content
stringlengths
5
1.05M
import numpy as np # We create a rank 1 ndarray x = np.array([1,2,3]) # We create a 3 x 3 ndarray Y = np.array([[1,2,3],[4,5,6],[7,8,9]]) # We create a 3 x 1 ndarray Z = np.array([1,2,3]).reshape(3,1) # We print x print() print('x = ', x) print() # We print Y print() print('Y = \n', Y) print() # We print Z print() print('Z = \n', Z) print() print('x + Y = \n', x + Y) print() print('Z + Y = \n',Z + Y)
def args2kwargs(thrift_spec, *args): arg_names = [item[1][1] for item in sorted(thrift_spec.items())] return dict(zip(arg_names, args))
from re import match from tests import * def test_root(app, client): """Testing root path.""" r = get(client=client, path="/") assert 200 == r.status_code assert "/" == r.json["path"] assert "Punch Clock v0.1.0" == r.json["message"] assert match( "^202[0-9]-[0-1][0-9]-[0-3][0-9] [0-9]+:[0-5][0-9]:[0-5][0-9]$", r.json["datetime"], ) def test_list_users(app, client): """Testing show/users path.""" api_dummy_user(app, client, "32165498700", "Jesse Pinkman", "jesse@crystalz.org") api_dummy_user( app, client, "98763532112", "Walter White", "heisenberg@crystalz.org" ) r = get(client, "/api/list/users") assert 200 == r.status_code exp = { "users": [ { "id": 1, "full_name": "Jesse Pinkman", "cpf": "32165498700", "email": "jesse@crystalz.org", }, { "id": 2, "full_name": "Walter White", "cpf": "98763532112", "email": "heisenberg@crystalz.org", }, ] } assert "1" == r.json["users"][0]["id"] assert "Jesse Pinkman" == r.json["users"][0]["full_name"] assert "32165498700" == r.json["users"][0]["cpf"] assert "jesse@crystalz.org" == r.json["users"][0]["email"] assert "2" == r.json["users"][1]["id"] assert "Walter White" == r.json["users"][1]["full_name"] assert "98763532112" == r.json["users"][1]["cpf"] assert "heisenberg@crystalz.org" == r.json["users"][1]["email"]
""" The goal of this rewrite is to use the existing command framework of the discord.py library. Here is its documentation: https://discordpy.readthedocs.io/en/latest/index.html """ # imports import discord from discord.ext import tasks, commands import configparser import bot_database as db import mathParser import polling import tictactoe import connect_four import party_notifier import misc_functions as misc import asyncio import random bot_data = db.bot_database() bot = commands.Bot(command_prefix = bot_data.prefix) # CHECKS def is_admin(ctx): admin_role = ctx.guild.get_role(bot_data.IDs['admin_role']) return admin_role in ctx.author.roles @bot.event async def on_ready(): # Only add cogs on first init: bot.add_cog(polling.Poll_Commands(bot, bot_data)) bot.add_cog(tictactoe.tic_tac_toe(bot)) bot.add_cog(party_notifier.Party_Notifier(bot, bot_data)) # bot.add_cog(connect_four.connect_four(bot)) # Set activity: if bot_data.activity_name != '-1': game = discord.Game(bot_data.activity_name) await bot.change_presence(status=discord.Status.online, activity=game) else: await bot.change_presence(status=None, activity=None) print(f'Bot logged in as {bot.user}') @bot.event async def on_voice_state_update(member, before, after): # This function looks if any channel has more than a set number of participants # and if it does, sends a notification notif_channel = bot.get_channel(bot_data.IDs['notification_channel']) with open(bot_data.datapath + 'party_channels.txt', 'r') as file: partyChannelIDs = [int(x[:-1]) for x in file.readlines()] # CHECKS # If channel has become empty, unmark it as party channel if before.channel is not None and len(before.channel.members) == 0: if before.channel.id in bot_data.party_channels: bot_data.party_channels = bot_data.party_channels - {int(before.channel.id)} await notif_channel.send(f'The party in **{before.channel.name}** has ended.') return if after.channel is None: return if after.channel.id not in partyChannelIDs: return # See if channel is already a party channel if after.channel.id in bot_data.party_channels: return else: bot_data.party_channels = bot_data.party_channels.union({int(after.channel.id)}) print(bot_data.party_channels) if len(after.channel.members) >= bot_data.party_count: # Do this weird thing to get the guild and its roles this_guild = after.channel.guild party_role = this_guild.get_role(bot_data.IDs['party_role']) await notif_channel.send(f'{party_role.mention} There seems to be a party in **{after.channel.name}**') return @bot.event async def on_message(message): """ If possible don't define commands here. Use the command framework for that (see below) Only use this function if you are processing messages without commands. """ # Code goes here if message.author == bot.user: return """ Random Estereggs """ if ('Mo ' or 'Mo,' or 'Mo.' or 'Mo!' or 'Mo?') in message.content or message.content == 'Mo': await message.channel.send('Habe ich etwas von meinem Meister, Herrn und Gebieter Mo gehört? :heart_eyes:', delete_after= 20) if message.content == "Hello there!": await message.channel.send("General Kenobi! You are a bold one! Hehehehe KILL HIM!") await message.channel.send("https://gph.is/2pE8sbx") return if 'scrinzi' in message.content.lower(): await message.channel.send('Scrinzi, so ein Sack! :face_vomiting:', delete_after=5) return await bot.process_commands(message) class Main_Commands(commands.Cog): """ This cog contains all the main commands which don't really fit into another cog. """ def __init__(self, bot): self.bot = bot @commands.command(brief="Just for testing random stuff.", help="This function is for testing code. Don't expect any predictable behaviour from it.") async def test(self, ctx): pass @commands.command(brief="Countdown from value. Default is 10s.", help="Start a countdown from a designated value or 10 seconds if none has been specified.", usage="<seconds>") async def countdown(self, ctx, arg = "10"): if not arg.isdigit(): counter = 10 else: counter = int(arg) if counter > 500: await ctx.send('Dude, I don\'t have all day!', delete_after=10.0) return msg = await ctx.send(f'Countdown: {counter}') while counter > 0: counter -= 1 await asyncio.sleep(1) await msg.edit(content=(f'Countdown: {counter}' if counter != 0 else 'Countdown: **NOW**')) @commands.command(brief="View rules.", help="This command fetches the rules as they are defined in the rule-channel.", aliases=["regeln"]) async def rules(self, ctx): ruleChannel = bot.get_channel(bot_data.IDs['rule_channel']) ruleMsg = await ruleChannel.fetch_message(bot_data.IDs['rule_message']) await ctx.send(ruleMsg.content) @commands.command(brief="Calculate constant math expressions.", help="This command tries to calculate constant mathematical expressions.\nNo variables allowed.\n\ \nValid constants and functions:\n - e, pi, c, h, k\n - sin, sinh, asin, asinh, cos, cosh, acos, acosh, tan, atan, atan2, atanh, exp, expm1, ln, lg, sqrt, abs, trunc, round, sgn", usage="<expression>") async def calc(self, ctx, *, arg): nsp = mathParser.NumericStringParser() try: result = nsp.eval(arg) except: await ctx.send(f"Invalid expression. Type `{bot_data.prefix}help calc` for information on the command.", delete_after=10.0) print(f'Invalid \'calc\' expression: {arg}') return await ctx.send(result) @commands.command(brief="Generate random number", help="Generate a random number or randomly choose from multiple elements after the following pattern:\n\ \nrandom\t\t-> [0,1]\nrandom a\t-> [0,a]\nrandom a b\t-> [a,b]\nrandom a b c\t-> a or b or c or ...", aliases=['random']) async def rand(self, ctx, *args): if not args: answer = str(random.random()) elif len(args) == 1 and args[0].isdigit(): answer = str(random.uniform(0.0, float(args[0]))) elif len(args) == 2 and args[0].isdigit() and args[1].isdigit(): answer = str(random.uniform(float(args[0]), float(args[1]))) elif len(args) > 1: answer = str(random.choice(args)) else: await ctx.send(f'Error: Invalid argument. Type `{bot_data.prefix}help random` for information on the command.', delete_after=10.0) return await ctx.send(answer) @commands.command(brief="Save Quote.", help="Save a quote, its author and optionally information on the context of the quote.\ \nIf available the quote will also be sent to a dedicated text channel.", usage='"<Author>" "<Quote>" "<Optional context>"') async def quote(self, ctx, *args): await ctx.message.delete() if len(args) < 2 or len(args) > 3: await ctx.send(f"Error: Invalid arguments. Type `{bot_data.prefix}help quote` for information on the command", delete_after=10.0) return author_name: str = args[0].lower() quote_text: str = args[1] if len(args) == 3: quote_context = args[2] else: quote_context = "No Context given" qfile = configparser.ConfigParser() qfile.read(f'{bot_data.datapath}quotes.txt') try: quote_count: int = int(qfile[author_name]['count']) except: quote_count: int = 0 try: if not qfile.has_section(author_name): qfile.add_section(author_name) qfile.set(author_name, 'count', str(quote_count + 1)) qfile.set(author_name, f'q#{quote_count}', f'"{quote_text}" "{quote_context}"') with open(f'{bot_data.datapath}quotes.txt', 'w') as configfile: qfile.write(configfile) if bot_data.IDs['quote_channel'] != -1: quote_channel = bot.get_channel(bot_data.IDs['quote_channel']) await quote_channel.send(f':\n**Person:** {author_name}\ \n**Zitat:** {quote_text}\ \n**Kontext:** {quote_context}') await ctx.send('Saved quote.', delete_after=10) except: await ctx.send(f'There was an error saving the quote. Type `{bot_data.prefix}help quote` for correct format.', delete_after=10.0) @commands.command(brief="Make the bot say something.", help="Let the bot say something. Your original message will be deleted. Mentions will be converted to text.", usage="<text>") async def echo(self, ctx, *, arg): await ctx.message.delete() if bot_data.locks['echo'] or is_admin(ctx): await ctx.send(arg) else: await ctx.send('Error: This command is currently locked.', delete_after=10.0) @commands.check(is_admin) @commands.command(brief="Lock access to the 'echo' command.", help="With this command you can lock the 'echo' command.\ \n\necholock\t-> Show current lock status\necholock toggle\t-> Toggle lock\ \n\nAlternatives to 'toggle' are 'switch' and 'change'", usage="[<none>, toggle, switch, change]") async def echolock(self, ctx, *args): arg = args[0] if len(args) > 0 else "" if arg in ['toggle', 'switch', 'change']: bot_data.locks['echo'] = not bot_data.locks['echo'] statusStr = "unlocked" if bot_data.locks['echo'] else "locked" # Update 'config.txt': config = configparser.ConfigParser() config.read('config.txt') config.set('LOCKS', 'echo', str(misc.bool_to_int(bot_data.locks['echo']))) with open('config.txt', 'w') as configfile: config.write(configfile) await ctx.send(f'`{bot_data.prefix}echo` is now **{statusStr}**') elif len(arg) == 0: statusStr = "unlocked" if bot_data.locks['echo'] else "locked" await ctx.send(f'`{bot_data.prefix}echo` is **{statusStr}**') else: await ctx.send(f'Error: Invalid argument. See `{bot_data.prefix}help echo` for information on the command.') @commands.check(is_admin) @commands.command(brief="Change the 'Playing' status of the bot.", help = "Changes the 'Playing' status of the bot to the specified text. If no argument is given the status will be removed.") async def setactivity(self, ctx, *args): if not args: await self.bot.change_presence(status=None, activity=None) configStr: str = '-1' else: arg = ' '.join(args) game = discord.Game(arg) await self.bot.change_presence(status=discord.Status.online, activity=game) configStr: str = arg # Save to config config = configparser.ConfigParser() config.read('config.txt') config.set('BASE', 'activity_name', configStr) with open('config.txt', 'w') as configfile: config.write(configfile) @commands.command(brief="Convert weight to usable units.", help='This command converts your mass (kg) to its corresponding resting energy in ' 'kilotons of TNT. This is equivalent to half the energy released in the explosion of you' ' touching your anti-matter twin.\nThis is also a great way of calling random people fat.', usage='<mass in kg>') async def weight(self, ctx, *, arg): # Make lowercase in case someone entered units: arg = arg.lower() # Scan for cancer: if misc.element_in_str(['grain', 'gr', 'drachm', 'dr', 'ounce', 'oz', 'pound', 'lb', 'stone', 'st', 'quarter', 'qr', 'qtr', 'hundretweight', 'cwt', 'slug'], arg): admin_role = ctx.guild.get_role(bot_data.IDs['admin_role']) await ctx.send(f"{admin_role.mention} **IMPERIAL UNITS DETECTED!!!** Authorities were notified. Stay where you are criminal scum!") return # Detect units: factor = 1.0 if arg.endswith('kg'): arg = arg[0:-2] elif arg.endswith('g'): arg = arg[0:-1] factor = 1. / 1000.0 elif arg.endswith('t'): arg = arg[0:-1] factor = 1000 elif arg.endswith('u'): arg = arg[0:-1] factor = 6.0221e26 elif arg.endswith('tev/c^2'): arg = arg[0:-7] factor = 5.60852495e23 elif arg.endswith('tev/c²'): arg = arg[0:-6] factor = 5.60852495e23 elif arg.endswith('gev/c^2'): arg = arg[0:-7] factor = 5.60852495e26 elif arg.endswith('gev/c²'): arg = arg[0:-6] factor = 5.60852495e26 elif arg.endswith('kev/c^2'): arg = arg[0:-7] factor = 5.60852495e29 elif arg.endswith('kev/c²'): arg = arg[0:-6] factor = 5.60852495e29 elif arg.endswith('ev/c^2'): arg = arg[0:-6] factor = 5.60852495e32 elif arg.endswith('ev/c²'): arg = arg[0:-5] factor = 5.60852495e32 else: factor = 1.0 # If arg still has non-digit chars, it is an error if not arg.isdigit(): # Detect mathematical expressions: nsp = mathParser.NumericStringParser() try: arg = nsp.eval(arg) except: await ctx.send('Error: Could not parse argument. Use something like `10 kg` or just `10`.', delete_after=10) return E = float(arg) * factor * (2.998e8)**2 Joule_to_gigatonTNT = 2.390e-19 hiroshima_energy = 16e-6 # gigatons of TNT GT_mass_raw = E * Joule_to_gigatonTNT if GT_mass_raw >= 1e3: explosion_str = f'{round(GT_mass_raw * 1e-3, 2)} terratons' elif GT_mass_raw < 1e3 and GT_mass_raw >= 1: explosion_str = f'{round(GT_mass_raw, 2)} gigatons' elif GT_mass_raw < 1 and GT_mass_raw >= 0.001: explosion_str = f'{round(GT_mass_raw * 1e3, 2)} megatons' elif GT_mass_raw < 1e-3 and GT_mass_raw >= 1e-6: explosion_str = f'{round(GT_mass_raw * 1e6, 2)} kilotons' else: explosion_str = f'{round(GT_mass_raw * 1e9, 2)} tons' # Hiroshima formatting: hir_fac = round(GT_mass_raw / hiroshima_energy, 1) hir_str = f'or **{hir_fac}** hiroshima bombs**' if hir_fac >= 1 else '' # For the lulz: if float(arg) * factor >= 100: pref = '**WOW!** ' suff = 'Damn.' else: pref = '' suff = '' text = f'{pref}This mass is equivalent to a very generous **{explosion_str} of TNT** {hir_str}. {suff}' await ctx.send(text) @commands.command(brief="cry", help=" show the only emotion HAL is currently capable of") async def cry(self, ctx): await ctx.send(':sob:') await asyncio.sleep(5) await ctx.send('http://gph.is/2f4QMDC', delete_after = 10) @commands.command(brief = 'let HAL show you his Magic') async def draw_card(self, ctx): await ctx.send('Your Card is the Ace of Spades', delete_after = 40) await asyncio.sleep(7) await ctx.send('shuffeling the deck',delete_after = 10) await asyncio.sleep(3) await ctx.send('trust me bro', delete_after = 3) await asyncio.sleep(7) await ctx.send('Was this your card:', delete_after = 23) await asyncio.sleep(3) await ctx.send('http://gph.is/1UPsMwn', delete_after = 20) await ctx.send('The ACE OF SPADES!') await asyncio.sleep(5) await ctx.send('not impressed?', delete_after = 5) await asyncio.sleep(5) await ctx.send('https://gph.is/g/aNMKlwP', delete_after = 10) await ctx.send('http://gph.is/1oKXMOp', delete_after = 10) bot.add_cog(Main_Commands(bot)) bot.run(bot_data.token)
""" Variable Substitution, Multiplication, Division, Scaling """ #***************************************************************************** # Copyright (C) 2007 William Stein and Jonathan Hanke # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # http://www.gnu.org/licenses/ #***************************************************************************** import copy def swap_variables(self, r, s, in_place = False): """ Switch the variables `x_r` and `x_s` in the quadratic form (replacing the original form if the in_place flag is True). INPUT: `r`, `s` -- integers >= 0 OUTPUT: a QuadraticForm (by default, otherwise none) EXAMPLES:: sage: Q = QuadraticForm(ZZ, 4, range(1,11)) sage: Q Quadratic form in 4 variables over Integer Ring with coefficients: [ 1 2 3 4 ] [ * 5 6 7 ] [ * * 8 9 ] [ * * * 10 ] sage: Q.swap_variables(0,2) Quadratic form in 4 variables over Integer Ring with coefficients: [ 8 6 3 9 ] [ * 5 2 7 ] [ * * 1 4 ] [ * * * 10 ] sage: Q.swap_variables(0,2).swap_variables(0,2) Quadratic form in 4 variables over Integer Ring with coefficients: [ 1 2 3 4 ] [ * 5 6 7 ] [ * * 8 9 ] [ * * * 10 ] """ if (in_place == False): Q = copy.deepcopy(self) Q.__init__(self.base_ring(), self.dim(), self.coefficients()) Q.swap_variables(r,s,in_place=True) return Q else: ## Switch diagonal elements tmp = self[r,r] self[r,r] = self[s,s] self[s,s] = tmp ## Switch off-diagonal elements for i in range(self.dim()): if (i != r) and (i != s): tmp = self[r,i] self[r,i] = self[s,i] self[s,i] = tmp def multiply_variable(self, c, i, in_place = False): """ Replace the variables `x_i` by `c*x_i` in the quadratic form (replacing the original form if the in_place flag is True). Here `c` must be an element of the base_ring defining the quadratic form. INPUT: `c` -- an element of Q.base_ring() `i` -- an integer >= 0 OUTPUT: a QuadraticForm (by default, otherwise none) EXAMPLES:: sage: Q = DiagonalQuadraticForm(ZZ, [1,9,5,7]) sage: Q.multiply_variable(5,0) Quadratic form in 4 variables over Integer Ring with coefficients: [ 25 0 0 0 ] [ * 9 0 0 ] [ * * 5 0 ] [ * * * 7 ] """ if (in_place == False): Q = copy.deepcopy(self) Q.__init__(self.base_ring(), self.dim(), self.coefficients()) Q.multiply_variable(c,i,in_place=True) return Q else: ## Stretch the diagonal element tmp = c * c * self[i,i] self[i,i] = tmp ## Switch off-diagonal elements for k in range(self.dim()): if (k != i): tmp = c * self[k,i] self[k,i] = tmp def divide_variable(self, c, i, in_place = False): """ Replace the variables `x_i` by `(x_i)/c` in the quadratic form (replacing the original form if the in_place flag is True). Here `c` must be an element of the base_ring defining the quadratic form, and the division must be defined in the base ring. INPUT: `c` -- an element of Q.base_ring() `i` -- an integer >= 0 OUTPUT: a QuadraticForm (by default, otherwise none) EXAMPLES:: sage: Q = DiagonalQuadraticForm(ZZ, [1,9,5,7]) sage: Q.divide_variable(3,1) Quadratic form in 4 variables over Integer Ring with coefficients: [ 1 0 0 0 ] [ * 1 0 0 ] [ * * 5 0 ] [ * * * 7 ] """ if (in_place == False): Q = copy.deepcopy(self) Q.__init__(self.base_ring(), self.dim(), self.coefficients()) Q.divide_variable(c,i,in_place=True) return Q else: ## Stretch the diagonal element tmp = self[i,i] / (c*c) self[i,i] = tmp ## Switch off-diagonal elements for k in range(self.dim()): if (k != i): tmp = self[k,i] / c self[k,i] = tmp def scale_by_factor(self, c, change_value_ring_flag=False): """ Scale the values of the quadratic form by the number `c`, if this is possible while still being defined over its base ring. If the flag is set to true, then this will alter the value ring to be the field of fractions of the original ring (if necessary). INPUT: `c` -- a scalar in the fraction field of the value ring of the form. OUTPUT: A quadratic form of the same dimension EXAMPLES:: sage: Q = DiagonalQuadraticForm(ZZ, [3,9,18,27]) sage: Q.scale_by_factor(3) Quadratic form in 4 variables over Integer Ring with coefficients: [ 9 0 0 0 ] [ * 27 0 0 ] [ * * 54 0 ] [ * * * 81 ] sage: Q.scale_by_factor(1/3) Quadratic form in 4 variables over Integer Ring with coefficients: [ 1 0 0 0 ] [ * 3 0 0 ] [ * * 6 0 ] [ * * * 9 ] """ ## Try to scale the coefficients while staying in the ring of values. new_coeff_list = [x*c for x in self.coefficients()] ## Check if we can preserve the value ring and return result. -- USE THE BASE_RING FOR NOW... R = self.base_ring() try: list2 = [R(x) for x in new_coeff_list] # This is a hack: we would like to use QuadraticForm here, but # it doesn't work by scoping reasons. Q = self.__class__(R, self.dim(), list2) return Q except Exception: if (change_value_ring_flag == False): raise TypeError("Oops! We could not rescale the lattice in this way and preserve its defining ring.") else: raise UntestedCode("This code is not tested by current doctests!") F = R.fraction_field() list2 = [F(x) for x in new_coeff_list] Q = copy.deepcopy(self) Q.__init__(self.dim(), F, list2, R) ## DEFINE THIS! IT WANTS TO SET THE EQUIVALENCE RING TO R, BUT WITH COEFFS IN F. #Q.set_equivalence_ring(R) return Q def extract_variables(self, var_indices): """ Extract the variables (in order) whose indices are listed in var_indices, to give a new quadratic form. INPUT: var_indices -- a list of integers >= 0 OUTPUT: a QuadraticForm EXAMPLES:: sage: Q = QuadraticForm(ZZ, 4, range(10)); Q Quadratic form in 4 variables over Integer Ring with coefficients: [ 0 1 2 3 ] [ * 4 5 6 ] [ * * 7 8 ] [ * * * 9 ] sage: Q.extract_variables([1,3]) Quadratic form in 2 variables over Integer Ring with coefficients: [ 4 6 ] [ * 9 ] """ m = len(var_indices) Q = copy.deepcopy(self) Q.__init__(self.base_ring(), m) for i in range(m): for j in range(i, m): Q[i,j] = self[ var_indices[i], var_indices[j] ] return Q def elementary_substitution(self, c, i, j, in_place = False): ## CHECK THIS!!! """ Perform the substitution `x_i --> x_i + c*x_j` (replacing the original form if the in_place flag is True). INPUT: `c` -- an element of Q.base_ring() `i`, `j` -- integers >= 0 OUTPUT: a QuadraticForm (by default, otherwise none) EXAMPLES:: sage: Q = QuadraticForm(ZZ, 4, range(1,11)) sage: Q Quadratic form in 4 variables over Integer Ring with coefficients: [ 1 2 3 4 ] [ * 5 6 7 ] [ * * 8 9 ] [ * * * 10 ] sage: Q.elementary_substitution(c=1, i=0, j=3) Quadratic form in 4 variables over Integer Ring with coefficients: [ 1 2 3 6 ] [ * 5 6 9 ] [ * * 8 12 ] [ * * * 15 ] :: sage: R = QuadraticForm(ZZ, 4, range(1,11)) sage: R Quadratic form in 4 variables over Integer Ring with coefficients: [ 1 2 3 4 ] [ * 5 6 7 ] [ * * 8 9 ] [ * * * 10 ] :: sage: M = Matrix(ZZ, 4, 4, [1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1]) sage: M [1 0 0 1] [0 1 0 0] [0 0 1 0] [0 0 0 1] sage: R(M) Quadratic form in 4 variables over Integer Ring with coefficients: [ 1 2 3 6 ] [ * 5 6 9 ] [ * * 8 12 ] [ * * * 15 ] """ if (in_place == False): Q = copy.deepcopy(self) Q.__init__(self.base_ring(), self.dim(), self.coefficients()) Q.elementary_substitution(c, i, j, True) return Q else: ## Adjust the a_{k,j} coefficients ij_old = self[i,j] ## Store this since it's overwritten, but used in the a_{j,j} computation! for k in range(self.dim()): if (k != i) and (k != j): ans = self[j,k] + c*self[i,k] self[j,k] = ans elif (k == j): ans = self[j,k] + c*ij_old + c*c*self[i,i] self[j,k] = ans else: ans = self[j,k] + 2*c*self[i,k] self[j,k] = ans def add_symmetric(self, c, i, j, in_place = False): """ Performs the substitution `x_j --> x_j + c*x_i`, which has the effect (on associated matrices) of symmetrically adding `c * j`-th row/column to the `i`-th row/column. NOTE: This is meant for compatibility with previous code, which implemented a matrix model for this class. It is used in the local_normal_form() method. INPUT: `c` -- an element of Q.base_ring() `i`, `j` -- integers >= 0 OUTPUT: a QuadraticForm (by default, otherwise none) EXAMPLES:: sage: Q = QuadraticForm(ZZ, 3, range(1,7)); Q Quadratic form in 3 variables over Integer Ring with coefficients: [ 1 2 3 ] [ * 4 5 ] [ * * 6 ] sage: Q.add_symmetric(-1, 1, 0) Quadratic form in 3 variables over Integer Ring with coefficients: [ 1 0 3 ] [ * 3 2 ] [ * * 6 ] sage: Q.add_symmetric(-3/2, 2, 0) ## ERROR: -3/2 isn't in the base ring ZZ Traceback (most recent call last): ... RuntimeError: Oops! This coefficient can't be coerced to an element of the base ring for the quadratic form. :: sage: Q = QuadraticForm(QQ, 3, range(1,7)); Q Quadratic form in 3 variables over Rational Field with coefficients: [ 1 2 3 ] [ * 4 5 ] [ * * 6 ] sage: Q.add_symmetric(-3/2, 2, 0) Quadratic form in 3 variables over Rational Field with coefficients: [ 1 2 0 ] [ * 4 2 ] [ * * 15/4 ] """ return self.elementary_substitution(c, j, i, in_place)
n=float(input("Enter the number: \t")) if n==0 : print("Zero\n") elif n<0 : print("Negative\n") else: print("Positive\n")
""" MIT License Copyright (c) 2021 ilkergzlkkr Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import logging, os import typing as t from . import errors from .gqlhttp import GQLHTTPClient log = logging.getLogger(__name__) class DCLClient: """ API wrapper for dclist.net -------------------------- Parameters ---------- bot: discord.Client An instance of a discord.py Client object. token: str Your bot's Dclist.Net API Token. **loop: Optional[event loop] An `event loop` to use for asynchronous operations. Defaults to ``bot.loop``. **transporter: Optional[gql.transport] A `gql.transport` to use for transporting graphql queries. """ def __init__(self, bot, api_token: t.Optional[str]=None, *args, **kwargs): if api_token is None: log.warning("No Token Provided. DCLClient never gonna post bot stats.") self.bot = bot self.bot_id = None self.loop = kwargs.get("loop", bot.loop) self.http = GQLHTTPClient(api_token, loop=self.loop, transporter=kwargs.get('transporter')) async def __get_ready(self): await self.bot.wait_until_ready() if self.bot_id is None: self.bot_id = self.bot.user.id async def _get_app_info(self): await self.__get_ready() return self.bot_id, (await self.bot.application_info()).owner.id async def postBotStats(self, guild_count: t.Optional[int]=None, user_count: t.Optional[int]=None, shard_count: t.Optional[int]=None): """ Post bot stats to the API Parameters ---------- :param guild_count: Guild count (optional) :param user_count: User count (optional) :param shard_count: User count (optional) """ await self.__get_ready() if guild_count is None: guild_count = len(self.bot.guilds) if user_count is None: user_count = len(list(self.bot.get_all_members())) data = await self.http.postBotStats(guild_count, user_count, shard_count) return data['postBotStats'] async def getBotById(self, bot_id: t.Optional[int]) -> dict: """ Get a bot listed on dclist.net Parameters ---------- :param bot_id: Bot id to be fetched if bot_id is not given. self bot will be used for getting stats. Returns ------- bot: Bot as a dict fetched from gql-api """ if bot_id is None: bot_id, _ = await _get_app_info() data = await self.http.getBotById(bot_id) return data['getBot'] async def getUserById(self, user_id: t.Optional[int]) -> dict: """ Get a user from dclist.net. Parameters ---------- :param user_id: User id to be fetched. if user_id is not given. self bot owner will be used for getting stats. Returns ------- user: User as a dict fetched from gql-api. """ if user_id is None: _, user_id = await _get_app_info() data = await self.http.getUserById(user_id) return data['getUser'] async def isUserVoted(self, user_id: t.Optional[int]) -> bool: """ Is user voted for my bot from dclist.net. Parameters ---------- :param user_id: User id to be checked. if user_id is not given. self bot owner will be used for getting voted info. Returns ------- :return bool: True or False is user voted. """ if user_id is None: _, user_id = await _get_app_info() data = await self.http.isUserVoted(user_id) return data['isUserVoted'] async def getUserComment(self, user_id: t.Optional[int]) -> dict: """ Get a user comment from dclist.net from your bot page. Parameters ---------- :param user_id: User id to be checked. if user_id is not given. self bot owner will be used for getting comment info. Returns ------- :return Comment: Comment stats as a dict fetched from gql-api. given user must be commented to your any bots. if not so. return value will be None. """ if user_id is None: _, user_id = await _get_app_info() data = await self.http.getUserComment(user_id) return data['getUserComment']
import base64 import click import pytest from evernote.edam.error.ttypes import EDAMUserException from evernote_backup import cli_app_auth, cli_app_util from evernote_backup.cli_app_click_util import NaturalOrderGroup from evernote_backup.cli_app_util import ProgramTerminatedError from evernote_backup.log_util import get_time_txt def test_get_sync_client_token_expired_error(mock_evernote_client): mock_evernote_client.fake_is_token_expired = True network_error_retry_count = 50 max_chunk_results = 200 fake_token = "S=1:U=ff:E=fff:C=ff:P=1:A=test222:V=2:H=ff" with pytest.raises(ProgramTerminatedError) as excinfo: cli_app_auth.get_sync_client( fake_token, "evernote", network_error_retry_count, max_chunk_results ) assert str(excinfo.value) == "Authentication token expired or revoked!" def test_get_sync_client_token_invalid_error(mock_evernote_client): mock_evernote_client.fake_is_token_invalid = True network_error_retry_count = 50 max_chunk_results = 200 fake_token = "S=1:U=ff:E=fff:C=ff:P=1:A=test222:V=2:H=ff" with pytest.raises(ProgramTerminatedError) as excinfo: cli_app_auth.get_sync_client( fake_token, "evernote", network_error_retry_count, max_chunk_results ) assert str(excinfo.value) == "Invalid authentication token!" def test_get_sync_client_unexpected_error(mock_evernote_client): mock_evernote_client.fake_auth_verify_unexpected_error = True network_error_retry_count = 50 max_chunk_results = 200 fake_token = "S=1:U=ff:E=fff:C=ff:P=1:A=test222:V=2:H=ff" with pytest.raises(EDAMUserException): cli_app_auth.get_sync_client( fake_token, "evernote", network_error_retry_count, max_chunk_results ) def test_unscrambler(): test_data = base64.b64encode(b":8:<2&00000") expected = ["12345", "54321"] result_data = cli_app_util.unscramble(test_data) assert result_data == expected def test_natural_order_group(): @click.group(cls=NaturalOrderGroup) def test_cli(): """pass""" @test_cli.command() def test_command1(): """pass""" @test_cli.command() def test_command3(): """pass""" @test_cli.command() def test_command2(): """pass""" assert list(test_cli.list_commands(None)) == [ "test-command1", "test-command3", "test-command2", ] pass @pytest.mark.parametrize( "time_seconds,time_txt", [ (10, "0:10"), (65, "01:05"), (3605, "01:00:05"), ], ) def test_cli_test_tty(time_seconds, time_txt): assert get_time_txt(time_seconds) == time_txt
import numpy as np import tensorflow as tf from tensorflow.keras import backend as K from tensorflow.keras.metrics import Metric from sklearn.metrics import f1_score, accuracy_score epsilon = K.epsilon() term_code = {'begin': 1, 'inside': 2, 'outside': 0, } idx2polarity = {0: 'background', 1: 'positive', 2: 'negative', 3: 'neutral', 4: 'conflict', } polarity2idx = {v: k for k,v in idx2polarity.items()} def mask_absa(y_aspect, y_sentiment, mask): # Mask background words and conflict-sentiment words # for not to count in evaluation Ys_aspect, Ys_sentiment = [], [] for seq_aspect, seq_sentiment, seq_mask in zip(y_aspect, y_sentiment, mask): labels_aspect, labels_sentiment = [], [] for l_a, l_s, m in zip(seq_aspect, seq_sentiment, seq_mask): if m == 0: break labels_aspect.append(np.argmax(l_a)) if not np.any(l_s): # all 0s means background or conflict-sentiment word # -> be not counted for evaluation labels_sentiment.append(0) else: labels_sentiment.append(np.argmax(l_s)+1) Ys_aspect.append(labels_aspect) Ys_sentiment.append(labels_sentiment) return Ys_aspect, Ys_sentiment def score_absa_single_sample(t_true, t_pred, s_true=[], s_pred=[], counters: dict={}, term_only: bool=False): n_relevants, n_corrects, n_predicteds = 0, 0, 0 n_words = len(t_true) for j in range(n_words): if t_true[j] == term_code['begin']: n_relevants += 1 if not term_only: if s_true[j] != polarity2idx['background']: counters['overall'][idx2polarity[s_true[j]]] += 1 if t_pred[j] == term_code['begin']: matching = True for k in range(j+1, len(t_true)): if t_true[k] == term_code['inside'] and t_pred[k] == term_code['inside']: continue elif t_true[k] != term_code['inside'] and t_pred[k] != term_code['inside']: break else: matching = False break if matching: n_corrects += 1 if not term_only: if s_true[j] != polarity2idx['background']: counters['gold'][idx2polarity[s_true[j]]] += 1 counters['pred'][idx2polarity[s_pred[j]]] += 1 if s_true[j] == s_pred[j]: counters['correct'][idx2polarity[s_pred[j]]] += 1 else: counters['pred']['conflict'] += 1 for t_p in t_pred: if t_p == term_code['begin']: n_predicteds += 1 if term_only: return n_relevants, n_corrects, n_predicteds return [n_relevants, n_corrects, n_predicteds], counters def score_absa(terms_true, terms_pred, sentiments_true: list=[], sentiments_pred: list=[], average_method: str='macro', term_only: bool=False): # Define useful variables if not term_only: # Sentiment Distribution for Aspect / Opinion Terms: # pred_count: predicted results that are correctly extracted # gold_count: gold results that are correctly extracted # correct_count: results that get both span & prediction correctly # overall_count: ground-truth counters = { 'gold': {'positive': 0, 'negative': 0, 'neutral': 0, }, 'pred': {'positive': 0, 'negative': 0, 'neutral': 0, 'conflict': 0}, 'correct': {'positive': 0, 'negative': 0, 'neutral': 0, }, 'overall': {'positive': 0, 'negative': 0, 'neutral': 0, } } # Do statistics n_corrects, n_predicteds, n_relevants = 0, 0, 0 n_samples = len(terms_true) for i in range(n_samples): t_true, t_pred = terms_true[i], terms_pred[i] if term_only: sample_relevants, sample_corrects, sample_predicteds = score_absa_single_sample(t_true, t_pred, term_only=term_only) else: s_true, s_pred = sentiments_true[i], sentiments_pred[i] [sample_relevants, sample_corrects, sample_predicteds], \ counters = score_absa_single_sample(t_true, t_pred, s_true, s_pred, counters, term_only) n_corrects += sample_corrects n_relevants += sample_relevants n_predicteds += sample_predicteds # Calculate evaluation metrics for Term (of Aspect or Opinion) term_P = n_corrects / (n_predicteds+epsilon) # precision term_R = n_corrects / (n_relevants+epsilon) # recall term_F1 = 2*term_P*term_R / (term_P+term_R+epsilon) if term_only: return term_F1 sentiment_Acc, sentiment_F1, absa_F1 = score_sentiment_and_overall(n_predicteds, counters, average_method) return term_F1, sentiment_Acc, sentiment_F1, absa_F1 def score_sentiment_and_overall(n_predicteds: int, counters: dict, average_method: str='micro'): # Precision and Recall per each sentiment polarity positive_P = counters['correct']['positive'] / (counters['pred']['positive']+epsilon) positive_R = counters['correct']['positive'] / (counters['gold']['positive']+epsilon) negative_P = counters['correct']['negative'] / (counters['pred']['negative']+epsilon) negative_R = counters['correct']['negative'] / (counters['gold']['negative']+epsilon) neutral_P = counters['correct']['neutral'] / (counters['pred']['neutral']+epsilon) neutral_R = counters['correct']['neutral'] / (counters['gold']['neutral']+epsilon) # Calculate evaluation metrics for Sentiment n_corrects_sentiment = counters['correct']['positive'] + counters['correct']['negative'] + counters['correct']['neutral'] n_corrects_aspect = counters['gold']['positive'] + counters['gold']['negative'] + counters['gold']['neutral'] n_overall = counters['overall']['positive'] + counters['overall']['negative'] + counters['overall']['neutral'] sentiment_Acc = n_corrects_sentiment / (n_corrects_aspect+epsilon) if average_method == 'micro': sentiment_P = (positive_P+negative_P+neutral_P) / 3.0 sentiment_R = (positive_R+negative_R+neutral_R) / 3.0 sentiment_F1 = 2*sentiment_P*sentiment_R / (sentiment_P+sentiment_R+epsilon) elif average_method == 'macro': positive_F1 = 2*positive_P*positive_R / (positive_P+positive_R+epsilon) negative_F1 = 2*negative_P*negative_R / (negative_P+negative_R+epsilon) neutral_F1 = 2*neutral_P*neutral_R / (neutral_P+neutral_R+epsilon) sentiment_F1 = (positive_F1+negative_F1+neutral_F1) / 3.0 else: raise ValueError('average_method must be either micro or macro') # Calculate evaluation metrics for ABSA absa_P = n_corrects_sentiment / (n_predicteds-counters['pred']['conflict']+epsilon) absa_R = n_corrects_sentiment / (n_overall+epsilon) absa_F1 = 2*absa_P*absa_R / (absa_P+absa_R+epsilon) return sentiment_Acc, sentiment_F1, absa_F1 def evaluate_absa(aspects_true, aspects_pred, opinions_true, opinions_pred, sentiments_true, sentiments_pred, mask, include_opinion: bool=True): aspects_true, sentiments_true = mask_absa(aspects_true, sentiments_true, mask) aspects_pred, sentiments_pred = mask_absa(aspects_pred, sentiments_pred, mask) absa_scores = score_absa(aspects_true, aspects_pred, sentiments_true, sentiments_pred) # aspect_f1, sentiment_acc, sentiment_f1, absa_f1 = absa_scores if include_opinion: opinions_true, _ = mask_absa(opinions_true, sentiments_true, mask) opinions_pred, _ = mask_absa(opinions_pred, sentiments_pred, mask) opinion_f1 = score_absa(opinions_true, opinions_pred, term_only=True) absa_scores = [opinion_f1] + list(absa_scores) return absa_scores def evaluate_multilists(arrays_true, arrays_pred, mask, average_method: str='macro'): if isinstance(arrays_true, np.ndarray): arrays_true = [arrays_true] arrays_pred = [arrays_pred] elif not isinstance(arrays_true, (list, tuple)): raise ValueError(f"inputs must be np.ndarray / list / tuple, not {arrays_true.__class__}") average_method = average_method.lower() if average_method not in ['micro', 'macro']: print(f'average_method={average_method} is out-of-option, so average_method is set as micro') average_method = 'macro' def evaluate(list_true, list_pred, mask): # Remove background words for not to count in evaluation list_true, list_true_unmask = np.argmax(list_true, axis=-1), [] list_pred, list_pred_unmask = np.argmax(list_pred, axis=-1), [] for seq_true, seq_pred, seq_mask in zip(list_true, list_pred, mask): seq_true_unmask, seq_pred_unmask = [] , [] for token_true, token_pred, token_mask in zip(seq_true, seq_pred, seq_mask): if token_mask == 0: break if token_true == 0: continue # skip background seq_true_unmask.append(token_true) seq_pred_unmask.append(token_pred) list_true_unmask.extend(seq_true_unmask) list_pred_unmask.extend(seq_pred_unmask) list_score = [f1_score(list_true_unmask, list_pred_unmask, zero_division='warn', average=average_method), accuracy_score(list_true_unmask, list_pred_unmask)] return list_score scores = [evaluate(list_true, list_pred, mask) for list_true, list_pred in zip(arrays_true, arrays_pred)] return sum(scores, []) # flatten nested lists class F_score(Metric): def __init__(self, beta: int=1, threshold: float=0.5, **kwargs): super().__init__(**kwargs) # handle base args (e.g. dtype) self.beta = int(beta) self.threshold = float(threshold) self.count_positives = create_positive_counters(beta, threshold) self.n_true_positives = self.add_weight("n_true_positives", initializer="zeros") self.n_possible_positives = self.add_weight('n_possible_positives', initializer='zeros') self.n_predicted_positives = self.add_weight('n_predicted_positives', initializer='zeros') def update_state(self, y_true, y_pred, sample_weight=None): true_positives, predicted_positives, possible_positives = self.count_positives(y_true, y_pred) self.n_true_positives.assign_add(true_positives) self.n_possible_positives.assign_add(possible_positives) self.n_predicted_positives.assign_add(predicted_positives) def result(self): precision = self.n_true_positives / (self.n_predicted_positives+epsilon) recall = self.n_true_positives / (self.n_possible_positives+epsilon) f_score = (1+self.beta**2) * (precision*recall) / (self.beta**2*precision+recall+epsilon) return f_score def create_positive_counters(beta=1, threshold=0.5): def count_positives(y_true, y_pred): def count(x): return tf.reduce_sum(x) y_true = tf.cast(y_true, tf.float32) y_pred = tf.cast(y_pred, tf.float32) y_pred = tf.where(y_pred>=threshold, 1., 0.) true_positives = count(y_true*y_pred) predicted_positives = count(y_pred) possible_positives = count(y_true) return true_positives, predicted_positives, possible_positives return count_positives def create_fscore(beta=1, threshold=0.5): def f_score(y_true, y_pred): def count(x): return tf.reduce_sum(x) def recall(y_true, y_pred): true_positives = count(y_true*y_pred) possible_positives = count(y_true) recall = true_positives / (possible_positives+K.epsilon()) return recall def precision(y_true, y_pred): true_positives = count(y_true*y_pred) predicted_positives = count(y_pred) precision = true_positives / (predicted_positives+K.epsilon()) return precision y_true = tf.cast(y_true, tf.float32) y_pred = tf.cast(y_pred, tf.float32) y_pred = tf.where(y_pred>=threshold, 1., 0.) P, R = precision(y_true, y_pred), recall(y_true, y_pred) return (1+beta**2)*(P*R)/(beta**2*P+R+K.epsilon()) return f_score
import html import re from typing import List, Optional from flask import Blueprint, current_app, jsonify, g from flask_apispec import use_kwargs from webargs.flaskparser import use_args from neo4japp.blueprints.auth import auth from neo4japp.blueprints.projects import ProjectBaseView from neo4japp.constants import FILE_INDEX_ID, FRAGMENT_SIZE, LogEventType from neo4japp.blueprints.filesystem import FilesystemBaseView from neo4japp.data_transfer_objects.common import ResultQuery from neo4japp.database import ( get_search_service_dao, get_elastic_service, get_file_type_service ) from neo4japp.exceptions import ServerException from neo4japp.models import ( Files, Projects, ) from neo4japp.schemas.common import PaginatedRequestSchema from neo4japp.schemas.search import ( ContentSearchSchema, ContentSearchResponseSchema, OrganismSearchSchema, SynonymSearchSchema, SynonymSearchResponseSchema, VizSearchSchema, ) from neo4japp.services.file_types.providers import ( DirectoryTypeProvider, ) from neo4japp.util import jsonify_with_class, SuccessResponse from neo4japp.utils.logger import EventLog, UserEventLog from neo4japp.utils.request import Pagination bp = Blueprint('search', __name__, url_prefix='/search') @bp.route('/viz-search', methods=['POST']) @auth.login_required @use_kwargs(VizSearchSchema) def visualizer_search( query, page, limit, domains, entities, organism ): search_dao = get_search_service_dao() current_app.logger.info( f'Term: {query}, Organism: {organism}, Entities: {entities}, Domains: {domains}', extra=UserEventLog( username=g.current_user.username, event_type=LogEventType.VISUALIZER_SEARCH.value).to_dict() ) results = search_dao.visualizer_search( term=query, organism=organism, page=page, limit=limit, domains=domains, entities=entities, ) return jsonify({ 'result': results.to_dict(), }) # Start Search Helpers # def content_search_params_are_empty(params): """ Checks if the given content search params are completely empty. We do checking on specific fields, because for some options we don't want to execute a search if only that option is present. E.g., a request with only the `synonyms` option doesn't make sense. """ if 'q' in params and params['q']: return False elif 'types' in params and params['types']: return False elif 'folders' in params and params['folders']: return False return True def get_types_from_params(q, advanced_args): """ Adds "types" filters to `q` for each type specified in `advanced_args`, or returns `q` unmodified if `types` was not present or empty. """ types = [] try: if advanced_args['types'] != '': types = advanced_args['types'].split(';') return f'{q} ({" OR ".join([f"type:{t}" for t in types])})' if len(types) else q except KeyError: return q def get_folders_from_params(advanced_args): """ Extracts and returns the list of file hash IDs from the input `advanced_args`. `folders` is an expected property on `advanced_args`, if it does not exist, or it is empty, then an empty list is returned instead. """ try: if advanced_args['folders'] != '': return advanced_args['folders'].split(';') else: return [] except KeyError: return [] def get_filepaths_filter(accessible_folders: List[Files], accessible_projects: List[Projects]): """ Generates an elastic boolean query which filters documents based on folder/project access. Takes as input two options: - accessible_folders: a list of Files objects representing folders to be included in the query - accessible_projects: a list of Projects objects representing projects to be included in the query Any files present in accessible_folders which are not children of accessible_projects will be ignored, and returned along with the query. """ accessible_projects_ids = [ project.id for project in accessible_projects ] filepaths = [] for file in accessible_folders: filepaths.append(file.filename_path) if len(filepaths): return { 'bool': { 'should': [ { "term": { "file_path.tree": file_path } } for file_path in filepaths ] } } else: # If there were no accessible filepaths in the given list, search all accessible projects return { 'bool': { 'should': [ # If the user has access to the project the document is in... {'terms': {'project_id': accessible_projects_ids}}, # OR if the document is public. {'term': {'public': True}} ] } } # End Search Helpers # class ContentSearchView(ProjectBaseView, FilesystemBaseView): decorators = [auth.login_required] @use_args(ContentSearchSchema) @use_args(PaginatedRequestSchema) def get(self, params: dict, pagination: Pagination): current_app.logger.info( f'Term: {params["q"]}', extra=UserEventLog( username=g.current_user.username, event_type=LogEventType.CONTENT_SEARCH.value).to_dict() ) current_user = g.current_user file_type_service = get_file_type_service() if content_search_params_are_empty(params): return jsonify(ContentSearchResponseSchema(context={ 'user_privilege_filter': g.current_user.id, }).dump({ 'total': 0, 'query': ResultQuery(phrases=[]), 'results': [], })) offset = (pagination.page - 1) * pagination.limit q = params['q'] q = get_types_from_params(q, params) folders = get_folders_from_params(params) # Set the search term once we've parsed the params for all advanced options user_search_query = q.strip() text_fields = ['description', 'data.content', 'filename'] text_field_boosts = {'description': 1, 'data.content': 1, 'filename': 3} highlight = { 'fields': { 'data.content': {}, }, # Need to be very careful with this option. If fragment_size is too large, search # will be slow because elastic has to generate large highlight fragments. Setting # to 0 generates cleaner sentences, but also runs the risk of pulling back huge # sentences. 'fragment_size': FRAGMENT_SIZE, 'order': 'score', 'pre_tags': ['@@@@$'], 'post_tags': ['@@@@/$'], 'number_of_fragments': 100, } EXCLUDE_FIELDS = ['enrichment_annotations', 'annotations'] # Gets the full list of projects accessible by the current user. accessible_projects, _ = self.get_nondeleted_projects(None, accessible_only=True) # Gets the full list of folders accessible by the current user. accessible_folders = self.get_nondeleted_recycled_files( Files.hash_id.in_(folders), attr_excl=EXCLUDE_FIELDS ) accessible_folder_hash_ids = [folder.hash_id for folder in accessible_folders] dropped_folders = [folder for folder in folders if folder not in accessible_folder_hash_ids] filepaths_filter = get_filepaths_filter( accessible_folders, accessible_projects ) # These are the document fields that will be returned by elastic return_fields = ['id'] filter_ = [ # The file must be accessible by the user, and in the specified list of # filepaths or public if no list is given... filepaths_filter, # ...And it shouldn't be a directory. Right now there's not really any helpful info # attached to directory type documents (including a filename, for top-level # directories), so instead just ignore them. { 'bool': { 'must_not': [ {'term': {'mime_type': DirectoryTypeProvider.MIME_TYPE}} ] } } ] elastic_service = get_elastic_service() elastic_result, search_phrases = elastic_service.search( index_id=FILE_INDEX_ID, user_search_query=user_search_query, offset=offset, limit=pagination.limit, text_fields=text_fields, text_field_boosts=text_field_boosts, return_fields=return_fields, filter_=filter_, highlight=highlight ) elastic_result = elastic_result['hits'] highlight_tag_re = re.compile('@@@@(/?)\\$') # So while we have the results from Elasticsearch, they don't contain up to date or # complete data about the matched files, so we'll take the hash IDs returned by Elastic # and query our database file_ids = [doc['fields']['id'][0] for doc in elastic_result['hits']] file_map = { file.id: file for file in self.get_nondeleted_recycled_files( Files.id.in_(file_ids), attr_excl=['enrichment_annotations', 'annotations'] ) } results = [] for document in elastic_result['hits']: file_id = document['fields']['id'][0] file: Optional[Files] = file_map.get(file_id) if file and file.calculated_privileges[current_user.id].readable: file_type = file_type_service.get(file) if file_type.should_highlight_content_text_matches() and \ document.get('highlight') is not None: if document['highlight'].get('data.content') is not None: snippets = document['highlight']['data.content'] for i, snippet in enumerate(snippets): snippet = html.escape(snippet) snippet = highlight_tag_re.sub('<\\1highlight>', snippet) snippets[i] = f"<snippet>{snippet}</snippet>" file.calculated_highlight = snippets results.append({ 'item': file, 'rank': document['_score'], }) return jsonify(ContentSearchResponseSchema(context={ 'user_privilege_filter': g.current_user.id, }).dump({ 'total': elastic_result['total'], 'query': ResultQuery(phrases=search_phrases), 'results': results, 'dropped_folders': dropped_folders })) class SynonymSearchView(FilesystemBaseView): decorators = [auth.login_required] @use_args(SynonymSearchSchema) @use_args(PaginatedRequestSchema) def get(self, params, pagination: Pagination): search_term = params.get('term', None) organisms = [] if len(params['organisms']): organisms = params['organisms'].split(';') types = [] if len(params['types']): types = params['types'].split(';') if search_term is None: return jsonify(SynonymSearchResponseSchema().dump({ 'data': [], })) page = pagination.page limit = pagination.limit offset = (page - 1) * limit try: search_dao = get_search_service_dao() results = search_dao.get_synonyms(search_term, organisms, types, offset, limit) count = search_dao.get_synonyms_count(search_term, organisms, types) except Exception as e: current_app.logger.error( f'Failed to get synonym data for term: {search_term}', exc_info=e, extra=EventLog(event_type=LogEventType.CONTENT_SEARCH.value).to_dict() ) raise ServerException( title='Unexpected error during synonym search', message='A system error occurred while searching for synonyms, we are ' + 'working on a solution. Please try again later.' ) return jsonify(SynonymSearchResponseSchema().dump({ 'data': results, 'count': count })) bp.add_url_rule('content', view_func=ContentSearchView.as_view('content_search')) bp.add_url_rule('synonyms', view_func=SynonymSearchView.as_view('synonym_search')) @bp.route('/organism/<string:organism_tax_id>', methods=['GET']) @auth.login_required @jsonify_with_class() def get_organism(organism_tax_id: str): search_dao = get_search_service_dao() result = search_dao.get_organism_with_tax_id(organism_tax_id) return SuccessResponse(result=result, status_code=200) @bp.route('/organisms', methods=['POST']) @auth.login_required @use_kwargs(OrganismSearchSchema) def get_organisms(query, limit): search_dao = get_search_service_dao() results = search_dao.get_organisms(query, limit) return jsonify({'result': results})
#Betrothed Numbers #TOOLS def Divisors(num): from math import sqrt as mmsq s=set([1]) i=1 a=int(mmsq(num)+1) while i<=a: if(num//i==num): i+=1 continue if (num%i==0): if (num//i!=i): s.add(num//i) s.add(i) i+=1 return s ############################# # Nikita's Method def NBetrothedNumbers(n) : bet=[] for num1 in range (1,n) : sum1 = 1 i = 2 while i * i <= num1 : if (num1 % i == 0) : sum1 = sum1 + i if (i * i != num1) : sum1 += num1 / i i =i + 1 if (sum1 > num1) : num2 = sum1 - 1 sum2 = 1 j = 2 while j * j <= num2 : if (num2 % j == 0) : sum2 += j if (j * j != num2) : sum2 += num2 / j j = j + 1 if (sum2 == num1+1) : bet.append ((num1,num2)) return bet n = 1000000 bet=NBetrothedNumbers(n) bet ##Brute force Method def BetrothedNumber(k,ratio=5.5,ratio2=5.5,order=1,returni=False): ##All divisors for all numbers allDels=dict() ###Second number is greater than first number from itertools import chain concatenated = chain( range(k, int(k*ratio)+1 ),range(k, int(k/ratio2)+1 ,-1) ) for i in concatenated: ###We don't want repeat operations ###Therefore search and save all divisors if(str(i) not in allDels): allDels[str(i)] = Divisors(i) ###Sum1+order_num = 2nd Num and Sum2+order_num = 1st Nub if(i != k and sum(allDels[str(i)]) == k+order and sum(allDels[str(k)]) == i+order): if(returni): return (k,i) else: print(k,"->",i) def BetrothedNumbers(m,n,order=1): if(m!=n): s1=set([1]) for i in range(int(m/2+1),1,-1): if(m%i==0): s1.add(i) s2=set([1]) for i in range(int(n/2+1),1,-1): if(n%i==0): s2.add(i) return sum(s1)==n+1 and sum(s2)+n==sum(s1)+m else: return False def doTest(toPrint=False,toProgress=False,start=1,toEnd=1000,algo="bf"): s=set() KK=10000 from IPython.display import clear_output for i in range(start,toEnd+1): if(toProgress and (i<KK or (i>=KK and i%(KK/100)==0))): clear_output(wait=True) print(i,end="\t") if(algo=="bf"): bet=BetrothedNumber(i) if(bet): s.add(bet) if(toPrint and not toProgress): print(bet,end=", ") if(toProgress and (i<KK or (i>=KK and i%(KK/100)==0))): print(s) if(not toPrint): return s #BetrothedNumber(48) #BetrothedNumbers(140,195) #doTest()
""" 1. Вывести все коммиты (сообщения) и подсчитать все. 1.1 Вывести сообщения длина которых больше 10 и их кол-во """ import sys import requests url = 'https://api.github.com/repos/{}/{}/commits?page1&per_page=100'.format(sys.argv[1],sys.argv[2]) response = requests.get(url,headers={'Authorization':'Token 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'}).json() commit=[] for r in response: commit.append(r['commit']['message']) sum=0 # print(commit) count = 0 for massage in commit: sum+=1 if len(massage)>10: count+=1 print(massage) print('total commits-',sum) print('total commits that are great than 10-',count) user=[] for r in response: if r['commit']['author']['name'] not in user: user.append(r['commit']['author']['name']) print(user)
#! /usr/bin/env python import math import rospy import tf import tf2_ros from sensor_msgs.msg import LaserScan from darknet_ros_msgs.msg import BoundingBox #msg that contains bounding box coordinates from darknet_ros_msgs.msg import BoundingBoxes # from apriltag_ros.msg import Coordinates #rostopic echo darknet_ros/bounding_boxes... #std_msgs/Header header #uint32 seq #time stamp #string frame_id #std_msgs/Header image_header #uint32 seq #time stamps #string frame_id #darknet_ros_msgs/BoundingBox[] bounding_boxes #float64 probability #int64 xmin #int64 ymin #int64 xmax #int64 ymax #int16 id #string Class #rostopic type /scan | rosmsg show #std_msgs/Header header #uint32 seq #time stamp #string frame_id #float32 angle_min #float32 angle_max #float32 angle_increment #float32 time_increment #float32 scan_time #float32 range_min #float32 range_max #float32[] ranges #float32[] intensities rospy.init_node('animalDetect_node',anonymous = False) # lidar_angle = None def callback1(animalBox): #function for calculating relative #global lidar_angle angleScale = 320/26.75 #Camera view 26.75*2, negativ direction counter clockwise try: animalType = str(animalBox.bounding_boxes[0].Class) #CALCULATING if animalType in ['cat', 'cow', 'dog', 'horse']: #if class is one of these animals print(animalType) x_max = animalBox.bounding_boxes[0].xmax x_min = animalBox.bounding_boxes[0].xmin x_position = (x_max + x_min)/2 #calculate the pixel in optical frame [0-640] Raspery pi has resolut 640x.... x_angle = x_position/angleScale-26.75 x_angle = round(x_angle) if x_angle <0: #To get correct slot in ranges[], pos direct in ranges is counter clockwise [0-359] lidar_angle = -x_angle else: lidar_angle = 359 - x_angle #print(x_angle) # print(lidar_angle) # lidarAngleInfo = Coordinates() # # lidarAngleInfo.lidarAngle = lidar_angle #might be good for geometric # # try: # pub.publish(lidarAngleInfo) #Publishing coordinates onto the "chatter" topic for the yaml file to read. # # except rospy.ROSInterruptException: # pass return lidar_angle else: return except (IndexError): return #TRANSLATE THIS TO ANGLE AROUND ROBOT #note: 53.5 degree viewing angle max (-26.75 to 26.75) #note: LaserScan (0-360) with 0 being in front, rotating CCW - base scan def callback2(laserData): #function for determining laser distance at determined angle # print len(msg.ranges) try: x = callback1() #x = callback1(animalBox).lidar_angle #lidar_angle_new = int(lidar_angle) #xx = int(x) #print(lidar_angle_new) #print(x) except: pass x = callback1() #x = callback1().lidar_angle #animalDistance = laserData.ranges[xx] #print(animalDistance) #animalDistance = laserData.ranges[int(lidar_angle)] #lidar_angle = None #print(animalDistance) # if lidar_angle: # print(lidar_angle) # try: # animal_distance = laserData.ranges[lidar_angle] # # if x_angle: # print(animal_distance) # # except(IndexError): #pub = rospy.Publisher('animalFound', Coordinates, queue_size=10) #return if __name__ == '__main__': sub1 = rospy.Subscriber('/darknet_ros/bounding_boxes', BoundingBoxes , callback1) #sub2 = rospy.Subscriber('/scan', LaserScan , callback2) # sub3 = rospy.Subscriber('chatter', Coordinates , callback2) sub2 = rospy.Subscriber('/scan', LaserScan , callback2) rospy.spin() #continuous loop
# The myplugin module must be locatable by Python. # If you configured CMake in the build directory ``/path/to/repo/build`` then, # assuming you are in ``/path/to/repo``, run the tests with something like # PYTHONPATH=./cmake-build-debug/src/pythonmodule mpiexec -n 2 python -m mpi4py -m pytest tests/ # This test is not currently run automatically in any way. Build the module, point your PYTHONPATH at it, # and run pytest in the tests directory. import logging import os try: import mpi4py.MPI as _MPI except (ImportError, ModuleNotFoundError): _MPI = None import gmxapi as gmx from gmxapi.simulation.context import Context from gmxapi.simulation.workflow import WorkElement, from_tpr from gmxapi import version as gmx_version import pytest # create console handler ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) # create formatter and add it to the handler formatter = logging.Formatter('%(asctime)s:%(name)s:%(levelname)s: %(message)s') ch.setFormatter(formatter) # add the handlers to the logger logging.getLogger().addHandler(ch) logger = logging.getLogger() def test_import(): # Suppress inspection warning outside of testing context. # noinspection PyUnresolvedReferences import myplugin assert myplugin @pytest.mark.usefixtures("cleandir") def test_binding_protocol(spc_water_box, mdrun_kwargs): """Test that gmxapi successfully attaches MD plugins.""" import myplugin if _MPI is not None: _size = _MPI.COMM_WORLD.Get_size() _rank = _MPI.COMM_WORLD.Get_rank() else: _size = 1 _rank = 0 tpr_filename = spc_water_box logger.info("Testing plugin potential with input file {}".format(os.path.abspath(tpr_filename))) assert gmx.version.api_is_at_least(0, 2, 1) md = from_tpr([tpr_filename] * _size, append_output=False, **mdrun_kwargs) potential = WorkElement(namespace="myplugin", operation="null_restraint", params={'sites': [1, 4]}) potential.name = "null restraint" md.add_dependency(potential) context = Context(md) with context as session: session.run() # See also #3038, #3145, #4079 assert isinstance(context.potentials, list) assert len(context.potentials) > 0 for restraint in context.potentials: if isinstance(restraint, myplugin.NullRestraint): assert gmx.version.api_is_at_least(0, 2, 1) assert restraint.count() > 1 @pytest.mark.usefixtures("cleandir") def test_ensemble_potential_nompi(spc_water_box, mdrun_kwargs): """Test ensemble potential without an ensemble. """ tpr_filename = spc_water_box logger.info("Testing plugin potential with input file {}".format(os.path.abspath(tpr_filename))) assert gmx.version.api_is_at_least(0, 0, 5) md = from_tpr([tpr_filename], append_output=False, **mdrun_kwargs) # Create a WorkElement for the potential params = {'sites': [1, 4], 'nbins': 10, 'binWidth': 0.1, 'min_dist': 0., 'max_dist': 10., 'experimental': [1.] * 10, 'nsamples': 1, 'sample_period': 0.001, 'nwindows': 4, 'k': 10000., 'sigma': 1.} potential = WorkElement(namespace="myplugin", operation="ensemble_restraint", params=params) # Note that we could flexibly capture accessor methods as workflow elements, too. Maybe we can # hide the extra Python bindings by letting myplugin.HarmonicRestraint automatically convert # to a WorkElement when add_dependency is called on it. potential.name = "ensemble_restraint" md.add_dependency(potential) context = Context(md) with context as session: session.run() @pytest.mark.withmpi_only @pytest.mark.usefixtures("cleandir") def test_ensemble_potential_withmpi(spc_water_box, mdrun_kwargs): tpr_filename = spc_water_box logger.info("Testing plugin potential with input file {}".format(os.path.abspath(tpr_filename))) assert gmx_version.api_is_at_least(0, 0, 5) md = from_tpr([tpr_filename, tpr_filename], append_output=False, **mdrun_kwargs) # Create a WorkElement for the potential params = {'sites': [1, 4], 'nbins': 10, 'binWidth': 0.1, 'min_dist': 0., 'max_dist': 10., 'experimental': [0.5] * 10, 'nsamples': 1, 'sample_period': 0.001, 'nwindows': 4, 'k': 10000., 'sigma': 1.} potential = WorkElement(namespace="myplugin", operation="ensemble_restraint", params=params) # Note that we could flexibly capture accessor methods as workflow elements, too. Maybe we can # hide the extra Python bindings by letting myplugin.HarmonicRestraint automatically convert # to a WorkElement when add_dependency is called on it. potential.name = "ensemble_restraint" md.add_dependency(potential) context = Context(md) with context as session: session.run()
from glob import glob from typing import List import os import pandas as pd import wget class EmoDB(object): def __init__(self, sampling_rate: int = 16000, num_mel_bins: int = 40, frame_length: int = 50, frame_shift: int = 10, max_len: int = 3, center_feats: bool = True, scale_feats: bool = True, emotions: List[str] = None, download_dir: str = None, experiment_dir: str = None): if emotions is None: emotions = ["neutral", "anger", "happiness", "sadness"] # config download dir if download_dir is None: self.download_root = f"{os.path.expanduser('~')}/vistec-ser_tmpfiles/vistec" else: self.download_root = f"{download_dir}/vistec-ser_tmpfiles/emodb" if not os.path.exists(self.download_root): os.makedirs(self.download_root) # config experiment dir if experiment_dir is None: self.experiment_root = f"{os.path.expanduser('~')}/vistec-ser_tmpfiles/exp_emodb" else: self.experiment_root = f"{experiment_dir}" self.experiment_dir = f"{self.experiment_root}" if not os.path.exists(self.experiment_dir): os.makedirs(self.experiment_dir) self.download_url = "http://www.emodb.bilderbar.info/download/download.zip" self.emotion_mappings = {'N': 'neutral', 'W': 'anger', 'F': 'happiness', 'T': 'sadness'} self.label_path = f"{self.download_root}/labels.csv" self.test_speaker = ["09", "15"] self.val_speaker = ["12", "10"] self.max_len = max_len self.sampling_rate = sampling_rate self.frame_length = frame_length self.frame_shift = frame_shift self.num_mel_bins = num_mel_bins self.center_feats = center_feats self.scale_feats = scale_feats self.sec_to_frame = 10 * self.frame_shift self.emotions = emotions self.n_classes = len(self.emotions) def download(self): # download if not os.path.exists(f"{self.download_root}/download.zip"): print(">downloading dataset...") wget.download(url=self.download_url, out=f"{self.download_root}/download.zip", bar=wget.bar_adaptive) # unzip if not os.path.exists(f"{self.download_root}/emo-db"): print(">unzipping data...") os.system(f"unzip -q {self.download_root}/download.zip -d {self.download_root}/emo-db") if not os.path.exists(f"{self.label_path}"): print(">preparing labels...") labels = ["PATH, EMOTION\n"] for wav in glob(f"{self.download_root}/emo-db/*/*.wav"): key = wav.split('.')[0][-2] if key not in self.emotion_mappings.keys(): continue emotion = self.emotion_mappings[key] wav = os.path.abspath(wav) labels.append(f"{wav},{emotion}\n") open(self.label_path, "w").writelines(labels) def prepare_labels(self): self.download() assert os.path.exists(self.label_path) labels = pd.read_csv(self.label_path)
# -*- coding: utf-8 -*- # @Author: Zeyuan Shang # @Date: 2016-05-04 20:42:41 # @Last Modified by: Zeyuan Shang # @Last Modified time: 2016-05-04 20:43:41 s = raw_input() n = len(s) player1, player2 = 0, 0 for i in xrange(len(s)): if s[i] in "AEIOU": player1 += n - i else: player2 += n - i if player1 > player2: print "Kevin", player1 elif player1 < player2: print "Stuart", player2 else: print "Draw"
# Removing "_pilon" from fasta titles and writing the new reference ot the right position old_fasta = '../../Output/WGS/reference_refinement/pilon_output/w303_vlte.fasta' new_fasta = '../../Output/WGS/reference/w303_vlte.fasta' with open(new_fasta, 'w') as outfile: with open(old_fasta, 'r') as infile: for line in infile: outfile.write(line.replace("_pilon", "")) # Updates a gff based on indels in a pilon .changes file import pandas as pd import csv from collections import defaultdict change_file = '../../Output/WGS/reference_refinement/pilon_output/w303_vlte.changes' old_gff = '../accessory_files/orig_w303_ref/w303_ref.gff' new_gff = '../../Output/WGS/reference/w303_vlte.gff' # Generating map between old reference index and new reference index base_map = defaultdict(dict) with open(change_file, 'r') as infile: reader = csv.reader(infile, delimiter=' ') for row in reader: chromo = row[0].split(':')[0].split('_')[0] old_loc = int(row[0].split(':')[1].split('-')[0]) new_loc = int(row[1].split(':')[1].split('-')[0]) if row[2] == '.': base_map[chromo][old_loc] = new_loc+len(row[3]) elif row[3] == '.': base_map[chromo][old_loc+len(row[2])] = new_loc elif len(row[2]) != len(row[3]): base_map[chromo][old_loc+len(row[2])] = new_loc + len(row[3]) def old_to_new_base(chromo, old_base): # makes the conversions td = base_map[chromo] anchors = sorted(td.keys()) shift = 0 for anch in anchors: if anch <= old_base: shift = td[anch] - anch else: break return old_base + shift ## Double check: all simple substitutions in the change file should with open(change_file, 'r') as infile: reader = csv.reader(infile, delimiter=' ') for row in reader: chromo = row[0].split(':')[0].split('_')[0] old_loc = int(row[0].split(':')[1].split('-')[0]) new_loc = int(row[1].split(':')[1].split('-')[0]) if len(row[2]) == len(row[3]) and '.' not in row: try: assert new_loc == old_to_new_base(chromo, old_loc) except AssertionError: print('Index change error, for this row:', row, '. Thinks this is the new base:', old_to_new_base(chromo, old_loc)) with open(old_gff, 'r') as infile: reader = csv.reader(infile, delimiter='\t') next(reader) #skip header with open(new_gff, 'w') as outfile: writer = csv.writer(outfile, delimiter='\t') writer.writerow(['##gff-version 3']) for row in reader: writer.writerow(row[:3] + [old_to_new_base(row[0], int(r)) for r in row[3:5]] + row[5:])
import discord, os, platform, asyncio from discord.ext import commands import core.config class SchedulerEvents(commands.Cog, name='scheduler_events'): def __init__(self, bot): self.bot = bot if core.config.TESTING: self.channel = self.bot.get_channel(core.config.BOT_CHANNEL) else: self.channel = self.bot.get_channel(core.config.WADSWORTH_CHANNEL) self.ping_channel = self.channel # Events @commands.Cog.listener() async def on_message(self, message): return True # @commands.Cog.listener() # async def on_raw_reaction_add(self, payload): # if payload.emoji.id in reaction_list: # print('Hello') # check the message database for a scheulde, if the message that received a reaction is within the database and the reaction is within parameters # then process changes to the scheduled task @commands.Cog.listener() async def on_raw_reaction_remove(self, payload): print('Goodbye')
# following PEP 386, versiontools will pick it up __version__ = (0, 1, 7, "final", 0)
from ._command import Command, Commands from .mkr import MakeReportCommand from .debug import DebugCommand
from cadorsfeed import db from cadorsfeed.aerodb import lookup from flask import current_app as app def import_blacklist(): with app.open_resource('aerodb/blacklist.txt') as blacklist: for line in blacklist: line = line.strip() if not line.startswith('#') and len(line) == 3: aerodrome = lookup(line) if aerodrome is not None: aerodrome.blacklist = True db.session.commit()
################################################################################ # # Package : AlphaPy # Module : estimators # Created : July 11, 2013 # # Copyright 2017 ScottFree Analytics LLC # Mark Conway & Robert D. Scott II # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ################################################################################ # # Imports # from alphapy.globals import ModelType from alphapy.globals import Objective from alphapy.globals import SSEP import logging import numpy as np from scipy.stats import randint as sp_randint from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import ExtraTreesClassifier from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.linear_model import RandomizedLasso from sklearn.linear_model import RandomizedLogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import LinearSVC from sklearn.svm import OneClassSVM from sklearn.svm import SVC import xgboost as xgb import yaml # # Initialize logger # logger = logging.getLogger(__name__) # # Define scorers # scorers = {'accuracy' : (ModelType.classification, Objective.maximize), 'average_precision' : (ModelType.classification, Objective.maximize), 'f1' : (ModelType.classification, Objective.maximize), 'f1_macro' : (ModelType.classification, Objective.maximize), 'f1_micro' : (ModelType.classification, Objective.maximize), 'f1_samples' : (ModelType.classification, Objective.maximize), 'f1_weighted' : (ModelType.classification, Objective.maximize), 'neg_log_loss' : (ModelType.classification, Objective.minimize), 'precision' : (ModelType.classification, Objective.maximize), 'recall' : (ModelType.classification, Objective.maximize), 'roc_auc' : (ModelType.classification, Objective.maximize), 'adjusted_rand_score' : (ModelType.clustering, Objective.maximize), 'mean_absolute_error' : (ModelType.regression, Objective.minimize), 'neg_mean_squared_error' : (ModelType.regression, Objective.minimize), 'median_absolute_error' : (ModelType.regression, Objective.minimize), 'r2' : (ModelType.regression, Objective.maximize)} # # Define XGB scoring map # xgb_score_map = {'neg_log_loss' : 'logloss', 'mean_absolute_error' : 'mae', 'neg_mean_squared_error' : 'rmse', 'precision' : 'map', 'roc_auc' : 'auc'} # # Class Estimator # class Estimator: """Store information about each estimator. Parameters ---------- algorithm : str Abbreviation representing the given algorithm. model_type : enum ModelType The machine learning task for this algorithm. estimator : function A scikit-learn, TensorFlow, or XGBoost function. grid : dict The dictionary of hyperparameters for grid search. scoring : bool, optional Use a scoring function to evaluate the best model. """ # __new__ def __new__(cls, algorithm, model_type, estimator, grid, scoring=False): return super(Estimator, cls).__new__(cls) # __init__ def __init__(self, algorithm, model_type, estimator, grid, scoring=False): self.algorithm = algorithm.upper() self.model_type = model_type self.estimator = estimator self.grid = grid self.scoring = scoring # __str__ def __str__(self): return self.name # # Classes # class AdaBoostClassifierCoef(AdaBoostClassifier): """An AdaBoost classifier where the coefficients are set to the feature importances for Recursive Feature Elimination to work. """ def fit(self, *args, **kwargs): super(AdaBoostClassifierCoef, self).fit(*args, **kwargs) self.coef_ = self.feature_importances_ class ExtraTreesClassifierCoef(ExtraTreesClassifier): """An Extra Trees classifier where the coefficients are set to the feature importances for Recursive Feature Elimination to work. """ def fit(self, *args, **kwargs): super(ExtraTreesClassifierCoef, self).fit(*args, **kwargs) self.coef_ = self.feature_importances_ class RandomForestClassifierCoef(RandomForestClassifier): """A Random Forest classifier where the coefficients are set to the feature importances for Recursive Feature Elimination to work. """ def fit(self, *args, **kwargs): super(RandomForestClassifierCoef, self).fit(*args, **kwargs) self.coef_ = self.feature_importances_ class GradientBoostingClassifierCoef(GradientBoostingClassifier): """A Gradient Boostin classifier where the coefficients are set to the feature importances for Recursive Feature Elimination to work. """ def fit(self, *args, **kwargs): super(GradientBoostingClassifierCoef, self).fit(*args, **kwargs) self.coef_ = self.feature_importances_ # # Define estimator map # estimator_map = {'AB' : AdaBoostClassifierCoef, 'GB' : GradientBoostingClassifierCoef, 'GBR' : GradientBoostingRegressor, 'KNN' : KNeighborsClassifier, 'KNR' : KNeighborsRegressor, 'LOGR' : LogisticRegression, 'LR' : LinearRegression, 'LSVC' : LinearSVC, 'LSVM' : SVC, 'NB' : MultinomialNB, 'RBF' : SVC, 'RF' : RandomForestClassifierCoef, 'RFR' : RandomForestRegressor, 'SVM' : SVC, 'XGB' : xgb.XGBClassifier, 'XGBM' : xgb.XGBClassifier, 'XGBR' : xgb.XGBRegressor, 'XT' : ExtraTreesClassifierCoef, 'XTR' : ExtraTreesRegressor } # # Function get_algos_config # def get_algos_config(cfg_dir): r"""Read the algorithms configuration file. Parameters ---------- cfg_dir : str The directory where the configuration file ``algos.yml`` is stored. Returns ------- specs : dict The specifications for determining which algorithms to run. """ logger.info("Algorithm Configuration") # Read the configuration file full_path = SSEP.join([cfg_dir, 'algos.yml']) with open(full_path, 'r') as ymlfile: specs = yaml.load(ymlfile) # Ensure each algorithm has required keys required_keys = ['model_type', 'params', 'grid', 'scoring'] for algo in specs: algo_keys = list(specs[algo].keys()) if set(algo_keys) != set(required_keys): logger.warning("Algorithm %s is missing the required keys %s", algo, required_keys) logger.warning("Keys found instead: %s", algo_keys) else: # determine whether or not model type is valid model_types = {x.name: x.value for x in ModelType} model_type = specs[algo]['model_type'] if model_type in model_types: specs[algo]['model_type'] = ModelType(model_types[model_type]) else: raise ValueError("algos.yml model:type %s unrecognized" % model_type) # Algorithm Specifications return specs # # Function get_estimators # # AdaBoost (feature_importances_) # Gradient Boosting (feature_importances_) # K-Nearest Neighbors (NA) # Linear Regression (coef_) # Linear Support Vector Machine (coef_) # Logistic Regression (coef_) # Naive Bayes (coef_) # Radial Basis Function (NA) # Random Forest (feature_importances_) # Support Vector Machine (NA) # XGBoost Binary (NA) # XGBoost Multi (NA) # Extra Trees (feature_importances_) # Random Forest (feature_importances_) # Randomized Lasso def get_estimators(model): r"""Define all the AlphaPy estimators based on the contents of the ``algos.yml`` file. Parameters ---------- model : alphapy.Model The model object containing global AlphaPy parameters. Returns ------- estimators : dict All of the estimators required for running the pipeline. """ # Extract model data directory = model.specs['directory'] n_estimators = model.specs['n_estimators'] n_jobs = model.specs['n_jobs'] seed = model.specs['seed'] verbosity = model.specs['verbosity'] # Initialize estimator dictionary estimators = {} # Global parameter substitution fields ps_fields = {'n_estimators' : 'n_estimators', 'n_jobs' : 'n_jobs', 'nthread' : 'n_jobs', 'random_state' : 'seed', 'seed' : 'seed', 'verbose' : 'verbosity'} # Get algorithm specifications config_dir = SSEP.join([directory, 'config']) algo_specs = get_algos_config(config_dir) # Create estimators for all of the algorithms for algo in algo_specs: model_type = algo_specs[algo]['model_type'] params = algo_specs[algo]['params'] for param in params: if param in ps_fields and isinstance(param, str): algo_specs[algo]['params'][param] = eval(ps_fields[param]) func = estimator_map[algo] est = func(**params) grid = algo_specs[algo]['grid'] scoring = algo_specs[algo]['scoring'] estimators[algo] = Estimator(algo, model_type, est, grid, scoring) # return the entire classifier list return estimators
from urllib.parse import parse_qsl, urlsplit from social_apis.exceptions.social_api_error import * def iterator(api_method, return_pages=False, **params): r"""Returns a generator for results of specific supported method. Usage:: >>> from social_apis.networks.facebook import Facebook >>> facebook = Facebook(access_token="<<access_token>>") >>> response = iterator(facebook.search, q='python') >>> for item in response: >>> print (item) """ if not callable(api_method): raise TypeError('iterator() takes a Network function as its first argument.') if not hasattr(api_method, 'iter_key') or not hasattr(api_method, 'iter_field'): raise IteratorError(f'Unable to create generator for method "{api_method.__name__}"') iter_key = api_method.iter_key iter_field = api_method.iter_field iter_next = api_method.iter_next if hasattr(api_method, 'iter_next') else iter_field iter_mode = api_method.iter_mode if hasattr(api_method, 'iter_mode') else 'cursor' while True: content = api_method(**params) if not content: return results = get_field(content, iter_key) if return_pages: yield results else: for result in results: yield result try: next_field = get_field(content, iter_next) if str(next_field).lower() in ['none', 'null', '0', '[]', '{}', '']: return if iter_mode == 'cursor': params[iter_field] = next_field elif iter_mode == 'offset': params[iter_field] = int(params[iter_field]) + 10 if iter_field in params else 0 except (TypeError, ValueError): raise IteratorError('Unable to generate next page of search results, `page` is not a number.') except (KeyError, AttributeError): raise IteratorError('Unable to generate next page of search results, content has unexpected structure.') def get_field(content, field, raise_error=False): r""" Returns a 'field' (str) of 'content' (dict). Split 'field' by dots and iterate 'content' by them. Return None if field not in content. Raise error if raise_error=True """ fields = field.split('.') result = content for f in fields: if f in result: result = result.get(f) else: if raise_error: raise KeyError("Content has unexpected structure.") else: result = None break return result
# Copyright 2020 KCL-BMEIS - King's College London # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from exeteracovid.algorithms.covid_test import ValidateCovidTestResultsFacVersion1, ValidateCovidTestResultsFacVersion2 from exeteracovid.algorithms.temperature import ValidateTemperature1 from exeteracovid.algorithms.weight_height_bmi import ValidateHeight1, ValidateHeight2 class ParsingSchemaVersionError(Exception): pass class ClassEntry: def __init__(self, key, class_definition, version_from, version_to=None): self.key = key self.class_definition = class_definition self.version_from = version_from self.version_to = version_to def __str__(self): output = 'ClassEntry(field={}, class_definition={}, version_from={}, version_to={})' return output.format(self.key, self.class_definition, self.version_from, self.version_to) def __repr__(self): return self.__str__() parsing_schemas = [1, 2] class ParsingSchema: def __init__(self, schema_number): #self.parsing_schemas = [1, 2] self.functors = { 'validate_weight_height_bmi': [ ClassEntry('validate_weight_height_bmi', ValidateHeight1, 1, 2), ClassEntry('validate_weight_height_bmi', ValidateHeight2, 2, None)], 'validate_temperature': [ ClassEntry('validate_temperature', ValidateTemperature1, 1, None)], 'clean_covid_progression': [ ClassEntry('validate_covid_fields', ValidateCovidTestResultsFacVersion1, 1, 2), ClassEntry('validate_covid_fields', ValidateCovidTestResultsFacVersion2, 2, None)] } self._validate_schema_number(schema_number) self.class_entries = dict() for f in self.functors.items(): for e in f[1]: if schema_number >= e.version_from and\ (e.version_to is None or schema_number < e.version_to): self.class_entries[f[0]] = e.class_definition break def _validate_schema_number(self, schema_number): if schema_number not in parsing_schemas: raise ParsingSchemaVersionError( f'{schema_number} is not a valid cleaning schema value')
import os from typing import Union import sentry_sdk from dependency_injector import containers from flask_cors import CORS from sentry_sdk.integrations.flask import FlaskIntegration from .containers.dev_container import DevAppContainer from .containers.prod_container import ProdAppContainer env = os.environ.get('FLASK_ENV') sentry_sdk.init( dsn=os.environ.get('SENTRY_DSN'), integrations=[FlaskIntegration()], traces_sample_rate=1.0, environment=env, ) def get_container(env: str) -> containers.DeclarativeContainer: if env == 'production': return ProdAppContainer() return DevAppContainer() def create_app(container: Union[DevAppContainer, ProdAppContainer]): app = container.app() app.container = container app.debug = True app.add_url_rule( '/comments/<string:post_slug>', view_func=container.get_comments_view.as_view(), methods=('GET',), ) app.add_url_rule( '/comments/<string:post_slug>', view_func=container.add_comment_view.as_view(), methods=('POST', 'OPTIONS'), ) return app container = get_container(env) app = create_app(container) cors = CORS(app) app.config['CORS_HEADERS'] = 'Content-Type'
import pytest, os, uuid, warnings from tenable.downloads import Downloads from tenable.errors import * @pytest.fixture(scope='module') def vcr_config(): return { 'filter_headers': [ ('Authorization', 'Bearer 000'), ], } @pytest.fixture(autouse=True, scope='module') def dl(request, vcr): warnings.filterwarnings('ignore', category=DeprecationWarning) return Downloads(os.getenv('DL_TOKEN'), vendor='pytest', product='pytenable-automated-testing')
from django.test import TestCase from mock import Mock, patch, mock_open from .dummyrunner_settings import ( c_creates_button, c_creates_obj, c_digs, c_examines, c_help, c_idles, c_login, c_login_nodig, c_logout, c_looks, c_moves, c_moves_n, c_moves_s, c_socialize, ) try: import memplot except ImportError: memplot = Mock() class TestDummyrunnerSettings(TestCase): def setUp(self): self.client = Mock() self.client.cid = 1 self.client.counter = Mock(return_value=1) self.client.gid = "20171025161153-1" self.client.name = "Dummy-%s" % self.client.gid self.client.password = "password-%s" % self.client.gid self.client.start_room = "testing_room_start_%s" % self.client.gid self.client.objs = [] self.client.exits = [] def clear_client_lists(self): self.client.objs = [] self.client.exits = [] def test_c_login(self): self.assertEqual( c_login(self.client), ( "create %s %s" % (self.client.name, self.client.password), "connect %s %s" % (self.client.name, self.client.password), "@dig %s" % self.client.start_room, "@teleport %s" % self.client.start_room, "@dig testing_room_1 = exit_1, exit_1", ), ) def test_c_login_no_dig(self): self.assertEqual( c_login_nodig(self.client), ( "create %s %s" % (self.client.name, self.client.password), "connect %s %s" % (self.client.name, self.client.password), ), ) def test_c_logout(self): self.assertEqual(c_logout(self.client), "@quit") def perception_method_tests(self, func, verb, alone_suffix=""): self.assertEqual(func(self.client), "%s%s" % (verb, alone_suffix)) self.client.exits = ["exit1", "exit2"] self.assertEqual(func(self.client), ["%s exit1" % verb, "%s exit2" % verb]) self.client.objs = ["foo", "bar"] self.assertEqual(func(self.client), ["%s foo" % verb, "%s bar" % verb]) self.clear_client_lists() def test_c_looks(self): self.perception_method_tests(c_looks, "look") def test_c_examines(self): self.perception_method_tests(c_examines, "examine", " me") def test_idles(self): self.assertEqual(c_idles(self.client), ("idle", "idle")) def test_c_help(self): self.assertEqual( c_help(self.client), ("help", "help @teleport", "help look", "help @tunnel", "help @dig"), ) def test_c_digs(self): self.assertEqual(c_digs(self.client), ("@dig/tel testing_room_1 = exit_1, exit_1")) self.assertEqual(self.client.exits, ["exit_1", "exit_1"]) self.clear_client_lists() def test_c_creates_obj(self): objname = "testing_obj_1" self.assertEqual( c_creates_obj(self.client), ( "@create %s" % objname, '@desc %s = "this is a test object' % objname, "@set %s/testattr = this is a test attribute value." % objname, "@set %s/testattr2 = this is a second test attribute." % objname, ), ) self.assertEqual(self.client.objs, [objname]) self.clear_client_lists() def test_c_creates_button(self): objname = "testing_button_1" typeclass_name = "contrib.tutorial_examples.red_button.RedButton" self.assertEqual( c_creates_button(self.client), ("@create %s:%s" % (objname, typeclass_name), "@desc %s = test red button!" % objname), ) self.assertEqual(self.client.objs, [objname]) self.clear_client_lists() def test_c_socialize(self): self.assertEqual( c_socialize(self.client), ( "ooc Hello!", "ooc Testing ...", "ooc Testing ... times 2", "say Yo!", "emote stands looking around.", ), ) def test_c_moves(self): self.assertEqual(c_moves(self.client), "look") self.client.exits = ["south", "north"] self.assertEqual(c_moves(self.client), ["south", "north"]) self.clear_client_lists() def test_c_move_n(self): self.assertEqual(c_moves_n(self.client), "north") def test_c_move_s(self): self.assertEqual(c_moves_s(self.client), "south") class TestMemPlot(TestCase): @patch.object(memplot, "_idmapper") @patch.object(memplot, "os") @patch.object(memplot, "open", new_callable=mock_open, create=True) @patch.object(memplot, "time") @patch("evennia.utils.idmapper.models.SharedMemoryModel.flush_from_cache", new=Mock()) def test_memplot(self, mock_time, mocked_open, mocked_os, mocked_idmapper): if isinstance(memplot, Mock): return from evennia.utils.create import create_script mocked_idmapper.cache_size.return_value = (9, 5000) mock_time.time = Mock(return_value=6000.0) script = create_script(memplot.Memplot) script.db.starttime = 0.0 mocked_os.popen.read.return_value = 5000.0 script.at_repeat() handle = mocked_open() handle.write.assert_called_with("100.0, 0.001, 0.001, 9\n") script.stop()
# -*- coding: utf-8 -*- from providerModules.a4kScrapers import core class sources(core.DefaultSources): def __init__(self, *args, **kwargs): super(sources, self).__init__(__name__, *args, **kwargs) def _soup_filter(self, response): try: response = core.json.loads(response.text) except: core.tools.log('a4kScrapers.solidtorrents: fail to parse json \n' + response.text) return [] torrents = response.get('results', []) results = [] for torrent in torrents: result = lambda: None result.hash = torrent.get('infohash', '') result.title = torrent.get('title', '') result.size = '%s B' % torrent['size'] if torrent.get('size', None) is not None else None result.seeds = torrent.get('swarm', {}).get('seeders', None) results.append(result) return results
# Copyright (c) 2021 Aiven, Helsinki, Finland. https://aiven.io/ from ._utils import find_component, find_user, format_uri from .common import ConnectionInfoError class PGConnectionInfo: def __init__(self, host, port, username, dbname, password, sslmode): self.host = host self.port = port self.username = username self.dbname = dbname self.password = password self.sslmode = sslmode @classmethod def from_service(cls, service, *, route, usage, privatelink_connection_id, username, dbname, sslmode): if service["service_type"] != "pg": raise ConnectionInfoError("Cannot format pg connection info for service type {service_type}".format_map(service)) info = find_component( service["components"], route=route, usage=usage, privatelink_connection_id=privatelink_connection_id ) host = info["host"] port = info["port"] user = find_user(service, username) password = user.get("password") if password is None: raise ConnectionInfoError(f"Could not find password for username {username}") return cls(host=host, port=port, username=username, dbname=dbname, password=password, sslmode=sslmode) def params(self): return { "host": self.host, "port": self.port, "user": self.username, "dbname": self.dbname, "password": self.password, "sslmode": self.sslmode, } def uri(self): return format_uri( scheme="postgres", username=self.username, password=self.password, host=self.host, port=self.port, path=f"/{self.dbname}", query={"sslmode": self.sslmode}, ) def connection_string(self): return f"host='{self.host}' port='{self.port}' user={self.username} dbname='{self.dbname}'" def psql(self): return ["psql", self.uri()]
""" src_constants.py holds global speedrun.com API constants """ from data_models import CelesteGames from dacite import from_dict PLATFORMS : dict = { "PlayStation 4" : "nzelkr6q", "Xbox One" : "o7e2mx6w", "PC" : "8gej2n93", "Switch" : "7m6ylw9p", "Google Stadia" : "o064z1e3", "PlayStation 5" : "4p9zjrer", "Xbox Series S" : "o7e2xj9w", "Xbox Series X" : "nzelyv9q", "Xbox One X" : "4p9z0r6r", "Xbox One S" : "o064j163" } CELESTE_GAMES : CelesteGames = from_dict( data_class=CelesteGames, data={ "games" : [ { "id" : "o1y9j9v6", "name" : "Celeste", "version" : { "variable_id" : "38do9y4l", "default_ver" : "5q8e7y3q", "invalid_ver" : { "nzelkr6q" : ["zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "o7e2mx6w" : ["810gdx5l", "zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "o7e2xj9w" : ["810gdx5l", "zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "nzelyv9q" : ["810gdx5l", "zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "4p9z0r6r" : ["zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "o064j163" : ["810gdx5l", "zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "8gej2n93" : [], "7m6ylw9p" : ["zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "o064z1e3" : ["810gdx5l", "zqoo4vxq"], "4p9zjrer" : ["810gdx5l", "zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51", "p12wv871", "z1992w01", "z19rn0j1", "jq6766n1", "81w8xj91", "5lmn0eyq", "8107j55l", "z19zn7yq", "0q528evq", "0q52262q", "4qynnv41", "81wn7y51", "21d26k3l", "21d4ej31", "5lekw0zl", "gq7n65n1", "jq64d2j1", "gq7nm6n1", "81p7kme1", "814xmmwq", "zqoyep21", "p125p721", "klrzv5o1", "xqkr09d1", "81wmoemq", "4qyxe02l", "mlny6xj1", "8105e42q", "21d47051", "xqkrkxk1", "9qjzy331", "jq64kdj1", "5lmxj5m1", "81wmwkvq", "zqoyw7x1", "013veyxl", "rqv4wn6q", "8142k7kl", "5lekgwkl", "0q5oe021", "4lxxwj4l", "814xenvq", "z194gw8l", "p125e841", "81p7wg81", "klrz4jo1"] } } }, { "id" : "j1ne9me1", "name" : "Celeste Category Extensions", "version" : { "variable_id" : "dlomdgd8", "default_ver" : "xqkzpg4q", "invalid_ver" : { "nzelkr6q" : ["5lmvmd4l", "0137g6xl", "5q887vyq", "5lmg3eyl", "5lemyr51", "4lxe2o21"], "o7e2mx6w" : ["5lmvmd4l", "0137g6xl", "5q887vyq", "5lmg3eyl", "5lemyr51", "4lxe2o21"], "o7e2xj9w" : ["810gdx5l", "zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "nzelyv9q" : ["810gdx5l", "zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "4p9z0r6r" : ["810gdx5l", "zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "o064j163" : ["810gdx5l", "zqoo4vxq", "21dg78p1", "9qjxmo0l", "rqve2p71", "5lemyz51"], "8gej2n93" : [], "7m6ylw9p" : ["0137g6xl", "5q887vyq", "5lmg3eyl", "5lemyr51", "4lxe2o21"], "o064z1e3" : ["5lmvmd4l", "0137g6xl"], "4p9zjrer" : ["5lmvmd4l", "0137g6xl", "5q887vyq", "5lmg3eyl", "5lemyr51", "4lxe2o21", "jqz5gr4q", "21g49wx1", "p12z7gv1", "8107krpl", "mln3j2nq", "81pnr3nl", "8107jwwl", "810x4j51", "81pxr3nq", "gq77yvrq", "21gxkwoq", "jqz0ork1", "klr58ew1", "21d2pjgl", "5q8gnx6l", "4qynkvd1", "mln5g4nl", "810x2op1", "9qjgp6oq", "jq6289ol", "5lmd7r0l", "81wn6v61", "zqo5z84l", "0132zoyq", "rqvmjkyq", "5leep26l", "0q52dvvq", "4lxym5gq", "8142rokl", "z19z024q", "p122gv21", "81pxrynq", "xqkzpe4q", "gq77y5rq", "21gxknoq", "jqz0onk1", "klr583w1", "21d2pkgl", "5q8gnk6l", "4qynkzd1", "mln5g8nl", "810x2vp1", "9qjgp7oq", "jq6285ol", "5lmd7o0l", "81wn6461", "z196ev81", "jq6ngvnl", "zqokn7gl"] } } }, { "id" : "w6jl3ked", "name" : "Modded Celeste", "version" : { "variable_id" : "p853km0n", "default_ver" : "z19rw541", "invalid_ver" : { "8gej2n93" : [] } } }, { "id" : "j1lqq576", "name" : "Into The Jungle", "version" : { "variable_id" : "9l7x0xqn", "default_ver" : "5q8p493l", "invalid_ver" : { "8gej2n93" : [] } } }, { "id" : "y6554g36", "name" : "Glyph", "version" : { "variable_id" : "5ly14pyl", "default_ver" : "21dwwrgl", "invalid_ver" : { "8gej2n93" : [] } } }, { "id" : "w6j7lx46", "name" : "D-Sides", "version" : { "variable_id" : "e8m5krxn", "default_ver" : "mlnnnrnl", "invalid_ver" : { "8gej2n93" : [] } } }, { "id" : "46w3p271", "name" : "Quickie Mountain 2", "version" : { "variable_id" : "68kodrkn", "default_ver" : "013d623l", "invalid_ver" : { "8gej2n93" : [] } } }, { "id" : "k6qw4q06", "name" : "2020 Spring Collab", "version" : { "variable_id" : "6njzg4el", "default_ver" : "0q5p3zrl", "invalid_ver" : { "8gej2n93" : [] } } } ] } )
from envyaml import EnvYAML from nameko.standalone.rpc import ServiceRpcProxy from nameko.exceptions import UnknownService config = EnvYAML('config.yml') CC = 'bnbbtc' STREAM = 'depth' SPEED = '1000ms' LIMIT = 1000 with ServiceRpcProxy('listener', config) as proxy: try: proxy.get_order_book(CC, LIMIT) proxy.start_stream(CC, STREAM, SPEED) except UnknownService as ex: print('Listener was not ready')
""" Contains the elements made out of various layers which make up the sublayers of the model. """
# -*- coding: utf-8 -*- """ @Time : 2018/7/17 下午2:42 @FileName: utils.py @author: 王炳宁 @contact: wangbingning@sogou-inc.com """ import itertools import multiprocessing import pickle import re import numpy as np from joblib import Parallel, delayed from tqdm import tqdm np.random.seed(10245) def get_file_charset(filename): import chardet rawdata = open(filename, 'rb').read(1000) result = chardet.detect(rawdata) charenc = result['encoding'] return charenc def DBC2SBC(ustring): rstring = "" for uchar in ustring: inside_code = ord(uchar) if inside_code == 0x3000: inside_code = 0x0020 else: inside_code -= 0xfee0 if not (0x0021 <= inside_code <= 0x7e): rstring += uchar continue rstring += chr(inside_code) return rstring def write_lst_to_file(lst, filename, encoding='utf-8'): output = '\n'.join(lst) with open(filename, 'w', encoding=encoding, errors='ignore') as f: f.write(output) def dump_file(obj, filename): f = open(filename, 'wb') pickle.dump(obj, f) def load_file(filename): with open(filename, 'rb') as f: data = pickle.load(f) return data def get_model_parameters(model): total = 0 for parameter in model.parameters(): if parameter.requires_grad: tmp = 1 for a in parameter.size(): tmp *= a total += tmp return total def remove_duplciate_lst(lst): lst.sort() return list(k for k, _ in itertools.groupby(lst)) def padding(sequence, pads=0, max_len=None, dtype='int32', return_matrix_for_size=False): # we should judge the rank if True or isinstance(sequence[0], list): v_length = [len(x) for x in sequence] # every sequence length seq_max_len = max(v_length) if (max_len is None) or (max_len > seq_max_len): max_len = seq_max_len v_length = list(map(lambda z: z if z <= max_len else max_len, v_length)) x = (np.ones((len(sequence), max_len)) * pads).astype(dtype) for idx, s in enumerate(sequence): trunc = s[:max_len] x[idx, :len(trunc)] = trunc if return_matrix_for_size: v_matrix = np.asanyarray([map(lambda item: 1 if item < line else 0, range(max_len)) for line in v_length], dtype=dtype) return x, v_matrix return x, np.asarray(v_length, dtype='int32') else: seq_len = len(sequence) if max_len is None: max_len = seq_len v_vector = sequence + [0] * (max_len - seq_len) padded_vector = np.asarray(v_vector, dtype=dtype) v_index = [1] * seq_len + [0] * (max_len - seq_len) padded_index = np.asanyarray(v_index, dtype=dtype) return padded_vector, padded_index def add2count(value, map): if value not in map: map[value] = 0 map[value] += 1 import os def get_dir_files(dirname): L = [] for root, dirs, files in os.walk(dirname): for file in files: L.append(os.path.join(root, file)) return L def clean(txt): txt = DBC2SBC(txt) txt = txt.lower() txt = re.sub('(\s*)?(<.*?>)?', '', txt) return txt def multi_process(func, lst, num_cores=multiprocessing.cpu_count(), backend='multiprocessing'): workers = Parallel(n_jobs=num_cores, backend=backend) output = workers(delayed(func)(one) for one in tqdm(lst)) # output = workers(delayed(func)(one) for one in lst) return output def get_file_info(filename): with open(filename, encoding=get_file_charset(filename), errors='ignore') as f: for line in f: yield line def evaluate_comqa(results, threshold=0.5): precision = [] recall = [] f1 = [] accuracy = [] for one in results: [pred, paras] = one sample_a = 1.0e-9 sample_b = 1.0e-9 sample_c = 1.0e-9 num = 0 if len(pred) < len(paras): pred.extend([0.0] * len(paras)) for p, para in zip(pred, paras): r = para[1] num += 1 if p > threshold: sample_a += 1 if r == 1: sample_b += 1 if p > threshold and r == 1: sample_c += 1 sample_precision = sample_c / sample_a sample_recall = sample_c / sample_b if sample_precision >= 0.999 and sample_recall >= 0.999: acc = 1 else: acc = 0 sample_f1 = 2 * sample_precision * sample_recall / (sample_recall + sample_precision) precision.append(sample_precision) recall.append(sample_recall) f1.append(sample_f1) accuracy.append(acc) precision = np.mean(precision) recall = np.mean(recall) f1 = np.mean(f1) accuracy = np.mean(accuracy) macro_f1 = 2 * precision * recall / (precision + recall) return precision, recall, f1, macro_f1, accuracy
from __future__ import print_function import argparse, sys, os, warnings import librosa import numpy as np from numpy import linalg as LA import keras from keras.models import model_from_json if not sys.warnoptions: warnings.simplefilter("ignore") os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' FLAGS=None def decide_class(prediction): if prediction <= 0.5: file_prediction = '😺 cat!!!' else: file_prediction = '🐶 dog!!!' return file_prediction def get_final_prediction(scores): scores = [np.argmax(s) for s in scores] # print(np.mean(scores)) return decide_class(np.mean(scores)) def pre_process_file(file, model): if FLAGS.file_path == 'data/cats_dogs.wav': file = os.getcwd() + '/' + file ts, sr = librosa.load(file) if model == 'mel': frequency = librosa.feature.melspectrogram(y=ts,sr=sr) mel_delta = librosa.feature.delta(frequency) return frequency, mel_delta else: frequency = librosa.feature.melspectrogram(y=ts,sr=sr) mfcc = librosa.feature.mfcc(S=librosa.power_to_db(frequency),sr=sr) mfcc_delta = librosa.feature.delta(mfcc) return mfcc, mfcc_delta def process_file(feature, feature_delta): if FLAGS.model_type.lower() == 'mel': height = 128 else: height = 20 window_size = 28 combined_features = np.stack((feature, feature_delta)) windows = int(combined_features.shape[2] / window_size) combined_features = np.reshape(combined_features[:,:,0:windows*window_size], (2, height, windows*window_size)) data = [] for w in range(windows): data.append(combined_features[:,:,w*window_size:(w+1)*window_size]) return np.array(data, dtype=np.float32) def reshape_input(windows): input_d = windows.shape[1] #Depth input_h = windows.shape[2] #Height input_w = windows.shape[3] #Width if FLAGS.model_type.lower() == 'mel': return windows.reshape(windows.shape[0], input_h, input_w, input_d) else: windows = windows - windows.mean() windows = windows/LA.norm(windows) return windows.reshape(windows.shape[0], input_h*input_w*input_d) def predict(windows, model_type='mel'): if model_type == 'mel': model_path='keras_model_mel/saved_models/sound_classifier.json' else: model_path='keras_model_mfcc/saved_models/sound_classifier.json' json_file = open(model_path, 'r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) #adapting our input to the model that we'll use windows = reshape_input(windows) #generate predictions scores = loaded_model.predict(windows) print('We think this is a....') print(get_final_prediction(scores)) def main(_): if FLAGS.model_type.lower() not in ['mel', 'mfcc']: print('Sorry this model doesn''t exist, choose from mel or mfcc') sys.exit() if FLAGS.file_path == 'data/cats_dogs.wav': print('We will classify the audio in the file under data/cats_dogs/cat_1.wav') elif '.wav' not in FLAGS.file_path: print('Please submit an audio file in WAV format') sys.exit() elif os.path.exists(FLAGS.file_path) == False: print('Cannot find the file, please resubmit') sys.exit() else: print('Let''s classify this file: ' + FLAGS.file_path) feature, feature_delta = pre_process_file(FLAGS.file_path, FLAGS.model_type) audio_windows = process_file(feature, feature_delta) predict(audio_windows, FLAGS.model_type) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_type', type=str, default='mel', help='Choose from mel or mfcc model to classify.') parser.add_argument('--file_path', type=str, default='data/cats_dogs/cat_1.wav', help='File you want to analyse.') FLAGS, unparsed = parser.parse_known_args() main(FLAGS)
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import gtk from cairis.core.Borg import Borg from cairis.core.ObstacleParameters import ObstacleParameters from cairis.core.GoalAssociationParameters import GoalAssociationParameters from cairis.core.ObstacleEnvironmentProperties import ObstacleEnvironmentProperties from NDImplementationDecorator import NDImplementationDecorator __author__ = 'Shamal Faily' class ObstacleNodeDialog: def __init__(self,objt,environmentName,dupProperty,overridingEnvironment,builder): self.window = builder.get_object("ObstacleNodeDialog") b = Borg() self.dbProxy = b.dbProxy self.theEnvironmentName = environmentName self.theObstacleAssociation = None self.theObstacleId = -1 self.decorator = NDImplementationDecorator(builder) obstacleCategories = self.dbProxy.getDimensionNames('obstacle_category_type') self.obstacleAssociations = [] self.subObstacleAssociations = [] if (objt == None): self.decorator.updateComboCtrl("obstacleCategoryCtrl",obstacleCategories,'') self.decorator.updateButtonLabel("obstacleOkButton","Create") self.isCreate = True else: self.theObstacleId= objt.id() envProperty = objt.environmentProperty(self.theEnvironmentName) self.obstacleAssociations = envProperty.goalRefinements() self.subObstacleAssociations = envProperty.subGoalRefinements() self.decorator.updateTextCtrl("obstacleNameCtrl",objt.name()) self.decorator.updateComboCtrl("obstacleCategoryCtrl",obstacleCategories,objt.category(environmentName,dupProperty)) self.decorator.updateMLTextCtrl("obstacleDefinitionCtrl",objt.definition(environmentName,dupProperty)) self.decorator.updateButtonLabel("obstacleOkButton","Update") self.isCreate = False self.window.resize(350,600) def environmentProperties(self): obsCat = self.decorator.getComboValue("obstacleCategoryCtrl") obsDef = self.decorator.getMLText("obstacleDefinitionCtrl") envProperties = ObstacleEnvironmentProperties(self.theEnvironmentName,'',obsDef,obsCat,self.obstacleAssociations,self.subObstacleAssociations) return envProperties def newObstacleParameters(self): obsName = self.decorator.getText("obstacleNameCtrl") envProperties = self.environmentProperties() parameters = ObstacleParameters(obsName,'Obstacle refinement',[],[envProperties]) parameters.setId(self.theObstacleId) return parameters def existingObstacleParameters(self): obsName = self.decorator.getText("obstacleNameCtrl") modifiedProperties = self.environmentProperties() envProperties = self.dbProxy.obstacleEnvironmentProperties(self.theObstacleId) for idx,p in enumerate(envProperties): if (p.name() == self.theEnvironmentName): envProperties[idx] = modifiedProperties parameters = ObstacleParameters(obsName,'Obstacle refinement',[],envProperties) parameters.setId(self.theObstacleId) return parameters def parentObstacle(self,obsName,assocType): self.theObstacleAssociation = GoalAssociationParameters(self.theEnvironmentName,obsName,'obstacle',assocType) def on_obstacleOkButton_clicked(self,callback_data): if (self.isCreate): parameters = self.newObstacleParameters() self.dbProxy.addObstacle(parameters) self.theObstacleAssociation.theSubGoal = parameters.name() self.theObstacleAssociation.theSubGoalDimension = 'obstacle' self.theObstacleAssociation.theAlternativeId = 0 self.theObstacleAssociation.theRationale = '' self.dbProxy.addGoalAssociation(self.theObstacleAssociation) else: parameters = self.existingObstacleParameters() self.dbProxy.updateObstacle(parameters) self.window.destroy() def show(self): self.window.show()
import math import random import weakref from build_buy import is_location_outside from interactions.constraints import CostFunctionBase from sims4.tuning.tunable import HasTunableFactory, AutoFactoryInit, TunableRange, TunableTuple, Tunable, OptionalTunable import sims4.math import socials.geometry import terrain class SocialGroupCostFunction(CostFunctionBase): def __init__(self, group, sim): self._group_ref = weakref.ref(group) self._sim = sim def constraint_cost(self, position, orientation, routing_surface): group = self._group_ref() if group is None: return 0.0 geometry = group.geometry if not geometry or len(geometry) == 1 and self._sim in geometry: ideal_position = group.position effective_distance = (position - ideal_position).magnitude_2d()*2.0 score = socials.geometry.SocialGeometry.GROUP_DISTANCE_CURVE.get(effective_distance) return -score (base_focus, base_field) = socials.geometry._get_social_geometry_for_sim(self._sim) transform = sims4.math.Transform(position, orientation) multiplier = socials.geometry.score_transform(transform, self._sim, geometry, group.group_radius, base_focus, base_field) offset = multiplier*socials.geometry.SocialGeometry.SCORE_STRENGTH_MULTIPLIER if self._sim in geometry: if sims4.math.vector3_almost_equal_2d(position, self._sim.position, epsilon=0.01): offset += socials.geometry.SocialGeometry.SCORE_OFFSET_FOR_CURRENT_POSITION return -offset class PetGroupCostFunction(HasTunableFactory, AutoFactoryInit, CostFunctionBase): FACTORY_TUNABLES = {'maximum_distance': TunableRange(description='\n Any distance to another Sim over this amount scores zero.\n ', tunable_type=float, default=1.0, minimum=0), 'minimum_distance': TunableRange(description='\n Any distance to another Sim under this amount scores zero.\n ', tunable_type=float, default=1.5, minimum=0), 'required_distance': TunableRange(description='\n Any position that requires the Sim to move less than this amount\n scores zero. This encourages Sims to move.\n ', tunable_type=float, default=0.75, minimum=0)} SIDE_ARC_START = math.cos(sims4.math.PI/4) SIDE_ARC_END = math.cos(sims4.math.PI*3/4) def __init__(self, sim, target, *args, **kwargs): super().__init__(*args, **kwargs) self._sim = sim self._target_ref = target.ref() def constraint_cost(self, position, orientation, routing_surface): target = self._target_ref() if target is None: return 0.0 distance_to_position = (position - self._sim.position).magnitude() if distance_to_position < self.required_distance: return 0.0 vector_to_pos = position - target.position distance_to_sim = vector_to_pos.magnitude() if distance_to_sim <= self.minimum_distance or distance_to_sim > self.maximum_distance: return 0.0 else: unit_vector_to_sim = vector_to_pos/distance_to_sim fwd = target.transform.orientation.transform_vector(sims4.math.Vector3.Z_AXIS()) angle = sims4.math.vector_dot(fwd, unit_vector_to_sim) if angle <= PetGroupCostFunction.SIDE_ARC_START and angle >= PetGroupCostFunction.SIDE_ARC_END: return -3.0 return 0.0 class ThrowingGroupCostFunction(HasTunableFactory, AutoFactoryInit, CostFunctionBase): FACTORY_TUNABLES = {'maximum_distance': TunableRange(description='\n Any distance to another Sim over this amount will be penalized.\n ', tunable_type=float, default=10.0, minimum=0), 'minimum_distance': TunableRange(description='\n Any distance to another Sim under this amount will be penalized.\n ', tunable_type=float, default=3.0, minimum=0), 'adjustment_distance': TunableRange(description='\n Any position that requires the Sim to be at a distance less than\n this value will be penalized.\n ', tunable_type=float, default=5.0, minimum=0), 'location_tests': TunableTuple(description='\n Tests to run on the goal location to validate if it should be\n discouraged when using this social group.\n ', validate_snowmask=OptionalTunable(description='\n If enabled goals that do not match the snowmask value will\n be discouraged. This is used for winter to guarantee cases\n like snowball fight the Sims readjust and move around in places\n where there is snow.\n ', tunable=Tunable(description='\n Value snowmask should be greater than to pass this test.\n ', tunable_type=float, default=0.5)), validate_is_outside=OptionalTunable(description='\n If enabled goals that do not match the outside condition will\n be discouraged.\n ', tunable=Tunable(description='\n If True goals outside will be encouraged, if false only\n goals on the inside will be encouraged.\n ', tunable_type=bool, default=False)))} INVALID_GOAL_SCORE = 20 def __init__(self, sim, target, force_readjust, *args, **kwargs): super().__init__(*args, **kwargs) self._sim = sim self._target_ref = target.ref() self._force_readjust = force_readjust def _score_location(self, position): if self.location_tests.validate_snowmask is not None and terrain.get_snowmask_value(position) > self.location_tests.validate_snowmask: return ThrowingGroupCostFunction.INVALID_GOAL_SCORE elif self.location_tests.validate_is_outside is not None and self.location_tests.validate_is_outside != is_location_outside(position, self._sim.level): return ThrowingGroupCostFunction.INVALID_GOAL_SCORE return 0.0 def constraint_cost(self, position, orientation, routing_surface): target = self._target_ref() if target is None: return 0.0 constraint_cost = 0.0 if self._sim.get_main_group() is None or self._sim.get_main_group().anchor is None: return constraint_cost vector_to_pos = position - target.intended_position distance_to_sim = vector_to_pos.magnitude() if distance_to_sim <= self.minimum_distance: return ThrowingGroupCostFunction.INVALID_GOAL_SCORE constraint_cost += self._score_location(position) vector_to_anchor = position - self._sim.get_main_group().anchor.position distance_to_anchor = vector_to_anchor.magnitude_squared() constraint_cost = -distance_to_anchor distance_to_position = (position - self._sim.intended_position).magnitude() if distance_to_position < self.adjustment_distance: constraint_cost += ThrowingGroupCostFunction.INVALID_GOAL_SCORE return constraint_cost
""" API to convert Cadene's models Supported models: -se_resnet50 -se_resnet101 -se_resnet152 -cafferesnet101 -bninception -fbresnet152 -resnet18 -resnet34 -resnet50 -resnet101 -resnet152 Convert and save models with cadene_to_tf Examples: cadene_to_tf(modelList=['se_resnet50'], quiet=False) cadene_to_tf(modelList=['se_resnet50', 'bninception(pretrained=None)]) cadene_to_tf(modelList=models.txt) """ from .cadene_to_tf import cadene_to_tf
import unittest from ilmklib import Graph class TestGraph(unittest.TestCase): def test_simple_errors(self): g = Graph() self.assertFalse(g.is_cyclic()) g.add_vertex("a") with self.assertRaises(Exception): g.add_vertex("a") self.assertFalse(g.is_cyclic()) g.add_edge("a", "a") self.assertTrue(g.is_cyclic()) g = Graph() self.assertEqual(len(g), 0) g.add_vertex("a") self.assertEqual(len(g), 1) self.assertTrue("a" in g) with self.assertRaises(Exception): # Try to add an edge with a dst that isn't in the graph g.add_edge("d", "a") with self.assertRaises(Exception): # Try to add an edge with a src that isn't in the graph g.add_edge("a", "d") def test_simple_cyclic(self): g = Graph() g.add_vertex("a") g.add_vertex("b") g.add_vertex("c") g.add_edge("b", "a") g.add_edge("c", "b") g.add_edge("a", "c") self.assertTrue(g.is_cyclic()) def test_get_items(self): """ Test that the items function iterates over the entire set of vertices """ g = Graph() g.add_vertex("a") g.add_vertex("b") g.add_vertex("c") seen = [] for k, v in g.items(): seen.append(k) self.assertEqual(sorted(seen), sorted(["a", "b", "c"])) def test_complicated_cyclic(self): """ Create a tree structure where each node points to its own numerical value divided by 2 (as an int) e.g. 1 has an edge to 0 2 and 3 have an edge to 1 4 and 5 have an edge to 2 etc. """ g = Graph() for i in range(100): g.add_vertex(i) for i in range(100): if i == 0: continue o = int(i / 2) g.add_edge(o, i) self.assertFalse(g.is_cyclic()) # add in an edge from 1 to 99 and ensure that the cycle is detected # (99 -> 49 -> 24 -> 12 -> 6 -> 3 -> 1 -> 99) g.add_edge(99, 1) # The whole graph should be deterministically cyclic for i in range(100): self.assertTrue(g.is_cyclic(True)) def test_complicated_disconnected_cyclic(self): """ Create a tree structure where each node points to its own numerical value divided by 2 (as an int) e.g. 1 has an edge to 0 2 and 3 have an edge to 1 4 and 5 have an edge to 2 etc. """ g = Graph() for i in range(100): g.add_vertex(i) for i in range(1, 100): o = int(i / 2) g.add_edge(o, i) self.assertFalse(g.is_cyclic(True)) # Create a small cycle of 3 vertices g.add_vertex("a") g.add_vertex("b") g.add_vertex("c") g.add_edge("b", "a") g.add_edge("c", "b") g.add_edge("a", "c") # The whole graph should be deterministically cyclic for i in range(100): self.assertTrue(g.is_cyclic(True)) def test_disconnected_cyclic(self): g = Graph() g.add_vertex("a") g.add_vertex("b") g.add_vertex("c") g.add_vertex("e") g.add_vertex("f") g.add_vertex("g") # a -> b -> c -> a is a cyclic graph g.add_edge("b", "a") g.add_edge("c", "b") g.add_edge("a", "c") # e -> f -> g is not cyclic, but is disconnected g.add_edge("f", "e") g.add_edge("g", "f") # The whole graph should be deterministically cyclic for i in range(100): self.assertTrue(g.is_cyclic(True)) def test_c_source(self): g = Graph() g.add_vertex("source1.c") g.add_vertex("source2.c") g.add_vertex("source3.c") g.add_vertex("header1.h") g.add_vertex("header2.h") g.add_vertex("header3.h") g.add_vertex("common1.h") g.add_vertex("common2.h") g.add_vertex("source1.o") g.add_vertex("source2.o") g.add_vertex("source3.o") g.add_vertex("binary") g.add_edge("source1.o", "source1.c") g.add_edge("source2.o", "source2.c") g.add_edge("source3.o", "source3.c") g.add_edge("source1.o", "header1.h") g.add_edge("source2.o", "header2.h") g.add_edge("source3.o", "header3.h") g.add_edge("source1.o", "common1.h") g.add_edge("source2.o", "common1.h") g.add_edge("source2.o", "common2.h") g.add_edge("source3.o", "common2.h") g.add_edge("binary", "source1.o") g.add_edge("binary", "source2.o") g.add_edge("binary", "source3.o") self.assertFalse(g.is_cyclic()) deps = list(g.get_direct_predecessors("binary")) self.assertEqual(len(deps), 3) self.assertIn("source1.o", deps) self.assertIn("source2.o", deps) self.assertIn("source3.o", deps) deps = list(g.get_direct_successors("common1.h")) self.assertEqual(len(deps), 2) self.assertIn("source1.o", deps) self.assertIn("source2.o", deps) deps = list(g.get_all_predecessors("source2.o")) self.assertEqual(len(deps), 4) self.assertIn("source2.c", deps) self.assertIn("header2.h", deps) self.assertIn("common1.h", deps) self.assertIn("common2.h", deps) deps = list(g.get_all_successors("common1.h")) self.assertEqual(len(deps), 3) self.assertIn("source1.o", deps) self.assertIn("source2.o", deps) self.assertIn("binary", deps) def test_multi_cyclic(self): g = Graph() g.add_vertex("a") g.add_vertex("b") g.add_vertex("c") g.add_vertex("d") g.add_vertex("e") g.add_vertex("f") g.add_vertex("g") g.add_vertex("h") g.add_vertex("i") g.add_vertex("j") """ a e h | / \ / \ / \ | d b f i | \ / \ / \ / | c g j | """ # a -> b -> c -> d -> a g.add_edge("b", "a") g.add_edge("c", "b") g.add_edge("d", "c") g.add_edge("a", "d") # e -> b -> g -> f -> e g.add_edge("b", "e") g.add_edge("g", "b") g.add_edge("f", "g") g.add_edge("e", "f") # h -> f -> j -> i -> h g.add_edge("f", "h") g.add_edge("h", "i") g.add_edge("i", "j") g.add_edge("j", "f") for i in range(100): self.assertTrue(g.is_cyclic(True)) def test_alternate_api(self): g = Graph() g.add_vertex("a") g.add_vertex("b") g.add_vertex("c") g.add_vertex("d") g.add_vertex("e") g.add_vertex("f") g.add_vertex("g") g.add_edge("a", "b", "c", "d", "e", "f") deps = list(g.get_direct_predecessors("a")) self.assertIn("b", deps) self.assertIn("c", deps) self.assertIn("d", deps) self.assertIn("e", deps) self.assertIn("f", deps) g = Graph() g.add_vertex("a") g.add_vertex("b") g.add_vertex("c") g.add_vertex("d") g.add_vertex("e") g.add_vertex("f") g.add_vertex("g") g.add_edges("a", ["b", "c", "d", "e", "f"]) deps = list(g.get_direct_predecessors("a")) self.assertIn("b", deps) self.assertIn("c", deps) self.assertIn("d", deps) self.assertIn("e", deps) self.assertIn("f", deps) with self.assertRaises(TypeError): g.add_edges("a", "b") def test_reaching_recursion_depth(self): g = Graph() for i in range(2000): g.add_vertex(i) for i in range(1, 2000): g.add_edge(i-1, i) with self.assertRaises(RecursionError): for i in range(100): g.is_cyclic(True)
#!/usr/bin/env python3 # partial implementation of EDLIN # (c) 2019 <christian.tschudin@unibas.ch> import re def editor(lines): # expects an array of lines, returns an array of lines if modified else None modif = False curr = 0 while True: cmd = input('*') if len(cmd) == 0: if curr >= len(lines): print("no line to edit") else: print(f"replace line {curr+1} (type <enter> to keep the line as is):") print(lines[curr]) ln = input() if ln != '': lines[curr] = ln modif = True continue orig = cmd cmd = cmd.lower() if cmd in ['?', 'h']: print('''EDLIN help: h this help text q quit (any modification is lost) e exit (modifications are saved) <num> make line <num> the current line d delete current line i insert text before current line l list from current line to end p like 'l' but make last line the current line s<text> search for <text> The last group of commands can be prefixed with a range, which is either a line number <num>, or a line number pair <from>,<to>''') continue if cmd.isnumeric(): n = int(cmd) if n < 1 or n > len(lines): print("out of range") else: curr = n-1 print(f"{n}: {lines[curr]}") continue if cmd == 'q': if modif: cmd = input("there are changes: really quit? y/n [N]:") if cmd.lower() != 'y': continue return None if cmd == 'e': return lines if modif else None rng = re.match(r'([0-9.]+)([^0-9,.])|([0-9.]+),([0-9.]+)([^0-9.])', cmd) if rng: if rng.group(2): cmd = rng.group(2) if rng.group(1) == '.': rng = (curr, curr) else: rng = ( int(rng.group(1))-1, int(rng.group(1))-1 ) else: cmd = rng.group(5) a = curr if rng.group(3) == '.' else int(rng.group(3))-1 b = curr if rng.group(4) == '.' else int(rng.group(4))-1 rng = ( a, b ) if rng[0] < 0 or rng[1] < 0 or rng[0] > rng[1]: print("invalid range") continue if cmd == 'd': if rng: if rng[0] >= len(lines) or rng[1] >= len(lines): print("invalid range") continue else: rng = (curr, curr) del lines[rng[0]:rng[1]+1] curr = rng[0] if curr == len(lines) and curr > 0: curr -= 1 modif = True continue if cmd == 'i': if rng: if rng[0] != rng[1] or rng[0] > len(lines): print("invalid range") continue else: rng = (curr, curr) new = [] print("enter text, terminate with a single '.' on a line") while True: ln = input() if ln == '.': break new.append(ln) lines = lines[:rng[0]] + new + lines[rng[0]:] curr = rng[0] + len(new) if curr == len(lines) and curr > 0: curr -= 1 print(f"{len(new)} line(s) inserted") if len(new) > 0: modif = True continue if cmd in ['l', 'p']: if not rng: rng = (curr, len(lines)-1) for i in range(rng[0], rng[1]+1): print(f"{i+1}: {lines[i]}") if cmd == 'p': curr = rng[1] continue if cmd[0] == 's': orig = orig[orig.index('s')+1:] if not rng: rng = (0, len(lines)-1) for i in range(rng[0], rng[1]+1): if orig in lines[i]: print(f"{i+1}: {lines[i]}") cmd = input("correct entry? y/n [Y]:") if len(cmd) == 0 or cmd in ['y', 'Y']: curr = i break else: print(f"'{orig}' not found") continue print(f"unknown command {cmd}") # --------------------------------------------------------------------------- if __name__ == '__main__': import sys if len(sys.argv) != 2: print(f"useage: {sys.argv[0]} <filename>") else: fn = sys.argv[1] with open(fn, 'r') as f: buf = f.read() if len(buf) > 0 and buf[-1] == '\n': buf = buf[:-1] new = editor(buf.split('\n')) if new: with open(fn, 'w') as f: f.write('\n'.join(new) + '\n') print(f"{len(new)} line(s) written to {fn}") # eof
from functools import partial from multipledispatch import dispatch from webpub_manifest_parser.core.ast import ( Collection, CollectionList, CompactCollection, Link, LinkList, Manifestlike, Metadata, ) from webpub_manifest_parser.core.semantic import ( ManifestSemanticError, SemanticAnalyzer, SemanticAnalyzerError, ) from webpub_manifest_parser.odl.ast import ODLFeed, ODLLicense, ODLPublication from webpub_manifest_parser.odl.registry import ODLMediaTypesRegistry from webpub_manifest_parser.opds2.ast import OPDS2FeedMetadata from webpub_manifest_parser.opds2.registry import OPDS2LinkRelationsRegistry from webpub_manifest_parser.utils import encode, first_or_default class ODLPublicationSemanticError(SemanticAnalyzerError): """Base class for semantic errors related to ODL 2.x feeds.""" def _format_message( self, node, node_property=None, message=None, inner_exception=None ): """Format the error message. :param node: ODL 2.x publication :type node: webpub_manifest_parser.odl.ast.ODLPublication :param node_property: AST node's property associated with the error :type node_property: Optional[webpub_manifest_parser.core.properties.Property] :param message: Parameterized string containing description of the error occurred and the placeholder for the feed's identifier :type message: Optional[str] :param inner_exception: (Optional) Inner exception :type inner_exception: Optional[Exception] """ if not isinstance(node, ODLPublication): raise ValueError( "Argument 'node' must be an instance of {0}".format(ODLPublication) ) if node.metadata: if node.metadata.title: message = message.format(node.metadata.title) elif node.metadata.identifier: message = message.format(node.metadata.identifier) return message class ODLLicenseSemanticError(SemanticAnalyzerError): """Base class for semantic errors related to ODL 2.x feeds.""" def _format_message( self, node, node_property=None, message=None, inner_exception=None ): """Format the error message. :param node: ODL 2.x license :type node: webpub_manifest_parser.odl.ast.ODLLicense :param node_property: AST node's property associated with the error :type node_property: Optional[webpub_manifest_parser.core.properties.Property] :param message: Parameterized string containing description of the error occurred and the placeholder for the feed's identifier :type message: Optional[str] :param inner_exception: (Optional) Inner exception :type inner_exception: Optional[Exception] """ if not isinstance(node, ODLLicense): raise ValueError( "Argument 'node' must be an instance of {0} class".format(ODLLicense) ) if node.metadata: message = message.format(node.metadata.identifier) return message ODL_FEED_MISSING_PUBLICATIONS_SUBCOLLECTION_ERROR = partial( ManifestSemanticError, message="ODL feed '{0}' does not contain required 'publications' subcollection", ) ODL_FEED_CONTAINS_REDUNDANT_GROUPS_SUBCOLLECTIONS_ERROR = partial( ManifestSemanticError, message="ODL feed '{0}' contains redundant 'groups' subcollections", ) ODL_FEED_CONTAINS_REDUNDANT_FACETS_SUBCOLLECTIONS_ERROR = partial( ManifestSemanticError, message="ODL feed '{0}' contains redundant 'facets' subcollections", ) ODL_FEED_CONTAINS_REDUNDANT_NAVIGATION_SUBCOLLECTION_ERROR = partial( ManifestSemanticError, message="ODL feed '{0}' contains redundant 'navigation' subcollection", ) ODL_PUBLICATION_MUST_CONTAIN_EITHER_LICENSES_OR_OA_ACQUISITION_LINK_ERROR = partial( ODLPublicationSemanticError, message="ODL publication '{0}' contains neither 'licenses' subcollection nor " "an Open-Access Acquisition Link (http://opds-spec.org/acquisition/open-access)", ) ODL_LICENSE_MUST_CONTAIN_SELF_LINK_TO_LICENSE_INFO_DOCUMENT_ERROR = partial( ODLLicenseSemanticError, message="ODL license '{0}' does not contain a 'self' link to the License Info Document", ) ODL_LICENSE_MUST_CONTAIN_CHECKOUT_LINK_TO_LICENSE_STATUS_DOCUMENT_ERROR = partial( ODLLicenseSemanticError, message="ODL license '{0}' does not contain a 'checkout' link to the License Status Document", ) class ODLSemanticAnalyzer(SemanticAnalyzer): """ODL semantic analyzer.""" @dispatch(Manifestlike) def visit(self, node): """Perform semantic analysis of the manifest node. :param node: Manifest-like node :type node: Manifestlike """ super(ODLSemanticAnalyzer, self).visit(node) if not node.publications: with self._record_errors(): raise ODL_FEED_MISSING_PUBLICATIONS_SUBCOLLECTION_ERROR( node=node, node_property=ODLFeed.publications ) if node.groups: with self._record_errors(): raise ODL_FEED_CONTAINS_REDUNDANT_GROUPS_SUBCOLLECTIONS_ERROR( node=node, node_property=ODLFeed.groups ) if node.facets: with self._record_errors(): raise ODL_FEED_CONTAINS_REDUNDANT_FACETS_SUBCOLLECTIONS_ERROR( node=node, node_property=ODLFeed.facets ) if node.navigation: with self._record_errors(): raise ODL_FEED_CONTAINS_REDUNDANT_NAVIGATION_SUBCOLLECTION_ERROR( node=node, node_property=ODLFeed.navigation ) if node.links is not None: with self._record_errors(): node.links.accept(self) if node.publications is not None: with self._record_errors(): node.publications.accept(self) @dispatch(OPDS2FeedMetadata) # noqa: F811 def visit(self, node): # pylint: disable=E0102 """Perform semantic analysis of the feed's metadata. :param node: Feed's metadata :type node: OPDS2FeedMetadata """ # super(ODLSemanticAnalyzer, self).visit(node) @dispatch(Metadata) # noqa: F811 def visit(self, node): # pylint: disable=E0102 """Perform semantic analysis of the feed's metadata. :param node: Feed's metadata :type node: Metadata """ super(ODLSemanticAnalyzer, self).visit(node) @dispatch(ODLPublication) # noqa: F811 def visit(self, node): # pylint: disable=E0102 """Perform semantic analysis of the OPDS 2.0 publication. :param node: ODL 2.0 publication :type node: ODLPublication """ self._logger.debug(u"Started processing {0}".format(encode(node))) if (not node.licenses or len(node.licenses) == 0) and ( (not node.licenses or len(node.links) == 0) or not node.links.get_by_rel(OPDS2LinkRelationsRegistry.OPEN_ACCESS.key) ): with self._record_errors(): raise ODL_PUBLICATION_MUST_CONTAIN_EITHER_LICENSES_OR_OA_ACQUISITION_LINK_ERROR( node=node, node_property=None ) elif node.licenses: node.licenses.accept(self) self._logger.debug(u"Finished processing {0}".format(encode(node))) @dispatch(LinkList) # noqa: F811 def visit(self, node): # pylint: disable=E0102 """Perform semantic analysis of the list of links. :param node: Manifest's metadata :type node: LinkList """ super(ODLSemanticAnalyzer, self).visit(node) @dispatch(Link) # noqa: F811 def visit(self, node): # pylint: disable=E0102 """Perform semantic analysis of the link node. :param node: Link node :type node: Link """ super(ODLSemanticAnalyzer, self).visit(node) @dispatch(CollectionList) # noqa: F811 def visit(self, node): # pylint: disable=E0102 """Perform semantic analysis of the list of sub-collections. :param node: CollectionList node :type node: CollectionList """ super(ODLSemanticAnalyzer, self).visit(node) @dispatch(CompactCollection) # noqa: F811 def visit(self, node): # pylint: disable=E0102 """Perform semantic analysis of the compact collection node. :param node: Collection node :type node: CompactCollection """ super(ODLSemanticAnalyzer, self).visit(node) @dispatch(Collection) # noqa: F811 def visit(self, node): # pylint: disable=E0102 """Perform semantic analysis of the collection node. :param node: Collection node :type node: Collection """ super(ODLSemanticAnalyzer, self).visit(node) @dispatch(ODLLicense) # noqa: F811 def visit(self, node): # pylint: disable=E0102 """Perform semantic analysis of the ODL license node. :param node: ODLLicense node :type node: ODLLicense """ self_link = ( first_or_default(node.links.get_by_rel(OPDS2LinkRelationsRegistry.SELF.key)) if node.links else None ) if ( not self_link or self_link.type != ODLMediaTypesRegistry.ODL_LICENSE_INFO_DOCUMENT.key ): with self._record_errors(): raise ODL_LICENSE_MUST_CONTAIN_SELF_LINK_TO_LICENSE_INFO_DOCUMENT_ERROR( node=node, node_property=None ) borrow_link = ( first_or_default( node.links.get_by_rel(OPDS2LinkRelationsRegistry.BORROW.key) ) if node.links else None ) if ( not borrow_link or borrow_link.type != ODLMediaTypesRegistry.ODL_LICENSE_STATUS_DOCUMENT.key ): with self._record_errors(): raise ODL_LICENSE_MUST_CONTAIN_CHECKOUT_LINK_TO_LICENSE_STATUS_DOCUMENT_ERROR( node=node, node_property=None )
import os import json import random import numpy import csv import traceback import subprocess import concurrent import collections import operator import math def convert_latency_nanos_to_millis(latencies): return list(map(lambda x: x / 1e6, latencies)) def get_region(config, server): for region, servers in config["server_regions"].items(): if server in servers: return region raise ValueError("{} not in any region".format(server)) def get_regions(config): return set([get_region(config, s) for s in config["clients"] + config["server_names"]]) def get_num_regions(config): return len(set([get_region(config, s) for s in config["clients"] + config["server_names"]])) def calculate_statistics(config, local_out_directory): runs = [] op_latencies = {} op_times = {} op_latency_counts = {} op_tputs = {} client_op_latencies = [] client_op_times = [] for i in range(config['num_experiment_runs']): client_op_latencies.append({}) client_op_times.append({}) stats, run_op_latencies, run_op_times, run_op_latency_counts, run_op_tputs, run_client_op_latencies, run_client_op_times = calculate_statistics_for_run( config, local_out_directory, i) runs.append(stats) for k, vv in run_op_latency_counts.items(): for j in range(len(run_op_latencies[k])): if k in op_latencies: if len(op_latencies[k]) <= j: op_latencies[k].append(run_op_latencies[k][j]) else: op_latencies[k][j] += run_op_latencies[k][j] else: op_latencies[k] = [run_op_latencies[k][j]] if k in op_latency_counts: op_latency_counts[k] += vv else: op_latency_counts[k] = vv for k, v in run_op_times.items(): for j in range(len(v)): if k in op_times: if len(op_times[k]) <= j: op_times[k].append(v[j]) else: op_times[k][j] += v[j] else: op_times[k] = [v[j]] for k, v in run_op_tputs.items(): if k in run_op_tputs: if k in op_tputs: op_tputs[k] += run_op_tputs[k] else: op_tputs[k] = run_op_tputs[k] for cid, opl in run_client_op_latencies.items(): client_op_latencies[i][cid] = opl for cid, opt in run_client_op_times.items(): client_op_times[i][cid] = opt stats = {} stats['aggregate'] = {} norm_op_latencies, norm_op_times = calculate_all_op_statistics( config, stats['aggregate'], op_latencies, op_times, op_latency_counts, op_tputs) for k, v in norm_op_latencies.items(): op_latencies['%s_norm' % k] = v for k, v in norm_op_times.items(): op_times['%s_norm' % k] = v stats['runs'] = runs stats['run_stats'] = {} ignored = {'cdf': 1, 'cdf_log': 1, 'time': 1} for cat in runs[0]: # we assume there is at least one run if not ('region-' in cat) and type(runs[0][cat]) is dict: stats['run_stats'][cat] = {} for s in runs[0][cat]: if s in ignored: continue data = [] for run in runs: data.append(run[cat][s]) stats['run_stats'][cat][s] = calculate_statistics_for_data( data, cdf=False) if 'region-' in cat: stats['run_stats'][cat] = {} for cat2 in runs[0][cat]: # we assume there is at least one run if type(runs[0][cat][cat2]) is dict: stats['run_stats'][cat][cat2] = {} for s in runs[0][cat][cat2]: if s in ignored: continue data = [] for run in runs: data.append(run[cat][cat2][s]) stats['run_stats'][cat][cat2][s] = calculate_statistics_for_data( data, cdf=False) stats_file = STATS_FILE if 'stats_file_name' not in config else config['stats_file_name'] with open(os.path.join(local_out_directory, stats_file), 'w') as f: json.dump(stats, f, indent=2, sort_keys=True) return stats, op_latencies, op_times, client_op_latencies, client_op_times def calculate_statistics_for_run(config, local_out_directory, run): region_op_latencies = {} region_op_times = {} region_op_latency_counts = {} region_op_tputs = {} region_client_op_latencies = {} region_client_op_times = {} stats = {} regions = get_regions(config) for region in regions: r_op_latencies = {} r_op_latency_counts = {} r_op_times = {} r_op_tputs = {} op_latencies = {} op_latency_counts = {} op_tputs = {} op_times = {} for client in config["clients"]: if get_region(config, client) != region: continue client_dir = client for k in range(config["client_processes_per_client_node"]): client_out_file = os.path.join(local_out_directory, client_dir, '%s-%d-stdout-%d.log' % (client, k, run)) start_time_sec = -1 start_time_usec = -1 end_time_sec = {} end_time_usec = {} with open(client_out_file) as f: ops = f.readlines() foundEnd = False for op in ops: foundEnd = False opCols = op.strip().split(',') for x in range(0, len(opCols), 2): if opCols[x].isdigit(): break if len(opCols[x]) > 0 and opCols[x][0] == '#': # special line, not an operation if opCols[x] == '#start': start_time_sec = float(opCols[x+1]) start_time_usec = float( opCols[x+2]) break elif opCols[x] == '#end': cid = 0 if x + 3 < len(opCols): cid = int(opCols[x+3]) end_time_sec[cid] = float( opCols[x+1]) end_time_usec[cid] = float( opCols[x+2]) foundEnd = True break if not opCols[x] in config['client_stats_blacklist']: if 'input_latency_scale' in config: opLat = float( opCols[x+1]) / config['input_latency_scale'] else: opLat = float(opCols[x+1]) / 1e9 if 'output_latency_scale' in config: opLat = opLat * \ config['output_latency_scale'] else: opLat = opLat * 1e3 opTime = 0.0 if x + 2 < len(opCols): if 'input_latency_scale' in config: opTime = float( opCols[x+2]) / config['input_latency_scale'] else: opTime = float( opCols[x+2]) / 1e9 if 'output_latency_scale' in config: opTime = opTime * \ config['output_latency_scale'] else: opTime = opTime * 1e3 cid = 0 if x + 3 < len(opCols): cid = int(opCols[x + 3]) if cid not in op_latencies: op_latencies[cid] = {} if cid not in op_times: op_times[cid] = {} if cid not in op_latency_counts: op_latency_counts[cid] = {} if opCols[x] in op_latencies[cid]: op_latencies[cid][opCols[x]].append( opLat) else: op_latencies[cid][opCols[x]] = [ opLat] if opCols[x] in op_times[cid]: op_times[cid][opCols[x]].append( opTime) else: op_times[cid][opCols[x]] = [opTime] if not opCols[x] in config['client_combine_stats_blacklist']: if 'combined' in op_latencies[cid]: op_latencies[cid]['combined'].append( opLat) else: op_latencies[cid]['combined'] = [ opLat] if 'combined' in op_times[cid]: op_times[cid]['combined'].append( opTime) else: op_times[cid]['combined'] = [ opTime] if 'combined' in op_latency_counts[cid]: op_latency_counts[cid]['combined'] += 1 else: op_latency_counts[cid]['combined'] = 1 if 'client_combine_ro_ops' in config: if opCols[x] in config['client_combine_ro_ops']: rorw = 'ro' else: rorw = 'rw' if rorw in op_latencies[cid]: op_latencies[cid][rorw].append( opLat) else: op_latencies[cid][rorw] = [ opLat] if rorw in op_times[cid]: op_times[cid][rorw].append( opTime) else: op_times[cid][rorw] = [ opTime] if rorw in op_latency_counts[cid]: op_latency_counts[cid][rorw] += 1 else: op_latency_counts[cid][rorw] = 1 if opCols[x] in op_latency_counts[cid]: op_latency_counts[cid][opCols[x]] += 1 else: op_latency_counts[cid][opCols[x]] = 1 if foundEnd: run_time_sec = end_time_sec[cid] run_time_sec += end_time_usec[cid] / 1e6 if cid in op_latency_counts: for k1, v in op_latency_counts[cid].items(): print('Client %s-%d %d tput %s is %f (%d / %f)' % ( client, k, cid, k1, v / run_time_sec, v, run_time_sec)) if k1 in op_tputs: op_tputs[k1] += v / \ run_time_sec else: op_tputs[k1] = v / run_time_sec client_stats_file = os.path.join(local_out_directory, client_dir, '%s-%d-stats-%d.json' % (client, k, run)) try: with open(client_stats_file) as f: client_stats = json.load(f) for k1, v in client_stats.items(): if (not 'stats_merge_lists' in config) or (not k1 in config['stats_merge_lists']): if k1 not in stats: stats[k1] = v else: stats[k1] += v else: if k1 not in stats: stats[k1] = v else: if len(stats[k1]) < len(v): for uu in range(len(stats[k1]), len(v)): stats[k1].append(0) for uu in range(len(v)): stats[k1][uu] += v[uu] except FileNotFoundError: print('No stats file %s.' % client_stats_file) except json.decoder.JSONDecodeError: print('Invalid JSON file %s.' % client_stats_file) for instance_idx in range(config["num_instances"]): for shard_idx in range(len(config["shards"])): shard = config["shards"][shard_idx] for replica_idx in range(len(shard)): replica = shard[replica_idx] if get_region(config, replica) != region: continue server_stats_file = os.path.join(local_out_directory, 'server-%d-%d' % (instance_idx, shard_idx), 'server-%d-%d-%d-stats-%d.json' % (instance_idx, shard_idx, replica_idx, run)) print(server_stats_file) try: with open(server_stats_file) as f: server_stats = json.load(f) for k, v in server_stats.items(): if not type(v) is dict: if (not 'stats_merge_lists' in config) or (not k in config['stats_merge_lists']): if k not in stats: stats[k] = v else: stats[k] += v else: if k not in stats: stats[k] = v else: if len(stats[k]) < len(v): for uu in range(len(stats[k]), len(v)): stats[k].append(0) for uu in range(len(v)): stats[k][uu] += v[uu] except FileNotFoundError: print('No stats file %s.' % server_stats_file) except json.decoder.JSONDecodeError: print('Invalid JSON file %s.' % server_stats_file) for cid, opl in op_latencies.items(): for k, v in opl.items(): if k in r_op_latencies: r_op_latencies[k].extend(v) else: r_op_latencies[k] = v.copy() region_client_op_latencies[cid] = opl for cid, opt in op_times.items(): for k, v in opt.items(): if k in r_op_times: r_op_times[k].extend(v) else: r_op_times[k] = v.copy() region_client_op_times[cid] = opt for cid, oplc in op_latency_counts.items(): for k, v in oplc.items(): if k in r_op_latency_counts: r_op_latency_counts[k] += v else: r_op_latency_counts[k] = v for k, v in op_tputs.items(): if k in r_op_tputs: r_op_tputs[k] += v else: r_op_tputs[k] = v # print('Region %d had op counts: w=%d, r=%d, rmw=%d.' % (i, writes, reads, rmws)) # normalize by server region to account for latency differences for k, v in r_op_latencies.items(): if k in region_op_latencies: region_op_latencies[k].append(v) else: region_op_latencies[k] = [v] for k, v in r_op_times.items(): if k in region_op_times: region_op_times[k].append(v) else: region_op_times[k] = [v] for k, v in r_op_latency_counts.items(): if k in region_op_latency_counts: region_op_latency_counts[k] = min( region_op_latency_counts[k], v) else: region_op_latency_counts[k] = v for k, v in r_op_tputs.items(): if k in region_op_tputs: region_op_tputs[k].append(v) else: region_op_tputs[k] = [v] # TODO: remove this hack if 'fast_writes_0' in stats or 'slow_writes_0' in stats or 'fast_reads_0' in stats or 'slow_reads_0' in stats: fw0 = stats['fast_writes_0'] if 'fast_writes_0' in stats else 0 sw0 = stats['slow_writes_0'] if 'slow_writes_0' in stats else 0 if fw0 + sw0 > 0: stats['fast_write_ratio'] = fw0 / (fw0 + sw0) stats['slow_write_ratio'] = sw0 / (fw0 + sw0) fr0 = stats['fast_reads_0'] if 'fast_reads_0' in stats else 0 sr0 = stats['slow_reads_0'] if 'slow_reads_0' in stats else 0 if fr0 + sr0 > 0: stats['fast_read_ratio'] = fr0 / (fr0 + sr0) stats['slow_read_ratio'] = sr0 / (fr0 + sr0) # TODO: decide if this is a hack that needs to be removed? total_committed = 0 total_attempts = 0 stats_new = {} for k, v in stats.items(): if k.endswith('_committed'): k_prefix = k[:-len('_committed')] k_attempts = k_prefix + '_attempts' k_commit_rate = k_prefix + '_commit_rate' k_abort_rate = k_prefix + '_abort_rate' total_committed += stats[k] total_attempts += stats[k_attempts] stats_new[k_commit_rate] = stats[k] / stats[k_attempts] stats_new[k_abort_rate] = 1 - stats_new[k_commit_rate] for k, v in stats_new.items(): stats[k] = v if total_attempts > 0: stats['committed'] = total_committed stats['attempts'] = total_attempts stats['commit_rate'] = total_committed / total_attempts stats['abort_rate'] = 1 - stats['commit_rate'] norm_op_latencies, norm_op_times = calculate_all_op_statistics( config, stats, region_op_latencies, region_op_times, region_op_latency_counts, region_op_tputs) for k, v in norm_op_latencies.items(): region_op_latencies['%s_norm' % k] = v for k, v in norm_op_times.items(): region_op_times['%s_norm' % k] = v return stats, region_op_latencies, region_op_times, region_op_latency_counts, region_op_tputs, region_client_op_latencies, region_client_op_times def calculate_op_statistics(config, stats, total_recorded_time, op_type, latencies, norm_latencies, tput): if len(latencies) > 0: stats[op_type] = calculate_statistics_for_data(latencies) stats[op_type]['ops'] = len(latencies) if tput == -1: stats[op_type]['tput'] = len(latencies) / total_recorded_time else: stats[op_type]['old_tput'] = len(latencies) / total_recorded_time stats[op_type]['tput'] = tput if op_type == 'combined': stats['combined']['ops'] = len(latencies) stats['combined']['time'] = total_recorded_time # TODO: fix # if (not 'server_emulate_wan' in config or config['server_emulate_wan']) and len(norm_latencies) > 0: # stats['%s_norm' % op_type] = calculate_statistics_for_data( # norm_latencies) # stats['%s_norm' % op_type]['samples'] = len(norm_latencies) def calculate_all_op_statistics(config, stats, region_op_latencies, region_op_times, region_op_latency_counts, region_op_tputs): total_recorded_time = float( config['client_experiment_length'] - config['client_ramp_up'] - config['client_ramp_down']) norm_op_latencies = {} norm_op_times = {} for k, v in region_op_latencies.items(): latencies = [lat for region_lats in v for lat in region_lats] tput = -1 if len(v) == 0 else 0 if k in region_op_tputs: for region_tput in region_op_tputs[k]: tput += region_tput for i in range(len(v)): sample_idxs = random.sample( range(len(v[i])), region_op_latency_counts[k]) if k in norm_op_times: norm_op_latencies[k].extend([v[i][idx] for idx in sample_idxs]) norm_op_times[k].extend( [region_op_times[k][i][idx] for idx in sample_idxs]) else: norm_op_latencies[k] = [v[i][idx] for idx in sample_idxs] norm_op_times[k] = [region_op_times[k][i][idx] for idx in sample_idxs] if not 'server_emulate_wan' in config or config['server_emulate_wan']: for i in range(len(v)): region_key = 'region-%d' % i if region_key not in stats: stats[region_key] = {} op_tput = -1 if k in region_op_tputs and len(region_op_tputs[k]) > i: op_tput = region_op_tputs[k][i] calculate_op_statistics( config, stats[region_key], total_recorded_time, k, v[i], [], op_tput) calculate_op_statistics( config, stats, total_recorded_time, k, latencies, norm_op_latencies[k], tput) return norm_op_latencies, norm_op_times def calculate_cdf_for_npdata(npdata): ptiles = [] for i in range(1, 100): # compute percentiles [1, 100) ptiles.append([i, numpy.percentile(npdata, i, interpolation='higher')]) return ptiles def calculate_cdf_log_for_npdata(npdata, precision): ptiles = [] base = 0 scale = 1 for i in range(0, precision): for j in range(0, 90): if i == 0 and j == 0: continue ptiles.append([base + j / scale, numpy.percentile(npdata, base + j / scale, interpolation='higher')]) base += 90 / scale scale = scale * 10 return ptiles def calculate_statistics_for_data(data, cdf=True, cdf_log_precision=4): npdata = numpy.asarray(data) s = { 'p50': numpy.percentile(npdata, 50).item(), 'p75': numpy.percentile(npdata, 75).item(), 'p90': numpy.percentile(npdata, 90).item(), 'p95': numpy.percentile(npdata, 95).item(), 'p99': numpy.percentile(npdata, 99).item(), 'p99.9': numpy.percentile(npdata, 99.9).item(), 'max': numpy.amax(npdata).item(), 'min': numpy.amin(npdata).item(), 'mean': numpy.mean(npdata).item(), 'stddev': numpy.std(npdata).item(), 'var': numpy.var(npdata).item(), } if cdf: s['cdf'] = calculate_cdf_for_npdata(npdata) s['cdf_log'] = calculate_cdf_log_for_npdata(npdata, cdf_log_precision) return s def generate_gnuplot_script_cdf_log_agg_new(script_file, out_file, x_label, y_label, width, height, font, series, title): with open(script_file, 'w') as f: write_gpi_header(f) f.write("set title \"%s\"\n" % title) f.write("set key bottom right\n") f.write("set ytics (0,0.9,0.99,0.999,0.9999,1.0)\n") f.write("set xlabel '%s'\n" % x_label) f.write("set ylabel '%s'\n" % y_label) f.write("set terminal pngcairo size %d,%d enhanced dashed font '%s'\n" % ( width, height, font)) f.write('set output \'%s\'\n' % out_file) write_line_styles(f) f.write('plot ') for i in range(len(series)): if i == 0: labels = ':yticlabels(3)' else: labels = '' f.write("'%s' using 1:(-log10(1-$2))%s title \"%s\" ls %d with lines" % ( series[i][1], labels, series[i][0].replace('_', '\\\\\\_'), i + 1)) if i != len(series) - 1: f.write(', \\\n') def generate_gnuplot_script_lot_plot_stacked(script_file, out_file, x_label, y_label, width, height, font, series, title): with open(script_file, 'w') as f: write_gpi_header(f) f.write("set title \"%s\"\n" % title) f.write("set key top left\n") f.write("set xlabel '%s'\n" % x_label) f.write("set ylabel '%s'\n" % y_label) f.write("set terminal pngcairo size %d,%d enhanced dashed font '%s'\n" % (width, height, font)) f.write('set output \'%s\'\n' % out_file) write_line_styles(f) f.write('plot ') for i in range(len(series)): f.write("'%s' title \"%s\" ls %d with filledcurves x1" % (series[i][1], series[i][0].replace('_', '\\\\\\_'), i + 1)) if i != len(series) - 1: f.write(', \\\n') def generate_gnuplot_script_cdf_agg_new(script_file, out_file, x_label, y_label, width, height, font, series, title): with open(script_file, 'w') as f: write_gpi_header(f) f.write("set title \"%s\"\n" % title) f.write("set key bottom right\n") f.write("set xlabel '%s'\n" % x_label) f.write("set ylabel '%s'\n" % y_label) f.write("set terminal pngcairo size %d,%d enhanced dashed font '%s'\n" % (width, height, font)) f.write('set output \'%s\'\n' % out_file) write_line_styles(f) f.write('plot ') for i in range(len(series)): f.write("'%s' title \"%s\" ls %d with lines" % (series[i][1], series[i][0].replace('_', '\\\\\\_'), i + 1)) if i != len(series) - 1: f.write(', \\\n') def generate_csv_for_plot(plot_csv_file, x_vars, y_vars): with open(plot_csv_file, 'w') as f: csvwriter = csv.writer(f) for i in range(len(x_vars)): csvwriter.writerow([x_vars[i], y_vars[i]]) def generate_gnuplot_script(plot, plot_script_file, plot_csv_file, plot_out_file): with open(plot_script_file, 'w') as f: write_gpi_header(f) f.write("set key top left\n") f.write("set xlabel '%s'\n" % plot['x_label']) f.write("set ylabel '%s'\n" % plot['y_label']) f.write("set terminal pngcairo size %d,%d enhanced font '%s'\n" % (plot['width'], plot['height'], plot['font'])) f.write('set output \'%s\'\n' % plot_out_file) write_line_styles(f) f.write("plot '%s' title '%s' with linespoint\n" % (plot_csv_file, 'series-1')) def generate_plot(plot, plots_directory, x_vars, y_vars): plot_csv_file = os.path.join(plots_directory, '%s.csv' % plot['name']) generate_csv_for_plot(plot_csv_file, x_vars, y_vars) plot_script_file = os.path.join(plots_directory, '%s.gpi' % plot['name']) plot_out_file = os.path.join(plots_directory, '%s.png' % plot['name']) generate_gnuplot_script(plot, plot_script_file, plot_csv_file, plot_out_file) subprocess.call(['gnuplot', plot_script_file]) def generate_gnuplot_script_agg(plot, plot_script_file, plot_out_file, series): with open(plot_script_file, 'w') as f: write_gpi_header(f) f.write("set key top left\n") f.write("set xlabel '%s'\n" % plot['x_label']) f.write("set ylabel '%s'\n" % plot['y_label']) f.write("set terminal pngcairo size %d,%d enhanced dashed font '%s'\n" % (plot['width'], plot['height'], plot['font'])) f.write('set output \'%s\'\n' % plot_out_file) write_line_styles(f) f.write('plot ') for i in range(len(series)): f.write("'%s' title '%s' ls %d with linespoint" % ( series[i], plot['series_titles'][i].replace('_', '\\_'), i + 1)) if i != len(series) - 1: f.write(', \\\n') def generate_plots(config, base_out_directory, out_dirs): plots_directory = os.path.join( base_out_directory, config['plot_directory_name']) os.makedirs(plots_directory, exist_ok=True) csv_classes = set() csv_files = [] subprocesses = [] ### # Generate aggregate cdf plots for i in range(len(out_dirs[0])): # for each series i csv_files.append({}) collecting = collections.deque([out_dirs[0][i]]) while len(collecting) != 0: # bfs flattening of independent vars if type(collecting[0]) is str: sub_plot_directory = os.path.join( collecting[0], config['plot_directory_name']) for f in os.listdir(sub_plot_directory): if f.endswith('.csv') and (f.startswith('aggregate-') or f.startswith('lot-')): csv_class = os.path.splitext(os.path.basename(f))[0] csv_classes.add(csv_class) if not csv_class in csv_files[i]: csv_files[i][csv_class] = [] csv_files[i][csv_class].append( os.path.join(sub_plot_directory, f)) else: for od in collecting[0]: collecting.append(od) collecting.popleft() for csv_class in csv_classes: idx = -1 for j in range(len(csv_files)): if csv_class in csv_files[j]: idx = j break if idx == -1: continue for j in range(len(csv_files[idx][csv_class])): title = '' for k in range(len(config['experiment_independent_vars']) - 1 - len(config['experiment_independent_vars_unused']), -1, -1): title += '%s=%s' % (config['experiment_independent_vars'][k][0].replace('_', '\\\\\\_'), str(config[config['experiment_independent_vars'][k][0]])) if k > 0: title += '\\n' x = j for k in range(len(config['experiment_independent_vars_unused']) - 1, 0, -1): if k == len(config['experiment_independent_vars_unused']) - 1: title += '\\n' n = len( config[config['experiment_independent_vars_unused'][k][0]]) title += '%s=%s' % (config['experiment_independent_vars_unused'][k][0].replace('_', '\\\\\\_'), str(config[config['experiment_independent_vars_unused'][k][0]][x % n])) x = x // n if k > 0: title += '\\n' plot_script_file = os.path.join( plots_directory, '%s-%d.gpi' % (csv_class, j)) plot_out_file = os.path.join( plots_directory, '%s-%d.png' % (csv_class, j)) series = [] for i in range(len(csv_files)): if csv_class in csv_files[i] and len(csv_files[i][csv_class]) > j: series.append(('%s=%s' % (config['experiment_independent_vars_unused'][0][0], config[config['experiment_independent_vars_unused'][0][0]][i]), csv_files[i][csv_class][j])) if 'lot-' in csv_class: if not 'lot_plots' in config: config['lot_plots'] = { 'x_label': 'Time', 'y_label': 'Latency', 'width': config['cdf_plots']['width'], 'height': config['cdf_plots']['height'], 'font': config['cdf_plots']['font'] } generate_gnuplot_script_cdf_agg_new(plot_script_file, plot_out_file, config['lot_plots']['x_label'], config['lot_plots']['y_label'], config['lot_plots']['width'], config['lot_plots']['height'], config['lot_plots']['font'], series, title) elif 'log' in csv_class: generate_gnuplot_script_cdf_log_agg_new(plot_script_file, plot_out_file, config['cdf_plots']['x_label'], config['cdf_plots']['y_label'], config['cdf_plots']['width'], config['cdf_plots']['height'], config['cdf_plots']['font'], series, title) else: generate_gnuplot_script_cdf_agg_new(plot_script_file, plot_out_file, config['cdf_plots']['x_label'], config['cdf_plots']['y_label'], config['cdf_plots']['width'], config['cdf_plots']['height'], config['cdf_plots']['font'], series, title) print(plot_script_file) # subprocesses.append(subprocess.Popen(['gnuplot', plot_script_file])) subprocess.call(['gnuplot', plot_script_file]) # End generate all aggregate cdf plots ### ### # Generate specific plots # for now we only support configurable plot generation with 1 indep var for plot in config['plots']: if len(config['experiment_independent_vars']) - len(config['experiment_independent_vars_unused']) == 1: # generate csvs and single series plots x_vars = [] y_vars = [] for i in range(len(out_dirs[0])): assert type(out_dirs[0][i]) is str # for each value of the independent variable stats_file = os.path.join( out_dirs[0][i], config['stats_file_name']) print(stats_file) with open(stats_file) as f: stats = json.load(f) if plot['x_var_is_config']: x_var = config for k in plot['x_var']: if type(x_var) is dict: x_var = x_var[k] elif type(x_var) is list: x_var = x_var[i] if type(x_var) is list: x_var = x_var[i] else: x_var = stats for k in plot['x_var']: if k in x_var: x_var = x_var[k] else: x_var = 0 break x_vars.append(x_var) y_var = stats for k in plot['y_var']: if k in y_var or (isinstance(y_var, list) and isinstance(k, int) and k < len(y_var)): y_var = y_var[k] else: y_var = 0 break y_vars.append(y_var) print(plots_directory) generate_plot(plot, plots_directory, x_vars, y_vars) elif len(config['experiment_independent_vars']) == len(config['experiment_independent_vars_unused']): csv_files = [] for i in range(len(out_dirs[-1])): # for series i sub_plot_directory = os.path.join( out_dirs[-1][i], config['plot_directory_name']) csv_files.append(os.path.join( sub_plot_directory, '%s.csv' % plot['name'])) plot_script_file = os.path.join( plots_directory, '%s.gpi' % plot['name']) plot_out_file = os.path.join( plots_directory, '%s.png' % plot['name']) generate_gnuplot_script_agg( plot, plot_script_file, plot_out_file, csv_files) subprocess.call(['gnuplot', plot_script_file]) # subprocesses.append(subprocess.Popen(['gnuplot', plot_script_file])) # End generate specific plots ### # for subprocess in subprocesses: # subprocess.wait() def run_gnuplot(data_files, out_file, script_file): # print(script_file) args = ['gnuplot', '-e', "outfile='%s'" % out_file] for i in range(len(data_files)): args += ['-e', "datafile%d='%s'" % (i, data_files[i])] args.append(script_file) subprocess.call(args) def generate_csv_for_cdf_plot(csv_file, cdf_data, log=False): with open(csv_file, 'w') as f: csvwriter = csv.writer(f) k = 1 for i in range(len(cdf_data)): data = [cdf_data[i][1], cdf_data[i][0] / 100] if log and abs(cdf_data[i][0] / 100 - (1 - 10**-k)) < 0.000001: data.append(1 - 10**-k) k += 1 csvwriter.writerow(data) def generate_csv_for_lot_plot(csv_file, lot_data, lot_times=None, use_idxs=False): with open(csv_file, 'w') as f: csvwriter = csv.writer(f) if lot_times == None: agg = 0.0 for i in range(len(lot_data)): agg += lot_data[i] if use_idxs: data = [i, lot_data[i]] else: data = [agg, lot_data[i]] csvwriter.writerow(data) else: aggregate_data = [] for i in range(len(lot_data)): aggregate_data.append([lot_times[i], lot_data[i]]) aggregate_data = sorted(aggregate_data, key=operator.itemgetter(0)) for row in aggregate_data: csvwriter.writerow(row) def generate_csv_for_tot_plot(csv_file, lot_data, lot_times): with open(csv_file, 'w') as f: csvwriter = csv.writer(f) aggregate_data = [] for i in range(len(lot_data)): aggregate_data.append([lot_times[i], lot_data[i]]) aggregate_data = sorted(aggregate_data, key=operator.itemgetter(0)) tot_data = [] if len(aggregate_data) > 0: ops_in_interval = 1 start_interval = aggregate_data[0][0] end_interval = aggregate_data[0][0] interval = 5e2 for i in range(1, len(aggregate_data)): if aggregate_data[i][0] < start_interval + interval: ops_in_interval += 1 else: tot_data.append( [end_interval, ops_in_interval * 1e3 / interval]) ops_in_interval = 0 start_interval = aggregate_data[i][0] end_interval = aggregate_data[i][0] tot_data.append([end_interval, ops_in_interval * 1e3 / interval]) for row in tot_data: csvwriter.writerow(row) def generate_cdf_plot(config, plots_directory, plot_name, cdf_data): plot_name = plot_name.replace('_', '-') plot_csv_file = os.path.join(plots_directory, '%s.csv' % plot_name) generate_csv_for_cdf_plot(plot_csv_file, cdf_data) plot_script_file = os.path.join(plots_directory, '%s.gpi' % plot_name) generate_gnuplot_script_cdf(config, plot_script_file) run_gnuplot([plot_csv_file], os.path.join(plots_directory, '%s.png' % plot_name), plot_script_file) def generate_gnuplot_script_lot(config, script_file, line_type='points'): with open(script_file, 'w') as f: f.write("set datafile separator ','\n") f.write("set key bottom right\n") f.write("set yrange [0:]\n") if 'plot_lot_x_label' in config: f.write("set xlabel '%s'\n" % config['plot_lot_x_label']) if 'plot_lot_y_label' in config: f.write("set ylabel '%s'\n" % config['plot_lot_y_label']) f.write("set terminal pngcairo size %d,%d enhanced font '%s'\n" % (config['plot_cdf_png_width'], config['plot_cdf_png_height'], config['plot_cdf_png_font'])) f.write('set output outfile\n') f.write("plot datafile0 title '%s' with %s\n" % (config['plot_cdf_series_title'].replace('_', '\\_'), line_type)) def generate_lot_plot(config, plots_directory, plot_name, lot_data, lot_times): plot_name = plot_name.replace('_', '-') plot_csv_file = os.path.join(plots_directory, '%s.csv' % plot_name) generate_csv_for_lot_plot(plot_csv_file, lot_data, lot_times) plot_script_file = os.path.join(plots_directory, '%s.gpi' % plot_name) generate_gnuplot_script_lot(config, plot_script_file) run_gnuplot([plot_csv_file], os.path.join(plots_directory, '%s.png' % plot_name), plot_script_file) def generate_tot_plot(config, plots_directory, plot_name, lot_data, lot_times): plot_name = plot_name.replace('_', '-') plot_csv_file = os.path.join(plots_directory, '%s.csv' % plot_name) generate_csv_for_tot_plot(plot_csv_file, lot_data, lot_times) plot_script_file = os.path.join(plots_directory, '%s.gpi' % plot_name) generate_gnuplot_script_lot(config, plot_script_file, 'linespoints') run_gnuplot([plot_csv_file], os.path.join(plots_directory, '%s.png' % plot_name), plot_script_file) def generate_cdf_log_plot(config, plots_directory, plot_name, cdf_data): plot_name = plot_name.replace('_', '-') plot_csv_file = os.path.join(plots_directory, '%s.csv' % plot_name) generate_csv_for_cdf_plot(plot_csv_file, cdf_data, log=True) plot_script_file = os.path.join(plots_directory, '%s.gpi' % plot_name) generate_gnuplot_script_cdf_log(config, plot_script_file) run_gnuplot([plot_csv_file], os.path.join(plots_directory, '%s.png' % plot_name), plot_script_file) CDF_PLOTS = ['txn', 'w', 'r', 'rmw', 'max', 'maxr', 'maxw', 'maxrmw', 'combined', 'txn_norm', 'w_norm', 'r_norm', 'rmw_norm', 'combined_norm', 'max_norm', 'maxr_norm', 'maxw_norm', 'maxrmw_norm'] def generate_cdf_plots(config, local_out_directory, stats, executor): futures = [] plots_directory = os.path.join( local_out_directory, config['plot_directory_name']) os.makedirs(plots_directory, exist_ok=True) for op_type in stats['aggregate']: if not op_type in config['client_cdf_plot_blacklist'] and not 'region-' in op_type: cdf_plot_name = 'aggregate-%s' % op_type futures.append(executor.submit(generate_cdf_plot, config, plots_directory, cdf_plot_name, stats['aggregate'][op_type]['cdf'])) cdf_log_plot_name = 'aggregate-%s-log' % op_type futures.append(executor.submit(generate_cdf_log_plot, config, plots_directory, cdf_log_plot_name, stats['aggregate'][op_type]['cdf_log'])) elif 'region-' in op_type: for op_type2 in stats['aggregate'][op_type]: if not op_type2 in config['client_cdf_plot_blacklist']: cdf_plot_name = 'aggregate-%s-%s' % (op_type, op_type2) futures.append(executor.submit(generate_cdf_plot, config, plots_directory, cdf_plot_name, stats['aggregate'][op_type][op_type2]['cdf'])) cdf_log_plot_name = 'aggregate-%s-%s-log' % ( op_type, op_type2) futures.append(executor.submit(generate_cdf_log_plot, config, plots_directory, cdf_log_plot_name, stats['aggregate'][op_type][op_type2]['cdf_log'])) for i in range(len(stats['runs'])): for op_type in stats['runs'][i]: if not op_type in config['client_cdf_plot_blacklist'] and not 'region-' in op_type: if type(stats['runs'][i][op_type]) is dict: cdf_plot_name = 'run-%d-%s' % (i, op_type) futures.append(executor.submit(generate_cdf_plot, config, plots_directory, cdf_plot_name, stats['runs'][i][op_type]['cdf'])) cdf_log_plot_name = 'run-%d-%s-log' % (i, op_type) futures.append(executor.submit(generate_cdf_log_plot, config, plots_directory, cdf_log_plot_name, stats['runs'][i][op_type]['cdf'])) elif 'region-' in op_type: for op_type2 in stats['runs'][i][op_type]: if not op_type2 in config['client_cdf_plot_blacklist']: if type(stats['runs'][i][op_type]) is dict: cdf_plot_name = 'run-%d-%s-%s' % ( i, op_type, op_type2) futures.append(executor.submit(generate_cdf_plot, config, plots_directory, cdf_plot_name, stats['runs'][i][op_type][op_type2]['cdf'])) cdf_log_plot_name = 'run-%d-%s-%s-log' % ( i, op_type, op_type2) futures.append(executor.submit(generate_cdf_log_plot, config, plots_directory, cdf_log_plot_name, stats['runs'][i][op_type][op_type2]['cdf'])) concurrent.futures.wait(futures) def generate_ot_plots(config, local_out_directory, stats, op_latencies, op_times, client_op_latencies, client_op_times, executor): futures = [] plots_directory = os.path.join( local_out_directory, config['plot_directory_name']) os.makedirs(plots_directory, exist_ok=True) for i in range(len(stats['runs'])): ops = [] for op_type in stats['runs'][i]: if config['client_total'] == 1 and op_type.startswith('op'): ops.append(op_type) if not op_type in config['client_cdf_plot_blacklist'] and not 'region-' in op_type: if type(stats['runs'][i][op_type]) is dict: plot_name = 'run-%d-%s' % (i, op_type) futures.append(executor.submit(generate_lot_plot, config, plots_directory, 'lot-' + plot_name, op_latencies[op_type][i], op_times[op_type][i])) futures.append(executor.submit(generate_tot_plot, config, plots_directory, 'tot-' + plot_name, op_latencies[op_type][i], op_times[op_type][i])) for cid, opl in client_op_latencies[i].items(): if not op_type in client_op_times[i][cid] or not op_type in opl: continue client_plot_name = plot_name + ('-client-%d' % cid) futures.append(executor.submit(generate_lot_plot, config, plots_directory, 'lot-' + client_plot_name, opl[op_type], client_op_times[i][cid][op_type])) futures.append(executor.submit(generate_tot_plot, config, plots_directory, 'tot-' + client_plot_name, opl[op_type], client_op_times[i][cid][op_type])) elif 'region-' in op_type: for op_type2 in stats['runs'][i][op_type]: if not op_type2 in config['client_cdf_plot_blacklist']: if type(stats['runs'][i][op_type]) is dict: lot_plot_name = 'lot-run-%d-%s-%s' % ( i, op_type, op_type2) futures.append(executor.submit(generate_lot_plot, config, plots_directory, lot_plot_name, op_latencies[op_type2][i], op_times[op_type2][i])) if len(ops) > 0: ops.sort() series = [convert_latency_nanos_to_millis( stats['runs'][i][ops[0]])] series_csvs = [] plot_csv_file = os.path.join(plots_directory, '%s.csv' % ops[0]) series_csvs.append((ops[0], plot_csv_file)) generate_csv_for_lot_plot( plot_csv_file, series[0], None, None, True) for k in range(1, len(ops)): series.append(convert_latency_nanos_to_millis( stats['runs'][i][ops[k]])) for j in range(len(series[-2])): series[-1][j] += series[-2][j] plot_csv_file = os.path.join( plots_directory, '%s.csv' % ops[k]) series_csvs.append((ops[k], plot_csv_file)) generate_csv_for_lot_plot( plot_csv_file, series[-1], None, None, True) series.append(convert_latency_nanos_to_millis( stats['runs'][i]['commit'])) for j in range(len(series[-2])): series[-1][j] += series[-2][j] plot_csv_file = os.path.join(plots_directory, 'commit.csv') series_csvs.append(('commit', plot_csv_file)) generate_csv_for_lot_plot( plot_csv_file, series[-1], None, None, True) plot_name = 'breakdown' plot_script_file = os.path.join( plots_directory, '%s.gpi' % plot_name) plot_out_file = os.path.join(plots_directory, '%s.png' % plot_name) series_csvs.reverse() generate_gnuplot_script_lot_plot_stacked(plot_script_file, plot_out_file, 'Transaction #', config['lot_plots']['y_label'], 1600, 600, config['lot_plots']['font'], series_csvs, 'Breakdown') subprocess.call(['gnuplot', plot_script_file]) for fut in concurrent.futures.as_completed(futures): fut.result() def generate_csv_for_tput_lat_plot(plot_csv_file, tputs, lats): with open(plot_csv_file, 'w') as f: csvwriter = csv.writer(f) for i in range(len(tputs)): csvwriter.writerow([tputs[i], lats[i]]) def generate_tput_lat_plot(config, plots_directory, plot_name, tputs, lats): plot_csv_file = os.path.join(plots_directory, '%s.csv' % plot_name) generate_csv_for_tput_lat_plot(plot_csv_file, tputs, lats) plot_script_file = os.path.join(plots_directory, '%s.gpi' % plot_name) generate_gnuplot_script_tput_lat(config, plot_script_file) run_gnuplot([plot_csv_file], os.path.join(plots_directory, '%s.png' % plot_name), plot_script_file) STATS_FILE = 'stats.json' def generate_tput_lat_plots(config, base_out_directory, exp_out_directories): plots_directory = os.path.join( base_out_directory, config['plot_directory_name']) os.makedirs(plots_directory, exist_ok=True) tputs = [] lats = {} for i in range(len(exp_out_directories)): stats_file = os.path.join(exp_out_directories[i], STATS_FILE) print(stats_file) with open(stats_file) as f: stats = json.load(f) if 'combined' in stats['run_stats']: combined_run_stats = stats['run_stats']['combined'] tputs.append(combined_run_stats['tput']['p50']) ignore = {'stddev': 1, 'var': 1, 'tput': 1, 'ops': 1} for lat_stat, lat in combined_run_stats.items(): if lat_stat in ignore: continue if lat_stat not in lats: lats[lat_stat] = [] lats[lat_stat].append(lat['p50']) # median of runs for lat_stat, lat in lats.items(): plot_name = 'tput-%s-lat' % lat_stat print(plots_directory) generate_tput_lat_plot(config, plots_directory, plot_name, tputs, lat) def generate_agg_cdf_plots(config, base_out_directory, sub_out_directories): plots_directory = os.path.join( base_out_directory, config['plot_directory_name']) os.makedirs(plots_directory, exist_ok=True) csv_files = {} for i in range(len(sub_out_directories)): # for replication protocol i for j in range(len(sub_out_directories[i])): # for client configuration j sub_plot_directory = os.path.join( sub_out_directories[i][j], config['plot_directory_name']) for f in os.listdir(sub_plot_directory): if f.endswith('.csv') and f.startswith('aggregate'): csv_class = os.path.splitext(os.path.basename(f))[0] if csv_class not in csv_files: csv_files[csv_class] = [] if len(csv_files[csv_class]) == j: csv_files[csv_class].append([]) csv_files[csv_class][j].append( os.path.join(sub_plot_directory, f)) for csv_class, file_lists in csv_files.items(): for j in range(len(file_lists)): plot_script_file = os.path.join( plots_directory, '%s-%d.gpi' % (csv_class, j)) if 'log' in csv_class: generate_gnuplot_script_cdf_log_agg(config, plot_script_file) else: generate_gnuplot_script_cdf_agg(config, plot_script_file) run_gnuplot(file_lists[j], os.path.join(plots_directory, '%s-%d.png' % (csv_class, j)), plot_script_file) def generate_agg_tput_lat_plots(config, base_out_directory, out_directories): plots_directory = os.path.join( base_out_directory, config['plot_directory_name']) os.makedirs(plots_directory, exist_ok=True) csv_files = {} for i in range(len(out_directories)): # for replication protocol i sub_plot_directory = os.path.join( out_directories[i], config['plot_directory_name']) for f in os.listdir(sub_plot_directory): if f.endswith('.csv'): csv_class = os.path.splitext(os.path.basename(f))[0] if csv_class not in csv_files: csv_files[csv_class] = [] csv_files[csv_class].append( os.path.join(sub_plot_directory, f)) for csv_class, files in csv_files.items(): plot_script_file = os.path.join(plots_directory, '%s.gpi' % csv_class) generate_gnuplot_script_tput_lat_agg(config, plot_script_file) run_gnuplot(files, os.path.join(plots_directory, '%s.png' % csv_class), plot_script_file) def generate_gnuplot_script_tail_at_scale(config, script_file): with open(script_file, 'w') as f: write_gpi_header(f) f.write("set key top left\n") f.write("set xlabel '# of subrequests'\n") f.write("set ylabel 'Median Latency (ms)'\n") f.write("set terminal pngcairo size %d,%d enhanced dashed font '%s'\n" % (config['plot_cdf_png_width'], config['plot_cdf_png_height'], config['plot_cdf_png_font'])) f.write('set output outfile\n') write_line_styles(f) f.write('plot ') for i in range(len(config['replication_protocol'])): f.write("datafile%d title '%s' ls %d with lines" % ( i, config['plot_cdf_series_title'][i].replace('_', '\\_'), i + 1)) if i != len(config['replication_protocol']) - 1: f.write(', \\\n') def generate_tail_at_scale_plots(config, base_out_directory, sub_out_directories): plots_directory = os.path.join( base_out_directory, config['plot_directory_name']) os.makedirs(plots_directory, exist_ok=True) csv_files = [[[] for i in range(len(config['server_names'])+1)] for j in range(len(config['client_nodes_per_server']))] for k in range(len(config['client_tail_at_scale'])): # for tail-at-scale request size k for i in range(len(sub_out_directories[k])): # for replication protocol i for j in range(len(sub_out_directories[k][i])): # for client configuration j with open(os.path.join(sub_out_directories[k][i][j], STATS_FILE)) as f: stats = json.load(f) csvfile = os.path.join( plots_directory, '%s-%d-%d-overall.csv' % (config['replication_protocol'][i], i, j)) csv_files[j][0].append(csvfile) with open(csvfile, 'a') as csvf: csvwriter = csv.writer(csvf) csvwriter.writerow( [config['client_tail_at_scale'][k], stats['aggregate']['max_norm']['p50']]) for r in range(len(config['server_names'])): csvfilereg = os.path.join( plots_directory, '%s-%d-%d-region-%d.csv' % (config['replication_protocol'][i], i, j, r)) csv_files[j][r+1].append(csvfilereg) with open(csvfilereg, 'a') as csvfreg: csvwriterreg = csv.writer(csvfreg) csvwriterreg.writerow( [config['client_tail_at_scale'][k], stats['aggregate']['region-%d' % r]['max']['p50']]) for j in range(len(config['client_nodes_per_server'])): plot_script_prefix = 'tail-at-scale-overall-%d' % j plot_script_file = os.path.join( plots_directory, '%s.gpi' % plot_script_prefix) generate_gnuplot_script_tail_at_scale(config, plot_script_file) run_gnuplot(csv_files[j][0], os.path.join( plots_directory, '%s.png' % plot_script_prefix), plot_script_file) print(csv_files) num_regions = get_num_regions(config) for r in range(num_regions): plot_script_file = os.path.join( plots_directory, 'tail-at-scale-%d-region-%d.gpi' % (j, r)) generate_gnuplot_script_tail_at_scale(config, plot_script_file) run_gnuplot(csv_files[j][r+1], os.path.join(plots_directory, 'tail-at-scale-%d-region-%d.png' % (j, r)), plot_script_file) def generate_gnuplot_script_cdf(config, script_file): with open(script_file, 'w') as f: f.write("set datafile separator ','\n") f.write("set key bottom right\n") f.write("set xlabel '%s'\n" % config['plot_cdf_x_label']) f.write("set ylabel '%s'\n" % config['plot_cdf_y_label']) f.write("set terminal pngcairo size %d,%d enhanced font '%s'\n" % (config['plot_cdf_png_width'], config['plot_cdf_png_height'], config['plot_cdf_png_font'])) f.write('set output outfile\n') f.write("plot datafile0 title '%s' with lines\n" % config['plot_cdf_series_title'].replace('_', '\\_')) def generate_gnuplot_script_cdf_log(config, script_file): with open(script_file, 'w') as f: f.write("set datafile separator ','\n") f.write("set key bottom right\n") f.write("set xlabel '%s'\n" % config['plot_cdf_x_label']) f.write("set ylabel '%s'\n" % config['plot_cdf_y_label']) f.write("set terminal pngcairo size %d,%d enhanced font '%s'\n" % (config['plot_cdf_png_width'], config['plot_cdf_png_height'], config['plot_cdf_png_font'])) f.write('set output outfile\n') f.write("plot datafile0 using 1:(-log10(1-$2)):yticlabels(3) title '%s' with lines\n" % config['plot_cdf_series_title'].replace('_', '\\_')) def generate_gnuplot_script_tput_lat(config, plot_script_file): with open(plot_script_file, 'w') as f: f.write("set datafile separator ','\n") f.write("set key top left\n") f.write("set xlabel '%s'\n" % config['plot_tput_lat_x_label']) f.write("set ylabel '%s'\n" % config['plot_tput_lat_y_label']) f.write("set terminal pngcairo size %d,%d enhanced font '%s'\n" % (config['plot_tput_lat_png_width'], config['plot_tput_lat_png_height'], config['plot_tput_lat_png_font'])) f.write('set output outfile\n') f.write("plot datafile0 title '%s' with linespoint\n" % config['plot_tput_lat_series_title'].replace('_', '\\_')) def write_gpi_header(f): f.write("set datafile separator ','\n") def write_line_styles(f): f.write('set style line 1 linetype 1 linewidth 2\n') f.write('set style line 2 linetype 1 linecolor "green" linewidth 2\n') f.write('set style line 3 linetype 1 linecolor "blue" linewidth 2\n') f.write('set style line 4 linetype 4 linewidth 2\n') f.write('set style line 5 linetype 5 linewidth 2\n') f.write('set style line 6 linetype 8 linewidth 2\n') def generate_gnuplot_script_cdf_log_agg(config, script_file): with open(script_file, 'w') as f: write_gpi_header(f) f.write("set key bottom right\n") f.write("set ytics (0,0.9,0.99,0.999,0.9999,1.0)\n") f.write("set xlabel '%s'\n" % config['plot_cdf_x_label']) f.write("set ylabel '%s'\n" % config['plot_cdf_y_label']) f.write("set terminal pngcairo size %d,%d enhanced dashed font '%s'\n" % (config['plot_cdf_png_width'], config['plot_cdf_png_height'], config['plot_cdf_png_font'])) f.write('set output outfile\n') write_line_styles(f) f.write('plot ') for i in range(len(config['replication_protocol'])): if i == 0: labels = ':yticlabels(3)' else: labels = '' f.write("datafile%d using 1:(-log10(1-$2))%s title '%s' ls %d with lines" % (i, labels, config['plot_cdf_series_title'][i].replace('_', '\\_'), i + 1)) if i != len(config['replication_protocol']) - 1: f.write(', \\\n') def generate_gnuplot_script_cdf_agg(config, script_file): with open(script_file, 'w') as f: write_gpi_header(f) f.write("set key bottom right\n") f.write("set xlabel '%s'\n" % config['plot_cdf_x_label']) f.write("set ylabel '%s'\n" % config['plot_cdf_y_label']) f.write("set terminal pngcairo size %d,%d enhanced dashed font '%s'\n" % (config['plot_cdf_png_width'], config['plot_cdf_png_height'], config['plot_cdf_png_font'])) f.write('set output outfile\n') write_line_styles(f) f.write('plot ') for i in range(len(config['replication_protocol'])): f.write("datafile%d title '%s' ls %d with lines" % ( i, config['plot_cdf_series_title'][i].replace('_', '\\_'), i + 1)) if i != len(config['replication_protocol']) - 1: f.write(', \\\n') def generate_gnuplot_script_tput_lat_agg(config, plot_script_file): with open(plot_script_file, 'w') as f: write_gpi_header(f) f.write("set key top left\n") f.write("set xlabel '%s'\n" % config['plot_tput_lat_x_label']) f.write("set ylabel '%s'\n" % config['plot_tput_lat_y_label']) f.write("set terminal pngcairo size %d,%d enhanced dashed font '%s'\n" % (config['plot_tput_lat_png_width'], config['plot_tput_lat_png_height'], config['plot_tput_lat_png_font'])) f.write('set output outfile\n') write_line_styles(f) f.write('plot ') for i in range(len(config['replication_protocol'])): f.write("datafile%d title '%s' ls %d with linespoint" % ( i, config['plot_tput_lat_series_title'][i].replace('_', '\\_'), i + 1)) if i != len(config['replication_protocol']) - 1: f.write(', \\\n') def regenerate_plots(config_file, exp_dir, executor, calc_stats=True): with open(config_file) as f: config = json.load(f) if not 'client_stats_blacklist' in config: config['client_stats_blacklist'] = [] if not 'client_combine_stats_blacklist' in config: config['client_combine_stats_blacklist'] = [] if not 'client_cdf_plot_blacklist' in config: config['client_cdf_plot_blacklist'] = [] out_directories = sorted(next(os.walk(exp_dir))[1]) if 'plots' in out_directories: out_directories.remove('plots') out_directories = [os.path.join(exp_dir, d) for d in out_directories] out_directories = out_directories[:len(config['replication_protocol'])] sub_out_directories = [] for i in range(len(out_directories)): out_dir = out_directories[i] dirs = sorted(next(os.walk(out_dir))[1]) if 'plots' in dirs: dirs.remove('plots') dirs = [os.path.join( out_dir, d, config['out_directory_name']) for d in dirs] config_new = config.copy() config_new['base_local_exp_directory'] = exp_dir server_replication_protocol = config['replication_protocol'][i] config_new['replication_protocol'] = server_replication_protocol config_new['plot_cdf_series_title'] = config['plot_cdf_series_title'][i] config_new['plot_tput_lat_series_title'] = config['plot_tput_lat_series_title'][i] config_new['replication_protocol_settings'] = config['replication_protocol_settings'][i] sub_out_directories.append(dirs) for j in range(len(dirs)): sub_out_dir = dirs[j] config_new_new = config_new.copy() config_new_new['base_local_exp_directory'] = exp_dir n = config_new['client_nodes_per_server'][j] m = config_new['client_processes_per_client_node'][j] config_new_new['client_nodes_per_server'] = n config_new_new['client_processes_per_client_node'] = m if calc_stats: stats = calculate_statistics(config_new_new, sub_out_dir) else: with open(os.path.join(sub_out_dir, STATS_FILE)) as f: stats = json.load(f) generate_cdf_plots( config_new_new, sub_out_dir, stats, executor) generate_tput_lat_plots(config_new, out_dir, dirs) generate_agg_cdf_plots(config, exp_dir, sub_out_directories) generate_agg_tput_lat_plots(config, exp_dir, out_directories) def generate_agg_write_percentage_csv(config, base_out_directory, sub_out_directories): plots_directory = os.path.join( base_out_directory, config['plot_directory_name']) os.makedirs(plots_directory, exist_ok=True) print(config['client_write_percentage']) write_percentage = config['client_write_percentage'] / ( config['client_write_percentage'] + config['client_read_percentage'] + config['client_rmw_percentage']) for i in range(len(sub_out_directories)): # for replication protocol i for j in range(len(sub_out_directories[i])): # for client configuration j with open(os.path.join(sub_out_directories[i][j], STATS_FILE)) as f: stats = json.load(f) for p in ['p50', 'p75', 'p90', 'p95', 'p99']: for t in ['w_norm', 'r_norm']: with open(os.path.join(base_out_directory, '%s-%d-%d-%s-%s.csv' % (config['replication_protocol'][i], i, j, t, p)), 'w') as f: csvwriter = csv.writer(f) csvwriter.writerow( [write_percentage, stats['aggregate'][t][p]]) def generate_varying_write_csvs(config_file, exp_dir, calc_stats=True): with open(config_file) as f: config = json.load(f) out_directories = sorted(next(os.walk(exp_dir))[1]) if 'plots' in out_directories: out_directories.remove('plots') out_directories = [os.path.join(exp_dir, d) for d in out_directories] out_directories = out_directories[:len(config['replication_protocol'])] sub_out_directories = [] for i in range(len(out_directories)): out_dir = out_directories[i] dirs = sorted(next(os.walk(out_dir))[1]) if 'plots' in dirs: dirs.remove('plots') dirs = [os.path.join( out_dir, d, config['out_directory_name']) for d in dirs] config_new = config.copy() config_new['base_local_exp_directory'] = exp_dir server_replication_protocol = config['replication_protocol'][i] config_new['replication_protocol'] = server_replication_protocol config_new['plot_cdf_series_title'] = config['plot_cdf_series_title'][i] config_new['plot_tput_lat_series_title'] = config['plot_tput_lat_series_title'][i] config_new['replication_protocol_settings'] = config['replication_protocol_settings'][i] sub_out_directories.append(dirs) for j in range(len(dirs)): sub_out_dir = dirs[j] config_new_new = config_new.copy() config_new_new['base_local_exp_directory'] = exp_dir n = config_new['client_nodes_per_server'][j] m = config_new['client_processes_per_client_node'][j] config_new_new['client_nodes_per_server'] = n config_new_new['client_processes_per_client_node'] = m generate_agg_write_percentage_csv(config, exp_dir, sub_out_directories) def regenerate_tail_at_scale_plots(config_file, exp_dir): with open(config_file) as f: config = json.load(f) directories = sorted(next(os.walk(exp_dir))[1]) if 'plots' in directories: directories.remove('plots') directories = [os.path.join(exp_dir, d) for d in directories] directories = directories[:len(config['client_tail_at_scale'])] sub_sub_out_directories = [] for k in range(len(directories)): out_directories = sorted(next(os.walk(directories[k]))[1]) if 'plots' in out_directories: out_directories.remove('plots') out_directories = [os.path.join( directories[k], d) for d in out_directories] out_directories = out_directories[:len( config['replication_protocol'])] sub_out_directories = [] for i in range(len(out_directories)): out_dir = out_directories[i] dirs = sorted(next(os.walk(out_dir))[1]) if 'plots' in dirs: dirs.remove('plots') dirs = [os.path.join( out_dir, d, config['out_directory_name']) for d in dirs] config_new = config.copy() config_new['client_tail_at_scale'] = config['client_tail_at_scale'][k] config_new['base_local_exp_directory'] = exp_dir server_replication_protocol = config['replication_protocol'][i] config_new['replication_protocol'] = server_replication_protocol config_new['plot_cdf_series_title'] = config['plot_cdf_series_title'][i] config_new['plot_tput_lat_series_title'] = config['plot_tput_lat_series_title'][i] config_new['replication_protocol_settings'] = config['replication_protocol_settings'][i] sub_out_directories.append(dirs) sub_sub_out_directories.append(sub_out_directories) generate_tail_at_scale_plots(config, exp_dir, sub_sub_out_directories)
from django.urls import path from .views import ListDonor, DetailDonor urlpatterns = [ path('', ListDonor.as_view()), path('<int:pk>/', DetailDonor.as_view()), ]
# Generated by Django 2.2.13 on 2020-08-26 20:21 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('pipeline', '0062_auto_20200825_2231'), ('pipeline', '0062_auto_20200826_1735'), ] operations = [ ]
from flask import Response, send_file,request, make_response from flask_restful import Resource import json import pandas as pd import pymongo client = pymongo.MongoClient(host='127.0.0.1', port=27017) db_list = client.list_database_names() db = client.data class upload(Resource): def post(self, data_type): excel_data_df = pd.read_csv(request.files['file']) json_str = json.loads(excel_data_df.to_json(orient='records')) db[data_type].insert_many(json_str) return { 'msg': '上传成功' } class download(Resource): def get(self): type = request.args.get('type') response = make_response(send_file('./static/files/{}.csv'.format(type))) response.headers["Content-Disposition"] = "attachment=True; filename={}.csv;".format( type) return response
nome = str(input('Digite seu nome completo: ')).strip().title().split() tamanho= int(len(nome)) print('Ola, {} {}, bem vindo(a)!!'.format(nome[0], nome[tamanho-1]))
from urllib.request import urlretrieve import os import pandas as pd import numpy as np from datetime import datetime DATA_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '../../../data')) UCI_DATASETS = [] def _UCI(C): UCI_DATASETS.append(C) return C class Dataset: ndim_x = None ndim_y = None target_columns = [] feature_columns = [] data_file_name = '' download_url = '' @property def data_file_path(self): return os.path.join(DATA_DIR, self.data_file_name) @property def needs_download(self): return not os.path.isfile(self.data_file_path) def download_dataset(self): print("Downloading data file from %s" % self.download_url) urlretrieve(self.download_url, self.data_file_path) def get_df(self): if self.needs_download: self.download_dataset() df = pd.read_csv(self.data_file_path) return self._process_df(df) def get_target_feature_split(self): df = self.get_df() X = np.array(df[self.feature_columns]) Y = np.array(df[self.target_columns]) assert X.ndim == Y.ndim == 2 assert X.shape[0] == Y.shape[0] assert X.shape[1] == self.ndim_x and Y.shape[1] == self.ndim_y return X, Y def get_train_valid_splits(self, valid_portion, n_splits, shuffle=False, random_state=None): X, Y = self.get_target_feature_split() n_instances = X.shape[0] valid_size = int(valid_portion * n_instances) assert valid_size * n_splits <= n_instances idx = np.arange(n_instances) if shuffle: if random_state is not None: random_state.shuffle(idx) else: np.random.shuffle(idx) X_trains, Y_trains, X_valids, Y_valids = [], [], [], [] for i in reversed(range(n_splits)): idx_start = (n_instances // n_splits) * i idx_end = idx_start + valid_size idx_train, idx_valid = np.concatenate([idx[:idx_start], idx[idx_end:]]), idx[idx_start:idx_end] assert len(set(idx_train) | set(idx_valid)) == n_instances X_trains.append(X[idx_train, :]) Y_trains.append(Y[idx_train, :]) X_valids.append(X[idx_valid, :]) Y_valids.append(Y[idx_valid, :]) return X_trains, Y_trains, X_valids, Y_valids def _process_df(self, df): return df def __str__(self): return "%s (ndim_x = %i, ndim_y = %i)"%(str(self.__class__.__name__), self.ndim_x, self.ndim_y) class EuroStoxx50(Dataset): ndim_x = 14 ndim_y = 1 target_columns = ['log_ret_1'] feature_columns = ['log_ret_last_period', 'log_risk_free_1d', 'RealizedVariation', 'bakshiSkew', 'bakshiKurt', 'SVIX', 'Mkt-RF', 'SMB', 'HML', 'WML', 'WML_risk_10d', 'Mkt-RF_risk_10d', 'SMB_risk_10d', 'HML_risk_10d'] data_file_name = 'eurostoxx50.csv' def get_train_valid_splits(self, valid_portion, n_splits, shift_size=100, shuffle=False, random_state=None): # needs extra treatment since it's time-series data --> shifts train and valid set by shift_size each split # --> ensures that the valid data is always in the future of the train data assert shuffle is False X, Y = self.get_target_feature_split() n_instances = X.shape[0] valid_size = int(valid_portion * n_instances) training_size = n_instances - valid_size - n_splits*shift_size assert valid_size * n_splits <= n_instances idx = np.arange(n_instances) X_trains, Y_trains, X_valids, Y_valids = [], [], [], [] for i in reversed(range(n_splits)): idx_train_start = int(i * shift_size) idx_valid_start = idx_train_start + training_size idx_valid_end = idx_valid_start + valid_size idx_train, idx_valid = idx[idx_train_start:idx_valid_start], idx[idx_valid_start:idx_valid_end] X_trains.append(X[idx_train, :]) Y_trains.append(Y[idx_train, :]) X_valids.append(X[idx_valid, :]) Y_valids.append(Y[idx_valid, :]) return X_trains, Y_trains, X_valids, Y_valids def download_dataset(self): raise AssertionError("Sry, the EuroStoxx 50 data is proprietary and won't be open-sourced") class NCYTaxiDropoffPredict(Dataset): ndim_x = 6 ndim_y = 2 data_file_name = 'yellow_tripdata_2016-01.csv' data_file_name_processed = 'yellow_tipdata_2016-01_processed.csv' download_url = 'https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2016-01.csv' target_columns = ['dropoff_loc_lat', 'dropoff_loc_lon'] feature_columns = ['pickup_loc_lat', 'pickup_loc_lon', 'pickup_time_day_of_week_sin', 'pickup_time_day_of_week_cos', 'pickup_time_of_day_sin', 'pickup_time_of_day_cos'] x_bounds = [-74.04, -73.75] y_bounds = [40.62, 40.86] too_close_radius = 0.00001 min_duration = 30 max_duration = 3 * 3600 def __init__(self, n_samples=10**4, seed=22): self.n_samples = n_samples self.random_state = np.random.RandomState(seed) def get_df(self): data_file_path_processed = os.path.join(DATA_DIR, self.data_file_name_processed) if not os.path.isfile(data_file_path_processed): df = super(NCYTaxiDropoffPredict, self).get_df().dropna() print("save processed NYC data as csv to %s" % data_file_path_processed) df.to_csv(data_file_path_processed) print("loading %s" % data_file_path_processed) df = pd.read_csv(data_file_path_processed) return df.sample(n=self.n_samples, random_state=self.random_state) def _process_df(self, df): # does some data cleaning data = df.values pickup_loc = np.array((data[:, 5], data[:, 6])).T dropoff_loc = np.array((data[:, 9], data[:, 10])).T ind = np.ones(len(data)).astype(bool) ind[data[:, 5] < self.x_bounds[0]] = False ind[data[:, 5] > self.x_bounds[1]] = False ind[data[:, 6] < self.y_bounds[0]] = False ind[data[:, 6] > self.y_bounds[1]] = False ind[data[:, 9] < self.x_bounds[0]] = False ind[data[:, 9] > self.x_bounds[1]] = False ind[data[:, 10] < self.y_bounds[0]] = False ind[data[:, 10] > self.y_bounds[1]] = False print('discarding {} out of bounds {} {}'.format(np.sum(np.invert(ind).astype(int)), self.x_bounds, self.y_bounds)) early_stop = ((data[:, 5] - data[:, 9]) ** 2 + (data[:, 6] - data[:, 10]) ** 2 < self.too_close_radius) ind[early_stop] = False print('discarding {} trip less than {} gp dist'.format(np.sum(early_stop.astype(int)), self.too_close_radius ** 0.5)) times = np.array([_process_time(d_pickup, d_dropoff) for (d_pickup, d_dropoff) in data[:, 1:3]]) pickup_time = times[:, :2] dropoff_time = times[:, 2:4] duration = times[:, 4] short_journeys = (duration < self.min_duration) ind[short_journeys] = False print('discarding {} less than {}s journeys'.format(np.sum(short_journeys.astype(int)), self.min_duration)) long_journeys = (duration > self.max_duration) ind[long_journeys] = False print('discarding {} more than {}h journeys'.format(np.sum(long_journeys.astype(int)), self.max_duration / 3600.)) pickup_loc_lat = pickup_loc[ind, 0] pickup_loc_lon = pickup_loc[ind, 1] dropoff_loc_lat = dropoff_loc[ind, 0] dropoff_loc_lon = dropoff_loc[ind, 1] pickup_time_day_of_week = pickup_time[ind, 0] pickup_time_of_day = pickup_time[ind, 1] dropoff_time_day_of_week = dropoff_time[ind, 0] dropoff_time_of_day = dropoff_time[ind, 1] duration = duration[ind] print('{} total rejected journeys'.format(np.sum(np.invert(ind).astype(int)))) df_processed = pd.DataFrame( {"pickup_loc_lat": pickup_loc_lat, "pickup_loc_lon": pickup_loc_lon, "dropoff_loc_lat": dropoff_loc_lat, "dropoff_loc_lon": dropoff_loc_lon, "pickup_time_day_of_week": pickup_time_day_of_week.astype(np.int), "pickup_time_day_of_week_sin": np.sin(pickup_time_day_of_week), "pickup_time_day_of_week_cos": np.cos(pickup_time_day_of_week.astype(np.int)), "pickup_time_of_day": pickup_time_of_day, "pickup_time_of_day_sin": np.sin(pickup_time_of_day), "pickup_time_of_day_cos": np.cos(pickup_time_of_day), "dropoff_time_day_of_week": dropoff_time_day_of_week.astype(np.int), "dropoff_time_of_day": dropoff_time_of_day, "duration": duration}) return df_processed def __str__(self): return "%s (n_samples = %i, ndim_x = %i, ndim_y = %i)" % (str(self.__class__.__name__), self.n_samples, self.ndim_x, self.ndim_y) class UCI_Dataset(Dataset): uci_base_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/' uci_data_path = '' @property def download_url(self): return os.path.join(self.uci_base_url, self.uci_data_path) @property def target_columns(self): return [self.get_df().columns[-1]] @property def feature_columns(self): return list(self.get_df().columns[:-1]) @_UCI class BostonHousing(UCI_Dataset): uci_data_path = 'housing/housing.data' data_file_name = 'housing.data' ndim_x = 13 ndim_y = 1 def get_df(self): if self.needs_download: self.download_dataset() df = pd.read_fwf(self.data_file_path, header=None) return df @_UCI class Conrete(UCI_Dataset): uci_data_path = 'concrete/compressive/Concrete_Data.xls' data_file_name = 'concrete.xls' ndim_y = 1 ndim_x = 8 def get_df(self): if self.needs_download: self.download_dataset() df = pd.read_excel(self.data_file_path).dropna() return df @_UCI class Energy(UCI_Dataset): uci_data_path ='00242/ENB2012_data.xlsx' data_file_name = 'energy.xlsx' ndim_x = 9 ndim_y = 1 def get_df(self): if self.needs_download: self.download_dataset() df = pd.read_excel(self.data_file_path).dropna() return df @_UCI class Power(UCI_Dataset): download_url = 'https://www.dropbox.com/s/w7qkzjtuynwxjke/power.csv?dl=1' data_file_name = 'power.csv' ndim_x = 4 ndim_y = 1 def get_df(self): if self.needs_download: self.download_dataset() df = pd.read_csv(self.data_file_path).dropna() return df @_UCI class Protein(UCI_Dataset): uci_data_path = '00265/CASP.csv' data_file_name = 'protein.csv' ndim_x = 9 ndim_y = 1 def get_df(self): if self.needs_download: self.download_dataset() df = pd.read_csv(self.data_file_path).dropna() return df @_UCI class WineRed(UCI_Dataset): uci_data_path = 'wine-quality/winequality-red.csv' data_file_name = 'wine_red.csv' ndim_x = 11 ndim_y = 1 def get_df(self): if self.needs_download: self.download_dataset() df = pd.read_csv(self.data_file_path, delimiter=';').dropna() return df @_UCI class WineWhite(UCI_Dataset): uci_data_path = 'wine-quality/winequality-white.csv' data_file_name = 'wine_white.csv' ndim_x = 11 ndim_y = 1 def get_df(self): if self.needs_download: self.download_dataset() df = pd.read_csv(self.data_file_path, delimiter=';').dropna() return df @_UCI class Yacht(UCI_Dataset): uci_data_path = '00243/yacht_hydrodynamics.data' data_file_name = 'yacht.data' ndim_x = 6 ndim_y = 1 def get_df(self): if self.needs_download: self.download_dataset() df = pd.read_fwf(self.data_file_path, header=None).dropna() return df """ helper methods """ def _convert_to_day_minute(d): rescale = lambda x, a, b: b[0] + (b[1] - b[0]) * x / (a[1] - a[0]) day_of_week = rescale(float(d.weekday()), [0, 6], [0, 2 * np.pi]) time_of_day = rescale(d.time().hour * 60 + d.time().minute, [0, 24 * 60], [0, 2 * np.pi]) return day_of_week, time_of_day def _process_time(pickup_datetime, dropoff_datetime): d_pickup = datetime.strptime(pickup_datetime, "%Y-%m-%d %H:%M:%S") d_dropoff = datetime.strptime(dropoff_datetime, "%Y-%m-%d %H:%M:%S") duration = (d_dropoff - d_pickup).total_seconds() pickup_day_of_week, pickup_time_of_day = _convert_to_day_minute(d_pickup) dropoff_day_of_week, dropoff_time_of_day = _convert_to_day_minute(d_dropoff) return [pickup_day_of_week, pickup_time_of_day, dropoff_day_of_week, dropoff_time_of_day, duration] if __name__ == "__main__": for dataset_class in [EuroStoxx50, NCYTaxiDropoffPredict] + UCI_DATASETS: dataset = dataset_class() _, Y = dataset.get_target_feature_split() n_samples = Y.shape[0] print("%s: n_samples = %i, ndim_x = %i, ndim_y = %i"%(str(dataset.__class__.__name__), n_samples, dataset.ndim_x, dataset.ndim_y))
import os import sys import unittest currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) import boto_utils from constants import TABLE_NAME class TestDynamoProvision(unittest.TestCase): def setUp(self) -> None: self.dynamodb = boto_utils.dynamodb def test_migration(self): created_table = boto_utils.migration() self.assertEqual(created_table.name, TABLE_NAME) if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- # @Author : DevinYang(pistonyang@gmail.com) import math from torch import nn from torch.nn.init import xavier_normal_, xavier_uniform_, \ kaiming_normal_, kaiming_uniform_, zeros_ class XavierInitializer(object): """Initialize a model params by Xavier. Fills the input `Tensor` with values according to the method described in `Understanding the difficulty of training deep feedforward neural networks` - Glorot, X. & Bengio, Y. (2010) Args: model (nn.Module): model you need to initialize. random_type (string): random_type gain (float): an optional scaling factor, default is sqrt(2.0) """ def __init__(self, random_type='uniform', gain=math.sqrt(2.0)): assert random_type in ('uniform', 'normal') self.initializer = xavier_uniform_ if random_type == 'uniform' else xavier_normal_ self.gain = gain def __call__(self, module): if isinstance(module, (nn.Conv2d, nn.Conv3d)): self.initializer(module.weight.data, gain=self.gain) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)): if module.weight is not None: module.weight.data.fill_(1) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Linear): self.initializer(module.weight.data, gain=self.gain) if module.bias is not None: module.bias.data.zero_() class KaimingInitializer(object): def __init__( self, slope=0, mode='fan_out', nonlinearity='relu', random_type='normal'): assert random_type in ('uniform', 'normal') self.slope = slope self.mode = mode self.nonlinearity = nonlinearity self.initializer = kaiming_uniform_ if random_type == 'uniform' else kaiming_normal_ def __call__(self, module): if isinstance(module, (nn.Conv2d, nn.Conv3d)): self.initializer( module.weight.data, self.slope, self.mode, self.nonlinearity) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, (nn.BatchNorm2d, nn.BatchNorm3d, nn.GroupNorm)): if module.weight is not None: module.weight.data.fill_(1) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Linear): self.initializer( module.weight.data, self.slope, self.mode, self.nonlinearity) if module.bias is not None: module.bias.data.zero_() class ZeroLastGamma(object): """Notice that this need to put after other initializer. """ def __init__(self, block_name='Bottleneck', bn_name='bn3'): self.block_name = block_name self.bn_name = bn_name def __call__(self, module): if module.__class__.__name__ == self.block_name: target_bn = module.__getattr__(self.bn_name) zeros_(target_bn.weight)
# File executed when user click on `Run` button # Must not run any test, just run the user if __name__ == "__main__": import template template.score()
#! /usr/bin/env python """ Authors: Henning O. Sorensen Center for Fundamental Research: Metal Structures in Four Dimensions Risoe National Laboratory for Sustainable Energy Technical University of Denmark Frederiksborgvej 399 DK-4000 Roskilde email:henning.sorensen@risoe.dk This function is largely following the algorithm: "A Fast Traversal Algorithm" by John Amanatides, Proc. Eurographics '87, Amsterdam, The Netherlands, August 1987, pp 1-10. """ from __future__ import absolute_import from __future__ import print_function import numpy as n #import copy def pixel_trace(corners): # Initialize variables p_start = n.array([corners[0], corners[1]],n.float)+0.5 p_end = n.array([corners[2], corners[3]],n.float)+0.5 zero = 1e-09 final_out = False t_total = 0 nr_voxels = 0 nextpix = n.zeros(2,n.int) delta = n.ones(2,n.int) t = n.zeros(2,n.float) t_one = n.zeros(2,n.float) #voxel=zeros((product(gridsize),3)) voxel = [] # the ray is defined r0 + t *r r0 = p_start r = p_end-r0 t_max = n.sqrt(n.sum(r*r)) # Maximum ray path lenght in normalized coordinate system r = r/t_max startpix = n.floor(r0) #The pixel where the ray originates # Set step size and direction in x,y,z # find first intersection with voxel border for i in range(2): if r[i] == 0: t_one[i] = n.inf # Determine paths for stepping 1 in x,y,z respectively. t[i] = n.inf # Maybe add a check for r(i) = 0 not to divide by zero else: t_one[i] = n.abs(1/r[i]) # Determine paths for stepping 1 in x,y,z respectively. if r[i] > 0: t[i] = (n.floor(r0[i])+1-r0[i])/r[i] else: delta[i] = -1 t[i] = (n.floor(r0[i])-r0[i])/r[i] # Find which voxel border is intersected next while t_total < t_max-zero: # to make sure that an extra step is not taken if t_total essitianlly equals t_max t_old =t if t[0] < t[1]: #print "%i : x<y, " %nr_voxels pix = nextpix.copy() nextpix[0] = nextpix[0] + delta[0] t_voxel = t[0] - t_total t_total = t[0] t[0] = t[0] + t_one[0] else: #print "%i : y<x" %nr_voxels pix = nextpix.copy() nextpix[1] = nextpix[1] + delta[1] t_voxel = t[1] - t_total t_total = t[1] t[1] = t[1] + t_one[1] # Do not output if t_voxel is zero if t_voxel > zero: pix = pix + startpix nr_voxels = nr_voxels + 1 voxel.append([pix[0],pix[1],t_voxel]) # Correct t_voxel of the last voxel if overshot if final_out == False: voxel[nr_voxels-1][2] = voxel[nr_voxels-1][2]-(t_total-t_max) voxel = n.array(voxel) # Integrate intensity along ray return voxel if __name__=='__main__': start = [3.6 , 2] end = [11, 12] pixlist = pixel_trace(start,end) #print int print(pixlist)
from typing import Tuple, Any from sty import fg, FgRegister, rs class Palette: # Default palette colors BLUE: Tuple = (5, 156, 205) GREEN: Tuple = (51, 222, 136) RED: Tuple = (240, 70, 87) YELLOW: Tuple = (249, 149, 72) ORANGE: Tuple = (232, 149, 39) BL_HX: str = '#%02x%02x%02x' % BLUE GR_HX: str = '#%02x%02x%02x' % GREEN RD_HX: str = '#%02x%02x%02x' % RED YL_HX: str = '#%02x%02x%02x' % YELLOW OG_HX: str = '#%02x%02x%02x' % ORANGE def __init__(self, blue=BLUE, green=GREEN, red=RED, yellow=YELLOW, orange=ORANGE): if isinstance(blue, Tuple): fg.blue = fg(*blue) fg.green = fg(*green) fg.red = fg(*red) fg.yellow = fg(*yellow) fg.orange = fg(*orange) # Prompt Toolkit HEX colors self.bl: str = '#%02x%02x%02x' % blue self.gr: str = '#%02x%02x%02x' % green self.rd: str = '#%02x%02x%02x' % red self.yl: str = '#%02x%02x%02x' % yellow self.og: str = '#%02x%02x%02x' % orange else: fg.blue = fg(blue) fg.green = fg(green) fg.red = fg(red) fg.yellow = fg(yellow) fg.orange = fg(orange) # Prompt Toolkit HEX colors self.bl: str = '#%02x%02x%02x' % Palette.BLUE self.gr: str = '#%02x%02x%02x' % Palette.GREEN self.rd: str = '#%02x%02x%02x' % Palette.RED self.yl: str = '#%02x%02x%02x' % Palette.YELLOW self.og: str = '#%02x%02x%02x' % Palette.ORANGE self.fg_bl: FgRegister = fg.blue self.fg_gr: FgRegister = fg.green self.fg_rd: FgRegister = fg.red self.fg_yl: FgRegister = fg.yellow self.fg_og: FgRegister = fg.orange self.rs = rs.all
#!/usr/bin/env python # Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Checks that the main console and subconsole configs are consistent.""" import collections import difflib import os import sys THIS_DIR = os.path.dirname(os.path.abspath(__file__)) SRC_ROOT = os.path.join(THIS_DIR, '..', '..') sys.path.insert(1, os.path.join( SRC_ROOT, "third_party", "protobuf", "python")) import google.protobuf.text_format import project_pb2 def compare_builders(name, main_builders, sub_builders): # Checks that the builders on a subwaterfall on the main waterfall # are consistent with the builders on that subwaterfall's main page. # For example, checks that the builders on the "chromium.win" section # are the same as on the dedicated standalone chromium.win waterfall. def to_list(builders, category_prefix=''): desc_list = [] for builder in builders: desc_list.append('name: ' + ', '.join(builder.name)) # A bot with "chromium.win|foo|bar" on the main waterfall should have # a category of "foo|bar" on the "chromium.win" subwaterfall. category = builder.category if category_prefix: if category: category = category_prefix + '|' + category else: category = category_prefix desc_list.append('category: ' + category) desc_list.append('short_name: ' + builder.short_name) return desc_list main_desc = to_list(main_builders) sub_desc = to_list(sub_builders, name) if main_desc != sub_desc: print ('bot lists different between main waterfall ' + 'and stand-alone %s waterfall:' % name) print '\n'.join(difflib.unified_diff(main_desc, sub_desc, fromfile='main', tofile=name, lineterm='')) print return False return True def main(): project = project_pb2.Project() with open(os.path.join(THIS_DIR, 'generated', 'luci-milo.cfg'), 'rb') as f: google.protobuf.text_format.Parse(f.read(), project) # Maps subwaterfall name to list of builders on that subwaterfall # on the main waterfall. subwaterfalls = collections.defaultdict(list) for console in project.consoles: if console.id == 'main': # Chromium main waterfall console. for builder in console.builders: subwaterfall = builder.category.split('|', 1)[0] subwaterfalls[subwaterfall].append(builder) # subwaterfalls contains the waterfalls referenced by the main console # Check that every referenced subwaterfall has its own console, unless it's # explicitly excluded below. excluded_names = [ # This is the chrome console in src-internal. 'chrome', ] all_console_names = [console.id for console in project.consoles] referenced_names = set(subwaterfalls.keys()) missing_names = referenced_names - set(all_console_names + excluded_names) if missing_names: print 'Missing subwaterfall console for', missing_names return 1 # Check that the bots on a subwaterfall match the corresponding bots on the # main waterfall all_good = True for console in project.consoles: if console.id in subwaterfalls: if not compare_builders(console.id, subwaterfalls[console.id], console.builders): all_good = False return 0 if all_good else 1 if __name__ == '__main__': sys.exit(main())
""" Exercise 5 Use the Subway class below to help solve these problems. class Subway: fare = 2.4 def __init__(self): self.stops = ["Alewife", "Davis", "Porter", "Harvard", "Central", "Kendall"] self.current_stop= "Alewife" self.direction = "south" self.passengers = 0 self.total_fares = 0 Create the following methods for the Subway class: board - Accepts an integer that represents the number of passengers boarding the subway. disembark - Accepts an integer that represents the number of passengers exiting the subway. There cannot be a negative number of passengers on a subway. The fewest number of passengers on a subway is 0. advance - Moves the subway to the next stop. If self.direction is "south" the subway moves from Alewife to Kendall. If self.direction is "north" the subway moves from Kendall to Alewife. When the subway has reached its final stop, self.direction should change. distance - Accepts a string that represents a stop and returns the number of stops between the subway and the desired stop. The distance should be a positive number. change_fare - Accepts a float and changes the fare for all instances of the Subway class. calculate_fares - Calculates the fare for each passenger boarding the subway and adds it to total_fares. Expected Output Use the examples below to test if your program is working as expected. Boarding the Subway If self.passengers is 220 and 45 people board the subway, then self.passengers would be 265. Total Fares If 100 passengers, in total, have boarded the train, the self.total_fares would be 240. Exiting the Subway If self.passengers is 113 and 23 people exit the subway, then self.passengers would be 90. Advancing the Subway If the subway is currently at Kendall and is traveling South, advancing the subway would change self.current_stop to "Central" and self.direction would become "north". If the subway is currently at Porter and is traveling South, ancing the subway would change self.current_stop to Harvard and self.direction would remain "south". Calculating Distance If the subway is currently at Davis and the desired stop is Central, the distance between them is 3 stops. Changing the Fare If the subway fare increased to $2.75, then fare should be 2.75 for all instances of the Subway class. """ class Subway: fare = 2.4 def __init__(self): self.stops = ["Alewife", "Davis", "Porter", "Harvard", "Central", "Kendall"] self.current_stop = "Davis" self.direction = "south" self.passengers = 0 self.total_fares = 0 def board(self, new_passengers): """ Adds the number of people boarding the subway. Also adds to total_fares for the new passengers """ self.passengers += new_passengers self.total_fares += new_passengers * Subway.fare def disembark(self, passengers_leaving): """Subtracts the number of people exiting the subway""" if passengers_leaving > self.passengers: self.passengers = 0 else: self.passengers -= passengers_leaving def advance(self): """Advances the subway to the next stop""" current_index = self.stops.index(self.current_stop) if self.direction == "south": if self.current_stop == "Kendall": self.current_stop = "Central" self.direction = "north" else: self.current_stop = self.stops[current_index + 1] else: if self.current_stop == "Alewife": self.current_stop = "Davis" self.direction = "south" else: self.current_stop = self.stops[current_index - 1] def distance(self, desired_stop): """ Returns the number of stops between the current location and the desired stop """ current_index = self.stops.index(self.current_stop) desired_index = self.stops.index(desired_stop) return abs(current_index - desired_index) @classmethod def change_fare(cls, new_fare): """Change fare for all instances of Subway class""" Subway.fare = new_fare
# -*- coding: utf-8 -*- # # BitcoinLib - Python Cryptocurrency Library # Cache DataBase - SqlAlchemy database definitions for caching # © 2020 February - 1200 Web Development <http://1200wd.com/> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # from sqlalchemy import create_engine from sqlalchemy import Column, Integer, BigInteger, String, Boolean, ForeignKey, DateTime, Enum, LargeBinary from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, relationship, close_all_sessions # try: # import mysql.connector # from parameterized import parameterized_class # import psycopg2 # from psycopg2 import sql # from psycopg2.extensions import ISOLATION_LEVEL_AUTOCOMMIT # except ImportError as e: # print("Could not import all modules. Error: %s" % e) # # from psycopg2cffi import compat # Use for PyPy support # # compat.register() # pass # Only necessary when mysql or postgres is used from urllib.parse import urlparse from bitcoinlib.main import * _logger = logging.getLogger(__name__) _logger.info("Default Cache Database %s" % DEFAULT_DATABASE_CACHE) Base = declarative_base() class WitnessTypeTransactions(enum.Enum): legacy = "legacy" segwit = "segwit" class DbCache: """ Cache Database object. Initialize database and open session when creating database object. Create new database if is doesn't exist yet """ def __init__(self, db_uri=None): self.engine = None self.session = None if db_uri is None: db_uri = DEFAULT_DATABASE_CACHE elif not db_uri: return self.o = urlparse(db_uri) # if self.o.scheme == 'mysql': # raise Warning("Could not connect to cache database. MySQL databases not supported at the moment, " # "because bytes strings are not supported as primary keys") if not self.o.scheme or len(self.o.scheme) < 2: db_uri = 'sqlite:///%s' % db_uri if db_uri.startswith("sqlite://") and ALLOW_DATABASE_THREADS: db_uri += "&" if "?" in db_uri else "?" db_uri += "check_same_thread=False" if self.o.scheme == 'mysql': db_uri += "&" if "?" in db_uri else "?" db_uri += 'binary_prefix=true' self.engine = create_engine(db_uri, isolation_level='READ UNCOMMITTED') Session = sessionmaker(bind=self.engine) Base.metadata.create_all(self.engine) self.db_uri = db_uri _logger.info("Using cache database: %s://%s:%s/%s" % (self.o.scheme or '', self.o.hostname or '', self.o.port or '', self.o.path or '')) self.session = Session() def drop_db(self): self.session.commit() self.session.close_all() close_all_sessions() Base.metadata.drop_all(self.engine) class DbCacheTransactionNode(Base): """ Link table for cache transactions and addresses """ __tablename__ = 'cache_transactions_node' txid = Column(LargeBinary(32), ForeignKey('cache_transactions.txid'), primary_key=True) transaction = relationship("DbCacheTransaction", back_populates='nodes', doc="Related transaction object") index_n = Column(Integer, primary_key=True, doc="Order of input/output in this transaction") value = Column(BigInteger, default=0, doc="Value of transaction input") address = Column(String(255), index=True, doc="Address string base32 or base58 encoded") script = Column(LargeBinary, doc="Locking or unlocking script") witnesses = Column(LargeBinary, doc="Witnesses (signatures) used in Segwit transaction inputs") sequence = Column(BigInteger, default=0xffffffff, doc="Transaction sequence number. Used for timelock transaction inputs") is_input = Column(Boolean, primary_key=True, doc="True if input, False if output") spent = Column(Boolean, default=None, doc="Is output spent?") ref_txid = Column(LargeBinary(32), index=True, doc="Transaction hash of input which spends this output") ref_index_n = Column(BigInteger, doc="Index number of transaction input which spends this output") def prev_txid(self): if self.is_input: return self.ref_txid def output_n(self): if self.is_input: return self.ref_index_n def spending_txid(self): if not self.is_input: return self.ref_txid def spending_index_n(self): if not self.is_input: return self.ref_index_n class DbCacheTransaction(Base): """ Transaction Cache Table Database which stores transactions received from service providers as cache """ __tablename__ = 'cache_transactions' txid = Column(LargeBinary(32), primary_key=True, doc="Hexadecimal representation of transaction hash or transaction ID") date = Column(DateTime, doc="Date when transaction was confirmed and included in a block") version = Column(BigInteger, default=1, doc="Tranaction version. Default is 1 but some wallets use another version number") locktime = Column(BigInteger, default=0, doc="Transaction level locktime. Locks the transaction until a specified block " "(value from 1 to 5 million) or until a certain time (Timestamp in seconds after 1-jan-1970)." " Default value is 0 for transactions without locktime") confirmations = Column(Integer, default=0, doc="Number of confirmation when this transaction is included in a block. " "Default is 0: unconfirmed") block_height = Column(Integer, index=True, doc="Height of block this transaction is included in") network_name = Column(String(20), doc="Blockchain network name of this transaction") fee = Column(BigInteger, doc="Transaction fee") nodes = relationship("DbCacheTransactionNode", cascade="all,delete", doc="List of all inputs and outputs as DbCacheTransactionNode objects") order_n = Column(Integer, doc="Order of transaction in block") witness_type = Column(Enum(WitnessTypeTransactions), default=WitnessTypeTransactions.legacy, doc="Transaction type enum: legacy or segwit") class DbCacheAddress(Base): """ Address Cache Table Stores transactions and unspent outputs (UTXO's) per address """ __tablename__ = 'cache_address' address = Column(String(255), primary_key=True, doc="Address string base32 or base58 encoded") network_name = Column(String(20), doc="Blockchain network name of this transaction") balance = Column(BigInteger, default=0, doc="Total balance of UTXO's linked to this key") last_block = Column(Integer, doc="Number of last updated block") last_txid = Column(LargeBinary(32), doc="Transaction ID of latest transaction in cache") n_utxos = Column(Integer, doc="Total number of UTXO's for this address") n_txs = Column(Integer, doc="Total number of transactions for this address") class DbCacheBlock(Base): """ Block Cache Table Stores block headers """ __tablename__ = 'cache_blocks' height = Column(Integer, primary_key=True, doc="Height or sequence number for this block") block_hash = Column(LargeBinary(32), index=True, doc="Hash of this block") network_name = Column(String(20), doc="Blockchain network name") version = Column(BigInteger, doc="Block version to specify which features are used (hex)") prev_block = Column(LargeBinary(32), doc="Block hash of previous block") merkle_root = Column(LargeBinary(32), doc="Merkle root used to validate transaction in block") time = Column(BigInteger, doc="Timestamp to indicated when block was created") bits = Column(BigInteger, doc="Encoding for proof-of-work, used to determine target and difficulty") nonce = Column(BigInteger, doc="Nonce (number used only once or n-once) is used to create different block hashes") tx_count = Column(Integer, doc="Number of transactions included in this block") class DbCacheVars(Base): """ Table to store various blockchain related variables """ __tablename__ = 'cache_variables' varname = Column(String(50), primary_key=True, doc="Variable unique name") network_name = Column(String(20), primary_key=True, doc="Blockchain network name of this transaction") value = Column(String(255), doc="Value of variable") type = Column(String(20), doc="Type of variable: int, string or float") expires = Column(DateTime, doc="Datetime value when variable expires")
from __future__ import absolute_import from pygments.style import Style from pygments.token import * COLOR_1 = '#e6dccc' COLOR_2 = '#1e214f' COLOR_3 = '#b5242e' COLOR_4 = '#1e4f34' COLOR_5 = '#537b99' class Attest(Style): default_style = "" styles = { Comment: 'italic ' + COLOR_5, Keyword: 'bold ' + COLOR_2, Operator: 'bold ' + COLOR_4, Punctuation: '#777', Number: COLOR_4, Name: '#000', Name.Decorator: 'bold ' + COLOR_2, Name.Builtin: COLOR_2, Name.Exception: 'bold ' + COLOR_3, Generic.Error: 'bold ' + COLOR_3, String: COLOR_3 }
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: __init__.py # # Copyright 2021 Costas Tyfoxylos, Jenda Brands, Theodoor Scholte # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # """ awsenergylabelerlib package. Import all parts from awsenergylabelerlib here .. _Google Python Style Guide: http://google.github.io/styleguide/pyguide.html """ from ._version import __version__ from .awsenergylabelerlib import EnergyLabeler, LandingZone, SecurityHub from .awsenergylabelerlibexceptions import (InvalidFrameworks, InvalidOrNoCredentials, InvalidAccountListProvided, InvalidRegionListProvided, MutuallyExclusiveArguments, NoAccess, NoRegion, AccountsNotPartOfLandingZone, UnableToRetrieveSecurityHubRegions, InvalidRegion) from .configuration import (ALL_LANDING_ZONE_EXPORT_TYPES, ALL_ACCOUNT_EXPORT_TYPES, DATA_EXPORT_TYPES, ACCOUNT_METRIC_EXPORT_TYPES, LANDING_ZONE_METRIC_EXPORT_TYPES, SECURITY_HUB_ACTIVE_REGIONS, ACCOUNT_THRESHOLDS, LANDING_ZONE_THRESHOLDS, DEFAULT_SECURITY_HUB_FILTER, DEFAULT_SECURITY_HUB_FRAMEWORKS) from .entities import DataExporter, AwsAccount from .validations import (is_valid_account_id, are_valid_account_ids, validate_account_ids, validate_allowed_denied_account_ids, is_valid_region, get_invalid_regions, validate_regions, validate_allowed_denied_regions, DestinationPath) __author__ = 'Costas Tyfoxylos <ctyfoxylos@schubergphilis.com>' __docformat__ = '''google''' __date__ = '''09-11-2021''' __copyright__ = '''Copyright 2021, Costas Tyfoxylos, Jenda Brands, Theodoor Scholte''' __license__ = '''MIT''' __maintainer__ = '''Costas Tyfoxylos''' __email__ = '''<ctyfoxylos@schubergphilis.com>''' __status__ = '''Development''' # "Prototype", "Development", "Production". # This is to 'use' the module(s), so lint doesn't complain assert __version__ assert EnergyLabeler assert LandingZone assert SecurityHub assert InvalidFrameworks assert InvalidOrNoCredentials assert InvalidAccountListProvided assert InvalidRegionListProvided assert MutuallyExclusiveArguments assert NoAccess assert NoRegion assert AccountsNotPartOfLandingZone assert UnableToRetrieveSecurityHubRegions assert InvalidRegion assert ALL_LANDING_ZONE_EXPORT_TYPES assert ALL_ACCOUNT_EXPORT_TYPES assert DATA_EXPORT_TYPES assert LANDING_ZONE_METRIC_EXPORT_TYPES assert ACCOUNT_METRIC_EXPORT_TYPES assert SECURITY_HUB_ACTIVE_REGIONS assert ACCOUNT_THRESHOLDS assert LANDING_ZONE_THRESHOLDS assert DEFAULT_SECURITY_HUB_FILTER assert DEFAULT_SECURITY_HUB_FRAMEWORKS assert DataExporter assert AwsAccount assert is_valid_account_id assert are_valid_account_ids assert validate_account_ids assert validate_allowed_denied_account_ids assert is_valid_region assert get_invalid_regions assert validate_regions assert validate_allowed_denied_regions assert DestinationPath
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Base class for both in-memory and in-disk data structures. """ import abc from BaseClasses import BaseEntity from utils import utils, InputData, InputTypes class DataObjectsCollection(InputData.ParameterInput): """ Class for reading in a collection of data objects. """ DataObjectsCollection.createClass("DataObjects") # # # # class DataObject(utils.metaclass_insert(abc.ABCMeta, BaseEntity)): """ Base class. Data objects are RAVEN's method for storing data internally and passing it from one RAVEN entity to another. Fundamentally, they consist of a collection of realizations, each of which contains inputs, outputs, and pointwise metadata. In addition, the data object has global metadata. The pointwise inputs and outputs could be floats, time-dependent, or ND-dependent variables. This base class is used to force the consistent API between all data containers """ ### INPUT SPECIFICATION ### @classmethod def getInputSpecification(cls): """ Method to get a reference to a class that specifies the input data for class "cls". @ In, cls, the class for which we are retrieving the specification @ Out, inputSpecification, InputData.ParameterInput, class to use for specifying the input of cls. """ inputSpecification = super(DataObject,cls).getInputSpecification() inputSpecification.addParam('hierarchical', InputTypes.BoolType) inputInput = InputData.parameterInputFactory('Input',contentType=InputTypes.StringType) #TODO list inputSpecification.addSub(inputInput) outputInput = InputData.parameterInputFactory('Output', contentType=InputTypes.StringType) #TODO list inputSpecification.addSub(outputInput) # TODO this should be specific to ND set indexInput = InputData.parameterInputFactory('Index',contentType=InputTypes.StringType) #TODO list indexInput.addParam('var',InputTypes.StringType,True) inputSpecification.addSub(indexInput) optionsInput = InputData.parameterInputFactory("options") for option in ['operator','pivotParameter']: optionSubInput = InputData.parameterInputFactory(option, contentType=InputTypes.StringType) optionsInput.addSub(optionSubInput) for option in ['inputRow','outputRow']: optionSubInput = InputData.parameterInputFactory(option, contentType=InputTypes.IntegerType) optionsInput.addSub(optionSubInput) for option in ['outputPivotValue','inputPivotValue']: optionSubInput = InputData.parameterInputFactory(option, contentType=InputTypes.FloatType) optionsInput.addSub(optionSubInput) inputSpecification.addSub(optionsInput) #inputSpecification.addParam('type', param_type = InputTypes.StringType, required = False) #inputSpecification.addSub(InputData.parameterInputFactory('Input',contentType=InputTypes.StringType)) #inputSpecification.addSub(InputData.parameterInputFactory('Output',contentType=InputTypes.StringType)) #inputSpecification.addSub(InputData.parameterInputFactory('options',contentType=InputTypes.StringType)) return inputSpecification def __init__(self): """ Constructor. @ In, None @ Out, None """ super().__init__() self.name = 'DataObject' self.printTag = self.name self._sampleTag = 'RAVEN_sample_ID' # column name to track samples self.protectedTags = ['RAVEN_parentID','RAVEN_isEnding'] # list(str) protected RAVEN variable names, # should not be avail to user as var names self._inputs = [] # list(str) if input variables self._outputs = [] # list(str) of output variables self._metavars = [] # list(str) of POINTWISE metadata variables self._orderedVars = [] # list(str) of vars IN ORDER of their index self._meta = {} # dictionary to collect meta until data is collapsed self._selectInput = None # if not None, describes how to collect input data from history self._selectOutput = None # if not None, describes how to collect output data from history self._pivotParams = {} # independent dimensions as keys, values are the vars that depend on them self._fromVarToIndex = {} # mapping between variables and indexes ({var:index}). # "index" here refers to dimensional variables (e.g. time, x, y, z etc) self._aliases = {} # variable aliases self._data = None # underlying data structure self._collector = None # object used to collect samples self._inputKDTree = None # for finding outputs given inputs (pointset only?) self._scaleFactors = None # scaling factors inputs as {var:(mean,scale)} self.hierarchical = False # this flag controls the printing/plotting of the dataobject # in case it is an hierarchical one. # If True, all the branches are going to be printed/plotted independenttly, # otherwise the are going to be reconstructed @property def sampleTag(self): """ Getter property for _sampleTag, the tag that identifies the realization label for RAVEN @ In, None @ Out, sampleTag, string, variable name """ return self._sampleTag def _readMoreXML(self,xmlNode): """ Initializes data object based on XML input @ In, xmlNode, xml.etree.ElementTree.Element or InputData.ParameterInput specification, input information @ Out, None """ if isinstance(xmlNode,InputData.ParameterInput): inp = xmlNode else: inp = DataObject.getInputSpecification()() inp.parseNode(xmlNode) # get hierarchical strategy self.hierarchical = inp.parameterValues.get("hierarchical", False) pivotParam = None # single pivot parameter given in the input for child in inp.subparts: # TODO check for repeats, "notAllowdInputs", names in both input and output space if child.getName() == 'Input': self._inputs.extend(list(x.strip() for x in child.value.split(',') if x.strip()!='')) elif child.getName() == 'Output': self._outputs.extend(list(x.strip() for x in child.value.split(',') if x.strip()!='')) elif child.getName() == 'Index': depends = list(d.strip() for d in child.value.split(',')) var = child.parameterValues['var'] self._pivotParams[var] = depends # options node elif child.getName() == 'options': duplicateInp = False # if True, then multiple specification options were used for input duplicateOut = False # if True, then multiple specification options were used for output for cchild in child.subparts: # pivot if cchild.getName() == 'pivotParameter': # TODO not applicable to ND, only to HistSet, but read it here # TODO add checks somewhere if both "index" and "pivotParameter" are provided self._tempPivotParam = cchild.value.strip() # input pickers elif cchild.getName() in ['inputRow','inputPivotValue']: if self._selectInput is not None: duplicateInp = True self.setSelectiveInput(cchild.getName(),cchild.value) # output pickers elif cchild.getName() in ['outputRow','outputPivotValue','operator']: if self._selectOutput is not None: duplicateOut = True self._selectOutput = (cchild.getName(),cchild.value) # TODO check this in the input checker instead of here? if duplicateInp: self.raiseAWarning('Multiple options were given to specify the input row to read! Using last entry:',self._selectInput) if duplicateOut: self.raiseAWarning('Multiple options were given to specify the output row to read! Using last entry:',self._selectOutput) # end options node # end input reading # clear keywords InputPlaceHolder but NOT the OutputPlaceHolder, for legacy reasons while 'InputPlaceHolder' in self._inputs: self._inputs.remove('InputPlaceHolder') #while 'OutputPlaceHolder' in self._outputs: # self._outputs.remove('OutputPlaceHolder') # set default pivot parameters, if needed self._setDefaultPivotParams() # remove index variables from input/output spaces, but silently, since we'll still have them available later for index in self._pivotParams.keys(): try: self._outputs.remove(index) except ValueError: pass #not requested as output anyway try: self._inputs.remove(index) except ValueError: pass #not requested as input anyway # check inputs and outputs, if there were duplicates, error out dups = set(self._inputs).intersection(self._outputs) if dups: self.raiseAnError(IOError, 'Variables: "', ','.join(dups), '" are specified in both "Input" and "Output" Node of DataObject "', self.name,'"') self._orderedVars = self._inputs + self._outputs # check if protected vars have been violated if set(self.protectedTags).intersection(set(self._orderedVars)): self.raiseAnError(IOError, 'Input, Output and Index variables can not be part of RAVEN protected tags: '+','.join(self.protectedTags)) def _setDefaultPivotParams(self): """ Allows setting default pivot parameters. In general, does nothing. @ In, None @ Out, None """ pass def setPivotParams(self,params): """ Sets the pivot parameters for variables. @ In, params, dict, var:[params] as str:list(str) @ Out, None """ # TODO typechecking, assertions coords = set().union(*params.values()) for coord in coords: if coord not in self._pivotParams: self._pivotParams[coord] = list(var for var in params.keys() if coord in params[var]) else: self._pivotParams[coord] = list(set(list(var for var in params.keys() if coord in params[var]) + self._pivotParams[coord])) def setSelectiveInput(self,option,value): """ Sets the input selection method for retreiving subset data. @ In, option, str, from [inputRow,inputPivotValue] @ In, value, int or float, either the index (row number) or the pivot value (will be cast if other type) @ Out, None """ assert(option in ['inputRow','inputPivotValue']) if option == 'inputRow': value = int(value) elif option == 'inputPivotValue': value = float(value) self._selectInput = (option,value) self.raiseADebug('Set selective input to',self._selectInput) def setSelectiveOutput(self,option,value): """ Sets the output selection method for retreiving subset data. @ In, option, str, from [outputRow,outputPivotValue,operator] @ In, value, int or float or str, index or pivot value or operator name respectively @ Out, None """ assert(option in ['outputRow','outputPivotValue','operator']) if option == 'outputRow': value = int(value) elif option == 'outputPivotValue': value = float(value) elif option == 'operator': value = value.strip().lower() self._selectOutput = (option,value) self.raiseADebug('Set selective output to',self._selectOutput) ###################### # DATA CONTAINER API # ###################### @abc.abstractmethod def addExpectedMeta(self,keys, params={}): """ Registers meta to look for in realization @ In, keys, set(str), keys to register @ In, params, dict, optional, {key:[indexes]}, keys of the dictionary are the variable names, values of the dictionary are lists of the corresponding indexes/coordinates of given variable @ Out, None """ pass @abc.abstractmethod def addMeta(self,tag,xmlDict): """ Adds general (not pointwise) metadata to this data object. Can add several values at once, collected as a dict keyed by target variables. Data ends up being written as follows (see docstrings above for dict structure) - A good default for 'target' is 'general' if there's not a specific target <tag> <target> <scalarMetric>value</scalarMetric> <scalarMetric>value</scalarMetric> <vectorMetric> <wrt>value</wrt> <wrt>value</wrt> </vectorMetric> </target> <target> <scalarMetric>value</scalarMetric> <vectorMetric> <wrt>value</wrt> </vectorMetric> </target> </tag> @ In, tag, str, section to add metadata to, usually the data submitter (BasicStatistics, DataObject, etc) @ In, xmlDict, dict, data to change, of the form {target:{scalarMetric:value,scalarMetric:value,vectorMetric:{wrt:value,wrt:value}}} @ Out, None """ pass @abc.abstractmethod def addRealization(self,rlz): """ Adds a "row" (or "sample") to this data object. This is the method to add data to this data object. Note that rlz can include many more variables than this data object actually wants. Before actually adding the realization, data is formatted for this data object. @ In, rlz, dict, {var:val} format where "var" is the variable name as a string, "val" is either a float or a np.ndarray of values. @ Out, None """ pass @abc.abstractmethod def addVariable(self,varName,values,classify='meta'): """ Adds a variable/column to the data. "values" needs to be as long as self.size. @ In, varName, str, name of new variable @ In, values, np.array, new values (floats/str for scalars, xr.DataArray for hists) @ In, classify, str, optional, either 'input', 'output', or 'meta' @ Out, None """ pass @abc.abstractmethod def asDataset(self): """ Casts this dataobject as an xr.Dataset. Functionally, typically collects the data from self._collector and places it in self._data. Efficiency note: this is the slowest part of typical data collection. @ In, None @ Out, xarray.Dataset, all the data from this data object. """ pass @abc.abstractmethod def constructNDSample(self,vals,dims,coords,name=None): """ Constructs a single realization instance (for one variable) from a realization entry. @ In, vals, np.ndarray, should have shape of (len(coords[d]) for d in dims) @ In, dims, list(str), names of dependent dimensions IN ORDER of appearance in vals, e.g. ['time','x','y'] @ In, coords, dict, {dimension:list(float)}, values for each dimension at which 'val' was obtained, e.g. {'time': @ Out, obj, xr.DataArray, completed realization instance suitable for sending to "addRealization" """ pass @abc.abstractmethod def getDimensions(self,var): """ Provides the independent dimensions that this variable depends on. To get all dimensions at once, use self.indexes property. @ In, var, str, name of variable (if None, give all) @ Out, dims, dict, {name:values} of independent dimensions """ pass @abc.abstractmethod def getMeta(self,keys=None,pointwise=False,general=False): """ Method to obtain entries in the metadata. If niether pointwise nor general, then returns an empty dict. @ In, keys, list(str), optional, the keys (or main tag) to search for. If None, return all. @ In, pointwise, bool, optional, if True then matches will be searched in the pointwise metadata @ In, general, bool, optional, if True then matches will be searched in the general metadata @ Out, meta, dict, key variables/xpaths to data object entries (column if pointwise, XML if general) """ pass @abc.abstractmethod def getVars(self,subset=None): """ Gives list of variables that are part of this dataset. @ In, subset, str, optional, if given can return 'input','output','meta' subset types @ Out, getVars, list(str), list of variable names requested """ pass @abc.abstractmethod def getVarValues(self,var): """ Returns the sampled values of "var" @ In, var, str or list(str), name(s) of variable(s) @ Out, res, xr.DataArray, samples (or dict of {var:xr.DataArray} if multiple variables requested) """ pass @abc.abstractmethod def realization(self, index=None, matchDict=None, noMatchDict=None, tol=1e-15, unpackXArray=False, asDataSet = False, options = None): """ Method to obtain a realization from the data, either by index or matching value. Either "index" or one of ("matchDict", "noMatchDict") must be supplied. If matchDict and no match is found, will return (len(self),None) after the pattern of numpy, scipy @ In, index, int, optional, number of row to retrieve (by index, not be "sample") @ In, matchDict, dict, optional, {key:val} to search for matches @ In, noMatchDict, dict, optional, {key:val} to search for antimatches (vars should NOT match vals within tolerance) @ In, asDataSet, bool, optional, return realization from the data as a DataSet @ In, tol, float, optional, tolerance to which match should be made @ In, unpackXArray, bool, optional, True if the coordinates of the xarray variables must be exposed in the dict (e.g. if P(t) => {P:ndarray, t:ndarray}) (valid only for dataset) @ In, options, dict, optional, options to be applied to the search @ Out, index, int, optional, index where found (or len(self) if not found), only returned if matchDict @ Out, rlz, dict, realization requested (None if not found) """ pass @abc.abstractmethod def load(self,fname,style='netCDF',**kwargs): """ Reads this dataset from disk based on the format. @ In, fname, str, path and name of file to read @ In, style, str, optional, options are enumerated below @ In, kwargs, dict, optional, additional arguments to pass to reading function @ Out, None """ pass @abc.abstractmethod def remove(self,realization=None,variable=None): """ Used to remove either a realization or a variable from this data object. @ In, realization, dict or int, optional, (matching or index of) realization to remove @ In, variable, str, optional, name of "column" to remove @ Out, None """ pass @abc.abstractmethod def reset(self): """ Sets this object back to its initial state. @ In, None @ Out, None """ pass @abc.abstractmethod def sliceByIndex(self,axis): """ Returns list of realizations at "snapshots" along "axis" @ In, axis, str, name of index along which to obtain slices @ Out, slices, list, list of slices """ pass @abc.abstractmethod def write(self,fname,style='netCDF',**kwargs): """ Writes this dataset to disk based on the format. @ In, fname, str, path and name of file to write @ In, style, str, optional, options are enumerated below @ In, kwargs, dict, optional, additional arguments to pass to writing function @ Out, None """ pass
# coding=utf-8 """ 将华氏温度转换为摄氏温度 F = 1.8C + 32 Version: 0.1 Author: huijz Date: 2020-08-21 """ f = float(input('请输入华氏温度:')) c = (f - 32) / 1.8 print'%.2f华氏度 = %.2f摄氏度' % (f, c)
import sys import textwrap import argparse import numpy as np import networkx as nx import random import json from config import * from max_circulation import * import pickle from functools import reduce # generates the start and end nodes for a fixed set of topologies - hotnets/line/simple graph def generate_workload_standard(filename, payment_graph_topo, workload_type, total_time, \ log_normal, kaggle_size, txn_size_mean, timeout_value, generate_json_also, circ_frac, std_workload=True): # by default ASSUMES NO END HOSTS dag_frac = round(1 - circ_frac,3) demand_dict_dag = dict() demand_dict_circ = dict() # define start and end nodes and amounts # edge a->b in payment graph appears in index i as start_nodes[i]=a, and end_nodes[i]=b if payment_graph_topo == 'hotnets_topo': if circ_frac == 1: start_nodes = [0, 1, 2, 2, 3, 3, 4] end_nodes = [1, 3, 1, 4, 2, 0, 2] amt_relative = [1, 2, 1, 1, 1, 1, 1] amt_absolute = [SCALE_AMOUNT * x for x in amt_relative] else: start_nodes = [0,3,0,1,2,3,2,4] end_nodes = [4,0,1,3,1,2,4,2] amt_relative = [1,2,1,2,1,2,2,1] amt_absolute = [SCALE_AMOUNT * x for x in amt_relative] graph = hotnets_topo_graph elif payment_graph_topo == 'toy_dctcp': start_nodes = [2, 4, 6, 8, 10, 3, 5, 7, 9, 11] end_nodes = [3, 5, 7, 9, 11, 2, 4, 6, 8, 10] amt_relative = [1] * 10 print("here generating topo") amt_absolute = [SCALE_AMOUNT * MEAN_RATE * x for x in amt_relative] graph = toy_dctcp_graph elif payment_graph_topo == 'simple_deadlock': start_nodes = [1,0,2] end_nodes = [2,2,0] amt_relative = [2,1,2] amt_absolute = [SCALE_AMOUNT * x for x in amt_relative] graph = simple_deadlock_graph elif payment_graph_topo == 'dag_example': start_nodes = [0, 2, 1] end_nodes = [2, 1, 2] amt_relative = [10, 5, 5] amt_absolute = [SCALE_AMOUNT * x for x in amt_relative] graph = dag_example_graph elif payment_graph_topo == 'parallel_graph': start_nodes = [0, 2, 1, 3] end_nodes = [2, 0, 3, 1] amt_relative = [1, 1, 1, 1] amt_absolute = [SCALE_AMOUNT * x for x in amt_relative] graph = parallel_graph elif payment_graph_topo == 'simple_line': if "five" in filename: num_nodes = 5 graph = five_line_graph else: num_nodes = 3 graph = simple_line_graph print(num_nodes) start_nodes = [0, num_nodes - 1] end_nodes = [num_nodes - 1, 0] amt_relative = [MEAN_RATE] * 2 '''start_nodes = [0, 2, 0, 1] end_nodes = [2, 0, 1, 0] amt_relative = [MEAN_RATE, MEAN_RATE, 2*MEAN_RATE, 2*MEAN_RATE]''' amt_absolute = [SCALE_AMOUNT * x for x in amt_relative] demand_dict_circ[0,num_nodes - 1] = MEAN_RATE demand_dict_circ[num_nodes - 1, 0] = MEAN_RATE demand_dict_dag[0, num_nodes - 1] = MEAN_RATE elif payment_graph_topo == 'hardcoded_circ': start_nodes = [0, 1, 2, 3, 4] end_nodes = [1, 2, 3, 4, 0] amt_relative = [MEAN_RATE] * 5 amt_absolute = [SCALE_AMOUNT * x for x in amt_relative] graph = five_node_graph # generate circulation instead if you need a circulation if not std_workload: start_nodes, end_nodes, amt_relative = [], [], [] num_nodes = graph.number_of_nodes() """ generate circulation and dag demand """ if circ_frac > 0: demand_dict_circ = circ_demand(list(graph), mean=MEAN_RATE, \ std_dev=CIRCULATION_STD_DEV) if dag_frac > 0: demand_dict_dag = dag_demand(list(graph), mean=MEAN_RATE, \ std_dev=CIRCULATION_STD_DEV) demand_dict = { key: circ_frac * demand_dict_circ.get(key, 0) + dag_frac * demand_dict_dag.get(key, 0) \ for key in set(demand_dict_circ) | set(demand_dict_dag) } print(demand_dict) for i, j in list(demand_dict.keys()): start_nodes.append(i) end_nodes.append(j) amt_relative.append(demand_dict[i, j]) if payment_graph_topo != 'hardcoded_circ': amt_absolute = [SCALE_AMOUNT * MEAN_RATE * x for x in amt_relative] print(amt_absolute) if generate_json_also: generate_json_files(filename + '.json', graph, graph, start_nodes, end_nodes, amt_absolute) write_txns_to_file(filename + '_workload.txt', start_nodes, end_nodes, amt_absolute,\ workload_type, total_time, log_normal, kaggle_size, txn_size_mean, timeout_value) # write the given set of txns denotes by start_node -> end_node with absolute_amts as passed in # to a separate workload file # workload file of form # [amount] [timeSent] [sender] [receiver] [priorityClass] [timeout_value] # write to file - assume no priority for now # transaction sizes are either constant or exponentially distributed around their mean def write_txns_to_file(filename, start_nodes, end_nodes, amt_absolute,\ workload_type, total_time, log_normal, kaggle_size, txn_size_mean, timeout_value, mode="w", start_time=0): outfile = open(filename, mode) if "newseed" in filename: print("newseed") np.random.seed(12493) if distribution == 'uniform': # constant transaction size generated at uniform intervals for k in range(len(start_nodes)): cur_time = 0 '''if (start_nodes[k] == 1 or end_nodes[k] == 1): cur_time = 300''' while cur_time < total_time: rate = amt_absolute[k] if log_normal: txn_size = MIN_TXN_SIZE/10 while (txn_size < MIN_TXN_SIZE or txn_size > MAX_TXN_SIZE): txn_power = np.random.normal(loc=LOG_NORMAL_MEAN, scale=LOG_NORMAL_SCALE) txn_size = round(10 ** txn_power, 1) else: txn_size = txn_size_mean outfile.write(str(txn_size) + " " + str(cur_time + start_time) + " " + str(start_nodes[k]) + \ " " + str(end_nodes[k]) + " 0 " + str(timeout_value) + "\n") cur_time += (1.0 / rate) elif distribution == 'poisson': if kaggle_size: print("generating from kaggle for size") amt_dist = np.load(KAGGLE_AMT_DIST_FILENAME) num_amts = amt_dist.item().get('p').size # constant transaction size to be sent in a poisson fashion for k in range(len(start_nodes)): current_time = 0.0 rate = amt_absolute[k]*1.0 beta = (1.0) / (1.0 * rate) # if the rate is higher, given pair will have more transactions in a single second while current_time < total_time: if log_normal: txn_size = MIN_TXN_SIZE/10 while (txn_size < MIN_TXN_SIZE or txn_size > MAX_TXN_SIZE): txn_power = np.random.normal(loc=LOG_NORMAL_SCALE, scale=LOG_NORMAL_SCALE) txn_size = round(10 ** txn_power, 1) elif kaggle_size: # draw an index according to the amount pmf txn_idx = np.random.choice(num_amts, 1, \ p=amt_dist.item().get('p'))[0] # map the index to a tx amount txn_size = int(round(amt_dist.item().get('bins')[txn_idx], 1)) else: txn_size = txn_size_mean outfile.write(str(txn_size) + " " + str(current_time + start_time) + " " + str(start_nodes[k]) \ + " " + str(end_nodes[k]) + " 0 " + str(timeout_value) + "\n") time_incr = np.random.exponential(beta) current_time = current_time + time_incr elif distribution == 'kaggle': # load the data amt_dist = np.load(KAGGLE_AMT_DIST_FILENAME) time_dist = np.load(KAGGLE_TIME_DIST_FILENAME) num_amts = amt_dist.item().get('p').size num_times = time_dist.item().get('p').size # transaction sizes drawn from kaggle data, as is inter-transaction time for k in range(len(start_nodes)): current_time = 0.0 while current_time < total_time: # draw an index according to the amount pmf txn_idx = np.random.choice(num_amts, 1, \ p=amt_dist.item().get('p'))[0] # map the index to a tx amount txn_size = amt_dist.item().get('bins')[txn_idx] outfile.write(str(txn_size) + " " + str(current_time + start_time) + " " + str(start_nodes[k]) + \ " " + str(end_nodes[k]) + " 0 " + str(timeout_value) + "\n") # draw an index according to the time pmf time_idx = np.random.choice(num_times, 1, \ p=time_dist.item().get('p'))[0] # map index to an inter-tx time time_incr = time_dist.item().get('bins')[time_idx] current_time = current_time + time_incr outfile.close() np.random.seed(SEED_LIST[args.run_num]) # generates the json file necessary for the distributed testbed to be used to test # the lnd implementation def generate_json_files(filename, graph, inside_graph, start_nodes, end_nodes, amt_absolute): for balance in balance_list: json_string = {} # create btcd connections # routers connected to each other and end hosts connected to respective router btcd_connections = [] for i in range(graph.number_of_nodes() - 1): connection = {"src": str(i) + "r", "dst" : str(i + 1) + "r"} btcd_connections.append(connection) connection = {"src": str(i) + "e", "dst" : str(i) + "r"} btcd_connections.append(connection) connection = {"src": str(graph.number_of_nodes() - 1) + "e", "dst" : str(graph.number_of_nodes() - 1) + "r"} btcd_connections.append(connection) json_string["btcd_connections"] = btcd_connections # miner node json_string["miner"] = "0r" # create nodesi for end hosts and router nodes and assign them distinct ips nodes = [] for n in graph.nodes(): node = {"name": str(n) + "r", "ip" : "10.0.1." + str(100 + n)} nodes.append(node) node = {"name": str(n) + "e", "ip" : "10.0.2." + str(100 + n)} nodes.append(node) json_string["nodes"] = nodes # creates all the lnd channels edges = [] for (u,v) in graph.edges(): if u == v: cap = ENDHOST_LND_ONE_WAY_CAPACITY node_type = "e" else: cap = balance * 400 / 2 node_type = "r" if u <= v: edge = {"src": str(u) + "r", "dst": str(v) + node_type, "capacity" : cap} edges.append(edge) json_string["lnd_channels"] = edges # creates the string for the demands demands = [] for s, e, a in zip(start_nodes, end_nodes, amt_absolute): demand_entry = {"src": str(s) + "e", "dst": str(e) + "e",\ "rate": a} demands.append(demand_entry) json_string["demands"] = demands with open(filename + '_' + str(balance) + '.json', 'w') as outfile: json.dump(json_string, outfile, indent=8) # generate workload for arbitrary topology by uniformly sampling # the set of nodes for sender-receiver pairs # size of transaction is determined when writing to the file to # either be exponentially distributed or constant size def generate_workload_for_provided_topology(filename, inside_graph, whole_graph, end_host_map, \ workload_type, total_time, \ log_normal, kaggle_size, txn_size_mean, timeout_value, generate_json_also, circ_frac): num_nodes = inside_graph.number_of_nodes() start_nodes, end_nodes, amt_relative = [], [], [] """ generate circulation and dag demand """ circ_frac = round(circ_frac, 3) dag_frac = round(1 - circ_frac, 3) demand_dict_dag = dict() demand_dict_circ = dict() if circ_frac > 0: demand_dict_circ = circ_demand(list(inside_graph), mean=MEAN_RATE, \ std_dev=CIRCULATION_STD_DEV) if dag_frac > 0: demand_dict_dag = dag_demand(list(inside_graph), mean=MEAN_RATE, \ std_dev=CIRCULATION_STD_DEV, skew_param=dag_frac*10, gen_method="src_skew") circ_total = reduce(lambda x, value: x + value, iter(demand_dict_circ.values()), 0) dag_total = reduce(lambda x, value: x + value, iter(demand_dict_dag.values()), 0) if "weird" not in filename or dag_frac == 0.20 or dag_frac == 0.45: demand_dict = { key: circ_frac * demand_dict_circ.get(key, 0) + dag_frac * demand_dict_dag.get(key, 0) \ for key in set(demand_dict_circ) | set(demand_dict_dag) } else: # just add dag and don't weigh demand_dict = { key: demand_dict_circ.get(key, 0) + dag_frac * demand_dict_dag.get(key, 0) \ for key in set(demand_dict_circ) | set(demand_dict_dag) } total = reduce(lambda x, value: x + value, iter(demand_dict.values()), 0) print("Circulation", circ_total) print("Dag", dag_total) print("total", total) print(circ_frac) print(dag_frac) ''' pkl_op = open(filename + '_demand.pkl', 'wb') pickle.dump(demand_dict, pkl_op) pkl_op.close() ''' if "two_node_imbalance" in filename: demand_dict = dict() demand_dict[0, 1] = MEAN_RATE demand_dict[1, 0] = 5 * MEAN_RATE print(demand_dict) elif "two_node_capacity" in filename: demand_dict = dict() demand_dict[0, 1] = 2 * MEAN_RATE demand_dict[1, 0] = 5 * MEAN_RATE print(demand_dict) if "three_node" in filename: demand_dict = dict() demand_dict[0, 2] = MEAN_RATE demand_dict[1, 2] = MEAN_RATE demand_dict[2, 1] = MEAN_RATE demand_dict[1, 0] = MEAN_RATE for i, j in list(demand_dict.keys()): start_nodes.append(end_host_map[i]) end_nodes.append(end_host_map[j]) amt_relative.append(demand_dict[i, j]) amt_absolute = [SCALE_AMOUNT * x for x in amt_relative] print("generated workload") max_circ = max_circulation(demand_dict) if total != 0: print("ALERT!", "maximum circulation: ", max_circ, " or ", float(max_circ)/total) if generate_json_also: generate_json_files(filename, whole_graph, inside_graph, start_nodes, end_nodes, amt_absolute) if "weird" not in filename: print("generting txns here") write_txns_to_file(filename + '_workload.txt', start_nodes, end_nodes, amt_absolute,\ workload_type, total_time, log_normal, kaggle_size, txn_size_mean, timeout_value) else: kaggle_size = False start_nodes_circ, end_nodes_circ, amt_relative_circ = [], [], [] for i, j in list(demand_dict_circ.keys()): start_nodes_circ.append(end_host_map[i]) end_nodes_circ.append(end_host_map[j]) amt_relative_circ.append(demand_dict_circ[i, j]) amt_absolute_circ = [SCALE_AMOUNT * x for x in amt_relative_circ] # circ for 1000s if dag_frac == 0.20 or dag_frac == 0.45 or dag_frac == 0.8: # dag plus circ for 2000s write_txns_to_file(filename + '_workload.txt', start_nodes, end_nodes, amt_absolute,\ workload_type, 2000, log_normal, kaggle_size, txn_size_mean, timeout_value) # circ again for 1000s write_txns_to_file(filename + '_workload.txt', start_nodes_circ, end_nodes_circ, amt_absolute_circ,\ workload_type, 1000, log_normal, kaggle_size, txn_size_mean, timeout_value, "a", 2000) else: write_txns_to_file(filename + '_workload.txt', start_nodes_circ, end_nodes_circ, amt_absolute_circ,\ workload_type, 1000, log_normal, kaggle_size, txn_size_mean, timeout_value) # dag plus circ for 1000s write_txns_to_file(filename + '_workload.txt', start_nodes, end_nodes, amt_absolute,\ workload_type, 1000, log_normal, kaggle_size, txn_size_mean, timeout_value, "a", 1000) # circ again for 1000s write_txns_to_file(filename + '_workload.txt', start_nodes_circ, end_nodes_circ, amt_absolute_circ,\ workload_type, 1000, log_normal, kaggle_size, txn_size_mean, timeout_value, "a", 2000) # parse a given line of edge relationships from the topology file # and return whether this is a router node and its identifier def parse_node(node_name): try: val = int(node_name[:-1]) if node_name[-1] == 'r': return True, val if node_name[-1] == 'e': return False, val return -1 except: return -1 # parse topology file to get graph structure def parse_topo(topo_filename): g = nx.Graph() router_graph = nx.Graph() end_host_map = dict() line_num = 0 with open(topo_filename) as topo_file: for line in topo_file: line_num += 1 # landmark line if line_num == 1: continue if line == '\n': continue n1 = parse_node(line.split()[0]) n2 = parse_node(line.split()[1]) if n1 == -1 or n2 == -1: print("Bad line " + line) continue g.add_edge(n1[1], n2[1]) if n1[0] and n2[0]: router_graph.add_edge(n1[1], n2[1]) elif n1[0]: end_host_map[n1[1]] = n2[1] elif n2[0]: end_host_map[n2[1]] = n1[1] return g, router_graph, end_host_map # generate circulation demand for node ids mentioned in node_list, # with average total demand at a node equal to 'mean', and a # perturbation of 'std_dev' def circ_demand(node_list, mean, std_dev): print("MEAN DEMAND", mean) assert type(mean) is int assert type(std_dev) is int demand_dict = {} num_nodes = len(node_list) """ sum of 'mean' number of random permutation matrices """ """ note any permutation matrix is a circulation demand """ """ matrix indices are shifted by number of nodes to account """ for i in range(mean): perm = np.random.permutation(node_list) for j, k in enumerate(perm): if (j, k) in list(demand_dict.keys()): demand_dict[j, k] += 1 else: demand_dict[j, k] = 1 """ add 'std_dev' number of additional cycles to the demand """ for i in range(std_dev): cycle_len = np.random.choice(list(range(1, num_nodes+1))) cycle = np.random.choice(node_list, cycle_len) cycle = set(cycle) cycle = list(cycle) cycle.append(cycle[0]) for j in range(len(cycle[:-1])): if (cycle[j], cycle[j+1]) in list(demand_dict.keys()): demand_dict[cycle[j], cycle[j+1]] += 1 else: demand_dict[cycle[j], cycle[j+1]] = 1 """ remove diagonal entries of demand matrix """ for (i, j) in list(demand_dict.keys()): if i == j: del demand_dict[i, j] return demand_dict # generate dag for node ids mentioned in node_list, # with average total demand out of a node equal to 'mean', and a # perturbation of 'std_dev' def dag_demand(node_list, mean, std_dev, skew_param=5,gen_method="topological_sort"): print("DAG_DEMAND", mean) assert type(mean) is int assert type(std_dev) is int demand_dict = {} if gen_method == "src_skew": """ sample receiver uniformly at random and source from exponential distribution """ for i in range(len(node_list) * mean): sender = len(node_list) while sender >= len(node_list): sender = int(np.random.exponential(len(node_list)/skew_param)) receiver_list = np.random.permutation(node_list) receiver_index = len(node_list) while receiver_index >= len(node_list): receiver_index = int(np.random.exponential(len(node_list)/skew_param)) receiver = receiver_list[receiver_index] demand_dict[sender, receiver] = demand_dict.get((sender, receiver), 0) + 1 else: perm = np.random.permutation(node_list) print("root is ", perm[0]) """ use a random ordering of the nodes """ """ as the topological sort of the DAG demand to produce """ """ generate demand from a node to only nodes higher """ """ than it in the random ordering """ for i, node in enumerate(perm[:-1]): receiver_node_list = perm[i + 1:] total_demand_from_node = mean + np.random.choice([std_dev, -1*std_dev]) for j in range(total_demand_from_node): receiver = np.random.choice(receiver_node_list) demand_dict[node, receiver] = demand_dict.get((node, receiver), 0) + 1 """ remove diagonal entries of demand matrix """ for (i, j) in list(demand_dict.keys()): if i == j: del demand_dict[i, j] return demand_dict # parse arguments parser = argparse.ArgumentParser(description="Create arbitrary txn workloads to run the omnet simulator on") parser.add_argument('--graph-topo', \ choices=['hotnets_topo', 'simple_line', 'simple_deadlock', 'custom', 'hardcoded_circ', 'toy_dctcp', 'dag_example', 'parallel_graph'],\ help='type of graph (Small world or scale free or custom topology)', default='simple_line') parser.add_argument('--payment-graph-dag-percentage', type=int,\ help='percentage of circulation to put in the payment graph', default=0) parser.add_argument('--topo-filename', dest='topo_filename', type=str, \ help='name of topology file to generate worklooad for') parser.add_argument('output_file_prefix', type=str, help='name of the output workload file', \ default='simple_workload.txt') parser.add_argument('interval_distribution', choices=['uniform', 'poisson','kaggle'],\ help='time between transactions is determine by this', default='poisson') parser.add_argument('--experiment-time', dest='total_time', type=int, \ help='time to generate txns for', default=30) parser.add_argument('--txn-size-mean', dest='txn_size_mean', type=int, \ help='mean_txn_size', default=1) parser.add_argument('--log-normal', action='store_true', help='should txns be exponential in size') parser.add_argument('--kaggle-size', action='store_true', help='should txns be kaggle in size') parser.add_argument('--generate-json-also', action="store_true", help="do you need to generate json file also \ for the custom topology") parser.add_argument('--balance-list', type=int, nargs='+', dest='balance_list', default=[100]) parser.add_argument('--timeout-value', type=float, help='generic time out for all transactions', default=5) parser.add_argument('--scale-amount', type=int, help='how much to scale the mean deamnd by', default=5) parser.add_argument('--run-num', type=int, help='influences the seed', default=1) args = parser.parse_args() output_prefix = args.output_file_prefix circ_frac = (100 - args.payment_graph_dag_percentage) / 100.0 distribution = args.interval_distribution total_time = args.total_time txn_size_mean = args.txn_size_mean log_normal = args.log_normal kaggle_size = args.kaggle_size topo_filename = args.topo_filename generate_json_also = args.generate_json_also graph_topo = args.graph_topo balance_list = args.balance_list timeout_value = args.timeout_value SCALE_AMOUNT = args.scale_amount if kaggle_size: log_normal = False # generate workloads np.random.seed(SEED_LIST[args.run_num]) random.seed(SEED_LIST[args.run_num]) if graph_topo != 'custom': generate_workload_standard(output_prefix, graph_topo, distribution, \ total_time, log_normal, kaggle_size, txn_size_mean, timeout_value, generate_json_also, circ_frac) elif topo_filename is None: raise Exception("Topology needed for custom file") else: whole_graph, inside_graph, end_host_map = parse_topo(topo_filename) generate_workload_for_provided_topology(output_prefix, inside_graph, whole_graph, end_host_map,\ distribution, total_time, log_normal, kaggle_size,\ txn_size_mean, timeout_value, generate_json_also, circ_frac)
from pecan import make_app import eventlet from authdog import model def setup_app(config): model.init_model() app_conf = dict(config.app) eventlet_enabled = dict(config.EVENTLET).get("enabled") if eventlet_enabled: eventlet.monkey_patch(time=True, thread=True) return make_app( app_conf.pop('root'), logging=getattr(config, 'logging', {}), **app_conf )
# Interface for a "set" of cases class CaseSet: def __init__(self, time): self.time = time def __len__(self): raise NotImplementedError() def iterator(self): raise NotImplementedError() def get_time(self): return self.time def set_time(self, time): self.time = time
# -*-coding:Utf-8 -* # Copyright (c) 2010-2017 LE GOFF Vincent # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT # OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Fichier contenant le contexte éditeur EdtEmplacement.""" from primaires.interpreteur.editeur.uniligne import Uniligne class EdtEmplacement(Uniligne): """Classe définissant le contexte éditeur 'edt_emplacement'.""" def __init__(self, pere, objet, attribut): Uniligne.__init__(self, pere, objet, attribut) self.ajouter_option("e", self.opt_epaisseur) self.ajouter_option("p", self.opt_positions) def opt_epaisseur(self, arguments): """Option épaisseur. Syntaxe : /e <épaisseur> """ try: epaisseur = int(arguments) except ValueError: self.pere << "|err|Epaisseur invalide, spécifiez un nombre.|ff|" else: self.objet.epaisseur = epaisseur self.actualiser() def opt_positions(self, arguments): """Option positions. Syntaxe : /p <position1> (, <position2>, (...)) """ if not arguments.strip(): self.pere << "|err|Entrez au moins une position ou plusieurs " \ "séparées par des virgules.|ff|" return arguments = arguments.split(",") positions = set() for arg in arguments: try: arg = arg.strip() position = int(arg) except ValueError: self.pere << "|err|Position invalide, spécifiez un " \ "nombre.|ff|" return else: positions.add(position) self.objet.positions = tuple(sorted(positions)) self.actualiser() def accueil(self): """Retourne le message d'accueil.""" msg = Uniligne.accueil(self) msg += "\nPositions actuelles : " positions = self.objet.positions if not positions: msg += "|rg|aucune|ff|" else: msg += ", ".join([str(p) for p in positions]) return msg
# Simple basic assignment def main(): x = 1
from django.shortcuts import render from .models import * # Create your views here. def image(request): images = Image.objects.all() location = Location.objects.all() return render(request, 'images.html',{"images":images,"location":location}) def locations(request,location_id): loc = Location.objects.get(location=location_id) location = Image.objects.filter(location=loc.id) locs = Location.objects.all() catego = Category.objects.all() return render(request,'location.html',{"location":location,"catego":catego,"locs":locs}) # def imagealone(request,image_id): # try: # image = Image.objects.get(id=image_id) # except DoesNotExist: # raise Http404() # return render(request,"imageOne.html",{"image":image}) def search_results(request): if 'image' in request.GET and request.GET["image"]: search_term = request.GET.get("image") searched_images = Image.search_by_category(search_term) message = f"{search_term}" return render(request, 'search.html', {"message": message, "images": searched_images}) else: message = "You haven't searched for any category" return render(request, 'search.html', {"message": message})
from advent_2021.helpers import get_input if __name__ == "__main__": positions = list(map(int, next(get_input()).split(","))) print( min( sum(abs(position - target) for position in positions) for target in range(min(positions), max(positions)) ) )
from django.shortcuts import get_object_or_404, render from django.http import HttpResponseRedirect from django.core.urlresolvers import reverse from django.views import generic from django.views.decorators.csrf import csrf_exempt from rest_framework import status from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.decorators import api_view from horarios.serializers import SessionSerializer, SubjectSimpleSerializer, SubjectSerializer, GroupSerializer, ProfessionSerializer from horarios.models import Session, Subject, Group, Profession from rest_framework import generics from rest_framework.permissions import IsAdminUser, AllowAny def home(request): """ this will render the home page :param request: :return: home page of the project """ return render(request, 'home.html') @csrf_exempt def do_deploy(request): """ deploys on the server after github sends a POST-Receive hook. This is initiated by a push on the master branch on github. :param request: JSON encoded payload sent by github. """ import json import subprocess from django.http import HttpResponse, Http404 from django.conf import settings if request.method != 'POST': raise Http404 if not 'payload' in request.POST.keys(): raise Http404 payload = json.loads(request.POST['payload']) out_json = {'status':'failed'} if payload['ref'] == 'refs/heads/master': DEPLOY_SCRIPT = getattr(settings,"DEPLOY_SCRIPT", "pwd") out = subprocess.check_output(settings.DEPLOY_SCRIPT) if not getattr(settings,"DEBUG",False): out = "" out_json = {'status' : 'success', 'output' : out } return HttpResponse(json.dumps(out_json), content_type='application/json') class SubjectProfessionAutocompleteView(APIView): def get(self, request, *args , **kw): import json search_term = kw['search_term'] try: profession = int(kw['profession']) except: profession = "" try: subject_type = json.loads(kw['subject_type']) except: subject_type = [] queryset = Subject.autocomplete(search_term,profession,subject_type) print queryset serializer = SubjectSimpleSerializer(queryset, many=True) return Response(serializer.data) class SessionList(generics.ListCreateAPIView): queryset = Session.objects.all() serializer_class = SessionSerializer class SessionDetail(generics.RetrieveUpdateAPIView): permission_classes = (AllowAny,) queryset = Session.objects.all() serializer_class = SessionSerializer class SubjectList(generics.ListAPIView): queryset = Subject.objects.all() serializer_class = SubjectSerializer permission_classes = (IsAdminUser,) class SubjectDetail(generics.RetrieveAPIView): queryset = Subject.objects.all() serializer_class = SubjectSerializer class ProfessionList(generics.ListAPIView): queryset = Profession.objects.all() serializer_class = ProfessionSerializer
# coding: utf-8 import time from selenium.webdriver.common.by import By from selenium.common.exceptions import NoSuchElementException from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as ec class JsTools: message_status = False dim_status = False logger = None page_wait = None js_injector = """ var include_js = function(url, callback){ var script = document.createElement('script'); script.type = 'text/javascript'; script.src = url; if (callback) { script.onreadystatechange = callback; script.onload = script.onreadystatechange; } document.getElementsByTagName('head')[0].appendChild(script); console.log("Scrip loaded"); } var include_css = function(url, callback){ var css = document.createElement('link'); css.type = 'text/css'; css.rel = 'stylesheet'; css.href = url; document.getElementsByTagName('head')[0].appendChild(css); console.log("CSS loaded"); } var create_target = function(){ document.body.innerHTML += '<span id="kissenium"></span>'; } """ def __init__(self, message_status, dim_status, logger, page_wait): self.message_status = message_status self.dim_status = dim_status self.logger = logger self.page_wait = page_wait def message(self, browser, message, message_timing=4, pause=2): self.logger.info( "[InjectMessage] message: Messaging status : %s | Message to send : %s " % (self.message_status, message)) if self.message_status == "True": self.inject_dependencies(browser) browser.execute_script("spop({ template: '%s', autoclose: %s });" % (message, str(message_timing * 1000))) time.sleep(pause) def dim_by_id(self, browser, element_id, timing=2): self.logger.info( "[InjectMessage] dim: Messaging status : %s" % self.dim_status) if self.dim_status == "True": self.inject_dependencies(browser) browser.execute_script("$('#%s').dimBackground();" % element_id) time.sleep(timing) browser.execute_script("$('#%s').undim();" % element_id) def inject_dependencies(self, browser): if self.message_status == "True" or self.dim_status == "True": try: browser.find_element(By.__dict__.get('ID'), "kissenium") except NoSuchElementException: self.logger.info("[InjectMessage] inject_dependencies: no dependencies injected, injecting them...") browser.execute_script(self.js_injector + """ include_css('https://www.adiuvo.fr/kissenium.min.css', function(){}); include_js('https://www.adiuvo.fr/kissenium.min.js', function(){ create_target(); }); """) WebDriverWait(browser, int(self.page_wait)).until( ec.presence_of_element_located((By.ID, "kissenium")) ) self.logger.info("[InjectMessage] inject_dependencies: Dependencies injected!")
''' Use this file to store names for global permissions -- permissions that don't belong in any particular module. For module specific permissions, create an Enum within the module ''' import enum class Permissions(enum.IntEnum): #Site admins -- always have permission to everything -- Use with caution ADMIN = 1
from datetime import datetime from SearchAlgorithms import AEstrela from _8puzzle import puzzle goal= [[1,2,3],[8,0,4],[7,6,5]] def test_1(): board = [[8,1,3],[0,7,2],[6,5,4]] state = puzzle(" ", board, 1, 0, goal) beginning = datetime.now() print(beginning) algorithm = AEstrela() result = algorithm.search(state) ending = datetime.now() print("Tempo de resolucao:", ending-beginning) assert result.state.env() == str(goal) def test_2(): board = [[7,8,6],[2,3,5],[1,4,0]] state = puzzle(" ", board, 2, 2, goal) beginning = datetime.now() algorithm = AEstrela() result = algorithm.search(state) ending = datetime.now() print("Tempo de resolucao:", ending-beginning) assert result.state.env() == str(goal) def test_3(): board = [[7,8,6],[2,3,5],[0,1,4]] state = puzzle(" ", board, 2, 0, goal) beginning = datetime.now() algorithm = AEstrela() result = algorithm.search(state) ending = datetime.now() print("Tempo de resolucao::", ending-beginning) assert result.state.env() == str(goal) def test_4(): board = [[8,3,6],[7,5,4],[2,1,0]] state = puzzle(" ", board, 2, 2, goal) beginning = datetime.now() algorithm = AEstrela() result = algorithm.search(state) ending = datetime.now() print("Tempo de resolucao::", ending-beginning) assert result.state.env() == str(goal) def test_5(): board = [[3,4,8],[1,2,5],[7,0,6]] state = puzzle(" ", board, 2, 1, goal) print("Teste impossível") assert state.isSolvable() == False
# Example used along with arduino_example import time import serial from watchedserial import WatchedReaderThread PORT = "COM3" class MyPacket(serial.threaded.FramedPacket): def handle_packet(self, packet): print(packet) class MyWatchedReaderThread(WatchedReaderThread): def handle_reconnect(self): print("Reconnected") def handle_disconnect(self, error): print("Disconnected") ser = serial.Serial(PORT, baudrate=115200) with MyWatchedReaderThread(ser, MyPacket) as protocol: while True: time.sleep(1)
import cupy import unittest import warnings import numpy import pytest try: import scipy.sparse import scipy.sparse.linalg import scipy.stats scipy_available = True except ImportError: scipy_available = False from cupy import testing from cupy.testing import condition from cupyx.scipy import sparse import cupyx.scipy.sparse.linalg # NOQA @testing.parameterize(*testing.product({ 'dtype': [numpy.float32, numpy.float64], })) @testing.with_requires('scipy') class TestLsqr(unittest.TestCase): def setUp(self): rvs = scipy.stats.randint(0, 15).rvs self.A = scipy.sparse.random(50, 50, density=0.2, data_rvs=rvs) self.b = numpy.random.randint(15, size=50) def test_size(self): for xp, sp in ((numpy, scipy.sparse), (cupy, sparse)): A = sp.csr_matrix(self.A, dtype=self.dtype) b = xp.array(numpy.append(self.b, [1]), dtype=self.dtype) with pytest.raises(ValueError): sp.linalg.lsqr(A, b) def test_shape(self): for xp, sp in ((numpy, scipy.sparse), (cupy, sparse)): A = sp.csr_matrix(self.A, dtype=self.dtype) b = xp.array(numpy.tile(self.b, (2, 1)), dtype=self.dtype) with pytest.raises(ValueError): sp.linalg.lsqr(A, b) @condition.retry(10) @testing.numpy_cupy_allclose(atol=1e-1, sp_name='sp') def test_csrmatrix(self, xp, sp): A = sp.csr_matrix(self.A, dtype=self.dtype) b = xp.array(self.b, dtype=self.dtype) x = sp.linalg.lsqr(A, b) return x[0] @condition.retry(10) @testing.numpy_cupy_allclose(atol=1e-1, sp_name='sp') def test_ndarray(self, xp, sp): A = xp.array(self.A.A, dtype=self.dtype) b = xp.array(self.b, dtype=self.dtype) x = sp.linalg.lsqr(A, b) return x[0] @testing.parameterize(*testing.product({ 'ord': [None, -numpy.Inf, -2, -1, 0, 1, 2, 3, numpy.Inf, 'fro'], 'dtype': [ numpy.float32, numpy.float64, numpy.complex64, numpy.complex128 ], 'axis': [None, (0, 1), (1, -2)], })) @testing.with_requires('scipy') @testing.gpu class TestMatrixNorm(unittest.TestCase): @testing.numpy_cupy_allclose(rtol=1e-3, atol=1e-4, sp_name='sp', accept_error=(ValueError, NotImplementedError)) def test_matrix_norm(self, xp, sp): a = xp.arange(9, dtype=self.dtype) - 4 b = a.reshape((3, 3)) b = sp.csr_matrix(b, dtype=self.dtype) return sp.linalg.norm(b, ord=self.ord, axis=self.axis) @testing.parameterize(*testing.product({ 'ord': [None, -numpy.Inf, -2, -1, 0, 1, 2, numpy.Inf, 'fro'], 'dtype': [ numpy.float32, numpy.float64, numpy.complex64, numpy.complex128 ], 'transpose': [True, False], 'axis': [0, (1,), (-2,), -1], }) ) @testing.with_requires('scipy') @testing.gpu class TestVectorNorm(unittest.TestCase): @testing.numpy_cupy_allclose(rtol=1e-3, atol=1e-4, sp_name='sp', accept_error=(ValueError,)) def test_vector_norm(self, xp, sp): a = xp.arange(9, dtype=self.dtype) - 4 b = a.reshape((3, 3)) b = sp.csr_matrix(b, dtype=self.dtype) if self.transpose: b = b.T return sp.linalg.norm(b, ord=self.ord, axis=self.axis) # TODO : TestVsNumpyNorm @testing.parameterize(*testing.product({ 'which': ['LM', 'LA'], 'k': [3, 6, 12], 'return_eigenvectors': [True, False], 'use_linear_operator': [True, False], })) @testing.with_requires('scipy') class TestEigsh: n = 30 density = 0.33 tol = {numpy.float32: 1e-5, numpy.complex64: 1e-5, 'default': 1e-12} res_tol = {'f': 1e-5, 'd': 1e-12} def _make_matrix(self, dtype, xp): shape = (self.n, self.n) a = testing.shaped_random(shape, xp, dtype=dtype) mask = testing.shaped_random(shape, xp, dtype='f', scale=1) a[mask > self.density] = 0 a = a * a.conj().T return a def _test_eigsh(self, a, xp, sp): ret = sp.linalg.eigsh(a, k=self.k, which=self.which, return_eigenvectors=self.return_eigenvectors) if self.return_eigenvectors: w, x = ret # Check the residuals to see if eigenvectors are correct. ax_xw = a @ x - xp.multiply(x, w.reshape(1, self.k)) res = xp.linalg.norm(ax_xw) / xp.linalg.norm(w) tol = self.res_tol[numpy.dtype(a.dtype).char.lower()] assert(res < tol) else: w = ret return xp.sort(w) @pytest.mark.parametrize('format', ['csr', 'csc', 'coo']) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=tol, atol=tol, sp_name='sp') def test_sparse(self, format, dtype, xp, sp): a = self._make_matrix(dtype, xp) a = sp.coo_matrix(a).asformat(format) if self.use_linear_operator: a = sp.linalg.aslinearoperator(a) return self._test_eigsh(a, xp, sp) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=tol, atol=tol, sp_name='sp') def test_dense(self, dtype, xp, sp): a = self._make_matrix(dtype, xp) if self.use_linear_operator: a = sp.linalg.aslinearoperator(a) return self._test_eigsh(a, xp, sp) def test_invalid(self): if self.use_linear_operator is True: raise unittest.SkipTest for xp, sp in ((numpy, scipy.sparse), (cupy, sparse)): a = xp.diag(xp.ones((self.n, ), dtype='f')) with pytest.raises(ValueError): sp.linalg.eigsh(xp.ones((2, 1), dtype='f')) with pytest.raises(ValueError): sp.linalg.eigsh(a, k=0) xp, sp = cupy, sparse a = xp.diag(xp.ones((self.n, ), dtype='f')) with pytest.raises(ValueError): sp.linalg.eigsh(xp.ones((1,), dtype='f')) with pytest.raises(TypeError): sp.linalg.eigsh(xp.ones((2, 2), dtype='i')) with pytest.raises(ValueError): sp.linalg.eigsh(a, k=self.n) with pytest.raises(ValueError): sp.linalg.eigsh(a, k=self.k, which='SM') with pytest.raises(ValueError): sp.linalg.eigsh(a, k=self.k, which='SA') @testing.parameterize(*testing.product({ 'shape': [(30, 29), (29, 29), (29, 30)], 'k': [3, 6, 12], 'return_vectors': [True, False], 'use_linear_operator': [True, False], })) @testing.with_requires('scipy') class TestSvds: density = 0.33 tol = {numpy.float32: 1e-4, numpy.complex64: 1e-4, 'default': 1e-12} def _make_matrix(self, dtype, xp): a = testing.shaped_random(self.shape, xp, dtype=dtype) mask = testing.shaped_random(self.shape, xp, dtype='f', scale=1) a[mask > self.density] = 0 return a def _test_svds(self, a, xp, sp): ret = sp.linalg.svds(a, k=self.k, return_singular_vectors=self.return_vectors) if self.return_vectors: u, s, vt = ret # Check the results with u @ s @ vt, as singular vectors don't # necessarily match. return u @ xp.diag(s) @ vt else: return xp.sort(ret) @pytest.mark.parametrize('format', ['csr', 'csc', 'coo']) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=tol, atol=tol, sp_name='sp') def test_sparse(self, format, dtype, xp, sp): a = self._make_matrix(dtype, xp) a = sp.coo_matrix(a).asformat(format) if self.use_linear_operator: a = sp.linalg.aslinearoperator(a) return self._test_svds(a, xp, sp) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=tol, atol=tol, sp_name='sp') def test_dense(self, dtype, xp, sp): a = self._make_matrix(dtype, xp) if self.use_linear_operator: a = sp.linalg.aslinearoperator(a) return self._test_svds(a, xp, sp) def test_invalid(self): if self.use_linear_operator is True: raise unittest.SkipTest for xp, sp in ((numpy, scipy.sparse), (cupy, sparse)): a = xp.diag(xp.ones(self.shape, dtype='f')) with pytest.raises(ValueError): sp.linalg.svds(a, k=0) xp, sp = cupy, sparse a = xp.diag(xp.ones(self.shape, dtype='f')) with pytest.raises(ValueError): sp.linalg.svds(xp.ones((1,), dtype='f')) with pytest.raises(TypeError): sp.linalg.svds(xp.ones((2, 2), dtype='i')) with pytest.raises(ValueError): sp.linalg.svds(a, k=min(self.shape)) with pytest.raises(ValueError): sp.linalg.svds(a, k=self.k, which='SM') @testing.parameterize(*testing.product({ 'x0': [None, 'ones'], 'M': [None, 'jacobi'], 'atol': [None, 'select-by-dtype'], 'b_ndim': [1, 2], 'use_linear_operator': [False, True], })) @testing.with_requires('scipy') @testing.gpu class TestCg: n = 30 density = 0.33 _atol = {'f': 1e-5, 'd': 1e-12} def _make_matrix(self, dtype, xp): dtype = numpy.dtype(dtype) shape = (self.n, 10) a = testing.shaped_random(shape, xp, dtype=dtype.char.lower(), scale=1) if dtype.char in 'FD': a = a + 1j * testing.shaped_random( shape, xp, dtype=dtype.char.lower(), scale=1) mask = testing.shaped_random(shape, xp, dtype='f', scale=1) a[mask > self.density] = 0 a = a @ a.conj().T a = a + xp.diag(xp.ones((self.n,), dtype=dtype.char.lower())) M = None if self.M == 'jacobi': M = xp.diag(1.0 / xp.diag(a)) return a, M def _make_normalized_vector(self, dtype, xp): b = testing.shaped_random((self.n,), xp, dtype=dtype) return b / xp.linalg.norm(b) def _test_cg(self, dtype, xp, sp, a, M): dtype = numpy.dtype(dtype) b = self._make_normalized_vector(dtype, xp) if self.b_ndim == 2: b = b.reshape(self.n, 1) x0 = None if self.x0 == 'ones': x0 = xp.ones((self.n,), dtype=dtype) atol = None if self.atol == 'select-by-dtype': atol = self._atol[dtype.char.lower()] if atol is None and xp == numpy: # Note: If atol is None or not specified, Scipy (at least 1.5.3) # raises DeprecationWarning with pytest.deprecated_call(): return sp.linalg.cg(a, b, x0=x0, M=M, atol=atol) else: return sp.linalg.cg(a, b, x0=x0, M=M, atol=atol) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_dense(self, dtype, xp, sp): a, M = self._make_matrix(dtype, xp) if self.use_linear_operator: a = sp.linalg.aslinearoperator(a) if M is not None: M = sp.linalg.aslinearoperator(M) return self._test_cg(dtype, xp, sp, a, M) @pytest.mark.parametrize('format', ['csr', 'csc', 'coo']) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_sparse(self, format, dtype, xp, sp): a, M = self._make_matrix(dtype, xp) a = sp.coo_matrix(a).asformat(format) if self.use_linear_operator: a = sp.linalg.aslinearoperator(a) if M is not None: M = sp.coo_matrix(M).asformat(format) if self.use_linear_operator: M = sp.linalg.aslinearoperator(M) return self._test_cg(dtype, xp, sp, a, M) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_empty(self, dtype, xp, sp): if not (self.x0 is None and self.M is None and self.atol is None and self.use_linear_operator is False): raise unittest.SkipTest a = xp.empty((0, 0), dtype=dtype) b = xp.empty((0,), dtype=dtype) if self.atol is None and xp == numpy: # Note: If atol is None or not specified, Scipy (at least 1.5.3) # raises DeprecationWarning with pytest.deprecated_call(): return sp.linalg.cg(a, b) else: return sp.linalg.cg(a, b) @testing.for_dtypes('fdFD') def test_callback(self, dtype): if not (self.x0 is None and self.M is None and self.atol is None and self.use_linear_operator is False): raise unittest.SkipTest xp, sp = cupy, sparse a, M = self._make_matrix(dtype, xp) b = self._make_normalized_vector(dtype, xp) is_called = False def callback(x): print(xp.linalg.norm(b - a @ x)) nonlocal is_called is_called = True sp.linalg.cg(a, b, callback=callback) assert is_called def test_invalid(self): if not (self.x0 is None and self.M is None and self.atol is None and self.use_linear_operator is False): raise unittest.SkipTest for xp, sp in ((numpy, scipy.sparse), (cupy, sparse)): a, M = self._make_matrix('f', xp) b = self._make_normalized_vector('f', xp) ng_a = xp.ones((self.n, ), dtype='f') with pytest.raises(ValueError): sp.linalg.cg(ng_a, b, atol=self.atol) ng_a = xp.ones((self.n, self.n + 1), dtype='f') with pytest.raises(ValueError): sp.linalg.cg(ng_a, b, atol=self.atol) ng_a = xp.ones((self.n, self.n, 1), dtype='f') with pytest.raises(ValueError): sp.linalg.cg(ng_a, b, atol=self.atol) ng_b = xp.ones((self.n + 1,), dtype='f') with pytest.raises(ValueError): sp.linalg.cg(a, ng_b, atol=self.atol) ng_b = xp.ones((self.n, 2), dtype='f') with pytest.raises(ValueError): sp.linalg.cg(a, ng_b, atol=self.atol) ng_x0 = xp.ones((self.n + 1,), dtype='f') with pytest.raises(ValueError): sp.linalg.cg(a, b, x0=ng_x0, atol=self.atol) ng_M = xp.diag(xp.ones((self.n + 1,), dtype='f')) with pytest.raises(ValueError): sp.linalg.cg(a, b, M=ng_M, atol=self.atol) xp, sp = cupy, sparse b = self._make_normalized_vector('f', xp) ng_a = xp.ones((self.n, self.n), dtype='i') with pytest.raises(TypeError): sp.linalg.cg(ng_a, b, atol=self.atol) @testing.parameterize(*testing.product({ 'x0': [None, 'ones'], 'M': [None, 'jacobi'], 'atol': [None, 'select-by-dtype'], 'b_ndim': [1, 2], 'restart': [None, 10], 'use_linear_operator': [False, True], })) @testing.with_requires('scipy>=1.4') @testing.gpu class TestGmres: n = 30 density = 0.2 _atol = {'f': 1e-5, 'd': 1e-12} # TODO(kataoka): Fix the `lstsq` call in CuPy's `gmres` @pytest.fixture(autouse=True) def ignore_futurewarning(self): with warnings.catch_warnings(): warnings.filterwarnings( 'ignore', '`rcond` parameter will change', FutureWarning, ) yield def _make_matrix(self, dtype, xp): dtype = numpy.dtype(dtype) shape = (self.n, self.n) a = testing.shaped_random(shape, xp, dtype=dtype, scale=1) mask = testing.shaped_random(shape, xp, dtype='f', scale=1) a[mask > self.density] = 0 diag = xp.diag(testing.shaped_random( (self.n,), xp, dtype=dtype.char.lower(), scale=1) + 1) a[diag > 0] = 0 a = a + diag M = None if self.M == 'jacobi': M = xp.diag(1.0 / xp.diag(a)) return a, M def _make_normalized_vector(self, dtype, xp): b = testing.shaped_random((self.n,), xp, dtype=dtype, scale=1) return b / xp.linalg.norm(b) def _test_gmres(self, dtype, xp, sp, a, M): dtype = numpy.dtype(dtype) b = self._make_normalized_vector(dtype, xp) if self.b_ndim == 2: b = b.reshape(self.n, 1) x0 = None if self.x0 == 'ones': x0 = xp.ones((self.n,), dtype=dtype) atol = None if self.atol == 'select-by-dtype': atol = self._atol[dtype.char.lower()] if atol is None and xp == numpy: # Note: If atol is None or not specified, Scipy (at least 1.5.3) # raises DeprecationWarning with pytest.deprecated_call(): return sp.linalg.gmres( a, b, x0=x0, restart=self.restart, M=M, atol=atol) else: return sp.linalg.gmres( a, b, x0=x0, restart=self.restart, M=M, atol=atol) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_dense(self, dtype, xp, sp): a, M = self._make_matrix(dtype, xp) if self.use_linear_operator: a = sp.linalg.aslinearoperator(a) if M is not None: M = sp.linalg.aslinearoperator(M) return self._test_gmres(dtype, xp, sp, a, M) @pytest.mark.parametrize('format', ['csr', 'csc', 'coo']) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_sparse(self, format, dtype, xp, sp): a, M = self._make_matrix(dtype, xp) a = sp.coo_matrix(a).asformat(format) if self.use_linear_operator: a = sp.linalg.aslinearoperator(a) if M is not None: M = sp.coo_matrix(M).asformat(format) if self.use_linear_operator: M = sp.linalg.aslinearoperator(M) return self._test_gmres(dtype, xp, sp, a, M) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_empty(self, dtype, xp, sp): if not (self.x0 is None and self.M is None and self.atol is None and self.restart is None and self.use_linear_operator is False): raise unittest.SkipTest a = xp.empty((0, 0), dtype=dtype) b = xp.empty((0,), dtype=dtype) if self.atol is None and xp == numpy: # Note: If atol is None or not specified, Scipy (at least 1.5.3) # raises DeprecationWarning with pytest.deprecated_call(): return sp.linalg.gmres(a, b) else: return sp.linalg.gmres(a, b) @testing.for_dtypes('fdFD') def test_callback(self, dtype): if not (self.x0 is None and self.M is None and self.atol is None and self.restart is None and self.use_linear_operator is False): raise unittest.SkipTest xp, sp = cupy, sparse a, M = self._make_matrix(dtype, xp) b = self._make_normalized_vector(dtype, xp) is_called = False def callback1(x): print(xp.linalg.norm(b - a @ x)) nonlocal is_called is_called = True sp.linalg.gmres(a, b, callback=callback1, callback_type='x') assert is_called is_called = False def callback2(pr_norm): print(pr_norm) nonlocal is_called is_called = True sp.linalg.gmres(a, b, callback=callback2, callback_type='pr_norm') assert is_called def test_invalid(self): if not (self.x0 is None and self.M is None and self.atol is None and self.restart is None and self.use_linear_operator is False): raise unittest.SkipTest for xp, sp in ((numpy, scipy.sparse), (cupy, sparse)): a, M = self._make_matrix('f', xp) b = self._make_normalized_vector('f', xp) ng_a = xp.ones((self.n, ), dtype='f') with pytest.raises(ValueError): sp.linalg.gmres(ng_a, b) ng_a = xp.ones((self.n, self.n + 1), dtype='f') with pytest.raises(ValueError): sp.linalg.gmres(ng_a, b) ng_a = xp.ones((self.n, self.n, 1), dtype='f') with pytest.raises(ValueError): sp.linalg.gmres(ng_a, b) ng_b = xp.ones((self.n + 1,), dtype='f') with pytest.raises(ValueError): sp.linalg.gmres(a, ng_b) ng_b = xp.ones((self.n, 2), dtype='f') with pytest.raises(ValueError): sp.linalg.gmres(a, ng_b) ng_x0 = xp.ones((self.n + 1,), dtype='f') with pytest.raises(ValueError): sp.linalg.gmres(a, b, x0=ng_x0) ng_M = xp.diag(xp.ones((self.n + 1,), dtype='f')) with pytest.raises(ValueError): sp.linalg.gmres(a, b, M=ng_M) ng_callback_type = '?' with pytest.raises(ValueError): sp.linalg.gmres(a, b, callback_type=ng_callback_type) xp, sp = cupy, sparse b = self._make_normalized_vector('f', xp) ng_a = xp.ones((self.n, self.n), dtype='i') with pytest.raises(TypeError): sp.linalg.gmres(ng_a, b) @testing.parameterize(*testing.product({ 'dtype': [numpy.float32, numpy.float64, numpy.complex64, numpy.complex128], 'outer_modification': [ 'normal', 'transpose', 'hermitian'], 'inner_modification': [ 'normal', 'sparse', 'linear_operator', 'class_matvec', 'class_matmat'], 'M': [1, 6], 'N': [1, 7], })) @testing.gpu @testing.with_requires('scipy>=1.4') class TestLinearOperator(unittest.TestCase): # modified from scipy # class that defines parametrized custom cases # adapted from scipy's analogous tests def _inner_cases(self, xp, sp, A): # creating base-matrix-like class with default # matrix-vector and adjoint-matrix-vector impl def mv(x): return A.dot(x) def rmv(x): return A.T.conj().dot(x) # defining the user-defined classes class BaseMatlike(sp.linalg.LinearOperator): def __init__(self): self.dtype = A.dtype self.shape = A.shape def _adjoint(self): shape = self.shape[1], self.shape[0] return sp.linalg.LinearOperator( matvec=rmv, rmatvec=mv, dtype=self.dtype, shape=shape) class HasMatvec(BaseMatlike): def _matvec(self, x): return mv(x) class HasMatmat(BaseMatlike): def _matmat(self, x): return mv(x) if self.inner_modification == 'normal': return sp.linalg.aslinearoperator(A) if self.inner_modification == 'sparse': # TODO(asi1024): Fix to return contiguous matrix. return sp.linalg.aslinearoperator(sp.csr_matrix(A)) if self.inner_modification == 'linear_operator': return sp.linalg.LinearOperator( matvec=mv, rmatvec=rmv, dtype=A.dtype, shape=A.shape) if self.inner_modification == 'class_matvec': return HasMatvec() if self.inner_modification == 'class_matmat': return HasMatmat() assert False def _generate_linear_operator(self, xp, sp): A = testing.shaped_random((self.M, self.N), xp, self.dtype) if self.outer_modification == 'normal': return self._inner_cases(xp, sp, A) if self.outer_modification == 'transpose': # From SciPy 1.4 (scipy/scipy#9064) return self._inner_cases(xp, sp, A.T).T if self.outer_modification == 'hermitian': return self._inner_cases(xp, sp, A.T.conj()).H assert False @testing.numpy_cupy_allclose(sp_name='sp', rtol=1e-6) def test_matvec(self, xp, sp): linop = self._generate_linear_operator(xp, sp) x_1dim = testing.shaped_random((self.N,), xp, self.dtype) x_2dim = testing.shaped_random((self.N, 1), xp, self.dtype) return linop.matvec(x_1dim), linop.matvec(x_2dim) @testing.numpy_cupy_allclose( sp_name='sp', rtol=1e-6, contiguous_check=False) def test_matmat(self, xp, sp): linop = self._generate_linear_operator(xp, sp) x = testing.shaped_random((self.N, 8), xp, self.dtype) return linop.matmat(x) @testing.numpy_cupy_allclose(sp_name='sp', rtol=1e-6) def test_rmatvec(self, xp, sp): linop = self._generate_linear_operator(xp, sp) x_1dim = testing.shaped_random((self.M,), xp, self.dtype) x_2dim = testing.shaped_random((self.M, 1), xp, self.dtype) return linop.rmatvec(x_1dim), linop.rmatvec(x_2dim) @testing.numpy_cupy_allclose( sp_name='sp', rtol=1e-6, contiguous_check=False) def test_rmatmat(self, xp, sp): linop = self._generate_linear_operator(xp, sp) x = testing.shaped_random((self.M, 8), xp, self.dtype) return linop.rmatmat(x) @testing.numpy_cupy_allclose( sp_name='sp', rtol=1e-6, contiguous_check=False) def test_dot(self, xp, sp): linop = self._generate_linear_operator(xp, sp) x0 = testing.shaped_random((self.N,), xp, self.dtype) x1 = testing.shaped_random((self.N, 1), xp, self.dtype) x2 = testing.shaped_random((self.N, 8), xp, self.dtype) return linop.dot(x0), linop.dot(x1), linop.dot(x2) @testing.numpy_cupy_allclose( sp_name='sp', rtol=1e-6, contiguous_check=False) def test_mul(self, xp, sp): linop = self._generate_linear_operator(xp, sp) x0 = testing.shaped_random((self.N,), xp, self.dtype) x1 = testing.shaped_random((self.N, 1), xp, self.dtype) x2 = testing.shaped_random((self.N, 8), xp, self.dtype) return linop * x0, linop * x1, linop * x2 @testing.parameterize(*testing.product({ 'lower': [True, False], 'unit_diagonal': [True, False], 'nrhs': [None, 1, 4], 'order': ['C', 'F'] })) @testing.with_requires('scipy>=1.4.0') @testing.gpu class TestSpsolveTriangular: n = 10 density = 0.5 def _make_matrix(self, dtype, xp): a_shape = (self.n, self.n) a = testing.shaped_random(a_shape, xp, dtype=dtype, scale=1) mask = testing.shaped_random(a_shape, xp, dtype='f', scale=1) a[mask > self.density] = 0 diag = xp.diag(xp.ones((self.n,), dtype=dtype)) a = a + diag if self.lower: a = xp.tril(a) else: a = xp.triu(a) b_shape = (self.n,) if self.nrhs is None else (self.n, self.nrhs) b = testing.shaped_random(b_shape, xp, dtype=dtype, order=self.order) return a, b def _test_spsolve_triangular(self, sp, a, b): return sp.linalg.spsolve_triangular(a, b, lower=self.lower, unit_diagonal=self.unit_diagonal) @pytest.mark.parametrize('format', ['csr', 'csc', 'coo']) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_sparse(self, format, dtype, xp, sp): a, b = self._make_matrix(dtype, xp) a = sp.coo_matrix(a).asformat(format) return self._test_spsolve_triangular(sp, a, b) def test_invalid_cases(self): dtype = 'float64' if not (self.lower and self.unit_diagonal and self.nrhs == 4 and self.order == 'C'): raise unittest.SkipTest for xp, sp in ((numpy, scipy.sparse), (cupy, sparse)): a, b = self._make_matrix(dtype, xp) a = sp.csr_matrix(a) # a is not a square matrix ng_a = sp.csr_matrix(xp.ones((self.n + 1, self.n), dtype=dtype)) with pytest.raises(ValueError): self._test_spsolve_triangular(sp, ng_a, b) # b is not a 1D/2D matrix ng_b = xp.ones((1, self.n, self.nrhs), dtype=dtype) with pytest.raises(ValueError): self._test_spsolve_triangular(sp, a, ng_b) # mismatched shape ng_b = xp.ones((self.n + 1, self.nrhs), dtype=dtype) with pytest.raises(ValueError): self._test_spsolve_triangular(sp, a, ng_b) xp, sp = cupy, sparse a, b = self._make_matrix(dtype, xp) a = sp.csr_matrix(a) # unsupported dtype ng_a = sp.csr_matrix(xp.ones((self.n, self.n), dtype='bool')) with pytest.raises(TypeError): self._test_spsolve_triangular(sp, ng_a, b) # a is not spmatrix ng_a = xp.ones((self.n, self.n), dtype=dtype) with pytest.raises(TypeError): self._test_spsolve_triangular(sp, ng_a, b) # b is not cupy ndarray ng_b = numpy.ones((self.n, self.nrhs), dtype=dtype) with pytest.raises(TypeError): self._test_spsolve_triangular(sp, a, ng_b) @testing.parameterize(*testing.product({ 'tol': [0, 1e-5], 'reorder': [0, 1, 2, 3], })) @testing.with_requires('scipy') class TestCsrlsvqr(unittest.TestCase): n = 8 density = 0.75 _test_tol = {'f': 1e-5, 'd': 1e-12} def _setup(self, dtype): dtype = numpy.dtype(dtype) a_shape = (self.n, self.n) a = testing.shaped_random(a_shape, numpy, dtype=dtype, scale=2/self.n) a_mask = testing.shaped_random(a_shape, numpy, dtype='f', scale=1) a[a_mask > self.density] = 0 a_diag = numpy.diag(numpy.ones((self.n,), dtype=dtype)) a = a + a_diag b = testing.shaped_random((self.n,), numpy, dtype=dtype) test_tol = self._test_tol[dtype.char.lower()] return a, b, test_tol @testing.for_dtypes('fdFD') def test_csrlsvqr(self, dtype): if not cupy.cusolver.check_availability('csrlsvqr'): unittest.SkipTest('csrlsvqr is not available') a, b, test_tol = self._setup(dtype) ref_x = numpy.linalg.solve(a, b) cp_a = cupy.array(a) sp_a = cupyx.scipy.sparse.csr_matrix(cp_a) cp_b = cupy.array(b) x = cupy.cusolver.csrlsvqr(sp_a, cp_b, tol=self.tol, reorder=self.reorder) cupy.testing.assert_allclose(x, ref_x, rtol=test_tol, atol=test_tol) @testing.parameterize(*testing.product({ 'format': ['csr', 'csc', 'coo'], 'nrhs': [None, 1, 4], 'order': ['C', 'F'] })) @unittest.skipUnless(scipy_available, 'requires scipy') @testing.gpu class TestSplu(unittest.TestCase): n = 10 density = 0.5 def _make_matrix(self, dtype, xp, sp, density=None): if density is None: density = self.density a_shape = (self.n, self.n) a = testing.shaped_random(a_shape, xp, dtype=dtype, scale=2 / self.n) mask = testing.shaped_random(a_shape, xp, dtype='f', scale=1) a[mask > density] = 0 diag = xp.diag(xp.ones((self.n,), dtype=dtype)) a = a + diag if self.format == 'csr': a = sp.csr_matrix(a) elif self.format == 'csc': a = sp.csc_matrix(a) elif self.format == 'coo': a = sp.coo_matrix(a) b_shape = (self.n,) if self.nrhs is None else (self.n, self.nrhs) b = testing.shaped_random(b_shape, xp, dtype=dtype, order=self.order) return a, b @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_splu(self, dtype, xp, sp): a, b = self._make_matrix(dtype, xp, sp) return sp.linalg.splu(a).solve(b) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_factorized(self, dtype, xp, sp): a, b = self._make_matrix(dtype, xp, sp) return sp.linalg.factorized(a)(b) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_spilu(self, dtype, xp, sp): a, b = self._make_matrix(dtype, xp, sp) return sp.linalg.spilu(a).solve(b) @testing.for_dtypes('fdFD') @testing.numpy_cupy_allclose(rtol=1e-5, atol=1e-5, sp_name='sp') def test_spilu_0(self, dtype, xp, sp): # Note: We don't know how to compute ILU(0) with # scipy.sprase.linalg.spilu, so in this test we use a matrix where the # format is a sparse matrix but is actually a dense matrix. a, b = self._make_matrix(dtype, xp, sp, density=1.0) if xp == cupy: # Set fill_factor=1 to computes ILU(0) using cuSparse ainv = sp.linalg.spilu(a, fill_factor=1) else: ainv = sp.linalg.spilu(a) return ainv.solve(b)
import matplotlib.pyplot as plt from shapely.geometry import * from shapely.geometry.base import * from hybrid.resource import ( SolarResource, WindResource, ElectricityPrices ) from hybrid.layout.plot_tools import plot_shape from hybrid.log import hybrid_logger as logger from hybrid.keys import set_nrel_key_dot_env def plot_site(verts, plt_style, labels): for i in range(len(verts)): if i == 0: plt.plot([verts[0][0], verts[len(verts) - 1][0]], [verts[0][1], verts[len(verts) - 1][1]], plt_style, label=labels) else: plt.plot([verts[i][0], verts[i - 1][0]], [verts[i][1], verts[i - 1][1]], plt_style) plt.grid() class SiteInfo: def __init__(self, data, solar_resource_file="", wind_resource_file="", grid_resource_file=""): set_nrel_key_dot_env() self.data = data self.vertices = np.array([np.array(v) for v in data['site_boundaries']['verts']]) self.polygon: Polygon = Polygon(self.vertices) self.valid_region = self.polygon.buffer(1e-8) if 'lat' not in data or 'lon' not in data: raise ValueError("SiteInfo requires lat and lon") self.lat = data['lat'] self.lon = data['lon'] if 'year' not in data: data['year'] = 2012 self.solar_resource = SolarResource(data['lat'], data['lon'], data['year'], filepath=solar_resource_file) # TODO: allow hub height to be used as an optimization variable self.wind_resource = WindResource(data['lat'], data['lon'], data['year'], wind_turbine_hub_ht=80, filepath=wind_resource_file) self.elec_prices = ElectricityPrices(data['lat'], data['lon'], data['year'], filepath=grid_resource_file) self.n_timesteps = len(self.solar_resource.data['gh']) // 8760 * 8760 self.n_periods_per_day = self.n_timesteps // 365 # TODO: Does not handle leap years well self.interval = (60*24)/self.n_periods_per_day self.urdb_label = data['urdb_label'] if 'urdb_label' in data.keys() else None logger.info("Set up SiteInfo with solar and wind resource files: {}, {}".format(self.solar_resource.filename, self.wind_resource.filename)) @property def boundary(self) -> BaseGeometry: # TODO: remove boundaries of interior holes # return self.polygon.boundary.difference(self.polygon.interiors) return self.polygon.exterior @property def bounding_box(self) -> np.ndarray: return np.array([np.min(self.vertices, 0), np.max(self.vertices, 0)]) @property def center(self) -> Point: bounding_box = self.bounding_box return (bounding_box[1] - bounding_box[0]) * .5 def plot(self, figure=None, axes=None, border_color=(0, 0, 0), alpha=0.95, linewidth=4.0 ): bounds = self.polygon.bounds site_sw_bound = np.array([bounds[0], bounds[1]]) site_ne_bound = np.array([bounds[2], bounds[3]]) site_center = .5 * (site_sw_bound + site_ne_bound) max_delta = max(bounds[2] - bounds[0], bounds[3] - bounds[1]) reach = (max_delta / 2) * 1.3 min_plot_bound = site_center - reach max_plot_bound = site_center + reach if not figure and not axes: figure = plt.figure(1) axes = figure.add_subplot(111) axes.set_aspect('equal') axes.set(xlim=(min_plot_bound[0], max_plot_bound[0]), ylim=(min_plot_bound[1], max_plot_bound[1])) plot_shape(figure, axes, self.polygon, '--', color=border_color, alpha=alpha, linewidth=linewidth / 2) plt.tick_params(which='both', labelsize=15) plt.xlabel('x (m)', fontsize=15) plt.ylabel('y (m)', fontsize=15) return figure, axes
# -*- coding: utf8 -*-fr # pylint: disable=invalid-name """ ItopapiDeliveryModel is an abstraction of Organization representation on iTop """ from itopapi.model.prototype import ItopapiPrototype from itopapi.model.features.hasOrganization import HasOrganization __version__ = '1.0' __authors__ = ['Julien Nauroy <julien.nauroy@u-psud.fr>'] class ItopapiDeliveryModel(ItopapiPrototype, HasOrganization): # Configuration specific to itop itop = { # Name of the class in Itop 'name': 'DeliveryModel', # Define which fields to save when creating or updating from the python API 'save': ['name', 'description'], 'foreign_keys': [ HasOrganization.foreign_key, ], 'list_types': { 'contacts_list': 'contact_id_finalclass_recall' }, } @staticmethod def find(key): """ Retrieve one or more instance of ApplicationSolution with the given key or criteria """ return ItopapiPrototype.find(ItopapiDeliveryModel, key) @staticmethod def find_by_name(name): return ItopapiPrototype.find_by_name(ItopapiDeliveryModel, name) @staticmethod def find_all(): """ Retrieve all instance of OSFamily """ return ItopapiPrototype.find_all(ItopapiDeliveryModel) """ ItopapiDeliveryModel is an object that represents an Application Solution from iTop """ def __init__(self, data=None): super(ItopapiDeliveryModel, self).__init__(data) self.description = None ################################## # Lists # ################################## self.customers_list = [] self.contacts_list = []
import pytest from creator.studies.factories import StudyFactory from creator.studies.models import Study from creator.events.models import Event from creator.tasks import setup_slack_task def test_setup_slack_success(db, mocker, settings): """ Test that the setup task operates correctly when the setup succeeds """ settings.FEAT_SLACK_CREATE_CHANNELS = True settings.SLACK_TOKEN = "ABC" study = StudyFactory() mock_setup = mocker.patch("creator.tasks.setup_slack") assert Event.objects.count() == 0 setup_slack_task(study.kf_id) assert mock_setup.call_count == 1 assert Event.objects.count() == 2 assert Event.objects.filter(event_type="SL_STR").count() == 1 assert Event.objects.filter(event_type="SL_SUC").count() == 1 def test_setup_slack_no_study(db, mocker, settings): """ Test that correct exception is raised if the study does not exist """ with pytest.raises(Study.DoesNotExist): setup_slack_task("ABC") def test_setup_slack_fail(db, mocker, settings): """ Test that the setup task operates correctly when the setup fails """ settings.FEAT_SLACK_CREATE_CHANNELS = True settings.SLACK_TOKEN = "ABC" study = StudyFactory() mock_setup = mocker.patch("creator.tasks.setup_slack") mock_setup.side_effect = Exception("error making channel") assert Event.objects.count() == 0 setup_slack_task(study.kf_id) assert mock_setup.call_count == 1 assert Event.objects.count() == 2 assert Event.objects.filter(event_type="SL_STR").count() == 1 assert Event.objects.filter(event_type="SL_ERR").count() == 1
import os import unittest import importlib import logging import zipfile from nose.tools import raises from mock import patch, MagicMock import datman import datman.xnat import datman.scanid # Disable all logging for the duration of testing logging.disable(logging.CRITICAL) upload = importlib.import_module('bin.dm_xnat_upload') FIXTURE = "tests/fixture_xnat_upload/" class CheckFilesExist(unittest.TestCase): ident = datman.scanid.parse("STUDY_SITE_9999_01_01") archive = "some_dir/STUDY_SITE_9999_01_01.zip" session = FIXTURE + "xnat_session.txt" session_no_resources = FIXTURE + "xnat_session_missing_resources.txt" session_missing_data = FIXTURE + "xnat_session_missing_scan_data.txt" archive_scan_uids = [ '1.2.840.113619.2.336.4120.8413787.19465.1412083372.445', '1.2.840.113619.2.336.4120.8413787.19465.1412083372.444', '1.2.840.113619.2.336.4120.8413787.19465.1412083372.447', '1.2.840.113619.2.336.4120.8413787.19465.1412083372.446', '1.2.840.113619.2.336.4120.8413787.19465.1412083372.440', '1.2.840.113619.2.80.142631515.25030.1412106144.3.0.2', '1.2.840.113619.2.336.4120.8413787.19465.1412083372.443', '1.2.840.113619.2.336.4120.8413787.19465.1412083372.442', '1.2.840.113619.2.5.18242516414121059301412105930313000', '1.2.840.113619.2.80.142631515.25030.1412106138.1.0.2'] archive_experiment_id = '1.2.840.113619.6.336.' \ '254801968553430904107911738210738061468' @raises(Exception) @patch('bin.dm_xnat_upload.missing_resource_data') @patch('datman.utils.get_archive_headers') def test_raises_exception_if_scan_uids_mismatch(self, mock_headers, mock_missing_resources): # Set up mock_headers.return_value = self.__generate_mock_headers(bad_id=True) mock_missing_resources.return_value = False xnat_session = self.__get_xnat_session(self.session) # Run files_exist = upload.check_files_exist(self.archive, xnat_session, self.ident) # Should raise an exception, so assertion is never reached assert False ##### To do: # Test that false is returned when a resource is missing, or when a scan is # missing def __generate_mock_headers(self, bad_id=False): headers = {} for num, item in enumerate(self.archive_scan_uids): scan = MagicMock() scan.SeriesInstanceUID = item scan.StudyInstanceUID = self.archive_experiment_id headers[num] = scan if bad_id: bad_scan = headers[0] bad_scan.StudyInstanceUID = '1.1.111.111111.1.111.111111111111111' headers[0] = bad_scan return headers def __get_xnat_session(self, text_file): with open(text_file, 'r') as session_data: xnat_session = eval(session_data.read()) return xnat_session class GetResources(unittest.TestCase): name_list = ['some_zipfile_name/', 'some_zipfile_name/dicom_file1.dcm', 'some_zipfile_name/dicom_file2.dcm', 'some_zipfile_name/bvals.txt', 'some_zipfile_name/gradOrs.txt', 'some_zipfile_name/dicom_file3.dcm', 'some_zipfile_name/Name_info.txt', 'some_zipfile_name/subjectid_EmpAcc.log'] @patch('bin.dm_xnat_upload.is_dicom') @patch('io.BytesIO') def test_returns_all_resources(self, mock_IO, mock_isdicom): # Set up inputs archive_zip = MagicMock(spec=zipfile.ZipFile) archive_zip.return_value.namelist.return_value = self.name_list expected_resources = ['some_zipfile_name/bvals.txt', 'some_zipfile_name/gradOrs.txt', 'some_zipfile_name/Name_info.txt', 'some_zipfile_name/subjectid_EmpAcc.log'] # Stop get_resources from verifying 'dicoms' in the mock zipfile archive_zip.return_value.read.side_effect = lambda x: x mock_IO.side_effect = lambda x: x mock_isdicom.side_effect = lambda x: True if '.dcm' in x else False actual_resources = upload.get_resources(archive_zip.return_value) assert sorted(actual_resources) == sorted(expected_resources)
from typing import List, Tuple import copy def addGuards(lines: List[str]) -> List[List[str]]: line_len = len(lines[0]) + 2 array = [['.'] * line_len ] for i, line in enumerate(lines): array.append(list('.' + line + '.')) array.append(['.'] * line_len) return array def sumOfNeighbours(array: List[List[str]], i: int, j: int) -> int: neighbours = range(-1, 2) neighbour_sum = 0 for di in neighbours: for dj in neighbours: if (di != 0 or dj != 0) and array[i + di][j + dj] == '#': neighbour_sum += 1 return neighbour_sum # true if something changed def nextStep(array: List[List[str]], occupied_threshold: int) -> Tuple[List[List[str]], bool, int]: m = len(array[0]) - 2 n = len(array) - 2 buffor = copy.deepcopy(array) occupied = 0 for i in range(1, n + 1): for j in range(1, m + 1): if array[i][j] == '.': buffor[i][j] = array[i][j] else: neighbour_sum = sumOfNeighbours(array, i, j) if array[i][j] == 'L' and neighbour_sum == 0: buffor[i][j] = '#' elif array[i][j] == '#' and neighbour_sum >= occupied_threshold: buffor[i][j] = 'L' else: buffor[i][j] = array[i][j] if buffor[i][j] == '#': occupied += 1 return buffor, buffor != array, occupied def main() -> None: with open("11.in") as file: f = file.read() lines = f.splitlines() with_guards = addGuards(lines) steps = -1 different = True while different: with_guards, different, occupied = nextStep(with_guards, 4) steps += 1 print(occupied) # main()
# -*- coding: UTF-8 -*- # This file is part of the jetson_stats package (https://github.com/rbonghi/jetson_stats or http://rnext.it). # Copyright (c) 2019 Raffaello Bonghi. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # control command line import curses # Graphics elements from .lib.common import (check_curses, strfdelta, plot_name_info, size_min, label_freq, jetson_clocks_gui, nvp_model_gui) from .lib.linear_gauge import linear_gauge, GaugeName @check_curses def plot_CPUs(stdscr, offest, list_cpus, width): max_bar = int(float(width) / 2.0) for idx, name in enumerate(sorted(list_cpus)): cpu = list_cpus[name] # Split in double list start = max_bar if idx >= len(list_cpus) / 2 and len(list_cpus) > 4 else 0 off_idx = idx - len(list_cpus) / 2 if idx >= len(list_cpus) / 2 and len(list_cpus) > 4 else idx # Check if exist governor and add in percent name percent = "" if 'val' in cpu and 'governor' in cpu: percent = "{gov} -{val: 4}%".format(gov=cpu['governor'].capitalize(), val=cpu['val']) # Show linear gauge linear_gauge( stdscr, offset=int(offest + off_idx), start=start, size=max_bar, name=GaugeName(name, color=curses.color_pair(6)), value=cpu.get('val', 0), status='ON' if cpu else 'OFF', percent=percent, label=label_freq(cpu['frq'], start='k') if 'frq' in cpu else '') # Size block CPU return int(offest + idx / 2 + 1) if len(list_cpus) > 4 else int(offest + idx + 1) @check_curses def plot_temperatures(stdscr, start, offset, width, height, jetson): start = start + (width - 17) // 2 # Define color temperatures color_options = { 60: curses.color_pair(1), 40: curses.color_pair(3), 20: curses.A_NORMAL, } list_options = sorted(color_options.keys(), reverse=True) # Plot title stdscr.addstr(offset, start - 1, " [Sensor] ", curses.A_BOLD) stdscr.addstr(offset, start + 11, " [Temp] ", curses.A_BOLD) # Plot name and temperatures for idx, name in enumerate(sorted(jetson.temperature)): # Print temperature name value = jetson.temperature[name] stdscr.addstr(offset + idx + 1, start, ("{name:<7}").format(name=name)) # Set color temperature color = curses.A_NORMAL for k in list_options: if value >= k: color = color_options[k] break # Print temperature value stdscr.addstr(offset + idx + 1, start + offset // 2 + 3, ("{val:8.2f}C").format(val=value), color) @check_curses def plot_watts(stdscr, start, offset, width, height, jetson): start = start + (width - 6) // 2 # Plot title stdscr.addstr(offset, start - 11, " [Power/mW] ", curses.A_BOLD) stdscr.addstr(offset, start + 2, " [Cur] ", curses.A_BOLD) stdscr.addstr(offset, start + 9, " [Avr] ", curses.A_BOLD) # Plot watts total, power = jetson.power for idx, name in enumerate(sorted(power)): value = power[name] stdscr.addstr(offset + idx + 1, start - 10, name, curses.A_NORMAL) stdscr.addstr(offset + idx + 1, start + 3, str(value['cur']), curses.A_NORMAL) stdscr.addstr(offset + idx + 1, start + 10, str(value['avg']), curses.A_NORMAL) # Plot totals before finishing stdscr.addstr(offset + idx + 2, start - 10, 'ALL', curses.A_BOLD) stdscr.addstr(offset + idx + 2, start + 3, str(total['cur']), curses.A_BOLD) stdscr.addstr(offset + idx + 2, start + 10, str(total['avg']), curses.A_BOLD) @check_curses def compact_info(stdscr, start, offset, width, height, jetson): # Title menu stdscr.addstr(offset, start + (width - 7) // 2, " [info] ", curses.A_BOLD) counter = 1 # Model board information uptime_string = strfdelta(jetson.uptime, "{days} days {hours}:{minutes}:{seconds}") plot_name_info(stdscr, offset + counter, start + 1, "UpT", uptime_string) counter += 1 # FAN status ctrl = "Ta" if jetson.fan.auto else "Tm" if jetson.fan.speed is not None: label = "{ctrl}={target: >3.0f}%".format(ctrl=ctrl, target=jetson.fan.speed) else: label = "{ctrl}".format(ctrl=ctrl) linear_gauge( stdscr, offset=offset + counter, start=start + 1, size=width, name=GaugeName('FAN', color=curses.color_pair(6)), value=jetson.fan.get('measure', 0), status='ON' if jetson.fan else 'DISABLED', label=label) counter += 1 # Jetson clocks status: Running (Green) or Normal (Grey) jetson_clocks_gui(stdscr, offset + counter, start + 1, jetson) counter += 1 # NVP Model if jetson.nvpmodel is not None: nvp_model_gui(stdscr, offset + counter, start + 1, jetson) counter += 1 # Write all engines engines(stdscr, start, offset + counter, width, height, jetson) def engines(stdscr, start, offset, width, height, jetson): stdscr.hline(offset, start + 1, curses.ACS_HLINE, width - 1) stdscr.addstr(offset, start + (width - 13) // 2, " [HW engines] ", curses.A_BOLD) counter = 1 # APE frequency if jetson.engine.ape: plot_name_info(stdscr, offset + counter, start + 1, "APE", str(jetson.engine.ape['val']) + "MHz") counter += 1 # Find encoders if jetson.engine.nvenc: enc_name = 'NVENC' enc_val = "{value}{unit}Hz".format(value=jetson.engine.nvenc['val'], unit="M") elif jetson.engine.msenc: enc_name = 'MSENC' enc_val = "{value}{unit}Hz".format(value=jetson.engine.msenc['val'], unit="M") else: enc_name = 'NVENC' enc_val = "[OFF]" # Find decoders if jetson.engine.nvdec: dec_name = 'NVDEC' dec_val = "{value}{unit}Hz".format(value=jetson.engine.nvdec['val'], unit="M") else: dec_name = 'NVDEC' dec_val = "[OFF]" double_info(stdscr, start + 1, offset + counter, width, (enc_name, enc_val), (dec_name, dec_val)) counter += 1 # NVJPG if jetson.engine.nvjpg is not None: if jetson.engine.nvjpg: value, _, unit = size_min(jetson.engine.nvjpg) value = "{value}{unit}Hz".format(value=value, unit=unit) else: value = "[OFF]" # Plot status plot_name_info(stdscr, offset + counter, start + 1, "NVJPG", value) def double_info(stdscr, start, offset, width, enc, dec): plot_name_info(stdscr, offset, start, enc[0], enc[1]) plot_name_info(stdscr, offset, start + width // 2, dec[0], dec[1]) # EOF
#Deep pi from scipy.spatial import distance import imutils from imutils.video import VideoStream from imutils import face_utils from threading import Thread import time import dlib import cv2 from playsound import playsound import serial #Create alarm using thread def create_alarm(): global alarm_status while alarm_status: playsound("1.mp3") #countdown and send msg to arduino def countdown(): global alarm_status global my_timer my_timer=5*60 while alarm_status : mins, secs = divmod(my_timer, 60) timer = '{:02d}:{:02d}'.format(mins, secs) time.sleep(1) my_timer -= 1 if(my_timer==0): msg =serial.Serial("dev/rfcomm1", baudrate=9600) msg.write(str(10)) #msg2arduino # calculate eye aspect ratio (EAR) def EAR_Calculater(point): p14 = distance.euclidean(point[0], point[3]) p32 = distance.euclidean(point[1], point[5]) p65 = distance.euclidean(point[2], point[4]) Ear = (p65 + p32) / (p14 + p14) return Ear #detect shape position def Shape_Position(shape): (Leye_first, Leye_last) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"] # left_eye = (42, 48)) (Reye_first, Reye_last) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"] # right_eye = (36, 42) leftEye = shape[Leye_first:Leye_last] rightEye = shape[Reye_first:Reye_last] leftEAR = EAR_Calculater(leftEye) rightEAR = EAR_Calculater(rightEye) Avg_ear = (leftEAR + rightEAR) / 2.0 return (Avg_ear, leftEye, rightEye) #create parameters EAR_Threshold = 0.25 NO_EAR_FRAMES = 22 #number of frame to make affect alarm_status = False count = 0 my_timer=60*5 detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml") predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') V_Stream= VideoStream(usePiCamera=True).start() //For Raspberry Pi time.sleep(1.0) while True: frame = V_Stream.read() frame = imutils.resize(frame, width=777,height=777) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) rectangl = detector.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30),flags=cv2.CASCADE_SCALE_IMAGE) for (x, y, w, h) in rectangl: rectangl = dlib.rectangle(int(x), int(y), int(x + w),int(y + h)) cv2.rectangle(frame,(x,y),(x+w,y+h),(110,255,0),5,1 ) shape = predictor(gray, rectangl) shape = face_utils.shape_to_np(shape) eye = Shape_Position(shape) Ear = eye[0] leftEye = eye [1] rightEye = eye[2] Leye = cv2.convexHull(leftEye) Reye = cv2.convexHull(rightEye) cv2.drawContours(frame, [Leye,Reye], -1, (0, 0, 255), 2) if Ear < EAR_Threshold: count += 1 if count >= NO_EAR_FRAMES: if alarm_status == False: alarm_status = True t = Thread(target=create_alarm) t1 = Thread(target=countdown) t.deamon = True t.start() t1.start() mi, se = divmod(my_timer, 60) help_timer = '{:02d}:{:02d}'.format(mi, se) cv2.putText(frame, "Call help in "+str(help_timer), (10, 90), cv2.FONT_ITALIC, 0.7, (13, 212, 255), 2) cv2.putText(frame, "Sleep Alert", (10, 30), cv2.FONT_ITALIC, 0.8, (255, 0, 255), 2) else: alarm_status = False count = 0 cv2.putText(frame, "EAR: {:.2f}".format(Ear), (10, 60), cv2.FONT_ITALIC, 0.7, (0, 0, 255), 2) cv2.imshow("Deep PI", frame) if (cv2.waitKey(1)& 0xFF== ord(" ")): #change q to button read from driver break cv2.destroyAllWindows() V_Stream.stop()
#!/usr/bin/python3 # -*- coding: utf-8 -*- from abc import ABCMeta, abstractmethod from enum import Enum class JudgeType(Enum): Normal = "normal" Decimal = "decimal" Other = "other" class ErrorType(Enum): Absolute = "absolute" Relative = "relative" AbsoluteOrRelative = "absolute_or_relative" DEFAULT_EPS = 1e-9 class NoJudgeTypeException(Exception): pass class Judge(metaclass=ABCMeta): @abstractmethod def verify(self, output, expected): pass @abstractmethod def to_dict(self): pass class NormalJudge(Judge): def __init__(self): self.judge_type = JudgeType.Normal def verify(self, output, expected): return output == expected def to_dict(self): return { "judge_type": self.judge_type.value, } @classmethod def from_dict(cls, dic): r = NormalJudge() return r class DecimalJudge(Judge): def __init__(self, error_type: ErrorType = ErrorType.AbsoluteOrRelative, diff: float = 0.0 ): self.judge_type = JudgeType.Decimal self.error_type = error_type self.diff = diff def _verify_sub(self, output: float, expected: float) -> bool: if self.error_type in [ErrorType.Absolute, ErrorType.AbsoluteOrRelative] and abs(expected - output) <= self.diff: return True if self.error_type in [ErrorType.Relative, ErrorType.AbsoluteOrRelative] and self._calc_absolute(output, expected): return True return False def _calc_absolute(self, output: float, expected: float) -> bool: if expected == 0: return expected == output return abs((expected - output) / expected) <= self.diff def verify(self, output, expected) -> bool: output = output.strip().split() expected = expected.strip().split() if len(output) != len(expected): return False for i in range(0, len(output)): if not self._verify_sub(float(output[i]), float(expected[i])): return False return True def to_dict(self): return { "judge_type": self.judge_type.value, "error_type": self.error_type.value, "diff": self.diff } @classmethod def from_dict(cls, dic): r = DecimalJudge( diff=dic["diff"] ) r.error_type = ErrorType(dic["error_type"]) return r class OtherJudge(Judge): # dummy pass
#coding: utf-8 # import logging # import datetime # import tornado.escape # from config import BaseController # from config.dmls import QUERY_STATEMENTS, USER_LIST # class ApiQuery(BaseController): # "/v1/query" # def post(self): # delta = datetime.timedelta(days=1) # data = tornado.escape.json_decode(self.request.body) # user_id = data["user_id"] # start_time = data["start_time"] / 1000 # start_obj = datetime.datetime.fromtimestamp(start_time) # end_obj = start_obj + delta # dict_result = {} # dict_query = { # 'user_id': user_id, # 'start_time': start_obj.strftime("%Y-%m-%d"), # 'end_time': end_obj.strftime("%Y-%m-%d"), # } # conn = self.get_conn() # cursor = self.get_cursor(conn) # try: # for qs in QUERY_STATEMENTS: # cursor.execute(qs, dict_query) # result = cursor.fetchone() # if result: # dict_result.update(result) # else: # logging.warn(qs) # except Exception as e: # logging.warn(e) # logging.warn(qs) # conn.rollback() # finally: # self.put_conn(conn) # if 'grp_use' not in dict_result: # dict_result['grp_use'] = 0 # self.write(dict_result) # class ApiAllUsers(BaseController): # "/v1/users" # def post(self): # result = [] # data = tornado.escape.json_decode(self.request.body) # nick_name = "%" + data["nick_name"] + "%" # logging.warn("Nick name: %s", nick_name) # ret = 0 # conn = self.get_conn() # cursor = self.get_cursor(conn) # try: # cursor.execute(USER_LIST, {'nick_name': nick_name}) # result = cursor.fetchall() # except: # logging.warn("Fail to get user list") # conn.rollback() # finally: # self.put_conn(conn) # if not result: # ret = 1 # total = len(result) # self.write(dict(users=result, ret=ret, total=total))
# Copyright (C) 2020 Atsushi Togo # All rights reserved. # # This file is part of phono3py. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the phonopy project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import numpy as np class RealToReciprocal(object): def __init__(self, fc3, supercell, primitive, mesh, symprec=1e-5): self._fc3 = fc3 self._supercell = supercell self._primitive = primitive self._mesh = mesh self._symprec = symprec self._p2s_map = primitive.get_primitive_to_supercell_map() self._s2p_map = primitive.get_supercell_to_primitive_map() # Reduce supercell atom index to primitive index (self._smallest_vectors, self._multiplicity) = primitive.get_smallest_vectors() self._fc3_reciprocal = None def run(self, triplet): self._triplet = triplet num_patom = self._primitive.get_number_of_atoms() dtype = "c%d" % (np.dtype('double').itemsize * 2) self._fc3_reciprocal = np.zeros( (num_patom, num_patom, num_patom, 3, 3, 3), dtype=dtype) self._real_to_reciprocal() def get_fc3_reciprocal(self): return self._fc3_reciprocal def _real_to_reciprocal(self): num_patom = self._primitive.get_number_of_atoms() sum_triplets = np.where( np.all(self._triplet != 0, axis=0), self._triplet.sum(axis=0), 0) sum_q = sum_triplets.astype('double') / self._mesh for i in range(num_patom): for j in range(num_patom): for k in range(num_patom): self._fc3_reciprocal[ i, j, k] = self._real_to_reciprocal_elements((i, j, k)) prephase = self._get_prephase(sum_q, i) self._fc3_reciprocal[i] *= prephase def _real_to_reciprocal_elements(self, patom_indices): num_satom = self._supercell.get_number_of_atoms() pi = patom_indices i = self._p2s_map[pi[0]] dtype = "c%d" % (np.dtype('double').itemsize * 2) fc3_reciprocal = np.zeros((3, 3, 3), dtype=dtype) for j in range(num_satom): if self._s2p_map[j] != self._p2s_map[pi[1]]: continue for k in range(num_satom): if self._s2p_map[k] != self._p2s_map[pi[2]]: continue phase = self._get_phase((j, k), pi[0]) fc3_reciprocal += self._fc3[i, j, k] * phase return fc3_reciprocal def _get_prephase(self, sum_q, patom_index): r = self._primitive.get_scaled_positions()[patom_index] return np.exp(2j * np.pi * np.dot(sum_q, r)) def _get_phase(self, satom_indices, patom0_index): si = satom_indices p0 = patom0_index phase = 1+0j for i in (0, 1): vs = self._smallest_vectors[si[i], p0, :self._multiplicity[si[i], p0]] phase *= (np.exp(2j * np.pi * np.dot( vs, self._triplet[i + 1].astype('double') / self._mesh)).sum() / self._multiplicity[si[i], p0]) return phase
# @lc app=leetcode id=717 lang=python3 # # [717] 1-bit and 2-bit Characters # # https://leetcode.com/problems/1-bit-and-2-bit-characters/description/ # # algorithms # Easy (46.28%) # Likes: 626 # Dislikes: 1604 # Total Accepted: 96.5K # Total Submissions: 208.2K # Testcase Example: '[1,0,0]' # # We have two special characters: # # # The first character can be represented by one bit 0. # The second character can be represented by two bits (10 or 11). # # # Given a binary array bits that ends with 0, return true if the last character # must be a one-bit character. # # # Example 1: # # # Input: bits = [1,0,0] # Output: true # Explanation: The only way to decode it is two-bit character and one-bit # character. # So the last character is one-bit character. # # # Example 2: # # # Input: bits = [1,1,1,0] # Output: false # Explanation: The only way to decode it is two-bit character and two-bit # character. # So the last character is not one-bit character. # # # # Constraints: # # # 1 <= bits.length <= 1000 # bits[i] is either 0 or 1. # # # # @lc tags=array # @lc imports=start from imports import * # @lc imports=end # @lc idea=start # # 0为单位字符,10、11位双位字符。判断是否以单位字符结束。 # dfa。 # # @lc idea=end # @lc group= # @lc rank= # @lc code=start class Solution: def isOneBitCharacter(self, bits: List[int]) -> bool: dfa = [ # 0 1 # 2end [2, 1], # 2start [0, 0], # 1end [2, 1] ] s = 0 for c in bits: s = dfa[s][c] return s == 2 # @lc code=end # @lc main=start if __name__ == '__main__': print('Example 1:') print('Input : ') print('bits = [1,0,0]') print('Exception :') print('true') print('Output :') print(str(Solution().isOneBitCharacter([1, 0, 0]))) print() print('Example 2:') print('Input : ') print('bits = [1,1,1,0]') print('Exception :') print('false') print('Output :') print(str(Solution().isOneBitCharacter([1, 1, 1, 0]))) print() pass # @lc main=end
# -*- coding: utf-8 -*- import remi import remi.gui as gui from remi.gui import * from threading import Timer import traceback import time import math import epics #from epics import caget, caput, cainfo style_inheritance_dict = {'opacity':'inherit', 'overflow':'inherit', 'background-color':'inherit', 'background-image':'inherit', 'background-position':'inherit', 'background-repeat':'inherit', 'border-color':'inherit', 'border-width':'inherit', 'border-style':'inherit', 'border-radius':'inherit', 'color':'inherit', 'font-family':'inherit', 'font-size':'inherit', 'font-style':'inherit', 'font-weight':'inherit', 'white-space':'inherit', 'letter-spacing':'inherit'} style_inheritance_text_dict = {'opacity':'inherit', 'overflow':'inherit', 'color':'inherit', 'font-family':'inherit', 'font-size':'inherit', 'font-style':'inherit', 'font-weight':'inherit', 'white-space':'inherit', 'letter-spacing':'inherit'} # noinspection PyUnresolvedReferences class EPICSWidget(object): @property @gui.editor_attribute_decorator('WidgetSpecific','The PV name', str, {}) def epics_pv_name(self): return self.__epics_pv_name @epics_pv_name.setter def epics_pv_name(self, v): self.__epics_pv_name = v self.disconnect() try: self.epics_pv = epics.PV(self.__epics_pv_name, auto_monitor=True, callback=self.onChanges, connection_callback=self.onConnectionChange, connection_timeout=2) except: print(traceback.format_exc()) epics_pv = None # here will be stored the PV instance app_instance = None def __del__(self): self.disconnect() def disconnect(self): if self.epics_pv: self.epics_pv.clear_auto_monitor() self.epics_pv.disconnect() @decorate_set_on_listener("(self, emitter, pvname=None, conn=None, chid=None, **kwargs)") @decorate_event def onConnectionChange(self, pvname=None, conn=None, chid=None, **kwargs): #print('ca connection status changed: ', pvname, conn, chid) #Here I use the outline red color to show the unconnected state # of course this can be avoided or changed self.style['outline'] = "1px solid red" if conn: del self.style['outline'] return (pvname, conn, chid, kwargs) @decorate_set_on_listener("(self, emitter, pvname=None, value=None, **kwargs)") @decorate_event def onChanges(self, pvname=None, value=None, **kwargs): #as default I write the value to the widget itself self.set_value(str(value)) return (pvname, value, kwargs) def search_app_instance(self, node): if issubclass(node.__class__, remi.server.App): return node if not hasattr(node, "get_parent"): return None return self.search_app_instance(node.get_parent()) def get_app_instance(self): if self.app_instance==None: self.app_instance = self.search_app_instance(self) return self.app_instance class EPICSBooleanButton(gui.Container, EPICSWidget): """ A Button widget that sets the bit when clicked. """ icon = "" @property @gui.editor_attribute_decorator('WidgetSpecific','Specifies if the button is toggle or must reset the value on release', bool, {}) def toggle(self): return self.__toggle @toggle.setter def toggle(self, v): self.__toggle = v self.button.onmouseup.do(self.reset_bit if not self.__toggle else None) @property @editor_attribute_decorator("WidgetSpecific",'''Text content''', str, {}) def text(self): return self.button.get_text() @text.setter def text(self, value): self.button.set_text(value) button = None # The gui.Button widget instance led = None # The led indicator Widget def __init__(self, button_label='epics button', epics_pv_name='', toggle=False, *args, **kwargs): self.color_inactive = 'darkgray' self.color_active = 'rgb(0,255,0)' self.button = gui.Button(button_label, width="100%", height="100%", style=style_inheritance_dict) self.led = gui.Widget(width=15, height=5, style={'position':'absolute', 'left':'2px', 'top':'2px', 'background-color':self.color_inactive}) self.led_status = False default_style = {'position':'absolute','left':'10px','top':'10px', 'background-color':'rgb(4, 90, 188)', 'color':'white'} default_style.update(kwargs.get('style',{})) kwargs['style'] = default_style kwargs['width'] = kwargs['style'].get('width', kwargs.get('width','100px')) kwargs['height'] = kwargs['style'].get('height', kwargs.get('height','100px')) super(EPICSBooleanButton, self).__init__(*args, **kwargs) _style = {'position':'relative'} _style.update(style_inheritance_dict) self.append(gui.Container(children=[self.button, self.led], width="100%", height="100%", style=_style)) self.toggle = toggle self.epics_pv_name = epics_pv_name self.button.onmousedown.do(self.set_bit) def set_bit(self, emitter, *args, **kwargs): self.pressed = True self.written = False value = 1 if self.toggle: value = 0 if self.led_status else 1 self.epics_pv.put(value, callback = (self.put_done if not self.toggle else None) ) def put_done(self, *args, **kwargs): self.written = True #this function gets called when a set_bit is completed and the button is not toggle # and so the value have to be reset if not self.pressed: self.epics_pv.put(0) def reset_bit(self, emitter, x, y, *args, **kwargs): self.pressed = False if self.written: self.epics_pv.put(0) def set_value(self, value): if not self.get_app_instance(): return with self.get_app_instance().update_lock: #this function gets called when the camonitor notifies a change on the PV self.led_status = float(value)>0.0 self.led.style.update({'background-color':self.color_active if self.led_status else self.color_inactive}) class EPICSLed(HBox, EPICSWidget): """A Status indicator widget. """ icon = "" @property @editor_attribute_decorator("Geometry",'''Widget width.''', 'css_size', {}) def css_width(self): return self.style.get('width', None) @css_width.setter def css_width(self, value): self.style['width'] = str(value) self._update_size() @property @editor_attribute_decorator("Geometry",'''Widget height.''', 'css_size', {}) def css_height(self): return self.style.get('height', None) @css_height.setter def css_height(self, value): self.style['height'] = str(value) self._update_size() label_value = None # the gui.Label used to show the value 0 or 1 def __init__(self, epics_pv_name='', *args, **kwargs): self.color_inactive = 'darkgray' self.color_active = 'rgb(0,180,0)' default_style = {'position':'absolute','left':'10px','top':'10px', 'color':'white','background-color':self.color_inactive, 'align-items':'center', 'justify-content':'center'} default_style.update(kwargs.get('style',{})) kwargs['style'] = default_style kwargs['width'] = kwargs['style'].get('width', kwargs.get('width','50px')) kwargs['height'] = kwargs['style'].get('height', kwargs.get('height','50px')) super(EPICSLed, self).__init__(*args, **kwargs) _style = {'text-align':'center'} _style.update(style_inheritance_text_dict) self.label_value = gui.Label("0", style=_style) self.append(self.label_value) self.epics_pv_name = epics_pv_name def _update_size(self): width = gui.from_pix(self.style.get('width', "100").replace("%","")) height = gui.from_pix(self.style.get('height', "100").replace("%","")) radius = min(width, height)/2 self.style['border-radius'] = gui.to_pix(radius) def set_value(self, value): if not self.get_app_instance(): return with self.get_app_instance().update_lock: _value = float(value) self.label_value.set_text( '1' if _value>0.0 else '0' ) self.style.update({'background-color':self.color_active if _value>0.0 else self.color_inactive}) class EPICSValueMeterWidget(Progress, EPICSWidget): """A simple progress bar indicating a value. """ icon = "" def __init__(self, epics_pv_name='', max_value=100, *args, **kwargs): default_style = {'position':'absolute','left':'10px','top':'10px'} default_style.update(kwargs.get('style',{})) kwargs['style'] = default_style kwargs['width'] = kwargs['style'].get('width', kwargs.get('width','100px')) kwargs['height'] = kwargs['style'].get('height', kwargs.get('height','30px')) super(EPICSValueMeterWidget, self).__init__(0, max_value,*args, **kwargs) self.epics_pv_name = epics_pv_name def set_value(self, value): if not self.get_app_instance(): return with self.get_app_instance().update_lock: Progress.set_value(self, value) try: import pygal except: print("It is required to install pygal to use EPICSPlotPV widget") class EPICSPlotPV(gui.Svg, EPICSWidget): """A simple plot bar indicating a value. REQUIRES library pygal to be installed """ icon = "" @property @editor_attribute_decorator("WidgetSpecific",'''Defines the maximum values count.''', int, {'possible_values': '', 'min': 0, 'max': 65535, 'default': 0, 'step': 1}) def max_values_count(self): return self.values.maxlen @max_values_count.setter def max_values_count(self, value): self.values.maxlen = int(value) def __init__(self, epics_pv_name='', max_values_count=100, *args, **kwargs): w = kwargs.get("style", {}).get("width", kwargs.get("width", 100)) h = kwargs.get("style", {}).get("height", kwargs.get("height", 100)) if 'width' in kwargs.keys(): del kwargs["width"] if 'height' in kwargs.keys(): del kwargs["height"] default_style = {'position':'absolute','left':'10px','top':'10px', 'overflow':'hidden', 'background-color':'lightgray', 'margin':'10px'} default_style.update(kwargs.get('style',{})) kwargs['style'] = default_style super(EPICSPlotPV, self).__init__(w, h, *args, **kwargs) self.values = gui.SvgPolyline(max_values_count) self.epics_pv_name = epics_pv_name def set_value(self, value): if not self.get_app_instance(): return with self.get_app_instance().update_lock: self.values.add_coord(time.clock(), float(value)) try: plot = pygal.XY() pairs = [] for i in range(0, len(self.values.coordsX)): pairs.append([self.values.coordsX[i], self.values.coordsY[i]]) plot.add(self.epics_pv_name, pairs) self.add_child("chart", plot.render()) except: self.style['overflow'] = "visible" self.add_child("chart", gui.SvgText(10,10, "Install pygal to use this widget")) class EPICSValueGaugeWidget(Svg, EPICSWidget): """A gauge indicator for an EPICS PV value """ icon = "" @property @editor_attribute_decorator("WidgetSpecific",'''Defines the minimum value.''', float, {'possible_values': '', 'min': -65535, 'max': 65535, 'default': 0, 'step': 1}) def min_value(self): return self.__dict__.get('__min_value',0) @min_value.setter def min_value(self, value): self.__dict__['__min_value'] = value self.text_min_value.set_text(str(value)) @property @editor_attribute_decorator("WidgetSpecific",'''Defines the maximum value.''', float, {'possible_values': '', 'min': -65535, 'max': 65535, 'default': 0, 'step': 1}) def max_value(self): return self.__dict__.get('__max_value',1) @max_value.setter def max_value(self, value): self.__dict__['__max_value'] = value self.text_max_value.set_text(str(value)) indicator = None # a gui.SvgPolygon that indicates the actual value indicator_pin = None # a gui.SvgCircle around which the indicator rotates text_min_value = None # the gui.SvgText min value indicator text_max_value = None # the gui.SvgText max value indicator text_actual_value = None # the gui.SvgText value indicator def __init__(self, epics_pv_name='', min_value=0, max_value=100, *args, **kwargs): w = kwargs.get("style", {}).get("width", kwargs.get("width", 100)) h = kwargs.get("style", {}).get("height", kwargs.get("height", 100)) if 'width' in kwargs.keys(): del kwargs["width"] if 'height' in kwargs.keys(): del kwargs["height"] default_style = {'position':'absolute','left':'10px','top':'10px'} default_style.update(kwargs.get('style',{})) kwargs['style'] = default_style super(EPICSValueGaugeWidget, self).__init__(width=w, height=h, *args, **kwargs) self.epics_pv_name = epics_pv_name #the indicator self.indicator = gui.SvgPolygon(_maxlen=4) self.indicator.set_stroke(width=0.001, color='red') self.indicator.set_fill('red') indicator_pin_radius = 0.05 self.indicator_pin = gui.SvgCircle(0,0.5,indicator_pin_radius) self.indicator_pin.set_fill('black') #the value signs scale = max_value-min_value radius_min = 0.4 radius_max = 0.5 for i in range(0,10): angle = math.pi/9*i #sign = gui.SvgLine(math.cos(angle)*radius_min, radius_max-math.sin(angle)*radius_min, math.cos(angle)*radius_max, radius_max-math.sin(angle)*radius_max) sign = gui.SvgLine(math.cos(angle)*(radius_min - 0.01 + 0.1*(i+1)/10), radius_max-math.sin(angle)*(radius_min - 0.01 + 0.1*(i+1)/10), math.cos(angle)*radius_max, radius_max-math.sin(angle)*radius_max) sign.set_stroke(0.01, 'black') self.append(sign) #subindicators value signs scale = max_value-min_value radius_min = 0.4 radius_max = 0.5 for i in range(0,100): angle = math.pi/99*i #sign = gui.SvgLine(math.cos(angle)*radius_min, radius_max-math.sin(angle)*radius_min, math.cos(angle)*radius_max, radius_max-math.sin(angle)*radius_max) sign = gui.SvgLine(math.cos(angle)*(radius_min - 0.01 + 0.1*(i+10)/100), radius_max-math.sin(angle)*(radius_min - 0.01 + 0.1*(i+10)/100), math.cos(angle)*radius_max, radius_max-math.sin(angle)*radius_max) sign.set_stroke(0.002, 'black') self.append(sign) font_size = 0.1 self.text_min_value = gui.SvgText(-radius_max, 0.5 + font_size + 0.01, str(min_value)) self.text_min_value.style['font-size'] = gui.to_pix(font_size) self.text_min_value.style['text-anchor'] = "start" self.text_max_value = gui.SvgText(radius_max, 0.5 + font_size + 0.01, str(max_value)) self.text_max_value.style['font-size'] = gui.to_pix(font_size) self.text_max_value.style['text-anchor'] = "end" self.text_actual_value = gui.SvgText(0, 0.5 + indicator_pin_radius + font_size + 0.01, str(max_value)) self.text_actual_value.style['font-size'] = gui.to_pix(font_size) self.text_actual_value.style['text-anchor'] = "middle" self.text_actual_value.style['font-weight'] = 'bold' self.min_value = min_value self.max_value = max_value self.append([self.indicator, self.indicator_pin, self.text_min_value, self.text_max_value, self.text_actual_value]) self.set_viewbox(-0.5, 0, 1, 0.70) self.value = self.min_value def set_value(self, value): if not self.get_app_instance(): return with self.get_app_instance().update_lock: value = float(value) #min value at left #max value at right #value to radians scale = self.max_value-self.min_value if scale==0.0: return relative_value = value - self.min_value angle = relative_value*math.pi/scale #inversion min at left angle = math.pi - angle radius = 0.5 self.indicator.add_coord(math.cos(angle)*radius, radius-math.sin(angle)*radius) self.indicator.add_coord(math.cos(angle+0.5)*0.04, radius-math.sin(angle+0.5)*0.04) #self.indicator.add_coord(0.02,0.4) self.indicator.add_coord(0,radius) self.indicator.add_coord(math.cos(angle-0.5)*0.04, radius-math.sin(angle-0.5)*0.04) if hasattr(self, "actual_value"): self.text_actual_value.set_text(str(value))
import importlib import torch from torch import nn from torch.nn import functional as F class MyModel(nn.Module): def __init__(self, args, network): super(MyModel, self).__init__() self.args = args self.encoder = network def forward(self, images, output_type='loss'): embeddings = self.encoder(images) embeddings = embeddings.view(self.args.N * (self.args.K + self.args.Q), -1) support_embeddings = embeddings[:self.args.N * self.args.K, :] query_embeddings = embeddings[self.args.N * self.args.K:, :] prototypes = torch.mean(support_embeddings.view(self.args.K, self.args.N, -1), dim=0) prototypes = F.normalize(prototypes, dim=1, p=2) logits = torch.mm(query_embeddings, prototypes.t()) / self.args.tau if output_type == 'logits': return logits elif output_type == 'loss': query_targets = torch.arange(self.args.N).repeat(self.args.Q).long() query_targets = query_targets.cuda(self.args.devices[0]) loss = nn.CrossEntropyLoss()(logits, query_targets) return loss def get_network_params(self): modules = [self.encoder] for i in range(len(modules)): for j in modules[i].parameters(): yield j def get_other_params(self): modules = [] for i in range(len(modules)): for j in modules[i].parameters(): yield j
import matplotlib.pyplot as plt import PIL.Image import numpy as np import os import random from patch.constants import PATCH_SIZE def _convert(im: PIL.Image): return ((im + 1) * 127.5).astype(np.uint8) def show(im: PIL.Image): plt.axis('off') plt.imshow(_convert(im), interpolation="nearest") plt.show() def load_image(image_path: str): im = PIL.Image.open(image_path) im = im.resize(PATCH_SIZE, PIL.Image.ANTIALIAS) if image_path.endswith('.png'): ch = 4 else: ch = 3 try: im = np.array(im.getdata()).reshape(im.size[0], im.size[1], ch)[:,:,:3] except ValueError as e: print("An error ocurred when processing file", image_path) raise e return im / 127.5 - 1 class StubImageLoader(): """An image loader that uses just a few ImageNet-like images. In fact, all images are supplied by the user. """ def __init__(self, images_dir, batch_size): self.image_paths = [] self.batch_size = batch_size #only keep the image paths and load them when requested for dirpath, _, filenames in os.walk(images_dir): for image_path in filenames: self.image_paths.append(os.path.join(dirpath, image_path)) def get_images(self): # fetch a random sample of images chosen = random.sample(self.image_paths, self.batch_size) return [load_image(img_path) for img_path in chosen]
import sys my_list = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] new_list=[element for element in my_list if element<5] print(new_list) if sys.version_info[0] >= 3: num=int(input("Please enter a number: ")) else: num=int(raw_input("Please enter a number: ")) newer_list=[element for element in my_list if element<num] print(newer_list)
# Let's finish the file access project in Python.
import pytz from pathlib import Path def separate_log_file(current_timestamp, internet_connected, just_booted, ping_time): if just_booted: just_booted_message = "YES" else: just_booted_message = "NO" now = current_timestamp.now(pytz.timezone('America/New_York')) file_name = now.strftime("%Y-%m-%d") log_line_date = now.strftime("%H:%M:%S") l = f"Script has run at {log_line_date}. Internet connected: {internet_connected}. Just booted: {just_booted_message}. Ping Time: {ping_time}\n" file = Path.home().joinpath(f'.config/outagedetector/{file_name}.log') # print(f"Writing to {file}") with open(file, 'a+') as f: f.writelines(l) f.close()
from ..base.command_with_args import CommandWithArgs from ..base.argument import Argument from pyod.models.abod import ABOD from pyod.models.cblof import CBLOF from pyod.models.auto_encoder import AutoEncoder from .pyod import * class AlgorithmCommand(CommandWithArgs): tag = "algorithm" patterns = [ "Queria rodar o algoritmo", "vamos a aplicar o algoritmo", "Queria rodar o algoritmo", "Treina o algoritmo", "Vamos dar fit do algoritmo", "Executa o algoritmo" ] def __init__(self, parent, task_manager): super(AlgorithmCommand, self).__init__(parent, task_manager) self.responses = ["Posso rodar o algortimo {0} no dataset {1} e guardar o resultao em {2}."] self.user_config_tag = 'algorithm' self.algorithms = { 'abod': AbodAlgorithm, 'cblof': CblofAlgorithm, 'autoencoder': AutoEncoderAlgorithm, 'hhos': HbosAlgorithm, 'iforest': IForestAlgorithm, 'knn': KnnAlgorithm, 'lmdd': LmddAlgorithm, 'loda': LodaAlgorithm } self.complete = False self.algorithm_name = Argument({ 'parent': self, 'name': 'algorithm_name', 'trigger': 'algoritmo', 'position': 1 }) self.dataset_name = Argument({ 'parent': self, 'name': 'dataset_name', 'trigger': 'dataset', 'position': 1 }) self.context_variable = Argument({ 'parent': self, 'name': 'variable_name', 'trigger': 'guarda em', 'position': 1 }) self.children = [ self.algorithm_name, self.dataset_name, self.context_variable ] def run(self, context): algorithm_name = self.algorithm_name.value dataset_name = self.dataset_name.value context_variable = self.context_variable.value algorithm = self.algorithms[algorithm_name].algorithm dataframe = context[dataset_name] algorithm_agrs = self.algorithms[algorithm_name].get_arg(dataframe=dataframe) clf = algorithm(**algorithm_agrs) clf.fit(dataframe) context[context_variable] = clf def generate_code(self, code_generator, context): algorithm_name = self.algorithm_name.value algorithm = self.algorithms[algorithm_name] dataset_name = self.dataset_name.value dataframe = context[dataset_name] code_generator.write("") code_generator.write("# Fit the {0} algorithm".format(algorithm.name)) code_generator.write(algorithm.import_code) dataset_name = self.dataset_name.value context_variable = self.context_variable.value algorithm_args = algorithm.get_args_code(dataframe=dataframe) code_generator.write("{0} = {1}({2})".format(context_variable, algorithm.name, algorithm_args)) code_generator.write("{0}.fit({1})".format(context_variable,dataset_name))
import random import time from secrets import token_hex from pyramid.httpexceptions import HTTPCreated from pyramid.view import view_defaults from sqlalchemy.orm.exc import NoResultFound from {{cookiecutter.project_slug}}.handlers import view_config from {{cookiecutter.project_slug}}.handlers.auth import LoginHandler from {{cookiecutter.project_slug}}.lib.decorators import validate from {{cookiecutter.project_slug}}.lib.factories.auth.recovery import AccountRecoveryFactory from {{cookiecutter.project_slug}}.lib.hash import hash_plaintext from {{cookiecutter.project_slug}}.lib.middleware.sendgrid import SendGridClient from {{cookiecutter.project_slug}}.lib.schemas.auth import (AccountRecoveryLoginSchema, AccountRecoverySchema) from {{cookiecutter.project_slug}}.lib.security.auth import AuthWithRecoveryTokenManager from {{cookiecutter.project_slug}}.models import save from {{cookiecutter.project_slug}}.models.security.recovery_token import RecoveryToken from {{cookiecutter.project_slug}}.models.user import get_one_user_by_email_address, User NUMBER_OF_TOKEN_BYTES = 3 TOKEN_TTL_IN_SECONDS = 7200 MIN_TIME_PADDING_IN_DECISECONDS = 2 MAX_TIME_PADDING_IN_DECISECONDS = 8 @view_defaults( containment=AccountRecoveryFactory, context=AccountRecoveryFactory, renderer='json' ) class AccountRecoveryHandler(LoginHandler): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.auth_manager = AuthWithRecoveryTokenManager(self.request) @validate(AccountRecoverySchema()) @view_config( path_hints=['/auth/recover-account'], request_schema_class=AccountRecoverySchema, permission='recovery.request_token', tags=['authentication', 'account recovery'], request_method='POST', public_hint=True ) def request_account_recovery_token(self, request_data): response = HTTPCreated() token = token_hex(NUMBER_OF_TOKEN_BYTES) email_address = request_data['email_address'] self._prevent_user_enumeration() try: recipient = get_one_user_by_email_address(email_address) self._invalidate_any_current_recovery_token(recipient) self._save_recovery_token(recipient, token) SendGridClient().send_account_recovery_email(email_address, token) except NoResultFound: # To avoid user enumeration we don't indicate failure. pass raise response @staticmethod def _prevent_user_enumeration(): time.sleep(random.randint( MIN_TIME_PADDING_IN_DECISECONDS, MAX_TIME_PADDING_IN_DECISECONDS ) / 10) @staticmethod def _invalidate_any_current_recovery_token(user): try: user.active_recovery_token.invalidate() except AttributeError: pass @staticmethod def _save_recovery_token(for_user: User, token: str): token_hash, token_salt = hash_plaintext(token) recovery_token = RecoveryToken( token_hash=token_hash, token_salt=token_salt, for_user=for_user ) save(recovery_token) @validate(AccountRecoveryLoginSchema()) @view_config( path_hints=['/auth/recover-account/login'], request_schema_class=AccountRecoveryLoginSchema, permission='recovery.login', request_method='POST', successful_response_code=200, tags=['authentication', 'account recovery'], name='login', public_hint=True ) def login(self, login_data): self.auth_manager.login(login_data) raise self.request.response
import matplotlib.pyplot as plt import numpy as np import pandas as pd import torch import torch.nn as nn import torch.nn.functional as F from torchaudio import datasets from sklearn.model_selection import train_test_split from util import load_data from rnn_lstm import TikTokModel, prepare_datasets from tqdm.auto import tqdm if __name__ == "__main__": X_train, X_validation, X_test, y_train, y_validation, y_test = prepare_datasets( 0.25, 0.2 ) X_test = torch.from_numpy(X_test).float() y_test = torch.from_numpy(y_test).float() trained_tiktok_model = TikTokModel(X_test.shape[2]) trained_tiktok_model.load_state_dict(torch.load("trained_tiktok_model.pt")) print(trained_tiktok_model) outputs_test = trained_tiktok_model(X_test) outputs_test = torch.squeeze(outputs_test) test_data_labels = y_test test_data_labels = test_data_labels.to(torch.float32) predicted_test = outputs_test.round().detach().numpy() total_test = test_data_labels.size(0) correct_test = np.sum(predicted_test == test_data_labels.detach().numpy()) accuracy_test = 100 * correct_test / total_test print(accuracy_test)
from threading import Thread, Lock from time import sleep try: from queue import Queue, Empty except ImportError: from Queue import Queue, Empty from .performer import Performer from .stacktracer import * from .backend import * from .logger import * from .utils import * class Manager(object): def __init__(self, root, **kwargs): super(Manager, self).__init__() self._performer = Performer(self, **kwargs) self._lock = Lock() self._state = Lock() # @NOTE: these parameters are used to tracking down system status self._use_parallel = None self._current_dir_path = None self._current_dir_type = None self._count_payload = 0 self._on_going = 0 self._output = None self._root = None self._error = False self._keep = True # @NOTE: define our slot callbacks self._departure_callbacks = [] # @NOTE: queue task of build and teardown stage self._build = Queue() self._teardown = Queue() # @NOTE: eveything about a real workspace will be represented here self._count_rules = 0 self._running = 0 self._await = [] self._rules = {} self._functions = {} # @NOTE: share resouce between objects self._languages = {} self._plugins = {} self._backends = { 'package': Package(**kwargs), 'config': Config(**kwargs), 'file': File(**kwargs), 'hook': Hook(**kwargs) } # @NOTE: okey now, load backends for name in self._backends: self._backends[name].mount(self) self._backends[name].check() self._backends[name].define() @property def root(self): return self._root @property def backends(self): return self._backends @property def languages(self): return self._languages @property def plugins(self): return self._plugins @property def type(self): return 'Manager' @property def error(self): return self._error @property def count_rules(self): return is_okey_to_continue(self._lock, lambda: self._count_rules) @property def count_payload(self): return is_okey_to_continue(self._lock, lambda: self._count_payload) def __enter_payload(self): def update(): self._count_payload += 1 update_variable_safety(self._state, update) def __exit_payload(self): def update(): self._count_payload -= 1 update_variable_safety(self._state, update) def package_update(self, passed=False): return self._backends['package'].update(passed) def package_install(self, packages): if isinstance(packages, list): for package in packages: if self._backends['package'].install(package, True) is True: return True else: return False else: return self._backends['package'].install(packages, True) def support(self, languages): if isinstance(languages, list): for language in languages: self._languages[Manager.derived(language)] = language elif isinstance(language, Language): self._languages[Manager.derived(language)] = language elif not languages is None: raise AssertionError('\'languages\' must be a list') else: self._languages = {} for name in self._languages: self._languages[name].mount(self._performer) for name in self._languages: try: self._languages[name].mount(self) except Exception as error: Logger.error(str(error)) self._languages[name] = None for name in self._languages: if self._languages[name] is None: continue try: self._languages[name].define() except Exception as error: Logger.error(str(error)) self._languages[name] = None def install(self, plugins): if isinstance(plugins, list): for plugin in plugins: self._plugins[Manager.derived(plugin)] = plugin elif isinstance(plugin, Plugin): self._plugins[Manager.derived(plugin)] = plugin elif not plugins is None: raise AssertionError('\'plugins\' must be a list') else: self._plugins = [] for name in self._plugins: self._plugins[name].mount(self) for name in self._plugins: self._plugins[name].define() def set_current_dir(self, type, dir_path): if dir_path != self._current_dir_path and (not self._current_dir_path is None): for callback in self._departure_callbacks: callback(mode=self._current_dir_type) if type.lower() == 'workspace': self._root = dir_path self._current_dir_path = dir_path self._current_dir_type = type self._on_going = 0 def create_new_node(self, name, node): name = self.convert_name_to_absolute_name(name) if name in self._rules: return False try: self._rules[name] = { 'dir': self._current_dir_path, 'define': node, 'depends_on': [], 'depends_by': [] } self._build.put(name) self._count_rules += 1 self._on_going += 1 return True except Queue.Full: return False def read_value_from_node(self, dep, key): # @NOTE: this helper function helps to read value from a node of our # build tree if dep[0] == ':' or dep[0:2] == '//': name = self.convert_dep_to_absolute_name(dep) else: name = dep if not name in self._rules: return None elif key in ['define', 'depends_on', 'depends_by']: return None else: return self._rules[name].get(key) def modify_node_inside_dependency_tree(self, name, key, value): # @NOTE: this helper function helps to modify node inside our build tree if name in self._rules: if key in ['dir', 'define', 'depends_on', 'depends_by']: return False else: self._rules[name][key] = value else: return False return True @staticmethod def convert_absolute_name_to_name(absolute_name): # @NOTE: this helper function helps to convert abs_name to name return absolute_name.split(':')[1] @staticmethod def convert_absolute_name_to_dep(root, absolute_name): # @NOTE: this helper function helps to convert abs_name to dependency if absolute_name is None: return "Unknown" elif root[-1] == '/': return '//' + absolute_name[len(root):] else: return '/' + absolute_name[len(root):] def convert_name_to_absolute_name(self, name, path=None): # @NOTE: this helper function helps to convert name to abs_name if path is None: return '%s:%s' % (self._current_dir_path, name) else: return '%s:%s' % (path, name) def convert_dep_to_absolute_name(self, dep): # @NOTE: this helper function helps to convert dependency to abs_name if dep[0] == ':': return '%s:%s' % (self._current_dir_path, dep[1:]) elif dep[0:2] == '//': if self._root[-1] == '/': return '%s%s' % (self._root, dep[2:]) else: return '%s%s' % (self._root, dep[1:]) def add_to_dependency_tree(self, name, node, deps): # @NOTE: this helper function helps to add a new node to building tree name = self.convert_name_to_absolute_name(name) if name in self._rules: return False elif deps is None: return self.create_new_node(name, node) else: wait_to_remove = [] self._lock.acquire() self._rules[name] = { 'dir': self._current_dir_path, 'define': node, 'depends_on': [], 'depends_by': [] } for dep in deps: dep = self.convert_dep_to_absolute_name(dep) self._rules[name]['depends_on'].append(dep) if not dep in self._rules: Logger.debug('rule %s is waiting %s' % (name, dep)) self._await.append((name, dep)) else: Logger.debug('rule %s is depended by %s' % (name, dep)) self._rules[dep]['depends_by'].append(name) for index, (node_name, dep) in enumerate(self._await): if dep in self._rules: Logger.debug('rule %s is depended by %s' % (dep, node_name)) # @NOTE: add dependency and mark to remove this waiting task # at lastly self._rules[dep]['depends_by'].append(node_name) wait_to_remove.append(index) if len(wait_to_remove): wait_to_remove.sort() # @NOTE: be carefull removing an item of list, we must reduce # index after finish removing an item for counter, index in enumerate(wait_to_remove): del self._await[index - counter] self._count_rules += 1 self._lock.release() return True def eval_function(self, function, path=None, node=None, **kwargs): # @NOTE: this helper function helps to perform a function function = self.find_function(function) if function is None: return None elif node is None: return function(root=self._root, output=self._output, **kwargs) else: name_node = self.convert_name_to_absolute_name(node, path=path) if name_node in self._rules: return function(root=self._rules[name_node]['dir'], output=self._output, **kwargs) else: return None def add_rule(self, owner, function, use_on_workspace=False): self._functions[function.__name__] = { 'owner': owner, 'function': function, 'use_on_workspace': use_on_workspace } def find_function(self, name, position=None): if not name in self._functions: return None else: function = self._functions[name] if (not position is None) and (position == 'workspace') \ and function['use_on_workspace'] is False: return None else: if function['owner'].check() is False: return None return function['function'] def show_pending_tasks(self): # @NOTE: show pending tasks when threads are stucked, sometime it's because # there are nothing to do so nothing to be show and we will close application # after that have_pending = False for rule_name in self._rules: rule = self._rules[rule_name] if not 'done' in rule or rule['done'] is False: print('>> Rule %s is waiting tasks:' % \ Manager.convert_absolute_name_to_dep(self._root, rule_name)) for dep in rule['depends_on']: if not dep in self._rules: print('\t\t%s -> didn\'t exist' % Manager.convert_absolute_name_to_dep(self._root, dep)) have_pending = True elif not 'done' in self._rules[dep] or self._rules[dep]['done'] is False: print('\t\t%s' % Manager.convert_absolute_name_to_dep(self._root, dep)) have_pending = True else: return have_pending def teardown(self, root, output=None): # @NOTE: now run teardown callbacks. Since i don't want to solve race # condition problems on 'root', everything will be run on master-thread # after all our consumer-thread have finished while self._teardown.empty() is False: callback, info = self._teardown.get() if callable(info) is True: info(is_on_running=False) if callable(callback) is False: continue elif callback(root=root, output=output) is False: raise AssertionError('there some problem when teardown this project') self._teardown.task_done() def found_bug(self, bug, turn_to_debug=False, no_lock=False): def update(): self._error = True # @NOTE: this function will use to notify when a bug has been found if turn_to_debug is True: Logger.debug('Got an exception: %s -> going to teardown this project' % str(bug)) else: Logger.error('Got an exception: %s -> going to teardown this project' % str(bug)) if no_lock or self._use_parallel is False or self._current_dir_type == 'workspace': update() else: update_variable_safety(self._lock, update) def perform(self, root, output=None, timeout=1, retry_checking_multithread=30): # @NOTE: sometime, adding rules don't run as i expected, for example # adding rule with unknown dependecies, we must scan throw self._await # to make sure everything has been added completely if len(self._await) > 0: Logger.debug('It seems self._await still have %d rules ' 'under implemented' % len(self._await)) while True: wait_to_remove = [] for index, (node_name, dep) in enumerate(self._await): if dep in self._rules: Logger.debug('rule %s is depended by %s' % (dep, node_name)) # @NOTE: add dependency and mark to remove this waiting task # at lastly self._rules[dep]['depends_by'].append(node_name) wait_to_remove.append(index) else: # @NOTE: if we don't have anything on waiting to remove, it # means we finish checking now if len(wait_to_remove) == 0: break # @NOTE: on the otherhand, we must remove waiting dependencies # and do again wait_to_remove.sort() for counter, index in enumerate(wait_to_remove): del self._await[index - counter] # @NOTE: sometime we use undefined dependencies and cause system # hange forever, this way will check everything before invoke # building system if len(self._await) > 0: list_untagged_rules = () for rule, dep in self._await: list_untagged_rules.add(rule) self.found_bug( AssertionError('still have untagged rules, please check ' 'your `.build` and `.workspace` here it\'s ' 'the list of untagged rules:\n%s' % \ '\n'.join(list_untagged_rules))) # @NOTE: unexpected error can happen before performing rules. # if it happens, abandon this project now if self._error: return not self._error # @NOTE: narrate how to implement the project according instructions if self._use_parallel is None: self._use_parallel = can_run_on_multi_thread(retry_checking_multithread) if self._use_parallel is True and self._current_dir_type == 'build': return self.perform_on_multi_thread(root, output, timeout) else: return self.perform_on_single_thread(root, output) def perform_on_single_thread(self, root, output=None, timeout=1): # @NOTE: there was a big issue when run this tool on a single core machine # since we only have a master, we never run payload at here and we can't # compile anything self._root = root self._output = output self._count_payload = 0 self._performer.reset() Logger.debug('Run on single-thread') parsing = self._performer.perform_on_single_thread(timeout=timeout) running = self._performer.perform_on_single_thread(timeout=timeout) if parsing is None or running is None: self.found_bug(AssertionError('it seems performer got bugs'), no_lock=True) return False while self._keep is True and self.count_rules > 0 and not self._error: while self._current_dir_type == 'build' and \ not self._error and self._keep is True: if self._performer._pipe.qsize() > 0: if self._keep is True: parsing() if self._keep is True: running() elif self._performer._jobs.qsize() > 0: if self._keep is True: running() else: break try: # @NOTE: fetch a new task task_name = self._build.get(timeout=timeout) except Empty: if self._performer._pipe.qsize() == 0 and \ self._performer._jobs.qsize() == 0: self._keep = False continue # @NOTE: parse this task if not task_name in self._rules: self.found_bug(AssertionError('it seems there is a race condition with ' 'task %s' % task_name), no_lock=True) continue define = self._rules[task_name]['define'] depends_by = self._rules[task_name]['depends_by'] if 'info' in define: define['info'](is_on_running=True, **define) if 'callback' in define: kwargs = define.get('kwargs') try: if self._rules[task_name]['dir'] is None: workspace = root else: workspace = self._rules[task_name]['dir'] # @NOTE: check dependency here if kwargs is None: result = define['callback'](root=workspace, workspace=output) else: result = define['callback'](root=workspace, workspace=output, **kwargs) if result is False: self._keep = False elif not define.get('teardown') is None: self._teardown.put((define['teardown'], define.get('info'))) if 'info' in define: define['info'](is_on_running=True, is_finish_successful=True, **define) if self._keep is True: parsing() if self._keep is True: running() if self._keep is False: continue for name in depends_by: # @NOTE: detect position of this dependency and remove # it out of dependency list try: index = self._rules[name]['depends_on'].index(task_name) except ValueError: index = -1 if index >= 0: del self._rules[name]['depends_on'][index] # @NOTE: if the task's dependencies is None now, put it to queue 'build' if len(self._rules[name]['depends_on']) == 0: self._build.put(name) else: Logger.debug('Finish pushing task %s' % task_name) self._rules[task_name]['done'] = True except Exception as error: # @NOTE: update status to from running -> stoping because we # found a bug inside our code self.found_bug(error, no_lock=True) # @NOTE: print exception Logger.exception() else: return not self._error def perform_on_multi_thread(self, root, output=None, timeout=1, parallel_core=4): lock = Lock() # @NOTE: tracer consumes so much time so we must consider using it # start_tracer('/tmp/test.html') self._root = root self._output = output self._count_payload = 0 self._performer.reset() Logger.debug('Run on multi-threads') if len(self._rules) == 0: return True if self._current_dir_type == 'build': for callback in self._departure_callbacks: callback(mode=self._current_dir_type) def stop_running(): self._keep = False def wrapping(): # @NOTE: make all consumer-threads wait until the main-thread finishs # creating and configures if (not self._current_dir_type is None) and self._current_dir_type.lower() == 'build': role, performing_callback = self._performer.perform_on_multi_thread(timeout=timeout) else: role, performing_callback = 'master', None wait(lock) if not performing_callback is None: if role == 'payload' and self._performer.pending(): self.__enter_payload() begin = True # @NOTE: fetch a task from queue and perform it while self._keep is True and (self.count_rules > 0 or self.count_payload > 0): if is_okey_to_continue(self._lock, lambda: self._keep) is False: if role != 'master': break else: self._performer.clear_pipe() continue # @NOTE: payload must finish its tasks first before supporting # parsing rules if role == 'payload' and (self._performer.pending() or self._build.qsize() == 0): performing_callback() if role == 'payload': if self._build.qsize() == 0 and self.count_rules == 0: # @NOTE: when payload determines that rules are converted # it must reload to check and run finish its task # instead of waiting task from main-thread continue else: sleep(timeout) # Logger.debug('Payload turn off when ' # 'count_rules=%d' % self.count_rules) # @NOTE: now get task from self._build and peform parsing try: if role == 'master': # @NOTE: when master determines that rules are converted # it must jump to perform tasks instead of waiting new # task from main-thread Logger.debug('Master have %d to do now' \ % self._performer._pipe.qsize()) while self._performer._pipe.qsize() > 0 and self._keep: performing_callback() else: if self._build.qsize() == 0 and self.count_rules == 0: Logger.debug('Master off but there were nothing ' 'to do now') raise Empty task_name = self._build.get(timeout=timeout) self._lock.acquire() Logger.debug('Convert rule %s now' % task_name) if not task_name is None: self._running += 1 self._lock.release() except Empty: if self._running == 0 and self._performer.running == 0: # @NOTE: since this might be caused by a race condition # with the build script, we must show tasks that are on # pending if self._performer._jobs.qsize() == 0: update_variable_safety(self._lock, stop_running) if self.show_pending_tasks(): self.found_bug(AssertionError('it seems there is a race condition, ' 'nothing run recently'), turn_to_debug=True) if role != 'master' and self._performer._inside.locked(): performing_callback() continue else: if role == 'payload': performing_callback() continue if not task_name in self._rules: update_variable_safety(self._lock, stop_running) raise AssertionError('it seems there is a race condition with task %s' % task_name) define = self._rules[task_name]['define'] depends_by = self._rules[task_name]['depends_by'] if 'info' in define: define['info'](is_on_running=True, **define) if 'callback' in define: kwargs = define.get('kwargs') try: if self._rules[task_name]['dir'] is None: workspace = root else: workspace = self._rules[task_name]['dir'] # @NOTE: check dependency here if kwargs is None: result = define['callback'](root=workspace, workspace=output) else: result = define['callback'](root=workspace, workspace=output, **kwargs) if result is False: update_variable_safety(self._lock, stop_running) elif not define.get('teardown') is None: self._teardown.put((define['teardown'], define.get('info'))) if 'info' in define: define['info'](is_on_running=True, is_finish_successful=True, **define) self._lock.acquire() for name in depends_by: # @NOTE: detect position of this dependency and remove # it out of dependency list try: index = self._rules[name]['depends_on'].index(task_name) except ValueError: index = -1 if index >= 0: del self._rules[name]['depends_on'][index] # @NOTE: if the task's dependencies is None now, put it to queue 'build' if len(self._rules[name]['depends_on']) == 0: self._build.put(name) else: self._rules[task_name]['done'] = True self._count_rules -= 1 self._lock.release() if role == 'master' and not performing_callback is None: performing_callback() elif role == 'payload' and self._performer.pending() is True: performing_callback() except Exception as error: # @NOTE: update status to from running -> stoping because we found a bug inside our code update_variable_safety(self._lock, stop_running) self.found_bug(error) # @NOTE: print exception Logger.exception() finally: self._running -= 1 self._build.task_done() if role == 'master': Logger.debug('Master finish transfer request to Performer') while self._performer._pipe.qsize() > 0 and self._keep: performing_callback() else: Logger.debug('Master deliver task to payloads') if self._keep: if self._performer._jobs.qsize() == 0: update_variable_safety(self._lock, stop_running) else: Logger.debug('Master become a payload and will support ' 'another payloads') _, performing_callback = \ self._performer.perform_on_multi_thread(timeout=timeout) performing_callback() Logger.debug('Teardown master now') else: Logger.debug('Teardown payload now') if not performing_callback is None: if role == 'payload': self.__exit_payload() lock.acquire() consumers = [] for i in range(parallel_core*multiprocessing.cpu_count()): thread = Thread(target=wrapping) # @NOTE: configure consumer-threads thread.setName('Builder-%d' % i) thread.start() # @NOTE: add this thread to consumer-list consumers.append(thread) else: # @NOTE: okey, now release lock to enable consumer-threads finish our # backlog and wait until they are finish our backlog if not self._current_dir_type is None: Logger.debug('begin parsing %s' % (self._current_dir_type.upper())) lock.release() for i in range(parallel_core*multiprocessing.cpu_count()): consumers[i].join() # stop_tracer() return not self._error @property def languages(self): return self._languages @property def plugins(self): return self._plugins @staticmethod def derived(instance): result = None try: for class_name in reversed(instance.derived()): if class_name == 'Plugin' or class_name == 'Language': if result is None: return instance.__class__.__name__.lower() else: return result.lower() else: result = class_name except Exception as error: Logger.error(error) Logger.exception() return None def when_depart(self, type): def route(function): def wrapping(mode, *args, **kwargs): if mode.lower() == type.lower(): return function(*args, **kwargs) else: return None self._departure_callbacks.append(wrapping) return wrapping return route def hook(self, when_calling_happen, status=True): def route(function): self._performer.install_event(when_calling_happen, status, function) return function return route
# -*- coding: utf-8 -*- """ Created on Thu Sep 12 12:23:35 2019 @author: Joule """ import random from cipher import Cipher from crypto_utils import modular_inverse class Multiplikasjon(Cipher): """Krypter ved hjelp av multiplikasjons cipheret""" def encode(self, text, key): encoded = '' for letter in text: encoded += self.dictionary.get(((ord(letter)-32)*key)%95) return encoded def decode(self, coded_text, key): decoded = '' for letter in coded_text: decoded += self.dictionary.get(((ord(letter)-32)*(modular_inverse(key, 95)))%95) return decoded def generate_key(self): key = 0 while True: key = random.randint(2, 94) if modular_inverse(key, 95): return key
import numpy as np def test_q1_shape(df): try: assert df.shape[0] == 45 except AssertionError: print("Your dataframe doesn't have the correct number of rows.") print("Try looking back at conditional statements using loc/iloc.") return print("You successfully used pandas to filter a dataset") def test_q2_shape(df): try: assert df.shape[0] == 42 except AssertionError: print("Your dataframe doesn't have the correct number of rows.") print("Try looking back at conditional statements using loc/iloc.") return print("You successfully filtered the dataset") def test_q2_statement(statement): error = False drug1 = statement.split(" ")[1] ratio = statement.split(" ")[3] drug2 = statement.split(" ")[-1] if drug1 != "Ebselen": print("Your top scoring drug does not appear to be correct.") error = True if drug2 != "Remdesivir": print("Your second scoring drug does not appear to be correct.") error = True if not np.isclose(float(ratio), 1.05133928571, atol=0.001): print("Your ratio does not appear to be correct.") error = True if not error: print("You successfully used pandas!") def a_column_or_index_contains(df, contains): for series in [df[col] for col in df.columns] + [df.index]: if np.all([contained in series.to_list() for contained in contains]): return True return False def test_popular_drugs(df): assert a_column_or_index_contains( df, ["Remdesivir", "Tocilizumab", "Ebselen"] ), "Couldn't find the correct popular drugs in your dataset" print("You found the correct popular drugs")
import numpy as np import time import copy #np.random.seed(134213) def smape(X, y, w): y_pred = X @ w n = X.shape[0] res = .0 for y_true, y_hat in zip(y, y_pred): res += abs(y_hat - y_true) / (abs(y_hat) + abs(y_true)) res /= n return res def normalize(X): n = X.shape[0] k = X.shape[1] coeffs = np.zeros(k) for j in range(k): coeffs[j] = np.max(np.absolute(X[:, j])) if coeffs[j] == 0.: coeffs[j] = 1. X[:, j] /= coeffs[j] return coeffs def stochastic_gradient(X_i, y_i, weights, lambda_reg): y_hat = X_i @ weights grad = 2 * ((y_hat - y_i) * X_i + lambda_reg * weights) return grad def gradient_smape(X, y, weights): avg_grad = np.zeros(X.shape[1]) for X_i, y_i in zip(X, y): y_hat = X_i @ weights t = y_hat * y_i num = X_i * (abs(t) + t) denom = abs(y_hat) * (abs(y_hat) + abs(y_i)) ** 2 g = np.sign(y_hat - y_i) * num / denom avg_grad += g avg_grad /= X.shape[0] return avg_grad def sgd(X_train, y_train, lambd=0.0, learning_rate=0.01, t=1.1, w=None): """ Stochastic Gradient Descent of Linear Regression """ n = X_train.shape[0] k = X_train.shape[1] # Uniform initilization weights = np.random.uniform(low=-1/(2 * n), high=1/(2 * n), size=k) if w is None else w start_time = time.process_time() while time.process_time() - start_time < t: sample_idx = np.random.randint(n) y_hat = X_train[sample_idx] @ weights weights -= learning_rate * stochastic_gradient( X_train[sample_idx], y_train[sample_idx], weights, lambd) return weights def gd(X_train, y_train, learning_rate=0.01, t=1.1, w=None): n = X_train.shape[0] k = X_train.shape[1] # Uniform initilization or cont training weights = np.random.uniform(low=-1/(2 * n), high=1/(2 * n), size=k) if w is None else w start_time = time.process_time() while time.process_time() - start_time < t: g = gradient_smape(X_train, y_train, weights) weights -= learning_rate * g return weights def fit_least_squares(X, y, lambd=0.0): inv = np.linalg.inv(X.T @ X + lambd * np.eye(X.shape[1])) pinv = inv @ X.T weights = pinv @ y return weights if __name__ == '__main__': n, m = map(int, input().split()) X = np.zeros((n, m + 1)) y = np.zeros(n) for i in range(n): s = list(map(int, input().split())) X[i, :] = s[:-1] + [1.] y[i] = s[-1] X_old = copy.deepcopy(X) coeffs = normalize(X) try: w = fit_least_squares(X, y, 0.0) / coeffs except: w1 = gd(X, y, 1.5e7, 1.1) / coeffs w2 = gd(X, y, 1e7, 2.0) / coeffs if smape(X_old, y, w1) <= smape(X_old, y, w2): w = w1 else: w = w2 print(*w)
# %% [markdown] # # # Workshop: NumPy Universal Operations and Broadcasting # # In this workshop we'll explore universal operations and broadcasting in more # depth. Some of the operations used in this workshop were not presented in the # lectures, you have to look into [the NumPy # documentation](https://numpy.org/doc/stable/reference/ufuncs.html) to discover # them. # %% import numpy as np # %% arr1 = np.arange(1, 25).reshape(2, 3, 4) lst1 = [2, 3, 5, 7] # %% [markdown] # # ## Universal Operations # # Compute arrays `arr2` and `arr3` that contain the elements of `arr1` and # `lst1` squared, respectively. # %% [markdown] # # Compute the product of `arr1` and `lst1`. Before evaluating your solution: try # to determine the shape of the result. How is the shape of the result # determined? Do you need an universal function or can you perform the # multiplication as just a normal product? # %% [markdown] # # Write a function `may_consume_alcohol(ages)` that takes a list or # 1-dimensional array of ages and returns an array containing the values `"no"` # if the corresponding index in the input array is less than 18, `"maybe"` if # the value is above 18 but lower than 21 and `"yes"` if the value is at least # 21. # # For example `may_consume_alcohol([15, 20, 30, 21, 20, 17, 18])` returns an # array containing `['no', 'maybe', 'yes', 'yes', 'maybe', 'no', 'maybe']`. # %% [markdown] # # Write a function `double_or_half(values)` that takes a list or 1-dimensional # array of numbers and returns a vector of the same length containing `v * 2` if # the corresponding member of `values` is odd and `v // 2` if the corresponding # member is even. # # For example, `double_or_half([0, 1, 2, 5, 10, 99])` should return a vector # containing the values `[0, 2, 1, 10, 5, 198]`. # # *Hint:* Check the documentation for the `choose` function. # %%
#!/usr/bin/python # coding: utf-8 from datetime import date, datetime, timedelta from predict_functions import * from sklearn.externals import joblib import pandas as pd import pymongo as pym import re date = datetime.strftime(datetime.utcnow() - timedelta(hours=24), '%Y-%m-%d') fname = 'data/twitter_sentiments_{}.json'.format(date) df_pred = pd.DataFrame() # 1. Chargement du vocabulaire voca = pd.read_json('trained_dict.json').to_dict()[0] # 2. Chargement des tweets a predire # dataframe contenant les tweets a predire dans une colonne 'text' print('Chargement des tweets des candidats depuis la base MongoDB ...') df = extract_tweets(date, days=1, port=27017) other_politicians = ['bayrou', 'aignan', 'poutou', 'arthaud', 'cheminade', 'valls', 'sarko', 'hollande'] candidates = {'macron': 'macron|emmanuel', 'fillon': 'fillon', 'hamon': 'hamon|benoit|benoît', 'melenchon': 'melenchon|mélenchon|jlm', 'le pen': 'le pen|lepen|mlp|marine' } # on repère les tweets où plusieurs candidats sont cités stop_words = '|'.join([pol for pol in other_politicians]) df['other'] = df['text'].str.contains(stop_words, case=False) # on repère les candidats contenus dans les tweets for candidate in candidates: df[candidate] = df['text'].str.contains(candidate, case=False) # filtrage des tweets contenant d'autres personnalités politiques df = df[df['other']==False] # filtrage des tweets contenant plusieurs des 5 candidats (ou aucun candidat) df['count'] = 1 * df.fillon + df.macron + df['le pen'] + df.melenchon + df.hamon df = df[df['count']==1] df.reset_index(drop=True, inplace=True) # 3. Creation des features et de la matrice TF-IDF pour la base test X_test= build_X(df, drop_dups=False, vocab=voca, min_df=3, n_grams=(1,1)) # 4. Chargement du modele entraine clf = joblib.load('trained_logistic_regression.pkl') # 5. Prediction print('Prediction des tweets...') y_pred = clf.predict(X_test) df['sentiment'] = y_pred # 6. Sauvegarder les predictions # ajout de la ligne du candidat dans le dataframe for candidate in candidates: curr_df = df[df[candidate]==True] taille = curr_df.shape[0] rec = {'count': taille, 'candidat': candidate} try: rec['neg'] = curr_df[curr_df['sentiment']==-1].shape[0] / taille rec['neu'] = curr_df[curr_df['sentiment']==0].shape[0] / taille rec['pos'] = curr_df[curr_df['sentiment']==1].shape[0] / taille except: # si aucun tweet pour le candidat courant n'est dans la base rec['neg'], rec['neu'], rec['pos'] = ('-', '-', '-') df_pred = df_pred.append(rec, verify_integrity=False, ignore_index=True) df_pred.set_index('candidat', drop=True, inplace=True) print('Sauvegarde des pourcentages par candidat dans un .json : {}'.format(fname)) print(df_pred) df_pred.to_json(fname) print('Insertion dans la base MongoDB "predicted"...') insert_in_mongo(df.drop(['other', 'count'], axis=1), port=27017)
''' Builder for the snapshot from smaller snapshots. ''' from amuse.datamodel.particles import Particles from amuse.lab import units from amuse.units.quantities import VectorQuantity from omtool.core.datamodel import Snapshot class SnapshotBuilder: ''' Builder for the snapshot from smaller snapshots. ''' def __init__(self): self.snapshot = Snapshot(Particles(), 0 | units.Myr) def add_snapshot(self, snapshot: Snapshot, offset: VectorQuantity = [0, 0, 0] | units.kpc, velocity: VectorQuantity = [0, 0, 0] | units.kms ): ''' Appends snapshot of any number of particles to the result. ''' snapshot.particles.position += offset snapshot.particles.velocity += velocity self.snapshot = self.snapshot + snapshot def add_particles(self, particles: Particles): ''' Appends particles to the result and takes timestamp from it. ''' self.snapshot.particles.add_particles(particles) def get_result(self) -> Snapshot: ''' Returns resulting snapshot. ''' self.snapshot.particles.move_to_center() return self.snapshot def to_fits(self, filename: str): ''' Writes reult to FITS file. ''' self.snapshot.particles.move_to_center() self.snapshot.to_fits(filename)
fruits = ['orange', 'apple', 'banana', 'pineapple', 'coconut', 'banana'] print(fruits) count = fruits.count('banana') # 2 print(f"There are {count} bananas")
from __future__ import print_function import sublime import sublime_plugin import traceback try: from latextools_utils import get_setting from latextools_utils.distro_utils import using_miktex from latextools_utils.external_command import external_command except ImportError: from .latextools_utils import get_setting from .latextools_utils.distro_utils import using_miktex from .latextools_utils.external_command import external_command if sublime.version() < '3000': _ST3 = False strbase = basestring else: _ST3 = True strbase = str def _view_texdoc(file): if file is None: raise Exception('File must be specified') if not isinstance(file, strbase): raise TypeError('File must be a string') command = ['texdoc'] if using_miktex(): command.append('--view') command.append(file) try: external_command(command) except OSError: traceback.print_exc() sublime.error_message('Could not run texdoc. Please ensure that your texpath setting is configured correctly in the LaTeXTools settings.') class LatexPkgDocCommand(sublime_plugin.WindowCommand): def run(self): window = self.window def _on_done(file): if ( file is not None and isinstance(file, strbase) and file != '' ): window.run_command('latex_view_doc', {'file': file}) window.show_input_panel( 'View documentation for which package?', '', _on_done, None, None ) class LatexViewDocCommand(sublime_plugin.WindowCommand): def run(self, file): _view_texdoc(file) def is_visible(self): return False # hide this from menu