content
stringlengths
5
1.05M
# Copyright (c) 2021 by Don Deel. All rights reserved. """ RedfishODataService API Definitions. Defines REST API behaviors for RedfishODataService. Allows initial data for instances of this API object to be set. Based upone Singleton template version 0.9.0 """ # Standard library module imports # None # Third party module imports from flask_restful import Resource # REST operations from flask import request # JSON input from REST # Local module imports from fish_data import fish # Fish data import fishem_httpcodes as HTTP # HTTP status codes # Constants # None # Capabilities Restricions from unversioned schema # (These items are read-only within the classes below) # # None # The Redfish OData service document is stored in the fish object # dictionary. The key '/redfish/v1/odata' should only be defined # when a valid odata service document is present. It can be defined # here (see below) or by loading fishem from a mockup or a fish file. # Mockups and fish files loaded into fishem can overwrite any # initial object defined here. # # An initial odata document can be defined like this: # fish['/redfish/v1/odata'] = { # << JSON odata service document contents>> # } class RedfishODataService(Resource): """Defines API behaviors for the Redfish OData Service document. Defined: GET. flask_restful provides default support for HEAD and OPTIONS. It also provides a 405 (Method Not Allowed) response for any RESTful service requests that are not defined. """ def __init__(self): """Handles class setup. Called by flask_restful prior to each and every REST operation handled by this class.""" # End of __init__() def get(self): """Defines GET behavior. Called by flask_restful.""" # TODO: Generate an OData service document on demand, if possible # Handle GET request inst_key = request.path # fish keys do not have trailing slashes if inst_key.endswith('/'): inst_key += '/' inst_key = inst_key.replace('//', '') # Ensure object is in the fish object dictionary if inst_key not in fish: return 'Object not found', HTTP.NOT_FOUND # Return the requested object return fish[inst_key], HTTP.OK # End of get() # Activate the API module def activate(rest_api): # Register the URIs that this API module responds to rest_api.add_resource(RedfishODataService, '/redfish/v1/odata', '/redfish/v1/odata/') return # End of activate()
class FindMin(): def __init__(self,num1,num2,num3): self.num1=num1 self.num2=num2 self.num3=num3 def find_min(self): smallest=self.num1 if smallest > self.num2: smallest=self.num2 if smallest > self.num3: smallest=self.num3 return smallest # Main Program x=FindMin(2,-5,25) print x.find_min()
# This code is all CDS code # Author: David Wu (dwu@broadinstitute.org) import collections import pandas as pd import pickle import random import sys from scipy.special import comb from scipy.stats import pearsonr from sklearn.ensemble import RandomForestRegressor # Generate 10 random splits of cell lines for a tissue to fewshot over def get_10_splits(cell_lines_in_tissue, num_cell_lines_in_training_set): set_of_combs = set() while len(set_of_combs) < min(comb(len(cell_lines_in_tissue), num_cell_lines_in_training_set, exact=True), 10): random_training_set = tuple(random.sample(cell_lines_in_tissue, num_cell_lines_in_training_set)) set_of_combs.add(random_training_set) return set_of_combs # Convert defaultdict to regular for pickling def default_to_regular(d): if isinstance(d, collections.defaultdict): d = {k: default_to_regular(v) for k, v in d.items()} return d def main(): logfile = open("log.txt", "w+") feature_matrix = pd.read_csv("achilles_data/feature_matrix.csv", header=0, index_col=0) labels_matrix = pd.read_csv("achilles_data/labels_matrix.csv", header=0, index_col=0) # K shot learning to perform FEWSHOT_START = 0 FEWSHOT_END = 10 # get gene to predict over argv = sys.argv[1:] if len(argv) != 1: raise ValueError('A very specific bad thing happened.') gene = argv[0] # Read in necessary files with open('achilles_data/lineages_to_fewshot_over.pkl', 'rb') as f: lineages_to_fewshot_over = pickle.load(f) with open('achilles_data/gene_to_features.pkl', 'rb') as f: gene_to_features = pickle.load(f) # Get feature set final_features_to_use = gene_to_features[gene] logfile.write(f"Number of features used: {len(final_features_to_use)}\n") # Quit if gene has no features print(f"Gene: {gene} has {len(final_features_to_use)} features!") if len(final_features_to_use) == 0: quit() # prepare feature matrix final_features_to_use = list(final_features_to_use) feature_matrix = feature_matrix[final_features_to_use] all_cell_lines = feature_matrix.index.tolist() # Dictionary mapping tissue to gene to list of k shot performances tissue_to_gene_to_corrlation_list = collections.defaultdict(lambda : collections.defaultdict(lambda : collections.defaultdict(list))) # Replicate TCRP fewshot learning process on random forest for tissue in lineages_to_fewshot_over: sys.stderr.write(f"Tissue: {tissue}") cell_lines_in_tissue = lineages_to_fewshot_over[tissue] for num_cell_lines_in_training_set in range(FEWSHOT_START, FEWSHOT_END + 1): cell_lines_to_include_in_training = get_10_splits(cell_lines_in_tissue, num_cell_lines_in_training_set) for cell_line_set in cell_lines_to_include_in_training: test_set_cell_lines = [element for element in cell_lines_in_tissue if element not in cell_line_set] training_set_cell_lines = [element for element in all_cell_lines if element not in test_set_cell_lines] if len(set(test_set_cell_lines) & set(training_set_cell_lines)) != 0: raise ValueError('A very specific bad thing happened.') train_features = feature_matrix.loc[training_set_cell_lines] test_features = feature_matrix.loc[test_set_cell_lines] train_labels = labels_matrix.loc[training_set_cell_lines][gene] test_labels = labels_matrix.loc[test_set_cell_lines][gene] model = RandomForestRegressor(n_estimators=100, max_depth=8, min_samples_leaf=5, n_jobs=-1, random_state=0) model.fit(train_features, train_labels) predictions = model.predict(test_features) correlation = pearsonr(test_labels.tolist(), list(predictions))[0] tissue_to_gene_to_corrlation_list[tissue][gene][num_cell_lines_in_training_set].append(correlation) tissue_to_gene_to_corrlation_list = default_to_regular(tissue_to_gene_to_corrlation_list) # ouput results with open(f'{gene}_results_dict.pkl', 'wb') as handle: pickle.dump(tissue_to_gene_to_corrlation_list, handle) main()
# coding: utf-8 # Author:雪山凌狐 # website:http://www.xueshanlinghu.com # version: 1.1 # update_date:2020-01-28 # 自己封装的SMTP发送邮件类,一般用于QQ邮箱SMTP发信 import smtplib import email.utils from email.message import EmailMessage import os try: # 外部使用本包导入方式 from .xs_sendmail_setting import sender, receiver, username, password except: # 测试本python代码用的导入方式 from xs_sendmail_setting import sender, receiver, username, password def sendmail(sender = sender, receiver = receiver, username = username, password = password, subject = 'Python3发送邮件测试', content_text = '这是一封测试邮件,收到该邮件表示服务器可以正常发送邮件', cc_receiver = '', bcc_receiver = '', content_type = 'plain', host = 'smtp.qq.com', port = 465, img_list = [], attach_list = [], debug = 0): ''' 发送邮件功能帮助: ============================== 入参: sender 发件人,string,只能填写一个,如'xxx<xxx@xxx.com>',可添加昵称也可以不加,注意邮箱必须要和鉴权登录账号相同 receiver 收件人,string,可填写多个,用英文半角逗号,分隔,如'xxx<xxx@xxx.com>,xxx@xxx.com',可添加昵称也可以不加 username 登录用户名,string password 登录密码,string subject 主题,string,默认为'Python3发送邮件测试' content_text 邮件正文,string,可以是普通内容或HTML格式内容,默认为'这是一封测试邮件,收到该邮件表示服务器可以正常发送邮件' cc_receiver 抄送人,string,可填写多个,用英文半角逗号,分隔,如'xxx<xxx@xxx.com>,xxx@xxx.com', 可添加昵称也可以不加,默认为'' bcc_receiver 密送人,可以接收到邮件但不会展示在接收人列表中,string,可填写多个,用英文半角逗号,分隔, 如'xxx<xxx@xxx.com>,xxx@xxx.com',可添加昵称也可以不加,默认为'' content_type 邮件正文类型,string,普通内容填写'plain',HTML内容填写'html',默认为'plain' host SMTP服务器主机,string,默认为'smtp.qq.com' port 端口,int,默认为465 img_list 图片列表(正文中引用),list,列表的元素为dict,字典键值:'imgpath' 图片地址,相对或绝对路径, Windows下的路径应用两个\表示;'imgID' 图片ID,在HTML正文中引用,可自动生成。 若正文中不引用该图片,是希望作为附件的,可放到attach_list参数中传入 默认为[] 如: import email.utils image_id = email.utils.make_msgid() # 太长可能有问题,只取其中的部分即可 image_id = image_id[1:13] content_text = '<img src="cid:' + image_id + '" />' content_type = 'html' img_list = [{"imgpath": "邮件发送\\图片\\star.jpg", "imgID": image_id}] attach_list 附件列表,list,列表元素为string,为附件地址,相对或绝对路径。Windows下的路径应用两个\表示 默认为[] 如: attach_list = ["邮件发送\\附件\\附件一张.jpg", "邮件发送\\附件\\小人走路.gif"] debug 调试模式,当该值非0时会显示一些调试信息,默认为0 ============================== 其他注意事项: 1.该函数不传入任何参数也可以进行测试 2.本文件可以直接运行,进行测试 ''' # 创建邮件对象 msg = EmailMessage() # 设置邮件正文内容 msg.set_content(content_text, content_type, 'utf-8') # 设置主题 msg['Subject'] = subject # 设置发件人 msg['From'] = sender # 设置收件人,如果有多个的,传入的字符串多个之间使用,分隔,程序会自动处理,支持“昵称<邮箱地址>”的形式 msg['To'] = receiver.split(",") receiverlist = receiver # 设置抄送人,如果有多个的,传入的字符串多个之间使用,分隔,程序会自动处理,支持“昵称<邮箱地址>”的形式 if cc_receiver != '': msg['Cc'] = cc_receiver.split(",") receiverlist = receiverlist + "," + cc_receiver # 设置密送人,如果有多个的,传入的字符串多个之间使用,分隔,程序会自动处理,支持“昵称<邮箱地址>”的形式 if bcc_receiver != '': receiverlist = receiverlist + "," + bcc_receiver # 设置加载的图片 for imginfo in img_list: if imginfo.get("imgpath") and imginfo.get("imgID"): if os.path.exists(imginfo["imgpath"]): with open(imginfo["imgpath"], 'rb') as f: msg.add_attachment(f.read(), maintype = 'image', subtype = os.path.splitext(imginfo["imgpath"])[1].replace(".", ""), filename = os.path.split(imginfo["imgpath"])[1], cid = imginfo["imgID"]) # 加载附件: for attach_file in attach_list: if os.path.exists(attach_file): with open(attach_file, 'rb') as f: # 不在正文中引用图片啥的,是附件,不用指定cid msg.add_attachment(f.read(), maintype = 'application', subtype = os.path.splitext(attach_file)[1].replace(".", ""), filename = os.path.split(attach_file)[1]) # 正式发送 try: # 创建SMTP连接,一定要使用SSL连接! conn = smtplib.SMTP_SSL(host, port = port) # 设置调试级别,0为不输出调试信息,1为输出调试信息 if debug != 0: conn.set_debuglevel(1) # 登录服务器 conn.login(username, password) # 发送邮件 conn.sendmail(sender, receiverlist.split(","), msg.as_string()) # 退出连接 conn.quit() if debug != 0: print("\n原始邮件内容为:\n" + msg.as_string()) return True except Exception as e: print('发送邮件报错,%s' % (str(e))) return False # 快速将传入的内容头尾加上<p>标签 def text_html(text): ''' 快速将传入的内容头尾加上<p>标签 ''' return "<p>%s</p>" % text if __name__ == '__main__': # 发送邮件测试 sender = sender receiver = receiver subject = '测试邮件主题' # 普通文本正文测试 # content_text = '看到我表示测试成功!' # 普通文本正文测试 # 快速生成html文本测试 # content_text = '看到我表示测试成功!\n这是第二行内容\n这是第三行' # final_content_text = '' # for i in content_text.split("\n"): # print(i, text_html(i)) # final_content_text = final_content_text + text_html(i) # print(final_content_text) # content_text = final_content_text # content_type = 'html' # 快速生成html文本测试 # 正文带图片测试 # image_id = email.utils.make_msgid() # # 太长可能有问题,只取其中的部分即可 # image_id = image_id[1:13] # # print(image_id) # content_text = '看到我表示测试成功!\n如下是一张图片:\n<img src="cid:' + image_id + '" />' # final_content_text = '' # for i in content_text.split("\n"): # # print(i, text_html(i)) # final_content_text = final_content_text + text_html(i) # # print(final_content_text) # content_text = final_content_text # content_type = 'html' # img_list = [{"imgpath": "邮件发送\\图片\\star.jpg", "imgID": image_id}] # 正文带图片测试 # 正文带图片和附件测试 image_id = email.utils.make_msgid() # 太长可能有问题,只取其中的部分即可 image_id = image_id[1:13] # print(image_id) content_text = '看到我表示测试成功!\n如下是一张图片:\n<img src="cid:' + image_id + '" />' final_content_text = '' for i in content_text.split("\n"): print(i, text_html(i)) final_content_text = final_content_text + text_html(i) print(final_content_text) content_text = final_content_text content_type = 'html' img_list = [{"imgpath": "邮件发送\\图片\\star.jpg", "imgID": image_id}] attach_list = ["邮件发送\\附件\\附件一张.jpg", "邮件发送\\附件\\小人走路.gif"] # 正文带图片和附件测试 cc_receiver = '' bcc_receiver = '' res = sendmail(sender = sender, receiver = receiver, subject = subject, content_text = content_text, debug = 1, cc_receiver = cc_receiver, bcc_receiver = bcc_receiver, content_type = content_type, img_list = img_list, attach_list = attach_list) if res: print("发送邮件成功!") else: print("发送邮件失败!")
from django.urls import path from django.conf.urls import url from . import views urlpatterns = [ #path('signup/', views.SignUp.as_view(), name='signup'), path('camera/cholesterol_login/', views.cholesterol_login, name='cholesterol_login'), path('camera/bilirubin_login/', views.bilirubin_login, name='bilirubin_login'), path('camera/cataract_login/', views.cataract_login, name='cataract_login'), path('camera/cholesterol/', views.cholesterol_, name='cholesterol_'), path('camera/bilirubin/', views.bilirubin_, name='bilirubin_'), path('camera/cataract/', views.cataract_, name='cataract_'), path('logout/', views.logout, name='logout'), path('history/', views.history, name='history'), path('home/', views.search_form), url(r'^signup/$', views.signup), path('login/', views.login), url(r'^aadhar/$', views.aadhar), url(r'^aadhar2/$', views.aadhar2), path('about/', views.about), path('contact/', views.contact), path('login_only_redirect/', views.login_only_redirect), path('direct_test/', views.direct_test), path('diagnosis_registered/', views.diagnosis_registered), path('notifyform/', views.notifyform), path('notifyformexec/', views.notifyformexec), path('genform/', views.genform), path('gen_diagnosis/', views.gen_diagnosis), path('finddoctors/', views.finddoctors), path('diagnosis_option/', views.diagnosis_option), path('camera/cholesterol_login_module/', views.cholesterol_login_module), path('camera/bilirubin_login_module/', views.bilirubin_login_module), path('camera/cataract_login_module/', views.cataract_login_module), ]
# -*- coding: utf-8 -*- from .util.pyutil import ChemPyDeprecationWarning import warnings from .electrolytes import ( A, B, limiting_log_gamma, extended_log_gamma, davies_log_gamma, limiting_activity_product, extended_activity_product, davies_activity_product, ) warnings.warn("use .electrolytes instead of .debye_huckel", ChemPyDeprecationWarning)
from empire import * from empire.enums.base_enum import BaseEnum class PythonTokenTypes(BaseEnum): ENDMARKER: Final[int] = 0 NAME: Final[int] = 1 NUMBER: Final[int] = 2 STRING: Final[int] = 3 NEWLINE: Final[int] = 4 INDENT: Final[int] = 5 DEDENT: Final[int] = 6 LPAR: Final[int] = 7 RPAR: Final[int] = 8 LSQB: Final[int] = 9 RSQB: Final[int] = 10 COLON: Final[int] = 11 COMMA: Final[int] = 12 SEMI: Final[int] = 13 PLUS: Final[int] = 14 MINUS: Final[int] = 15 STAR: Final[int] = 16 SLASH: Final[int] = 17 VBAR: Final[int] = 18 AMPER: Final[int] = 19 LESS: Final[int] = 20 GREATER: Final[int] = 21 EQUAL: Final[int] = 22 DOT: Final[int] = 23 PERCENT: Final[int] = 24 LBRACE: Final[int] = 25 RBRACE: Final[int] = 26 EQEQUAL: Final[int] = 27 NOTEQUAL: Final[int] = 28 LESSEQUAL: Final[int] = 29 GREATEREQUAL: Final[int] = 30 TILDE: Final[int] = 31 CIRCUMFLEX: Final[int] = 32 LEFTSHIFT: Final[int] = 33 RIGHTSHIFT: Final[int] = 34 DOUBLESTAR: Final[int] = 35 PLUSEQUAL: Final[int] = 36 MINEQUAL: Final[int] = 37 STAREQUAL: Final[int] = 38 SLASHEQUAL: Final[int] = 39 PERCENTEQUAL: Final[int] = 40 AMPEREQUAL: Final[int] = 41 VBAREQUAL: Final[int] = 42 CIRCUMFLEXEQUAL: Final[int] = 43 LEFTSHIFTEQUAL: Final[int] = 44 RIGHTSHIFTEQUAL: Final[int] = 45 DOUBLESTAREQUAL: Final[int] = 46 DOUBLESLASH: Final[int] = 47 DOUBLESLASHEQUAL: Final[int] = 48 AT: Final[int] = 49 ATEQUAL: Final[int] = 50 RARROW: Final[int] = 51 ELLIPSIS: Final[int] = 52 COLONEQUAL: Final[int] = 53 OP: Final[int] = 54 AWAIT: Final[int] = 55 ASYNC: Final[int] = 56 TYPE_IGNORE: Final[int] = 57 TYPE_COMMENT: Final[int] = 58 # These aren't used by the C tokenizer but are needed for tokenize.py ERRORTOKEN: Final[int] = 59 COMMENT: Final[int] = 60 NL: Final[int] = 61 ENCODING: Final[int] = 62 N_TOKENS: Final[int] = 63 # Special definitions for cooperation with parser NT_OFFSET: Final[int] = 256
import os os.environ.setdefault("DJANGO_SETTINGS_MODULE", "project.settings") from services import CCTVService class CCTV_Api(object): @staticmethod def main(): while 1: service = CCTVService() menu = input('0-Exit, 1-read_csv 2-read_xls 3-read_json') if menu == '0': break elif menu == '1': service.csv({'context':'./data/', 'fname':'cctv_in_seoul'}) elif menu == '2': service.xls({'context':'./data/', 'fname':'pop_in_seoul'}) elif menu == '3': service.json({'context':'./data/', 'fname':'geo_simple'}) else: continue CCTV_Api.main()
import unittest import numpy import pytest import chainer from chainer import backend from chainer.backends import _cpu from chainer.backends import cuda from chainer import functions from chainer import testing import chainerx def _to_gpu(x, device_id): if device_id >= 0: return cuda.to_gpu(x, device_id) else: return x _nonchainerx_backend_configs = ( [ # NumPy {}, # CuPy {'use_cuda': True, 'cuda_device': 0}, {'use_cuda': True, 'cuda_device': 1}, ]) _chainerx_backend_configs = ( [ {'use_chainerx': True, 'chainerx_device': 'native:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:0'}, {'use_chainerx': True, 'chainerx_device': 'cuda:1'}, ]) _numpy_device = chainer.get_device('@numpy') class CopyTestBase(object): def setUp(self): self.x = numpy.random.uniform(-1, 1, (10, 5)).astype(self.dtype) self.gy = numpy.random.uniform(-1, 1, (10, 5)).astype(self.dtype) self.ggx = numpy.random.uniform(-1, 1, (10, 5)).astype(self.dtype) self.check_double_backward_options = {} if self.dtype == numpy.float16: self.check_double_backward_options = {'atol': 5e-3, 'rtol': 5e-2} def check_forward(self, dst_device_spec, src_device, dst_device): x = src_device.send(self.x) x_var = chainer.Variable(x) y = functions.copy(x_var, dst_device_spec) assert y.device == dst_device assert backend.get_device_from_array(y.array) == dst_device assert y.dtype == self.dtype numpy.testing.assert_array_equal(_numpy_device.send(y.array), self.x) def test_forward(self, src_backend_config, dst_backend_config): self.check_forward( dst_backend_config.device, src_backend_config.device, dst_backend_config.device) def test_backward(self, src_backend_config, dst_backend_config): x = src_backend_config.get_array(self.x) gy = dst_backend_config.get_array(self.gy) src_device = src_backend_config.device dst_device = dst_backend_config.device x_var = chainer.Variable(x, requires_grad=True) y_var = functions.copy(x_var, dst_device) y_var.grad = gy y_var.backward() x_grad = x_var.grad assert x_var.grad_var.device == src_device assert backend.get_device_from_array(x_grad) == src_device numpy.testing.assert_array_equal(_numpy_device.send(x_grad), self.gy) def test_double_backward(self, src_backend_config, dst_backend_config): x = src_backend_config.get_array(self.x) gy = dst_backend_config.get_array(self.gy) ggx = src_backend_config.get_array(self.ggx) dst_device = dst_backend_config.device x_var = chainer.Variable(x, requires_grad=True) y_var = functions.copy(x_var, dst_device) y_var.grad = gy gy_var = y_var.grad_var y_var.backward(enable_double_backprop=True) assert x_var.grad_var.requires_grad is True x_var.grad_var.grad = ggx x_var.grad_var.backward() assert gy_var.grad_var.device == dst_device assert ( backend.get_device_from_array(gy_var.grad_var.array) == dst_device) numpy.testing.assert_array_equal( _numpy_device.send(gy_var.grad_var.array), self.ggx) @testing.inject_backend_tests(None, _nonchainerx_backend_configs) @testing.inject_backend_tests(None, _nonchainerx_backend_configs) @testing.parameterize(*testing.product({ 'dtype': [numpy.float16, numpy.float32, numpy.float64], })) class TestCopyNonChainerx(CopyTestBase, unittest.TestCase): def test_forward_int(self, src_backend_config, dst_backend_config): src_device = src_backend_config.device dst_device = dst_backend_config.device if dst_device.xp is numpy: dst_device_spec = -1 elif dst_device.xp is chainer.backends.cuda.cupy: dst_device_spec = dst_device.device.id else: assert False, dst_device self.check_forward( dst_device_spec, src_device, dst_device) def test_forward_str(self, src_backend_config, dst_backend_config): src_device = src_backend_config.device dst_device = dst_backend_config.device if dst_device.xp is numpy: dst_device_spec = '@numpy' elif dst_device.xp is chainer.backends.cuda.cupy: dst_device_spec = '@cupy:{}'.format(dst_device.device.id) else: assert False, dst_device self.check_forward( dst_device_spec, src_device, dst_device) @testing.inject_backend_tests(None, _chainerx_backend_configs) @testing.inject_backend_tests(None, _chainerx_backend_configs) @testing.parameterize(*testing.product({ 'dtype': [numpy.float16, numpy.float32, numpy.float64], })) class TestCopyChainerx(CopyTestBase, unittest.TestCase): def test_forward_str(self, src_backend_config, dst_backend_config): src_device = src_backend_config.device dst_device = dst_backend_config.device dst_device_spec = dst_device.device.name self.check_forward( dst_device_spec, src_device, dst_device) @testing.inject_backend_tests(None, _chainerx_backend_configs) @testing.inject_backend_tests(None, _nonchainerx_backend_configs) class TestCopyBetweenChainerxAndNonChainerx(unittest.TestCase): # Copy between non-ChainerX and ChainerX devices are not supported. dtype = numpy.float32 def check_invalid(self, src_device, dst_device_spec): x = src_device.send( numpy.random.uniform(-1, 1, (10, 5)).astype(self.dtype)) x_var = chainer.Variable(x) with pytest.raises(RuntimeError): functions.copy(x_var, dst_device_spec) def test_invalid(self, nonchx_backend_config, chx_backend_config): assert nonchx_backend_config.xp is not chainerx assert chx_backend_config.xp is chainerx self.check_invalid( nonchx_backend_config.device, chx_backend_config.device) self.check_invalid( chx_backend_config.device, nonchx_backend_config.device) # cuda.DummyDevice is not supported either. self.check_invalid( chx_backend_config.device, cuda.DummyDevice) @testing.inject_backend_tests(None, _nonchainerx_backend_configs) @testing.inject_backend_tests(None, _nonchainerx_backend_configs) class TestCopyCudaDummyDevice(unittest.TestCase): def test_dummy_device(self, src_backend_config, current_backend_config): x_arr = src_backend_config.get_array(numpy.zeros((2, 3))) with current_backend_config: y = functions.copy(x_arr, cuda.DummyDevice) # Always transferred to NumPy device, regardless of the current CUDA # device. assert isinstance(y.device, _cpu.CpuDevice) testing.run_module(__name__, __file__)
# -*- coding: utf-8 -*- # Copyright 2020 ICON Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time from typing import Iterable from unittest.mock import Mock import pytest from iconservice.base.block import Block from iconservice.base.block import NULL_BLOCK from iconservice.precommit_data_manager import PrecommitDataManager class TestPrecommitDataManager(object): @pytest.fixture(scope="function") def manager(self, create_precommit_data_manager): return create_precommit_data_manager(NULL_BLOCK) @pytest.fixture(scope="class") def create_precommit_data_manager(self): def func(block: "Block"): manager = PrecommitDataManager() manager.init(block) return manager return func @pytest.fixture(scope="function") def create_dummy_precommit_data(self): def func(block: 'Block'): data = Mock() data.block_batch.block = block return data return func @staticmethod def tx_hash() -> bytes: """Returns 32 length random tx_hash in bytes :return: tx_hash in bytes """ print("tx_hash()") return os.urandom(32) @staticmethod def block_hash() -> bytes: """Returns 32 length random block_hash in bytes :return: block_hash in bytes """ print("block_hash()") return os.urandom(32) @staticmethod def timestamp() -> int: return int(time.time() * 1_000_000) def test_init_with_null_block(self, manager: 'PrecommitDataManager'): precommit_data = manager.get(bytes(32)) assert precommit_data is None block: 'Block' = manager.last_block assert block == NULL_BLOCK assert manager.get(block.hash) is None assert len(manager) == 1 def test_with_genesis_block(self, manager: 'PrecommitDataManager', create_dummy_precommit_data): block_hash = bytes(32) block = Block( block_height=0, timestamp=1234, block_hash=block_hash, prev_hash=None, ) precommit_data = create_dummy_precommit_data(block) # TEST: push # null_block -> genesis_block manager.push(precommit_data) assert manager.last_block == NULL_BLOCK assert len(manager) == 2 # TEST: get # null_block -> genesis_block assert manager.get(block_hash) == precommit_data assert len(manager) == 2 # TEST: commit # genesis_block only manager.commit(block) assert manager.last_block == block assert len(manager) == 1 # TEST clear manager.clear() assert manager.last_block == block assert len(manager) == 1 def test_get(self, create_precommit_data_manager, create_dummy_precommit_data): """ parent0 - child0 / root - parent1 - child1 \ parent2 - child2 :param create_precommit_data_manager: :return: """ block_height = 100 root = Block( block_height=block_height, timestamp=self.timestamp(), block_hash=self.block_hash(), prev_hash=self.block_hash() ) parents = [] for i in range(3): block = Block( block_height=root.height + 1, timestamp=self.timestamp(), block_hash=self.block_hash(), prev_hash=root.hash ) parents.append(block) children = [] for i in range(3): parent = parents[i] block = Block( block_height=parent.height + 1, prev_hash=parent.hash, timestamp=self.timestamp(), block_hash=self.block_hash(), ) children.append(block) manager = create_precommit_data_manager(root) # Push parent blocks for block in parents: precommit_data = create_dummy_precommit_data(block) manager.push(precommit_data) assert len(manager) == 4 # Push child blocks for block in children: precommit_data = create_dummy_precommit_data(block) manager.push(precommit_data) assert len(manager) == 7 # There is no precommit_data for root, because root block has been already committed. assert manager.get(root.hash) is None for block in parents: precommit_data = manager.get(block.hash) assert precommit_data.block_batch.block == block for block in children: precommit_data = manager.get(block.hash) assert precommit_data.block_batch.block == block def test_push(self, manager): pass def test_commit(self, manager): pass def validate_block_to_invoke(self, manager): pass def validate_block_to_commit(self, manager): pass def clear(self): pass
import datetime as dt import logging import random import sqlite3 logger = logging.getLogger(__file__) with open('data/first_names.txt') as f: first_names = [n.strip() for n in f] with open("data/last_names.txt") as f: last_names = [n.strip() for n in f] CLASS_NAMES = [ "Mineral Psychology", "Underwater Basket Weaving", "The History of Mud", "Algorithms and Data Structures", "Programming Languages", "Natural Language Processing", "Computational Linguistics", "Machine Learning", "Deep Learning", "The Literature of Science Fiction", "Creative Writing", "Statistics", "Writing Creative Non-fiction", "Jazz Composition", "Jazz Piano", "Classical Piano", "Music Theory", "Intro to Biology", "Computational Biology", "The Molecular Biology of the Cell", "Cancer Biology", "Number Theory", "The History of Technology", ] def insert_students(db, n): sql = """ INSERT INTO students (first_name, last_name, dob) VALUES (?,?,?) """ for i in range(1, n+1): first_name = random.choice(first_names) last_name = random.choice(last_names) dob = dt.date.today() - dt.timedelta(days= (random.normalvariate(19,2) + random.paretovariate(3)) * 365.2421897) db.execute(sql, (first_name, last_name, dob)) if i % 100 == 0: db.commit() db.commit() sql = """ SELECT id FROM students """ cursor = db.execute(sql) return [row[0] for row in cursor] def insert_classes(db): sql = """ INSERT INTO classes (name) VALUES (?) """ for name in CLASS_NAMES: db.execute(sql, (name,)) db.commit() sql = """ SELECT id FROM classes """ cursor = db.execute(sql) return [row[0] for row in cursor] def enroll(db, student_id, class_id): sql = """ INSERT INTO enrollments (student_id, class_id) VALUES (?,?) """ db.execute(sql, (student_id, class_id,)) def enrollments(db, student_ids, class_ids): for student_id in student_ids: for class_id in random.sample(class_ids, k=random.randint(0,3)): logger.debug("enrolling %s in %s", student_id, class_id) # nobody signs up for this class if class_id == 2: continue enroll(db, student_id, class_id) db.commit() with sqlite3.connect("data/class_enrollments.sqlite.db") as db: student_ids = insert_students(db, n=1000) class_ids = insert_classes(db) enrollments(db, student_ids, class_ids)
ano = int(input("Digite o ano: ")) if ano%100 == 0 and ano%400 == 0: print('Bissexto!!') else : if ano%4 == 0: print('Bissexto!!') else: print('Não é Bissexto!')
#!/usr/bin/env python3 #coding=utf-8 import os import VBREG as REG import CorpusReader as cr os.system('clear') print('Training starts - Tuna-Furniture') ts,ds,ats = cr.LoadAlignedRegCorpus('Corpora/ETunaF-Aligned2.json') reg = REG.VBREG(ts,ds,ats) print('Training completes') # "targets": [ # "colour=grey;orientation=front;type=desk;size=large" # ], # "distractors": [ # "colour=blue;orientation=front;type=desk;size=large", # "colour=red;orientation=back;type=desk;size=large", # "colour=green;orientation=left;type=desk;size=small", # "colour=blue;orientation=front;type=fan;size=large", # "colour=red;orientation=back;type=fan;size=large", # "colour=green;orientation=left;type=fan;size=small" # ], txt1 = reg.Generate([ ('colour','grey',1),('orientation','front',1),('type','desk',1),('size','large',1) ],[ [('colour','blue',1),('orientation','front',1),('type','desk',1),('size','large',1)], [('colour','red',1),('orientation','back',1),('type','desk',1),('size','large',1)], [('colour','green',1),('orientation','left',1),('type','desk',1),('size','small',1)], [('colour','blue',1),('orientation','front',1),('type','fan',1),('size','large',1)], [('colour','red',1),('orientation','back',1),('type','fan',1),('size','large',1)], [('colour','green',1),('orientation','left',1),('type','fan',1),('size','small',1)], ]) print('task1:',txt1) print('corpus text: grey frontal table') print('') # "targets": [ # "colour=red;orientation=right;type=chair;size=small" # ], # "distractors": [ # "colour=red;orientation=left;type=chair;size=small", # "colour=blue;orientation=back;type=chair;size=small", # "colour=grey;orientation=front;type=chair;size=large", # "colour=red;orientation=left;type=sofa;size=small", # "colour=blue;orientation=back;type=sofa;size=small", # "colour=grey;orientation=front;type=sofa;size=large" # ], txt2 = reg.Generate([ ('colour','red',1),('orientation','right',1),('type','chair',1),('size','small',1) ],[ [('colour','red',1),('orientation','left',1),('type','chair',1),('size','small',1)], [('colour','blue',1),('orientation','back',1),('type','chair',1),('size','small',1)], [('colour','grey',1),('orientation','front',1),('type','chair',1),('size','large',1)], [('colour','red',1),('orientation','left',1),('type','sofa',1),('size','small',1)], [('colour','blue',1),('orientation','back',1),('type','sofa',1),('size','small',1)], [('colour','grey',1),('orientation','front',1),('type','sofa',1),('size','large',1)], ]) print('task2:',txt2) print('corpus text: red large chair') print('') print('Training starts - Tuna-People') ts,ds,ats = cr.LoadAlignedRegCorpus('Corpora/ETunaP-Aligned2.json') reg = REG.VBREG(ts,ds,ats) print('Training completes') # "targets": [ # "age=old;orientation=front;hairColour=light;hasSuit=1;hasShirt=1;hasTie=1;hasBeard=1;hasGlasses=1;hasHair=1" # ], # "distractors": [ # "age=old;orientation=left;hairColour=light;hasSuit=0;hasShirt=1;hasTie=0;hasBeard=0;hasGlasses=1;hasHair=1", # "age=young;orientation=front;hairColour=dark;hasSuit=1;hasShirt=0;hasTie=1;hasBeard=0;hasGlasses=1;hasHair=1", # "age=old;orientation=front;hairColour=light;hasSuit=1;hasShirt=0;hasTie=1;hasBeard=0;hasGlasses=1;hasHair=1", # "age=young;orientation=front;hairColour=dark;hasSuit=0;hasShirt=0;hasTie=0;hasBeard=0;hasGlasses=0;hasHair=1", # "age=young;orientation=front;hairColour=dark;hasSuit=0;hasShirt=1;hasTie=0;hasBeard=0;hasGlasses=0;hasHair=1", # "age=old;orientation=front;hairColour=light;hasSuit=1;hasShirt=0;hasTie=1;hasBeard=0;hasGlasses=0;hasHair=1" # ], txt1 = reg.Generate([ ('age','old',1),('orientation','front',1),('hairColour','light',1),('hasSuit','1',1),('hasShirt','1',1),('hasTie','1',1),('hasBeard','1',1),('hasGlasses','1',1),('hasHair','1',1) ],[ [('age','old',1),('orientation','left',1),('hairColour','light',1),('hasSuit','0',1),('hasShirt','1',1),('hasTie','0',1),('hasBeard','0',1),('hasGlasses','1',1),('hasHair','1',1)], [('age','young',1),('orientation','front',1),('hairColour','dark',1),('hasSuit','1',1),('hasShirt','0',1),('hasTie','1',1),('hasBeard','0',1),('hasGlasses','1',1),('hasHair','1',1)], [('age','old',1),('orientation','front',1),('hairColour','light',1),('hasSuit','1',1),('hasShirt','0',1),('hasTie','1',1),('hasBeard','0',1),('hasGlasses','1',1),('hasHair','1',1)], [('age','young',1),('orientation','front',1),('hairColour','dark',1),('hasSuit','0',1),('hasShirt','0',1),('hasTie','0',1),('hasBeard','0',1),('hasGlasses','0',1),('hasHair','1',1)], [('age','young',1),('orientation','front',1),('hairColour','dark',1),('hasSuit','0',1),('hasShirt','1',1),('hasTie','0',1),('hasBeard','0',1),('hasGlasses','0',1),('hasHair','1',1)], [('age','old',1),('orientation','front',1),('hairColour','light',1),('hasSuit','1',1),('hasShirt','0',1),('hasTie','1',1),('hasBeard','0',1),('hasGlasses','0',1),('hasHair','1',1)], ]) print('task1:',txt1) print('corpus text: beard, glasses, old') print('') # "targets": [ # "age=young;orientation=front;hairColour=dark;hasSuit=0;hasShirt=1;hasTie=0;hasBeard=1;hasGlasses=0;hasHair=1" # ], # "distractors": [ # "age=young;orientation=front;hairColour=light;hasSuit=1;hasShirt=0;hasTie=1;hasBeard=0;hasGlasses=0;hasHair=1", # "age=young;orientation=front;hairColour=dark;hasSuit=1;hasShirt=0;hasTie=1;hasBeard=0;hasGlasses=0;hasHair=1", # "age=young;orientation=right;hairColour=dark;hasSuit=0;hasShirt=1;hasTie=0;hasBeard=0;hasGlasses=0;hasHair=1", # "age=old;orientation=front;hairColour=light;hasSuit=1;hasShirt=0;hasTie=1;hasBeard=0;hasGlasses=0;hasHair=1", # "age=old;orientation=front;hairColour=light;hasSuit=1;hasShirt=0;hasTie=1;hasBeard=0;hasGlasses=0;hasHair=1", # "age=old;orientation=right;hairColour=light;hasSuit=1;hasShirt=0;hasTie=1;hasBeard=0;hasGlasses=0;hasHair=1" # ], txt2 = reg.Generate([ ('age','young',1),('orientation','front',1),('hairColour','dark',1),('hasSuit','0',1),('hasShirt','1',1),('hasTie','0',1),('hasBeard','1',1),('hasGlasses','0',1),('hasHair','1',1) ],[ [('age','young',1),('orientation','front',1),('hairColour','light',1),('hasSuit','1',1),('hasShirt','0',1),('hasTie','1',1),('hasBeard','0',1),('hasGlasses','0',1),('hasHair','1',1)], [('age','young',1),('orientation','front',1),('hairColour','dark',1),('hasSuit','1',1),('hasShirt','0',1),('hasTie','1',1),('hasBeard','0',1),('hasGlasses','0',1),('hasHair','1',1)], [('age','young',1),('orientation','right',1),('hairColour','dark',1),('hasSuit','0',1),('hasShirt','1',1),('hasTie','0',1),('hasBeard','0',1),('hasGlasses','0',1),('hasHair','1',1)], [('age','old',1),('orientation','front',1),('hairColour','light',1),('hasSuit','1',1),('hasShirt','0',1),('hasTie','1',1),('hasBeard','0',1),('hasGlasses','0',1),('hasHair','1',1)], [('age','old',1),('orientation','front',1),('hairColour','light',1),('hasSuit','1',1),('hasShirt','0',1),('hasTie','1',1),('hasBeard','0',1),('hasGlasses','0',1),('hasHair','1',1)], [('age','old',1),('orientation','right',1),('hairColour','light',1),('hasSuit','1',1),('hasShirt','0',1),('hasTie','1',1),('hasBeard','0',1),('hasGlasses','0',1),('hasHair','1',1)], ]) print('task1:',txt2) print('corpus text: guy with barb') print('')
import os from math import cos, sin, pi def rotate_vector(theta, vector): #Rotation by anti-clocwise rotation matrix R = [ [cos(theta), -sin(theta)], [sin(theta), cos(theta)]] new_vector = list(); new_vector.append(0); new_vector.append(0); for i in xrange(2): for j in xrange(2): new_vector[i]+=R[i][j]*vector[j] return new_vector def ConvertToRadians(angle): return angle*pi/180 def ConvertToAngles(angle): return angle*180/pi
import os SAMPLES_DIR = '/home/pi/ArchSound/ArchSound/samples/' SAMPLES_CONFIG = [ {'zone': '1', 'space': SAMPLES_DIR + '01_molenstraat/space.wav', 'steps': SAMPLES_DIR + '01_molenstraat/steps.wav'}, {'zone': '2', 'space': SAMPLES_DIR + '02_pocket_park/space_steps.wav', 'steps': ''}, {'zone': '3', 'space': SAMPLES_DIR + '03_pocket_park_2/space.wav', 'steps': SAMPLES_DIR + '03_pocket_park_2/steps.wav'}, {'zone': '4', 'space': SAMPLES_DIR + '04_atrium/space.wav', 'steps': SAMPLES_DIR + '04_atrium/steps.wav'}, {'zone': '5', 'space': SAMPLES_DIR + '05_playground//space_steps.wav', 'steps': ''}, {'zone': '6', 'space': SAMPLES_DIR + '06_skatepark/space.wav', 'steps': ''}, {'zone': '7', 'space': SAMPLES_DIR + '07_green_belt/space.wav', 'steps': SAMPLES_DIR + '07_green_belt/steps.wav'}, {'zone': '8', 'space': SAMPLES_DIR + '08_green_belt_2/space.wav', 'steps': SAMPLES_DIR + '08_green_belt_2/steps.wav'}, {'zone': '9', 'space': SAMPLES_DIR + '09_tws/space.wav', 'steps': SAMPLES_DIR + '09_tws/steps.wav'}, {'zone': '10', 'space': SAMPLES_DIR + '10_ziekerstraat/space.wav', 'steps': SAMPLES_DIR + '10_ziekerstraat/steps.wav'}, {'zone': '11', 'space': SAMPLES_DIR + '11_meditation_garden/space.wav', 'steps': SAMPLES_DIR + '11_meditation_garden/steps.wav'} ]
import demistomock as demisto from CommonServerPython import * from CommonServerUserPython import * ''' IMPORTS ''' import os import traceback import requests import zipfile import io from datetime import datetime as dt # Disable insecure warnings requests.packages.urllib3.disable_warnings() ''' GLOBALS/PARAMS ''' # Remove trailing slash to prevent wrong URL path to service API_URL = demisto.params()['url'].rstrip('/') # Should we use SSL USE_SSL = not demisto.params().get('insecure', False) # Remove proxy if not set to true in params if not demisto.params().get('proxy'): os.environ.pop('HTTP_PROXY', None) os.environ.pop('HTTPS_PROXY', None) os.environ.pop('http_proxy', None) os.environ.pop('https_proxy', None) THRESHOLD = int(demisto.params().get('threshold', 1)) # disable-secrets-detection-start # Whether compromised websites are considered malicious or not. See the blacklists output in # https://urlhaus-api.abuse.ch/ # disable-secrets-detection-end COMPROMISED_IS_MALICIOUS = demisto.params().get('compromised_is_malicious', False) # Headers to be sent in requests HEADERS = { 'Content-Type': 'application/x-www-form-urlencoded', 'Accept': 'application/json' } ''' HELPER FUNCTIONS ''' def http_request(method, command, data=None): retry = int(demisto.params().get('retry', 3)) try_num = 0 while try_num < retry: try_num += 1 url = f'{API_URL}/{command}/' res = requests.request(method, url, verify=USE_SSL, data=data, headers=HEADERS) if res.status_code == 200: return res raise Exception(f'Error in API call {url} [{res.status_code}] - {res.reason}') def reformat_date(date): try: return dt.strptime(date.rstrip(' UTC'), '%Y-%m-%d %H:%M:%S').strftime('%Y-%m-%dT%H:%M:%S') except Exception: return 'Unknown' def extract_zipped_buffer(buffer): with io.BytesIO() as bio: bio.write(buffer) with zipfile.ZipFile(bio) as z: return z.read(z.namelist()[0]) def query_url_information(url): return http_request('POST', 'url', f'url={url}') def query_host_information(host): return http_request('POST', 'host', f'host={host}') def query_payload_information(hash_type, hash): return http_request('POST', 'payload', f'{hash_type}_hash={hash}') def download_malware_sample(sha256): return http_request('GET', f'download/{sha256}') ''' COMMANDS + REQUESTS FUNCTIONS ''' def test_module(): """ Performs basic get request to get item samples """ http_request('POST', 'url') def calculate_dbot_score(blacklists, threshold, compromised_is_malicious): dbot_score = 0 description = 'Not listed in any blacklist' blacklist_appearances = [] for blacklist, status in blacklists.items(): if blacklist == 'spamhaus_dbl': if status.endswith('domain') or (status.startswith('abused') and compromised_is_malicious): blacklist_appearances.append((blacklist, status)) elif status == 'listed': blacklist_appearances.append((blacklist, None)) if len(blacklist_appearances) >= threshold: description = '' for appearance in blacklist_appearances: if appearance[1] is not None: description += f'Listed in {appearance[0]}. ' else: description += f'Listed as {appearance[1]} in {appearance[0]}. ' dbot_score = 3 elif len(blacklist_appearances) > 0: dbot_score = 2 else: dbot_score = 1 return dbot_score, description def url_command(): url = demisto.args().get('url') try: url_information = query_url_information(url).json() ec = { 'URL': { 'Data': url }, 'DBotScore': { 'Type': 'url', 'Vendor': 'URLhaus', 'Indicator': url } } if url_information['query_status'] == 'ok': # URLhaus output blacklist_information = [] blacklists = url_information.get('blacklists', {}) for bl_name, bl_status in blacklists.items(): blacklist_information.append({'Name': bl_name, 'Status': bl_status}) date_added = reformat_date(url_information.get('date_added')) urlhaus_data = { 'ID': url_information.get('id', ''), 'Status': url_information.get('url_status', ''), 'Host': url_information.get('host', ''), 'DateAdded': date_added, 'Threat': url_information.get('threat', ''), 'Blacklist': blacklist_information, 'Tags': url_information.get('tags', []) } payloads = [] for payload in url_information.get('payloads', []): vt_data = payload.get('virustotal', None) vt_information = None if vt_data: vt_information = { 'Result': float(vt_data.get('percent', 0)), 'Link': vt_data.get('link', '') } payloads.append({ 'Name': payload.get('filename', 'unknown'), 'Type': payload.get('file_type', ''), 'MD5': payload.get('response_md5', ''), 'VT': vt_information }) urlhaus_data['Payload'] = payloads # DBot score calculation dbot_score, description = calculate_dbot_score(url_information.get('blacklists', {}), THRESHOLD, COMPROMISED_IS_MALICIOUS) ec['DBotScore']['Score'] = dbot_score if dbot_score == 3: ec['URL']['Malicious'] = { 'Vendor': 'URLhaus', 'Description': description } ec['URLhaus.URL(val.ID && val.ID === obj.ID)'] = urlhaus_data human_readable = tableToMarkdown(f'URLhaus reputation for {url}', { 'URLhaus link': url_information.get("urlhaus_reference", "None"), 'Description': description, 'URLhaus ID': urlhaus_data['ID'], 'Status': urlhaus_data['Status'], 'Threat': url_information.get("threat", ""), 'Date added': date_added }) demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': url_information, 'HumanReadable': human_readable, 'HumanReadableFormat': formats['markdown'], 'EntryContext': ec }) elif url_information['query_status'] == 'no_results': ec['DBotScore']['Score'] = 0 human_readable = f'## URLhaus reputation for {url}\n' \ f'No results!' demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': url_information, 'HumanReadable': human_readable, 'HumanReadableFormat': formats['markdown'], 'EntryContext': ec }) elif url_information['query_status'] == 'invalid_url': human_readable = f'## URLhaus reputation for {url}\n' \ f'Invalid URL!' demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': url_information, 'HumanReadable': human_readable, 'HumanReadableFormat': formats['markdown'], 'EntryContext': ec }) else: demisto.results({ 'Type': entryTypes['error'], 'ContentsFormat': formats['text'], 'Contents': f'Query results = {url_information["query_status"]}' }) except Exception: demisto.debug(traceback.format_exc()) return_error('Failed getting url data, please verify the arguments and parameters') def domain_command(): domain = demisto.args()['domain'] try: domain_information = query_host_information(domain).json() ec = { 'Domain': { 'Name': domain }, 'DBotScore': { 'Type': 'domain', 'Vendor': 'URLhaus', 'Indicator': domain } } if domain_information['query_status'] == 'ok': # URLHaus output blacklist_information = [] blacklists = domain_information.get('blacklists', {}) for bl_name, bl_status in blacklists.items(): blacklist_information.append({'Name': bl_name, 'Status': bl_status}) first_seen = reformat_date(domain_information.get('firstseen')) urlhaus_data = { 'FirstSeen': first_seen, 'Blacklist': blacklists, 'URL': domain_information.get('urls', []) } # DBot score calculation dbot_score, description = calculate_dbot_score(domain_information.get('blacklists', {}), THRESHOLD, COMPROMISED_IS_MALICIOUS) ec['DBotScore']['Score'] = dbot_score if dbot_score == 3: ec['domain']['Malicious'] = { 'Vendor': 'URLhaus', 'Description': description } ec['URLhaus.Domain(val.Name && val.Name === obj.Name)'] = urlhaus_data human_readable = tableToMarkdown(f'URLhaus reputation for {domain}', { 'URLhaus link': domain_information.get('urlhaus_reference', 'None'), 'Description': description, 'First seen': first_seen, }) demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': domain_information, 'HumanReadable': human_readable, 'HumanReadableFormat': formats['markdown'], 'EntryContext': ec }) elif domain_information['query_status'] == 'no_results': ec['DBotScore']['Score'] = 0 human_readable = f'## URLhaus reputation for {domain}\n' \ f'No results!' demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': domain_information, 'HumanReadable': human_readable, 'HumanReadableFormat': formats['markdown'], 'EntryContext': ec }) elif domain_information['query_status'] == 'invalid_host': human_readable = f'## URLhaus reputation for {domain}\n' \ f'Invalid domain!' demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': domain_information, 'HumanReadable': human_readable, 'HumanReadableFormat': formats['markdown'], 'EntryContext': ec }) else: demisto.results({ 'Type': entryTypes['error'], 'ContentsFormat': formats['text'], 'Contents': f'Query results = {domain_information["query_status"]}' }) except Exception: demisto.debug(traceback.format_exc()) return_error('Failed getting domain data, please verify the arguments and parameters') def file_command(): hash = demisto.args()['file'] if len(hash) == 32: hash_type = 'md5' elif len(hash) == 64: hash_type = 'sha256' else: return_error('Only accepting MD5 (32 bytes) or SHA256 (64 bytes) hash types') try: file_information = query_payload_information(hash_type, hash).json() if file_information['query_status'] == 'ok' and file_information['md5_hash']: # URLhaus output first_seen = reformat_date(file_information.get('firstseen')) last_seen = reformat_date(file_information.get('lastseen')) urlhaus_data = { 'MD5': file_information.get('md5_hash', ''), 'SHA256': file_information.get('sha256_hash', ''), 'Type': file_information.get('file_type', ''), 'Size': int(file_information.get('file_size', '')), 'Signature': file_information.get('signature', ''), 'FirstSeen': first_seen, 'LastSeen': last_seen, 'DownloadLink': file_information.get('urlhaus_download', ''), 'URL': file_information.get('urls', []) } virus_total_data = file_information.get('virustotal') if virus_total_data: urlhaus_data['VirusTotal'] = { 'Percent': float(file_information.get('virustotal', {'percent': 0})['percent']), 'Link': file_information.get('virustotal', {'link': ''})['link'] } ec = { 'File': { 'Size': urlhaus_data.get('Size', 0), 'MD5': urlhaus_data.get('MD5', ''), 'SHA256': urlhaus_data.get('SHA256') }, 'URLhaus.File(val.MD5 && val.MD5 === obj.MD5)': urlhaus_data } human_readable = tableToMarkdown(f'URLhaus reputation for {hash_type.upper()} : {hash}', { 'URLhaus link': urlhaus_data.get('DownloadLink', ''), 'Signature': urlhaus_data.get('Signature', ''), 'MD5': urlhaus_data.get('MD5', ''), 'SHA256': urlhaus_data.get('SHA256', ''), 'First seen': first_seen, 'Last seen': last_seen }) demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': file_information, 'HumanReadable': human_readable, 'HumanReadableFormat': formats['markdown'], 'EntryContext': ec }) elif (file_information['query_status'] == 'ok' and not file_information['md5_hash']) or \ file_information['query_status'] == 'no_results': human_readable = f'## URLhaus reputation for {hash_type.upper()} : {hash}\n' \ f'No results!' demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': file_information, 'HumanReadable': human_readable, 'HumanReadableFormat': formats['markdown'], }) elif file_information['query_status'] in ['invalid_md5', 'invalid_sha256']: human_readable = f'## URLhaus reputation for {hash_type.upper()} : {hash}\n' \ f'Invalid {file_information["query_status"].lstrip("invalid_").upper()}!' demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': file_information, 'HumanReadable': human_readable, 'HumanReadableFormat': formats['markdown'], }) else: demisto.results({ 'Type': entryTypes['error'], 'ContentsFormat': formats['text'], 'Contents': f'Query results = {file_information["query_status"]}' }) except Exception: print(traceback.format_exc()) demisto.debug(traceback.format_exc()) return_error('Failed getting file data, please verify the arguments and parameters') def urlhaus_download_sample_command(): """ The response can be either the zipped sample (content-type = application/zip), or JSON (content-type = text/html) containing the query status. """ file_sha256 = demisto.args()['file'] res = download_malware_sample(file_sha256) try: if len(res.content) == 0: demisto.results({ 'Type': entryTypes['note'], 'HumanReadable': f'No results for SHA256: {file_sha256}', 'HumanReadableFormat': formats['markdown'] }) elif res.headers['content-type'] in ['text/html', 'application/json'] and \ res.json()['query_status'] == 'not_found': demisto.results({ 'Type': entryTypes['note'], 'ContentsFormat': formats['json'], 'Contents': res.json(), 'HumanReadable': f'No results for SHA256: {file_sha256}', 'HumanReadableFormat': formats['markdown'] }) elif res.headers['content-type'] == 'application/zip': demisto.results(fileResult(file_sha256, extract_zipped_buffer(res.content))) else: raise Exception # Handle like an exception except Exception: demisto.results({ 'Type': entryTypes['error'], 'ContentsFormat': formats['text'], 'Contents': str(res.content) }) ''' COMMANDS MANAGER / SWITCH PANEL ''' LOG('Command being called is %s' % (demisto.command())) try: if demisto.command() == 'test-module': # This is the call made when pressing the integration test button. test_module() demisto.results('ok') elif demisto.command() == 'url': url_command() elif demisto.command() == 'domain': domain_command() elif demisto.command() == 'file': file_command() elif demisto.command() == 'urlhaus-download-sample': urlhaus_download_sample_command() # Log exceptions except Exception as e: LOG(str(e)) LOG.print_log() raise
import qcore from qcore.asserts import AssertRaises class Foo(metaclass=qcore.DisallowInheritance): pass def test_disallow_inheritance(): with AssertRaises(TypeError): class Bar(Foo): pass
#!/usr/bin/env python from __future__ import print_function import jinja2 import argparse import os import fnmatch import numpy as np if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('filename') parser.add_argument('env_dir') args = parser.parse_args() env = jinja2.Environment(loader=jinja2.FileSystemLoader(args.env_dir)) template = env.get_template(os.path.relpath(args.filename, args.env_dir)) # create dictionary with useful modules etc. try: import rospkg rospack = rospkg.RosPack() except ImportError: pass rospack = None d = {'np': np, 'rospack': rospack} result = template.render(d) filename_out = args.filename.replace('.sdf.jinja','-gen.sdf') with open(filename_out, 'w') as f_out: print('{:s} -> {:s}'.format(args.filename, filename_out)) f_out.write(result)
from django.urls import path from . import views urlpatterns = [ path('textCheck', views.textCheck, name='textCheck'), path('check', views.check, name='check'), path('check_result', views.check_result, name='check_result'), path('globalUpload', views.globalUpload, name='globalUpload'), path('fileMerge', views.fileMerge, name='fileMerge'), path('file_download', views.file_download, name='file_download'), ]
from math import * inp = input().split(" ") n = int(inp[0]) r = int(inp[1]) fives = 1 for i in range(n): a = int(input()) fives = (fives*a)//gcd(fives,a) print((fives+r) % (10**9+7))
import unittest from xappt.models.callback import Callback class CallbackHost: def __init__(self): self.call_info = { 'a': [], 'b': [], 'c': [], } def callback_method_a(self, *args, **kwargs): self.call_info['a'].append((args, kwargs)) def callback_method_b(self, *args, **kwargs): self.call_info['b'].append((args, kwargs)) def callback_method_c(self, *args, **kwargs): self.call_info['c'].append((args, kwargs)) class TestCallback(unittest.TestCase): def test_add(self): cb_host = CallbackHost() cb = Callback() cb.add(cb_host.callback_method_a) self.assertEqual(0, len(cb._callback_functions)) cb._run_deferred_ops() self.assertEqual(1, len(cb._callback_functions)) def test_add_auto_remove(self): cb_host = CallbackHost() cb = Callback() cb.add(cb_host.callback_method_a) cb._run_deferred_ops() self.assertEqual(1, len(cb._callback_functions)) del cb_host cb._run_deferred_ops() self.assertEqual(0, len(cb._callback_functions)) def test_weakref(self): cb_host = CallbackHost() cb = Callback() cb.add(cb_host.callback_method_a) cb._run_deferred_ops() self.assertEqual(1, len(cb._callback_functions)) cb.remove(cb_host.callback_method_a) cb._run_deferred_ops() self.assertEqual(0, len(cb._callback_functions)) def test_clear(self): cb_host = CallbackHost() cb = Callback() cb.add(cb_host.callback_method_a) cb.add(cb_host.callback_method_b) cb.add(cb_host.callback_method_c) cb._run_deferred_ops() self.assertEqual(3, len(cb._callback_functions)) cb.clear() cb._run_deferred_ops() self.assertEqual(0, len(cb._callback_functions)) def test_invoke(self): cb_host = CallbackHost() cb = Callback() cb.add(cb_host.callback_method_a) cb.invoke("arg1", "arg2") call_info = cb_host.call_info['a'] self.assertEqual(1, len(call_info)) self.assertIn("arg1", call_info[0][0]) self.assertIn("arg2", call_info[0][0]) def test_invoke_paused(self): cb_host = CallbackHost() cb = Callback() cb.add(cb_host.callback_method_a) self.assertFalse(cb.paused) cb.paused = True self.assertTrue(cb.paused) cb.invoke("arg1", "arg2") self.assertEqual(1, len(cb._callback_functions)) self.assertEqual(0, len(cb_host.call_info['a']))
"""Test the ht.pyfilter.operations.primaryimage module.""" # ============================================================================= # IMPORTS # ============================================================================= # Standard Library import argparse # Third Party import pytest # Houdini Toolbox from ht.pyfilter.manager import PyFilterManager from ht.pyfilter.operations import primaryimage # ============================================================================= # FIXTURES # ============================================================================= @pytest.fixture def init_operation(mocker): """Fixture to initialize an operation.""" mocker.patch.object(primaryimage.SetPrimaryImage, "__init__", lambda x, y: None) def _create(): return primaryimage.SetPrimaryImage(None) return _create # ============================================================================= # TESTS # ============================================================================= class Test_SetPrimaryImage: """Test the ht.pyfilter.operations.primaryimage.SetPrimaryImage object.""" def test___init__(self, mocker): """Test object initialization.""" mock_super_init = mocker.patch.object( primaryimage.PyFilterOperation, "__init__" ) mock_manager = mocker.MagicMock(spec=PyFilterManager) op = primaryimage.SetPrimaryImage(mock_manager) mock_super_init.assert_called_with(mock_manager) assert not op._disable_primary_image assert op._primary_image_path is None # Properties def test_disable_primary_image(self, init_operation, mocker): """Test the 'disable_primary_image' property.""" mock_value = mocker.MagicMock(spec=bool) op = init_operation() op._disable_primary_image = mock_value assert op.disable_primary_image == mock_value def test_primary_image_path(self, init_operation, mocker): """Test the 'primary_image_path' property.""" mock_value = mocker.MagicMock(spec=str) op = init_operation() op._primary_image_path = mock_value assert op.primary_image_path == mock_value # Static Methods def test_build_arg_string(self, mocker): """Test arg string construction.""" result = primaryimage.SetPrimaryImage.build_arg_string() assert result == "" mock_value = mocker.MagicMock(spec=str) result = primaryimage.SetPrimaryImage.build_arg_string( primary_image_path=mock_value ) assert result == "--primary-image-path={}".format(mock_value) result = primaryimage.SetPrimaryImage.build_arg_string( disable_primary_image=True ) assert result == "--disable-primary-image" def test_register_parser_args(self, mocker): """Test registering all the argument parser args.""" mock_parser = mocker.MagicMock(spec=argparse.ArgumentParser) primaryimage.SetPrimaryImage.register_parser_args(mock_parser) calls = [ mocker.call("--primary-image-path", dest="primary_image_path"), mocker.call( "--disable-primary-image", action="store_true", dest="disable_primary_image", ), ] mock_parser.add_argument.assert_has_calls(calls) # Methods # filter_camera def test_filter_camera__no_op(self, init_operation, patch_operation_logger, mocker): """Test 'filter_camera' when doing nothing.""" mock_set = mocker.patch("ht.pyfilter.operations.primaryimage.set_property") op = init_operation() op._disable_primary_image = False op._primary_image_path = None op.filter_camera() mock_set.assert_not_called() def test_filter_camera__disable( self, init_operation, patch_operation_logger, mocker ): """Test 'filter_camera' when disabling the image.""" mock_set = mocker.patch("ht.pyfilter.operations.primaryimage.set_property") mock_logger = mocker.patch( "ht.pyfilter.operations.primaryimage._logger", autospec=True ) op = init_operation() op._disable_primary_image = True op.filter_camera() mock_logger.info.assert_called() mock_set.assert_called_with("image:filename", "null:") def test_filter_camera__path(self, init_operation, patch_operation_logger, mocker): """Test 'filter_camera' when setting the image path.""" mock_set = mocker.patch("ht.pyfilter.operations.primaryimage.set_property") mock_path = mocker.MagicMock(spec=str) op = init_operation() op._disable_primary_image = False op._primary_image_path = mock_path op.filter_camera() mock_set.assert_called_with("image:filename", mock_path) # process_parsed_args def test_process_parsed_args__noop(self, init_operation, mocker): """Test processing parsed args when no args are set.""" mock_namespace = mocker.MagicMock(spec=argparse.Namespace) mock_namespace.disable_primary_image = False mock_namespace.primary_image_path = None op = init_operation() op._disable_primary_image = False op._primary_image_path = None op.process_parsed_args(mock_namespace) assert not op.disable_primary_image assert op.primary_image_path is None def test_process_parsed_args__all(self, init_operation, mocker): """Test processing parsed args when all args are set.""" mock_path = mocker.MagicMock(spec=str) mock_namespace = mocker.MagicMock(spec=argparse.Namespace) mock_namespace.disable_primary_image = True mock_namespace.primary_image_path = mock_path op = init_operation() op._disable_primary_image = False op._primary_image_path = None op.process_parsed_args(mock_namespace) assert op.disable_primary_image assert op.primary_image_path == mock_path # should_run def test_should_run__no_op(self, init_operation): """Test if the operation should run with no args set.""" op = init_operation() op._disable_primary_image = False op._primary_image_path = None assert not op.should_run() def test_should_run__disable(self, init_operation): """Test if the operation should run when disable image is set.""" op = init_operation() op._disable_primary_image = True op._primary_image_path = None assert op.should_run() def test_should_run__set_path(self, init_operation, mocker): """Test if the operation should run when setting an image path.""" op = init_operation() op._disable_primary_image = False op._primary_image_path = mocker.MagicMock(spec=str) assert op.should_run()
import os import cv2 import torch import numpy as np class SAVE_ATTEN(object): def __init__(self, save_dir='../save_bins'): """ save_dir: the path for saving target """ self.save_dir = save_dir if not os.path.exists(self.save_dir): os.makedirs(self.save_dir) def save_masked_img_batch(self, path_batch, atten_batch, label_batch): """ process batch_size images; the path_batch and label_batch obtained from dataloader,and the atten_batch obtained directly from the modle(without any changes) atten_batch:get the attention_map after a layer in the forwad function of the model.py for example: def forward(self,x): x = self.layer1(x) x = self.layer2(x) return x def get_attention_map(self): return self.layer1(x) the procedure of obtaining attention_map : external input ----> batch selection ----> channel selection ----> normalize ----> resize ----> denormalize ----> save """ img_num = atten_batch.size()[0] for idx in range(img_num): atten = atten_batch[idx] atten = atten.cpu().data.numpy() label = label_batch[idx] label_list = self.get_label(label) # Label_list may be multiple labels, so it may correspond to multiple maps self._save_masked_img(path_batch[idx], atten, label_list) def _save_masked_img(self, img_path, atten, label_list): """ Process each image in turn label: the target class which will be used as the index to get correspoing channel """ if not os.path.isfile(img_path): raise 'Image not exist:%s'%(img_path) for each_label in label_list: label = each_label[0] attention_map = atten[label,:,:] # now is [width, height] atten_norm = attention_map img = cv2.imread(img_path) org_size = np.shape(img) w, h = org_size[0], org_size[1] # regularize each attention map atten_norm = self.normalize_map(atten_norm) atten_norm = cv2.resize(atten_norm, dsize=(h,w)) atten_norm = atten_norm* 255 heat_map = cv2.applyColorMap(atten_norm.astype(np.uint8), cv2.COLORMAP_JET) img = cv2.addWeighted(img.astype(np.uint8), 0.5, heat_map.astype(np.uint8), 0.5, 0) img_id = img_path.strip().split('/')[-1] img_id = img_id.strip().split('.')[0] save_dir = os.path.join(self.save_dir, img_id + '_' + str(label) +'.png') cv2.imwrite(save_dir, img) def normalize_map(self, atten_map): min_val = np.min(atten_map) max_val = np.max(atten_map) atten_norm = (atten_map - min_val)/(max_val - min_val) return atten_norm def get_label(self, gt_label): labels_idx = [] labels_idx = torch.nonzero(gt_label.squeeze()).cpu().numpy() # labels_idx is a list and it'type like this [[12], [22]], so you must use labels_idx[i][0] to get the correspoding label class return labels_idx def _merge_multi_class(self, atten, label_list): atten_norm = torch.zeros_like(atten) for each_label in label_list: label = each_label[0] atten_norm += atten[label,:,:] # atten_norm can be processed outside of the for loop return atten_norm
from django.apps import AppConfig class ContactUpdateConfig(AppConfig): name = 'contact_update'
import os from dotenv import load_dotenv, find_dotenv class Config(object): # Environment config SECRET_KEY = os.environ.get('SECRET_KEY', 'dev') BASE_PATH = os.environ.get('BASE_PATH', '') DB_HOST = os.environ.get('DB_HOST', 'localhost') DB_USER = os.environ.get('DB_USER', 'user') DB_PASS = os.environ.get('DB_PASS', 'pass') DB_PORT = os.environ.get('DB_PORT', 5432) DB_NAME = os.environ.get('DB_NAME', 'db_name') DB_URL = f"postgres://{DB_USER}:{DB_PASS}@{DB_HOST}:{DB_PORT}/{DB_NAME}" ENVIRONMENT_NAME = os.environ.get('ENVIRONMENT_NAME', 'dev') # SqlAlchemy config SQLALCHEMY_DATABASE_URI = DB_URL SQLALCHEMY_TRACK_MODIFICATIONS = False SQLALCHEMY_ENGINE_OPTIONS = {"pool_pre_ping": True} JWT_OIDC_WELL_KNOWN_CONFIG = os.environ.get( 'JWT_OIDC_WELL_KNOWN_CONFIG', 'https://localhost:8080/auth/realms/mds/.well-known/openid-configuration') JWT_OIDC_AUDIENCE = os.environ.get('JWT_OIDC_AUDIENCE', 'mds') JWT_OIDC_ALGORITHMS = os.environ.get('JWT_OIDC_ALGORITHMS', 'RS256') NRIS_DB_USER = os.environ.get('NRIS_DB_USER', 'localhost') NRIS_DB_PASSWORD = os.environ.get('NRIS_DB_PASSWORD', 'localhost') NRIS_DB_PORT = os.environ.get('NRIS_DB_PORT', 'localhost') NRIS_DB_SERVICENAME = os.environ.get('NRIS_DB_SERVICENAME', 'localhost') NRIS_DB_HOSTNAME = os.environ.get('NRIS_DB_HOSTNAME', 'localhost') NRIS_SERVER_CERT_DN = os.environ.get('NRIS_SERVER_CERT_DN', 'localhost') # Cache settings CACHE_TYPE = os.environ.get('CACHE_TYPE', 'redis') CACHE_REDIS_HOST = os.environ.get('CACHE_REDIS_HOST', 'redis') CACHE_REDIS_PORT = os.environ.get('CACHE_REDIS_PORT', 6379) CACHE_REDIS_PASS = os.environ.get('CACHE_REDIS_PASS', 'redis-password') CACHE_REDIS_URL = 'redis://:{0}@{1}:{2}'.format(CACHE_REDIS_PASS, CACHE_REDIS_HOST, CACHE_REDIS_PORT) def JWT_ROLE_CALLBACK(jwt_dict): return (jwt_dict['realm_access']['roles']) class TestConfig(Config): TESTING = os.environ.get('TESTING', True) DB_NAME = os.environ.get('DB_NAME_TEST', 'db_name_test') DB_URL = f"postgres://{Config.DB_USER}:{Config.DB_PASS}@{Config.DB_HOST}:{Config.DB_PORT}/{DB_NAME}" SQLALCHEMY_DATABASE_URI = DB_URL NRIS_DB_USER = os.environ.get('NRIS_DB_USER', 'localhost') NRIS_DB_PASSWORD = os.environ.get('NRIS_DB_PASSWORD', 'localhost') NRIS_DB_PORT = os.environ.get('NRIS_DB_PORT', 'localhost') NRIS_DB_SERVICENAME = os.environ.get('NRIS_DB_SERVICENAME', 'localhost') NRIS_DB_HOSTNAME = os.environ.get('NRIS_DB_HOSTNAME', 'localhost') NRIS_SERVER_CERT_DN = os.environ.get('NRIS_SERVER_CERT_DN', 'localhost') JWT_OIDC_TEST_MODE = True JWT_OIDC_TEST_AUDIENCE = "test_audience" JWT_OIDC_TEST_CLIENT_SECRET = "test_secret" JWT_OIDC_TEST_ISSUER = "test_issuer" # Dummy Private Keys for testing purposes, can replace these keys with any other generated key. JWT_OIDC_TEST_KEYS = { "keys": [{ "kid": "flask-jwt-oidc-test-client", "kty": "RSA", "alg": "RS256", "use": "sig", "n": "AN-fWcpCyE5KPzHDjigLaSUVZI0uYrcGcc40InVtl-rQRDmAh-C2W8H4_Hxhr5VLc6crsJ2LiJTV_E72S03pzpOOaaYV6-TzAjCou2GYJIXev7f6Hh512PuG5wyxda_TlBSsI-gvphRTPsKCnPutrbiukCYrnPuWxX5_cES9eStR", "e": "AQAB" }] } # Dummy Private Keys for testing purposes. JWT_OIDC_TEST_PRIVATE_KEY_JWKS = { "keys": [{ "kid": "flask-jwt-oidc-test-client", "kty": "RSA", "alg": "RS256", "use": "sig", "kty": "RSA", "n": "AN-fWcpCyE5KPzHDjigLaSUVZI0uYrcGcc40InVtl-rQRDmAh-C2W8H4_Hxhr5VLc6crsJ2LiJTV_E72S03pzpOOaaYV6-TzAjCou2GYJIXev7f6Hh512PuG5wyxda_TlBSsI-gvphRTPsKCnPutrbiukCYrnPuWxX5_cES9eStR", "e": "AQAB", "d": "C0G3QGI6OQ6tvbCNYGCqq043YI_8MiBl7C5dqbGZmx1ewdJBhMNJPStuckhskURaDwk4-8VBW9SlvcfSJJrnZhgFMjOYSSsBtPGBIMIdM5eSKbenCCjO8Tg0BUh_xa3CHST1W4RQ5rFXadZ9AeNtaGcWj2acmXNO3DVETXAX3x0", "p": "APXcusFMQNHjh6KVD_hOUIw87lvK13WkDEeeuqAydai9Ig9JKEAAfV94W6Aftka7tGgE7ulg1vo3eJoLWJ1zvKM", "q": "AOjX3OnPJnk0ZFUQBwhduCweRi37I6DAdLTnhDvcPTrrNWuKPg9uGwHjzFCJgKd8KBaDQ0X1rZTZLTqi3peT43s", "dp": "AN9kBoA5o6_Rl9zeqdsIdWFmv4DB5lEqlEnC7HlAP-3oo3jWFO9KQqArQL1V8w2D4aCd0uJULiC9pCP7aTHvBhc", "dq": "ANtbSY6njfpPploQsF9sU26U0s7MsuLljM1E8uml8bVJE1mNsiu9MgpUvg39jEu9BtM2tDD7Y51AAIEmIQex1nM", "qi": "XLE5O360x-MhsdFXx8Vwz4304-MJg-oGSJXCK_ZWYOB_FGXFRTfebxCsSYi0YwJo-oNu96bvZCuMplzRI1liZw" }] } # Dummy Private Key, for testing purposes. JWT_OIDC_TEST_PRIVATE_KEY_PEM = """ -----BEGIN RSA PRIVATE KEY----- MIICXQIBAAKBgQDfn1nKQshOSj8xw44oC2klFWSNLmK3BnHONCJ1bZfq0EQ5gIfg tlvB+Px8Ya+VS3OnK7Cdi4iU1fxO9ktN6c6TjmmmFevk8wIwqLthmCSF3r+3+h4e ddj7hucMsXWv05QUrCPoL6YUUz7Cgpz7ra24rpAmK5z7lsV+f3BEvXkrUQIDAQAB AoGAC0G3QGI6OQ6tvbCNYGCqq043YI/8MiBl7C5dqbGZmx1ewdJBhMNJPStuckhs kURaDwk4+8VBW9SlvcfSJJrnZhgFMjOYSSsBtPGBIMIdM5eSKbenCCjO8Tg0BUh/ xa3CHST1W4RQ5rFXadZ9AeNtaGcWj2acmXNO3DVETXAX3x0CQQD13LrBTEDR44ei lQ/4TlCMPO5bytd1pAxHnrqgMnWovSIPSShAAH1feFugH7ZGu7RoBO7pYNb6N3ia C1idc7yjAkEA6Nfc6c8meTRkVRAHCF24LB5GLfsjoMB0tOeEO9w9Ous1a4o+D24b AePMUImAp3woFoNDRfWtlNktOqLel5PjewJBAN9kBoA5o6/Rl9zeqdsIdWFmv4DB 5lEqlEnC7HlAP+3oo3jWFO9KQqArQL1V8w2D4aCd0uJULiC9pCP7aTHvBhcCQQDb W0mOp436T6ZaELBfbFNulNLOzLLi5YzNRPLppfG1SRNZjbIrvTIKVL4N/YxLvQbT NrQw+2OdQACBJiEHsdZzAkBcsTk7frTH4yGx0VfHxXDPjfTj4wmD6gZIlcIr9lZg 4H8UZcVFN95vEKxJiLRjAmj6g273pu9kK4ymXNEjWWJn -----END RSA PRIVATE KEY-----"""
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Copyright 2021- QuOCS Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ from qtpy import QtWidgets from quocspyside2interface.gui.settings.AllInOneCommForm import AllInOneCommForm from quocspyside2interface.gui.settings.FilesUpdateForm import FilesUpdateForm from quocspyside2interface.gui.settings.LocalCommForm import LocalCommForm from quocspyside2interface.gui.settings.PythonClassForm import PythonClassForm from quocspyside2interface.gui.settings.RemoteCommForm import RemoteCommForm from quocspyside2interface.gui.uiclasses.CommFomSettingsUI import Ui_Form class CommFom(QtWidgets.QWidget, Ui_Form): """Widget for Communication and Figure of merit evaluation""" def __init__(self, parent=None, loaded_dictionary=None, plugin_name=None): super().__init__(parent) # TODO Thinks here what is the best behaviour with buttons in the case of a new fom mode self.setupUi(self) # Communication QButtonGroup self.comm_button_group = QtWidgets.QButtonGroup() # self.comm_button_group.addButton(self.remote_radio_button) # self.comm_button_group.addButton(self.local_radio_button) self.comm_button_group.addButton(self.allinone_radio_button) # Not available buttons self.no_available_button_group = QtWidgets.QButtonGroup() self.no_available_button_group.addButton(self.remote_radio_button) self.no_available_button_group.addButton(self.local_radio_button) self.no_available_button_group.addButton(self.files_exchange_radio_button) self.no_available_button_group.setExclusive(False) # self.test_radio_button.setChecked(True) # Fom QButtonGroup self.fom_button_group = QtWidgets.QButtonGroup() self.fom_button_group.addButton(self.python_class_radio_button) # self.fom_button_group.addButton(self.files_exchange_radio_button) # Create the widget object and set it communication_dictionary, figure_of_merit_dictionary = None, None if loaded_dictionary is not None: communication_dictionary = loaded_dictionary[0] figure_of_merit_dictionary = loaded_dictionary[1] # Comm self.remote_comm_form = RemoteCommForm() self.local_comm_form = LocalCommForm() self.all_in_one_comm_form = AllInOneCommForm(loaded_dictionary=communication_dictionary) # Fom self.python_class_form = PythonClassForm(loaded_dictionary=figure_of_merit_dictionary) self.files_update_form = FilesUpdateForm() # Comm # self.remote_radio_button.pressed.connect(self.set_remote_widget) # self.local_radio_button.pressed.connect(self.set_local_widget) self.allinone_radio_button.pressed.connect(self.set_all_in_one_widget) # Fom self.python_class_radio_button.pressed.connect(self.set_python_class_widget) # self.files_exchange_radio_button.pressed.connect(self.set_files_update_widget) self.no_available_button_group.buttonReleased.connect(self.no_available_button_unchecked) # Initialization self._initialization() def _initialization(self): # Set initial widgets self.allinone_radio_button.setChecked(True) self.comm_scroll_area.setWidget(self.all_in_one_comm_form) # self.python_class_radio_button.setChecked(True) self.fom_scroll_area.setWidget(self.python_class_form) # self.comm_scroll_area.setWidgetResizable(True) @staticmethod def no_available_button_unchecked(no_available_button): """Just a module to disabled button action""" if no_available_button is not None: no_available_button.setChecked(False) def get_dictionary(self): communication_dict = self.comm_scroll_area.widget().get_dictionary() figure_of_merit_dict = self.fom_scroll_area.widget().get_dictionary() return {"communication": communication_dict, "figure_of_merit": figure_of_merit_dict} def set_remote_widget(self): self.comm_scroll_area.takeWidget() self.comm_scroll_area.setWidget(self.remote_comm_form) self.remote_comm_form = self.comm_scroll_area.widget() def set_local_widget(self): self.comm_scroll_area.takeWidget() self.comm_scroll_area.setWidget(self.local_comm_form) self.local_comm_form = self.comm_scroll_area.widget() def set_all_in_one_widget(self): self.comm_scroll_area.takeWidget() self.comm_scroll_area.setWidget(self.all_in_one_comm_form) self.all_in_one_comm_form = self.comm_scroll_area.widget() def set_python_class_widget(self): self.fom_scroll_area.takeWidget() self.fom_scroll_area.setWidget(self.python_class_form) self.python_class_form = self.fom_scroll_area.widget() def set_files_update_widget(self): self.fom_scroll_area.takeWidget() self.fom_scroll_area.setWidget(self.files_update_form) self.files_update_form = self.fom_scroll_area.widget()
from .utils.packetCreator import * """ Format of an SSL record Byte 0 = SSL record type Bytes 1-2 = SSL version (major/minor) Bytes 3-4 = Length of data in the record (excluding the header itself). The maximum SSL supports is 16384 (16K). Byte 0 can have following values: SSL3_RT_CHANGE_CIPHER_SPEC 20 (x'14') SSL3_RT_ALERT 21 (x'15') SSL3_RT_HANDSHAKE 22 (x'16') SSL3_RT_APPLICATION_DATA 23 (x'17') Bytes 1-2 in the record have the following version values: SSL3_VERSION x'0300' TLS1_VERSION x'0301' """ class RecordHeader3(object): def __init__(self): self.type = 0 self.version = (0,0) self.length = 0 self.ssl2 = False def create(self,version, type, length): self.type = type self.version = version self.length = length return self def write(self): w = Writer() w.add(self.type, 1) w.add(self.version[0], 1) w.add(self.version[1], 1) w.add(self.length, 2) return w.bytes #TODO parse function not included class RecordHeader2(object): def __init__(self): self.type = 0 self.version = (0,0) self.length = 0 self.ssl2 = True #TODO parse fucntion not included """ FORMAT OF AN SSL HANDHSAKE RECORD Byte 0 = SSL record type = 22 (SSL3_RT_HANDSHAKE) Bytes 1-2 = SSL version (major/minor) Bytes 3-4 = Length of data in the record (excluding the header itself). Byte 5 = Handshake type Bytes 6-8 = Length of data to follow in this record Bytes 9-n = Command-specific data """ class HandshakeMsg(object): def __init__(self, handshakeType): self.contentType = ContentType.handshake self.handshakeType = handshakeType def postWrite(self,w): headerWriter = Writer() headerWriter.add(self.handshakeType, 1) headerWriter.add(len(w.bytes), 3) return headerWriter.bytes + w.bytes """ Client hello as per RFC struct { ProtocolVersion client_version; Random random; SessionID session_id; CipherSuite cipher_suites<2..2^16-1>; CompressionMethod compression_methods<1..2^8-1>; Extension extensions<0..2^16-1>; } ClientHello; """ class ClientHello(HandshakeMsg): def __init__(self, ssl2=False): HandshakeMsg.__init__(self, HandshakeType.client_hello) self.ssl2 = ssl2 self.client_version = (0,0) self.random = bytearray(32) self.session_id = bytearray(0) self.cipher_suites = [] # list of 16-bit values self.certificate_types = [CertificateType.x509] self.compression_methods = [] # list of 8-bit values self.srp_username = None # string self.tack = False # TLS key pinning for everyone http://lwn.net/Articles/499134/ self.supports_npn = False self.server_name = bytearray(0) # for Server Name Indication (SNI) def create(self, version, random, session_id, cipher_suites, certificate_types = None, srpUsername=None, tack=False, supports_npn=False, serverName=None): self.client_version = version self.random = random self.session_id = session_id #THis field should be empty if no session_id is available or the client wishes to generate new security parameters self.cipher_suites = cipher_suites self.certificate_types = certificate_types self.compression_methods = [0] if srpUsername: self.srp_username = bytearray(srpUsername, "utf-8") self.tack = tack self.supports_npn = supports_npn if serverName: self.server_name = bytearray(serverName, "utf-8") return self #TODO parse not included def write(self): w = writer() w.add(self.client_version[0], 1) w.add(self.client_version[1], 1) w.addFixSeq(self.random, 1) w.addVarSeq(self.sesion_id, 1, 1) w.addVarSeq(self.cipher_suites, 2, 2) w.addVarSeq(self.copmression_methods, 1, 1) #TODO read about extensions w2 = Writer() # for extensions if self.certificate_types and self.certificate_types != [CertificateType.x509]: w2.add(ExternsionType.cert_type, 2) w2.add(len(self.certificate_types)+1,2) w2.addVarSeq(self.certificate_types, 1, 1) if self.srp_username: w2.add(ExtensionType.srp, 2) w2.add(len(self.srp_username)+1, 2) w2.addVarSeq(self.srp_username, 1, 1) if self.supports_npn: w2.add(ExtensionType.supports_npn, 2) w2.add(0, 2) if self.server_name: w2.add(ExtensionType.server_name, 2) w2.add(len(self.server_name)+5, 2) w2.add(len(self.server_name)+3, 2) w2.add(NameType.host_name, 1) w2.addVarSeq(self.server_name, 1, 2) if self.tack: w2.add(ExtensionType.tack, 2) w2.add(0, 2) if len(w2.bytes): w.add(len(w2.bytes), 2) w.bytes += w2.bytes return self.postWrite(w)
from collections import defaultdict def sock_merchant(sock_colors): sock_counter = defaultdict(int) result = 0 for sock_color in sock_colors: sock_counter[sock_color] += 1 for sock_type_count in sock_counter.values(): result += sock_type_count // 2 return result n = int(input().strip()) sock_array = list(map(int, input().strip().split(' '))) print(sock_merchant(sock_array))
import os from flask import Flask, Response, request import requests import requests_ftp import xml.etree.ElementTree as ET from pprint import pprint import json import datetime # Set up FTP requests_ftp.monkeypatch_session() cache = dict() def get_cached_result(url: str) -> ET.Element: cached_res = cache.get(url, None) if cached_res is None or (datetime.datetime.now().timestamp() - cached_res[1]) > 600: cache[url] = (get_BOM_xml(url), datetime.datetime.now().timestamp()) return cache[url][0] return cached_res[0] def get_BOM_xml(url: str) -> ET.Element: s = requests.Session() resp = s.retr(url) xmltree = ET.fromstring(resp.text) return xmltree def make_xml_element_dict(xml_element: ET.Element) -> dict: d = dict() d[xml_element.tag] = xml_element.attrib d[xml_element.tag]['text'] = xml_element.text d[xml_element.tag]['children'] = [make_xml_element_dict(x) for x in xml_element.getchildren()] return d def get_bom_obs() -> dict: xmltree = get_cached_result('ftp://ftp.bom.gov.au/anon/gen/fwo/IDD60920.xml') obs = xmltree.find('observations') station = ([x for x in obs.findall('station') if x.get('stn-name') == 'DARWIN AIRPORT'])[0] outdict = dict() outdict['observation_time'] = station[0].get('time-local') outdict['apparent_temp'] = [x for x in station[0][0].findall('element') if x.get('type') == 'apparent_temp'][0].text outdict['air_temperature'] = [x for x in station[0][0].findall('element') if x.get('type') == 'air_temperature'][0].text return outdict def get_bom_mini_forecast() -> dict: xmltree = get_cached_result('ftp://ftp.bom.gov.au/anon/gen/fwo/IDD10207.xml') current_forecast = [i for i in xmltree[1] if i.attrib['description'] == 'Darwin Airport'][0].getchildren()[0] #return current_forecast outdict = dict() outdict['forecast_icon_code'] = [x for x in current_forecast.getchildren() if x.attrib['type'] == 'forecast_icon_code'][0].text outdict['short_forecast'] = [x for x in current_forecast.getchildren() if x.attrib['type'] == 'precis'][0].text outdict['probability_of_precipitation'] = [x for x in current_forecast.getchildren() if x.attrib['type'] == 'probability_of_precipitation'][0].text return outdict def get_bom_long_forecast() -> dict: xmltree = get_cached_result('ftp://ftp.bom.gov.au/anon/gen/fwo/IDD10198.xml') all_forecasts = [x for x in xmltree[1].getchildren() if x.attrib['description'] == "Darwin City and Outer Darwin"][0] forecastzero = [x for x in all_forecasts.getchildren() if x.attrib['index'] == '0'][0] forecast = [x for x in forecastzero.getchildren() if x.attrib['type'] == 'forecast'][0].text outdict = dict() outdict['long_forecast'] = forecast return outdict def get_full_data() -> dict: obs = get_bom_obs() minis = get_bom_mini_forecast() longf = get_bom_long_forecast() outdict = dict() outdict['observation'] = obs outdict['mini_forecast'] = minis outdict['long_forecast'] = longf return outdict """Create and configure an instance of the Flask application.""" app = Flask(__name__, instance_relative_config=True) app.config.from_mapping( ) # ensure the instance folder exists try: os.makedirs(app.instance_path) except OSError: pass @app.route('/bom_data') def bom_observations(): outputdict = get_full_data() return Response(json.dumps(outputdict), mimetype='application/json', headers=[('Access-Control-Allow-Origin', '*')]) @app.route('/nearby_search') def nearby_search(): pprint(request.headers) r = requests.get('https://maps.googleapis.com/maps/api/place/nearbysearch/json', params=request.args ) pprint(r.url) return Response(r.text, mimetype='application/json', headers=[('Access-Control-Allow-Origin', '*')]) @app.route('/geocode') def geocode(): r = requests.get('https://maps.googleapis.com/maps/api/geocode/json', params=request.args ) return Response(r.text, mimetype='application/json', headers=[('Access-Control-Allow-Origin', '*')])
from setuptools import setup, find_packages import robosync setup( name='robosync', version=robosync.__version__, url='https://github.com/rbn920/robosync/', license='MIT', author='Robert Nelson', test_require=['unittest'], author_email='robertb.nelson@gmail.com', description='Sync with Python and robocopy', long_description='', packages=['robosync'], include_package_data=True, platforms='windows', test_suite='robosync.test.test_robosync', classifiers=['Programming Language :: Python', 'Development Status :: 3 - Alpha', 'Natural Language :: English', 'Intended Audience :: End Users/Desktop', 'License :: OSI Approved :: MIT', 'Environment :: Win32 (MS Windows)'] )
# WARPnet Client<->Server Architecture # WARPnet Parameter Definitions # # Author: Siddharth Gupta import struct, time from warpnet_framework.warpnet_common_params import * from warpnet_framework.warpnet_client_definitions import * from twisted.internet import reactor import binascii RETRANSMIT_COUNT = 10 # Max retries to send the data struct WAIT_TIME = 10 # Time to wait before resending data structs FILE_REFRESH_TIME = 60 # In seconds, time to wait between file reopens # Struct IDs STRUCTID_CONTROL = 0x13 STRUCTID_CONTROL_ACK = 0x14 STRUCTID_OBSERVE_REQUEST = 0x15 STRUCTID_OBSERVE = 0x16 STRUCTID_COMMAND = 0x17 STRUCTID_COMMAND_ACK = 0x18 STRUCTID_RTOBSERVE_REQUEST = 0x1A STRUCTID_RTOBSERVE = 0x1B STRUCTID_CFO = 0x20 STRUCTID_PHYCTRL = 0x22 STRUCTID_PHYCTRL_ACK = 0x23 STRUCTID_OBSERVE_BER = 0x24 STRUCTID_OBSERVE_BER_REQ = 0x25 STRUCTID_OBSERVE_COOPBER = 0x28 STRUCTID_OBSERVE_COOPBER_REQ = 0x29 STRUCTID_OBSERVE_PER = 0x26 STRUCTID_OBSERVE_PER_REQ = 0x27 STRUCTID_RAW_PKT = 0x30 STRUCTID_LOGPARAMS = 0x32 STRUCTID_LOGPARAMS_ACK = 0x33 # Command IDs COMMANDID_STARTTRIAL = 0x40 COMMANDID_STOPTRIAL = 0x41 COMMANDID_RELAYSTATE = 0x42 COMMANDID_PKTGEN = 0x46 COMMANDID_RESET_PER = 0x50 # Command Params COMMANDPARAM_RELAYOFF = 0x43 COMMANDPARAM_RELAYAF = 0x44 COMMANDPARAM_RELAYDF = 0x45 COMMANDPARAM_PKTGEN_ENABLE = 0x47 COMMANDPARAM_PKTGEN_DISABLE = 0x48 PKTTYPE_NCDATA = 0x00 PKTTYPE_NCMHOPDATA = 0xA2 PKTTYPE_DFDATA = 0xEE PKTTYPE_AFDATA = 0x55 PKTTYPE_AFGHDATA = 0xC3 PKTTYPE_DFGHDATA = 0x3C PKTTYPE_INVALID = 0x88 PHYCTRL_BER_EN = 0x1 PHYCTRL_CFO_EN = 0x2 PHYCTRL_PHYDUMP_EN = 0x4 PHYTRCL_EXTPKTDET_EN = 0x8 PHYCTRL_COOP_EN = 0x10 PHYCTRL_CFO_CORR_EN = 0x20 PHYCTRL_SWAP_ANT = 0x40 PHYCTRL_TX_NC = 0x01 PHYCTRL_TX_DF = 0x02 PHYCTRL_TX_AF = 0x04 PHYCTRL_TX_AFGH = 0x08 PHYCTRL_TX_DFGH = 0x10 PHYCTRL_TX_NCMHOP = 0x20 class MyDataLogger(DataCollector): def __init__(self, filename): self.filename = filename self.logFile = open(self.filename, 'w') def log(self, dataToLog): self.logFile.write(dataToLog) self.logFile.flush() def closeFile(self): self.logFile.close() # Struct Definitions # ControlStruct is a ClientStruct that stores some basic parameters to pass to the WARP board. The local variable can be accessed # globally by calling ControlStruct.txPower etc. The struct must also understand the conversion from integer values to binary # using the prepToSend function; it will be provided with the nodeID. class ControlStruct(ClientStruct): txPower = -1 channel = -1 modOrderHeader = -1 modOrderPayload = -1 reserved = 0 packetGeneratorPeriod = 0 packetGeneratorLength = 0 def __init__(self): self.structID = STRUCTID_CONTROL self.txPower = 63 self.channel = 4 self.modOrderHeader = 0 self.modOrderPayload = 2 self.packetGeneratorPeriod = 0 self.packetGeneratorLength = 1300 self.expectedReturnStructID = STRUCTID_CONTROL_ACK def prepToSend(self, nodeID): self.updateDone = False return struct.pack('!6BHII', self.structID, nodeID, self.txPower, self.channel, self.modOrderHeader, self.modOrderPayload, self.reserved, self.packetGeneratorPeriod, self.packetGeneratorLength) def updateFromNode(self, rawData, pcapts): dataTuple = struct.unpack('!BBH', rawData[0:4]) #print "Control struct successfully applied at node %d" % dataTuple[1] # CommandStruct is a Client struct to send commands or request data from the WARP board. The cmdIDs are defined in warpnet_params.py class CommandStruct(ClientStruct): cmdID = -1 cmdParam = -1 def __init__(self, cmdID, cmdParam): self.structID = STRUCTID_COMMAND self.expectedReturnStructID = STRUCTID_COMMAND_ACK self.cmdID = cmdID self.cmdParam = cmdParam def prepToSend(self, nodeID): self.updateDone = False return struct.pack('!4B', self.structID, nodeID, self.cmdID, self.cmdParam) def updateFromNode(self, rawData, pcapts): pass #print "Successfully executed command %d" % self.cmdID # BER struct that is filled in by the node class ObserveStruct(ClientStruct): sourceNode = -1 numDataTx = -1 numNACKTx = -1 numDataRx = -1 numNACKRx = -1 numBadHeaderRx = -1 sumGain = -1 sumRSSI = -1 packetCountRx = -1 def __init__(self, sourceNode, logger=None): ClientStruct.__init__(self, logger) self.structID = STRUCTID_OBSERVE_REQUEST self.expectedReturnStructID = STRUCTID_OBSERVE self.sourceNode = sourceNode self.logData("structID=%d, nodeID, cmdID, numDataTx, numNACKTx, numDataRx, numNACKRx, numBadHeaderRx, sumGain, sumRSSI, packetCountRx, trialDuration, time\r\n" % STRUCTID_OBSERVE_REQUEST) def prepToSend(self, nodeID): self.updateDone = False return struct.pack('!BBH', self.structID, nodeID, self.sourceNode) def updateFromNode(self, rawData, pcapts): dataTuple = struct.unpack('!2BH9I', rawData[0:40]) self.logData("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %d\r\n" % (dataTuple[0], dataTuple[1], dataTuple[2], dataTuple[3], dataTuple[4], dataTuple[5], dataTuple[6], dataTuple[7], dataTuple[8], dataTuple[9], dataTuple[10], dataTuple[11], time.time())) class RTObserveStruct(ClientStruct): sequenceNumber = -1 pktType = -1 srcNode = -1 dstNode = -1 relayNode = -1 state = -1 rssi = -1 gain = -1 timestamp = -1 def __init__(self, logger=None): ClientStruct.__init__(self, logger) self.structID = STRUCTID_RTOBSERVE_REQUEST self.expectedReturnStructID = STRUCTID_RTOBSERVE self.logData("sequenceNumber, pktType, srcNode, dstNode, relayNode, state, RSSI, gain, timestamp\r\n") def prepToSend(self, nodeID): self.updateDone = False return struct.pack('!BBH', self.structID, nodeID, 0) def updateFromNode(self, rawData, pcapts): dataTuple = struct.unpack('!2BH6B2HI', rawData[0:18]) self.logData("%d, %d, %d, %d, %d, %d, %d, %d, %d\r\n" % (dataTuple[2], dataTuple[3], dataTuple[4], dataTuple[5], dataTuple[6], dataTuple[7], dataTuple[9], dataTuple[10], dataTuple[11])) class CFOStruct(ClientStruct): atten = 0 pktLen = 0 minMag = 0 def __init__(self, logger=None): ClientStruct.__init__(self, logger) self.structID = STRUCTID_CFO #Dangerous to reuse structID only if there's another controller self.expectedReturnStructID = STRUCTID_CFO self.logData("nodeID, seqNum, cfo_c, cfo_p, cfo_b, txCFO, pktStatus, atten, pktLen, minMag, pcap timestamp\r\n") self.atten = 0 self.pktLen = 0 self.minMag = 0 def prepToSend(self, nodeID): self.updateDone = False return struct.pack('!BBH', self.structID, nodeID, 0) def updateFromNode(self, rawData, pcapts): dataTuple = struct.unpack('!2B H 5i', rawData[0:24]) self.logData("%d, %d, %d, %d, %d, %d, %d, %d, %d, %d, %s\r\n" % (dataTuple[1], dataTuple[2], dataTuple[3], dataTuple[4], dataTuple[5], dataTuple[6], dataTuple[7], self.atten, self.pktLen, self.minMag, pcapts)) class PHYctrlStruct(ClientStruct): param0 = 0 param1 = 0 param2 = 0 param3 = 0 param4 = 0 param5 = 0 param6 = 0 param7 = 0 param8 = 0 param9 = 0 def __init__(self, logger=None): ClientStruct.__init__(self, logger) self.structID = STRUCTID_PHYCTRL self.expectedReturnStructID = STRUCTID_PHYCTRL_ACK self.param0 = 0 #short - Enable CFO correction self.param1 = 0 #int - Tx CFO Freq self.param2 = 0 #int self.param3 = 0 #int self.param4 = 0 #int self.param5 = 0 #int self.param6 = 0 #int self.param7 = 0 #int self.param8 = 0 #int self.param9 = 0 #int def prepToSend(self, nodeID): self.updateDone = False #was type "i", but Python complained when MSB of argument was 1... return struct.pack('!BBH9I', self.structID, nodeID, self.param0, self.param1, self.param2, self.param3, self.param4, self.param5, self.param6, self.param7, self.param8, self.param9) class ObserveBERStruct(ClientStruct): #0 unsigned char structID; #1 unsigned char nodeID; #2 unsigned short sequenceNumber; #3 unsigned char nodeID_tx; #4 unsigned char nodeID_rx; #5 unsigned short mac_seqNum; #6 unsigned int bits_rx; #7 unsigned int bits_errors; totalBitsReceived = 0 totalBitErrors = 0 nodeID_tx = -1 nodeID_rx = -1 def __init__(self, logger=None): ClientStruct.__init__(self, logger) self.structID = STRUCTID_OBSERVE_BER_REQ self.expectedReturnStructID = STRUCTID_OBSERVE_BER self.totalBitsReceived = 0 self.totalBitErrors = 0 def prepToSend(self, nodeID): self.updateDone = False return struct.pack('!BBH', self.structID, nodeID, 0) def updateFromNode(self, rawData, pcapts): dataTuple = struct.unpack('!2B H 2B H 2I', rawData[0:16]) self.nodeID_tx = dataTuple[3] self.nodeID_rx = dataTuple[4] self.totalBitsReceived += dataTuple[6] self.totalBitErrors += dataTuple[7] def clearBitCounts(self): self.totalBitsReceived = 0 self.totalBitErrors = 0 class ObserveCoopBERStruct(ClientStruct): #0 unsigned char structID; #1 unsigned char nodeID; #2 unsigned short sequenceNumber; #3 unsigned char nodeID_tx; #4 unsigned char nodeID_rx; #5 unsigned short mac_seqNum; #6 unsigned char mac_pktType; #7 unsigned char reserved0; #8 unsigned char reserved1; #9 unsigned char reserved2; #10 unsigned int bits_rx; #11 unsigned int bits_errors; nodeID_tx = -1 nodeID_rx = -1 totalBitsReceived_NC = 0 totalBitsReceived_AF = 0 totalBitsReceived_AFGH = 0 totalBitsReceived_DF = 0 totalBitsReceived_DFGH = 0 totalBitsReceived_NCMHOP = 0 totalBitErrors_NC = 0 totalBitErrors_AF = 0 totalBitErrors_AFGH = 0 totalBitErrors_DF = 0 totalBitErrors_DFGH = 0 totalBitErrors_NCMHOP = 0 totalBitsReceived_AF_noNC = 0 totalBitsReceived_AFGH_noNC = 0 totalBitsReceived_DF_noNC = 0 totalBitsReceived_DFGH_noNC = 0 totalBitErrors_AF_noNC = 0 totalBitErrors_AFGH_noNC = 0 totalBitErrors_DF_noNC = 0 totalBitErrors_DFGH_noNC = 0 lastSeqNum_NC = -1; def __init__(self, logger=None): ClientStruct.__init__(self, logger) self.structID = STRUCTID_OBSERVE_COOPBER_REQ self.expectedReturnStructID = STRUCTID_OBSERVE_COOPBER self.totalBitsReceived_NC = 0 self.totalBitsReceived_AF = 0 self.totalBitsReceived_AFGH = 0 self.totalBitsReceived_DF = 0 self.totalBitsReceived_DFGH = 0 self.totalBitsReceived_NCMHOP = 0 self.totalBitErrors_NC = 0 self.totalBitErrors_AF = 0 self.totalBitErrors_AFGH = 0 self.totalBitErrors_DF = 0 self.totalBitErrors_DFGH = 0 self.totalBitErrors_NCMHOP = 0 self.totalBitsReceived_AF_noNC = 0 self.totalBitsReceived_AFGH_noNC = 0 self.totalBitsReceived_DF_noNC = 0 self.totalBitsReceived_DFGH_noNC = 0 self.totalBitErrors_AF_noNC = 0 self.totalBitErrors_AFGH_noNC = 0 self.totalBitErrors_DF_noNC = 0 self.totalBitErrors_DFGH_noNC = 0 self.lastSeqNum_NC = -1; def prepToSend(self, nodeID): self.updateDone = False return struct.pack('!BBH', self.structID, nodeID, 0) def updateFromNode(self, rawData, pcapts): dataTuple = struct.unpack('!2B H 2B H 4B 2I', rawData[0:20]) self.nodeID_tx = dataTuple[3] self.nodeID_rx = dataTuple[4] self.coopPktType = dataTuple[6] if(dataTuple[6] == PKTTYPE_NCDATA): self.totalBitsReceived_NC += dataTuple[10] self.totalBitErrors_NC += dataTuple[11] self.lastSeqNum_NC = dataTuple[5] elif(dataTuple[6] == PKTTYPE_AFDATA): self.totalBitsReceived_AF += dataTuple[10] self.totalBitErrors_AF += dataTuple[11] if(self.lastSeqNum_NC != dataTuple[5]): self.totalBitsReceived_AF_noNC += dataTuple[10] self.totalBitErrors_AF_noNC += dataTuple[11] elif(dataTuple[6] == PKTTYPE_AFGHDATA): self.totalBitsReceived_AFGH += dataTuple[10] self.totalBitErrors_AFGH += dataTuple[11] if(self.lastSeqNum_NC != dataTuple[5]): self.totalBitsReceived_AFGH_noNC += dataTuple[10] self.totalBitErrors_AFGH_noNC += dataTuple[11] elif(dataTuple[6] == PKTTYPE_DFDATA): self.totalBitsReceived_DF += dataTuple[10] self.totalBitErrors_DF += dataTuple[11] if(self.lastSeqNum_NC != dataTuple[5]): self.totalBitsReceived_DF_noNC += dataTuple[10] self.totalBitErrors_DF_noNC += dataTuple[11] elif(dataTuple[6] == PKTTYPE_DFGHDATA): self.totalBitsReceived_DFGH += dataTuple[10] self.totalBitErrors_DFGH += dataTuple[11] if(self.lastSeqNum_NC != dataTuple[5]): self.totalBitsReceived_DFGH_noNC += dataTuple[10] self.totalBitErrors_DFGH_noNC += dataTuple[11] elif(dataTuple[6] == PKTTYPE_NCMHOPDATA): self.totalBitsReceived_NCMHOP += dataTuple[10] self.totalBitErrors_NCMHOP += dataTuple[11] else: print("ObserveCoopBERStruct::updateFromNode: Unknown pktType=%d" % dataTuple[6]) def clearBitCounts(self): self.totalBitsReceived_NC = 0 self.totalBitsReceived_AF = 0 self.totalBitsReceived_AFGH = 0 self.totalBitsReceived_DF = 0 self.totalBitsReceived_DFGH = 0 self.totalBitsReceived_NCMHOP = 0 self.totalBitErrors_NC = 0 self.totalBitErrors_AF = 0 self.totalBitErrors_AFGH = 0 self.totalBitErrors_DF = 0 self.totalBitErrors_DFGH = 0 self.totalBitErrors_NCMHOP = 0 self.totalBitsReceived_AF_noNC = 0 self.totalBitsReceived_AFGH_noNC = 0 self.totalBitsReceived_DF_noNC = 0 self.totalBitsReceived_DFGH_noNC = 0 self.totalBitErrors_AF_noNC = 0 self.totalBitErrors_AFGH_noNC = 0 self.totalBitErrors_DF_noNC = 0 self.totalBitErrors_DFGH_noNC = 0 self.lastSeqNum_NC = -1; class ObservePERStruct(ClientStruct): #typedef struct { # unsigned char structID; # unsigned char nodeID; # unsigned char reqNum; # unsigned char reqType; # unsigned int numPkts_tx; # unsigned int numPkts_rx_good; # unsigned int numPkts_rx_goodHdrBadPyld; # unsigned int numPkts_rx_badHdr; #} warpnetObservePER; numPkts_tx = -1 numPkts_rx_good = -1 numPkts_rx_goodHdrBadPyld = -1 numPkts_rx_badHdr = -1 reqNum = -1 reqType = -1 def __init__(self, logger=None): ClientStruct.__init__(self, logger) self.structID = STRUCTID_OBSERVE_PER_REQ self.expectedReturnStructID = STRUCTID_OBSERVE_PER self.numPkts_tx = 0 self.numPkts_rx_good = 0 self.numPkts_rx_goodHdrBadPyld = 0 self.numPkts_rx_badHdr = 0 self.reqNum = 0 self.reqType = 0 def prepToSend(self, nodeID): self.updateDone = False return struct.pack('!4B', self.structID, nodeID, self.reqNum, self.reqType) def updateFromNode(self, rawData, pcapts): dataTuple = struct.unpack('!2B 2B 4I', rawData[0:20]) self.reqNum = dataTuple[2] self.reqType = dataTuple[3] self.numPkts_tx = dataTuple[4] self.numPkts_rx_good = dataTuple[5] self.numPkts_rx_goodHdrBadPyld = dataTuple[6] self.numPkts_rx_badHdr = dataTuple[7] class LogParams(ClientStruct): #typedef struct { # unsigned char structID; # unsigned char nodeID; # # unsigned short fileSuffix; # # unsigned int param0; # unsigned int param1; # unsigned int param2; # unsigned int param3; #} warpnetLogParams; fileSuffix = 0 param0 = 0 param1 = 0 param2 = 0 param3 = 0 def __init__(self, logger=None): ClientStruct.__init__(self, logger) self.structID = STRUCTID_LOGPARAMS self.expectedReturnStructID = STRUCTID_LOGPARAMS_ACK self.fileSuffix = 0 self.param0 = 0 #int self.param1 = 0 #int self.param2 = 0 #int self.param3 = 0 #int def prepToSend(self, nodeID): self.updateDone = False #was type "i", but Python complained when MSB of argument was 1... return struct.pack('!BBH4I', self.structID, nodeID, self.fileSuffix, self.param0, self.param1, self.param2, self.param3) def updateFromNode(self, rawData, pcapts): pass
########################################################################## # # Copyright (c) 2013-2015, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import re import traceback import functools import warnings import IECore import Gaffer import GafferUI import GafferRenderMan ########################################################################## # Access to shaders and annotations from the shader cache ########################################################################## def _shader( shaderNode ) : if isinstance( shaderNode, GafferRenderMan.RenderManShader ) : shaderName = shaderNode["name"].getValue() else : shaderName = shaderNode["__shaderName"].getValue() try : return GafferRenderMan.RenderManShader.shaderLoader().read( shaderName + ".sdl" ) except Exception, e : return None def _shaderAnnotations( shaderNode ) : shader = _shader( shaderNode ) return shader.blindData().get( "ri:annotations", {} ) if shader is not None else {} ########################################################################## # Nodules ########################################################################## def __parameterNoduleType( plug ) : # only coshader parameters should be connectable in the node # graph. if plug.typeId() == Gaffer.Plug.staticTypeId() : return "GafferUI::StandardNodule" elif plug.typeId() == Gaffer.ArrayPlug.staticTypeId() : return "GafferUI::CompoundNodule" return "" GafferUI.Metadata.registerPlugValue( GafferRenderMan.RenderManShader, "parameters.*", "nodule:type", __parameterNoduleType ) GafferUI.Metadata.registerPlugValue( GafferRenderMan.RenderManShader, "parameters.*", "compoundNodule:orientation", "y" ) # coshader arrays tend to be used for layering, so we prefer to present the # last entry at the top, hence the increasing direction. GafferUI.Metadata.registerPlugValue( GafferRenderMan.RenderManShader, "parameters.*", "compoundNodule:direction", "increasing" ) ########################################################################## # NodeUI - this exists only for backwards compatibility, and will be # removed. ########################################################################## class RenderManShaderUI( GafferUI.StandardNodeUI ) : def __init__( self, node, displayMode = None, **kw ) : GafferUI.StandardNodeUI.__init__( self, node, displayMode, **kw ) warnings.warn( "RenderManShaderUI is deprecated, use either StandardNodeUI or LayoutPlugValueWidget.", DeprecationWarning, 2 ) ########################################################################## # PlugValueWidget creator for the parameters plug itself. ########################################################################## def __parametersPlugValueWidgetCreator( plug ) : # Because we don't know the names of sections in advance, # we must use this opportunity to do a just-in-time registration of # metadata values for the collapsed status of each section. An # alternative approach would perhaps allow Metadata to be registered # with wildcards in the name, and with an associated method to return all # matching names (so registeredPlugValues() could continue to work). collapsedRe = re.compile( "^page\.(.+)\.collapsed" ) annotations = _shaderAnnotations( plug.node() ) for name, value in annotations.items() : m = collapsedRe.match( name ) if m : Gaffer.Metadata.registerPlugValue( plug, "layout:section:" + m.group( 1 ) + ":collapsed", value in ( "True", "true", "1" ), persistent = False, ) shader = _shader( plug.node() ) if shader is not None : # when shaders are reloaded after having new parameters added, # the order of the plugs and the parameters don't match, so we # use the parameter ordering to define the ui order via metadata. ## \todo Ideally we'd get the plug ordering to match in # RenderManShader::loadShader(), and then the ordering of # connections in the node graph would be correct too. orderedParameterNames = shader.blindData()["ri:orderedParameterNames"] index = 0 for name in orderedParameterNames : if name.endswith( "Values" ) and name[:-6] + "Positions" in shader.parameters : name = name[:-6] elif name.endswith( "Positions" ) and name[:-9] + "Values" in shader.parameters : continue if name in plug : Gaffer.Metadata.registerPlugValue( plug[name], "layout:index", index, persistent = False ) index += 1 # Now we've created the appropriate metadata, we can just defer to a standard LayoutPlugValueWidget return GafferUI.LayoutPlugValueWidget( plug ) GafferUI.PlugValueWidget.registerCreator( GafferRenderMan.RenderManShader, "parameters", __parametersPlugValueWidgetCreator ) GafferUI.PlugValueWidget.registerCreator( GafferRenderMan.RenderManLight, "parameters", __parametersPlugValueWidgetCreator ) ########################################################################## # PlugValueWidgets for the individual parameter plugs. We use annotations # stored in the shader to provide hints as to how we should build the UI. # We use the OSL specification for shader metadata in the hope that one day # we'll get to use OSL in Gaffer and then we'll have a consistent metadata # convention across both shader types. ########################################################################## def __optionValue( plug, stringValue ) : if isinstance( plug, Gaffer.StringPlug ) : return stringValue elif isinstance( plug, Gaffer.IntPlug ) : return int( stringValue ) elif isinstance( plug, Gaffer.FloatPlug ) : return float( stringValue ) else : raise Exception( "Unsupported parameter type." ) def __numberCreator( plug, annotations ) : if len( plug ) : return GafferUI.CompoundNumericPlugValueWidget( plug ) else : return GafferUI.NumericPlugValueWidget( plug ) def __stringCreator( plug, annotations ) : return GafferUI.StringPlugValueWidget( plug ) def __booleanCreator( plug, annotations ) : return GafferUI.BoolPlugValueWidget( plug ) def __popupCreator( plug, annotations ) : options = annotations.get( plug.getName() + ".options", None ) if options is None : raise Exception( "No \"options\" annotation." ) options = options.value.split( "|" ) labelsAndValues = [ ( x, __optionValue( plug, x ) ) for x in options ] return GafferUI.EnumPlugValueWidget( plug, labelsAndValues ) def __mapperCreator( plug, annotations ) : options = annotations.get( plug.getName() + ".options", None ) if options is None : raise Exception( "No \"options\" annotation." ) options = options.value.split( "|" ) labelsAndValues = [] for option in options : tokens = option.split( ":" ) if len( tokens ) != 2 : raise Exception( "Option \"%s\" is not of form name:value" % option ) labelsAndValues.append( ( tokens[0], __optionValue( plug, tokens[1] ) ) ) return GafferUI.EnumPlugValueWidget( plug, labelsAndValues ) def __fileNameCreator( plug, annotations ) : extensions = annotations.get( plug.getName() + ".extensions", None ) if extensions is not None : extensions = extensions.value.split( "|" ) else : extensions = [] bookmarksCategory = annotations.get( plug.getName() + ".bookmarksCategory", None ) if bookmarksCategory is not None : bookmarksCategory = bookmarksCategory.value else : # seems like a reasonable guess, and it's preferable to have a category # rather than to have any bookmarks made here pollute the bookmarks for # other browsers. bookmarksCategory = "texture" return GafferUI.PathPlugValueWidget( plug, path = Gaffer.FileSystemPath( "/", filter = Gaffer.FileSystemPath.createStandardFilter( extensions = extensions, extensionsLabel = "Show only supported files", ), ), pathChooserDialogueKeywords = { "bookmarks" : GafferUI.Bookmarks.acquire( plug, pathType = Gaffer.FileSystemPath, category = bookmarksCategory, ), }, ) def __nullCreator( plug, annotations ) : return None __creators = { "number" : __numberCreator, "vector2" : __numberCreator, "string" : __stringCreator, "boolean" : __booleanCreator, "checkBox" : __booleanCreator, "popup" : __popupCreator, "mapper" : __mapperCreator, "filename" : __fileNameCreator, "null" : __nullCreator, } def __plugValueWidgetCreator( plug ) : global __creators annotations = _shaderAnnotations( plug.node() ) parameterName = plug.getName() widgetType = annotations.get( parameterName + ".widget", None ) widgetCreator = None if widgetType is not None : widgetCreator = __creators.get( widgetType.value, None ) if widgetCreator is None : IECore.msg( IECore.Msg.Level.Warning, "RenderManShaderUI", "Shader parameter \"%s.%s\" has unsupported widget type \"%s\"" % ( plug.node()["name"].getValue(), parameterName, widgetType ) ) if widgetCreator is not None : try : return widgetCreator( plug, annotations ) except Exception, e : IECore.msg( IECore.Msg.Level.Warning, "RenderManShaderUI", "Error creating UI for parameter \"%s.%s\" : \"%s\"" % ( plug.node()["name"].getValue(), parameterName, str( e ) ) ) if plug.typeId() == Gaffer.ArrayPlug.staticTypeId() : # coshader array return None result = GafferUI.PlugValueWidget.create( plug, useTypeOnly=True ) if isinstance( result, GafferUI.VectorDataPlugValueWidget ) : result.vectorDataWidget().setSizeEditable( plug.defaultValue().size() == 0 ) return result GafferUI.PlugValueWidget.registerCreator( GafferRenderMan.RenderManShader, "parameters.*", __plugValueWidgetCreator ) GafferUI.PlugValueWidget.registerCreator( GafferRenderMan.RenderManLight, "parameters.*", __plugValueWidgetCreator ) ########################################################################## # Metadata registrations ########################################################################## def __nodeDescription( node ) : __defaultNodeDescription = """Loads shaders for use in RenderMan renderers. Use the ShaderAssignment node to assign shaders to objects in the scene.""" description = _shaderAnnotations( node ).get( "help", None ) return description.value if description is not None else __defaultNodeDescription def __nodeColor( node ) : try: annotations = _shaderAnnotations( node ) if annotations.has_key( "nodeColor" ) : match = re.search( "color\((.+),(.+),(.+)\)", annotations["nodeColor"].value ) if match: return IECore.Color3f( float( match.group(1) ), float( match.group(2) ), float( match.group(3) ) ) else: raise Exception, "Error parsing \"nodeColor\" annotation: " + annotations["nodeColor"].value except Exception, e: IECore.msg( IECore.Msg.Level.Warning, "RenderManShaderUI", str( e ) ) return None def __nodeActivators( node ) : class ExpressionVariables : def connected( self, key ) : return node["parameters"][key].getInput() is not None def __getitem__( self, key ) : if key == "connected" : return self.connected else : return node["parameters"][key].getValue() result = IECore.CompoundData() for name, value in _shaderAnnotations( node ).items() : if not name.startswith( "activator." ) or not name.endswith( ".expression" ) : continue active = False try : active = eval( value.value, globals(), ExpressionVariables() ) except Exception, e : IECore.msg( IECore.Msg.Level.Error, "Parameter activator", "".join( traceback.format_exception_only( type( e ), e ) ) ) result[name.split( "." )[1]] = bool( active ) return result def __plugDescription( plug ) : annotations = _shaderAnnotations( plug.node() ) d = annotations.get( plug.getName() + ".help", None ) return d.value if d is not None else "" def __plugLabel( plug ) : annotations = _shaderAnnotations( plug.node() ) d = annotations.get( plug.getName() + ".label", None ) return d.value if d is not None else None def __plugDivider( plug ) : annotations = _shaderAnnotations( plug.node() ) d = annotations.get( plug.getName() + ".divider", None ) if d is None : return False return d.value.lower() in ( "True", "true", "1" ) def __plugVisibleDimensions( plug ) : annotations = _shaderAnnotations( plug.node() ) d = annotations.get( plug.getName() + ".widget", None ) if d is not None and d.value == "vector2" : return 2 else : return None def __plugSection( plug ) : annotations = _shaderAnnotations( plug.node() ) return annotations.get( plug.getName() + ".page", None ) def __plugActivator( plug ) : annotations = _shaderAnnotations( plug.node() ) return annotations.get( plug.getName() + ".activator", None ) Gaffer.Metadata.registerNodeDescription( GafferRenderMan.RenderManShader, __nodeDescription ) Gaffer.Metadata.registerNodeValue( GafferRenderMan.RenderManShader, "nodeGadget:color", __nodeColor ) for nodeType in( GafferRenderMan.RenderManShader, GafferRenderMan.RenderManLight ) : Gaffer.Metadata.registerNodeValue( nodeType, "layout:activators", __nodeActivators ) Gaffer.Metadata.registerPlugDescription( nodeType, "parameters.*", __plugDescription ) Gaffer.Metadata.registerPlugValue( nodeType, "parameters.*", "label", __plugLabel ) Gaffer.Metadata.registerPlugValue( nodeType, "parameters.*", "divider", __plugDivider ) Gaffer.Metadata.registerPlugValue( nodeType, "parameters.*", "ui:visibleDimensions", __plugVisibleDimensions ) Gaffer.Metadata.registerPlugValue( nodeType, "parameters.*", "layout:section", __plugSection ) Gaffer.Metadata.registerPlugValue( nodeType, "parameters.*", "layout:activator", __plugActivator )
from .linked_list import LinkedList from .hashmap import HashMap
import pytest import os @pytest.fixture(autouse=True) def is_skinny(): if "MLFLOW_SKINNY" not in os.environ: pytest.skip("This test is only valid for the skinny client") def test_fails_import_flask(): import mlflow assert mlflow is not None with pytest.raises(ImportError): import flask assert flask is not None def test_fails_import_pandas(): import mlflow assert mlflow is not None with pytest.raises(ImportError): import pandas assert pandas is not None def test_fails_import_numpy(): import mlflow assert mlflow is not None with pytest.raises(ImportError): import numpy assert numpy is not None
from abc import ABC, abstractmethod from typing import List class Collision(ABC): """Abstract interface for a game collision.""" @abstractmethod def snake(self, location: List) -> bool: pass @abstractmethod def apple(self, location: List) -> bool: pass class GameCollision(Collision): """SnakeEntity game collision interface.""" def __init__(self, position: List, size: int) -> None: self._position: List = position self._size: int = size self._times: int = 11 self._diff: int = 10 self._shift: int = 1 def snake(self, location: List) -> bool: return (location[0] + location[0] + self._diff) > self._position[0] > location[0] and \ (location[1] + location[1] + self._diff) > self._position[1] > location[1] or \ (location[0] + location[0] + self._diff) > self._position[0] + self._diff > location[0] and \ (location[1] + location[1] + self._diff) > self._position[1] + self._diff > location[1] def apple(self, location: List) -> bool: return (location[0] - self._shift + (self._times * self._size)) > self._position[0] > location[0] - self._shift and \ (location[1] - self._shift + (self._times * self._size)) > self._position[1] > location[1] - self._shift or \ (location[0] - self._shift + (self._times * self._size)) > self._position[0] + self._diff > location[0] - self._shift and \ (location[1] - self._shift + (self._times * self._size)) > self._position[1] + self._diff > location[1] - self._shift
import unittest import uuid import mock def fake_id(prefix): entropy = ''.join([a for a in str(uuid.uuid4()) if a.isalnum()]) return '{}_{}'.format(prefix, entropy) class APITestCase(unittest.TestCase): def setUp(self): super(APITestCase, self).setUp() self.requestor_patcher = mock.patch('gym.scoreboard.client.api_requestor.APIRequestor') requestor_class_mock = self.requestor_patcher.start() self.requestor_mock = requestor_class_mock.return_value def mock_response(self, res): self.requestor_mock.request = mock.Mock(return_value=(res, 'reskey')) class TestData(object): @classmethod def file_upload_response(cls): return { 'id': fake_id('file'), 'object': 'file', } @classmethod def evaluation_response(cls): return { 'id': fake_id('file'), 'object': 'evaluation', }
import os import fcntl import os.path import pytest import simplejson from .conftest import requires_questionnaire, requires_mongomock from happi.backends.json_db import JSONBackend from happi.errors import DuplicateError, SearchError from happi import Client from happi.containers import Motor @pytest.fixture(scope='function') def mockmongo(mockmongoclient): return mockmongoclient.backend @pytest.fixture(scope='function') def mockjson(device_info, valve_info): # Write underlying database with open('testing.json', 'w+') as handle: simplejson.dump({device_info['prefix']: device_info}, handle) # Return handle name yield JSONBackend('testing.json') # Delete file os.remove('testing.json') @requires_mongomock def test_mongo_find(valve_info, device_info, mockmongo): mm = mockmongo mm._collection.insert_one(valve_info) # No single device expected assert mm.find(beamline='BLERG', multiples=False) == [] # Single device by id assert device_info == mm.find(_id=device_info['_id'], multiples=False) # Single device by kwarg assert valve_info == mm.find(prefix=valve_info['prefix'], multiples=False) # No multiple devices expected assert mm.find(beamline='BLERG', multiples=False) == [] # Multiple devices by id assert [device_info] == mm.find(_id=device_info['_id'], multiples=True) # Multiple devices by kwarg assert [device_info] == mm.find(prefix=device_info['prefix'], multiples=True) # Multiple devices expected result = mm.find(beamline='LCLS', multiples=True) assert all([info in result for info in (device_info, valve_info)]) @requires_mongomock def test_mongo_save(mockmongo, device_info, valve_info): # Duplicate device with pytest.raises(DuplicateError): mockmongo.save(device_info['prefix'], device_info, insert=True) # Device not found with pytest.raises(SearchError): mockmongo.save(valve_info['prefix'], valve_info, insert=False) # Add to database mockmongo.save(valve_info['prefix'], valve_info, insert=True) assert mockmongo._collection.find_one(valve_info) == valve_info @requires_mongomock def test_mongo_delete(mockmongo, device_info): mockmongo.delete(device_info['prefix']) assert mockmongo._collection.find_one(device_info) is None def test_json_find(valve_info, device_info, mockjson): mm = mockjson # Write underlying database with open(mm.path, 'w+') as handle: simplejson.dump({valve_info['prefix']: valve_info, device_info['prefix']: device_info}, handle) # No single device expected assert mm.find(beamline='BLERG', multiples=False) == [] # Single device by id assert device_info == mm.find(_id=device_info['_id'], multiples=False) # Single device by kwarg assert valve_info == mm.find(prefix=valve_info['prefix'], multiples=False) # No multiple devices expected assert mm.find(beamline='BLERG', multiples=False) == [] # Multiple devices by id assert [device_info] == mm.find(_id=device_info['_id'], multiples=True) # Multiple devices by kwarg assert [device_info] == mm.find(prefix=device_info['prefix'], multiples=True) # Multiple devices expected result = mm.find(beamline='LCLS', multiples=True) assert all([info in result for info in (device_info, valve_info)]) def test_json_delete(mockjson, device_info): mockjson.delete(device_info['prefix']) assert device_info not in mockjson.all_devices def test_json_save(mockjson, device_info, valve_info): # Duplicate device with pytest.raises(DuplicateError): mockjson.save(device_info['prefix'], device_info, insert=True) # Device not found with pytest.raises(SearchError): mockjson.save(valve_info['prefix'], valve_info, insert=False) # Add to database mockjson.save(valve_info['prefix'], valve_info, insert=True) assert valve_info in mockjson.all_devices def test_json_locking(mockjson): # Place lock on file handle = open(mockjson.path, 'w') fcntl.flock(handle, fcntl.LOCK_EX | fcntl.LOCK_NB) # Attempt to save with pytest.raises(IOError): mockjson.store({"_ID": "ID"}) def test_json_initialize(): jb = JSONBackend("testing.json", initialize=True) # Check that the file was made assert os.path.exists("testing.json") # Check it is a valid json file assert jb.load() == {} # Check that we can not overwrite the database with pytest.raises(PermissionError): JSONBackend("testing.json", initialize=True) # Cleanup os.remove("testing.json") @requires_questionnaire def test_qs_find(mockqsbackend): assert len(mockqsbackend.find(beamline='TST', multiples=True)) == 6 assert len(mockqsbackend.find(name='sam_r', multiples=True)) == 1 @requires_questionnaire def test_qsbackend_with_client(mockqsbackend): c = Client(database=mockqsbackend) assert len(c.all_devices) == 6 assert all([isinstance(d, Motor) for d in c.all_devices])
try: import uwsgi # noqa: F401 except ModuleNotFoundError: class postfork: """Simple non-uwsgi stub that just calls the postfork function""" def __init__(self, f): f() def __call__(self, f): pass else: import uwsgidecorators postfork = uwsgidecorators.postfork
from django.contrib import admin from .models import Board, Post, Topic # Register your models here. admin.site.register(Board), admin.site.register(Post), admin.site.register(Topic),
class Triangle: EQUILATERAL = "equilateral" ISOSCELES = "isosceles" SCALENE = "scalene" def __init__(self, a, b, c): self.a = a self.b = b self.c = c if self.error(): raise TriangleError def kind(self): if self.equilateral(): return self.EQUILATERAL if self.isosceles(): return self.ISOSCELES return self.SCALENE def equilateral(self): return self.a == self.b == self.c def isosceles(self): return self.a == self.b or self.b == self.c or self.a == self.c def error(self): return self.negative_sides() or self.triangle_inequality() def negative_sides(self): return self.a <= 0 or self.b <= 0 or self.c <= 0 def triangle_inequality(self): return (self.a + self.b <= self.c or self.b + self.c <= self.a or self.a + self.c <= self.b) class TriangleError(Exception): pass
from .visible_object import VisibleObject from ..aabb import AABB class Sphere(VisibleObject): TYPE = 'sphere' def __init__(self, **kwargs): self._location = [0, 0, 0] self._size = 2 attribute_mappings = { 'location': { 'attribute': '_location' }, 'size': { 'attribute': '_size' } } super().__init__(Sphere.TYPE, attribute_mappings, **kwargs) def aabb(self): (cx, cy, cz) = self._location r = self._size return AABB(cx - r, cx + r, cy - r, cy + r, cz - r, cz + r) def to_bpy(self, bpy, name_prefix): bpy.ops.mesh.primitive_ico_sphere_add( location=self._location, size=self._size ) obj = bpy.context.object super().apply_common_bpy_properties(bpy, obj, name_prefix) return obj
""" Utilities for Django Models """ # Python from typing import Any # Django from django.forms.widgets import ChoiceWidget from django import forms # Django filters import django_filters as filters def set_placeholder(field: Any, text: str) -> Any: """ Pass a Django form field and set a placeholder widget attribute, HTML Input with placeholder attribute with value as text passed Args: field: Django form field (usually a CharField), this need to be compatible with HTML placeholder attribute. text: Text to set in placeholder Returns: The same field with the placehorder attr assigned """ field.widget.attrs["placeholder"] = text return field class PaginationForm(forms.Form): pagination_choices = ( (10, "10"), (25, "25"), (50, "50"), (100, "100"), (150, "150"), (150, "250"), ) pagination = forms.ChoiceField( label="Paginate by", choices=pagination_choices, widget=forms.Select( attrs={ "onchange": "this.form.submit()" } ) ) class NumberInFilter(filters.BaseInFilter, filters.CharFilter): pass class CharInFilter(filters.BaseInFilter, filters.CharFilter): pass class DateInput(forms.DateInput): input_type = "date"
#Feliz Natal dia = 25 if(dia == 24): print('Bora comer panetone') print('Beber um refri') print('comer doce') elif dia == 25: print('Feliz Natal!!!')
import pytest @pytest.mark.django_db def test_signed_out_homepage(client): response = client.get("/") assert response.status_code == 200 assert b'<a href="/login/auth0">Sign in</a>' in response.content
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author: lipeijie import os import sys sys.path.insert(0, os.getcwd() + "/.") import json from pathlib import Path import time import re import fire import psutil import numpy as np import torch from google.protobuf import text_format import torchplus from second.builder import target_assigner_builder, voxel_builder from second.data.preprocess import merge_second_batch, merge_second_batch_multigpu from second.protos import pipeline_pb2 from second.pytorch.builder import (box_coder_builder, input_reader_builder, lr_scheduler_builder, optimizer_builder, losses_builder) from second.utils.log_tool import SimpleModelLog from second.utils.progress_bar import ProgressBar from second.pytorch.models.my_pointpillars import PointPillarsNet from second.pytorch.models.pointpillars_loss import PointPillarsLoss def example_convert_to_torch(example, dtype=torch.float32, device=None) -> dict: device = device or torch.device("cuda:0") example_torch = {} float_names = [ "voxels", "anchors", "reg_targets", "reg_weights", "bev_map", "importance" ] for k, v in example.items(): if k in float_names: # slow when directly provide fp32 data with dtype=torch.half example_torch[k] = torch.tensor( v, dtype=torch.float32, device=device).to(dtype) elif k in ["coordinates", "labels", "num_points"]: example_torch[k] = torch.tensor( v, dtype=torch.int32, device=device) elif k in ["anchors_mask"]: example_torch[k] = torch.tensor( v, dtype=torch.uint8, device=device) elif k == "calib": calib = {} for k1, v1 in v.items(): calib[k1] = torch.tensor( v1, dtype=dtype, device=device).to(dtype) example_torch[k] = calib elif k == "num_voxels": example_torch[k] = torch.tensor(v) else: example_torch[k] = v return example_torch def _worker_init_fn(worker_id): time_seed = np.array(time.time(), dtype=np.int32) np.random.seed(time_seed + worker_id) print(f"WORKER {worker_id} seed:", np.random.get_state()[1][0]) def freeze_params_v2(params: dict, include: str=None, exclude: str=None): assert isinstance(params, dict) include_re = None if include is not None: include_re = re.compile(include) exclude_re = None if exclude is not None: exclude_re = re.compile(exclude) for k, p in params.items(): if include_re is not None: if include_re.match(k) is not None: p.requires_grad = False if exclude_re is not None: if exclude_re.match(k) is None: p.requires_grad = False def filter_param_dict(state_dict: dict, include: str=None, exclude: str=None): assert isinstance(state_dict, dict) include_re = None if include is not None: include_re = re.compile(include) exclude_re = None if exclude is not None: exclude_re = re.compile(exclude) res_dict = {} for k, p in state_dict.items(): if include_re is not None: if include_re.match(k) is None: continue if exclude_re is not None: if exclude_re.match(k) is not None: continue res_dict[k] = p return res_dict def load_config(model_dir, config_path): config_file_bkp = "pipeline.config" if isinstance(config_path, str): # directly provide a config object. this usually used # when you want to train with several different parameters in # one script. config = pipeline_pb2.TrainEvalPipelineConfig() with open(config_path, "r") as f: proto_str = f.read() text_format.Merge(proto_str, config) else: config = config_path proto_str = text_format.MessageToString(config, indent=2) with (model_dir / config_file_bkp).open("w") as f: f.write(proto_str) return config, proto_str def load_target_assigner_param(model_cfg): classes_cfg = model_cfg.target_assigner.class_settings num_class = len(classes_cfg) use_mcnms = [c.use_multi_class_nms for c in classes_cfg] use_rotate_nms = [c.use_rotate_nms for c in classes_cfg] if len(model_cfg.target_assigner.nms_pre_max_sizes) != 0: nms_pre_max_sizes = list(model_cfg.target_assigner.nms_pre_max_sizes) assert len(nms_pre_max_sizes) == num_class else: nms_pre_max_sizes = [c.nms_pre_max_size for c in classes_cfg] if len(model_cfg.target_assigner.nms_post_max_sizes) != 0: nms_post_max_sizes = list(model_cfg.target_assigner.nms_post_max_sizes) assert len(nms_post_max_sizes) == num_class else: nms_post_max_sizes = [c.nms_post_max_size for c in classes_cfg] if len(model_cfg.target_assigner.nms_score_thresholds) != 0: nms_score_thresholds = list(model_cfg.target_assigner.nms_score_thresholds) assert len(nms_score_thresholds) == num_class else: nms_score_thresholds = [c.nms_score_threshold for c in classes_cfg] if len(model_cfg.target_assigner.nms_iou_thresholds) != 0: nms_iou_thresholds = list(model_cfg.target_assigner.nms_iou_thresholds) assert len(nms_iou_thresholds) == num_class else: nms_iou_thresholds = [c.nms_iou_threshold for c in classes_cfg] assert all(use_mcnms) or all([not b for b in use_mcnms]), "not implemented" assert all(use_rotate_nms) or all([not b for b in use_rotate_nms]), "not implemented" if all([not b for b in use_mcnms]): assert all([e == nms_pre_max_sizes[0] for e in nms_pre_max_sizes]) assert all([e == nms_post_max_sizes[0] for e in nms_post_max_sizes]) assert all([e == nms_score_thresholds[0] for e in nms_score_thresholds]) assert all([e == nms_iou_thresholds[0] for e in nms_iou_thresholds]) return num_class, use_mcnms, use_rotate_nms, nms_pre_max_sizes, nms_post_max_sizes, \ nms_score_thresholds, nms_iou_thresholds def build_net_loss(model_cfg, target_assigner): num_class, use_mcnms, use_rotate_nms, nms_pre_max_sizes, nms_post_max_sizes, \ nms_score_thresholds, nms_iou_thresholds = load_target_assigner_param(model_cfg) losses = losses_builder.build(model_cfg.loss) cls_loss_ftor, loc_loss_ftor, cls_weight, loc_weight, _ = losses net_loss = PointPillarsLoss(target_assigner, nms_score_thresholds=nms_score_thresholds, nms_iou_thresholds=nms_iou_thresholds, nms_pre_max_sizes=nms_pre_max_sizes, nms_post_max_sizes=nms_post_max_sizes, cls_loss_ftor=cls_loss_ftor, loc_loss_ftor=loc_loss_ftor, cls_loss_weight=cls_weight, loc_loss_weight=loc_weight) return net_loss def load_pretrained_model(net, pretrained_path, pretrained_include, pretrained_exclude, freeze_include, freeze_exclude): if pretrained_path is not None: model_dict = net.state_dict() pretrained_dict = torch.load(pretrained_path) pretrained_dict = filter_param_dict(pretrained_dict, pretrained_include, pretrained_exclude) new_pretrained_dict = {} for k, v in pretrained_dict.items(): if k in model_dict and v.shape == model_dict[k].shape: new_pretrained_dict[k] = v print("Load pretrained parameters:") for k, v in new_pretrained_dict.items(): print(k, v.shape) model_dict.update(new_pretrained_dict) net.load_state_dict(model_dict) freeze_params_v2(dict(net.named_parameters()), freeze_include, freeze_exclude) def create_optimizer(model_dir, train_cfg, net): optimizer_cfg = train_cfg.optimizer loss_scale = train_cfg.loss_scale_factor fastai_optimizer = optimizer_builder.build( optimizer_cfg, net, mixed=False, loss_scale=loss_scale) amp_optimizer = fastai_optimizer torchplus.train.try_restore_latest_checkpoints(model_dir, [fastai_optimizer]) lr_scheduler = lr_scheduler_builder.build(optimizer_cfg, amp_optimizer, train_cfg.steps) return amp_optimizer, lr_scheduler def get_paddings_indicator(actual_num, max_num, axis=0): """Create boolean mask by actually number of a padded tensor. Args: actual_num ([type]): [description] max_num ([type]): [description] Returns: [type]: [description] """ actual_num = torch.unsqueeze(actual_num, axis + 1) # tiled_actual_num: [N, M, 1] max_num_shape = [1] * len(actual_num.shape) max_num_shape[axis + 1] = -1 max_num = torch.arange( max_num, dtype=torch.int, device=actual_num.device).view(max_num_shape) # tiled_actual_num: [[3,3,3,3,3], [4,4,4,4,4], [2,2,2,2,2]] # tiled_max_num: [[0,1,2,3,4], [0,1,2,3,4], [0,1,2,3,4]] paddings_indicator = actual_num.int() > max_num # paddings_indicator shape: [batch_size, max_num] return paddings_indicator def reshape_input(batch_size, input_features, coords, grid_size): # input_features: [num_voxels, max_num_points_per_voxel, 9] # coors: [num_voxels, 4] # print("grid_size:", grid_size) # x, y, z nx = grid_size[0] ny = grid_size[1] pillar_x = input_features[:, :, 0].squeeze() pillar_y = input_features[:, :, 1].squeeze() pillar_z = input_features[:, :, 2].squeeze() pillar_i = input_features[:, :, 3].squeeze() pillar_c_x = input_features[:, :, 4].squeeze() pillar_c_y = input_features[:, :, 5].squeeze() pillar_c_z = input_features[:, :, 6].squeeze() pillar_p_x = input_features[:, :, 7].squeeze() pillar_p_y = input_features[:, :, 8].squeeze() batch_canvas = [] for batch_itt in range(batch_size): # Create the canvas for this sample all_canvas = [] # Only include non-empty pillars batch_mask = coords[:, 0] == batch_itt this_coords = coords[batch_mask, :] indices = this_coords[:, 2] * nx + this_coords[:, 3] indices = indices.type(torch.long) voxels_x = pillar_x[batch_mask, :] canvas_x = torch.zeros( nx * ny, 100, dtype=input_features.dtype, device=input_features.device) canvas_x[indices, :] = voxels_x all_canvas.append(canvas_x) voxels_y = pillar_y[batch_mask, :] canvas_y = torch.zeros( nx * ny, 100, dtype=input_features.dtype, device=input_features.device) canvas_y[indices, :] = voxels_y all_canvas.append(canvas_y) voxels_z = pillar_z[batch_mask, :] canvas_z = torch.zeros( nx * ny, 100, dtype=input_features.dtype, device=input_features.device) canvas_z[indices, :] = voxels_z all_canvas.append(canvas_z) voxels_i = pillar_i[batch_mask, :] canvas_i = torch.zeros( nx * ny, 100, dtype=input_features.dtype, device=input_features.device) canvas_i[indices, :] = voxels_i all_canvas.append(canvas_i) voxels_c_x = pillar_c_x[batch_mask, :] canvas_c_x = torch.zeros( nx * ny, 100, dtype=input_features.dtype, device=input_features.device) canvas_c_x[indices, :] = voxels_c_x all_canvas.append(canvas_c_x) voxels_c_y = pillar_c_y[batch_mask, :] canvas_c_y = torch.zeros( nx * ny, 100, dtype=input_features.dtype, device=input_features.device) canvas_c_y[indices, :] = voxels_c_y all_canvas.append(canvas_c_y) voxels_c_z = pillar_c_z[batch_mask, :] canvas_c_z = torch.zeros( nx * ny, 100, dtype=input_features.dtype, device=input_features.device) canvas_c_z[indices, :] = voxels_c_z all_canvas.append(canvas_c_z) voxels_p_x = pillar_p_x[batch_mask, :] canvas_p_x = torch.zeros( nx * ny, 100, dtype=input_features.dtype, device=input_features.device) canvas_p_x[indices, :] = voxels_p_x all_canvas.append(canvas_p_x) voxels_p_y = pillar_p_y[batch_mask, :] canvas_p_y = torch.zeros( nx * ny, 100, dtype=input_features.dtype, device=input_features.device) canvas_p_y[indices, :] = voxels_p_y all_canvas.append(canvas_p_y) all_data = torch.stack(all_canvas, 0) # Append to a list for later stacking. batch_canvas.append(all_data) # Stack to 3-dim tensor (batch-size, nchannels, nrows*ncols, 100) batch_canvas = torch.stack(batch_canvas, 0) # print("batch_canvas", batch_canvas.shape) return batch_canvas def reshape_input1(input_features): # input_features: [num_voxels, max_num_points_per_voxel, 9] pillar_x = input_features[:, :, 0].unsqueeze(0).unsqueeze(0) pillar_y = input_features[:, :, 1].unsqueeze(0).unsqueeze(0) pillar_z = input_features[:, :, 2].unsqueeze(0).unsqueeze(0) pillar_i = input_features[:, :, 3].unsqueeze(0).unsqueeze(0) pillar_c_x = input_features[:, :, 4].unsqueeze(0).unsqueeze(0) pillar_c_y = input_features[:, :, 5].unsqueeze(0).unsqueeze(0) pillar_c_z = input_features[:, :, 6].unsqueeze(0).unsqueeze(0) pillar_p_x = input_features[:, :, 7].unsqueeze(0).unsqueeze(0) pillar_p_y = input_features[:, :, 8].unsqueeze(0).unsqueeze(0) batch_canvas = [pillar_x, pillar_y, pillar_z, pillar_i, pillar_c_x, pillar_c_y, pillar_c_z, pillar_p_x, pillar_p_y] return torch.cat(batch_canvas, 1) def compute_model_input(voxel_size, pc_range, with_distance, voxels, num_voxels, coors): # num_voxels: [num_voxels] # Need pillar (voxel) size and x/y offset in order to calculate pillar offset vx = voxel_size[0] vy = voxel_size[1] x_offset = vx / 2 + pc_range[0] y_offset = vy / 2 + pc_range[1] device = voxels.device dtype = voxels.dtype # Find distance of x, y, and z from cluster center points_mean = voxels[:, :, :3].sum( dim=1, keepdim=True) / num_voxels.type_as(voxels).view(-1, 1, 1) f_cluster = voxels[:, :, :3] - points_mean # Find distance of x, y, and z from pillar center f_center = torch.zeros_like(voxels[:, :, :2]) f_center[:, :, 0] = voxels[:, :, 0] - ( coors[:, 3].to(dtype).unsqueeze(1) * vx + x_offset) f_center[:, :, 1] = voxels[:, :, 1] - ( coors[:, 2].to(dtype).unsqueeze(1) * vy + y_offset) # Combine together feature decorations features_ls = [voxels, f_cluster, f_center] if with_distance: points_dist = torch.norm(voxels[:, :, :3], 2, 2, keepdim=True) features_ls.append(points_dist) features = torch.cat(features_ls, dim=-1) # The feature decorations were calculated without regard to whether pillar was empty. Need to ensure that # empty pillars remain set to zeros. voxel_count = features.shape[1] mask = get_paddings_indicator(num_voxels, voxel_count, axis=0) mask = torch.unsqueeze(mask, -1).type_as(features) features *= mask # print("features", features.shape) return features def kaiming_init(model, scale=0.1): for m in model.modules(): if isinstance(m, torch.nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in', nonlinearity='relu') m.weight.data *= scale # for residual block if m.bias is not None: m.bias.data.zero_() elif isinstance(m, torch.nn.Linear): torch.nn.init.kaiming_normal_(m.weight, a=0, mode='fan_in') # nn.init.normal_(m.weight, 0, 0.01) m.weight.data *= scale if m.bias is not None: m.bias.data.zero_() elif isinstance(m, torch.nn.BatchNorm2d): torch.nn.init.ones_(m.weight) torch.nn.init.zeros_(m.bias) elif isinstance(m, torch.nn.BatchNorm1d): torch.nn.init.ones_(m.weight) torch.nn.init.zeros_(m.bias) float_dtype = torch.float32 def evaluate(net, net_loss, best_mAP, voxel_generator, target_assigner, config, model_logging, model_dir, result_path=None): torch.cuda.empty_cache() global_step = net_loss.get_global_step() eval_input_cfg = config.eval_input_reader model_cfg = config.model.second eval_dataset = input_reader_builder.build( eval_input_cfg, model_cfg, training=False, voxel_generator=voxel_generator, target_assigner=target_assigner) eval_dataloader = torch.utils.data.DataLoader( eval_dataset, batch_size=eval_input_cfg.batch_size, # only support multi-gpu train shuffle=False, num_workers=eval_input_cfg.preprocess.num_workers, pin_memory=False, collate_fn=merge_second_batch) result_path_step = result_path / f"step_{global_step}" # result_path_step.mkdir(parents=True, exist_ok=True) model_logging.log_text("#################################", global_step) model_logging.log_text("# EVAL", global_step) model_logging.log_text("#################################", global_step) model_logging.log_text("Generate output labels...", global_step) t = time.time() detections = [] prog_bar = ProgressBar() prog_bar.start((len(eval_dataset) + eval_input_cfg.batch_size - 1) // eval_input_cfg.batch_size) for example in iter(eval_dataloader): example = example_convert_to_torch(example, float_dtype) batch_size = example["anchors"].shape[0] coors = example["coordinates"] input_features = compute_model_input(voxel_generator.voxel_size, voxel_generator.point_cloud_range, with_distance=False, voxels=example['voxels'], num_voxels=example['num_points'], coors=coors) # input_features = reshape_input(batch_size, input_features, coors, voxel_generator.grid_size) input_features = reshape_input1(input_features) net.batch_size = batch_size preds_list = net(input_features, coors) detections += net_loss(example, preds_list) prog_bar.print_bar() sec_per_ex = len(eval_dataset) / (time.time() - t) model_logging.log_text( f'generate label finished({sec_per_ex:.2f}/s). start eval:', global_step) result_dict = eval_dataset.dataset.evaluation( detections, str(result_path_step)) if result_dict['mAp'] > best_mAP: best_mAP = result_dict['mAp'] ckpt_path = Path(model_dir) / "best_pointpillars.pth" torch.save(net.state_dict(), ckpt_path) for k, v in result_dict["results"].items(): model_logging.log_text("Evaluation {}".format(k), global_step) model_logging.log_text(v, global_step) model_logging.log_text("mAP {}".format(result_dict['mAp']), global_step) model_logging.log_text("best_mAP {}".format(best_mAP), global_step) model_logging.log_metrics(result_dict["detail"], global_step) # with open(result_path_step / "result.pkl", 'wb') as f: # pickle.dump(detections, f) return best_mAP def train(config_path, model_dir, result_path=None, create_folder=False, display_step=50, pretrained_path=None, pretrained_include=None, pretrained_exclude=None, freeze_include=None, freeze_exclude=None, multi_gpu=False, measure_time=False, resume=False): """train a PointPillars model specified by a config file. """ torch.cuda.empty_cache() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_dir = str(Path(model_dir).resolve()) if create_folder: if Path(model_dir).exists(): model_dir = torchplus.train.create_folder(model_dir) model_dir = Path(model_dir) if not resume and model_dir.exists(): raise ValueError("model dir exists and you don't specify resume.") model_dir.mkdir(parents=True, exist_ok=True) if result_path is None: result_path = model_dir / 'results' config, proto_str = load_config(model_dir, config_path) input_cfg = config.train_input_reader model_cfg = config.model.second train_cfg = config.train_config target_assigner_cfg = model_cfg.target_assigner voxel_generator = voxel_builder.build(model_cfg.voxel_generator) bv_range = voxel_generator.point_cloud_range[[0, 1, 3, 4]] box_coder = box_coder_builder.build(model_cfg.box_coder) target_assigner = target_assigner_builder.build(target_assigner_cfg, bv_range, box_coder) box_coder.custom_ndim = target_assigner._anchor_generators[0].custom_ndim net = PointPillarsNet(1, voxel_generator.grid_size, target_assigner.num_anchors_per_location, target_assigner.box_coder.code_size, with_distance=False).to(device) kaiming_init(net, 1.0) net_loss = build_net_loss(model_cfg, target_assigner).to(device) net_loss.clear_global_step() net_loss.clear_metrics() # print("num parameters:", len(list(net.parameters()))) load_pretrained_model(net, pretrained_path, pretrained_include, pretrained_exclude, freeze_include, freeze_exclude) if resume: torchplus.train.try_restore_latest_checkpoints(model_dir, [net]) amp_optimizer, lr_scheduler = create_optimizer(model_dir, train_cfg, net) collate_fn = merge_second_batch num_gpu = 1 ###################### # PREPARE INPUT ###################### dataset = input_reader_builder.build( input_cfg, model_cfg, training=True, voxel_generator=voxel_generator, target_assigner=target_assigner, multi_gpu=multi_gpu) dataloader = torch.utils.data.DataLoader( dataset, batch_size=input_cfg.batch_size * num_gpu, shuffle=True, num_workers=input_cfg.preprocess.num_workers * num_gpu, pin_memory=False, collate_fn=collate_fn, worker_init_fn=_worker_init_fn, drop_last=not multi_gpu) ###################### # TRAINING ###################### model_logging = SimpleModelLog(model_dir) model_logging.open() model_logging.log_text(proto_str + "\n", 0, tag="config") start_step = net_loss.get_global_step() total_step = train_cfg.steps t = time.time() steps_per_eval = train_cfg.steps_per_eval clear_metrics_every_epoch = train_cfg.clear_metrics_every_epoch amp_optimizer.zero_grad() step_times = [] step = start_step best_mAP = 0 epoch = 0 net.train() net_loss.train() try: while True: if clear_metrics_every_epoch: net_loss.clear_metrics() for example in dataloader: lr_scheduler.step(net_loss.get_global_step()) time_metrics = example["metrics"] example.pop("metrics") example_torch = example_convert_to_torch(example, float_dtype) batch_size = example_torch["anchors"].shape[0] coors = example_torch["coordinates"] input_features = compute_model_input(voxel_generator.voxel_size, voxel_generator.point_cloud_range, with_distance=False, voxels=example_torch['voxels'], num_voxels=example_torch['num_points'], coors=coors) # input_features = reshape_input(batch_size, input_features, coors, voxel_generator.grid_size) input_features = reshape_input1(input_features) net.batch_size = batch_size preds_list = net(input_features, coors) ret_dict = net_loss(example_torch, preds_list) cls_preds = ret_dict["cls_preds"] loss = ret_dict["loss"].mean() cls_loss_reduced = ret_dict["cls_loss_reduced"].mean() loc_loss_reduced = ret_dict["loc_loss_reduced"].mean() cls_pos_loss = ret_dict["cls_pos_loss"].mean() cls_neg_loss = ret_dict["cls_neg_loss"].mean() loc_loss = ret_dict["loc_loss"] cls_loss = ret_dict["cls_loss"] cared = ret_dict["cared"] labels = example_torch["labels"] loss.backward() torch.nn.utils.clip_grad_norm_(net.parameters(), 10.0) amp_optimizer.step() amp_optimizer.zero_grad() net_loss.update_global_step() net_metrics = net_loss.update_metrics(cls_loss_reduced, loc_loss_reduced, cls_preds, labels, cared) step_time = (time.time() - t) step_times.append(step_time) t = time.time() metrics = {} num_pos = int((labels > 0)[0].float().sum().cpu().numpy()) num_neg = int((labels == 0)[0].float().sum().cpu().numpy()) if 'anchors_mask' not in example_torch: num_anchors = example_torch['anchors'].shape[1] else: num_anchors = int(example_torch['anchors_mask'][0].sum()) global_step = net_loss.get_global_step() if global_step % display_step == 0: loc_loss_elem = [ float(loc_loss[:, :, i].sum().detach().cpu().numpy() / batch_size) for i in range(loc_loss.shape[-1]) ] metrics["runtime"] = { "step": global_step, "steptime": np.mean(step_times), } metrics["runtime"].update(time_metrics[0]) step_times = [] metrics.update(net_metrics) metrics["loss"]["loc_elem"] = loc_loss_elem metrics["loss"]["cls_pos_rt"] = float( cls_pos_loss.detach().cpu().numpy()) metrics["loss"]["cls_neg_rt"] = float( cls_neg_loss.detach().cpu().numpy()) if model_cfg.use_direction_classifier: dir_loss_reduced = ret_dict["dir_loss_reduced"].mean() metrics["loss"]["dir_rt"] = float( dir_loss_reduced.detach().cpu().numpy()) metrics["misc"] = { "num_vox": int(example_torch["voxels"].shape[0]), "num_pos": int(num_pos), "num_neg": int(num_neg), "num_anchors": int(num_anchors), "lr": float(amp_optimizer.lr), "mem_usage": psutil.virtual_memory().percent, } model_logging.log_metrics(metrics, global_step) step += 1 epoch += 1 if epoch % 2 == 0: global_step = net_loss.get_global_step() torchplus.train.save_models(model_dir, [net, amp_optimizer], global_step) net.eval() net_loss.eval() best_mAP = evaluate(net, net_loss, best_mAP, voxel_generator, target_assigner, config, model_logging, model_dir, result_path) net.train() net_loss.train() if epoch > 100: break if epoch > 100: break except Exception as e: print(json.dumps(example["metadata"], indent=2)) model_logging.log_text(str(e), step) model_logging.log_text(json.dumps(example["metadata"], indent=2), step) torchplus.train.save_models(model_dir, [net, amp_optimizer], step) raise e finally: model_logging.close() torchplus.train.save_models(model_dir, [net, amp_optimizer], net_loss.get_global_step()) if __name__ == '__main__': fire.Fire()
def test(): assert ( "from spacy.tokens import Doc" in __solution__ ), "Importes-tu correctement la classe Doc ?" assert ( len(spaces) == 5 ), "Il semble que le nombre d'espaces ne correspond pas au nombre de mots." assert all(isinstance(s, bool) for s in spaces), "Les espaces doivent être des booléens." assert [int(s) for s in spaces] == [0, 1, 1, 1, 0], "Les espaces sont-ils corrects ?" assert doc.text == "Allez, on commence !", "Es-tu certain d'avoir correctement créé le Doc ?" __msg__.good("Bien !")
import yaml from definitions import CONFIG_PATH, DEFAULT_SETTINGS config = yaml.safe_load(open(CONFIG_PATH, encoding="utf8")) for setting, default_value in DEFAULT_SETTINGS.items(): if setting not in config: config[setting] = default_value
from database import database, manage, models
from django.apps import AppConfig class portfolioConfig(AppConfig): name = 'portfolio'
import sublime import sublime_plugin from Default.exec import ExecCommand # Related reading/viewing; # https://stackoverflow.com/questions/56934013/sublimetext-run-the-exec-with-current-file-as-arg-tab-context-menu # https://youtu.be/WxiMlhOX_Ng # This plugin is a combination of an exec variant written for a stack overflow # answer and one from my YouTube video on common custom build targets. # # The internal exec command can execute external programs, but unless it is # invoked via the build command as a part of a build system, variables like # $file and the like are not expanded. This makes key bindings or menu entries # that want to execute specific tasks in context harder or impossible to do. # # In addition the exec command uses the global show_panel_on_build setting to # open the build output, which may also not be desirable if you're executing # ad-hoc programs. # # This variant of the command expands variables the same way as they would be # expanded in a build system, and also supports a custom argument named # show_panel that controls if the output panel should be displayed or not. A # value of None honors the show_panel_on_build setting; set it to True or False # to explicitly show or not show the panel. class MenuExecCommand(ExecCommand): """ A simple wrapper around the internal exec command that expands all of the normal build variables prior to the build, while also being able to temporarily suppress the build output panel if desired. """ def run(self, show_panel=None, **kwargs): variables = self.window.extract_variables() for key in ("cmd", "shell_cmd", "working_dir"): if key in kwargs: kwargs[key] = sublime.expand_variables(kwargs[key], variables) settings = sublime.load_settings("Preferences.sublime-settings") pref_var = settings.get("show_panel_on_build") show_panel = pref_var if show_panel is None else show_panel if show_panel != pref_var: settings.set("show_panel_on_build", show_panel) super().run(**kwargs) if show_panel != pref_var: settings.set("show_panel_on_build", pref_var)
bl_info = { "name": "Window Generator", "description": "Generate Window Arrays", "author": "Austin Jacob", "version": (1, 0, 0), "blender": (2, 79, 0), "location": "View3D > Add > Mesh", "warning": "", # used for warning icon and text in addons panel "wiki_url": "", "tracker_url": "", "category": "Add Mesh"} import bpy import bmesh from bpy.props import ( BoolProperty, BoolVectorProperty, FloatProperty, FloatVectorProperty, IntProperty, EnumProperty, ) class AddWindows(bpy.types.Operator): """Add an array of windows to a mesh""" bl_idname = "mesh.windows_add" bl_label = "Add Windows" bl_options = {'REGISTER', 'UNDO'} length = FloatProperty( name="Length", description="Window Length", min=0.01, default=2, ) width = FloatProperty( name="Width", description="Window Width", min=0.01, default=0.325, ) height = FloatProperty( name="Height", description="Window Height", min=0.01, default=1.5, ) thick = FloatProperty( name="Thickness", description="How thick each window pane is", min=0.01, default=0.05, ) #No boxes can touch because then booleans don't work #So shift minimums can never quite be 0. x_shift = FloatProperty( name="Distance Apart (X)", description="How far apart each window is on the x-axis", min=0.0001, default=0.0001, ) y_shift = FloatProperty( name="Distance Apart (Y)", description="How far apart each window is on the y-axis", min=0.0001, default=0.0001, ) x_win = IntProperty( name="Windows Per Row", description="How many windows per row", min=1, default=1, ) y_win = IntProperty( name="Windows Per Column", description="How many windows per column", min=1, default=1, ) layers = BoolVectorProperty( name="Layers", description="Object Layers", size=20, options={'HIDDEN', 'SKIP_SAVE'}, ) # generic transform props view_align = BoolProperty( name="Align to View", default=False, ) location = FloatVectorProperty( name="Location", subtype='TRANSLATION', ) rotation = FloatVectorProperty( name="Rotation", subtype='EULER', ) def execute(self, context): #Rename the variables to be easier to work with x_win = self.x_win y_win = self.y_win l = self.length w = self.width h = self.height t = self.thick x_shift = self.x_shift y_shift = self.y_shift x_loc = 0 y_loc = 0 loc = self.location rot = self.rotation #Make the window object mesh1 = bpy.data.meshes.new("windows") windows_obj = bpy.data.objects.new("Windows_Obj", mesh1) scene = bpy.context.scene scene.objects.link(windows_obj) bm1 = bmesh.new() verts = [(-(l / 2.0), +(w / 2.0), +(h / 2.0)), (-((l / 2.0) - t), +(w / 2.0), +((h / 2.0) - t)), (+((l / 2.0) - t), +(w / 2.0), +((h / 2.0) - t)), (+(l / 2.0), +(w / 2.0), +(h / 2.0)), (+(l / 2.0), +(w / 2.0), -(h / 2.0)), (+((l / 2.0) - t), +(w / 2.0), -((h / 2.0) - t)), (-((l / 2.0) - t), +(w / 2.0), -((h / 2.0) - t)), (-(l / 2.0), +(w / 2.0), -(h / 2.0)), (-(l / 2.0), -(w / 2.0), +(h / 2.0)), (-((l / 2.0) - t), -(w / 2.0), +((h / 2.0) - t)), (+((l / 2.0) - t), -(w / 2.0), +((h / 2.0) - t)), (+(l / 2.0), -(w / 2.0), +(h / 2.0)), (+(l / 2.0), -(w / 2.0), -(h / 2.0)), (+((l / 2.0) - t), -(w / 2.0), -((h / 2.0) - t)), (-((l / 2.0) - t), -(w / 2.0), -((h / 2.0) - t)), (-(l / 2.0), -(w / 2.0), -(h / 2.0)), ] faces = [(3, 2, 1, 0), (4, 5, 2, 3), (7, 6, 5, 4), (0, 1, 6, 7), (8, 9, 10, 11), (11, 10, 13, 12), (12, 13, 14, 15), (15, 14, 9, 8), (0, 7, 15, 8), (3, 0, 8, 11), (4, 3, 11, 12), (7, 4, 12, 15), (9, 14, 6, 1), (1, 2, 10, 9), (2, 5, 13, 10), (5, 6, 14, 13), ] for v_co in verts: bm1.verts.new(v_co) bm1.verts.ensure_lookup_table() for f_idx in faces: bm1.faces.new([bm1.verts[i] for i in f_idx]) bm1.to_mesh(mesh1) mesh1.update() #Apply array modifier twice on the window mesh to make a grid of windows x_array = bpy.data.objects[windows_obj.name].modifiers.new(name='x_window_array', type='ARRAY') x_array.count = x_win x_array.use_relative_offset = False x_array.use_constant_offset = True x_array.constant_offset_displace = (x_shift + l, 0.0, 0.0) y_array = bpy.data.objects[windows_obj.name].modifiers.new(name='y_window_array', type='ARRAY') y_array.count = y_win y_array.use_relative_offset = False y_array.use_constant_offset = True y_array.constant_offset_displace = (0.0, 0.0, y_shift + h) #Now make the boolean cutout boxes #These boxes are used to cut holes #in the wall where the windows fit mesh2 = bpy.data.meshes.new("window_boolean") window_boolean_obj = bpy.data.objects.new("Window_Boolean_Obj", mesh2) scene = bpy.context.scene scene.objects.link(window_boolean_obj) bm2 = bmesh.new() verts = [(+(l / 2.0), +w / 2.0, -(h / 2.0)), (+(l / 2.0), -w / 2.0, -(h / 2.0)), (-(l / 2.0), -w / 2.0, -(h / 2.0)), (-(l / 2.0), +w / 2.0, -(h / 2.0)), (+(l / 2.0), +w / 2.0, +(h / 2.0)), (+(l / 2.0), -w / 2.0, +(h / 2.0)), (-(l / 2.0), -w / 2.0, +(h / 2.0)), (-(l / 2.0), +w / 2.0, +(h / 2.0)), ] faces = [(0, 1, 2, 3), (4, 7, 6, 5), (0, 4, 5, 1), (1, 5, 6, 2), (2, 6, 7, 3), (4, 0, 3, 7), ] for v_co in verts: bm2.verts.new(v_co) bm2.verts.ensure_lookup_table() for f_idx in faces: bm2.faces.new([bm2.verts[i] for i in f_idx]) bm2.to_mesh(mesh2) mesh2.update() #Apply array modifier twice to make a grid of window cutouts x_array2 = bpy.data.objects[window_boolean_obj.name].modifiers.new(name='x_window_array2', type='ARRAY') x_array2.count = x_win x_array2.use_relative_offset = False x_array2.use_constant_offset = True x_array2.constant_offset_displace = (x_shift + l, 0.0, 0.0) y_array2 = bpy.data.objects[window_boolean_obj.name].modifiers.new(name='y_window_array2', type='ARRAY') y_array2.count = y_win y_array2.use_relative_offset = False y_array2.use_constant_offset = True y_array2.constant_offset_displace = (0.0, 0.0, y_shift + h) #Transform both objects (translate, rotate) windows_obj.location = loc windows_obj.rotation_euler = rot window_boolean_obj.location = loc window_boolean_obj.rotation_euler = rot #Hide the cutout objects to only see the windows window_boolean_obj.hide = True #Apply all array modifiers on both objects #Also apply location, rotation, and scale. bpy.context.scene.objects.active = windows_obj bpy.ops.object.modifier_apply(apply_as='DATA', modifier='x_window_array') bpy.ops.object.modifier_apply(apply_as='DATA', modifier='y_window_array') bpy.ops.object.transform_apply(location = True, scale = True, rotation = True) bpy.context.scene.objects.active = window_boolean_obj bpy.ops.object.modifier_apply(apply_as='DATA', modifier='x_window_array2') bpy.ops.object.modifier_apply(apply_as='DATA', modifier='y_window_array2') bpy.ops.object.transform_apply(location = True, scale = True, rotation = True) return {'FINISHED'} def menu_func(self, context): self.layout.operator(AddWindows.bl_idname, icon='MOD_LATTICE') def register(): bpy.utils.register_class(AddWindows) bpy.types.INFO_MT_mesh_add.append(menu_func) def unregister(): bpy.utils.unregister_class(AddWindows) bpy.types.INFO_MT_mesh_add.remove(menu_func) if __name__ == "__main__": register()
# # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # { 'includes' : [ '../ion/common.gypi', ], 'variables': { # Used by make_into_app.gypi. We can define this once per target, or # globally here. 'target_app_location_param': '<(PRODUCT_DIR)/test', }, 'targets': [ { 'target_name': 'Snapshot_assets', 'type': 'static_library', 'includes': [ '../ion/dev/zipasset_generator.gypi', ], 'dependencies': [ '<(ion_dir)/port/port.gyp:ionport', ], 'sources': [ 'Snapshot_assets.iad', ], }, # target: Snapshot_assets { 'target_name': 'Snapshot', 'includes': [ 'demobase.gypi', ], 'variables': { 'demo_class_name': 'Snapshot' }, 'sources': [ 'Camera.cpp', 'Camera.hpp', 'FileManager.cpp', 'FileManager.hpp', 'FinalAction.hpp', 'Hud.cpp', 'Hud.hpp', 'IonFwd.h', 'KeyboardHandler.cpp', 'KeyboardHandler.hpp', 'Macros.h', 'main.cpp', 'resource.h', 'Scene.cpp', 'Scene.hpp', 'SceneBase.cpp', 'SceneBase.hpp', 'stdafx.cpp', 'stdafx.h', 'targetver.h', 'Window.cpp', 'Window.hpp', ], 'dependencies': [ ':Snapshot_assets', '<(ion_dir)/external/freetype2.gyp:ionfreetype2', '<(ion_dir)/external/glfw.gyp:glfw', ], 'msvs_settings': { 'VCLinkerTool': { 'AdditionalDependencies': [ '%(AdditionalDependencies)', ], }, 'VCCLCompilerTool': { 'OpenMP': 'true', 'EnableEnhancedInstructionSet': '3', # AdvancedVectorExtensions } }, }, # target: Snapshot { 'variables': { 'make_this_target_into_an_app_param': 'Snapshot', 'apk_class_name_param': 'Snapshot', }, 'includes': [ 'demo_apk_variables.gypi', ], }, { 'target_name': 'SnapshotInstaller', 'type': 'wix_installer', 'dependencies': [ ':Snapshot', ], 'sources': [ './InstallSnapshot.wxs', ], }, # target: SnapshotInstaller ], }
import torch import torch.nn.functional as F from torch import nn from .pooler import RoIAlign from .utils import Matcher, BalancedPositiveNegativeSampler, roi_align from .box_ops import BoxCoder, box_iou, process_box, nms def fastrcnn_loss(class_logit, box_regression, label, regression_target): classifier_loss = F.cross_entropy(class_logit, label) N, num_pos = class_logit.shape[0], regression_target.shape[0] box_regression = box_regression.reshape(N, -1, 4) box_regression, label = box_regression[:num_pos], label[:num_pos] box_idx = torch.arange(num_pos, device=label.device) box_reg_loss = F.smooth_l1_loss(box_regression[box_idx, label], regression_target, reduction='sum') / N return classifier_loss, box_reg_loss def maskrcnn_loss(mask_logit, proposal, matched_idx, label, gt_mask): matched_idx = matched_idx[:, None].to(proposal) roi = torch.cat((matched_idx, proposal), dim=1) M = mask_logit.shape[-1] gt_mask = gt_mask[:, None].to(roi) mask_target = roi_align(gt_mask, roi, 1., M, M, -1)[:, 0] idx = torch.arange(label.shape[0], device=label.device) mask_loss = F.binary_cross_entropy_with_logits(mask_logit[idx, label], mask_target) return mask_loss class RoIHeads(nn.Module): def __init__(self, box_roi_pool, box_predictor, fg_iou_thresh, bg_iou_thresh, num_samples, positive_fraction, reg_weights, score_thresh, nms_thresh, num_detections): super().__init__() self.box_roi_pool = box_roi_pool self.box_predictor = box_predictor self.mask_roi_pool = None self.mask_predictor = None self.proposal_matcher = Matcher(fg_iou_thresh, bg_iou_thresh, allow_low_quality_matches=False) self.fg_bg_sampler = BalancedPositiveNegativeSampler(num_samples, positive_fraction) self.box_coder = BoxCoder(reg_weights) self.score_thresh = score_thresh self.nms_thresh = nms_thresh self.num_detections = num_detections self.min_size = 1 def has_mask(self): if self.mask_roi_pool is None: return False if self.mask_predictor is None: return False return True def select_training_samples(self, proposal, target): gt_box = target['boxes'] gt_label = target['labels'] proposal = torch.cat((proposal, gt_box)) iou = box_iou(gt_box, proposal) pos_neg_label, matched_idx = self.proposal_matcher(iou) pos_idx, neg_idx = self.fg_bg_sampler(pos_neg_label) idx = torch.cat((pos_idx, neg_idx)) regression_target = self.box_coder.encode(gt_box[matched_idx[pos_idx]], proposal[pos_idx]) proposal = proposal[idx] matched_idx = matched_idx[idx] label = gt_label[matched_idx] num_pos = pos_idx.shape[0] label[num_pos:] = 0 return proposal, matched_idx, label, regression_target def fastrcnn_inference(self, class_logit, box_regression, proposal, image_shape): N, num_classes = class_logit.shape device = class_logit.device pred_score = F.softmax(class_logit, dim=-1) box_regression = box_regression.reshape(N, -1, 4) boxes = [] labels = [] scores = [] for l in range(1, num_classes): score, box_delta = pred_score[:, l], box_regression[:, l] keep = score >= self.score_thresh box, score, box_delta = proposal[keep], score[keep], box_delta[keep] box = self.box_coder.decode(box_delta, box) box, score = process_box(box, score, image_shape, self.min_size) keep = nms(box, score, self.nms_thresh)[:self.num_detections] box, score = box[keep], score[keep] label = torch.full((len(keep),), l, dtype=keep.dtype, device=device) boxes.append(box) labels.append(label) scores.append(score) results = dict(boxes=torch.cat(boxes), labels=torch.cat(labels), scores=torch.cat(scores)) return results def forward(self, feature, proposal, image_shape, target): if self.training: proposal, matched_idx, label, regression_target = self.select_training_samples(proposal, target) box_feature = self.box_roi_pool(feature, proposal, image_shape) # roi pooling class_logit, box_regression = self.box_predictor(box_feature) # estimate final bbox result, losses = {}, {} if self.training: classifier_loss, box_reg_loss = fastrcnn_loss(class_logit, box_regression, label, regression_target) losses = dict(roi_classifier_loss=classifier_loss, roi_box_loss=box_reg_loss) else: result = self.fastrcnn_inference(class_logit, box_regression, proposal, image_shape) if self.has_mask(): if self.training: num_pos = regression_target.shape[0] mask_proposal = proposal[:num_pos] pos_matched_idx = matched_idx[:num_pos] mask_label = label[:num_pos] ''' # -------------- critial ---------------- box_regression = box_regression[:num_pos].reshape(num_pos, -1, 4) idx = torch.arange(num_pos, device=mask_label.device) mask_proposal = self.box_coder.decode(box_regression[idx, mask_label], mask_proposal) # --------------------------------------- ''' if mask_proposal.shape[0] == 0: losses.update(dict(roi_mask_loss=torch.tensor(0))) return result, losses else: mask_proposal = result['boxes'] if mask_proposal.shape[0] == 0: result.update(dict(masks=torch.empty((0, 28, 28)))) return result, losses mask_feature = self.mask_roi_pool(feature, mask_proposal, image_shape) mask_logit = self.mask_predictor(mask_feature) if self.training: gt_mask = target['masks'] mask_loss = maskrcnn_loss(mask_logit, mask_proposal, pos_matched_idx, mask_label, gt_mask) losses.update(dict(roi_mask_loss=mask_loss)) else: label = result['labels'] idx = torch.arange(label.shape[0], device=label.device) mask_logit = mask_logit[idx, label] mask_prob = mask_logit.sigmoid() result.update(dict(masks=mask_prob)) return result, losses
import time import loggedmethods class BaseInstrument(object): logged_methods_on = False capabilities = ( {'name': 'SystemTime', 'type': 'property'}, ) def __init__(self): pass def getSystemTime(self): return time.time() def getCapabilities(self): implemented = [] for cap in self.capabilities: found = {'name': cap['name'], 'implemented': []} if cap['type'] == 'property': for op in ('set','get'): attr = op + cap['name'] if hasattr(self, attr): found['implemented'].append(op) elif cap['type'] == 'method': if hasattr(self, cap['name']): found['implemented'].append('call') if found['implemented']: implemented.append(found) return implemented
# charter.renderers.pdf.title # # Renderer for drawing a title onto the chart in PDF format. from ...constants import * ############################################################################# def draw(chart, canvas): text_width = canvas.stringWidth(chart['title'], "Helvetica", 24) text_height = 24 * 1.2 left = CHART_WIDTH/2 - text_width/2 bottom = CHART_HEIGHT - TITLE_HEIGHT/2 + text_height/2 canvas.setFont("Helvetica", 24) canvas.setFillColorRGB(0.25, 0.25, 0.625) canvas.drawString(left, bottom, chart['title'])
from typing import Optional, Tuple, Dict from dataset_tools import QuestionCase from filenames import SlotFillingFiles from neural_sparql_machine.fairseq_wrapper import FairseqTranslator from entity_linking import BaseEntityLinkingSystem from query_generation import SparqlQueryGenerator, QueryTemplateGenerator, \ FairseqQueryTemplateGenerator from query_tools import Query, WikidataQuery, WikidataTokenizer from question_answering.base_question_answering_system import BaseQuestionAnsweringSystem from slot_filling import StandardQueryGenerationSlotFillingHelper, \ BaseQueryGenerationSlotFillingHelper, SlotFillingMethodEnum from slot_filling.slot_filler import BaseSlotFiller, FlairNerSlotFiller from templates.wikidata_template import WikidataTemplate class QueryGeneratorNotFound(Exception): """ Exception when a Query Generator instance is not found. """ pass class NeuralQuestionAnsweringSystem(BaseQuestionAnsweringSystem): """ Question Answering system based on Neural Machine Translation for generating SPARQL queries. """ def __init__(self, query_generator: SparqlQueryGenerator): """ Neural Question Answering constructor. :param query_generator: Neural Machine Translation query generator. """ self.query_generator = query_generator def get_query(self, question_case: QuestionCase, num_entities_expected: Optional[int] = None) -> Optional[WikidataQuery]: """ Given a question string, obtain the query that should retrieve the answers. :param question_case: question string. :param num_entities_expected: maximum number of entities expected. :return: Wikidata Query, if exists. """ sparql_query = self.query_generator.generate_one(question_case) return sparql_query if str(sparql_query) else None def get_query_debug(self, question_case: QuestionCase, num_entities_expected: Optional[int] = None) -> Tuple[Optional[WikidataQuery], Dict]: """ Given a question string, obtain the query that should retrieve the answers. Includes a debug dict with entities identified and the query template, for analysis purposes. :param question_case: question string. :param num_entities_expected: maximum number of entities expected. :return: tuple with Wikidata Query (if exists), and its debug dict. """ # query_prediction = self.get_query(question_case) sparql_query_candidates = self.query_generator.generate_one_n_candidates(question_case) if not sparql_query_candidates: query_prediction = None else: query_prediction = WikidataQuery(str(sparql_query_candidates[0])) debug = { 'entities': None, 'slots': None, 'query_templates': [ WikidataTemplate(query).get_empty_query(ignore_type=True) for query in sparql_query_candidates ], 'sparql_queries': sparql_query_candidates } return query_prediction, debug @classmethod def load_model(cls, question_answering_opt: Dict, dataset_opt: Optional[Dict]): print("Loading SPARQL Query Generator system...") return cls(SparqlQueryGenerator.load_model(question_answering_opt['query_generator_opt'], dataset_opt)) class EntityLinkingQuestionAnsweringSystem(BaseQuestionAnsweringSystem): """ Question Answering system based on Neural Machine Translation and Entity Linking for generating SPARQL queries. """ def __init__(self, query_template_generator: QueryTemplateGenerator, entity_linker: BaseEntityLinkingSystem, slot_filler: BaseSlotFiller, slot_filling_method: Optional[BaseQueryGenerationSlotFillingHelper] = None): """ Entity Linking Question Answering constructor. :param query_template_generator: Neural Machine Translation query template generator. :param entity_linker: Entity linking system for entity recognition and disambiguation. :param slot_filler: Slot Filling system for named entity labeling. """ self.query_template_generator = query_template_generator self.entity_linker = entity_linker self.slot_filler = slot_filler self.filler_method = slot_filling_method if slot_filling_method else StandardQueryGenerationSlotFillingHelper() def get_query(self, question_case: QuestionCase, num_entities_expected: Optional[int] = None) -> Optional[ WikidataQuery]: """ Given a question string, obtain the query that should retrieve the answers. :param question_case: question string. :param num_entities_expected: maximum number of entities expected. :return: Wikidata Query, if exists. """ entities = self.entity_linker.get_entity_extracted(question_case, num_entities_expected) slots = self.slot_filler.evaluate(question_case) query_template_candidates = self.query_template_generator.generate_one_n_candidates(question_case) for query_template in query_template_candidates: slots_dict = {case['label']: case['slot'] for case in slots} query_string, _ = self.filler_method.fill_template(query_template, slots_dict, entities) sparql_query = WikidataQuery(query_string) if sparql_query.is_valid(): return sparql_query return None def get_query_debug(self, question_case: QuestionCase, num_entities_expected: Optional[int] = None) -> Tuple[ Query, Dict]: """ Given a question string, obtain the query that should retrieve the answers. Includes a debug dict with entities identified and the query template, for analysis purposes. The uid parameter is used for an offline Entity Linking process over known datasets. :param question_case: question string. :param num_entities_expected: maximum number of entities expected. :return: tuple with Wikidata Query (if exists), and its debug dict. """ entities = self.entity_linker.get_entity_extracted(question_case, num_entities_expected) slots = self.slot_filler.evaluate(question_case) query_template_candidates = self.query_template_generator.generate_one_n_candidates(question_case) # Create sparql candidates sparql_query_candidates = list() slot_entity_map_candidates = list() for query_template in query_template_candidates: slots_dict = {case['label']: case['slot'] for case in slots} query_string, slot_entity_map = self.filler_method.fill_template(str(query_template), slots_dict, entities) sparql_query = WikidataQuery(query_string) sparql_query_candidates.append(sparql_query) slot_entity_map_candidates.append(slot_entity_map) return sparql_query_candidates[0] if sparql_query_candidates else None, {'entities': entities, 'slots': slots, 'query_templates': query_template_candidates, 'sparql_queries': sparql_query_candidates, 'slot_entity_map': slot_entity_map_candidates} @classmethod def create_fairseq_model(cls, vocab: str, checkpoints_folder: str, entity_linker: BaseEntityLinkingSystem): """ Construct a Entity Linking Neural Question Answering system based on the FairseqTranslator class to generate SPARQL queries and the Flair Slot Filler. :param vocab: vocab path file of the Fairseq Translator :param checkpoints_folder: model folder of the Fairseq Translator :param entity_linker: Entity linking system for entity recognition and disambiguation. :return: """ # Initialize query template generator translator = FairseqTranslator(vocab, checkpoints_folder) query_template_generator = FairseqQueryTemplateGenerator(translator, WikidataTokenizer()) # Initialize slot filler file_manager = SlotFillingFiles(dataset_variant='plus') slot_filler = FlairNerSlotFiller(model_folder=file_manager.model_folder()) return cls(query_template_generator, entity_linker, slot_filler) @classmethod def load_model(cls, question_answering_opt: Dict, dataset_opt: Dict): # Initialize Entity Linking system entity_linking_opt = question_answering_opt['entity_linking_opt'] print("Building Entity Linking system...") entity_linker = BaseEntityLinkingSystem.load_model(entity_linking_opt, dataset_opt) # Initialize Slot Filler system print("Loading Slot Filling system...") slot_filler_opt = question_answering_opt['slot_filler_opt'] slot_filler = BaseSlotFiller.load_model(slot_filler_opt, dataset_opt) filler_helper = SlotFillingMethodEnum[slot_filler_opt['filling_method']].value() print(f"{slot_filler_opt['filling_method']} filling method...") # Initialize Query Template generator print("Loading Query Template Generator system...") query_template_generator_opt = question_answering_opt['query_template_generator_opt'] query_template_generator = QueryTemplateGenerator.load_model(query_template_generator_opt, dataset_opt) return cls(query_template_generator, entity_linker, slot_filler, filler_helper)
class Trie: class Node: def __init__(self): self.endmark = False self.next = {} def __init__(self): self.root = self.Node() def insert(self, str): str = str.lower() curr = self.root for c in str: if c not in curr.next: curr.next[c] = self.Node() curr = curr.next[c] curr.endmark = True def search(self, str): str = str.lower() curr = self.root for c in str: if c not in curr.next: return False curr = curr.next[c] return curr.endmark
#!/usr/bin/env python3 """ Created on 15 Oct 2020 @author: Bruno Beloff (bruno.beloff@southcoastscience.com) DESCRIPTION The disk_volume utility is used to determine whether a volume is mounted and, if so, the free and used space on the volume. Space is given in blocks. The volume is identified by its mount point. If the "is-available" field in the report is false, this indicates that an OS error occurred when an attempt was made to access the volume. This error can occur if a removable medium failed, or was disconnected without being unmounted. The disk_volume utility is normally included in the commands accepted by the control_receiver utility. SYNOPSIS disk_volume.py [-v] MOUNTED_ON EXAMPLES ./disk_volume.py -v /srv/SCS_logging DOCUMENT EXAMPLE {"filesystem": "/dev/mmcblk0p1", "size": 15384184, "used": 319296, "free": 14892092, "mounted-on": "/srv/SCS_logging", "is-available": false} SEE ALSO scs_dev/disk_usage """ import sys from scs_core.data.json import JSONify from scs_dev.cmd.cmd_disk_volume import CmdDiskVolume from scs_host.sys.host import Host # -------------------------------------------------------------------------------------------------------------------- if __name__ == '__main__': # ---------------------------------------------------------------------------------------------------------------- # cmd... cmd = CmdDiskVolume() if not cmd.is_valid(): cmd.print_help(sys.stderr) exit(2) if cmd.verbose: print("disk_volume: %s" % cmd, file=sys.stderr) # ---------------------------------------------------------------------------------------------------------------- # run... volume = Host.disk_volume(cmd.mounted_on) print(JSONify.dumps(volume)) # ---------------------------------------------------------------------------------------------------------------- # end... if cmd.verbose and volume: print("disk_volume: percent used: %s" % volume.percent_used(), file=sys.stderr)
from dataclasses import dataclass, field from typing import Dict, Any @dataclass class RecconSpanExtractionArguments: model_name: str = field( default="mrm8488/spanbert-finetuned-squadv2", metadata={"help": "Pretrained model to use for training"}, ) train_data_path: str = field( default="data/subtask1/fold1/dailydialog_qa_train_with_context.json", metadata={"help": "Path of training data"}, ) val_data_path: str = field( default="data/subtask1/fold1/dailydialog_qa_valid_with_context.json", metadata={"help": "Path of validation data"}, ) test_data_path: str = field( default="data/subtask1/fold1/dailydialog_qa_test_with_context.json", metadata={"help": "Path of validation data"}, ) max_seq_length: int = field( default=512, metadata={"help": "Maximum sequence length"}, ) doc_stride: int = field( default=512, metadata={"help": "Document stride"}, ) max_query_length: int = field( default=512, metadata={"help": "Maximum query length"}, ) train_args: Dict[str, Any] = field( default_factory=lambda: { "output_dir": "output/", "overwrite_output_dir": True, "evaluation_strategy": "steps", "per_device_train_batch_size": 16, "per_device_eval_batch_size": 16, "gradient_accumulation_steps": 1, "learning_rate": 1e-5, "weight_decay": 0, "adam_epsilon": 1e-8, "max_grad_norm": 1, "num_train_epochs": 12, "warmup_ratio": 0.06, "no_cuda": False, "seed": 0, "fp16": False, "load_best_model_at_end": True, "label_names": ["start_positions", "end_positions"], "report_to": "none", }, metadata={"help": "Arguments for training Reccon Span Extraction models."}, ) eval_args: Dict[str, Any] = field( default_factory=lambda: { "trained_model_dir": "output/", "results_path": "result/", "batch_size": 16, "n_best_size": 20, "null_score_diff_threshold": 0.0, "sliding_window": False, "no_cuda": False, "max_answer_length": 200, }, metadata={"help": "Arguments for evaluating Reccon Span Extraction models."}, ) def __post_init__(self): # Model assert self.model_name in [ "mrm8488/spanbert-finetuned-squadv2", "roberta-base", ], "Invalid model type!" # Training assert self.max_seq_length > 0, "max_seq_length must be positive." assert self.doc_stride > 0, "doc_stride must be positive." assert self.max_query_length > 0, "max_query_length must be positive." assert isinstance( self.train_args, Dict ), "train_args must be represented as a Dictionary." assert self.train_args["seed"] >= 0, "Random seed must be at least 0." assert ( self.train_args["num_train_epochs"] > 0 ), "num_train_epochs must be at least 1." assert ( self.train_args["per_device_train_batch_size"] > 0 ), "per_device_train_batch_size must be at least 1." assert ( self.train_args["per_device_eval_batch_size"] > 0 ), "per_device_eval_batch_size must be at least 1." assert ( self.train_args["gradient_accumulation_steps"] > 0 ), "gradient_accumulation_steps must be positive." assert self.train_args["learning_rate"] > 0, "learning_rate must be positive." assert self.train_args["warmup_ratio"] >= 0, "warmup_ratio must be at least 0." assert self.train_args["weight_decay"] >= 0, "weight_decay must be at least 0." assert self.train_args["max_grad_norm"] > 0, "max_grad_norm must be positive." assert self.train_args["adam_epsilon"] >= 0, "adam_epsilon must be at least 0." # Eval assert isinstance( self.eval_args, Dict ), "eval_args must be represented as a Dictionary." assert self.eval_args["n_best_size"] >= 1, "n_best_size must be at least 1." assert ( self.eval_args["null_score_diff_threshold"] >= 0 ), "null_score_diff_threshold must be at least 0." assert ( self.eval_args["max_answer_length"] >= 1 ), "max_answer_length must be at least 1."
from user_manager.manager.app import app as manager_app from user_manager.oauth.app import app app.mount('/api/v1/manager', manager_app) def print_routes(container, prefix=''): if hasattr(container, 'routes'): for route in getattr(container, 'routes'): print_routes(route, prefix + getattr(container, 'path', '')) elif hasattr(container, 'path'): print( f"Route {', '.join(getattr(container, 'methods', None))} {prefix}{getattr(container, 'path', None)}: " f"{getattr(container, 'name', None)}" ) else: print(f"Route {repr(container)}") print_routes(app)
shadowed = False def property(f): global shadowed shadowed = True return f class C(object): @property def meth(self): pass C() ___assertTrue(shadowed)
#!/usr/bin/python # Get the Commonly Used Abbreviation for ML Estimators/Algorithms classification_estimators = { "Logistic Regression": "lr", "K Nearest Neighbour": "knn", "Naives Bayes": "nb", "Decision Tree": "dt", "SVM (Linear)": "svm", "SVM (RBF)": "rbfsvm", "Gaussian Process": "gpc", "Multi Level Perceptron": "mlp", "Ridge Classifier": "ridge", "Random Forest": "rf", "Quadratic Discriminant Analysis": "qda", "AdaBoost": "ada", "Gradient Boosting Classifier": "gbc", "Linear Discriminant Analysis": "lda", "Extra Trees Classifier": "et", "Extreme Gradient Boosting": "xgboost", "Light Gradient Boosting": "lightgbm", "Cat Boost Classifier": "catboost", } regression_estimators = { "Linear Regression": "lr", "Lasso Regression": "lasso", "Ridge Regression": "ridge", "Elastic Net": "en", "Least Angle Regression": "lar", "Lasso Least Angle Regression": "llar", "Orthogonal Matching Pursuit": "omp", "Bayesian Ridge": "br", "Automatic Relevance Determination": "ard", "Passive Aggressive Regressor": "par", "Random Sample Consensus": "ransac", "TheilSen Regressor": "tr", "Huber Regressor": "huber", "Kernel Ridge": "kr", "Support Vector Machine": "svm", "K Neighbors Regressor": "knn", "Decision Tree": "dt", "Random Forest": "rf", "Extra Trees Regressor": "et", "AdaBoost Regressor": "ada", "Gradient Boosting Regressor": "gbr", "Multi Level Perceptron": "mlp", "Extreme Gradient Boosting": "xgboost", "Light Gradient Boosting": "lightgbm", "CatBoost Regressor": "catboost", } anomaly_detection_estimators = { "Angle-base Outlier Detection": "abod", "Isolation Forest": "iforest", "Clustering-Based Local Outlier": "cluster", "Connectivity-Based Outlier Factor": "cof", "Histogram-based Outlier Detection": "histogram", "k-Nearest Neighbors Detector": "knn", "Local Outlier Factor": "lof", "One-class SVM detector": "svm", "Principal Component Analysis": "pca", "Minimum Covariance Determinant": "mcd", "Subspace Outlier Detection": "sod", "Stochastic Outlier Selection": "sos", } nlp_estimators = { "Latent Dirichlet Allocation": "lda", "Latent Semantic Indexing": "lsi", "Hierarchical Dirichlet Process": "hdp", "Random Projections": "rp", "Non-Negative Matrix Factorization": "nmf", } clustering_estimators = { "K-Means Clustering": "kmeans", "Affinity Propagation": "ap", "Mean shift Clustering": "meanshift", "Spectral Clustering": "sc", "Agglomerative Clustering": "hclust", "Density-Based Spatial Clustering": "dbscan", "OPTICS Clustering": "optics", "Birch Clustering": "birch", "K-Modes Clustering": "kmodes", } all_estimators = { "Logistic Regression": "lr", "K Nearest Neighbour": "knn", "Naives Bayes": "nb", "Decision Tree": "dt", "SVM (Linear)": "svm", "SVM (RBF)": "rbfsvm", "Gaussian Process": "gpc", "Multi Level Perceptron": "mlp", "Ridge Classifier": "ridge", "Random Forest": "rf", "Quadratic Discriminant Analysis": "qda", "AdaBoost": "ada", "Gradient Boosting Classifier": "gbc", "Linear Discriminant Analysis": "lda", "Extra Trees Classifier": "et", "Extreme Gradient Boosting": "xgboost", "Light Gradient Boosting": "lightgbm", "Cat Boost Classifier": "catboost", "Linear Regression": "lr", "Lasso Regression": "lasso", "Ridge Regression": "ridge", "Elastic Net": "en", "Least Angle Regression": "lar", "Lasso Least Angle Regression": "llar", "Orthogonal Matching Pursuit": "omp", "Bayesian Ridge": "br", "Automatic Relevance Determination": "ard", "Passive Aggressive Regressor": "par", "Random Sample Consensus": "ransac", "TheilSen Regressor": "tr", "Huber Regressor": "huber", "Kernel Ridge": "kr", "Support Vector Machine": "svm", "K Neighbors Regressor": "knn", "Decision Tree": "dt", "Random Forest": "rf", "Extra Trees Regressor": "et", "AdaBoost Regressor": "ada", "Gradient Boosting Regressor": "gbr", "Multi Level Perceptron": "mlp", "Extreme Gradient Boosting": "xgboost", "Light Gradient Boosting": "lightgbm", "CatBoost Regressor": "catboost", "Angle-base Outlier Detection": "abod", "Isolation Forest": "iforest", "Clustering-Based Local Outlier": "cluster", "Connectivity-Based Outlier Factor": "cof", "Histogram-based Outlier Detection": "histogram", "k-Nearest Neighbors Detector": "knn", "Local Outlier Factor": "lof", "One-class SVM detector": "svm", "Principal Component Analysis": "pca", "Minimum Covariance Determinant": "mcd", "Subspace Outlier Detection": "sod", "Stochastic Outlier Selection": "sos", "Latent Dirichlet Allocation": "lda", "Latent Semantic Indexing": "lsi", "Hierarchical Dirichlet Process": "hdp", "Random Projections": "rp", "Non-Negative Matrix Factorization": "nmf", "K-Means Clustering": "kmeans", "Affinity Propagation": "ap", "Mean shift Clustering": "meanshift", "Spectral Clustering": "sc", "Agglomerative Clustering": "hclust", "Density-Based Spatial Clustering": "dbscan", "OPTICS Clustering": "optics", "Birch Clustering": "birch", "K-Modes Clustering": "kmodes", "Validation Curve": "vc", "Confusion Matrix": "cm/confusion_matrix", } def get_abbrev(estimator_name, estimator_type="all"): """Return the Abbreviation/Short Form for an ML Estimator/Algorithm # Example >>> get_abbrev('Logistic Regression') 'lr' >>> get_abbrev('Logistic Regression','classification') 'lr' """ if estimator_type == "classification": for key, value in classification_estimators.items(): if estimator_name.title() == key: return value return False elif estimator_type == "regression": for key, value in regression_estimators.items(): if estimator_name.title() == key: return value return False elif estimator_type == "clustering": for key, value in clustering_estimators.items(): if estimator_name.title() == key: return value return False elif estimator_type == "nlp": for key, value in nlp_estimators.items(): if estimator_name.title() == key: return value return False elif estimator_type == "anomaly": for key, value in anomaly_detection_estimators.items(): if estimator_name.title() == key: return value return False else: for key, value in all_estimators.items(): if estimator_name.title() == key: return value return False def get_fullname(estimator_abbrev, estimator_type="all"): """Return the Full Name for an Abbreviated Estimator/Algorithm # Example >>> get_fullname('lr') 'Logistic Regression' 'Linear Regression' >>> get_fullname('dt') 'Decision Tree' """ for key, value in all_estimators.items(): if estimator_abbrev.lower() == value: return key return False
# -*- coding: utf-8 -*- # # Copyright (C) 2019 Miroslav Bauer, CESNET. # # oarepo-references is free software; you can redistribute it and/or modify # it under the terms of the MIT License; see LICENSE file for more details. """Pytest configuration. See https://pytest-invenio.readthedocs.io/ for documentation on which test fixtures are available. """ import os import uuid import pytest from flask import url_for from invenio_app.factory import create_api from invenio_db import db as _db from invenio_pidstore.providers.recordid import RecordIdProvider from sqlalchemy_utils import create_database, database_exists from tests.test_utils import TestRecord from invenio_search import RecordsSearch from oarepo_references.api import RecordReferenceAPI from oarepo_references.models import ClassName @pytest.fixture(scope="module") def create_app(): """Return API app.""" return create_api @pytest.fixture(scope="module") def references_api(): """Returns an instance of RecordReferenceAPI.""" return RecordReferenceAPI() @pytest.fixture(scope='session') def celery_config(): """Celery app test configuration.""" return { 'broker_url': 'memory://localhost/', 'result_backend': 'rpc' } @pytest.fixture(scope="module") def app_config(app_config): """Flask application fixture.""" app_config = dict( TESTING=True, JSON_AS_ASCII=True, SQLALCHEMY_TRACK_MODIFICATIONS=True, SQLALCHEMY_DATABASE_URI=os.environ.get( 'SQLALCHEMY_DATABASE_URI', 'sqlite:///:memory:'), SERVER_NAME='localhost', CELERY_ALWAYS_EAGER=True, CELERY_BROKER_URL='memory://localhost/', CELERY_RESULT_BACKEND='rpc' ) app_config['PIDSTORE_RECID_FIELD'] = 'pid' app_config['RECORDS_REST_ENDPOINTS'] = dict( recid=dict( pid_type='recid', pid_minter='recid', pid_fetcher='recid', search_class=RecordsSearch, search_index=None, search_type=None, record_serializers={ 'application/json': ('invenio_records_rest.serializers' ':json_v1_response'), }, search_serializers={ 'application/json': ('invenio_records_rest.serializers' ':json_v1_search'), }, list_route='/records/', item_route='/records/<pid(recid):pid_value>' ) ) return app_config @pytest.fixture def db(app): """Returns fresh db.""" with app.app_context(): if not database_exists(str(_db.engine.url)) and \ app.config['SQLALCHEMY_DATABASE_URI'] != 'sqlite://': create_database(_db.engine.url) _db.create_all() yield _db # Explicitly close DB connection _db.session.close() _db.drop_all() def get_pid(): """Generates a new PID for a record.""" record_uuid = uuid.uuid4() provider = RecordIdProvider.create( object_type='rec', object_uuid=record_uuid, ) return record_uuid, provider.pid.pid_value @pytest.fixture def referenced_records(db): """Create a list of records to be referenced by other records.""" rrdata = [{'title': 'a'}, {'title': 'b'}] referenced_records = [] for rr in rrdata: ruuid, pid = get_pid() rr['pid'] = pid referenced_records.append(TestRecord.create(rr, id_=ruuid)) db.session.commit() return referenced_records def get_ref_url(pid): """Returns canonical_url for a record by its PID.""" return url_for('invenio_records_rest.recid_item', pid_value=pid, _external=True) @pytest.fixture def class_names(db): """Test Class names fixture.""" class_names = [ ClassName.create(name=str(TestRecord.__class__)) ] db.session.commit() return class_names @pytest.fixture def referencing_records(db, referenced_records): """Create sample records with references to others.""" referencing_records = [ TestRecord.create({ 'title': 'c', 'pid': get_pid()[1], '$ref': get_ref_url(referenced_records[0]['pid']) }), TestRecord.create({ 'title': 'd', 'pid': get_pid()[1], '$ref': get_ref_url(referenced_records[1]['pid']) }), TestRecord.create({'title': 'e', 'pid': get_pid()[1], 'reflist': [ {'$ref': get_ref_url(referenced_records[1]['pid'])}, {'$ref': get_ref_url(referenced_records[0]['pid'])} ]}), TestRecord.create({'title': 'f', 'pid': get_pid()[1], 'reflist': [ {'title': 'f', '$ref': get_ref_url(referenced_records[0]['pid'])}, ]}) ] db.session.commit() return referencing_records @pytest.fixture def test_record_data(): """Returns a data for a test record.""" return { 'pid': 999, 'title': 'rec1', 'taxo1': { 'links': { 'self': 'http://localhost/api/taxonomies/requestors/a/b/', }, 'slug': 'b' }, 'sub': { 'taxo2': { 'links': { 'self': 'http://localhost/api/taxonomies/requestors/a/c/', }, 'slug': 'c' } } }
import json import requests import os import psycopg2 import subprocess import csv import datetime import utilities import config def main(): stocks = config.stocks get_data_csv_name = config.get_data_csv_name db_csv_name = config.db_csv_name subprocess.call( ["rm", get_data_csv_name] ) subprocess.call( ["rm", db_csv_name] ) number = 1 for stock_index in range(len(stocks) - 1): qiita_api = os.environ['QIITA_API'] url = "https://qiita.com/api/v2/items" h = {"Authorization": "Bearer " + qiita_api} p = { 'per_page': 100, 'query': 'stocks:<{} stocks:>{}'.format(str(int(stocks[stock_index]) + 1), stocks[stock_index + 1]) } response = requests.get(url, params=p, headers=h) response_list = json.loads(response.text) for index, item in enumerate(response_list): created_at = response_list[index]["created_at"] article_id = response_list[index]["id"] likes_count = response_list[index]["likes_count"] tags =[] for tag_index in range(5): try: tags.append(response_list[index]["tags"][tag_index]["name"]) except IndexError: tags.append(None) title = response_list[index]["title"] updated_at = response_list[index]["updated_at"] url = response_list[index]["url"] user_id = response_list[index]["user"]["id"] number = utilities.write_csv(get_data_csv_name, number, article_id, user_id, title, likes_count, url, tags, created_at, updated_at) utilities.delete_csv_row(get_data_csv_name, db_csv_name) dt_now = datetime.datetime.now() file = open('update_log.txt', 'a') file.write(str(dt_now) + "\n") file.close() conn = utilities.get_connection() cur = conn.cursor() cur.execute('DELETE FROM update_time') cur.execute('INSERT INTO update_time VALUES (' + str(dt_now.year) + ',' + str(dt_now.month) + ',' + str(dt_now.day) + ')') cur.execute('DELETE FROM articles') f = open('db.csv','r') cur.copy_from( f , 'articles', sep=',', null='\\N') conn.commit() cur.close() conn.close() if __name__ == "__main__": # try: main() # except Exception as e: # file = open('update_log.txt', 'a') # file.write(str(e) + ">>>\n") # file.close()
import pytest from xdl.errors import ( XDLUndeclaredAlwaysWriteError, XDLUndeclaredDefaultPropError, XDLUndeclaredPropLimitError, XDLUndeclaredInternalPropError ) from xdl.steps import AbstractStep from xdl.utils.prop_limits import ROTATION_SPEED_PROP_LIMIT class TestUndeclaredDefaultProp(AbstractStep): __test__ = False PROP_TYPES = { 'volume': float } DEFAULT_PROPS = { 'volume': '15 mL', 'stir': True } def __init__(self): super().__init__(locals()) def get_steps(self): return [] class TestUndeclaredInternalProp(AbstractStep): __test__ = False PROP_TYPES = { 'volume': float } DEFAULT_PROPS = { 'volume': '15 mL' } INTERNAL_PROPS = [ 'stir' ] def __init__(self): super().__init__(locals()) def get_steps(self): return [] class TestUndeclaredAlwaysWrite(AbstractStep): __test__ = False PROP_TYPES = { 'volume': float } DEFAULT_PROPS = { 'volume': '15 mL' } ALWAYS_WRITE = [ 'stir' ] def __init__(self): super().__init__(locals()) def get_steps(self): return [] class TestUndeclaredPropLimit(AbstractStep): __test__ = False PROP_TYPES = { 'volume': float } DEFAULT_PROPS = { 'volume': '15 mL' } PROP_LIMITS = { 'stir_speed': ROTATION_SPEED_PROP_LIMIT } def __init__(self): super().__init__(locals()) def get_steps(self): return [] @pytest.mark.unit def test_undeclared_default_props(): """Test error raised if default prop specified that isn't in PROP_TYPES.""" with pytest.raises(XDLUndeclaredDefaultPropError): TestUndeclaredDefaultProp() @pytest.mark.unit def test_undeclared_prop_limits(): """Test error raised if prop limit specified that isn't in PROP_TYPES.""" with pytest.raises(XDLUndeclaredPropLimitError): TestUndeclaredPropLimit() @pytest.mark.unit def test_undeclared_internal_props(): """Test error raised if internal prop specified that isn't in PROP_TYPES.""" with pytest.raises(XDLUndeclaredInternalPropError): TestUndeclaredInternalProp() @pytest.mark.unit def test_undeclared_always_write(): """Test error raised if always write specified that isn't in PROP_TYPES.""" with pytest.raises(XDLUndeclaredAlwaysWriteError): TestUndeclaredAlwaysWrite()
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ UL call demonstrated: TmrDevice.pulse_out_start() Purpose: Generate an output pulse using the specified timer Demonstration: Outputs user defined pulse on the specified timer Steps: 1. Call get_daq_device_inventory() to get the list of available DAQ devices 2. Call DaqDevice() to create a DaqDevice object 3. Call DaqDevice.get_tmr_device() to get the TmrDevice object for the timer subsystem 4. Verify the TmrDevice object is valid 5. Call DaqDevice.connect() to connect to the device 6. Call TmrDevice.pulse_out_start() to start the output pulse for the specified timer 7. Call TmrDevice.get_pulse_out_status() to get the output status and display the status 8. Call TmrDevice.scan_stop() to stop the scan 9. Call DaqDevice.disconnect() and DaqDevice.release() before exiting the process """ from __future__ import print_function from time import sleep from sys import stdout from os import system from uldaq import (get_daq_device_inventory, DaqDevice, InterfaceType, TmrIdleState, PulseOutOption, TmrStatus) # Constants ERASE_LINE = '\x1b[2K' def main(): """Timer pulse output example.""" timer_number = 0 frequency = 1000.0 # Hz duty_cycle = 0.5 # 50 percent pulse_count = 0 # Continuous initial_delay = 0.0 idle_state = TmrIdleState.LOW options = PulseOutOption.DEFAULT interface_type = InterfaceType.ANY daq_device = None tmr_device = None try: # Get descriptors for all of the available DAQ devices. devices = get_daq_device_inventory(interface_type) number_of_devices = len(devices) # Verify at least one DAQ device is detected. if number_of_devices == 0: raise RuntimeError('Error: No DAQ devices found') print('Found', number_of_devices, 'DAQ device(s):') for i in range(number_of_devices): print(' [', i, '] ', devices[i].product_name, ' (', devices[i].unique_id, ')', sep='') descriptor_index = input('\nPlease select a DAQ device, enter a number' + ' between 0 and ' + str(number_of_devices - 1) + ': ') descriptor_index = int(descriptor_index) if descriptor_index not in range(number_of_devices): raise RuntimeError('Error: Invalid descriptor index') # Create the DAQ device from the descriptor at the specified index. daq_device = DaqDevice(devices[descriptor_index]) tmr_device = daq_device.get_tmr_device() # Verify the specified DAQ device supports timers. if tmr_device is None: raise RuntimeError('Error: The DAQ device does not support timers') # Establish a connection to the device. descriptor = daq_device.get_descriptor() print('\nConnecting to', descriptor.dev_string, '- please wait...') # For Ethernet devices using a connection_code other than the default # value of zero, change the line below to enter the desired code. daq_device.connect(connection_code=0) print('\n', descriptor.dev_string, 'ready') print(' Function demonstrated: TmrDevice.pulse_out_start') print(' Timer:', timer_number) print(' Frequency:', frequency, 'Hz') print(' Duty cycle:', duty_cycle) print(' Initial delay:', initial_delay) try: input('\nHit ENTER to continue') except (NameError, SyntaxError): pass # Start the timer pulse output. (frequency, duty_cycle, initial_delay) = tmr_device.pulse_out_start(timer_number, frequency, duty_cycle, pulse_count, initial_delay, idle_state, options) system('clear') print('Please enter CTRL + C to terminate the process\n') print('Active DAQ device: ', descriptor.dev_string, ' (', descriptor.unique_id, ')\n', sep='') print(' Actual frequency:', frequency, 'Hz') print(' Actual duty cycle:', duty_cycle, 'Hz') print(' Actual initial delay:', initial_delay, 'Hz') try: print('\n Outputting {0:.6f} Hz pulse with duty cycle {1:.3f} ' 'for timer {2:d}'.format(frequency, duty_cycle, timer_number)) status = tmr_device.get_pulse_out_status(timer_number) count = 0 if status == TmrStatus.RUNNING: # If the status is RUNNING, then this timer does support the # get_pulse_out_status() function so the status is checked to # determine if the pulse output is stopped due to an error. while status == TmrStatus.RUNNING: status = tmr_device.get_pulse_out_status(timer_number) print_status_dots(count) count += 1 else: # If the status is IDLE, then this timer does not support the # get_pulse_out_status() function so we will wait for user # input to stop the pulse output. while True: print_status_dots(count) count += 1 except KeyboardInterrupt: pass except RuntimeError as error: print('\n', error) finally: if daq_device: # Stop the scan. if tmr_device: tmr_device.pulse_out_stop(timer_number) stdout.write(ERASE_LINE) print('\r Status:', TmrStatus.IDLE) # Disconnect from the DAQ device. if daq_device.is_connected(): daq_device.disconnect() # Release the DAQ device resource. daq_device.release() def print_status_dots(count): """Display incrementing dots to indicate a status of running.""" if count % 6 == 0: stdout.write(ERASE_LINE) print('\r ', TmrStatus.RUNNING, end='') else: print('.', end='') stdout.flush() sleep(0.5) if __name__ == '__main__': main()
__author__ = "Swas.py" __title__ = "vscode" __license__ = "MIT" __copyright__ = "Copyright 2021 Swas.py" __version__ = "1.4.5" from . import window from .compiler import build from .extension import Extension from .envMethods import env from . import _types as ext from ._types import *
# Generated by Django 3.2.5 on 2021-07-27 17:15 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('movielist_app', '0002_auto_20210727_1527'), ] operations = [ migrations.AddField( model_name='watchlist', name='platform', field=models.ForeignKey(default=None, on_delete=django.db.models.deletion.CASCADE, related_name='watchlist', to='movielist_app.streamplatform'), preserve_default=False, ), ]
from flask_restful import Resource, current_app, request from schematics.exceptions import DataError from server.models.postgis.task import Task from server.models.postgis.task_annotation import TaskAnnotation from server.services.project_service import ProjectService, NotFound from server.services.task_annotations_service import TaskAnnotationsService from server.services.application_service import ApplicationService class AnnotationsRestAPI(Resource): def get(self, project_id: int, annotation_type: str = None): """ Get all task annotations for a project --- tags: - annotations produces: - application/json parameters: - name: project_id in: path description: The ID of the project required: true type: integer - name: annotation_type in: path description: The type of annotation to fetch required: false type: string responses: 200: description: Project Annotations 404: description: Project or annotations not found 500: description: Internal Server Error """ try: ProjectService.get_project_by_id(project_id) except NotFound as e: current_app.logger.error(f"Error validating project: {str(e)}") return {"Error": "Project not found"}, 404 try: if annotation_type: annotations = TaskAnnotation.get_task_annotations_by_project_id_type( project_id, annotation_type ) else: annotations = TaskAnnotation.get_task_annotations_by_project_id( project_id ) return annotations.to_primitive(), 200 except NotFound: return {"Error": "Annotations not found"}, 404 def post(self, project_id: int, annotation_type: str): """ Store new task annotations for tasks of a project --- tags: - annotations produces: - application/json parameters: - in: header name: Content-Type description: Content type for post body required: true type: string default: application/json - name: project_id in: path description: The unique project ID required: true type: integer - name: annotation_type in: path description: Annotation type required: true type: string - name: Application-Token in: header description: Application token registered with TM required: true type: string - in: body name: body required: true description: JSON object for creating draft project schema: projectId: type: integer required: true annotationType: type: string required: true tasks: type: array required: true items: schema: taskId: type: integer required: true annotationSource: type: string annotationMarkdown: type: string properties: description: JSON object with properties responses: 200: description: Project updated 400: description: Client Error - Invalid Request 404: description: Project or task not found 500: description: Internal Server Error """ if "Application-Token" in request.headers: application_token = request.headers["Application-Token"] try: is_valid_token = ApplicationService.check_token( # noqa application_token ) except NotFound: current_app.logger.error(f"Invalid token") return {"Error": "Invalid token"}, 500 else: current_app.logger.error(f"No token supplied") return {"Error": "No token supplied"}, 500 try: annotations = request.get_json() or {} except DataError as e: current_app.logger.error(f"Error validating request: {str(e)}") try: ProjectService.get_project_by_id(project_id) except NotFound as e: current_app.logger.error(f"Error validating project: {str(e)}") task_ids = [t["taskId"] for t in annotations["tasks"]] # check if task ids are valid tasks = Task.get_tasks(project_id, task_ids) tasks_ids_db = [t.id for t in tasks] if len(task_ids) != len(tasks_ids_db): return {"Error": "Invalid task id"}, 500 for annotation in annotations["tasks"]: try: TaskAnnotationsService.add_or_update_annotation( annotation, project_id, annotation_type ) except DataError as e: current_app.logger.error(f"Error creating annotations: {str(e)}") return {"Error": "Error creating annotations"}, 500 return project_id, 200 def put(self, project_id: int, task_id: int): """ Update a single task's annotations """ pass
from enum import Enum from typing import Literal as _Literal, Sequence from .lexeme import Lexeme __all__ = ["Token"] # backwards / forwards paradox again... # TODO: improve on this Type = type Object = object # TODO: make this precise def construct(name, bases: Sequence[Type]): ... def create(name, bases: Sequence[Type], methods) -> Object: ... class _Token(Enum): LEFT_PAREN = "(" RIGHT_PAREN = ")" class Line(int): ... class Literal(Enum, _Literal): ... class TokenType: ... class Token( type, Lexeme, Literal, Line, ): ... def scan(): ...
#!/usr/bin/env python3 """ Computes embeddings on a set of tasks """ import json import os import shutil import time from pathlib import Path import click import tensorflow as tf import torch from slugify import slugify from tqdm import tqdm import heareval.gpu_max_mem as gpu_max_mem from heareval.embeddings.task_embeddings import Embedding, task_embeddings if torch.cuda.is_available() and not tf.test.is_gpu_available( cuda_only=False, min_cuda_compute_capability=None ): raise ValueError("GPUs not available in tensorflow, but found by pytorch") @click.command() @click.argument("module", type=str) @click.option( "--model", default=None, help="Location of model weights file", type=click.Path(exists=True), ) @click.option( "--tasks-dir", default="tasks", help="Location of tasks to compute embeddings on", type=str, ) @click.option( "--task", default="all", help="Task to run. (Default: all)", type=str, ) @click.option( "--embeddings-dir", default="embeddings", help="Location to save task embeddings" ) @click.option( "--model-options", default="{}", help="A JSON dict of kwargs to pass to load_model" ) def runner( module: str, model: str = None, tasks_dir: str = "tasks", task: str = "tasks", embeddings_dir: str = "embeddings", model_options: str = "{}", ) -> None: model_options_dict = json.loads(model_options) if isinstance(model_options_dict, dict): if model_options_dict: options_str = "-" + "-".join( [ "%s=%s" % (slugify(k), slugify(str(v))) for k, v in model_options_dict.items() ] ) else: options_str = "" else: raise ValueError("model_options should be a JSON dict") # Check for directory containing the tasks tasks_dir_path = Path(tasks_dir) embeddings_dir_path = Path(embeddings_dir) print(embeddings_dir_path) if not tasks_dir_path.is_dir(): raise ValueError( "Cannot locate directory containing tasks. " f"Ensure that directory named {tasks_dir_path} exists or specify a folder " f"containing HEAR tasks using the argument --tasks-dir" ) # Load the embedding model embedding = Embedding(module, model, model_options_dict) if task == "all": tasks = list(tasks_dir_path.iterdir()) else: tasks = [tasks_dir_path.joinpath(task)] assert os.path.exists(tasks[0]), f"{tasks[0]} does not exist" for task_path in tqdm(tasks): # TODO: Would be good to include the version here # https://github.com/neuralaudio/hear2021-eval-kit/issues/37 embed_dir = embeddings_dir_path.joinpath(embedding.name + options_str) task_name = task_path.name embed_task_dir = embed_dir.joinpath(task_name) done_embeddings = embed_task_dir.joinpath(".done.embeddings") if os.path.exists(done_embeddings): continue if os.path.exists(embed_task_dir): shutil.rmtree(embed_task_dir) start = time.time() gpu_max_mem.reset() task_embeddings(embedding, task_path, embed_task_dir) time_elapsed = time.time() - start gpu_max_mem_used = gpu_max_mem.measure() print( f"...computed embeddings in {time_elapsed} sec " f"(GPU max mem {gpu_max_mem_used}) " f"for {task_path.name} using {module} {model_options}" ) open(embed_task_dir.joinpath("profile.embeddings.json"), "wt").write( json.dumps( { "time_elapsed": time_elapsed, "gpu_max_mem": gpu_max_mem_used, "gpu_device_name": gpu_max_mem.device_name(), }, indent=4, ) ) # Touch this file to indicate that processing completed successfully open(done_embeddings, "wt") if __name__ == "__main__": runner()
"""XPO logistics LTL rate quote response Datatype definition module.""" import attr from typing import List, Union, Optional from jstruct import JList, JStruct @attr.s(auto_attribs=True) class rateQuote: confirmationNbr shipmentInfo accessorialTariffName actlDiscountPct amcAmt aMCInd commodity deficitRatingInfo dscntSrcCd fscTariffName inboundZoneCd lnhChargeAmt nhChargeAmt offShrSIC offShrTariff offShrZoneCd ratingTariffName serviced bill2Party shipperToConsigneeMiles consignee shipperToConsigneeMiles totAccessorialAmt totCharge exchangeRate totDiscountAmt totFSCAmt totOffShrAccChargeAmt totOffShrAmt totOffShrFscCharge totOffShrLnhChargeAmt totTaxAmt trailerCnt vspApplied @attr.s(auto_attribs=True) class transitTime: destStateCd: Optional[str] = None destPostalCd: Optional[str] = None destSicCd: Optional[str] = None estDlvrDate: Optional[str] = None garntInd: Optional[bool] = None latestPkupDate: Optional[str] = None origPostalCd: Optional[str] = None origStateCd: Optional[str] = None origSicCd: Optional[str] = None requestedDlvrDate: Optional[str] = None requestedPkupDate: Optional[str] = None transitDays: Optional[int] = None earliestPkupDate: Optional[str] = None note: Optional[str] = None isPkupDateHoliday: Optional[bool] = None isrqstdDeliveryDateHoliday: Optional[bool] = None @attr.s(auto_attribs=True) class msgs: errorCd: Optional[str] = None message: Optional[str] = None fieldName: Optional[str] = None fieldValue: Optional[str] = None @attr.s(auto_attribs=True) class RateResponse: rateQuote: rateQuote = JStruct[rateQuote] transitTime: transitTime = JStruct[transitTime] msgs= msgs = JStruct[msgs]
""" usage: $ deephyper-analytics plot csv -p results.csv --xy elapsed_sec objective """ import sys import matplotlib.pyplot as plt import pandas as pd def add_subparser(subparsers): subparser_name = "plot" function_to_call = main parser = subparsers.add_parser( subparser_name, help="Tool to generate a quick 2D plot from file." ) subparsers = parser.add_subparsers(help="Kind of analytics.") # best search_spaces subparser = subparsers.add_parser("csv", help="Plot for CSV files.") subparser.add_argument( "--path", "-p", type=str, default="results.csv", help="Path to CSV file." ) subparser.add_argument( "--xy", metavar="xy", type=str, nargs=2, default=["elapsed_sec", "objective"], help="name of x y variables in the CSV file.", ) return subparser_name, function_to_call def main(path, xy, *args, **kwargs): if sys.argv[2] == "csv": df = pd.read_csv(path) plt.figure() plt.scatter(df[xy[0]], df[xy[1]]) plt.xlabel(xy[0]) plt.ylabel(xy[1]) plt.show()
""" Exceptions and warnings """ class ArimWarning(UserWarning): pass class InvalidDimension(ValueError): """ Raised when an array has an invalid dimension. """ @classmethod def message_auto(cls, array_name, expected_dimension, current_dimension=None): current = ( " (current: {})".format(current_dimension) if current_dimension is not None else "" ) message = "Dimension of array '{}' must be {}{}.".format( array_name, expected_dimension, current ) return cls(message) class InvalidShape(ValueError): """ Raised when an array has an invalid shape. """ @classmethod def message_auto(cls, array_name, expected_shape, current_shape=None): current = ( " (current: {})".format(current_shape) if current_shape is not None else "" ) message = "Array '{}' must have shape {} (current: {}){}.".format( array_name, expected_shape, current_shape, current ) return cls(message) class NotAnArray(TypeError): def __init__(self, array_name, message=None): if message is None: message = " '{}' must be an array. Try to convert to numpy.array first.".format( array_name ) super().__init__(message)
import unittest import sys import os sys.path.insert(0,"../src/") import SVN import shutil class TestSVNbackend(unittest.TestCase): def setUp(self): self.workerc=4 self.workdir="testdir/workdir" self.repodir="testdir/repo" self.text=""" Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut metus massa, sagittis consequat tincidunt non, sodales at quam. Cras bibendum, mauris eu placerat condimentum, magna nisi laoreet massa, eget venenatis ligula velit eu nisi. Aenean nec turpis vel nunc porta ornare. Donec dolor dolor, imperdiet vel ultricies interdum, eleifend at lorem. Aliquam vitae nunc lacus. Suspendisse vitae leo sed risus tempor fermentum quis ut odio. Nunc eu faucibus nunc. Integer accumsan tempus eros, vitae placerat risus pulvinar ut. Quisque eu congue ipsum. Fusce ultrices sapien erat, sed pulvinar erat faucibus ac. Nullam sit amet lectus mauris. Donec et tincidunt justo. Fusce porttitor augue et libero varius pretium. Sed aliquet metus nec quam bibendum commodo. Morbi venenatis sagittis semper. Integer venenatis accumsan magna vel bibendum. Aenean elementum lorem lacus, nec imperdiet velit sagittis quis. Praesent lorem metus, consectetur et consequat sit amet, suscipit in velit. Etiam ornare augue enim. Phasellus egestas nunc vitae nisi imperdiet, sed lacinia ante sollicitudin. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut ut quam fringilla est elementum fringilla et ut ligula. Nullam augue ipsum, porta ut turpis id, facilisis lacinia eros. Nullam euismod fringilla massa, non lobortis tortor placerat vitae. Cras risus mi, pulvinar quis augue at, convallis dignissim est. Curabitur malesuada, massa a lacinia fermentum, ligula lorem molestie erat, in consectetur risus purus ut justo. Aliquam lobortis laoreet enim, condimentum consectetur felis. Aenean id scelerisque lectus, a placerat ex. Mauris felis diam, interdum vitae augue sit amet, faucibus euismod velit. Vestibulum malesuada augue at quam pharetra gravida. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Etiam tempus faucibus justo vel vestibulum. Nulla ipsum lorem, blandit nec scelerisque ut, blandit at """ def _prepareRepo(self): shutil.rmtree(self.workdir, ignore_errors=True) shutil.rmtree(self.repodir, ignore_errors=True) self.repo=SVN.SVNBackend(self.workdir,self.repodir,self.workerc) def _testCleanUp(self): for a in range(self.workerc): for f in os.listdir(os.path.join(self.repo.workdir,"wd%d"%a)): self.assertTrue(f.startswith('.')) self.assertTrue(self.repo.workers.qsize()==self.workerc) def test_add_get(self): self._prepareRepo() self.repo.addFile("test1","file1",self.text) res=self.repo.getFile("test1","file1") self.assertTrue(self.text==res) self._testCleanUp() def test_changefile(self): self._prepareRepo() self.repo.addFile("test1","file1",self.text) res=self.repo.getFile("test1","file1") self.assertTrue(self.text==res) self.repo.addFile("test1","file1",self.text[10:]) res=self.repo.getFile("test1","file1") self.assertTrue(self.text[10:]==res) self._testCleanUp() def test_loadCollections(self): self._prepareRepo() self.repo.addFile("test1","file1",self.text) self.repo.addFile("test2","file1",self.text) wd=self.repo.getWorkdir() res=wd.loadCollections() self.assertTrue(len(res)==2) self.assertTrue("test1" in res) self.assertTrue("test2" in res) self.repo.freeWorkdir(wd) self._testCleanUp() def test_loadObjects(self): self._prepareRepo() self.repo.addFile("test2","file1",self.text) self.repo.addFile("test2","file2",self.text) wd=self.repo.getWorkdir() res=wd.loadObjects("test2") self.assertTrue(len(res)==2) self.assertTrue("file2" in res) self.assertTrue("file1" in res) self.repo.freeWorkdir(wd) self._testCleanUp() def test_getFileInfo(self): self._prepareRepo() self.repo.addFile("test2","file1",self.text) wd=self.repo.getWorkdir() fp=wd.openFile("test2","file1",'r') res=wd.getFileInfo(fp) fp.close() self.assertTrue("changed" in res) self.repo.freeWorkdir(wd) self._testCleanUp() def test_reopen(self): self._prepareRepo() self.repo.addFile("test3","file1",self.text) repo2=SVN.SVNBackend(self.workdir+"2",self.repodir,1) res=repo2.getFile("test3","file1") self.assertTrue(self.text==res) self._testCleanUp() if __name__ == '__main__': unittest.main()
# blog/admin.py # -*- coding: utf-8 -*- from __future__ import unicode_literals import xadmin from xadmin.layout import Fieldset, Row # from django.contrib import admin from django.utils.html import format_html from django.urls import reverse from .models import Category, Tag, Post # from typeidea.custom_site import custom_site from .adminforms import PostAdminForm from typeidea.adminx import BaseOwnerAdmin # class PostAdmin(admin.ModelAdmin): class PostAdmin(BaseOwnerAdmin): form = PostAdminForm list_display = [ 'title', 'category', 'status_show', 'pv', 'uv', 'owner', 'created_time', 'operator'] # category、status变为可点链接 # list_display_links = ['category', 'status_show', 'title'] search_fields = ['title', 'category__name', 'owner__username'] list_filter = ['owner'] # 动作按钮在上 actions_on_top = True # 动作按钮在底部 actions_on_bottom = False # 创建时间 date_hierarchy = 'created_time' # 展示可编辑项 # list_editable = ['title'] ''' 编辑页面 ''' # 增加删除保存键置顶 # save_on_top = True # 要展示的字段 # fields = ( # 'title', 'category', # 'tag', # 'desc', # 'status', # 'content', 'is_markdown', # ) exclude = ( 'html', 'owner', 'html', 'pv', 'uv', ) form_layout = ( Fieldset( "基础信息", 'title', 'desc', Row('category', 'tag', 'status'), 'is_markdown', 'content', ), ) # # status不展示 # exclude = ('status',) # fieldsets = ( # 跟fields互斥 # ('基础设置', { # 'fields': (('category', 'title'), # 'desc', # 'status', # TODO(Treehl): 后面添加的字段 # 'content') # }), # ('高级设置', { # 'classes': ('collapse', 'addon'), # 'fields': ('tag',), # }), # ) # 水平布局 # filter_horizontal = ('tag', ) # 垂直布局 # filter_vertical = ('tag',) def operator(self, obj): return format_html( '<a href="{}">编辑</a>', reverse('cus_admin:blog_post_change', args=(obj.id,)) ) operator.short_description = '操作' xadmin.site.register(Post, PostAdmin) # xadmin.site.register(Post, PostAdmin) # def save_model(self, request, obj, form, change): # print self, request, obj, form, change # obj.owner = request.user # super(PostAdmin, self).save_model(request, obj, form, change) # class PostInline(admin.TabularInline): # fields = ('title', 'desc', 'status') # extra = 2 # 控制额外多几个 # # 指定模型类 # model = Post # class CategoryAdmin(admin.ModelAdmin): class CategoryAdmin(BaseOwnerAdmin): list_display = ['name', 'status', 'is_nav', 'created_time', 'operator'] fields = ('name', 'status', 'is_nav') def operator(self, obj): return format_html( '<a href="{}">编辑</a>', reverse('cus_admin:blog_category_change', args=(obj.id,)) ) operator.short_description = '操作' xadmin.site.register(Category, CategoryAdmin) # class TagAdmin(admin.ModelAdmin): class TagAdmin(BaseOwnerAdmin): list_display = ['name', 'status', 'created_time', 'operator'] fields = ('name', 'status') def operator(self, obj): return format_html( '<a href="{}">编辑</a>', reverse('cus_admin:blog_tag_change', args=(obj.id,)) ) operator.short_description = '操作' xadmin.site.register(Tag, TagAdmin)
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # http://doc.scrapy.org/en/latest/topics/items.html import scrapy from scrapy.item import Item, Field class Home(scrapy.Item): location = Field() rent_price = Field() available_at = Field() allows_pets = Field() furnished = Field() min_time_to_stay = Field() deposit = Field() source_id = Field() description = Field() url = Field() title = Field() dimensions = Field() source = Field() updated_at = Field() address = Field() geolocation = Field() rooms = Field()
import unittest from solution.linked_list import LinkedList from solution.linked_list_helpers import LinkedListHelpers class TestCasesLinkedListHelpers(unittest.TestCase): def execute_tests_both_linked_lists_none(self: object) -> None: # Arrange linked_list_helpers: LinkedListHelpers = LinkedListHelpers() linked_list_1: LinkedList = None linked_list_2: LinkedList = None # Act result_union: LinkedList = linked_list_helpers.union( linked_list_1, linked_list_2) result_intersection: LinkedList = linked_list_helpers.intersection( linked_list_1, linked_list_2) # Assert self.assertIsNone(result_union) self.assertIsNone(result_intersection) def execute_tests_both_linked_lists_first_is_none(self: object) -> None: # Arrange linked_list_helpers: LinkedListHelpers = LinkedListHelpers() linked_list_1: LinkedList = None linked_list_2: LinkedList = LinkedList() element_2 = [6, 32, 4, 9, 6, 1, 11, 21, 1] for i in element_2: linked_list_2.append(i) # Act result_union: LinkedList = linked_list_helpers.union( linked_list_1, linked_list_2) result_intersection: LinkedList = linked_list_helpers.intersection( linked_list_1, linked_list_2) # Assert self.assertIsNone(result_union) self.assertIsNone(result_intersection) def execute_tests_both_linked_lists_second_is_none(self: object) -> None: # Arrange linked_list_helpers: LinkedListHelpers = LinkedListHelpers() linked_list_1: LinkedList = LinkedList() element_1 = [6, 32, 4, 9, 6, 1, 11, 21, 1] for i in element_1: linked_list_1.append(i) linked_list_2: LinkedList = None # Act result_union: LinkedList = linked_list_helpers.union( linked_list_1, linked_list_2) result_intersection: LinkedList = linked_list_helpers.intersection( linked_list_1, linked_list_2) # Assert self.assertIsNone(result_union) self.assertIsNone(result_intersection) def execute_tests_both_linked_lists_both_empty_lists(self: object) -> None: # Arrange linked_list_helpers: LinkedListHelpers = LinkedListHelpers() linked_list_1: LinkedList = LinkedList() linked_list_2: LinkedList = LinkedList() # Act result_union: LinkedList = linked_list_helpers.union( linked_list_1, linked_list_2) result_intersection: LinkedList = linked_list_helpers.intersection( linked_list_1, linked_list_2) # Assert self.assertEqual(result_union.size(), 0) self.assertEqual(result_intersection.size(), 0) def execute_tests_both_linked_lists_first_empty_list(self: object) -> None: # Arrange linked_list_helpers: LinkedListHelpers = LinkedListHelpers() linked_list_1: LinkedList = LinkedList() linked_list_2: LinkedList = LinkedList() element_2 = [6, 32, 4, 9, 6, 1, 11, 21, 1] for i in element_2: linked_list_2.append(i) # Act result_union: LinkedList = linked_list_helpers.union( linked_list_1, linked_list_2) result_intersection: LinkedList = linked_list_helpers.intersection( linked_list_1, linked_list_2) # Assert result_union_list: list = sorted(result_union.to_list()) result_intersection_list: list = sorted(result_intersection.to_list()) self.assertEqual(result_union.size(), 7) self.assertListEqual(result_union_list, [1, 4, 6, 9, 11, 21, 32]) self.assertEqual(result_intersection.size(), 0) self.assertListEqual(result_intersection_list, []) def execute_tests_both_linked_lists_second_empty_list(self: object) -> None: # Arrange linked_list_helpers: LinkedListHelpers = LinkedListHelpers() linked_list_1: LinkedList = LinkedList() element_1 = [6, 32, 4, 9, 6, 1, 11, 21, 1] for i in element_1: linked_list_1.append(i) linked_list_2: LinkedList = LinkedList() # Act result_union: LinkedList = linked_list_helpers.union( linked_list_1, linked_list_2) result_intersection: LinkedList = linked_list_helpers.intersection( linked_list_1, linked_list_2) # Assert result_union_list: list = sorted(result_union.to_list()) result_intersection_list: list = sorted(result_intersection.to_list()) self.assertEqual(result_union.size(), 7) self.assertListEqual(result_union_list, [1, 4, 6, 9, 11, 21, 32]) self.assertEqual(result_intersection.size(), 0) self.assertListEqual(result_intersection_list, []) def execute_tests_both_lists_with_elements_and_overlap(self: object) -> None: # Arrange linked_list_helpers: LinkedListHelpers = LinkedListHelpers() linked_list_1: LinkedList = LinkedList() element_1 = [3, 2, 4, 35, 6, 65, 6, 4, 3, 21] for i in element_1: linked_list_1.append(i) linked_list_2: LinkedList = LinkedList() element_2 = [6, 32, 4, 9, 6, 1, 11, 21, 1] for i in element_2: linked_list_2.append(i) # Act result_union: LinkedList = linked_list_helpers.union( linked_list_1, linked_list_2) result_intersection: LinkedList = linked_list_helpers.intersection( linked_list_1, linked_list_2) # Assert result_union_list: list = result_union.to_list() result_union_list_sorted: list = sorted(result_union_list) result_intersection_list: list = result_intersection.to_list() result_intersection_list_sorted: list = sorted( result_intersection_list) self.assertEqual(result_union.size(), 11) self.assertListEqual(result_union_list_sorted, [1, 2, 3, 4, 6, 9, 11, 21, 32, 35, 65]) self.assertEqual(result_intersection.size(), 3) self.assertListEqual(result_intersection_list_sorted, [4, 6, 21]) def execute_tests_both_lists_with_elements_and_no_overlap(self: object) -> None: # Arrange linked_list_helpers: LinkedListHelpers = LinkedListHelpers() linked_list_1: LinkedList = LinkedList() element_1 = [3, 2, 4, 35, 6, 65, 6, 4, 3, 21] for i in element_1: linked_list_1.append(i) linked_list_2: LinkedList = LinkedList() element_2 = [32, 9, 1, 11, 1] for i in element_2: linked_list_2.append(i) # Act result_union: LinkedList = linked_list_helpers.union( linked_list_1, linked_list_2) result_intersection: LinkedList = linked_list_helpers.intersection( linked_list_1, linked_list_2) # Assert result_union_list: list = result_union.to_list() result_union_list_sorted: list = sorted(result_union_list) result_intersection_list: list = result_intersection.to_list() result_intersection_list_sorted: list = sorted( result_intersection_list) self.assertEqual(result_union.size(), 11) self.assertListEqual(result_union_list_sorted, [1, 2, 3, 4, 6, 9, 11, 21, 32, 35, 65]) self.assertEqual(result_intersection.size(), 0) self.assertListEqual(result_intersection_list_sorted, [])
import torch import torch.nn as nn import torch.nn.functional as F from .utils import get_block, get_norm from .unet_utils import inconv, down_block, up_block from .dual_attention_utils import DAHead class DAUNet(nn.Module): def __init__(self, in_ch, num_classes, base_ch=32, block='BasicBlock', pool=True): super().__init__() block = get_block(block) nb = 2 # num_block self.inc = inconv(in_ch, base_ch, block=block) self.down1 = down_block(base_ch, 2*base_ch, num_block=nb, block=block, pool=pool) self.down2 = down_block(2*base_ch, 4*base_ch, num_block=nb, block=block, pool=pool) self.down3 = down_block(4*base_ch, 8*base_ch, num_block=nb, block=block, pool=pool) self.down4 = down_block(8*base_ch, 16*base_ch, num_block=nb, block=block, pool=pool) self.DAModule = DAHead(16*base_ch, num_classes) self.up1 = up_block(16*base_ch, 8*base_ch, num_block=nb, block=block) self.up2 = up_block(8*base_ch, 4*base_ch, num_block=nb, block=block) self.up3 = up_block(4*base_ch, 2*base_ch, num_block=nb, block=block) self.up4 = up_block(2*base_ch, base_ch, num_block=nb, block=block) self.outc = nn.Conv2d(base_ch, num_classes, kernel_size=1) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) feat_fuse, sasc_pred, sa_pred, sc_pred = self.DAModule(x5) out = self.up1(feat_fuse, x4) out = self.up2(out, x3) out = self.up3(out, x2) out = self.up4(out, x1) out = self.outc(out) return out
def multiprocess_state_generator(video_frame_generator, stream_sha256): """Returns a packaged dict object for use in frame_process""" for frame in video_frame_generator: yield {'mode': 'video', 'main_sequence': True}
from unittest import TestCase from anybadge import Badge, parse_args, main class TestAnybadge(TestCase): """Test case class for anybadge package.""" def test_badge_equal_label_value_width(self): """Test that label and value widths are equal when text is the same.""" badge = Badge(label='a', value='a', num_padding_chars=0) self.assertEqual(badge.label_width, badge.value_width) def test_badge_equal_split(self): """Test that the color split is in the middle when label and value are equal width.""" badge = Badge(label='a', value='a') self.assertEqual(int(badge.badge_width / 2), badge.color_split_position) def test_badge_equal_split_no_padding(self): """Test that the color split is in the middle when label and value are equal width.""" badge = Badge(label='a', value='a', num_padding_chars=0) self.assertEqual(int(badge.badge_width / 2), badge.color_split_position) def test_badge_width_with_long_value_text(self): """Test the width of a badge generated with a long text value.""" badge = Badge(label='CppCheck', value='err: 2 | warn: 9 | info: 99 | style: 365', default_color='red') badge.write_badge('test_badge_1.svg', overwrite=True) self.assertLessEqual(badge.badge_width, 326) def test_badge_width_with_long_value_text_zero_padding(self): """Test the width of a badge generated with a long text value.""" badge = Badge(label='CppCheck', value='err: 2 | warn: 9 | info: 99 | style: 365', default_color='red', num_padding_chars=0) badge.write_badge('test_badge_2.svg', overwrite=True) self.assertLessEqual(badge.badge_width, 306) def test_badge_width_with_medium_value_text(self): """Test the width of a badge generated with a medium text value.""" badge = Badge(label='medium', value='89.67%', default_color='green') badge.write_badge('test_badge_medium.svg', overwrite=True) self.assertLessEqual(badge.badge_width, 138) def test_badge_width_with_medium_value_text_zero_pad(self): """Test the width of a badge generated with a medium text value.""" badge = Badge(label='medium no padding', value='89.67%', default_color='green', num_padding_chars=0) badge.write_badge('test_badge_medium_no_padding.svg', overwrite=True) self.assertLessEqual(badge.badge_width, 156) def test_badge_width_with_short_value_text(self): """Test the width of a badge generated with a short text value.""" badge = Badge(label='short', value='1', default_color='green') badge.write_badge('test_badge_short.svg', overwrite=True) self.assertLessEqual(badge.badge_width, 101) def test_badge_width_with_short_value_text_zero_pad(self): """Test the width of a badge generated with a short text value.""" badge = Badge(label='short value no padding', value='1', default_color='green', num_padding_chars=0) badge.write_badge('test_badge_short_no_padding.svg', overwrite=True) self.assertLessEqual(badge.badge_width, 143) def test_badge_width_with_tiny_value_text(self): """Test the width of a badge generated with a short text value.""" badge = Badge(label='a', value='1', default_color='green') badge.write_badge('test_badge_tiny_text_value.svg', overwrite=True) self.assertLessEqual(badge.badge_width, 76) def test_badge_width_with_tiny_value_text_no_padding(self): """Test the width of a badge generated with a short text value.""" badge = Badge(label='a', value='1', default_color='green', num_padding_chars=0) badge.write_badge('test_badge_tiny_text_value_no_padding.svg', overwrite=True) self.assertLessEqual(badge.badge_width, 76) def test_badge_with_thresholds(self): """Test generating a badge using thresholds.""" thresholds = { 2: 'red', 4: 'orange', 6: 'green', 8: 'brightgreen' } badge = Badge('thresholds', '2.22', value_suffix='%', thresholds=thresholds) badge.write_badge('test_badge_thresholds.svg', overwrite=True) def test_badge_with_text_color(self): """Test generating a badge with alternate text_color.""" badge = Badge('text color', '2.22', value_suffix='%', text_color='#010101,#101010') badge.write_badge('test_badge_text_color.svg', overwrite=True) def test_multiple_badges_in_one_session(self): badges = [ Badge('multiple 1', value='100', value_suffix='%', num_padding_chars=0), Badge('multiple 2', value='1234567890'), ] self.assertNotEqual(badges[0].badge_width, badges[1].badge_width) def test_multiple_badges_get_different_mask_id(self): badges = [ Badge('multiple 1', value='100', value_suffix='%', num_padding_chars=0), Badge('multiple 2', value='1234567890'), ] self.assertNotEqual(badges[0].mask_id, badges[1].mask_id) def test_integer_str_value_is_handled_as_integer(self): badge = Badge('integer', value='1234') self.assertTrue(badge.value_is_int) self.assertFalse(badge.value_is_float) badge.write_badge('test_badge_int_str.svg', overwrite=True) def test_integer_int_value_is_handled_as_integer(self): badge = Badge('integer', value=1234) self.assertTrue(badge.value_is_int) self.assertFalse(badge.value_is_float) badge.write_badge('test_badge_int.svg', overwrite=True) def test_float_str_value_is_handled_as_float(self): badge = Badge('float str', value='1234.1') self.assertFalse(badge.value_is_int) self.assertTrue(badge.value_is_float) badge.write_badge('test_badge_float_str.svg', overwrite=True) def test_float_value_is_handled_as_float(self): badge = Badge('float int', value=1234.1) self.assertFalse(badge.value_is_int) self.assertTrue(badge.value_is_float) badge.write_badge('test_badge_float.svg', overwrite=True) def test_float_value_with_zero_decimal(self): badge = Badge('float with zeros', value='10.00') self.assertFalse(badge.value_is_int) self.assertTrue(badge.value_is_float) badge.write_badge('test_badge_float_zeros.svg', overwrite=True) def test_float_value_with_non_zero_decimal(self): badge = Badge('float str no decimal', value='10.01') self.assertFalse(badge.value_is_int) self.assertTrue(badge.value_is_float) badge.write_badge('test_badge_float-str-no-decimal.svg', overwrite=True) def test_padding_label(self): badge = Badge('label padding', value='10.01', num_label_padding_chars=2) badge.write_badge('test_badge_padding_label.svg', overwrite=True) def test_padding_value(self): badge = Badge('value padding', value='10.01', num_value_padding_chars=2) badge.write_badge('test_badge_padding_value.svg', overwrite=True) def test_value_formatting(self): badge = Badge('value formatting', value="10", value_format="%s hits/sec") self.assertEqual("10 hits/sec", badge.value_text) def test_font_name(self): font = 'Arial, Helvetica, sans-serif' badge = Badge('font', value=font, font_name=font) badge.write_badge('test_badge_font.svg', overwrite=True) badge_repr = repr(badge) self.assertTrue("font_name='Arial, Helvetica, sans-serif'" in badge_repr) def test_invalid_font_name(self): font = 'Invalid font' with self.assertRaises(ValueError): _ = Badge('font', value=font, font_name=font) def test_font_size(self): for size in [10, 11, 12]: badge = Badge('font size', value=size, font_size=size) badge.write_badge('test_badge_font_size_%s.svg' % size, overwrite=True) def test_font_size_repr(self): badge = Badge('font size', value=10, font_size=10) badge_repr = repr(badge) self.assertTrue("font_size=10" in badge_repr) def test_template_from_file(self): file = "tests/template.svg" badge = Badge('template from file', value=file, template=file) _ = badge.badge_svg_text def test_repr_svg(self): badge = Badge('label', 'value') self.assertEqual(badge.badge_svg_text, badge._repr_svg_()) def test_str_value_with_threshold_and_default(self): badge = Badge('label', value='fred', thresholds={'pass': 'green', 'fail': 'red'}, default_color='orange') self.assertTrue('orange', badge.badge_color) def test_invalid_color(self): with self.assertRaises(ValueError): badge = Badge('label', value='fred', default_color='floberry') _ = badge.badge_color_code def test_invalid_write_path(self): badge = Badge('label', 'value') with self.assertRaisesRegexp(ValueError, r'File location may not be a directory\.'): badge.write_badge('tests/') with self.assertRaisesRegexp(RuntimeError, r'File ".*tests\/exists\.svg" already exists\.'): badge.write_badge('tests/exists') badge.write_badge('tests/exists') def test_arg_parsing(self): args = parse_args(['-l', 'label', '-v', 'value']) self.assertEqual('label', args.label) self.assertEqual('value', args.value) def test_main_print(self): main(['--label', 'label', '--value', 'value']) def test_main_write_to_file(self): main(['--label', 'label', '--value', 'value', '--file', 'test_badge_main.svg', '--overwrite']) def test_main_thresholds(self): main([ '--label', 'label', '--value', 'value', '--file', 'test_badge_main_threshold.svg', '--overwrite', '2=red', '4=orange']) def test_named_threshold(self): main([ '--value', 'value', '--file', 'test_badge_main_named_threshold.svg', '--overwrite', 'coverage']) def test_main_missing_value(self): with self.assertRaisesRegexp(ValueError, r'Label has not been set\. Please use --label argument\.'): main(['--value', '123', '--file', 'test_badge_main.svg', '--overwrite'])
import re import json import socket import asyncio import logging from time import time import websockets from .util import Queue, get as default_get, current_task from .error import ( SocketIOError, ConnectionFailed, ConnectionClosed, PingTimeout ) from .proxy import ProxyError class SocketIOResponse: """socket.io event response. Attributes ---------- id : `int` match : `function`(`str`, `object`) future : `asyncio.Future` """ MAX_ID = 2 ** 32 last_id = 0 def __init__(self, match): self.id = (self.last_id + 1) % self.MAX_ID self.__class__.last_id = self.id self.match = match self.future = asyncio.Future() def __eq__(self, res): if isinstance(res, SocketIOResponse): return self is res return self.id == res def __str__(self): return '<SocketIOResponse #%d>' % self.id __repr__ = __str__ def set(self, value): self.future.set_result(value) def cancel(self, ex=None): if not self.future.done(): if ex is None: self.future.cancel() else: self.future.set_exception(ex) @staticmethod def match_event(ev=None, data=None): def match(ev_, data_): if not re.match(ev, ev_): return False if data is not None: if isinstance(data, dict): if not isinstance(data_, dict): return False for key, value in data.items(): if value != data_.get(key): return False else: raise NotImplementedError('match_event !isinstance(data, dict)') return True return match class SocketIO: """Asynchronous socket.io connection. Attributes ---------- websocket : `websockets.client.WebSocketClientProtocol` Websocket connection. ping_interval : `float` Ping interval in seconds. ping_timeout : `float` Ping timeout in seconds. error : `None` or `Exception` events : `asyncio.Queue` of ((`str`, `object`) or `None`) Event queue. response : `list` of `cytube_bot.socket_io.SocketIOResponse` response_lock : `asyncio.Lock` ping_task : `asyncio.tasks.Task` recv_task : `asyncio.tasks.Task` close_task : `asyncio.tasks.Task` closing : `asyncio.Event` closed : `asyncio.Event` ping_response : `asyncio.Event` loop : `asyncio.events.AbstractEventLoop` Event loop. """ logger = logging.getLogger(__name__) def __init__(self, websocket, config, qsize, loop): """ Parameters ---------- websocket : `websockets.client.WebSocketClientProtocol` Websocket connection. config : `dict` Websocket configuration. qsize : `int` Event queue size. loop : `asyncio.events.AbstractEventLoop` Event loop. """ self.websocket = websocket self.loop = loop self._error = None self.closing = asyncio.Event(loop=self.loop) self.closed = asyncio.Event(loop=self.loop) self.ping_response = asyncio.Event(loop=self.loop) self.events = Queue(maxsize=qsize, loop=self.loop) self.response = [] self.response_lock = asyncio.Lock() self.ping_interval = max(1, config.get('pingInterval', 10000) / 1000) self.ping_timeout = max(1, config.get('pingTimeout', 10000) / 1000) self.ping_task = self.loop.create_task(self._ping()) self.recv_task = self.loop.create_task(self._recv()) self.close_task = None @property def error(self): return self._error @error.setter def error(self, ex): if self._error is not None: self.logger.info('error already set: %r', self._error) return self.logger.info('set error %r', ex) self._error = ex if ex is not None: self.logger.info('create close task') self.close_task = self.loop.create_task(self.close()) @asyncio.coroutine def close(self): """Close the connection. """ self.logger.info('close') if self.close_task is not None: if self.close_task is current_task(self.loop): self.logger.info('current task is close task') else: self.logger.info('wait for close task') yield from asyncio.wait_for(self.close_task, None, loop=self.loop) if self.closed.is_set(): self.logger.info('already closed') return if self.closing.is_set(): self.logger.info('already closing, wait') yield from self.closed.wait() return self.closing.set() try: if self._error is None: self.logger.info('set error') self._error = ConnectionClosed() else: self.logger.info('error already set: %r', self._error) self.logger.info('queue null event') try: self.events.put_nowait(None) except asyncio.QueueFull: pass self.logger.info('set response future exception') for res in self.response: res.cancel(self.error) self.response = [] self.logger.info('cancel ping task') self.ping_task.cancel() self.logger.info('cancel recv task') self.recv_task.cancel() self.logger.info('wait for tasks') yield from asyncio.wait_for( asyncio.gather(self.ping_task, self.recv_task), None, loop=self.loop ) self.ping_response.clear() self.logger.info('close websocket') yield from self.websocket.close() self.logger.info('clear event queue') while not self.events.empty(): ev = yield from self.events.get() self.events.task_done() if isinstance(ev, Exception): self.error = ev #yield from self.events.join() finally: self.ping_task = None self.recv_task = None self.websocket = None self.closed.set() @asyncio.coroutine def recv(self): """Receive an event. Returns ------- (`str`, `object`) Event name and data. Raises ------ `ConnectionClosed` """ if self.error is not None: raise self.error # pylint:disable=raising-bad-type ev = yield from self.events.get() self.events.task_done() if ev is None: raise self.error # pylint:disable=raising-bad-type return ev @asyncio.coroutine def emit(self, event, data, match_response=False, response_timeout=None): """Send an event. Parameters ---------- event : `str` Event name. data : `object` Event data. match_response : `function` or `None`, optional Response match function. response_timeout : `float` or `None`, optional Response timeout in seconds. Returns ------- `object` Response data if `get_response` is `True`. Raises ------ `asyncio.CancelledError` `SocketIOError` """ if self.error is not None: raise self.error # pylint:disable=raising-bad-type data = '42%s' % json.dumps((event, data)) self.logger.info('emit %s', data) release = False response = None try: if match_response is not None: yield from self.response_lock.acquire() release = True response = SocketIOResponse(match_response) self.logger.info('get response %s', response) self.response.append(response) yield from self.websocket.send(data) if match_response is not None: self.response_lock.release() release = False if response_timeout is not None: res = asyncio.wait_for(response.future, response_timeout, loop=self.loop) else: res = response.future try: res = yield from res self.logger.info('%s', res) except asyncio.CancelledError: self.logger.info('response cancelled %s', event) raise except asyncio.TimeoutError as ex: self.logger.info('response timeout %s', event) response.cancel() res = None finally: yield from self.response_lock.acquire() try: self.response.remove(response) except ValueError: pass finally: self.response_lock.release() self.logger.info('response %s %r', event, res) return res except asyncio.CancelledError: self.logger.error('emit cancelled') raise except Exception as ex: self.logger.error('emit error: %r', ex) if not isinstance(ex, SocketIOError): ex = SocketIOError(ex) raise ex finally: if release: self.response_lock.release() @asyncio.coroutine def _ping(self): """Ping task.""" try: dt = 0 while self.error is None: yield from asyncio.sleep(max(self.ping_interval - dt, 0)) self.logger.debug('ping') self.ping_response.clear() dt = time() yield from self.websocket.send('2') yield from asyncio.wait_for( self.ping_response.wait(), self.ping_timeout, loop=self.loop ) dt = max(time() - dt, 0) except asyncio.CancelledError: self.logger.info('ping cancelled') except asyncio.TimeoutError: self.logger.error('ping timeout') self.error = PingTimeout() except (socket.error, ProxyError, websockets.exceptions.ConnectionClosed, websockets.exceptions.InvalidState, websockets.exceptions.PayloadTooBig, websockets.exceptions.WebSocketProtocolError ) as ex: self.logger.error('ping error: %r', ex) self.error = ConnectionClosed(ex) @asyncio.coroutine def _recv(self): """Read task.""" try: while self.error is None: data = yield from self.websocket.recv() self.logger.debug('recv %s', data) if data.startswith('2'): data = data[1:] self.logger.debug('ping %s', data) yield from self.websocket.send('3' + data) elif data.startswith('3'): self.logger.debug('pong %s', data[1:]) self.ping_response.set() elif data.startswith('4'): try: if data[1] == '0': event = '' data = None elif data[1] == '1': event = data[2:] data = None else: data = json.loads(data[2:]) if not isinstance(data, list): raise ValueError('not an array') if len(data) == 0: raise ValueError('empty array') if len(data) == 1: event, data = data[0], None elif len(data) == 2: event, data = data else: event = data[0] data = data[1:] except ValueError as ex: self.logger.error('invalid event %s: %r', data, ex) else: self.logger.debug('event %s %s', event, data) yield from self.events.put((event, data)) for response in self.response: if response.match(event, data): self.logger.debug('response %s %s', event, data) response.set((event, data)) break else: self.logger.warning('unknown event: "%s"', data) except asyncio.CancelledError: self.logger.info('recv cancelled') self.error = ConnectionClosed() except (socket.error, ProxyError, websockets.exceptions.ConnectionClosed, websockets.exceptions.InvalidState, websockets.exceptions.PayloadTooBig, websockets.exceptions.WebSocketProtocolError ) as ex: self.logger.error('recv error: %r', ex) self.error = ConnectionClosed(ex) except Exception as ex: self.error = ConnectionClosed(ex) raise @classmethod def _get_config(cls, url, loop, get): """Get socket configuration. Parameters ---------- url : `str` get : `function` Returns ------- `dict` Socket id, ping timeout, ping interval. """ url = url + '?EID=2&transport=polling' cls.logger.info('get %s', url) data = yield from get(url, loop=loop) try: data = json.loads(data[data.index('{'):]) if 'sid' not in data: raise ValueError('no sid in %s' % data) except ValueError: raise websockets.exceptions.InvalidHandshake(data) return data @classmethod @asyncio.coroutine def _connect(cls, url, qsize, loop, get, connect): """Create a connection. Parameters ---------- url : `str` qsize : `int` loop : `asyncio.events.AbstractEventLoop` get : `function` connect : `function` Returns ------- `SocketIO` """ conf = yield from cls._get_config(url, loop, get) sid = conf['sid'] cls.logger.info('sid=%s', sid) url = '%s?EID=3&transport=websocket&sid=%s' % ( url.replace('http', 'ws', 1), sid ) cls.logger.info('connect %s', url) websocket = yield from connect(url, loop=loop) try: cls.logger.info('2probe') yield from websocket.send('2probe') res = yield from websocket.recv() cls.logger.info('3probe') if res != '3probe': raise websockets.exceptions.InvalidHandshake( 'invalid response: "%s" != "3probe"', res ) cls.logger.info('upgrade') yield from websocket.send('5') return SocketIO(websocket, conf, qsize, loop) except: yield from websocket.close() raise @classmethod @asyncio.coroutine def connect(cls, url, retry=-1, retry_delay=1, qsize=0, loop=None, get=default_get, connect=websockets.connect): """Create a connection. Parameters ---------- url : `str` socket.io URL. retry : `int` Maximum number of tries. retry_delay : `float` Delay between tries in seconds. qsize : `int` Event queue size. loop : `None` or `asyncio.events.AbstractEventLoop` Event loop. get : `function` HTTP GET request coroutine. connect : `function` Websocket connect coroutine. Returns ------- `SocketIO` Raises ------ `ConnectionFailed` `asyncio.CancelledError` """ loop = loop or asyncio.get_event_loop() i = 0 while True: try: io = yield from cls._connect(url, qsize, loop, get, connect) return io except asyncio.CancelledError: cls.logger.error( 'connect(%s) (try %d / %d): cancelled', url, i + 1, retry + 1 ) raise except Exception as ex: cls.logger.error( 'connect(%s) (try %d / %d): %r', url, i + 1, retry + 1, ex ) if i == retry: raise ConnectionFailed(ex) i += 1 yield from asyncio.sleep(retry_delay)
import os from dotenv import load_dotenv if os.path.isfile('./.env'): load_dotenv() JWT_SECRET = os.getenv('JWT_SECRET', 'pass') PORT = os.getenv('PORT', '8000') DEBUG = os.getenv('MODE', 'production') == 'development'
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2018-03-29 05:03 from __future__ import unicode_literals from django.db import migrations import tagging.fields class Migration(migrations.Migration): dependencies = [ ('blog', '0006_auto_20180328_2107'), ] operations = [ migrations.AddField( model_name='link', name='tags', field=tagging.fields.TagField(blank=True, max_length=255), ), ]
from __future__ import print_function from .logger import logger from .kinto2yaml import introspect_server async def initialize_server(async_client, config, bucket=None, collection=None, force=False, delete_missing_records=False): logger.debug("Converting YAML config into a server batch.") bid = bucket cid = collection # 1. Introspect current server state. if not force or delete_missing_records: current_server_status = await introspect_server( async_client, bucket=bucket, collection=collection, records=True ) current_server_buckets = current_server_status["buckets"] else: # We don't need to load it because we will override it nevertheless. current_server_buckets = {} # 2. For each bucket if 'buckets' in config: buckets = config.get("buckets", {}) else: # pragma: no cover # Legacy for file before kinto-wizard 4.0 logger.warning("Your file seems to be in legacy format. " "Please add a `buckets:` root level.") buckets = config with async_client.batch() as batch: for bucket_id, bucket in buckets.items(): # Skip buckets that we don't want to import. if bid and bucket_id != bid: logger.debug("Skip bucket {}".format(bucket_id)) continue bucket_exists = bucket_id in current_server_buckets bucket_data = bucket.get('data', {}) bucket_permissions = bucket.get('permissions', {}) bucket_groups = bucket.get('groups', {}) bucket_collections = bucket.get('collections', {}) # Skip bucket if we don't have a collection in them if cid and cid not in bucket_collections: logger.debug("Skip bucket {}".format(bucket_id)) continue if not bucket_exists: bucket_current_groups = {} bucket_current_collections = {} # Create the bucket if not present in the introspection batch.create_bucket(id=bucket_id, data=bucket_data, permissions=bucket_permissions, safe=(not force)) else: current_bucket = current_server_buckets[bucket_id] bucket_current_groups = {} bucket_current_collections = {} current_bucket_data = {} current_bucket_permissions = {} if current_bucket: bucket_current_groups = current_bucket.get('groups', {}) bucket_current_collections = current_bucket.get('collections', {}) # Patch the bucket if mandatory current_bucket_data = current_bucket.get('data', {}) current_bucket_permissions = current_bucket.get('permissions', {}) if (current_bucket_data != bucket_data or current_bucket_permissions != bucket_permissions): batch.patch_bucket(id=bucket_id, data=bucket_data, permissions=bucket_permissions) # 2.1 For each group, patch it if needed for group_id, group_info in bucket_groups.items(): group_exists = bucket_exists and group_id in bucket_current_groups group_data = group_info.get('data', {}) group_permissions = group_info.get('permissions', {}) if not group_exists: batch.create_group(id=group_id, bucket=bucket_id, data=group_data, permissions=group_permissions, safe=(not force)) else: current_group = bucket_current_groups[group_id] current_group_data = current_group.get('data', {}) current_group_permissions = current_group.get('permissions', {}) if (current_group_data != group_data or current_group_permissions != group_permissions): batch.patch_group(id=group_id, bucket=bucket_id, data=group_data, permissions=group_permissions) # 2.2 For each collection patch it if mandatory for collection_id, collection in bucket_collections.items(): # Skip collections that we don't want to import. if cid and collection_id != cid: logger.debug("Skip collection {}/{}".format(bucket_id, collection_id)) continue collection_exists = bucket_exists and collection_id in bucket_current_collections collection_data = collection.get('data', {}) collection_permissions = collection.get('permissions', {}) if not collection_exists: batch.create_collection(id=collection_id, bucket=bucket_id, data=collection_data, permissions=collection_permissions, safe=(not force)) else: current_collection = bucket_current_collections[collection_id] current_collection_data = current_collection.get('data', {}) current_collection_permissions = current_collection.get('permissions', {}) if (current_collection_data != collection_data or current_collection_permissions != collection_permissions): batch.patch_collection(id=collection_id, bucket=bucket_id, data=collection_data, permissions=collection_permissions) # 2.2.1 For each collection, create its records. collection_records = collection.get('records', {}) for record_id, record in collection_records.items(): record_exists = (collection_exists and record_id in current_collection.get('records', {})) record_data = record.get('data', {}) record_permissions = record.get('permissions', None) if not record_exists: batch.create_record(id=record_id, bucket=bucket_id, collection=collection_id, data=record_data, permissions=record_permissions, safe=(not force)) else: current_record = current_collection['records'][record_id] current_record_data = current_record.get('data', {}) current_record_permissions = current_record.get('permissions', {}) if (current_record_data != record_data or current_record_permissions != record_permissions): batch.update_record(id=record_id, bucket=bucket_id, collection=collection_id, data=record_data, permissions=record_permissions) if delete_missing_records and collection_exists and collection_records: # Fetch all records IDs file_records_ids = set(collection_records.keys()) server_records_ids = set(current_collection['records'].keys()) to_delete = server_records_ids - file_records_ids if not force: message = ("Are you sure that you want to delete the " "following {} records?".format(len(list(to_delete)))) value = input(message) if value.lower() not in ['y', 'yes']: print("Exiting") exit(1) for record_id in to_delete: batch.delete_record(id=record_id, bucket=bucket_id, collection=collection_id) logger.debug('Sending batch:\n\n%s' % batch.session.requests) logger.info("Batch uploaded")
dict = dict() lista = list() dict['nome'] = str(input('Nome do jogador: ')).capitalize() partidas = int(input(f'Quantas partidas {dict["nome"]} jogou? ')) for c in range(0, partidas): lista.append(int(input(f' Quantos gols na {c}° partida? '))) dict['gols'] = lista[:] dict['total'] = sum(lista) print('-='*30) print(dict) print('-='*30) for k, v in dict.items(): print(f'O campo {k} tem valor {v}') print('-='*30) print(f'O jogador {dict["nome"]} jogou {partidas} partidas.') for i, v in enumerate(lista): print(f' => Na partida {i}, fez {v} gols.') print(dict['total'])
#source: https://medium.com/@joel.barmettler/how-to-upload-your-python-package-to-pypi-65edc5fe9c56 #README.md: https://dillinger.io/ from distutils.core import setup setup( name = 'ChoateStudentHelp', # How you named your package folder (MyLib) packages = ['ChoateStudentHelp'], # Chose the same as "name" version = '0.1', # Start with a small number and increase it with every change you make license='MIT', # Chose a license from here: https://help.github.com/articles/licensing-a-repository description = 'This module includes 6 distinct functions that I thought would be useful in my life as a student of Choate Rosemary Hall.', # Give a short description about your library author = 'Brian Harder', # Type in your name author_email = 'bharder23@choate.edu', # Type in your E-Mail url = 'https://github.com/brianHarder/ChoateStudentHelp', # Provide either the link to your github or to your website download_url = 'https://github.com/brianHarder/ChoateStudentHelp/archive/v_01.tar.gz', # I explain this later on keywords = ['useful', 'unique'], # Keywords that define your package best install_requires=[ # I get to this in a second 'yfinance', 'stockquotes', 'sympy', 'Pillow', 'geopy', 'matplotlib', 'bs4', ], classifiers=[ 'Development Status :: 3 - Alpha', # Chose either "3 - Alpha", "4 - Beta" or "5 - Production/Stable" as the current state of your package 'Intended Audience :: Developers', # Define that your audience are developers 'Topic :: Software Development :: Build Tools', 'License :: OSI Approved :: MIT License', # Again, pick a license 'Programming Language :: Python :: 3', #Specify which pyhton versions that you want to support 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.9', ], )
import unittest from translator import english_to_french, french_to_english class Testetof1(unittest.TestCase): def test1(self): self.assertEqual(english_to_french("Hello"),"Bonjour") class Testetof2(unittest.TestCase): def test1(self): self.assertEqual(english_to_french(" ")," ") class Testftoe1(unittest.TestCase): def test1(self): self.assertEqual(french_to_english("Bonjour"),"Hello") class Testftoe2(unittest.TestCase): def test1(self): self.assertEqual(french_to_english(" ")," ") unittest.main()
#!/usr/bin/env python3 # MIT License # # Copyright (c) 2020 FABRIC Testbed # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # # Author: Komal Thareja (kthare10@renci.org) from fabric_mb.message_bus.message_bus_exception import MessageBusException from fabric_mb.message_bus.messages.term_avro import TermAvro class ResourceTicketAvro: def __init__(self): self.guid = None self.term = None self.units = 0 self.properties = None self.type = None self.issuer = None self.holder = None def from_dict(self, value: dict): """ The Avro Python library does not support code generation. For this reason we must provide conversion from dict to our class for de-serialization :param value: incoming message dictionary """ self.guid = value.get('guid', None) temp = value.get('term', None) if temp is not None: self.term = TermAvro() self.term.from_dict(value=temp) self.units = value.get('units', 0) self.properties = value.get('properties', None) self.type = value.get('type', None) self.issuer = value.get('issuer', None) self.holder = value.get('holder', None) def to_dict(self) -> dict: """ The Avro Python library does not support code generation. For this reason we must provide a dict representation of our class for serialization. :return dict representing the class """ if not self.validate(): raise MessageBusException("Invalid arguments") result = {"guid": self.guid, "units": self.units} if self.term is not None: result["term"] = self.term.to_dict() if self.properties is not None: result["properties"] = self.properties if self.type is not None: result["type"] = self.type if self.issuer is not None: result["issuer"] = self.issuer if self.holder is not None: result["holder"] = self.holder return result def get_guid(self) -> str: return self.guid def get_units(self) -> int: return self.units def get_term(self) -> TermAvro: return self.term def get_properties(self) -> dict: return self.properties def get_type(self) -> str: return self.type def get_issuer(self) -> str: return self.issuer def get_holder(self) -> str: return self.holder def set_guid(self, guid: str): self.guid = guid def set_units(self, units: int): self.units = units def set_term(self, term: TermAvro): self.term = term def set_properties(self, properties: dict): self.properties = properties def set_type(self, rtype: str): self.type = rtype def set_issuer(self, issuer: str): self.issuer = issuer def set_holder(self, holder: str): self.holder = holder def __str__(self): return f"guid: {self.guid} units: {self.units} term: {self.term} properties: {self.properties} " \ f"type: {self.type} issuer: {self.issuer} holder: {self.holder}" def validate(self) -> bool: """ Check if the object is valid and contains all mandatory fields :return True on success; False on failure """ ret_val = True if self.guid is None or self.units is None or self.type is None: ret_val = False return ret_val def __eq__(self, other): if not isinstance(other, ResourceTicketAvro): return False return self.guid == other.guid and self.units == other.units and self.term == other.term and \ self.properties == other.properties and self.type == other.type and self.issuer == other.issuer and \ self.holder == other.holder
#!/usr/bin/env python import curses import os from box import Box from utils import load_yaml def main(screen): """ Draws and redraws the screen. """ # Hide the cursor. curses.curs_set(0) # Load config from file. config = load_yaml(os.path.expanduser('~/.suave/config.yml')) # Create boxes from config. boxes = [] for box in config: boxes.append( Box( screen=screen, rows=box['rows'], columns=box['columns'], rows_offset=box['rows-offset'], columns_offset=box['columns-offset'], command=box['command'], interval=box['interval'], ) ) while True: # Redraw the screen only when it changes. if screen.is_wintouched(): screen.clear() screen.refresh() # Give every box an opportunity to redraw if it has changed. [box.redraw_if_changed() for box in boxes] # Wait before redrawing again. curses.napms(1000) curses.wrapper(main)
# -*- coding: utf-8 -*- """ filtering exceptions module. """ from pyrin.core.exceptions import CoreException, CoreBusinessException class FilteringException(CoreException): """ filtering exception. """ pass class FilteringBusinessException(CoreBusinessException, FilteringException): """ filtering business exception. """ pass
import timeit from itertools import product import pickle import os import numpy as np from matplotlib import pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from sphere.distribution import fb8, FB8Distribution, fb8_mle, spa plt.style.use('paper.mplstyle') def grid(npts): return [_.flatten() for _ in np.meshgrid(np.linspace(0, np.pi, npts), np.linspace(0,2*np.pi, npts))] def make_title(fb8, kbdec=0): def FBname(n): return r'\rm{{FB}}_{}'.format(n) def FBtitle(n, ps): return r'${}({})$'.format(FBname(n), ps) kapbet = r'\kappa = {:.'+str(kbdec)+r'f}, \beta = {:.'+str(kbdec)+r'f}' kapbet = kapbet.format(fb8.kappa, fb8.beta) if fb8.nu[0] == 1.: if fb8.eta == 1.: return FBtitle(5, kapbet) if fb8.eta == -1.: return FBtitle(4, kapbet) return FBtitle(6, kapbet+r', \eta={:.1g}'.format(fb8.eta)) return FBtitle(8, kapbet+r', \eta={:.1g}, \vec{{\nu}}=({:.3g},{:.3g},{:.3g})'.format( fb8.eta, np.round(fb8.nu[0],3), np.round(fb8.nu[1],3), np.round(fb8.nu[2],3))) def plot_fb8(fb8, npts): """ Plot fb8 on 3D sphere """ xs = fb8.spherical_coordinates_to_nu(*grid(npts)) pdfs = fb8.pdf(xs) z,x,y = xs.T fig = plt.figure(figsize=plt.figaspect(1.)) ax = fig.add_subplot(111, projection='3d') ax.plot_surface(x.reshape(npts, npts), y.reshape(npts, npts), z.reshape(npts, npts), alpha=0.5, rstride=1, cstride=1, facecolors=cm.gray(pdfs.reshape(npts, npts)/pdfs.max())) # ax.set_xticks([]) # ax.set_yticks([]) # ax.set_zticks([]) ax.set_axis_off() ax.set_title(make_title(fb8), fontsize=12, y=0.18) plt.tight_layout(-5) def hp_plot_fb8(fb8, nside): import healpy as hp npix = hp.nside2npix(nside) fb8_map = fb8.pdf(fb8.spherical_coordinates_to_nu( *hp.pix2ang(nside, np.arange(npix)))) plt.figure(figsize=(9,6)) vmap = cm.gray vmap.set_under('w') vmap.set_bad('w') hp.mollview(fb8_map, title=make_title(fb8, 1), min=0, max=np.round(np.nanmax(fb8_map),2), cmap=vmap, hold=True, cbar=True, xsize=1600) hp.graticule() def build_args(kappa, beta, eta, alpha=0., rho=0.): if kappa is None: xvals = np.arange(beta/10., 0.8*beta) idx = 3 xlabel='kappa' text = rf'$\beta={beta}, \eta={eta:.1g}$' textx = 0.03 elif beta is None: xvals = np.arange(kappa/10., 0.8*kappa) idx = 4 xlabel = 'beta' text = rf'$\kappa={kappa}, \eta={eta:.1g}$' textx = 0.03 elif eta is None: xvals = np.arange(-1., 1.02, 0.02) idx = 5 xlabel = 'eta' text = rf'$\kappa={kappa}, \beta={beta}$' textx = 0.5 args = [] for x in xvals: arg = [0.,0.,0.,kappa,beta,eta,alpha,rho] arg[idx] = x args.append(arg) return xvals, xlabel, text, textx, args def approx_norm(kappa, beta, eta): """ Compare log-c6 vs approx log-c6 """ xvals, xlabel, text, textx, args = build_args(kappa, beta, eta) plt.figure() plt.plot(xvals, [np.log(fb8(*_).normalize()) for _ in args], label='Series', color='k', linewidth=3.5) plt.plot(xvals, [fb8(*_)._approx_log_normalize() for _ in args], linestyle='--', color='gray', label='Approximate') plt.plot(xvals, [spa(fb8(*_)).log_c3() for _ in args], linestyle=':', color='gray', label='Saddlepoint') plt.xlabel(rf'$\{xlabel}$') plt.ylabel(rf'$\ln c_6(\{xlabel})$') plt.legend() plt.text(textx,0.7,text, transform=plt.gca().transAxes, fontsize=14) plt.tight_layout(0.1) def numerical_norm(kappa, beta, eta, alpha, rho): """ Compare log-c8 (series) vs numerical integration log-c8 """ xvals, xlabel, text, textx, args = build_args(kappa, beta, eta, alpha, rho) plt.figure() plt.plot(xvals, [np.log(fb8(*_).normalize()) for _ in args], label='Series', color='k', linewidth=3.5) plt.plot(xvals, [np.log(fb8(*_)._nnormalize()) for _ in args], linestyle='--', color='gray', label='Numerical integration') plt.plot(xvals, [spa(fb8(*_[:-2])).log_c3() for _ in args], linestyle=':', color='gray', label='Saddlepoint') plt.xlabel(rf'$\{xlabel}$') plt.ylabel(rf'$\ln c_8(\{xlabel})$') plt.legend() plt.text(textx,0.7,text, transform=plt.gca().transAxes, fontsize=14) _ = fb8(0.,0.,0.,100.,10.,-0.5,alpha,rho) textnu = rf'$\vec{{\nu}}=({_.nu[0]:.3g},{_.nu[1]:.3g},{_.nu[2]:.3g})$' plt.text(textx,0.6,textnu, transform=plt.gca().transAxes, fontsize=14) plt.tight_layout(0.1) def time_norm(kappa, beta, eta, alpha, rho): """ Plot execution time of .normalize to ._nnormalize """ xvals, xlabel, text, textx, args = build_args(kappa, beta, eta, alpha, rho) tfile = os.path.join('figs', 'time', 'timec8.pkl') if os.path.isfile(tfile) and str(args) in pickle.load(open(tfile, 'rb')): times_normalize, times_nnormalize = pickle.load(open(tfile, 'rb'))[str(args)] else: times_normalize = [] times_nnormalize = [] setup = 'from sphere.distribution import fb8' for _ in args: times_normalize.append( min(timeit.repeat(stmt=('fb8('+','.join(['{}']*8)+').normalize(cache=dict())').format(*_), setup=setup, repeat=3, number=1))) times_nnormalize.append( min(timeit.repeat(stmt=('fb8('+','.join(['{}']*8)+')._nnormalize()').format(*_), setup=setup, repeat=3, number=1))) if os.path.isfile(tfile): ddd = pickle.load(open(tfile, 'rb')) else: ddd = {} ddd[str(args)] = [times_normalize, times_nnormalize] with open(tfile, 'wb') as f: pickle.dump(ddd, f) plt.figure() plt.plot(xvals, times_normalize, label='Series', color='k', linewidth=3.5) plt.plot(xvals, times_nnormalize, linestyle='--', color='gray', label='Numerical integration') plt.xlabel(rf'$\{xlabel}$') plt.ylabel(rf'Runtime [s]') # plt.yscale('log') plt.legend() plt.text(0.42,0.38,text, transform=plt.gca().transAxes, fontsize=14) _ = fb8(0.,0.,0.,100.,10.,-0.5,alpha,rho) textnu = rf'$\vec{{\nu}}=({_.nu[0]:.3g},{_.nu[1]:.3g},{_.nu[2]:.3g})$' plt.text(0.42,0.28,textnu, transform=plt.gca().transAxes, fontsize=14) plt.tight_layout(0.1) def do_fits(ths, phs): from matplotlib.patches import Circle from mpl_toolkits.mplot3d import art3d xs = FB8Distribution.spherical_coordinates_to_nu(ths, phs) z,x,y = xs.T fit5 = fb8_mle(xs, True, fb5_only=True) plot_fb8(fit5, 200) ax = plt.gca() # ax.scatter(x*1.05, y*1.05, z*1.05, color='k', depthshade=False, edgecolors='k', linewidth=0.5) for (_x, _y, _z) in zip(x,y,z): p = Circle((_x, _y), 0.01, ec='k', fc="none") ax.add_patch(p) art3d.pathpatch_2d_to_3d(p, z=_z) fit8 = fb8_mle(xs, True) plot_fb8(fit8, 200) ax = plt.gca() for (_x, _y, _z) in zip(x,y,z): p = Circle((_x, _y), 0.01, ec='k', fc="none") ax.add_patch(p) art3d.pathpatch_2d_to_3d(p, z=_z) def hp_fits(ths, phs, nside=64): import healpy as hp xs = FB8Distribution.spherical_coordinates_to_nu(ths, phs) z,x,y = xs.T fit5 = fb8_mle(xs, True, fb5_only=True) hp_plot_fb8(fit5, nside) hp.projscatter(ths, phs, marker='.', linewidths=0, s=5, c='k') ax = plt.gca() ax.annotate(r"$\bf{-180^\circ}$", xy=(1.7, 0.625), size="medium") ax.annotate(r"$\bf{180^\circ}$", xy=(-1.95, 0.625), size="medium") ax.annotate("Galactic", xy=(0.8, -0.05), size="medium", xycoords="axes fraction") plt.savefig('figs/Fig5_fb5.png') fit8 = fb8_mle(xs, True) hp_plot_fb8(fit8, nside) hp.projscatter(ths, phs, marker='.', linewidths=0, s=5, c='k') ax = plt.gca() ax.annotate(r"$\bf{-180^\circ}$", xy=(1.7, 0.625), size="medium") ax.annotate(r"$\bf{180^\circ}$", xy=(-1.95, 0.625), size="medium") ax.annotate("Galactic", xy=(0.8, -0.05), size="medium", xycoords="axes fraction") plt.savefig('figs/Fig5_fb8.png') def yukspor(): phs, ths = np.radians(np.loadtxt('yukspor.txt')) do_fits(ths, phs) def bsc5(mag_low=6): dat = np.loadtxt('bsc5.dat', comments='#', skiprows=43) _ = dat[dat[:,-1]<=mag_low] phs, ths = np.radians([_[:,1], 90.-_[:,2]]) hp_fits(ths, phs) def toy(seed=92518): from matplotlib.patches import Circle from mpl_toolkits.mplot3d import art3d np.random.seed(seed) toyf8 = fb8(np.pi/16, -np.pi/3,0,55,60,-1.,0.07,0.3) xs = toyf8.rvs(100) fit5 = fb8_mle(xs, fb5_only=True) print(fit5, -fit5.log_likelihood(xs)) plot_fb8(fit5, 200) ax = plt.gca() for (_z, _x, _y) in xs: p = Circle((_x, _y), 0.01, ec='w', fc="none") ax.add_patch(p) art3d.pathpatch_2d_to_3d(p, z=_z, zdir='z') plt.savefig('figs/Fig4_toyfb5.png') fit8 = fb8_mle(xs) print(fit8, -fit8.log_likelihood(xs)) plot_fb8(fit8, 200) ax = plt.gca() for (_z, _x, _y) in xs: p = Circle((_x, _y), 0.01, ec='w', fc="none") ax.add_patch(p) art3d.pathpatch_2d_to_3d(p, z=_z) plt.savefig('figs/Fig4_toyfb8.png') def time(eta=1, alpha=0, rho=0, step=10): """ Plot ratio of time spent on .normalize to ._nnormalize """ times_normalize = [] times_nnormalize = [] kappas = range(1, 200, step) betas = range(1, 200, step) setup = 'from sphere.distribution import fb8' for x in product([0], [0], [0], kappas, betas, [eta], [alpha], [rho]): print(x) times_normalize.append( min(timeit.timeit(stmt=('fb8('+','.join(['{}']*8)+').normalize(dict())').format(*x), setup=setup, number=1))) times_nnormalize.append( min(timeit.timeit(stmt=('fb8('+','.join(['{}']*8)+')._nnormalize()').format(*x), setup=setup, number=1))) np.reshape(times_normalize, (len(kappas), len(betas))) np.reshape(times_nnormalize, (len(kappas), len(betas))) return times_normalize, times_nnormalize def appendix(th, ph, ps): for x in product([th], [ph], [ps], [10,], [1,10], [-1, -0.8, 1], [0, np.pi/2], [0]): plot_fb8(fb8(*x), 200) plt.savefig('figs/appendix/fb8_k{:.0f}_b{:.0f}_e{:.1f}_a{:.2f}.png'.format(*x[3:-1])) def __main__(): th,ph,ps = (np.pi/16, -np.pi/3, 0) # FB4 plot_fb8(fb8(th,ph,ps,10,10,-1,0,0), 200) plt.savefig('figs/Fig1_fb4.png') # FB5 plot_fb8(fb8(th,ph,ps,10,4,1,0,0), 200) plt.savefig('figs/Fig1_fb5.png') # FB6 plot_fb8(fb8(th+np.pi/6,ph,ps,10,10,-0.5,0,0), 200) plt.savefig('figs/Fig2_fb6.png') # FB8 plot_fb8(fb8(th,ph,ps,10,10,-1,0.5,0.3), 200) plt.savefig('figs/Fig2_fb8.png') # approx_c6 approx_norm(None, 100., -0.5) plt.savefig('figs/Fig3_approxc6_kappa.pdf') approx_norm(100., None, -0.5) plt.savefig('figs/Fig3_approxc6_beta.pdf') approx_norm(100., 100., None) plt.savefig('figs/Fig3_approxc6_eta.pdf') # ln_c8 numerical_norm(None, 100., -0.5, 0.5, 0.3) plt.savefig('figs/Fig3_lnc8_kappa.pdf') numerical_norm(100., None, -0.5, 0.5, 0.3) plt.savefig('figs/Fig3_lnc8_beta.pdf') numerical_norm(100., 100., None, 0.5, 0.3) plt.savefig('figs/Fig3_lnc8_eta.pdf') # time_c8 time_norm(None, 100., -0.5, 0.5, 0.3) plt.savefig('figs/Fig3_timec8_kappa.pdf') time_norm(100., None, -0.5, 0.5, 0.3) plt.savefig('figs/Fig3_timec8_beta.pdf') time_norm(100., 100., None, 0.5, 0.3) plt.savefig('figs/Fig3_timec8_eta.pdf') # toy application toy() # bright stars catalog bsc5() # appendixfb8s appendix(0,0,0) if __name__=='__main__': __main__()
import os, re, sys import subprocess as sp import random, string import numpy as np from .utils import * from .pfunc import pfunc DEBUG=False # load package locations from yaml file, watch! global dict package_locs = load_package_locations() def bpps(sequence, package='vienna', constraint=None, pseudo=False, T=37, coaxial=True, linear=False, dna=False, motif=None, dangles=True,param_file=None,reweight=None, beam_size=100, DEBUG=False, threshknot=False): ''' Compute base pairing probability matrix for RNA sequence. Args: sequence (str): nucleic acid sequence T (float): temperature (Celsius) linear (bool): call LinearPartition to estimate Z in Vienna or Contrafold constraint (str): structure constraint (functional in vienna, contrafold, rnastructure) motif (str): argument to vienna motif pseudo (bool): (NUPACK only) include pseudoknot calculation dangles (bool): dangles or not, specifiable for vienna, nupack dna (bool): (NUPACK only) use SantaLucia 1998 parameters for DNA coaxial (bool): coaxial stacking or not, specifiable for rnastructure, vfold noncanonical(bool): include noncanonical pairs or not (for contrafold, RNAstructure (Cyclefold)) beam size (int): Beam size for LinearPartition base pair calculation. DEBUG (bool): Output command-line calls to packages. threshknot (bool): calls threshknot to predict pseudoknots (for contrafold with LinearPartition) Possible packages: 'vienna_2', 'vienna_1','contrafold_1','contrafold_2', 'nupack_95','nupack_99','rnasoft_2007','rnasoft_1999','rnastructure','vfold_0','vfold_1' Returns array: NxN matrix of base pair probabilities ''' try: pkg, version = package.lower().split('_') except: pkg, version = package, None if motif is not None and pkg != 'vienna': raise ValueError('motif option can only be used with Vienna.') if pseudo and pkg != 'nupack': raise ValueError('pseudoknot option only implemented with Nupack.') if not dangles and pkg not in ['vienna','nupack']: print('Warning: %s does not support dangles options' % pkg) if not coaxial and pkg not in ['rnastructure','vfold']: print('Warning: %s does not support coaxial options' % pkg) if linear and pkg not in ['vienna','contrafold','eternafold']: print('Warning: LinearPartition only implemented for vienna, contrafold, eternafold.') if pkg=='nupack': return bpps_nupack_(sequence, version = version, dangles = dangles, T = T, pseudo=pseudo, dna=dna) elif pkg=='vfold': return bpps_vfold_(sequence, version = version, T = T, coaxial = coaxial) else: _, tmp_file = pfunc(sequence, package=package, bpps=True, linear=linear, motif=motif, constraint=constraint, T=T, coaxial=coaxial, dangles=dangles, param_file=param_file,reweight=reweight, beam_size=beam_size, DEBUG=DEBUG, threshknot=threshknot) if linear: #parse linearpartition output return bpps_linearpartition_(sequence, tmp_file) else: if 'contrafold' in package: return bpps_contrafold_(sequence, tmp_file) if package=='eternafold': return bpps_contrafold_(sequence, tmp_file) elif 'vienna' in package: return bpps_vienna_(sequence, tmp_file) elif 'rnasoft' in package: return bpps_rnasoft_(sequence, tmp_file) elif 'rnastructure' in package: return bpps_rnastructure_(sequence, tmp_file, coaxial=coaxial) else: raise RuntimeError('package not yet implemented') def bpps_vienna_(sequence, tmp_file): dot_fname = tmp_file probs=np.zeros([len(sequence), len(sequence)]) with open(dot_fname,'r') as f: for line in f.readlines(): if 'ubox' in line: try: i, j, p, _ = line.split() i, j, p = int(i)-1, int(j)-1, float(p)**2 probs[i,j] = p probs[j,i] = p except: pass os.remove(dot_fname) return probs def bpps_contrafold_(sequence, tmp_file): fname = tmp_file probs=np.zeros([len(sequence), len(sequence)]) for line in open(fname).readlines(): if len(line.split(':')) > 1: first_ind = int(line.split()[0])-1 for x in line.split()[2:]: second_ind = int(x.split(':')[0])-1 p = float(x.split(':')[1]) probs[first_ind, second_ind] = p probs[second_ind, first_ind] = p os.remove(fname) return probs def bpps_rnasoft_(sequence, tmp_file): fname = tmp_file probs=np.zeros([len(sequence), len(sequence)]) for line in open(fname).readlines(): i,j,p = int(line.split()[0]), int(line.split()[1]), float(line.split()[2]) probs[i,j] = p probs[j,i] = p os.remove(fname) return probs def bpps_nupack_(sequence, version='95', T=37, dangles=True, pseudo=False,dna=False): if not version: version='95' nupack_materials={'95': 'rna1995', '99': 'rna1999'} if dna: material='dna1998' else: material=nupack_materials[version] DIR = package_locs['nupack'] if dangles: dangle_option='some' else: dangle_option='none' seqfile = write([sequence]) command=['%s/pairs' % DIR, '%s' % seqfile.replace('.in',''), '-T', str(T), '-material', material, '-dangles', dangle_option, '-cutoff', '0.0000000001'] if pseudo: command.append('--pseudo') p = sp.Popen(command, stdout=sp.PIPE, stderr=sp.PIPE) stdout, stderr = p.communicate() if p.returncode: raise Exception('Nupack pfunc failed: on %s\n%s' % (sequence, stderr)) ppairs_file = '%s.ppairs' % seqfile.replace('.in','') os.remove(seqfile) probs=np.zeros([len(sequence), len(sequence)]) with open(ppairs_file, 'r') as f: for line in f.readlines(): if not line.startswith('%'): fields = line.split() if len(fields) > 1: if int(fields[1]) <= len(sequence): i, j, p = int(fields[0])-1, int(fields[1])-1, float(fields[2]) probs[i,j] = p probs[j,i] = p return probs def bpps_rnastructure_(sequence, tmp_file, coaxial=True): DIR = package_locs['rnastructure'] pfsfile = tmp_file #'%s/rnastructtmp.pfs' % package_locs['TMP'] outfile = '%s.probs' % (tmp_file.replace('.pfs','')) command = ['%s/ProbabilityPlot' % DIR, pfsfile, outfile, '-t', '-min', '0.0000000001'] probs=np.zeros([len(sequence), len(sequence)]) if DEBUG: print(' '.join(command)) p = sp.Popen(command, stdout=sp.PIPE, stderr=sp.PIPE) stdout, stderr = p.communicate() if DEBUG: print('stdout') print(stdout) print('stderr') print(stderr) if p.returncode: raise Exception('RNAstructure ProbabilityPlot failed: on %s\n%s' % (seq, stderr)) with open(outfile, 'r') as f: for line in f.readlines()[2:]: fields = line.split() i, j, p = int(fields[0])-1, int(fields[1])-1, 10**(-1*float(fields[2])) probs[i,j] = p probs[j,i] = p os.remove(outfile) os.remove(pfsfile) return probs def bpps_vfold_(sequence, version='0',T=37, coaxial=True): #available versions: 0 for Turner 04 params, 1 for Mfold 2.3 params DIR = package_locs["vfold"] cwd = os.getcwd() os.chdir(DIR) #vfold precompiled binaries don't work being called from elsewhere if DEBUG: print(os.getcwd()) seqfile = write([sequence]) outfile = filename()+'.pij' if sys.platform=="linux": platform='linux' elif sys.platform=="darwin": platform='mac' elif sys.platform=="win32": platform='win' else: raise RuntimeError('Vfold has binaries for linux, macOS, and win') command = ['./Vfold2d_npk_%s.o %d %d %s %s %d' % (platform, int(coaxial), T, seqfile, outfile, int(version))] if DEBUG: print(' '.join(command)) p = sp.Popen(command, stdout=sp.PIPE, stderr=sp.PIPE, shell=True) stdout, stderr = p.communicate() os.chdir(cwd) if DEBUG: print('stdout') print(stdout) print('stderr') print(stderr) if p.returncode: raise Exception('Vfold2d_npk failed: on %s\n%s' % (sequence, stderr)) os.remove(seqfile) probs = np.zeros([len(sequence),len(sequence)]) p_ij_output = np.loadtxt(outfile,usecols=(0,2,3)) #col 0: set of inds 1, col 1: set of inds 2, col 2: bpp for i,j,p in p_ij_output: probs[int(i-1),int(j-1)] = p probs[int(j-1),int(i-1)] = p os.remove(outfile) return probs #output: take second field of last line for Z def bpps_linearpartition_(sequence, tmp_file): fname = tmp_file probs=np.zeros([len(sequence), len(sequence)]) for line in open(fname,'r').readlines(): if len(line.strip())>0: first_ind, second_ind, p = line.strip().split(' ') first_ind = int(first_ind)-1 second_ind = int(second_ind)-1 p = float(p) probs[first_ind, second_ind] = p probs[second_ind, first_ind] = p os.remove(fname) return probs
""" Module: 'mlx90640' on M5 FlowUI v1.4.0-beta """ # MCU: (sysname='esp32', nodename='esp32', release='1.11.0', version='v1.11-284-g5d8e1c867 on 2019-08-30', machine='ESP32 module with ESP32') # Stubber: 1.3.1 - updated from typing import Any def deinit(): pass def getCenterTmp(): pass def getMaxTmp(): pass def getMinTmp(): pass def getTmp(): pass def init(): pass def setColorMaxTmp(): pass def setColorMinTmp(): pass def update(): pass
# Generated by Django 3.2.12 on 2022-03-21 17:33 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='MLAlgorithm', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128)), ('description', models.CharField(max_length=1000)), ('code', models.CharField(max_length=50000)), ('version', models.CharField(max_length=128)), ('owner', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='MLEndpoint', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=128)), ('owner', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='MLRequest', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('input_data', models.CharField(max_length=10000)), ('full_response', models.CharField(max_length=10000)), ('response', models.CharField(max_length=10000)), ('feedback', models.CharField(blank=True, max_length=10000, null=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('parent_mlalgorithm', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='endpoints.mlalgorithm')), ], ), migrations.CreateModel( name='MLAlgorithmStatus', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('status', models.CharField(max_length=128)), ('active', models.BooleanField()), ('created_by', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ('parent_mlalgorithm', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='status', to='endpoints.mlalgorithm')), ], ), migrations.AddField( model_name='mlalgorithm', name='parent_endpoint', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='endpoints.mlendpoint'), ), migrations.CreateModel( name='ABTest', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=10000)), ('created_by', models.CharField(max_length=128)), ('created_at', models.DateTimeField(auto_now_add=True)), ('ended_at', models.DateTimeField(blank=True, null=True)), ('summary', models.CharField(blank=True, max_length=10000, null=True)), ('parent_mlalgorithm_1', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='parent_mlalgorithm_1', to='endpoints.mlalgorithm')), ('parent_mlalgorithm_2', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='parent_mlalgorithm_2', to='endpoints.mlalgorithm')), ], ), ]
import os files = os.listdir('.') best_files = [] for f in files: if 'best.' in f and 'py' not in f: best_files.append(f) best_data = [] for f in best_files: with open(f) as ff: best_data.append(ff.readlines()) best_dict = {} for b in best_data: #print(b) b = b[0] tab_split = b.split("\t") print(tab_split) peak = tab_split[0] best = tab_split[1] if float(peak) not in best_dict: best_dict[float(peak)] = [float(best)] else: best_dict[float(peak)].append(float(best)) print(best_dict) import numpy as np for k in sorted(best_dict.keys()): print(str(k) + '\t' + str(np.mean(best_dict[k])) + '\t' + str(np.std(best_dict[k])/np.sqrt(len(best_dict[k]))))
"""" Samuro Bot Автор: *fennr* github: https://github.com/fennr/Samuro-HotsBot Бот для сообществ по игре Heroes of the Storm """ import os import discord from discord import Embed from discord.ext import commands from utils.library import files from utils.classes.Const import config from utils import library guild_ids = [845658540341592096] # Put your server ID in this array. class general(commands.Cog, name="General"): def __init__(self, bot): self.bot = bot @commands.command(name="info", aliases=["botinfo"]) async def info(self, context): """ - Получить информацию о боте """ embed = discord.Embed( description="Русскоязычный бот по игре Heroes of the Storm", color=config.success ) embed.set_author( name="Samuro" ) embed.add_field( name="Автор:", value="fenrir#5455", inline=True ) embed.add_field( name="Префикс:", value=f"{config.bot_prefix}", inline=False ) embed.set_footer( text=f"Информация для {context.author}" ) await context.send(embed=embed) @commands.command(name="invite") async def invite(self, context): """ - Получить ссылку для приглашения бота на свой канал """ try: APP_ID = os.environ.get('app_id_prod') except: APP_ID = os.environ.get('APP_ID') embed = discord.Embed( title="Приглашение на сервер", description=f"Для подключения Самуро перейдите по [ссылке](https://discordapp.com/oauth2/authorize?&client_id={APP_ID}&permissions=270416&scope=bot)\n" f"По багам/вопросам писать: __fenrir#5455__", color=config.info ) await context.send(embed=embed) await context.author.send(embed=embed) @commands.command(name="ping") async def ping(self, context): """ - Проверка жив ли бот """ embed = discord.Embed( color=config.success ) embed.add_field( name="Pong!", value=":ping_pong:", inline=True ) embed.set_footer( text=f"Pong request by {context.author}" ) await context.send(embed=embed) @commands.command(name="poll") async def poll(self, context, *args): """ Создать опрос """ poll_title = " ".join(args) embed = discord.Embed( title=f"{poll_title}", color=config.success ) embed.set_footer( text=f"Опрос создан: {context.message.author} • Проголосовать!" ) embed_message = await context.send(embed=embed) await embed_message.add_reaction("👍") await embed_message.add_reaction("👎") await embed_message.add_reaction("🤷") @commands.command(name="avatar") async def avatar(self, ctx, member: discord.Member): user_avatar = library.avatar(ctx, member) embed = Embed( title=f"{member.name}", color=config.info ) embed.set_image( url=user_avatar ) await ctx.send(embed=embed) def setup(bot): bot.add_cog(general(bot))
import torch import torch.nn as nn import torch.nn.functional as nnf class SpatialTransformer(nn.Module): """ N-D Spatial Transformer """ def __init__(self, size, mode='bilinear'): super().__init__() self.mode = mode # create sampling grid vectors = [torch.arange(0, s) for s in size] grids = torch.meshgrid(vectors) grid = torch.stack(grids) grid = torch.unsqueeze(grid, 0) grid = grid.type(torch.FloatTensor) # registering the grid as a buffer cleanly moves it to the GPU, but it also # adds it to the state dict. this is annoying since everything in the state dict # is included when saving weights to disk, so the model files are way bigger # than they need to be. so far, there does not appear to be an elegant solution. # see: https://discuss.pytorch.org/t/how-to-register-buffer-without-polluting-state-dict self.register_buffer('grid', grid) def forward(self, src, flow): # new locations new_locs = self.grid + flow shape = flow.shape[2:] # need to normalize grid values to [-1, 1] for resampler for i in range(len(shape)): new_locs[:, i, ...] = 2 * (new_locs[:, i, ...] / (shape[i] - 1) - 0.5) # move channels dim to last position # also not sure why, but the channels need to be reversed if len(shape) == 2: new_locs = new_locs.permute(0, 2, 3, 1) new_locs = new_locs[..., [1, 0]] elif len(shape) == 3: new_locs = new_locs.permute(0, 2, 3, 4, 1) new_locs = new_locs[..., [2, 1, 0]] return nnf.grid_sample(src, new_locs, align_corners=True, mode=self.mode) class VecInt(nn.Module): """ Integrates a vector field via scaling and squaring. """ def __init__(self, inshape, nsteps): super().__init__() assert nsteps >= 0, 'nsteps should be >= 0, found: %d' % nsteps self.nsteps = nsteps self.scale = 1.0 / (2 ** self.nsteps) self.transformer = SpatialTransformer(inshape) def forward(self, vec): vec = vec * self.scale for _ in range(self.nsteps): vec = vec + self.transformer(vec, vec) return vec class ResizeTransform(nn.Module): """ Resize a transform, which involves resizing the vector field *and* rescaling it. """ def __init__(self, vel_resize, ndims): super().__init__() self.factor = 1.0 / vel_resize self.mode = 'linear' if ndims == 2: self.mode = 'bi' + self.mode elif ndims == 3: self.mode = 'tri' + self.mode def forward(self, x): if self.factor < 1: # resize first to save memory x = nnf.interpolate(x, align_corners=True, scale_factor=self.factor, mode=self.mode) x = self.factor * x elif self.factor > 1: # multiply first to save memory x = self.factor * x x = nnf.interpolate(x, align_corners=True, scale_factor=self.factor, mode=self.mode) # don't do anything if resize is 1 return x
import inspect from flask.ext.admin.form import BaseForm def converts(*args): def _inner(func): func._converter_for = frozenset(args) return func return _inner class InlineFormAdmin(object): """ Settings for inline form administration. You can use this class to customize displayed form. For example:: class MyUserInfoForm(InlineFormAdmin): form_columns = ('name', 'email') """ _defaults = ['form_columns', 'excluded_form_columns', 'form_args'] def __init__(self, model, **kwargs): """ Constructor :param model: Target model class :param kwargs: Additional options """ self.model = model for k in self._defaults: if not hasattr(self, k): setattr(self, k, None) for k, v in kwargs.iteritems(): setattr(self, k, v) class ModelConverterBase(object): def __init__(self, converters=None, use_mro=True): self.use_mro = use_mro if not converters: converters = {} for name in dir(self): obj = getattr(self, name) if hasattr(obj, '_converter_for'): for classname in obj._converter_for: converters[classname] = obj self.converters = converters def get_converter(self, column): if self.use_mro: types = inspect.getmro(type(column.type)) else: types = [type(column.type)] # Search by module + name for col_type in types: type_string = '%s.%s' % (col_type.__module__, col_type.__name__) if type_string in self.converters: return self.converters[type_string] # Search by name for col_type in types: if col_type.__name__ in self.converters: return self.converters[col_type.__name__] return None def get_form(self, model, base_class=BaseForm, only=None, exclude=None, field_args=None): raise NotImplemented()
# # Flask # from . import auth_blueprint from flask import Flask, request, url_for, redirect, Response, make_response from flask_cors import CORS, cross_origin # # Configuration Object # from config import CONFIG as conf # # Python Standard Library # import logging import os from pprint import pprint import json from time import gmtime, strftime import datetime # # Password Hashing # import bcrypt # # JWT # import jwt # # GraphQL # from application.gql import Query, Mutation from application.gql.mutations import CREATE_USER from application.gql.queries import GET_USER_BY_EMAIL # # User Helper Functions # from application.auth.user import get_user_by_email, get_user_by_uuid CONFIG = conf() def generate_auth_token(user): '''Generates a JWT access token. ''' payload = { "email": user['email'], "aud": CONFIG.JWT_AUDIENCE, "exp": (datetime.datetime.utcnow() + datetime.timedelta(seconds=CONFIG.ACCESS_TOKEN_EXPIRE)), "alg": "RS256", "expires_at": "", "https://hasura.io/jwt/claims": { "x-hasura-allowed-roles": ["user"], "x-hasura-default-role": "anonymous", "x-hasura-user-id": user['uuid'], "x-hasura-org-id": "123", "x-hasura-role": user['role'], "x-hasura-custom": "custom-value" } } token = jwt.encode(payload, CONFIG.JWT_SECRET, algorithm='RS256') # print(token) # print(token.decode('UTF-8')) return token.decode('UTF-8') def generate_refresh_token(user): '''Generates a JWT refresh token. ''' payload = { "email": user['email'], "aud": CONFIG.JWT_AUDIENCE, "exp": (datetime.datetime.utcnow() + datetime.timedelta(seconds=CONFIG.REFRESH_TOKEN_EXPIRE)), "expires_at": "", "alg": "RS256", "token_version": 0 } token = jwt.encode(payload, CONFIG.JWT_SECRET, algorithm='RS256') # print(token) # print(token.decode('UTF-8')) return token.decode('UTF-8') @auth_blueprint.route('/login', methods=['POST']) def auth_login(): '''Login: The user tries to log in by posting via the client with data in the body of the request. If the username and password match the DB record, then a token will be generated and sent back in the response. This token expires based on CONFIG.ACCESS_TOKEN_EXPIRE. If either username does not exist or username/password combo do not match, then return an error with the appropriate message. ''' # Get request body as json(dict) data = request.get_json() email = data.get('email') password = data.get('password') # # Check the credentials (Try and get a user with that email) # user = get_user_by_email(email) if user is None: # user does not exist based on that email return { "STATUS": "ERROR", "MESSAGE": "User not found" } else: if bcrypt.checkpw(password.encode('utf8'), user['password_hash'].encode('utf8')): # # User credentials are correct! # if not user['has_confirmed']: # # User has not confirmed their email yet # return { "STATUS": "ERROR", "MESSAGE": "Email not confirmed" } token = generate_auth_token(user) refresh_token = generate_refresh_token(user) res = make_response( { "STATUS": "OK", "token": token, "tokenExpiry": CONFIG.ACCESS_TOKEN_EXPIRE, "refreshToken": refresh_token, "callback": f"http://127.0.0.1:8000/auth/callback?uuid={user['uuid']}", "user": { "uuid": user['uuid'], "email": user['email'], "name": user['name'], "initials": user['initials'], "hasCompletedOnboarding": user['has_completed_onboarding'] } } ) # res.headers['Access-Control-Allow-Credentials'] = True # res.set_cookie(key='refreshToken', value=refresh_token, # domain='127.0.0.1:3000', httponly=True) # max_age=CONFIG.REFRESH_TOKEN_EXPIRE, return res else: return {"STATUS": "ERROR", "MESSAGE": "Wrong password"} @auth_blueprint.route('/callback') def login_callback(): """ This should set a cookie on the client containing a valid jwt """ user = get_user_by_uuid(request.args.get('uuid')) # print('\n\n\nCALLBACK USER: ', user) if user: refresh_token = generate_refresh_token(user) res = make_response( {"STATUS": "OK", "refreshToken": refresh_token}) res.headers['Access-Control-Allow-Credentials'] = True res.set_cookie(key='refreshToken', value=refresh_token, domain='127.0.0.1', httponly=True) # max_age=CONFIG.REFRESH_TOKEN_EXPIRE, return res @auth_blueprint.route('/refresh', methods=['POST']) def auth_refresh(): # TODO: Refresh token here # print('Request Cookies: ', request.cookies) body = request.get_json() # print('Body: ', body) # # TODO: Decode refresh token and get user # try: rt = body.get('refreshToken').encode('utf-8') # print('\n\nRT: ', rt) decoded_result = decode_token(rt, verify=True) # print('Refresh Token Result: ', decoded_result) # user = get_user_by_email(refresh['email']) # print('User from RF Token: ', user) # new_token = generate_auth_token(user) if decoded_result[0] == 'ERROR' and decoded_result[1] == "EXPIRED": return {"STATUS": "ERROR", 'MESSAGE': "refresh token expired", "newToken": None} elif decoded_result[0] == 'SUCCESS' and decoded_result[1] == 'VALID': user = get_user_by_email(decoded_result[2]['email']) returnUser = { "uuid": user['uuid'], "email": user['email'], "name": user['name'], "initials": user['initials'], "hasCompletedOnboarding": user['has_completed_onboarding'] } return {"STATUS": "OK", "newToken": generate_auth_token(user), "user": returnUser, "newRefreshToken": generate_refresh_token(user)} except Exception as e: print('\n\n\n\nError: ', str(e)) return {'STATUS': "ERROR"} # # TODO: Generate new access token # def decode_token(raw_token, verify=False): try: decoded = jwt.decode(raw_token, CONFIG.JWT_PUBLIC_KEY, algorithms=[ 'RS256'], audience=CONFIG.JWT_AUDIENCE, verify=verify) return ('SUCCESS', 'VALID', decoded) except jwt.ExpiredSignatureError as e: print('INVALID TOKEN: EXPIRED!') return ('ERROR', 'EXPIRED', None)