content
stringlengths
5
1.05M
""" Support for Zwave roller shutter components. For more details about this platform, please refer to the documentation https://home-assistant.io/components/rollershutter.zwave/ """ # Because we do not compile openzwave on CI # pylint: disable=import-error import logging from homeassistant.components.rollershutter import DOMAIN from homeassistant.components.zwave import ZWaveDeviceEntity from homeassistant.components import zwave from homeassistant.components.rollershutter import RollershutterDevice COMMAND_CLASS_SWITCH_MULTILEVEL = 0x26 # 38 COMMAND_CLASS_SWITCH_BINARY = 0x25 # 37 _LOGGER = logging.getLogger(__name__) def setup_platform(hass, config, add_devices, discovery_info=None): """Find and return Z-Wave roller shutters.""" if discovery_info is None or zwave.NETWORK is None: return node = zwave.NETWORK.nodes[discovery_info[zwave.ATTR_NODE_ID]] value = node.values[discovery_info[zwave.ATTR_VALUE_ID]] if value.command_class != zwave.COMMAND_CLASS_SWITCH_MULTILEVEL: return if value.index != 0: return value.set_change_verified(False) add_devices([ZwaveRollershutter(value)]) class ZwaveRollershutter(zwave.ZWaveDeviceEntity, RollershutterDevice): """Representation of an Zwave roller shutter.""" def __init__(self, value): """Initialize the zwave rollershutter.""" from openzwave.network import ZWaveNetwork from pydispatch import dispatcher ZWaveDeviceEntity.__init__(self, value, DOMAIN) self._node = value.node dispatcher.connect( self.value_changed, ZWaveNetwork.SIGNAL_VALUE_CHANGED) def value_changed(self, value): """Called when a value has changed on the network.""" if self._value.value_id == value.value_id or \ self._value.node == value.node: self.update_ha_state() _LOGGER.debug("Value changed on network %s", value) @property def current_position(self): """Return the current position of Zwave roller shutter.""" if self._value.data <= 5: return 100 elif self._value.data >= 95: return 0 else: return 100 - self._value.data def move_up(self, **kwargs): """Move the roller shutter up.""" self._node.set_dimmer(self._value.value_id, 100) def move_down(self, **kwargs): """Move the roller shutter down.""" self._node.set_dimmer(self._value.value_id, 0) def stop(self, **kwargs): """Stop the roller shutter.""" for value in self._node.get_values( class_id=COMMAND_CLASS_SWITCH_BINARY).values(): # Rollershutter will toggle between UP (True), DOWN (False). # It also stops the shutter if the same value is sent while moving. value.data = value.data break
import sys import os sys.path.insert(1, os.path.join(sys.path[0], '..')) import numpy as np from base.SO3 import SO3 from base.simple_filter import LowPassFilter, AverageFilter from estimation.magnetometer_calibrator import MagnetometerCalibrator from estimation.kalman_filter import KalmanFilterSO3 class Engine: GYRO_NO_MOTION_THRESHOLD = 0.1 ACCEL_NO_MOTION_THRESHOLD = 10.0 # FIXME we may need a bigger value LOWPASS_GAIN = 0.9 STATIC_CAL_SAMPLE_COUNT = 200 SENSOR_COVAR_AMPLIFIER = 2.0 # covar obtained after static calibration would be amplified for better stability INITIAL_POSE_COVAR = 1e1 # diagonal STATE_INIT = 0 STATE_CALIBRATE_MOVING = 1 # for mag bias STATE_CALIBRATE_STATIC = 2 # for gyro bias, mag ref and accel ref STATE_RUNNING = 3 def __init__(self): self._filter = KalmanFilterSO3() # estimates the transform from current chip to initial chip self._gyro_lp = LowPassFilter(Engine.LOWPASS_GAIN) self._accel_lp = LowPassFilter(Engine.LOWPASS_GAIN) self._gyro_avg = AverageFilter() self._accel_avg = AverageFilter() self._mag_avg = AverageFilter() self._gyro_bias = None self._mag_calibrator = MagnetometerCalibrator(np.zeros(3)) self._state = Engine.STATE_INIT self._last_update_time = 0.0 def set_mag_param(self, mag_bias): ''' update the mag parameters. Could be used as a hacky way to advance the internal state machine, but only in the simulation. ''' if (self._state < Engine.STATE_CALIBRATE_STATIC): self._state = Engine.STATE_CALIBRATE_STATIC self._mag_bias = mag_bias def update(self, t, gyro, accel, mag): """ """ t *= 1.0 gyro = np.array(gyro, dtype=np.float) accel = np.array(accel, dtype=np.float) mag = np.array(mag, dtype=np.float) # update low pass filters self._gyro_lp.update(gyro) self._accel_lp.update(accel) no_motion = self._check_no_motion(gyro, accel) if (self._state == Engine.STATE_INIT): # wait until starts to move if (not no_motion): print("[EngineState] transit from INIT to CALIBRATE_MOVING") self._state = Engine.STATE_CALIBRATE_MOVING elif (self._state == Engine.STATE_CALIBRATE_MOVING): self._mag_calibrator.update(mag) self._mag_bias = self._mag_calibrator.bias # wait until found bias, and stopped moving if ((self._mag_bias is not None) and \ (no_motion)): print("[EngineState] transit from CALIBRATE_MOVING to CALIBRATE_STATIC") print("mag bias is {}".format(self._mag_bias)) self._state = Engine.STATE_CALIBRATE_STATIC elif (self._state == Engine.STATE_CALIBRATE_STATIC): if (no_motion): # only update when device is stationary done = self._update_static_calibration(gyro, accel, mag) if (done): # NOTE: acceleration is in the opposite direction of the corresponding inertial force gravity_in_body = self._accel_avg.value gravity_in_world = np.array([0, 0, 1], dtype=np.float) * np.linalg.norm(gravity_in_body) R_from_body_to_world = SO3.from_two_directions(gravity_in_body, gravity_in_world) initial_pose_covar = np.eye(3) * Engine.INITIAL_POSE_COVAR self._gyro_bias = self._gyro_avg.value gyro_covar = self._gyro_avg.covar * Engine.SENSOR_COVAR_AMPLIFIER accel_covar = self._accel_avg.covar * Engine.SENSOR_COVAR_AMPLIFIER mag_ref = R_from_body_to_world.inverse() * self._mag_avg.value mag_covar = self._mag_avg.covar * Engine.SENSOR_COVAR_AMPLIFIER # initialize the kalman filter here. self._filter.set_initial_pose(R_from_body_to_world, initial_pose_covar) self._filter.set_sensor_covar(gyro_covar, accel_covar, mag_covar) self._filter.set_references(gravity_in_world, mag_ref) self._state = Engine.STATE_RUNNING print("[EngineState] transit from CALIBRATE_STATIC to RUNNING") print("initial orientation = {}\nroll = {}, pitch = {}, yaw = {}".format( R_from_body_to_world.ln(), R_from_body_to_world.get_roll(), R_from_body_to_world.get_pitch(), R_from_body_to_world.get_yaw())) print("gravity in world = {}".format(gravity_in_world)) print("gyro bias = {}".format(self._gyro_bias)) print("gyro covar = \n{}".format(gyro_covar)) print("accel covar = \n{}".format(accel_covar)) print("mag ref = {}".format(mag_ref)) print("mag covar = \n{}".format(mag_covar)) elif (self._state == Engine.STATE_RUNNING): dt = t - self._last_update_time # always do gyro update gyro_calibrated = gyro - self._gyro_bias self._filter.process_update(gyro_calibrated, dt) # do accel update iff gravity is dominant if (np.linalg.norm(accel) < Engine.ACCEL_NO_MOTION_THRESHOLD): self._filter.acc_update(accel) else: print("[ACC] rejected") # do mag update iff mag reading matchs mag param mag_calibrated = self._mag_calibrator.calibrate_measurement(mag) if (mag_calibrated is not None): self._filter.mag_update(mag_calibrated) else: print("[MAG] rejected") else: # invalid state -- should not happen assert(False) self._last_update_time = t def get_orientation_in_world(self): ''' :return transform from current chip to world. ''' if (self._state < Engine.STATE_RUNNING): return None return self._filter.get_estimate_mean().inverse() def get_orientation_covar(self): if (self._state < Engine.STATE_RUNNING): return None return self._filter.get_estimate_covar() def get_state_string(self): """ :return a string representing the internal state. """ if (self._state == Engine.STATE_INIT): return "Init" elif (self._state == Engine.STATE_CALIBRATE_MOVING): return "Moving calibration" elif (self._state == Engine.STATE_CALIBRATE_STATIC): return "Static calibration" elif (self._state == Engine.STATE_RUNNING): return "Running" else: raise RuntimeError("Invalid state: {}".format(self._state)) def _check_no_motion(self, gyro, accel): """ :return True if the barely moving """ tg = Engine.GYRO_NO_MOTION_THRESHOLD ta = Engine.ACCEL_NO_MOTION_THRESHOLD # trivial motion both instantaneously and recently return ((np.linalg.norm(gyro) < tg) and \ (np.linalg.norm(self._gyro_lp.value) < tg) and \ (np.linalg.norm(accel) < ta) and \ (np.linalg.norm(self._accel_lp.value) < ta)) def _update_static_calibration(self, gyro, accel, mag): """ estimate gyro offset, mag ref and accel ref :return True if finished. """ self._gyro_avg.update(gyro) self._accel_avg.update(accel) self._mag_avg.update(mag - self._mag_bias) return ((self._gyro_avg.count > Engine.STATIC_CAL_SAMPLE_COUNT) and \ (self._accel_avg.count > Engine.STATIC_CAL_SAMPLE_COUNT) and \ (self._mag_avg.count > Engine.STATIC_CAL_SAMPLE_COUNT)) if (__name__ == '__main__'): pass
import matplotlib.pyplot as plt import shapefile import pandas as pd shpFilePath = r"C:\Users\tq220\Documents\Tits things\2018-2019\Data Science\Final-project-data\Data\Utah_FORGE_gravity.shp" line_dict={} df=pd.DataFrame(columns=['x','y']) test = shapefile.Reader(shpFilePath) inds=[] listx=[] listy=[] for ind,sr in enumerate(test.shapeRecords()): inds.append(ind) listx=[] listy=[] # print(sr.shape.points) for xNew,yNew in sr.shape.points: # print(xNew) listx.append(xNew) listy.append(yNew) df.loc['{0}'.format(ind)]=[listx,listy] # plt.plot(listx,listy) # line_dict['line{0}x'.format(ind)]=listx # line_dict['line{0}y'.format(ind)]=listy #df.to_csv('surface_fractures_group_by_shape.csv') #plt.scatter(listx,listy,markersize=1) #plt.show()
import os import sys import shutil import asyncio from azure_functions_worker import protos from azure_functions_worker import testutils async def vertify_nested_namespace_import(): test_env = {} request = protos.FunctionEnvironmentReloadRequest( environment_variables=test_env) request_msg = protos.StreamingMessage( request_id='0', function_environment_reload_request=request) disp = testutils.create_dummy_dispatcher() # Mock intepreter starts in placeholder mode import azure.module_a as mod_a # noqa: F401 # Mock function specialization, load customer's libraries and functionapps ns_root = os.path.join( testutils.UNIT_TESTS_ROOT, 'azure_namespace_import', 'namespace_location_b') test_path = os.path.join(ns_root, 'azure', 'namespace_b', 'module_b') test_mod_path = os.path.join(test_path, 'test_module.py') os.makedirs(test_path) with open(test_mod_path, 'w') as f: f.write('MESSAGE = "module_b is imported"') try: # Mock a customer uses test_module if sys.argv[1].lower() == 'true': await disp._handle__function_environment_reload_request( request_msg) from azure.namespace_b.module_b import test_module print(test_module.MESSAGE) except ModuleNotFoundError: print('module_b fails to import') finally: # Cleanup shutil.rmtree(ns_root) if __name__ == '__main__': loop = asyncio.get_event_loop() loop.run_until_complete(vertify_nested_namespace_import()) loop.close()
# --------------------------------------------------------------- # 这个脚本向你展示了如何使用 openvino 对 PPQ 导出的模型进行推理 # 你需要注意,openvino 也可以运行各种各样的量化方案,你甚至可以用 tensorRT 的 policy # 但总的来说,openvino 需要非对称量化的 activation 和对称量化的 weights # --------------------------------------------------------------- # For this onnx inference test, all test data is randomly picked. # If you want to use real data, just rewrite the defination of SAMPLES import numpy as np import openvino import torch import torchvision import torchvision.models from torch.utils.data import DataLoader from tqdm import tqdm from ppq import * from ppq.api import * QUANT_PLATFROM = TargetPlatform.PPL_CUDA_INT8 BATCHSIZE = 16 MODELS = { 'resnet50': torchvision.models.resnet50, 'mobilenet_v2': torchvision.models.mobilenet.mobilenet_v2, 'mnas': torchvision.models.mnasnet0_5, 'shufflenet': torchvision.models.shufflenet_v2_x1_0} DEVICE = 'cuda' SAMPLES = [torch.rand(size=[BATCHSIZE, 3, 224, 224]) for _ in range(256)] for mname, model_builder in MODELS.items(): print(f'Ready for run quantization with {mname}') model = model_builder(pretrained = True).to(DEVICE) quantized = quantize_torch_model( model=model, calib_dataloader=SAMPLES, collate_fn=lambda x: x.to(DEVICE), calib_steps=32, input_shape=[BATCHSIZE, 3, 224, 224], setting=QuantizationSettingFactory.default_setting(), platform=QUANT_PLATFROM, onnx_export_file='model_fp32.onnx') executor = TorchExecutor(graph=quantized) ref_results = [] for sample in tqdm(SAMPLES, desc='PPQ GENERATEING REFERENCES', total=len(SAMPLES)): result = executor.forward(inputs=sample.to(DEVICE))[0] result = result.cpu().reshape([BATCHSIZE, 1000]) ref_results.append(result) fp32_input_names = [name for name, _ in quantized.inputs.items()] fp32_output_names = [name for name, _ in quantized.outputs.items()] graphwise_error_analyse(graph=quantized, running_device='cuda', dataloader=SAMPLES, collate_fn=lambda x: x.cuda(), steps=32) export_ppq_graph(graph=quantized, platform=TargetPlatform.OPENVINO_INT8, graph_save_to='model_int8.onnx') int8_input_names = [name for name, _ in quantized.inputs.items()] int8_output_names = [name for name, _ in quantized.outputs.items()] # run with openvino. # do not use Tensorrt provider to run quantized model. # TensorRT provider needs another qdq format. import openvino.runtime openvino_executor = openvino.runtime.Core() model = openvino_executor.compile_model( model = openvino_executor.read_model(model="model_int8.onnx"), device_name="CPU") openvino_results = [] for sample in tqdm(SAMPLES, desc='OPENVINO GENERATEING OUTPUTS', total=len(SAMPLES)): result = model([convert_any_to_numpy(sample)]) for key, value in result.items(): result = convert_any_to_torch_tensor(value).reshape([BATCHSIZE, 1000]) openvino_results.append(result) # compute simulating error error = [] for ref, real in zip(ref_results, openvino_results): error.append(torch_snr_error(ref, real)) error = sum(error) / len(error) * 100 print(f'PPQ INT8 Simulating Error: {error: .3f} %') # benchmark with openvino int8 print(f'Start Benchmark with openvino (Batchsize = {BATCHSIZE})') benchmark_samples = [np.zeros(shape=[BATCHSIZE, 3, 224, 224], dtype=np.float32) for _ in range(512)] model = openvino_executor.compile_model( model = openvino_executor.read_model(model="model_fp32.onnx"), device_name="CPU") tick = time.time() for sample in tqdm(benchmark_samples, desc='FP32 benchmark...'): result = model([convert_any_to_numpy(sample)]) tok = time.time() print(f'Time span (FP32 MODE): {tok - tick : .4f} sec') model = openvino_executor.compile_model( model = openvino_executor.read_model(model="model_int8.onnx"), device_name="CPU") tick = time.time() for sample in tqdm(benchmark_samples, desc='INT8 benchmark...'): result = model([convert_any_to_numpy(sample)]) tok = time.time() print(f'Time span (INT8 MODE): {tok - tick : .4f} sec')
import pandas as pd import numpy as np import matplotlib.pyplot as plt import argparse import torch import torch.optim as optim import torch.nn as nn from torch.autograd import Variable import os import random import pickle import esm from torch.utils.data import TensorDataset, DataLoader import emb_classifier torch.cuda.empty_cache() def get_args(): parser = argparse.ArgumentParser( formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('-indir', type=str, required=False, default=None) parser.add_argument('-outdir', type=str, required=False, default=None) parser.add_argument('-data_dir', type=str, required=False, default='data/') args = parser.parse_args() return args def suffle_n_batch(data, batch_size): batched = [] random.shuffle(data) for i in range(len(data)//batch_size+1): batched.append(data[i*batch_size:i*batch_size+batch_size]) if len(batched[-1])==0: return batched[:-1] else: return batched def get_emb_esm1b(seq, LM_model, average=True): B, L = seq.shape L = L - 2 # remove start and end token #LM_model.eval() with torch.no_grad(): output = LM_model(seq, repr_layers=[33], return_contacts=True) # get the output from the language model embedding = output['representations'][33][:,1:-1,:] # embedding size (1, L, 1280) attention_map = output['attentions'][:,:,:,1:-1,1:-1] # attention map size (1, 33, 20, L, L) attention_map = attention_map.reshape(B, 33*20, L, L).permute(0,2,3,1) # (1, L, L, 660) # if you wanna average the embeddings along the sequence dimension -- i think this could be really cool too if (average): embedding = embedding.mean(1) return embedding,attention_map def load_data(args): with open(os.path.join(args.data_dir,'train_tuple_data.pkl'), 'rb') as f: train = pickle.load(f) with open(os.path.join(args.data_dir,'valid_tuple_data.pkl'), 'rb') as f: valid = pickle.load(f) return train, valid #get arguments args = get_args() indir = args.indir outdir = args.outdir print('Args got') print(f'indir {indir}') print(f'outdir {outdir}') # Loading and processing the data: train, valid = load_data(args) print('Data loaded') #Preprocess data into tensors LM_model, alphabet = esm.pretrained.esm1b_t33_650M_UR50S() batch_converter = alphabet.get_batch_converter() print('ESM1b loaded') #Convert data into format that esm1b will like y_train, _, x_train = batch_converter(train) y_val, _, x_val = batch_converter(valid) y_train = torch.tensor(y_train) y_val = torch.tensor(y_val) # Instantiate the network classifier = emb_classifier.Net() # Load model from previous state if indir arg is specified if indir is not None: if os.path.exists(indir): classifier.load_state_dict(torch.load(indir)) print(f'loaded model from {indir}') # Instantiate the cross-entropy loss criterion = nn.CrossEntropyLoss() # Instantiate the Adam optimizer optimizer = optim.Adam(classifier.parameters(),lr=3e-4) print('Classifier, optimizer, and criterion compiled') # Moving tensors over to gpu if available device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f'Using device {device}') #x_train = x_train.to(device) #y_train = y_train.to(device) #x_val = x_val.to(device) #y_val = y_val.to(device) classifier = classifier.to(device) LM_model = LM_model.to(device) LM_model.eval() print(f'Moved tensors to {device}') trainset = TensorDataset(x_train, y_train) valset = TensorDataset(x_val, y_val) train_loader = DataLoader(trainset, shuffle=True, batch_size=1) valid_loader = DataLoader(valset, shuffle=True, batch_size=1) print('Dataloaders built') num_parameters = sum(p.numel() for p in classifier.parameters() if p.requires_grad) print('Number of parameters classifier: ', num_parameters) num_parameters = sum(p.numel() for p in LM_model.parameters() if p.requires_grad) print('Number of parameters esm1b: ', num_parameters) grad_accum = 256 # CNN model training count = 0 loss_list = [] iteration_list = [] accuracy_list = [] num_epochs = 100 output_dict = {} print('Now beginning training') torch.cuda.empty_cache() for epoch in range(num_epochs): for i, data in enumerate(train_loader): seq, labels = data seq = seq.to(device) labels = labels.to(device) x, _ = get_emb_esm1b(seq, LM_model=LM_model, average=True) # Clear gradients optimizer.zero_grad() # Forward propagation outputs = classifier(x) # Calculate relu and cross entropy loss loss = criterion(outputs, labels)/grad_accum print(f'outputs {outputs.tolist()} lables {labels.tolist()}') # Calculating gradients loss.backward() if (i+1) % grad_accum == 0: total_norm = torch.nn.utils.clip_grad_norm_(classifier.parameters(),1.0) if not (total_norm == total_norm): print('Gradient are NaN') optimizer.zero_grad() continue optimizer.step() print('Train - epoch: '+str(epoch)+' batch: '+str(int((i+1)/grad_accum))+' loss: '+str(float(loss.data)*grad_accum)) count += 1 correct = 0 total = 0 valid_loss = 0 for j, val_data in enumerate(valid_loader): with torch.no_grad(): val_seq, val_labels = val_data val_seq = val_seq.to(device) val_labels = val_labels.to(device) val_x, _ = get_emb_esm1b(val_seq, LM_model=LM_model, average=True) outputs = classifier(val_x) loss_valid = criterion(outputs, val_labels) # Get predictions from the maximum value predicted = torch.max(outputs.data, 1)[1] # Total number of labels total += len(val_labels) correct += (predicted == val_labels).sum() valid_loss += float(loss_valid.data) # print('valid_loss: ', valid_loss) accuracy = 100 * correct / float(total) print('Valid - epcoh: '+str(epoch) + ' loss: '+str(float(valid_loss/(j+1)))+' accuracy: '+str(float(accuracy))) path = os.path.join(outdir,'save_model/model_'+str(epoch)+'.pt') torch.save(classifier.state_dict(), path) print('Model '+str(epoch)+' was saved.')
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 18 11:45:16 2018 @author: nemec """ # ============================================================================= # importing all the packages import numpy as np import glob import re # ============================================================================= #defining all the constants norm = 90*90*4/np.pi**2*np.pi #we need to normalize the areas on the sphere area = 0.1**2. # I don't know if I ever use this.... conv = np.pi/180. # ============================================================================= #set position of observer and Bsat #x_c is the central longitude of the observer #y_c is the central latitude of the observer # 90 is the north pole, -90 the south pole x_c = 0 y_c = 0 #we might need to experiment with this two values more, but for now, we just take #those two as fixed B_sat = 484 B_spot = 1500 # ============================================================================= #set up the grid for the mu calculations #I think its probably better if Sasha explains you at same point, how SATIRE works mu_grid = [1.0000, 0.9000, 0.8000, 0.7000, 0.6000, 0.5000, 0.4000, 0.3000 ,0.2000, 0.1000, 0.0500] mu_low = [0.95,0.85,0.75, 0.65, 0.55, 0.45, 0.35, 0.25, 0.15, 0.075, 0] mu_up = [1,0.95,0.85,0.75,0.65,0.55,0.45,0.35,0.25,0.15,0.075] # ============================================================================= #reading in the files #the filenames are saved into "files" files = sorted(glob.glob("CalcMagnetogram.2000.*")) spotx = np.loadtxt("pos_x.txt") spoty = np.loadtxt("pos_y.txt") start = 100749 g = open("fac_old"+str(B_sat)+".txt","w") for files in files: name = re.findall("2000.(\d+)",files) visibility = [] #I'm setting up all kinds of lists that are needed for the next steps a = [] b = [] c = [] mu1 = [] mu2 = [] mu3 = [] mu4 = [] mu5 = [] mu6 = [] mu7 = [] mu8 = [] mu9 = [] mu10 = [] mu11 = [] factor = [] data = np.loadtxt(files) #this array now contains the information of the flux in each pixel #of the magnetogram, so the array has 360X181 entries time= int(name[0]) ff = np.zeros((180,360)) spot_x= spotx[np.where(int(name[0])==spotx[:,2]),0] spot_y= spoty[np.where(int(name[0])==spoty[:,2]),0] #if np.shape(spot_x) == np.shape(spot_y): for i in range(0,180): #for latitudes for j in range(0,360): #for longitudes #setting up the boundaries of the pixels x_min = j x_max = j+1 y_min = i y_max = i+1 #look for spot-minipixels in the 1x1 deg pixels spot = (spot_x[np.where((x_min <= spot_x) & (spot_x < x_max) & (y_min<= spot_y) & (spot_y < y_max))]) B = abs(data[i][j]) #here we have two methods to calculate the faculae filling factors, maybe stick to that one for now if np.shape(spot) !=(0,): # ff[i,j] =(1 - len(spot)*0.1*0.1) helper =B- B_spot*len(spot)*0.1*0.1 if helper < 0: ff[i,j] = 0 else: ff[i,j] = helper/B_sat # a.append(1-len(spot)*0.1*0.1) if np.shape(spot) == (0,) and B < B_sat: ff[i,j] =abs(data[i][j])/B_sat if np.shape(spot) == (0,) and B >= B_sat: ff[i,j]=1 #here I am rotating the grid and calculate the mu-positions x_rot = [] conv = np.pi/180. x_rot=(j+13.28*(int(time)-start))%359 x_pos = 180-x_rot y_pos = 90-i delta_lambda = abs(x_pos-x_c) distance = np.arccos((np.sin((y_c)*conv)*np.sin((y_pos)*conv)+np.cos((y_c)*conv) \ *np.cos((y_pos)*conv)*np.cos(delta_lambda*conv)))/conv vis = np.cos(distance*conv) #print(distance) #if distance <=90: # visibility.append(ff[i,j]*np.cos(distance*conv)*np.cos(y_pos*conv)) #if vis <=1 and vis >= 0 and np.shape(spot) !=(0,): #I don't remember what these two #lines were for.... # a.append(1-len(spot)*0.1*0.1) if vis <=mu_up[0] and vis >mu_low[0]: mu1.append(ff[i,j]*vis*np.cos(y_pos*conv)) if vis <=mu_up[1] and vis >mu_low[1]: mu2.append(ff[i,j]*vis*np.cos(y_pos*conv)) if vis <=mu_up[2] and vis >mu_low[2]: mu3.append(ff[i,j]*vis*np.cos(y_pos*conv)) if vis <=mu_up[3] and vis >mu_low[3]: mu4.append(ff[i,j]*vis*np.cos(y_pos*conv)) if vis <=mu_up[4] and vis >mu_low[4]: mu5.append(ff[i,j]*vis*np.cos(y_pos*conv)) if vis <=mu_up[5] and vis >mu_low[5]: mu6.append(ff[i,j]*vis*np.cos(y_pos*conv)) if vis <=mu_up[6] and vis >mu_low[6]: mu7.append(ff[i,j]*vis*np.cos(y_pos*conv)) if vis <=mu_up[7] and vis >mu_low[7]: mu8.append(ff[i,j]*vis*np.cos(y_pos*conv)) if vis <=mu_up[8] and vis >mu_low[8]: mu9.append(ff[i,j]*vis*np.cos(y_pos*conv)) if vis <=mu_up[9] and vis >mu_low[9]: mu10.append(ff[i,j]*vis*np.cos(y_pos*conv)) if vis <=mu_up[10] and vis >mu_low[10]: mu11.append(ff[i,j]*vis*np.cos(y_pos*conv)) #the following one is just for testing, if the mu-ring distribution gives the same #result, as if we would just use the full "visible" disc # if distance <=90: # visibility.append(ff[i,j]*np.cos(distance*conv)*np.cos(y_pos*conv)) r1=sum(mu1)/norm r2=sum(mu2)/norm r3= sum(mu3)/norm r4=sum(mu4)/norm r5=sum(mu5)/norm r6=sum(mu6)/norm r7=sum(mu7)/norm r8=sum(mu8)/norm r9=sum(mu9)/norm r10=sum(mu10)/norm r11=sum(mu11)/norm total = r1+r2+r3+r4+r5+r6+r7+r8+r9+r10+r11 #print(a) g.write("%f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \t %f \n" %(r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,time,total)) # f.write("%f \t \n" %(sum(a))) #f.close() g.close()
""" Scraping Manga from komikid.com Author: Irfan Chahyadi Source: github.com/irfanchahyadi/Scraping-Manga """ # IMPORT REQUIRED PACKAGE import os, requests, bs4 # GET LIST OF ALL CHAPTER def get_all_chapter(): res = requests.get('http://www.komikid.com/manga/one-piece') soup = bs4.BeautifulSoup(res.content, 'html.parser') chapters = soup.select('h5.chapter-title-rtl > a') chapters = [(c['href'], c.get_text()) for c in chapters] for h, t in chapters: download(h, t) # DOWNLOAD EACH CHAPTER def download(html, text): res = requests.get(html) soup = bs4.BeautifulSoup(res.content, 'html.parser') pages = soup.select('#all > img') # Create Chapter folder folder_dir = os.path.join(directory, text) if not os.path.isdir(folder_dir): os.mkdir(folder_dir) # Download each Page for i, p in enumerate(pages): href = p['data-src'].strip() filename = os.path.join(folder_dir, str(i+1) + href[-4:]) if not os.path.isfile(filename): print('downloading {} page {}'.format(text, i+1)) try: img = requests.get(href) with open(filename, 'wb') as f: for chunk in img.iter_content(100000): f.write(chunk) except Exception as e: print('{} at {} page {}'.format(e, text, i+1)) else: print('already have {} page {}'.format(text, i+1)) if __name__ == '__main__': directory = os.path.join(os.getcwd(), 'One Piece') # Create Manga folder if not exists if not os.path.isdir(directory): os.mkdir(directory) get_all_chapter()
n = int(input()) m = int(input()) mat = [[int(j) for j in input().split()] for i in range(n)] def flood_fill(i, j): if i >= n or j >= m or i < 0 or j < 0 or mat[i][j] == 0 or mat[i][j] == -1: return 0 else: mat[i][j] = -1 return 1 + flood_fill(i-1, j-1) + flood_fill(i-1, j) + flood_fill(i-1, j+1) + flood_fill(i, j-1) + flood_fill(i, j+1) + flood_fill(i+1, j-1) + flood_fill(i+1, j) + flood_fill(i+1, j+1) print (max(flood_fill(i, j) for i in range(n) for j in range(m)))
from . import blocks from . import losses from . import normalization from . import regularizers
""" Launch point """ from components.button import ToggleButton from components.camera import Camera from components.microphone import Microphone button = ToggleButton() camera = Camera() mic = Microphone() def main(): try: while True: if button.is_on(): camera.start_recording() mic.start_recording() else: camera.stop_recording() mic.stop_recording() finally: camera.close_and_clean() mic.close_and_clean() if __name__ == "__main__": main()
import time from model.contact import Contact import re from selenium.webdriver.support.ui import Select import allure class ContactHelper: def __init__(self, app): self.app = app def open_add_contact_page(self): wd = self.app.wd if not wd.current_url.endswith("/edit.php"): wd.find_element_by_link_text("add new").click() @allure.step('I add a contact: "{contact}" to the list') def create(self, contact): wd = self.app.wd self.open_add_contact_page() self.enter_value(contact) wd.find_element_by_xpath("(//input[@name='submit'])[2]").click() self.return_to_home_page() self.contact_cache = None def return_to_home_page(self): wd = self.app.wd wd.find_element_by_link_text("home page").click() def open_home_page(self): wd = self.app.wd if not (wd.current_url.endswith("/index.php") and len( wd.find_elements_by_xpath("//input[@value='Delete']")) > 0): wd.find_element_by_link_text("home").click() @allure.step('I delete a first contact') def delete_first(self): self.delete_some(0) @allure.step('I delete a contact with id: "{id}"') def delete_some_contact_by_id(self, id): wd = self.app.wd self.open_home_page() self.select_some_by_id(id) wd.find_element_by_xpath("//input[@value='Delete']").click() wd.switch_to_alert().accept() time.sleep(1) self.contact_cache = None @allure.step('I delete a contact with index: "{index}"') def delete_some_contact_by_index(self, index): wd = self.app.wd self.open_home_page() self.select_some_by_index(index) wd.find_element_by_xpath("//input[@value='Delete']").click() wd.switch_to_alert().accept() time.sleep(1) self.contact_cache = None @allure.step('I modify a contact: "{contact}"') def modify_first(self, contact): wd = self.app.wd self.open_home_page() self.select_first() wd.find_element_by_xpath("//table[@id='maintable']/tbody/tr[2]/td[8]/a/img").click() self.enter_value(contact) wd.find_element_by_xpath("(//input[@name='update'])[2]").click() self.return_to_home_page() self.contact_cache = None @allure.step('I modify a contact with index: "{index}"') def modify_some_by_index(self, contact, index): wd = self.app.wd self.open_home_page() self.select_some_by_index(index) xpath = "//table[@id='maintable']/tbody/tr[" + str(index + 2) + "]/td[8]/a/img" wd.find_element_by_xpath(xpath).click() self.enter_value(contact) wd.find_element_by_xpath("(//input[@name='update'])[2]").click() self.return_to_home_page() self.contact_cache = None @allure.step('I modify a contact with id: "{id}"') def modify_some_by_id(self, contact, id): wd = self.app.wd self.open_home_page() row = wd.find_element_by_xpath("//input[@id='%s']/../.." % id) row.find_elements_by_tag_name("td")[7].click() self.enter_value(contact) wd.find_element_by_xpath("(//input[@name='update'])[2]").click() self.return_to_home_page() self.contact_cache = None def select_first(self): wd = self.app.wd wd.find_element_by_name("selected[]").click() @allure.step('I select a contact with index: "{index}"') def select_some_by_index(self, index): wd = self.app.wd wd.find_elements_by_name("selected[]")[index].click() @allure.step('I select a contact with id: "{id}"') def select_some_by_id(self, id): wd = self.app.wd wd.find_element_by_css_selector("input[id='%s']" % id).click() @allure.step('I get a contact with id: "{id}"') def get_some_by_id(self, id): wd = self.app.wd wd.find_element_by_css_selector("input[id='%s']" % id) self.open_home_page() row = wd.find_element_by_xpath("//input[@id='%s']/../.." % id) cells = row.find_elements_by_tag_name("td") firstname = cells[2].text lastname = cells[1].text id = cells[0].find_element_by_tag_name("input").get_attribute("value") all_phones = cells[5].text all_emails = cells[4].text contact = Contact(lastname=lastname, firstname=firstname, id=id, all_phone_from_home_page=all_phones, all_emails_from_home_page=all_emails) return contact @allure.step('I enter a contact: "{contact}"') def enter_value(self, contact): self.change_field_value("firstname", contact.firstname) self.change_field_value("middlename", contact.middlename) self.change_field_value("lastname", contact.lastname) self.change_field_value("company", contact.company) self.change_field_value("address", contact.address) self.change_field_value("home", contact.home_phone) self.change_field_value("mobile", contact.mobile_phone) self.change_field_value("work", contact.work_phone) self.change_field_value("fax", contact.fax) self.change_field_value("email", contact.email) self.change_field_value("email2", contact.email2) self.change_field_value("email3", contact.email3) self.change_field_value("phone2", contact.phone2) def change_field_value(self, field_name, text): wd = self.app.wd if text is not None: wd.find_element_by_name(field_name).click() wd.find_element_by_name(field_name).clear() wd.find_element_by_name(field_name).send_keys(text) @allure.step('I calculate contact count') def count(self): wd = self.app.wd self.open_home_page() return len(wd.find_elements_by_name("selected[]")) contact_cache = None @allure.step('I get a contact list') def get_contact_list(self): if self.contact_cache is None: wd = self.app.wd self.open_home_page() self.contact_cache = [] for row in wd.find_elements_by_name("entry"): cells = row.find_elements_by_tag_name("td") firstname = cells[2].text lastname = cells[1].text id = cells[0].find_element_by_tag_name("input").get_attribute("value") all_phones = cells[5].text all_emails = cells[4].text self.contact_cache.append(Contact(lastname=lastname, firstname=firstname, id=id, all_phone_from_home_page=all_phones, all_emails_from_home_page=all_emails)) # below is my_way # count = len(wd.find_elements_by_name("selected[]")) # for i in range(2, count+2): # xpath = "//table[@id='maintable']/tbody/tr[" + str(i) + "]/td[2]" # lastname = wd.find_element_by_xpath(xpath).text # xpath = "//table[@id='maintable']/tbody/tr[" + str(i) + "]/td[3]" # firstname = wd.find_element_by_xpath(xpath).text # xpath = "//table[@id='maintable']/tbody/tr[" + str(i) + "]/td[1]/input" # id = wd.find_element_by_xpath(xpath).get_attribute("value") # self.contact_cache.append(Contact(lastname=lastname, firstname=firstname, id=id)) return list(self.contact_cache) @allure.step('I open a contact to edit by index: "{index}"') def open_contact_to_edit_by_index(self, index): wd = self.app.wd self.app.open_home_page() row = wd.find_elements_by_name("entry")[index] cell = row.find_elements_by_tag_name("td")[7] cell.find_element_by_tag_name("a").click() @allure.step('I open a contact to view by index: "{index}"') def open_contact_view_by_index(self, index): wd = self.app.wd self.app.open_home_page() row = wd.find_elements_by_name("entry")[index] cell = row.find_elements_by_tag_name("td")[6] cell.find_element_by_tag_name("a").click() @allure.step('I get a contact info from edit page by index: "{index}"') def get_contact_info_from_edit_page(self, index): wd = self.app.wd self.open_contact_to_edit_by_index(index) first_name = wd.find_element_by_name("firstname").get_attribute("value") last_name = wd.find_element_by_name("lastname").get_attribute("value") id = wd.find_element_by_name("id").get_attribute("value") home_phone = wd.find_element_by_name("home").get_attribute("value") work_phone = wd.find_element_by_name("work").get_attribute("value") mobile_phone = wd.find_element_by_name("mobile").get_attribute("value") phone2 = wd.find_element_by_name("phone2").get_attribute("value") email = wd.find_element_by_name("email").get_attribute("value") email2 = wd.find_element_by_name("email2").get_attribute("value") email3 = wd.find_element_by_name("email3").get_attribute("value") return Contact(firstname=first_name, lastname=last_name, id=id, home_phone=home_phone, work_phone=work_phone, mobile_phone=mobile_phone, email=email, email2=email2, email3=email3, phone2=phone2) @allure.step('I get a contact info from view page by index: "{index}"') def get_contact_from_view_page(self, index): wd = self.app.wd self.open_contact_view_by_index(index) text = wd.find_element_by_id("content").text if re.search("H: (.*)", text) is None: home_phone = None else: home_phone = re.search("H: (.*)", text).group(1) if re.search("W: (.*)", text) is None: work_phone = None else: work_phone = re.search("W: (.*)", text).group(1) if re.search("M: (.*)", text) is None: mobile_phone = None else: mobile_phone = re.search("M: (.*)", text).group(1) if re.search("P: (.*)", text) is None: phone2 = None else: phone2 = re.search("P: (.*)", text).group(1) return Contact(home_phone=home_phone, work_phone=work_phone, mobile_phone=mobile_phone, phone2=phone2) @allure.step('I add a contact: "{contact}" to a group: "{group}"') def add_in_group(self, contact, group): wd = self.app.wd self.app.open_home_page() self.select_some_by_id(contact.id) Select(wd.find_element_by_name("to_group")).select_by_visible_text(group.name) wd.find_element_by_name("add").click() self.open_home_page() @allure.step('I del a contact: "{contact}" from a group: "{group}"') def del_from_group(self, contact, group): wd = self.app.wd self.app.open_home_page() Select(wd.find_element_by_name("group")).select_by_visible_text(group.name) self.select_some_by_id(contact.id) wd.find_element_by_name("remove").click() self.open_home_page()
from .http import MPXApi from .api_base import get_guid_based_id __version__ = "0.1.16" __title__ = "mpxapi"
# ==================================================================== # CODE AUTHOR: RAUL ESPINOSA # This is the code for the actual cart functionality. A small note: # I can't actually make the cart "work" until the models of the things # that are supposed to go in the cart (i.e. the books) exist and can # be imported/referenced. That being the case, I'm going to use some # placeholder code to model the functionality needed. These can be # refactored to the genuine book model code when it's available # Note that I used the following resources to learn # about django session functions and such: # https://docs.djangoproject.com/en/2.0/topics/http/sessions/ # https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Sessions # ==================================================================== # This data type simplifies floating-point arithmetic and makes it # look more like what calculators make it look like in real life. # Also allows for rounding rules to be established, # which will help with price calculations from decimal import Decimal from django.conf import settings # Importing my Book class from the bookDetails package I made from bookDetails.models import Book, Purchase # This is the cart class. class Cart(object): # Constructor method for the class - includes a request parameter def __init__(self, request): # Start by creating a session for the new cart self.session = request.session # This structure is better than the try/except I had before. # Just try to get the cart from the current session userCart = self.session.get(settings.CART_SESSION_ID) if not userCart: # If we can't, just make a blank cart userCart = self.session[settings.CART_SESSION_ID] = {} # Assign the newly created and ID'd userCart to this cart model self.userCart = userCart # Our cart's status has to be modifiable, i.e. we need to be able # to change the state of the cart dynamically. For this, we need # a save function def save(self): self.session.modified = True # The function that will be used to add items to the cart. def add(self, book, amount=1, change_amount=False): # Get the book's ID (its Primary Key) book_id = str(book.id) #purchse = Purchase.objects.create(book=book.id, user=request.user, has_purchased=True) # If the book isn't in the cart, add it (and all the requisite parameters # the cart has to show), as well as a parameter indicating whether # an item is saved for later (SFL) or not, which defaults to false if book_id not in self.userCart: self.userCart[book_id] = {'amount': 0, 'author': book.book_author, 'author_bio': book.author_bio, 'description': book.book_description, 'genre': book.book_genre, 'publishing_info': book.publishing_info, 'avg_rating': str(book.avg_rating), 'price': str(book.price), 'SFL': False} # If change_amount is True, we change the number of the specified # book in the cart to the specified amount if change_amount: self.userCart[book_id]['amount'] = amount # Otherwise, we just add the specified amount of the specified book # to the cart else: self.userCart[book_id]['amount'] += amount # Save the state of the cart, cementing our changes self.save() # Function for removing books from the cart def remove(self, book): # Same idea as in the add() function - now uses # book's ID! book_id = str(book.id) # If the book is in the cart, remove it, # then save the state of the cart if book_id in self.userCart: del self.userCart[book_id] self.save() # Function for setting a book's status as Saved For Later (SFL) def addSFL(self, book): book_id = str(book.id) # If the book is in the cart, set its SFL status # to True, indicating the book is in the saved for later # list if book_id in self.userCart: self.userCart[book_id]['SFL'] = True self.save() # Function for moving a book back to the cart from the # SFL list def removeSFL(self, book): book_id = str(book.id) # If the book is in the cart, set its # SFL status to False so that it will show up # in the cart again if book_id in self.userCart: self.userCart[book_id]['SFL'] = False self.save() # This iterator will be used to iterate (of course) through the # books in the cart, i.e. the Book models (instances) def __iter__(self): # Get the keys corresponding to all the books # in the database - now uses Book model's hidden ID # parameter! book_ids = self.userCart.keys() # Use the keys to get the actual Book objects # and add them to the cart books = Book.objects.filter(id__in=book_ids) # Create a copy of the current cart cart = self.userCart.copy() # Add the books to the copy of the cart for book in books: cart[str(book.id)]['book'] = book # Iterate over the books in the copied cart, # adding a price and total price attribute to each # item, then returning the book instance for book in cart.values(): # We made the price attribute of the book a string # in the add method so we could serialize it (needed # for use w/ Sessions); now we have to convert back to # a Decimal value so we can perform arithmetic on it book['price'] = Decimal(book['price']) # Calculate the subtotal price for the copies of each book book['total_price'] = book['price'] * book['amount'] # NOTE 2/23/19: # Maybe we need to add the book's other attributes here, such # as author name, etc...? Not sure if that's needed, since # we pass the book instance later yield book # Returns the total number of items in a user's cart def __len__(self): return sum(book['amount'] for book in self.userCart.values()) # Calculates the total cost of all the books in the cart that aren't # listed as being saved for later def get_total_price(self): return sum((book['price'] * book['amount']) for book in self.userCart.values() if not book['SFL']) # Delete the cart from the session - this is functionally the same # as "emptying" it, since a new empty cart will be created the next time the # user adds a book to their cart def clear(self): del self.session[settings.CART_SESSION_ID] self.save()
# -*- coding: utf-8 -*- import urwid __author__ = 'Sumin Byeon' __version__ = '0.1.3' __all__ = ['StackedWidget'] class StackedWidget(urwid.Widget): """A widget container that presents one child widget at a time.""" #: A list containing all widgets widgets = [] #: An index of the current widget current = 0 def __init__(self): self.widgets = [] self.current = 0 def push_widget(self, widget): """Appends a widget at the end of the list.""" self.widgets.append(widget) def insert_widget(self, index, widget): """Inserts a widget at a given index.""" self.widgets.insert(index, widget) def pop_widget(self): """Retrieves and removes the last widget (with the maximum index).""" n = len(self.widgets) assert n > 0 widget = self.widgets.pop() if self.current == n - 1: self.current -= 1 self._invalidate() return widget def show_widget(self, index): assert 0 <= index < len(self.widgets) self.current = index self._invalidate() def show_next_widget(self): n = self.widget_count self.show_widget((self.current + 1) % n) def show_previous_widget(self): n = self.widget_count self.show_widget((self.current - 1 + n) % n) @property def widget_count(self): """The function name is pretty much self-explanatory.""" return len(self.widgets) @property def current_widget(self): """Returns a widget that is currently being rendered. If the widget list is empty, it returns None.""" if self.widget_count > 0: return self.widgets[self.current] else: return None def selectable(self): """It appears ``selectable()`` must return ``True`` in order to get any key input.""" return True def render(self, size, focus=False): assert self.current_widget is not None return self.current_widget.render(size, focus) def keypress(self, size, key): """Passes key inputs to the current widget. If the current widget is ``None`` then it returns the given key input so that ``unhandled_input`` function can handle it.""" if self.current_widget is not None: return self.current_widget.keypress(size, key) else: return key def mouse_event(self, size, event, button, col, row, focus): if self.current_widget is not None: return self.current_widget.mouse_event( size, event, button, col, row, focus) else: return False
#!/usr/bin/env python3 # We are given a list of numbers in a 'short-hand' range notation where only # the significant part of the next number is written because we know the # numbers are always increasing # ex. '1,3,7,2,4,1' represents [1, 3, 7, 12, 14, 21]). # # Some people use different separators for their ranges # ex. '1-3,1-2', '1:3,1:2', '1..3,1..2' # represent the same numbers [1, 2, 3, 11, 12]) # and they sometimes specify a third digit for the range step # ex. '1:5:2' represents [1, 3, 5] # # NOTE: For this challenge range limits are always inclusive. # Our job is to return a list of the complete numbers. # The possible separators are: ['-', ':', '..'] # # You'll be given strings in the 'short-hand' range notation # # '1,3,7,2,4,1' # '1-3,1-2' # '1:5:2' # '104-2' # '104..02' # '545,64:11' # # You should output a string of all the numbers separated by a space # # '1 3 7 12 14 21' # '1 2 3 11 12' # '1 3 5' # '104 105 106 107 108 109 110 111 112' # '104 105 106...200 201 202' # truncated for simplicity # '545 564 565 566...609 610 611' # truncated for simplicity separators = ['-', ':', '..'] inputs = [ '1,3,7,2,4,1', '1-3,1-2', '1:5:2', '104-2', '104..02', '545,64:11', ] for line in inputs: line_output = [] line_ranges = line.split(',') for i, r in enumerate(line_ranges): range_output = [] try: range_output = [int(r)] except ValueError: range_numbers = [] for s in separators: if r.count(s): range_numbers = r.split(s) break for n in enumerate(range_numbers): if len(range_numbers) == 3: if i > 0: for s in separators: if r.count(s): sep_found = True if not sep_found: numbers = int(r) if not numbers: if r.count(s): numbers = range(*[int(n) for n in r.split(s)]) output.append(numbers) print(output)
from HABApp.core.events import ValueChangeEventFilter, ValueUpdateEventFilter from . import ItemStateChangedEvent, ItemStateEvent class ItemStateEventFilter(ValueUpdateEventFilter): _EVENT_TYPE = ItemStateEvent class ItemStateChangedEventFilter(ValueChangeEventFilter): _EVENT_TYPE = ItemStateChangedEvent
#!/bin/python import math import os import random import re import sys if __name__ == '__main__': cases = int(input()) for caseNo in range(cases): s = raw_input() #reverse string rs = s[::-1] n = len(s) #take the difference of ascii values for i in range(1, n): d1 = abs(ord(s[i]) - ord(s[i - 1])) d2 = abs(ord(rs[i]) - ord(rs[i - 1])) #if the difference at any point isn't equal string is not funny if d1 != d2: print("Not Funny") break else: print("Funny")
""" Campaign tools """ import yaml import arcade from .ship import Ship from .utils import Position from .player import Player from .render import RenderEngine class Map(object): """ A single map within a campaign """ def __init__(self): pass # TODO class Campaign(object): """ A campaign holds all of the story information required to play through our tails of adventure! """ def __init__(self): pass # TODO def basic_start(self, player: Player, window): """ When using the dev mode, we often just want to jump into a map or environment to work on mechanics and other game elements :param player: Our current Player :return: None """ player.set_ship( Ship.new_ship("Skalk", position=Position(250, 230)) ) player.ship.add_to_scene() # Bit of a performance drag... need to know why from ..draw.starfield import Starfield self._background = Starfield(window) RenderEngine().add_object(self._background) class CampaignLoader(object): """ Yaml parser for reading and understanding a campaign """ def __init__(self): self._found_campaigns = {} def dev_campaign(self): """ :return: A default Campaign for testing """ return Campaign()
_base_ = [ '../_base_/models/universenet50.py', '../_base_/datasets/waymo_open_2d_detection_f0_mstrain_640_1280.py', '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py' ] model = dict(bbox_head=dict(num_classes=3)) data = dict(samples_per_gpu=2) optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001) fp16 = dict(loss_scale=512.) load_from = 'https://github.com/shinya7y/UniverseNet/releases/download/20.06/universenet50_fp16_8x2_mstrain_480_960_2x_coco_20200523_epoch_24-726c5c93.pth' # noqa
"""Diagnostics support for Open-Meteo.""" from __future__ import annotations import json from typing import Any from open_meteo import Forecast from homeassistant.components.diagnostics import async_redact_data from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_LATITUDE, CONF_LONGITUDE from homeassistant.core import HomeAssistant from homeassistant.helpers.update_coordinator import DataUpdateCoordinator from .const import DOMAIN TO_REDACT = { CONF_LATITUDE, CONF_LONGITUDE, } async def async_get_config_entry_diagnostics( hass: HomeAssistant, entry: ConfigEntry ) -> dict[str, Any]: """Return diagnostics for a config entry.""" coordinator: DataUpdateCoordinator[Forecast] = hass.data[DOMAIN][entry.entry_id] # Round-trip via JSON to trigger serialization data: dict[str, Any] = json.loads(coordinator.data.json()) return async_redact_data(data, TO_REDACT)
from django.contrib import admin from .models import Atracao admin.site.register(Atracao)
from .. import app from .. import queue from .. import hooks from ..models import Post from bs4 import BeautifulSoup import urllib import re import requests def register(): hooks.register('post-saved', send_webmentions) def send_webmentions(post, args): if args.get('action') in ('save_draft', 'publish_quietly'): app.logger.debug('skipping webmentions for {}'.format(post.id)) return try: app.logger.debug("queueing webmentions for {}".format(post.id)) queue.enqueue(do_send_webmentions, post.id) return True, 'Success' except Exception as e: app.logger.exception('sending webmentions') return False, "Exception while sending webmention: {}"\ .format(e) def do_send_webmentions(post_id): app.logger.debug("sending mentions for {}".format(post_id)) post = Post.load_by_id(post_id) return handle_new_or_edit(post) def get_source_url(post): return post.permalink def get_target_urls(post): target_urls = [] # send mentions to 'in_reply_to' as well as all linked urls target_urls += post.in_reply_to target_urls += post.repost_of target_urls += post.like_of app.logger.debug("search post content {}".format(post.content_html)) soup = BeautifulSoup(post.content_html) for link in soup.find_all('a'): link_target = link.get('href') if link_target: app.logger.debug("found link {} with href {}" .format(link, link_target)) target_urls.append(link_target.strip()) return target_urls def get_response(url): if url in get_response.cached_responses: return get_response.cached_responses[url] response = requests.get(url) get_response.cached_responses[url] = response return response get_response.cached_responses = {} def handle_new_or_edit(post): target_urls = get_target_urls(post) app.logger.debug("Sending webmentions to these urls {}" .format(" ; ".join(target_urls))) results = [] for target_url in target_urls: results.append(send_mention(post, target_url)) return results def send_mention(post, target_url): app.logger.debug("Looking for webmention endpoint on %s", target_url) success, explanation = check_content_type_and_size(target_url) if success: if supports_webmention(target_url): app.logger.debug("Site supports webmention") success, explanation = send_webmention(post, target_url) elif supports_pingback(target_url): app.logger.debug("Site supports pingback") success, explanation = send_pingback(post, target_url) app.logger.debug("Sending pingback successful: %s", success) else: app.logger.debug("Site does not support mentions") success = False explanation = 'Site does not support webmentions or pingbacks' return {'target': target_url, 'success': success, 'explanation': explanation} def check_content_type_and_size(target_url): request = urllib.request.Request( target_url, headers={'User-Agent': 'kylewm.com'}) metadata = urllib.request.urlopen(request).info() if not metadata: return False, "Could not retrieve metadata for url {}".format( target_url) content_type = metadata.get_content_maintype() content_length = metadata.get('Content-Length') if content_type and content_type != 'text': return False, "Target content type '{}' is not 'text'".format( content_type) if content_length and int(content_length) > 2097152: return False, "Target content length {} is too large".format( content_length) return True, None def supports_webmention(target_url): return find_webmention_endpoint(target_url) is not None def find_webmention_endpoint(target_url): app.logger.debug("looking for webmention endpoint in %s", target_url) response = get_response(target_url) app.logger.debug("looking for webmention endpoint in headers and body") endpoint = (find_webmention_endpoint_in_headers(response.headers) or find_webmention_endpoint_in_html(response.text)) app.logger.debug("webmention endpoint %s %s", response.url, endpoint) return endpoint and urllib.parse.urljoin(response.url, endpoint) def find_webmention_endpoint_in_headers(headers): if 'link' in headers: m = re.search('<(https?://[^>]+)>; rel="webmention"', headers.get('link')) or \ re.search('<(https?://[^>]+)>; rel="http://webmention.org/?"', headers.get('link')) if m: return m.group(1) def find_webmention_endpoint_in_html(body): soup = BeautifulSoup(body) link = (soup.find('link', attrs={'rel': 'webmention'}) or soup.find('link', attrs={'rel': 'http://webmention.org/'}) or soup.find('a', attrs={'rel': 'webmention'})) return link and link.get('href') def send_webmention(post, target_url): app.logger.debug( "Sending webmention from %s to %s", get_source_url(post), target_url) try: endpoint = find_webmention_endpoint(target_url) if not endpoint: return False, "No webmention endpoint for {}".format( target_url) payload = {'source': get_source_url(post), 'target': target_url} headers = {'content-type': 'application/x-www-form-urlencoded', 'accept': 'application/json'} response = requests.post(endpoint, data=payload, headers=headers) #from https://github.com/vrypan/webmention-tools/blob/master/ # webmentiontools/send.py if response.status_code // 100 != 2: app.logger.warn( "Failed to send webmention for %s. " "Response status code: %s, %s", target_url, response.status_code, response.text) return False, "Status code: {}, Response: {}".format( response.status_code, response.text) else: app.logger.debug( "Sent webmention successfully to %s. Sender response: %s:", target_url, response.text) return True, "Successful" except Exception as e: return False, "Exception while sending webmention {}".format(e) def supports_pingback(target_url): return find_pingback_endpoint(target_url) is not None def find_pingback_endpoint(target_url): response = get_response(target_url) endpoint = response.headers.get('x-pingback') if not endpoint: soup = BeautifulSoup(response.text) link = soup.find('link', attrs={'rel': 'pingback'}) endpoint = link and link.get('href') return endpoint def send_pingback(post, target_url): try: endpoint = find_pingback_endpoint(target_url) source_url = get_source_url(post) payload = ( """<?xml version="1.0" encoding="iso-8859-1"?><methodCall>""" """<methodName>pingback.ping</methodName><params><param>""" """<value><string>{}</string></value></param><param><value>""" """<string>{}</string></value></param></params></methodCall>""" .format(source_url, target_url)) headers = {'content-type': 'application/xml'} response = requests.post(endpoint, data=payload, headers=headers) app.logger.debug( "Pingback to %s response status code %s. Message %s", target_url, response.status_code, response.text) return True, "Sent pingback successfully" except Exception as e: return False, "Exception while sending pingback: {}".format(e)
from nose.tools import eq_ from elasticutils import S, DefaultMappingType, NoModelError, MappingType from elasticutils.tests import ElasticTestCase model_cache = [] def reset_model_cache(): del model_cache[0:] class Meta(object): def __init__(self, db_table): self.db_table = db_table class Manager(object): def filter(self, id__in=None): return [m for m in model_cache if m.id in id__in] class FakeModel(object): _meta = Meta('fake') objects = Manager() def __init__(self, **kw): for key in kw: setattr(self, key, kw[key]) model_cache.append(self) class FakeMappingType(MappingType): def get_model(self): return FakeModel class TestResultsWithData(ElasticTestCase): @classmethod def setup_class(cls): super(TestResultsWithData, cls).setup_class() if cls.skip_tests: return cls.create_index() cls.index_data([ {'id': 1, 'foo': 'bar', 'tag': 'awesome', 'width': '2'}, {'id': 2, 'foo': 'bart', 'tag': 'boring', 'width': '7'}, {'id': 3, 'foo': 'car', 'tag': 'awesome', 'width': '5'}, {'id': 4, 'foo': 'duck', 'tag': 'boat', 'width': '11'}, {'id': 5, 'foo': 'train car', 'tag': 'awesome', 'width': '7'} ]) @classmethod def teardown_class(cls): super(TestResultsWithData, cls).teardown_class() reset_model_cache() def test_default_results_are_default_mapping_type(self): """With untyped S, return dicts.""" # Note: get_s with no args should return an untyped S searcher = list(self.get_s().query(foo='bar')) assert isinstance(searcher[0], DefaultMappingType) def test_typed_s_returns_type(self): """With typed S, return objects of type.""" searcher = list(self.get_s(FakeMappingType).query(foo='bar')) assert isinstance(searcher[0], FakeMappingType) def test_values_dict_results(self): """With values_dict, return list of dicts.""" searcher = list(self.get_s().query(foo='bar').values_dict()) assert isinstance(searcher[0], dict) def test_values_list_no_fields(self): """Specifying no fields with values_list defaults to ['id'].""" searcher = list(self.get_s().query(foo='bar').values_list()) assert isinstance(searcher[0], tuple) # We sort the result and expected result here so that the # order is stable and comparable. eq_(sorted(searcher[0]), sorted((u'2', u'bar', u'awesome', 1))) def test_values_list_results(self): """With values_list fields, returns list of tuples.""" searcher = list(self.get_s().query(foo='bar') .values_list('foo', 'width')) assert isinstance(searcher[0], tuple) def test_default_results_form_has_metadata(self): """Test default results form has metadata.""" searcher = list(self.get_s().query(foo='bar')) assert hasattr(searcher[0], '_id') assert hasattr(searcher[0], '_score') assert hasattr(searcher[0], '_source') assert hasattr(searcher[0], '_type') assert hasattr(searcher[0], '_explanation') assert hasattr(searcher[0], '_highlight') def test_values_list_form_has_metadata(self): """Test default results form has metadata.""" searcher = list(self.get_s().query(foo='bar').values_list('id')) assert hasattr(searcher[0], '_id') assert hasattr(searcher[0], '_score') assert hasattr(searcher[0], '_source') assert hasattr(searcher[0], '_type') assert hasattr(searcher[0], '_explanation') assert hasattr(searcher[0], '_highlight') def test_values_dict_form_has_metadata(self): """Test default results form has metadata.""" searcher = list(self.get_s().query(foo='bar').values_dict()) assert hasattr(searcher[0], '_id') assert hasattr(searcher[0], '_score') assert hasattr(searcher[0], '_source') assert hasattr(searcher[0], '_type') assert hasattr(searcher[0], '_explanation') assert hasattr(searcher[0], '_highlight') def test_values_dict_no_args(self): """Calling values_dict() with no args fetches all fields.""" eq_(S().query(fld1=2) .values_dict() ._build_query(), {"query": {"term": {"fld1": 2}}}) def test_values_list_no_args(self): """Calling values() with no args fetches only id.""" eq_(S().query(fld1=2) .values_list() ._build_query(), {'query': {"term": {"fld1": 2}}}) class TestMappingType(ElasticTestCase): def tearDown(self): super(TestMappingType, self).tearDown() self.__class__.cleanup_index() def test_default_mapping_type(self): data = [ {'id': 1, 'name': 'Alice'} ] self.__class__.index_data(data, create_index=True) s = self.get_s(DefaultMappingType) result = list(s)[0] assert isinstance(result, DefaultMappingType) eq_(result.id, 1) self.assertRaises(NoModelError, lambda: result.object) def test_mapping_type_attribute_override(self): data = [ {'id': 1, '_object': 'foo'} ] self.__class__.index_data(data, create_index=True) s = self.get_s(DefaultMappingType) result = list(s)[0] # Instance attribute (which starts out as None) takes precedence. eq_(result._object, None) # _object ES result field is available through __getitem__ eq_(result['_object'], 'foo') # key/val from ES # Get the ES result field id eq_(result.id, 1) # Set id to something else result.id = 'foo' # Now it returns the instance attribute eq_(result.id, 'foo') # id still available through __getitem__ eq_(result['id'], 1) # If it doesn't exist, throw AttributeError self.assertRaises(AttributeError, lambda: result.doesnt_exist) # If it doesn't exist, throw KeyError self.assertRaises(KeyError, lambda: result['doesnt_exist'])
import fractions num = 1 den = 1 count = 0 sum = 0 while den <= 12000: count = 0 min_num = int((den + 0.0) / 3 + 1) max_num = den/2 if den % 2 == 0: max_num -= 1 while min_num <= max_num: if fractions.gcd(min_num, den) == 1: count += 1 min_num += 1 sum += count den += 1 print(sum)
import concurrent.futures as cf import json from datetime import datetime import math import moodle.models as models from frontend.models import Submission, GradingFile, Assignment, Course from moodle.exceptions import AccessDenied, InvalidResponse from persistence.worktree import WorkTree from util import interaction MAX_WORKERS = 10 class MoodleFrontend: def __init__(self, worktree=None): # todo, read course from worktree config. from moodle.communication import MoodleSession self.worktree = worktree or WorkTree() self.config = WorkTree.get_global_config_values() self.session = MoodleSession(moodle_url=self.config.url, token=self.config.token) @property def course_ids(self): return self.worktree.courses.keys() @property def assignment_ids(self): return self.worktree.assignments.keys() def sync_assignments(self): response = self.session.mod_assign_get_assignments(self.course_ids) wrapped = models.CourseAssignmentResponse(response) result = self.worktree.assignments.update(wrapped.raw) output = ['{}: {:d}'.format(k, v) for k, v in result.items()] return output def sync_users(self): # limit collected information to only relevant bits. is faster and can possibly work around some moodle bugs. sync_fields = ['fullname', 'groups', 'id'] options = {'userfields': ','.join(sync_fields)} users = {} output = "" for cid in self.course_ids: try: response = self.session.core_enrol_get_enrolled_users(course_id=cid, options=options) users[int(cid)] = response output += f'{cid:5d}:got {len(response):4d}\n' except AccessDenied as denied: message = f'{cid:d} denied access to users: {denied}\n' output += message except InvalidResponse as e: message = f'Moodle encountered an error: msg:{e.message} \n debug:{e.debug_message}\n' output += message self.worktree.users = users return output def sync_submissions(self): now = math.floor(datetime.now().timestamp()) response = self.session.mod_assign_get_submissions(self.assignment_ids, since=self.worktree.submissions.last_sync) result = self.worktree.submissions.update(response, now) output = ['{}: {:d}'.format(k, v) for k, v in result.items()] return output def sync_grades(self): now = math.floor(datetime.now().timestamp()) response = self.session.mod_assign_get_grades(self.assignment_ids, since=self.worktree.grades.last_sync) result = self.worktree.grades.update(response, now) output = ['{}: {:d}'.format(k, v) for k, v in result.items()] return output def get_course_list(self): wrapped = models.CourseListResponse(self.session.core_enrol_get_users_courses(self.config.user_id)) return wrapped def sync_file_meta_data(self): files = [] for as_id, submissions in self.worktree.submissions.items(): for submission in submissions: files += Submission(submission).files with cf.ThreadPoolExecutor(max_workers=MAX_WORKERS) as tpe: try: future_to_file = {tpe.submit(self.session.core_files_get_files, **file.meta_data_params): file for file in files} for future in cf.as_completed(future_to_file): file = future_to_file[future] response = models.FileMetaDataResponse(future.result()) for file in response.files: print(file) except KeyboardInterrupt: print('stopping…') tpe.shutdown() raise # for file in files: # wrapped = models.FileMetaDataResponse(self.session.core_files_get_files(**file.meta_data_params)) # print(str(wrapped.raw)) # for received in wrapped.files: # print(received.author) # reply = moodle.get_submissions_for_assignments(wt.assignments.keys()) # data = json.loads(strip_mlang(reply.text)) # result = wt.submissions.update(data) # output = ['{}: {:d}'.format(k, v) for k, v in result.items()] # print('finished. ' + ' '.join(output)) def download_files(self, assignment_ids=None): courses = self.worktree.data assignments = [] if assignment_ids is None or 0 == len(assignment_ids): for c in courses: assignments += c.assignments.values() else: for c in courses: assignments += c.get_assignments(assignment_ids) files = self.worktree.prepare_download(assignments) file_count = len(files) counter = 0 # todo, error handling if file_count > 0: interaction.print_progress(counter, file_count) with cf.ThreadPoolExecutor(max_workers=MAX_WORKERS) as tpe: try: future_to_file = {tpe.submit(self.session.download_file, file.url): file for file in files} for future in cf.as_completed(future_to_file): file = future_to_file[future] response = future.result() counter += 1 interaction.print_progress(counter, file_count, suffix=file.path) self.worktree.write_submission_file(file, response.content) except KeyboardInterrupt: print('stopping…') tpe.shutdown() raise for a in assignments: self.worktree.write_grading_and_html_file(a) def upload_grades(self, upload_data): def argument_list(upload_data): for grades in upload_data: as_id = grades.assignment_id team = grades.team_submission args = [] for values in grades.grades: args.append({ 'assignment_id': as_id, 'user_id': values.id, 'grade': values.grade, 'feedback_text': values.feedback, 'team_submission': team }) return args args_list = argument_list(upload_data) grade_count = len(args_list) counter = 0 if grade_count > 0: interaction.print_progress(counter, grade_count) with cf.ThreadPoolExecutor(max_workers=MAX_WORKERS) as tpe: try: future_to_grade = {tpe.submit(self.session.mod_assign_save_grade, **args): args for args in args_list} for future in cf.as_completed(future_to_grade): args = future_to_grade[future] response = future.result() counter += 1 interaction.print_progress(counter, grade_count) except KeyboardInterrupt: print('stopping…') tpe.shutdown() raise def upload_files(self, files): # TODO, Wrap and return it, don't print. do print in wstools.upload. also modify submit response = self.session.upload_files(files) return models.FileUploadResponse(response) def search_courses_by_keywords(self, keyword_list): # TODO: wrap and return to wstools.enrol response = self.session.core_course_search_courses(' '.join(keyword_list)) return response def get_course_enrolment_methods(self, course_id): # TODO: wrap and return to wstools.enrol response = self.session.core_enrol_get_course_enrolment_methods(course_id) return response def enrol_in_course(self, course_id, instance_id, password=''): # TODO: wrap and return to wstools.enrol response = self.session.enrol_self_enrol_user(course_id, instance_id=instance_id, password=password) return response def save_submission(self, assignment_id, text='', text_format=0, text_file_id=0, files_id=0): # TODO: wrap and return to wstools.submit response = self.session.mod_assign_save_submission(assignment_id, text, text_format, text_file_id, files_id) return response @classmethod def get_token(cls, url, user, password, service): # TODO: wrap and return to wstools.auth from moodle.communication import MoodleSession session = MoodleSession(moodle_url=url) token = session.get_token(user_name=user, password=password, service=service) return token def get_user_id(self): # TODO: wrap and return to wstools.auth from moodle.fieldnames import JsonFieldNames as Jn data = self.session.core_webservice_get_site_info() return data[Jn.user_id] def parse_grade_files(self, fd_list): """ this mostly rewrites the values read from the grading file. since most of this can be done, when creating the grading file it should be done there. Namely, adding a team_submission field and instead of setting the submission.id in the file, use the user.id instead :param fd_list: :return: """ upload_data = [] print('this will upload the following grades:') grade_format = ' {:>20}:{:6d} {:5.1f} > {}' invalid_values = [] for file in fd_list: # cls needs to be set, for the strict flag to be registered. wrapped = GradingFile(json.load(file, cls=json.JSONDecoder, strict=False)) assignment = Assignment(self.worktree.assignments[wrapped.assignment_id]) assignment.course = Course(self.worktree.courses[assignment.course_id]) assignment.course.users = self.worktree.users[str(assignment.course_id)] assignment.submissions = self.worktree.submissions[assignment.id] wrapped.team_submission = assignment.is_team_submission print(f' assignment {assignment.id:5d}, team_submission: {assignment.is_team_submission}') for grade in wrapped.grades: submission = assignment.submissions[grade.id] if assignment.is_team_submission: group = assignment.course.groups[submission.group_id] user = group.members[0] grade.id = user.id else: grade.id = submission.user_id if assignment.max_points < grade.grade: invalid_values.append(grade) print(grade_format.format(grade.name, grade.id, grade.grade, grade.feedback[:40])) upload_data.append(wrapped) if len(invalid_values) > 0: for grade in invalid_values: print( "WARNING: the grade value is larger than the max achievable grade") print(grade_format.format(grade.name, grade.id, grade.grade, grade.feedback[:40])) raise SystemExit(1) answer = input('does this look good? [Y/n]: ') if 'n' == answer: print('do it right, then') raise SystemExit(0) elif not ('y' == answer.lower() or '' == answer): print('wat') raise SystemExit(1) return upload_data def get_course_content(self): for course_id in self.course_ids: response = self.session.core_course_get_contents(course_id) wrapped = models.CourseContentResponse(response) for section in wrapped: for module in section.modules: """ known modnames and how to dump: forum: via mod_forum_get_forum_discussions_paginated, to get discussion id list then use mod_forum_get_forum_discussion_posts, to dump the posts. posts can have attachments, download maybe? assign: is easy, already implemented. folder: can contain multiple files, the urls may contain the ?forcedownload parameter which might need to get stripped, not quite sure resource: same as folder, both have 'contents' field, containing a fileurl, should check type. label: is just an annotation to an activity, so just dump description. uncertain: choice: has externallib, should be dumpable. page: presents html, has no externallib, cant be dumped via WS. but page contains an url, can be downloaded, maybe. quiz: has externallib, but is not accessible to me. lesson, ratingallocate, label, wiki: no clue undumpable: lti: linked external learning tool, can't do anything about that. choicegroup: no externallib, https://github.com/ndunand/moodle-mod_choicegroup """ # print(module.modname) known_dumpable = ['forum', 'assign', 'folder', 'resource', 'label'] uncertain = ['choice', 'lesson', 'quiz', 'wiki', 'page', 'ratingallocate', 'publication'] known_undumpable = ['lti', 'choicegroup'] unchecked = ['url', 'organizer', 'checklist', 'glossary', 'feedback', 'book', 'attendance'] if module.modname not in known_dumpable+uncertain+known_undumpable+unchecked: print(module.modname) #print(json.dumps(module.raw, indent=2, ensure_ascii=False)) if module.modname == 'organizer': print(json.dumps(module.raw, indent=2, ensure_ascii=False))
from marshmallow import Schema, fields, pprint from flask import Flask from flask_restplus import reqparse from flask_restplus import Resource, Api from scraper import scrape import util def analyze_func(x): return x api = Api() app = Flask(__name__) api.init_app(app) """ Serialization Schemas """ class SubmissionResponseSchema(Schema): """ SubmissionRequestSchema :param str submission: permalink """ submission = fields.Str() @api.route('/submission') class SubmissionResource(Resource): submission_parser = reqparse.RequestParser() submission_parser.add_argument('submission', type=str, help='Submission URL.') def post(self): submission_args = self.submission_parser.parse_args() submission_url = submission_args.get('submission', None) print(submission_url) if submission_url is None: return { "error": "URL not found." }, 400 try: submission_scraper = scrape.RedditSubmissionScraper(url=submission_url) submission_scraper.extract_data() except: return { "error": "Submission not found." }, 404 predicted_flair = util.predict_flair(submission_scraper.scraped) submission_scraper.scraped['comments'] = submission_scraper.scraped['comments'][:10] submission_scraper.scraped['prediction'] = predicted_flair[0] return submission_scraper.scraped, 200 if __name__ == "__main__": app.run(debug=True)
from argparse import ArgumentParser from pathlib import Path from pfm import PotentialFieldMethod, Space DIR = Path(__file__).parent def main() -> None: parser = ArgumentParser( prog="python main.py", description="Potential field method runner" ) parser.add_argument( "--space", dest="space", help=( "Path to the JSON file describing the configuration space, " "default: %(default)r" ), default=DIR / "data" / "normally.json", ) parser.add_argument( "--solution", dest="solution", help=( "The path to the file where the solution will be written, " "default: %(default)r" ), default=DIR / "solution.json", ) args = parser.parse_args() input_path = Path(args.space).resolve() output_path = Path(args.solution).resolve() space = Space.form_file(input_path) algorithm = PotentialFieldMethod() plan = algorithm.solve(space) plan.dump(output_path) parser.exit() if __name__ == "__main__": main()
# -*- coding: utf-8 -*- """INFO Set the package information for `mkstuff' :Author: Martin Kilbinger, <martin.kilbinger@cea.fr> :Date: 18/04/2019 """ # Release version version_info = (1, 2, 2) __version__ = '.'.join(str(c) for c in version_info) # Package details __author__ = 'Martin Kilbinger' __email__ = 'martin.kilbinger@cea.fr' __year__ = 2019 __url__ = 'https://github.com/martinkilbinger/mkstuff' __description__ = 'Useful but random scientific python modules and scripts' # Dependencies __requires__ = ['numpy', 'scipy', 'astropy'] # Default package properties __license__ = 'MIT' __about__ = ('{} \n\n Author: {} \n Email: {} \n Year: {} \n {} \n\n' ''.format(__name__, __author__, __email__, __year__, __description__)) __setup_requires__ = ['pytest-runner', ] __tests_require__ = ['pytest', 'pytest-cov', 'pytest-pep8']
from db.models import Country, Notice, session from sqlalchemy import desc, func import datetime class Stats: def __init__(self, db_session): self.session = db_session def notice_ordered_per_country(self): all_countries = self.session.query(Country) ordered_list = all_countries.order_by(desc(Country.total_notices)).all() data = {} for country in ordered_list: data[country.name] = country.total_notices return data @property def total_notices(self): total = self.session.query(func.sum(Country.total_notices)).one() return int(total[0]) def notice_per_hundred_thousand_people(self): data = {} for country in self.session.query(Country).all(): try: data[country.code] = round((int(country.total_notices) * 1_000_000) / int(country.population), 2) except TypeError: data[country.code] = -1 data = dict(sorted(data.items(), key=lambda item: item[1], reverse=True)) return data def notices_percentage_per_country(self): data = {} for country, notices in self.notice_ordered_per_country().items(): data[country] = f"{round(int(notices) / int(self.total_notices), 2) * 100} %" return data def gender_ratio(self, country=None): if not country: male = self.session.query(Notice.sex).filter(Notice.sex == 'M').count() female = self.session.query(Notice.sex).filter(Notice.sex == 'F').count() else: male = self.session.query(Notice.sex).filter(Notice.sex == 'M', Notice.country == country).count() female = self.session.query(Notice.sex).filter(Notice.sex == 'F', Notice.country == country).count() total = male + female male_ratio = "{} %".format(round((male / total) * 100, 2)) female_ratio = "{} %".format(round((female / total) * 100, 2)) return { "Male": male_ratio, "Female": female_ratio } @staticmethod def calculate_age(birth_date): today = datetime.date.today() age = today.year - birth_date.year - ((today.month, today.day) < (birth_date.month, birth_date.day)) return age def average_age(self, query=None): if not query: dates = session.query(Notice.date_of_birth).all() else: dates = [(country.date_of_birth,) for country in query] ages = [] for date in dates: if isinstance(date[0], datetime.date): ages.append(self.calculate_age(date[0])) avg = round(sum(ages) / len(ages)) return avg def average_age_by_gender(self, gender): query = self.session.query(Notice.date_of_birth).filter(Notice.sex == gender).all() return self.average_age(query) def stats_by_country(self, country_code: str): country_code = country_code.upper() country = self.session.query(Country).filter(Country.code == country_code).first() query = self.session.query(Notice).filter(Notice.country == country_code).all() average_age = self.average_age(query) gender_ratio = self.gender_ratio(country_code) per_million_people = self.notice_per_hundred_thousand_people().get(country_code) percentage = self.notices_percentage_per_country().get(country.name) return { "country": country.name, "percentage": percentage, "total_notices": country.total_notices, "average_age": average_age, "gender_ratio": gender_ratio, "per_million_people": per_million_people, }
import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.colors as colors from scipy.integrate import cumtrapz, quad from scipy.interpolate import interp1d from scipy.stats import chi2 import PlottingTools as PT import argparse import os #--------------- # MATPLOTLIB settings mpl.rcParams.update({'font.size': 18,'font.family':'serif'}) mpl.rcParams['xtick.major.size'] = 7 mpl.rcParams['xtick.major.width'] = 1 mpl.rcParams['xtick.minor.size'] = 3 mpl.rcParams['xtick.minor.width'] = 1 mpl.rcParams['ytick.major.size'] = 7 mpl.rcParams['ytick.major.width'] = 1 mpl.rcParams['ytick.minor.size'] = 3 mpl.rcParams['ytick.minor.width'] = 1 mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.direction'] = 'in' mpl.rcParams['xtick.top'] = True mpl.rcParams['ytick.right'] = True mpl.rcParams['font.family'] = 'serif' mpl.rc('text', usetex=True) mpl.rcParams['legend.edgecolor'] = 'inherit' #--------------- parser = argparse.ArgumentParser(description='...') parser.add_argument('-m_x', '--m_x', help='DM mass in GeV', type=float, default = 0.2) parser.add_argument('-hemisphere','--hemisphere', help='Hemisphere of the experiment (N or S)', type=str, default="N") parser.add_argument('-sigtext', '--sigtext', type=str, default="") args = parser.parse_args() hemisphere = args.hemisphere m_x = args.m_x #DM mass in GeV m_str = str(int(m_x*1000)) #String of DM mass in MeV if (hemisphere == "N"): lat_text = "Northern Hemisphere ($46^\circ$N)" elif (hemisphere == "S"): lat_text = "Southern Hemisphere ($37^\circ$S)" fig = plt.figure(figsize=(7,5)) ax = fig.add_subplot(111) axes = [] axes.append(fig.add_subplot(131)) axes.append(fig.add_subplot(132)) axes.append(fig.add_subplot(133)) #axes.append(fig.add_subplot(144)) ax.spines['top'].set_color('none') ax.spines['bottom'].set_color('none') ax.spines['left'].set_color('none') ax.spines['right'].set_color('none') ax.tick_params(labelcolor='w', top=False, bottom=False, left=False, right=False) file_labels = ["A", "B", "C"]#, "D"] #sig_labels = [r"5 \times 10^{-35}", r"8 \times 10^{-35}", r"1 \times 10^{-34}", r"2 \times 10^{-34}"] ratio_labels = [r"0.3 ", r"", r"3.1"] m_list = np.geomspace(0.0581, 0.5, 1000) rho_list = np.linspace(0.01, 1.0, 2000) L_clip = -20 for i in range(3): m, rho, L = np.loadtxt("../results/example_mx100_" + args.sigtext + "_" + hemisphere + "_" + file_labels[i] + ".txt", unpack=True, usecols=(0, 1,2)) L_grid = L.reshape(1000, 2000).T cont = axes[i].contourf(m_list, rho_list, np.clip(L_grid, L_clip, 0.1), levels=np.linspace(L_clip, 0, 11)) irho,im = np.unravel_index(np.argmax(L_grid), (2000, 1000)) axes[i].plot([m_x, m_x], [0.01, 1.0], linestyle='--',color='w') axes[i].axhline(0.4, linestyle='--',color='w') axes[i].plot(m_list[im], rho_list[irho],"r^", mew=2, ms=4) #axes[i].set_xscale('log') if (i > 0): axes[i].get_yaxis().set_ticklabels([]) axes[i].set_xlim(0.06, 0.160) #axes[i].set_xticks([0.06, 0.07, 0.08, 0.09, 0.1, 0.2])#, 0.3, 0.4, 0.5]) axes[i].set_xticks(np.arange(0.06, 0.165, 0.01), minor=True) axes[i].set_xticks([0.100, 0.150]) axes[i].set_xticklabels(["100", "150"]) #axes[i].set_xticklabels([" ","60", " ", " ", " ", "100", " ", " ", " ", " ", "150", " "])#, "", "0.4", " "]) axes[i].tick_params(axis='x', colors='white', labelsize=16, which='both') axes[i].tick_params(axis='y', colors='white') axes[i].tick_params(labelcolor='k') axes[i].spines['top'].set_color('white') axes[i].spines['bottom'].set_color('white') axes[i].spines['left'].set_color('white') axes[i].spines['right'].set_color('white') #axes[i].text(0.3, 0.07, r'$' + sig_labels[i] + '\, \mathrm{cm}^2$', color='w', ha='center', va='center', fontsize=12) #0.3, 0.07 axes[i].text(0.71, 0.85, r"$\sigma_{p}^{\mathrm{SI}} = " + ratio_labels[i] + " \,\sigma_{p}^{\mathrm{SI}}{}'$",color='w', ha='center', va='center', fontsize=12,transform=axes[i].transAxes) axes[i].text(0.71, 0.93, file_labels[i], color='w', ha='center', va='center', fontsize=18, transform=axes[i].transAxes) axes[1].text(0.05, 1.02,lat_text,fontsize=14) cb_ax = fig.add_axes([0.94, 0.09, 0.02, 0.8]) cbar = fig.colorbar(cont, cax=cb_ax, label=r'$\Delta \log \mathcal{L}$') ax.set_xlabel(r'$m_\chi$ [MeV]') axes[0].set_ylabel(r'$\rho_\chi$ [GeV/cm$^3$]') #plt.tight_layout() plt.subplots_adjust(wspace=0.1) plt.savefig("../plots/Likelihood_examples_mx100_" + args.sigtext + "_" + hemisphere + ".pdf", bbox_inches='tight') plt.show()
import matplotlib.pyplot as plt import numpy as np import json ''' This script plots multiple frame-by-frame results for PSNR and SSIM for testing video sequences. The raw results files are generated from eval_video.m using MATLAB. ''' ### Three sets of results ### # Loading result text files into JSON format path1 = "test/vid4/alt_only_cur_downsize_20200916_ff_0.txt" f1 = open(path1, 'r') frameData1 = json.load(f1) path2 = "test/vid4/alt_only_cur_downsize_20200916_obj2_HR_10_20201008.txt" f2 = open(path2, 'r') frameData2 = json.load(f2) path3 = "test/vid4/alt_only_cur_downsize_20200916_info_recycle_ff_0_20201002.txt" f3 = open(path3, 'r') frameData3 = json.load(f3) # Iterate through each video sequence for (vid1, vid2, vid3) in zip(frameData1, frameData2, frameData3): # Initialise result arrays psnr_arr1 = [] ssim_arr1 = [] psnr_arr2 = [] ssim_arr2 = [] psnr_arr3 = [] ssim_arr3 = [] # Do not plot the final average of average result from the test since it is not a video sequence if vid1 == 'average of average' or vid2 == 'average of average' or vid3 == 'average of average': continue #iterate through each frame for (frames1, frames2, frames3) in zip(frameData1[vid1]['frame'][0],frameData2[vid2]['frame'][0], frameData3[vid3]['frame'][0]): psnr1 = frameData1[vid1]['frame'][0][frames1][0] ssim1 = frameData1[vid1]['frame'][0][frames1][1] psnr_arr1.append(psnr1) ssim_arr1.append(ssim1) psnr2 = frameData2[vid2]['frame'][0][frames2][0] ssim2 = frameData2[vid2]['frame'][0][frames2][1] psnr_arr2.append(psnr2) ssim_arr2.append(ssim2) psnr3 = frameData3[vid3]['frame'][0][frames3][0] ssim3 = frameData3[vid3]['frame'][0][frames3][1] psnr_arr3.append(psnr3) ssim_arr3.append(ssim3) psnr_arr1 = np.array(psnr_arr1) ssim_arr1 = np.array(ssim_arr1) psnr_arr2 = np.array(psnr_arr2) ssim_arr2 = np.array(ssim_arr2) psnr_arr3 = np.array(psnr_arr3) ssim_arr3 = np.array(ssim_arr3) plt.figure(figsize=(14, 7)) plt.subplot(121) plt.plot(range(0, len(psnr_arr1)), psnr_arr1, label='No Information Recycling') plt.plot(range(0, len(psnr_arr2)), psnr_arr2, label='Periodic HR') plt.plot(range(0, len(psnr_arr3)), psnr_arr3, label='Information Recycling') plt.legend(loc='lower right') plt.title('{}: PSNR Across Frames'.format(vid1)) plt.xlabel('Frame') plt.ylabel('PSNR') plt.subplot(122) plt.plot(range(0, len(ssim_arr1)), ssim_arr1, label='No Information Recycling') plt.plot(range(0, len(ssim_arr2)), ssim_arr2, label='Periodic HR') plt.plot(range(0, len(ssim_arr3)), ssim_arr3, label='Information Recycling') plt.title('{}: SSIM Across Frames'.format(vid1)) plt.legend(loc='lower right') plt.xlabel('Frame') plt.ylabel('SSIM') plt.show()
"""Create category table. Revision ID: 0c3924deb2b7 Revises: f68e6dafb977 Create Date: 2020-04-15 17:01:38.788610 """ import sqlalchemy as sa from sqlalchemy.dialects import postgresql from modist.models.common import CategoryType from alembic import op # revision identifiers, used by Alembic. revision = "0c3924deb2b7" down_revision = "f68e6dafb977" branch_labels = None depends_on = None def upgrade(): """Pushes changes into the database.""" op.create_table( "category", sa.Column( "created_at", sa.DateTime(timezone=True), server_default=sa.text("now()"), nullable=False, ), sa.Column( "updated_at", sa.DateTime(timezone=True), server_default=sa.text("now()"), nullable=False, ), sa.Column("is_active", sa.Boolean(), server_default="true", nullable=False), sa.Column( "id", postgresql.UUID(as_uuid=True), server_default=sa.text("uuid_generate_v4()"), nullable=False, ), sa.Column("parent_id", postgresql.UUID(as_uuid=True), nullable=True), sa.Column("type", sa.Enum(CategoryType), nullable=False), sa.Column("name", sa.String(length=64), nullable=False), sa.Column("description", sa.Text(), nullable=True), sa.Column("depth", sa.Integer(), server_default="0", nullable=False), sa.Column( "lineage", postgresql.ARRAY(postgresql.UUID(as_uuid=True)), server_default="{}", nullable=False, ), sa.ForeignKeyConstraint(["parent_id"], ["category.id"], ondelete="cascade"), sa.PrimaryKeyConstraint("id"), sa.UniqueConstraint("parent_id", "name", "type"), ) op.create_refresh_updated_at_trigger("category") op.create_refresh_depth_and_lineage_trigger("category") def downgrade(): """Reverts changes performed by upgrade().""" op.drop_refresh_depth_and_lineage_trigger("category") op.drop_refresh_updated_at_trigger("category") op.drop_table("category") sa.Enum(CategoryType).drop(bind=op.get_bind())
import scrapy from tobber.items import Torrent from tobber.spiders.indexer import Indexer class Rarbg(Indexer): name = "rarbg" def start_requests(self): print 'Rarbg is scrapying...' self.site = "https://rarbg.is" urls = [] search = self.site + "/torrents.php?search=" for title in self.title: urls.append(search + title.replace('%20','+')) for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): #xPath rules table = response.xpath('//table[@class="lista2t"]') row = table.xpath('./tr[@class="lista2"]') for i in range(len(row)): content = row[i].xpath('./td[@class="lista"]') title = content[1].xpath('./a/@title') href = content[1].xpath('./a/@href') size = content[3].xpath('./text()') seeders = content[4].xpath('./font/text()') leechers = content[5].xpath('./text()') yield Torrent( title = self.extract_data(title), size = self.extract_data(size), seeders = self.extract_data(seeders), leechers = self.extract_data(leechers), href = self.site + self.extract_data(href), site = self.name, counter = i )
#!/usr/bin/env python import os import math import numpy as np import cst.sord # FIXME: prestress not correct dx = 100.0 dt = dx / 12500.0 nx = int(16500.0 / dx + 21.5) ny = int(16500.0 / dx + 21.5) nz = int(12000.0 / dx + 120.5) nt = int(8.0 / dt + 1.5) alpha = math.sin(math.pi / 3.0) prm = { 'shape': [nx, ny, nz, nt], 'delta': [dx, dx, dx, dt], 'nproc3': [1, 1, 2], 'bc1': ['-node', 'free', 'free'], 'bc2': ['pml', 'pml', 'free'], 'n1expand': [0, 0, 50], 'n2expand': [0, 0, 50], 'affine': [ [1.0, 0.0, 0.0], [0.0, alpha, 0.0], [0.0, 0.5, 1.0], ], 'hourglass': [1.0, 2.0], 'rho': [2700.0], 'vp': [5716.0], 'vs': [3300.0], 'faultnormal': '+z', 'co': [200000.0], 'dc': [0.5], 'mud': [0.1], 'sxx': [([0, []], '=>', 'sxx.bin')], 'syy': [([0, []], '=>', 'syy.bin')], 'szz': [([0, []], '=>', 'szz.bin')], } # hypocenter y = 12000.0 / dx z = nz // 2 - 0.5 prm['hypocenter'] = hypo = [0.0, y, z] # near-fault volume i = int(15000.0 / dx + 0.5) l0 = int(z - 3000.0 / dx + 0.5) l1 = int(z + 3000.0 / dx + 0.5) prm['gam'] = [0.2, ([[i], [i], [l0, l1]], '=', 0.02)] prm['mus'] = [10000.0, ([[i+1], [i+1]], '=', 0.7)] prm['trup'] = [([[i+1], [i+1], -1], '=>', 'trup.bin')] # nucleation k = int(hypo[1]) m = int(1500.0 / dx + 0.5) n = int(1500.0 / dx + 1.5) prm['mus'] += [ ([[n], [k-n, k+n+1]], '=', 0.66), ([[n], [k-m, k+m+1]], '=', 0.62), ([[m], [k-n, k+n+1]], '=', 0.62), ([[m], [k-m, k+m+1]], '=', 0.54), ] # slip, slip velocity, and shear traction time histories for j, k in [ [0, 0], [45, 0], [120, 0], [0, 15], [0, 30], [0, 45], [0, 75], [45, 75], [120, 75], [0, 120], ]: x = j * 100.0 / dx y = k * 100.0 / dx for f in ( 'sux', 'suy', 'suz', 'svx', 'svy', 'svz', 'tsx', 'tsy', 'tsz', 'tnm' ): s = 'faultst%03ddp%03d-%s.bin' % (j, k, f) if f not in prm: prm[f] = [] prm[f] += [([x, y, []], '.>', s)] # displacement and velocity time histories for j, k, l in [ [0, 0, -30], [0, 0, -20], [0, 0, -10], [0, 0, 10], [0, 0, 20], [0, 0, 30], [0, 3, -10], [0, 3, -5], [0, 3, 5], [0, 3, 10], [120, 0, -30], [120, 0, 30], ]: x = j * 100.0 / dx y = k * 100.0 / dx / alpha z = l * 100.0 / dx + hypo[2] for f in 'ux', 'uy', 'uz', 'vx', 'vy', 'vz': s = 'body%03dst%03ddp%03d-%s.bin' % (j, k, l, f) s = s.replace('body-', 'body-0') if f not in prm: prm[f] = [] prm[f] += [([x, y, z, []], '.>', s)] # pre-stress d = np.arange(ny) * alpha * dx x = d * 9.8 * -1147.16 y = d * 9.8 * -1700.0 z = d * 9.8 * -594.32 k = int(13800.0 / dx + 1.5) x[k:] = y[k:] z[k:] = y[k:] d = 'repo/TPV12' os.mkdir(d) os.chdir(d) x.astype('f').tofile('sxx.bin') y.astype('f').tofile('syy.bin') z.astype('f').tofile('szz.bin') cst.sord.run(prm)
def plug_element_count(plug): lbracket = plug.rfind("[") if lbracket != -1: rbracket = plug.rfind("]") if rbracket != -1 and lbracket < rbracket: slicestr = plug[lbracket + 1:rbracket] bounds = slicestr.split(":") if len(bounds) > 1: return int(bounds[1]) - int(bounds[0]) + 1 return 1 class MayaParserBase(object): def on_requires_maya(self, version): pass def on_requires_plugin(self, plugin, version): pass def on_file_info(self, key, value): pass def on_current_unit(self, angle, linear, time): pass def on_file_reference(self, path): pass def on_create_node(self, nodetype, name, parent): pass def on_select(self, name): pass def on_add_attr(self, node, name): pass def on_set_attr(self, name, value, type): pass def on_set_attr_flags(self, plug, keyable=None, channelbox=None, lock=None): pass def on_connect_attr(self, src_plug, dst_plug): pass
import json import csv import pymysql import re import os.path import cloudscraper import http.client http.client._is_legal_header_name = re.compile(rb'[^\s][^:\r\n]*').fullmatch scraper = cloudscraper.create_scraper() def main(): print("========== Starting ==========") cfg = read_config() db = pymysql.connect(cfg["SQL Server IP"], cfg["SQL username"], cfg["SQL Password"], "curse_analytics") cursor = db.cursor() r = get(cfg, "https://authors.curseforge.com/dashboard/projects?filter-games=&filter-project-status=4") text = r.text for group in re.findall("<a.*href=\"/dashboard/project/(.*)\"><span>Download</span></a>", text): print(group) got = get(cfg, "https://authors.curseforge.com/dashboard/project/" + group) for row in csv.DictReader(got.text.splitlines(), delimiter=','): cursor.execute("select statDate, projectId from stats where statDate=STR_TO_DATE(\"{}\", '%Y-%m-%d') and projectId={}".format(row["Date"], row["Project ID"])) if cursor.rowcount == 0: cursor.execute("insert into stats values(STR_TO_DATE(\"{}\", '%Y-%m-%d'), {}, \"{}\",{},{},{},{},{},{})".format(row["Date"], row["Project ID"], row["Name"], row["Points"], row["Historical Download"], row["Daily Download"], row["Daily Unique Download"], row["Daily Twitch App Download"], row["Daily Curse Forge Download"])) db.commit() print("============ Done ============") def read_config(): if not os.path.isfile("config.json"): print("=== Generating Config File ===") with open('config.json', 'w') as f: json.dump({"SQL Server IP": "127.0.0.1", "SQL username": "username", "SQL Password": "password", "Cobalt Session": "session"}, f) print(" Please edit config and retry ") exit(0) with open('config.json') as config_file: return json.load(config_file) def get(cfg, url): return scraper.get(url, headers={ "referer": "https://authors.curseforge.com/store/transactions", "user-agent": 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'twitch-desktop-electron-platform/1.0.0 Chrome/66.0.3359.181 Twitch/3.0.16 Safari/537.36 ' 'desklight/8.42.2', "accept-language": "en-GB,en;q=0.9,en-US;q=0.8,de;q=0.7", "accept-encoding": "gzip, deflate, br", "accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3", ":authority": "authors.curseforge.com", ":method": "GET", ":scheme": "https", }, cookies={ "CobaltSession": cfg["Cobalt Session"], }) if __name__ == '__main__': main()
# Generated by Django 3.0.9 on 2020-10-06 13:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('articles', '0003_auto_20201005_1613'), ] operations = [ migrations.AddField( model_name='article', name='image', field=models.ImageField(blank=True, null=True, upload_to='article_images/'), ), ]
import pytest from flask import Flask from flask import jsonify from flask_jwt_extended import create_access_token from flask_jwt_extended import create_refresh_token from flask_jwt_extended import jwt_required from flask_jwt_extended import JWTManager from tests.utils import get_jwt_manager from tests.utils import make_headers @pytest.fixture(scope="function") def app(): app = Flask(__name__) app.config["JWT_SECRET_KEY"] = "foobarbaz" JWTManager(app) @app.route("/protected", methods=["GET"]) @jwt_required() def access_protected(): return jsonify(foo="bar") @app.route("/refresh_protected", methods=["GET"]) @jwt_required(refresh=True) def refresh_protected(): return jsonify(foo="bar") return app @pytest.mark.parametrize("blocklist_type", [["access"], ["refresh", "access"]]) def test_non_blocklisted_access_token(app, blocklist_type): jwt = get_jwt_manager(app) @jwt.token_in_blocklist_loader def check_blocklisted(jwt_header, jwt_data): assert jwt_header["alg"] == "HS256" assert jwt_data["sub"] == "username" return False with app.test_request_context(): access_token = create_access_token("username") test_client = app.test_client() response = test_client.get("/protected", headers=make_headers(access_token)) assert response.get_json() == {"foo": "bar"} assert response.status_code == 200 @pytest.mark.parametrize("blocklist_type", [["access"], ["refresh", "access"]]) def test_blocklisted_access_token(app, blocklist_type): jwt = get_jwt_manager(app) @jwt.token_in_blocklist_loader def check_blocklisted(jwt_header, jwt_data): return True with app.test_request_context(): access_token = create_access_token("username") test_client = app.test_client() response = test_client.get("/protected", headers=make_headers(access_token)) assert response.get_json() == {"msg": "Token has been revoked"} assert response.status_code == 401 @pytest.mark.parametrize("blocklist_type", [["refresh"], ["refresh", "access"]]) def test_non_blocklisted_refresh_token(app, blocklist_type): jwt = get_jwt_manager(app) @jwt.token_in_blocklist_loader def check_blocklisted(jwt_header, jwt_data): return False with app.test_request_context(): refresh_token = create_refresh_token("username") test_client = app.test_client() response = test_client.get( "/refresh_protected", headers=make_headers(refresh_token) ) assert response.get_json() == {"foo": "bar"} assert response.status_code == 200 @pytest.mark.parametrize("blocklist_type", [["refresh"], ["refresh", "access"]]) def test_blocklisted_refresh_token(app, blocklist_type): jwt = get_jwt_manager(app) @jwt.token_in_blocklist_loader def check_blocklisted(jwt_header, jwt_data): return True with app.test_request_context(): refresh_token = create_refresh_token("username") test_client = app.test_client() response = test_client.get( "/refresh_protected", headers=make_headers(refresh_token) ) assert response.get_json() == {"msg": "Token has been revoked"} assert response.status_code == 401 def test_custom_blocklisted_message(app): jwt = get_jwt_manager(app) @jwt.token_in_blocklist_loader def check_blocklisted(jwt_header, jwt_data): return True @jwt.revoked_token_loader def custom_error(jwt_header, jwt_data): assert jwt_header["alg"] == "HS256" assert jwt_data["sub"] == "username" return jsonify(baz="foo"), 404 with app.test_request_context(): access_token = create_access_token("username") test_client = app.test_client() response = test_client.get("/protected", headers=make_headers(access_token)) assert response.get_json() == {"baz": "foo"} assert response.status_code == 404
import xlrd from string import lower ddr_fpga_list = ['FPGA00', 'FPGA01', 'FPGA02', 'FPGA03', 'FPGA30', 'FPGA31', 'FPGA32', 'FPGA33'] class lpfrow(object): def __init__(self, schematic, port, ball, bank): self.schematic = schematic self.port = port self.ball = ball self.bank = bank self.commented = True def render(self): if self.commented: precomment = "# " else: precomment = "" return precomment + "LOCATE COMP \"" + str(self.port) + "\" SITE \"" + str(self.ball) + "\"; # " + str(self.schematic) def port_prefix(self): cut = self.port.index("[") return self.port[:cut] # returns a unique number for hs ls def hs_enum(self): if 'hs' in lower(self.port): return 1 if 'ls' in lower(self.port): return 2 # returns a unique number for n,e,s,w def dir_enum(self): # trim off hs, ls to avoid detection of south below trunc = self.port if trunc.startswith('HS_'): trunc = trunc[3:] if trunc.startswith('LS_'): trunc = trunc[3:] # check long names first so that E doesn't trigger in WEST if 'NORTH' in trunc: return 3 if 'EAST' in trunc: return 4 if 'SOUTH' in trunc: return 5 if 'WEST' in trunc: return 6 # check singles if we didn't match fulls above if 'N' in trunc: return 3 if 'E' in trunc: return 4 if 'S' in trunc: return 5 if 'W' in trunc: return 6 # def unique_enum(self): # return self.hs_enum() + self.dir_enum()*10 class ddrrow(lpfrow): def __init__(self): lpfrow.__init__(self, None, None, None, None) self.sdrampin = None self.iotype = None self.slewrate = None self.termination = None self.vref = None self.diffresistor = None def render_location(self): finalcomment = str(self.sdrampin) + ", " + self.iotype + ", " + self.slewrate + ", " + str(self.termination) + ", " + str(self.diffresistor) if self.commented: precomment = "# " else: precomment = "" return precomment + "LOCATE COMP \"" + self.port + "\" SITE \"" + self.ball + "\"; # " + finalcomment class mibrow(ddrrow): def __init__(self): ddrrow.__init__(self) def parse_mib_sheet(sheetname, workbook): sheet = workbook.sheet_by_name(sheetname) maxrows = len(sheet.col(0)) mibpins = [] ddr_fpga_enabled = [] all_configs = [] for lookrow, lookcol in [(0,4),(0,5),(0,6)]: cell = sheet.cell(lookrow, lookcol).value this_config = {} this_config['name'] = cell this_config['col'] = lookcol if 'CONFIG' in cell: this_config['parsed_name'] = ['CONFIG'] else: this_config['parsed_name'] = cell.split(', ') # this_config['balls'] = [] # # for lookdatarow in range(lookrow+1, maxrows): # datacell = sheet.cell(lookdatarow, lookcol).value # if xlrd.empty_cell.value == datacell: # break # this_config['balls'].append(datacell) # when all done all_configs.append(this_config) o2 = {} keymap = {} keymap[0] = 'schematic' keymap[1] = 'port' keymap[2] = 'iotype' keymap[3] = 'slewrate' for cfg in all_configs: for fpga in cfg['parsed_name']: # return all_configs mibpins = [] for row in range(1, 31): # a = sheet.cell(row, 0).value mpin = mibrow() # Set the the col in which to read the .ball from ballcell = sheet.cell(row, cfg['col']).value mpin.ball = ballcell anyfound = False for k in keymap: v = keymap[k] cellval = sheet.cell(row, k).value if xlrd.empty_cell.value == cellval: continue else: anyfound = True mpin.__setattr__(v, cellval) if anyfound: if mpin.port is None: mpin.commented = True mibpins.append(mpin) o2[fpga] = mibpins return all_configs, o2 def parse_ddr_sheet(sheetname, workbook): sheet = workbook.sheet_by_name(sheetname) maxrows = len(sheet.col(0)) ddrpins = [] keymap = {} keymap[0] = 'port' keymap[1] = 'ball' keymap[2] = 'bank' keymap[3] = 'sdrampin' keymap[4] = 'iotype' keymap[5] = 'slewrate' keymap[6] = 'termination' keymap[7] = 'vref' keymap[8] = 'diffresistor' ddr_fpga_enabled = [] for row in range(0, maxrows): a = sheet.cell(row, 0).value # b = sheet.cell(row, 1).value if 'fpga00' in lower(a): ddr_fpga_enabled = a.split(', ') if 'connection between' in lower(a) or 'fpga00' in lower(a) or 'fpga top level' in lower(a): continue ddrpin = ddrrow() anyfound = False for k in keymap: v = keymap[k] cellval = sheet.cell(row, k).value if xlrd.empty_cell.value == cellval: continue else: anyfound = True ddrpin.__setattr__(v, cellval) if anyfound: # push ddrpin object ddrpins.append(ddrpin) return ddrpins, ddr_fpga_enabled # # # # # if xlrd.empty_cell.value in [sheet.cell(row, 0).value, sheet.cell(row, 1).value, sheet.cell(row, 2).value, sheet.cell(row, 3).value]: # continue # open file def parse_fpga(sheetname, workbook): sheet = workbook.sheet_by_name(sheetname) maxrows = len(sheet.col(0)) pins = [] for row in range(0, maxrows): if xlrd.empty_cell.value in [sheet.cell(row, 0).value, sheet.cell(row, 1).value, sheet.cell(row, 2).value, sheet.cell(row, 3).value]: continue # pull 4 potential columns a = sheet.cell(row, 0).value b = sheet.cell(row, 1).value c = sheet.cell(row, 2).value d = sheet.cell(row, 3).value rowgood = True if 'connection between' in lower(a) or 'schematic' in lower(a): rowgood = False print row if rowgood: pins.append(lpfrow(a, b, c, d)) return pins def write_fpga(sheetname, pins, all_mib_pins, ddrpins=None): # sheet = workbook.sheet_by_name(sheetname) if sheetname.startswith("FPGA"): fnameout = "outputs/" + "cs" + sheetname.lstrip("FPGA") + "_top.lpf" else: fnameout = "outputs/" + sheetname + "_output.lpf" prev_pin_enum = -1 group_first_pin = [] group_names = [] group_name_suffix = "_GROUP" ls_type = "LVCMOS15" hs_type = "SSTL15_I" skip_ddr = True # write file with open(fnameout, 'w') as f: # write out header with open('common_header_snip.txt', 'r') as content_file: f.write(content_file.read()) f.write("######################## CS" + sheetname.lstrip("FPGA") + " configuration only ########################") f.write('\n') # write out Groups for Normal Pins for p in pins: # print p.hs_enum(), p.dir_enum() # print p.port_prefix() if p.port_prefix() not in group_names: if skip_ddr and 'ddr' in lower(p.port_prefix()): continue group_names.append(p.port_prefix()) group_first_pin.append(p) for i, name in enumerate(group_names): firstpin = group_first_pin[i] full_group_name = name + group_name_suffix f.write('DEFINE PORT GROUP "' + full_group_name + '" "' + name + '[*]";\n') if firstpin.hs_enum() == 1: speedtype = hs_type else: speedtype = ls_type f.write('IOBUF GROUP "' + full_group_name + '" IO_TYPE=' + speedtype + ';\n') # write out normal pins for p in pins: if skip_ddr and 'ddr' in lower(p.port_prefix()): continue f.write(p.render() + "\n") # mandatory write out MIB assert sheetname in all_mib_pins mibpins = all_mib_pins[sheetname] f.write('\n\n######################## MIB ########################\n') with open('mib_groups_snip.txt', 'r') as content_file: f.write(content_file.read()) f.write('\n') for p in mibpins: f.write(p.render() + "\n") # optional write out ddr pins if ddrpins is not None: f.write('\n\n######################## DDR ########################\n') with open('ddr_groups_snip.txt', 'r') as content_file: f.write(content_file.read()) f.write('\n') for p in ddrpins: f.write(p.render_location() + "\n") def main(): workbook = xlrd.open_workbook('rev2_array_fpga_pin_mappings_new.xls') ddr, ddr_enabled = parse_ddr_sheet('DDR SDRAM', workbook) junk, all_mib_pins = parse_mib_sheet('MIB BUS', workbook) fpgas = {} fpgas['FPGA00'] = None fpgas['FPGA01'] = None fpgas['FPGA02'] = None fpgas['FPGA03'] = None fpgas['FPGA10'] = None fpgas['FPGA11'] = None fpgas['FPGA12'] = None fpgas['FPGA13'] = None fpgas['FPGA20'] = None fpgas['FPGA21'] = None fpgas['FPGA22'] = None fpgas['FPGA23'] = None fpgas['FPGA30'] = None fpgas['FPGA31'] = None fpgas['FPGA32'] = None fpgas['FPGA33'] = None for key in fpgas: pins = parse_fpga(key, workbook) enabled_for_us = key in ddr_enabled if enabled_for_us: # write it with ddr write_fpga(key, pins, all_mib_pins, ddr) else: # write it solo write_fpga(key, pins, all_mib_pins) # save it fpgas[key] = pins if __name__ == '__main__': main()
# -*- coding: UTF-8 -*- # Clasificador con Naive Bayes incorporado, archivos usados: stopwords.txt, clasificador.pickle, politicos-historico.txt, medios-historico.txt, politicos-historico-recuperados.json, medios-historico-recuperados.json # Argumento 1 : Lista de usuarios recuperados () # Argumento 2 : Lista de usuarios totales import json from nltk.stem import SnowballStemmer import os import pickle import re import sys from textblob.classifiers import NaiveBayesClassifier # ============ UTILIDADES ============== # Asignación del stemmer en español stemmer = SnowballStemmer("spanish") # Creo un diccionario de stopwords a partir de un archivo ubicado en directorio util stopwords = {} archivoStop = open('util/stopwords.txt', 'r') for stopw in archivoStop: stopwords[stopw.strip()] = '' # Para el reemplazo de acentos por sus equivalentes no acentuadas acentos = {'á': 'a', 'é': 'e', 'í': 'i', 'ó': 'o', 'ú': 'u', 'à': 'a', 'è': 'e', 'ì': 'i', 'ò': 'o', 'ù': 'u'} # ======================================= # ============ NORMALIZACIÓN ============ # ======================================= def textNormalization(dictUsuarios): # Contenedor de elementos normalizados normalizados = {} # Recorrido del diccionario de descripciones de usuarios for recListado in dictUsuarios: transform = dictUsuarios[recListado].strip() # Elimino leading y trailing spaces transform = transform.lower() # Cambio a minúsculas # Remoción de URLs URLless_string = re.sub(r'\w+:\/{2}[\d\w-]+(\.[\d\w-]+)*(?:(?:\/[^\s/]*))*', '', transform) transform = URLless_string # Reemplazo de separadores (arbitrario) transform = transform.replace('/', ' ').replace('-', ' ') # Reemplazo de acentos for acento in acentos: transform = transform.replace(acento, acentos[acento]) # Remoción de caracteres no alfabéticos for caracter in transform: if not caracter.isalpha() and not caracter == ' ': transform = transform.replace(caracter, '') # División de la cadena de texto para hacer un recorrido y eliminar stopwords transform = transform.split() for palabra in transform: if palabra in stopwords: transform[transform.index(palabra)] = '' # Si la palabra se encuentra en el diccionario de stopwords, se elimina # Stemming: empleando el SnowballStemmer ubica la raíz de la palabra para eliminar plurales y otras transformaciones: for palabra in transform: transform[transform.index(palabra)] = stemmer.stem(palabra) transform = list(set(transform)) # Elimina palabras duplicadas de la lista transform = ' '.join(transform) # Fusión de la cadena transform = ' '.join(transform.split()) # Separación - fusión para remover espacios de más if transform != '': normalizados[recListado] = transform return normalizados if os.path.isfile('util/clasificador.pickle'): print('Clasificador ya entrenado, cargando...') f = open('util/clasificador.pickle', 'rb') clasificador = pickle.load(f) f.close() print('Clasificador cargado :D') else: # ================================================ # ============ CARGA DE DESCRIPCIONES ============ # ================================================ print('Clasificador no entrenado, entrenando (may take a while)...\nCargando archivos necesarios...') polRuta = 'util/politicos-historico-recuperados.json' # Archivo de políticos (descripciones) medRuta = 'util/medios-historico-recuperados.json' # Archivo de medios (descripciones) polArchivo = open(polRuta, 'r') politJson = json.load(polArchivo) medArchivo = open(medRuta, 'r') mediosJson = json.load(medArchivo) # Creación de un diccionario con nombres de usuario como keys y descripciones como valores polDescripciones = {} for linea in politJson: polDescripciones[linea['name']] = linea['description'].encode('UTF-8') medDescripciones = {} for linea in mediosJson: medDescripciones[linea['name']] = linea['description'].encode('UTF-8') print('Normalizando descripciones...') # Creación de diccionarios de usuarios = descipciones_normalizadas polNormalizados = textNormalization(polDescripciones) medNormalizados = textNormalization(medDescripciones) # ciuNormalizados = textNormalization(ciuDescripciones) print('Descripciones normalizadas.\nEntrenando clasificador...') # ============ Entrenamiento ============ training = [] for recNormalizados in polNormalizados: training.append((polNormalizados[recNormalizados], 'politico')) for recNormalizados in medNormalizados: training.append((medNormalizados[recNormalizados], 'medio')) # for recNormalizados in ciuNormalizados: # training.append((ciuNormalizados[recNormalizados], 'ciudadano')) clasificador = NaiveBayesClassifier(training) f = open('util/clasificador.pickle', 'wb') pickle.dump(clasificador, f, -1) f.close() print('Clasificador entrenado :D\n') print('\nNormalizando texto ingresado...') porClasificar = {} f = open(sys.argv[1], 'r') classifyJson = json.load(f) for item in classifyJson: porClasificar[item['name']] = item['description'].encode('UTF-8') clasificaEsto = textNormalization(porClasificar) print('Texto normalizado.') historicos = {} fPolH = open('util/politicos-historico.txt', 'r') for item in fPolH: historicos[item.strip()] = 'politico' fMedH = open('util/medios-historico.txt', 'r') for item in fMedH: historicos[item.strip()] = 'medio' print('\nClasificando:') clasifSalida = {} for item in clasificaEsto: if item in historicos: clasifSalida[item] = historicos[item] else: prob_dist = clasificador.prob_classify(clasificaEsto[item]) if round(prob_dist.prob(prob_dist.max()), 3) == 1: clasifSalida[item] = prob_dist.max() else: clasifSalida[item] = 'ciudadano' print 'Leyendo lista completa de usuarios...' fUserList = open(sys.argv[2], 'r') for item in fUserList: item = item.strip() if not item in clasifSalida: if item in historicos: clasifSalida[item] = historicos[item] else: clasifSalida[item] = 'ciudadano' print 'Imprimiendo salida...' clasifExport = [] for item in clasifSalida: exportThis = {} exportThis['name'] = item exportThis['category'] = clasifSalida[item] clasifExport.append(exportThis) # Escritura del archivo al terminar la ejecución archivoRuta = sys.argv[2].split('.') archivoRuta = archivoRuta[0] + '_clasifsalida.json' with open(archivoRuta, 'w') as f: json.dump(clasifExport, f, indent=4, ensure_ascii=False)
# -*- coding: utf-8 -*- # Copyright 2020 The PsiZ Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Weighted Minkowski distance layer. Classes: WeightedMinkowski: A TensorFlow layer for computing weighted minkowski distance. """ import tensorflow as tf from tensorflow.python.keras import backend as K import psiz.keras.constraints as pk_constraints from psiz.keras.layers.ops.core import wpnorm @tf.keras.utils.register_keras_serializable( package='psiz.keras.layers', name='WeightedMinkowski' ) class WeightedMinkowski(tf.keras.layers.Layer): """Weighted Minkowski distance.""" def __init__(self, rho_initializer=None, **kwargs): """Initialize. Arguments: rho_initializer (optional): Initializer for rho. """ super(WeightedMinkowski, self).__init__(**kwargs) if rho_initializer is None: rho_initializer = tf.random_uniform_initializer(1.01, 3.) self.rho_initializer = tf.keras.initializers.get(rho_initializer) self.rho = self.add_weight( shape=[], initializer=self.rho_initializer, trainable=self.trainable, name="rho", dtype=K.floatx(), constraint=pk_constraints.GreaterThan(min_value=1.0) ) self.theta = {'rho': self.rho} def call(self, inputs): """Call. Arguments: inputs: z_0: A tf.Tensor denoting a set of vectors. shape = (batch_size, [n, m, ...] n_dim) z_1: A tf.Tensor denoting a set of vectors. shape = (batch_size, [n, m, ...] n_dim) w: The weights allocated to each dimension in a weighted minkowski metric. shape = (batch_size, [n, m, ...] n_dim) Returns: shape = (batch_size, [n, m, ...]) """ z_0 = inputs[0] # Query. z_1 = inputs[1] # References. w = inputs[2] # Dimension weights. # Expand rho to shape=(sample_size, batch_size, [n, m, ...]). rho = self.rho * tf.ones(tf.shape(z_0)[0:-1]) # Weighted Minkowski distance. x = z_0 - z_1 d_qr = wpnorm(x, w, rho) d_qr = tf.squeeze(d_qr, [-1]) return d_qr def get_config(self): """Return layer configuration.""" config = super().get_config() config.update({ 'rho_initializer': tf.keras.initializers.serialize( self.rho_initializer ) }) return config
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers, Model def dped_resnet(input_shape, instance_norm = True): inputs = keras.Input(shape=input_shape) conv_0 = layers.Conv2D(64, 9, padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(inputs) conv_b1 = _dped_resnet_block(conv_0, instance_norm) conv_b2 = _dped_resnet_block(conv_b1, instance_norm) conv_b3 = _dped_resnet_block(conv_b2, instance_norm) conv_b4 = _dped_resnet_block(conv_b3, instance_norm) conv_5 = layers.Conv2D(64, 9, padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(conv_b4) conv_5 = tf.nn.leaky_relu(conv_5) conv_6 = layers.Conv2D(64, 9, padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(conv_5) conv_6 = tf.nn.leaky_relu(conv_6) tconv_7 = layers.Conv2DTranspose(64, 3, (2,2), padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(conv_6) tconv_7 = tf.nn.leaky_relu(tconv_7) conv_8 = layers.Conv2D(3, 9, padding="same", activation=tf.nn.tanh, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(tconv_7) * 0.58 + 0.5 return Model(inputs=inputs, outputs=conv_8, name="dped_resnet") def _dped_resnet_block(input, instance_norm): x = layers.Conv2D(64, 3, padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(input) if instance_norm: x = layers.BatchNormalization()(x) x = layers.Conv2D(64, 3, padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(x) if instance_norm: x = layers.BatchNormalization()(x) return layers.add([input, x]) def dped_adversarial(input_shape): inputs = keras.Input(shape=input_shape) conv1 = keras.layers.Conv2D(48, 11, (4,4), padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(inputs) conv2 = keras.layers.Conv2D(128, 5, (2,2), padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(conv1) conv2 = layers.BatchNormalization()(conv2) conv3 = keras.layers.Conv2D(192, 3, (1,1), padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(conv2) conv3 = layers.BatchNormalization()(conv3) conv4 = keras.layers.Conv2D(192, 3, (1,1), padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(conv3) conv4 = layers.BatchNormalization()(conv4) conv5 = keras.layers.Conv2D(192, 3, (1,1), padding="same", activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(conv4) conv5 = layers.BatchNormalization()(conv5) conv5 = layers.Flatten()(conv5) fc6 = layers.Dense(1024, activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(conv5) fc7 = layers.Dense(2, activation=tf.nn.softmax, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(fc6) return Model(inputs=inputs, outputs=fc7, name="dped_adversarial") def fourier_adversarial(input_shape): inputs = keras.Input(shape=input_shape) finputs = layers.Flatten()(inputs) fc1 = layers.Dense(1024, activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(finputs) fc2 = layers.Dense(1024, activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(fc1) fc3 = layers.Dense(1024, activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(fc2) fc4 = layers.Dense(1024, activation=tf.nn.leaky_relu, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(fc3) fc5 = layers.Dense(2, activation=tf.nn.softmax, \ kernel_initializer=tf.keras.initializers.TruncatedNormal(stddev=0.01, seed=1), \ bias_initializer=tf.keras.initializers.constant(0.01))(fc4) return Model(inputs=inputs, outputs=fc5, name="fourier_adversarial")
from abc import abstractclassmethod import os import datetime import typing import json from ..EnumLogLevel import EnumLogLevel class Converter_prettyJSON_to_raw(object): ################################################################################################################################ ## Constructor ################################################################################################################################ ################################################################################################################################ ## Public Properties ################################################################################################################################ ################################################################################################################################ ## Helper Methods ################################################################################################################################ def __json_to_timeStamp(self, jTimeStamp:dict) -> float: assert isinstance(jTimeStamp, dict) return jTimeStamp["t"] # def __json_to_stackTraceElement(self, jStackTraceElement:dict) -> tuple: assert isinstance(jStackTraceElement, dict) return ( jStackTraceElement["file"], jStackTraceElement["line"], jStackTraceElement["module"], jStackTraceElement["code"], ) # ################################################################################################################################ ## Public Methods ################################################################################################################################ def json_to_logEntry(self, jLogEntry:dict) -> list: assert isinstance(jLogEntry, dict) sType = jLogEntry["type"] rawLogEntry = [ sType, 0, # jLogEntry["id"], jLogEntry["indent"], self.__json_to_timeStamp(jLogEntry["timeStamp"]), EnumLogLevel.parse(jLogEntry["logLevel"][0]), ] if sType == "txt": rawLogEntry.append(jLogEntry["text"]) assert len(rawLogEntry) == 7 elif sType == "ex": rawLogEntry.append(jLogEntry["exception"]) rawLogEntry.append(jLogEntry["text"]) stackTraceList = None if "stacktrace" in jLogEntry: stackTraceList = [ self.__json_to_stackTraceElement(x) for x in jLogEntry["stacktrace"] ] rawLogEntry.append(stackTraceList) assert len(rawLogEntry) == 9 elif sType == "desc": rawLogEntry.append(jLogEntry["text"]) children = None if "children" in jLogEntry: children = [ self.json_to_logEntry(x) for x in jLogEntry["children"] ] rawLogEntry.append(children) assert len(rawLogEntry) == 8 else: raise Exception("Implementation Error!") return rawLogEntry # ################################################################################################################################ ## Static Methods ################################################################################################################################ #
# Generated by Django 2.2.1 on 2019-05-06 10:28 from django.db import migrations, models import Core.models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='ProjectModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('tag', models.CharField( choices=[('default', 'default'), ('home', 'home'), ('abroad', 'abroad'), ('other', 'other')], default='other', max_length=50)), ('name', models.CharField(blank=True, max_length=100, null=True)), ('desc', models.TextField(blank=True, null=True)), ], ), migrations.CreateModel( name='SettingModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('activating', models.BooleanField(default=False)), ('tag', models.CharField( choices=[('debug', 'debug'), ('home', 'home'), ('abroad', 'abroad'), ('other', 'other')], default='other', max_length=50)), ('kind', models.CharField(choices=[('redis', 'redis'), ('nginx_file_server', 'nginx_file_server')], default='other', max_length=50)), ('setting', Core.models.DiyDictField(default={})), ], ), migrations.CreateModel( name='TaskModel', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pid', models.IntegerField(default=0)), ('kind', models.CharField(blank=True, default=None, max_length=100, null=True)), ('kwargs', Core.models.DiyDictField(default={})), ('task_id', models.CharField(blank=True, default=None, max_length=150, null=True)), ('status', models.CharField(blank=True, choices=[('PENDING', 'PENDING'), ('STARTED', 'STARTED'), ('SUCCESS', 'SUCCESS'), ('FAILURE', 'FAILURE'), ('RETRY', 'RETRY'), ('REVOKED', 'REVOKED'), ('PROGRESS', 'PROGRESS'), ('STORED', 'STORED'), ('STOREFAIL', 'STOREFAIL')], default='PENDING', max_length=50, null=True)), ('start_time', models.IntegerField(default=0)), ('end_time', models.IntegerField(default=0)), ], ), ]
import mysql.connector from mysql.connector import errorcode from mysql.connector.connection import MySQLConnection class DatabaseHelper(MySQLConnection): def __init__(self, svr_ctx=None, *args, **kwargs): super(DatabaseHelper, self).__init__(*args, **kwargs) self.svr_ctx = svr_ctx def _create_database(self, db_name): cursor = self.cursor() try: cursor.execute( "CREATE DATABASE {} DEFAULT CHARACTER SET 'utf8'".format(db_name)) except mysql.connector.Error as err: self.svr_ctx.logger.fatal("Failed creating database: {}".format(err)) def create_database(self, db_name): cursor = self.cursor() try: cursor.execute("USE {}".format(db_name)) except mysql.connector.Error as err: self.svr_ctx.logger.info("Database {} does not exists.".format(db_name)) if err.errno == errorcode.ER_BAD_DB_ERROR: self._create_database(cursor) self.svr_ctx.logger.info("Database {} created successfully.".format(db_name)) self.database = db_name else: self.svr_ctx.logger.fatal(err) def create_table(self, table_name, table_description): cursor = self.cursor() try: self.svr_ctx.logger.info("Creating table {}: ".format(table_name), end='') cursor.execute(table_description) except mysql.connector.Error as err: if err.errno == errorcode.ER_TABLE_EXISTS_ERROR: self.svr_ctx.logger.warn("already exists.") else: self.svr_ctx.logger.error(err.msg) else: self.svr_ctx.logger.info("OK")
import os import torch class CheckPoint(object): def __init__(self, root, save_fn, load_fn, record_filename="checkpoint.txt", num_record=-1, clean=False): self.root = root self.save_fn = save_fn self.load_fn = load_fn self.filename = record_filename self.num_record = num_record if not os.path.exists(root): os.makedirs(root) # clean the record file record_filename = os.path.join(self.root, self.filename) if clean and os.path.exists(record_filename): with open(record_filename, "w") as f: f.write('') def read_record_file(self): record_filename = os.path.join(self.root, self.filename) if not os.path.exists(record_filename): return [] with open(record_filename, "r") as f: records = f.read().split() records = [i for i in records if i.strip()] return records def write_record_file(self, records): record_filename = os.path.join(self.root, self.filename) with open(record_filename, "w") as f: for record in records: f.write("{}\n".format(record)) def save(self, filename, *args): if not os.path.isabs(filename): filename = os.path.join(self.root, filename) self.save_fn(filename, *args) records = self.read_record_file() records.append(filename) if 0 < self.num_record < len(records): while self.num_record < len(records): record = records.pop(0) try: os.remove(record) except Exception: pass self.write_record_file(records) def load(self, filename): self.load_fn(filename) def try_load_last(self): record_filename = os.path.join(self.root, self.filename) if not os.path.exists(record_filename): return with open(record_filename, "r") as f: records = f.read().split() records = [i for i in records if i.strip()] if len(records) > 0: self.load_fn(records[-1]) def search_checkpoint_records(save_dir): checkpoint_files = [] if os.path.exists(save_dir): checkpoint_record = os.path.join(save_dir, "checkpoint.txt") if os.path.exists(checkpoint_record): for line in open(checkpoint_record): if line.strip() != "": # print(line.strip()) checkpoint_files.append(line.strip()) while len(checkpoint_files) > 5: try: print("remove {}".format(checkpoint_files[0])) os.remove(os.path.join(save_dir, checkpoint_files.pop(0))) except Exception: pass return checkpoint_files def save_checkpoint_records(checkpoint_files, save_dir): with open(os.path.join(save_dir, "checkpoint.txt"), "w") as f: for checkpoint_file in checkpoint_files: f.write("{}\n".format(checkpoint_file)) def save_checkpoint(model, optimizer, scheduler, epoch, path): save_dir = os.path.dirname(path) checkpoint_files = search_checkpoint_records(save_dir) if not os.path.exists(save_dir): os.makedirs(save_dir) if len(checkpoint_files) == 5: try: os.remove(os.path.join(save_dir, checkpoint_files.pop(0))) except Exception: pass checkpoint_files.append(os.path.basename(path)) torch.save({ "epoch": epoch, "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "scheduler_state_dict": scheduler.state_dict(), }, path) save_checkpoint_records(checkpoint_files, save_dir) def load_checkpoint(save_path): checkpoint_path = save_path if os.path.isdir(save_path) and os.path.exists(save_path): checkpoint_records = search_checkpoint_records(save_path) if len(checkpoint_records) == 0: raise FileNotFoundError(os.path.join(save_path, "checkpoint.txt")) checkpoint_path = os.path.join(save_path, checkpoint_records[-1]) print("restore checkpoint from {}".format(checkpoint_path)) if os.path.exists(checkpoint_path): return torch.load(checkpoint_path, map_location="cpu") else: raise FileNotFoundError(checkpoint_path) def log_loss(losses, save_dir, epoch, mode="train"): assert isinstance(losses, list) if not os.path.exists(save_dir): os.makedirs(save_dir) with open(os.path.join(save_dir, "{}.txt".format(mode)), "a") as f: f.write("{} ".format(epoch)) for loss in losses: f.write("{} ".format(loss)) f.write("\n")
#!/usr/bin/env python import kubeexport import sys from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand requires = ['docopt==0.6.2'] test_requires = ['pytest==3.7.1', 'pytest-cov==2.5.1'] if sys.version_info[0] < 3: test_requires.append('SystemIO>=1.1') class PyTestCommand(TestCommand): """Run py.test unit tests""" def finalize_options(self): TestCommand.finalize_options(self) self.test_args = ['--verbose', '--cov', 'kubeexport'] self.test_suite = True def run(self): import pytest rcode = pytest.main(self.test_args) sys.exit(rcode) setup_options = dict( name='kube-export', version=kubeexport.__version__, description='Kubernetes export tool. Export Kubernetes resources in structured yaml or json files.', long_description=open('README.md').read(), author='Shiwaforce.com', url='https://www.shiwaforce.com', packages=find_packages(exclude=['tests*']), install_requires=requires, tests_require=test_requires, cmdclass={'test': PyTestCommand}, entry_points={ 'console_scripts': ['kube-export=kubeexport.kubeexport:main'], }, license="MIT", classifiers=( 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Natural Language :: English', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ), ) setup(**setup_options)
from .domain import Domain, DomainCreate, DomainInDB, DomainUpdate from .msg import Msg from .token import Token, TokenPayload from .user import User, UserCreate, UserInDB, UserUpdate from .event import EventCreate, EventCreated from .billing import StripeLink
import pytest import trio from alexandria.payloads import ( Advertise, Ack, FindNodes, FoundNodes, Locate, Locations, Ping, Pong, Retrieve, Chunk, ) @pytest.mark.trio async def test_client_send_ping(alice_and_bob_clients): alice, bob = alice_and_bob_clients async with bob.message_dispatcher.subscribe(Ping) as subscription: request_id = await alice.send_ping(bob.local_node) with trio.fail_after(1): message = await subscription.receive() assert message.node == alice.local_node payload = message.payload assert isinstance(payload, Ping) assert payload.request_id == request_id @pytest.mark.trio async def test_client_send_pong(alice_and_bob_clients): alice, bob = alice_and_bob_clients async with bob.message_dispatcher.subscribe(Pong) as subscription: await alice.send_pong(bob.local_node, request_id=1234) with trio.fail_after(1): message = await subscription.receive() assert message.node == alice.local_node payload = message.payload assert isinstance(payload, Pong) @pytest.mark.trio async def test_client_send_find_nodes(alice_and_bob_clients): alice, bob = alice_and_bob_clients async with bob.message_dispatcher.subscribe(FindNodes) as subscription: request_id = await alice.send_find_nodes(bob.local_node, distance=1) with trio.fail_after(1): message = await subscription.receive() assert message.node == alice.local_node payload = message.payload assert isinstance(payload, FindNodes) assert payload.request_id == request_id @pytest.mark.trio async def test_client_send_found_nodes(alice_and_bob_clients): alice, bob = alice_and_bob_clients async with bob.message_dispatcher.subscribe(FoundNodes) as subscription: total_messages = await alice.send_found_nodes( bob.local_node, request_id=1234, found_nodes=(), ) with trio.fail_after(1): message = await subscription.receive() assert message.node == alice.local_node payload = message.payload assert isinstance(payload, FoundNodes) assert payload.total == total_messages @pytest.mark.trio async def test_client_send_advertise(alice_and_bob_clients): alice, bob = alice_and_bob_clients async with bob.message_dispatcher.subscribe(Advertise) as subscription: request_id = await alice.send_advertise( bob.local_node, key=b'key', who=bob.local_node, ) with trio.fail_after(1): message = await subscription.receive() assert message.node == alice.local_node payload = message.payload assert isinstance(payload, Advertise) assert payload.request_id == request_id assert payload.key == b'key' assert payload.node == (bob.local_node_id, bob.listen_on.ip_address.packed, bob.listen_on.port) # noqa: E501 @pytest.mark.trio async def test_client_send_ack(alice_and_bob_clients): alice, bob = alice_and_bob_clients async with bob.message_dispatcher.subscribe(Ack) as subscription: await alice.send_ack(bob.local_node, request_id=1234) with trio.fail_after(1): message = await subscription.receive() assert message.node == alice.local_node payload = message.payload assert isinstance(payload, Ack) assert payload.request_id == 1234 @pytest.mark.trio async def test_client_send_locate(alice_and_bob_clients): alice, bob = alice_and_bob_clients async with bob.message_dispatcher.subscribe(Locate) as subscription: request_id = await alice.send_locate(bob.local_node, key=b'key') with trio.fail_after(1): message = await subscription.receive() assert message.node == alice.local_node payload = message.payload assert isinstance(payload, Locate) assert payload.request_id == request_id assert payload.key == b'key' @pytest.mark.trio async def test_client_send_locations(alice_and_bob_clients): alice, bob = alice_and_bob_clients async with bob.message_dispatcher.subscribe(Locations) as subscription: total_messages = await alice.send_locations(bob.local_node, request_id=1234, locations=()) with trio.fail_after(1): message = await subscription.receive() assert message.node == alice.local_node payload = message.payload assert isinstance(payload, Locations) assert payload.request_id == 1234 assert payload.total == total_messages # This is an odd Hashable type... assert tuple(payload.nodes) == () @pytest.mark.trio async def test_client_send_retrieve(alice_and_bob_clients): alice, bob = alice_and_bob_clients async with bob.message_dispatcher.subscribe(Retrieve) as subscription: request_id = await alice.send_retrieve(bob.local_node, key=b'key') with trio.fail_after(1): message = await subscription.receive() assert message.node == alice.local_node payload = message.payload assert isinstance(payload, Retrieve) assert payload.request_id == request_id assert payload.key == b'key' @pytest.mark.trio async def test_client_send_chunks(alice_and_bob_clients): alice, bob = alice_and_bob_clients async with bob.message_dispatcher.subscribe(Chunk) as subscription: total_chunks = await alice.send_chunks(bob.local_node, request_id=1234, data=b'key') with trio.fail_after(1): message = await subscription.receive() assert message.node == alice.local_node payload = message.payload assert isinstance(payload, Chunk) assert payload.request_id == 1234 assert payload.total == total_chunks assert payload.index == 0 assert payload.data == b'key'
#!/usr/bin/env python # -*- coding: UTF-8 -*- # Copyright 2014 Konrad Podloucky # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Setuptools script for building pytractor. """ from setuptools import setup, find_packages from codecs import open # To use a consistent encoding from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the relevant file with open(path.join(here, 'DESCRIPTION.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='pytractor', version='0.2.2.dev1', description='Selenium testing for Angular.js apps', long_description=long_description, url='https://github.com/kpodl/pytractor', author='Konrad Podloucky', author_email='konrad+pytractor@crunchy-frog.org', license='Apache 2.0', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Testing', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python :: 2.7', ], keywords='selenium angular.js testing', package_dir={'': 'src'}, packages=find_packages('src'), # For package data see MANIFEST.in include_package_data=True, install_requires=[ 'selenium>=2.48.0', 'future>=0.15.2' ], tests_require=[ 'nose>=1.3.7', 'mock>=1.3.0', ], test_suite='nose.collector', use_2to3=True )
def aumentar(n=0, tx=0, formato=False): aum = n + (n * tx / 100) if formato: return moeda(aum) else: return aum def diminuir(n=0, tx=0, formato=False): dim = n - (n * tx / 100) return dim if formato is False else moeda(dim) def metade(n=0, formato=False): met = n / 2 return met if formato is False else moeda(met) def dobro(n=0, formato=False): dob = n * 2 return dob if formato is False else moeda(dob) def moeda(n=0, m='R$ '): return f'{m}{n:.2f}'.replace('.', ',') def titulo(txt): t = len(txt) print('~' * t) print(f'{txt}') print('~' * t) def resumo(n=0, tx1=0, tx2=0): a = aumentar(n, tx1) d = diminuir(n, tx2) m = metade(n) db = dobro(n) titulo(f'{"DADOS DO VALOR"}'.center(30)) print(f'Preço analisado: \t{moeda(n)}') print(f'Dobro do preço: \t{moeda(db)}') print(f'Metade do preço: \t{moeda(m)}') print(f'{tx1}% de aumento: \t{moeda(a)}') print(f'{tx2}% de desconto: \t{moeda(d)}') titulo(f'{"FIM"}'.center(30))
"""Canonical ISO date format YYYY-MM-DDTHH:mm:SS+HH:mm This parser is _extremely_ strict, and the dates that match it, though really easy to work with for the computer, are not particularly readable. See the iso_date_loose module for a slightly relaxed definition which allows the "T" character to be replaced by a " " character, and allows a space before the timezone offset, as well as allowing the integer values to use non-0-padded integers. ISO_date -- YYYY-MM-DD format, with a month and date optional ISO_time -- HH:mm:SS format, with minutes and seconds optional ISO_date_time -- YYYY-MM-DD HH:mm:SS+HH:mm format, with time optional and TimeZone offset optional Interpreter: MxInterpreter Interprets the parse tree as mx.DateTime values ISO_date and ISO_time returns DateTime objects Time only returns RelativeDateTime object which, when added to a DateTime gives you the given time within that day """ try: from mx import DateTime haveMX = 1 except ImportError: haveMX = 0 from simpleparse.parser import Parser from simpleparse import common, objectgenerator from simpleparse.common import chartypes, numbers from simpleparse.dispatchprocessor import * c = {} declaration =""" year := digit,digit,digit,digit month := digit,digit day := digit,digit hour := digit,digit minute := digit,digit second := digit,digit offset_sign := [-+] offset := offset_sign, hour, time_separator?, minute <date_separator> := '-' <time_separator> := ':' ISO_date := year, (date_separator, month, (date_separator, day)?)? ISO_time := hour, (time_separator, minute, (time_separator, second)?)? ISO_date_time := ISO_date, ([T], ISO_time)?, offset? """ _p = Parser( declaration ) for name in ["ISO_time","ISO_date", "ISO_date_time"]: c[ name ] = objectgenerator.LibraryElement( generator = _p._generator, production = name, ) common.share( c ) if haveMX: class MxInterpreter(DispatchProcessor): """Interpret a parsed ISO_date_time_loose in GMT/UTC time or localtime """ def __init__( self, inputLocal = 1, returnLocal = 1, ): self.inputLocal = inputLocal self.returnLocal = returnLocal dateName = 'ISO_date' timeName = 'ISO_time' def ISO_date_time( self, (tag, left, right, sublist), buffer): """Interpret the loose ISO date + time format""" set = singleMap( sublist, self, buffer ) base, time, offset = ( set.get(self.dateName), set.get(self.timeName) or DateTime.RelativeDateTime(hour=0,minute=0,second=0), set.get( "offset" ), ) base = base + time offset = set.get( "offset" ) if offset is not None: # an explicit timezone was entered, convert to gmt and return as appropriate... gmt = base - offset if self.returnLocal: return gmt.localtime() else: return gmt # was in the default input locale (either gmt or local) if self.inputLocal and self.returnLocal: return base elif not self.inputLocal and not self.returnLocal: return base elif self.inputLocal and not self.returnLocal: # return gmt from local... return base.gmtime() else: return base.localtime() def ISO_date( self, (tag, left, right, sublist), buffer): """Interpret the ISO date format""" set = {} for item in sublist: set[ item[0] ] = dispatch( self, item, buffer) return DateTime.DateTime( set.get("year") or now().year, set.get("month") or 1, set.get("day") or 1, ) def ISO_time( self, (tag, left, right, sublist), buffer): """Interpret the ISO time format""" set = {} for item in sublist: set[ item[0] ] = dispatch( self, item, buffer) return DateTime.RelativeDateTime( hour = set.get("hour") or 0, minute = set.get("minute") or 0, second = set.get("second") or 0, ) integer = numbers.IntInterpreter() second = offset_minute = offset_hour = year = month = day = hour =minute =integer def offset( self, (tag, left, right, sublist), buffer): """Calculate the time zone offset as a date-time delta""" set = singleMap( sublist, self, buffer ) direction = set.get('offset_sign',1) hour = set.get( "hour", 0) minute = set.get( "minute", 0) delta = DateTime.DateTimeDelta( 0, hour*direction, minute*direction) return delta def offset_sign( self , (tag, left, right, sublist), buffer): """Interpret the offset sign as a multiplier""" v = buffer [left: right] if v in ' +': return 1 else: return -1
import encodedecode as ed import registers as registers import execution as execution import shareddata as globl def jmpf(params): distance = [params[1], params[2], params] distance = ed.decode(distance) if globl.mode == globl.modes.bootloader: globl.bootl += distance elif globl.mode == globl.modes.rom: globl.roml += distance def jmpb(params): distance = [params[1], params[2], params] distance = ed.decode(distance) if globl.mode == globl.modes.bootloader: globl.bootl -= distance elif globl.mode == globl.modes.rom: globl.roml -= distance def jmp(params): if params[1] == "00000011" and len(params) >= 2 and ed.decode([params[2], params[3], params]) == 0: globl.mode = globl.modes.rom execution.run(globl.rom)
############################### # # Created by Patrik Valkovic # 3/9/2021 # ############################### import unittest import ffeat class NormalizedPipeTest(unittest.TestCase): def test_valid(self): n = ffeat.NormalizedPipe() param = (1,3,8), {"something": True} result = n(param) self.assertEqual(result, param) def test_onlyargs(self): n = ffeat.NormalizedPipe() result = n((1,3,8)) self.assertEqual(result, ((1,3,8), {})) def test_only_one_arg(self): n = ffeat.NormalizedPipe() result = n(13) self.assertEqual(result, ((13,), {})) def test_none(self): n = ffeat.NormalizedPipe() result = n(None) self.assertEqual(result, (tuple(), {})) if __name__ == '__main__': unittest.main()
import json from rest_framework.views import APIView from rest_framework.response import Response from rest_framework import status from multapp.utility.notification import SendMailNotifications class NotificationServicesRest(APIView): name = 'notification_service' ''' { "mail_list": ["mail@domain.com", "other_mail@domail.com"], "subject": "Notification Fake", "content_html": "<h1>Content Mail</h1>" } ''' def post(self, request, **kwargs): body_unicode = request.body.decode('utf-8') body = json.loads(body_unicode) ''' message = '<h2>Multa de Transito N0: ' + str(numquote) + \ '</h2></br><p>Estimado proveedor se ha creado una nueva cotizacion para el cliente ' + client_name + \ '</p></br><p>Ingrese a la plataforma o cree su Oferta a traves de los servicios disponibles</p>' + \ '<br><h3>MERCA DIGITAL SA</h3>' subject = 'Multa de Transito - Simit Services' ''' if 'mail_list' in body and 'subject' in body and 'content_html' in body: try: sendmailnotification = SendMailNotifications() sendmailnotification.send_mail( list_emails=body['mail_list'], subject=body['subject'], content_xml=body['content_html'] ) return Response( {'data': {'mail': 'OK'}}, status=status.HTTP_200_OK ) except: return Response( {'data': {'error': 'Message Don´t Send'}}, status=status.HTTP_500_INTERNAL_SERVER_ERROR ) else: return Response( {'message': 'invalid message'}, status=status.HTTP_400_BAD_REQUEST )
from torch import nn import torchvision.models as models from typeguard import typechecked @typechecked class ResNet(nn.Module): def __init__(self, encoder_name: str, pretrained: bool = False): """ :param encoder_name: :param pretrained: """ super(ResNet, self).__init__() self.base_layers = get_encoder(encoder_name, pretrained) self.layer0 = nn.Sequential( nn.Conv2d( 3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False ), nn.BatchNorm2d( 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True ), nn.ReLU(inplace=True), ) self.layer1 = nn.Sequential(*self.base_layers[0:2]) self.layer2 = self.base_layers[2] self.layer3 = self.base_layers[3] self.layer4 = self.base_layers[4] def forward(self, x): """ Forward pass through feature extraction network :param x: Input image :return: Returns feature outputs at different stages of the networks resnet18 Layer 0: torch.Size([1, 64, 112, 112]); Latent size multiple: 8.0 Layer 1: torch.Size([1, 64, 56, 56]); Latent size multiple: 8.0 Layer 2: torch.Size([1, 128, 28, 28]); Latent size multiple: 4.0 Layer 3: torch.Size([1, 256, 14, 14]); Latent size multiple: 2.0 Layer 4: torch.Size([1, 512, 7, 7]); Latent size multiple: 1.0 (4, 4 for 128x128 image) resnet50 Layer 0: torch.Size([1, 64, 112, 112]); Latent size multiple: 32.0 Layer 1: torch.Size([1, 256, 56, 56]); Latent size multiple: 8.0 Layer 2: torch.Size([1, 512, 28, 28]); Latent size multiple: 4.0 Layer 3: torch.Size([1, 1024, 14, 14]); Latent size multiple: 2.0 Layer 4: torch.Size([1, 2048, 7, 7]); Latent size multiple: 1.0 """ layer0 = self.layer0(x) layer1 = self.layer1(layer0) layer2 = self.layer2(layer1) layer3 = self.layer3(layer2) layer4 = self.layer4(layer3) return layer0, layer1, layer2, layer3, layer4 def get_encoder(encoder_name, pretrained): if encoder_name == "resnet18": base_model = models.resnet18(pretrained=pretrained) elif encoder_name == "resnet50": base_model = models.resnet50(pretrained=pretrained) elif encoder_name == "resnet101": base_model = models.resnet101(pretrained=pretrained) else: raise Exception("Unspecified model name: {}".format(encoder_name)) return list(base_model.children())[3:8]
""" Base da API """ from flask import Flask, jsonify from flask_cors import CORS from sqlalchemy import create_engine import pandas as pd app = Flask(__name__) CORS(app) engine = create_engine('postgresql://equipe215:ZXF1aXBlMjE1QHNlcnBybw@bd.inova.serpro.gov.br:5432/equipe215') with engine.connect() as connection: columns = connection.execute("SELECT column_name FROM information_schema.columns WHERE table_name='imoveis';") columns = columns.fetchall() columns = [column[0] for column in columns] @app.route("/bairros") def get_bairros(): """ Retorna os bairros com valores disponíveis :return: """ with engine.connect() as connection: response = connection.execute("SELECT DISTINCT x.\"bairro\" FROM imoveis x ORDER BY x.\"bairro\";") connection.close() return jsonify([line[0] for line in response]) @app.route("/all") def get_all(): """ Retorna todos :return: """ with engine.connect() as connection: response = connection.execute(f"SELECT * FROM imoveis;").fetchall() response = [{columns[i]: line[i] for i in range(len(line))} for line in response] return jsonify(response) @app.route("/bairro/<string:bairro>") def getBy_bairro(bairro): """ Retorna os imóveis disponíveis em determinado municipio :param str bairro: :return: """ with engine.connect() as connection: response = connection.execute(f"SELECT x.* FROM imoveis x WHERE x.\"bairro\" = '{bairro}';").fetchall() response = [{columns[i]: line[i] for i in range(len(line))} for line in response] return jsonify(response) @app.route("/valor/<int:valor>") def getBy_valor(valor): """ Retorna os imóveis disponíveis de acordo com o valor :param int valor: :return: """ limite_inferior = valor * 0.2 limite_superior = limite_inferior + .2 with engine.connect() as connection: response = connection.execute(f"SELECT x.* FROM imoveis x WHERE x.\"normal_value_terreno\" <= {limite_superior} AND x.\"normal_value_terreno\" > {limite_inferior};").fetchall() response = [{columns[i]: line[i] for i in range(len(line))} for line in response] return jsonify(response) @app.route("/index/<int:index>") def getBy_index(index): """ Retorna linha de indice tal :param int index: :return: """ with engine.connect() as connection: response = connection.execute(f"SELECT x.* FROM imoveis x WHERE x.\"index\" =100;").fetchall() response = [{columns[i]: line[i] for i in range(len(line))} for line in response] return jsonify(response[0]) if __name__ == "__main__": app.run(host = 'localhost', port = 5000, debug = False)
import requests SMMS_URL = "https://sm.ms/api/upload" def upload_smms(path, upload_name): smfile = {'smfile': open(path, 'rb')} r = requests.post(SMMS_URL, files=smfile) result = r.json() if result['code'] == 'success': url = result['data']['url'] delete = result['data']['delete'] return url, delete else: return False, False
import numpy as np import pandas as pd from patsy import dmatrices import warnings def sigmoid(x): '''SIGMOID FUNCTION FOR X''' return 1/(1+np.exp(-x)) ## Algorith settings np.random.seed(0) # set the seed tol=1e-8 # convergence tolerance lam = None # l2 - regularization max_iter = 20 # maximum allowed iterations r = 0.95 # covariance between x and z n = 1000 # number of observations (size of dataset to generate) sigma = 1 # variance of noise - how spread out is the data? ## Model settings beta_x, beta_z, beta_v = -4, .9, 1 # true beta coefficients var_x, var_z, var_v = 1, 1, 4 # variances of inputs ## the model specification i want to fit formula = 'y ~ x + z + v + np.exp(x) + I(v**2 + z)' # keeping x and z closely related (height and weight) x, z = np.random.multivariate_normal([0,0], [[var_x, r], [r, var_z]], n).T # blood pressure v = np.random.normal(0, var_v, n)**3 # create a pandas dataframe A = pd.DataFrame({'x': x, 'z': z, 'v': v}) # compute the log offs for our 3 independent variables # using the sigmoid function A['log_odds'] = sigmoid(A[['x', 'z', 'v']].dot([beta_x, beta_z, beta_v]) + sigma * np.random.normal(0,1,n)) #compute te probability sample from binomial distribuition A['y'] = [np.random.binomial(1,p) for p in A.log_odds] # create a dataframe that encompasses our input data, model formula, and outputs y, X = dmatrices(formula, A, return_type = 'dataframe') X.head() def catch_singularity(f): def silencer(*args, **kwargs): try: return f(*args, **kwargs) except np.linalg.LinAlgError: warnings.warn('Algotithm terminated - singular Hessian') return args[0] return silencer def newton_step(curr, X, lam=None): p = np.array(sigmoid(X.dot(curr[:, 0])), ndmin=2).T w = np.diag((p * (1 - p))[:, 0]) hessian = X.T.dot(w).dot(X) grad = X.T.dot(y - p) if lam: step, *_ = np.linalg.lstsq(hessian + lam * np.eye(curr.shape[0]), grad) else: step, *_ = np.linalg.lstsq(hessian, grad) beta = curr + step return beta def alt_newton_step(curr, X, lam=None): p = np.array(sigmoid(X.dot(curr[:, 0])), ndmin=2).T w = np.diag((p * (1 - p))[:, 0]) hessian = X.T.dot(w).dot(X) grad = X.T.dot(y - p) if lam: step = np.dot(np.linalg(hessian + lam * np.eye(curr.chape[0])), grad) else: step = np.dot(np.linalg.inv(hessian), grad) beta = curr + step return beta def check_coefs_convergence(beta_old, beta_new, tol, iters): coef_change = np.abs(beta_old - beta_new) return not (np.any(coef_change > tol) & (iters < max_iter)) ## initial conditions # initial coefficients (weight values), 2 copies, we'll update one beta_old, beta = np.ones((len(X.columns), 1)), np.zeros((len(X.columns), 1)) iter_count = 0 coefs_converged = False while not coefs_converged: beta_old = beta beta = newton_step(beta, X, lam=lam) iter_count += 1 coefs_converged = check_coefs_convergence(beta_old, beta, tol, iter_count) print('Iterations: {}'.format(iter_count)) print('Beta: {}'.format(beta))
from typing import Callable, Dict, Optional, List import logging import torch import matplotlib as mpl from .subscriber import LoggerSubscriber def get_type(value): if isinstance(value, torch.nn.Module): return LoggerObserver.TORCH_MODULE if isinstance(value, mpl.figure.Figure): return LoggerObserver.FIGURE if isinstance(value, str): return LoggerObserver.TEXT return LoggerObserver.SCALAR class LoggerObserver(object): """Logger Oberserver Degisn Pattern notifies every subscribers when .log() is called """ SCALAR = 'scalar' FIGURE = 'figure' TORCH_MODULE = 'torch_module' TEXT = 'text' WARN = logging.WARN ERROR = logging.ERROR DEBUG = logging.DEBUG INFO = logging.INFO CRITICAL = logging.CRITICAL instances = {} def __new__(cls, name, *args, **kwargs): if name in LoggerObserver.instances.keys(): return LoggerObserver.instances[name] else: return object.__new__(cls, *args, **kwargs) def __init__(self, name) -> None: self.subscriber = [] self.name = name LoggerObserver.instances[name] = self @classmethod def getLogger(cls, name): if name in LoggerObserver.instances.keys(): return LoggerObserver.instances[name] else: return cls(name) def subscribe(self, subscriber: LoggerSubscriber): self.subscriber.append(subscriber) def log(self, logs: List[Dict]): for subscriber in self.subscriber: for log in logs: tag = log['tag'] value = log['value'] type = log['type'] if 'type' in log.keys() else get_type(value) kwargs = log['kwargs'] if 'kwargs' in log.keys() else {} if type == LoggerObserver.SCALAR: subscriber.log_scalar( tag=tag, value=value, **kwargs ) if type == LoggerObserver.FIGURE: subscriber.log_figure( tag=tag, value=value, **kwargs ) if type == LoggerObserver.TORCH_MODULE: subscriber.log_torch_module( tag=tag, value=value, **kwargs ) if type == LoggerObserver.TEXT: subscriber.log_text( tag=tag, value=value, **kwargs ) def text(self, value, level): self.log([{ 'tag': 'stdout', 'value': value, 'type': LoggerObserver.TEXT, 'kwargs': { 'level': level } }])
from pathlib import Path import pytest @pytest.fixture() def html_file(): return Path(__file__).parent / "assets" / "index.html"
""" 출처: https://www.hackerrank.com/challenges/coin-change/problem """ def getWay(n, c): n_perms = [1] + [0] * n for coin in c: print("coin", coin) for i in range(coin, n + 1): print("i", i) n_perms[i] += n_perms[i - coin] return n_perms if __name__ == '__main__': print("========answer========") print(getWay(4, [1, 4, 3]))
import random letter = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z','A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'] number = ['0','1','2','3','4','5','6','7','8','9'] symbol = ['!','@','#','$','%','^','&','*','(',')','_'] print("Welcome to the PyPassword Generator!") letters = int(input("How many letters would you like in your password: \n")) symbols = int(input("How many symbols would you like in your password: \n")) numbers = int(input("How many numbers would you like in your password: \n")) password = "" for n in range(1,letters+1): password += random.choice(letter) for x in range(1,symbols+1): password += random.choice(symbol) for y in range(1,numbers+1): password += random.choice(number) temp = list(password) random.shuffle(temp) password = ''.join(temp) print(password)
from .process_tables import *
from pydantic import BaseModel from typing import List from app.api.schemas.pagination import PaginatedModel class GroupUserBase(BaseModel): group_id: int class GroupUserCreate(GroupUserBase): user_id: int class GroupUserAddOrRemove(BaseModel): user_id: int class GroupUser(GroupUserCreate): id: int class Config: orm_mode = True class GroupUsersPaginated(PaginatedModel): """ Group user list with pagination. """ items: List[GroupUser] class Meta: orm_model_class = GroupUser
from fabric.api import * from fabric.contrib.files import * # Custom Code Enigma modules import common.ConfigFile import common.Services import common.Utils import common.PHP import AdjustConfiguration import Drupal import DrupalUtils # Override the shell env variable in Fabric, so that we don't see # pesky 'stdin is not a tty' messages when using sudo env.shell = '/bin/bash -c' global config # Here, an editorial site is a copy of the production site, which hooks into # the same database and files directory as the production site, but is # hosted on a different server. # # As a result, this script assumes an editorial site already exists. It does # not handle creating a new editorial site. # # This script simply sets up some variables from config.ini, clones down the # repository, adjusts the settings.php and files symlinks, then adjust the live # symlink, all on the editorial server. Lastly, it clears opcache and purges # Varnish cache. @task def main(repo, repourl, build, branch, buildtype, keepbuilds=10, config_filename='config.ini'): # Read the config.ini file from repo, if it exists config = common.ConfigFile.buildtype_config_file(buildtype, config_filename) # We don't need to define a host, as that should be defined in the Jenkins job (or whatever CI is being used) # Define server roles (if applicable) common.Utils.define_roles(config, False, None) user = "jenkins" application_directory = "www" www_root = "/var/www" site_root = www_root + '/%s_%s_%s' % (repo, branch, build) site_link = www_root + '/live.%s.%s' % (repo, branch) # Set our host_string based on user@host env.host_string = '%s@%s' % (user, env.host) ssh_key = common.ConfigFile.return_config_item(config, "Build", "ssh_key") # Can be set in the config.ini [Drupal] section ### @TODO: deprecated, can be removed later drupal_version = common.ConfigFile.return_config_item(config, "Version", "drupal_version", "string", None, True, True, replacement_section="Drupal") # This is the correct location for 'drupal_version' - note, respect the deprecated value as default drupal_version = common.ConfigFile.return_config_item(config, "Drupal", "drupal_version", "string", drupal_version) # Can be set in the config.ini [Composer] section composer = common.ConfigFile.return_config_item(config, "Composer", "composer", "boolean", True) composer_lock = common.ConfigFile.return_config_item(config, "Composer", "composer_lock", "boolean", True) no_dev = common.ConfigFile.return_config_item(config, "Composer", "no_dev", "boolean", True) # Set SSH key if needed # @TODO: this needs to be moved to config.ini for Code Enigma GitHub projects if "git@github.com" in repourl: ssh_key = "/var/lib/jenkins/.ssh/id_rsa_github" # Run the tasks. # -------------- execute(common.Utils.clone_repo, repo, repourl, branch, build, None, ssh_key, hosts=env.roledefs['app_all']) # Gitflow workflow means '/' in branch names, need to clean up. branch = common.Utils.generate_branch_name(branch) print "===> Branch is %s" % branch drupal_version = int(DrupalUtils.determine_drupal_version(drupal_version, repo, branch, build, config)) print "===> the drupal_version variable is set to %s" % drupal_version if drupal_version > 7 and composer is True: # Sometimes people use the Drupal Composer project which puts Drupal 8's composer.json file in repo root. with settings(warn_only=True): if run("find %s/composer.json" % site_root).return_code == 0: path = site_root else: path = site_root + "/" + application_directory execute(common.PHP.composer_command, path, "install", None, no_dev, composer_lock) # Compile a site mapping, which is needed if this is a multisite build # Just sets to 'default' if it is not mapping = {} mapping = Drupal.configure_site_mapping(repo, mapping, config) for alias,site in mapping.iteritems(): execute(AdjustConfiguration.adjust_settings_php, repo, branch, build, buildtype, alias, site, www_root, application_directory) execute(AdjustConfiguration.adjust_drushrc_php, repo, branch, build, site, www_root, application_directory) execute(AdjustConfiguration.adjust_files_symlink, repo, branch, build, alias, site, www_root, application_directory) execute(common.Utils.adjust_live_symlink, repo, branch, build, hosts=env.roledefs['app_all']) # Final clean up and run tests, if applicable execute(common.Services.clear_php_cache, hosts=env.roledefs['app_all']) execute(common.Services.clear_varnish_cache, hosts=env.roledefs['app_all']) execute(common.Utils.remove_old_builds, repo, branch, keepbuilds, hosts=env.roledefs['app_all'])
import math import torch import torch.nn as nn from torch.nn.init import _calculate_fan_in_and_fan_out, calculate_gain def MSRInitializer(Alpha=0, WeightScale=1): def Initializer(Tensor): _, fan_out = _calculate_fan_in_and_fan_out(Tensor) gain = calculate_gain('leaky_relu', Alpha) std = gain / math.sqrt(fan_out) bound = math.sqrt(3.0) * std * WeightScale with torch.no_grad(): if WeightScale != 0: return Tensor.uniform_(-bound, bound) else: return Tensor.zero_() return Initializer def XavierInitializer(Tensor): _, fan_out = _calculate_fan_in_and_fan_out(Tensor) gain = calculate_gain('sigmoid') std = gain * math.sqrt(1.0 / fan_out) a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation with torch.no_grad(): return Tensor.uniform_(-a, a) def RawConvolutionalLayer(InputChannels, OutputChannels, ReceptiveField=3, Strides=1, KernelInitializer=None, UseBias=True, Groups=1): KernelInitializer = MSRInitializer() if KernelInitializer is None else KernelInitializer ConvolutionalLayer = nn.Conv2d(InputChannels, OutputChannels, kernel_size=ReceptiveField, stride=Strides, padding=(ReceptiveField - 1) // 2, bias=UseBias, groups=Groups) KernelInitializer(ConvolutionalLayer.weight) if UseBias: ConvolutionalLayer.bias.data.fill_(0) return ConvolutionalLayer def RawFullyConnectedLayer(InputFeatures, OutputFeatures): FullyConnectedLayer = nn.Linear(InputFeatures, OutputFeatures, bias=True) XavierInitializer(FullyConnectedLayer.weight) FullyConnectedLayer.bias.data.fill_(0) return FullyConnectedLayer def BatchNorm(Channels): RawBatchNorm = nn.BatchNorm2d(Channels) RawBatchNorm.weight.data.fill_(1) RawBatchNorm.bias.data.fill_(0) return RawBatchNorm class ConvolutionalLayer(nn.Module): def __init__(self, InputChannels, OutputChannels, ReceptiveField=3, Strides=1, Activation=True, BatchNormalization=True, Junction=False, WeightScale=0, Groups=1): super(ConvolutionalLayer, self).__init__() WeightScale = WeightScale if Junction else 1 Alpha = 0 if Activation else 1 self.LinearLayer = RawConvolutionalLayer(InputChannels, OutputChannels, ReceptiveField, Strides, MSRInitializer(Alpha, WeightScale), not BatchNormalization, Groups) self.BatchNormalizationLayer = BatchNorm(OutputChannels) if BatchNormalization else None self.ActivationLayer = nn.ReLU(inplace=True if BatchNormalization else False) if Activation else None def forward(self, x, Shortcut=None): RawOutputFlag = self.BatchNormalizationLayer is None and self.ActivationLayer is None x = self.LinearLayer(x) x = x + Shortcut if Shortcut is not None else x y = self.BatchNormalizationLayer(x) if self.BatchNormalizationLayer is not None else x y = self.ActivationLayer(y) if self.ActivationLayer is not None else y return [x, y] if RawOutputFlag == False else x class BottleneckConvolutionalLayer(nn.Module): def __init__(self, InputChannels, OutputChannels, ReceptiveField=3, Strides=1, Activation=True, BatchNormalization=True, Junction=False, WeightScale=0): super(BottleneckConvolutionalLayer, self).__init__() self.BottleneckLayer = ConvolutionalLayer(InputChannels, OutputChannels, 1, 1, BatchNormalization=BatchNormalization) self.TransformationLayer = ConvolutionalLayer(OutputChannels, OutputChannels, ReceptiveField, Strides, Activation, BatchNormalization, Junction, WeightScale) def forward(self, x, Shortcut=None): _, x = self.BottleneckLayer(x) return self.TransformationLayer(x, Shortcut) class SequentialConvolutionalLayer(nn.Module): def __init__(self, InputChannels, OutputChannels, ReceptiveField=3, Windowed=True, BatchNormalization=True, Junction=False, WeightScale=0, k=8, DropRate=0.1): super(SequentialConvolutionalLayer, self).__init__() Filters = [] self.Windowed = Windowed for x in range(OutputChannels // k): Filters += [BottleneckConvolutionalLayer(InputChannels if Windowed else InputChannels + x * k, k, ReceptiveField=ReceptiveField, Strides=1, Activation=True, BatchNormalization=BatchNormalization, Junction=Junction, WeightScale=WeightScale)] self.Filters = nn.ModuleList(Filters) self.Dropout = nn.Dropout2d(p=DropRate) if DropRate > 0 else None self.k = k def forward(self, x, Shortcut=None): SequenceView = x RawSequence = [] ActivatedSequence = [] for y in range(len(self.Filters)): CurrentShortcutSlice = Shortcut[:, y * self.k : (y + 1) * self.k, :, :] if Shortcut is not None else None DropoutSequenceView = self.Dropout(SequenceView) if self.Dropout is not None else SequenceView RawFeature, ActivatedFeature = self.Filters[y](DropoutSequenceView, CurrentShortcutSlice) RawSequence += [RawFeature] ActivatedSequence += [ActivatedFeature] SequenceView = SequenceView[:, self.k:, :, :] if self.Windowed else SequenceView SequenceView = torch.cat([SequenceView, ActivatedFeature], 1) return torch.cat(RawSequence, 1), torch.cat(ActivatedSequence, 1) class ResidualBlock(nn.Module): def __init__(self, InputChannels, BatchNormalization=True, WeightScale=0, k=8): super(ResidualBlock, self).__init__() self.LayerA = SequentialConvolutionalLayer(InputChannels, InputChannels, BatchNormalization=BatchNormalization, k=k) self.LayerB = SequentialConvolutionalLayer(InputChannels, InputChannels, BatchNormalization=BatchNormalization, Junction=True, WeightScale=WeightScale, k=k) def forward(self, x, Shortcut): _, x = self.LayerA(x) return self.LayerB(x, Shortcut) class DownsampleLayer(nn.Module): def __init__(self, InputChannels, OutputChannels, BatchNormalization=True, k=8): super(DownsampleLayer, self).__init__() self.ExtensionLayer = SequentialConvolutionalLayer(InputChannels, OutputChannels - InputChannels, BatchNormalization=BatchNormalization, k=k) self.ShrinkingLayer = ConvolutionalLayer(OutputChannels, OutputChannels, 3, 2, BatchNormalization=BatchNormalization, Groups=OutputChannels // k) def forward(self, x): _, ActivatedFeatures = self.ExtensionLayer(x) x = torch.cat([x, ActivatedFeatures], 1) return self.ShrinkingLayer(x) class ResNetCIFAR(nn.Module): def __init__(self, Classes=10, BlocksPerStage=[3, 3, 3], PyramidFactor=[1, 2, 4], Widening=8, Granularity=8, BatchNormalization=True, DropRate=0.1, WeightScale=0): super(ResNetCIFAR, self).__init__() Settings = dict(BatchNormalization=BatchNormalization, k=Granularity) Stage2Width = 16 * PyramidFactor[1] / PyramidFactor[0] Stage3Width = 16 * PyramidFactor[2] / PyramidFactor[0] self.Init = ConvolutionalLayer(3, 16, BatchNormalization=BatchNormalization) self.Head = SequentialConvolutionalLayer(16, 16 * Widening, Windowed=False, DropRate=0, **Settings) self.Stage1 = nn.ModuleList([ResidualBlock(16 * Widening, WeightScale=WeightScale, **Settings) for _ in range(BlocksPerStage[0])]) self.Downsample1 = DownsampleLayer(16 * Widening, int(Stage2Width * Widening), **Settings) self.Stage2 = nn.ModuleList([ResidualBlock(int(Stage2Width * Widening), WeightScale=WeightScale, **Settings) for _ in range(BlocksPerStage[1])]) self.Downsample2 = DownsampleLayer(int(Stage2Width * Widening), int(Stage3Width * Widening), **Settings) self.Stage3 = nn.ModuleList([ResidualBlock(int(Stage3Width * Widening), WeightScale=WeightScale, **Settings) for _ in range(BlocksPerStage[2])]) self.Dropout = nn.Dropout2d(p=DropRate) if DropRate > 0 else None self.Blender = ConvolutionalLayer(int(Stage3Width * Widening), int(Stage3Width * Widening), 1, 1, BatchNormalization=BatchNormalization) self.Compress = nn.AdaptiveAvgPool2d((1, 1)) self.Classifier = RawFullyConnectedLayer(int(Stage3Width * Widening), Classes) def forward(self, x): def Refine(ActivatedFeatures, RawFeatures, PoolOfBlocks): for Block in PoolOfBlocks: RawFeatures, ActivatedFeatures = Block(ActivatedFeatures, RawFeatures) return RawFeatures, ActivatedFeatures _, ActivatedFeatures = self.Init(x) RawFeatures, ActivatedFeatures = self.Head(ActivatedFeatures) RawFeatures, ActivatedFeatures = Refine(ActivatedFeatures, RawFeatures, self.Stage1) RawFeatures, ActivatedFeatures = self.Downsample1(ActivatedFeatures) RawFeatures, ActivatedFeatures = Refine(ActivatedFeatures, RawFeatures, self.Stage2) RawFeatures, ActivatedFeatures = self.Downsample2(ActivatedFeatures) RawFeatures, ActivatedFeatures = Refine(ActivatedFeatures, RawFeatures, self.Stage3) ActivatedFeatures = self.Dropout(ActivatedFeatures) if self.Dropout is not None else ActivatedFeatures RawFeatures, ActivatedFeatures = self.Blender(ActivatedFeatures) x = self.Compress(ActivatedFeatures) x = x.view(x.size(0), -1) x = self.Classifier(x) return x from utils import summary summary(ResNetCIFAR(Classes=10, BlocksPerStage=[1,1,1], PyramidFactor=[1,2,3], Widening=7, Granularity=16, BatchNormalization=True, WeightScale=0),(3,32,32))
import music21 from mirdata.annotations import KeyData, ChordData from mirdata.datasets import haydn_op20 from tests.test_utils import run_track_tests import numpy as np def test_track(): default_trackid = "0" data_home = "tests/resources/mir_datasets/haydn_op20" dataset = haydn_op20.Dataset(data_home) track = dataset.track(default_trackid) expected_attributes = { "humdrum_annotated_path": "tests/resources/mir_datasets/haydn_op20/op20n1-01.hrm", "title": "op20n1-01", "track_id": "0", } expected_property_types = { "duration": int, "chords": ChordData, "chords_music21": list, "roman_numerals": list, "keys": KeyData, "keys_music21": list, "score": music21.stream.Score, "midi_path": str, } run_track_tests(track, expected_attributes, expected_property_types) def test_to_jam(): data_home = "tests/resources/mir_datasets/haydn_op20" dataset = haydn_op20.Dataset(data_home) track = dataset.track("0") jam = track.to_jams() assert jam["file_metadata"]["title"] == "op20n1-01", "title does not match expected" assert jam["file_metadata"]["duration"] == 644, "duration does not match expected" assert ( jam["sandbox"]["humdrum_annotated_path"] == "tests/resources/mir_datasets/haydn_op20/op20n1-01.hrm" ), "duration does not match expected" assert ( jam["sandbox"]["midi_path"] == "tests/resources/mir_datasets/haydn_op20/op20n1-01.midi" ), "duration does not match expected" assert isinstance(jam["sandbox"]["chords_music21"], list) assert jam["sandbox"]["chords_music21"][0]["time"] == 0 assert jam["sandbox"]["chords_music21"][0]["chord"] == "Eb-major triad" assert isinstance(jam["sandbox"]["keys_music21"], list) assert jam["sandbox"]["keys_music21"][0]["time"] == 0 assert isinstance(jam["sandbox"]["keys_music21"][0]["key"], music21.key.Key) assert isinstance(jam["sandbox"]["roman_numerals"], list) assert jam["sandbox"]["roman_numerals"][0]["time"] == 0 assert jam["sandbox"]["roman_numerals"][0]["roman_numeral"] == "I" chord_data = jam["sandbox"]["chord"] assert type(chord_data) == ChordData assert type(chord_data.intervals) == np.ndarray assert type(chord_data.labels) == list assert np.array_equal( chord_data.intervals[:, 0], np.array([0.0, 364.0, 392.0, 644.0]) ) assert np.array_equal( chord_data.intervals[:, 1], np.array([363.0, 391.0, 643.0, 644.0]) ) assert np.array_equal( chord_data.labels, np.array( [ "Eb-major triad", "Bb-dominant seventh chord", "Eb-major triad", "F-dominant seventh chord", ] ), ) assert haydn_op20.load_chords(None) is None key_data = jam["sandbox"]["key"] assert type(key_data) == KeyData assert type(key_data.intervals) == np.ndarray assert np.array_equal(key_data.intervals[:, 0], np.array([0.0, 644.0])) assert np.array_equal(key_data.intervals[:, 1], np.array([643.0, 644.0])) assert np.array_equal(key_data.keys, ["Eb:major", "Bb:major"]) assert haydn_op20.load_key(None) is None def test_load_score(): path = "tests/resources/mir_datasets/haydn_op20/op20n1-01.hrm" score = haydn_op20.load_score(path) assert isinstance(score, music21.stream.Score) assert len(score.parts) == 4 def test_load_key(): path = "tests/resources/mir_datasets/haydn_op20/op20n1-01.hrm" key_data = haydn_op20.load_key(path) assert type(key_data) == KeyData assert type(key_data.intervals) == np.ndarray assert np.array_equal(key_data.intervals[:, 0], np.array([0.0, 644.0])) assert np.array_equal(key_data.intervals[:, 1], np.array([643.0, 644.0])) assert np.array_equal(key_data.keys, ["Eb:major", "Bb:major"]) assert haydn_op20.load_key(None) is None key_music21 = haydn_op20.load_key_music21(path) assert isinstance(key_music21, list) assert len(key_music21) == 4 assert key_music21[0]["time"] == 0 assert key_music21[-1]["time"] == 644 assert isinstance(key_music21[0]["key"], music21.key.Key) def test_load_chords(): path = "tests/resources/mir_datasets/haydn_op20/op20n1-01.hrm" chord_data = haydn_op20.load_chords(path) assert type(chord_data) == ChordData assert type(chord_data.intervals) == np.ndarray assert type(chord_data.labels) == list assert np.array_equal( chord_data.intervals[:, 0], np.array([0.0, 364.0, 392.0, 644.0]) ) assert np.array_equal( chord_data.intervals[:, 1], np.array([363.0, 391.0, 643.0, 644.0]) ) assert np.array_equal( chord_data.labels, np.array( [ "Eb-major triad", "Bb-dominant seventh chord", "Eb-major triad", "F-dominant seventh chord", ] ), ) assert haydn_op20.load_chords(None) is None chords = haydn_op20.load_chords_music21(path) assert isinstance(chords, list) assert len(chords) == 4 assert chords[0]["time"] == 0 assert chords[-1]["time"] == 644 assert chords[0]["chord"] == "Eb-major triad" assert chords[-1]["chord"] == "F-dominant seventh chord" def test_load_roman_numerals(): path = "tests/resources/mir_datasets/haydn_op20/op20n1-01.hrm" roman_numerals = haydn_op20.load_roman_numerals(path) assert isinstance(roman_numerals, list) assert len(roman_numerals) == 4 assert roman_numerals[0]["time"] == 0 assert roman_numerals[-1]["time"] == 644 assert roman_numerals[0]["roman_numeral"] == "I" assert roman_numerals[-1]["roman_numeral"] == "V43/V" def test_load_midi_path(): path = "tests/resources/mir_datasets/haydn_op20/op20n1-01.hrm" midi_path = haydn_op20.convert_and_save_to_midi(path) assert isinstance(midi_path, str) assert midi_path == "tests/resources/mir_datasets/haydn_op20/op20n1-01.midi"
import json class TestQuestionnaireResourceEndpoints: def test_valid_questionnaire_submision( self, client, logged_in_user_token, setup_plans ): """ Test for questionnaira submission with valid data """ response = client.post( "/api/v1/questionnaire/process", data=json.dumps( { "first_name": "Jesse", "address": "No 8, Heaven Gates Drive, Santorini, Greece", "occupation": "Employed", "has_children": False, "email": "bigmanjesse@gmail.com", "children_count": 2, } ), headers={"authorization": f"Bearer {logged_in_user_token}"}, ) resp = response.get_json() assert response.status_code == 200 assert resp["message"] == "Here is your recommendation" assert "highly_recommended" in resp["data"].keys() assert "least_recommended" in resp["data"].keys() assert "recommended" in resp["data"].keys()
#!/usr/bin/env python import rospy import actionlib from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal from sensor_msgs.msg import Joy from geometry_msgs.msg import Twist from ar_track_alvar_msgs.msg import AlvarMarkers from nav_msgs.msg import Odometry from ros_numpy import numpify from tf.transformations import decompose_matrix, euler_from_quaternion import numpy as np def odom_callback(msg): # global cur_pos, cur_heading pose_msg = msg.pose.pose pose = numpify(pose_msg) __, __, angles, translate, __ = decompose_matrix(pose) cur_pos = translate[0:2] cur_heading = angles[2] # print "odom: " + str(cur_heading) def ar_pose_marker_callback(msg): if len(msg.markers) == 0: return pose_msg = msg.markers[0].pose.pose pose = numpify(pose_msg) __, __, angles, translate, __ = decompose_matrix(pose) cur_pos = translate[0:2] cur_heading = angles[2] print "ar: " + str(angles) # print msg.markers[0].pose # print "______________________________________" rospy.init_node('range_ahead') odom_sub = rospy.Subscriber('odom', Odometry, odom_callback) ar_sub = rospy.Subscriber('ar_pose_marker', AlvarMarkers, ar_pose_marker_callback) rospy.spin()
import matplotlib.pyplot as plt import numpy as np import seaborn as sns # Set random seed for reproducibility np.random.seed(1000) Nsamples = 10000 def X1_sample(): return np.random.normal(0.1, 2.0) def X2_sample(x1): return np.random.normal(x1, 0.5 + np.sqrt(np.abs(x1))) if __name__ == '__main__': X = np.zeros((Nsamples,)) Y = np.zeros((Nsamples,)) for i, t in enumerate(range(Nsamples)): x1 = X1_sample() x2 = X2_sample(x1) X[i] = x1 Y[i] = x2 # Show the density estimation sns.set() fig, ax = plt.subplots(figsize=(10, 8)) sns.kdeplot(X, Y, shade=True, shade_lowest=True, kernel="gau", ax=ax) ax.set_xlabel(r"$x_1$", fontsize=18) ax.set_ylabel(r"$x_2$", fontsize=18) ax.set_xlim([-5, 5]) ax.set_ylim([-6, 6]) plt.show()
""" ## Twitter Celebrity Matcher This is a standalone script that scrapes tweets based on a given Twitter handle Author: [Ahmed Shahriar Sakib](https://www.linkedin.com/in/ahmedshahriar) Source: [Github](https://github.com/ahmedshahriar/TwitterCelebrityMatcher) """ import tweepy import pandas as pd import schedule import time import os import glob from dotenv import load_dotenv load_dotenv() access_key = os.environ.get("ACCESS_KEY") access_secret = os.environ.get("ACCESS_SECRET") consumer_key = os.environ.get("CONSUMER_KEY") consumer_secret = os.environ.get("CONSUMER_SECRET") # screen_name="apotofvestiges" # https://gist.github.com/mbejda/9c3353780270e7298763 handler_df = pd.read_csv("../celebrity-listing/Top-1000-Celebrity-Twitter-Accounts.csv", header=0) # list of accounts # screen_names = handler_df.twitter.unique().tolist() screen_names_all = handler_df.twitter.unique().tolist() screen_names_parsed = [x.split('\\')[1].replace('.csv', '').strip() for x in glob.glob( "../twitter-celebrity-tweets-data/*.csv")] # missing Twitter accounts to be parsed screen_names = list(set(screen_names_all) - set(screen_names_parsed)) i = 0 def parser(): try: print("\n\nstarting...") global screen_names global i print(i) name = screen_names[i] print(name) auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_key, access_secret) api = tweepy.API(auth) alltweets = [] new_tweets = api.user_timeline(screen_name=name, count=200, tweet_mode="extended") alltweets.extend(new_tweets) oldest = alltweets[-1].id - 1 while len(new_tweets) > 0: print("getting tweets before %s" % (oldest)) new_tweets = api.user_timeline(screen_name=name, count=200, max_id=oldest, tweet_mode="extended") alltweets.extend(new_tweets) oldest = alltweets[-1].id - 1 print("...%s tweets downloaded so far" % (len(alltweets))) out_tweets = [[tweet.id_str, tweet.created_at, tweet.full_text.encode("utf-8")] for tweet in alltweets] df = pd.DataFrame(out_tweets, columns=['twitter_id', 'date', 'tweet']) # export tweets to CSV under dataset directory df.to_csv("../twitter-celebrity-tweets-data/%s.csv" % name, index=False) i = i + 1 print(i) except Exception as e: print(e) i = i + 1 pass # Cron Job parser() # configure schedule job schedule.every(5).seconds.do(parser) # schedule.every(1).minutes.do(parser) # schedule.every().hour.do(parser) # schedule.every().day.at("23:19").do(parser) # schedule.every().day.at("23:24").do(parser) # schedule.every().day.at("23:30").do(parser) # schedule.every().day.at("23:40").do(parser) # schedule.every(5).to(10).minutes.do(parser) # schedule.every().monday.do(parser) # schedule.every().wednesday.at("13:15").do(parser) # schedule.every().minute.at(":17").do(parser) while len(screen_names) > i: schedule.run_pending() time.sleep(1)
text = "Lorem ipsum dolor sit amet, calis de tabarnak d'osti de criss de sacréfils de siboire de calaille d'incompétent de calis." saveFile = open("createdFiles/Lorem ipsum 2.0.txt", "w") saveFile.write(text) saveFile.close()
#!/usr/bin/env python import os import sys from optparse import OptionParser INDENTCOUNT = 4 INDENTCHAR = ' ' parser = OptionParser() parser.add_option('-a', '--app', dest='app', help='The app which contains the model.') parser.add_option('-m', '--model', dest='model', help='The model to produce the Form for.') parser.add_option('-p', '--path', dest='path', help='The path to look for the files, directories separated by space.') parser.add_option('-w', '--write', dest='file', help='The output file to append the form to, without this argument the output is printed.') options, args = parser.parse_args() if not(options.model and options.app): parser.print_help() sys.exit() if options.path: sys.path += options.path.split() if options.file: sys.stdout = file(options.file, 'a') try: if 'DJANGO_SETTINGS_MODULE' in os.environ: settings = __import__(os.environ['DJANGO_SETTINGS_MODULE']) else: import settings except ImportError: print 'Settings file not found. Place this file in the same dir as manage.py or use the path argument.' sys.exit() project_directory = os.path.dirname(settings.__file__) project_name = os.path.basename(project_directory) sys.path.append(os.path.join(project_directory, '..')) project_module = __import__(project_name) os.environ['DJANGO_SETTINGS_MODULE'] = '%s.settings' % project_name from django.newforms import form_for_model models = __import__('%s.%s.models' % (project_name, options.app,), '', '', [options.model]) model = getattr(models, options.model) fields = model._meta.fields + model._meta.many_to_many print 'class %sForm(forms.Form):' % (options.model) for field in fields: formfield = field.formfield() if formfield: fieldtype = str(formfield).split()[0].split('.')[-1] arguments = {} arguments['verbose_name'] = '\'%s\'' % field.verbose_name arguments['help_text'] = '\'%s\'' % field.help_text arguments['required'] = not field.blank print '%s%s = forms.%s(%s)' % (INDENTCOUNT * INDENTCHAR, field.name, fieldtype, ', '.join(['%s=%s' % (k, v) for k, v in arguments.iteritems()]))
# -*- coding: utf-8 -*- from .fields import ImportPathField __all__ = ['ImportPathField']
# # This file is part of pysnmp software. # # Copyright (c) 2005-2018, Ilya Etingof <etingof@gmail.com> # License: http://snmplabs.com/pysnmp/license.html # # PySNMP MIB module PYSNMP-MIB (http://snmplabs.com/pysnmp) # ASN.1 source http://mibs.snmplabs.com:80/asn1/PYSNMP-MIB # Produced by pysmi-0.1.3 at Mon Apr 17 11:46:02 2017 # On host grommit.local platform Darwin version 16.4.0 by user ilya # Using Python version 3.4.2 (v3.4.2:ab2c023a9432, Oct 5 2014, 20:42:22) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ValueRangeConstraint, ConstraintsIntersection, ValueSizeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsIntersection", "ValueSizeConstraint", "ConstraintsUnion") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") ModuleIdentity, iso, MibScalar, MibTable, MibTableRow, MibTableColumn, Gauge32, NotificationType, IpAddress, MibIdentifier, Unsigned32, Counter32, ObjectIdentity, Counter64, Bits, Integer32, enterprises, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "iso", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Gauge32", "NotificationType", "IpAddress", "MibIdentifier", "Unsigned32", "Counter32", "ObjectIdentity", "Counter64", "Bits", "Integer32", "enterprises", "TimeTicks") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") pysnmp = ModuleIdentity((1, 3, 6, 1, 4, 1, 20408)) if mibBuilder.loadTexts: pysnmp.setRevisions(('2017-04-14 00:00', '2005-05-14 00:00',)) if mibBuilder.loadTexts: pysnmp.setLastUpdated('201704140000Z') if mibBuilder.loadTexts: pysnmp.setOrganization('The PySNMP Project') if mibBuilder.loadTexts: pysnmp.setContactInfo('E-mail: Ilya Etingof <etingof@gmail.com> GitHub: https://github.com/etingof/pysnmp') if mibBuilder.loadTexts: pysnmp.setDescription('PySNMP top-level MIB tree infrastructure') pysnmpObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 1)) pysnmpExamples = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 2)) pysnmpEnumerations = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 3)) pysnmpModuleIDs = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 3, 1)) pysnmpAgentOIDs = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 3, 2)) pysnmpDomains = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 3, 3)) pysnmpExperimental = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 9999)) pysnmpNotificationPrefix = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 4)) pysnmpNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 4, 0)) pysnmpNotificationObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 4, 1)) pysnmpConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 5)) pysnmpCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 5, 1)) pysnmpGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 20408, 5, 2)) mibBuilder.exportSymbols("PYSNMP-MIB", pysnmpCompliances=pysnmpCompliances, pysnmpObjects=pysnmpObjects, pysnmpNotificationPrefix=pysnmpNotificationPrefix, pysnmpModuleIDs=pysnmpModuleIDs, pysnmpGroups=pysnmpGroups, pysnmpNotificationObjects=pysnmpNotificationObjects, pysnmp=pysnmp, pysnmpExperimental=pysnmpExperimental, pysnmpNotifications=pysnmpNotifications, PYSNMP_MODULE_ID=pysnmp, pysnmpEnumerations=pysnmpEnumerations, pysnmpDomains=pysnmpDomains, pysnmpAgentOIDs=pysnmpAgentOIDs, pysnmpConformance=pysnmpConformance, pysnmpExamples=pysnmpExamples)
from typing import Optional from aioros_action import ActionClient from aioros_action import create_client from aioros import NodeHandle from aioros_tf2.abc import BufferInterface from aioros_tf2.exceptions import ConnectivityException from aioros_tf2.exceptions import ExtrapolationException from aioros_tf2.exceptions import InvalidArgumentException from aioros_tf2.exceptions import LookupException from aioros_tf2.exceptions import TimeoutException from aioros_tf2.exceptions import TransformException from genpy import Duration from genpy import Time from geometry_msgs.msg import TransformStamped from tf2_msgs.msg import LookupTransformAction from tf2_msgs.msg import LookupTransformGoal from tf2_msgs.msg import TF2Error class BufferActionClient(BufferInterface): def __init__(self, ns: str) -> None: self._ns = ns self._action_client: Optional[ActionClient] = None async def init( self, node_handle: NodeHandle ) -> None: self._action_client = await create_client( node_handle, self._ns, LookupTransformAction) async def close(self) -> None: if self._action_client: await self._action_client.close() self._action_client = None async def wait_for_server(self) -> None: await self._action_client.wait_for_server() async def lookup_transform( self, target_frame: str, source_frame: str, time: Time, timeout: Optional[Duration] = None ) -> TransformStamped: return await self._call_action( LookupTransformGoal( target_frame=target_frame, source_frame=source_frame, source_time=time, timeout=timeout or Duration(), advanced=False)) async def lookup_transform_full( self, target_frame: str, target_time: Time, source_frame: str, source_time: Time, fixed_frame: str, timeout: Optional[Duration] = None ) -> TransformStamped: return await self._call_action( LookupTransformGoal( target_frame=target_frame, source_frame=source_frame, source_time=source_time, timeout=timeout or Duration(), target_time=target_time, fixed_frame=fixed_frame, advanced=True)) async def can_transform( self, target_frame: str, source_frame: str, time: Time, timeout: Optional[Duration] = None ) -> bool: try: self.lookup_transform( target_frame, source_frame, time, timeout) return True except TransformException: return False async def can_transform_full( self, target_frame: str, target_time: Time, source_frame: str, source_time: Time, fixed_frame: str, timeout: Optional[Duration] = None ) -> bool: try: self.lookup_transform_full( target_frame, target_time, source_frame, source_time, fixed_frame, timeout) return True except TransformException: return False async def _call_action( self, goal: LookupTransformGoal ) -> TransformStamped: goal_handle = self._action_client.send_goal(goal) result = await goal_handle.wait_for_result() if result.error.error != TF2Error.NO_ERROR: if result.error.error == TF2Error.LOOKUP_ERROR: raise LookupException(result.error.error_string) elif result.error.error == TF2Error.CONNECTIVITY_ERROR: raise ConnectivityException(result.error.error_string) elif result.error.error == TF2Error.EXTRAPOLATION_ERROR: raise ExtrapolationException(result.error.error_string) elif result.error.error == TF2Error.INVALID_ARGUMENT_ERROR: raise InvalidArgumentException(result.error.error_string) elif result.error.error == TF2Error.TIMEOUT_ERROR: raise TimeoutException(result.error.error_string) else: raise TransformException(result.error.error_string) return result.transform async def create_buffer_action_client( node_handle: NodeHandle, ns: str, ) -> BufferActionClient: buffer_action_client = BufferActionClient(ns) await buffer_action_client.init(node_handle) return buffer_action_client
import logging import numpy as np import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from matplotlib.patches import Rectangle logger = logging.getLogger() from activeClassifier.visualisation.base import Visualiser, visualisation_level from activeClassifier.tools.utility import softmax # annoying UserWarning from plt.imshow in _glimpse_patches_until_t() import warnings warnings.filterwarnings( action='ignore', category=UserWarning, module=r'.*matplotlib' ) class Visualization_predRSSM(Visualiser): def __init__(self, model, FLAGS): super().__init__(model, FLAGS) self.num_policies = model.n_policies self.size_z = FLAGS.size_z self.planner = FLAGS.planner self.use_pixel_obs_FE = FLAGS.use_pixel_obs_FE self.rnd_first_glimpse = FLAGS.rnd_first_glimpse self.rnn_cell = FLAGS.rnn_cell @visualisation_level(1) def visualise(self, d, suffix='', nr_obs_overview=8, nr_obs_reconstr=5): nr_obs_overview = min(nr_obs_overview, self.batch_size_eff) # batch_size_eff is set in _eval_feed() -> has to come before nr_obs_reconstr = min(nr_obs_reconstr, self.batch_size_eff) nr_obs_FE = min(3, self.batch_size_eff) self.plot_overview(d, nr_obs_overview, suffix) self.plot_reconstr(d, nr_obs_reconstr, suffix) self.plot_reconstr_patches(d, nr_obs_reconstr, suffix) # moved to batch-wise: # self.plot_stateBelieves(d, suffix) # self.plot_fb(d, prefix) if (self.planner == 'ActInf') & (d['epoch'] >= self.pre_train_epochs): # self.plot_planning(d, nr_examples=nr_obs_reconstr) self.plot_planning_patches(d, nr_examples=nr_obs_reconstr) self.plot_FE(d, nr_obs_FE, suffix) @visualisation_level(1) def intermed_plots(self, d, nr_examples, suffix='', folder_name='rnd_loc_eval'): self.plot_planning_patches(d, nr_examples, suffix, folder_name) @visualisation_level(1) def plot_reconstr(self, d, nr_examples, suffix='', folder_name='reconstr'): def get_title_color(post_believes, hyp): if post_believes[hyp] == post_believes.max(): color = 'magenta' elif post_believes[hyp] > 0.1: color = 'blue' else: color = 'black' return color nax = 2 + self.num_classes_kn gl = self._glimpse_reshp(d['glimpse']) # [T, B, scale[0], scales*scale[0]] gl_post = self._glimpse_reshp(d['reconstr_posterior']) # [T, B, scale[0], scales*scale[0]] gl_preds = self._glimpse_reshp(d['reconstr_prior']) # [T, B, hyp, scale[0], scales*scale[0]] idx_examples = self._get_idx_examples(d['y'], nr_examples, replace=False) for i in idx_examples: f, axes = plt.subplots(self.num_glimpses + 1, nax, figsize=(4 * self.num_scales * nax, 4 * (self.num_glimpses + 1))) axes = axes.reshape([self.num_glimpses + 1, nax]) self._plot_img_plus_locs(axes[0, 0], d['x'][i], d['y'][i], d['clf'][i], d['locs'][:, i, :], d['decisions'][:, i]) for t in range(self.num_glimpses): # true glimpse axes[t+1, 0].imshow(gl[t, i], **self.im_show_kwargs) title = 'Label: {}, clf: {}'.format(self.lbl_map[d['y'][i]], self.lbl_map[d['clf'][i]]) if self.uk_label is not None: title += ', p(uk) post: {:.2f}'.format(d['uk_belief'][t + 1, i]) axes[t+1, 0].set_title(title) # posterior axes[t+1, 1].imshow(gl_post[t, i], **self.im_show_kwargs) axes[t+1, 1].set_title('Posterior, nll: {:.2f}'.format(d['nll_posterior'][t, i])) # prior for all classes ranked_losses = np.argsort(d['KLdivs'][t, i, :]) ps = softmax(-d['KLdivs'][t, i, :]) for j, hyp in enumerate(ranked_losses): axes[t+1, j+2].imshow(gl_preds[t, i, hyp], **self.im_show_kwargs) if d['decisions'][t, i] != -1: axes[t+1, j + 2].set_title('Decision: {}'.format(d['decisions'][t, i])) else: c = get_title_color(d['state_believes'][t+1, i, :], hyp) axes[t+1, j + 2].set_title('{}, p: {:.2f}, KL: {:.2f}, post-c: {:.2f}'.format(self.lbl_map[hyp], ps[hyp], d['KLdivs'][t, i, hyp], d['state_believes'][t+1, i, hyp]), color=c) [ax.set_axis_off() for ax in axes.ravel()] self._save_fig(f, folder_name, '{}{}_n{}{isuk}.png'.format(self.prefix, suffix, i, isuk='_uk' if (d['y'][i] == self.uk_label) else '')) @visualisation_level(1) def plot_reconstr_patches(self, d, nr_examples, suffix='', folder_name='reconstr_patches'): def get_title_color(post_believes, hyp): if post_believes[hyp] == post_believes.max(): color = 'magenta' elif post_believes[hyp] > 0.1: color = 'blue' else: color = 'black' return color nax = 2 + self.num_classes_kn gl = self._glimpse_reshp(d['glimpse']) # [T, B, scale[0], scales*scale[0]] gl_post = self._glimpse_reshp(d['reconstr_posterior']) # [T, B, scale[0], scales*scale[0]] gl_preds = self._glimpse_reshp(d['reconstr_prior']) # [T, B, hyp, scale[0], scales*scale[0]] idx_examples = self._get_idx_examples(d['y'], nr_examples, replace=False) for i in idx_examples: f, axes = plt.subplots(self.num_glimpses, nax, figsize=(4 * self.num_scales * nax, 4 * (self.num_glimpses + 1))) axes = axes.reshape([self.num_glimpses, nax]) self._plot_img_plus_locs(axes[0, 0], d['x'][i], d['y'][i], d['clf'][i], d['locs'][:, i, :], d['decisions'][:, i]) # rank hypotheses by final believes T = np.argmax(d['decisions'][:, i]) # all non-decisions are -1 ranked_hyp = np.argsort(-d['state_believes'][T, i, :]) for t in range(self.num_glimpses - 1): # true glimpses up until and including t self._plot_seen(d['x'][i], d['locs'][:, i], until_t=min(t + 1, self.num_glimpses), ax=axes[t + 1, 0]) title = 'Label: {}, clf: {}'.format(self.lbl_map[d['y'][i]], self.lbl_map[d['clf'][i]]) if self.uk_label is not None: title += ', p(uk) post: {:.2f}'.format(d['uk_belief'][t + 1, i]) axes[t + 1, 0].set_title(title) # posterior self._glimpse_patches_until_t(t+1, gl[:, i], gl_post[:, i], d['locs'][:, i], axes[t + 1, 1]) axes[t + 1, 1].set_title('Posterior, nll: {:.2f}'.format(d['nll_posterior'][t, i])) # prior for all classes ranks_overall = np.argsort(-d['state_believes'][t, i, :]).tolist() ranks_kl = np.argsort(d['KLdivs'][t, i, :]).tolist() ps_kl = softmax(-d['KLdivs'][t, i, :]) for j, hyp in enumerate(ranked_hyp): self._glimpse_patches_until_t(min(t + 1, self.num_glimpses), gl[:, i], gl_preds[:, i, hyp], d['locs'][:, i], axes[t + 1, j + 2]) if d['decisions'][t, i] != -1: axes[t + 1, j + 2].set_title('Decision: {}'.format(d['decisions'][t, i])) else: c = get_title_color(d['state_believes'][min(t + 1, self.num_glimpses), i, :], hyp) axes[t + 1, j + 2].set_title('{}: tot. rank pre: {}, kl rank: {}\nsftmx(KL): {:.2f}, KL: {:.2f}, post-c: {:.2f}'.format( self.lbl_map[hyp], ranks_overall.index(hyp), ranks_kl.index(hyp), ps_kl[hyp], d['KLdivs'][t, i, hyp], d['state_believes'][t + 1, i, hyp]), color=c) [(ax.set_xticks([]), ax.set_yticks([]), ax.set_ylim([self.img_shape[0] - 1, 0]), ax.set_xlim([0, self.img_shape[1] - 1])) for ax in axes.ravel()] [ax.set_axis_off() for ax in axes[0].ravel()] self._save_fig(f, folder_name, '{}{}_n{}{isuk}.png'.format(self.prefix, suffix, i, isuk='_uk' if (d['y'][i] == self.uk_label) else '')) def _stick_glimpse_onto_canvas(self, glimpse, loc): img_y, img_x = self.img_shape[:2] loc_y, loc_x = loc half_width = self.scale_sizes[0] / 2 assert len(self.scale_sizes) == 1, 'Not adjusted for multiple scales yet' # Adjust glimpse if going over the edge y_overlap_left = -int(min(round(loc_y - half_width), 0)) y_overlap_right = int(img_y - round(loc_y + half_width)) if ((round(loc_y + half_width) - img_y) > 0) else None x_overlap_left = -int(min(round(loc_x - half_width), 0)) x_overlap_right = int(img_x - round(loc_x + half_width)) if ((round(loc_x + half_width) - img_x) > 0) else None glimpse = glimpse[y_overlap_left : y_overlap_right, x_overlap_left : x_overlap_right] # Boundaries of the glimpse x_boundry_left = int(max(round(loc_x - half_width), 0)) x_boundry_right = int(min(round(loc_x + half_width), img_x)) y_boundry_left = int(max(round(loc_y - half_width), 0)) y_boundry_right = int(min(round(loc_y + half_width), img_y)) # Pad up to canvas size if self.img_shape[2] == 1: glimpse_padded = np.pad(glimpse, [(y_boundry_left, img_y - y_boundry_right), (x_boundry_left, img_x - x_boundry_right)], mode='constant') else: glimpse_padded = np.pad(glimpse, [(y_boundry_left, img_y - y_boundry_right), (x_boundry_left, img_x - x_boundry_right), (0, 0)], mode='constant') assert glimpse_padded.shape == tuple(self.img_shape_squeezed) return glimpse_padded def _glimpse_patches_until_t(self, until_t, true_glimpses, glimpses, locs, ax): """Plot the true_glimpses[:until_t - 2] & glimpses[until_t - 1] onto a canvas of shape img_shape, with the latest glimpses overlapping older ones (important for predictions)""" ix, iy = np.meshgrid(np.arange(self.img_shape[0]), np.arange(self.img_shape[1])) half_width = self.scale_sizes[0] / 2 seen = np.zeros(self.img_shape[:2], np.bool) glimpse_padded = np.zeros(self.img_shape_squeezed) for t in range(until_t): loc = locs[t, :] y_boundry = [loc[0] - half_width, loc[0] + half_width] x_boundry = [loc[1] - half_width, loc[1] + half_width] new = (ix >= round(x_boundry[0])) & (ix < round(x_boundry[1])) & (iy >= round(y_boundry[0])) & (iy < round(y_boundry[1])) seen[new] = True input = glimpses if (t == until_t - 1) else true_glimpses new_glimpse_padded = self._stick_glimpse_onto_canvas(input[t], locs[t]) glimpse_padded = np.where(new, new_glimpse_padded, glimpse_padded) glimpse_padded_seen = self._mask_unseen(glimpse_padded, seen) ax.imshow(glimpse_padded_seen, **self.im_show_kwargs) half_pixel = 0.5 if (self.scale_sizes[0] % 2 == 0) else 0 # glimpses are rounded to pixel values do the same for the rectangle to make it fit nicely ax.add_patch(Rectangle(np.round(locs[until_t - 1, ::-1] - half_width) - half_pixel, width=self.scale_sizes[0], height=self.scale_sizes[0], edgecolor='green', facecolor='none')) # @visualisation_level(2) # def plot_planning(self, d, nr_examples, suffix='', folder_name='planning'): # # T x [True glimpse, exp_exp_obs, exp_obs...] # nax_x = self.num_policies # nax_y = 1 + self.num_glimpses # # # exp_exp_obs = self._scale_reshp(d['exp_exp_obs']) # [T, B, n_policies, scale[0], scales*scale[0]] # # exp_obs = self._scale_reshp(d['exp_obs']) # [T, B, n_policies, num_classes, scale[0], scales*scale[0]] # # for i in range(nr_examples): # f, axes = plt.subplots(nax_y, nax_x, figsize=(4 * self.num_scales * nax_x, 4 * nax_y)) # axes = axes.reshape([nax_y, nax_x]) # self._plot_img_plus_locs(axes[0, 0], d['x'][i], d['y'][i], d['clf'][i], d['locs'][:, i, :], d['decisions'][:, i]) # # # Note: first action is random, meaning d['potential_actions'][0] will be zero # for t in range(self.num_glimpses): # for k in range(self.num_policies): # # potential location under evaluation # locs = d['potential_actions'][t, i, k] # color = 'green' if (locs == d['locs'][t, i, :]).all() else 'cyan' # # axes[t, k].imshow(d['x'][i].reshape(self.img_shape_squeezed), **self.im_show_kwargs) # axes[t, k].scatter(locs[1], locs[0], marker='x', facecolors=color, linewidth=2.5, s=0.25 * (5 * 8 * 24)) # axes[t, k].add_patch(Rectangle(locs[::-1] - self.scale_sizes[0] / 2, width=self.scale_sizes[0], height=self.scale_sizes[0], edgecolor=color, facecolor='none', linewidth=2.5)) # axes[t, k].set_title('G: {:.2f}, H_: {:.2f}, exp_H: {:.2f}, G_dec: {:.2f}'.format(d['G'][t, i, k], d['H_exp_exp_obs'][t, i, k], d['exp_H'][t, i, k], d['G'][t, i, -1])) # # # ranked_hyp = np.argsort(d['state_believes'][t, i, :]) # # for j, hyp in enumerate(ranked_hyp[::-1]): # # # axes[t, j + 2].imshow(exp_obs[t, i, k, hyp], **self.im_show_kwargs) # # axes[t, j + 2].set_title('Hyp: {}, prob: {:.2f}'.format(hyp, d['state_believes'][t, i, hyp])) # # [ax.set_axis_off() for ax in axes.ravel()] # self._save_fig(f, folder_name, '{}{}_n{}.png'.format(self.prefix, suffix, i)) @visualisation_level(2) def plot_planning(self, d, nr_examples, suffix='', folder_name='planning'): # T x [True glimpse, exp_exp_obs, exp_obs...] nax_x = nr_examples nax_y = self.num_glimpses f, axes = plt.subplots(nax_y, nax_x, figsize=(8 * self.num_scales * nax_x, 4 * nax_y), squeeze=False) for i in range(nr_examples): # Note: first action is random, meaning d['potential_actions'][0] will be zero for t in range(self.num_glimpses): if t == 0: # random action self._plot_img_plus_locs(axes[0, i], d['x'][i], d['y'][i], d['clf'][i], d['locs'][:, i, :], d['decisions'][:, i]) axes[t, i].set_title('t: {}, random policy, lbl: {}, clf: {}'.format(t, d['y'][i], d['clf'][i])) else: if np.sum(d['H_exp_exp_obs'][t, i, :]) == 0.: axes[t, i].set_title('t: {}, decision - no glimpse'.format(t)) break axes[t, i].imshow(d['x'][i].reshape(self.img_shape_squeezed), **self.im_show_kwargs) axes[t, i].set_title('t: {}, selected policy: {}'.format(t, np.argmax(d['G'][t, i, :]))) for k in range(self.num_policies): # potential location under evaluation locs = d['potential_actions'][t, i, k] color = 'C{}'.format(k) correct = np.all((locs == d['locs'][t, i, :])) lbl = '{}: G: {:.2f}, H_: {:.2f}, exp_H: {:.2f}, G_dec: {:.2f}'.format(k, d['G'][t, i, k], d['H_exp_exp_obs'][t, i, k], d['exp_H'][t, i, k], d['G'][t, i, -1]) axes[t, i].add_patch(Rectangle(locs[::-1] - self.scale_sizes[0] / 2, width=self.scale_sizes[0], height=self.scale_sizes[0], edgecolor=color, facecolor='none', linewidth=1.5, label=lbl)) if correct: axes[t, i].scatter(locs[1], locs[0], marker='x', facecolors=color, linewidth=1.5, s=0.25 * (5 * 8 * 24)) # add current believes to legend ranked_believes = np.argsort(- d['state_believes'][t, i, :]) lbl = 'hyp: ' + ', '.join('{} ({:.2f})'.format(j, d['state_believes'][t, i, j]) for j in ranked_believes[:5]) axes[t, i].scatter(0, 0, marker='x', facecolors='k', linewidth=0, s=0, label=lbl) chartBox = axes[t, i].get_position() axes[t, i].set_position([chartBox.x0, chartBox.y0, chartBox.width * 0.6, chartBox.height]) axes[t, i].legend(loc='center left', bbox_to_anchor=(1.04, 0.5), borderaxespad=0) [ax.set_axis_off() for ax in axes.ravel()] self._save_fig(f, folder_name, '{}{}.png'.format(self.prefix, suffix)) @visualisation_level(2) def plot_planning_patches(self, d, nr_examples, suffix='', folder_name='planning_patches'): nax_x = nr_examples nax_y = self.num_glimpses if self.rnd_first_glimpse else self.num_glimpses + 1 f, axes = plt.subplots(nax_y, nax_x, figsize=(8 * self.num_scales * nax_x, 4 * nax_y), squeeze=False) frames_cmap = matplotlib.cm.get_cmap('bwr') frames_color = frames_cmap(np.linspace(1, 0, self.num_policies)) for i in range(nr_examples): # if first glimpse is random, plot overview in its spot. O/w create an additional plot self._plot_img_plus_locs(axes[0, i], d['x'][i], d['y'][i], d['clf'][i], d['locs'][:, i, :], d['decisions'][:, i]) if self.rnd_first_glimpse: start_t = 1 axes[0, i].set_title('t: {}, random policy, lbl: {}, clf: {}'.format(0, d['y'][i], d['clf'][i])) else: start_t = 0 axes[0, i].set_title('Lbl: {}, clf: {}'.format(d['y'][i], d['clf'][i])) for ax, t in enumerate(range(start_t, self.num_glimpses)): ax += 1 # plot patches seen until now self._plot_seen(d['x'][i], d['locs'][:, i], until_t=t, ax=axes[ax, i]) # add current believes to legend ranked_believes = np.argsort(- d['state_believes'][t, i, :]) lbl = 'hyp: ' + ', '.join('{} ({:.2f})'.format(j, d['state_believes'][t, i, j]) for j in ranked_believes[:5]) axes[ax, i].add_patch(Rectangle((0, 0), width=0.1, height=0.1, linewidth=0, color='white', label=lbl)) decided = (d['decisions'][:t+1, i] != -1).any() if decided: axes[ax, i].set_title('t: {}, decision - no new glimpse'.format(t)) else: selected = [j for j, arr in enumerate(d['potential_actions'][t, i, :]) if (arr == d['locs'][t, i]).all()] axes[ax, i].set_title('t: {}, selected policy: {}'.format(t, selected[0])) # plot rectangles for evaluated next locations ranked_policies = np.argsort(- d['G'][t, i, :-1]) for iii, k in enumerate(ranked_policies): # potential location under evaluation locs = d['potential_actions'][t, i, k] correct = np.all((locs == d['locs'][t, i, :])) lbl = '{}: G: {:.2f}, H(exp): {:.2f}, E(H): {:.2f}, G_dec: {:.2f}'.format(k, d['G'][t, i, k], d['H_exp_exp_obs'][t, i, k], d['exp_H'][t, i, k], d['G'][t, i, -1]) axes[ax, i].add_patch(Rectangle(locs[::-1] - self.scale_sizes[0] / 2, width=self.scale_sizes[0], height=self.scale_sizes[0], edgecolor=frames_color[iii], facecolor='none', linewidth=1.5, label=lbl)) if correct: axes[ax, i].scatter(locs[1], locs[0], marker='x', facecolors=frames_color[iii], linewidth=1.5, s=0.25 * (5 * 8 * 24)) # place legend next to plot chartBox = axes[ax, i].get_position() axes[ax, i].set_position([chartBox.x0, chartBox.y0, chartBox.width * 0.6, chartBox.height]) axes[ax, i].legend(loc='center left', bbox_to_anchor=(1.04, 0.5), borderaxespad=0) if decided: # set all following axes off and stop [axes[ttt, i].set_axis_off() for ttt in range(ax+1, nax_y)] break [(ax.set_xticks([]), ax.set_yticks([]), ax.set_ylim([self.img_shape[0] - 1, 0]), ax.set_xlim([0, self.img_shape[1] - 1])) for ax in axes.ravel()] self._save_fig(f, folder_name, '{}{}.png'.format(self.prefix, suffix)) @visualisation_level(2) def plot_FE(self, d, nr_examples, suffix='', folder_name='FE'): if self.rnn_cell.startswith('Conv') and not self.use_pixel_obs_FE: logging.debug('Skip FE plots for convLSTM. Shapes for z not defined') # TODO: adjust size_z to not come from FLAGS but from VAEEncoder.output_shape_flat return # T x [True glimpse, posterior, exp_exp_obs, exp_obs...] nax_x = 3 + self.num_classes_kn nax_y = self.num_glimpses gl = self._glimpse_reshp(d['glimpse']) # [T, B, scale[0], scales*scale[0]] if self.use_pixel_obs_FE: posterior = self._glimpse_reshp(d['reconstr_posterior']) exp_exp_obs = self._glimpse_reshp(d['exp_exp_obs']) exp_obs_prior = self._glimpse_reshp(d['reconstr_prior']) else: if self.size_z == 10: shp = [5, 2] elif self.size_z == 32: shp = [8, 4] elif self.size_z == 128: shp = [16, 8] else: shp = 2 * [int(np.sqrt(self.size_z))] if np.prod(shp) != self.size_z: print('Unspecified shape for this size_z and plot_z. Skipping z plots.') return posterior = np.reshape(d['z_post'], [self.num_glimpses, self.batch_size_eff] + shp) exp_exp_obs = np.reshape(d['exp_exp_obs'], [self.num_glimpses, self.batch_size_eff, self.num_policies] + shp) exp_obs_prior = np.reshape(d['selected_exp_obs_enc'], [self.num_glimpses, self.batch_size_eff, self.num_classes_kn] + shp) for i in range(nr_examples): f, axes = plt.subplots(nax_y, nax_x, figsize=(4 * self.num_scales * nax_x, 4 * nax_y), squeeze=False) for t in range(self.num_glimpses): if t == 0: self._plot_img_plus_locs(axes[t, 0], d['x'][i], d['y'][i], d['clf'][i], d['locs'][:, i, :], d['decisions'][:, i]) else: axes[t, 0].imshow(gl[t, i], **self.im_show_kwargs) axes[t, 0].set_title('t: {}'.format(t)) axes[t, 1].imshow(posterior[t, i], **self.im_show_kwargs) axes[t, 1].set_title('posterior') p = d['selected_action_idx'][t, i] axes[t, 2].imshow(exp_exp_obs[t, i, p], **self.im_show_kwargs) axes[t, 2].set_title('H(exp) policy0: {:.2f}'.format(d['H_exp_exp_obs'][t, i, p])) ranked_believes = np.argsort(- d['state_believes'][t, i, :]) for k in ranked_believes: axes[t, 3 + k].imshow(exp_obs_prior[t, i, k], **self.im_show_kwargs) axes[t, 3 + k].set_title('k: {}, p: {:.2f}'.format(k, d['state_believes'][t, i, k])) [ax.set_axis_off() for ax in axes.ravel()] self._save_fig(f, folder_name, '{}{}_n{}.png'.format(self.prefix, suffix, i)) @visualisation_level(2) def plot_fb(self, d, suffix=''): def fb_hist(fb1, fb2, ax, title, add_legend): """fb1, fb2: tuple of (values, legend)""" ax.hist(fb1[0], bins, alpha=0.5, label=fb1[1]) ax.hist(fb2[0], bins, alpha=0.5, label=fb2[1]) ax.set_title(title) if add_legend: ax.legend(loc='upper right') nax = self.num_classes ntax = self.num_glimpses - 1 bins = 40 f, axes = plt.subplots(ntax, nax, figsize=(4 * nax, 4 * self.num_glimpses)) if self.uk_label is not None: is_uk = (d['y'] == self.uk_label) fb_kn_best = d['fb'][:, ~is_uk, :].min(axis=2) # in-shape: [T, B, hyp] fb_uk_best = d['fb'][:, is_uk, :].min(axis=2) else: fb_kn_best, fb_uk_best = None, None for t in range(ntax): for hyp in range(self.num_classes_kn): is_hyp = (d['y'] == hyp) if t < self.num_glimpses: pre = 't{}: '.format(t) if (hyp == 0) else '' fb_corr = d['fb'][t, is_hyp, hyp] fb_wrong = d['fb'][t, ~is_hyp, hyp] else: # last row: sum over time break # pre = 'All t: ' if (hyp == 0) else '' # fb_corr = d['fb'][:, is_hyp, hyp].sum(axis=0) # fb_wrong = d['fb'][:, ~is_hyp, hyp].sum(axis=0) fb_hist((fb_corr, 'correct hyp'), (fb_wrong, 'wrong hyp'), axes[t, hyp], '{}hyp: {}'.format(pre, self.lbl_map[hyp]), add_legend=(t==0)) if self.uk_label is not None: # right most: best fb across hyp for kn vs uk if t < self.num_glimpses: fb_kn = fb_kn_best[t] fb_uk = fb_uk_best[t] else: fb_kn = fb_kn_best.sum(axis=0) fb_uk = fb_uk_best.sum(axis=0) fb_hist((fb_kn, 'known'), (fb_uk, 'uk'), axes[t, nax - 1], 'best fb', add_legend=(t==0)) self._save_fig(f, 'fb', '{}{}.png'.format(self.prefix, suffix)) @visualisation_level(2) def plot_stateBelieves(self, d, suffix): # TODO: INCLUDE uk_belief and plots differentiating by known/uk ntax = self.num_glimpses bins = 40 f, axes = plt.subplots(ntax, 1, figsize=(4, 4 * self.num_glimpses), squeeze=False) top_believes = d['state_believes'].max(axis=2) # [T+1, B, num_classes] -> [T+1, B] top_believes_class = d['state_believes'].argmax(axis=2) # [T+1, B, num_classes] -> [T+1, B] is_corr = (top_believes_class == d['y'][np.newaxis, :]) corr = np.ma.masked_array(top_believes, mask=~is_corr) wrong = np.ma.masked_array(top_believes, mask=is_corr) for t in range(ntax): if corr[t+1].mask.any(): axes[t, 0].hist(corr[t+1].compressed(), bins=bins, alpha=0.5, label='corr') if wrong[t+1].mask.any(): axes[t, 0].hist(wrong[t+1].compressed(), bins=bins, alpha=0.5, label='wrong') axes[t, 0].legend(loc='upper right') axes[t, 0].set_title('Top believes after glimpse {}'.format(t+1)) axes[t, 0].set_xlim([0, 1]) self._save_fig(f, 'c', '{}{}.png'.format(self.prefix, suffix))
import torch import torch.nn as nn from core.taming.utils import Normalize, nonlinearity class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) else: self.nin_shortcut = torch.nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h
import os import git import click import json import string import random import pickle from pathlib import Path import shutil from subprocess import STDOUT, check_call import sys def load_config(): """ Load configuration class. If not configured before create a new one and save as pickle in homedir/.settler. """ home_dir = os.path.expanduser("~") settler_dir = os.path.join(home_dir, ".settler") cfg_filepath = os.path.join(settler_dir, "config.pickle") # TODO: do this with __new__ # https://stackoverflow.com/questions/43965376/initialize-object-from-the-pickle-in-the-init-function if os.path.isfile(cfg_filepath): with open(cfg_filepath, 'rb') as file: return pickle.load(file) else: # click.echo("No settler folder found, initializing new one.", color='green') return SettlerConfig() class SettlerConfig: def __init__(self): self.home_dir = os.path.expanduser("~") settler_dir = os.path.join(self.home_dir, ".settler") self.settler_cfg = os.path.join(settler_dir, "config.pickle") if not os.path.isdir(settler_dir): os.mkdir(settler_dir) self.backpacks = {} self.backpack_dir = None self.backpack_data = None self.backpack_name = None # self.save_pickle() def drop_backpack(self): self.backpack_dir = None self.backpack_data = None self.backpack_name = None def load_backpack(self): for dir_name in self.backpack_data["folders"]: load_dir(dir_name, self.backpack_dir, self.home_dir) for filename in self.backpack_data["files"]: load_file(filename, self.backpack_dir, self.home_dir) #for package_name in self.backpack_data["apt-get"]: # install_apt(package_name) def unload_backpack(self): for dirname in self.backpack_data["folders"]: unload_dir(dirname, self.backpack_dir, self.home_dir) for filename in self.backpack_data["files"]: unload_file(filename, self.backpack_dir, self.home_dir) self.drop_backpack() def add_backpack(self, backpack_dir): backpack_dir = os.path.abspath(backpack_dir) backpack_cfg_path = os.path.join(backpack_dir, "settler.json") backpack_data = read_cfg(backpack_cfg_path) if self.backpack_dir is None: self.backpacks[backpack_data["name"]] = backpack_dir self.backpack_data = backpack_data self.backpack_dir = backpack_dir self.backpack_name = backpack_data["name"] else: self.backpacks[backpack_data["name"]] = backpack_dir click.echo("Backpack " + self.backpack_name + " already loaded", color='red') def status(self): if self.backpacks: rm_list = [] click.echo("Backpacks:") for name, dirpath in sorted(self.backpacks.items()): if os.path.isdir(dirpath): if name == self.backpack_name: click.echo(click.style("[x] " + name + " " + dirpath, fg='blue')) else: click.echo("[ ] " + name + " " + dirpath) else: click.echo(click.style("Folder not found , removing @ " + dirpath, fg='blue')) rm_list.append(name) for key in rm_list: self.backpacks.pop(key, None) def save_pickle(self): with open(self.settler_cfg, "wb") as raw_file: pickle.dump(self, raw_file) def remove_backpack(self, name): if name in self.backpacks: self.backpacks.pop(name) click.echo(click.style("Removed backpack: " + name, fg='green')) else: click.echo(click.style("Backpack: " + name + " not registered.", fg='blue')) def random_generator(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for x in range(size)) def initialize_folder(foldername): try: os.mkdir("./" + foldername) cfg_filepath = os.path.join(foldername, "settler.json") with open(cfg_filepath, 'w') as cfg_file: default_cfg = """ { "name": \""""+foldername+"""\", "apt-get" : [ "gimp" ], "folders": [".fakefolder"], "files": [".fakerc", ".fakerc2"] }""" cfg_file.write(default_cfg) print(foldername + " created.") print("Edit settler.json to add files and folders to settler") except OSError: print("Folder " + foldername + " already exists.") def refresh_folder(folderpath): cfg_path = os.path.join(folderpath, "settler.json") if os.path.isfile(cfg_path): print("Check if files need copying") cfg_data = read_cfg(folderpath) else: print("Folder is not a backpack.") def unload_file(filename, backpack_dir, home_dir): src = os.path.join(home_dir, filename) dst = os.path.join(backpack_dir, filename) if os.path.isfile(dst): os.unlink(src) shutil.copy(dst, src) click.echo(click.style("File: " + dst + " -> " + src, fg='green')) else: click.echo(click.style("Skipping: File not found @ " + dst, fg='blue')) def unload_dir(dirname, backpack_dir, home_dir): """ """ src = os.path.join(home_dir, dirname) dst = os.path.join(backpack_dir, dirname) if not os.path.isdir(dst): click.echo(click.style("Skipping: Folder not found @ " + dst, fg='blue')) return if os.path.islink(src): os.unlink(src) if os.path.isdir(src): click.echo(click.style("Skipping: Folder already present @ " + src, fg='blue')) return shutil.copytree(dst, src) click.echo(click.style("Dir: " + dst + " -> " + src, fg='green')) def load_dir(dirname, backpack_dir, home_dir): """ If the dirname has not been loaded it will be: 1) Moved to the current active backpack 2) A link pointing to backpack will be placed """ src = os.path.join(home_dir, dirname) dst = os.path.join(backpack_dir, dirname) if not os.path.isdir(src): click.echo(click.style("Skipping: Source directory doesnt exist: @ " + src, fg='blue')) return if os.path.isdir(dst): click.echo(click.style("Skipping: Destination directory already exists @ " + dst, fg='blue')) return click.echo(click.style("Dir: " + src + " -> " + dst, fg='green')) shutil.copytree(src, dst) shutil.rmtree(src) os.symlink(dst, src) def load_file(filename, backpack_dir, home_dir): """ If the filename has not been loaded it will be: 1) Moved to the current active backpack 2) A link pointing to backpack will be placed """ src = os.path.join(home_dir, filename) dst = os.path.join(backpack_dir, filename) if os.path.isfile(src): # shutil.copy(src, dst) # os.remove(src) shutil.move(src, dst) os.symlink(dst, src) click.echo(click.style("File:" + src + " -> " + dst, fg='green')) else: click.echo(click.style("Skipping: File not found @ " + src, fg='blue')) def install_apt(package_name): install_text = click.style(' + %s' % package_name, fg='blue') click.echo(install_text) check_call(['sudo', 'apt-get', 'install', '-y', package_name], stdout=open(os.devnull, 'wb'), stderr=STDOUT) def uninstall_apt(package_name): pass def read_cfg(filepath): with open(filepath, 'r') as raw_file: cfg_data = json.load(raw_file) return cfg_data # # # Install apt-get packages # for package_name in cfg_data['apt-get']: # install_apt(package_name) # # for dirname in cfg_data['folders']: # load_dir(dirname) # # for filename in cfg_data['files']: # load_file(filename) def read_config(path): click.echo("Loading config") with open(path + '/settler.json', 'r') as f_json: data = json.load(f_json) click.echo("Installing apt packages:") # Install apt-get packages for package_name in data['apt-get']: install_apt(package_name) # Copy directories copy_directories(path, data) copy_files(path, data) return data def copy_files(path, config): home_path = str(Path.home()) files = {} for root, dirs, filesx in os.walk(path): for filename in filesx: if filename != 'settler.json': filename = str(filename) files[filename] = os.path.join(home_path, filename) break if 'files' in config: for filename, filepath in config['files'].items(): if os.path.exists(os.path.join(path, filename)) and filename != '': if os.path.isabs(filepath): files[filename] = filepath else: files[filename] = os.path.join(home_path, filepath) for filename, dst in files.items(): click.echo("Saving %s as %s" % (filename, dst)) src = os.path.join(path, filename) shutil.copyfile(src, dst) def copy_directories(path, config): home_path = str(Path.home()) folders = {} for f in os.listdir(path): if not os.path.isfile(os.path.join(path, f)) and f != '.git': folders[f] = os.path.join(home_path, f) if 'folders' in config: for foldername, folderpath in config['folders'].items(): if os.path.exists(os.path.join(path, foldername)) and foldername != '': if os.path.isabs(folderpath): folders[foldername] = folderpath else: folders[foldername] = os.path.join(home_path, folderpath) for foldername, dst in folders.items(): click.echo("Copying %s to %s" % (foldername, dst)) src = os.path.join(path, foldername) copydir(src, dst) print("Folders", folders) def copydir(source, dest, indent=0): """Copy a directory structure overwriting existing files""" for root, dirs, files in os.walk(source): if not os.path.isdir(root): os.makedirs(root) for each_file in files: rel_path = root.replace(source, '').lstrip(os.sep) dest_path = os.path.join(dest, rel_path, each_file) shutil.copyfile(os.path.join(root, each_file), dest_path) def clone_repo(backpack, branch): text_repo = click.style('%s' % backpack, fg='blue') text_branch = click.style('%s' % branch, fg='green') click.echo("Cloning " + text_repo + ":" + text_branch) # Clone repository gh_url = 'https://github.com/' + backpack + '.git' local_path = '/tmp/' + random_generator() repo = git.Repo.clone_from(gh_url, local_path, branch=branch) return local_path # class Progress(git.remote.RemoteProgress): # def update(self, op_code, cur_count, max_count=None, message=''): # print(self._cur_line)
from facepy.exceptions import FacepyError from facepy.graph_api import GraphAPI from facepy.signed_request import SignedRequest from facepy.utils import get_application_access_token, get_extended_access_token __all__ = [ 'FacepyError', 'GraphAPI', 'SignedRequest', 'get_application_access_token', 'get_extended_access_token', ]
"""Added RandomTable Revision ID: 183d3f0348eb Revises: 51f5ccfba190 Create Date: 2017-11-28 11:43:16.511000 """ # revision identifiers, used by Alembic. revision = '183d3f0348eb' down_revision = '2356a38169ea' from alembic import op import sqlalchemy as sa def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('random_table', sa.Column('id', sa.Text(), nullable=False), sa.Column('author_id', sa.Integer(), nullable=False), sa.Column('name', sa.Text(), nullable=True), sa.Column('description', sa.Text(), nullable=True), sa.Column('definition', sa.Text(), nullable=True), sa.Column('min', sa.Integer(), nullable=True), sa.Column('max', sa.Integer(), nullable=True), sa.Column('description_html', sa.Text(), nullable=True), sa.Column('permissions', sa.Integer(), nullable=True), sa.Column('line_type', sa.Integer(), nullable=True), sa.Column('timestamp', sa.DateTime(), nullable=True), sa.ForeignKeyConstraint(['author_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id', 'author_id') ) op.create_index(op.f('ix_random_table_permissions'), 'random_table', ['permissions'], unique=False) op.create_index(op.f('ix_random_table_timestamp'), 'random_table', ['timestamp'], unique=False) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index(op.f('ix_random_table_timestamp'), table_name='random_table') op.drop_index(op.f('ix_random_table_permissions'), table_name='random_table') op.drop_table('random_table') # ### end Alembic commands ###
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('lexicon', '0109_nexusexport__exportbeauti'), ] operations = [ migrations.AddField( model_name='language', name='latitude', field=models.DecimalField( null=True, max_digits=19, decimal_places=10), ), migrations.AddField( model_name='language', name='longitude', field=models.DecimalField( null=True, max_digits=19, decimal_places=10), ), ]
"""Atomic append of gzipped data. The point is - if several gzip streams are concatenated, they are read back as one whole stream. """ import gzip import io __all__ = ('gzip_append',) def gzip_append(filename: str, data: bytes, level: int = 6) -> None: """Append a block of data to file with safety checks.""" # compress data buf = io.BytesIO() with gzip.GzipFile(fileobj=buf, compresslevel=level, mode="w") as g: g.write(data) zdata = buf.getvalue() # append, safely with open(filename, "ab+", 0) as f: f.seek(0, 2) pos = f.tell() try: f.write(zdata) except Exception as ex: # rollback on error f.seek(pos, 0) f.truncate() raise ex
""" Copyright (C) 2019 by The Salk Institute for Biological Studies and Pittsburgh Supercomputing Center, Carnegie Mellon University Use of this source code is governed by an MIT-style license that can be found in the LICENSE file or at https://opensource.org/licenses/MIT. """ # NOTE: usage of some a git library was considered, however, it was not clear whether they # really work on Windows and MacOS, therefore a simple wrapper functions were created instead import os import time import datetime from utils import * from build_settings import * BASE_URL = 'https://github.com/mcellteam/' BASE_URL_HTTPS = 'https://github.com/mcellteam/' BASE_URL_SSH = 'git@github.com:mcellteam/' PRIVATE_BASE_URL_SSH = 'git@github.com:mcellteam/' GIT_SUFFIX = '.git' BASE_REPOSITORIES = [ REPO_NAME_MCELL, REPO_NAME_LIBBNG, REPO_NAME_CELLBLENDER, REPO_NAME_MCELL_TESTS, REPO_NAME_MCELL_TOOLS, REPO_NAME_NEUROPIL_TOOLS, REPO_NAME_MESH_TOOLS, # REPO_NAME_GAMER1, - TODO REPO_NAME_VTK ] FORKED_REPOSITORIES = [REPO_NAME_NFSIM, REPO_NAME_NFSIMCINTERFACE, REPO_NAME_BIONETGEN, REPO_NAME_GAMER] ALL_REPOSITORIES = BASE_REPOSITORIES + FORKED_REPOSITORIES REPOSITORIES_ALLOWED_TO_BE_DIRTY = [REPO_NAME_MCELL_TESTS, REPO_NAME_MCELL_TOOLS, REPO_NAME_GAMER, REPO_NAME_BIONETGEN] FORKED_REPOSITORY_BRANCH_PREFIX = 'mcell_' MIN_GIT_VERSION= 'git version 1.9' ORIGIN = 'origin' GAMER_BASE_URL = 'https://github.com/ctlee/' GAMER_BRANCH = 'master' def run_git_w_ascii_output(args, cwd): cmd = ['git'] cmd += args return run_with_ascii_output(cmd, cwd) def run_git_w_ec_check(args, cwd): cmd = ['git'] cmd += args #print(str(cmd)) ec = run(cmd, cwd) check_ec(ec, cmd) def check_git_version(): out = run_git_w_ascii_output(['--version'], os.getcwd()) # TODO: just a string compre for now.. if out >= MIN_GIT_VERSION: log("Checked " + out + " - ok") else: fatal_error("Required at least " + MIN_GIT_VERSION) def clone(name, opts, base_url): log("Repository '" + name + "' does not exist, cloning it...") run_git_w_ec_check(['clone', base_url + name + GIT_SUFFIX], opts.top_dir) def fetch(name, opts): run_git_w_ec_check(['fetch'], os.path.join(opts.top_dir, name)) def get_default_branch(name, branch): if branch.startswith(BRANCH_PREFIX_MCELL4): return DEFAULT_BRANCH_MCELL4 elif name in FORKED_REPOSITORIES: return FORKED_REPOSITORY_BRANCH_PREFIX + DEFAULT_BRANCH else: return DEFAULT_BRANCH def checkout(name, opts, branch): log("Checking out branch '" + branch + "'") repo_dir = os.path.join(opts.top_dir, name) # first check that the branch exists on remote branches = run_git_w_ascii_output(['branch', '-r'], repo_dir) full_name = ORIGIN + '/' + branch if not full_name in branches: # FIXME: improve check, we are just checking a substring orig_branch = branch branch = get_default_branch(name, branch) warning("Remote branch '" + orig_branch + "' does not exit in repo '" + name + "', defaulting to '" + branch + "'.") full_name2 = ORIGIN + '/' + branch if not full_name2 in branches: # FIXME: improve check, we are just checking a substring orig_branch = branch branch = DEFAULT_BRANCH warning("Remote default branch '" + orig_branch + "' does not exit in repo '" + name + "', defaulting to '" + branch + "'.") # then we need to check that the branch is clean before we switch status = run_git_w_ascii_output(['status'], repo_dir) print(status) if 'working directory clean' not in status and 'working tree clean' not in status: if not opts.ignore_dirty and name not in REPOSITORIES_ALLOWED_TO_BE_DIRTY: fatal_error("Repository '" + name + "' is not clean. " "Either clean it manually or if you are sure that there are " "no changes that need to be kept run this script with '-c'.") else: warning("Repository '" + name + "' is not clean, but this repo is allowed to be dirty.") # finally we can switch run_git_w_ec_check(['checkout', branch], repo_dir) def update(name, opts): log("Updating repository '" + name + "'.") run_git_w_ec_check(['pull'], os.path.join(opts.top_dir, name)) def get_or_update_repository(name, opts, base_url, branch): # does the directory exist? repo_path = os.path.join(opts.top_dir, name) if not os.path.exists(repo_path): clone(name, opts, base_url) else: log("Repository '" + name + "' already exists, no need to clone it.") fetch(name, opts) # checkout the required branch checkout(name, opts, branch) # update if opts.update: update(name, opts) def pull_repository(name, opts, base_url, branch): run_git_w_ec_check(['pull'], os.path.join(opts.top_dir, name)) def push_repository(name, opts, base_url, branch): run_git_w_ec_check(['push'], os.path.join(opts.top_dir, name)) def reset_hard_repository(name, opts, base_url, branch): run_git_w_ec_check(['reset', '--hard'], os.path.join(opts.top_dir, name)) def tag_repository(name, opts, base_url, branch): run_git_w_ec_check(['tag', branch, '-m', branch], os.path.join(opts.top_dir, name)) def merge_repository(name, opts, base_url, branch): # not all branches must be present out = run_git_w_ascii_output(['merge', branch], os.path.join(opts.top_dir, name)) print(out) def run_on_all_repositories(opts, function): if opts.ssh: base_url_w_prefix = BASE_URL_SSH else: base_url_w_prefix = BASE_URL_HTTPS for name in BASE_REPOSITORIES: log("--- Preparing repository '" + name + "' ---") function(name, opts, base_url_w_prefix, opts.branch) for name in FORKED_REPOSITORIES: log("--- Preparing repository '" + name + "' ---") if not opts.branch.startswith(BRANCH_PREFIX_MCELL4): # use mcell_ prefix branch_name = FORKED_REPOSITORY_BRANCH_PREFIX + opts.branch else: branch_name = opts.branch function(name, opts, base_url_w_prefix, branch_name) if opts.use_private_repos: log("--- Preparing repository '" + REPO_NAME_MCELL_TEST_PRIVATE + "' ---") function(REPO_NAME_MCELL_TEST_PRIVATE, opts, PRIVATE_BASE_URL_SSH, opts.branch) def get_or_update(opts): check_git_version() run_on_all_repositories(opts, get_or_update_repository) def pull(opts): check_git_version() run_on_all_repositories(opts, pull_repository) def push(opts): check_git_version() run_on_all_repositories(opts, push_repository) def reset_hard(opts): check_git_version() run_on_all_repositories(opts, reset_hard_repository) def tag(opts): check_git_version() run_on_all_repositories(opts, tag_repository) def merge(opts): check_git_version() run_on_all_repositories(opts, merge_repository) def create_version_file(opts): if not os.path.exists(opts.work_dir): os.makedirs(opts.work_dir) version_file = os.path.join(opts.work_dir, RELEASE_INFO_FILE) with open(version_file, "w", encoding="utf-8") as f: f.write("CellBlender release: " + opts.release_version + "\n") now = datetime.datetime.now() f.write("Built on " + now.strftime("%Y-%m-%d %H:%M") + " " + str(time.tzname) + "\n") f.write("OS: " + platform.platform() + "\n") cmd = ['gcc', '--version'] res = run_with_ascii_output(cmd, cwd='.') if cmd: f.write("GCC: " + res.split('\n')[0] + "\n") f.write("\n") for repo_name in ALL_REPOSITORIES: branch = run_git_w_ascii_output(['describe', '--all'], cwd=os.path.join(opts.top_dir, repo_name)) commit = run_git_w_ascii_output(['log', '-1', '--pretty="%H"'], cwd=os.path.join(opts.top_dir, repo_name)) f.write(repo_name + ": " + commit + " (" + branch + ")\n")
from collections import Counter import numpy as np VOWELS = [ord(c) for c in "AEIOU"] def duplicate_items(l): return [x for x, count in Counter(l).items() if count > 1] def duplicate_items_order(l): total = 0 for i in range(len(l) - 1): if l[i] == l[i + 1]: total += i return total def alphab(c): i = c - ord("A") # If we have non text characters, treat as A if i > 25: return 0 return i def name_features(name): # 0 letter frequency # 26 letter order # 52 length # 53 vowel percentage # 54 final character # 55 final character - 1 # 56 final character - 2 # 57 double letter counts # 58 double letter order arr = np.zeros(26 + 26 + 7) # Letter frequencies and orders for i, c in enumerate(name): arr[alphab(c)] += 1 arr[alphab(c) + 26] += i + 1 # Length arr[52] = len(name) # Vowel percentage count_vowels = len([c for c in name if c in VOWELS]) arr[53] = int((count_vowels / len(name)) * 100) # Last character arr[54] = name[-1] # Last but one character arr[55] = name[-2] # Last but two character arr[56] = name[-3] # Double character counts and order arr[57] = len(duplicate_items(name)) arr[58] = duplicate_items_order(name) return arr name_features_map = np.vectorize(name_features, otypes=[np.ndarray]) def featurize(names): return np.array(name_features_map(names).tolist())
# Copyright 2019 The FastEstimator Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import random import tarfile from pathlib import Path from typing import Dict, List, Optional, Tuple import pandas as pd import wget from fastestimator.dataset.csv_dataset import CSVDataset from fastestimator.util.wget_util import bar_custom, callback_progress wget.callback_progress = callback_progress def _create_csv(images: List[str], label_dict: Dict[str, int], csv_path: str) -> None: """A helper function to create and save csv files. Args: images: List of image id's. label_dict: Mapping of class name to label id. csv_path: Path to save the csv file. """ df = pd.DataFrame(images, columns=["image"]) df["label"] = df["image"].apply(lambda x: label_dict[x.split("/")[0]]) df["image"] = "food-101/images/" + df["image"] + ".jpg" df.to_csv(csv_path, index=False) return None def load_data(root_dir: Optional[str] = None) -> Tuple[CSVDataset, CSVDataset]: """Load and return the Food-101 dataset. Food-101 dataset is a collection of images from 101 food categories. Sourced from http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz Args: root_dir: The path to store the downloaded data. When `path` is not provided, the data will be saved into `fastestimator_data` under the user's home directory. Returns: (train_data, test_data) """ home = str(Path.home()) if root_dir is None: root_dir = os.path.join(home, 'fastestimator_data', 'Food_101') else: root_dir = os.path.join(os.path.abspath(root_dir), 'Food_101') os.makedirs(root_dir, exist_ok=True) image_compressed_path = os.path.join(root_dir, 'food-101.tar.gz') image_extracted_path = os.path.join(root_dir, 'food-101') train_csv_path = os.path.join(root_dir, 'train.csv') test_csv_path = os.path.join(root_dir, 'test.csv') if not os.path.exists(image_extracted_path): # download if not os.path.exists(image_compressed_path): print("Downloading data to {}".format(root_dir)) wget.download('http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz', root_dir, bar=bar_custom) # extract print("\nExtracting files ...") with tarfile.open(image_compressed_path) as img_tar: img_tar.extractall(root_dir) labels = open(os.path.join(root_dir, "food-101/meta/classes.txt"), "r").read().split() label_dict = {labels[i]: i for i in range(len(labels))} if not os.path.exists(train_csv_path): train_images = open(os.path.join(root_dir, "food-101/meta/train.txt"), "r").read().split() random.shuffle(train_images) _create_csv(train_images, label_dict, train_csv_path) if not os.path.exists(test_csv_path): test_images = open(os.path.join(root_dir, "food-101/meta/test.txt"), "r").read().split() random.shuffle(test_images) _create_csv(test_images, label_dict, test_csv_path) return CSVDataset(train_csv_path), CSVDataset(test_csv_path)
from django.core.validators import MinLengthValidator from django.db import models class About(models.Model): first_name = models.CharField(max_length=100, validators=[MinLengthValidator(2)]) last_name = models.CharField(max_length=100, validators=[MinLengthValidator(2)]) place = models.CharField(max_length=100, validators=[MinLengthValidator(2)]) contact = models.EmailField() country = models.CharField(max_length=100, validators=[MinLengthValidator(2)]) description = models.TextField() def __str__(self): return f"{self.first_name} {self.last_name}"
import numpy as np import nltk from nltk.tokenize import word_tokenize # using sent_tokenize won't work from nltk.corpus import stopwords from nltk.stem import PorterStemmer def preprocess(file_name): file = open(file_name,"r") if file.mode == 'r': content = file.read() sentences = content.split(".") words = [] for i,j in enumerate(sentences): words.append(word_tokenize(j)) stop_words = set(stopwords.words('english')) ps = PorterStemmer() for i in range(np.shape(words)[0]): words[i] = [w for w in words[i] if not w in stop_words and w.isalpha()] # Removes stop_words and punctuations pos_tagged = np.copy(words) # ner_tags = np.copy(words) # POS Tagging """ try: for i,j in enumerate(words): pos_tagged[i] = [] for p,q in enumerate(nltk.pos_tag(j)): pos_tagged[i].append(q[1]) except Exception as e: print(str(e)) """ # NER Tagging """ try: for i,j in enumerate(words): tagged = nltk.pos_tag(words[i]) ner_tags[i] = nltk.ne_chunk(tagged, binary=False) except Exception as e: print(str(e)) """ for i in range(np.shape(words)[0]): # Perform stemming only after POS and NER Tagging for j,a in enumerate(words[i]): words[i][j] = ps.stem(a) save_name = file_name.split(".")[0] + "_words." + file_name.split(".")[1] file_new = open(save_name,"w+") for i in range(np.shape(words)[0]): for j in words[i]: file_new.write(j+" ") file_new.write("\n") file_new.close() file.close()
from __future__ import unicode_literals import os import fcntl import select import signal import errno from codecs import getincrementaldecoder from ..terminal.vt100_input import InputStream from .base import BaseEventLoop __all__ = ( 'PosixEventLoop', 'call_on_sigwinch', ) class PosixEventLoop(BaseEventLoop): stdin_decoder_cls = getincrementaldecoder('utf-8') def __init__(self, input_processor, stdin): super(PosixEventLoop, self).__init__(input_processor, stdin) self.inputstream = InputStream(self.input_processor) # Create a pipe for inter thread communication. self._schedule_pipe = os.pipe() fcntl.fcntl(self._schedule_pipe[0], fcntl.F_SETFL, os.O_NONBLOCK) # Create incremental decoder for decoding stdin. # We can not just do `os.read(stdin.fileno(), 1024).decode('utf-8')`, because # it could be that we are in the middle of a utf-8 byte sequence. self._stdin_decoder = self.stdin_decoder_cls() def loop(self): """ The input 'event loop'. """ if self.closed: raise Exception('Event loop already closed.') timeout = self.input_timeout while True: r, w, x = _select([self.stdin, self._schedule_pipe[0]], [], [], timeout) # If we got a character, feed it to the input stream. If we got # none, it means we got a repaint request. if self.stdin in r: c = self._read_from_stdin() if c: # Feed input text. self.inputstream.feed(c) # Immediately flush the input. self.inputstream.flush() return # If we receive something on our "call_from_executor" pipe, process # these callbacks in a thread safe way. elif self._schedule_pipe[0] in r: # Flush all the pipe content. os.read(self._schedule_pipe[0], 1024) # Process calls from executor. calls_from_executor, self._calls_from_executor = self._calls_from_executor, [] for c in calls_from_executor: c() else: # Fire input timeout event. self.onInputTimeout.fire() timeout = None def _read_from_stdin(self): """ Read the input and return it. """ # Note: the following works better than wrapping `self.stdin` like # `codecs.getreader('utf-8')(stdin)` and doing `read(1)`. # Somehow that causes some latency when the escape # character is pressed. (Especially on combination with the `select`. try: bytes = os.read(self.stdin.fileno(), 1024) except OSError: # In case of SIGWINCH bytes = b'' try: return self._stdin_decoder.decode(bytes) except UnicodeDecodeError: # When it's not possible to decode this bytes, reset the decoder. # The only occurence of this that I had was when using iTerm2 on OS # X, with "Option as Meta" checked (You should choose "Option as # +Esc".) self._stdin_decoder = self.stdin_decoder_cls() return '' def call_from_executor(self, callback): """ Call this function in the main event loop. Similar to Twisted's ``callFromThread``. """ self._calls_from_executor.append(callback) if self._schedule_pipe: os.write(self._schedule_pipe[1], b'x') def close(self): super(PosixEventLoop, self).close() # Close pipes. schedule_pipe = self._schedule_pipe self._schedule_pipe = None if schedule_pipe: os.close(schedule_pipe[0]) os.close(schedule_pipe[1]) def _select(*args, **kwargs): """ Wrapper around select.select. When the SIGWINCH signal is handled, other system calls, like select are aborted in Python. This wrapper will retry the system call. """ while True: try: return select.select(*args, **kwargs) except select.error as e: # Retry select call when EINTR if e.args and e.args[0] == errno.EINTR: continue else: raise class call_on_sigwinch(object): """ Context manager which Installs a SIGWINCH callback. (This signal occurs when the terminal size changes.) """ def __init__(self, callback): self.callback = callback def __enter__(self): self.previous_callback = signal.signal(signal.SIGWINCH, lambda *a: self.callback()) def __exit__(self, *a, **kw): signal.signal(signal.SIGWINCH, self.previous_callback)
from machine import ADC , Pin from Blocky.Pin import getPin class WaterSensor : def __init__ (self , port , sensitivity = 4): if (getPin(port)[2] == None): from machine import reset reset() self.adc = ADC(getPin[2]) if (sensitivity == 1) self.adc.atten(ADC.ATTN0_DB) elif (sensitivity == 2) self.adc.atten(ADC.ATTN_2_5DB) elif (sensitivity == 3) self.adc.atten(ADC.ATTN6_DB) elif (sensitivity == 4) self.adc.atten(ADC.ATTN11_DB) def read(self): return 4095 - self.adc.read()
import pandas as pd import numpy as np import scipy import scipy.stats as stats import pylab import sklearn.feature_selection as sk from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import BaggingClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.svm import LinearSVC from scipy.stats import probplot from pandas import DataFrame import matplotlib.pyplot as plt # # #X = full[[]] #tup = [2,3,4,5,6,7] #for k in range(len(full)): # tup.append(k) # #tup = tuple(tup) #X = full.iloc[:,[3,4,5,6,7,9,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2,-1]] #print(X) # # ##print(full) # #X = np.array(X) # #SNP15 = pd.read_csv("AIHack-SNP-Matrix-15.csv") #Clin = pd.read_csv("AIHack-Clinical.csv") #PC = pd.read_csv("AIHack-PCs.csv") #Clin = Clin.replace('nan', np.NaN) #Clin.fillna(Clin.mean(), inplace = True) #full = pd.concat([Clin, SNP15, PC], axis=1, join_axes=[Clin.index]) #full = full.drop("Unnamed: 0", axis=1) low = 8 high = 16391 #=========================================================================================== # 1. Data Loading def load_data_CAD(): SNP15 = pd.read_csv("D:/AI_Hack/GWAS_files/AIHack-SNP-Matrix-15.csv") Clin = pd.read_csv("D:/AI_Hack/GWAS_files/AIHack-Clinical.csv") PC = pd.read_csv("D:/AI_Hack/GWAS_files/AIHack-PCs.csv") Clin = Clin.replace('nan', np.NaN) Clin.fillna(Clin.mean(), inplace = True) full = pd.concat([Clin, SNP15, PC], axis=1, join_axes=[Clin.index]) full = full.drop("Unnamed: 0", axis=1) CAD = full.iloc[:,1] return CAD def load_data_HDL(): SNP15 = pd.read_csv("AIHack-SNP-Matrix-15.csv") Clin = pd.read_csv("AIHack-Clinical.csv") PC = pd.read_csv("AIHack-PCs.csv") Clin = Clin.replace('nan', np.NaN) Clin.fillna(Clin.mean(), inplace = True) full = pd.concat([Clin, SNP15, PC], axis=1, join_axes=[Clin.index]) full = full.drop("Unnamed: 0", axis=1) HDL = full.iloc[:,6] return HDL def load_data_LDL(): SNP15 = pd.read_csv("AIHack-SNP-Matrix-15.csv") Clin = pd.read_csv("AIHack-Clinical.csv") PC = pd.read_csv("AIHack-PCs.csv") Clin = Clin.replace('nan', np.NaN) Clin.fillna(Clin.mean(), inplace = True) full = pd.concat([Clin, SNP15, PC], axis=1, join_axes=[Clin.index]) full = full.drop("Unnamed: 0", axis=1) LDL = full.iloc[:,7] return LDL #=========================================================================================== # 2. Statistical learning for prediction of significant SNPs # Logistic Regression Model def calc_CAD(CAD): SNP_pvalues = [] for i in range(low, high): X = full.iloc[:,[2,3,4,5,6,7,i,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2]] #X Values for 1 SNP X = np.array(X) #convert dataframe to array #create logisitic regression model, and find weights clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, CAD) denom = (2.0*(1.0+np.cosh(clf.decision_function(X)))) F_ij = np.dot((X/denom[:,None]).T,X) ## Fisher Information Matrix Cramer_Rao = np.linalg.inv(F_ij) ## Inverse Information Matrix sigma_estimates = np.array([np.sqrt(Cramer_Rao[i,i]) for i in range(Cramer_Rao.shape[0])]) # sigma for each coefficient z_scores = clf.coef_[0]/sigma_estimates # z-score for eaach model coefficient p_values = [stats.norm.sf(abs(x))*2 for x in z_scores] ### `two tailed test for p-values SNP_pvalues.append(-np.log(p_values[5])) return SNP_pvalues # Alternative methods but none gave successful Manhattan Plots # def svm(CAD): # SNP_pvalues = [] # for i in range(low, high): # X = full.iloc[:,[2,3,4,5,6,7,i,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2]] #X Values for 1 SNP # X = np.array(X) #convert dataframe to array # #create logisitic regression model, and find weights # clf = LinearSVC(random_state=0, tol=1e-5).fit(X, CAD) # denom = (2.0*(1.0+np.cosh(clf.decision_function(X)))) # F_ij = np.dot((X/denom[:,None]).T,X) ## Fisher Information Matrix # Cramer_Rao = np.linalg.inv(F_ij) ## Inverse Information Matrix # sigma_estimates = np.array([np.sqrt(Cramer_Rao[i,i]) for i in range(Cramer_Rao.shape[0])]) # sigma for each coefficient # z_scores = clf.coef_[0]/sigma_estimates # z-score for eaach model coefficient # p_values = [stats.norm.sf(abs(x))*2 for x in z_scores] ### `two tailed test for p-values # SNP_pvalues.append(-np.log(p_values[5])) # return SNP_pvalues # def forest(CAD): # SNP_pvalues = [] # for i in range(8,9): # # range(low, high): # print (i) # X = full.iloc[:,[2,3,4,5,6,7,i,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2]] #X Values for 1 SNP # X = np.array(X) #convert dataframe to array # #create logisitic regression model, and find weights # clf = RandomForestClassifier(n_estimators=100, max_depth=2,random_state=0).fit(X, CAD) # denom = (2.0*(1.0+np.cosh(clf.oob_decision_function_[:,0]))) # # F_ij = np.dot((X/denom[:,None]).T,X) ## Fisher Information Matrix # # Cramer_Rao = np.linalg.inv(F_ij) ## Inverse Information Matrix # # sigma_estimates = np.array([np.sqrt(Cramer_Rao[i,i]) for i in range(Cramer_Rao.shape[0])]) # sigma for each coefficient # # z_scores = clf.coef_[0]/sigma_estimates # z-score for eaach model coefficient # # p_values = [stats.norm.sf(abs(x))*2 for x in z_scores] ### `two tailed test for p-values # # SNP_pvalues.append(-np.log(p_values[5])) # return clf.oob_decision_function_ #=========================================================================================== # Flagging of missing data def flag_alleles(SNP_pvalues): lst = [] col = [] for i in range(len(SNP_pvalues)): if SNP_pvalues[i] > -np.log10((10**(-5)/(10**1))): col.append(full.columns[i+8]) return col def calc_HDL(HDL): SNP_pvalues = [] for i in range(low,high): X = full.iloc[:,[1,2,3,4,5,7,i,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2]] #X Values for 1 SNP # X = np.array(X, dtype = float) #convert dataframe to array # X = X + np.ones(shape = np.shape(X)) fvalue, pvalue = sk.f_regression(X, HDL) SNP_pvalues.append(-np.log(pvalue[5])) return SNP_pvalues def calc_LDL(LDL): SNP_pvalues = [] for i in range(low,high): X = full.iloc[:,[2,3,4,5,6,i,-12,-11,-10,-9,-8,-7,-6,-5,-4,-3,-2]] #X Values for 1 SNP X = np.array(X) #convert dataframe to array fvalue, pvalue = sk.f_regression(X, LDL) # for j in range(len(X)): # scipy.stats.chi2() SNP_pvalues.append(-np.log(pvalue[5])) return SNP_pvalues #=========================================================================================== 3. Manhattan Plots def graph_CAD(SNP_pvalues): df = DataFrame({'gene' : ['gene-%i' % i for i in np.arange(len(SNP_pvalues))], 'minuslog10pvalue' : SNP_pvalues}) df['ind'] = range(len(df)) print (df) # ax = plt.fig.add_subplot(111) plt.figure(1) colors = 'red' plt.scatter(df['ind'],df['minuslog10pvalue'],s=1) plt.plot(np.arange(0,17000,1), np.ones(17000)*-np.log10((10**(-5)/(17))),color = 'red', linewidth = '1') plt.gca() plt.title("Deviation between control and CAD phenotype allele frequencies") plt.xlabel(r'SNP site $i$') plt.ylabel(r'$-log(p_{i})$') plt.show() def graph_HDL(SNP_pvalues): df = DataFrame({'gene' : ['gene-%i' % i for i in np.arange(len(SNP_pvalues))], 'minuslog10pvalue' : SNP_pvalues}) df['ind'] = range(len(df)) plt.figure(2) ax = fig.add_subplot(111) plt.scatter(df['ind'],df['minuslog10pvalue'],s=1) plt.plot(np.arange(0,17000,1), np.ones(17000)*-np.log10((10**(-5)/(17))),color = 'red', linewidth = '1') plt.gca() plt.title("Deviation between control and HDL phenotype allele frequencies") plt.xlabel(r'SNP site $i$') plt.ylabel(r'$-log(p_{i})$') plt.show() def graph_LDL(SNP_pvalues): df = DataFrame({'gene' : ['gene-%i' % i for i in np.arange(len(SNP_pvalues))], 'minuslog10pvalue' : SNP_pvalues}) df['ind'] = range(len(df)) plt.figure(3) ax = fig.add_subplot(111) colors = 'red' plt.scatter(df['ind'],df['minuslog10pvalue'],s=1) plt.plot(np.arange(0,17000,1), np.ones(17000)*-np.log10((10**(-5)/(17))),color = 'red', linewidth = '1') plt.gca() plt.title("Deviation between control and LDL phenotype allele frequencies") plt.xlabel(r'SNP site $i$') plt.ylabel(r'$-log(p_{i})$') plt.show() # def QQ_plots_CAD(x): # stats.probplot(x, dist = 'norm', plot=pylab) # pylab.show() # pass
from marshmallow import Schema, validate, validates_schema, ValidationError from marshmallow.fields import String from app.users.documents import User BaseUserSchema = User.schema.as_marshmallow_schema() class CreateUserSchema(BaseUserSchema): id = String( dump_only=True, description='Unique document identifier of a User.' ) username = String( required=True, allow_none=False, description='Unique username.', validate=validate.Length(min=1, error='Field cannot be blank.') ) password = String( load_only=True, required=True, allow_none=False, description='User password.', validate=validate.Length(min=1, error='Field cannot be blank.') ) confirm_password = String( load_only=True, required=True, allow_none=False, description='User password confirm.', validate=validate.Length(min=1, error='Field cannot be blank.') ) @validates_schema(skip_on_field_errors=True) def validate_password_confirmation(self, data): if data['password'] != data['confirm_password']: raise ValidationError( 'Confirm password must equal to a new password.', field_names=['confirm_password', ] ) def load(self, data, many=None, partial=None): result = super(CreateUserSchema, self).load(data, many=many, partial=partial) # NOQA if not result.errors: result.data.pop('confirm_password') return result class Meta: fields = ( 'id', 'username', 'password', 'confirm_password' ) class UserProfileSchema(BaseUserSchema): id = String( dump_only=True, description='Unique document identifier of a User.' ) username = String( dump_only=True, description='Unique username.' ) class Meta: fields = ( 'id', 'username', ) class UserTokenSchema(Schema): access_token = String( required=True, allow_none=False, description='An JSON Web Token for getting an access to the resource.', validate=validate.Length(min=1, error='Field cannot be blank.') ) class Meta: fields = ( 'access_token', )
import numpy as np import pandas as pd import matplotlib.pyplot as plt import math #plt.scatter(x,y,alpha=0.3) #df.drop(df.columns[[0, 2]], axis='columns') def borrar(data): for iterable in range(99,data.shape[0]): data.drop([iterable], inplace=True) class regresion_logistica(): def __init__(self): self.X = [] self.Y = [] self.alsa = 0.07 self.umbral = 0.01 self.Theta = np.random.rand(4) #data = pd.read_csv(filename) #data.head() def h(self,vc): return sum( [ e[0]*e[1] for e in zip (self.Theta,vc ) ] ) def S(self,vc): return 1 / (1 + np.exp( -1 * self.h(vc)) ) def error(): """ m = len(self.X); s = 0 for i in range(m): s += Y[i]*math.log10( S(X[i]) + ( 1 - Y[i])* math.lhttps://github.com/perborgen/LogisticRegression/blob/master/logistic.pyog10( 1- S(X[i])) ) """ matrix = [ [1,2,3,4],[1,2,3,4]] regresion = regresion_logistica() regresion.S(matrix) #print(data)
# -*- coding: utf-8 -*- start_time = "2018-06-01 00:00:00" end_time = "2018-07-01 00:00:00" contributors_id = ()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Common utility functions Created on Sun May 27 16:37:42 2018 @author: chen """ import math import cv2 import os from imutils import paths import numpy as np import scipy.ndimage def rotate_cooridinate(cooridinate_og,rotate_angle,rotate_center): """ calculate the coordinates after rotation """ rotate_angle = rotate_angle*(math.pi/180) rotated_x = (cooridinate_og[0]-rotate_center[0])*math.cos(rotate_angle)\ -(cooridinate_og[1]-rotate_center[1])*math.sin(rotate_angle)+rotate_center[0] rotated_y = (cooridinate_og[0]-rotate_center[0])*math.sin(rotate_angle)\ +(cooridinate_og[1]-rotate_center[1])*math.cos(rotate_angle)+rotate_center[1] rotated_coordinate = np.array([rotated_x,rotated_y]) rotated_coordinate = np.round(rotated_coordinate).astype(np.int) return rotated_coordinate def mkdir(path): """ create new folder automatically """ folder = os.path.exists(path) if not folder: os.makedirs(path) def load_data(path): """ load data from specified folder """ print("[INFO] loading images...") imgs = [] # grab the image paths and randomly shuffle them imagePaths = sorted(list(paths.list_images(path))) for imagePath in imagePaths: # load the image, pre-process it, and store it in the data list image = cv2.imread(imagePath,cv2.IMREAD_GRAYSCALE) imgs.append(image) return imgs def sigmoid(x): return 1 / (1 + math.exp(-x)) def normfun(x,sigma): """ function of normal distribution """ mu = 45 pdf = np.exp(-((x - mu)**2)/(2*sigma**2)) / (sigma * np.sqrt(2*np.pi)) return pdf def calc_box(box,x_gap,y_gap,rotate_angle,center): """ calculate the size of the required surrounding environment for doorway segmentation box: four corners' coordinates of doorway x_gap: remained space in the vertical way y_gap: remained space in the horizontal way """ door_box = np.array([box[0][::-1]+[y_gap,x_gap],box[1][::-1]+[y_gap,-x_gap], box[2][::-1]-[y_gap,x_gap],box[3][::-1]-[y_gap,-x_gap]]) rotated_box = [] for coordinate in door_box: box_coordinate = rotate_cooridinate(coordinate,rotate_angle,center) rotated_box.append(box_coordinate) rotated_box = np.array(rotated_box) box = [np.min(rotated_box[:,0]),np.min(rotated_box[:,1]),np.max(rotated_box[:,0]),np.max(rotated_box[:,1])] return box def calc_IoU(candidateBound, groundTruthBounds): """ calculate the intersection over union """ cx1 = candidateBound[0] cy1 = candidateBound[1] cx2 = candidateBound[2] cy2 = candidateBound[3] gx1 = groundTruthBounds[:,0] gy1 = groundTruthBounds[:,1] gx2 = groundTruthBounds[:,2] gy2 = groundTruthBounds[:,3] carea = (cx2 - cx1) * (cy2 - cy1) garea = (gx2 - gx1) * (gy2 - gy1) x1 = np.maximum(cx1, gx1) y1 = np.maximum(cy1, gy1) x2 = np.minimum(cx2, gx2) y2 = np.minimum(cy2, gy2) w = np.maximum(0, x2 - x1) h = np.maximum(0, y2 - y1) area = w * h ious = area / (carea + garea - area) return ious def overlapp(candidateBound, groundTruthBounds): """ calculate the proportion of prediction to groundtruth """ cx1 = candidateBound[0] cy1 = candidateBound[1] cx2 = candidateBound[2] cy2 = candidateBound[3] gx1 = groundTruthBounds[:,0] gy1 = groundTruthBounds[:,1] gx2 = groundTruthBounds[:,2] gy2 = groundTruthBounds[:,3] garea = (gx2 - gx1) * (gy2 - gy1) x1 = np.maximum(cx1, gx1) y1 = np.maximum(cy1, gy1) x2 = np.minimum(cx2, gx2) y2 = np.minimum(cy2, gy2) w = np.maximum(0, x2 - x1) h = np.maximum(0, y2 - y1) area = w * h reious = area / garea return reious def calc_corner(door_center,door_size,door_depth,side): """ calculate the corners' coordinates from the centroid, size and depth of doorway door_corners_inside is a list of coordinates of corners close to the corridor door_corners_outside is a list of coordinates of corners close to the room """ door_corners_inside = [door_center-np.array([np.int(door_size/2),0]), door_center+np.array([door_size-np.int(door_size/2),0])] door_corners_outside = [x-np.array([0,np.power(-1,side)*door_depth[side]]) for x in door_corners_inside] door_corners_outside = np.array(door_corners_outside) return door_corners_inside,door_corners_outside def draw_door(mask,complete_map,door,door_depth,side): """ label the doorway on the mask and add some error inside the doorway region """ door_size = abs(door[1,0]-door[0,0]) door_area_inside = door+np.array([0,np.power(-1,side)*door_depth[side]]) # label the doorway on the mask cv2.rectangle(mask,tuple(door[0][::-1]),tuple(door_area_inside[1][::-1]),255,-1) # add a small point to emulate the error in the doorway region if door_size>20: if np.random.randint(4)==0: if side ==0: pt_center = [np.random.randint(door[0,0]+4,door[1,0]-3),np.random.randint(door[0,1],door_area_inside[0,1])] else: pt_center = [np.random.randint(door[0,0]+3,door[1,0]-2),np.random.randint(door_area_inside[0,1],door[0,1])] cv2.circle(complete_map,tuple(pt_center[::-1]),np.random.choice([1,2,3]),0,-1) return door_size def room_division(room_space,num_room): """ assign the lengths of rooms according to the length of corridor and number of rooms room_space: coordinates of corridor's side num_room: the number of rooms on one side rooms: a list of the coordinates belonging to different rooms rooms_corners: a list of only the top and bottom cooridnates of different rooms """ rooms = [] rooms_corners=[] a = num_room thickness = np.random.randint(2,5) length = room_space.shape[0]-(num_room-1)*thickness start_point = 0 for i in range(num_room-1): room_size = np.random.randint(length/(a+0.7),length/(a-0.7)) room = room_space[start_point:start_point+room_size,:] rooms.append(room) start_point +=room_size+thickness room = room_space[start_point:,:] rooms.append(room) rooms = [room.astype(np.int) for room in rooms] for x in rooms: rooms_corner = np.concatenate((x[0,:][np.newaxis,:],x[-1,:][np.newaxis,:]),axis = 0) rooms_corners.append(rooms_corner) return rooms,rooms_corners def calc_gradient(gmap): """ calculate the gradient of image to find the contour """ kernel = np.array([[1,1,1],[1,-8,1],[1,1,1]]) img = gmap.astype(np.int16) gradient = scipy.ndimage.correlate(img,kernel,mode = 'constant',cval =127) return gradient
# CRISP-DM Python template, main #import logging import load #import Model.svm.model as svmimport imp import cDataPreparation.dataCleaning.cleaningFunctions as clean import cDataPreparation.dataConstruction.constructFunctions as construct from sklearn.datasets import fetch_20newsgroups #import DataPreparation.integrating pathToSelectedData = "./_data/raw/train.json" # Where the initial data can be found rawDataType = 'json' label = 'firstLabel' pathToCleanData = "./data/clean/" # Where different versions of the cleaned data can be found pathToConstructedData = "./data/constructed/" # Where different versions of the constructed data can be found cleanDataFunctionToUse = clean.decode constructDataFunctionToUse = construct.buildTfIdfMatrix #data = {version:.., tables:.., functionUsed:..., rawDataUsed: ...} cleanData = load.conditionalLoadCleanData(clean.identity, pathToSelectedData, label, rawDataType) constructData = load.conditionalLoadConstructData(constructDataFunctionToUse, cleanData) print(constructData[1:5]) #ABT = integrateData(cleanData, constructData) #modelingGrid = list() # TODO load configurations from other files, check if they have been run or not, # TODO config file that says which configs have been run #modelingGrid.append({construct: constructDataFunctionToUse, model:modelOptions}) ## TODO implement the functions on the recipes problem #for params in modelingGrid: # if dataHasChangedSinceLastTask: # constructData = conditionalLoadConstructData(constructDataFunctionToUse) # ABT = integrateData(cleanData, constructData) # trainABT, validationABT = testDesign(ABT, testOptions) # model = modelType(modelOptions, ABT) # assessment = modelAssessment(model, validation) # logging.logAndSave(model, modelOptions, assessment, cleanDataFunctionToUse, constructDataFunctionToUse)
from .core import Field from .core import FieldDescriptor from .core import FieldGroup from .core import SimpleField from .core.enums import ValueStatus, FieldKind, IsbnType, PublicationType class IsbnField(Field): def __init__(self, document, name): super(IsbnField, self).__init__(document, 'identifiers.*', FieldKind.readonly) self._name = name self._value = None @property def value(self): if self._status is ValueStatus.none: raise RuntimeError('Accessing to field which is not set') else : return self._value def hard_set(self, value): pass def update(self, gjp): value = self._master_object(gjp) for fname in ['identifiers', 'isbns']: if fname in value: value = value[fname] else : value = None break if value is not None: if (self._name in value) and ('ean' in value[self._name]): self._value = str(value[self._name]['ean']) else: self._value = None self._status = ValueStatus.soft def gjp(self, gjp): pass class RelatedIsbnsField(SimpleField): def __init__(self, document): super(RelatedIsbnsField, self).__init__(document, 'related_products_isbn', 'related_products_isbn') def _parse_value(self, value): if not value: return set() else: return set(value.split(';')) def _value_validation(self, value): if not isinstance(value, set): raise TypeError('Expected set, got : {0}'.format(type(value))) for i in value: if not isinstance(i, str): raise ValueError('Expected ISBN, got : {0}'.format(i)) return value def _serialize_value(self, value): return ';'.join({v.replace('-','')for v in value}) class IsbnGroup(FieldGroup): def __init__(self, document): super(IsbnGroup, self).__init__(document) self._document = document self._fields['pdf'] = IsbnField(document, 'pdf') self._fields['epub'] = IsbnField(document, 'epub') self._fields['mobi'] = IsbnField(document, 'mobi') self._fields['ibooks'] = IsbnField(document, 'ibooks') self._fields['audiobook'] = IsbnField(document, 'audiobook') self._fields['software'] = IsbnField(document, 'software') self._fields['pod'] = IsbnField(document, 'pod') self._fields['related'] = RelatedIsbnsField(document) pdf = FieldDescriptor('pdf') epub = FieldDescriptor('epub') mobi = FieldDescriptor('mobi') ibooks = FieldDescriptor('ibooks') audiobook = FieldDescriptor('audiobook') software = FieldDescriptor('software') pod = FieldDescriptor('pod') related = FieldDescriptor('related') def __getitem__(self, key): if key in PublicationType: return getattr(self, key.identifier) elif PublicationType.find(key) is not None: return getattr(self, key) def assign(self, isbn_type, isbn = None): if isbn_type not in IsbnType: raise ValueError('isbn_type should be one of op.isbn, got: {0}'.format(isbn_type)) self._document.context.gjp.assign_isbn(self._document.document_id, isbn_type.identifier, isbn) self._document._fetch([])
from django.contrib.auth import models import factory from faker import Faker fake = Faker() class UserFactory(factory.django.DjangoModelFactory): username = fake.user_name() email = fake.email() first_name = fake.first_name() last_name = fake.last_name() class Meta: model = models.User