content
stringlengths
5
1.05M
#!/usr/bin/python3 # -*-coding:utf-8-*- __author__ = "Bannings" from collections import OrderedDict def checkio(data): data = ["".join(OrderedDict.fromkeys(d)) for d in data] letters = sorted(set("".join(data))) ans = "" while letters: for letter in letters: if not any(letter in d[1:] for d in data): ans += letter break data = [d.replace(letter, "") for d in data] letters.remove(letter) return ans #These "asserts" using only for self-checking and not necessary for auto-testing if __name__ == '__main__': assert checkio(["llo","low","lino","itttnosw"]) == "litnosw" assert checkio(["acb", "bd", "zwa"]) == "zwacbd", \ "Just concatenate it" assert checkio(["klm", "kadl", "lsm"]) == "kadlsm", \ "Paste in" assert checkio(["a", "b", "c"]) == "abc", \ "Cant determine the order - use english alphabet" assert checkio(["aazzss","aa"]) == "azs", \ "Each symbol only once" assert checkio(["dfg", "frt", "tyg"]) == "dfrtyg", \ "Concatenate and paste in"
import logging import os from phenoai.manager.weather_station_manager import WeatherStationManager from phenoai.manager.data_persistance_manager import DataPersistanceManager from typing import Optional from settings.constants import VITIGEOSS_CONFIG_FILE, VITIGEOSS_DATA_ROOT, VITIGEOSS_PHENO_PHASES_DIR from settings.instance import settings from fastapi import HTTPException import pandas as pd import json logger = logging.getLogger() def get_places_info(place: Optional[str] = None, variety: Optional[str] = None): result = {'places': []} with open(VITIGEOSS_CONFIG_FILE) as f: config = json.loads(f.read()) places = config['places'] if place: if place not in places: raise HTTPException(status_code=404, detail=f'Place {place} not found') places = [place] for _place in places: place_info = { 'name': _place, 'weather-station': config['place_to_station'][_place], 'varieties': config['place_to_varieties'][_place] } if variety and variety not in place_info['varieties']: continue result['places'].append(place_info) if variety and len(result['places']) == 0: raise HTTPException(status_code=404, detail=f'Variety {variety} not found') return result def get_pheno_phases_df(place: str, variety: str): df_path = get_pheno_phases_csv_path(place, variety) if os.path.exists(df_path): return pd.read_csv(df_path, sep=',', error_bad_lines=False, index_col=0) raise HTTPException(status_code=404, detail=f'Phenological phases dataframe not found. You must build it first.') def get_pheno_phases_csv_path(place: str, variety: str): return os.path.join(VITIGEOSS_DATA_ROOT, VITIGEOSS_PHENO_PHASES_DIR, f'{place}_{variety}_pheno_phases_df.csv') def get_input_data_df(place: str, variety: str, year: int, dpm: DataPersistanceManager): try: return dpm.load_df(place=place, variety=variety, year=year, force_new=False, fail_if_not_found=True).fillna(0.0) # Use df.fillna(0.0) to avoid problems with NaN values on Swagger except FileNotFoundError: raise HTTPException(status_code=404, detail=f'Input data not found for place {place}, variety {variety} and year {year}') def update_input_data_df(place: str, variety: str, year: int, force_new: bool, dpm: DataPersistanceManager, wsm: WeatherStationManager): df = dpm.load_df(place=place, variety=variety, year=year, force_new=force_new) weather_station_missing_rows = df[df[settings.input_data_source] != 'WS'] if weather_station_missing_rows.empty: return df.fillna(0.0) # Use df.fillna(0.0) to avoid problems with NaN values on Swagger update_df = wsm.get_wsdata_df(place, weather_station_missing_rows) if update_df is None: return df.fillna(0.0) # Use df.fillna(0.0) to avoid problems with NaN values on Swagger df = df.combine_first(update_df) # Update NaN values of the df with values of the update_df dpm.save_df(df) return df.fillna(0.0) # Use df.fillna(0.0) to avoid problems with NaN values on Swagger
""" Binary search Slicing is O(k) Complexity: O(log(n)) """ def search_binary(input_array, value): low = 0 high = len(input_array) - 1 le = len(input_array) if le == 0: return False else: mid = (low + high) // 2 if input_array[mid] == value: return True elif input_array[mid] > value: return search_binary(input_array[low: mid], value) elif input_array[mid] < value: return search_binary(input_array[mid + 1:], value) return -1 if __name__ == '__main__': test_list = [1, 3, 9, 11, 15, 19, 29, 31] test_val1 = 25 test_val2 = 15 test_val3 = 31 print (search_binary(test_list, test_val1)) print (search_binary(test_list, test_val2)) print (search_binary(test_list, test_val3))
import os import pathlib import shutil import airsimdroneracinglab def mod_client_file(): as_path = pathlib.Path(airsimdroneracinglab.__file__).resolve().parent dir_path = os.path.dirname(os.path.realpath(__file__)) mod_path = os.path.join(dir_path, 'client.py') target_path = os.path.join(as_path, 'client.py') shutil.copyfile(src=mod_path, dst=target_path)
#!/usr/bin/python3 import os from formula import formula system = os.environ.get("RIT_SYSTEM") linux_os = os.environ.get("RIT_LINUX_OS") formula.Run(system, linux_os)
#notes: figure out how to import word2vec embeddings #pre-process -- text -> onehot --> padding? --> embed --> concat --> lstm # --> numeric input #create second model w/ NLP pipeline vocab_size = 1000 #revisit model_inputN = layers.Input(shape = (19,125)) #numeric #text input model_inputT = layers.Input(shape = (19,200)) #assuming we have ~200 words per time-step embed = layers.Embedding(vocab_size, 64, input_length=(19,200))(model_inputT) #embedding for text concat = layers.Concatenate(axis =1, [embed, model_inputN] )() lstm = layers.LSTM(125, dropout = .2)(concat)
#!/usr/bin/env python # manager class allows creation of manager object to use as a higher # level API to connect to and interact with the YANG models on the device from ncclient import manager device = { 'host': 'r1.lab.local', 'username': 'wwt', 'password': 'WWTwwt1!', 'port': 830 } def main(): # # Connect to the device using the manager object # mgr = manager.connect( # host=device['host'], # username=device['username'], # password=device['password'], # port=device['port'], # hostkey_verify=False # ) # # Display Capabilities advertised by the device(server) # for capability in mgr.server_capabilities: # print(capability) # # Close the netconf session # mgr.close_session() # Refactor to use context manager # Double *'s infront of dict gives keyword arguments # Single * gives you all functional parameters as a tuple or to unpack a list # More reading on context manager is that a class needs to have an # __enter__ and __exit_ method define with manager.connect(**device, hostkey_verify=False) as mgr: for capability in mgr.server_capabilities: print(capability) if __name__ == "__main__": main()
import pygame #def drawBall(window): # ball = pygame.image.load("ball2.png") # window.blit(ball,(int(ball_pos[x]-10),int(ball_pos[y]-10))) from INI import * #import pygame class Ball: def __init__(self, window): self.window = window #self.ball = pygame.image.load("ball2.png") self.X = int(ball_pos[x]) self.Y = int(ball_pos[y]) self.radius = 10 self.speed = [0 , 0] self.goal = [0 , 0] #self.X = 300 #self.Y = 200 pygame.draw.circle(self.window, black, (self.X, self.Y), self.radius) def move (self): self.X = self.X + self.speed[0] self.Y = self.Y + self.speed[1] k = 0.9 self.speed[0] = int(k * self.speed[0]) self.speed[1] = int(k * self.speed[1]) print(self.speed) if (self.X > win_width or self.X < 0): if (self.Y > 165 and self.Y < 240): if (self.X < 0): self.goal = [0 , 1] else: self.goal = [1 , 0] else: self.speed[0] *= -1 if (self.Y > win_height or self.Y < 0): self.speed[1] *= -1 pygame.draw.circle(self.window, black, (self.X, self.Y), self.radius)
""" edx-lint ======== A collection of code quality tools: - A few pylint plugins to check for quality issues pylint misses. - A command-line tool to generate config files like pylintrc from a master file (part of edx_lint), and a repo-specific tweaks file. """ import setuptools def load_requirements(*requirements_paths): """ Load all requirements from the specified requirements files. Returns: list: Requirements file relative path strings """ requirements = set() for path in requirements_paths: requirements.update( line.split('#')[0].strip() for line in open(path).readlines() if is_requirement(line.strip()) ) return list(requirements) def is_requirement(line): """ Return True if the requirement line is a package requirement. Returns: bool: True if the line is not blank, a comment, a URL, or an included file """ return line and not line.startswith(("-r", "#", "-e", "git+", "-c")) setuptools.setup( include_package_data=True, install_requires=load_requirements("requirements/base.in"), )
#!/usr/bin/env python3 # -*- coding: iso-8859-1 -*- #pylint: disable=missing-docstring, line-too-long, empty-docstring, too-many-locals, invalid-name, trailing-newlines #------------------------------------------------------------------------------- # # Project: ViRES-Aeolus # Purpose: Aeolus -- get settings from the "config.ini" file # registraton/deregistration accordingly # Authors: Christian Schiller # Copyright(C): 2016 - EOX IT Services GmbH, Vienna, Austria # Email: christian dot schiller at eox dot at # Date: 2017-05-22 # License: MIT License (MIT) # #------------------------------------------------------------------------------- # The MIT License (MIT): # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies of this Software or works derived from this Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #------------------------------------------------------------------------------- """ # Project: ViRES-Aeolus # Purpose: Aeolus -- get settings from the "config.ini" file # registraton/deregistration accordingly # Authors: Christian Schiller # Copyright(C): 2017 - EOX IT Services GmbH, Vienna, Austria # Email: christian dot schiller at eox dot at # Date: 2017-05-22 # License: MIT License (MIT) 0.1: - initial version 0.2: - changed to python 3 """ from __future__ import print_function import os.path import ast import configparser as configparser __version__ = '0.2' def get_config(conf_file=None): """ read the config file provided or use the default in the current dir """ # print("I'm in "+sys._getframe().f_code.co_name) config = {} cp = configparser.ConfigParser() if conf_file is None: cfile = os.path.join(os.path.dirname(__file__), "config.ini") else: if conf_file.startswith('/'): cfile = conf_file else: cfile = os.path.join(os.path.dirname(__file__), conf_file) cp.read(cfile) for sec in cp.sections(): name = str.lower(sec) for opt in cp.options(sec): value = str.strip(cp.get(sec, opt)) try: if value in ('None', 'False', 'True'): config[name +'.'+ str.lower(opt)] = ast.literal_eval(value) elif value.startswith(('[', '{')): config[name +'.'+ str.lower(opt)] = ast.literal_eval(value) elif value == '/': value = '' #ast.literal_eval(value) config[name +'.'+ str.lower(opt)] = value elif isinstance(value, str) and value.startswith('/'): if value.endswith('/'): value = value[:-1] config[name +'.'+ str.lower(opt)] = value elif isinstance(value, str) and value.isalnum(): value = ast.literal_eval(value) config[name +'.'+ str.lower(opt)] = value elif isinstance(value, int): value = ast.literal_eval(value) config[name +'.'+ str.lower(opt)] = value else: config[name +'.'+ str.lower(opt)] = value except ValueError: config[name +'.'+ str.lower(opt)] = value return config
# # (C) 2014-2017 Seiji Matsuoka # Licensed under the MIT License (MIT) # http://opensource.org/licenses/MIT # """Debug utility""" import cProfile import os import pstats import sys from collections import deque from itertools import chain def total_size(obj, verbose=False): """Approximate memory size""" seen = set() def sizeof(o): if id(o) in seen: return 0 seen.add(id(o)) s = sys.getsizeof(o, default=0) if verbose: print(s, type(o), repr(o)) if isinstance(o, (tuple, list, set, frozenset, deque)): s += sum(map(sizeof, iter(o))) elif isinstance(o, dict): s += sum(map(sizeof, chain.from_iterable(o.items()))) elif "__dict__" in dir(o): s += sum(map(sizeof, chain.from_iterable(o.__dict__.items()))) return s return sizeof(obj) def total_size_str(obj): """Formatted approximate memory size""" s = total_size(obj) if 1 > s / 1000.0: return "{} Bytes".format(s) if 1 > s / 1000000.0: return "{} KB".format(round(s / 1000.0, 1)) if 1 > s / 1000000000.0: return "{} MB".format(round(s / 1000000.0, 1)) return "{} GB".format(round(s / 1000000000.0, 1)) def profile(func): """Decorator to execute cProfile""" def _f(*args, **kwargs): pr = cProfile.Profile() pr.enable() print("\n<<<---") res = func(*args, **kwargs) p = pstats.Stats(pr) p.strip_dirs().sort_stats('cumtime').print_stats(20) print("\n--->>>") return res return _f def mute(func): """Decorator to mute stdout""" def _f(*args, **kwargs): sys.stdout = open(os.devnull, 'w') res = func(*args, **kwargs) sys.stdout.close() sys.stdout = sys.__stdout__ return res return _f
from __future__ import annotations from typing import List from logger import logger from common_utils.base.basic import BasicLoadableHandler, BasicHandler from .objects import NDDS_Annotation_Object class NDDS_Annotation_Object_Handler( BasicLoadableHandler['NDDS_Annotation_Object_Handler', 'NDDS_Annotation_Object'], BasicHandler['NDDS_Annotation_Object_Handler', 'NDDS_Annotation_Object'] ): def __init__(self, ndds_obj_list: List[NDDS_Annotation_Object]=None): super().__init__(obj_type=NDDS_Annotation_Object, obj_list=ndds_obj_list) self.objects = self.obj_list @classmethod def from_dict_list(cls, dict_list: List[dict]) -> NDDS_Annotation_Object_Handler: return NDDS_Annotation_Object_Handler( ndds_obj_list=[NDDS_Annotation_Object.from_dict(obj_dict) for obj_dict in dict_list] ) def delete(self, idx_list: List[int], verbose: bool=False, verbose_ref=None): if len(idx_list) > 0 and verbose and verbose_ref: logger.info(f'verbose_ref: {verbose_ref}') for i in idx_list: if verbose: if verbose_ref: logger.info(f'\tDeleted duplicate of {self.objects[i].class_name}') else: logger.info(f'Deleted duplicate of {self.objects[i].class_name}') del self[i] def find_duplicates(self) -> List[int]: duplicate_idx_list = [] for i in range(len(self)): for j in range(i+1, len(self)): if self[i].class_name == self[j].class_name: if j not in duplicate_idx_list: duplicate_idx_list.append(j) return duplicate_idx_list def delete_duplicates(self, verbose: bool=False, verbose_ref=None): self.delete( idx_list=self.find_duplicates(), verbose=verbose, verbose_ref=verbose_ref )
import json from operator import attrgetter from os.path import expanduser from pathlib import Path from typing import List, Tuple from pydantic import BaseModel, ValidationError import pytest from reponews.config import ActivityPrefs, Configuration from reponews.types import ActivityType, Repository, User from reponews.util import UserError, get_default_state_file DATA_DIR = Path(__file__).with_name("data") def mkrepo(owner: str, name: str) -> Repository: return Repository( id="1234", owner=User(login=owner, url=f"https://github.com/{owner}"), name=name, nameWithOwner=f"{owner}/{name}", url=f"https://github.com/{owner}/{name}", description="A repository", descriptionHTML="A repository", ) @pytest.mark.parametrize( "tomlfile", sorted((DATA_DIR / "config").glob("*.toml")), ids=attrgetter("name"), ) @pytest.mark.usefixtures("tmp_home") def test_parse_config(tomlfile: Path) -> None: config = Configuration.from_toml_file(tomlfile) with tomlfile.with_suffix(".json").open() as fp: expected = json.load(fp) if expected["state_file"] is None: expected["state_file"] = get_default_state_file() for key in ("auth_token_file", "state_file"): if expected[key] is not None: expected[key] = expanduser(expected[key]).format(config=tomlfile.parent) assert config.for_json() == expected @pytest.mark.parametrize( "tomlfile", sorted((DATA_DIR / "bad-config").glob("*.toml")), ids=attrgetter("name"), ) def test_parse_bad_config(tomlfile: Path) -> None: with pytest.raises(ValidationError): Configuration.from_toml_file(tomlfile) class InclusionCase(BaseModel): included_owners: List[str] included_repos: List[Tuple[str, str]] not_excluded_repos: List[Tuple[str, str]] excluded_repos: List[Tuple[str, str]] @pytest.mark.parametrize( "tomlfile", sorted((DATA_DIR / "inclusions").glob("*.toml")), ids=attrgetter("name"), ) def test_inclusions(tomlfile: Path) -> None: config = Configuration.from_toml_file(DATA_DIR / "inclusions" / tomlfile) expected = InclusionCase.parse_file(tomlfile.with_suffix(".json")) assert config.get_included_repo_owners() == expected.included_owners assert config.get_included_repos() == expected.included_repos for owner, name in expected.not_excluded_repos: assert not config.is_repo_excluded(mkrepo(owner, name)) for owner, name in expected.excluded_repos: assert config.is_repo_excluded(mkrepo(owner, name)) @pytest.mark.parametrize( "tomlfile,repo,is_affiliated,prefs", [ ( "empty.toml", mkrepo("owner", "repo"), True, ActivityPrefs( issues=True, pull_requests=True, discussions=True, releases=True, tags=True, released_tags=False, stars=True, forks=True, my_activity=False, ), ), ( "empty.toml", mkrepo("owner", "repo"), False, ActivityPrefs( issues=True, pull_requests=True, discussions=True, releases=True, tags=True, released_tags=False, stars=True, forks=True, my_activity=False, ), ), ( "full.toml", mkrepo("owner", "repo"), True, ActivityPrefs( issues=False, pull_requests=False, discussions=True, releases=True, tags=True, released_tags=False, stars=True, forks=True, my_activity=True, ), ), ( "full.toml", mkrepo("owner", "repo"), False, ActivityPrefs( issues=False, pull_requests=False, discussions=True, releases=True, tags=True, released_tags=False, stars=True, forks=True, my_activity=True, ), ), ( "repo-activity01.toml", mkrepo("luser", "repo"), True, ActivityPrefs( issues=False, pull_requests=False, discussions=True, releases=True, tags=True, released_tags=False, stars=True, forks=True, my_activity=False, ), ), ( "repo-activity01.toml", mkrepo("luser", "repo"), False, ActivityPrefs( issues=True, pull_requests=True, discussions=True, releases=True, tags=True, released_tags=False, stars=True, forks=True, my_activity=False, ), ), ( "repo-activity01.toml", mkrepo("owner", "project"), False, ActivityPrefs( issues=True, pull_requests=True, discussions=True, releases=True, tags=False, released_tags=False, stars=True, forks=True, my_activity=True, ), ), ( "repo-activity01.toml", mkrepo("owner", "repo"), False, ActivityPrefs( issues=True, pull_requests=True, discussions=True, releases=False, tags=False, released_tags=False, stars=True, forks=True, my_activity=False, ), ), ( "repo-activity01.toml", mkrepo("owner", "repo"), True, ActivityPrefs( issues=False, pull_requests=False, discussions=True, releases=False, tags=False, released_tags=False, stars=True, forks=True, my_activity=False, ), ), ( "repo-activity02.toml", mkrepo("luser", "repo"), True, ActivityPrefs( issues=True, pull_requests=False, discussions=False, releases=True, tags=True, released_tags=False, stars=False, forks=False, my_activity=False, ), ), ( "repo-activity02.toml", mkrepo("luser", "repo"), False, ActivityPrefs( issues=False, pull_requests=True, discussions=False, releases=True, tags=True, released_tags=False, stars=False, forks=False, my_activity=False, ), ), ( "repo-activity02.toml", mkrepo("owner", "project"), False, ActivityPrefs( issues=False, pull_requests=True, discussions=False, releases=True, tags=False, released_tags=False, stars=True, forks=False, my_activity=True, ), ), ( "repo-activity02.toml", mkrepo("owner", "repo"), False, ActivityPrefs( issues=False, pull_requests=True, discussions=False, releases=False, tags=False, released_tags=False, stars=True, forks=True, my_activity=False, ), ), ( "repo-activity02.toml", mkrepo("owner", "repo"), True, ActivityPrefs( issues=True, pull_requests=False, discussions=False, releases=False, tags=False, released_tags=False, stars=True, forks=True, my_activity=False, ), ), ( "yestags.toml", mkrepo("owner", "repo"), True, ActivityPrefs( issues=True, pull_requests=True, discussions=True, releases=True, tags=True, released_tags=True, stars=True, forks=True, my_activity=False, ), ), ( "yestags.toml", mkrepo("owner", "repo"), False, ActivityPrefs( issues=True, pull_requests=True, discussions=True, releases=True, tags=True, released_tags=True, stars=True, forks=True, my_activity=False, ), ), ], ) def test_get_repo_activity_prefs( tomlfile: str, repo: Repository, is_affiliated: bool, prefs: ActivityPrefs ) -> None: config = Configuration.from_toml_file(DATA_DIR / "config" / tomlfile) assert config.get_repo_activity_prefs(repo, is_affiliated) == prefs @pytest.mark.parametrize( "prefs,types", [ ( ActivityPrefs( issues=True, pull_requests=True, discussions=True, releases=True, tags=True, released_tags=False, stars=True, forks=True, my_activity=False, ), [ ActivityType.ISSUE, ActivityType.PR, ActivityType.DISCUSSION, ActivityType.RELEASE, ActivityType.TAG, ActivityType.STAR, ActivityType.FORK, ], ), ( ActivityPrefs( issues=False, pull_requests=False, discussions=False, releases=False, tags=False, released_tags=True, stars=False, forks=False, my_activity=True, ), [], ), ( ActivityPrefs( issues=True, pull_requests=True, discussions=True, releases=True, tags=False, released_tags=True, stars=False, forks=False, my_activity=True, ), [ ActivityType.ISSUE, ActivityType.PR, ActivityType.DISCUSSION, ActivityType.RELEASE, ], ), ], ) def test_get_activity_types(prefs: ActivityPrefs, types: List[ActivityType]) -> None: assert prefs.get_activity_types() == types def test_get_auth_token_explicit( monkeypatch: pytest.MonkeyPatch, tmp_home: Path ) -> None: monkeypatch.setenv("GITHUB_TOKEN", "QWERTY") (tmp_home / "token.txt").write_text("abcdef\n") config = Configuration( auth_token="123456", auth_token_file="~/token.txt", ) assert config.get_auth_token() == "123456" def test_get_auth_token_file(monkeypatch: pytest.MonkeyPatch, tmp_home: Path) -> None: monkeypatch.setenv("GITHUB_TOKEN", "QWERTY") (tmp_home / "token.txt").write_text("abcdef\n") config = Configuration(auth_token_file="~/token.txt") assert config.get_auth_token() == "abcdef" @pytest.mark.usefixtures("tmp_home") def test_get_auth_token_missing_file(monkeypatch: pytest.MonkeyPatch) -> None: monkeypatch.setenv("GITHUB_TOKEN", "QWERTY") config = Configuration(auth_token_file="~/token.txt") with pytest.raises(FileNotFoundError): config.get_auth_token() def test_get_auth_token_envvar1( monkeypatch: pytest.MonkeyPatch, tmp_home: Path ) -> None: monkeypatch.setenv("GITHUB_TOKEN", "QWERTY") monkeypatch.setenv("GH_TOKEN", "QR") (tmp_home / "token.txt").write_text("abcdef\n") config = Configuration() assert config.get_auth_token() == "QWERTY" def test_get_auth_token_envvar1_empty( monkeypatch: pytest.MonkeyPatch, tmp_home: Path ) -> None: monkeypatch.setenv("GITHUB_TOKEN", "") monkeypatch.setenv("GH_TOKEN", "QR") (tmp_home / "token.txt").write_text("abcdef\n") config = Configuration() assert config.get_auth_token() == "QR" def test_get_auth_token_envvar2( monkeypatch: pytest.MonkeyPatch, tmp_home: Path ) -> None: monkeypatch.delenv("GITHUB_TOKEN", raising=False) monkeypatch.setenv("GH_TOKEN", "QR") (tmp_home / "token.txt").write_text("abcdef\n") config = Configuration() assert config.get_auth_token() == "QR" def test_get_auth_token_notset(monkeypatch: pytest.MonkeyPatch, tmp_home: Path) -> None: monkeypatch.delenv("GITHUB_TOKEN", raising=False) monkeypatch.delenv("GH_TOKEN", raising=False) (tmp_home / "token.txt").write_text("abcdef\n") config = Configuration() with pytest.raises(UserError) as excinfo: config.get_auth_token() assert str(excinfo.value) == ( "GitHub OAuth token not set. Specify in config file or via" " GITHUB_TOKEN or GH_TOKEN environment variable." ) def test_get_auth_token_envvar2_empty( monkeypatch: pytest.MonkeyPatch, tmp_home: Path ) -> None: monkeypatch.delenv("GITHUB_TOKEN", raising=False) monkeypatch.setenv("GH_TOKEN", "") (tmp_home / "token.txt").write_text("abcdef\n") config = Configuration() with pytest.raises(UserError) as excinfo: config.get_auth_token() assert str(excinfo.value) == ( "GitHub OAuth token not set. Specify in config file or via" " GITHUB_TOKEN or GH_TOKEN environment variable." )
class CachedAttr: def __init__(self, name, func) -> None: self.name = name self.func = func def __get__(self, instance, owner): try: return instance.__dict__[self.name] except KeyError: result = self.func() instance.__dict__[self.name] = result return result import time def longRunFunction(): time.sleep(3) return "this is a long run result" class TestClass: cachedAttr = CachedAttr('cachedAttr', longRunFunction) tc = TestClass() print(tc.cachedAttr) print(tc.cachedAttr) # this is a long run result # this is a long run result
from datetime import datetime from .db import db class Song(db.Model): __tablename__ = "songs" id = db.Column(db.INTEGER, primary_key=True) user_id = db.Column(db.INTEGER, db.ForeignKey("users.id")) artist = db.Column(db.String(50)) name = db.Column(db.String(50), nullable=False) url = db.Column(db.String(255), nullable=False) normalized_data = db.Column(db.TEXT) cover_image = db.Column(db.String(255)) genre = db.Column(db.String(255)) description = db.Column(db.TEXT) release_date = db.Column(db.DateTime()) aws_unique_name = db.Column(db.String(255), unique=True) duration = db.Column(db.Numeric(5, 2)) uploaded_date = db.Column(db.DateTime, default=datetime.now()) user = db.relationship("User", back_populates="song") comments = db.relationship("Comment", back_populates="song") likes = db.relationship("Like", back_populates="song") def to_dict(self): return { "id" : self.id, "user_id": self.user_id, "artist": self.artist, "name": self.name, "url": self.url, "normalized_data": self.normalized_data, "cover_image": self.cover_image, "genre": self.genre, "description": self.description, "release_date": self.release_date, "duration": float(self.duration), 'uploaded_date': self.uploaded_date }
from python.test.test_game_state import DEFAULT_ELEVATION_MAP from python.lib.board_state import BoardState from .constants import ( DEFAULT_ELEVATION_MAP_SHAPE, DEFAULT_ELEVATION_MAP, DEFAULT_EXPECTED_OUTPUT_GRID_MAP, ) def test_BoardState_create_grid_map_from_elevation_array(): elevation_map_2d = DEFAULT_ELEVATION_MAP shape = DEFAULT_ELEVATION_MAP_SHAPE grid_map = BoardState.create_grid_map_from_elevation_array(elevation_map_2d, shape) expected_grid_map = DEFAULT_EXPECTED_OUTPUT_GRID_MAP for k, v in grid_map.items(): # print(f"{k}: {v} -> {expected_grid_map[k]}") assert k in expected_grid_map assert v == expected_grid_map[k] assert grid_map == expected_grid_map def test_BoardState_create_position_list_from_2d_mask(): # a cross mask in a 3x4 neighborhood mask_2d = [ [None, BoardState.FILLED_TILE, None], [ BoardState.FILLED_TILE, BoardState.MASK_DEFAULT_PIVOT_VALUE, BoardState.FILLED_TILE, ], [None, BoardState.FILLED_TILE, None], [None, BoardState.FILLED_TILE, None], ] shape = (3, 4) # without a grid pivot grid_map = BoardState.create_2d_position_list_from_2d_mask(mask_2d, shape) expected_grid_map = { (-1, 0): BoardState.FILLED_TILE, (0, -1): BoardState.FILLED_TILE, (0, 1): BoardState.FILLED_TILE, (1, 0): BoardState.FILLED_TILE, (0, 2): BoardState.FILLED_TILE, } assert grid_map == expected_grid_map # with a grid pivot provided grid_pivot_pos = (1, 1) grid_map_rel = BoardState.create_2d_position_list_from_2d_mask( mask_2d, shape, grid_pivot_pos ) expected_grid_map_relative = { (0, 1): BoardState.FILLED_TILE, (1, 0): BoardState.FILLED_TILE, (2, 1): BoardState.FILLED_TILE, (1, 2): BoardState.FILLED_TILE, (1, 3): BoardState.FILLED_TILE, } assert grid_map_rel == expected_grid_map_relative def test_board_state(): span = 8 # the board's square radius grid = [] for x in range(-(span - 1), span): for y in range(-1, 2): for z in range(-(span - 1), span): grid.append((x, y, z)) board = BoardState(grid) board.setup() # Check center tile neighbors expected_neighbors = BoardState.NEIGHBORING_DIRECTIONS_MASK CENTER_TILE_POS = (0, 0, 0) actual_neighbors = board.neighbors(CENTER_TILE_POS) assert expected_neighbors == actual_neighbors # Check corner cases corners = [(-1, 0, -1), (1, 0, 1), (1, 0, -1), (-1, 0, 1)] corner_positions = [((span - 1) * x, y, (span - 1) * z) for x, y, z in corners] idx = 0 for corner_pos in corner_positions: x, y, z = corners[idx] s = span - 1 corner_neighbors = board.neighbors(corner_pos) print( "corner: ", corners[idx], corner_pos, " corner_neighbors: ", corner_neighbors, ) assert len(corner_neighbors) == 6 invalid_tiles = [ ((s * x) + x, y, s * z), ((s * x), y, (s * z) + z), ((s * x) + x, y + 1, s * z), ((s * x), y + 1, (s * z) + z), ((s * x) + x, y - 1, s * z), ((s * x), y - 1, (s * z) + z), ] for invalid_tile in invalid_tiles: assert invalid_tile not in corner_neighbors idx += 1 # Check pathfinding diagonal_path = board.astar(corner_positions[0], corner_positions[1]) diagonal_path_list = list(diagonal_path) expected_diagonal_path = [ (-7, 0, -7), (-6, 0, -7), (-5, 0, -7), (-4, 0, -7), (-3, 0, -7), (-2, 0, -7), (-1, 0, -7), (0, 0, -7), (1, 0, -7), (2, 0, -7), (3, 0, -7), (3, 0, -6), (3, 0, -5), (3, 0, -4), (4, 0, -4), (5, 0, -4), (6, 0, -4), (6, 0, -3), (6, 0, -2), (6, 0, -1), (6, 0, 0), (6, 0, 1), (6, 0, 2), (6, 0, 3), (7, 0, 3), (7, 0, 4), (7, 0, 5), (7, 0, 6), (7, 0, 7), ] assert diagonal_path_list == expected_diagonal_path lateral_path = board.astar(corner_positions[0], corner_positions[2]) lateral_path_list = list(lateral_path) expected_lateral_path = [ (-7, 0, -7), (-6, 0, -7), (-5, 0, -7), (-4, 0, -7), (-3, 0, -7), (-2, 0, -7), (-1, 0, -7), (0, 0, -7), (1, 0, -7), (2, 0, -7), (3, 0, -7), (4, 0, -7), (5, 0, -7), (6, 0, -7), (7, 0, -7), ] assert lateral_path_list == expected_lateral_path # Test movable area checking movable_area_from_center = board.movable_area(CENTER_TILE_POS, distance_budget=2) print("[") for pos in movable_area_from_center: print(f"{pos},") print("]") expected_movable_area = [ (0, -1, -1), (0, -1, -2), (-1, 1, -1), (0, -1, 1), (0, 1, 0), (-1, 1, 1), (2, 1, 0), (1, -1, 1), (1, -1, -1), (0, 0, -1), (0, 0, -2), (0, 0, 1), (1, 0, 1), (1, 1, 0), (1, 0, -1), (-1, -1, -1), (0, -1, 0), (-1, -1, 1), (-1, 1, 0), (-2, 1, 0), (0, 1, 2), (1, -1, 0), (2, -1, 0), (-1, 0, 1), (-1, 0, -1), (0, 0, 0), (1, 0, 0), (2, 0, 0), (-1, -1, 0), (0, 1, -1), (-2, -1, 0), (0, -1, 2), (0, 1, 1), (0, 1, -2), (-1, 0, 0), (-2, 0, 0), (0, 0, 2), (1, 1, -1), (1, 1, 1), ] assert movable_area_from_center == expected_movable_area
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fnmatch import itertools import json import logging import os import re from typing import List from urllib.parse import urljoin from urllib.parse import urlparse import aiohttp from kazoo.handlers.threading import KazooTimeoutError from kazoo.retry import KazooRetry from mypy_extensions import TypedDict from retry import retry from . import exceptions from . import framework from . import log from . import mesos_file from . import slave from . import task from . import util from . import zookeeper from paasta_tools.async_utils import async_ttl_cache from paasta_tools.utils import get_user_agent ZOOKEEPER_TIMEOUT = 1 INVALID_PATH = "{0} does not have a valid path. Did you forget /mesos?" MISSING_MASTER = """unable to connect to a master at {0}. Try running `mesos config master zk://localhost:2181/mesos`. See the README for more examples.""" MULTIPLE_SLAVES = "There are multiple slaves with that id. Please choose one: " logger = logging.getLogger(__name__) class MesosState(TypedDict): slaves: List frameworks: List orphan_tasks: List MesosMetrics = TypedDict( 'MesosMetrics', { 'master/cpus_total': int, 'master/cpus_used': int, 'master/disk_total': int, 'master/disk_used': int, 'master/gpus_total': int, 'master/gpus_used': int, 'master/mem_total': int, 'master/mem_used': int, 'master/tasks_running': int, 'master/tasks_staging': int, 'master/tasks_starting': int, 'master/slaves_active': int, 'master/slaves_inactive': int, }, ) class MesosMaster: def __init__(self, config): self.config = config def __str__(self): return "<master: {}>".format(self.key()) def key(self): return self.config["master"] @util.CachedProperty(ttl=5) def host(self): return "{}://{}".format( self.config["scheme"], self.resolve(self.config["master"]), ) @util.CachedProperty(ttl=5) def cache_host(self): host_url = urlparse(self.host) replaced = host_url._replace(netloc=host_url.hostname + ':5055') return replaced.geturl() async def _request( self, url: str, method: str = 'GET', cached: bool = False, **kwargs, ) -> aiohttp.ClientResponse: headers = {'User-Agent': get_user_agent()} if cached and self.config.get("use_mesos_cache", False): # TODO: fall back to original host if this fails? host = self.cache_host else: host = self.host try: async with aiohttp.ClientSession( conn_timeout=self.config["response_timeout"], read_timeout=self.config["response_timeout"], ) as session: async with session.request( method=method, url=urljoin(host, url), headers=headers, **kwargs, ) as resp: # if nobody awaits resp.text() or resp.json() before we exit the session context manager, then the # http connection gets closed before we read the response; then later calls to resp.text/json will # fail. await resp.text() return resp except aiohttp.client_exceptions.ClientConnectionError: raise exceptions.MasterNotAvailableException( MISSING_MASTER.format(host), ) except aiohttp.client_exceptions.TooManyRedirects: raise exceptions.MasterTemporarilyNotAvailableException( ( "Unable to connect to master at %s, likely due to " "an ongoing leader election" ) % host, ) async def fetch(self, url, **kwargs): return await self._request(url, **kwargs) async def post(self, url, **kwargs): return await self._request(url, method='POST', **kwargs) def _file_resolver(self, cfg): return self.resolve(open(cfg[6:], "r+").read().strip()) @retry(KazooTimeoutError, tries=5, delay=0.5, logger=logger) def _zookeeper_resolver(self, cfg): hosts, path = cfg[5:].split("/", 1) path = "/" + path retry = KazooRetry(max_tries=10) with zookeeper.client( hosts=hosts, read_only=True, connection_retry=retry, command_retry=retry, ) as zk: def master_id(key): return int(key.split("_")[-1]) def get_masters(): return [x for x in zk.get_children(path) if re.search(r"\d+", x)] leader = sorted(get_masters(), key=lambda x: master_id(x)) if len(leader) == 0: raise exceptions.MasterNotAvailableException( f"cannot find any masters at {cfg}", ) data, stat = zk.get(os.path.join(path, leader[0])) if not data: exceptions.MasterNotAvailableException( "Cannot retrieve valid MasterInfo data from ZooKeeper", ) else: data = data.decode('utf8') try: parsed = json.loads(data) if parsed and "address" in parsed: ip = parsed["address"].get("ip") port = parsed["address"].get("port") if ip and port: return f"{ip}:{port}" except ValueError as parse_error: log.debug( "[WARN] No JSON content, probably connecting to older " "Mesos version. Reason: {}".format(parse_error), ) raise exceptions.MasterNotAvailableException( "Failed to parse mesos master ip from ZK", ) @log.duration def resolve(self, cfg): """Resolve the URL to the mesos master. The value of cfg should be one of: - host:port - zk://host1:port1,host2:port2/path - zk://username:password@host1:port1/path - file:///path/to/file (where file contains one of the above) """ if cfg.startswith("zk:"): return self._zookeeper_resolver(cfg) elif cfg.startswith("file:"): return self._file_resolver(cfg) else: return cfg @async_ttl_cache(ttl=15, cleanup_self=True) async def state(self) -> MesosState: return await (await self.fetch("/master/state.json", cached=True)).json() async def state_summary(self) -> MesosState: return await (await self.fetch("/master/state-summary")).json() @async_ttl_cache(ttl=0, cleanup_self=True) async def slave(self, fltr): lst = await self.slaves(fltr) log.debug(f"master.slave({fltr})") if len(lst) == 0: raise exceptions.SlaveDoesNotExist( f"Slave {fltr} no longer exists.", ) elif len(lst) > 1: raise exceptions.MultipleSlavesForIDError( "Multiple slaves matching filter {}. {}".format( fltr, ",".join([slave.id for slave in lst]), ), ) return lst[0] async def slaves(self, fltr=""): return [ slave.MesosSlave(self.config, x) for x in (await self.state())['slaves'] if fltr == x['id'] ] async def _task_list(self, active_only=False): keys = ["tasks"] if not active_only: keys.append("completed_tasks") return itertools.chain( *[util.merge(x, *keys) for x in await self._framework_list(active_only)], ) async def task(self, fltr): lst = await self.tasks(fltr) if len(lst) == 0: raise exceptions.TaskNotFoundException( "Cannot find a task with filter %s" % fltr, ) elif len(lst) > 1: raise exceptions.MultipleTasksForIDError( "Multiple tasks matching filter {}. {}".format( fltr, ",".join([task.id for task in lst]), ), ) return lst[0] async def orphan_tasks(self): return (await self.state())["orphan_tasks"] # XXX - need to filter on task state as well as id async def tasks(self, fltr="", active_only=False): return [ task.Task(self, x) for x in await self._task_list(active_only) if fltr in x['id'] or fnmatch.fnmatch(x['id'], fltr) ] async def framework(self, fwid): return list(filter( lambda x: x.id == fwid, await self.frameworks(), ))[0] async def _framework_list(self, active_only=False): keys = ["frameworks"] if not active_only: keys.append("completed_frameworks") return util.merge(await self._frameworks(), *keys) @async_ttl_cache(ttl=15, cleanup_self=True) async def _frameworks(self): return await (await self.fetch("/master/frameworks", cached=True)).json() async def frameworks(self, active_only=False): return [framework.Framework(f) for f in await self._framework_list(active_only)] async def teardown(self, framework_id): return await self.post( "/master/teardown", data="frameworkId=%s" % framework_id, ) async def metrics_snapshot(self) -> MesosMetrics: return await (await self.fetch("/metrics/snapshot")).json() @property # type: ignore @util.memoize def log(self): return mesos_file.File(self, path="/master/log")
s1 = ["s1","s2","s3","s4","s5"] s2 = s1[2:4] print(f"Result: {s2}")
import json from os import path from punica.core.base_project import BaseProject from punica.exception.punica_exception import PunicaException, PunicaError class ProjectWithConfig(BaseProject): def __init__(self, project_dir: str = ''): super().__init__(project_dir) pj_config_file_path = path.join(self.project_dir, 'punica.json') old_pj_config_file_path = path.join(self.project_dir, 'punica-config.json') if path.exists(pj_config_file_path): self._pj_config_file_path = pj_config_file_path elif path.exists(old_pj_config_file_path): self._pj_config_file_path = old_pj_config_file_path else: raise PunicaException(PunicaError.config_file_not_found) try: with open(self._pj_config_file_path, 'r')as f: self._pj_config = json.load(f) except FileNotFoundError: raise PunicaException(PunicaError.config_file_not_found) @property def pj_config(self): return self._pj_config @property def default_network(self): return self.pj_config.get('defaultNet', '') def get_rpc_address(self, network: str = ''): try: if len(network) == 0: network = self.pj_config['defaultNet'] networks = self.pj_config['networks'] host = networks[network]['host'] port = networks[network]['port'] return f'{host}:{port}' except KeyError: raise PunicaException(PunicaError.invalid_network_config)
# from ...geometry.Bisector import * from ...Util import * from ...graph.Vertex import * from Event import * from ...geometry.BisectorRay import * from ..Breakpoint import * class CircleEvent(Event): # def __init__(self, arc): def __init__(self, arc, causing_event_is_site_type): self.arc = arc self.causing_event_is_site_type = causing_event_is_site_type def getArc(self): return self.arc def getCausingEventIsSiteType(self): return self.causing_event_is_site_type def setCausingEventIsSiteType(self, causing_event_is_site_type): self.causing_event_is_site_type = causing_event_is_site_type """ def centerArcIsSplitResidueArc(self): return (self.arc).getIsSplitResidueArc() """ # retrieve focus of associated arc def _getAssociatedLocation(self): return self.getArc().getFocus() # append vertices to the vertex list def handle(self, tree, vertex_list, event_queue, truncated_bisector_edge_dict, sweep_line, initial_y_value): # print "handling a circle event" # three phases # 1. deal with arc tree and potentially # invalidate future circle events # 2. deal with features of diagram # 3. check for newly visible circle events # phase 1 arc = self.getArc() left_arc = tree.getArcLeftNeighbor(arc) right_arc = tree.getArcRightNeighbor(arc) # print "left arc focus:", left_arc.getFocus() # print "arc focus:", arc.getFocus() # print "right arc focus:", right_arc.getFocus() # left_found_arc, left_found_payload = tree.getArcWithPayload(left_arc) l_y = sweep_line.getY() left_found_payload = tree.getArcPayload(left_arc) invalidated_left_arc_circle_event = False arc1 = tree.getArcLeftNeighbor(left_arc) arc2 = left_arc arc3 = arc if left_found_payload.hasCircleEvent() == True: result = CircleEvent.getLargestEmptyCircleLowestExtent(l_y, arc1, arc2, arc3) location = result y = location[1] curr_y = l_y # print "circle event y and sweep-line y:", y, curr_y # raise Exception() # if CircleEvent.axisAlignedComp(y, curr_y) == 0: if False: # do not remove circle event # raise Exception() pass else: # print "removed event's arcs:", arc1.getFocus(), arc2.getFocus(), arc3.getFocus() # remove circle event # print "invalidating a circle event for a left neighbor arc with focus:", left_arc.getFocus() left_circle_event = left_found_payload.getCircleEvent() # event_queue.remove(left_circle_event) event_queue.removeEvent(left_circle_event) left_found_payload.removeCircleEvent() invalidated_left_arc_circle_event = True # right_found_arc, right_found_payload = tree.getArcWithPayload(right_arc) right_found_payload = tree.getArcPayload(right_arc) invalidated_right_arc_circle_event = False arc1 = arc arc2 = right_arc arc3 = tree.getArcRightNeighbor(right_arc) if right_found_payload.hasCircleEvent() == True: result = CircleEvent.getLargestEmptyCircleLowestExtent(l_y, arc1, arc2, arc3) location = result y = location[1] curr_y = l_y # print "circle event y and sweep-line y:", y, curr_y # if CircleEvent.axisAlignedComp(y, curr_y) == 0: if False: # do not remove circle event # raise Exception() pass else: # print "removed event's arcs:", arc1.getFocus(), arc2.getFocus(), arc3.getFocus() # remove circle event # print "invalidating a circle event for a right neighbor arc with focus:", right_arc.getFocus() right_circle_event = right_found_payload.getCircleEvent() event_queue.removeEvent(right_circle_event) right_found_payload.removeCircleEvent() invalidated_right_arc_circle_event = True invalidated_values = [invalidated_left_arc_circle_event, invalidated_right_arc_circle_event] affirmative_invalidated_values = [x for x in invalidated_values if x == True] num_affirmative_invalidated_values = len(affirmative_invalidated_values) # print tree.toFocusList(), tree.toIntervalStringList() # print "circle event leads to # of circle events being invalidated:", num_affirmative_invalidated_values # phase 2 # retrieve two edges # create an edge # create a vertex # set three endpoints left_site = left_arc.getFocus() center_site = arc.getFocus() right_site = right_arc.getFocus() left_edge = truncated_bisector_edge_dict.getTruncatedBisectorEdge(left_site, center_site) right_edge = truncated_bisector_edge_dict.getTruncatedBisectorEdge(center_site, right_site) outgoing_edge = truncated_bisector_edge_dict.addTruncatedBisectorEdge(left_site, right_site) might_occur, lowest_extent_location = CircleEvent.mightLeadToACircleEventOccurringInFuture(left_arc, arc, right_arc, sweep_line.getY()) l_y = sweep_line.getY() # print "sweep-line y-value:", l_y # raise Exception() focus1 = left_arc.getFocus() focus2 = arc.getFocus() focus3 = right_arc.getFocus() # bisector1 = Bisector(focus1, focus2) bisectorRay1 = CircleEvent.getBisectorRay(l_y, left_arc, arc) """ print "bisector ray one:", bisectorRay1.toString() print "focuses:", focus1, focus2, focus3 """ # bisector2 = Bisector(focus2, focus3) bisectorRay2 = CircleEvent.getBisectorRay(l_y, arc, right_arc) """ print "bisector ray two:", bisectorRay2.toString() print tree.toIntervalStringList() print tree.toFocusList() """ # raise Exception() # print bisectorRay1.doesIntersectWithRay(bisectorRay2) # print bisectorRay1.intersectWithRay(bisectorRay2) # print focus1, focus2, focus3 # print bisector1.doesIntersectWithBisector(bisector2) # print CircleEvent.getLargestEmptyCircleLowestExtent(left_arc, arc, right_arc), sweep_line.getY() location = CircleEvent.getIntersectionHelper(l_y, left_arc, arc, right_arc) # truncate components of location # so as to have outputted features # with certain amount of precision x, y = location """ truncated_x = tree._truncate(x, tree.getPrecision()) truncated_y = tree._truncate(y, tree.getPrecision()) """ rounded_x = round_with_precision(x, tree.getPrecision()) rounded_y = round_with_precision(y, tree.getPrecision()) """ location_with_truncated_components = (truncated_x, truncated_y) # vertex = Vertex(None, location) vertex = Vertex(None, location_with_truncated_components) """ location_with_rounded_components = (rounded_x, rounded_y) vertex = Vertex(None, location) vertex_list.append(vertex) # print "about to modify existing edges" """ left_edge.setIndeterminateEndpoint(location) right_edge.setIndeterminateEndpoint(location) outgoing_edge.setIndeterminateEndpoint(location) """ truncated_bisector_edge_dict.setIndeterminateEndpoint(left_site, center_site, vertex) truncated_bisector_edge_dict.setIndeterminateEndpoint(center_site, right_site, vertex) truncated_bisector_edge_dict.setIndeterminateEndpoint(left_site, right_site, vertex) # phase 1 transplanted # remove an arc tree.removeArc(arc) # phase 3 might_occur1 = None might_occur2 = None if tree.hasArcLeftNeighbor(left_arc): triple1_left = tree.getArcLeftNeighbor(left_arc) triple1_center = left_arc triple1_right = right_arc # print tree.toString() might_occur1, lowest_extent_location1 = CircleEvent.mightLeadToACircleEventOccurringInFuture(triple1_left, triple1_center, triple1_right, sweep_line.getY()) # location1 = CircleEvent.getIntersectionHelper(triple1_left, triple1_center, triple1_right) if might_occur1 == True: # print "for a circle event, see that we have a possible additional circle event:", triple1_left.getFocus(), triple1_center.getFocus(), triple1_right.getFocus() event = CircleEvent(triple1_center, True) y = lowest_extent_location1[1] priority = -1 * y # priority = tree._truncate(-1 * y, tree.getPrecision()) # priority = -1 * getLargestEmptyCircleLowestExtent(triple1_left, triple1_center, triple1_right) event_queue.insert((priority, triple1_center.getIsSplitResidueArc()), event) # print "prospective circle event involving arcs with focuses:", triple1_left.getFocus(), triple1_center.getFocus(), triple1_right.getFocus() # found_arc, found_payload = tree.getArcWithPayload(triple1_center) found_payload = tree.getArcPayload(triple1_center) found_payload.setCircleEvent(event) if event.isCircleEvent() == False: raise Exception("storing as a circle event a site event") # found_payload.setEventPriority(priority) if tree.hasArcRightNeighbor(right_arc): triple2_left = left_arc triple2_center = right_arc triple2_right = tree.getArcRightNeighbor(right_arc) might_occur2, lowest_extent_location2 = CircleEvent.mightLeadToACircleEventOccurringInFuture(triple2_left, triple2_center, triple2_right, sweep_line.getY()) # location2 = CircleEvent.getIntersectionHelper(triple2_left, triple2_center, triple2_right) if might_occur2 == True: # print "for a circle event, see that we have a possible additional circle event:", triple2_left.getFocus(), triple2_center.getFocus(), triple2_right.getFocus() event = CircleEvent(triple2_center, True) y = lowest_extent_location2[1] priority = -1 * y # priority = tree._truncate(-1 * y, tree.getPrecision()) # priority = -1 * getLargestEmptyCircleLowestExtent(triple2_left, triple2_center, triple2_right) event_queue.insert((priority, triple2_center.getIsSplitResidueArc()), event) # print "prospective circle event involving arcs with focuses:", triple2_left.getFocus(), triple2_center.getFocus(), triple2_right.getFocus() # found_arc, found_payload = tree.getArcWithPayload(triple2_center) # print "focus:", triple2_center.getFocus() found_payload = tree.getArcPayload(triple2_center) found_payload.setCircleEvent(event) if event.isCircleEvent() == False: raise Exception("storing as a circle event a site event") # found_payload.setEventPriority(priority) might_occur_values = [might_occur1, might_occur2] affirmative_might_occur_values = [x for x in might_occur_values if x == True] num_affirmative_might_occur_values = len(affirmative_might_occur_values) # print "circle event leads to # of possible circle events:", num_affirmative_might_occur_values # if a bisector intersection exists, return an (x, y) tuple # otherwise, return None @staticmethod # def getIntersectionHelper(arc1, arc2, arc3): def getIntersectionHelper(l_y, arc1, arc2, arc3): focus1 = arc1.getFocus() focus2 = arc2.getFocus() focus3 = arc3.getFocus() # print "focuses for arcs involved in an intersection:", focus1, focus2, focus3 # print "sweep-line y-value for an intersection:", l_y # bisector1 = Bisector(focus1, focus2) bisectorRay1 = CircleEvent.getBisectorRay(l_y, arc1, arc2) # print focus1, focus2, focus3 # bisector2 = Bisector(focus2, focus3) bisectorRay2 = CircleEvent.getBisectorRay(l_y, arc2, arc3) # print "bisector one for intersection:", bisectorRay1.toString() # print "bisector two for intersection:", bisectorRay2.toString() # print focus1, focus2, focus3 # if not bisector1.doesIntersectWithBisector(bisector2): # if not bisectorRay1.intersectWithRay(bisectorRay2): # print "ray intersects:", bisectorRay1.doesIntersectWithRay(bisectorRay2) # using this test to disqualify intersections is flawed; # it ignores case where an arc is inserted that is at bottom # of largest empty circle for a circle event # middle_arc_is_growing = (arc1.isDegenerate(l_y) == False) and (arc2.isDegenerate(l_y) == True) and (arc3.isDegenerate(l_y) == False) """ print "middle arc is growing:", middle_arc_is_growing print arc1.getFocus(), arc2.getFocus(), arc3.getFocus(), l_y print "bisector rays intersect:", bisectorRay1.doesIntersectWithRay(bisectorRay2) """ # cover case where middle arc is growing but not degenerate # resulting pair of arc neighbors would share same focus """ if bisectorRay1.doesIntersectWithRay(bisectorRay2) == False and not (arc1.isDegenerate(l_y) == False and arc2.isDegenerate(l_y) == True and arc3.isDegenerate(l_y) == False): """ # if (bisectorRay1.doesIntersectWithRay(bisectorRay2) == False or middle_arc_is_growing == True): if (bisectorRay1.doesIntersectWithRay(bisectorRay2) == False): # print arc2.isDegenerate(l_y) # print "returning that we have no intersection" return None else: # location = bisector1.intersectWithBisector(bisector2) location = bisectorRay1.intersectWithRay(bisectorRay2) # print "intersection location:", location return location @staticmethod def intersectionExists(l_y, arc1, arc2, arc3): location = CircleEvent.getIntersectionHelper(l_y, arc1, arc2, arc3) # print "intersection location:", location result = location != None return result # assume a bisector intersection exists # return an (x, y) tuple @staticmethod def distanceFromBisectorIntersectionToContributingSite(l_y, arc1, arc2, arc3): # distance from center of a largest empty circle to a site on its boundary location = CircleEvent.getIntersectionHelper(l_y, arc1, arc2, arc3) site = arc1.getFocus() """ site2 = arc2.getFocus() site3 = arc3.getFocus() """ distance = getDistance(location, site) # print "largest empty circle arc focuses:", arc1.getFocus(), arc2.getFocus(), arc3.getFocus() # print "largest empty circle center, site, radius:", location, site, distance """ distance2 = getDistance(location, site2) distance3 = getDistance(location, site3) print distance, distance2, distance3 """ return distance # assume a bisector intersection exists # return an (x, y) tuple @staticmethod def getLargestEmptyCircleLowestExtent(l_y, arc1, arc2, arc3): location = CircleEvent.getIntersectionHelper(l_y, arc1, arc2, arc3) distance = CircleEvent.distanceFromBisectorIntersectionToContributingSite(l_y, arc1, arc2, arc3) # print arc1.getFocus(), arc2.getFocus(), arc3.getFocus() lowest_extent_x = location[0] lowest_extent_y = location[1] - distance lowest_extent = (lowest_extent_x, lowest_extent_y) # print "values related to largest empty circle:", location, distance, lowest_extent return lowest_extent # might occur, given that circle event might be invalidated # by future, we mean at current sweep line location or lower, # assuming that sweep line moves from top to bottom # return a (might_occur, location) tuple # might_occur is a boolean value # location is an (x, y) tuple # if a corresponding circle event # will occur in the "future", # or None if a corresponding circle event # will not occur in the "future" # location is lowest extent of corresponding largest empty circle @staticmethod # def mightLeadToACircleEventOccurringInFuture(arc1, arc2, arc3, l_y): def mightLeadToACircleEventOccurringInFuture(arc1, arc2, arc3, l_y, tolerance = 0.001): # result = getIntersectionHelper(arc1, arc2, arc3) intersection_exists = CircleEvent.intersectionExists(l_y, arc1, arc2, arc3) # print "intersection exists:", intersection_exists # if result == None: if intersection_exists == False: # no bisector intersection exists return (False, None) else: result = CircleEvent.getLargestEmptyCircleLowestExtent(l_y, arc1, arc2, arc3) location = result y = location[1] # print arc1.getFocus(), arc2.getFocus(), arc3.getFocus() # print "proposed circle event priority:", -1 * location[1] # print location, l_y # print "circle event prediction values:", y, l_y # if y <= l_y: # tolerance = tree._getTolerance() # print y, l_y y_is_satisfactory = (y <= (l_y + tolerance)) # print y, l_y if y_is_satisfactory == True: # print "circle event might occur" return (True, location) else: return (False, None) def toString(self): return "circle event" def isCircleEvent(self): return True # x and y are location components, i.e. scalars # specifically, the location components # are assumed to be values that are # axis-aligned measurements @staticmethod # def _featureLocationComponentComparator(x, y, tolerance = 0.001): def axisAlignedComp(x, y, tolerance = 0.001): if x >= (y + tolerance): return 1 elif x <= (y - tolerance): return -1 elif (x <= (y + tolerance)) and (x >= (y - tolerance)): return 0 # retrieve a bisector ray for a given left arc, right arc, and a sweep-line position # we do not attempt to get bisector rays for leading arcs @staticmethod def getBisectorRay(l_y, arc1, arc2): """ arc_interval1 = arc_tree._getArcIntervalForArc(arc1) arc_interval2 = arc_tree._getArcIntervalForArc(arc2) """ # generating breakpoints on-the-fly # breakpoint = Breakpoint(arc1, arc2) focus1 = arc1.getFocus() focus2 = arc2.getFocus() focus_y1 = focus1[1] focus_y2 = focus2[1] focus_x1 = focus1[0] focus_x2 = focus2[0] arcs = [arc1, arc2] min_focus_x = min(focus_x1, focus_x2) left_arc_candidates = [x for x in arcs if (x.getFocus())[0] == min_focus_x] left_arc = left_arc_candidates[0] right_arc_candidates = [x for x in arcs if x != left_arc] right_arc = right_arc_candidates[0] left_arc_focus = left_arc.getFocus() right_arc_focus = right_arc.getFocus() # sweep_line = arc_tree.getSweepLine() # l_y = sweep_line.getY() # if focus_y1 == focus_y2 and focus_y1 == l_y: """ if CircleEvent.axisAlignedComp(focus_y1, focus_y2) == 0 and CircleEvent.axisAlignedComp(focus_y1, l_y) == 0: # both arcs are degenerate and are leading arcs # create a downward-facing vertical bisector ray # with base of midpoint of line segment # from arc one focus to arc two focus # such a bisector ray is clockwise ninety degrees # from line segment from arc one focus to arc two focus breakpoint = Breakpoint(arc1, arc2) breakpoint_location = breakpoint.getLocation(l_y) # bisectorRay = BisectorRay.construct(focus2, focus1) # bisectorRay = BisectorRay.construct(focus2, focus1, breakpoint_location) bisectorRay = BisectorRay.construct(right_arc_focus, left_arc_focus, breakpoint_location) return bisectorRay # elif focus_y1 == focus_y2 and focus_y1 != l_y: """ if CircleEvent.axisAlignedComp(focus_y1, focus_y2) == 0 and CircleEvent.axisAlignedComp(focus_y1, l_y) != 0: # create a downward-facing vertical bisector # with a base of breakpoint corresponding to the two arcs breakpoint = Breakpoint(arc1, arc2) breakpoint_location = breakpoint.getLocation(l_y) # bisectorRay = BisectorRay(focus2, focus1, breakpoint_location) bisectorRay = BisectorRay(right_arc_focus, left_arc_focus, breakpoint_location) return bisectorRay else: # create a bisector ray that has base of a breakpoint # corresponding to the two arcs # use concept of a "funnel" to tell # which of two possible directions # the bisector ray should point in # consider low arc low_focus_y = min(focus_y1, focus_y2) arcs = [arc1, arc2] low_arc_candidates = [x for x in arcs if (x.getFocus())[1] == low_focus_y] low_arc = low_arc_candidates[0] low_arc_focus = low_arc.getFocus() low_arc_focus_x = low_arc_focus[0] # print arc1, arc2 # print focus1, focus2 breakpoint = Breakpoint(arc1, arc2) breakpoint_location = breakpoint.getLocation(l_y) # print breakpoint.getXComponent(l_y) x, y = breakpoint_location # print focus1, focus2, breakpoint_location # have a degenerate case where low arc focus # shares x-component with breakpoint; # in this case, we consider high arc focus x # assume that the two arcs have corresponding focuses # that do not have x-component values that are the same, # as any situation possibly leading to this outcome # would have led arc with higher focus being removed # upon insertion of the arc with lower focus # if x < low_arc_focus_x: if CircleEvent.axisAlignedComp(x, low_arc_focus_x) == -1: if low_arc == arc1: # choose bisector ray with negative x component # bisectorRay = CircleEvent.getBisectorRayWithNegativeXComponent(arc1, arc2, breakpoint_location) bisectorRay = CircleEvent.getBisectorRayWithNegativeXComponent(left_arc, right_arc, breakpoint_location) return bisectorRay elif low_arc == arc2: # bisectorRay = CircleEvent.getBisectorRayWithNegativeXComponent(arc1, arc2, breakpoint_location) bisectorRay = CircleEvent.getBisectorRayWithNegativeXComponent(left_arc, right_arc, breakpoint_location) return bisectorRay # elif x > low_arc_focus_x: if CircleEvent.axisAlignedComp(x, low_arc_focus_x) == 1: if low_arc == arc1: # choose bisector ray with positive x component # bisectorRay = CircleEvent.getBisectorRayWithPositiveXComponent(arc1, arc2, breakpoint_location) bisectorRay = CircleEvent.getBisectorRayWithPositiveXComponent(left_arc, right_arc, breakpoint_location) return bisectorRay elif low_arc == arc2: # bisectorRay = CircleEvent.getBisectorRayWithPositiveXComponent(arc1, arc2, breakpoint_location) bisectorRay = CircleEvent.getBisectorRayWithPositiveXComponent(left_arc, right_arc, breakpoint_location) return bisectorRay # elif x == low_arc_focus_x: # low arc is degenerate elif CircleEvent.axisAlignedComp(x, low_arc_focus_x) == 0: # choose bisector ray with x component # pointing in direction of high arc focus x # relative to breakpoint x component # assume that high arc x is never equal to low arc x high_arc_candidates = [x for x in arcs if (x.getFocus())[1] != low_focus_y] high_arc = high_arc_candidates[0] high_arc_focus = high_arc.getFocus() high_arc_focus_x = high_arc_focus[0] # print "high arc focus:", high_arc_focus # if high_arc_focus_x < low_arc_focus_x: if CircleEvent.axisAlignedComp(high_arc_focus_x, low_arc_focus_x) == -1: if low_arc == arc1: bisectorRay = CircleEvent.getBisectorRayWithPositiveXComponent(arc1, arc2, breakpoint_location) return bisectorRay elif low_arc == arc2: # choose bisector ray with negative x component bisectorRay = CircleEvent.getBisectorRayWithNegativeXComponent(arc1, arc2, breakpoint_location) # print "bisector ray:", bisectorRay.toString() return bisectorRay # elif high_arc_focus_x > low_arc_focus_x: elif CircleEvent.axisAlignedComp(high_arc_focus_x, low_arc_focus_x) == 1: if low_arc == arc1: # choose bisector ray with positive x component bisectorRay = CircleEvent.getBisectorRayWithPositiveXComponent(arc1, arc2, breakpoint_location) # print "bisector ray:", bisectorRay.toString() return bisectorRay elif low_arc == arc2: bisectorRay = CircleEvent.getBisectorRayWithNegativeXComponent(arc1, arc2, breakpoint_location) return bisectorRay # elif high_arc_focus_x == low_arc_focus_x: elif CircleEvent.axisAlignedComp(high_arc_focus_x, low_arc_focus_x) == 0: if low_arc == arc1: bisectorRay = CircleEvent.getBisectorRayWithPositiveXComponent(arc1, arc2, breakpoint_location) return bisectorRay elif low_arc == arc2: bisectorRay = CircleEvent.getBisectorRayWithNegativeXComponent(arc1, arc2, breakpoint_location) return bisectorRay raise Exception("fell through") @staticmethod def getBisectorRayWithNegativeXComponent(arc1, arc2, offset_vector): bisector_ray_candidates = CircleEvent.getBisectorRayCandidates(arc1, arc2, offset_vector) satisfactory_bisector_rays = [x for x in bisector_ray_candidates if CircleEvent.bisectorRayHasNegativeXComponent(x) == True] satisfactory_bisector_ray = satisfactory_bisector_rays[0] return satisfactory_bisector_ray @staticmethod def getBisectorRayWithPositiveXComponent(arc1, arc2, offset_vector): bisector_ray_candidates = CircleEvent.getBisectorRayCandidates(arc1, arc2, offset_vector) satisfactory_bisector_rays = [x for x in bisector_ray_candidates if CircleEvent.bisectorRayHasPositiveXComponent(x) == True] satisfactory_bisector_ray = satisfactory_bisector_rays[0] return satisfactory_bisector_ray # retrieve two candidates in the form of a two-tuple @staticmethod def getBisectorRayCandidates(arc1, arc2, offset_vector): focus1 = arc1.getFocus() focus2 = arc2.getFocus() # create two bisector rays # points ninety degrees CCW of line segment from focus1 to focus2 bisectorRay1 = BisectorRay(focus1, focus2, offset_vector) # points ninety degrees CW of line segment from focus1 to focus2 bisectorRay2 = BisectorRay(focus2, focus1, offset_vector) result = (bisectorRay1, bisectorRay2) return result @staticmethod def bisectorRayHasPositiveXComponent(bisectorRay): direction_vector = bisectorRay.getDirectionVector() x_component = direction_vector[0] # print "x component:", x_component is_positive = x_component > 0 return is_positive @staticmethod def bisectorRayHasNegativeXComponent(bisectorRay): direction_vector = bisectorRay.getDirectionVector() x_component = direction_vector[0] # print "x component:", x_component is_negative = x_component < 0 return is_negative """ # invalid intersection focus1 = (90.0, 100.0) focus2 = (86.0, 98.0) focus3 = (90.0, 100.0) bisector1 = Bisector(focus1, focus2) # print focus1, focus2, focus3 bisector2 = Bisector(focus2, focus3) # print focus1, focus2, focus3 print bisector1.doesIntersectWithBisector(bisector2) location = bisector1.intersectWithBisector(bisector2) print location """ """ from ..SweepLine import * # from ..arc_tree.ArcTree import * sweep_line = SweepLine() """ """ arc_tree = ArcTree(3, sweep_line) sweep_line.setY(364) arc_tree.insertArc(arc1) sweep_line.setY(328) arc_tree.insertArc(arc2) sweep_line.setY(243) arc_tree.insertArc(arc3) sweep_line.setY(155) print arc_tree.toIntervalStringList() """ from ..arc_tree.Arc import * """ l_y = 155 arc1 = Arc((141, 364)) arc2 = Arc((255, 328)) arc3 = Arc((128, 243)) """ """ l_y = 268 arc1 = Arc((298, 366)) arc2 = Arc((299, 366)) arc3 = Arc((307, 268)) """ """ l_y = 203 arc1 = Arc((298, 366)) arc2 = Arc((299, 366)) arc3 = Arc((370, 203)) """ """ l_y = 150 arc1 = Arc((100, 200)) arc2 = Arc((200, 400)) arc3 = Arc((300, 200)) """ """ l_y = 79.289 arc1 = Arc((400, 100)) arc2 = Arc((400, 200)) arc3 = Arc((500, 200)) """ """ l_y = 79.289 arc1 = Arc((300, 200)) arc2 = Arc((400, 100)) arc3 = Arc((400, 200)) """ """ l_y = 79.289 arc1 = Arc((300, 200)) arc2 = Arc((400, 200)) arc3 = Arc((400, 100)) """ """ l_y = 200 arc1 = Arc((200, 400), 400) arc2 = Arc((400, 400), 400) arc3 = Arc((300, 200), 200) """ l_y = 228 """ arc1 = Arc((170, 314)) arc2 = Arc((230, 271)) arc3 = Arc((170, 314)) """ """ arc1 = Arc((230, 271)) arc2 = Arc((170, 314)) arc3 = Arc((359, 228)) bisector_ray1 = CircleEvent.getBisectorRay(l_y, arc1, arc2) bisector_ray2 = CircleEvent.getBisectorRay(l_y, arc2, arc3) breakpoint1 = Breakpoint(arc1, arc2) breakpoint_location1 = breakpoint1.getLocation(l_y) breakpoint2 = Breakpoint(arc2, arc3) breakpoint_location2 = breakpoint2.getLocation(l_y) """ """ print "breakpoint one location:", breakpoint_location1 print "breakpoint two location:", breakpoint_location2 print "bisector ray one:", bisector_ray1.toString() print "bisector ray two:", bisector_ray2.toString() """ """ does_intersect = bisector_ray1.doesIntersectWithRay(bisector_ray2) intersection = bisector_ray1.intersectWithRay(bisector_ray2) """ """ print does_intersect """ """ # raise Exception() # print intersection result = CircleEvent.mightLeadToACircleEventOccurringInFuture(arc1, arc2, arc3, l_y) # print result """
import numpy as np from torch import nn from torchvision import models class FineTuneModel(nn.Module): """Model used to test a ResNet50 with finetuning FC layers""" def __init__(self, num_classes): super(FineTuneModel, self).__init__() # Everything except the last linear layer original_model = models.resnet50(pretrained=True) self.features = nn.Sequential(*list(original_model.children())[:-1]) self.classifier = nn.Sequential( nn.Linear(2048, 128), nn.ReLU(), nn.Linear(128, 128), nn.ReLU(), nn.Linear(128, num_classes), ) def forward(self, x): f = self.features(x) f = f.view(f.size(0), -1) y = self.classifier(f) return y
""" Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: MIT-0 """ import unittest from cfn_policy_validator.application_error import ApplicationError from cfn_policy_validator.parsers.utils.node_evaluator import NodeEvaluator from cfn_policy_validator.tests.parsers_tests import mock_node_evaluator_setup from cfn_policy_validator.tests.utils import load, load_resources, account_config, expected_type_error class WhenEvaluatingAPolicyWithASelectFunction(unittest.TestCase): @mock_node_evaluator_setup() def test_returns_value_at_index_1(self): template = load_resources({ 'ResourceA': { 'Type': 'AWS::Random::Service', 'Properties': { 'PropertyA': { 'Fn::Select': ['1', ['option 0', 'option 1']] } } } }) node_evaluator = NodeEvaluator(template, account_config, {}) result = node_evaluator.eval(template['Resources']['ResourceA']['Properties']['PropertyA']) self.assertEqual(result, 'option 1') class WhenEvaluatingAPolicyWithASelectFunctionThatReturnsAnObject(unittest.TestCase): @mock_node_evaluator_setup() def test_returns_value_at_index_0(self): template = load_resources({ 'ResourceA': { 'Type': 'AWS::Random::Service', 'Properties': { 'PropertyA': { 'Fn::Select': ['0', [{'option': '0'}, {'option': '1'}]] } } } }) node_evaluator = NodeEvaluator(template, account_config, {}) result = node_evaluator.eval(template['Resources']['ResourceA']['Properties']['PropertyA']) self.assertEqual(result, {'option': '0'}) class WhenEvaluatingAPolicyWithASelectFunctionAndInvalidValue(unittest.TestCase): @mock_node_evaluator_setup() def test_raises_an_error(self): template = load_resources({ 'ResourceA': { 'Type': 'AWS::Random::Service', 'Properties': { 'PropertyA': { 'Fn::Select': '0' } } } }) node_evaluator = NodeEvaluator(template, account_config, {}) with self.assertRaises(ApplicationError) as context: node_evaluator.eval(template['Resources']['ResourceA']['Properties']['PropertyA']) self.assertEqual(expected_type_error('Fn::Select', 'array', "'0'"), str(context.exception)) class WhenEvaluatingAPolicyWithASelectFunctionAndAListNotEqualToTwo(unittest.TestCase): @mock_node_evaluator_setup() def test_raises_an_error(self): template = load_resources({ 'ResourceA': { 'Type': 'AWS::Random::Service', 'Properties': { 'PropertyA': { 'Fn::Select': ['0', ['option 0'], '3rd'] } } } }) node_evaluator = NodeEvaluator(template, account_config, {}) with self.assertRaises(ApplicationError) as context: node_evaluator.eval(template['Resources']['ResourceA']['Properties']['PropertyA']) self.assertEqual("Additional items are not allowed ('3rd' was unexpected), Path: Fn::Select", str(context.exception)) class WhenEvaluatingAPolicyWithASelectFunctionAndAnInvalidFirstValue(unittest.TestCase): @mock_node_evaluator_setup() def tests_raises_an_error(self): template = load({ 'Resources': { 'ResourceA': { 'Type': 'AWS::Random::Service', 'Properties': { 'PropertyA': { 'Fn::Select': ['a', ['option 0', 'option 1']] } } } } }) node_evaluator = NodeEvaluator(template, account_config, {}) with self.assertRaises(ApplicationError) as context: node_evaluator.eval(template['Resources']['ResourceA']['Properties']['PropertyA']) self.assertEqual("The first value for Fn::Select must be an integer. Invalid value: a", str(context.exception)) class WhenEvaluatingAPolicyWithASelectFunctionAndAnInvalidSecondValue(unittest.TestCase): @mock_node_evaluator_setup() def tests_raises_an_error(self): template = load_resources({ 'ResourceA': { 'Type': 'AWS::Random::Service', 'Properties': { 'PropertyA': { 'Fn::Select': ['1', 'option 0'] } } } }) node_evaluator = NodeEvaluator(template, account_config, {}) with self.assertRaises(ApplicationError) as context: node_evaluator.eval(template['Resources']['ResourceA']['Properties']['PropertyA']) self.assertEqual(expected_type_error('Fn::Select.1', 'array', "'option 0'"), str(context.exception)) class WhenEvaluatingAPolicyWithASelectFunctionAndIndexIsLargerThanList(unittest.TestCase): @mock_node_evaluator_setup() def tests_raises_an_error(self): template = load({ 'Resources': { 'ResourceA': { 'Type': 'AWS::Random::Service', 'Properties': { 'PropertyA': { 'Fn::Select': ['2', ['option 0', 'option 1']] } } } } }) node_evaluator = NodeEvaluator(template, account_config, {}) with self.assertRaises(ApplicationError) as context: node_evaluator.eval(template['Resources']['ResourceA']['Properties']['PropertyA']) self.assertEqual("Fn::Select index is out of bounds of the list. Invalid value: ['2', ['option 0', 'option 1']]", str(context.exception)) class WhenEvaluatingAPolicyWithASelectFunctionAndIndexIsNegative(unittest.TestCase): @mock_node_evaluator_setup() def tests_raises_an_error(self): template = load({ 'Resources': { 'ResourceA': { 'Type': 'AWS::Random::Service', 'Properties': { 'PropertyA': { 'Fn::Select': ['-1', ['option 0', 'option 1']] } } } } }) node_evaluator = NodeEvaluator(template, account_config, {}) with self.assertRaises(ApplicationError) as context: node_evaluator.eval(template['Resources']['ResourceA']['Properties']['PropertyA']) self.assertEqual("Fn::Select index is out of bounds of the list. Invalid value: ['-1', ['option 0', 'option 1']]", str(context.exception))
""" Test an AppSettings without a prefix """ from django.test import TestCase, override_settings from . import app_settings_no_prefix, app_settings_with_prefix class TestAppSettingsWithoutPrefix(TestCase): def test_attribute_default(self): self.assertEqual(app_settings_no_prefix.UNSET_ATTRIBUTE, "default") def test_attribute_overridden_in_settings(self): self.assertEqual(app_settings_no_prefix.SET_ATTRIBUTE, "test") @override_settings(SET_ATTRIBUTE="overridden") def test_attribute_overridden_in_tests(self): self.assertEqual(app_settings_no_prefix.SET_ATTRIBUTE, "overridden") def test_property_default(self): self.assertEqual(app_settings_no_prefix.UNSET_PROPERTY, "default") def test_property_overridden(self): self.assertEqual(app_settings_no_prefix.SET_PROPERTY, "test") @override_settings(SET_PROPERTY="overridden") def test_property_overridden_in_tests(self): self.assertEqual(app_settings_no_prefix.SET_PROPERTY, "overridden") def test_callable_default(self): self.assertEqual(app_settings_no_prefix.UNSET_CALLABLE, "unset") def test_callable_overridden(self): self.assertEqual(app_settings_no_prefix.SET_CALLABLE, "called test") @override_settings(SET_CALLABLE="overridden") def test_callable_overridden_in_tests(self): self.assertEqual(app_settings_no_prefix.SET_CALLABLE, "called overridden") def test_undefined(self): with self.assertRaises(AttributeError): assert app_settings_no_prefix.UNDEFINED class TestAppSettingsWithPrefix(TestCase): def test_attribute_default(self): self.assertEqual(app_settings_with_prefix.UNSET_ATTRIBUTE, "default") def test_attribute_overridden(self): self.assertEqual(app_settings_with_prefix.SET_ATTRIBUTE, "prefixed test") @override_settings(PREFIX_SET_ATTRIBUTE="prefixed overridden") def test_attribute_overridden_in_tests(self): self.assertEqual(app_settings_with_prefix.SET_ATTRIBUTE, "prefixed overridden") def test_property_default(self): self.assertEqual(app_settings_with_prefix.UNSET_PROPERTY, "default") def test_property_overridden(self): self.assertEqual(app_settings_with_prefix.SET_PROPERTY, "prefixed test") @override_settings(PREFIX_SET_PROPERTY="prefixed overridden") def test_property_overridden_in_tests(self): self.assertEqual(app_settings_with_prefix.SET_PROPERTY, "prefixed overridden") def test_callable_default(self): self.assertEqual(app_settings_with_prefix.UNSET_CALLABLE, "unset") def test_callable_overridden(self): self.assertEqual(app_settings_with_prefix.SET_CALLABLE, "called prefixed test") @override_settings(PREFIX_SET_CALLABLE="prefixed overridden") def test_callable_overridden_in_tests(self): self.assertEqual( app_settings_with_prefix.SET_CALLABLE, "called prefixed overridden" ) def test_using_prefix__raises_exception(self): with self.assertRaises(AttributeError): assert app_settings_with_prefix.PREFIX_SET_ATTRIBUTE def test_undefined(self): with self.assertRaises(AttributeError): assert app_settings_with_prefix.UNDEFINED
from rest_framework.routers import DefaultRouter from ..viewsets.dynamic_menu import DynamicMenuViewSet router = DefaultRouter() router.register(prefix=r'menu', viewset=DynamicMenuViewSet, basename='menu') urls = router.urls
""" Python implementation of full-gmm-test.cc """ import unittest import numpy as np from kaldi.base import math as kaldi_math from kaldi.matrix import Matrix, Vector from kaldi.matrix.common import MatrixTransposeType from kaldi.matrix.functions import vec_mat_vec from kaldi.matrix.packed import SpMatrix, TpMatrix from kaldi.gmm import * from kaldi.gmm._model_test_common import * def RandPosdefSpMatrix(dim): """ Generate random (non-singular) matrix Arguments: dim - int matrix_sqrt - TpMatrix logdet - float Outputs: matrix - SpMatrix """ while True: tmp = Matrix(dim, dim) tmp.set_randn_() if tmp.cond() < 100: break print("Condition number of random matrix large {}, trying again (this is normal)".format(tmp.cond())) # tmp * tmp^T will give positive definite matrix matrix = SpMatrix(dim) matrix.add_mat2_(1.0, tmp, MatrixTransposeType.NO_TRANS, 0.0) matrix_sqrt = TpMatrix(len(matrix)) matrix_sqrt = matrix_sqrt.cholesky_(matrix) logdet_out = matrix.log_pos_def_det() return matrix, matrix_sqrt, logdet_out def init_rand_diag_gmm(gmm): num_comp, dim = gmm.num_gauss(), gmm.dim() weights = Vector([kaldi_math.rand_uniform() for _ in range(num_comp)]) tot_weigth = weights.sum() for i, m in enumerate(weights): weights[i] = m / tot_weigth means = Matrix([[kaldi_math.rand_gauss() for _ in range(dim)] for _ in range(num_comp)]) vars_ = Matrix([[kaldi_math.exp(kaldi_math.rand_gauss()) for _ in range(dim)] for _ in range(num_comp)]) vars_.invert_elements_() gmm.set_weights(weights) gmm.set_inv_vars_and_means(vars_, means) gmm.perturb(0.5 * kaldi_math.rand_uniform()) gmm.compute_gconsts() class TestFullGmm(unittest.TestCase): def setUp(self): np.random.seed(12345) def testFullGmmEst(self): fgmm = FullGmm() dim = 10 + np.random.randint(low = 0, high = 10) num_comp = 1 + np.random.randint(low = 0, high = 10) num_frames = 5000 feats = Matrix(num_frames, dim) init_rand_full(dim, num_comp, fgmm) fgmm_normal = FullGmmNormal.new_with_other(fgmm) fgmm_normal.rand(feats) acc = AccumFullGmm.new_with_full(fgmm, GmmUpdateFlags.ALL) for t in range(num_frames): acc.accumulate_from_full(fgmm, feats[t,:], 1.0) opts = MleFullGmmOptions() objf_change, count = mle_full_gmm_update(opts, acc, GmmUpdateFlags.ALL, fgmm) change = objf_change / count num_params = num_comp * (dim + 1 + (dim * (dim + 1)/2)) predicted_change = 0.5 * num_params / num_frames print("Objf change per frame was {} vs. predicted {}".format(change, predicted_change)) self.assertTrue(change < 2.0 * predicted_change) self.assertTrue(change > 0.0) def testFullGmm(self): dim = 1 + np.random.randint(low = 0, high = 9) nMix = 1 + np.random.randint(low = 0, high = 9) print("Testing NumGauss: {}, Dim: {}".format(nMix, dim)) feat = Vector([kaldi_math.rand_gauss() for _ in range(dim)]) weights = Vector([kaldi_math.rand_uniform() for _ in range(nMix)]) tot_weigth = weights.sum() for i, m in enumerate(weights): weights[i] = m / tot_weigth means = Matrix([[kaldi_math.rand_gauss() for _ in range(dim)] for _ in range(nMix)]) invcovars = [SpMatrix(dim) for _ in range(nMix)] covars_logdet = [] for _ in range(nMix): c, matrix_sqrt, logdet_out = RandPosdefSpMatrix(dim) invcovars[_].copy_from_sp_(c) invcovars[_].invert_double_() covars_logdet.append(logdet_out) # Calculate loglike for feature Vector def auxLogLike(w, logdet, mean_row, invcovar): return -0.5 * ( kaldi_math.M_LOG_2PI * dim \ + logdet \ + vec_mat_vec(mean_row, invcovar, mean_row) \ + vec_mat_vec(feat, invcovar, feat)) \ + vec_mat_vec(mean_row, invcovar, feat) \ + np.log(w) loglikes = [auxLogLike(weights[m], covars_logdet[m], means[m, :], invcovars[m]) for m in range(nMix)] loglike = Vector(loglikes).log_sum_exp() # new Gmm gmm = FullGmm(nMix, dim) gmm.set_weights(weights) gmm.set_inv_covars_and_means(invcovars, means) gmm.compute_gconsts() loglike1, posterior1 = gmm.component_posteriors(feat) self.assertAlmostEqual(loglike, loglike1, delta = 0.01) self.assertAlmostEqual(1.0, posterior1.sum(), delta = 0.01) weights_bak = gmm.weights() means_bak = gmm.means() invcovars_bak = gmm.covars() for i in range(nMix): invcovars_bak[i].invert_double_() # Set all params one-by-one to new model gmm2 = FullGmm(gmm.num_gauss(), gmm.dim()) gmm2.set_weights(weights_bak) gmm2.set_means(means_bak) gmm2.inv_covars_ = invcovars_bak gmm2.compute_gconsts() loglike_gmm2 = gmm2.log_likelihood(feat) self.assertAlmostEqual(loglike1, loglike_gmm2, delta = 0.01) loglikes = gmm2.log_likelihoods(feat) self.assertAlmostEqual(loglikes.log_sum_exp(), loglike_gmm2) indices = list(range(gmm2.num_gauss())) loglikes = gmm2.log_likelihoods_preselect(feat, indices) self.assertAlmostEqual(loglikes.log_sum_exp(), loglike_gmm2) # Simple component mean accessor + mutator gmm3 = FullGmm(gmm.num_gauss(), gmm.dim()) gmm3.set_weights(weights_bak) means_bak.set_zero_() for i in range(nMix): gmm.get_component_mean(i, means_bak[i,:]) gmm3.set_means(means_bak) gmm3.inv_covars_ = invcovars_bak gmm3.compute_gconsts() loglike_gmm3 = gmm3.log_likelihood(feat) self.assertAlmostEqual(loglike1, loglike_gmm3, delta = 0.01) gmm4 = FullGmm(gmm.num_gauss(), gmm.dim()) gmm4.set_weights(weights_bak) invcovars_bak, means_bak = gmm.get_covars_and_means() for i in range(nMix): invcovars_bak[i].invert_double_() gmm4.set_inv_covars_and_means(invcovars_bak, means_bak) gmm4.compute_gconsts() loglike_gmm4 = gmm4.log_likelihood(feat) self.assertAlmostEqual(loglike1, loglike_gmm4, delta = 0.01) # TODO: I/O tests # CopyFromFullGmm gmm4 = FullGmm() gmm4.copy_from_full(gmm) loglike5, _ = gmm4.component_posteriors(feat) self.assertAlmostEqual(loglike, loglike5, delta = 0.01) # CopyFromDiag gmm_diag = DiagGmm(nMix, dim) init_rand_diag_gmm(gmm_diag) loglike_diag = gmm_diag.log_likelihood(feat) gmm_full = FullGmm().copy(gmm_diag) loglike_full = gmm_full.log_likelihood(feat) gmm_diag2 = DiagGmm().copy(gmm_full) loglike_diag2 = gmm_diag2.log_likelihood(feat) self.assertAlmostEqual(loglike_diag, loglike_full, delta = 0.01) self.assertAlmostEqual(loglike_diag, loglike_diag2, delta = 0.01) # Split and merge test for 1 component # TODO: Implement split # weights1 = Vector([1.0]) # means1 = Matrix(means[0,:]) # invcovars1 = [invcovars[0]] # gmm1 = FullGmm(1, dim) # gmm1.set_weights(weights1) # gmm1.SetInvCovarsAndMeans(invcovars1, means1) # gmm1.ComputeGconsts() # gmm2 = FullGmm() # gmm2.CopyFromFullGmm(gmm1) # gmm2.Split(2, 0.001) # gmm2.Merge(1) # loglike1 = gmm1.LogLikelihood(feat) # loglike2 = gmm2.LogLikelihood(feat) # self.assertAlmostEqual(loglike1, loglike2, delta = 0.01) if __name__ == '__main__': unittest.main()
from typing import Optional, Union, List, Dict import pandas as pd import torch def convert_pandas_to_torch_tensor( data_batch: pd.DataFrame, columns: Optional[Union[List[str], List[List[str]]]] = None, column_dtypes: Optional[Union[torch.dtype, List[torch.dtype]]] = None, ) -> Union[torch.Tensor, List[torch.Tensor]]: """Converts a Pandas dataframe to a torch Tensor or list of torch Tensors. The format of the return type will match the format of ``columns``. If a list of columns is provided, the return type will be a single tensor. If ``columns`` is a list of lists, then the return type will be a list of tensors. Args: data_batch (pandas.DataFrame): The pandas dataframe to convert to a torch tensor. columns (Optional[Union[List[str], List[List[str]]]): The names of the columns in the dataframe to include in the torch tensor. If this arg is a List[List[str]], then the return type will be a List of tensors. This is useful for multi-input models. If None, then use all columns in the ``data_batch``. column_dtype (Optional[Union[torch.dtype, List[torch.dtype]): The torch dtype to use for the tensor. If set to None, then automatically infer the dtype. Returns: Either a torch tensor of size (N, len(columns)) where N is the number of rows in the ``data_batch`` Dataframe, or a list of tensors, where the size of item i is (N, len(columns[i])). """ multi_input = columns and (isinstance(columns[0], (list, tuple))) if not multi_input and column_dtypes and type(column_dtypes) != torch.dtype: raise TypeError( "If `columns` is a list of strings, " "`column_dtypes` must be None or a single `torch.dtype`." f"Got {type(column_dtypes)} instead." ) columns = columns if columns else [] def get_tensor_for_columns(columns, dtype): feature_tensors = [] if columns: batch = data_batch[columns] else: batch = data_batch for col in batch.columns: col_vals = batch[col].values t = torch.as_tensor(col_vals, dtype=dtype) t = t.view(-1, 1) feature_tensors.append(t) return torch.cat(feature_tensors, dim=1) if multi_input: if type(column_dtypes) not in [list, tuple]: column_dtypes = [column_dtypes] * len(columns) return [ get_tensor_for_columns(columns=subcolumns, dtype=dtype) for subcolumns, dtype in zip(columns, column_dtypes) ] else: return get_tensor_for_columns(columns=columns, dtype=column_dtypes) def load_torch_model( saved_model: Union[torch.nn.Module, Dict], model_definition: Optional[torch.nn.Module] = None, ) -> torch.nn.Module: """Loads a PyTorch model from the provided``saved_model``. If ``saved_model`` is a torch Module, then return it directly. If ``saved_model`` is a torch state dict, then load it in the ``model_definition`` and return the loaded model. """ if isinstance(saved_model, torch.nn.Module): return saved_model elif isinstance(saved_model, dict): if not model_definition: raise ValueError( "Attempting to load torch model from a " "state_dict, but no `model_definition` was " "provided." ) model_definition.load_state_dict(saved_model) return model_definition else: raise ValueError( f"Saved model is of type {type(saved_model)}. " f"The model saved in the checkpoint is expected " f"to be of type `torch.nn.Module`, or a model " f"state dict of type dict." )
#!/usr/bin/env python # coding: utf-8 # # Navigation # In this notebook, you will learn how to use the Unity ML-Agents environment for the first project of the [Deep Reinforcement Learning Nanodegree](https://www.udacity.com/course/deep-reinforcement-learning-nanodegree--nd893). # ### 1. Start the Environment import os import sys from os import path from collections import deque from datetime import datetime import torch import numpy as np from unityagents import UnityEnvironment # from matplotlib import pyplot as plt sys.path.insert(0, os.path.dirname(__file__)) sys.path.insert(0, os.getcwd()) CKPT_DIR = path.join(path.dirname(__file__), 'checkpoints') from dqn_agent import Agent env = UnityEnvironment(file_name="p1_navigation/Banana_Linux_NoVis/Banana.x86_64") # Environments contain **_brains_** which are responsible for deciding the actions of their associated agents. # Here we check for the first brain available, and set it as the default brain we will be controlling from Python. brain_name = env.brain_names[0] brain = env.brains[brain_name] # Examine the State and Action Spaces # The simulation contains a single agent that navigates a large environment. At each time step, it has four actions at its disposal: # - `0` - walk forward # - `1` - walk backward # - `2` - turn left # - `3` - turn right # # The state space has `37` dimensions and contains the agent's velocity, along with ray-based perception of objects # around agent's forward direction. A reward of `+1` is provided for collecting a yellow banana, and a reward # of `-1` is provided for collecting a blue banana. # reset the environment env_info = env.reset(train_mode=True)[brain_name] print('Number of agents:', len(env_info.agents)) action_size = brain.vector_action_space_size print('Number of actions:', action_size) state = env_info.vector_observations[0] print('States look like:', state) state_size = len(state) print('States have length:', state_size) agent = Agent(state_size=state_size, action_size=action_size, seed=0, mode='Double_DQN', use_prioritized_memory=True) def dqn(n_episodes=2000, eps_start=1.0, eps_end=0.01, eps_decay=0.995): """Deep Q-Learning. Params ====== n_episodes (int): maximum number of training episodes max_t (int): maximum number of timesteps per episode eps_start (float): starting value of epsilon, for epsilon-greedy action selection eps_end (float): minimum value of epsilon eps_decay (float): multiplicative factor (per episode) for decreasing epsilon """ scores = [] # list containing scores from each episode scores_window = deque(maxlen=100) # last 100 scores eps = eps_start # initialize epsilon for i_episode in range(1, n_episodes+1): env_info = env.reset(train_mode=True)[brain_name] state = env_info.vector_observations[0] # get the current state score = 0 while 1: action = agent.get_action(state, eps) # select an action env_info = env.step(action)[brain_name] # send the action to the environment next_state = env_info.vector_observations[0] # get the next state reward = env_info.rewards[0] # get the reward done = env_info.local_done[0] # see if episode has finished agent.step(state, action, reward, next_state, done) # take step with agent (including learning) score += reward # update the score state = next_state # roll over the state to next time step if done: # exit loop if episode finished break scores_window.append(score) # save most recent score scores.append(score) # save most recent score eps = max(eps_end, eps_decay*eps) # decrease epsilon for next episode # Printing & Monitoring cur_mean = np.mean(scores_window) print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, cur_mean), end="") if i_episode % 100 == 0: print('\rEpisode {}\tAverage Score: {:.2f}\tepsilon: {:.5f}'.format(i_episode, cur_mean,eps)) # Environment is solved if average score of last 100 episodes >= 13 if cur_mean >= 13.0: print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode, cur_mean)) file_basename = path.join(CKPT_DIR, 'solved_{}'.format(datetime.now().strftime('%Y%m%d_%H%M%S'))) torch.save(agent.qnetwork_local.state_dict(), file_basename + '.pt') np.savez_compressed(file_basename + '.npz', scores=scores) break return scores n_episodes_max = 1000 eps_end = .005 eps_decay = .995 scores = dqn(n_episodes=n_episodes_max, eps_end=eps_end, eps_decay=eps_decay) n_episodes = len(scores) print('# episodes: {}'.format(n_episodes)) env.close()
import fileimput import random import json from State import State if __name__ == '__main__': state = State() # for line in fileinput.input(bufsize=1): # changes = json.loads(line)['cells'] # for change in changes: # state.change(change) # # print(state.getJSON())
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Zoe Sysinfo - https://github.com/rmed/zoe-sysinfo # # Copyright (c) 2015 Rafael Medina García <rafamedgar@gmail.com> # # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.) import sys sys.path.append('./lib') import base64 import psutil import zoe from datetime import datetime from zoe.deco import * HTML_HEADER = """ <html> <head> <style> h2 { border-bottom: 1px solid #CCCCCC; margin-top: 20px; width: 100%; } table { border-collapse: separate; border-spacing: 5px; } </style> </head><body>""" HTML_FOOTER = "</body></html>" @Agent(name="sysinfo") class Sysinfo: @Message(tags=["report"]) def complete_report(self, sender, src): """ Send a complete report to user by mail. """ HTML = "" + HTML_HEADER # CPU cpu_html = "<h2>CPU Information</h2><ul>" cpu_info = self.gather_cpu() for cpu in cpu_info.keys(): info = cpu_info[cpu] cpu_html += """ <li>%s<ul> <li>User: %s %%</li> <li>System: %s %%</li> <li>Idle: %s %%</li> </ul></li>""" % ( cpu.upper(), str(info["user"]), str(info["system"]), str(info["idle"])) cpu_html += "</ul>" # Disks disk_html = "<h2>Disk Information</h2><ul>" disk_info = self.gather_disk() for disk in disk_info.keys(): info = disk_info[disk] usage = disk_info[disk]["usage"] disk_html += """ <li>%s<ul> <li>Mount point: %s</li> <li>Filesystem: %s</li> <li>Options: %s</li> <li>Usage:<ul> <li>Total: %s</li> <li>Used: %s</li> <li>Free: %s</li> <li>Percentage used: %s %%</li> </ul></li> </ul></li>""" % ( disk, info["mountpoint"], info["fstype"], info["opts"], self.size_fmt(usage["total"]), self.size_fmt(usage["used"]), self.size_fmt(usage["free"]), str(usage["percentage"])) disk_html += "</ul>" # Memory mem_html = "<h2>Memory Information</h2><ul>" mem_info = self.gather_memory() for mem_type in mem_info.keys(): info = mem_info[mem_type] mem_html += """ <li>%s<ul> <li>Total: %s</li> <li>Free: %s</li> <li>Used: %s</li> <li>Percentage used: %s</li> </ul></li>""" % ( mem_type.title(), self.size_fmt(info["total"]), self.size_fmt(info["free"]), self.size_fmt(info["used"]), str(info["percentage"])) mem_html += "</ul>" # Processes proc_html = "<h2>Running processes Information</h2><table>" proc_html += """<tr> <th>PID</th> <th>Name</th> <th>User</th> <th>Status</th> <th>Exec</th> <th>Resident Memory</th> <th>Virtual Memory</th></tr>""" proc_info = self.gather_proc() for proc in proc_info.keys(): info = proc_info[proc] proc_html += """<tr> <td>%s</td> <td>%s</td> <td>%s</td> <td>%s</td> <td>%s</td> <td>%s</td> <td>%s</td></tr>""" % ( str(proc), str(info["name"]), str(info["username"]), str(info["status"]), str(info["exe"]), self.size_fmt(info["memory"]["resident"]), self.size_fmt(info["memory"]["virtual"])) proc_html += "</table>" HTML += cpu_html + disk_html + mem_html + proc_html + HTML_FOOTER attachment = self.attach_html(HTML) return (self.feedback("Generating report...", sender, src), self.feedback(attachment, sender, "mail")) @Message(tags=["cpu"]) def info_cpu(self, sender, src): """ Send basic information on CPU usage jabber or Telegram. """ cpu_info = self.gather_cpu() msg = "CPU usage (%s)\n" % self.current_datetime() for cpu in cpu_info.keys(): info = cpu_info[cpu] msg += """ %s -------- User: %s %% System: %s %% Idle: %s %%\n\n""" % ( cpu.upper(), str(info["user"]), str(info["system"]), str(info["idle"])) return self.feedback(msg, sender, src) @Message(tags=["disk"]) def info_disk(self, sender, src): """ Send basic information on disk usage by jabber or Telegram. """ disk_info = self.gather_disk() msg = "Disk usage (%s)\n" % self.current_datetime() for disk in disk_info.keys(): info = disk_info[disk] usage = disk_info[disk]["usage"] msg += """ %s -------- Mount point: %s Filesystem type: %s Options: %s Usage: - Total: %s - Used: %s - Free: %s - Percentage used: %s %%\n\n""" % ( disk, info["mountpoint"], info["fstype"], info["opts"], self.size_fmt(usage["total"]), self.size_fmt(usage["used"]), self.size_fmt(usage["free"]), str(usage["percentage"])) return self.feedback(msg, sender, src) @Message(tags=["mem"]) def info_memory(self, sender, src): """ Send basic information on memory usage by jabber or Telegram. """ mem_info = self.gather_memory() msg = "Memory usage (%s)\n" % self.current_datetime() for mem_type in mem_info.keys(): info = mem_info[mem_type] msg += """ %s -------- Total: %s Free: %s Used: %s Percentage used: %s %%\n\n""" % ( mem_type, self.size_fmt(info["total"]), self.size_fmt(info["free"]), self.size_fmt(info["used"]), str(info["percentage"])) return self.feedback(msg, sender, src) def attach_html(self, html): """ Build the attachment file. This file is stored in the directory specified in ZOE_HOME/etc/sysinfo.conf (the directory must exist previously) """ now = datetime.today() filename = "sysinfo_%s_%s_%s_%s_%s_%s.html" % ( str(now.day), str(now.month), str(now.year), str(now.hour), str(now.minute), str(now.second)) b64 = base64.standard_b64encode(bytes(html, 'utf-8')).decode('utf-8') return zoe.Attachment(b64, "text/html", filename) def current_datetime(self): """ Return the current date and time in human-readable format. """ now = datetime.today() return now.strftime("%d/%m/%Y - %H:%M:%S") def feedback(self, data, user, dst): """ Send feedback to the user data -- may be text or an attachment for e-mail user -- user to send the feedback to dst -- either 'jabber', 'tg' or 'mail' """ to_send = { "dst": "relay", "relayto": dst, "to": user } if dst == "jabber" or dst == "tg": to_send["msg"] = data else: to_send["html"] = data.str() to_send["subject"] = "System information report" return zoe.MessageBuilder(to_send) def gather_cpu(self): """ Gather information on system CPU. Obtains usage percentage for each CPU present for user, system and idle. """ result = {} cpu_info = psutil.cpu_times_percent(percpu=True) for index, cpu in enumerate(cpu_info): result["cpu" + str(index)] = { "user": cpu.user, "system": cpu.system, "idle": cpu.idle } return result def gather_disk(self): """ Gather information on system disks. Obtains mounted disk partitions and their usage statistics. """ result = {} partitions = psutil.disk_partitions(all=True) for partition in partitions: part_usage = psutil.disk_usage(partition.mountpoint) result[partition.device] = { "mountpoint": partition.mountpoint, "fstype": partition.fstype, "opts": partition.opts, "usage": { "total": part_usage.total, "used": part_usage.used, "free": part_usage.free, "percentage": part_usage.percent } } return result def gather_memory(self): """ Gather information on system memory. Obtains physical RAM and swap statistics. """ result = {} mem_info = psutil.virtual_memory() swap_info = psutil.swap_memory() result["ram"] = { "total": mem_info.total, "free": mem_info.available, "used": mem_info.used, "percentage": mem_info.percent } result["swap"] = { "total": swap_info.total, "free": swap_info.free, "used": swap_info.used, "percentage": swap_info.percent } return result def gather_proc(self): """ Gather information on running processes. Obtains pid, name, executable, user running the process, status of the process and memory usage. """ result = {} for proc in psutil.process_iter(): try: process = psutil.Process(proc.pid) proc_data = process.as_dict( attrs=["name", "exe", "username", "status"]) mem_info = process.memory_info() proc_data["memory"] = {} proc_data["memory"]["resident"] = mem_info.rss proc_data["memory"]["virtual"] = mem_info.vms result[proc.pid] = proc_data except psutil.NoSuchProcess: continue return result def size_fmt(self, num): """ Represents amount of bytes in a better human-readable way. Obtained from http://stackoverflow.com/a/1094933 """ for unit in ['B','KiB','MiB','GiB','TiB','PiB','EiB','ZiB']: if abs(num) < 1024.0: return "%3.1f %s" % (num, unit) num /= 1024.0 return "%.1f %s" % (num, 'YiB')
import socket class c: hp = 50 def client_program(message): global hp host = input('please enter the hostname: \n') # as both code is running on same pc port = int(input('please enter the port: \n')) # socket server port number client_socket = socket.socket() # instantiate client_socket.connect((host, port)) # connect to the server #message = input(" -> ") # take input while message.lower().strip() != 'bye': client_socket.send(message.encode("utf-8")) # send message data = client_socket.recv(1024).decode("utf-8") # receive response if 'dmg' in data: dmg_received = data.split(' ')[-1].strip() print('damage received:', dmg_received) hp -= int(dmg_received) print('hp: ', hp) data2 = 'enemyhp ' + str(hp) conn.send(bytes(data2, "utf-8")) elif 'hp' in data and not 'ehp': hp_received = data.split(' ')[-1].strip() print('hp:', hp_received) elif 'ehp' in data: ehp_received = data.split(' ')[-1].strip() print('enemy hp:', ehp_received) print('Received from server: ' + data) # show in terminal #message = '' #message = input(" -> ") # again take input client_socket.close() # close the connection if __name__ == '__main__': c.client_program('dmg 567')
# Copyright (C) 2015-2016 Ammon Smith and Bradley Cai # Available for use under the terms of the MIT License. __all__ = [ 'depends', 'config_fields', 'run' ] from do_target import targetobj from testparser import TestParser import re import os import testobj depends = [ 'build', ] config_fields = { 'fail-fast': bool, 'show-type': bool, 'show-skipped': bool, 'test-dir': str, 'recursive': bool, 'failed-test-log': (str, type(None)), 'ignore-tests': list, 'regex': dict, 'regex-order': list, } TEST_FILE_REGEX = re.compile(r'.+\.test', re.IGNORECASE) def run(tracker): if len(tracker.config['regex'].keys()) != len(tracker.config['regex-order']) or \ not set(tracker.config['regex'].keys()).issubset(tracker.config['regex-order']): tracker.print_error("Configuration fields 'regex' and 'regex-order' don't match up.") tracker.print_error("'regex-order' should be an ordered list of the keys in 'regex'.") tracker.terminate() directory = 'tests' if not os.path.isdir(directory): directory = '../tests' tracker.print_activity("Switching directory to '%s'" % directory) os.chdir(directory) regex = tracker.run_job(job_get_regular_expression_order, "Geting order of regular expressions") test_files = tracker.run_job(job_get_test_files, "Finding tests") tracker.config['ignore-tests'] = set(tracker.config['ignore-tests']) if not test_files: tracker.print_error("No *.test files found.") tracker.terminate() tests = tracker.run_job(job_parse_tests, "Parsing %d test file%s" % (len(test_files), plural(len(test_files))), test_files, regex) passed, skipped, testcount, testsrun = \ tracker.run_job(job_run_tests, "Running tests", tests) tracker.run_job(job_print_results, "Test results", \ passed, skipped, testcount, testsrun) ### Defined jobs ### def job_get_regular_expression_order(tracker): regex = [] counter = 1 for name in tracker.config['regex-order']: tracker.print_operation(counter, name) regex.append(testobj.TestableRegex(name, tracker.config['regex'][name], tracker)) if name not in tracker.config['regex'].keys(): tracker.print_error( "Configuration error: regex '%s' mentioned in 'regex-order' but not specified in 'regex'." % name) tracker.terminate() counter += 1 return tuple(regex) def job_get_test_files(tracker): gen = os.walk('.', followlinks=True) test_files = [] for dirpath, dirnames, filenames in gen: for filename in filenames: if TEST_FILE_REGEX.match(filename): test_files.append(os.path.join(dirpath, filename)) if not tracker.config['recursive']: break return sorted(test_files) def job_parse_tests(tracker, test_files, regex): parser = TestParser() tests = [] if not test_files: tracker.print_string("(nothing to do)") for test_file in test_files: name = os.path.basename(test_file) if skip_test(test_file, tracker.config['ignore-tests']): if tracker.config['show-skipped']: tracker.print_operation('SKIP', name) tests.append(testobj.SkipTest(name)) continue tracker.print_operation("ADD", name) try: with open(test_file, 'r') as fh: data = parser.parse(name, fh.readlines()) except IOError as err: tracker.print_error("Unable to open '%s': %s." % (test_file, err)) tracker.failure() # Take the collected data and build the test object test = tracker.run_job(job_build_test, None, data, regex) if test: tests.append(test) return tests def job_build_test(tracker, data, regex): if 'Name' not in data.keys(): tracker.print_error("%s: No name specified." % data['filename']) tracker.failure() return None if len(data['Name']) > 1: tracker.print_error("%s: Multiple names specified." % data['filename']) tracker.failure() return None data['Name'] = data['Name'][0] if 'Type' not in data.keys(): tracker.print_error("%s: No test type specified." % data['filename']) tracker.failure() return None if len(data['Type']) > 1: tracker.print_error("%s: Multiple test types specified." % data['filename']) tracker.failure() return None data['Type'] = data['Type'][0] if 'Input' not in data.keys(): tracker.print_error("%s: No input value specified." % data['filename']) tracker.failure() return None if len(data['Input']) > 1: tracker.print_error("%s: Multiple input values specified." % data['filename']) tracker.failure() return None data['Input'] = data['Input'][0] + '\n' if 'EscapeStrings' in data.keys(): if len(data['EscapeStrings']) > 1: tracker.print_error("%s: Setting 'EscapeStrings' set multiple times." % data['filename']) tracker.failure() return None data['EscapeStrings'] = get_boolean_option(tracker, data['filename'], data['EscapeStrings'][0]) if data['EscapeStrings'] is None: return None else: data['EscapeStrings'] = False for key in data.keys(): match = testobj.MULTIPLE_REGEX_FIELD_NAME_REGEX.match(key) if match: name = match.group(1).lower() regex[name].multiple = get_boolean_option(tracker, data['filename'], data[key]) if regex[name].multiple is None: return None for regex_value in regex: regex_value.group = tracker.config['regex'][regex_value.name].get('group', 0) try: return testobj.TEST_BUILDERS[data['Type']](data, regex) except KeyError: tracker.print_error("%s: Unknown test type: '%s'." % data['filename']) tracker.print_notice("Supported test types: %s." % (', '.join(testobj.TEST_BUILDERS.keys()))) tracker.failure() return None def job_run_tests(tracker, tests): passed = 0 skipped = 0 testcount = len(tests) testsrun = testcount testobj.Test.set_up_error_log(tracker.config['failed-test-log']) for test in tests: result = test.run() if tracker.config['show-type']: testinfo = "%s (%s)" % (test.name, test.type) else: testinfo = test.name if result is None: tracker.print_operation("SKIP", testinfo) skipped += 1 testsrun -= 1 elif result is True: tracker.print_operation("PASS", testinfo, targetobj.GREEN) passed += 1 elif result is False: tracker.print_operation("FAIL", testinfo, targetobj.RED) if tracker.config['fail-fast']: passed = -1 return else: tracker.print_error("Invalid test return value: %s\n" % result) tacker.terminate() return passed, skipped, testcount, testsrun def job_print_results(tracker, passed, skipped, testcount, testsrun): if passed < testsrun and tracker.args.usecolor: label = "%sRESULTS%s" % (tracker.get_color(tracker.RED), tracker.end_color()) else: label = "RESULTS" tracker.print_operation(label, "Ran %d test%s." % (testsrun, plural(testsrun))) if testsrun == 0: tracker.print_notice("No tests were run.") return if tracker.config['fail-fast']: if passed == -1: tracker.print_operation(label, "A test failed, so the suite was aborted.") else: tracker.print_operation(label, "All tests passed.") else: tracker.print_operation(label, "%d / %d (%.1f%%) of tests passed." % (passed, testsrun, 100.0 * passed / testsrun)) if passed < testsrun and tracker.config['failed-test-log']: tracker.print_notice("A report for failed tests was written in '%s'." % \ os.path.abspath(tracker.config['failed-test-log'])) tracker.failure() ### Helper functions ### def plural(num): return '' if num == 1 else 's' def skip_test(test, ignore): return test in ignore or \ test[:-5] in ignore or \ os.path.basename(test) in ignore or \ os.path.basename(test[:-5]) in ignore def get_boolean_option(tracker, filename, string): string = string.lower() if string in ('true', 'yes', 'enable', 'enabled', 'set', '1'): return True elif string in ('false', 'no', 'disable', 'disabled', 'unset', '0'): return False else: tracker.print_error('%s: Unknown boolean value: \'%s\'.' % (filename, string)) tracker.failure() return None
import jsonlines import json from nltk.tokenize import sent_tokenize # def preproc(split): # data = [] # with jsonlines.open(f'{split}.txt') as reader: # for obj in reader: # # print(obj.keys()) # # print() # # print(obj['metadata']) # # print("SUMMURY", summury[session_id][f"{obj['metadata']['initial_data_id']}"]) # # print("SPEAKER 1",obj['personas'][0]) # # print("SPEAKER 2",obj['personas'][1]) # # print(obj['metadata']) # # print(obj['init_personas']) # dial = {"id":obj['metadata']['initial_data_id'],"meta":[],"dialogue":[]} # dial["meta"] = {"user":obj['personas'][0],"assistant":obj['personas'][1]} # temp = [] # for d in obj['dialog']: # if d['id'] == "Speaker 1": # temp = [d['text']] # elif d['id'] == "Speaker 2": # if len(temp)==0: # print(obj['metadata']['initial_data_id']) # else: # temp.append(d['text']) # dial['dialogue'].append(temp) # # # print(f"{d['id']}: {d['text']}") # # input() # data.append(dial) # return data # for split in ["valid","test"]: # for session_id in range(2,6): # data = preproc(f"msc/msc_dialogue/session_{session_id}/{split}") # with open(f'../msc/session-{session_id}-{split}.json', 'w') as fp: # json.dump(data, fp, indent=4) # summury_session = json.load(open("msc/msc_dialogue/sessionlevel_summaries_subsample5.json")) # summury = json.load(open("msc/msc_dialogue/summaries_subsample5.json")) def preproc(split): data = [] with jsonlines.open(f'{split}.txt') as reader: for obj in reader: dial = {"id":obj['initial_data_id'],"user_memory":[],"dialogue":[]} temp = [] for d in obj['dialog']: # print(f"{d['id']}: {d['text']}") if d['id'] == "bot_0": temp = [d['text']] if 'persona_text' in d: # print("TLDR: ", d['persona_text']) dial['user_memory'].append([d['persona_text']]) else: # print("TLDR: None") dial['user_memory'].append([]) elif d['id'] == "bot_1": temp.append(d['text']) dial['dialogue'].append(temp) if len(dial["dialogue"]) != len(dial["user_memory"]): temp.append("") dial['dialogue'].append(temp) assert len(dial["dialogue"]) == len(dial["user_memory"]) data.append(dial) return data for split in ["valid","test"]: print(split) for session_id in range(1,5): print(session_id) data = preproc(f"msc/msc_personasummary/session_{session_id}/{split}") with open(f'../msc/parse-session-{session_id}-{split}.json', 'w') as fp: json.dump(data, fp, indent=4)
from java.util import Map from geoscript.util import xml from geoscript.feature.feature import Feature def writeGML(f, ver=2, format=True, bounds=False, xmldecl=False, nsprefix='gsf'): """ Writes a :class:`Feature <geoscript.feature.Feature>` object as GML. *ver* specifies the gml version to encode. Supported versions include 2, 3, and 3.2. *format* specifies whether to format or pretty print the result. *bounds* specifies whether to include feature bounds in the result. *xmldecl* specifies whether to include the XML declaration in the result. *nsprefix* specifies the prefix to be mapped to the namespace :attr:`uri <geoscript.feature.schema.Schema.uri>` for the feature schema. """ el = (xml.gml.uri(ver), "_Feature" if ver < 3.2 else "AbstractFeature") return xml.gml.encode(f._feature, el, ver, format, bounds, xmldecl, {nsprefix: f.schema.uri}) def readGML(input, ver=2): """ Reads a :class:`Feature <geoscript.feature.Feature>` from GML. *input* is the GML to read specified as a str, file, or some other input stream. *ver* specifies the gml version to encode. Supported versions include 2, 3, and 3.2. """ obj = xml.gml.parse(input, ver) if isinstance(obj, Map): # turn map into feature fid = obj.remove('fid') if not fid: fid = obj.remove('id') obj = Feature(dict(obj), fid) return obj
from django.shortcuts import render # Create your views here. from django.http import HttpResponse def index(request): return HttpResponse('This is a bad request. Start with the music route.') def music(request): return HttpResponse('blues') def artist1(request): return HttpResponse('Muddy Waters') def artist2(request): return HttpResponse('Fats Domino') def artist3(request): return HttpResponse('B.B. King')
# Generated by Django 2.2.5 on 2020-02-27 13:39 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('record', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='record', name='item', ), migrations.AddField( model_name='record', name='quantity', field=models.PositiveIntegerField(default=1), ), migrations.AlterField( model_name='record', name='time', field=models.DateTimeField(auto_now_add=True), ), migrations.DeleteModel( name='Item', ), ]
import sys sys.path.append("..") from pyinsights import mlmodels, dataread, sklsetups
from database import db class Naf(db.Model): __tablename__ = "naf" id_naf = db.Column(db.Integer, primary_key=True) code_sous_classe = db.Column(db.String(255)) libelle_sous_classe = db.Column(db.String(255)) code_sous_classe_short = db.Column(db.String(255)) code_classe = db.Column(db.String(255)) libelle_classe = db.Column(db.String(255)) code_classe_short = db.Column(db.String(255)) code_groupe = db.Column(db.String(255)) libelle_groupe = db.Column(db.String(255)) code_groupe_short = db.Column(db.String(255)) code_division = db.Column(db.String(255)) libelle_division = db.Column(db.String(255)) code_section = db.Column(db.String(255)) libelle_section = db.Column(db.String(255)) def __init__(self, code_sous_classe, libelle_sous_classe, code_sous_classe_short, code_classe, libelle_classe, code_classe_short, code_groupe, libelle_groupe, code_groupe_short, code_division, libelle_division, code_section, libelle_section): self.code_sous_classe = code_sous_classe self.libelle_sous_classe = libelle_sous_classe self.code_sous_classe_short = code_sous_classe_short self.code_classe = code_classe self.libelle_classe = libelle_classe self.code_classe_short = code_classe_short self.code_groupe = code_groupe self.libelle_groupe = libelle_groupe self.code_groupe_short = code_groupe_short self.code_division = code_division self.libelle_division = libelle_division self.code_section = code_section self.libelle_section = libelle_section def __repr__(self): return '%s/%s/%s/%s/%s/%s/%s/%s/%s/%s/%s/%s/%s/%s' % (self.code_sous_classe, self.libelle_sous_classe, self.code_sous_classe_short, self.code_classe, self.libelle_classe, self.code_classe_short, self.code_groupe, self.libelle_groupe, self.code_groupe_short, self.code_division, self.libelle_division, self.code_section, self.libelle_section)
# TensorBoxPy3 https://github.com/SMH17/TensorBoxPy3 import tensorflow as tf from train import build_forward import cv2 import argparse import random import json import os def create_meta_graph(args, H): tf.reset_default_graph() x_in = tf.placeholder(tf.float32, name='x_in', shape=[H['image_height'], H['image_width'], 3]) if H['use_rezoom']: pred_boxes, pred_logits, pred_confidences, pred_confs_deltas, pred_boxes_deltas = build_forward(H, tf.expand_dims(x_in, 0), 'test', reuse=None) grid_area = H['grid_height'] * H['grid_width'] pred_confidences = tf.reshape(tf.nn.softmax(tf.reshape(pred_confs_deltas, [grid_area * H['rnn_len'], 2])), [grid_area, H['rnn_len'], 2]) if H['reregress']: pred_boxes = pred_boxes + pred_boxes_deltas else: pred_boxes, pred_logits, pred_confidences = build_forward(H, tf.expand_dims(x_in, 0), 'test', reuse=None) tf.add_to_collection('placeholders', x_in) tf.add_to_collection('vars', pred_boxes) tf.add_to_collection('vars', pred_confidences) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver.save(sess, args.output) tf.train.write_graph(sess.graph.as_graph_def(), '', "{}.pb".format(args.output)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--output', required=True) parser.add_argument('--hypes', required=True) parser.add_argument('--gpu', default=0) args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) with open(args.hypes, 'r') as f: H = json.load(f) create_meta_graph(args, H)
import torch from torch import nn from torch.nn import functional as F class Encoder(nn.Module): def __init__( self, in_channels, channels=(32, 32, 64, 64), n_latent=20, n_hidden=256, size=64 ): super().__init__() self.size = size in_ch = in_channels layers = [] for ch in channels: layers.append(nn.Conv2d(in_ch, ch, 4, stride=2, padding=1)) layers.append(nn.ReLU()) in_ch = ch self.conv = nn.Sequential(*layers) out_size = size // (len(channels) ** 2) self.linear = nn.Sequential( nn.Linear(out_size ** 2 * channels[-1], n_hidden), nn.ReLU(), nn.Linear(n_hidden, n_latent * 2), ) def sample(self, mean, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return mean + std * eps def forward(self, input): if input.shape[2] != self.size: input = F.interpolate( input, size=(self.size, self.size), mode='bilinear', align_corners=False ) out = self.conv(input) out = out.view(out.shape[0], -1) out = self.linear(out) mean, logvar = out.chunk(2, dim=1) return self.sample(mean, logvar), mean, logvar class Decoder(nn.Module): def __init__( self, out_channels, channels=(64, 32, 32), n_latent=20, n_hidden=256, size=64 ): super().__init__() start_size = size // (2 ** (len(channels) + 1)) self.start_size = start_size self.linear = nn.Sequential( nn.Linear(n_latent, n_hidden), nn.ReLU(), nn.Linear(n_hidden, (start_size ** 2) * channels[0]), nn.ReLU(), ) layers = [] in_ch = channels[0] for ch in channels: layers.append(nn.ConvTranspose2d(in_ch, ch, 4, stride=2, padding=1)) layers.append(nn.ReLU()) in_ch = ch layers.append(nn.ConvTranspose2d(in_ch, out_channels, 4, stride=2, padding=1)) self.conv = nn.Sequential(*layers) def forward(self, input): out = self.linear(input) out = out.view(out.shape[0], -1, self.start_size, self.start_size) out = self.conv(out) return out class VAE(nn.Module): def __init__( self, in_channels, enc_channels=(32, 32, 64, 64), dec_channels=(64, 32, 32), n_latent=20, n_hidden=256, size=64, ): super().__init__() self.enc = Encoder(in_channels, enc_channels, n_latent, n_hidden, size) self.dec = Decoder(in_channels, dec_channels, n_latent, n_hidden, size) def forward(self, input, sample=True): latent, mean, logvar = self.enc(input) if not sample: latent = mean out = self.dec(latent) return out, mean, logvar
# Copyright 2015 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ChromeOS family boards.""" from cros.factory.device.boards import linux from cros.factory.device import device_types from cros.factory.utils import type_utils class ChromeOSBoard(linux.LinuxBoard): """Common interface for ChromeOS boards.""" @device_types.DeviceProperty def audio(self): from cros.factory.device.audio import utils as audio_utils return audio_utils.CreateAudioControl( self, controller=audio_utils.CONTROLLERS.ALSA) @device_types.DeviceProperty def bluetooth(self): from cros.factory.device.chromeos import bluetooth return bluetooth.ChromeOSBluetoothManager(self) @device_types.DeviceProperty def camera(self): from cros.factory.device.chromeos import camera return camera.ChromeOSCamera(self) @device_types.DeviceProperty def display(self): from cros.factory.device.chromeos import display return display.ChromeOSDisplay(self) @device_types.DeviceProperty def fan(self): from cros.factory.device import fan return fan.ECToolFanControl(self) @device_types.DeviceProperty def power(self): from cros.factory.device import power return power.ChromeOSPower(self) @device_types.DeviceProperty def wifi(self): from cros.factory.device import wifi return wifi.WiFiChromeOS(self) @device_types.DeviceProperty def vpd(self): from cros.factory.device import vpd return vpd.ChromeOSVitalProductData(self) @type_utils.Overrides def GetStartupMessages(self): res = super(ChromeOSBoard, self).GetStartupMessages() mosys_log = self.CallOutput( ['mosys', 'eventlog', 'list'], stderr=self.STDOUT) if mosys_log: res['mosys_log'] = mosys_log return res
import inspect import decorateme from mandos.model.apis.caching_pubchem_api import CachingPubchemApi from mandos.model.apis.chembl_api import ChemblApi from mandos.model.apis.chembl_scrape_api import ( CachingChemblScrapeApi, ChemblScrapeApi, QueryingChemblScrapeApi, ) from mandos.model.apis.g2p_api import CachingG2pApi, G2pApi from mandos.model.apis.hmdb_api import CachingHmdbApi, HmdbApi, QueryingHmdbApi from mandos.model.apis.pubchem_api import PubchemApi from mandos.model.apis.pubchem_similarity_api import ( CachingPubchemSimilarityApi, QueryingPubchemSimilarityApi, ) from mandos.model.apis.querying_pubchem_api import QueryingPubchemApi from mandos.model.apis.similarity_api import SimilarityApi from mandos.model.utils.setup import logger @decorateme.auto_utils() class Apis: Pubchem: PubchemApi = None Chembl: ChemblApi = None ChemblScrape: ChemblScrapeApi = None G2p: G2pApi = None Hmdb: HmdbApi = None Similarity: SimilarityApi = None @classmethod def set( cls, *, chembl: ChemblApi, pubchem: PubchemApi, g2p: G2pApi, hmdb: HmdbApi, chembl_scrape: ChemblScrapeApi, similarity: SimilarityApi, ) -> None: cls.Chembl = chembl cls.Pubchem = pubchem cls.G2p = g2p cls.Hmdb = hmdb cls.ChemblScrape = chembl_scrape cls.Similarity = similarity logger.debug("Set custom API singletons") cls.describe() @classmethod def set_default( cls, *, pubchem: bool = True, chembl: bool = True, hmdb: bool = True, g2p: bool = True, scrape: bool = True, similarity: bool = True, ) -> None: if chembl: from chembl_webresource_client.new_client import new_client as _Chembl cls.Chembl = ChemblApi.wrap(_Chembl) if pubchem: cls.Pubchem = CachingPubchemApi(QueryingPubchemApi()) if hmdb: cls.Hmdb = CachingHmdbApi(QueryingHmdbApi()) if g2p: cls.G2p = CachingG2pApi() if scrape: cls.ChemblScrape = CachingChemblScrapeApi(QueryingChemblScrapeApi()) if similarity: cls.Similarity = CachingPubchemSimilarityApi(QueryingPubchemSimilarityApi()) logger.debug("Set default singletons") cls.describe() @classmethod def describe(cls) -> None: for v in [ f" {m} = {getattr(cls, m)}" for m in dir(cls) if m[0].isupper() and not inspect.ismethod(m) ]: logger.debug(v) __all__ = ["Apis"]
"""Provide custom gateway for tests changing apicast parameters.""" import pytest from weakget import weakget from testsuite.gateways import gateway from testsuite.gateways.apicast.template import TemplateApicast from testsuite.utils import blame from testsuite.utils import warn_and_skip @pytest.fixture(scope="module", autouse=True) def require_openshift(testconfig): """These tests require openshift available""" if not weakget(testconfig)["openshift"]["servers"]["default"] % False: warn_and_skip("All retry_policy tests skipped due to missing openshift") @pytest.fixture(scope="module") def staging_gateway(request): """Deploy self-managed template based apicast gateway.""" gw = gateway(kind=TemplateApicast, staging=True, name=blame(request, "gw")) request.addfinalizer(gw.destroy) gw.create() return gw
#!/bin/python from . import halt, Settings, interface from time import sleep import random from threading import Thread from .evolution_generations import Generations import datetime import os import waitress import promoterz from version import VERSION def launchWebEvolutionaryInfo(): print("WEBSERVER MODE") webpageTitle = "japonicus evolutionary statistics - v%.2f" % VERSION webApp, webServer = promoterz.webServer.core.build_server(webpageTitle) webServerProcess = Thread( target=waitress.serve, kwargs={ "app": webServer, "listen": "0.0.0.0:8182" } ) webServerProcess.start() return webApp def buildSettingsOptions(optionparser, settingSubsets): settings = Settings.getSettings(SettingsFiles=settingSubsets) # PARSE GENCONF & DATASET COMMANDLINE ARGUMENTS; for settingSubset in settingSubsets: parser = promoterz.metaPromoterz.generateCommandLineArguments( optionparser, settings[settingSubset]) options, args = parser.parse_args() for settingSubset in settingSubsets: settings[settingSubset] =\ promoterz.metaPromoterz.applyCommandLineOptionsToSettings( options, settings[settingSubset] ) return settings, options def loadEvaluationModule(): req = [ "validateSettings", "showStatistics" ] pass class JaponicusSession(): def __init__(self, EvaluationModule, settings, options): # ADDITIONAL MODES; markzero_time = datetime.datetime.now() print() # show title; interface.showTitleDisclaimer(settings['backtest'], VERSION) self.web_server = launchWebEvolutionaryInfo()\ if options.spawn_web else None sleep(1) if not EvaluationModule.validateSettings(settings): exit(1) # --SELECT STRATEGY; if options.random_strategy: Strategy = "" GekkoStrategyFolder = os.listdir(settings['Global']['gekkoPath'] + '/strategies') while Strategy + '.js' not in GekkoStrategyFolder: if Strategy: print( "Strategy %s descripted on settings but not found on strat folder." % Strategy ) Strategy = random.choice(list(settings['strategies'].keys())) print("> %s" % Strategy) elif options.strategy: Strategy = options.strategy elif not options.skeleton: print("No strategy specified! Use --strat or go --help") exit(1) # --LAUNCH GENETIC ALGORITHM; if options.genetic_algorithm: japonicusOptions = { "GenerationMethod": None, "TargetParameters": None } japonicusOptions["GenerationMethod"] =\ 'chromosome' if options.chromosome_mode else 'oldschool' if options.skeleton: EvaluationMode = 'indicator' AllIndicators = Settings.getSettings()['indicators'] TargetParameters = Settings.getSettings()['skeletons'][options.skeleton] for K in AllIndicators.keys(): if type(AllIndicators[K]) != dict: TargetParameters[K] = AllIndicators[K] elif AllIndicators[K]['active']: TargetParameters[K] = AllIndicators[K] TargetParameters[K]['active'] = (0, 1) japonicusOptions["TargetParameters"] = TargetParameters if not TargetParameters: print("Bad configIndicators!") exit(1) else: EvaluationMode = Strategy # READ STRATEGY PARAMETER RANGES FROM TOML; try: TOMLData = promoterz.TOMLutils.preprocessTOMLFile( "strategy_parameters/%s.toml" % Strategy ) except FileNotFoundError: print("Failure to find strategy parameter rules for " + "%s at ./strategy_parameters" % Strategy) gekkoParameterPath = "%s/config/strategies/%s.toml" %\ (settings['Global']['gekkoPath'], Strategy) print("Trying to locate strategy parameters at %s" % gekkoParameterPath) TOMLData = promoterz.TOMLutils.preprocessTOMLFile( gekkoParameterPath) japonicusOptions["TargetParameters"] =\ promoterz.TOMLutils.TOMLToParameters(TOMLData) # RUN ONE EQUAL INSTANCE PER REPEATER NUMBER SETTINGS, # SEQUENTIALLY... for s in range(options.repeater): Generations( EvaluationModule, japonicusOptions, EvaluationMode, settings, options, web=self.web_server ) deltatime = datetime.datetime.now() - markzero_time print("Run took %i seconds." % deltatime.seconds) if options.spawn_web: print('Statistics info server still runs...')
from contextlib import contextmanager try: import _winreg as wr except Exception, e: LOG.error("Can't load win reg to register commands: %s" % e) @contextmanager def closing(root, path, style, value=None): open_key = None try: open_key = wr.OpenKey(root, path, 0, style) yield open_key except: reg = wr.CreateKey(root, path) if value: wr.SetValueEx(reg, None, 0, wr.REG_SZ, value) wr.CloseKey(reg) open_key = wr.OpenKey(root, path, 0, style) yield open_key finally: if open_key is not None: wr.CloseKey(open_key) def register_extension(ext=None, name="Open with python", command="python %1", shift_required=False): """ register_extension allows you to have python do registry editing to add commands to the context menus in Windows Explorer. :param str|None ext: String extension that you want to be affected by this change. None if you want it to affect all. :param str name: User facing display name for this. :param str command: The command that you want to run when the menu item is clicked. %1 is the object that you have selected being passed in. :param bool shift_required: Does this command require shift to be held to show up? :return: True if it succeeded. :rtype: bool """ regPath = ext if ext is None: regPath = "*" with closing(wr.HKEY_CLASSES_ROOT, regPath, wr.KEY_READ, value=ext[1].upper() + ext[2:] + "_pyReg") as key: val = wr.QueryValue(key, None) with closing(wr.HKEY_CLASSES_ROOT, val, wr.KEY_READ) as key: with closing(key, "shell", wr.KEY_READ) as key_shell: with closing(key_shell, name, wr.KEY_READ) as key_title: if shift_required: wr.SetValueEx(reg, "Extended", 0, wr.REG_SZ) with closing(key_title, "command", wr.KEY_SET_VALUE) as key_command: wr.SetValueEx(key_command, None, 0, wr.REG_SZ, command) return True
# -*- coding: utf-8 -*- __author__ ='Charles Keith Brown' __email__ = 'charles.k.brown@gmail.com' __version__ = '0.1.1'
import time import datetime from train_v2 import Train from validation import Validation import parameters as param from build_dataset import BuildDataset from testing import Testing class Main: def __init__(self): # print('Mode: ', param.mode) self.run(mode=param.mode, train_restored_saved_model=param.train_restored_saved_model) #@staticmethod def run(self, mode, train_restored_saved_model): start_time = time.time() print('Mode: ', mode) print('Model_id: ', param.model_id) # building dataset if mode == param.mode_list[1] or mode == param.mode_list[2] or mode == param.mode_list[3] or \ mode == param.mode_list[6]: BuildDataset(mode=param.mode) # Training elif mode == param.mode_list[4]: Train() # Testing elif mode == param.mode_list[5]: Testing(testing_mode='simple') elif mode == param.mode_list[7]: Testing(testing_mode='simple_duc') else: print('Please specify the mode') print('\nTime: {}\t({:.3f}sec)'.format((datetime.timedelta(seconds=time.time() - start_time)), time.time() - start_time)) if __name__ == "__main__": Main()
# -*- coding: utf-8 -*- """ Calculation of the dry deposition velocity of aerosol particles on the surface of a vegetation. In CFD models, the deposition of the aerosol may be included in the concentration equation by an additional term, dc/dt = - LAD ud c, where c is the mass concentration, LAD is one-sided leaf area density, and ud is the deposition velocity as calculated here. This package serves to calculate ud, given the state of the atmosphere, the properties of the vegetation, and the properties of the particles. """ from math import exp, pi, sqrt, log import numpy as np # Constants KB = 1.3806488e-23 # Boltzmann constant LAMBD = 0.066*1e-6 # Mean free path in air GRAV = 9.81 # Gravitational constant def slip_correction_factor(dp): """Slip correction factor for gravitational settling of particle with diameter 'dp'""" return 1. + 2*LAMBD/dp*(1.257 + 0.4*exp(-1.1*dp/(2*LAMBD))) def browndif_coeff(environ, particle): """Coefficient of Brownian diffusion""" T = environ["T"] mua = environ["mu"] dp = particle["d"] Cc = slip_correction_factor(dp) DB = KB*T*Cc/(3*pi*mua*dp) return DB def settling_velocity(environ, particle): """Return settling velocity of the particle in the air.""" rhop = particle["rho"] dp = particle["d"] mua = environ["mu"] Cc = slip_correction_factor(dp) return (rhop*(dp**2)*GRAV*Cc)/(18*mua) class DepVelModel(): """Base class for deposition velocity models""" @classmethod def get_components(cls): """Return list of names of deposition velocity components""" return [] def get(self, comp): """Return value of the specified component""" return getattr(self, comp)() class PetroffModel(DepVelModel): """Vegetation model following (Petroff et al., 2008) for conifer trees and (Petroff et al., 2009) for broadleaves. In both cases, Dirac leaf size distribution is assumed. Parameters: environ: 'mu', 'rho', 'u', 'uf' particle: 'd', 'rho' vegetation: 'de', 'leafType', 'leafDist' """ def __init__(self, environ, particle, vegetation): self.mua = environ["mu"] self.rhoa = environ["rho"] self.nua = self.mua/self.rhoa self.u = environ["u"] self.uf = environ["uf"] self._set_veget_params(vegetation) self.dp = particle["d"] self.rhop = particle["rho"] # Schmidt number self.Sc = self.nua/browndif_coeff(environ, particle) # Settling velocity self.us = settling_velocity(environ, particle) @classmethod def get_components(cls): return ["total", "brownian_diffusion", "sedimentation", "interception", "impaction", "turbulent_impaction"] def _set_veget_params(self, vegetation): self.de = vegetation["de"] self.leaf_type = vegetation["leafType"] leaf_dist = vegetation["leafDist"] dist_needle = {"horizontal": (2./pi**2, 1./pi), "plagiophile": (0.27, 0.22), "vertical": (1./pi, 0.), "uniform": (0.27, 2./pi**2)} dist_broadleaf = {"horizontal": (0., 0.5), "plagiophile": (0.216, 0.340), "vertical": (1./pi, 0.), "uniform": (2/pi**2, 1./pi)} if self.leaf_type == "needle": self.kx, self.kz = dist_needle[leaf_dist] self.Cb = 0.467 self.beta = 0.6 elif self.leaf_type == "broadleaf": self.kx, self.kz = dist_broadleaf[leaf_dist] self.Cb = 0.664 self.beta = 0.47 else: raise ValueError("Unknown leafType %s" % self.leaf_type) def brownian_diffusion(self): """Brownian diffusion""" Re = self.u*self.de/self.nua # See the article for constants nb = 0.5 return 2 * self.u*self.Cb*(self.Sc**(-2./3.))*(Re**(nb - 1)) def sedimentation(self): """Sedimentation""" return 2 * self.kz*self.us def interception(self): """Interception""" if self.leaf_type == "needle": return 2 * (2*self.u*self.kx*(self.dp/self.de)) elif self.leaf_type == "broadleaf": return 2 * (self.u*self.kx/2.0*(self.dp/self.de) *(2.0 + log(4.0*self.de/self.dp))) else: raise ValueError("Unknown leafType %s" % self.leaf_type) def impaction(self): """Impaction""" Cc = slip_correction_factor(self.dp) tauP = self.rhop*Cc*(self.dp**2)/(18.0*self.mua) St = self.u*tauP/self.de IIm = (St/(St + self.beta))**2 vIm = self.u*self.kx*IIm return 2 * vIm def turbulent_impaction(self): """Turbulent impaction""" kIT1 = 3.5e-4 kIT2 = 0.18 Cc = slip_correction_factor(self.dp) tauP = self.rhop*Cc*(self.dp**2)/(18.0*self.mua) tauPPlus = tauP * self.uf**2 / self.nua if tauPPlus <= 20: return 2 * self.uf * kIT1 * tauPPlus**2 else: return 2 * self.uf * kIT2 def total(self): """Total deposition velocity""" return (self.brownian_diffusion() + self.sedimentation() + self.interception() + self.impaction() + self.turbulent_impaction()) class ApprxPetroffModel(DepVelModel): """Approximated Petroff model described in (Sip, 2016). Parameters: environ: 'mu', 'rho', 'u', 'uf' particle: 'd', 'rho' vegetation: 'de', 'leafType', 'leafDist' """ def __init__(self, environ, particle, vegetation): self.mua = environ["mu"] self.rhoa = environ["rho"] self.nua = self.mua/self.rhoa self.u = environ["u"] self.uf = environ["uf"] self.set_veget_params(vegetation) self.dp = particle["d"] self.rhop = particle["rho"] # Settling velocity self.us = settling_velocity(environ, particle) self.environ = environ self.particle = particle sti = np.array([1e-2, 1e-1, 1e0, 1e1, 1e2]) ei = (sti/(sti + self.beta))**2 self.iim_fun = lambda x: np.interp(x, sti, ei, left=0.0, right=1.0) @classmethod def get_components(cls): return ["total", "brownian_diffusion", "sedimentation", "interception", "impaction", "turbulent_impaction"] def set_veget_params(self, vegetation): self.de = vegetation["de"] self.leaf_type = vegetation["leafType"] leaf_dist = vegetation["leafDist"] dist_needle = {"horizontal": (2./pi**2, 1./pi), "plagiophile": (0.27, 0.22), "vertical": (1./pi, 0.), "uniform": (0.27, 2./pi**2)} dist_broadleaf = {"horizontal": (0., 0.5), "plagiophile": (0.216, 0.340), "vertical": (1./pi, 0.), "uniform": (2/pi**2, 1./pi)} if self.leaf_type == "needle": self.kx, self.kz = dist_needle[leaf_dist] self.Cb = 0.467 self.beta = 0.6 elif self.leaf_type == "broadleaf": self.kx, self.kz = dist_broadleaf[leaf_dist] self.Cb = 0.664 self.beta = 0.47 else: raise ValueError("Unknown leafType %s" % self.leaf_type) def brownian_diffusion(self): """Brownian diffusion""" Re = self.u*self.de/self.nua nb = 0.5 Cc = 3.34*LAMBD/self.dp DB = (KB*self.environ["T"]*Cc)/(3*pi*self.mua*self.dp) Sc = self.nua/DB return 2*self.u*self.Cb*(Sc**(-2./3.))*(Re**(nb - 1)) def sedimentation(self): """Sedimentation""" return 2*self.kz*self.us def interception(self): """Interception""" if self.leaf_type == "needle": return 2*(2*self.u*self.kx*(self.dp/self.de)) elif self.leaf_type == "broadleaf": a = 4.57 b = -0.078 return 2*(self.u*self.kx/2.0*(self.dp/self.de) *(2.0 + log(4.0*self.de) + a*self.dp**b)) else: raise ValueError("Unknown leafType %s" % self.leaf_type) def impaction(self): """Impaction""" Cc = 1.0 tauP = self.rhop*Cc*(self.dp**2)/(18.0*self.mua) St = self.u*tauP/self.de IIm = self.iim_fun(St) vIm = self.u*self.kx*IIm return 2*vIm def turbulent_impaction(self): """Turbulent impaction""" kIT1 = 3.5e-4 kIT2 = 0.18 Cc = slip_correction_factor(self.dp) tauP = self.rhop*Cc*(self.dp**2)/(18.0*self.mua) tauPPlus = tauP * self.uf**2 / self.nua if tauPPlus <= 20: return 2 * self.uf * kIT1 * tauPPlus**2 else: return 2 * self.uf * kIT2 def total(self): """Total deposition velocity""" return (self.brownian_diffusion() + self.sedimentation() + self.interception() + self.impaction() + self.turbulent_impaction()) class RaupachModel(DepVelModel): """Deposition velocity model used in (Raupach et al, 2001). Incorporates only impaction and Brownian diffusion. Parameters: environ: 'mu', 'rho', 'u' particle: 'd', 'rho' vegetation: 'de', 'frontalToTotal' """ def __init__(self, environ, particle, vegetation): self.mua = environ["mu"] self.rhoa = environ["rho"] self.nua = self.mua/self.rhoa self.u = environ["u"] self.de = vegetation["de"] self.frontal_to_total = vegetation["frontalToTotal"] self.dp = particle["d"] self.rhop = particle["rho"] # Schmidt number self.Sc = self.nua/browndif_coeff(environ, particle) @classmethod def get_components(cls): return ['brownian_diffusion', 'impaction', 'total'] def brownian_diffusion(self): """Brownian diffusion""" Cpol = 1.32/2 # Polhausen coeffient Re = self.u*self.de/self.nua gpb = 2*self.u*Cpol*(Re**-0.5)*(self.Sc**(-2./3.)) return gpb def impaction(self): """Impaction""" St = ((self.dp**2)*self.rhop*self.u)/(18*self.mua*self.de) p = 0.8 q = 2.0 E = (St/(St + p))**q return 2*self.u*self.frontal_to_total*E def total(self): """Total deposition velocity""" return self.brownian_diffusion() + self.impaction() class BruseModel(DepVelModel): """Vegetation model as described in (Bruse, 2007). Incorporates sedimentation, impaction and Brownian diffusion.""" def __init__(self, environ, particle, vegetation): self.mua = environ["mu"] self.rhoa = environ["rho"] self.nua = self.mua/self.rhoa self.u = environ["u"] self.set_veget_params(vegetation) self.dp = particle["d"] self.rhop = particle["rho"] # Schmidt number self.Sc = self.nua/browndif_coeff(environ, particle) # Settling velocity self.us = settling_velocity(environ, particle) self.ra = self.A*sqrt(self.de/max(self.u, 0.05)) self.ustar = sqrt(self.u/self.ra) def set_veget_params(self, vegetation): self.de = vegetation["de"] if vegetation["leafType"] == "broadleaf": self.A = 87.0 else: self.A = 200.0 @classmethod def get_components(cls): return ["total", "brownian_diffusion", "sedimentation", "impaction"] def sedimentation(self): """Sedimentation""" return self.us def impaction(self): """Impaction""" St = (self.us*(self.ustar**2))/(GRAV*self.nua) return self.ustar*(10.0**(-3.0/St)) def brownian_diffusion(self): """Brownian diffusion""" return self.ustar*(self.Sc**(-2.0/3.0)) def total(self): """Total deposition velocity""" rb = 1.0/(self.brownian_diffusion() + self.impaction()) return 1.0/(self.ra + rb + self.ra*rb*self.us) + self.us # Available models MODELS = { "Petroff": PetroffModel, "ApprxPetroff": ApprxPetroffModel, "Raupach": RaupachModel, "Bruse": BruseModel } def calc(model, environ, particle, vegetation, component="total"): """Calculate deposition using given model. All models are initialized by three dicts, describing the atmospheric environment, particle, and vegetation. Used nomenclature is given below. All quantities are in SI units. Not all parameter are used in all models, check the documentation of each model for the necessary ones. Args: environ (dict): Description of the atmospheric environment. Dict may include: 'mu': Dynamic viscosity. 'rho': Air density. 'T': Air temperature. 'u': Wind speed. 'uf': Friction velocity. particle (dict): Description of the particle. Dict may include: 'd': Diameter of the particle. 'rho': Density of the particle. vegetation (dict): Description of the vegetation. Dict may include: 'de': Vegetation element (leaf, needle) diameter. 'leafType': Either 'needle' or 'broadleaf' 'leafDist': Distribution of the leaf orientation. One of 'horizontal', 'plagiophile', 'vertical', 'uniform'. 'frontalToTotal': Fraction of frontal area to total (two sided) leaf area. component (str): Component of the deposition velocity associated with a physical process to get, or 'total' for the total deposition velocity. For each model, :py:meth:`DepVelModel.get_components()` returns list of the components ('total' included). """ if model not in MODELS: raise ValueError("Model " + model + " not implemented.") return MODELS[model](environ, particle, vegetation).get(component)
import time x = 0 while x <= 10: print x x+=1 time.sleep(0.5) print('I will trow an error now, lets see if you can catch it!') i = 12 print('err '+i)
import io import sys import wordcloud import numpy as np from matplotlib import pyplot as plt def custom_word_clouds(file_contents): punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~''' # feel free to edit this list uninteresting_words = ["the", "a", "to", "if", "is", "it", "of", "and", "or", "an", "as", "i", "me", "my", "thus", \ "we", "our", "ours", "you", "your", "yours", "he", "she", "him", "his", "her", "hers", "its", "they", "them", \ "their", "what", "which", "who", "whom", "this", "that", "am", "are", "was", "were", "be", "been", "being", \ "have", "has", "had", "do", "does", "did", "but", "at", "by", "with", "from", "here", "when", "where", "how", \ "all", "any", "both", "each", "few", "more", "some", "such", "no", "nor", "too", "very", "can", "will", "just"] frequencies = {} seperate = file_contents.split() for word in seperate: # disregard the words that are in our uninteresting_words list if word in uninteresting_words: pass else: for letter in word: # remove/replace punctuations if letter in punctuations: word.replace(letter,'') if word not in frequencies.keys(): frequencies[word] = 1 else: frequencies[word] += 1 cloud = wordcloud.WordCloud() cloud.generate_from_frequencies(frequencies) return cloud.to_array() # location of our txt file file_contents = open('sample.txt').read() # creating the image myimage = custom_word_clouds(file_contents) plt.imshow(np.real(myimage), interpolation = 'nearest') plt.axis('off') plt.show()
import numpy as np import json A = np.load("basic_features.npy") b = np.load("basic_param.npy") print(A) print(b) data = {"features": A.tolist(), "param": b.tolist()} with open("simple_rep.json", "w") as outf: json.dump(data, outf)
import unittest from time import sleep from core.client import DealTapAut from pages.homepage import Home from pages.login import Login class TestLogin(unittest.TestCase): def setUp(self): self.dealtap_aut = DealTapAut() self.dealtap_aut.launch() self.home_page = Home() self.home_page.click_login_from_homepage() def tearDown(self): self.dealtap_aut = DealTapAut() self.dealtap_aut.close_browser() def test_invalid_email_as_username(self): login_page = Login() login_page.set_login_page_username('john.doe') login_page.set_login_page_password('abc123') actual_invalid_email_text = login_page.get_invalid_email_text() expected_invalid_email_text = "Email is invalid." self.assertEqual(actual_invalid_email_text, expected_invalid_email_text) def test_failed_login_attempt(self): login_page = Login() login_page.set_login_page_username('john.doe@test.ca') login_page.set_login_page_password('abc123') sleep(3) login_page.click_on_login_button() actual_login_failed_text = login_page.get_login_failed_text() expected_login_failed_text = "Login failed. Incorrect username or password." login_page.click_on_login_failed_okay_button() self.assertEqual(actual_login_failed_text, expected_login_failed_text) def test_successful_login_attempt(self): login_page = Login() login_page.set_login_page_username('mazlanislam@outlook.com') login_page.set_login_page_password('Password1234') sleep(3) login_page.click_on_login_button() actual_login_passed_text = login_page.get_login_passed_text() expected_login_passed_text = "Dashboard - Home" self.assertEqual(actual_login_passed_text, expected_login_passed_text) if __name__ == '__main__': unittest.main()
#!/usr/bin/env python3 '''A testing script to evaluate action flows without accidentally running them at startup.''' import sys import time import board import busio from random import randint import adafruit_tca9548a import adafruit_tcs34725 import adafruit_hcsr04 from adafruit_bus_device.i2c_device import I2CDevice import modules.motor_smbus as motor_lib from modules.robot import Robot import modules.laser as laser_lib if __name__ == "__main__": with busio.I2C(board.SCL, board.SDA) as bus: robot = Robot(bus) start_ts = time.time() LOST = False while time.time() < start_ts + 30.0: try: if not LOST: robot.leave_start() #leaves you at intersection robot.do_motor_burst(motor_lib.FORWARD_CMD) #enter intersection robot.do_align() #aligns to far side robot.do_turn(angle=motor_lib.RIGHT_90_DIR) robot.do_motor_burst(motor_lib.TRAN_R_CMD) robot.check() robot.fire(cmd=laser_lib.LASER_FIRE_CMD) robot.do_align() robot.do_motor_burst(motor_lib.BACKWARD_CMD) robot.do_turn(angle=motor_lib.RIGHT_180_DIR) robot.do_fwd_deflect_edge(stop_purple=0) robot.do_motor_burst(motor_lib.BACKWARD_CMD) # robot.do_align() # robot.do_motor_burst(motor_lib.BACKWARD_CMD) robot.do_turn(angle=motor_lib.RIGHT_90_DIR) robot.do_fwd_deflect_edge(stop_purple=0) robot.do_motor_burst(motor_lib.BACKWARD_CMD) # robot.do_align() # robot.do_motor_burst(motor_lib.BACKWARD_CMD) robot.check() robot.fire(cmd=laser_lib.LASER_FIRE_CMD) robot.do_motor_burst(motor_lib.BACKWARD_CMD) robot.do_turn(angle=motor_lib.RIGHT_90_DIR) robot.check() robot.fire(cmd=laser_lib.LASER_FIRE_CMD) robot.do_motor_burst(motor_lib.BACKWARD_CMD) robot.do_turn(angle=motor_lib.LEFT_180_DIR) robot.do_align() robot.do_motor_burst(motor_lib.BACKWARD_CMD) robot.do_turn(angle=motor_lib.LEFT_90_DIR) robot.do_fwd_deflect_edge(stop_purple=0) robot.do_motor_burst(motor_lib.BACKWARD_CMD) robot.do_turn(angle=motor_lib.LEFT_90_DIR) robot.check() robot.fire(cmd=laser_lib.LASER_FIRE_CMD) robot.do_motor_burst(motor_lib.BACKWARD_CMD) robot.do_turn(angle=motor_lib.LEFT_180_DIR) robot.do_align() robot.do_motor_burst(motor_lib.BACKWARD_CMD) robot.do_turn(angle=motor_lib.RIGHT_90_DIR) robot.do_fwd_deflect_edge(stop_purple=1) robot.do_motor_burst(motor_lib.FORWARD_CMD) robot.do_align() robot.do_turn(angle=motor_lib.RIGHT_90_DIR) robot.do_fwd_deflect_edge(stop_purple=1) robot.do_motor_burst(motor_lib.FORWARD_CMD) robot.do_fwd_deflect_edge(stop_purple=1) robot.do_motor_burst(motor_lib.FORWARD_CMD) robot.do_fwd_deflect_edge(stop_purple=1) robot.do_motor_burst(motor_lib.BACKWARD_CMD) robot.do_turn(angle=motor_lib.LEFT_90_DIR) robot.do_fwd_deflect_edge(stop_purple=0) else: choice = randint(0,5); if choice == 0: time.sleep(0.5) elif choice == 1: robot.do_align_check(timeout=1.0) robot.do_motor_burst(motor_lib.BACKWARD_CMD) elif choice == 2: robot.do_turn(angle=motor_lib.RIGHT_90_DIR) elif choice == 3: robot.follow(timeout=5.0) robot.fire(cmd=laser_lib.LASER_FIRE_CMD) except KeyboardInterrupt: print('!Interrupt') break except IOError: print('!IOerror') LOST = True robot.stop()
from datetime import datetime import json def getPersonal(date): personal = [] with open('./lib/data/events.json', 'r') as f: file = json.load(f) for key in file['events'].keys(): if file['events'][key]['repeat'] is not None: if type(file['events'][key]['repeat']) == dict: rep = checkRepeat(date, key, cus=file['events'][key]['repeat']) else: rep = checkRepeat(date, key, reptype=file['events'][key]['repeat']) if rep == True: personal.append(file['events'][key]['name']) if key == str(date): personal.append(file['events'][key]['name']) return list(set(personal)) def checkRepeat(curr, eve, reptype=None, cus=None): date1 = datetime.strptime(curr, "%Y-%m-%d") date2 = datetime.strptime(eve, "%Y-%m-%d") if reptype: if reptype.lower() == 'day': if date1 < date2: return False else: return True elif reptype.lower() == 'week': if date1 < date2: return False else: if (date1 - date2).days % 7 == 0: return True elif reptype.lower() == 'month': if date1 < date2: return False elif date1.day == date2.day: try: return True except ValueError: return False elif reptype.lower() == 'year': if date1 < date2: return False elif date1.strftime('%m-%d') == date2.strftime('%m-%d'): try: return True except ValueError: return False elif cus: if cus['end'] is not None and date1 > datetime.strptime(cus['end'], "%Y-%m-%d"): return False if cus['every'].lower() == "week": if int((date1 - date2).days // 7) % int(cus['num']) == 0: if cus['days'] is not None and date1.strftime('%A') in cus['days']: return True else: return True else: return False if cus['every'].lower() == 'year': if date1 < date2: return False elif date1.year - date2.year == int(cus['num']) and date1.strftime('%m-%d') == date2.strftime('%m-%d'): return True if cus['every'].lower() == 'day': if int(date1.day) % int(cus['num']) == 0: return True else: return False if cus['every'].lower() == 'month': if date1.day == date2.day and (date1.month - date2.month) % int(cus['num']) == 0: return True else: return False
import argparse import json import sys import os import sh from sh import docker parentdir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) os.sys.path.insert(0, parentdir) import time # import multiprocessing def reset(package: str): container_name = package + "_build" image_name = package + "_image" docker.rm("-f", container_name, _ok_code=[0, 1]) docker.rmi(image_name, _ok_code=[0, 1]) def run(package: str, configuration_dir: str, binary_name: str, qemu: bool, minimize: bool, timeout: float, fuzz_duration: float): if os.path.exists(configuration_dir): print("Skipping {0}. Directory already exists".format(configuration_dir)) return reset(package) print("Starting qemu={0},minimize={1},Fuzzing timeout={2}".format(qemu, minimize, timeout)) start = time.time() container_name = package + "_build" # +"_"+str(uuid.uuid4())[:8] image_name = package + "_image" # +"_"+str(uuid.uuid4())[:8] timecommand = sh.Command("time") # type: sh.Command docker_args = ["--name", container_name, "--entrypoint", "python", "pacmanfuzzer", "/inputinferer/configfinder/builder_wrapper.py", "-p", package] if qemu: docker_args.append("-Q") with timecommand(_with=True) as timeprocess: print("Building") build_process = docker.run(docker_args, _ok_code=[0, 1, 2], _out=sys.stdout, _err=sys.stderr) # type: sh.RunningCommand if not qemu and build_process.exit_code == 2: print("WITHOUT QEMU: Failed") return with timecommand(_with=True): docker.commit([container_name, image_name], _out=sys.stdout, _err=sys.stderr) docker_args = ["--rm", "--cap-add=SYS_PTRACE", "-v", configuration_dir + ":/results", "--entrypoint", "python", image_name, "/inputinferer/configfinder/config_finder_for_pacman_package.py", "-p", package, "-v", "/results/"] if qemu: docker_args.append("-Q") with timecommand(_with=True): print("Finding the input vector") input_process = docker.run(docker_args, _out=sys.stdout, _err=sys.stderr) print(input_process.cmd) with open(os.path.join(configuration_dir, package + "/" + binary_name + ".json")) as binary_name_fp: config_dict = json.load(binary_name_fp)[0] seeds = config_dict["file_type"] parameter = config_dict["parameter"] binary_path = config_dict["binary_path"] if not os.path.exists(os.path.join(configuration_dir, package + "/" + binary_name)): os.mkdir(os.path.join(configuration_dir, package + "/" + binary_name)) if minimize: docker_args = ["--rm", "--cap-add=SYS_PTRACE", "-v", configuration_dir + ":/results", "--entrypoint", "python", image_name, "/inputinferer/configfinder/controller.py", "minimize", "-p", package, "-v", "/results", "-s", seeds, "--parameter=" + parameter, "-b", binary_path, "-afile", binary_name + ".afl_config"] if qemu: docker_args.append("-Q") with timecommand(_with=True): print("Minimizing") docker.run(docker_args, _out=sys.stdout, _err=sys.stderr) with open(os.path.join(configuration_dir, package + "/" + binary_name + ".afl_config")) as afl_config_fp: seeds = json.load(afl_config_fp)["min_seeds_dir"] docker_args = ["--rm", "--cap-add=SYS_PTRACE", "-v", configuration_dir + ":/results", "--entrypoint", "python", image_name, "/inputinferer/configfinder/controller.py", "evalfuzz"] if fuzz_duration: docker_args += ["-ft", fuzz_duration] if timeout: docker_args += ["-t", timeout] docker_args += ["-p", package, "-v", "/results", "-s", seeds, "--parameter=" + parameter, "-b", binary_path, "-afile", binary_name + ".afl_config"] if qemu: docker_args.append("-Q") with timecommand(_with=True): print("Fuzzing") docker.run(docker_args, _out=sys.stdout, _err=sys.stderr) print("Done") end = time.time() print("Time elapsed: ", str(end - start)) def main(package: str, configuration_dir: str, binary_name: str, timeout: float, fuzz_duration: float): # p = mp.Pool(mp.cpu_count()-2) # a1 = p.map_async(lambda x: run(package,x,binary_name,timeout=timeout,qemu=False,minimize=False),[os.path.join(os.getcwd(), configuration_dir + "/" + package + "noqemu/" + "run" + str(i)) for i in range(10)]) # a2 = p.map_async(lambda x: run(package, x, binary_name, timeout=timeout, qemu=False, minimize=True),[os.path.join(os.getcwd(), configuration_dir + "/" + package + "noqemuminimize/" + "run" + str(i)) for i in range(10)]) # a3 = p.map_async(lambda x: run(package, x, binary_name, timeout=timeout, qemu=True, minimize=False),[os.path.join(os.getcwd(), configuration_dir + "/" + package + "qemu/" + "run" + str(i)) for i in range(10)]) # a4 = p.map_async(lambda x: run(package, x, binary_name, timeout=timeout, qemu=True, minimize=True),[os.path.join(os.getcwd(), configuration_dir + "/" + package + "qemuminimize/" + "run" + str(i)) for i in range(10)]) # a1.get() # a2.get() # a3.get() # a4.get() for i in range(10): run(package, os.path.join(os.getcwd(), configuration_dir + "/" + package + "noqemu/" + "run" + str(i)), binary_name, timeout=timeout, qemu=False, minimize=False, fuzz_duration=fuzz_duration) run(package, os.path.join(os.getcwd(), configuration_dir + "/" + package + "noqemuminimize/" + "run" + str(i)), binary_name, timeout=timeout, qemu=False, minimize=True, fuzz_duration=fuzz_duration) run(package, os.path.join(os.getcwd(), configuration_dir + "/" + package + "qemu/" + "run" + str(i)), binary_name, timeout=timeout, qemu=True, minimize=False, fuzz_duration=fuzz_duration) run(package, os.path.join(os.getcwd(), configuration_dir + "/" + package + "qemuminimize/" + "run" + str(i)), binary_name, timeout=timeout, qemu=True, minimize=True, fuzz_duration=fuzz_duration) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Examine a package.') parser.add_argument("-p", "--package", required=True, type=str, help="The package to be examined. Must be an apt package.") parser.add_argument("-cd", "--configuration_dir", required=True, type=str, help="Where to store the results?") parser.add_argument("-ft", "--fuzzer_timeout", required=False, type=float, help="The timeout for afl (the whole fuzzer process)", default=None) # Default timeout: None ( take the one from config) parser.add_argument("-t", "--timeout", required=False, type=float, help="The timeout for afl (per run)", default=None) # Default timeout: None ( take the one from config) parser.add_argument("-b", "--binary_path", required=True, type=str, help="The name of ther binary.") # Either fuzz projects or binaries arguments = parser.parse_args() main(arguments.package, arguments.configuration_dir, arguments.binary_path, timeout=arguments.timeout, fuzz_duration=arguments.fuzzer_timeout)
import logging from flask import jsonify, request, make_response, abort from app import app from app.errors import MyError import app.utils_routes as utils @app.errorhandler(400) def not_found(error): return make_response( jsonify({'error': 'Bad request, sosi hui, hz pochemu'}), 400) @app.errorhandler(404) def not_found(error): return make_response(jsonify({'error': 'Not found this url'}), 404) type_request = { 0: utils.register, 1: utils.login, 2: utils.create_room, 3: utils.change_room, 4: utils.get_user_rooms, 5: utils.send_request_to_room, 6: utils.turn_off_alarm, 7: utils.search_rooms, 8: utils.check_alarm, 9: utils.is_request_in_room, 10: utils.get_room, } @app.route('/alarm_api', methods=['POST']) def alarm_api(): try: client_request = request.get_json() if isinstance(client_request, dict): ans = type_request[client_request['requestType']](client_request) ans['requestType'] = client_request['requestType'] return jsonify(ans) except MyError as e: return jsonify({ 'error': str(e), 'for egor': 'проверь название поля' }) except Exception as e: logging.INFO(e) abort(400) @app.route('/') def about(): return 'Api by MBkkt for Alarm by alamasm'
''' Mapping objects for translating between internal and external representations. ''' class FieldException(Exception): pass class EncoderException(Exception): pass class DecoderException(Exception): pass class FieldMap(object): name = None field_name = None value = None def __init__(self, name, field_name=None, value=None): self.remote_name = name self.value = value self.field_name def __get__(self, instance, owner): return self.value def __set__(self, instance, value): self.value = value class Encoder(object): def encode(self, instance): ''' generate remote representation from local instance ''' raise EncoderException("Not implemented!") class Decoder(object): def decode(self, instance): ''' generate local representation from remote instance ''' raise DecoderException("Not implemented!") class TransformBase(Encoder, Decoder): ''' Base class for transforming objects between local representation and remote. The naming convention is to "decode" remote representations into local and "encode" local representations into remote. ''' def read(self, instance): ''' Convenience wrapper for decode ''' return self.decode(instance) def write(self, instance): ''' Convenience wrapper for encode ''' return self.encode(instance) def get_value(self, field, instance): ''' Returns dict key value or class instance field value ''' class ModelTransform(TransformBase): ''' Extend this class to implement transforms between Django model instances and remote representation . ''' model = None uri = None def __init__(self, model, uri=None): self.model = model self.uri = uri def get_field_value(field, instance, default=None): ''' Returns dict key value or class instance field value This is effectively a convenience wrapper to check whether instance is a dict or object to determine whether to use dict.get or getattr ''' if not field: raise FieldException('None not allowed for field name') try: if isinstance(instance, dict): value = instance.get(field, default) if default else instance.get(field) elif isinstance(instance, object): value = getattr(instance, field,default) if default else getattr(instance,field) except Exception, e: raise FieldException('Instance has no ield %s' % field, e) return value
class Solution: def expand(self, s, i): left = i // 2 - (i % 2 == 0) right = i // 2 + 1 while(left >= 0 and right < len(s) and s[left] == s[right]): left -= 1 right += 1 return right - left - 1 def get_p(self, s, i, r): pivot = i // 2 return s[pivot - r + (i % 2 == 1): pivot + r + 1] def longestPalindrome(self, s): n = 2 * len(s) - 1 ls = [0] * n for i in range(n): ls[i] = self.expand(s, i) i_max = ls.index(max(ls)) r = ls[i_max] // 2 return self.get_p(s, i_max, r)
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: MIT-0 '''An example of handling errors with s3 functions. Disclaimer: this is only created to demonstrate unit testing''' import boto3 import os import json # configure aws authentication BUCKET_NAME = os.environ['S3_BUCKET'] SSM_S3_ACCESS_PARAM = os.environ['S3_ACCESS_PARAM'] SSM_S3_SECRET_PARAM = os.environ['S3_SECRET_PARAM'] # get s3 credentials from ssm ssm_client = boto3.client('ssm') ACCESS_KEY = ssm_client.get_parameter(Name=SSM_S3_ACCESS_PARAM, WithDecryption=True)['Parameter']['Value'] SECRET_KEY = ssm_client.get_parameter(Name=SSM_S3_SECRET_PARAM, WithDecryption=True)['Parameter']['Value'] # NOTE: do not hardcode these values s3_client = boto3.client('s3', aws_access_key_id=ACCESS_KEY, aws_secret_access_key=SECRET_KEY) def my_put_object(key, body): # encodes the body and puts it in the bucket body = body.encode('utf-8') s3_client.put_object(Bucket=BUCKET_NAME, Key=key, Body=body) def my_get_object(key): # return body of object in s3. return false if exception raised. try: response = s3_client.get_object(Bucket=BUCKET_NAME, Key=key) body = json.loads(response['Body'].read()) except Exception as e: print(e) return False return body def my_list_objects_v2(): # return list of objects in s3. return false if exception raised. try: response = s3_client.list_objects_v2(Bucket=BUCKET_NAME) except Exception as e: print(e) return False # if there is nothing in the bucket, raise an exception if 'Contents' not in response: raise Exception('Bucket empty') return response['Contents']
from flask import Flask, render_template, Response import cv2 import eyesight import eyesight.services as services def construct_eyesight_pipeline(): # First, get camera camera = services.PiCamera() # camera = services.VideoFileReader() # Define services detector = services.ObjectDetector(camera) segmentator = services.SemanticSegmentator(camera) tracker = services.OpticalFlowLucasKanade(camera) contour_extrapolator = services.SegmentationExtrapolator( segmentator=segmentator, tracker=tracker, orig_size=(640, 480)) # Output services composer = services.DetectronDraw( image_stream=camera, # detector=detector, # segmentator=segmentator, tracker=tracker, contours=contour_extrapolator, ) return services.PerformanceBar(composer) # Flask App app = Flask(__name__) # Define and start eyesight pipeline service = construct_eyesight_pipeline() manager = eyesight.ServiceManager(service) manager.start() @app.route('/') def index(): """Video streaming home page.""" return render_template('index.html') def gen(camera): """Video streaming generator function.""" while True: frame = cv2.cvtColor(camera.query()[1], cv2.COLOR_RGB2BGR) frame = cv2.imencode('.jpg', frame)[1].tobytes() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') @app.route('/video_feed') def video_feed(): """Video streaming route. Put this in the src attribute of an img tag.""" return Response(gen(service), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == '__main__': app.run(host='0.0.0.0', threaded=True)
# Copyright 2021 Matt Chaput and Marcos Pontes. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY MATT CHAPUT ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO # EVENT SHALL MATT CHAPUT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # The views and conclusions contained in the software and documentation are # those of the authors and should not be interpreted as representing official # policies, either expressed or implied, of Matt Chaput. """ This module contains classes for scoring (and sorting) search results. author: matt chaput and marcos pontes """ from __future__ import division from collections import defaultdict from math import log, pi, sqrt from functools import lru_cache from typing import Union import whoosh.query from whoosh.compat import iteritems from whoosh.minterm import exist_minterm, get_minterm, get_minterm_match from whoosh.weighting_schema import IDF, TF # Base classes class WeightingModel(object): """Abstract base class for scoring models. A WeightingModel object provides a method, ``scorer``, which returns an instance of :class:`whoosh.scoring.Scorer`. Basically, WeightingModel objects store the configuration information for the model (for example, the values of B and K1 in the BM25F model), and then creates a scorer instance based on additional run-time information (the searcher, the fieldname, and term text) to do the actual scoring. """ use_final = False DOC_FREQUENCY_CACHE = 100 def idf(self, searcher, fieldname, text, idf_schema: IDF = IDF.default): """Returns the inverse document frequency of the given term. """ parent = searcher.get_parent() return idf_schema(parent, fieldname, text) @lru_cache(maxsize=DOC_FREQUENCY_CACHE) def tf(self, searcher, fieldname, docnum, tf_schema: TF = TF.frequency): """Returns the document frequencies of the given (doc, term) pair. """ all_tf = {} matcher = searcher.vector_as("weight", docnum, fieldname) for term, freq in matcher: max_weight = searcher.term_info(fieldname, term).max_weight() all_tf[term] = tf_schema(freq, max_weight) return all_tf def scorer(self, searcher, fieldname, text, qf=1, query_context=None): """Returns an instance of :class:`whoosh.scoring.Scorer` configured for the given searcher, fieldname, and term text. """ raise NotImplementedError(self.__class__.__name__) def final(self, searcher, docnum, score): """Returns a final score for each document. You can use this method in subclasses to apply document-level adjustments to the score, for example using the value of stored field to influence the score (although that would be slow). WeightingModel sub-classes that use ``final()`` should have the attribute ``use_final`` set to ``True``. :param searcher: :class:`whoosh.searching.Searcher` for the index. :param docnum: the doc number of the document being scored. :param score: the document's accumulated term score. :rtype: float """ return score class BaseScorer(object): """Base class for "scorer" implementations. A scorer provides a method for scoring a document, and sometimes methods for rating the "quality" of a document and a matcher's current "block", to implement quality-based optimizations. Scorer objects are created by WeightingModel objects. Basically, WeightingModel objects store the configuration information for the model (for example, the values of B and K1 in the BM25F model), and then creates a scorer instance. """ def supports_block_quality(self): """Returns True if this class supports quality optimizations. """ return False def score(self, matcher): """Returns a score for the current document of the matcher. """ raise NotImplementedError(self.__class__.__name__) def max_quality(self): """Returns the *maximum limit* on the possible score the matcher can give. This can be an estimate and not necessarily the actual maximum score possible, but it must never be less than the actual maximum score. """ raise NotImplementedError(self.__class__.__name__) def block_quality(self, matcher): """Returns the *maximum limit* on the possible score the matcher can give **in its current "block"** (whatever concept of "block" the backend might use). This can be an estimate and not necessarily the actual maximum score possible, but it must never be less than the actual maximum score. If this score is less than the minimum score required to make the "top N" results, then we can tell the matcher to skip ahead to another block with better "quality". """ raise NotImplementedError(self.__class__.__name__) # Scorer that just returns term weight class WeightScorer(BaseScorer): """A scorer that simply returns the weight as the score. This is useful for more complex weighting models to return when they are asked for a scorer for fields that aren't scorable (don't store field lengths). """ def __init__(self, maxweight): self._maxweight = maxweight def supports_block_quality(self): return True def score(self, matcher): return matcher.weight() def max_quality(self): return self._maxweight def block_quality(self, matcher): return matcher.block_max_weight() @classmethod def for_(cls, searcher, fieldname, text): ti = searcher.term_info(fieldname, text) return cls(ti.max_weight()) # Base scorer for models that only use weight and field length class WeightLengthScorer(BaseScorer): """Base class for scorers where the only per-document variables are term weight and field length. Subclasses should override the ``_score(weight, length)`` method to return the score for a document with the given weight and length, and call the ``setup()`` method at the end of the initializer to set up common attributes. """ def setup(self, searcher, fieldname, text): """Initializes the scorer and then does the busy work of adding the ``dfl()`` function and maximum quality attribute. This method assumes the initializers of WeightLengthScorer subclasses always take ``searcher, offset, fieldname, text`` as the first three arguments. Any additional arguments given to this method are passed through to the initializer. Note: this method calls ``self._score()``, so you should only call it in the initializer after setting up whatever attributes ``_score()`` depends on:: class MyScorer(WeightLengthScorer): def __init__(self, searcher, fieldname, text, parm=1.0): self.parm = parm self.setup(searcher, fieldname, text) def _score(self, weight, length): return (weight / (length + 1)) * self.parm """ ti = searcher.term_info(fieldname, text) if not searcher.schema[fieldname].scorable: return WeightScorer(ti.max_weight()) self.dfl = lambda docid: searcher.doc_field_length(docid, fieldname, 1) self._maxquality = self._score(ti.max_weight(), ti.min_length()) def supports_block_quality(self): return True def score(self, matcher): return self._score(matcher.weight(), self.dfl(matcher.id())) def max_quality(self): return self._maxquality def block_quality(self, matcher): return self._score(matcher.block_max_weight(), matcher.block_min_length()) def _score(self, weight, length): # Override this method with the actual scoring function raise NotImplementedError(self.__class__.__name__) # WeightingModel implementations # Debugging model class DebugModel(WeightingModel): def __init__(self): self.log = [] def scorer(self, searcher, fieldname, text, qf=1, query_context=None): return DebugScorer(searcher, fieldname, text, self.log) class DebugScorer(BaseScorer): def __init__(self, searcher, fieldname, text, log): ti = searcher.term_info(fieldname, text) self._maxweight = ti.max_weight() self.searcher = searcher self.fieldname = fieldname self.text = text self.log = log def supports_block_quality(self): return True def score(self, matcher): fieldname, text = self.fieldname, self.text docid = matcher.id() w = matcher.weight() length = self.searcher.doc_field_length(docid, fieldname) self.log.append((fieldname, text, docid, w, length)) return w def max_quality(self): return self._maxweight def block_quality(self, matcher): return matcher.block_max_weight() # BM25F Model def bm25(idf, tf, fl, avgfl, B, K1): # idf - inverse document frequency # tf - term frequency in the current document # fl - field length in the current document # avgfl - average field length across documents in collection # B, K1 - free paramters return idf * ((tf * (K1 + 1)) / (tf + K1 * ((1 - B) + B * fl / avgfl))) class BM25F(WeightingModel): """Implements the BM25F scoring algorithm. """ def __init__(self, B=0.75, K1=1.2, **kwargs): """ >>> from whoosh import scoring >>> # Set a custom B value for the "content" field >>> w = scoring.BM25F(B=0.75, content_B=1.0, K1=1.5) :param B: free parameter, see the BM25 literature. Keyword arguments of the form ``fieldname_B`` (for example, ``body_B``) set field- specific values for B. :param K1: free parameter, see the BM25 literature. """ self.B = B self.K1 = K1 self._field_B = {} for k, v in iteritems(kwargs): if k.endswith("_B"): fieldname = k[:-2] self._field_B[fieldname] = v def supports_block_quality(self): return True def scorer(self, searcher, fieldname, text, qf=1, query_context=None): if not searcher.schema[fieldname].scorable: return WeightScorer.for_(searcher, fieldname, text) if fieldname in self._field_B: B = self._field_B[fieldname] else: B = self.B return BM25FScorer(searcher, fieldname, text, B, self.K1, qf=qf) class BM25FScorer(WeightLengthScorer): def __init__(self, searcher, fieldname, text, B, K1, qf=1): # IDF and average field length are global statistics, so get them from # the top-level searcher parent = searcher.get_parent() # Returns self if no parent self.idf = parent.idf(fieldname, text) self.avgfl = parent.avg_field_length(fieldname) or 1 self.B = B self.K1 = K1 self.qf = qf self.setup(searcher, fieldname, text) def _score(self, weight, length): s = bm25(self.idf, weight, length, self.avgfl, self.B, self.K1) return s # DFree model def dfree(tf, cf, qf, dl, fl): # tf - term frequency in current document # cf - term frequency in collection # qf - term frequency in query # dl - field length in current document # fl - total field length across all documents in collection prior = tf / dl post = (tf + 1.0) / (dl + 1.0) invpriorcol = fl / cf norm = tf * log(post / prior) return qf * norm * (tf * (log(prior * invpriorcol)) + (tf + 1.0) * (log(post * invpriorcol)) + 0.5 * log(post / prior)) class DFree(WeightingModel): """Implements the DFree scoring model from Terrier. See http://terrier.org/ """ def supports_block_quality(self): return True def scorer(self, searcher, fieldname, text, qf=1, query_context=None): if not searcher.schema[fieldname].scorable: return WeightScorer.for_(searcher, fieldname, text) return DFreeScorer(searcher, fieldname, text, qf=qf) class DFreeScorer(WeightLengthScorer): def __init__(self, searcher, fieldname, text, qf=1): # Total term weight and total field length are global statistics, so # get them from the top-level searcher parent = searcher.get_parent() # Returns self if no parent self.cf = parent.frequency(fieldname, text) self.fl = parent.field_length(fieldname) self.qf = qf self.setup(searcher, fieldname, text) def _score(self, weight, length): return dfree(weight, self.cf, self.qf, length, self.fl) # PL2 model rec_log2_of_e = 1.0 / log(2) def pl2(tf, cf, qf, dc, fl, avgfl, c): # tf - term frequency in the current document # cf - term frequency in the collection # qf - term frequency in the query # dc - doc count # fl - field length in the current document # avgfl - average field length across all documents # c -free parameter TF = tf * log(1.0 + (c * avgfl) / fl) norm = 1.0 / (TF + 1.0) f = cf / dc return norm * qf * (TF * log(1.0 / f) + f * rec_log2_of_e + 0.5 * log(2 * pi * TF) + TF * (log(TF) - rec_log2_of_e)) class PL2(WeightingModel): """Implements the PL2 scoring model from Terrier. See http://terrier.org/ """ def __init__(self, c=1.0): self.c = c def scorer(self, searcher, fieldname, text, qf=1, query_context=None): if not searcher.schema[fieldname].scorable: return WeightScorer.for_(searcher, fieldname, text) return PL2Scorer(searcher, fieldname, text, self.c, qf=qf) class PL2Scorer(WeightLengthScorer): def __init__(self, searcher, fieldname, text, c, qf=1): # Total term weight, document count, and average field length are # global statistics, so get them from the top-level searcher parent = searcher.get_parent() # Returns self if no parent self.cf = parent.frequency(fieldname, text) self.dc = parent.doc_count_all() self.avgfl = parent.avg_field_length(fieldname) or 1 self.c = c self.qf = qf self.setup(searcher, fieldname, text) def _score(self, weight, length): return pl2(weight, self.cf, self.qf, self.dc, length, self.avgfl, self.c) class Boolean(WeightingModel): def supports_block_quality(self): return True def scorer(self, searcher, fieldname, text, qf=1, query_context=None): ql = 1.0 if query_context: ql = len(query_context.subqueries) return BooleanScorer(ql) class BooleanScorer(BaseScorer): def __init__(self, ql): self.ql = ql def max_quality(self): return 1.0 def block_quality(self, matcher): return 1.0 def score(self, matcher): return 1.0 / self.ql if matcher.weight() > 0.0 else 0.0 class Probabilistic(WeightingModel): def supports_block_quality(self): return True def scorer(self, searcher, fieldname, text, qf=1, query_context=None): N = searcher.doc_count() ni = searcher.doc_frequency(fieldname, text) return ProbabilisticScorer(N, ni) class ProbabilisticScorer(BaseScorer): def __init__(self, N, ni): self.N = N self.ni = ni def score(self, matcher): return log((self.N + 0.5) / (self.ni + 0.5)) def max_quality(self): return 1.0 def block_quality(self, matcher): return 1.0 class Frequency(WeightingModel): def scorer(self, searcher, fieldname, text, qf=1, query_context=None): maxweight = searcher.term_info(fieldname, text).max_weight() return WeightScorer(maxweight) class TF_IDF(WeightingModel): """ Using the VSM classic approach (which vector=True for the queried field), the first query is quite slower because of the calculation of all normalization terms. The next queries will be as faster as the original whoosh approach. """ tf_normalize = True def __init__(self, *, tf: Union[TF, str] = TF.frequency, idf: Union[IDF, str] = IDF.default): """ >>> from whoosh import scoring >>> # You can set IDF and TF schemas >>> w = scoring.TF_IDF(tf = TF.frequency, idf=IDF.inverse_frequency) :param idf: free parameter, indicates the idf schema. See the Vector Space Model literature. :param tf: free parameter, indicates the tf schema. See the Vector Space Model literature. """ self.idf_table = dict() self.tf_table = defaultdict(dict) self.query_terms = set() self._idf_schema = IDF.get(idf) if isinstance(idf, str) else idf self._tf_schema = TF.get(tf) if isinstance(tf, str) else tf def scorer(self, searcher, fieldname, text, qf=1, query_context=None): # IDF is a global statistic, so get it from the top-level searcher self.extract_idf_table(searcher, fieldname, query_context) # Global context is needed for TF self.query_terms = set() self.all_terms(query_context) return TFIDFScorer(self, fieldname, text, searcher, query_context, self._tf_schema) def extract_idf_table(self, searcher, fieldname, query_context): if query_context: if isinstance(query_context, whoosh.query.compound.CompoundQuery): for subquery in query_context: self.extract_idf_table(searcher, fieldname, subquery) elif isinstance(query_context, whoosh.query.terms.Term): self.idf_table[query_context.text] = searcher.idf(fieldname, query_context.text, self._idf_schema) def all_terms(self, context): if context: if isinstance(context, whoosh.query.compound.CompoundQuery): for subquery in context: self.all_terms(subquery) elif isinstance(context, whoosh.query.terms.Term): self.query_terms.add(context.text) def apply_tf_normalization(self, score, docnum): norm_tf = 0.0 for text, f in self.tf_table[docnum].items(): if text in self.query_terms: norm_tf += (f * self.idf_table.get(text, 1)) ** 2 return score / sqrt(norm_tf) if norm_tf != 0 else 0.0 def tf(self, searcher, fieldname, docnum, tf_schema: TF = TF.frequency, context=None): # slow: usar só no último caso all_tf = super(TF_IDF, self).tf(searcher, fieldname, docnum, tf_schema) if context and not self.query_terms: self.all_terms(context) filtered_terms = {term: freq for term, freq in all_tf.items() if term in self.query_terms} return filtered_terms class TFIDFScorer(BaseScorer): """ Basic formulation of TFIDF Similarity based on Lucene score function. """ def __init__(self, weighting, fieldname, text, searcher, query_context, tf_schema): self._fieldname = fieldname self._searcher = searcher self._weighting = weighting self._text = text.decode(encoding="utf-8") self._context = query_context self.tf_schema = tf_schema self.idf_table = weighting.idf_table self.norm_idf = sqrt(sum([v ** 2 for k, v in self.idf_table.items() if k in weighting.query_terms])) def supports_block_quality(self): return True def score(self, matcher): if self._searcher.has_vector(matcher.id(), self._fieldname): return self._approach(matcher) else: return matcher.weight() * self.idf_table.get(self._text, 1) # whoosh default definition def _approach(self, matcher): tf_term = self._tf_statistics(matcher) idf_term, norm_idf = self._idf_statistics() return tf_term * (idf_term ** 2) / norm_idf def _idf_statistics(self): idf = self.idf_table.get(self._text, 1) return idf, self.norm_idf def _tf_statistics(self, matcher): maxweight = self._searcher.term_info(self._fieldname, self._text).max_weight() tf_term = self.tf_schema(matcher.weight(), maxweight) self._weighting.tf_table[matcher.id()][self._text] = tf_term return tf_term def max_quality(self): idf = self.idf_table[self._text] # idf global statistics max_weight = self._searcher.term_info(self._fieldname, self._text).max_weight() return max_weight * idf def block_quality(self, matcher): idf = self.idf_table[self._text] # idf global statistics return matcher.block_max_weight() * idf class BeliefNetwork(TF_IDF): tf_normalize = True def __init__(self, tf: Union[TF, str] = TF.frequency, idf: Union[IDF, str] = IDF.default): """ >>> from whoosh import scoring >>> # You can set IDF and TF schemas >>> w = scoring.BeliefNetwork(tf = TF.frequency, idf=IDF.inverse_frequency) :param idf: free parameter, indicates the idf schema. See the Vector Space Model literature. :param tf: free parameter, indicates the tf schema. See the Vector Space Model literature. """ super().__init__(tf=tf, idf=idf) def scorer(self, searcher, fieldname, text, qf=1, query_context=None): # IDF is a global statistic, so get it from the top-level searcher # self.extract_idf_table(searcher, fieldname, query_context) self.extract_idf_table(searcher, fieldname, query_context) # Global context is needed for TF self.query_terms = set() self.all_terms(query_context) return BeliefNetworkScorer(self, fieldname, text, searcher, query_context, self._tf_schema, qf) class BeliefNetworkScorer(TFIDFScorer): """ Basic formulation of BeliefNetwork Similarity. """ def __init__(self, weighting, fieldname, text, searcher, query_context, tf_schema, qf=1): super().__init__(weighting, fieldname, text, searcher, query_context, tf_schema) self.qf = qf self.t = len(query_context.subqueries) def _approach(self, matcher): tf_term = self._tf_statistics(matcher) idf_term, norm_idf = self._idf_statistics() p_dj_k = tf_term * idf_term p_q_k = self.qf * idf_term / norm_idf if norm_idf != 0 else 0.0 p_k = (1 / 2) ** self.t return p_dj_k * p_q_k * p_k class ExtendedBoolean(TF_IDF): tf_normalize = False def __init__(self, p=3): """ >>> from whoosh import scoring >>> # You can set p value >>> w = scoring.ExtendedBoolean(p=3) """ super().__init__(tf=TF.normalized_frequency, idf=IDF.inverse_frequency) self.p = p def scorer(self, searcher, fieldname, text, qf=1, query_context=None): # IDF is a global statistic, so get it from the top-level searcher self.extract_idf_table(searcher, fieldname, query_context) # Global context is needed for TF self.query_terms = set() self.all_terms(query_context) return ExtendedBooleanScorer(self, fieldname, text, searcher, query_context, self._tf_schema, self.p) @staticmethod def apply_function(score, p, qry_type): from math import pow if qry_type == 'AND': return 1 - pow(score, 1 / p if p != 0 else 1) return pow(score, 1 / p if p != 0 else 1) class ExtendedBooleanScorer(TFIDFScorer): """ Basic formulation of ExtendedBoolean Similarity. """ def __init__(self, weighting, fieldname, text, searcher, query_context, tf_schema, p): super().__init__(weighting, fieldname, text, searcher, query_context, tf_schema) self.p = p self.qry_type = 'OR' if isinstance(query_context, whoosh.query.compound.Or) else 'AND' self.t = len(query_context.subqueries) def _approach(self, matcher): tf_term = self._tf_statistics(matcher) idf_term, _ = self._idf_statistics() wij = tf_term * idf_term if self.qry_type == 'AND': return (1 - wij) ** self.p / self.t return wij ** self.p / self.t class GeneralizedVSM(TF_IDF): tf_normalize = True def __init__(self, *, mdb: str = None, tf: Union[TF, str] = TF.frequency, idf: Union[IDF, str] = IDF.default): """ >>> from whoosh import scoring >>> # You can set IDF and TF schemas >>> w = scoring.GeneralizedVSM(tf = TF.frequency, idf=IDF.inverse_frequency) :param idf: free parameter, indicates the idf schema. See the Vector Space Model literature. :param tf: free parameter, indicates the tf schema. See the Vector Space Model literature. :param mdb: Minterm db base path. Example: 'mycol', 'mycol/body', etc. """ super().__init__(tf=tf, idf=idf) self.mdb = mdb def scorer(self, searcher, fieldname, text, qf=1, query_context=None): # IDF is a global statistic, so get it from the top-level searcher self.extract_idf_table(searcher, fieldname, query_context) self.query_terms = set() self.all_terms(query_context) return GeneralizedVSMScorer(self, fieldname, text, searcher, query_context, self._tf_schema, self._idf_schema, self.mdb) class GeneralizedVSMScorer(TFIDFScorer): """ Basic formulation of BeliefNetwork Similarity. """ def __init__(self, weighting, fieldname, text, searcher, query_context, tf_schema, idf_schema, mdb): super().__init__(weighting, fieldname, text, searcher, query_context, tf_schema) self.idf_schema = idf_schema self.mdb = mdb def _approach(self, matcher): if exist_minterm(): tf_term = self._tf_statistics(matcher) idf_term, norm_idf = self._idf_statistics() try: minterm = get_minterm(self.mdb, self._text) match_index = get_minterm_match(self.mdb, matcher.id()) return (tf_term * (idf_term ** 2) / norm_idf if norm_idf != 0 else 0.0) * \ minterm[match_index] except KeyError: return tf_term * (idf_term ** 2) / norm_idf if norm_idf != 0 else 0.0 else: return matcher.weight() * self.idf_table.get(self._text, 1) # whoosh default definition # Utility models class Weighting(WeightingModel): """This class provides backwards-compatibility with the old weighting class architecture, so any existing custom scorers don't need to be rewritten. """ def scorer(self, searcher, fieldname, text, qf=1, query_context=None): return self.CompatibilityScorer(searcher, fieldname, text, self.score) def score(self, searcher, fieldname, text, docnum, weight): raise NotImplementedError class CompatibilityScorer(BaseScorer): def __init__(self, searcher, fieldname, text, scoremethod): self.searcher = searcher self.fieldname = fieldname self.text = text self.scoremethod = scoremethod def score(self, matcher): return self.scoremethod(self.searcher, self.fieldname, self.text, matcher.id(), matcher.weight()) class FunctionWeighting(WeightingModel): """Uses a supplied function to do the scoring. For simple scoring functions and experiments this may be simpler to use than writing a full weighting model class and scorer class. The function should accept the arguments ``searcher, fieldname, text, matcher``. For example, the following function will score documents based on the earliest position of the query term in the document:: def pos_score_fn(searcher, fieldname, text, matcher): poses = matcher.value_as("positions") return 1.0 / (poses[0] + 1) pos_weighting = scoring.FunctionWeighting(pos_score_fn) with myindex.searcher(weighting=pos_weighting) as s: results = s.search(q) Note that the searcher passed to the function may be a per-segment searcher for performance reasons. If you want to get global statistics inside the function, you should use ``searcher.get_parent()`` to get the top-level searcher. (However, if you are using global statistics, you should probably write a real model/scorer combo so you can cache them on the object.) """ def __init__(self, fn): self.fn = fn def scorer(self, searcher, fieldname, text, qf=1, query_context=None): return self.FunctionScorer(self.fn, searcher, fieldname, text, qf=qf) class FunctionScorer(BaseScorer): def __init__(self, fn, searcher, fieldname, text, qf=1): self.fn = fn self.searcher = searcher self.fieldname = fieldname self.text = text self.qf = qf def score(self, matcher): return self.fn(self.searcher, self.fieldname, self.text, matcher) class MultiWeighting(WeightingModel): """Chooses from multiple scoring algorithms based on the field. """ def __init__(self, default, **weightings): """The only non-keyword argument specifies the default :class:`Weighting` instance to use. Keyword arguments specify Weighting instances for specific fields. For example, to use ``BM25`` for most fields, but ``Frequency`` for the ``id`` field and ``TF_IDF`` for the ``keys`` field:: mw = MultiWeighting(BM25(), id=Frequency(), keys=TF_IDF()) :param default: the Weighting instance to use for fields not specified in the keyword arguments. """ self.default = default # Store weighting functions by field name self.weightings = weightings def scorer(self, searcher, fieldname, text, qf=1, query_context=None): w = self.weightings.get(fieldname, self.default) return w.scorer(searcher, fieldname, text, qf=qf) class ReverseWeighting(WeightingModel): """Wraps a weighting object and subtracts the wrapped model's scores from 0, essentially reversing the weighting model. """ def __init__(self, weighting): self.weighting = weighting def scorer(self, searcher, fieldname, text, qf=1, query_context=None): subscorer = self.weighting.scorer(searcher, fieldname, text, qf=qf) return ReverseWeighting.ReverseScorer(subscorer) class ReverseScorer(BaseScorer): def __init__(self, subscorer): self.subscorer = subscorer def supports_block_quality(self): return self.subscorer.supports_block_quality() def score(self, matcher): return 0 - self.subscorer.score(matcher) def max_quality(self): return 0 - self.subscorer.max_quality() def block_quality(self, matcher): return 0 - self.subscorer.block_quality(matcher)
from dataclasses import dataclass @dataclass(frozen=True) class Price: """ A generic (and minimalist) representation of the current price """ last: float change: float change_pct: float
import sys def getbit(i, n): return (i >> n) & 1 def setbit(i, n, val=1): if val == 1: return i | (1 << n) return i & (~(1 << n)) def bitcmp(i1, i2, n): for i in range(0, n): b2 = getbit(i2, i) b1 = getbit(i1, i) if b1 != b2: return b1 - b2 return 0 def fac_check(i, i1, i2, bits): p = i1 * i2 if p > i: return -3 if p == i: if i1 == 1 or i2 == 1: return -4 return 10 return bitcmp(i, p, bits) def factorize_run(i, i1, i2, n): for b in range(0, 4): i1 = setbit(i1, n, getbit(b, 0)) i2 = setbit(i2, n, getbit(b, 1)) rc = fac_check(i, i1, i2, n + 1) if rc == 10: return factorize(i1) + factorize(i2) if rc == 0: f = factorize_run(i, i1, i2, n + 1) if f != [i]: return f return [i] def factorize(i): l = factorize_run(i, 0, 0, 0) l.sort() return l fpr = int(sys.argv[1]) print (("Factorizing " + str(fpr) + " ...")) rc = factorize(fpr) print (rc)
import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from pathlib import Path pconfig = Path(__file__).parents[1] #aa = os.path.abspath(os.path.join(yourpath, os.pardir)) traindatapathForlogistic = "%s/data/raw/Social_Network_Ads.csv"%pconfig if __name__ == "__main__": print("羅吉斯訓練資料集在",traindatapathForlogistic)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Jupyter ipython notebook utilities. # # This file is part of the pybgl project. # https://github.com/nokia/pybgl __author__ = "Marc-Olivier Buob" __maintainer__ = "Marc-Olivier Buob" __email__ = "marc-olivier.buob@nokia-bell-labs.com" __copyright__ = "Copyright (C) 2018, Nokia" __license__ = "BSD-3" from pybgl.html import html from pybgl.graphviz import dotstr_to_html def in_ipynb() -> bool: """ Tests whether the code is running inside a Jupyter Notebook. Returns: True iff the code is running inside a Jupyter Notebook. """ try: return str(type(get_ipython())) == "<class 'ipykernel.zmqshell.ZMQInteractiveShell'>" except NameError: return False def background_template_html(background_color = None): return "<div style='background-color:%s'>%%s</div>" % background_color if background_color else "%s" def ipynb_display_graph(g, background_color = None, **kwargs): """ Display a Graph in a Jupyter Notebook. """ template_html = background_template_html(background_color) html(template_html % dotstr_to_html(g.to_dot(**kwargs))) def display_svg(svg, filename_svg, background_color = None): with open(filename_svg, "w") as f: print(svg, file = f) html("<a href='%s' target='_blank'>View</a>" % filename_svg) template_html = background_template_html(background_color) html(template_html % svg) def display_body(body_html, filename_html, **kwargs): return display_svg( "<html><head><meta charset='UTF-8'></head><body>%s</body></html>" % body_html, filename_html, **kwargs ) def ipynb_get_background_color(): """ Retrieves the HTML background color of the Jupyter notebook. Returns: The `str` containing the background color of the notebook, `None` otherwise. """ if not in_ipynb(): return None # <<< Must be in an independant Jupyter cell to publish bgcolor from IPython.display import Javascript, display display(Javascript( """ var bgcolor = getComputedStyle(document.querySelector('.notebook_app #notebook')).backgroundColor; IPython.notebook.kernel.execute("bgcolor = '" + bgcolor + "'") """ )) # >>> return bgcolor def ipynb_get_foreground_color(): """ Retrieves the HTML foreground color of the Jupyter notebook. Returns: The `str` containing the background color of the notebook, `None` otherwise. """ if not in_ipynb(): return None # <<< Must be in an independant Jupyter cell to publish fgcolor from IPython.display import Javascript, display display(Javascript( """ var fgcolor = getComputedStyle(document.querySelector('.notebook_app div.output_area pre')).color; IPython.notebook.kernel.execute("fgcolor = '" + fgcolor + "'") """ )) # >>> return fgcolor
#!/usr/bin/env python3 import can import logging import os import signal import socketcan import socketcanopen logging.basicConfig(level=logging.DEBUG) CAN_INTERFACE = "vcan0" can_bus = can.Bus(CAN_INTERFACE, bustype="socketcan") node_id = 0x02 canopen_od = socketcanopen.ObjectDictionary.from_eds(os.path.dirname(os.path.relpath(__file__)) + '/node.eds', node_id) node = socketcanopen.Node(can_bus, node_id, canopen_od) signal.pause() # Run forever
from video import * import sys header_color='#ffaa00' slide("title.png",48,[(50,"Creature Control in",header_color), (50,"a Fluid Environment",header_color), " ", (36,"paperid 0143"), (36,"SIGGRAPH 2009")]) slide("wind_blocks.png",36, [(54,"Block Examples",header_color), " ", "Two blocks connected with", "a single joint optimizing", "various objective functions", "(simple fluids)"]) slide("fluid_blocks.png",36, [(54,"Block Examples",header_color), " ", "Two blocks connected with", "a single joint optimizing", "various objective functions", "(Navier-Stokes fluids)"]) slide("human-back-effort.png",36, [(54,"Human",header_color), " ", "A human with three controlled", "joints optimizes effort", "on the lower back"]) slide("human-effort.png",36, [(54,"Human",header_color), " ", "A human with three controlled", "joints optimizes effort", "on the lower back and arms"]) slide("human-wind-back-effort.png",36, [(54,"Human",header_color), " ", "A human with three controlled", "joints optimizes effort", "on the lower back"]) slide("human-wind-effort.png",36, [(54,"Human",header_color), " ", "A human with three controlled", "joints optimizes effort", "on the lower back and arms"]) slide("human-wind-drag.png",36, [(54,"Human",header_color), " ", "A human with three controlled", "joints optimizes effort", "on the lower back", "and drag on the arms"]) slide("bird-block.png",36, [(54,"Driven Flyer",header_color), " ", "A driven flyer with two", "controlled joints alternates", "maximizing and minimizing", "drag"]) slide("bird-mesh.png",36, [(54,"Driven Flyer",header_color), " ", "A driven flyer with two", "controlled joints alternates", "maximizing and minimizing", "drag (with flesh)"]) slide("octosquid-close.png",36, [(54,"Swimmer",header_color), " ", "A swimmer with five controlled", "joints alternates maximizing", "and minimizing drag, close"]) slide("octosquid-farther.png",36, [(54,"Swimmer",header_color), " ", "A swimmer with five controlled", "joints alternates maximizing", "and minimizing drag, far"]) slide("half.png",36, ["half speed"]) slide("end.png",54,["The End"]) final_render_base="/solver/vol0/swimming4/final_video" video_dir="swimming_video_tmp" if not os.path.exists(video_dir): os.mkdir(video_dir) #if os.path.isdir(video_dir): # print "%s already exists... delete? (y/n) "%video_dir, # c=sys.stdin.readline() # if c=="y\n": shutil.rmtree(video_dir) # else: sys.exit(1) shutil.rmtree(video_dir) video=VIDEO(video_dir) using_lengths=True testing_titles=True skip_interval=1 def caption_length(time=3.5): if not using_lengths and testing_titles: return 1 else: return int(video.fps*time) video.add_frame("title.png",caption_length(4./skip_interval)) # blocks demos video.add_frame("wind_blocks.png",caption_length(8./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming2/final_input_videos/wind_final_render",step=skip_interval) video.add_frame("fluid_blocks.png",caption_length(8./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming2/final_input_videos/fluids_final_render",step=skip_interval) #humans video.add_frame("human-back-effort.png",caption_length(7./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming2/final_input_videos/human_no_smoke_back_render",0,274,step=skip_interval) video.add_frame("human-effort.png",caption_length(7./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming2/final_input_videos/human_no_smoke_min_effort_col_render",0,274,step=skip_interval) video.add_frame("human-wind-back-effort.png",caption_length(7./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming2/final_input_videos/wind_back_final_render",124,399,step=skip_interval) video.add_frame("human-wind-effort.png",caption_length(7./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming2/final_input_videos/wind_effort_final_render",124,399,step=skip_interval) video.add_frame("human-wind-drag.png",caption_length(7./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming2/final_input_videos/wind_drag_final_render",124,399,step=skip_interval) video.add_frame("bird-block.png",caption_length(7./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming9/render_backup/bird/bird_bones_mike/bird_flying_bones_Smoke_Postprocess_Test_3_Resolution_15_final_render",step=skip_interval) video.add_frame("bird-mesh.png",caption_length(7./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming9/render_backup/bird/bird_mesh_mike/bird_flying_mesh_Smoke_Postprocess_Test_2_Resolution_15_final_high_render",step=2*skip_interval) #video.add_frame("half.png",caption_length(2./skip_interval)) #video.add_directory("/solver/vol0/swimming9/render_backup/bird/bird_mesh_mike/bird_flying_mesh_Smoke_Postprocess_Test_2_Resolution_15_final_high_render",step=skip_interval,duplicate=2) video.add_frame("octosquid-close.png",caption_length(6./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming9/render_backup/octosquid/octosquid_mike_2/octosquid_final_close_render",step=2*skip_interval) #video.add_frame("half.png",caption_length(2./skip_interval)) #video.add_directory("/solver/vol0/swimming9/render_backup/octosquid/octosquid_mike_2/octosquid_final_close_render",step=skip_interval,duplicate=2) video.add_frame("octosquid-farther.png",caption_length(6./skip_interval)) if not testing_titles: video.add_directory("/solver/vol0/swimming9/render_backup/octosquid/octosquid_mike/octosquid_final_far_render",step=2*skip_interval) #video.add_frame("half.png",caption_length(2./skip_interval)) #video.add_directory("/solver/vol0/swimming9/render_backup/octosquid/octosquid_mike/octosquid_final_far_render",step=skip_interval,duplicate=2) video.add_frame("end.png",caption_length(2./skip_interval)) video.make_movie('swimming')
""" Import as: import dev_scripts.git.git_hooks.utils as dsgghout """ # NOTE: This file should depend only on Python standard libraries. import compileall import inspect import logging import os import re import string import subprocess import sys from typing import Any, List, Optional, Tuple _LOG = logging.getLogger(__name__) # TODO(gp): Check these hooks # https://github.com/pre-commit/pre-commit-hooks/tree/master/pre_commit_hooks # https://github.com/pre-commit/pre-commit-hooks/blob/master/pre_commit_hooks/check_ast.py # https://github.com/pre-commit/pre-commit-hooks/blob/master/pre_commit_hooks/check_added_large_files.py # https://github.com/pre-commit/pre-commit-hooks/blob/master/pre_commit_hooks/check_merge_conflict.py # https://code-maven.com/enforcing-commit-message-format-in-git # TODO(gp): Add a check for "Do not commit" or "Do not merge". # The path to the git-binary: _GIT_BINARY_PATH = "git" # Stat copy-paste from helpers/printing.py _COLOR_MAP = { "blue": 94, "green": 92, "white": 0, "purple": 95, "red": 91, "yellow": 33, # Blu. "DEBUG": 34, # Cyan. "INFO": 36, # Yellow. "WARNING": 33, # Red. "ERROR": 31, # White on red background. "CRITICAL": 41, } def color_highlight(text: str, color: str) -> str: """ Return a colored string. """ prefix = "\033[" suffix = "\033[0m" assert color in _COLOR_MAP color_code = _COLOR_MAP[color] txt = f"{prefix}{color_code}m{text}{suffix}" return txt # End copy-paste. # Start copy-paste from helpers/introspection.py def get_function_name(count: int = 0) -> str: """ Return the name of the function calling this function, i.e., the name of the function calling `get_function_name()`. """ ptr = inspect.currentframe() # count=0 corresponds to the calling function, so we need to add an extra # step walking the call stack. count += 1 for _ in range(count): assert ptr is not None ptr = ptr.f_back func_name = ptr.f_code.co_name # type: ignore return func_name # End copy-paste. # Start copy-paste from helpers/system_interaction.py def _system_to_string( cmd: str, abort_on_error: bool = True, verbose: bool = False ) -> Tuple[int, str]: assert isinstance(cmd, str), "Type of '%s' is %s" % (str(cmd), type(cmd)) if verbose: print(f"> {cmd}") stdout = subprocess.PIPE stderr = subprocess.STDOUT with subprocess.Popen( cmd, shell=True, executable="/bin/bash", stdout=stdout, stderr=stderr ) as p: output = "" while True: line = p.stdout.readline().decode("utf-8") # type: ignore if not line: break # print((line.rstrip("\n"))) output += line p.stdout.close() # type: ignore rc = p.wait() if abort_on_error and rc != 0: msg = ( "cmd='%s' failed with rc='%s'" % (cmd, rc) ) + "\nOutput of the failing command is:\n%s" % output _LOG.error(msg) sys.exit(-1) return rc, output # End copy-paste. # ############################################################################# # Utils. # ############################################################################# def _get_files() -> List[str]: """ Get all the files to process. """ # Check all files staged and modified, i.e., skipping only un-tracked files. # TODO(gp): In reality we should check only staged files. # > git status --porcelain -uno # M dev_scripts/git/git_hooks/pre-commit.py cmd = f"{_GIT_BINARY_PATH} status --porcelain --untracked-files=no" rc, txt = _system_to_string(cmd) _ = rc file_list: List[str] = txt.splitlines() # Remove the Git codes (in the first 3 characters) leaving only the file name. file_list = [file_name[3:] for file_name in file_list] return file_list def _report() -> str: func_name = get_function_name(count=1) print("\n" + color_highlight(f"##### {func_name} ######", "purple")) return func_name def _handle_error(func_name: str, error: bool, abort_on_error: bool) -> None: """ Abort depending on the error code `error` and on the desired behavior `abort_on_error`. """ if error: print("\n" + color_highlight(f"'{func_name}' failed", "red")) if abort_on_error: sys.exit(-1) else: print(color_highlight(f"'{func_name}' passed", "green")) # ############################################################################# # check_master # ############################################################################# def check_master(abort_on_error: bool = True) -> None: """ Check if we are committing directly to master, instead of a branch. """ func_name = _report() # Print some information. verbose = True cmd = "git rev-parse --abbrev-ref HEAD" rc, branch_name = _system_to_string(cmd, verbose=verbose) _ = rc branch_name = branch_name.lstrip().rstrip() print(f"Branch is '{branch_name}'") if branch_name == "master": msg = ( "You shouldn't merge into `master`: please do a PR and then merge it" ) _LOG.error(msg) error = True else: error = False # Handle error. _handle_error(func_name, error, abort_on_error) # ############################################################################# # check_author # ############################################################################# def check_author(abort_on_error: bool = True) -> None: """ Ensure that the committer use a gmail and not a corporate account. Extremely custom but effective invariant. """ func_name = _report() # Print some information. verbose = True var = "user.name" cmd = f"{_GIT_BINARY_PATH} config {var}" _system_to_string(cmd, verbose=verbose) cmd = f"{_GIT_BINARY_PATH} config --show-origin {var}" _system_to_string(cmd, verbose=verbose) # var = "user.email" cmd = f"{_GIT_BINARY_PATH} config {var}" rc, user_email = _system_to_string(cmd, verbose=verbose) _ = rc user_email = user_email.lstrip().rstrip() cmd = f"{_GIT_BINARY_PATH} config --show-origin {var}" _system_to_string(cmd, verbose=verbose) print(f"user_email='{user_email}") # Check. error = False if not user_email.endswith("@gmail.com"): _LOG.error("user_email='%s' is incorrect", user_email) error = True # Handle error. _handle_error(func_name, error, abort_on_error) # ############################################################################# # check_file_size # ############################################################################# # Start copy-paste From helpers/introspection.py def _sizeof_fmt(num: float) -> str: """ Return a human-readable string for a filesize (e.g., "3.5 MB"). """ # From http://stackoverflow.com/questions/1094841 for x in ["bytes", "KB", "MB", "GB", "TB"]: if num < 1024.0: return "%3.1f %s" % (num, x) num /= 1024.0 assert 0, "Invalid num='%s'" % num # End copy-paste. # The maximum file-size in KB for a file (not notebook) to be committed. _MAX_FILE_SIZE_IN_KB = 512 def check_file_size( abort_on_error: bool = True, file_list: Optional[List[str]] = None ) -> None: """ Ensure that (not notebook) files are not larger than a certain size. The goal is to avoid to check in a 100MB file. """ func_name = _report() print(f"max file size={_MAX_FILE_SIZE_IN_KB} KB") if file_list is None: file_list = _get_files() _LOG.info("Files:\n%s", "\n".join(file_list)) # Check all files: error = False for file_name in file_list: if not os.path.exists(file_name): _LOG.warning("'%s' doesn't exist", file_name) continue _LOG.info(file_name) stat = os.stat(file_name) size = stat.st_size size_as_str = _sizeof_fmt(stat.st_size) _LOG.debug("%s: %s", file_name, size_as_str) if not file_name.endswith(".ipynb"): if size > _MAX_FILE_SIZE_IN_KB * 1024: # File is to big, abort the commit. msg = ( f"Filename '{file_name}' is too big to be committed" + f": {size_as_str} > {_MAX_FILE_SIZE_IN_KB} KB" ) _LOG.error(msg) error = True # Handle error. _handle_error(func_name, error, abort_on_error) # ############################################################################# # check_words # ############################################################################# _CAESAR_STEP = 7 def caesar(text: str, step: int) -> str: def shift(alphabet: str) -> str: return alphabet[step:] + alphabet[:step] alphabets = (string.ascii_lowercase, string.ascii_uppercase, string.digits) shifted_alphabets = tuple(map(shift, alphabets)) joined_alphabets = "".join(alphabets) joined_shifted_alphabets = "".join(shifted_alphabets) table = str.maketrans(joined_alphabets, joined_shifted_alphabets) return text.translate(table) def _get_regex(decaesarify: bool) -> Any: # Prepare the regex. words = "ln lnpk sptl sltvuhkl slt jyfwav" if decaesarify: words = caesar(words, -_CAESAR_STEP) words_as_regex = "(" + "|".join(words.split()) + ")" regex = fr""" (?<![^\W_]) # The preceding char should not be a letter or digit char. {words_as_regex} (?![^\W_]) # The next char cannot be a letter or digit. """ # regex = re.compile(r"\b(%s)\b" % "|".join(words.split())) # _LOG.debug("regex=%s", regex) regex = re.compile(regex, re.IGNORECASE | re.VERBOSE) # _LOG.debug("regex=%s", regex) return regex def _check_words_in_text( file_name: str, lines: List[str], decaesarify: bool = True ) -> List[str]: """ Look for words in the content `lines` of `file_name`. :return: violations in cfile format """ regex = _get_regex(decaesarify) # Search for violations. violations = [] for i, line in enumerate(lines): _LOG.debug("%s: %s", i + 1, line) m = regex.search(line) if m: # Remove some false positive. if file_name.endswith(".ipynb") and "image/png" in line: continue if file_name.endswith(".html") and '<td class="ms' in line: continue if file_name.endswith("git.py") and "return _is_repo" in line: continue if file_name.endswith("ack") and "compressed" in line: continue if file_name.endswith("helpers/git.py") and "def is_" in line: continue # Found a violation. val = m.group(1) _LOG.debug(" -> found '%s'", val) val = caesar(val, _CAESAR_STEP) violation = f"{file_name}:{i+1}: Found '{val}'" violations.append(violation) return violations def _check_words_files(file_list: List[str]) -> bool: """ Look for words in the passed files. :return: error """ _LOG.debug("Processing %d files", len(file_list)) # Scan all the files. violations = [] for file_name in file_list: if any(file_name.endswith(ext) for ext in "jpg png zip pkl gz".split()): _LOG.warning("Skipping '%s'", file_name) continue if not os.path.exists(file_name): _LOG.warning("Skipping '%s' since it doesn't exist", file_name) continue if os.path.isdir(file_name): _LOG.warning("Skipping '%s' since it is a dir", file_name) continue _LOG.info(file_name) with open(file_name) as f: lines = f.readlines() violations.extend(_check_words_in_text(file_name, lines)) # error = False if violations: file_content = "\n".join(map(str, violations)) _LOG.error("There are %d violations:\n%s", len(violations), file_content) # Write file. file_name = "cfile" with open(file_name, "w") as f: f.write(file_content) _LOG.warning("Saved cfile in '%s'", file_name) error = True return error def check_words( abort_on_error: bool = True, file_list: Optional[List[str]] = None ) -> None: """ Check that certain words are not used in the staged files. """ func_name = _report() # Get the files. if file_list is None: file_list = _get_files() _LOG.info("Files:\n%s", "\n".join(file_list)) # error = _check_words_files(file_list) # Handle error. _handle_error(func_name, error, abort_on_error) # ############################################################################# # Python compile # ############################################################################# def _check_python_compile(file_list: List[str]) -> bool: """ Run `compileall.compile_file()` on the files. :return: error """ _LOG.debug("Processing %d files", len(file_list)) # Scan all the files. violations = [] for file_name in file_list: success = compileall.compile_file(file_name, force=True, quiet=0) _LOG.debug("%s -> success=%s", file_name, success) if not success: _LOG.error("file_name='%s' doesn't compile correctly", file_name) violations.append(file_name) _LOG.debug("violations=%s", len(violations)) error = len(violations) > 0 return error def check_python_compile( abort_on_error: bool = True, file_list: Optional[List[str]] = None ) -> None: """ Check that code can be compiled. This is not as thorough as executing it. """ func_name = _report() # Get the files. if file_list is None: file_list = _get_files() _LOG.info("Files:\n%s", "\n".join(file_list)) # Keep only the python files. file_list = [f for f in file_list if f.endswith(".py")] _LOG.info("Python files:\n%s", "\n".join(file_list)) # error = _check_python_compile(file_list) # Handle error. _handle_error(func_name, error, abort_on_error)
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class MicrosoftgraphrelatedPerson(Model): """relatedPerson. :param display_name: :type display_name: str :param relationship: Possible values include: 'manager', 'colleague', 'directReport', 'dotLineReport', 'assistant', 'dotLineManager', 'alternateContact', 'friend', 'spouse', 'sibling', 'child', 'parent', 'sponsor', 'emergencyContact', 'other', 'unknownFutureValue' :type relationship: str or ~users.models.enum :param user_principal_name: :type user_principal_name: str """ _attribute_map = { 'display_name': {'key': 'displayName', 'type': 'str'}, 'relationship': {'key': 'relationship', 'type': 'str'}, 'user_principal_name': {'key': 'userPrincipalName', 'type': 'str'}, } def __init__(self, display_name=None, relationship=None, user_principal_name=None): super(MicrosoftgraphrelatedPerson, self).__init__() self.display_name = display_name self.relationship = relationship self.user_principal_name = user_principal_name
import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transforms import numpy as np import matplotlib.pyplot as plt import torch import torch.optim as optim import torch.utils.data as data_utils from torch.autograd import Variable from torchvision import models, datasets from deeprobust.image.attack.deepfool import DeepFool import deeprobust.image.netmodels.resnet as resnet import matplotlib.pyplot as plt ''' CIFAR10 ''' # load model model = resnet.ResNet18().to('cuda') print("Load network") """ Change the model directory here """ model.load_state_dict(torch.load("./trained_models/CIFAR10_ResNet18_epoch_20.pt")) model.eval() # load dataset testloader = torch.utils.data.DataLoader( datasets.CIFAR10('image/data', train = False, download = True, transform = transforms.Compose([transforms.ToTensor()])), batch_size = 1, shuffle = True) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # choose attack example X, Y = next(iter(testloader)) X = X.to('cuda').float() # run deepfool attack adversary = DeepFool(model) AdvExArray = adversary.generate(X, Y).float() # predict pred = model(AdvExArray).cpu().detach() # print and save result print('===== RESULT =====') print("true label:", classes[Y]) print("predict_adv:", classes[np.argmax(pred)]) AdvExArray = AdvExArray.cpu().detach().numpy() AdvExArray = AdvExArray.swapaxes(1,3).swapaxes(1,2)[0] plt.imshow(AdvExArray, vmin = 0, vmax = 255) plt.savefig('./adversary_examples/cifar_advexample_deepfool.png')
name = "autoclf" __all__ = ["classification", "datasets", "encoding", "getargs"]
from rest_framework import routers from .api import NetworkLocationViewSet from .api import NetworkSearchViewSet router = routers.SimpleRouter() router.register(r"networklocation", NetworkLocationViewSet, base_name="networklocation") router.register(r"networksearch", NetworkSearchViewSet, base_name="networksearch") urlpatterns = router.urls
# Generated by Django 2.1.15 on 2022-02-13 17:41 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0005_auto_20220213_1703'), ] operations = [ migrations.AlterField( model_name='studyfile', name='size_kb', field=models.PositiveIntegerField(), ), ]
from ._threads import _Thread from .utils import filter from .videobulk import _VideoBulk from ._http import _get_playlist_data from ._rgxs import _PlaylistPatterns as rgx from typing import List, Optional, Dict, Any class Playlist: __HEAD = 'https://www.youtube.com/playlist?list=' def __init__(self, playlist_id: str): """ :param str playlist_id: the _id of the playlist """ if 'youtube.com' in playlist_id: self.id = playlist_id.split('list=')[-1] else: self.id = playlist_id self.__playlist_data = _get_playlist_data(self.id) def __repr__(self): return f'<Playlist {self.url}>' @property def name(self) -> Optional[str]: """ :return: the name of the playlist """ names = rgx.name.findall(self.__playlist_data) return names[0] if names else None @property def url(self) -> Optional[str]: """ :return: url of the playlist """ return f'https://www.youtube.com/playlist?list={self.id}' @property def video_count(self) -> Optional[str]: """ :return: total number of videos in that playlist """ video_count = rgx.video_count.findall(self.__playlist_data) return video_count[0] if video_count else None @property def videos(self) -> _VideoBulk: """ :return: list of < video objects > for each video in the playlist (consider limit) """ videos = rgx.video_id.findall(self.__playlist_data) return _VideoBulk(filter(iterable=videos)) @property def thumbnail(self) -> Optional[str]: """ :return: url of the thumbnail of the playlist """ thumbnails = rgx.thumbnail.findall(self.__playlist_data) return thumbnails[0] if thumbnails else None @property def info(self) -> Dict[str, Any]: """ :return: a dict containing playlist info """ def _get_data(pattern): data = pattern.findall(self.__playlist_data) return data[0] if data else None patterns = [rgx.name, rgx.video_count, rgx.thumbnail] data = _Thread.run(_get_data, patterns) return { 'name': data[0], 'video_count': data[1], 'videos': filter(rgx.video_id.findall(raw)), 'url': self.__HEAD + self.id, 'thumbnail': data[2] }
import pandas as pd import numpy as np from sklearn.metrics import accuracy_score from sklearn.model_selection import KFold from models import MNBDocumentClassifier if __name__ == "__main__": # setup x_lab, y_lab x_lab = 'sentence' y_lab = 'class' # load training data with open('data/rotten_imdb/plot.tok.gt9.5000', encoding="ISO-8859-1") as csv: df_subj = pd.read_csv(csv, delimiter='\n', header=None, names=['sentence']) df_subj['class'] = 'subj' with open('data/rotten_imdb/quote.tok.gt9.5000', encoding="ISO-8859-1") as csv: df_obj = pd.read_csv(csv, delimiter='\n', header=None, names=['sentence']) df_obj['class'] = 'obj' df_train = df_subj.append(df_obj) # create model model = MNBDocumentClassifier() # TODO: Add grid search for model parameter values # TODO: Add option to pass parameter values to MNBDocumentClassifier # get cross validated error of model kf = KFold(n_splits=10) scores = [] for train_i, test_i in kf.split(df_train): # get split train = df_train.iloc[train_i] test = df_train.iloc[test_i] # fit model model.fit(train[x_lab], train[y_lab]) # get estimated accuracy score y_pred = model.predict(test[x_lab]) score = accuracy_score(test[y_lab], y_pred) scores.append(score) # print accuracy metrics print(f'K-Fold CV scores:\n') for i, score in enumerate(scores): print(f'{i}:\t{round(score, 3)}') print(f'\nMean score:\t{sum(scores) / len(scores)}')
from objects_superclass import Task from objects_superclass import Resource class ImagingMissions(Task): im_count = 0 tabu_freq = 0 def __init__(self, resource_reqd, tabu_tenure, name,size, lat, longi, payload_reqd, imaging_time, memory_reqd, look_angle_reqd, priority, repition): self.resource_reqd = resource_reqd self.tabu_tenure = tabu_tenure self.name = name self.size = size self.lat = lat self.longi = longi self.payload_reqd = payload_reqd self.imaging_time = imaging_time self.memory_reqd = memory_reqd self.look_angle_reqd = look_angle_reqd self.priority = priority self.repition =repition ImagingMissions.im_count += 1 def __repr__(self): return "0" def get_name(self): return self.name def get_size(self): return self.size def get_pos(self): return [float(self.lat),float(self.longi)] def get_payload_reqd(self): return self.payload_reqd def get_imaging_time(self): return float(self.imaging_time) def get_memory_reqd(self): return float(self.memory_reqd) def get_look_angle_reqd(self): return float(self.look_angle_reqd) def get_priority(self): return float(self.priority) def get_repition(self): return float(self.repition) class Satellite(Resource): sat_count = 0 def __init__(self,name,attitude,ave_angular_speed,payload,memory,max_memory,lat,longi,roll,pitch,yaw,altitude): self.name = name self.attitude = attitude self.ave_angular_speed = ave_angular_speed self.payload = payload self.memory = memory self.max_memory = max_memory self.lat = lat self.longi = longi self.roll = roll self.pitch = pitch self.yaw = yaw self.altitude = altitude Satellite.sat_count += 1 def get_name(self): return self.name def get_attitude(self): return self.attitude def get_ave_angular_speed(self): return float(self.ave_angular_speed) def get_payload(self): return self.payload def get_memory(self): return float(self.memory) def get_max_memory(self): return float(self.max_memory) def get_orbit_params(self): return [float(self.lat),float(self.longi)] def get_sat_attitude(self): return [float(self.roll),float(self.pitch), float(self.yaw)] def get_sat_altitude(self): return float(self.altitude) class GroundStation(Resource): gs_count = 0 def __init__(self, name, lat, longi): self.name = name self.lat = lat self.longi = longi def get_name(self): return self.name def get_pos(self): return [float(self.lat),float(self.longi)] class ImagingOpp(ImagingMissions): im_opp_count = 0 tabu_freq = 0 time_taken = 0 def __init__(self, resource_reqd, tabu_tenure, name, size, lat,longi, payload_reqd, imaging_time, memory_reqd, look_angle_reqd, name1, satellite, ATW,priority, score, repition): self.resource_reqd = resource_reqd self.tabu_tenure = tabu_tenure self.name = name self.size = size self.lat = lat self.longi = longi self.payload_reqd = payload_reqd self.imaging_time = imaging_time self.memory_reqd = memory_reqd self.look_angle_reqd = look_angle_reqd self.priority = priority self.name1 = name1 self.satellite = satellite self.ATW = ATW self.score = score self.repition =repition ImagingOpp.im_opp_count += 1 def __repr__(self): return "1" def get_name1(self): return self.name1 def get_satellite(self): return self.satellite def get_ATW(self): return self.ATW def get_score(self): return self.score class nullImagingOpp(ImagingMissions): im_opp_count = 0 tabu_freq = 0 def __init__(self, resource_reqd, tabu_tenure, name, size, lat,longi, payload_reqd, imaging_time, memory_reqd, look_angle_reqd, name1, satellite, ATW,priority = 1, score = 0, repition = 0): self.resource_reqd = resource_reqd #1 self.tabu_tenure = tabu_tenure #2 self.name = name #3 self.size = size #4 self.lat = lat #5 self.longi = longi #6 self.payload_reqd = payload_reqd #7 self.imaging_time = imaging_time #8 self.memory_reqd = memory_reqd #9 self.look_angle_reqd = look_angle_reqd #10 self.priority = priority #11 self.name1 = name1 #12 self.satellite = satellite #13 self.ATW = ATW #14 self.score = score #15 self.repition =repition #16 ImagingOpp.im_opp_count += 1 def __repr__(self): return "0" def get_name1(self): return self.name1 def get_satellite(self): return self.satellite def get_ATW(self): return self.ATW def get_score(self): return self.score class Downlink(Task): dl_count = 0 tabu_freq = 0 def __init__(self, name, name1, resource_reqd, tabu_tenure, groundstation, lat, longi, downlink_time, satellite, ATW, score): self.name = name self.name1 = name1 self.resource_reqd = resource_reqd self.tabu_tenure = tabu_tenure self.groundstation = groundstation self.lat = lat self.longi = longi self.downlink_time = downlink_time self.satellite = satellite self.ATW = ATW self.score = score Downlink.dl_count+= 1 def get_name(self): return self.name def get_name1(self): return self.name1 def get_groundstation(self): return self.groundstation def get_resource_reqd(self): return self.resource_reqd def get_pos(self): return [float(self.lat), float(self.longi)] def get_downlink_time(self): return self.downlink_time def get_satellite(self): return self.satellite def get_ATW(self): return self.ATW def get_score(self): return self.score #Testing # test_IM = ImagingMissions(['satellite'],1,'1',[1,2],'EO',5,1,45,1) # print(test_IM) # print(test_IM.im_count) # print("-------------------------------------------------------------------------") # test_sat = Satellite('T1',[0.1,0.1,0.1],3.75,'EO',8,[1,1]) # print(test_sat) # print(test_sat.sat_count) # print(test_sat.get_name()) # print('-------------------------------------------------------------------------') # test_IMopp = ImagingOpp(['satellite'],1,'1',[1,2],'EO',5,1,45,1,'1',test_sat,[100,120]) # print(test_IMopp) # print(test_IMopp.im_opp_count)
from behave import * from kelpy import cronjob from kubernetes import config, client from jinja2 import Environment, FileSystemLoader @when("the CronJob called {cronjob_name} is created") @given("the CronJob called {cronjob_name} exists") def step_impl(context, cronjob_name): cronjob_namespace = "default" env = Environment( loader=FileSystemLoader("./templates"), trim_blocks=True, lstrip_blocks=True ) cronjob_tmpl = env.get_template("cronjob.j2") cronjob_spec_file = cronjob_tmpl.render( cronjob_name=cronjob_name, cronjob_namespace=cronjob_namespace ) context.create_resp = cronjob.create( context.k8s_v1_batch_client, cronjob_spec_file, cronjob_namespace ) @when("the user attempts to retrieve the CronJob {cronjob_name}") def step_impl(context, cronjob_name): context.get_resp = cronjob.get(context.k8s_v1_batch_client, cronjob_name) @given("a CronJob called {cronjob_name} does not exist") def step_impl(context, cronjob_name): cronjob.delete(context.k8s_v1_batch_client, cronjob_name) @then("None is returned instead of the CronJob") def step_impl(context): assert context.get_resp is None, "Did not return None" @then("Results for the CronJob {cronjob_name} are returned") def step_impl(context, cronjob_name): assert context.get_resp, "Should've returned a valid response" @then("a valid CronJob called {cronjob_name} can be found") def step_impl(context, cronjob_name): assert context.create_resp, f"Should've found {cronjob_name} CronJob"
from measure_mate.settings.base import * DEBUG = os.environ.get('DJANGO_DEBUG', True) CSP_CONNECT_SRC += ( "ws://localhost:*", "ws://127.0.0.1:*", "http://localhost:*", "http://127.0.0.1:*" ) INSTALLED_APPS += ( 'django_extensions', )
# Import all python files within this folder from os.path import dirname, basename, isdir, realpath from commands import getstatusoutput as bash from nrutils import verbose,__pathsfile__ import glob # # list all py files within this directory # modules = [ basename(f)[:-3] for f in glob.glob(dirname(__file__)+"/*.py") if not ('__init__.py' in f) ] # # # Dynamically import all modules within this folder (namespace preserving) # for module in modules: # if verbose: print ' .%s' % module # exec 'import %s' % module # Search recurssively within the config's sim_dir for files matching the config's metadata_id this_file = realpath(__file__) if this_file[-1] == 'c': this_file = this_file[:-1] cmd = 'find %s -maxdepth 2 -name "__init__.py"' % dirname(this_file) status, output = bash(cmd) # make a list of all packages within the directory which contains this file dir_list = output.split(chr(10)) internal_packages = [ basename(dirname(p)) for p in dir_list if not (p == this_file) ] # __all__ = internal_packages # Import all modules from each package # if verbose: print '\t%s:\n' % __name__ for p in internal_packages: if verbose: print ' .%s: ' % p exec 'import %s' % p # exec 'from %s import *' % p
from datetime import datetime import logging from pathlib import Path class LoggingMeta(type): _is_logging = True _log_location = Path.home() / ".crucyble" / "{}.log".format(datetime.now().isoformat()) def no_log(self): self._is_logging = False @property def is_logging(self): return self._is_logging @classmethod def log_to(cls, log_location: Path): cls.log_location = log_location @property def log_location(self): if not self._log_location.parent.exists(): self._log_location.parent.mkdir(exist_ok=True) return self._log_location @log_location.setter def log_location(self, new_location): if not isinstance(new_location, Path): raise ValueError("GloVe.log_location must be a valid Path object! Got {} instead.".format(type(new_location))) self._log_location = new_location @property def log_location_char(self): return str(self.log_location).encode("utf-8") def logging_callback(logger, log_path: Path): with open(log_path, 'r') as f: for line in f: line = line.rstrip() if line != "": logger.info(line)
from typing import Callable, Coroutine from fastapi import Depends, Request from hibiapi.api.wallpaper import ( Config, EndpointsType, NetRequest, WallpaperCategoryType, WallpaperEndpoint, WallpaperOrderType, ) from hibiapi.utils.routing import SlashRouter, exclude_params __mount__, __config__ = "wallpaper", Config router = SlashRouter(tags=["Wallpaper"]) WallpaperAPIRoot = NetRequest() async def request_client(): async with WallpaperAPIRoot as client: yield WallpaperEndpoint(client) @router.get("/", summary="爱壁纸 API 兼容实现", deprecated=True) async def _match_all( request: Request, type: EndpointsType = EndpointsType.wallpaper, endpoint: WallpaperEndpoint = Depends(request_client), ): func: Callable[..., Coroutine] = getattr(endpoint, type) return await func(**exclude_params(func, request.query_params)) @router.get(EndpointsType.wallpaper) async def wallpaper( category: WallpaperCategoryType, limit: int = 20, skip: int = 0, adult: bool = True, order: WallpaperOrderType = WallpaperOrderType.hot, endpoint: WallpaperEndpoint = Depends(request_client), ): """ ## Name: `wallpaper` > 横版壁纸 --- ### Required: - ***WallpaperCategoryType*** **`category` - Description: 壁纸分类 --- ### Optional: - ***int*** `limit` = `20` - Description: 指定返回结果数量, 范围[20, 49] - ***int*** `skip` = `0` - Description: 跳过的壁纸数 - ***bool*** `adult` = `true` - Description: NSFW开关, 没太大效果 - ***OrderType*** `order` = `OrderType.hot` - Description: 搜索结果排序 """ return await endpoint.wallpaper( category=category, limit=limit, skip=skip, adult=adult, order=order, ) @router.get(EndpointsType.vertical) async def vertical( category: WallpaperCategoryType, limit: int = 20, skip: int = 0, adult: bool = True, order: WallpaperOrderType = WallpaperOrderType.hot, endpoint: WallpaperEndpoint = Depends(request_client), ): """ ## Name: `vertical` > 竖版壁纸 --- ### Required: - ***WallpaperCategoryType*** **`category` - Description: 壁纸分类 --- ### Optional: - ***int*** `limit` = `20` - Description: 指定返回结果数量, 范围[20, 49] - ***int*** `skip` = `0` - Description: 跳过的壁纸数 - ***bool*** `adult` = `true` - Description: NSFW开关, 没太大效果 - ***OrderType*** `order` = `OrderType.hot` - Description: 搜索结果排序 """ return await endpoint.vertical( category=category, limit=limit, skip=skip, adult=adult, order=order, )
class TextEditor: _content = '' def type(self, words): self._content = self._content + ' ' + words def get_content(self): return self._content.strip() editor = TextEditor() editor.type('This is the first sentence') editor.type('This is the second.') print(editor.get_content())
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Internationalization helpers.""" import gettext _DEFAULT_LANGUAGE_CODE = 'en-US' _LOCALE_DOMAIN = 'voice-recognizer' _language_code = _DEFAULT_LANGUAGE_CODE _locale_dir = None def set_locale_dir(locale_dir): """Sets the directory that contains the language bundles. This is only required if you call set_language_code with gettext_install=True. """ global _locale_dir if not locale_dir: raise ValueError('locale_dir must be valid') _locale_dir = locale_dir def set_language_code(code, gettext_install=False): """Set the BCP-47 language code that the speech systems should use. Args: gettext_install: if True, gettext's _() will be installed in as a builtin. As this has global effect, it should only be done by applications. """ global _language_code _language_code = code.replace('_', '-') if gettext_install: if not _locale_dir: raise ValueError('locale_dir is not set. Please call set_locale_dir().') language_id = code.replace('-', '_') t = gettext.translation(_LOCALE_DOMAIN, _locale_dir, [language_id], fallback=True) t.install() def get_language_code(): """Returns the BCP-47 language code that the speech systems should use. We don't use the system locale because the Assistant API only supports en-US at launch, so that should be used by default in all environments. """ return _language_code
# Escreva um programa que leia dois números e mostre uma mensagem na tela: # - O primeiro valor é maior # - o segundo valor é maior # - Não exxiste valor maior, os dois são iguais n1 = float(input('Digite o 1° número: ')) n2 = float(input('Digite o 2° número: ')) if n1 > n2: print('{} é maior que {}.'.format(n1, n2)) elif n1 < n2: print('{} é maior que {}.'.format(n2, n1)) else: print('{} é igual a {}.'.format(n1, n2))
from osgeo import ogr, osr databaseServer = "localhost" databaseName = "te_data" databaseUser = "postgres" databasePW = "123456" connString = "PG: host=%s dbname=%s user=%s password=%s" % (databaseServer,databaseName,databaseUser,databasePW) def GetPGLayer( lyr_name ): conn = ogr.Open(connString) lyr = conn.GetLayer( lyr_name ) # feature_count = lyr.GetFeatureCount() # create long line: line = ogr.Geometry(ogr.wkbLineString) for f in lyr: geom = f.GetGeometryRef() line.AddPoint(geom.GetX(), geom.GetY()) # get current layer srs srs = lyr.GetSpatialRef() # out layer name out_layer_name = "line_test" # Create a layer conn.CreateLayer(out_layer_name, geom_type=ogr.wkbLineString, srs=srs, options=['OVERWRITE=YES']) # Get Created layer lyr = conn.GetLayer( out_layer_name ) # Add an ID field # idField = ogr.FieldDefn("id", ogr.OFTInteger) # lyr.CreateField(idField) # Create the feature and set values featureDefn = lyr.GetLayerDefn() feature = ogr.Feature(featureDefn) feature.SetGeometry(line) # feature.SetField("id", 1) # Start transaction lyr.StartTransaction() lyr.CreateFeature(feature) # Commit Transaction lyr.CommitTransaction() feature = None # Delete Layer # conn.DeleteLayer(lyr_name) # Close connection conn = None # lyr_name = 'pharmacies' # lyr = GetPGLayer(lyr_name)
def isPalindrome(string): # Write your code here. i =0 while (i < len(string)//2): if string[i]!=string[-i-1]: return False else: i += 1 return True string = "abcdefghhgfedcba" print(isPalindrome(string)) string = "abcdefgghgfedcba" print(isPalindrome(string))
from ..registry import DETECTORS from .two_stage import TwoStageDetector @DETECTORS.register_module class FasterRCNN(TwoStageDetector): def __init__(self, backbone, rpn_head, bbox_roi_extractor, bbox_head, train_cfg, test_cfg, neck=None, shared_head=None, pretrained=None): super(FasterRCNN, self).__init__( backbone=backbone, neck=neck, shared_head=shared_head, rpn_head=rpn_head, bbox_roi_extractor=bbox_roi_extractor, bbox_head=bbox_head, train_cfg=train_cfg, test_cfg=test_cfg, pretrained=pretrained)
#!python3 import subprocess from typing import Tuple, List, Dict, Union from magLabUtilities.parametrictestutilities.testmanager import TestCase class GeometryGenerator: @staticmethod def fromScript(scriptFP:str, overrideParameterList:List[Tuple[str,Union[str,int,float]]]): cmdString = '' cmdList = [] for overrideParameter in overrideParameterList: if isinstance(overrideParameter[1], str): cmdString += r'%s = \'%s\'\n' % (overrideParameter[0], overrideParameter[1]) cmdList.append('%s = \'%s\'' % (overrideParameter[0], overrideParameter[1])) elif isinstance(overrideParameter[1], int): cmdString += r'%s = %d\n' % (overrideParameter[0], overrideParameter[1]) cmdList.append('%s = %d' % (overrideParameter[0], overrideParameter[1])) elif isinstance(overrideParameter[1], float): cmdString += r'%s = %f\n' % (overrideParameter[0], overrideParameter[1]) cmdList.append('%s = %f' % (overrideParameter[0], overrideParameter[1])) subprocess.run(['py', '-2', scriptFP, *cmdList]) @staticmethod def fromTestCase(testCase:TestCase, processParameterList:List[str], scriptFP:str): overrideParameterList = [] overrideParameterList.append(('unvFD', testCase.caseFD)) for processParameter in processParameterList: coord = testCase.coordDict[processParameter] overrideParameterList.append((coord.name, coord.value)) GeometryGenerator.fromScript(scriptFP, overrideParameterList)
__author__ = 'Qiao Zhang' from tianyancha.tianyancha import Tianyancha from tianyancha.tianyancha import WriterJson
""" Unit tests for the cluster renderer """ from __future__ import absolute_import from __future__ import unicode_literals import unittest from .. import clusterRenderer from ... import utils from ....filtering import clusters from ....filtering.filters import clusterFilter from ....system import lattice class TestClusterRenderer(unittest.TestCase): """ Test the cluster renderer """ def setUp(self): """ Called before each test """ # lattice self.lattice = lattice.Lattice() self.lattice.addAtom("He", [0, 0, 0], 0) self.lattice.addAtom("He", [0, 0, 8], 0) self.lattice.addAtom("He", [3, 0, 0], 0) self.lattice.addAtom("He", [0, 11, 22], 0) self.lattice.addAtom("He", [4, 7, 1], 0) self.lattice.addAtom("He", [1.5, 3, 0], 0) self.lattice.addAtom("He", [0, 4, 30], 0) self.lattice.addAtom("He", [1.5, 1.5, 3], 0) self.lattice.addAtom("He", [99, 99, 99], 0) # reference self.ref = lattice.Lattice() self.ref.addAtom("He", [0, 0, 0], 0) self.ref.addAtom("He", [0, 0, 8], 0) self.ref.addAtom("He", [3, 0, 0], 0) self.ref.addAtom("He", [0, 11, 22], 0) self.ref.addAtom("He", [4, 7, 1], 0) self.ref.addAtom("He", [1.5, 3, 0], 0) self.ref.addAtom("He", [0, 4, 30], 0) self.ref.addAtom("He", [1.5, 1.5, 3], 0) self.ref.addAtom("He", [99, 99, 99], 0) # cluster list cluster = clusters.AtomCluster(self.lattice) cluster.addAtom(0) cluster.addAtom(2) cluster.addAtom(5) cluster.addAtom(7) self.atomClusters = [cluster] cluster = clusters.DefectCluster(self.lattice, self.ref) cluster.addInterstitial(2) cluster.addInterstitial(5) cluster.addVacancy(0) cluster.addVacancy(7) self.defectClusters = [cluster] # settings self.settings = clusterFilter.ClusterFilterSettings() def tearDown(self): """ Called after each test """ # remove refs self.lattice = None self.ref = None self.atomClusters = None self.defectClusters = None self.settings = None def test_clusterRendererAtoms(self): """ Cluster renderer (atoms) """ # run the renderer renderer = clusterRenderer.ClusterRenderer() renderer.render(self.atomClusters, self.settings, refState=None) # check result is correct type self.assertIsInstance(renderer.getActor(), utils.ActorObject) def test_clusterRendererDefects(self): """ Cluster renderer (defects) """ # run the renderer renderer = clusterRenderer.ClusterRenderer() renderer.render(self.defectClusters, self.settings, refState=self.ref) # check result is correct type self.assertIsInstance(renderer.getActor(), utils.ActorObject)
#!/usr/bin/python # # Copyright (C) 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gdata.base.service import gdata.service try: from xml.etree import ElementTree except ImportError: from elementtree import ElementTree import atom import gdata.base # Demonstrates queries to the itemtypes feed for specified locale. gb_client = gdata.base.service.GBaseService() locale = raw_input('Please enter locale (ex: en_US): ') q = gdata.base.service.BaseQuery() q.feed = '/base/feeds/itemtypes/%s' % locale print q.ToUri() feed = gb_client.QueryItemTypesFeed(q.ToUri()) print feed.title.text for entry in feed.entry: print '\t' + entry.title.text for attr in entry.attributes.attribute: print '\t\tAttr name:%s, type:%s' % (attr.name, attr.type)
import os def read_file(file_path, split=False): """Read the contents of a file from disk. Args: file_name (string): full path to file on disk """ data = None if os.path.isfile(file_path): with open(file_path, 'r') as fs: data = fs.read().strip('\n') if split: data = data.split('\n') return data def repo_location(): return os.path.expanduser('~/.dotfiles') VERSION = read_file(os.path.join(os.path.dirname(os.path.abspath(__file__)), 'VERSION'))
""" Runs a series of maintenance operations on the collection of entry files, updating the table of content files for each category as well as creating a statistics file. Counts the number of records each sub-folder and updates the overview. Sorts the entries in the contents files of each sub folder alphabetically. This script runs with Python 3, it could also with Python 2 with some minor tweaks probably. """ import re import urllib.request import http.client import datetime import json import textwrap from utils.utils import * TOC = '_toc.md' def get_category_paths(): """ Returns all sub folders of the games path. """ return [os.path.join(games_path, x) for x in os.listdir(games_path) if os.path.isdir(os.path.join(games_path, x))] def get_entry_paths(category_path): """ Returns all files of a category path, except for '_toc.md'. """ return [os.path.join(category_path, x) for x in os.listdir(category_path) if x != TOC and os.path.isfile(os.path.join(category_path, x))] def extract_overview_for_toc(file): """ Parses a file for some interesting fields and concatenates the content. To be displayed after the game name in the category TOCs. """ info = infos[file] output = [] if 'code language' in info: output.extend(info['code language']) if 'code license' in info: output.extend(info['code license']) # state if 'state' in info: output.extend(info['state']) output = ", ".join(output) return output def update_readme(): """ Recounts entries in sub categories and writes them to the readme. Also updates the _toc files in the categories directories. Note: The Readme must have a specific structure at the beginning, starting with "# Open Source Games" and ending on "A collection.." Needs to be performed regularly. """ print('update readme file') # read readme readme_text = read_text(readme_file) # compile regex for identifying the building blocks regex = re.compile(r"(.*?)(\[comment\]: # \(start.*?end of autogenerated content\))(.*)", re.DOTALL) # apply regex matches = regex.findall(readme_text) assert len(matches) == 1 matches = matches[0] start = matches[0] end = matches[2] # get sub folders category_paths = get_category_paths() # assemble paths toc_paths = [os.path.join(path, TOC) for path in category_paths] # get titles (discarding first two ("# ") and last ("\n") characters) category_titles = [read_first_line(path)[2:-1] for path in toc_paths] # get number of files (minus 1 for the already existing TOC file) in each sub folder n_entries = [len(os.listdir(path)) - 1 for path in category_paths] # combine titles, category names, numbers in one list info = zip(category_titles, [os.path.basename(path) for path in category_paths], n_entries) # sort according to sub category title (should be unique) info = sorted(info, key=lambda x:x[0]) # assemble output update = ['- **[{}](games/{}/{})** ({})\n'.format(entry[0], entry[1], TOC, entry[2]) for entry in info] update = "{} entries\n".format(sum(n_entries)) + "".join(update) # insert new text in the middle text = start + "[comment]: # (start of autogenerated content, do not edit)\n" + update + "\n[comment]: # (end of autogenerated content)" + end # write to readme write_text(readme_file, text) def update_category_tocs(): """ Lists all entries in all sub folders and generates the list in the toc file. Needs to be performed regularly. """ # get category paths category_paths = get_category_paths() # for each category for category_path in category_paths: print('generate toc for {}'.format(os.path.basename(category_path))) # read toc header line toc_file = os.path.join(category_path, TOC) toc_header = read_first_line(toc_file) # stays as is # get paths of all entries in this category entry_paths = get_entry_paths(category_path) # get titles (discarding first two ("# ") and last ("\n") characters) titles = [read_first_line(path)[2:-1] for path in entry_paths] # get more interesting info more = [extract_overview_for_toc(path) for path in entry_paths] # combine name, file name and more info info = zip(titles, [os.path.basename(path) for path in entry_paths], more) # sort according to entry title (should be unique) info = sorted(info, key=lambda x:x[0]) # assemble output update = ['- **[{}]({})** ({})\n'.format(*entry) for entry in info] update = "".join(update) # combine with toc header text = toc_header + '\n' + "[comment]: # (start of autogenerated content, do not edit)\n" + update + "\n[comment]: # (end of autogenerated content)" # write to toc file with open(toc_file, mode='w', encoding='utf-8') as f: f.write(text) def check_validity_external_links(): """ Checks all external links it can find for validity. Prints those with non OK HTTP responses. Does only need to be run from time to time. """ # regex for finding urls (can be in <> or in () or a whitespace regex = re.compile(r"[\s\n]<(http.+?)>|\]\((http.+?)\)|[\s\n](http[^\s\n,]+)") # count number_checked_links = 0 # get category paths category_paths = get_category_paths() # for each category for category_path in category_paths: print('check links for {}'.format(os.path.basename(category_path))) # get entry paths entry_paths = get_entry_paths(category_path) # for each entry for entry_path in entry_paths: # read entry content = read_text(entry_path) # apply regex matches = regex.findall(content) # for each match for match in matches: # for each possible clause for url in match: # if there was something if url: try: # without a special header, frequent 403 responses occur req = urllib.request.Request(url, headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64)'}) urllib.request.urlopen(req) except urllib.error.HTTPError as e: print("{}: {} - {}".format(os.path.basename(entry_path), url, e.code)) except urllib.error.URLError as e: print("{}: {} - {}".format(os.path.basename(entry_path), url, e.reason)) except http.client.RemoteDisconnected: print("{}: {} - disconnected without response".format(os.path.basename(entry_path), url)) number_checked_links += 1 if number_checked_links % 50 == 0: print("{} links checked".format(number_checked_links)) print("{} links checked".format(number_checked_links)) def check_template_leftovers(): """ Checks for template leftovers. Should be run only occasionally. """ # load template and get all lines text = read_text(os.path.join(games_path, 'template.md')) text = text.split('\n') check_strings = [x for x in text if x and not x.startswith('##')] # get category paths category_paths = get_category_paths() # for each category for category_path in category_paths: # get paths of all entries in this category entry_paths = get_entry_paths(category_path) for entry_path in entry_paths: # read it line by line content = read_text(entry_path) for check_string in check_strings: if content.find(check_string) >= 0: print('{}: found {}'.format(os.path.basename(entry_path), check_string)) def parse_entry(content): """ Returns a dictionary of the features of the content """ info = {} # read title regex = re.compile(r"^# (.*)") # start of content, starting with "# " and then everything until the end of line matches = regex.findall(content) assert len(matches) == 1 assert matches[0] info['title'] = matches[0] # read description regex = re.compile(r"^.*\n\n_(.*)_\n") # third line from top, everything between underscores matches = regex.findall(content) assert len(matches) == 1, info['title'] assert matches[0] info['description'] = matches[0] # first read all field names regex = re.compile(r"^- (.*?): ", re.MULTILINE) # start of each line having "- ", then everything until a colon, then ": " fields = regex.findall(content) # check that essential fields are there essential_fields = ['Home', 'State', 'Code repository', 'Code language'] for field in essential_fields: if field not in fields: print('Error: Essential field "{}" missing in entry "{}"'.format(field, info['title'])) return info # so that the remaining entries can also be parsed # check that all fields are valid fields and are existing in that order valid_fields = ('Home', 'Media', 'State', 'Play', 'Download', 'Platform', 'Keywords', 'Code repository', 'Code language', 'Code license', 'Code dependencies', 'Assets license', 'Build system', 'Build instructions') index = 0 for field in fields: while index < len(valid_fields) and field != valid_fields[index]: index += 1 if index == len(valid_fields): print('Error: Field "{}" in entry "{}" either misspelled or in wrong order'.format(field, info['title'])) return info # so that the remaining entries can also be parsed # iterate over found fields for field in fields: regex = re.compile(r"- {}: (.*)".format(field)) matches = regex.findall(content) assert len(matches) == 1 # every field should only be present once v = matches[0] # first store as is info[field.lower()+'-raw'] = v # remove parenthesis v = re.sub(r'\([^)]*\)', '', v) # split on ',' v = v.split(',') # strip v = [x.strip() for x in v] # remove all being false (empty) v = [x for x in v if x] # if entry is of structure <..> remove <> v = [x[1:-1] if x[0] is '<' and x[-1] is '>' else x for x in v] # empty fields will not be stored if not v: continue # store in info info[field.lower()] = v # state (essential field) must contain either beta or mature but not both, but at least one v = info['state'] for t in v: if t != 'beta' and t != 'mature' and not t.startswith('inactive since '): print('Error: Unknown state tage "{}" in entry "{}"'.format(t, info['title'])) return info # so that the rest can run through if 'beta' in v != 'mature' in v: print('Error: State must be one of <"beta", "mature"> in entry "{}"'.format(info['title'])) return info # so that the rest can run through # extract inactive year phrase = 'inactive since ' inactive_year = [x[len(phrase):] for x in v if x.startswith(phrase)] assert len(inactive_year) <= 1 if inactive_year: info['inactive'] = inactive_year[0] # urls in home, download, play and code repositories must start with http or https (or git) and should not contain space for field in ['home', 'download', 'play', 'code repository']: if field in info: for url in info[field]: if not (url.startswith('http://') or url.startswith('https://') or url.startswith('git://')): print('URL "{}" in entry "{}" does not start with http'.format(url, info['title'])) if ' ' in url: print('URL "{}" in entry "{}" contains a space'.format(url, info['title'])) # github repositories should end on .git if 'code repository' in info: for repo in info['code repository']: if repo.startswith('https://github.com/') and not repo.endswith('.git'): print('Github repo {} in entry "{}" should end on .git.'.format(repo, info['title'])) # check valid platform tags valid_platforms = ('Android', 'Windows', 'Linux', 'macOS', 'Browser') if 'platform' in info: for platform in info['platform']: if platform not in valid_platforms: print('Error: invalid platform tag "{}" in entry "{}"'.format(platform, info['title'])) return info # so that the rest can run through return info def assemble_infos(): """ Parses all entries and assembles interesting infos about them. """ # get category paths category_paths = get_category_paths() # a database of all important infos about the entries infos = {} # for each category for category_path in category_paths: # get paths of all entries in this category entry_paths = get_entry_paths(category_path) # get titles (discarding first two ("# ") and last ("\n") characters) category = read_first_line(os.path.join(category_path, TOC))[2:-1] for entry_path in entry_paths: # read entry content = read_text(entry_path) # parse entry info = parse_entry(content) # add category info['category'] = category # add file information info['file'] = os.path.basename(entry_path)[:-3] # [:-3] to cut off the .md info['path'] = os.path.basename(category_path) + '/' + os.path.basename(entry_path) # add to list infos[entry_path] = info return infos def generate_statistics(): """ Generates the statistics page. Should be done every time the entries change. """ # for this function replace infos with infos.values infois = infos.values() # start the page statistics_path = os.path.join(games_path, 'statistics.md') statistics = '[comment]: # (autogenerated content, do not edit)\n# Statistics\n\n' # total number number_entries = len(infois) rel = lambda x: x / number_entries * 100 # conversion to percent statistics += 'analyzed {} entries on {}\n\n'.format(number_entries, datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) # State (beta, mature, inactive) statistics += '## State\n\n' number_state_beta = sum(1 for x in infois if 'beta' in x['state']) number_state_mature = sum(1 for x in infois if 'mature' in x['state']) number_inactive = sum(1 for x in infois if 'inactive' in x) statistics += '- mature: {} ({:.1f}%)\n- beta: {} ({:.1f}%)\n- inactive: {} ({:.1f}%)\n\n'.format(number_state_mature, rel(number_state_mature), number_state_beta, rel(number_state_beta), number_inactive, rel(number_inactive)) if number_inactive > 0: entries_inactive = [(x['title'], x['inactive']) for x in infois if 'inactive' in x] entries_inactive.sort(key=lambda x: x[0]) # first sort by name entries_inactive.sort(key=lambda x: x[1], reverse=True) # then sort by inactive year (more recently first) entries_inactive = ['{} ({})'.format(*x) for x in entries_inactive] statistics += '##### Inactive State\n\n' + ', '.join(entries_inactive) + '\n\n' # Language statistics += '## Code Languages\n\n' field = 'code language' # those without language tag # TODO the language tag is now an essential field, this cannot happen anymore # number_no_language = sum(1 for x in infois if field not in x) # if number_no_language > 0: # statistics += 'Without language tag: {} ({:.1f}%)\n\n'.format(number_no_language, rel(number_no_language)) # entries_no_language = [x['title'] for x in infois if field not in x] # entries_no_language.sort() # statistics += ', '.join(entries_no_language) + '\n\n' # get all languages together languages = [] for info in infois: if field in info: languages.extend(info[field]) unique_languages = set(languages) unique_languages = [(l, languages.count(l) / len(languages)) for l in unique_languages] unique_languages.sort(key=lambda x: x[0]) # first sort by name unique_languages.sort(key=lambda x: x[1], reverse=True) # then sort by occurrence (highest occurrence first) unique_languages = ['- {} ({:.1f}%)\n'.format(x[0], x[1]*100) for x in unique_languages] statistics += '##### Language frequency\n\n' + ''.join(unique_languages) + '\n' # Licenses statistics += '## Code licenses\n\n' field = 'code license' # those without license number_no_license = sum(1 for x in infois if field not in x) if number_no_license > 0: statistics += 'Without license tag: {} ({:.1f}%)\n\n'.format(number_no_license, rel(number_no_license)) entries_no_license = [x['title'] for x in infois if field not in x] entries_no_license.sort() statistics += ', '.join(entries_no_license) + '\n\n' # get all licenses together licenses = [] for info in infois: if field in info: licenses.extend(info[field]) unique_licenses = set(licenses) unique_licenses = [(l, licenses.count(l) / len(licenses)) for l in unique_licenses] unique_licenses.sort(key=lambda x: x[0]) # first sort by name unique_licenses.sort(key=lambda x: -x[1]) # then sort by occurrence (highest occurrence first) unique_licenses = ['- {} ({:.1f}%)\n'.format(x[0], x[1]*100) for x in unique_licenses] statistics += '##### Licenses frequency\n\n' + ''.join(unique_licenses) + '\n' # Keywords statistics += '## Keywords\n\n' field = 'keywords' # get all keywords together keywords = [] for info in infois: if field in info: keywords.extend(info[field]) unique_keywords = set(keywords) unique_keywords = [(l, keywords.count(l) / len(keywords)) for l in unique_keywords] unique_keywords.sort(key=lambda x: x[0]) # first sort by name unique_keywords.sort(key=lambda x: -x[1]) # then sort by occurrence (highest occurrence first) unique_keywords = ['- {} ({:.1f}%)'.format(x[0], x[1]*100) for x in unique_keywords] statistics += '##### Keywords frequency\n\n' + '\n'.join(unique_keywords) + '\n\n' # no download or play field statistics += '## Entries without download or play fields\n\n' entries = [] for info in infois: if 'download' not in info and 'play' not in info: entries.append(info['title']) entries.sort() statistics += '{}: '.format(len(entries)) + ', '.join(entries) + '\n\n' # code hosted not on github, gitlab, bitbucket, launchpad, sourceforge popular_code_repositories = ('github.com', 'gitlab.com', 'bitbucket.org', 'code.sf.net', 'code.launchpad.net') statistics += '## Entries with a code repository not on a popular site\n\n' entries = [] field = 'code repository' for info in infois: if field in info: popular = False for repo in info[field]: for popular_repo in popular_code_repositories: if popular_repo in repo: popular = True break # if there were repositories, but none popular, add them to the list if not popular: entries.append(info['title']) # print(info[field]) entries.sort() statistics += '{}: '.format(len(entries)) + ', '.join(entries) + '\n\n' # Build systems: statistics += '## Build systems\n\n' field = 'build system' # get all build systems together build_systems = [] for info in infois: if field in info: build_systems.extend(info[field]) statistics += 'Build systems information available for {:.1f}% of all projects.\n\n'.format(len(build_systems) / len(infois) * 100) unique_build_systems = set(build_systems) unique_build_systems = [(l, build_systems.count(l) / len(build_systems)) for l in unique_build_systems] unique_build_systems.sort(key=lambda x: x[0]) # first sort by name unique_build_systems.sort(key=lambda x: -x[1]) # then sort by occurrence (highest occurrence first) unique_build_systems = ['- {} ({:.1f}%)'.format(x[0], x[1]*100) for x in unique_build_systems] statistics += '##### Build systems frequency ({})\n\n'.format(len(build_systems)) + '\n'.join(unique_build_systems) + '\n\n' # C, C++ projects without build system information c_cpp_project_without_build_system = [] for info in infois: if field not in info and ('C' in info['code language'] or 'C++' in info['code language']): c_cpp_project_without_build_system.append(info['title']) c_cpp_project_without_build_system.sort() statistics += '##### C and C++ projects without build system information ({})\n\n'.format(len(c_cpp_project_without_build_system)) + ', '.join(c_cpp_project_without_build_system) + '\n\n' # C, C++ projects with build system information but without CMake as build system c_cpp_project_not_cmake = [] for info in infois: if field in info and 'CMake' in info[field] and ('C' in info['code language'] or 'C++' in info['code language']): c_cpp_project_not_cmake.append(info['title']) c_cpp_project_not_cmake.sort() statistics += '##### C and C++ projects with a build system different from CMake ({})\n\n'.format(len(c_cpp_project_not_cmake)) + ', '.join(c_cpp_project_not_cmake) + '\n\n' # Platform statistics += '## Platform\n\n' field = 'platform' # get all platforms together platforms = [] for info in infois: if field in info: platforms.extend(info[field]) statistics += 'Platform information available for {:.1f}% of all projects.\n\n'.format(len(platforms) / len(infois) * 100) unique_platforms = set(platforms) unique_platforms = [(l, platforms.count(l) / len(platforms)) for l in unique_platforms] unique_platforms.sort(key=lambda x: x[0]) # first sort by name unique_platforms.sort(key=lambda x: -x[1]) # then sort by occurrence (highest occurrence first) unique_platforms = ['- {} ({:.1f}%)'.format(x[0], x[1]*100) for x in unique_platforms] statistics += '##### Platforms frequency\n\n' + '\n'.join(unique_platforms) + '\n\n' with open(statistics_path, mode='w', encoding='utf-8') as f: f.write(statistics) def export_json(): """ Parses all entries, collects interesting info and stores it in a json file suitable for displaying with a dynamic table in a browser. """ # make database out of it db = {'headings': ['Game', 'Description', 'Download', 'Category', 'State', 'Keywords', 'Source']} entries = [] for info in infos.values(): # game & description entry = ['{} (<a href="{}">home</a>, <a href="{}">entry</a>)'.format(info['title'], info['home'][0], r'https://github.com/Trilarion/opensourcegames/blob/master/games/' + info['path']), textwrap.shorten(info['description'], width=60, placeholder='..')] # download field = 'download' if field in info and info[field]: entry.append('<a href="{}">Link</a>'.format(info[field][0])) else: entry.append('') # category entry.append(info['category']) # state (field state is essential) entry.append('{} / {}'.format(info['state'][0], 'inactive since {}'.format(info['inactive']) if 'inactive' in info else 'active')) # keywords field = 'keywords' if field in info and info[field]: entry.append(', '.join(info[field])) else: entry.append('') # source text = [] field = 'code repository' if field in info and info[field]: text.append('<a href="{}">Source</a>'.format(info[field][0])) field = 'code language' if field in info and info[field]: text.append(', '.join(info[field])) field = 'code license' if field in info and info[field]: text.append(info[field][0]) entry.append(' - '.join(text)) # append to entries entries.append(entry) # sort entries by game name entries.sort(key=lambda x: x[0]) db['data'] = entries # output json_path = os.path.join(games_path, os.path.pardir, 'docs', 'data.json') text = json.dumps(db, indent=1) write_text(json_path, text) def git_repo(repo): """ Tests if a repo is a git repo, then returns the repo url, possibly modifying it slightly. """ # generic (https://*.git) or (http://*.git) ending on git if (repo.startswith('https://') or repo.startswith('http://')) and repo.endswith('.git'): return repo # for all others we just check if they start with the typical urls of git services services = ['https://git.tuxfamily.org/', 'http://git.pond.sub.org/', 'https://gitorious.org/', 'https://git.code.sf.net/p/'] for service in services: if repo.startswith(service): return repo # the rest is ignored return None def svn_repo(repo): """ """ if repo.startswith('https://svn.code.sf.net/p/') and repo.endswith('/code/'): return repo if repo.startswith('http://svn.uktrainsim.com/svn/'): return repo if repo is 'https://rpg.hamsterrepublic.com/source/wip': return repo # not svn return None def hg_repo(repo): """ """ if repo.startswith('https://bitbucket.org/') and not repo.endswith('.git'): return repo if repo.startswith('http://hg.'): return repo # not hg return None def bzr_repo(repo): if repo.startswith('https://code.launchpad.net/'): return repo # not bzr return None def update_primary_code_repositories(): primary_repos = {'git':[],'svn':[],'hg':[],'bzr':[]} unconsumed_entries = [] # for every entry filter those that are known git repositories (add additional repositories) for info in infos.values(): field = 'code repository-raw' # if field 'Code repository' is available if field in info: consumed = False repos = info[field] if repos: # split at comma repos = repos.split(',') # keep the first and all others containing "(+)" additional_repos = [x for x in repos[1:] if "(+)" in x] repos = repos[0:1] repos.extend(additional_repos) for repo in repos: # remove parenthesis and strip of white spaces repo = re.sub(r'\([^)]*\)', '', repo) repo = repo.strip() url = git_repo(repo) if url: primary_repos['git'].append(url) consumed = True continue url = svn_repo(repo) if url: primary_repos['svn'].append(url) consumed = True continue url = hg_repo(repo) if url: primary_repos['hg'].append(url) consumed=True continue url = bzr_repo(repo) if url: primary_repos['bzr'].append(url) consumed=True continue if not consumed: unconsumed_entries.append([info['title'], info[field]]) # print output #if info['code repository']: # print('Entry "{}" unconsumed repo: {}'.format(info['title'], info[field])) #if not info['code repository']: # print('Entry "{}" unconsumed repo: {}'.format(info['title'], info[field])) # sort them alphabetically (and remove duplicates) for k, v in primary_repos.items(): primary_repos[k] = sorted(set(v)) # write them to tools/git json_path = os.path.join(games_path, os.path.pardir, 'tools', 'archives.json') text = json.dumps(primary_repos, indent=1) write_text(json_path, text) if __name__ == "__main__": # paths games_path = os.path.realpath(os.path.join(os.path.dirname(__file__), os.path.pardir, 'games')) readme_file = os.path.realpath(os.path.join(games_path, os.pardir, 'README.md')) # assemble info infos = assemble_infos() # recount and write to readme update_readme() # generate list in toc files update_category_tocs() # generate report generate_statistics() # update database for html table export_json() # check for unfilled template lines check_template_leftovers() # check external links (only rarely) # check_validity_external_links() # collect list of primary code repositories update_primary_code_repositories()
# Filename: config.py """ Globe Indexer Configuration Module """ # Original data set DATA_SET_URL = 'http://download.geonames.org/export/dump/cities1000.zip' # Download file DATA_CHUNK_SIZE = 1024 # For proximity search limit DEFAULT_PROXIMITY_LIMIT = 5 # The radius of earth in kilometers EARTH_RADIUS = 6371 # New line character NEW_LINE = '\n'
# -*- coding: utf-8 -*- # Copyright (c) 2013 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Unittests for cros.""" from __future__ import print_function import sys from chromite.lib import commandline from chromite.lib import cros_test_lib from chromite.scripts import cros assert sys.version_info >= (3, 6), 'This module requires Python 3.6+' class RunScriptTest(cros_test_lib.MockTempDirTestCase): """Test the main functionality.""" def setUp(self): self.PatchObject(cros, '_RunSubCommand', autospec=True) def testDefaultLogLevel(self): """Test that the default log level is set to notice.""" arg_parser = self.PatchObject(commandline, 'ArgumentParser', return_value=commandline.ArgumentParser()) cros.GetOptions() arg_parser.assert_called_with(caching=True, default_log_level='notice') def testSubcommand(self): """Test parser when given a subcommand.""" parser = cros.GetOptions('lint') opts = parser.parse_args(['lint']) self.assertEqual(opts.subcommand, 'lint')
#!/usr/bin/env python3 import socket, time HOST = '127.0.0.1' # Standard loopback interface address (localhost) PORT = 10047 # Port to listen on (non-privileged ports are > 1023) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.bind((HOST, PORT)) s.listen() print("Waiting for connection...") conn, addr = s.accept() with conn: print('Connected by', addr) while True: data = conn.recv(1024) print("Got msg:", data.decode('utf-8')) continue time.sleep(1) msg = "Das msg" s.sendall(bytes(msg, 'utf-8'))
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Nets for predicting 2D lines.""" import tensorflow as tf # LDIF is an internal package, should be imported last. # pylint: disable=g-bad-import-order from ldif.util import line_util from ldif.util import net_util # pylint: enable=g-bad-import-order def lstm_lines_transcoder(inputs, model_config): """A model that uses an LSTM to predict a sequence of lines.""" batch_size = model_config.hparams.bs height = model_config.hparams.h width = model_config.hparams.w conv_layer_depths = [16, 32, 64, 128, 128] number_of_lines = model_config.hparams.sc # Was 4! number_of_layers = model_config.hparams.cc line_embedding_size = 5 encoded_image_length = 1024 # embedding_size = line_embedding_size * number_of_lines lstm_size = model_config.hparams.hlw reencode_partial_outputs = True encoded_image, _, _ = net_util.encode( inputs, model_config, conv_layer_depths=conv_layer_depths, fc_layer_depths=[encoded_image_length], name='Encoder') if reencode_partial_outputs: encoded_partial_output, _, _ = net_util.encode( tf.ones_like(inputs), model_config, conv_layer_depths=conv_layer_depths, fc_layer_depths=[encoded_image_length], name='OutputReencoder') else: encoded_partial_output = None lstm = tf.contrib.rnn.MultiRNNCell([ tf.contrib.rnn.BasicLSTMCell(lstm_size) for _ in range(number_of_layers) ]) state = lstm.zero_state(batch_size, tf.float32) partial_images = [] for i in range(number_of_lines): if reencode_partial_outputs: embedding_in = tf.concat([encoded_image, encoded_partial_output], axis=-1) else: embedding_in = encoded_image output, state = lstm(embedding_in, state) line_parameters = tf.contrib.layers.fully_connected( inputs=output, num_outputs=line_embedding_size, activation_fn=None, normalizer_fn=None) current_image = line_util.network_line_parameters_to_line( line_parameters, height, width) current_image = 2.0 * current_image - 1.0 if partial_images: current_image = tf.minimum(partial_images[-1], current_image) partial_images.append(current_image) if reencode_partial_outputs and i < number_of_lines - 1: encoded_partial_output, _, _ = net_util.encode( current_image, model_config, conv_layer_depths=conv_layer_depths, fc_layer_depths=[encoded_image_length], name='OutputReencoder') return partial_images def bag_of_lines_transcoder(inputs, model_config): """A model that outputs K lines all at once to replicate a target shape.""" batch_size = model_config.hparams.bs height = model_config.hparams.h width = model_config.hparams.w conv_layer_depths = [16, 32, 64, 128, 128] number_of_lines = 4 line_embedding_size = 5 embedding_size = line_embedding_size * number_of_lines z, _, _ = net_util.encode( inputs, model_config, conv_layer_depths=conv_layer_depths, fc_layer_depths=[embedding_size], name='Encoder') z = tf.reshape(z, [batch_size, number_of_lines, line_embedding_size]) # Code is not batched: batch_items = [] with tf.name_scope('Decoder'): for bi in range(batch_size): line_images = [] for i in range(number_of_lines): line_parameters = z[bi, i, :] line_image = line_util.network_line_parameters_to_line( line_parameters, height, width) line_images.append(line_image) batch_items.append(line_util.union_of_line_drawings(line_images)) decoded_batch = tf.stack(batch_items, axis=0) # Lines are in the range [0,1], so rescale to [-1, 1]. return 2.0 * decoded_batch - 1.0
import sys import os import yaml class SingleCrawlerManifestManager(object): """ """ required_files = ["spider_manifest.json", "spider_manifest.py"] def __init__(self, config_path=None): print("Setting ETI path as: {}".format(config_path)) self.config_path = config_path def import_files(self): # print("self.manifest_path", self.config_path) self.spider_config = yaml.load(open("{}/spider_manifest.yml".format(self.config_path))) sys.path.append(self.config_path) import spider_transformations self.cti_transformations_module = spider_transformations # print("cti_manifest is {}".format(self.spider_config)) # print("cti_transformations_module is {}".format(self.cti_transformations_module)) def validate_cti_path_and_files(self): errors = [] try: files_in_path = os.listdir(self.config_path) except Exception as e: errors.append("No such path exist {}".format(self.config_path)) files_in_path = [] if errors == 0: for required_file in self.required_files: if required_file not in files_in_path: errors.append("{} file not in the path {}".format(required_file, self.config_path)) return errors def import_cti_transformations(self): for tranformation in self.spider_config.get("transformations", []): method_to_call = getattr(self.cti_transformations_module, tranformation.get("transformation_fn")) tranformation['transformation_fn'] = method_to_call def get_manifest(self): errors = self.validate_cti_path_and_files() if len(errors) > 0: return None, errors self.import_files() self.import_cti_transformations() return self.spider_config, errors
L = [100] L.append(200) print L
#!/usr/bin/env python """ Determines the frequencies of residue pair contacts in molecular dynamics simulations. Given one or more MDContact outputs, this script determines the frequency of each unique interaction of the form (itype, residue 1, residue2), weighted by number of frames, across all inputs. The inputs are one or more MDContact output file paths as well as an output path. The user may also specify a subset of interaction types to compute frequencies for. The user may additionally provide a label file to convert residue labellings (typically for the use of aligning sequences for performing frequency comparisons with other trajectories). The output is a single tsv file with each row indicating residue id 1, residue id 2, and contact frequency. """ from __future__ import division from collections import defaultdict import sys import argparse def atomid_to_resid(atom): return atom[0:atom.rfind(":")] # return ':'.join(atom.split(':')[1:3]) def gen_counts(input_lines, interaction_types, residuelabels=None): """ Parse each line in `input_lines` as a line from MDContacts and return interaction-counts for each residue pair. If `residuelabels` is defined it is used to modify residue identifiers and to filter out residues not indicated. For example: inputs = [ "# total_frames: 3", "\t".join(["0", "hbbb", "A:ALA:1:N", "A:ARG:4:O"]), "\t".join(["0", "vdw", "A:ALA:1:CB", "A:ARG:4:CA"]), "\t".join(["1", "vdw", "A:ALA:1:N", "A:CYS:5:CA"]), "\t".join(["2", "hbbb", "A:THR:2:N", "A:CYS:5:O"]), "\t".join(["2", "hbss", "A:ALA:1:N", "A:CYS:5:O"]) ] labels = {"A:ALA:1": "A1", "A:ARG:4": "R4", "A:CYS:5": "C5"} # Only consider hbbb and vdw, filter away THR, and map to single-letter labels gen_counts(inputs, ["hbbb", "vdw"], labels) # Returns: { ("A1", "R4"): 1, ("A1", "C5"): 1 } Parameters ---------- input_lines: Iterable[str] Interactions formatted as MDContacts output, e.g. ["0\thbbb\tA:ALA:1:N\tA:ARG:4:H", ...] interaction_types: list of str Which interaction types to consider residuelabels: dict of (str: str) Remaps and filters residuelabels, e.g. {"A:ARG:4": "R4"} Returns ------- (int, dict of (str, str): int) Total frame-count and mapping of residue-residue interactions to frame-count """ # Maps residue pairs to set of frames in which they're present rescontact_frames = defaultdict(set) total_frames = 0 for line in input_lines: line = line.strip() if "total_frames" in line: tokens = line.split(" ") total_frames = int(tokens[1][tokens[1].find(":")+1:]) if len(line) == 0 or line[0] == "#": continue tokens = line.split("\t") # Check that the interaction type is specified itype = tokens[1] if itype not in interaction_types: continue frame = int(tokens[0]) if frame + 1 > total_frames: total_frames = frame + 1 res1 = atomid_to_resid(tokens[2]) res2 = atomid_to_resid(tokens[3]) # Change residue id according to `residuelabels` or skip if any of the residues are not present if residuelabels is not None: if res1 not in residuelabels or res2 not in residuelabels: continue res1 = residuelabels[res1] res2 = residuelabels[res2] # Ensure lexicographical order of residue names if res2 < res1: res1, res2 = res2, res1 rescontact_frames[(res1, res2)].add(frame) # Insted of returning list of frames for each interaction, only return number of frames rescontact_counts = {(res1, res2): len(frames) for (res1, res2), frames in rescontact_frames.items()} return total_frames, rescontact_counts def parse_labelfile(label_file): """ Parses a label-file and returns a dictionary with the residue label mappings. Unless prepended with a comment- indicator (#), each line is assumed to have a valid residue identifier (e.g. "A:ALA:1") and a label which the residue should be mapped to (e.g. "A1"). Example: parse_labelfile(["A:ALA:1\tA1") # Returns {"A:ALA:1": "A1"} Parameters ---------- label_file: Iterable[str] Lines with tab-separated residue identifier and label Returns ------- dict of str: str Mapping from residue-id in contact-file to label of any format """ ret = {} for line in label_file: line = line.strip() # Ignore line if empty or comment if line[0] == "#" or len(line) == 0: continue tokens = line.split("\t") ret[tokens[0]] = tokens[1] return ret def gen_frequencies(count_list): """ Take a list of residue contact counts (see output of `gen_counts`) and compute total counts and frequencies. Example: clist = [ (4, {("A1", "R4"): 4, ("A1", "C5"): 3}), # First simulation has 4 frames and two contacts (3, {("A1", "R4"): 2}) # Second simulation has 3 frames and one contact ] gen_frequencies(clist) # Returns: (7, {("A1", "R4"): (6, 0.857), ("A1", "C5"): (3, 0.429)}) Parameters ---------- count_list: list of (int, dict of (str, str): int) List with individual frame counts and dictionaries mapping residue pairs to frame-counts Return ------ (int, dict of (str, str): (int, float)) Total framecount and mapping of residue ID pairs to the number of frames in which they contact and the frequency """ rescontact_count = defaultdict(int) total_frames = 0 for frames, rescount_dict in count_list: total_frames += frames for (res1, res2), count in rescount_dict.items(): rescontact_count[(res1, res2)] += count respair_freqs = {respair: (count, float(count) / total_frames) for respair, count in rescontact_count.items()} return total_frames, respair_freqs def main(): # Parse command line arguments class MyParser(argparse.ArgumentParser): def error(self, message): # Prints full program help when error occurs self.print_help(sys.stderr) sys.stderr.write('\nError: %s\n' % message) sys.exit(2) parser = MyParser(description=__doc__, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('--input_files', type=argparse.FileType('r'), required=True, nargs='+', metavar='FILE.tsv', help="Path to one or more contact-file outputs") parser.add_argument('--label_file', type=argparse.FileType('r'), required=False, metavar='FILE.tsv', help="A label file for standardizing residue names between different proteins") parser.add_argument('--output_file', type=argparse.FileType('w'), required=True, metavar='FILE.tsv', help="Path to output file") parser.add_argument('--itypes', required=False, default="all", type=str, nargs="+", metavar="ITYPE", help='Include only these interaction types in frequency computation. Valid choices are: \n' '* all (default), \n' '* sb (salt-bridges), \n' '* pc (pi-cation), \n' '* ps (pi-stacking), \n' '* ts (t-stacking), \n' '* vdw (van der Waals), \n' '* hbbb, hbsb, hbss, (hydrogen bonds with specific backbone/side-chain profile)\n' '* wb, wb2 (water-bridges and extended water-bridges) \n' '* hls, hlb (ligand-sidechain and ligand-backbone hydrogen bonds), \n' '* lwb, lwb2 (ligand water-bridges and extended water-bridges)') # results, unknown = parser.parse_known_args() args = parser.parse_args() # Update itypes if "all" is specified if "all" in args.itypes: args.itypes = ["sb", "pc", "ps", "ts", "vdw", "hb", "lhb", "hbbb", "hbsb", "hbss", "wb", "wb2", "hls", "hlb", "lwb", "lwb2"] output_file = args.output_file input_files = args.input_files itypes = args.itypes labels = parse_labelfile(args.label_file) if args.label_file else None counts = [gen_counts(input_file, itypes, labels) for input_file in input_files] total_frames, frequencies = gen_frequencies(counts) output_file.write('#\ttotal_frames:%d\tinteraction_types:%s\n' % (total_frames, ','.join(itypes))) output_file.write('#\tColumns:\tresidue_1,\tresidue_2\tframe_count\tcontact_frequency\n') for (res1, res2), (count, frequency) in frequencies.items(): output_file.write('\t'.join([res1, res2, "%.3f" % frequency]) + "\n") if __name__ == '__main__': main()
#import MySQLdb import psycopg2 import os DATABASE_URL = os.environ['DATABASE_URL'] db = psycopg2.connect(DATABASE_URL, sslmode='require') #db = psycopg2.connect(host = "localhost", user = "postgres", password = "test", database = "forensics") cursor = db.cursor() cursor.execute("SET SCHEMA '{}'".format('forensics')) sqlcmd2 = "SET search_path TO forensics;" cursor.execute(sqlcmd2) print('Switched') sql_cmd = "SELECT * FROM forensics.papers;" #sql_cmd = "select year, count(*) from papers group by year" cursor.execute(sql_cmd) resp = cursor.fetchall() print(resp) kind_list=[] for kind in range(len(resp)): print(resp[kind]) print(resp[kind][0]) kind_list.append(resp[kind][0]) print(kind_list)