp2**2 - 2*x31*x32*xp1*xp2 - 2*x31*x41*xp2**2 + 2*x31*x42*xp1*xp2 + x32**2*xp1**2 + 2*x32*x41*xp1*xp2 - 2*x32*x42*xp1**2 + x41**2*xp2**2 - 2*x41*x42*xp1*xp2 + x42**2*xp1**2))/(2*(x11*x32 - x11*x42 - x12*x31 + x12*x41 - x21*x32 + x21*x42 + x22*x31 - x22*x41)) xi2a = (2*x11*x22 - x11*x42 - 2*x12*x21 + x12*x41 + x21*x32 - x22*x31 + xp1*(x12 - x22 - x32 + x42) + xp2*(-x11 + x21 + x31 - x41) - np.sqrt(x11**2*x42**2 - 2*x11**2*x42*xp2 + x11**2*xp2**2 - 2*x11*x12*x41*x42 + 2*x11*x12*x41*xp2 + 2*x11*x12*x42*xp1 - 2*x11*x12*xp1*xp2 - 2*x11*x21*x32*x42 + 2*x11*x21*x32*xp2 + 2*x11*x21*x42*xp2 - 2*x11*x21*xp2**2 - 2*x11*x22*x31*x42 + 2*x11*x22*x31*xp2 + 4*x11*x22*x32*x41 - 4*x11*x22*x32*xp1 - 4*x11*x22*x41*xp2 + 2*x11*x22*x42*xp1 + 2*x11*x22*xp1*xp2 + 2*x11*x31*x42*xp2 - 2*x11*x31*xp2**2 - 4*x11*x32*x41*xp2 + 2*x11*x32*x42*xp1 + 2*x11*x32*xp1*xp2 + 2*x11*x41*x42*xp2 + 2*x11*x41*xp2**2 - 2*x11*x42**2*xp1 - 2*x11*x42*xp1*xp2 + x12**2*x41**2 - 2*x12**2*x41*xp1 + x12**2*xp1**2 + 4*x12*x21*x31*x42 - 4*x12*x21*x31*xp2 - 2*x12*x21*x32*x41 + 2*x12*x21*x32*xp1 + 2*x12*x21*x41*xp2 - 4*x12*x21*x42*xp1 + 2*x12*x21*xp1*xp2 - 2*x12*x22*x31*x41 + 2*x12*x22*x31*xp1 + 2*x12*x22*x41*xp1 - 2*x12*x22*xp1**2 + 2*x12*x31*x41*xp2 - 4*x12*x31*x42*xp1 + 2*x12*x31*xp1*xp2 + 2*x12*x32*x41*xp1 - 2*x12*x32*xp1**2 - 2*x12*x41**2*xp2 + 2*x12*x41*x42*xp1 - 2*x12*x41*xp1*xp2 + 2*x12*x42*xp1**2 + x21**2*x32**2 - 2*x21**2*x32*xp2 + x21**2*xp2**2 - 2*x21*x22*x31*x32 + 2*x21*x22*x31*xp2 + 2*x21*x22*x32*xp1 - 2*x21*x22*xp1*xp2 + 2*x21*x31*x32*xp2 - 4*x21*x31*x42*xp2 + 2*x21*x31*xp2**2 - 2*x21*x32**2*xp1 + 2*x21*x32*x41*xp2 + 2*x21*x32*x42*xp1 - 2*x21*x32*xp1*xp2 - 2*x21*x41*xp2**2 + 2*x21*x42*xp1*xp2 + x22**2*x31**2 - 2*x22**2*x31*xp1 + x22**2*xp1**2 - 2*x22*x31**2*xp2 + 2*x22*x31*x32*xp1 + 2*x22*x31*x41*xp2 + 2*x22*x31*x42*xp1 - 2*x22*x31*xp1*xp2 - 4*x22*x32*x41*xp1 + 2*x22*x32*xp1**2 + 2*x22*x41*xp1*xp2 - 2*x22*x42*xp1**2 + x31**2*xp2**2 - 2*x31*x32*xp1*xp2 - 2*x31*x41*xp2**2 + 2*x31*x42*xp1*xp2 + x32**2*xp1**2 + 2*x32*x41*xp1*xp2 - 2*x32*x42*xp1**2 + x41**2*xp2**2 - 2*x41*x42*xp1*xp2 + x42**2*xp1**2))/(2*(x11*x22 - x11*x42 - x12*x21 + x12*x41 + x21*x32 - x22*x31 + x31*x42 - x32*x41)) xi2b = (x11*xi1 - x11 - x21*xi1 + xp1)/(x11*xi1 - x11 - x21*xi1 - x31*xi1 + x31 + x41*xi1) return (xi1,xi2a,xi2b) def get_xi_3d(hexahedron,p): [p0, p1, p2, p3, p4, p5, p6, p7] = hexahedron xp1 = p[0] xp2 = p[1] xp3 = p[2] x11 = p0[0] x12 = p0[1] x13 = p0[2] x21 = p1[0] x22 = p1[1] x23 = p1[2] x31 = p2[0] x32 = p2[1] x33 = p2[2] x41 = p3[0] x42 = p3[1] x43 = p3[2] x51 = p4[0] x52 = p4[1] x53 = p4[2] x61 = p5[0] x62 = p5[1] x63 = p5[2] x71 = p6[0] x72 = p6[1] x73 = p6[2] x81 = p7[0] x82 = p7[1] x83 = p7[2] xi3 = (2*x11*x32 - x11*x72 - x11*xp2 - 2*x12*x31 + x12*x71 + x12*xp1 + x31*x52 + x31*xp2 - x32*x51 - x32*xp1 + x51*xp2 - x52*xp1 - x71*xp2 + x72*xp1 - np.sqrt(x11**2*x72**2 - 2*x11**2*x72*xp2 + x11**2*xp2**2 - 2*x11*x12*x71*x72 + 2*x11*x12*x71*xp2 + 2*x11*x12*x72*xp1 - 2*x11*x12*xp1*xp2 - 2*x11*x31*x52*x72 + 2*x11*x31*x52*xp2 + 2*x11*x31*x72*xp2 - 2*x11*x31*xp2**2 - 2*x11*x32*x51*x72 + 2*x11*x32*x51*xp2 + 4*x11*x32*x52*x71 - 4*x11*x32*x52*xp1 - 4*x11*x32*x71*xp2 + 2*x11*x32*x72*xp1 + 2*x11*x32*xp1*xp2 + 2*x11*x51*x72*xp2 - 2*x11*x51*xp2**2 - 4*x11*x52*x71*xp2 + 2*x11*x52*x72*xp1 + 2*x11*x52*xp1*xp2 + 2*x11*x71*x72*xp2 + 2*x11*x71*xp2**2 - 2*x11*x72**2*xp1 - 2*x11*x72*xp1*xp2 + x12**2*x71**2 - 2*x12**2*x71*xp1 + x12**2*xp1**2 + 4*x12*x31*x51*x72 - 4*x12*x31*x51*xp2 - 2*x12*x31*x52*x71 + 2*x12*x31*x52*xp1 + 2*x12*x31*x71*xp2 - 4*x12*x31*x72*xp1 + 2*x12*x31*xp1*xp2 - 2*x12*x32*x51*x71 + 2*x12*x32*x51*xp1 + 2*x12*x32*x71*xp1 - 2*x12*x32*xp1**2 + 2*x12*x51*x71*xp2 - 4*x12*x51*x72*xp1 + 2*x12*x51*xp1*xp2 + 2*x12*x52*x71*xp1 - 2*x12*x52*xp1**2 - 2*x12*x71**2*xp2 + 2*x12*x71*x72*xp1 - 2*x12*x71*xp1*xp2 + 2*x12*x72*xp1**2 + x31**2*x52**2 - 2*x31**2*x52*xp2 + x31**2*xp2**2 - 2*x31*x32*x51*x52 + 2*x31*x32*x51*xp2 + 2*x31*x32*x52*xp1 - 2*x31*x32*xp1*xp2 + 2*x31*x51*x52*xp2 - 4*x31*x51*x72*xp2 + 2*x31*x51*xp2**2 - 2*x31*x52**2*xp1 + 2*x31*x52*x71*xp2 + 2*x31*x52*x72*xp1 - 2*x31*x52*xp1*xp2 - 2*x31*x71*xp2**2 + 2*x31*x72*xp1*xp2 + x32**2*x51**2 - 2*x32**2*x51*xp1 + x32**2*xp1**2 - 2*x32*x51**2*xp2 + 2*x32*x51*x52*xp1 + 2*x32*x51*x71*xp2 + 2*x32*x51*x72*xp1 - 2*x32*x51*xp1*xp2 - 4*x32*x52*x71*xp1 + 2*x32*x52*xp1**2 + 2*x32*x71*xp1*xp2 - 2*x32*x72*xp1**2 + x51**2*xp2**2 - 2*x51*x52*xp1*xp2 - 2*x51*x71*xp2**2 + 2*x51*x72*xp1*xp2 + x52**2*xp1**2 + 2*x52*x71*xp1*xp2 - 2*x52*x72*xp1**2 + x71**2*xp2**2 - 2*x71*x72*xp1*xp2 + x72**2*xp1**2))/(2*x11*x32 - 2*x11*x72 - 2*x12*x31 + 2*x12*x71 + 2*x31*x52 - 2*x32*x51 + 2*x51*x72 - 2*x52*x71) xi3b = (2*x11*x32 - x11*x72 - x11*xp2 - 2*x12*x31 + x12*x71 + x12*xp1 + x31*x52 + x31*xp2 - x32*x51 - x32*xp1 + x51*xp2 - x52*xp1 - x71*xp2 + x72*xp1 + np.sqrt(x11**2*x72**2 - 2*x11**2*x72*xp2 + x11**2*xp2**2 - 2*x11*x12*x71*x72 + 2*x11*x12*x71*xp2 + 2*x11*x12*x72*xp1 - 2*x11*x12*xp1*xp2 - 2*x11*x31*x52*x72 + 2*x11*x31*x52*xp2 + 2*x11*x31*x72*xp2 - 2*x11*x31*xp2**2 - 2*x11*x32*x51*x72 + 2*x11*x32*x51*xp2 + 4*x11*x32*x52*x71 - 4*x11*x32*x52*xp1 - 4*x11*x32*x71*xp2 + 2*x11*x32*x72*xp1 + 2*x11*x32*xp1*xp2 + 2*x11*x51*x72*xp2 - 2*x11*x51*xp2**2 - 4*x11*x52*x71*xp2 + 2*x11*x52*x72*xp1 + 2*x11*x52*xp1*xp2 + 2*x11*x71*x72*xp2 + 2*x11*x71*xp2**2 - 2*x11*x72**2*xp1 - 2*x11*x72*xp1*xp2 + x12**2*x71**2 - 2*x12**2*x71*xp1 + x12**2*xp1**2 + 4*x12*x31*x51*x72 - 4*x12*x31*x51*xp2 - 2*x12*x31*x52*x71 + 2*x12*x31*x52*xp1 + 2*x12*x31*x71*xp2 - 4*x12*x31*x72*xp1 + 2*x12*x31*xp1*xp2 - 2*x12*x32*x51*x71 + 2*x12*x32*x51*xp1 + 2*x12*x32*x71*xp1 - 2*x12*x32*xp1**2 + 2*x12*x51*x71*xp2 - 4*x12*x51*x72*xp1 + 2*x12*x51*xp1*xp2 + 2*x12*x52*x71*xp1 - 2*x12*x52*xp1**2 - 2*x12*x71**2*xp2 + 2*x12*x71*x72*xp1 - 2*x12*x71*xp1*xp2 + 2*x12*x72*xp1**2 + x31**2*x52**2 - 2*x31**2*x52*xp2 + x31**2*xp2**2 - 2*x31*x32*x51*x52 + 2*x31*x32*x51*xp2 + 2*x31*x32*x52*xp1 - 2*x31*x32*xp1*xp2 + 2*x31*x51*x52*xp2 - 4*x31*x51*x72*xp2 + 2*x31*x51*xp2**2 - 2*x31*x52**2*xp1 + 2*x31*x52*x71*xp2 + 2*x31*x52*x72*xp1 - 2*x31*x52*xp1*xp2 - 2*x31*x71*xp2**2 + 2*x31*x72*xp1*xp2 + x32**2*x51**2 - 2*x32**2*x51*xp1 + x32**2*xp1**2 - 2*x32*x51**2*xp2 + 2*x32*x51*x52*xp1 + 2*x32*x51*x71*xp2 + 2*x32*x51*x72*xp1 - 2*x32*x51*xp1*xp2 - 4*x32*x52*x71*xp1 + 2*x32*x52*xp1**2 + 2*x32*x71*xp1*xp2 - 2*x32*x72*xp1**2 + x51**2*xp2**2 - 2*x51*x52*xp1*xp2 - 2*x51*x71*xp2**2 + 2*x51*x72*xp1*xp2 + x52**2*xp1**2 + 2*x52*x71*xp1*xp2 - 2*x52*x72*xp1**2 + x71**2*xp2**2 - 2*x71*x72*xp1*xp2 + x72**2*xp1**2))/(2*x11*x32 - 2*x11*x72 - 2*x12*x31 + 2*x12*x71 + 2*x31*x52 - 2*x32*x51 + 2*x51*x72 - 2*x52*x71) xi1 = (xp1*(x13*(-xi3 + 1) + x53*xi3) - xp1*(x23*(-xi3 + 1) + x63*xi3) - xp1*(x33*(-xi3 + 1) + x73*xi3) + xp1*(x43*(-xi3 + 1) + x83*xi3) - xp2*(x11*(-xi3 + 1) + x51*xi3) + xp2*(x21*(-xi3 + 1) + x61*xi3) + xp2*(x31*(-xi3 + 1) + x71*xi3) - xp2*(x41*(-xi3 + 1) + x81*xi3) + 2*(x11*(-xi3 + 1) + x51*xi3)*(x33*(-xi3 + 1) + x73*xi3) - (x11*(-xi3 + 1) + x51*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 2*(x13*(-xi3 + 1) + x53*xi3)*(x31*(-xi3 + 1) + x71*xi3) + (x13*(-xi3 + 1) + x53*xi3)*(x41*(-xi3 + 1) + x81*xi3) - (x21*(-xi3 + 1) + x61*xi3)*(x33*(-xi3 + 1) + x73*xi3) + (x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3) + np.sqrt(xp1**2*(x13*(-xi3 + 1) + x53*xi3)**2 - 2*xp1**2*(x13*(-xi3 + 1) + x53*xi3)*(x23*(-xi3 + 1) + x63*xi3) - 2*xp1**2*(x13*(-xi3 + 1) + x53*xi3)*(x33*(-xi3 + 1) + x73*xi3) + 2*xp1**2*(x13*(-xi3 + 1) + x53*xi3)*(x43*(-xi3 + 1) + x83*xi3) + xp1**2*(x23*(-xi3 + 1) + x63*xi3)**2 + 2*xp1**2*(x23*(-xi3 + 1) + x63*xi3)*(x33*(-xi3 + 1) + x73*xi3) - 2*xp1**2*(x23*(-xi3 + 1) + x63*xi3)*(x43*(-xi3 + 1) + x83*xi3) + xp1**2*(x33*(-xi3 + 1) + x73*xi3)**2 - 2*xp1**2*(x33*(-xi3 + 1) + x73*xi3)*(x43*(-xi3 + 1) + x83*xi3) + xp1**2*(x43*(-xi3 + 1) + x83*xi3)**2 - 2*xp1*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x13*(-xi3 + 1) + x53*xi3) + 2*xp1*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x23*(-xi3 + 1) + x63*xi3) + 2*xp1*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x33*(-xi3 + 1) + x73*xi3) - 2*xp1*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 2*xp1*xp2*(x13*(-xi3 + 1) + x53*xi3)*(x21*(-xi3 + 1) + x61*xi3) + 2*xp1*xp2*(x13*(-xi3 + 1) + x53*xi3)*(x31*(-xi3 + 1) + x71*xi3) - 2*xp1*xp2*(x13*(-xi3 + 1) + x53*xi3)*(x41*(-xi3 + 1) + x81*xi3) - 2*xp1*xp2*(x21*(-xi3 + 1) + x61*xi3)*(x23*(-xi3 + 1) + x63*xi3) - 2*xp1*xp2*(x21*(-xi3 + 1) + x61*xi3)*(x33*(-xi3 + 1) + x73*xi3) + 2*xp1*xp2*(x21*(-xi3 + 1) + x61*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 2*xp1*xp2*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3) + 2*xp1*xp2*(x23*(-xi3 + 1) + x63*xi3)*(x41*(-xi3 + 1) + x81*xi3) - 2*xp1*xp2*(x31*(-xi3 + 1) + x71*xi3)*(x33*(-xi3 + 1) + x73*xi3) + 2*xp1*xp2*(x31*(-xi3 + 1) + x71*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 2*xp1*xp2*(x33*(-xi3 + 1) + x73*xi3)*(x41*(-xi3 + 1) + x81*xi3) - 2*xp1*xp2*(x41*(-xi3 + 1) + x81*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 2*xp1*(x11*(-xi3 + 1) + x51*xi3)*(x13*(-xi3 + 1) + x53*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 4*xp1*(x11*(-xi3 + 1) + x51*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x33*(-xi3 + 1) + x73*xi3) + 2*xp1*(x11*(-xi3 + 1) + x51*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 2*xp1*(x11*(-xi3 + 1) + x51*xi3)*(x33*(-xi3 + 1) + x73*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 2*xp1*(x11*(-xi3 + 1) + x51*xi3)*(x43*(-xi3 + 1) + x83*xi3)**2 - 2*xp1*(x13*(-xi3 + 1) + x53*xi3)**2*(x41*(-xi3 + 1) + x81*xi3) + 2*xp1*(x13*(-xi3 + 1) + x53*xi3)*(x21*(-xi3 + 1) + x61*xi3)*(x33*(-xi3 + 1) + x73*xi3) - 4*xp1*(x13*(-xi3 + 1) + x53*xi3)*(x21*(-xi3 + 1) + x61*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 2*xp1*(x13*(-xi3 + 1) + x53*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3) + 2*xp1*(x13*(-xi3 + 1) + x53*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x41*(-xi3 + 1) + x81*xi3) - 4*xp1*(x13*(-xi3 + 1) + x53*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 2*xp1*(x13*(-xi3 + 1) + x53*xi3)*(x33*(-xi3 + 1) + x73*xi3)*(x41*(-xi3 + 1) + x81*xi3) + 2*xp1*(x13*(-xi3 + 1) + x53*xi3)*(x41*(-xi3 + 1) + x81*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 2*xp1*(x21*(-xi3 + 1) + x61*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x33*(-xi3 + 1) + x73*xi3) - 2*xp1*(x21*(-xi3 + 1) + x61*xi3)*(x33*(-xi3 + 1) + x73*xi3)**2 + 2*xp1*(x21*(-xi3 + 1) + x61*xi3)*(x33*(-xi3 + 1) + x73*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 2*xp1*(x23*(-xi3 + 1) + x63*xi3)**2*(x31*(-xi3 + 1) + x71*xi3) + 2*xp1*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x33*(-xi3 + 1) + x73*xi3) + 2*xp1*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 4*xp1*(x23*(-xi3 + 1) + x63*xi3)*(x33*(-xi3 + 1) + x73*xi3)*(x41*(-xi3 + 1) + x81*xi3) + xp2**2*(x11*(-xi3 + 1) + x51*xi3)**2 - 2*xp2**2*(x11*(-xi3 + 1) + x51*xi3)*(x21*(-xi3 + 1) + x61*xi3) - 2*xp2**2*(x11*(-xi3 + 1) + x51*xi3)*(x31*(-xi3 + 1) + x71*xi3) + 2*xp2**2*(x11*(-xi3 + 1) + x51*xi3)*(x41*(-xi3 + 1) + x81*xi3) + xp2**2*(x21*(-xi3 + 1) + x61*xi3)**2 + 2*xp2**2*(x21*(-xi3 + 1) + x61*xi3)*(x31*(-xi3 + 1) + x71*xi3) - 2*xp2**2*(x21*(-xi3 + 1) + x61*xi3)*(x41*(-xi3 + 1) + x81*xi3) + xp2**2*(x31*(-xi3 + 1) + x71*xi3)**2 - 2*xp2**2*(x31*(-xi3 + 1) + x71*xi3)*(x41*(-xi3 + 1) + x81*xi3) + xp2**2*(x41*(-xi3 + 1) + x81*xi3)**2 - 2*xp2*(x11*(-xi3 + 1) + x51*xi3)**2*(x43*(-xi3 + 1) + x83*xi3) + 2*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x13*(-xi3 + 1) + x53*xi3)*(x41*(-xi3 + 1) + x81*xi3) + 2*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x21*(-xi3 + 1) + x61*xi3)*(x33*(-xi3 + 1) + x73*xi3) + 2*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x21*(-xi3 + 1) + x61*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 2*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3) - 4*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x41*(-xi3 + 1) + x81*xi3) + 2*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 4*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x33*(-xi3 + 1) + x73*xi3)*(x41*(-xi3 + 1) + x81*xi3) + 2*xp2*(x11*(-xi3 + 1) + x51*xi3)*(x41*(-xi3 + 1) + x81*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 4*xp2*(x13*(-xi3 + 1) + x53*xi3)*(x21*(-xi3 + 1) + x61*xi3)*(x31*(-xi3 + 1) + x71*xi3) + 2*xp2*(x13*(-xi3 + 1) + x53*xi3)*(x21*(-xi3 + 1) + x61*xi3)*(x41*(-xi3 + 1) + x81*xi3) + 2*xp2*(x13*(-xi3 + 1) + x53*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x41*(-xi3 + 1) + x81*xi3) - 2*xp2*(x13*(-xi3 + 1) + x53*xi3)*(x41*(-xi3 + 1) + x81*xi3)**2 - 2*xp2*(x21*(-xi3 + 1) + x61*xi3)**2*(x33*(-xi3 + 1) + x73*xi3) + 2*xp2*(x21*(-xi3 + 1) + x61*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3) + 2*xp2*(x21*(-xi3 + 1) + x61*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x33*(-xi3 + 1) + x73*xi3) - 4*xp2*(x21*(-xi3 + 1) + x61*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 2*xp2*(x21*(-xi3 + 1) + x61*xi3)*(x33*(-xi3 + 1) + x73*xi3)*(x41*(-xi3 + 1) + x81*xi3) - 2*xp2*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3)**2 + 2*xp2*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x41*(-xi3 + 1) + x81*xi3) + (x11*(-xi3 + 1) + x51*xi3)**2*(x43*(-xi3 + 1) + x83*xi3)**2 - 2*(x11*(-xi3 + 1) + x51*xi3)*(x13*(-xi3 + 1) + x53*xi3)*(x41*(-xi3 + 1) + x81*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 2*(x11*(-xi3 + 1) + x51*xi3)*(x21*(-xi3 + 1) + x61*xi3)*(x33*(-xi3 + 1) + x73*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 2*(x11*(-xi3 + 1) + x51*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 4*(x11*(-xi3 + 1) + x51*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x33*(-xi3 + 1) + x73*xi3)*(x41*(-xi3 + 1) + x81*xi3) + (x13*(-xi3 + 1) + x53*xi3)**2*(x41*(-xi3 + 1) + x81*xi3)**2 + 4*(x13*(-xi3 + 1) + x53*xi3)*(x21*(-xi3 + 1) + x61*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 2*(x13*(-xi3 + 1) + x53*xi3)*(x21*(-xi3 + 1) + x61*xi3)*(x33*(-xi3 + 1) + x73*xi3)*(x41*(-xi3 + 1) + x81*xi3) - 2*(x13*(-xi3 + 1) + x53*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x41*(-xi3 + 1) + x81*xi3) + (x21*(-xi3 + 1) + x61*xi3)**2*(x33*(-xi3 + 1) + x73*xi3)**2 - 2*(x21*(-xi3 + 1) + x61*xi3)*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3)*(x33*(-xi3 + 1) + x73*xi3) + (x23*(-xi3 + 1) + x63*xi3)**2*(x31*(-xi3 + 1) + x71*xi3)**2))/(2*(x11*(-xi3 + 1) + x51*xi3)*(x33*(-xi3 + 1) + x73*xi3) - 2*(x11*(-xi3 + 1) + x51*xi3)*(x43*(-xi3 + 1) + x83*xi3) - 2*(x13*(-xi3 + 1) + x53*xi3)*(x31*(-xi3 + 1) + x71*xi3) + 2*(x13*(-xi3 + 1) + x53*xi3)*(x41*(-xi3 + 1) + x81*xi3) - 2*(x21*(-xi3 + 1) + x61*xi3)*(x33*(-xi3 + 1) + x73*xi3) + 2*(x21*(-xi3 + 1) + x61*xi3)*(x43*(-xi3 + 1) + x83*xi3) + 2*(x23*(-xi3 + 1) + x63*xi3)*(x31*(-xi3 + 1) + x71*xi3) - 2*(x23*(-xi3 + 1) + x63*xi3)*(x41*(-xi3 + 1) + x81*xi3)) xi2 = (x11*xi1*xi3 - x11*xi1 - x11*xi3 + x11 - x21*xi1*xi3 + x21*xi1 - x51*xi1*xi3 + x51*xi3 + x61*xi1*xi3 - xp1)/(x11*xi1*xi3 - x11*xi1 - x11*xi3 + x11 - x21*xi1*xi3 + x21*xi1 - x31*xi1*xi3 + x31*xi1 + x31*xi3 - x31 + x41*xi1*xi3 - x41*xi1 - x51*xi1*xi3 + x51*xi3 + x61*xi1*xi3 + x71*xi1*xi3 - x71*xi3 - x81*xi1*xi3) return (xi1,xi2,xi3,xi3b) np.random.seed(1) max_factor = 0 def point_is_in_tetrahedron(tetrahedron,correct_orientation,p): [p3, p0, p1, p2] = tetrahedron global max_factor debug = False xp1 = p[0] xp2 = p[1] xp3 = p[2] x11 = p0[0] x12 = p0[1] x13 = p0[2] x21 = p1[0] x22 = p1[1] x23 = p1[2] x31 = p2[0] x32 = p2[1] x33 = p2[2] x41 = p3[0] x42 = p3[1] x43 = p3[2] if debug: print "" print "----" print "tetrahedron:", tetrahedron, ", p:",p det = (x11 - x41)*(x22 - x42)*(x33 - x43) - (x11 - x41)*(x23 - x43)*(x32 - x42) - (x12 - x42)*(x21 - x41)*(x33 - x43) + (x12 - x42)*(x23 - x43)*(x31 - x41) + (x13 - x43)*(x21 - x41)*(x32 - x42) - (x13 - x43)*(x22 - x42)*(x31 - x41) xi1 = 1/det * ((-x41 + xp1)*((x22 - x42)*(x33 - x43) - (x23 - x43)*(x32 - x42)) + (-x42 + xp2)*(-(x21 - x41)*(x33 - x43) + (x23 - x43)*(x31 - x41)) + (-x43 + xp3)*((x21 - x41)*(x32 - x42) - (x22 - x42)*(x31 - x41))) xi2 = 1/det * ((-x41 + xp1)*(-(x12 - x42)*(x33 - x43) + (x13 - x43)*(x32 - x42)) + (-x42 + xp2)*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) + (-x43 + xp3)*(-(x11 - x41)*(x32 - x42) + (x12 - x42)*(x31 - x41))) xi3 = 1/det * ((-x41 + xp1)*((x12 - x42)*(x23 - x43) - (x13 - x43)*(x22 - x42)) + (-x42 + xp2)*(-(x11 - x41)*(x23 - x43) + (x13 - x43)*(x21 - x41)) + (-x43 + xp3)*((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))) if debug: print "det: ", det, ",xi1: ",xi1,", xi2:",xi2, ",xi3:",xi3 factor = 3-xi1**2-xi2**2-xi3**2 #factor = (np.sqrt(3)-np.linalg.norm(np.array([xi1,xi2,xi3]))) point_is_inside = (xi1 >= 0 and xi2 >= 0 and xi3 >= 0) max_factor = max(factor,max_factor) if not correct_orientation[0]: xi1 = 1. - xi1 if not correct_orientation[1]: xi2 = 1. - xi2 if not correct_orientation[2]: xi3 = 1. - xi3 if debug: print "t matrix: " tmat = np.array([[x11-x41,x21-x41,x31-x41],[x12-x42,x22-x42,x32-x42],[x13-x43,x23-x43,x33-x43]]) print tmat print "adj: " adj = np.array([[(x22 - x42)*(x33 - x43) - (x23 - x43)*(x32 - x42), -(x21 - x41)*(x33 - x43) + (x23 - x43)*(x31 - x41), (x21 - x41)*(x32 - x42) - (x22 - x42)*(x31 - x41)], [-(x12 - x42)*(x33 - x43) + (x13 - x43)*(x32 - x42), (x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41), -(x11 - x41)*(x32 - x42) + (x12 - x42)*(x31 - x41)], [(x12 - x42)*(x23 - x43) - (x13 - x43)*(x22 - x42), -(x11 - x41)*(x23 - x43) + (x13 - x43)*(x21 - x41), (x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41)]]) print adj print "det: ", det, ",xi1: ",xi1,", xi2:",xi2, ",xi3:",xi3,", factor:",factor print "" print "check:" xi = np.array([[xi1],[xi2],[xi3]]) xi = np.array([[1.0],[0.0],[0.0]]) print tmat.dot(xi) print "" print tmat.dot(xi),"=",p-p3 print "p-p3:",(p - p3) tinv = np.array([[(-(-(-x12 + x42)*((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41)) + (-x13 + x43)*((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41)))*(-(x21 - x41)*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)) + (x31 - x41)*((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))) + (((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)))*((x11 - x41)*(x22 - x42) - (-x12 + x42)*(x21 - x41) - (x12 - x42)*(x21 - x41)))/((x11 - x41)*((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)))), (-(x11 - x41)*(x21 - x41)*(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41))) + (x11 - x41)*((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*(-(x21 - x41)*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)) + (x31 - x41)*((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))))/((x11 - x41)*((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)))), -(-(x21 - x41)*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)) + (x31 - x41)*((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41)))/(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)))], [((-x12 + x42)*(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41))) - ((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41))*(-(-x12 + x42)*((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41)) + (-x13 + x43)*((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))))/(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)))), ((x11 - x41)*((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)) + (x11 - x41)*(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41))))/(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)))), -(x11 - x41)*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41))/(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)))], [(-(-x12 + x42)*((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41)) + (-x13 + x43)*((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41)))/(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41))), -(x11 - x41)*((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))/(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41))), (x11 - x41)*((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))/(((x11 - x41)*(x22 - x42) - (x12 - x42)*(x21 - x41))*((x11 - x41)*(x33 - x43) - (x13 - x43)*(x31 - x41)) - ((x11 - x41)*(x23 - x43) - (x13 - x43)*(x21 - x41))*((x11 - x41)*(x32 - x42) - (x12 - x42)*(x31 - x41)))]]) print "t^-1:" print tinv det = (x11 - x41)*(x22 - x42)*(x33 - x43) - (x11 - x41)*(x23 - x43)*(x32 - x42) - (x12 - x42)*(x21 - x41)*(x33 - x43) + (x12 - x42)*(x23 - x43)*(x31 - x41) + (x13 - x43)*(x21 - x41)*(x32 - x42) - (x13 - x43)*(x22 - x42)*(x31 - x41) print "det:",det print "adj/det:" print adj/det xir = tinv.dot(np.reshape(p-p3,(3,1))) print "t^-1 (p-p3)=" print xir print "=" print (adj/det).dot(np.reshape(p-p3,(3,1))) return (point_is_inside, (xi1, xi2, xi3), factor) def get_xi_3d2(hexahedron,p): [p0, p1, p2, p3, p4, p5, p6, p7] = hexahedron debug = False xi_sum = np.zeros(3) denom = 0 no_factor = True only_some = False # p0 r = point_is_in_tetrahedron([p0, p1, p2, p4], [True,True,True], p) xi = np.array(r[1]) if not r[0]: if debug: print "p0 out" if debug: print "0 xi: ",xi factor = 1./(0.1+np.linalg.norm(p-p0)) if no_factor: factor = 1.0 xi_sum += xi*factor denom += factor # p1 if not only_some: r = point_is_in_tetrahedron([p1, p0, p5, p3], [False,True,True], p) xi = np.array(r[1]) if not r[0]: if debug: print "p1 out" xi[1],xi[2] = xi[2],xi[1] if debug: print "1 xi: ",xi factor = 1./(0.1+np.linalg.norm(p-p1)) if no_factor: factor = 1.0 xi_sum += xi*factor denom += factor # p2 r = point_is_in_tetrahedron([p2, p3, p6, p0], [True,True,False], p) xi = np.array(r[1]) if not r[0]: if debug: print "p2 out" xi[1],xi[2] = xi[2],xi[1] if debug: print "2 xi: ",xi factor = 1./(0.1+np.linalg.norm(p-p2)) if no_factor: factor = 1.0 xi_sum += xi*factor denom += factor # p3 r = point_is_in_tetrahedron([p3, p2, p1, p7], [False,False,True], p) xi = np.array(r[1]) if not r[0]: if debug: print "p3 out" if debug: print "3 xi: ",xi factor = 1./(0.1+np.linalg.norm(p-p3)) if no_factor: factor = 1.0 xi_sum += xi*factor denom += factor # p4 if not only_some: r = point_is_in_tetrahedron([p4, p5, p0, p6], [True,False,True], p) xi = np.array(r[1]) if not r[0]: if debug: print "p4 out" xi[1],xi[2] = xi[2],xi[1] if debug: print "4 xi: ",xi factor = 1./(0.1+np.linalg.norm(p-p4)) if no_factor: factor = 1.0 xi_sum += xi*factor denom += factor # p5 r = point_is_in_tetrahedron([p5, p4, p7, p1], [False,True,False], p) xi = np.array(r[1]) if not r[0]: if debug: print "p5 out" if debug: print "5 xi: ",xi factor = 1./(0.1+np.linalg.norm(p-p5)) if no_factor: factor = 1.0 xi_sum += xi*factor denom += factor # p6 r = point_is_in_tetrahedron([p6, p7, p4, p2], [True,False,False], p) xi = np.array(r[1]) if not r[0]: if debug: print "p6 out" if debug: print "6 xi: ",xi factor = 1./(0.1+np.linalg.norm(p-p6)) if no_factor: factor = 1.0 xi_sum += xi*factor denom += factor # p7 if not only_some: r = point_is_in_tetrahedron([p7, p6, p3, p5], [False,False,False], p) xi = np.array(r[1]) if not r[0]: if debug: print "p7 out" xi[1],xi[2] = xi[2],xi[1] if debug: print "7 xi: ",xi factor = 1./(0.1+np.linalg.norm(p-p7)) if no_factor: factor = 1.0 xi_sum += xi*factor denom += factor xi_sum /= denom if debug: print "final xi: ", xi_sum eps = 1e-12 if (0.0-eps <= xi_sum[0] <= 1.0+eps) and (0.0-eps <= xi_sum[1] <= 1.0+eps) and (0.0-eps <= xi_sum[2] <= 1.0+eps): if debug: print "inside" return xi_sum else: if debug: print "outside" return None def point_is_in_element(hexahedron,p): [p0, p1, p2, p3, p4, p5, p6, p7] = hexahedron # bottom [p0,p1,p3,p2] a30 = (-p3+p0) a01 = (-p0+p1) a12 = (-p1+p2) a32 = (-p3+p2) a20 = (-p2+p0) v0 = np.cross(a30, a01).dot(-p0+p) >= 0 v1 = np.cross(a01, a12).dot(-p1+p) >= 0 v2 = np.cross(a12, a32).dot(-p3+p) >= 0 v3 = np.cross(a32, a20).dot(-p2+p) >= 0 # top [p4,p6,p7,p5] a74 = (-p7+p4) a46 = (-p4+p6) a65 = (-p6+p5) a75 = (-p7+p5) a54 = (-p5+p4) v4 = np.cross(a74, a46).dot(-p4+p) >= 0 v5 = np.cross(a46, a65).dot(-p6+p) >= 0 v6 = np.cross(a65, a75).dot(-p7+p) >= 0 v7 = np.cross(a75, a54).dot(-p5+p) >= 0 # right [p1,p5,p7,p3] a71 = (-p7+p1) a15 = (-p1+p5) a53 = (-p5+p3) a73 = (-p7+p3) a31 = (-p3+p1) v8 = np.cross(a71, a15).dot(-p1+p) >= 0 v9 = np.cross(a15, a53).dot(-p5+p) >= 0 v10 = np.cross(a53, a73).dot(-p7+p) >= 0 v11 = np.cross(a73, a31).dot(-p3+p) >= 0 # left [p0,p2,p6,p4] a60 = (-p6+p0) a02 = (-p0+p2) a24 = (-p2+p4) a64 = (-p6+p4) a40 = (-p4+p0) v12 = np.cross(a60, a02).dot(-p0+p) >= 0 v13 = np.cross(a02, a24).dot(-p2+p) >= 0 v14 = np.cross(a24, a64).dot(-p6+p) >= 0 v15 = np.cross(a64, a40).dot(-p4+p) >= 0 # front [p0,p4,p5,p1] a50 = (-p5+p0) a04 = (-p0+p4) a41 = (-p4+p1) a51 = (-p5+p1) a10 = (-p1+p0) v16 = np.cross(a50, a04).dot(-p0+p) >= 0 v17 = np.cross(a04, a41).dot(-p4+p) >= 0 v18 = np.cross(a41, a51).dot(-p5+p) >= 0 v19 = np.cross(a51, a10).dot(-p1+p) >= 0 # back [p2,p3,p7,p6] a72 = (-p7+p2) a23 = (-p2+p3) a36 = (-p3+p6) a76 = (-p7+p6) a62 = (-p6+p2) v20 = np.cross(a72, a23).dot(-p2+p) >= 0 v21 = np.cross(a23, a36).dot(-p3+p) >= 0 v22 = np.cross(a36, a76).dot(-p7+p) >= 0 v23 = np.cross(a76, a62).dot(-p6+p) >= 0 b1 = point_is_in_front_of_quadrilateral([p0,p1,p3,p2],p) # bottom b2 = point_is_in_front_of_quadrilateral([p4,p6,p7,p5],p) # top b3 = point_is_in_front_of_quadrilateral([p1,p5,p7,p3],p) # right b4 = point_is_in_front_of_quadrilateral([p0,p2,p6,p4],p) # left b5 = point_is_in_front_of_quadrilateral([p0,p4,p5,p1],p) # front b6 = point_is_in_front_of_quadrilateral([p2,p3,p7,p6],p) # back is_inside0 = v0 and v1 and v2 and v3 and v4 and v5 and v6 and v7 and v8 and v9 and v10 and v11 and v12 and v13 and v14 and v15 and v16 and v17 and v18 and v19 and v20 and v21 and v22 and v23 is_inside = b1 and b2 and b3 and b4 and b5 and b6 if is_inside0 != is_inside: print "b: ",b1,b2,b3,b4,b5,b6 print "v: ",v0, v1, v2, v3, ",", v4, v5, v6, v7, ",", v8, v9, v10, v11, ",", v12, v13, v14, v15, ",", v16, v17, v18, v19, ",", v20, v21, v22, v23 print "error!" debug = True if debug: print "v: ",v0, v1, v2, v3, ",", v4, v5, v6, v7, ",", v8, v9, v10, v11, ",", v12, v13, v14, v15, ",", v16, v17, v18, v19 , ",", v20, v21, v22, v23 print "" print "point ",p if b1 and b2 and b3 and b4 and b5 and b6: print "inside" else: print "outside" pp = p p = [p0, p1, p2, p3, p4, p5, p6, p7] import stl from stl import mesh out_3d_mesh_triangles = [ [p[1],p[0],p[2]],[p[1],p[2],p[3]], # bottom [p[0],p[3],p[1]],[p[0],p[2],p[3]], # bottom [p[4],p[5],p[7]],[p[4],p[7],p[6]], # top [p[0],p[1],p[5]],[p[0],p[5],p[4]], # front [p[2],p[7],p[3]],[p[2],p[6],p[7]], # back [p[2],p[0],p[4]],[p[2],p[4],p[6]], # left [p[1],p[3],p[7]],[p[1],p[7],p[5]], # right [pp, pp+np.array([0.1,0.0,0.0]), pp-np.array([0.1,0.0,0.0])], [pp, pp+np.array([0.0,0.1,0.0]), pp-np.array([0.0,0.1,0.0])], [pp, pp+np.array([0.0,0.0,0.1]), pp-np.array([0.0,0.0,0.1])], ] # write debugging output stl meshes def write_stl(triangles, outfile, description): # create output mesh n_triangles = len(triangles) # Create the mesh out_mesh = mesh.Mesh(np.zeros(n_triangles, dtype=mesh.Mesh.dtype)) for i, f in enumerate(triangles): out_mesh.vectors[i] = f #for j in range(3): #print "set (",i,",",j,")=",f[j]," (=",stl_mesh.vectors[i][j],")" #out_mesh.update_normals() out_mesh.save(outfile, mode=stl.Mode.ASCII) print "saved {} triangles to \"{}\" ({})".format(n_triangles,outfile,description) write_stl(out_3d_mesh_triangles, "auat.stl", "aut") return is_inside def point_is_in_front_of_quadrilateral(quadrilateral,p): [p0, p1, p2, p3] = quadrilateral v0 = np.cross((-p2+p0), (-p0+p1)).dot(-p0+p) v1 = np.cross((-p0+p1), (-p1+p3)).dot(-p1+p) v2 = np.cross((-p1+p2), (-p2+p3)).dot(-p2+p) v3 = np.cross((-p2+p3), (-p3+p0)).dot(-p3+p) c2 = np.cross((-p1+p2), (-p2+p3)) c2 = c2/np.linalg.norm(c2) c22 = -p2+p c22 = c22/np.linalg.norm(c22) v2 = c2.dot(c22) print "angle=",np.arccos(v2)*180./np.pi debug = True if debug: print "quad ",quadrilateral print "c2=",c2,",p22=",c22 print "v2 = ",(-p1+p2),"x",(-p2+p3)," (=",np.cross((-p1+p2), (-p2+p3)),"), dot",-p2+p print ", v0:",v0,", v1:",v1,", v2:",v2,", v3:",v3 return v0 >= 0 and v1 >= 0 and v2 >= 0 and v3 >= 0 if True: #point (58.9434,146.219,37), element 1 # p0 ((61.6746,146.275,37), # p1 (60.3037,146.374,37), # p2 (62.1413,145.011,37), # p3 (60.6606,145.111,37), # p4 (71.9646,148.898,50.8421), # p5 (69.9016,149.867,50.8421), # p6 (71.7574,146.739,50.8421), # p7 (69.8146,147.667,50.8421)) #DEBUG: 0 xi: (2.06187,0.204832,4.08175e-16) #DEBUG: 1 xi: (2.04524,4.08645e-16,0.203918) #DEBUG: 2 xi: (1.90644,4.12565e-16,0.196281) #DEBUG: 3 xi: (1.96677,0.199601,4.10861e-16) #DEBUG: 4 xi: (1.26432,0,0.592938) #DEBUG: 5 xi: (1.64441,0.353881,3.33067e-16) #DEBUG: 6 xi: (1.63102,1.14093,5.55112e-16) #DEBUG: 7 xi: (1.88966,5.55112e-16,0.871531) #VERB3: pointIsInElement, point (63.0191,146.036,37), element 0((63.0191,146.036,37),(61.6746,146.275,37),(64.2323,145.398,37),(62.1413,145.011,37),(73.7444,147.455,50.8421),(71.9646,148.898,50.8421),(75.2802,145.762,50.8421),(71.7574,146.739,50.8421)) #VERB3: xi: (0,0,0) #VERB3: xi: (1.11022e-16,-7.1741e-32,-3.73501e-18) #VERB3: xi: (0,0,0) #VERB3: xi: (0.43771,0.361389,3.27812e-16) #VERB3: xi: (0,0,0) #VERB3: xi: (0.287173,-0.365592,7.77156e-16) #VERB3: p5 out # test #DEBUG: pointIsInElement, point # p (59.368,144.955,37), element 7 # p0 (59.368,144.955,37), # p1 (57.0694,144.573,37), # p2 (59.3694,144.08,37), # p3 (56.4743,143.333,37), # p4 (67.8127,148.044,50.8421), # p5 (64.6207,148.895,50.8421), # p6 (67.3157,146.434,50.8421), # p7 (63.9783,146.701,50.8421) #DEBUG: xi: (0,0,0) #DEBUG: xi: (3.06205,0,-11.8288) #DEBUG: p1 out # [p1, p0, p5, p3] #VERB3: isInside: 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1 # ((),(),(),(),(),(),(),() p0 = np.array((72.253,151.97,120.053)) p1 = np.array((57.9479,156.418,120.053)) p2 = np.array((71.5834,139.519,120.053)) p3 = np.array((64.2421,147.55,120.053)) p4 = np.array((72.9941,155.63,133.895)) p5 = np.array((57.1602,159.617,133.895)) p6 = np.array((71.1095,141.566,133.895)) p7 = np.array((63.6357,150.208,133.895)) pp = np.array([70,150,122]) p = [p0, p1, p2, p3, p4, p5, p6, p7] import stl from stl import mesh out_3d_mesh_triangles = [ [p[0],p[3],p[1]],[p[0],p[2],p[3]], # bottom [p[4],p[5],p[7]],[p[4],p[7],p[6]], # top [p[0],p[1],p[5]],[p[0],p[5],p[4]], # front [p[2],p[7],p[3]],[p[2],p[6],p[7]], # back [p[2],p[0],p[4]],[p[2],p[4],p[6]], # left [p[1],p[3],p[7]],[p[1],p[7],p[5]], # right [pp, pp+np.array([0.1,0.0,0.0]), pp+np.array([0.2,0.0,0.0])], ] # write debugging output stl meshes def write_stl(triangles, outfile, description): # create output mesh n_triangles = len(triangles) # Create the mesh out_mesh = mesh.Mesh(np.zeros(n_triangles, dtype=mesh.Mesh.dtype)) for i, f in enumerate(triangles): out_mesh.vectors[i] = f #for j in range(3): #print "set (",i,",",j,")=",f[j]," (=",stl_mesh.vectors[i][j],")" #out_mesh.update_normals() out_mesh.save(outfile, mode=stl.Mode.ASCII) print "saved {} triangles to \"{}\" ({})".format(n_triangles,outfile,description) write_stl(out_3d_mesh_triangles, "aut.stl", "aut") p = pp point_is_in_element([p0, p1, p2, p3, p4, p5, p6, p7], p) sys.exit(0) # test factor = 0.050 #factor = 0 p0 = np.array([0.0, 0.0, 0.0]) + np.random.rand(3)*factor p1 = np.array([1.0, 0.0, 0.0]) + np.random.rand(3)*factor p2 = np.array([0.0, 1.0, 0.0]) + np.random.rand(3)*factor p3 = np.array([1.0, 1.0, 0.0]) + np.random.rand(3)*factor p4 = np.array([0.0, 0.0, 1.0]) + np.random.rand(3)*factor p5 = np.array([1.0, 0.0, 1.0]) + np.random.rand(3)*factor p6 = np.array([0.0, 1.0, 1.0]) + np.random.rand(3)*factor p7 = np.array([1.0, 1.0, 1.0]) + np.random.rand(3)*factor p = np.array([0.3, 0.4, 0.2]) print "3d" xis = np.random.rand(100000,3) #xis = error_sum = 0 n = 0 for xi in xis: (xi1,xi2,xi3) = xi p = (1-xi1)*(1-xi2)*(1-xi3)*p0 + xi1*(1-xi2)*(1-xi3)*p1 + (1-xi1)*xi2*(1-xi3)*p2 + xi1*xi2*(1-xi3)*p3 + (1-xi1)*(1-xi2)*xi3*p4 + xi1*(1-xi2)*xi3*p5 + (1-xi1)*xi2*xi3*p6 + xi1*xi2*xi3*p7 xi_comp = get_xi_3d2([p0, p1, p2, p3, p4, p5, p6, p7], p) in_el0 = xi_comp is not None in_el1 = point_is_in_element([p0, p1, p2, p3, p4, p5, p6, p7], p) if in_el0 != in_el1: print "break" #break if xi_comp is None: #print "None" continue error = np.linalg.norm(xi_comp-xi) error_sum += error n += 1 #if error < 1e-12: # print xi,"ok" #else: # print xi,"failed, error: ", error,", computed: ",xi_comp,", point: ",p print "avg error: ", error_sum/n print "max_factor:",max_factor #print "2d" #print get_xi_2d([p0, p1, p2, p3], p)
class OpCode(object): def __init__(self, arg): self.arg = int(arg) def execute(self): pass @staticmethod def parseline(line, lineno): code, arg = line.split() try: return OpCode.make(code, arg) except ValueError: raise(ValueError(f"line {lineno} has an unexpected opcode: {code}")) @staticmethod def make(code, arg): if code == "acc": return Acc(arg) elif code == "jmp": return Jmp(arg) elif code == "nop": return Nop(arg) else: raise(ValueError(f"unexpected opcode: {code}")) def swap(self): if isinstance(self, Jmp): return Nop(self.arg) elif isinstance(self, Nop): return Jmp(self.arg) else: return self class Acc(OpCode): def execute(self): return 1, self.arg class Jmp(OpCode): def execute(self): return self.arg, 0 class Nop(OpCode): def execute(self): return 1, 0 class Machine(object): def __init__(self, acc=0): self.acc = acc self.tape = [] def load_tape(self, fname): numlines = 0 with open(fname, 'r') as handle: for lineno, line in enumerate(handle.readlines()): self.tape.append(OpCode.parseline(line, lineno)) ++numlines return numlines def __len__(self): return len(self.tape) def reset(self): self.acc = 0 def execute(self): self.reset() ptr, N = 0, len(self) seen = [False] * N while ptr < N and not seen[ptr]: seen[ptr] = True shift, acc = self.tape[ptr].execute() ptr += shift self.acc += acc exited_early = (ptr != N) return self.acc, exited_early def swap(self, ptr): self.tape[ptr] = self.tape[ptr].swap() def debug(self): for ptr in range(len(self)): self.swap(ptr) accumulator, exited_early = self.execute() if not exited_early: return accumulator self.swap(ptr) def main(): machine = Machine() machine.load_tape("input.txt") part1, _ = machine.execute() part2 = machine.debug() print(f"Part I: {part1}") print(f"Part II: {part2}") if __name__ == '__main__': main()
from . import api, commons def check_params(line_id: str, station_id: str, direction_sens: str): response = api.get_missions_next(line_id, station_id, direction_sens) # invalid station if response.ambiguityMessage is not None: raise commons.RatpException( "invalid line code and/or station code and/or direction" ) def lines_by_name(name_query: str = ""): results = [] # get all lines lines = api.get_lines_realtime_realm() # filter by name for line in sorted(lines, key=lambda k: k["code"]): # ignore lines that do not contain query string if name_query not in line.name.lower(): continue results.append(simplified_line_data(line)) return results def lines_by_code(code_query): results = [] lines = api.get_lines_by_code(code_query) for line in sorted(lines, key=lambda k: k["code"]): # stop if no results if line["id"] is None: break results.append(simplified_line_data(line)) return results def simplified_line_data(line): if line.image is None: # image = '' image = "" else: image = f"http://opendata-tr.ratp.fr/wsiv/static/line/{line.image}" return { "id": line.id, "reseau": line.reseau.name, "code": line.code, "name": line.name, "image": image, } def simplified_station_data(station: dict) -> dict: return { "name": station.name, "line_station_id": station.id, "line": simplified_line_data(station.line), } def directions(line_id: str) -> dict: response = api.get_directions(line_id) results = {} for direction in response.directions: results[direction.sens] = direction.name return results def stations_by_line(line_id: str) -> list: stations = api.get_stations_by_line(line_id) results = [] for station in stations: results.append(simplified_station_data(station)) return results def stations_by_name(name_query: str) -> list: response = api.get_stations_by_name(name_query) results = [] for station in response.stations: results.append(simplified_station_data(station)) return results def next_departures(line_id: str, station_id: str, direction_sens: str) -> dict: response = api.get_missions_next(line_id, station_id, direction_sens) # invalid station if response.ambiguityMessage is not None: raise commons.RatpException("invalid station code and/or direction") missions = [] for mission in response.missions: # handle case where service has ended if len(mission.stations) > 1: destination_name = mission.stations[1].name else: destination_name = "---" if len(mission.stationsDates) > 0: stations_date = mission.stationsDates[0] else: stations_date = "------------" missions.append( { "code": mission.code, "destinationName": destination_name, "datetime": stations_date, # 'platform': mission.stationsPlatforms[0], # only for RER "message": mission.stationsMessages[0], } ) if len(response.perturbations) > 0: perturbations = response.perturbations[0].message.text else: perturbations = "" return {"missions": missions, "perturbations": perturbations}
# Generated by make-pins.py, do NOT edit! PINS_AF = ( ('LED1', (1, 'LPI2C1_SCL'), (3, 'GPT3_COMPARE1'), (5, 'GPIO3_PIN7'), (10, 'GPIO9_PIN7'), (11, 'FLEXPWM1_PWMX2'), ), ('LED2', (1, 'LPI2C1_SDA'), (3, 'GPT3_COMPARE2'), (5, 'GPIO3_PIN8'), (10, 'GPIO9_PIN8'), (11, 'FLEXPWM1_PWMX3'), ), ('LED3', (3, 'GPT3_COMPARE3'), (5, 'GPIO3_PIN9'), (10, 'GPIO9_PIN9'), (11, 'FLEXPWM2_PWMX0'), ), ('LED4', (2, 'GPT1_CAPTURE2'), (5, 'GPIO3_PIN12'), (10, 'GPIO9_PIN12'), (11, 'FLEXPWM2_PWMX3'), ), ('KEY', (5, 'GPIO13_PIN0'), ), )