content
stringlengths
5
1.05M
# Generated by Django 3.0.1 on 2020-01-08 09:11 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('WebAXEL', '0047_auto_20200107_1358'), ] operations = [ migrations.CreateModel( name='RobotCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('categorie', models.CharField(max_length=255, verbose_name='Catégorie du robot')), ], ), migrations.AlterField( model_name='dataset', name='categories_dataset', field=models.ManyToManyField(blank=True, default=None, to='WebAXEL.DataSetCategory', verbose_name='Catégories du jeu de données'), ), migrations.AlterField( model_name='dataset', name='dataset', field=models.FileField(null=True, upload_to='static/datasets/', verbose_name='Fichier jeu de données'), ), migrations.AlterField( model_name='dataset', name='date_ajout', field=models.DateTimeField(auto_now_add=True, verbose_name="Date d'ajout du jeu de données"), ), migrations.AlterField( model_name='dataset', name='description', field=models.TextField(blank=True, null=True, verbose_name='Description du jeu de données'), ), migrations.AlterField( model_name='datasetcategory', name='categorie', field=models.CharField(max_length=255, verbose_name='Catégorie du jeu de données'), ), migrations.AlterField( model_name='document', name='categories_document', field=models.ManyToManyField(blank=True, default=None, to='WebAXEL.DocumentCategory', verbose_name='Catégories du Document'), ), migrations.CreateModel( name='Robot', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nom', models.CharField(max_length=255, verbose_name='Nom')), ('model', models.CharField(max_length=255, verbose_name='Modèle')), ('utilisation', models.CharField(max_length=255, verbose_name='Utilisation')), ('date_ajout', models.DateTimeField(auto_now_add=True, verbose_name="Date d'ajout du robot")), ('description', models.TextField(blank=True, null=True, verbose_name='Description du robot')), ('categories_robot', models.ManyToManyField(blank=True, default=None, to='WebAXEL.DataSetCategory', verbose_name='Catégories du robot')), ], ), ]
from __future__ import absolute_import import functools import black_magic.decorator from test.benchmark import _common class StandardPartial(_common.Base): def __init__(self): self.func = functools.partial(_common.func, 0) class BlackMagicPartial(_common.Base): def __init__(self): self.func = black_magic.decorator.partial(_common.func, 0) if __name__ == '__main__': _common.main(StandardPartial, BlackMagicPartial)
class ERROR_CODE(object): NOT_FOUND_ERROR = 404
# -*- coding: utf-8 -*- """ link ~~~~~~~~~~~~ The link module helps you connect to all of the data sources you need through a simple configuration Sample Config to connect to mysql:: { "dbs":{ "my_db": { "wrapper": "MysqlDB", "host": "mysql-master.123fakestreet.net", "password": "<password>", "user": "<user>", "database": "<database_name>" } } } Sample Code:: In [3]: from link import lnk # uses the keys from your configuration to look up and create the # appropriate objects In [35]: my_db = lnk.dbs.my_db In [36]: data = my_db.select('select id from my_table') :copyright: (c) 2013 by David Himrod :license: Apache2, see LICENSE for more details. """ #import all of this version information __version__ = '0.2.10' __author__ = 'David Himrod' __license__ = 'Apache 2.0' __copyright__ = 'Copyright 2013 David Himrod' __title__ = 'link' from .link import Link, Wrapper, lnk from common import *
#!/usr/bin/env python3 """ 9.xxx 2 Octet Floating Point Number """ import struct def encode(value): s = 0 e = 0 if value < 0: s = 0x8000 m = int(value * 100) while (m > 2047) or (m < -2048): e = e + 1 m = m >> 1 num = s | (e << 11) | (int(m) & 0x07ff) ret = bytearray([0]) ret.extend(struct.pack('>H', int(num))) return ret def decode(data): if len(data) != 2: return None i1 = data[0] i2 = data[1] s = (i1 & 0x80) >> 7 e = (i1 & 0x78) >> 3 m = (i1 & 0x07) << 8 | i2 if s == 1: s = -1 << 11 f = (m | s) * 0.01 * pow(2, e) return round(f, 2)
import os import sys import argparse def prompt_sudo(): try: os.mkdir('/test') os.rmdir('/test') except PermissionError: print('You need root permission to generate the service!') sys.exit(1) prompt_sudo() parser = argparse.ArgumentParser() parser.add_argument("--name", help="Name of the service") parser.add_argument("--type", help="Type of the service") parser.add_argument("--desc", help="Description of the service") parser.add_argument("--start", help="Start cmd of the service") parser.add_argument("--stop", help="Stop cmd of the service") args = parser.parse_args(sys.argv[1:]) name = args.name or input('Enter name for service: ') type = args.type or input('Enter type for service (Press Enter for default): ') description = args.desc or input('Enter description for service: ') startOperation = args.start or input('Enter service start command: ') stopOperation = args.stop or input('Enter service stop command (Press Enter for none): ') if type is '' or None: type = 'simple' if stopOperation: stopOperation = 'ExecStop=%s' % stopOperation with open(f'/etc/systemd/system/{name}.service', 'w') as f: try: f.write(""" [Unit] Description=%s After=multi-user.target [Service] Type=%s ExecStart=%s %s [Install] WantedBy=multi-user.target """ % (description, type, startOperation, stopOperation)) except IOError as err: print(f'An Input/Output error happened!\n{err}') cmd = f'sudo systemctl enable {name}' print(f'To enable the service, type: {cmd}')
import os from itertools import combinations file_path = os.path.join(os.path.dirname(__file__), "input.txt") with open(file_path, 'r') as input: all_lines = input.readlines() for i in range(len(all_lines)): all_lines[i] = all_lines[i].strip('\n') all_lines[i] = int(all_lines[i]) preamble = [] for i in range(25): preamble.append(all_lines.pop(0)) valid = False for num in all_lines: for pair in combinations(preamble, r=2): if num == sum(pair): valid = True if valid: preamble.pop(0) preamble.append(num) valid = False else: print(num) break
# -*- coding: utf-8 -*- """ @author: Yi Zhang @contact: zhangyi_aero@hotmail.com @time: 2022/05/07 3:46 PM """ import sys if './' not in sys.path: sys.path.append('./') from screws.freeze.base import FrozenOnly class FrameSegments(FrozenOnly): """""" def __init__(self, cell, edge_name, segments): """ Parameters ---------- cell edge_name : str {'U', 'D', 'L', 'R'} """ self._cell_ = cell self._edge_ = edge_name self._segments_ = segments self._freeze_self_() @property def edge(self): return self._edge_ def __iter__(self): """Go through all segments on this edge of a root-cell.""" for _r in self._segments_: yield self._segments_[_r] if __name__ == "__main__": # mpiexec -n 4 python objects/nCSCG/rf2/_2d/mesh/cell/frame/segments/main.py pass
import random #to print out the board def drawBoard (board): print (' | |') print (' ' + board[7] + ' | ' + board[8] + ' | ' + board[9]) print (' | |') print ('------------') print (' | |') print (' ' + board[4] + ' | ' + board[5] + ' | ' + board[6]) print (' | |') print ('------------') print (' | |') print (' ' + board[1] + ' | ' + board[2] + ' | ' + board[3]) print (' | |') def inputPlayerLetter(): letter = '' while not (letter == 'X' or letter == 'O'): print('What do you want: X or O?') letter = input().upper() if letter == 'X': return ['X','O'] else: return ['O','X'] def firstTurn(): if random.randint(0,1) == 0: return 'computer' else: return 'player' def playAgain(): print ('Do you want to play again?') return input().lower().startswith('y') def makeMove(board , letter , move): board[move] = letter def winner(bo,le): return ((bo[7]==le and bo[8]==le and bo[9]==le) or (bo[4]==le and bo[5]==le and bo[6]==le) or (bo[1]==le and bo[2]==le and bo[3]==le) or (bo[7]==le and bo[4]==le and bo[1]==le) or (bo[8]==le and bo[5]==le and bo[2]==le) or (bo[9]==le and bo[6]==le and bo[3]==le) or (bo[9]==le and bo[5]==le and bo[1]==le) or (bo[7]==le and bo[5]==le and bo[3]==le)) def getBoardCopy(board): dupeBoard = [] for i in board: dupeBoard.append(i) return dupeBoard def isSpaceFree(board, move): return board[move] == ' ' def getPlayerMove(board): move = ' ' while move not in '1 2 3 4 5 6 7 8 9'.split() or not isSpaceFree(board,int(move)): print ('What is your next move? (1-9)') move = input() return int (move) def chooseRandomMoveFromList (board,movesList): possibleMoves = [] for i in movesList: if isSpaceFree(board,i): possibleMoves.append(i) if len(possibleMoves) != 0: return random.choice(possibleMoves) else: return None def getComputerMove(board,computerLetter): if computerLetter == 'X': playerLetter == 'O' else: playerLetter == 'X' #to check if we can the next move for i in range(1,10): copy = getBoardCopy(board) if isSpaceFree(copy,i): makeMove(copy, computerLetter , i) if winner(copy, computerLetter): return i #to check if player can win in their next move and block them for i in range(1,10): copy = getBoardCopy(board) if isSpaceFree(copy,i): makeMove(copy, playerLetter , i) if winner(copy, playerLetter): return i #try to take one of the corners if they are free move = chooseRandomMoveFromList (board, [1, 3, 7, 9]) if move != None: return move #try to take the centre, if it is free if isSpaceFree(board, [5]): return 5 #move on one of the sides return chooseRandomMoveFromList (board, [2, 4, 6, 8]) def isBoardFull (board): #return true if every space is full, otherwise false for i in range(1, 10): if isSpaceFree(board, i): return False return True print ('Welcome to Tic Tac Toe') while True: #reset the board theBoard = [' '] * 10 playerLetter, computerLetter = inputPlayerLetter() turn = firstTurn() print ('The ' + turn + ' will go first. ') gameIsPlaying = True while gameIsPlaying: if turn == 'player': #Player's turn drawBoard(theBoard) move = getPlayerMove(theBoard) makeMove (theBoard , playerLetter , move) if winner (theBoard, playerLetter): drawBoard(theBoard) print('You have won the game!!') gameIsPlaying = False else: if isBoardFull(theBoard): drawBoard(theBoard) print('The game is a Tie!!') break else: turn = 'computer' else: #Computer's turn move = getComputerMove(theBoard, computerLetter) makeMove(theBoard, computerLetter, move) if winner(theBoard, computerLetter): drawBoard(theBoard) print('The computer has won!! You lose!') gameIsPlaying = False else: if isBoardFull(theBoard): drawBoard(theBoard) print('The game is a Tie!!') break else: turn = 'player' if not playAgain(): break
# Keeps the rates.csv file updated from pandas import * from pyvalet import ValetInterpreter # Fetch the data using Valet API vi = ValetInterpreter() # Step 1: Get all foreign exchange rates # CAD to INR _, cad_inr = vi.get_series_observations('FXCADINR') dates = cad_inr.loc[3:]['id'] cad_inr = cad_inr.loc[3:]['label'].astype(float) # USD to CAD _, usd_cad = vi.get_series_observations('FXUSDCAD') usd_cad = usd_cad.loc[3:]['label'].astype(float) # EUR to CAD _, eur_cad = vi.get_series_observations('FXEURCAD') eur_cad = eur_cad.loc[3:]['label'].astype(float) # GBP to CAD _, gbp_cad = vi.get_series_observations('FXGBPCAD') gbp_cad = gbp_cad.loc[3:]['label'].astype(float) # Step 2: Covert and round all currencies to INR # USD to INR usd_inr = round(usd_cad * cad_inr, 2) # USD to INR eur_inr = round(eur_cad * cad_inr, 2) # USD to INR gbp_inr = round(gbp_cad * cad_inr, 2) # Round CAD to INR cad_inr = round(cad_inr, 2) # Step 3: Merge the data merged = concat([dates, cad_inr, usd_inr, eur_inr, gbp_inr], axis=1) merged.columns = ['date', 'CAD', 'USD', 'EUR', 'GBP'] # Step 4: Write to file merged.to_csv('rates.csv', index=False)
import sys import csv import StringIO import json from threading import Thread from SimpleWebSocketServer import WebSocket, SimpleWebSocketServer clients = [] class SockClient(WebSocket): def handleMessage(self): if self.data is None: self.data = '' try: self.sendMessage(str(self.data)) except: print "Could not send message to client." def handleConnected(self): print self.address, 'connected' clients.append(self) def handleClose(self): clients.remove(self) print self.address, 'closed' def sendEvent(self, evt): print "sending message to ",self.address self.sendMessage(evt) def triggerEvent(evt): for client in clients[:]: client.sendEvent(evt) def startServer(): server = SimpleWebSocketServer('', 8080, SockClient) server.serveforever() serverThread = Thread(target = startServer) serverThread.start() try: while True: line = sys.stdin.readline() data = csv.reader(StringIO.StringIO(line)) lst = [] for r in data: lst.append(r) triggerEvent(json.dumps(lst)) except KeyboardInterrupt: sys.exit()
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for frequency analysis.""" import numpy as np import tensorflow.compat.v1 as tf from frequency_analysis import freq_heatmap class FreqHeatmapTest(tf.test.TestCase): def test_heatmap(self): x = tf.placeholder(dtype=tf.float32, shape=(None, 3, 3)) y = tf.placeholder(dtype=tf.int64, shape=None) flat_x = tf.reshape(x, [-1, 9]) np.random.seed(8629) row_1 = 0.3 + 0.5 * np.random.randn(9) init_val = np.transpose(np.array([row_1, (-1.0) * row_1])) init_w = tf.constant_initializer(init_val) w = tf.get_variable('weights', shape=(9, 2), initializer=init_w) logits = tf.matmul(flat_x, w) predictions = tf.argmax(logits, 1) correct_prediction = tf.equal(predictions, y) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) init = tf.global_variables_initializer() with self.test_session() as sess: x_np = np.array([0.2 * np.ones([3, 3]), (-0.2) * np.ones([3, 3])]) y_np = np.array([0, 1]) data_dict = {x: x_np, y: y_np} sess.run(init, feed_dict=data_dict) # Compute Fourier heatmaps and test error using generate_freq_heatmap. neural_network = freq_heatmap.TensorFlowNeuralNetwork( sess, x, y, [logits], accuracy) heatmaps, test_acc, clean_test_acc = freq_heatmap.generate_freq_heatmap( neural_network, x_np, y_np) # Compute the Fourier heatmaps without using generate_freq_heatmap. heatmap_check = np.zeros([3, 3]) test_acc_check = np.zeros([3, 3]) for pos in [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1)]: fft_basis = np.zeros([3, 3], dtype=np.complex64) if pos == (1, 1): fft_basis[1, 1] = 1.0 else: fft_basis[pos[0], pos[1]] = 0.5 + 0.5j fft_basis[2 - pos[0], 2 - pos[1]] = 0.5 - 0.5j basis = 3 * np.real(np.fft.ifft2(np.fft.ifftshift(fft_basis))) basis_flat = np.reshape(basis, [1, 9]) logit_change = np.matmul(basis_flat, init_val) change_norm = np.linalg.norm(logit_change) heatmap_check[pos[0], pos[1]] = change_norm heatmap_check[2 - pos[0], 2 - pos[1]] = change_norm data_dict_basis = {x: x_np + basis, y: y_np} test_acc_basis = sess.run(accuracy, feed_dict=data_dict_basis) test_acc_check[pos[0], pos[1]] = test_acc_basis test_acc_check[2 - pos[0], 2 - pos[1]] = test_acc_basis heatmap_check /= np.amax(heatmap_check) clean_test_acc_check = sess.run(accuracy, feed_dict=data_dict) self.assertAllClose([heatmap_check], heatmaps) self.assertAllClose(test_acc_check, test_acc) self.assertEqual(clean_test_acc_check, clean_test_acc) if __name__ == '__main__': tf.test.main()
import boto3 import fire if __name__ == '__main__': fire.Fire(boto3)
import re from string import punctuation from string import digits import pymorphy2 import codecs def prepr(input: str): input = input.lower() input = re.sub(':', '', input) input = re.sub("#", '', input) delreg = "(\S+(\.|\/)+\S+)+" input = re.sub(delreg, '', input) stop = punctuation + digits + '»«' ru = 'йцукенгшщзхъфывапролджэячсмитьбюЙЦУКЕНГШЩЗХЪФЫВАПРОЛДЖЭЯЧСМИТЬБЮ ' input = ''.join([s for s in input if s not in stop and s in ru]) stopwords = [] morph = pymorphy2.MorphAnalyzer() input = [morph.parse(word)[0].normal_form for word in input.split()] with codecs.open("stopwords.txt", 'r', 'utf-8') as file: for line in file: stopwords += line input = [word for word in input if word not in stopwords] return input
import os import sys ''' Since tweetme.py is now present in parent directory we need to add appropriate path in order to access it as a module. Path is added with respect to the location user is running the tests from. ''' parent_directory_path = os.getcwd().split('/') if 'tests' in parent_directory_path: parent_directory_path = parent_directory_path[:len(os.getcwd().split('/'))-1] parent_directory_path = '/'.join(parent_directory_path) if parent_directory_path not in sys.path: sys.path.append(parent_directory_path)
from typing import List from odm2_postgres_api.schemas.schemas import ( SamplingFeaturesCreate, VariablesCreate, EquipmentModelCreate, LoggersTimeSeriesCreate, DataQualityCreate, ControlledVocabularyCreate, ) def loggers_controlled_vocabularies() -> List[ControlledVocabularyCreate]: loggers_cv = [ { "name": "Discarded", "term": "discarded", "definition": "Measurement point categorised as bad measurement by a domain expert.", "controlled_vocabulary_table_name": "cv_censorcode", }, { "name": "Approved", "term": "approved", "definition": "Measurement point categorised as good measurement by a domain expert.", "controlled_vocabulary_table_name": "cv_censorcode", }, ] return [ControlledVocabularyCreate(**cv) for cv in loggers_cv] def loggers_sampling_features() -> List[SamplingFeaturesCreate]: # NOTE: how do we store coordinates of Site? sampling_feature_annotation? # Langtjernet: 60.21482433130298, 11.240493855592176 sampling_features = [ { "samplingfeatureuuid": "904fca98-3c36-4902-992f-a18f9da72b1e", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Langtjern_boye", }, { "samplingfeatureuuid": "1bd73c59-fcaa-459f-92a2-b999773c60bb", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Langtjern_inlet", }, { "samplingfeatureuuid": "62d5af54-bee3-4631-a798-9c4ba6f6abf5", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Langtjern_outlet", }, { "samplingfeatureuuid": "62f3a1f4-aa32-4b8e-ae9c-b5e3fc947cd3", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Langtjern_weather", }, { "samplingfeatureuuid": "1a30038f-85b0-4045-a66e-af8504205a4a", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Iskoras_outlet", }, { "samplingfeatureuuid": "2d6dceb2-9769-437a-a20d-b36f41d4ae29", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Maalselva", }, { "samplingfeatureuuid": "ce6cb9fe-0023-445c-ae95-57ad615afc8f", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Adventelva", }, { "samplingfeatureuuid": "33130cf7-78b3-4680-aa0b-539f31f4e0ca", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Lundevann", }, { "samplingfeatureuuid": "da7b2aa0-4f74-4a25-aa8b-7dfa63795339", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Svanfoss", }, { "samplingfeatureuuid": "c8b2270e-64e8-4c20-b98b-7b494f0c1315", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Rosten", }, { "samplingfeatureuuid": "017a9014-3476-4fd1-8dd3-80c4f2a7c644", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Kviteberg", }, { "samplingfeatureuuid": "9e366f0f-56dd-45aa-b2eb-9048c0013cf5", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Sjoa", }, { "samplingfeatureuuid": "528af2ce-394c-446d-9caa-4ac04773091d", "samplingfeaturetypecv": "Site", "samplingfeaturecode": "Kraakfoss", }, ] return [SamplingFeaturesCreate(**sf) for sf in sampling_features] def loggers_qc_tests() -> List[DataQualityCreate]: qc_tests = [ { "dataqualitytypecv": "Accuracy", "dataqualitycode": "frozen_test", "dataqualitydescription": "Five (or more) identical consecutive measurements indicates " "that sensor is mal-functioning (frozen).", }, { "dataqualitytypecv": "Accuracy", "dataqualitycode": "snowdepth_variability_test", "dataqualitydescription": "Measurements of snow depth which show high variability of depth gradient" "over time are inaccurate.", }, { "dataqualitytypecv": "Accuracy", "dataqualitycode": "range_test", "dataqualitydescription": "Values outside configurable range are labelled as bad.", }, { "dataqualitytypecv": "Accuracy", "dataqualitycode": "spike_test", "dataqualitydescription": "Temporary extreme increase in value is labelled as bad.", }, ] return [DataQualityCreate(**qc) for qc in qc_tests] def loggers_variables() -> List[VariablesCreate]: loggers_variables_list = [ { "variabletypecv": "Chemistry", "variablenamecv": "Oxygen, dissolved percent of saturation", "variabledefinition": "Oxygen, dissolved percent of saturation at 1m. Last 10 samples.", "variablecode": "OxygenSat_1m", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Oxygen, dissolved percent of saturation", "variabledefinition": "Oxygen, dissolved percent of saturation at 6m. Last 10 samples.", "variablecode": "OxygenSat_6m", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, at depth 0.5m", "variablecode": "Temp_0.5m", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, at depth 1m", "variablecode": "Temp_1m", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, at depth 1.5m", "variablecode": "Temp_1.5m", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, at depth 2m", "variablecode": "Temp_2m", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, at depth 3m", "variablecode": "Temp_3m", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, at depth 4m", "variablecode": "Temp_4m", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, at depth 6m", "variablecode": "Temp_6m", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, at depth 8m", "variablecode": "Temp_8m", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Fluorescence, dissolved organic matter (DOM)", "variabledefinition": "Fluorescence of dissolved organic matter (DOM), CDOM sensor", "variablecode": "CO2Value_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Carbon dioxide", "variabledefinition": "Carbon dioxide", "variablecode": "CDOMdigitalFinal_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Electrical conductivity", "variabledefinition": "Electrical conductivity", "variablecode": "CondValue_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Water level", "variabledefinition": "Water level in a lake - vannstand", "variablecode": "LevelValue_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "pH", "variabledefinition": "pH is the measure of the acidity or alkalinity " "of a solution. pH is formally a measure of the activity " "of dissolved hydrogen ions (H+). Solutions in which the " "concentration of H+ exceeds that of OH- have a pH value " "lower than 7.0 and are known as acids.", "variablecode": "PhValue_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, ground", "variablecode": "Temp_ground_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, water", "variablecode": "Temp_water_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, air", "variablecode": "Temp_air_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, ground at 15 cm", "variablecode": "Temp_ground_15cm_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, ground at 20 cm", "variablecode": "Temp_ground_20cm_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Water level", "variabledefinition": "Water level in a bucket", "variablecode": "BV_mm", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Global Radiation", "variabledefinition": "Solar radiation, direct and diffuse, " "received from a solid angle of 2p steradians " "on a horizontal surface. Source: World Meteorological Organization, Meteoterm", "variablecode": "GS_Wpm2_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Relative humidity", "variabledefinition": "Relative humidity", "variablecode": "LF_psnt_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor, air", "variablecode": "LT_gr_C_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Precipitation", "variabledefinition": "Precipitation growth last hour", "variablecode": "NB_mm", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Wind speed", "variabledefinition": "Wind speed max", "variablecode": "VH_3_s_Max", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Wind speed", "variabledefinition": "Wind speed", "variablecode": "VH_mps_WVc(1)", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Wind direction", "variabledefinition": "Wind direction", "variablecode": "VH_mps_WVc(2)", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Water level", "variabledefinition": "Water level", "variablecode": "waterLevel_mm_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Climate", "variablenamecv": "Snow depth", "variabledefinition": "Snow depth", "variablecode": "snowValue_mm_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Instrumentation", "variablenamecv": "Voltage", "variabledefinition": "Battery voltage", "variablecode": "Batt_Volt_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Instrumentation", "variablenamecv": "Voltage", "variabledefinition": "Battery voltage", "variablecode": "Batt_V_Min", "nodatavalue": -9999, }, # Iskoras { "variabletypecv": "Instrumentation", "variablenamecv": "Counter", "variabledefinition": "Signal counter used to check whether all signals which are used " "as in input to aggregation (average) of conductivity values are present", "variablecode": "CondTeller", "nodatavalue": -9999, }, { "variabletypecv": "Instrumentation", "variablenamecv": "Counter", "variabledefinition": "Signal counter used to check whether all signals which are used " "as in input to aggregation (average) of pH values are present", "variablecode": "PHTeller", "nodatavalue": -9999, }, { "variabletypecv": "Instrumentation", "variablenamecv": "Counter", "variabledefinition": "Signal counter used to check whether all signals which are used " "as in input to aggregation (average) of level values are present", "variablecode": "LevelTeller", "nodatavalue": -9999, }, { "variabletypecv": "Instrumentation", "variablenamecv": "Counter", "variabledefinition": "Signal counter used to check weather all signals which are used " "as in input to aggregation (average) of temperature values are present", "variablecode": "TempLevelTeller", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature measured by conductivity sensor setup", "variablecode": "TempCond_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature measured by Ph sensor", "variablecode": "TempPh_Avg", "nodatavalue": -9999, }, # Maalselva variables are not averages { "variabletypecv": "Chemistry", "variablenamecv": "Electrical conductivity", "variabledefinition": "Electrical conductivity", "variablecode": "CondValue", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "pH", "variabledefinition": "pH is the measure of the acidity or alkalinity " "of a solution. pH is formally a measure of the activity " "of dissolved hydrogen ions (H+). Solutions in which the " "concentration of H+ exceeds that of OH- have a pH value " "lower than 7.0 and are known as acids.", "variablecode": "PhValue", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Fluorescence, dissolved organic matter (DOM)", "variabledefinition": "Fluorescence of dissolved organic matter (DOM), CDOM sensor", "variablecode": "CDOMdigitalFinal", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Fluorescence, dissolved organic matter (DOM)", "variabledefinition": "Fluorescence of dissolved organic matter (DOM), CDOM sensor", "variablecode": "CDOManalogFinal", "nodatavalue": -9999, }, { "variabletypecv": "Instrumentation", "variablenamecv": "Voltage", "variabledefinition": "Battery voltage", "variablecode": "Batt_Volt", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Temperature, sensor", "variabledefinition": "Temperature, sensor", "variablecode": "Temp", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Turbidity", "variabledefinition": "Turbidity", "variablecode": "Turbidity", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Turbidity", "variabledefinition": "Turbidity", "variablecode": "Turbidity_Avg", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Salinity", "variabledefinition": "Salinity", "variablecode": "Salinity", "nodatavalue": -9999, }, { "variabletypecv": "Chemistry", "variablenamecv": "Salinity", "variabledefinition": "Salinity", "variablecode": "Salinity_Avg", "nodatavalue": -9999, }, ] return [VariablesCreate(**v) for v in loggers_variables_list] def loggers_equipment_models(man_id: int) -> List[EquipmentModelCreate]: equipment_models = [ { "modelmanufacturerid": man_id, "modelpartnumber": "CS511-L", "modelname": "Dissolved Oxygen Sensor", "isinstrument": True, }, ] return [EquipmentModelCreate(**em) for em in equipment_models] def loggers_timeseries_result() -> List[LoggersTimeSeriesCreate]: timeseries = [ # Langtjern_boye { "samplingfeaturecode": "Langtjern_boye", "variablecode": "OxygenSat_1m", "unitstypecv": "Dimensionless", "unitsabbreviation": "%", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_boye", "variablecode": "OxygenSat_6m", "unitstypecv": "Dimensionless", "unitsabbreviation": "%", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_boye", "variablecode": "Temp_0.5m", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_boye", "variablecode": "Temp_1m", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_boye", "variablecode": "Temp_1.5m", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_boye", "variablecode": "Temp_2m", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_boye", "variablecode": "Temp_3m", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_boye", "variablecode": "Temp_4m", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_boye", "variablecode": "Temp_6m", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_boye", "variablecode": "Temp_8m", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_boye", "variablecode": "Batt_Volt_Avg", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Average", }, # Langtjern_outlet { "samplingfeaturecode": "Langtjern_outlet", "variablecode": "Batt_Volt_Avg", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_outlet", "variablecode": "CDOMdigitalFinal_Avg", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_outlet", "variablecode": "CO2Value_Avg", "unitstypecv": "Concentration count per volume", "unitsabbreviation": "ppmv", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_outlet", "variablecode": "CondValue_Avg", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "µS/cm", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_outlet", "variablecode": "LevelValue_Avg", "unitstypecv": "Length", "unitsabbreviation": "mm", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_outlet", "variablecode": "PhValue_Avg", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_outlet", "variablecode": "Temp_air_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_outlet", "variablecode": "Temp_water_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_outlet", "variablecode": "Temp_ground_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, # Langtjern_inlet { "samplingfeaturecode": "Langtjern_inlet", "variablecode": "Batt_Volt_Avg", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_inlet", "variablecode": "CDOMdigitalFinal_Avg", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_inlet", "variablecode": "LevelValue_Avg", "unitstypecv": "Length", "unitsabbreviation": "mm", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_inlet", "variablecode": "Temp_water_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_inlet", "variablecode": "Temp_ground_20cm_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_inlet", "variablecode": "Temp_ground_15cm_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, # Langtjern_weather { "samplingfeaturecode": "Langtjern_weather", "variablecode": "Batt_V_Min", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "LevelValue_Avg", "unitstypecv": "Length", "unitsabbreviation": "mm", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "BV_mm", "unitstypecv": "Length", "unitsabbreviation": "mm", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "GS_Wpm2_Avg", "unitstypecv": "Energy per area", "unitsabbreviation": "W/m2", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "LF_psnt_Avg", "unitstypecv": "Dimensionless", "unitsabbreviation": "%", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "LT_gr_C_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "NB_mm", "unitstypecv": "Length", "unitsabbreviation": "mm", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "VH_3_s_Max", "unitstypecv": "Linear velocity", "unitsabbreviation": "m/s", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "VH_mps_WVc(1)", "unitstypecv": "Linear velocity", "unitsabbreviation": "m/s", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "VH_mps_WVc(2)", "unitstypecv": "Angle", "unitsabbreviation": "deg", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "waterLevel_mm_Avg", "unitstypecv": "Length", "unitsabbreviation": "mm", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Langtjern_weather", "variablecode": "snowValue_mm_Avg", "unitstypecv": "Length", "unitsabbreviation": "mm", "aggregationstatisticcv": "Average", "dataqualitycodes": ["frozen_test", "snowdepth_variability_test"], }, # Iskoras { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "Batt_Volt_Avg", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "Temp_air_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "CondTeller", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "PHTeller", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "LevelTeller", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "TempLevelTeller", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "CondValue_Avg", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "µS/cm", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "TempCond_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "TempPh_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "PhValue_Avg", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Iskoras_outlet", "variablecode": "LevelValue_Avg", "unitstypecv": "Length", "unitsabbreviation": "mm", "aggregationstatisticcv": "Average", }, # Maalselva { "samplingfeaturecode": "Maalselva", "variablecode": "PhValue", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Maalselva", "variablecode": "Temp", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Maalselva", "variablecode": "CondValue", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "µS/cm", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Maalselva", "variablecode": "CDOMdigitalFinal", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Maalselva", "variablecode": "CDOManalogFinal", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Maalselva", "variablecode": "Salinity", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Maalselva", "variablecode": "Batt_Volt", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Maalselva", "variablecode": "Turbidity", "unitstypecv": "Turbidity", "unitsabbreviation": "NTU", "aggregationstatisticcv": "Unknown", }, # Lundevann { "samplingfeaturecode": "Lundevann", "variablecode": "PhValue", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Lundevann", "variablecode": "Temp", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Lundevann", "variablecode": "CondValue", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "µS/cm", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Lundevann", "variablecode": "Turbidity", "unitstypecv": "Turbidity", "unitsabbreviation": "NTU", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Lundevann", "variablecode": "CDOMdigitalFinal", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Unknown", }, # Adventelva { "samplingfeaturecode": "Adventelva", "variablecode": "PhValue_Avg", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Adventelva", "variablecode": "CondValue_Avg", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "mS/m", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Adventelva", "variablecode": "LevelValue_Avg", "unitstypecv": "Length", "unitsabbreviation": "mm", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Adventelva", "variablecode": "Turbidity_Avg", "unitstypecv": "Turbidity", "unitsabbreviation": "NTU", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Adventelva", "variablecode": "Temp_water_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Adventelva", "variablecode": "Batt_Volt_Avg", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Average", }, # Svanfoss { "samplingfeaturecode": "Svanfoss", "variablecode": "Batt_Volt_Avg", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Svanfoss", "variablecode": "Temp_air_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Svanfoss", "variablecode": "CDOMdigitalFinal", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Svanfoss", "variablecode": "PhValue_Avg", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Svanfoss", "variablecode": "TempPh_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Svanfoss", "variablecode": "CondValue_Avg", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "mS/m", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Svanfoss", "variablecode": "Salinity_Avg", "unitstypecv": "Salinity", "unitsabbreviation": "ppt", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Svanfoss", "variablecode": "Turbidity_Avg", "unitstypecv": "Turbidity", "unitsabbreviation": "NTU", "aggregationstatisticcv": "Average", }, # Rosten { "samplingfeaturecode": "Rosten", "variablecode": "Batt_Volt_Avg", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Rosten", "variablecode": "Temp_air_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Rosten", "variablecode": "CDOMdigitalFinal", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Rosten", "variablecode": "PhValue_Avg", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Rosten", "variablecode": "TempPh_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Rosten", "variablecode": "CondValue_Avg", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "mS/m", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Rosten", "variablecode": "Salinity_Avg", "unitstypecv": "Salinity", "unitsabbreviation": "ppt", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Rosten", "variablecode": "Turbidity_Avg", "unitstypecv": "Turbidity", "unitsabbreviation": "NTU", "aggregationstatisticcv": "Average", }, # Kviteberg { "samplingfeaturecode": "Kviteberg", "variablecode": "Batt_V_Min", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Kviteberg", "variablecode": "GS_Wpm2_Avg", "unitstypecv": "Energy per area", "unitsabbreviation": "W/m2", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Kviteberg", "variablecode": "LF_psnt_Avg", "unitstypecv": "Dimensionless", "unitsabbreviation": "%", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Kviteberg", "variablecode": "LT_gr_C_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Kviteberg", "variablecode": "VH_3_s_Max", "unitstypecv": "Linear velocity", "unitsabbreviation": "m/s", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Kviteberg", "variablecode": "VH_mps_WVc(1)", "unitstypecv": "Linear velocity", "unitsabbreviation": "m/s", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Kviteberg", "variablecode": "VH_mps_WVc(2)", "unitstypecv": "Angle", "unitsabbreviation": "deg", "aggregationstatisticcv": "Unknown", }, # Sjoa { "samplingfeaturecode": "Sjoa", "variablecode": "Batt_Volt_Avg", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Sjoa", "variablecode": "Temp_air_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Sjoa", "variablecode": "CDOMdigitalFinal", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Sjoa", "variablecode": "PhValue_Avg", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Sjoa", "variablecode": "TempPh_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Sjoa", "variablecode": "CondValue_Avg", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "mS/m", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Sjoa", "variablecode": "Salinity_Avg", "unitstypecv": "Salinity", "unitsabbreviation": "ppt", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Sjoa", "variablecode": "Turbidity_Avg", "unitstypecv": "Turbidity", "unitsabbreviation": "NTU", "aggregationstatisticcv": "Average", }, # Sjoa { "samplingfeaturecode": "Kraakfoss", "variablecode": "Batt_Volt_Avg", "unitstypecv": "Electromotive force", "unitsabbreviation": "Volts", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Kraakfoss", "variablecode": "Temp_air_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Kraakfoss", "variablecode": "CDOMdigitalFinal", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Unknown", }, { "samplingfeaturecode": "Kraakfoss", "variablecode": "PhValue_Avg", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Kraakfoss", "variablecode": "TempPh_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Kraakfoss", "variablecode": "CondValue_Avg", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "mS/m", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Kraakfoss", "variablecode": "Salinity_Avg", "unitstypecv": "Salinity", "unitsabbreviation": "ppt", "aggregationstatisticcv": "Average", }, { "samplingfeaturecode": "Kraakfoss", "variablecode": "Turbidity_Avg", "unitstypecv": "Turbidity", "unitsabbreviation": "NTU", "aggregationstatisticcv": "Average", }, ] return [LoggersTimeSeriesCreate.parse_obj(ts) for ts in timeseries] def loggers_update_qc() -> List[LoggersTimeSeriesCreate]: timeseries_qc = [ { "samplingfeaturecode": "Langtjern_weather", "variablecode": "snowValue_mm_Avg", "unitstypecv": "Length", "unitsabbreviation": "mm", "aggregationstatisticcv": "Average", "dataqualitycodes": ["frozen_test", "snowdepth_variability_test"], }, { "samplingfeaturecode": "Maalselva", "variablecode": "PhValue", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Maalselva", "variablecode": "Temp", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Maalselva", "variablecode": "CondValue", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "µS/cm", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Maalselva", "variablecode": "CDOMdigitalFinal", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Maalselva", "variablecode": "CDOManalogFinal", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Maalselva", "variablecode": "Turbidity", "unitstypecv": "Turbidity", "unitsabbreviation": "NTU", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Adventelva", "variablecode": "PhValue_Avg", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Average", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Adventelva", "variablecode": "CondValue_Avg", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "mS/m", "aggregationstatisticcv": "Average", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Adventelva", "variablecode": "Turbidity_Avg", "unitstypecv": "Turbidity", "unitsabbreviation": "NTU", "aggregationstatisticcv": "Average", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Adventelva", "variablecode": "Temp_water_Avg", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Average", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Lundevann", "variablecode": "PhValue", "unitstypecv": "Dimensionless", "unitsabbreviation": "-", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Lundevann", "variablecode": "Temp", "unitstypecv": "Temperature", "unitsabbreviation": "degC", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Lundevann", "variablecode": "CondValue", "unitstypecv": "Electrical conductivity", "unitsabbreviation": "µS/cm", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Lundevann", "variablecode": "Turbidity", "unitstypecv": "Turbidity", "unitsabbreviation": "NTU", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, { "samplingfeaturecode": "Lundevann", "variablecode": "CDOMdigitalFinal", "unitstypecv": "Fluorescence", "unitsabbreviation": "µg/L", "aggregationstatisticcv": "Unknown", "dataqualitycodes": ["frozen_test", "range_test", "spike_test"], }, ] return [LoggersTimeSeriesCreate.parse_obj(ts) for ts in timeseries_qc]
''' Module for reading Cosmo Skymed HDF5 imagery. This is more or less a line-for-line port of the reader from NGA's MATLAB SAR Toolbox. ''' # SarPy imports from .sicd import MetaNode from . import Reader as ReaderSuper # Reader superclass from . import sicd from ...geometry import geocoords as gc from ...geometry import point_projection as point from .utils import chipper # Python standard library imports import copy import datetime # External dependencies import numpy as np import h5py # We prefer numpy.polynomial.polynomial over numpy.polyval/polyfit since its coefficient # ordering is consistent with SICD, and because it supports 2D polynomials. from numpy.polynomial import polynomial as poly from scipy.constants import speed_of_light # try to import comb from scipy.special. # If an old version of scipy is being used then import from scipy.misc from scipy import __version__ as scipy_version dot_locs = [] for i, version_char in enumerate(scipy_version): if version_char == '.': dot_locs.append(i) major_version = int(scipy_version[0:dot_locs[0]]) if major_version >= 1: from scipy.special import comb else: from scipy.misc import comb __classification__ = "UNCLASSIFIED" __author__ = ["Jarred Barber", "Wade Schwartzkopf"] __email__ = "jpb5082@gmail.com" def datenum_w_frac(datestring, as_datetime=False): ''' Python's datetime type won't parse or stores times with finer than microsecond precision, but CSK time are often represented down to the nanosecond. In order to handle this precision we handle the fractional seconds separately so we can process with the precision we need. `as_datetime` returns a Python datetime object. ''' epoch = datetime.datetime.strptime('2000-01-01 00:00:00', '%Y-%m-%d %H:%M:%S') if '.' in datestring: date, frac = datestring.split('.') else: date = datestring frac = '0' date = datetime.datetime.strptime(date, '%Y-%m-%d %H:%M:%S') datenum_s = (date - epoch).total_seconds() datenum_frac = float('0.' + frac) if np.isnan(datenum_frac): datenum_frac = 0 if as_datetime: return date + datetime.timedelta(seconds=datenum_frac) else: return datenum_s, datenum_frac def isa(filename): """Test to see if file is a product.xml file.""" try: with h5py.File(filename, 'r') as h5: if 'CSK' in h5.attrs['Satellite ID'].decode('ascii'): return Reader except Exception: pass class CSMChipper(chipper.Base): def __init__(self, filename, band, meta): self.filename = filename def complextype(data): return data[..., 0] + data[..., 1] * 1j self.band = band self.complextype = complextype self.symmetry = [False, False, True] with h5py.File(filename, 'r') as h5: lineorder = h5.attrs['Lines Order'].decode('ascii') columnorder = h5.attrs['Columns Order'].decode('ascii') key = 'S%02d' % (self.band+1) self.datasize = np.array(h5[key]['SBI'].shape[:2]) self.symmetry[1] = (columnorder != 'NEAR-FAR') self.symmetry[0] = (lineorder == 'EARLY-LATE') != ( meta.SCPCOA.SideOfTrack == 'R') def read_raw_fun(self, dim1rg, dim2rg): if len(dim1rg) == 2: dim1rg = list(dim1rg) + [1] if len(dim2rg) == 2: dim2rg = list(dim2rg) + [1] with h5py.File(self.filename, 'r') as h5: s1, e1, k1 = dim1rg s2, e2, k2 = dim2rg key = 'S%02d' % (self.band+1) return h5[key]['SBI'][s1:e1:k1, s2:e2:k2, :] class Reader(ReaderSuper): def __init__(self, product_filename): self.sicdmeta = meta2sicd(product_filename) self.read_chip = [ CSMChipper(product_filename, band, self.sicdmeta[band]) for band in range(len(self.sicdmeta)) ] def meta2sicd(filename): ''' Extract attributes from CSM HDF5 file and format as SICD ''' return _convert_meta(*_extract_meta_from_HDF(filename)) def _populate_meta(root, recurse=True): ''' DFS to merge all attrs into a single dict ''' def f(v): if isinstance(v, bytes): return v.decode('ascii') return v meta = {k: f(v) for k, v in root.attrs.items()} if recurse: try: for v in root.values(): try: meta.update(_populate_meta(v)) except Exception: # Doesn't have attrs pass except AttributeError: # Doesn't have values() pass return meta def _extract_meta_from_HDF(filename): ''' Extract the attribute metadata from the HDF5 files ''' band_meta = [] band_shapes = [] with h5py.File(filename, 'r') as h5: h5meta = _populate_meta(h5, recurse=False) # per-band data numbands = len(h5.keys()) for i in range(numbands): # "pingpong" mode has multiple polarizations groupname = '/S%02d' % (i+1) band_meta.append(_populate_meta(h5[groupname])) band_shapes.append(h5[groupname]['SBI'].shape[:2]) return h5meta, band_meta, band_shapes def _convert_meta(h5meta, band_meta, band_shapes): ''' Extract the CSM metadata into SICD format Inputs: h5meta: The attributes from the HDF5 root band_meta: A list of dicts, with dict i containing the attributes from /S0{i+1} band_shapes: The dataset shapes of each band dataset. ''' def _polyshift(a, shift): b = np.zeros(a.size) for j in range(1, len(a) + 1): for k in range(j, len(a) + 1): b[j - 1] = b[j - 1] + ( a[k - 1] * comb(k - 1, j - 1) * np.power(shift, (k - j))) return b numbands = len(band_meta) # CollectionInfo output_meta = MetaNode() output_meta.CollectionInfo = MetaNode() output_meta.CollectionInfo.CollectorName = h5meta['Satellite ID'] output_meta.CollectionInfo.CoreName = str(h5meta['Programmed Image ID']) output_meta.CollectionInfo.CollectType = 'MONOSTATIC' output_meta.CollectionInfo.RadarMode = MetaNode() if h5meta['Acquisition Mode'] in [ 'HIMAGE', 'PINGPONG', 'WIDEREGION', 'HUGEREGION' ]: output_meta.CollectionInfo.RadarMode.ModeType = 'STRIPMAP' else: # case {'ENHANCED SPOTLIGHT','SMART'} # "Spotlight" output_meta.CollectionInfo.RadarMode.ModeType = 'DYNAMIC STRIPMAP' output_meta.CollectionInfo.RadarMode.ModeID = h5meta['Multi-Beam ID'] output_meta.CollectionInfo.Classification = 'UNCLASSIFIED' # ImageCreation output_meta.ImageCreation = MetaNode() img_create_time = datenum_w_frac(h5meta['Product Generation UTC'], True) output_meta.ImageCreation.DateTime = img_create_time output_meta.ImageCreation.Profile = 'Prototype' # ImageData output_meta.ImageData = MetaNode() # Just a placeholder # Most subfields added below in "per band" section # Used for computing SCP later # GeoData output_meta.GeoData = MetaNode() if h5meta['Ellipsoid Designator'] == 'WGS84': output_meta.GeoData.EarthModel = 'WGS_84' # Most subfields added below in "per band" section # Grid output_meta.Grid = MetaNode() if h5meta['Projection ID'] == 'SLANT RANGE/AZIMUTH': output_meta.Grid.ImagePlane = 'SLANT' output_meta.Grid.Type = 'RGZERO' else: output_meta.Grid.ImagePlane = 'GROUND' output_meta.Grid.Row = MetaNode() output_meta.Grid.Col = MetaNode() output_meta.Grid.Row.Sgn = -1 # Always true for CSM output_meta.Grid.Col.Sgn = -1 # Always true for CSM fc = h5meta['Radar Frequency'] # Center frequency output_meta.Grid.Row.KCtr = 2 * fc / speed_of_light output_meta.Grid.Col.KCtr = 0 output_meta.Grid.Row.DeltaKCOAPoly = np.atleast_2d(0) output_meta.Grid.Row.WgtType = MetaNode() output_meta.Grid.Col.WgtType = MetaNode() output_meta.Grid.Row.WgtType.WindowName = h5meta[ 'Range Focusing Weighting Function'].rstrip().upper() if output_meta.Grid.Row.WgtType.WindowName == 'HAMMING': # The usual CSM weigting output_meta.Grid.Row.WgtType.Parameter = MetaNode() output_meta.Grid.Row.WgtType.Parameter.name = 'COEFFICIENT' output_meta.Grid.Row.WgtType.Parameter.value = \ str(h5meta['Range Focusing Weighting Coefficient']) output_meta.Grid.Col.WgtType.WindowName = h5meta[ 'Azimuth Focusing Weighting Function'].rstrip().upper() if output_meta.Grid.Col.WgtType.WindowName == 'HAMMING': # The usual CSM weigting output_meta.Grid.Col.WgtType.Parameter = MetaNode() output_meta.Grid.Col.WgtType.Parameter.name = 'COEFFICIENT' output_meta.Grid.Col.WgtType.Parameter.value = \ str(h5meta['Azimuth Focusing Weighting Coefficient']) # WgtFunct will be populated in sicd.derived_fields # More subfields added below in "per band" section # Timeline [collectStart, collectStartFrac] = datenum_w_frac(h5meta['Scene Sensing Start UTC']) [collectEnd, collectEndFrac] = datenum_w_frac(h5meta['Scene Sensing Stop UTC']) # We loose a bit of precision when assigning the SICD CollectStart # field, since a Python datetime type just doesn't have enough # bits to handle the full precision given in the CSK metadata. However, all # relative times within the SICD metadata structure will be computed at # full precision. output_meta.Timeline = MetaNode() output_meta.Timeline.IPP = MetaNode() output_meta.Timeline.IPP.Set = MetaNode() output_meta.Timeline.CollectStart = datenum_w_frac( h5meta['Scene Sensing Start UTC'], True) output_meta.Timeline.CollectDuration = datenum_w_frac( h5meta['Scene Sensing Stop UTC'], True) output_meta.Timeline.CollectDuration = ( output_meta.Timeline.CollectDuration - output_meta.Timeline.CollectStart).total_seconds() output_meta.Timeline.IPP.Set.TStart = 0 output_meta.Timeline.IPP.Set.TEnd = 0 # Apply real value later. Just a placeholder. output_meta.Timeline.IPP.Set.IPPStart = 0 # More subfields added below in "per band" section # Position # Compute polynomial from state vectors [ref_time, ref_time_frac] = datenum_w_frac(h5meta['Reference UTC']) # Times in SICD are with respect to time from start of collect, but # time in CSM are generally with respect to reference time. ref_time_offset = np.round(ref_time - collectStart) ref_time_offset += ( ref_time_frac - collectStartFrac) # Handle fractional seconds state_vector_T = h5meta['State Vectors Times'] # In seconds state_vector_T = state_vector_T + ref_time_offset # Make with respect to Timeline.CollectStart state_vector_pos = h5meta['ECEF Satellite Position'] # sv2poly.m in MATLAB SAR Toolbox shows ways to determine best polynomial order, # but 5th is almost always best polyorder = np.minimum(5, len(state_vector_T) - 1) P_x = poly.polyfit(state_vector_T, state_vector_pos[:, 0], polyorder) P_y = poly.polyfit(state_vector_T, state_vector_pos[:, 1], polyorder) P_z = poly.polyfit(state_vector_T, state_vector_pos[:, 2], polyorder) # We don't use these since they are derivable from the position polynomial # state_vector_vel = h5meta['ECEF Satellite Velocity'] # state_vector_acc = h5meta['ECEF Satellite Acceleration'] # P_vx = polyfit(state_vector_T, state_vector_vel(1,:), polyorder) # P_vy = polyfit(state_vector_T, state_vector_vel(2,:), polyorder) # P_vz = polyfit(state_vector_T, state_vector_vel(3,:), polyorder) # P_ax = polyfit(state_vector_T, state_vector_acc(1,:), polyorder) # P_ay = polyfit(state_vector_T, state_vector_acc(2,:), polyorder) # P_az = polyfit(state_vector_T, state_vector_acc(3,:), polyorder) # Store position polynomial output_meta.Position = MetaNode() output_meta.Position.ARPPoly = MetaNode() output_meta.Position.ARPPoly.X = P_x output_meta.Position.ARPPoly.Y = P_y output_meta.Position.ARPPoly.Z = P_z # RadarCollection output_meta.RadarCollection = MetaNode() output_meta.RadarCollection.RcvChannels = MetaNode() output_meta.RadarCollection.RcvChannels.ChanParameters = [] tx_pol = [] for i in range(numbands): pol = band_meta[i]['Polarisation'] output_meta.RadarCollection.RcvChannels.ChanParameters.append(MetaNode()) output_meta.RadarCollection.RcvChannels.ChanParameters[i].TxRcvPolarization = \ pol[0] + ':' + pol[1] if pol[0] not in tx_pol: tx_pol.append(pol[0]) if len(tx_pol) == 1: output_meta.RadarCollection.TxPolarization = tx_pol else: output_meta.RadarCollection.TxPolarization = 'SEQUENCE' output_meta.RadarCollection.TxSequence = [] for i in range(len(tx_pol)): output_meta.RadarCollection.TxSequence.append(MetaNode()) output_meta.RadarCollection.TxSequence[i].TxStep = i + 1 output_meta.RadarCollection.TxSequence[i].TxPolarization = tx_pol[i] # Most subfields added below in "per band" section # ImageFormation output_meta.ImageFormation = MetaNode() output_meta.ImageFormation.RcvChanProc = MetaNode() output_meta.ImageFormation.RcvChanProc.NumChanProc = 1 output_meta.ImageFormation.RcvChanProc.PRFScaleFactor = 1 output_meta.ImageFormation.ImageFormAlgo = 'RMA' output_meta.ImageFormation.TStartProc = 0 output_meta.ImageFormation.TEndProc = output_meta.Timeline.CollectDuration output_meta.ImageFormation.STBeamComp = 'SV' output_meta.ImageFormation.ImageBeamComp = 'NO' output_meta.ImageFormation.AzAutofocus = 'NO' output_meta.ImageFormation.RgAutofocus = 'NO' # More subfields added below in "per band" section output_meta.RMA = MetaNode() output_meta.RMA.RMAlgoType = 'OMEGA_K' output_meta.RMA.ImageType = 'INCA' output_meta.RMA.INCA = MetaNode() output_meta.RMA.INCA.FreqZero = fc # These polynomials are used later to determine RMA.INCA.DopCentroidPoly t_az_ref = h5meta['Azimuth Polynomial Reference Time'] t_rg_ref = h5meta['Range Polynomial Reference Time'] # Strip of zero coefficients at end of polynomials. Not required but makes things cleaner. dop_poly_az = h5meta['Centroid vs Azimuth Time Polynomial'] dop_poly_az = dop_poly_az[:(np.argwhere(dop_poly_az != 0.0)[-1, 0] + 1)] dop_poly_rg = h5meta['Centroid vs Range Time Polynomial'] dop_poly_rg = dop_poly_rg[:(np.argwhere(dop_poly_rg != 0.0)[-1, 0] + 1)] # dop_rate_poly_az = h5meta['Doppler Rate vs Azimuth Time Polynomial'] dop_rate_poly_rg = h5meta['Doppler Rate vs Range Time Polynomial'] dop_rate_poly_rg = dop_rate_poly_rg[:(np.argwhere(dop_poly_rg != 0.0)[-1, 0] + 1)] # SCPCOA output_meta.SCPCOA = MetaNode() output_meta.SCPCOA.SideOfTrack = h5meta['Look Side'][0:1].upper() # Most subfields added below in "per band" section, but we grab this field # now so we know to flip from CSM's EARLY-LATE column order to SICD's # view-from-above column order. # Process fields specific to each polarimetric band band_independent_meta = copy.deepcopy( output_meta) # Values that are consistent across all bands grouped_meta = [] for i in range(numbands): output_meta = copy.deepcopy(band_independent_meta) # ImageData datasize = band_shapes[i] # All polarizations should be same size output_meta.ImageData = MetaNode() output_meta.ImageData.NumCols = datasize[0] output_meta.ImageData.NumRows = datasize[1] output_meta.ImageData.FullImage = copy.deepcopy(output_meta.ImageData) output_meta.ImageData.FirstRow = 0 output_meta.ImageData.FirstCol = 0 output_meta.ImageData.PixelType = 'RE16I_IM16I' # There are many different options for picking the SCP point. We chose # the point that is closest to the reference zero-doppler and range # times in the CSM metadata. t_az_first = band_meta[i]['Zero Doppler Azimuth First Time'] # Zero doppler time of first column ss_az_s = band_meta[i]['Line Time Interval'] # Image column spacing in zero doppler time (seconds) output_meta.ImageData.SCPPixel = MetaNode() output_meta.ImageData.SCPPixel.Col = int( np.round((t_az_ref - t_az_first) / ss_az_s) + 1) if output_meta.SCPCOA.SideOfTrack == 'L': # Order of columns in SICD goes in reverse time for left-looking ss_az_s = -ss_az_s output_meta.ImageData.SCPPixel.Col = int( output_meta.ImageData.NumCols - output_meta.ImageData.SCPPixel.Col - 1) # First column in SICD is actually last line in CSM terminology t_az_first = band_meta[i]['Zero Doppler Azimuth Last Time'] t_rg_first = band_meta[i][ 'Zero Doppler Range First Time'] # Range time of first row if 'SCS' in h5meta['Product Type']: # 'Column Time Interval' does not exist in detected products. ss_rg_s = band_meta[i][ 'Column Time Interval'] # Row spacing in range time (seconds) output_meta.ImageData.SCPPixel.Row = int( round((t_rg_ref - t_rg_first) / ss_rg_s) + 1) else: raise NotImplementedError('Only complex products supported') # How Lockheed seems to pick the SCP: output_meta.ImageData.SCPPixel = MetaNode() output_meta.ImageData.SCPPixel.Col = datasize[0] // 2 output_meta.ImageData.SCPPixel.Row = int(np.ceil(datasize[1] / 2) - 1) # GeoData # Initially, we just seed this with a rough value. Later we will put # in something more precise. latlon = band_meta[i]['Centre Geodetic Coordinates'] output_meta.GeoData.SCP = MetaNode() output_meta.GeoData.SCP.LLH = MetaNode() output_meta.GeoData.SCP.ECF = MetaNode() output_meta.GeoData.SCP.LLH.Lat = latlon[0] output_meta.GeoData.SCP.LLH.Lon = latlon[1] # CSM generally gives HAE as zero. Perhaps we should adjust this to DEM. output_meta.GeoData.SCP.LLH.HAE = latlon[2] ecf = gc.geodetic_to_ecf(latlon)[0] output_meta.GeoData.SCP.ECF.X = ecf[0] output_meta.GeoData.SCP.ECF.Y = ecf[1] output_meta.GeoData.SCP.ECF.Z = ecf[2] # Calling derived_sicd_fields at the end will populate these fields # with the sensor model, so we don't need to do it here. # latlon=get_hdf_attribute(dset_id(i),'Top Left Geodetic Coordinates') # output_meta.GeoData.ImageCorners.ICP.FRFC.Lat=latlon(1) # output_meta.GeoData.ImageCorners.ICP.FRFC.Lon=latlon(2) # latlon=get_hdf_attribute(dset_id(i),'Bottom Left Geodetic Coordinates') # output_meta.GeoData.ImageCorners.ICP.FRLC.Lat=latlon(1) # output_meta.GeoData.ImageCorners.ICP.FRLC.Lon=latlon(2) # latlon=get_hdf_attribute(dset_id(i),'Bottom Right Geodetic Coordinates') # output_meta.GeoData.ImageCorners.ICP.LRLC.Lat=latlon(1) # output_meta.GeoData.ImageCorners.ICP.LRLC.Lon=latlon(2) # latlon=get_hdf_attribute(dset_id(i),'Top Right Geodetic Coordinates') # output_meta.GeoData.ImageCorners.ICP.LRFC.Lat=latlon(1) # output_meta.GeoData.ImageCorners.ICP.LRFC.Lon=latlon(2) # Grid output_meta.Grid.Row.SS = band_meta[i]['Column Spacing'] # Exactly equivalent to above: # Grid.Row.SS=get_hdf_attribute(dset_id(i),'Column Time Interval')*speed_of_light/2 # Col.SS is derived after DRateSFPoly below, rather than used from this # given field, so that SICD metadata can be internally consistent: # output_meta.Grid.Col.SS = band_meta[i]['Line Spacing'] output_meta.Grid.Row.ImpRespBW = 2 * band_meta[i][ 'Range Focusing Bandwidth'] / speed_of_light output_meta.Grid.Row.DeltaK1 = -output_meta.Grid.Row.ImpRespBW / 2 output_meta.Grid.Row.DeltaK2 = -output_meta.Grid.Row.DeltaK1 # output_meta.Grid.Col.DeltaK1/2 will be populated by sicd.derived_fields # ImpRespWid will be populated by sicd.derived_fields # Timeline prf = band_meta[i]['PRF'] output_meta.Timeline.IPP.Set.IPPEnd = int( np.floor(prf * output_meta.Timeline.CollectDuration)) output_meta.Timeline.IPP.Set.IPPPoly = np.array([0, prf]) output_meta.Timeline.IPP.Set.TEnd = output_meta.Timeline.CollectDuration # RadarCollection # Absence of RefFreqIndex means all frequencies are true values # output_meta.RadarCollection.RefFreqIndex=uint32(0) chirp_length = band_meta[i]['Range Chirp Length'] chirp_rate = abs(band_meta[i]['Range Chirp Rate']) bw = chirp_length * chirp_rate output_meta.RadarCollection.TxFrequency = MetaNode() output_meta.RadarCollection.TxFrequency.Min = fc - (bw / 2) output_meta.RadarCollection.TxFrequency.Max = fc + (bw / 2) output_meta.RadarCollection.Waveform = MetaNode() output_meta.RadarCollection.Waveform.WFParameters = MetaNode() output_meta.RadarCollection.Waveform.WFParameters.TxPulseLength = chirp_length output_meta.RadarCollection.Waveform.WFParameters.TxRFBandwidth = bw output_meta.RadarCollection.Waveform.WFParameters.TxFreqStart = \ output_meta.RadarCollection.TxFrequency.Min output_meta.RadarCollection.Waveform.WFParameters.TxFMRate = chirp_rate sample_rate = band_meta[i]['Sampling Rate'] if np.isnan(band_meta[i]['Reference Dechirping Time']): output_meta.RadarCollection.Waveform.WFParameters.RcvDemodType = 'CHIRP' output_meta.RadarCollection.Waveform.WFParameters.RcvFMRate = 0 else: output_meta.RadarCollection.Waveform.WFParameters.RcvDemodType = 'STRETCH' output_meta.RadarCollection.Waveform.WFParameters.RcvWindowLength = ( band_meta[i]['Echo Sampling Window Length']) / sample_rate output_meta.RadarCollection.Waveform.WFParameters.ADCSampleRate = sample_rate # ImageFormation output_meta.ImageFormation.RcvChanProc.ChanIndex = i + 1 output_meta.ImageFormation.TxFrequencyProc = MetaNode() output_meta.ImageFormation.TxFrequencyProc.MinProc = \ output_meta.RadarCollection.TxFrequency.Min output_meta.ImageFormation.TxFrequencyProc.MaxProc = \ output_meta.RadarCollection.TxFrequency.Max output_meta.ImageFormation.TxRcvPolarizationProc = \ output_meta.RadarCollection.RcvChannels.ChanParameters[i].TxRcvPolarization # RMA # Range time to SCP t_rg_scp = t_rg_first + (ss_rg_s * float(output_meta.ImageData.SCPPixel.Row)) output_meta.RMA.INCA.R_CA_SCP = t_rg_scp * speed_of_light / 2 # Zero doppler time of SCP t_az_scp = t_az_first + (ss_az_s * float(output_meta.ImageData.SCPPixel.Col)) # Compute DRateSFPoly # We do this first since some other things are dependent on it. # For the purposes of the DRateSFPoly computation, we ignore any # changes in velocity or doppler rate over the azimuth dimension. # Velocity is derivate of position. scp_ca_time = t_az_scp + ref_time_offset # With respect to start of collect vel_x = poly.polyval(scp_ca_time, poly.polyder(P_x)) vel_y = poly.polyval(scp_ca_time, poly.polyder(P_y)) vel_z = poly.polyval(scp_ca_time, poly.polyder(P_z)) vm_ca_sq = vel_x**2 + vel_y**2 + vel_z**2 # Magnitude of the velocity squared # Polynomial representing range as a function of range distance from SCP r_ca = np.array([output_meta.RMA.INCA.R_CA_SCP, 1.]) dop_rate_poly_rg_shifted = _polyshift(dop_rate_poly_rg, t_rg_scp - t_rg_ref) dop_rate_poly_rg_scaled = dop_rate_poly_rg_shifted * np.power( ss_rg_s / output_meta.Grid.Row.SS, np.arange(0, len(dop_rate_poly_rg))) output_meta.RMA.INCA.DRateSFPoly = -poly.polymul( dop_rate_poly_rg_scaled, r_ca) * ( speed_of_light / (2.0 * fc * vm_ca_sq)) # Assumes a SGN of -1 output_meta.RMA.INCA.DRateSFPoly = np.array( [output_meta.RMA.INCA.DRateSFPoly]) # .transpose() # Fields dependent on Doppler rate # This computation of SS is actually better than the claimed SS # (Line Spacing) in many ways, because this makes all of the metadata # internally consistent. This must be the sample spacing exactly at SCP # (which is the definition for SS in SICD), if the other metadata from # which is it computed is correct and consistent. Since column SS can vary # slightly over a RGZERO image, we don't know if the claimed sample spacing # in the native metadata is at our chosen SCP, or another point, or an # average across image or something else. output_meta.Grid.Col.SS = (np.sqrt(vm_ca_sq) * ss_az_s * output_meta.RMA.INCA.DRateSFPoly[0, 0]) # Convert to azimuth spatial bandwidth (cycles per meter) output_meta.Grid.Col.ImpRespBW = min( band_meta[i]['Azimuth Focusing Bandwidth'] * abs(ss_az_s), 1) / output_meta.Grid.Col.SS # Can't have more bandwidth in data than sample spacing output_meta.RMA.INCA.TimeCAPoly = np.array([scp_ca_time, ss_az_s / output_meta.Grid.Col.SS]) # Compute DopCentroidPoly/DeltaKCOAPoly output_meta.RMA.INCA.DopCentroidPoly = np.zeros((len(dop_poly_rg), len(dop_poly_az))) # Compute doppler centroid value at SCP output_meta.RMA.INCA.DopCentroidPoly[0] = ( poly.polyval(t_rg_scp - t_rg_ref, dop_poly_rg) + poly.polyval( t_az_scp - t_az_ref, dop_poly_az) - 0.5 * (dop_poly_az[0] + dop_poly_rg[0])) # These should be identical # Shift 1D polynomials to account for SCP dop_poly_az_shifted = _polyshift(dop_poly_az, t_az_scp - t_az_ref) dop_poly_rg_shifted = _polyshift(dop_poly_rg, t_rg_scp - t_rg_ref) # Scale 1D polynomials to from Hz/s^n to Hz/m^n dop_poly_az_scaled = dop_poly_az_shifted * np.power( ss_az_s / output_meta.Grid.Col.SS, np.arange(0, len(dop_poly_az))) dop_poly_rg_scaled = dop_poly_rg_shifted * np.power( ss_rg_s / output_meta.Grid.Row.SS, np.arange(0, len(dop_poly_rg))) output_meta.RMA.INCA.DopCentroidPoly[1:, 0] = dop_poly_rg_scaled[1:] output_meta.RMA.INCA.DopCentroidPoly[0, 1:] = dop_poly_az_scaled[1:] output_meta.RMA.INCA.DopCentroidCOA = True output_meta.Grid.Col.DeltaKCOAPoly = (output_meta.RMA.INCA.DopCentroidPoly * ss_az_s / output_meta.Grid.Col.SS) # TimeCOAPoly # TimeCOAPoly=TimeCA+(DopCentroid/dop_rate) # Since we can't evaluate this equation analytically, we will evaluate # samples of it across our image and fit a 2D polynomial to it. # From radarsat.py POLY_ORDER = 2 # Order of polynomial which we want to compute in each dimension grid_samples = POLY_ORDER + 1 coords_az_m = np.linspace( -output_meta.ImageData.SCPPixel.Col, (output_meta.ImageData.NumCols - output_meta.ImageData.SCPPixel.Col - 1), grid_samples) * output_meta.Grid.Col.SS coords_rg_m = np.linspace( -output_meta.ImageData.SCPPixel.Row, (output_meta.ImageData.NumRows - output_meta.ImageData.SCPPixel.Row - 1), grid_samples) * output_meta.Grid.Row.SS [coords_az_m_2d, coords_rg_m_2d] = np.meshgrid(coords_az_m, coords_rg_m) timeca_sampled = poly.polyval2d( coords_rg_m_2d, coords_az_m_2d, np.atleast_2d(output_meta.RMA.INCA.TimeCAPoly)) dopcentroid_sampled = poly.polyval2d( coords_rg_m_2d, coords_az_m_2d, output_meta.RMA.INCA.DopCentroidPoly) doprate_sampled = poly.polyval2d( coords_rg_m_2d, coords_az_m_2d, np.atleast_2d(dop_rate_poly_rg_scaled)) timecoa_sampled = timeca_sampled + ( dopcentroid_sampled / doprate_sampled) # Least squares fit for 2D polynomial a = np.zeros(((POLY_ORDER + 1)**2, (POLY_ORDER + 1)**2)) for k in range(POLY_ORDER + 1): for j in range(POLY_ORDER + 1): a[:, k * (POLY_ORDER + 1) + j] = np.multiply( np.power(coords_az_m_2d.flatten(), j), np.power(coords_rg_m_2d.flatten(), k)) A = np.zeros(((POLY_ORDER + 1)**2, (POLY_ORDER + 1)**2)) for k in range((POLY_ORDER + 1)**2): for j in range((POLY_ORDER + 1)**2): A[k, j] = np.multiply(a[:, k], a[:, j]).sum() b_coa = [ np.multiply(timecoa_sampled.flatten(), a[:, k]).sum() for k in range((POLY_ORDER + 1)**2) ] x_coa = np.linalg.solve(A, b_coa) output_meta.Grid.TimeCOAPoly = np.reshape( x_coa, (POLY_ORDER + 1, POLY_ORDER + 1)) # Radiometric output_meta.Radiometric = MetaNode() if h5meta['Range Spreading Loss Compensation Geometry'] != 'NONE': fact = h5meta['Reference Slant Range']**( 2 * h5meta['Reference Slant Range Exponent']) if h5meta['Calibration Constant Compensation Flag'] == 0: fact = fact * (1 / (h5meta['Rescaling Factor']**2)) fact = fact / band_meta[i]['Calibration Constant'] output_meta.Radiometric.BetaZeroSFPoly = np.array([[fact]]) # GeoData # Now that sensor model fields have been populated, we can populate # GeoData.SCP more precisely. ecf = point.image_to_ground([ output_meta.ImageData.SCPPixel.Row, output_meta.ImageData.SCPPixel.Col ], output_meta)[0] output_meta.GeoData.SCP.ECF.X = ecf[0] output_meta.GeoData.SCP.ECF.Y = ecf[1] output_meta.GeoData.SCP.ECF.Z = ecf[2] llh = gc.ecf_to_geodetic(ecf)[0] output_meta.GeoData.SCP.LLH.Lat = llh[0] output_meta.GeoData.SCP.LLH.Lon = llh[1] output_meta.GeoData.SCP.LLH.HAE = llh[2] # SCPCOA sicd.derived_fields(output_meta) grouped_meta.append(output_meta) return grouped_meta
import re from typing import Dict, List, Tuple, Type from graia.amnesia.message import Element, MessageChain from avilla.commander.utilles import gen_subclass from avilla.core.elements import Text ELEMENT_MAPPING: Dict[str, Type[Element]] = {i.__name__: i for i in gen_subclass(Element)} def chain_from_mapping_string(string: str, mapping: Dict[str, Element]) -> "MessageChain": """从映射字符串与映射字典的元组还原消息链. Args: string (str): 映射字符串 mapping (Dict[int, Element]): 映射字典. Returns: MessageChain: 构建的消息链 """ elements: List[Element] = [] for x in re.split("(\x02\\d+_\\w+\x03)", string): if x: if x[0] == "\x02" and x[-1] == "\x03": index, class_name = x[1:-1].split("_") if not isinstance(mapping[index], ELEMENT_MAPPING[class_name]): raise ValueError("Validation failed: not matching element type!") elements.append(mapping[index]) else: elements.append(Text(x)) chain = MessageChain(elements) return chain def chain_to_mapping_str( message_chain: MessageChain, ) -> Tuple[str, Dict[str, Element]]: """转换消息链为映射字符串与映射字典的元组. Returns: Tuple[str, Dict[str, Element]]: 生成的映射字符串与映射字典的元组 """ elem_mapping: Dict[str, Element] = {} elem_str_list: List[str] = [] for i, elem in enumerate(message_chain.content): if not isinstance(elem, Text): elem_mapping[str(i)] = elem elem_str_list.append(f"\x02{i}_{elem.__class__.__name__}\x03") else: elem_str_list.append(elem.text) return "".join(elem_str_list), elem_mapping
#!/usr/bin/env python3 """ Copyright (C) 2018 Christian Thomas Jacobs Pynea facilitates the reproducibility of LaTeX documents by embedding the scripts and data files required to regenerate the figures within the document itself. Pynea is released under the MIT license. See the file LICENSE.md for more details. """ from subprocess import call import fitz import os.path import git import re from pynea.resource import Resource class Figure(Resource): """ A figure to be included in the LaTeX document. """ def __init__(self, path, script, command, data): """ Save the path to the figure file and resources used to generate it. """ # The path to the figure file itself. self.path = path # The script that generated the figure. self.script = script # The command used to execute the script. self.command = command # Any data files that the script depends on. self.data = data return @property def is_modified(self): """ Return True if the figure, script, data and/or command has changed. """ # Has the figure itself changed? figure_modified = super(Figure, self).is_modified if(not figure_modified): # Has the script which generated the figure changed? script_modified = self.script.is_modified if(not script_modified): # Have the script's data files changed? data_modified = any([d.is_modified for d in self.data]) if(not data_modified): # Has the command used to run the script changed? # Open figure and obtain the previously-used command from the metadata. pdf = fitz.open(self.path) keywords = pdf.metadata["keywords"] # NOTE: If the previously-used command is not found then it is assumed that the figure has been modified. if(keywords): m = re.match(r"script_command:(.+),", keywords) if(m): previous_command = m.group(1) command_modified = (self.command != previous_command) if(not command_modified): return False return True def generate(self): """ Generate the figure by running the script which generates it. """ # Record the current working directory. cwd = os.getcwd() # Change to the script's working directory. os.chdir(os.path.dirname(self.script.path)) # Re-run the command. return_code = call(self.command, shell=True) # Switch back to the current working directory. os.chdir(cwd) return return_code def embed(self): """ Embed the script and data files in the figure. """ # Open the PDF file that will host the script file and data files. pdf = fitz.open(self.path) # Embed script. b = open(self.script.path, "rb").read() try: pdf.embeddedFileUpd(self.script.path, b) except: pdf.embeddedFileAdd(b, self.script.path) pdf.save(pdf.name, incremental=True) # Embed data files. for data in self.data: b = open(data.path, "rb").read() try: pdf.embeddedFileUpd(data.path, b) except: pdf.embeddedFileAdd(b, data.path) pdf.save(pdf.name, incremental=True) # Embed metadata (including command used to run the script). metadata = pdf.metadata metadata["keywords"] = "script_command:%s, script_git_revision:%s" % (self.command, self.script.revision) pdf.setMetadata(metadata) pdf.save(pdf.name, incremental=True) # Close the figure. pdf.close() return
# Generated by Django 2.2.3 on 2020-06-02 21:59 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('cers', '0003_auto_20200602_2111'), ] operations = [ migrations.RenameField( model_name='attendance', old_name='is_entry', new_name='is_in', ), ]
# -*- coding: utf-8 -*- from django.contrib.auth.backends import ModelBackend from .models import EmailAddress from .utils import get_most_qualified_user_for_email_and_password class EmailBackend(ModelBackend): def authenticate(self, username=None, password=None): """ tries verified email addresses, the email field on user objects and unconfirmed email addresses. username is not checked, since the default model backend already does that. """ username = username.strip() return get_most_qualified_user_for_email_and_password(username, password) class PermissionBackend(object): def authenticate(self): return None def has_perm(self, user_obj, perm, obj=None): # TODO: cache if perm == 'aldryn_accounts.has_verified_email': if not user_obj or user_obj.is_anonymous(): return False return EmailAddress.objects.has_verified_email(user_obj) return False
import os import re from shift_oelint_parser.parser import get_items from shift_oelint_parser.cls_item import Variable, Item from shift_oelint_parser.helper_files import expand_term, guess_recipe_name, guess_recipe_version, guess_base_recipe_name from shift_oelint_parser.constants import CONSTANTS class Stash(object): def __init__(self, quiet=False): """constructor """ self.__list = [] self.__seen_files = set() self.__map = {} self.__quiet = quiet def AddFile(self, _file, lineOffset=0, forcedLink=None): """Adds a file to the stash Arguments: _file {str} -- Full path to file Keyword Arguments: lineOffset {int} -- Line offset from the file that include this file (default: {0}) forcedLink {[type]} -- Force link against a file (default: {None}) Returns: list -- List of {shift_oelint_parser.cls_item.Item} """ _, _ext = os.path.splitext(_file) if _file in self.__seen_files and _ext not in [".inc"]: return [] if not self.__quiet: print("Parsing {}".format(_file)) self.__seen_files.add(_file) res = get_items(self, _file, lineOffset=lineOffset) if forcedLink: for r in res: r.IncludedFrom = forcedLink if _file not in self.__map: self.__map[_file] = [] self.__map[_file].append(forcedLink) if forcedLink not in self.__map: self.__map[forcedLink] = [] self.__map[forcedLink].append(_file) # Match bbappends to bbs if _file.endswith(".bbappend"): bn_this = os.path.basename(_file).replace( ".bbappend", "").replace("%", ".*") for item in self.__list: if re.match(bn_this, os.path.basename(item.Origin)): if _file not in self.__map: self.__map[_file] = [] self.__map[_file].append(item.Origin) if item.Origin not in self.__map: self.__map[item.Origin] = [] self.__map[item.Origin].append(_file) # find maximum line number of the origin _maxline = max(x.Line for x in self.__list if x.Origin == item.Origin) for r in res: # pretend that we are adding the file to the end of the original r.Line += _maxline break self.__list += res return res def Remove(self, item): self.__list.remove(item) def Finalize(self): # cross link all the files for k in self.__map.keys(): for l in self.__map[k]: self.__map[k] += [x for x in self.__map[l] if x != k] self.__map[k] = list(set(self.__map[k])) for k, v in self.__map.items(): for item in [x for x in self.__list if x.Origin == k]: for link in v: item.AddLink(link) def GetRecipes(self): """Get bb files in stash Returns: list -- List of bb files in stash """ return list(set([x.Origin for x in self.__list if x.Origin.endswith(".bb")])) def GetLoneAppends(self): """Get bbappend without a matching bb Returns: list -- list of bbappend without a matching bb """ __linked_appends = [] __appends = [] for x in self.__list: if x.Origin.endswith(".bbappend"): __appends.append(x.Origin) else: __linked_appends += x.Links x = list(set([x for x in __appends if x not in __linked_appends])) return x def __is_linked_to(self, item, filename, nolink=False): return (filename in item.Links and not nolink) or filename == item.Origin def __get_items_by_file(self, items, filename, nolink=False): if not filename: return items return [x for x in items if self.__is_linked_to(x, filename, nolink=nolink)] def __get_items_by_classifier(self, items, classifier): if not classifier: return items return [x for x in items if x.CLASSIFIER == classifier] def __get_items_by_attribute(self, items, attname, attvalue): if not attname: return items # v is a list res = [x for x in items if attname in x.GetAttributes().keys()] if attvalue: res = [x for x in res if (attname in x.GetAttributes( ).keys() and x.GetAttributes()[attname] == attvalue)] return res def GetLinksForFile(self, filename): """Get file which this file is linked against Arguments: filename {str} -- full path to file Returns: list -- list of full paths the file is linked against """ if not filename: return [] return [x.Origin for x in self.__get_items_by_file(self.__list, filename) if x.Origin != filename] def GetItemsFor(self, filename=None, classifier=None, attribute=None, attributeValue=None, nolink=False): """Get items for filename Keyword Arguments: filename {str} -- Full path to file (default: {None}) classifier {str} -- class specifier (e.g. Variable) (default: {None}) attribute {str} -- class attribute name (default: {None}) attributeValue {str} -- value of the class attribute name (default: {None}) nolink {bool} -- Consider linked files (default: {False}) Returns: [type] -- [description] """ res = self.__list res = self.__get_items_by_file(res, filename, nolink=nolink) res = self.__get_items_by_classifier(res, classifier) res = self.__get_items_by_attribute(res, attribute, attributeValue) return sorted(list(set(res)), key=lambda x: x.Line) def ExpandVar(self, filename=None, attribute=None, attributeValue=None, nolink=False): """Expand variable to dictionary Args: filename {str} -- Full path to file (default: {None}) attribute {str} -- class attribute name (default: {None}) attributeValue {str} -- value of the class attribute name (default: {None}) nolink {bool} -- Consider linked files (default: {False}) Returns: {dict}: expanded variables from call + base set of variables """ _res = self.GetItemsFor(filename=filename, classifier=Variable.CLASSIFIER, attribute=attribute, attributeValue=attributeValue, nolink=nolink) _exp = { "PN": guess_recipe_name(filename), "PV": guess_recipe_version(filename), "BPN": guess_base_recipe_name(filename) } _exp = dict(list(_exp.items()) + list(CONSTANTS.SetsBase.items())) for item in sorted(_res, key=lambda x: x.Line): varop = item.VarOp name = item.VarNameComplete if item.Flag: continue if name not in _exp.keys(): _exp[name] = None if varop in [" = ", " := "]: if not item.IsAppend() and "remove" not in item.SubItems: _exp[name] = item.VarValueStripped elif varop == " ?= " and _exp[name] is None: _exp[name] = item.VarValueStripped elif varop == " ??= " and _exp[name] is None: _exp[name] = item.VarValueStripped elif varop == " += ": if _exp[name] is None: _exp[name] = "" _exp[name] += " " + item.VarValueStripped elif varop == " =+ ": if _exp[name] is None: _exp[name] = "" _exp[name] = item.VarValueStripped + " " + _exp[name] elif varop in [" .= "]: if _exp[name] is None: _exp[name] = "" _exp[name] += item.VarValueStripped elif varop in [" =. "]: if _exp[name] is None: _exp[name] = "" _exp[name] = item.VarValueStripped + _exp[name] # and now for a second run with special for item in sorted(_res, key=lambda x: x.Line): varop = item.VarOp name = item.VarNameComplete if item.Flag: continue if name not in _exp.keys(): _exp[name] = None if _exp[name] is None: _exp[name] = "" _exp[name] += item.VarValueStripped elif "append" in item.SubItems: if _exp[name] is None: _exp[name] = "" _exp[name] += item.VarValueStripped elif "prepend" in item.SubItems: if _exp[name] is None: _exp[name] = "" _exp[name] = item.VarValueStripped + _exp[name] # and now for the run with remove for item in sorted(_res, key=lambda x: x.Line): varop = item.VarOp name = item.VarNameComplete if item.Flag: continue if name not in _exp.keys(): _exp[name] = None if "remove" in item.SubItems: if _exp[name] is None: _exp[name] = "" _exp[name] = _exp[name].replace(item.VarValueStripped, "") # final run and explode the settings _finalexp = {} for k,v in _exp.items(): _newkey = expand_term(self, filename, k) if _newkey not in _finalexp: _finalexp[_newkey] = [] _finalexp[_newkey] += Item.safe_linesplit(expand_term(self, filename, v or "")) return _finalexp
from matplotlib import pyplot as plt from epyseg.deeplearning.augmentation.generators.data import DataGenerator from epyseg.deeplearning.augmentation.generators.meta import MetaGenerator import numpy as np # logging from epyseg.tools.logger import TA_logger logger = TA_logger() # MINIMAL_AUGMENTATIONS = [{'type': None}, {'type': None},{'type': None}, {'type': None}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'translate'}, {'type': 'rotate'}] # added intensity shifts to the minimal augmentation --> should make it more robust for masking MINIMAL_AUGMENTATIONS = [{'type': None}, {'type': None},{'type': None}, {'type': None}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'translate'}, {'type': 'rotate'},{'type': 'random_intensity_gamma_contrast'}, {'type': 'intensity'}, {'type': 'random_intensity_gamma_contrast'}, {'type': 'intensity'}] ALL_AUGMENTATIONS_BUT_INVERT_AND_HIGH_NOISE = [{'type': None}, {'type': None}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'translate'}, {'type': 'shear'}, {'type': 'flip'}, {'type': 'rotate'}, {'type': 'low noise'}, {'type': 'high noise'}, {'type': 'stretch'}] ALL_AUGMENTATIONS_BUT_INVERT = [{'type': None}, {'type': None}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'translate'}, {'type': 'shear'}, {'type': 'flip'}, {'type': 'rotate'}, {'type': 'low noise'}, {'type': 'high noise'}, {'type': 'stretch'}] ALL_AUGMENTATIONS_BUT_INVERT_AND_NOISE = [{'type': None}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'translate'}, {'type': 'shear'}, {'type': 'flip'}, {'type': 'rotate'}, {'type': 'stretch'}, {'type': 'rotate (interpolation free)'}, {'type': 'rotate (interpolation free)'}, {'type': 'rotate (interpolation free)'}] ALL_AUGMENTATIONS = [{'type': None}, {'type': None}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'translate'}, {'type': 'shear'}, {'type': 'flip'}, {'type': 'rotate'}, {'type': 'invert'}, {'type': 'low noise'}, {'type': 'high noise'}, {'type': 'stretch'}] ALL_AUGMENTATIONS_BUT_HIGH_NOISE = [{'type': None}, {'type': None}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'translate'}, {'type': 'shear'}, {'type': 'flip'}, {'type': 'rotate'}, {'type': 'invert'}, {'type': 'low noise'}, {'type': 'stretch'}] STRETCHED_AUG_EPITHELIA = [{'type': None}, {'type': 'stretch'}, {'type': 'stretch'}, {'type': 'stretch'}, {'type': 'invert'}, {'type': 'flip'}, {'type': 'translate'}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'shear'}, {'type': 'rotate'}, {'type': 'low noise'}] STRETCHED_AUG_EPITHELIA_2 = [{'type': None}, {'type': None}, {'type': None}, {'type': None}, {'type': 'stretch'}, {'type': 'stretch'}, {'type': 'stretch'}, {'type': 'invert'},{'type': 'invert'},{'type': 'invert'},{'type': 'invert'}, {'type': 'flip'}, {'type': 'translate'}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'shear'}, {'type': 'rotate'}, {'type': 'low noise'}] STRETCHED_AUG_EPITHELIA_3 = [{'type': None}, {'type': None}, {'type': None}, {'type': None}, {'type': 'stretch'}, {'type': 'stretch'}, {'type': 'stretch'}, {'type': 'flip'}, {'type': 'translate'}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'shear'}, {'type': 'rotate'}, {'type': 'low noise'},{'type': 'rotate (interpolation free)'}, {'type': 'rotate (interpolation free)'}, {'type': 'rotate (interpolation free)'}] STRETCHED_AUG_EPITHELIA_4 = [{'type': None}, {'type': None}, {'type': 'stretch'}, {'type': 'stretch'}, {'type': 'stretch'}, {'type': 'flip'}, {'type': 'translate'},{'type': 'flip'}, {'type': 'zoom'}, {'type': 'shear'}, {'type': 'rotate'}, {'type': 'rotate'}, {'type': 'rotate'}, {'type': 'rotate'}, {'type': 'zoom'}, {'type': 'blur'}, {'type': 'shear'}, {'type': 'rotate'}, {'type': 'low noise'},{'type': 'rotate (interpolation free)'}, {'type': 'rotate (interpolation free)'}, {'type': 'rotate (interpolation free)'}] TRAINING_FOR_BEGINNING_LITTLE_INTERPOLATION = [{'type': 'rotate (interpolation free)'}, {'type': 'rotate (interpolation free)'}, {'type': 'rotate (interpolation free)'}, {'type': None}, {'type': 'flip'}, {'type': 'translate'}, {'type': 'blur'}] NO_AUGMENTATION = [{'type': None}] TEST_AUGMENTATION = [{'type': 'invert'}] SAFE_AUGMENTATIONS_FOR_SINGLE_PIXEL_WIDE = [{'type': None}, {'type': 'blur'}, {'type': 'translate'}, {'type': 'flip'}] SAFE_AUGMENTATIONS_FOR_SINGLE_PIXEL_WIDE_PLUS_INVERT_AND_NOISE = [{'type': None}, {'type': 'blur'}, {'type': 'translate'}, {'type': 'flip'}, {'type': 'invert'}, {'type': 'low noise'}] class MetaAugmenter: def __init__(self, inputs=None, outputs=None, output_folder=None, input_shape=(None, None, None, 1), output_shape=(None, None, None, 1), input_channel_of_interest=None, output_channel_of_interest=None, input_channel_reduction_rule='copy channel of interest to all channels', input_channel_augmentation_rule='copy channel of interest to all channels', output_channel_reduction_rule='copy channel of interest to all channels', output_channel_augmentation_rule='copy channel of interest to all channels', augmentations=None, crop_parameters=None, mask_dilations=None, infinite=False, default_input_tile_width=128, default_input_tile_height=128, default_output_tile_width=128, default_output_tile_height=128, keep_original_sizes=False, input_normalization={'method': 'Rescaling (min-max normalization)', 'range': [0, 1], 'individual_channels': True}, output_normalization={'method': 'Rescaling (min-max normalization)', 'range': [0, 1], 'individual_channels': True}, validation_split=0, test_split=0, shuffle=True, clip_by_frequency=None, is_predict_generator=False, overlap_x=0, overlap_y=0, batch_size=None, batch_size_auto_adjust=False, invert_image=False, input_bg_subtraction=None, create_epyseg_style_output=None, remove_n_border_mask_pixels=None, is_output_1px_wide=False, rebinarize_augmented_output=False, rotate_n_flip_independently_of_augmentation=False, mask_lines_and_cols_in_input_and_mask_GT_with_nans=None, # should be 'id' or 'noid' and requires a custom loss and metrics --> can only be applied with some losses z_frames_to_add=None, **kwargs): self.augmenters = [] self.inputs = inputs self.outputs = outputs self.output_folder = output_folder self.input_shape = input_shape self.output_shape = output_shape self.input_channel_of_interest = input_channel_of_interest self.output_channel_of_interest = output_channel_of_interest self.input_channel_reduction_rule = input_channel_reduction_rule self.input_channel_augmentation_rule = input_channel_augmentation_rule self.output_channel_reduction_rule = output_channel_reduction_rule self.output_channel_augmentation_rule = output_channel_augmentation_rule self.augmentations = augmentations self.crop_parameters = crop_parameters self.batch_size = batch_size self.batch_size_auto_adjust = batch_size_auto_adjust self.invert_image = invert_image self.input_bg_subtraction = input_bg_subtraction self.create_epyseg_style_output=create_epyseg_style_output self.remove_n_border_mask_pixels = remove_n_border_mask_pixels self.is_output_1px_wide = is_output_1px_wide self.rebinarize_augmented_output = rebinarize_augmented_output self.rotate_n_flip_independently_of_augmentation = rotate_n_flip_independently_of_augmentation self.mask_lines_and_cols_in_input_and_mask_GT_with_nans = mask_lines_and_cols_in_input_and_mask_GT_with_nans self.z_frames_to_add = z_frames_to_add self.mask_dilations = mask_dilations self.infinite = infinite self.default_input_tile_width = default_input_tile_width self.default_input_tile_height = default_input_tile_height self.default_output_tile_width = default_output_tile_width self.default_output_tile_height = default_output_tile_height self.keep_original_sizes = keep_original_sizes self.input_normalization = input_normalization self.output_normalization = output_normalization self.validation_split = validation_split self.test_split = test_split self.shuffle = shuffle self.clip_by_frequency = clip_by_frequency self.is_predict_generator = is_predict_generator self.overlap_x = overlap_x self.overlap_y = overlap_y if inputs is not None: for i, inp in enumerate(inputs): if outputs is not None: cur_output = outputs[i] else: cur_output = None self.augmenters.append( DataGenerator(inputs=inp, outputs=cur_output, output_folder=output_folder, input_shape=input_shape, output_shape=output_shape, input_channel_of_interest=input_channel_of_interest, output_channel_of_interest=output_channel_of_interest, input_channel_reduction_rule=input_channel_reduction_rule, input_channel_augmentation_rule=input_channel_augmentation_rule, output_channel_reduction_rule=output_channel_reduction_rule, output_channel_augmentation_rule=output_channel_augmentation_rule, augmentations=augmentations, crop_parameters=crop_parameters, mask_dilations=mask_dilations, infinite=infinite, default_input_tile_width=default_input_tile_width, default_input_tile_height=default_input_tile_height, default_output_tile_width=default_output_tile_width, default_output_tile_height=default_output_tile_height, keep_original_sizes=keep_original_sizes, input_normalization=input_normalization, output_normalization=output_normalization, validation_split=validation_split, test_split=test_split, shuffle=shuffle, clip_by_frequency=clip_by_frequency, is_predict_generator=is_predict_generator, overlap_x=overlap_x, overlap_y=overlap_y, invert_image=invert_image, input_bg_subtraction=input_bg_subtraction, create_epyseg_style_output=create_epyseg_style_output, remove_n_border_mask_pixels=remove_n_border_mask_pixels, is_output_1px_wide=is_output_1px_wide, rebinarize_augmented_output=rebinarize_augmented_output, rotate_n_flip_independently_of_augmentation=rotate_n_flip_independently_of_augmentation, mask_lines_and_cols_in_input_and_mask_GT_with_nans=mask_lines_and_cols_in_input_and_mask_GT_with_nans, z_frames_to_add = z_frames_to_add )) def _get_significant_parameter(self, local_param, global_param): if local_param is not None: return local_param else: return global_param def appendDatasets(self, datasets=None, augmentations=None, **kwargs): logger.debug('datasets ' + str(datasets)) logger.debug('augs ' + str(augmentations)) if datasets is None: return # parse and handle inputs for dataset in datasets: fused = {**dataset, 'augmentations': augmentations} # print('fused', fused) self.append(**fused) def append(self, inputs=None, outputs=None, output_folder=None, input_shape=None, output_shape=None, input_channel_of_interest=None, output_channel_of_interest=None, input_channel_reduction_rule=None, input_channel_augmentation_rule=None, output_channel_reduction_rule=None, output_channel_augmentation_rule=None, augmentations=None, crop_parameters=None, mask_dilations=None, infinite=None, default_input_tile_width=None, default_input_tile_height=None, default_output_tile_width=None, default_output_tile_height=None, keep_original_sizes=None, input_normalization=None, output_normalization=None, validation_split=None, test_split=None, shuffle=None, clip_by_frequency=None, is_predict_generator=None, overlap_x=None, overlap_y=None, invert_image=None, input_bg_subtraction=None,create_epyseg_style_output=None, remove_n_border_mask_pixels=None, is_output_1px_wide=None, rebinarize_augmented_output=None, rotate_n_flip_independently_of_augmentation=None,mask_lines_and_cols_in_input_and_mask_GT_with_nans=None, z_frames_to_add = None, **kwargs): # print('debug 123', inputs, outputs, self.inputs, self.outputs) # inputs and outputs are ok --> why is there a bug then???? self.augmenters.append( DataGenerator(inputs=self._get_significant_parameter(inputs, self.inputs), outputs=self._get_significant_parameter(outputs, self.outputs), output_folder =self._get_significant_parameter(output_folder, self.output_folder), input_shape=self._get_significant_parameter(input_shape, self.input_shape), output_shape=self._get_significant_parameter(output_shape, self.output_shape), input_channel_of_interest=self._get_significant_parameter(input_channel_of_interest, self.input_channel_of_interest), output_channel_of_interest=self._get_significant_parameter(output_channel_of_interest, self.output_channel_of_interest), input_channel_reduction_rule=self._get_significant_parameter(input_channel_reduction_rule, self.input_channel_reduction_rule), input_channel_augmentation_rule=self._get_significant_parameter( input_channel_augmentation_rule, self.input_channel_augmentation_rule), output_channel_reduction_rule=self._get_significant_parameter(output_channel_reduction_rule, self.output_channel_reduction_rule), output_channel_augmentation_rule=self._get_significant_parameter( output_channel_augmentation_rule, self.output_channel_augmentation_rule), augmentations=self._get_significant_parameter(augmentations, self.augmentations), crop_parameters=self._get_significant_parameter(crop_parameters, self.crop_parameters), mask_dilations=self._get_significant_parameter(mask_dilations, self.mask_dilations), infinite=self._get_significant_parameter(infinite, self.infinite), default_input_tile_width=self._get_significant_parameter(default_input_tile_width, self.default_input_tile_width), default_input_tile_height=self._get_significant_parameter(default_input_tile_height, self.default_input_tile_height), default_output_tile_width=self._get_significant_parameter(default_output_tile_width, self.default_output_tile_width), default_output_tile_height=self._get_significant_parameter(default_output_tile_height, self.default_output_tile_height), keep_original_sizes=self._get_significant_parameter(keep_original_sizes, self.keep_original_sizes), validation_split=self._get_significant_parameter(validation_split, self.validation_split), test_split=self._get_significant_parameter(test_split, self.test_split), shuffle=self._get_significant_parameter(shuffle, self.shuffle), clip_by_frequency=self._get_significant_parameter(clip_by_frequency, self.clip_by_frequency), is_predict_generator=self._get_significant_parameter(is_predict_generator, self.is_predict_generator), overlap_x=self._get_significant_parameter(overlap_x, self.overlap_x), overlap_y=self._get_significant_parameter(overlap_y, self.overlap_y), invert_image=self._get_significant_parameter(invert_image, self.invert_image), input_bg_subtraction=self._get_significant_parameter(input_bg_subtraction, self.input_bg_subtraction), create_epyseg_style_output=self._get_significant_parameter(create_epyseg_style_output, self.create_epyseg_style_output), remove_n_border_mask_pixels=self._get_significant_parameter(remove_n_border_mask_pixels, self.remove_n_border_mask_pixels), input_normalization=self._get_significant_parameter(input_normalization, self.input_normalization), output_normalization=self._get_significant_parameter(output_normalization, self.output_normalization), is_output_1px_wide=self._get_significant_parameter(is_output_1px_wide, self.is_output_1px_wide), rebinarize_augmented_output=self._get_significant_parameter(rebinarize_augmented_output, self.rebinarize_augmented_output), rotate_n_flip_independently_of_augmentation=self._get_significant_parameter(rotate_n_flip_independently_of_augmentation, self.rotate_n_flip_independently_of_augmentation), mask_lines_and_cols_in_input_and_mask_GT_with_nans=self._get_significant_parameter(mask_lines_and_cols_in_input_and_mask_GT_with_nans, self.mask_lines_and_cols_in_input_and_mask_GT_with_nans), z_frames_to_add=self._get_significant_parameter(z_frames_to_add, self.z_frames_to_add), )) def validation_generator(self, infinite=False): if infinite: while True: for orig, label in self._validation_generator(skip_augment=True): # bug fix for recent tensorflow that really needs true and pred to be unpacked if single input and output if len(orig) == 1: orig = orig[0] if len(label) == 1: label = label[0] yield orig, label else: for orig, label in self._validation_generator(skip_augment=True): # bug fix for recent tensorflow that really needs true and pred to be unpacked if single input and output if len(orig) == 1: orig = orig[0] if len(label) == 1: label = label[0] yield orig, label def train_generator(self, infinite=False): if infinite: while True: for orig, label in self._train_generator(skip_augment=False): # bug fix for recent tensorflow that really needs true and pred to be unpacked if single input and output if len(orig) == 1: orig = orig[0] if len(label) == 1: label = label[0] yield orig, label else: for orig, label in self._train_generator(skip_augment=False): # bug fix for recent tensorflow that really needs true and pred to be unpacked if single input and output if len(orig) == 1: orig = orig[0] if len(label) == 1: label = label[0] yield orig, label def test_generator(self, infinite=False): if infinite: while True: for orig, label in self._test_generator(skip_augment=True): # bug fix for recent tensorflow that really needs true and pred to be unpacked if single input and output if len(orig) == 1: orig = orig[0] if len(label) == 1: label = label[0] yield orig, label else: for orig, label in self._test_generator(skip_augment=True): # bug fix for recent tensorflow that really needs true and pred to be unpacked if single input and output if len(orig) == 1: orig = orig[0] if len(label) == 1: label = label[0] yield orig, label def angular_yielder(self, orig, mask, count): # mask = self.extra_watershed_mask(mask) # shrink mask to 1 px wide irrespective of transfo # NB could do here the generations of the nine stacks --> TODO --> would increase size by 9 but it is a good idea I think # can also copy the code of the other stuff if count == 0: # rot 180 return np.rot90(orig, 2, axes=(-3, -2)), np.rot90(mask, 2, axes=(-3, -2)) if count == 1: # flip hor return np.flip(orig, -2), np.flip(mask, -2) if count == 2: # flip ver return np.flip(orig, -3), np.flip(mask, -3) # make it yield the original and the nine versions of it # --> TODO # ça marche ça me genere les 9 versions du truc dans tous les sens --> probablement ce que je veux --> tt mettre ici if count == 3: # yield np.rot90(orig, axes=(-3, -2)), np.rot90(mask, axes=(-3, -2)) # rot 90 return np.rot90(orig, axes=(-3, -2)), np.rot90(mask, axes=(-3, -2)) if count == 4: # rot 90_flipped_hor or ver return np.flip(np.rot90(orig, axes=(-3, -2)), -2), np.flip(np.rot90(mask, axes=(-3, -2)), -2) if count == 5: # rot 90_flipped_hor or ver return np.flip(np.rot90(orig, axes=(-3, -2)), -3), np.flip(np.rot90(mask, axes=(-3, -2)), -3) if count == 6: # rot 270 return np.rot90(orig, 3, axes=(-3, -2)), np.rot90(mask, 3, axes=(-3, -2)) def _train_generator(self, skip_augment, first_run=False): train = MetaGenerator(self.augmenters, shuffle=self.shuffle, batch_size=self.batch_size, gen_type='train') for out in train.generator(skip_augment, first_run): try: # # print(len(out)) # # that works check that all are there and all are possible otherwise skip # # --> need ensure that width = height # # need set a parameter to be sure to use it or not and need remove rotation and flip from augmentation list (or not in fact) # orig, mask = out # augmentations = 7 # if orig[0].shape[-2] != orig[0].shape[-3]: # augmentations = 3 # for aug in range(augmentations): # yield self.angular_yielder(orig, mask, aug) # yield orig, mask yield out except: # failed to generate output --> continue continue def _test_generator(self, skip_augment, first_run=False): test = MetaGenerator(self.augmenters, shuffle=False, batch_size=self.batch_size, gen_type='test') for out in test.generator(skip_augment, first_run): # # yield out # # print(len(out)) # # that works check that all are there and all are possible otherwise skip # # --> need ensure that width = height # # need set a parameter to be sure to use it or not and need remove rotation and flip from augmentation list (or not in fact) # orig, mask = out # augmentations = 7 # if orig[0].shape[-2] != orig[0].shape[-3]: # augmentations = 3 # for aug in range(augmentations): # yield self.angular_yielder(orig, mask, aug) # yield orig, mask yield out def _validation_generator(self, skip_augment, first_run=False): valid = MetaGenerator(self.augmenters, shuffle=self.shuffle, batch_size=self.batch_size, gen_type='valid') for out in valid.generator(skip_augment, first_run): # # yield out # # print(len(out)) # # that works check that all are there and all are possible otherwise skip # # --> need ensure that width = height # # need set a parameter to be sure to use it or not and need remove rotation and flip from augmentation list (or not in fact) # orig, mask = out # augmentations = 7 # if orig[0].shape[-2] != orig[0].shape[-3]: # augmentations = 3 # for aug in range(augmentations): # yield self.angular_yielder(orig, mask, aug) # yield orig, mask yield out def predict_generator(self): # TODO can use datagen for now pass def __len__(self): # returns the nb of datasets if not self.augmenters: return 0 return len(self.augmenters) # returns the real nb of batches with the current parameters... def get_train_length(self, first_run=False): # need run the train algo once with real tiled data to get the counts train_generator = self._train_generator(skip_augment=True, first_run=first_run) nb_batches = 0 for _, _ in train_generator: nb_batches += 1 return nb_batches def get_test_length(self, first_run=False): # need run the train algo once with real tiled data to get the counts test_generator = self._test_generator(skip_augment=True, first_run=first_run) nb_batches = 0 for _, _ in test_generator: nb_batches += 1 return nb_batches def get_validation_length(self, first_run=False): # need run the train algo once with real tiled data to get the counts validation_generator = self._validation_generator(skip_augment=True, first_run=first_run) nb_batches = 0 for _, _ in validation_generator: nb_batches += 1 return nb_batches if __name__ == '__main__': pass
import anachronos from e2e_test.runner import http from e2e_test.testing_messages import SIMPLE_GET, SIMPLE_POST_DTO, DIFFERENT_POST_DTO, GET_WITH_PARAMETERS, \ GET_WITH_PATH_PARAMETER class SimpleResourceTest(anachronos.TestCase): def test_simple_get(self): http.get("/") self.assertThat(SIMPLE_GET).is_stored() def test_post_dto(self): response = http.post("/", json={'name': 'Paul Atreides', 'age': 17}).json() self.assertThat(SIMPLE_POST_DTO).is_stored() self.assertEqual('Paul Atreides', response['name']) def test_selectRightResourceMethodBasedOnPayloadDtoType(self): response = http.post("/", json={'name': 'Paul Atreides', 'role': "foobar"}).json() self.assertThat(DIFFERENT_POST_DTO).is_stored() self.assertEqual('Paul Atreides', response['name']) def test_givenMissingOrMalformedPayloadDto_thenReturn400BadRequest(self): response = http.post("/", json={}) self.assertEqual(400, response.status_code) def test_getWithQueryParameters(self): response = http.get("/params?query=foo&age=13") self.assertEqual(200, response.status_code) self.assertThat(GET_WITH_PARAMETERS).is_contained() def test_givenMissingOrMalformedQueryParams_thenReturn400BadRequest(self): response = http.get("/params?query=foo&age=a") self.assertEqual(400, response.status_code) self.assertThat(GET_WITH_PARAMETERS + " foo a").is_never_stored() def test_withPathParameter(self): http.get("/path/foobar") self.assertThat(GET_WITH_PATH_PARAMETER + " foobar").is_stored() if __name__ == '__main__': anachronos.run_tests()
# -*- coding: utf-8 -*- import pandas as pd import numpy as np data_connect = pd.read_csv('C:/Users/sch/PycharmProjects/pythonProject3/csv/connect.csv') connect = data_connect['connect'] connect_ad = data_connect['connect_ad'] connect_k8s = data_connect['connect_k8s'] connect_hyscal = data_connect['connect_hyscal'] data = np.zeros((5, 4)) data[0, 0] = np.mean(connect[0:20]) data[1, 0] = np.mean(connect[0:40]) data[2, 0] = np.mean(connect[0:60]) data[3, 0] = np.mean(connect[0:80]) data[4, 0] = np.mean(connect[0:100]) data[0, 1] = np.mean(connect_ad[0:20]) data[1, 1] = np.mean(connect_ad[0:40]) data[2, 1] = np.mean(connect_ad[0:60]) data[3, 1] = np.mean(connect_ad[0:80]) data[4, 1] = np.mean(connect_ad[0:100]) data[0, 2] = np.mean(connect_k8s[0:20]) data[1, 2] = np.mean(connect_k8s[0:40]) data[2, 2] = np.mean(connect_k8s[0:60]) data[3, 2] = np.mean(connect_k8s[0:80]) data[4, 2] = np.mean(connect_k8s[0:100]) data[0, 3] = np.mean(connect_hyscal[0:20]) data[1, 3] = np.mean(connect_hyscal[0:40]) data[2, 3] = np.mean(connect_hyscal[0:60]) data[3, 3] = np.mean(connect_hyscal[0:80]) data[4, 3] = np.mean(connect_hyscal[0:100]) names = ['connect', 'connect_ad', 'connect_k8s', 'connect_hyscal'] data = pd.DataFrame(data=data) data.to_csv('C:/Users/sch/PycharmProjects/pythonProject3/csv/connect_avg.csv', header=names)
""" Hamilitonian Monte Carlo implementation. Adapted from https://github.com/franrruiz/vcd_divergence/blob/master/mcmc/hmc_vae.m """ import torch import utils def hmc_vae(current_q, model, img, epsilon=None, Burn=3, T=10, adapt=0, L=5): """ Hamilitonian Monte Carlo sampler. :param current_q: initial samples :param model: vae model for probability computations :param img: datapoints :param epsilon: initial step size :param Burn: number of burn in iterations :param T: number of MC iterations :param adapt: 1 if step size should be adapted during burn in :param L: number of leapfrog steps :return: final samples, all produced samples, average acceptance rate, adapted step size """ if epsilon is None: epsilon = 0.5 / current_q.size(1) N = current_q.size(0) n = current_q.size(1) acceptHist = torch.zeros((N, Burn + T), device=current_q.device) logpxzHist = torch.zeros((N, Burn + T), device=current_q.device) samples = torch.zeros((N, n, T), device=current_q.device) if (Burn + T) == 0: z = current_q delta = -1 accRate = 0 return z, samples, accRate, delta eta = 0.01 opt = 0.9 cnt = 0 for i in range(0, Burn + T - 1): q = current_q p = torch.normal(mean=0., std=1., size=(N, n), device=current_q.device) current_p = p pred = model.dec_forward(q) log_pxz = utils.log_pxz(pred, img, q) gradz = torch.autograd.grad(torch.sum(log_pxz), q)[0] current_U = - log_pxz grad_U = - gradz p = p - epsilon * grad_U / 2 for j in range(0, L - 1): q = q + epsilon * p if j != L: pred = model.dec_forward(q) log_pxz = utils.log_pxz(pred, img, q) gradz = torch.autograd.grad(torch.sum(log_pxz), q)[0] proposed_U = - log_pxz grad_U = - gradz p = p - epsilon * grad_U pred = model.dec_forward(q) log_pxz = utils.log_pxz(pred, img, q) gradz = torch.autograd.grad(torch.sum(log_pxz), q)[0] proposed_U = - log_pxz grad_U = - gradz p = p - epsilon * grad_U / 2 p = -p current_K = torch.sum(current_p ** 2, 1) / 2 proposed_K = torch.sum(p ** 2, 1) / 2 accept = torch.normal(mean=torch.zeros(N), std=torch.ones(N)).to(current_q.device) < torch.exp( current_U - proposed_U + current_K - proposed_K) acceptHist[:, i] = accept current_q = torch.where(accept.unsqueeze(1), q, current_q) current_U = torch.where(accept, proposed_U, current_U) if (i < Burn) and (adapt == 1): change = eta * ((torch.mean(accept.to(torch.float32)) - opt) / opt) epsilon = epsilon + change * epsilon elif i >= Burn: cnt = cnt + 1 samples[:, :, cnt] = current_q logpxzHist[:, i] = - current_U z = current_q return z, samples, torch.mean(acceptHist.to(torch.float32), 1), epsilon
# Copyright (c) 2017 Sony Corporation. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import sys import time from tqdm import tqdm def test_data_iterator(di, args): current_epoch = -1 logger.info('{}'.format(di.size)) pbar = None for data in di: time.sleep(args.wait / 1000.0) if di.epoch >= args.max_epoch: break if current_epoch != di.epoch: current_epoch = di.epoch if pbar is not None: pbar.close() logger.info('Epoch {}'.format(current_epoch)) pbar = tqdm(total=di.size) pbar.update(len(data[0])) if __name__ == '__main__': from nnabla.logger import logger from nnabla.config import nnabla_config parser = argparse.ArgumentParser(description='Data iterator sample.') parser.add_argument('-m', '--memory_cache', action='store_true', help='Use memory cache') parser.add_argument('-f', '--file_cache', action='store_true', help='Use file cache') parser.add_argument('-S', '--shuffle', action='store_true', help='Enable shuffling data') parser.add_argument('-b', '--batch_size', type=int, default=64, help='Batch size') parser.add_argument('-s', '--cache_size', type=int, default=100, help='Cache size (num of data).') parser.add_argument('-M', '--memory_size', type=int, default=1048576, help='Memory buffer size in byte.') parser.add_argument('-o', '--output', type=str, default=None, help='If specified, cache data will output to here.') parser.add_argument('-n', '--normalize', action='store_true', help='Enable data normalize') parser.add_argument('-e', '--max_epoch', type=int, default=3, help='Max epoch to read.') parser.add_argument('-w', '--wait', type=float, default=0, help='Wait time for dummy data processing.') parser.add_argument('uri', help='PATH to CSV_DATASET format file or ' '"MNIST_TRAIN", "MNIST_TEST", "TINY_IMAGENET_TRAIN",' '"TINY_IMAGENET_VAL"') args = parser.parse_args() logger.debug('memory_cache: {}'.format(args.memory_cache)) logger.debug('file_cache: {}'.format(args.file_cache)) logger.debug('shuffle: {}'.format(args.shuffle)) logger.debug('batch_size: {}'.format(args.batch_size)) logger.debug('cache_size: {}'.format(args.cache_size)) logger.debug('memory_size: {}'.format(args.memory_size)) logger.debug('output: {}'.format(args.output)) logger.debug('normalize: {}'.format(args.normalize)) logger.debug('max_epoch: {}'.format(args.max_epoch)) logger.debug('wait: {}'.format(args.wait)) nnabla_config.set('DATA_ITERATOR', 'data_source_file_cache_size', '{}'.format(args.cache_size)) nnabla_config.set('DATA_ITERATOR', 'data_source_buffer_max_size', '{}'.format(args.memory_size)) if args.uri == 'MNIST_TRAIN': sys.path.append(os.path.join(os.path.dirname( os.path.abspath(__file__)), '..', 'vision', 'mnist')) from mnist_data import data_iterator_mnist with data_iterator_mnist(args.batch_size, True, None, args.shuffle, args.memory_cache, args.file_cache) as di: test_data_iterator(di, args) elif args.uri == 'MNIST_TEST': sys.path.append(os.path.join(os.path.dirname( os.path.abspath(__file__)), '..', 'vision', 'mnist')) from mnist_data import data_iterator_mnist with data_iterator_mnist(args.batch_size, False, None, args.shuffle, args.memory_cache, args.file_cache) as di: test_data_iterator(di, args) elif args.uri == 'TINY_IMAGENET_TRAIN': sys.path.append(os.path.join(os.path.dirname( os.path.abspath(__file__)), '..', 'vision', 'imagenet')) from tiny_imagenet_data import data_iterator_tiny_imagenet with data_iterator_tiny_imagenet(args.batch_size, 'train') as di: test_data_iterator(di, args) elif args.uri == 'TINY_IMAGENET_VAL': sys.path.append(os.path.join(os.path.dirname( os.path.abspath(__file__)), '..', 'vision', 'imagenet')) from tiny_imagenet_data import data_iterator_tiny_imagenet with data_iterator_tiny_imagenet(args.batch_size, 'val') as di: test_data_iterator(di, args) else: if os.path.splitext(args.uri)[1].lower() == '.cache': from nnabla.utils.data_iterator import data_iterator_cache with data_iterator_cache(uri=args.uri, batch_size=args.batch_size, shuffle=args.shuffle, with_memory_cache=args.memory_cache, normalize=args.normalize) as di: test_data_iterator(di, args) else: from nnabla.utils.data_iterator import data_iterator_csv_dataset with data_iterator_csv_dataset(uri=args.uri, batch_size=args.batch_size, shuffle=args.shuffle, normalize=args.normalize, with_memory_cache=args.memory_cache, with_file_cache=args.file_cache, cache_dir=args.output) as di: test_data_iterator(di, args)
from .user import CustomUserAdmin from ... import forms class StudentAdmin(CustomUserAdmin): form = forms.StudentChangeForm add_form = forms.StudentCreationForm list_filter = CustomUserAdmin.list_filter + ('supervisor', ) list_display = CustomUserAdmin.list_display + ('supervisor',) fieldsets = CustomUserAdmin.fieldsets + ( (None, {'fields' : ('supervisor',)},), ) add_fieldsets = CustomUserAdmin.add_fieldsets + ( (None, { 'classes' : ('wide',), 'fields' : ('supervisor',)} ), )
import numpy as np class Node: def __init__(self, name_initial, id): self.id = id self.nextNodes = [] self.name_initial = name_initial if name_initial == 'transition': self.listExpectedType = Place elif name_initial == 'places': self.listExpectedType = Transition else: raise ValueError('Error!', 'No se configuro un tipo de nodo') def getName(self): return "{}{}".format(self.name_initial, self.id) def print(self): print(self.getName(),'-> ', end='') def printNextNames(self): for node in self.nextNodes: print(node.getName()) def addNext(self, node): if isinstance(node, self.listExpectedType): self.nextNodes.append(node) else: raise ValueError('Error de tipo de datos!', "No se puede agregar un {} a una lista que espera {}".format( node.__class__.__name__, self.listExpectedType.__name__) ) class Transition(Node): def __init__(self, id): Node.__init__(self, 'transition', id) self.preconditions = [] self.wait_time = 15 self.time_waited = 0 self.action = self.doNothing # default action def runAction(self): print("Executing action for:", self.getName()) self.action() def print(self, end_of_line = ''): print("{}[{}]".format(self.getName(), self.time_waited),'-> ', end=end_of_line) def doNothing(self): pass class Place(Node): def __init__(self, id): Node.__init__(self, 'places', id) self.marks = 0 self.required_marks = 1 def print(self): print("{}[{}]".format(self.getName(), self.marks),'-> ', end='') class Network: def __init__(self, places_list, transitions_list, initial_state_list = [], max_width = False, name = "", active = False): self.places = places_list self.transitions = transitions_list self.configurePreconditions() self.setInitialState(initial_state_list) self.global_time = 0 self.max_width = max_width # "ancho" de la red. Se refiere a el numero de elementos (lugares y transiciones) unicos que se pueden recorrer antes de repetirse self.name = name self.active = active def setInitialState(self, initial_state_list): if initial_state_list: if len(initial_state_list) == len(self.places): for i in range(len(self.places)): self.places[i].marks = initial_state_list[i] else: raise ValueError('Error!', 'Error en el numero de elementos en initial_state_list: se esperaban {} elementos y se recibieron {}.'.format(len(self.places), len(initial_state_list))) def configurePreconditions(self): for transition in self.transitions: for place in self.places: if transition in place.nextNodes: transition.preconditions.append(place) def nextStep(self, actual_time = 0): if actual_time: self.global_time = actual_time self.global_time += 1 for transition in self.transitions: #? Por cada transicion ... all_conditions_marked = True #? ... validando que se cumplan todas las precondiciones ... if transition.time_waited == 0: #? ... solo si no se esta en estado de espera de una transicion que ya cumplió sus precondiciones previamente #? Recorriendo todos Place para verficar que se cumplan las marcas (se puede hacer esto porque python asigna objetos por referencia) for precondition in transition.preconditions: if precondition.marks < precondition.required_marks: all_conditions_marked = False #! TODO: hacer que se puedan configurar multiples marcas if all_conditions_marked: #? Cuando se cumplen todas las condiciones para la transicion... if transition.time_waited == transition.wait_time: #? ... ver que se halla esperado el tiempo de espera de la transicion print("(t={}, w={}) ".format(self.global_time, transition.time_waited), end='') transition.runAction() transition.time_waited = 0 #? Quitando las marcas de las precondiciones for pre in transition.preconditions: pre.marks = 0 #? y poniendoselas a los Place() siguientes for pos in transition.nextNodes: pos.marks += 1 else: transition.time_waited += 1 def fastForward(self, number_of_steps): for _ in range(number_of_steps): self.nextStep() def print(self, firstElements = True): pointer = self.places[0] for _ in range(self.max_width if self.max_width else len(self.places) + len(self.transitions)): pointer.print() if firstElements: pointer = pointer.nextNodes[0] else: pointer = pointer.nextNodes[-1] print() def getMatrixPre(self, show=False, log=False): # Generando la matriz PRE (condiciones que tiene que cumplir cada transicion para efectuarse) # Debe quedar con las transiciones en el eje horizontal y los lugares en el eje vertical: # t0 t1 t2 # p0 1 0 0 # p1 0 1 0 # p2 1 0 1 # De momento se genera con los ejes inversos y recorre diferente al imprimirlo en pantalla pre = [] for transition in self.transitions: pre_col = [] for place in self.places: if transition in place.nextNodes: pre_col.append(1) else: pre_col.append(0) pre.append(pre_col) pre_np = np.asarray(pre).transpose() if log: np.savetxt("./logs/pre.csv", pre_np, delimiter=',') if show: print("PRE MATRIX:") for i in range(len(pre[0])): for j in range(len(pre)): print(pre[j][i], end=' ') print() def getMatrixPos(self, show=False, log=False): # Generando la matriz POS (condiciones que se cumplen luego de una transicion) pos = [] for transition in self.transitions: pos_col = [] for place in self.places: if place in transition.nextNodes: pos_col.append(1) else: pos_col.append(0) pos.append(pos_col) pos_np = np.asarray(pos).transpose() if log: np.savetxt("./logs/pre.csv", pos_np, delimiter=',') if show: print("POS MATRIX:") for i in range(len(pos[0])): for j in range(len(pos)): print(pos[j][i], end=' ') print() return pos_np #? Regresa una lista de objetos Places() que tienen como ID el rango de numeros pasado como argumento def generatePlaces(range_of_ids): _p = [] for i in range_of_ids: _p.append(Place(i)) # se le pasa i como argumento, que sera la id del Place() return _p #? Regresa una lista de objetos Transition() que tienen como ID el rango de numeros pasado como argumento def generateTransitions(range_of_ids): _t = [] for i in range_of_ids: _t.append(Transition(i)) # se le pasa i como argumento, que sera la id del Transition() return _t #? Red para pruebas def getDemoNetwork(): # Generando una lista de objetos Places() (Lugares) en una lista llamada 'places' places = generatePlaces(range(6)) # Repitiendo el mismo proceso para generar los objetos tipo Transition() en la lista 'transition' transition = generateTransitions(range(5)) # Estableciendo las relaciones entre Places y Transitions places[0].addNext(transition[0]) transition[0].addNext(places[1]) places[1].addNext(transition[1]) transition[1].addNext(places[2]) places[2].addNext(transition[2]) transition[2].addNext(places[0]) # places[3].addNext(transition[0]) transition[0].addNext(places[4]) places[4].addNext(transition[3]) transition[3].addNext(places[5]) places[5].addNext(transition[4]) transition[4].addNext(places[3]) # initial_state = [1,0,0,1,0,0] return Network(places, transition, initial_state, 6) if __name__ == "__main__": Petri = getDemoNetwork() Petri.getMatrixPre(show=True) Petri.getMatrixPos(show=True) print("Acciones de las transiciones:") Petri.fastForward(60) print() print("Estado final de la red:") Petri.print() print()
class DateException(Exception): pass class UnknownModeException(Exception): pass
import json import pandas as pd; import matplotlib.pyplot as plt; import seaborn as sns; import folium as fol; from config.settings import DATA_DIRS, STATICFILES_DIRS, TEMPLATES # 인구이동 df = pd.read_excel(DATA_DIRS[0]+'//data1.xlsx',engine='openpyxl' ,header=0); # 전력량 df2 = pd.read_excel(DATA_DIRS[0]+'//data2.xlsx',engine='openpyxl'); df3 = pd.read_csv(DATA_DIRS[0]+'//auto-mpg.csv',header=None); df3.columns = ['mpg','cyl','dis','hor','wei','acc','year','origin','name']; # 대학위치 df4 = pd.read_excel(DATA_DIRS[0]+'//data3.xlsx',engine='openpyxl'); # 경기도 행정 구역 df5 = pd.read_excel(DATA_DIRS[0]+'//data4.xlsx',engine='openpyxl'); # titanic tt = sns.load_dataset('titanic'); class P109: def mat01(self): print(df); df2 = df.fillna(method='ffill'); print(df2); mask = (df2['전출지별'] == '서울특별시') & (df['전입지별'] != '서울특별시'); print(mask); df_seoul = df2[mask]; print(df_seoul); df_seoul = df_seoul.drop(['전출지별'], axis=1); print(df_seoul); df_seoul.rename({'전입지별':'전입지'}, axis=1,inplace=True); print(df_seoul); df_seoul.set_index('전입지',inplace=True); print(df_seoul); sr_one = df_seoul.loc['경기도']; print(sr_one); plt.plot(sr_one); plt.title('서울 -> 경기'); plt.savefig(STATICFILES_DIRS[0]+'/ss.jpg'); #plt.show(); def mat02(self): print(df); df2 = df.fillna(method='ffill'); print(df2); mask = (df2['전출지별'] == '서울특별시') & (df['전입지별'] != '서울특별시'); print(mask); df_seoul = df2[mask]; print(df_seoul); df_seoul = df_seoul.drop(['전출지별'], axis=1); print(df_seoul); df_seoul.rename({'전입지별':'전입지'}, axis=1,inplace=True); print(df_seoul); df_seoul.set_index('전입지',inplace=True); print(df_seoul); df3 = df_seoul.loc[['충청남도','강원도','충청북도','전라남도']]; print(df3); #df3.loc['sum'] = df3.sum(); df3['sum'] = df3.sum(axis=1); df3s = df3[['sum']].sort_values(by='sum'); print(df3s); # plt.style.use('ggplot'); # df3t.index = df3t.index.map(int); # df3t.plot(kind='barh',stacked=False,alpha=0.2,figsize=(10,5)); # plt.show(); def mat03(self,sy,ey): #print(df2); df3 = df2.loc[5:9]; df3.drop('전력량 (억㎾h)', axis=1, inplace=True); df3.set_index('발전 전력별',inplace=True); print(df3); df3t = df3.T; print(df3t); df3t.drop('원자력', axis=1, inplace=True); #print(df3t); df3t =df3t.rename(columns={'합계':'총발전량'}); #print(df3t); df3t['1년전'] = df3t['총발전량'].shift(1); df3t['증감률'] = ((df3t['총발전량']/df3t['1년전'])-1) * 100; df3t['증감률'].fillna(0,inplace=True); df3t['year'] = df3t.index; df3t['new_year'] = pd.to_datetime(df3t.index); df3t['new_year'] = df3t['new_year'].dt.to_period(freq='A'); df3t.set_index(df3t['new_year'], inplace=True); df3t = df3t[sy:ey]; print(df3t); year = df3t['year'].tolist(); w = df3t['수력'].tolist(); f = df3t['화력'].tolist(); df3t['증감률'] = df3t['증감률']+100; avg = df3t['증감률'].tolist(); result = {}; result['year'] = year; result['w'] = w; result['f'] = f; result['avg'] = avg; print(result); return result; def mat04(self): #국가별 차량의 개수를 구하시오 print(df3); df3['count'] = 1; df4 = df3.groupby('origin').sum(); df4.index = ['USA','EU','JPN']; print(df4); def mat05(self): df4 = df3[df3['origin']==1]['mpg'] print(df4); def mat06(self): print(tt); tt2 = tt.pivot_table(index=['sex'],columns=['class'],aggfunc='size'); print(tt2); def mat07(self): seoul_map = fol.Map(location=[37.55,126.98],zoom_start=12); seoul_map.save(TEMPLATES[0]['DIRS'][0]+'\\seoul_map.html'); def mat08(self): seoul_map = fol.Map(location=[37.55,126.98],zoom_start=12); print(df4); df4.columns = ['name','lat','lng']; df4.set_index('name',inplace=True); for name,lat,lng in zip(df4.index,df4['lat'],df4['lng']): #print(name,lat,lng); fol.Marker([lat,lng],popup=name).add_to(seoul_map); seoul_map.save(TEMPLATES[0]['DIRS'][0]+'\\seoul_coll.html'); def mat09(self,year): df5.set_index('구분',inplace=True); print(df5); geo_path = DATA_DIRS[0]+'/data4.json'; geo_data = json.load(open(geo_path),encoding='utf-8'); print(geo_data); map = fol.Map(location=[37.5502, 126.982], zoom_start=9); fol.Choropleth( geo_data= geo_data, data = df5[year], columns=[df5.index,df5[year]], fill_color='YlOrRd', fill_opacity=0.7,line_opacity=0.3, threshold_scale = [10000,100000,300000,500000,700000], key_on='feature.properties.name' ).add_to(map); map.save(TEMPLATES[0]['DIRS'][0] + '\\chart4result.html'); def mat10(self): tt = sns.load_dataset('titanic'); sns.set_style('whitegrid'); fig = plt.figure(figsize=(15,5)); ax1 = fig.add_subplot(1, 3, 1); ax2 = fig.add_subplot(1, 3, 2); ax3 = fig.add_subplot(1, 3, 3); sns.barplot(x='sex',y='survived',data=tt,ax=ax1); sns.barplot(x='sex', y='survived',hue='class', data=tt, ax=ax2); sns.barplot(x='sex', y='survived',hue='class', dodge=False, data=tt, ax=ax3); plt.savefig(STATICFILES_DIRS[0]+'/tt.jpg'); if __name__ == '__main__': P109().mat03();
""" Implementations of the subnetworks: - Encoder - Generator (Decoder) - D_real - D_prior - D_em """ import tensorflow as tf import numpy as np from PK_Utils.PK_layers import dense, conv2d, deconv2d, batch_norm from PK_Utils.PK_config import size_batch, num_z_channels # --HELPERS --------------------------------------- # ------------------------------------------------- def lrelu(inp, leak=0.2): """ Leaky Rectified Linear Unit (ReLu) activation. @param inp: input tensor @return: tensor of same size as input tensor """ return tf.maximum(inp, leak*inp) def concat_label(tensor, label, duplicate=1): """ Duplicates label and concatenates it to tensor. @param tensor: input tensor (1) of size [batch_size, length] (2) of size [batch_size, x, x, length] @param label: input tensor of size [batch_size, label_length] @return: (1) tensor of size [batch_size, length+duplicate*label_length] (2) tensor of size [batch_size, x, x, length+duplicate*label_length] """ # duplicate the label to enhance its effect label = tf.tile(label, [1, duplicate]) # get shapes of label and tensor tensor_shape = tensor.get_shape().as_list() label_shape = label.get_shape().as_list() # CASE (1) if len(tensor_shape) == 2: return tf.concat([tensor, label], 1) # CASE (2) if len(tensor_shape) == 4: # reshape label to [batch_size, 1, 1, duplicate*label_length] label = tf.reshape(label, [tensor_shape[0], 1, 1, label_shape[-1]]) # scale label to [batch_size, x, x, duplicate*label_length] label = label*tf.ones([tensor_shape[0], tensor_shape[1], tensor_shape[2], label_shape[-1]]) # concatenate label and tensor return tf.concat([tensor, label], 3) # --NETWORKS -------------------------------------- # ------------------------------------------------- def generator(z, valence, arousal, reuse_variables=False): """ Creates generator network. @param z: tensor of size config.num_z_channels @param valence: tensor of size 1 @param arousal: tensor of size 1 @return: tensor of size 96x96x3 """ if reuse_variables: tf.compat.v1.get_variable_scope().reuse_variables() with tf.compat.v1.variable_scope("G") as scope: # duplicate valence/arousal label and concatenate to z z = concat_label(z, valence, duplicate=num_z_channels) z = concat_label(z, arousal, duplicate=num_z_channels) # -- fc layer name = 'G_fc' current = dense(z, 1024*6*6, reuse=reuse_variables) # reshape current = tf.reshape(current, [-1, 6, 6, 1024]) current = tf.nn.relu(current) # -- transposed convolutional layer 1-4 for index, num_filters in enumerate([512, 256, 128, 64]): name = 'G_deconv' + str(index+1) current = deconv2d(current, num_filters, name=name, reuse=reuse_variables) current = tf.nn.relu(current) # -- transposed convolutional layer 5+6 current = deconv2d(current, 32, stride=1, name='G_deconv5', reuse=reuse_variables) current = tf.nn.relu(current) current = deconv2d(current, 3, stride=1, name='G_deconv6', reuse=reuse_variables) return tf.nn.tanh(current) def encoder(current, reuse_variables=False): """ Creates encoder network. @param current: tensor of size 96x96x3 @return: tensor of size config.num_z_channels """ if reuse_variables: tf.compat.v1.get_variable_scope().reuse_variables() with tf.compat.v1.variable_scope("E") as scope: # -- transposed convolutional layer 1-4 for index, num_filters in enumerate([64,128,256,512]): name = 'E_conv' + str(index) current = conv2d(current, num_filters, name=name, reuse=reuse_variables) current = tf.nn.relu(current) # reshape current = tf.reshape(current, [size_batch, -1]) # -- fc layer name = 'E_fc' current = dense(current, num_z_channels, name=name, reuse=reuse_variables) return tf.nn.tanh(current) def d_img(current, valence, arousal, reuse_variables=False): """ Creates discriminator network on generated image + desired emotion. @param current: tensor of size 96x96x3 @param valence: tensor of size 1 @param arousal: tensor of size 1 @return: sigmoid(output), output (output tensor is of size 1) """ if reuse_variables: tf.compat.v1.get_variable_scope().reuse_variables() with tf.compat.v1.variable_scope("D_img") as scope: # -- convolutional blocks (= convolution+batch_norm+relu) 1-4 for index, num_filters in enumerate([16, 32, 64, 128]): # convolution name = 'D_img_conv' + str(index+1) current = conv2d(current, num_filters, name=name, reuse=reuse_variables) # batch normalization name = 'D_img_bn' + str(index+1) current = batch_norm(current, name, reuse=reuse_variables) # relu activation current = tf.nn.relu(current) if index==0: current = concat_label(current, valence, 16) current = concat_label(current, arousal, 16) # reshape current = tf.reshape(current, [size_batch, -1]) # -- fc 1 name = 'D_img_fc1' current = lrelu(dense(current,1024, name=name, reuse=reuse_variables)) # -- fc 2 name = 'D_img_fc2' current = dense(current,1, name=name, reuse=reuse_variables) return tf.nn.sigmoid(current), current def d_prior(current, reuse_variables=False): if reuse_variables: tf.compat.v1.get_variable_scope().reuse_variables() with tf.compat.v1.variable_scope("D_prior") as scope: # FC blocks 1-3 (full connection+batch_nom+relu) for index, num_filters in enumerate([64,32,16]): name = 'D_prior_fc' + str(index+1) current = dense(current, num_filters, name=name) # batch normalization name = 'D_prior_bn' + str(index+1) current = batch_norm(current, name, reuse=reuse_variables) # relu activation current = tf.nn.relu(current) # FC block 4 name = 'D_prior_fc' + str(index+2) current = dense(current, 1, name=name) return tf.nn.sigmoid(current), current def d_em(current, reuse_variables=False): if reuse_variables: tf.compat.v1.get_variable_scope().reuse_variables() with tf.compat.v1.variable_scope("d_em") as scope: # FC blocks 1 (full connection+batch_nom+relu) # name = 'D_em_fc1' # current = dense(current, 64, name=name) # # batch normalization # name = 'D_em_bn1' # current = batch_norm(current, name) # # relu activation # current = tf.nn.relu(current) for index, num_filters in enumerate([64,32,16]): name = 'D_em_fc1' + str(index+1) current = dense(current, num_filters, name=name) # batch normalization name = 'D_em_bn1' + str(index+1) current = batch_norm(current, name, reuse=reuse_variables) # relu activation current = tf.nn.relu(current) # FC block 2_Arousal name = 'D_em_fc2_arousal' current_arousal = dense(current, 1, name=name) # FC block 2_Valence name = 'D_em_fc2_arousal' current_valence = dense(current, 1, name=name) return tf.nn.sigmoid(current_arousal), tf.nn.sigmoid(current_valence), current_arousal, current_valence
https://leetcode.com/problems/count-sorted-vowel-strings/ class Solution: def countVowelStrings(self, n: int) -> int: # The formula is (n+5-1)C(n)=(n+4)C(n) return (n+4)*(n+3)*(n+2)*(n+1)//24
from PIL import Image from PIL import ImageFont from PIL import ImageDraw def img_add_number(image_path,sign="46"): im=Image.open(image_path) width,height=im.size draw=ImageDraw.Draw(im) font=ImageFont.truetype("Arial.ttf",min(width//6,height//6)) draw.text((width*0.75,height*0.075),sign,font=font,fill=(255,33,33,255)) left,right=image_path.rsplit(".",1) new_image_path=left+"_"+sign+"."+right im.save(new_image_path) if __name__=='__main__': img_add_number("./sample.jpg") print"Finished."
import os import sys import pickle import warnings from typing import Dict import numpy as np import pandas as pd from autosklearn.estimators import AutoSklearnClassifier from sklearn.exceptions import DataConversionWarning from surfboard.sound import Waveform from surfboard.feature_extraction import extract_features as get_voice_features from tqdm import tqdm from functools import partialmethod tqdm.__init__ = partialmethod(tqdm.__init__, disable=True) def get_input_data(): model_path = input() file_path = input() mp3 = Waveform(file_path) return model_path, mp3 def load_model(model_path): with open(model_path, 'rb') as file: return pickle.load(file) def extract_features(sample: Waveform): features = ['mfcc', 'log_melspec', 'chroma_stft', 'spectral_slope', 'intensity', 'kurtosis_slidingwindow'] df_features: pd.DataFrame = get_voice_features([sample], features, statistics_list=['mean']) return df_features.to_numpy() def test_model(feature: np.ndarray, model_meta): model: AutoSklearnClassifier = model_meta['model'] label_mapping: Dict = model_meta['labels'] label = model.predict(feature)[0] person = label_mapping[label] probability = model.predict_proba(feature)[0][label] return person, probability def print_output(person, probability): print(person) sys.stdout.flush() print(probability) sys.stdout.flush() def main(): model_path, mp3 = get_input_data() model_meta = load_model(model_path) features = extract_features(mp3) person, probability = test_model(features, model_meta) print_output(person, probability) if __name__ == '__main__': warnings.filterwarnings(action='ignore', category=DataConversionWarning) with warnings.catch_warnings(): warnings.simplefilter("ignore") main()
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-10-18 09:30 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('app', '0001_initial'), ] operations = [ migrations.CreateModel( name='Business', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=30)), ('email', models.EmailField(blank=True, max_length=70)), ], ), migrations.CreateModel( name='Neighborhood', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Locality', models.CharField(max_length=30)), ('name', models.CharField(max_length=30)), ('occupants_count', models.IntegerField(blank=True, default=0)), ('date', models.DateTimeField(auto_now_add=True)), ], ), migrations.RemoveField( model_name='post', name='profile', ), migrations.RemoveField( model_name='post', name='user_profile', ), migrations.RemoveField( model_name='ratings', name='post_rated', ), migrations.RemoveField( model_name='profile', name='bio', ), migrations.AddField( model_name='profile', name='email', field=models.EmailField(blank=True, max_length=70), ), migrations.DeleteModel( name='Post', ), migrations.DeleteModel( name='Ratings', ), migrations.AddField( model_name='neighborhood', name='profile', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='app.Profile'), ), migrations.AddField( model_name='neighborhood', name='user_profile', field=models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts', to=settings.AUTH_USER_MODEL), ), migrations.AddField( model_name='business', name='biz_hood', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='app.Neighborhood'), ), migrations.AddField( model_name='business', name='biz_owner', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='app.Profile'), ), ]
""" Plugin to create a quick panel lookup that lets you jump between comment titles """ import os import imp import time import sys import sublime import sublime_plugin import re # # > Plugin command # class table_of_comments_command(sublime_plugin.TextCommand): def run(self, edit, move=None, fold=None, unfold=None, generate=None): toc = TableOfComments(self.view, edit) if move is not None: self.traverse_comments(toc, move) elif fold is not None or unfold is not None: self.fold_comments(toc, fold, unfold) elif generate is not None: toc.create_toc() else: self.show_quick_panel(toc) # >> Quick panel def show_quick_panel(self, toc): view = self.view toc._debug_start('Show quick panel') toc.create_toc() # Get current section from cursor show_index = 0 current_section = toc.get_section_from_cursor() if current_section: show_index = current_section['index'] # Store positions for returning to return_to = [] for each in view.sel(): return_to.append(each) toc.return_to = return_to # Pop up the panel titles = toc.get_comment_titles('string') self.window = sublime.active_window() if sys.version_info < (3, 0): self.window.show_quick_panel(titles, toc.on_list_selected_done) else: self.window.show_quick_panel( # Pass on_highlighted callback titles, toc.on_list_selected_done, False, show_index, toc.on_list_selected_done) toc._debug_stop('Show quick panel') # >> Up down # Allows moving up and down through comments def traverse_comments(self, toc, move): view = self.view titles = toc.get_comment_titles() sel = view.sel() if len(sel) == 1: current_line_no, col_no = view.rowcol(sel[0].b) for x in range(len(titles)): item = titles[x] if move == 'up': # moving up if item['line'] < current_line_no: if x+1 < len(titles): if titles[x+1]['line'] >= current_line_no: return toc.on_list_selected_done(x) else: return toc.on_list_selected_done(x) else: # moving down if item['line'] > current_line_no: return toc.on_list_selected_done(x) # >> Fold comments def fold_comments(self, toc, fold, unfold): comments = self.view.find_by_selector('comment') is_all = fold == 'all' or unfold == 'all' # Get the content regions to fold fold_regions = [] if is_all: sections = toc.get_sections() for s in sections: content_region = s['content_region'] fold_regions.append(content_region) else: section = toc.get_section_from_cursor() fold_regions.append(section['content_region']) # Fold, unfold or toggle if fold is not None: self.view.fold(fold_regions) elif unfold is not None: self.view.unfold(fold_regions) elif self.view.fold(fold_regions) is False: self.view.unfold(fold_regions) # # > Plugin class # class TableOfComments: def __init__(self, view, edit): self.view = view self.edit = edit # # Debug timing functions # # timers = {} def _debug_start(self, ref): self.timers[ref] = time.time() def _debug_stop(self, ref): start_time = self.timers[ref] duration = time.time() - start_time self.timers[ref] = duration # # Table TOC tag # def get_toc_region(self, view): title = get_setting('toc_title', str) pattern = r'\/\*(\s|\*)*'+title+r'[^\/]*\/' matches = view.find_all(pattern) for region in (matches): if self.is_scope_or_comment(view, region): return region return None def is_in_toc_region(self, view, region): toc_region = self.get_toc_region(view) if toc_region: if region.a > toc_region.a and region.a < toc_region.b: return True return False def create_toc(self): view = self.view edit = self.edit region = self.get_toc_region(view) if region: toc = self.compile_toc(view) existing = view.substr(region) if existing != toc: view.replace(edit, region, toc) def compile_toc(self, view): self._debug_start('compile-toc') titles = self.get_comment_titles('string') title = get_setting('toc_title', str) start = get_setting('toc_start', str) line = get_setting('toc_line', str) end = get_setting('toc_end', str) front = "\n" + line output = start + front + title + front.rstrip() for title in titles: comment_level = title.count('-') + 1 try: level = int(get_setting('toc_level', int)) if level >= comment_level: output += front + title except TypeError: output += front + title output += "\n"+end self._debug_stop('compile-toc') return output # # >> Quick panel # # Jump list quick menu selected def on_list_selected_done(self, picked): if picked == -1: self.view.sel().clear() for each in self.return_to: self.view.sel().add(each) self.view.show(self.view.sel()) else: titles = self.get_comment_titles() title = titles[picked] row = title['line'] point = self.view.text_point(row, 0) line_region = self.view.line(point) # Reference the 'text' within the line only text = title['text'] text = re.escape(text) text = text.replace('\>', '>') # ">" does not work when escaped text_region = self.view.find(text, line_region.a) # view.rowcol() returns a zero based line number line = int(title['line'])+1 # Use goto_line to move the document then highlight if sublime.active_window().active_view(): sublime.active_window().active_view().run_command( "goto_line", {"line": line} ) self.view.sel().clear() self.view.sel().add(text_region) # # >> Parse # # Core parse function (returned as dict or list) def get_comment_titles(self, format='dict', test=None): self._debug_start('get-comment-titles') view = self.view level_char = get_setting('level_char', str) comment_chars = get_setting('comment_chars', str) comment = list(comment_chars) comment = 'DIV'.join(comment_chars) start = r'\s|'+re.escape(comment).replace('DIV', '|') # build the pattern to match the comment pattern = r'^('+start+')*?('+format_pattern(level_char)+'+)\s*' + \ r'(.+)('+start+')*?$' matches = view.find_all(pattern) results = [] toc_title = get_setting('toc_title', str) for match in matches: bits = view.lines(match) # go through each line for region in bits: # Ensure it's comment or source if not self.is_scope_or_comment(view, region): continue # Ensure not in toc region already if self.is_in_toc_region(view, region): continue line = view.substr(region) line_match = re.match(pattern, line) if not line_match: continue if level_char in line: # Add the level chars label = line_match.group(2) # Replace level char with toc char label = self.replace_level_chars(label) level = len(label) if label != '': label += ' ' # append the heading text, remove trailing comment chars text = line_match.group(3).strip(comment_chars+' ') label += text # Get the position if line != '' and line != toc_title: line_no, col_no = view.rowcol(region.b) if format == 'dict': results.append( {'label': label, 'text': text, 'level': level, 'region': region, 'line': line_no}) else: results.append(label) self._debug_stop('get-comment-titles') return results # # >> Plugin sections (regions) # # Returns list of sections dicts with all related values def get_sections(self): comments = self.view.find_by_selector('comment') titles = self.get_comment_titles() # Only get comment blocks with titles within them sections = [] for i in range(len(comments)): # we need to get the whole lines in order to match # indented title regions correctly comment = self.view.line(comments[i]) # If multiple lines returned check for valid lines comment_lines = self.view.split_by_newlines(comment) if len(comment_lines) > 0: fixed_comment_lines = [] for x in range(len(comment_lines)): if self.is_scope_or_comment(self.view, comment_lines[x]): fixed_comment_lines.append(comment_lines[x]) if len(fixed_comment_lines) > 0: comment = sublime.Region( fixed_comment_lines[0].a, fixed_comment_lines[len(fixed_comment_lines)-1].b ) # Append to sections for title in titles: if comment.contains(title['region']): title['title_region'] = comment sections.append(title) break # Get the fold regions (content blocks) s_no = len(sections) view_size = self.view.size() for i in range(s_no): section = sections[i] section['index'] = i region = section['title_region'] # content_region = the area that will be hidden when folded fold_start = region.b + 1 fold_end = view_size # get the next section of equal or lower level for j in range(i+1, s_no): if sections[j]['level'] <= section['level']: fold_end = sections[j]['title_region'].a - 1 break content_region = sublime.Region(fold_start, fold_end) section['content_region'] = content_region return sections # Returns the title and content region from cursor def get_section_from_cursor(self): # Current selection sel = self.view.sel()[0] line_no, col_no = self.view.rowcol(sel.b) # Find within sections sections = self.get_sections() for section in reversed(sections): if section['line'] <= line_no: return section return False # Only find titles within genuine comments # This will no doubt need to be improved over time for various syntaxes # ('string.quoted' makes python """ comments """ not trigger) def is_scope_or_comment(self, view, region): line = view.substr(region) # Trim to scope # If line starts with whitespace, the syntax returned is "source" not # "comment" for the initial char trimmed = line.lstrip() diff = len(line) - len(trimmed) scope = view.scope_name(region.a + diff) # Check out scope comments_scope = ['comment'] disallow = ['string.quoted'] for each in comments_scope: if scope.find(each) < 0: return False for each in disallow: if scope.find(each) > 0: return False return True def replace_level_chars(self, line): level_char = get_setting('level_char', str) toc_char = get_setting('toc_char', str) # remove the last char so level one has no indent line = line[:-1].replace(level_char, toc_char) return line # # Helpers # def format_pattern(pattern): pattern = re.escape(pattern) pattern = pattern.replace('\>', '>') return pattern def get_setting(name, typeof=str): settings = sublime.load_settings('tableofcomments.sublime-settings') setting = settings.get(name) if setting: if typeof == str: return setting if typeof == bool: return setting is True elif typeof == int: return int(settings.get(name, 500)) else: if typeof == str: return '' else: return None # # Testing infrastructure # if sys.version_info < (3, 0): import tests else: from . import tests class table_of_comments_run_tests_command(sublime_plugin.TextCommand): def run(self, edit): reload_test_bootstrap() tests.run(self.view, edit) # For developing, reload tests.* which in turn reloads it's sub packages basedir = os.getcwd() def reload_test_bootstrap(): os.chdir(basedir) path = 'tests' if sys.version_info < (3, 0): __import__(path) sys.modules[path] = reload(sys.modules[path]) else: imp.reload(eval(path)) class table_of_comments_auto_runner(sublime_plugin.EventListener): def on_pre_save(self, view): if get_setting('toc_generate_on_save', bool): view.run_command('table_of_comments', { 'generate': True })
# coding=utf-8 import numpy as np import scipy.stats from .cobsampler import ChangeOfBasisSampler class Test(object): """ Super class implementing tests for CoBSampler. Sub-classes should specify target distribution. """ def __init__(self, ndim, target, nsteps, cobparams={}): self.ndim = ndim self.targetdist = target self.niterations = nsteps self.firscob = cobparams.pop('firstcob', 1000) self.ncob = cobparams.pop('ncob', 1000) self.updatecob = cobparams.pop('updatecob', 1000) self.sampler = ChangeOfBasisSampler def run(self, p0): # initialise sampler sampler = self.sampler(self.ndim, self.targetdist.logpdf, (), {}, startpca=self.firscob, nupdatepca=self.updatecob, npca=self.ncob) # p0 = np.zeros(self.ndim) sampler.run_mcmc(self.niterations, p0) return sampler class MultinormalTest(Test): """ Class implementing test on multinormal distribution. """ def __init__(self, nsteps, ndim=2, mean=None, cov=None, cobparams={}): """ :param int nsteps: number of MCMC iterations. :param int ndim: target dimension :param np.array cov: covariance matrix. If None, random covariance is constructed. """ target = Multinormal(ndim, mean, cov) super(MultinormalTest, self).__init__(ndim, target, nsteps, cobparams) class RosenbrockTest(Test): """ Class implementing test on Rosenbrock density. """ def __init__(self, nsteps, a=1, b=100, cobparams={}): target = Rosenbrock(a, b, 2) super(RosenbrockTest, self).__init__(2, target, nsteps, cobparams) class TargetDistribution(object): """ Class for test target distributions. """ class Multinormal(TargetDistribution): def __init__(self, ndim=2, mean=None, cov=None): self.ndim = ndim if mean is None: mean = np.zeros(ndim) else: assert len(mean) == ndim, 'Dimensions of mean arry do no match ' \ 'of dimensions.' self.mean = mean if cov is not None: assert cov.shape == (ndim, ndim), 'Dimensions of covariance ' \ 'matrix do no match.' self.cov = cov else: # If covariance is not given, initialise at random. self.cov = 0.5 - np.random.rand(self.ndim ** 2).reshape((self.ndim, self.ndim)) self.cov = np.triu(self.cov) self.cov += self.cov.T - np.diag(self.cov.diagonal()) self.cov = np.dot(self.cov, self.cov) self.dist = scipy.stats.multivariate_normal(mean=self.mean, cov=self.cov) def pdf(self, x): """ Return value of pdf at point x :param np.array x: Position in parameter space. :return: """ return self.dist.pdf(x) def logpdf(self, x): return self.dist.logpdf(x) class Rosenbrock(TargetDistribution): """ Class implementing the Rosenbrock density. """ def __init__(self, a=1, b=100, ndim=2): self.a = a self.b = b self.ndim = ndim def pdf(self, x): if (np.abs(x[0]) > 10) or (np.abs(x[1]) > 10): return 0 return np.exp(-(self.a - x[0])**2 - self.b*(x[1] - x[0]**2)**2) def logpdf(self, x): if (np.abs(x[0]) > 30) or (np.abs(x[1]) > 30): return -np.inf else: return -(self.a - x[0])**2 - self.b*(x[1] - x[0]*x[0])**2 def contour(self, k, n=1000): """ :param float k: constant identifying contour. :param int n: number of points used to construct contour. """ x = np.linspace(self.a - k, self.a + k, n) yplus = x**2 + np.sqrt( (k**2 - (x - self.a)**2)/self.b ) yminus = x ** 2 - np.sqrt((k ** 2 - (x - self.a) ** 2) / self.b) xx = np.concatenate((x, x[::-1])) yy = np.concatenate((yminus, yplus[::-1])) return np.array([xx, yy]) def rvs(self, size=1): """ Draw samples from the Rosenbrock density. Uses the fact that p(x1,x2) = p(x2|x1)*p(x1) and that: 1) p(x1) \propto N(a, 1) 2) p(x2|x1) \propto N(x1**2, 1/sqrt(2*b)) """ # Draw samples from marginal p(x1) x1 = np.random.randn(size) + self.a # Draw samples from conditional, p(x2 | x1) sigma = 1./np.sqrt(2 * self.b) x2 = np.random.randn(size) * sigma + x1**2 return np.array([x1, x2]).T
#!/usr/bin/env python # # MIT License # # Copyright (c) 2018-2019 Groupe Allo-Media # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import argparse from typing import List, Tuple import pika from pika.exceptions import ( ChannelClosed, ConnectionClosed, AMQPConnectionError, AMQPHeartbeatTimeout, ) class Resurrection: def __init__( self, url: str, queue: str, batch_size: int = 1, count: int = 0 ) -> None: connection = pika.BlockingConnection(pika.URLParameters(url)) channel = connection.channel() self._batch_size = batch_size result = channel.queue_declare(queue, passive=True) channel.basic_qos(prefetch_count=self._batch_size) queue_name = result.method.queue self._count = result.method.message_count if count == 0 else count self._seen = 0 self.messages: List[ Tuple[pika.spec.Basic.Deliver, pika.spec.BasicProperties, bytes] ] = [] channel.basic_consume( queue=queue_name, on_message_callback=self.callback, auto_ack=False ) self._channel = channel self._connection = connection def callback( self, ch: pika.channel.Channel, method: pika.spec.Basic.Deliver, properties: pika.spec.BasicProperties, body: bytes, ) -> None: # we cache the message to avoid loops if # some resurrected messages come back dead again. self.messages.append((method, properties, body)) print("Buffering message", method) self._seen += 1 if self._seen == self._count: print("replay") self.replay() print("stop consuming") self._channel.stop_consuming() elif self._seen % self._batch_size == 0: print("replay batch") self.replay() def replay(self): for method, properties, body in self.messages: print("Replaying", method) print() self._channel.basic_publish( exchange=properties.headers["x-first-death-exchange"], routing_key=method.routing_key, body=body, properties=pika.BasicProperties( delivery_mode=2, # make message persistent content_type=properties.content_type, reply_to=properties.reply_to, correlation_id=properties.correlation_id, headers=properties.headers, ), ) # Confirm consumption only if successfuly resent self._channel.basic_ack(method.delivery_tag) self.messages.clear() def run(self): try: self._channel.start_consuming() except KeyboardInterrupt: return True except ( ChannelClosed, ConnectionClosed, AMQPConnectionError, AMQPHeartbeatTimeout, ) as e: print(e) return False else: return True finally: if not self._connection.is_closed: self._connection.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Resend dead letters.") parser.add_argument("amqp_url", help="URL of the broker, including credentials.") parser.add_argument("queue", help="Name of dead-letter queue.") parser.add_argument( "--count", help="Number of message to resurrect (default is 0 = all).", type=int, default=0, ) parser.add_argument( "--batch_size", help="for more efficiency, if the messages are small, process them in batches of this size (default is 1).", type=int, default=1, ) # parser.add_argument( # "--filter", # help="Log patterns to subscribe to (default to all)", # nargs="*", # default=["#"], # ) args = parser.parse_args() expected_stop = False print("Ctrl-C to quit.") print("Resurrecting from:", args.queue) inspector = Resurrection(args.amqp_url, args.queue, args.batch_size, args.count) if inspector.run(): print("Done!") else: print("connection error (closed)")
# pylint: disable-msg=no-name-in-module,import-error from distutils.cmd import Command from os import getcwd from subprocess import check_call from setuptools import setup class ComputePerformingFundsCommand(Command): description = 'calculate performing funds' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): command = ['python', '-m', 'scripts.compute_performing_funds'] return check_call(command) class ComputeReturnsCommand(Command): description = 'compute returns from db' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): command = ['python', '-m', 'scripts.compute_returns'] return check_call(command) class PylintCommand(Command): description = 'run pylint on Python source files' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): command = ['pylint', getcwd()] return check_call(command) class ListCollectionsCommand(Command): description = 'list all the collections in db' user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): command = ['python', '-m', 'scripts.list_collections'] return check_call(command) setup(cmdclass={ 'compute_performing_funds': ComputePerformingFundsCommand, 'compute_returns': ComputeReturnsCommand, 'lint': PylintCommand, 'list_collections': ListCollectionsCommand })
"""User Expression module ============================= Contains the definition of user defined expressions. It has the class UserExpression that evaluates an expression defined in an string. Example: Creating an expression:: true_value = UserExpression("1==1").evaluate() false_expression = UserExpression("1==2").evaluate() true_value = 3 == UserExpression("1+2").evaluate() .. warning:: Currently the use of an object with this class is unsafe. Is very dangerous if you accept strings to evaluate from untrusted input because it can execute malicious code. """ from typing import Any from gsf.core.expressions import Expression class UserExpression(Expression): value: Any """Value of the expression.""" def __init__(self, expression_value: Any): self.value = expression_value def evaluate(self): return self.value def __str__(self): return str(self.evaluate())
# -*- coding: utf-8 -*- """ Created on Thu Dec 19 19:33:17 2019 @author: Mysia """ import numpy as np def nnloss(x,t,dzdy): instanceWeights=np.ones(len(x)) res=x-t if(dzdy==0): y = (1/2) * instanceWeights * np.power(res,2) else: y = res return y
import time, DAN, requests, random, datetime import sys from threading import Thread import re import json import traceback name = "" light = 0 interval = 50 changeinterval = 10 #s ledmesseges = {} ledindex = 0 skip = 0 def sendMessegeToLEDMatrix(msg): DAN.push('LEDCommandSender', json.dumps({'model':'LEDMatrix', 'data':[msg]})) def loop(): global changeinterval global ledindex global skip while 1: if skip == 0: now = datetime.datetime.now() for index in list(ledmesseges.keys()): if index < now: if list(ledmesseges.keys()).index(index) < ledindex: ledindex = ledindex - 1 del ledmesseges[index] if len(ledmesseges): print("ledsent:"+ledmesseges[list(ledmesseges.keys())[ledindex]]) sendMessegeToLEDMatrix(ledmesseges[list(ledmesseges.keys())[ledindex]]); if ledindex < len(ledmesseges)-1: ledindex = ledindex+1 else: ledindex = 0 else: skip = 0 time.sleep(changeinterval) def push2queue(msg, sec): global ledmesseges ledmesseges[datetime.datetime.now() + datetime.timedelta(seconds = sec)] = msg def interrupt(msg): global skip skip = 1 DAN.push('LEDCommandSender', json.dumps({'model':'LEDMatrix', 'data':[msg]})) loopthread = Thread(target=loop) loopthread.start() ServerURL = 'http://140.113.199.189:9999' #with no secure connection #ServerURL = 'https://DomainName' #with SSL connection Reg_addr = None #if None, Reg_addr = MAC address DAN.profile['dm_name']='LEDMatrixManager' DAN.profile['df_list']=['LEDCommandSender', 'LEDManagerReciever'] DAN.profile['d_name']= None # None for autoNaming DAN.device_registration_with_retry(ServerURL, Reg_addr) while True: try: Msg=DAN.pull('LEDManagerReciever') if Msg != None: msg = json.loads(Msg[0]) model = msg['model'] if model == 'TextSender': print(msg['data'][0]) m = re.match("^.*現在(.*)天氣.*$", msg['data'][0]) if m != None: DAN.push('LEDCommandSender', json.dumps({'model':'weather', 'data':[m.group(1)]})) m = re.match("^.*現在(時間|幾點).*$", msg['data'][0]) if m != None: interrupt('{0:%H:%M}'.format(datetime.datetime.now())) m = re.match("^.*今天.*(幾月|幾號|幾日|日期).*$", msg['data'][0]) if m != None: push2queue('{0:today: %m-%d-%Y}'.format(datetime.datetime.now()), 60) m = re.match("^"+name+".*亮度([0-9]*).*$", msg['data'][0]) if m != None: light = eval(m.group(1)) DAN.push('LEDCommandSender', json.dumps({'model':'LEDMatrix', 'data':['!intensity '+str(light)]})) m = re.match("^"+name+".*亮.?點.*$", msg['data'][0]) if m != None: if light < 15: light += 1 DAN.push('LEDCommandSender', json.dumps({'model':'LEDMatrix', 'data':['!intensity '+str(light)]})) m = re.match("^"+name+".*暗.?點.*$", msg['data'][0]) if m != None: if light > 0: light -= 1 DAN.push('LEDCommandSender', json.dumps({'model':'LEDMatrix', 'data':['!intensity '+str(light)]})) m = re.match("^"+name+".*快.?點.*$", msg['data'][0]) if m != None: interval /= 2 DAN.push('LEDCommandSender', json.dumps({'model':'LEDMatrix', 'data':['!interval '+str(interval)]})) m = re.match("^"+name+".*慢.?點.*$", msg['data'][0]) if m != None: interval *= 2 DAN.push('LEDCommandSender', json.dumps({'model':'LEDMatrix', 'data':['!interval '+str(interval)]})) m = re.match("^"+name+".*間隔.*(久|長).?點.*$", msg['data'][0]) if m != None: if changeinterval <3: changeinterval += 3 m = re.match("^"+name+".*間隔.*(短|小).?點.*$", msg['data'][0]) if m != None: if changeinterval > 3: changeinterval -= 3 m = re.match("^"+name+".*向左滑.*$", msg['data'][0]) if m != None: DAN.push('LEDCommandSender', json.dumps({'model':'LEDMatrix', 'data':['!mode scrollLeft']})) m = re.match("^"+name+".*向右滑.*$", msg['data'][0]) if m != None: DAN.push('LEDCommandSender', json.dumps({'model':'LEDMatrix', 'data':['!mode scrollRight']})) m = re.match("^.*你.*名字.*$", msg['data'][0]) if m != None: interrupt(name) m = re.match("^"+name+".*插播(.*)$", msg['data'][0]) if m != None: interrupt(m.group(1)) m = re.match("^"+name+".*顯示([0-9]*)秒(.*)$", msg['data'][0]) if m != None: push2queue(m.group(2), eval(m.group(1))) m = re.match("^"+name+".*改名.*([a-z]*)$", msg['data'][0]) if m != None: name = m.group(1) m = re.match("^"+name+"笑臉$", msg['data'][0]) if m != None: interrupt("O wO") m = re.match("^"+name+"哭臉$", msg['data'][0]) if m != None: interrupt("Q wQ") m = re.match("^"+name+"眨眼$", msg['data'][0]) if m != None: interrupt("> w<") m = re.match("^(!.*)$", msg['data'][0]) if m != None: DAN.push('LEDCommandSender', json.dumps({'model':'LEDMatrix', 'data':[m.group(1)]})) elif model == 'weather': push2queue(msg['data'][0], 60) except Exception as e: print(e) print(traceback.format_exception(None, e, e.__traceback__), file=sys.stderr, flush=True) if str(e).find('mac_addr not found:') != -1: print('Reg_addr is not found. Try to re-register...') DAN.device_registration_with_retry(ServerURL, Reg_addr) else: print('Connection failed due to unknow reasons.') time.sleep(1) time.sleep(0.2)
import argparse import sys from subprocess import call import numpy as np def parseVals(fname): f = open(fname) line = f.readline() rtvals = [] schemes = [] while line: if (line == '' or line == '\n'): break tmp = line.split() if (tmp[0] == 'matrix'): schemes = tmp[1:] # print 'number of schemes:', len(schemes) # print 'scheme names:', ' '.join(schemes) line = f.readline() continue mat = tmp[0] tmp = tmp[1:] assert len(tmp) == len(schemes) for (rt, sch) in zip(tmp, schemes): rtvals.append((sch, float(rt), mat, 1.0 / float(rt))) line = f.readline() f.close() return schemes, rtvals def perfProfVals(schemes, rtvals, args): ''' partitioning instance = (mat) ''' inst = {} for x in rtvals: t = x[2] if (t not in inst): inst[t] = [] inst[t].append((x[0], x[3])) # normalize instNew = {} for k, v in inst.iteritems(): if args.lines == '': best = min([x[1] for x in v]) else: best = min([v[int(i)][1] for i in args.lines.split(',')]) instNew[k] = [] for i in range(len(v)): x = list(v[i]) x[1] = float(x[1]) / float(best) instNew[k].append(tuple(x)) inst = instNew ninst = len(inst) sys.stdout.write('Number of instances: %d\n' % (ninst)) # pp.pprint(inst) xmax = max([x[3] for x in rtvals]) xticks = [round(x, 3) for x in np.arange(1.00, args.xmax * 10, args.xstep)] # xticks = [round(x,3) for x in np.arange(1.00, args.xmax, args.xstep)] # xticks.extend(np.linspace(args.xmax, xmax, 10000)) perfvals = {} for sch in schemes: perfvals[sch] = [0 for x in range(len(xticks))] for k, v in inst.iteritems(): for x in v: sch = x[0] normval = x[1] for i in range(len(xticks)): if (normval <= xticks[i]): perfvals[sch][i] += 1 # percentages for k, v in perfvals.iteritems(): for i in range(len(v)): v[i] = round(float(v[i]) / float(ninst), 3) return perfvals, xticks def genPlot(schemes, perfvals, xticks, args): outdatafile = open((args.name + '-perf-prof.dat'), 'w') outgpfile = open((args.name + '-perf-prof.p'), 'w') s = '# within%\t' for sch in schemes: s += str(sch) + '\t' s += '\n' outdatafile.write(s) yticks = [round(y, 3) for y in np.arange(0.05, 1.05, args.ystep)] yticksVals = [] for y_idx in range(len(yticks)): y = yticks[y_idx] yticksVals.append([]) for sch in schemes: vals = perfvals[sch] x = '?' for i in range(len(xticks)): if (y <= vals[i]): x = xticks[i] break yticksVals[y_idx].append(x) # one value per scheme for x_idx in range(len(xticks)): x = xticks[x_idx] for y_idx in range(len(yticks)): y = yticks[y_idx] s = str(x) + '\t' for schVal in yticksVals[y_idx]: if (str(schVal) == '?'): s += '?\t' elif (schVal == x): s += str(y) + '\t' else: # sys.stdout.write('this should not happen.\n') s += '?\t' s += '\n' outdatafile.write(s) outdatafile.close() outgpfile.write('set term postscript eps enhanced color\n') outgpfile.write('set output \'' + args.name + '-perf-prof.eps' + '\'\n') outgpfile.write("set size 2.00,2.75\n") outgpfile.write("unset log\n") outgpfile.write("unset label\n") outgpfile.write("set xrange [%f:%f]\n" % (0.98, args.xmax)) outgpfile.write("set yrange [0:1.0]\n") xstr = "set xtics (" for x in np.arange(1.00, args.xmax, 0.20): xstr += "\"" + str(round(x, 2)) + "\"" + " " + str(round(x, 2)) + ", " xstr = xstr[0:len(xstr) - 2] xstr += ") font \", 18\"" outgpfile.write("%s\n" % (xstr)) ystr = "set ytics (" for y in np.arange(0.00, 1.10, 0.10): ystr += "\"" + str(round(y, 2)) + "\"" + " " + str(round(y, 2)) + ", " ystr = ystr[0:len(ystr) - 2] ystr += ") font \", 18\"" outgpfile.write("%s\n" % (ystr)) # outgpfile.write('set title \"' + # args.title + # '\" font \", 24\"\n') outgpfile.write('set xlabel \"Parallel runtime relative to the best' '\" font \", 24\"\n') outgpfile.write('set ylabel \"fraction of test cases\" font \", 24\"\n') # outgpfile.write("set key inside right bottom spacing 1.40 font \", 20\"\n") # outgpfile.write("set key horizontal outside center bottom spacing 1.40 font \", 24\"\n") if args.style == 1: pointIds = [5, 4, 7, 6, 13, 12, 9, 8, 11, 10, 15, 14] pointSizes = [1.5] * 12 lineTypes = [1] * 12 colorIds = ['#DC143C', '#DC143C', '#0000FF', '#0000FF', '#FF7F50', '#FF7F50', '#DA70D6', '#DA70D6', '#3CB371', '#3CB371', '#808080', '#808080'] outgpfile.write("set bmargin 16\n") # outgpfile.write("set key horizontal outside bottom center maxcolumns 3 font \",12\n") # outgpfile.write("unset key\n") outgpfile.write("set key horizontal inside right bottom maxcolumns 2\n") # outgpfile.write("set key box\n") elif args.style == 2: pointIds = [5, 7, 13, 1, 2, 3] pointSizes = [1] * 12 lineTypes = [1] * 12 colorIds = ['#DC143C', '#0000FF', '#FF7F50', '#DA70D6', '#3CB371', '#808080'] outgpfile.write("set key horizontal outside bottom center maxcolumns 4 font \",24\n") elif args.style == 3: pointIds = [5, 7, 4, 6, 1] pointSizes = [1] * 12 lineTypes = [1] * 12 colorIds = ['#DC143C', '#0000FF', '#DC143C', '#0000FF', '#DA70D6'] outgpfile.write("set key horizontal inside right bottom maxcolumns 1 font \",24\n") elif args.style == 4: pointIds = [5, 7, 13, 15, 1, 2, 3] pointSizes = [1] * 12 lineTypes = [1] * 12 colorIds = ['#DC143C', '#0000FF', '#FF7F50', '#808080', '#DA70D6', '#3CB371', '#808080'] outgpfile.write("set key horizontal outside center bottom maxcolumns 2 font \",24\n") else: exit(1) # pointIds = [0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 5, 7] # count = 12 # pointIds = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # count = 12 pointIds = [4, 6, 8, 10, 12, 14, 1, 2] pointSizes = [1.35, 1.60, 1.90, 1.90, 1.80, 1.70, 1.80, 1.80] colorIds = ['#DC143C', '#FF7F50', '#DA70D6', '#3CB371', '#808080', '#0000FF', '#B8860B', '#008B8B'] # colorIds = ['#000000'] * len(schemes) lineTypes = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] outgpfile.write('set bmargin 14\n') outgpfile.write("set key horizontal outside center bottom\n") colorIds = ['#DC143C', '#FF7F50', '#DA70D6', '#3CB371', '#808080', '#0000FF'] pointIds = [-1, 0, 1, 2, 3, -1, 4, 6, 8, 10, 12, 4, 5, 7, 9, 11, 13, 5] oldLen = len(colorIds) while len(colorIds) < len(schemes): colorIds.append(colorIds[len(colorIds) % oldLen]) oldLen = len(lineTypes) while len(lineTypes) < len(schemes): lineTypes.append(lineTypes[len(lineTypes) % oldLen]) oldLen = len(pointIds) while len(pointIds) < len(schemes): pointIds.append(pointIds[len(pointIds) % oldLen]) oldLen = len(pointSizes) while len(pointSizes) < len(schemes): pointSizes.append(pointSizes[len(pointSizes) % oldLen]) if args.lines == '': lines = [i for i in range(len(schemes))] else: lines = [int(i) for i in args.lines.split(',')] for i in range(len(lines)): outgpfile.write('set style line %d lc rgb \'%s\' ' 'lt %d lw 2 pt %d ps %.2f\n' % (i + 1, colorIds[i], lineTypes[i], pointIds[i], pointSizes[i])) outgpfile.write('plot ') first = True for i, v in enumerate(lines): if first: first = False else: outgpfile.write(', \\\n') outgpfile.write('\t"' + args.name + '-perf-prof.dat' + '\" u 1:%d t \'%s\' ' 'w linespoints ls %d' % (v + 2, '%s' % (schemes[v]), i + 1)) outgpfile.write("\nset output\n") outgpfile.close() call(["gnuplot", args.name + '-perf-prof.p']) return parser = argparse.ArgumentParser() parser.add_argument('result_file') parser.add_argument('--xstep', type=float, default=0.010) parser.add_argument('--xmax', type=float, default=2.55) parser.add_argument('--ystep', type=float, default=0.025) parser.add_argument('--title', type=str, default="TODO: title") parser.add_argument('--style', type=int, default=0) parser.add_argument('--lines', type=str, default="") parser.add_argument('--name', type=str, default="a") args = parser.parse_args() schemes, rtvals = parseVals(args.result_file) perfvals, xticks = perfProfVals(schemes, rtvals, args) genPlot(schemes, perfvals, xticks, args) # genPlot(schemes, perfvals, xticks, "Two-phase schemes (cori-KNL)", args) # genPlot(schemes, perfvals, xticks, "One-phase schemes (cori-KNL)", args)
from setuptools import setup setup( name='deepgp_approxep', version='1.0', description='Approximate Expectation Propagation for Deep GPs', author='Thang Bui et al (2016)', author_email='thang.buivn@gmail.com', packages=['deepgp_approxep'], #same as name install_requires=['numpy'], #external packages as dependencies )
# The rand7() API is already defined for you. # def rand7(): # @return a random integer in the range 1 to 7 class Solution: def rand10(self): """ :rtype: int """ a = rand7() while a > 5: a = rand7() b = rand7() while b == 4: b = rand7() if b > 4: return 5 + a else: return a # @lc code=end
# -*- coding: utf-8 -*- # """*********************************************************************************************""" # FileName [ config.py ] # Synopsis [ configuration settings ] # Author [ Ting-Wei Liu (Andi611) ] # Copyright [ Copyleft(c), NTUEE, NTU, Taiwan ] """*********************************************************************************************""" import argparse def get_config(): parser = argparse.ArgumentParser() parser.add_argument('mode', type=str, choices=['train', 'moments', 'preview', 'incept', 'infer', 'generate']) parser.add_argument('--conditional', action='store_true', help='Train a conditional SpecGAN') data_args = parser.add_argument_group('Data') data_args.add_argument('--data_dir', type=str, help='Data directory') data_args.add_argument('--data_tfrecord_prefix', type=str, help='Prefix of the .tfrecord files') data_args.add_argument('--data_first_window', action='store_true', help='If set, only use the first window from each audio example') data_args.add_argument('--data_moments_fp', type=str, help='Path to store and retrieve the data moments .pkl file') SpecGAN_args = parser.add_argument_group('SpecGAN') SpecGAN_args.add_argument('--SpecGAN_kernel_len', type=int, help='Length of square 2D filter kernels') SpecGAN_args.add_argument('--SpecGAN_dim', type=int, help='Dimensionality multiplier for model of G and D') SpecGAN_args.add_argument('--SpecGAN_batchnorm', action='store_true', help='Enable batchnorm') SpecGAN_args.add_argument('--SpecGAN_disc_nupdates', type=int, help='Number of discriminator updates per generator update') SpecGAN_args.add_argument('--SpecGAN_loss', type=str, choices=['dcgan', 'lsgan', 'wgan', 'wgan-gp'], help='Which GAN loss to use') SpecGAN_args.add_argument('--SpecGAN_genr_upsample', type=str, choices=['zeros', 'nn', 'lin', 'cub'], help='Generator upsample strategy') SpecGAN_args.add_argument('--SpecGAN_ngl', type=int, help='Number of Griffin-Lim iterations') SpecGAN_args.add_argument('--SpecGAN_word_embedding_dim', type=int, help='Dimension for word conditional vectors') SpecGAN_args.add_argument('--SpecGAN_model_initializer', type=str, choices=['orthogonal', 'default'], help='GAN model initializer') SpecGAN_args.add_argument('--SpecGAN_prior_noise', type=str, choices=['uniform', 'normal'], help='GAN prior distribution') train_args = parser.add_argument_group('Train') train_args.add_argument('--train_dir', type=str, help='Training directory') train_args.add_argument('--train_batch_size', type=int, help='Batch size') train_args.add_argument('--train_max_step', type=int, help='Maximum training steps before terminating training') train_args.add_argument('--train_save_secs', type=int, help='How often to save model') train_args.add_argument('--train_summary_secs', type=int, help='How often to report summaries') train_args.add_argument('--train_display_step', type=int, help='How often to display training log') train_args.add_argument('--train_save_log_step', type=int, help='How often to save training log') preview_args = parser.add_argument_group('Preview') preview_args.add_argument('--preview_n', type=int, help='Number of samples to preview') incept_args = parser.add_argument_group('Incept') incept_args.add_argument('--incept_metagraph_fp', type=str, help='Inference model for inception score') incept_args.add_argument('--incept_ckpt_fp', type=str, help='Checkpoint for inference model') incept_args.add_argument('--incept_n', type=int, help='Number of generated examples to test') incept_args.add_argument('--incept_k', type=int, help='Number of groups to test') preview_args = parser.add_argument_group('Generate') preview_args.add_argument('--generate_dir', type=str, help='Generation directory') preview_args.add_argument('--generate_num', type=int, help='Number of samples to generate') preview_args.add_argument('--generate_visualize_num', type=int, help='Number of samples to generate and visualize') constant_args = parser.add_argument_group('Constants') constant_args.add_argument('--_VOCAB_SIZE', type=int, help='Expected vocabulary size') constant_args.add_argument('--_FS', type=int, help='Frequency') constant_args.add_argument('--_WINDOW_LEN', type=int, help='Window length') constant_args.add_argument('--_D_Z ', type=int, help='Dimension of noise z') constant_args.add_argument('--_LOG_EPS', type=float, help='Log eps constant') constant_args.add_argument('--_CLIP_NSTD', type=float, help='Clip stantard normalization') parser.set_defaults( #---data---# data_dir='../data/sc09_preprocess_energy', data_tfrecord_prefix='sc09', data_first_window=False, data_moments_file='moments.pkl', #---SpecGAN---# SpecGAN_kernel_len=5, SpecGAN_dim=64, SpecGAN_batchnorm=False, SpecGAN_disc_nupdates=5, SpecGAN_loss='wgan-gp', SpecGAN_genr_upsample='zeros', SpecGAN_ngl=16, SpecGAN_word_embedding_dim=10, SpecGAN_model_initializer='default', SpecGAN_prior_noise='normal', #---train---# train_dir='../train_energy', train_batch_size=64, train_max_step=300000, train_save_secs=300, train_summary_secs=300, train_display_step=20, train_save_log_step=100, #---preview---# preview_n=32, #---incept---# incept_metagraph_fp='../eval/inception/infer.meta', incept_ckpt_fp='../eval/inception/best_acc-103005', incept_n=5000, incept_k=10, #---generate---# generate_dir='../generate_energy', generate_num=50, generate_visualize_num=50, #---constant---# _VOCAB_SIZE=10, _FS=16000, _WINDOW_LEN=16384, _D_Z=100, _LOG_EPS=1e-6, _CLIP_NSTD=3.0) args = parser.parse_args() return args
import time import twitter import twitter_tokens api = twitter.Api( consumer_key=twitter_tokens.api_key, consumer_secret=twitter_tokens.api_secret, access_token_key=twitter_tokens.access_token, access_token_secret=twitter_tokens.access_token_secret ) # api.PostUpdate("This is the first tweet") def temp_request(current_temp): try: latest_status = api.GetHomeTimeline(count=1) latest_status_text = latest_status[0].text.lower() latest_status_id = latest_status[0].id if "what" in latest_status_text and "temperature" in latest_status_text: api.DestroyStatus(latest_status_id) print "Getting and tweeting temp!" api.PostUpdate("The current temperature is %d deg. (%s)" % (current_temp, time.ctime())) except Exception as e: print "There is a problem with connecting to twitter at %s, please check your internet connection. The exception is %s" % (time.ctime(), e) pass def tweet(tweet): try: api.PostUpdate("%s (%s)" % (tweet, time.ctime())) except Exception as e: print "There is a problem connecting to twitter, could not tweet '%s' at %s due to exception %s" % (tweet, time.ctime(), e) pass # from twython import Twython # twy = Twython( # twitter_tokens.api_key, # twitter_tokens.api_secret, # twitter_tokens.access_token, # twitter_tokens.access_token_secret # ) # photo = open("/Users/macuser/Desktop/Programming/python/data_analysis/temp.png", 'rb') # twy.update_status_with_media(media=photo, status="Testing temp graphs.")
__copyright__ = "Copyright (c) 2020-2021 Jina AI Limited. All rights reserved." __license__ = "Apache-2.0" import os from PIL import Image from jina import Flow from ...pdf_segmenter import PDFSegmenter def test_flow(test_dir, doc_generator_img_text, expected_text): flow = Flow().add(uses=PDFSegmenter) doc_array = doc_generator_img_text for doc in doc_array: with flow: results = flow.post( on='/test', inputs=doc, return_results=True ) assert len(results[0].docs) == 1 chunks = results[0].docs[0].chunks assert len(chunks) == 3 for idx, c in enumerate(chunks[:2]): with Image.open(os.path.join(test_dir, f'data/test_img_{idx}.jpg')) as img: blob = chunks[idx].blob assert chunks[idx].mime_type == 'image/*' assert blob.shape[1], blob.shape[0] == img.size if idx == 0: assert blob.shape == (660, 1024, 3) if idx == 1: assert blob.shape == (626, 1191, 3) # Check text assert chunks[2].text == expected_text assert chunks[2].mime_type == 'text/plain'
from setuptools import setup setup( name='pypythia', packages=['pypythia'], license='MIT', version='0.0.3', author='Christian Schulze', author_email='chris@andinfinity.de', url='https://github.com/ChristianSch/PyPythia' )
import asyncio import audioop import functools import ipaddress import threading import traceback import urllib.parse from typing import Coroutine, Union import av from ..config import Config from ..natives import AudioFifo, AudioFilter from ..utils.threadLock import withLock AVOption = { "err_detect": "ignore_err", "reconnect": "1", "reconnect_streamed": "1", "reconnect_delay_max": "5", } class PyAVSource: def __init__(self, Source: str) -> None: self.loop = asyncio.get_event_loop() self.Source = Source self.AVOption = AVOption self.Container: av.StreamContainer = None self.selectAudioStream = self.FrameGenerator = None self._end = threading.Event() self._haveToReloadResampler = threading.Event() self._waitforread = threading.Lock() self._loading = threading.Lock() self._seeking = threading.Lock() self.BufferLoader = None self.AudioFifo = AudioFifo() self._duration = None self._position = 0.0 self._volume = 1.0 self._filter = {} self.stopped = False def __del__(self): self.cleanup() @property def volume(self) -> float: return self._volume @volume.setter def volume(self, value: float) -> None: self._volume = max(value, 0.0) @property def filter(self) -> dict: return self._filter @filter.setter def filter(self, value: dict) -> None: self._filter = value @property def duration(self) -> float: return self._duration @property def position(self) -> float: return round( self._position - ( self.AudioFifo.samples / 960 / 50 * (self.filter["atempo"] if "atempo" in self.filter else 1.0) ), 2, ) def read(self) -> bytes: if not self.BufferLoader: self.start() if not self.AudioFifo: return Data = self.AudioFifo.read() if not Data and self._loading.locked(): while self._loading.locked(): if not self._waitforread.locked(): self._waitforread.acquire() self._waitforread.acquire() Data = self.AudioFifo.read() if Data: break if Data and self.volume != 1.0: Data = audioop.mul(Data, 2, min(self._volume, 2.0)) return Data def _seek(self, offset: float, *args, **kwargs) -> None: with withLock(self._seeking): if not self.Container: if not self._loading.locked(): self.Container = av.open( self.Source.Source, options=self.Source.AVOption ) else: while not self.Container: pass kwargs["any_frame"] = True self.Container.seek(round(max(offset, 1) * 1000000), *args, **kwargs) self.reload() def seek(self, offset: float, *args, **kwargs) -> Coroutine: return self.loop.run_in_executor( None, functools.partial(self._seek, offset, *args, **kwargs) ) def reload(self) -> None: self._haveToReloadResampler.set() if not self._loading.locked(): if self._end.is_set(): self._end.clear() self.start() def start(self) -> None: self.BufferLoader = Loader(self) self.BufferLoader.start() def stop(self) -> bool: self.stopped = True return self.stopped def is_opus(self) -> bool: return False def cleanup(self) -> None: self._end.set() if self.AudioFifo and not self.AudioFifo.haveToFillBuffer.is_set(): self.AudioFifo.haveToFillBuffer.clear() self.AudioFifo = None class Loader(threading.Thread): def __init__(self, AudioSource: PyAVSource) -> None: threading.Thread.__init__(self) self.daemon = True self.Source = AudioSource self.Resampler = None self.Filter = {} self.FilterGraph = None def _do_run(self) -> None: with withLock(self.Source._loading): if not self.Source.Container: self.Source.Container = av.open( self.Source.Source, options=self.Source.AVOption ) self.Source._duration = round(self.Source.Container.duration / 1000000, 2) self.Source.selectAudioStream = self.Source.Container.streams.audio[0] self.Source.FrameGenerator = self.Source.Container.decode( self.Source.selectAudioStream ) while not self.Source._end.is_set(): if self.Source.filter != self.Filter: self.Filter = self.Source.filter if self.Source.filter: self.FilterGraph = AudioFilter() self.FilterGraph.selectAudioStream = ( self.Source.selectAudioStream ) self.FilterGraph.setFilters(self.Filter) else: self.FilterGraph = None if not self.Resampler or self.Source._haveToReloadResampler.is_set(): self.Resampler = av.AudioResampler( format=av.AudioFormat("s16").packed, layout="stereo", rate=48000 ) self.Source._haveToReloadResampler.clear() _seek_locked = False if self.Source._seeking.locked(): self.Source._seeking.acquire() _seek_locked = True Frame = next(self.Source.FrameGenerator, None) if _seek_locked: self.Source._seeking.release() self.Source.AudioFifo.reset() if not Frame: self.Source.stop() break _current_position = float(Frame.pts * Frame.time_base) if self.FilterGraph: self.FilterGraph.push(Frame) Frame = self.FilterGraph.pull() if not Frame: continue Frame.pts = None try: Frame = self.Resampler.resample(Frame) except ValueError: self.Source._haveToReloadResampler.set() continue if self.Source.AudioFifo: if not self.Source.AudioFifo.haveToFillBuffer.is_set(): self.Source.AudioFifo.haveToFillBuffer.wait() self.Source.AudioFifo.write(Frame) self.Source._position = _current_position if self.Source._waitforread.locked(): self.Source._waitforread.release() def run(self) -> None: try: self._do_run() except: traceback.print_exc() finally: if self.Source.Container: self.Source.Container.close() self.Source.Container = None self.Source.stop()
#!/usr/bin/env python #____________________________________________________________ # # # A very simple way to make plots with ROOT via an XML file # # Francisco Yumiceva # yumiceva@fnal.gov # # Fermilab, 2010 # #____________________________________________________________ """ ntuplemaker A very simple script to plot the beam spot data stored in condDB usage: %prog -t <tag name> -a, --auth = AUTH: DB authorization path. online(/nfshome0/popcondev/conddb). -b, --batch : Run ROOT in batch mode. -c, --create = CREATE: name for beam spot data file. -d, --data = DATA: input beam spot data file. -D, --destDB = DESTDB: destination DB string. online(oracle://cms_orcon_prod/CMS_COND_31X_BEAMSPOT). -i, --initial = INITIAL: First IOV. Options: run number, or run:lumi, eg. \"133200:21\" -f, --final = FINAL: Last IOV. Options: run number, or run:lumi -o, --output = OUTPUT: filename of ROOT file with plots. -x, --xcrossing = XCROSSING : Bunch crossing number. Francisco Yumiceva (yumiceva@fnal.gov) Fermilab 2010 """ from __future__ import print_function from builtins import range import os, string, re, sys, math import commands, time from BeamSpotObj import BeamSpot from IOVObj import IOV from CommonMethods import * try: import ROOT except: print("\nCannot load PYROOT, make sure you have setup ROOT in the path") print("and pyroot library is also defined in the variable PYTHONPATH, try:\n") if (os.getenv("PYTHONPATH")): print(" setenv PYTHONPATH ${PYTHONPATH}:$ROOTSYS/lib\n") else: print(" setenv PYTHONPATH $ROOTSYS/lib\n") sys.exit() from ROOT import * from array import array def getFill( json, run ): thefill = 0 run = int(run) keys = json.keys() for i in keys: run0 = int(json[i][0]) run1 = int(json[i][1]) if run>= run0 and run<=run1: thefill = i return int(thefill) if __name__ == '__main__': # fill and runs FillList = {} runsfile = open("FillandRuns.txt") for line in runsfile: if line.find('fill:') != -1: aline = line.split() afill = aline[1] run0 = aline[3] run1 = aline[5] FillList[int(afill)] = [int(run0),int(run1)] #print FillList # create ntuple gROOT.ProcessLine( "struct spot {\ Float_t position[3];\ Float_t posError[3];\ Float_t width[3];\ Float_t widthError[3];\ Float_t slope[2];\ Float_t slopeError[2];\ Float_t time[2];\ Int_t run;\ Int_t lumi[2];\ Int_t fill;\ };" ); bntuple = spot() fntuple = TFile( 'bntuple.root', 'RECREATE' ) tbylumi = TTree( 'bylumi', 'beam spot data lumi by lumi' ) tbylumi.Branch('fill', AddressOf( bntuple, 'fill'), 'fill/I' ) tbylumi.Branch('run', AddressOf( bntuple, 'run'), 'run/I' ) tbylumi.Branch('lumi', AddressOf( bntuple, 'lumi'), 'lumi[2]/I' ) tbylumi.Branch('position', AddressOf( bntuple, 'position'),'position[3]/F') tbylumi.Branch('posErr', AddressOf( bntuple, 'posError'),'posError[3]/F') tbylumi.Branch('width', AddressOf( bntuple, 'width'),'width[3]/F') tbylumi.Branch('widthErr', AddressOf( bntuple, 'widthError'),'widthError[3]/F') tbylumi.Branch('slope', AddressOf( bntuple, 'slope'),'slope[2]/F') tbylumi.Branch('slopeErr', AddressOf( bntuple, 'slopeError'),'slopeError[2]/F') tbylumi.Branch('time', AddressOf( bntuple, 'time'),'time[2]/F') tbyIOV = TTree( 'byIOV', 'beam spot data by IOV' ) tbyIOV.Branch('fill', AddressOf( bntuple, 'fill'), 'fill/I' ) tbyIOV.Branch('run', AddressOf( bntuple, 'run'), 'run/I' ) tbyIOV.Branch('lumi', AddressOf( bntuple, 'lumi'), 'lumi[2]/I' ) tbyIOV.Branch('position', AddressOf( bntuple, 'position'),'position[3]/F') tbyIOV.Branch('posErr', AddressOf( bntuple, 'posError'),'posError[3]/F') tbyIOV.Branch('width', AddressOf( bntuple, 'width'),'width[3]/F') tbyIOV.Branch('widthErr', AddressOf( bntuple, 'widthError'),'widthError[3]/F') tbyIOV.Branch('slope', AddressOf( bntuple, 'slope'),'slope[2]/F') tbyIOV.Branch('slopeErr', AddressOf( bntuple, 'slopeError'),'slopeError[2]/F') tbyIOV.Branch('time', AddressOf( bntuple, 'time'),'time[2]/F') tbyrun = TTree( 'byrun', 'beam spot data by run' ) tbyrun.Branch('fill', AddressOf( bntuple, 'fill'), 'fill/I' ) tbyrun.Branch('run', AddressOf( bntuple, 'run'), 'run/I' ) tbyrun.Branch('lumi', AddressOf( bntuple, 'lumi'), 'lumi[2]/I' ) tbyrun.Branch('position', AddressOf( bntuple, 'position'),'position[3]/F') tbyrun.Branch('posErr', AddressOf( bntuple, 'posError'),'posError[3]/F') tbyrun.Branch('width', AddressOf( bntuple, 'width'),'width[3]/F') tbyrun.Branch('widthErr', AddressOf( bntuple, 'widthError'),'widthError[3]/F') tbyrun.Branch('slope', AddressOf( bntuple, 'slope'),'slope[2]/F') tbyrun.Branch('slopeErr', AddressOf( bntuple, 'slopeError'),'slopeError[2]/F') tbyrun.Branch('time', AddressOf( bntuple, 'time'),'time[2]/F') # COMMAND LINE OPTIONS ################################# option,args = parse(__doc__) if not args and not option: exit() if not option.data: print(" need to provide beam spot data file") exit() if option.batch: ROOT.gROOT.SetBatch() datafilename = "tmp_beamspot.dat" if option.create: datafilename = option.create getDBdata = True if option.data: getDBdata = False IOVbase = 'lumibase' firstRun = "0:0" lastRun = "4999999999:4999999999" if option.initial: firstRun = option.initial if option.final: lastRun = option.final # GET IOVs ################################ if getDBdata: print(" read DB to get list of IOVs for the given tag") acommand = 'cmscond_list_iov -c frontier://PromptProd/CMS_COND_31X_BEAMSPOT -P /afs/cern.ch/cms/DB/conddb -t '+ tag tmpstatus = commands.getstatusoutput( acommand ) tmplistiov = tmpstatus[1].split('\n') #print tmplistiov iovlist = [] passline = False iline = jline = 0 totlines = len(tmplistiov) for line in tmplistiov: if line.find('since') != -1: passline = True jline = iline if passline and iline > jline and iline < totlines-1: linedata = line.split() #print linedata aIOV = IOV() aIOV.since = int(linedata[0]) aIOV.till = int(linedata[1]) iovlist.append( aIOV ) iline += 1 print(" total number of IOVs = " + str(len(iovlist))) # GET DATA ################################ otherArgs = '' if option.destDB: otherArgs = " -d " + option.destDB if option.auth: otherArgs = otherArgs + " -a "+ option.auth print(" get beam spot data from DB for IOVs. This can take a few minutes ...") tmpfile = open(datafilename,'w') for iIOV in iovlist: passiov = False tmprunfirst = firstRun tmprunlast = lastRun tmplumifirst = 1 tmplumilast = 9999999 if IOVbase=="lumibase": #tmprunfirst = int(firstRun.split(":")[0]) #tmprunlast = int(lastRun.split(":")[0]) #tmplumifirst = int(firstRun.split(":")[1]) #tmplumilast = int(lastRun.split(":")[1]) tmprunfirst = pack( int(firstRun.split(":")[0]) , int(firstRun.split(":")[1]) ) tmprunlast = pack( int(lastRun.split(":")[0]) , int(lasstRun.split(":")[1]) ) #print "since = " + str(iIOV.since) + " till = "+ str(iIOV.till) if iIOV.since >= int(tmprunfirst) and int(tmprunlast) < 0 and iIOV.since <= int(tmprunfirst): print(" IOV: " + str(iIOV.since)) passiov = True if iIOV.since >= int(tmprunfirst) and int(tmprunlast) > 0 and iIOV.till <= int(tmprunlast): print(" IOV: " + str(iIOV.since) + " to " + str(iIOV.till)) passiov = True if iIOV.since >= int(tmprunlast) and iIOV.till >= 4294967295: print(" IOV: " + str(iIOV.since) + " to " + str(iIOV.till)) passiov = True if passiov: acommand = 'getBeamSpotDB.py -t '+ tag + " -r " + str(iIOV.since) +otherArgs if IOVbase=="lumibase": tmprun = unpack(iIOV.since)[0] tmplumi = unpack(iIOV.since)[1] acommand = 'getBeamSpotDB.py -t '+ tag + " -r " + str(tmprun) +" -l "+tmplumi +otherArgs status = commands.getstatusoutput( acommand ) tmpfile.write(status[1]) print(" beam spot data collected and stored in file " + datafilename) tmpfile.close() # PROCESS DATA ################################### # check if input data exists if given if option.data: if os.path.isdir(option.data): tmp = commands.getstatusoutput("ls "+option.data) files = tmp[1].split() datafilename = "combined_all.txt" output = open(datafilename,"w") for f in files: if os.path.isdir(option.data+"/"+f) is False: input = open(option.data +"/"+f) output.writelines(input.readlines()) output.close() print(" data files have been collected in "+datafilename) elif os.path.exists(option.data): datafilename = option.data else: print(" input beam spot data DOES NOT exist, file " + option.data) exit() listbeam = [] if option.xcrossing: listmap = readBeamSpotFile(datafilename,listbeam,IOVbase,firstRun,lastRun) # bx print("List of bunch crossings in the file:") print(listmap.keys()) listbeam = listmap[option.Xrossing] else: readBeamSpotFile(datafilename,listbeam,IOVbase,firstRun,lastRun) sortAndCleanBeamList(listbeam,IOVbase) ################################### for ii in range(0,len(listbeam)): ibeam = listbeam[ii] bntuple.position = array('f', [float(ibeam.X), float(ibeam.Y), float(ibeam.Z)]) bntuple.posError = array('f', [float(ibeam.Xerr),float(ibeam.Yerr),float(ibeam.Zerr)]) bntuple.width = array('f', [float(ibeam.beamWidthX), float(ibeam.beamWidthY), float(ibeam.sigmaZ)]) bntuple.widthError = array('f',[float(ibeam.beamWidthXerr),float(ibeam.beamWidthYerr),float(ibeam.sigmaZerr)]) bntuple.run = int(ibeam.Run) bntuple.fill = int( getFill( FillList, int(ibeam.Run) ) ) bntuple.lumi = array('i', [int(ibeam.IOVfirst),int(ibeam.IOVlast)]) line = ibeam.IOVBeginTime begintime = time.mktime( time.strptime(line.split()[0] + " " + line.split()[1] + " " + line.split()[2],"%Y.%m.%d %H:%M:%S %Z") ) line = ibeam.IOVEndTime endtime = time.mktime( time.strptime(line.split()[0] + " " + line.split()[1] + " " + line.split()[2],"%Y.%m.%d %H:%M:%S %Z") ) bntuple.time = array('f', [begintime, endtime]) tbylumi.Fill() iovlist = listbeam iovlist = createWeightedPayloads("tmp.txt",iovlist,False) for ii in range(0,len(iovlist)): ibeam = iovlist[ii] bntuple.position = array('f', [float(ibeam.X), float(ibeam.Y), float(ibeam.Z)]) bntuple.posError = array('f', [float(ibeam.Xerr),float(ibeam.Yerr),float(ibeam.Zerr)]) bntuple.width = array('f', [float(ibeam.beamWidthX), float(ibeam.beamWidthY), float(ibeam.sigmaZ)]) bntuple.widthError = array('f',[float(ibeam.beamWidthXerr),float(ibeam.beamWidthYerr),float(ibeam.sigmaZerr)]) bntuple.run = int(ibeam.Run) bntuple.fill = int( getFill( FillList, int(ibeam.Run) ) ) bntuple.lumi = array('i', [int(ibeam.IOVfirst),int(ibeam.IOVlast)]) line = ibeam.IOVBeginTime begintime = time.mktime( time.strptime(line.split()[0] + " " + line.split()[1] + " " + line.split()[2],"%Y.%m.%d %H:%M:%S %Z") ) line = ibeam.IOVEndTime endtime = time.mktime( time.strptime(line.split()[0] + " " + line.split()[1] + " " + line.split()[2],"%Y.%m.%d %H:%M:%S %Z") ) bntuple.time = array('f', [begintime, endtime]) tbyIOV.Fill() weightedlist = listbeam weightedlist = createWeightedPayloads("tmp.txt",weightedlist,True) for ii in range(0,len(weightedlist)): ibeam = weightedlist[ii] bntuple.position = array('f', [float(ibeam.X), float(ibeam.Y), float(ibeam.Z)]) bntuple.posError = array('f', [float(ibeam.Xerr),float(ibeam.Yerr),float(ibeam.Zerr)]) bntuple.width = array('f', [float(ibeam.beamWidthX), float(ibeam.beamWidthY), float(ibeam.sigmaZ)]) bntuple.widthError = array('f',[float(ibeam.beamWidthXerr),float(ibeam.beamWidthYerr),float(ibeam.sigmaZerr)]) bntuple.run = int(ibeam.Run) bntuple.fill = int( getFill( FillList, int(ibeam.Run) ) ) bntuple.lumi = array('i', [int(ibeam.IOVfirst),int(ibeam.IOVlast)]) line = ibeam.IOVBeginTime begintime = time.mktime( time.strptime(line.split()[0] + " " + line.split()[1] + " " + line.split()[2],"%Y.%m.%d %H:%M:%S %Z") ) line = ibeam.IOVEndTime endtime = time.mktime( time.strptime(line.split()[0] + " " + line.split()[1] + " " + line.split()[2],"%Y.%m.%d %H:%M:%S %Z") ) bntuple.time = array('f', [begintime, endtime]) tbyrun.Fill() os.system('rm tmp.txt') fntuple.cd() tbylumi.Write() tbyIOV.Write() tbyrun.Write() fntuple.Close() # CLEAN temporal files ################################### #os.system('rm tmp_beamspotdata.log')
"""A package (for Nevow) for defining the schema, validation and rendering of HTML forms. """ version_info = (0, 9, 3) version = '.'.join([str(i) for i in version_info]) from nevow import static from formal.types import * from formal.validation import * from formal.widget import * from formal.widgets.restwidget import * from formal.widgets.multiselect import * from formal.form import Form, Field, Group, ResourceMixin, renderForm from formal import iformal def widgetFactory(widgetClass, *a, **k): def _(original): return widgetClass(original, *a, **k) return _ try: import pkg_resources except ImportError: import os.path defaultCSS = static.File(os.path.join(os.path.split(__file__)[0], 'formal.css')) formsJS = static.File(os.path.join(os.path.split(__file__)[0], 'js')) else: from formal.util import LazyResource defaultCSS = LazyResource(lambda: static.File(pkg_resources.resource_filename('formal', 'formal.css'))) formsJS = LazyResource(lambda: static.File(pkg_resources.resource_filename('formal', 'js'))) del LazyResource # Register standard adapters from twisted.python.components import registerAdapter from formal import converters from formal.util import SequenceKeyLabelAdapter registerAdapter(TextInput, String, iformal.IWidget) registerAdapter(TextInput, Integer, iformal.IWidget) registerAdapter(TextInput, Float, iformal.IWidget) registerAdapter(Checkbox, Boolean, iformal.IWidget) registerAdapter(DatePartsInput, Date, iformal.IWidget) registerAdapter(TextInput, Time, iformal.IWidget) registerAdapter(FileUploadRaw, File, iformal.IWidget) registerAdapter(SequenceKeyLabelAdapter, tuple, iformal.IKey) registerAdapter(SequenceKeyLabelAdapter, tuple, iformal.ILabel) registerAdapter(converters.NullConverter, String, iformal.IStringConvertible) registerAdapter(converters.DateToDateTupleConverter, Date, iformal.IDateTupleConvertible) registerAdapter(converters.BooleanToStringConverter, Boolean, iformal.IBooleanConvertible) registerAdapter(converters.BooleanToStringConverter, Boolean, iformal.IStringConvertible) registerAdapter(converters.IntegerToStringConverter, Integer, iformal.IStringConvertible) registerAdapter(converters.FloatToStringConverter, Float, iformal.IStringConvertible) registerAdapter(converters.DateToStringConverter, Date, iformal.IStringConvertible) registerAdapter(converters.TimeToStringConverter, Time, iformal.IStringConvertible) registerAdapter(converters.NullConverter, File, iformal.IFileConvertible) registerAdapter(converters.NullConverter, Sequence, iformal.ISequenceConvertible) try: Decimal except NameError: pass else: registerAdapter(TextInput, Decimal, iformal.IWidget) registerAdapter(converters.DecimalToStringConverter, Decimal, iformal.IStringConvertible) del SequenceKeyLabelAdapter del registerAdapter
# !/usr/bin/env python3 # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import sys import argparse import logging import paddle class UnpackDataLoader(paddle.io.DataLoader): def __init__(self, *args, **kwargs): super(UnpackDataLoader, self).__init__(*args, batch_size=1, **kwargs) def __iter__(self): return ([yy[0] for yy in y] for y in super(UnpackDataLoader, self).__iter__()) def create_if_not_exists(dir): try: dir.mkdir(parents=True) except FileExistsError: pass return dir def get_warmup_and_linear_decay(max_steps, warmup_steps): return lambda step: min(step / warmup_steps, 1. - (step - warmup_steps) / (max_steps - warmup_steps))
import bpy from bpy.props import * from bpy.types import Node, NodeSocket from arm.logicnode.arm_nodes import * class ColorgradingGetGlobalNode(Node, ArmLogicTreeNode): '''Colorgrading Get Global node''' bl_idname = 'LNColorgradingGetGlobalNode' bl_label = 'Colorgrading Get Global' bl_icon = 'QUESTION' def init(self, context): self.outputs.new('NodeSocketFloat', 'Whitebalance') self.outputs.new('NodeSocketVector', 'Tint') self.outputs.new('NodeSocketVector', 'Saturation') self.outputs.new('NodeSocketVector', 'Contrast') self.outputs.new('NodeSocketVector', 'Gamma') self.outputs.new('NodeSocketVector', 'Gain') self.outputs.new('NodeSocketVector', 'Offset') add_node(ColorgradingGetGlobalNode, category='Postprocess')
import base64 import random import re from random import randint import discord from discord.ext.commands import Cog, Context, command, group, cooldown, BucketType, CommandError import missile from dimsecret import debug max_pp_size = 69 guild_id = 675477913411518485 spam_ch_id = 723153902454964224 bot_ch_id = 718210372561141771 def encode(text: str) -> str: """Converts the given string to base64""" b: bytes = text.encode() encoded: bytes = base64.b64encode(b) return encoded.decode() def decode(text: str) -> str: b: bytes = text.encode() decoded: bytes = base64.b64decode(b) return decoded.decode() class BasePPException(CommandError): def __init__(self, message=None, *args): self.message = message super().__init__(message, args) def __str__(self): return self.message class PPNotFound(BasePPException): def __init__(self, target_is_sender: bool): if target_is_sender: super().__init__("Please set up your pp by `{0}pp`!") else: super().__init__('Target has no pp.') class PPStunned(BasePPException): def __init__(self, target_is_sender: bool): if target_is_sender: super().__init__('Your pp is stunned! Please use `{0}pp sf` to remove the effect!') else: super().__init__('Target is stunned!') class PPLocked(BasePPException): def __init__(self, target_is_sender: bool): if target_is_sender: super().__init__('Your pp is locked! Please use `{0}pp lock` to unlock!') else: super().__init__('Target has enabled lock!') class PP: def __init__(self, size: int, viagra, sesami, stun=0): self.size: int = size self.viagra: int = viagra # -1: Not available 0: Not activated 1-3: rounds left self.score = 0 self.sesami_oil: bool = sesami self.stun: int = stun self.lock: bool = False def draw(self) -> str: """Returns the string for displaying pp""" description = f'Ɛ{"Ξ" * self.size}>' if self.lock: description = f"🔒Locked\n{description}" if self.viagra > 0: description = f'**{description}**\nViagra rounds left: {self.viagra}' elif self.viagra == 0: description += '\nViagra available!' if self.sesami_oil: description += '\nSesami oil' if self.size == max_pp_size: description += '\n**MAX POWER**' if self.stun: description += f'\n**STUNNED:** {self.stun} rounds left' return description def check_lock(self, b): if self.lock: raise PPLocked(b) return self class BitBay(Cog): """Utilities for 128BB Version 1.4""" def __init__(self, bot): self.bot: missile.Bot = bot self.organs: dict = {} # Dict for storing pp size @Cog.listener() async def on_message(self, msg: discord.Message): """Message Pattern Matching logic""" if msg.guild and (msg.guild.id == guild_id or debug) and not msg.author.bot: if re.search(r".*BSoD", msg.content): await msg.reply('https://discord.com/channels/675477913411518485/675477914019430423/825823145315270687') return if re.search(r"^((?!n('?t|o)).)*(play.*(3D All Star|3d?AS))$", msg.content, re.IGNORECASE): await msg.reply('YOU WHAT??? <:pepestab:725176431121793084>') return if re.search(r".*(no one|who|don'?t) care", msg.content, re.IGNORECASE): await msg.reply('I CARE, BITCH') return match = re.search(r".*(where|how) .*?(get|download|find|obtain|acquire) ", msg.content, re.IGNORECASE) if match: # Download-related match = msg.content # match = match.string[match.span()[1]:] if re.search(r"(.* |^)(switch|yuzu|ryu)", match, re.IGNORECASE): if re.search(r"(.* |^)(game|nsp|xci|rom)", match, re.IGNORECASE): await msg.reply("Please use <#730596209701421076>, don't use FitGirl repacks.") elif re.search(r"(.* |^)shader", match, re.IGNORECASE): await msg.reply("<#709944999399260190>") elif re.search(r"(.* |^)key", match, re.IGNORECASE): await msg.reply("<#702908846565490708>") elif re.search(r"(.* |^)change ?log", match, re.IGNORECASE): await msg.reply("<#749927995183202376>") elif re.search(r"(.* |^).*mod", match, re.IGNORECASE): await msg.reply("Please check pins in <#702621234835226744>") elif re.search(r"(.* |^)save", match, re.IGNORECASE): await msg.reply("<#718565804345393182>") elif re.search(r"(.* |^)mii", match, re.IGNORECASE): await msg.reply("<#731478871823613962>") elif re.search(r"(.* |^)firmware", match, re.IGNORECASE): await msg.reply("Yuzu doesn't need firmware. Unsubscribe the guy that said it.\nSwitch firmware" " link is in the oldest pin at <#718990080387317850> but I PMed you") await msg.author.send(decode('aHR0cHM6Ly9kYXJ0aHN0ZXJuaWUubmV0L3N3aXRjaC1maXJtd2FyZXMv')) elif re.search(r"(.* |^)(cemu|wii ?u)", match, re.IGNORECASE): await msg.reply("May I suggest you <#718989936837263450> pins?") elif re.search(r"(.* |^)(citra|3ds) ", match, re.IGNORECASE): await msg.reply("May I suggest you <#750213635975938112> pins?") elif re.search(r"(.* |^)(gc|gamecube|wii|dolphin) ", match, re.IGNORECASE): await msg.reply("May I suggest you <#750178026704207944> pins?") elif re.search(r"(.* |^)n?ds", match, re.IGNORECASE): await msg.reply("May I suggest you <#749996667511767090> pins?") elif re.search(r"(.* |^)(rom|game|shader|mod|key|save|mii|firmware)", match, re.IGNORECASE): await msg.reply('Please specify the emulator you want e.g. `Where download switch games`\n' 'Tips: You can send `d.dec <base64>` to decode all those aHxxxx text!') elif re.search(r"(.* |^)amiibo", match, re.IGNORECASE): await msg.reply('<#796160202067017789>') @command(aliases=('enc',)) async def encode(self, ctx: Context, *, url: str): """Encodes base64 via command""" if ctx.channel.type == discord.ChannelType.text: await ctx.message.delete() if missile.is_url(url): await ctx.send(f'<{self.bot.ip}b64d?s={encode(url)}>') else: url = ctx.author.mention + ': ' + url await ctx.send(encode(url)) @command(aliases=('dec',)) async def decode(self, ctx: Context, content: str): """Decodes base64 via command""" import binascii try: await ctx.author.send(decode(content)) await ctx.message.add_reaction('✅') except (UnicodeDecodeError, binascii.Error): await ctx.send('Malformed base64 string.') @staticmethod def pp_embed(user: discord.User, pp: PP): return missile.Embed(user.display_name + "'s pp", pp.draw()) def get_pp(self, ctx: Context, target_id: int): if self.organs.get(target_id, None): return self.organs[target_id] raise PPNotFound(ctx.author.id == target_id) def get_pp_checked(self, ctx: Context, target_id: int): pp = self.get_pp(ctx, target_id) b = ctx.author.id == target_id if pp.stun: raise PPStunned(b) pp.check_lock(b) return pp @group(invoke_without_command=True) async def pp(self, ctx: Context, user: discord.User = None): """ Wiki for the d.pp commands: https://github.com/TCLRainbow/DimBot/wiki/pp """ if user: # If target already has pp, allows modifying. Else throw PPNotFound as you can't initialise others pp = self.get_pp(ctx, user.id) pp.check_lock(ctx.author == user) else: # Check if sender has pp as no target is specified user = ctx.author pp = self.organs.get(ctx.author.id, None) if pp and pp.stun: # Checks whether the to-be-rolled PP is stunned raise PPStunned(ctx.author.id == user.id) # Randomises user's pp properties size = randint(0, max_pp_size) viagra = (randint(0, 100) < 25) - 1 sesami = randint(0, 100) < 10 if pp: # Updates a PP if exist pp.size = size pp.viagra = viagra if sesami: pp.sesami_oil = True else: # Creates PP if not exist pp = self.organs[user.id] = PP(size, viagra, sesami) await ctx.reply(embed=self.pp_embed(user, pp)) @pp.command() async def info(self, ctx: Context, user: discord.User = None): """Shows the pp info""" user = user if user else ctx.author pp = self.get_pp(ctx, user.id) await ctx.reply(embed=missile.Embed(f'pp size: {pp.size}', pp.draw())) @pp.command() async def slap(self, ctx: Context, user: discord.User): """Use pp to slap others""" pp = self.get_pp(ctx, ctx.author.id) await ctx.send(embed=missile.Embed(description=pp.draw(), thumbnail=user.avatar_url)) @pp.command() @missile.is_rainbow() async def max(self, ctx: Context, target: discord.User = None, viagra=True, sesami=True): target = target if target else ctx.author viagra -= 1 self.organs[target.id] = PP(max_pp_size, viagra, sesami) await ctx.reply(embed=self.pp_embed(target, self.organs[target.id])) @pp.command() async def min(self, ctx: Context): """Minimises your pp strength""" pp = self.get_pp(ctx, ctx.author.id) pp = PP(0, -1, False, pp.stun) await ctx.reply(embed=self.pp_embed(ctx.author, pp)) @pp.command() async def cut(self, ctx: Context): """Cuts your pp""" # Internally this removes the user from self.organs pp = self.get_pp(ctx, ctx.author.id) if await self.bot.ask_reaction(ctx, '⚠Cutting your pp also resets your score! Are you sure?'): self.organs.pop(ctx.author.id) await ctx.send(embed=discord.Embed( title=ctx.author.display_name + "'s penis", description=f"Ɛ\n{'Ξ' * pp.size}>", color=discord.Color.red())) @pp.command(aliases=('sf',)) @cooldown(rate=1, per=10.0, type=BucketType.user) # Each person can only call this once per 10s async def swordfight(self, ctx: Context, user: discord.User = None): """Use your pp as a weapon and fight""" if not user: user = self.bot.get_user(random.choice(list(self.organs.keys()))) my = self.get_pp(ctx, ctx.author.id).check_lock(True) his = self.get_pp(ctx, user.id).check_lock(ctx.author == user) content = '' if my.stun: stun_msg = 'Focusing energy on your muscle, your hand is slowly moving.' my.stun -= 1 if not my.stun: stun_msg += '\nWith a masculine roar, you are wielding your light saber again.' await ctx.reply(stun_msg) return if his.sesami_oil: his.sesami_oil = False await ctx.reply('Your opponent instantly deflects your attack.') return xp = my.size - his.size my.score += xp if my.viagra > 1: my.viagra -= 1 elif my.viagra == 1: my.viagra = -1 my.size //= 2 content = f"{ctx.author} ran out of ammo!" if my.size > his.size: title = "VICTORY" gain_msg = f"You gained **{xp}** score!" elif my.size == his.size: title = "TIE" gain_msg = '' else: title = "LOST" gain_msg = f"You lost **{-xp}** score!" await ctx.send( content=content, embed=missile.Embed(title, f"**{ctx.author.name}'s pp:**\n{my.draw()}\n" f"**{user.name}'s pp:**\n{his.draw()}\n\n{gain_msg}")) @pp.command(aliases=('lb',)) async def leaderboard(self, ctx: Context): """Shows the pp leaderboard""" self.organs = dict( sorted(self.organs.items(), key=lambda item: item[1].score, reverse=True)) # Sort self.xp by score base = 'pp score leaderboard:\n' for key in self.organs.keys(): base += f"{self.bot.get_user(key).name}: **{self.organs[key].score}** " await ctx.reply(base) @pp.command() async def viagra(self, ctx: Context): """In your pp, WE TRUST""" pp = self.get_pp_checked(ctx, ctx.author.id) if pp.viagra: await ctx.reply('You are already one with your pp! Rounds left: ' + str(pp.viagra)) elif pp.viagra == 0: pp.viagra = 3 pp.size *= 2 await ctx.send(f'{ctx.author.mention} has faith in his pp!!! New length: {pp.size}') else: await ctx.reply("You don't have viagra yet!") @pp.command(aliases=('zen',)) async def zenitsu(self, ctx: Context, user: discord.User = None): """Stuns your opponent""" my = self.get_pp_checked(ctx, ctx.author.id) if my.sesami_oil and my.viagra == 0: if not user: user = self.bot.get_user(random.choice(list(self.organs.keys()))) his = self.get_pp_checked(ctx, user.id) his.stun = 2 my.sesami_oil = my.viagra_available = False await ctx.reply( "https://i.pinimg.com/originals/0e/20/37/0e2037b27580b13d9141bc9cf0162b71.gif\n" f"Inhaling thunder, you stunned {user}!") else: await ctx.reply("You need to have viagra available and sesami oil!") @pp.command() async def changelog(self, ctx: Context): """Shows the latest changelog of the PP command""" await ctx.reply(""" **__May 8, 3:58AM GMT+1__** (Rocket Update 2)\n Fixes a glitch where you can still attack others with lock on\n Lock command now has a cool down of 30s """) @pp.command() @cooldown(rate=1, per=30.0, type=BucketType.user) # Each person can only call this once per 30s async def lock(self, ctx: Context): pp = self.get_pp(ctx, ctx.author.id) pp.lock = not pp.lock await ctx.reply(f'Your pp is now {"" if pp.lock else "un"}locked.')
# -*- coding: utf-8 -*- from .expr import * def_Topic( Title("Landau's function"), Section("Definitions"), Entries( "32e430", ), Section("Tables"), Entries( "177218", ), Section("Arithmetic representations"), Entries( "7932c3", ), Section("Asymptotics"), Entries( "a3ab2a", ), Section("Bounds and inequalities"), Entries( "9697b8", "3d5019", "87d19b", ), Section("Riemann hypothesis"), Entries( "65fa9f", ), ) make_entry(ID("32e430"), SymbolDefinition(LandauG, LandauG(n), "Landau's function"), Description("Landau's function", LandauG(n), "gives the largest order of an element of the symmetric group", Subscript(S, n), "."), Description("It can be defined arithmetically as the maximum least common multiple of the partitions of", n, ", as in", EntryReference("7932c3"), "."), Description("The following table lists conditions such that", SourceForm(LandauG(n)), "is defined in Fungrim."), Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List( Tuple(Element(n, ZZGreaterEqual(0)), Element(LandauG(n), ZZGreaterEqual(1))))), References("https://oeis.org/A000793")) # Tables make_entry(ID("177218"), Description("Table of", LandauG(n), "for", LessEqual(0, n, 100)), Table(TableRelation(Tuple(n, y), Equal(LandauG(n), y)), TableHeadings(n, LandauG(n)), TableSplit(4), List( Tuple(0, 1), Tuple(1, 1), Tuple(2, 2), Tuple(3, 3), Tuple(4, 4), Tuple(5, 6), Tuple(6, 6), Tuple(7, 12), Tuple(8, 15), Tuple(9, 20), Tuple(10, 30), Tuple(11, 30), Tuple(12, 60), Tuple(13, 60), Tuple(14, 84), Tuple(15, 105), Tuple(16, 140), Tuple(17, 210), Tuple(18, 210), Tuple(19, 420), Tuple(20, 420), Tuple(21, 420), Tuple(22, 420), Tuple(23, 840), Tuple(24, 840), Tuple(25, 1260), Tuple(26, 1260), Tuple(27, 1540), Tuple(28, 2310), Tuple(29, 2520), Tuple(30, 4620), Tuple(31, 4620), Tuple(32, 5460), Tuple(33, 5460), Tuple(34, 9240), Tuple(35, 9240), Tuple(36, 13860), Tuple(37, 13860), Tuple(38, 16380), Tuple(39, 16380), Tuple(40, 27720), Tuple(41, 30030), Tuple(42, 32760), Tuple(43, 60060), Tuple(44, 60060), Tuple(45, 60060), Tuple(46, 60060), Tuple(47, 120120), Tuple(48, 120120), Tuple(49, 180180), Tuple(50, 180180), Tuple(51, 180180), Tuple(52, 180180), Tuple(53, 360360), Tuple(54, 360360), Tuple(55, 360360), Tuple(56, 360360), Tuple(57, 471240), Tuple(58, 510510), Tuple(59, 556920), Tuple(60, 1021020), Tuple(61, 1021020), Tuple(62, 1141140), Tuple(63, 1141140), Tuple(64, 2042040), Tuple(65, 2042040), Tuple(66, 3063060), Tuple(67, 3063060), Tuple(68, 3423420), Tuple(69, 3423420), Tuple(70, 6126120), Tuple(71, 6126120), Tuple(72, 6846840), Tuple(73, 6846840), Tuple(74, 6846840), Tuple(75, 6846840), Tuple(76, 8953560), Tuple(77, 9699690), Tuple(78, 12252240), Tuple(79, 19399380), Tuple(80, 19399380), Tuple(81, 19399380), Tuple(82, 19399380), Tuple(83, 38798760), Tuple(84, 38798760), Tuple(85, 58198140), Tuple(86, 58198140), Tuple(87, 58198140), Tuple(88, 58198140), Tuple(89, 116396280), Tuple(90, 116396280), Tuple(91, 116396280), Tuple(92, 116396280), Tuple(93, 140900760), Tuple(94, 140900760), Tuple(95, 157477320), Tuple(96, 157477320), Tuple(97, 232792560), Tuple(98, 232792560), Tuple(99, 232792560), Tuple(100, 232792560), ))) # Arithmetic representations # todo: semantic markup for variable-length tuples (or better, partitions?) make_entry(ID("7932c3"), Formula(Equal(LandauG(n), Maximum(SetBuilder(LCM(Subscript(s, 1), Ellipsis, Subscript(s, k)), Tuple(k, Subscript(s, i)), And(Element(k, ZZGreaterEqual(0)), Element(Subscript(s, i), ZZGreaterEqual(1)), Equal(Sum(Subscript(s, i), Tuple(i, 1, k)), n)))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(1)))) # Asymptotics make_entry(ID("a3ab2a"), Formula(Equal(SequenceLimit(Log(LandauG(n)) / Sqrt(n * Log(n)), n, Infinity), 1))) # Bounds and inequalities make_entry(ID("9697b8"), Formula(LessEqual(Log(LandauG(n)), Sqrt(n*Log(n)) * (1 + (Log(Log(n))-Decimal("0.975"))/(2*Log(n))))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(4))), References("Jean-Pierre Massias, Jean-Louis Nicolas and Guy Robin (1989), Effective bounds for the maximal order of an element in the symmetric group, Mathematics of Computation, 53, 118, 665--665, https://doi.org/10.1090/s0025-5718-1989-0979940-4")) make_entry(ID("3d5019"), Formula(GreaterEqual(Log(LandauG(n)), Sqrt(n*Log(n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(906))), References("Jean-Pierre Massias, Jean-Louis Nicolas and Guy Robin (1989), Effective bounds for the maximal order of an element in the symmetric group, Mathematics of Computation, 53, 118, pp. 665-665, https://doi.org/10.1090/s0025-5718-1989-0979940-4")) make_entry(ID("87d19b"), Formula(LessEqual(Maximum(SetBuilder(p, p, And(Element(p, PP), Divides(p, LandauG(n))))), Decimal("1.328") * Sqrt(n*Log(n)))), Variables(n), Assumptions(Element(n, ZZGreaterEqual(5))), References("Jon Grantham (1995), The largest prime dividing the maximal order of an element of S_n, 64, 209, pp. 407--210, https://doi.org/10.2307/2153344")) # Riemann hypothesis make_entry(ID("65fa9f"), Formula(Equivalent(RiemannHypothesis, ForAll(n, Element(n, ZZGreaterEqual(1)), Less(Log(LandauG(n)), Where(Sqrt(f(n)), Equal(f(y), UniqueSolution(Brackets(Equal(LogIntegral(x), y)), x, Element(x, OpenInterval(1, Infinity))))))))), References("Marc Deleglise, Jean-Louis Nicolas, The Landau function and the Riemann Hypothesis, https://arxiv.org/abs/1907.07664"))
# -*- coding: utf-8 -*- """ @author: Adam Reinhold Von Fisher - https://www.linkedin.com/in/adamrvfisher/ """ #This is a graphical display tool for candlestick charts + indicators #It has a trading model inside. #Import modules from YahooGrabber import YahooGrabber from YahooSourceDailyGrabber import YahooSourceDailyGrabber import matplotlib.pyplot as plt from matplotlib.finance import candlestick_ohlc import matplotlib.dates as mdates import numpy as np #Assign ticker string = 'STX' #Request data Asset = YahooGrabber(string) #Trimmer Asset = Asset[-100:] #Make column that represents X axis Asset['Index'] = Asset.index #Format for mpl Asset['IndexToNumber'] = Asset['Index'].apply(mdates.date2num) #Format Dataframe to feed candlestick_ohlc() AssetCopy = Asset[['IndexToNumber', 'Open', 'High', 'Low', 'Close', 'Adj Close']].copy() #Create axe and define X and Y axis scale figure, axe = plt.subplots(figsize = (10,5)) #Assign labels plt.ylabel(string + ' Price') plt.xlabel('Date') #Variable windows #donchianwidow is used to find the min/max of the price range to make the long/short signal #Smaller donchain window = more likely double days donchianwindow = 55 #ATRwindow is used for volatility position sizing ATRwindow = 20 #stopwindow is used for trailing high/low used for long/short exits stopwindow = 13 #Counter tracks iteration progress Counter = 0 #SubIndex column is a secondary index, it only exists to help identify exits AssetCopy['SubIndex'] = range(0,len(AssetCopy)) #Log Returns AssetCopy['LogRet'] = np.log(AssetCopy['Adj Close']/AssetCopy['Adj Close'].shift(1)) AssetCopy['LogRet'] = AssetCopy['LogRet'].fillna(0) #ATR calculation using ATRwindow AssetCopy['Method1'] = AssetCopy['High'] - AssetCopy['Low'] AssetCopy['Method2'] = abs((AssetCopy['High'] - AssetCopy['Close'].shift(1))) AssetCopy['Method3'] = abs((AssetCopy['Low'] - AssetCopy['Close'].shift(1))) AssetCopy['Method1'] = AssetCopy['Method1'].fillna(0) AssetCopy['Method2'] = AssetCopy['Method2'].fillna(0) AssetCopy['Method3'] = AssetCopy['Method3'].fillna(0) AssetCopy['TrueRange'] = AssetCopy[['Method1','Method2','Method3']].max(axis = 1) #ATR in points; not % AssetCopy['ATR'] = AssetCopy['TrueRange'].rolling(window = ATRwindow, center=False).mean() #Market top and bottom calculation #Technical calculations #Donchian Channel AssetCopy['RollingMax'] = AssetCopy['High'].rolling(20).max() AssetCopy['RollingMin'] = AssetCopy['Low'].rolling(20).min() #SMA AssetCopy['SMA5'] = AssetCopy['Close'].rolling(5).mean() AssetCopy['SMA20'] = AssetCopy['Close'].rolling(20).mean() #N period ATR Setup AssetCopy['Method1'] = AssetCopy['High'] - AssetCopy['Low'] AssetCopy['Method2'] = abs((AssetCopy['High'] - AssetCopy['Close'].shift(1))) AssetCopy['Method3'] = abs((AssetCopy['Low'] - AssetCopy['Close'].shift(1))) AssetCopy['Method1'] = AssetCopy['Method1'].fillna(0) AssetCopy['Method2'] = AssetCopy['Method2'].fillna(0) AssetCopy['Method3'] = AssetCopy['Method3'].fillna(0) AssetCopy['TrueRange'] = AssetCopy[['Method1','Method2','Method3']].max(axis = 1) AssetCopy['4wkATRPoints'] = AssetCopy['TrueRange'].rolling(window = 20, center=False).mean() AssetCopy['4wkATRPercent'] = AssetCopy['4wkATRPoints'] / AssetCopy['Close'] AssetCopy['ATRRollingMax'] = AssetCopy['4wkATRPercent'].rolling(20).max() AssetCopy['ATRRollingMin'] = AssetCopy['4wkATRPercent'].rolling(20).min() #Signal = Price </> min/max #if price is greater than the max go long AssetCopy['LongSignal'] = np.where(AssetCopy['High'] >= AssetCopy['RollingMax'].shift(1), 1, 0) #if price is less than the min go short AssetCopy['ShortSignal'] = np.where(AssetCopy['Low'] <= AssetCopy['RollingMin'].shift(1), 1, 0) #If double signal days exist, then entry and P/L on those days will not be reflected correctly, spurious return stream AssetCopy['DoubleDay'] = np.where(AssetCopy['LongSignal'] + AssetCopy['ShortSignal'] == 2, 1, 0) #Next two lines combines long signal and short signal columns into a single column #If there is a double day then a short entry is recorded AssetCopy['Signal'] = np.where(AssetCopy['LongSignal'] == 1, 1, 0) AssetCopy['Signal'] = np.where(AssetCopy['ShortSignal'] == 1, -1, AssetCopy['Signal']) #if Rolling Min/Max is still being computed, stay out of market AssetCopy['Signal'] = np.where(AssetCopy['RollingMax'] == np.nan, 0, AssetCopy['Signal']) #Index values for segmenting data for trade analysis SignalDates = list(AssetCopy['Signal'].loc[(AssetCopy['Signal'] != 0)].index) #Trade ATR on signal day AssetCopy['TradeATR'] = np.where(AssetCopy['Signal'] != 0, AssetCopy['ATR'].shift(1), np.nan) #Exits other than initial 2 ATR stop, stopwindow is used here #Asset1['LimitExitPrice'] = np.nan AssetCopy['ShortExitPrice'] = AssetCopy['High'].rolling(window=stopwindow, center=False).max() AssetCopy['LongExitPrice'] = AssetCopy['Low'].rolling(window=stopwindow, center=False).min() #Declare columns to record entry price and initial 2 ATR stop for unit one AssetCopy['EntryPriceUnitOne'] = np.nan AssetCopy['StopPriceUnitOne'] = np.nan #Be sure to check for double signal days, gaps on first unit entry, and gaps on exits. #Default stops and entries #Find the first trade of the signal period, so we can document entry prices #Long entry first unit // enter one cent above previous high AssetCopy['EntryPriceUnitOne'] = np.where(AssetCopy['Signal'] == 1, AssetCopy['RollingMax'].shift(1) + .01, np.nan) #Short entry first unit // enter one cent below previous low AssetCopy['EntryPriceUnitOne'] = np.where(AssetCopy['Signal'] == -1, AssetCopy['RollingMin'].shift(1) - .01, AssetCopy['EntryPriceUnitOne']) #Overlay axe.plot(AssetCopy['IndexToNumber'], AssetCopy['RollingMax'], color = 'green', label = 'RollingMax') axe.plot(AssetCopy['IndexToNumber'], AssetCopy['RollingMin'], color = 'red', label = 'RollingMin') axe.plot(AssetCopy['IndexToNumber'], AssetCopy['SMA5'], color = 'black', label = 'SMA5') axe.plot(AssetCopy['IndexToNumber'], AssetCopy['SMA20'], color = 'yellow', label = 'SMA20') #Signal triangles.. axe.scatter(AssetCopy.loc[AssetCopy['LongSignal'] == 1, 'IndexToNumber'].values, AssetCopy.loc[AssetCopy['LongSignal'] == 1, 'EntryPriceUnitOne'].values, label='skitscat', color='green', s=50, marker="^") axe.scatter(AssetCopy.loc[AssetCopy['ShortSignal'] == 1, 'IndexToNumber'].values, AssetCopy.loc[AssetCopy['ShortSignal'] == 1, 'EntryPriceUnitOne'].values, label='skitscat', color='red', s=50, marker="v") #Plot the DF values with the figure, object candlestick_ohlc(axe, AssetCopy.values, width=.6, colorup='green', colordown='red') axe.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) #For ATR figure2, axe2 = plt.subplots(figsize = (10,2)) #Labels plt.ylabel(string + ' ATR') plt.xlabel('Date') #ATR line graphs and rolling min/max axe2.plot(AssetCopy['IndexToNumber'], AssetCopy['4wkATRPercent'], color = 'black', label = '4wkATRPercent') axe2.plot(AssetCopy['IndexToNumber'], AssetCopy['ATRRollingMax'], color = 'green', label = 'ATRRollingMax') axe2.plot(AssetCopy['IndexToNumber'], AssetCopy['ATRRollingMin'], color = 'red', label = 'ATRRollingMin') #Date formatting axe2.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) #Save image to CWD.. #plt.savefig('TestingTesting.png') #Display figure #plt.show()
import tensorflow as tf tf.logging.set_verbosity(tf.logging.FATAL) import sys sys.path.append('../') import tensorflow as tf import numpy as np import gpflow from dgps_with_iwvi.layers import LatentVariableLayer, GPLayer from dgps_with_iwvi.models import DGP_VI, DGP_IWVI # class DirectlyParameterizedEncoder(gpflow.Parameterized): # """ # No amortization is used; each datapoint element has an # associated mean and variance of its latent variable. # # IMPORTANT: Not compatible with minibatches # """ # # def __init__(self, latent_dim, num_data, # num_samples=None, # mean=None, # std=None, # broadcast_axis=None, # name=None): # gpflow.Parameterized.__init__(self, name=name) # self.latent_dim = latent_dim # self.num_data = num_data # # if mean is None: # mean = np.random.randn(num_data, latent_dim) # # if mean.shape != (num_data, latent_dim): # raise ValueError("mean must have shape (num_data={}, latent_dim={})" # .format(num_data, latent_dim)) # # if std is None: # std = np.ones((num_data, latent_dim)) * 1e-4 # # self.mean = gpflow.Param(mean) # self.std = gpflow.Param(std, transform=gpflow.transforms.positive) # self.num_samples = num_samples # self.broadcast_axis = broadcast_axis # # @gpflow.params_as_tensors # def __call__(self, Z): # if self.broadcast_axis is None: # m = tf.tile(self.mean, [self.num_samples, 1]) # s = tf.tile(self.std, [self.num_samples, 1]) # elif self.broadcast_axis == 0: # m = tf.tile(self.mean[None, :, :], [self.num_samples, 1, 1]) # s = tf.tile(self.std[None, :, :], [self.num_samples, 1, 1]) # elif self.broadcast_axis == 1: # m = tf.tile(self.mean[:, None, :], [1, self.num_samples, 1]) # s = tf.tile(self.std[:, None, :], [1, self.num_samples, 1]) # # return m, s # # # class Data: # N = 10 # Ns = 100 # Dx = 1 # Dy = 2 # M = 25 # # np.random.seed(0) # # Xs = np.random.randn(Ns, Dx) # # X_mean = np.random.randn(N, Dx) # X_var = np.random.uniform(low=1e-4, high=1e-1, size=(N, Dx)) # # Z = np.random.randn(M, Dx) # # Y = np.concatenate([np.sin(10*X_mean), np.cos(10*X_mean)], 1) # # # class Fixtures: # kern = gpflow.kernels.RBF(1, lengthscales=0.1) # lik = gpflow.likelihoods.Gaussian() # var = 1 # custom_config = gpflow.settings.get_settings() # custom_config.numerics.jitter_level = 1e-18 # with gpflow.settings.temp_settings(custom_config): # # class ReferenceBGPLVM: # model = gpflow.models.BayesianGPLVM(Data.X_mean, # Data.X_var, # Data.Y, # Fixtures.kern, # Data.M, # Z=Data.Z) # # # get inducing point distribution # mu, cov = model.predict_f_full_cov(Data.Z) # # # unwhiten # std = np.linalg.cholesky(np.transpose(cov, [2, 0, 1])) # K = Fixtures.kern.compute_K_symm(Data.Z) # L = np.linalg.cholesky(K) # L_inv = np.linalg.inv(L) # cov_white = np.einsum('ab,bcp,dc->pad', L_inv, cov, L_inv) # # q_mu = np.linalg.solve(L, mu) # q_sqrt = np.linalg.cholesky(cov_white + 1e-12 * np.eye(Data.M)[None, :, :]) # # # predictions # pred_m, pred_v = model.predict_f(Data.Xs) # pred_m_full_cov, pred_v_full_cov = model.predict_f_full_cov(Data.Xs) # # # bound # L = model.compute_log_likelihood() # # # def test_bound_vs_gplvm(): # custom_config = gpflow.settings.get_settings() # custom_config.numerics.jitter_level = 1e-18 # with gpflow.settings.temp_settings(custom_config): # encoder_vi = DirectlyParameterizedEncoder(Data.Dx, Data.N, # mean=Data.X_mean, # std=Data.X_var**0.5, # num_samples=1, # broadcast_axis=None) # # encoder_iw = DirectlyParameterizedEncoder(Data.Dx, Data.N, # mean=Data.X_mean, # std=Data.X_var ** 0.5, # num_samples=1, # broadcast_axis=1) # # layers_vi = [LatentVariableLayer(Data.Dx, encoder=encoder_vi), # GPLayer(Fixtures.kern, Data.Z, Data.Dy)] # # layers_iw = [LatentVariableLayer(Data.Dx, encoder=encoder_iw), # GPLayer(Fixtures.kern, Data.Z, Data.Dy)] # # m_dgp_vi = DGP_VI(np.zeros((Data.N, 0)), Data.Y, layers_vi, Fixtures.lik, num_samples=1) # m_dgp_iw = DGP_IWVI(np.zeros((Data.N, 0)), Data.Y, layers_iw, Fixtures.lik, num_samples=1) # # for model in [m_dgp_vi, m_dgp_iw]: # model.layers[1].q_mu = ReferenceBGPLVM.q_mu # model.layers[1].q_sqrt = ReferenceBGPLVM.q_sqrt # # L = [model.compute_log_likelihood() for _ in range(1000)] # # L_mean = np.average(L) # L_stderr = np.std(L) / len(L) ** 0.5 # # # check ground truth is within +-3 std deviation CI # assert L_mean + 3 * L_stderr > ReferenceBGPLVM.L # assert L_mean - 3 * L_stderr < ReferenceBGPLVM.L # # # m, v = model.predict_f(Data.Xs) # np.testing.assert_allclose(m, ReferenceBGPLVM.pred_m, atol=1e-6, rtol=1e-6) # np.testing.assert_allclose(v, ReferenceBGPLVM.pred_v, atol=1e-6, rtol=1e-6) # # m_full, v_full = model.predict_f_full_cov(Data.Xs) # v_full = np.transpose(v_full, [1, 2, 0]) # np.testing.assert_allclose(m_full, ReferenceBGPLVM.pred_m_full_cov, atol=1e-6, rtol=1e-6) # np.testing.assert_allclose(v_full, ReferenceBGPLVM.pred_v_full_cov, atol=1e-6, rtol=1e-6) # # # def test_IW_vs_VI(): # K = 10 # encoder_vi = DirectlyParameterizedEncoder(Data.Dx, Data.N, # mean=Data.X_mean, # std=Data.X_var ** 0.5, # num_samples=K, # broadcast_axis=None) # # encoder_iw = DirectlyParameterizedEncoder(Data.Dx, Data.N, # mean=Data.X_mean, # std=Data.X_var ** 0.5, # num_samples=K, # broadcast_axis=1) # # layers_vi = [LatentVariableLayer(Data.Dx, encoder=encoder_vi), # GPLayer(Fixtures.kern, Data.Z, Data.Dy)] # # layers_iw = [LatentVariableLayer(Data.Dx, encoder=encoder_iw), # GPLayer(Fixtures.kern, Data.Z, Data.Dy)] # # m_dgp_vi = DGP_VI(np.zeros((Data.N, 0)), Data.Y, layers_vi, Fixtures.lik, num_samples=K) # m_dgp_iw = DGP_IWVI(np.zeros((Data.N, 0)), Data.Y, layers_iw, Fixtures.lik, num_samples=K) # # for model in [m_dgp_vi, m_dgp_iw]: # model.layers[1].q_mu = ReferenceBGPLVM.q_mu # model.layers[1].q_sqrt = ReferenceBGPLVM.q_sqrt # # L_vi = [m_dgp_vi.compute_log_likelihood() for _ in range(1000)] # L_iw = [m_dgp_iw.compute_log_likelihood() for _ in range(1000)] # # L_vi_mean = np.average(L_vi) # L_iw_mean = np.average(L_iw) # # # for K > 1 the IW estimate should be greater than the VI estimator # assert L_vi_mean < L_iw_mean # # # def test_IW_var_vs_VI_single_sample(): # K = 1 # encoder_vi = DirectlyParameterizedEncoder(Data.Dx, Data.N, # mean=Data.X_mean, # std=Data.X_var ** 0.5, # num_samples=K, # broadcast_axis=None) # # encoder_iw = DirectlyParameterizedEncoder(Data.Dx, Data.N, # mean=Data.X_mean, # std=Data.X_var ** 0.5, # num_samples=K, # broadcast_axis=1) # # layers_vi = [LatentVariableLayer(Data.Dx, encoder=encoder_vi), # GPLayer(Fixtures.kern, Data.Z, Data.Dy)] # # layers_iw = [LatentVariableLayer(Data.Dx, encoder=encoder_iw), # GPLayer(Fixtures.kern, Data.Z, Data.Dy)] # # m_dgp_vi = DGP_VI(np.zeros((Data.N, 0)), Data.Y, layers_vi, Fixtures.lik, num_samples=K) # m_dgp_iw = DGP_IWVI(np.zeros((Data.N, 0)), Data.Y, layers_iw, Fixtures.lik, num_samples=K) # # # for model in [m_dgp_vi, m_dgp_iw]: # model.layers[1].q_mu = ReferenceBGPLVM.q_mu # model.layers[1].q_sqrt = ReferenceBGPLVM.q_sqrt # # L_vi = [m_dgp_vi.compute_log_likelihood() for _ in range(1000)] # L_iw = [m_dgp_iw.compute_log_likelihood() for _ in range(1000)] # # L_vi_std = np.std(L_vi) # L_iw_std = np.std(L_iw) # # # in the 1 sample case the variance of the VI estimator should be strictly less than the IW # assert L_vi_std < L_iw_std def test_pos_def(): # N = 10 # Dx = 3 # Dy = 1 # K = 5 from bayesian_benchmarks.data import get_regression_data data = get_regression_data('wilson_3droad') X = data.X_train Y = data.Y_train M = 128 from scipy.cluster.vq import kmeans2 Z = kmeans2(X, M, minit='points')[0] N, Dx = X.shape Dy = Y.shape[1] K = 1 lik = gpflow.likelihoods.Gaussian(variance=0.1) kern = gpflow.kernels.RBF(Dx, lengthscales=0.1) X = np.random.randn(N, Dx) Y = np.random.randn(N, Dy) layers_vi = [LatentVariableLayer(Dx, XY_dim=Dx+Dy), GPLayer(kern, Z, Dy)] layers_iw = [LatentVariableLayer(Dx, XY_dim=Dx+Dy), GPLayer(kern, Z, Dy)] m_dgp_vi = DGP_VI(X, Y, layers_vi, lik, num_samples=K, minibatch_size=512) m_dgp_iw = DGP_IWVI(X, Y, layers_iw, lik, num_samples=K, minibatch_size=512) for model in [m_dgp_vi, m_dgp_iw]: model.layers[-1].q_mu.set_trainable(False) model.layers[-1].q_sqrt.set_trainable(False) optimizer_adam = gpflow.train.AdamOptimizer(0.005) adam_op = optimizer_adam.make_optimize_tensor(model) optimizer_ng = gpflow.train.NatGradOptimizer(gamma=0.01) ng_op = optimizer_ng.make_optimize_tensor(model, var_list=[[model.layers[-1].q_mu, model.layers[-1].q_sqrt]]) sess = model.enquire_session() for _ in range(10): print('{} {:.2f}'.format(_, sess.run(model.likelihood_tensor))) sess.run(ng_op) sess.run(adam_op) L_vi = [m_dgp_vi.compute_log_likelihood() for _ in range(100)] L_iw = [m_dgp_iw.compute_log_likelihood() for _ in range(100)] L_vi = np.average(L_vi) L_iw = np.average(L_iw) print(L_vi, L_iw) test_pos_def()
""" Loading a pretrained model and using it for superresolution and denoising purposes on the test-set. Denoising_in_superresolution/src @author: Angel Villar-Corrales """ import os import json from tqdm import tqdm import torch import lib.utils as utils import lib.metrics as metrics import lib.arguments as arguments import lib.model_setup as model_setup class Evaluate: """ Loading the model and performing superresolution in a few images Args: ----- exp_path: string path to the experiment directory checkpoint: integer number of epochs corresponding to the checkpoint to load. -1 means trained model """ def __init__(self, exp_path, checkpoint=-1): """ Initializer of the evaluator object """ self.exp_path = exp_path self.models_path = os.path.join(self.exp_path, "models") self.plots_path = os.path.join(self.exp_path, "plots") self.exp_data = utils.load_configuration_file(self.exp_path) self.exp_data["training"]["batch_size"] = 1 self.exp_data["dataset"]["patches_per_img"] = 1 self.train_logs = utils.load_train_logs(self.exp_path) self.checkpoint = checkpoint utils.set_random_seed() return def load_dataset(self): """ Loading dataset and data loaders """ self.dataset, _, _, self.test_loader, self.num_channels = model_setup.load_dataset(self.exp_data) return def load_generalization_dataset(self, noise, std): """ Loading dataset and data loaders to evaluate the generalization capabilities of a model Args: ----- noise: string type of noise used to corrup the test images std: float power of the corruption noise """ self.dataset, self.test_loader, self.num_channels = \ model_setup.load_generalization_dataset(exp_data=self.exp_data, noise=noise, std=std) return def load_model(self): """ Creating a model and loading the pretrained network parameters from the saved state dictionary. Setting the model to use a GPU """ # getting model name given checkpoint if(self.checkpoint < 0): model_name = "model_trained" else: model_name = f"model_epoch_{self.checkpoint}" path_to_model = os.path.join(self.models_path, model_name) # making sure the model exists if(not os.path.exists(path_to_model)): print("ERROR!") print(f"Model: {model_name} was not found in path {self.models_path}") exit() # creating model architecture # setting up the device torch.backends.cudnn.fastest = True self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # initializing the model and loading the state dicitionary model = model_setup.setup_model(exp_data=self.exp_data, exp_path=self.exp_path) model.load_state_dict(torch.load(path_to_model, map_location=self.device)) self.model = model.to(self.device) # setting up model hyper-parameters self.optimizer, self.loss_function, self.scheduler = model_setup.hyperparameter_setup(self.exp_data, self.model) return @torch.no_grad() def test_model(self): """ Using the pretrained model to perform denoising and superresolution in the test set measuring the metric values Returns: -------- results: dictionary dict containing the average result for each of the metrics: loss, mse, mae, psnr, ssim, ms_ssim """ self.model.eval() loss_list = [] mae_list = [] mse_list = [] psnr_list = [] ssim_list = [] ms_ssim_list = [] for _, (hr_imgs, lr_imgs, labels) in enumerate(tqdm(self.test_loader)): hr_imgs = hr_imgs.to(self.device).float() lr_imgs = lr_imgs.to(self.device).float() # pretrained model expects input in range [-0.5, 0.5] and we were using [-1,1] recovered_images = self.model(lr_imgs * 0.5) * 2 # setting images to the range [0,1] hr_imgs, lr_imgs = metrics.denorm_img(hr_imgs), metrics.denorm_img(lr_imgs) recovered_images = metrics.denorm_img(recovered_images) loss = self.loss_function(hr_imgs, recovered_images) loss_list.append(loss) metric_vals = metrics.compute_metrics(original_img=hr_imgs, resoluted_img=recovered_images) mae_list.append(metric_vals["mae"]) mse_list.append(metric_vals["mae"]) psnr_list.append(metric_vals["psnr"]) ssim_list.append(metric_vals["ssim"]) ms_ssim_list.append(metric_vals["ms_ssim"]) loss = metrics.get_loss_stats(loss_list, message="Test Loss Stats") results = { "loss": loss, "mse": torch.mean(torch.stack(mse_list)), "mae": torch.mean(torch.stack(mae_list)), "psnr": torch.mean(torch.stack(psnr_list)), "ssim": torch.mean(torch.stack(ssim_list)), "sm_ssim": torch.mean(torch.stack(ms_ssim_list)), } return results if __name__ == "__main__": os.system("clear") exp_directory, noise, std = arguments.get_directory_argument(generalization=True) checkpoint = 90 evaluator = Evaluate(exp_path=exp_directory, checkpoint=checkpoint) if(noise == ""): evaluator.load_dataset() else: evaluator.load_generalization_dataset(noise=noise, std=std) evaluator.load_model() results = evaluator.test_model() print(f"Test Loss: {results['loss']}") print(f"Test MAE: {results['mae']}") print(f"Test MSE: {results['mse']}") print(f"Test PSNR: {results['psnr']}") print(f"Test SSIM: {results['ssim']}") print(f"Test SM-SSIM: {results['sm_ssim']}") # creating/saving generalization results if(noise != ""): gen_logs_path = os.path.join(exp_directory, "generalization_logs.json") if(not os.path.exists(gen_logs_path)): gen_logs = utils.create_generalization_logs(exp_directory) else: gen_logs = utils.load_generalization_logs(exp_directory) exp_name = f"noise={noise}__std={std}" gen_logs[exp_name] = {} gen_logs[exp_name]["MAE"] = float(results['mae']) gen_logs[exp_name]["MSE"] = float(results['mse']) gen_logs[exp_name]["PSNR"] = float(results['psnr']) gen_logs[exp_name]["SSIM"] = float(results['ssim']) gen_logs[exp_name]["SM-SSIM"] = float(results['sm_ssim']) with open(gen_logs_path, "w") as file: json.dump(gen_logs, file) #
from django.http import HttpResponseRedirect from django.shortcuts import render, redirect, get_object_or_404 from django.http import HttpResponse from django.views.generic import TemplateView from .forms import PostForm, CommentForm from .models import Post, Comment from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required @login_required def get_posts(request): if request.method == 'POST': if 'post' in request.POST: postForm = PostForm(request.POST) if postForm.is_valid(): post = postForm.save(commit=False) post.author = request.user post.save() return redirect('cabPosts:posts') else: commentForm=CommentForm(request.POST) if commentForm.is_valid(): post_id = request.POST['post_id'] post_instance = get_object_or_404(Post, id=post_id) comment = commentForm.save(commit=False) comment.name = request.user comment.post = post_instance comment.email = request.user.email comment.save() return redirect('cabPosts:posts') else: return render(request,'500.html',{}) else: postForm = PostForm() posts = Post.objects.all() commentForm = CommentForm() comments=Comment.objects.all() args = {'postForm':postForm, 'posts':posts ,'commentForm':commentForm,'comments':comments} return render(request, 'cabPosts/posts.html', args)
# GET import os db_login = os.environ['db_login'] db_password = os.environ['db_password'] # # MONGO STUFF from pymongo import MongoClient # from pymongo import MongoClient # from bson.json_util import dumps # from bson.objectid import ObjectId client = MongoClient( f"mongodb+srv://{db_login}:{db_password}@cluster0.qxw2m.mongodb.net/myFirstDatabase?retryWrites=true&w=majority" ) db = client.test_database OSTAS = db.OSTAS USERS = db.USERS SHIPS = db.SHIPS TICKETS = db.TICKETS LOGS = db.LOGS # print(*db.USERS.find({})) # # from uuid import uuid4 # generate unique id from datetime import date, datetime, timedelta from flask import Flask, jsonify, redirect, render_template, request, session app = Flask(__name__, static_url_path="/") app.secret_key = str(uuid4()) @app.route("/") def index(): if "user" in session and session["user"]["privledge"] == "ADMIN": return render_template("admin.html") return render_template("index.html", logined="user" in session) @app.route("/stats/") def stats(): if "user" in session and session["user"]["privledge"] == "ADMIN": return render_template("stats.html") return redirect("/login") @app.route("/stats/csv/") def csv_stats(): if "user" in session and session["user"]["privledge"] == "ADMIN": return render_template("/components/html_to_csv.html") return redirect("/login") @app.route("/stats/json/") def json_stats(): if "user" in session and session["user"]["privledge"] == "ADMIN": return render_template("/components/html_to_json.html") return redirect("/login") @app.route("/cart/") @app.route("/cart/<string:id>") def cart(id=None): if "user" in session and session["user"]["privledge"] != "ADMIN": if not id: return render_template("bag.html") user = USERS.find_one({"_id": session["user"]["_id"]}) cart_item = list(filter(lambda c: c["_id"] == id, user["cart"])) if len(cart_item) == 0: return redirect("/cart/") return render_template( "components/html_ticket.html", cart=cart_item[0], user=user ) return redirect("/login") import auth, get_data, add_data, delete_data if __name__ == "__main__": app.run(host="0.0.0.0", port=8080)
# -*- coding: utf-8 -*- # # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import posixpath import re import subprocess import sys import gslib import gslib.tests.testcase as testcase from gslib.tests.util import ObjectToURI as suri from gslib.wildcard_iterator import ContainsWildcard class TestStat(testcase.GsUtilIntegrationTestCase): """Integration tests for stat command.""" def test_stat_output(self): object_uri = self.CreateObject(contents='z') stdout = self.RunGsUtil(['stat', suri(object_uri)], return_stdout=True) self.assertIn(object_uri.uri, stdout) self.assertIn('Creation time:', stdout) self.assertIn('Cache-Control:', stdout) self.assertIn('Content-Encoding:', stdout) self.assertIn('Content-Length:', stdout) self.assertIn('Content-Type:', stdout) self.assertIn('Hash (crc32c):', stdout) self.assertIn('Hash (md5):', stdout) self.assertIn('ETag:', stdout) self.assertIn('Generation:', stdout) self.assertIn('Metageneration:', stdout) def test_minus_q_stat(self): object_uri = self.CreateObject(contents='z') stdout = self.RunGsUtil(['-q', 'stat', suri(object_uri)], return_stdout=True) self.assertEquals(0, len(stdout)) stdout = self.RunGsUtil(['-q', 'stat', suri(object_uri, 'junk')], return_stdout=True, expected_status=1) self.assertEquals(0, len(stdout)) def test_stat_of_non_object_uri(self): self.RunGsUtil(['-q', 'stat', 'gs://'], expected_status=1) self.RunGsUtil(['-q', 'stat', 'gs://bucket/object'], expected_status=1) self.RunGsUtil(['-q', 'stat', 'file://tmp/abc'], expected_status=1)
#!/usr/bin/env python import matplotlib matplotlib.use('Agg') import doctest import nodepy import unittest import os import subprocess import tempfile import sys import nbformat if sys.version_info >= (3,0): kernel = 'python3' else: kernel = 'python2' def _notebook_run(path): """Execute a notebook via nbconvert and collect output. :returns (parsed nb object, execution errors) """ with tempfile.NamedTemporaryFile(suffix=".ipynb") as fout: args = ["jupyter", "nbconvert", "--to", "notebook", "--execute", "--ExecutePreprocessor.timeout=120", "--ExecutePreprocessor.kernel_name="+kernel, "--output", fout.name, path] subprocess.check_call(args) fout.seek(0) nb = nbformat.reads(fout.read().decode('utf-8'), nbformat.current_nbformat) errors = [output for cell in nb.cells if "outputs" in cell for output in cell["outputs"] if output.output_type == "error"] return nb, errors def run_tests(): for filename in os.listdir('./examples'): if (filename.split('.')[-1] == 'ipynb' and filename not in ['Internal_stability_SO.ipynb', 'Introduction to NodePy.ipynb', 'stability_polynomial_speed.ipynb']): print('running notebook: '+ filename) _, errors = _notebook_run('./examples/'+filename) if errors != []: raise(Exception) for module_name in ['runge_kutta_method', 'linear_multistep_method', 'twostep_runge_kutta_method', 'downwind_runge_kutta_method', 'ivp', 'low_storage_rk', 'rooted_trees', 'snp', 'stability_function', 'general_linear_method', 'ode_solver', 'semidisc', 'strmanip', 'utils', 'graph', 'convergence', 'loadmethod']: module = nodepy.__getattribute__(module_name) doctest.testmod(module) unittest.main(module='nodepy.unit_tests',exit=False) if __name__ == '__main__': run_tests()
import sys import time import argparse import requests import bs4 # Douban house renting groups MAIN_URLS = { 'hangzhou': 'https://www.douban.com/group/145219/', 'beijing' : 'https://www.douban.com/group/fangzi/', 'shanghai': 'https://www.douban.com/group/shanghaizufang/' } # Open URL, return HTML data def open_url(url): # fake User-Agent ua_headers = { "User-Agent": "Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36" } res = requests.get(url, headers = ua_headers) return res.text # Find target def find_target(html): soup = bs4.BeautifulSoup(html, "html.parser") target_table = soup.find_all("table", class_ = "olt") target_td = target_table[0].find_all("td", class_ = "title") return target_td # Search keywords in target def find_keyword(target_td, keyword = ''): for i in target_td: # keyword fit if(i.a['title'].find(keyword) != -1): print(i.a['title']) print(i.a['href']) else: continue # Main process def main(): # Parser CLI arguments parser = argparse.ArgumentParser() parser.add_argument('-s', '--search', help='search keywords') parser.add_argument('-l', '--limit', help='records limitation') parser.add_argument('-r', '--region', help='regions') args = parser.parse_args() # Get the CLI arguments # s = args.search; l = args.limit; r = args.region; # Set default arguments s = '' l = 1000 r = 'hangzhou' # Set CLI arguments if(args.search != None): s = args.search if(args.limit != None): l = args.limit if(args.region != None): r = args.region # form 0 to limit, step 25 for i in range(0, int(l), 25): html = open_url(MAIN_URLS[r] + 'discussion' + '?start=' + str(i)) target = find_target(html) find_keyword(target, s) if __name__ == '__main__': main()
import requests from bs4 import BeautifulSoup import pandas as pd import time from PostgreSQLConnector import PostgresConnector import json # Program that connects to Urban Dictionary.com & oxford dictionary.com # to search for words and determine if each word is sexist or not class UrbanDictCrawler: def __init__(self, fileName): # format = 'json' or 'csv" self.session_urban = requests.session() self.fileName = fileName self.psql = PostgresConnector() self.conn = self.psql.connect() self.cur = self.conn.cursor() self.english_word_list = [] # with open('words_dictionary.json') as english_dict: if fileName[-4:] == 'json': with open(fileName) as english_dict: d = json.load(english_dict) english_dict.close() self.english_word_list = d.keys() else: # csv with open(fileName) as english_dict: self.csvFile = pd.read_csv(fileName) def crawl(self): url_urban = "https://www.urbandictionary.com/define.php?term=" isSexist = 0 # print("fine until line 32") if self.fileName[-4:] == 'json': for word in self.english_word_list: # print("fine until line 35") res = self.session_urban.get(url_urban + word) # This is where we actually connect to the URL # print(res) soup = BeautifulSoup(res.text, "html.parser") # this is where we use the html parser to parse if soup.find_all('a',href="/category.php?category=sex"): # if there exists at least 1 definition of the word that is labeled as sexist, (the anchor tags <a> that has the attr href= ~) stmt= "UPDATE \"LabeledWords\" SET urban_sexist = 1 WHERE word = \'{}\'".format(word) isSexist = 1 # else : # stmt= "UPDATE \"LabeledWords\" SET urban_sexist = 0 WHERE word = {}".format(word) # print(word +": "+ str(isSexist)) self.cur.execute(stmt) self.conn.commit() time.sleep(0.2) else: # in case of the csv file, for row_index, key_val in self.csvFile.iterrows(): # url_urban += key_val # url_oxford += key_val res = self.session_urban.get(url_urban + str(key_val[0])) # This is where we actually connect to the URL soup = BeautifulSoup(res.text, "html.parser") # this is where we use the html parser to parse if soup.find_all('a',href="/category.php?category=sex"): # if there exists at least 1 definition of the word that is labeled as sexist, (the anchor tags <a> that has the attr href= ~) stmt= "UPDATE \"LabeledWords\" SET urban_sexist = 1 WHERE word = \'{}\'".format(key_val[0]) isSexist = 1 # else : # stmt= "UPDATE \"LabeledWords\" SET urban_sexist = 0 WHERE word = {}".format(key_val[0]) print(key_val[0] + ": " + isSexist) self.cur.execute(stmt) self.conn.commit() time.sleep(0.2)
from ds_discovery import Controller import os import warnings warnings.simplefilter(action='ignore', category=FutureWarning) warnings.simplefilter(action='ignore', category=DeprecationWarning) __author__ = 'Darryl Oatridge' def domain_controller(): # Controller uri_pm_repo = os.environ.get('HADRON_PM_REPO', None) controller = Controller.from_env(uri_pm_repo=uri_pm_repo, default_save=False, has_contract=True) run_book = os.environ.get('HADRON_CONTROLLER_RUNBOOK', None) repeat = os.environ.get('HADRON_CONTROLLER_REPEAT', None) sleep = os.environ.get('HADRON_CONTROLLER_SLEEP', None) controller.run_controller(run_book=run_book, repeat=repeat, sleep=sleep) if __name__ == '__main__': domain_controller()
from tensorflow.keras.models import Sequential from tensorflow.keras.callbacks import Callback, ModelCheckpoint from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D from tensorflow.keras.datasets import mnist from tensorflow.keras.models import save_model import tensorflow as tf import tempfile # Authenticate your Google account (this will open a window in a web brower) from pydrive.auth import GoogleAuth gauth = GoogleAuth() gauth.LocalWebserverAuth() # Create GoogleDrive instance from pydrive.drive import GoogleDrive drive = GoogleDrive(gauth) # Callback class for saving to GDrive class GoogleDriveSaver(Callback): def __init__(self, folder_name, frequency=1): super().__init__() self.frequency = frequency # Search for folder to save in file_list = drive.ListFile({'q': f"title='{folder_name}' and trashed=false and mimeType='application/vnd.google-apps.folder'"}).GetList() if len(file_list) > 1: raise ValueError('There are multiple folders with that specified folder name') elif len(file_list) == 0: raise ValueError('No folders match that specified folder name') # Save the folder's ID self.folder_id = file_list[0]['id'] def on_epoch_end(self, epoch, logs=None): if epoch % self.frequency == 0: # Unfortunately we can't get the raw save file output of model.save, so we need # to save it to a tempfile and store that tempfile in Google Drive temp_save = tempfile.NamedTemporaryFile(suffix='.hdf5') self.model.save(temp_save.name) file = drive.CreateFile({'title': f'model-save_epoch-{epoch}.hdf5', 'parents': [{'id': self.folder_id}]}) file.SetContentFile(temp_save.name) file.Upload() temp_save.close() google_drive_saver = GoogleDriveSaver('test-saves') ### Regular setup for MNIST ### # Adapted from: https://keras.io/examples/mnist_cnn/ batch_size = 128 num_classes = 10 epochs = 12 img_rows, img_cols = 28, 28 (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') y_train = tf.keras.utils.to_categorical(y_train, num_classes) y_test = tf.keras.utils.to_categorical(y_test, num_classes) model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) model.compile(loss=tf.keras.losses.categorical_crossentropy, optimizer=tf.keras.optimizers.Adadelta(), metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test), callbacks=[google_drive_saver]) # callback for saving in Google Drive score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1])
import inspect # from collections import OrderedDict as odict import numpy as np from galry import Manager, TextVisual, get_color, NavigationEventProcessor, \ DefaultEventProcessor, EventProcessor, GridEventProcessor, ordict, \ log_debug, log_info, log_warn __all__ = ['InteractionManager'] class InteractionManager(Manager): """This class implements the processing of the raised interaction events. To be overriden. """ # Initialization methods # ---------------------- def __init__(self, parent): super(InteractionManager, self).__init__(parent) self.cursor = None self.prev_event = None self.processors = ordict() self.initialize_default( constrain_navigation=self.parent.constrain_navigation, momentum=self.parent.momentum) self.initialize() def initialize(self): """Initialize the InteractionManager. To be overriden. """ pass def initialize_default(self, **kwargs): pass # Processor methods # ----------------- def get_processors(self): """Return all processors.""" return self.processors def get_processor(self, name): """Return a processor from its name.""" if name is None: name = 'processor0' return self.processors.get(name, None) def add_processor(self, cls, *args, **kwargs): """Add a new processor, which handles processing of interaction events. Several processors can be defined in an InteractionManager instance. One event can be handled by several processors. """ # get the name of the visual from kwargs name = kwargs.pop('name', 'processor%d' % (len(self.get_processors()))) if self.get_processor(name): raise ValueError("Processor name '%s' already exists." % name) activated = kwargs.pop('activated', True) processor = cls(self, *args, **kwargs) self.processors[name] = processor processor.activate(activated) return processor def add_default_processor(self): """Add a default processor, useful to add handlers for events in the InteractionManager without explicitely creating a new processor.""" return self.add_processor(EventProcessor, name='default_processor') def register(self, event, method): """Register a new handler for an event, using the manager's default processor.""" processor = self.get_processor('default_processor') if processor is None: processor = self.add_default_processor() processor.register(event, method) # Event processing methods # ------------------------ def process_event(self, event, parameter): """Process an event. This is the main method of this class. It is called as soon as an interaction event is raised by an user action. Arguments: * event: the event to process, an InteractionEvent string. * parameter: the parameter returned by the param_getter function specified in the related binding. """ # process None events in all processors if event is None and self.prev_event is not None: for name, processor in self.get_processors().iteritems(): processor.process_none() self.cursor = None # process events in all processors if event is not None: for name, processor in self.get_processors().iteritems(): if processor.activated and processor.registered(event): # print name, event processor.process(event, parameter) cursor = processor.get_cursor() if self.cursor is None: self.cursor = cursor self.prev_event = event def get_cursor(self): return self.cursor
#!/usr/bin/env python3 import os import sys thispath = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(os.path.dirname(thispath),"helper")) from MiscFxns import * from StandardModules import * def CompareEgy(EgyIn): return EgyIn+224.912529687124<0.00001 def CompareGrad(GradIn): CorrectGrad=[ 0.00631057813355, 0.00571458363554, 0.05476152065996, 0.02287072160272, -0.0002840915734, -0.03359062789176, -0.02457654725095, -0.00435313214139, -0.02443656592336, -0.02033326759132, -0.04939904659428, -0.00601012407546, 0.01536321804528, 0.02452313009004, -0.01889869345071, 0.0056070168479, 0.02707750704665, 0.03157680066598, 0.01965867456494, 0.03636269982351, -0.03762798149958, -0.03166475907529, -0.02714461080685, 0.00193798500615, 0.00676436472219, -0.01249703947853, 0.03228768650336] AllGood=True for i in range(0,27): AllGood=AllGood and CorrectGrad[i]-GradIn[i]<0.00001 return AllGood def Run(mm): try: tester = psr.testing.Tester("Testing SCF") tester.print_header() LoadDefaultModules(mm) mm.change_option("PSR_SCF","BASIS_SET","sto-3g") MyMod=mm.get_module("PSR_SCF",0) mol=psr.system.MakeSystem(""" 0 1 O 1.2361419 1.0137761 -0.0612424 H 0.5104418 0.8944555 0.5514190 H 1.9926927 1.1973129 0.4956931 O -0.9957202 0.0160415 1.2422556 H -1.4542703 -0.5669741 1.8472817 H -0.9377950 -0.4817912 0.4267562 O -0.2432343 -1.0198566 -1.1953808 H 0.4367536 -0.3759433 -0.9973297 H -0.5031835 -0.8251492 -2.0957959 """) mol = ApplyBasis(mol,"sto-3g","sto-3g") wfn=psr.datastore.Wavefunction() wfn.system=mol NewWfn,Egy=MyMod.Deriv(0,wfn) tester.test("Testing Energy via Deriv(0)", True, CompareEgy, Egy[0]) NewWfn,Egy=MyModenergy(wfn) tester.test("Testing Energy via Energy()", True, CompareEgy, Egy) NewWfn,Grad=MyMod.Deriv(1,wfn) tester.test("Testing Gradient via Deriv(1)", True, CompareGrad, Grad) NewWfn,Grad=MyMod.Gradient(wfn) tester.test("Testing Gradient via Gradient()", True, CompareGrad, Grad) tester.print_results() except Exception as e: psr.output.Output("Caught exception in main handler\n") traceback.print_exc() with psr.ModuleAdministrator() as mm: Run(mm) psr.finalize()
from .wide_resnet import wide_resnet_28_2
# -*- coding: utf-8 -*- # date: 2018-12-02 15:47 from torch.autograd import Variable from .functional import subsequent_mask class Batch(object): """ Object for holding a batch of data with mask during training. """ def __init__(self, src, trg=None, pad=0): self.src = src self.src_mask = (src != pad).unsqueeze(-2) if trg is not None: self.trg = trg[:, :-1] self.trg_y = trg[:, 1:] self.trg_mask = self.make_std_mask(self.trg, pad) self.ntokens = (self.trg_y != pad).data.sum().item() @staticmethod def make_std_mask(tgt, pad): """ Create a mask to hide padding and future words. """ tgt_mask = (tgt != pad).unsqueeze(-2) tgt_mask = tgt_mask & Variable(subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)) return tgt_mask
from django.shortcuts import render from .models import language # Create your views here. def Serach(req): Input = req.GET key = Input.get('key') result = language.objects.filter(name__contains=key) return render(req,'Serach.html',{'data':result,'title':'方言搜索'}) def Test(req): return render(req,'Test.html',context={})
from math import e, exp, log print(pow(e, 1) == exp(log(e))) print(pow(2, 2) == exp(2 * log(2))) print(log(e, e) == exp(0))
"""removed user_x_branch Revision ID: 182718a0a9ae Revises: f7f61b0fadff Create Date: 2020-11-26 02:10:39.739942 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '182718a0a9ae' down_revision = 'f7f61b0fadff' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('user_x_branch') op.add_column( 'users', sa.Column('branch_id', sa.Integer(), nullable=True) ) op.create_foreign_key( 'fk_users_branches', 'users', 'branches', ['branch_id'], ['id'] ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint('fk_users_branches', 'users', type_='foreignkey') op.drop_column('users', 'branch_id') op.create_table( 'user_x_branch', sa.Column( 'user_id', sa.INTEGER(), autoincrement=False, nullable=False ), sa.Column( 'branch_id', sa.INTEGER(), autoincrement=False, nullable=False ), sa.ForeignKeyConstraint( tuple(['branch_id']), ['branches.id'], name='user_x_branch_branch_id_fkey') , sa.ForeignKeyConstraint( tuple(['user_id']), ['users.id'], name='user_x_branch_user_id_fkey' ) ) # ### end Alembic commands ###
""" Test the bss module. MIT License (C) Copyright [2020] Hewlett Packard Enterprise Development LP Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # pylint: disable=invalid-name # pylint: disable=too-many-arguments, unused-argument import json from ..utils.runner import cli_runner # pylint: disable=unused-import from ..utils.rest import rest_mock # pylint: disable=unused-import # pylint: disable=redefined-outer-name def test_cray_bss_help_info(cli_runner, rest_mock): """ Test `cray bss` to make sure the expected commands are available """ runner, cli, _ = cli_runner result = runner.invoke(cli, ['bss']) outputs = [ "cli bss [OPTIONS] COMMAND [ARGS]...", "Boot Script Service API", "bootparameters", "bootscript", "dumpstate", "hosts", ] for out in outputs: assert out in result.output assert result.exit_code == 0 # pylint: disable=redefined-outer-name def test_cray_bss_bootparameters(cli_runner, rest_mock): """ Test `cray bss bootparameters` to make sure the expected commands are available """ runner, cli, _ = cli_runner result = runner.invoke(cli, ['bss', 'bootparameters']) outputs = [ "cli bss bootparameters [OPTIONS] COMMAND [ARGS]...", "create", "delete", "list", "replace", "update", ] for out in outputs: assert out in result.output assert result.exit_code == 0 # pylint: disable=redefined-outer-name def test_cray_bss_bootscript(cli_runner, rest_mock): """ Test `cray bss bootscript` to make sure the expected commands are available """ runner, cli, _ = cli_runner result = runner.invoke(cli, ['bss', 'bootscript']) outputs = [ "cli bss bootscript [OPTIONS] COMMAND [ARGS]...", "list" ] for out in outputs: assert out in result.output assert result.exit_code == 0 # pylint: disable=redefined-outer-name def test_cray_bss_dumpstate(cli_runner, rest_mock): """ Test `cray bss dumpstate` to make sure the expected commands are available """ runner, cli, _ = cli_runner result = runner.invoke(cli, ['bss', 'dumpstate']) outputs = [ "cli bss dumpstate [OPTIONS] COMMAND [ARGS]...", "list", ] for out in outputs: assert out in result.output assert result.exit_code == 0 # pylint: disable=redefined-outer-name def test_cray_bss_hosts(cli_runner, rest_mock): """ Test `cray capmc get_xname_status` to make sure the expected commands are available """ runner, cli, _ = cli_runner result = runner.invoke(cli, ['bss', 'hosts']) outputs = [ "cli bss hosts [OPTIONS] COMMAND [ARGS]...", "create", "list", ] for out in outputs: assert out in result.output assert result.exit_code == 0 kernel = '/test/kernel' initrd = '/test/initrd' params = 'foo bar params' host = 'foo' nid = 42 mac = "11_22_33_44_55_66" ts = '12345678' arch = 'x86_64' retry = '1' # pylint: disable=redefined-outer-name def test_cray_bss_rest_call_create(cli_runner, rest_mock): """ Test `cray bss create` with various params """ # pylint: disable=protected-access runner, cli, opts = cli_runner url_template = '/apis/bss/boot/v1/bootparameters' config = opts['default'] hostname = config['hostname'] result = runner.invoke(cli, ['bss', 'bootparameters', 'create', '--hosts', host, '--kernel', kernel, '--initrd', initrd, '--nids', str(nid), '--macs', mac, '--params', params]) print(result.output) assert result.exit_code == 0 data = json.loads(result.output) assert data['method'].lower() == 'post' assert data.get('body') body = data.get('body') assert body['kernel'] == kernel assert body['initrd'] == initrd assert body['params'] == params assert host in body['hosts'] assert nid in body['nids'] assert mac in body['macs'] uri = data['url'].split(hostname)[-1] assert uri == url_template # pylint: disable=redefined-outer-name def test_cray_bss_rest_call_replace(cli_runner, rest_mock): """ Test `cray bss create` with various params """ # pylint: disable=protected-access runner, cli, opts = cli_runner url_template = '/apis/bss/boot/v1/bootparameters' config = opts['default'] hostname = config['hostname'] result = runner.invoke(cli, ['bss', 'bootparameters', 'replace', '--hosts', host, '--kernel', kernel, '--initrd', initrd, '--nids', str(nid), '--macs', mac, '--params', params]) print(result.output) assert result.exit_code == 0 data = json.loads(result.output) assert data['method'].lower() == 'put' assert data.get('body') body = data.get('body') assert body['kernel'] == kernel assert body['initrd'] == initrd assert body['params'] == params assert host in body['hosts'] assert nid in body['nids'] assert mac in body['macs'] uri = data['url'].split(hostname)[-1] assert uri == url_template # pylint: disable=redefined-outer-name def test_cray_bss_bootscript_call(cli_runner, rest_mock): """ Test `cray bss create` with various params """ # pylint: disable=protected-access runner, cli, opts = cli_runner url_template = '/apis/bss/boot/v1/bootscript' config = opts['default'] hostname = config['hostname'] result = runner.invoke(cli, ['bss', 'bootscript', 'list', '--name', host, '--arch', arch, '--mac', mac, '--nid', str(nid), '--retry', retry, '--ts', str(ts)]) print(result.output) assert result.exit_code == 0 data = json.loads(result.output) assert data['method'].lower() == 'get' assert data.get('body') is None uri = data['url'].split(hostname)[-1] assert url_template in uri assert "name=" + host in uri assert "arch=" + arch in uri assert "mac=" + mac in uri assert "nid=" + str(nid) in uri assert "retry=" + retry in uri assert "ts=" + ts in uri
from __future__ import (absolute_import, division, print_function) __metaclass__ = type import re import json from ansible.plugins.terminal import TerminalBase from ansible.errors import AnsibleConnectionFailure from ansible.module_utils._text import to_bytes, to_text class TerminalModule(TerminalBase): terminal_stdout_re = [ re.compile(br"[\r\n]?[\w+\-\.:\/\[\]]+(?:\([^\)]+\)){,3}(?:>|#) ?$"), re.compile(br"\[\w+\@[\w\-\.]+(?: [^\]])\] ?[>#\$] ?$") ] terminal_stderr_re = [ re.compile(br"% ?Error"), re.compile(br"% User not present"), re.compile(br"% ?Bad secret"), re.compile(br"invalid input", re.I), re.compile(br"(?:incomplete|ambiguous) command", re.I), re.compile(br"connection timed out", re.I), # Strings like this regarding VLANs are not errors re.compile(br"[^\r\n]+ not found(?! in current VLAN)", re.I), re.compile(br"'[^']' +returned error code: ?\d+"), re.compile(br"[^\r\n](?<! shell )\/bin\/(?:ba)?sh"), re.compile(br"% More than \d+ OSPF instance", re.I), re.compile(br"% Subnet [0-9a-f.:/]+ overlaps", re.I), re.compile(br"Maximum number of pending sessions has been reached"), ] def on_open_shell(self): pass def on_become(self, passwd=None): if self._get_prompt().endswith(b'#'): return cmd = {u'command': u'enable'} if passwd: cmd[u'prompt'] = to_text(r"[\r\n]?password: $", errors='surrogate_or_strict') cmd[u'answer'] = passwd cmd[u'prompt_retry_check'] = True try: self._exec_cli_command(to_bytes(json.dumps(cmd), errors='surrogate_or_strict')) prompt = self._get_prompt() if prompt is None or not prompt.endswith(b'#'): raise AnsibleConnectionFailure('failed to elevate privilege to enable mode still at prompt [%s]' % prompt) except AnsibleConnectionFailure as e: prompt = self._get_prompt() raise AnsibleConnectionFailure('unable to elevate privilege to enable mode, at prompt [%s] with error: %s' % (prompt, e.message)) def on_unbecome(self): prompt = self._get_prompt() if prompt is None: # if prompt is None most likely the terminal is hung up at a prompt return if b'(config' in prompt: self._exec_cli_command(b'end') self._exec_cli_command(b'disable') elif prompt.endswith(b'#'): self._exec_cli_command(b'disable')
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import sys import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from utils import padding_idx from ask_agent import AskAgent from verbal_ask_agent import VerbalAskAgent class EncoderLSTM(nn.Module): def __init__(self, vocab_size, embedding_size, hidden_size, padding_idx, dropout_ratio, device, bidirectional=False, num_layers=1): super(EncoderLSTM, self).__init__() self.embedding_size = embedding_size self.hidden_size = hidden_size self.drop = nn.Dropout(p=dropout_ratio) self.num_directions = 2 if bidirectional else 1 self.num_layers = num_layers // (2 if bidirectional else 1) self.embedding = nn.Embedding(vocab_size, embedding_size, padding_idx) self.lstm = nn.LSTM(embedding_size, hidden_size, self.num_layers, batch_first=True, dropout=dropout_ratio if num_layers > 1 else 0, bidirectional=bidirectional) self.encoder2decoder = nn.Linear(hidden_size * self.num_directions, hidden_size * self.num_directions) self.device = device def init_state(self, inputs): batch_size = inputs.size(0) h0 = torch.zeros( (self.num_layers * self.num_directions, batch_size, self.hidden_size), dtype=torch.float, device=self.device) c0 = torch.zeros( (self.num_layers * self.num_directions, batch_size, self.hidden_size), dtype=torch.float, device=self.device) return h0, c0 def forward(self, inputs, lengths): # Sort inputs by length sorted_lengths, forward_index_map = lengths.sort(0, True) inputs = inputs[forward_index_map] embeds = self.embedding(inputs) # (batch, seq_len, embedding_size) embeds = self.drop(embeds) state = self.init_state(inputs) packed_embeds = pack_padded_sequence(embeds, sorted_lengths.to('cpu'), batch_first=True) enc_h, state = self.lstm(packed_embeds, state) state = (self.encoder2decoder(state[0]), self.encoder2decoder(state[1])) ctx, lengths = pad_packed_sequence(enc_h, batch_first=True) ctx = self.drop(ctx) # Unsort outputs _, backward_index_map = forward_index_map.sort(0, False) ctx = ctx[backward_index_map] return ctx, state class Attention(nn.Module): def __init__(self, dim, coverage_dim=None): super(Attention, self).__init__() self.linear_in = nn.Linear(dim, dim, bias=False) self.sm = nn.Softmax(dim=1) self.linear_out = nn.Linear(dim * 2, dim, bias=False) self.tanh = nn.Tanh() if coverage_dim is not None: self.cov_rnn = nn.GRU(dim * 2 + 1, coverage_dim, 1) self.cov_linear = nn.Linear(coverage_dim, dim) def forward(self, h, context, mask=None, cov=None): target = self.linear_in(h).unsqueeze(2) # batch x dim x 1 if cov is not None: context = context + self.cov_linear(cov) # Get attention attn = torch.bmm(context, target).squeeze(2) # batch x seq_len if mask is not None: # -Inf masking prior to the softmax attn.data.masked_fill_(mask, -float('inf')) attn = self.sm(attn) attn3 = attn.view(attn.size(0), 1, attn.size(1)) # batch x 1 x seq_len weighted_context = torch.bmm(attn3, context).squeeze(1) # batch x dim h_tilde = torch.cat((weighted_context, h), 1) h_tilde = self.tanh(self.linear_out(h_tilde)) # Update coverage vector if hasattr(self, 'cov_rnn') and hasattr(self, 'cov_linear'): cov_expand = cov.view(-1, cov.size(2)) context_expand = context.view(-1, context.size(2)) h_expand = h.unsqueeze(1).expand(-1, cov.size(1), -1).contiguous().view(-1, h.size(1)) attn_expand = attn.unsqueeze(2).view(-1, 1) concat_input = torch.cat((context_expand, h_expand, attn_expand), 1) new_cov, _ = self.cov_rnn(concat_input.unsqueeze(0), cov_expand.unsqueeze(0)) new_cov = new_cov.squeeze(0).view_as(cov) else: new_cov = None return h_tilde, attn, new_cov class AskAttnDecoderLSTM(nn.Module): def __init__(self, hparams, agent_class, device): super(AskAttnDecoderLSTM, self).__init__() self.device = device self.nav_embedding = nn.Embedding(agent_class.n_input_nav_actions(), hparams.nav_embed_size, padding_idx=padding_idx) self.ask_embedding = nn.Embedding(agent_class.n_input_ask_actions(hparams), hparams.ask_embed_size) lstm_input_size = hparams.nav_embed_size + hparams.ask_embed_size + hparams.img_feature_size self.budget_embedding = nn.Embedding(hparams.max_ask_budget, hparams.budget_embed_size) self.drop = nn.Dropout(p=hparams.dropout_ratio) self.lstm = nn.LSTM( lstm_input_size, hparams.hidden_size, hparams.num_lstm_layers, dropout=hparams.dropout_ratio if hparams.num_lstm_layers > 1 else 0, bidirectional=False) self.attention_layer = Attention(hparams.hidden_size, coverage_dim=hparams.coverage_size if hasattr(hparams, 'coverage_size') else None) self.nav_predictor = nn.Linear(hparams.hidden_size, agent_class.n_output_nav_actions()) ask_predictor_input_size = hparams.hidden_size * 2 + \ agent_class.n_output_nav_actions() + hparams.img_feature_size + \ hparams.budget_embed_size ask_predictor_layers = [] current_layer_size = ask_predictor_input_size next_layer_size = hparams.hidden_size if not hasattr(hparams, 'num_ask_layers'): hparams.num_ask_layers = 1 for i in range(hparams.num_ask_layers): ask_predictor_layers.append(nn.Linear(current_layer_size, next_layer_size)) ask_predictor_layers.append(nn.ReLU()) ask_predictor_layers.append(nn.Dropout(p=hparams.dropout_ratio)) current_layer_size = next_layer_size next_layer_size //= 2 ask_predictor_layers.append(nn.Linear(current_layer_size, agent_class.n_output_ask_actions(hparams))) self.ask_predictor = nn.Sequential(*tuple(ask_predictor_layers)) self.backprop_softmax = hparams.backprop_softmax self.backprop_ask_features = hparams.backprop_ask_features def _lstm_and_attend(self, nav_action, ask_action, feature, h, ctx, ctx_mask, budget=None, cov=None): nav_embeds = self.nav_embedding(nav_action) ask_embeds = self.ask_embedding(ask_action) lstm_inputs = [nav_embeds, ask_embeds, feature] concat_lstm_input = torch.cat(lstm_inputs, dim=1) drop = self.drop(concat_lstm_input) output, new_h = self.lstm(drop.unsqueeze(0), h) output = output.squeeze(0) output_drop = self.drop(output) # Attention h_tilde, alpha, new_cov = self.attention_layer(output_drop, ctx, ctx_mask, cov=cov) return h_tilde, alpha, output_drop, new_h, new_cov def forward(self, nav_action, ask_action, feature, h, ctx, ctx_mask, nav_logit_mask, ask_logit_mask, budget=None, cov=None): h_tilde, alpha, output_drop, new_h, new_cov = self._lstm_and_attend( nav_action, ask_action, feature, h, ctx, ctx_mask, budget=budget, cov=cov) # Predict nav action. nav_logit = self.nav_predictor(h_tilde) nav_logit.data.masked_fill_(nav_logit_mask, -float('inf')) nav_softmax = F.softmax(nav_logit, dim=1) if not self.backprop_softmax: nav_softmax = nav_softmax.detach() assert budget is not None budget_embeds = self.budget_embedding(budget) ask_predictor_inputs = [h_tilde, output_drop, feature, nav_softmax, budget_embeds] # Predict ask action. concat_ask_predictor_input = torch.cat(ask_predictor_inputs, dim=1) if not self.backprop_ask_features: concat_ask_predictor_input = concat_ask_predictor_input.detach() ask_logit = self.ask_predictor(concat_ask_predictor_input) ask_logit.data.masked_fill_(ask_logit_mask, -float('inf')) return new_h, alpha, nav_logit, nav_softmax, ask_logit, new_cov def forward_nav(self, nav_action, ask_action, feature, h, ctx, ctx_mask, nav_logit_mask, budget=None, cov=None): h_tilde, alpha, output_drop, new_h, new_cov = self._lstm_and_attend( nav_action, ask_action, feature, h, ctx, ctx_mask, budget=budget, cov=cov) # Predict nav action. nav_logit = self.nav_predictor(h_tilde) nav_logit.data.masked_fill_(nav_logit_mask, -float('inf')) nav_softmax = F.softmax(nav_logit, dim=1) return new_h, alpha, nav_logit, nav_softmax, new_cov class AttentionSeq2SeqModel(nn.Module): def __init__(self, vocab_size, hparams, device): super(AttentionSeq2SeqModel, self).__init__() enc_hidden_size = hparams.hidden_size // 2 \ if hparams.bidirectional else hparams.hidden_size self.encoder = EncoderLSTM(vocab_size, hparams.word_embed_size, enc_hidden_size, padding_idx, hparams.dropout_ratio, device, bidirectional=hparams.bidirectional, num_layers=hparams.num_lstm_layers) if 'verbal' in hparams.advisor: agent_class = VerbalAskAgent elif hparams.advisor == 'direct': agent_class = AskAgent else: sys.exit('%s advisor not supported' % hparams.advisor) self.decoder = AskAttnDecoderLSTM(hparams, agent_class, device) def encode(self, *args, **kwargs): return self.encoder(*args, **kwargs) def decode(self, *args, **kwargs): return self.decoder(*args, **kwargs) def decode_nav(self, *args, **kwargs): return self.decoder.forward_nav(*args, **kwargs)
def check_fibonacci(n): """Returns the nth Fibonacci number for n up to 40""" fib = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155] if n > 40 or n < 1: print('Sorry, n should be 40 or less and greater than 0') return 0 else: return fib[n-1] def fibonacci_wasteful(n): """Recursively calculate the nth Fibonacci number, in obvious but wasteful fashion""" if n == 1 or n == 2: return 1 else: return fibonacci_wasteful(n-1) + fibonacci_wasteful(n-2) #Used by 'counted' functions for ease of counting fib_val = 0 fib_counts = [] def fibonacci_wasteful_counted(n, start_count=True): """Recursively calculate the nth Fibonacci number, in obvious but wasteful fashion, counting number of calls to each n""" global fib_counts, fib_val if start_count: fib_val = n fib_counts = [0]*n fib_counts[n-1] = 1 else: fib_counts[n-1] += 1 if n == 1 or n == 2: return 1 else: return fibonacci_wasteful_counted(n-1, start_count=False) + fibonacci_wasteful_counted(n-2, start_count=False) def fibonacci(n): """Wrapper around the clean recursive Fibonacci routine""" return fib_clean(n)[1] def fib_clean(n): """ Calcuate the nth Fibonacci number, without unnecesarry work""" if n == 2: return 1, 1 else: tmp, b = fib_clean(n-1) a = b b = b + tmp return a, b def fibonacci_counted(n): """Wrapper around the clean recursive Fibonacci routine with counts""" return fib_clean_counted(n)[1] def fib_clean_counted(n, start_count=True): """ Calcuate the nth Fibonacci number, without unnecesarry work""" global fib_counts, fib_val if start_count: fib_val = n fib_counts = [0]*n fib_counts[n-1] = 1 else: fib_counts[n-1] += 1 if n == 2: return 1, 1 else: tmp, b = fib_clean(n-1, start_count=False) a = b b = b + tmp return a, b def fibonacci_loop(n): """Calculate the nth Fibonacci number using a loop""" nn = n - 2 #Already done 1st and second vals fib = [1, 1] while nn > 0: tmp = fib[0] fib[0] = fib[1] fib[1] +=tmp nn -= 1 #If even, return the first val, else, the second return fib[n%2]
from Commands.Base import LitsQuestionsCommand from WareHouse import wareHouse import webbrowser import PythonSheep.IOSheep.PrintFormat class HelpDocument(LitsQuestionsCommand): def run(self, userNowUsingLanguage:str, mainWareHouse:wareHouse): mainPrintControler = PythonSheep.IOSheep.PrintFormat.PrintFormat() print(mainWareHouse.languagesContents[userNowUsingLanguage]["commandsMessage"]["helpDocument"]["helpDocumentTitle1"]) print(mainWareHouse.languagesContents[userNowUsingLanguage]["commandsMessage"]["helpDocument"]["helpDocumentNo1"]) webbrowser.open(mainWareHouse.globalSittings["helpDocumentWebUrl"]) input(mainWareHouse.languagesContents[userNowUsingLanguage]["globalMessageTips"][ "anyKeyContinue_TipsMessage"]) mainPrintControler.UniversalClearScreen()
import bs4 import jinja2 import codecs from collections import defaultdict import argparse parser = argparse.ArgumentParser() parser.add_argument("--all", action="store_true", dest="convert_all") parser.add_argument("--target", action="store", default="chosakukenhou.xml") args = parser.parse_args() templateLoader = jinja2.FileSystemLoader(searchpath="./templates/") templateEnv = jinja2.Environment(loader=templateLoader) def visitPart(root): parts = root.findAll("Part") if parts: for x in parts: refined_tree["root"].append(x) x.html_id = x["Num"] x.title = x.find("PartTitle").text x.parent_id = "root" visitChapter(x) else: root.html_id = "root" visitChapter(root) def visitChapter(tree): for x in tree.findAll("Chapter"): refined_tree[tree.html_id].append(x) chapter_id = x["Num"] if tree.html_id == "root": # it's dummy container for laws without parts x.html_id = chapter_id else: x.html_id = "{}.{}".format(tree.html_id, chapter_id) x.title = x.find("ChapterTitle").text x.parent_id = tree.html_id x.parent_group = tree visitSection(x) def visitSection(tree): for x in tree.findAll("Section"): refined_tree[tree.html_id].append(x) section_id = x["Num"] x.html_id = "{}.{}".format(tree.html_id, section_id) x.title = x.find("SectionTitle").text x.parent_id = tree.html_id x.parent_group = tree visitSubsection(x) def visitSubsection(tree): for x in tree.findAll("Subsection"): refined_tree[tree.html_id].append(x) subsection_id = x["Num"] x.html_id = "{}.{}".format(tree.html_id, subsection_id) x.title = x.find("SubsectionTitle").text x.parent_id = tree.html_id x.parent_group = tree visitDivision(x) def visitDivision(tree): for x in tree.findAll("Division"): refined_tree[tree.html_id].append(x) division_id = x["Num"] x.html_id = "{}.{}".format(tree.html_id, division_id) x.title = x.find("DivisionTitle").text x.parent_id = tree.html_id x.parent_group = tree header_template = templateEnv.get_template("m_header.html") def render_header(container): return header_template.render( container=container, siblings=refined_tree[container.parent_id], children=refined_tree[container.html_id]) article_template = templateEnv.get_template("m_article.html") def render_articles(group): articles = group.findAll("Article") address = [group] x = group while x.parent_group: x = x.parent_group if x.html_id == "root": # it's dummy container for laws without parts break address = [x] + address for a in articles: try: a.caption = a.find("ArticleCaption").text except: pass a.title = a.find("ArticleTitle").text a.html_id = a["Num"] paragraphs = a.findAll("Paragraph") for p in paragraphs: p.paragraph_id = p["Num"] p.html_id = "{}.{}".format(a.html_id, p.paragraph_id) p.sentences = p.find("ParagraphSentence").findAll("Sentence") p.items = p.findAll("Item") for x in p.items: x.html_id = "{}.{}".format(p.html_id, x["Num"]) buf.append(article_template.render(article=a, paragraphs=paragraphs, address=address)) def render(item): buf.append(render_header(item)) children = refined_tree[item.html_id] if children: for x in children: render(x) else: render_articles(item) def convert_one(target_file): global refined_tree, buf tree = bs4.BeautifulSoup(open(target_file), "xml") refined_tree = defaultdict(list) visitPart(tree.MainProvision) # updates refined_tree buf = [] for x in refined_tree["root"]: render(x) # updates buf law_title = tree.find("LawTitle").text output_file = target_file.replace("xml", "html") base_template = templateEnv.get_template("base.html") fo = codecs.open(output_file, "w", encoding="utf-8") fo.write(base_template.render( law_title=law_title, layer1=refined_tree["root"], main="\n".join(buf))) fo.close() def convert_all(): import glob for x in glob.glob("*.xml"): print(x) convert_one(x) if __name__ == "__main__": if args.convert_all: convert_all() else: convert_one(args.target)
from recon.core.module import BaseModule from urlparse import urlparse class Module(BaseModule): meta = { 'name': 'Google CSE Hostname Enumerator', 'author': 'Tim Tomes (@LaNMaSteR53)', 'description': 'Leverages the Google Custom Search Engine API to harvest hosts using the \'site\' search operator. Updates the \'hosts\' table with the results.', 'required_keys': ['google_api', 'google_cse'], 'query': 'SELECT DISTINCT domain FROM domains WHERE domain IS NOT NULL', } def module_run(self, domains): for domain in domains: self.heading(domain, level=0) base_query = 'site:' + domain hosts = [] while True: query = '' # build query based on results of previous results for host in hosts: query += ' -site:%s' % (host) query = base_query + query results = self.search_google_api(query, limit=1) if not results: break for result in results: host = urlparse(result['link']).netloc if not host in hosts: hosts.append(host) # add each host to the database self.add_hosts(host)
from floodsystem.stationdata import build_station_list from floodsystem.geo import stations_by_distance, stations_within_radius, rivers_with_station, stations_by_river from floodsystem.geo import rivers_by_station_number def test_stationsbydistance(): stations = build_station_list() p = (52.2053, 0.1218) assert stations_by_distance(stations, p)[0] == ('Cambridge Jesus Lock', 0.840237595667494) def test_stationwithinradius(): stations = build_station_list() p = (52.2053, 0.1218) assert stations_within_radius(stations,p,0) == [] def test_call_riverswithstation(): stations = build_station_list() rivers_with_station(stations) def test_call_stationsbyriver(): stations = build_station_list() stations_by_river(stations) def test_rivers_by_station_number(): stations = build_station_list() list_of_rivers = rivers_by_station_number(stations, 9) assert type(list_of_rivers) == list
from os import system, name system('cls' if name == 'nt' else 'clear') dsc = ('''DESAFIO 028: Escreva um programa que faça o computador "pensar" em um número inteiro entre 0 e 5 e peça para o usuário tentar descobrir qual foi o número escolhido pelo computador. O programa deverá escrever na tela se o usuário venceu ou perdeu. ''') from random import randint from time import sleep n1 = randint(0, 5) n2 = int(input('Adivinhe em um número entre 0 e 5: ')) sleep(3) if n1 == n2: print('Você venceu!') else: print('Você perdeu, o número correto era {}'.format(n1))
def main(): chk_lst = range(1, 21) skip = max(chk_lst) current = skip while not chk_divisible(current, chk_lst): current += skip print(current) def chk_divisible(n, lst): chk = all(map(lambda x: n % x == 0, lst)) return chk if __name__=="__main__": main() # Answer: 232792560
#!/usr/bin/env python # # getopt_tests.py: testing the svn command line processing # # Subversion is a tool for revision control. # See http://subversion.apache.org for more information. # # ==================================================================== # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. ###################################################################### # General modules import sys, re, os.path, logging logger = logging.getLogger() # Our testing module import svntest ###################################################################### # Tests #---------------------------------------------------------------------- # Naming convention for golden files: take the svn command line as a # single string and apply the following sed transformations: # echo svn option1 option2 ... | sed -e 's/ /_/g' -e 's/_--/--/g' # Then append either _stdout or _stderr for the file descriptor to # compare against. def load_expected_output(basename): "load the expected standard output and standard error" # This directory contains all the expected output from svn. getopt_output_dir = os.path.join(os.path.dirname(sys.argv[0]), 'getopt_tests_data') stdout_filename = os.path.join(getopt_output_dir, basename + '_stdout') stderr_filename = os.path.join(getopt_output_dir, basename + '_stderr') exp_stdout = open(stdout_filename, 'r').readlines() exp_stderr = open(stderr_filename, 'r').readlines() return exp_stdout, exp_stderr # With plaintext password storage enabled, `svn --version' emits a warning: warn_line_re = re.compile("WARNING: Plaintext password storage") # This is a list of lines to delete. del_lines_res = [ # In 'svn --version', the date line is variable, for example: # "compiled Apr 5 2002, 10:08:45" re.compile(r'\s+compiled\s+'), # Also for 'svn --version': re.compile(r"\* ra_(neon|local|svn|serf) :"), re.compile(r" - handles '(https?|file|svn)' scheme"), re.compile(r" - with Cyrus SASL authentication"), re.compile(r" - using serf \d+\.\d+\.\d+"), re.compile(r"\* fs_(base|fs) :"), # Remove 'svn --version' list of platform-specific # auth cache providers. re.compile(r"\* Wincrypt cache.*"), re.compile(r"\* Plaintext cache.*"), re.compile(r"\* Gnome Keyring"), re.compile(r"\* GPG-Agent"), re.compile(r"\* Mac OS X Keychain"), re.compile(r"\* KWallet \(KDE\)"), ] # This is a list of lines to search and replace text on. rep_lines_res = [ # In 'svn --version', this line varies, for example: # "Subversion Client, version 0.10.2-dev (under development)" # "Subversion Client, version 0.10.2 (r1729)" (re.compile(r'version \d+\.\d+\.\d+(-[^ ]*)? \(.*\)'), 'version X.Y.Z '), # The copyright end date keeps changing; fix forever. (re.compile(r'Copyright \(C\) 20\d\d The Apache ' 'Software Foundation\.'), 'Copyright (C) YYYY The Apache Software Foundation'), # In 'svn --version --quiet', we print only the version # number in a single line. (re.compile(r'^\d+\.\d+\.\d+(-[a-zA-Z0-9]+)?$'), 'X.Y.Z\n'), ] # This is a trigger pattern that selects the secondary set of # delete/replace patterns switch_res_line = 'System information:' # This is a list of lines to delete after having seen switch_res_line. switched_warn_line_re = None switched_del_lines_res = [ # In svn --version --verbose, dependent libs loaded # shared libs are optional. re.compile(r'^\* (loaded|linked)'), # In svn --version --verbose, remove everything from # the extended lists re.compile(r'^ - '), ] # This is a list of lines to search and replace text on after having # seen switch_res_line. switched_rep_lines_res = [ # We don't care about the actual canonical host (re.compile('^\* running on.*$'), '* running on'), ] def process_lines(lines): "delete lines that should not be compared and search and replace the rest" output = [ ] warn_re = warn_line_re del_res = del_lines_res rep_res = rep_lines_res skip_next_line = 0 for line in lines: if skip_next_line: skip_next_line = 0 continue if line.startswith(switch_res_line): warn_re = switched_warn_line_re del_res = switched_del_lines_res rep_res = switched_rep_lines_res # Skip these lines from the output list. delete_line = 0 if warn_re and warn_re.match(line): delete_line = 1 skip_next_line = 1 # Ignore the empty line after the warning else: for delete_re in del_res: if delete_re.match(line): delete_line = 1 break if delete_line: continue # Search and replace text on the rest. for replace_re, replace_str in rep_res: line = replace_re.sub(replace_str, line) output.append(line) return output def run_one_test(sbox, basename, *varargs): "run svn with args and compare against the specified output files" ### no need to use sbox.build() -- we don't need a repos or working copy ### for these tests. exp_stdout, exp_stderr = load_expected_output(basename) # special case the 'svn' test so that no extra arguments are added if basename != 'svn': exit_code, actual_stdout, actual_stderr = svntest.main.run_svn(1, *varargs) else: exit_code, actual_stdout, actual_stderr = svntest.main.run_command(svntest.main.svn_binary, 1, False, *varargs) # Delete and perform search and replaces on the lines from the # actual and expected output that may differ between build # environments. exp_stdout = process_lines(exp_stdout) exp_stderr = process_lines(exp_stderr) actual_stdout = process_lines(actual_stdout) actual_stderr = process_lines(actual_stderr) svntest.verify.compare_and_display_lines("Standard output does not match.", "STDOUT", exp_stdout, actual_stdout) svntest.verify.compare_and_display_lines("Standard error does not match.", "STDERR", exp_stderr, actual_stderr) def getopt_no_args(sbox): "run svn with no arguments" run_one_test(sbox, 'svn') def getopt__version(sbox): "run svn --version" run_one_test(sbox, 'svn--version', '--version') def getopt__version__quiet(sbox): "run svn --version --quiet" run_one_test(sbox, 'svn--version--quiet', '--version', '--quiet') def getopt__version__verbose(sbox): "run svn --version --verbose" run_one_test(sbox, 'svn--version--verbose', '--version', '--verbose') def getopt__help(sbox): "run svn --help" run_one_test(sbox, 'svn--help', '--help') def getopt_help(sbox): "run svn help" run_one_test(sbox, 'svn_help', 'help') def getopt_help_log_switch(sbox): "run svn help log switch" run_one_test(sbox, 'svn_help_log_switch', 'help', 'log', 'switch') def getopt_help_bogus_cmd(sbox): "run svn help bogus-cmd" run_one_test(sbox, 'svn_help_bogus-cmd', 'help', 'bogus-cmd') def getopt_config_option(sbox): "--config-option's spell checking" sbox.build(create_wc=False, read_only=True) expected_stderr = '.*W205000.*did you mean.*' expected_stdout = svntest.verify.AnyOutput svntest.actions.run_and_verify_svn2(expected_stdout, expected_stderr, 0, 'info', '--config-option', 'config:miscellanous:diff-extensions=' + '-u -p', sbox.repo_url) ######################################################################## # Run the tests # list all tests here, starting with None: test_list = [ None, getopt_no_args, getopt__version, getopt__version__quiet, getopt__version__verbose, getopt__help, getopt_help, getopt_help_bogus_cmd, getopt_help_log_switch, getopt_config_option, ] if __name__ == '__main__': svntest.main.run_tests(test_list) # NOTREACHED ### End of file.
import aos_sw_api from .user_pass_ip import username, password, switch_ip, api_version def test_auth_client(): with aos_sw_api.Client(switch_ip, api_version, username, password) as client: print(client._session.headers) def main(): test_auth_client() if __name__ == "__main__": main()
from tornado.gen import Task from . import cached from . validate import validate from . import internal from . import singleton import logging import ujson class AppNotFound(Exception): pass class ApplicationInfoAdapter(object): def __init__(self, data): self.id = data.get("id") self.name = data.get("name") self.title = data.get("title") self.versions = data.get("versions") def dump(self): return { "id": self.id, "name": self.name, "title": self.title, "versions": self.versions } class EnvironmentClient(object, metaclass=singleton.Singleton): def __init__(self, cache): self.internal = internal.Internal() self.cache = cache async def list_apps(self): @cached(kv=self.cache, h="environment_apps", json=True) async def get(): try: response = await self.internal.request( "environment", "get_apps") except internal.InternalError: logging.exception("Failed to list apps") return [] else: return response all_apps = await get() return { app_data["app_name"]: app_data["app_title"] for app_data in all_apps } @validate(app_name="str_name", app_info=ApplicationInfoAdapter) async def set_app_info(self, app_name, app_info): """ Do not use this method for any purposes except testing, as its affect the cache permanently """ async with self.cache.acquire() as db: await db.set("environment_app:" + app_name, ujson.dumps(app_info.dump())) async def get_app_info(self, app_name): @cached(kv=self.cache, h=lambda: "environment_app:" + app_name, json=True) async def get(): response = await self.internal.request( "environment", "get_app_info", app_name=app_name) return response try: app_info = await get() return ApplicationInfoAdapter(app_info) except internal.InternalError as e: if e.code == 404: raise AppNotFound() else: raise e async def get_app_title(self, app_name): app_info = await self.get_app_info(app_name) return app_info.title async def get_app_versions(self, app_name): app_info = await self.get_app_info(app_name) return app_info.versions
from fireo import models as mdl class User(mdl.Model): id = mdl.IDField() name = mdl.TextField() class Student(mdl.Model): id = mdl.IDField() address = mdl.TextField() def test_parent_key_with_id_field(): u = User() u.id = 'test_parent_key_with_id_field' u.name = 'testing parent key with id field' u.save() s1 = Student(parent=u.key) s1.id = 'student_id_in_test_parent_key' s1.address = 'testing parent student key' s1.save() s2 = Student.collection.get(s1.key) assert s1.id == s2.id assert s1.key == s2.key class User1(mdl.Model): user_id = mdl.IDField() name = mdl.TextField() class Student1(mdl.Model): student_id = mdl.IDField() address = mdl.TextField() def test_parent_key_with_custom_field(): u = User1() u.user_id = 'test_parent_key_with_custom_field' u.name = 'testing parent key with_custom_field' u.save() s1 = Student1(parent=u.key) s1.student_id = 'student_id_test_parent_key_with_custom_field' s1.address = 'testing parent student keywith_custom_field' s1.save() s2 = Student1.collection.get(s1.key) assert s1.student_id == s2.student_id assert s1.key == s2.key assert s1.id is None assert s2.id is None def test_parent_key_custom_field_without_value(): u = User1() u.name = 'testing parent key with_custom_field' u.save() s1 = Student1(parent=u.key) s1.address = 'testing parent student keywith_custom_field' s1.save() s2 = Student1.collection.get(s1.key) assert s1.student_id == s2.student_id assert s1.key == s2.key assert s1.id is None assert s2.id is None def test_parent_key_without_value(): u = User() u.id = 'test_parent_key_without_value' u.name = 'testing parent key without value' u.save() s1 = Student(parent=u.key) s1.id = 'student_id_in_test_parent_key_without_value' s1.address = 'testing parent student key without value' s1.save() s2 = Student.collection.get(s1.key) assert s1.id == s2.id assert s1.key == s2.key class Company(mdl.Model): name = mdl.TextField() class Employee(mdl.Model): address = mdl.TextField() def test_parent_key_without_id_field(): c = Company() c.name = 'testing parent key without id field' c.save() e1 = Employee(parent=c.key) e1.address = 'testing parent student key without field' e1.save() e2 = Employee.collection.get(e1.key) assert e1.id == e2.id assert e1.key == e2.key def test_parent_key_with_value(): c = Company() c.id = 'test_parent_key_with_value' c.name = 'testing parent key with value' c.save() e1 = Employee(parent=c.key) e1.id = 'student_test_parent_key_with_values' e1.address = 'testing parent student key with value' e1.save() e2 = Employee.collection.get(e1.key) assert e1.id == e2.id assert e1.key == e2.key def test_parent_key_with_id_name(): c = Company() c.id = 'test_parent_key_with_id_name' c.name = 'testing parent key with value' c.save() e1 = Employee(parent=c.key) e1.id = 'student_test_parent_key_with_id_name' e1.address = 'testing parent student key with value' e1.save() e2 = Employee.collection.get(e1.key) assert e1.id == e2.id assert e1.key == e2.key assert e1.id != 'test_parent_key_with_id_name' assert e2.id != 'test_parent_key_with_id_name'
from PyQt5.QtWidgets import QApplication, QMainWindow, QToolButton, QLineEdit, QMessageBox from PyQt5.QtWebEngineWidgets import QWebEngineView from PyQt5.QtCore import QUrl, QSize from PyQt5.QtGui import QIcon, QPixmap #Variaveis home_url = "https://www.google.com" facebook_url = "https://www.facebook.com" twitter_url = "https://www.twitter.com" youtube_url = "https://www.youtube.com" application = QApplication([]) #INTERFACE mainWindow = QMainWindow() mainWindow.setGeometry(0,0,1350,690) mainWindow.setMinimumHeight(690) mainWindow.setMaximumHeight(690) mainWindow.setMinimumWidth(1350) mainWindow.setMaximumWidth(1350) mainWindow.setWindowTitle("NAVEGADOR") mainWindow.setStyleSheet("background-color: rgb(0,0,0);") #RENDERIZAR PAGINAS DO NAVEGADOR web = QWebEngineView(mainWindow) web.setGeometry(0,30,1350,690) web.setStyleSheet("background-color: rgb(255,255,255);") web.load(QUrl(home_url)) #Linha de Entrada da Url go_line = QLineEdit(mainWindow) go_line.setGeometry(350,5,500,20) go_line.setStyleSheet("background-color: rgb(255,255,255);") #Butão Home home_button = QToolButton(mainWindow) home_button.setGeometry(10,3,20,20) home_button_icon = QIcon() home_button_icon.addPixmap(QPixmap("img/home.png")) home_button.setIcon(home_button_icon) home_button.setStyleSheet("background-color: transparent") #Butão Reload reload_button = QToolButton(mainWindow) reload_button.setGeometry(60,3,20,20) reload_button_icon = QIcon() reload_button_icon.addPixmap(QPixmap("img/reciclar.png")) reload_button.setIcon(reload_button_icon) reload_button.setStyleSheet("background-color: transparent") #Butão Voutar back_button = QToolButton(mainWindow) back_button.setGeometry(140,3,20,20) back_button_icon = QIcon() back_button_icon.addPixmap(QPixmap("img/retorna.png")) back_button.setIcon(back_button_icon) back_button.setStyleSheet("background-color: transparent") #Butão Para Frente forward_button = QToolButton(mainWindow) forward_button.setGeometry(180,5,20,20) forward_button_icon = QIcon() forward_button_icon.addPixmap(QPixmap("img/frente.png")) forward_button.setIcon(forward_button_icon) forward_button.setStyleSheet("background-color: transparent") forward_button.setIconSize(QSize(50,50)) #Butão de Psguisa go_button = QToolButton(mainWindow) go_button.setGeometry(880,3,30,30) go_button_icon = QIcon() go_button_icon.addPixmap(QPixmap("img/procurar.png")) go_button.setIcon(go_button_icon) go_button.setStyleSheet("background-color: transparent") #Butão de Facebook facebook_button = QToolButton(mainWindow) facebook_button.setGeometry(1200,1,30,30) facebook_button_icon = QIcon() facebook_button_icon.addPixmap(QPixmap("img/facebook.png")) facebook_button.setStyleSheet("background-color: transparent") facebook_button.setIcon(facebook_button_icon) #Butão de Youtube youtube_button = QToolButton(mainWindow) youtube_button.setGeometry(1250,1,30,30) youtube_button_icon = QIcon() youtube_button_icon.addPixmap(QPixmap("img/youtube.png")) youtube_button.setStyleSheet("background-color: transparent") youtube_button.setIcon(youtube_button_icon) youtube_button.setIconSize(QSize(20,20)) #Butão de Twiter twiter_button = QToolButton(mainWindow) twiter_button.setGeometry(1300,1,30,30) twiter_button_icon = QIcon() twiter_button_icon.addPixmap(QPixmap("img/twitter.png")) twiter_button.setStyleSheet("background-color: transparent") twiter_button.setIcon(twiter_button_icon) def home(mainWindow): web.load(QUrl(home_url)) def reload(mainWindow): web.reload() def back(mainWindow): web.back() def forward(mainWindow): web.forward() def go(mainWindow): go_url = go_line.text() web.load(QUrl(go_url)) def facebook(mainWindow): web.load(QUrl(facebook_url)) def twitter(mainWindow): web.load(QUrl(twitter_url)) def youtube(mainWindow): web.load(QUrl(youtube_url)) def Downloads(item): item.accept() msg = QMessageBox() msg.setWindowTitle("Dowloads") msg.setText("O seu download foi iniciado") msg.setIcon(QMessageBox.Warning) msg.exec_() #Adicionar função no butão home_button.clicked.connect(home) reload_button.clicked.connect(reload) back_button.clicked.connect(back) forward_button.clicked.connect(forward) facebook_button.clicked.connect(facebook) twiter_button.clicked.connect(twitter) youtube_button.clicked.connect(youtube) go_button.clicked.connect(go) web.page().profile().downloadRequested.connect(Downloads) mainWindow.show() application.exec_()
# 读取人物名称 f = open('name.txt') data = f.read() data0 = data.split('|') # 读取兵器名称 f2 = open('weapon.txt') # data2 = f2.read() i = 1 for line in f2.readlines(): if i % 2 == 1: print(line.strip('\n')) i += 1 f3 = open('sanguo.txt',encoding='GB18030') print(f3.read().replace('\n','')) # # # def func(filename): # print(open(filename).read()) # print('test func') # # # # func('name.txt')
thistuple = ("apple", "banana", "cherry", "apple", "cherry") print(thistuple) fruits = ("apple", "banana", "cherry") (green, yellow, red) = fruits print(green) print(yellow) print(red)
import grpc import time import drivers.xarm.wrapper.xarm_api as xai from concurrent import futures import robot_con.xarm_shuidi_grpc.xarm.xarm_pb2 as xarm_msg import robot_con.xarm_shuidi_grpc.xarm.xarm_pb2_grpc as xarm_rpc import numpy as np class XArmServer(xarm_rpc.XArmServicer): def __init__(self, arm_ip): """ :param _arm_x: an instancde of arm.XArmAPI :return: """ super().__init__() self._xai_x = xai.XArmAPI(port=arm_ip) if self._xai_x.has_err_warn: if self._xai_x.get_err_warn_code()[1][0] == 1: print("The Emergency Button is pushed in to stop!") input("Release the emergency button and press any key to continue. Press Enter to continue...") self._xai_x.clean_error() self._xai_x.clean_error() self._xai_x.motion_enable() self._xai_x.set_mode(1) # servo motion mode self._xai_x.set_state(state=0) self._xai_x.reset(wait=True) self._xai_x.clean_gripper_error() self._xai_x.set_gripper_enable(1) self._xai_x.set_gripper_mode(0) self.__speed = 5000 self._xai_x.set_gripper_speed(self.__speed) # 1000-5000 self._xai_x.set_gripper_position(850) # 1000-5000 def get_jnt_values(self, request, context): code, jnt_values = self._xai_x.get_servo_angle(is_radian=True) if code != 0: raise Exception(f"The returned code of get_servo_angle is wrong! Code: {code}") return xarm_msg.JntValues(data=np.array(jnt_values).tobytes()) def move_jspace_path(self, request, context): nrow = request.length ncol = request.njnts flat_path_data = np.frombuffer(request.data, dtype=np.float64) path = flat_path_data.reshape((nrow, ncol)) for jnt_values in path.tolist(): self._xai_x.set_servo_angle_j(jnt_values, is_radian=True) time.sleep(.01) return xarm_msg.Status(value=xarm_msg.Status.DONE) def jaw_to(self, request, context): self.__speed = request.speed self._xai_x.set_gripper_speed(self.__speed) self._xai_x.set_gripper_position(request.position, wait=True) return xarm_msg.Status(value=xarm_msg.Status.DONE) def get_gripper_status(self, request, context): speed = self.__speed code, position = self._xai_x.get_gripper_position() if code != 0: raise Exception(f"The returned code of get_gripper_position is wrong! Code: {code}") return xarm_msg.GripperStatus(speed=speed, position=position) def serve(arm_ip = "192.168.50.99", host = "localhost:18300"): _ONE_DAY_IN_SECONDS = 60 * 60 * 24 options = [('grpc.max_message_length', 100 * 1024 * 1024)] server = grpc.server(futures.ThreadPoolExecutor(max_workers=10), options = options) xai_server = XArmServer(arm_ip) xarm_rpc.add_XArmServicer_to_server(xai_server, server) server.add_insecure_port(host) server.start() print("The XArm server is started!") try: while True: time.sleep(_ONE_DAY_IN_SECONDS) except KeyboardInterrupt: server.stop(0) if __name__ == "__main__": serve(arm_ip = "192.168.1.185", host = "192.168.50.99:18300")
from django.db import models # Create your models here. from django.forms import Textarea from django.db import models from django.contrib import admin from django.utils.encoding import python_2_unicode_compatible from imagekit.models import ImageSpecField from imagekit.processors import ResizeToFit # Create your models here. @python_2_unicode_compatible class Icon(models.Model): title = models.CharField(max_length=30) icon= models.ImageField("Menu Icon", upload_to="images/", blank=True, null=True) height = models.IntegerField() width = models.IntegerField() url = models.CharField(max_length=500, blank=True, null=True) icon_thumbnail = ImageSpecField(source='icon', processors=[ResizeToFit(50,50)], format='PNG', options={'quality': 80}) class Meta: verbose_name = 'icon' verbose_name_plural = 'icons' def __str__(self): return self.title def __unicode__(self): return unicode(self.title) # Create your models here. @python_2_unicode_compatible class SocialAuthIcon(models.Model): title = models.CharField(max_length=30) icon= models.ImageField("Social Authentication Icon", upload_to="images/", blank=True, null=True) height = models.IntegerField() width = models.IntegerField() url = models.CharField(max_length=500, blank=True, null=True) icon_thumbnail = ImageSpecField(source='icon', processors=[ResizeToFit(40,40)], format='PNG', options={'quality': 40}) class Meta: verbose_name = 'Social Authentication Icon' verbose_name_plural = 'Social Authentication Icons' def __str__(self): return self.title def __unicode__(self): return unicode(self.title) @python_2_unicode_compatible class SocialIcon(models.Model): title = models.CharField(max_length=30) icon= models.ImageField("Social Icon", upload_to="images/", blank=True, null=True) height = models.IntegerField() width = models.IntegerField() url = models.CharField(max_length=500, blank=True, null=True) icon_thumbnail = ImageSpecField(source='icon', processors=[ResizeToFit(50,50)], format='PNG', options={'quality': 80}) class Meta: verbose_name = 'social icon' verbose_name_plural = 'social icons' def __str__(self): return self.title def __unicode__(self): return unicode(self.title) @python_2_unicode_compatible class ActionIcon(models.Model): action_id = models.CharField(max_length=30, blank=True, null=True) title = models.CharField(max_length=30) icon= models.ImageField("Action Icon", upload_to="images/", blank=True, null=True) height = models.IntegerField() width = models.IntegerField() url = models.CharField(max_length=500, blank=True, null=True) icon_thumbnail = ImageSpecField(source='icon', processors=[ResizeToFit(50,50)], format='PNG', options={'quality': 80}) class Meta: verbose_name = 'action icon' verbose_name_plural = 'action icons' def __str__(self): return self.title def __unicode__(self): return unicode(self.title) """ Register with admin """ class ActionIconAdmin(admin.ModelAdmin): fields = ('action_id','title','icon','url','height','width') class SocialIconAdmin(admin.ModelAdmin): fields = ('title','icon','url','height','width') class IconAdmin(admin.ModelAdmin): fields = ('title','icon','url','height','width') class SocialAuthIconAdmin(admin.ModelAdmin): fields = ('title','icon','url','height','width') admin.site.register(Icon) admin.site.register(SocialIcon) admin.site.register(ActionIcon) admin.site.register(SocialAuthIcon)
# coding: utf-8 import os import sys import logging from importlib import import_module def pytest_sessionstart(session): logging.basicConfig( stream=sys.stdout, level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s", ) proj_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../')) sys.path.insert(0, proj_dir) jqdatasdk = import_module("jqdatasdk") client = jqdatasdk.JQDataClient.instance() client.ensure_auth() assert jqdatasdk.is_auth() def pytest_sessionfinish(session, exitstatus): import_module("jqdatasdk").logout() logging.info("test session finish, exit status: %s", exitstatus)
# Generated by Django 3.1.4 on 2020-12-02 13:33 import datetime import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [] operations = [ migrations.CreateModel( name="Lexer", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("name", models.CharField(max_length=225)), ], ), migrations.CreateModel( name="Paste", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("content", models.TextField(default="")), ( "inspiration_date", models.DateField( default=datetime.datetime(2020, 12, 9, 13, 33, 47, 290810) ), ), ( "lex", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, to="paste.lexer" ), ), ], ), ]
#!/usr/bin/python3 """ Script language: Python3 Talks to: - Vega node (REST) - Vega wallet (REST) Apps/Libraries: - REST: requests (https://pypi.org/project/requests/) """ # Note: this file uses smart-tags in comments to section parts of the code to # show them as snippets in our documentation. They are not necessary to be # included when creating your own custom code. # # Example of smart-tags: # __something: # some code here # :something__ import json import requests import time import os import helpers node_url_rest = os.getenv("NODE_URL_REST") if not helpers.check_url(node_url_rest): print("Error: Invalid or missing NODE_URL_REST environment variable.") exit(1) wallet_server_url = os.getenv("WALLETSERVER_URL") if not helpers.check_url(wallet_server_url): print("Error: Invalid or missing WALLETSERVER_URL environment variable.") exit(1) wallet_name = os.getenv("WALLET_NAME") if not helpers.check_var(wallet_name): print("Error: Invalid or missing WALLET_NAME environment variable.") exit(1) wallet_passphrase = os.getenv("WALLET_PASSPHRASE") if not helpers.check_var(wallet_passphrase): print("Error: Invalid or missing WALLET_PASSPHRASE environment variable.") exit(1) # Help guide users against including api version suffix on url wallet_server_url = helpers.check_wallet_url(wallet_server_url) ##################################################################################### # W A L L E T S E R V I C E # ##################################################################################### print(f"Logging into wallet: {wallet_name}") # __login_wallet: # Log in to an existing wallet req = {"wallet": wallet_name, "passphrase": wallet_passphrase} response = requests.post(f"{wallet_server_url}/api/v1/auth/token", json=req) helpers.check_response(response) token = response.json()["token"] # :login_wallet__ assert token != "" print("Logged in to wallet successfully") # __get_pubkey: # List key pairs and select public key to use headers = {"Authorization": f"Bearer {token}"} response = requests.get(f"{wallet_server_url}/api/v1/keys", headers=headers) helpers.check_response(response) keys = response.json()["keys"] pubkey = keys[0]["pub"] # :get_pubkey__ assert pubkey != "" print("Selected pubkey for signing") ##################################################################################### # L I S T P R O P O S A L S # ##################################################################################### # There are two types of REST request for proposals on Vega: # 1 - MARKET proposals (/governance/market/proposals) # 2 - ASSET proposals (/governance/asset/proposals) # Note: In the future users will be able to call an endpoint to retrieve ALL proposals. # __get_proposals: # Request a list of proposals on a Vega network response = requests.get(node_url_rest + "/governance/market/proposals") helpers.check_response(response) proposals = response.json() print("Proposals:\n{}".format(json.dumps(proposals, indent=2, sort_keys=True))) # :get_proposals__ proposalID = proposals["data"][0]["proposal"]["id"] assert proposalID != "" print(f"Proposal found: {proposalID}") ##################################################################################### # P R O P O S A L D E T A I L S # ##################################################################################### # __get_proposal_detail: # Request results of a specific proposal on a Vega network response = requests.get(node_url_rest + "/governance/proposal/" + proposalID) helpers.check_response(response) response_json = response.json() print("Proposal:\n{}".format(json.dumps(response_json, indent=2, sort_keys=True))) # :get_proposal_detail__ ##################################################################################### # P A R T Y P R O P O S A L S # ##################################################################################### # __get_proposals_by_party: # Request results of a specific proposal on a Vega network response = requests.get(node_url_rest + "/parties/" + pubkey + "/proposals") helpers.check_response(response) response_json = response.json() print("Party proposals:\n{}".format(json.dumps(response_json, indent=2, sort_keys=True))) # :get_proposals_by_party__
# type: ignore[attr-defined] ''' :created: 2019-07-29 :author: Leandro (Cerberus1746) Benedet Garcia''' from dataclasses import _FIELDS, _get_field from typing import Optional, Any, Type from keyword import iskeyword def add_field(dataclass_instance: object, field_name: str, field_type: Type[Any], field_value: Optional[Any] = None): '''Create a new dataclass field :param dataclass_instance: The input dataclass :param field_name: The name of the field :param field_type: The field type :param field_value: The value of the field''' setattr(dataclass_instance, field_name, field_value) getattr(dataclass_instance, _FIELDS)[field_name] = _get_field(dataclass_instance, field_name, field_type) dataclass_instance.__annotations__[field_name] = field_type def check_field(dataclass_instance: object, field_name: str) -> bool: '''Return true if the field exist inside the input dataclass :param dataclass_instance: The dataclass to check :param field_name: The name of the field to check''' return field_name in getattr(dataclass_instance, _FIELDS) def delete_field(dataclass_instance: object, field_name: str, default: Optional[Any] = None) -> Any: '''Remove the field from the dataclass :param dataclass_instance: The dataclass to delete the field from :param field_name: The field name to delete :param default: the value to be returned if the field doesn't exist :raises KeyError: If default is `None` and the field doesn't exist''' getattr(dataclass_instance, _FIELDS).pop(field_name, None) dataclass_instance.__annotations__.pop(field_name, None) if hasattr(dataclass_instance, field_name): cur_value = getattr(dataclass_instance, field_name) delattr(dataclass_instance, field_name) return cur_value if default is not None: return default raise KeyError(field_name) def item_zip(*dicts_input): '''Function to iterate across multiple dictionaries An example in how to use this function is: .. code:: python first_dict = {"first": 1} second_dict = {"second": 2} for first_key, first_var, second_key, second_var in item_zip(first_dict , second_dict): #prints first, 1 print(first_key, first_var) #prints second, 2 print(second_key, second_var)''' zipped = zip(*[cur_dict.items() for cur_dict in dicts_input]) return map(lambda x: (x[0][0], x[0][1], x[1][0], x[1][1]), zipped) def valid_variable(name): '''Check if string is a valid keyword name :param name: the string to be checked''' return name.isidentifier() and not iskeyword(name) __all__ = ("add_field", "check_field", "delete_field", "item_zip", "valid_variable")
import pickle import json import os OUTPUT_DIR='json/' os.makedirs(OUTPUT_DIR, exist_ok=True) # ------------------------------------- # SheetProperties # ------------------------------------- with open("dict_SheetProperties.pickle", mode='rb') as f: data = pickle.load(f) sd = json.dumps(data, sort_keys=True, ensure_ascii=False, indent=2) with open(OUTPUT_DIR+"SheetProperties.json", mode='w') as f: json.dump(data, f, sort_keys=True, ensure_ascii=False, indent=2) # ------------------------------------- # ShieldsLag # ------------------------------------- with open("dict_ShieldsLag.pickle", mode='rb') as f: data = pickle.load(f) sd = json.dumps(data, sort_keys=True, ensure_ascii=False, indent=2) with open(OUTPUT_DIR+"ShieldsLag.json", mode='w') as f: json.dump(data, f, sort_keys=True, ensure_ascii=False, indent=2) # ------------------------------------- # OutOfShieldStartup # ------------------------------------- with open("dict_OutOfShieldStartup.pickle", mode='rb') as f: data = pickle.load(f) sd = json.dumps(data, sort_keys=True, ensure_ascii=False, indent=2) with open(OUTPUT_DIR+"OutOfShieldStartup.json", mode='w') as f: json.dump(data, f, sort_keys=True, ensure_ascii=False, indent=2) # ------------------------------------- # CharacterList # ------------------------------------- with open("dict_CharacterList.pickle", mode='rb') as f: data = pickle.load(f) sd = json.dumps(data, sort_keys=True, ensure_ascii=False, indent=2) with open(OUTPUT_DIR+"CharacterList.json", mode='w') as f: json.dump(data, f, sort_keys=True, ensure_ascii=False, indent=2)
import re #replace charset notation in text def repalce_charset_notation(content, new_notation): #try: charset_re = re.compile(r'<meta.*?charset=["\']*(.+?)["\'>]', flags=re.I) pragma_re = re.compile(r'<meta.*?content=["\']*;?charset=(.+?)["\'>]', flags=re.I) xml_re = re.compile(r'^<\?xml.*?encoding=["\']*(.+?)["\'>]') charset_all = charset_re.findall(content) pragma_all = pragma_re.findall(content) xml_all = xml_re.findall(content) def match_fun(orig): def match_func(match, origin = orig): newtext = re.sub(origin, new_notation, match.group(0)) return newtext return match_func if charset_all: content = re.sub(r'<meta.*?charset=["\']*(.+?)["\'>]', match_fun(charset_all[0]), content) if pragma_all: content = re.sub(r'<meta.*?content=["\']*;?charset=(.+?)["\'>]', match_fun(pragma_all[0]), content) if xml_all: content = re.sub(r'^<\?xml.*?encoding=["\']*(.+?)["\'>]', match_fun(xml_all[0]), content) #except: #print("Exception in: repalce_charset_notation") return content text = '<meta http-equiv="Content-Type" content="text/html; charset=gb2312">' newtext = repalce_charset_notation(text, "utf-8") print(text) print(newtext)