content
stringlengths
5
1.05M
import FWCore.ParameterSet.Config as cms process = cms.Process("Rec") process.load("FWCore.MessageLogger.MessageLogger_cfi") process.load("CondCore.DBCommon.CondDBSetup_cfi") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(20) ) #can be 300 in that file process.source = cms.Source("PoolSource", fileNames = cms.untracked.vstring( #MC relval SINGLE MUON ###'/store/relval/CMSSW_2_1_9/RelValSingleMuPt10/GEN-SIM-DIGI-RAW-HLTDEBUG/IDEAL_V9_v2/0000/EA123BEB-9F85-DD11-AB1D-000423D9870C.root' #MC relval singlemu #'/store/relval/CMSSW_3_1_0_pre3/RelValSingleMuPt10/GEN-SIM-DIGI-RAW-HLTDEBUG/IDEAL_30X_v1/0001/581655A2-7D0A-DE11-B548-0019DB2F3F9A.root' #MC relval ttbar '/store/relval/CMSSW_3_1_0_pre3/RelValTTbar/GEN-SIM-DIGI-RAW-HLTDEBUG/IDEAL_30X_v1/0001/1EE2ECB6-170A-DE11-BE8C-0016177CA7A0.root', #'/store/relval/CMSSW_3_1_0_pre3/RelValTTbar/GEN-SIM-RECO/IDEAL_30X_v1/0001/3C8AABDF-FA0A-DE11-80A5-001D09F290BF.root' ) ) # output module # process.load("Configuration.EventContent.EventContentCosmics_cff") process.FEVT = cms.OutputModule("PoolOutputModule", process.FEVTEventContent, dataset = cms.untracked.PSet(dataTier = cms.untracked.string('RECO')), fileName = cms.untracked.string('promptrecoCosmics.root') ) process.FEVT.outputCommands.append('keep CSCDetIdCSCALCTDigiMuonDigiCollection_muonCSCDigis_MuonCSCALCTDigi_*') process.FEVT.outputCommands.append('keep CSCDetIdCSCCLCTDigiMuonDigiCollection_muonCSCDigis_MuonCSCCLCTDigi_*') process.FEVT.outputCommands.append('keep CSCDetIdCSCComparatorDigiMuonDigiCollection_muonCSCDigis_MuonCSCComparatorDigi_*') process.FEVT.outputCommands.append('keep CSCDetIdCSCCorrelatedLCTDigiMuonDigiCollection_csctfDigis_*_*') process.FEVT.outputCommands.append('keep CSCDetIdCSCCorrelatedLCTDigiMuonDigiCollection_muonCSCDigis_MuonCSCCorrelatedLCTDigi_*') process.FEVT.outputCommands.append('keep CSCDetIdCSCRPCDigiMuonDigiCollection_muonCSCDigis_MuonCSCRPCDigi_*') process.FEVT.outputCommands.append('keep CSCDetIdCSCStripDigiMuonDigiCollection_muonCSCDigis_MuonCSCStripDigi_*') process.FEVT.outputCommands.append('keep CSCDetIdCSCWireDigiMuonDigiCollection_muonCSCDigis_MuonCSCWireDigi_*') process.FEVT.outputCommands.append('keep cscL1TrackCSCDetIdCSCCorrelatedLCTDigiMuonDigiCollectionstdpairs_csctfDigis_*_*') process.FEVT.outputCommands.append('keep DTChamberIdDTLocalTriggerMuonDigiCollection_muonDTDigis_*_*') process.FEVT.outputCommands.append('keep DTLayerIdDTDigiMuonDigiCollection_muonDTDigis_*_*') process.FEVT.outputCommands.append('keep intL1CSCSPStatusDigisstdpair_csctfDigis_*_*') process.FEVT.outputCommands.append('keep L1MuDTChambPhContainer_dttfDigis_*_*') process.FEVT.outputCommands.append('keep L1MuDTChambThContainer_dttfDigis_*_*') process.FEVT.outputCommands.append('keep L1MuDTTrackContainer_dttfDigis_DATA_*') process.FEVT.outputCommands.append('keep PixelDigiedmDetSetVector_siPixelDigis_*_*') process.FEVT.outputCommands.append('keep RPCDetIdRPCDigiMuonDigiCollection_muonRPCDigis_*_*') process.configurationMetadata = cms.untracked.PSet( version = cms.untracked.string(''), name = cms.untracked.string(''), annotation = cms.untracked.string('CRUZET Prompt Reco with DQM with Mag field at 0T') ) process.options = cms.untracked.PSet( wantSummary = cms.untracked.bool(True) ) ## default is false # Conditions (Global Tag is used here): process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") ####process.GlobalTag.connect = "frontier://PromptProd/CMS_COND_21X_GLOBALTAG" process.GlobalTag.globaltag = "IDEAL_V9::All" process.GlobalTag.globaltag = "IDEAL_30X::All" process.es_prefer_GlobalTag = cms.ESPrefer('PoolDBESSource','GlobalTag') ###process.prefer("GlobalTag") # Magnetic field: force mag field to be 0 tesla process.load("Configuration.StandardSequences.MagneticField_0T_cff") #Geometry process.load("Configuration.StandardSequences.GeometryRecoDB_cff") # Real data raw to digi ##process.load("Configuration.StandardSequences.RawToDigi_Data_cff") process.load("Configuration.StandardSequences.RawToDigi_cff") # reconstruction sequence for Cosmics #process.load("Configuration.StandardSequences.ReconstructionCosmics_cff") process.load("Configuration.StandardSequences.Reconstruction_cff") # offline DQM ##process.load("DQMOffline.Configuration.DQMOfflineCosmics_cff") process.load("DQMOffline.Configuration.DQMOffline_cff") process.load("DQMServices.Components.MEtoEDMConverter_cff") #L1 trigger validation #process.load("L1Trigger.HardwareValidation.L1HardwareValidation_cff") process.load("L1Trigger.Configuration.L1Config_cff") process.load("L1TriggerConfig.CSCTFConfigProducers.CSCTFConfigProducer_cfi") process.load("L1TriggerConfig.CSCTFConfigProducers.L1MuCSCTFConfigurationRcdSrc_cfi") ##new## process.load("Configuration.StandardSequences.Simulation_cff") #MC process.SiPixelTrackResidualSource.TrackCandidateProducer = cms.string('newTrackCandidateMaker') process.SiPixelTrackResidualSource.trajectoryInput = cms.InputTag('generalTracks') process.SiPixelTrackResidualSource.saveFile = cms.untracked.bool(True) process.SiPixelTrackResidualSource.modOn = cms.untracked.bool(True) process.SiPixelClusterSource.modOn = cms.untracked.bool(True) #event content analyzer process.dump = cms.EDAnalyzer('EventContentAnalyzer') #Paths ##process.allPath = cms.Path( process.RawToDigi_woGCT * process.reconstructionCosmics * process.DQMOfflineCosmics * process.MEtoEDMConverter) ##process.allPath = cms.Path( process.RawToDigi * process.reconstruction * process.DQMOffline * process.MEtoEDMConverter) #######process.allPath = cms.Path( process.RawToDigi * process.reconstruction * process.DQMOffline) process.allPath = cms.Path( process.RawToDigi * process.reconstruction * process.SiPixelClusterSource * process.SiPixelTrackResidualSource) process.outpath = cms.EndPath(process.FEVT)
import os import yaml import argparse def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--archs', type = str, choices=['TSA'], help = 'our approach') parser.add_argument('--benchmark', type = str, choices=['FineDiving'], help = 'dataset') parser.add_argument('--prefix', type = str, default='default', help = 'experiment name') parser.add_argument('--resume', action='store_true', default=False ,help = 'resume training (interrupted by accident)') parser.add_argument('--sync_bn', type=bool, default=False) parser.add_argument('--fix_bn', type=bool, default=True) parser.add_argument('--test', action='store_true', default=False) parser.add_argument('--ckpts', type=str, default=None, help='test used ckpt path') args = parser.parse_args() if args.test: if args.ckpts is None: raise RuntimeError('--ckpts should not be None when --test is activate') return args def setup(args): args.config = '{}_TSA.yaml'.format(args.benchmark) args.experiment_path = os.path.join('./experiments',args.archs, args.benchmark, args.prefix) if args.resume: cfg_path = os.path.join(args.experiment_path,'config.yaml') if not os.path.exists(cfg_path): print("Failed to resume") args.resume = False setup(args) return print('Resume yaml from %s' % cfg_path) with open(cfg_path) as f: config = yaml.load(f, Loader=yaml.Loader) merge_config(config, args) args.resume = True else: config = get_config(args) merge_config(config, args) create_experiment_dir(args) save_experiment_config(args) def get_config(args): try: print('Load config yaml from %s' % args.config) with open(args.config) as f: config = yaml.load(f, Loader=yaml.Loader) except: raise NotImplementedError('%s arch is not supported'% args.archs) return config def merge_config(config, args): for k, v in config.items(): setattr(args, k, v) def create_experiment_dir(args): try: os.makedirs(args.experiment_path) print('Create experiment path successfully at %s' % args.experiment_path) except: pass def save_experiment_config(args): config_path = os.path.join(args.experiment_path,'config.yaml') with open(config_path, 'w') as f: yaml.dump(args.__dict__, f) print('Save the Config file at %s' % config_path)
import pydig class PhishingTrackerDig: @staticmethod def analyzer(record, type='ANY'): if record is None or len(record) == 0: return None type = type.upper() if type == 'ANY': types = [ 'A', 'AAAA', 'CNAME', 'MX', 'NS', 'TXT' ] data = {} for t in types: data[t] = PhishingTrackerDig.analyzer(record, t) return data try: response = pydig.query(record, type) except Exception as e: response = 'Exception: {}'.format(str(e)) if type == 'TXT': response = [s.strip('"') for s in response] return response
from typing import Tuple from pydantic import BaseSettings class Settings(BaseSettings): telegram_api_key: str admin_ids: Tuple[int, ...] sheet_title: str = 'Курсы по Питону' class Config: case_sensitive = False env_file = 'creds/.env' env_file_encoding = 'utf-8'
# Generated by Django 2.2.12 on 2020-06-04 16:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('EvalData', '0039_auto_20200601_1353'), ] operations = [ migrations.AddField( model_name='textsegmentwithtwotargets', name='contextLeft', field=models.TextField(blank=True, null=True, verbose_name='Context (left)'), ), migrations.AddField( model_name='textsegmentwithtwotargets', name='contextRight', field=models.TextField(blank=True, null=True, verbose_name='Context (right)'), ), ]
from django.urls import path from . import views app_name = 'blog' urlpatterns = [ path('', views.index, name='index'), path('cat/<str:category>/', views.index, name='index-specific-cat'), path('author/<str:author_first_name>-<str:author_last_name>/', views.author_index, name='specific-author'), path('post/<slug:slug>/', views.post_detail, name='post-detail'), path('edit/', views.new_post, name='new-post'), path('edit/<str:Id>/', views.post_editor, name='post-edit'), path('delete/<str:Id>/', views.delete_post, name='delete-post'), path('image/upload', views.post_image_upload, name='add-image'), path('image/delete', views.delete_image, name='delete-image'), ]
import torch from .action_head.action_head import build_roi_action_head class Combined3dROIHeads(torch.nn.ModuleDict): def __init__(self, cfg, heads): super(Combined3dROIHeads, self).__init__(heads) self.cfg = cfg.clone() def forward(self, slow_features, fast_features, boxes, objects=None, extras={}, part_forward=-1): result, loss_action, loss_weight, accuracy_action = self.action(slow_features, fast_features, boxes, objects, extras, part_forward) return result, loss_action, loss_weight, accuracy_action def c2_weight_mapping(self): weight_map = {} for name, m_child in self.named_children(): if m_child.state_dict() and hasattr(m_child,"c2_weight_mapping"): child_map = m_child.c2_weight_mapping() for key, val in child_map.items(): new_key = name + '.' + key weight_map[new_key] = val return weight_map def build_3d_roi_heads(cfg, dim_in): roi_heads = [] roi_heads.append(("action", build_roi_action_head(cfg, dim_in))) if roi_heads: roi_heads = Combined3dROIHeads(cfg, roi_heads) return roi_heads
from . import Subplotter import numpy as np def masked(to_mask, mask): return [item for item, keep in zip(to_mask, mask) if keep] class SampleSubplotter(Subplotter): def __init__(self, colors): super(SampleSubplotter, self).__init__(colors) self.failed_samples = [] self.unfailed_samples = [] self.failed_colors = [] self.unfailed_colors = [] self.failed_markers = [] self.unfailed_markers = [] def incur_sample(self, state, action, failed, color=None, marker=None): if color is None: color = [0.9, 0.3, 0.3] # States and actions are stored in np arrays of shape (1,) (since we # are plotting them) if failed: marker = marker if marker is not None else 'x' self.failed_samples.append((state[0], action[0])) self.failed_colors.append(color) self.failed_markers.append(marker) else: marker = marker if marker is not None else '.' self.unfailed_samples.append((state[0], action[0])) self.unfailed_colors.append(color) self.unfailed_markers.append(marker) def flush_samples(self): self.failed_samples = [] self.unfailed_samples = [] self.failed_colors = [] self.unfailed_colors = [] self.failed_markers = [] self.unfailed_markers = [] def ensure_samples_in_at_least_one(self, *datasets): dataset = np.unique( np.vstack(datasets), axis=0 ) def is_in_dataset(to_check): return [np.isclose(x, dataset).all(axis=1).any() for x in to_check] failed_in = is_in_dataset(self.failed_samples) unfailed_in = is_in_dataset(self.unfailed_samples) def filter_list(to_filter, keep_bools): return [x for x, keep in zip(to_filter, keep_bools) if keep] self.failed_samples = filter_list(self.failed_samples, failed_in) self.unfailed_samples = filter_list(self.unfailed_samples, unfailed_in) self.failed_colors = filter_list(self.failed_colors, failed_in) self.unfailed_colors = filter_list(self.unfailed_colors, unfailed_in) self.failed_markers = filter_list(self.failed_markers, failed_in) self.unfailed_markers = filter_list(self.unfailed_markers, failed_in) def draw_on_axs(self, ax_Q): def scatter_stateactions(stateactions, colors, markers): markers_set = set(markers) for marker in markers_set: fltr = [m == marker for m in markers] if any(fltr): states, actions = zip(*masked(stateactions, fltr)) ax_Q.scatter( actions, states, color=masked(colors, fltr), s=60, marker=marker, edgecolors='none' ) if len(self.failed_samples) > 0: scatter_stateactions(self.failed_samples, self.failed_colors, self.failed_markers) if len(self.unfailed_samples) > 0: scatter_stateactions(self.unfailed_samples, self.unfailed_colors, self.unfailed_markers)
a = 21.0 b = 10.5 if ( a == b ): print "Line 1 - a is equal to b" else: print "Line 1 - a is not equal to b" if ( a != b ): print "Line 2 - a is not equal to b" else: print "Line 2 - a is equal to b" if ( a <> b ): print "Line 3 - a is not equal to b" else: print "Line 3 - a is equal to b" if ( a < b ): print "Line 4 - a is less than b" else: print "Line 4 - a is not less than b" if ( a > b ): print "Line 5 - a is greater than b" else: print "Line 5 - a is not greater than b" a = 5.0; b = 20.0; if ( a <= b ): print "Line 6 - a is either less than or equal to b" else: print "Line 6 - a is neither less than nor equal to b" if ( b >= a ): print "Line 7 - b is either greater than or equal to b" else: print "Line 7 - b is neither greater than nor equal to b"
""" First text analytics script using nltk. Will load the tokens and then create a dictionary of words with the number of occurences in the text. """ from TokenizeLemmatize import unpickle_tokens from collections import Counter def count_names(tokens): """Return a counter of the continuous chains of NNPs.""" names = [] name = None for word, tag in tokens: if word == '’': tag = '’' if name is None and tag.startswith('NNP'): name = word elif name is not None and tag.startswith('NNP'): name = name + ' ' + word elif name is not None and not tag.startswith('NNP'): names.append(name) name = None return Counter(names) def filter_names(names, target): """Filter out the names which do not contain the target name.""" hits = [] for name, count in names.most_common(): if target in name.split(' '): hits.append((name, count)) return hits # main loop if __name__ == "__main__": try: tokens = unpickle_tokens('Texts/NonFreeTexts/InfiniteJest') except FileNotFoundError: tokens = unpickle_tokens('Texts/FreeTexts/Hamlet') # print(count_names(tokens)) print(filter_names(count_names(tokens), 'Hal'))
# -*- coding: utf-8 -*- # @Author: David Hanson # @Date: 2021-01-31 13:45:32 # @Last Modified by: David Hanson # @Last Modified time: 2021-01-31 14:09:40 # recursive method: def find_factorial_recursive(number): if number <= 1: return 1 else: return number * find_factorial_recursive(number-1) # iterative method def find_factorial_iterative(number): num_step = number - 1 while num_step > 0: number = number * num_step num_step -= 1 return number print(find_factorial_recursive(10)) print(find_factorial_iterative(10))
from . import parser from . import watch def gen_leases(path): """ Keep track of currently valid leases for ISC dhcpd. Yields dictionaries that map ``ip`` to information about the lease. Will block until new information is available. """ g = watch.watch_dhcp_leases(path) for _ in g: with file(path) as f: s = f.read() leases = {} for l in parser.parse(s): assert 'ip' in l leases[l['ip']] = l yield leases
import http import io import argparse import json import os import pathlib from collections import defaultdict from typing import Optional, Tuple import librosa import rnd_utilities import aiohttp from pydub import AudioSegment from aiogram import Bot, Dispatcher, types, executor from aiogram.types import InlineKeyboardButton, InlineKeyboardMarkup from tacotron2.app.syntesis import defaults parser = argparse.ArgumentParser() parser.add_argument( '--config', type=str, required=True, help='Telegram bot configuration' ) args = parser.parse_args() config = rnd_utilities.load_json(pathlib.Path(args.config)) API_TOKEN = config['api_token'] AUTH = aiohttp.BasicAuth( login=config['user'], password=config['password'] ) HEADERS = { "accept": "application/json", "Content-Type": "application/json" } BOT = Bot(token=API_TOKEN) BOT_FOLDER = config['bot_folder'] DP = Dispatcher(BOT) VOICES = config['voices'] DEFAULT_VOICE = '__default__' START_VOICE = config['default_voice'] USER_VOICES = defaultdict(lambda: START_VOICE) def get_mp3_path(wav_basestring, text, sampling_rate): hashname = str(hash(text)) io_stream = io.BytesIO(wav_basestring) audio = librosa.load(io_stream) path_to_save = os.path.join(BOT_FOLDER, hashname) librosa.output.write_wav( path=path_to_save + '.wav', y=audio[0], sr=sampling_rate) sound = AudioSegment.from_wav(path_to_save + '.wav') sound.export(path_to_save + '.mp3', format='mp3') return path_to_save + '.mp3' def _get_voices_keyboard(selected: Optional[str] = None): keyboard = [] for voice, _ in VOICES.items(): if voice == DEFAULT_VOICE: continue text = voice if voice == selected: text = f'[ {voice} ]' btn = InlineKeyboardButton(text=text, callback_data=voice) keyboard.append([btn]) keyboard = InlineKeyboardMarkup(inline_keyboard=keyboard) return keyboard def _get_server_payload_for_user(message): user_id = str(message.from_user.id) if user_id in USER_VOICES: user_voice = USER_VOICES[user_id] else: user_voice = START_VOICE voice_url = VOICES[user_voice]['url'] voice_denoiser_strength = VOICES[user_voice]['denoiser_strength'] inp_dict = { "utterance": message, 'denoiser_strength': voice_denoiser_strength } payload = json.dumps(inp_dict) return payload, voice_url async def get_error_response_text(response): if response.status == http.HTTPStatus.BAD_REQUEST: response = await response.text() else: response = "Undefined error." return response async def reply_using_server_response(response, message: types.Message): status = response.status text = message.text user_id = str(message.from_user.id) if status == http.HTTPStatus.OK: response = await response.read() path_to_mp3 = get_mp3_path( wav_basestring=response, text=text, sampling_rate=VOICES[USER_VOICES[user_id]]['sampling_rate'] ) with open(path_to_mp3, 'rb') as audio_file: await message.answer_voice(audio_file) else: error_text = get_error_response_text(response) await message.answer(error_text) @DP.message_handler(commands=['start']) async def send_kb(message: types.Message): """This handler will be called when user sends `/start`""" await message.reply( f"""Привет. Я озвучу любую отправленную мне фразу на русском языке длиной до {defaults.MAX_UTTERANCE_LENGTH} символов. \n Чтобы выбрать голос отправь /voices \n Также, если хочешь сам выставить ударения - добавь знак `+` после требуемой гласной буквы.""" ) @DP.message_handler(commands=['voices']) async def send_kb(message: types.Message): """This handler will be called if user sends `/voices`""" keyboard = _get_voices_keyboard() await message.reply( "Выбери голос", reply_markup=keyboard, reply=False ) @DP.callback_query_handler(lambda q: q.data in VOICES.keys()) async def send_kb(callback_query: types.CallbackQuery): user_id = str(callback_query.from_user.id) voice = callback_query.data keyboard = _get_voices_keyboard(selected=voice) USER_VOICES[user_id] = voice await callback_query.message.edit_reply_markup(keyboard) await callback_query.message.reply( f'<Голос изменен на "{voice}">', reply=False ) @DP.message_handler() async def reply_on_message(message: types.Message): """Replies on user message.""" payload, url = _get_server_payload_for_user(message) async with aiohttp.ClientSession(auth=AUTH) as session: async with session.post(url, data=payload, headers=HEADERS) as server_response: await reply_using_server_response(server_response, message) if __name__ == '__main__': executor.start_polling(DP, skip_updates=True)
import requests import numpy as np import cv2 import os from hashlib import sha1 images_dir = "animals" name_prefix = "tree" os.makedirs(images_dir, exist_ok=True) with open("trees.txt", "rt") as file: links = file.read().split("\n") for link in links: hex = sha1(bytes(link, encoding='utf-8')).hexdigest() img_name = f"{name_prefix}-{hex}.png" img_path = os.path.join(images_dir, img_name) if os.path.isfile(img_path): print(f"This file exists already: {img_path}") continue try: re = requests.get(link, stream=True) if re.status_code != 200: print(f"Invalid, {re.status_code}, {link}") continue except Exception as err: print(f"Error: {err}") continue img_raw = re.content image = np.frombuffer(img_raw, dtype=np.uint8) image = cv2.imdecode(image, cv2.IMREAD_COLOR) try: cv2.imwrite(img_path, image) print(f"Saved image: {img_path}") except Exception as err: print(f"Error, {err}") print(f"Finished")
from django.apps import AppConfig from django.conf import settings from django.utils.translation import gettext_lazy as _ class UrlManagerConfig(AppConfig): name = "djangocms_url_manager" verbose_name = _("django CMS URL Manager") url_manager_supported_models = {} def ready(self): from .compat import CMS_36 if CMS_36: from .utils import parse_settings self.url_manager_supported_models = parse_settings( settings, "URL_MANAGER_SUPPORTED_MODELS" )
from __future__ import print_function from builtins import chr import base64 import pickle from Crypto import Random from Crypto.Cipher import AES from cumulusci.core.config import ConnectedAppOAuthConfig from cumulusci.core.config import OrgConfig from cumulusci.core.config import ScratchOrgConfig from cumulusci.core.config import ServiceConfig from cumulusci.core.exceptions import ConfigError from cumulusci.core.keychain import BaseProjectKeychain BS = 16 pad = lambda s: s + (BS - len(s) % BS) * chr(BS - len(s) % BS).encode('ascii') unpad = lambda s: s[0:-ord(s[-1])] class BaseEncryptedProjectKeychain(BaseProjectKeychain): """ Base class for building project keychains that use AES encryption for securing stored org credentials """ encrypted = True def _get_connected_app(self): if self.app: return self._decrypt_config(ConnectedAppOAuthConfig, self.app) def _get_service(self, name): return self._decrypt_config(ServiceConfig, self.services[name]) def _set_service(self, service, service_config, project): encrypted = self._encrypt_config(service_config) self._set_encrypted_service(service, encrypted, project) def _set_encrypted_service(self, service, encrypted, project): self.services[service] = encrypted def _set_org(self, org_config, global_org): encrypted = self._encrypt_config(org_config) self._set_encrypted_org(org_config.name, encrypted, global_org) def _set_encrypted_org(self, name, encrypted, global_org): self.orgs[name] = encrypted def _get_org(self, name): return self._decrypt_config(OrgConfig, self.orgs[name], extra=[name]) def _get_cipher(self, iv=None): if iv is None: iv = Random.new().read(AES.block_size) cipher = AES.new(self.key, AES.MODE_CBC, iv) return cipher, iv def _encrypt_config(self, config): pickled = pickle.dumps(config.config) pickled = pad(pickled) #pickled = base64.b64encode(pickled) cipher, iv = self._get_cipher() encrypted = base64.b64encode(iv + cipher.encrypt(pickled)) return encrypted def _decrypt_config(self, config_class, encrypted_config, extra=None): if not encrypted_config: if extra: return config_class(None, *extra) else: return config_class() encrypted_config = base64.b64decode(encrypted_config) iv = encrypted_config[:16] cipher, iv = self._get_cipher(iv) pickled = cipher.decrypt(encrypted_config[16:]) config_dict = pickle.loads(pickled) args = [config_dict] if extra: args += extra return self._construct_config(config_class, args) def _construct_config(self, config_class, args): if args[0].get('scratch'): config_class = ScratchOrgConfig return config_class(*args) def _validate_key(self): if not self.key: raise ConfigError('CUMULUSCI_KEY not set') if len(self.key) != 16: raise ConfigError('CUMULUSCI_KEY must be 16 characters long')
############################################################ # -*- coding: utf-8 -*- # # # # # # # # # ## ## # ## # # # # # # # # # # # # # # # ## # ## ## ###### # # # # # # # # # Python-based Tool for interaction with the 10micron mounts # GUI with PyQT5 for python # # written in python3, (c) 2019-2021 by mworion # Licence APL2.0 # ########################################################### # standard libraries # external packages from PyQt5.QtGui import QGuiApplication, QCursor from PyQt5.QtCore import Qt import numpy as np import matplotlib.path as mpath # local import class HemisphereWindowExt: """ the HemisphereWindowExt window class handles """ __all__ = ['HemisphereWindowExt', ] @staticmethod def markerPoint(): """ :return: marker """ circleB = mpath.Path.unit_circle() circleS = mpath.Path.unit_circle() verts = np.concatenate([circleB.vertices, 0.5 * circleS.vertices]) codes = np.concatenate([circleB.codes, circleS.codes]) marker = mpath.Path(verts, codes) return marker @staticmethod def markerAltAz(): """ :return: marker """ circleB = mpath.Path.unit_circle() circleM = mpath.Path.unit_circle() circleS = mpath.Path.unit_circle() circleC = mpath.Path.unit_circle() verts = np.concatenate([circleB.vertices, 0.8 * circleM.vertices, 0.15 * circleS.vertices, 0.1 * circleC.vertices]) codes = np.concatenate([circleB.codes, circleM.codes, circleS.codes, circleC.codes]) marker = mpath.Path(verts, codes) return marker @staticmethod def markerStar(): """ :return: marker """ star = mpath.Path.unit_regular_star(8) verts = np.concatenate([star.vertices]) codes = np.concatenate([star.codes]) marker = mpath.Path(verts, codes) return marker def setOperationMode(self): """ setOperationMode changes the operation mode of the hemisphere window(s) depending on the choice, colors and styles will be changed. :return: success """ if self.ui.checkEditNone.isChecked(): self.operationMode = 'normal' self.ui.addPositionToHorizon.setEnabled(False) elif self.ui.checkEditBuildPoints.isChecked(): self.operationMode = 'build' self.ui.addPositionToHorizon.setEnabled(False) elif self.ui.checkEditHorizonMask.isChecked(): self.operationMode = 'horizon' self.ui.addPositionToHorizon.setEnabled(True) elif self.ui.checkPolarAlignment.isChecked(): self.ui.checkShowAlignStar.setChecked(True) self.operationMode = 'star' self.ui.addPositionToHorizon.setEnabled(False) self.drawHemisphere() return True def enableEditPoints(self, status): """ :param status: :return: """ self.ui.operationMode.setEnabled(status) hem = self.hemisphereMat.figure.canvas if status: self.hemMouse = hem.mpl_connect('button_press_event', self.onMouseDispatcher) else: hem.mpl_disconnect(self.hemMouse) return True def showMouseCoordinates(self, event): """ :param event: :return: success """ if not event.inaxes: xText = '-' yText = '-' QGuiApplication.setOverrideCursor(QCursor(Qt.ArrowCursor)) else: xText = f'{event.xdata:3.1f}' yText = f'{event.ydata:3.1f}' QGuiApplication.setOverrideCursor(QCursor(Qt.CrossCursor)) self.ui.altitude.setText(yText) self.ui.azimuth.setText(xText) return True def slewSelectedTarget(self, slewType='normal'): """ :param slewType: :return: success """ azimuthT = self.app.mount.obsSite.AzTarget.degrees altitudeT = self.app.mount.obsSite.AltTarget.degrees if self.app.deviceStat['dome']: self.app.dome.avoidFirstOvershoot() delta = self.app.dome.slewDome(altitude=altitudeT, azimuth=azimuthT) geoStat = 'Geometry corrected' if delta else 'Equal mount' t = f'Slewing dome: [{geoStat}],' t += f' AZ:[{azimuthT:3.1f}] delta: [{delta:3.1f}]' self.app.message.emit(t, 0) suc = self.app.mount.obsSite.startSlewing(slewType=slewType) if suc: t = f'Slewing mount to AZ:[{azimuthT:3.1f}], ALT:[{altitudeT:3.1f}]' self.app.message.emit(t, 0) else: t = f'Cannot slew to AZ:[{azimuthT:3.1f}], ALT:[{altitudeT:3.1f}]' self.app.message.emit(t, 2) return suc def onMouseNormal(self, event): """ onMouseNormal handles the mouse event in normal mode. this means only a double click is possible and offers the opportunity to slew the telescope to a certain position in sky selected by the mouse. :param event: mouse events :return: success """ if not event.inaxes: return False if event.button != 1 or not event.dblclick: return False azimuth = int(event.xdata + 0.5) altitude = int(event.ydata + 0.5) question = '<b>Manual slewing to coordinate</b>' question += '<br><br>Selected coordinates are:<br>' question += f'<font color={self.M_BLUE}> Altitude: {altitude:3.1f}°' question += f' Azimuth: {azimuth:3.1f}°</font>' question += '<br><br>Would you like to start slewing?<br>' suc = self.messageDialog(self, 'Slewing mount', question) if not suc: return False suc = self.app.mount.obsSite.setTargetAltAz(alt_degrees=altitude, az_degrees=azimuth) if not suc: t = f'Cannot slew to AZ:[{azimuth:3.1f}], ALT:[{altitude:3.1f}]' self.app.message.emit(t, 2) return False t = f'Slewing mount to AZ:[{azimuth:3.1f}], ALT:[{altitude:3.1f}]' self.app.message.emit(t, 0) suc = self.slewSelectedTarget(slewType='keep') return suc def addHorizonPointManual(self): """ :return: """ data = self.app.data alt = self.app.mount.obsSite.Alt az = self.app.mount.obsSite.Az if alt is None or az is None: return False index = self.getIndexPointX(x=az.degrees, plane=data.horizonP) if index is None and data.horizonP: return False suc = data.addHorizonP(value=(alt.degrees, az.degrees), position=index) if suc: self.drawHemisphere() return suc def addHorizonPoint(self, data=None, event=None): """ addHorizonPoint calculates from the position of the left mouse click the position where the next horizon point should be added. the coordinates are given from mouse click itself. :param data: point in tuples (alt, az) :param event: mouse event :return: """ index = self.getIndexPointX(x=event.xdata, plane=data.horizonP) if index is None and data.horizonP: return False suc = data.addHorizonP(value=(event.ydata, event.xdata), position=index) return suc def deleteHorizonPoint(self, data=None, event=None): """ deleteHorizonPoint selects the next horizon point in distance max and tries to delete it. there have to be at least 2 horizon point left. :param data: point in tuples (alt, az) :param event: mouse event :return: success """ index = self.getIndexPoint(event=event, plane=data.horizonP) if index is None: return False suc = False if len(data.horizonP) > 0: suc = data.delHorizonP(position=index) return suc def editHorizonMask(self, data=None, event=None): """ editHorizonMask does dispatching the different mouse clicks for adding or deleting horizon mask points and call the function accordingly. :param data: point in tuples (alt, az) :param event: mouse event :return: success """ if event.button == 1: suc = self.addHorizonPoint(data=data, event=event) elif event.button == 3: suc = self.deleteHorizonPoint(data=data, event=event) else: return False if data.horizonP is None: return False self.drawHemisphere() return suc def addBuildPoint(self, data=None, event=None): """ addBuildPoint calculates from the position of the left mouse click the position where the next modeldata point should be added. the coordinates are given from mouse click itself. :param data: point in tuples (alt, az) :param event: mouse event :return: """ self.app.buildPointsChanged.emit() index = self.getIndexPoint(event=event, plane=data.buildP, epsilon=360) if index is None: return False index += 1 suc = data.addBuildP(value=(event.ydata, event.xdata, True), position=index) if not suc: return False return True def deleteBuildPoint(self, data=None, event=None): """ deleteBuildPoint selects the next modeldata point in distance max and tries to delete it. there have to be at least 2 horizon point left. :param data: point in tuples (alt, az) :param event: mouse event :return: success """ self.app.buildPointsChanged.emit() index = self.getIndexPoint(event=event, plane=data.buildP) if index is None: return False suc = data.delBuildP(position=index) return suc def editBuildPoints(self, data=None, event=None): """ editBuildPoints does dispatching the different mouse clicks for adding or deleting model data points and call the function accordingly. :param data: points in tuples (alt, az) :param event: mouse event :return: success """ if event.button == 1: suc = self.addBuildPoint(data=data, event=event) elif event.button == 3: suc = self.deleteBuildPoint(data=data, event=event) else: return False self.drawHemisphere() return suc def onMouseEdit(self, event): """ onMouseEdit handles the mouse event in normal mode. this means depending on the edit mode (horizon or model points) a left click adds a new point and right click deletes the selected point. :param event: mouse events :return: success """ data = self.app.data if not event.inaxes: return False if event.dblclick: return False if self.ui.checkEditHorizonMask.isChecked(): suc = self.editHorizonMask(event=event, data=data) elif self.ui.checkEditBuildPoints.isChecked(): suc = self.editBuildPoints(event=event, data=data) else: return False return suc def onMouseStar(self, event): """ onMouseStar handles the mouse event in polar align mode. this means only a right click is possible and offers the opportunity to slew the telescope to the selected star and start manual polar alignment. :param event: mouse events :return: success """ if not event.inaxes: return False if not self.app.mount.model.numberStars: self.app.message.emit('No model for alignment present!', 2) return False if event.button == 1 and not event.dblclick: alignType = 'polar' elif event.button == 3 and not event.dblclick: alignType = 'ortho' else: return False hip = self.app.hipparcos plane = list(zip(hip.alt, hip.az)) index = self.getIndexPoint(event=event, plane=plane, epsilon=2) if index is None: return False name = hip.name[index] ra, dec = hip.getAlignStarRaDecFromName(hip.name[index]) question = '<b>Polar / Ortho Alignment procedure</b>' question += '<br><br>Selected alignment type: ' question += f'<font color={self.M_BLUE}>{alignType}.</font>' question += '<br>Selected alignment star: ' question += f'<font color={self.M_BLUE}>{name}.</font>' question += '<br>Would you like to start alignment?<br>' isDAT = self.app.mount.setting.statusDualAxisTracking warning = f'<br><i><font color={self.M_YELLOW}>' warning += 'Dual Axis Tracking is actually enabled!<br>' warning += 'It should be off during alignment process.</font></i>' question = question + warning if isDAT else question suc = self.messageDialog(self, 'Slewing mount', question) if not suc: return False suc = self.app.mount.obsSite.setTargetRaDec(ra_hours=ra, dec_degrees=dec) if not suc: self.app.message.emit(f'Cannot slew to: [{name}]', 2) return False self.app.message.emit(f'Align [{alignType}] to: [{name}]', 1) suc = self.slewSelectedTarget(slewType=alignType) return suc def onMouseDispatcher(self, event): """ onMouseDispatcher dispatches the button events depending on the actual operation mode. :param event: button event for parsing :return: True for test purpose """ if self.ui.checkEditNone.isChecked(): self.onMouseNormal(event) elif self.ui.checkEditBuildPoints.isChecked(): self.onMouseEdit(event) elif self.ui.checkEditHorizonMask.isChecked(): self.onMouseEdit(event) elif self.ui.checkPolarAlignment.isChecked(): self.onMouseStar(event) return True
from .controller_util import get_triggering_dags
# Copyright 2021 Rafał Safin (rafsaf). All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from django.contrib.auth.decorators import login_required from django.http import HttpRequest, HttpResponse from django.shortcuts import get_object_or_404, redirect, render from django.views.decorators.http import require_POST from base import forms, models from base.models.profile import Profile @login_required def new_outline_create(request: HttpRequest) -> HttpResponse: """creates new user's outline login required""" profile: Profile = models.Profile.objects.select_related().get(user=request.user) form1 = forms.OutlineForm(None) form2 = forms.ChangeServerForm(None) form1.fields["world"].choices = [ (f"{world.pk}", f"{world.human()}") for world in models.World.objects.filter(server=profile.server).order_by( "postfix" ) ] if request.method == "POST": if "form1" in request.POST: form1 = forms.OutlineForm(request.POST) form1.fields["world"].choices = [ (f"{world.pk}", world.human()) for world in models.World.objects.filter( server=profile.server ).order_by("postfix") ] if form1.is_valid(): world = request.POST["world"] world_instance = get_object_or_404(models.World, pk=int(world)) new_instance = models.Outline( owner=request.user, date=request.POST["date"], name=request.POST["name"], world=world_instance, morale_on=profile.default_morale_on, ) new_instance.save() new_instance.refresh_from_db() result = models.Result(outline=new_instance) result.save() new_instance.create_stats() return redirect("base:planer_create_select", new_instance.pk) if "form2" in request.POST: form2 = forms.ChangeServerForm(request.POST) if form2.is_valid(): new_server = request.POST.get("server") new_server = get_object_or_404(models.Server, dns=new_server) profile: models.Profile = models.Profile.objects.get(user=request.user) profile.server = new_server profile.server_bind = True profile.save() return redirect("base:planer_create") context = {"form1": form1, "profile": profile, "form2": form2} return render(request, "base/new_outline/new_outline_create.html", context) @login_required def new_outline_create_select(request: HttpRequest, _id: int) -> HttpResponse: """select user's ally and enemy tribe after creating outline, login required""" instance = get_object_or_404( models.Outline, pk=_id, owner=request.user, editable="active" ) ally_tribe: list[models.Tribe] = [ tribe for tribe in models.Tribe.objects.filter( world=instance.world, tag__in=instance.ally_tribe_tag ) ] enemy_tribe: list[models.Tribe] = [ tribe for tribe in models.Tribe.objects.filter( world=instance.world, tag__in=instance.enemy_tribe_tag ) ] banned_tribe_id = [tribe.pk for tribe in ally_tribe + enemy_tribe] choices = [("banned", "--------")] + [ # type: ignore (f"{tribe.tag}", f"{tribe.tag}") for tribe in models.Tribe.objects.filter(world=instance.world).exclude( pk__in=banned_tribe_id ) ] if request.method == "POST": if "tribe1" in request.POST: form1 = forms.MyTribeTagForm(request.POST) form1.fields["tribe1"].choices = choices form2 = forms.EnemyTribeTagForm() form2.fields["tribe2"].choices = choices if form1.is_valid(): tribe = request.POST["tribe1"] instance.ally_tribe_tag.append(tribe) instance.save() return redirect("base:planer_create_select", _id) elif "tribe2" in request.POST: form1 = forms.MyTribeTagForm() form1.fields["tribe1"].choices = choices form2 = forms.EnemyTribeTagForm(request.POST) form2.fields["tribe2"].choices = choices if form2.is_valid(): tribe = request.POST["tribe2"] instance.enemy_tribe_tag.append(tribe) instance.save() return redirect("base:planer_create_select", _id) else: form1 = forms.MyTribeTagForm() form1.fields["tribe1"].choices = choices form2 = forms.EnemyTribeTagForm() form2.fields["tribe2"].choices = choices else: form1 = forms.MyTribeTagForm() form1.fields["tribe1"].choices = choices form2 = forms.EnemyTribeTagForm() form2.fields["tribe2"].choices = choices context = { "instance": instance, "form1": form1, "form2": form2, "ally": ally_tribe, "enemy": enemy_tribe, } return render(request, "base/new_outline/new_outline_create_select.html", context) @require_POST @login_required def outline_delete_ally_tags(request: HttpRequest, _id: int) -> HttpResponse: """Delete ally tribe tags from outline""" instance = get_object_or_404(models.Outline, pk=_id, owner=request.user) instance.ally_tribe_tag = list() instance.save() return redirect("base:planer_create_select", _id) @require_POST @login_required def outline_delete_enemy_tags(request: HttpRequest, _id: int) -> HttpResponse: """Delete enemy tribe tags from outline""" instance = get_object_or_404(models.Outline, pk=_id, owner=request.user) instance.enemy_tribe_tag = list() instance.save() return redirect("base:planer_create_select", _id) @require_POST @login_required def outline_disable_editable(request: HttpRequest, _id: int) -> HttpResponse: """Outline not editable after chosing tags""" instance = get_object_or_404(models.Outline, pk=_id, owner=request.user) instance.editable = "inactive" instance.save() return redirect("base:planer")
import random import evaluation from evaluation import PTBTokenizer, Cider from data.tokenizers import Tokenizer from data.medicalDataloaders import R2DataLoader from models.visual_extractor import VisualExtractor from models.rstnet import Transformer, TransformerEncoder, TransformerDecoderLayer, ScaledDotProductAttention import torch from torch.optim import Adam from torch.optim.lr_scheduler import LambdaLR from torch.nn import NLLLoss from tqdm import tqdm from torch.utils.tensorboard import SummaryWriter import argparse import os import pickle import numpy as np import itertools import multiprocessing from shutil import copyfile import os os.environ["CUDA_VISIBLE_DEVICES"] = "3" def evaluate_loss(model, visual_extractor, dataloader, loss_fn, tokenizer, device): # Validation loss model.eval() running_loss = .0 with tqdm(desc='Epoch %d - validation' % e, unit='it', total=len(dataloader)) as pbar: with torch.no_grad(): for it, (images_id, images, captions, reports_masks) in enumerate(dataloader): images, captions, reports_masks = images.to(device), captions.to(device), reports_masks.to(device) features = visual_extractor(images) out = model(features, captions) captions = captions[:, 1:].contiguous() out = out[:, :-1].contiguous() loss = loss_fn(out.view(-1, tokenizer.get_vocab_size()), captions.view(-1)) this_loss = loss.item() running_loss += this_loss pbar.set_postfix(loss=running_loss / (it + 1)) pbar.update() val_loss = running_loss / len(dataloader) return val_loss def evaluate_metrics(model, visual_extractor, dataloader, tokenizer, args, device): import itertools model.eval() gen = {} gts = {} with tqdm(desc='Epoch %d - evaluation' % e, unit='it', total=len(dataloader)) as pbar: for it, (images_id, images, captions, reports_masks) in enumerate(dataloader): images, captions, reports_masks = images.to(device), captions.to(device), reports_masks.to(device) with torch.no_grad(): features = visual_extractor(images) out, _ = model.beam_search(features, args.max_seq_length, tokenizer.token2idx['<eos>'], args.beam_size, out_size=1) caps_gen = tokenizer.decode_batch(out[..., :-1]) caps_gt = tokenizer.decode_batch(captions[..., 1:]) for i, (gts_i, gen_i) in enumerate(zip(caps_gt, caps_gen)): # gen_i = ' '.join([k for k, g in itertools.groupby(gen_i)]) gen['%d_%d' % (it, i)] = [gen_i, ] # gen['%d_%d' % (it, i)] = [gen_i] # gts['%d_%d' % (it, i)] = gts_i gts['%d_%d' % (it, i)] = [gts_i, ] pbar.update() print(gen) gts = evaluation.PTBTokenizer.tokenize(gts) gen = evaluation.PTBTokenizer.tokenize(gen) scores, _ = evaluation.compute_scores(gts, gen) return scores def train_xe(model, visual_extractor, dataloader, tokenizer, optim, device): # Training with cross-entropy model.train() scheduler.step() print('lr = ', optim.state_dict()['param_groups'][0]['lr']) running_loss = .0 sum_eos = 0 with tqdm(desc='Epoch %d - train' % e, unit='it', total=len(dataloader)) as pbar: for it, (images_id, images, captions, reports_masks) in enumerate(dataloader_train): images, captions, reports_masks = images.to(device), captions.to(device), reports_masks.to(device) features = visual_extractor(images) out = model(features, captions) optim.zero_grad() # print('captions', (captions == tokenizer.token2idx['<eos>']).sum()) captions_gt = captions[:, 1:].contiguous() out = out[:, :-1].contiguous() sum_eos += int((captions == tokenizer.token2idx['<eos>']).sum()) loss = loss_fn(out.view(-1, tokenizer.get_vocab_size()), captions_gt.view(-1)) loss.backward() optim.step() this_loss = loss.item() running_loss += this_loss pbar.set_postfix(loss=running_loss / (it + 1)) pbar.update() # scheduler.step() loss = running_loss / len(dataloader) # scheduler.step() return loss, sum_eos if __name__ == '__main__': device = torch.device('cuda') parser = argparse.ArgumentParser(description='Transformer') parser.add_argument('--exp_name', type=str, default='rstnet') parser.add_argument('--batch_size', type=int, default=12) parser.add_argument('--workers', type=int, default=4) parser.add_argument('--m', type=int, default=40) parser.add_argument('--head', type=int, default=8) parser.add_argument('--resume_last', action='store_true') parser.add_argument('--resume_best', action='store_true') parser.add_argument('--threshold', type=int, default=3, help='the cut off frequency for the words.') parser.add_argument('--dataset_name', type=str, default='iu_xray', choices=['iu_xray', 'mimic_cxr'], help='the dataset to be used.') parser.add_argument('--logs_folder', type=str, default='language_tensorboard_logs') parser.add_argument('--ann_path', type=str, default='../ReportGen/data/iu_xray/annotation.json', help='the path to the directory containing the data.') parser.add_argument('--image_dir', type=str, default='../ReportGen/data/iu_xray/images/', help='the path to the directory containing the data.') # parser.add_argument('--ann_path', type=str, default='../datasets/mimic_cxr/annotation.json', # help='the path to the directory containing the data.') # parser.add_argument('--image_dir', type=str, default='../datasets/mimic_cxr/images/', # help='the path to the directory containing the data.') parser.add_argument('--max_seq_length', type=int, default=60, help='the maximum sequence length of the reports.') parser.add_argument('--seed', type=int, default=9233, help='.') parser.add_argument('--num_workers', type=int, default=2, help='the number of workers for dataloader.') parser.add_argument('--visual_extractor', type=str, default='resnet101', help='the visual extractor to be used.') parser.add_argument('--visual_extractor_pretrained', type=bool, default=True, help='whether to load the pretrained visual extractor') parser.add_argument('--lr_model', type=float, default=0.5, help='the learning rate for the transformer.') parser.add_argument('--lr_ve', type=float, default=0.25, help='the learning rate for the visual extractor.') parser.add_argument('--lr_bert', type=float, default=1, help='the learning rate for BERT.') parser.add_argument('--epochs', type=int, default=100) parser.add_argument('--beam_size', type=int, default=3, help='the beam size when beam searching.') parser.add_argument('--patience', type=int, default=100) parser.add_argument('--xe_base_lr', type=float, default=0.0001) args = parser.parse_args() print(args) print('Transformer Training') writer = SummaryWriter(log_dir=os.path.join(args.logs_folder, args.exp_name)) torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(args.seed) # Create the dataset tokenizer = Tokenizer(args) dataloader_train = R2DataLoader(args, tokenizer, split='train', shuffle=True) dataloader_val = R2DataLoader(args, tokenizer, split='val', shuffle=False) dataloader_test = R2DataLoader(args, tokenizer, split='test', shuffle=False) # Model and dataloaders encoder = TransformerEncoder(3, tokenizer.token2idx['<pad>'], attention_module=ScaledDotProductAttention, attention_module_kwargs={'m': args.m}) decoder = TransformerDecoderLayer(tokenizer.get_vocab_size(), args.max_seq_length - 1, 3, tokenizer.token2idx['<pad>']) ve = VisualExtractor(args).to(device) model = Transformer(tokenizer.token2idx['<bos>'], encoder, decoder).to(device) # ref_caps_train = list(train_dataset.text) # cider_train = Cider(PTBTokenizer.tokenize(ref_caps_train)) def lambda_lr(s): print("s:", s) if s <= 3: lr = args.xe_base_lr * s / 4 elif s <= 10: lr = args.xe_base_lr elif s <= 12: lr = args.xe_base_lr * 0.2 else: lr = args.xe_base_lr * 0.2 * 0.2 return lr # Initial conditions bert_params = list(map(id, model.decoder.language_model.parameters())) ed_params = filter(lambda x: id(x) not in bert_params, model.parameters()) optim = Adam([ {'params': model.decoder.language_model.parameters(), 'lr': args.lr_bert}, {'params': ed_params, 'lr': args.lr_model, 'betas': (0.9, 0.98)}, {'params': ve.parameters(), 'lr': args.lr_ve} ]) scheduler = LambdaLR(optim, lambda_lr) loss_fn = NLLLoss(ignore_index=tokenizer.token2idx['<pad>']) # best_cider = .0 # best_test_cider = 0. use_rl = False best_bleu4 = .0 best_test_bleu4 = 0. patience = 0 start_epoch = 0 if args.resume_last or args.resume_best: if args.resume_last: fname = 'saved_transformer_models/%s_last.pth' % args.exp_name else: fname = 'saved_transformer_models/%s_best.pth' % args.exp_name if os.path.exists(fname): data = torch.load(fname) torch.set_rng_state(data['torch_rng_state']) torch.cuda.set_rng_state(data['cuda_rng_state']) np.random.set_state(data['numpy_rng_state']) random.setstate(data['random_rng_state']) model.load_state_dict(data['tr_state_dict']) ve.load_state_dict(data['ve_state_dict']) """ optim.load_state_dict(data['optimizer']) scheduler.load_state_dict(data['scheduler']) """ start_epoch = data['epoch'] + 1 best_bleu4 = data['best_bleu4'] best_test_bleu4 = data['best_test_bleu4'] patience = data['patience'] optim.load_state_dict(data['optimizer']) scheduler.load_state_dict(data['scheduler']) print('Resuming from epoch %d, validation loss %f, best bleu4 %f, and best_test_bleu4 %f' % ( data['epoch'], data['val_loss'], data['best_bleu4'], data['best_test_bleu4'])) print('patience:', data['patience']) print("Training starts") for e in range(start_epoch, start_epoch + args.epochs): train_loss, sum_eos = train_xe(model, ve, dataloader_train, tokenizer, optim, device) writer.add_scalar('data/train_loss', train_loss, e) # Validation loss val_loss = evaluate_loss(model, ve, dataloader_val, loss_fn, tokenizer, device) writer.add_scalar('data/val_loss', val_loss, e) # Validation scores scores = evaluate_metrics(model, ve, dataloader_val, tokenizer, args, device) print("Validation scores", scores) val_bleu4 = scores['BLEU'][3] writer.add_scalar('data/val_cider', scores['CIDEr'], e) writer.add_scalar('data/val_bleu1', scores['BLEU'][0], e) writer.add_scalar('data/val_bleu2', scores['BLEU'][1], e) writer.add_scalar('data/val_bleu3', scores['BLEU'][2], e) writer.add_scalar('data/val_bleu4', scores['BLEU'][3], e) writer.add_scalar('data/val_meteor', scores['METEOR'], e) writer.add_scalar('data/val_rouge', scores['ROUGE'], e) # Test scores scores = evaluate_metrics(model, ve, dataloader_test, tokenizer, args, device) print("Test scores", scores) test_bleu4 = scores['BLEU'][3] writer.add_scalar('data/test_cider', scores['CIDEr'], e) writer.add_scalar('data/test_bleu1', scores['BLEU'][0], e) writer.add_scalar('data/test_bleu2', scores['BLEU'][1], e) writer.add_scalar('data/test_bleu3', scores['BLEU'][2], e) writer.add_scalar('data/test_bleu4', scores['BLEU'][3], e) writer.add_scalar('data/test_meteor', scores['METEOR'], e) writer.add_scalar('data/test_rouge', scores['ROUGE'], e) # Prepare for next epoch best = False if val_bleu4 >= best_bleu4: best_bleu4 = val_bleu4 patience = 0 best = True else: patience += 1 best_test = False if test_bleu4 >= best_test_bleu4: best_test_bleu4 = test_bleu4 best_test = True exit_train = False if patience == args.patience: print('patience reached.') exit_train = True torch.save({ 'torch_rng_state': torch.get_rng_state(), 'cuda_rng_state': torch.cuda.get_rng_state(), 'numpy_rng_state': np.random.get_state(), 'random_rng_state': random.getstate(), 'epoch': e, 'val_loss': val_loss, 'val_bleu4': val_bleu4, 'tr_state_dict': model.state_dict(), 've_state_dict': ve.state_dict(), 'optimizer': optim.state_dict() if not use_rl else optim_rl.state_dict(), 'scheduler': scheduler.state_dict() if not use_rl else scheduler_rl.state_dict(), 'patience': patience, 'best_bleu4': best_bleu4, 'best_test_bleu4': best_test_bleu4, 'use_rl': use_rl, }, 'saved_transformer_models/%s_last.pth' % args.exp_name) if best: copyfile('saved_transformer_models/%s_last.pth' % args.exp_name, 'saved_transformer_models/%s_best.pth' % args.exp_name) if best_test: copyfile('saved_transformer_models/%s_last.pth' % args.exp_name, 'saved_transformer_models/%s_best_test.pth' % args.exp_name) if exit_train: writer.close() break
import pickle import nltk import spacy import benepar import torch import json import os import subprocess import numpy as np from tempfile import TemporaryDirectory from fairseq.models.bart import BARTModel from nltk import sent_tokenize,word_tokenize from nltk.corpus import stopwords from nltk.tree import Tree from nltk.tree import ParentedTree from benepar.spacy_plugin import BeneparComponent from collections import defaultdict, Counter import time from transformers.pipelines import pipeline import warnings warnings.filterwarnings("ignore") #from bert_score import BERTScorer class FEQA(object): def __init__(self, device='cpu', qa_model_name = "deepset/minilm-uncased-squad2", qg_model_dir='../feqa/bart_qg/checkpoints/'): self.qg_model = BARTModel.from_pretrained( qg_model_dir, checkpoint_file = 'checkpoint_best.pt' ) if device=='cuda': self.qg_model.to(device) #.cuda() self.qg_model.half() self.qg_model.eval() self.batch_size = 1#64 self.beam_size = 10 self.max_length = 100 self.nlp = spacy.load('en_core_web_sm') #self.parser = benepar.Parser("benepar_en2") self.stop_words = set(stopwords.words('english')) self.qa_threshold = 0.1 # below threshold, the question quality is too vague self.qa_pipeline = pipeline('question-answering', model=qa_model_name, tokenizer=qa_model_name) # self.bertscorer = BERTScorer(lang="en") #, rescale_with_baseline=True) def _get_entities(self, output_summary): entities = [X.text for X in self.nlp(output_summary).ents] return entities # def _get_masked_phrases(self, output_summary, phrase_types=["NP"]): # masked_phrases = [] # parse_tree = self.parser.parse(output_summary) # for subtree in parse_tree.subtrees(): # phrases_list = [(subtree_.leaves(), subtree_.label()) for subtree_ in subtree if type(subtree_) == Tree and subtree_.label() in phrase_types] # for phrase_tuple in phrases_list: # phrase = phrase_tuple[0] # phrase_type = phrase_tuple[1] # phrase_text = " ".join(phrase) # if len(phrase) > 0 and phrase_text not in self.stop_words: # masked_phrases.append(phrase_text) # return masked_phrases def _generate_questions(self, summaries, entities=True, phrase_types=["NP"]): doc_ids = [] qa_masks = [] tokenized_phrases = [] for id_, summary in enumerate(summaries): summary = summary.strip() all_masked_phrases = [] if entities: all_masked_phrases.extend(self._get_entities(summary)) # all_masked_phrases.extend(self._get_masked_phrases(summary,phrase_types)) all_masked_phrases = list(set(all_masked_phrases)) for i, masked_phrase in enumerate(all_masked_phrases): tokenized_summary = " ".join(nltk.word_tokenize(summary.lower())) tokenized_phrase = " ".join(nltk.word_tokenize(masked_phrase.lower())) qa_masks.append(tokenized_summary + " [SEP] " + tokenized_phrase) doc_ids.append(str(id_)) tokenized_phrases.append(tokenized_phrase) questions = [] for i in range(0, len(qa_masks), self.batch_size): batch = qa_masks[i:i + self.batch_size] hypotheses = self.qg_model.sample(batch, beam=self.beam_size, lenpen=1.0, max_len_b=self.max_length, min_len=1, no_repeat_ngram_size=3) questions.extend(hypotheses) return doc_ids, questions, tokenized_phrases def _convert_to_squad_format(self, gold_answers, questions, doc_ids, bodies): squad_format = {"data":[]} id_questions=defaultdict(list) id_gold_answers=defaultdict(str) for idx in range(0,len(doc_ids)): id_questions[doc_ids[idx].strip()].append((questions[idx], gold_answers[idx])) for idx in id_questions: paragraphs = [] context = bodies[int(idx)].strip() title = "doc_" + str(idx) questions_list_input=[] for q_id, question in enumerate(id_questions[idx]): gold_answer = question[1] question_text = question[0] answers_input = [{"text": gold_answer, "answer_start": 0}] questions_input = { "question": question_text, "answers": answers_input, "id": str(idx).strip() + "-" + str(q_id) } questions_list_input.append(questions_input) id_gold_answers[questions_input["id"]] = gold_answer paragraphs.append({"context":" ".join(nltk.word_tokenize(context)).lower(),"qas":questions_list_input}) squad_format["data"].append({"title":title,"paragraphs":paragraphs}) squad_format["version"] = "1.1" return id_gold_answers, squad_format def _answer_questions_by_context(self, squad_format): id_answers=defaultdict(str) for doc in squad_format['data']: for para in doc['paragraphs']: context = para['context'] for q in para['qas']: inputs = { 'question': q['question'], 'context': context } ret = self.qa_pipeline(inputs) id_answers[q["id"]] = ret # print(q['question']) # print(ret) # print() return id_answers def _readable_qas_dict(self, doc_ids, questions, gold_answers, pred_dict, bodies): qas_dict = defaultdict() previous_doc_id = None for idx, qa_id in enumerate(pred_dict): qa_info = {"question": questions[idx], "gold_ans": gold_answers[idx], "reply_ans": pred_dict[qa_id]["answer"], "reply_scr": pred_dict[qa_id]["score"]} # if qa_info["reply_scr"] > self.qa_threshold: # cand = [qa_info["reply_ans"]] # ref = [qa_info['gold_ans']] # _, _, bert_f1 = self.bertscorer.score( cand, ref ) # qa_info["bert_f1"] = bert_f1.item() # doc_f1_list.append(qa_info["bert_f1"]) # else: # qa_info["bert_f1"] = None doc_id = doc_ids[idx].strip() if doc_id != previous_doc_id: # if previous_doc_id is not None: # if len(doc_f1_list) == 0: # qas_dict[previous_doc_id]["doc_f1"] = 0 # else: # qas_dict[previous_doc_id]["doc_f1"] = np.mean(doc_f1_list) # doc_f1_list = [] qas_dict[doc_id] = dict() qas_dict[doc_id]['context'] = bodies[int(doc_id)] qas_dict[doc_id]['qas'] = dict() qas_dict[doc_id]['qas'][qa_id] = qa_info else: qas_dict[doc_id]['qas'][qa_id] = qa_info previous_doc_id = doc_ids[idx] return qas_dict def _compute_f1(self, a_gold, a_pred): # with word-overlap gold_toks = nltk.word_tokenize(a_gold) pred_toks = nltk.word_tokenize(a_pred) common = Counter(gold_toks) & Counter(pred_toks) num_same = sum(common.values()) if len(gold_toks) == 0 or len(pred_toks) == 0: return int(gold_toks == pred_toks) if num_same == 0: return 0 precision = 1.0 * num_same / len(pred_toks) recall = 1.0 * num_same / len(gold_toks) f1 = (2 * precision * recall) / (precision + recall) return f1 def _compare_pred_gold(self, qas_dict, use_bertscr=True): doc_f1_list = [] for doc_id in qas_dict: for qa_id in qas_dict[doc_id]['qas']: qa_info = qas_dict[doc_id]['qas'][qa_id] if qa_info["reply_scr"] > self.qa_threshold: cand = qa_info["reply_ans"] ref = qa_info['gold_ans'] if use_bertscr: _, _, bert_f1 = self.bertscorer.score( [cand], [ref] ) bert_f1 = bert_f1.item() else: bert_f1 = self._compute_f1(cand, ref) qas_dict[doc_id]['qas'][qa_id]["bert_f1"] = bert_f1 doc_f1_list.append(qa_info["bert_f1"]) else: qa_info["bert_f1"] = None if len(doc_f1_list) == 0: qas_dict[doc_id]["doc_f1"] = 0 else: qas_dict[doc_id]["doc_f1"] = np.mean(doc_f1_list) doc_f1_list = [] f1_list = [] for doc_id in qas_dict: f1_list.append(qas_dict[doc_id]["doc_f1"] ) return qas_dict, f1_list def compute_score(self, bodies, summaries, aggregate=False, show_qas_dict=False, use_bertscr=False): #generate questions from summaries #print("Generating questions...") ts = time.time() doc_ids, questions, gold_answers = self._generate_questions(summaries) te = time.time() #print("time spent generate questions:", te-ts) #print("Getting answers...") #run qa system ts = time.time() gold_answers_dict, squad_format = self._convert_to_squad_format(gold_answers, questions, doc_ids, bodies) pred_dict = self._answer_questions_by_context(squad_format) te = time.time() #print("time spent answering questions:", te-ts) qas_dict = self._readable_qas_dict(doc_ids, questions, gold_answers, pred_dict, bodies) qas_dict, f1_list = self._compare_pred_gold(qas_dict, use_bertscr=use_bertscr) if show_qas_dict: for doc_id in qas_dict: #print("context:", qas_dict[doc_id]['context']) print("doc_f1:", qas_dict[doc_id]['doc_f1']) qas = qas_dict[doc_id]['qas'] for q_id in qas: print(q_id) print("qst:", qas[q_id]["question"]) print("g_a:", qas[q_id]["gold_ans"]) print("r_a:", qas[q_id]["reply_ans"]) print("scr:", qas[q_id]["reply_scr"]) print("bert_f1:", qas[q_id]["bert_f1"] ) if aggregate: return np.mean(f1_list) return f1_list def score(self, summaries, bodies, bodies_tokenized=None, lengths=None, extra=None): if extra is None: scores = self.compute_score( bodies, summaries, aggregate=False, show_qas_dict=False, use_bertscr=False) return scores, "no need to cal faithfulness for argmax" else: scores = [0] * len(summaries) return scores, None
""" CPMpy interfaces to (the Python API interface of) solvers Solvers typically use some of the generic transformations in `transformations` as well as specific reformulations to map the CPMpy expression to the solver's Python API ================== List of submodules ================== .. autosummary:: :nosignatures: ortools pysat utils =============== List of classes =============== .. autosummary:: :nosignatures: CPM_ortools CPM_pysat ================= List of functions ================= .. autosummary:: :nosignatures: param_combinations """ from .utils import builtin_solvers, get_supported_solvers, param_combinations from .ortools import CPM_ortools from .pysat import CPM_pysat from .minizinc import CPM_minizinc
import copy import pytest import numpy as np import pandas as pd from nomenclature.core import process from nomenclature.definition import DataStructureDefinition from nomenclature.processor.region import RegionProcessor from pyam import IAMC_IDX, IamDataFrame, assert_iamframe_equal from conftest import TEST_DATA_DIR def test_region_processing_rename(): # Test **only** the renaming aspect, i.e. 3 things: # 1. All native regions **with** a renaming property should be renamed correctly # 2. All native regions **without** a renaming property should be passed through # 3. All regions which are explicitly named should be dropped # Testing strategy: # 1. Rename region_a -> region_A # 2. Leave region_B untouched # 3. Drop region_C test_df = IamDataFrame( pd.DataFrame( [ ["model_a", "scen_a", "region_a", "Primary Energy", "EJ/yr", 1, 2], ["model_a", "scen_a", "region_B", "Primary Energy", "EJ/yr", 3, 4], ["model_a", "scen_a", "region_C", "Primary Energy", "EJ/yr", 5, 6], ], columns=IAMC_IDX + [2005, 2010], ) ) exp = copy.deepcopy(test_df) exp.filter(region=["region_a", "region_B"], inplace=True) exp.rename(region={"region_a": "region_A"}, inplace=True) obs = process( test_df, DataStructureDefinition(TEST_DATA_DIR / "region_processing/dsd"), processor=RegionProcessor.from_directory( TEST_DATA_DIR / "region_processing/rename_only" ), ) assert_iamframe_equal(obs, exp) @pytest.mark.parametrize( "rp_dir", ["region_processing/rename_only", "region_processing/empty_aggregation"] ) def test_region_processing_empty_raises(rp_dir): # Test that an empty result of the region-processing raises # see also https://github.com/IAMconsortium/pyam/issues/631 test_df = IamDataFrame( pd.DataFrame( [ ["model_a", "scen_a", "region_foo", "Primary Energy", "EJ/yr", 1, 2], ["model_b", "scen_a", "region_foo", "Primary Energy", "EJ/yr", 1, 2], ], columns=IAMC_IDX + [2005, 2010], ) ) with pytest.raises(ValueError, match=("'model_a', 'model_b'.*empty dataset")): process( test_df, DataStructureDefinition(TEST_DATA_DIR / "region_processing/dsd"), processor=RegionProcessor.from_directory(TEST_DATA_DIR / rp_dir), ) def test_region_processing_no_mapping(simple_df): # Test that a model without a mapping is passed untouched exp = copy.deepcopy(simple_df) obs = process( simple_df, DataStructureDefinition(TEST_DATA_DIR / "region_processing/dsd"), processor=RegionProcessor.from_directory( TEST_DATA_DIR / "region_processing/no_mapping" ), ) assert_iamframe_equal(obs, exp) def test_region_processing_aggregate(): # Test only the aggregation feature test_df = IamDataFrame( pd.DataFrame( [ ["model_a", "scen_a", "region_A", "Primary Energy", "EJ/yr", 1, 2], ["model_a", "scen_a", "region_B", "Primary Energy", "EJ/yr", 3, 4], ["model_a", "scen_a", "region_C", "Primary Energy", "EJ/yr", 5, 6], ["model_a", "scen_b", "region_A", "Primary Energy", "EJ/yr", 1, 2], ["model_a", "scen_b", "region_B", "Primary Energy", "EJ/yr", 3, 4], ], columns=IAMC_IDX + [2005, 2010], ) ) exp = IamDataFrame( pd.DataFrame( [ ["model_a", "scen_a", "World", "Primary Energy", "EJ/yr", 4, 6], ["model_a", "scen_b", "World", "Primary Energy", "EJ/yr", 4, 6], ], columns=IAMC_IDX + [2005, 2010], ) ) obs = process( test_df, DataStructureDefinition(TEST_DATA_DIR / "region_processing/dsd"), processor=RegionProcessor.from_directory( TEST_DATA_DIR / "region_processing/aggregate_only" ), ) assert_iamframe_equal(obs, exp) @pytest.mark.parametrize( "directory", ("complete_processing", "complete_processing_list") ) def test_region_processing_complete(directory): # Test all three aspects of region processing together: # 1. Renaming # 2. Passing models without a mapping # 3. Aggregating correctly test_df = IamDataFrame( pd.DataFrame( [ ["m_a", "s_a", "region_a", "Primary Energy", "EJ/yr", 1, 2], ["m_a", "s_a", "region_B", "Primary Energy", "EJ/yr", 3, 4], ["m_a", "s_a", "region_C", "Primary Energy", "EJ/yr", 5, 6], ["m_a", "s_a", "region_a", "Primary Energy|Coal", "EJ/yr", 0.5, 1], ["m_a", "s_a", "region_B", "Primary Energy|Coal", "EJ/yr", 1.5, 2], ["m_b", "s_b", "region_A", "Primary Energy", "EJ/yr", 1, 2], ], columns=IAMC_IDX + [2005, 2010], ) ) exp = IamDataFrame( pd.DataFrame( [ ["m_a", "s_a", "region_A", "Primary Energy", "EJ/yr", 1, 2], ["m_a", "s_a", "region_B", "Primary Energy", "EJ/yr", 3, 4], ["m_a", "s_a", "World", "Primary Energy", "EJ/yr", 4, 6], ["m_a", "s_a", "region_A", "Primary Energy|Coal", "EJ/yr", 0.5, 1], ["m_a", "s_a", "region_B", "Primary Energy|Coal", "EJ/yr", 1.5, 2], ["m_a", "s_a", "World", "Primary Energy|Coal", "EJ/yr", 2, 3], ["m_b", "s_b", "region_A", "Primary Energy", "EJ/yr", 1, 2], ], columns=IAMC_IDX + [2005, 2010], ) ) obs = process( test_df, DataStructureDefinition(TEST_DATA_DIR / "region_processing/dsd"), processor=RegionProcessor.from_directory( TEST_DATA_DIR / "region_processing" / directory ), ) assert_iamframe_equal(obs, exp) @pytest.mark.parametrize( "folder, exp_df, args", [ ( "weighted_aggregation", [ ["model_a", "scen_a", "World", "Primary Energy", "EJ/yr", 4, 6], ["model_a", "scen_a", "World", "Emissions|CO2", "Mt CO2", 5, 8], ["model_a", "scen_a", "World", "Price|Carbon", "USD/t CO2", 2.8, 7.0], ], None, ), ( "weighted_aggregation_rename", [ ["model_a", "scen_a", "World", "Primary Energy", "EJ/yr", 4, 6], ["model_a", "scen_a", "World", "Emissions|CO2", "Mt CO2", 5, 8], ["model_a", "scen_a", "World", "Price|Carbon", "USD/t CO2", 2.8, 7.0], ["model_a", "scen_a", "World", "Price|Carbon (Max)", "USD/t CO2", 3, 8], ], None, ), # check that region-aggregation with missing weights passes (inconsistent index) # TODO check the log output ( "weighted_aggregation", [ ["model_a", "scen_a", "World", "Primary Energy", "EJ/yr", 4, 6], ["model_a", "scen_a", "World", "Emissions|CO2", "Mt CO2", 5, np.nan], ], dict(variable="Emissions|CO2", year=2010, keep=False), ), ], ) def test_region_processing_weighted_aggregation(folder, exp_df, args, caplog): # test a weighed sum test_df = IamDataFrame( pd.DataFrame( [ ["model_a", "scen_a", "region_A", "Primary Energy", "EJ/yr", 1, 2], ["model_a", "scen_a", "region_B", "Primary Energy", "EJ/yr", 3, 4], ["model_a", "scen_a", "region_A", "Emissions|CO2", "Mt CO2", 4, 6], ["model_a", "scen_a", "region_B", "Emissions|CO2", "Mt CO2", 1, 2], ["model_a", "scen_a", "region_A", "Price|Carbon", "USD/t CO2", 3, 8], ["model_a", "scen_a", "region_B", "Price|Carbon", "USD/t CO2", 2, 4], ], columns=IAMC_IDX + [2005, 2010], ) ) if args is not None: test_df = test_df.filter(**args) exp = IamDataFrame(pd.DataFrame(exp_df, columns=IAMC_IDX + [2005, 2010])) obs = process( test_df, DataStructureDefinition(TEST_DATA_DIR / "region_processing" / folder / "dsd"), processor=RegionProcessor.from_directory( TEST_DATA_DIR / "region_processing" / folder / "aggregate" ), ) assert_iamframe_equal(obs, exp) # check the logs since the presence of args should cause a warning in the logs if args: logmsg = ( "Could not aggregate 'Price|Carbon' for region 'World' " "({'weight': 'Emissions|CO2'})" ) assert logmsg in caplog.text def test_region_processing_skip_aggregation(): test_df = IamDataFrame( pd.DataFrame( [ ["m_a", "s_a", "region_A", "Primary Energy", "EJ/yr", 1, 2], ["m_a", "s_a", "region_B", "Primary Energy", "EJ/yr", 3, 4], ], columns=IAMC_IDX + [2005, 2010], ) ) exp = test_df obs = process( test_df, DataStructureDefinition( TEST_DATA_DIR / "region_processing/skip_aggregation/dsd" ), processor=RegionProcessor.from_directory( TEST_DATA_DIR / "region_processing/skip_aggregation/mappings" ), ) assert_iamframe_equal(obs, exp) @pytest.mark.parametrize( "input_data, exp_data, warning", [ ( # Variable is available in provided and aggregated data and the same [ ["m_a", "s_a", "region_A", "Primary Energy", "EJ/yr", 1, 2], ["m_a", "s_a", "region_B", "Primary Energy", "EJ/yr", 3, 4], ["m_a", "s_a", "World", "Primary Energy", "EJ/yr", 4, 6], ], [["m_a", "s_a", "World", "Primary Energy", "EJ/yr", 4, 6]], None, ), ( # Variable is only available in the provided data [ ["m_a", "s_a", "region_A", "Primary Energy", "EJ/yr", 1, 2], ["m_a", "s_a", "region_B", "Primary Energy", "EJ/yr", 3, 4], ], [["m_a", "s_a", "World", "Primary Energy", "EJ/yr", 4, 6]], None, ), ( # Variable is only available in the aggregated data [["m_a", "s_a", "World", "Primary Energy", "EJ/yr", 4, 6]], [["m_a", "s_a", "World", "Primary Energy", "EJ/yr", 4, 6]], None, ), ( # Variable is not available in all scenarios in the provided data [ ["m_a", "s_a", "region_A", "Primary Energy", "EJ/yr", 1, 2], ["m_a", "s_a", "region_B", "Primary Energy", "EJ/yr", 3, 4], ["m_a", "s_b", "region_A", "Primary Energy", "EJ/yr", 5, 6], ["m_a", "s_b", "region_B", "Primary Energy", "EJ/yr", 7, 8], ["m_a", "s_a", "World", "Primary Energy", "EJ/yr", 4, 6], ], [ ["m_a", "s_a", "World", "Primary Energy", "EJ/yr", 4, 6], ["m_a", "s_b", "World", "Primary Energy", "EJ/yr", 12, 14], ], None, ), ( # Using skip-aggregation: true should only take provided results [ ["m_a", "s_a", "region_A", "Skip-Aggregation", "EJ/yr", 1, 2], ["m_a", "s_a", "region_B", "Skip-Aggregation", "EJ/yr", 3, 4], ["m_a", "s_a", "World", "Skip-Aggregation", "EJ/yr", 10, 11], ], [["m_a", "s_a", "World", "Skip-Aggregation", "EJ/yr", 10, 11]], None, ), ( # Using the region-aggregation attribute to create an additional variable [ ["m_a", "s_a", "region_A", "Variable A", "EJ/yr", 1, 10], ["m_a", "s_a", "region_B", "Variable A", "EJ/yr", 10, 1], ["m_a", "s_a", "World", "Variable A", "EJ/yr", 11, 11], ], [ ["m_a", "s_a", "World", "Variable A", "EJ/yr", 11, 11], ["m_a", "s_a", "World", "Variable A (max)", "EJ/yr", 10, 10], ], None, ), ( # Variable is available in provided and aggregated data but different [ ["m_a", "s_a", "region_A", "Primary Energy", "EJ/yr", 1, 2], ["m_a", "s_a", "region_B", "Primary Energy", "EJ/yr", 3, 4], ["m_a", "s_a", "World", "Primary Energy", "EJ/yr", 5, 6], ], [["m_a", "s_a", "World", "Primary Energy", "EJ/yr", 5, 6]], [ "Difference between original and aggregated data:", "m_a s_a World Primary Energy", "2005 5 4", ], ), ( # Conflict between overlapping renamed variable and provided data [ ["m_a", "s_a", "region_A", "Variable B", "EJ/yr", 1, 2], ["m_a", "s_a", "region_B", "Variable B", "EJ/yr", 3, 4], ["m_a", "s_a", "World", "Variable B", "EJ/yr", 4, 6], ], [["m_a", "s_a", "World", "Variable B", "EJ/yr", 4, 6]], [ "Difference between original and aggregated data:", "m_a s_a World Variable B EJ/yr", "2005 4 3", ], ), ], ) def test_partial_aggregation(input_data, exp_data, warning, caplog): # Dedicated test for partial aggregation # Test cases are: # * Variable is available in provided and aggregated data and the same # * Variable is only available in the provided data # * Variable is only available in the aggregated data # * Variable is not available in all scenarios in the provided data # * Using skip-aggregation: true should only take provided results # * Using the region-aggregation attribute to create an additional variable # * Variable is available in provided and aggregated data but different obs = process( IamDataFrame(pd.DataFrame(input_data, columns=IAMC_IDX + [2005, 2010])), DataStructureDefinition(TEST_DATA_DIR / "region_processing/dsd"), processor=RegionProcessor.from_directory( TEST_DATA_DIR / "region_processing/partial_aggregation" ), ) exp = IamDataFrame(pd.DataFrame(exp_data, columns=IAMC_IDX + [2005, 2010])) # Assert that we get the expected values assert_iamframe_equal(obs, exp) # Assert that we get the correct warnings if warning is None: assert "WARNING" not in caplog.text else: assert all(c in caplog.text for c in warning)
import numpy as np import re import xml.etree.cElementTree as ET input = None with open("svm.model") as f: input = f.readlines() svm_type = re.match(r"svm_type ([\w_]+)", input[0]).groups()[0] kernel_type = re.match(r"kernel_type ([\w]+)", input[1]).groups()[0] gamma = float(re.match(r"gamma ([-\d.]+)", input[2]).groups()[0]) nr_class = int(re.match(r"nr_class ([\d]+)", input[3]).groups()[0]) total_sv = int(re.match(r"total_sv ([\d]+)", input[4]).groups()[0]) rho = list(map(float, re.findall(r"([-\d.]+)", input[5]))) label = list(map(int, re.findall(r"([\d]+)", input[6]))) nr_sv = list(map(int, re.findall(r"([\d]+)", input[7]))) sv_coef = np.zeros((total_sv, nr_class-1), dtype=np.float) total_sv_val = max([int(idx) for idx, val in re.findall(r"([\d]+):([-\d.]+)", input[9])]) SVs = np.zeros((total_sv, total_sv_val), dtype=np.float) for i in range(9, total_sv+9): coef = re.findall(r"([-\d.]+)", input[i]) for j in range(nr_class-1): sv_coef[i-9,j] = float(coef[j]) sv = {int(idx): float(val) for idx, val in re.findall(r"([\d]+):([-\d.]+)", input[i])} for j in range(total_sv_val): if j+1 in sv: SVs[i-9,j] = sv[j+1] xml_os = ET.Element("opencv_storage") xml_ms = ET.SubElement(xml_os, "ish_svm", type_id="opencv-ml-svm") ET.SubElement(xml_ms, "svm_type").text = svm_type.upper() xml_k = ET.SubElement(xml_ms, "kernel") ET.SubElement(xml_k, "type").text = kernel_type.upper() ET.SubElement(xml_k, "gamma").text = str(gamma) ET.SubElement(xml_ms, "C").text = str(1) # default: C=1, only used during training phase ET.SubElement(xml_ms, "var_all").text = str(total_sv_val) ET.SubElement(xml_ms, "var_count").text = str(total_sv_val) ET.SubElement(xml_ms, "class_count").text = str(nr_class) xml_cl = ET.SubElement(xml_ms, "class_labels", type_id="opencv-matrix") ET.SubElement(xml_cl, "rows").text = str(1) ET.SubElement(xml_cl, "cols").text = str(nr_class) ET.SubElement(xml_cl, "dt").text = "i" ET.SubElement(xml_cl, "data").text = " ".join(map(str, label)) ET.SubElement(xml_ms, "sv_total").text = str(total_sv) xml_sv = ET.SubElement(xml_ms, "support_vectors") for i in range(0, total_sv): ET.SubElement(xml_sv, "_").text = " ".join(map(str, SVs[i,:])) xml_df = ET.SubElement(xml_ms, "decision_functions") # results in a total of nr_class*(nr_class-1)/2 decision functions rho_idx = 0 for i in range(0, nr_class): for j in range(i+1, nr_class): xml_dfe = ET.SubElement(xml_df, "_") ET.SubElement(xml_dfe, "sv_count").text = str(nr_sv[i]+nr_sv[j]) ET.SubElement(xml_dfe, "rho").text = str(rho[rho_idx]) rho_idx += 1 alphas_c1 = sv_coef[sum(nr_sv[:i]):sum(nr_sv[:i])+nr_sv[i], j-1] alphas_c2 = sv_coef[sum(nr_sv[:j]):sum(nr_sv[:j])+nr_sv[j], i] alphas = np.concatenate((alphas_c1, alphas_c2), axis=0) ET.SubElement(xml_dfe, "alpha").text = " ".join(map(str, alphas)) idxs_c1 = [idx for idx in range(sum(nr_sv[:i]),sum(nr_sv[:i])+nr_sv[i])] idxs_c2 = [idx for idx in range(sum(nr_sv[:j]),sum(nr_sv[:j])+nr_sv[j])] idxs = np.concatenate((idxs_c1, idxs_c2), axis=0) ET.SubElement(xml_dfe, "index").text = " ".join(map(str, idxs)) tree = ET.ElementTree(xml_os) tree.write("svm.xml", xml_declaration=True)
#!/usr/bin/env python # import collections import datetime import logging import yfinance import syncfin.db.model as mydb import syncfin.utils.parallel as parallel log = logging.getLogger(__name__) class TickerPull(object): def _update_db(self, db, index, row): values = { 'date': ('%s' % index).split()[0], 'close': round(row['Close'], 2), 'open': round(row['Open'], 2), 'high': round(row['High'], 2), 'low': round(row['Low'], 2), 'split': row.get('Stock Splits', 0), 'volume': int(row['Volume']) } db.write(**values) def update(self, tckr): """ Updates 'tckr' history in local database. """ with mydb.Ticker() as db: if db.table_exists(db.table_name(tckr)): db.set_table(tckr) start_date = db.max('date') end_date = '%s' % datetime.date.today() if start_date == end_date: return # Nothing to update. data = yfinance.download(tckr, start=start_date, end=end_date) else: db.add_new_table(tckr) db.set_table(tckr) _tckr = yfinance.Ticker(tckr) # get historical market data data = _tckr.history(period="max") for index, row in data.iterrows(): try: self._update_db(db, index, row) except Exception as err: if 'UNIQUE constraint failed' in err.args[0]: # Trying to update for same date again. continue elif 'cannot convert float NaN to integer' in err.args[0]: continue log.error("Cannot process %s : %s. \nError - %r ", index, row, err) def update_till_today(self, tckrs): print ("Updating Historical data for : %s" % ' '.join(tckrs)) for tckr in tckrs: try: self.update(tckr) print("%s ... Done" % tckr) except Exception as _: print("%s ... Skipped due to error" % tckr) class ProfileUpdate(object): def update(self, tckr): with mydb.CompanyProfile() as db: db.table = db.TABLE info = yfinance.Ticker(tckr).info values = {} for field in db._get_fields(db.TABLE): if field == 'date': continue try: val = info.get(field, '') if val: values[field] = val except Exception: pass # ignore fields which are not available. values['date'] = datetime.datetime.today().strftime('%Y-%m-%d') db.write(**values) def _update(self, tckr): try: self.update(tckr) log.info("%s (Summary) ... Done" % tckr) except Exception as _: log.info("%s ... Skipped due to error" % tckr) def update_all(self, tckrs): print ("Updating Profile data for : %s" % ' '.join(tckrs)) params = [(tckr, (tckr,) , {}) for tckr in tckrs] parallel.ThreadPool(self._update, params)
"""Nice function to make figures for slides (not used in the framework).""" import numpy as np import matplotlib.cm as cm import matplotlib.pyplot as plt import matplotlib.patches as mpatches def plot_decomposition_graph( graph, nodes_color="#6886b7", weight="weight", colormap="jet", ax=None, edge_width=1, edges_step=1, edge_alpha=0.2, figsize=(8, 8), ): xx = np.array(sorted(graph.nodes)) L = xx.max() edges = [ (start, end, data[weight] / (end - start)) for start, end, data in graph.edges(data=True) ] edges = edges[::edges_step] edges = sorted(edges, key=lambda e: e[2]) max_segment_length = max([end - start for (start, end, _) in edges]) weights = np.array([w for (_, _, w) in edges]) normalized_weights = (255 * weights / weights.max()).astype("uint8") colormap = cm.__dict__[colormap] colors = colormap(normalized_weights, alpha=edge_alpha) if ax is None: fig, ax = plt.subplots(1, figsize=figsize) ax.axis("off") # print (list(colors)) for (start, end, w), color in zip(edges, colors): xc = 0.5 * (start + end) half = 0.5 * abs(end - start) ax.add_patch( mpatches.Arc( (xc, 0), 2 * half, 2 * half, theta1=0, theta2=180, facecolor="none", ls="-", edgecolor=color, linewidth=1, ) ) ax.plot(xx, [0 for x in xx], marker="o", c=nodes_color) ax.set_aspect("equal") ax.set_xlim(-1, L + 1) ax.set_ylim(-1, max_segment_length / 2 + 1)
import csv import gzip import logging import os.path from collections import namedtuple from itertools import chain, takewhile, groupby, product from os import getcwd import pandas as pd from more_itertools import peekable from py.path import local from nltk.corpus import brown, CategorizedTaggedCorpusReader from nltk.corpus.reader.bnc import BNCCorpusReader from nltk.parse.dependencygraph import DependencyGraph, DependencyGraphError from nltk.parse.stanford import StanfordDependencyParser from nltk.stem.snowball import SnowballStemmer logger = logging.getLogger(__name__) Token = namedtuple('Token', 'word, stem, tag') Dependency = namedtuple('Dependency', 'head, relation, dependant') class BNC: def __init__(self, root, paths): self.root = root self.paths = paths @classmethod def init_kwargs(cls, root=None, fileids=r'[A-K]/\w*/\w*\.xml'): if root is None: root = os.path.join(getcwd(), 'BNC', 'Texts') return dict( root=root, paths=BNCCorpusReader(root=root, fileids=fileids).fileids(), ) def words_by_document(self, path): def it(): reader = BNCCorpusReader(fileids=path, root=self.root) words_tags = reader.tagged_words(stem=False) stems = (s for s, _ in reader.tagged_words(stem=True)) for (word, tag), stem in zip(words_tags, stems): yield Token(word, stem, tag) # Consider the whole file as one document! yield it() class Brown: def __init__(self, root, paths): self.root = root self.paths = paths @classmethod def init_kwargs(cls, root=None, fileids=None): return dict( root=brown.root if root is None else root, paths=brown.fileids() if fileids is None else fileids, ) def words_by_document(self, path): stemmer = SnowballStemmer('english') def it(): reader = CategorizedTaggedCorpusReader( fileids=[path], root=self.root, cat_file='cats.txt', tagset='brown', encoding='ascii', ) for word, tag in reader.tagged_words(): stem = stemmer.stem(word) yield Token(word, stem, tag) # Consider the whole file as one document! yield it() class BNC_CCG: def __init__(self, paths): self.paths = paths @classmethod def init_kwargs(cls, root=None): if root is None: root = os.path.join(getcwd(), 'corpora', 'CCG_BNC_v1') return dict( paths=[str(n) for n in local(root).visit() if n.check(file=True, exists=True)], ) def words_by_document(self, path): def word_tags(dependencies, tokens): for token in tokens.values(): # TODO: return a namedtuple? yield token.word, token.stem, token.tag # Consider the whole file as one document! for dependencies, tokens in self.ccg_bnc_iter(path): yield word_tags(dependencies, tokens) def ccg_bnc_iter(self, f_name): with open(f_name, 'rt', encoding='utf8') as f: # Get rid of trailing whitespace. lines = (l.strip() for l in f) while True: # Sentences are split by an empty line. sentence = list(takewhile(bool, lines)) if not sentence: # No line was taken, this means all the file has be read! break # Take extra care of comments. sentence = [l for l in sentence if not l.startswith('#')] if not sentence: # If we got nothing, but comments: skip. continue *dependencies, c = sentence tokens = dict(self.parse_tokens(c)) dependencies = self.parse_dependencies(dependencies) yield dependencies, tokens def verb_subject_object_iter(self, path): for dependencies, tokens in self.ccg_bnc_iter(path): yield from self._collect_verb_subject_object(dependencies, tokens) def _collect_verb_subject_object(self, dependencies, tokens): """Retrieve verb together with it's subject and object from a C&C parsed file. File format description [1] or Table 13 in [2]. [1] http://svn.ask.it.usyd.edu.au/trac/candc/wiki/MarkedUp [2] http://anthology.aclweb.org/J/J07/J07-4004.pdf """ dependencies = sorted( d for d in dependencies if d.relation in ('dobj', 'ncsubj') ) for head_id, group in groupby(dependencies, lambda d: d.head): group = list(group) try: (_, obj, obj_id), (_, subj, subj_id) = sorted(g for g in group if g.relation in ('dobj', 'ncsubj')) except ValueError: pass else: if obj == 'dobj'and subj == 'ncsubj': try: yield tuple(chain(tokens[head_id], tokens[subj_id], tokens[obj_id])) except KeyError: logger.debug('Invalid group %s', group) def dependencies_iter(self, path): def collect_dependencies(dependencies, tokens): for d in dependencies: yield Dependency(tokens[d.head], d.relation, tokens[d.dependant]) # Consider the whole file as one document! for dependencies, tokens in self.ccg_bnc_iter(path): yield from collect_dependencies(dependencies, tokens) def parse_dependencies(self, dependencies): """Parse and filter out verb subject/object dependencies from a C&C parse.""" for dependency in dependencies: assert dependency[0] == '(' assert dependency[-1] == ')' dependency = dependency[1:-1] split_dependency = dependency.split() split_dependency_len = len(split_dependency) if split_dependency_len == 3: # (dobj in_15 judgement_17) relation, head, dependant = split_dependency elif split_dependency_len == 4: empty = lambda r: r == '_' or '_' not in r if empty(split_dependency[-1]): # (ncsubj being_19 judgement_17 _) # (ncsubj laid_13 rule_12 obj) relation, head, dependant = split_dependency[:-1] elif empty(split_dependency[1]): # (xmod _ judgement_17 as_18) # (ncmod poss CHOICE_4 IT_1) relation, _, head, dependant = split_dependency else: # (cmod who_11 people_3 share_12) logger.debug('Ignoring dependency: %s', dependency) continue else: logger.debug('Invalid dependency: %s', dependency) continue parse_argument = lambda a: int(a.split('_')[1]) try: head_id = parse_argument(head) dependant_id = parse_argument(dependant) except (ValueError, IndexError): logger.debug('Could not extract dependency argument: %s', dependency) continue yield Dependency(head_id, relation, dependant_id) def parse_tokens(self, c): """Parse and retrieve token position, word, stem and tag from a C&C parse.""" assert c[:4] == '<c> ' c = c[4:] for position, token in enumerate(c.split()): word, stem, tag, *_ = token.split('|') yield position, Token(word, stem, tag) def ukwac_cell_extractor(cells): word, lemma, tag, feats, head, rel = cells return word, lemma, tag, tag, feats, head, rel class UKWAC: def __init__(self, paths, file_passes, lowercase_stem, limit): self.paths = paths self.file_passes = int(file_passes) self.lowercase_stem = lowercase_stem self.limit = int(limit) if limit is not None else None @classmethod def init_kwargs( cls, root=None, workers_count=16, lowercase_stem=False, limit=None, ): if root is None: root = os.path.join(getcwd(), 'dep_parsed_ukwac') paths = [ str(n) for n in local(root).visit() if n.check(file=True, exists=True) ] file_passes = max(1, workers_count // len(paths)) paths = list( chain.from_iterable( ((i, p) for p in paths) for i in range(file_passes) ) ) assert lowercase_stem in ('', 'y', False, True) lowercase_stem = bool(lowercase_stem) return dict( paths=paths, file_passes=file_passes, lowercase_stem=lowercase_stem, limit=limit, ) def words_by_document(self, path): for document in self.documents(path): yield self.document_words(document) def documents(self, path): file_pass, path = path with gzip.open(path, 'rt', encoding='ISO-8859-1') as f: lines = (l.rstrip() for l in f) lines = peekable( l for l in lines if not l.startswith('<text') and l != '<s>' ) c = 0 while lines: if (c % (10 ** 4)) == 0: logger.debug( '%s text elements are read, every %s is processed. ' 'It\'s about %.2f of the file.', c, self.file_passes, c / 550000, # An approximate number of texts in a file. ) if (self.limit is not None) and (c > self.limit): logger.info('Limit of sentences is reached.') break document = list(takewhile(lambda l: l != '</text>', lines)) if (c % self.file_passes) == file_pass: yield document c += 1 def document_words(self, document): for dg in self.document_dependency_graphs(document): # Make sure that nodes are sorted by the position in the sentence. for _, node in sorted(dg.nodes.items()): if node['word'] is not None: yield self.node_to_token(node) def verb_subject_object_iter(self, path): for document in self.documents(path): for dg in self.document_dependency_graphs(document): for node in dg.nodes.values(): if node['tag'][0] == 'V': if 'SBJ' in node['deps'] and 'OBJ' in node['deps']: for sbj_address, obj_address in product( node['deps']['SBJ'], node['deps']['OBJ'], ): sbj = dg.nodes[sbj_address] obj = dg.nodes[obj_address] yield ( node['word'], node['lemma'], node['tag'], sbj['word'], sbj['lemma'], sbj['tag'], obj['word'], obj['lemma'], obj['tag'], ) def document_dependency_graphs(self, document): document = peekable(iter(document)) while document: sentence = list(takewhile(lambda l: l != '</s>', document)) if not sentence: # It might happen because of the snippets like this: # # plates plate NNS 119 116 PMOD # </text> # </s> # <text id="ukwac:http://www.learning-connections.co.uk/curric/cur_pri/artists/links.html"> # <s> # Ideas Ideas NP 1 14 DEP # # where </text> is before </s>. continue try: dg = DependencyGraph( sentence, cell_extractor=ukwac_cell_extractor, cell_separator='\t', ) except DependencyGraphError: logger.exception("Couldn't instantiate a dependency graph.") else: for node in dg.nodes.values(): if self.lowercase_stem and node['lemma']: node['lemma'] = node['lemma'].lower() yield dg def node_to_token(self, node): return Token(node['word'], node['lemma'], node['tag']) def dependencies_iter(self, path): for document in self.documents(path): for dg in self.document_dependency_graphs(document): for node in dg.nodes.values(): if node['head'] is not None: yield Dependency( self.node_to_token(dg.nodes[node['head']]), node['rel'], self.node_to_token(node) ) class SingleFileDatasetMixIn: def __init__(self, paths, tagset): self.paths = paths self.tagset = tagset @classmethod def init_kwargs(cls, root=None, tagset='ukwac'): if root is None: root = os.path.join(getcwd(), cls.default_file_name) return { 'paths': [root], 'tagset': tagset, } class KS13(SingleFileDatasetMixIn): # TODO: Corpus readers should define tag mapping! vectorizer = 'compositional' default_file_name = 'emnlp2013_turk.txt' def read_file(self, group=False): # TODO: should be moved away from here. from fowler.corpora.wsd.datasets import tag_mappings df = pd.read_csv( self.paths[0], sep=' ', usecols=( 'subject1', 'verb1', 'object1', 'subject2', 'verb2', 'object2', 'score', ), ) for item, tag in ( ('subject1', 'N'), ('verb1', 'V'), ('object1', 'N'), ('subject2', 'N'), ('verb2', 'V'), ('object2', 'N'), ): df['{}_tag'.format(item)] = tag_mappings[self.tagset][tag] if group: df = df.groupby( [ 'subject1', 'subject1_tag', 'verb1', 'verb1_tag', 'object1', 'object1_tag', 'subject2', 'subject2_tag', 'verb2', 'verb2_tag', 'object2', 'object2_tag', ], as_index=False, ).mean() return df def words_by_document(self, path): # Part of CorpusReader df = self.read_file() def words_iter(rows): for _, row in rows: for item in ( 'subject1', 'verb1', 'object1', 'subject2', 'verb2', 'object2', ): word = stem = row[item] t = row['{}_tag'.format(item)] yield word, stem, t yield words_iter(df.iterrows()) def dependency_graphs_pairs(self): # Part of Dataset df = self.read_file(group=True) for _, row in df.iterrows(): yield ( transitive_sentence_to_graph( row['subject1'], row['subject1_tag'], row['verb1'], row['verb1_tag'], row['object1'], row['object1_tag'], ), transitive_sentence_to_graph( row['subject2'], row['subject2_tag'], row['verb2'], row['verb2_tag'], row['object2'], row['object2_tag'], ), row['score'] ) class PhraseRel(SingleFileDatasetMixIn): # TODO: Corpus readers should define tag mapping! vectorizer = 'compositional' extra_fields = 'relevance_type', default_file_name = 'phraserel.csv' def read_file(self): # TODO: should be moved away from here. from fowler.corpora.wsd.datasets import tag_mappings df = pd.read_csv( self.paths[0], sep=',', usecols=( 'query_subject', 'query_verb', 'query_object', 'document_subject', 'document_verb', 'document_object', 'relevance_type', 'relevance_mean', ), ) for item, tag in ( ('query_subject', 'N'), ('query_verb', 'V'), ('query_object', 'N'), ('document_subject', 'N'), ('document_verb', 'V'), ('document_object', 'N'), ): df['{}_tag'.format(item)] = tag_mappings[self.tagset][tag] return df def words_by_document(self, path): # Part of CorpusReader df = self.read_file() def words_iter(rows): for _, row in rows: for item in ( 'query_subject', 'query_verb', 'query_object', 'document_subject', 'document_verb', 'document_object', ): word = stem = row[item] t = row['{}_tag'.format(item)] yield word, stem, t yield words_iter(df.iterrows()) def dependency_graphs_pairs(self): # Part of Dataset df = self.read_file() for _, row in df.iterrows(): yield ( transitive_sentence_to_graph( row['query_subject'], row['query_subject_tag'], row['query_verb'], row['query_verb_tag'], row['query_object'], row['query_object_tag'], ), transitive_sentence_to_graph( row['document_subject'], row['document_subject_tag'], row['document_verb'], row['document_verb_tag'], row['document_object'], row['document_object_tag'], ), row['relevance_mean'], row['relevance_type'], ) def transitive_sentence_to_graph(s, s_t, v, v_t, o, o_t): template = ( '{s}\t{s_t}\t2\tSBJ\n' '{v}\t{v_t}\t0\tROOT\n' '{o}\t{o_t}\t2\tOBJ\n' ) return DependencyGraph( template.format( s=s, s_t=s_t, v=v, v_t=v_t, o=o, o_t=o_t, ) ) class GS11(SingleFileDatasetMixIn): """Transitive sentence disambiguation dataset described in [1]. The data is available at [2]. [1] Grefenstette, Edward, and Mehrnoosh Sadrzadeh. "Experimental support for a categorical compositional distributional model of meaning." Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2011. [2] http://www.cs.ox.ac.uk/activities/compdistmeaning/GS2011data.txt """ # TODO: Corpus readers should define tag mapping! vectorizer = 'compositional' default_file_name = 'GS2011data.txt' def read_file(self, group=False): # TODO: should be moved away from here. from fowler.corpora.wsd.datasets import tag_mappings df = pd.read_csv( self.paths[0], sep=' ', usecols=( 'verb', 'subject', 'object', 'landmark', 'input', ), ) for item, tag in ( ('subject', 'N'), ('verb', 'V'), ('object', 'N'), ('landmark', 'V'), ): df['{}_tag'.format(item)] = tag_mappings[self.tagset][tag] if group: df = df.groupby( [ 'subject', 'subject_tag', 'verb', 'verb_tag', 'object', 'object_tag', 'landmark', 'landmark_tag' ], as_index=False, ).mean() return df def words_by_document(self, path): # Part of CorpusReader df = self.read_file() def words_iter(rows): for _, row in rows: for item in ( 'subject', 'verb', 'object', 'landmark' ): word = stem = row[item] t = row['{}_tag'.format(item)] yield word, stem, t yield words_iter(df.iterrows()) def dependency_graphs_pairs(self): # Part of Dataset df = self.read_file(group=True) for _, row in df.iterrows(): yield ( transitive_sentence_to_graph( row['subject'], row['subject_tag'], row['verb'], row['verb_tag'], row['object'], row['object_tag'], ), transitive_sentence_to_graph( row['subject'], row['subject_tag'], row['landmark'], row['landmark_tag'], row['object'], row['object_tag'], ), row['input'] ) class GS12(SingleFileDatasetMixIn): # TODO: Corpus readers should define tag mapping! vectorizer = 'compositional' default_file_name = 'GS2012data.txt' def read_file(self, group=False): # TODO: should be moved away from here. from fowler.corpora.wsd.datasets import tag_mappings df = pd.read_csv( self.paths[0], sep=' ', usecols=( 'adj_subj', 'subj', 'verb', 'landmark', 'adj_obj', 'obj', 'annotator_score' ), ) for item, tag in ( ('adj_subj', 'J'), ('subj', 'N'), ('verb', 'V'), ('adj_obj', 'J'), ('obj', 'N'), ('landmark', 'V'), ): df['{}_tag'.format(item)] = tag_mappings[self.tagset][tag] if group: df = df.groupby( [ 'adj_subj', 'adj_subj_tag', 'subj', 'subj_tag', 'verb', 'verb_tag', 'adj_obj', 'adj_obj_tag', 'obj', 'obj_tag', 'landmark', 'landmark_tag' ], as_index=False, ).mean() return df def words_by_document(self, path): # Part of CorpusReader df = self.read_file() def words_iter(rows): for _, row in rows: for item in ( 'adj_subj', 'subj', 'verb', 'adj_obj', 'obj', 'landmark' ): word = stem = row[item] t = row['{}_tag'.format(item)] yield word, stem, t yield words_iter(df.iterrows()) def dependency_graphs_pairs(self): # Part of Dataset df = self.read_file(group=True) for _, row in df.iterrows(): yield ( self.sentence_to_graph( row['adj_subj'], row['adj_subj_tag'], row['subj'], row['subj_tag'], row['verb'], row['verb_tag'], row['adj_obj'], row['adj_obj_tag'], row['obj'], row['obj_tag'], ), self.sentence_to_graph( row['adj_subj'], row['adj_subj_tag'], row['subj'], row['subj_tag'], row['landmark'], row['landmark_tag'], row['adj_obj'], row['adj_obj_tag'], row['obj'], row['obj_tag'], ), row['annotator_score'] ) def sentence_to_graph(self, sa, sa_t, s, s_t, v, v_t, oa, oa_t, o, o_t): template = ( '{sa}\t{sa_t}\t2\tamod\n' '{s}\t{s_t}\t3\tSBJ\n' '{v}\t{v_t}\t0\tROOT\n' '{oa}\t{oa_t}\t2\tamod\n' '{o}\t{o_t}\t3\tOBJ\n' ) return DependencyGraph( template.format( sa=sa, sa_t=sa_t, s=s, s_t=s_t, v=v, v_t=v_t, oa=oa, oa_t=oa_t, o=o, o_t=o_t, ) ) class SimLex999(SingleFileDatasetMixIn): # TODO: Corpus readers should define tag mapping! vectorizer = 'lexical' default_file_name = 'SimLex-999.txt' def read_file(self): # TODO: should be moved away from here. from fowler.corpora.wsd.datasets import tag_mappings df = pd.read_csv( self.paths[0], sep='\t', usecols=('word1', 'word2', 'POS', 'SimLex999'), ) df.loc[df['POS'] == 'N', 'POS'] = tag_mappings[self.tagset]['N'] df.loc[df['POS'] == 'V', 'POS'] = tag_mappings[self.tagset]['V'] df.loc[df['POS'] == 'A', 'POS'] = tag_mappings[self.tagset]['J'] return df def words_by_document(self, path): # Part of CorpusReader def words_iter(rows): for _, row in rows: for item in ('word1', 'word2'): word = stem = row[item] t = row['POS'] yield word, stem, t yield words_iter(self.read_file().iterrows()) def dependency_graphs_pairs(self): # Part of Dataset df = self.read_file() for _, row in df.iterrows(): yield ( self.sentence_to_graph( row['word1'], row['POS'], ), self.sentence_to_graph( row['word2'], row['POS'], ), row['SimLex999'] ) def sentence_to_graph(self, w, t): template = ( '{w}\t{t}\t0\tROOT\n' ) return DependencyGraph(template.format(w=w, t=t)) class MEN(SingleFileDatasetMixIn): # TODO: Corpus readers should define tag mapping! vectorizer = 'lexical' default_file_name = 'MEN_dataset_lemma_form_full' def read_file(self): # TODO: should be moved away from here. from fowler.corpora.wsd.datasets import tag_mappings df = pd.read_csv( self.paths[0], sep=' ', names=('token1', 'token2', 'score'), ) def split(item): tag = 'tag{}'.format(item) word_token = df['token{}'.format(item)].str.split('-', expand=True) df['word{}'.format(item)] = word_token[0] df[tag] = word_token[1] df.loc[df[tag] == 'n', tag] = tag_mappings[self.tagset]['N'] df.loc[df[tag] == 'v', tag] = tag_mappings[self.tagset]['V'] df.loc[df[tag] == 'j', tag] = tag_mappings[self.tagset]['J'] split('1') split('2') return df def words_by_document(self, path): # Part of CorpusReader def words_iter(rows): for _, row in rows: for item in ('1', '2'): word = stem = row['word{}'.format(item)] t = row['tag{}'.format(item)] yield word, stem, t yield words_iter(self.read_file().iterrows()) def dependency_graphs_pairs(self): # Part of Dataset df = self.read_file() for _, row in df.iterrows(): yield ( self.sentence_to_graph( row['word1'], row['tag1'], ), self.sentence_to_graph( row['word2'], row['tag2'], ), row['score'] ) def sentence_to_graph(self, w, t): template = ( '{w}\t{t}\t0\tROOT\n' ) return DependencyGraph(template.format(w=w, t=t)) class MSRParaphraseCorpus(): # TODO: Corpus readers should define tag mapping! vectorizer = 'compositional' extra_fields = 'split', def __init__(self, paths, tagset): self.paths = paths self.tagset = tagset @classmethod def init_kwargs(cls, root=None, tagset='ukwac', split=None): if root is None: root = os.path.join(getcwd(), 'MSRParaphraseCorpus') if split is None: paths = [ (os.path.join(root, 'msr_paraphrase_train.txt'), 'train'), (os.path.join(root, 'msr_paraphrase_test.txt'), 'test'), ] elif split == 'train': paths = [ (os.path.join(root, 'msr_paraphrase_train.txt'), 'train'), ] elif split == 'test': paths = [ (os.path.join(root, 'msr_paraphrase_test.txt'), 'test'), ] return { 'paths': paths, 'tagset': tagset, } def read_file(self): dfs = [] for path, split in self.paths: df = pd.read_csv( path, sep='\t', quoting=csv.QUOTE_NONE, encoding='utf-8-sig', ) df['split'] = split dfs.append(df) df = pd.concat(dfs) logger.warn('Replacng `Treasury\\x12s` with `Treasurys`.') df['#1 String'] = df['#1 String'].str.replace('Treasury\x12s', 'Treasurys') return df def words_by_document(self, path): # Part of CorpusReader def words_iter(): for g1, g2, _ in self.dependency_graphs_pairs(): for g in g1, g2: for node in g.nodes.values(): if not node['address']: continue yield ( node['word'], node['lemma'], node['tag'], ) yield words_iter() def dependency_graphs_pairs(self): # Part of Dataset from fowler.corpora.wsd.datasets import tag_mappings df = self.read_file() parser = StanfordDependencyParser() def parse(string): dg = next(parser.raw_parse(string)) for node in dg.nodes.values(): if not node['address']: continue node['original_tag'] = node['tag'] node['tag'] = tag_mappings[self.tagset][node['tag'][0]] return dg for _, row in df.iterrows(): yield ( parse(row['#1 String']), parse(row['#2 String']), row['Quality'], row['split'], )
# SPDX-FileCopyrightText: 2018-2022 Espressif Systems (Shanghai) CO LTD # SPDX-License-Identifier: Apache-2.0 # import importlib.util import os import sys from importlib.abc import Loader from typing import Any def _load_source(name: str, path: str) -> Any: spec = importlib.util.spec_from_file_location(name, path) if not spec: return None module = importlib.util.module_from_spec(spec) sys.modules[spec.name] = module assert isinstance(spec.loader, Loader) spec.loader.exec_module(module) return module idf_path = os.environ['IDF_PATH'] # protocomm component related python files generated from .proto files constants_pb2 = _load_source('constants_pb2', idf_path + '/components/protocomm/python/constants_pb2.py') sec0_pb2 = _load_source('sec0_pb2', idf_path + '/components/protocomm/python/sec0_pb2.py') sec1_pb2 = _load_source('sec1_pb2', idf_path + '/components/protocomm/python/sec1_pb2.py') sec2_pb2 = _load_source('sec2_pb2', idf_path + '/components/protocomm/python/sec2_pb2.py') session_pb2 = _load_source('session_pb2', idf_path + '/components/protocomm/python/session_pb2.py') # wifi_provisioning component related python files generated from .proto files wifi_constants_pb2 = _load_source('wifi_constants_pb2', idf_path + '/components/wifi_provisioning/python/wifi_constants_pb2.py') wifi_config_pb2 = _load_source('wifi_config_pb2', idf_path + '/components/wifi_provisioning/python/wifi_config_pb2.py') wifi_scan_pb2 = _load_source('wifi_scan_pb2', idf_path + '/components/wifi_provisioning/python/wifi_scan_pb2.py')
""" Testing the benefits of using pone """ import pyspiel import time import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from darkhex.algorithms.gel_all_information_states import get_all_information_states def num_states_encountered(): """ Returns the number of possible states to encounter in a game. """ num_rows = 4 num_cols = 3 # No pone start = time.time() game = pyspiel.load_game( f"dark_hex_ir(num_rows={num_rows},num_cols={num_cols})") info_states = get_all_information_states(game, num_rows, num_cols, include_terminal_states=True, get_data=False) game1_len = len(info_states) time1 = time.time() - start print(f'Number of states (No pone): {game1_len}') print(f'Time: {time1}') # Pone start = time.time() game = pyspiel.load_game( f"dark_hex_ir(num_rows={num_rows},num_cols={num_cols},use_early_terminal=True)" ) info_states = get_all_information_states(game, num_rows, num_cols, include_terminal_states=True, get_data=False) game2_len = len(info_states) time2 = time.time() - start print(f'Number of states (Pone): {game2_len}') print(f'Time: {time2}') # plot number of states encountered plt.figure(figsize=(3, 5)) sns.color_palette("tab10") sns.set_style("darkgrid") x = ['p-one', 'no p-one'] y = [game2_len / 100000, game1_len / 100000] plt.bar(x, y, width=.9, color=sns.color_palette("tab10")[:2], align='center') plt.ylabel('Number of states encountered (x100000)') plt.title(f'Number of states\nfor p-one vs no p-one') plt.tight_layout() plt.savefig('darkhex/experiments/results/pone_vs_npone_num_states.pdf') # plot time plt.figure(figsize=(3, 5)) x = ['p-one', 'no p-one'] y = [time2, time1] plt.bar(x, y, width=.9, color=sns.color_palette("tab10")[:2], align='center') plt.ylabel('Time (s)') plt.title(f'Time\nfor p-one vs no p-one') plt.tight_layout() plt.savefig('darkhex/experiments/results/pone_vs_npone_time.pdf') if __name__ == "__main__": num_states_encountered()
""" Resource and titles """ import os import re VPC_GATEWAY_ATTACHMENT = "VPCGatewayAttachment" def vpc_gateway_title(prefix): """ The VPC gateway title. """ return "%s%s" % (prefix, VPC_GATEWAY_ATTACHMENT) def vpc_title(prefix): """ VPC title """ return "%sVPC" % prefix def bucket_name(prefix, suffix=None): """ DNS compliant bucket name. """ if suffix: fmt_str, fmt_args = ("%sApp.%s", (prefix, suffix)) else: fmt_str, fmt_args = ("%sApp", prefix) return "-".join([cp.lower() for cp in re.sub("([A-Z])", " \\1", fmt_str % fmt_args).split()]) def packaged_path(template_path, token='packaged'): """ Converts a path like ../foo/bar/template.yml to ../foo/bar/template-packaged.yml """ dn = os.path.dirname(template_path) bn = os.path.basename(template_path) fn, ext = re.split('\.', bn) fp = os.path.join(dn, fn) return "{0}-{1}.{2}".format(fp, token, ext) def subnet_title(prefix, index=1): """Subnet title""" return "%sPublicSubnet%d" % (prefix, index)
"""Tests for the helper functions.""" from pyglet.window.key import MOD_SHIFT, MOD_CTRL, MOD_ALT, MOD_NUMLOCK from shimmer.helpers import bitwise_contains, bitwise_add, bitwise_remove def test_bitwise_add(subtests): """Test that the bitwise_add function works as intended.""" assert bitwise_add(MOD_SHIFT, MOD_CTRL) == 3 assert bitwise_add(MOD_CTRL, MOD_SHIFT) == 3 assert bitwise_add(MOD_SHIFT, MOD_ALT) == 5 assert bitwise_add(MOD_SHIFT, bitwise_add(MOD_CTRL, MOD_ALT)) == 7 with subtests.test("Adding to itself results in itself"): assert bitwise_add(MOD_SHIFT, MOD_SHIFT) == MOD_SHIFT def test_bitwise_remove(subtests): """Test that the bitwise_remove function works as intended.""" shift_ctrl = bitwise_add(MOD_SHIFT, MOD_CTRL) with subtests.test("Removing one mask from another works."): assert bitwise_remove(shift_ctrl, MOD_SHIFT) == MOD_CTRL assert bitwise_remove(shift_ctrl, MOD_CTRL) == MOD_SHIFT with subtests.test("Removing a bit that isn't contained results in no change."): assert bitwise_remove(shift_ctrl, MOD_ALT) == shift_ctrl with subtests.test("Can remove a single mask to get 0."): assert bitwise_remove(MOD_SHIFT, MOD_SHIFT) == 0 def test_bitwise_contains(subtests): """Test that the bitwise_contains function works as intended.""" shift_alt = bitwise_add(MOD_SHIFT, MOD_ALT) with subtests.test("Comparing single bits works."): assert bitwise_contains(MOD_SHIFT, MOD_SHIFT) is True assert bitwise_contains(MOD_SHIFT, MOD_CTRL) is False with subtests.test("A single bit matches a multi-bit mask."): assert bitwise_contains(shift_alt, MOD_SHIFT) is True assert bitwise_contains(shift_alt, MOD_CTRL) is False assert bitwise_contains(shift_alt, MOD_ALT) is True with subtests.test("A multi-bit mask matches a single bit"): assert bitwise_contains(MOD_SHIFT, shift_alt) is True with subtests.test("A multi-bit mask matches a multi-bit mask."): assert bitwise_contains(shift_alt, shift_alt) is True shift_ctrl = bitwise_add(MOD_SHIFT, MOD_CTRL) assert bitwise_contains(shift_alt, shift_ctrl) is True with subtests.test( "A multi-bit mask with no overlap does not match another multi-bit mask" ): alt_numlock = bitwise_add(MOD_ALT, MOD_NUMLOCK) assert bitwise_contains(shift_ctrl, alt_numlock) is False
import numpy as np import decimal import spectra class Smear(object): """ This class smears the energy and radius of a spectra. The class can recieve energy and radius as individual data points or a 1 dimensional numpy array to smear which is then returned. 2d and 3d arrays with linked energy, radius and time information is yet to be implemented. Attributes: _light_yield (float): Number of PMT hits expected for a MeV energy deposit in NHit/MeV _position_resolution (float): Sigma in mm """ _light_yield = 200. # NHit per MeV _position_resolution = 100. # mm def __init__(self): """ Initialise the Smear class by seeding the random number generator """ np.random.seed() def bin_1d_array(self, array, bins): """ Sorts a 1 dimensional array and bins it Args: array (:class:`numpy.array`): To sort and bin bins (list): Upper limit of bins Returns: A 1 dimensional numpy array, sorted and binned. """ array = np.sort(array) split_at = array.searchsorted(bins) return np.split(array, split_at) def calc_gaussian(self, x, mean, sigma): """ Calculates the value of a gaussian whose integral is equal to one at position x with a given mean and sigma. Args: x : Position to calculate the gaussian mean : Mean of the gaussian sigma : Sigma of the gaussian Returns: Value of the gaussian at the given position """ return np.exp(-(x-mean)**2/(2*sigma**2))/(sigma*np.sqrt(2*np.pi)) def floor_to_bin(self, x, bin_size): """ Rounds down value bin content to lower edge of nearest bin. Args: x (float): Value to round down bin_size (float): Width of a bin Returns: Value of nearest lower bin edge """ dp = abs(decimal.Decimal(str(bin_size)).as_tuple().exponent) coef = np.power(10, dp) return np.floor(coef*(x//bin_size)*bin_size)/coef def ceil_to_bin(self, x, bin_size): """ Rounds up value bin content to upper edge of nearest bin. Args: x (float): Value to round down bin_size (float): Width of a bin Returns: Value of nearest lower bin edge """ dp = abs(decimal.Decimal(str(bin_size)).as_tuple().exponent) coef = np.power(10, dp) return np.ceil(coef*(bin_size+(x//bin_size)*bin_size))/coef def get_energy_sigma(self, energy): """ Calculates sigma at a given energy. Args: energy (float): Energy value of data point(s) Returns: Sigma equivalent to sqrt(energy/_light_yield) """ return np.sqrt(energy/self._light_yield) def smear_energy_0d(self, energy): """ Smears a single energy value Args: energy (float): Value to smear Returns: Smeared energy value """ sigma = self.get_energy_sigma(energy) return np.fabs(np.random.normal(energy, sigma)) def smear_energy_1d(self, energies, bins, binned=False): """ Smears a 1 dimensional array of energy values Args: energies (:class:`numpy.array`): Values to smear bins (list): Upper edge of bins for array binned (bool): Is the array already binned? (True or False) Returns: Smeared and sorted 1 dimensional numpy array of energy values """ if binned is False: energies = self.bin_1d_array(energies, bins) bin_size = bins[1]-bins[0] smeared_energies = [] for energy in energies: if energy.any(): energy_bin = self.floor_to_bin(energy[0], bin_size)+0.5*bin_size num_entries = len(energy) smeared_energies += self.smear_energy_bin(energy_bin, num_entries) return np.array(smeared_energies) def smear_energy_bin(self, energy, entries): """ Smears one energy bin. Args: energy (float): Central value of energy of bin entries (int): Number of entries in the bin Returns: A list of smeared energies corresponding to the input bin. """ sigma = self.get_energy_sigma(energy) smeared_energies = [] for i in range(entries): smeared_energies.append(np.fabs(np.random.normal(energy, sigma))) return smeared_energies def smear_radius_0d(self, radius): """ Smears a single radius value Args: radius (float): Value to smear Returns: Smeared radius value """ return np.fabs(np.random.normal(radius, self._position_resolution)) def smear_radii_1d(self, radii, bins, binned=False): """ Smears a 1 dimensional array of radius values Args: radii (:class:`numpy.array`): Values to smear bins (list): Upper edge of bins for array binned (bool): Is the array already binned? (True or False) Returns: Smeared and sorted 1 dimensional numpy array of radius values """ if binned is False: radii = self.bin_1d_array(radii, bins) bin_size = bins[1]-bins[0] smeared_radii = [] for radius in radii: if radius.any(): radius_bin = self.floor_to_bin(radius[0], bin_size)+0.5*bin_size num_entries = len(radius) smeared_radii += self.smear_radius_bin(radius_bin, num_entries) return np.array(smeared_radii) def smear_radius_bin(self, radius, entries): """ Smears one energy bin. Args: radius (float): Central value of radius of bin entries (int): Number of entries in the bin Returns: A list of smeared radii corresponding to the input bin. """ smeared_radii = [] for i in range(entries): smeared_radii.append(np.fabs(np.random.normal(radius, self._position_resolution))) return smeared_radii def random_gaussian_energy_spectra(self, true_spectrum): """ Smears the energy of a spectra object by generating a number of random points from a Gaussian pdf generated for that bin. The number of points generated is equivalent to the number of entries in that bin. Args: true_spectrum (spectra): spectrum to be smeared Returns: A smeared spectra object. """ energy_step = (true_spectrum._energy_high-true_spectrum._energy_low)/true_spectrum._energy_bins time_step = (true_spectrum._time_high-true_spectrum._time_low)/true_spectrum._time_bins radial_step = (true_spectrum._radial_high-true_spectrum._radial_low)/true_spectrum._radial_bins smeared_spectrum = spectra.Spectra(true_spectrum._name+str(self._light_yield)+"_light_yield", true_spectrum._num_decays) for time_bin in range(true_spectrum._time_bins): mean_time = time_bin*time_step+0.5*time_step for radial_bin in range(true_spectrum._radial_bins): mean_radius = radial_bin*radial_step+0.5*radial_step for energy_bin in range(true_spectrum._energy_bins): mean_energy = energy_bin*energy_step+0.5*energy_step sigma = self.get_energy_sigma(mean_energy) entries = true_spectrum._data[energy_bin, radial_bin, time_bin] for i in range(int(entries)): try: smeared_spectrum.fill(np.fabs(np.random.normal(mean_energy, sigma)), mean_radius, mean_time) except: # Occurs when smeared energy is > max bin print "Warning: Smeared energy out of bounds. Skipping." continue return smeared_spectrum def weight_gaussian_energy_spectra(self, true_spectrum, num_sigma=5.): """ Smears the energy of a spectra object by calculating a Gaussian pdf for each bin and applying a weight to the bin and corresponding bins a default 5 sigma apart. Args: true_spectrum (spectra): spectrum to be smeared num_sigma (float): Width of window to apply the weight method. Default is 5. Returns: A smeared spectra object. """ energy_step = (true_spectrum._energy_high-true_spectrum._energy_low)/true_spectrum._energy_bins time_step = (true_spectrum._time_high-true_spectrum._time_low)/true_spectrum._time_bins radial_step = (true_spectrum._radial_high-true_spectrum._radial_low)/true_spectrum._radial_bins smeared_spectrum = spectra.Spectra(true_spectrum._name+str(self._light_yield)+"_light_yield", true_spectrum._num_decays) for time_bin in range(true_spectrum._time_bins): mean_time = time_bin*time_step+0.5*time_step for radial_bin in range(true_spectrum._radial_bins): mean_radius = radial_bin*radial_step+0.5*radial_step for energy_bin in range(true_spectrum._energy_bins): mean_energy = energy_bin*energy_step+0.5*energy_step sigma = self.get_energy_sigma(mean_energy) entries = float(true_spectrum._data[energy_bin, radial_bin, time_bin]) if entries == 0: continue # Bin Empty lower_bin = self.floor_to_bin(mean_energy-num_sigma*sigma, energy_step)+0.5*energy_step upper_bin = self.ceil_to_bin(mean_energy+num_sigma*sigma, energy_step)-0.5*energy_step if upper_bin > true_spectrum._energy_high: upper_bin = true_spectrum._energy_high-0.5*energy_step if lower_bin < true_spectrum._energy_low: lower_bin = true_spectrum._energy_low+0.5*energy_step weights = [] for energy in np.arange(lower_bin, upper_bin, energy_step): weights.append(self.calc_gaussian(energy, mean_energy, sigma)) i = 0 tot_weight = np.array(weights).sum() for energy in np.arange(lower_bin, upper_bin, energy_step): smeared_spectrum.fill(energy, mean_radius, mean_time, entries*weights[i]/tot_weight) i += 1 return smeared_spectrum def random_gaussian_radius_spectra(self, true_spectrum): """ Smears the radius of a spectra object by generating a number of random points from a Gaussian pdf generated for that bin. The number of points generated is equivalent to the number of entries in that bin. Args: true_spectrum (spectra): spectrum to be smeared Returns: A smeared spectra object. """ energy_step = (true_spectrum._energy_high-true_spectrum._energy_low)/true_spectrum._energy_bins time_step = (true_spectrum._time_high-true_spectrum._time_low)/true_spectrum._time_bins radial_step = (true_spectrum._radial_high-true_spectrum._radial_low)/true_spectrum._radial_bins smeared_spectrum = spectra.Spectra(true_spectrum._name+str(self._position_resolution)+"_position_resolution", true_spectrum._num_decays) for time_bin in range(true_spectrum._time_bins): mean_time = time_bin*time_step+0.5*time_step for energy_bin in range(true_spectrum._energy_bins): mean_energy = energy_bin*energy_step+0.5*energy_step for radial_bin in range(true_spectrum._radial_bins): mean_radius = radial_bin*radial_step+0.5*radial_step entries = true_spectrum._data[energy_bin, radial_bin, time_bin] for i in range(int(entries)): try: smeared_spectrum.fill(mean_energy, np.fabs(np.random.normal(mean_radius, self._position_resolution)), mean_time) except: # Occurs when smeared radius is > max bin print "Warning: Smeared radius out of bounds. Skipping." continue return smeared_spectrum def weight_gaussian_radius_spectra(self, true_spectrum, num_sigma=5.): """ Smears the radius of a spectra object by calculating a Gaussian pdf for each bin and applies a weight to the bin and corresponding bins a default 5 sigma apart. Args: true_spectrum (spectra): spectrum to be smeared num_sigma (float): Width of window to apply the weight method. Default is 5. Returns: A smeared spectra object. """ energy_step = (true_spectrum._energy_high-true_spectrum._energy_low)/true_spectrum._energy_bins time_step = (true_spectrum._time_high-true_spectrum._time_low)/true_spectrum._time_bins radial_step = (true_spectrum._radial_high-true_spectrum._radial_low)/true_spectrum._radial_bins smeared_spectrum = spectra.Spectra(true_spectrum._name+str(self._position_resolution)+"_position_resolution", true_spectrum._num_decays) for time_bin in range(true_spectrum._time_bins): mean_time = time_bin*time_step+0.5*time_step for energy_bin in range(true_spectrum._energy_bins): mean_energy = energy_bin*energy_step+0.5*energy_step for radial_bin in range(true_spectrum._radial_bins): mean_radius = radial_bin*radial_step+0.5*radial_step entries = float(true_spectrum._data[energy_bin, radial_bin, time_bin]) if entries == 0: continue # Bin Empty lower_bin = self.floor_to_bin(mean_radius-num_sigma*self._position_resolution, radial_step)+0.5*radial_step upper_bin = self.ceil_to_bin(mean_radius+num_sigma*self._position_resolution, radial_step)-0.5*radial_step if upper_bin > true_spectrum._radial_high: upper_bin = true_spectrum._radial_high-0.5*energy_step if lower_bin < true_spectrum._radial_low: lower_bin = true_spectrum._radial_low+0.5*energy_step weights = [] for radius in np.arange(lower_bin, upper_bin, radial_step): weights.append(self.calc_gaussian(radius, mean_radius, self._position_resolution)) weight_tot = np.array(weights).sum() i = 0 for radius in np.arange(lower_bin, upper_bin, radial_step): smeared_spectrum.fill(mean_energy, radius, mean_time, entries*weights[i]/weight_tot) i += 1 return smeared_spectrum
import urllib.request, urllib.parse, urllib.error from bs4 import BeautifulSoup import ssl #SSL Certification Error Handle ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE #Data Collection link = input('Enter URL: ') cont = int(input('Enter count: ')) line = int(input('Enter position: ')) print('Retrieving: %s' % link) for i in range(0, cont): html = urllib.request.urlopen(link, context=ctx).read() soup = BeautifulSoup(html, 'html.parser') tags = soup('a') cn = 0 ps = 0 for tag in tags: ps += 1 if ps == line: print('Retrieving: %s' % str(tag.get('href', None))) link = str(tag.get('href', None)) ps = 0 break
import os from typing import List from fvttmv.path_tools import PathTools from fvttmv.wolds_finder import WorldsFinder dirs_in_worlds_to_look_for_db_file = ["data", "packs"] class DbFilesIterator: """ Tools for iterating over db files. """ def iterate_through_all(self, abs_path_to_foundry_data: str, abs_paths_to_additional_targets: List[str]): # Check before iterating -> Don't fail in the middle for abs_path in abs_paths_to_additional_targets + [abs_path_to_foundry_data]: PathTools.assert_path_format_is_ok(abs_path) for abs_path_to_target in abs_paths_to_additional_targets: PathTools.assert_path_is_file_or_dir(abs_path_to_target) PathTools.assert_path_is_dir(abs_path_to_foundry_data) for abs_path_to_db in self.__iterate_through_all_worlds(abs_path_to_foundry_data): yield abs_path_to_db for abs_path_to_db in self.__iterate_trough_additional_targets(abs_paths_to_additional_targets): yield abs_path_to_db def __iterate_through_all_worlds(self, abs_path_to_foundry_data: str): PathTools.assert_path_format_is_ok(abs_path_to_foundry_data) PathTools.assert_path_is_dir(abs_path_to_foundry_data) worlds_finder = WorldsFinder(abs_path_to_foundry_data) world_dirs = worlds_finder.get_paths_to_worlds() for path_to_world_dir in world_dirs: for db_file in self.__iterate_through_world_dir(path_to_world_dir): yield db_file def __iterate_trough_additional_targets(self, abs_paths_to_additional_targets: List[str]): for abs_path_to_additional_target in abs_paths_to_additional_targets: if os.path.isfile(abs_path_to_additional_target): yield abs_path_to_additional_target continue for abs_path_to_db in self.__iterate_through_dir(abs_path_to_additional_target): yield abs_path_to_db def __iterate_through_dir(self, abs_path_to_dir: str): PathTools.assert_path_format_is_ok(abs_path_to_dir) PathTools.assert_path_is_dir(abs_path_to_dir) # os.listdir is not always sorted the same way. For testing purposes and reproduction purposes it should be though for element in sorted(os.listdir(abs_path_to_dir)): abs_path_to_element = os.path.join(abs_path_to_dir, element) if not os.path.isfile(abs_path_to_element): continue if element.endswith(".db"): yield abs_path_to_element def __iterate_through_world_dir(self, abs_path_to_world_dir: str): for directory in dirs_in_worlds_to_look_for_db_file: abs_path_to_dir = os.path.join(abs_path_to_world_dir, directory) if not os.path.exists(abs_path_to_dir): continue for db_file in self.__iterate_through_dir(abs_path_to_dir): yield db_file
'''Module with functions to work with artists data. Під час підбору потрібного датасету ми зіткнулися з проблемою: більший датасет не мав інформації щодо популярності композицій. Через це ми вирішили побудувати свій власний критерій популярності, що базується на популярності артистів, що працювали над певною композицією. За допомогою цих функцій, ми зібрали інформацію про популярність виконавців з меншого датасету - таких всього 32 тисячі. Потім, ми відкинули всі пісні з більшого датасету, у яких список виконавців не мав хоча б одного з малого датасету. В результаті маємо датасет на більше ніж 600 тисяч пісень замість початково запланованих 160 тисяч. ''' from typing import List, Set import pandas as pd def get_artists(data: pd.DataFrame) -> set: ''' Return a set of artists from the dataset. ''' artists_set = set() for artist_data in data['artists']: # Add a single artist if len(artist_data) == 1: artists_set.add(artist_data[0]) # Add a group of artists else: for artist in artist_data: artists_set.add(artist) return artists_set def has_known_artist(artist_data: List[str], artists: Set[str]): ''' Return True if at least one artist is present in the given set, False otherwise. ''' # Check if at least one artist from the group is known for artist in artist_data: if artist in artists: return True return False def get_mean_popularity(artists, popularity): ''' Return mean popularity value for among given artists. Return None if there is missing data for at least one artist. ''' try: return sum(popularity[artist] for artist in artists) / len(artists) except: return None
# # @lc app=leetcode id=243 lang=python3 # # [243] Shortest Word Distance # # @lc code=start class Solution: def shortestDistance(self, words, word1, word2): d = {word1: -1, word2: -1} mi = float('inf') if word1 == word2: return for i in range(len(words)): if words[i] == word1: d[word1] = i if d[word2] != -1: mi = min(abs(d[word1] - d[word2]), mi) elif words[i] == word2: d[word2] = i if d[word1] != -1: mi = min(abs(d[word1] - d[word2]), mi) return mi # @lc code=end
#!/usr/bin/python """ pi-timolo - Raspberry Pi Long Duration Timelapse, Motion Tracking, with Low Light Capability written by Claude Pageau Jul-2017 (release 7.x) This release uses OpenCV to do Motion Tracking. It requires updated config.py """ from __future__ import print_function progVer = "ver 11.52" # Requires Latest 11.2 release of config.py __version__ = progVer # May test for version number at a future time import os import subprocess warn_on = False # Add short delay to review warning messages mypath = os.path.abspath(__file__) # Find the full path of this python script # get the path location only (excluding script name) baseDir = os.path.dirname(mypath) baseFileName = os.path.splitext(os.path.basename(mypath))[0] progName = os.path.basename(__file__) logFilePath = os.path.join(baseDir, baseFileName + ".log") horz_line = '-------------------------------------------------------' print(horz_line) print('%s %s written by Claude Pageau' % (progName, progVer)) print(horz_line) print('Loading Wait ....') # import python library modules import datetime import logging import sys import subprocess import shutil import glob import time import math from threading import Thread from fractions import Fraction import numpy as np from PIL import Image from PIL import ImageFont from PIL import ImageDraw # Attempt to import dateutil try: from dateutil.parser import parse except ImportError: print("WARN : Could Not Import dateutil.parser") print(" Disabling timelapseStartAt, motionStartAt and VideoStartAt") print(" See https://github.com/pageauc/pi-timolo/wiki/Basic-Trouble-Shooting#problems-with-python-pip-install-on-wheezy") warn_on = True # Disable get_sched_start if import fails for Raspbian wheezy or Jessie timelapseStartAt = "" motionStartAt = "" videoStartAt = "" # Attempt to import pyexiv2. Note python3 can be a problem try: # pyexiv2 Transfers image exif data to writeTextToImage # For python3 install of pyexiv2 lib # See https://github.com/pageauc/pi-timolo/issues/79 # Bypass pyexiv2 if library Not Found import pyexiv2 except ImportError: print("WARN : Could Not Import pyexiv2. Required for Saving Image EXIF meta data") print(" If Running under python3 then Install pyexiv2 library for python3 per") print(" cd ~/pi-timolo") print(" ./install-py3exiv2.sh") warn_on = True except OSError as err: print("WARN : Could Not import python3 pyexiv2 due to an Operating System Error") print(" %s" % err) print(" Camera images will be missing exif meta data") warn_on = True """ This is a dictionary of the default settings for pi-timolo.py If you don't want to use a config.py file these will create the required variables with default values. Change dictionary values if you want different variable default values. A message will be displayed if a variable is Not imported from config.py. Note: plugins can override default and config.py values if plugins are enabled. This happens after config.py variables are initialized """ default_settings = { 'configName':'default_settings', 'configTitle':'No config.py so using internal dictionary settings', 'pluginEnable':False, 'pluginName':"shopcam", 'verbose':True, 'logDataToFile':False, 'debug':False, 'imageNamePrefix':'cam1-', 'imageWidth':1920, 'imageHeight':1080, 'imageFormat':".jpg", 'imageJpegQuality':95, 'imageRotation':0, 'imageVFlip':True, 'imageHFlip':True, 'imageGrayscale':False, 'imagePreview':False, 'noNightShots':False, 'noDayShots':False, 'useVideoPort':False, 'imageShowStream':False, 'streamWidth':320, 'streamHeight':240, 'showDateOnImage':True, 'showTextFontSize':18, 'showTextBottom':True, 'showTextWhite':True, 'showTextWhiteNight':True, 'nightTwilightThreshold':90, 'nightDarkThreshold':50, 'nightBlackThreshold':4, 'nightSleepSec':30, 'nightMaxShutSec':5.9, 'nightMaxISO':800, 'nightDarkAdjust':4.7, 'motionTrackOn':True, 'motionTrackQuickPic':False, 'motionTrackInfo':True, 'motionTrackTimeOut':0.3, 'motionTrackTrigLen':75, 'motionTrackMinArea':100, 'motionTrackFrameRate':20, 'motionTrackQPBigger':3.0, 'motionDir':"media/motion", 'motionPrefix':"mo-", 'motionStartAt':"", 'motionVideoOn':False, 'motionVideoFPS':15, 'motionVideoTimer':10, 'motionQuickTLOn':False, 'motionQuickTLTimer':20, 'motionQuickTLInterval':4, 'motionForce':3600, 'motionNumOn':True, 'motionNumRecycle':True, 'motionNumStart':1000, 'motionNumMax':500, 'motionSubDirMaxFiles':0, 'motionSubDirMaxHours':0, 'motionRecentMax':40, 'motionRecentDir':"media/recent/motion", 'motionDotsOn':False, 'motionDotsMax':100, 'motionCamSleep':0.7, 'createLockFile':False, 'timelapseOn':True, 'timelapseDir':"media/timelapse", 'timelapsePrefix':"tl-", 'timelapseStartAt':"", 'timelapseTimer':300, 'timelapseCamSleep':4.0, 'timelapseNumOn':True, 'timelapseNumRecycle':True, 'timelapseNumStart':1000, 'timelapseNumMax':2000, 'timelapseExitSec':0, 'timelapseMaxFiles':0, 'timelapseSubDirMaxFiles':0, 'timelapseSubDirMaxHours':0, 'timelapseRecentMax':40, 'timelapseRecentDir':"media/recent/timelapse", 'videoRepeatOn':False, 'videoPath':"media/videos", 'videoPrefix':"vid-", 'videoStartAt':"", 'videoDuration':120, 'videoTimer':60, 'videoFPS':30, 'videoNumOn':False, 'videoNumRecycle':False, 'videoNumStart':100, 'videoNumMax':20, 'spaceTimerHrs':0, 'spaceFreeMB':500, 'spaceMediaDir':'/home/pi/pi-timolo/media', 'spaceFileExt':'jpg', 'web_server_port':8080, 'web_server_root':"media", 'web_page_title':"PI-TIMOLO Media", 'web_page_refresh_on':True, 'web_page_refresh_sec':"900", 'web_page_blank':False, 'web_image_height':"768", 'web_iframe_width_usage':"70%", 'web_iframe_width':"100%", 'web_iframe_height':"100%", 'web_max_list_entries':0, 'web_list_height':"768", 'web_list_by_datetime':True, 'web_list_sort_descending':True } # Check for config.py variable file to import and error out if not found. configFilePath = os.path.join(baseDir, "config.py") if os.path.isfile(configFilePath): try: # Read Configuration variables from config.py file from config import * except ImportError: print('WARN : Problem Importing Variables from %s' % configFilePath) warn_on = True else: print('WARN : %s File Not Found. Cannot Import Configuration Variables.' % configFilePath) print(' Run Console Command Below to Download File from GitHub Repo') print(' wget -O config.py https://raw.github.com/pageauc/pi-timolo/master/source/config.py') print(' or cp config.py.new config.py') print(' Will now use default_settings dictionary variable values.') warn_on = True """ Check if variables were imported from config.py. If not create variable using the values in the default_settings dictionary above. """ for key, val in default_settings.items(): try: exec(key) except NameError: print('WARN : config.py Variable Not Found. Setting ' + key + ' = ' + str(val)) exec(key + '=val') warn_on = True # Setup Logging now that variables are imported from config.py/plugin if logDataToFile: logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)-8s %(funcName)-10s %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename=logFilePath, filemode='w') elif verbose: logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)-8s %(funcName)-10s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') else: logging.basicConfig(level=logging.CRITICAL, format='%(asctime)s %(levelname)-8s %(funcName)-10s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') # Check for user_motion_code.py file to import and error out if not found. userMotionFilePath = os.path.join(baseDir, "user_motion_code.py") if not os.path.isfile(userMotionFilePath): print('WARN : %s File Not Found. Cannot Import user_motion_code functions.' % userMotionFilePath) warn_on = True else: # Read Configuration variables from config.py file try: motionCode = True import user_motion_code except ImportError: print('WARN : Failed Import of File user_motion_code.py Investigate Problem') motionCode = False warn_on = True # Give some time to read any warnings if warn_on and verbose: print('') print('Please Review Warnings Wait 10 sec ...') time.sleep(10) try: import cv2 except ImportError: if sys.version_info > (2, 9): logging.error("Failed to import cv2 opencv for python3") logging.error("Try installing opencv for python3") logging.error("See https://github.com/pageauc/opencv3-setup") else: logging.error("Failed to import cv2 for python2") logging.error("Try reinstalling per command") logging.error("sudo apt-get install python-opencv") logging.error("Exiting %s Due to Error", progName) sys.exit(1) try: from picamera import PiCamera except ImportError: logging.error("Problem importing picamera module") logging.error("Try command below to import module") if sys.version_info > (2, 9): logging.error("sudo apt-get install python3-picamera") else: logging.error("sudo apt-get install python-picamera") logging.error("Exiting %s Due to Error", progName) sys.exit(1) from picamera.array import PiRGBArray import picamera.array # Check that pi camera module is installed and enabled camResult = subprocess.check_output("vcgencmd get_camera", shell=True) camResult = camResult.decode("utf-8") camResult = camResult.replace("\n", "") if (camResult.find("0")) >= 0: # Was a 0 found in vcgencmd output logging.error("Pi Camera Module Not Found %s", camResult) logging.error("if supported=0 Enable Camera using command sudo raspi-config") logging.error("if detected=0 Check Pi Camera Module is Installed Correctly") logging.error("Exiting %s Due to Error", progName) sys.exit(1) else: logging.info("Pi Camera Module is Enabled and Connected %s", camResult) if pluginEnable: # Check and verify plugin and load variable overlay pluginDir = os.path.join(baseDir, "plugins") # Check if there is a .py at the end of pluginName variable if pluginName.endswith('.py'): pluginName = pluginName[:-3] # Remove .py extensiion pluginPath = os.path.join(pluginDir, pluginName + '.py') logging.info("pluginEnabled - loading pluginName %s", pluginPath) if not os.path.isdir(pluginDir): logging.error("plugin Directory Not Found at %s", pluginDir) logging.error("Rerun github curl install script to install plugins") logging.error("https://github.com/pageauc/pi-timolo/wiki/" "How-to-Install-or-Upgrade#quick-install") logging.error("Exiting %s Due to Error", progName) sys.exit(1) elif not os.path.isfile(pluginPath): logging.error("File Not Found pluginName %s", pluginPath) logging.error("Check Spelling of pluginName Value in %s", configFilePath) logging.error("------- Valid Names -------") validPlugin = glob.glob(pluginDir + "/*py") validPlugin.sort() for entry in validPlugin: pluginFile = os.path.basename(entry) plugin = pluginFile.rsplit('.', 1)[0] if not ((plugin == "__init__") or (plugin == "current")): logging.error(" %s", plugin) logging.error("------- End of List -------") logging.error("Note: pluginName Should Not have .py Ending.") logging.error("or Rerun github curl install command. See github wiki") logging.error("https://github.com/pageauc/pi-timolo/wiki/" "How-to-Install-or-Upgrade#quick-install") logging.error("Exiting %s Due to Error", progName) sys.exit(1) else: pluginCurrent = os.path.join(pluginDir, "current.py") try: # Copy image file to recent folder logging.info("Copy %s to %s", pluginPath, pluginCurrent) shutil.copy(pluginPath, pluginCurrent) except OSError as err: logging.error('Copy Failed from %s to %s - %s', pluginPath, pluginCurrent, err) logging.error("Check permissions, disk space, Etc.") logging.error("Exiting %s Due to Error", progName) sys.exit(1) logging.info("Import Plugin %s", pluginPath) sys.path.insert(0, pluginDir) # add plugin directory to program PATH from plugins.current import * try: if os.path.isfile(pluginCurrent): os.remove(pluginCurrent) pluginCurrentpyc = os.path.join(pluginDir, "current.pyc") if os.path.isfile(pluginCurrentpyc): os.remove(pluginCurrentpyc) except OSError as err: logging.warn("Failed Removal of %s - %s", pluginCurrentpyc, err) time.sleep(5) else: logging.info("No Plugin Enabled per pluginEnable=%s", pluginEnable) # Turn on verbose when debug mode is enabled if debug: verbose = True # Make sure image format extention starts with a dot if not imageFormat.startswith('.',0,1): imageFormat = '.' + imageFormat #================================== # System Variables # Should Not need to be customized #================================== SECONDS2MICRO = 1000000 # Used to convert from seconds to microseconds nightMaxShut = int(nightMaxShutSec * SECONDS2MICRO) # default=5 seconds IMPORTANT- 6 seconds works sometimes # but occasionally locks RPI and HARD reboot required to clear darkAdjust = int((SECONDS2MICRO/5.0) * nightDarkAdjust) daymode = False # default should always be False. motionPath = os.path.join(baseDir, motionDir) # Store Motion images # motion dat file to save currentCount motionNumPath = os.path.join(baseDir, motionPrefix + baseFileName + ".dat") motionStreamStopSec = .5 # default= 0.5 seconds Time to close stream thread timelapsePath = os.path.join(baseDir, timelapseDir) # Store Time Lapse images # timelapse dat file to save currentCount timelapseNumPath = os.path.join(baseDir, timelapsePrefix + baseFileName + ".dat") lockFilePath = os.path.join(baseDir, baseFileName + ".sync") # Colors for drawing lines cvWhite = (255, 255, 255) cvBlack = (0, 0, 0) cvBlue = (255, 0, 0) cvGreen = (0, 255, 0) cvRed = (0, 0, 255) LINE_THICKNESS = 1 # Thickness of opencv drawing lines LINE_COLOR = cvWhite # color of lines to highlight motion stream area CAMERA_WIDTH = streamWidth CAMERA_HEIGHT = streamHeight CAMERA_FRAMERATE = motionTrackFrameRate # camera framerate bigImage = motionTrackQPBigger # increase size of motionTrackQuickPic image bigImageWidth = int(CAMERA_WIDTH * bigImage) bigImageHeight = int(CAMERA_HEIGHT * bigImage) TRACK_TRIG_LEN = motionTrackTrigLen # Length of track to trigger speed photo # Don't track progress until this Len reached. TRACK_TRIG_LEN_MIN = int(motionTrackTrigLen / 6) # Set max overshoot triglen allowed half cam height TRACK_TRIG_LEN_MAX = int(CAMERA_HEIGHT / 2) # Timeout seconds Stops motion tracking when no activity TRACK_TIMEOUT = motionTrackTimeOut # OpenCV Contour sq px area must be greater than this. MIN_AREA = motionTrackMinArea BLUR_SIZE = 10 # OpenCV setting for Gaussian difference image blur THRESHOLD_SENSITIVITY = 20 # OpenCV setting for difference image threshold # Fix range Errors Use zero to set default quality to 85 if imageJpegQuality < 1: imageJpegQuality = 85 elif imageJpegQuality > 100: imageJpegQuality = 100 #------------------------------------------------------------------------------ class PiVideoStream: """ Create a picamera in memory video stream and return a frame when update called """ def __init__(self, resolution=(CAMERA_WIDTH, CAMERA_HEIGHT), framerate=CAMERA_FRAMERATE, rotation=0, hflip=False, vflip=False): # initialize the camera and stream try: self.camera = PiCamera() except: logging.error("PiCamera Already in Use by Another Process") logging.error("Exiting %s Due to Error", progName) exit(1) self.camera.resolution = resolution self.camera.framerate = framerate self.camera.hflip = hflip self.camera.vflip = vflip self.camera.rotation = rotation self.rawCapture = PiRGBArray(self.camera, size=resolution) self.stream = self.camera.capture_continuous(self.rawCapture, format="bgr", use_video_port=True) # initialize the frame and the variable used to indicate # if the thread should be stopped self.thread = None # Initialize thread self.frame = None self.stopped = False def start(self): """ start the thread to read frames from the video stream""" self.thread = Thread(target=self.update, args=()) self.thread.daemon = True self.thread.start() return self def update(self): """ keep looping infinitely until the thread is stopped""" for f in self.stream: # grab the frame from the stream and clear the stream in # preparation for the next frame self.frame = f.array self.rawCapture.truncate(0) # if the thread indicator variable is set, stop the thread # and release camera resources if self.stopped: self.stream.close() self.rawCapture.close() self.camera.close() return def read(self): """ return the frame most recently read """ return self.frame def stop(self): """ indicate that the thread should be stopped """ self.stopped = True if self.thread is not None: self.thread.join() #------------------------------------------------------------------------------ def shut2Sec(shutspeed): """ Convert camera shutter speed setting to string """ shutspeedSec = shutspeed/float(SECONDS2MICRO) shutstring = str("%.4f") % (shutspeedSec) return shutstring #------------------------------------------------------------------------------ def showTime(): """ Show current date time in text format """ rightNow = datetime.datetime.now() currentTime = ("%04d-%02d-%02d %02d:%02d:%02d" % (rightNow.year, rightNow.month, rightNow.day, rightNow.hour, rightNow.minute, rightNow.second)) return currentTime #------------------------------------------------------------------------------ def showDots(dotcnt): """ If motionShowDots=True then display a progress dot for each cycle. If motionTrackOn then this would normally be too fast and should be turned off """ if motionDotsOn: if motionTrackOn and verbose: dotcnt += 1 if dotcnt > motionDotsMax + 2: print("") dotcnt = 0 elif dotcnt > motionDotsMax: print("") stime = showTime() + " ." sys.stdout.write(stime) sys.stdout.flush() dotcnt = 0 else: sys.stdout.write('.') sys.stdout.flush() return dotcnt #------------------------------------------------------------------------------ def checkConfig(): """ Check if both motion track and timelapse are disabled and error out """ if not motionTrackOn and not timelapseOn: errorText = ("Both Motion and Timelapse are turned OFF" " - motionTrackOn=%s timelapseOn=%s \n" % (motionTrackOn, timelapseOn)) if verbose: logging.error(errorText) else: sys.stdout.write(errorText) sys.exit(1) #------------------------------------------------------------------------------ def displayInfo(motioncount, timelapsecount): """ Display variable settings with plugin overlays if required """ if verbose: print("----------------------------------- Settings " "-----------------------------------") print("Config File .. configName=%s configTitle=%s" % (configName, configTitle)) if pluginEnable: print(" Plugin .. pluginEnable=%s pluginName=%s" " (Overlays %s Variable Settings)" % (pluginEnable, pluginName, configName)) else: print(" Plugin .. pluginEnable=%s" % pluginEnable) print("") print("Image Info ... Size=%ix%i ext=%s Prefix=%s" " VFlip=%s HFlip=%s Rotation=%i" % (imageWidth, imageHeight, imageFormat, imageNamePrefix, imageVFlip, imageHFlip, imageRotation)) print(" imageGrayscale=%s Preview=%s" % (imageGrayscale, imagePreview)) if imageFormat == '.jpg' or imageFormat == '.jpeg': print(" JpegQuality=%i where 1=Low 100=High" % (imageJpegQuality)) print(" Low Light.. nightTwilightThreshold=%i" " nightDarkThreshold=%i nightBlackThreshold=%i" % (nightTwilightThreshold, nightDarkThreshold, nightBlackThreshold)) print(" nightMaxShutSec=%.2f nightMaxISO=%i" " nightDarkAdjust=%.2f nightSleepSec=%i" % (nightMaxShutSec, nightMaxISO, nightDarkAdjust, nightSleepSec)) print(" No Shots .. noNightShots=%s noDayShots=%s" % (noNightShots, noDayShots)) if showDateOnImage: print(" Img Text .. On=%s Bottom=%s (False=Top) WhiteText=%s (False=Black)" % (showDateOnImage, showTextBottom, showTextWhite)) print(" showTextWhiteNight=%s showTextFontSize=%i px height" % (showTextWhiteNight, showTextFontSize)) else: print(" No Text .. showDateOnImage=%s Text on Image is Disabled" % (showDateOnImage)) print("") if motionTrackOn: print("Motion Track.. On=%s Prefix=%s MinArea=%i sqpx" " TrigLen=%i-%i px TimeOut=%i sec" % (motionTrackOn, motionPrefix, motionTrackMinArea, motionTrackTrigLen, TRACK_TRIG_LEN_MAX, motionTrackTimeOut)) print(" motionTrackInfo=%s motionDotsOn=%s imageShowStream=%s" % (motionTrackInfo, motionDotsOn, imageShowStream)) print(" Stream .... size=%ix%i framerate=%i fps" " motionStreamStopSec=%.2f QuickPic=%s" % (CAMERA_WIDTH, CAMERA_HEIGHT, motionTrackFrameRate, motionStreamStopSec, motionTrackQuickPic)) print(" Img Path .. motionPath=%s motionCamSleep=%.2f sec" % (motionPath, motionCamSleep)) print(" Sched ..... motionStartAt %s blank=Off or" " Set Valid Date and/or Time to Start Sequence" % motionStartAt) print(" Force ..... forceTimer=%i min (If No Motion)" % (motionForce/60)) print(" Lockfile .. On=%s Path=%s NOTE: For Motion Images Only." % (createLockFile, lockFilePath)) if motionNumOn: print(" Num Seq ... motionNumOn=%s numRecycle=%s" " numStart=%i numMax=%i current=%s" % (motionNumOn, motionNumRecycle, motionNumStart, motionNumMax, motioncount)) print(" Num Path .. motionNumPath=%s " % (motionNumPath)) else: print(" Date-Time.. motionNumOn=%s Image Numbering is Disabled" % (motionNumOn)) if motionQuickTLOn: print(" Quick TL .. motionQuickTLOn=%s motionQuickTLTimer=%i" " sec motionQuickTLInterval=%i sec (0=fastest)" % (motionQuickTLOn, motionQuickTLTimer, motionQuickTLInterval)) else: print(" Quick TL .. motionQuickTLOn=%s Quick Time Lapse Disabled" % motionQuickTLOn) if motionVideoOn: print(" Video ..... motionVideoOn=%s motionVideoTimer=%i" " sec motionVideoFPS=%i (superseded by QuickTL)" % (motionVideoOn, motionVideoTimer, motionVideoFPS)) else: print(" Video ..... motionVideoOn=%s Motion Video is Disabled" % motionVideoOn) print(" Sub-Dir ... motionSubDirMaxHours=%i (0-off)" " motionSubDirMaxFiles=%i (0=off)" % (motionSubDirMaxHours, motionSubDirMaxFiles)) print(" Recent .... motionRecentMax=%i (0=off) motionRecentDir=%s" % (motionRecentMax, motionRecentDir)) else: print("Motion ....... motionTrackOn=%s Motion Tracking is Disabled)" % motionTrackOn) print("") if timelapseOn: print("Time Lapse ... On=%s Prefix=%s Timer=%i sec" " timelapseExitSec=%i (0=Continuous)" % (timelapseOn, timelapsePrefix, timelapseTimer, timelapseExitSec)) print(" timelapseMaxFiles=%i" % (timelapseMaxFiles)) print(" Img Path .. timelapsePath=%s timelapseCamSleep=%.2f sec" % (timelapsePath, timelapseCamSleep)) print(" Sched ..... timelapseStartAt %s blank=Off or" " Set Valid Date and/or Time to Start Sequence" % timelapseStartAt) if timelapseNumOn: print(" Num Seq ... On=%s numRecycle=%s numStart=%i numMax=%i current=%s" % (timelapseNumOn, timelapseNumRecycle, timelapseNumStart, timelapseNumMax, timelapsecount)) print(" Num Path .. numPath=%s" % (timelapseNumPath)) else: print(" Date-Time.. motionNumOn=%s Numbering Disabled" % timelapseNumOn) print(" Sub-Dir ... timelapseSubDirMaxHours=%i (0=off)" " timelapseSubDirMaxFiles=%i (0=off)" % (timelapseSubDirMaxHours, timelapseSubDirMaxFiles)) print(" Recent .... timelapseRecentMax=%i (0=off) timelapseRecentDir=%s" % (timelapseRecentMax, timelapseRecentDir)) else: print("Time Lapse ... timelapseOn=%s Timelapse is Disabled" % timelapseOn) print("") if spaceTimerHrs > 0: # Check if disk mgmnt is enabled print("Disk Space .. Enabled - Manage Target Free Disk Space." " Delete Oldest %s Files if Required" % (spaceFileExt)) print(" Check Every spaceTimerHrs=%i (0=off)" " Target spaceFreeMB=%i (min=100 MB) spaceFileExt=%s" % (spaceTimerHrs, spaceFreeMB, spaceFileExt)) print(" Delete Oldest spaceFileExt=%s spaceMediaDir=%s" % (spaceFileExt, spaceMediaDir)) else: print("Disk Space .. spaceTimerHrs=%i " "(Disabled) - Manage Target Free Disk Space. Delete Oldest %s Files" % (spaceTimerHrs, spaceFileExt)) print(" .. Check Every spaceTimerHrs=%i (0=Off)" " Target spaceFreeMB=%i (min=100 MB)" % (spaceTimerHrs, spaceFreeMB)) print("") print("Logging ...... verbose=%s (True=Enabled False=Disabled)" % verbose) print(" Log Path .. logDataToFile=%s logFilePath=%s" % (logDataToFile, logFilePath)) print("--------------------------------- Log Activity " "---------------------------------") checkConfig() #------------------------------------------------------------------------------ def subDirLatest(directory): """ Scan for directories and return most recent """ dirList = ([name for name in os.listdir(directory) if os.path.isdir(os.path.join(directory, name))]) if len(dirList) > 0: lastSubDir = sorted(dirList)[-1] lastSubDir = os.path.join(directory, lastSubDir) else: lastSubDir = directory return lastSubDir #------------------------------------------------------------------------------ def subDirCreate(directory, prefix): """ Create a subdirectory in directory with unique name based on prefix and date time """ now = datetime.datetime.now() # Specify folder naming subDirName = ('%s%d-%02d%02d-%02d%02d' % (prefix, now.year, now.month, now.day, now.hour, now.minute)) subDirPath = os.path.join(directory, subDirName) if not os.path.isdir(subDirPath): try: os.makedirs(subDirPath) except OSError as err: logging.error('Cannot Create Directory %s - %s, using default location.', subDirPath, err) subDirPath = directory else: logging.info('Created %s', subDirPath) else: subDirPath = directory return subDirPath #------------------------------------------------------------------------------ def subDirCheckMaxFiles(directory, filesMax): """ Count number of files in a folder path """ fileList = glob.glob(directory + '/*jpg') count = len(fileList) if count > filesMax: makeNewDir = True logging.info('Total Files in %s Exceeds %i', directory, filesMax) else: makeNewDir = False return makeNewDir #------------------------------------------------------------------------------ def subDirCheckMaxHrs(directory, hrsMax, prefix): """ Note to self need to add error checking extract the date-time from the directory name """ dirName = os.path.split(directory)[1] # split dir path and keep dirName # remove prefix from dirName so just date-time left dirStr = dirName.replace(prefix, '') # convert string to datetime dirDate = datetime.datetime.strptime(dirStr, "%Y-%m-%d-%H:%M") rightNow = datetime.datetime.now() # get datetime now diff = rightNow - dirDate # get time difference between dates days, seconds = diff.days, diff.seconds dirAgeHours = days * 24 + seconds // 3600 # convert to hours if dirAgeHours > hrsMax: # See if hours are exceeded makeNewDir = True logging.info('MaxHrs %i Exceeds %i for %s', dirAgeHours, hrsMax, directory) else: makeNewDir = False return makeNewDir #------------------------------------------------------------------------------ def subDirChecks(maxHours, maxFiles, directory, prefix): """ Check if motion SubDir needs to be created """ if maxHours < 1 and maxFiles < 1: # No Checks required # logging.info('No sub-folders Required in %s', directory) subDirPath = directory else: subDirPath = subDirLatest(directory) if subDirPath == directory: # No subDir Found logging.info('No sub folders Found in %s', directory) subDirPath = subDirCreate(directory, prefix) # Check MaxHours Folder Age Only elif (maxHours > 0 and maxFiles < 1): if subDirCheckMaxHrs(subDirPath, maxHours, prefix): subDirPath = subDirCreate(directory, prefix) elif (maxHours < 1 and maxFiles > 0): # Check Max Files Only if subDirCheckMaxFiles(subDirPath, maxFiles): subDirPath = subDirCreate(directory, prefix) elif maxHours > 0 and maxFiles > 0: # Check both Max Files and Age if subDirCheckMaxHrs(subDirPath, maxHours, prefix): if subDirCheckMaxFiles(subDirPath, maxFiles): subDirPath = subDirCreate(directory, prefix) else: logging.info('MaxFiles Not Exceeded in %s', subDirPath) os.path.abspath(subDirPath) return subDirPath #------------------------------------------------------------------------------ def checkMediaPaths(): """ Checks for image folders and create them if they do not already exist. """ if motionTrackOn: if not os.path.isdir(motionPath): logging.info("Create Motion Media Folder %s", motionPath) try: os.makedirs(motionPath) except OSError as err: logging.error("Could Not Create %s - %s", motionPath, err) sys.exit(1) if os.path.isfile(motionNumPath): logging.info("Delete Motion dat File %s", motionNumPath) os.remove(motionNumPath) if timelapseOn: if not os.path.isdir(timelapsePath): logging.info("Create TimeLapse Image Folder %s", timelapsePath) try: os.makedirs(timelapsePath) except OSError as err: logging.error("Could Not Create %s - %s", motionPath, err) sys.exit(1) if os.path.isfile(timelapseNumPath): logging.info("Delete TimeLapse dat file %s", timelapseNumPath) os.remove(timelapseNumPath) # Check for Recent Image Folders and create if they do not already exist. if motionRecentMax > 0: if not os.path.isdir(motionRecentDir): logging.info("Create Motion Recent Folder %s", motionRecentDir) try: os.makedirs(motionRecentDir) except OSError as err: logging.error('Failed to Create %s - %s', motionRecentDir, err) sys.exit(1) if timelapseRecentMax > 0: if not os.path.isdir(timelapseRecentDir): logging.info("Create TimeLapse Recent Folder %s", timelapseRecentDir) try: os.makedirs(timelapseRecentDir) except OSError as err: logging.error('Failed to Create %s - %s', timelapseRecentDir, err) sys.exit(1) #------------------------------------------------------------------------------ def deleteOldFiles(maxFiles, dirPath, prefix): """ Delete Oldest files gt or eq to maxfiles that match filename prefix """ try: fileList = sorted(glob.glob(os.path.join(dirPath, prefix + '*')), key=os.path.getmtime) except OSError as err: logging.error('Problem Reading Directory %s - %s', dirPath, err) else: while len(fileList) >= maxFiles: oldest = fileList[0] oldestFile = oldest try: # Remove oldest file in recent folder fileList.remove(oldest) logging.info('%s', oldestFile) os.remove(oldestFile) except OSError as err: logging.error('Failed %s err: %s', oldestFile, err) #------------------------------------------------------------------------------ def saveRecent(recentMax, recentDir, filename, prefix): """ Create a symlink file in recent folder (timelapse or motion subfolder) Delete Oldest symlink file if recentMax exceeded. """ src = os.path.abspath(filename) # original file path dest = os.path.abspath(os.path.join(recentDir, os.path.basename(filename))) deleteOldFiles(recentMax, os.path.abspath(recentDir), prefix) try: # Create symlink in recent folder logging.info('symlink %s', dest) os.symlink(src, dest) # Create a symlink to actual file except OSError as err: logging.error('symlink %s to %s err: %s', dest, src, err) #------------------------------------------------------------------------------ def filesToDelete(mediaDirPath, extension=imageFormat): """ Deletes files of specified format extension by walking folder structure from specified mediaDirPath """ return sorted( (os.path.join(dirname, filename) for dirname, dirnames, filenames in os.walk(mediaDirPath) for filename in filenames if filename.endswith(extension)), key=lambda fn: os.stat(fn).st_mtime, reverse=True) #------------------------------------------------------------------------------ def freeSpaceUpTo(freeMB, mediaDir, extension=imageFormat): """ Walks mediaDir and deletes oldest files until spaceFreeMB is achieved. You should Use with Caution this feature. """ mediaDirPath = os.path.abspath(mediaDir) if os.path.isdir(mediaDirPath): MB2Bytes = 1048576 # Conversion from MB to Bytes targetFreeBytes = freeMB * MB2Bytes fileList = filesToDelete(mediaDir, extension) totFiles = len(fileList) delcnt = 0 logging.info('Session Started') while fileList: statv = os.statvfs(mediaDirPath) availFreeBytes = statv.f_bfree*statv.f_bsize if availFreeBytes >= targetFreeBytes: break filePath = fileList.pop() try: os.remove(filePath) except OSError as err: logging.error('Del Failed %s', filePath) logging.error('Error is %s', err) else: delcnt += 1 logging.info('Del %s', filePath) logging.info('Target=%i MB Avail=%i MB Deleted %i of %i Files ', targetFreeBytes / MB2Bytes, availFreeBytes / MB2Bytes, delcnt, totFiles) # Avoid deleting more than 1/4 of files at one time if delcnt > totFiles / 4: logging.warning('Max Deletions Reached %i of %i', delcnt, totFiles) logging.warning('Deletions Restricted to 1/4 of ' 'total files per session.') break logging.info('Session Ended') else: logging.error('Directory Not Found - %s', mediaDirPath) #------------------------------------------------------------------------------ def freeDiskSpaceCheck(lastSpaceCheck): """ Perform Disk space checking and Clean up if enabled and return datetime done to reset ready for next sched date/time""" if spaceTimerHrs > 0: # Check if disk free space timer hours is enabled # See if it is time to do disk clean-up check if (datetime.datetime.now() - lastSpaceCheck).total_seconds() > spaceTimerHrs * 3600: lastSpaceCheck = datetime.datetime.now() if spaceFreeMB < 100: # set freeSpaceMB to reasonable value if too low diskFreeMB = 100 else: diskFreeMB = spaceFreeMB logging.info('spaceTimerHrs=%i diskFreeMB=%i spaceMediaDir=%s spaceFileExt=%s', spaceTimerHrs, diskFreeMB, spaceMediaDir, spaceFileExt) freeSpaceUpTo(diskFreeMB, spaceMediaDir, spaceFileExt) return lastSpaceCheck #------------------------------------------------------------------------------ def getCurrentCount(numberpath, numberstart): """ Create a .dat file to store currentCount or read file if it already Exists""" if not os.path.isfile(numberpath): # Create numberPath file if it does not exist logging.info("Creating New File %s numberstart= %s", numberpath, numberstart) open(numberpath, 'w').close() f = open(numberpath, 'w+') f.write(str(numberstart)) f.close() # Read the numberPath file to get the last sequence number with open(numberpath, 'r') as f: writeCount = f.read() f.closed try: numbercounter = int(writeCount) # Found Corrupt dat file since cannot convert to integer except ValueError: # Try to determine if this is motion or timelapse if numberpath.find(motionPrefix) > 0: filePath = motionPath + "/*" + imageFormat fprefix = motionPath + motionPrefix + imageNamePrefix else: filePath = timelapsePath + "/*" + imageFormat fprefix = timelapsePath + timelapsePrefix + imageNamePrefix try: # Scan image folder for most recent file # and try to extract most recent number counter newest = max(glob.iglob(filePath), key=os.path.getctime) writeCount = newest[len(fprefix)+1:newest.find(imageFormat)] except: writeCount = numberstart try: numbercounter = int(writeCount)+1 except ValueError: numbercounter = numberstart logging.warn("Found Invalid Data in %s Resetting Counter to %s", numberpath, numbercounter) f = open(numberpath, 'w+') f.write(str(numbercounter)) f.close() f = open(numberpath, 'r') writeCount = f.read() f.close() numbercounter = int(writeCount) return numbercounter #------------------------------------------------------------------------------ def writeTextToImage(imagename, datetoprint, currentDayMode): """ function to write date/time stamp directly on top or bottom of images. """ if showTextWhite: FOREGROUND = (255, 255, 255) # rgb settings for white text foreground textColour = "White" else: FOREGROUND = (0, 0, 0) # rgb settings for black text foreground textColour = "Black" if showTextWhiteNight and (not currentDayMode): # rgb settings for black text foreground FOREGROUND = (255, 255, 255) textColour = "White" img = cv2.imread(imagename) # This is grayscale image so channels is not avail or used height, width, channels = img.shape # centre text and compensate for graphics text being wider x = int((width/2) - (len(imagename)*2)) if showTextBottom: y = (height - 50) # show text at bottom of image else: y = 10 # show text at top of image TEXT = imageNamePrefix + datetoprint font_path = '/usr/share/fonts/truetype/freefont/FreeSansBold.ttf' font = ImageFont.truetype(font_path, showTextFontSize, encoding='unic') try: text = TEXT.decode('utf-8') # required for python2 except: text = TEXT # Just set for python3 img = Image.open(imagename) # For python3 install of pyexiv2 lib # See https://github.com/pageauc/pi-timolo/issues/79 try: # Read exif data since ImageDraw does not save this metadata metadata = pyexiv2.ImageMetadata(imagename) metadata.read() except: pass draw = ImageDraw.Draw(img) # draw.text((x, y),"Sample Text",(r,g,b)) draw.text((x, y), text, FOREGROUND, font=font) img.save(imagename) logging.info("Added %s Text [ %s ]", textColour, datetoprint) try: metadata.write() # Write previously saved exif data to image file except: logging.warn("Image EXIF Data Not Transferred.") logging.info("Saved %s", imagename) #------------------------------------------------------------------------------ def postImageProcessing(numberon, counterstart, countermax, counter, recycle, counterpath, filename, currentDaymode): """ If required process text to display directly on image """ rightNow = datetime.datetime.now() if showDateOnImage: dateTimeText = ("%04d%02d%02d_%02d:%02d:%02d" % (rightNow.year, rightNow.month, rightNow.day, rightNow.hour, rightNow.minute, rightNow.second)) if numberon: if not recycle and countermax > 0: counterStr = "%i/%i " % (counter, counterstart + countermax) imageText = counterStr + dateTimeText else: counterStr = "%i " % (counter) imageText = counterStr + dateTimeText else: imageText = dateTimeText # Now put the imageText on the current image try: # This will fail for a video file writeTextToImage(filename, imageText, currentDaymode) except: pass if createLockFile and motionTrackOn: createSyncLockFile(filename) # Process currentCount for next image if number sequence is enabled if numberon: counter += 1 if countermax > 0: if counter > counterstart + countermax: if recycle: counter = counterstart else: counter = counterstart + countermax + 1 logging.warn("Exceeded Image Count numberMax=%i for %s \n", countermax, filename) # write next image counter number to dat file writeCount = str(counter) if not os.path.isfile(counterpath): logging.info("Create New Counter File writeCount=%s %s", writeCount, counterpath) open(counterpath, 'w').close() f = open(counterpath, 'w+') f.write(str(writeCount)) f.close() logging.info("Next Counter=%s %s", writeCount, counterpath) return counter #------------------------------------------------------------------------------ def getVideoName(path, prefix, numberon, counter): """ build image file names by number sequence or date/time""" if numberon: if motionVideoOn or videoRepeatOn: filename = os.path.join(path, prefix + str(counter) + ".h264") else: if motionVideoOn or videoRepeatOn: rightNow = datetime.datetime.now() filename = ("%s/%s%04d%02d%02d-%02d%02d%02d.h264" % (path, prefix, rightNow.year, rightNow.month, rightNow.day, rightNow.hour, rightNow.minute, rightNow.second)) return filename #------------------------------------------------------------------------------ def getImageName(path, prefix, numberon, counter): """ build image file names by number sequence or date/time """ if numberon: filename = os.path.join(path, prefix + str(counter) + imageFormat) else: rightNow = datetime.datetime.now() filename = ("%s/%s%04d%02d%02d-%02d%02d%02d%s" % (path, prefix, rightNow.year, rightNow.month, rightNow.day, rightNow.hour, rightNow.minute, rightNow.second, imageFormat)) return filename #------------------------------------------------------------------------------ def takeTrackQuickPic(image, filename): """ Enlarge and Save stream image if motionTrackQuickPic=True""" big_image = cv2.resize(image, (bigImageWidth, bigImageHeight)) cv2.imwrite(filename, big_image) logging.info("Saved %ix%i Image to %s", bigImageWidth, bigImageHeight, filename) #------------------------------------------------------------------------------ def showBox(filename): """ Show stream image detection area on image to align camera This is a quick fix for restricting motion detection to a portion of the final image. Change the stream image size on line 206 and 207 above Adjust track config.py file motionTrackTrigLen as required. """ working_image = cv2.imread(filename) x1y1 = (int((imageWidth - CAMERA_WIDTH)/2), int((imageHeight - CAMERA_HEIGHT)/2)) x2y2 = (x1y1[0] + CAMERA_WIDTH, x1y1[1] + CAMERA_HEIGHT) cv2.rectangle(working_image, x1y1, x2y2, LINE_COLOR, LINE_THICKNESS) cv2.imwrite(filename, working_image) #------------------------------------------------------------------------------ def takeDayImage(filename, cam_sleep_time): """ Take a Day image using exp=auto and awb=auto """ with picamera.PiCamera() as camera: camera.resolution = (imageWidth, imageHeight) camera.vflip = imageVFlip camera.hflip = imageHFlip camera.rotation = imageRotation # Valid values are 0, 90, 180, 270 # Day Automatic Mode camera.exposure_mode = 'auto' camera.awb_mode = 'auto' if imageGrayscale: camera.color_effects = (128, 128) time.sleep(cam_sleep_time) # use motion or TL camera sleep to get AWB if imagePreview: camera.start_preview() if imageFormat == ".jpg": # Set quality if image is jpg camera.capture(filename, quality=imageJpegQuality) else: camera.capture(filename) camera.close() if imageShowStream: # Show motion area on full image to align camera showBox(filename) logging.info("camSleepSec=%.2f exp=auto awb=auto Size=%ix%i ", cam_sleep_time, imageWidth, imageHeight) # showDateOnImage displays FilePath so avoid showing twice if not showDateOnImage: logging.info("FilePath %s", filename) if runScriptAfterCapture!=False: if os.path.isfile(runScriptAfterCapture): subprocess.call([runScriptAfterCapture]) else: logging.error("Script to be run after taking an image, "+runScript+", doesn't exist") #------------------------------------------------------------------------------ def getShut(pxAve): """ Calculate a shutter speed based on image pixel average """ px = pxAve + 1 # avoid division by zero offset = nightMaxShut - ((nightMaxShut / float(nightDarkThreshold) * px)) brightness = offset * (1/float(nightDarkAdjust)) # hyperbolic curve + brightness adjust shut = (nightMaxShut * (1 / float(px))) + brightness return int(shut) #------------------------------------------------------------------------------ def takeNightImage(filename, pixelAve): """ Take low light Twilight or Night image """ with picamera.PiCamera() as camera: camera.resolution = (imageWidth, imageHeight) camera.vflip = imageVFlip camera.hflip = imageHFlip camera.rotation = imageRotation # valid values are 0, 90, 180, 270 if imageGrayscale: camera.color_effects = (128, 128) time.sleep(1) # Use Twilight Threshold variable framerate_range if pixelAve >= nightDarkThreshold: camera.framerate_range = (Fraction(1, 6), Fraction(30, 1)) time.sleep(1) camera.iso = nightMaxISO logging.info("%ix%i TwilightThresh=%i/%i MaxISO=%i uses framerate_range", imageWidth, imageHeight, pixelAve, nightTwilightThreshold, nightMaxISO) time.sleep(4) else: # Set the framerate to a fixed value camera.framerate = Fraction(1, 6) time.sleep(1) camera.iso = nightMaxISO if pixelAve <= nightBlackThreshold: # Black Threshold (very dark) camera.shutter_speed = nightMaxShut logging.info("%ix%i BlackThresh=%i/%i shutSec=%s MaxISO=%i nightSleepSec=%i", imageWidth, imageHeight, pixelAve, nightBlackThreshold, shut2Sec(nightMaxShut), nightMaxISO, nightSleepSec) else: # Dark Threshold (Between Twilight and Black) camShut = getShut(pixelAve) if camShut > nightMaxShut: camShut = nightMaxShut # Set the shutter for long exposure camera.shutter_speed = camShut logging.info("%ix%i DarkThresh=%i/%i shutSec=%s MaxISO=%i nightSleepSec=%i", imageWidth, imageHeight, pixelAve, nightDarkThreshold, shut2Sec(camShut), nightMaxISO, nightSleepSec) time.sleep(nightSleepSec) camera.exposure_mode = 'off' if imageFormat == ".jpg": camera.capture(filename, format='jpeg', quality=imageJpegQuality) else: camera.capture(filename) camera.framerate = 5 # Adhoc Fix for Stretch camera freeze issue # Perform sudo rpi-update camera.close() if imageShowStream: # Show motion area on full image to align camera showBox(filename) # showDateOnImage displays FilePath to avoid showing twice if not showDateOnImage: logging.info("FilePath %s", filename) if runScriptAfterCapture!=False: if os.path.isfile(runScript): subprocess.call([runScript]) else: logging.error("Script to be run after taking an image, "+runScript+", doesn't exist") #------------------------------------------------------------------------------ def takeQuickTimeLapse(moPath, imagePrefix, NumOn, motionNumCount, currentDayMode, NumPath): """ Take a quick timelapse sequence using yield if motion triggered """ logging.info("Start Sequence for %i sec every %i sec", motionQuickTLTimer, motionQuickTLInterval) checkTimeLapseTimer = datetime.datetime.now() keepTakingImages = True imgCnt = 0 filename = getImageName(moPath, imagePrefix, NumOn, motionNumCount) while keepTakingImages: yield filename rightNow = datetime.datetime.now() timelapseDiff = (rightNow - checkTimeLapseTimer).total_seconds() motionNumCount = postImageProcessing(NumOn, motionNumStart, motionNumMax, motionNumCount, motionNumRecycle, NumPath, filename, currentDayMode) filename = getImageName(moPath, imagePrefix, NumOn, motionNumCount) if timelapseDiff > motionQuickTLTimer: keepTakingImages = False else: imgCnt += 1 if motionRecentMax > 0: saveRecent(motionRecentMax, motionRecentDir, filename, imagePrefix) time.sleep(motionQuickTLInterval) logging.info('End Sequence Total %i Images in %i seconds', imgCnt, timelapseDiff) #------------------------------------------------------------------------------ def takeVideo(filename, duration, fps=25): """ Take a short motion video if required """ # Working folder for h264 videos h264_work = os.path.join(baseDir, "h264_work") if not os.path.isdir(h264_work): try: os.makedirs(h264_work) except OSError as err: logging.error('%s err: %s', h264_work, err) else: logging.info('Created Dir %s', h264_work) filePath264 = os.path.join(h264_work, os.path.basename(filename)) # Final destination for mp4 videos filePathMP4 = os.path.join(os.path.dirname(filename), os.path.splitext(os.path.basename(filename))[0] + ".mp4") # command to convert h264 video to mp4 h264_mp4_cmd = ("/usr/bin/MP4Box -add %s:fps=%i -new %s" % (filePath264, fps, filePathMP4)) logging.info("File : %s", filePath264) logging.info("Start: Size %ix%i for %i sec at %i fps", imageWidth, imageHeight, duration, fps) if motionVideoOn or videoRepeatOn: with picamera.PiCamera() as camera: camera.resolution = (imageWidth, imageHeight) camera.vflip = imageVFlip camera.hflip = imageHFlip # rotation can be used if camera is on side camera.rotation = imageRotation camera.framerate = fps if showDateOnImage: rightNow = datetime.datetime.now() dateTimeText = (" Started at %04d-%02d-%02d %02d:%02d:%02d " % (rightNow.year, rightNow.month, rightNow.day, rightNow.hour, rightNow.minute, rightNow.second)) camera.annotate_text_size = showTextFontSize camera.annotate_foreground = picamera.Color('black') camera.annotate_background = picamera.Color('white') camera.annotate_text = dateTimeText camera.start_recording(filePath264) camera.wait_recording(duration) camera.stop_recording() camera.close() # This creates a subprocess that runs MP4Box to convert h264 file # to MP4 with the filename as a parameter. Note this will take # some time so MP4Box logging info will be delayed. try: logging.info("MP4Box %s", filePathMP4) proc = subprocess.Popen(h264_mp4_cmd, shell=True, stdin=None, stdout=None, stderr=None, close_fds=True) except IOError: logging.error("subprocess %s", h264_mp4_cmd) if motionRecentMax > 0: saveRecent(motionRecentMax, motionRecentDir, filePathMP4, motionPrefix) createSyncLockFile(filename) #------------------------------------------------------------------------------ def createSyncLockFile(imagefilename): """ If required create a lock file to indicate file(s) to process """ if createLockFile: if not os.path.isfile(lockFilePath): open(lockFilePath, 'w').close() logging.info("Create Lock File %s", lockFilePath) rightNow = datetime.datetime.now() now = ("%04d%02d%02d-%02d%02d%02d" % (rightNow.year, rightNow.month, rightNow.day, rightNow.hour, rightNow.minute, rightNow.second)) filecontents = (now + " createSyncLockFile - " + imagefilename + " Ready to sync using sudo ./sync.sh command.") f = open(lockFilePath, 'w+') f.write(filecontents) f.close() #------------------------------------------------------------------------------ def trackPoint(grayimage1, grayimage2): """ Process two cropped grayscale images. check for motion and return center point of motion for largest contour. """ movementCenterPoint = [] # initialize list of movementCenterPoints biggestArea = MIN_AREA # Get differences between the two greyed images differenceimage = cv2.absdiff(grayimage1, grayimage2) # Blur difference image to enhance motion vectors differenceimage = cv2.blur(differenceimage, (BLUR_SIZE, BLUR_SIZE)) # Get threshold of blurred difference image # based on THRESHOLD_SENSITIVITY variable retval, thresholdimage = cv2.threshold(differenceimage, THRESHOLD_SENSITIVITY, 255, cv2.THRESH_BINARY) try: # opencv2 syntax default contours, hierarchy = cv2.findContours(thresholdimage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) except ValueError: # opencv 3 syntax thresholdimage, contours, hierarchy = cv2.findContours(thresholdimage, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) if contours: for c in contours: cArea = cv2.contourArea(c) if cArea > biggestArea: biggestArea = cArea (x, y, w, h) = cv2.boundingRect(c) cx = int(x + w/2) # x center point of contour cy = int(y + h/2) # y center point of contour movementCenterPoint = [cx, cy] return movementCenterPoint #------------------------------------------------------------------------------ def trackDistance(mPoint1, mPoint2): """ Return the triangulated distance between two tracking locations """ x1, y1 = mPoint1 x2, y2 = mPoint2 trackLen = abs(math.hypot(x2 - x1, y2 - y1)) return trackLen #------------------------------------------------------------------------------ def getStreamPixAve(streamData): """ Calculate the average pixel values for the specified stream used for determining day/night or twilight conditions """ pixAverage = int(np.average(streamData[..., 1])) return pixAverage #------------------------------------------------------------------------------ def checkIfDayStream(currentDayMode, image): """ Try to determine if it is day, night or twilight.""" dayPixAverage = 0 dayPixAverage = getStreamPixAve(image) if dayPixAverage > nightTwilightThreshold: currentDayMode = True else: currentDayMode = False return currentDayMode #------------------------------------------------------------------------------ def timeToSleep(currentDayMode): """ Based on weather it is day or night (exclude twilight) return sleepMode boolean based on variable settings for noNightShots or noDayShots config.py variables Note if both are enabled then no shots will be taken. """ if noNightShots: if currentDayMode: sleepMode = False else: sleepMode = True elif noDayShots: if currentDayMode: sleepMode = True else: sleepMode = False else: sleepMode = False return sleepMode #------------------------------------------------------------------------------ def getSchedStart(dateToCheck): """ This function will try to extract a valid date/time from a date time formatted string variable If date/time is past then try to extract time and schedule for current date at extracted time """ goodDateTime = datetime.datetime.now() if len(dateToCheck) > 1: # Check if timelapseStartAt is set try: # parse and convert string to date/time or return error goodDateTime = parse(dateToCheck) except: # Is there a colon indicating possible time format exists if ":" in dateToCheck: timeTry = dateToCheck[dateToCheck.find(":") -2:] # Try to extract time only from string try: # See if a valid time is found returns with current day goodDateTime = parse(timeTry) except: logging.error("Bad Date and/or Time Format %s", dateToCheck) logging.error('Use a Valid Date and/or Time ' 'Format Eg "DD-MMM-YYYY HH:MM:SS"') goodDateTime = datetime.datetime.now() logging.warn("Resetting date/time to Now: %s", goodDateTime) # Check if date/time is past if goodDateTime < datetime.datetime.now(): if ":" in dateToCheck: # Check if there is a time component # Extract possible time component timeTry = dateToCheck[dateToCheck.find(":") -2:] try: # parse for valid time # returns current day with parsed time goodDateTime = parse(timeTry) except: pass # Do Nothing return goodDateTime #------------------------------------------------------------------------------ def checkSchedStart(schedDate): """ Based on schedule date setting see if current datetime is past and return boolean to indicate processing can start for timelapse or motiontracking """ startStatus = False if schedDate < datetime.datetime.now(): startStatus = True # sched date/time has passed so start sequence return startStatus #------------------------------------------------------------------------------ def checkForTimelapse(timelapseStart): """ Check if timelapse timer has expired """ rightNow = datetime.datetime.now() timeDiff = (rightNow - timelapseStart).total_seconds() if timeDiff > timelapseTimer: timelapseStart = rightNow timelapseFound = True else: timelapseFound = False return timelapseFound #------------------------------------------------------------------------------ def timolo(): """ Main motion and or motion tracking initialization and logic loop """ # Counter for showDots() display if not motion found # shows system is working dotCount = 0 checkMediaPaths() timelapseNumCount = 0 motionNumCount = 0 tlstr = "" # Used to display if timelapse is selected mostr = "" # Used to display if motion is selected moCnt = "non" tlCnt = "non" daymode = False # Keep track of night and day based on dayPixAve # Forcing motion if no motion for motionForce time exceeded forceMotion = False motionFound = False takeTimeLapse = True stopTimeLapse = False takeMotion = True stopMotion = False firstTimeLapse = True timelapseStart = datetime.datetime.now() timelapseExitStart = timelapseStart checkMotionTimer = timelapseStart startTL = getSchedStart(timelapseStartAt) startMO = getSchedStart(motionStartAt) trackLen = 0.0 if spaceTimerHrs > 0: lastSpaceCheck = datetime.datetime.now() if timelapseOn: tlstr = "TimeLapse" # Check if timelapse subDirs reqd and create one if non exists tlPath = subDirChecks(timelapseSubDirMaxHours, timelapseSubDirMaxFiles, timelapseDir, timelapsePrefix) if timelapseNumOn: timelapseNumCount = getCurrentCount(timelapseNumPath, timelapseNumStart) tlCnt = str(timelapseNumCount) else: logging.warn("Timelapse is Suppressed per timelapseOn=%s", timelapseOn) stopTimeLapse = True logging.info("Start PiVideoStream ....") vs = PiVideoStream().start() vs.camera.rotation = imageRotation vs.camera.hflip = imageHFlip vs.camera.vflip = imageVFlip time.sleep(1) if motionTrackOn: mostr = "Motion Tracking" # Check if motion subDirs required and # create one if required and non exists moPath = subDirChecks(motionSubDirMaxHours, motionSubDirMaxFiles, motionDir, motionPrefix) if motionNumOn: motionNumCount = getCurrentCount(motionNumPath, motionNumStart) moCnt = str(motionNumCount) trackTimeout = time.time() trackTimer = TRACK_TIMEOUT startPos = [] startTrack = False image1 = vs.read() image2 = vs.read() grayimage1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) else: image2 = vs.read() # use video stream to check for daymode logging.info("Motion Tracking is Suppressed per variable motionTrackOn=%s", motionTrackOn) stopMotion = True daymode = checkIfDayStream(daymode, image2) pixAve = getStreamPixAve(image2) if timelapseOn and motionTrackOn: tlstr = " and " + tlstr displayInfo(moCnt, tlCnt) # Display config.py settings if logDataToFile: logging.info("logDataToFile=%s Logging to Console Disabled.", logDataToFile) logging.info("Sending Console Messages to %s", logFilePath) logging.info("Entering Loop for %s%s", mostr, tlstr) else: if pluginEnable: logging.info("plugin %s - Start %s%s Loop ...", pluginName, mostr, tlstr) else: logging.info("Start %s%s Loop ... ctrl-c Exits", mostr, tlstr) if motionTrackOn and not checkSchedStart(startMO): logging.info('Motion Track: motionStartAt = "%s"', motionStartAt) logging.info("Motion Track: Sched Start Set For %s Please Wait ...", startMO) if timelapseOn and not checkSchedStart(startTL): logging.info('Timelapse : timelapseStartAt = "%s"', timelapseStartAt) logging.info("Timelapee : Sched Start Set For %s Please Wait ...", startTL) logging.info("daymode=%s motionDotsOn=%s ", daymode, motionDotsOn) dotCount = showDots(motionDotsMax) # reset motion dots while True: # Start main program Loop. motionFound = False forceMotion = False if (motionTrackOn and (not motionNumRecycle) and (motionNumCount > motionNumStart + motionNumMax) and (not stopMotion)): logging.warning("motionNumRecycle=%s and motionNumCount %i Exceeds %i", motionNumRecycle, motionNumCount, motionNumStart + motionNumMax) logging.warn("Suppressing Further Motion Tracking") logging.warn("To Reset: Change %s Settings or Archive Images", configName) logging.warn("Then Delete %s and Restart %s \n", motionNumPath, progName) takeMotion = False stopMotion = True if stopTimeLapse and stopMotion: logging.warn("NOTICE: Both Motion and Timelapse Disabled") logging.warn("per Num Recycle=False and " "Max Counter Reached or timelapseExitSec Settings") logging.warn("Change %s Settings or Archive/Save Media Then", configName) logging.warn("Delete appropriate .dat File(s) to Reset Counter(s)") logging.warn("Exiting %s %s \n", progName, progVer) sys.exit(1) # if required check free disk space and delete older files (jpg) if spaceTimerHrs > 0: lastSpaceCheck = freeDiskSpaceCheck(lastSpaceCheck) # use image2 to check daymode as image1 may be average # that changes slowly, and image1 may not be updated if motionTrackOn: if daymode != checkIfDayStream(daymode, image2): daymode = not daymode image2 = vs.read() image1 = image2 else: image2 = vs.read() else: image2 = vs.read() # if daymode has changed, reset background # to avoid false motion trigger if daymode != checkIfDayStream(daymode, image2): daymode = not daymode pixAve = getStreamPixAve(image2) rightNow = datetime.datetime.now() # refresh rightNow time if not timeToSleep(daymode): # Don't take images if noNightShots # or noDayShots settings are valid if timelapseOn and checkSchedStart(startTL): # Check for a scheduled date/time to start timelapse if firstTimeLapse: firstTimeLapse = False takeTimeLapse = True else: takeTimeLapse = checkForTimelapse(timelapseStart) if ((not stopTimeLapse) and takeTimeLapse and timelapseExitSec > 0): if ((datetime.datetime.now() - timelapseExitStart).total_seconds() > timelapseExitSec): logging.info("timelapseExitSec=%i Exceeded.", timelapseExitSec) logging.info("Suppressing Further Timelapse Images") logging.info("To RESET: Restart %s to Restart " "timelapseExitSec Timer. \n", progName) # Suppress further timelapse images takeTimeLapse = False stopTimeLapse = True if ((not stopTimeLapse) and timelapseNumOn and (not timelapseNumRecycle)): if (timelapseNumMax > 0 and timelapseNumCount > (timelapseNumStart + timelapseNumMax)): logging.warn("timelapseNumRecycle=%s and Counter=%i Exceeds %i", timelapseNumRecycle, timelapseNumCount, timelapseNumStart + timelapseNumMax) logging.warn("Suppressing Further Timelapse Images") logging.warn("To RESET: Change %s Settings or Archive Images", configName) logging.warn("Then Delete %s and Restart %s \n", timelapseNumPath, progName) # Suppress further timelapse images takeTimeLapse = False stopTimeLapse = True if takeTimeLapse and (not stopTimeLapse): if motionDotsOn and motionTrackOn: # reset motion dots dotCount = showDots(motionDotsMax + 2) else: print("") if pluginEnable: if timelapseExitSec > 0: exitSecProgress = (datetime.datetime.now() - timelapseExitStart).total_seconds() logging.info("%s Sched TimeLapse daymode=%s Timer=%i sec" " ExitSec=%i/%i Status", pluginName, daymode, timelapseTimer, exitSecProgress, timelapseExitSec) else: logging.info("%s Sched TimeLapse daymode=%s" " Timer=%i sec ExitSec=%i 0=Continuous", pluginName, daymode, timelapseTimer, timelapseExitSec) else: if timelapseExitSec > 0: exitSecProgress = (datetime.datetime.now() - timelapseExitStart).total_seconds() logging.info("Sched TimeLapse daymode=%s Timer=%i sec" " ExitSec=%i/%i Status", daymode, timelapseTimer, exitSecProgress, timelapseExitSec) else: logging.info("Sched TimeLapse daymode=%s Timer=%i sec" " ExitSec=%i 0=Continuous", daymode, timelapseTimer, timelapseExitSec) imagePrefix = timelapsePrefix + imageNamePrefix filename = getImageName(tlPath, imagePrefix, timelapseNumOn, timelapseNumCount) logging.info("Stop PiVideoStream ...") vs.stop() time.sleep(motionStreamStopSec) # reset time lapse timer timelapseStart = datetime.datetime.now() if daymode: takeDayImage(filename, timelapseCamSleep) else: takeNightImage(filename, pixAve) timelapseNumCount = postImageProcessing(timelapseNumOn, timelapseNumStart, timelapseNumMax, timelapseNumCount, timelapseNumRecycle, timelapseNumPath, filename, daymode) if timelapseRecentMax > 0: saveRecent(timelapseRecentMax, timelapseRecentDir, filename, imagePrefix) if timelapseMaxFiles > 0: deleteOldFiles(timelapseMaxFiles, timelapseDir, imagePrefix) dotCount = showDots(motionDotsMax) logging.info("Restart PiVideoStream ....") vs = PiVideoStream().start() vs.camera.rotation = imageRotation vs.camera.hflip = imageHFlip vs.camera.vflip = imageVFlip time.sleep(1) tlPath = subDirChecks(timelapseSubDirMaxHours, timelapseSubDirMaxFiles, timelapseDir, timelapsePrefix) if motionTrackOn and checkSchedStart(startMO) and takeMotion and (not stopMotion): # IMPORTANT - Night motion tracking may not work very well # due to long exposure times and low light image2 = vs.read() grayimage2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) movePoint1 = trackPoint(grayimage1, grayimage2) grayimage1 = grayimage2 if movePoint1 and not startTrack: startTrack = True trackTimeout = time.time() startPos = movePoint1 image2 = vs.read() grayimage2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) movePoint2 = trackPoint(grayimage1, grayimage2) if movePoint2 and startTrack: # Two sets of movement required trackLen = trackDistance(startPos, movePoint2) # wait until track well started if trackLen > TRACK_TRIG_LEN_MIN: # Reset tracking timer object moved trackTimeout = time.time() if motionTrackInfo: logging.info("Track Progress From(%i,%i) To(%i,%i) trackLen=%i/%i px", startPos[0], startPos[1], movePoint2[0], movePoint2[1], trackLen, TRACK_TRIG_LEN) # Track length triggered if trackLen > TRACK_TRIG_LEN: # reduce chance of two objects at different positions if trackLen > TRACK_TRIG_LEN_MAX: motionFound = False if motionTrackInfo: logging.info("TrackLen %i px Exceeded %i px Max Trig Len Allowed.", trackLen, TRACK_TRIG_LEN_MAX) else: motionFound = True if pluginEnable: logging.info("%s Motion Triggered Start(%i,%i)" " End(%i,%i) trackLen=%.i/%i px", pluginName, startPos[0], startPos[1], movePoint2[0], movePoint2[1], trackLen, TRACK_TRIG_LEN) else: logging.info("Motion Triggered Start(%i,%i)" " End(%i,%i) trackLen=%i/%i px", startPos[0], startPos[1], movePoint2[0], movePoint2[1], trackLen, TRACK_TRIG_LEN) image1 = vs.read() image2 = image1 grayimage1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) grayimage2 = grayimage1 startTrack = False startPos = [] trackLen = 0.0 # Track timed out if (time.time() - trackTimeout > trackTimer) and startTrack: image1 = vs.read() image2 = image1 grayimage1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) grayimage2 = grayimage1 if motionTrackInfo: logging.info("Track Timer %.2f sec Exceeded. Reset Track", trackTimer) startTrack = False startPos = [] trackLen = 0.0 rightNow = datetime.datetime.now() timeDiff = (rightNow - checkMotionTimer).total_seconds() if motionForce > 0 and timeDiff > motionForce: image1 = vs.read() image2 = image1 grayimage1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) grayimage2 = grayimage1 dotCount = showDots(motionDotsMax + 2) # New Line logging.info("No Motion Detected for %s minutes. " "Taking Forced Motion Image.", (motionForce / 60)) checkMotionTimer = rightNow forceMotion = True if motionFound or forceMotion: imagePrefix = motionPrefix + imageNamePrefix if motionTrackQuickPic: # Do not stop PiVideoStream filename = getImageName(moPath, imagePrefix, motionNumOn, motionNumCount) takeTrackQuickPic(image2, filename) motionNumCount = postImageProcessing(motionNumOn, motionNumStart, motionNumMax, motionNumCount, motionNumRecycle, motionNumPath, filename, daymode) if motionRecentMax > 0: saveRecent(motionRecentMax, motionRecentDir, filename, imagePrefix) else: if motionTrackOn: logging.info("Stop PiVideoStream ...") vs.stop() time.sleep(motionStreamStopSec) checkMotionTimer = rightNow if forceMotion: forceMotion = False # check if motion Quick Time Lapse option is On. # This option supersedes motionVideoOn if motionQuickTLOn and daymode: filename = getImageName(moPath, imagePrefix, motionNumOn, motionNumCount) with picamera.PiCamera() as camera: camera.resolution = (imageWidth, imageHeight) camera.vflip = imageVFlip camera.hflip = imageHFlip # valid rotation values 0, 90, 180, 270 camera.rotation = imageRotation time.sleep(motionCamSleep) # This uses yield to loop through time lapse # sequence but does not seem to be faster # due to writing images camera.capture_sequence(takeQuickTimeLapse(moPath, imagePrefix, motionNumOn, motionNumCount, daymode, motionNumPath)) camera.close() motionNumCount = getCurrentCount(motionNumPath, motionNumStart) else: if motionVideoOn: filename = getVideoName(motionPath, imagePrefix, motionNumOn, motionNumCount) takeVideo(filename, motionVideoTimer, motionVideoFPS) else: filename = getImageName(moPath, imagePrefix, motionNumOn, motionNumCount) if daymode: takeDayImage(filename, motionCamSleep) else: takeNightImage(filename, pixAve) motionNumCount = postImageProcessing(motionNumOn, motionNumStart, motionNumMax, motionNumCount, motionNumRecycle, motionNumPath, filename, daymode) if motionRecentMax > 0: if not motionVideoOn: # prevent h264 video files from # being copied to recent saveRecent(motionRecentMax, motionRecentDir, filename, imagePrefix) if motionTrackOn: logging.info("Restart PiVideoStream ....") vs = PiVideoStream().start() vs.camera.rotation = imageRotation vs.camera.hflip = imageHFlip vs.camera.vflip = imageVFlip time.sleep(1) image1 = vs.read() image2 = image1 grayimage1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) grayimage2 = grayimage1 trackLen = 0.0 trackTimeout = time.time() startPos = [] startTrack = False forceMotion = False moPath = subDirChecks(motionSubDirMaxHours, motionSubDirMaxFiles, motionDir, motionPrefix) if motionFound and motionCode: # =========================================== # Put your user code in userMotionCode() function # In the File user_motion_code.py # =========================================== try: user_motion_code.userMotionCode(filename) dotCount = showDots(motionDotsMax) except ValueError: logging.error("Problem running userMotionCode function from File %s", userMotionFilePath) else: # show progress dots when no motion found dotCount = showDots(dotCount) #------------------------------------------------------------------------------ def videoRepeat(): """ This is a special dash cam video mode that overrides both timelapse and motion tracking settings It has it's own set of settings to manage start, video duration, number recycle mode, Etc. """ # Check if folder exist and create if required if not os.path.isdir(videoPath): logging.info("Create videoRepeat Folder %s", videoPath) os.makedirs(videoPath) print("--------------------------------------------------------------------") print("VideoRepeat . videoRepeatOn=%s" % videoRepeatOn) print(" Info ..... Size=%ix%i videoPrefix=%s videoDuration=%i seconds videoFPS=%i" % (imageWidth, imageHeight, videoPrefix, videoDuration, videoFPS)) print(" Vid Path . videoPath=%s" % videoPath) print(" Sched .... videoStartAt=%s blank=Off or Set Valid Date and/or Time to Start Sequence" % videoStartAt) print(" Timer .... videoTimer=%i minutes 0=Continuous" % videoTimer) print(" Num Seq .. videoNumOn=%s videoNumRecycle=%s videoNumStart=%i" " videoNumMax=%i 0=Continuous" % (videoNumOn, videoNumRecycle, videoNumStart, videoNumMax)) print("--------------------------------------------------------------------") print("WARNING: videoRepeatOn=%s Suppresses TimeLapse and Motion Settings." % videoRepeatOn) startVideoRepeat = getSchedStart(videoStartAt) if not checkSchedStart(startVideoRepeat): logging.info('Video Repeat: videoStartAt = "%s" ', videoStartAt) logging.info("Video Repeat: Sched Start Set For %s Please Wait ...", startVideoRepeat) while not checkSchedStart(startVideoRepeat): pass videoStartTime = datetime.datetime.now() lastSpaceCheck = datetime.datetime.now() videoCount = 0 videoNumCounter = videoNumStart keepRecording = True while keepRecording: # if required check free disk space and delete older files # Set variables spaceFileExt='mp4' and # spaceMediaDir= to appropriate folder path if spaceTimerHrs > 0: lastSpaceCheck = freeDiskSpaceCheck(lastSpaceCheck) filename = getVideoName(videoPath, videoPrefix, videoNumOn, videoNumCounter) takeVideo(filename, videoDuration, videoFPS) timeUsed = (datetime.datetime.now() - videoStartTime).total_seconds() timeRemaining = (videoTimer*60 - timeUsed) / 60.0 videoCount += 1 if videoNumOn: videoNumCounter += 1 if videoNumMax > 0: if videoNumCounter - videoNumStart > videoNumMax: if videoNumRecycle: videoNumCounter = videoNumStart logging.info("Restart Numbering: videoNumRecycle=%s " "and videoNumMax=%i Exceeded", videoNumRecycle, videoNumMax) else: keepRecording = False logging.info("Exit since videoNumRecycle=%s " "and videoNumMax=%i Exceeded %i Videos Recorded", videoNumRecycle, videoNumMax, videoCount) logging.info("Recorded %i of %i Videos", videoCount, videoNumMax) else: logging.info("Recorded %i Videos videoNumMax=%i 0=Continuous", videoCount, videoNumMax) else: logging.info("Progress: %i Videos Recorded in Folder %s", videoCount, videoPath) if videoTimer > 0: if timeUsed > videoTimer * 60: keepRecording = False errorText = ("Stop Recording Since videoTimer=%i minutes Exceeded \n", videoTimer) logging.warn(errorText) sys.stdout.write(errorText) else: logging.info("Remaining Time %.1f of %i minutes", timeRemaining, videoTimer) else: videoStartTime = datetime.datetime.now() logging.info("Exit: %i Videos Recorded in Folder %s", videoCount, videoPath) #------------------------------------------------------------------------------ def getTlNumFromRclone(): tryToDoIt=True while tryToDoIt: logging.info("TIMELAPSENUMUPDATE: Trying to update "+timelapseNumPath+" from most recent Rclone file") rcloneLsLines = subprocess.run(timelapseListRcloneCmd.split(), stdout=subprocess.PIPE).stdout.decode('utf-8').splitlines() i=0 while i < len(rcloneLsLines): outputLine=rcloneLsLines[i] if "error" in outputLine.lower(): logging.error("TIMELAPSENUMUPDATE: Rclone ls command encountered an error") if timelapseListRcloneErrorResetNetworking: logging.info("TIMELAPSENUMUPDATE: Restarting networking") subprocess.run(["sudo", "-S", "service", "networking", "restart"],input=raspiSudoPassword) if timelapseListRcloneErrorRetry: logging.info("TIMELAPSENUMUPDATE: Trying again in"+str(timelapseListRcloneErrorRetrySleep)+"seconds") time.sleep(timelapseListRcloneErrorRetrySleep) else: tryToDoIt=False break if not timelapseListRcloneOutputSplit: filename=outputLine else: filename=outputLine.split(timelapseListRcloneOutputSplit)[timelapseListRcloneOutputIndex] if timelapsePrefix in filename and imageNamePrefix in filename and imageFormat in filename: tlNumberStr = filename[len(timelapsePrefix+imageNamePrefix):-len(imageFormat)] try: tlNumberStr=str(int(tlNumberStr)+1) except ValueError: logging.debug("TIMELAPSENUMUPDATE: couldn't extract num from filename "+filename) continue f = open(timelapseNumPath, "w+") f.write(tlNumberStr) f.close() logging.info("TIMELAPSENUMUPDATE: updated timelapse num to "+tlNumberStr) tryToDoIt=False break if i==len(rcloneLsLines): tryToDoIt=False #------------------------------------------------------------------------------ if __name__ == '__main__': if timelapseOn and timelapseNumGetFromRcloneRemote: getTlNumFromRclone() """ Initialization prior to launching appropriate pi-timolo options """ logging.info("Testing if Pi Camera is in Use") # Test if the pi camera is already in use ts = PiVideoStream().start() time.sleep(1) ts.stop() time.sleep(motionStreamStopSec) logging.info("Pi Camera is Available.") if pluginEnable: logging.info("Start pi-timolo per %s and plugins/%s.py Settings", configFilePath, pluginName) else: logging.info("Start pi-timolo per %s Settings", configFilePath) if not verbose: print("NOTICE: Logging Disabled per variable verbose=False ctrl-c Exits") try: if videoRepeatOn: videoRepeat() else: timolo() except KeyboardInterrupt: print("") if verbose: logging.info("User Pressed Keyboard ctrl-c") logging.info("Exiting %s %s", progName, progVer) else: sys.stdout.write("User Pressed Keyboard ctrl-c \n") sys.stdout.write("Exiting %s %s \n" % (progName, progVer)) try: if pluginEnable: if os.path.isfile(pluginCurrent): os.remove(pluginCurrent) pluginCurrentpyc = os.path.join(pluginDir, "current.pyc") if os.path.isfile(pluginCurrentpyc): os.remove(pluginCurrentpyc) except OSError as err: logging.warn("Failed To Remove File %s - %s", pluginCurrentpyc, err) sys.exit(1)
import matplotlib.pyplot as plt from matplotlib.patches import Patch from matplotlib.colors import to_rgb, to_rgba #--------------------------------------------------------------------------------------------------- # matplotlib style settings #--------------------------------------------------------------------------------------------------- plt.rcParams['axes.linewidth'] = 1.4 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['ytick.minor.size'] = 2.5 plt.rcParams['xtick.minor.size'] = 4.0 plt.rcParams['ytick.minor.visible'] = True plt.rcParams['ytick.labelsize'] = 'large' plt.rcParams['xtick.labelsize'] = 'large' #--------------------------------------------------------------------------------------------------- # custom user functions for plotting #--------------------------------------------------------------------------------------------------- def set_custom_alpha(col_, alpha_): rgb_ = to_rgba(col_) return (col_[0], col_[1], col_[2], alpha_) def rgb2rgba(col_): _ = [] for c in col_: _.append(float(c)/255.0) _.append(1.0) return tuple(_) def getNcols(N=3, cmap_='plasma'): cmap = plt.get_cmap(cmap_) cols = cmap.colors arr = [] for i in range(N): arr.append(cols[int(256*float(i)/float(N))]) return arr #---------------------------------------------------------------------------------------------------
from activist.views import ActivistViewSet from rest_framework.routers import DefaultRouter router = DefaultRouter() router.register(r'activists', ActivistViewSet) urlpatterns = router.urls
def single_number(integers): """ Naive version: Given a non-empty array of integers, every element appears twice except for one. Find that single one. Runtime: O(n), Space: O(n) """ seen = set() for integer in integers: if integer in seen: seen.remove(integer) else: seen.add(integer) return seen.pop() def find_unique_elem(arr): """ Given a non-empty array of integers, every element appears twice except for one. Find that single one. Runtime: O(n), Space: O(1) """ result = 0 for item in arr: # all numbers repeated twice will be equal to 0 after XOR operation # at the end, only left is the unique integer result ^= item return result arr = [2, 2, 1] print(find_unique_elem(arr))
from django.contrib import admin from .models import Survey, Question, Answer class SurveyAdmin(admin.ModelAdmin): list_display = ( 'pk', 'title', 'description', 'start_date', 'end_date', 'author') search_fields = ('title',) list_filter = ('start_date',) empty_value_display = '-empty-' def get_readonly_fields(self, request, obj=None): if obj: return ['start_date'] return self.readonly_fields class QuestionAdmin(admin.ModelAdmin): list_display = ( 'survey', 'pk', 'text', 'answer_type', 'answer_choices',) search_fields = ('title',) list_filter = ('survey',) class AnswerAdmin(admin.ModelAdmin): list_display = ( 'text', 'anonimously', 'question', 'pk', 'author',) search_fields = ('text',) list_filter = ('question','author',) admin.site.register(Survey, SurveyAdmin) admin.site.register(Question, QuestionAdmin) admin.site.register(Answer, AnswerAdmin)
import math import torch.nn as nn from collections import OrderedDict import torch.utils.model_zoo as model_zoo from torchvision.models.resnet import model_urls import torch import torch.nn as nn class Backbone(nn.Module): """Base class for backbone networks. Handles freezing layers etc. args: frozen_layers - Name of layers to freeze. Either list of strings, 'none' or 'all'. Default: 'none'. """ def __init__(self, frozen_layers=()): super().__init__() if isinstance(frozen_layers, str): if frozen_layers.lower() == 'none': frozen_layers = () elif frozen_layers.lower() != 'all': raise ValueError('Unknown option for frozen layers: \"{}\". Should be \"all\", \"none\" or list of layer names.'.format(frozen_layers)) self.frozen_layers = frozen_layers self._is_frozen_nograd = False def train(self, mode=True): super().train(mode) if mode == True: self._set_frozen_to_eval() if not self._is_frozen_nograd: self._set_frozen_to_nograd() self._is_frozen_nograd = True def _set_frozen_to_eval(self): if isinstance(self.frozen_layers, str) and self.frozen_layers.lower() == 'all': self.eval() else: for layer in self.frozen_layers: getattr(self, layer).eval() def _set_frozen_to_nograd(self): if isinstance(self.frozen_layers, str) and self.frozen_layers.lower() == 'all': for p in self.parameters(): p.requires_grad_(False) else: for layer in self.frozen_layers: for p in getattr(self, layer).parameters(): p.requires_grad_(False) def conv3x3(in_planes, out_planes, stride=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1, use_bn=True): super(BasicBlock, self).__init__() self.use_bn = use_bn self.conv1 = conv3x3(inplanes, planes, stride, dilation=dilation) if use_bn: self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, dilation=dilation) if use_bn: self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) if self.use_bn: out = self.bn1(out) out = self.relu(out) out = self.conv2(out) if self.use_bn: out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=dilation, bias=False, dilation=dilation) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(Backbone): """ ResNet network module. Allows extracting specific feature blocks.""" def __init__(self, block, layers, output_layers, num_classes=1000, inplanes=64, dilation_factor=1, frozen_layers=()): self.inplanes = inplanes super(ResNet, self).__init__(frozen_layers=frozen_layers) self.output_layers = output_layers self.conv1 = nn.Conv2d(3, inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) stride = [1 + (dilation_factor < l) for l in (8, 4, 2)] self.layer1 = self._make_layer(block, inplanes, layers[0], dilation=max(dilation_factor//8, 1)) self.layer2 = self._make_layer(block, inplanes*2, layers[1], stride=stride[0], dilation=max(dilation_factor//4, 1)) # self.layer3 = self._make_layer(block, inplanes*4, layers[2], stride=stride[1], dilation=max(dilation_factor//2, 1)) self.layer3 = self._make_layer(block, inplanes*4, layers[2], stride=1, dilation=2) # self.layer4 = self._make_layer(block, inplanes*8, layers[3], stride=stride[2], dilation=dilation_factor) out_feature_strides = {'conv1': 4, 'layer1': 4, 'layer2': 4*stride[0], 'layer3': 4*stride[0]*stride[1]} if isinstance(self.layer1[0], BasicBlock): out_feature_channels = {'conv1': inplanes, 'layer1': inplanes, 'layer2': inplanes*2, 'layer3': inplanes*4} elif isinstance(self.layer1[0], Bottleneck): base_num_channels = 4 * inplanes out_feature_channels = {'conv1': inplanes, 'layer1': base_num_channels, 'layer2': base_num_channels * 2, 'layer3': base_num_channels * 4} else: raise Exception('block not supported') self._out_feature_strides = out_feature_strides self._out_feature_channels = out_feature_channels self.num_channels_output = [list(out_feature_channels.values())[-1]] # self.avgpool = nn.AvgPool2d(7, stride=1) # self.avgpool = nn.AdaptiveAvgPool2d((1,1)) # self.fc = nn.Linear(inplanes*8 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def out_feature_strides(self, layer=None): if layer is None: return self._out_feature_strides else: return self._out_feature_strides[layer] def out_feature_channels(self, layer=None): if layer is None: return self._out_feature_channels else: return self._out_feature_channels[layer] def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, dilation=dilation)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def _add_output_and_check(self, name, x, outputs, output_layers, output_NCHW): if name in output_layers: if not output_NCHW: x = x.flatten(start_dim=2) x = x.transpose(1, 2) outputs[name] = x return len(output_layers) == len(outputs) def forward(self, x, output_layers=None, output_NCHW=False): """ Forward pass with input x. The output_layers specify the feature blocks which must be returned """ outputs = OrderedDict() if output_layers is None: output_layers = self.output_layers x = self.conv1(x) x = self.bn1(x) x = self.relu(x) if self._add_output_and_check('conv1', x, outputs, output_layers, output_NCHW): return outputs.values() x = self.maxpool(x) x = self.layer1(x) if self._add_output_and_check('layer1', x, outputs, output_layers, output_NCHW): return outputs.values() x = self.layer2(x) if self._add_output_and_check('layer2', x, outputs, output_layers, output_NCHW): return outputs.values() x = self.layer3(x) if self._add_output_and_check('layer3', x, outputs, output_layers, output_NCHW): return outputs.values() # x = self.layer4(x) # if self._add_output_and_check('layer4', x, outputs, output_layers): # return outputs # # x = self.avgpool(x) # x = x.view(x.size(0), -1) # x = self.fc(x) # # if self._add_output_and_check('fc', x, outputs, output_layers): # return outputs # # if len(output_layers) == 1 and output_layers[0] == 'default': # return x raise ValueError('output_layer is wrong.') def resnet_baby(output_layers=None, pretrained=False, inplanes=16, **kwargs): """Constructs a ResNet-18 model. """ if output_layers is None: output_layers = ['default'] else: for l in output_layers: if l not in ['conv1', 'layer1', 'layer2', 'layer3', 'layer4', 'fc']: raise ValueError('Unknown layer: {}'.format(l)) model = ResNet(BasicBlock, [2, 2, 2, 2], output_layers, inplanes=inplanes, **kwargs) if pretrained: raise NotImplementedError return model def resnet18(output_layers=None, pretrained=False, **kwargs): """Constructs a ResNet-18 model. """ if output_layers is None: output_layers = ['default'] else: for l in output_layers: if l not in ['conv1', 'layer1', 'layer2', 'layer3', 'layer4', 'fc']: raise ValueError('Unknown layer: {}'.format(l)) model = ResNet(BasicBlock, [2, 2, 2, 2], output_layers, **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def resnet50(output_layers=None, pretrained=False, **kwargs): """Constructs a ResNet-50 model. """ if output_layers is None: output_layers = ['default'] else: for l in output_layers: if l not in ['conv1', 'layer1', 'layer2', 'layer3', 'layer4', 'fc']: raise ValueError('Unknown layer: {}'.format(l)) model = ResNet(Bottleneck, [3, 4, 6, 3], output_layers, **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50']), strict=False) return model def resnet101(output_layers=None, pretrained=False, **kwargs): """Constructs a ResNet-50 model. """ if output_layers is None: output_layers = ['default'] else: for l in output_layers: if l not in ['conv1', 'layer1', 'layer2', 'layer3', 'layer4', 'fc']: raise ValueError('Unknown layer: {}'.format(l)) model = ResNet(Bottleneck, [3, 4, 23, 3], output_layers, **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model
import asyncio import logging.config import warnings from functools import partial from typing import Optional import annofabapi import requests from annofabapi.models import ProjectJobType from annofabcli.common.dataclasses import WaitOptions from annofabcli.common.exceptions import DownloadingFileNotFoundError, UpdatedFileForDownloadingError logger = logging.getLogger(__name__) DOWNLOADING_FILETYPE_DICT = { ProjectJobType.GEN_TASKS_LIST: "タスク全件ファイル", ProjectJobType.GEN_INPUTS_LIST: "入力データ全件ファイル", ProjectJobType.GEN_ANNOTATION: "アノテーションzip", } DEFAULT_WAIT_OPTIONS = WaitOptions(interval=60, max_tries=360) def _get_annofab_error_message(http_error: requests.HTTPError) -> Optional[str]: obj = http_error.response.json() errors = obj.get("errors") if errors is None: return None return errors[0].get("message") class DownloadingFile: def __init__(self, service: annofabapi.Resource): self.service = service @staticmethod def get_max_wait_minutes(wait_options: WaitOptions): return wait_options.max_tries * wait_options.interval / 60 def _wait_for_completion( self, project_id: str, job_type: ProjectJobType, wait_options: Optional[WaitOptions] = None, job_id: Optional[str] = None, ): if wait_options is None: wait_options = DEFAULT_WAIT_OPTIONS max_wait_minutes = self.get_max_wait_minutes(wait_options) filetype = DOWNLOADING_FILETYPE_DICT[job_type] logger.info(f"{filetype}の更新処理が完了するまで、最大{max_wait_minutes}分間待ちます。job_id={job_id}") result = self.service.wrapper.wait_for_completion( project_id, job_type=job_type, job_access_interval=wait_options.interval, max_job_access=wait_options.max_tries, ) if not result: raise UpdatedFileForDownloadingError(f"{filetype}の更新処理が{max_wait_minutes}分以内に完了しない、または更新処理に失敗しました。") async def download_annotation_zip_with_async( self, project_id: str, dest_path: str, is_latest: bool = False, wait_options: Optional[WaitOptions] = None ): loop = asyncio.get_event_loop() partial_func = partial(self.download_annotation_zip, project_id, dest_path, is_latest, wait_options) result = await loop.run_in_executor(None, partial_func) return result def download_annotation_zip( self, project_id: str, dest_path: str, is_latest: bool = False, wait_options: Optional[WaitOptions] = None ): logger.debug(f"アノテーションzipをダウンロードします。path={dest_path}") if is_latest: self.wait_until_updated_annotation_zip(project_id, wait_options) self.service.wrapper.download_annotation_archive(project_id, dest_path) else: try: self.service.wrapper.download_annotation_archive(project_id, dest_path) except requests.HTTPError as e: if e.response.status_code == requests.codes.not_found: logger.info(f"アノテーションzipが存在しなかったので、アノテーションzipファイルの更新処理を実行します。") self.wait_until_updated_annotation_zip(project_id, wait_options) self.service.wrapper.download_annotation_archive(project_id, dest_path) else: raise e def wait_until_updated_annotation_zip(self, project_id: str, wait_options: Optional[WaitOptions] = None): job_id = None try: job = self.service.api.post_annotation_archive_update(project_id)[0]["job"] job_id = job["job_id"] except requests.HTTPError as e: # すでにジョブが進行中の場合は、無視する if e.response.status_code == requests.codes.conflict: logger.warning(f"別のバックグラウンドジョブが既に実行されているので、更新処理を無視します。") logger.warning(f"{_get_annofab_error_message(e)}") else: raise e self._wait_for_completion( project_id, job_type=ProjectJobType.GEN_ANNOTATION, wait_options=wait_options, job_id=job_id ) async def download_input_data_json_with_async( self, project_id: str, dest_path: str, is_latest: bool = False, wait_options: Optional[WaitOptions] = None ): loop = asyncio.get_event_loop() partial_func = partial(self.download_input_data_json, project_id, dest_path, is_latest, wait_options) result = await loop.run_in_executor(None, partial_func) return result def download_input_data_json( self, project_id: str, dest_path: str, is_latest: bool = False, wait_options: Optional[WaitOptions] = None ): logger.debug(f"入力データ全件ファイルをダウンロードします。path={dest_path}") if is_latest: self.wait_until_updated_input_data_json(project_id, wait_options) self.service.wrapper.download_project_inputs_url(project_id, dest_path) else: try: self.service.wrapper.download_project_inputs_url(project_id, dest_path) except requests.HTTPError as e: if e.response.status_code == requests.codes.not_found: logger.info(f"入力データ全件ファイルが存在しなかったので、入力データ全件ファイルの更新処理を実行します。") self.wait_until_updated_input_data_json(project_id, wait_options) self.service.wrapper.download_project_inputs_url(project_id, dest_path) else: raise e def wait_until_updated_input_data_json(self, project_id: str, wait_options: Optional[WaitOptions] = None): job_id = None try: job = self.service.api.post_project_inputs_update(project_id)[0]["job"] job_id = job["job_id"] except requests.HTTPError as e: # すでにジョブが進行中の場合は、無視する if e.response.status_code == requests.codes.conflict: logger.warning(f"別のバックグラウンドジョブが既に実行されているので、更新処理を無視します。") logger.warning(f"{_get_annofab_error_message(e)}") else: raise e self._wait_for_completion( project_id, job_type=ProjectJobType.GEN_INPUTS_LIST, wait_options=wait_options, job_id=job_id ) async def download_task_json_with_async( self, project_id: str, dest_path: str, is_latest: bool = False, wait_options: Optional[WaitOptions] = None ): loop = asyncio.get_event_loop() partial_func = partial(self.download_task_json, project_id, dest_path, is_latest, wait_options) result = await loop.run_in_executor(None, partial_func) return result def download_task_json( self, project_id: str, dest_path: str, is_latest: bool = False, wait_options: Optional[WaitOptions] = None ): logger.debug(f"タスク全件ファイルをダウンロードします。path={dest_path}") if is_latest: self.wait_until_updated_task_json(project_id, wait_options) self.service.wrapper.download_project_tasks_url(project_id, dest_path) else: try: self.service.wrapper.download_project_tasks_url(project_id, dest_path) except requests.HTTPError as e: if e.response.status_code == requests.codes.not_found: logger.info(f"タスク全件ファイルが存在しなかったので、タスク全件ファイルの更新処理を実行します。") self.wait_until_updated_task_json(project_id, wait_options) self.service.wrapper.download_project_tasks_url(project_id, dest_path) else: raise e def wait_until_updated_task_json(self, project_id: str, wait_options: Optional[WaitOptions] = None): job_id = None try: job = self.service.api.post_project_tasks_update(project_id)[0]["job"] job_id = job["job_id"] except requests.HTTPError as e: # すでにジョブが進行中の場合は、無視する if e.response.status_code == requests.codes.conflict: logger.warning(f"別のバックグラウンドジョブが既に実行されているので、更新処理を無視します。") logger.warning(f"{_get_annofab_error_message(e)}") else: raise e self._wait_for_completion( project_id, job_type=ProjectJobType.GEN_TASKS_LIST, wait_options=wait_options, job_id=job_id ) async def download_task_history_json_with_async(self, project_id: str, dest_path: str): """ 非同期でタスク履歴全件ファイルをダウンロードする。 Raises: DownloadingFileNotFoundError: """ return self.download_task_history_json(project_id, dest_path=dest_path) def download_task_history_json(self, project_id: str, dest_path: str): """ タスク履歴全件ファイルをダウンロードする。 Args: project_id: dest_path: Raises: DownloadingFileNotFoundError: """ try: logger.debug(f"タスク履歴全件ファイルをダウンロードします。path={dest_path}") self.service.wrapper.download_project_task_histories_url(project_id, dest_path) except requests.HTTPError as e: if e.response.status_code == requests.codes.not_found: logger.info(f"タスク履歴全件ファイルが存在しません。") raise DownloadingFileNotFoundError("タスク履歴全件ファイルが存在しません。") from e raise e def download_task_history_event_json(self, project_id: str, dest_path: str): """ タスク履歴イベント全件ファイルをダウンロードする。 .. deprecated:: 0.21.1 Args: project_id: dest_path: Raises: DownloadingFileNotFoundError: """ try: logger.debug(f"タスク履歴イベント全件ファイルをダウンロードします。path={dest_path}") self.service.wrapper.download_project_task_history_events_url(project_id, dest_path) except requests.HTTPError as e: if e.response.status_code == requests.codes.not_found: logger.info(f"タスク履歴イベント全件ファイルが存在しません。") raise DownloadingFileNotFoundError("タスク履歴イベント全件ファイルが存在しません。") from e raise e async def download_task_history_event_json_with_async(self, project_id: str, dest_path: str): """ 非同期で検査コメント全件ファイルをダウンロードする。 .. deprecated:: 0.21.1 Raises: DownloadingFileNotFoundError: """ warnings.warn("deprecated", DeprecationWarning) return self.download_task_history_event_json(project_id, dest_path=dest_path) async def download_inspection_json_with_async(self, project_id: str, dest_path: str): """ 非同期で検査コメント全件ファイルをダウンロードする。 Raises: DownloadingFileNotFoundError: """ return self.download_inspection_json(project_id, dest_path=dest_path) def download_inspection_json(self, project_id: str, dest_path: str): """ 検査コメント全件ファイルをダウンロードする。 Raises: DownloadingFileNotFoundError: """ try: logger.debug(f"検査コメント全件ファイルをダウンロードします。path={dest_path}") self.service.wrapper.download_project_inspections_url(project_id, dest_path) except requests.HTTPError as e: if e.response.status_code == requests.codes.not_found: logger.info(f"検査コメント全件ファイルが存在しません。") raise DownloadingFileNotFoundError("タスク履歴全件ファイルが存在しません。") from e raise e
# Same as script 14, but the algorith is trained with a number of agents varying from 1 to 20. import sys import os lucas_path = os.environ['LUCAS_PATH'] sys.path.insert(1, lucas_path) from general import general as gen from devices.devices import node, base_station, mobile_user, d2d_user, d2d_node_type from pathloss import pathloss from plots.plots import plot_positions, plot_spectral_effs from q_learning.environments.completeEnvironment import CompleteEnvironment from dqn.agents.dqnAgent import ExternalDQNAgent from dqn.externalDQNFramework import ExternalDQNFramework from dqn.replayMemory import ReplayMemory from dqn.dqn import DQN from q_learning.q_table import DistributedQTable from q_learning import rewards from parameters.parameters import EnvironmentParameters, TrainingParameters, DQNAgentParameters, LearningParameters from typing import List from matplotlib import pyplot as plt import torch import math import numpy as np import os import pickle n_mues = 1 # number of mues n_d2d = 2 # number of d2d pairs n_rb = n_mues # number of RBs bs_radius = 500 # bs radius in m rb_bandwidth = 180*1e3 # rb bandwidth in Hz d2d_pair_distance = 50 # d2d pair distance in m p_max = 23 # max tx power in dBm noise_power = -116 # noise power per RB in dBm bs_gain = 17 # macro bs antenna gain in dBi user_gain = 4 # user antenna gain in dBi sinr_threshold_train = 6 # mue sinr threshold in dB for training sinr_threshold_mue = 6 # true mue sinr threshold in dB mue_margin = .5e4 # conversions from dB to pow p_max = p_max - 30 p_max = gen.db_to_power(p_max) noise_power = noise_power - 30 noise_power = gen.db_to_power(noise_power) bs_gain = gen.db_to_power(bs_gain) user_gain = gen.db_to_power(user_gain) sinr_threshold_train = gen.db_to_power(sinr_threshold_train) # q-learning parameters STEPS_PER_EPISODE = 25 EPSILON_MIN = 0.05 # MAX_NUM_STEPS = 50 # EPSILON_DECAY = 0.4045*1e-4 # super long training # EPSILON_DECAY = 0.809*1e-4 # long training # EPSILON_DECAY = 0.809*1e-4 # medium training EPSILON_DECAY = 1.675*1e-4 # medium training # EPSILON_DECAY = 8.09*1e-4 # short training # MAX_NUM_EPISODES = 40000 # super long training # MAX_NUM_EPISODES = 20000 # long training MAX_NUM_EPISODES = 960 # medium training # MAX_NUM_EPISODES = 2000 # short training ALPHA = 0.05 # Learning rate GAMMA = 0.98 # Discount factor # C = 8000 # C constant for the improved reward function C = 80 # C constant for the improved reward function TARGET_UPDATE = 10 MAX_NUMBER_OF_AGENTS = 20 # more parameters env_params = EnvironmentParameters(rb_bandwidth, d2d_pair_distance, p_max, noise_power, bs_gain, user_gain, sinr_threshold_train, n_mues, n_d2d, n_rb, bs_radius, c_param=C, mue_margin=mue_margin) train_params = TrainingParameters(MAX_NUM_EPISODES, STEPS_PER_EPISODE) agent_params = DQNAgentParameters(EPSILON_MIN, EPSILON_DECAY, 1, 512, GAMMA) ext_framework = ExternalDQNFramework(agent_params) # actions = [i*p_max/10/1000 for i in range(21)] # worst # actions = [i*0.80*p_max/10/1000 for i in range(21)] # best histogram reward_function = rewards.dis_reward_tensor # environment = CompleteEnvironment(env_params, reward_function, early_stop=1e-6, tolerance=10) environment = CompleteEnvironment(env_params, reward_function) # training function # TODO: colocar agente e d2d_device na mesma classe? fazer propriedade d2d_device no agente? def train(framework: ExternalDQNFramework, env: CompleteEnvironment, params: TrainingParameters, agent_params: DQNAgentParameters, max_d2d: int): best_reward = float('-inf') device = torch.device('cuda') rewards_bag = list() aux_range = range(max_d2d)[1:] epsilon = agent_params.start_epsilon for episode in range(params.max_episodes): # TODO: atualmente redistribuo os usuarios aleatoriamente a cada episodio. Isto é o melhor há se fazer? # Simular deslocamento dos usuários? actions = [i*0.82*p_max/10/1000 for i in range(21)] # best result n_agents = np.random.choice(aux_range) agents = [ExternalDQNAgent(agent_params, actions) for i in range(n_agents)] # 1 agent per d2d tx counts = np.zeros(len(agents)) awaits = list() await_steps = [2,3,4] for a in agents: awaits.append(np.random.choice(await_steps)) a.set_action(torch.tensor(0).long().cuda(), a.actions[0]) a.set_epsilon(epsilon) env.build_scenario(agents) done = False obs = [env.get_state(a) for a in agents] total_reward = 0.0 i = 0 bag = list() while not done: if i >= params.steps_per_episode: break else: actions = torch.zeros([len(agents)], device=device) for j, agent in enumerate(agents): if counts[j] < awaits[j]: counts[j] += 1 else: agent.get_action(framework, obs[j]) actions[j] = agent.action_index counts[j] = 0 awaits[j] = np.random.choice(await_steps) next_obs, rewards, done = env.step(agents) i += 1 for j, agent in enumerate(agents): framework.replay_memory.push(obs[j], actions[j], next_obs[j], rewards[j]) framework.learn() obs = next_obs total_reward += torch.sum(rewards) bag.append(total_reward.item()) obs = next_obs if episode % TARGET_UPDATE == 0: framework.target_net.load_state_dict(framework.policy_net.state_dict()) if total_reward > best_reward: best_reward = total_reward print("Episode#:{} sum reward:{} best_sum_reward:{} eps:{}".format(episode, total_reward, best_reward, agents[0].epsilon)) rewards_bag.append(np.average(bag)) epsilon = agents[0].epsilon # Return the trained policy return rewards_bag # SCRIPT EXEC # training rewards = train(ext_framework, environment, train_params, agent_params, MAX_NUMBER_OF_AGENTS) cwd = os.getcwd() torch.save(ext_framework.policy_net.state_dict(), f'{cwd}/models/ext_model_dqn_agent_mult.pt') filename = gen.path_leaf(__file__) filename = filename.split('.')[0] filename = f'{lucas_path}/data/{filename}.pickle' with open(filename, 'wb') as f: pickle.dump(ext_framework.bag, f) plt.figure(1) plt.plot(ext_framework.bag, '.') plt.xlabel('Iterations') plt.ylabel('Average Q-Values') plt.figure(2) plt.plot(rewards, '.') plt.show()
from ..functions import loader from .animation import Animation from .enemy import Enemy from .box import Box from .pig import Pig # pig sprites loader load_image = loader("kings_and_pigs/data/sprites/04-Pig Throwing a Box") class PigThrowingBox(Enemy): def __init__(self, x, y, type=None, id=None): idle = load_image("Idle (26x30).png") run = load_image("Run (26x30).png") pick = load_image("Picking Box (26x30).png") # throw = load_image("Throwing Box (26x30).png") self.animation_left_idle = Animation(idle, 9) self.animation_right_idle = self.animation_left_idle.flip() self.animation_left_run = Animation(run, 6) self.animation_right_run = self.animation_left_run.flip() self.animation_left_jump = None self.animation_right_jump = None self.animation_left_fall = None self.animation_right_fall = None self.animation_left_pick = Animation(pick, 5) self.animation_right_pick = self.animation_left_pick.flip() # self.animation_left_throw = Animation(throw, 5) # self.animation_right_throw = self.animation_left_throw.flip() super().__init__(x, y, self.animation_right_idle, type, id) self.adjust_hit_box(left=5, right=10, top=5) self.adjust_direction = 5 self.facing_right = False self.lives = 2 self.can_throw = True def get_hit_area(self, chamber=None): area = self.get_hit_box() area.left += 10 if self.facing_right else -160 area.top -= 15 area.width += 150 area.height += 15 return area def jump(self, floors): pass # cannot jump def fall_on_ground(self, floor, chamber, force): pass # do nothing def attack(self, targets, chamber): # attack = throw a box box = Box(self.rect.x + 4, self.rect.y + 3) pig = Pig(self.rect.x - 4, self.rect.y + 2, self.type, self.id) pig.facing_right = self.facing_right box.vy = -8 box.vx = 8 if self.facing_right else -8 self.replace_with = [pig, box] def hit(self, direction, chamber): # when hero hits - destroy the box and hit the pig separately box = Box(self.rect.x + 4, self.rect.y + 3) pig = Pig(self.rect.x - 4, self.rect.y + 2, self.type, self.id) pig.facing_right = self.facing_right box.hit(direction, chamber) pig.hit(direction, chamber) self.replace_with = [box, pig] def murder(self): box = Box(self.rect.x + 4, self.rect.y + 3) pig = Pig(self.rect.x - 4, self.rect.y + 2, self.type, self.id) pig.facing_right = self.facing_right pig.murder() self.replace_with = [box, pig] def pick(self): if self.in_action: return def pick_is_done(): self.in_action = False self.in_action = True if self.facing_right: self.change_animation(self.animation_right_pick) self.animation_right_pick.on_done(pick_is_done) else: self.change_animation(self.animation_left_pick) self.animation_left_pick.on_done(pick_is_done)
tamiyo_1 = "Al parecer la historia era cierta" jace_2 = "cual historia ! ?" tamiyo_3 = "el bosque cuenta que tu eliminaste" tamiyo_4 = "al anciano nicol" jace_5 = "su nombre era lucin" tamiyo_6 = "que ingenuo eres, si llegas a mi" tamiyo_7 = "te contare una historia" tamiyo_8 = "muajajajajajaja"
while True: a, b = map(int, input().split()) if a == b: break else: print('Crescente' if a < b else 'Decrescente')
import torch from torch import optim import torch.nn.functional as F import time import os import matplotlib.pyplot as plt from loss import ContrastiveLoss import datahandler as dl from model import SiameseNetwork from torch.utils import tensorboard root_dir = '..\..\Dataset\MVTEC_AD' epochs = 200 lear_rate = 0.0005 trainbatchsize = 4 validbatchsize = 4 testbatchsize = 1 log_dir = "logs" if not os.path.exists(log_dir): os.makedirs(log_dir) writer = tensorboard.SummaryWriter(log_dir) train_loader, valid_loader, test_loader = dl.pre_processor(root_dir=root_dir, trainbatchsize=trainbatchsize, validbatchsize=validbatchsize, testbatchsize=1) net = SiameseNetwork().cuda() # net.train() criterion = ContrastiveLoss().cuda() optimizer = optim.Adam(net.parameters(), lr = lear_rate ) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.95) train_losses = [] val_losses = [] best_val = 0.1 start_time = time.time() for epoch in range( epochs): net.train() running_loss = 0 for i, data in enumerate(train_loader, 0): # giving the argument 0 starts the counter from 0 img0, img1 , label = data img0, img1 , label = img0.cuda(), img1.cuda() , label.cuda() # reset the gradients optimizer.zero_grad() output1, output2 = net(img0, img1) loss_contrastive = criterion(output1, output2, label) loss_contrastive.backward() # backward pass optimizer.step() # update weights running_loss += loss_contrastive.item() writer.add_scalar('train_loss/epoch', running_loss, epoch) train_losses.append(running_loss/len(train_loader)) if epoch % 2 == 0: val_loss = 0 net.eval() with torch.no_grad(): for i , data in enumerate(valid_loader, 0): img_0, img_1, label_ = data img_0, img_1 , label_ = img_0.cuda(), img_1.cuda() , label_.cuda() output1, output2 = net(img_0, img_1) # distance = torch.sigmoid(F.pairwise_distance(output1, output2)) loss_val = criterion(output1, output2, label_) val_loss += loss_val.item() writer.add_scalar('val_loss/epoch', val_loss, epoch) val_losses.append(val_loss/len(valid_loader)) print('Epoch : ',epoch, "\t Train loss: {:.2f}".format(running_loss/len(train_loader)), "\t Validation loss: {:.2f}".format(val_loss/len(valid_loader))) if val_loss/len(valid_loader) < best_val: best_val = val_loss/len(valid_loader) PATH = '../models/best_model_val_loss.pth' torch.save(net, PATH) print() print("Saved best model at epoch: ", epoch) print() if epoch%2 == 0: PATH = "../models/saved_epoch_model.pth" torch.save(net, PATH) scheduler.step() print('It took {} seconds to train the model.. '.format(time.time() - start_time)) # plot and save the losses fig = plt.figure(figsize=(10,5)) plt.title("Training and Validation Loss") plt.plot(train_losses, label = "train") plt.plot(val_losses, label = "val") plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend() fig.savefig('new_Train_&_Val_loss.png')
# Copyright 2017 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import logging import requests from six.moves.urllib import parse from sushy import exceptions LOG = logging.getLogger(__name__) class Connector(object): def __init__(self, url, username=None, password=None, verify=True): self._url = url self._session = requests.Session() self._session.verify = verify if username and password: self._session.auth = (username, password) def close(self): """Close this connector and the associated HTTP session.""" self._session.close() def _op(self, method, path='', data=None, headers=None): """Generic RESTful request handler. :param method: The HTTP method to be used, e.g: GET, POST, PUT, PATCH, etc... :param path: The sub-URI path to the resource. :param data: Optional JSON data. :param headers: Optional dictionary of headers. :returns: The response object from the requests library. :raises: ConnectionError :raises: HTTPError """ if headers is None: headers = {} if data is not None: data = json.dumps(data) headers['Content-Type'] = 'application/json' url = parse.urljoin(self._url, path) # TODO(lucasagomes): We should mask the data to remove sensitive # information LOG.debug('HTTP request: %(method)s %(url)s; ' 'headers: %(headers)s; body: %(data)s', {'method': method, 'url': url, 'headers': headers, 'data': data}) try: response = self._session.request(method, url, data=data, headers=headers) except requests.ConnectionError as e: raise exceptions.ConnectionError(url=url, error=e) exceptions.raise_for_response(method, url, response) LOG.debug('HTTP response for %(method)s %(url)s: ' 'status code: %(code)s', {'method': method, 'url': url, 'code': response.status_code}) return response def get(self, path='', data=None, headers=None): """HTTP GET method. :param path: Optional sub-URI path to the resource. :param data: Optional JSON data. :param headers: Optional dictionary of headers. :returns: The response object from the requests library. :raises: ConnectionError :raises: HTTPError """ return self._op('GET', path, data, headers) def post(self, path='', data=None, headers=None): """HTTP POST method. :param path: Optional sub-URI path to the resource. :param data: Optional JSON data. :param headers: Optional dictionary of headers. :returns: The response object from the requests library. :raises: ConnectionError :raises: HTTPError """ return self._op('POST', path, data, headers) def patch(self, path='', data=None, headers=None): """HTTP PATCH method. :param path: Optional sub-URI path to the resource. :param data: Optional JSON data. :param headers: Optional dictionary of headers. :returns: The response object from the requests library. :raises: ConnectionError :raises: HTTPError """ return self._op('PATCH', path, data, headers) def __enter__(self): return self def __exit__(self, *_args): self.close()
"""Train A2C agent in ALE game registerd in gym. Some hyper parametes are from OpenAI baselines: https://github.com/openai/baselines/blob/master/baselines/a2c/a2c.py """ import os from torch.optim import RMSprop import rainy from rainy.agents import A2CAgent from rainy.envs import Atari, atari_parallel @rainy.main(A2CAgent, script_path=os.path.realpath(__file__)) def main(envname: str = "Breakout") -> rainy.Config: c = rainy.Config() c.set_env(lambda: Atari(envname, frame_stack=False)) c.set_optimizer(lambda params: RMSprop(params, lr=7e-4, alpha=0.99, eps=1e-5)) # c.set_net_fn('actor-critic', rainy.net.actor_critic.conv_shared(rnn=net.GruBlock)) c.set_net_fn("actor-critic", rainy.net.actor_critic.conv_shared()) c.nworkers = 16 c.nsteps = 5 c.set_parallel_env(atari_parallel()) c.grad_clip = 0.5 c.value_loss_weight = 1.0 c.use_gae = False c.max_steps = int(2e7) c.eval_env = Atari(envname) c.eval_deterministic = False c.episode_log_freq = 100 c.eval_freq = None c.save_freq = None return c if __name__ == "__main__": main()
from bs4 import BeautifulSoup import urllib2 import shlex import os import wget from subprocess import Popen, PIPE def mysoup(link): url = urllib2.Request(link, headers={ 'User-Agent': 'Mozilla/5.0 (X11; Linux i686; rv:33.0) Gecko/20100101 Firefox/33.0' }) page = urllib2.urlopen(url) soup = BeautifulSoup(page.read()) return soup #def upload_youtube(link,title,desc,keyword): def upload_youtube(link): cmd = '/home/hadn/python/bin/python /home/hadn/vtv_detail.py %s' % link cmd = shlex.split(cmd.encode('utf8')) print cmd try: up = Popen(cmd, stdout=PIPE) print up.communicate() except Exception as e: print str(e) pass soup = mysoup("http://vtv.vn/truyen-hinh-truc-tuyen.htm") videos_new = soup.find("div",{"class":"video-news-box"}).find("ul",{"class":"list-item"}).find_all("li") links = [] for video in videos_new: link = "http://vtv.vn"+video.find("a").get("href") links.append(link) if not links: sys.exit(0) with open('/home/hadn/vtv.txt') as f: link_traced = f.readlines()[0].split(',') index = 0 for link in links: if link in link_traced: break index += 1 if index > 0: with open('/home/hadn/vtv.txt', 'w') as f: f.write(','.join(links[:index])) for link in links[:index]: upload_youtube(link)
import numpy as np import sys import cvxEDA import json import matplotlib.pyplot as plt import scipy.optimize import gsr def bateman(tau0, tau1): return lambda t: np.exp(-t/tau0) - np.exp(-t/tau1) ts = np.arange(0, 100, 0.1) plt.plot(ts, bateman(10.0, 5.0)(ts)) plt.show() data = [] for line in sys.stdin: row = json.loads(line) data.append((row[0]['ts'], row[1]['E'])) data = np.array(data) data = data[::3] #data = data[5000:10000] data = data[data[:,1] > 0] ts, scr = data.T scr = 1.0/scr oscr = scr.copy() scr -= np.mean(scr) scr /= np.std(scr) dt = np.median(np.diff(ts)) ts = np.arange(len(ts))*dt #plt.plot(data[:,0], 1.0/data[:,1]) def objective(taus): tau0, tau1 = np.exp(taus) wtf = list(cvxEDA.cvxEDA(scr, dt, tau0=tau0, tau1=tau1)) print(tau0, tau1, float(wtf[-1])) return float(wtf[-1]) #print(objective([2.0, 0.7])) #fit = scipy.optimize.minimize(objective, np.log((10.0, 5.0))) #print(fit) #tau0, tau1 = np.exp(fit.x) #tau0, tau1 = np.exp([ 4.40451525, -1.79824158]) # WTF!! wtf = list(cvxEDA.cvxEDA(scr, dt)) driver, tonic, kernel = gsr.deconv_baseline(oscr, 1/dt) ax = plt.subplot(2,1,1) plt.plot(ts, scr) recon = scr - wtf[5] plt.plot(ts, recon) #plt.plot(ts, wtf[2]) plt.subplot(2,1,2,sharex=ax) plt.plot(ts, wtf[1]/np.max(wtf[1])) plt.plot(ts, driver/np.max(driver)) plt.show()
from gi.repository import Gtk from .basewidgets import Child class Button(Child): def __init__(self, bananawidget): self.widget = Gtk.Button() self.widget.connect('clicked', self._do_click) super().__init__(bananawidget) def _do_click(self, button): self.bananawidget.on_click.run() def set_text(self, text): self.widget.set_label(text) # TODO: set_imagepath. ImageButton = Button
""" Python Attributed Hierarchical Port Graph. AHPGraph, is intended to be a simple, flexible way to describe architecture components and their connections. These physical architecture descriptions can then be converted to SST component graphs or analyzed by other tools. """ from .Device import * from .DeviceGraph import * from .SSTGraph import *
from framework.core.base import BasePage class addQuestionPage (BasePage): questionTextBox = None showMore = None todayLink = None nowLink = None choiceText1 = None choiceText2 = None choiceText3 = None choiceVotes1 = None choiceVotes2 = None choiceVotes3 = None addChoice = None saveButton = None def __init__(self, driver): super().__init__(driver) self.driver = driver def locate_elements(self): self.questionTextBox = self.driver.find_element_by_id("id_question_text") self.showMore = self.driver.find_element_by_id("fieldsetcollapser0") self.todayLink = self.driver.find_element_by_link_text("Today") self.nowLink = self.driver.find_element_by_link_text("Now") self.choiceText1 = self.driver.find_element_by_name("choice_set-0-choice_text") self.choiceText2 = self.driver.find_element_by_name("choice_set-1-choice_text") self.choiceText3 = self.driver.find_element_by_name("choice_set-2-choice_text") self.choiceVotes1 = self.driver.find_element_by_name("choice_set-0-votes") self.choiceVotes2 = self.driver.find_element_by_name("choice_set-1-votes") self.choiceVotes3 = self.driver.find_element_by_name("choice_set-2-votes") self.addChoice = self.driver.find_element_by_link_text("Add another Choice") self.saveButton = self.driver.find_element_by_name("_save") def setQuestionText(self, question_text=''): self.questionTextBox.send_keys(question_text) def setNow(self): self.showMore.click() self.todayLink.click() self.nowLink.click() def setChoicesText(self, choiceTextvalue1='', choiceTextvalue2='', choiceTextvalue3=''): self.choiceText1.send_keys(choiceTextvalue1) self.choiceText2.send_keys(choiceTextvalue2) self.choiceText3.send_keys(choiceTextvalue3) def setChoiceVotes(self, choiceVotesValue1=0, choiceVotesValue2=0, choiceVotesValue3=0): self.choiceVotes1.clear() self.choiceVotes2.clear() self.choiceVotes3.clear() self.choiceVotes1.send_keys(choiceVotesValue1) self.choiceVotes2.send_keys(choiceVotesValue2) self.choiceVotes3.send_keys(choiceVotesValue3) def savePoll(self): self.saveButton.click() #return mainPage(self.driver)
#!/usr/bin/python # -*- coding: UTF-8 -*- from controller.node_controller import NodeController from common import utilities class NodeCommandImpl: def __init__(self, config): self.node_controller = NodeController(config) def gen_node_config(self): function = "generate_all_config" notice_info = "generate config for all nodes" return self.execute_command(function, notice_info) def start_all(self): function = "start_group" notice_info = "start all nodes of the given group" return self.execute_command(function, notice_info) def stop_all(self): function = "stop_group" notice_info = "stop all nodes of the given group" return self.execute_command(function, notice_info) def upgrade_nodes(self): function = "upgrade_group" notice_info = "upgrade all nodes of the given group" return self.execute_command(function, notice_info) def deploy_nodes(self): function = "generate_and_deploy_group_services" notice_info = "deploy all nodes of the given group" return self.execute_command(function, notice_info) def upload_nodes(self): function = "deploy_group_services" notice_info = "upload all nodes config of the given group" return self.execute_command(function, notice_info) def undeploy_nodes(self): function = "undeploy_group" notice_info = "undeploy all nodes of the given group" return self.execute_command(function, notice_info) def generate_expand_config(self): function = "generate_all_expand_config" notice_info = "generate expand config for the given group" return self.execute_command(function, notice_info) def expand_nodes(self): function = "expand_and_deploy_all_nodes" notice_info = "expand nodes for the given group" return self.execute_command(function, notice_info) def execute_command(self, function, notice_info): utilities.print_split_info() utilities.print_badage(notice_info) ret = getattr(self.node_controller, function)() if ret is True: utilities.print_badage("%s success" % notice_info) else: utilities.log_error("%s failed" % notice_info) utilities.print_split_info() return ret
#!/usr/bin/env python """ Layered wheel implementation """ import base64 import csv import hashlib import io import pprint import re import shutil import subprocess import zipfile import email.policy # Non-greedy matching of an optional build number may be too clever (more # invalid wheel filenames will match). Separate regex for .dist-info? WHEEL_INFO_RE = re.compile( r"""^(?P<namever>(?P<name>.+?)-(?P<ver>.+?))(-(?P<build>\d[^-]*))? -(?P<pyver>.+?)-(?P<abi>.+?)-(?P<plat>.+?)\.whl$""", re.VERBOSE, ) class HashStream(io.BufferedIOBase): """ Forward operations to an underlying stream, calculating a hash as we go. For reading *or* writing, not both. """ # blake2b 11.39s vs sha256 11.75s vs passthrough 7.68s def __init__(self, backing: io.BufferedIOBase, callback, algo="blake2s"): super().__init__() self.backing = backing self.length = 0 self.digest = hashlib.new(algo) self.callback = callback # one of these methods makess recordReader() fail # (we haven't written the entire io interface) # def closed(self): # return self.backing.closed() # def readable(self): # return self.backing.readable() # def writable(self): # return self.backing.writable() def write(self, b): self.digest.update(b) self.length += len(b) return self.backing.write(b) def read(self, n=None): data = self.backing.read(n) self.digest.update(data) self.length += len(data) return data def close(self): super().close() self.callback(self) return self.backing.close() class WheelArchiver(zipfile.ZipFile): """ Open a wheel file for reading *or* writing, not both. Wraps ZipFile to handle {namever}/RECORD. Check read files against RECORD in read mode. Automatically write RECORD on close in write mode. Defer writes to dist-info until close? Or raise if non-dist-info files written after any dist-info is written. Args: namever (str): First part of the wheel filename, the package name and version. e.g. "beaglevote-1.0". Or parsed from filename if given. """ def __init__(self, *args, namever=None, **kwargs): super().__init__(*args, **kwargs) if namever is None and self.filename: namever = WHEEL_INFO_RE.match(self.filename).group("namever") self.namever = namever self._file_hashes = {} # if mode = 'r' initialize from RECORD self._file_sizes = {} @property def dist_info(self): return f"{self.namever}.dist-info" @property def wheelfile_path(self): return self.dist_info + "/WHEEL" @property def metadata_path(self): return self.dist_info + "/METADATA" @property def record_path(self): return self.dist_info + "/RECORD" def open(self, name, *args, **kwargs): """ Buffer files written to the dist-info directory and append to wheel on close. """ if isinstance(name, zipfile.ZipInfo): fname = name.filename else: fname = name return HashStream( super().open(name, *args, **kwargs), lambda hash: self._hash_callback(fname, hash), ) def _hash_callback(self, fname, hashwriter: HashStream): self._file_hashes[fname] = ( hashwriter.digest.name, urlsafe_b64encode(hashwriter.digest.digest()).decode("charmap"), ) self._file_sizes[fname] = hashwriter.length def urlsafe_b64encode(data): """urlsafe_b64encode without padding""" return base64.urlsafe_b64encode(data).rstrip(b"=") def urlsafe_b64decode(data): """urlsafe_b64decode without padding""" pad = b"=" * (4 - (len(data) & 3)) return base64.urlsafe_b64decode(data + pad) def recordWriter(data): return csv.writer(data, delimiter=",", quotechar='"', lineterminator="\n") def recordReader(data): return csv.reader(data, delimiter=",", quotechar='"', lineterminator="\n") policy = email.policy.EmailPolicy(utf8=True, max_line_length=0) def parse_kv(fp): """ parse bytes from fp.read() for METADATA or WHEEL. Overkill for just getting the wheel version. """ # HashStream isn't complete enough to send to .parse() # This will be good for round-tripping (parse / generate), may be # details getting "normal" Unicode in and out, beware surrogates. return email.parser.BytesParser(policy=policy).parsebytes(fp.read()) def write_kv(kv): """ Return bytes for an EmailMessage (representing WHEEL or METADATA) Overkill for WHEEL (can generate with a string template), useful for METADATA. Would be convenient to alsos accept a sequence of key-value pairs. [('Wheel-Version', '1.0'), ('Generator', 'bdist_wheel (0.31.1)'), ('Root-Is-Purelib', 'false'), ('Tag', 'cp37-cp37m-manylinux2010_x86_64')] """ return kv.as_bytes(policy=policy)
from PyQt5.QtWidgets import (QDesktopWidget, QMainWindow, QAction, QFrame) from PyQt5.QtGui import (QPalette, QPen, QIcon, QPainter, QColor) from PyQt5.QtCore import Qt, QBasicTimer, QPoint, QTimer from gui.communicate import Communicate from common.state import State from gui.dialogs.message_dialog import * from common.computer import Computer from gui.dialogs.main_window import * import time WINDOW_TITLE = "Reversi" WINDOWHEIGHT = 480 WINDOWWIDTH = 640 SPACE = 50 WIDTH = 8 HEIGHT = 8 X_OFFSET = int((WINDOWWIDTH - 400) / 2) Y_OFFSET = int((WINDOWHEIGHT - 440) / 2) PLAYERS_STATES = [State.black, State.white] class BoardUi(QFrame): def __init__(self, parent, game): super().__init__(parent) self.main_window = parent self.game = game def start(self): self.show() self.setFocusPolicy(Qt.StrongFocus) self.timer = QBasicTimer() self.timer.start(150, self) if isinstance(self.game.first_player, Computer) \ and isinstance(self.game.second_player, Computer): self.computers_play() def computers_play(self): while not self.game.is_game_won(): self.computer_turn() #self.show_winner_message() def init_signals(self): self.communicate = Communicate() self.communicate.restart.connect(self.restart_game) def paintEvent(self, e): painter = QPainter() painter.begin(self) self.draw_board_rectangle(painter) painter.end() def draw_board_rectangle(self, painter): col = QColor(0, 0, 0) col.setNamedColor('#d4d4d4') painter.setPen(col) painter.setBrush(QColor(200, 0, 0)) painter.drawRect(X_OFFSET, Y_OFFSET, 400, 400) pen = QPen(Qt.black, 2, Qt.SolidLine) painter.setPen(pen) for spot in [(x, x) for x in range(WIDTH + 1)]: left = ((spot[0] * SPACE) + X_OFFSET, Y_OFFSET) right = ((spot[0] * SPACE) + X_OFFSET, Y_OFFSET + (HEIGHT * SPACE)) up = (X_OFFSET, (spot[1] * SPACE) + Y_OFFSET) down = (X_OFFSET + (WIDTH * SPACE), (spot[1] * SPACE) + Y_OFFSET) painter.drawLine(left[0], left[1], right[0], right[1]) painter.drawLine(up[0], up[1], down[0], down[1]) for x in range(WIDTH): for y in range(HEIGHT): centerx, centery = self.get_center(x, y) if self.game.board.pieces[x][y].state in PLAYERS_STATES: if self.game.board.pieces[x][y].state == State.white: painter.setBrush(Qt.white) else: painter.setBrush(Qt.black) center = QPoint(centerx, centery) circle_diameter = int(SPACE / 2) - 5 painter.drawEllipse( center, circle_diameter, circle_diameter) def get_center(self, x, y): return X_OFFSET + x * SPACE + int(SPACE / 2), \ Y_OFFSET + y * SPACE + int(SPACE / 2) def timerEvent(self, event): self.update() def get_clicked_block_position(self, mouseX, mouseY): for x in range(WIDTH): for y in range(HEIGHT): if mouseX > x * SPACE + X_OFFSET and \ mouseX < (x + 1) * SPACE + X_OFFSET and \ mouseY > y * SPACE + Y_OFFSET and \ mouseY < (y + 1) * SPACE + Y_OFFSET: return (x, y) return None def mousePressEvent(self, event): if isinstance(self.game.get_current_player(), Computer): return position = event.pos() piece_position = self.get_clicked_block_position( position.x(), position.y()) if piece_position is None: return current_player = self.game.get_current_player() other_player = self.game.get_other_player() is_valid = current_player.make_move( piece_position[0], piece_position[1], other_player) if not is_valid: return self.game.change_current_player() if self.game.is_game_won(): self.show_winner_message() return if isinstance(self.game.get_current_player(), Computer): self.computer_turn() message = str( self.get_current_player_message() + " | Scores: " + self.get_score_text()) self.main_window.communicate.message_statusbar.emit(message) def get_current_player_message(self): if self.game.first_player.colour == self.game.current_player_colour: return "First player's turn with " \ + self.game.current_player_colour.name return "Second player's turn with " \ + self.game.current_player_colour.name def show_winner_message(self): winner = self.game.get_winner() message = None if winner is None: message = "No one won its a tie" elif winner is self.game.first_player: message = "First Player has won" else: message = "Second Player has won" self.main_window.communicate.message_statusbar.emit(message) def get_score_text(self): text = 'Player 1: %s Player 2: %s' first_player_score = self.game.first_player.score second_player_score = self.game.second_player.score return text % (first_player_score, second_player_score) def restart_game(self): self.game.reset_game() self.update() message = str( self.get_current_player_message() + " | Scores: " + self.get_score_text()) self.main_window.communicate.message_statusbar.emit(message) def computer_turn(self): current_player = self.game.get_current_player() other_player = self.game.get_other_player() current_player.make_move(other_player) self.game.change_current_player() if self.game.is_game_won(): print("here") self.show_winner_message()
def scrape_facebook_url(url): pass
#Imports for finding urls import urllib import json import urllib.request #Imports for UI import tkinter as tk from tkinter import * import json, requests from tkinter.messagebox import showinfo, showwarning #Imports to scrape video download, thumbnail, title from pytube import * import PIL.Image from PIL import ImageTk #extras import os from pytube.helpers import install_proxy import ast #VARS video_links = [] index = 0 last_title = "" proxy_use = False saved_ids = {} API_KEY = "" #PROXY servers = { "http": "", 'https': "" } #READ FILE FROM TXT file = open("savedIDS.txt") read_content = file.read() saved_ids = ast.literal_eval(read_content) #FUCNTIONS def addProxy(ip, port): #proxy settings global servers servers["http"] = "http://" + ip + ":" + port servers["https"] = "https://" + ip + ":" + port try: install_proxy(servers) res = requests.get("https://www.google.com/", proxies=servers) showinfo("Proxy", "Sucsessfuly connect to porxy at " + ip + ":" + port) except: showinfo("Proxy", "Sorry but we cant connect to that IP and Port") def addID(name, cid): global saved_ids #saveing ids saved_ids[name] = cid #open file and read with open('savedIDS.txt', 'w') as convert_file: convert_file.write(json.dumps(saved_ids)) #save ids in current saved_ids dict file = open("savedIDS.txt") read_content = file.read() saved_ids = ast.literal_eval(read_content) def get_all_video_in_channel(channel_id): global video_links #clear video_links video_links = [] #OUR API KEY api_key = API_KEY base_video_url = 'https://www.youtube.com/watch?v=' base_search_url = 'https://www.googleapis.com/youtube/v3/search?' first_url = base_search_url+'key={}&channelId={}&part=snippet,id&order=date&maxResults=25'.format(api_key, channel_id) url = first_url for i in range(1): print(url) inp = urllib.request.urlopen(url) resp = json.load(inp) for i in resp['items']: if i['id']['kind'] == "youtube#video": video_links.append(base_video_url + i['id']['videoId']) try: next_page_token = resp['nextPageToken'] url = first_url + '&pageToken={}'.format(next_page_token) except: break def get_video_thumbnail(url): #Get thumbnail my_video = YouTube(url) name = "curtmb.png" response = requests.get(my_video.thumbnail_url) file = open("curtmb.png", "wb") file.write(response.content) file.close() return name def get_video_title(url): #get title my_video = YouTube(url) return(my_video.title) def download_video(url): #download video my_video = YouTube(url) print(my_video) my_video = my_video.streams.get_highest_resolution() my_video.download() #set status status.set("Downloaded") def downlaod_buffer(url): #set status status.set("Downloading") download_video(url) def delete_video(): global last_title #set status status.set("Browsing") #delete video os.remove(last_title.replace(".", "") + ".mp4") def submit_buffer(name, com, cid): global index, API_KEY if com == "none": if API_KEY == "": showwarning("API KEY INVALID","Your API key is empty, make sure you have submit your key. For more help reference the HOW_TO_RUN.txt file in the folder you downloaded") else: index = 0 add_videos(name, com, cid) else: API_KEY = cid def add_videos(name, com, cid): global main, cthumbnail, index, video_links, last_title, status, saved_ids #check saved file to grab ids if cid in saved_ids.keys(): cid = saved_ids[cid] channel_id = cid get_all_video_in_channel(channel_id) if com == "n": index += 1 status.set('Browsing') add_videos(get_video_thumbnail(video_links[index]), "none", cid) elif com == "l": index -= 1 status.set('Browsing') add_videos(get_video_thumbnail(video_links[index]), "none", cid) else: name = get_video_thumbnail(video_links[index]) #rezize img cthumbnail = PIL.Image.open(name) cthumbnail = cthumbnail.resize((535,400), PIL.Image.ANTIALIAS) cthumbnail = ImageTk.PhotoImage(cthumbnail) #show img main.create_image(0,0, anchor=NW, image=cthumbnail) #add title to view title = get_video_title(video_links[index]) vid_title.set(title) last_title = title #SET UP UI app = tk.Tk() app.geometry("750x550") app.configure(bg="lightblue") #UI #--------------------MAIN UI-------------------- vid_title = StringVar() vid_title.set('Please enter the channel ID of of your youtuber below...') vidLabel = tk.Label(app, textvariable=vid_title, bg="lightblue", font=("Airl", 15)) vidLabel.place(relx=0,rely=0) ytName = tk.Entry(app, width=70) ytName.place(relx=.01,rely=0.95) main = tk.Canvas(app, width=535, height=400) main.place(relx=0.01,rely=0.06) cthumbnail = ImageTk.PhotoImage(file="base.png") main.create_image(0,0, anchor=NW, image=cthumbnail) Submit = tk.Button(app, width=14, text="Submit ID", command= lambda *args: submit_buffer(ytName, "none", ytName.get())) Submit.place(relx=0.6,rely=0.94) keyName = tk.Entry(app, width=70) keyName.place(relx=.01,rely=0.82) Submitkey = tk.Button(app, width=14, text="Submit KEY", command= lambda *args: submit_buffer(keyName, "KEY", keyName.get())) Submitkey.place(relx=0.6,rely=0.81) #--------------------MAIN UI-------------------- #--------------------STATUS-------------------- statlab = tk.Label(app, text="Status:", bg="lightblue", font=("Airl", 15)) statlab.place(relx=.85, rely=.05) status = StringVar() status.set('Browsing') statusLabel = tk.Label(app, textvariable=status, bg="lightblue", font=("Airl", 15)) statusLabel.place(relx=.835, rely=.1) #--------------------STATUS-------------------- #--------------------CONTROLS-------------------- download = tk.Button(app, text="Download video", command= lambda *args: downlaod_buffer(video_links[index])) download.place(relx=0.4,rely=0.88) delete = tk.Button(app, text="Delete video", command= lambda *args: delete_video()) delete.place(relx=0.55,rely=0.88) next = tk.Button(app, width=14, text="Next", command= lambda *args: add_videos(ytName, "n", ytName.get())) next.place(relx=0.18,rely=0.88) last = tk.Button(app, width=14, text="Last", command= lambda *args: add_videos(ytName, "l", ytName.get())) last.place(relx=0.01,rely=0.88) #--------------------CONTROLS-------------------- #--------------------PROXY-------------------- proxlab = tk.Label(app, text="Proxy:", bg="lightblue", font=("Airl", 15)) proxlab.place(relx=.85, rely=.2) ipLabel = tk.Label(app, text="IP:", bg="lightblue") ipLabel.place(relx=.79, rely=.3) ip_ent = tk.Entry(app) ip_ent.place(relx=.815, rely=.3) portLabel = tk.Label(app, text="Port:", bg="lightblue") portLabel.place(relx=.775, rely=.4) port_ent = tk.Entry(app) port_ent.place(relx=.815, rely=.4) Submitprox = tk.Button(app, width=14, text="Submit proxy", command= lambda *args: addProxy(ip_ent.get(), port_ent.get())) Submitprox.place(relx=0.83,rely=0.46) #--------------------PROXY-------------------- #--------------------SAVED IDS-------------------- savelab = tk.Label(app, text="Save an ID:", bg="lightblue", font=("Airl", 15)) savelab.place(relx=.82, rely=.6) nameLabel = tk.Label(app, text="Name:", bg="lightblue") nameLabel.place(relx=.75, rely=.7) name_ent = tk.Entry(app) name_ent.place(relx=.815, rely=.7) idLabel = tk.Label(app, text="ID:", bg="lightblue") idLabel.place(relx=.775, rely=.8) id_ent = tk.Entry(app) id_ent.place(relx=.815, rely=.8) Submitprox = tk.Button(app, width=14, text="Save ID", command= lambda *args: addID(name_ent.get(), id_ent.get())) Submitprox.place(relx=0.83,rely=0.87) showids = tk.Button(app, width=14, text="Show saved ID's", command= lambda: showinfo("Saved ID's", saved_ids)) showids.place(relx=0.83,rely=0.93) #--------------------SAVED IDS-------------------- app.mainloop()
import os from django import template from django.utils.safestring import mark_safe from django.utils.translation import ugettext from django.conf import settings from django_openid.models import UserOpenidAssociation try: any except NameError: def any(seq): for x in seq: if x: return True return False register = template.Library() def openid_icon(openid, user): oid = u'%s' % openid matches = [u.openid == oid for u in UserOpenidAssociation.objects.filter(user=user)] if any(matches): return mark_safe(u'<img src="%s" alt="%s" />' % ( os.path.join(settings.STATIC_URL, 'images', 'openid-icon.png'), ugettext('Logged in with OpenID') )) else: return u'' register.simple_tag(openid_icon)
# Generated by Django 4.0 on 2022-01-03 18:57 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('post', '0009_alter_post_thumbnail'), ] operations = [ migrations.AlterField( model_name='post', name='published', field=models.BooleanField(default=False, verbose_name='Published'), ), migrations.AlterField( model_name='post', name='re_published', field=models.BooleanField(default=False, verbose_name='Re-published'), ), ]
import numpy as np target = 80 score_beg = np.array([72, 35, 64, 88, 51, 90, 74, 12]) def curve(score_beg): limit_up = 100 mean_score = score_beg.mean() added_score = target - mean_score new_score = score_beg + added_score return np.clip(new_score, score_beg, limit_up) print(score_beg) curve(score_beg)
""" Copyright 2021 Inmanta Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Contact: code@inmanta.com """ import os import pytest from providers.gitlab.helpers.gitlab_client import GitlabClient from providers.gitlab.helpers.gitlab_provider import GitlabProvider @pytest.fixture(scope="package") def token(lab_config_session: dict) -> str: return os.getenv(lab_config_session["gitlab"]["configuration"]["token_env_var"]) @pytest.fixture(scope="package") def base_url(lab_config_session: dict) -> str: return lab_config_session["gitlab"]["configuration"]["base_url"] @pytest.fixture(scope="package") def provider(base_url: str, token: str) -> GitlabProvider: return GitlabProvider(base_url, token) @pytest.fixture(scope="package") def parent_namespace_id(lab_config_session: dict) -> int: return lab_config_session["gitlab"]["values"]["namespace_id"] @pytest.fixture(scope="package") def parent_namespace_path(lab_config_session: dict) -> str: return lab_config_session["gitlab"]["values"]["namespace_path"] @pytest.fixture(scope="package") def project_name(lab_config_session: dict) -> str: return lab_config_session["gitlab"]["values"]["project_name"] @pytest.fixture(scope="package") def global_client(lab_config_session: dict, base_url: str, token: str) -> GitlabClient: gitlab_values = lab_config_session["gitlab"]["values"] gitlab_client = GitlabClient(base_url, token) yield gitlab_client project_path = os.path.join( gitlab_values["namespace_path"], gitlab_values["project_name"] ) gitlab_client.delete_project(project_path) @pytest.fixture(scope="function") def gitlab_client( lab_config_session: dict, global_client: GitlabClient ) -> GitlabClient: gitlab_values = lab_config_session["gitlab"]["values"] project_path = os.path.join( gitlab_values["namespace_path"], gitlab_values["project_name"] ) global_client.delete_project(project_path) return global_client
#!/usr/bin/env python import numpy as np import math import matplotlib.pyplot as plt import rospy import std_msgs.msg import geometry_msgs.msg from nav_msgs.msg import Odometry import itertools import tf D = 0.15 # look-ahead distance L = 0.21 # 24 before show_animation = True x_odom = 0.0 y_odom = 0.0 theta_odom = 0.0 ##################################################### # /left_motor/encoder Callback # ##################################################### def odomCallback(msg): global x_odom, y_odom, theta_odom x_odom = msg.pose.pose.position.x y_odom = msg.pose.pose.position.y (r, p, y) = tf.transformations.euler_from_quaternion([msg.pose.pose.orientation.x, msg.pose.pose.orientation.y, msg.pose.pose.orientation.z, msg.pose.pose.orientation.w]) theta_odom = y ##################################################### # Initialize Publisher # ##################################################### rospy.init_node('path_follower_node', anonymous=True) pub_path_following_VEL = rospy.Publisher('/keyboard/vel', geometry_msgs.msg.Twist, queue_size=1) rate = rospy.Rate(50) # odom subscriber rospy.Subscriber("/robot_odom", Odometry, odomCallback) class State: def __init__(self, x=0.0, y=0.0, yaw=0.0): self.x = x self.y = y self.yaw = yaw def send_message(LINEAR_VELOCITY, ANGULAR_VELOCITY): VEL = geometry_msgs.msg.Twist() if not rospy.is_shutdown(): VEL.linear.x = LINEAR_VELOCITY VEL.linear.y = 0.0 VEL.linear.z = 0.0 VEL.angular.x = 0.0 VEL.angular.y = 0.0 VEL.angular.z = ANGULAR_VELOCITY pub_path_following_VEL.publish(VEL) def pure_pursuit_control(state, path_x, path_y, t_ind_prev): t_ind = calc_target_index(state, path_x, path_y) # if the previous target was further away on the path than now, use that instead if t_ind_prev >= t_ind: t_ind = t_ind_prev # target index to coordinates if t_ind < len(path_x): tx = path_x[t_ind] ty = path_y[t_ind] else: tx = path_x[-1] ty = path_y[-1] t_ind = len(path_x) - 1 # calculate the angle to the target point (relative to heading angle) alpha = math.atan2(ty - state.y, tx - state.x) - state.yaw # if reversing, flip the steering angle #if state.v < 0: # alpha = math.pi - alpha D_tot = D # calculate an appropriate steering angle delta = math.atan2(2.0 * L * math.sin(alpha) / D_tot, 1.0) return delta, t_ind def calc_target_index(state, path_x, path_y): # find the index of the path closest to the robot #print("x,y", state.x,state.y) dx = [state.x - icx for icx in path_x] dy = [state.y - icy for icy in path_y] d = [abs(math.sqrt(idx ** 2 + idy ** 2)) for (idx, idy) in zip(dx, dy)] t_ind = d.index(min(d)) # total look ahead distance (taking the speed into consideration) D_tot = D # search length L = 0.0 # find the index of the look head point on the path (look ahead is the distance ALONG the path, not straight line) path_length = len(path_x) while L < D_tot and (t_ind + 1) < path_length: dx = path_x[t_ind + 1] - path_x[t_ind] dy = path_y[t_ind + 1] - path_y[t_ind] L += math.sqrt(dx**2 + dy**2) t_ind += 1 return t_ind def main(): state = State(x=0,y=0,yaw=0) # target course #path_x = np.arange(0, 3, 0.01) #path_y = [0.5*math.cos(ix / 0.3)-0.5 for ix in path_x] path_x1 = np.arange(0, 1, 0.01) path_x2 = np.empty(100) path_x2.fill(1) path_y1 = np.empty(100) path_y1.fill(0) path_y2 = np.arange(0, 1, 0.01) path_x = np.append(path_x1, path_x2) path_y = np.append(path_y1, path_y2) print(path_x) print(path_y) print(len(path_x)) print(len(path_y)) lastIndex = len(path_x) - 1 x = [0] y = [0] yaw = [0] t = [0.0] state.x = x_odom state.y = y_odom state.yaw = theta_odom target_ind = calc_target_index(state, path_x, path_y) while lastIndex > target_ind: state.x = x_odom state.y = y_odom state.yaw = theta_odom ang_vel, target_ind = pure_pursuit_control(state, path_x, path_y, target_ind) GAIN = 0.7 lin_vel = 0.07 send_message(lin_vel, ang_vel*GAIN) #rate.sleep() print("ang_vel", ang_vel*GAIN) x.append(x_odom) y.append(y_odom) yaw.append(theta_odom) if show_animation: plt.cla() plt.plot(path_x, path_y, ".r", label="course") plt.plot([x_odom, x_odom + math.cos(theta_odom)], [y_odom, y_odom + math.sin(theta_odom)], "g", label="angle") plt.plot(x, y, "-b", label="trajectory") plt.plot(path_x[target_ind], path_y[target_ind], "xg", label="target") plt.axis("equal") plt.grid(True) plt.pause(0.001) # Test send_message(0, 0) assert lastIndex >= target_ind, "Cannot goal" if show_animation: plt.plot(path_x, path_y, ".r", label="course") plt.plot(x, y, "-b", label="trajectory") plt.legend() plt.xlabel("x[m]") plt.ylabel("y[m]") plt.axis("equal") plt.grid(True) plt.show() if __name__ == '__main__': print("path tracker started") main()
#!/usr/bin/env python #-*- coding: UTF-8 -*- ########################################################################### # # Copyright (c) 2018 www.codingchen.com, Inc. All Rights Reserved # ########################################################################## ''' @brief leetcode algorithm @author chenhui(hui.chen6789@gmail.com) @date 2018/11/08 19:09:33 ''' class Solution: def intToRoman(self, num): """ :type num: int :rtype: str """ roman = '' simbols = ['I', 'V', 'X', 'L', 'C', 'D', 'M'] i = 0 while num > 0: number = num % 10 if number < 4: roman = ''.join([simbols[2*i] for _ in range(number)]) + roman elif number == 4: roman = simbols[2*i] + simbols[2*i+1] + roman elif number > 4 and number < 9: roman = simbols[2*i+1] + ''.join([simbols[2*i] for _ in range(number - 5)]) + roman elif number == 9: roman = simbols[2*i] + simbols[2*i+2] + roman num = num // 10 i += 1 return roman if __name__ == '__main__': s = Solution() print(s.intToRoman(3)) print(s.intToRoman(58)) print(s.intToRoman(1994))
from copy import deepcopy import numpy as np import random import itertools import cPickle as pickle class agent(object): ''' This is an abstract agent class, however its abstractness is not enforced via the ABC module. This is a deliberate design choice. The brains of the agent class is the pick_action() method. Within the project, three classes extend agent, namely: 1- manual_agent: where pick_action() asks for human input. This is used if you would like to play with a hard-coded logic or a trained TD-learner 2- teacher : where pick_action() follows a (nearly) optimal hard-coded logic. This is used to train the td-learner 3- td_learner : where pick_action() follows an epsilon greedy policy selection, and depending on the user input does on-policy (SARSA) or off-policy (Q-learning) learning Attributes: ---------------------- name - (str) the name you would like to give to the agent marker - (int) the marker that the agent will use to play. This is either 1 or -1 (rather than 'X' and 'O') board_dimensions - (tuple) The size of the tic-tac-toe board. For now hard-coded as 3*3 ''' def __init__(self, name, marker): self.name = name self.marker = marker self.oppmarker = -1 if self.marker==1 else 1 self.board_dimensions = (3,3) def pick_action(self, env): ''' Given the environment the agent is dealing with, pick one of the legal environment actions Parameters: -------------------- ''' return class manual_agent(agent): ''' Agent that relies on human input to pick actions. The pick_action() method renders the current state of the environment and asks for input from the human user. Attributes: ---------------------- name - (str) the name you would like to give to the agent marker - (int) the marker that the agent will use to play. This is either 1 or -1 (rather than 'X' and 'O') board_dimensions - (tuple) The size of the tic-tac-toe board. For now hard-coded as 3*3 ''' def __init__(self, name, marker): ''' Return a manual agent object with the indicated name and marker (-1 or 1 ) of choice. ''' super(manual_agent, self).__init__(name, marker) self.epsilon = 0 # TO DO: here for plotting convenience / remove def pick_action(self, obs): ''' Ask for manual action input from the human user. If necessary, this would allow printing instructions for the human as well. Parameters: ------------- obs - (np.array) the current environment (board) state For example: np.array([0,0,0,0,0,0,0,0,0]) for an empty board. ''' action = None available_actions = np.where(obs==0)[0] while action not in available_actions: # print out what to do self.instruct_human(obs, available_actions) action = raw_input() try: action = int(action) if action not in available_actions: print 'Sorry, %s is not a valid action.'%(str(action)) except: if action.lower().startswith('inst'): self.print_instructions() else: print 'Sorry, \'%s\' is not a valid input.'%(str(action)) return action def instruct_human(self, obs, available_actions): ''' Based on the input board configuration and the available actions, instruct the human to input a vali (available) action. Parameters: -------------- obs -(np.array) the current environment (board) state For example: np.array([0,0,0,0,0,0,0,0,0]) for an empty board. available)actions -(list) the available actions based on the unoccupied cells on the board. The player can only pick one of these. ''' print 'Current board: ' self.render(obs) print 'Your marker is %i. What is your next move?'%(self.marker) print 'Please pick one of %s'%(str(available_actions)) print 'Type: Instructions for locations mapping.' def print_instructions(self): ''' Prints the instructions (as below) out to the reader. ''' inst = '---------------Instructions --------------- \n'\ 'Available actions are integers from 0 to 8 on a 3*3 board \n'\ 'with the location mapping as below:\n' \ '0 | 1 | 2 \n'\ '----------\n'\ '3 | 4 | 5 \n'\ '----------\n'\ '6 | 7 | 8 \n'\ 'If the location you are choosing is already taken (is not 0),the computer \n' \ 'will keep on asking you to put in an available location integer. \n'\ '------------------------------------------' print inst def render(self,obs): ''' Hard-coded visualisation of the current state of the board Parameters: ------------- obs - (np.array) the current environment (board) state For example: np.array([0,0,0,0,0,0,0,0,0]) for an empty board. ''' board = [str(i) for i in obs] # "board" is a list of 10 strings representing the board (ignore index 0) print(' ' + board[0] + ' | ' + board[1] + ' | ' + board[2]) print('-----------') print(' ' + board[3] + ' | ' + board[4] + ' | ' + board[5]) print('-----------') print(' ' + board[6] + ' | ' + board[7] + ' | ' + board[8]) class teacher(agent): ''' Agent with a hard-coded game-play logic for a 3*3 board configuration. The logic mainly involves looking one move ahead to see whether the agent can win the game immediately, or whether it can avoid losing by blocking an immediate win opportunity by the opponent. If neither is possible, the agent first tries to choose an unoccupied corner, then the centre and finally one of the sides (in this preference order). There is also a special logic to deflect certain moves when the opponent starts the game by picking one of the corners. Attributes: ---------------------- name - (str) the name you would like to give to the agent marker - (int) the marker that the agent will use to play. This is either 1 or -1 (rather than 'X' and 'O') board_dimensions - (tuple) The size of the tic-tac-toe board. For now hard-coded as 3*3 epsilon - (float) the randomness factor. For instance, if this is 0.2, the teacher object would act randomly 20% of the time and carries out its hard-coded logic 80% of the time. This is set to 0.5 during training to allow some state space exploration for the opponent (a td-learner). ''' def __init__(self, name, marker, epsilon): ''' Creates a teacher object that acts on a hard-coded logic as specified by its pick_action() method. ''' super(teacher, self).__init__(name, marker) self.epsilon = epsilon def pick_action(self, obs): ''' Given the environment the agent is dealing with, returns one of the legal environment actions based on the hard-coded logic, whereby the agent looks one move ahead to see whether the agent can win the game immediately, or whether it can avoid losing by blocking an immediate win opportunity by the opponent. If neither is possible, the agent first tries to choose an unoccupied corner, then the centre and finally one of the sides (in this preference order). There is also a special logic to deflect certain moves when the opponent starts the game by picking one of the corners. Parameters: ---------------- obs - (np.array) the current (board) state For example: np.array([0,0,0,0,0,0,0,0,0]) for an empty board. ''' available_actions = np.where(obs==0)[0] if np.random.rand() < self.epsilon: # random action return np.random.choice(available_actions) else: if len(available_actions) == 1: # agent has no option to pick another action return available_actions[0] else: # pick action based on the hard-coded logic # special logic for when the opponent starts at a corner if (len(available_actions) ==8) and any(obs[[0,2,6,8]] !=0): return 4 # special logic for when the opponent starts with opposite corners elif (len(available_actions) ==6) and (sum(obs[[0,8]]) == 2*self.oppmarker or sum(obs[[2,6]]) == 2*self.oppmarker): sides = np.intersect1d(np.array([1, 3, 5, 7]), available_actions) return random.choice(sides) else: # 1. Check if we can win the game with this move for action in available_actions: board_copy_attack = self.__considerMove(self.marker, action, obs) if self.__isWinner(board_copy_attack): # First, attempt to win with this move return action # 2. Check if the opponent can win on their next move, and block them. for action in available_actions: board_copy_defend = self.__considerMove(self.oppmarker, action, obs) if self.__isWinner(board_copy_defend): # If not possible, defend return action # 3. Take one of the corners, if they are free. corners = np.intersect1d(np.array([0, 2, 6, 8]), available_actions) if len(corners)>0: return random.choice(corners) # 4. Take the centre if it is free. if 4 in available_actions: return 4 # 5. If nothing else is free, take one of the free side locations sides = np.intersect1d(np.array([1, 3, 5, 7]), available_actions) return random.choice(sides) def __considerMove(self, mark, move, obs): ''' Given a move, a player marker and the current board configuration, return a (temporary) copy of the board with the considered move applied. Parameters: ---------------- mark - {-1,1} the numeric marker (equivalent to 'X' or 'O') for the tic-tac-toe game. move - (int) a legal move location on the board. obs - (np.array) the 3*3 board configuration to test a move on ''' board_copy = deepcopy(obs) board_copy[move] = mark return board_copy def __isWinner(self, board): ''' Given a board configuration, this method returns True if there is a winner. Note: There is an equivalent method in the tic_tac_toe class, however in order to keep the agent and the environment isolated, this class has its own _isWinner() implementation, at the expense of minor repetition. Parameters: ----------------- obs - (np.array) the current (board) state For example: np.array([0,0,0,0,0,0,0,0,0]) for an empty board. ''' board_mat =board.reshape(self.board_dimensions) # episode ending criteria row_complete = any(abs(board_mat.sum(axis=1))==3 ) col_complete = any(abs(board_mat.sum(axis=0))==3 ) diag_complete = abs(np.diag(board_mat).sum())==3 opp_diag_complete = abs(np.diag(np.fliplr(board_mat)).sum()) == 3 # if any of the criteria satisfies, episode complete if any([row_complete, col_complete, diag_complete, opp_diag_complete]) : return True else: False class td_learner(agent): ''' Epsilon-greedy temporal difference (td) learner that is trained based on the equation: Q(s,a) <-- Q(s,a) + alpha * [target - prediction], where: prediction = Q(s,a), and target = r + gamma * max_a'[Q(s',a')] for Q-learning, or target = r + gamma * [ (1-epsilon)* max_a'[Q(s',a')] + epsilon* mean[Q(s',a') |a'!= optimal a'] ] for SARSA. Attributes: ---------------------- name - (str) the name you would like to give to the agent marker - (int) the marker that the agent will use to play. This is either 1 or -1 (rather than 'X' and 'O') board_dimensions - (tuple) The size of the tic-tac-toe board. For now hard-coded as 3*3 epsilon - (float) the randomness factor. For instance, if this is 0.2, the agent would act randomly 20% of the time and pick the optimal action 80% of the time. This is annealed from 1 to 0.05 during training to allow some state space exploration. In other words, this adjusts the exploration / exploitation balance. learning - {'off-policy', 'on-policy'} defines whether update_q_table() operates off-policy (i.e. Q-Learning) or on-policy (SARSA) learn_rate - (float) the learning rate (alpha) for the td-update formula given above. gamma - (float) the future reward discount factor in the td-update formula given above. Its choice should be informed by average episode (game-play) duration. action_set_size - (int) the number of available actions. By default, if the agent is used with the tic-tac-toe environment, this is equal to the state dimension size, i.e. 3*3 q_dict - (dict) the Q-value lookup table of the td-learner, implemented as a dictionary where keys are tuples of unique states and the values are the available actions per each state. This can either be initialised empty or loaded from an existing pickled q value dictionary. q_table_dir - (str) the pickled file location of a previously trained Q value dictionary. If this is not None, instead of creating an empty Q value dictionary, the object is initialised by reading in the pickled dictionary at this location. ''' def __init__(self, name, marker, state_dimensions, learning, epsilon, learn_rate, gamma, action_set_size = None, q_table_dir = None): ''' Creates a Temporal-Difference Learner object. Depending on the user-defined 'learning' parameter, the agent either does off-policy (Q-Learning) or on-policy (SARSA) learning. ''' super(td_learner, self).__init__(name, marker) self.epsilon = epsilon self.final_epsilon = 0.05 # hard-coded, make dynamic self.learning_rate = learn_rate self.gamma = gamma self.learning = learning if action_set_size is None: self.__action_space_size = len(state_dimensions) else: self.__action_space_size = action_set_size if q_table_dir is None: self.q_dict = self.__create_q_table(state_dimensions) else: self.q_dict = self.load_q_dict(q_table_dir) def __create_q_table(self, state_dimensions): ''' Create a Q lookup dict by taking the Cartesian product of all the dimensions in the state space. For the 3*3 tic-tac-toe environment, each cell can have [-1,0,1]. So there are 3**(3*3) configurations. Some of these are not legal game plays, e.g.(1,1,1,1,1,1,1,1,1) but for the time being (due to time constraints) we do not worry about these. Each product is then used as a tuple key, pointing to a numpy array of size 9, each representing an available location, i.e. action index. The lookup dictionary is constrained in the sense that when we know a certain state can not allow an action (i.e. that particular location is already occupied), we populate the Q value for that action as np.nan. For instance: q_dict[(1,1,1,1,1,1,1,1,1)] = array([ nan, nan, nan, nan, nan, nan, nan, nan, nan]) q_dict[(0,0,1,-1,0,0,0,0,0)] = array([-0.06, -0.04, nan, nan, -0.03, -0.03, -0.07, 0.04, 0.06]) etc.. Parameters: ------------ state_dimensions - (list) the state dimensions for the environment that the agent will interact with. For the tic_tac_toe env, this is a list of all possible markers [-1,0,1] repeated 3*3 times. ''' n = self.__action_space_size # for brevity below, create temp variable q_dict = dict([(element, np.array([(i == 0 and [np.random.uniform(0, 0)] or [np.nan])[0] for i in element])) for element in itertools.product(*state_dimensions )]) return q_dict def set_epsilon(self, val): ''' Manually adjust the td_learner agent's epsilon. This is not very clean but is done while the td-learner is playing against a manual_agent (human) to ensure that we play with a fully exploitative, non-random td-learner agent. Parameters: ---------------- val - (float) the value we want to set the epsilon to ''' self.epsilon = val def save_q_dict(self, name): ''' Pickles and saves the current Q-value dictionary of the agent with the provided file name. This is used to save the results of a trained agent so we can play with it without having to retrain. Parameters: ---------------- name - (str) the directory and name that we want to give to the pickled Q dictionary file. Example: 'on_policy_trained.p' ''' with open(name, 'wb') as fp: pickle.dump(self.q_dict, fp) def load_q_dict(self, dir): ''' Loads the pickled dictionary in the provided location as the agent's q-value dictionary play. We can initialise a td-learner in this way and play with it directly, without having to retrain a blank one. Parameters: ---------------- name - (str) the directory and name of the pickled Q value dictionary file that we want to load. ''' with open(dir, 'rb') as fp: q_dict = pickle.load(fp) return q_dict def pick_action(self, obs): ''' Pick action in an epsilon-greedy way. By self.epsilon probability this returns a random action, and by (1-epsilon) probability it returns the action with the maximum q-value for the current environment state. Parameters: --------------- obs - (np.array) the current (board) state to pick an action on. For example: np.array([0,0,0,0,0,0,0,0,0]) for an empty board. ''' if np.random.rand() < self.epsilon: # random action action = np.random.choice(np.where(obs==0)[0]) else: # action with the max q-value action = np.nanargmax(self.__get_state_vals(obs)) return action def update_q_table(self, obs, action, reward, next_obs, done): ''' Implementation of the temporal difference learning update: Q(s,a) <-- Q(s,a) + alpha * [target - prediction]. where: prediction = Q(s,a), and target = r + gamma * max_a'[Q(s',a')] for Q-learning, or def update_q_table(self, obs, action, reward, next_obs, done): ''' Implementation of the temporal difference learning update: Q(s,a) <-- Q(s,a) + alpha * [target - prediction]. where: prediction = Q(s,a), and target = r + gamma * max_a'[Q(s',a')] for Q-learning, or target = r + gamma * [ (1-epsilon)* max_a'[Q(s',a')] + epsilon* mean[Q(s',a')] for SARSA. def update_q_table(self, obs, action, reward, next_obs, done, func): ''' Implementation of the temporal difference learning update: Q(s,a) <-- Q(s,a) + alpha * [target - prediction]. where: prediction = Q(s,a), and target = r + gamma * max_a'[Q(s',a')] for Q-learning, or target = r + gamma * [ (1-epsilon)* max_a'[Q(s',a')] + epsilon* mean[Q(s',a')] for SARSA. The definition of the target changes depending on whether the learning is done off-policy (Q-Learning) or on-policy (SARSA). Off-policy (Q-Learning) computes the difference between Q(s,a) and the maximum action value, while on-policy (SARSA) computes the difference between Q(s,a) and the weighted sum of the average action value and the maximum. Parameters: --------------- obs - (np.array), the state we transitioned from (s). action - (int) the action (a) taken at state=s. reward - (int) the reward (r) resulting from taking the specific action (a) at state = s. next_obs - (np.array) the next state (s') we transitioned into after the taking the action at state=s. done - (bool) episode termination indicator. If True, target (above) is only equal to the immediate reward (r) and there is no discounted future reward func - (np.nanmax, np.nanmin) Should update with max if it is the agent's turn and should take min if the opponent's turn ''' if self.learning == 'off-policy': # Q-Learning if done: # terminal state, just immediate reward target = reward else: # within episode target = reward + self.gamma*func(self.__get_state_vals(next_obs)) prediction = self.__get_state_vals(obs)[action] updated_q_val = prediction + self.learning_rate *(target - prediction) # update the q-value for the observed state,action pair self.__set_q_val(obs, action, updated_q_val) elif self.learning == 'on-policy': # SARSA if done: # terminal state, just immediate reward target = reward else: # within episode on_policy_q = self.epsilon * np.nanmean(self.__get_state_vals(next_obs)) + \ (1- self.epsilon) * func(self.__get_state_vals(next_obs)) target = reward + self.gamma*on_policy_q prediction = self.__get_state_vals(obs)[action] updated_q_val = prediction + self.learning_rate *(target - prediction) # update the q-value for the observed state,action pair self.__set_q_val(obs, action, updated_q_val) else: raise ValueError ('Learning method is not known.') def on_policy_q_target(self, next_obs): ''' Calculate the target in the TD learning update function: Q(s,a) <-- Q(s,a) + alpha * [target - prediction] when the learning is done on policy. In this case, target is the difference between Q(s,a) and the weighted sum of the average action value and the maximum. The weighting is done using self.epsilon. target = r + gamma * [ (1-epsilon)* max_a'[Q(s',a')] + epsilon* mean[Q(s',a') |a'!= optimal a'] ] Parameters: ----------------- next_obs - (np.array) the next state (s') we transitioned into after the taking the action at state=s. ''' # next action candidates a_prime_candidates = deepcopy(self.__get_state_vals(next_obs)) # optimum next state action (greedy selection) optimum_a_prime_idx = np.nanargmax(a_prime_candidates) # on_policy_q = (1-eps)*optimal a' + eps*E[non_optimal a'] exp_greedy_q = self.epsilon*a_prime_candidates[optimum_a_prime_idx] if all(np.isnan((np.delete(a_prime_candidates,optimum_a_prime_idx))) ): exp_random_q = 0 else: exp_random_q = (1-self.epsilon)* np.nanmean(np.delete(a_prime_candidates,optimum_a_prime_idx)) return exp_greedy_q + exp_random_q def __set_q_val(self, state, action, q_val): ''' Set the q value for a state-action pair in the object's q val dictionary. Parameters: ----------------- state -(list) the state index, for a 3*3 board action -(int) the action index q_val -(float) the Q value to appoint to the state-action pair ''' self.q_dict[tuple(state)][action] = q_val def __get_state_vals(self, state): ''' For a given state, look up and return the the action values from the object's q val dictionary.The q values are returned as a dictionary with keys equal to action indices and the values the corresponding q values. The output is a dictionary to facilitate post-processing and filtering out some q-values that belong to unavailable action locations. Parameters: ----------------- state -(list) the state index, for a 3*3 board ''' d = self.q_dict[tuple(state)] return d
from typing import Optional, Dict from sqlalchemy.sql.sqltypes import DateTime from repository.models import Section from datetime import datetime # 기계 # 1. 솔레노이드 밸브 5ea # 2. 물공급용 워터펌프 # 3. 스프레이용 워터펌프 # 4. 양액공급용 워터펌프 2ea class Machine: def __init__( self, name: str, pin: int, id: Optional[int]= None, createdAt: Optional[DateTime]= None ): self.id = id self.name = name self.pin = pin self.createdAt = createdAt @classmethod def from_dict(cls, adict: Dict) -> object: return cls(**adict) def to_dict(self) -> Dict: return { "id": self.id, "name": self.name, "pin": self.pin, "createdAt": self.createdAt }
import csv from pymongo import MongoClient import sys from pprint import pprint client = MongoClient() client = MongoClient('localhost', 27017) db = client.test_database # Find the unique authors and publishers author_list = [] publisher_list = [] with open("book.csv", newline='') as csvfile: bookreader = csv.DictReader(csvfile, delimiter=',') for row in bookreader: author_list_tmp = row['Author'].split(";") for author in author_list_tmp: if author.strip() not in author_list: author_list.append(author.strip()) publisher = row['publisher'].strip() if publisher not in publisher_list: publisher_list.append(publisher) # print(author_list) # print(publisher_list) # creating author collection and create documents db.author.drop() author_collection = db.author db.publisher.drop() publisher_collection = db.publisher for author_name in author_list: print(author_name) author_dict = {"author": author_name} author_collection.insert_one(author_dict) cursor = author_collection.find({}) for document in cursor: pprint(document) for publisher_name in publisher_list: print(publisher_name) publisher_dict = {"publisher": publisher_name} publisher_collection.insert_one(publisher_dict) cursor = publisher_collection.find({}) for document in cursor: pprint(document) print(db.collection_names()) db.book.drop() book_collection = db.book db.inventory.drop() inventory_collection = db.inventory with open("book.csv", newline='') as csvfile: bookreader = csv.DictReader(csvfile, delimiter=',') for row in bookreader: dict1 = {} dict2 = {} print(row) dict1["title"] = row["Title"] dict1["ISBN-13"] = row["ISBN-13"] dict1["ISBN-10"] = row["ISBN-10"] dict1["review_count"] = row["Reviews"] dict1["description"] = row["Book Description"] dict1["published"] = row["published"] dict1["pages"] = row["pages"] dict1["price"] = row["price"] author_list_tmp = row['Author'].split(";") author_id_list = [] for author in author_list_tmp: author_id_list.append(author_collection.find({"author": author.strip()})[0]["_id"]) dict1["author_id"] = author_id_list publisher_id_list = [] publisher_list_tmp = row['publisher'].split(";") for publisher in publisher_list_tmp: publisher_id_list.append(publisher_collection.find({"publisher": publisher.strip()})[0]["_id"]) dict1["publisher_id"] = publisher_id_list result = book_collection.insert_one(dict1) dict2["_id"] = result.inserted_id dict2["quantity"] = row["quantity"] inventory_collection.insert_one(dict2) cursor = book_collection.find({}) for document in cursor: pprint(document) cursor = inventory_collection.find({}) for document in cursor: pprint(document) db.customers.drop() customers_collection = db.customers with open("customer.csv", newline='') as csvfile: customersreader = csv.DictReader(csvfile, delimiter=',') for row in customersreader: dict1 = {} dict1["name"] = row["Name"] dict1["email_address"] = row["email_address"] dict1["address"] = row["address"] dict1["phone_number"] = row["phone number"] customers_collection.insert_one(dict1) cursor = customers_collection.find({}) for document in cursor: pprint(document) db.order.drop() order_collection = db.order with open("order.csv", newline='') as csvfile: orderreader = csv.DictReader(csvfile, delimiter=',') for row in orderreader: print(row) dict1 = {} book_id_list = [] # email_addr=row["userid"] # isbn_list_tmp=row['ISBN-13'].split(";") # for isbn in isbn_list_tmp: # book_id_list.append(book_collection.find({"ISBN-13":isbn})[0]["_id"]) # dict1["customer_id"]=customer_collection.find({"email_address":email_addr})[0]["_id"] dict1["order_id"] = row["order_id"] dict1['email'] = row["email"] dict1['title'] = row["title"] dict1["amount"] = row["amount"] dict1["created_time"] = row["created_time"] dict1['status'] = row["status"] dict1["completed_time"] = row["completed_time"] print(dict1) order_collection.insert_one(dict1) cursor = order_collection.find({}) for document in cursor: pprint(document)
# -*- coding: utf-8 -*- VERSION = "1.5.0" #should keep up with the counterwallet version it works with (for now at least) DB_VERSION = 22 #a db version increment will cause counterblockd to rebuild its database off of counterpartyd CAUGHT_UP = False #atomic state variable, set to True when counterpartyd AND counterblockd are caught up UNIT = 100000000 SUBDIR_ASSET_IMAGES = "asset_img" #goes under the data dir and stores retrieved asset images SUBDIR_FEED_IMAGES = "feed_img" #goes under the data dir and stores retrieved feed images MARKET_PRICE_DERIVE_NUM_POINTS = 8 #number of last trades over which to derive the market price (via WVAP) # FROM counterpartyd # NOTE: These constants must match those in counterpartyd/lib/config.py REGULAR_DUST_SIZE = 5430 MULTISIG_DUST_SIZE = 5430 * 2 ORDER_BTC_DUST_LIMIT_CUTOFF = MULTISIG_DUST_SIZE mongo_db = None #will be set on server init BTC = 'BTC' XCP = 'XCP' MAX_REORG_NUM_BLOCKS = 10 #max reorg we'd likely ever see MAX_FORCED_REORG_NUM_BLOCKS = 20 #but let us go deeper when messages are out of sync ARMORY_UTXSVR_PORT_MAINNET = 6590 ARMORY_UTXSVR_PORT_TESTNET = 6591 QUOTE_ASSETS = ['BTC', 'XBTC', 'XCP'] # define the priority for quote asset MARKET_LIST_QUOTE_ASSETS = ['XCP', 'XBTC', 'BTC'] # define the order in the market list DEFAULT_BACKEND_RPC_PORT_TESTNET = 18332 DEFAULT_BACKEND_RPC_PORT = 8332
from .interface import Interface #from . import message #from . import parsers
# If tests is a package, debugging is a bit easier.
# coding: utf-8 # # Your first neural network # # In this project, you'll build your first neural network and use it to predict daily bike rental ridership. We've provided some of the code, but left the implementation of the neural network up to you (for the most part). After you've submitted this project, feel free to explore the data and the model more. # # # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt # ## Load and prepare the data # # A critical step in working with neural networks is preparing the data correctly. Variables on different scales make it difficult for the network to efficiently learn the correct weights. Below, we've written the code to load and prepare the data. You'll learn more about this soon! # In[2]: data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) # In[3]: rides.head() # ## Checking out the data # # This dataset has the number of riders for each hour of each day from January 1 2011 to December 31 2012. The number of riders is split between casual and registered, summed up in the `cnt` column. You can see the first few rows of the data above. # # Below is a plot showing the number of bike riders over the first 10 days or so in the data set. (Some days don't have exactly 24 entries in the data set, so it's not exactly 10 days.) You can see the hourly rentals here. This data is pretty complicated! The weekends have lower over all ridership and there are spikes when people are biking to and from work during the week. Looking at the data above, we also have information about temperature, humidity, and windspeed, all of these likely affecting the number of riders. You'll be trying to capture all this with your model. # In[4]: rides[:24 * 10].plot(x='dteday', y='cnt') # ### Dummy variables # Here we have some categorical variables like season, weather, month. To include these in our model, we'll need to make binary dummy variables. This is simple to do with Pandas thanks to `get_dummies()`. # In[5]: dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides = pd.concat([rides, dummies], axis=1) fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 'weekday', 'atemp', 'mnth', 'workingday', 'hr'] data = rides.drop(fields_to_drop, axis=1) data.head() # ### Scaling target variables # To make training the network easier, we'll standardize each of the continuous variables. That is, we'll shift and scale the variables such that they have zero mean and a standard deviation of 1. # # The scaling factors are saved so we can go backwards when we use the network for predictions. # In[6]: quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed'] # Store scalings in a dictionary so we can convert back later scaled_features = {} for each in quant_features: mean, std = data[each].mean(), data[each].std() scaled_features[each] = [mean, std] data.loc[:, each] = (data[each] - mean) / std # ### Splitting the data into training, testing, and validation sets # # We'll save the data for the last approximately 21 days to use as a test set after we've trained the network. We'll use this set to make predictions and compare them with the actual number of riders. # In[7]: # Save data for approximately the last 21 days test_data = data[-21 * 24:] # Now remove the test data from the data set data = data[:-21 * 24] # Separate the data into features and targets target_fields = ['cnt', 'casual', 'registered'] features, targets = data.drop(target_fields, axis=1), data[target_fields] test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields] # We'll split the data into two sets, one for training and one for validating as the network is being trained. Since this is time series data, we'll train on historical data, then try to predict on future data (the validation set). # In[ ]: # Hold out the last 60 days or so of the remaining data as a validation set train_features, train_targets = features[:-60 * 24], targets[:-60 * 24] val_features, val_targets = features[-60 * 24:], targets[-60 * 24:] # ## Time to build the network # # Below you'll build your network. We've built out the structure and the backwards pass. You'll implement the forward pass through the network. You'll also set the hyperparameters: the learning rate, the number of hidden units, and the number of training passes. # # <img src="assets/neural_network.png" width=300px> # # The network has two layers, a hidden layer and an output layer. The hidden layer will use the sigmoid function for activations. The output layer has only one node and is used for the regression, the output of the node is the same as the input of the node. That is, the activation function is $f(x)=x$. A function that takes the input signal and generates an output signal, but takes into account the threshold, is called an activation function. We work through each layer of our network calculating the outputs for each neuron. All of the outputs from one layer become inputs to the neurons on the next layer. This process is called *forward propagation*. # # We use the weights to propagate signals forward from the input to the output layers in a neural network. We use the weights to also propagate error backwards from the output back into the network to update our weights. This is called *backpropagation*. # # > **Hint:** You'll need the derivative of the output activation function ($f(x) = x$) for the backpropagation implementation. If you aren't familiar with calculus, this function is equivalent to the equation $y = x$. What is the slope of that equation? That is the derivative of $f(x)$. # # Below, you have these tasks: # 1. Implement the sigmoid function to use as the activation function. Set `self.activation_function` in `__init__` to your sigmoid function. # 2. Implement the forward pass in the `train` method. # 3. Implement the backpropagation algorithm in the `train` method, including calculating the output error. # 4. Implement the forward pass in the `run` method. # # In[ ]: ############# # In the my_answers.py file, fill out the TODO sections as specified ############# from my_answers import NeuralNetwork # In[ ]: def MSE(y, Y): return np.mean((y - Y) ** 2) # ## Unit tests # # Run these unit tests to check the correctness of your network implementation. This will help you be sure your network was implemented correctly befor you starting trying to train it. These tests must all be successful to pass the project. # In[ ]: import unittest inputs = np.array([[0.5, -0.2, 0.1]]) targets = np.array([[0.4]]) test_w_i_h = np.array([[0.1, -0.2], [0.4, 0.5], [-0.3, 0.2]]) test_w_h_o = np.array([[0.3], [-0.1]]) class TestMethods(unittest.TestCase): ########## # Unit tests for data loading ########## def test_data_path(self): # Test that file path to dataset has been unaltered self.assertTrue(data_path.lower() == 'bike-sharing-dataset/hour.csv') def test_data_loaded(self): # Test that data frame loaded self.assertTrue(isinstance(rides, pd.DataFrame)) ########## # Unit tests for network functionality ########## def test_activation(self): network = NeuralNetwork(3, 2, 1, 0.5) # Test that the activation function is a sigmoid self.assertTrue(np.all(network.activation_function(0.5) == 1 / (1 + np.exp(-0.5)))) def test_train(self): # Test that weights are updated correctly on training network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() network.train(inputs, targets) self.assertTrue(np.allclose(network.weights_hidden_to_output, np.array([[0.37275328], [-0.03172939]]))) self.assertTrue(np.allclose(network.weights_input_to_hidden, np.array([[0.10562014, -0.20185996], [0.39775194, 0.50074398], [-0.29887597, 0.19962801]]))) def test_run(self): # Test correctness of run method network = NeuralNetwork(3, 2, 1, 0.5) network.weights_input_to_hidden = test_w_i_h.copy() network.weights_hidden_to_output = test_w_h_o.copy() self.assertTrue(np.allclose(network.run(inputs), 0.09998924)) suite = unittest.TestLoader().loadTestsFromModule(TestMethods()) unittest.TextTestRunner().run(suite) # ## Training the network # # Here you'll set the hyperparameters for the network. The strategy here is to find hyperparameters such that the error on the training set is low, but you're not overfitting to the data. If you train the network too long or have too many hidden nodes, it can become overly specific to the training set and will fail to generalize to the validation set. That is, the loss on the validation set will start increasing as the training set loss drops. # # You'll also be using a method know as Stochastic Gradient Descent (SGD) to train the network. The idea is that for each training pass, you grab a random sample of the data instead of using the whole data set. You use many more training passes than with normal gradient descent, but each pass is much faster. This ends up training the network more efficiently. You'll learn more about SGD later. # # ### Choose the number of iterations # This is the number of batches of samples from the training data we'll use to train the network. The more iterations you use, the better the model will fit the data. However, this process can have sharply diminishing returns and can waste computational resources if you use too many iterations. You want to find a number here where the network has a low training loss, and the validation loss is at a minimum. The ideal number of iterations would be a level that stops shortly after the validation loss is no longer decreasing. # # ### Choose the learning rate # This scales the size of weight updates. If this is too big, the weights tend to explode and the network fails to fit the data. Normally a good choice to start at is 0.1; however, if you effectively divide the learning rate by n_records, try starting out with a learning rate of 1. In either case, if the network has problems fitting the data, try reducing the learning rate. Note that the lower the learning rate, the smaller the steps are in the weight updates and the longer it takes for the neural network to converge. # # ### Choose the number of hidden nodes # In a model where all the weights are optimized, the more hidden nodes you have, the more accurate the predictions of the model will be. (A fully optimized model could have weights of zero, after all.) However, the more hidden nodes you have, the harder it will be to optimize the weights of the model, and the more likely it will be that suboptimal weights will lead to overfitting. With overfitting, the model will memorize the training data instead of learning the true pattern, and won't generalize well to unseen data. # # Try a few different numbers and see how it affects the performance. You can look at the losses dictionary for a metric of the network performance. If the number of hidden units is too low, then the model won't have enough space to learn and if it is too high there are too many options for the direction that the learning can take. The trick here is to find the right balance in number of hidden units you choose. You'll generally find that the best number of hidden nodes to use ends up being between the number of input and output nodes. # In[ ]: import sys #################### ### Set the hyperparameters in you myanswers.py file ### #################### from my_answers import iterations, learning_rate, hidden_nodes, output_nodes N_i = train_features.shape[1] network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate) losses = {'train': [], 'validation': []} for ii in range(iterations): # Go through a random batch of 128 records from the training data set batch = np.random.choice(train_features.index, size=128) X, y = train_features.ix[batch].values, train_targets.ix[batch]['cnt'] network.train(X, y) # Printing out the training progress train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values) val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values) sys.stdout.write( "\rProgress: {:2.1f}".format(100 * ii / float(iterations)) + "% ... Training loss: " + str(train_loss)[ :5] + " ... Validation loss: " + str( val_loss)[:5]) sys.stdout.flush() losses['train'].append(train_loss) losses['validation'].append(val_loss) # In[ ]: plt.plot(losses['train'], label='Training loss') plt.plot(losses['validation'], label='Validation loss') plt.legend() _ = plt.ylim() # ## Check out your predictions # # Here, use the test data to view how well your network is modeling the data. If something is completely wrong here, make sure each step in your network is implemented correctly. # In[ ]: fig, ax = plt.subplots(figsize=(8, 4)) mean, std = scaled_features['cnt'] predictions = network.run(test_features).T * std + mean ax.plot(predictions[0], label='Prediction') ax.plot((test_targets['cnt'] * std + mean).values, label='Data') ax.set_xlim(right=len(predictions)) ax.legend() dates = pd.to_datetime(rides.ix[test_data.index]['dteday']) dates = dates.apply(lambda d: d.strftime('%b %d')) ax.set_xticks(np.arange(len(dates))[12::24]) _ = ax.set_xticklabels(dates[12::24], rotation=45) # ## OPTIONAL: Thinking about your results(this question will not be evaluated in the rubric). # # Answer these questions about your results. How well does the model predict the data? Where does it fail? Why does it fail where it does? # # > **Note:** You can edit the text in this cell by double clicking on it. When you want to render the text, press control + enter # # #### Your answer below
from tqdm import tqdm import torch def run_epoch(model, iterator, criterion, optimizer, metrics, phase='train', epoch=0, device='cpu', writer=None): is_train = (phase == 'train') if is_train: model.train() else: model.eval() epoch_loss = 0.0 epoch_metrics = dict((metric_name, 0.0) for metric_name in metrics.keys()) with torch.set_grad_enabled(is_train): for (images, targets) in tqdm(iterator, desc=f"{phase}", ascii=True): images, targets = images.to(device), targets.to(device) predictions = model(images) loss = criterion(predictions, targets) if is_train: optimizer.zero_grad() loss.backward() optimizer.step() epoch_loss += loss.item() for metric_name in metrics.keys(): epoch_metrics[metric_name] += metrics[metric_name](predictions.detach(), targets) epoch_loss /= len(iterator) for metric_name in metrics.keys(): epoch_metrics[metric_name] /= len(iterator) if writer is not None: writer.add_scalar(f"loss/{phase}", epoch_loss, epoch) for metric_name in metrics.keys(): writer.add_scalar(f"{metric_name}/{phase}", epoch_metrics[metric_name], epoch) return epoch_loss, epoch_metrics def print_metrics(epoch, train_loss, train_metrics, val_loss, val_metrics): print(f'Epoch: {epoch + 1:02}') print(f'\tTrain Loss: {train_loss:.2f} | Train Metrics: ' + ' | '.join([metric_name + ': ' + f"{train_metrics[metric_name]:.2f}" for metric_name in train_metrics.keys()])) print(f'\t Val Loss: {val_loss:.2f} | Val Metrics: ' + ' | '.join([metric_name + ': ' + f"{val_metrics[metric_name]:.2f}" for metric_name in val_metrics.keys()])) def train(model, train_dataloader, val_dataloader, criterion, optimizer, scheduler, metrics, n_epochs, device, writer): best_val_loss = float('+inf') for epoch in range(n_epochs): train_loss, train_metrics = run_epoch(model, train_dataloader, criterion, optimizer, metrics, phase='train', epoch=epoch, device=device, writer=writer) val_loss, val_metrics = run_epoch(model, val_dataloader, criterion, None, metrics, phase='val', epoch=epoch, device=device, writer=writer) if scheduler is not None: scheduler.step(val_loss) if val_loss < best_val_loss: best_val_loss = val_loss torch.save(model.state_dict(), f"{model.name}.best.pth") print_metrics(epoch, train_loss, train_metrics, val_loss, val_metrics) if writer is not None: writer.close()
import evfuncs import pytest import soundfile import vocalpy def test_field_access(): assert False def test_defaults(): assert False def test_asdict(): assert False def test_equality(): assert False def test_inequality(): assert False @pytest.mark.parametrize( 'spect_format, with_format_str', [ ('npz', False), ('npz', True), ('mat', False), ('mat', True), ] ) def test_spectrogram_from_file(spect_format: str, with_format_str: bool, specific_spect_list): spect_list = specific_spect_list(spect_format) if with_format_str: format_str = spect_format else: format_str = None for spect_path in spect_list: spect = vocalpy.Spectrogram.from_file(spect_path, format=format_str) assert isinstance(spect, vocalpy.Spectrogram) for spect_attrs in ('s', 't', 'f', 'audio_path'): assert hasattr(spect, spect_attrs) # TODO: rewrite to actually load dict and assert that attributes equal what's in dict # TODO: use an 'assert helper' for this pytest.fail() def test_from_mat(spect_list_mat: list): for spect_path in spect_list_mat: spect = vocalpy.Spectrogram.from_mat(spect_path) assert isinstance(spect, vocalpy.Spectrogram) for spect_attrs in ('s', 't', 'f', 'audio_path'): assert hasattr(spect, spect_attrs) def test_from_npz(spect_list_npz: list): for spect_path in spect_list_npz: spect = vocalpy.Spectrogram.from_npz(spect_path) assert isinstance(spect, vocalpy.Spectrogram) for spect_attrs in ('s', 't', 'f', 'audio_path'): assert hasattr(spect, spect_attrs) @pytest.mark.parametrize( 'audio_format', [ 'wav', 'cbin', ] ) def test_spectrogram_from_arrays(specific_audio_list, audio_format): audio_paths = specific_audio_list(audio_format) for audio_path in audio_paths: if audio_format == 'wav': data, samplerate = soundfile.read(audio_path) elif audio_format == 'cbin': data, samplerate = evfuncs.load_cbin(audio_path) s, t, f = vocalpy.signal.spectrogram(data=data, samplerate=samplerate) spect = vocalpy.Spectrogram(s=s, t=t, f=f) assert isinstance(spect, vocalpy.Spectrogram) for spect_attrs in ('s', 't', 'f', 'audio_path'): assert hasattr(spect, spect_attrs) def test_to_file(): assert False
import TestExports from TestExports import project_to_json PROJECT_NAME = 'African Animals' #Uncomment if running on Windows: #project_to_json(PROJECT_NAME, 'Windows') #Uncomment if running on Mac: project_to_json(PROJECT_NAME, 'Mac') #Uncomment if running on Linux: #project_to_json(PROJECT_NAME, 'Linux')
# BSD Licence # Copyright (c) 2009, Science & Technology Facilities Council (STFC) # All rights reserved. # # See the LICENSE file in the source distribution of this software for # the full license text. """ Utilities for use with genshi @author: Stephen Pascoe """ from genshi import * class RenameElementFilter(object): """ Rename the root element in the stream. Filters of this class will replicate the stream until the first START event then change the event element's QName. It will then count opening and closing tags until it finds the matching close tag and replace the QName in that. It then continues to replicate the stream. """ def __init__(self, newQName): self.newQName = newQName # status 0: awaiting START, 1: awaiting END, 2: noop self.status = 0 self.tcount = 0 def __call__(self, stream): for kind, data, pos in stream: if self.status == 0: if kind == Stream.START: self.status = 1 self.tcount = 1 yield kind, (self.newQName, data[1]), pos else: yield kind, data, pos elif self.status == 1: if kind == Stream.START: self.tcount += 1 elif kind == Stream.END: self.tcount -= 1 if self.tcount == 0: self.status == 2 yield kind, self.newQName, pos else: yield kind, data, pos elif self.status == 2: yield kind, data, pos
import director.applogic as app import director.objectmodel as om from director import cameraview import functools actionName = 'ActionColorizeLidar' def setVisProperties(obj, colorModeEnabled): if colorModeEnabled: alpha = 1.0 pointSize = 4.0 colorBy = 'rgb' else: alpha = 0.5 pointSize = 1.0 colorBy = None obj.setProperty('Alpha', alpha) obj.setProperty('Point Size', pointSize) def colorizePoints(polyData): cameras = ['CAMERACHEST_RIGHT', 'CAMERACHEST_LEFT', 'CAMERA_LEFT'] for camera in cameras: cameraview.colorizePoints(polyData, camera) def colorizeSegmentationLidar(enabled): obj = om.findObjectByName('pointcloud snapshot') if not obj: return if enabled: colorizePoints(obj.polyData) else: obj.polyData.GetPointData().RemoveArray('rgb') setVisProperties(obj, enabled) _colorizeMapNames = ['HEIGHT_MAP_SCENE', 'SCANS_HALF_SWEEP'] def colorizeMapCallback(obj): if obj and obj.getProperty('Name') in _colorizeMapNames: colorizePoints(obj.polyData) obj._updateColorByProperty() obj.setProperty('Color By', 'rgb') def colorizeMaps(enabled): if enabled: om.findObjectByName('Map Server').source.colorizeCallback = colorizeMapCallback for name in _colorizeMapNames: colorizeMapCallback(om.findObjectByName(name)) else: om.findObjectByName('Map Server').source.colorizeCallback = None def colorizeMultisense(enabled): obj = om.findObjectByName('Multisense') if not obj: return setVisProperties(obj, enabled) colorBy = 'Camera RGB' if enabled else 'Solid Color' obj.setProperty('Color By', colorBy) def colorizeMapsOff(): obj = om.findObjectByName('Map Server') obj.source.colorizeCallback = None alpha = 0.7 pointSize = 1.0 obj.setProperty('Alpha', alpha) obj.setProperty('Point Size', pointSize) def onColorizeLidar(): colorizeEnabled = app.getToolBarActions()[actionName].checked colorizeMaps(colorizeEnabled) colorizeMultisense(colorizeEnabled) colorizeSegmentationLidar(colorizeEnabled) def initColorizeCallbacks(): obj = om.findObjectByName('Multisense') assert(obj) def callback(): colorizePoints(obj.model.polyDataObj.polyData) obj.model.colorizeCallback = callback def init(): action = app.getToolBarActions()[actionName] action.connect(action, 'triggered()', onColorizeLidar) initColorizeCallbacks()
#!/usr/bin/env python """ plot position data from a time, position, rotation file """ import numpy as np from mpl_toolkits.mplot3d import axes3d, Axes3D import matplotlib.pyplot as plt import sys import re fig = plt.figure() ax = Axes3D(fig) ax.hold(True) # HRC:POINTS: [2448.59; -1015.19; -206.10] [2445.40; -1063.05; -203.92] [2439.18; -1180.01; -203.92] [2433.39; -1298.93; -203.92] points_re = re.compile(r'HRC:POINTS: \[(.*); (.*); (.*)\] \[(.*);(.*); (.*)\] \[(.*); (.*); (.*)\] \[(.*); (.*); (.*)\]') good_points = [] bad_points = [] with open('HumanTraceBotOsiris2-good.log') as f: for line in f: m = points_re.match(line.strip()) if m: good_points.append([float(x) for x in m.groups()]) with open('HumanTraceBotOsiris2-bad.log') as f: for line in f: m = points_re.match(line.strip()) if m: bad_points.append([float(x) for x in m.groups()]) label = 'good' good_points = np.array(good_points) bad_points = np.array(bad_points) for r in range(np.size(good_points,0)): row = good_points[r,3:] seg = row.reshape((3,3)) ax.plot(seg[:,0], seg[:,1], seg[:,2], label=label,color='green') label = '_nolabel_' ax.plot(good_points[:,0], good_points[:,1], good_points[:,2], linestyle='None', marker='x', color='blue', label='good path') label = 'bad' for r in range(np.size(bad_points,0)): row = bad_points[r,3:] seg = row.reshape((3,3)) ax.plot(seg[:,0], seg[:,1], seg[:,2], label=label,color='red') label = '_nolabel_' ax.plot(bad_points[:,0], bad_points[:,1], bad_points[:,2], linestyle='None', marker='x', color='black', label='bad path') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.show()
import argparse import json import logging from git import Repo import os import sys import re import traceback import services from services.base_service import Service from helpers.json_skeletons import JSONSkeleton from importlib import import_module from helpers.api import VeracodeAPI from helpers.exceptions import VeracodeAPIError from helpers.exceptions import VeracodeError import configparser banner = """ _ _ _ __ __ ___ _ __ __ _ ___ ___ __| | ___ ___ | |(_) \ \ / // _ \| '__|/ _` | / __|/ _ \ / _` | / _ \ _____ / __|| || | \ V /| __/| | | (_| || (__| (_) || (_| || __/|_____|| (__ | || | \_/ \___||_| \__,_| \___|\___/ \__,_| \___| \___||_||_| """ readme = banner + """This Command Line Interface for Veracode is based on 3 key principles: * Services and Commands: The Veracode functionality is broken up into a set of Services (e.g. static, dynamic, admin, etc.). Each Service has a limited set of Commands that can be executed (e.g. start). The Commands represent higher level operations than the underlying API calls (e.g. the start command in the static service will create a scan, upload files and begin the scanning process). * Configuration : Config information for each Service is stored in a JSON formatted file (veracode-cli.config) which is managed within the Git repository for the application code. Each Service provides a skeleton command which will generate a default configuration block for the Service in the config file. * Branches : Each Veracode Service can be configured and used differently based on the Git Branch that is being worked on. The config file supports regular expression matching between the Branch Name (supplied as an argument) and the configuration blocks in the file. When the CLI is executed it will produce a JSON output which is either written to a file (veracode-cli.output) or to the console. The default option is file. The output can also be used as additional input for subsequent commands. For example: "veracode-cli static start" will produce output that includes the build_id of the scan that has been started. When "veracode-cli static results" is executed it will use the build_id to identify which scan to retrieve results from, and those results will be outputted. Next, when "veracode-cli static tickets" is executed it will use those results to synchronise with the configured ticketing system. For more information use the -h option to show Help. """ creds_warning = """There don't seem to be any Veracode API credentials configured. If you don't have any credentials then see the following page on the Veracode Help Center for more information. https://help.veracode.com/reader/LMv_dtSHyb7iIxAQznC~9w/RUQ3fCrA~jO2ff1G3t0ctg Alternatively contact your Veracode Admin team or Security Program Manager. Once you have your credentials there are 3 ways to supply them: * As Environment Variables Use VID and VKEY * As arguments on the command line veracode-cli --vid=<your_id> --vkey=<your_key> * In a Credentials File https://help.veracode.com/reader/LMv_dtSHyb7iIxAQznC~9w/1EGRCXxGvHuj5wxn6h3eXA """ ######################################################################################################################## # Main entry point # def run(): try: """ setup the main arugment parser """ parser = argparse.ArgumentParser(prog='veracode-cli', description='A Command Line Interface for interacting with Veracode Services using a local JSON configuration file to manage the settings that are used. For more information use the readme service.') parser.add_argument("-v", "--vid", type=str, help="API ID for the Veracode Platform user") parser.add_argument("-k", "--vkey", type=str, help="API Key for the Veracode Platform user") parser.add_argument("-s", "--stage", type=str, help="Stage name to be used to select the activities settings") parser.add_argument("-b", "--branch", type=str, help="Branch name to be used to select configuration settings") parser.add_argument("-c", "--console", action="store_true", help="Should the output be sent the console. If this is enabled then all other console output will be suppressed") parser.add_argument("-e", "--error", action="store_true", help="Should the command fail if the veracode-cli.output file contains an error") """ add sub-parsers for each of the services """ service_parsers = parser.add_subparsers(dest='service', help='Veracode service description') readme_parser = service_parsers.add_parser('readme', help='show the detailed readme information') for service_class in Service.services: service_class.add_parser(service_parsers) """ parse the command line """ args = parser.parse_args() """ set up the output_data object """ output_data = {} """ Just show the Readme? """ if args.service == 'readme': """ show the readme file information """ print(readme) return 0 if not args.console: print(banner) """ ------------------------------------------------ """ """ First thing to do is get the VeracodeAPI created """ """ ------------------------------------------------ """ try: if args.vid is None or args.vkey is None: """ OK, lets try the environment variables... """ args.vid = os.environ.get("VID") args.vkey = os.environ.get("VKEY") if args.vid is None or args.vid == "" or args.vkey is None or args.vkey == "": """ OK, try for the credentials file instead... """ auth_file = os.path.join(os.path.expanduser("~"), '.veracode', 'credentials') if not os.path.exists(auth_file): creds_file = False else: creds = configparser.ConfigParser() creds.read(auth_file) credentials_section_name = os.environ.get("VERACODE_API_PROFILE", "default") args.vid = creds.get(credentials_section_name, "VERACODE_API_KEY_ID") args.vkey = creds.get(credentials_section_name, "VERACODE_API_KEY_SECRET") if args.vid is None or args.vid == "" or args.vkey is None or args.vkey == "": """ warning and guidance on credentials """ output_data["error"] = creds_warning return else: try: """ create the Veracode API instance """ api = VeracodeAPI(None, args.vid, args.vkey) except: """ error message about incorrect credentials """ print(f'{"exception":10} : Unexpected Exception #001 : {sys.exc_info()[0]}') except UnboundLocalError as ule1: """ Unexpected Exception """ print("Different Unexpected error creating the API object : " + str(ule1)) except: """ Unexpected Exception """ print(f'{"exception":10} : {"Unexpected Exception #002 :", sys.exc_info()[0]}') """ -------------------------------------------------------------- """ """ Next we need to load the Configuration data for the Branch """ """ -------------------------------------------------------------- """ try: with open('veracode-cli.config') as json_file: config = json.load(json_file) except FileNotFoundError: if not args.console: print( "The veracode-cli.config file was not found at " + os.getcwd()) config = {} config["error"] = "Config File not found" except: """ Unexpected Exception """ print(f'{"exception":10} : {"Unexpected Exception #003 :", sys.exc_info()[0]}') """ what Branch are we working on """ if args.branch is None: """ get the current repository""" repo = Repo(os.path.curdir) if repo.bare: raise VeracodeError("No usable Git Repository found. Unable to identify active branch.") args.branch = repo.active_branch if not args.console: print("Using '" + str(args.branch) + "' as active branch") """ Get the Branch Configuration segment """ branch_config = None for segment in config["branches"]: if re.match("^"+segment["branch_pattern"]+"$", str(args.branch)): """ This is the config to use... """ branch_config = segment break if branch_config is None: """ """ raise VeracodeError("No Static Scan Configuration found for branch '" + str(args.branch) + "'") """ ------------------------------------------------- """ """ Next we need to load any Context data that exists """ """ ------------------------------------------------- """ if not args.console: try: with open('veracode-cli.output') as json_file: context = json.load(json_file) except FileNotFoundError: context = {} except: """ Unexpected Exception """ print(f'{"exception":10} : {"Unexpected Exception #004 :", sys.exc_info()[0]}') else: """ Load the data from stdin """ context = json.load(sys.stdin.readlines()) """ initialise the output data with the previous context """ output_data = context """ Was there an error in the previous context? """ if args.error is True and "error" in context and context["error"] is not None: output_data["error"] = f'{"exception":10} : Error in veracode-cli.context - {context["error"]}' if not args.console: print(output["error"]) return output output_data["error"] = None if args.service is None: """ ------------------------------------------------------------------------- """ """ If no Service was provided as an Argument then use Activities from config """ """ ------------------------------------------------------------------------- """ """ which Activities should we perform? """ if args.stage is None: if not args.console: print("No Stage specified. Unable to proceed") output_data["error"] = "No Stage specified. Unable to proceed" else: """ find the right stage in the config """ stage_activities = None for segment in config.stages: if re.match("^" + segment["stage_pattern"] + "$", str(args.stage)): """ This is the config to use... """ stage_config = segment break if stage_config is None: """ couldn't find the stage """ output_data["error"] = "" raise VeracodeError("No Stage Configuration found for stage '" + str(args.stage) + "'") else: """ --------------------------------------------------------------- """ """ Service was provided as an Argument so execute that one service """ """ --------------------------------------------------------------- """ if not args.console: print(f'{"service":10} : {args.service}') print(f'{"command":10} : {args.command}') for arg in vars(args): if arg is not "service" and arg is not "command" and arg is not "vid" and arg is not "vkey" and arg is not "None": print(f'{arg:10} : {getattr(args, arg)}') print(f'{"context":10} : {context}') print() """ load the relevant service class """ service = my_import('services.' + args.service + '.' + args.service) instance = service() """ execute the service """ output_data = instance.execute(args, branch_config, api, context) except KeyboardInterrupt: if not args.console: print(f'{"exception":10} : {"Keyboard Interrupt. Exiting..."}') except VeracodeError as verr: output_data["error"] = "Veracode Error occurred: " + str(verr) if not args.console: print(f'{"exception":10} : {output_data["error"]}') except UnboundLocalError as ule: if not args.console: print(f'{"exception":10} : {"UnboundLocalError - " + str(ule)}') except AttributeError as ae: if not args.console: print(f'{"exception":10} : {"AttributeError - " + str(ae)}') traceback.print_exc() except: """ Unexpected Exception """ print(f'{"exception":10} : Unexpected Exception #005 - {sys.exc_info()[0]}') traceback.print_exc() finally: if not args.console: print() """ if there's an error then lets print it out""" if "error" in output_data: if output_data["error"] is not None: print(output_data["error"]) """ send the output to veracode-cli.output """ with open('veracode-cli.output', 'w') as outfile: json.dump(output_data, outfile, indent=4, sort_keys=True) """ Always output to the console """ print(output_data) if "error" in output_data: if output_data["error"] is not None: return 1 else: return 0 else: return 0 def get_service(name): kludge = 'services.' + name + '.' + name components = kludge.split('.') mod = __import__(components[0]) for comp in components[1:]: mod = getattr(mod, comp) return mod def my_import(name): components = name.split('.') mod = __import__(components[0]) for comp in components[1:]: mod = getattr(mod, comp) return mod def start(): try: return run() except KeyboardInterrupt: print("\r\nExiting") if __name__ == "__main__": error = start() exit(error)
class Solution(object): def countSmaller(self, nums): """ :type nums: List[int] :rtype: List[int] """ if nums == []: return [] res = [] sorted_nums = [] rev = nums[::-1] for num in rev: l, r = 0, len(res) - 1 while l <= r: m = l + (r - l) / 2 if num <= sorted_nums[m]: r = m - 1 else: l = m + 1 res.insert(0, l) sorted_nums.insert(l, num) return res
# contagem regressiva para ano novo from time import sleep for c in range(10, -1, -1): print(c) sleep(0.5) print('BUMM BUMM ')
from django.urls import path, include from rest_framework import routers from . import views router = routers.DefaultRouter() router.register('', views.UserViewSet, basename='user') urlpatterns = [ path('register/', views.CreateUserView.as_view(), name='register'), path('', include(router.urls)), ]
import argparse parser = argparse.ArgumentParser(description='This script is ') # Test or not args parser.add_argument('-t', '--test', default=False, type=bool, help='Test or not') # The coordinate args parser.add_argument('-lt_x', '--left_top_x', default=0, type=int, help='Left-top x-coordinate') parser.add_argument('-lt_y', '--left_top_y', default=0, type=int, help='Left-top y-coordinate') parser.add_argument('-rl_x', '--right_lower_x', default=0, type=int, help='Left-lower x-coordinate') parser.add_argument('-rl_y', '--right_lower_y', default=0, type=int, help='Left-lower y-coordinate') args = parser.parse_args()
#!/usr/bin/env python from __future__ import print_function # Libraries we need import pyxhook import time import subprocess nounlist = open("nounlist.txt","r") stringtosearch = "" # This function is called every time a key is presssed def kbevent(event): global running global stringtosearch # print key info #print(event) #stringtosearch += chr(event.Ascii) # print (stringtosearch) # If the ascii value matches spacebar, terminate the while loop if event.Ascii == 32: #print (stringtosearch) if stringtosearch in open("nounlist.txt","r").read(): # p=subprocess.Popen(["firefox","www." + stringtosearch + ".com"]) print ("http://www.wikipedia.org/wiki/" + stringtosearch) print ("http://www.google.com/#?=" + stringtosearch) #subprocess.Popen(["firefox", "www.wikipedia.org/wiki/"+ stringtosearch]) stringtosearch = '' elif event.Ascii == 27: #print (stringtosearch) running = False else: stringtosearch += chr(event.Ascii) #print (stringtosearch) # Create hookmanager hookman = pyxhook.HookManager() # Define our callback to fire when a key is pressed down hookman.KeyDown = kbevent # Hook the keyboard hookman.HookKeyboard() # Start our listener hookman.start() # Create a loop to keep the application running running = True while running: time.sleep(0.1) # Close the listener when we are done hookman.cancel()
# -*- coding: utf-8 -*- import paho.mqtt.client as mqtt import time class mqtt_handler: client = mqtt.Client() def __init__(self): return @classmethod def subscribe(cls): cls.client.connect("broker.mqttdashboard.com", port=1883, keepalive=60) cls.client.loop_start() @classmethod def publish(cls, message): cls.client.publish("robotline/ra1", message) @classmethod def cancel(cls): cls.client.loop_stop() cls.client.disconnect() mqtt = mqtt_handler() mqtt.subscribe() mqtt.publish("message send")
import maze.__maze as __maze __maze.createMaze() def __canMoveLeft(curPos: []): room = __maze.mazeLayout[curPos[0]][curPos[1]] if int(room[0]): return True else: return False def __canMoveTop(curPos: []): room = __maze.mazeLayout[curPos[0]][curPos[1]] if int(room[1]): return True else: return False def __canMoveRight(curPos: []): room = __maze.mazeLayout[curPos[0]][curPos[1]] if int(room[2]): return True else: return False def __canMoveDown(curPos: []) -> bool: room = __maze.mazeLayout[curPos[0]][curPos[1]] if int(room[3]): return True else: return False def canMoveInDirection(direction: str, curPos: []) -> bool: if direction == 'left': return __canMoveLeft(curPos) if direction == 'right': return __canMoveRight(curPos) if direction == 'up': return __canMoveTop(curPos) if direction == 'down': return __canMoveDown(curPos) raise Exception('Allowed values are left,right,up or down') def moveInDirection(direction: str, curPos: []) -> []: canMove = canMoveInDirection(direction, curPos) if canMove: if direction == 'left': curPos[1] = curPos[1] - 1 elif direction == 'right': curPos[1] = curPos[1] + 1 elif direction == 'up': curPos[0] = curPos[0] - 1 else: if direction == 'down': curPos[0] = curPos[0] + 1 else: raise Exception('Cannot move in the direction:%s in the position:[%s,%s]' % (direction, curPos[0], curPos[1])) return curPos def getInitialDirection(): firstRoom = __maze.mazeLayout[0][0] if firstRoom == '10000': return 'left' if firstRoom == '01000': return 'up' if firstRoom == '00100': return 'right' if firstRoom == '00010': return 'down' raise Exception("The first element of the maze layout should be one of '10000','01000','00100' or '00010'") def moveInDirectionIfStillInsideMaze(direction: str,curPos: []) -> bool: try: moveInDirection(direction, curPos) except IndexError: return False return True def isMazeSolved(curPos: []) -> bool: data = __maze.mazeLayout[curPos[0]][curPos[1]] if int(data[4]) == 1: return True return False
import dsz import sqlite3 import sys if (__name__ == '__main__'): save_flags = dsz.control.Method() dsz.control.echo.Off() if (dsz.script.Env['script_parent_echo_disabled'].lower() != 'false'): dsz.control.quiet.On() if (len(sys.argv) != 3): dsz.ui.Echo(('Invalid number of arguments supplied. Expected 3 (including program name), received %d.' % len(sys.argv))) print ('For debugging purposes:\n%s' % sys.argv) sys.exit((-1)) database_file = sys.argv[1] sql_statement = sys.argv[2] dsz.script.data.Start('sqlstatementinfo') dsz.script.data.Add('database_file', database_file, dsz.TYPE_STRING) dsz.script.data.Add('sql_statement', sql_statement, dsz.TYPE_STRING) dsz.script.data.Store() db = sqlite3.connect(database_file) c = db.cursor() rows = c.execute(sql_statement).fetchall() if (len(rows) > 0): for r in rows: dsz.script.data.Start('row') d = 0 for c in r: dsz.script.data.Add(('column%d' % d), str(c), dsz.TYPE_STRING) d += 1 dsz.script.data.Store()
import pytest from aioarango import ArangoClient from aioarango.connection import BasicConnection, JwtConnection, JwtSuperuserConnection from aioarango.errno import FORBIDDEN, HTTP_UNAUTHORIZED from aioarango.exceptions import ( JWTAuthError, JWTSecretListError, JWTSecretReloadError, ServerEncryptionError, ServerTLSError, ServerTLSReloadError, ServerVersionError, ) from tests.helpers import assert_raises, generate_jwt, generate_string pytestmark = pytest.mark.asyncio async def test_auth_invalid_method(client: ArangoClient, db_name, username, password): with assert_raises(ValueError) as err: await client.db( name=db_name, username=username, password=password, verify=True, auth_method="bad_method", ) assert "invalid auth_method" in str(err.value) async def test_auth_basic(client: ArangoClient, db, db_name, username, password): db = await client.db( name=db_name, username=username, password=password, verify=True, auth_method="basic", ) assert isinstance(db.conn, BasicConnection) assert isinstance(await db.version(), str) assert isinstance(await db.properties(), dict) async def test_auth_jwt(client: ArangoClient, db, db_name, username, password): db = await client.db( name=db_name, username=username, password=password, verify=True, auth_method="jwt", ) assert isinstance(db.conn, JwtConnection) assert isinstance(await db.version(), str) assert isinstance(await db.properties(), dict) bad_password = generate_string() with assert_raises(JWTAuthError) as err: await client.db(db_name, username, bad_password, auth_method="jwt") assert err.value.error_code == HTTP_UNAUTHORIZED # TODO re-examine commented out code @pytest.mark.skip(reason="ArangoDB is not configured to use JWT auth.") async def test_auth_superuser_token(client, db_name, root_password, secret): token = generate_jwt(secret) db = await client.db("_system", superuser_token=token) bad_db = await client.db("_system", superuser_token="bad_token") assert isinstance(db.conn, JwtSuperuserConnection) assert isinstance(await db.version(), str) assert isinstance(await db.properties(), dict) # # Test get JWT secrets # secrets = db.jwt_secrets() # assert 'active' in secrets # assert 'passive' in secrets # Test get JWT secrets with bad database with assert_raises(JWTSecretListError) as err: await bad_db.jwt_secrets() assert err.value.error_code == FORBIDDEN # # Test reload JWT secrets # secrets = db.reload_jwt_secrets() # assert 'active' in secrets # assert 'passive' in secrets # Test reload JWT secrets with bad database with assert_raises(JWTSecretReloadError) as err: await bad_db.reload_jwt_secrets() assert err.value.error_code == FORBIDDEN # Test get TLS data result = await db.tls() assert isinstance(result, dict) # Test get TLS data with bad database with assert_raises(ServerTLSError) as err: await bad_db.tls() assert err.value.error_code == FORBIDDEN # Test reload TLS result = await db.reload_tls() assert isinstance(result, dict) # Test reload TLS with bad database with assert_raises(ServerTLSReloadError) as err: await bad_db.reload_tls() assert err.value.error_code == FORBIDDEN # # Test get encryption # result = db.encryption() # assert isinstance(result, dict) # Test reload user-defined encryption keys. with assert_raises(ServerEncryptionError) as err: await bad_db.encryption() assert err.value.error_code == FORBIDDEN async def test_auth_jwt_expiry(client, db_name, root_password, secret): # Test automatic token refresh on expired token. db = await client.db("_system", "root", root_password, auth_method="jwt") expired_token = generate_jwt(secret, exp=-1000) db.conn._token = expired_token db.conn._auth_header = f"bearer {expired_token}" assert isinstance(await db.version(), str) # Test correct error on token expiry. db = await client.db("_system", superuser_token=expired_token) with assert_raises(ServerVersionError) as err: await db.version() assert err.value.error_code == FORBIDDEN
# Source: https://github.com/willwhite/freemail/ # Copyright (c) 2015, Will White <will@mapbox.com> # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. FREE_EMAIL_DOMAINS = frozenset( ( "1033edge.com", "11mail.com", "123.com", "123box.net", "123india.com", "123mail.cl", "123mail.org", "123qwe.co.uk", "126.com", "126.net", "139.com", "150mail.com", "150ml.com", "15meg4free.com", "163.com", "16mail.com", "188.com", "189.cn", "1coolplace.com", "1freeemail.com", "1funplace.com", "1internetdrive.com", "1mail.net", "1me.net", "1mum.com", "1musicrow.com", "1netdrive.com", "1nsyncfan.com", "1under.com", "1webave.com", "1webhighway.com", "2-mail.com", "212.com", "24horas.com", "2911.net", "2980.com", "2bmail.co.uk", "2d2i.com", "2die4.com", "2trom.com", "3000.it", "30minutesmail.com", "3126.com", "321media.com", "3675.mooo.com", "37.com", "3ammagazine.com", "3dmail.com", "3email.com", "3g.ua", "3xl.net", "404: not found", "444.net", "4email.com", "4email.net", "4mg.com", "4newyork.com", "4x4man.com", "50mail.com", "5iron.com", "5star.com", "74.ru", "88.am", "88.com", "8848.net", "888.luk2.com", "888.nu", "97rock.com", "99.com", "a1.net", "aa.da.mail-temp.com", "aaamail.zzn.com", "aamail.net", "aapt.net.au", "aaronkwok.net", "abbeyroadlondon.co.uk", "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijk.com", "abcflash.net", "abdulnour.com", "aberystwyth.com", "abolition-now.com", "about.com", "abv.bg", "abwesend.de", "academycougars.com", "acceso.or.cr", "access4less.net", "accessgcc.com", "accountant.com", "acdcfan.com", "ace-of-base.com", "acmecity.com", "acmemail.net", "acninc.net", "activatormail.com", "activist.com", "adam.com.au", "addcom.de", "address.com", "adelphia.net", "adexec.com", "adfarrow.com", "adios.net", "adoption.com", "ados.fr", "adrenalinefreak.com", "advalvas.be", "aeiou.pt", "aemail4u.com", "aeneasmail.com", "afreeinternet.com", "africamail.com", "africamel.net", "ag.us.to", "agoodmail.com", "ahaa.dk", "ahgae-crews.us.to", "ai.aax.cloudns.asia", "aichi.com", "aim.com", "aircraftmail.com", "airforce.net", "airforceemail.com", "airmail.cc", "airpost.net", "ajacied.com", "ak47.hu", "aknet.kg", "albawaba.com", "alecsmail.com", "alex4all.com", "alexandria.cc", "algeria.com", "alhilal.net", "alibaba.com", "alice.it", "alicedsl.de", "alive.cz", "aliyun.com", "allergist.com", "allmail.net", "alloymail.com", "allracing.com", "allsaintsfan.com", "alltel.net", "alpenjodel.de", "alphafrau.de", "alskens.dk", "altavista.com", "altavista.net", "altavista.se", "alternativagratis.com", "alumni.com", "alumnidirector.com", "alvilag.hu", "amele.com", "america.hm", "ameritech.net", "amnetsal.com", "amorki.pl", "amrer.net", "amuro.net", "amuromail.com", "ananzi.co.za", "ancestry.com", "andylau.net", "anfmail.com", "angelfan.com", "angelfire.com", "angelic.com", "animail.net", "animal.net", "animalhouse.com", "animalwoman.net", "anjungcafe.com", "annsmail.com", "anonymous.to", "anote.com", "another.com", "anotherwin95.com", "anti-social.com", "antisocial.com", "antongijsen.com", "antwerpen.com", "anymoment.com", "anytimenow.com", "aol.co.uk", "aol.com", "aol.fr", "aon.at", "apagitu.chickenkiller.com", "apexmail.com", "apmail.com", "apollo.lv", "aport.ru", "aport2000.ru", "apple.dnsabr.com", "appraiser.net", "approvers.net", "arabia.com", "arabtop.net", "arcademaster.com", "archaeologist.com", "arcor.de", "arcotronics.bg", "arcticmail.com", "argentina.com", "aristotle.org", "army.net", "arnet.com.ar", "artlover.com", "artlover.com.au", "as-if.com", "asean-mail", "asean-mail.com", "asheville.com", "asia-links.com", "asia-mail.com", "asia.com", "asiafind.com", "asianavenue.com", "asiancityweb.com", "asiansonly.net", "asianwired.net", "asiapoint.net", "assala.com", "assamesemail.com", "astroboymail.com", "astrolover.com", "astrosfan.com", "astrosfan.net", "asurfer.com", "atheist.com", "athenachu.net", "atina.cl", "atl.lv", "atlaswebmail.com", "atlink.com", "ato.check.com", "atozasia.com", "atrus.ru", "att.net", "attglobal.net", "attymail.com", "au.ru", "auctioneer.net", "ausi.com", "aussiemail.com.au", "austin.rr.com", "australia.edu", "australiamail.com", "austrosearch.net", "autoescuelanerja.com", "autograf.pl", "automotiveauthority.com", "autorambler.ru", "aver.com", "avh.hu", "awsom.net", "axoskate.com", "ayna.com", "azimiweb.com", "azure.cloudns.asia", "bacapedia.web.id", "bachelorboy.com", "bachelorgal.com", "backpackers.com", "backstreet-boys.com", "backstreetboysclub.com", "backwards.com", "bagherpour.com", "bahrainmail.com", "baldmama.de", "baldpapa.de", "ballyfinance.com", "bangkok.com", "bangkok2000.com", "bannertown.net", "baptistmail.com", "baptized.com", "barcelona.com", "bartender.net", "baseballmail.com", "basketballmail.com", "batuta.net", "baudoinconsulting.com", "bboy.zzn.com", "bcvibes.com", "beeebank.com", "beenhad.com", "beep.ru", "beer.com", "beethoven.com", "belanjaonlineku.web.id", "belice.com", "belizehome.com", "bell.net", "bellair.net", "bellsouth.net", "berkscounty.com", "berlin.com", "berlin.de", "berlinexpo.de", "bestmail.us", "betriebsdirektor.de", "bettergolf.net", "bharatmail.com", "bigassweb.com", "bigblue.net.au", "bigboab.com", "bigfoot.com", "bigfoot.de", "bigger.com", "biggerbadder.com", "bigmailbox.com", "bigmir.net", "bigpond.com", "bigpond.com.au", "bigpond.net.au", "bigramp.com", "bigtokenican2.hmail.us", "bigtokenican3.hmail.us", "bikemechanics.com", "bikeracer.com", "bikeracers.net", "bikerider.com", "billsfan.com", "billsfan.net", "bimamail.com", "bimla.net", "bin-wieder-da.de", "bio-muesli.info", "birdlover.com", "birdowner.net", "bisons.com", "bitmail.com", "bitpage.net", "bizhosting.com", "bk.ru", "bla-bla.com", "blackburnmail.com", "blackplanet.com", "blader.com", "blazemail.com", "bleib-bei-mir.de", "blockfilter.com", "bluebottle.com", "bluehyppo.com", "bluemail.ch", "bluemail.dk", "bluesfan.com", "blushmail.com", "bmlsports.net", "boardermail.com", "boatracers.com", "bol.com.br", "bolando.com", "bollywoodz.com", "bolt.com", "boltonfans.com", "bombdiggity.com", "bonbon.net", "boom.com", "bootmail.com", "bornnaked.com", "bossofthemoss.com", "bostonoffice.com", "bounce.net", "box.az", "box.ua", "boxbg.com", "boxemail.com", "boxfrog.com", "boyzoneclub.com", "bradfordfans.com", "brasilia.net", "bratwurst.dnsabr.com", "brazilmail.com", "brazilmail.com.br", "breathe.com", "bresnan.net", "brew-master.com", "brew-meister.com", "brfree.com.br", "briefemail.com", "bright.net", "britneyclub.com", "brittonsign.com", "broadcast.net", "brokenvalve.com", "brusseler.com", "bsdmail.com", "btinternet.com", "btopenworld.co.uk", "buerotiger.de", "buffymail.com", "buford.us.to", "bullsfan.com", "bullsgame.com", "bumerang.ro", "bumrap.com", "bunko.com", "buryfans.com", "business-man.com", "businessman.net", "businessweekmail.com", "busta-rhymes.com", "busymail.com", "busymail.comhomeart.com", "buyersusa.com", "bvimailbox.com", "byteme.com", "c.nut.emailfake.nut.cc", "c2.hu", "c2i.net", "c3.hu", "c4.com", "cabacabana.com", "cableone.net", "cad.edu.gr", "caere.it", "cairomail.com", "calidifontain.be", "californiamail.com", "callnetuk.com", "callsign.net", "caltanet.it", "camidge.com", "canada-11.com", "canada.com", "canadianmail.com", "canoemail.com", "canwetalk.com", "caramail.com", "care2.com", "careerbuildermail.com", "carioca.net", "cartestraina.ro", "casablancaresort.com", "casema.nl", "cash4u.com", "cashette.com", "casino.com", "catcha.com", "catchamail.com", "catholic.org", "catlover.com", "catsrule.garfield.com", "ccnmail.com", "cd2.com", "celineclub.com", "celtic.com", "center-mail.de", "centermail.at", "centermail.de", "centermail.info", "centoper.it", "centralpets.com", "centrum.cz", "centrum.sk", "centurytel.net", "certifiedmail.com", "cfl.rr.com", "cgac.es", "cghost.s-a-d.de", "chaiyomail.com", "chance2mail.com", "chandrasekar.net", "charmedmail.com", "charter.com", "charter.net", "chat.ru", "chattown.com", "chauhanweb.com", "check.com", "check.com12", "check1check.com", "cheerful.com", "chef.net", "chek.com", "chello.at", "chello.nl", "chemist.com", "chequemail.com", "cheyenneweb.com", "chez.com", "chickmail.com", "childrens.md", "china.com", "china.net.vg", "chinalook.com", "chinamail.com", "chirk.com", "chocaholic.com.au", "christianmail.net", "churchusa.com", "cia-agent.com", "cia.hu", "ciaoweb.it", "cicciociccio.com", "cincinow.net", "citeweb.net", "citiz.net", "citlink.net", "city-of-bath.org", "city-of-birmingham.com", "city-of-brighton.org", "city-of-cambridge.com", "city-of-coventry.com", "city-of-edinburgh.com", "city-of-lichfield.com", "city-of-lincoln.com", "city-of-liverpool.com", "city-of-manchester.com", "city-of-nottingham.com", "city-of-oxford.com", "city-of-swansea.com", "city-of-westminster.com", "city-of-westminster.net", "city-of-york.net", "city2city.com", "cityofcardiff.net", "cityoflondon.org", "claramail.com", "classicalfan.com", "classicmail.co.za", "clerk.com", "cliffhanger.com", "close2you.ne", "close2you.net", "club4x4.net", "clubalfa.com", "clubbers.net", "clubducati.com", "clubhonda.net", "clubmember.org", "clubnetnoir.com", "clubvdo.net", "cluemail.com", "cmpmail.com", "cnnsimail.com", "cntv.cn", "cocaine.ninja", "codec.ro", "codec.roemail.ro", "coder.hu", "coid.biz", "cok.3utilities.com", "coldmail.com", "collectiblesuperstore.com", "collector.org", "collegebeat.com", "collegeclub.com", "collegemail.com", "colleges.com", "columbus.rr.com", "columbusrr.com", "columnist.com", "comast.com", "comast.net", "comcast.com", "comcast.net", "comic.com", "communityconnect.com", "comprendemail.com", "compuserve.com", "computer-freak.com", "computer4u.com", "computermail.net", "conexcol.com", "conk.com", "connect4free.net", "connectbox.com", "conok.com", "consultant.com", "contractor.net", "contrasto.cu.cc", "cookiemonster.com", "cool.br", "coole-files.de", "coolgoose.ca", "coolgoose.com", "coolkiwi.com", "coollist.com", "coolmail.com", "coolmail.net", "coolsend.com", "coolsite.net", "cooooool.com", "cooperation.net", "cooperationtogo.net", "copacabana.com", "cornells.com", "cornerpub.com", "corporatedirtbag.com", "correo.terra.com.gt", "cortinet.com", "cotas.net", "counsellor.com", "countrylover.com", "cousinit.mooo.com", "cox.com", "cox.net", "coxinet.net", "cpaonline.net", "cr3wmail.sytes.net", "cracker.hu", "crazedanddazed.com", "crazysexycool.com", "creo.cloudns.cc", "cristianemail.com", "critterpost.com", "croeso.com", "crosshairs.com", "crosswinds.net", "crwmail.com", "cry4helponline.com", "cs.com", "csinibaba.hu", "cuemail.com", "cum.sborra.tk", "curio-city.com", "curtsmail.com", "cute-girl.com", "cuteandcuddly.com", "cutey.com", "cww.de", "cyber-africa.net", "cyber-matrix.com", "cyber-wizard.com", "cyber4all.com", "cyberbabies.com", "cybercafemaui.com", "cyberdude.com", "cyberforeplay.net", "cybergal.com", "cybergrrl.com", "cyberinbox.com", "cyberleports.com", "cybermail.net", "cybernet.it", "cyberservices.com", "cyberspace-asia.com", "cybertrains.org", "cyclefanz.com", "cynetcity.com", "dabsol.net", "dadacasa.com", "daha.com", "dailypioneer.com", "dallas.theboys.com", "dallasmail.com", "dangerous-minds.com", "dansegulvet.com", "data54.com", "davegracey.com", "dawnsonmail.com", "dawsonmail.com", "dazedandconfused.com", "dbzmail.com", "deadlymob.org", "deal-maker.com", "dearriba.com", "death-star.com", "dejanews.com", "deliveryman.com", "deneg.net", "depechemode.com", "deseretmail.com", "desertmail.com", "desilota.com", "deskmail.com", "deskpilot.com", "destin.com", "detik.com", "deutschland-net.com", "devotedcouples.com", "dezigner.ru", "dfwatson.com", "dgd.mail-temp.com", "di-ve.com", "die-besten-bilder.de", "die-genossen.de", "die-optimisten.de", "die-optimisten.net", "diemailbox.de", "digibel.be", "digital-filestore.de", "diplomats.com", "directbox.com", "dirtracer.com", "dirtracers.com", "disciples.com", "discofan.com", "discovery.com", "discoverymail.com", "disinfo.net", "disposable.com", "dmailman.com", "dmaji.ddns.net", "dmtc.edu.pl", "dnsmadeeasy.com", "doctor.com", "dodo.com.au", "dog.com", "dogit.com", "doglover.com", "dogmail.co.uk", "dogsnob.net", "doityourself.com", "doneasy.com", "donjuan.com", "dontgotmail.com", "dontmesswithtexas.com", "doramail.com", "dostmail.com", "dotcom.fr", "dott.it", "download-privat.de", "dplanet.ch", "dr.com", "dragoncon.net", "dragracer.com", "dropzone.com", "drotposta.hu", "dubaimail.com", "dublin.com", "dublin.ie", "dumpmail.com", "dunlopdriver.com", "dunloprider.com", "duno.com", "dutchmail.com", "dvx.dnsabr.com", "dwp.net", "dygo.com", "dynamitemail.com", "dyndns.org", "e-apollo.lv", "e-mail.com.tr", "e-mail.dk", "e-mail.ru", "e-mail.ua", "e-mailanywhere.com", "e-mails.ru", "e-tapaal.com", "ea.luk2.com", "earthalliance.com", "earthcam.net", "earthdome.com", "earthling.net", "earthlink.net", "earthonline.net", "eastcoast.co.za", "eastmail.com", "easy.to", "easypost.com", "eatmydirt.com", "ecardmail.com", "ecbsolutions.net", "echina.com", "ecompare.com", "edmail.com", "ednatx.com", "edtnmail.com", "educacao.te.pt", "educastmail.com", "ehmail.com", "eintagsmail.de", "eircom.net", "ekidz.com.au", "elitemail.org", "elsitio.com", "elvis.com", "elvisfan.com", "email-london.co.uk", "email.biz", "email.com", "email.cz", "email.ee", "email.it", "email.nu", "email.org", "email.ro", "email.ru", "email.si", "email.su", "email.tst", "email.ua", "email.women.com", "email2me.net", "email4u.info", "emailacc.com", "emailaccount.com", "emailasso.net", "emailchoice.com", "emailcorner.net", "emailem.com", "emailengine.net", "emailengine.org", "emailforyou.net", "emailgroups.net", "emailit.com", "emailpinoy.com", "emailplanet.com", "emailplus.org", "emails.ru", "emailuser.net", "emailx.net", "ematic.com", "embarqmail.com", "eml.cc", "emumail.com", "end-war.com", "enel.net", "engineer.com", "england.com", "england.edu", "englandmail.com", "epage.ru", "epatra.com", "epicgamers.mooo.com", "epix.net", "epost.de", "eposta.hu", "eqqu.com", "eqr.luk2.com", "eramail.co.za", "eresmas.com", "eriga.lv", "estranet.it", "ethos.st", "etoast.com", "etrademail.com", "eudoramail.com", "europamel.net", "europe.com", "europemail.com", "euroseek.com", "eurosport.com", "every1.net", "everyday.com.kh", "everymail.net", "everyone.net", "examnotes.net", "excite.co.jp", "excite.com", "excite.it", "execs.com", "exemail.com.au", "expressasia.com", "extenda.net", "extended.com", "eyou.com", "ezcybersearch.com", "ezmail.egine.com", "ezmail.ru", "ezrs.com", "f-m.fm", "f1fans.net", "facebook.com", "fahr-zur-hoelle.org", "falseaddress.com", "fan.com", "fan.theboys.com", "fansonlymail.com", "fantasticmail.com", "farang.net", "farifluset.mailexpire.com", "faroweb.com", "fast-email.com", "fast-mail.org", "fastem.com", "fastemail.us", "fastemailer.com", "fastermail.com", "fastest.cc", "fastimap.com", "fastmail.ca", "fastmail.cn", "fastmail.co.uk", "fastmail.com", "fastmail.com.au", "fastmail.es", "fastmail.fm", "fastmail.im", "fastmail.in", "fastmail.jp", "fastmail.mx", "fastmail.net", "fastmail.nl", "fastmail.se", "fastmail.to", "fastmail.tw", "fastmail.us", "fastmailbox.net", "fastmessaging.com", "fastservice.com", "fatcock.net", "fathersrightsne.org", "fax.ru", "fbi-agent.com", "fbi.hu", "fea.st", "federalcontractors.com", "feinripptraeger.de", "felicity.com", "felicitymail.com", "femenino.com", "fetchmail.co.uk", "fetchmail.com", "fettabernett.de", "feyenoorder.com", "ffanet.com", "fiberia.com", "filipinolinks.com", "financemail.net", "financier.com", "findmail.com", "finebody.com", "finfin.com", "fire-brigade.com", "fireman.net", "fishburne.org", "fishfuse.com", "flashemail.com", "flashmail.com", "flashmail.net", "flipcode.com", "fmail.co.uk", "fmailbox.com", "fmgirl.com", "fmguy.com", "fnbmail.co.za", "fnmail.com", "folkfan.com", "foodmail.com", "football.theboys.com", "footballmail.com", "for-president.com", "force9.co.uk", "forfree.at", "forpresident.com", "fortuncity.com", "fortunecity.com", "forum.dk", "foxmail.com", "francemel.fr", "free-online.net", "free-org.com", "free.com.pe", "free.fr", "freeaccess.nl", "freeaccount.com", "freeandsingle.com", "freebox.com", "freedom.usa.com", "freedomlover.com", "freegates.be", "freeghana.com", "freeler.nl", "freemail.c3.hu", "freemail.com.au", "freemail.com.pk", "freemail.de", "freemail.et", "freemail.gr", "freemail.hu", "freemail.it", "freemail.lt", "freemail.nl", "freemail.org.mk", "freenet.de", "freenet.kg", "freeola.com", "freeola.net", "freeserve.co.uk", "freestamp.com", "freestart.hu", "freesurf.fr", "freesurf.nl", "freeuk.com", "freeuk.net", "freeukisp.co.uk", "freeweb.org", "freewebemail.com", "freeyellow.com", "freezone.co.uk", "fresnomail.com", "freudenkinder.de", "friends-cafe.com", "friendsfan.com", "from-africa.com", "from-america.com", "from-argentina.com", "from-asia.com", "from-australia.com", "from-belgium.com", "from-brazil.com", "from-canada.com", "from-china.net", "from-england.com", "from-europe.com", "from-france.net", "from-germany.net", "from-holland.com", "from-israel.com", "from-italy.net", "from-japan.net", "from-korea.com", "from-mexico.com", "from-outerspace.com", "from-russia.com", "from-spain.net", "fromalabama.com", "fromalaska.com", "fromarizona.com", "fromarkansas.com", "fromcalifornia.com", "fromcolorado.com", "fromconnecticut.com", "fromdelaware.com", "fromflorida.net", "fromgeorgia.com", "fromhawaii.net", "fromidaho.com", "fromillinois.com", "fromindiana.com", "fromiowa.com", "fromjupiter.com", "fromkansas.com", "fromkentucky.com", "fromlouisiana.com", "frommaine.net", "frommaryland.com", "frommassachusetts.com", "frommiami.com", "frommichigan.com", "fromminnesota.com", "frommississippi.com", "frommissouri.com", "frommontana.com", "fromnebraska.com", "fromnevada.com", "fromnewhampshire.com", "fromnewjersey.com", "fromnewmexico.com", "fromnewyork.net", "fromnorthcarolina.com", "fromnorthdakota.com", "fromohio.com", "fromoklahoma.com", "fromoregon.net", "frompennsylvania.com", "fromrhodeisland.com", "fromru.com", "fromsouthcarolina.com", "fromsouthdakota.com", "fromtennessee.com", "fromtexas.com", "fromthestates.com", "fromutah.com", "fromvermont.com", "fromvirginia.com", "fromwashington.com", "fromwashingtondc.com", "fromwestvirginia.com", "fromwisconsin.com", "fromwyoming.com", "front.ru", "frontier.com", "frontiernet.net", "frostbyte.uk.net", "fsmail.net", "ftml.net", "fubuki.shp7.cn", "fullmail.com", "funkfan.com", "funky4.com", "fuorissimo.com", "furnitureprovider.com", "fuse.net", "fut.es", "fwnb.com", "fxsmails.com", "g.hmail.us", "galamb.net", "galaxy5.com", "galaxyhit.com", "gamebox.net", "gamegeek.com", "gamespotmail.com", "garbage.com", "gardener.com", "gaybrighton.co.uk", "gaza.net", "gazeta.pl", "gazibooks.com", "gci.net", "gee-wiz.com", "geecities.com", "geek.com", "geek.hu", "geeklife.com", "gencmail.com", "general-hospital.com", "gentlemansclub.de", "geocities.com", "geography.net", "geologist.com", "geopia.com", "germanymail.com", "gh2000.com", "ghanamail.com", "ghostmail.com", "giantsfan.com", "giga4u.de", "gigileung.org", "girl4god.com", "givepeaceachance.com", "glay.org", "glendale.net", "globalfree.it", "globalpagan.com", "globalsite.com.br", "gmail.com", "gmail.com.br", "gmail.gr.com", "gmail.ru", "gmail.sk", "gmail.zalvisual.us", "gmx.at", "gmx.co.uk", "gmx.com", "gmx.de", "gmx.fr", "gmx.li", "gmx.net", "gnwmail.com", "go.com", "go.ro", "go.ru", "go2.com.py", "go2net.com", "gocollege.com", "gocubs.com", "gofree.co.uk", "goldenmail.ru", "goldmail.ru", "goldtoolbox.com", "golfemail.com", "golfilla.info", "golfmail.be", "gonavy.net", "goodnewsmail.com", "goodstick.com", "googlemail.com", "goplay.com", "gorontalo.net", "gospelfan.com", "gothere.uk.com", "gotomy.com", "gotti.otherinbox.com", "govolsfan.com", "gportal.hu", "grabmail.com", "graduate.org", "graffiti.net", "gramszu.net", "graphic-designer.com", "grapplers.com", "gratisweb.com", "greenmail.net", "groupmail.com", "grungecafe.com", "gspam.mooo.com", "gtemail.net", "gtmc.net", "gu.luk2.com", "gua.net", "guessmail.com", "guju.net", "gurlmail.com", "guy.com", "guy2.com", "guyanafriends.com", "gyorsposta.com", "gyorsposta.hu", "h-mail.us", "hab-verschlafen.de", "habmalnefrage.de", "hackermail.com", "hackermail.net", "hailmail.net", "hairdresser.net", "hamptonroads.com", "handbag.com", "handleit.com", "hang-ten.com", "hanmail.net", "happemail.com", "happycounsel.com", "happypuppy.com", "hardcorefreak.com", "hawaii.rr.com", "hawaiiantel.net", "headbone.com", "heartthrob.com", "heerschap.com", "heesun.net", "hehe.com", "hello.hu", "hello.net.au", "hello.to", "helter-skelter.com", "hempseed.com", "herediano.com", "heremail.com", "herono1.com", "herr-der-mails.de", "hetnet.nl", "hey.to", "hhdevel.com", "hhh.sytes.net", "highmilton.com", "highquality.com", "highveldmail.co.za", "hilarious.com", "hiphopfan.com", "hispavista.com", "hitmail.com", "hitthe.net", "hkg.net", "hkstarphoto.com", "hku.us.to", "hockeymail.com", "hollywoodkids.com", "home-email.com", "home.de", "home.nl", "home.no.net", "home.ro", "home.se", "homeart.com", "homelocator.com", "homemail.com", "homestead.com", "homeworkcentral.com", "honduras.com", "hongkong.com", "hookup.net", "hoopsmail.com", "horrormail.com", "host-it.com.sg", "hot-shot.com", "hot.ee", "hotbot.com", "hotbrev.com", "hotepmail.com", "hotfire.net", "hotletter.com", "hotmail.be", "hotmail.ca", "hotmail.ch", "hotmail.co.il", "hotmail.co.nz", "hotmail.co.th", "hotmail.co.uk", "hotmail.com", "hotmail.com.br", "hotmail.com.hk", "hotmail.com.tw", "hotmail.de", "hotmail.es", "hotmail.fr", "hotmail.it", "hotmail.kg", "hotmail.kz", "hotmail.nl", "hotmail.no", "hotmail.roor", "hotmail.ru", "hotpop3.com", "hotvoice.com", "housefan.com", "housefancom", "housemail.com", "hsuchi.net", "html.tou.com", "hu2.ru", "hughes.net", "humanoid.net", "hunsa.com", "hurting.com", "hush.ai", "hush.com", "hushmail.com", "hypernautica.com", "i-connect.com", "i-france.com", "i-mail.com.au", "i-mailbox.net", "i-p.com", "i.am", "i.amhey.to", "i.ua", "i12.com", "i6.cloudns.cc", "i6.cloudns.cx", "iamawoman.com", "iamwaiting.com", "iamwasted.com", "iamyours.com", "icestorm.com", "icfu.mooo.com", "ich-bin-verrueckt-nach-dir.de", "ich-will-net.de", "icloud.com", "icmsconsultants.com", "icq.com", "icqmail.com", "icrazy.com", "icu.md", "id-base.com", "ididitmyway.com", "idigjesus.com", "idirect.com", "iespana.es", "ifoward.com", "ig.com.br", "ignazio.it", "ignmail.com", "ihateclowns.com", "iinet.net.au", "ijustdontcare.com", "ilkposta.com", "ilovechocolate.com", "ilovejesus.com", "ilovethemovies.com", "ilovetocollect.net", "ilse.nl", "imaginemail.com", "imail.org", "imail.ru", "imailbox.com", "imap-mail.com", "imap.cc", "imapmail.org", "imel.org", "imneverwrong.com", "imposter.co.uk", "imstressed.com", "imtoosexy.com", "in-box.net", "in2jesus.com", "iname.com", "inbox.com", "inbox.lt", "inbox.lv", "inbox.net", "inbox.ru", "incamail.com", "includingarabia.com", "incredimail.com", "index.ua", "indexa.fr", "india.com", "indiatimes.com", "indo-mail.com", "indocities.com", "indomail.com", "indyracers.com", "inerted.com", "info-media.de", "info66.com", "infohq.com", "infomail.es", "infomart.or.jp", "infospacemail.com", "infovia.com.ar", "inicia.es", "inmail.sk", "inmail24.com", "inmano.com", "innocent.com", "inorbit.com", "inoutbox.com", "insidebaltimore.net", "insight.rr.com", "instruction.com", "instructor.net", "insurer.com", "interburp.com", "interfree.it", "interia.pl", "interlap.com.ar", "intermail.co.il", "internet-club.com", "internet-e-mail.com", "internet-mail.org", "internet-police.com", "internetbiz.com", "internetdrive.com", "internetegypt.com", "internetemails.net", "internetmailing.net", "internode.on.net", "investormail.com", "inwind.it", "iobox.com", "iobox.fi", "iol.it", "iowaemail.com", "ip3.com", "iprimus.com.au", "iqemail.com", "irangate.net", "iraqmail.com", "ireland.com", "irelandmail.com", "irj.hu", "isellcars.com", "iservejesus.com", "islamonline.net", "isleuthmail.com", "ismart.net", "isonfire.com", "isp9.net", "israelmail.com", "ist-allein.info", "ist-einmalig.de", "ist-ganz-allein.de", "ist-willig.de", "italymail.com", "itloox.com", "itmom.com", "ivebeenframed.com", "ivillage.com", "iwan-fals.com", "iwmail.com", "iwon.com", "izadpanah.com", "jahoopa.com", "jakuza.hu", "japan.com", "jaydemail.com", "jazzandjava.com", "jazzfan.com", "jazzgame.com", "jerusalemmail.com", "jetable.de", "jetemail.net", "jewishmail.com", "jippii.fi", "jmail.co.za", "job4u.com", "joinme.com", "jokes.com", "jordanmail.com", "journalist.com", "jovem.te.pt", "joymail.com", "jpopmail.com", "jubiimail.dk", "jump.com", "jumpy.it", "juniormail.com", "junkmail.com", "juno.com", "justemail.net", "justicemail.com", "kaazoo.com", "kaffeeschluerfer.com", "kaffeeschluerfer.de", "kaixo.com", "kalpoint.com", "kansascity.com", "kapoorweb.com", "karachian.com", "karachioye.com", "karbasi.com", "katamail.com", "kayafmmail.co.za", "kbjrmail.com", "kcks.com", "keftamail.com", "keg-party.com", "keko.com.ar", "kellychen.com", "keromail.com", "keyemail.com", "kgb.hu", "khosropour.com", "kickassmail.com", "killermail.com", "kimo.com", "kinglibrary.net", "kinki-kids.com", "kissfans.com", "kittymail.com", "kitznet.at", "kiwibox.com", "kiwitown.com", "km.ru", "kmail.com.au", "kmail.mooo.com", "kommespaeter.de", "konx.com", "korea.com", "koreamail.com", "kozmail.com", "kpnmail.nl", "krim.ws", "krongthip.com", "krunis.com", "ksanmail.com", "ksee24mail.com", "kube93mail.com", "kukamail.com", "kumarweb.com", "kuwait-mail.com", "la.com", "ladymail.cz", "lagerlouts.com", "lahoreoye.com", "lakmail.com", "lamer.hu", "land.ru", "lankamail.com", "laposte.net", "lass-es-geschehen.de", "latemodels.com", "latinmail.com", "latino.com", "lavache.com", "law.com", "lawyer.com", "leehom.net", "legalactions.com", "legislator.com", "lenta.ru", "leonlai.net", "letsgomets.net", "letterbox.com", "letterboxes.org", "levele.com", "levele.hu", "lex.bg", "lexis-nexis-mail.com", "libero.it", "liberomail.com", "lick101.com", "liebt-dich.info", "link.cloudns.asia", "linkmaster.com", "linktrader.com", "linuxfreemail.com", "linuxmail.org", "lionsfan.com.au", "liontrucks.com", "list.ru", "listomail.com", "littleapple.com", "littleblueroom.com", "live.at", "live.be", "live.ca", "live.cl", "live.cn", "live.co.uk", "live.co.za", "live.com", "live.com.ar", "live.com.au", "live.com.mx", "live.com.my", "live.com.pt", "live.com.sg", "live.de", "live.dk", "live.fr", "live.ie", "live.in", "live.it", "live.jp", "live.nl", "live.no", "live.ru", "live.se", "liverpoolfans.com", "lko.co.kr", "llandudno.com", "llangollen.com", "lmxmail.sk", "lobbyist.com", "localbar.com", "locos.com", "london.com", "loobie.com", "looksmart.co.uk", "looksmart.com", "looksmart.com.au", "lopezclub.com", "louiskoo.com", "love.cz", "loveable.com", "lovecat.com", "lovefootball.com", "lovelygirl.net", "lovemail.com", "lover-boy.com", "lovergirl.com", "lovethebroncos.com", "lovethecowboys.com", "loveyouforever.de", "lovingjesus.com", "lowandslow.com", "luso.pt", "luukku.com", "lvey.luk2.com", "lvie.com.sg", "lycos.co.uk", "lycos.com", "lycos.de", "lycos.es", "lycos.it", "lycos.ne.jp", "lycosemail.com", "lycosmail.com", "m-a-i-l.com", "m-hmail.com", "m4.org", "mac.com", "macbox.com", "macfreak.com", "machinecandy.com", "macmail.com", "madcreations.com", "madonnafan.com", "madrid.com", "maennerversteherin.com", "maennerversteherin.de", "maffia.hu", "magicmail.co.za", "mahmoodweb.com", "mail-awu.de", "mail-box.cz", "mail-center.com", "mail-central.com", "mail-me.com", "mail-page.com", "mail.austria.com", "mail.az", "mail.be", "mail.bg", "mail.bulgaria.com", "mail.byte.it", "mail.co.za", "mail.com", "mail.com.tr", "mail.defaultdomain.ml", "mail.ee", "mail.entrepeneurmag.com", "mail.freetown.com", "mail.gr", "mail.hitthebeach.com", "mail.htl22.at", "mail.kmsp.com", "mail.md", "mail.misterpinball.de", "mail.nu", "mail.org.uk", "mail.pf", "mail.pharmacy.com", "mail.pt", "mail.r-o-o-t.com", "mail.ru", "mail.salu.net", "mail.sisna.com", "mail.spaceports.com", "mail.svenz.eu", "mail.theboys.com", "mail.ua", "mail.usa.com", "mail.vasarhely.hu", "mail15.com", "mail1st.com", "mail2007.com", "mail2aaron.com", "mail2abby.com", "mail2abc.com", "mail2actor.com", "mail2admiral.com", "mail2adorable.com", "mail2adoration.com", "mail2adore.com", "mail2adventure.com", "mail2aeolus.com", "mail2aether.com", "mail2affection.com", "mail2afghanistan.com", "mail2africa.com", "mail2agent.com", "mail2aha.com", "mail2ahoy.com", "mail2aim.com", "mail2air.com", "mail2airbag.com", "mail2airforce.com", "mail2airport.com", "mail2alabama.com", "mail2alan.com", "mail2alaska.com", "mail2albania.com", "mail2alcoholic.com", "mail2alec.com", "mail2alexa.com", "mail2algeria.com", "mail2alicia.com", "mail2alien.com", "mail2allan.com", "mail2allen.com", "mail2allison.com", "mail2alpha.com", "mail2alyssa.com", "mail2amanda.com", "mail2amazing.com", "mail2amber.com", "mail2america.com", "mail2american.com", "mail2andorra.com", "mail2andrea.com", "mail2andy.com", "mail2anesthesiologist.com", "mail2angela.com", "mail2angola.com", "mail2ann.com", "mail2anna.com", "mail2anne.com", "mail2anthony.com", "mail2anything.com", "mail2aphrodite.com", "mail2apollo.com", "mail2april.com", "mail2aquarius.com", "mail2arabia.com", "mail2arabic.com", "mail2architect.com", "mail2ares.com", "mail2argentina.com", "mail2aries.com", "mail2arizona.com", "mail2arkansas.com", "mail2armenia.com", "mail2army.com", "mail2arnold.com", "mail2art.com", "mail2artemus.com", "mail2arthur.com", "mail2artist.com", "mail2ashley.com", "mail2ask.com", "mail2astronomer.com", "mail2athena.com", "mail2athlete.com", "mail2atlas.com", "mail2atom.com", "mail2attitude.com", "mail2auction.com", "mail2aunt.com", "mail2australia.com", "mail2austria.com", "mail2azerbaijan.com", "mail2baby.com", "mail2bahamas.com", "mail2bahrain.com", "mail2ballerina.com", "mail2ballplayer.com", "mail2band.com", "mail2bangladesh.com", "mail2bank.com", "mail2banker.com", "mail2bankrupt.com", "mail2baptist.com", "mail2bar.com", "mail2barbados.com", "mail2barbara.com", "mail2barter.com", "mail2basketball.com", "mail2batter.com", "mail2beach.com", "mail2beast.com", "mail2beatles.com", "mail2beauty.com", "mail2becky.com", "mail2beijing.com", "mail2belgium.com", "mail2belize.com", "mail2ben.com", "mail2bernard.com", "mail2beth.com", "mail2betty.com", "mail2beverly.com", "mail2beyond.com", "mail2biker.com", "mail2bill.com", "mail2billionaire.com", "mail2billy.com", "mail2bio.com", "mail2biologist.com", "mail2black.com", "mail2blackbelt.com", "mail2blake.com", "mail2blind.com", "mail2blonde.com", "mail2blues.com", "mail2bob.com", "mail2bobby.com", "mail2bolivia.com", "mail2bombay.com", "mail2bonn.com", "mail2bookmark.com", "mail2boreas.com", "mail2bosnia.com", "mail2boston.com", "mail2botswana.com", "mail2bradley.com", "mail2brazil.com", "mail2breakfast.com", "mail2brian.com", "mail2bride.com", "mail2brittany.com", "mail2broker.com", "mail2brook.com", "mail2bruce.com", "mail2brunei.com", "mail2brunette.com", "mail2brussels.com", "mail2bryan.com", "mail2bug.com", "mail2bulgaria.com", "mail2business.com", "mail2buy.com", "mail2ca.com", "mail2california.com", "mail2calvin.com", "mail2cambodia.com", "mail2cameroon.com", "mail2canada.com", "mail2cancer.com", "mail2capeverde.com", "mail2capricorn.com", "mail2cardinal.com", "mail2cardiologist.com", "mail2care.com", "mail2caroline.com", "mail2carolyn.com", "mail2casey.com", "mail2cat.com", "mail2caterer.com", "mail2cathy.com", "mail2catlover.com", "mail2catwalk.com", "mail2cell.com", "mail2chad.com", "mail2champaign.com", "mail2charles.com", "mail2chef.com", "mail2chemist.com", "mail2cherry.com", "mail2chicago.com", "mail2chile.com", "mail2china.com", "mail2chinese.com", "mail2chocolate.com", "mail2christian.com", "mail2christie.com", "mail2christmas.com", "mail2christy.com", "mail2chuck.com", "mail2cindy.com", "mail2clark.com", "mail2classifieds.com", "mail2claude.com", "mail2cliff.com", "mail2clinic.com", "mail2clint.com", "mail2close.com", "mail2club.com", "mail2coach.com", "mail2coastguard.com", "mail2colin.com", "mail2college.com", "mail2colombia.com", "mail2color.com", "mail2colorado.com", "mail2columbia.com", "mail2comedian.com", "mail2composer.com", "mail2computer.com", "mail2computers.com", "mail2concert.com", "mail2congo.com", "mail2connect.com", "mail2connecticut.com", "mail2consultant.com", "mail2convict.com", "mail2cook.com", "mail2cool.com", "mail2cory.com", "mail2costarica.com", "mail2country.com", "mail2courtney.com", "mail2cowboy.com", "mail2cowgirl.com", "mail2craig.com", "mail2crave.com", "mail2crazy.com", "mail2create.com", "mail2croatia.com", "mail2cry.com", "mail2crystal.com", "mail2cuba.com", "mail2culture.com", "mail2curt.com", "mail2customs.com", "mail2cute.com", "mail2cutey.com", "mail2cynthia.com", "mail2cyprus.com", "mail2czechrepublic.com", "mail2dad.com", "mail2dale.com", "mail2dallas.com", "mail2dan.com", "mail2dana.com", "mail2dance.com", "mail2dancer.com", "mail2danielle.com", "mail2danny.com", "mail2darlene.com", "mail2darling.com", "mail2darren.com", "mail2daughter.com", "mail2dave.com", "mail2dawn.com", "mail2dc.com", "mail2dealer.com", "mail2deanna.com", "mail2dearest.com", "mail2debbie.com", "mail2debby.com", "mail2deer.com", "mail2delaware.com", "mail2delicious.com", "mail2demeter.com", "mail2democrat.com", "mail2denise.com", "mail2denmark.com", "mail2dennis.com", "mail2dentist.com", "mail2derek.com", "mail2desert.com", "mail2devoted.com", "mail2devotion.com", "mail2diamond.com", "mail2diana.com", "mail2diane.com", "mail2diehard.com", "mail2dilemma.com", "mail2dillon.com", "mail2dinner.com", "mail2dinosaur.com", "mail2dionysos.com", "mail2diplomat.com", "mail2director.com", "mail2dirk.com", "mail2disco.com", "mail2dive.com", "mail2diver.com", "mail2divorced.com", "mail2djibouti.com", "mail2doctor.com", "mail2doglover.com", "mail2dominic.com", "mail2dominica.com", "mail2dominicanrepublic.com", "mail2don.com", "mail2donald.com", "mail2donna.com", "mail2doris.com", "mail2dorothy.com", "mail2doug.com", "mail2dough.com", "mail2douglas.com", "mail2dow.com", "mail2downtown.com", "mail2dream.com", "mail2dreamer.com", "mail2dude.com", "mail2dustin.com", "mail2dyke.com", "mail2dylan.com", "mail2earl.com", "mail2earth.com", "mail2eastend.com", "mail2eat.com", "mail2economist.com", "mail2ecuador.com", "mail2eddie.com", "mail2edgar.com", "mail2edwin.com", "mail2egypt.com", "mail2electron.com", "mail2eli.com", "mail2elizabeth.com", "mail2ellen.com", "mail2elliot.com", "mail2elsalvador.com", "mail2elvis.com", "mail2emergency.com", "mail2emily.com", "mail2engineer.com", "mail2english.com", "mail2environmentalist.com", "mail2eos.com", "mail2eric.com", "mail2erica.com", "mail2erin.com", "mail2erinyes.com", "mail2eris.com", "mail2eritrea.com", "mail2ernie.com", "mail2eros.com", "mail2estonia.com", "mail2ethan.com", "mail2ethiopia.com", "mail2eu.com", "mail2europe.com", "mail2eurus.com", "mail2eva.com", "mail2evan.com", "mail2evelyn.com", "mail2everything.com", "mail2exciting.com", "mail2expert.com", "mail2fairy.com", "mail2faith.com", "mail2fanatic.com", "mail2fancy.com", "mail2fantasy.com", "mail2farm.com", "mail2farmer.com", "mail2fashion.com", "mail2fat.com", "mail2feeling.com", "mail2female.com", "mail2fever.com", "mail2fighter.com", "mail2fiji.com", "mail2filmfestival.com", "mail2films.com", "mail2finance.com", "mail2finland.com", "mail2fireman.com", "mail2firm.com", "mail2fisherman.com", "mail2flexible.com", "mail2florence.com", "mail2florida.com", "mail2floyd.com", "mail2fly.com", "mail2fond.com", "mail2fondness.com", "mail2football.com", "mail2footballfan.com", "mail2found.com", "mail2france.com", "mail2frank.com", "mail2frankfurt.com", "mail2franklin.com", "mail2fred.com", "mail2freddie.com", "mail2free.com", "mail2freedom.com", "mail2french.com", "mail2freudian.com", "mail2friendship.com", "mail2from.com", "mail2fun.com", "mail2gabon.com", "mail2gabriel.com", "mail2gail.com", "mail2galaxy.com", "mail2gambia.com", "mail2games.com", "mail2gary.com", "mail2gavin.com", "mail2gemini.com", "mail2gene.com", "mail2genes.com", "mail2geneva.com", "mail2george.com", "mail2georgia.com", "mail2gerald.com", "mail2german.com", "mail2germany.com", "mail2ghana.com", "mail2gilbert.com", "mail2gina.com", "mail2girl.com", "mail2glen.com", "mail2gloria.com", "mail2goddess.com", "mail2gold.com", "mail2golfclub.com", "mail2golfer.com", "mail2gordon.com", "mail2government.com", "mail2grab.com", "mail2grace.com", "mail2graham.com", "mail2grandma.com", "mail2grandpa.com", "mail2grant.com", "mail2greece.com", "mail2green.com", "mail2greg.com", "mail2grenada.com", "mail2gsm.com", "mail2guard.com", "mail2guatemala.com", "mail2guy.com", "mail2hades.com", "mail2haiti.com", "mail2hal.com", "mail2handhelds.com", "mail2hank.com", "mail2hannah.com", "mail2harold.com", "mail2harry.com", "mail2hawaii.com", "mail2headhunter.com", "mail2heal.com", "mail2heather.com", "mail2heaven.com", "mail2hebe.com", "mail2hecate.com", "mail2heidi.com", "mail2helen.com", "mail2hell.com", "mail2help.com", "mail2helpdesk.com", "mail2henry.com", "mail2hephaestus.com", "mail2hera.com", "mail2hercules.com", "mail2herman.com", "mail2hermes.com", "mail2hespera.com", "mail2hestia.com", "mail2highschool.com", "mail2hindu.com", "mail2hip.com", "mail2hiphop.com", "mail2holland.com", "mail2holly.com", "mail2hollywood.com", "mail2homer.com", "mail2honduras.com", "mail2honey.com", "mail2hongkong.com", "mail2hope.com", "mail2horse.com", "mail2hot.com", "mail2hotel.com", "mail2houston.com", "mail2howard.com", "mail2hugh.com", "mail2human.com", "mail2hungary.com", "mail2hungry.com", "mail2hygeia.com", "mail2hyperspace.com", "mail2hypnos.com", "mail2ian.com", "mail2ice-cream.com", "mail2iceland.com", "mail2idaho.com", "mail2idontknow.com", "mail2illinois.com", "mail2imam.com", "mail2in.com", "mail2india.com", "mail2indian.com", "mail2indiana.com", "mail2indonesia.com", "mail2infinity.com", "mail2intense.com", "mail2iowa.com", "mail2iran.com", "mail2iraq.com", "mail2ireland.com", "mail2irene.com", "mail2iris.com", "mail2irresistible.com", "mail2irving.com", "mail2irwin.com", "mail2isaac.com", "mail2israel.com", "mail2italian.com", "mail2italy.com", "mail2jackie.com", "mail2jacob.com", "mail2jail.com", "mail2jaime.com", "mail2jake.com", "mail2jamaica.com", "mail2james.com", "mail2jamie.com", "mail2jan.com", "mail2jane.com", "mail2janet.com", "mail2janice.com", "mail2japan.com", "mail2japanese.com", "mail2jasmine.com", "mail2jason.com", "mail2java.com", "mail2jay.com", "mail2jazz.com", "mail2jed.com", "mail2jeffrey.com", "mail2jennifer.com", "mail2jenny.com", "mail2jeremy.com", "mail2jerry.com", "mail2jessica.com", "mail2jessie.com", "mail2jesus.com", "mail2jew.com", "mail2jeweler.com", "mail2jim.com", "mail2jimmy.com", "mail2joan.com", "mail2joann.com", "mail2joanna.com", "mail2jody.com", "mail2joe.com", "mail2joel.com", "mail2joey.com", "mail2john.com", "mail2join.com", "mail2jon.com", "mail2jonathan.com", "mail2jones.com", "mail2jordan.com", "mail2joseph.com", "mail2josh.com", "mail2joy.com", "mail2juan.com", "mail2judge.com", "mail2judy.com", "mail2juggler.com", "mail2julian.com", "mail2julie.com", "mail2jumbo.com", "mail2junk.com", "mail2justin.com", "mail2justme.com", "mail2k.ru", "mail2kansas.com", "mail2karate.com", "mail2karen.com", "mail2karl.com", "mail2karma.com", "mail2kathleen.com", "mail2kathy.com", "mail2katie.com", "mail2kay.com", "mail2kazakhstan.com", "mail2keen.com", "mail2keith.com", "mail2kelly.com", "mail2kelsey.com", "mail2ken.com", "mail2kendall.com", "mail2kennedy.com", "mail2kenneth.com", "mail2kenny.com", "mail2kentucky.com", "mail2kenya.com", "mail2kerry.com", "mail2kevin.com", "mail2kim.com", "mail2kimberly.com", "mail2king.com", "mail2kirk.com", "mail2kiss.com", "mail2kosher.com", "mail2kristin.com", "mail2kurt.com", "mail2kuwait.com", "mail2kyle.com", "mail2kyrgyzstan.com", "mail2la.com", "mail2lacrosse.com", "mail2lance.com", "mail2lao.com", "mail2larry.com", "mail2latvia.com", "mail2laugh.com", "mail2laura.com", "mail2lauren.com", "mail2laurie.com", "mail2lawrence.com", "mail2lawyer.com", "mail2lebanon.com", "mail2lee.com", "mail2leo.com", "mail2leon.com", "mail2leonard.com", "mail2leone.com", "mail2leslie.com", "mail2letter.com", "mail2liberia.com", "mail2libertarian.com", "mail2libra.com", "mail2libya.com", "mail2liechtenstein.com", "mail2life.com", "mail2linda.com", "mail2linux.com", "mail2lionel.com", "mail2lipstick.com", "mail2liquid.com", "mail2lisa.com", "mail2lithuania.com", "mail2litigator.com", "mail2liz.com", "mail2lloyd.com", "mail2lois.com", "mail2lola.com", "mail2london.com", "mail2looking.com", "mail2lori.com", "mail2lost.com", "mail2lou.com", "mail2louis.com", "mail2louisiana.com", "mail2lovable.com", "mail2love.com", "mail2lucky.com", "mail2lucy.com", "mail2lunch.com", "mail2lust.com", "mail2luxembourg.com", "mail2luxury.com", "mail2lyle.com", "mail2lynn.com", "mail2madagascar.com", "mail2madison.com", "mail2madrid.com", "mail2maggie.com", "mail2mail4.com", "mail2maine.com", "mail2malawi.com", "mail2malaysia.com", "mail2maldives.com", "mail2mali.com", "mail2malta.com", "mail2mambo.com", "mail2man.com", "mail2mandy.com", "mail2manhunter.com", "mail2mankind.com", "mail2many.com", "mail2marc.com", "mail2marcia.com", "mail2margaret.com", "mail2margie.com", "mail2marhaba.com", "mail2maria.com", "mail2marilyn.com", "mail2marines.com", "mail2mark.com", "mail2marriage.com", "mail2married.com", "mail2marries.com", "mail2mars.com", "mail2marsha.com", "mail2marshallislands.com", "mail2martha.com", "mail2martin.com", "mail2marty.com", "mail2marvin.com", "mail2mary.com", "mail2maryland.com", "mail2mason.com", "mail2massachusetts.com", "mail2matt.com", "mail2matthew.com", "mail2maurice.com", "mail2mauritania.com", "mail2mauritius.com", "mail2max.com", "mail2maxwell.com", "mail2maybe.com", "mail2mba.com", "mail2me4u.com", "mail2mechanic.com", "mail2medieval.com", "mail2megan.com", "mail2mel.com", "mail2melanie.com", "mail2melissa.com", "mail2melody.com", "mail2member.com", "mail2memphis.com", "mail2methodist.com", "mail2mexican.com", "mail2mexico.com", "mail2mgz.com", "mail2miami.com", "mail2michael.com", "mail2michelle.com", "mail2michigan.com", "mail2mike.com", "mail2milan.com", "mail2milano.com", "mail2mildred.com", "mail2milkyway.com", "mail2millennium.com", "mail2millionaire.com", "mail2milton.com", "mail2mime.com", "mail2mindreader.com", "mail2mini.com", "mail2minister.com", "mail2minneapolis.com", "mail2minnesota.com", "mail2miracle.com", "mail2missionary.com", "mail2mississippi.com", "mail2missouri.com", "mail2mitch.com", "mail2model.com", "mail2moldova.commail2molly.com", "mail2mom.com", "mail2monaco.com", "mail2money.com", "mail2mongolia.com", "mail2monica.com", "mail2montana.com", "mail2monty.com", "mail2moon.com", "mail2morocco.com", "mail2morpheus.com", "mail2mors.com", "mail2moscow.com", "mail2moslem.com", "mail2mouseketeer.com", "mail2movies.com", "mail2mozambique.com", "mail2mp3.com", "mail2mrright.com", "mail2msright.com", "mail2museum.com", "mail2music.com", "mail2musician.com", "mail2muslim.com", "mail2my.com", "mail2myboat.com", "mail2mycar.com", "mail2mycell.com", "mail2mygsm.com", "mail2mylaptop.com", "mail2mymac.com", "mail2mypager.com", "mail2mypalm.com", "mail2mypc.com", "mail2myphone.com", "mail2myplane.com", "mail2namibia.com", "mail2nancy.com", "mail2nasdaq.com", "mail2nathan.com", "mail2nauru.com", "mail2navy.com", "mail2neal.com", "mail2nebraska.com", "mail2ned.com", "mail2neil.com", "mail2nelson.com", "mail2nemesis.com", "mail2nepal.com", "mail2netherlands.com", "mail2network.com", "mail2nevada.com", "mail2newhampshire.com", "mail2newjersey.com", "mail2newmexico.com", "mail2newyork.com", "mail2newzealand.com", "mail2nicaragua.com", "mail2nick.com", "mail2nicole.com", "mail2niger.com", "mail2nigeria.com", "mail2nike.com", "mail2no.com", "mail2noah.com", "mail2noel.com", "mail2noelle.com", "mail2normal.com", "mail2norman.com", "mail2northamerica.com", "mail2northcarolina.com", "mail2northdakota.com", "mail2northpole.com", "mail2norway.com", "mail2notus.com", "mail2noway.com", "mail2nowhere.com", "mail2nuclear.com", "mail2nun.com", "mail2ny.com", "mail2oasis.com", "mail2oceanographer.com", "mail2ohio.com", "mail2ok.com", "mail2oklahoma.com", "mail2oliver.com", "mail2oman.com", "mail2one.com", "mail2onfire.com", "mail2online.com", "mail2oops.com", "mail2open.com", "mail2ophthalmologist.com", "mail2optometrist.com", "mail2oregon.com", "mail2oscars.com", "mail2oslo.com", "mail2painter.com", "mail2pakistan.com", "mail2palau.com", "mail2pan.com", "mail2panama.com", "mail2paraguay.com", "mail2paralegal.com", "mail2paris.com", "mail2park.com", "mail2parker.com", "mail2party.com", "mail2passion.com", "mail2pat.com", "mail2patricia.com", "mail2patrick.com", "mail2patty.com", "mail2paul.com", "mail2paula.com", "mail2pay.com", "mail2peace.com", "mail2pediatrician.com", "mail2peggy.com", "mail2pennsylvania.com", "mail2perry.com", "mail2persephone.com", "mail2persian.com", "mail2peru.com", "mail2pete.com", "mail2peter.com", "mail2pharmacist.com", "mail2phil.com", "mail2philippines.com", "mail2phoenix.com", "mail2phonecall.com", "mail2phyllis.com", "mail2pickup.com", "mail2pilot.com", "mail2pisces.com", "mail2planet.com", "mail2platinum.com", "mail2plato.com", "mail2pluto.com", "mail2pm.com", "mail2podiatrist.com", "mail2poet.com", "mail2poland.com", "mail2policeman.com", "mail2policewoman.com", "mail2politician.com", "mail2pop.com", "mail2pope.com", "mail2popular.com", "mail2portugal.com", "mail2poseidon.com", "mail2potatohead.com", "mail2power.com", "mail2presbyterian.com", "mail2president.com", "mail2priest.com", "mail2prince.com", "mail2princess.com", "mail2producer.com", "mail2professor.com", "mail2protect.com", "mail2psychiatrist.com", "mail2psycho.com", "mail2psychologist.com", "mail2qatar.com", "mail2queen.com", "mail2rabbi.com", "mail2race.com", "mail2racer.com", "mail2rachel.com", "mail2rage.com", "mail2rainmaker.com", "mail2ralph.com", "mail2randy.com", "mail2rap.com", "mail2rare.com", "mail2rave.com", "mail2ray.com", "mail2raymond.com", "mail2realtor.com", "mail2rebecca.com", "mail2recruiter.com", "mail2recycle.com", "mail2redhead.com", "mail2reed.com", "mail2reggie.com", "mail2register.com", "mail2rent.com", "mail2republican.com", "mail2resort.com", "mail2rex.com", "mail2rhodeisland.com", "mail2rich.com", "mail2richard.com", "mail2ricky.com", "mail2ride.com", "mail2riley.com", "mail2rita.com", "mail2rob.com", "mail2robert.com", "mail2roberta.com", "mail2robin.com", "mail2rock.com", "mail2rocker.com", "mail2rod.com", "mail2rodney.com", "mail2romania.com", "mail2rome.com", "mail2ron.com", "mail2ronald.com", "mail2ronnie.com", "mail2rose.com", "mail2rosie.com", "mail2roy.com", "mail2rudy.com", "mail2rugby.com", "mail2runner.com", "mail2russell.com", "mail2russia.com", "mail2russian.com", "mail2rusty.com", "mail2ruth.com", "mail2rwanda.com", "mail2ryan.com", "mail2sa.com", "mail2sabrina.com", "mail2safe.com", "mail2sagittarius.com", "mail2sail.com", "mail2sailor.com", "mail2sal.com", "mail2salaam.com", "mail2sam.com", "mail2samantha.com", "mail2samoa.com", "mail2samurai.com", "mail2sandra.com", "mail2sandy.com", "mail2sanfrancisco.com", "mail2sanmarino.com", "mail2santa.com", "mail2sara.com", "mail2sarah.com", "mail2sat.com", "mail2saturn.com", "mail2saudi.com", "mail2saudiarabia.com", "mail2save.com", "mail2savings.com", "mail2school.com", "mail2scientist.com", "mail2scorpio.com", "mail2scott.com", "mail2sean.com", "mail2search.com", "mail2seattle.com", "mail2secretagent.com", "mail2senate.com", "mail2senegal.com", "mail2sensual.com", "mail2seth.com", "mail2sevenseas.com", "mail2sexy.com", "mail2seychelles.com", "mail2shane.com", "mail2sharon.com", "mail2shawn.com", "mail2ship.com", "mail2shirley.com", "mail2shoot.com", "mail2shuttle.com", "mail2sierraleone.com", "mail2simon.com", "mail2singapore.com", "mail2single.com", "mail2site.com", "mail2skater.com", "mail2skier.com", "mail2sky.com", "mail2sleek.com", "mail2slim.com", "mail2slovakia.com", "mail2slovenia.com", "mail2smile.com", "mail2smith.com", "mail2smooth.com", "mail2soccer.com", "mail2soccerfan.com", "mail2socialist.com", "mail2soldier.com", "mail2somalia.com", "mail2son.com", "mail2song.com", "mail2sos.com", "mail2sound.com", "mail2southafrica.com", "mail2southamerica.com", "mail2southcarolina.com", "mail2southdakota.com", "mail2southkorea.com", "mail2southpole.com", "mail2spain.com", "mail2spanish.com", "mail2spare.com", "mail2spectrum.com", "mail2splash.com", "mail2sponsor.com", "mail2sports.com", "mail2srilanka.com", "mail2stacy.com", "mail2stan.com", "mail2stanley.com", "mail2star.com", "mail2state.com", "mail2stephanie.com", "mail2steve.com", "mail2steven.com", "mail2stewart.com", "mail2stlouis.com", "mail2stock.com", "mail2stockholm.com", "mail2stockmarket.com", "mail2storage.com", "mail2store.com", "mail2strong.com", "mail2student.com", "mail2studio.com", "mail2studio54.com", "mail2stuntman.com", "mail2subscribe.com", "mail2sudan.com", "mail2superstar.com", "mail2surfer.com", "mail2suriname.com", "mail2susan.com", "mail2suzie.com", "mail2swaziland.com", "mail2sweden.com", "mail2sweetheart.com", "mail2swim.com", "mail2swimmer.com", "mail2swiss.com", "mail2switzerland.com", "mail2sydney.com", "mail2sylvia.com", "mail2syria.com", "mail2taboo.com", "mail2taiwan.com", "mail2tajikistan.com", "mail2tammy.com", "mail2tango.com", "mail2tanya.com", "mail2tanzania.com", "mail2tara.com", "mail2taurus.com", "mail2taxi.com", "mail2taxidermist.com", "mail2taylor.com", "mail2taz.com", "mail2teacher.com", "mail2technician.com", "mail2ted.com", "mail2telephone.com", "mail2teletubbie.com", "mail2tenderness.com", "mail2tennessee.com", "mail2tennis.com", "mail2tennisfan.com", "mail2terri.com", "mail2terry.com", "mail2test.com", "mail2texas.com", "mail2thailand.com", "mail2therapy.com", "mail2think.com", "mail2tickets.com", "mail2tiffany.com", "mail2tim.com", "mail2time.com", "mail2timothy.com", "mail2tina.com", "mail2titanic.com", "mail2toby.com", "mail2todd.com", "mail2togo.com", "mail2tom.com", "mail2tommy.com", "mail2tonga.com", "mail2tony.com", "mail2touch.com", "mail2tourist.com", "mail2tracey.com", "mail2tracy.com", "mail2tramp.com", "mail2travel.com", "mail2traveler.com", "mail2travis.com", "mail2trekkie.com", "mail2trex.com", "mail2triallawyer.com", "mail2trick.com", "mail2trillionaire.com", "mail2troy.com", "mail2truck.com", "mail2trump.com", "mail2try.com", "mail2tunisia.com", "mail2turbo.com", "mail2turkey.com", "mail2turkmenistan.com", "mail2tv.com", "mail2tycoon.com", "mail2tyler.com", "mail2u4me.com", "mail2uae.com", "mail2uganda.com", "mail2uk.com", "mail2ukraine.com", "mail2uncle.com", "mail2unsubscribe.com", "mail2uptown.com", "mail2uruguay.com", "mail2usa.com", "mail2utah.com", "mail2uzbekistan.com", "mail2v.com", "mail2vacation.com", "mail2valentines.com", "mail2valerie.com", "mail2valley.com", "mail2vamoose.com", "mail2vanessa.com", "mail2vanuatu.com", "mail2venezuela.com", "mail2venous.com", "mail2venus.com", "mail2vermont.com", "mail2vickie.com", "mail2victor.com", "mail2victoria.com", "mail2vienna.com", "mail2vietnam.com", "mail2vince.com", "mail2virginia.com", "mail2virgo.com", "mail2visionary.com", "mail2vodka.com", "mail2volleyball.com", "mail2waiter.com", "mail2wallstreet.com", "mail2wally.com", "mail2walter.com", "mail2warren.com", "mail2washington.com", "mail2wave.com", "mail2way.com", "mail2waycool.com", "mail2wayne.com", "mail2webmaster.com", "mail2webtop.com", "mail2webtv.com", "mail2weird.com", "mail2wendell.com", "mail2wendy.com", "mail2westend.com", "mail2westvirginia.com", "mail2whether.com", "mail2whip.com", "mail2white.com", "mail2whitehouse.com", "mail2whitney.com", "mail2why.com", "mail2wilbur.com", "mail2wild.com", "mail2willard.com", "mail2willie.com", "mail2wine.com", "mail2winner.com", "mail2wired.com", "mail2wisconsin.com", "mail2woman.com", "mail2wonder.com", "mail2world.com", "mail2worship.com", "mail2wow.com", "mail2www.com", "mail2wyoming.com", "mail2xfiles.com", "mail2xox.com", "mail2yachtclub.com", "mail2yahalla.com", "mail2yemen.com", "mail2yes.com", "mail2yugoslavia.com", "mail2zack.com", "mail2zambia.com", "mail2zenith.com", "mail2zephir.com", "mail2zeus.com", "mail2zipper.com", "mail2zoo.com", "mail2zoologist.com", "mail2zurich.com", "mail3000.com", "mail4u.info", "mailandftp.com", "mailandnews.com", "mailas.com", "mailasia.com", "mailbolt.com", "mailbomb.net", "mailboom.com", "mailbox.as", "mailbox.co.za", "mailbox.gr", "mailbox.hu", "mailbox.r2.dns-cloud.net", "mailbr.com.br", "mailc.net", "mailcan.com", "mailcc.com", "mailchoose.co", "mailcity.com", "mailclub.fr", "mailclub.net", "mailexcite.com", "mailforce.net", "mailftp.com", "mailgate.gr", "mailgenie.net", "mailhaven.com", "mailhood.com", "mailinatorzz.mooo.com", "mailinblack.com", "mailingaddress.org", "mailingweb.com", "mailisent.com", "mailite.com", "mailme.dk", "mailmight.com", "mailmij.nl", "mailnew.com", "mailops.com", "mailoye.com", "mailpanda.com", "mailpokemon.com", "mailpost.zzn.com", "mailpride.com", "mailpuppy.com", "mailroom.com", "mailru.com", "mailsent.net", "mailservice.ms", "mailshuttle.com", "mailstart.com", "mailstartplus.com", "mailsurf.com", "mailtag.com", "mailto.de", "mailueberfall.de", "mailup.net", "mailwire.com", "mailworks.org", "mailz.info.tm", "maktoob.com", "malayalamtelevision.net", "mall.tko.co.kr", "maltesemail.com", "manager.de", "mancity.net", "mantrafreenet.com", "mantramail.com", "mantraonline.com", "marchmail.com", "mariah-carey.ml.org", "mariahc.com", "marijuana.com", "marijuana.nl", "marketing.lu", "married-not.com", "marsattack.com", "martindalemail.com", "mash4077.com", "masrawy.com", "matmail.com", "mauimail.com", "mauritius.com", "maxleft.com", "maxmail.co.uk", "mbdnsmail.mooo.com", "mbox.com.au", "me-mail.hu", "me.com", "medical.net.au", "medmail.com", "medscape.com", "meetingmall.com", "megago.com", "megamail.pt", "megapoint.com", "mehrani.com", "mehtaweb.com", "meine-dateien.info", "meine-diashow.de", "meine-fotos.info", "meine-urlaubsfotos.de", "mekhong.com", "melodymail.com", "meloo.com", "members.student.com", "memeware.net", "mendoan.uu.gl", "merda.flu.cc", "merda.igg.biz", "merda.nut.cc", "merda.usa.cc", "message.hu", "messages.to", "metacrawler.com", "metalfan.com", "metaping.com", "metta.lk", "mexicomail.com", "mhdsl.ddns.net", "miatadriver.com", "miesto.sk", "mighty.co.za", "miho-nakayama.com", "mikrotamanet.com", "millionaireintraining.com", "millionairemail.com", "milmail.com", "milmail.com15", "mindless.com", "mindspring.com", "mini-mail.com", "minister.com", "misery.net", "mittalweb.com", "mixmail.com", "mjfrogmail.com", "ml1.net", "mm.st", "mns.ru", "mobi.web.id", "mobilbatam.com", "mochamail.com", "mohammed.com", "moldova.cc", "moldova.com", "moldovacc.com", "momslife.com", "monemail.com", "money.net", "montevideo.com.uy", "moonman.com", "moose-mail.com", "mor19.uu.gl", "mortaza.com", "mosaicfx.com", "moscowmail.com", "most-wanted.com", "mostlysunny.com", "motormania.com", "movemail.com", "movieluver.com", "mp4.it", "mr-potatohead.com", "mrpost.com", "mscold.com", "msgbox.com", "msn.cn", "msn.com", "msn.com.au", "msn.nl", "mttestdriver.com", "multiplechoices", "mundomail.net", "munich.com", "music.com", "music.com19", "musician.org", "musicscene.org", "muskelshirt.de", "muslim.com", "muslimemail.com", "muslimsonline.com", "mutantweb.com", "mxp.dns-cloud.net", "mxp.dnsabr.com", "my.com", "my.safe-mail.gq", "mybox.it", "mycabin.com", "mycampus.com", "mycity.com", "mycool.com", "mydomain.com", "mydotcomaddress.com", "myfamily.com", "myfastmail.com", "mygo.com", "myiris.com", "mymacmail.com", "mynamedot.com", "mynet.com", "mynetaddress.com", "myownemail.com", "myownfriends.com", "mypad.com", "mypersonalemail.com", "myplace.com", "myrambler.ru", "myrealbox.com", "myremarq.com", "myself.com", "mystupidjob.com", "mythirdage.com", "myway.com", "myworldmail.com", "n2.com", "n2baseball.com", "n2business.com", "n2mail.com", "n2soccer.com", "n2software.com", "nabc.biz", "nafe.com", "nagpal.net", "nakedgreens.com", "name.com", "nameplanet.com", "nan.us.to", "nandomail.com", "naplesnews.net", "naseej.com", "nativestar.net", "nativeweb.net", "naui.net", "naver.com", "navigator.lv", "navy.org", "naz.com", "nchoicemail.com", "neeva.net", "nemra1.com", "nenter.com", "neo.rr.com", "nervhq.org", "net-c.be", "net-c.ca", "net-c.cat", "net-c.com", "net-c.es", "net-c.fr", "net-c.it", "net-c.lu", "net-c.nl", "net-c.pl", "net-pager.net", "net-shopping.com", "net4b.pt", "net4you.at", "netbounce.com", "netbroadcaster.com", "netby.dk", "netc.eu", "netc.fr", "netc.it", "netc.lu", "netc.pl", "netcenter-vn.net", "netcmail.com", "netcourrier.com", "netexecutive.com", "netexpressway.com", "netgenie.com", "netian.com", "netizen.com.ar", "netlane.com", "netlimit.com", "netmanor.com", "netmongol.com", "netnet.com.sg", "netnoir.net", "netpiper.com", "netposta.net", "netradiomail.com", "netralink.com", "netscape.net", "netscapeonline.co.uk", "netspace.net.au", "netspeedway.com", "netsquare.com", "netster.com", "nettaxi.com", "nettemail.com", "netterchef.de", "netzero.com", "netzero.net", "neue-dateien.de", "neuro.md", "newmail.com", "newmail.net", "newmail.ru", "newsboysmail.com", "newyork.com", "nextmail.ru", "nexxmail.com", "nfmail.com", "nhmail.com", "nicebush.com", "nicegal.com", "nicholastse.net", "nicolastse.com", "nightmail.com", "nikopage.com", "nimail.com", "ninfan.com", "nirvanafan.com", "noavar.com", "nonpartisan.com", "norika-fujiwara.com", "norikomail.com", "northgates.net", "noways.ddns.net", "nqav95zj0p.kro.kr", "nqrk.luk2.com", "ntscan.com", "null.net", "nullbox.info", "nuo.co.kr", "nur-fuer-spam.de", "nus.edu.sg", "nxt.ru", "ny.com", "nybella.com", "nyc.com", "nycmail.com", "nzoomail.com", "o-tay.com", "o.spamtrap.ro", "o2.co.uk", "o2.pl", "oaklandas-fan.com", "oath.com", "oceanfree.net", "oddpost.com", "odmail.com", "office-dateien.de", "office-email.com", "officedomain.com", "offroadwarrior.com", "oicexchange.com", "oikrach.com", "okbank.com", "okhuman.com", "okmad.com", "okmagic.com", "okname.net", "okuk.com", "oldies1041.com", "oldies104mail.com", "ole.com", "olemail.com", "olympist.net", "omaninfo.com", "omeaaa124.ddns.net", "omen.ru", "onebox.com", "onenet.com.ar", "onet.com.pl", "onet.eu", "onet.pl", "oninet.pt", "online.de", "online.ie", "online.nl", "onlinewiz.com", "onmilwaukee.com", "onobox.com", "onvillage.com", "op.pl", "openmailbox.org", "operafan.com", "operamail.com", "opoczta.pl", "optician.com", "optonline.net", "optusnet.com.au", "orange.fr", "orbitel.bg", "orgmail.net", "orthodontist.net", "osite.com.br", "oso.com", "otakumail.com", "our-computer.com", "our-office.com", "our.st", "ourbrisbane.com", "ournet.md", "outel.com", "outgun.com", "outlook.at", "outlook.be", "outlook.cl", "outlook.co.id", "outlook.co.il", "outlook.co.nz", "outlook.co.th", "outlook.com", "outlook.com.au", "outlook.com.br", "outlook.com.gr", "outlook.com.pe", "outlook.com.tr", "outlook.com.vn", "outlook.cz", "outlook.de", "outlook.dk", "outlook.es", "outlook.fr", "outlook.hu", "outlook.ie", "outlook.in", "outlook.it", "outlook.jp", "outlook.kr", "outlook.lv", "outlook.my", "outlook.nl", "outlook.ph", "outlook.pt", "outlook.sa", "outlook.sg", "outlook.sk", "over-the-rainbow.com", "ownmail.net", "ozbytes.net.au", "ozemail.com.au", "pacbell.net", "pacific-ocean.com", "pacific-re.com", "pacificwest.com", "packersfan.com", "pagina.de", "pagons.org", "pakistanmail.com", "pakistanoye.com", "palestinemail.com", "parkjiyoon.com", "parrot.com", "parsmail.com", "partlycloudy.com", "partybombe.de", "partyheld.de", "partynight.at", "parvazi.com", "password.nafko.cf", "passwordmail.com", "pathfindermail.com", "pconnections.net", "pcpostal.com", "pcsrock.com", "pcusers.otherinbox.com", "peachworld.com", "pediatrician.com", "pemail.net", "penpen.com", "peoplepc.com", "peopleweb.com", "perfectmail.com", "perso.be", "personal.ro", "personales.com", "petlover.com", "petml.com", "pettypool.com", "pezeshkpour.com", "phayze.com", "phone.net", "photographer.net", "phpbb.uu.gl", "phreaker.net", "phus8kajuspa.cu.cc", "physicist.net", "pianomail.com", "pickupman.com", "picusnet.com", "pigpig.net", "pinoymail.com", "piracha.net", "pisem.net", "pkwt.luk2.com", "planet-mail.com", "planet.nl", "planetaccess.com", "planetall.com", "planetarymotion.net", "planetdirect.com", "planetearthinter.net", "planetmail.com", "planetmail.net", "planetout.com", "plasa.com", "playersodds.com", "playful.com", "plus.com", "plusmail.com.br", "pmail.net", "pobox.hu", "pobox.sk", "pochta.ru", "poczta.fm", "poczta.onet.pl", "poetic.com", "pokemonpost.com", "pokepost.com", "polandmail.com", "polbox.com", "policeoffice.com", "politician.com", "polizisten-duzer.de", "pool-sharks.com", "poond.com", "popaccount.com", "popmail.com", "popsmail.com", "popstar.com", "populus.net", "portableoffice.com", "portugalmail.com", "portugalmail.pt", "portugalnet.com", "positive-thinking.com", "post.com", "post.cz", "post.sk", "posta.net", "posta.ro", "posta.rosativa.ro.org", "postaccesslite.com", "postafree.com", "postaweb.com", "postfach.cc", "postinbox.com", "postino.ch", "postmark.net", "postmaster.co.uk", "postpro.net", "pousa.com", "powerfan.com", "praize.com", "pray247.com", "premiumservice.com", "presidency.com", "press.co.jp", "pride.nafko.cf", "priest.com", "primposta.com", "primposta.hu", "pro.cloudns.asia", "pro.hu", "probemail.com", "prodigy.net", "progetplus.it", "programist.ru", "programmer.net", "programozo.hu", "proinbox.com", "project2k.com", "prolaunch.com", "promessage.com", "prontomail.com", "prontomail.compopulus.net", "protestant.com", "protonmail.com", "prydirect.info", "psv-supporter.com", "ptd.net", "public-files.de", "public.usa.com", "publicist.com", "pulp-fiction.com", "purpleturtle.com", "pw.r4.dns-cloud.net", "q.com", "qatarmail.com", "qip.ru", "qmail.com", "qprfans.com", "qq.cn", "qq.com", "qrio.com", "qt1.ddns.net", "quackquack.com", "quakemail.com", "qualityservice.com", "quantentunnel.de", "qudsmail.com", "quepasa.com", "quickhosts.com", "quicknet.nl", "quickwebmail.com", "quiklinks.com", "quikmail.com", "qv7.info", "qwest.net", "qwestoffice.net", "r-o-o-t.com", "r4.dns-cloud.net", "raakim.com", "racedriver.com", "racefanz.com", "racingfan.com.au", "racingmail.com", "radicalz.com", "radiku.ye.vc", "radiologist.net", "ragingbull.com", "ralib.com", "rambler.ru", "ramjane.mooo.com", "ranmamail.com", "raspberrypi123.ddns.net", "rastogi.net", "ratt-n-roll.com", "rattle-snake.com", "raubtierbaendiger.de", "ravearena.com", "ravemail.com", "razormail.com", "rccgmail.org", "realemail.net", "reallyfast.biz", "reallyfast.info", "realradiomail.com", "realtyagent.com", "reborn.com", "receiveee.chickenkiller.com", "recycler.com", "recyclermail.com", "rediff.com", "rediffmail.com", "rediffmailpro.com", "rednecks.com", "redseven.de", "redsfans.com", "reggaefan.com", "reggafan.com", "regiononline.com", "registerednurses.com", "reincarnate.com", "religious.com", "renren.com", "repairman.com", "reply.hu", "representative.com", "rescueteam.com", "resumemail.com", "rezai.com", "richmondhill.com", "rickymail.com", "rin.ru", "riopreto.com.br", "rk9.chickenkiller.com", "rn.com", "ro.ru", "roadrunner.com", "roanokemail.com", "rock.com", "rocketmail.com", "rocketship.com", "rockfan.com", "rodrun.com", "rogers.com", "rome.com", "romymichele.com", "roosh.com", "rootprompt.org", "rotfl.com", "roughnet.com", "rr.com", "rrohio.com", "rsub.com", "rubyridge.com", "runbox.com", "rushpost.com", "ruttolibero.com", "rvshop.com", "rxdoc.biz", "ryo.shp7.cn", "s-mail.com", "s6.weprof.it", "sabreshockey.com", "sacbeemail.com", "saeuferleber.de", "safarimail.com", "safrica.com", "sagra.lu", "sagra.lumarketing.lu", "sags-per-mail.de", "sailormoon.com", "saintly.com", "saintmail.net", "sale-sale-sale.com", "salehi.net", "salesperson.net", "samerica.com", "samilan.net", "sammimail.com", "sanfranmail.com", "sanook.com", "sapo.pt", "sativa.ro.org", "saudia.com", "sayhi.net", "sbcglobal.net", "scandalmail.com", "scarlet.nl", "scbox.one.pl", "schizo.com", "schmusemail.de", "schoolemail.com", "schoolmail.com", "schoolsucks.com", "schreib-doch-mal-wieder.de", "schweiz.org", "sci.fi", "science.com.au", "scientist.com", "scifianime.com", "scotland.com", "scotlandmail.com", "scottishmail.co.uk", "scubadiving.com", "seanet.com", "search.ua", "searchwales.com", "sebil.com", "seckinmail.com", "secret-police.com", "secretary.net", "secretservices.net", "seductive.com", "seekstoyboy.com", "seguros.com.br", "send.hu", "sendme.cz", "sent.as", "sent.at", "sent.com", "sentrismail.com", "serga.com.ar", "servemymail.com", "sesmail.com", "sex.dns-cloud.net", "sexmagnet.com", "seznam.cz", "sgbteam.hostingarif.me", "shahweb.net", "shaniastuff.com", "shared-files.de", "sharewaredevelopers.com", "sharmaweb.com", "she.com", "shinedyoureyes.com", "shitaway.cu.cc", "shitaway.usa.cc", "shockinmytown.cu.cc", "shootmail.com", "shortmail.com", "shotgun.hu", "shuf.com", "sialkotcity.com", "sialkotian.com", "sialkotoye.com", "sify.com", "silkroad.net", "sina.cn", "sina.com", "sinamail.com", "singapore.com", "singles4jesus.com", "singmail.com", "singnet.com.sg", "singpost.com", "skafan.com", "skim.com", "skizo.hu", "sky.com", "slamdunkfan.com", "slingshot.com", "slo.net", "slotter.com", "sm.westchestergov.com", "smapxsmap.net", "smileyface.comsmithemail.net", "smoothmail.com", "sms.at", "snail-mail.net", "snail-mail.ney", "snakebite.com", "sndt.net", "snet.net", "sniper.hu", "snoopymail.com", "snowboarding.com", "snowdonia.net", "socamail.com", "socceramerica.net", "soccermail.com", "soccermomz.com", "socialworker.net", "sociologist.com", "sofortmail.de", "softhome.net", "sogou.com", "sohu.com", "sol.dk", "solcon.nl", "soldier.hu", "solution4u.com", "songwriter.net", "sonnenkinder.org", "soon.com", "soulfoodcookbook.com", "sp.nl", "space-bank.com", "space-man.com", "space-ship.com", "space-travel.com", "space.com", "spaceart.com", "spacebank.com", "spacemart.com", "spacetowns.com", "spacewar.com", "spainmail.com", "spam.fassagforpresident.ga", "spameater.com", "spartapiet.com", "spazmail.com", "speedemail.net", "speedpost.net", "speedrules.com", "speedrulz.com", "speedymail.org", "sperke.net", "spils.com", "spinfinder.com", "spl.at", "spoko.pl", "sportemail.com", "sportsmail.com", "sporttruckdriver.com", "spray.no", "spray.se", "spymac.com", "srilankan.net", "ssl-mail.com", "st-davids.net", "stade.fr", "stalag13.com", "stargateradio.com", "starmail.com", "starmail.org", "starmedia.com", "starplace.com", "starspath.com", "start.com.au", "starting-point.com", "startrekmail.com", "stealthmail.com", "stipte.nl", "stockracer.com", "stoned.com", "stones.com", "stop-my-spam.pp.ua", "stopdropandroll.com", "storksite.com", "streber24.de", "stribmail.com", "strompost.com", "strongguy.com", "student.su", "studentcenter.org", "subnetwork.com", "subram.com", "sudanmail.net", "suhabi.com", "suisse.org", "sukhumvit.net", "sunpoint.net", "sunrise-sunset.com", "sunsgame.com", "sunumail.sn", "superdada.com", "supereva.it", "supermail.ru", "surat.com", "surf3.net", "surfree.com", "surfy.net", "surgical.net", "surimail.com", "survivormail.com", "swbell.net", "sweb.cz", "swedenmail.com", "sweetville.net", "swift-mail.com", "swiftdesk.com", "swingeasyhithard.com", "swingfan.com", "swipermail.zzn.com", "swirve.com", "swissinfo.org", "swissmail.com", "swissmail.net", "switchboardmail.com", "switzerland.org", "sx172.com", "syom.com", "syriamail.com", "t-online.de", "t2mail.com", "takuyakimura.com", "talk21.com", "talkcity.com", "tamil.com", "tampabay.rr.com", "tankpolice.com", "tatanova.com", "taufik.sytes.net", "taufikrt.ddns.net", "tbwt.com", "tds.net", "teachermail.net", "teachers.org", "teamdiscovery.com", "teamtulsa.net", "tech-center.com", "tech4peace.org", "techemail.com", "techie.com", "techindo.web.id", "technisamail.co.za", "technologist.com", "techpointer.com", "techscout.com", "techseek.com", "techspot.com", "teenagedirtbag.com", "tele2.at", "tele2.nl", "telebot.com", "telebot.net", "teleline.es", "telerymd.com", "teleserve.dynip.com", "telfort.nl", "telfortglasvezel.nl", "telinco.net", "telkom.net", "telpage.net", "telstra.com", "telstra.com.au", "temp.cloudns.asia", "tempmail.sytes.net", "temtulsa.net", "tenchiclub.com", "tenderkiss.com", "tennismail.com", "terminverpennt.de", "terra.cl", "terra.com", "terra.com.ar", "terra.com.br", "terra.es", "test.com", "test.de", "tfanus.com.er", "tfz.net", "thai.com", "thaimail.com", "thaimail.net", "the-african.com", "the-airforce.com", "the-aliens.com", "the-american.com", "the-animal.com", "the-army.com", "the-astronaut.com", "the-beauty.com", "the-big-apple.com", "the-biker.com", "the-boss.com", "the-brazilian.com", "the-canadian.com", "the-canuck.com", "the-captain.com", "the-chinese.com", "the-country.com", "the-cowboy.com", "the-davis-home.com", "the-dutchman.com", "the-eagles.com", "the-englishman.com", "the-fastest.net", "the-fool.com", "the-frenchman.com", "the-galaxy.net", "the-genius.com", "the-gentleman.com", "the-german.com", "the-gremlin.com", "the-hooligan.com", "the-italian.com", "the-japanese.com", "the-lair.com", "the-madman.com", "the-mailinglist.com", "the-marine.com", "the-master.com", "the-mexican.com", "the-ministry.com", "the-monkey.com", "the-newsletter.net", "the-pentagon.com", "the-police.com", "the-prayer.com", "the-professional.com", "the-quickest.com", "the-russian.com", "the-snake.com", "the-spaceman.com", "the-stock-market.com", "the-student.net", "the-whitehouse.net", "the-wild-west.com", "the18th.com", "thecoolguy.com", "thecriminals.com", "thedarkmaster097.sytes.net", "thedoghousemail.com", "thedorm.com", "theend.hu", "theglobe.com", "thegolfcourse.com", "thegooner.com", "theheadoffice.com", "theinternetemail.com", "thelanddownunder.com", "themail.com", "themillionare.net", "theoffice.net", "theplate.com", "thepokerface.com", "thepostmaster.net", "theraces.com", "theracetrack.com", "therapist.net", "thestreetfighter.com", "theteebox.com", "thewatercooler.com", "thewebpros.co.uk", "thewizzard.com", "thewizzkid.com", "thezhangs.net", "thirdage.com", "thisgirl.com", "thoic.com", "thundermail.com", "tidni.com", "timein.net", "tiscali.at", "tiscali.be", "tiscali.co.uk", "tiscali.it", "tiscali.lu", "tiscali.se", "tkcity.com", "tko.co.kr", "toast.com", "toke.com", "tom.com", "toolsource.com", "toothfairy.com", "topchat.com", "topgamers.co.uk", "topletter.com", "topmail-files.de", "topmail.com.ar", "topsurf.com", "topteam.bg", "torchmail.com", "torontomail.com", "tortenboxer.de", "totalmail.de", "totalmusic.net", "toughguy.net", "tpg.com.au", "travel.li", "trialbytrivia.com", "trimix.cn", "tritium.net", "trmailbox.com", "tropicalstorm.com", "truckers.com", "truckerz.com", "truckracer.com", "truckracers.com", "trust-me.com", "truth247.com", "truthmail.com", "tsamail.co.za", "ttml.co.in", "tunisiamail.com", "turboprinz.de", "turboprinzessin.de", "turkey.com", "tut.by", "tvstar.com", "twc.com", "twinstarsmail.com", "tycoonmail.com", "typemail.com", "u2club.com", "ua.fm", "uae.ac", "uaemail.com", "ubbi.com", "ubbi.com.br", "uboot.com", "uk2.net", "uk2k.com", "uk2net.com", "uk7.net", "uk8.net", "ukbuilder.com", "ukcool.com", "ukdreamcast.com", "ukmail.org", "ukmax.com", "ukr.net", "uku.co.uk", "ultapulta.com", "ultrapostman.com", "ummah.org", "umpire.com", "unbounded.com", "unforgettable.com", "uni.de", "uni.demailto.de", "unican.es", "unihome.com", "unite.cloudns.asia", "universal.pt", "uno.ee", "uno.it", "unofree.it", "unomail.com", "unterderbruecke.de", "uol.com.ar", "uol.com.br", "uol.com.co", "uol.com.mx", "uol.com.ve", "uole.com", "uole.com.ve", "uolmail.com", "uomail.com", "upc.nl", "upcmail.nl", "upf.org", "ureach.com", "urgentmail.biz", "usa.com", "usa.net", "usaaccess.net", "usanetmail.com", "usermail.com", "username.e4ward.com", "usma.net", "usmc.net", "uswestmail.net", "utanet.at", "uymail.com", "uyuyuy.com", "v-sexi.com", "vahoo.com", "vampirehunter.com", "varbizmail.com", "vcmail.com", "velnet.co.uk", "velocall.com", "verizon.net", "verizonmail.com", "verlass-mich-nicht.de", "versatel.nl", "veryfast.biz", "veryspeedy.net", "videotron.ca", "vinbazar.com", "violinmakers.co.uk", "vip.126.com", "vip.163.com", "vip.21cn.com", "vip.citiz.net", "vip.gr", "vip.onet.pl", "vip.qq.com", "vip.sina.com", "vipmail.ru", "virgilio.it", "virgin.net", "virginbroadband.com.au", "virtual-mail.com", "virtualactive.com", "virtualmail.com", "visitmail.com", "visitweb.com", "visto.com", "visualcities.com", "vivavelocity.com", "vivianhsu.net", "vjmail.com", "vjr.luk2.com", "vjtimail.com", "vlmail.com", "vnet.citiz.net", "vnn.vn", "vodafone.nl", "vodafonethuis.nl", "volcanomail.com", "vollbio.de", "volloeko.de", "vorscorp.mooo.com", "vorsicht-bissig.de", "vorsicht-scharf.de", "vote-democrats.com", "vote-hillary.com", "vote-republicans.com", "vote4gop.org", "votenet.com", "vp.pl", "vr9.com", "w3.to", "wahoye.com", "wales2000.net", "walla.co.il", "walla.com", "wam.co.za", "wanadoo.es", "wanadoo.fr", "war-im-urlaub.de", "warmmail.com", "warpmail.net", "warrior.hu", "wasd.dropmail.me", "waumail.com", "wbdet.com", "wearab.net", "web-mail.com.ar", "web-police.com", "web.de", "webave.com", "webcammail.com", "webcity.ca", "webdream.com", "webinbox.com", "webindia123.com", "webjump.com", "webmail.bellsouth.net", "webmail.co.yu", "webmail.co.za", "webmail.hu", "webmails.com", "webname.com", "webprogramming.com", "webstation.com", "websurfer.co.za", "webtopmail.com", "weedmail.com", "weekmail.com", "weekonline.com", "wegas.ru", "wehshee.com", "weibsvolk.de", "weibsvolk.org", "weinenvorglueck.de", "welsh-lady.com", "westnet.com.au", "whale-mail.com", "whartontx.com", "wheelweb.com", "whipmail.com", "whoever.com", "whoopymail.com", "whtjddn.33mail.com", "wickedmail.com", "wideopenwest.com", "wildmail.com", "will-hier-weg.de", "windowslive.com", "windrivers.net", "windstream.net", "wingnutz.com", "winmail.com.au", "winning.com", "wir-haben-nachwuchs.de", "wir-sind-cool.org", "wirsindcool.de", "witty.com", "wiz.cc", "wkbwmail.com", "wo.com.cn", "woh.rr.com", "wolf-web.com", "wolke7.net", "wombles.com", "women-at-work.org", "wonder-net.com", "wongfaye.com", "wooow.it", "worker.com", "workmail.com", "worldemail.com", "worldmailer.com", "worldnet.att.net", "wormseo.cn", "wosaddict.com", "wouldilie.com", "wovz.cu.cc", "wowgirl.com", "wowmail.com", "wowway.com", "wp.pl", "wptamail.com", "wrestlingpages.com", "wrexham.net", "writeme.com", "writemeback.com", "wrongmail.com", "wsfr.luk2.com", "wtvhmail.com", "wwdg.com", "www.com", "www.dmtc.edu.pl", "www.e4ward.com", "www2000.net", "wx88.net", "wxs.net", "wyrm.supernews.com", "x-mail.net", "x-networks.net", "x5g.com", "xaker.ru", "xaynetsss.ddns.net", "xing886.uu.gl", "xmail.com", "xmastime.com", "xms.nl", "xmsg.com", "xnmail.mooo.com", "xoom.com", "xoommail.com", "xpressmail.zzn.com", "xs4all.nl", "xsecurity.org", "xsmail.com", "xtra.co.nz", "xuno.com", "xxx.sytes.net", "xzapmail.com", "y7mail.com", "ya.ru", "yada-yada.com", "yaho.com", "yahoo.ae", "yahoo.ar", "yahoo.at", "yahoo.be", "yahoo.ca", "yahoo.ch", "yahoo.cl", "yahoo.cn", "yahoo.co", "yahoo.co.id", "yahoo.co.il", "yahoo.co.in", "yahoo.co.jp", "yahoo.co.kr", "yahoo.co.nz", "yahoo.co.th", "yahoo.co.uk", "yahoo.co.za", "yahoo.com", "yahoo.com.ar", "yahoo.com.au", "yahoo.com.br", "yahoo.com.cn", "yahoo.com.co", "yahoo.com.hk", "yahoo.com.is", "yahoo.com.mx", "yahoo.com.my", "yahoo.com.ph", "yahoo.com.ru", "yahoo.com.sg", "yahoo.com.tr", "yahoo.com.tw", "yahoo.com.vn", "yahoo.cz", "yahoo.de", "yahoo.dk", "yahoo.es", "yahoo.fi", "yahoo.fr", "yahoo.gr", "yahoo.hu", "yahoo.id", "yahoo.ie", "yahoo.in", "yahoo.it", "yahoo.jp", "yahoo.mx", "yahoo.my", "yahoo.nl", "yahoo.no", "yahoo.ph", "yahoo.pl", "yahoo.pt", "yahoo.ro", "yahoo.ru", "yahoo.se", "yahoo.uk", "yahoo.vn", "yahoofs.com", "yalla.com", "yalla.com.lb", "yalook.com", "yam.com", "yandex.com", "yandex.mail", "yandex.pl", "yandex.ru", "yandex.ua", "yapost.com", "yawmail.com", "yclub.com", "yeah.net", "yebox.com", "yehaa.com", "yehey.com", "yemenmail.com", "yepmail.net", "yert.ye.vc", "yesbox.net", "yesey.net", "yifan.net", "ymail.com", "ynnmail.com", "yogotemail.com", "yopmail.biz.st", "yopmail.xxi2.com", "yopolis.com", "yopweb.com", "youareadork.com", "youmailr.com", "youpy.com", "your-house.com", "your-mail.com", "yourinbox.com", "yourlifesucks.cu.cc", "yourlover.net", "yourname.ddns.org", "yourname.freeservers.com", "yournightmare.com", "yours.com", "yourssincerely.com", "yoursubdomain.findhere.com", "yoursubdomain.zzn.com", "yourteacher.net", "yourwap.com", "youvegotmail.net", "yuuhuu.net", "yyhmail.com", "zahadum.com", "zcities.com", "zdnetmail.com", "zeeks.com", "zeepost.nl", "zensearch.net", "zhaowei.net", "ziggo.nl", "zionweb.org", "zip.net", "zipido.com", "ziplip.com", "zipmail.com", "zipmail.com.br", "zipmax.com", "zmail.ru", "zoho.com", "zonnet.nl", "zoominternet.net", "zubee.com", "zuzzurello.com", "zwallet.com", "zweb.in", "zybermail.com", "zydecofan.com", "zzn.com", "zzom.co.uk", "zzom.co.uk1033edge.com", "zzom.co.ukgmail.com", "zzom.co.ukhitmail.com", "zzom.co.uksina.com0-mail.com", ) )
import pytest import pandas._testing as tm class TestDataFrameTake: def test_take(self, float_frame): # homogeneous order = [3, 1, 2, 0] for df in [float_frame]: result = df.take(order, axis=0) expected = df.reindex(df.index.take(order)) tm.assert_frame_equal(result, expected) # axis = 1 result = df.take(order, axis=1) expected = df.loc[:, ["D", "B", "C", "A"]] tm.assert_frame_equal(result, expected, check_names=False) # negative indices order = [2, 1, -1] for df in [float_frame]: result = df.take(order, axis=0) expected = df.reindex(df.index.take(order)) tm.assert_frame_equal(result, expected) result = df.take(order, axis=0) tm.assert_frame_equal(result, expected) # axis = 1 result = df.take(order, axis=1) expected = df.loc[:, ["C", "B", "D"]] tm.assert_frame_equal(result, expected, check_names=False) # illegal indices msg = "indices are out-of-bounds" with pytest.raises(IndexError, match=msg): df.take([3, 1, 2, 30], axis=0) with pytest.raises(IndexError, match=msg): df.take([3, 1, 2, -31], axis=0) with pytest.raises(IndexError, match=msg): df.take([3, 1, 2, 5], axis=1) with pytest.raises(IndexError, match=msg): df.take([3, 1, 2, -5], axis=1) def test_take_mixed_type(self, float_string_frame): # mixed-dtype order = [4, 1, 2, 0, 3] for df in [float_string_frame]: result = df.take(order, axis=0) expected = df.reindex(df.index.take(order)) tm.assert_frame_equal(result, expected) # axis = 1 result = df.take(order, axis=1) expected = df.loc[:, ["foo", "B", "C", "A", "D"]] tm.assert_frame_equal(result, expected) # negative indices order = [4, 1, -2] for df in [float_string_frame]: result = df.take(order, axis=0) expected = df.reindex(df.index.take(order)) tm.assert_frame_equal(result, expected) # axis = 1 result = df.take(order, axis=1) expected = df.loc[:, ["foo", "B", "D"]] tm.assert_frame_equal(result, expected) def test_take_mixed_numeric(self, mixed_float_frame, mixed_int_frame): # by dtype order = [1, 2, 0, 3] for df in [mixed_float_frame, mixed_int_frame]: result = df.take(order, axis=0) expected = df.reindex(df.index.take(order)) tm.assert_frame_equal(result, expected) # axis = 1 result = df.take(order, axis=1) expected = df.loc[:, ["B", "C", "A", "D"]] tm.assert_frame_equal(result, expected)
import requests baseURL = 'https://storytelling.blackrock.com/insights/api/stories/' def getAllPages(cnt): pages = [] for i in range(1, cnt+1): params = {'page': i} resp = requests.get(baseURL, params=params) pages.append(resp.json()) return pages def getAllStories(pages): return [story for page in pages for story in page['results']] if __name__ == "__main__": pass
""" This is the config file for the rig, it contains functions that set sane defaults for different bits of the rig, at some point this may be converted so that those defaults can be saved in the database, but that may not really matter since these measures will be taken elsewhere too This file will be used by rigIO during init so it is fine to call stuff directly """ clx_defaults={ 'protocolPath':{ 'HILL_RIG':'C:/tom_axon', }, } mcc_defaults={ 'VC_Holding':-.06, 'VC_HoldingEnable':0, 'VC_PrimarySignal':0, 'VC_PrimarySignalGain':1, 'VC_PrimarySignalLPF':2000, 'IC_Holding':0, 'IC_HoldingEnable':0, 'IC_PrimarySignal':7, 'IC_PrimarySignalGain':1, 'IC_PrimarySignalLPF':2000, } esp_defaults={ 'Speed':(1,.1), 'FeLim':8, #TODO 'kp kd, or ki needed to fix felim nonsense' 'MotorOn':0, } #TODO move the functions themselves into their own file? def mcc(ctrl): mcc_mode_dict={'VC':0,'IC':2} for channel in range(ctrl.mcNum): ctrl.selectMC(channel) for key,value in mcc_defaults.items(): ctrl.SetMode(mcc_mode_dict[key[:2]]) getattr(ctrl,'Set'+key[3:])(value) def esp(ctrl): for key,value in esp_defaults.items(): #FIXME some of these things do need state tracking... if hasattr(value,'__iter__'): getattr(ctrl,'set'+key)(*value) else: getattr(ctrl,'set'+key)(value) def set_all_defaults(rigio): #mcc(rigio.ctrlDict['mccControl']) #FIXME WARNING DANGEROUS!!! on a crash this could fry cells! esp(rigio.ctrlDict['espControl'])
from typing import ( Union, ) from ssz.exceptions import ( DeserializationError, SerializationError, ) from ssz.sedes.base import ( BaseCompositeSedes, ) from ssz.utils import ( merkleize, pack_bytes, ) BytesOrByteArray = Union[bytes, bytearray] class ByteVector(BaseCompositeSedes[BytesOrByteArray, bytes]): def __init__(self, size: int) -> None: if size < 0: raise TypeError("Size cannot be negative") self.size = size # # Size # is_fixed_sized = True def get_fixed_size(self): return self.size # # Serialization # def serialize(self, value: BytesOrByteArray) -> bytes: if len(value) != self.size: raise SerializationError( f"Cannot serialize length {len(value)} byte-string as bytes{self.size}" ) return value # # Deserialization # def deserialize(self, data: bytes) -> bytes: if len(data) != self.size: raise DeserializationError( f"Cannot deserialize length {len(data)} data as bytes{self.size}" ) return data # # Tree hashing # def hash_tree_root(self, value: bytes) -> bytes: serialized_value = self.serialize(value) return merkleize(pack_bytes(serialized_value)) bytes4 = ByteVector(4) bytes32 = ByteVector(32) bytes48 = ByteVector(48) bytes96 = ByteVector(96)
from essence import World, System, Component, DuplicateComponentError, NoSuchComponentError import pytest from fixtures import world def test_can_add_components_to_entities(world): entity = world.create_entity() component = Component() assert not world.has_component(entity, Component) world.add_component(entity, component) assert world.has_component(entity, Component) assert world.get_component(entity, Component) is component def test_can_remove_components(world): entity = world.create_entity() component = Component() world.add_component(entity, component) assert world.has_component(entity, Component) world.remove_component(entity, Component) assert not world.has_component(entity, Component) def test_adding_a_duplicate_component_is_an_error(world): entity = world.create_entity() world.add_component(entity, Component()) with pytest.raises(DuplicateComponentError): world.add_component(entity, Component()) def test_getting_a_non_existent_component_is_an_error(world): entity = world.create_entity() with pytest.raises(NoSuchComponentError): world.get_component(entity, Component) def test_can_pass_a_default_when_getting_a_component(world): entity = world.create_entity() assert world.get_component(entity, Component, missing="foo") == "foo"
from __future__ import print_function # Import smorgasbord import sys import os import pdb current_module = sys.modules[__name__] import numpy as np import scipy.stats import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt import astropy.io.fits import astropy.wcs import astropy.convolution import ChrisFuncs # Function to sum all elements in an ellipse centred on the middle of a given array # Args: Array, semi-major axis (pix), axial ratio, position angle (deg), i & j coords of centre of ellipse # Returns: Numpy array containing the sum of the pixel values in the ellipse, total number of pixels counted, and an array containing the pixel values def EllipseSum(array, rad, axial_ratio, angle, i_centre, j_centre): # Create slice of input array, containing only the region of interest i_cutout_min = int(np.floor(max([0, i_centre-rad]))) i_cutout_max = int(np.ceil(min([(array.shape)[0], i_centre+rad]))) j_cutout_min = int(np.floor(max([0, j_centre-rad]))) j_cutout_max = int(np.ceil(min([(array.shape)[1], j_centre+rad]))) array_slice = array[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] i_centre_slice = i_centre - i_cutout_min j_centre_slice = j_centre - j_cutout_min if array[int(i_centre),int(j_centre)]!=array_slice[int(i_centre_slice),int(j_centre_slice)]: if np.isnan(array[int(i_centre),int(j_centre)]==False) and np.isnan(array_slice[int(i_centre_slice),int(j_centre_slice)]==False): print('SEVERE ERROR: EllipseSum check failed.') pdb.set_trace() else: array = array_slice i_centre = i_centre_slice j_centre = j_centre_slice # Define semi-major & semi-minor axes, then convert input angle to radians semi_maj = float(rad) semi_min = float(rad) / float(axial_ratio) angle = np.radians(float(angle)) # Create meshgrids with which to access i & j coordinates for ellipse calculations i_linespace = np.linspace(0, array.shape[0]-1, array.shape[0]) j_linespace = np.linspace(0, array.shape[1]-1, array.shape[1]) i_grid, j_grid = np.meshgrid(i_linespace, j_linespace, indexing='ij') # Use meshgrids to create array identifying which coordinates lie within ellipse i_trans = -(j_grid-float(j_centre))*np.sin(angle) + (i_grid-float(i_centre))*np.cos(angle) j_trans = (j_grid-float(j_centre))*np.cos(angle) + (i_grid-float(i_centre))*np.sin(angle) ellipse_check = (j_trans**2 / semi_maj**2) + (i_trans**2 / semi_min**2 ) # Calculate flux & pixels in aperture, and store pixel values ellipse_where = np.where( (ellipse_check<=1) & (np.isnan(array)==False) ) ellipse_tot = sum( array[ ellipse_where ] ) ellipse_count = ellipse_where[0].shape[0] ellipse_pix = array[ ellipse_where ] ellipse_nan = np.where( (ellipse_check<=1) & (np.isnan(array)==True) ) # Return results return [ellipse_tot, ellipse_count, ellipse_pix, ellipse_nan] # Function to sum all elements in an annulus centred upon the middle of the given array # Args: Array, semi-major axis of inside edge of annulus (pix), width of annulus (pix), axial ratio, position angle (deg), i & j coords of centre of ellipse # Returns: Numpy array containing the sum of the pixel values in the annulus, the total number of pixels counted, and an array containing the pixel values def AnnulusSum(array, rad_inner, width, axial_ratio, angle, i_centre, j_centre): # Create slice of input array, containing only the region of interest i_cutout_min = int(np.floor(max([0, i_centre-(rad_inner+width)]))) i_cutout_max = int(np.ceil(min([(array.shape)[0], i_centre+(rad_inner+width)]))) j_cutout_min = int(np.floor(max([0, j_centre-(rad_inner+width)]))) j_cutout_max = int(np.ceil(min([(array.shape)[1], j_centre+(rad_inner+width)]))) array_slice = array[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] i_centre_slice = i_centre - i_cutout_min j_centre_slice = j_centre - j_cutout_min if array[int(i_centre),int(j_centre)]!=array_slice[int(i_centre_slice),int(j_centre_slice)]: if np.isnan(array[int(i_centre),int(j_centre)]==False) and np.isnan(array_slice[int(i_centre_slice),int(j_centre_slice)]==False): print('SEVERE ERROR: AnnulusSum check failed.') pdb.set_trace() else: array = array_slice i_centre = i_centre_slice j_centre = j_centre_slice # Define semi-major & semi-minor axes, then convert input angle to radians semi_maj_inner = float(rad_inner) semi_min_inner = float(semi_maj_inner) / float(axial_ratio) semi_maj_outer = float(rad_inner) + float(width) semi_min_outer = float(semi_maj_outer) / float(axial_ratio) angle = np.radians(float(angle)) # Create meshgrids with which to access i & j coordinates for ellipse calculations i_linespace = np.linspace(0, array.shape[0]-1, array.shape[0]) j_linespace = np.linspace(0, array.shape[1]-1, array.shape[1]) i_grid, j_grid = np.meshgrid(i_linespace, j_linespace, indexing='ij') # Use meshgrids to create array identifying which coordinates lie within inner ellipse i_trans = -(j_grid-float(j_centre))*np.sin(angle) + (i_grid-float(i_centre))*np.cos(angle) j_trans = (j_grid-float(j_centre))*np.cos(angle) + (i_grid-float(i_centre))*np.sin(angle) ellipse_check_inner = (j_trans**2 / semi_maj_inner**2) + (i_trans**2 / semi_min_inner**2 ) # Use meshgrids to create array identifying which coordinates lie within outer ellipse i_trans = -(j_grid-float(j_centre))*np.sin(angle) + (i_grid-float(i_centre))*np.cos(angle) j_trans = (j_grid-float(j_centre))*np.cos(angle) + (i_grid-float(i_centre))*np.sin(angle) ellipse_check_outer = (j_trans**2 / semi_maj_outer**2) + (i_trans**2 / semi_min_outer**2 ) # Calculate flux & pixels in aperture, and store pixel values annulus_where = np.where( (ellipse_check_outer<=1) & (ellipse_check_inner>1) & (np.isnan(array)==False) ) annulus_tot = sum( array[ annulus_where ] ) annulus_count = annulus_where[0].shape[0] annulus_pix = array[ annulus_where ] annulus_nan = np.where( (ellipse_check_outer<=1) & (ellipse_check_inner>1) & (np.isnan(array)==True) ) # Return results return [annulus_tot, annulus_count, annulus_pix, annulus_nan] # Function to make annular photometry faster by pre-preparing arrays of transposed coords that are to be repeatedly used # Args: Array, semi-major axis of inside edge of annulus (pix), width of annulus (pix), axial ratio, position angle (deg), i & j coords of centre of ellipse # Returns: List containing i & j transposed coords def AnnulusQuickPrepare(array, angle, i_centre, j_centre): # Convert input angle to radians angle = np.radians(float(angle)) # Create meshgrids with which to access i & j coordinates for ellipse calculations i_linespace = np.linspace(0, array.shape[0]-1, array.shape[0]) j_linespace = np.linspace(0, array.shape[1]-1, array.shape[1]) i_grid, j_grid = np.meshgrid(i_linespace, j_linespace, indexing='ij') # Use meshgrids to create array identifying which coordinates lie within inner ellipse i_trans = -(j_grid-float(j_centre))*np.sin(angle) + (i_grid-float(i_centre))*np.cos(angle) j_trans = (j_grid-float(j_centre))*np.cos(angle) + (i_grid-float(i_centre))*np.sin(angle) # Return results return (i_trans, j_trans) # Function to sum all elements in an annulus centred upon the middle of the given array, usingpre-prepared transposed coord arrays # Args: Array, semi-major axis of inside edge of annulus (pix), width of annulus (pix), axial ratio, position angle (deg), i & j coords of centre of ellipse, i & j transposed coord arrays # Returns: Numpy array containing the sum of the pixel values in the annulus, the total number of pixels counted, and an array containing the pixel values def AnnulusQuickSum(array, rad_inner, width, axial_ratio, angle, i_centre, j_centre, i_trans, j_trans): # Create slice of input array, containing only the region of interest i_cutout_min = int(np.floor(max([0, i_centre-(rad_inner+width)]))) i_cutout_max = int(np.ceil(min([(array.shape)[0], i_centre+(rad_inner+width)]))) j_cutout_min = int(np.floor(max([0, j_centre-(rad_inner+width)]))) j_cutout_max = int(np.ceil(min([(array.shape)[1], j_centre+(rad_inner+width)]))) array_slice = array[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] i_centre_slice = i_centre - i_cutout_min j_centre_slice = j_centre - j_cutout_min if array[int(i_centre),int(j_centre)]!=array_slice[int(i_centre_slice),int(j_centre_slice)]: if np.isnan(array[int(i_centre),int(j_centre)]==False) and np.isnan(array_slice[int(i_centre_slice),int(j_centre_slice)]==False): print('SEVERE ERROR: AnnulusQuickSum check failed.') pdb.set_trace() else: array = array_slice i_centre = i_centre_slice j_centre = j_centre_slice # Make corresponding slices of transposed coord arrays i_trans = i_trans[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] j_trans = j_trans[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] # Define semi-major & semi-minor axes, then convert input angle to radians semi_maj_inner = float(rad_inner) semi_min_inner = float(semi_maj_inner) / float(axial_ratio) semi_maj_outer = float(rad_inner) + float(width) semi_min_outer = float(semi_maj_outer) / float(axial_ratio) angle = np.radians(float(angle)) # Use meshgrids to create array identifying which coordinates lie within inner & outer ellipses ellipse_check_inner = (j_trans**2 / semi_maj_inner**2) + (i_trans**2 / semi_min_inner**2 ) # Use meshgrids to create array identifying which coordinates lie within outer ellipse ellipse_check_outer = (j_trans**2 / semi_maj_outer**2) + (i_trans**2 / semi_min_outer**2 ) # Calculate flux & pixels in aperture, and store pixel values annulus_where = np.where( (ellipse_check_outer<=1) & (ellipse_check_inner>1) & (np.isnan(array)==False) ) annulus_tot = sum( array[ annulus_where ] ) annulus_count = annulus_where[0].shape[0] annulus_pix = array[ annulus_where ] # Return results return [annulus_tot, annulus_count, annulus_pix] # Function to sum all elements in an annulus centred upon the middle of the given array, using pre-prepared transposed coord arrays # Args: Array, semi-major axis of ellipse (pix), position angle (deg), i & j coords of centre of ellipse, i & j transposed coord arrays # Returns: Numpy array containing the sum of the pixel values in the ellipse, the total number of pixels counted, and an array containing the pixel values def EllipseQuickSum(array, rad, axial_ratio, angle, i_centre, j_centre, i_trans, j_trans): # Create slice of input array, containing only the region of interest i_cutout_min = int(np.floor(max([0, i_centre-rad]))) i_cutout_max = int(np.ceil(min([(array.shape)[0], i_centre+rad]))) j_cutout_min = int(np.floor(max([0, j_centre-rad]))) j_cutout_max = int(np.ceil(min([(array.shape)[1], j_centre+rad]))) array_slice = array[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] i_centre_slice = i_centre - i_cutout_min j_centre_slice = j_centre - j_cutout_min if array[int(i_centre),int(j_centre)]!=array_slice[int(i_centre_slice),int(j_centre_slice)]: if np.isnan(array[int(i_centre),int(j_centre)]==False) and np.isnan(array_slice[int(i_centre_slice),int(j_centre_slice)]==False): print('SEVERE ERROR: EllipseQuickSum check failed.') pdb.set_trace() else: array = array_slice i_centre = i_centre_slice j_centre = j_centre_slice # Make corresponding slices of transposed coord arrays i_trans = i_trans[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] j_trans = j_trans[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] # Define semi-major & semi-minor axes, then convert input angle to radians semi_maj = float(rad) semi_min = float(semi_maj) / float(axial_ratio) angle = np.radians(float(angle)) # Use meshgrids to create array identifying which coordinates lie within ellipses ellipse_check = (j_trans**2 / semi_maj**2) + (i_trans**2 / semi_min**2 ) # Calculate flux & pixels in aperture, and store pixel values ellipse_where = np.where( (ellipse_check<=1) & (np.isnan(array)==False) ) ellipse_tot = sum( array[ ellipse_where ] ) ellipse_count = ellipse_where[0].shape[0] ellipse_pix = array[ ellipse_where ] # Return results return [ellipse_tot, ellipse_count, ellipse_pix] # Function to return a mask identifying all pixels within an ellipse of given parameters # Args: Array, semi-major axis (pix), axial ratio, position angle (deg), i & j coords of centre of ellipse # Returns: Mask array of same dimensions as input array where pixels that lie within ellipse have value 1 def EllipseMask(array, rad, axial_ratio, angle, i_centre, j_centre): # Define semi-major & semi-minor axes, then convert input angle to radians semi_maj = float(rad) semi_min = float(rad) / float(axial_ratio) angle = np.radians(float(angle)) # Create meshgrids with which to access i & j coordinates for ellipse calculations i_linespace = np.linspace(0, array.shape[0]-1, array.shape[0]) j_linespace = np.linspace(0, array.shape[1]-1, array.shape[1]) i_grid, j_grid = np.meshgrid(i_linespace, j_linespace, indexing='ij') # Use meshgrids to create array identifying which coordinates lie within ellipse i_trans = -(j_grid-float(j_centre))*np.sin(angle) + (i_grid-float(i_centre))*np.cos(angle) j_trans = (j_grid-float(j_centre))*np.cos(angle) + (i_grid-float(i_centre))*np.sin(angle) ellipse_check = (j_trans**2 / semi_maj**2) + (i_trans**2 / semi_min**2 ) # Create ellipse mask ellipse_mask = np.zeros([array.shape[0], array.shape[1]]) ellipse_mask[ np.where( ellipse_check<=1 ) ] = 1.0 # Return array return ellipse_mask # Function to sum all pixel elements inside a given circle... the old-fashioned way # Args: Array to be used, i & j coordinates of centre of circle, radius of circle # Returns: Sum of elements within circle, number of pixels within circle def CircleSum(fits, i_centre, j_centre, r): i_centre, j_centre, r = int(i_centre), int(j_centre), int(r) ap_sum = 0.0 ap_pix = 0.0 ap_values = [] for i in range(-r, r+1): for j in range(-r, r+1): if i**2.0 + j**2.0 <= r**2.0: try: ap_sum += fits[i_centre+i, j_centre+j] ap_pix += 1.0 ap_values.append(fits[i_centre+i, j_centre+j]) except: continue return [ap_sum, ap_pix, ap_values] # Function to sum all pixel elements inside a given circle... the old-fashioned way # Args: Array to be used, i & j coordinates of centre of circle, radius of circle # Returns: Sum of elements within circle, number of pixels within circle def CircleAnnulusSum(fits, i_centre, j_centre, r, width): i_centre, j_centre, r, width = int(i_centre), int(j_centre), int(r), int(width) ann_sum = 0.0 ann_pix = 0.0 ann_values = [] for i in range(-r, r+1): for j in range(-r, r+1): if (i**2.0 + j**2.0 > r**2.0) and (i**2.0 + j**2.0 <= (r+width)**2.0): try: ann_sum += fits[i_centre+i, j_centre+j] ann_pix += 1.0 ann_values.append(fits[i_centre+i, j_centre+j]) except: continue return [ann_sum, ann_pix, ann_values] # Function to sum all elements in an ellipse centred on the middle of an array that has been resized to allow better pixel sampling # Args: Array, semi-major axis (pix), axial ratio, position angle (deg), i & j coords of centre of ellipse, upscaling factor # Returns: Numpy array containing the sum of the pixel values in the ellipse, the total number of pixels counted, and an array containing the pixel values def EllipseSumUpscale(cutout, rad, axial_ratio, angle, i_centre, j_centre, upscale=1): # Create slice of input array, containing only the region of interest i_cutout_min = int(np.floor(max([0, i_centre-rad]))) i_cutout_max = int(np.ceil(min([(cutout.shape)[0], i_centre+rad]))) j_cutout_min = int(np.floor(max([0, j_centre-rad]))) j_cutout_max = int(np.ceil(min([(cutout.shape)[1], j_centre+rad]))) cutout_slice = cutout[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] i_centre_slice = i_centre - i_cutout_min j_centre_slice = j_centre - j_cutout_min # Produce integer versions of values i_centre_int, j_centre_int = int(round(i_centre)), int(round(j_centre)) i_centre_slice_int, j_centre_slice_int = int(round(i_centre_slice)), int(round(j_centre_slice)) # Check that sliced coordinates are compatible with the original coordinates if cutout[i_centre_int,j_centre_int]!=cutout[i_centre_slice_int,j_centre_slice_int]: if np.isnan(cutout[i_centre_int,j_centre_int]==False) and np.isnan(cutout_slice[i_centre_slice_int,j_centre_slice_int]==False): print('SEVERE ERROR: EllipseSumUpscale check failed.') pdb.set_trace() else: cutout = cutout_slice i_centre = i_centre_slice j_centre = j_centre_slice # Resize array to increase pixel sampling, cupdate centre coords, and downscale pixel values accordinly to preserve flux cutout_inviolate = np.copy(cutout) cutout = np.zeros([cutout_inviolate.shape[0]*upscale, cutout_inviolate.shape[1]*upscale]) scipy.ndimage.zoom(cutout_inviolate, upscale, output=cutout, order=0) cutout *= float(upscale)**-2.0 i_centre = float(i_centre) * float(upscale) j_centre = float(j_centre) * float(upscale) # Define semi-major & semi-minor axes, then convert input angle to radians semi_maj = float(rad) * float(upscale) semi_min = semi_maj / float(axial_ratio) angle = np.radians(float(angle)) # Create meshgrids with which to access i & j coordinates for ellipse calculations i_linespace = np.linspace(0, cutout.shape[0]-1, cutout.shape[0]) j_linespace = np.linspace(0, cutout.shape[1]-1, cutout.shape[1]) i_grid, j_grid = np.meshgrid(i_linespace, j_linespace, indexing='ij') # Use meshgrids to create array identifying which coordinates lie within ellipse i_trans = -(j_grid-float(j_centre))*np.sin(angle) + (i_grid-float(i_centre))*np.cos(angle) j_trans = (j_grid-float(j_centre))*np.cos(angle) + (i_grid-float(i_centre))*np.sin(angle) ellipse_check = (j_trans**2 / semi_maj**2) + (i_trans**2 / semi_min**2 ) # Calculate flux & pixels in aperture, and store pixel values ellipse_where = np.where( (ellipse_check<=1) & (np.isnan(cutout)==False) ) ellipse_tot = sum( cutout[ ellipse_where ] ) ellipse_count = ellipse_where[0].shape[0] ellipse_pix = cutout[ ellipse_where ] # Scale output values down to what they would've been for original array ellipse_count *= float(upscale)**-2.0 # Return results return [ellipse_tot, ellipse_count, ellipse_pix] # Function to sum all elements in an annulus centred upon the middle of an array that has been resized to allow better pixel sampling # Args: Array, semi-major axis of inside edge of annulus (pix), width of annulus (pix), axial ratio, position angle (deg), i & j coords of centre of ellipse, upscaling factor # Returns: Numpy array containing the sum of the pixel values in the annulus, the total number of pixels counted, and an array containing the pixel values def AnnulusSumUpscale(cutout, rad_inner, width, axial_ratio, angle, i_centre, j_centre, upscale=1): # Create slice of input array, containing only the region of interest i_cutout_min = int(np.floor(max([0, i_centre-(rad_inner+width)]))) i_cutout_max = int(np.ceil(min([(cutout.shape)[0], i_centre+(rad_inner+width)]))) j_cutout_min = int(np.floor(max([0, j_centre-(rad_inner+width)]))) j_cutout_max = int(np.ceil(min([(cutout.shape)[1], j_centre+(rad_inner+width)]))) cutout_slice = cutout[ int(round(i_cutout_min)):int(round(i_cutout_max))+1, int(round(j_cutout_min)):int(round(j_cutout_max))+1 ] i_centre_slice = i_centre - i_cutout_min j_centre_slice = j_centre - j_cutout_min # Produce integer versions of values i_centre_int, j_centre_int = int(round(i_centre)), int(round(j_centre)) i_centre_slice_int, j_centre_slice_int = int(round(i_centre_slice)), int(round(j_centre_slice)) # Check that sliced coordinates are compatible with the original coordinates if cutout[i_centre_int,j_centre_int]!=cutout[i_centre_slice_int,j_centre_slice_int]: if np.isnan(cutout[i_centre_int,j_centre_int]==False) and np.isnan(cutout_slice[i_centre_slice_int,j_centre_slice_int]==False): print('SEVERE ERROR: AnnulusSumUpscale check failed.') pdb.set_trace() else: cutout = cutout_slice i_centre = i_centre_slice j_centre = j_centre_slice # Resize array to increase pixel sampling, update centre coords, and downscale pixel values accordinly to preserve flux cutout_inviolate = np.copy(cutout) cutout = np.zeros([cutout_inviolate.shape[0]*upscale, cutout_inviolate.shape[1]*upscale]) scipy.ndimage.zoom(cutout_inviolate, upscale, output=cutout, order=0) cutout *= float(upscale)**-2.0 i_centre = float(i_centre) * float(upscale) j_centre = float(j_centre) * float(upscale) # Define semi-major & semi-minor axes, then convert input angle to radians semi_maj_inner = float(rad_inner) * float(upscale) semi_min_inner = semi_maj_inner / float(axial_ratio) semi_maj_outer = ( float(rad_inner) * float(upscale) ) + ( float(width) * float(upscale) ) semi_min_outer = semi_maj_outer / float(axial_ratio) angle = np.radians(float(angle)) # Create meshgrids with which to access i & j coordinates for ellipse calculations i_linespace = np.linspace(0, cutout.shape[0]-1, cutout.shape[0]) j_linespace = np.linspace(0, cutout.shape[1]-1, cutout.shape[1]) i_grid, j_grid = np.meshgrid(i_linespace, j_linespace, indexing='ij') # Use meshgrids to create cutout identifying which coordinates lie within inner ellipse i_trans = -(j_grid-float(j_centre))*np.sin(angle) + (i_grid-float(i_centre))*np.cos(angle) j_trans = (j_grid-float(j_centre))*np.cos(angle) + (i_grid-float(i_centre))*np.sin(angle) ellipse_check_inner = (j_trans**2 / semi_maj_inner**2) + (i_trans**2 / semi_min_inner**2 ) # Use meshgrids to create cutout identifying which coordinates lie within outer ellipse i_trans = -(j_grid-float(j_centre))*np.sin(angle) + (i_grid-float(i_centre))*np.cos(angle) j_trans = (j_grid-float(j_centre))*np.cos(angle) + (i_grid-float(i_centre))*np.sin(angle) ellipse_check_outer = (j_trans**2 / semi_maj_outer**2) + (i_trans**2 / semi_min_outer**2 ) # Calculate flux & pixels in aperture, and store pixel values annulus_where = np.where( (ellipse_check_outer<=1) & (ellipse_check_inner>1) & (np.isnan(cutout)==False) ) annulus_tot = sum( cutout[ annulus_where ] ) annulus_count = annulus_where[0].shape[0] annulus_pix = cutout[ annulus_where ] # Scale output values down to what they would've been for original array annulus_count *= float(upscale)**-2.0 # Return results return [annulus_tot, annulus_count, annulus_pix] # Function to iteratively calculate SPIRE aperture noise of photometry cutout using randomly-placed (annular-background-subtracted) circular aperture # Args: Map, radius of aperture (pix), area of aperture (pix), boolean of whether or not to sky-subtract the noise apertures, relative radius of inner edge of annulus, relative width of annulus, angle of source ellipse, axial ratio of source ellipse # Returns: Aperture standard deviation, and list of mean background values, list of aperture sum values def CircularApertureStandardDeviationFinder(fits, area, ann=True, ann_inner=1.5, ann_width=1.0, angle=0.0, axial_ratio=1.0, apertures=100): # Calculate aperture's radius from given circular area rad = np.sqrt(area/np.pi) # Define width of border if ann==True: factor = ann_inner + ann_width elif ann==False: factor = 1.0 # Define exclusion zone semi_maj = ( area / (axial_ratio*np.pi) )**0.5 source_i_centre, source_j_centre = int(round(float(fits.shape[0])/2.0)), int(round(float(fits.shape[1])/2.0)) exclusion_mask = ChrisFuncs.EllipseMask(fits, semi_maj, axial_ratio, angle, source_i_centre, source_j_centre) # Definine initial values and initiate loop if rad < 2: rad = 2 # Define limits for fixed sigma-clip fits_clip = ChrisFuncs.SigmaClip(fits[ np.where(exclusion_mask==0) ], sigma_thresh=5.0, median=True, no_zeros=True) clip_upper = fits_clip[1] + (3.0 * fits_clip[0]) clip_lower = fits_clip[1] - (3.0 * fits_clip[0]) # Loop over apertures ap_sum_array = [] bg_mean_array = [] rejects_array = [] clip_frac_array = [] old_school_ap_sum_array = [] a = 0 b = 0 sum_ratio_array = [] while a<apertures*2.5: # Generate box coordinates, excluding cutout border, and target source ap_border = int((factor*rad)+1) neverending = 1 while neverending > 0: b += 1 neverending = 1 i_centre = np.random.randint(ap_border, fits.shape[0]-ap_border) j_centre = np.random.randint(ap_border, fits.shape[1]-ap_border) # Do crude check that generated coords do not intersect source if ( abs(0.5*fits.shape[0] - i_centre) < rad ) and ( abs(0.5*fits.shape[1] - j_centre) < rad ): continue # Do sophisticated check that generated coords do not intersect source exclusion_cutout = exclusion_mask[ i_centre-(rad+1):i_centre+(rad+1) , j_centre-(rad+1):j_centre+(rad+1) ] exclusion_sum = np.sum(exclusion_cutout) if exclusion_sum>0: continue else: break # Extract slice around aperture; if slice has either dimension 0, then continue cutout = fits[ i_centre-(rad*factor+1):i_centre+(rad*factor+1) , j_centre-(rad*factor+1):j_centre+(rad*factor+1) ] box_centre = int(round(cutout.shape[0]/2.0)) if cutout.shape[0]==0 or cutout.shape[1]==0: continue # If background-subtraction required, measure sky annulus if ann==True: bg_phot = ChrisFuncs.AnnulusSum(cutout, ann_inner*rad, ann_width*rad, 1.0, 0.0, box_centre, box_centre) bg_mean = ChrisFuncs.SigmaClip(np.array(bg_phot[2]))[1] elif ann==False: bg_mean = 0.0 # Measure sky aperture, and reject if it contains nothing but NaN pixels ap_phot = ChrisFuncs.EllipseSum(cutout, rad, 1.0, 0.0, box_centre, box_centre) old_school_ap_sum_array.append(ap_phot[0]) if ap_phot[2].shape[0] == 0: continue if np.where( ap_phot[2]==0 )[0].shape[0] == ap_phot[2].shape[0]: continue # Perform fixed sigma-clip of sky aperture; reject if >20% of pixels are clipped, otherwise scale flux for removed pixels rejects_array.append(ap_phot[0]) ap_clipped = ap_phot[2][ np.where( (ap_phot[2]<clip_upper) & (ap_phot[2]>clip_lower) ) ] ap_clipped = ap_clipped[ np.where( ap_clipped<clip_upper ) ] ap_clipped = ap_clipped[ np.where( ap_clipped>clip_lower ) ] clip_frac = float(ap_clipped.shape[0]) / float(ap_phot[2].shape[0]) if clip_frac<0.8: continue ap_sum = np.sum(ap_clipped) / clip_frac sum_ratio_array.append(ap_sum/ap_phot[0]) clip_frac_array.append(clip_frac) # Store calculated sum and tick up counter a += 1 ap_sum_array.append(ap_sum) if ann==True: bg_mean_array.append(bg_mean) #pdb.set_trace() # Clip out the random apertures with the most extremal clip fractions, to get rid of stray light and so forth clip_frac_threshold = np.median(clip_frac_array) + ( 2.0 * np.std(clip_frac_array) ) ap_sum_array = np.array(ap_sum_array) bg_mean_array = np.array(bg_mean_array) old_school_ap_sum_array = np.array(old_school_ap_sum_array) ap_sum_array = ap_sum_array[ np.where( (clip_frac_array<clip_frac_threshold) & (np.isnan(ap_sum_array)==False) ) ] bg_mean_array = bg_mean_array[ np.where( (clip_frac_array<clip_frac_threshold) & (np.isnan(bg_mean_array)==False) ) ] max_index = np.min([100, int(ap_sum_array.shape[0])]) ap_sum_array = ap_sum_array[:max_index] # Now take standard deviation of output array to get a noise value as pure as the driven snow ap_sigma = np.std(ap_sum_array) rejects_array = np.array(rejects_array) rejects_array = rejects_array[:max_index] # Report calculated standard deviation return ap_sigma, bg_mean_array, ap_sum_array, old_school_ap_sum_array # Function to find all contiguous pixels that lie above a given flux limit # Args: Array, radius of guess region (pix), i & j coords of centre of guess region, cutoff value for pixel selection, optional custom structure # Returns: Array of ones and zeros indicating contiguous region def ContiguousPixels(cutout, rad_initial, i_centre, j_centre, cutoff, custom_structure=False): # Create version of cutout where significant pixels have value 1, insignificant pixels have value 0 cont_array_binary = np.zeros([(cutout.shape)[0], (cutout.shape)[1]]) cont_array_binary[np.where(cutout>=cutoff)[0], np.where(cutout>=cutoff)[1]] = 1 # Use SciPy's label function to identify contiguous features in binary map if isinstance(custom_structure, bool) and custom_structure==False: cont_structure = np.array([[0,1,0], [1,1,1], [0,1,0]]) else: cont_structure = custom_structure cont_array = np.zeros([(cutout.shape)[0], (cutout.shape)[1]]) scipy.ndimage.measurements.label(cont_array_binary, structure=cont_structure, output=cont_array) # Identify primary contiguous feature within specified radius of given coordinates cont_array_mask = ChrisFuncs.EllipseMask(cont_array, rad_initial, 1.0, 0.0, i_centre, j_centre) cont_search_values = cont_array[ np.where( cont_array_mask==1 ) ] # If no features found, only return central "cross" of pixels; otherwise, identify primary feature if int(sum(cont_search_values)) == 0: cont_array = np.zeros([(cutout.shape)[0], (cutout.shape)[1]]) cont_array[int(round(i_centre)), int(round(j_centre))] = 1 cont_array[int(round(i_centre))+1, int(round(j_centre))] = 1 cont_array[int(round(i_centre))-1, int(round(j_centre))] = 1 cont_array[int(round(i_centre)), int(round(j_centre))+1] = 1 cont_array[int(round(i_centre)), int(round(j_centre))-1] = 1 else: # Take mode of values cont_search_values = np.array(cont_search_values) cont_target = scipy.stats.mode(cont_search_values[np.where(cont_search_values>0)])[0][0] # Remove all features other than primary, set value of primary feature to 1 cont_array[np.where(cont_array!=cont_target)] = 0 cont_array[np.where(cont_array!=0)] = 1 # If feautre contains fewer than 5 pixels, once again default to central "cross" if np.sum(cont_array) < 5: cont_array = np.zeros([(cutout.shape)[0], (cutout.shape)[1]]) cont_array[int(round(i_centre)), int(round(j_centre))] = 1 cont_array[int(round(i_centre))+1, int(round(j_centre))] = 1 cont_array[int(round(i_centre))-1, int(round(j_centre))] = 1 cont_array[int(round(i_centre)), int(round(j_centre))+1] = 1 cont_array[int(round(i_centre)), int(round(j_centre))-1] = 1 # Report array and count return cont_array # Function that combines all of the ellipse-fitting steps (finds convex hull, fits ellipse to this, then finds properties of ellipse) # Args: x & y coordinates to which the ellipse is to be fitted # Returns: Array of x & y coordinates of ellipse centre, array of ellipse's major & minor axes, ellipse's position angle def EllipseFit(x,y): # Find convex hull of points p = np.zeros([x.shape[0],2]) p[:,0], p[:,1] = x, y h = [] for s in scipy.spatial.ConvexHull(p).simplices: h.append(p[s[0]]) h.append(p[s[1]]) h = np.array(h) x, y = h[:,0], h[:,1] # Carry out ellipse-fitting witchcraft x = x[:,np.newaxis] y = y[:,np.newaxis] D = np.hstack((x*x, x*y, y*y, x, y, np.ones_like(x))) S = np.dot(D.T,D) C = np.zeros([6,6]) C[0,2] = C[2,0] = 2; C[1,1] = -1 E, V = np.linalg.eig(np.dot(np.linalg.inv(S), C)) n = np.argmax(np.abs(E)) a = V[:,n] # Calculate and return properties of ellipse centre = np.real(ChrisFuncs.EllipseCentre(a)) axes = np.real(ChrisFuncs.EllipseAxes(a)) angle = (180/3.14159) * np.real(ChrisFuncs.EllipseAngle(a)) if axes[0]<axes[1]: angle += 90.0 return np.array([centre, axes, angle, [x,y]]) # Function to calculate the coordinates of the centre of an ellipse produced by EllipseFit # Args: Ellipse produced by EllipseFit # Returns: Array of x & y coordinates of ellipse centre def EllipseCentre(a): b,c,d,f,g,a = a[1]/2, a[2], a[3]/2, a[4]/2, a[5], a[0] b,c,d,f,g,a = b,c,d,f,g,a num = b*b-a*c x0=(c*d-b*f)/num y0=(a*f-b*d)/num return np.array([x0,y0]) # Function to calculate the lengths of the axes of an ellipse produced by EllipseFit # Args: Ellipse produced by EllipseFit # Returns: Array of ellipse's major & minor axes def EllipseAxes(a): b,c,d,f,g,a = a[1]/2, a[2], a[3]/2, a[4]/2, a[5], a[0] up = 2*(a*f*f+c*d*d+g*b*b-2*b*d*f-a*c*g) down1=(b*b-a*c)*( (c-a)*np.sqrt(1+4*b*b/((a-c)*(a-c)))-(c+a)) down2=(b*b-a*c)*( (a-c)*np.sqrt(1+4*b*b/((a-c)*(a-c)))-(c+a)) res1=np.sqrt(up/down1) res2=np.sqrt(up/down2) return np.array([res1, res2]) # Function to calculat the position angle of the centre of an ellipse produced by EllipseFit # Args: Ellipse produced by EllipseFit # Returns: Ellipse's position angle def EllipseAngle(a): b,c,d,f,g,a = a[1]/2, a[2], a[3]/2, a[4]/2, a[5], a[0] b,c,d,f,g,a = b,c,d,f,g,a return 0.5*np.arctan(2*b/(a-c)) """ # GUIDE TO ELLIPTICAL APERTURES I assume you also know the location of the ellipse's center. Call that (x0,y0). Let t be the counterclockwise angle the major axis makes with respect to the x-axis. Let a and b be the semi-major and semi-minor axes, respectively. If P = (x,y) is an arbitrary point then do this: X = (x-x0)*cos(t)+(y-y0)*sin(t); % Translate and rotate coords. Y = -(x-x0)*sin(t)+(y-y0)*cos(t); % to align with ellipse If X^2/a^2+Y^2/b^2 is less than 1, the point P lies inside the ellipse. If it equals 1, it is right on the ellipse. If it is greater than 1, P is outside. """
# Generated by Django 3.2.8 on 2021-11-05 00:54 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('main', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='project', name='created_date', ), ]
import gym import numpy as np from stable_baselines import DQN from stable_baselines.common import atari_wrappers from stable_baselines.common.cmd_util import make_atari_env from stable_baselines.common.vec_env import VecFrameStack from stable_baselines.results_plotter import load_results, ts2xy, X_TIMESTEPS from stable_baselines.common.callbacks import BaseCallback import logging import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # FATAL logging.getLogger('tensorflow').setLevel(logging.FATAL) env = atari_wrappers.make_atari('PongNoFrameskip-v4') env = atari_wrappers.wrap_deepmind(env) MODEL_SAVE_DIR = "." dqn_agent = DQN( policy='CnnPolicy', env=env, exploration_fraction=0.1, exploration_final_eps=0.01, exploration_initial_eps=1.0, train_freq=4, verbose=1 ) class SaveOnBestTrainingRewardCallback(BaseCallback): def __init__(self, check_freq, verbose=1): super(SaveOnBestTrainingRewardCallback, self).__init__(verbose) self.check_freq = check_freq self.best_mean_episode_reward = -np.inf def _on_step(self) -> bool: if self.n_calls % self.check_freq == 0: print(self.locals["episode_rewards"][-100:]) mean_100ep_reward = np.mean(self.locals["episode_rewards"][-100:]) if self.verbose > 0: # print(self.episode_rewards[-100:]) print("Steps: {} | Best mean reward: {:.2f} | Last mean reward per episode: {:.2f}".format( self.num_timesteps, self.best_mean_episode_reward, mean_100ep_reward )) # New best model, you could save the agent here if mean_100ep_reward > self.best_mean_episode_reward: self.best_mean_episode_reward = mean_100ep_reward saved_file_name = MODEL_SAVE_DIR + "/dqn_pong_{0}_{1}".format( self.n_calls, int(mean_100ep_reward) ) # Example for saving best model if self.verbose > 0: print("Saving new best model to {}".format(saved_file_name)) self.model.save(saved_file_name) print() return True callback = SaveOnBestTrainingRewardCallback(check_freq=1000) MAX_STEPS = 1000000 dqn_agent = dqn_agent.learn(total_timesteps=MAX_STEPS, callback=callback)
import json import pytest from unittest import mock from asynctest import patch from blebox_uniapi.box import Box from blebox_uniapi import error pytestmark = pytest.mark.asyncio @pytest.fixture def mock_session(): return mock.MagicMock(host="172.1.2.3", port=80) @pytest.fixture def data(): return { "id": "abcd1234ef", "type": "airSensor", "deviceName": "foobar", "fv": "1.23", "hv": "4.56", "apiLevel": "20180403", } async def test_json_paths(mock_session, data): box = Box(mock_session, data) assert "foo" == box.follow(json.loads("""["foo"]"""), "[0]") assert 4 == box.follow( json.loads("""[{"foo":"3", "value":4}]"""), "[foo='3']/value" ) assert 4 == box.follow(json.loads("""[{"foo":3, "value":4}]"""), "[foo=3]/value") with pytest.raises(error.JPathFailed, match=r"with: foo=bc at .* within .*"): box.follow(json.loads("""[{"foo":"ab", "value":4}]"""), "[foo='bc']/value") with pytest.raises( error.JPathFailed, match=r"with value at index 1 at .* within .*" ): box.follow(json.loads("""[{"value":4}]"""), "[1]/value") with pytest.raises( error.JPathFailed, match=r"with value at index 1 at .* within .*" ): box.follow(json.loads("""{"value":4}"""), "[1]/value") with pytest.raises(error.JPathFailed, match=r"with: foo=7 at .* within .*"): box.follow(json.loads("""[{"foo":3, "value":4}]"""), "[foo=7]/value") with pytest.raises( error.JPathFailed, match=r"item 'foo' not among \['value'\] at .* within .*" ): box.follow(json.loads("""{"value":4}"""), "foo") with pytest.raises( error.JPathFailed, match=r"unexpected item type: 'foo' not in: \[4\] at .* within .*", ): box.follow(json.loads("""[4]"""), "foo") with pytest.raises( error.JPathFailed, match=r"list expected but got {'foo': \[4\]} at .* within .*", ): box.follow(json.loads("""{"foo": [4]}"""), "[bar=0]/value") async def test_without_id(mock_session, data): with pytest.raises( error.UnsupportedBoxResponse, match="Device at 172.1.2.3:80 has no id" ): del data["id"] Box(mock_session, data) async def test_without_type(mock_session, data): with pytest.raises( error.UnsupportedBoxResponse, match="Device:abcd1234ef at 172.1.2.3:80 has no type", ): del data["type"] Box(mock_session, data) async def test_with_unknown_type(mock_session, data): with pytest.raises( error.UnsupportedBoxResponse, match=r"'foobar' \(unknownBox:abcd1234ef/1.23 at 172.1.2.3:80\) is not a supported type", ): data["type"] = "unknownBox" Box(mock_session, data) async def test_without_name(mock_session, data): with pytest.raises( error.UnsupportedBoxResponse, match="airSensor:abcd1234ef at 172.1.2.3:80 has no name", ): del data["deviceName"] Box(mock_session, data) async def test_without_firmware_version(mock_session, data): with pytest.raises( error.UnsupportedBoxResponse, match=r"'foobar' \(airSensor:abcd1234ef at 172.1.2.3:80\) has no firmware version", ): del data["fv"] Box(mock_session, data) async def test_without_hardware_version(mock_session, data): with pytest.raises( error.UnsupportedBoxResponse, match=r"'foobar' \(airSensor:abcd1234ef/1.23 at 172.1.2.3:80\) has no hardware version", ): del data["hv"] Box(mock_session, data) async def test_without_api_level(mock_session, data): with pytest.raises( error.UnsupportedBoxVersion, match=r"'foobar' \(airSensor:abcd1234ef/1.23 at 172.1.2.3:80\) has unsupported version", ): del data["apiLevel"] Box(mock_session, data) async def test_with_init_failure(mock_session, data): with patch( "blebox_uniapi.box.AirQuality", spec_set=True, autospec=True ) as mock_sensor: mock_sensor.side_effect = KeyError with pytest.raises( error.UnsupportedBoxResponse, match=r"'foobar' \(airSensor:abcd1234ef/1.23 at 172.1.2.3:80\) failed to initialize: ", ): Box(mock_session, data) async def test_properties(mock_session, data): box = Box(mock_session, data) assert "foobar" == box.name assert None is box.last_data assert "airSensor" == box.type assert "airSensor" == box.model assert "abcd1234ef" == box.unique_id assert "1.23" == box.firmware_version assert "4.56" == box.hardware_version assert "BleBox" == box.brand assert 20180403 == box.api_version async def test_validations(mock_session, data): box = Box(mock_session, data) with pytest.raises( error.BadFieldExceedsMax, match=r"foobar.field1 is 123 which exceeds max \(100\)", ): box.check_int_range(123, "field1", 100, 0) with pytest.raises( error.BadFieldLessThanMin, match=r"foobar.field1 is 123 which is less than minimum \(200\)", ): box.check_int_range(123, "field1", 300, 200) with pytest.raises(error.BadFieldMissing, match=r"foobar.field1 is missing"): box.check_int(None, "field1", 300, 200) with pytest.raises( error.BadFieldNotANumber, match=r"foobar.field1 is '123' which is not a number" ): box.check_int("123", "field1", 300, 200) with pytest.raises(error.BadFieldMissing, match=r"foobar.field1 is missing"): box.check_hex_str(None, "field1", 300, 200) with pytest.raises( error.BadFieldNotAString, match=r"foobar.field1 is 123 which is not a string" ): box.check_hex_str(123, "field1", 300, 200) with pytest.raises(error.BadFieldMissing, match=r"foobar.field1 is missing"): box.check_rgbw(None, "field1") with pytest.raises( error.BadFieldNotAString, match=r"foobar.field1 is 123 which is not a string" ): box.check_rgbw(123, "field1") with pytest.raises( error.BadFieldNotRGBW, match=r"foobar.field1 is 123 which is not a rgbw string" ): box.check_rgbw("123", "field1")
import os import sys import glob import time import random import numpy as np import matplotlib.pyplot as plt from matplotlib import cm, colors from mpl_toolkits.mplot3d import Axes3D from keras.utils import Sequence from keras.callbacks import Callback def _calc_plot_dim(n, f=0.3): rows = max(int(np.sqrt(n) - f), 1) cols = 1 while rows*cols < n: cols += 1 return rows, cols class DataGenerator(Sequence): def __init__(self, data_path): self.batch_ids = glob.glob(os.path.join(data_path, 'batch_*.npz')) def apply_preprocessing(self, batch): X, Y = batch add_norm(X) add_noise(X, c=0.1) rand_shift_xy(X, c=0.02) add_cutout(X, n_holes=5) Y = [Y[:,:,:,i] for i in range(Y.shape[-1])] minimum_to_zero(Y) return X,Y def load_batch(self, index): file_path = os.path.join(self.batch_ids[index]) batch_object = np.load(file_path) batch_data = (batch_object['arr_0'], batch_object['arr_1']) return batch_data def __len__(self): return len(self.batch_ids) def __getitem__(self, index): batch = self.load_batch(index) return self.apply_preprocessing(batch) class HistoryPlotter(Callback): def __init__(self, log_path, plot_path, loss_labels): self.log_path = log_path self.plot_path = plot_path self.loss_labels = ['Total_weighted'] + loss_labels self.read_log() super(HistoryPlotter, self).__init__() def read_log(self): self.losses = [] self.val_losses = [] if os.path.exists(self.log_path): with open(self.log_path, 'r') as f: f.readline() for line in f: line = line.split(',') lt = [] lv = [] for i in range(len(self.loss_labels)): lt.append(float(line[1+i])) lv.append(float(line[1+len(self.loss_labels)+i])) self.losses.append(lt) self.val_losses.append(lv) def on_epoch_end(self, epoch, logs): lt = [logs['loss']] lv = [logs['val_loss']] for label in self.loss_labels[1:]: lt.append(logs[label+'_loss']) lv.append(logs['val_'+label+'_loss']) self.losses.append(lt) self.val_losses.append(lv) self.plot() def plot(self, show=False): x = range(1, len(self.losses)+1) n_rows, n_cols = _calc_plot_dim(len(self.loss_labels), f=0) fig, axes = plt.subplots(n_rows, n_cols, figsize=(4.5*n_cols, 4*n_rows)) for i, (label, ax) in enumerate(zip(self.loss_labels, axes.flatten())): ax.semilogy(x, np.array(self.losses)[:,i]) ax.semilogy(x, np.array(self.val_losses)[:,i]) ax.legend(['Training', 'Validation']) ax.set_xlabel('Epochs') ax.set_ylabel('Loss') ax.set_title(label) fig.tight_layout() plt.savefig(self.plot_path) if show: plt.show() else: plt.close() def make_prediction_plots(preds, true=None, losses=None, descriptors=None, outdir='./predictions/', start_ind=0, verbose=1): if true is None: rows = 1 else: rows = 2 if not isinstance(true, list): true = [true] if not isinstance(preds, list): preds = [preds] if descriptors is not None: if len(descriptors) != len(preds): raise ValueError('len(descriptors) = %d and len(preds) = %d do not match' % (len(descriptors), len(preds))) if not os.path.exists(outdir): os.makedirs(outdir) cols = len(preds) if losses is not None and losses.ndim < 1: losses = np.expand_dims(losses, axis=0) img_ind = start_ind for i in range(preds[0].shape[0]): fig, axes = plt.subplots(rows, cols) fig.set_size_inches(6*cols, 5*rows) if cols == 1: axes = np.expand_dims(axes, axis=1) if losses is not None and losses.ndim < 2: losses = np.expand_dims(losses, axis=1) for j in range(cols): p = preds[j][i] if true is not None: t = true[j][i] ax = axes[:, j] vmax = np.concatenate([p,t]).flatten().max() vmin = np.concatenate([p,t]).flatten().min() else: ax = [axes[j]] vmax = p.flatten().max() vmin = p.flatten().min() title1 = '' title2 = '' cmap = cm.viridis if descriptors is not None: descriptor = descriptors[j] title1 += descriptor+' Prediction' title2 += descriptor+' Reference' if descriptor == 'ES': vmax = max(abs(vmax), abs(vmin)) vmin = -vmax cmap = cm.coolwarm if losses is not None: title1 += '\nMSE = '+'{:.2E}'.format(losses[i,j]) im1 = ax[0].imshow(p, vmax=vmax, vmin=vmin, cmap=cmap, origin='lower') if true is not None: im2 = ax[1].imshow(t, vmax=vmax, vmin=vmin, cmap=cmap, origin='lower') if title1 != '': ax[0].set_title(title1) if true: ax[1].set_title(title2) for axi in ax: pos = axi.get_position() pos_new = [pos.x0, pos.y0, 0.8*(pos.x1-pos.x0), pos.y1-pos.y0] axi.set_position(pos_new) pos1 = ax[0].get_position() if true is not None: pos2 = ax[1].get_position() c_pos = [pos1.x1+0.1*(pos1.x1-pos1.x0), pos2.y0, 0.08*(pos1.x1-pos1.x0), pos1.y1-pos2.y0] else: c_pos = [pos1.x1+0.1*(pos1.x1-pos1.x0), pos1.y0, 0.08*(pos1.x1-pos1.x0), pos1.y1-pos1.y0] cbar_ax = fig.add_axes(c_pos) fig.colorbar(im1, cax=cbar_ax) save_name = outdir+str(img_ind)+'_pred.png' plt.savefig(save_name) plt.close() if verbose > 0: print('Prediction saved to '+save_name) img_ind += 1 def make_input_plots(Xs, outdir='./predictions/', start_ind=0, constant_range=True, cmap=cm.viridis, verbose=1): if not os.path.exists(outdir): os.makedirs(outdir) if not isinstance(Xs, list): Xs = [Xs] img_ind = start_ind for i in range(Xs[0].shape[0]): for j in range(len(Xs)): x = Xs[j][i] rows, cols = _calc_plot_dim(x.shape[-1]) fig = plt.figure(figsize=(3.2*cols,2.5*rows)) vmax = x.max() vmin = x.min() for k in range(x.shape[-1]): fig.add_subplot(rows,cols,k+1) if constant_range: plt.imshow(x[:,:,k], cmap = cmap, vmin=vmin, vmax=vmax, origin="lower") else: plt.imshow(x[:,:,k], cmap = cmap, origin="lower") plt.colorbar() save_name = outdir+str(img_ind)+'_input' if len(Xs) > 1: save_name += str(j+1) save_name += '.png' plt.savefig(save_name) plt.close() if verbose > 0: print('Input image saved to '+save_name) img_ind += 1 def calculate_losses(model, true, preds=None, X=None): import keras.backend as K if preds is None and X is None: raise ValueError('preds and X cannot both be None') if preds is None: preds = model.predict_on_batch(X) if not isinstance(true, list): true = [true] if not isinstance(preds, list): preds = [preds] losses = np.zeros((true[0].shape[0], len(true))) for i, (t, p) in enumerate(zip(true, preds)): t = K.variable(t) p = K.variable(p) loss = model.loss_functions[i](t, p) sh = loss.shape.as_list() if len(sh) > 1: loss = K.mean(K.reshape(loss, (sh[0],-1)), axis=1) losses[:,i] = K.eval(loss) if losses.shape[1] == 1: losses = losses[:,0] if losses.shape[0] == 1 and losses.ndim == 1: losses = losses[0] return losses def minimum_to_zero(Y_): if isinstance(Y_, list): Ys = Y_ else: Ys = [Y_] for Y in Ys: sh = Y.shape for j in range(sh[0]): Y[j,:,] = Y[j,:,] - np.amin(Y[j,:,]) def add_noise(X_, c=0.1 ): if isinstance(X_, list): Xs = X_ else: Xs = [X_] for X in Xs: sh = X.shape R = np.random.rand( sh[0], sh[1], sh[2], sh[3] ) - 0.5 for j in range(sh[0]): for i in range(sh[3]): vmin = X[j,:,:,i].min() vmax = X[j,:,:,i].max() X[j,:,:,i] += R[j,:,:,i] * c*(vmax-vmin) def add_norm(X_): if isinstance(X_, list): Xs = X_ else: Xs = [X_] for X in Xs: sh = X.shape for j in range(sh[0]): for i in range(sh[3]): mean=np.mean(X[j,:,:,i]) sigma=np.std(X[j,:,:,i]) X[j,:,:,i]-= mean X[j,:,:,i]= X[j,:,:,i]/ sigma def rand_shift_xy(X_, c=0.02): # c= percantage shift acording to size of image in pixels. c=0.05 ~ 5 % if isinstance(X_, list): Xs = X_ else: Xs = [X_] for X in Xs: sh= X.shape max_y_shift=np.floor(sh[1]*c).astype(int) max_x_shift=np.floor(sh[2]*c).astype(int) for j in range(sh[0]): for i in range(sh[3]): rand_shift_y=random.choice(np.append(np.arange(-max_y_shift,0), np.arange(1,max_y_shift+1))) rand_shift_x= random.choice(np.append(np.arange(-max_x_shift,0), np.arange(1,max_x_shift+1))) shift_y=abs(rand_shift_y) shift_x=abs(rand_shift_x) a=X[j,:,:,i] tmp=np.zeros((sh[1]+2*shift_y,sh[2]+2*shift_x)) tmp[shift_y:-shift_y,shift_x:-shift_x]=a tmp[:shift_y,shift_x:-shift_x]=a[shift_y:0:-1,:] tmp[-shift_y:,shift_x:-shift_x]=a[-2:-2-shift_y:-1,:] tmp[:,-shift_x:]=tmp[:,-2-shift_x:-2-2*shift_x:-1] tmp[:,:shift_x]=tmp[:,2*shift_x:shift_x:-1] X[j,:,:,i]=tmp[shift_y-rand_shift_y:shift_y-rand_shift_y+sh[1],shift_x-rand_shift_x:shift_x-rand_shift_x+sh[2] ] def add_cutout(X_, n_holes=5): def get_random_eraser(input_img,p=0.2, s_l=0.001, s_h=0.01, r_1=0.1, r_2=1/0.1, v_l=0, v_h=0): ''' p : the probability that random erasing is performed s_l, s_h : minimum / maximum proportion of erased area against input image r_1, r_2 : minimum / maximum aspect ratio of erased area v_l, v_h : minimum / maximum value for erased area ''' sh = input_img.shape img_h, img_w= [sh[0],sh[1]] if np.random.uniform(0, 1) > p: return input_img while True: s = np.random.uniform(s_l, s_h) * img_h * img_w r = np.random.uniform(r_1, r_2) w = int(np.sqrt(s / r)) h = int(np.sqrt(s * r)) left = np.random.randint(0, img_w) top = np.random.randint(0, img_h) if left + w <= img_w and top + h <= img_h: break c = np.random.uniform(v_l, v_h) input_img[top:top + h, left:left + w] = 0.0 return input_img if isinstance(X_, list): Xs = X_ else: Xs = [X_] for X in Xs: sh = X.shape for j in range(sh[0]): for i in range(sh[3]): for attempt in range(n_holes): X[j,:,:,i]=get_random_eraser(X[j,:,:,i])