content
stringlengths
5
1.05M
''' Created on september 28, 2017 a rule-based business dialog simulator user:query bot:current bot:accumulate bot:response ask[category] | slot:[category] | slot:[category] | api_call request property1 provide[property1] | slot:[property1] | slot:[category,property1] | api_call request property2 provide[property2] | slot:[property2] | slot:[category,property1,property2] | api_call request property3 . . . ''' import os import sys grandfatherdir = os.path.dirname(os.path.dirname( os.path.dirname(os.path.abspath(__file__)))) from collections import OrderedDict import numpy as np from simulator_utils import Tv, Phone, Ac, name_map, template class BusinessSimulator(object): def __init__(self, obj): self.category = name_map[obj.name] self.obj = obj self.necessary_property = obj.get_property()['necessary'].keys() self.other_property = obj.get_property()['other'].keys() def gen_normal_dialog(self): def one_turn(proper=None): if proper: # not turn 1 chosen_necessary_property = [proper] necessary.remove(proper) chosen_other_property = list() else: chosen_necessary_property = list() picked_necessary_num = np.random.randint(0, 2) for _ in range(picked_necessary_num + 1): proper = np.random.choice(necessary) chosen_necessary_property.append(proper) necessary.remove(proper) chosen_other_property = list() picked_other_num = np.random.randint(1, 3) for _ in range(picked_other_num + 1): proper = np.random.choice(other) chosen_other_property.append(proper) other.remove(proper) properties = chosen_necessary_property + chosen_other_property queries.append(properties) current_slots.append(properties) before_property = accumulate_slots[-1] if len( accumulate_slots) else accumulate_slots accumulate_slots.append(before_property + properties) request_property = np.random.choice( necessary) if len(necessary) else 'END' responses.append(request_property) return request_property necessary = list(self.necessary_property) other = list(self.other_property) queries = list() current_slots = list() accumulate_slots = list() responses = list() proper = None while len(necessary): proper = one_turn(proper) # print('queries:', queries) # print('current_slots', current_slots) # print('accumulate_slots:', accumulate_slots) # print('responses:', responses) dialogs = list() for _ in range(5000): dialog = self.fill(queries, current_slots, accumulate_slots, responses) dialogs.append(dialog) # print(dialog) self.write_dialog(dialogs) def fill(self, queries, current_slots, accumulate_slots, responses): def get_property_value(proper, dic): value_necess = np.random.choice( dic['necessary'].get(proper, ['ERROR'])) value_other = np.random.choice(dic['other'].get(proper, ['ERROR'])) return value_necess if value_necess != 'ERROR' else value_other property_map = self.obj.get_property() property_value = {} for p in accumulate_slots[-1]: property_value[p] = get_property_value(p, property_map) # print(property_value) # responses responses_filled = ['api_call_request ' + res for res in responses] # queries queries_filled = list() for i, query in enumerate(queries): query_filled = ''.join( [property_value.get(p, 'ERROR') for p in query]) if i == 0: query_filled = template.replace('[p]', query_filled) query_filled = query_filled.replace('[c]', self.category) # else: # query_filled += 'provide' queries_filled.append(query_filled) # current current_slots_filled = list() for current_slot in current_slots: current_slot_filled = 'slot:' + ','.join( property_value.get(p, 'ERROR') for p in current_slot) current_slots_filled.append(current_slot_filled) # accumulate accumulate_slots_filled = list() for accumulate_slot in accumulate_slots: accumulate_slot_filled = 'slot:' + ','.join( property_value.get(p, 'ERROR') for p in accumulate_slot) accumulate_slots_filled.append(accumulate_slot_filled) return (queries_filled, current_slots_filled, accumulate_slots_filled, responses_filled) def write_dialog(self, dialogs): path = os.path.join( grandfatherdir, 'data/memn2n/normal_business_dialog.txt') dia = dialogs[0] rows = len(dia[0]) cols = len(dia) with open(path, 'a', encoding='utf-8') as f: for dialog in dialogs: for i in range(rows): for j in range(cols): f.write(dialog[j][i] + '#') f.write('\n') f.write('\n') def main(): tv = Tv() ac = Ac() phone = Phone() ll = [tv, ac, phone] for l in ll: print(l.name) bs = BusinessSimulator(l) bs.gen_normal_dialog() if __name__ == '__main__': main()
# -*- coding: utf-8 -*- from odoo import fields, models, api, _ import logging import rpc_functions as rpc from odoo.exceptions import UserError _logger = logging.getLogger(__name__) class DataUploading(models.TransientModel): _name = 'rpc.data.uploading' _description = u"数据上传-上传" REPEATTYPE = [ ('00', u'忽略'), ('01', u'删除'), ('02', u'替换'), ] # repeat_type = fields.Selection(string=u'重复处理方式', selection=REPEATTYPE, default='02', required=True) rpc_data = fields.Many2one(comodel_name='rpc.base.data', string=u'上传数据表', required=True) @api.multi def start_uploading(self): """开始上传操作""" logging.info(u"开始上传操作") rpc_data = self.rpc_data # 上传配置项内容 rpc_url, rpc_db, username, password = rpc.get_rpc_condif() logging.info(u"上传的参数为url:{},db:{},username:{},pwd:{}".format(rpc_url, rpc_db, username, password)) # 开始连接rpc model, uid = rpc.connection_rpc(rpc_url, rpc_db, username, password) # 组装需要上传的字段和模型名 model_name = rpc_data.model_id.model fields_dict = self.pack_model_field_to_array(rpc_data) logging.info(u"需要上传的模型:{}".format(fields_dict)) domain = list() for d in rpc_data.domain_ids: domain.append(rpc.string_transfer_list(d.name)) logging.info(u"数据表过滤表达式:{}".format(domain)) rpc.search_create(model, rpc_db, uid, password, model_name, domain, fields_dict) logging.info(u"数据上传完成") @api.model def pack_model_field_to_array(self, model): """获取上传的字段""" field_arr = [] for field in model.field_ids: field_arr.append(field.name) return field_arr
from help import Help from music import Music import os import discord from discord.ext import commands import json from dotenv import load_dotenv load_dotenv() with open("config.json", "r") as config_file: config = json.load(config_file) prefix = config["PREFIX"] intents = discord.Intents.default() intents.members = True bot = commands.Bot(command_prefix=prefix, intents=intents) bot.remove_command("help") bot.add_cog(Music(bot)) bot.add_cog(Help(bot)) bot.run(os.getenv("TOKEN"))
# -*- coding: utf-8 -*- """ Basic Unittests ##################### """ from __future__ import absolute_import import os import unittest import tempfile from datetime import datetime from collections import deque from main import Task, App class TestTask(unittest.TestCase): """Test unit operations of the Task class.""" def setUp(self): self.task = Task("id0", 2, "%Y-%m-%d %H:%M:%S") header = "ip,date,time,zone,cik,accession,extention,code,size,idx,norefer,noagent,find,crawler,browser".split(",") line = "101.81.133.jja,2017-06-30,00:00:00,0.0,1608552.0,0001047469-17-004337,-index.htm,200.0,80251.0,1.0,0.0,0.0,9.0,0.0,".split(",") self.message = dict(zip(header, line)) def test_clean(self): """Test :func:`Task.clean`.""" self.assertDictEqual(self.task.clean(self.message), {'accession': '0001047469-17-004337', 'browser': '', 'cik': '1608552.0', 'code': '200.0', 'crawler': '0.0', 'date': '2017-06-30', 'datetime': datetime(2017, 6, 30, 0, 0), 'extention': '-index.htm', 'find': '9.0', 'idx': '1.0', 'ip': '101.81.133.jja', 'noagent': '0.0', 'norefer': '0.0', 'size': '80251.0', 'time': '00:00:00', 'zone': '0.0'}) def test_add(self): """Test :func:`Task.add`.""" self.assertEqual(len(self.task), 0) self.task.add(self.message) self.assertEqual(len(self.task), 1) def test_flush(self): """Test :func:`Task.flush`.""" self.task.messages = deque() self.task.add(self.message) self.assertEqual(len(self.task), 1) entry = self.task.flush(datetime.max) self.assertIsInstance(entry, deque) self.assertEqual(len(self.task), 0) logfile = """ip,date,time,zone,cik,accession,extention,code,size,idx,norefer,noagent,find,crawler,browser 101.81.133.jja,2017-06-30,00:00:00,0.0,1608552.0,0001047469-17-004337,-index.htm,200.0,80251.0,1.0,0.0,0.0,9.0,0.0, 107.23.85.jfd,2017-06-30,00:00:00,0.0,1027281.0,0000898430-02-001167,-index.htm,200.0,2825.0,1.0,0.0,0.0,10.0,0.0, 107.23.85.jfd,2017-06-30,00:00:00,0.0,1136894.0,0000905148-07-003827,-index.htm,200.0,3021.0,1.0,0.0,0.0,10.0,0.0, 107.23.85.jfd,2017-06-30,00:00:01,0.0,841535.0,0000841535-98-000002,-index.html,200.0,2699.0,1.0,0.0,0.0,10.0,0.0, 108.91.91.hbc,2017-06-30,00:00:01,0.0,1295391.0,0001209784-17-000052,.txt,200.0,19884.0,0.0,0.0,0.0,10.0,0.0, 106.120.173.jie,2017-06-30,00:00:02,0.0,1470683.0,0001144204-14-046448,v385454_20fa.htm,301.0,663.0,0.0,0.0,0.0,10.0,0.0, 107.178.195.aag,2017-06-30,00:00:02,0.0,1068124.0,0000350001-15-000854,-xbrl.zip,404.0,784.0,0.0,0.0,0.0,10.0,1.0, 107.23.85.jfd,2017-06-30,00:00:03,0.0,842814.0,0000842814-98-000001,-index.html,200.0,2690.0,1.0,0.0,0.0,10.0,0.0, 107.178.195.aag,2017-06-30,00:00:04,0.0,1068124.0,0000350001-15-000731,-xbrl.zip,404.0,784.0,0.0,0.0,0.0,10.0,1.0, 108.91.91.hbc,2017-06-30,00:00:04,0.0,1618174.0,0001140361-17-026711,.txt,301.0,674.0,0.0,0.0,0.0,10.0,0.0,""" output = """101.81.133.jja,2017-06-30 00:00:00,2017-06-30 00:00:00,1,1 108.91.91.hbc,2017-06-30 00:00:01,2017-06-30 00:00:01,1,1 107.23.85.jfd,2017-06-30 00:00:00,2017-06-30 00:00:03,4,4 106.120.173.jie,2017-06-30 00:00:02,2017-06-30 00:00:02,1,1 107.178.195.aag,2017-06-30 00:00:02,2017-06-30 00:00:04,3,2 108.91.91.hbc,2017-06-30 00:00:04,2017-06-30 00:00:04,1,1""" class TestApp(unittest.TestCase): """Test full operation of the App class.""" def setUp(self): """Set up app redirecting output to a pipe.""" self.tempdir = tempfile.mkdtemp() self.log = os.path.join(self.tempdir(), "log.csv") with open(self.log, "w") as f: f.write(logfile) self.out = os.path.join(self.tempdir(), "out") self.app = App(self.log, 2, self.out) def tearDown(self): """Remove temporary files and directories.""" os.remove(self.log) os.remove(self.out) os.rmdir(self.tempdir) def run(self): """Run app and check results.""" self.app.run() self.assertEqual(len(self.tasks), 5) self.assertTrue(all(len(task.messages) == 0 for task in self.app.tasks.values())) self.assertListEqual(list(self.tasks.keys()), ['101.81.133.jja', '107.23.85.jfd', '108.91.91.hbc', '106.120.173.jie', '107.178.195.aag']) self.assertEqual(self.tasks.output_queue.qsize(), 0) with open(self.out) as f: check = f.read() self.assertEqual(output, check) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python """ cubic spline planner Author: Atsushi Sakai """ import math import numpy as np import bisect from scipy.spatial import distance class Spline: """ Cubic Spline class """ def __init__(self, x, y): self.b, self.c, self.d, self.w = [], [], [], [] self.x = x self.y = y self.nx = len(x) # dimension of x h = np.diff(x) # calc coefficient c self.a = [iy for iy in y] # calc coefficient c A = self.__calc_A(h) B = self.__calc_B(h) self.c = np.linalg.solve(A, B) # print(self.c1) # calc spline coefficient b and d for i in range(self.nx - 1): self.d.append((self.c[i + 1] - self.c[i]) / (3.0 * h[i])) tb = (self.a[i + 1] - self.a[i]) / h[i] - h[i] * \ (self.c[i + 1] + 2.0 * self.c[i]) / 3.0 self.b.append(tb) def calc(self, t): """ Calc position if t is outside of the input x, return None """ if t < self.x[0]: return None elif t > self.x[-1]: return None i = self.__search_index(t) dx = t - self.x[i] result = self.a[i] + self.b[i] * dx + \ self.c[i] * dx ** 2.0 + self.d[i] * dx ** 3.0 return result def calcd(self, t): """ Calc first derivative if t is outside of the input x, return None """ if t < self.x[0]: return None elif t > self.x[-1]: return None i = self.__search_index(t) dx = t - self.x[i] result = self.b[i] + 2.0 * self.c[i] * dx + 3.0 * self.d[i] * dx ** 2.0 return result def calcdd(self, t): """ Calc second derivative """ if t < self.x[0]: return None elif t > self.x[-1]: return None i = self.__search_index(t) dx = t - self.x[i] result = 2.0 * self.c[i] + 6.0 * self.d[i] * dx return result def calcddd(self, t): if t < self.x[0]: return None elif t > self.x[-1]: return None i = self.__search_index(t) result = 6.0 * self.d[i] return result def __search_index(self, x): """ search data segment index """ return bisect.bisect(self.x, x) - 1 def __calc_A(self, h): """ calc matrix A for spline coefficient c """ A = np.zeros((self.nx, self.nx)) A[0, 0] = 1.0 for i in range(self.nx - 1): if i != (self.nx - 2): A[i + 1, i + 1] = 2.0 * (h[i] + h[i + 1]) A[i + 1, i] = h[i] A[i, i + 1] = h[i] A[0, 1] = 0.0 A[self.nx - 1, self.nx - 2] = 0.0 A[self.nx - 1, self.nx - 1] = 1.0 # print(A) return A def __calc_B(self, h): """ calc matrix B for spline coefficient c """ B = np.zeros(self.nx) for i in range(self.nx - 2): B[i + 1] = 3.0 * (self.a[i + 2] - self.a[i + 1]) / \ h[i + 1] - 3.0 * (self.a[i + 1] - self.a[i]) / h[i] # print(B) return B class Spline2D: """ 2D Cubic Spline class """ def __init__(self, x, y): self.s = self.__calc_s(x, y) self.sx = Spline(self.s, x) self.sy = Spline(self.s, y) def __calc_s(self, x, y): dx = np.diff(x) dy = np.diff(y) self.ds = [math.sqrt(idx ** 2 + idy ** 2) for (idx, idy) in zip(dx, dy)] s = [0] s.extend(np.cumsum(self.ds)) return s def calc_position(self, s): """ calc position """ x = self.sx.calc(s) y = self.sy.calc(s) return x, y def calc_curvature(self, s): """ calc curvature """ dx = self.sx.calcd(s) ddx = self.sx.calcdd(s) dy = self.sy.calcd(s) ddy = self.sy.calcdd(s) k = (ddy * dx - ddx * dy) / (dx ** 2 + dy ** 2) return k def calc_d_curvature(self, s): """ calc d_curvature which is derivative of curvature by s """ dx = self.sx.calcd(s) ddx = self.sx.calcdd(s) dddx = self.sx.calcddd(s) dy = self.sy.calcd(s) ddy = self.sy.calcdd(s) dddy = self.sy.calcddd(s) squareterm = dx * dx + dy * dy dk = ((dddy + dx - dddx * dy) * squareterm - 3 * (ddy * dx - ddx * dy) * (dx * ddx + dy * ddy)) / (squareterm * squareterm) return dk def calc_yaw(self, s): """ calc yaw """ dx = self.sx.calcd(s) dy = self.sy.calcd(s) yaw = math.atan2(dy, dx) return yaw def calc_spline_course(x, y, ds=0.1): sp = Spline2D(x, y) s = list(np.arange(0, sp.s[-1], ds)) rx, ry, ryaw, rk, rdk = [], [], [], [], [] for i_s in s: ix, iy = sp.calc_position(i_s) rx.append(ix) ry.append(iy) ryaw.append(sp.calc_yaw(i_s)) rk.append(sp.calc_curvature(i_s)) rdk.append(sp.calc_d_curvature(i_s)) return rx, ry, ryaw, rk, rdk, s def main(): print("Spline 2D test") import matplotlib.pyplot as plt import numpy as np manhae1 = np.load(file='/home/menguiin/catkin_ws/src/macaron_2/path/K-CITY-garage-1m.npy') x = manhae1[0:manhae1.shape[0]-1, 0] y = manhae1[0:manhae1.shape[0]-1, 1] rx, ry, ryaw, rk, rdk, s = calc_spline_course(x, y) s = np.array(s) flg, ax = plt.subplots(1) plt.plot(range(-s.shape[0],s.shape[0],2),s, "s", label="s-value") plt.grid(True) plt.axis("equal") plt.xlabel("index") plt.ylabel("sval") plt.legend() flg, ax = plt.subplots(1) plt.plot(x, y, "xb", label="input") plt.plot(rx, ry, "-r", label="spline") plt.grid(True) plt.axis("equal") plt.xlabel("x[m]") plt.ylabel("y[m]") plt.legend() flg, ax = plt.subplots(1) plt.plot(s, [math.degrees(iyaw) for iyaw in ryaw], "or", label="yaw") plt.grid(True) plt.legend() plt.xlabel("line length[m]") plt.ylabel("yaw angle[deg]") flg, ax = plt.subplots(1) plt.plot(s, rk, "-r", label="curvature") plt.grid(True) plt.legend() plt.xlabel("line length[m]") plt.ylabel("curvature [1/m]") plt.show() if __name__ == '__main__': main()
""" The "lf"-record =============== Offset Size Contents 0x0000 Word ID: ASCII-"lf" = 0x666C 0x0002 Word number of keys 0x0004 ???? Hash-Records """ import io from aiowinreg.filestruct.hashrecord import NTRegistryHR class NTRegistryRI: def __init__(self): self.magic = b'ri' self.keys_cnt = None self.hash_records = [] @staticmethod def from_bytes(data): return NTRegistryRI.from_buffer(io.BytesIO(data)) @staticmethod def from_buffer(buff): lf = NTRegistryRI() lf.magic = buff.read(2) lf.keys_cnt = int.from_bytes(buff.read(2), 'little', signed = False) for _ in range(lf.keys_cnt): hr = NTRegistryHR.from_buffer(buff) lf.hash_records.append(hr) return lf def __str__(self): t = '== NT Registry RI Record ==\r\n' for k in self.__dict__: if isinstance(self.__dict__[k], list): for i, item in enumerate(self.__dict__[k]): t += ' %s: %s: %s' % (k, i, str(item)) else: t += '%s: %s \r\n' % (k, str(self.__dict__[k])) return t
#!/usr/bin/env python # This file is part of Androguard. # # Copyright (c) 2012 Geoffroy Gueguen <geoffroy.gueguen@gmail.com> # All Rights Reserved. # # Androguard is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Androguard is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Androguard. If not, see <http://www.gnu.org/licenses/>. import sys sys.path.append('./') from androguard.core.bytecodes import apk, dvm from androguard.core.analysis.analysis import uVMAnalysis from androguard.decompiler.dad.decompile import DvMethod from androguard.decompiler.dad.instruction import Constant, BinaryCompExpression class PrintVisitor(object): def __init__(self, graph): self.graph = graph self.visited_nodes = set() self.loop_follow = [None] self.latch_node = [None] self.if_follow = [None] self.switch_follow = [None] self.next_case = None def visit_ins(self, ins): return ins.visit(self) def visit_node(self, node): if node in (self.if_follow[-1], self.switch_follow[-1], self.loop_follow[-1], self.latch_node[-1]): return if node in self.visited_nodes: return self.visited_nodes.add(node) node.visit(self) def visit_loop_node(self, loop): print '- Loop node', loop.num follow = loop.get_loop_follow() if follow is None and not loop.looptype.endless(): exit('Loop has no follow !', 'error') if loop.looptype.pretest(): if loop.true is follow: loop.neg() loop.true, loop.false = loop.false, loop.true cnd = loop.visit_cond(self) print 'while(%s) {' % cnd elif loop.looptype.posttest(): print 'do {' self.latch_node.append(loop.latch) elif loop.looptype.endless(): print 'while(true) {' pass self.loop_follow.append(follow) if loop.looptype.pretest(): self.visit_node(loop.true) else: self.visit_node(loop.cond) self.loop_follow.pop() if loop.looptype.pretest(): print '}' elif loop.looptype.posttest(): print '} while(', self.latch_node.pop() loop.latch.visit_cond(self) print ')' else: self.visit_node(loop.latch) if follow is not None: self.visit_node(follow) def visit_cond_node(self, cond): print '- Cond node', cond.num follow = cond.get_if_follow() if cond.false is self.loop_follow[-1]: cond.neg() cond.true, cond.false = cond.false, cond.true cond.visit_cond(self) self.visit_node(cond.false) elif follow is not None: is_else = not (follow in (cond.true, cond.false)) if (cond.true in (follow, self.next_case) or cond.num > cond.true.num): cond.neg() cond.true, cond.false = cond.false, cond.true self.if_follow.append(follow) if not cond.true in self.visited_nodes: cnd = cond.visit_cond(self) print 'if (%s) {' % cnd self.visit_node(cond.true) if is_else and not cond.false in self.visited_nodes: print '} else {' self.visit_node(cond.false) print '}' self.if_follow.pop() self.visit_node(follow) else: cond.visit_cond(self) self.visit_node(cond.true) self.visit_node(cond.false) def visit_short_circuit_condition(self, nnot, aand, cond1, cond2): if nnot: cond1.neg() cond1.visit_cond(self) cond2.visit_cond(self) def visit_switch_node(self, switch): lins = switch.get_ins() for ins in lins[:-1]: self.visit_ins(ins) switch_ins = switch.get_ins()[-1] self.visit_ins(switch_ins) follow = switch.switch_follow cases = switch.cases self.switch_follow.append(follow) default = switch.default for i, node in enumerate(cases): if node in self.visited_nodes: continue for case in switch.node_to_case[node]: pass if i + 1 < len(cases): self.next_case = cases[i + 1] else: self.next_case = None if node is default: default = None self.visit_node(node) if default not in (None, follow): self.visit_node(default) self.switch_follow.pop() self.visit_node(follow) def visit_statement_node(self, stmt): print '- Statement node', stmt.num sucs = self.graph.sucs(stmt) for ins in stmt.get_ins(): self.visit_ins(ins) if len(sucs) == 0: return follow = sucs[0] self.visit_node(follow) def visit_return_node(self, ret): print '- Return node', ret.num for ins in ret.get_ins(): self.visit_ins(ins) def visit_throw_node(self, throw): for ins in throw.get_ins(): self.visit_ins(ins) def visit_constant(self, cst): return cst def visit_base_class(self, cls): return cls def visit_variable(self, var): return 'v%s' % var def visit_param(self, param): return 'p%s' % param def visit_this(self): return 'this' def visit_assign(self, lhs, rhs): if lhs is None: rhs.visit(self) return l = lhs.visit(self) r = rhs.visit(self) print '%s = %s;' % (l, r) def visit_move_result(self, lhs, rhs): l = lhs.visit(self) r = rhs.visit(self) print '%s = %s;' % (l, r) def visit_move(self, lhs, rhs): if lhs is rhs: return l = lhs.visit(self) r = rhs.visit(self) print '%s = %s;' % (l, r) def visit_astore(self, array, index, rhs): arr = array.visit(self) if isinstance(index, Constant): idx = index.visit(self, 'I') else: idx = index.visit(self) r = rhs.visit(self) print '%s[%s] = %s' % (arr, idx, r) def visit_put_static(self, cls, name, rhs): r = rhs.visit(self) return '%s.%s = %s' % (cls, name, r) def visit_put_instance(self, lhs, name, rhs): l = lhs.visit(self) r = rhs.visit(self) return '%s.%s = %s' % (l, name, r) def visit_new(self, atype): pass def visit_invoke(self, name, base, args): base.visit(self) for arg in args: arg.visit(self) def visit_return_void(self): print 'return;' def visit_return(self, arg): a = arg.visit(self) print 'return %s;' % a def visit_nop(self): pass def visit_switch(self, arg): arg.visit(self) def visit_check_cast(self, arg, atype): arg.visit(self) def visit_aload(self, array, index): arr = array.visit(self) idx = index.visit(self) return '%s[%s]' % (arr, idx) def visit_alength(self, array): res = array.visit(self) return '%s.length' % res def visit_new_array(self, atype, size): size.visit(self) def visit_filled_new_array(self, atype, size, args): atype.visit(self) size.visit(self) for arg in args: arg.visit(self) def visit_fill_array(self, array, value): array.visit(self) def visit_monitor_enter(self, ref): ref.visit(self) def visit_monitor_exit(self, ref): pass def visit_throw(self, ref): ref.visit(self) def visit_binary_expression(self, op, arg1, arg2): val1 = arg1.visit(self) val2 = arg2.visit(self) return '%s %s %s' % (val1, op, val2) def visit_unary_expression(self, op, arg): arg.visit(self) def visit_cast(self, op, arg): a = arg.visit(self) return '(%s %s)' % (op, a) def visit_cond_expression(self, op, arg1, arg2): val1 = arg1.visit(self) val2 = arg2.visit(self) return '%s %s %s' % (val1, op, val2) def visit_condz_expression(self, op, arg): if isinstance(arg, BinaryCompExpression): arg.op = op arg.visit(self) else: arg.visit(self) def visit_get_instance(self, arg, name): arg.visit(self) def visit_get_static(self, cls, name): return '%s.%s' % (cls, name) TEST = '../DroidDream/magicspiral.apk' vm = dvm.DalvikVMFormat(apk.APK(TEST).get_dex()) vma = uVMAnalysis(vm) method = vm.get_method('crypt')[0] method.show() amethod = vma.get_method(method) dvmethod = DvMethod(amethod) dvmethod.process() # build IR Form / control flow... graph = dvmethod.graph print 'Entry block : %s\n' % graph.get_entry() for block in graph: # graph.get_rpo() to iterate in reverse post order print 'Block : %s' % block for ins in block.get_ins(): print ' - %s' % ins print visitor = PrintVisitor(graph) graph.get_entry().visit(visitor)
""" Utility files for configs 1. Take the diff between two configs. """ import os import pickle import ml_collections def load_config(config_fpath): if os.path.isdir(config_fpath): config_fpath = os.path.join(config_fpath, 'config.pkl') else: assert config_fpath[-4:] == '.pkl', f'{config_fpath} is not a pickle file. Aborting' with open(config_fpath, 'rb') as f: config = pickle.load(f) return get_updated_config(config) def get_updated_config(config): """ It makes sure that older versions of the config also run with current settings. """ frozen_dict = isinstance(config, ml_collections.FrozenConfigDict) if frozen_dict: config = ml_collections.ConfigDict(config) with config.unlocked(): if 'cl_latent_weight' not in config.loss: config.loss.cl_latent_weight = 0.5 if 'lr_scheduler_patience' not in config.training: config.training.lr_scheduler_patience = 10 if 'kl_annealing' not in config.loss: config.loss.kl_annealing = False if 'kl_annealtime' not in config.loss: config.loss.kl_annealtime = 10 if 'kl_start' not in config.loss: config.loss.kl_start = -1 if 'noise_head' in config.model: config.model.noise_head_fc = config.model.noise_head if 'noise_head_cnn' not in config.model: config.model.noise_head_cnn = [[] for _ in config.loss.cl_channels] if 'noise_head_cnn_kernel_size' not in config.model: config.model.noise_head_cnn_kernel_size = 3 if 'img_dsample' not in config.data: config.data.img_dsample = 2 if frozen_dict: return ml_collections.FrozenConfigDict(config) else: return config
from setuptools import setup, find_packages setup( name="minesweeper", version="0.1.0", description="Inefficient Minesweeper Solver", long_description="A very inefficient minesweeper solver.", author="rhdzmota", packages=find_packages(where="src"), package_dir={ "": "src" }, include_package_data=True, scripts=[ "bin/minesweeper" ], python_requires=">3.5, <4" )
############################################################# # # Multi-Dimensional Robust Synthetic Control Tests # (based on SVD) # # Generates two metrics and compared the RMSE for forecasts # for each metric using RSC against mRSC. # # Test are based on random data so it is advised to run # several times. Also note that in this setting RSC is # also expected to do well. mRSC is expected to help but # cannot be guaranteed to always be better. # # You need to ensure that this script is called from # the tslib/ parent directory or tslib/tests/ directory: # # 1. python tests/testScriptMultiSynthControlSVD.py # 2. python testScriptMultiSynthControlSVD.py # ############################################################# import sys, os sys.path.append("../..") sys.path.append("..") sys.path.append(os.getcwd()) from matplotlib import pyplot as plt import numpy as np import pandas as pd import copy from tslib.src import tsUtils from tslib.src.synthcontrol.syntheticControl import RobustSyntheticControl from tslib.src.synthcontrol.multisyntheticControl import MultiRobustSyntheticControl def simpleFunctionOne(theta, rho): alpha = 0.7 exp_term = np.exp((-1.0 *theta) - rho - (alpha * theta * rho)) exp_term2 = np.exp(-1.0 *alpha * theta * rho) p = 10.0 * float(1.0 / (1.0 + exp_term)) + 10.0/exp_term2 return p def simpleFunctionTwo(theta, rho): alpha = 0.5 exp_term = np.exp((-1.0 *theta) - rho - (alpha * theta * rho)) p = 10.0 * float(1.0 / (1.0 + exp_term)) return p def generateDataMatrix(N, T, rowRank, colRank, genFunction, rowParams, colParams): matrix = np.zeros([N, T]) for i in range(0, N): for j in range(0, T): matrix[i, j] = genFunction(rowParams[i], colParams[j]) return matrix def generateFirstRow(matrix, weights): (N, T) = np.shape(matrix) assert(len(weights) == N) weights = weights.reshape([N, 1]) weights = weights/np.sum(weights) return np.dot(weights.T, matrix) def generateOneMetricMatrix(N, T, TrainingEnd, rowRank, colRank, genFunction, trueWeights, rowParams, colParams): matrix = generateDataMatrix(N, T, rowRank, colRank, genFunction, rowParams, colParams) firstRow = generateFirstRow(matrix, trueWeights) meanMatrix = np.zeros([N+1, T]) #np.concatenate([firstRow, matrix], axis=0) meanMatrix[0, :] = firstRow meanMatrix[1:, :] = matrix #print(np.linalg.matrix_rank(meanMatrix)) noiseMatrix = np.random.normal(0.0, 1.0, [N+1, T]) #print(np.linalg.matrix_rank(noiseMatrix)) observationMatrix = meanMatrix + noiseMatrix #print(np.linalg.matrix_rank(observationMatrix)) # convert to dataframes trainingDict = {} testDict = {} meanTrainingDict = {} meanTestDict = {} for i in range(0, N+1): trainingDict.update({str(i): observationMatrix[i, 0:TrainingEnd]}) meanTrainingDict.update({str(i): meanMatrix[i, 0:TrainingEnd]}) testDict.update({str(i): observationMatrix[i, TrainingEnd:]}) meanTestDict.update({str(i): meanMatrix[i, TrainingEnd:]}) trainDF = pd.DataFrame(data=trainingDict) testDF = pd.DataFrame(data=testDict) meanTrainDF = pd.DataFrame(data=meanTrainingDict) meanTestDF = pd.DataFrame(data=meanTestDict) #print(np.shape(trainDF), np.shape(testDF)) #print(np.shape(meanTrainDF), np.shape(meanTestDF)) return (observationMatrix, meanMatrix, trainDF, testDF, meanTrainingDict, meanTestDict) def rankComparison(): N = 100 T = 120 TrainingEnd = 100 rowRank = 200 colRank = 200 # generate metric matrices genFunctionOne = simpleFunctionOne genFunctionTwo = simpleFunctionTwo trueWeights = np.random.uniform(0.0, 1.0, N) trueWeights = trueWeights/np.sum(trueWeights) thetaArrayParams = np.random.uniform(0.0, 1.0, rowRank) rhoArrayParams = np.random.uniform(0.0, 1.0, colRank) rowParams = np.random.choice(thetaArrayParams, N) colParams = np.random.choice(rhoArrayParams, T) # metric 1 (observationMatrix, meanMatrix, trainDF, testDF, meanTrainingDict, meanTestDict) = generateOneMetricMatrix(N, T, TrainingEnd, rowRank, colRank, genFunctionOne, trueWeights, rowParams, colParams) # metric 2 (observationMatrix2, meanMatrix2, trainDF2, testDF2, meanTrainingDict2, meanTestDict2) = generateOneMetricMatrix(N, T, TrainingEnd, rowRank, colRank, genFunctionTwo, trueWeights, rowParams, colParams) thetaArrayParams = np.random.uniform(0.0, 1.0, rowRank) rhoArrayParams = np.random.uniform(0.0, 1.0, colRank) rowParams = np.random.choice(thetaArrayParams, N) colParams = np.random.choice(rhoArrayParams, T) # metric 3 (observationMatrix3, meanMatrix3, trainDF3, testDF3, meanTrainingDict3, meanTestDict3) = generateOneMetricMatrix(N, T, TrainingEnd, rowRank, colRank, genFunctionTwo, trueWeights, rowParams, colParams) # concatenation matrixA = np.zeros([N+1, 2*T]) matrixA[:, 0:T] = meanMatrix matrixA[:, T: ] = meanMatrix2 u, s, v = np.linalg.svd(meanMatrix, full_matrices=False) u, s_, v = np.linalg.svd(meanMatrix2, full_matrices=False) u, sA, v = np.linalg.svd(matrixA, full_matrices=False) # print(np.linalg.matrix_rank(meanMatrix)) # print(np.linalg.matrix_rank(meanMatrix2)) # print(np.linalg.matrix_rank(meanMatrix3)) # print(np.linalg.matrix_rank(matrixA)) k = 20 plt.plot(range(0, k), s[0:k], color='magenta', label='metric1') plt.plot(range(0, k), s_[0:k], color='black', label='metric2') plt.plot(range(0, k), sA[0:k], '-x', color='red', label='combined') plt.xlabel('Singular Value Index (largest to smallest)') plt.ylabel('Singular Value') plt.title('Diagnostic: Rank Preservation Property') legend = plt.legend(loc='lower right', shadow=True) plt.show() def runAnalysis(N, T, TrainingEnd, rowRank, colRank): # generate metric matrices genFunctionOne = simpleFunctionOne genFunctionTwo = simpleFunctionTwo trueWeights = np.random.uniform(0.0, 1.0, N) trueWeights = trueWeights/np.sum(trueWeights) thetaArrayParams = np.random.uniform(0.0, 1.0, rowRank) rhoArrayParams = np.random.uniform(0.0, 1.0, colRank) rowParams = np.random.choice(thetaArrayParams, N) colParams = np.random.choice(rhoArrayParams, T) # metric 1 (observationMatrix1, meanMatrix1, trainDF1, testDF1, meanTrainingDict1, meanTestDict1) = generateOneMetricMatrix(N, T, TrainingEnd, rowRank, colRank, genFunctionOne, trueWeights, rowParams, colParams) # metric 2 (observationMatrix2, meanMatrix2, trainDF2, testDF2, meanTrainingDict2, meanTestDict2) = generateOneMetricMatrix(N, T, TrainingEnd, rowRank, colRank, genFunctionTwo, trueWeights, rowParams, colParams) keySeriesLabel = '0' otherSeriesLabels = [] for ind in range(1, N+1): otherSeriesLabels.append(str(ind)) # RSC analysis singvals = 8 ############################ #### RSC for metric 1 rscmodel1 = RobustSyntheticControl(keySeriesLabel, singvals, len(trainDF1), probObservation=1.0, svdMethod='numpy', otherSeriesKeysArray=otherSeriesLabels) # fit the model rscmodel1.fit(trainDF1) predictionsRSC1 = rscmodel1.predict(testDF1) rscRMSE1 = np.sqrt(np.mean((predictionsRSC1 - meanTestDict1[keySeriesLabel])**2)) #print("\n\n *** RSC rmse1:") #print(rscRMSE1) ############################ ##### RSC for metric 2 rscmodel2 = RobustSyntheticControl(keySeriesLabel, singvals, len(trainDF2), probObservation=1.0, svdMethod='numpy', otherSeriesKeysArray=otherSeriesLabels) # fit the model rscmodel2.fit(trainDF2) predictionsRSC2 = rscmodel2.predict(testDF2) rscRMSE2 = np.sqrt(np.mean((predictionsRSC2 - meanTestDict2[keySeriesLabel])**2)) #print("\n\n *** RSC rmse2:") #print(rscRMSE2) ############################ #### multi RSC model (combined) -- relative_weights = [1.0, 1.0] # instantiate the model mrscmodel = MultiRobustSyntheticControl(2, relative_weights, keySeriesLabel, singvals, len(trainDF1), probObservation=1.0, svdMethod='numpy', otherSeriesKeysArray=otherSeriesLabels) # fit mrscmodel.fit([trainDF1, trainDF2]) # predict combinedPredictionsArray = mrscmodel.predict([testDF1[otherSeriesLabels], testDF2[otherSeriesLabels]]) # split the predictions for the metrics predictionsmRSC_1 = combinedPredictionsArray[0] predictionsmRSC_2 = combinedPredictionsArray[1] # compute RMSE mrscRMSE1 = np.sqrt(np.mean((predictionsmRSC_1 - meanTestDict1[keySeriesLabel])**2)) mrscRMSE2 = np.sqrt(np.mean((predictionsmRSC_2 - meanTestDict2[keySeriesLabel])**2)) #print("\n\n *** mRSC rmse1:") #print(mrscRMSE1) #print("\n\n *** mRSC rmse2:") #print(mrscRMSE1) return ({"rsc1": rscRMSE1, "rsc2": rscRMSE2, "mrsc1": mrscRMSE1, "mrsc2": mrscRMSE2}) def main(): # diagnostic test for rank preservation (see paper referenced) rankComparison() rowRank = 10 colRank = 10 rsc1 = [] rsc1A = [] rsc2 = [] rsc2A = [] mrsc1 = [] mrsc1A = [] mrsc2 = [] mrsc2A = [] # simulating many random tests and varying matrix sizes N_array = [50, 100, 150, 200, 250, 300] for N in N_array: print("**********************************************************") print(N) print("**********************************************************") for T in [30]: TrainingEnd = int(0.75*T) rsc1_array = [] rsc1A_array = [] rsc2_array = [] rsc2A_array = [] mrsc1_array = [] mrsc1A_array = [] mrsc2_array = [] mrsc2A_array = [] for iter in range(0, 20): resDict = runAnalysis(N, T, TrainingEnd, rowRank, colRank) rsc1_array.append(resDict['rsc1']) rsc2_array.append(resDict['rsc2']) mrsc1_array.append(resDict['mrsc1']) mrsc2_array.append(resDict['mrsc2']) rsc1.append(np.mean(rsc1_array)) rsc2.append(np.mean(rsc2_array)) mrsc1.append(np.mean(mrsc1_array)) mrsc2.append(np.mean(mrsc2_array)) print("====================================") print("====================================") print("Metric # 1:") print("mRSC - RSC:") for i in range(0, len(N_array)): print(i, mrsc1[i] - rsc1[i]) print("Metric # 2:") print("mRSC - RSC:") for i in range(0, len(N_array)): print(i, mrsc2[i] - rsc2[i]) print("====================================") print("====================================") print("====================================") print("====================================") print("Metric # 1:") print("mRSC, RSC:") for i in range(0, len(N_array)): print(i, mrsc1[i], rsc1[i]) print("Metric # 2:") print("mRSC, RSC,:") for i in range(0, len(N_array)): print(i, mrsc2[i], rsc2[i]) print("====================================") print("====================================") # plotting plt.plot(N_array, mrsc1, color='r', label='mRSC (metricA)') plt.plot(N_array, mrsc2, color='orange', label='mRSC (metricB)') plt.plot(N_array, rsc1, '-.', color='blue', label='RSC (metricA)') plt.plot(N_array, rsc2, '--x',color='magenta', label='RSC (metricB)') plt.xlabel('N') plt.ylabel('RMSE') plt.title('mRSC vs RSC for metricA and metricB') legend = plt.legend(loc='upper right', shadow=True) plt.show() if __name__ == "__main__": main()
#!/usr/bin/env python3 # The infinite monkey theorem : The theorem states that a monkey hitting keys at random on a # typewriter keyboard for an infinite amount of time will almost surely type a given text, # such as the complete works of William Shakespeare. Well, suppose we replace a monkey with # a Python function. How long do you think it would take for a Python function to generate # just one sentence of Shakespeare? # The sentence we’ll shoot for is: “methinks it is like a weasel” # The Program returns the number of iterations spent to hit the target/goal string. import random def genRandomString(strlen) : letter = "abcdefghijklmnopqrstuvwxyz "; result = "" for i in range(strlen) : result = result + letter[random.randrange(27)] return result def score(goal, test_string) : match_char = 0 for i in range(len(goal)) : if goal[i] == test_string[i] : match_char = match_char + 1 return (match_char / len(goal)) def getLoops(goalstr) : loop_count = 0; random_string = genRandomString(len(goalstr)) if goalstr == "exit" : print ("\n Ohh, I Just saw the dreadful \"Exit\". \n" , "I feel I should wish you a Good Bye then, See ya later :)") exit() else : while ( score(goalstr, random_string) < 1.0 ) : print (random_string) loop_count = loop_count + 1 random_string = genRandomString(len(goalstr)) return loop_count def main(): print (" \n Python program to implement Infinite monkey theorem \n") print ("Loops : ", getLoops(input("Enter string you want to find match for : "))) main()
from .settings import * REMOTE_TEST_RESET_URL = '/_new_test' MIDDLEWARE_CLASSES = ( 'api_test.middleware.api_test.ApiTestMiddleware', # must be first ) + MIDDLEWARE_CLASSES INSTALLED_APPS += ( 'api_test', )
#! /usr/bin/env python import glob import os from optparse import OptionParser import pprint import re import sys f_trial_re = re.compile(r"parallel trial.* \((\d+)\) failed") s_trial_re = re.compile(r"parallel trial.* \((\d+)\) solved") ttime_re = re.compile(r"Total time = ([+|-]?(0|[1-9]\d*)(\.\d*)?([eE][+|-]?\d+)?)") be_separator_re = re.compile(r"=== parallel trial.* \((\d+)\) (\S+) ===") def analyze(output): bname = os.path.basename(output) b = os.path.splitext(bname)[0] record = {} record["benchmark"] = b is_parallel = False with open(output, 'r') as f: f_trial = -1 s_trial = -1 ttime = -1 f_times = [] s_times = [] lines = [] for line in f: ## information from front-end m = re.search(f_trial_re, line) if m: _f_trial = int(m.group(1)) f_trial = max(f_trial, _f_trial) else: m = re.search(s_trial_re, line) if m: _s_trial = int(m.group(1)) if s_trial < 0: s_trial = _s_trial else: s_trial = min(s_trial, _s_trial) m = re.search(ttime_re, line) if m: # to filter out the final Sketch run for CFG retrieval ttime = max(ttime, int(float(m.group(1)))) ## information from back-end m = re.search(be_separator_re, line) if m: is_parallel = True if m.group(2) in ["failed", "solved"]: record = be_analyze_lines(lines, b) if record["succeed"] == "Succeed": s_times.append(record["ttime"]) else: # "Failed" f_times.append(record["ttime"]) lines = [] else: lines.append(line) # for plain Sketch, the whole message is from back-end if not is_parallel: record = be_analyze_lines(lines, b) if record["succeed"] == "Succeed": s_times.append(ttime) else: # "Failed" f_times.append(ttime) trial = len(f_times) + len(s_times) record["trial"] = max(trial, s_trial) s_succeed = "Succeed" if any(s_times) else "Failed" record["succeed"] = s_succeed f_time_sum = sum(f_times) s_time_sum = sum(s_times) record["ttime"] = ttime record["stime"] = float(s_time_sum) / len(s_times) if s_times else 0 record["ftime"] = float(f_time_sum) / len(f_times) if f_times else 0 record["ctime"] = f_time_sum + s_time_sum return record exit_re = re.compile(r"Solver exit value: ([-]?\d+)") be_tout_re = re.compile(r"timed out: (\d+)") be_etime_re = re.compile(r"elapsed time \(s\) .* ([+|-]?(0|[1-9]\d*)(\.\d*)?([eE][+|-]?\d+)?)") be_stime_re = re.compile(r"Total elapsed time \(ms\):\s*([+|-]?(0|[1-9]\d*)(\.\d*)?([eE][+|-]?\d+)?)") be_ttime_re = re.compile(r"TOTAL TIME ([+|-]?(0|[1-9]\d*)(\.\d*)?([eE][+|-]?\d+)?)") def be_analyze_lines(lines, b): record = {} record["benchmark"] = b exit_code = -1 etime = 0 ttime = 0 timeout = None succeed = False propagation = -1 for line in reversed(lines): m = re.search(exit_re, line) if m: exit_code = int(m.group(1)) succeed |= exit_code == 0 if "ALL CORRECT" in line: succeed |= True if "[SKETCH] DONE" in line: succeed |= True m = re.search(be_ttime_re, line) if m: ttime = ttime + int(float(m.group(1))) m = re.search(be_stime_re, line) if m: etime = float(m.group(1)) m = re.search(be_tout_re, line) if m: timeout = int(m.group(1)) for line in lines: m = re.search(be_etime_re, line) if m: etime = int(float(m.group(1)) * 1000) break s_succeed = "Succeed" if succeed else "Failed" record["succeed"] = s_succeed if timeout: _time = timeout elif etime: _time = etime else: _time = ttime record["ttime"] = _time return record def main(): parser = OptionParser(usage="usage: %prog [options]") parser.add_option("-b", "--benchmark", action="append", dest="benchmarks", default=[], help="benchmark(s) under analysis") parser.add_option("-d", "--dir", action="store", dest="out_dir", default="output", help="output folder") parser.add_option("--rm-failed", action="store_true", dest="rm_failed", default=False, help="remove failed output") (opt, args) = parser.parse_args() outputs = glob.glob(os.path.join(opt.out_dir, "*.txt")) # filter out erroneous cases (due to broken pipes, etc.) outputs = filter(lambda f: os.path.getsize(f) > 0, outputs) for output in outputs: bname = os.path.basename(output) if any(opt.benchmarks): found = False for b in opt.benchmarks: found |= bname.startswith(b) if found: break if not found: continue record = analyze(output) pprint.pprint(record) if not opt.rm_failed: continue if record["succeed"] != "Succeed": print "deleting {}".format(output) os.remove(output) if __name__ == "__main__": sys.exit(main())
#!/usr/bin/env python from __future__ import print_function from builtins import * from past.utils import old_div import cli import re import argparse from csr_aws_guestshell import cag csr = cag() def print_cmd_output(command, output, print_output): if print_output: col_space = old_div((80 - (len(command))), 2) print("\n%s %s %s" % ('=' * col_space, command, '=' * col_space)) print("%s \n%s" % (output, '=' * 80)) def execute_command(command, print_output): cmd_output = cli.execute(command) while len(cmd_output) == 0: print("CMD FAILED, retrying") cmd_output = cli.execute(command) print_cmd_output(command, cmd_output, print_output) return cmd_output def get_stat_drop(print_output): cmd_output = execute_command( "show platform hardware qfp active statistics drop clear", print_output) if "all zero" in cmd_output: csr.send_metric("TailDrop", int(0), "Statistics drops") return if "TailDrop" not in cmd_output: csr.send_metric("TailDrop", int(0), "Statistics drops") for line in cmd_output.splitlines(): if ("-" in line) or ("Global Drop Stats" in line): continue entries = line.split() if print_output: print("%s --> %s/%s" % (entries[0], entries[1], entries[2])) csr.send_metric(entries[0], (entries[1]), "Statistics drops") def get_datapath_util(print_output): cmd_output = execute_command( "show platform hardware qfp active datapath utilization", print_output) row_names = [ "input_priority_pps", "input_priority_bps", "input_non_priority_pps", "input_non_priority_bps", "input_total_pps", "input_total_bps", "output_priority_pps", "output_priority_bps", "output_non_priority_pps", "output_non_priority_bps", "output_total_pps", "output_total_bps", "processing_load_pct"] i = 0 for line in cmd_output.splitlines(): if i >= len(row_names): break m = re.search( r'.*\s+(?P<fivesecs>\d+)\s+(?P<onemin>\d+)\s+(?P<fivemin>\d+)\s+(?P<onehour>\d+)', line) if m: # print "%s --> %s %s %s %s" % (row_names[i], # m.group('fivesecs'),m.group('onemin'),m.group('fivemin'),m.group('onehour')) csr.send_metric(row_names[i] + '_fivesecs', m.group( 'fivesecs'), "datapath utilization") csr.send_metric(row_names[i] + '_onemin', m.group( 'onemin'), "datapath utilization") csr.send_metric(row_names[i] + '_fivemin', m.group( 'fivemin'), "datapath utilization") csr.send_metric(row_names[i] + '_onehour', m.group( 'onehour'), "datapath utilization") i = i + 1 def show_gig_interface_summary(print_output): cmd_output = execute_command("show interfaces summary", print_output) total_txbps = 0 total_rxbps = 0 for line in cmd_output.splitlines(): if "Giga" in line: total_txbps += int(line.split()[-3]) total_rxbps += int(line.split()[-5]) csr.send_metric("output_gig_interface_summary_bps", total_txbps, "aggregate gig interfaces bps") csr.send_metric("input_gig_interface_summary_bps", total_rxbps, "aggregate gig interfaces bps") def show_interface(print_output): cmd_output = execute_command("show interface summary", print_output) table_start = 0 for line in cmd_output.splitlines(): if 'Interface' in line: continue if "-" in line: table_start = 1 continue if table_start == 0: continue entries = line.lstrip('*').split() cmd = "show interface %s" % (entries[0]) interface_output = execute_command(cmd, print_output) m = re.search( r'.*\s+(?P<packets_input>\d+) packets input.*\s+(?P<bytes_input>\d+) bytes.*', interface_output) if m: # print "match! %s %s" % # (m.group('packets_input'),m.group('bytes_input')) csr.send_metric("packets_input_" + entries[0], m.group('packets_input'), cmd) csr.send_metric("bytes_input_" + entries[0], m.group('bytes_input'), cmd) m = re.search( r'.*\s+(?P<packets_output>\d+) packets output.*\s+(?P<bytes_output>\d+) bytes.*', interface_output) if m: # print "match! %s %s" % # (m.group('packets_output'),m.group('bytes_output')) csr.send_metric("packets_output_" + entries[0], m.group('packets_output'), cmd) csr.send_metric("bytes_output_" + entries[0], m.group('bytes_output'), cmd) m = re.search( r'.*\s+(?P<unknown_drops>\d+) unknown protocol drops.*', interface_output) if m: # print "match! %s" % (m.group('unknown_drops')) csr.send_metric("unknown_drops_" + entries[0], m.group('unknown_drops'), cmd) m = re.search( r'.*Total output drops:\s+(?P<output_drops>\d+)\s+.*', interface_output) if m: # print "match! %s" % (m.group('output_drops')) csr.send_metric("output_drops_" + entries[0], m.group('output_drops'), cmd) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Upload Stats to custom metrics") parser.add_argument('--display', help='Show Output', action='store_true') parser.add_argument('--category', help='Send ', default="all") args = parser.parse_args() if args.category in ["all", "drops"]: get_stat_drop(args.display) if args.category in ["all", "util"]: get_datapath_util(args.display) if args.category in ["all", "interface"]: show_interface(args.display) if args.category in ["all", "interface_summary"]: show_gig_interface_summary(args.display)
# link: https://leetcode.com/problems/partition-equal-subset-sum/ # solution explanation: https://leetcode.com/problems/partition-equal-subset-sum/discuss/462699/Whiteboard-Editorial.-All-Approaches-explained. class Solution(object): def __init__(self): self.st = {} def canPartition(self, nums): """ :type nums: List[int] :rtype: bool """ nums = sorted(nums, reverse=True) s = sum(nums) if s%2 != 0: return False print(nums) target = s//2 print(target) return self.backtracking(nums, target) def backtracking(self, nums, curr): if curr<0: return False if curr == 0: return True for i in range(len(nums)): # for TLE check if the current number is greater than the remaining sum if nums[i] > curr: return False return self.backtracking(nums[i+1:], curr-nums[i]) or self.backtracking(nums[i+1:],curr) return False
# coding: utf-8 # Copyright (C) zhongjie luo <l.zhjie@qq.com> import pandas as pd import numpy as np import os import json def check_duplicate(df, col_name): temp = df.reset_index() result = temp.duplicated(subset=col_name, keep=False) index = np.argwhere(result).reshape(-1) return df.iloc[index] class Conf: def device(self): """:return dataframe columns: name,ip,price""" return self._device.copy() def checkpoint(self): """:return dataframe columns: name,ip,device,alarmdelay""" return self._checkpoint.copy() def cost_lambda_str(self): """func params: device, measure, checkpoint""" return self._cost_lambda_str def interval(self): return self._interval def acktimeout(self): return self._acktimeout def httpserver(self): return tuple(self._httpserver) def charset(self): return self._charset def __init__(self, filename): self._httpserver = ["127.0.0.1", 8787] with open(filename, "r") as fp: conf = json.load(fp) conf_dir = os.path.dirname(filename) data_dir = conf.get("datadir", None) if data_dir is None or len(data_dir.strip()) == 0: data_dir = conf_dir # require fileds: name,ip,device,alarmdelay" self._charset = conf.get("charset", "utf-8") checkpoint = conf["checkpoint"] df = pd.read_csv(os.path.join(data_dir, checkpoint["file"]), encoding=self._charset) if len(df) == 0: print("checkpoint not fount") exit(100) dst, src = zip(*[(x.split(":") * 2)[:2] for x in checkpoint["field"].split(",")]) df = df[list(src)] df.columns = dst temp = check_duplicate(df, "ip") if len(temp): print(temp) raise RuntimeError("checkpoint, duplicated ip") alarm_delay = max(conf["alarmdelay"], 0.001) df["alarmdelay"] = df["alarmdelay"].astype(np.float32).fillna(alarm_delay) self._checkpoint = df # require fileds: name,ip,price" device = conf["device"] df = pd.read_csv(os.path.join(data_dir, device["file"]), encoding=self._charset) if len(df) == 0: print("device not fount") exit(100) dst, src = zip(*[(x.split(":") * 2)[:2] for x in device["field"].split(",")]) df = df[list(src)] df.columns = dst temp = check_duplicate(df, "name") if len(temp): print(temp) raise RuntimeError("device, duplicated name") temp = check_duplicate(df, "ip") if len(temp): print(temp) raise RuntimeError("device, duplicated ip") self._device = df self._cost = None cost = conf.get("costfunc", None) if cost is not None: self._cost_lambda_str = "lambda m:%s" % (cost["cost"]) self._interval = max(conf["interval"], 1) self._acktimeout = max(conf["acktimeout"], 1) http = conf.get("httpserver") if http is not None: self._httpserver[0] = str(http.get("bindip", self._httpserver[0])) self._httpserver[1] = int(http.get("port", self._httpserver[1]))
from common.checks import APTPackageChecksBase from common.plugins.storage import ( CephChecksBase, CEPH_PKGS_CORE, CEPH_SERVICES_EXPRS, StorageChecksBase, ) YAML_PRIORITY = 0 class CephPackageChecks(StorageChecksBase, APTPackageChecksBase): @property def output(self): if self._output: return {"ceph": self._output} def __call__(self): # require at least one core package to be installed to include # this in the report. if self.core: self._output["dpkg"] = self.all class CephServiceChecks(CephChecksBase): def get_running_services_info(self): """Get string info for running services.""" if self.services: self._output["services"] = self.get_service_info_str() def __call__(self): self.get_running_services_info() def get_service_checker(): # Do this way to make it easier to write unit tests. return CephServiceChecks(CEPH_SERVICES_EXPRS) def get_pkg_checker(): return CephPackageChecks(CEPH_PKGS_CORE)
def main() -> None: N = int(input()) points = [tuple(map(int, input().split())) for _ in range(N)] assert 4 <= N <= 100 assert all(len(point) == 2 for point in points) assert all(points[i] != points[j] for i in range(N) for j in range(i + 1, N)) assert all(0 <= point[0] <= 10**9 and 0 <= point[1] <= 10**9 for point in points) if __name__ == '__main__': main()
import easygui easygui.msgbox('Selecione o arquivo de origem', 'Origem') origfile = easygui.fileopenbox() arq = open(origfile, 'r') arqdest = open(origfile + '.changed', 'w') substituiparam = 0 achouparam = 0 log = 1 # 1=on 0=off def findparam(x): global achouparam global substituiparam if (x.find("get:") != -1): achouparam = 1 if log: print(x) if (achouparam == 1 and x.find('tags:') > 0): substituiparam = 1 if log: print(x) if (linha.find("post:") != -1): achouparam = 2 if log: print(x) if (achouparam == 2 and linha.find('tags:') > 0): substituiparam = 2 if log: print(x) if (linha.find("delete:") != -1): achouparam = 3 if log: print(x) if (achouparam == 3 and linha.find('tags:') > 0): substituiparam = 3 if log: print(x) if (linha.find("put:") != -1): achouparam = 4 if log: print(x) if (achouparam == 4 and linha.find('tags:') > 0): substituiparam = 4 if log: print(x) for linha in arq: if (substituiparam == 1): if log: print("Deletado: " + linha) linha = ' - "RETRIEVAL Operations"\n' if log: print("Alterado: " + linha) substituiparam = 0 achouparam = 0 if (substituiparam == 2): if log: print("Deletado: " + linha) linha = ' - "CREATION Operations"\n' if log: print("Alterado: " + linha) substituiparam = 0 achouparam = 0 if (substituiparam == 3): if log: print("Deletado: " + linha) linha = ' - "DELETION Operations"\n' if log: print("Alterado: " + linha) substituiparam = 0 achouparam = 0 if (substituiparam == 4): if log: print("Deletado: " + linha) linha = ' - "MODIFICATION Operations"\n' if log: print("Alterado: " + linha) substituiparam = 0 achouparam = 0 findparam(linha) arqdest.write(linha) arq.close() arqdest.close()
f1 = 'general' f2 = 'perfectionism_certainty' f3 = 'responsibility_and_threat_estimation' f4 = 'importance_and_control_of_thought' f5 = 'complete_performance' option_numbers = 7 factors_names = ('raw',f1,f2,f3,f4,f5) factors = { 1 :(f1,) , 2 :(f1,) , 3 :(f2,) , 4 :(f2,) , 5 :(f3,) , 6 :(f3,) , 7:(f4,) , 8 :(f3,) , 9 :(f2,) , 10 :(f2,) , 11 :(f2,) , 12 :(f5,) , 13 :(f5,) , 14 :(f2,) , 15 :(f5,) , 16 :(f3,) , 17 :(f3,) , 18 :(f1,) , 19 :(f3,) , 20 :(f2,) , 21 :(f4,) , 22 :(f1,) , 23 :(f3,) , 24 :(f4,) , 25 :(f5,) , 26 :(f2,) , 27 :(f4,) , 28:(f4,) , 29 :(f1,) , 30 :(f1,) , 31 :(f2,) , 32 :(f1,) , 33 :(f1,) , 34 :(f1,) , 35 :(f1,) , 36 :(f1,) , 37:(f2,) , 38 :(f1,) , 39 :(f5,) , 40 :(f1,) , 41 :(f1,) , 42 :(f4,) , 43 :(f1,) , 44 :(f1,) }
from flask import Blueprint, Response, request import logging import jinja2 import jinja2.utils from mr_provisioner.models import Machine, MachineEvent from mr_provisioner import db from sqlalchemy.exc import DatabaseError from collections import namedtuple mod = Blueprint('preseed', __name__, template_folder='templates') logger = logging.getLogger('preseed') PInterface = namedtuple('object', ['name', 'static_ipv4', 'prefix', 'netmask', 'mac']) PImage = namedtuple('object', ['filename', 'description', 'known_good']) def make_reporting_undefined(machine, request, base=jinja2.Undefined): def report(undef): if undef._undefined_hint is None: if undef._undefined_obj is jinja2.utils.missing: hint = '%s is undefined' % undef._undefined_name else: hint = '%s has no attribute %s' % ( jinja2.utils.object_type_repr(undef._undefined_obj), undef._undefined_name) else: hint = undef._undefined_hint MachineEvent.preseed_error(machine.id, None, request.remote_addr, hint) class ReportingUndefined(base): def __str__(self): report(self) return base.__str__(self) def __iter__(self): report(self) return base.__iter__(self) def __bool__(self): report(self) return base.__bool__(self) def __len__(self): report(self) return base.__len__(self) return ReportingUndefined @mod.route('/<machine_id>', methods=['GET']) def get_preseed(machine_id): machine = Machine.query.get(machine_id) if not machine: return "", 404 preseed = machine.preseed if not preseed: return "", 404 MachineEvent.preseed_accessed(machine.id, None, request.remote_addr) assignees = machine.assignees ssh_key = assignees[0].ssh_key if len(assignees) > 0 else '' ssh_keys = [u.ssh_key for u in assignees] kernel_opts = machine.kernel_opts interfaces = [PInterface(name=i.identifier, static_ipv4=i.static_ipv4, prefix=i.network.prefix, netmask=i.network.netmask, mac=i.mac) for i in machine.interfaces if i.static_ipv4] kernel = None if machine.kernel: kernel = PImage(filename=machine.kernel.filename, description=machine.kernel.description, known_good=machine.kernel.known_good) initrd = None if machine.initrd: initrd = PImage(filename=machine.initrd.filename, description=machine.initrd.description, known_good=machine.initrd.known_good) try: template = jinja2.Template(preseed.file_content, undefined=make_reporting_undefined(machine, request)) return Response( template.render(ssh_key=ssh_key, ssh_keys=ssh_keys, hostname=machine.hostname, interfaces=interfaces, kernel=kernel, initrd=initrd, kernel_options=kernel_opts), mimetype='text/plain') except jinja2.TemplateSyntaxError as e: MachineEvent.preseed_error(machine.id, None, request.remote_addr, e.message, e.lineno) return Response( "Syntax error on preseed template: {} - line: {}".format(e.message, e.lineno), status=400) except (jinja2.TemplateError, Exception) as e: MachineEvent.preseed_error(machine.id, None, request.remote_addr, e.message) return Response( "Exception raised while rendering preseed template: {}".format(e.message), status=400) @mod.errorhandler(DatabaseError) def handle_db_error(error): db.session.rollback() raise
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See LICENSE in the project root # for license information. import sys from _pydevd_bundle import pydevd_comm from ptvsd.socket import Address from ptvsd.daemon import Daemon, DaemonStoppedError, DaemonClosedError from ptvsd._util import debug, new_hidden_thread def start_server(daemon, host, port, **kwargs): """Return a socket to a (new) local pydevd-handling daemon. The daemon supports the pydevd client wire protocol, sending requests and handling responses (and events). This is a replacement for _pydevd_bundle.pydevd_comm.start_server. """ sock, next_session = daemon.start_server((host, port)) def handle_next(): try: session = next_session(**kwargs) debug('done waiting') return session except (DaemonClosedError, DaemonStoppedError): # Typically won't happen. debug('stopped') raise except Exception as exc: # TODO: log this? debug('failed:', exc, tb=True) return None def serve_forever(): debug('waiting on initial connection') handle_next() while True: debug('waiting on next connection') try: handle_next() except (DaemonClosedError, DaemonStoppedError): break debug('done') t = new_hidden_thread( target=serve_forever, name='sessions', ) t.start() return sock def start_client(daemon, host, port, **kwargs): """Return a socket to an existing "remote" pydevd-handling daemon. The daemon supports the pydevd client wire protocol, sending requests and handling responses (and events). This is a replacement for _pydevd_bundle.pydevd_comm.start_client. """ sock, start_session = daemon.start_client((host, port)) start_session(**kwargs) return sock def install(pydevd, address, start_server=start_server, start_client=start_client, **kwargs): """Configure pydevd to use our wrapper. This is a bit of a hack to allow us to run our VSC debug adapter in the same process as pydevd. Note that, as with most hacks, this is somewhat fragile (since the monkeypatching sites may change). """ addr = Address.from_raw(address) daemon = Daemon(**kwargs) _start_server = (lambda p: start_server(daemon, addr.host, p)) _start_server.orig = start_server _start_client = (lambda h, p: start_client(daemon, h, p)) _start_client.orig = start_client # These are the functions pydevd invokes to get a socket to the client. pydevd_comm.start_server = _start_server pydevd_comm.start_client = _start_client # Ensure that pydevd is using our functions. pydevd.start_server = _start_server pydevd.start_client = _start_client __main__ = sys.modules['__main__'] if __main__ is not pydevd: if getattr(__main__, '__file__', None) == pydevd.__file__: __main__.start_server = _start_server __main__.start_client = _start_client return daemon
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Определим универсальное множество word = input("Введите слово: ") vowels = set("a,e,i,o,u,y") word_set = set(word.lower()) print('Гласных {} '.format(len(word_set.intersection(vowels))))
# Copyright 2013-2021 The Meson development team # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .baseobjects import InterpreterObject, MesonInterpreterObject, ObjectHolder, TYPE_var, HoldableTypes from .exceptions import InvalidArguments from ..mesonlib import HoldableObject, MesonBugException def _unholder(obj: InterpreterObject) -> TYPE_var: if isinstance(obj, ObjectHolder): assert isinstance(obj.held_object, HoldableTypes) return obj.held_object elif isinstance(obj, MesonInterpreterObject): return obj elif isinstance(obj, HoldableObject): raise MesonBugException(f'Argument {obj} of type {type(obj).__name__} is not held by an ObjectHolder.') elif isinstance(obj, InterpreterObject): raise InvalidArguments(f'Argument {obj} of type {type(obj).__name__} cannot be passed to a method or function') raise MesonBugException(f'Unknown object {obj} of type {type(obj).__name__} in the parameters.')
# Generated by Django 3.2.7 on 2021-10-27 18:37 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import uuid class Migration(migrations.Migration): dependencies = [ ('tracks', '0006_auto_20211025_1631'), ] operations = [ migrations.CreateModel( name='TrackRequest', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('requestId', models.UUIDField(default=uuid.uuid4, verbose_name='Request id')), ('method', models.CharField(default='GET', max_length=20, verbose_name='Method')), ('requestUrl', models.CharField(max_length=500, verbose_name='Request url')), ('requestHeaders', models.JSONField(blank=True, default=list, null=True, verbose_name='Request headers')), ('requestBody', models.TextField(blank=True, null=True, verbose_name='Request body')), ('statusCode', models.IntegerField(verbose_name='Response status code')), ('responseBody', models.TextField(blank=True, null=True, verbose_name='Response body')), ('responseHeaders', models.JSONField(blank=True, default=dict, verbose_name='Response headers')), ('duration', models.FloatField(blank=True, default=0.0, null=True, verbose_name='Duration in seconds')), ('created', models.DateTimeField(default=django.utils.timezone.now, verbose_name='Created')), ('service', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='tracks.service', verbose_name='Service')), ], ), ]
#!/usr/bin/python import socket import sys sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) server_addr = ('',8080) sock.bind(server_addr) while 1: data, addr = sock.recvfrom(4096) print >> sys.stderr, data
from django.shortcuts import render, get_object_or_404 from db.models import Category, Post from .forms import ContactForm from django.core.mail import send_mail # from django.http import HttpResponse # from django.template.loader import get_template # from django.core.mail import EmailMessage # from django.template import Context # # from sendgrid.message import SendGridEmailMessage # # import sendgrid thanks_message = """Thank You, We appreciate that you’ve taken the time to write us. We’ll get back to you very soon.\n \n \n ------------------------------------\n \n This is your message\n \n ------------------------------------\n \n """ def home(request): latest_project = Post.get_lastest_visible('project') latest_blog = Post.get_lastest_visible('blog') latest_arabic = Post.get_lastest_visible('arabic') return render(request, 'home.html', { 'latest_project': latest_project, 'latest_blog': latest_blog, 'latest_arabic':latest_arabic, }) def cv(request): return render(request, 'cv.html',) def smedia(request): return render(request, 'smedia.html',) def contact(request): # new logic! if request.method == 'POST': form = ContactForm(data=request.POST) if form.is_valid(): contact_email = form.cleaned_data.get('contact_email') subject = form.cleaned_data.get('subject') message = form.cleaned_data.get('message') send_mail( subject, message, contact_email, ['m@mohd.im'], fail_silently=False, ) message = thanks_message + message subject = "RE:" + subject send_mail( subject, message, 'm@mohd.im', [contact_email], fail_silently=False, ) return render(request, 'thanks-email.html',) else: form = ContactForm() return render(request, 'contact.html', { 'form': form, # 'errors': errors,contactcontact # 'subject_val': subject_val, # 'contact_email_val': contact_email_val, # 'message_val': message_val, }) def robots(request): return render(request, 'robots.txt',) # def contact(request): # form_class = ContactForm # # # new logic! # if request.method == 'POST': # form = form_class(data=request.POST) # # contact_email = request.POST.get('contact_email', '') # content = request.POST.get('content', '') # # sg = sendgrid.SendGridClient('SENDGRID_USERNAME', 'SENDGRID_PASSWORD') # # message = sendgrid.Mail() # message.add_to('m@mohd.im') # message.set_subject('via CuntactMe') # message.set_text(content) # message.set_from(contact_email) # status, msg = sg.send(message) # return redirect('thank-u-email.html') # # return render(request, 'contact.html', { # 'form': form_class, # }) # def contact(request): # from django.core.mail import send_mail # # send_mail( # 'Subject here', # 'Here is the message.', # 'from@example.com', # ['mohd.muthanna+contact.mohd.im@gmail.com'], # fail_silently=False, # ) # # return render(request, 'contact.html',) # our view # def contact(request): # form_class = ContactForm # # # if request.method == 'POST': # form = form_class(data=request.POST) # # if form.is_valid(): # contact_email = request.POST.get('contact_email', '') # subject = request.POST.get('subject', '') # message = request.POST.get('message', '') # # send_mail( # subject, # message, # contact_email, # ['m@mohd.im'], # fail_silently=False, # ) # message = """ # Thank You,\n We appreciate that you’ve taken the time to write us. # We’ll get back to you very soon.\n \n \n # ------------------------------------ # This is your message # ------------------------------------ # """ + message # subject = "RE:" + subject # send_mail( # subject, # message, # 'm@mohd.im', # [contact_email], # fail_silently=False, # ) # # # # # return redirect('/thank-u-email.html/') # return render(request, 'thanks-email.html',) # # return render(request, 'contact.html', { # 'form': form_class, # }) # #
#Django 生成器 import os def info(project_name, mysite_name, app_name, db): # project_name = str(input('請輸入專案名稱:')) # mysite_name = str(input('請輸入Mysite名稱:')) # app_name = str(input('請輸入App名稱:')) # db = str(input('資料庫 / 預設:1 Mysql:2 :')) project_path = '/Users/weichenho/Desktop' #修改路徑到你要的位置 project_file = project_path + '/' + project_name os.mkdir(project_file) #建立專案資料夾 os.system(f'cd {project_file} && django-admin startproject {mysite_name}') #建立mysite資料夾 os.system(f'cd {project_file}/{mysite_name} && python manage.py startapp {app_name}') #建立app資料夾 os.mkdir(f'{project_file}/{mysite_name}/templates') #建立templates資料夾 os.mkdir(f'{project_file}/{mysite_name}/static') #建立static資料夾 html = open(f'{project_file}/{mysite_name}/templates/index.html','w') #建立html檔案 html.close() return project_file, mysite_name, app_name, db def settings(project_file, mysite_name, app_name, db): #更改settings.py設定檔 #路徑 {project_file}/{mysite_name}/{mysite_name}/settings.py file_object1 = open(f'{project_file}/{mysite_name}/{mysite_name}/settings.py','r') #讀django取生成的原始檔 l = [] #將檔案內容append到list try: while True: line = file_object1.readline() if line: l.append(line) else: break finally: file_object1.close() new_l = [] for i in l: if i == 'from pathlib import Path\n': new_l.append('from pathlib import Path\n') new_l.append('import os\n') new_l.append('import pymysql\n') new_l.append('pymysql.version_info = (1, 4, 13, "final", 0) ##需自行新增\n') new_l.append('pymysql.install_as_MySQLdb() #####\n') elif i == "ALLOWED_HOSTS = []\n": new_l.append("ALLOWED_HOSTS = ['*']\n") elif i == " 'django.contrib.staticfiles',\n": new_l.append(" 'django.contrib.staticfiles',\n") new_l.append(f" '{app_name}',\n") elif i == " 'DIRS': [],\n": new_l.append(" 'DIRS': [os.path.join(BASE_DIR, 'templates').replace('\\\\', '/')],\n") elif i == " 'ENGINE': 'django.db.backends.sqlite3',\n" and db == '2': #Mysql設定區 new_l.append(" 'ENGINE': 'django.db.backends.mysql',\n") elif i == " 'NAME': BASE_DIR / 'db.sqlite3',\n" and db == '2': new_l.append(" 'NAME': '',\n") new_l.append(" 'USER': 'root',\n") new_l.append(" 'PASSWORD': 'root',\n") new_l.append(" 'HOST': '127.0.0.1',\n") new_l.append(" 'PORT': '3306',\n") elif i == "LANGUAGE_CODE = 'en-us'\n": new_l.append("LANGUAGE_CODE = 'zh-Hant'\n") elif i == "TIME_ZONE = 'UTC'\n": new_l.append("TIME_ZONE = 'Asia/Taipei'\n") elif i == 'USE_I18N = True\n': new_l.append("USE_I18N = True\n") elif i == 'USE_L10N = True\n': new_l.append("USE_L10N = True\n") elif i == 'USE_TZ = True\n': new_l.append("USE_TZ = False\n") elif i == "STATIC_URL = '/static/'\n": new_l.append("STATIC_URL = '/static/'\n") new_l.append("\n") new_l.append("STATICFILES_DIRS = [\n") new_l.append(" os.path.join(BASE_DIR, 'static'),\n") new_l.append("]\n") else: new_l.append(i) file_object2 = open(f'{project_file}/{mysite_name}/{mysite_name}/settings.py','w') for i in new_l: file_object2.writelines(i) file_object2.close() #---------------------------Mysite裡的urls.py--------------------------------- def urls(project_file, mysite_name, app_name): file_object1 = open(f'{project_file}/{mysite_name}/{mysite_name}/urls.py','r') l = [] try: while True: line = file_object1.readline() if line: l.append(line) else: break finally: file_object1.close() new_l = [] for i in l: if i == 'from django.urls import path\n': new_l.append('from django.urls import path\n') new_l.append('from django.conf.urls import include, url') new_l.append('\n') new_l.append('\n') elif i == " path('admin/', admin.site.urls),\n": new_l.append(" path('admin/', admin.site.urls),\n") new_l.append(f" path('', include('{app_name}.urls')),\n") else: new_l.append(i) file_object2 = open(f'{project_file}/{mysite_name}/{mysite_name}/urls.py','w') for i in new_l: file_object2.writelines(i) file_object2.close() #-----------------------------Apps裡的urls.py--------------------------------- file_object3 = open(f'{project_file}/{mysite_name}/{app_name}/urls.py','w') l = [ "from django.conf.urls import url\n", f"from {app_name} import views\n", "from django.urls import path", "\n", "\n", "\n", "urlpatterns = [\n", " path('', views.index),\n", "]\n" ] for i in l: file_object3.writelines(i) file_object3.close() #-----------------------------views.py--------------------------------- def views(project_file, mysite_name, app_name): file_object1 = open(f'{project_file}/{mysite_name}/{app_name}/views.py','w') l = [ "from django.shortcuts import render,redirect, HttpResponse\n", "from django.urls import reverse\n", "from django.http import HttpResponseRedirect\n", f"#from {app_name}.models import User\n", "\n", "\n", "\n", "def index(request):\n", "\n", " return render(request,'index.html')" ] for i in l: file_object1.writelines(i) file_object1.close()
# -*- coding: utf-8 -*- __author__ = "Mark McClain" __copyright__ = "Mark McClain" __license__ = "mit" from unittest import TestCase from awslambda import LambdaBaseSsm from unittest.mock import patch import boto3 from moto import mock_ssm class LambdaBaseSsmImpl(LambdaBaseSsm): def handle(self, event, context) -> dict: return event.update({}) class TestLambdaBaseSsm(TestCase): @classmethod def setUpClass(cls) -> None: pass def setUp(self) -> None: pass @mock_ssm def test_parameter_not_found(self) -> None: with self.assertRaises(KeyError): lambda_base_ssm_impl = LambdaBaseSsmImpl() lambda_base_ssm_impl.get_parameter('lambda-base/parameters/param') @mock_ssm def test_parameter_default(self) -> None: lambda_base_ssm_impl = LambdaBaseSsmImpl() self.assertEqual('value', lambda_base_ssm_impl.get_parameter('lambda-base/parameters/param', 'value')) @mock_ssm @patch.dict('os.environ', {'ENV': 'dev', 'CONFIG_PATHS': 'lambda-base'}) def test_create_with_prameters(self) -> None: client = boto3.client('ssm') client.put_parameter( Name='/dev/lambda-base/parameters', Description='A test parameter', Value='{"param1": "param1", "param2": "param2"}', Type='String') lambda_base_ssm_impl = LambdaBaseSsmImpl() self.assertEqual('param1', lambda_base_ssm_impl.get_parameter('/lambda-base/parameters/param1')) self.assertEqual('param2', lambda_base_ssm_impl.get_parameter('/lambda-base/parameters/param2')) self.assertIsNotNone(lambda_base_ssm_impl)
response.view = 'generic.html' # use a generic view tables_list = UL([LI(A(table,_href=URL("app","grid",args=table))) for table in db.tables if not table.startswith("auth_")]) pages_dict = { "myInventoryItems":URL("app","grid",args=["inventoryItem","inventoryItem"],vars={"keywords": 'inventoryItem.idSeller = "%s"' % auth.user_id}), "publicInventory":URL("app","grid",args=["inventoryItem","inventoryItem"],vars={"keywords": 'inventoryItem.idSeller != "%s"' % auth.user_id}), } def pages(): tables_list.insert(0,LI(HR(),_style="list-style-type:none")) for pageName,pageUrl in pages_dict.iteritems(): tables_list.insert(0,LI(A(pageName,_href=pageUrl))) return dict(message=tables_list) def grid(): tablename = request.args(0) if not tablename in db.tables: raise HTTP(403) grid = SQLFORM.smartgrid(db[tablename], args=[tablename]) return dict(grid=grid)
# Copyright (c) 2021 Koichi Sakata import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="pylib-sakata", version="0.1.2", author="Koichi Sakata", author_email="", description="Control system design and analysis package", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Koichi-Sakata/pylib_sakata", package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), python_requires=">=3.6", )
""" Integration tests for the :func:`esmvalcore.preprocessor.regrid.regrid` function. """ import unittest import iris import numpy as np import tests from esmvalcore.preprocessor import extract_point from tests.unit.preprocessor._regrid import _make_cube class Test(tests.Test): def setUp(self): """Prepare tests.""" shape = (3, 4, 4) data = np.arange(np.prod(shape)).reshape(shape) self.cube = _make_cube(data, dtype=np.float64) self.cs = iris.coord_systems.GeogCS(iris.fileformats.pp.EARTH_RADIUS) def test_extract_point__single_linear(self): """Test linear interpolation when extracting a single point""" point = extract_point(self.cube, 2.1, 2.1, scheme='linear') self.assertEqual(point.shape, (3,)) np.testing.assert_allclose(point.data, [5.5, 21.5, 37.5]) # Exactly centred between grid points. point = extract_point(self.cube, 2.5, 2.5, scheme='linear') self.assertEqual(point.shape, (3,)) np.testing.assert_allclose(point.data, [7.5, 23.5, 39.5]) # On a (edge) grid point. point = extract_point(self.cube, 4, 4, scheme='linear') self.assertEqual(point.shape, (3,)) np.testing.assert_allclose(point.data, [15, 31, 47]) # Test two points outside the valid area. # These should be masked, since we set up the interpolation # schemes that way. point = extract_point(self.cube, -1, -1, scheme='linear') self.assertEqual(point.shape, (3,)) masked = np.ma.array([np.nan] * 3, mask=True) self.assert_array_equal(point.data, masked) point = extract_point(self.cube, 30, 30, scheme='linear') self.assertEqual(point.shape, (3,)) self.assert_array_equal(point.data, masked) def test_extract_point__single_nearest(self): """Test nearest match when extracting a single point""" point = extract_point(self.cube, 2.1, 2.1, scheme='nearest') self.assertEqual(point.shape, (3,)) np.testing.assert_allclose(point.data, [5, 21, 37]) point = extract_point(self.cube, 4, 4, scheme='nearest') self.assertEqual(point.shape, (3,)) np.testing.assert_allclose(point.data, [15, 31, 47]) # Test two points outside the valid area point = extract_point(self.cube, -1, -1, scheme='nearest') self.assertEqual(point.shape, (3,)) masked = np.ma.array(np.empty(3, dtype=np.float64), mask=True) self.assert_array_equal(point.data, masked) point = extract_point(self.cube, 30, 30, scheme='nearest') self.assertEqual(point.shape, (3,)) self.assert_array_equal(point.data, masked) def test_extract_point__multiple_linear(self): """Test linear interpolation for an array of one coordinate""" # Test points on the grid edges, on a grid point, halfway and # one in between. coords = self.cube.coords(dim_coords=True) print([coord.standard_name for coord in coords]) point = extract_point(self.cube, [1, 1.1, 1.5, 2, 4], 2, scheme='linear') self.assertEqual(point.shape, (3, 5)) # Longitude is not a dimension coordinate anymore. self.assertEqual(['air_pressure', 'latitude'], [ coord.standard_name for coord in point.coords(dim_coords=True)]) np.testing.assert_allclose(point.data, [[1, 1.4, 3, 5, 13], [17, 17.4, 19., 21., 29], [33, 33.4, 35, 37, 45]]) point = extract_point(self.cube, 4, [1, 1.1, 1.5, 2, 4], scheme='linear') self.assertEqual(point.shape, (3, 5)) self.assertEqual(['air_pressure', 'longitude'], [ coord.standard_name for coord in point.coords(dim_coords=True)]) np.testing.assert_allclose(point.data, [[12, 12.1, 12.5, 13, 15], [28, 28.1, 28.5, 29, 31], [44, 44.1, 44.5, 45, 47]]) # Test latitude and longitude points outside the grid. # These should all be masked. coords = self.cube.coords(dim_coords=True) point = extract_point(self.cube, [0, 10], 3, scheme='linear') self.assertEqual(point.shape, (3, 2)) masked = np.ma.array(np.empty((3, 2), dtype=np.float64), mask=True) self.assert_array_equal(point.data, masked) coords = self.cube.coords(dim_coords=True) point = extract_point(self.cube, 2, [0, 10], scheme='linear') coords = point.coords(dim_coords=True) self.assertEqual(point.shape, (3, 2)) self.assert_array_equal(point.data, masked) def test_extract_point__multiple_nearest(self): """Test nearest match for an array of one coordinate""" point = extract_point(self.cube, [1, 1.1, 1.5, 1.501, 2, 4], 2, scheme='nearest') self.assertEqual(point.shape, (3, 6)) self.assertEqual(['air_pressure', 'latitude'], [ coord.standard_name for coord in point.coords(dim_coords=True)]) np.testing.assert_allclose(point.data, [[1, 1, 1, 5, 5, 13], [17, 17, 17, 21, 21, 29], [33, 33, 33, 37, 37, 45]]) point = extract_point(self.cube, 4, [1, 1.1, 1.5, 1.501, 2, 4], scheme='nearest') self.assertEqual(point.shape, (3, 6)) self.assertEqual(['air_pressure', 'longitude'], [ coord.standard_name for coord in point.coords(dim_coords=True)]) np.testing.assert_allclose(point.data, [[12, 12, 12, 13, 13, 15], [28, 28, 28, 29, 29, 31], [44, 44, 44, 45, 45, 47]]) point = extract_point(self.cube, [0, 10], 3, scheme='nearest') masked = np.ma.array(np.empty((3, 2), dtype=np.float64), mask=True) self.assertEqual(point.shape, (3, 2)) self.assert_array_equal(point.data, masked) point = extract_point(self.cube, 2, [0, 10], scheme='nearest') self.assertEqual(point.shape, (3, 2)) self.assert_array_equal(point.data, masked) def test_extract_point__multiple_both_linear(self): """Test for both latitude and longitude arrays, with linear interpolation""" point = extract_point(self.cube, [0, 1.1, 1.5, 1.51, 4, 5], [0, 1.1, 1.5, 1.51, 4, 5], scheme='linear') self.assertEqual(point.data.shape, (3, 6, 6)) result = np.ma.array(np.empty((3, 6, 6), dtype=np.float64), mask=True) result[0, 1, 1:5] = [0.5, 0.9, 0.91, 3.4] result[0, 2, 1:5] = [2.1, 2.5, 2.51, 5.0] result[0, 3, 1:5] = [2.14, 2.54, 2.55, 5.04] result[0, 4, 1:5] = [12.1, 12.5, 12.51, 15.0] result[1, 1, 1:5] = [16.5, 16.9, 16.91, 19.4] result[1, 2, 1:5] = [18.10, 18.5, 18.51, 21.0] result[1, 3, 1:5] = [18.14, 18.54, 18.55, 21.04] result[1, 4, 1:5] = [28.1, 28.5, 28.51, 31.0] result[2, 1, 1:5] = [32.5, 32.9, 32.91, 35.4] result[2, 2, 1:5] = [34.1, 34.5, 34.51, 37] result[2, 3, 1:5] = [34.14, 34.54, 34.55, 37.04] result[2, 4, 1:5] = [44.1, 44.5, 44.51, 47] # Unmask the inner area of the result array. # The outer edges of the extracted points are outside the cube # grid, and should thus be masked. result.mask[:, 1:5, 1:5] = False np.testing.assert_allclose(point.data, result) def test_extract_point__multiple_both_nearest(self): """Test for both latitude and longitude arrays, with nearest match""" point = extract_point(self.cube, [0, 1.1, 1.5, 1.51, 4, 5], [0, 1.1, 1.5, 1.51, 4, 5], scheme='nearest') self.assertEqual(point.data.shape, (3, 6, 6)) result = np.ma.array(np.empty((3, 6, 6), dtype=np.float64), mask=True) result[0, 1, 1:5] = [0.0, 0.0, 1.0, 3.0] result[0, 2, 1:5] = [0.0, 0.0, 1.0, 3.0] result[0, 3, 1:5] = [4.0, 4.0, 5.0, 7.0] result[0, 4, 1:5] = [12.0, 12.0, 13.0, 15.0] result[1, 1, 1:5] = [16.0, 16.0, 17.0, 19.0] result[1, 2, 1:5] = [16.0, 16.0, 17.0, 19.0] result[1, 3, 1:5] = [20.0, 20.0, 21.0, 23.0] result[1, 4, 1:5] = [28.0, 28.0, 29.0, 31.0] result[2, 1, 1:5] = [32.0, 32.0, 33.0, 35.0] result[2, 2, 1:5] = [32.0, 32.0, 33.0, 35.0] result[2, 3, 1:5] = [36.0, 36.0, 37.0, 39.0] result[2, 4, 1:5] = [44.0, 44.0, 45.0, 47.0] result.mask[:, 1:5, 1:5] = False np.testing.assert_allclose(point.data, result) if __name__ == '__main__': unittest.main()
def superTuple(name, attributes): """Creates a Super Tuple class.""" dct = {} #Create __new__. nargs = len(attributes) def _new_(cls, *args): if len(args) != nargs: raise TypeError("%s takes %d arguments (%d given)." % (cls.__name__, nargs, len(args))) return tuple.__new__(cls, args) dct["__new__"] = staticmethod(_new_) #Create __repr__. def _repr_(self): contents = [repr(elem) for elem in self] return "%s<%s>" % (self.__class__.__name__, ", ".join(contents)) dct["__repr__"] = _repr_ #Create attribute properties. def getter(i): return lambda self: self.__getitem__(i) for index, attribute in enumerate(attributes): dct[attribute] = property(getter(index)) #Set slots. dct["__slots__"] = [] #Return class. return type(name, (tuple,), dct)
import sandstone.models.mlp import sandstone.models.linear import sandstone.models.rnn
from time import sleep from nltk.tokenize import word_tokenize from nltk.stem.wordnet import WordNetLemmatizer from nltk.corpus import sentiwordnet as swn, stopwords, wordnet from nltk.sentiment.vader import SentimentIntensityAnalyzer import nltk import pandas as pd import re from datetime import datetime nltk.download('vader_lexicon') nltk.download('stopwords') nltk.download('punkt') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet') nltk.download('sentiwordnet') class SentimentAnalyzer: def __init__(self): self.sentimentAnalyzer = SentimentIntensityAnalyzer() self.stop_words = set(stopwords.words('english')) self.lemmatizer = WordNetLemmatizer() def preprocess_text(self, text): # Special Character Filtering text_char_filter = self.specialchar_filtering_text(text) # To lower case text_lower = self.to_lowercase_text(text_char_filter) # Tokenized tokenized = self.tokenize_text(text_lower) result = tokenized return result def specialchar_filtering_text(self, text): # print("\n======================== Special Char Filtering =========================") result = " ".join(re.findall("[a-zA-Z]+", text)) return result def to_lowercase_text(self, text): # print("\n======================== Data case folding =========================") result = text.lower() return result def tokenize_text(self, text): print("[", datetime.now(), "] Tokenizing data....") result = nltk.pos_tag(word_tokenize(text)) return result def lemmatize_text(self, text, pos_tag): result = self.lemmatizer.lemmatize(text, pos_tag) # print(result) return result def get_wordnet_pos_tag(self, tag): tag_dict = { "J": wordnet.ADJ, "N": wordnet.NOUN, "V": wordnet.VERB, "R": wordnet.ADV, } return tag_dict.get(tag, wordnet.NOUN) def get_vader(self, text): return self.sentimentAnalyzer.polarity_scores(text) def get_wordnet_degree(self, word): pos_tag = self.get_wordnet_pos_tag(word[1][0]) # print(word[0], " ", word[1][0], " ", pos_tag) lemmatized = self.lemmatize_text(word[0], pos_tag) synset = swn.senti_synset('{0}.{1}.03'.format(lemmatized, pos_tag)) return { 'positive': synset.pos_score(), 'negative': synset.neg_score(), 'objective': synset.obj_score() } def get_wordnet_aggregation(self, pos, neg, obj): pos_wordnet = 0 neg_wordnet = 0 result = 0 if pos > neg: pos_wordnet = pos / (pos + neg) result = pos_wordnet - (obj * pos_wordnet) elif pos < neg: neg_wordnet = neg / (pos + neg) * -1 result = neg_wordnet - (obj * neg_wordnet) else: result = 0 return result def get_sentiwordnet(self, text): sentences_result = 0 total = 0 text_preprocessed = self.preprocess_text(text) word_count = 0 for word in text_preprocessed: if word[0] not in self.stop_words: try: degree = self.get_wordnet_degree(word) result = self.get_wordnet_aggregation( degree['positive'], degree['negative'], degree['objective']) # print("Result = ", result) if result != None: word_count += 1 sentences_result += result except: continue print("[", datetime.now(), "] Word count :", word_count) if word_count > 0: sentences_result = sentences_result / word_count else : sentences_result = 0 print("[", datetime.now(), "] Sentences result :", sentences_result) return result if __name__ == "__main__": sentimentAnalyzer = SentimentAnalyzer() # Good # score = sentimentAnalyzer.get_sentiwordnet( # "Great Hampton Inn. Great Location. Great People. Good breakfast. Clean and comfortable . Easy to get to from the airports. Has not shown any wear from the time built. The room was comfortable and clean") # Bad # score = sentimentAnalyzer.get_sentiwordnet( # "I booked this hotel tonight (april 11,2019) under my company reservation for two nights. Once, I arrived your front office staff said no reservation for us (Andi and Ega). They said that no room at all. Your marketing for my company (KPPU) said the same 'No'. They do nothing, do not make an effort for double check. I said that your hotel staff had confirm to Ms.Xenia this noon, but they still refusing us So, we force to search another hotel at 18.38 tonight. What a bad reservation system you had. It is so impossible for me do check in at the hotel without the reservation. And I have no word of apologize at all from your hotel staff Bad.. Very bad indeed.") # Check score = sentimentAnalyzer.get_sentiwordnet( "In the end i think the biggest issue with Cupadak Paradiso is the price. The location is beautiful but when you ask $150USD per night in South East Asia people’s expectations are relatively high. Unfortunately in this instance ours weren’t met. No airconditioning might be an issue for some for that money but was actually fine for us, a fan more than sufficed, but in 2019 to still be charging for wifi felt cheap, surely you just integrate the cost into your room rate calculation. The lodge itself is creaking after 25 years and in need of a bit of refurbishment. The food was ok but to have set times for group meals is quite rigid, although for sure easier for their kitchen. Couple of disclaimers at this point, we did make two mistakes during our stay, firstly asking if it was possible to have some Indonesian food on the daily menu, secondly leaving some empty cans outside one of our rooms. Both of these events then became issues that the owner Dominique felt the need to highlight to the whole group at every subsequent mealtime, either telling everyone that we’d been naive in leaving the cans and she’d had to fight off the monkeys in the morning or apologising to everyone for the local food being served but it had been specially requested. This became uncomfortable, as much as we liked the idea of shared mealtimes it only works when guests feel comfortable in the management’s company. Knowing that we were going to be regularly lambasted for our errors wasn’t enjoyable. Just a last point but the staff seemed to be very relaxed, lounging in the library, restaurant or bar. It wasn’t really clear what they were up to but could be an idea to have a staff room dedicated for them as a slightly seperate area from guests. It is a beautiful spot and great place to relax and watch the world go by but could have been so much more...")
import unittest from huobi.impl.utils import * from huobi.model.constant import * from huobi.impl.restapirequestimpl import RestApiRequestImpl from huobi.impl.utils.timeservice import convert_cst_in_millisecond_to_utc data = ''' { "code": 200, "success": "True", "data": [ { "id": 1499184000, "amount": 123.123, "open": 0.7794, "close": 0.779, "low": 0.769, "high": 0.7694, "vol": 456.456 } ] } ''' class TestGetETFCandlestick(unittest.TestCase): def test_request(self): impl = RestApiRequestImpl("", "") request = impl.get_etf_candlestick("hb10", CandlestickInterval.YEAR1, 100) self.assertEqual("GET", request.method) self.assertTrue(request.url.find("/quotation/market/history/kline") != -1) self.assertTrue(request.url.find("symbol=hb10")) self.assertTrue(request.url.find("period=1year")) self.assertTrue(request.url.find("limit=100")) def test_result(self): impl = RestApiRequestImpl("", "") request = impl.get_etf_candlestick("hb10", CandlestickInterval.YEAR1, 100) candlestick_list = request.json_parser(parse_json_from_string(data)) self.assertEqual(1, len(candlestick_list)) self.assertEqual(convert_cst_in_millisecond_to_utc(1499184000), candlestick_list[0].timestamp) self.assertEqual(0.7694, candlestick_list[0].high) self.assertEqual(0.769, candlestick_list[0].low) self.assertEqual(0.7794, candlestick_list[0].open) self.assertEqual(0.779, candlestick_list[0].close) self.assertEqual(123.123, candlestick_list[0].amount) self.assertEqual(456.456, candlestick_list[0].volume)
"""SniTun reference implementation.""" import asyncio from contextlib import suppress from itertools import cycle import logging from multiprocessing import cpu_count import select import socket from typing import Awaitable, Iterable, List, Optional, Dict from threading import Thread import async_timeout from .listener_peer import PeerListener from .listener_sni import SNIProxy from .peer_manager import PeerManager from .worker import ServerWorker from .sni import ParseSNIError, parse_tls_sni _LOGGER = logging.getLogger(__name__) WORKER_STALE_MAX = 10 class SniTunServer: """SniTunServer helper class for Dual port Asyncio.""" def __init__( self, fernet_keys: List[str], sni_port: Optional[int] = None, sni_host: Optional[str] = None, peer_port: Optional[int] = None, peer_host: Optional[str] = None, throttling: Optional[int] = None, ): """Initialize SniTun Server.""" self._peers: PeerManager = PeerManager(fernet_keys, throttling=throttling) self._list_sni: SNIProxy = SNIProxy(self._peers, host=sni_host, port=sni_port) self._list_peer: PeerListener = PeerListener( self._peers, host=peer_host, port=peer_port ) @property def peers(self) -> PeerManager: """Return peer manager.""" return self._peers def start(self) -> Awaitable[None]: """Run server. Return coroutine. """ return asyncio.wait([self._list_peer.start(), self._list_sni.start()]) def stop(self) -> Awaitable[None]: """Stop server. Return coroutine. """ return asyncio.wait([self._list_peer.stop(), self._list_sni.stop()]) class SniTunServerSingle: """SniTunServer helper class for Single port Asnycio.""" def __init__( self, fernet_keys: List[str], host: Optional[str] = None, port: Optional[int] = None, throttling: Optional[int] = None, ): """Initialize SniTun Server.""" self._loop: asyncio.BaseEventLoop = asyncio.get_event_loop() self._server: Optional[asyncio.AbstractServer] = None self._peers: PeerManager = PeerManager(fernet_keys, throttling=throttling) self._list_sni: SNIProxy = SNIProxy(self._peers) self._list_peer: PeerListener = PeerListener(self._peers) self._host: str = host or "0.0.0.0" self._port: int = port or 443 @property def peers(self) -> PeerManager: """Return peer manager.""" return self._peers async def start(self) -> None: """Run server.""" self._server = await asyncio.start_server( self._handler, host=self._host, port=self._port ) async def stop(self) -> None: """Stop server.""" self._server.close() await self._server.wait_closed() async def _handler( self, reader: asyncio.StreamReader, writer: asyncio.StreamWriter ) -> None: """Handle incoming connection.""" try: async with async_timeout.timeout(10): data = await reader.read(2048) except asyncio.TimeoutError: _LOGGER.warning("Abort connection initializing") writer.close() return except OSError: return # Connection closed / healty check if not data: writer.close() return # Select the correct handler for process data if data[0] == 0x16: self._loop.create_task( self._list_sni.handle_connection(reader, writer, data=data) ) elif data.startswith(b"gA"): self._loop.create_task( self._list_peer.handle_connection(reader, writer, data=data) ) else: _LOGGER.warning("No valid ClientHello found: %s", data) writer.close() return class SniTunServerWorker(Thread): """SniTunServer helper class for Worker.""" def __init__( self, fernet_keys: List[str], host: Optional[str] = None, port: Optional[int] = None, worker_size: Optional[int] = None, throttling: Optional[int] = None, ): """Initialize SniTun Server.""" super().__init__() self._host: str = host or "0.0.0.0" self._port: int = port or 443 self._fernet_keys: List[str] = fernet_keys self._throttling: Optional[int] = throttling self._worker_size: int = worker_size or (cpu_count() * 2) self._workers: List[ServerWorker] = [] self._running: bool = False # TCP server self._server: Optional[socket.socket] = None self._poller: Optional[select.epoll] = None @property def peer_counter(self) -> int: """Return number of active peer connections.""" return sum(worker.peer_size for worker in self._workers) def start(self) -> None: """Run server.""" # Init first all worker, we don't want the epoll on the childs _LOGGER.info("Run SniTun with %d worker", self._worker_size) for _ in range(self._worker_size): worker = ServerWorker(self._fernet_keys, throttling=self._throttling) worker.start() self._workers.append(worker) self._server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._server.bind((self._host, self._port)) self._server.setblocking(False) self._server.listen(80 * 1000) self._running = True self._poller = select.epoll() self._poller.register(self._server.fileno(), select.EPOLLIN) super().start() def stop(self) -> None: """Stop server.""" self._running = False self.join() # Shutdown all workers for worker in self._workers: worker.shutdown() worker.close() self._workers.clear() self._server.close() self._poller.close() def run(self) -> None: """Handle incoming connection.""" fd_server = self._server.fileno() connections: Dict[int, socket.socket] = {} worker_lb = cycle(self._workers) stale: Dict[int, int] = {} while self._running: events = self._poller.poll(1) for fileno, event in events: # New Connection if fileno == fd_server: con, _ = self._server.accept() con.setblocking(False) self._poller.register( con.fileno(), select.EPOLLIN | select.EPOLLHUP | select.EPOLLERR ) connections[con.fileno()] = con stale[con.fileno()] = 0 # Read hello & forward to worker elif event & select.EPOLLIN: self._poller.unregister(fileno) con = connections.pop(fileno) self._process(con, worker_lb) # Close else: self._poller.unregister(fileno) con = connections.pop(fileno) con.close() # cleanup stale connection for fileno in tuple(stale): if fileno not in connections: stale.pop(fileno) elif stale[fileno] >= WORKER_STALE_MAX: self._poller.unregister(fileno) con = connections.pop(fileno) con.close() else: stale[fileno] += 1 def _process(self, con: socket.socket, workers_lb: Iterable[ServerWorker]) -> None: """Process connection & helo.""" data = b"" try: data = con.recv(2048) except OSError as err: _LOGGER.warning("Receive fails: %s", err) con.close() return # No data received if not data: with suppress(OSError): con.shutdown(socket.SHUT_RDWR) return # Peer connection if data.startswith(b"gA"): next(workers_lb).handover_connection(con, data) _LOGGER.debug("Handover new peer connection: %s", data) return # TLS/SSL connection if data[0] != 0x16: _LOGGER.warning("No valid ClientHello found: %s", data) with suppress(OSError): con.shutdown(socket.SHUT_RDWR) return try: hostname = parse_tls_sni(data) except ParseSNIError: _LOGGER.warning("Receive invalid ClientHello on public Interface") else: for worker in self._workers: if not worker.is_responsible_peer(hostname): continue worker.handover_connection(con, data, sni=hostname) _LOGGER.info("Handover %s to %s", hostname, worker.name) return _LOGGER.warning("No responsible worker for %s", hostname) with suppress(OSError): con.shutdown(socket.SHUT_RDWR)
import torch import torch.nn as nn from torch.distributions import Normal, kl_divergence from .utils import ModuleTraits class Baseline(nn.Sequential): def __init__(self, dim_in=784, dim_out=784): super().__init__( nn.Linear(dim_in, 500), nn.GELU(), nn.Linear(500, 500), nn.GELU(), nn.Linear(500, dim_out), ) class EncoderTraits(ModuleTraits): @property def normal(self) -> Normal: return self._saved_for_later["normal"] class Encoder(EncoderTraits, Baseline): def __init__(self): super().__init__(dim_out=400) def forward(self, x, y_=None): if y_ is not None: x = x.clone() x[x == -1] = y_[x == -1] μ, logσ = super().forward(x).chunk(2, dim=-1) σ = logσ.exp() z = μ + σ * torch.randn_like(μ) self.save_for_later(normal=Normal(μ, σ)) return z class DumbEncoder(EncoderTraits, nn.Module): def __init__(self): super().__init__() def forward(self, x, _): μ = torch.zeros(len(x), 200, device=x.device) normal = Normal(μ, torch.ones_like(μ)) self.save_for_later(normal=normal) return normal.sample() class Decoder(Baseline): def __init__(self, conditioned=False): super().__init__(dim_in=984 if conditioned else 200) if __name__ == "__main__": x = torch.randn(3, 28, 28) y = torch.randn(3, 28, 28) baseline = Baseline() prior = Encoder() encoder = Encoder() decoder = Decoder() x = x.flatten(1) y = y.flatten(1) y_ = baseline(x) z_prior = prior(x, y_) z_posterior = encoder(x, y) kl = kl_divergence(encoder.normal, prior.normal) x = decoder(z_prior) x = x.view(3, 28, 28) print(x.shape)
from django.db import models from django.utils.safestring import mark_safe class BaseModel(models.Model): model_name = None table_fields = [] supported_views = ["detailed", "list", "gallery"] extra_context = {} def admin_url(self): name = self.model_name.replace("-", "_").lower() return "/admin/museum_site/{}/{}/change/".format(name, self.id) def url(self): raise NotImplementedError('Subclasses must implement "url" method.') def preview_url(self): raise NotImplementedError( 'Subclasses must implement "preview_url" method.' ) def scrub(self): raise NotImplementedError( 'Subclasses must implement "scrub" method.' ) def _init_icons(self): # Stub self._minor_icons = [] self._major_icons = [] def get_all_icons(self): # Returns combined list of both major and minor icons, populating if needed if not hasattr(self, "_major_icons"): self._init_icons() return self._major_icons + self._minor_icons def get_major_icons(self): # Returns list of major icons, populating if needed if not hasattr(self, "_major_icons"): self._init_icons() return self._major_icons def initial_context(self, *args, **kwargs): context = { "pk": self.pk, "model": self.model_name, "preview": {"url": self.preview_url(), "alt": self.preview_url()}, "url": self.url(), "icons": self.get_all_icons(), "major_icons": self.get_major_icons(), "roles": [], "debug": False, "request": None, "extras": [], } request = kwargs.get("request") context["request"] = request # Debug mode if request and request.session.get("DEBUG"): context["debug"] = True if hasattr(self, "extra_context"): context.update(self.extra_context) return context def ssv(self, field_name, field_attr="title"): # Get a string of slash separated values for a many-to-many field ssv = "" if hasattr(self, field_name): entries = list( getattr(self, field_name).all().values_list( field_attr, flat=True ) ) ssv= "/".join(entries) return ssv class Meta: abstract = True
from matplotlib import pyplot as plt from jax import random from scipy.spatial.transform import Rotation as R from optimism.JaxConfig import * from optimism import EquationSolver as EqSolver from optimism import Objective from optimism.test import TestFixture from optimism.test.MeshFixture import MeshFixture from optimism.phasefield import PhaseFieldLorentzPlastic as Model from optimism import SparseMatrixAssembler from optimism import TensorMath from optimism import Mesh plotting=False class GradOfPlasticPhaseFieldModelFixture(TestFixture.TestFixture): def setUp(self): self.E = 100.0 self.nu = 0.321 self.Gc = 40.0 self.psiC = 0.5*self.E self.l = 1.0 self.Y0 = 0.3*self.E self.H = 1.0e-2*self.E props = {'elastic modulus': self.E, 'poisson ratio': self.nu, 'critical energy release rate': self.Gc, 'critical strain energy density': self.psiC, 'regularization length': self.l, 'yield strength': self.Y0, 'hardening model': 'linear', 'hardening modulus': self.H, 'kinematics': 'large deformations'} self.model = Model.create_material_model_functions(props) self.flux_func = grad(self.model.compute_energy_density, (0,1,2)) self.internalVariables = self.model.compute_initial_state() def test_zero_point(self): dispGrad = np.zeros((3,3)) phase = 0. phaseGrad = np.zeros(3) energy = self.model.compute_energy_density(dispGrad, phase, phaseGrad, self.internalVariables) self.assertNear(energy, 0.0, 12) stress, phaseForce, phaseGradForce = self.flux_func(dispGrad, phase, phaseGrad, self.internalVariables) self.assertArrayNear(stress, np.zeros((3,3)), 12) self.assertNear(phaseForce, 3.0/8.0*self.Gc/self.l, 12) self.assertArrayNear(phaseGradForce, np.zeros(3), 12) def test_rotation_invariance(self): key = random.PRNGKey(0) dispGrad = random.uniform(key, (3,3)) key, subkey = random.split(key) phase = random.uniform(subkey) key,subkey = random.split(key) phaseGrad = random.uniform(subkey, (3,)) energy = self.model.compute_energy_density(dispGrad, phase, phaseGrad, self.internalVariables) Q = R.random(random_state=1234).as_matrix() dispGradStar = Q@(dispGrad + np.identity(3)) - np.identity(3) phaseStar = phase phaseGradStar = Q@phaseGrad internalVariablesStar = self.internalVariables energyStar = self.model.compute_energy_density(dispGradStar, phaseStar, phaseGradStar, internalVariablesStar) self.assertNear(energy, energyStar, 12) def test_elastic_energy(self): strainBelowYield = 0.5*self.Y0/self.E # engineering strain dispGrad = np.diag(np.exp(strainBelowYield*np.array([1.0, -self.nu, -self.nu])))-np.identity(3) phase = 0.0 phaseGrad = np.zeros(3) energy = self.model.compute_energy_density(dispGrad, phase, phaseGrad, self.internalVariables) energyExact = 0.5*self.E*strainBelowYield**2 self.assertNear(energy, energyExact, 12) piolaStress,_,_ = self.flux_func(dispGrad, phase, phaseGrad, self.internalVariables) mandelStress = piolaStress@(dispGrad + np.identity(3)).T stressExact = ops.index_update(np.zeros((3,3)), ops.index[0,0], self.E*strainBelowYield) self.assertArrayNear(mandelStress, stressExact, 12) def test_plastic_stress(self): strain11 = 1.1*self.Y0/self.E eqps = (self.E*strain11 - self.Y0)/(self.H + self.E) elasticStrain11 = strain11 - eqps lateralStrain = -self.nu*elasticStrain11 - 0.5*eqps strains = np.array([strain11, lateralStrain, lateralStrain]) dispGrad = np.diag(np.exp(strains)) - np.identity(3) phase = 0.0 phaseGrad = np.zeros(3) energyExact = 0.5*self.E*elasticStrain11**2 + self.Y0*eqps + 0.5*self.H*eqps**2 energy = self.model.compute_energy_density(dispGrad, phase, phaseGrad, self.internalVariables) self.assertNear(energy, energyExact, 12) stress,_,_ = self.flux_func(dispGrad, phase, phaseGrad, self.internalVariables) mandelStress = stress@(dispGrad + np.identity(3)).T mandelStress11Exact = self.E*(strain11 - eqps) self.assertNear(mandelStress[0,0], mandelStress11Exact, 12) if __name__ == '__main__': TestFixture.unittest.main()
from importlib.resources import path import functools import torch import torch.nn as nn class Net(nn.Module): def __init__(self, NN_ARCHITECTURE): super(Net, self).__init__() # Define a fully connected layers model with three inputs (frequency, flux density, duty ratio) # and one output (power loss). self.layers = nn.Sequential( nn.Linear(NN_ARCHITECTURE[0], NN_ARCHITECTURE[1]), nn.ReLU(), nn.Linear(NN_ARCHITECTURE[1], NN_ARCHITECTURE[2]), nn.ReLU(), nn.Linear(NN_ARCHITECTURE[2], NN_ARCHITECTURE[3]), nn.ReLU(), nn.Linear(NN_ARCHITECTURE[3], NN_ARCHITECTURE[4]) ) def forward(self, x): return self.layers(x) # Returns number of trainable parameters in a network def count_parameters(self): return sum(p.numel() for p in self.parameters() if p.requires_grad) @functools.lru_cache(maxsize=8) def model(material, waveform, device='cpu'): with path('magnet.models', f'Model_{material}_{waveform}.sd') as sd_file: state_dict = torch.load(sd_file) if waveform == 'Sinusoidal': NN_ARCHITECTURE = [2, 24, 24, 24, 1] neural_network = Net(NN_ARCHITECTURE).double().to(device) elif waveform == 'Trapezoidal': NN_ARCHITECTURE = [6, 24, 24, 24, 1] neural_network = Net(NN_ARCHITECTURE).double().to(device) neural_network.load_state_dict(state_dict, strict=True) neural_network.eval() return neural_network class Net_LSTM(nn.Module): def __init__(self): super(Net_LSTM, self).__init__() self.lstm = nn.LSTM(1, 32, num_layers=1, batch_first=True, bidirectional=False) self.fc1 = nn.Sequential( nn.Linear(32, 16), nn.LeakyReLU(0.2), nn.Linear(16, 16), nn.LeakyReLU(0.2), nn.Linear(16, 15) ) self.fc2 = nn.Sequential( nn.Linear(16, 16), nn.LeakyReLU(0.2), nn.Linear(16, 16), nn.LeakyReLU(0.2), nn.Linear(16, 1) ) def forward(self, x, freq): x, _ = self.lstm(x) x = x[:, -1, :] # Get last output only (many-to-one) x = self.fc1(x) y = self.fc2(torch.cat((x,freq),1)) return y def count_parameters(self): # Returns number of trainable parameters in a network return sum(p.numel() for p in self.parameters() if p.requires_grad) @functools.lru_cache(maxsize=8) def model_lstm(material, device='cpu'): with path('magnet.models', f'Model_{material}_LSTM.sd') as sd_file: device = torch.device('cpu') state_dict = torch.load(sd_file, map_location=device) neural_network = Net_LSTM().double().to(device) neural_network.load_state_dict(state_dict, strict=True) neural_network.eval() return neural_network
from .Param import VelocityParameter, SlownessParameter, SlothParameter
from yoyo import step transaction( step( """ALTER TABLE transfer_meter ADD COLUMN month VARCHAR;""", """ALTER TABLE transfer_meter DROP COLUMN month;"""), step("""CREATE UNIQUE INDEX transfer_meter_month_idx ON transfer_meter(month);"""))
import tensorflow as tf from base.base_model import BaseModel from utils.alad_utils import get_getter import utils.alad_utils as sn class SENCEBGAN(BaseModel): def __init__(self, config): super(SENCEBGAN, self).__init__(config) self.build_model() self.init_saver() def build_model(self): ############################################################################################ # INIT ############################################################################################ # Kernel initialization for the convolutions if self.config.trainer.init_type == "normal": self.init_kernel = tf.random_normal_initializer(mean=0.0, stddev=0.02) elif self.config.trainer.init_type == "xavier": self.init_kernel = tf.contrib.layers.xavier_initializer( uniform=False, seed=None, dtype=tf.float32 ) # Placeholders self.is_training_gen = tf.placeholder(tf.bool) self.is_training_dis = tf.placeholder(tf.bool) self.is_training_enc_g = tf.placeholder(tf.bool) self.is_training_enc_r = tf.placeholder(tf.bool) self.feature_match1 = tf.placeholder(tf.float32) self.feature_match2 = tf.placeholder(tf.float32) self.image_input = tf.placeholder( tf.float32, shape=[None] + self.config.trainer.image_dims, name="x" ) self.noise_tensor = tf.placeholder( tf.float32, shape=[None, self.config.trainer.noise_dim], name="noise" ) ############################################################################################ # MODEL ############################################################################################ self.logger.info("Building training graph...") with tf.variable_scope("SENCEBGAN"): # First training part # G(z) ==> x' with tf.variable_scope("Generator_Model"): self.image_gen = self.generator(self.noise_tensor) # Discriminator outputs with tf.variable_scope("Discriminator_Model"): self.embedding_real, self.decoded_real = self.discriminator( self.image_input, do_spectral_norm=self.config.trainer.do_spectral_norm ) self.embedding_fake, self.decoded_fake = self.discriminator( self.image_gen, do_spectral_norm=self.config.trainer.do_spectral_norm ) # Second training part # E(x) ==> z' with tf.variable_scope("Encoder_G_Model"): self.image_encoded = self.encoder_g(self.image_input) # G(z') ==> G(E(x)) ==> x'' with tf.variable_scope("Generator_Model"): self.image_gen_enc = self.generator(self.image_encoded) # Discriminator outputs with tf.variable_scope("Discriminator_Model"): self.embedding_enc_fake, self.decoded_enc_fake = self.discriminator( self.image_gen_enc, do_spectral_norm=self.config.trainer.do_spectral_norm ) self.embedding_enc_real, self.decoded_enc_real = self.discriminator( self.image_input, do_spectral_norm=self.config.trainer.do_spectral_norm ) with tf.variable_scope("Discriminator_Model_XX"): self.im_logit_real, self.im_f_real = self.discriminator_xx( self.image_input, self.image_input, do_spectral_norm=self.config.trainer.do_spectral_norm, ) self.im_logit_fake, self.im_f_fake = self.discriminator_xx( self.image_input, self.image_gen_enc, do_spectral_norm=self.config.trainer.do_spectral_norm, ) # Third training part with tf.variable_scope("Encoder_G_Model"): self.image_encoded_r = self.encoder_g(self.image_input) with tf.variable_scope("Generator_Model"): self.image_gen_enc_r = self.generator(self.image_encoded_r) with tf.variable_scope("Encoder_R_Model"): self.image_ege = self.encoder_r(self.image_gen_enc_r) with tf.variable_scope("Discriminator_Model_ZZ"): self.z_logit_real, self.z_f_real = self.discriminator_zz( self.image_encoded_r, self.image_encoded_r, do_spectral_norm=self.config.trainer.do_spectral_norm, ) self.z_logit_fake, self.z_f_fake = self.discriminator_zz( self.image_encoded_r, self.image_ege, do_spectral_norm=self.config.trainer.do_spectral_norm, ) ############################################################################################ # LOSS FUNCTIONS ############################################################################################ with tf.name_scope("Loss_Functions"): with tf.name_scope("Generator_Discriminator"): # Discriminator Loss if self.config.trainer.mse_mode == "norm": self.disc_loss_real = tf.reduce_mean( self.mse_loss( self.decoded_real, self.image_input, mode="norm", order=self.config.trainer.order, ) ) self.disc_loss_fake = tf.reduce_mean( self.mse_loss( self.decoded_fake, self.image_gen, mode="norm", order=self.config.trainer.order, ) ) elif self.config.trainer.mse_mode == "mse": self.disc_loss_real = self.mse_loss( self.decoded_real, self.image_input, mode="mse", order=self.config.trainer.order, ) self.disc_loss_fake = self.mse_loss( self.decoded_fake, self.image_gen, mode="mse", order=self.config.trainer.order, ) self.loss_discriminator = ( tf.math.maximum(self.config.trainer.disc_margin - self.disc_loss_fake, 0) + self.disc_loss_real ) # Generator Loss pt_loss = 0 if self.config.trainer.pullaway: pt_loss = self.pullaway_loss(self.embedding_fake) self.loss_generator = self.disc_loss_fake + self.config.trainer.pt_weight * pt_loss # New addition to enforce visual similarity delta_noise = self.embedding_real - self.embedding_fake delta_flat = tf.layers.Flatten()(delta_noise) loss_noise_gen = tf.reduce_mean(tf.norm(delta_flat, ord=2, axis=1, keepdims=False)) self.loss_generator += 0.1 * loss_noise_gen with tf.name_scope("Encoder_G"): if self.config.trainer.mse_mode == "norm": self.loss_enc_rec = tf.reduce_mean( self.mse_loss( self.image_gen_enc, self.image_input, mode="norm", order=self.config.trainer.order, ) ) self.loss_enc_f = tf.reduce_mean( self.mse_loss( self.decoded_enc_real, self.decoded_enc_fake, mode="norm", order=self.config.trainer.order, ) ) elif self.config.trainer.mse_mode == "mse": self.loss_enc_rec = tf.reduce_mean( self.mse_loss( self.image_gen_enc, self.image_input, mode="mse", order=self.config.trainer.order, ) ) self.loss_enc_f = tf.reduce_mean( self.mse_loss( self.embedding_enc_real, self.embedding_enc_fake, mode="mse", order=self.config.trainer.order, ) ) self.loss_encoder_g = ( self.loss_enc_rec + self.config.trainer.encoder_f_factor * self.loss_enc_f ) if self.config.trainer.enable_disc_xx: self.enc_xx_real = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.im_logit_real, labels=tf.zeros_like(self.im_logit_real) ) self.enc_xx_fake = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.im_logit_fake, labels=tf.ones_like(self.im_logit_fake) ) self.enc_loss_xx = tf.reduce_mean(self.enc_xx_real + self.enc_xx_fake) self.loss_encoder_g += self.enc_loss_xx with tf.name_scope("Encoder_R"): if self.config.trainer.mse_mode == "norm": self.loss_encoder_r = tf.reduce_mean( self.mse_loss( self.image_ege, self.image_encoded_r, mode="norm", order=self.config.trainer.order, ) ) elif self.config.trainer.mse_mode == "mse": self.loss_encoder_r = tf.reduce_mean( self.mse_loss( self.image_ege, self.image_encoded_r, mode="mse", order=self.config.trainer.order, ) ) if self.config.trainer.enable_disc_zz: self.enc_zz_real = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.z_logit_real, labels=tf.zeros_like(self.z_logit_real) ) self.enc_zz_fake = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.z_logit_fake, labels=tf.ones_like(self.z_logit_fake) ) self.enc_loss_zz = tf.reduce_mean(self.enc_zz_real + self.enc_zz_fake) self.loss_encoder_r += self.enc_loss_zz if self.config.trainer.enable_disc_xx: with tf.name_scope("Discriminator_XX"): self.loss_xx_real = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.im_logit_real, labels=tf.ones_like(self.im_logit_real) ) self.loss_xx_fake = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.im_logit_fake, labels=tf.zeros_like(self.im_logit_fake) ) self.dis_loss_xx = tf.reduce_mean(self.loss_xx_real + self.loss_xx_fake) if self.config.trainer.enable_disc_zz: with tf.name_scope("Discriminator_ZZ"): self.loss_zz_real = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.z_logit_real, labels=tf.ones_like(self.z_logit_real) ) self.loss_zz_fake = tf.nn.sigmoid_cross_entropy_with_logits( logits=self.z_logit_fake, labels=tf.zeros_like(self.z_logit_fake) ) self.dis_loss_zz = tf.reduce_mean(self.loss_zz_real + self.loss_zz_fake) ############################################################################################ # OPTIMIZERS ############################################################################################ with tf.name_scope("Optimizers"): self.generator_optimizer = tf.train.AdamOptimizer( self.config.trainer.standard_lr_gen, beta1=self.config.trainer.optimizer_adam_beta1, beta2=self.config.trainer.optimizer_adam_beta2, ) self.encoder_g_optimizer = tf.train.AdamOptimizer( self.config.trainer.standard_lr_enc, beta1=self.config.trainer.optimizer_adam_beta1, beta2=self.config.trainer.optimizer_adam_beta2, ) self.encoder_r_optimizer = tf.train.AdamOptimizer( self.config.trainer.standard_lr_enc, beta1=self.config.trainer.optimizer_adam_beta1, beta2=self.config.trainer.optimizer_adam_beta2, ) self.discriminator_optimizer = tf.train.AdamOptimizer( self.config.trainer.standard_lr_dis, beta1=self.config.trainer.optimizer_adam_beta1, beta2=self.config.trainer.optimizer_adam_beta2, ) # Collect all the variables all_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) # Generator Network Variables self.generator_vars = [ v for v in all_variables if v.name.startswith("SENCEBGAN/Generator_Model") ] # Discriminator Network Variables self.discriminator_vars = [ v for v in all_variables if v.name.startswith("SENCEBGAN/Discriminator_Model") ] # Discriminator Network Variables self.encoder_g_vars = [ v for v in all_variables if v.name.startswith("SENCEBGAN/Encoder_G_Model") ] self.encoder_r_vars = [ v for v in all_variables if v.name.startswith("SENCEBGAN/Encoder_R_Model") ] self.dxxvars = [ v for v in all_variables if v.name.startswith("SENCEBGAN/Discriminator_Model_XX") ] self.dzzvars = [ v for v in all_variables if v.name.startswith("SENCEBGAN/Discriminator_Model_ZZ") ] # Generator Network Operations self.gen_update_ops = tf.get_collection( tf.GraphKeys.UPDATE_OPS, scope="SENCEBGAN/Generator_Model" ) # Discriminator Network Operations self.disc_update_ops = tf.get_collection( tf.GraphKeys.UPDATE_OPS, scope="SENCEBGAN/Discriminator_Model" ) self.encg_update_ops = tf.get_collection( tf.GraphKeys.UPDATE_OPS, scope="SENCEBGAN/Encoder_G_Model" ) self.encr_update_ops = tf.get_collection( tf.GraphKeys.UPDATE_OPS, scope="SENCEBGAN/Encoder_R_Model" ) self.update_ops_dis_xx = tf.get_collection( tf.GraphKeys.UPDATE_OPS, scope="SENCEBGAN/Discriminator_Model_XX" ) self.update_ops_dis_zz = tf.get_collection( tf.GraphKeys.UPDATE_OPS, scope="SENCEBGAN/Discriminator_Model_ZZ" ) with tf.control_dependencies(self.gen_update_ops): self.gen_op = self.generator_optimizer.minimize( self.loss_generator, var_list=self.generator_vars, global_step=self.global_step_tensor, ) with tf.control_dependencies(self.disc_update_ops): self.disc_op = self.discriminator_optimizer.minimize( self.loss_discriminator, var_list=self.discriminator_vars ) with tf.control_dependencies(self.encg_update_ops): self.encg_op = self.encoder_g_optimizer.minimize( self.loss_encoder_g, var_list=self.encoder_g_vars, global_step=self.global_step_tensor, ) with tf.control_dependencies(self.encr_update_ops): self.encr_op = self.encoder_r_optimizer.minimize( self.loss_encoder_r, var_list=self.encoder_r_vars, global_step=self.global_step_tensor, ) if self.config.trainer.enable_disc_xx: with tf.control_dependencies(self.update_ops_dis_xx): self.disc_op_xx = self.discriminator_optimizer.minimize( self.dis_loss_xx, var_list=self.dxxvars ) if self.config.trainer.enable_disc_zz: with tf.control_dependencies(self.update_ops_dis_zz): self.disc_op_zz = self.discriminator_optimizer.minimize( self.dis_loss_zz, var_list=self.dzzvars ) # Exponential Moving Average for Estimation self.dis_ema = tf.train.ExponentialMovingAverage(decay=self.config.trainer.ema_decay) maintain_averages_op_dis = self.dis_ema.apply(self.discriminator_vars) self.gen_ema = tf.train.ExponentialMovingAverage(decay=self.config.trainer.ema_decay) maintain_averages_op_gen = self.gen_ema.apply(self.generator_vars) self.encg_ema = tf.train.ExponentialMovingAverage(decay=self.config.trainer.ema_decay) maintain_averages_op_encg = self.encg_ema.apply(self.encoder_g_vars) self.encr_ema = tf.train.ExponentialMovingAverage(decay=self.config.trainer.ema_decay) maintain_averages_op_encr = self.encr_ema.apply(self.encoder_r_vars) if self.config.trainer.enable_disc_xx: self.dis_xx_ema = tf.train.ExponentialMovingAverage( decay=self.config.trainer.ema_decay ) maintain_averages_op_dis_xx = self.dis_xx_ema.apply(self.dxxvars) if self.config.trainer.enable_disc_zz: self.dis_zz_ema = tf.train.ExponentialMovingAverage( decay=self.config.trainer.ema_decay ) maintain_averages_op_dis_zz = self.dis_zz_ema.apply(self.dzzvars) with tf.control_dependencies([self.disc_op]): self.train_dis_op = tf.group(maintain_averages_op_dis) with tf.control_dependencies([self.gen_op]): self.train_gen_op = tf.group(maintain_averages_op_gen) with tf.control_dependencies([self.encg_op]): self.train_enc_g_op = tf.group(maintain_averages_op_encg) with tf.control_dependencies([self.encr_op]): self.train_enc_r_op = tf.group(maintain_averages_op_encr) if self.config.trainer.enable_disc_xx: with tf.control_dependencies([self.disc_op_xx]): self.train_dis_op_xx = tf.group(maintain_averages_op_dis_xx) if self.config.trainer.enable_disc_zz: with tf.control_dependencies([self.disc_op_zz]): self.train_dis_op_zz = tf.group(maintain_averages_op_dis_zz) ############################################################################################ # TESTING ############################################################################################ self.logger.info("Building Testing Graph...") with tf.variable_scope("SENCEBGAN"): with tf.variable_scope("Discriminator_Model"): self.embedding_q_ema, self.decoded_q_ema = self.discriminator( self.image_input, getter=get_getter(self.dis_ema), do_spectral_norm=self.config.trainer.do_spectral_norm, ) with tf.variable_scope("Generator_Model"): self.image_gen_ema = self.generator( self.embedding_q_ema, getter=get_getter(self.gen_ema) ) with tf.variable_scope("Discriminator_Model"): self.embedding_rec_ema, self.decoded_rec_ema = self.discriminator( self.image_gen_ema, getter=get_getter(self.dis_ema), do_spectral_norm=self.config.trainer.do_spectral_norm, ) # Second Training Part with tf.variable_scope("Encoder_G_Model"): self.image_encoded_ema = self.encoder_g( self.image_input, getter=get_getter(self.encg_ema) ) with tf.variable_scope("Generator_Model"): self.image_gen_enc_ema = self.generator( self.image_encoded_ema, getter=get_getter(self.gen_ema) ) with tf.variable_scope("Discriminator_Model"): self.embedding_enc_fake_ema, self.decoded_enc_fake_ema = self.discriminator( self.image_gen_enc_ema, getter=get_getter(self.dis_ema), do_spectral_norm=self.config.trainer.do_spectral_norm, ) self.embedding_enc_real_ema, self.decoded_enc_real_ema = self.discriminator( self.image_input, getter=get_getter(self.dis_ema), do_spectral_norm=self.config.trainer.do_spectral_norm, ) if self.config.trainer.enable_disc_xx: with tf.variable_scope("Discriminator_Model_XX"): self.im_logit_real_ema, self.im_f_real_ema = self.discriminator_xx( self.image_input, self.image_input, getter=get_getter(self.dis_xx_ema), do_spectral_norm=self.config.trainer.do_spectral_norm, ) self.im_logit_fake_ema, self.im_f_fake_ema = self.discriminator_xx( self.image_input, self.image_gen_enc_ema, getter=get_getter(self.dis_xx_ema), do_spectral_norm=self.config.trainer.do_spectral_norm, ) # Third training part with tf.variable_scope("Encoder_G_Model"): self.image_encoded_r_ema = self.encoder_g(self.image_input) with tf.variable_scope("Generator_Model"): self.image_gen_enc_r_ema = self.generator(self.image_encoded_r_ema) with tf.variable_scope("Encoder_R_Model"): self.image_ege_ema = self.encoder_r(self.image_gen_enc_r_ema) with tf.variable_scope("Discriminator_Model"): self.embedding_encr_fake_ema, self.decoded_encr_fake_ema = self.discriminator( self.image_gen_enc_r_ema, getter=get_getter(self.dis_ema), do_spectral_norm=self.config.trainer.do_spectral_norm, ) self.embedding_encr_real_ema, self.decoded_encr_real_ema = self.discriminator( self.image_input, getter=get_getter(self.dis_ema), do_spectral_norm=self.config.trainer.do_spectral_norm, ) if self.config.trainer.enable_disc_zz: with tf.variable_scope("Discriminator_Model_ZZ"): self.z_logit_real_ema, self.z_f_real_ema = self.discriminator_zz( self.image_encoded_r_ema, self.image_encoded_r_ema, getter=get_getter(self.dis_zz_ema), do_spectral_norm=self.config.trainer.do_spectral_norm, ) self.z_logit_fake_ema, self.z_f_fake_ema = self.discriminator_zz( self.image_encoded_r_ema, self.image_ege_ema, getter=get_getter(self.dis_zz_ema), do_spectral_norm=self.config.trainer.do_spectral_norm, ) with tf.name_scope("Testing"): with tf.name_scope("Image_Based"): delta = self.image_input - self.image_gen_enc_ema self.rec_residual = -delta delta_flat = tf.layers.Flatten()(delta) img_score_l1 = tf.norm( delta_flat, ord=2, axis=1, keepdims=False, name="img_loss__1" ) self.img_score_l1 = tf.squeeze(img_score_l1) delta = self.decoded_enc_fake_ema - self.decoded_enc_real_ema delta_flat = tf.layers.Flatten()(delta) img_score_l2 = tf.norm( delta_flat, ord=2, axis=1, keepdims=False, name="img_loss__2" ) self.img_score_l2 = tf.squeeze(img_score_l2) with tf.name_scope("Noise_Based"): delta = self.image_encoded_r_ema - self.image_ege_ema delta_flat = tf.layers.Flatten()(delta) final_score_1 = tf.norm( delta_flat, ord=2, axis=1, keepdims=False, name="final_score_1" ) self.final_score_1 = tf.squeeze(final_score_1) self.score_comb_im = ( 1 * self.img_score_l1 + self.feature_match1 * self.final_score_1 ) delta = self.image_encoded_r_ema - self.embedding_enc_fake_ema delta_flat = tf.layers.Flatten()(delta) final_score_2 = tf.norm( delta_flat, ord=2, axis=1, keepdims=False, name="final_score_2" ) self.final_score_2 = tf.squeeze(final_score_2) delta = self.embedding_encr_real_ema - self.embedding_encr_fake_ema delta_flat = tf.layers.Flatten()(delta) final_score_3 = tf.norm( delta_flat, ord=2, axis=1, keepdims=False, name="final_score_3" ) self.final_score_3 = tf.squeeze(final_score_3) # Combo 1 self.score_comb_z = ( (1 - self.feature_match2) * self.final_score_2 + self.feature_match2 * self.final_score_3 ) # Combo 2 if self.config.trainer.enable_disc_xx: delta = self.im_f_real_ema - self.im_f_fake_ema delta_flat = tf.layers.Flatten()(delta) final_score_4 = tf.norm( delta_flat, ord=1, axis=1, keepdims=False, name="final_score_4" ) self.final_score_4 = tf.squeeze(final_score_4) delta = self.z_f_real_ema - self.z_f_fake_ema delta_flat = tf.layers.Flatten()(delta) final_score_6 = tf.norm( delta_flat, ord=1, axis=1, keepdims=False, name="final_score_6" ) self.final_score_6 = tf.squeeze(final_score_6) ############################################################################################ # TENSORBOARD ############################################################################################ if self.config.log.enable_summary: with tf.name_scope("train_summary"): with tf.name_scope("dis_summary"): tf.summary.scalar("loss_disc", self.loss_discriminator, ["dis"]) tf.summary.scalar("loss_disc_real", self.disc_loss_real, ["dis"]) tf.summary.scalar("loss_disc_fake", self.disc_loss_fake, ["dis"]) if self.config.trainer.enable_disc_xx: tf.summary.scalar("loss_dis_xx", self.dis_loss_xx, ["enc_g"]) if self.config.trainer.enable_disc_zz: tf.summary.scalar("loss_dis_zz", self.dis_loss_zz, ["enc_r"]) with tf.name_scope("gen_summary"): tf.summary.scalar("loss_generator", self.loss_generator, ["gen"]) with tf.name_scope("enc_summary"): tf.summary.scalar("loss_encoder_g", self.loss_encoder_g, ["enc_g"]) tf.summary.scalar("loss_encoder_r", self.loss_encoder_r, ["enc_r"]) with tf.name_scope("img_summary"): tf.summary.image("input_image", self.image_input, 1, ["img_1"]) tf.summary.image("reconstructed", self.image_gen, 1, ["img_1"]) # From discriminator in part 1 tf.summary.image("decoded_real", self.decoded_real, 1, ["img_1"]) tf.summary.image("decoded_fake", self.decoded_fake, 1, ["img_1"]) # Second Stage of Training tf.summary.image("input_enc", self.image_input, 1, ["img_2"]) tf.summary.image("reconstructed", self.image_gen_enc, 1, ["img_2"]) # From discriminator in part 2 tf.summary.image("decoded_enc_real", self.decoded_enc_real, 1, ["img_2"]) tf.summary.image("decoded_enc_fake", self.decoded_enc_fake, 1, ["img_2"]) # Testing tf.summary.image("input_image", self.image_input, 1, ["test"]) tf.summary.image("reconstructed", self.image_gen_enc_r_ema, 1, ["test"]) tf.summary.image("residual", self.rec_residual, 1, ["test"]) self.sum_op_dis = tf.summary.merge_all("dis") self.sum_op_gen = tf.summary.merge_all("gen") self.sum_op_enc_g = tf.summary.merge_all("enc_g") self.sum_op_enc_r = tf.summary.merge_all("enc_r") self.sum_op_im_1 = tf.summary.merge_all("img_1") self.sum_op_im_2 = tf.summary.merge_all("img_2") self.sum_op_im_test = tf.summary.merge_all("test") self.sum_op = tf.summary.merge([self.sum_op_dis, self.sum_op_gen]) ############################################################################################### # MODULES ############################################################################################### def generator(self, noise_input, getter=None): with tf.variable_scope("Generator", custom_getter=getter, reuse=tf.AUTO_REUSE): net_name = "Layer_1" with tf.variable_scope(net_name): x_g = tf.layers.Dense( units=2 * 2 * 256, kernel_initializer=self.init_kernel, name="fc" )(noise_input) x_g = tf.layers.batch_normalization( x_g, momentum=self.config.trainer.batch_momentum, training=self.is_training_gen, name="batch_normalization", ) x_g = tf.nn.leaky_relu( features=x_g, alpha=self.config.trainer.leakyReLU_alpha, name="relu" ) x_g = tf.reshape(x_g, [-1, 2, 2, 256]) net_name = "Layer_2" with tf.variable_scope(net_name): x_g = tf.layers.Conv2DTranspose( filters=128, kernel_size=5, strides=2, padding="same", kernel_initializer=self.init_kernel, name="conv2t", )(x_g) x_g = tf.layers.batch_normalization( x_g, momentum=self.config.trainer.batch_momentum, training=self.is_training_gen, name="batch_normalization", ) x_g = tf.nn.leaky_relu( features=x_g, alpha=self.config.trainer.leakyReLU_alpha, name="relu" ) net_name = "Layer_3" with tf.variable_scope(net_name): x_g = tf.layers.Conv2DTranspose( filters=64, kernel_size=5, strides=2, padding="same", kernel_initializer=self.init_kernel, name="conv2t", )(x_g) x_g = tf.layers.batch_normalization( x_g, momentum=self.config.trainer.batch_momentum, training=self.is_training_gen, name="batch_normalization", ) x_g = tf.nn.leaky_relu( features=x_g, alpha=self.config.trainer.leakyReLU_alpha, name="relu" ) net_name = "Layer_4" with tf.variable_scope(net_name): x_g = tf.layers.Conv2DTranspose( filters=32, kernel_size=5, strides=2, padding="same", kernel_initializer=self.init_kernel, name="conv2t", )(x_g) x_g = tf.layers.batch_normalization( x_g, momentum=self.config.trainer.batch_momentum, training=self.is_training_gen, name="batch_normalization", ) x_g = tf.nn.leaky_relu( features=x_g, alpha=self.config.trainer.leakyReLU_alpha, name="relu" ) net_name = "Layer_5" with tf.variable_scope(net_name): x_g = tf.layers.Conv2DTranspose( filters=1, kernel_size=5, strides=2, padding="same", kernel_initializer=self.init_kernel, name="conv2t", )(x_g) x_g = tf.tanh(x_g, name="tanh") return x_g def discriminator(self, image_input, getter=None, do_spectral_norm=False): layers = sn if do_spectral_norm else tf.layers with tf.variable_scope("Discriminator", custom_getter=getter, reuse=tf.AUTO_REUSE): with tf.variable_scope("Encoder"): x_e = tf.reshape( image_input, [-1, self.config.data_loader.image_size, self.config.data_loader.image_size, 1], ) net_name = "Layer_1" with tf.variable_scope(net_name): x_e = layers.conv2d( x_e, filters=32, kernel_size=5, strides=2, padding="same", kernel_initializer=self.init_kernel, name="conv", ) x_e = tf.nn.leaky_relu( features=x_e, alpha=self.config.trainer.leakyReLU_alpha, name="leaky_relu" ) # 14 x 14 x 64 net_name = "Layer_2" with tf.variable_scope(net_name): x_e = layers.conv2d( x_e, filters=64, kernel_size=5, padding="same", strides=2, kernel_initializer=self.init_kernel, name="conv", ) x_e = tf.layers.batch_normalization( x_e, momentum=self.config.trainer.batch_momentum, training=self.is_training_dis, ) x_e = tf.nn.leaky_relu( features=x_e, alpha=self.config.trainer.leakyReLU_alpha, name="leaky_relu" ) # 7 x 7 x 128 net_name = "Layer_3" with tf.variable_scope(net_name): x_e = layers.conv2d( x_e, filters=128, kernel_size=5, padding="same", strides=2, kernel_initializer=self.init_kernel, name="conv", ) x_e = tf.layers.batch_normalization( x_e, momentum=self.config.trainer.batch_momentum, training=self.is_training_dis, ) x_e = tf.nn.leaky_relu( features=x_e, alpha=self.config.trainer.leakyReLU_alpha, name="leaky_relu" ) # 4 x 4 x 256 x_e = tf.layers.Flatten()(x_e) net_name = "Layer_4" with tf.variable_scope(net_name): x_e = layers.dense( x_e, units=self.config.trainer.noise_dim, kernel_initializer=self.init_kernel, name="fc", ) embedding = x_e with tf.variable_scope("Decoder"): net = tf.reshape(embedding, [-1, 1, 1, self.config.trainer.noise_dim]) net_name = "layer_1" with tf.variable_scope(net_name): net = tf.layers.Conv2DTranspose( filters=256, kernel_size=5, strides=(2, 2), padding="same", kernel_initializer=self.init_kernel, name="tconv1", )(net) net = tf.layers.batch_normalization( inputs=net, momentum=self.config.trainer.batch_momentum, training=self.is_training_dis, name="tconv1/bn", ) net = tf.nn.relu(features=net, name="tconv1/relu") net_name = "layer_2" with tf.variable_scope(net_name): net = tf.layers.Conv2DTranspose( filters=128, kernel_size=5, strides=(2, 2), padding="same", kernel_initializer=self.init_kernel, name="tconv2", )(net) net = tf.layers.batch_normalization( inputs=net, momentum=self.config.trainer.batch_momentum, training=self.is_training_dis, name="tconv2/bn", ) net = tf.nn.relu(features=net, name="tconv2/relu") net_name = "layer_3" with tf.variable_scope(net_name): net = tf.layers.Conv2DTranspose( filters=64, kernel_size=5, strides=(2, 2), padding="same", kernel_initializer=self.init_kernel, name="tconv3", )(net) net = tf.layers.batch_normalization( inputs=net, momentum=self.config.trainer.batch_momentum, training=self.is_training_dis, name="tconv3/bn", ) net = tf.nn.relu(features=net, name="tconv3/relu") net_name = "layer_4" with tf.variable_scope(net_name): net = tf.layers.Conv2DTranspose( filters=32, kernel_size=5, strides=(2, 2), padding="same", kernel_initializer=self.init_kernel, name="tconv4", )(net) net = tf.layers.batch_normalization( inputs=net, momentum=self.config.trainer.batch_momentum, training=self.is_training_dis, name="tconv4/bn", ) net = tf.nn.relu(features=net, name="tconv4/relu") net_name = "layer_5" with tf.variable_scope(net_name): net = tf.layers.Conv2DTranspose( filters=1, kernel_size=5, strides=(2, 2), padding="same", kernel_initializer=self.init_kernel, name="tconv5", )(net) decoded = tf.nn.tanh(net, name="tconv5/tanh") return embedding, decoded def encoder_g(self, image_input, getter=None): with tf.variable_scope("Encoder_G", custom_getter=getter, reuse=tf.AUTO_REUSE): x_e = tf.reshape( image_input, [-1, self.config.data_loader.image_size, self.config.data_loader.image_size, 1], ) net_name = "Layer_1" with tf.variable_scope(net_name): x_e = tf.layers.Conv2D( filters=64, kernel_size=5, strides=(2, 2), padding="same", kernel_initializer=self.init_kernel, name="conv", )(x_e) x_e = tf.layers.batch_normalization( x_e, momentum=self.config.trainer.batch_momentum, training=self.is_training_enc_g, ) x_e = tf.nn.leaky_relu( features=x_e, alpha=self.config.trainer.leakyReLU_alpha, name="leaky_relu" ) net_name = "Layer_2" with tf.variable_scope(net_name): x_e = tf.layers.Conv2D( filters=128, kernel_size=5, padding="same", strides=(2, 2), kernel_initializer=self.init_kernel, name="conv", )(x_e) x_e = tf.layers.batch_normalization( x_e, momentum=self.config.trainer.batch_momentum, training=self.is_training_enc_g, ) x_e = tf.nn.leaky_relu( features=x_e, alpha=self.config.trainer.leakyReLU_alpha, name="leaky_relu" ) net_name = "Layer_3" with tf.variable_scope(net_name): x_e = tf.layers.Conv2D( filters=256, kernel_size=5, padding="same", strides=(2, 2), kernel_initializer=self.init_kernel, name="conv", )(x_e) x_e = tf.layers.batch_normalization( x_e, momentum=self.config.trainer.batch_momentum, training=self.is_training_enc_g, ) x_e = tf.nn.leaky_relu( features=x_e, alpha=self.config.trainer.leakyReLU_alpha, name="leaky_relu" ) x_e = tf.layers.Flatten()(x_e) net_name = "Layer_4" with tf.variable_scope(net_name): x_e = tf.layers.Dense( units=self.config.trainer.noise_dim, kernel_initializer=self.init_kernel, name="fc", )(x_e) return x_e def encoder_r(self, image_input, getter=None): with tf.variable_scope("Encoder_R", custom_getter=getter, reuse=tf.AUTO_REUSE): x_e = tf.reshape( image_input, [-1, self.config.data_loader.image_size, self.config.data_loader.image_size, 1], ) net_name = "Layer_1" with tf.variable_scope(net_name): x_e = tf.layers.Conv2D( filters=64, kernel_size=5, strides=(2, 2), padding="same", kernel_initializer=self.init_kernel, name="conv", )(x_e) x_e = tf.layers.batch_normalization( x_e, momentum=self.config.trainer.batch_momentum, training=self.is_training_enc_r, ) x_e = tf.nn.leaky_relu( features=x_e, alpha=self.config.trainer.leakyReLU_alpha, name="leaky_relu" ) net_name = "Layer_2" with tf.variable_scope(net_name): x_e = tf.layers.Conv2D( filters=128, kernel_size=5, padding="same", strides=(2, 2), kernel_initializer=self.init_kernel, name="conv", )(x_e) x_e = tf.layers.batch_normalization( x_e, momentum=self.config.trainer.batch_momentum, training=self.is_training_enc_r, ) x_e = tf.nn.leaky_relu( features=x_e, alpha=self.config.trainer.leakyReLU_alpha, name="leaky_relu" ) net_name = "Layer_3" with tf.variable_scope(net_name): x_e = tf.layers.Conv2D( filters=256, kernel_size=5, padding="same", strides=(2, 2), kernel_initializer=self.init_kernel, name="conv", )(x_e) x_e = tf.layers.batch_normalization( x_e, momentum=self.config.trainer.batch_momentum, training=self.is_training_enc_r, ) x_e = tf.nn.leaky_relu( features=x_e, alpha=self.config.trainer.leakyReLU_alpha, name="leaky_relu" ) x_e = tf.layers.Flatten()(x_e) net_name = "Layer_4" with tf.variable_scope(net_name): x_e = tf.layers.Dense( units=self.config.trainer.noise_dim, kernel_initializer=self.init_kernel, name="fc", )(x_e) return x_e # Regularizer discriminator for the Generator Encoder def discriminator_xx(self, img_tensor, recreated_img, getter=None, do_spectral_norm=False): """ Discriminator architecture in tensorflow Discriminates between (x, x) and (x, rec_x) Args: img_tensor: recreated_img: getter: for exponential moving average during inference reuse: sharing variables or not do_spectral_norm: """ layers = sn if do_spectral_norm else tf.layers with tf.variable_scope("Discriminator_xx", reuse=tf.AUTO_REUSE, custom_getter=getter): net = tf.concat([img_tensor, recreated_img], axis=1) net_name = "layer_1" with tf.variable_scope(net_name): net = layers.conv2d( net, filters=64, kernel_size=4, strides=2, padding="same", kernel_initializer=self.init_kernel, name="conv1", ) net = tf.nn.leaky_relu( features=net, alpha=self.config.trainer.leakyReLU_alpha, name="conv2/leaky_relu" ) net = tf.layers.dropout( net, rate=self.config.trainer.dropout_rate, training=self.is_training_enc_g, name="dropout", ) with tf.variable_scope(net_name, reuse=True): weights = tf.get_variable("conv1/kernel") net_name = "layer_2" with tf.variable_scope(net_name): net = layers.conv2d( net, filters=128, kernel_size=4, strides=2, padding="same", kernel_initializer=self.init_kernel, name="conv2", ) net = tf.nn.leaky_relu( features=net, alpha=self.config.trainer.leakyReLU_alpha, name="conv2/leaky_relu" ) net = tf.layers.dropout( net, rate=self.config.trainer.dropout_rate, training=self.is_training_enc_g, name="dropout", ) net = tf.layers.Flatten()(net) intermediate_layer = net net_name = "layer_3" with tf.variable_scope(net_name): net = tf.layers.dense(net, units=1, kernel_initializer=self.init_kernel, name="fc") logits = tf.squeeze(net) return logits, intermediate_layer # Regularizer discriminator for the Reconstruction Encoder def discriminator_zz(self, noise_tensor, recreated_noise, getter=None, do_spectral_norm=False): """ Discriminator architecture in tensorflow Discriminates between (z, z) and (z, rec_z) Args: noise_tensor: recreated_noise: getter: for exponential moving average during inference reuse: sharing variables or not do_spectral_norm: """ layers = sn if do_spectral_norm else tf.layers with tf.variable_scope("Discriminator_zz", reuse=tf.AUTO_REUSE, custom_getter=getter): y = tf.concat([noise_tensor, recreated_noise], axis=-1) net_name = "y_layer_1" with tf.variable_scope(net_name): y = layers.dense(y, units=64, kernel_initializer=self.init_kernel, name="fc") y = tf.nn.leaky_relu(features=y, alpha=self.config.trainer.leakyReLU_alpha) y = tf.layers.dropout( y, rate=self.config.trainer.dropout_rate, training=self.is_training_enc_r, name="dropout", ) net_name = "y_layer_2" with tf.variable_scope(net_name): y = layers.dense(y, units=32, kernel_initializer=self.init_kernel, name="fc") y = tf.nn.leaky_relu(features=y, alpha=self.config.trainer.leakyReLU_alpha) y = tf.layers.dropout( y, rate=self.config.trainer.dropout_rate, training=self.is_training_enc_r, name="dropout", ) intermediate_layer = y net_name = "y_layer_3" with tf.variable_scope(net_name): y = layers.dense(y, units=1, kernel_initializer=self.init_kernel, name="fc") logits = tf.squeeze(y) return logits, intermediate_layer ############################################################################################### # CUSTOM LOSSES ############################################################################################### def mse_loss(self, pred, data, mode="norm", order=2): if mode == "norm": delta = pred - data delta = tf.layers.Flatten()(delta) loss_val = tf.norm(delta, ord=order, axis=1, keepdims=False) elif mode == "mse": loss_val = tf.reduce_mean(tf.squared_difference(pred, data)) return loss_val def pullaway_loss(self, embeddings): norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keepdims=True)) normalized_embeddings = embeddings / norm similarity = tf.matmul(normalized_embeddings, normalized_embeddings, transpose_b=True) batch_size = tf.cast(tf.shape(embeddings)[0], tf.float32) pt_loss = (tf.reduce_sum(similarity) - batch_size) / (batch_size * (batch_size - 1)) return pt_loss def init_saver(self): self.saver = tf.train.Saver(max_to_keep=self.config.log.max_to_keep)
# Funzioni import operator # Moduli from django.shortcuts import render_to_response from django.core.context_processors import csrf from django.template import RequestContext from django.contrib.auth.models import User from django.http import HttpResponse # Database from ftft.canzoni.models import canzone, licenze from ftft.gruppi.models import gruppo, influence, famusartist from ftft.accountsys.models import Playlist, Rate, Topten from ftft.search.forms import songform # SEARCH BY TAG ----------------------------------------------------------------------------------------- def search(request): var = {} var.update(csrf(request)) # form area form = songform() var.update({'form':form }) '''if request.method =='POST': formset=songform(request.POST) # searchbytag('nome','mood(id)','licenza(id)','genere','titolo') selezione = searchbytag(request.POST['gruppo'],request.POST['moood'],request.POST['licenza'],request.POST['genere'],request.POST['titolo']) var.update({'selezione':selezione})''' # estrai influenze influenze = famusartist.objects.order_by('nome') var.update({'influenze':influenze }) return render_to_response('search.html',var,context_instance=RequestContext(request)) # LINK SEARCH BY TAG def searchByTag(request): if request.method =='POST': #formset=songform(request.POST) selezione = searchbytag(request.POST['titolo'],request.POST['gruppo'],request.POST['licenza'],request.POST['moood'],request.POST['genere']) # searchbytag('titolo','gruppo','licenza(id)','mood(id)','genere') return render_to_response('moduli/searchresult.html',{'selezione':selezione}) # FUNCTION selezione by tag----------------------------------------------------------------------------------------- def searchbytag(titolo,nomegruppo,licenza,mood,genere): if not titolo and not gruppo and not licenza and not mood and not genere: selezionetag = "no found" else: result = "no found" # 0 Apri Array ricerca # 2 Verifica se sono pieni if titolo: titolo= canzone.objects.filter(titolo__icontains=titolo) # 4 verifica che siano pieni if titolo: result = titolo if nomegruppo: nomegruppo= canzone.objects.filter(gruppo= gruppo.objects.filter(nome__icontains=nomegruppo)) # 4 verifica che siano pieni if nomegruppo: # 5 se pieni inserisci in Array risultato if result == "no found": result = nomegruppo else: result = [i for i in result if i in nomegruppo] if licenza: licenza = canzone.objects.filter(licenza__in = licenze.objects.filter(id=licenza)) # 4 verifica che siano pieni if licenza: # 5 se pieni inserisci in Array risultato if result == "no found": result = licenza else: result = [i for i in result if i in licenza] if mood: mood = canzone.objects.filter(moood=mood) # 4 verifica che siano pieni if mood: # 5 se pieni inserisci in Array risultato if result == "no found": result = mood else: result = [i for i in result if i in mood] if genere: genere = canzone.objects.filter(gruppo__in = gruppo.objects.filter(genere__icontains=genere)) # 4 verifica che siano pieni if genere: # 5 se pieni inserisci in Array risultato if result == "no found": result = genere else: result = [i for i in result if i in genere] return result # SEARCH BY DRAG & DROP ----------------------------------------------------------------------------------------- # LINK SEARCH BY DRAGDROP def searchByDragDrop(request): if request.method =='POST': # Estrai dati da post, inserisci in lista associativa nvariabili= int((len(request.POST)-1)/2) lista = [] for i in range(nvariabili): i=str(i) lista.append((request.POST['artista'+i],request.POST['peso'+i])) # Ordina la lista in base al peso lista = sorted(lista, key=lambda oggetto: oggetto[1], reverse=True) listart = [i[0] for i in lista] # Controlla se artisti presenti in database e inserisci id in lista-classifica hitlist = [] for artista in listart: artsel = famusartist.objects.filter(nome__icontains=artista) if artsel: for a in artsel: hitlist.append(a.id) # Selezione i primi 10 topten = hitlist[:10] selezioneord = selectfromtopten(topten) return render_to_response('moduli/searchresult.html',{'selezione':selezioneord}) #WORK IN PROGRESS # SEARCH BY TOP TEN ----------------------------------------------------------------------------------------- # LINK SEARCH BY TOP TEN def searchByTopTen(request): if request.method =='POST': topten = [] contatore = len(request.POST)-1 for i in range(contatore): idg=request.POST['relations'+str(i+1)] grobj = famusartist.objects.filter(id=idg) topten.append(grobj) selezioneord = searchByTopOnBands(topten,"on") canzoni = frombandtosong(selezioneord) #return HttpResponse(selezioneord) return render_to_response('moduli/searchresult.html',{'selezione':canzoni}) def selectfromtopten(topten,usr=None): sbtb = searchByTopOnBands(topten) if usr: sbtu = searchByTopOnUser(topten,usr=usr) else: sbtu = searchByTopOnUser(topten) selezione= sbtb # aggiorna pesi e elimina duplicati for key,value in sbtu.items(): if key not in selezione: selezione[key] = value else: selezione[key] += value # converti in tupla e ordina in base al peso selezionerisp = [(k,v) for k, v in selezione.items()] #selezionerisp = sorted(selezionerisp, reverse=True) selezionerisp = sorted(selezionerisp, key=lambda tup: tup[1], reverse=True) selezionerisp = [i[0] for i in selezionerisp] # estrai la lista gruppi selezionerisp = frombandtosong(selezionerisp) # estrai canzoni consigliate return selezionerisp # FUNCTION From Band List To Song List------------------------------------------------------------------------------ def frombandtosong(listagruppi): canzoni = [] # Apri lista che conterra risultati for g in listagruppi: #listacanz = canzone.objects.filter(gruppo=g)[:1]# decommentare on test listacanz = canzone.objects.filter(gruppo=g) if len(listacanz)>1: listacanz = listacanz.order_by('?')[1] '''for c in listacanz: if c not in canzoni: canzoni.append(c)''' canzoni.append(listacanz) else: canzoni.append(listacanz) return canzoni # FUNCTION From User To TopTen---------------------------------------------------------------------------------------- def fromusertotopten(userid): topten = Topten.objects.filter(user=userid).order_by('posizione') return topten # FUNCTION Pearson Correlation----------------------------------------------------------------------------------------- def pearson(x,y): n=len(x) vals=range(n) #regular sums sumx=sum([float(x[i]) for i in vals]) sumy=sum([float(y[i]) for i in vals]) #sum of the squares sumxSq=sum([x[i]**2.0 for i in vals]) sumySq=sum([y[i]**2.0 for i in vals]) #sum of the products pSum=sum([x[i]*y[i] for i in vals]) #do pearson score num=pSum-(sumx*sumy/n) den = pow((sumxSq - pow(sumx, 2) / n) * (sumySq - pow(sumy, 2) / n), 0.5) if den==0: r = 1 else: r=num/den return r # Modifica return HttpResponse(list)#Controllo # search by TOP-TEN ON BANDS------------------------------------------------------------------------------------------------- # INPUT:1-10 SONGS LIST -> OUTPUT:BANDS dict---------------------------------------------------------------------------------- def searchByTopOnBands(topten,case=None): startlist=topten x=10 #contatore pesi if case=="on": # RICERCA Per Pagina Ricerca gruppimod=dict() #dizionario dei gruppi e pesi for infl in startlist:#Per ogni influenza prendi i gruppi correlati gruppi = gruppo.objects.filter(influenze=infl) for g in gruppi: # Per ogni gruppo inserisci o calcola peso pesogruppo = influence.objects.get(artist=infl,gruppo=g) pesogruppo = 10 if g in gruppimod: gruppimod[g] += x * pesogruppo else: gruppimod[g] = x * pesogruppo x = x-1 else: # RICERCA Per Profilo gruppimod=dict() #dizionario dei gruppi e pesi for infl in startlist:#Per ogni influenza prendi i gruppi correlati try: gruppi = gruppo.objects.filter(influenze=infl.artist) except: gruppi = gruppo.objects.filter(influenze=infl) for g in gruppi: # Per ogni gruppo inserisci o calcola peso try: pesogruppo = influence.objects.get(artist=infl.artist,gruppo=g) except: pesogruppo = influence.objects.get(artist=infl,gruppo=g) pesogruppo = 11-pesogruppo.posizione if g in gruppimod: gruppimod[g] += x * pesogruppo else: gruppimod[g] = x * pesogruppo x = x-1 return gruppimod # Modifica # SEARCH BY TOP-TEN ON USER-------------------------------------------------------------------------------------------- # INPUT:1-10 SONGS LIST -> OUTPUT:BANDS dict---------------------------------------------------------------------------------- def searchByTopOnUser(topten,usr=None): utentimod = dict() # dizionario degli utenti e pesi x = 10 # contatore pesi for famusart in topten: try: campitop = Topten.objects.filter(artist=famusart.artist) except: campitop = Topten.objects.filter(artist=famusart) for campo in campitop: peso = 11 - campo.posizione if campo.user in utentimod: utentimod[campo.user] += x * peso else: if campo.user != usr: utentimod[campo.user] = x * peso x = x-1 #Estrapola 1risultato migliore, 2peggiore 3calcola media if len(utentimod) > 0 : mass_peso_ut = max([utentimod[i] for i in utentimod]) minm_peso_ut = min([utentimod[i] for i in utentimod]) med_peso = (mass_peso_ut + minm_peso_ut)/5 else : mass_peso_ut=minm_peso_ut=med_peso=0 #Verifica se utente loggato per eliminare risultati dopp # Ordina Risultati e inserisci in nuova lista i nomi utenti test # resultlist = list(sorted(utentimod, key=utentimod.__getitem__, reverse=True)) # FINE ESTRAZIONE CLASSIFICA USER # Estrapola gruppi candidabili e inseriscigli/somma il peso utente Diz_gruppi_peso = dict() # Apri lista che conterra risultati for ut, peso in utentimod.items(): if peso > med_peso: listagruppi = gruppo.objects.filter(rate=Rate.objects.filter(user=ut).filter(valutazione__gt=3))# Filtro valutazioni 3 / Togliere filtro 5 fuori dal test for c in listagruppi: if c in Diz_gruppi_peso: Diz_gruppi_peso[c] += peso else: Diz_gruppi_peso[c] = peso #Recupero peso massimo if len(Diz_gruppi_peso)>0: mass_peso_grup = max([Diz_gruppi_peso[i] for i in Diz_gruppi_peso]) else: mass_peso_grup = 0 #Normalizza sulla base del massimo peso-utente Diz_gruppi_peso = dict((grupp, int((peso*mass_peso_ut)/mass_peso_grup)) for (grupp, peso) in Diz_gruppi_peso.items()) '''for grupp, peso in Diz_gruppi_peso.items(): peso = (peso*mass_peso_ut)/mass_peso_grup''' return Diz_gruppi_peso # EXTRACTOR PLAYLIST------------------------------------------------------------------------------------------------- # INPUT:USER -> OUTPUT:PLAYLIST----------------------------------------------------------------------------------------- def playlistextractor(iduser): # Prendi Utente user=User.objects.get(id=iduser) playlist=canzone.objects.filter(playlist=Playlist.objects.filter(user=user)) return (playlist) def fromsongtoband(idsong): song = canzone.objects.get(id=idsong) gruppi = [] for art in song.gruppo.all(): gruppi.append(art.id) return gruppi # SEARCH BY PLAYLIST------------------------------------------------------------------------------------------------- # INPUT:USER -> OUTPUT:SONGS----------------------------------------------------------------------------------------- '''def searchbyplaylist(iduser): # Prendi Utente user=User.objects.get(id=iduser) playlist = canzone.objects.filter(playlist__user=iduser) insplaylist = set(playlist) # Seleziona utenti con almeno una canzone in comune usertest = User.objects.filter(playlist__canzone__in=playlist)# (canzone__in=playlist)? # Elimina doppi e user attivo usertest = list(set(usertest)) if user in usertest: usertest.remove(user) # Inizializza dizionario play list songmod = dict() # Confronta insieme canzoni for test in usertest: playtest=canzone.objects.filter(playlist=Playlist.objects.filter(user=test)) # Converti in Insieme insplaytest = set(playtest) intersezione = insplaylist & insplaytest peso = len(intersezione) if peso == 1: peso =1.5 differenza = insplaytest - insplaylist for song in differenza: if song in songmod: songmod[song] += songmod[song] * peso else: songmod[song] = peso resultlist = list(sorted(songmod, key=songmod.__getitem__, reverse=True)) # PER IL TEST COMMENTA LE SEGUENTI TRE LINEE e DECOMMENTA ULTIMA #resultlist = resultlist[:30] #shuffle(resultlist) #resultlist = resultlist[:10] resultlist = resultlist[:5] return (resultlist) ''' def searchbyplaylist(iduser): #inizializzazione dati user #user_id=request.user.id user_id=iduser user_pl_id= [] user_pl_art = [] #inizializzazione user simili/matrici playlist usertest_id = [] usertest_pl_id= [] usertest_pl_art = [] #inizializzazione artisti di cui calcolare peso similarita art_sel = [] #estrazione playlist user user_pl=playlistextractor(user_id) #estrazione artisti for song in user_pl: user_pl_id.append(song.id) art = fromsongtoband(song.id) for a in art: if a not in user_pl_art: user_pl_art.append(a) #estrazione utenti con artisti in comune in playlist usertest = Playlist.objects.filter(canzone__in=user_pl) for us in usertest: if us.user.id not in usertest_id and us.user.id != user_id: usertest_id.append(us.user.id) #estrazioni playlist for u in usertest_id: #inizializzazione riga riga_pl= [] riga_art=[] #estrazione playlist user pl=playlistextractor(u) #estrazione artisti for s in pl: riga_pl.append(s.id) art = fromsongtoband(s.id) for a in art: riga_art.append(a) usertest_pl_id.append(riga_pl) usertest_pl_art.append(riga_art) #selezione artisti per calcolo similarità for a in usertest_pl_art: for x in a: if x not in art_sel: art_sel.append([x]) #inserici user_pl in matrice pl usertest_pl_art.append(user_pl_art) #costruisci matrice 1 e vettore1 mat1=[] for pl in usertest_pl_art: riga = [] for s in user_pl_art: if s in pl: riga.append(1) else: riga.append(0) mat1.append(riga) vec_mat1=[] for i in range(len(mat1)): for j in range(len(mat1[0])): if i == 0: vec_mat1.append(mat1[i][j]) else: vec_mat1[j]=vec_mat1[j]+mat1[i][j] #calcola peso per ogni artista for art in art_sel: artist = art[0] #vettore presenze MatTest vec_art = [] for pl in usertest_pl_art: if artist in pl: vec_art.append(1) else: vec_art.append(0) #somma vettore ris_test = 0 for n in vec_art: ris_test = ris_test+n #matrice 2 mat2=[] for j in range(len(vec_art)): riga = [] for i in range(len(mat1[0])): x=mat1[j][i]*vec_art[j] riga.append(x) mat2.append(riga) #calcola somma colonne vec_mat2=[] for i in range(len(mat2)): for j in range(len(mat2[0])): if i == 0: vec_mat2.append(mat1[i][j]) else: vec_mat2[j]=vec_mat2[j]+mat2[i][j] simset = 0 for i in range(len(vec_mat1)): sim = float( vec_mat2[i]/ float( (ris_test*vec_mat1[i])**0.5 ) ) simset = simset + sim #appendi peso al relativo gruppo indice = art_sel.index(art) art_sel[indice].append(simset) #-----------Valutazione canzone #seleziona canzoni da valutare canz_sel=[] for canz in usertest_pl_id: for c in canz: if c not in canz_sel and c not in user_pl_id: canz_sel.append(c) lista_ris=[] for canz in canz_sel: #conta c_song = 0 for pl in usertest_pl_id: if canz in pl: c_song += 1 #recupera gruppo art = fromsongtoband(canz) #recupera pesi e calcola media pesi = [] for a in art: for ris in art_sel: if ris[0] == a: peso = ris[1] pesi.append(peso) cont = 0 for p in pesi: cont = cont + p peso_def = cont/len(pesi) #calcola peso c_song * peso peso_canz= c_song * peso_def #appendi in lista lista_ris.append([canz,peso_canz]) lista_ris = sorted(lista_ris,key=lambda x: x[1],reverse=True) #seleziona i primi 5 lista_ris = lista_ris[:5] #recupera oggetto canzoni resultlist = [] for c in lista_ris: canz = canzone.objects.get(id=c[0]) resultlist.append(canz) #return HttpResponse(resultlist) return (resultlist) # SEARCH BY RATE------------------------------------------------------------------------------------------------- # INPUT:USER -> PLAYLIST -> PEARSON/USER -> OUTPUT: BANDS dict------------------------------------------------------------ def searchByRate(userid): user = User.objects.get(id=userid) # 1) Recupera valutazioni espresse dall'utente votiuser= Rate.objects.filter(user=user, valutazione__gte=3).reverse() '''if votiuser.count() > 5: votiuser= list(votiuser[:5])'''# 5 Restrizione per TEST banduser = dict() # Allestisci dizionario user gruppo,voto for v in votiuser: banduser[v.gruppo] = v.valutazione # 2) Recupera utenti con valutazione gruppi in comune(escludi utente base) usertest=User.objects.filter(rate=Rate.objects.filter(gruppo=gruppo.objects.filter(rate=votiuser))).distinct().exclude(id=user.id) # 3) Calcola l'indice di PEARSON classificaindici = dict() for u in usertest: bandtest = dict() for g in votiuser: if Rate.objects.filter(user=u).filter(gruppo=g.gruppo): testval=Rate.objects.get(id=Rate.objects.filter(user=u).filter(gruppo=g.gruppo)) bandtest[testval.gruppo] = testval.valutazione else: bandtest[g.gruppo] = 0 indicepearson = pearson(list(banduser.values()),list(bandtest.values())) classificaindici[u] = indicepearson #FILTRO # Filtra i piu alti di 0,75 abbassa la soglia in caso di nessun risultato soglia = 1 numeroris = 0 indicifiltrati = dict() while numeroris < 2 and soglia != 0: indicifiltrati = {k: v for k, v in classificaindici.items() if v > soglia} soglia = soglia - 0.25 numeroris = len(indicifiltrati) '''indicifiltrati = {k: v for k, v in classificaindici.items() if v == 1} if len(indicifiltrati) == 0: indicifiltrati = {k: v for k, v in classificaindici.items() if v > 0}''' # Estrai una lista di utenti ordinati utentisuggeriti = sorted(indicifiltrati, key=indicifiltrati.__getitem__, reverse=True) # 3) Ricava e seleziona relativi gruppi con valutazione > 3 gruppisuggeriti = dict() for s in utentisuggeriti: gruppivotati = gruppo.objects.filter(rate=Rate.objects.filter(user=s).filter(valutazione__gte=3)) # Insieme utente base insut = set (gruppo.objects.filter(rate=votiuser)) instest = set (gruppivotati) inssugg= instest-insut for g in inssugg: rate = Rate.objects.get(id=Rate.objects.filter(user=s).filter(gruppo=g)) if g in gruppisuggeriti: gruppisuggeriti[g] += gruppisuggeriti[g] + rate.valutazione else: gruppisuggeriti[g] = rate.valutazione return (gruppisuggeriti) #Filtro gruppi dell'utente e indesiderati def negGrup(userid): filtro = gruppo.objects.filter(referente=User.objects.get(id=userid)) return filtro def BandUserSuggestion(userid): # prendi utente e top ten per iniziare le ricerche user=userid topten = fromusertotopten(user) # ricerca peri diversi metodi sbr = searchByRate(user) sbtb = searchByTopOnBands(topten) sbtu = searchByTopOnUser(topten) # popola il dizionario e pesa in base al numero di successi gruppi = dict() for g in sbr: gruppi[g] = 1 for g in sbtb: if g in gruppi: gruppi[g] += (gruppi[g] + 1) else: gruppi[g] = 1 for g in sbtu: if g in gruppi: gruppi[g] += (gruppi[g] + 1) else: gruppi[g] = 1 filtrogruppi = negGrup(userid) for f in filtrogruppi: if f in gruppi: del gruppi[f] gruppi= sorted(gruppi, key=gruppi.__getitem__,reverse=True)[:20] # COMMENTARE PROSSIMA RIGA DURANTE TEST #shuffle(gruppi) gruppi = (gruppi)[:10] return gruppi ## ALGORITMI CORRELAZIONE DA UTENTI # Prende id 2 user (user,canzone per predizione su gruppo) e ne calcola l'indice di correlazione di Pearson def pearsonfromuser(usera,userb): recorda = Rate.objects.filter(user__id=usera) votia = [] votib = [] for v in recorda: votia.append(v.valutazione) try: valb = Rate.objects.get(user__id=userb,gruppo=v.gruppo) votib.append(valb.valutazione) except: votib.append(0) indice = pearson(votia,votib) return (indice) #Indice somiglianza (user,canzone) def onbandfromuser(user,canz): #Estrazione del gruppo della canzone grup = gruppo.objects.filter(canzone__titolo=canz.titolo) #Estrazione top ten utente topuser = Topten.objects.filter(user=user).order_by('posizione') #Estrazione top ten gruppo topgruppo = influence.objects.filter(gruppo=grup).order_by('posizione') #Calcola Punteggio n = int(11) punteggio = 0 for i in topuser: for j in topgruppo: if i.artist == j.artist: a = int(n - i.posizione) b = int(n - j.posizione) punteggio = int(punteggio + a*b) indice = punteggio / 385 return (indice)
#!/usr/bin/env python import mmap import os from os import path import sys import time def parse_adr(adr): """ Converts an IP address + port in the form aaaaaaaa:pppp to the form a.b.c.d:p. """ ip_raw, port_raw = adr.split(":") # Split into a list of the octets. ip_hexs = [ip_raw[idx: idx + 2] for idx in xrange(0, len(ip_raw), 2)] # Convert each octet to an int. ip_ints = [int(hex_str, 16) for hex_str in ip_hexs] ip_ints.reverse() return("{}:{}".format(".".join([str(x) for x in ip_ints]), int(port_raw, 16))) def main(): assert len(sys.argv) == 6, \ ("Expected five arguments: logging interval (seconds), logging " "duration (seconds), local IP address + port (a.b.c.d:p1), remote IP " "address + port (e.f.g.h:p2), output file") intv_s, dur_s, lcl_adr_tgt, rem_adr_tgt, out = sys.argv[1:] dur_s = float(dur_s) intv_s = float(intv_s) # Make sure that the output file does not already exist. if path.exists(out): print("Output file already exists: {}".format(out)) sys.exit(-1) else: # Create the output directory if it does not already exist. odr = path.dirname(out) if odr and not path.isdir(odr): os.makedirs(odr) # While polling the file, only record the lines to maximize sample rate. start_s = time.time() cur_s = start_s delt_s = 0 tstamp_lines = [] with open("/proc/net/tcp", "r+") as f: while (delt_s < dur_s): delt_s = time.time() - start_s tstamp_lines.append((delt_s, [line for line in f])) f.seek(0) time.sleep(intv_s) # Do all the data parsing once we are done.. cwnds = [] for tstamp_s, lines in tstamp_lines: # Find the lines corresponding to outgoing connections, and extract # their cwnds. Skip the first line, which is the column headings. for line in lines[1:]: splits = line.strip().split() lcl_adr = parse_adr(splits[1]) rem_adr = parse_adr(splits[2]) if lcl_adr == lcl_adr_tgt and rem_adr == rem_adr_tgt: cwnds.append((tstamp_s, int(splits[15]))) with open(out, "w") as f: for tstamp_s, cwnd in cwnds: f.write("{},{}\n".format(tstamp_s, cwnd)) if __name__ == "__main__": main()
# -*- coding: utf-8 -*- # Generated by Django 1.11.23 on 2019-11-07 00:58 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('website', '0003_load_initial_data'), ] operations = [ migrations.AddField( model_name='session', name='lhs_samples', field=models.TextField(default='[]'), ), migrations.AlterField( model_name='session', name='tuning_session', field=models.CharField(choices=[('tuning_session', 'Tuning Session'), ('no_tuning_session', 'No Tuning'), ('randomly_generate', 'Randomly Generate'), ('lhs', 'Run LHS')], default='tuning_session', max_length=64, verbose_name='session type'), ), ]
#!/usr/bin/python3 import requests from bs4 import BeautifulSoup import pandas as pd url = "https://cn.investing.com/equities/apple-computer-inc-historical-data" response = requests.get(url, headers={"User-Agent": "Mozilla/5.0"}) soup = BeautifulSoup(response.text, 'html.parser') html = soup.find(id = "curr_table").tbody y = html.text list1 = y.split("\n\n") result = {} for i in list1[1:-1]: a = i.split("\n") if a[0] == "": v = a[6].split("M") result.update({a[1]:{"close": a[2], "open": a[3], "high": a[4], "low": a[5], "vol": v[0]+"M", "range":v[1]}}) else: v = a[5].split("M") result.update({a[0]:{"close": a[1], "open": a[2], "high": a[3], "low": a[4], "vol": v[0]+"M", "range":v[1]}}) print(result) # import re # list1 = html.split("<tr>\n<td class=\"first left bold noWrap\" data-real-value=") # dict_result = [];day2 = [];prise2 = [];volume2=[];percent2=[]; # for i in range(0,len(list1)): # if list1[i] != []: # day = re.findall("\d+年\d+月\d+日",list1[i]) # for j in day: # if j !=[]: # day2.append(j) # prise = re.findall("data-real-value=\"\d\d\d.\d\d\"",list1[i]) # for k in prise: # if k != []: # prise2.append(k.replace('data-real-value=', "").replace('"', "")) # volume = re.findall(">.*M",list1[i]) # for a in volume: # if a != []: # volume2.append(a.replace(">","")) # percent = re.findall(">-*\d+.\d+%",list1[i]) # for b in percent: # if b != []: # percent2.append(a.replace(">","")) # dict_result.append([day,[prise, volume, percent]]) # print(dict_result) # open_prise = re.findall("\d+年\d+月\d+日",text) # high = re.findall("\d+年\d+月\d+日",text) # low = re.findall("\d+年\d+月\d+日",text) # range_prise = re.findall("\d+年\d+月\d+日",text) # print(list1) # df = pd.read_html(str(html), header = 0)[0] # print(df) # headers = { # :authority: cn.investing.com # :method: GET # :path: /equities/apple-computer-inc-historical-data # :scheme: https # accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9 # accept-encoding: gzip, deflate, br # accept-language: zh-TW,zh;q=0.9,en-US;q=0.8,en;q=0.7 # cache-control: max-age=0 # cookie: logglytrackingsession=b49ea460-d00e-4b2b-b5e7-1ba8a3b303cc; PHPSESSID=lt5c0u20d1iic8pc7eqt8qar5m; SideBlockUser=a%3A2%3A%7Bs%3A10%3A%22stack_size%22%3Ba%3A1%3A%7Bs%3A11%3A%22last_quotes%22%3Bi%3A8%3B%7Ds%3A6%3A%22stacks%22%3Ba%3A1%3A%7Bs%3A11%3A%22last_quotes%22%3Ba%3A1%3A%7Bi%3A0%3Ba%3A3%3A%7Bs%3A7%3A%22pair_ID%22%3Bs%3A4%3A%226408%22%3Bs%3A10%3A%22pair_title%22%3Bs%3A0%3A%22%22%3Bs%3A9%3A%22pair_link%22%3Bs%3A28%3A%22%2Fequities%2Fapple-computer-inc%22%3B%7D%7D%7D%7D; geoC=TW; adBlockerNewUserDomains=1627291318; StickySession=id.23059254203.989cn.investing.com; udid=dc7448f5c99e96dba1149af65bb0126f; __cflb=0H28uxmf5JNxjDUC6WDvQUEoJyvKUTqwPn61uSCp1dv; __gads=ID=4b4eb919e3648788:T=1627291320:S=ALNI_MYFqYUhnjzax1FSqSIT5TTdE5T-Kw; protectedMedia=2; _ga=GA1.2.1528658918.1627291320; _gid=GA1.2.1008979733.1627291323; G_ENABLED_IDPS=google; adsFreeSalePopUp=3; Hm_lvt_a1e3d50107c2a0e021d734fe76f85914=1627291324,1627291532,1627299698,1627304916; Hm_lpvt_a1e3d50107c2a0e021d734fe76f85914=1627304916; smd=dc7448f5c99e96dba1149af65bb0126f-1627309473; _gat_allSitesTracker=1 # sec-ch-ua: " Not;A Brand";v="99", "Google Chrome";v="91", "Chromium";v="91" # sec-ch-ua-mobile: ?0 # sec-fetch-dest: document # sec-fetch-mode: navigate # sec-fetch-site: cross-site # sec-fetch-user: ?1 # upgrade-insecure-requests: 1 # user-agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.164 Safari/537.36 # }
""" Demonstration of Earnshaw's theorem Ahmed Al-kharusi Please check the simulation yourself. You may find mistakes! See the references """ import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #The moving charge position_velocity_xi = np.array([0, 0]) position_velocity_yi = np.array([-0.01, 0]) position_velocity_zi = np.array([0.01,0]) #The fixed charges CHARGE1_POSITION = np.array([1, 1, 1]) CHARGE2_POSITION = np.array([1, 1, -1]) CHARGE3_POSITION = np.array([1, -1, 1]) CHARGE4_POSITION = np.array([-1, 1, 1]) CHARGE5_POSITION = np.array([1, -1, -1]) CHARGE6_POSITION = np.array([-1, -1, 1]) CHARGE7_POSITION = np.array([-1, 1, -1]) CHARGE8_POSITION = np.array([-1, -1, -1]) #Coulomb constant arb. units k = 1 # set all charges =+1 and masses =1 #consider removing place holders for more efficient codes def acceleration(position_velocity, axis , position_velocity_x, position_velocity_y,position_velocity_z): d1 = (position_velocity[0]-CHARGE1_POSITION[axis]) d2 = (position_velocity[0]-CHARGE2_POSITION[axis]) d3 = (position_velocity[0]-CHARGE3_POSITION[axis]) d4 = (position_velocity[0]-CHARGE4_POSITION[axis]) d5 = (position_velocity[0]-CHARGE5_POSITION[axis]) d6 = (position_velocity[0]-CHARGE6_POSITION[axis]) d7 = (position_velocity[0]-CHARGE7_POSITION[axis]) d8 = (position_velocity[0]-CHARGE8_POSITION[axis]) r1 = np.linalg.norm(np.array([CHARGE1_POSITION[0]-position_velocity_x[0], CHARGE1_POSITION[1]-position_velocity_y[0], CHARGE1_POSITION[2]-position_velocity_z[0]])) r2 = np.linalg.norm(np.array([CHARGE2_POSITION[0]-position_velocity_x[0], CHARGE2_POSITION[1]-position_velocity_y[0], CHARGE2_POSITION[2]-position_velocity_z[0]])) r3 = np.linalg.norm(np.array([CHARGE3_POSITION[0]-position_velocity_x[0], CHARGE3_POSITION[1]-position_velocity_y[0], CHARGE3_POSITION[2]-position_velocity_z[0]])) r4 = np.linalg.norm(np.array([CHARGE4_POSITION[0]-position_velocity_x[0], CHARGE4_POSITION[1]-position_velocity_y[0], CHARGE4_POSITION[2]-position_velocity_z[0]])) r5 = np.linalg.norm(np.array([CHARGE5_POSITION[0]-position_velocity_x[0], CHARGE5_POSITION[1]-position_velocity_y[0], CHARGE5_POSITION[2]-position_velocity_z[0]])) r6 = np.linalg.norm(np.array([CHARGE6_POSITION[0]-position_velocity_x[0], CHARGE6_POSITION[1]-position_velocity_y[0], CHARGE6_POSITION[2]-position_velocity_z[0]])) r7 = np.linalg.norm(np.array([CHARGE7_POSITION[0]-position_velocity_x[0], CHARGE7_POSITION[1]-position_velocity_y[0], CHARGE7_POSITION[2]-position_velocity_z[0]])) r8 = np.linalg.norm(np.array([CHARGE8_POSITION[0]-position_velocity_x[0], CHARGE8_POSITION[1]-position_velocity_y[0], CHARGE8_POSITION[2]-position_velocity_z[0]])) return k*(d1/r1**3+d2/r2**3+d3/r3**3+d4/r4**3+d5/r5**3+d6/r6**3+d7/r7**3+d8/r8**3) def derivatives_x(position_velocity_x, t, x,y,z): return np.array([position_velocity_x[1], acceleration(position_velocity_x, 0, x,y,z) ]) def derivatives_y(position_velocity_y, t, x,y,z): return np.array([position_velocity_y[1], acceleration(position_velocity_y, 1, x,y,z)]) #place_holder so that it can be used with rk4 def derivatives_z(position_velocity_z, t, x,y,z): return np.array([position_velocity_z[1], acceleration(position_velocity_z, 2, x,y,z)]) #taken from... (see references) def rk4(y,dy,t,h, x,yy,z): k1=dy(y,t, x,yy,z) k2=dy(y+h/2*k1,t+h/2, x,yy,z) k3=dy(y+h/2*k2,t+h/2, x,yy,z) k4=dy(y+h*k3,t+h, x,yy,z) y=y+h*(k1+2*k2+2*k3+k4)/6 #t=t+h return y def implement_rk4(position_velocity_x, position_velocity_y, position_velocity_z, t, h, steps_no): global time_arr time_arr = np.array([t]) data_x = np.array([position_velocity_x]) data_y = np.array([position_velocity_y]) data_z = np.array([position_velocity_z]) for i in range(steps_no): tempx = position_velocity_x tempy = position_velocity_y position_velocity_x = rk4( position_velocity_x, derivatives_x, t, h ,position_velocity_x, position_velocity_y, position_velocity_z) position_velocity_y = rk4( position_velocity_y, derivatives_y, t,h, tempx, position_velocity_y, position_velocity_z) position_velocity_z = rk4( position_velocity_z, derivatives_z, t,h, tempx, tempy, position_velocity_z) t +=h #time_arr = np.append(time_arr, t) data_x = np.vstack((data_x, position_velocity_x)) data_y = np.vstack((data_y, position_velocity_y)) data_z = np.vstack((data_z, position_velocity_z)) time_arr = np.append(time_arr, t) #print (star2_arr_x," ", star1_arr_x) [x, vx] = data_x.transpose() [y, vy] = data_y.transpose() [z, zy] = data_z.transpose() return [x ,y, z] # can also return vx, vy, vz for energies and othe info t = 0 # starting time h = 1/(30) # step size for the RK4 method steps_no = 40000 # number of steps of the RK4 method [x, y, z] = implement_rk4(position_velocity_xi, position_velocity_yi, position_velocity_zi, t, h, steps_no) save_every_n_frames = 30 (ymin, ymax) = (-1.1, 1.1) (xmin, xmax) = (-1.1, 1.1) (zmin, zmax) = (-1.1, 1.1) for j in range(int(len(x)/save_every_n_frames)-1): i = j*save_every_n_frames fig = plt.figure(figsize=(10,10)) ax = fig.gca(projection='3d', autoscale_on=False,xlim=(xmin,xmax), ylim=(ymin,ymax), zlim=(zmin,zmax)) ax.scatter(x[0:i], y[0:i], z[0:i], s=2, c='black', alpha=0.9) ax.scatter(x[i], y[i], z[i], s=200, c='c', label='Free charge') ax.set_title("Free charge position:("+str(round(x[i],2))+", "+str(round(y[i],2))+", "+str(round(z[i],2))+")\n Add a small offset"#'Add a small offset\n' , c='blue',fontsize=14,loc='left' ) ax.scatter(CHARGE1_POSITION[0], CHARGE1_POSITION[1], CHARGE1_POSITION[2] , s=200, c='r', label="Fixed charges\nat cube vertices") ax.scatter(CHARGE2_POSITION[0], CHARGE2_POSITION[1], CHARGE2_POSITION[2] , s=200, c='r') ax.scatter(CHARGE3_POSITION[0], CHARGE3_POSITION[1], CHARGE3_POSITION[2] , s=200, c='r') ax.scatter(CHARGE4_POSITION[0], CHARGE4_POSITION[1], CHARGE4_POSITION[2] , s=200, c='r') ax.scatter(CHARGE5_POSITION[0], CHARGE5_POSITION[1], CHARGE5_POSITION[2] , s=200, c='r') ax.scatter(CHARGE6_POSITION[0], CHARGE6_POSITION[1], CHARGE6_POSITION[2] , s=200, c='r') ax.scatter(CHARGE7_POSITION[0], CHARGE7_POSITION[1], CHARGE7_POSITION[2] , s=200, c='r') ax.scatter(CHARGE8_POSITION[0], CHARGE8_POSITION[1], CHARGE8_POSITION[2] , s=200, c='r') ax.set_xlabel('$x$', fontsize=30) ax.set_ylabel('$y$', fontsize=30) ax.set_zlabel('$z$', fontsize=30) ax.legend(fontsize=18) plt.tight_layout() fig.savefig(str(j)+'.png',dpi=110) plt.show() plt.close() """ References: #The rk4 function is taken from https://youtu.be/HPreOWKJOiY """
from __future__ import absolute_import import numpy from targets.marshalling.marshaller import Marshaller from targets.target_config import FileFormat class NumpyArrayMarshaller(Marshaller): type = numpy.ndarray file_format = FileFormat.numpy def target_to_value(self, target, **kwargs): """ :param obj: object to pickle :return: """ import numpy as np return np.load(target.path, **kwargs) def value_to_target(self, value, target, **kwargs): """ :param obj: object to pickle :return: """ import numpy as np target.mkdir_parent() np.save(target.path, value, **kwargs) class NumpyArrayPickleMarshaler(NumpyArrayMarshaller): file_format = FileFormat.pickle def target_to_value(self, target, **kwargs): import numpy as np return np.load(target.path, allow_pickle=True, **kwargs) def value_to_target(self, value, target, **kwargs): import numpy as np np.save(target.path, value, allow_pickle=True, **kwargs)
"""/** * @author [Jai Miles] * @email [jaimiles23@gmail.com] * @create date 2020-05-06 15:10:52 * @modify date 2020-06-16 15:11:39 * @desc [ TODO: - Consider is_instance(data, (tuple, list)) vs has_attr(__iter__)?? ########## # README.md Example. ########## linear_nlg is a naive natural language generation (NLG) to interact with the user. The method transforms linearly connected sentence chunks (e.g., clauses, parts of speech, etc.) into speech responses. Consider the following arbitrary noun phrase: "The red dog" This phrase can be parsed into 3 separate chunks: "The": determiner "red": colour adjective "dog": animal noun In this example, the determiner, adjective, and noun have no effect on the meaning of the response. We can use naive NLG to create an arbitrary noun phrase. This skill's NLG method would sample from the following three message tuples (MT). A single item is sampled from each message tuple to create the noun phrase (DET, JJ, NN). MT_DET = ( "The", "A", ) MT_COLOUR_JJ = ( "red", "blue", "yellow", ) MT_ANIMAL_NN = ( "dog", "cat", ) This NLG method requires careful consideration of sentence structure and semantics to avoid unnatural responses. However, successful implementation increases response variety multiplicatively. The speech construction for the above noun phrase yields 12 response permutations. Data for each NLG method is located in each subdirectory's data module. ########## # Test ########## >>> test = [MT_DET, MT_COLOUR_JJ, MT_ANIMAL_NN] >>> naive_nlg(test) "The red dog" ]*/ """ ########## # Imports ########## import random from logs import logger, log_func_name from pauser import Pauser ########## # Create Message from Tuple of Message Clauses ########## @log_func_name def linear_nlg(tuple_message_clause: tuple, str_joiner: str = ' ') -> str: """Returns message constructed from tuple message clause. Constructs the message with different methods per data type. ## Data type Method Tuple/list random.choice() str append int Pauser.get_p_level() """ def get_clause(tup_data) -> str: """Helper func: returns clause from tup_data using recursion.""" if (tup_data is None) or (len(tup_data) == 0): return '' elif isinstance(tup_data, str): return tup_data elif isinstance(tup_data, (int, float)): return Pauser.get_p_level(tup_data) elif isinstance(tup_data, (tuple, list)): if isinstance(tup_data[0], str): ## List of strings, return choice. return random.choice(tup_data) else: # Recursion of tuples in tuple speech_list = [] for clause_list in tup_data: clause = get_clause(clause_list) speech_list.append(clause) return str_joiner.join(speech_list) else: logger.warning(f"get_clause: Unrecognized data type {tup_data}") logger.debug(tuple_message_clause) speech_list = [] for tup_data in tuple_message_clause: clause = get_clause(tup_data) speech_list.append( clause) # logger.debug(speech_list) return str_joiner.join(speech_list)
# @Title: 子集 (Subsets) # @Author: 18015528893 # @Date: 2021-02-28 12:23:12 # @Runtime: 44 ms # @Memory: 15.2 MB class Solution: def subsets(self, nums: List[int]) -> List[List[int]]: result = [] def backtrack(path, start): result.append(list(path)) if len(path) >= len(nums): return for i in range(start, len(nums)): path.append(nums[i]) backtrack(path, i+1) path.pop() backtrack([], 0) return result
#!/usr/bin/env python # a stacked bar plot with errorbars from pylab import * N = 5 menMeans = (20, 35, 30, 35, 27) womenMeans = (25, 32, 34, 20, 25) menStd = (2, 3, 4, 1, 2) womenStd = (3, 5, 2, 3, 3) ind = arange(N) # the x locations for the groups width = 0.35 # the width of the bars: can also be len(x) sequence p1 = bar(ind, menMeans, width, color='r', yerr=womenStd) p2 = bar(ind, womenMeans, width, color='y', bottom=menMeans, yerr=menStd) ylabel('Scores') title('Scores by group and gender') xticks(ind+width/2., ('G1', 'G2', 'G3', 'G4', 'G5') ) yticks(arange(0,81,10)) legend( (p1[0], p2[0]), ('Men', 'Women') ) show()
from typing import Dict, List, Any, Optional from .featurizing import Featurizing, featurizing # from ..operation import DatasetOperation, dataset_operation from typing import Callable, Mapping from .plugins.summarization.sum_attribute import * from .plugins.summarization.extractive_methods import _ext_oracle from .plugins.summarization.extractive_methods import _lead_k from .plugins.summarization.extractive_methods import _compute_rouge # store all featurizing class import os import sys sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from operation import DatasetOperation, dataset_operation from .general import get_features_sample_level as get_features_sample_level_general class SummarizationFeaturizing(Featurizing, DatasetOperation): def __init__(self, name:str = None, func:Callable[...,Any] = None, resources: Optional[Mapping[str, Any]] = None, contributor: str = None, processed_fields: List = ["text"], generated_field: str = None, task = "summarization", description = None, ): super().__init__(name = name, func = func, resources = resources, contributor = contributor, description= description) self._type = 'SummarizationFeaturizing' self.processed_fields = processed_fields self.generated_field = generated_field self._data_type = "Dataset" self.task = task class summarization_featurizing(featurizing, dataset_operation): def __init__(self, name: Optional[str] = None, resources: Optional[Mapping[str, Any]] = None, contributor: str = None, processed_fields:List = None, generated_field:str = None, task = "summarization", description = None, ): super().__init__(name = name, resources = resources, contributor = contributor, task = task, description=description) self.processed_fields = processed_fields self.generated_field = generated_field def __call__(self, *param_arg): if callable(self.name): tf_class = SummarizationFeaturizing(name = self.name.__name__, func=self.name) return tf_class(*param_arg) else: f = param_arg[0] name = self.name or f.__name__ tf_cls = SummarizationFeaturizing(name=name, func = f, resources = self.resources, contributor = self.contributor, processed_fields = self.processed_fields, generated_field = self.generated_field, task = self.task, description=self.description) return tf_cls @summarization_featurizing(name = "get_density", contributor="datalab", task = "summarization", description="This function measures to what extent a summary covers the content in the source text.") def get_density(sample:dict): summary_attribute = SUMAttribute() attribute_info = summary_attribute.cal_attributes_each(sample['text'], sample['summary']) return {"density":attribute_info["attr_density"]} @summarization_featurizing(name = "get_coverage", contributor="datalab", task = "summarization", description="This function measures to what extent a summary covers the content in the source text.") def get_coverage(sample:dict): summary_attribute = SUMAttribute() attribute_info = summary_attribute.cal_attributes_each(sample['text'], sample['summary']) return {"coverage":attribute_info["attr_coverage"]} @summarization_featurizing(name = "get_compression", contributor="datalab", task = "summarization", description="This function measures the compression ratio from the source text to the generated summary.") def get_compression(sample:dict): summary_attribute = SUMAttribute() attribute_info = summary_attribute.cal_attributes_each(sample['text'], sample['summary']) return {"compression":attribute_info["attr_compression"]} @summarization_featurizing(name = "get_repetition", contributor="datalab", task = "summarization", description="This function measures the rate of repeated segments in summaries. The segments are instantiated as trigrams.") def get_repetition(sample:dict): summary_attribute = SUMAttribute() attribute_info = summary_attribute.cal_attributes_each(sample['text'], sample['summary']) return {"repetition":attribute_info["attr_repetition"]} @summarization_featurizing(name = "get_novelty", contributor="datalab", task = "summarization", description="This measures the proportion of segments in the summaries that haven’t appeared in source documents. The segments are instantiated as bigrams.") def get_novelty(sample:dict): summary_attribute = SUMAttribute() attribute_info = summary_attribute.cal_attributes_each(sample['text'], sample['summary']) return {"novelty":attribute_info["attr_novelty"]} @summarization_featurizing(name = "get_copy_len", contributor="datalab", task = "summarization", description="Measures the average length of segments in summary copied from source document.") def get_copy_len(sample:dict): summary_attribute = SUMAttribute() attribute_info = summary_attribute.cal_attributes_each(sample['text'], sample['summary']) return {"copy_len":attribute_info["attr_copy_len"]} @summarization_featurizing(name = "get_all_features", contributor="datalab", task = "summarization", description="Calculate all features for summarization datasets (density, coverage, compression, repetition, novelty, copy lenght)") def get_all_features(sample:dict): summary_attribute = SUMAttribute() attribute_info = summary_attribute.cal_attributes_each(sample['text'], sample['summary']) return { "density":attribute_info["attr_density"], "coverage":attribute_info["attr_coverage"], "compression": attribute_info["attr_compression"], "repetition": attribute_info["attr_repetition"], "novelty": attribute_info["attr_novelty"], "copy_len": attribute_info["attr_copy_len"], } @summarization_featurizing(name = "get_oracle_summary", contributor="datalab", task = "summarization", description="This function extract the oracle summaries for text summarization") def get_oracle_summary(sample:dict) -> Dict: """ Input: SummarizationDataset: dict Output: return {"source":src, "reference":ref, "oracle_summary":oracle, "oracle_labels":labels, "oracle_score":max_score} """ document = sent_tokenize(sample["text"]) # List summary = sample['summary'] oracle_info = _ext_oracle(document, summary, _compute_rouge, max_sent=3) return oracle_info # # # @summarization_featurizing(name = "get_lead_k_summary", contributor="datalab", task = "summarization", description="This function extract the lead k summary for text summarization datasets") def get_lead_k_summary(sample:dict) -> Dict: """ Input: SummarizationDataset: dict Output: return {"source":src, "reference":ref, "lead_k_summary":src, "lead_k_score":score} """ document = sent_tokenize(sample["text"]) # List summary = sample['summary'] lead_k_info = _lead_k(document, summary, _compute_rouge, k = 3) return lead_k_info def get_schema_of_sample_level_features(): return { "text_length":1, "text_lexical_richness":0.2, "text_basic_words":0.2, "text_gender_bias_word_male":1, "text_gender_bias_word_female":2, "text_gender_bias_single_name_male":1, "text_gender_bias_single_name_female":1, "summary_length": 1, "summary_lexical_richness": 0.2, "summary_basic_words": 0.2, "summary_gender_bias_word_male": 1, "summary_gender_bias_word_female": 2, "summary_gender_bias_single_name_male": 1, "summary_gender_bias_single_name_female": 1, "density": 0.1, "coverage": 0.1, "compression": 0.1, "repetition": 0.1, "novelty": 0.1, "copy_len": 0.1, } @summarization_featurizing(name = "get_features_sample_level", contributor= "datalab", processed_fields= "text", task="summarization", description="This function is used to calculate the text length") def get_features_sample_level(sample:dict): text = sample["text"] summary = sample["summary"] res_info_general = get_features_sample_level_general.func(text) res_info_general_new = {} for k,v in res_info_general.items(): res_info_general_new["text" + "_" + k] =v res_info_general = get_features_sample_level_general.func(summary) for k,v in res_info_general.items(): res_info_general_new["summary" + "_" + k] =v # get task-dependent features summary_features = get_all_features.func(sample) # update the res_info_general_new res_info_general_new.update(summary_features) # res_info_general_new.update({"answer_length":answer_length, # "option1_length":option1_length, # "option2_length":option2_length, # # "option_index":int(option_index), # }) return res_info_general_new def get_schema_of_sample_level_features_asap(): return { "text_length":1, # "text_lexical_richness":0.2, # "text_basic_words":0.2, # "text_gender_bias_word_male":1, # "text_gender_bias_word_female":2, # "text_gender_bias_single_name_male":1, # "text_gender_bias_single_name_female":1, "summary_length": 1, "summary_lexical_richness": 0.2, "summary_basic_words": 0.2, "summary_gender_bias_word_male": 1, "summary_gender_bias_word_female": 2, "summary_gender_bias_single_name_male": 1, "summary_gender_bias_single_name_female": 1, # "density": 0.1, # "coverage": 0.1, # "compression": 0.1, # "repetition": 0.1, # "novelty": 0.1, # "copy_len": 0.1, "n_aspects":0.0, } @summarization_featurizing(name = "get_features_sample_level_asap", contributor= "datalab", processed_fields= "text", task="summarization", description="This function is used to calculate the text length") def get_features_sample_level_asap(sample:dict): text = sample["text"] summary = sample["review"] aspects = sample["aspects"] # res_info_general = get_features_sample_level_general.func(text) res_info_general_new = {} # for k,v in res_info_general.items(): # res_info_general_new["text" + "_" + k] =v res_info_general_new["text" + "_" + "length"] = len(text.split(" ")) res_info_general = get_features_sample_level_general.func(summary) for k,v in res_info_general.items(): res_info_general_new["summary" + "_" + k] =v # get task-dependent features # summary_attribute = SUMAttribute() # attribute_info = summary_attribute.cal_attributes_each(sample['text'], sample['review']) # summary_features = { # "density":attribute_info["attr_density"], # "coverage":attribute_info["attr_coverage"], # "compression": attribute_info["attr_compression"], # "repetition": attribute_info["attr_repetition"], # "novelty": attribute_info["attr_novelty"], # "copy_len": attribute_info["attr_copy_len"], # } # res_info_general_new.update(summary_features) # print(aspects) # exit() n_aspects = len(aspects) res_info_general_new.update({"n_aspects":n_aspects}) # update the res_info_general_new # res_info_general_new.update({"answer_length":answer_length, # "option1_length":option1_length, # "option2_length":option2_length, # # "option_index":int(option_index), # }) return res_info_general_new
#!/usr/bin/python # # Watch for changes to amazon/google product reviews. # CONFIG=".review-scraper" VERBOSE=False AMAZON_REVIEWS_URL="http://www.amazon.com/Bitiotic-Freeform-Backgammon/product-reviews/B00A7KD23K/ref=dp_db_cm_cr_acr_txt" GOOGLE_PROD_URL="https://play.google.com/store/apps/details?id=com.bitiotic.freeform.android" import sys import urllib2 import BeautifulSoup import md5 import os import pickle #_configFileName = os.path.join(os.path.expanduser("~"), CONFIG) # XXX command line option for this (use explicit dir for running under cron) _configFileName = os.path.join("/home/pat/", CONFIG) # Picklable object that represents a review site (and what to scrape out of it) class Site: def __init__(self, name, url, tag, attrs): self.name = name self.url = url self.tag = tag self.attrs = attrs def __hash__(self): # .tag and .attrs are not part of the identity return hash((self.name, self.url)) def __eq__(self, other): # .tag and .attrs are not part of the identity return (self.name, self.url) == (other.name, other.url) # Collect all the state to save in one place. For each site, track checksum of reviews. class Saved: PICKLEFMT=0 def __init__(self): self.version = "review-scraper.py v0.0.5" self.sites = {} def addSite(self, site): self.updateSite(site, "unknown md5sum") def updateSite(self, site, csum): self.sites[site] = csum def save(self): """Save this object to the given file. Existing contents will be obliterated.""" with open(_configFileName, "w") as fileHandle: pickle.dump(self, fileHandle, Saved.PICKLEFMT) @staticmethod def load(): """Load existing saved object from file, or create new object if no file exists.""" if os.path.exists(_configFileName): with open(_configFileName, "r") as fileHandle: try: obj = pickle.load(fileHandle) except: obj = "Invalid Save File" if not isinstance(obj, Saved): raise RuntimeError, "Saved state corrupt, is not an instance of Saved" return obj else: return Saved() # Retrive rough review text plus md5sum of reviewsa def watchFor(label, url, tag, attrs): blurbs = scrapeChunks(label, url, tag, attrs) if VERBOSE: if not blurbs: print "No HTML found for ", tag, "+", attrs else: print blurbs # Compute md5 checksum of review so we can see if anything changed cx = md5.new() cx.update(blurbs) return (blurbs, cx.hexdigest()) def scrapeChunks(label, url, tag, attrs): req = urllib2.Request(url) response = urllib2.urlopen(req) content = BeautifulSoup.BeautifulSoup(response.read()) #fh = open("/tmp/splat.html", "w") #fh.write(str(content.prettify())) #fh.close() chunks = content.body.findAll(tag, attrs=attrs) if not chunks: return None else: return "\n\n".join([c.text for c in chunks]) def addSite(saveState, name, url, tag, attrs): saveState.addSite(Site(name, url, tag, attrs)) def updateSites(saveState): for site, oldcx in saveState.sites.items(): if VERBOSE: print "Checking", site.name, "..." newcx = watchFor(site.name, site.url, site.tag, site.attrs) saveState.updateSite(site, newcx) if VERBOSE: if newcx != oldcx: print " Changed!" else: print " No change" else: if newcx != oldcx: print "Reviews have changed (?) at", site.name def main(): state = Saved.load() try: if False: # Set to 'True' to add these sites to the list. Only needs to be done once. addSite(state, "Google", GOOGLE_PROD_URL, 'div', attrs={ 'class': 'review-body'}) addSite(state, "Amazon", AMAZON_REVIEWS_URL, 'table', attrs={ 'id': 'productReviews' }) updateSites(state) finally: state.save() if __name__ == "__main__": sys.exit(main()) #eof
#!/usr/bin/env python3 import pyasmtools def fac_iter(arg_n: int) -> int: res = 1 for cur_n in range(1,arg_n+1): res *= cur_n return res fac_iter = pyasmtools.TraceMe(fac_iter) print( "fac_iter(7):", fac_iter(7))
from PyQt5 import QtWidgets, QtCore, QtGui from collections import OrderedDict class ZmqSetupWindow(QtWidgets.QMainWindow): """Sub window for zmq settings""" zmqSetupChanged = QtCore.pyqtSignal(OrderedDict) def __init__(self, parent=None): super(ZmqSetupWindow, self).__init__(parent) self.window_title = '%sMQ setup' % u'\u00D8' self.default_ports = OrderedDict([('log', 8500), ('data', 8600), ('cmd', 8700), ('stage', 8800)]) self.ports = OrderedDict([(k, self.default_ports[k]) for k in self.default_ports]) self.edits = {} self._init_ui() def _init_ui(self): self.setWindowTitle(self.window_title) # Make this window blocking parent window self.setWindowModality(QtCore.Qt.ApplicationModal) self.screen = QtWidgets.QDesktopWidget().screenGeometry() self.resize(0.25 * self.screen.width(), 0.25 * self.screen.height()) # Main widget widget = QtWidgets.QWidget() layout = QtWidgets.QGridLayout() layout.setHorizontalSpacing(20) layout.setVerticalSpacing(10) layout.setAlignment(QtCore.Qt.AlignTop) widget.setLayout(layout) self.setCentralWidget(widget) layout.addWidget(QtWidgets.QLabel('Ports:'), 0, 0, 1, 1) for i, port in enumerate(self.default_ports): label = QtWidgets.QLabel(port.capitalize()) edit = QtWidgets.QLineEdit() edit.setValidator(QtGui.QIntValidator(1, int(2**16))) edit.setText(str(self.default_ports[port])) layout.addWidget(label, i+1, 1, 1, 1) layout.addWidget(edit, i+1, 2, 1, 1) self.edits[port] = edit btn_reset = QtWidgets.QPushButton('Reset') btn_reset.clicked.connect(lambda _: [self.edits[k].setText(str(self.default_ports[k])) for k in self.default_ports]) layout.addWidget(btn_reset, 6, 0, 1, 1) btn_ok = QtWidgets.QPushButton('Ok') btn_ok.clicked.connect(lambda _: self._update_ports()) btn_ok.clicked.connect(self.close) btn_cancel = QtWidgets.QPushButton('Cancel') btn_cancel.clicked.connect(self.close) layout.addWidget(btn_cancel, 6, 3, 1, 1) layout.addWidget(btn_ok, 6, 4, 1, 1) def _update_ports(self): for port in self.edits: self.ports[port] = int(self.edits[port].text()) self.zmqSetupChanged.emit(self.ports)
""" A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below). Now consider if some obstacles are added to the grids. How many unique paths would there be? An obstacle and empty space is marked as 1 and 0 respectively in the grid. Note: m and n will be at most 100. Example 1: Input: [ [0,0,0], [0,1,0], [0,0,0] ] Output: 2 Explanation: There is one obstacle in the middle of the 3x3 grid above. There are two ways to reach the bottom-right corner: 1. Right -> Right -> Down -> Down 2. Down -> Down -> Right -> Right """ class Solution(object): def uniquePathsWithObstacles(self, obstacleGrid): """ :type obstacleGrid: List[List[int]] :rtype: int """ # 存储网格的长与宽 m = len(obstacleGrid) n = len(obstacleGrid[0]) # 如果左上角有障碍,则直接返回0 if obstacleGrid[0][0] == 1: return 0 # 将左上角那一格的路径数设为1(因为前面判定过是否有障碍) obstacleGrid[0][0] = 1 # 边界的初始化 # 对于上边,若这一格没有障碍,且左边一格路径数为1(即之前都无障碍),则将这一格的路径数设为1 for i in range(1,n): obstacleGrid[0][i] = int(obstacleGrid[0][i] == 0 and obstacleGrid[0][i - 1] == 1) # 对于左边,若这一格没有障碍,且上边一格路径数为1(即之前都无障碍),则将这一格的路径数设为1 for i in range(1,m): obstacleGrid[i][0] = int(obstacleGrid[i][0] == 0 and obstacleGrid[i - 1][0] == 1) # 对于右下方(m-1)*(n-1)的网格,每一格的路径数等于它左边格子的路径数加上它上边格子的路径数(如果没有障碍),否则直接为0。 for i in range(1,m): for j in range(1,n): obstacleGrid[i][j] = (obstacleGrid[i][j - 1] + obstacleGrid[i - 1][j]) * (1 - obstacleGrid[i][j]) return obstacleGrid[m - 1][n - 1] """ 思路:利用动态规划的方法,边界的初始化需要重新设定。其他思路与之前大致相同,只是多了一个障碍的判定。由于obstacleGrid的存在,因此不需要额外的空间,即空间复杂度为O(1)。 """
""" Database Cleanup to be run every day. Condenses high resolution report data into averages and anomalies. Stores the averages and anomalies in separate DB table. Data to Clean | | v v __________________________________________ Previous 48H | Previous 24H | Now | xxx | xxx | | xxx | xxx | | """ import datetime import sqlalchemy as sa import pandas as pd import numpy as np from sqlalchemy import and_ from sqlalchemy.orm import Session from server.db.mappings import HistoricalData, Node, Update, DiskUpdate, SessionUpdate, GPUUpdate, Pool import server.constants as const def clean(host: str, port: int, user: str, password: str, dbname: str, pool: int, verbose=False) -> bool: """ Reads through all current database entries, and condenses all entries older than 48 hours old. Condensed data will be entered into the historical database. :return: """ # Create DB Session print("Connecting to Database...") engine = sa.create_engine(f"mysql://{user}:{password}@{host}:{port}/" f"{dbname}", echo=verbose) session = Session(engine) pool = session.get(Pool, {'id': pool}) hr_cutoff = datetime.datetime.now() - datetime.timedelta(days=1) print(f"Condensing all data before {hr_cutoff}") def _clean(data): return None if np.isnan(data) else data for node in pool.nodes: node: Node print(f"Condensing {node.pool_id}:{node.id}") # General Updates query = session.query(Update).filter(and_(Update.node_id == node.id, Update.timestamp <= hr_cutoff)) updates = pd.read_sql(query.statement, query.session.bind) # Disk Updates disk_query = session.query(DiskUpdate).filter(and_(DiskUpdate.update.has(node_id=node.id), DiskUpdate.update.has(Update.timestamp <= hr_cutoff))) disk_updates = pd.read_sql(disk_query.statement, disk_query.session.bind) # GPU Updates gpu_query = session.query(GPUUpdate).filter(and_(GPUUpdate.update.has(node_id=node.id), GPUUpdate.update.has(Update.timestamp <= hr_cutoff))) gpu_updates = pd.read_sql(gpu_query.statement, gpu_query.session.bind) if len(updates) > 0: historical = HistoricalData() historical.node_id = node.id historical.pool_id = node.pool_id historical.time = hr_cutoff historical.avg_cpu_curr_freq = _clean(updates['cpu_current_frequency'].mean()) historical.avg_cpu_percent_usage = _clean(updates['cpu_percent_usage'].mean()) historical.avg_cpu_load_1 = _clean(updates['cpu_load_1'].mean()) historical.avg_cpu_load_5 = _clean(updates['cpu_load_5'].mean()) historical.avg_cpu_load_15 = _clean(updates['cpu_load_15'].mean()) historical.avg_ram_used_virt = _clean(updates['ram_used_virtual'].mean()) historical.avg_ram_used_swap = _clean(updates['ram_used_swap'].mean()) historical.avg_battery_avail = _clean(updates['battery_available_percent'].mean()) if len(disk_updates) > 0: disks = disk_updates['partition_id'].unique() avail_avgs = [] used_avgs = [] for disk in disks: avail_avgs.append(disk_updates.loc[disk_updates['partition_id'] == disk]['free_storage'].mean()) used_avgs.append(disk_updates.loc[disk_updates['partition_id'] == disk]['used_storage'].mean()) historical.total_disk_avail = _clean(sum(avail_avgs)) historical.total_disk_used = _clean(sum(used_avgs)) if len(gpu_updates) > 0: gpus = gpu_updates['uuid'].unique() loads = [] memory_useds = [] for gpu in gpus: loads.append(gpu_updates.loc[gpu_updates['uuid'] == gpu]['load'].mean()) memory_useds.append(gpu_updates.loc[gpu_updates['uuid'] == gpu]['memory_used'].mean()) historical.avg_gpu_load = _clean(np.average(loads)) historical.avg_gpu_memory_used = _clean(np.average(memory_useds)) session.add(historical) print(f"Added record for {node.pool_id}:{node.id}.") else: print(f"No updates in time range for {node.pool_id}:{node.id}.") print("Committing changes to Historical DB.") session.commit() query = session.query(Update).filter(Update.timestamp <= hr_cutoff) query.delete() session.commit() return True if __name__ == '__main__': clean(const.DB_URL, const.DB_PORT, const.DB_USER, const.DB_PASSWORD, const.DB_SCHEMA, const.POOL_ID, False)
print("Added python, too much code.")
import logging import socket from ipaddress import IPv4Address from ipaddress import ip_network from saturn import state from saturn.protocol import TcpClient from saturn.socks import reply from .base import SocksRequest class SocksRequestConnect(SocksRequest): action_id = 1 async def go(self): assert not isinstance(self.dispatcher.state, state.Connected) on_connect = self.dispatcher.loop.create_future() allowed_to = False for addr in getattr(self.dispatcher.server.config["Security"], 'allowed_destinations', ["0.0.0.0/0"]): if self.dst_addr in ip_network(addr): allowed_to = True break if not allowed_to: return reply.ConnectionNotAllowed() try: self.dispatcher.client_transport, self.client_protocol = await self.dispatcher.loop.create_connection( lambda: TcpClient(self.dispatcher, on_connect), str(self.dst_addr), self.dst_port) except OSError as e: if e.errno == 110: return reply.NetworkUnreachable() if e.errno == 111: return reply.ConnectionRefused() if e.errno == 113 or e.errno == 101: return reply.HostUnreachable() if e.errno == 22: return reply.AddressTypeNotSupported() logging.error(f'TCP Client got {e.errno}: {e} while trying to connect to {self.dst_addr}') return reply.Failure() self.dispatcher.connected = True await on_connect self.dispatcher.state = state.Connected() return reply.Success(IPv4Address(socket.gethostbyname(socket.gethostname())), 8081)
#open the file for writing f = open("myfile.txt","w") print("Enter Text (Type # when you are done)") s='' while s != '#': s = input() f.write(s+"\n") f.close
""" Funções para uma string Leia uma string e retorne o maximo de função """ x = input('Digite algo: ') # funcao .is print(f'Tipo primitivo: {type(x)}') print('É numero:', x.isnumeric()) print('É alfabético:', x.isalpha()) print('É alfanúmero:', x.isalnum()) print('Está em maiusculo:', x.isupper()) print('Está em minusculo:', x.islower())
import importlib from django.conf import settings from django.template import loader from django.utils.text import slugify def get_action(state_machine_name, trigger, task): def _add_action_id(action): action["id"] = slugify(action["title"]) def _add_action_form(action, task): template = loader.get_template(action["template_filename"]) action["form"] = template.render( {"task": task, "action": action, **action["template_context"]} ) builders = importlib.import_module(settings.ACTION_CONF).action_builders action = builders[state_machine_name][trigger](task) _add_action_id(action) _add_action_form(action, task) return action def build_state_machine(state_machine_name, state_name): builders = importlib.import_module( settings.STATE_MACHINE_CONF ).state_machine_builders return builders[state_machine_name](state_name)
""" mbed CMSIS-DAP debugger Copyright (c) 2006-2013 ARM Limited Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from ..flash.flash import Flash from ..core.coresight_target import (SVDFile, CoreSightTarget) from ..core.memory_map import (FlashRegion, RamRegion, MemoryMap) flash_algo = { 'load_address' : 0x10000000, 'instructions' : [ 0xE00ABE00, 0x062D780D, 0x24084068, 0xD3000040, 0x1E644058, 0x1C49D1FA, 0x2A001E52, 0x4770D1F2, 0x47700a80, 0x21004842, 0x22016301, 0x63416342, 0x6b416342, 0xd0fc07c9, 0x493e6382, 0x70082002, 0x47702000, 0x47702000, 0x4c3bb5f8, 0x25002032, 0x261f444c, 0x493960a6, 0x60206065, 0x4f384449, 0x91004620, 0x696047b8, 0xd10b2800, 0x203460a6, 0x60206065, 0x60e04833, 0x99004620, 0x696047b8, 0xd0002800, 0xbdf82001, 0x4d2bb5f8, 0x444d0a84, 0x492a606c, 0x60ac2032, 0x60284449, 0x460f4e28, 0x47b04628, 0x28006968, 0x606cd10b, 0x60ac2034, 0x48246028, 0x463960e8, 0x47b04628, 0x28006968, 0x2001d000, 0xb5f8bdf8, 0x00054614, 0x6861d10e, 0x68e26820, 0x68a11840, 0x18401889, 0x18406921, 0x18406961, 0x184069a1, 0x61e04240, 0x0aa84e12, 0x2132444e, 0x60316070, 0x60b04910, 0x4f104449, 0x91004630, 0x697047b8, 0xd10e2800, 0x20336075, 0x603060b4, 0x02402001, 0x480a60f0, 0x46306130, 0x47b89900, 0x28006970, 0x2001d000, 0x0000bdf8, 0x40048040, 0x40048000, 0x00000004, 0x00000018, 0x1fff1ff1, 0x00002ee0, 0x00000000, ], 'pc_init' : 0x10000025, 'pc_erase_sector' : 0x10000089, 'pc_program_page' : 0x100000C7, 'pc_eraseAll' : 0x10000049, # Double buffering is not supported since sector size differs from page size 'static_base' : 0x10000000 + 0x00000020 + 0x00000128, 'begin_data' : 0x10000000 + 0x00000800, # Analyzer uses a max of 128 B data (32 pages * 4 bytes / page) 'begin_stack' : 0x10000800, 'min_program_length' : 1024, 'analyzer_supported' : True, 'analyzer_address' : 0x10001000 # Analyzer 0x10001000..0x10000600 } class Flash_lpc824(Flash): def __init__(self, target): super(Flash_lpc824, self).__init__(target, flash_algo) # TODO - temporary until flash algo is rebuilt with 1K page program size def programPage(self, flashPtr, bytes): write_size = 512 for i in range(0, 2): data = bytes[i * write_size : (i + 1) * write_size] Flash.programPage(self, flashPtr + i * write_size, data) class LPC824(CoreSightTarget): memoryMap = MemoryMap( FlashRegion( start=0, length=0x8000, blocksize=0x400, isBootMemory=True), RamRegion( start=0x10000000, length=0x2000) ) def __init__(self, link): super(LPC824, self).__init__(link, self.memoryMap) def resetStopOnReset(self, software_reset=None, map_to_user=True): super(LPC824, self).resetStopOnReset(software_reset) # Remap to use flash and set SP and SP accordingly if map_to_user: self.writeMemory(0x40048000, 0x2, 32) sp = self.readMemory(0x0) pc = self.readMemory(0x4) self.writeCoreRegisterRaw('sp', sp) self.writeCoreRegisterRaw('pc', pc)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import argparse import cv2 import os from maskrcnn_benchmark.config import cfg from my_predictor import COCODemo import time vis = True def main(): config_file = '/media/kevin/办公/xizang/1119_outputs/1119_infer_configs.yaml' opts = ["MODEL.DEVICE", "cuda"] confidence_threshold = 0.7 min_image_size = 720 # load config from file and command-line arguments cfg.merge_from_file(config_file) cfg.merge_from_list(opts) cfg.freeze() print(cfg) # prepare object that handles inference plus adds predictions on top of image coco_demo = COCODemo( cfg, confidence_threshold=confidence_threshold, min_image_size=min_image_size, ) img_dir = '/media/kevin/娱乐/xizang_database/testdata/1118/JPEGImages' img_out_dir = '/media/kevin/办公/xizang/主观结果/1119' img_list = os.listdir(img_dir) # 获取类别文件夹下所有图片的路径 for i in range(0, 1500, 50): if not img_list[i].endswith('jpg'): # 若不是jpg文件,跳过 continue # print(i) start_time = time.time() img_path = os.path.join(img_dir, img_list[i]) print(img_path) img = cv2.imread(img_path) img = cv2.resize(img, (1280, 720)) composite = coco_demo.run_on_opencv_image(img) print("Time: {:.2f} s / img".format(time.time() - start_time)) img_out_path = os.path.join(img_out_dir, 'det_'+img_list[i]) cv2.imwrite(img_out_path, composite) print('image write to %s'%img_out_path) if vis: cv2.namedWindow("COCO detections",0); cv2.resizeWindow("COCO detections", 1800, 1100); cv2.imshow("COCO detections", composite) if cv2.waitKey(5000) == 27: exit() if vis: cv2.destroyAllWindows() if __name__ == "__main__": main()
import io import logging import os import sqlite3 from datetime import datetime from shutil import copyfile from django.conf import settings from django.core.management import call_command from django.db.utils import DatabaseError logger = logging.getLogger(__name__) def common_clean(db_name, db_file): # let's remove the damaged db files if settings.DATABASES["default"]["ENGINE"] != "django.db.backends.sqlite3": return os.remove(db_file) logger.error("{} is corrupted".format(db_name)) def regenerate_database(connection): # procedure to create from scratch a sqlite database when using Django ORM from django.db.migrations.recorder import MigrationRecorder connection.close() common_clean(connection.alias, connection.get_connection_params()["database"]) if connection.alias == "notifications_db": logger.error("Regenerating {}".format(connection.alias)) # delete the db migrations and run them again connection_migrations = MigrationRecorder(connection).Migration connection_migrations.objects.filter(app="notifications").delete() call_command( "migrate", interactive=False, verbosity=False, app_label="notifications", database="notifications_db", ) call_command("migrate", interactive=False, verbosity=False) def repair_sqlite_db(connection): from kolibri.core.deviceadmin.utils import KWARGS_IO_WRITE from kolibri.core.deviceadmin.utils import default_backup_folder if settings.DATABASES["default"]["ENGINE"] != "django.db.backends.sqlite3": return # First let's do a file_backup dest_folder = default_backup_folder() if hasattr(connection, "name"): orm = "sqlalchemy" conn_name = connection.name original_path = connection.url.database else: orm = "django" conn_name = connection.alias original_path = connection.get_connection_params()["database"] fname = "{con}_{dtm}.dump".format( con=conn_name, dtm=datetime.now().strftime("%Y-%m-%d_%H-%M-%S") ) if not os.path.exists(dest_folder): os.makedirs(dest_folder) backup_path = os.path.join(dest_folder, fname) copyfile(original_path, backup_path) if orm == "sqlalchemy": # Remove current file, it will be automatically regenerated common_clean(conn_name, original_path) logger.error("Regenerating {}".format(connection.name)) return # now, let's try to repair it, if possible: # os.remove(original_path) fixed_db_path = "{}.2".format(original_path) with io.open(fixed_db_path, **KWARGS_IO_WRITE) as f: # If the connection hasn't been opened yet, then open it try: for line in connection.connection.iterdump(): f.write(line) connection.close() copyfile(fixed_db_path, original_path) # let's check if the tables are there: cursor = connection.cursor() cursor.execute("SELECT name FROM sqlite_master WHERE type='table';") if len(cursor.fetchall()) == 0: # no way, the db has no tables regenerate_database(connection) except (DatabaseError, sqlite3.DatabaseError): # no way, the db is totally broken regenerate_database(connection) finally: os.remove(fixed_db_path)
from pygame import mixer mixer.init() mixer.music.load('ex021.mp3') mixer.music.play() input()
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See LICENSE in the project root # for license information. __doc__ = """pytest-based ptvsd tests.""" import colorama import pytest # This is only imported to ensure that the module is actually installed and the # timeout setting in pytest.ini is active, since otherwise most timeline-based # tests will hang indefinitely. import pytest_timeout # noqa colorama.init() pytest.register_assert_rewrite('tests.helpers')
def mergesort(arr): if len(arr)>1: mid=len(arr)//2 l=arr[:mid] r=arr[mid:] mergesort(l) mergesort(r) i=j=k=0 while i<len(l) and j <len(r): if l[i]<r[j]: arr[k]=l[i] i+=1 else: arr[k]=r[j] j+=1 k+=1 while i<len(l): arr[k]=l[i] i+=1 k+=1 while j<len(r): arr[k]=r[j] j+=1 k+=1 return arr data = [4, 2, 2, 8, 3, 3, 1,45,65,67,87,98,34,56,7788] mergesort(data)
import dataclasses @dataclasses.dataclass class NonPublicMetrics(): impression_count: int url_link_clicks: int user_profile_clicks: int
def API_error(description): """Create an API error message.""" return {"status": "error", "error": description} def API_fatal(description): """Create an API fatal error message.""" return {"status": "fatal", "error": description} def API_response(*args, **kwargs): """Create an API response using provided arguments. Positional arguments: any number of dicts that will be merged into the response. Keyword arguments: will be merged into the response.""" r = {"status": "ok"} for a in args: if type(a) is dict: r.update(a) else: raise Exception("Unsupported arguments") if kwargs: r.update(kwargs) return r
'''Test script for Homework 3, Computational Photonics, SS 2020: FDTD method. ''' import numpy as np from finite_difference_time_domain import fdtd_3d, Fdtd3DAnimation from matplotlib import pyplot as plt import time # dark bluered colormap, registers automatically with matplotlib on import import bluered_dark plt.rcParams.update({ 'figure.figsize': (12/2.54, 9/2.54), 'figure.subplot.bottom': 0.15, 'figure.subplot.left': 0.165, 'figure.subplot.right': 0.90, 'figure.subplot.top': 0.9, 'axes.grid': False, 'image.cmap': 'bluered_dark', }) plt.close('all') # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # constants c = 2.99792458e8 # speed of light [m/s] mu0 = 4*np.pi*1e-7 # vacuum permeability [Vs/(Am)] eps0 = 1/(mu0*c**2) # vacuum permittivity [As/(Vm)] Z0 = np.sqrt(mu0/eps0) # vacuum impedance [Ohm] # simulation parameters Nx = 199 # number of grid points in x-direction Ny = 201 # number of grid points in y-direction Nz = 5 # number of grid points in z-direction dr = 30e-9 # grid spacing in [m] time_span = 10e-15 # duration of simulation [s] # x coordinates x = np.arange(-int(np.ceil((Nx-1)/2)), int(np.floor((Nx-1)/2)) + 1)*dr # y coordinates y = np.arange(-int(np.ceil((Ny-1)/2)), int(np.floor((Ny-1)/2)) + 1)*dr # source parameters freq = 500e12 # pulse [Hz] tau = 1e-15 # pulse width [s] t0 = 3 * tau source_width = 2 * dr # width of Gaussian current dist. [grid points] # grid midpoints midx = int(np.ceil((Nx-1)/2)) midy = int(np.ceil((Ny-1)/2)) midz = int(np.ceil((Nz-1)/2)) # choose dt small enough dt = dr / 2 / c # time array t = np.arange(0, time_span, dt) # %% create relative permittivity distribution %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% eps_rel = np.ones((Nx, Ny, Nz)) # %% current distributions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # jx = jy = np.zeros(...) # jz : Gaussion distribution in the xy-plane with a width of 2 grid points, # constant along z jx = np.zeros((Nx, Ny, Nz), dtype=np.complex128) jy = np.copy(jx) jz = np.ones((1, 1, Nz)) * np.exp(- (np.reshape(y, (1, len(y), 1)) ** 2 + np.reshape(x, (len(x), 1, 1)) ** 2) / source_width ** 2) # jz = np.exp(- (np.reshape(x, (1, len(x))) ** 2 + # np.reshape(y, (len(y), 1)) ** 2) / source_width ** 2) # output parameters z_ind = midz # z-index of field output output_step = 4 # time steps between field output #%% run simulations %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% times = [] for _ in range(1): a = time.time() Ex, Ey, Ez, Hx, Hy, Hz, t =\ fdtd_3d(eps_rel, dr, time_span, freq, tau, jx, jy, jz, "ex", z_ind, output_step) b = time.time() - a times.append(b) print("Time elapsed {:.4f} in seconds".format(np.mean(times))) print("Time elapsed stdev {:.4f} in seconds".format(np.std(times) / np.sqrt(len(times)))) x = x[1:] y = y[1:] #%% movie of Hx %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F = Hx*Z0*1e6 titlestr = 'x-Component of Magnetic Field' cb_label = '$\\Re\\{Z_0H_x\\}$ [µV/m]' rel_color_range = 1/3 fps = 10 ani = Fdtd3DAnimation(x, y, t, F, titlestr, cb_label, rel_color_range, fps) plt.show() ##%% movie of Ez %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% F = Ez*1e6 titlestr = 'z-Component of Electric Field' cb_label = '$\\Re\\{E_z\\}$ [µV/m]' rel_color_range = 1/3 fps = 10 ani = Fdtd3DAnimation(x, y, t, F, titlestr, cb_label, rel_color_range, fps) plt.show()
#!/usr/bin/python # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Created by: Anderson Brito # Email: andersonfbrito@gmail.com # Python version: Python 3 # # domAnnot.py -> Given a set of peptides annotated with CDS positions, # this code creates GFF annotations for Pfam domains # detected in HMMER searchers. As input it requires a # fasta file with the annotated peptides, and the output # from hmmscan (domtblout.txt) # # # Usage: domAnnot.py fastaFile domtblout.txt # # Release date: 16/11/2019 # Last update: 16/11/2019 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # from Bio import SeqIO import sys peptides = sys.argv[1] domains = open(sys.argv[2]).readlines() dThreshold = 1e-03 pThreshold = 1e-03 dPos = {} fasta_sequences = SeqIO.parse(open(peptides),'fasta') for fasta in fasta_sequences: # iterate over all fasta sequences id, seq = fasta.description, fasta.seq orf = id.split(".")[0] startOrf = id.strip().split(".")[-1].split("-")[0] endOrf = id.strip().split(".")[-1].split("-")[1] sense = id.strip().split(".")[1] dPos[orf] = startOrf + "_" + endOrf + "_" + sense outFile = open("-".join(peptides.split("-")[:-1]) + '-domAnnot.gff', 'w') header = "##gff-version 3\n# seqid source type start end score strand frame attributes\n" print(header) outFile.write(header) genome = '' for line in domains: if not line.startswith('#'): cevalue = line.split()[11] pevalue = line.split()[6] orf = line.split()[3].split(".")[0] if genome == '': genome = orf.split("-")[0] if orf in dPos.keys(): if float(cevalue) <= dThreshold and float(pevalue) <= pThreshold: dcode = line.split()[1].split(".")[0] # domain code dname = line.split()[0] # domain name sDom = int(line.split()[17]) # domain start position eDom = int(line.split()[18]) # domain end position sense = dPos[orf].split("_")[2] sorf = int(dPos[orf].split("_")[0]) # orf start position eorf = int(dPos[orf].split("_")[1]) # orf end position if sense == "forward": sense = "+" sanot = sorf + ((sDom * 3) - 2) - 1 eanot = sorf + (eDom * 3) - 1 else: sense = "-" sanot = eorf - (eDom * 3) + 1 eanot = eorf - (sDom * 3) + 3 entry = "\t".join([genome, "-", "misc_feature", str(sanot), str(eanot), ".", sense, ".", "Name="+dname+" ["+cevalue+"]; Note="+dcode]) outFile.write(entry + "\n") print(entry)
import discord from discord.ext.commands.converter import EmojiConverter as ec from discord.ext.commands.converter import PartialEmojiConverter from emoji import UNICODE_EMOJI_ENGLISH from redbot.core import commands from redbot.core.bot import Red old_tick = commands.context.TICK old_get_context = Red.get_context class FakeContext(commands.Context): tick_emoji = None def __init__(self, **kwargs): super().__init__(**kwargs) async def tick(self, *, message: str = None) -> bool: """Add a tick reaction to the command message. Keyword Arguments ----------------- message : str, optional The message to send if adding the reaction doesn't succeed. Returns ------- bool :code:`True` if adding the reaction succeeded. """ emoji = ( self.tick_emoji if self.channel.permissions_for(self.me).external_emojis else old_tick ) return await self.react_quietly(emoji, message=message) class EmojiConverter(ec): async def convert(self, ctx, argument): argument = argument.strip() if not argument in UNICODE_EMOJI_ENGLISH.keys(): return await super().convert(ctx, argument) return argument
"""Deep Pictorial Gaze architecture.""" from typing import Dict import numpy as np import scipy import tensorflow as tf from core import BaseDataSource, BaseModel from datasources import UnityEyes import util.gaze class DPG(BaseModel): """Deep Pictorial Gaze architecture as introduced in [Park et al. ECCV'18].""" def __init__(self, tensorflow_session=None, first_layer_stride=2, num_modules=3, num_feature_maps=32, growth_rate=8, extra_tags=[], **kwargs): """Specify DPG-specific parameters.""" self._hg_first_layer_stride = first_layer_stride self._hg_num_modules = num_modules self._hg_num_feature_maps= num_feature_maps self._dn_growth_rate = growth_rate self._extra_tags = extra_tags # Call parent class constructor super().__init__(tensorflow_session, **kwargs) _hg_first_layer_stride = 2 _hg_num_modules = 3 _hg_num_feature_maps = 32 _hg_num_residual_blocks = 1 _hg_num_gazemaps = 2 _dn_growth_rate = 8 _dn_compression_factor = 0.5 _dn_num_layers_per_block = (4, 4, 4, 4) _dn_num_dense_blocks = len(_dn_num_layers_per_block) @property def identifier(self): """Identifier for model based on data sources and parameters.""" first_data_source = next(iter(self._train_data.values())) input_tensors = first_data_source.output_tensors if self._data_format == 'NHWC': _, eh, ew, _ = input_tensors['eye'].shape.as_list() else: _, _, eh, ew = input_tensors['eye'].shape.as_list() return 'DPG_i%dx%d_f%dx%d_n%d_m%d_k%d_%s' % ( ew, eh, int(ew / self._hg_first_layer_stride), int(eh / self._hg_first_layer_stride), self._hg_num_feature_maps, self._hg_num_modules, self._dn_growth_rate, '-'.join(self._extra_tags) if len(self._extra_tags) > 0 else '', ) def train_loop_pre(self, current_step): """Run this at beginning of training loop.""" # Step learning rate decay multiplier = np.power(0.1, int(current_step / 10000)) self._tensorflow_session.run(self.assign_learning_rate_multiplier, feed_dict={ self.learning_rate_multiplier_placeholder: multiplier, }) _column_of_ones = None _column_of_zeros = None def _augment_training_images(self, images, mode): if mode == 'test': return images with tf.variable_scope('augment'): if self._data_format == 'NCHW': images = tf.transpose(images, perm=[0, 2, 3, 1]) n, h, w, _ = images.shape.as_list() if self._column_of_ones is None: self._column_of_ones = tf.ones((n, 1)) self._column_of_zeros = tf.zeros((n, 1)) transforms = tf.concat([ self._column_of_ones, self._column_of_zeros, tf.truncated_normal((n, 1), mean=0, stddev=.05*w), self._column_of_zeros, self._column_of_ones, tf.truncated_normal((n, 1), mean=0, stddev=.05*h), self._column_of_zeros, self._column_of_zeros, ], axis=1) images = tf.contrib.image.transform(images, transforms, interpolation='BILINEAR') if self._data_format == 'NCHW': images = tf.transpose(images, perm=[0, 3, 1, 2]) return images def build_model(self, data_sources: Dict[str, BaseDataSource], mode: str): """Build model.""" data_source = next(iter(data_sources.values())) input_tensors = data_source.output_tensors x = input_tensors['eye'] y1 = input_tensors['gazemaps'] if 'gazemaps' in input_tensors else None y2 = input_tensors['gaze'] if 'gaze' in input_tensors else None with tf.variable_scope('input_data'): # self.summary.feature_maps('eyes', x, data_format=self._data_format_longer) if y1 is not None: self.summary.feature_maps('gazemaps', y1, data_format=self._data_format_longer) outputs = {} loss_terms = {} metrics = {} # Lightly augment training data x = self._augment_training_images(x, mode) with tf.variable_scope('hourglass'): # Prepare for Hourglass by downscaling via conv with tf.variable_scope('pre'): n = self._hg_num_feature_maps x = self._apply_conv(x, num_features=n, kernel_size=7, stride=self._hg_first_layer_stride) x = tf.nn.relu(self._apply_bn(x)) x = self._build_residual_block(x, n, 2*n, name='res1') x = self._build_residual_block(x, 2*n, n, name='res2') # Hourglass blocks x_prev = x gmap = None for i in range(self._hg_num_modules): with tf.variable_scope('hg_%d' % (i + 1)): x = self._build_hourglass(x, steps_to_go=4, num_features=self._hg_num_feature_maps) x, gmap = self._build_hourglass_after( x_prev, x, do_merge=(i < (self._hg_num_modules - 1)), ) x_prev = x if y1 is not None: # Cross-entropy loss metrics['gazemaps_ce'] = -tf.reduce_mean(tf.reduce_sum( y1 * tf.log(tf.clip_by_value(gmap, 1e-10, 1.0)), # avoid NaN axis=[1, 2, 3])) # metrics['gazemaps_ce'] = tf.losses.softmax_cross_entropy( # tf.reshape(y1, (self._batch_size, -1)), # tf.reshape(gmap, (self._batch_size, -1)), # loss_collection=None, # ) x = gmap outputs['gazemaps'] = gmap self.summary.feature_maps('bottleneck', gmap, data_format=self._data_format_longer) with tf.variable_scope('densenet'): # DenseNet blocks to regress to gaze for i in range(self._dn_num_dense_blocks): with tf.variable_scope('block%d' % (i + 1)): x = self._apply_dense_block(x, num_layers=self._dn_num_layers_per_block[i]) if i == self._dn_num_dense_blocks - 1: break with tf.variable_scope('trans%d' % (i + 1)): x = self._apply_transition_layer(x) # Global average pooling with tf.variable_scope('post'): x = self._apply_bn(x) x = tf.nn.relu(x) if self._data_format == 'NCHW': x = tf.reduce_mean(x, axis=[2, 3]) else: x = tf.reduce_mean(x, axis=[1, 2]) x = tf.contrib.layers.flatten(x) # Output layer with tf.variable_scope('output'): x = self._apply_fc(x, 2) outputs['gaze'] = x if y2 is not None: metrics['gaze_mse'] = tf.reduce_mean(tf.squared_difference(x, y2)) metrics['gaze_ang'] = util.gaze.tensorflow_angular_error_from_pitchyaw(y2, x) # Combine two loss terms if y1 is not None and y2 is not None: loss_terms['combined_loss'] = 1e-5*metrics['gazemaps_ce'] + metrics['gaze_mse'] # Define outputs return outputs, loss_terms, metrics def _apply_conv(self, tensor, num_features, kernel_size=3, stride=1): return tf.layers.conv2d( tensor, num_features, kernel_size=kernel_size, strides=stride, padding='SAME', kernel_initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-4), bias_initializer=tf.zeros_initializer(), data_format=self._data_format_longer, name='conv', ) def _apply_fc(self, tensor, num_outputs): return tf.layers.dense( tensor, num_outputs, use_bias=True, kernel_initializer=tf.truncated_normal_initializer(mean=0.0, stddev=0.01), kernel_regularizer=tf.contrib.layers.l2_regularizer(1e-4), bias_initializer=tf.zeros_initializer(), name='fc', ) def _apply_pool(self, tensor, kernel_size=3, stride=2): tensor = tf.layers.max_pooling2d( tensor, pool_size=kernel_size, strides=stride, padding='SAME', data_format=self._data_format_longer, name='pool', ) return tensor def _apply_bn(self, tensor): return tf.contrib.layers.batch_norm( tensor, scale=True, center=True, is_training=self.use_batch_statistics, trainable=True, data_format=self._data_format, updates_collections=None, ) def _build_residual_block(self, x, num_in, num_out, name='res_block'): with tf.variable_scope(name): half_num_out = max(int(num_out/2), 1) c = x with tf.variable_scope('conv1'): c = tf.nn.relu(self._apply_bn(c)) c = self._apply_conv(c, num_features=half_num_out, kernel_size=1, stride=1) with tf.variable_scope('conv2'): c = tf.nn.relu(self._apply_bn(c)) c = self._apply_conv(c, num_features=half_num_out, kernel_size=3, stride=1) with tf.variable_scope('conv3'): c = tf.nn.relu(self._apply_bn(c)) c = self._apply_conv(c, num_features=num_out, kernel_size=1, stride=1) with tf.variable_scope('skip'): if num_in == num_out: s = tf.identity(x) else: s = self._apply_conv(x, num_features=num_out, kernel_size=1, stride=1) x = c + s return x def _build_hourglass(self, x, steps_to_go, num_features, depth=1): with tf.variable_scope('depth%d' % depth): # Upper branch up1 = x for i in range(self._hg_num_residual_blocks): up1 = self._build_residual_block(up1, num_features, num_features, name='up1_%d' % (i + 1)) # Lower branch low1 = self._apply_pool(x, kernel_size=2, stride=2) for i in range(self._hg_num_residual_blocks): low1 = self._build_residual_block(low1, num_features, num_features, name='low1_%d' % (i + 1)) # Recursive low2 = None if steps_to_go > 1: low2 = self._build_hourglass(low1, steps_to_go - 1, num_features, depth=depth+1) else: low2 = low1 for i in range(self._hg_num_residual_blocks): low2 = self._build_residual_block(low2, num_features, num_features, name='low2_%d' % (i + 1)) # Additional residual blocks low3 = low2 for i in range(self._hg_num_residual_blocks): low3 = self._build_residual_block(low3, num_features, num_features, name='low3_%d' % (i + 1)) # Upsample if self._data_format == 'NCHW': # convert to NHWC low3 = tf.transpose(low3, (0, 2, 3, 1)) up2 = tf.image.resize_bilinear( low3, up1.shape[1:3] if self._data_format == 'NHWC' else up1.shape[2:4], align_corners=True, ) if self._data_format == 'NCHW': # convert back from NHWC up2 = tf.transpose(up2, (0, 3, 1, 2)) return up1 + up2 def _build_hourglass_after(self, x_prev, x_now, do_merge=True): with tf.variable_scope('after'): for j in range(self._hg_num_residual_blocks): x_now = self._build_residual_block(x_now, self._hg_num_feature_maps, self._hg_num_feature_maps, name='after_hg_%d' % (j + 1)) x_now = self._apply_conv(x_now, self._hg_num_feature_maps, kernel_size=1, stride=1) x_now = self._apply_bn(x_now) x_now = tf.nn.relu(x_now) with tf.variable_scope('gmap'): gmap = self._apply_conv(x_now, self._hg_num_gazemaps, kernel_size=1, stride=1) x_next = x_now if do_merge: with tf.variable_scope('merge'): with tf.variable_scope('gmap'): x_gmaps = self._apply_conv(gmap, self._hg_num_feature_maps, kernel_size=1, stride=1) with tf.variable_scope('x'): x_now = self._apply_conv(x_now, self._hg_num_feature_maps, kernel_size=1, stride=1) x_next += x_prev + x_gmaps # Perform softmax on gazemaps if self._data_format == 'NCHW': n, c, h, w = gmap.shape.as_list() gmap = tf.reshape(gmap, (n, -1)) gmap = tf.nn.softmax(gmap) gmap = tf.reshape(gmap, (n, c, h, w)) else: n, h, w, c = gmap.shape.as_list() gmap = tf.transpose(gmap, perm=[0, 3, 1, 2]) gmap = tf.reshape(gmap, (n, -1)) gmap = tf.nn.softmax(gmap) gmap = tf.reshape(gmap, (n, c, h, w)) gmap = tf.transpose(gmap, perm=[0, 2, 3, 1]) return x_next, gmap def _apply_dense_block(self, x, num_layers): assert isinstance(num_layers, int) and num_layers > 0 c_index = 1 if self._data_format == 'NCHW' else 3 x_prev = x for i in range(num_layers): with tf.variable_scope('layer%d' % (i + 1)): n = x.shape.as_list()[c_index] with tf.variable_scope('bottleneck'): x = self._apply_composite_function(x, num_features=min(n, 4*self._dn_growth_rate), kernel_size=1) with tf.variable_scope('composite'): x = self._apply_composite_function(x, num_features=self._dn_growth_rate, kernel_size=3) if self._data_format == 'NCHW': x = tf.concat([x, x_prev], axis=1) else: x = tf.concat([x, x_prev], axis=-1) x_prev = x return x def _apply_transition_layer(self, x): c_index = 1 if self._data_format == 'NCHW' else 3 x = self._apply_composite_function( x, num_features=int(self._dn_compression_factor * x.shape.as_list()[c_index]), kernel_size=1) x = tf.layers.average_pooling2d(x, pool_size=2, strides=2, padding='valid', data_format=self._data_format_longer) return x def _apply_composite_function(self, x, num_features=_dn_growth_rate, kernel_size=3): x = self._apply_bn(x) x = tf.nn.relu(x) x = self._apply_conv(x, num_features=num_features, kernel_size=kernel_size, stride=1) return x
# Copyright 2018, Michael DeHaan LLC # License: Apache License Version 2.0 # ------------------------------------------------------------------------- # urls.py - the standard web routes configuration file for Django # -------------------------------------------------------------------------- from django.conf.urls import url from django.contrib import admin from django.contrib.auth.views import LoginView, LogoutView from django.urls import path from vespene.views import index, webhook_post from vespene.views.fileserving import serve_file, serve_dir from vespene.views.build import BuildView from vespene.views.pipeline import PipelineView from vespene.views.project import ProjectView from vespene.views.service_login import ServiceLoginView from vespene.views.snippet import SnippetView from vespene.views.ssh_key import SshKeyView from vespene.views.variable_set import VariableSetView from vespene.views.worker_pool import WorkerPoolView from vespene.views.organization import OrganizationView from vespene.views.stage import StageView from vespene.views.user import UserView from vespene.views.group import GroupView urlpatterns = [ # Home page path('', index, name='index'), path('ui', index, name='index'), path('ui/', index, name='index'), # Login/Logout path('login/', LoginView.as_view(template_name='registration/login.html'), name="login"), path('logout/', LogoutView.as_view(), name="logout"), # Admin path('admin/', admin.site.urls), # Projects path('ui/projects', ProjectView.list, name='project_list'), path('ui/projects/new', ProjectView.new, name='project_new'), path('ui/projects/<pk>/edit', ProjectView.edit, name='project_edit'), path('ui/projects/<pk>/delete', ProjectView.delete, name='project_delete'), path('ui/projects/<pk>/detail', ProjectView.detail, name='project_detail'), path('ui/projects/<pk>/start', ProjectView.project_start, name='project_start'), path('ui/projects/<pk>/start_prompt', ProjectView.project_start_prompt, name='project_start_prompt'), # Builds path('ui/builds', BuildView.list, name='build_list'), path('ui/builds/<pk>/detail', BuildView.detail, name='build_detail'), path('ui/builds/<pk>/stop', BuildView.build_stop, name='build_stop'), # Snippets path('ui/snippets', SnippetView.list, name='snippet_list'), path('ui/snippets/new', SnippetView.new, name='snippet_new'), path('ui/snippets/<pk>/edit', SnippetView.edit, name='snippet_edit'), path('ui/snippets/<pk>/delete', SnippetView.delete, name='snippet_delete'), path('ui/snippets/<pk>/detail', SnippetView.detail, name='snippet_detail'), # Variable Sets path('ui/variable_sets', VariableSetView.list, name='variable_set_list'), path('ui/variable_sets/new', VariableSetView.new, name='variable_set_new'), path('ui/variable_sets/<pk>/edit', VariableSetView.edit, name='variable_set_edit'), path('ui/variable_sets/<pk>/delete', VariableSetView.delete, name='variable_set_delete'), path('ui/variable_sets/<pk>/detail', VariableSetView.detail, name='variable_set_detail'), # SSH Access path('ui/ssh_keys', SshKeyView.list, name='ssh_key_list'), path('ui/ssh_keys/new', SshKeyView.new, name='ssh_key_new'), path('ui/ssh_keys/<pk>/edit', SshKeyView.edit, name='ssh_key_edit'), path('ui/ssh_keys/<pk>/delete', SshKeyView.delete, name='ssh_key_delete'), path('ui/ssh_keys/<pk>/detail', SshKeyView.detail, name='ssh_key_detail'), # Service Logins path('ui/service_logins', ServiceLoginView.list, name='service_login_list'), path('ui/service_logins/new', ServiceLoginView.new, name='service_login_new'), path('ui/service_logins/<pk>/edit', ServiceLoginView.edit, name='service_login_edit'), path('ui/service_logins/<pk>/delete', ServiceLoginView.delete, name='service_login_delete'), path('ui/service_logins/<pk>/detail', ServiceLoginView.detail, name='service_login_detail'), # Worker Pools path('ui/worker_pools', WorkerPoolView.list, name='worker_pool_list'), path('ui/worker_pools/new', WorkerPoolView.new, name='worker_pool_new'), path('ui/worker_pools/<pk>/edit', WorkerPoolView.edit, name='worker_pool_edit'), path('ui/worker_pools/<pk>/delete', WorkerPoolView.delete, name='worker_pool_delete'), path('ui/worker_pools/<pk>/detail', WorkerPoolView.detail, name='worker_pool_detail'), # Stages path('ui/stages', StageView.list, name='stage_list'), path('ui/stages/new', StageView.new, name='stage_new'), path('ui/stages/<pk>/edit', StageView.edit, name='stage_edit'), path('ui/stages/<pk>/delete', StageView.delete, name='stage_delete'), path('ui/stages/<pk>/detail', StageView.detail, name='stage_detail'), # Users path('ui/users', UserView.list, name='user_list'), path('ui/users/new', UserView.new, name='user_new'), path('ui/users/<pk>/edit', UserView.edit, name='user_edit'), path('ui/users/<pk>/delete', UserView.delete, name='user_delete'), path('ui/users/<pk>/detail', UserView.detail, name='user_detail'), # Groups path('ui/groups', GroupView.list, name='group_list'), path('ui/groups/new', GroupView.new, name='group_new'), path('ui/groups/<pk>/edit', GroupView.edit, name='group_edit'), path('ui/groups/<pk>/delete', GroupView.delete, name='group_delete'), path('ui/groups/<pk>/detail', GroupView.detail, name='group_detail'), # Pipelines path('ui/pipelines', PipelineView.list, name='pipeline_list'), path('ui/pipelines/new', PipelineView.new, name='pipeline_new'), path('ui/pipelines/<pk>/edit', PipelineView.edit, name='pipeline_edit'), path('ui/pipelines/<pk>/delete', PipelineView.delete, name='pipeline_delete'), path('ui/pipelines/<pk>/detail', PipelineView.detail, name='pipeline_detail'), path('ui/pipelines/<pk>/map', PipelineView.map, name='pipeline_map'), # Organizations path('ui/organizations', OrganizationView.list, name='organization_list'), path('ui/organizations/new', OrganizationView.new, name='organization_new'), path('ui/organizations/<pk>/edit', OrganizationView.edit, name='organization_edit'), path('ui/organizations/<pk>/delete', OrganizationView.delete, name='organization_delete'), path('ui/organizations/<pk>/detail', OrganizationView.detail, name='organization_detail'), # Webhooks path('webhooks', webhook_post, name='webhook_post'), path('webhooks/', webhook_post, name='webhook_post'), # Fileserving path('srv/<pk>/f/<location>', serve_file, name="serve_file"), path('srv/<pk>/d', serve_dir, name="serve_dir") ]
import unittest import numpy as np import chainer import chainer.functions as F import chainer.links as L import onnx import onnx_chainer from chainer import testing from onnx_chainer.testing import test_mxnet MXNET_OPSET_VERSION = { 'elu': (1, 6), 'hard_sigmoid': (6,), 'leaky_relu': (6,), 'log_softmax': (1,), 'relu': (1, 6), 'sigmoid': (1, 6), 'softmax': (1,), 'softplus': (1,), 'tanh': (1, 6), } @testing.parameterize( {'name': 'elu'}, {'name': 'hard_sigmoid'}, {'name': 'leaky_relu'}, {'name': 'log_softmax'}, {'name': 'relu'}, {'name': 'sigmoid'}, {'name': 'softmax'}, {'name': 'softplus'}, {'name': 'tanh'}, ) class TestActivations(unittest.TestCase): def setUp(self): class Model(chainer.Chain): def __init__(self, ops): super(Model, self).__init__() self.ops = ops def __call__(self, x): return self.ops(x) ops = getattr(F, self.name) self.model = Model(ops) self.x = np.random.randn(1, 5).astype(np.float32) self.fn = self.name + '.onnx' def test_compatibility(self): if MXNET_OPSET_VERSION[self.name] is not None: for mxnet_opset_version in MXNET_OPSET_VERSION[self.name]: test_mxnet.check_compatibility( self.model, self.x, self.fn, opset_version=mxnet_opset_version) for opset_version in range(1, onnx.defs.onnx_opset_version() + 1): onnx_chainer.export( self.model, self.x, opset_version=opset_version) @testing.parameterize( {'opset_version': 6}, {'opset_version': 7}, ) class TestPReLU(unittest.TestCase): def setUp(self): class Model(chainer.Chain): def __init__(self): super(Model, self).__init__() with self.init_scope(): self.prelu = L.PReLU() def __call__(self, x): return self.prelu(x) self.model = Model() self.x = np.zeros((1, 5), dtype=np.float32) self.fn = 'PReLU.onnx' def test_compatibility(self): test_mxnet.check_compatibility( self.model, self.x, self.fn, opset_version=self.opset_version) onnx_chainer.export( self.model, self.x, opset_version=self.opset_version)
import json import os dir_path = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(dir_path, 'metafile.schema.json')) as f: metafile=json.load(f)
print('\033[1;93m-=-\033[m' * 15) print(f'\033[1;31m{"LARGEST AND SMALLEST ON THE LIST":^45}\033[m', ) print('\033[1;93m-=-\033[m' * 15) numbers = list() largest = 0 big_position = list() small_position = list() numbers.append(int(input(f'Type a number for the position {0}: '))) smallest = numbers[0] for i in range(1, 5): numbers.append(int(input(f'Type a number for the position {i}: '))) if numbers[i] > largest: largest = numbers[i] if numbers[i] < smallest: smallest = numbers[i] print('-=-' * 15) print('You entered the valors: ', end='') for n in numbers: print(n, end=' ') for i in range(0, 5): if numbers[i] == largest: big_position.append(i) if numbers[i] == smallest: small_position.append(i) print(f'\nThe largest number entered was: {largest} in the positions ', end='') for n in big_position: print(f'{n}... ', end='') print(f'\nThe smallest number entered was: {smallest} in the positions ', end='') for n in small_position: print(f'{n}... ', end='')
d = { '0': [" "], '2': ['a', 'b', 'c'], '3': ['d', 'e', 'f'], '4': ['g', 'h', 'i'], '5': ['j', 'k', 'l'], '6': ['m', 'n', 'o'], '7': ['p', 'q', 'r', 's'], '8': ['t', 'u', 'v'], '9': ['w', 'x', 'y', 'z'] } n = int(input()) for i in range(n): t = input() prev = '' print("Case #{}: ".format(i + 1), end='') for j in t: ok = True num = '' x = 0 for key, val in d.items(): if j in val: num = key x = val.index(j) + 1 if (num == prev): print(" ", end='') print(num * x, end='') else: print(num * x, end='') prev = num print("")
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2018-05-07 01:30 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('standard', '0001_initial'), ] operations = [ migrations.AlterField( model_name='project', name='paleocore_appname', field=models.CharField(choices=[('compressor', 'compressor'), ('taggit', 'taggit'), ('modelcluster', 'modelcluster'), ('wagtail.contrib.wagtailsitemaps', 'wagtail.contrib.wagtailsitemaps'), ('wagtail.contrib.wagtailsearchpromotions', 'wagtail.contrib.wagtailsearchpromotions'), ('wagtail.contrib.settings', 'wagtail.contrib.settings'), ('wagtail.wagtailforms', 'wagtail.wagtailforms'), ('wagtail.wagtailredirects', 'wagtail.wagtailredirects'), ('wagtail.wagtailembeds', 'wagtail.wagtailembeds'), ('wagtail.wagtailsites', 'wagtail.wagtailsites'), ('wagtail.wagtailusers', 'wagtail.wagtailusers'), ('wagtail.wagtailsnippets', 'wagtail.wagtailsnippets'), ('wagtail.wagtaildocs', 'wagtail.wagtaildocs'), ('wagtail.wagtailimages', 'wagtail.wagtailimages'), ('wagtail.wagtailsearch', 'wagtail.wagtailsearch'), ('wagtail.wagtailadmin', 'wagtail.wagtailadmin'), ('wagtail.wagtailcore', 'wagtail.wagtailcore'), ('wagtailfontawesome', 'wagtailfontawesome'), ('wagalytics', 'wagalytics'), ('cachalot', 'cachalot'), ('utils', 'utils'), ('pages', 'pages'), ('blog', 'blog'), ('events', 'events'), ('contact', 'contact'), ('people', 'people'), ('photo_gallery', 'photo_gallery'), ('products', 'products'), ('documents_gallery', 'documents_gallery'), ('account', 'account'), ('foundation_formtags', 'foundation_formtags'), ('wagtail_feeds', 'wagtail_feeds'), ('leaflet', 'leaflet'), ('djgeojson', 'djgeojson'), ('wagtailgeowidget', 'wagtailgeowidget'), ('mapwidgets', 'mapwidgets'), ('projects', 'projects'), ('cc', 'cc'), ('fc', 'fc'), ('gdb', 'gdb'), ('lgrp', 'lgrp'), ('mlp', 'mlp'), ('drp', 'drp'), ('hrp', 'hrp'), ('omo_mursi', 'omo_mursi'), ('origins', 'origins'), ('standard', 'standard')], max_length=200, null=True), ), ]
from math import sqrt import numpy as np from PIL import Image def load_image(filepath: str) -> Image: return Image.open(filepath).convert("L") def grad_inf(ims: Image) -> Image: pixs = np.asarray(ims).astype("uint8") pixd = pixs.copy() height, width = pixs.shape for j in range(1, height-1): for i in range(1, width-1): acc = max(abs(int(pixs[j-1, i]) - int(pixs[j, i])), abs(int(pixs[j+1, i]) - int(pixs[j, i])), abs( int(pixs[j, i-1]) - int(pixs[j, i])), abs(int(pixs[j, i+1]) - int(pixs[j, i]))) pixd[j, i] = acc return Image.fromarray(pixd) def grad_plus_inf(ims: Image) -> Image: pixs = np.asarray(ims).astype("uint8") pixd = pixs.copy() height, width = pixs.shape for j in range(1, height-1): for i in range(1, width-1): pixd[j, i] = max(int(pixs[j-1, i]) - int(pixs[j, i]), int(pixs[j+1, i]) - int(pixs[j, i]), int(pixs[j, i-1]) - int(pixs[j, i]), int(pixs[j, i+1]) - int(pixs[j, i]), 0) return Image.fromarray(pixd) def grad_minus_inf(ims: Image) -> Image: pixs = np.asarray(ims).astype("uint8") pixd = pixs.copy() height, width = pixs.shape for j in range(1, height-1): for i in range(1, width-1): pixd[j, i] = max(int(pixs[j, i]) - int(pixs[j-1, i]), int(pixs[j, i]) - int(pixs[j+1, i]), int(pixs[j, i]) - int(pixs[j, i-1]), int(pixs[j, i]) - int(pixs[j, i+1]), 0) return Image.fromarray(pixd) def dilation(ims: Image, n: int) -> Image: pixs = np.asarray(ims).astype("uint8") pixd = pixs.copy() height, width = pixs.shape for _ in range(n): tmp = pixd.copy() for j in range(1, height-1): for i in range(1, width-1): tmp[j, i] = max(pixd[j-1, i], pixd[j+1, i], pixd[j, i-1], pixd[j, i+1], pixd[j, i]) pixd = tmp return Image.fromarray(pixd) def erosion(ims: Image, n: int) -> Image: pixs = np.asarray(ims).astype("uint8") pixd = pixs.copy() height, width = pixs.shape for _ in range(n): tmp = pixd.copy() for j in range(1, height-1): for i in range(1, width-1): tmp[j, i] = min(pixd[j-1, i], pixd[j+1, i], pixd[j, i-1], pixd[j, i+1], pixd[j, i]) pixd = tmp return Image.fromarray(pixd) if __name__ == "__main__": image = load_image("image.jpg") image_contours = grad_inf(image) image_contours.show("Contours image test") image_contours.save("image_grad.png") image_contours_plus = grad_plus_inf(image) image_contours_plus.show("Contours image test") image_contours_plus.save("image_grad_plus.png") image_contours_minus = grad_minus_inf(image) image_contours_minus.show("Contours image test") image_contours_minus.save("image_grad_minus.png") dilated_image = dilation(image, 10) dilated_image.show("Dilation image test") image_contours.save("dilated_image.png") eroded_image = erosion(image, 10) eroded_image.show("Erosion image test") image_contours.save("eroded_image.png")
# Copyright (c) 2013, Minda Sai Pvt LTd and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe import _ import math from calendar import monthrange from datetime import datetime,timedelta,date from frappe.utils import add_days, add_months,get_first_day,get_last_day from dateutil.rrule import * import json def execute(filters=None): if not filters: filters = {} columns = get_columns() data = [] row = [] employee = employee_details(filters) for e in employee: start_date = filters.get("start_date") month_start = get_first_day(start_date) from_date = add_months(month_start,-3) # frappe.errprint(month_start) # frappe.errprint(from_date) row = [e.biometric_id,e.employee_name,e.date_of_joining,e.status] # att = att_details(e.biometric_id) acc = acc_details(e.biometric_id,from_date) sac = sac_details(e.biometric_id,from_date) ae = ae_details(e.biometric_id,from_date) qe = qe_details(e.biometric_id,from_date) # itm = itm_details(e.biometric_id) # st = st_details(e.biometric_id) # cb = cb_details(e.biometric_id) # pk = pk_details(e.biometric_id) # if e.line == None: row += ["Pending"] else: row += [e.line] # if e.shift not in ["A","B","C","G"]: # row += ["Pending"] # else: # row += [e.shift] if acc: row += ["Completed"] else: row += ["Pending"] if sac == 1: row += ["Completed"] else: row += ["Pending"] if ae == 1: row += ["Completed"] else: row += ["Pending"] if qe == 1: row += ["Completed"] else: row += ["Pending"] # if e.department not in ["HR", "Accounts","Finance & Accounts","Purchase"]: # if pk == 1: # row += ["Completed"] # else: # row += ["Pending"] # else: # row += ["NA"] # if e.department not in ["HR", "Accounts","Finance & Accounts","Purchase"]: # if ita == 1: # row += ["Completed","NA"] # elif itm == 1: # row += ["NA","Completed"] # else: # row += ["Pending","Pending"] # else: # row += ["NA"] data.append(row) return columns, data def get_columns(): columns = [ _("Employee") + ":Link/Employee:100", _("Employee Name") + ":Data:100", _("Date of Joining") + ":Date:100", _("Status") + ":Select:100", _("Line") + ":Link/Line:100", # _("Shift") + ":Link/Shift:100", _("Auto Cutting and Crimping") + ":Link/Auto Cutting and Crimping:200", _("Semi Auto Crimping") + ":Link/Semi Auto Crimping:200", _("Assembly Evaluation") + ":Link/Assembly Evaluation:150", _("Quality Evaluation") + ":Link/Quality Evaluation:150" # _("Induction Test Machine") + ":Link/Induction Training Machine Area Crimping:100", ] return columns def get_conditions(filters): conditions = "" # if filters.get("employee"):conditions += "AND att.employee = '%s'" % filters["employee"] # if filters.get("start_date"): conditions += "and c.start_date >= %(start_date)s" # if filters.get("to_date"): conditions += " and c.date_of_skill_evaluatation <= %(to_date)s" return conditions, filters def employee_details(filters): employee = frappe.db.sql( """select biometric_id,employee_name,shift,status,department,designation,date_of_joining,line from `tabEmployee` where status = 'Active' """,as_dict = 1) # frappe.errprint(employee) return employee def acc_details(emp_id,from_date): if emp_id: acc = frappe.db.sql( """select name from `tabAuto Cutting and Crimping` where employee_code=%s and date_of_skill_evaluatation >= %s """,(emp_id,from_date)) if acc: return True else: return False def sac_details(emp_id,from_date): if emp_id: sac = frappe.db.sql( """select name from `tabSemi Auto Crimping` where employee_code=%s and date_of_skill_evaluatation >= %s """,(emp_id,from_date)) if sac: return True else: return False def ae_details(emp_id,from_date): if emp_id: ae = frappe.db.sql( """select name from `tabAssembly Evaluation` where employee_code=%s and date_of_skill_evaluatation >= %s """,(emp_id,from_date)) if ae: return True else: return False def qe_details(emp_id,from_date): if emp_id: qe = frappe.db.sql( """select name from `tabQuality Evaluation` where employee_code=%s and date_of_skill_evaluatation >= %s """,(emp_id,from_date)) if qe: frappe.errprint(qe) return True else: return False # def itm_details(emp_id): # if emp_id: # ita = frappe.db.sql( # """select * from `tabInduction Training Machine Area Crimping` where employee_code=%s """,(emp_id),as_dict = 1) # if ita: # return True # else: # return False # def att_details(emp_id): # today = date.today() # yesterday = add_days(today,-1) # day_before_yesterday = add_days(today,-2) # if emp_id: # att = frappe.db.sql( # """select attendance_date from `tabAttendance` where employee = %s and attendance_date in (%s,%s,%s) """,(emp_id,today,yesterday,day_before_yesterday),as_dict = 1) # if len(att) > 0: # return True # else: # return False # def st_details(emp_id): # if emp_id: # st = frappe.db.sql( # """select * from `tabSelection Test` where employee_code=%s """,(emp_id),as_dict = 1) # if st: # return True # else: # return False # def cb_details(emp_id): # if emp_id: # cb = frappe.db.sql( # """select * from `tabColor Blindness Test` where employee_code=%s """,(emp_id),as_dict = 1) # if cb: # return True # else: # return False # def pk_details(emp_id): # if emp_id: # pk = frappe.db.sql( # """select * from `tabNew Joinees Practical Knowledge Verification` where employee_code=%s """,(emp_id),as_dict = 1) # if pk: # return True # else: # return False
''' The snippet contains: How to declare and use a class with attributes and methods How to declare a class using inheritance grab from http://glowingpython.blogspot.com/2011/04/how-to-define-class-using-inheritance.html ''' class Point2D: """ a point in a 2D space """ name = "A dummy name" # attribute def __init__(self,x,y): # constructor self.x = x self.y = y def product(self,p): # method """ product with another point """ return self.x*p.x + self.y*p.y def print_2D(self): print "(",self.x,",",self.y,")" class Point3D(Point2D): # Point3D inherit Point2D def __init__(self,x,y,z): self.x = x self.y = y self.z = z def print_3D(self): print "(",self.x,",",self.y,",",self.z,")" ## just test the our classes ## p2 = Point2D(1,2) p2.print_2D() print p2.product(Point2D(2,1)) p3 = Point3D(5,4,3) p3.print_2D() p3.print_3D() # inherited method print p3.name # inherited attribute print dir(Point2D) print dir(Point3D) # dir return a list with attribute and methods of the class
#!/usr/bin/python3 import os import subprocess import json from iot_message.exception import DecryptNotFound from iot_message.exception import NoDecodersDefined __author__ = 'Bartosz Kościów' class Message(object): """Class Message""" protocol = "iot:1" chip_id = None node_name = None encoders = [] decoders = {} drop_unencrypted = False def __init__(self): if self.chip_id is None: self.chip_id = self._get_id() if self.node_name is None: self.node_name = self._get_node_name() self.data = None self.encoder = 0 @classmethod def add_decoder(cls, decoder): cls.decoders[decoder.name] = decoder @classmethod def add_encoder(cls, encoder): cls.encoders.append(encoder) def _get_id(self): """:return string""" if 'nt' in os.name: return subprocess.getoutput('wmic csproduct get uuid') else: return subprocess.getoutput('cat /var/lib/dbus/machine-id') def _get_node_name(self): import socket return socket.gethostname() def _initialize_data(self): self.data = { 'protocol': self.protocol, 'node': self.node_name, 'chip_id': self.chip_id, 'event': '', 'parameters': {}, 'response': '', 'targets': [ 'ALL' ] } def clear(self): self._initialize_data() def set(self, data): if self.data is None: self._initialize_data() for k, v in data.items(): self.data[k] = v def encrypt(self): if len(self.encoders) > 0: self.encoders[self.encoder].encrypt(self) def decrypt(self): if len(self.data['event']) > 8 and self.data['event'][0:8] == "message.": if self.data['event'] in self.decoders: self.decoders[self.data['event']].decrypt(self) else: raise DecryptNotFound("Decryptor %s not found".format(self.data['event'])) else: if self.drop_unencrypted: if len(self.decoders) > 0: self.data = None else: raise NoDecodersDefined("Encryption required but decoders empty") def __bytes__(self): self.encrypt() return json.dumps(self.data).encode() def __repr__(self): return json.dumps(self.data) def __getitem__(self, item): return self.data[item]
# MicroTosca types # MicroTOSCA node types MICROTOSCA_NODES_SERVICE = 'micro.nodes.Service' MICROTOSCA_NODES_DATABASE = 'micro.nodes.Datastore' MICROTOSCA_NODES_COMMUNICATIONPATTERN = 'micro.nodes.CommunicationPattern' MICROTOSCA_NODES_MESSAGE_BROKER = 'micro.nodes.MessageBroker' MICROTOSCA_NODES_MESSAGE_ROUTER = 'micro.nodes.MessageRouter' MICROTOSCA_NODES_MESSAGE_ROUTER_KINGRESS = 'micro.nodes.MessageRouter.KIngress' MICROTOSCA_NODES_MESSAGE_ROUTER_KSERVICE = 'micro.nodes.MessageRouter.KService' MICROTOSCA_NODES_MESSAGE_ROUTER_KPROXY = 'micro.nodes.MessageRouter.KProxy' # MicroTOSCA relationship types MICROTOSCA_RELATIONSHIPS_INTERACT_WITH = 'micro.relationships.InteractsWith' MICROTOSCA_RELATIONSHIPS_INTERACT_WITH_TIMEOUT_PROPERTY = "timeout" MICROTOSCA_RELATIONSHIPS_INTERACT_WITH_CIRCUIT_BREAKER_PROPERTY = "circuit_breaker" MICROTOSCA_RELATIONSHIPS_INTERACT_WITH_DYNAMIC_DISCOVEY_PROPERTY = "dynamic_discovery" # MicroTOSCA group types MICROTOSCA_GROUPS_TEAM = 'micro.groups.Team' MICROTOSCA_GROUPS_EDGE = 'micro.groups.Edge'
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2019 Ryan Mackenzie White <ryan.white4@canada.ca> # # Distributed under terms of the license. """ """ class NullDataError(ValueError): """ """ class MissingDataError(ValueError): """ """ class ParserWarning(Warning): """ """ class AbstractMethodError(NotImplementedError): """ Pandas errors.py Raise this error instead of NotImplementedError """ def __init__(self, class_instance, methodtype="method"): types = {"method", "classmethod", "staticmethod", "property"} if methodtype not in types: msg = "methodtype must be one of {}, got {} instead.".format( methodtype, types ) raise ValueError(msg) self.methodtype = methodtype self.class_instance = class_instance def __str__(self): if self.methodtype == "classmethod": name = self.class_instance.__name__ else: name = self.class_instance.__class__.__name__ msg = "This {methodtype} must be defined in the concrete class {name}" return msg.format(methodtype=self.methodtype, name=name)
# -*- coding: utf-8 -*- import abc from libs.code import Code class Query(object): def __init__(self, meta_param: dict, parsed_query_param: dict): self.meta_param = meta_param self.parsed_query_param = parsed_query_param self.type_ = meta_param["type"] if "type" in meta_param else None async def create_meta(self): """ create meta data according to param :return: """ raise Code.CurrentlyNotSupport async def create_data(self): """ create data according to param :return: """ raise Code.CurrentlyNotSupport async def search_meta(self): """ search meta data :return: """ raise Code.CurrentlyNotSupport async def search_data(self): """ search data :return: """ raise Code.CurrentlyNotSupport async def update_meta(self): """ update meta data :return: """ raise Code.CurrentlyNotSupport async def update_data(self): """ update data :return: """ raise Code.CurrentlyNotSupport async def delete_meta(self): """ delete meta data :return: """ raise Code.CurrentlyNotSupport async def delete_data(self): """ delete data :return: """ raise Code.CurrentlyNotSupport @abc.abstractmethod async def list(self): """ show cluster info :return: """ pass
import numpy as np import argparse import csv import os import time import h5py import librosa import multiprocessing import sys sys.path.insert(1, os.path.join(sys.path[0], '../..')) from utils.utilities import (mkdir, float32_to_int16, freq2note, get_filename, get_process_groups, read_lst, write_lst) from utils.target_process import TargetProcessor from conf.feature import * et = 1e-8 def remove_empty_segment(wav, frame_roll, sample_rate): segments = [] samples_per_frame = sample_rate * 1. / FRAMES_PER_SEC for i in range(frame_roll.shape[-1]): if not frame_roll[i] == NOTES_NUM_EXCLUDE_SILENCE: st = int(i * samples_per_frame) ed = int((i + 1)* samples_per_frame) if ed > wav.shape[-1]: ed = wav.shape[-1] segments.append(wav[st : ed]) if ed == wav.shape[-1]: break return np.concatenate(segments, -1) def pack_urmp_dataset_to_hdf5(args): dataset_dir = args.dataset_dir feature_dir = args.feature_dir process_num = args.process_num mkdir(feature_dir) meta_dict = {} meta_dict['audio_filename'] = [] audios_num = 0 for folder in os.listdir(dataset_dir): if str.startswith(folder, "._"): continue meta_data = folder.split('_') if len(meta_data) < 4: continue audios_num += 1 id = meta_data[0] name = meta_data[1] sources = meta_data[2:] audio = {} audio['mix'] = os.path.join(folder, f'AuMix_{folder}.wav') audio['separated_sources'] = [] audio['note_annotations'] = [] for j, s in enumerate(sources): audio['separated_sources'] += [os.path.join(folder, f'AuSep_{j + 1}_{s}_{id}_{name}.wav')] audio['note_annotations'] += [os.path.join(folder, f'Notes_{j + 1}_{s}_{id}_{name}.txt')] meta_dict['audio_filename'] += [audio] feature_time = time.time() print(f"The total number of the mixture audio is {audios_num}") def process_unit(n): name = meta_dict['audio_filename'][n]['mix'] print(name) audio_path = os.path.join(dataset_dir, name) (audio, _) = librosa.core.load(audio_path, sr=SAMPLE_RATE, mono=True) packed_hdf5_path = os.path.join(feature_dir, '{}.h5'.format(os.path.splitext(name)[0])) mkdir(os.path.dirname(packed_hdf5_path)) with h5py.File(packed_hdf5_path, 'w') as hf: #hf.attrs.create('midi_filename', data=meta_dict['midi_filename'][n].encode(), dtype='S100') hf.create_dataset(name='waveform', data=float32_to_int16(audio), dtype=np.int16) for i, name in enumerate(meta_dict['audio_filename'][n]['separated_sources']): audio_path = os.path.join(dataset_dir, name) (audio, _) = librosa.core.load(audio_path, sr=SAMPLE_RATE, mono=True) (hq_audio, _) = librosa.core.load(audio_path, sr=SAMPLE_RATE * 2, mono=True) note_annotations_path = os.path.join(dataset_dir, meta_dict['audio_filename'][n]['note_annotations'][i]) note_annotations = read_lst(note_annotations_path) note_annotations = [notes.split('\t\t') for notes in note_annotations] note_annotations = [[notes[0], float(notes[2]) + float(notes[0]), float(freq2note(notes[1]))] for notes in note_annotations] note_annotations = np.array(note_annotations, dtype = np.float32) note_annotations_lst = ['%s\t%s\t%s' % (notes[0], str(notes[1]), str(notes[2])) for notes in note_annotations] ref_path = os.path.join(feature_dir, '{}_ref.txt'.format(os.path.splitext(name)[0])) mkdir(os.path.dirname(packed_hdf5_path)) write_lst(ref_path, note_annotations_lst) duration = (audio.shape[-1] + SAMPLE_RATE - 1) // SAMPLE_RATE target_processor = TargetProcessor(duration, FRAMES_PER_SEC, BEGIN_NOTE, NOTES_NUM_EXCLUDE_SILENCE) target_dict = target_processor.process(0, note_annotations) frame_roll = np.array(target_dict['frame_roll'], dtype=np.int16) train_packed_hdf5_path = os.path.join(feature_dir, '{}._TRAIN.h5'.format(os.path.splitext(name)[0])) test_packed_hdf5_path = os.path.join(feature_dir, '{}._TEST.h5'.format(os.path.splitext(name)[0])) scale = 9 dense_audio = remove_empty_segment(audio, frame_roll, SAMPLE_RATE) dense_hq_audio = remove_empty_segment(hq_audio, frame_roll, SAMPLE_RATE * 2) for i in range(scale): shift_pitch = i - (scale // 2) packed_hdf5_path = os.path.join(feature_dir, '{}._TRAIN_shift_pitch_{}.h5'.format(os.path.splitext(name)[0], shift_pitch)) if os.path.exists(packed_hdf5_path): continue if shift_pitch == 0: shift_audio = audio shift_dense_audio = dense_audio else: shift_audio = librosa.effects.pitch_shift(hq_audio, SAMPLE_RATE * 2, n_steps=shift_pitch) shift_audio = librosa.core.resample(shift_audio, SAMPLE_RATE * 2, SAMPLE_RATE) shift_dense_audio = librosa.effects.pitch_shift(dense_hq_audio, SAMPLE_RATE * 2, n_steps=shift_pitch) shift_dense_audio = librosa.core.resample(shift_dense_audio, SAMPLE_RATE * 2, SAMPLE_RATE) shift_frame_roll = frame_roll.copy() + shift_pitch shift_frame_roll[shift_frame_roll == NOTES_NUM_EXCLUDE_SILENCE + shift_pitch] = NOTES_NUM_EXCLUDE_SILENCE shift_frame_roll = np.clip(shift_frame_roll, 0, NOTES_NUM_EXCLUDE_SILENCE) with h5py.File(packed_hdf5_path, 'w') as hf: hf.create_dataset(name='shift_waveform', data=float32_to_int16(shift_audio), dtype=np.int16) hf.create_dataset(name='shift_dense_waveform', data=float32_to_int16(shift_dense_audio), dtype=np.int16) hf.create_dataset(name='frame_roll', data=shift_frame_roll, dtype=np.int16) with h5py.File(train_packed_hdf5_path, 'w') as hf: hf.create_dataset(name='waveform', data=float32_to_int16(audio), dtype=np.int16) hf.create_dataset(name='frame_roll', data=frame_roll, dtype=np.int16) with h5py.File(test_packed_hdf5_path, 'w') as hf: hf.create_dataset(name='waveform', data=float32_to_int16(audio), dtype=np.int16) hf.create_dataset(name='waveform_path', data=[audio_path.encode()], dtype='S200') hf.create_dataset(name='note_annotations_txt', data=[ref_path.encode()], dtype='S200') hf.create_dataset(name='frame_roll', data=frame_roll, dtype=np.int16) def process_group(st, ed, total_num, pid): print(f"process {pid + 1} starts") for n in range(st, ed): process_unit(n) print(f"process {pid + 1} : {n + 1}/{total_num} done.") print(f"process {pid + 1} ends") audio_groups = get_process_groups(audios_num, process_num) for pid, (st, ed) in enumerate(audio_groups): p = multiprocessing.Process(target = process_group, args = (st, ed, audios_num, pid)) p.start() if __name__ == '__main__': parser = argparse.ArgumentParser(description='') parser.add_argument('--dataset_dir', type=str, required=True, help='Directory of dataset.') parser.add_argument('--feature_dir', type=str, required=True, help='Directory to store generated files.') parser.add_argument('--process_num', type=int, required=True, help='Number of processes.') args = parser.parse_args() pack_urmp_dataset_to_hdf5(args)
from __future__ import unicode_literals import unittest from rest_framework import status, test, settings from django.core.urlresolvers import reverse from nodeconductor.structure.tests import factories as structure_factories from nodeconductor.support.serializers import CommentSerializer class JiraTest(test.APITransactionTestCase): def setUp(self): self.user = structure_factories.UserFactory() def get_issues_url(cls, key=None): if key: return 'http://testserver' + reverse('issue-detail', kwargs={'pk': key}) else: return 'http://testserver' + reverse('issue-list') def get_comments_url(cls, key): return 'http://testserver' + reverse('issue-comments-list', kwargs={'pk': key}) def test_list_issues(self): self.client.force_authenticate(user=self.user) response = self.client.get(self.get_issues_url()) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertGreaterEqual(len(response.data), 3) def test_search_issues(self): self.client.force_authenticate(user=self.user) response = self.client.get(self.get_issues_url(), data={settings.api_settings.SEARCH_PARAM: '^_^'}) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual('TST-3', response.data[0]['key']) def test_create_issues(self): self.client.force_authenticate(user=self.user) data = { 'summary': 'Just a test', 'description': 'nothing more', } response = self.client.post(self.get_issues_url(), data=data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) key = response.data['key'] response = self.client.get(self.get_issues_url(key), data=data) self.assertEqual(response.data['summary'], data['summary']) def test_list_comments(self): self.client.force_authenticate(user=self.user) response = self.client.get(self.get_comments_url('TST-3')) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertGreaterEqual(len(response.data), 2) def test_create_comments(self): self.client.force_authenticate(user=self.user) comment = 'hi there' url = self.get_comments_url('TST-1') response = self.client.post(url, data={'body': comment}) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertIn(self.user.username, response.data['author']['displayName']) response = self.client.get(url) self.assertEqual(response.data[-1]['body'], comment) class JiraCommentAuthorSerializerTest(unittest.TestCase): def test_parsing(self): username = "Walter" uuid = '1c3323fc4ae44120b57ec40dea1be6e6' body = "Hello, world!" comment = {"body": "Comment posted by user {} ({})\n{}".format(username, uuid, body)} expected = { 'author': { 'displayName': username, 'uuid': uuid }, 'body': body } serializer = CommentSerializer(instance=comment) self.assertEqual(expected, serializer.data)
from Aula52.model.endereco_model import EnderecoModel from Aula52.dao.base_dao import BaseDao class EnderecoDao(BaseDao): def __init__(self): super().__init__("01_MDG_ENDERECO") def listar_todos(self): tuplas = super().listar_todos() lista = [] for e in tuplas: model = EnderecoModel(e[1], e[2], e[3], e[4], e[5], e[6], e[0]) lista.append(model.__dict__) return lista def buscar_por_id(self, id): tupla = super().buscar_por_id(id) model = EnderecoModel(tupla[1], tupla[2], tupla[3], tupla[4], tupla[5], tupla[6], tupla[0]) return model.__dict__ def inserir(self, model: EnderecoModel): self.cursor.execute("""INSERT INTO {} ( LOGRADOURO, NUMERO, COMPLEMENTO, BAIRRO, CIDADE, CEP )VALUES ( '{}', '{}', '{}', '{}', '{}', '{}' ) """.format(self.tabela, model.logradouro, model.numero, model.complemento, model.bairro, model.cidade, model.cep )) self.conexao.commit() model.id = self.cursor.lastrowid return model.__dict__ def alterar(self, model: EnderecoModel): self.cursor.execute(""" UPDATE {} SET LOGRADOURO = '{}', NUMERO = '{}', COMPLEMENTO = '{}', BAIRRO = '{}', CIDADE = '{}', CEP = '{}' WHERE ID = {} """.format(self.tabela, model.logradouro, model.numero, model.complemento, model.bairro, model.cidade, model.cep, model.id )) self.conexao.commit() return model.__dict__ def deletar(self, id): self.cursor.execute(""" DELETE FROM {} WHERE ID = {} """.format(self.tabela, id)) self.conexao.commit() return "Endereco de id {} deletado com sucesso".format(id)
"""restart: Restart nginx or flask in the dev container 'dsco restart' will restart both the nginx service and the flask service running inside the development container. To restart just one of those use the corresponding flag: --nginx or --flask """ import os from pathlib import Path from cookiecutter.main import cookiecutter from dsco.helpers import get_container import subprocess cmd_name = Path(__file__).stem def add_subparser(subparsers): sub = subparsers.add_parser(cmd_name, help="restart nginx and flask (dev)") sub.add_argument("--flask", action="store_true", help="restart flask") sub.add_argument("--nginx", action="store_true", help="restart nginx") def run_cmd(args, conf): if conf["proj_root"]: no_flag = not any([args.flask, args.nginx]) flask_flag = args.flask or no_flag nginx_flag = args.nginx or no_flag proj_name = conf["pyproject"]["tool"]["poetry"]["name"] container_name = get_container(proj_name, "dev") if nginx_flag: restart_nginx = 'bash -c "service nginx restart"' cmd = f"docker exec -it $({container_name}) {restart_nginx}" print(cmd) subprocess.run(cmd, shell=True) if flask_flag: restart_flask = ( 'bash -c "supervisorctl restart uwsgi && supervisorctl status"' ) cmd = f"docker exec -it $({container_name}) {restart_flask}" print(cmd) subprocess.run(cmd, shell=True) else: print("No project found.") def add_dispatch(dispatcher): dispatcher[cmd_name] = run_cmd
#!/usr/bin/env python3 # Goshu IRC Bot # written by Daniel Oaks <daniel@danieloaks.net> # licensed under the ISC license # Quite a lot of this module was taken, with permission, from # https://github.com/electronicsrules/megahal # In particular, the regexes and the display layout. Thanks a bunch, bro! import re import time from girc.formatting import escape, unescape from girc.utils import CaseInsensitiveDict from gbot.libs.helper import get_url, format_extract, JsonHandler from gbot.modules import Module class Cooldown: def __init__(self, cooldown_seconds=15, multiple=2, max_cooldown=60*60*24): self.cooldown_seconds = cooldown_seconds self.end_ts = time.time() self.default_multiple = multiple self.multiple = multiple self.max_cooldown = max_cooldown def can_do(self): if time.time() > self.end_ts: self.multiple = self.default_multiple self.end_ts = time.time() + self.cooldown_seconds return True self.multiple *= self.default_multiple cooldown = min(self.cooldown_seconds * self.multiple, self.max_cooldown) self.end_ts = time.time() + cooldown return False class link(Module): standard_admin_commands = ['ignore'] def __init__(self, bot): Module.__init__(self, bot) self.links = [] self.cooldowns = {} self.json_handlers.append(JsonHandler(self, self.dynamic_path, attr='links', ext='lnk', yaml=True, callback_name='_link_json_callback')) def _link_json_callback(self, new_json): for key, info in new_json.items(): for var_name, var_info in info.get('required_values', {}).items(): base_name = info['name'][0] self.parse_required_value(base_name, var_name, var_info) def link_listener(self, event): """Listens for links for which we can provide info @listen pubmsg @listen privmsg """ if event['source'].is_me or self.is_ignored(event['from_to']): return url_matches = re.search('(?:https?://)(\\S+)', unescape(event['message'])) if not url_matches: return for url in url_matches.groups(): response = '' for provider in self.links: if provider not in self.cooldowns: self.cooldowns[provider] = CaseInsensitiveDict() matches = re.match(self.links[provider]['match'], url) if matches: # response = '*** {}: '.format(self.links[provider]['display_name']) response = '' complete_dict = {} complete_dict.update(self.get_required_values(provider)) for key, value in matches.groupdict().items(): complete_dict[key] = escape(value) # check cooldown server_name = event['server'].name if event['from_to'].is_user: from_to = event['from_to'].host else: from_to = event['from_to'].name if server_name not in self.cooldowns[provider]: self.cooldowns[provider][server_name] = event['server'].idict() if from_to not in self.cooldowns[provider][server_name]: self.cooldowns[provider][server_name][from_to] = Cooldown() if not self.cooldowns[provider][server_name][from_to].can_do(): continue # getting the actual file itself api_url = self.links[provider]['url'].format(**complete_dict) r = get_url(api_url) display_name = self.links[provider]['display_name'] if isinstance(r, str): event['from_to'].msg('*** {}: {}'.format(display_name, r)) return # parsing response += format_extract(self.links[provider], r.text, debug=True, fail='*** {}: Failed'.format(display_name)) # remove urls from our response url_matches = re.search('(?:https?://)(\\S+)', response) if url_matches: for url in url_matches.groups(): for provider in self.links: matches = re.match(self.links[provider]['match'], url) if matches: response = response.replace(url, '[REDACTED]') if response: event['from_to'].msg(response) return # don't spam us tryna return every title
############################################################################# # Author: Muhammed S. ElRakabawi (elrakabawi.github.io) # Paper: Yin, C. (2017). Encoding DNA sequences by integer chaos game representation # License: MIT ############################################################################# import argparse import re class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' parser = argparse.ArgumentParser(description='Integer Chaos Game Representation of DNA Encoder/Decoder script') group = parser.add_mutually_exclusive_group(required=True) group.add_argument('-e', '--encode', type=str, help='Encode sequence from fasta file') group.add_argument('-d', '--decode', type=str, help='Decode sequence from icgr file') parser.add_argument('-q', '--quiet', action='store_true', help='Will not print validity checks') args = parser.parse_args() ################################ FUNCTIONS ################################### def clean_file(this_file): # Truncating function for cleaning the file this_file.seek(0) # Point cursor to first line this_file.truncate() # Truncate file this_file.seek(0) # Return cursor to first line return this_file def encode_icgr(dna_seq): # Integer Chaos Game Representation Encoder i_value = 0 # base index (position) alpha_x = 0 # Alpha (i,x) alpha_y = 0 # Alpha (i,y) arr = [] # List of lists [(i,Xi,Yi)..(n, X, Yn)] cgr_coordinate = {'A': (1, 1), 'G': (1, -1), 'T': (-1, 1), 'C': (-1, -1)} # Base mapping to coordinates for n in dna_seq: # For every nucleotide in sequence i_value = i_value + 1 # increment i --> n alpha_x = cgr_coordinate[n][0] # alpha_x = Nucleotide Xi coordinate alpha_y = cgr_coordinate[n][1] # alpha_y = Nucleotide Yi coordinate if i_value == 1: px = (2 ** (i_value - 1)) * alpha_x py = (2 ** (i_value - 1)) * alpha_y elif i_value > 1: px = px + (2 ** (i_value - 1)) * alpha_x py = py + (2 ** (i_value - 1)) * alpha_y arr.append([i_value, alpha_x, alpha_y, px, py]) big_x_value = arr[len(arr) - 1][3] big_y_value = arr[len(arr) - 1][4] return i_value, big_x_value, big_y_value def decode_icgr(i_value, big_x, big_y): # Integer Chaos Game Representation Decoder arr = [] # List of Bases [(i,Xi,Yi)..(n, X, Yn)] cgr_coordinate = {(1, 1): 'A', (1, -1): 'G', (-1, 1): 'T', (-1, -1): 'C'} # Coordinates mapping back to Bases alpha_x = 0 alpha_y = 0 for step in range(i_value, 0, -1): # For Every step in range (i --> 0) if big_x > 0: alpha_x = 1 elif big_x < 0: alpha_x = -1 if big_y > 0: alpha_y = 1 elif big_y < 0: alpha_y = -1 big_x = (abs(big_x)-(2**(i_value-1)))*alpha_x # [|Pi,x| - 2^(i-1)] * alpha(i,x) big_y = (abs(big_y) - (2 ** (i_value - 1))) * alpha_y # [|Pi,y| - 2^(i-1)] * alpha(i,y) arr.append(cgr_coordinate[(alpha_x, alpha_y)]) i_value -= 1 decoded_seq = ''.join(arr[::-1]) # Reverse and join chars to a string return decoded_seq # Return Decoded Sequence ################################ CORE LOGIC ################################### if args.encode: fastapath = args.encode icgrpath = fastapath[:fastapath.find('.')] + '.icgr' seq_comments = [] fasta_seq = '' with open(fastapath) as fp: line = fp.readline() while line: if line[0] == '>': seq_desc = line elif line[0] == ';': seq_comments.append([line]) else: line = line.replace('\n', '') fasta_seq += line line = fp.readline() seq_desc = '>>{}'.format(seq_desc) encoded_seq = encode_icgr(fasta_seq) decoded_seq = decode_icgr(encoded_seq[0], encoded_seq[1], encoded_seq[2]) answer_file = open(icgrpath, 'a') answer_file = clean_file(answer_file) answer_file.write(seq_desc) answer_file.write(str(encoded_seq)) if not args.quiet: print(bcolors.HEADER, 'Script running in Verbose Mode.\n Validity checks will be printed!', bcolors.ENDC) print(' Fasta file path:', fastapath) if decoded_seq == fasta_seq: print(bcolors.OKBLUE, 'Validity check returns True.', bcolors.ENDC) print(bcolors.OKBLUE, 'ICGR Encoding Done (Trusted) --> ', bcolors.WARNING, icgrpath, bcolors.ENDC, '\nI:', encoded_seq[0], '\nX:', encoded_seq[1], '\nY:', encoded_seq[2]) else: print(bcolors.WARNING, 'Validity check returns False.', bcolors.ENDC) choice = input(' Output file anyway? [y]: ') if choice == 'y': print(bcolors.OKBLUE, 'ICGR Encoding Done (Not Trusted) --> ', bcolors.WARNING, icgrpath, bcolors.ENDC, '\n I:', encoded_seq[0], '\n X:', encoded_seq[1], '\n Y:', encoded_seq[2]) else: print(bcolors.FAIL, 'iCGR encoding was not completed due to internal error', bcolors.ENDC) elif args.quiet: print(bcolors.HEADER, 'Script running in Quiet Mode.', bcolors.ENDC) if decoded_seq == fasta_seq: print(bcolors.OKBLUE, 'ICGR Encoding Done (Trusted) --> ', bcolors.WARNING, icgrpath, bcolors.ENDC) else: print(bcolors.WARNING, 'ICGR Encoding Done (Not Trusted) --> ', icgrpath, bcolors.ENDC) elif args.decode: icgrpath = args.decode fastapath = icgrpath[:icgrpath.find('.')] + '.fasta' open_file = open(icgrpath, 'r') file_lines = open_file.readlines() fasta_desc = file_lines[0].strip() icgr_data = file_lines[1].strip(',') # Split values from string icgr_data = icgr_data[1:-1] # Removes brackets icgr_data = icgr_data.split(',') # String to tuple decoded_seq = decode_icgr(int(icgr_data[0]), int(icgr_data[1]), int(icgr_data[2])) answer_file = open(fastapath, 'a') answer_file = clean_file(answer_file) answer_file.write(fasta_desc[2:] + '\n') answer_file.write(re.sub("(.{70})", "\\1\n", decoded_seq, 0, re.DOTALL)) # Printing sequence in fasta format print(bcolors.OKBLUE, 'ICGR Decoding Done Successfully! -->', bcolors.WARNING, fastapath, bcolors.ENDC)
#!/usr/bin/env python3 # Et eksempelprogram som viser integrasjon med ID-porten og # APIer fra skatteetaten. import base64 import webbrowser import random import time import json from urllib.parse import urlparse, parse_qs, quote from base64 import urlsafe_b64encode, urlsafe_b64decode from hashlib import sha256 from http.server import BaseHTTPRequestHandler, HTTPServer import xmltodict import requests from jose import jwt CLIENT_ID = '8d7adad7-b497-40d0-8897-9a9d86c95306' AUTH_DOMAIN = 'oidc-ver2.difi.no/idporten-oidc-provider' ALGORITHMS = ["RS256"] API_AUDIENCE = 'https://mp-test.sits.no/api/eksterntapi/formueinntekt/skattemelding/' # En enkel webserver som venter på callback fra browseren, og lagrer # unna callback-urlen. class BrowserRedirectHandler(BaseHTTPRequestHandler): timeout = 1000 result = None def do_GET(self) -> None: self.send_response(200) self.send_header('Content-Type', 'text/html') self.end_headers() self.wfile.write(b""" <!DOCTYPE html> <title>Authentication complete</title> <body> <h1>Authentication complete</h1> <p>You may close this page. """) BrowserRedirectHandler.result = self # Return a random byte array of length len def random_bytes(n: int) -> bytes: return bytearray(random.getrandbits(8) for _ in range(n)) def base64_response(s: str, encoding: str) -> str: base64_bytes = s.encode(encoding) message_bytes = base64.b64decode(base64_bytes) return message_bytes.decode(encoding) def decode_dokument(dokument): orginal_conten = dokument["content"] encoding = dokument["encoding"] dokument["content"] = base64_response(orginal_conten, encoding) return dokument def iter_dokumenter(d): for k, v in d.items(): if k == 'dokument': #valider response har en liste med dokumenter for dok in v: decode_dokument(dok) elif k == "skattemeldingdokument": decode_dokument(v) elif k == "dokumenter": iter_dokumenter(v) else: pass return d def base64_decode_response(r: requests): if not r: # ikke 200 ok return r.text utkast_resp = xmltodict.parse(r.text) for k, v in utkast_resp.items(): v = iter_dokumenter(v) utkast_resp[k] = v return xmltodict.unparse(utkast_resp) def main_relay(**kwargs) -> dict: # disabled - idporten fails to register 127.0.0.1 and dynamic port numbers for now # # Bind to port 0, let the OS find an available port # server = HTTPServer(('127.0.0.1', 0), BrowserRedirectHandler) # Get the jwks from idporten (for token verification later) u = requests.get('https://{}/.well-known/openid-configuration'.format(AUTH_DOMAIN)).json()["jwks_uri"] jwks = requests.get(u).json() server = HTTPServer(('127.0.0.1', 12345), BrowserRedirectHandler) port = server.server_address[1] assert 0 < port < 65536 client_id = CLIENT_ID # Public clients need state parameter and PKCE challenge # https://difi.github.io/felleslosninger/oidc_auth_spa.html # https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-00 state = urlsafe_b64encode(random_bytes(16)).decode().rstrip("=") pkce_secret = urlsafe_b64encode(random_bytes(32)).decode().rstrip("=").encode() pkce_challenge = urlsafe_b64encode(sha256(pkce_secret).digest()).decode() nonce = "{}".format(int(time.time() * 1e6)) u = 'https://{}/authorize'.format(AUTH_DOMAIN) + \ quote(('?scope=skatteetaten:formueinntekt/skattemelding openid' '&acr_values=Level3' '&client_id={}' '&redirect_uri=http://localhost:{}/token' '&response_type=code' '&state={}' '&nonce={}' '&resource={}' '&code_challenge={}' '&code_challenge_method=S256' '&ui_locales=nb'.format(client_id, port, state, nonce, API_AUDIENCE, pkce_challenge)), safe='?&=_') print(u) # Open web browser to get ID-porten authorization token webbrowser.open(u, new=0, autoraise=True) # Wait for callback from ID-porten while not hasattr(BrowserRedirectHandler.result, 'path'): server.handle_request() # Free the port, no more callbacks expected server.server_close() print("Authorization token received") # result.path is now something like # "/token?code=_Acl-x8H83rjhjhdefeefeef_xlbi_6TqauJV1Aiu_Q&state=oxw06LrtiyyWb7uj7umRSQ%3D%3D" # We must verify that state is identical to what we sent - https://tools.ietf.org/html/rfc7636 qs = parse_qs(urlparse(BrowserRedirectHandler.result.path).query) print(qs) assert len(qs['state']) == 1 and qs['state'][0] == state # Use the authorization code to get access and id token from /token payload = {'grant_type': 'authorization_code', 'code_verifier': pkce_secret, 'code': qs['code'][0], 'redirect_uri': 'http://localhost:{}/token'.format(port), 'client_id': client_id} headers = {'Accept': 'application/json'} r = requests.post('https://{}/token'.format(AUTH_DOMAIN), headers=headers, data=payload) if not r: print(r.headers, r.text) r.raise_for_status() js = r.json() assert js['token_type'] == 'Bearer' print("JS : ") print(js) # Validate tokens according to https://tools.ietf.org/html/rfc7519#section-7.2 # A list of 3rd party libraries for various languages on https://jwt.io/ # python possibilites: pyjwt, python-jose, jwcrypto, authlib # We use python-jose here: jwt.decode( js['id_token'], jwks, algorithms=ALGORITHMS, issuer="https://" + AUTH_DOMAIN + "/", audience=client_id, access_token=js['access_token'] ) id_encoded = js['id_token'].split(".")[1] id_token = json.loads(urlsafe_b64decode(id_encoded + "==").decode()) assert id_token['nonce'] == nonce # Also validate the access token separately, this is what we have to pass # on to our APIs jwt.decode( js['access_token'], jwks, algorithms=ALGORITHMS, issuer="https://" + AUTH_DOMAIN + "/", audience=API_AUDIENCE ) at_encoded = js['access_token'].split(".", 3)[1] access_token = json.loads(urlsafe_b64decode(at_encoded + "==").decode()) assert access_token['client_id'] == client_id assert access_token['token_type'] == "Bearer" assert access_token['acr'] == "Level3" assert access_token['aud'] == API_AUDIENCE print("The token is good, expires in {} seconds".format(access_token['exp'] - int(time.time()))) print("\nBearer {}".format(js['access_token'])) header = {'Authorization': 'Bearer ' + js['access_token']} return header
import cv2 def heightANDdepth(flame, pixel_to_meters, data, roi): """ This function calculates the flame height and thickness Parameters: ---------- flame: contour of the flame np.ndarray pixel_to_meters: ratio of meters per pixel float data: needs to be imported. Dictionary that includes all observed data from each experiment dict roi: region of image. np.ndarray Returns: -------- flame_height_top: height of the top of the flame in pixels float flame_height_bottom: height of the bottom of the flame in pixels float flame_projection: horizontal projection of the tip of the flame in pixels float flame_depth_below: depth of flame in pixels 500 mm above the door float flame_depth_topdoor = depth of flame in pixels at the top of the door float flame_depth_above = depth of flame in pixels 500 mm above the door float """ # define variables offset = 0.5 # determine heights at which the depth of the flame will be measured height_offset = int(offset / pixel_to_meters) height_door = data["top_of_door"][0] - data["min_y_real"] height_below = int(height_door - height_offset) height_above = int(height_door + height_offset) # determine the top and bottom flame heights top_point = tuple(flame[flame[:, :, 0].argmax()][0]) bottom_point = tuple(flame[flame[:, :, 0].argmin()][0]) height_top = top_point[0] height_bottom = bottom_point[0] # determine the horizontal projection of the flame flame_projection = 0 pt2 = top_point pt1 = (top_point[0], data["top_of_door"][1]) flame_projection = abs(pt2[1] - pt1[1]) # add a conditional to deal with contours detected on the floor if height_top < 300: height_top = 0 height_bottom = 0 flame_projection = 0 else: # draw on the frame the top and bottom heights as well as the projection cv2.circle(roi, top_point, 10, (0, 0, 255), 3) cv2.circle(roi, bottom_point, 10, (0, 0, 255), 3) cv2.arrowedLine(roi,pt2,pt1,color = (51,153,255),thickness = 3) # calculate the flame depth at three different heights for i,height in enumerate([height_below, height_door, height_above]): """ Initialize pt1 and pt2, otherwise the calculation of depth raises an error """ pt1 = (0,0) pt2 = (0,0) for y_coordinate in range(roi.shape[0]): # start from the edge of roi and find where the flame ends inside_flame = cv2.pointPolygonTest(flame, (height, y_coordinate), False) # if the point is in the flame if inside_flame in [0,1]: pt1 = (height, y_coordinate) break for y_coordinate in range(roi.shape[0], 0, -1): # start from the door and find where the flame starts inside_flame = cv2.pointPolygonTest(flame, (height, y_coordinate), False) # if the point is in the flame if inside_flame in [0,1]: pt2 = (height, y_coordinate) break # draw the lines that indicate the depth that was measured on the image cv2.arrowedLine(roi,pt2,pt1,color = (51,153,255),thickness = 3) depth = abs(pt2[1] - pt1[1]) # assign the depth value to the corresponding variable if i == 0: depth_below = depth if i == 1: depth_door = depth if i == 2: depth_above = depth return (height_top, height_bottom, flame_projection, depth_below, depth_door, depth_above)
import uuid from test_helper import get_result import floto import floto.api import floto.decider def test_07(): domain = 'floto_test' rs = floto.specs.retry_strategy.InstantRetry(retries=2) timer_a = floto.specs.task.Timer(id_='TimerA', delay_in_seconds=15) task_1 = floto.specs.task.ActivityTask(domain=domain, name='activity1', version='v5', retry_strategy=rs) timer_b = floto.specs.task.Timer(id_='TimerB', delay_in_seconds=5, requires=[task_1.id_]) task_2 = floto.specs.task.ActivityTask(domain=domain, name='activity2', version='v4', requires=[timer_b.id_], retry_strategy=rs) decider_spec = floto.specs.DeciderSpec(domain=domain, task_list=str(uuid.uuid4()), activity_tasks=[timer_a, timer_b, task_1, task_2], default_activity_task_list='floto_activities', terminate_decider_after_completion=True) decider = floto.decider.Decider(decider_spec=decider_spec) workflow_args = {'domain': decider_spec.domain, 'workflow_type_name': 'my_workflow_type', 'workflow_type_version': 'v1', 'task_list': decider_spec.task_list, 'input': {'foo': 'bar'}} response = floto.api.Swf().start_workflow_execution(**workflow_args) print(30 * '-' + ' Running Test 07 ' + 30 * '-') decider.run() print(30 * '-' + ' Done Test 07 ' + 30 * '-') return get_result(decider.domain, response['runId'], 'my_workflow_type_v1')
print('''Faça um programa que leia nome e média de um aluno, guardando também a situação em um dicionário. No final, mostre o conteúdo da estrutura na tela.''') aluno = dict() aluno['nome'] = str(input('Insira o nome: ')) aluno['nota'] = float(input('Insira a nota: ')) if aluno['nota'] < 7: aluno['nota'] = 'reprovado' else: aluno['situacao'] = 'aprovado' print(f'''O aluno {aluno['nome']} teve a nota {aluno['nota']} e foi {aluno['situacao']}.''')
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Feb 26 10:07:12 2017 @author: adriana The greatest common divisor of two positive integers is the largest integer that divides each of them without remainder. For example, gcd(2, 12) = 2 gcd(6, 12) = 6 gcd(9, 12) = 3 gcd(17, 12) = 1 A clever mathematical trick (due to Euclid) makes it easy to find greatest common divisors. Suppose that a and b are two positive integers: If b = 0, then the answer is a Otherwise, gcd(a, b) is the same as gcd(b, a % b) See this website for an example of Euclid's algorithm being used to find the gcd. Write a function gcdRecur(a, b) that implements this idea recursively. This function takes in two positive integers and returns one integer. """ def gcdRecur(a, b): if b == 0: return a else: return gcdRecur(b, a % b)