content
stringlengths
5
1.05M
"""Unit tests for the token set index""" from annif.lexical.tokenset import TokenSet, TokenSetIndex def test_mllm_tokenset(): tokens = [1, 3, 5] tset = TokenSet(tokens) assert tset.subject_id is None assert not tset.is_pref assert len(tset) == len(tokens) assert sorted(list(tset)) == sorted(tokens) assert tset.contains(TokenSet(tokens)) assert tset.contains(TokenSet([1])) assert not tset.contains(TokenSet([0])) assert tset.key in tokens def test_mllm_tokenset_empty_key(): assert TokenSet([]).key is None def test_mllm_tokensetindex(): index = TokenSetIndex() assert len(index) == 0 tset13 = TokenSet([1, 3], subject_id=1) index.add(tset13) assert len(index) == 1 index.add(TokenSet([])) # add empty assert len(index) == 1 tset2 = TokenSet([2]) index.add(tset2) tset23 = TokenSet([2, 3], subject_id=2) index.add(tset23) tset3 = TokenSet([3], subject_id=3, is_pref=True) index.add(tset3) tset34 = TokenSet([3, 4], subject_id=3, is_pref=False) index.add(tset34) tset5 = TokenSet([5]) index.add(tset5) result = index.search(TokenSet([1, 2, 3, 4])) assert len(result) == 4 assert (tset13, 0) in result assert (tset2, 1) in result assert (tset23, 0) in result assert (tset3, 2) in result assert tset34 not in [r[0] for r in result] assert tset5 not in [r[0] for r in result]
import logging import traceback from functools import wraps logger=logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) logger.propagate = True def log_error(func): @wraps(func) def wrapped(*args, **kwargs): try: return func(*args,**kwargs) except BaseException as error: logger.error(traceback.format_exc()) return wrapped
# -*- coding: utf-8 -*- """ transistor.examples.books_to_scrape.workgroup ~~~~~~~~~~~~ This module implements a working example of a BaseWorker and BaseGroup. :copyright: Copyright (C) 2018 by BOM Quote Limited :license: The MIT License, see LICENSE for more details. ~~~~~~~~~~~~ """ from transistor import BaseWorker from examples.books_to_scrape.persistence import ndb from transistor.persistence.newt_db.collections import SpiderList from transistor.utility.logging import logger class BooksWorker(BaseWorker): """ A Worker wraps the custom Spider object and processes it after returning data from a scrape or crawl. The Worker can be combined into a Group of an arbitrary number of Workers, to enable gevent based asynchronous I/O. First, inherit from BaseWorker and then implement the pre_process_exports and/or post_process_exports methods, as shown below. Other methods that could be easily overriden include get_spider, get_spider_extractor, and even process_exports could be overriden if needed. Also, add any extra class attributes as needed here, to support your custom Spider and Exporters. """ def pre_process_exports(self, spider, task): """ A hook point for customization before process_exports method is called. In this example, we use this method to save our spider data to postgresql using newt.db. :param spider: the Scraper or Crawler object (i.e. MouseKeyScraper()) :param task: just passing through the task item for printing. """ if self.job_id != 'NONE': try: # create the list with the job name if it doesnt already exist ndb.root.spiders.add(self.job_id, SpiderList()) logger.info(f'Worker {self.name}-{self.number} created a new spider ' f'list for {self.job_id}') except KeyError: # will be raised if there is already a list with the same job_name pass # export the scraper data to the items object items = self.load_items(spider) # save the items object to newt.db ndb.root.spiders[self.job_id].add(items) ndb.commit() logger.info(f'Worker {self.name}-{self.number} saved {items.__repr__()} to ' f'scrape_list "{self.job_id}" for task {task}.') else: # if job_id is NONE then we'll skip saving the objects logger.info(f'Worker {self.name}-{self.number} said job_name is {self.job_id} ' f'so will not save it.') def post_process_exports(self, spider, task): """ A hook point for customization after process_exports. In this example, we append the returned scraper object to a class attribute called `events`. """ self.events.append(spider) logger.info(f'{self.name} has {spider.stock} inventory status.') logger.info(f'pricing: {spider.price}') logger.info(f'Worker {self.name}-{self.number} finished task {task}')
class NoMoreQuestionError(BaseException): pass
import os from typing import List from concurrent.futures import ProcessPoolExecutor import numpy as np import pandas as pd import rdkit.RDLogger from rdkit import Chem from tqdm.auto import tqdm from loguru import logger def normalize_inchi(inchi: str): try: mol = Chem.MolFromInchi(inchi) if mol is not None: return Chem.MolToInchi(mol) except Exception: return None def _normalize_inchi_batch(inchis: List[str], verbose: bool = True): results = [] executor = ProcessPoolExecutor(max_workers=1) if verbose: logger.info("Start to normalize InChI") for inchi in tqdm(inchis, disable=not verbose): try: results.append( executor.submit(normalize_inchi, inchi).result() ) except Exception as e: if isinstance(e, KeyboardInterrupt): raise KeyboardInterrupt() results.append(None) executor.shutdown() executor = ProcessPoolExecutor(max_workers=1) executor.shutdown() return pd.Series(results, name="InChI") def normalize_inchi_batch( inchis: List[str], n_workers: int = os.cpu_count(), verbose: bool = True, ): if n_workers <= 1: return _normalize_inchi_batch(inchis, verbose) groups = np.array_split(inchis, n_workers) with ProcessPoolExecutor(max_workers=n_workers) as executor: futures = [ executor.submit( _normalize_inchi_batch, inchis=group, verbose=verbose ) for group in groups ] normed_inchis = pd.concat( [f.result() for f in futures], ignore_index=True ) return normed_inchis def disable_rdlogger(): rdlogger = rdkit.RDLogger.logger() rdlogger.setLevel(rdkit.RDLogger.ERROR) rdkit.rdBase.DisableLog('rdApp.error')
#!/usr/bin/env python # encoding: utf-8 import csv import nltk.data count = 0 rf = open("report_ONS.csv", "w") csv_writer = csv.writer(rf) with open("report_ONN.csv", "r") as f: csv_reader = csv.reader(f) for row in csv_reader: text = row[5] sent_detector = nltk.data.load("tokenizers/punkt/english.pickle") sents = sent_detector.tokenize(text.strip()) for sent in sents: csv_writer.writerow([count, sent]) count += 1 rf.close()
# coding=utf-8 import pandas as pd import sys import optparse from lxml import etree from sklearn import metrics def main(argv=None): # parse the input parser = optparse.OptionParser() parser.add_option('-g') parser.add_option('-t') options, args = parser.parse_args() gold_file_name = options.g test_file_name = options.t # process file with gold markup gold={} tree = etree.parse(gold_file_name) doc = tree.getroot() itemlist = doc.findall("review") test_ids = [] for itm in itemlist: review_id = itm.get("id") test_ids.append(int(review_id)) terms = itm.find("aspects").findall("aspect") for xml_term in terms: if xml_term.get("type")=="explicit" and xml_term.get("mark")=="Rel": term_identifier = xml_term.get("from")+"_"+xml_term.get("to") sentiment = xml_term.get("sentiment") gold[review_id + "_" + term_identifier] = sentiment # process file with participant markup test = {} tree = etree.parse(test_file_name) doc = tree.getroot() itemlist = doc.findall("review") for itm in itemlist: review_id = int(itm.get("id")) if review_id in test_ids: #it's test review terms = itm.find("aspects").findall("aspect") for xml_term in terms: if xml_term.get("type")=="explicit" and xml_term.get("mark")=="Rel": term_identifier = xml_term.get("from")+"_"+xml_term.get("to") sentiment = xml_term.get("sentiment") key = str(review_id) + "_" + term_identifier test[key] = sentiment actual = [] predicted = [] out2write = ["","id\tactual\tpredicted"] for key in gold: if gold[key] == "neutral" or key not in test: continue actual.append(gold[key]) predicted.append(test[key]) out2write.append(key + "\t" + gold[key] + "\t" + test[key]) p_micro,r_micro,f_micro,_ = metrics.precision_recall_fscore_support(actual, predicted, average="micro") p_macro,r_macro,f_macro,_ = metrics.precision_recall_fscore_support(actual, predicted, average="macro") print("%f\t%f\t%f\t%f\t%f\t%f" % (p_micro,r_micro,f_micro, p_macro,r_macro,f_macro)) result_string = "macro_avg_f1=" + str(f_macro) + "\tmicro_avg_f1="+str(f_micro) data_frame = pd.DataFrame({"col":[result_string] + out2write}) domain = gold_file_name.split("_")[1] out_file_name = "eval_В_"+domain+".csv" data_frame.to_csv(out_file_name, index=False, header=False, encoding="utf-8") print("see "+out_file_name+" for details") if __name__ == "__main__": main(sys.argv[1:]) exit()
from django.urls import path from . import views urlpatterns = [ path("", views.index, name="index"), path("register", views.register, name="register"), path("check", views.check, name="check"), path("login", views.login_view, name="login_view"), path("logout", views.logout_view, name="logout_view"), path("add_to_cart", views.add_to_cart, name="add_to_cart"), path("cart", views.cart, name="cart"), path("stripe_session", views.stripe_session, name="stripe_session"), path("checkout", views.checkout, name="checkout"), path("orders", views.orders, name="orders") ]
import requests, base64, json from flask import request, Response, render_template def auth_required(method=None, okta=True): def decorator(f): def wrapper(*args, **kwargs): def get_header(): auth_header = request.headers.get("Authorization") if auth_header and 'Basic' in auth_header: auth_header = auth_header[6:25] elif auth_header and 'Bearer' in auth_header: auth_header = auth_header elif not auth_header: auth_header = 'empty' return auth_header def basic_auth(username, password): auth_header = get_header() creds = username+":"+password b64_creds = base64.b64encode(creds.encode()) if auth_header != b64_creds.decode(): return False else: return True def oauth2(okta): jwt = get_header() if 'empty' not in jwt: if okta: is_valid = okta_jwt_remote_validator(jwt) else: ## ## Validator for any other provider will be configured. For now, returning True as default. ## is_valid = True else: is_valid = False return is_valid def okta_jwt_remote_validator(jwt): ''' These lines are commented out for now. This will be improved to use ENV Variables. client_id = "0oa13mjq7j9jacY8M357" client_secret = "HmQiJTBhJe46Ezk1nzapp138_8NbNI7aZcZpvJUk" creds = client_id + ":" + client_secret b64_creds = base64.b64encode(creds.encode()).decode() auth_header = "Basic " + b64_creds headers = {"Authorization":auth_header} token = str(jwt[7:(len(jwt))]) body = {"token":token} response = requests.post("https://adrian.okta.com/oauth2/ausa8dtz9H5QTLpmC356/v1/introspect", data=body, headers=headers) response_json = response.json() active = response_json["active"] ''' active = True return active if method == 'basic_auth': auth = basic_auth("user", "p@ss") if auth == True: return f(*args, **kwargs) else: return Response(render_template("403.html"), status=403, mimetype="text/html") if method == 'oauth2': auth = oauth2(okta) if auth == True: return f(*args, **kwargs) else: return Response(render_template("403.html"), status=403, mimetype="text/html") wrapper.__name__ = f.__name__ return wrapper return decorator
from pgcopy import CopyManager from . import test_datatypes class TestPublicSchema(test_datatypes.TypeMixin): temp = '' datatypes = ['integer', 'bool', 'varchar(12)'] def temp_schema_name(self): # This will set self.schema_table correctly, so that # TypeMixin.test_type will instantiate CopyManager # with public schema specified explicitly return "public" def test_default_public(self): # Use public schema by default bincopy = CopyManager(self.conn, self.table, self.cols) bincopy.copy(self.data) select_list = ','.join(self.cols) self.cur.execute("SELECT %s from %s" % (select_list, self.table)) self.checkResults() def cast(self, v): if isinstance(v, str): return v.encode() return v
# -*- coding: utf-8 -*- """ Test parsing of 'simple' offsets """ from __future__ import unicode_literals import time import datetime import unittest import parsedatetime as pdt from . import utils class test(unittest.TestCase): @utils.assertEqualWithComparator def assertExpectedResult(self, result, check, **kwargs): return utils.compareResultByTimeTuplesAndFlags(result, check, **kwargs) def setUp(self): self.cal = pdt.Calendar() (self.yr, self.mth, self.dy, self.hr, self.mn, self.sec, self.wd, self.yd, self.isdst) = time.localtime() def testOffsetAfterNoon(self): s = datetime.datetime(self.yr, self.mth, self.dy, 10, 0, 0) t = datetime.datetime( self.yr, self.mth, self.dy, 12, 0, 0) + datetime.timedelta(hours=5) start = s.timetuple() target = t.timetuple() self.assertExpectedResult( self.cal.parse('5 hours after 12pm', start), (target, 2)) self.assertExpectedResult( self.cal.parse('five hours after 12pm', start), (target, 2)) self.assertExpectedResult( self.cal.parse('5 hours after 12 pm', start), (target, 2)) self.assertExpectedResult( self.cal.parse('5 hours after 12:00pm', start), (target, 2)) self.assertExpectedResult( self.cal.parse('5 hours after 12:00 pm', start), (target, 2)) self.assertExpectedResult( self.cal.parse('5 hours after noon', start), (target, 2)) self.assertExpectedResult( self.cal.parse('5 hours from noon', start), (target, 2)) def testOffsetBeforeNoon(self): s = datetime.datetime.now() t = (datetime.datetime(self.yr, self.mth, self.dy, 12, 0, 0) + datetime.timedelta(hours=-5)) start = s.timetuple() target = t.timetuple() self.assertExpectedResult( self.cal.parse('5 hours before noon', start), (target, 2)) self.assertExpectedResult( self.cal.parse('5 hours before 12pm', start), (target, 2)) self.assertExpectedResult( self.cal.parse('five hours before 12pm', start), (target, 2)) self.assertExpectedResult( self.cal.parse('5 hours before 12 pm', start), (target, 2)) self.assertExpectedResult( self.cal.parse('5 hours before 12:00pm', start), (target, 2)) self.assertExpectedResult( self.cal.parse('5 hours before 12:00 pm', start), (target, 2)) def testOffsetBeforeModifiedNoon(self): # A contrived test of two modifiers applied to noon - offset by # -5 from the following day (-5 + 24) s = datetime.datetime.now() t = (datetime.datetime(self.yr, self.mth, self.dy, 12, 0, 0) + datetime.timedelta(hours=-5 + 24)) start = s.timetuple() target = t.timetuple() self.assertExpectedResult( self.cal.parse('5 hours before next noon', start), (target, 2)) if __name__ == "__main__": unittest.main()
pi=3.14 raio=5 area=pi*raio print(area)
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # copyright [2013] [Vitalii Lebedynskyi] # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import urllib.request import urllib.parse import ssl ssl._create_default_https_context = ssl._create_unverified_context def do_get(url): if not url: raise ValueError("url cannot be empty") stream = urllib.request.urlopen(url) return stream.read().decode('utf-8') def download_file(url, file): if not url: raise ValueError("url cannot be empty") stream = urllib.request.urlopen(url) with open(file, 'wb') as output: output.write(stream.read()) return True def get_random_headers(): return {"Content-Encoding": "UTF-8", "Accept-Charset": "UTF-8"}
from tkinter import * import sqlite3 root = Tk() root.title('Using Databases') root.geometry('300x300') # Creating or Connecting database conn = sqlite3.connect('address_book.db') # Creating cursor c = conn.cursor() c.execute("""CREATE TABLE address( first_name text, last_name text, address text, city text, state text, zip_code integer ) """) # Commit changes conn.commit() # Close connection conn.close() root.mainloop()
import logging from functools import singledispatchmethod from tinkoff.invest.services import Services from tinkoff.invest.strategies.base.errors import UnknownSignal from tinkoff.invest.strategies.base.signal import ( CloseLongMarketOrder, CloseShortMarketOrder, OpenLongMarketOrder, OpenShortMarketOrder, Signal, ) from tinkoff.invest.strategies.base.signal_executor_base import SignalExecutor from tinkoff.invest.strategies.moving_average.strategy_settings import ( MovingAverageStrategySettings, ) from tinkoff.invest.strategies.moving_average.strategy_state import ( MovingAverageStrategyState, ) logger = logging.getLogger(__name__) class MovingAverageSignalExecutor(SignalExecutor): def __init__( self, services: Services, state: MovingAverageStrategyState, settings: MovingAverageStrategySettings, ): super().__init__(services, settings) self._services = services self._state = state @singledispatchmethod def execute(self, signal: Signal) -> None: raise UnknownSignal() @execute.register def _execute_open_long_market_order(self, signal: OpenLongMarketOrder) -> None: self.execute_open_long_market_order(signal) self._state.long_open = True self._state.position = signal.lots logger.info("Signal executed %s", signal) @execute.register def _execute_close_long_market_order(self, signal: CloseLongMarketOrder) -> None: self.execute_close_long_market_order(signal) self._state.long_open = False self._state.position = 0 logger.info("Signal executed %s", signal) @execute.register def _execute_open_short_market_order(self, signal: OpenShortMarketOrder) -> None: self.execute_open_short_market_order(signal) self._state.short_open = True self._state.position = signal.lots logger.info("Signal executed %s", signal) @execute.register def _execute_close_short_market_order(self, signal: CloseShortMarketOrder) -> None: self.execute_close_short_market_order(signal) self._state.short_open = False self._state.position = 0 logger.info("Signal executed %s", signal)
import numpy as np import os.path import refnx, scipy # the ReflectDataset object will contain the data from refnx.dataset import ReflectDataset # the reflect module contains functionality relevant to reflectometry from refnx.reflect import ReflectModel # the analysis module contains the curvefitting engine from refnx.analysis import Objective, Transform, CurveFitter import matplotlib.pyplot as plt import matplotlib as mpl import seaborn as sns sns.set(palette="colorblind") mpl.rcParams["xtick.labelsize"] = 10 mpl.rcParams["ytick.labelsize"] = 10 mpl.rcParams["axes.facecolor"] = "w" mpl.rcParams["lines.linewidth"] = 2 mpl.rcParams["xtick.top"] = False mpl.rcParams["xtick.bottom"] = True mpl.rcParams["ytick.left"] = True mpl.rcParams["grid.linestyle"] = "--" mpl.rcParams["legend.fontsize"] = 10 mpl.rcParams["legend.facecolor"] = [1, 1, 1] mpl.rcParams["legend.framealpha"] = 0.75 mpl.rcParams["axes.labelsize"] = 10 mpl.rcParams["axes.linewidth"] = 1 mpl.rcParams["axes.edgecolor"] = "k" mpl.rcParams["axes.titlesize"] = 10 import sys import sim_lengths as sl import md_simulation as md forcefield = sys.argv[1] surface_pressure = sys.argv[2] lt = float(sys.argv[3]) rough = float(sys.argv[4]) traj_dir = '../data/reflectometry2/dspc_{}/{}'.format(surface_pressure, forcefield) anal_dir = "../output/reflectometry2/dspc_{}/".format(surface_pressure) print('{} {}'.format(forcefield, surface_pressure)) head = ['D', 'D', 'H', 'H', 'H', 'D', 'D'] tail = ['H', 'H', 'H', 'D', 'D', 'D', 'D'] sol = ['acmw', 'D', 'D', 'acmw', 'D', 'acmw', 'D'] contrasts = ['d13acmw', 'd13d2o', 'hd2o', 'd70acmw', 'd70d2o', 'd83acmw', 'd83d2o'] fig = plt.figure(figsize=(4.13, 3.51*1.3)) gs = mpl.gridspec.GridSpec(1, 3) ax1 = plt.subplot(gs[0, 0:2]) ax2 = plt.subplot(gs[0, 2]) all_chi = np.array([]) abc = {'trad': '(a)', 'slipids': '(b)', 'berger': '(c)', 'martini': '(d)'} for ci, contrast in enumerate(contrasts): for k in range(0, len(contrasts)): if contrasts[k] == contrast: break models = [] datasets = [] structures = [] lgts = sl.get_lgts(head[k], tail[k], sol[k], forcefield) l = np.array([]) timesteps = 0 for i in range(1, 2): print('frame{}'.format(i)) try: del sim except: pass if forcefield == 'martini': co = 30 else: co = 15 sim = md.MDSimulation(traj_dir + '_frame{}.pdb'.format(i), flip=True, verbose=True, layer_thickness=lt, roughness=rough) sim.assign_scattering_lengths('neutron', atom_types=lgts[0], scattering_lengths=lgts[1]) sim.run() layers_to_cut = int(co / lt) + 1 timesteps += sim.layers.shape[0] l = np.append(l, sim.layers[:, :-layers_to_cut, :]) n = l.reshape(timesteps, sim.layers.shape[1]-layers_to_cut, sim.layers.shape[2]) data_dir = '../data/reflectometry2/dspc_{}/'.format(surface_pressure) dataset = ReflectDataset(os.path.join(data_dir, '{}{}.dat'.format(contrast, surface_pressure))) refy = np.zeros((n.shape[0], dataset.x.size)) sldy = [] chi = np.zeros((n.shape[0])) print(n.shape[0]) for i in range(n.shape[0]): sim.av_layers = n[i, :, :] model = ReflectModel(sim) model.scale.setp(1, vary=True, bounds=(0.00000001, np.inf)) model.bkg.setp(dataset.y[-1], vary=True, bounds=(dataset.y[-1]*0.9, dataset.y[-1]*1.1)) objective = Objective(model, dataset, transform=Transform('YX4')) fitter = CurveFitter(objective) res = fitter.fit() refy[i] = model(dataset.x, x_err=dataset.x_err)*(dataset.x)**4 sldy.append(sim.sld_profile()[1]) chi[i] = objective.chisqr() all_chi = np.append(all_chi, objective.chisqr()) if i == 0: ax1.errorbar(dataset.x, dataset.y*(dataset.x)**4 * 10**(ci-1), yerr=dataset.y_err*( dataset.x)**4 * 10**(ci-1), linestyle='', marker='o', color=sns.color_palette()[ci]) ax1.plot(dataset.x, model(dataset.x, x_err=dataset.x_err)*( dataset.x)**4 * 10**(ci-1), color=sns.color_palette()[ci], alpha=0.1) zs, sld = sim.sld_profile() if zs.min() > -20: x2 = np.linspace(-20, zs.min(), 100) zs = np.append(x2, zs) y2 = np.zeros_like(x2) sld = np.append(y2, sld) if zs.max() < 80: x3 = np.linspace(zs.max(), 81, 100) y3 = np.ones_like(x3) * sld[-1] zs = np.append(zs, x3) sld = np.append(sld, y3) ax2.plot(zs, sld + ci*10, color=sns.color_palette()[ci], alpha=0.1) ax2.set_xlim([-20, 80]) ax1.plot(dataset.x, np.average(refy, axis=0) * 10**(ci-1), color='k', zorder=10) file_open = open('{}dspc_{}_{}_{}_chi_short.txt'.format(anal_dir, forcefield, surface_pressure, contrast), 'w') file_open.write('{:.2f}'.format(np.average(chi))) file_open.close() print(contrast) file_open = open('{}dspc_{}_{}_all_chi_short.txt'.format(anal_dir, forcefield, surface_pressure), 'w') file_open.write('${:.2f}\\pm{:.2f}$'.format(np.average(all_chi), np.std(all_chi))) file_open.close() ax1.set_ylabel(r'$Rq^4$/Å$^{-4}$') ax1.set_yscale('log') ax1.set_xlabel(r'$q$/Å$^{-1}$') ax2.set_xlabel(r'$z$/Å') ax2.set_ylabel(r'SLD/$10^{-6}$Å$^{-2}$') plt.tight_layout() fig_dir = "../reports/figures/reflectometry2/" plt.savefig('{}dspc_{}_{}_ref_sld_short.pdf'.format(fig_dir, forcefield, surface_pressure), bbox_inches='tight', pad_inches=0.1) plt.close()
from pyautogui import press, pixelMatchesColor flag = 0 while True: if pixelMatchesColor(889, 393, (161, 116, 56), 1): flag = 1 elif pixelMatchesColor(1026, 391, (161, 116, 56), 1): flag =0 if flag: press("right") else: press("left") ##you have to install pyautogui ##Plus you might have to configure according to your screen I mean the coordinates ##889, 393 is for the left branch wood ##1026 , 391 is for the right branch wood ##(211, 247, 255) Sky ##(161, 116, 56) Wood ##Score totally depends upon you system
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals from enum import Enum from lxml import etree import sys import os import codecs import re import spacy import pickle import json import networkx as nx import TermPreprocessor2 as tprep import OntologyOps as ontutils import NlpUtils.NounPhraseMerger as npm import NlpUtils.ExclusionPhraseMerger as epm import ExclusionDetector as eh from networkx.readwrite import json_graph import time nlp = spacy.load('/ext/NlpFinalModel') TRAINING_DATA = [ u'We may give your personal information to advertisers', u'We may give your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may give advertisers your personal information', u'We may give advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may give to advertisers your personal information', u'We may give to advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be given to advertisers', u'your personal information, demographic information, and financial information may be given to advertisers, analytics providers, and our business partners', u'your personal information may be given by advertisers', u'your personal information, demographic information, and financial information may be given by advertisers, analytics providers, and our business partners', u'We may choose to give your personal information to advertisers', u'We may choose to give your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'You may be required by us to give your personal information to advertisers', u'You may be required by us to give your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We are requiring you to give your personal information to advertisers', u'We are requiring you to give your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We require giving your personal information to advertisers', u'We require giving your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may give advertisers with your personal information', u'We may give advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may distribute your personal information', u'advertisers, analytics providers, and our business partners may distribute your personal information, demographic information, and financial information', u'We may distribute your personal information to advertisers', u'We may distribute your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may distribute advertisers your personal information', u'We may distribute advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may distribute to advertisers your personal information', u'We may distribute to advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be distributed to advertisers', u'your personal information, demographic information, and financial information may be distributed to advertisers, analytics providers, and our business partners', u'your personal information may be distributed', u'your personal information, demographic information, and financial information may be distributed', u'your personal information may be distributed by advertisers', u'your personal information, demographic information, and financial information may be distributed by advertisers, analytics providers, and our business partners', u'We may choose to distribute your personal information', u'We may choose to distribute your personal information, demographic information, and financial information', u'We may choose to distribute your personal information to advertisers', u'We may choose to distribute your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'You may be required by us to distribute your personal information', u'You may be required by us to distribute your personal information, demographic information, and financial information', u'You may be required by us to distribute your personal information to advertisers', u'You may be required by us to distribute your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We are requiring you to distribute your personal information', u'We are requiring you to distribute your personal information, demographic information, and financial information', u'We are requiring you to distribute your personal information to advertisers', u'We are requiring you to distribute your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We require distributing your personal information', u'We require distributing your personal information, demographic information, and financial information', u'We require distributing your personal information to advertisers', u'We require distributing your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may distribute advertisers with your personal information', u'We may distribute advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may share your personal information', u'advertisers, analytics providers, and our business partners may share your personal information, demographic information, and financial information', u'We may share your personal information with advertisers', u'We may share your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We may share advertisers your personal information', u'We may share advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may share with advertisers your personal information', u'We may share with advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be shared with advertisers', u'your personal information, demographic information, and financial information may be shared with advertisers, analytics providers, and our business partners', u'your personal information may be shared', u'your personal information, demographic information, and financial information may be shared', u'your personal information may be shared by advertisers', u'your personal information, demographic information, and financial information may be shared by advertisers, analytics providers, and our business partners', u'We may choose to share your personal information', u'We may choose to share your personal information, demographic information, and financial information', u'We may choose to share your personal information with advertisers', u'We may choose to share your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'You may be required by us to share your personal information', u'You may be required by us to share your personal information, demographic information, and financial information', u'You may be required by us to share your personal information with advertisers', u'You may be required by us to share your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We are requiring you to share your personal information', u'We are requiring you to share your personal information, demographic information, and financial information', u'We are requiring you to share your personal information with advertisers', u'We are requiring you to share your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We require sharing your personal information', u'We require sharing your personal information, demographic information, and financial information', u'We require sharing your personal information with advertisers', u'We require sharing your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We may share advertisers with your personal information', u'We may share advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may obtain your personal information', u'advertisers, analytics providers, and our business partners may obtain your personal information, demographic information, and financial information', u'We may obtain advertisers your personal information', u'We may obtain advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be obtained', u'your personal information, demographic information, and financial information may be obtained', u'your personal information may be obtained by advertisers', u'your personal information, demographic information, and financial information may be obtained by advertisers, analytics providers, and our business partners', u'We may choose to obtain your personal information', u'We may choose to obtain your personal information, demographic information, and financial information', u'You may be required by us to obtain your personal information', u'You may be required by us to obtain your personal information, demographic information, and financial information', u'We are requiring you to obtain your personal information', u'We are requiring you to obtain your personal information, demographic information, and financial information', u'We require obtaining your personal information', u'We require obtaining your personal information, demographic information, and financial information', u'We may obtain advertisers with your personal information', u'We may obtain advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may trade your personal information', u'advertisers, analytics providers, and our business partners may trade your personal information, demographic information, and financial information', u'We may trade your personal information with advertisers', u'We may trade your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We may trade advertisers your personal information', u'We may trade advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may trade with advertisers your personal information', u'We may trade with advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be traded with advertisers', u'your personal information, demographic information, and financial information may be traded with advertisers, analytics providers, and our business partners', u'your personal information may be traded', u'your personal information, demographic information, and financial information may be traded', u'your personal information may be traded by advertisers', u'your personal information, demographic information, and financial information may be traded by advertisers, analytics providers, and our business partners', u'We may choose to trade your personal information', u'We may choose to trade your personal information, demographic information, and financial information', u'We may choose to trade your personal information with advertisers', u'We may choose to trade your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'You may be required by us to trade your personal information', u'You may be required by us to trade your personal information, demographic information, and financial information', u'You may be required by us to trade your personal information with advertisers', u'You may be required by us to trade your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We are requiring you to trade your personal information', u'We are requiring you to trade your personal information, demographic information, and financial information', u'We are requiring you to trade your personal information with advertisers', u'We are requiring you to trade your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We require trading your personal information', u'We require trading your personal information, demographic information, and financial information', u'We require trading your personal information with advertisers', u'We require trading your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We may trade advertisers with your personal information', u'We may trade advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may rent your personal information', u'advertisers, analytics providers, and our business partners may rent your personal information, demographic information, and financial information', u'We may rent your personal information to advertisers', u'We may rent your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may rent advertisers your personal information', u'We may rent advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may rent to advertisers your personal information', u'We may rent to advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be rented to advertisers', u'your personal information, demographic information, and financial information may be rented to advertisers, analytics providers, and our business partners', u'your personal information may be rented', u'your personal information, demographic information, and financial information may be rented', u'your personal information may be rented by advertisers', u'your personal information, demographic information, and financial information may be rented by advertisers, analytics providers, and our business partners', u'We may choose to rent your personal information', u'We may choose to rent your personal information, demographic information, and financial information', u'We may choose to rent your personal information to advertisers', u'We may choose to rent your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'You may be required by us to rent your personal information', u'You may be required by us to rent your personal information, demographic information, and financial information', u'You may be required by us to rent your personal information to advertisers', u'You may be required by us to rent your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We are requiring you to rent your personal information', u'We are requiring you to rent your personal information, demographic information, and financial information', u'We are requiring you to rent your personal information to advertisers', u'We are requiring you to rent your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We require renting your personal information', u'We require renting your personal information, demographic information, and financial information', u'We require renting your personal information to advertisers', u'We require renting your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may rent advertisers with your personal information', u'We may rent advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may check your personal information', u'advertisers, analytics providers, and our business partners may check your personal information, demographic information, and financial information', u'We may check advertisers your personal information', u'We may check advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be checked', u'your personal information, demographic information, and financial information may be checked', u'your personal information may be checked by advertisers', u'your personal information, demographic information, and financial information may be checked by advertisers, analytics providers, and our business partners', u'We may choose to check your personal information', u'We may choose to check your personal information, demographic information, and financial information', u'You may be required by us to check your personal information', u'You may be required by us to check your personal information, demographic information, and financial information', u'We are requiring you to check your personal information', u'We are requiring you to check your personal information, demographic information, and financial information', u'We require checking your personal information', u'We require checking your personal information, demographic information, and financial information', u'We may check advertisers with your personal information', u'We may check advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may sell your personal information', u'advertisers, analytics providers, and our business partners may sell your personal information, demographic information, and financial information', u'We may sell your personal information to advertisers', u'We may sell your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may sell advertisers your personal information', u'We may sell advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may sell to advertisers your personal information', u'We may sell to advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be sold to advertisers', u'your personal information, demographic information, and financial information may be sold to advertisers, analytics providers, and our business partners', u'your personal information may be sold', u'your personal information, demographic information, and financial information may be sold', u'your personal information may be sold by advertisers', u'your personal information, demographic information, and financial information may be sold by advertisers, analytics providers, and our business partners', u'We may choose to sell your personal information', u'We may choose to sell your personal information, demographic information, and financial information', u'We may choose to sell your personal information to advertisers', u'We may choose to sell your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'You may be required by us to sell your personal information', u'You may be required by us to sell your personal information, demographic information, and financial information', u'You may be required by us to sell your personal information to advertisers', u'You may be required by us to sell your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We are requiring you to sell your personal information', u'We are requiring you to sell your personal information, demographic information, and financial information', u'We are requiring you to sell your personal information to advertisers', u'We are requiring you to sell your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We require selling your personal information', u'We require selling your personal information, demographic information, and financial information', u'We require selling your personal information to advertisers', u'We require selling your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may sell advertisers with your personal information', u'We may sell advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may use your personal information', u'advertisers, analytics providers, and our business partners may use your personal information, demographic information, and financial information', u'We may use advertisers your personal information', u'We may use advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be used', u'your personal information, demographic information, and financial information may be used', u'your personal information may be used by advertisers', u'your personal information, demographic information, and financial information may be used by advertisers, analytics providers, and our business partners', u'We may choose to use your personal information', u'We may choose to use your personal information, demographic information, and financial information', u'You may be required by us to use your personal information', u'You may be required by us to use your personal information, demographic information, and financial information', u'We are requiring you to use your personal information', u'We are requiring you to use your personal information, demographic information, and financial information', u'We require using your personal information', u'We require using your personal information, demographic information, and financial information', u'We may use advertisers with your personal information', u'We may use advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'We may provide your personal information to advertisers', u'We may provide your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may provide advertisers your personal information', u'We may provide advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may provide to advertisers your personal information', u'We may provide to advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be provided to advertisers', u'your personal information, demographic information, and financial information may be provided to advertisers, analytics providers, and our business partners', u'your personal information may be provided by advertisers', u'your personal information, demographic information, and financial information may be provided by advertisers, analytics providers, and our business partners', u'We may choose to provide your personal information to advertisers', u'We may choose to provide your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'You may be required by us to provide your personal information to advertisers', u'You may be required by us to provide your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We are requiring you to provide your personal information to advertisers', u'We are requiring you to provide your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We require providing your personal information to advertisers', u'We require providing your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may provide advertisers with your personal information', u'We may provide advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may transfer your personal information', u'advertisers, analytics providers, and our business partners may transfer your personal information, demographic information, and financial information', u'We may transfer your personal information to advertisers', u'We may transfer your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may transfer advertisers your personal information', u'We may transfer advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may transfer to advertisers your personal information', u'We may transfer to advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be transferred to advertisers', u'your personal information, demographic information, and financial information may be transferred to advertisers, analytics providers, and our business partners', u'your personal information may be transferred', u'your personal information, demographic information, and financial information may be transferred', u'your personal information may be transferred by advertisers', u'your personal information, demographic information, and financial information may be transferred by advertisers, analytics providers, and our business partners', u'We may choose to transfer your personal information', u'We may choose to transfer your personal information, demographic information, and financial information', u'We may choose to transfer your personal information to advertisers', u'We may choose to transfer your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'You may be required by us to transfer your personal information', u'You may be required by us to transfer your personal information, demographic information, and financial information', u'You may be required by us to transfer your personal information to advertisers', u'You may be required by us to transfer your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We are requiring you to transfer your personal information', u'We are requiring you to transfer your personal information, demographic information, and financial information', u'We are requiring you to transfer your personal information to advertisers', u'We are requiring you to transfer your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We require transfering your personal information', u'We require transfering your personal information, demographic information, and financial information', u'We require transfering your personal information to advertisers', u'We require transfering your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may transfer advertisers with your personal information', u'We may transfer advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'We may send your personal information to advertisers', u'We may send your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may send advertisers your personal information', u'We may send advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may send to advertisers your personal information', u'We may send to advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be sent to advertisers', u'your personal information, demographic information, and financial information may be sent to advertisers, analytics providers, and our business partners', u'your personal information may be sent by advertisers', u'your personal information, demographic information, and financial information may be sent by advertisers, analytics providers, and our business partners', u'We may choose to send your personal information to advertisers', u'We may choose to send your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'You may be required by us to send your personal information to advertisers', u'You may be required by us to send your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We are requiring you to send your personal information to advertisers', u'We are requiring you to send your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We require sending your personal information to advertisers', u'We require sending your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may send advertisers with your personal information', u'We may send advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may access your personal information', u'advertisers, analytics providers, and our business partners may access your personal information, demographic information, and financial information', u'We may access advertisers your personal information', u'We may access advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be accessed', u'your personal information, demographic information, and financial information may be accessed', u'your personal information may be accessed by advertisers', u'your personal information, demographic information, and financial information may be accessed by advertisers, analytics providers, and our business partners', u'We may choose to access your personal information', u'We may choose to access your personal information, demographic information, and financial information', u'You may be required by us to access your personal information', u'You may be required by us to access your personal information, demographic information, and financial information', u'We are requiring you to access your personal information', u'We are requiring you to access your personal information, demographic information, and financial information', u'We require accessing your personal information', u'We require accessing your personal information, demographic information, and financial information', u'We may access advertisers with your personal information', u'We may access advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may transmit your personal information', u'advertisers, analytics providers, and our business partners may transmit your personal information, demographic information, and financial information', u'We may transmit your personal information to advertisers', u'We may transmit your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may transmit advertisers your personal information', u'We may transmit advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may transmit to advertisers your personal information', u'We may transmit to advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be transmitted to advertisers', u'your personal information, demographic information, and financial information may be transmitted to advertisers, analytics providers, and our business partners', u'your personal information may be transmitted', u'your personal information, demographic information, and financial information may be transmitted', u'your personal information may be transmitted by advertisers', u'your personal information, demographic information, and financial information may be transmitted by advertisers, analytics providers, and our business partners', u'We may choose to transmit your personal information', u'We may choose to transmit your personal information, demographic information, and financial information', u'We may choose to transmit your personal information to advertisers', u'We may choose to transmit your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'You may be required by us to transmit your personal information', u'You may be required by us to transmit your personal information, demographic information, and financial information', u'You may be required by us to transmit your personal information to advertisers', u'You may be required by us to transmit your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We are requiring you to transmit your personal information', u'We are requiring you to transmit your personal information, demographic information, and financial information', u'We are requiring you to transmit your personal information to advertisers', u'We are requiring you to transmit your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We require transmitting your personal information', u'We require transmitting your personal information, demographic information, and financial information', u'We require transmitting your personal information to advertisers', u'We require transmitting your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may transmit advertisers with your personal information', u'We may transmit advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may save your personal information', u'advertisers, analytics providers, and our business partners may save your personal information, demographic information, and financial information', u'We may save advertisers your personal information', u'We may save advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be saved', u'your personal information, demographic information, and financial information may be saved', u'your personal information may be saved by advertisers', u'your personal information, demographic information, and financial information may be saved by advertisers, analytics providers, and our business partners', u'We may choose to save your personal information', u'We may choose to save your personal information, demographic information, and financial information', u'You may be required by us to save your personal information', u'You may be required by us to save your personal information, demographic information, and financial information', u'We are requiring you to save your personal information', u'We are requiring you to save your personal information, demographic information, and financial information', u'We require saving your personal information', u'We require saving your personal information, demographic information, and financial information', u'We may save advertisers with your personal information', u'We may save advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may store your personal information', u'advertisers, analytics providers, and our business partners may store your personal information, demographic information, and financial information', u'We may store advertisers your personal information', u'We may store advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be stored', u'your personal information, demographic information, and financial information may be stored', u'your personal information may be stored by advertisers', u'your personal information, demographic information, and financial information may be stored by advertisers, analytics providers, and our business partners', u'We may choose to store your personal information', u'We may choose to store your personal information, demographic information, and financial information', u'You may be required by us to store your personal information', u'You may be required by us to store your personal information, demographic information, and financial information', u'We are requiring you to store your personal information', u'We are requiring you to store your personal information, demographic information, and financial information', u'We require storing your personal information', u'We require storing your personal information, demographic information, and financial information', u'We may store advertisers with your personal information', u'We may store advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may disclose your personal information', u'advertisers, analytics providers, and our business partners may disclose your personal information, demographic information, and financial information', u'We may disclose your personal information to advertisers', u'We may disclose your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may disclose advertisers your personal information', u'We may disclose advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may disclose to advertisers your personal information', u'We may disclose to advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be disclosed to advertisers', u'your personal information, demographic information, and financial information may be disclosed to advertisers, analytics providers, and our business partners', u'your personal information may be disclosed', u'your personal information, demographic information, and financial information may be disclosed', u'your personal information may be disclosed by advertisers', u'your personal information, demographic information, and financial information may be disclosed by advertisers, analytics providers, and our business partners', u'We may choose to disclose your personal information', u'We may choose to disclose your personal information, demographic information, and financial information', u'We may choose to disclose your personal information to advertisers', u'We may choose to disclose your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'You may be required by us to disclose your personal information', u'You may be required by us to disclose your personal information, demographic information, and financial information', u'You may be required by us to disclose your personal information to advertisers', u'You may be required by us to disclose your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We are requiring you to disclose your personal information', u'We are requiring you to disclose your personal information, demographic information, and financial information', u'We are requiring you to disclose your personal information to advertisers', u'We are requiring you to disclose your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We require disclosing your personal information', u'We require disclosing your personal information, demographic information, and financial information', u'We require disclosing your personal information to advertisers', u'We require disclosing your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may disclose advertisers with your personal information', u'We may disclose advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may exchange your personal information', u'advertisers, analytics providers, and our business partners may exchange your personal information, demographic information, and financial information', u'We may exchange your personal information with advertisers', u'We may exchange your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We may exchange advertisers your personal information', u'We may exchange advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may exchange with advertisers your personal information', u'We may exchange with advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be exchanged with advertisers', u'your personal information, demographic information, and financial information may be exchanged with advertisers, analytics providers, and our business partners', u'your personal information may be exchanged', u'your personal information, demographic information, and financial information may be exchanged', u'your personal information may be exchanged by advertisers', u'your personal information, demographic information, and financial information may be exchanged by advertisers, analytics providers, and our business partners', u'We may choose to exchange your personal information', u'We may choose to exchange your personal information, demographic information, and financial information', u'We may choose to exchange your personal information with advertisers', u'We may choose to exchange your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'You may be required by us to exchange your personal information', u'You may be required by us to exchange your personal information, demographic information, and financial information', u'You may be required by us to exchange your personal information with advertisers', u'You may be required by us to exchange your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We are requiring you to exchange your personal information', u'We are requiring you to exchange your personal information, demographic information, and financial information', u'We are requiring you to exchange your personal information with advertisers', u'We are requiring you to exchange your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We require exchanging your personal information', u'We require exchanging your personal information, demographic information, and financial information', u'We require exchanging your personal information with advertisers', u'We require exchanging your personal information, demographic information, and financial information with advertisers, analytics providers, and our business partners', u'We may exchange advertisers with your personal information', u'We may exchange advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may know your personal information', u'advertisers, analytics providers, and our business partners may know your personal information, demographic information, and financial information', u'We may know advertisers your personal information', u'We may know advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be knew', u'your personal information, demographic information, and financial information may be knew', u'your personal information may be knew by advertisers', u'your personal information, demographic information, and financial information may be knew by advertisers, analytics providers, and our business partners', u'We may choose to know your personal information', u'We may choose to know your personal information, demographic information, and financial information', u'You may be required by us to know your personal information', u'You may be required by us to know your personal information, demographic information, and financial information', u'We are requiring you to know your personal information', u'We are requiring you to know your personal information, demographic information, and financial information', u'We require knowing your personal information', u'We require knowing your personal information, demographic information, and financial information', u'We may know advertisers with your personal information', u'We may know advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may report your personal information', u'advertisers, analytics providers, and our business partners may report your personal information, demographic information, and financial information', u'We may report your personal information to advertisers', u'We may report your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may report advertisers your personal information', u'We may report advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'We may report to advertisers your personal information', u'We may report to advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be reported to advertisers', u'your personal information, demographic information, and financial information may be reported to advertisers, analytics providers, and our business partners', u'your personal information may be reported', u'your personal information, demographic information, and financial information may be reported', u'your personal information may be reported by advertisers', u'your personal information, demographic information, and financial information may be reported by advertisers, analytics providers, and our business partners', u'We may choose to report your personal information', u'We may choose to report your personal information, demographic information, and financial information', u'We may choose to report your personal information to advertisers', u'We may choose to report your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'You may be required by us to report your personal information', u'You may be required by us to report your personal information, demographic information, and financial information', u'You may be required by us to report your personal information to advertisers', u'You may be required by us to report your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We are requiring you to report your personal information', u'We are requiring you to report your personal information, demographic information, and financial information', u'We are requiring you to report your personal information to advertisers', u'We are requiring you to report your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We require reporting your personal information', u'We require reporting your personal information, demographic information, and financial information', u'We require reporting your personal information to advertisers', u'We require reporting your personal information, demographic information, and financial information to advertisers, analytics providers, and our business partners', u'We may report advertisers with your personal information', u'We may report advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may receive your personal information', u'advertisers, analytics providers, and our business partners may receive your personal information, demographic information, and financial information', u'We may receive advertisers your personal information', u'We may receive advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be received', u'your personal information, demographic information, and financial information may be received', u'your personal information may be received by advertisers', u'your personal information, demographic information, and financial information may be received by advertisers, analytics providers, and our business partners', u'We may choose to receive your personal information', u'We may choose to receive your personal information, demographic information, and financial information', u'You may be required by us to receive your personal information', u'You may be required by us to receive your personal information, demographic information, and financial information', u'We are requiring you to receive your personal information', u'We are requiring you to receive your personal information, demographic information, and financial information', u'We require receiving your personal information', u'We require receiving your personal information, demographic information, and financial information', u'We may receive advertisers with your personal information', u'We may receive advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may gather your personal information', u'advertisers, analytics providers, and our business partners may gather your personal information, demographic information, and financial information', u'We may gather advertisers your personal information', u'We may gather advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be gathered', u'your personal information, demographic information, and financial information may be gathered', u'your personal information may be gathered by advertisers', u'your personal information, demographic information, and financial information may be gathered by advertisers, analytics providers, and our business partners', u'We may choose to gather your personal information', u'We may choose to gather your personal information, demographic information, and financial information', u'You may be required by us to gather your personal information', u'You may be required by us to gather your personal information, demographic information, and financial information', u'We are requiring you to gather your personal information', u'We are requiring you to gather your personal information, demographic information, and financial information', u'We require gathering your personal information', u'We require gathering your personal information, demographic information, and financial information', u'We may gather advertisers with your personal information', u'We may gather advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', u'advertisers may collect your personal information', u'advertisers, analytics providers, and our business partners may collect your personal information, demographic information, and financial information', u'We may collect advertisers your personal information', u'We may collect advertisers, analytics providers, and our business partners your personal information, demographic information, and financial information', u'your personal information may be collected', u'your personal information, demographic information, and financial information may be collected', u'your personal information may be collected by advertisers', u'your personal information, demographic information, and financial information may be collected by advertisers, analytics providers, and our business partners', u'We may choose to collect your personal information', u'We may choose to collect your personal information, demographic information, and financial information', u'You may be required by us to collect your personal information', u'You may be required by us to collect your personal information, demographic information, and financial information', u'We are requiring you to collect your personal information', u'We are requiring you to collect your personal information, demographic information, and financial information', u'We require collecting your personal information', u'We require collecting your personal information, demographic information, and financial information', u'We may collect advertisers with your personal information', u'We may collect advertisers, analytics providers, and our business partners with your personal information, demographic information, and financial information', ] def cleanupUnicodeErrors(term): # Cleanup from mistakes before... this should really be fixed during the intial parsing of the document... t = re.sub(u'\ufffc', u' ', term) t = re.sub(u'“', u'', t) t = re.sub(u'â€\u009d', u'', t) t = re.sub(u'â\u0080\u0094', u'', t) t = re.sub(u'â\u0080\u009d', u'', t) t = re.sub(u'â\u0080\u009c', u'', t) t = re.sub(u'â\u0080\u0099', u'', t) t = re.sub(u'â€', u'', t) t = re.sub(u'äë', u'', t) t = re.sub(u'ä', u'', t) t = re.sub(u'\u0093', u'', t) t = re.sub(u'\u0092', u'', t) t = re.sub(u'\u0094', u'', t) t = re.sub(u'\u00a7', u'', t)#Section symbol t = re.sub(u'\u25cf', u'', t)#bullet point symbol t = re.sub(u'´', u'\'', t) t = re.sub(u'\u00ac', u'', t) t = re.sub(u'\u00ad', u'-', t) t = re.sub(u'\u2211', u'', t) t = re.sub(u'\ufb01', u'fi', t) t = re.sub(u'\uff0c', u', ', t) t = re.sub(u'\uf0b7', u'', t) t = re.sub(u'\u037e', u';', t) return t class Analytics: def __init__(self): self.dataStore = {} self.currentDoc = None def recordPolicyStatementAnalytics(self, policyStatement): #negation_distance and exceptImpact sentenceText = cleanupUnicodeErrors(policyStatement['original_sentence']) if 'exceptImpact' in policyStatement and policyStatement['exceptImpact']: if sentenceText not in self.dataStore[self.currentDoc]['exceptions']: self.dataStore[self.currentDoc]['exceptions'][sentenceText] = 0 self.dataStore[self.currentDoc]['exceptions'][sentenceText] += 1 if 'negation_distance' in policyStatement and policyStatement['negation_distance'] >= 0: if sentenceText not in self.dataStore[self.currentDoc]['negations']: self.dataStore[self.currentDoc]['negations'][sentenceText] = [] self.dataStore[self.currentDoc]['negations'][sentenceText].append((policyStatement['negation_distance'], policyStatement['action'][1].i)) if sentenceText not in self.dataStore[self.currentDoc]['all']: self.dataStore[self.currentDoc]['all'][sentenceText] = 0 self.dataStore[self.currentDoc]['all'][sentenceText] += 1 def startDoc(self, filename): self.currentDoc = filename self.dataStore[self.currentDoc] = { 'performance' : { 'startTime' : time.time(), 'endTime' : 0, }, 'negations' : { }, 'exceptions' : { }, 'all': { } } def endDoc(self): if self.currentDoc == None: print 'Error writing end time. No current document.' return self.dataStore[self.currentDoc]['performance']['endTime'] = time.time() self.currentDoc = None class AnnotationType(Enum): NONE = 0 DATA_OBJ = 1 SHARE_VERB = 2 COLLECT_VERB = 3 SHARE_AND_COLLECT_VERB = 4 ENTITY = 5 @property def isShareOrCollect(self): return self in [AnnotationType.SHARE_VERB, AnnotationType.COLLECT_VERB, AnnotationType.SHARE_AND_COLLECT_VERB] @property def isCollect(self): return self == AnnotationType.COLLECT_VERB @property def isData(self): return self == AnnotationType.DATA_OBJ @property def isEntity(self): return self == AnnotationType.ENTITY @property def isNotNone(self): return self != AnnotationType.NONE @property def isNone(self): return self == AnnotationType.NONE #TODO add pass class KeyphraseTagger: # "use" is a special case... We may use your information in cojunction with advertisers to blah blah blah. def __init__(self): self.shareVerbs = [u'share', u'sell', u'provide', u'trade', u'transfer', u'give', u'distribute', u'disclose', u'send', u'rent', u'exchange', u'report', u'transmit'] self.collectVerbs = [u'collect', u'check', u'know', u'use', u'obtain', u'access', u'receive', u'gather', u'store', u'save'] def getTag(self, token): def isShareVerb(self, token): return token.pos == spacy.symbols.VERB and token.lemma_ in self.shareVerbs def isCollectVerb(self, token): return token.pos == spacy.symbols.VERB and token.lemma_ in self.collectVerbs #TODO do we really want "service|app|application" here? And not check if it is a subject or how related to the verb? def isEntity(self, token): return True if token.text.lower() in [u'we', u'i', u'us', u'me', u'you'] or token.ent_type_ in [u'PERSON', u'ORG'] else False def isDataObject(self, token): # TODO do we want to allow multi-token matches or just merge? return token.ent_type_ == u'DATA' and token.pos != spacy.symbols.VERB ############################# if isShareVerb(self, token): return AnnotationType.SHARE_VERB elif isCollectVerb(self, token): return AnnotationType.COLLECT_VERB elif isDataObject(self, token): return AnnotationType.DATA_OBJ elif isEntity(self, token): return AnnotationType.ENTITY return AnnotationType.NONE def tagSentence(self, sentence): res = {} for token in sentence: tag = self.getTag(token) if tag.isNotNone: res[(token.i, token)] = self.getTag(token) return res # TODO Refactor -- these should all be instance methods, so you don't need to keep passing common objects (graph, sentence, tokenTags) class DependencyGraphConstructor: @staticmethod def getConjugatedVerbs(sentence, targetTok = None): def isComma(token): return token.pos_ == u'PUNCT' and token.text == u',' def isCConj(token): return token.pos == spacy.symbols.CCONJ and token.lemma_ in [u'and', u'or', u'nor'] def isNegation(token): return token.dep == spacy.symbols.neg def getConjugatedVerbsInternal(results, token): if token.pos == spacy.symbols.VERB: results.append(token) for tok in token.children: if tok.i < token.i:#Ensure we only look at children that appear AFTER the token in the sentence continue if tok.dep == spacy.symbols.conj and tok.pos == spacy.symbols.VERB: if not getConjugatedVerbsInternal(results, tok): return False elif not (isComma(tok) or isCConj(tok) or isNegation(tok)): return False return True def isTokenContainedIn(token, conjugatedVerbs): for vbuffer in conjugatedVerbs: if token in vbuffer: return True return False conjugatedVerbs = [] vbuffer = [] for token in sentence: if token.pos == spacy.symbols.VERB: # Make sure we didn't already cover the verb... if isTokenContainedIn(token, conjugatedVerbs): continue vbuffer = [] getConjugatedVerbsInternal(vbuffer, token) if len(vbuffer) > 1: conjugatedVerbs.append(vbuffer) if targetTok != None: for vbuffer in conjugatedVerbs: if targetTok in vbuffer: return vbuffer return [] return conjugatedVerbs @staticmethod def getRootNodes(graph): def hasNoInEdges(graph, node): return len([n for n in graph.in_edges(node)]) == 0 root = [ n for n in graph.nodes if hasNoInEdges(graph, n) ] return root # Could be multiple trees... @staticmethod def collapseConjugatedEntities(graph, sentence, tokenTags): def traverseDownward(graph, node): outEdges = [ dst for src,dst in graph.out_edges(node) ] # Treat it as a stack instead... while len(outEdges) > 0: n = outEdges.pop() if graph[node][n]['label'] == u'conj' and node[2] == n[2] and node[2] in [AnnotationType.DATA_OBJ, AnnotationType.ENTITY]: # Remove link from X --> Y graph.remove_edge(node, n) #Replace node... graph.nodes[node]['lemma'] = u'{},{}'.format(graph.nodes[node]['lemma'], graph.nodes[n]['lemma']) graph.nodes[node]['lemmaList'].extend(graph.nodes[n]['lemmaList']) graph.nodes[node]['label'] = u'{}({}) - {}'.format(node[2], graph.nodes[node]['lemma'], node[1].i) outEdges2 = [ e for e in graph.out_edges(n) ] # Add all out links from Y --> Z to X --> Z (return all nodes, so we can add to outEdges...) for src,dst in outEdges2: graph.add_edge(node, dst, label = graph[src][dst]['label']) graph.remove_edge(src,dst) outEdges.append(dst) graph.remove_node(n) continue traverseDownward(graph, n) ################## # Get root node... roots = DependencyGraphConstructor.getRootNodes(graph) for r in roots: traverseDownward(graph, r) @staticmethod def getNodeAnnotationTag(node): return node[2] @staticmethod def isVerb(graph, node): return graph.nodes[node]['pos'] == u'VERB' @staticmethod def areAnnotationTagsEqual(node1, node2): t1 = DependencyGraphConstructor.getNodeAnnotationTag(node1) t2 = DependencyGraphConstructor.getNodeAnnotationTag(node2) return t1 == t2 or t1.isShareOrCollect and t2.isShareOrCollect @staticmethod def collapseConjugatedVerbs(graph, sentence, tokenTags): def getNewTag(n1, n2): if n2[2] != AnnotationType.SHARE_AND_COLLECT_VERB and n1[2].isNotNone and n1[2] != n2[2]: if n2[2].isNone: return n1[2] elif (n1[2] == AnnotationType.SHARE_VERB and n2[2] == AnnotationType.COLLECT_VERB) or (n1[2] == AnnotationType.COLLECT_VERB and n2[2] == AnnotationType.SHARE_VERB) or n1[2] == AnnotationType.SHARE_AND_COLLECT_VERB: return AnnotationType.SHARE_AND_COLLECT_VERB return n2[2] def replaceNode(graph, origNode, newNode): # Add out edges for s,t in graph.out_edges(origNode): graph.add_edge(newNode, t, label = graph[s][t]['label']) # Add in edges for s,t in graph.in_edges(origNode): graph.add_edge(s, newNode, label = graph[s][t]['label']) # Remove node from graph graph.remove_node(origNode) def addNewVerbNode(graph, node1, node2, docStart, docEnd): newTag = getNewTag(node1, node2) # Get new annotation tag newKey = (node2[0], node2[1], newTag)#FIXME this doesn't really represent the updated tag... negation = graph.node[node2]['neg'] # CHECKME can node1 ever be negated if node2 is not? newLemma = u'{},{}'.format(graph.nodes[node1]['lemma'], graph.nodes[node2]['lemma']) newNodeLabel = u'{}({}{})'.format(newTag, newLemma, u' - NOT' if negation else u'') newLemmaList = [] newLemmaList.extend(graph.nodes[node1]['lemmaList']) newLemmaList.extend(graph.nodes[node2]['lemmaList']) if newKey != node2: graph.add_node(newKey, label=newNodeLabel, lemma=newLemma, lemmaList=newLemmaList, tag = newTag, dep=node2[1].dep_, pos=node2[1].pos_, neg=negation, docStart=docStart, docEnd=docEnd) return (newKey, True) graph.nodes[node2]['lemma'] = newLemma graph.nodes[node2]['label'] = newNodeLabel graph.nodes[node2]['neg'] = negation graph.nodes[node2]['lemmaList'] = newLemmaList graph.nodes[node2]['tag'] = newTag graph.nodes[node2]['startDoc'] = docStart graph.nodes[node2]['endDoc'] = docEnd return (node2, False) ###################################### # Let's just walk the damn graph... def traverseDownward(graph, node): outEdges = [ dst for src,dst in graph.out_edges(node) ] # Treat it as a stack instead... while len(outEdges) > 0: n = outEdges.pop() if graph[node][n]['label'] == u'conj' and DependencyGraphConstructor.areAnnotationTagsEqual(node, n) and DependencyGraphConstructor.isVerb(graph, node) and DependencyGraphConstructor.isVerb(graph, n): #TODO the key changes due to the annotation tag potentially changing... #TODO ensure separation nodeTok = node[1] nodeChildTok = n[1] if nodeChildTok in DependencyGraphConstructor.getConjugatedVerbs(sentence, targetTok = nodeTok): #Remove link from X --> Y graph.remove_edge(node, n) # Get new Tag newTag = getNewTag(node, n) if newTag == node: graph.nodes[node]['lemma'] = u'{},{}'.format(graph.nodes[node]['lemma'], graph.nodes[n]['lemma']) graph.nodes[node]['lemmaList'].extend(graph.nodes[n]['lemmaList']) graph.nodes[node]['label'] = u'{}({}) - {}'.format(node[2], graph.nodes[node]['lemma'], node[1].i) # Add all out links from Y --> Z to X --> Z (return all nodes, so we can add to outEdges...) for src,dst in graph.out_edges(n): graph.add_edge(node, dst, label = graph[src][dst]['label']) graph.remove_edge(src,dst) outEdges.append(dst) graph.remove_node(n) else: # Add new tag... startDoc = nodeTok.i if nodeTok.i < nodeChildTok.i else nodeChildTok.i endDoc = nodeTok.i if nodeTok.i > nodeChildTok.i else nodeChildTok.i newNode,addedNewNode = addNewVerbNode(graph, n, node, startDoc, endDoc) if addedNewNode: # Add in edges for s,t in graph.in_edges(node): graph.add_edge(s, newNode, label = graph[s][t]['label']) graph.remove_edge(s,t) # Add out edges for s,t in graph.out_edges(node): graph.add_edge(newNode, t, label = graph[s][t]['label']) graph.remove_edge(s,t) if not addedNewNode: newNode = node # Add all out links from Y --> Z to X --> Z (return all nodes, so we can add to outEdges...) for src,dst in graph.out_edges(n): graph.add_edge(newNode, dst, label = graph[src][dst]['label']) graph.remove_edge(src,dst) outEdges.append(dst) # Remove node from graph if addedNewNode: graph.remove_node(node) node = newNode graph.remove_node(n) continue traverseDownward(graph, n) roots = DependencyGraphConstructor.getRootNodes(graph) for r in roots: traverseDownward(graph, r) @staticmethod def isVerbNegated(token, sentence): def isVerbNegatedInternal(token): return any(t.dep == spacy.symbols.neg for t in token.children) if isVerbNegatedInternal(token): return True # Check if verb is part of conjugated verb phrase, if so, check if any of those are negated conjugatedVerbs = DependencyGraphConstructor.getConjugatedVerbs(sentence, token) for tok in conjugatedVerbs: if isVerbNegatedInternal(tok): return True # Check if verb is xcomp, if so check if prior verb is negated? #TODO should also do advcl if token.dep == spacy.symbols.xcomp or token.dep == spacy.symbols.advcl: return DependencyGraphConstructor.isVerbNegated(token.head, sentence) return False @staticmethod def pruneUnattachedNodes(graph): def pruneChildren(graph, node): for s,t in graph.out_edges(node): pruneChildren(graph, t) if node in graph.nodes: graph.remove_node(node) def removeNodes(graph, nodesToRemove): for node in nodesToRemove: pruneChildren(graph, node) def hasNoOutEdges(graph, node): return len([n for n in graph.out_edges(node)]) == 0 def hasNoInEdges(graph, node): return len([n for n in graph.in_edges(node)]) == 0 def doesGraphContainVerb(graph, root): if root[2].isShareOrCollect: return True for _,n in graph.out_edges(root): if doesGraphContainVerb(graph, n): return True return False nodesToRemove = [ node for node in graph.nodes if hasNoOutEdges(graph, node) and hasNoInEdges(graph, node) ] removeNodes(graph, nodesToRemove) # Let's prune graphs that have no verbs... potentialRoots = [ node for node in graph.nodes if hasNoInEdges(graph, node) ] if len(potentialRoots) > 1: subGraphsToPrune = [r for r in potentialRoots if not doesGraphContainVerb(graph, r)] if len(subGraphsToPrune) < len(potentialRoots) and len(subGraphsToPrune) > 0: removeNodes(graph, subGraphsToPrune) @staticmethod def pruneNonSharingVerbs(graph): def getHead(graph, node): parents = [ src for src,_ in graph.in_edges(node) ] return parents[0] if len(parents) > 0 else node def subTreeContainsLabeledTags(graph, node, checkMatch=False): if checkMatch and node[2].isNotNone: return True for _,dst in graph.out_edges(node): if subTreeContainsLabeledTags(graph, dst, True): return True return False def childrenContainDataPractice(node): # One of the descendents need to contain a share verb... if (node[1].pos == spacy.symbols.VERB and node[2].isShareOrCollect and subTreeContainsLabeledTags(graph, node)): return True # elif(node[1].pos == spacy.symbols.VERB and node[1].dep_ == 'relcl'):# Only IF THE HEAD IS A DATA OBJECT OR ENTITY... # n2 = getHead(graph, node)[2] # if n2.isData or n2.isEntity: # return True for s,child in graph.out_edges(node): if childrenContainDataPractice(child): return True return False def pruneChildren(graph, node): for s,t in graph.out_edges(node): pruneChildren(graph, t) if node in graph.nodes: graph.remove_node(node) def removeNodes(graph, nodesToRemove): for node in nodesToRemove: pruneChildren(graph, node) def hasNoOutEdges(graph, node): return len([n for n in graph.out_edges(node)]) == 0 def hasNoInEdges(graph, node): return len([n for n in graph.in_edges(node)]) == 0 ############################# nodesToRemove = [ node for node in graph.nodes if node[1].pos == spacy.symbols.VERB and not childrenContainDataPractice(node) ] removeNodes(graph, nodesToRemove) nodesToRemove = [ node for node in graph.nodes if hasNoOutEdges(graph, node) and hasNoInEdges(graph, node) ] removeNodes(graph, nodesToRemove) nodesToRemove = [ node for node in graph.nodes if hasNoOutEdges(graph, node) and node[2].isNone and node[1].dep not in [spacy.symbols.nsubj, spacy.symbols.dobj, spacy.symbols.nsubjpass] ] while len(nodesToRemove) > 0: removeNodes(graph, nodesToRemove) nodesToRemove = [ node for node in graph.nodes if hasNoOutEdges(graph, node) and node[2].isNone and node[1].dep not in [spacy.symbols.nsubj, spacy.symbols.dobj, spacy.symbols.nsubjpass] ] ######################## @staticmethod def convertDTreeToNxGraph(sentence, tokenTags): def addNode(key, node, graph, sentence): if key not in graph: negation = False if key[2].isShareOrCollect: negation = DependencyGraphConstructor.isVerbNegated(node, sentence) graph.add_node(key, label=u'{}({}{}) - {}'.format(key[2], node.lemma_, u' - NOT' if negation else u'', node.i), tag = key[2], lemma = node.lemma_, lemmaList=[node.lemma_ if node.lemma_ != u'-PRON-' else node.text.lower()], dep=node.dep_, pos=node.pos_, neg=negation, docStart=node.i, docEnd=node.i) else: graph.add_node(key, label=u'{}({}) - {}'.format(key[2], node.lemma_, node.i), tag = key[2], lemma = node.lemma_, lemmaList=[node.lemma_ if node.lemma_ != u'-PRON-' else node.text.lower()], dep=node.dep_, pos=node.pos_, neg=negation, docStart=node.i, docEnd=node.i) def convertDTreeToNxGraphInternal(root, graph, tokenTags, sentence): rkey = DependencyGraphConstructor.getKey(root, tokenTags) if rkey not in graph: addNode(rkey, root, graph, sentence) for c in root.children: ckey = DependencyGraphConstructor.getKey(c, tokenTags) if ckey not in graph: addNode(ckey, c, graph, sentence) graph.add_edge(rkey, ckey, label = c.dep_) convertDTreeToNxGraphInternal(c, graph, tokenTags, sentence) ############## dgraph = nx.DiGraph() convertDTreeToNxGraphInternal(sentence.root, dgraph, tokenTags, sentence) return dgraph @staticmethod def drawGraph(g, filename): # try: # A = nx.drawing.nx_agraph.to_agraph(g) # A.draw(filename, prog='dot', args='-Granksep=2.0') # except:# FIXME unicode error here for some reason... # pass return @staticmethod def getKey(root, tokenTags): tKey = (root.i, root) tag = AnnotationType.NONE if tKey not in tokenTags else tokenTags[tKey] return (root.i, root, tag) @staticmethod def getSimplifiedDependencyGraph(sentence, tokenTags): def getPathBetweenNodes(g, itok, jtok, tokenTags): pathNodes = nx.shortest_path(g.to_undirected(), DependencyGraphConstructor.getKey(itok, tokenTags), DependencyGraphConstructor.getKey(jtok, tokenTags)) return g.subgraph(pathNodes).copy() ############################## if len(tokenTags) <= 1: # Need two or more tokens... return None g = DependencyGraphConstructor.convertDTreeToNxGraph(sentence, tokenTags) graphs = [] taggedTokens = [(token, tokenTags[(token.i, token)]) for i,token in tokenTags] for i,(itok,itag) in enumerate(taggedTokens): for j,(jtok, jtag) in enumerate(taggedTokens[i+1:]): graphs.append(getPathBetweenNodes(g, itok, jtok, tokenTags)) #Do not prune subjects and objects... #TODO is it just share verbs or all? for i,(itok,itag) in enumerate(taggedTokens): if itag.isShareOrCollect: for _, dst in g.out_edges(DependencyGraphConstructor.getKey(itok, tokenTags)): if dst[1].dep in [spacy.symbols.dobj, spacy.symbols.nsubj, spacy.symbols.nsubjpass] and dst[2].isNone: graphs.append(getPathBetweenNodes(g, itok, dst[1], tokenTags)) ################################# g = nx.compose_all(graphs) DependencyGraphConstructor.collapseConjugatedVerbs(g, sentence, tokenTags) # Prune non-attached nodes... DependencyGraphConstructor.pruneUnattachedNodes(g) DependencyGraphConstructor.collapseConjugatedEntities(g, sentence, tokenTags) DependencyGraphConstructor.pruneNonSharingVerbs(g) #DependencyGraphConstructor.drawGraph(g, 'simplified_graph.png') return g class PolicyTransformer: # TODO refactor so that these are instance methods # implicit everyone rule @staticmethod def applyPolicyTransformationRules(policyStatements, analyticsObj): def addPolicies(entity, collect, dataObjects, original_sentence, simplifiedStatements, actionLemma): #FIXME should not get a token at this point... if (type(entity) == unicode and entity == u'you') or (type(entity) == spacy.tokens.token.Token and entity.text == u'you'): return for d in dataObjects: simplifiedStatements.append((cleanupUnicodeErrors(entity), cleanupUnicodeErrors(collect), cleanupUnicodeErrors(d), cleanupUnicodeErrors(original_sentence), cleanupUnicodeErrors(actionLemma))) def addPoliciesByEntities(entities, collect, dataObjects, original_sentence, simplifiedStatements, actionLemma): if entities is not None and len(entities) > 0: if type(entities) == list: for e in entities: addPolicies(e, collect, dataObjects, original_sentence, simplifiedStatements, actionLemma) else: addPolicies(entities, collect, dataObjects, original_sentence, simplifiedStatements, actionLemma) else: addPolicies(u'third_party_implicit', collect, dataObjects, original_sentence, simplifiedStatements, actionLemma) def getAgentText(agent): if agent is None: #TODO CHECKME: Should we really have an implicit first party return u'we_implicit' if type(agent) == unicode: return agent if type(agent[1]) == unicode: return agent[1] return agent[1].lemma_ if agent[1].lemma_ != '-PRON-' else agent[1].text.lower() #return agent[1] if type(agent[1]) == unicode else agent[1].text.lower() #This needs to be the lemma unless -PRON- def handleShareVerb(pstatement, actionLemma, simplifiedStatements): agents = [ getAgentText(a) for a in pstatement['agent'] ] original_sentence = pstatement['original_sentence'] # Ensure that we don't create a conflict... # For example, if we have a sentence that claims "we do not collect or share X.", do not assume first party collect if pstatement['action'][2] == AnnotationType.SHARE_AND_COLLECT_VERB and pstatement['is_negated']: pass#FIXME clean up condition check else: addPoliciesByEntities(agents, u'collect', pstatement['data_objects'], original_sentence, simplifiedStatements, actionLemma) # If it is "you share/not share" and entities is nil, do not assume third-party if len(agents) == 1 and type(agents[0]) == unicode and agents[0] == u'you': if pstatement['entities'] is None or len(pstatement['entities']) == 0: pstatement['entities'] = [u'we_implicit'] collect = u'not_collect' if pstatement['is_negated'] else u'collect' #not sell, (you) not provide, trade, rent, exchange, # collect = u'collect' if actionLemma in [u'sell', u'rent', u'trade', u'exchange'] else collect # # you do not provide us does not mean not collect necessarily... # if len(agents) == 1 and type(agents[0]) == unicode and agents[0] == u'you' and actionLemma in [u'provide', u'give']: # return addPoliciesByEntities(pstatement['entities'], collect, pstatement['data_objects'], original_sentence, simplifiedStatements, actionLemma) def handleCollectVerb(pstatement, actionLemma, simplifiedStatements): agents = [ getAgentText(a) for a in pstatement['agent'] ] collect = u'not_collect' if pstatement['is_negated'] else u'collect' if pstatement['is_negated'] and actionLemma == u'use': return #not use, store, save. "Use" is typically conditional, so ignore negation (e.g., not use for...) collect = u'collect' if actionLemma in [u'store', u'save'] else collect original_sentence = pstatement['original_sentence'] addPoliciesByEntities(agents, collect, pstatement['data_objects'], original_sentence, simplifiedStatements, actionLemma) simplifiedStatements = [] #Array of statements for pstatement in policyStatements: #TODO analytics... exceptImpact, negation_distance analyticsObj.recordPolicyStatementAnalytics(pstatement) #Get the lemmas and do it this way instead... for actionLemma in pstatement['action_lemmas']: if actionLemma in [u'share', u'sell', u'provide', u'trade', u'transfer', u'give', u'distribute', u'disclose', u'send', u'rent', u'exchange', u'report', u'transmit']: #TODO refactor handleShareVerb(pstatement, actionLemma, simplifiedStatements) elif actionLemma in [u'collect', u'check', u'know', u'use', u'obtain', u'access', u'receive', u'gather', u'store', u'save']:#TODO refactor handleCollectVerb(pstatement, actionLemma, simplifiedStatements) # if pstatement['action'][2] in [AnnotationType.SHARE_VERB, AnnotationType.SHARE_AND_COLLECT_VERB]: # handleShareVerb(pstatement, simplifiedStatements) # if pstatement['action'][2] in [AnnotationType.COLLECT_VERB, AnnotationType.SHARE_AND_COLLECT_VERB]: # handleCollectVerb(pstatement, simplifiedStatements) return list(set(simplifiedStatements)) @staticmethod def handleExceptions(policyStatements, keyPhraseTagger, tags): #TODO probably don't need the tagger... def clonePolicyStatement(pol): return {'data_objects' : pol['data_objects'], 'entities' : pol['entities'], 'agent' : pol['agent'], 'action' : pol['action'], 'action_lemmas' : pol['action_lemmas'], 'is_negated' : pol['is_negated'], 'negation_distance' : pol['negation_distance'], 'original_sentence' : pol['original_sentence'], u'exceptions' : pol['exceptions'] } def lemmatize(tokens): return u' '.join(t.lemma_ for t in tokens) def getRelevantTags(e, tags): return {(term.i, term):tags[(term.i, term)] for term in e if (term.i, term) in tags} def isAllData(tags): return all(tags[k].isData for k in tags) def isAllEntity(tags): return all(tags[k].isEntity for k in tags) newStatements = [] removePolicyStatements = [] for pol in policyStatements: if pol['exceptions'] is not None and len(pol['exceptions']) > 0: # Get all exceptions at first that can be resolved with keywords or all data and entity excepts = [ (v,e) for v,e in pol['exceptions'] ] for v,e in pol['exceptions']: #Record how often exceptions affect policy statements... relTags = getRelevantTags(e, tags) elemma = lemmatize(e) if re.search(r'^.*\b(consent|you\sagree|your\s(express\s)?permission|you\sprovide|opt([\s\-](out|in))?|respond\sto\syou(r)?|disclose\sin\sprivacy\spolicy|follow(ing)?\scircumstance|permit\sby\schildren\'s\sonline\sprivacy\sprotection\sact)\b.*$', elemma): #Only do the exceptions in negative cases... # For example, we do not want to reverse: "We collect your personal information without your consent" if not pol['is_negated']: continue newPol = clonePolicyStatement(pol) newPol['is_negated'] = not newPol['is_negated'] newPol['exceptions'] = None#TODO do we ever really need this again? newPol['exceptImpact'] = True newStatements.append(newPol) excepts.remove((v,e)) removePolicyStatements.append(pol) elif elemma in [u'require by law', 'we receive subpoena', u'law']: #Only do the exceptions in negative cases... # For example, we do not want to reverse: "We collect your personal information without your consent" if not pol['is_negated']: continue newPol = clonePolicyStatement(pol) newPol['entities'] = [u'government agency'] newPol['is_negated'] = not newPol['is_negated'] newPol['exceptions'] = None#TODO do we ever really need this again? newPol['exceptImpact'] = True newStatements.append(newPol) excepts.remove((v,e)) removePolicyStatements.append(pol) elif len(relTags) == len(e): newPol = clonePolicyStatement(pol) newPol['is_negated'] = not newPol['is_negated'] newPol['exceptions'] = None#TODO do we ever really need this again? newPol['exceptImpact'] = True # If ALL data items if isAllData(relTags): newPol['data_objects'] = [ data.lemma_ for index,data in relTags ] newStatements.append(newPol) excepts.remove((v,e)) #removePolicyStatements.append(pol) # If ALL entities elif isAllEntity(relTags): if newPol['action'][2].isCollect: newPol['agent'] = [ data.lemma_ for index,data in relTags ] else: newPol['entities'] = [ data.lemma_ for index,data in relTags ] newStatements.append(newPol) excepts.remove((v,e)) #removePolicyStatements.append(pol) else: #Not sure what it is, let's flip it anyway... if not pol['is_negated']: continue newPol = clonePolicyStatement(pol) newPol['is_negated'] = not newPol['is_negated'] newPol['exceptImpact'] = True newPol['exceptions'] = None#TODO do we ever really need this again? newStatements.append(newPol) excepts.remove((v,e)) removePolicyStatements.append(pol) for pol in newStatements: policyStatements.append(pol) for pol in removePolicyStatements: if pol in policyStatements: policyStatements.remove(pol) return policyStatements class GraphCompare: @staticmethod def nmatchCallback(n1, n2): def getVerbGroup(lemmaList): groups = [[u'share', u'trade', u'exchange'], [u'transmit', u'send', u'give', u'provide'], [u'sell', u'transfer', u'distribute', u'disclose', u'rent', u'report'], [u'collect', u'check', u'know', u'use', u'obtain', u'access', u'receive', u'gather', u'store', u'save' ] ] results = [] for lemma in lemmaList: for i,g in enumerate(groups): if lemma in g: results.append(i) return set(results) #This should really never happen as long as the two lists in sync if n1['tag'].isShareOrCollect and n2['tag'].isShareOrCollect: vg1 = getVerbGroup(n1['lemmaList']) vg2 = getVerbGroup(n2['lemmaList']) return len(vg1.intersection(vg2)) > 0 # return getVerbGroup(n1['lemmaList']) == getVerbGroup(n2['lemmaList']) #return n1['dep'] == n2['dep'] and groupsMatch #TODO should we ensure verb matches? if n1['tag'].isNone and n2['tag'].isNone and n1['pos'] == u'ADP' and n2['pos'] == u'ADP': return n1['tag'] == n2['tag'] and n1['dep'] == n2['dep'] and n1['lemma'] == n2['lemma'] if n1['tag'].isNone and n2['tag'].isNone and n1['pos'] == u'VERB' and n2['pos'] == u'VERB': if n1['dep'] == u'ROOT' or n2['dep'] == u'ROOT': return n1['tag'] == n2['tag'] and n1['pos'] == n2['pos'] return n1['tag'] == n2['tag'] and n1['dep'] == n2['dep'] @staticmethod def ematchCallback(n1, n2): return n1['label'] == n2['label'] class PatternDiscover: def __init__(self, nlpModel, analyticsObj): self.tagger = KeyphraseTagger() self.parser = spacy.load(nlpModel) if type(nlpModel) != spacy.lang.en.English else nlpModel self.patterns = [] self.learnedPatternsCounter = 0 self.analyticsObj = analyticsObj def parseText(self, paragraph): paragraph = re.sub(r'\bid\b', u'identifier', paragraph) # Spacy parses "id" as "i would", so fix here... doc = self.parser(paragraph) epm.mergeExcludePhrases(doc, self.parser.vocab) npm.mergeNounPhrasesDoc(doc, self.parser.vocab) return doc def containsShareOrCollect(self, tags): return any(tags[k].isShareOrCollect for k in tags) def containsDataObject(self, tags): return any(tags[k].isData for k in tags) def train(self, paragraph): doc = self.parseText(paragraph) dgraphs = [] for sentence in doc.sents: tags = self.tagger.tagSentence(sentence) if len(tags) <= 0: continue if not self.containsShareOrCollect(tags): continue depGraph = DependencyGraphConstructor.getSimplifiedDependencyGraph(sentence, tags) if depGraph is not None: # We have a problem here, why would it return None? isIso = False for p in self.patterns: if nx.algorithms.isomorphism.is_isomorphic(depGraph, p, node_match=GraphCompare.nmatchCallback, edge_match=GraphCompare.ematchCallback): isIso = True break if isIso: continue DependencyGraphConstructor.drawGraph(depGraph, 'TRAINED_PATTERNS/{}.png'.format(self.learnedPatternsCounter)) self.learnedPatternsCounter += 1 self.patterns.append(depGraph) dgraphs.append(depGraph) return dgraphs def extractData(self, depGraph, subgraph, sentence, verbose=False): def isVerbNearestAncestor(targetVerb, exceptVerb): if targetVerb == exceptVerb: return True if exceptVerb.pos == spacy.symbols.VERB and self.tagger.getTag(exceptVerb).isShareOrCollect: return False if exceptVerb.head == exceptVerb: # Hit the root return False return isVerbNearestAncestor(targetVerb, exceptVerb.head) def getReleventExceptions(verb, exceptions): if exceptions is None or len(exceptions) == 0: return exceptions return [ (v,e) for v,e in exceptions if isVerbNearestAncestor(verb, v) ] def getNearestAnnotVerb(depGraph, node): for s,_ in depGraph.in_edges(node): if s[2].isShareOrCollect: return s for s,_ in depGraph.in_edges(node): res = getNearestAnnotVerb(depGraph, s) if res is not None: return res return None def hasSubjectAndDobj(depGraph, node): hasSubject = any(n for _,n in depGraph.out_edges(node) if n[1].dep in [spacy.symbols.nsubj, spacy.symbols.nsubjpass]) hasObject = any(n for _,n in depGraph.out_edges(node) if n[1].dep in [spacy.symbols.dobj]) return hasSubject and hasObject def extractDataObjects(depGraph, baseNode): def extractDataObjectsInternal(results, depGraph, baseNode): for _,node in depGraph.out_edges(baseNode): if node[2].isData : results.append(node) elif node[2].isShareOrCollect: # Extract from NEAREST verb only continue elif node[1].pos == spacy.symbols.ADP and node[1].lemma_ in [u'except when', u'except where', u'unless when', u'unless where', u'except for', u'except in', u'except under', u'unless for', u'unless in', u'unless under', u'apart from', u'aside from', u'with the exception of', u'other than', u'except to', u'unless to', u'unless as', u'except as']: continue extractDataObjectsInternal(results, depGraph, node) ########################## dataObjects = [] #TODO if relcl, should we check the parent first? extractDataObjectsInternal(dataObjects, depGraph, baseNode) #Only do this if we don't have a direct object AND subject... if len(dataObjects) == 0 and not hasSubjectAndDobj(depGraph,baseNode): # Get from nearest parent? v = getNearestAnnotVerb(depGraph, baseNode) extractDataObjectsInternal(dataObjects, depGraph, v) return dataObjects def getAgent(depGraph, baseNode): def getEntityConjunctions(depGraph, node): def getEntityConjunctionsInternal(depGraph, node, res): for _,target in depGraph.out_edges(node): if depGraph[node][target]['label'] == 'conj': res.append(target) getEntityConjunctionsInternal(depGraph, target, res) return res res = [node] res = getEntityConjunctionsInternal(depGraph, node, res) return res def getAgentInternal(depGraph, baseNode, skipTraverseUpwards=False, isXcomp=False): nsubj = None nsubjpass = None agentPobj = None dobj = None # Check children for the subject or agent if subject is passive... for _,node in depGraph.out_edges(baseNode): if depGraph[baseNode][node]['label'] == 'nsubj': nsubj = node elif depGraph[baseNode][node]['label'] == 'nsubjpass': nsubjpass = node elif depGraph[baseNode][node]['label'] == 'dobj' or depGraph[baseNode][node]['label'] == 'dative': dobj = node elif depGraph[baseNode][node]['label'] == 'agent': #"Agent" dependency tag for _,node2 in depGraph.out_edges(node): if node2[2].isEntity: agentPobj = node2 if nsubj is None: nsubj = nsubjpass if isXcomp: #If xcomp prefer dobj over nsubj... if dobj is not None and dobj[2].isEntity: return getEntityConjunctions(depGraph, dobj) if nsubj is not None and nsubj[2].isEntity: return getEntityConjunctions(depGraph, nsubj) if nsubjpass is not None and nsubjpass[2].isEntity: return getEntityConjunctions(depGraph, nsubjpass) if agentPobj is not None and agentPobj[2].isEntity: return getEntityConjunctions(depGraph, agentPobj) else: if nsubj is not None and nsubj[2].isEntity: return getEntityConjunctions(depGraph, nsubj) if nsubjpass is not None and nsubjpass[2].isEntity: return getEntityConjunctions(depGraph, nsubjpass) if agentPobj is not None and agentPobj[2].isEntity: return getEntityConjunctions(depGraph, agentPobj) if dobj is not None and dobj[2].isEntity: return getEntityConjunctions(depGraph, dobj) if not skipTraverseUpwards: # If we don't find anything, get the parent verb if exists and search there for node,_ in depGraph.in_edges(baseNode): res = getAgentInternal(depGraph, node, skipTraverseUpwards=True, isXcomp=baseNode[1].dep in [spacy.symbols.xcomp, spacy.symbols.advcl]) if res is not None: return res return None ################## agent = getAgentInternal(depGraph, baseNode) if agent is None or len(agent) == 0: #If we haven't found anything return the default (i.e., "we") -- Rationale: "Personal information may be collected." means implicit "we" return [u'we_implicit'] # Implicit first party return agent def ignoreActionObjectPair(verb, dobjects): if verb.lemma_ == u'send': #Ignore send email or message for d in dobjects: if re.search(r'.*\b(email|message)\b.*', d): return True return False def getVerbNegationDistance(token, sentence): def isVerbNegatedInternal(token): for t in token.children: if t.dep == spacy.symbols.neg: #TODO need to record this somewhere for analytics purposes... return t.i return -1 #return any(t.dep == spacy.symbols.neg for t in token.children) dist = isVerbNegatedInternal(token) if dist >= 0: return dist # Check if verb is part of conjugated verb phrase, if so, check if any of those are negated conjugatedVerbs = DependencyGraphConstructor.getConjugatedVerbs(sentence, token) for tok in conjugatedVerbs: dist = isVerbNegatedInternal(tok) if dist >= 0: return dist # Check if verb is xcomp, if so check if prior verb is negated? adjks if token.dep == spacy.symbols.xcomp: return getVerbNegationDistance(token.head, sentence) return -1 def extractEntities(depGraph, baseNode): def extractEntitiesInternal(results, depGraph, baseNode): agent = getAgent(depGraph, baseNode) for _,node in depGraph.out_edges(baseNode): if node[2].isEntity and node not in agent: results.append(node) elif node[2].isShareOrCollect: # Extract from NEAREST annotated verb only continue elif node[1].pos == spacy.symbols.ADP and node[1].lemma_ in [u'except when', u'except where', u'unless when', u'unless where', u'except for', u'except in', u'except under', u'unless for', u'unless in', u'unless under', u'apart from', u'aside from', u'with the exception of', u'other than', u'except to', u'unless to', u'unless as', u'except as']: continue extractEntitiesInternal(results, depGraph, node) ########################## entities = [] extractEntitiesInternal(entities, depGraph, baseNode) return entities ######################### def convertAgentToText(depGraph, agent): if agent is None: return agent result = [] for a in agent: if type(a) == unicode: result.append(a) continue result.extend(depGraph.nodes[a]['lemmaList']) return result results = [] if verbose: print 'Found match.\n\t', sentence # Start at the verbs... exceptions = eh.checkException(sentence)#TODO should probably check the verb match here instead of doing it below... for n in depGraph: if n[2].isShareOrCollect and n in subgraph: # Only extract from subgraph... # dataObjects = [ d[1].lemma_ for d in extractDataObjects(depGraph, n) ] dataObjects = [] for d in extractDataObjects(depGraph, n): dataObjects.extend(depGraph.nodes[d]['lemmaList']) # entities = [ e[1].lemma_ for e in extractEntities(depGraph, n) ] entities = [] for e in extractEntities(depGraph, n): entities.extend(depGraph.nodes[e]['lemmaList']) agent = getAgent(depGraph, n) #Agent to text agent = convertAgentToText(depGraph, agent) if len(dataObjects) == 0 or ignoreActionObjectPair(n[1], dataObjects): # skip <VERB, send>, <email> continue actionLemmas = depGraph.nodes[n]['lemmaList'] #Get related exceptions rooted under the specific share/collect verb... relExcepts = getReleventExceptions(n[1], exceptions) if verbose: print n, (u'NOT', n[1].i, getVerbNegationDistance(n[1], sentence)) if depGraph.nodes[n]['neg'] else u'' print '\tDATA: ', dataObjects print '\tAGENT: ', agent print '\tENTITIES: ', entities #print '\tTYPE: ', ptype print '\tEXCEPTIONS: ', exceptions negDist = getVerbNegationDistance(n[1], sentence) if depGraph.nodes[n]['neg'] else -1 results.append({'data_objects' : dataObjects, 'entities' : entities, 'agent' : agent, 'action' : n, 'action_lemmas' : actionLemmas, 'is_negated' : depGraph.nodes[n]['neg'], 'negation_distance' : negDist, 'original_sentence' : sentence.text, u'exceptions' : relExcepts }) return results def test(self, paragraph): def ensureAnnotationTagSetsEqual(tagSet1, tagSet2): def combineShareCollectTagSets(tagset): if AnnotationType.SHARE_AND_COLLECT_VERB in tagset: if AnnotationType.SHARE_VERB in tagset: tagset.remove(AnnotationType.SHARE_VERB) if AnnotationType.COLLECT_VERB in tagset: tagset.remove(AnnotationType.COLLECT_VERB) #TODO REMOVE ME # Treat everything as share or collect removedNodes = False for t in [AnnotationType.SHARE_VERB, AnnotationType.COLLECT_VERB, AnnotationType.SHARE_AND_COLLECT_VERB]: if t in tagset: tagset.remove(t) removedNodes = True if removedNodes: tagset.add(AnnotationType.SHARE_VERB) return tagset ################### tagSet1 = combineShareCollectTagSets(tagSet1) tagSet2 = combineShareCollectTagSets(tagSet2) return len(tagSet1) != len(tagSet2) or len(tagSet2 - tagSet1) > 0 or len(tagSet1 - tagSet2) > 0 def getTagsFromGraph(depGraph): return set([ n[2] for n in depGraph.nodes if n[2].isNotNone ]) def doesSentenceStartWithInterrogitive(sentence):#TODO we may want to be smarter about this... return any(child.lemma_ in [u'who', u'what', u'when', u'where', u'why', u'how', u'do'] and child.dep == spacy.symbols.advmod for child in sentence.root.children) ########################## results = [] doc = self.parseText(paragraph) for sentence in doc.sents: tags = self.tagger.tagSentence(sentence) if len(tags) <= 0: continue if not self.containsShareOrCollect(tags) or not self.containsDataObject(tags) or doesSentenceStartWithInterrogitive(sentence): continue #Prune the tree.. depGraph = DependencyGraphConstructor.getSimplifiedDependencyGraph(sentence, tags) if len(tags) <= 0 or depGraph is None: continue if not self.containsShareOrCollect(tags) or not self.containsDataObject(tags) or doesSentenceStartWithInterrogitive(sentence): continue uniqueTags = getTagsFromGraph(depGraph) subgraphs = [] for p in self.patterns: ptags = getTagsFromGraph(p) # Ensure pattern and test sentence have same types of tags present if ensureAnnotationTagSetsEqual(uniqueTags, ptags): continue GM = nx.algorithms.isomorphism.GraphMatcher(depGraph, p, node_match=GraphCompare.nmatchCallback, edge_match=GraphCompare.ematchCallback) matchFound = False for subgraph in GM.subgraph_isomorphisms_iter(): # Ensure all of the tags in p are present in subgraph (i.e., avoid single token subgraph matches) subgraphTags = set([ k[2] for k in subgraph if k[2].isNotNone ]) if ensureAnnotationTagSetsEqual(subgraphTags, ptags): continue subgraphs.extend(subgraph.keys()) if len(subgraphs) > 0: #DependencyGraphConstructor.drawGraph(subgraph, 'TRAINED_PATTERNS/SUBGRAPH.png') res = self.extractData(depGraph, subgraphs, sentence) res = PolicyTransformer.handleExceptions(res, self.tagger, tags) res = PolicyTransformer.applyPolicyTransformationRules(res, self.analyticsObj) for r in res: results.append(r) return results if len(results) > 0 else None def loadTrainingData(filename): pass def loadTestingData(path): data = [] for root,dirs,files in os.walk(path): for f in files: data.append((f, [ line.strip() for line in codecs.open(os.path.join(root, f), 'r', 'utf-8') ])) return data def aggregateBySentence(policies): results = {} if policies is not None:#We can just do extend instead of append if we're not going to be verbose here... for actor,collect,data,orig_sentence,actionLemma in policies: if orig_sentence not in results: results[orig_sentence] = set() results[orig_sentence].add((actor, collect, data, actionLemma)) return results def prettyPrintResults(policies): res = aggregateBySentence(policies) for sen in res: print sen for pol in res[sen]: print '\t', pol def val(v): res = v if type(v) == unicode else v.lemma_ return res.encode('utf-8') def valTxt(v): res = v if type(v) == unicode else v.text return res.encode('utf-8') def getOutputFilename(filename, outputDir): fname,ext = os.path.splitext(os.path.basename(filename)) return os.path.join(outputDir, '{}.pickle'.format(fname)) def dumpData(res, fname, outDir): outFile = getOutputFilename(fname, outDir) pickle.dump(res, open(outFile, 'wb')) def dumpTree(tok, tab=u''): print tab, tok.lemma_, tok.pos_, tok.dep_, tok.i, tok.ent_type_ for child in tok.children: dumpTree(child, tab + u'\t') def drawGraph(graph): # A = nx.drawing.nx_agraph.to_agraph(graph) # return A.draw(format='png', prog='dot', args='-Granksep=2.0') return analytics = Analytics() pd = PatternDiscover(nlpModel = nlp, analyticsObj=analytics) for sentence in TRAINING_DATA: pd.train(sentence) # TODO serialize the patterns and load up instead of training again... print len(pd.patterns) print len(pd.patterns) # In[70]: def loadTestingDataFromFile(path): data = [] for filepath in codecs.open(path, 'r', 'utf-8'): filepath = filepath.strip() data.append((os.path.basename(filepath), [ line.strip() for line in codecs.open(filepath, 'r', 'utf-8') ])) return data subsetNum = sys.argv[1] testing_data = loadTestingDataFromFile('/ext/input/policySubsets/{}.txt'.format(subsetNum)) complete_results = {} for filename,text in testing_data: results = [] if os.path.isfile(getOutputFilename(filename, '/ext/output/policy')) and os.path.isfile(getOutputFilename(filename, '/ext/output/analytics')): print 'Skipping', filename continue print '--------------------Parsing {}--------------------'.format(filename) analytics.startDoc(filename) for line in text: try: #FIXME remove this exception block print line res = pd.test(line) if res is not None:#We can just do extend instead of append if we're not going to be verbose here... res = [ (val(ent), val(col), val(dat), valTxt(sen), val(actionLemma)) for ent,col,dat,sen,actionLemma in res ] results.extend(res) prettyPrintResults(res) except RuntimeError as err: with codecs.open('/ext/output/log/ERROR_LOG_REC_{}.log'.format(subsetNum), 'a', 'utf-8') as logfile: logfile.write(u'{} --- {}\n'.format(filename, line)) analytics.endDoc() dumpData(results, filename, '/ext/output/policy') dumpData(analytics.dataStore[filename], filename, '/ext/output/analytics') complete_results[filename] = results print '--------------------------------------------------'.format(filename) # Pickle the results... #pickle.dump(complete_results, open('/ext/output/policy_results.pickle', 'wb')) #json.dump(complete_results, open('/ext/output/policy_results.json', 'wb'), indent=4) #pickle.dump(analytics.dataStore, open('/ext/output/analytics_data.pickle', 'wb')) #json.dump(analytics.dataStore, codecs.open('/ext/output/analytics_data.json', 'wb', 'utf-8'), indent=4)
''' This file is a part of Test Mile Arjuna Copyright 2018 Test Mile Software Testing Pvt Ltd Website: www.TestMile.com Email: support [at] testmile.com Creator: Rahul Verma Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from arjuna.tpi import Arjuna from arjuna.unitee.types.root import * from arjuna.unitee.types.containers import * from arjuna.core.reader.hocon import * from arjuna.core.utils import sys_utils from arjuna.unitee.test.defs.fixture import * from .group import * from xml.etree.ElementTree import Element from arjuna.core.utils import etree_utils from arjuna.unitee.utils import run_conf_utils from arjuna.core.config import ConfigContainer class StageDef(Root): def __init__(self, sdef, id, stage_xml): super().__init__() self.gdefs = [] self.config = ConfigContainer() self.tmcount = 0 self.threads = 1 self.sdef = sdef self.__iter = None self.__fixtures = FixturesDef() self.root = stage_xml self.unitee = Arjuna.get_unitee_instance() self.id = id self.name = "stage{:d}".format(id) if not isinstance(stage_xml, Element): self.console.display_error("Fatal: [Arjuna Error] Unsuppored input argument supplied for stage creation: {}".format(stage_xml)) sys_utils.fexit() else: self.__process(stage_xml) # self.nodes.append(SessionSubNode(self, len(self.nodes) + 1, input)) @property def fixture_defs(self): return self.__fixtures def __process(self, group_hocon): def display_err_and_exit(msg): self.console.display_error((msg + " Fix session template file: {}").format(self.sdef.fpath)) sys_utils.fexit() stage_attrs = etree_utils.convert_attribs_to_cidict(self.root) if "name" in stage_attrs: self.name = stage_attrs['name'].strip() if not self.name: display_err_and_exit(">>name<< attribute in stage definition should be a non-empty string.") threads_err_msg = ">>threads<< attribute in stage definition can be integer >=1." if "threads" in stage_attrs: self.threads = stage_attrs['threads'].strip() try: self.threads = int(self.threads) except: display_err_and_exit(threads_err_msg) else: if self.threads <=0: display_err_and_exit(threads_err_msg) node_dict = etree_utils.convert_to_cidict(self.root) if "groups" not in node_dict: display_err_and_exit(">>stage<< element in session definition must contain >>groups<< element.") for child_tag, child in node_dict.items(): child_tag = child_tag.lower() if child_tag == 'config': config = child for option in config: run_conf_utils.validate_config_xml_child("session", self.sdef.fpath, option) run_conf_utils.add_config_node_to_configuration("session", self.config, option) elif child_tag == 'fixtures': fixtures = child for child in fixtures: run_conf_utils.validate_fixture_xml_child("session", "stage", self.sdef.fpath, child) run_conf_utils.add_fixture_node_to_fixdefs(self.fixture_defs, child) elif child_tag =='groups': if "group" not in etree_utils.convert_to_cidict(child): display_err_and_exit(">>groups<< element in stage definition must contain atleast one >>group<< element.") groups = list(child) for index, group in enumerate(groups): run_conf_utils.validate_group_xml_child("session", self.sdef.fpath, group) node = GroupDef(self.sdef, self, len(self.gdefs) + 1, group) self.gdefs.append(node) else: display_err_and_exit("Unexpected element >>{}<< found in >>stage<< definition in session file.".format(child.tag)) def pick(self): for gdef in self.gdefs: self.tmcount += gdef.pick() self.__iter = iter(self.gdefs)
from orbs_client.account import create_account from orbs_client.client import Client
""" test_passlock.py Tests for passlock. """ import logging from passlock import __version__ logging.disable(logging.CRITICAL) def test_version(): assert __version__ == '0.1.4'
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # [START documentai_process_quality_document] # TODO(developer): Uncomment these variables before running the sample. # project_id= 'YOUR_PROJECT_ID' # location = 'YOUR_PROJECT_LOCATION' # Format is 'us' or 'eu' # processor_id = 'YOUR_PROCESSOR_ID' # Create processor in Cloud Console # file_path = '/path/to/local/pdf' def process_document_quality_sample( project_id: str, location: str, processor_id: str, file_path: str ): from google.cloud import documentai_v1beta3 as documentai # You must set the api_endpoint if you use a location other than 'us', e.g.: opts = {} if location == "eu": opts = {"api_endpoint": "eu-documentai.googleapis.com"} client = documentai.DocumentProcessorServiceClient(client_options=opts) # The full resource name of the processor, e.g.: # projects/project-id/locations/location/processor/processor-id # You must create new processors in the Cloud Console first name = f"projects/{project_id}/locations/{location}/processors/{processor_id}" with open(file_path, "rb") as image: image_content = image.read() # Read the file into memory document = {"content": image_content, "mime_type": "application/pdf"} # Configure the process request request = {"name": name, "raw_document": document} # Recognizes text entities in the PDF document result = client.process_document(request=request) print("Document processing complete.\n") # Read the quality-specific information from the output from the # Intelligent Document Quality Processor: # https://cloud.google.com/document-ai/docs/processors-list#processor_doc-quality-processor # OCR and other data is also present in the quality processor's response. # Please see the OCR and other samples for how to parse other data in the # response. document = result.document for entity in document.entities: conf_percent = "{:.1%}".format(entity.confidence) page_num = "" try: page_num = str(int(entity.page_anchor.page_refs.page) + 1) except AttributeError: page_num = "1" print(f"Page {page_num} has a quality score of {conf_percent}:") for prop in entity.properties: conf_percent = "{:.1%}".format(prop.confidence) print(f" * {prop.type_} score of {conf_percent}") # [END documentai_process_quality_document]
# Generated by Django 3.1.6 on 2021-03-31 12:51 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0007_auto_20210330_1640'), ] operations = [ migrations.AlterField( model_name='basket', name='customer', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='customer', to='core.customer'), ), migrations.AlterField( model_name='basketitem', name='basket', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='basket', to='core.basket'), ), migrations.AlterField( model_name='basketitem', name='product', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='product', to='core.product'), ), ]
# coding: utf-8 import celery @celery.shared_task() def sleep(message, seconds=1): import time time.sleep(seconds) print(f'bar: {message}') return seconds
#!/usr/bin/env python3 import os import glob import subprocess from utility.general_repo_tools import get_repo_root if __name__ == '__main__': root = get_repo_root() format_directories = [os.path.join(root, d) for d in ['apps', 'apps_test', 'core_csiro']] ignored_files = ["*gatt_efr32*", "*gatt_nrf52*", "*rpc_server*", "*rpc_client*"] for d in format_directories: c_finder_args = ["find", d, "-iname", "*.c"] h_finder_args = ["find", d, "-iname", "*.h"] for f in ignored_files: c_finder_args += ["-not", "(", "-name", f, ")"] h_finder_args += ["-not", "(", "-name", f, ")"] formatter_args = ["xargs", "clang-format", "-i", "-style=file"] print("Formatting source files in {:s}...".format(d)) c_finder = subprocess.Popen(c_finder_args, stdout=subprocess.PIPE) result = subprocess.check_output(formatter_args, stdin=c_finder.stdout) print("Formatting header files in {:s}...".format(d)) h_finder = subprocess.Popen(h_finder_args, stdout=subprocess.PIPE) result = subprocess.check_output(formatter_args, stdin=h_finder.stdout) print("Formatting complete")
# you can write to stdout for debugging purposes, e.g. # print("this is a debug message") def solution(A): # write your code in Python 3.6 if len(A) < 3: return 0 A = sorted(A) product_A = A[0] * A[1] * A[-1] product_B = A[-1] * A[-2] * A[-3] max_product = max(product_A, product_B) return max_product
from django.contrib.auth import get_user_model from django.contrib import messages from django.core.mail import send_mail from django.conf import settings from django.db.models import Q from django.db.models.functions import Concat from django.db.models import Value from .serializers import ( UserDetailSerializer, UserRUDSerializer, ) from rest_framework.generics import ( CreateAPIView, RetrieveUpdateDestroyAPIView, ListAPIView, ) from rest_framework.views import APIView from django.shortcuts import get_object_or_404 from rest_framework.response import Response from ..models import Profile from rest_framework.status import ( HTTP_200_OK, HTTP_400_BAD_REQUEST, HTTP_201_CREATED ) from rest_framework.views import APIView from rest_framework.permissions import ( AllowAny, IsAuthenticated ) User=get_user_model() from rest_framework.exceptions import NotFound from rest_framework.views import APIView from rest_framework import status from rest_framework.response import Response from rest_framework.permissions import AllowAny from allauth.account.models import EmailConfirmation, EmailConfirmationHMAC from django.http import HttpResponse, HttpResponseRedirect from allauth.socialaccount.providers.google.views import GoogleOAuth2Adapter from rest_auth.registration.views import SocialLoginView from rest_auth.registration.views import SocialConnectView # from posts.api.serializers import PostDetailSerializer # from posts.api.pagination import StandardResultPagination # from posts.models import Post from django.utils import timezone from django.contrib.sessions.models import Session import datetime class GoogleLogin(SocialConnectView): adapter_class = GoogleOAuth2Adapter class ConfirmEmailView(APIView): permission_classes = [AllowAny] def get(self, *args, **kwargs): self.object = confirmation = self.get_object() try: confirmation.confirm(self.request) return Response({"details":"E-mail ID registered successfully!"}) except: # A React Router Route will handle the failure scenario return Response({"details":"Failed to register E-mail ID. Invalid Link!"}) def get_object(self, queryset=None): key = self.kwargs['key'] email_confirmation = EmailConfirmationHMAC.from_key(key) if not email_confirmation: if queryset is None: queryset = self.get_queryset() try: email_confirmation = queryset.get(key=key.lower()) except EmailConfirmation.DoesNotExist: # A React Router Route will handle the failure scenario return Response({"details":"Failed to register E-mail ID. An error occured!"}) return email_confirmation def get_queryset(self): qs = EmailConfirmation.objects.all_valid() qs = qs.select_related("email_address__user") return qs class DeleteAllUnexpiredSessionsForUser(APIView): def get(self, request): try: unexpired_sessions = Session.objects.filter(expire_date__gte=timezone.now()) [ session.delete() for session in unexpired_sessions if str(request.user.id) == session.get_decoded().get('_auth_user_id') ] except: return Response({"detail":"Error!"}) return Response({"detail":"Successfully deleted all existing sessions!"}) class CurrentUserAPIView(APIView): def get(self, request): serializer = UserDetailSerializer(request.user,context={'request': request}) newdict={"sessionkey":request.session.session_key} newdict.update(serializer.data) return Response(serializer.data) class UserListAPIView(ListAPIView): serializer_class=UserDetailSerializer permission_classes = [AllowAny] def get_queryset(self): qs=User.objects.all() query=self.request.GET.get('s') if query is not None: qs=qs.filter( Q(username__icontains=query)| Q(first_name__icontains=query)| Q(last_name__icontains=query) ).distinct() return qs class UserRUDView(RetrieveUpdateDestroyAPIView): lookup_field= 'username' serializer_class=UserRUDSerializer queryset=User def get(self, request, username, *args, **kwargs): if(username!=request.user.username): return Response({"detail": "Not found."}, status=400) else: serializer = UserRUDSerializer(request.user,context={'request': request}) return Response(serializer.data) def update(self, request, username, *args, **kwargs): if(username!=request.user.username): return Response({"detail": "Not found."}, status=400) else: serializer = UserRUDSerializer(request.user,context={'request': request}) return Response(serializer.data) def destroy(self, request, username, *args, **kwargs): if(username!=request.user.username): return Response({"detail": "Not found."}, status=400) else: serializer = UserRUDSerializer(request.user,context={'request': request}) return Response(serializer.data) # def get_queryset(self,*args, **kwargs): # print(*args, **kwargs) # return User.objects.all() class FollowUnfollowAPIView(APIView): serializer_class = UserDetailSerializer permission_classes = [IsAuthenticated] lookup_field = 'username' queryset = User.objects.all() def get(self, request, slug, format=None): message = "ERROR" toggle_user = get_object_or_404(User, username__iexact=slug) if request.user.is_authenticated: # print("Hey", request.user, toggle_user) is_following = Profile.objects.toggle_follow(request.user, toggle_user) user_qs = get_object_or_404(User, username=toggle_user) serializer = UserDetailSerializer(user_qs,context={'request': request}) serializer2 = UserDetailSerializer(request.user,context={'request': request}) new_serializer_data = dict(serializer.data) new_serializer_data2 = dict(serializer2.data) new_serializer_data.update({'following': is_following}) new_serializer_data.update({'count': request.user.profile.following.all().count()}) new_serializer_data.update({'count2': toggle_user.followed_by.all().count()}) new_serializer_data.update({'logged': new_serializer_data2}) return Response(new_serializer_data) return Response({"message": message}, status=400) class FollowRemoveAPIView(APIView): permission_classes = [IsAuthenticated] def get(self, request, slug, format=None): message = "ERROR" toggle_user = get_object_or_404(User, username__iexact=slug) if request.user.is_authenticated: # print("Hey", request.user, toggle_user) is_following = Profile.objects.toggle_remove_follow(request.user, toggle_user) user_qs = get_object_or_404(User, username=toggle_user) serializer = UserDetailSerializer(user_qs,context={'request': request}) new_serializer_data = dict(serializer.data) new_serializer_data.update({'following': is_following}) new_serializer_data.update({'count': request.user.followed_by.all().count()}) return Response(new_serializer_data) return Response({"message": message}, status=400) # class UserPostListAPIView(ListAPIView): # serializer_class = PostDetailSerializer # pagination_class = StandardResultPagination # def get_queryset(self, *args, **kwargs): # qsuser = Post.objects.filter(user__username=self.kwargs['slug']).order_by("-updated_on") # print(self.request.GET) # search = self.request.GET.get("s", None) # if search: # qsfn = qsuser.annotate(full_name=Concat('user__first_name', Value(' '), 'user__last_name')) # qs=qsfn.filter( # Q(content__icontains=search) | # Q(user__username__icontains=search) | # Q(user__first_name__icontains=search) | # Q(user__last_name__icontains=search) | # Q(full_name__icontains=search) # ) # return qs # else: # return qsuser #Useless # class UserCreateAPIView(CreateAPIView): # serializer_class = UserCreateSerializer # queryset = User.objects.all() # def post(self,request,*args,**kwargs): # serializer = UserCreateSerializer(data=request.data) # if serializer.is_valid(): # serializer.save() # subject="Thank you for signing up!" # message="Welcome to local host" # from_mail=settings.EMAIL_HOST_USER # to_list=[serializer.data['email'],settings.EMAIL_HOST_USER] # # send_mail(subject,message,from_mail,to_list,fail_silently=True) # return Response(serializer.data, status=HTTP_201_CREATED) # return Response(serializer.errors, status=HTTP_400_BAD_REQUEST) # class UserLoginAPIView(APIView): # permission_classes=[AllowAny] # serializer_class = UserLoginSerializer # def post(self,request,*args,**kwargs): # serializer = UserLoginSerializer(data=request.data) # if serializer.is_valid(raise_exception=True): # return Response(serializer.data,status=HTTP_200_OK) # return Response(serializer.errors,status=HTTP_400_BAD_REQUEST)
# coding=utf-8 # -*- python -*- # # This file is part of GDSCTools software # # Copyright (c) 2015 - Wellcome Trust Sanger Institute # All rights reserved # # File author(s): Thomas Cokelaer <cokelaer@gmail.com> # # Distributed under the BSD 3-Clause License. # See accompanying file LICENSE.txt distributed with this software # # website: http://github.com/CancerRxGene/gdsctools # ############################################################################## """Code related to the ANOVA analysis to find associations between drug IC50s and genomic features""" from statsmodels.stats import multitest import easydev import numpy as np from gdsctools.qvalue import QValue __all__ = ['MultipleTesting', 'cohens', "signed_effects"] def multiple_correction(pvalues, method='fdr'): mt = MultipleTesting(method=method) values = mt.get_corrected_pvalues(pvalues, method=None) return values class MultipleTesting(object): """This class eases the computation of multiple testing corrections The method implemented so far are based on statsmodels or a local implementation of **qvalue** method. ================ ============================================= method name Description ================ ============================================= bonferroni one-step correction sidak one-step correction holm-sidak step down method using Sidak adjustments holm step down method using Bonferroni adjustments simes-hochberg step up method (independent) hommel close method based on Simes tests (non negative) fdr_bh FDR Benjamini-Hochberg (non-negative) fdr_by FDR Benjamini-Yekutieli (negative) fdr_tsbky FDR 2-stage Benjamini-Krieger-Yekutieli non negative frd_tsbh FDR 2-stage Benjamini-Hochberg' non-negative fdr same as fdr_bh qvalue see :class:`~gdsctools.qvalue.QValue` class ================ ============================================= .. seealso:: :mod:`gdsctools.qvalue`. .. seealso:: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2907892/ """ def __init__(self, method=None): """.. rubric:: Constructor :param method: default to **fdr** that is the FDR Benjamini-Hochberg correction. """ #: set of valid methods self.valid_methods = ['bonferroni', 'sidak', 'fdr_by', 'holm-sidak', 'simes-hochberg', 'hommel', 'fdr_bh', 'fdr_tsbh', 'fdr_tsbky', 'fdr', 'qvalue'] self._method = 'fdr' if method is not None: self.method = method # parameter of the multiple test (e.g. used if method is bonferroni self.alpha = 0.1 def _get_method(self): return self._method def _set_method(self, method): easydev.check_param_in_list(method, self.valid_methods) if method == 'fdr': method = 'fdr_bh' self._method = method method = property(_get_method, _set_method, doc="get/set method") def get_corrected_pvalues(self, pvalues, method=None): """Return corrected pvalues :param list pvalues: list or array of pvalues to correct. :param method: use the one defined in the constructor by default but can be overwritten here """ if method is not None: self.method = method pvalues = np.array(pvalues) if self.method == 'qvalue': qv = QValue(pvalues) corrections = qv.qvalue() return corrections else: corrections = multitest.multipletests(pvalues, alpha=self.alpha, method=self.method)[1] return corrections def plot_comparison(self, pvalues, methods=None): """Simple plot to compare the pvalues correction methods .. plot:: :include-source: :width: 80% from gdsctools.stats import MultipleTesting mt = MultipleTesting() pvalues = [1e-10, 9.5e-2, 2.2e-1, 3.6e-1, 5e-1, 6e-1,8e-1,9.6e-1] mt.plot_comparison(pvalues, methods=['fdr_bh', 'qvalue', 'bonferroni', 'fdr_tsbh']) .. note:: in that example, the qvalue and FDR are identical, but this is not true in general. """ if methods is None: methods = self.valid_methods import pylab pylab.clf() for method in methods: pv = self.get_corrected_pvalues(pvalues, method=method) pylab.plot(pvalues, pv, 'o-', label=method.replace("_","\_")) pylab.legend(loc='best') pylab.ylabel('corrected pvalues') pylab.grid() pylab.ylim([0, 1.05]) def cohens(x, y): r"""Effect size metric through Cohen's *d* metric :param x: first vector :param y: second vector :return: absolute effect size value The Cohen's effect size *d* is defined as the difference between two means divided by a standard deviation of the data. .. math:: d = \frac{\bar{x}_1 - \bar{x}_2}{s} For two independent samples, the *pooled standard deviation* is used instead, which is defined as: .. math:: s = \sqrt{ \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2} } A Cohen's *d* is frequently used in estimating sample sizes for statistical testing: a lower *d* value indicates the necessity of larger sample sizes, and vice versa. .. note:: we return the absolute value :references: https://en.wikipedia.org/wiki/Effect_size """ x = np.array(x) y = np.array(y) Nx = len(x) - 1. # note the dot to cast to float Ny = len(y) - 1. # mean difference: md = np.abs(x.mean() - y.mean()) # here, we want same as in R that is unbiased variance # so we use ddof = 1 xv = x.var(ddof=1) yv = y.var(ddof=1) csd = Nx * xv + Ny * yv csd /= Nx + Ny # make sure this is float csd = np.sqrt(csd) return md / csd def glass(x, y): r"""Return Effect size through Glass :math:`\Delta` estimator :param x: first sample :param y: second sample :return: 2 values (one or each sample) The Glass effect size is computed as .. math:: \Delta = \frac{\bar{x}_1-\bar{x}_2}{\sigma_i} .. note:: the standard deviation is the unbiased one (divided by N-1) where :math:`\sigma` is the standard deviation of either group """ x = np.array(x) y = np.array(y) # mean difference: md = np.abs(x.mean() - y.mean()) # here, we want same as in R that is unbiased variance # so we use ddof = 1 g1 = md / x.std(ddof=1) g2 = md / y.std(ddof=1) return g1, g2 def signed_effects(df): import numpy as np _colname_deltas = 'FEATURE_delta_MEAN_IC50' _colname_effect_size = 'FEATURE_IC50_effect_size' deltas = df[_colname_deltas] effects = df[_colname_effect_size] signed_effects = list(np.sign(deltas) * effects) return signed_effects
# See # import this into lldb with a command like # command script import pmat.py import lldb import shlex import optparse def pmat(debugger, command, result, dict): # Use the Shell Lexer to properly parse up command options just like a # shell would command_args = shlex.split(command) parser = create_pmat_options() try: (options, args) = parser.parse_args(command_args) except: return target = debugger.GetSelectedTarget() if target: process = target.GetProcess() if process: frame = process.GetSelectedThread().GetSelectedFrame() if frame: var = frame.FindVariable(args[0]) if var: array = var.GetChildMemberWithName("matA") if array: id = array.GetValueAsUnsigned (lldb.LLDB_INVALID_ADDRESS) if id != lldb.LLDB_INVALID_ADDRESS: debugger.HandleCommand ('po [0x%x dump]' % id) def create_pmat_options(): usage = "usage: %prog" description='''Print a dump of a vMAT_Array instance.''' parser = optparse.OptionParser(description=description, prog='pmat',usage=usage) return parser # # code that runs when this script is imported into LLDB # def __lldb_init_module (debugger, dict): # This initializer is being run from LLDB in the embedded command interpreter # Make the options so we can generate the help text for the new LLDB # command line command prior to registering it with LLDB below # add pmat parser = create_pmat_options() pmat.__doc__ = parser.format_help() # Add any commands contained in this module to LLDB debugger.HandleCommand('command script add -f %s.pmat pmat' % __name__)
# -*- coding: utf-8 -*- from .pyver import PY2 __all__ = ( 'BufferIO', 'StringIO', ) if PY2: from io import BytesIO, StringIO class BufferIO(BytesIO): pass else: from io import StringIO class BufferIO(StringIO): pass
from django.apps import AppConfig class DocMgmtConfig(AppConfig): name = 'doc_mgmt'
from flask import Flask from flask_cors import CORS import config as c app = Flask(__name__) CORS(app) @app.route("/") def helloWorld(): return "Hello, cross-origin-world!"
#!/usr/bin/env python # Constrainted EM algorithm for Shared Response Model # A Reduced-Dimension fMRI Shared Response Model # Po-Hsuan Chen, Janice Chen, Yaara Yeshurun-Dishon, Uri Hasson, James Haxby, Peter Ramadge # Advances in Neural Information Processing Systems (NIPS), 2015. (to appear) # movie_data is a three dimensional matrix of size voxel x TR x nsubjs # movie_data[:,:,m] is the data for subject m, which will be X_m^T in the standard # mathematic notation # E-step: # E_s : nvoxel x nTR # E_sst : nvoxel x nvoxel x nTR # M-step: # W_m : nvoxel x nvoxel x nsubjs # sigma_m2 : nsubjs # Sig_s : nvoxel x nvoxel import numpy as np, scipy, random, sys, math, os from scipy import stats def align(movie_data, options, args): print 'SRM', sys.stdout.flush() nsubjs = len(movie_data) for m in range(nsubjs): assert movie_data[0].shape[1] == movie_data[m].shape[1], 'numbers of TRs are different among subjects' nTR = movie_data[0].shape[1] nfeature = args.nfeature align_algo = args.align_algo current_file = options['working_path']+align_algo+'_current.npz' # zscore the data print 'zscoring data' nvoxel = np.zeros((nsubjs,),dtype=int) for m in xrange(nsubjs): nvoxel[m] = movie_data[m].shape[0] bX = np.zeros((sum(nvoxel),nTR)) voxel_str = 0 for m in range(nsubjs): bX[voxel_str:(voxel_str+nvoxel[m]),:] = stats.zscore(movie_data[m].T ,axis=0, ddof=1).T voxel_str = voxel_str + nvoxel[m] del movie_data # initialization when first time run the algorithm if not os.path.exists(current_file): print 'initialization of parameters' bSig_s = np.identity(nfeature) bW = np.zeros((sum(nvoxel),nfeature)) sigma2 = np.zeros(nsubjs) ES = np.zeros((nfeature,nTR)) bmu = [] for m in xrange(nsubjs): bmu.append(np.zeros((nvoxel[m],))) #initialization voxel_str = 0 if args.randseed is not None: print 'randinit', np.random.seed(args.randseed) for m in xrange(nsubjs): print m, A = np.random.random((nvoxel[m],nfeature)) Q, R_qr = np.linalg.qr(A) bW[voxel_str:(voxel_str+nvoxel[m]),:] = Q sigma2[m] = 1 bmu[m] = np.mean(bX[voxel_str:(voxel_str+nvoxel[m]),:],1) voxel_str = voxel_str + nvoxel[m] else: for m in xrange(nsubjs): print m, Q = np.eye(nvoxel[m],nfeature) bW[voxel_str:(voxel_str+nvoxel[m]),:] = Q sigma2[m] = 1 bmu[m] = np.mean(bX[voxel_str:(voxel_str+nvoxel[m]),:],1) voxel_str = voxel_str + nvoxel[m] niter = 0 np.savez_compressed(options['working_path']+align_algo+'_'+str(niter)+'.npz',\ bSig_s = bSig_s, bW = bW, bmu=bmu, sigma2=sigma2, ES=ES, nvoxel=nvoxel, niter=niter) print '' else: # more iterations starts from previous results workspace = np.load(current_file) niter = workspace['niter'] workspace = np.load(options['working_path']+align_algo+'_'+str(niter)+'.npz') bSig_s = workspace['bSig_s'] bW = workspace['bW'] bmu = workspace['bmu'] sigma2 = workspace['sigma2'] ES = workspace['ES'] niter = workspace['niter'] nvoxel = workspace['nvoxel'] # remove mean bX = bX - bX.mean(axis=1)[:,np.newaxis] print str(niter+1)+'th', bSig_x = bW.dot(bSig_s).dot(bW.T) voxel_str = 0 for m in range(nsubjs): bSig_x[voxel_str:(voxel_str+nvoxel[m]),voxel_str:(voxel_str+nvoxel[m])] += sigma2[m]*np.identity(nvoxel[m]) voxel_str = voxel_str + nvoxel[m] inv_bSig_x = scipy.linalg.inv(bSig_x) ES = bSig_s.T.dot(bW.T).dot(inv_bSig_x).dot(bX) bSig_s = bSig_s - bSig_s.T.dot(bW.T).dot(inv_bSig_x).dot(bW).dot(bSig_s) + ES.dot(ES.T)/float(nTR) voxel_str = 0 for m in range(nsubjs): print ('.'), sys.stdout.flush() Am = bX[voxel_str:(voxel_str+nvoxel[m]),:].dot(ES.T) pert = np.zeros((Am.shape)) np.fill_diagonal(pert,1) Um, sm, Vm = np.linalg.svd(Am+0.001*pert,full_matrices=0) bW[voxel_str:(voxel_str+nvoxel[m]),:] = Um.dot(Vm) sigma2[m] = np.trace(bX[voxel_str:(voxel_str+nvoxel[m]),:].T.dot(bX[voxel_str:(voxel_str+nvoxel[m]),:]))\ -2*np.trace(bX[voxel_str:(voxel_str+nvoxel[m]),:].T.dot(bW[voxel_str:(voxel_str+nvoxel[m]),:]).dot(ES))\ +nTR*np.trace(bSig_s) sigma2[m] = sigma2[m]/float(nTR*nvoxel[m]) voxel_str = voxel_str + nvoxel[m] new_niter = niter + 1 np.savez_compressed(current_file, niter = new_niter) np.savez_compressed(options['working_path']+align_algo+'_'+str(new_niter)+'.npz',\ bSig_s = bSig_s, bW = bW, bmu=bmu, sigma2=sigma2, ES=ES, nvoxel=nvoxel, niter=new_niter) os.remove(options['working_path']+align_algo+'_'+str(new_niter-1)+'.npz') # calculate log likelihood sign , logdet = np.linalg.slogdet(bSig_x) if sign == -1: print str(new_niter)+'th iteration, log sign negative' loglike = - 0.5*nTR*logdet - 0.5*np.trace(bX.T.dot(inv_bSig_x).dot(bX)) #-0.5*nTR*nvoxel*nsubjs*math.log(2*math.pi) np.savez_compressed(options['working_path']+align_algo+'_'+'loglikelihood_'+str(new_niter)+'.npz',\ loglike=loglike) # print str(-0.5*nTR*logdet)+','+str(-0.5*np.trace(bX.T.dot(inv_bSig_x).dot(bX))) print str(loglike) return new_niter
# -*- coding: utf-8 -*- from datetime import datetime from collections import OrderedDict from django.shortcuts import render, redirect from django.http import Http404, HttpResponse from django.core.urlresolvers import reverse from django.conf import settings from django.contrib.auth.decorators import login_required from django.views.decorators.http import require_http_methods from rest_framework.decorators import api_view from rest_framework.response import Response from rest_framework import viewsets, generics from dashboard.libs.date_tools import parse_date from dashboard.libs import swagger_tools from .models import Product, Area, ProductGroup, Person, Department, Skill from .tasks import sync_float from .serializers import ( PersonSerializer, PersonProductSerializer, DepartmentSerializer, SkillSerializer) from . import spreadsheets def _product_meta(request, product): meta = { 'can_edit': product.can_user_change(request.user), 'admin_url': request.build_absolute_uri(product.admin_url) } return meta def product_html(request, id): if not id: id = Product.objects.visible().first().id return redirect(reverse(product_html, kwargs={'id': id})) try: Product.objects.visible().get(id=id) except (ValueError, Product.DoesNotExist): raise Http404 return render(request, 'common.html') @api_view(['GET']) def product_json(request, id): """ detail view of a single product """ request_data = request.GET try: product = Product.objects.visible().get(id=id) except (ValueError, Product.DoesNotExist): error = 'cannot find product with id={}'.format(id) return Response({'error': error}, status=404) start_date = request_data.get('startDate') if start_date: start_date = parse_date(start_date) end_date = request_data.get('endDate') if end_date: end_date = parse_date(end_date) # get the profile of the product for each month profile = product.profile( start_date=start_date, end_date=end_date, freq='MS', calculation_start_date=settings.PEOPLE_COST_CALCATION_STARTING_POINT ) meta = _product_meta(request, product) return Response({**profile, 'meta': meta}) def product_group_html(request, id): if not id: id = ProductGroup.objects.first().id return redirect(reverse(product_group_html, kwargs={'id': id})) try: ProductGroup.objects.get(id=id) except (ValueError, ProductGroup.DoesNotExist): raise Http404 return render(request, 'common.html') @api_view(['GET']) def product_group_json(request, id): """ detail view of a single product group """ # TODO handle errors try: product_group = ProductGroup.objects.get(id=id) except (ValueError, ProductGroup.DoesNotExist): error = 'cannot find product group with id={}'.format(id) return Response({'error': error}, status=404) # get the profile of the product group for each month profile = product_group.profile( freq='MS', calculation_start_date=settings.PEOPLE_COST_CALCATION_STARTING_POINT) meta = _product_meta(request, product_group) return Response({**profile, 'meta': meta}) class PersonViewSet(viewsets.ReadOnlyModelViewSet): """ View set for person retrieve: Detail view of a single person list: List view of persons """ queryset = Person.objects.all() serializer_class = PersonSerializer @swagger_tools.additional_schema( OrderedDict([ ('start_date', { 'name': 'start_date', 'required': False, 'location': 'query', 'type': 'string', 'description': 'start date', }), ('end_date', { 'name': 'end_date', 'required': False, 'location': 'query', 'type': 'string', 'description': 'end date', }), ]) ) class PersonProductListView(generics.ListAPIView): """ List view of products the person(id={person_id}) spends time on in the time window defined by start date and end date. """ serializer_class = PersonProductSerializer def get_queryset(self): person = Person.objects.get(id=self.kwargs.get('person_id')) return person.products def get_serializer_context(self): context = super().get_serializer_context() start_date = self.request.query_params.get('start_date') if start_date: start_date = parse_date(start_date) end_date = self.request.query_params.get('end_date') if end_date: end_date = parse_date(end_date) return { 'start_date': start_date, 'end_date': end_date, 'person': Person.objects.get(id=self.kwargs.get('person_id')), **context } def service_html(request, id): if not id: id = Area.objects.filter(visible=True).first().id return redirect(reverse(service_html, kwargs={'id': id})) try: Area.objects.filter(visible=True).get(id=id) except (ValueError, Area.DoesNotExist): raise Http404 return render(request, 'common.html') @api_view(['GET']) def service_json(request, id): """ detail view of a single service area """ try: area = Area.objects.filter(visible=True).get(id=id) except (ValueError, Area.DoesNotExist): error = 'cannot find service area with id={}'.format(id) return Response({'error': error}, status=404) # get the profile of the service profile = area.profile( calculation_start_date=settings.PEOPLE_COST_CALCATION_STARTING_POINT) return Response(profile) def portfolio_html(request): return render(request, 'common.html', {'body_classes': 'portfolio'}) @api_view(['GET']) def services_json(request): """ list view of all service areas """ result = [ area.profile( calculation_start_date=settings.PEOPLE_COST_CALCATION_STARTING_POINT ) for area in Area.objects.filter(visible=True) ] return Response(result) @login_required @api_view(['POST']) def sync_from_float(request): """ sync data from Float.com """ sync_float.delay() return Response({ 'status': 'STARTED' }) @require_http_methods(['GET']) def products_spreadsheet(request, **kwargs): show = kwargs.get('show', 'visible') if show == 'visible': products = Product.objects.visible() elif show == 'all': products = Product.objects.all() else: products = Product.objects.filter(pk=show) spreadsheet = spreadsheets.Products( products, settings.PEOPLE_COST_CALCATION_STARTING_POINT ) response = HttpResponse(content_type="application/vnd.ms-excel") response['Content-Disposition'] = 'attachment; filename={}_{}_{}.xlsx'.format( 'ProductData', show, datetime.now().strftime('%Y-%m-%d_%H:%M:%S')) spreadsheet.workbook.save(response) return response class DepartmentViewSet(viewsets.ReadOnlyModelViewSet): """ View set for department retrieve: Detail view of a single department list: List view of departments """ queryset = Department.objects.all() serializer_class = DepartmentSerializer class SkillViewSet(viewsets.ReadOnlyModelViewSet): """ View set for skills retrieve: Detail view of a single skill list: List view of skills """ queryset = Skill.objects.all() serializer_class = SkillSerializer
import subprocess from pathlib import Path if __name__ == '__main__': script_path = Path(Path.cwd(), 'HjerrildTest.py') constants_path = Path(Path.cwd(),'constants.ini') workspace_path = Path(Path.cwd()) for guitar in ['martin', 'firebrand']: for train_mode in ['1Fret', '2FretA', '2FretB', '3Fret']: cmd_list = ['python', str(script_path), str(constants_path), str(workspace_path), '--guitar', guitar,'--train_mode', train_mode] proc = subprocess.Popen(cmd_list, stdin=None, stdout=None, stderr=None)
import re import math from .constants import * import lightcrs.utm as utm import lightcrs.mgrs as mgrs # WGS84 geoid is assumed # N .. 0 # E .. 90 # S .. 180 # W .. 270 # latitude south..north [-90..90] # longitude west..east [-180..180] class LatLon(object): def __init__(self, lat : float, lon : float) -> None: self.lat = lat self.lon = lon self._hash = hash((self.lat, self.lon)) def __hash__(self) -> int: return self._hash def __repr__(self) -> str: return f"LatLon({self.lat}, {self.lon})" def __str__(self) -> str: if self.lat < 0: ns = "S" lat = abs(self.lat) else: ns = "N" lat = self.lat if self.lon < 0: ew = "W" lon = abs(self.lon) else: ew = "E" lon = self.lon return f"{lat}{ns}, {lon}{ew}" def to_UTM(self) -> utm.UTM: """ Computes Universal Transverse Mercator coordinates from WGS84 based latitude longitude coordinates (e.g. GPS). Grid zones are 8 degrees latitude. N0 degrees is offset 10 into latitude bands. Args: latitude (float): [-90 .. 90] degrees longitude (float): [-180 .. 180] degrees Returns: UTM : namedtuple """ if not -80.0 <= self.lat <= 84.0: raise RuntimeError(f"latitude {self.lat} outside UTM limits") if self.lon == 180: self.lon = -180. zone = math.floor((self.lon + 180) / 6) + 1 lon_central_meridian = math.radians((zone - 1)*6 - 180 + 3) lat_band_idx = int(math.floor((self.lat/8) + 10)) lat_band = mgrs_lat_bands[lat_band_idx] # special case Norway if zone == 31 and lat_band == "V" and self.lon >= 3.0: zone += 1 lon_central_meridian += math.radians(6) # special case Svalbard if zone == 32 and lat_band == "X" and self.lon < 9.0: zone -= 1 lon_central_meridian -= math.radians(6) if zone == 32 and lat_band == "X" and self.lon >= 9.0: zone += 1 lon_central_meridian += math.radians(6) if zone == 34 and lat_band == "X" and self.lon < 21.0: zone -= 1 lon_central_meridian -= math.radians(6) if zone == 34 and lat_band == "X" and self.lon >= 21.0: zone += 1 lon_central_meridian += math.radians(6) if zone == 36 and lat_band == "X" and self.lon < 33.0: zone -= 1 lon_central_meridian -= math.radians(6) if zone == 36 and lat_band == "X" and self.lon >= 33.0: zone += 1 lon_central_meridian += math.radians(6) phi = math.radians(self.lat) lam = math.radians(self.lon) - lon_central_meridian cos_lam = math.cos(lam) sin_lam = math.sin(lam) tan_lam = math.tan(lam) tau = math.tan(phi) sigma = math.sinh(eccentricity * math.atanh(eccentricity * tau / math.sqrt(1 + tau**2))) tau_prime = tau * math.sqrt(1 + sigma**2) - sigma * math.sqrt(1 + tau**2) xi_prime = math.atan2(tau_prime, cos_lam) eta_prime = math.asinh(sin_lam / math.sqrt(tau_prime**2 + cos_lam**2)) xi = xi_prime eta = eta_prime for j in range(1, 7): xi += alpha[j] * math.sin(2* j * xi_prime) * math.cosh(2 * j * eta_prime) eta += alpha[j] * math.cos(2* j * xi_prime) * math.sinh(2 * j * eta_prime) x = scale * A * eta y = scale * A * xi # convergence: Karney 2011 Eq 23, 24 p_prime = 1 q_prime = 0 for j in range(1, 7): p_prime += 2 * j * alpha[j] * math.cos(2 * j * xi_prime) * math.cosh(2 * j * eta_prime) q_prime += 2 * j * alpha[j] * math.sin(2 * j * xi_prime) * math.sinh(2 * j * eta_prime) gamma_prime = math.atan(tau_prime / math.sqrt(1 + tau_prime**2) * tan_lam) gamma_pprime = math.atan2(q_prime, p_prime) gamma = gamma_prime + gamma_pprime # scale: Karney 2011 Eq 25 sin_phi = math.sin(phi) k_prime = math.sqrt(1 - eccentricity**2 * sin_phi**2) * math.sqrt(1 + tau**2) / \ math.sqrt(tau_prime**2 + cos_lam**2) k_pprime = (A / semimajor_axis) * math.sqrt(p_prime**2 + q_prime**2) k = scale * k_prime * k_pprime # shift origin x += 500000.0 # false easting if y < 0: y += 10000000.0 # false northing convergence = math.degrees(gamma) hemisphere = "N" if self.lat >= 0.0 else "S" # "zone", "band", "hemisphere", "easting", "northing" return utm.UTM(zone, hemisphere, x, y) def to_MGRS(self, precision=5) -> mgrs.MGRS: ucoords = self.to_UTM() lat_band_idx = int(math.floor((self.lat/8) + 10)) band = mgrs_lat_bands[lat_band_idx] column = math.floor(ucoords.easting / 100e3) square_e = easting_100k_letters[(ucoords.zone-1) % 3][column - 1] row = math.floor(ucoords.northing / 100e3) % 20 square_n = northing_100k_Letters[(ucoords.zone-1) % 2][row] easting = int(ucoords.easting % 100e3) northing = int(ucoords.northing % 100e3) gzd = f"{ucoords.zone:0>2}{band}" square_id = square_e + square_n return mgrs.MGRS(gzd, square_id, easting, northing, precision)
# Copyright 2018 GCP Lab Keeper authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module gets a list of instances running in a given GCP project and shuts them down. """ from pprint import pprint import re from googleapiclient import discovery from lib.lab_keeper.config import Config from lib.lab_keeper.authenticator import Authenticator class LabKeeper: """This class manages GCP Compute Engine resources.""" def __init__(self): """Initialize Lab Keeper parameters.""" self.config = Config() self.authenticator = Authenticator() self.credentials = self.authenticator.make_credentials() self.service = discovery.build( 'compute', 'v1', credentials=self.credentials) # List of Project IDs for this request. self.project_list = self.config.project_list # The list of the zone prefixes for this request. self.wanted_zone_prefixes = self.config.zone_prefixes # VM Label and value for shutdown flagging. self.label_key = self.config.label_key self.label_value = self.config.label_value def _request_instances(self, project, target_zones, label_key, label_value): """Make an API call to return all existing instances for a zone in a project.""" instance_list = [] pprint(f"Looking for instances in project {project}.") pprint(f"Looking for instances with label '{label_key}'='{label_value}'") for zone in target_zones: instance_request = self.service.instances().list( project=project, zone=zone, filter=f"labels.{label_key} = {label_value}") while instance_request is not None: response = instance_request.execute() if 'items' in response: for instance in response['items']: instance_list.append(instance) instance_request = self.service.instances().list_next( previous_request=instance_request, previous_response=response) pprint( f"{len(response['items'])} instances found in {zone}.") else: pprint(f"No instances found in zone {zone}. Continuing...") break pprint(f"{len(instance_list)} instances found in project {project}.") return instance_list def _request_zones(self, project): """Make an API call to return all available zones for a project.""" zone_request = self.service.zones().list(project=project) while zone_request is not None: response = zone_request.execute() zone_list = [] for zone in response['items']: # Puts all zone names inside a list. zone_list.append(zone.get('name', None)) zone_request = self.service.zones().list_next(previous_request=zone_request, previous_response=response) return zone_list def _filter_zones(self, wanted_zones_prefix, zone_list): """Filter unwanted zones from a zone list using a prefix.""" target_zones = [] for zone in zone_list: for prefix in wanted_zones_prefix: pattern = re.compile(f'^{prefix}') if pattern.match(zone): target_zones.append(zone) return target_zones def _get_instances_bystatus(self, instance_list): """Take an instance object list and return a dictionary with statuses as keys and a list of instances as its values.""" instances_bystatus = {} pprint(f"Checking status for {len(instance_list)} instances.") # Create a list of returned statuses status_list = [] for instance in instance_list: if instance.get("status", None) not in status_list: status_list.append(instance.get("status", None)) # Create a dictionary containing instances and zone by status for key in status_list: value = [] for instance in instance_list: if instance.get("status", None) == key: instance_data = {} instance_name = instance.get("name", None) zone_name = instance.get("zone", None).split('/')[-1] instance_data["name"] = instance_name instance_data["zone"] = zone_name value.append(instance_data) instances_bystatus[key] = value # Print formatted contents of dictionary for status in instances_bystatus: pprint("######################") pprint( f"{status} instances:") pprint("######################") for instance in instances_bystatus[status]: pprint(f"{instance['name']} in {instance['zone']}") return instances_bystatus def stop_running_instances(self, instance_status_list, project): """Stop compute engine instances in RUNNING state.""" # TODO: Check if instances in PROVISIONING, STAGING and REPAIRING # states can and need to be stopped. if "RUNNING" in instance_status_list.keys(): for running_instance in instance_status_list["RUNNING"]: instance = running_instance.get("name", None) zone = running_instance.get("zone", None) request = self.service.instances().stop( project=project, zone=zone, instance=instance) pprint(f"Stopping instance {instance} in zone {zone}...") response = request.execute() else: pprint(f"There are no running instances in project {project}.") return def main(self): """Main""" # Get a list of zone names zone_list = self._request_zones(self.project_list[0]) # Get only wanted zones target_zones = self._filter_zones(self.wanted_zone_prefixes, zone_list) # Get a list of instances for each target by project instances_list_projects = {} for project in self.project_list: instances = self._request_instances( project, target_zones, self.label_key, self.label_value) instances_list_projects[project] = instances # Create a list of instances by status by project instance_status_list_projects = {} for project in instances_list_projects: instance_status_list = self._get_instances_bystatus(instances_list_projects[project]) instance_status_list_projects[project] = instance_status_list # Stop running VMs for project in instance_status_list_projects: self.stop_running_instances(instance_status_list_projects[project], project) return if __name__ == '__main__': # Create a Lab Keeper instance, and run it. lk = LabKeeper() lk.main()
from flask_babel import _ from flask_wtf.form import FlaskForm from flask_wtf.recaptcha import RecaptchaField from wtforms.fields.core import StringField from wtforms.fields.html5 import EmailField from wtforms.fields.simple import SubmitField, TextAreaField from wtforms.validators import DataRequired, Email, Length class SupportForm(FlaskForm): """Support form.""" name = StringField(label=_('Name'), validators=[Length(max=35), DataRequired()]) email = EmailField(label=_('Email Address'), validators=[Length(min=6, max=120), Email()]) message = TextAreaField(label=_('Message'), validators=[Length(max=1000), DataRequired()]) recaptcha = RecaptchaField() submit = SubmitField(label=_('Send'))
import torch import torch.nn as nn import torch.nn.functional as F import torchvision import numpy as np from blocks import simple_block, Down_sample, Up_sample from torchsummary import summary # simplest U-Net class init_U_Net(nn.Module): def __init__( self, input_modalites, output_channels, base_channel, pad_method='pad', softmax=True, ): super(init_U_Net, self).__init__() self.softmax = softmax self.pad_method = pad_method self.min_channel = base_channel self.down_conv1 = simple_block(input_modalites, self.min_channel*2, 3) self.down_sample_1 = Down_sample(2) self.down_conv2 = simple_block(self.min_channel*2, self.min_channel*4, 3) self.down_sample_2 = Down_sample(2) self.down_conv3 = simple_block(self.min_channel*4, self.min_channel*8, 3) self.down_sample_3 = Down_sample(2) self.bridge = simple_block(self.min_channel*8, self.min_channel*16, 3) self.up_sample_1 = Up_sample(self.min_channel*16, self.min_channel*16, 2) self.up_conv1 = simple_block(self.min_channel*24, self.min_channel*8, 3, is_down=False) self.up_sample_2 = Up_sample(self.min_channel*8, self.min_channel*8, 2) self.up_conv2 = simple_block(self.min_channel*12, self.min_channel*4, 3, is_down=False) self.up_sample_3 = Up_sample(self.min_channel*4, self.min_channel*4, 2) self.up_conv3 = simple_block(self.min_channel*6, self.min_channel*2, 3, is_down=False) self.out = nn.Conv3d(self.min_channel*2, output_channels, kernel_size=1) for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu') elif isinstance(m, nn.InstanceNorm3d) or isinstance(m, nn.BatchNorm3d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): # encoder path self.block_1 = self.down_conv1(x) self.block_1_pool = self.down_sample_1(self.block_1) self.block_2 = self.down_conv2(self.block_1_pool) self.block_2_pool = self.down_sample_2(self.block_2) self.block_3 = self.down_conv3(self.block_2_pool) self.block_3_pool = self.down_sample_3(self.block_3) # bridge self.block_4 = self.bridge(self.block_3_pool) # decoder path self.block_5_upsample = self.up_sample_1(self.block_4) self.block_5_upsample = self.pad(self.block_3, self.block_5_upsample, self.pad_method) self.concat_1 = torch.cat([self.block_5_upsample, self.block_3], dim=1) self.block_5 = self.up_conv1(self.concat_1) self.block_6_upsample = self.up_sample_2(self.block_5) self.block_6_upsample = self.pad(self.block_2, self.block_6_upsample, self.pad_method) self.concat_2 = torch.cat([self.block_6_upsample, self.block_2], dim=1) self.block_6 = self.up_conv2(self.concat_2) self.block_7_upsample = self.up_sample_3(self.block_6) self.block_7_upsample = self.pad(self.block_1, self.block_7_upsample, self.pad_method) self.concat_3 = torch.cat([self.block_7_upsample, self.block_1], dim=1) self.block_7 = self.up_conv3(self.concat_3) res = self.out(self.block_7) if self.softmax: res = F.softmax(res, dim=1) return res def pad(self, encoder, decoder, method='pad'): encoder_z, encoder_y, encoder_x = encoder.shape[-3], encoder.shape[-2], encoder.shape[-1] decoder_z, decoder_y, decoder_x = decoder.shape[-3], decoder.shape[-2], decoder.shape[-1] diff_z, diff_y, diff_x = encoder_z - decoder_z, encoder_y - decoder_y, encoder_x - decoder_x if method == 'pad': x = F.pad(decoder, (diff_x//2, diff_x - diff_x//2, diff_y//2, diff_y - diff_y//2, diff_z//2, diff_z - diff_z//2), mode='constant', value=0) elif method == 'interpolate': x = F.interpolate(decoder, size=(encoder_z, encoder_y, encoder_x), mode='nearest') else: raise NotImplementedError() return x if __name__ == '__main__': from utils import load_config config_file = 'config.yaml' config = load_config(config_file) input_modalites = int(config['PARAMETERS']['input_modalites']) output_channels = int(config['PARAMETERS']['output_channels']) base_channel = 4 device = 'cuda:0' if torch.cuda.is_available() else 'cpu' net = init_U_Net(input_modalites, output_channels, base_channel) net.to(device) import tensorwatch as tw from tensorboardX import SummaryWriter # print(net) # params = list(net.parameters()) # for i in range(len(params)): # layer_shape = params[i].size() # print(len(layer_shape)) # print parameters infomation # count_params(net) input = torch.randn(1, 4, 64, 64, 64).to(device) # tw.draw_model(net, input) # input = torch.randn(1, 4, 130, 130, 130).to(device) # print(y.shape) # summary(net, input_size=(4, 64, 64, 64)) # print(net) # print(net._modules.keys()) # net.out = nn.Conv3d(16, 8, 3, padding=1) # net.to(device) # y = net(input) # print(y.data.shape) def count_params(model): ''' print number of trainable parameters and its size of the model''' num_of_param = sum(p.numel() for p in model.parameters() if p.requires_grad) print('Model {} : params number {}, params size: {:4f}M'.format(model._get_name(), num_of_param, num_of_param*4/1000/1000)) count_params(model=net)
import pandas as pd import requests from io import StringIO from os import path import os from csv import writer as csv_writer import hydrostats.data as hd import hydrostats.visual as hv import hydrostats as hs import datetime as dt import matplotlib.pyplot as plt import matplotlib.dates as mdates stations_pd = pd.read_csv('/Users/student/Dropbox/PhD/2021_Fall/Dissertation_v12/Middle_East/Israel/Israel_Selected_Stations.csv') IDs = stations_pd['statid'].tolist() COMIDs = stations_pd['COMID'].tolist() Names = stations_pd['Name'].tolist() obsFiles = [] simFiles = [] #COD = [] for id, name, comid in zip(IDs, Names, COMIDs): obsFiles.append('/Users/student/Dropbox/PhD/2021_Fall/Dissertation_v12/Middle_East/Israel/Historical/Observed_Data/{}.csv'.format(id)) #simFiles.append('/Users/student/Dropbox/PhD/2021_Fall/Dissertation_v12/Middle_East/Israel/Historical/Simulated_Data/{}.csv'.format(comid)) simFiles.append('/Users/student/Dropbox/PhD/2021_Fall/Dissertation_v12/Middle_East/Israel/Historical/Corrected_Data/{}.csv'.format(comid)) #User Input country = 'Israel' #output_dir = '/Users/student/Dropbox/PhD/2021_Fall/Dissertation_v12/Middle_East/Israel/Historical/validationResults_Original/' output_dir = '/Users/student/Dropbox/PhD/2021_Fall/Dissertation_v12/Middle_East/Israel/Historical/validationResults_Corrected/' '''Initializing Variables to Append to''' #Creating blank dataframe for Tables all_station_table = pd.DataFrame() station_array = [] comid_array = [] all_lag_table = pd.DataFrame() #Creating an empty list for volumes volume_list = [] #Creating a table template for the lag time table #lag_table = 'Station, COMID, Metric, Max, Max Lag Number, Min, Min LagNumber\n' #Making directories for all the Desired Plots table_out_dir = path.join(output_dir, 'Tables') if not path.isdir(table_out_dir): os.makedirs(table_out_dir) ''' plot_obs_hyd_dir = path.join(output_dir, 'Observed_Hydrographs') if not path.isdir(plot_obs_hyd_dir): os.makedirs(plot_obs_hyd_dir) plot_sim_hyd_dir = path.join(output_dir, 'Simulated_Hydrographs') if not path.isdir(plot_sim_hyd_dir): os.makedirs(plot_sim_hyd_dir) plot_out_dir = path.join(output_dir, 'Hydrographs') if not path.isdir(plot_out_dir): os.makedirs(plot_out_dir) scatter_out_dir = path.join(output_dir, 'Scatter_Plots') if not path.isdir(scatter_out_dir): os.makedirs(scatter_out_dir) scatter_ls_out_dir = path.join(output_dir, 'Scatter_Plots-Log_Scale') if not path.isdir(scatter_ls_out_dir): os.makedirs(scatter_ls_out_dir) hist_out_dir = path.join(output_dir, 'Histograms') if not path.isdir(hist_out_dir): os.makedirs(hist_out_dir) qqplot_out_dir = path.join(output_dir, 'QQ_Plot') if not path.isdir(qqplot_out_dir): os.makedirs(qqplot_out_dir) daily_average_out_dir = path.join(output_dir, 'Daily_Averages') if not path.isdir(daily_average_out_dir): os.makedirs(daily_average_out_dir) monthly_average_out_dir = path.join(output_dir, 'Monthly_Averages') if not path.isdir(monthly_average_out_dir): os.makedirs(monthly_average_out_dir) volume_analysis_out_dir = path.join(output_dir, 'Volume_Analysis') if not path.isdir(volume_analysis_out_dir): os.makedirs(volume_analysis_out_dir) lag_out_dir = path.join(output_dir, 'Lag_Analysis') if not path.isdir(lag_out_dir): os.makedirs(lag_out_dir) ''' for id, comid, name, obsFile, simFile in zip(IDs, COMIDs, Names, obsFiles, simFiles): print(id, comid, name) obs_df = pd.read_csv(obsFile, index_col=0) obs_df[obs_df < 0] = 0 obs_df.index = pd.to_datetime(obs_df.index) observed_df = obs_df.groupby(obs_df.index.strftime("%Y-%m-%d")).mean() observed_df.index = pd.to_datetime(observed_df.index) dates_obs = observed_df.index.tolist() ''' plt.figure(1) plt.figure(figsize=(15, 9)) plt.plot(dates_obs, observed_df.iloc[:, 0].values, 'k', color='red', label='Observed Streamflow') plt.title('Observed Hydrograph for ' + str(id) + ' - ' + name + '\n COMID: ' + str(comid)) plt.xlabel('Date') plt.ylabel('Streamflow (m$^3$/s)') plt.legend() plt.grid() plt.xlim(dates_obs[0], dates_obs[len(dates_obs)-1]) t = pd.date_range(dates_obs[0], dates_obs[len(dates_obs)-1], periods=10).to_pydatetime() plt.xticks(t) plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) plt.tight_layout() plt.savefig( plot_obs_hyd_dir + '/Observed Hydrograph for ' + str(id) + ' - ' + name + '. COMID - ' + str(comid) + '.png') sim_df = pd.read_csv(simFile, index_col=0) dates_sim = sim_df.index.tolist() dates=[] for date in dates_sim: dates.append(dt.datetime.strptime(date, "%Y-%m-%d")) dates_sim = dates plt.figure(2) plt.figure(figsize=(15, 9)) plt.plot(dates_sim, sim_df.iloc[:, 0].values, 'k', color='blue', label='Simulated Streamflow') plt.title('Simulated Hydrograph for ' + str(id) + ' - ' + name + '\n COMID - ' + str(comid)) plt.xlabel('Date') plt.ylabel('Streamflow (m$^3$/s)') plt.legend() plt.grid() plt.xlim(dates_sim[0], dates_sim[len(dates_sim)-1]) t = pd.date_range(dates_sim[0], dates_sim[len(dates_sim)-1], periods=10).to_pydatetime() plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) plt.tight_layout() plt.savefig( plot_sim_hyd_dir + '/Simulated Hydrograph for ' + str(id) + ' - ' + name + '. COMID - ' + str(comid) + '.png') ''' #Merging the Data merged_df = hd.merge_data(simFile, obsFile) '''Tables and Plots''' # Appending the table to the final table table = hs.make_table(merged_df, metrics=['ME', 'MAE', 'MAPE', 'RMSE', 'NRMSE (Mean)', 'NSE', 'KGE (2009)', 'KGE (2012)', 'R (Pearson)', 'R (Spearman)', 'r2'], location=id, remove_neg=False, remove_zero=False) all_station_table = all_station_table.append(table) #Making plots for all the stations sim_array = merged_df.iloc[:, 0].values obs_array = merged_df.iloc[:, 1].values '''Calculating the Volume of the Streams''' sim_volume_dt = sim_array * 0.0864 obs_volume_dt = obs_array * 0.0864 sim_volume_cum = [] obs_volume_cum = [] sum_sim = 0 sum_obs = 0 for i in sim_volume_dt: sum_sim = sum_sim + i sim_volume_cum.append(sum_sim) for j in obs_volume_dt: sum_obs = sum_obs + j obs_volume_cum.append(sum_obs) volume_percent_diff = (max(sim_volume_cum)-max(obs_volume_cum))/max(sim_volume_cum) volume_list.append([id, max(obs_volume_cum), max(sim_volume_cum), volume_percent_diff]) ''' plt.figure(3) plt.figure(figsize=(15, 9)) plt.plot(merged_df.index, sim_volume_cum, 'k', color='blue', label='Simulated Volume') plt.plot(merged_df.index, obs_volume_cum, 'k', color='red', label='Observed Volume') plt.title('Volume Analysis for ' + str(id) + ' - ' + name + '\n COMID: ' + str(comid)) plt.xlabel('Date') plt.ylabel('Volume (Mm^3)') plt.legend() plt.grid() plt.savefig( volume_analysis_out_dir + '/Volume Analysis for ' + str(id) + ' - ' + name + '. COMID - ' + str(comid) + '.png') hv.plot(merged_df, legend=('Simulated', 'Observed'), grid=True, title='Hydrograph for ' + str(id) + ' - ' + name + '\n COMID: ' + str(comid), labels=['Datetime', 'Streamflow (m$^3$/s)'], linestyles=['b-', 'r-'], fig_size=(15, 9)) plt.savefig(path.join(plot_out_dir, '{0}_{1}_hydrographs.png'.format(str(id), name))) daily_avg = hd.daily_average(merged_df) daily_std_error = hd.daily_std_error(merged_data=merged_df) hv.plot(merged_data_df=daily_avg, legend=('Simulated', 'Observed'), grid=True, x_season=True, title='Daily Average Streamflow (Standard Error) for ' + str( id) + ' - ' + name + '\n COMID: ' + str(comid), labels=['Datetime', 'Streamflow (m$^3$/s)'], linestyles=['b-', 'r-'], fig_size=(15, 9), ebars=daily_std_error, ecolor=('b', 'r'), tight_xlim=False) plt.savefig(path.join(daily_average_out_dir, '{0}_{1}_daily_average.png'.format(str(id), name))) hv.plot(merged_data_df=daily_avg, legend=('Simulated', 'Observed'), grid=True, x_season=True, title='Daily Average Streamflow for ' + str( id) + ' - ' + name + '\n COMID: ' + str(comid), labels=['Datetime', 'Streamflow (m$^3$/s)'], linestyles=['b-', 'r-'], fig_size=(15, 9)) plt.savefig(path.join(daily_average_out_dir, '{0}_{1}_daily_average_1.png'.format(str(id), name))) monthly_avg = hd.monthly_average(merged_df) monthly_std_error = hd.monthly_std_error(merged_data=merged_df) hv.plot(merged_data_df=monthly_avg, legend=('Simulated', 'Observed'), grid=True, x_season=True, title='Monthly Average Streamflow (Standard Error) for ' + str( id) + ' - ' + name + '\n COMID: ' + str(comid), labels=['Datetime', 'Streamflow (m$^3$/s)'], linestyles=['b-', 'r-'], fig_size=(15, 9), ebars=monthly_std_error, ecolor=('b', 'r'), tight_xlim=False) plt.savefig(path.join(monthly_average_out_dir, '{0}_{1}_monthly_average.png'.format(str(id), name))) hv.scatter(merged_data_df=merged_df, grid=True, title='Scatter Plot for ' + str(id) + ' - ' + name + '\n COMID: ' + str(comid), labels=('Simulated', 'Observed'), line45=True, best_fit=True, figsize=(15, 9)) plt.savefig(path.join(scatter_out_dir, '{0}_{1}_scatter_plot.png'.format(str(id), name))) hv.scatter(sim_array=sim_array, obs_array=obs_array, grid=True, title='Scatter Plot (Log Scale) for ' + str(id) + ' - ' + name + '\n COMID: ' + str( comid), labels=('Simulated', 'Observed'), line45=True, best_fit=True, log_scale=True, figsize=(15, 9)) plt.savefig(path.join(scatter_ls_out_dir, '{0}_{1}_scatter_plot-log_scale.png'.format(str(id), name))) hv.hist(merged_data_df=merged_df, num_bins=100, legend=('Simulated', 'Observed'), grid=True, title='Histogram of Streamflows for ' + str(id) + ' - ' + name + '\n COMID: ' + str( comid), labels=('Bins', 'Frequency'), figsize=(15, 9)) plt.savefig(path.join(hist_out_dir, '{0}_{1}_histograms.png'.format(str(id), name))) hv.qqplot(merged_data_df=merged_df, title='Quantile-Quantile Plot of Data for ' + str( id) + ' - ' + name + '\n COMID: ' + str(comid), xlabel='Simulated', ylabel='Observed', legend=True, figsize=(15, 9)) plt.savefig(path.join(qqplot_out_dir, '{0}_{1}_qq-plot.png'.format(str(id), name))) ''' '''Time Lag Analysis''' time_lag_metrics = ['ME', 'MAE', 'MAPE', 'RMSE', 'NRMSE (Mean)', 'NSE', 'KGE (2009)', 'KGE (2012)', 'SA', 'R (Pearson)', 'R (Spearman)', 'r2'] ''' station_out_dir = path.join(lag_out_dir, str(id)) if not path.isdir(station_out_dir): os.makedirs(station_out_dir) for metric in time_lag_metrics: print(metric) _, time_table = hs.time_lag(merged_dataframe=merged_df, metrics=[metric], interp_freq='1D', interp_type='pchip', shift_range=(-10, 10), remove_neg=False, remove_zero=False, plot_title=metric + ' at Different Lags for ' + str( id) + ' - ' + name + '\n COMID: ' + str(comid), plot=True, ylabel=metric + ' Values', xlabel='Number of Lagas', figsize=(15, 9), save_fig=path.join(station_out_dir, '{0}_timelag_plot_for{1}_{2}.png'.format(metric, str(id), name))) plt.grid() all_lag_table = all_lag_table.append(time_table) for i in range(0, len (time_lag_metrics)): station_array.append(id) comid_array.append(comid) plt.close('all') ''' #Writing the lag table to excel #table_IO = StringIO(all_lag_table) #table_IO.seek(0) #time_lag_df = pd.read_csv(table_IO, sep=",") ''' all_lag_table = all_lag_table.assign(Station=station_array) all_lag_table = all_lag_table.assign(COMID=comid_array) all_lag_table.to_excel(path.join(lag_out_dir, 'Summary_of_all_Stations.xlsx')) ''' #Writing the Volume Dataframe to a csv volume_df = pd.DataFrame(volume_list, columns=['Station', 'Observed Volume', 'Simulated Volume', 'Percent Difference']) volume_df.to_excel(path.join(table_out_dir, 'Volume_Table.xlsx')) #Stations for the Country to an Excel Spreadsheet all_station_table.to_excel(path.join(table_out_dir, 'Table_of_all_stations.xlsx'))
r""" This file implements the documentation and default values of the ``vice.yields.agb.settings`` global yield settings dataframe. .. note:: While the code in this file is seemingly useless in that the implemented class does nothing other than call its parent class, the purpose is for this instance to have its own documentation separate from other yield setting dataframes. """ from ..._globals import _RECOGNIZED_ELEMENTS_ from ...core.dataframe import agb_yield_settings class settings(agb_yield_settings): r""" The VICE dataframe: global yield settings for AGB stars For each chemical element, this object stores the current asymptotic giant branch (AGB) star nucleosynthetic yield setting. See `Notes`_ below for mathematical details. .. versionadded:: 1.2.0 In earlier versions, functions and classes within VICE accepted keyword arguments or attributes which encoded which model table of yields to adopt. This same functionality can be achieved by assigning a string as the yield setting for specific elements. .. note:: Modifying yield settings through this dataframe is equivalent to going through the ``vice.elements`` module. Indexing -------- - ``str`` [case-insensitive] : elemental symbols This dataframe must be indexed by the symbol of an element recognized by VICE as it appears on the periodic table. Item Assignment --------------- For each chemical element, the AGB star yield can be assigned either: - ``str`` [case-insensitive] : Adopt values published by a given study Keywords correspond to yields calculated on a table of progenitor masses and metallicities which can be adopted directly. - "cristallo11" : Cristallo et al. (2011, 2015) [1]_ [2]_ - "karakas10" : Karakas (2010) [3]_ - "ventura13" : Ventura et al. (2013) [4]_ - "karakas16" : Karakas & Lugaro (2016) [5]_ ; Karakas et al. (2018) [6]_ .. versionadded:: 1.3.0 The "ventura13" and "karakas16" yields models were introduced in version 1.3.0. - <function> : Mathematical function describing the yield Must accept progenitor zero age main sequence mass in :math:`M_\odot` as the first parameter and the metallicity by mass :math:`Z` as the second. Functions --------- - keys - todict - restore_defaults - factory_settings - save_defaults Notes ----- VICE defines the yield from AGB stars as the fraction of a star's initial mass which is processed into some element. As with all other yields in VICE, these are *net* rather than *gross* yields in that they quantify only the mass of a given element which is newly produced. For a star of mass :math:`M_\star`, the mass of the element ejected to the ISM, not counting previously produced nucleosynthetic material, is given by: .. math:: M = y_\text{AGB}(M_\star, Z_\star) M_\star where :math:`y_\text{AGB}` is the yield and :math:`Z_\star` is the initial metallicity of the star. This definition is retained in one- and multi-zone chemical evolution models as well. For further details, see VICE's science documentation: https://vice-astro.readthedocs.io/en/latest/science_documentation/index.html. Example Code ------------ >>> import vice >>> vice.yields.agb.settings["n"] = "cristallo11" >>> vice.yields.agb.settings["N"] "cristallo11" >>> vice.yields.agb.settings["N"] = "karakas10" >>> vice.yields.agb.settings["n"] "karakas10" >>> def f(m, z): return 0.001 * m * (z / 0.014) >>> vice.yields.agb.settings["n"] = f >>> vice.yields.agb.settings["N"] <function __main__.f(z)> .. [1] Cristallo et al. (2011), ApJS, 197, 17 .. [2] Cristallo et al. (2015), ApJS, 219, 40 .. [3] Karakas (2010), MNRAS, 403, 1413 .. [4] Ventura et al. (2013), MNRAS, 431, 3642 .. [5] Kakaras & Lugaro (2016), ApJ, 825, 26 .. [6] Karakas et al. (2018), MNRAS, 477, 421 """ def __init__(self): super().__init__(dict(zip(_RECOGNIZED_ELEMENTS_, len(_RECOGNIZED_ELEMENTS_) * ["cristallo11"])), "AGB yield", True, "agb") def keys(self): r""" Returns the keys of the AGB star yield settings dataframe. **Signature**: vice.yields.agb.settings.keys() .. note:: By nature, this function will simply return a list of all elements that are built into VICE - the same thing as ``vice.elements.recognized``. Example Code ------------ >>> import vice >>> elements = vice.yields.agb.settings.keys() >>> tuple(elements) == vice.elements.recognized True """ return super().keys() def todict(self): r""" Returns the AGB star yield settings dataframe as a dictionary. **Signature**: vice.yields.agb.settings.todict() .. note:: Modifications to the dictionary returned by this function will *not* affect the global yield settings. .. note:: Python dictionaries are case-sensitive, and are thus less flexible than this class. Example Code ------------ >>> import vice >>> example = vice.yields.agb.settings.todict() >>> example["c"] "cristallo11" >>> example["C"] Traceback (most recent call last): File "<stdin>", line 1, in <module> KeyError: 'C' >>> example["c"] = "not a yield setting" >>> example["c"] "not a yield setting" >>> vice.yields.agb.settings["c"] "cristallo11" """ return super().todict() def restore_defaults(self): r""" Restores the AGB star yield settings to their default values (i.e. undoes any changes since VICE was imported). **Signature**: vice.yields.agb.settings.restore_defaults() Example Code ------------ >>> import vice >>> vice.yields.agb.settings["c"] = "karakas10" >>> vice.yields.agb.settings["n"] = "karakas10" >>> vice.yields.agb.settings["o"] = "karakas10" >>> vice.yields.agb.settings.restore_defaults() >>> vice.yields.agb.settings["c"] "cristallo11" >>> vice.yields.agb.settings["n"] "cristallo11" >>> vice.yields.agb.settings["o"] "cristallo11" """ super().restore_defaults() def factory_settings(self): r""" Restores the AGB star yield settings to their factory defaults. This differs from ``vice.yields.agb.settings.restore_defaults`` in that users may modify their default values from those that VICE is distributed with. **Signature**: vice.yields.agb.settings.factory_settings() .. tip:: To revert your nucleosynthetic yield settings back to their production defaults *permanently*, simply call ``vice.yields.agb.settings.save_defaults`` immediately following this function. Example Code ------------ >>> import vice >>> vice.yields.agb.settings["c"] "karakas10" # the user has modified their default yield for carbon >>> vice.yields.agb.settings.factory_settings() >>> vice.yields.agb.settings["c"] "cristallo11" """ super().factory_settings() def save_defaults(self): r""" Saves the current AGB star yield settings as the default values. **Signature**: vice.yields.agb.settings.save_defaults() .. note:: Saving functional yields requires the package dill_, an extension to ``pickle`` in the python standard library. It is recommended that VICE users install dill_ >= 0.2.0. .. _dill: https://pypi.org/project/dill Example Code ------------ >>> import vice >>> vice.yields.agb.settings["c"] "cristallo11" >>> vice.yields.agb.settings["c"] = "karakas10" >>> vice.yields.agb.settings.save_defaults() After re-launching the python interpreter: >>> import vice >>> vice.yields.agb.settings["c"] "karakas10" """ super().save_defaults() settings = settings()
import unittest import nlpaug.augmenter.char as nac import nlpaug.util.text.tokenizer as text_tokenizer class TestCharacter(unittest.TestCase): def test_empty(self): texts = ['', None] augs = [ nac.OcrAug(), nac.KeyboardAug(), ] for text in texts: for aug in augs: augmented_text = aug.augment(text) self.assertEqual(text, augmented_text) def test_tokenizer(self): augs = [ nac.OcrAug(tokenizer=text_tokenizer.split_sentence), nac.KeyboardAug(tokenizer=text_tokenizer.split_sentence), nac.RandomCharAug(tokenizer=text_tokenizer.split_sentence), ] text = 'The quick brown fox, jumps over lazy dog.' expected_tokens = ['The', ' quick', ' brown', ' fox', ', ', 'jumps', ' over', ' lazy', ' dog', '.'] for aug in augs: tokens = aug.tokenizer(text) self.assertEqual(tokens, expected_tokens) text = 'The quick !brown fox, jumps # over lazy dog .' expected_tokens = ['The', ' quick', ' !', 'brown', ' fox', ', ', 'jumps', ' # ', 'over', ' lazy', ' dog', ' .'] for aug in augs: tokens = aug.tokenizer(text) self.assertEqual(tokens, expected_tokens) def test_multi_thread(self): text = 'The quick brown fox jumps over the lazy dog.' n = 3 augs = [ nac.KeyboardAug(tokenizer=text_tokenizer.split_sentence), nac.RandomCharAug(tokenizer=text_tokenizer.split_sentence), ] for num_thread in [1, 3]: for aug in augs: augmented_data = aug.augment(text, n=n, num_thread=num_thread) self.assertEqual(len(augmented_data), n) def test_stopwords(self): text = 'The quick brown fox jumps over the lazy dog.' stopwords = ['The', 'brown', 'fox', 'jumps', 'the', 'dog'] augs = [ nac.RandomCharAug(stopwords=stopwords), nac.KeyboardAug(stopwords=stopwords), nac.OcrAug(stopwords=stopwords) ] for aug in augs: for i in range(10): augmented_text = aug.augment(text) self.assertTrue( 'quick' not in augmented_text or 'over' not in augmented_text or 'lazy' not in augmented_text) def test_stopwords_regex(self): text = 'The quick brown fox jumps over the lazy dog.' stopwords_regex = "( [a-zA-Z]{1}ox | [a-z]{1}og|(brown)|[a-zA-z]{1}he)|[a-z]{2}mps " augs = [ nac.RandomCharAug(action="delete", stopwords_regex=stopwords_regex), nac.KeyboardAug(stopwords_regex=stopwords_regex), nac.OcrAug(stopwords_regex=stopwords_regex) ] for aug in augs: for i in range(10): augmented_text = aug.augment(text) self.assertTrue( 'quick' not in augmented_text or 'over' not in augmented_text or 'lazy' not in augmented_text)
n1 = int(input('Digite o primeiro número: ')) n2 = int(input('Digite o segundo número: ')) if n1 > n2: print('O primeiro valor {} é maior'.format(n1)) elif n2 > n1: print('O segundo valor {} é maior'.format(n2)) elif n1 == n2: print('Não existe valor maior, os dois são iguais')
""" The program translate image to minecraft block map @author: Tang142857 @project: workspace @file: img2block.py @date: 2021-06-30 Copyright(c): DFSA Software Develop Center """ import cv2 import numpy import translator import entry def read_image(img_path: str, **kwargs): """ Return the bit map of the image kwargs: ch:r,g,b,a,o resize:not use right now """ origin_img = cv2.imread(img_path) # pay attention here ,there is BGR not RGB rgb_img = cv2.cvtColor(origin_img, cv2.COLOR_BGR2RGB) block_map = translator.translate_img(rgb_img) map = numpy.array(block_map, dtype=numpy.uint8) map = cv2.cvtColor(map, cv2.COLOR_RGB2BGR) block_map = translator.translate_img(rgb_img, False) cv2.imshow('block_map', map) # cv2.imshow('origin_map', origin_img) # cv2.waitKey() return block_map if __name__ == '__main__': bm = read_image('/home/tang/file/download/pages/cpc.jpeg') # bm = read_image('/home/tang/file/pictures/non-human/non-cover.jpg') commands = translator.build_command(bm) entry.exe_lines(commands)
# -*- coding: utf-8 -*- from sympy import Rational as r from .BetaFunction import BetaFunction from Definitions import tensorContract import itertools class ScalarMassBetaFunction(BetaFunction): def compute(self, a,b, nLoops): perm = list(itertools.permutations([a, b], 2)) permSet = set(perm) coeff = r(len(perm),len(permSet)) ret = 0 for s1,s2 in permSet: ret += coeff * self.Beta(s1,s2, nLoops=nLoops) return r(1,2)*ret def fDefinitions(self): """ Functions definition """ for i in range(self.nLoops): self.functions.append([]) count = 1 while True: try: self.functions[i].append(eval(f"self.m{i+1}_{count}")) count += 1 except: break def cDefinitions(self): """ Coefficients definition """ ## 1-loop self.coefficients.append( [r(-6), r(1), r(1), r(1), r(-4), r(-2)] ) ## 2-loop # self.coefficients.append( [r(2), r(10), r(0), r(3), r(-143,6), r(11,6), # r(10,6), r(-3), r(8), r(8), r(-3), r(-3), # r(1,6), r(-1), r(-1,2), r(-2), r(0), r(0), # r(-12), r(5), r(0), r(-1), r(-1), r(0), # r(2), r(-4), r(2), r(4), r(1), r(0), # r(0), r(0), r(-1), r(-3,2), r(4), r(4), # r(2)] ) self.coefficients.append( [r(2), r(10), r(0), r(3), r(-143,6), r(11,6), r(10,6), r(-3), r(8), r(8), r(-3), r(-3), r(1,6), r(-1), r(-1,2), r(-2), r(0), r(0), r(-12), r(5), r(0), r(-1), r(-1), r(0), r(0), r(0), r(2), r(4), r(-8), r(-8), r(-4), r(-4), r(2), r(4), r(1), r(0), r(0), r(0), r(-1), r(-3,2), r(4), r(8), r(8), r(4), r(4), r(4), r(4), r(4), r(4), r(2), r(2)] ) ###################### # 1-loop functions # ###################### def m1_1(self, a,b): return tensorContract(self.C2S(a,e_), self.mu(e_,b)) def m1_2(self, a,b): return tensorContract(self.l(a,b,e_,f_), self.mu(e_,f_)) def m1_3(self, a,b): return tensorContract(self.h(a,e_,f_), self.h(b,e_,f_)) def m1_4(self, a,b): return tensorContract(self.Y2S(a,e_), self.mu(e_,b)) def m1_5(self, a,b): return tensorContract(self.y(a,i_,j_), self.yt(b,j_,k_), self.M(k_,l_), self.Mt(l_,i_), doTrace=True, yukSorting=self.model.YukPos) def m1_6(self, a,b): return tensorContract(self.y(a,i_,j_), self.Mt(j_,k_), self.y(b,k_,l_), self.Mt(l_,i_), doTrace=True, yukSorting=self.model.YukPos) ###################### # 2-loop functions # ###################### def m2_1(self, a,b): return tensorContract(self.Ts(A_,a,i_), self.Ts(C_,i_,e_), self.G(A_,B_), self.G(C_,D_), self.Ts(B_,b,j_), self.Ts(D_,j_,f_), self.mu(e_,f_)) def m2_2(self, a,b): return tensorContract(self.Ts(A_,a,i_), self.Ts(C_,i_,b), self.G(A_,B_), self.G(C_,D_), self.Ts(B_,e_,j_), self.Ts(D_,j_,f_), self.mu(e_,f_)) def m2_3(self, a,b): return tensorContract(self.C2S(a,e_), self.C2S(b,f_), self.mu(e_,f_)) def m2_4(self, a,b): return tensorContract(self.C2S(a,e_), self.C2S(e_,f_), self.mu(f_,b)) def m2_5(self, a,b): return tensorContract(self.C2SG(a,e_), self.mu(e_,b)) def m2_6(self, a,b): return tensorContract(self.C2SS(a,e_), self.mu(e_,b)) def m2_7(self, a,b): return tensorContract(self.C2SF(a,e_), self.mu(e_,b)) def m2_8(self, a,b): return tensorContract(self.Ts(A_,a,e_), self.Ts(B_,b,f_), self.G(A_,B_), self.l(e_,f_,g_,h_), self.mu(g_,h_)) def m2_9(self, a,b): return tensorContract(self.l(a,b,e_,f_), self.C2S(f_,g_), self.mu(e_,g_)) def m2_10(self, a,b): return tensorContract(self.h(a,e_,f_), self.C2S(f_,g_), self.h(e_,g_,b)) def m2_11(self, a,b): return tensorContract(self.C2S(a,e_), self.l(e_,b,f_,g_), self.mu(f_,g_)) def m2_12(self, a,b): return tensorContract(self.C2S(a,e_), self.h(e_,f_,g_), self.h(f_,g_,b)) def m2_13(self, a,b): return tensorContract(self.l(a,e_,f_,g_), self.l(e_,f_,g_,h_), self.mu(h_,b)) def m2_14(self, a,b): return tensorContract(self.l(a,e_,g_,h_), self.l(b,f_,g_,h_), self.mu(e_,f_)) def m2_15(self, a,b): return tensorContract(self.l(a,b,e_,f_), self.h(e_,g_,h_), self.h(f_,g_,h_)) def m2_16(self, a,b): return tensorContract(self.h(a,e_,f_), self.h(e_,g_,h_), self.l(f_,g_,h_,b)) def m2_17(self, a,b): return tensorContract(self.l(a,b,e_,f_), self.l(e_,f_,g_,h_), self.mu(g_,h_)) def m2_18(self, a,b): return tensorContract(self.h(a,e_,f_), self.l(e_,f_,g_,h_), self.h(g_,h_,b)) def m2_19(self, a,b): return tensorContract(self.Ts(A_,a,e_), self.Ts(C_,e_,b), self.G(A_,B_), self.G(C_,D_), self.T(D_,i_,j_), self.T(B_,j_,k_), self.Mt(k_,l_), self.M(l_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_20(self, a,b): return tensorContract(self.Y2SCF(a,e_), self.mu(e_,b)) def m2_21(self, a,b): return tensorContract(self.C2S(a,e_), self.Y2S(e_,f_), self.mu(f_,b)) def m2_22(self, a,b): return tensorContract(self.l(a,b,e_,f_), self.Y2S(f_,g_), self.mu(e_,g_)) def m2_23(self, a,b): return tensorContract(self.h(a,e_,f_), self.Y2S(f_,g_), self.h(e_,g_,b)) def m2_24(self, a,b): return tensorContract(self.y(a,i_,j_), self.T(A_,j_,k_), self.Mt(k_,l_), self.M(l_,m_), self.G(A_,B_), self.T(B_,m_,n_), self.yt(b,n_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_25(self, a,b): return tensorContract(self.y(a,i_,j_), self.T(A_,j_,k_), self.yt(b,k_,l_), self.M(l_,m_), self.G(A_,B_), self.T(B_,m_,n_), self.Mt(n_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_26(self, a,b): return tensorContract(self.y(a,i_,j_), self.T(A_,j_,k_), self.Mt(k_,l_), self.y(b,l_,m_), self.G(A_,B_), self.T(B_,m_,n_), self.Mt(n_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_27(self, a,b): return tensorContract(self.C2S(a,e_), self.y(e_,i_,j_), self.Mt(j_,k_), self.y(b,k_,l_), self.Mt(l_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_28(self, a,b): return tensorContract(self.C2S(a,e_), self.y(e_,i_,j_), self.yt(b,j_,k_), self.M(k_,l_), self.Mt(l_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_29(self, a,b): return tensorContract(self.y(a,i_,j_), self.yt(b,j_,k_), self.M(k_,l_), self.Mt(l_,m_), self.C2F(m_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_30(self, a,b): return tensorContract(self.y(a,i_,j_), self.Mt(j_,k_), self.y(b,k_,l_), self.Mt(l_,m_), self.C2F(m_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_31(self, a,b): return tensorContract(self.y(a,i_,j_), self.Mt(j_,k_), self.M(k_,l_), self.yt(b,l_,m_), self.C2F(m_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_32(self, a,b): return tensorContract(self.M(i_,j_), self.yt(a,j_,k_), self.y(b,k_,l_), self.Mt(l_,m_), self.C2F(m_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_33(self, a,b): return tensorContract(self.y(a,i_,j_), self.yt(e_,j_,k_), self.y(b,k_,l_), self.yt(f_,l_,i_), self.mu(e_,f_), doTrace=True, yukSorting=self.model.YukPos) def m2_34(self, a,b): return tensorContract(self.y(a,i_,j_), self.yt(e_,j_,k_), self.M(k_,l_), self.yt(f_,l_,i_), self.h(e_,f_,b), doTrace=True, yukSorting=self.model.YukPos) def m2_35(self, a,b): return tensorContract(self.M(i_,j_), self.yt(e_,j_,k_), self.M(k_,l_), self.yt(f_,l_,i_), self.l(e_,f_,a,b), doTrace=True, yukSorting=self.model.YukPos) def m2_36(self, a,b): return tensorContract(self.y(a,i_,j_), self.yt(b,j_,k_), self.y(e_,k_,l_), self.yt(f_,l_,i_), self.mu(e_,f_), doTrace=True, yukSorting=self.model.YukPos) def m2_37(self, a,b): return tensorContract(self.y(a,i_,j_), self.Mt(j_,k_), self.y(e_,k_,l_), self.yt(f_,l_,i_), self.h(e_,f_,b), doTrace=True, yukSorting=self.model.YukPos) def m2_38(self, a,b): return tensorContract(self.M(i_,j_), self.Mt(j_,k_), self.y(e_,k_,l_), self.yt(f_,l_,i_), self.l(e_,f_,a,b), doTrace=True, yukSorting=self.model.YukPos) def m2_39(self, a,b): return tensorContract(self.Y4S(a,e_), self.mu(e_,b)) def m2_40(self, a,b): return tensorContract(self.Y2SYF(a,e_), self.mu(e_,b)) def m2_41(self, a,b): return tensorContract(self.M(i_,j_), self.yt(a,j_,k_), self.M(k_,l_), self.yt(e_,l_,m_), self.y(b,m_,n_), self.yt(e_,n_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_42(self, a,b): return tensorContract(self.y(a,i_,j_), self.yt(b,j_,k_), self.M(k_,l_), self.yt(e_,l_,m_), self.M(m_,n_), self.yt(e_,n_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_43(self, a,b): return tensorContract(self.y(a,i_,j_), self.Mt(j_,k_), self.M(k_,l_), self.yt(e_, l_, m_), self.y(b, m_, n_), self.yt(e_, n_, i_), doTrace=True, yukSorting=self.model.YukPos) def m2_44(self, a,b): return tensorContract(self.y(a,i_,j_), self.Mt(j_,k_), self.y(b,k_,l_), self.yt(e_,l_,m_), self.M(m_,n_), self.yt(e_,n_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_45(self, a,b): return tensorContract(self.y(a,i_,j_), self.yt(b,j_,k_), self.y(e_,k_,l_), self.Mt(l_,m_), self.M(m_,n_), self.yt(e_,n_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_46(self, a,b): return tensorContract(self.y(a,i_,j_), self.Mt(j_,k_), self.y(e_,k_,l_), self.Mt(l_,m_), self.y(b,m_,n_), self.yt(e_,n_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_47(self, a,b): return tensorContract(self.y(a,i_,j_), self.Mt(j_,k_), self.y(e_,k_,l_), self.yt(b,l_,m_), self.M(m_,n_), self.yt(e_,n_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_48(self, a,b): return tensorContract(self.y(a,i_,j_), self.yt(b,j_,k_), self.M(k_,l_), self.Mt(l_,m_), self.Y2F(m_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_49(self, a,b): return tensorContract(self.y(a,i_,j_), self.Mt(j_,k_), self.y(b,k_,l_), self.Mt(l_,m_), self.Y2F(m_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_50(self, a,b): return tensorContract(self.y(a,i_,j_), self.Mt(j_,k_), self.M(k_,l_), self.yt(b,l_,m_), self.Y2F(m_,i_), doTrace=True, yukSorting=self.model.YukPos) def m2_51(self, a,b): return tensorContract(self.M(i_,j_), self.yt(a,j_,k_), self.y(b,k_,l_), self.Mt(l_,m_), self.Y2F(m_,i_), doTrace=True, yukSorting=self.model.YukPos)
from bs4 import BeautifulSoup, NavigableString from pathlib import Path def extract_references_page(html_string): """Extract the references in report282b, 283b, or 284b.html. Keeps any double spaces present in the original reference, as well as <i> and other minor HTML tags. """ # Add in extra <p> tags to make parsing easier html_string = html_string.replace("<blockquote>", "<blockquote><p>") # Fix the two broken refs of McCollough et al. and MacCord html_string = html_string.replace("Lenhardt<p>", "Lenhardt<blockquote><p>") soup = BeautifulSoup(html_string, 'html5lib') references = {} hrefs_to_refs = {} i = 0 contents = soup.body.contents while i < len(contents): author = None author_refs = None if i < len(contents) - 1 and contents[i+1].name == "blockquote": content = contents[i] if content.name == "a": if i == len(contents) - 1: raise Exception("Found an <a> tag in references, but it was " "the very last element in the page.") author = content.text.strip() author_refs = contents[i+1] hrefs_to_refs[content['name']] = {"author": author, "refNum": 0} elif isinstance(content, NavigableString): author = str(content).strip() author_refs = contents[i+1] else: raise Exception("Found an element right before a blockquote" + "that is not a NavigableString or an <a> " + "tag, " + str(content)) if author: extracted_refs = [] for ref in author_refs: # ref here refers to a <p> tag in the soup # Remove empty <p> tags if ref.text and ref.text.strip() == '': continue a_name = None if ref.a: a_name = ref.a['name'] ref.a.replace_with(ref.a.string) hrefs_to_refs[a_name] = { "author": author, "refNum": len(extracted_refs) } extracted_refs.append( str(ref).replace('<p>', '') .replace('</p>', '') .replace('\n', ' ') .strip() ) references[author] = extracted_refs i += 1 return {"refs": references, "hrefsToRefs": hrefs_to_refs} def extract_all_references(dig_parent_dir, readfile): """Extract all references A-Z from the site.""" dig_parent_path_obj = Path(dig_parent_dir) extracted = {"refs": {}, "hrefsToRefs": {}} for split_page_num in [282, 283, 284]: split_page_dir = dig_parent_path_obj / "dig/html/split" refs_html = readfile( "report" + str(split_page_num) + "b.html", split_page_dir ) data = extract_references_page(refs_html) extracted['refs'].update(data['refs']) extracted['hrefsToRefs'].update(data['hrefsToRefs']) return extracted
import json import argparse from src.model_handler.TrainHandler import start_training def parse_args(): parser = argparse.ArgumentParser(description="Adipocyte Fluorescence Predictor CLI Tool") parser.add_argument("-s", "--setting_file", type=str, help="JSON filepath that contains settings.") args = parser.parse_args() print(args) return args def get_settings(json_path): with open(json_path, "r") as json_file: settings = json.load(json_file) print(settings) return settings def main(): args = parse_args() settings = get_settings(args.setting_file) start_training(**settings) if __name__ == "__main__": main()
import enum import numpy as np import string import random from collections import namedtuple class DIRECTION(enum.Enum): UP = 0 RIGHT = 1 DOWN = 2 LEFT = 3 class TURN(enum.Enum): NONE = 0 LEFT = -1 RIGHT = 1 class BOARD_OBJECT(enum.Enum): EMPTY = 0 BODY = 1 TAIL = -1 APPLE = 2 ALL_DIRECTIONS = [DIRECTION.UP, DIRECTION.RIGHT, DIRECTION.DOWN, DIRECTION.LEFT] ALL_TURNS = [TURN.NONE, TURN.LEFT, TURN.RIGHT] DIRECTION_UNIT_VECTORS = dict( [ (DIRECTION.UP, [0, -1]), (DIRECTION.DOWN, [0, 1]), (DIRECTION.LEFT, [-1, 0]), (DIRECTION.RIGHT, [1, 0]), ] ) DIRECTION_MARKERS = dict( [ (DIRECTION.UP, '^'), (DIRECTION.DOWN, 'v'), (DIRECTION.LEFT, '<'), (DIRECTION.RIGHT, '>'), ] ) LOG_LEVEL_THRESHOLD = 1 chars = string.ascii_letters + string.digits def generate_id(): return ''.join([random.choice(chars) for n in range(6)]) def generate_chromosome(length): return np.random.uniform(-1, 1, length) def Log(message: str, level = 1, end='\n'): if(level >= LOG_LEVEL_THRESHOLD): print(message, end=end)
import json import logging from django.conf import settings from django.shortcuts import render from django.http import JsonResponse from django.contrib.auth.decorators import login_required from identity.keystone import Keystone from swift_cloud_tools.client import SCTClient log = logging.getLogger(__name__) @login_required def swift_cloud_report(request): keystone = Keystone(request) projects = [] environ = settings.ENVIRON if not environ and "localhost" in request.get_host(): environ = "local" try: for project in keystone.project_list(): projects.append({ "id": project.id, "name": project.name, "description": project.description, "environment": environ, "status": "", }) except Exception as e: log.exception(f"Keystone error: {e}") context = {"projects": json.dumps(projects)} return render(request, "vault/swift_cloud/report.html", context) @login_required def swift_cloud_status(request): project_id = request.GET.get('project_id') if not project_id: return JsonResponse({"error": "Missing project_id parameter"}, status=400) sct_client = SCTClient( settings.SWIFT_CLOUD_TOOLS_URL, settings.SWIFT_CLOUD_TOOLS_API_KEY ) content = {"status": None} response = sct_client.transfer_get(project_id) data = response.json() if response.status_code == 404: content["status"] = "Not initialized" else: content["status"] = "Waiting" if data.get("initial_date") and not data.get("final_date"): content["status"] = "Migrating" if data.get("final_date"): content["status"] = "Done" return JsonResponse(content, status=200) @login_required def swift_cloud_migrate(request): if request.method != 'POST': return JsonResponse({"error": "Method not allowed"}, status=405) sct_client = SCTClient( settings.SWIFT_CLOUD_TOOLS_URL, settings.SWIFT_CLOUD_TOOLS_API_KEY ) params = json.loads(request.body) content = {"message": "Migration job created"} status = 201 response = sct_client.transfer_create( params.get('project_id'), params.get('project_name'), params.get('environment') ) status = response.status_code if status != 201: content = {"error": response.text} return JsonResponse(content, status=status)
import abc __all__ = ['PowerDNSDatabaseMixIn'] class PowerDNSDatabaseMixIn(object): """ PowerDNSDatabaseMixIn class contains PowerDNS related queries """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def _execute(self, operation, params=()): pass def gslb_checks(self): operation = """ SELECT `contents_monitors`.`id`, `contents`.`content`, `monitors`.`monitor_json` FROM `contents_monitors` JOIN `contents` ON `contents_monitors`.`content_id` = `contents`.`id` JOIN `monitors` ON `contents_monitors`.`monitor_id` = `monitors`.`id` """ return self._execute(operation) def gslb_records(self, qname, qtype): operation = """ SELECT `names`.`name` AS `qname`, `types`.`type` AS `qtype`, `names_types`.`ttl`, `names_types`.`persistence`, `records`.`fallback`, `records`.`weight`, `contents_monitors`.`id`, `contents`.`content`, `views`.`rule` FROM `names` JOIN `names_types` ON `names`.`id` = `names_types`.`name_id` JOIN `types` ON `names_types`.`type_value` = `types`.`value` JOIN `records` ON `names_types`.`id` = `records`.`name_type_id` JOIN `contents_monitors` ON `records`.`content_monitor_id` = `contents_monitors`.`id` JOIN `contents` ON `contents_monitors`.`content_id` = `contents`.`id` JOIN `views` ON `records`.`view_id` = `views`.`id` """ if qtype == 'ANY': operation += """ WHERE `names`.`name` = %s AND `records`.`disabled` = 0 """ params = (qname,) else: operation += """ WHERE `names`.`name` = %s AND `types`.`type` = %s AND `records`.`disabled` = 0 """ params = (qname, qtype) return self._execute(operation, params)
from typing import List, Any from copy import deepcopy class Message: """ A message class for tranferring data between server and client """ def __init__( self, sender: str = "SERVER", house: str = "", room: str = "", text: str = "", action: str = "", reciepents: List[str] = [], data: dict[str, Any] = {}, ): self.action = action self.sender = sender self.house = house self.room = room self.text = text self.reciepents = reciepents self.data = data def clone(self) -> "Message": return deepcopy(self) def take_recipients(self) -> List[str]: """ Takes the ownership of reciepents and replace it with a empty list to reduce message load """ reciepents = self.reciepents self.reciepents = [] return reciepents def convert( self, sender: str = "SERVER", action: str = "push_text", text: str = "", house: str = "", room: str = "", reciepents: list[str] = [], data: dict[str, str] = {}, ) -> "Message": """ Converts some parts of the message for different actions """ message = self.clone() message.reciepents = reciepents if reciepents else [message.sender] message.action = action if room: message.room = room if house: message.house = house if text: message.text = text if sender == "SERVER": message.sender = "SERVER" message.data = data return message
"""denne filen tar kun inn viewsets og legger dem inn i urlpatterns """ from rest_framework import routers from .views import BrukerViewSet, NamesViewSet, UserViewSet, BorstViewSet, registrationView router = routers.DefaultRouter() router.register('api/kalas', BrukerViewSet, 'kalas') router.register('api/names', NamesViewSet, 'name') router.register('api/users', UserViewSet, 'users') router.register('api/borst', BorstViewSet, 'borst') urlpatterns = router.urls
import collector from server import APP # R0201 = Method could be a function Used when a method doesn't use its bound # instance, and so could be written as a function. # pylint: disable=R0201 class TestRoot: """Test various use cases for the index route.""" def test_route_with_no_worker(self, mocker): """Test index route when there is no worker set.""" client = APP.test_client(mocker) url = '/' redis = mocker.MagicMock() mocker.patch.object(collector.utils, 'REDIS', redis) response = client.get(url) assert response.get_data() == \ b'{"message":"No worker set","status":"Error","version":"1.0"}\n' assert response.status_code == 500 def test_route_with_redis_present(self, mocker): """Test index route when redis is present.""" client = APP.test_client(mocker) worker = mocker.MagicMock() mocker.patch.object(collector, 'WORKER', worker) url = '/' redis = mocker.MagicMock() mocker.patch.object(collector.utils, 'REDIS', redis) response = client.get(url) assert response.get_data() == \ b'{"message":"Up and Running","status":"OK","version":"1.0"}\n' assert response.status_code == 200 def test_route_with_redis_absent(self, mocker): """Test index route when there is no redis.""" client = APP.test_client(mocker) worker = mocker.MagicMock() mocker.patch.object(collector, 'WORKER', worker) url = '/' response = client.get(url) assert response.get_data() == \ b'{"message":"Required service not operational",' \ b'"status":"Error","version":"1.0"}\n' assert response.status_code == 500
from ..utils import get_by_key import datetime from ..models import meetups from ..models.meetups import MEETUPS_LIST from ..models import users from ..models.users import USERS_LIST QUESTIONS_LIST = [] class Questions(): def put(self, question_id, created_on, created_by, meetup, title, body,votes): self.single_question = {} question = get_by_key('question_id', question_id, QUESTIONS_LIST) if "message" not in question: return {"message": "the question id you entered is being used for another question"} created_on = datetime.datetime.now() self.single_question['question_id'] = question_id self.single_question['created_on'] = created_on self.single_question['created_by'] =int(created_by) self.single_question['meetup'] = int(meetup) self.single_question['title'] = title self.single_question['body'] = body self.single_question['votes'] = int(votes) QUESTIONS_LIST.append(self.single_question) return {"message": "Question has been added successfully"} def get_all_questions(self,meetup_id): question = [questions for questions in QUESTIONS_LIST if questions['meetup'] == meetup_id] if not question: return {"message": "question for this meetup does not exist"} return question def get_single_question(self, question_id): question = get_by_key('question_id', question_id, QUESTIONS_LIST) if not question: return {"message": "question does not exist"} return question def patch1(self,question_id): question = [questions for questions in QUESTIONS_LIST if questions['question_id'] == question_id] if not question: return{"message": "question is not available"} question[0]['votes']+=1 return {"message": "you upvoted thsi question"} def patch2(self,question_id): question= [questions for questions in QUESTIONS_LIST if questions['question_id'] == question_id] if not question: return {"message":"question is not available"} question[0]['votes']-=1 return {"message": "you downvoted this question"}
#!/usr/bin/env python3 """ Usage: check_ntp.py <host> <min_stratum> $ check_ntp.py pool.ntp.org 3 """ import sys import ntplib def check_health(host, min_stratum=3, port=123, ntp_version=3, timeout=5): try: c = ntplib.NTPClient() resp = c.request(host, port=port, version=ntp_version, timeout=timeout) except: print("Connection Fail") exit(1) if (int(resp.stratum) > int(min_stratum)): print("Current Stratum: %s, Minimum Stratum: %s" %(resp.stratum, min_stratum)) exit(2) exit(0) if __name__ == "__main__": try: host = sys.argv[1] min_stratum = sys.argv[2] except: print("WARNING - healchcheck could not run, please supply host and min_stratum") exit(1) check_health(host, min_stratum)
# Python variants vards = "Māris" uzvards = "Danne" # Vecais standarta veids pilnsVards = vards + " " + uzvards # Labāks variants pilnvsVards = "{} {}".format(vards, uzvards) # Jaunais veids pilnsVards = f"{vards} {uzvards}" print(pilnsVards)
import logging import os from re import template from typing import Dict, List, Tuple, cast from zipfile import ZipFile import requests import typer from .TemplateLoader import TemplateLoader from .TemplateOptions import TemplateOptions from .TemplateRenderer import TemplateRenderer from .utils import download CURVENOTE_API_URL = os.getenv("CURVENOTE_API_URL") API_URL = ( CURVENOTE_API_URL if CURVENOTE_API_URL is not None else "https://api.curvenote.com" ) TEMPLATE_DOWNLOAD_URL = "{api_url}/templates/tex/{template_name}/download" OLD_TEMPLATE_DOWNLOAD_URL = "{api_url}/templates/{template_name}/download" def do_download(URL: str, template_name: str): url = URL.format(api_url=API_URL, template_name=template_name) logging.info(f"DOWNLOAD: {url}") try: download_info = requests.get(url).json() if "status" in download_info and download_info["status"] != 200: raise ValueError(f'{template_name} not found - {download_info["status"]}') except requests.exceptions.RequestException as e: raise ValueError(f"Requests error - {url} - {e}") return download_info class PublicTemplateLoader(TemplateLoader): def __init__(self, template_location: str): super().__init__(template_location) def initialise_from_template_api( self, template_name: str ) -> Tuple[TemplateOptions, TemplateRenderer]: logging.info("Writing to target folder: %s", self._target_folder) logging.info("Looking up template %s", template_name) logging.info("latest code") try: download_info = {} try: name = ( template_name if template_name.startswith("public/") else f"public/{template_name}" ) download_info = do_download(TEMPLATE_DOWNLOAD_URL, name) except: name = ( template_name if not template_name.startswith("public/") else template_name[7:] ) download_info = do_download(OLD_TEMPLATE_DOWNLOAD_URL, name) if "link" not in download_info: typer.echo(f"Template '{template_name}' not found") raise typer.Exit(-1) except ValueError as err: logging.error("could not download template %s", template_name) raise ValueError(f"could not download template: {template_name}") from err # fetch template to local folder logging.info(f"Found template, download url {download_info['link']}") logging.info("downloading...") zip_filename = os.path.join( self._target_folder, f"{template_name.replace('/','_')}.template.zip" ) download(download_info["link"], zip_filename) # unzip logging.info("Download complete, unzipping...") with ZipFile(zip_filename, "r") as zip_file: zip_file.extractall(self._target_folder) logging.info("Unzipped to %s", self._target_folder) os.remove(zip_filename) logging.info("Removed %s", zip_filename) # success -- update members self._template_name = template_name renderer = TemplateRenderer() renderer.use_from_folder(self._target_folder) return TemplateOptions(self._target_folder), renderer
# -*- coding: utf-8 -*- """ Module for the structural design of steel members. """ import numpy as np class Geometry: """ Structural element geometry. Class for the geometric properties of a structural element. Parameters ---------- cs_sketch : CsSketch object Cross-section sketch. length : float Member's length. """ def __init__(self, cs_sketch, length, thickness): self.cs_sketch = cs_sketch self.length = length self.thickness = thickness class CsSketch: """ Cross-section geometry. Parameters ---------- nodes : list List of points. elem : list Element connectivity. """ def __init__(self, nodes, elem): self.nodes = nodes self.elem = elem class CsProps: """ Cross-section properties. Class for the mass properties of cross-sections. The properties can be calculated using the from_cs_sketch() method. Parameters ---------- area : float Cross-sectional area. xc : float `x` coordinate of the gravity center. yc : float `y` coordinate of the gravity center. moi_xx : float Moment of inertia around `x` axis. moi_yy : float Moment of inertia around `y` axis. moi_xy : float Polar moment of inertia. theta_principal : float Rotation of the principal axes. moi_1 : float Moment of inertia around the major axis. moi_2 : float Moment of inertia around the minor axis. """ def __init__(self, area=None, xc=None, yc=None, moi_xx=None, moi_yy=None, moi_xy=None, theta_principal=None, moi_1=None, moi_2=None ): self.area = area self.xc = xc self.yc = yc self.moi_xx = moi_xx self.moi_yy = moi_yy self.moi_xy = moi_xy self.theta_principal = theta_principal self.moi_1 = moi_1 self.moi_2 = moi_2 @classmethod def from_cs_sketch(cls, cs_sketch): """ Cross-section calculator. Alternative constructor, calculates mass properties of a given sc sketch and returns a CsProps object. Parameters ---------- cs_sketch : CsSketch object Notes ----- """ nele = len(cs_sketch.elem[0]) node = cs_sketch.elem[0] + cs_sketch.elem[1] nnode = 0 j = 0 while node: i = [ii for ii, x in enumerate(node) if x == node[0]] for ii in sorted(i, reverse=True): del node[ii] if len(i) == 2: j += 1 nnode += 1 # classify the section type (currently not used) # if j == nele: # section = 'close' # single cell # elif j == nele - 1: # section = 'open' # singly-branched # else: # section = 'open' # multi-branched # Calculate the cs-properties tt = [] xm = [] ym = [] xd = [] yd = [] side_length = [] for i in range(nele): sn = cs_sketch.elem[0][i] fn = cs_sketch.elem[1][i] # thickness of the element tt = tt + [cs_sketch.elem[2][i]] # compute the coordinate of the mid point of the element xm = xm + [mean_list([cs_sketch.nodes[0][sn], cs_sketch.nodes[0][fn]])] ym = ym + [mean_list([cs_sketch.nodes[1][sn], cs_sketch.nodes[1][fn]])] # compute the dimension of the element xd = xd + [(cs_sketch.nodes[0][fn] - cs_sketch.nodes[0][sn])] yd = yd + [(cs_sketch.nodes[1][fn] - cs_sketch.nodes[1][sn])] # compute the length of the element side_length = side_length + [np.sqrt(xd[i] ** 2 + yd[i] ** 2)] # calculate cross sectional area area = sum([a * b for a, b in zip(side_length, tt)]) # compute the centroid xc = sum([a * b * c for a, b, c in zip(side_length, tt, xm)]) / area yc = sum([a * b * c for a, b, c in zip(side_length, tt, ym)]) / area if abs(xc / np.sqrt(area)) < 1e-12: xc = 0 if abs(yc / np.sqrt(area)) < 1e-12: yc = 0 # Calculate MOI moi_xx = sum([sum(a) for a in zip([a ** 2 * b * c / 12 for a, b, c in zip(yd, side_length, tt)], [(a - yc) ** 2 * b * c for a, b, c in zip(ym, side_length, tt)])]) moi_yy = sum([sum(a) for a in zip([a ** 2 * b * c / 12 for a, b, c in zip(xd, side_length, tt)], [(a - xc) ** 2 * b * c for a, b, c in zip(xm, side_length, tt)])]) moi_xy = sum( [sum(a) for a in zip([a * b * c * d / 12 for a, b, c, d in zip(xd, yd, side_length, tt)], [(a - xc) * (b - yc) * c * d for a, b, c, d in zip(xm, ym, side_length, tt)])]) if abs(moi_xy / area ** 2) < 1e-12: moi_xy = 0 # Calculate angle of principal axes if moi_xx == moi_yy: theta_principal = np.pi / 2 else: theta_principal = np.arctan( (-2 * moi_xy) / (moi_xx - moi_yy)) / 2 # Change to centroid principal coordinates # coord12 = [[a - xc for a in cs_sketch.nodes[0]], # [a - yc for a in cs_sketch.nodes[1]]] coord12 = np.array([[np.cos(theta_principal), np.sin(theta_principal)], [-np.sin(theta_principal), np.cos(theta_principal)]]).dot(cs_sketch.nodes) # re-calculate cross sectional properties for the centroid for i in range(nele): sn = cs_sketch.elem[0][i] fn = cs_sketch.elem[1][i] # calculate the coordinate of the mid point of the element xm = xm + [mean_list([coord12[0][sn], coord12[0][fn]])] ym = ym + [mean_list([coord12[1][sn], coord12[1][fn]])] # calculate the dimension of the element xd = xd + [(coord12[0][fn] - coord12[0][sn])] yd = yd + [(coord12[1][fn] - coord12[1][sn])] # calculate the principal moment of inertia moi_1 = sum([sum(a) for a in zip([a ** 2 * b * c / 12 for a, b, c in zip(yd, side_length, tt)], [(a - yc) ** 2 * b * c for a, b, c in zip(ym, side_length, tt)])]) moi_2 = sum([sum(a) for a in zip([a ** 2 * b * c / 12 for a, b, c in zip(xd, side_length, tt)], [(a - xc) ** 2 * b * c for a, b, c in zip(xm, side_length, tt)])]) return cls( area=area, xc=xc, yc=yc, moi_xx=moi_xx, moi_yy=moi_yy, moi_xy=moi_xy, theta_principal=theta_principal, moi_1=moi_1, moi_2=moi_2 ) class Material: """ Material properties. Parameters ---------- e_modulus : float Modulus of elasticity. poisson : float Poisson's ratio. f_yield : float Yield stress plasticity : tuple Plasticity table (tuple of stress-plastic strain pairs). By default, no plasticity is considered. """ def __init__(self, e_modulus, poisson, f_yield, plasticity=None): self.e_modulus = e_modulus self.poisson = poisson self.f_yield = f_yield self.plasticity = plasticity @staticmethod def plastic_table(nominal=None): """ Plasticity tables. Tables with plastic stress-strain curve values for different steels given a steel name, e.g 'S355' Parameters ---------- nominal : string [optional] Steel name. Default value, 'S355' Attributes ---------- Notes ----- References ---------- """ if nominal is None: nominal = 'S235' if nominal is 'S355': table = ( (381.1, 0.0), (391.2, 0.0053), (404.8, 0.0197), (418.0, 0.0228), (444.2, 0.0310), (499.8, 0.0503), (539.1, 0.0764), (562.1, 0.1009), (584.6, 0.1221), (594.4, 0.1394), (5961, 1.) ) if nominal is 'S650': table = ( (760., 0.0), (770., 0.022), (850., 0.075), (900., 0.1), (901., 1.) ) return table @classmethod def from_nominal(cls, nominal_strength=None): """ Alternative constructor creating a steel material from a given nominal strength. Parameters ---------- nominal_strength : str Steel quality, given in the form of e.g. "S355" """ if nominal_strength is None: f_yield = 235. else: f_yield = float(nominal_strength.replace('S', '')) plasticity = cls.plastic_table(nominal=nominal_strength) return cls(210000., 0.3, f_yield, plasticity=plasticity) class BCs: def __init__(self, bcs): self.bcs = bcs @classmethod def from_hinged(cls): return cls([[1, 1, 1, 0, 0, 0], [1, 1, 1, 0, 0, 0]]) class StructProps: """ Structural properties of a member. Parameters ---------- t_classification : float, optional Classification of a tube, d/(t^2*e) p_classification : float, optional Classification of a plate, c/(t*e) lmbda_y : float, optional Flexural slenderness on the strong axis. lmbda_z : float, optional Flexural slenderness on the weak axis. n_pl_rd : float, optional Plastic axial compression resistance. n_b_rd_shell : float, optional Shell buckling resistance """ def __init__(self, t_classification=None, p_classification=None, lmbda_y=None, lmbda_z=None, n_pl_rd=None, n_b_rd_shell=None ): self.t_classification = t_classification self.p_classification = p_classification self.lmbda_y = lmbda_y self.lmbda_z = lmbda_z self.n_pl_rd = n_pl_rd self.n_b_rd_shell = n_b_rd_shell class Part: """ Structural part. Class describing a structural part, including geometry, boundary conditions loads and resistance. Parameters ---------- geometry : Geometry object, optional cs_props : CsProps object, optional material : Material object, optional struct_props : StructProps object, optional bc_loads: BCs object, optional """ def __init__(self, geometry=None, cs_props=None, material=None, struct_props=None, bc_loads=None ): self.geometry = geometry self.cs_props = cs_props self.material = material self.bc_loads = bc_loads self.struct_props = struct_props # SIMPLY SUPPORTED PLATE #TODO: Implement EN50341. Currently the resistance is calculated only for pure compression elements. Add interaction. def n_pl_rd( thickness, width, f_yield, psi=None ): # Docstring """ Plastic design resistance of a plate. Calculates the resistance of a plate according to EN1993-1-1 and EN1993-1-5. The plate is assumed simply supported. Parameters ---------- thickness : float [mm] Plate thickness width : float [mm] Plate width f_yield : float [MPa] Yield stress psi : float, optional [_] Ratio of the min over max stress for a linear distribution, (sigma_min / sigma_max) Default = 1, which implies a uniform distribution Returns ------- float [N] Plastic design resistance Notes ----- To be extended to include cantilever plate (outstand members) References ---------- .. [1] Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. Brussels: CEN, 2005. .. [2] Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements. Brussels: CEN, 2005. """ # Convert inputs to floats thickness, width, f_yield = float(thickness), float(width), float(f_yield) # Default value for psi if psi is None: psi = 1. else: psi = float(psi) # Calculate kapa_sigma k_sigma = 8.2 / (1.05 + psi) # Aeff calculation. # Reduction factor for the effective area of the profile acc. to EC3-1-5 classification = width / (thickness * np.sqrt(235 / f_yield)) lambda_p = classification / (28.4 * np.sqrt(k_sigma)) if lambda_p > 0.673 and plate_class(thickness, width, f_yield) == 4: rho = (lambda_p - 0.055 * (3 + psi)) / lambda_p ** 2 else: rho = 1. # Effective area a_eff = rho * thickness * width # Axial compression resistance , Npl nn_pl_rd = a_eff * f_yield # Return value return nn_pl_rd def plate_class( thickness, width, f_yield ): # Docstring """ Plate classification. Returns the class for a given plate, according to EN1993-1-1. Currently works for simply supported plates under pure compression. Parameters ---------- thickness : float [mm] Plate thickness width : float [mm] Plate width f_yield : float [MPa] Yield stress Returns ------- int [_] Class number Notes ----- To be extended to include the rest of the cases of Table 5.3 [1]. Members under combined axial and bending and outstand members. References ---------- .. [1] Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. Brussels: CEN, 2005 """ # Convert inputs to floats width, thickness, f_yield = float(width), float(thickness), float(f_yield) # Calculate classification classification = width / (thickness * np.sqrt(235. / f_yield)) if classification <= 33.: p_class = 1 elif classification <= 38.: p_class = 2 elif classification <= 42.: p_class = 3 else: p_class = 4 # Return value return p_class def sigma_cr_plate( thickness, width, psi=None ): # Docstring """ Critical stress of a plate. Calculates the critical stress for a simply supported plate. Parameters ---------- thickness : float [mm] Plate thickness width : float [mm] Plate width psi : float, optional [_] Ratio of the min over max stress for a linear distribution, (sigma_min / sigma_max) Default = 1, which implies a uniform distribution Returns ------- float [MPa] Plate critical stress Notes ----- To be extended to include cantilever plate (outstand members) References ---------- .. [1] Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements. Brussels: CEN, 2005. """ # Convert inputs to floats thickness, width = float(thickness), float(width) # Default value for psi if psi is None: psi = 1. else: psi = float(psi) # Calculate kapa_sigma k_sigma = 8.2 / (1.05 + psi) # Elastic critical stress acc. to EN3-1-5 Annex A sigma_e = 190000 * (thickness / width) ** 2 sigma_cr = sigma_e * k_sigma # Return value return sigma_cr # CYLINDRICAL SHELLS def sigma_x_rd( thickness, radius, length, f_y_k, fab_quality=None, gamma_m1=None ): # Docstring """ Meridional design buckling stress. Calculates the meridional buckling stress for a cylindrical shell according to EN1993-1-6 [1]. Parameters ---------- thickness : float [mm] Shell thickness radius : float [mm] Cylinder radius length : float [mm] Cylnder length f_y_k : float [MPa] Characteristic yield strength fab_quality : str, optional [_] Fabrication quality class. Accepts: 'fcA', 'fcB', 'fcC' The three classes correspond to .006, .010 and .016 times the width of a dimple on the shell. Default = 'fcA', which implies excelent fabrication gamma_m1 : int, optional [_] Partial safety factor Default = 1.1 Returns ------- float [MPa] Meridional buckling stress References ---------- .. [1] Eurocode 3: Design of steel structures - Part 1-6: Strength and stability of shell structures. Brussels: CEN, 2006._ """ # Default values if fab_quality is None: fab_quality = 'fcA' if gamma_m1 is None: gamma_m1 = 1.1 else: gamma_m1 = float(gamma_m1) # Fabrication quality class acc. to table D2 if fab_quality is 'fcA': q_factor = 40. elif fab_quality is 'fcB': q_factor = 25. elif fab_quality is 'fcC': q_factor = 16. else: print('Invalid fabrication class input. Choose between \'fcA\', \'fcB\' and \'fcC\' ') return # Critical meridinal stress, calculated on separate function sigma_cr, category = sigma_x_rcr(thickness, radius, length) # Shell slenderness lmda = np.sqrt(f_y_k / sigma_cr) delta_w_k = (1. / q_factor) * np.sqrt(radius / thickness) * thickness alpha = 0.62 / (1 + 1.91 * (delta_w_k / thickness) ** 1.44) beta = 0.6 eta = 1. if category is 'long': # For long cylinders, a formula is suggested for lambda, EC3-1-6 D1.2.2(4) # Currently, the general form is used. to be fixed. lmda_0 = 0.2 # lmda_0 = 0.2 + 0.1 * (sigma_e_M / sigma_e) else: lmda_0 = 0.2 lmda_p = np.sqrt(alpha / (1. - beta)) # Buckling reduction factor, chi if lmda <= lmda_0: chi = 1. elif lmda < lmda_p: chi = 1. - beta * ((lmda - lmda_0) / (lmda_p - lmda_0)) ** eta else: chi = alpha / (lmda ** 2) # Buckling stress sigma_rk = chi * f_y_k sigma_rd = sigma_rk / gamma_m1 # Return value return sigma_rd def n_cr_shell( thickness, radius, length ): # Docstring """ Critical compressive load for cylindrical shell. Calculates the critical load for a cylindrical shell under pure compression and assumes uniform stress distribution. Calculation according to EN1993-1-6 [1], Annex D. Parameters ---------- thickness : float [mm] Shell thickness radius : float [mm] Cylinder radius length : float [mm] Cylnder length Returns ------- float [N] Critical load References ---------- .. [1] Eurocode 3: Design of steel structures - Part 1-6: Strength and stability of shell structures. Brussels: CEN, 2006. """ # Convert inputs to floats thickness, radius, length = float(thickness), float(radius), float(length) # Elastic critical load acc to EN3-1-6 Annex D nn_cr_shell = 2 * np.pi * radius * thickness * sigma_x_rcr(thickness, radius, length)[0] # Return value return nn_cr_shell def sigma_x_rcr( thickness, radius, length ): # Docstring """ Critical meridional stress for cylindrical shell. Calculates the critical load for a cylindrical shell under pure compression and assumes uniform stress distribution. Calculation according to EN1993-1-6 [1], Annex D. Parameters ---------- thickness : float [mm] Shell thickness radius : float [mm] Cylinder radius length : float [mm] Cylnder length Returns ------- list List of 2 elements: a) float, Critical load [N] b) string, length category References ---------- .. [1] Eurocode 3: Design of steel structures - Part 1-6: Strength and stability of shell structures. Brussels: CEN, 2006. """ # Convert inputs to floats thickness, radius, length = float(thickness), float(radius), float(length) # Elastic critical load acc. to EN3-1-6 Annex D omega = length / np.sqrt(radius * thickness) if 1.7 <= omega <= 0.5 * (radius / thickness): c_x = 1. length_category = 'medium' elif omega < 1.7: c_x = 1.36 - (1.83 / omega) + (2.07 / omega ** 2) length_category = 'short' else: # c_x_b is read on table D.1 of EN3-1-5 Annex D acc. to BCs # BC1 - BC1 is used on the Abaqus models (both ends clamped, see EN3-1-5 table 5.1) c_x_b = 6. c_x_n = max((1 + 0.2 * (1 - 2 * omega * thickness / radius) / c_x_b), 0.6) c_x = c_x_n length_category = 'long' # Calculate critical stress, eq. D.2 on EN3-1-5 D.1.2.1-5 sigma_cr = 0.605 * 210000 * c_x * thickness / radius # Return value return sigma_cr, length_category def fabclass_2_umax(fab_class=None): # Docstring """ Max dimple displacement. Returns the maximum displacement for a dimple imperfection on a cylindrical shell. The values are taken from table 8.4 of EN1993-1-6[1] for a given fabrication quality class, A, B or C. Parameters ---------- fab_class : {'fcA', 'fcB', 'fcC'} The fabrication quality class. Returns ------- float u_max / l, where u_max is the maximum deviation and l the dimple's size (circumferencial or meridional) References ---------- .. [1] Eurocode 3: Design of steel structures - Part 1-6: Strength and stability of shell structures. Brussels: CEN, 2006. """ # default values if fab_class is None: fab_class = 'fcA' # Assign imperfection amplitude, u_max acc. to the fabrication class if fab_class is 'fcA': u_max = 0.006 elif fab_class is 'fcB': u_max = 0.010 else: u_max = 0.016 # Return values return u_max # OVERALL BUCKLING def n_cr_flex( length, moi_y, kapa_bc=None, e_modulus=None ): # Docstring """ Euler's critical load. Calculates the critical load for flexural buckling of a given column. A single direction is considered. If more directions are required (e.g the two principal axes), the function has to be called multiple times. For torsional mode critical load use n_cr_tor(), and for flexural-torsional critical load use n_cr_flex_tor() Parameters ---------- length : float [mm] Column length. moi_y : float [mm^4] Moment of inertia. kapa_bc : float, optional [_] length correction for the effect of the boundary conditions. Default = 1, which implies simply supported column. e_modulus : float, optional [MPa] Modulus of elasticity. Default = 210000., typical value for steel. Returns ------- float [N] Critical load. """ # default values if kapa_bc is None: kapa_bc = 1. else: kapa_bc = float(kapa_bc) if e_modulus is None: e_modulus = 210000. else: e_modulus = float(e_modulus) # Euler's critical load nn_cr_flex = (np.pi ** 2) * e_modulus * moi_y / (kapa_bc * length) ** 2 # Return the result return nn_cr_flex def n_cr_tor( length, area, moi_y0, moi_z0, moi_torsion, moi_warp, y_0=None, z_0=None, e_modulus=None, poisson=None, ): # Docstring """ Torsional elastic critical load Calculates the torsional elastic critical load for a hinged column. The input values are refering to the principal axes. For flexural buckling (Euler cases) use n_cr_flex. For the combined flexural-torsional modes use n_cr_flex_tor. Parameters ---------- length : float [mm] Column length. area : float [mm^2] Cross-sectional area. moi_y0 : float [mm^4] Moment of inertia around `y`-axis. `y`-axis on the centre of gravity but not necessarily principal. moi_z0 : float [mm^4] Moment of inertia around `z`-axis. `z`-axis on the centre of gravity but not necessarily principal. moi_torsion : float [mm^4] Saint Venant constant. moi_warp : float [mm^6] Torsion constant. y_0 : float, optional [mm] Distance on `y`-axis of the shear center to the origin. Default = 0, which implies symmetric profile z_0 : float, optional [mm] Distance on `z`-axis of the shear center to the origin. Default = 0, which implies symmetric profile e_modulus : float, optional [MPa] Modulus of elasticity. Default = 210000., general steel. poisson : float, optional [_] Young's modulus of elasticity. Default = 0.3, general steel. Returns ------- float [N] Flexural-torsional critical load. Notes ----- The torsional critical load is calculated as: .. math:: N_{cr, tor} = {GJ + {\pi^2EI_w\over{L^2}}\over{r^2}} Where: :math:`E` : Elasticity modulus :math:`G` : Shear modulus :math:`J` : Torsional constant (Saint Venant) :math:`I_w` : Warping constant :math:`r^2=(moi_y + moi_z)/A + x_0^2 + y_0^2` :math:`x_0, y_0` : Shear centre coordinates on the principal coordinate system References ---------- ..[1]N. S. Trahair, Flexural-torsional buckling of structures, vol. 6. CRC Press, 1993. ..[2]NS. Trahair, MA. Bradford, DA. Nethercot, and L. Gardner, The behaviour and design of steel structures to EC3, 4th edition. London; New York: Taylor & Francis, 2008. """ # default values if y_0 is None: y_0 = 0 else: y_0 = float(y_0) if z_0 is None: z_0 = 0 else: z_0 = float(z_0) if e_modulus is None: e_modulus = 210000. else: e_modulus = float(e_modulus) if poisson is None: poisson = 0.3 else: poisson = float(poisson) # Shear modulus g_modulus = e_modulus / (2 * (1 + poisson)) # Polar radius of gyration. i_pol = np.sqrt((moi_y0 + moi_z0) / area) moi_zero = np.sqrt(i_pol ** 2 + y_0 ** 2 + z_0 ** 2) # Calculation of critical torsional load. nn_cr_tor = (1 / moi_zero ** 2) * (g_modulus * moi_torsion + (np.pi ** 2 * e_modulus * moi_warp / length ** 2)) # Return the result return nn_cr_tor def n_cr_flex_tor( length, area, moi_y, moi_z, moi_yz, moi_torsion, moi_warp, y_sc=None, z_sc=None, e_modulus=None, poisson=None, ): # Docstring """ Flexural-Torsional elastic critical load Calculates the critical load for flexural-torsional buckling of a column with hinged ends. The returned value is the minimum of the the three flexural-torsional and the indepedent torsional mode, as dictated in EN1993-1-1 6.3.1.4 [1]. (for further details, see Notes). Parameters ---------- length : float [mm] Column length. area : float [mm^2] Cross-sectional area. moi_y : float [mm^4] Moment of inertia around `y`-axis. `y`-axis on the centre of gravity but not necessarily principal. moi_z : float [mm^4] Moment of inertia around `z`-axis. `z`-axis on the centre of gravity but not necessarily principal. moi_yz : float [mm^4] Product of inertia. moi_torsion : float [mm^4] Saint Venant constant. moi_warp : float [mm^6] Torsion constant. y_sc : float, optional [mm] Distance on `y`-axis of the shear center to the origin. Default = 0, which implies symmetric profile z_sc : float, optional [mm] Distance on `z`-axis of the shear center to the origin. Default = 0, which implies symmetric profile e_modulus : float, optional [MPa] Modulus of elasticity. Default = 210000., general steel. poisson : float, optional [_] Young's modulus of elasticity. Default = 0.3, general steel. Returns ------- float [N] Flexural-torsional critical load. Notes ----- The flexural-torsional critical loads are calculated as a combination of the three independent overall buckling modes: i) flexural around the major axis, ii) flexural around the minor axis, iii) Torsional buckling (around x-axis). First, the cs-properties are described on the principal axes. Then the three independent modes are calculated. The combined flexural-torsional modes are calculated as the roots of a 3rd order equation, as given in [1], [2]. The minimum of the torsional and the three combined modes is returned (the two independent flexural modes are not considered; for critical load of pure flexural mode use 'n_cr_flex'). References ---------- ..[1]N. S. Trahair, Flexural-torsional buckling of structures, vol. 6. CRC Press, 1993. ..[2]NS. Trahair, MA. Bradford, DA. Nethercot, and L. Gardner, The behaviour and design of steel structures to EC3, 4th edition. London; New York: Taylor & Francis, 2008. """ # default values if y_sc is None: y_sc = 0 else: y_sc = float(y_sc) if z_sc is None: z_sc = 0 else: z_sc = float(z_sc) if e_modulus is None: e_modulus = 210000. else: e_modulus = float(e_modulus) if poisson is None: poisson = 0.3 else: poisson = float(poisson) # Angle of principal axes if abs(moi_y - moi_z) < 1e-20: theta = np.pi / 4 else: theta = -np.arctan((2 * moi_yz) / (moi_y - moi_z)) / 2 # Distance of the rotation centre to the gravity centre on the # principal axes coordinate system y_0 = y_sc * np.cos(-theta) - z_sc * np.sin(-theta) z_0 = z_sc * np.cos(-theta) + y_sc * np.sin(-theta) # Moment of inertia around principal axes. moi_y0 = (moi_y + moi_z) / 2 + np.sqrt(((moi_y - moi_z) / 2) ** 2 + moi_yz ** 2) moi_z0 = (moi_y + moi_z) / 2 - np.sqrt(((moi_y - moi_z) / 2) ** 2 + moi_yz ** 2) # Polar radius of gyration. i_pol = np.sqrt((moi_y0 + moi_z0) / area) moi_zero = np.sqrt(i_pol ** 2 + y_0 ** 2 + z_0 ** 2) # Independent critical loads for flexural and torsional modes. n_cr_max = (np.pi ** 2 * e_modulus * moi_y0) / (length ** 2) n_cr_min = (np.pi ** 2 * e_modulus * moi_z0) / (length ** 2) n_tor = n_cr_tor( length, area, moi_y0, moi_z0, moi_torsion, moi_warp=moi_warp, y_0=y_0, z_0=z_0, e_modulus=e_modulus, poisson=poisson ) # Coefficients of the 3rd order equation for the critical loads # The equation is in the form aaaa * N ^ 3 - bbbb * N ^ 2 + cccc * N - dddd aaaa = moi_zero ** 2 - y_0 ** 2 - z_0 ** 2 bbbb = ((n_cr_max + n_cr_min + n_tor) * moi_zero ** 2) - (n_cr_min * y_0 ** 2) - (n_cr_max * z_0 ** 2) cccc = moi_zero ** 2 * (n_cr_min * n_cr_max) + (n_cr_min * n_tor) + (n_tor * n_cr_max) dddd = moi_zero ** 2 * n_cr_min * n_cr_max * n_tor det_3 = ( 4 * (-bbbb ** 2 + 3 * aaaa * cccc) ** 3 + (2 * bbbb ** 3 - 9 * aaaa * bbbb * cccc + 27 * aaaa ** 2 * dddd) ** 2 ) if det_3 < 0: det_3 = -1. * det_3 cf = 1j else: cf = 1 # Critical load # The following n_cr formulas are the roots of the 3rd order equation of the global critical load n_cr_1 = bbbb / (3. * aaaa) - (2 ** (1. / 3) * (-bbbb ** 2 + 3 * aaaa * cccc)) / \ (3. * aaaa * (2 * bbbb ** 3 - 9 * aaaa * bbbb * cccc + 27 * aaaa ** 2 * dddd + \ (cf * np.sqrt(det_3))) ** (1. / 3)) + ( 2 * bbbb ** 3 - 9 * aaaa * bbbb * cccc + 27 * aaaa ** 2 * dddd + \ (cf * np.sqrt(det_3))) ** (1. / 3) / ( 3. * 2 ** (1. / 3) * aaaa) n_cr_2 = bbbb / (3. * aaaa) + ((1 + (0 + 1j) * np.sqrt(3)) * (-bbbb ** 2 + 3 * aaaa * cccc)) / \ (3. * 2 ** (2. / 3) * aaaa * ( 2 * bbbb ** 3 - 9 * aaaa * bbbb * cccc + 27 * aaaa ** 2 * dddd + \ (cf * np.sqrt(det_3))) ** (1. / 3)) - ((1 - (0 + 1j) * np.sqrt(3)) * \ ( 2 * bbbb ** 3 - 9 * aaaa * bbbb * cccc + 27 * aaaa ** 2 * dddd + \ (cf * np.sqrt(det_3))) ** (1. / 3)) / ( 6. * 2 ** (1. / 3) * aaaa) n_cr_3 = bbbb / (3. * aaaa) + ((1 - (0 + 1j) * np.sqrt(3)) * (-bbbb ** 2 + 3 * aaaa * cccc)) / \ (3. * 2 ** (2. / 3) * aaaa * ( 2 * bbbb ** 3 - 9 * aaaa * bbbb * cccc + 27 * aaaa ** 2 * dddd + \ (cf * np.sqrt(det_3))) ** (1. / 3)) - ((1 + (0 + 1j) * np.sqrt(3)) * \ ( 2 * bbbb ** 3 - 9 * aaaa * bbbb * cccc + 27 * aaaa ** 2 * dddd + \ (cf * np.sqrt(det_3))) ** (1. / 3)) / ( 6. * 2 ** (1. / 3) * aaaa) # Lowest root is the critical load nn_cr_flex_tor = min(abs(n_cr_1), abs(n_cr_2), abs(n_cr_3), n_tor) # Return the critical load return nn_cr_flex_tor def lmbda_flex( length, area, moi_y, kapa_bc=None, e_modulus=None, f_yield=None ): # Docstring """ Flexural slenderness. Calculates the slenderness of a columne under pure compression. Euler's critical load is used. Parameters ---------- length : float [mm] Column length area : float [mm^2] Cross section area moi_y : float [mm^4] Moment of inertia kapa_bc : float, optional [_] length correction for the effect of the boundary conditions. Default = 1, which implies simply supported column e_modulus : float, optional [MPa] Modulus of elasticity Default = 210000., typical value for steel f_yield : float, optional [MPa] yield stress. Default = 380., brcause this value was used extencively while the function was being written. To be changed to 235. Returns ------- float [_] Member slenderness """ # default values if kapa_bc is None: kapa_bc = 1. else: kapa_bc = float(kapa_bc) if e_modulus is None: e_modulus = 210000. else: e_modulus = float(e_modulus) if f_yield is None: f_yield = 380. else: f_yield = float(f_yield) # Calculate Euler's critical load n_cr = n_cr_flex( length, moi_y, e_modulus=e_modulus, kapa_bc=kapa_bc ) # Flexural slenderness EN3-1-1 6.3.1.3 (1) lmbda_flexx = np.sqrt(area * f_yield / n_cr) # Return the result return lmbda_flexx def imp_factor(b_curve): # Docstring """ Imperfection factor. Returns the imperfection factor for a given buckling curve. The values are taken from Table 6.1 of EN1993-1-1 [1] Parameters ---------- b_curve : {'a0', 'a', 'b', 'c', 'd'} [_] Name of the buckling curve as obtained from Table 6.2 of [1]. Returns ------- float [_] Imperfection factor. References ---------- .. [1] Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. Brussels: CEN, 2005. """ switcher = { 'a0': 0.13, 'a': 0.21, 'b': 0.34, 'c': 0.49, 'd': 0.76, } return switcher.get(b_curve, "nothing") def chi_flex( length, area, moi_y, f_yield, b_curve, kapa_bc=None ): # Docstring """ Flexural buckling reduction factor. Claculates the reduction factor, chi, according to EN1993-1-1 6.3.1.2 Parameters ---------- length : float [mm] Column length area : float [mm^2] Cross section area moi_y : float [mm^4] Moment of inertia f_yield : float [MPa] Yield stress. b_curve : str [_] Name of the buckling curve as obtained from Table 6.2 of [1]. Valid options are {'a0', 'a', 'b', 'c', 'd'} kapa_bc : float, optional [_] length correction for the effect of the boundary conditions. Default = 1, which implies simply supported column Returns ------- float [_] Reduction factor. References ---------- .. [1] Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. Brussels: CEN, 2005. """ if kapa_bc is None: kapa_bc = 1. lmda = lmbda_flex( length=length, area=area, moi_y=moi_y, kapa_bc=kapa_bc, e_modulus=None, f_yield=f_yield ) alpha = imp_factor(b_curve) phi = (1 + alpha * (lmda - 0.2) + lmda ** 2) / 2. chi = 1 / (phi + np.sqrt(phi ** 2 - lmda ** 2)) if chi > 1.: chi = 1. return chi def n_b_rd( length, area, moi_y, f_yield, b_curve, kapa_bc=None, gamma_m1=None ): # Docstring """ Flexural buckling resistance. Verifies the resistance of a column against flexural buckling according to EN1993-1-1 6.3.1.1. Parameters ---------- length : float [mm] Column length area : float [mm^2] Cross section area moi_y : float [mm^4] Moment of inertia f_yield : float [MPa] Yield stress. b_curve : str [_] Name of the buckling curve as obtained from Table 6.2 of [1]. Valid options are: {'a0', 'a', 'b', 'c', 'd'} kapa_bc : float, optional [_] Length correction for the effect of the boundary conditions. Default = 1, which implies simply supported column gamma_m1 : float, optional [_] Partial safety factor. Default = 1. Returns ------- float [N] Buckling resistance. References ---------- .. [1] Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings. Brussels: CEN, 2005. """ if kapa_bc is None: kapa_bc = 1. if gamma_m1 is None: gamma_m1 = 1. chi = chi_flex(length, area, moi_y, f_yield, b_curve, kapa_bc=kapa_bc) nn_b_rd = area * f_yield * chi / gamma_m1 return nn_b_rd # CONNECTIONS def bolt_grade2stress(bolt_grade): # Docstring """ Convert bolt grade to yield and ultimate stress. Standard designation for bolt grade as a decimal is converted to yield and ultimate stress values in MPa. In the standard bolt grade designation, the integer part of the number represents the ultimate stress in MPa/100 and the decimal part is the yield stress as a percentage of the ultimate (e.g 4.6 is f_u = 400, f_y = 400 * 0.6 = 240). Parameters ---------- bolt_grade : float Returns ------- tuple : (f_ultimate, f_yield) """ # Calculation using divmod f_ultimate = 100 * divmod(bolt_grade, 1)[0] f_yield = round(f_ultimate * divmod(bolt_grade, 1)[1]) # Return values return f_ultimate, f_yield def shear_area(bolt_size, shear_threaded=None): # Docstring """ Shear area of a bolt. Returns the srea to be used for the calculation of shear resistance of a bolt, either the gross cross-section of the bolt (circle area) or the reduced area of the threaded part of the bolt. Parameters ---------- bolt_size : float Bolt's diameter. shear_threaded : bool, optional Designates if the shear plane is on the threaded portion or not. Default in False, which implies shearing of the non-threaded portion Returns ------- float Notes ----- Currently, the threaded area is based on an average reduction of the shank area. To be changed to analytic formula. """ # Default if shear_threaded is None: shear_threaded = False # Calculate area if shear_threaded: a_shear = 0.784 * (np.pi * bolt_size ** 2 / 4) else: a_shear = np.pi * bolt_size ** 2 / 4 # Return return a_shear def f_v_rd( bolt_size, bolt_grade, shear_threaded=None, gamma_m2=None ): # Docstring """ Bolt's shear resistance. Calculates the shear resistance of single bolt for one shear plane as given in table 3.4 of EC3-1-8. Parameters ---------- bolt_size : float Diameter of the non-threaded part (nominal bolt size e.g. M16 = 16) bolt_grade : float Bolt grade in standard designation format (see documentation of bolt_grade2stress()) shear_threaded : bool, optional Designates if the shear plane is on the threaded portion or not. Default in False, which implies shearing of the non-threaded portion gamma_m2 : float, optional Safety factor. Default value is 1.25 Returns ------- float """ # Defaults bolt_size = float(bolt_size) if shear_threaded is None: shear_threaded = False if gamma_m2 is None: gamma_m2 = 1.25 else: gamma_m2 = float(gamma_m2) # av coefficient if shear_threaded and bolt_grade == (4.6 or 8.6): a_v = 0.5 else: a_v = 0.6 # Get ultimate stress for bolt f_ub = bolt_grade2stress(bolt_grade)[0] # Shear area a_shear = shear_area(bolt_size, shear_threaded) # Shear resistance ff_v_rd = a_v * f_ub * a_shear / gamma_m2 # Return value return ff_v_rd def bolt_min_dist(d_0): """ Minimum bolt spacing. :param d_0: :return: """ e_1 = 1.2 * d_0 e_2 = 1.2 * d_0 e_3 = 1.5 * d_0 p_1 = 2.2 * d_0 p_2 = 2.4 * d_0 return e_1, e_2, e_3, p_1, p_2 def f_b_rd(bolt_size, bolt_grade, thickness, steel_grade, f_yield, distances, d_0): """ Connection bearing capacity. Calculates the bearing capacity of a single bolt on a plate. The distances to the plate edges/other bolts are described :param bolt_size: :param bolt_grade: :param thickness: :param steel_grade: :param f_yield: :param distances: :param d_0: :return: """ pass def f_weld_perp(): # f_w_1 = (sqrt(2) / 2) * a_weld * l_weld * f_ult / (b_w * gamma_m2) # f_w_2 = 0.9 * f_ult * a_weld * l_weld * sqrt(2) / gamma_m2 pass def f_weld_paral(): pass def bolt2washer(m_bolt): """ Washer diameter. Return the diameter of the washer for a given bolt diameter. The calculation is based on a function derived from linear regression on ENXXXXXXX[REF]. Parameters ---------- m_bolt : float Bolt diameter Attributes ---------- Notes ----- References ---------- """ d_washer = np.ceil(1.5893 * m_bolt + 5.1071) return d_washer def mean_list(numbers): """ Mean value. Calculate the average for a list of numbers. Parameters ---------- numbers : list Attributes ---------- Notes ----- References ---------- """ return float(sum(numbers)) / max(len(numbers), 1)
a = [10, 7, 5, 4] while True: m = max(a) index = a.index(m) a = [x + 1 for x in a] a[index] -= 4 print(a)
import random import IMLearn.learners.regressors.linear_regression from IMLearn.learners.regressors import PolynomialFitting from IMLearn.utils import split_train_test import numpy as np import pandas as pd import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" def country_to_columns(full_data): return pd.get_dummies(full_data["Country"]) def city_to_columns(full_data): return pd.get_dummies(full_data["City"]) def load_data(filename: str) -> pd.DataFrame: """ Load city daily temperature dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (Temp) """ full_data = pd.read_csv(filename, parse_dates=["Date"]).\ dropna().drop_duplicates() full_data = full_data[full_data["Temp"] > -72] day_of_year = [] for date in full_data["Date"]: day_of_year.append(pd.Period(date, "D").day_of_year) # cities = city_to_columns(full_data) # countries = country_to_columns(full_data) full_data["day_of_year"] = day_of_year features = full_data[["Country", "City", "day_of_year", "Year", "Month", "Day"]] # features = pd.concat([features, cities], axis=1) # features = pd.concat([features, countries], axis=1) labels = full_data["Temp"] return features, labels if __name__ == '__main__': np.random.seed(0) # Question 1 - Load and preprocessing of city temperature dataset df, responses = load_data( "C:\\Users\\idoro\\Desktop\\IML\\datasets\\City_Temperature.csv") # Question 2 - Exploring data for specific country israel_without_temp = df[df["Country"] == "Israel"] features_with_temp = pd.concat([df, responses], axis=1) israel_with_temp = \ features_with_temp[features_with_temp["Country"] == "Israel"] israel_temp = responses.reindex_like(israel_with_temp) fig = px.scatter(pd.DataFrame({"x": israel_with_temp["day_of_year"], "y": israel_temp}), x="x", y="y", labels={"x": "Day of year", "y": "Temperature"}, title="The temperature as a function of the day of year", color=israel_with_temp["Year"].astype(str)) fig.show() israel_by_month = israel_with_temp.groupby("Month").agg({"Temp": "std"}) months = (israel_with_temp["Month"].drop_duplicates()).values fig2 = px.bar(israel_by_month, x=months, y="Temp", labels={"x": "Month", "Temp": "Standard Deviation"}, title="The standard deviation of the daily temperatures " "as a function of months") fig2.show() # Question 3 - Exploring differences between countries grouped_by_country = features_with_temp.groupby(["Country", "Month"]) country_month_mean = grouped_by_country.mean().reset_index() country_month_std = grouped_by_country.std().reset_index() country_month_mean.insert(1, "std", country_month_std["Temp"]) fig3 = px.line(country_month_mean, x="Month", y="Temp", error_y="std", color="Country") fig3.update_layout(title="The average and standard deviation as a " "function of Country and Month", xaxis_title="Month", yaxis_title="Average month temperature") fig3.show() # Question 4 - Fitting model for different values of `k` israel_features_train, israel_temp_train, israel_features_test, \ israel_temp_test = split_train_test(israel_without_temp, israel_temp) israel_losses = [] for k in range(1, 11): poly_estimator = PolynomialFitting(k) poly_estimator.fit((israel_features_train["day_of_year"]).to_numpy(), israel_temp_train) rounded_loss = np.round(poly_estimator.loss (israel_features_test["day_of_year"].to_numpy(), israel_temp_test), 2) israel_losses.append(rounded_loss) fig4 = px.bar(x=[i for i in range(1, 11)], y=israel_losses) fig4.update_layout(title="The test error of the model as a function of " "the polynomial degree", xaxis_title="Polynomial Degree", yaxis_title="Test Error") fig4.show() print(israel_losses) # Question 5 - Evaluating fitted model on different countries min_k = np.argmin(israel_losses) + 1 israel_poly = PolynomialFitting(min_k) israel_poly.fit(israel_without_temp["day_of_year"].to_numpy(), israel_temp) losses_by_countries = {} countries = set(features_with_temp["Country"]) for country in countries: if country == "Israel": continue features_by_country = df[df["Country"] == country] temp_of_country = responses.reindex_like(features_by_country) rounded_loss = np.round(israel_poly.loss( features_by_country["day_of_year"].to_numpy(), temp_of_country), 2) losses_by_countries[country] = rounded_loss fig5 = px.bar(x=losses_by_countries.keys(), y=losses_by_countries.values(), color=losses_by_countries.keys()) fig5.update_layout(title="The test error of the model fitted for Israel " "as a function of the other countries" "the polynomial degree", xaxis_title="Country", yaxis_title="Test Error") fig5.show()
harness.add_runtime('softboundcets-O3', {"CC": "${CLANG}", "AS": "${CLANG}", "CFLAGS": "-O3 -fsoftboundcets -L${SOFTBOUND_RUNTIME_DIR}", "LDFLAGS": "-lm -lrt -lsoftboundcets_rt"})
import discord import asyncio import random from discord.ext import commands class MM(commands.Cog): def __init__(self, client): self.client = client def botAdminCheck(ctx): return ctx.message.author.id == 368671236370464769 # Guilds Checker @commands.command() @commands.guild_only() @commands.check(botAdminCheck) async def mmstart(self, ctx, members: commands.Greedy[discord.Member] = None): list_role = ['Murder', 'Detective'] roles = {} killed_people = [] guild = ctx.guild channel = ctx.channel color = 0xa05a4e f = open('cogs/mm/lives.txt', 'w') f.write("") f.close() # Refresh database f = open('cogs/mm/murder.txt', 'w') f.write("") f.close() # Refresh database f = open('cogs/mm/actions.txt', 'w') f.write("") f.close() meeting_cd = 10 # Meeting duration voting_cd = 10 # Voting wait time cooldown = 20 for i in (0, (len(members)-2)): # appending bystanding roles with regards to the total number of participants list_role.append('Bystanders') bystanders = len(list_role)-2 new = True for role in ctx.guild.roles: if role.name == 'Participant': # making a participant roles for permission purposes participant = role new = False if new: participant = await guild.create_role(name='Participant', hoist=False) lobby_init = await ctx.send(embed=discord.Embed(title='__**# Lobby**__', description=f'> Starting in 3 seconds...\n> \n> **__Roles__**\n> Murder \n> Detective \n> By Standers', color=color)) await asyncio.sleep(3) # lOBBY COOL DOWN for member in members: role = random.choice(list_role) roles[member] = role count = 0 await member.add_roles(participant) for i in list_role: if i == role: list_role.pop(count) count += 1 try: await lobby_init.edit(embed=discord.Embed(title='__**# Lobby**__', description=f'> {member.mention} Please reply ready.\n> \n> **__Roles__**\n> Murder : 1\n> Detective : 1\n> By Standers : {bystanders}', color=color)) # msg = await self.client.wait_for('message', check=lambda message : message.content.lower() == 'ready' and message.channel == channel and message.author == member, timeout = 30) except asyncio.TimeoutError: await lobby_init.edit(embed=discord.Embed(title='__**# Lobby**__', description=f'{member.mention} is inactive - Lobby failed to start.', color=discord.Color.dark_red())) return to_be_edited = await ctx.send('> Game is starting in `5` seconds....') await asyncio.sleep(5) await to_be_edited.delete() ids = 1 # 1 Chill pill center, 2 MIS if ids == 1: m_channel_id = 774215902433509386 d_channel_id = 774215942048710687 # THE CHILL PILL CENTER meeting = 774215983610200064 elif ids == 2: m_channel_id = 774201930892705822 # MIS d_channel_id = 774201944431656972 meeting = 774201910852976640 meeting_ch = ctx.guild.get_channel(meeting) m_channel = ctx.guild.get_channel(m_channel_id) d_channel = ctx.guild.get_channel(d_channel_id) await meeting_ch.purge(limit=200) await d_channel.purge(limit=200) await m_channel.purge(limit=200) # Disable everyones permissions to see any gaming channels await meeting_ch.set_permissions(ctx.guild.default_role, read_messages=False, send_messages=False) await d_channel.set_permissions(ctx.guild.default_role, read_messages=False, send_messages=False) await m_channel.set_permissions(ctx.guild.default_role, read_messages=False, send_messages=False) ######## GAME STARTS ######## await meeting_ch.send('> @everyone Meeting starts in 10 seconds!') await meeting_ch.set_permissions(participant, read_messages=True, send_messages=False) f = open('cogs/mm/lives.txt', 'a') for member in members: if roles[member] == 'Murder': murder = member await m_channel.set_permissions(murder, read_messages=True, send_messages=False) b = open('cogs/mm/murder.txt', 'w') b.write(f'{member.id}') b.close() f.write(f'{member.id}\n') elif roles[member] == 'Detective': detective = member await d_channel.set_permissions(detective, read_messages=True, send_messages=False) f = open('cogs/mm/lives.txt', 'a') f.write(f'{member.id}\n') elif roles[member] == 'Bystanders': f = open('cogs/mm/lives.txt', 'a') f.write(f'{member.id}\n') f.close() await m_channel.send(embed=discord.Embed(description=f'{murder.mention} you have been chosen as the murder!, you will have a choice to kill someone every night!', color=0x800000)) await d_channel.send(embed=discord.Embed(description=f'{detective.mention} you have been chosen as the detective!, you will have a choice to inspect someone every night!', color=0x6050dc)) ######## Identify certain bystanders for the detective ######## embed = discord.Embed( title='Bystanders', description="Detective, we have identified some bystanders for you, we really hope it helps!", color=0x6050dc) count = 0 for member in members: if count != random.randint(0, 3): if roles[member] == 'Bystanders': embed.add_field( name=f'{member.display_name}', value='is a confirmed bystander!') else: pass count += 1 await d_channel.send(embed=embed) ####### First ever setup meeting starts ####### # 10 sec before meeting begins await asyncio.sleep(10) f = open('cogs/mm/lives.txt', 'r') alive_list = f.read().split('\n') # Retrieve member data f.close() alive_list = [int(i) for i in alive_list if i != ""] initial_list = alive_list.copy() # Filter out murder from the member data set without_mrd = [int(i) for i in alive_list if int(i) != int(murder.id)] text = await meeting_ch.send(embed=discord.Embed(description='> Meeting has started! Introduce yourselves! You all have 50 seconds to talk. Prove your innocence.\n@everyone', color=color)) await meeting_ch.set_permissions(participant, read_messages=True, send_messages=True) # 50 sec meeting cool down await asyncio.sleep(meeting_cd) await meeting_ch.send(embed=discord.Embed(description='Meeting has ended.', color=color)) await meeting_ch.set_permissions(participant, read_messages=True, send_messages=False) await d_channel.set_permissions(detective, read_messages=True, send_messages=True) await m_channel.set_permissions(murder, read_messages=True, send_messages=True) f = open('cogs/mm/murder.txt', 'r') f_murder = f.read().split('\n') # Retrieve member data f.close() f_murder = [int(i) for i in f_murder if i != ""] murder = f_murder[0] list2 = alive_list.copy() while (len(without_mrd)) > 1: await asyncio.sleep(cooldown) f = open('cogs/mm/actions.txt', 'r') actions = f.read().split('~') actions = [i for i in actions if i != ""] f.close() killed = [i for i in actions if (list(i)[0]) == 'K'] if killed: victim = ctx.guild.get_member(int(killed[0][1:])) await meeting_ch.send(f'{victim.mention} got killed last night!') await meeting_ch.set_permissions(victim, read_messages=True, send_messages=False) await victim.remove_roles(participant) alive_list = [i for i in actions if i != int(killed[0][1:])] killed_people.append(victim) if not len(f_murder) > 0: await meeting_ch.send(embed=discord.Embed(description='Hip Hip Hooray! The murder is gone for good.', color=color)) break if len(list2) <= 2: await meeting_ch.send(f'{ctx.author.mention} <@{murder}> the town murder has killed enough bystanders and won! ') break murder = ctx.guild.get_member(murder) await meeting_ch.set_permissions(participant, read_messages=True, send_messages=False) await d_channel.set_permissions(detective, read_messages=True, send_messages=False) await m_channel.set_permissions(murder, read_messages=True, send_messages=False) f = open('cogs/mm/lives.txt', 'r') alive_list = f.read().split('\n') f.close() alive_list = [int(i) for i in alive_list if i != ""] # list2 = alive_list.copy() await asyncio.sleep(9) # refined_set = set(initial_list) - set(list2) # if len(list(refined_set)) > 0: # initial_list = [i for i in list(initial_list) if i != list(refined_set)[0]] # Restart the main member volume # for i in range(0,len(list(refined_set))): # await meeting_ch.send(f'<@{list(refined_set)[i]}> got killed last night.') # else: # pass text = await meeting_ch.send(embed=discord.Embed(description='Meeting has started! Introduce yourselves! You all have 50 seconds to talk. Prove your innocence.\n@everyone', color=color)) await meeting_ch.set_permissions(participant, read_messages=True, send_messages=True) await asyncio.sleep(meeting_cd) ############### VOTING ############### embed = discord.Embed( title="Vote out the most suspicious person (Needs majority to get voted out)(If you wish to skip, avoid voting anyone)!", color=color) emojis = ['\u0031\ufe0f\u20e3', '\u0032\ufe0f\u20e3', '\u0033\ufe0f\u20e3', '\u0034\ufe0f\u20e3', '\u0035\ufe0f\u20e3', '\u0036\ufe0f\u20e3', '\u0037\ufe0f\u20e3', '\u0038\ufe0f\u20e3', '\u0039\ufe0f\u20e3', '🔟'] count = 0 for member in list2: # Makes a votable embed list with every member embed.add_field( name=f'\u200b', value=f'{emojis[count]} <@{member}>') count += 1 message = await meeting_ch.send(embed=embed) for i in range(0, len(list2)): # Adds reactions to the embed with regards to the all members alive await message.add_reaction(f'{emojis[i]}') await asyncio.sleep(voting_cd) embed = discord.Embed( title="Vote out the most suspicious person (Needs majority to get voted out)(If you wish to skip, avoid voting anyone)!", color=color) emojis = ['\u0031\ufe0f\u20e3', '\u0032\ufe0f\u20e3', '\u0033\ufe0f\u20e3', '\u0034\ufe0f\u20e3', '\u0035\ufe0f\u20e3', '\u0036\ufe0f\u20e3', '\u0037\ufe0f\u20e3', '\u0038\ufe0f\u20e3', '\u0039\ufe0f\u20e3', '🔟'] count = 0 for member in list2: # Makes a votable embed list with every member embed.add_field( name=f'\u200b', value=f'{emojis[count]} <@{member}>') c final = await meeting_ch.fetch_message(message.id) # Fetch aftervoting results reactions = final.reactions highest = 0 tie = False for reaction in reactions: if (counter := int(reaction.count)) > highest: voted_emoji = reaction.emoji highest = counter tie = False elif (counter := int(reaction.count)) == highest: # Checks the votes tie = True if highest <= 1: tie = False index = 0 for emoji in emojis: if emoji == voted_emoji: # Gets the position of the highly voted emoji to retrieve the member break index += 1 # If the majority votes one highest person if highest >= (len(list2) / 2) and not tie: # The selected person await meeting_ch.send(f'<@{list2[index]}> has been voted out!') on_alive_list = list2.copy() c = 0 for i in on_alive_list: if int(i) == list2[index]: on_alive_list.pop(c) c += 1 f = open('cogs/mm/lives.txt', 'w') for i in on_alive_list: f.write(f'{i}\n') f.close() if tie: await meeting_ch.send('There has been a tie!') elif highest == 1: await meeting_ch.send('No one has voted! ') ############################################ VOTING ############################################ color = 0x6050dc embed = discord.Embed( title="Vote out the most suspicious person (Needs majority to get voted out)(If you wish to skip, avoid voting anyone)!", color=color) emojis = ['\u0031\ufe0f\u20e3', '\u0032\ufe0f\u20e3', '\u0033\ufe0f\u20e3', '\u0034\ufe0f\u20e3', '\u0035\ufe0f\u20e3', '\u0036\ufe0f\u20e3', '\u0037\ufe0f\u20e3', '\u0038\ufe0f\u20e3', '\u0039\ufe0f\u20e3', '🔟'] list2 = [] count = 0 for member in list2: # Makes a votable embed list with every member embed.add_field( name=f'\u200b', value=f'{emojis[count]} <@{member}>') count += 1 message = await meeting_ch.send(embed=embed) for i in range(0, len(list2)): # Adds reactions to the embed with regards to the all members alive await message.add_reaction(f'{emojis[i]}') await asyncio.sleep(10) final = await meeting_ch.fetch_message(message.id) # Fetch aftervoting results reactions = final.reactions highest = 0 tie = False for reaction in reactions: if (counter := int(reaction.count)) > highest: voted_emoji = reaction.emoji highest = counter elif (counter := int(reaction.count)) == highest: # Checks the votes tie = True if highest <= 1: tie = False index = 0 for emoji in emojis: if emoji == voted_emoji: # Gets the position of the highly voted emoji to retrieve the member break index += 1 low = False if not tie and highest > 1: # If the majority votes one highest person # The selected person await meeting_ch.send(f'<@{list2[index]}> has the majority vote!') on_alive_list = list2.copy() c = 0 for i in on_alive_list: # Makes a new list and removes the id of the person who got voted out if i == list2[index]: on_alive_list.pop(c) c += 1 f = open('cogs/mm/lives.txt', 'w') for i in on_alive_list: f.write(f'{i}\n') f.close() elif tie and not low: await meeting_ch.send('There has been a tie!') elif highest == 1: await meeting_ch.send('No one has voted!') else: await meeting_ch.send('There were no votes or are way too low!') low = True ######################################## await meeting_ch.send(embed=discord.Embed(description='Meeting has ended.', color=color)) await meeting_ch.set_permissions(participant, read_messages=True, send_messages=False) await d_channel.set_permissions(detective, read_messages=True, send_messages=True) await m_channel.set_permissions(murder, read_messages=True, send_messages=True) without_mrd = [int(i) for i in alive_list if int(i) != int(murder)] for member in members: await member.remove_roles(participant) for member in killed_people: await meeting_ch.set_permissions(member, read_messages=False, send_messages=False) @commands.command() @commands.cooldown(rate=1, per=10) @commands.guild_only() async def kill(self, ctx): ids = 1 # 1 Chill pill center, 2 MIS if ids == 1: m_channel_id = 774215902433509386 d_channel_id = 774215942048710687 # THE CHILL PILL CENTER meeting = 774215983610200064 elif ids == 2: m_channel_id = 774201930892705822 # MIS d_channel_id = 774201944431656972 meeting = 774201910852976640 meeting_ch = ctx.guild.get_channel(meeting) color = 0x800000 if ctx.channel.id == m_channel_id: f = open('cogs/mm/murder.txt', 'r') murder = f.read().split('\n') f.close() f = open('cogs/mm/lives.txt', 'r') alive_list = f.read().split('\n') f.close() alive_list = [i for i in alive_list if i != "" and murder[0]] embed = discord.Embed( title=f"POPULATION - {len(alive_list)}", color=color) count = 1 for i in alive_list: embed.add_field( name=f'\u200b', value=f'**{count}** <@{i}>', inline=False) count += 1 embed.set_footer( text='Please reply with the index of the person to kill!') try: text = await ctx.send(embed=embed) msg = await self.client.wait_for('message', check=lambda message: message.channel.id == m_channel_id and message.author == ctx.author, timeout=30) except asyncio.TimeoutError: await ctx.send('Kill timed out') else: index = int(msg.content) - 1 await text.edit(embed=discord.Embed(description=f'Killed <@{alive_list[index]}>!', color=color)) f = open('cogs/mm/actions.txt', 'w') f.write(f'~K{alive_list[index]}~') f.close() @kill.error async def kill_erorr_handler(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): await ctx.send("Kill is on cooldown!") @commands.command() @commands.cooldown(rate=1, per=10) @commands.guild_only() async def inspect(self, ctx): ids = 1 # 1 Chill pill center, 2 MIS if ids == 1: m_channel_id = 774215902433509386 d_channel_id = 774215942048710687 # THE CHILL PILL CENTER meeting = 774215983610200064 elif ids == 2: m_channel_id = 774201930892705822 # MIS d_channel_id = 774201944431656972 meeting = 774201910852976640 # if ctx.channel.id == d_channel_id: # color = 0x6050dc # f = open('cogs/mm/lives.txt', 'r') # alive_list = f.read().split('\n') # f.close() # alive_list = [int(i) for i in alive_list if i != ""] # # f = open('cogs/mm/murder.txt', 'r') # murder = f.read() # f.close() # # embed = discord.Embed(title=f"POPULATION - {len(alive_list)}", color = color) # count = 1 # for i in alive_list: # embed.add_field(name = f'\u200b', value =f'**{count}** <@{i}>', inline = False) # count += 1 # embed.set_footer(text='Please reply with the index of the person you would like to interrogate!') # try: # await ctx.send(embed=embed) # msg = await self.client.wait_for('message', check=lambda message : message.channel.id == d_channel_id , timeout =60) # except asyncio.TimeoutError: # await ctx.send('Inspect timed out') # else: # index = int(msg.content) - 1 # choice = random.randint(0,5) # if choice > 3: # if alive_list[index] == murder: # await ctx.send(embed = discord.Embed(title="RESULTS", color = color, description=f"<@{alive_list[index]}> is highly suspicious, better watch out for them.")) # else: # await ctx.send(embed = discord.Embed(title="RESULTS", color = color, description= f"<@{alive_list[index]}> is clear you can trust in them!")) # elif choice <= 3: # await ctx.send(embed=discord.Embed(title="RESULTS", color = color,description= f"<@{alive_list[index]}> is unclear, you may inspect this person tomorrow again!")) @inspect.error async def inspect_erorr_handler(self, ctx, error): if isinstance(error, commands.CommandOnCooldown): for role in ctx.guild.roles: if role.name == 'Participant': participant = role await ctx.send("Inspection is on cooldown!") @commands.command() async def voting(self, ctx, members: commands.Greedy[discord.Member] = None): m_channel_id = ctx.channel.id color = 0x800000 if ctx.channel.id == m_channel_id: f = open('cogs/mm/murder.txt', 'r') murder = f.read().split('\n') f.close() murder = [i for i in murder if i != ""] f = open('cogs/mm/lives.txt', 'r') alive_list = f.read().split('\n') f.close() alive_list = [i for i in alive_list if i != "" and murder[0]] embed = discord.Embed( title=f"POPULATION - {len(alive_list)}", color=color) count = 1 for i in alive_list: embed.add_field( name=f'\u200b', value=f'**{count}** <@{i}>', inline=False) count += 1 embed.set_footer( text='Please reply with the index of the person to kill!') try: text = await ctx.send(embed=embed) msg = await self.client.wait_for('message', check=lambda message: message.channel.id == m_channel_id and message.author == ctx.author, timeout=30) except asyncio.TimeoutError: await ctx.send('Kill timed out') else: index = int(msg.content) - 1 await text.edit(embed=discord.Embed(description=f'Killed <@{alive_list[index]}>!', color=color)) f = open('cogs/mm/actions.txt', 'w') f.write(f'~K{alive_list[index]}~') f.close() def setup(client): client.add_cog(MM(client)) print('MM.cog is loaded')
import pytari2600.memory.cartridge as cartridge import unittest import pkg_resources class TestCartridge(unittest.TestCase): def test_cartridge(self): cart = cartridge.GenericCartridge(pkg_resources.resource_filename(__name__, 'dummy_rom.bin'), 4, 0x1000, 0xFF9, 0x0) # Write should do nothing cart.write(0,7) self.assertEqual(cart.read(0), 0) self.assertEqual(cart.read(3), 3) self.assertEqual(cart.read(2048+2), 2) def test_ram_cartridge(self): cart = cartridge.GenericCartridge(pkg_resources.resource_filename(__name__, 'dummy_rom.bin'), 4, 0x1000, 0xFF9, 0x080) # Write should go to ram. cart.write(0,7) self.assertEqual(cart.read(0x80), 7) cart.write(0,31) self.assertEqual(cart.read(0x80), 31) if __name__ == '__main__': unittest.main()
from typing import Callable # noinspection PyCompatibility from concurrent.futures import Future from .predicated_work_subscription_event_listener import PredicatedWorkSubscriptionEventListener from yellowdog_client.scheduler import work_client as wc from yellowdog_client.model import WorkRequirement from yellowdog_client.model import WorkRequirementStatus class WorkRequirementHelper: """ This class provides a number of methods that return a :class:`concurrent.futures.Future` allowing consumers to simply wait for the required state of a work requirement before continuing on. Constructor accepts the following **arguments**: :param work_requirement: The work requirement. :type work_requirement: :class:`yellowdog_client.model.WorkRequirement` :param work_service_client_impl: The scheduler service client. :type work_service_client_impl: :class:`yellowdog_client.scheduler.WorkClient` .. seealso:: Use :meth:`yellowdog_client.scheduler.WorkClientImpl.get_work_requirement_helper` for easier access to the :class:`yellowdog_client.scheduler.WorkRequirementHelper` .. code-block:: python helper = client.work_client.get_work_requirement_helper(work_requirement) # WorkRequirementHelper .. versionadded:: 0.4.0 """ _work_requirement = None # type: WorkRequirement _work_service_client_impl = None # type: wc.WorkClient def __init__(self, work_requirement, work_service_client_impl): # type: (WorkRequirement, wc.WorkClient) -> None self._work_requirement = work_requirement self._work_service_client_impl = work_service_client_impl def when_requirement_matches(self, predicate): # type: (Callable[[WorkRequirement], bool]) -> Future """ Returns a :class:`concurrent.futures.Future` that is completed when the specified predicate evaluates to true. :param predicate: The predicate to test for each work requirement changed event received. :type predicate: Callable[[:class:`yellowdog_client.model.WorkRequirement`], :class:`bool`] :return: A :class:`concurrent.futures.Future` containing the matching work requirement. :rtype: :class:`concurrent.futures.Future` .. code-block:: python from concurrent import futures from yellowdog_client.model import WorkRequirementStatus future = helper.when_requirement_matches(lambda req: req.status == WorkRequirementStatus.COMPLETED) futures.wait(fs=(future,)) future_work_requirement = future.result() # WorkRequirement """ future = Future() future.set_running_or_notify_cancel() listener = PredicatedWorkSubscriptionEventListener( future=future, predicate=predicate, work_client=self._work_service_client_impl ) self._work_service_client_impl.add_work_requirement_listener( work_requirement=self._work_requirement, listener=listener ) listener.updated( obj=self._work_service_client_impl.get_work_requirement( work_requirement=self._work_requirement ) ) return future def when_requirement_status_is(self, status): # type: (WorkRequirementStatus) -> Future """ Returns a task that is completed when the work requirement status matches the specified status. :param status: The work requirement status to wait for. :type status: :class:`yellowdog_client.model.WorkRequirementStatus` :return: A :class:`concurrent.futures.Future` containing the matching work requirement. :rtype: :class:`concurrent.futures.Future` .. code-block:: python from concurrent import futures from yellowdog_client.model import WorkRequirementStatus future = helper.when_requirement_status_is(WorkRequirementStatus.COMPLETED) futures.wait(fs=(future,)) future_work_requirement = future.result() # WorkRequirement """ return self.when_requirement_matches(lambda requirement: requirement.status == status)
import os, logging import tool_shed.util.shed_util_common as suc import tool_shed.util.metadata_util as metadata_util from galaxy.web.form_builder import SelectField def build_approved_select_field( trans, name, selected_value=None, for_component=True ): options = [ ( 'No', trans.model.ComponentReview.approved_states.NO ), ( 'Yes', trans.model.ComponentReview.approved_states.YES ) ] if for_component: options.append( ( 'Not applicable', trans.model.ComponentReview.approved_states.NA ) ) if selected_value is None: selected_value = trans.model.ComponentReview.approved_states.NA select_field = SelectField( name=name ) for option_tup in options: selected = selected_value and option_tup[ 1 ] == selected_value select_field.add_option( option_tup[ 0 ], option_tup[ 1 ], selected=selected ) return select_field def build_changeset_revision_select_field( trans, repository, selected_value=None, add_id_to_name=True, downloadable=False, reviewed=False, not_reviewed=False ): """Build a SelectField whose options are the changeset_rev strings of certain revisions of the received repository.""" options = [] changeset_tups = [] refresh_on_change_values = [] if downloadable: # Restrict the options to downloadable revisions. repository_metadata_revisions = repository.downloadable_revisions elif reviewed: # Restrict the options to revisions that have been reviewed. repository_metadata_revisions = [] metadata_changeset_revision_hashes = [] for metadata_revision in repository.metadata_revisions: metadata_changeset_revision_hashes.append( metadata_revision.changeset_revision ) for review in repository.reviews: if review.changeset_revision in metadata_changeset_revision_hashes: repository_metadata_revisions.append( review.repository_metadata ) elif not_reviewed: # Restrict the options to revisions that have not yet been reviewed. repository_metadata_revisions = [] reviewed_metadata_changeset_revision_hashes = [] for review in repository.reviews: reviewed_metadata_changeset_revision_hashes.append( review.changeset_revision ) for metadata_revision in repository.metadata_revisions: if metadata_revision.changeset_revision not in reviewed_metadata_changeset_revision_hashes: repository_metadata_revisions.append( metadata_revision ) else: # Restrict the options to all revisions that have associated metadata. repository_metadata_revisions = repository.metadata_revisions for repository_metadata in repository_metadata_revisions: rev, label, changeset_revision = metadata_util.get_rev_label_changeset_revision_from_repository_metadata( trans, repository_metadata, repository=repository ) changeset_tups.append( ( rev, label, changeset_revision ) ) refresh_on_change_values.append( changeset_revision ) # Sort options by the revision label. Even though the downloadable_revisions query sorts by update_time, # the changeset revisions may not be sorted correctly because setting metadata over time will reset update_time. for changeset_tup in sorted( changeset_tups ): # Display the latest revision first. options.insert( 0, ( changeset_tup[ 1 ], changeset_tup[ 2 ] ) ) if add_id_to_name: name = 'changeset_revision_%d' % repository.id else: name = 'changeset_revision' select_field = SelectField( name=name, refresh_on_change=True, refresh_on_change_values=refresh_on_change_values ) for option_tup in options: selected = selected_value and option_tup[ 1 ] == selected_value select_field.add_option( option_tup[ 0 ], option_tup[ 1 ], selected=selected ) return select_field
# read in all LAMOST labels import numpy as np import pyfits from matplotlib import rc from matplotlib import cm import matplotlib as mpl rc('font', family='serif') rc('text', usetex=True) import matplotlib.pyplot as plt from matplotlib.colors import LogNorm direc = "/home/annaho/aida41040/annaho/TheCannon/data" print("reading in all data") teff = np.loadtxt( "%s/lamost_dr2/lamost_labels_all_dates.csv" %direc, delimiter=',', dtype='float', usecols=(1,), skiprows=1) logg = np.loadtxt( "%s/lamost_dr2/lamost_labels_all_dates.csv" %direc, delimiter=',', dtype='float', usecols=(2,), skiprows=1) feh = np.loadtxt( "%s/lamost_dr2/lamost_labels_all_dates.csv" %direc, delimiter=',', dtype='float', usecols=(3,), skiprows=1) print("reading in apogee labels") # read in apogee labels tr_IDs = np.load("../tr_id.npz")['arr_0'] labels_apogee = np.load("../tr_label.npz")['arr_0'] apogee_teff = labels_apogee[:,0] apogee_logg = labels_apogee[:,1] apogee_feh = labels_apogee[:,2] # read in lamost labels print("reading in lamost labels") a = pyfits.open("../../make_lamost_catalog/lamost_catalog_training.fits") b = a[1].data a.close() IDs_lamost = b['lamost_id'] IDs_lamost = np.array([val.strip() for val in IDs_lamost]) teff_all_lamost = b['teff_1'] logg_all_lamost = b['logg_1'] feh_all_lamost = b['feh'] inds = np.array([np.where(IDs_lamost==a)[0][0] for a in tr_IDs]) lamost_teff = teff_all_lamost[inds] lamost_logg = logg_all_lamost[inds] lamost_feh = feh_all_lamost[inds] # plot all print("plotting") fig, (ax0,ax1) = plt.subplots(ncols=2, figsize=(12,6), sharex=True, sharey=True) plt.subplots_adjust(wspace=0.3) def dr1(ax): ax.hist2d(teff,logg,bins=1000,norm=LogNorm(), cmap="Greys") ax.set_ylim(ax0.get_ylim()[1],ax0.get_ylim()[0]) ax.set_xlim(ax0.get_xlim()[1], ax0.get_xlim()[0]) ax.set_xlim(7500, 3800) ax.tick_params(axis='x', labelsize=16) ax.tick_params(axis='y', labelsize=16) dr1(ax0) dr1(ax1) cmap = cm.plasma # plot training set, lamost lamost_feh[lamost_feh>0.25]=0.25 lamost_feh[lamost_feh<-1.1]=-1.1 im = ax0.scatter(lamost_teff,lamost_logg,c=lamost_feh, s=1, lw=0, cmap=cmap) cbar = plt.colorbar(im, ax=ax0, label="[Fe/H] [dex] from LAMOST DR2") cbar.ax.tick_params(labelsize=16) cbar.set_clim(-1.1,0.25) ax0.set_xlabel("$\mbox{T}_{\mbox{eff}}$ [K]", fontsize=16) ax0.set_ylabel("log g [dex]", fontsize=16) ax0.text(0.05, 0.95, "Colored Points: reference set\nwith their LAMOST labels", horizontalalignment='left', verticalalignment='top', transform=ax0.transAxes, fontsize=16) ax0.text(0.05, 0.80, "Black Points: \n Full LAMOST DR2", transform=ax0.transAxes, fontsize=16, verticalalignment='top', horizontalalignment='left') ax0.locator_params(nbins=5) # plot training set, apogee apogee_feh[apogee_feh>0.25] = 0.25 apogee_feh[apogee_feh<-1.1] = -1.1 im = ax1.scatter(apogee_teff,apogee_logg,c=apogee_feh, s=1, lw=0, cmap=cmap) cbar = plt.colorbar(im, ax=ax1, label="[Fe/H] [dex] from APOGEE DR12") cbar.ax.tick_params(labelsize=16) cbar.set_clim(-1.1,0.25) ax1.set_xlabel("${\mbox{T}_{\mbox{eff}}}$ [K]", fontsize=16) ax1.set_ylabel("log g [dex]", fontsize=16) ax1.locator_params(nbins=5) ax1.text(0.05, 0.95, "Colored Points: reference set\nwith their APOGEE labels", horizontalalignment='left', verticalalignment='top', transform=ax1.transAxes, fontsize=16) ax1.text(0.05, 0.80, "Black Points: \n Full LAMOST DR2", transform=ax1.transAxes, fontsize=16, verticalalignment='top', horizontalalignment='left') plt.subplots_adjust(top=0.85) plt.show() #plt.savefig("ts_in_full_lamost_label_space.png") #plt.close()
## directory where the gps files are located #GPS_FILE_DIRECTORY = "C:/Users/raulms/Documents/Python Scripts/Codes/5StopsCentroids/Input/" GPS_FILE_DIRECTORY = "/home/pablo/projects/python/data/bhulan/sampledata/" ## file extension of the gps files # for now only handling excel files GPS_FILE_EXTENSION = "*.xlsx" ## name of the excel worksheet with GPS points WORKSHEET_NAME = "Hoja1" # minimum time at a given location that makes it a "stop" for the vehicle MIN_STOP_TIME = 2 # radius of 20 meters for stop location. # if a gps point is recorded within this variable meter radius of a stop location # it is considered part of the stop location CONSTRAINT = .02 # hours that a vehicle has to stay at a stop for it to be considered a DC or home DC_HOURS = 4 # radius in miles, to create a geo-fence around a city center and only # consider points within that zone. SANTIAGO_RADIUS = 60 # lat long for Santiago, used to calculate points within the city # this is a hack, needs to be fixed SANTI_LAT = '-33.469994' SANTI_LON = '-70.642193' # url to access cartodb CARTO_URL = "https://<username>.cartodb.com/api/v1/imports/?api_key=" # api key for CARTO_DB. set this before sending data to cartodb CARTO_DB_API_KEY = "<API_KEY_HERE>"
import numpy as np import torch import torch.nn as nn from awave.losses import get_loss_f from awave.utils.train import Trainer class AbstractWT(nn.Module): def fit(self, X=None, train_loader=None, pretrained_model=None, lr: float = 0.001, num_epochs: int = 20, seed: int = 42, attr_methods='Saliency', target=6, lamlSum: float = 1., lamhSum: float = 1., lamL2norm: float = 1., lamCMF: float = 1., lamConv: float = 1., lamL1wave: float = 1., lamL1attr: float = 1.): """ Params ------ X: numpy array or torch.Tensor For 1-d signals this should be 3-dimensional, (num_examples, num_curves_per_example, length_of_curve) e.g. for 500 1-dimensional curves of length 40 would be (500, 1, 40) train_loader: data_loader each element should return tuple of (x, _) pretrained_model: nn.Module, optional pretrained model to distill lamlSum : float Hyperparameter for penalizing sum of lowpass filter lamhSum : float Hyperparameter for penalizing sum of highpass filter lamL2norm : float Hyperparameter to enforce unit norm of lowpass filter lamCMF : float Hyperparameter to enforce conjugate mirror filter lamConv : float Hyperparameter to enforce convolution constraint lamL1wave : float Hyperparameter for penalizing L1 norm of wavelet coeffs lamL1attr : float Hyperparameter for penalizing L1 norm of attributions """ torch.manual_seed(seed) if X is None and train_loader is None: raise ValueError('Either X or train_loader must be passed!') elif train_loader is None: if 'ndarray' in str(type(X)): X = torch.Tensor(X).to(self.device) # convert to float X = X.float() if self.wt_type == 'DWT2d': X = X.unsqueeze(1) # need to pad as if it had y (to match default pytorch dataloaders) X = [(X[i], np.nan) for i in range(X.shape[0])] train_loader = torch.utils.data.DataLoader(X, shuffle=True, batch_size=len(X)) # print(iter(train_loader).next()) params = list(self.parameters()) optimizer = torch.optim.Adam(params, lr=lr) loss_f = get_loss_f(lamlSum=lamlSum, lamhSum=lamhSum, lamL2norm=lamL2norm, lamCMF=lamCMF, lamConv=lamConv, lamL1wave=lamL1wave, lamL1attr=lamL1attr) trainer = Trainer(pretrained_model, self, optimizer, loss_f, use_residuals=True, target=target, attr_methods=attr_methods, n_print=1, device=self.device) # actually train self.train() trainer(train_loader, epochs=num_epochs) self.train_losses = trainer.train_losses self.eval()
from models import Employee from db import session from flask_restful import reqparse from flask_restful import abort from flask_restful import Resource from flask_restful import fields from flask_restful import marshal_with employee_fields = { 'id': fields.Integer, 'created_at': fields.DateTime, 'updated_at': fields.DateTime, 'deleted_at': fields.DateTime, 'name': fields.String, 'city': fields.String, 'age': fields.Integer, 'status': fields.Boolean } parser = reqparse.RequestParser() parser.add_argument('name', type=str) parser.add_argument('city', type=str) parser.add_argument('age', type=int) parser.add_argument('status', type=bool) class EmployeeResource(Resource): @marshal_with(employee_fields) def get(self, name): employee = session.query(Employee).filter(Employee.name == name).first() if not employee: abort(404, message="Employee {} doesn't exist".format(name)) return employee def delete(self, name): employee = session.query(Employee).filter(Employee.name == name).first() if not employee: abort(404, message="Employee {} doesn't exist".format(name)) session.delete(employee) session.commit() return {}, 204 @marshal_with(employee_fields) def patch(self, name): parsed_args = parser.parse_args() employee = session.query(Employee).filter(Employee.name == name).first() # employee.name = parsed_args['name'] employee.city = parsed_args['city'] employee.age = parsed_args['age'] session.add(employee) session.commit() return employee, 200 class EmployeeListResource(Resource): @marshal_with(employee_fields) def get(self): employees = session.query(Employee).all() return employees @marshal_with(employee_fields) def post(self): parsed_args = parser.parse_args() employee = Employee( name=parsed_args['name'], city=parsed_args['city'], age=parsed_args['age'], status=parsed_args['status'], ) session.add(employee) session.commit() return employee, 201
class Plot(object): def __init__(self,name,array_func,event_weight_func,hist, dim=1, selection_func=None ): self.name = name self.array_func = array_func self.event_weight_func = event_weight_func self.hist = hist self.dim = dim self.selection_func = selection_func self.data_color = 'black'
from django.contrib import admin from fabric_bolt.fabfiles.models import Fabfile # #class FabfileAdmin(admin.ModelAdmin): # form = FabfileForm admin.site.register(Fabfile)
from setuptools import setup, Command import subprocess class PyTest(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): errno = subprocess.call(['py.test']) raise SystemExit(errno) setup( name='Flask-Split', version='0.4.0', url='http://github.com/jpvanhal/flask-split', license='MIT', author='Janne Vanhala', author_email='janne.vanhala@gmail.com', description='A/B testing for your Flask application', long_description=open('README.rst').read() + '\n\n' + open('CHANGES.rst').read(), packages=['flask_split'], include_package_data=True, zip_safe=False, platforms='any', install_requires=[ 'Flask>=0.10', 'Redis>=2.6.0', ], cmdclass={'test': PyTest}, classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Web Environment', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: Software Development :: Libraries :: Python Modules' ] )
class TreeNode(object): def __init__(self, x): self.val = x self.left = None self.right = None class BST: def __init__(self): self.root = None def insert(self, data): if self.root is None: print("Adding the first node of the tree") self.root = Node(data) else: self._insert(data, self.root) def _insert(self, data, currentnode: Node): """ :type data: object """ if currentnode.data < data: if currentnode.right is None: currentnode.right = Node(data) else: currentnode = currentnode.right self._insert(data, currentnode) elif currentnode.value > data: if currentnode.left is None: currentnode.left = Node(data) else: self._insert(data, currentnode.left) else: print("The node is already in the tree.")
import os import pytest import sqlalchemy as sa from imicrobe.load import models from orminator import session_manager_from_db_uri @pytest.fixture() def test_session(): engine = sa.create_engine(os.environ['IMICROBE_DB_URI'], echo=False) try: with engine.connect() as connection: connection.execute('DROP DATABASE imicrobe_test') except: pass with engine.connect() as connection: connection.execute('CREATE DATABASE imicrobe_test') test_db_uri = os.environ['IMICROBE_DB_URI'] + '_test' test_engine = sa.create_engine(test_db_uri, echo=False) models.Model.metadata.create_all(test_engine) with session_manager_from_db_uri(test_db_uri) as test_session: yield test_session with engine.connect() as connection: connection.execute('DROP DATABASE imicrobe_test')
""" Copyright (c) 2022 Huawei Technologies Co.,Ltd. openGauss is licensed under Mulan PSL v2. You can use this software according to the terms and conditions of the Mulan PSL v2. You may obtain a copy of Mulan PSL v2 at: http://license.coscl.org.cn/MulanPSL2 THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE. See the Mulan PSL v2 for more details. """ """ Case Type : 拷贝数据 Case Name : 反语法测试\copy file to table Description : 1.创建测试表并插入数据 2.构造数据文件 3.从文件中拷贝数据到表 4.清理环境 Expect : 1.创建测试表并插入数据成功 2.构造数据文件成功 3.从文件中拷贝数据到表失败 4.清理环境成功 """ import unittest from yat.test import Node from yat.test import macro from testcase.utils.Constant import Constant from testcase.utils.Logger import Logger Log = Logger() class CopyFile(unittest.TestCase): def setUp(self): Log.info('----Opengauss_Function_DML_Copy_Case0045开始执行----') self.user_node = Node('PrimaryDbUser') self.constant = Constant() def test_copy_file(self): Log.info('----创建测试表并对测试表插入数据----') sql_cmd = '''drop table if exists testzl; create table testzl(sk integer,id char(16),\ name varchar(20),sq_ft integer); insert into testzl values (001,'sk1','tt',3332); insert into testzl values (001,'sk1','tt',3332); insert into testzl values (001,'sk1','tt',3332); ''' excute_cmd = f'''source {macro.DB_ENV_PATH} ; gsql -d {self.user_node.db_name} -p \ {self.user_node.db_port} -c "{sql_cmd}" ''' Log.info(excute_cmd) msg = self.user_node.sh(excute_cmd).result() Log.info(msg) self.assertIn(self.constant.INSERT_SUCCESS_MSG, msg) self.assertIn(self.constant.TABLE_CREATE_SUCCESS, msg) Log.info('-------------创建数据文件-------------') mkdir_cmd = f'''mkdir {macro.DB_INSTANCE_PATH}/pg_copydir; touch {macro.DB_INSTANCE_PATH}/pg_copydir/testzl.dat; ''' Log.info(mkdir_cmd) mkdir_msg = self.user_node.sh(mkdir_cmd).result() Log.info(mkdir_msg) self.assertNotIn(self.constant.SQL_WRONG_MSG[1], mkdir_msg) Log.info('----使用反语法\copy file from table进行copy----') copy_cmd = f'''\copy '{macro.DB_INSTANCE_PATH}/pg_copydir/testzl.dat'\ to testzl; ''' excute_cmd = f'''source {macro.DB_ENV_PATH} ; gsql -d {self.user_node.db_name} -p \ {self.user_node.db_port} -c "{copy_cmd}" ''' Log.info(excute_cmd) copy_msg = self.user_node.sh(excute_cmd).result() Log.info(copy_msg) self.assertIn(self.constant.SYNTAX_ERROR_MSG, copy_msg) def tearDown(self): Log.info('----------------清理环境-----------------------') sql_cmd = 'drop table if exists testzl;' excute_cmd = f'''source {macro.DB_ENV_PATH} ; gsql -d {self.user_node.db_name} -p \ {self.user_node.db_port} -c "{sql_cmd}" ''' Log.info(excute_cmd) msg = self.user_node.sh(excute_cmd).result() Log.info(msg) self.assertIn(self.constant.TABLE_DROP_SUCCESS, msg) excute_cmd = f'''rm -rf {macro.DB_INSTANCE_PATH}/pg_copydir; rm -rf /home/{self.user_node.ssh_user}/testzl; ''' Log.info(excute_cmd) msg = self.user_node.sh(excute_cmd).result() Log.info(msg) Log.info('----Opengauss_Function_DML_Copy_Case0045执行完成----')
__author__ = 'denis_makogon' import proboscis from proboscis import asserts from proboscis import decorators from gigaspace.cinder_workflow import base as cinder_workflow from gigaspace.nova_workflow import base as nova_workflow from gigaspace.common import cfg from gigaspace.common import utils GROUP_WORKFLOW = 'gigaspace.cinder.volumes.api' CONF = cfg.CONF @proboscis.test(groups=[GROUP_WORKFLOW]) class TestWorkflow(object): """ This is a test suit that represents described workflow: - create volume: - check while it will reach 'available status' - list volumes - get volume: - by id - by name Attachment workflow was implemented in two different manners: Main workflow: - boot an instance: - format volume using cloudinit - poll until instance would reach ACTIVE state - check volume and server attachments - delete an instance - poll until instance would gone away - check if volume was deleted Alternative workflow: - boot volume - poll untill volume reach 'available' state - boot an instance without volume and userdata - poll untill instance would reach ACTIVE state - use Nova volumes API to attach volume - check volume attachments - reboot server (required, to let operating system to discover volume during reboot) - poll untill instance would reach ACTIVE state - check server attachments """ def __init__(self): self.cinder_actions = cinder_workflow.BaseCinderActions() self.nova_actions = nova_workflow.BaseNovaActions() self.volume = None self.server = None self.volume_size, self.display_name, self.expected_status = ( "1", "test_volume", "available") self.server_name, self.flavor_id, self.image_id, = ( "test_server", CONF.test_config.test_flavor_id, CONF.test_config.test_image_id ) def _poll_volume_status(self, expected_status): def _pollster(): volume = self.cinder_actions.show_volume(self.volume.id) if volume.status in ("error", "failed"): raise Exception("Volume is not in valid state") return volume.status == expected_status return _pollster def _create_volume(self): self.volume = self.cinder_actions.create_volume( self.volume_size, self.display_name) utils.poll_until(self._poll_volume_status(self.expected_status), expected_result=True, sleep_time=1) asserts.assert_equal(self.volume.size, int(self.volume_size)) volume = self.cinder_actions.show_volume(self.volume.id) asserts.assert_equal(volume.status, self.expected_status) @proboscis.test @decorators.time_out(300) def test_create_volume(self): """ - create volume: - check while it will reach 'available status' """ self._create_volume() @proboscis.test(depends_on=[test_create_volume]) def test_list_volumes(self): """ - list volumes """ volumes = self.cinder_actions.list_volumes() asserts.assert_equal(len(volumes), 1) @proboscis.test(depends_on=[test_list_volumes]) def test_get_volume_by_its_name_or_id(self): """ - get volume: - by name - by ID """ try: volume = self.cinder_actions.show_volume(self.display_name) except Exception as e: print("Can't get volume by its display name. %s" % str(e)) volume = self.cinder_actions.show_volume(self.volume.id) pass asserts.assert_equal(volume.status, self.expected_status) def _poll_until_server_is_active(self, expected_status): def _pollster(): server = self.nova_actions.get(self.server.id) if server.status.upper() in ["ERROR", "FAILED"]: raise Exception("Failed to spawn compute instance.") return server.status == expected_status return _pollster def _boot(self, volume_id): try: self.server = self.nova_actions.boot(self.server_name, self.flavor_id, self.image_id, volume_id=volume_id) utils.poll_until(self._poll_until_server_is_active("ACTIVE"), expected_result=True, sleep_time=1) self.server = self.nova_actions.get(self.server.id) asserts.assert_equal(self.server.status, "ACTIVE") except Exception as e: print(str(e)) raise proboscis.SkipTest("Failed to spawn an instance.") @decorators.time_out(300) @proboscis.test(depends_on=[test_get_volume_by_its_name_or_id]) def test_boot_instance(self): """ - boot an instance: - poll until instance would reach ACTIVE state - check attachments """ self._boot(self.volume.id) def _check_attachments(self): server = self.nova_actions.get(self.server.id) server_attachment = getattr( server, 'os-extended-volumes:volumes_attached').pop(0) volume_id = server_attachment['id'] volume = self.cinder_actions.show_volume(self.volume.id) volume_attachment = volume.attachments.pop(0) server_id = volume_attachment['server_id'] asserts.assert_equal(server.id, server_id) asserts.assert_equal(volume.id, volume_id) @proboscis.test(depends_on=[test_boot_instance]) def test_server_and_volume_attachments(self): """ - checks volume and server attachments """ self._check_attachments() def _poll_until_server_is_gone(self, server_id=None): def _pollster(): try: _server_id = (server_id if server_id else self.server.id) self.nova_actions.delete(_server_id) except Exception: print("\nInstance has gone.") return True return _pollster def _poll_until_volume_is_gone(self, volume_id=None): def _pollster(): try: _volume_id = (volume_id if volume_id else self.volume.id) self.cinder_actions.cinderclient.volumes.delete( _volume_id) except Exception: print("Volume has gone.") return True return _pollster @decorators.time_out(300) @proboscis.test(runs_after=[test_server_and_volume_attachments]) def test_boot_without_volume(self): """ - boot instance without volume """ self._boot(None) @proboscis.test(depends_on=[test_boot_without_volume]) def test_volume_create(self): """ - create volume """ self._create_volume() @proboscis.test(depends_on=[test_volume_create]) def test_attach_volume(self): self.nova_actions.create_server_volume(self.volume.id, self.server.id) utils.poll_until(self._poll_volume_status("in-use"), expected_result=True, sleep_time=1) self._check_attachments() @decorators.time_out(300) @proboscis.test(depends_on=[test_attach_volume]) def test_server_reboot_for_volume_discovery(self): self.nova_actions.novaclient.servers.reboot(self.server.id) utils.poll_until(self._poll_until_server_is_active("ACTIVE"), expected_result=True, sleep_time=1) self._check_attachments() @proboscis.after_class def test_delete_resources(self): """ - delete instance - delete volumes """ for server in self.nova_actions.novaclient.servers.list(): server.delete() utils.poll_until( self._poll_until_server_is_gone(server_id=server.id), expected_result=True, sleep_time=1) for volume in self.cinder_actions.cinderclient.volumes.list(): # one of the volumes was bootstraped with delete flag in block # mapping device, so Cinder API service would reject request # because of volume status that is 'deleting' at this stage if volume.status in ['available', 'error']: volume.delete() utils.poll_until( self._poll_until_volume_is_gone(volume_id=volume.id), expected_result=True, sleep_time=1)
from django.contrib.auth.models import User from django.db import models class University(models.Model): name = models.CharField(max_length=80, unique=True) acronym = models.CharField(max_length=40) def __str__(self): return self.name class Organization(models.Model): name = models.CharField(max_length=80, unique=True) def __str__(self): return self.name class Administrator(models.Model): user = models.OneToOneField(User, models.CASCADE) university = models.ForeignKey(University, models.CASCADE) def user_email(self): return self.user.email def __str__(self): return "Administrator of {university}".format(university=self.university) class Host(models.Model): user = models.OneToOneField(User, models.CASCADE) organization = models.ForeignKey(Organization, models.CASCADE) university = models.ForeignKey(University, models.CASCADE) administrator = models.ForeignKey(Administrator, models.SET_NULL, null=True, blank=True) def __str__(self): return "{organization} of {university}".format( organization=self.organization, university=self.university ) def user_email(self): return self.user.email def has_admin(self): return bool(self.administrator) hours = ( ("", "Hour of Event"), ("12 PM", "12 PM"), ("01 PM", "01 PM"), ("02 PM", "02 PM"), ("03 PM", "03 PM"), ("04 PM", "04 PM"), ("05 PM", "05 PM"), ("06 PM", "06 PM"), ("07 PM", "07 PM"), ("08 PM", "08 PM"), ("09 PM", "09 PM"), ("10 PM", "10 PM"), ("11 PM", "11 PM"), ("12 AM", "12 AM"), ("01 AM", "01 AM"), ("02 AM", "02 AM"), ("03 AM", "03 AM"), ("04 AM", "04 AM"), ("05 AM", "05 AM"), ("06 AM", "06 AM"), ("07 AM", "07 AM"), ("08 AM", "08 AM"), ("09 AM", "09 AM"), ("10 AM", "10 AM"), ("11 AM", "11 AM"), ) councils = ( ("", "Affiliated Council"), ("Interfraternity Council", "Interfraternity Council"), ("Panhellenic", "Panhellenic"), ("NPHC", "NPHC"), ("Non-Affiliated", "Non-Affiliated"), ) event_types = ( ("", "Type of Event"), ("Social", "Social"), ("Date Function", "Date Function"), ("Formal", "Formal"), ("Other", "Other"), ) invitation_types = ( ("", "Choose One"), ("Invitation Only", "Invitation Only"), ("Open to the Public", "Open to the Public"), ("Open to Faculty, Staff, Students", "Open to Faculty, Staff, Students"), ) event_locations = ( ("", "Where is the event located?"), ("Chapter House", "Chapter House"), ("Other Campus Venue", "Other Campus Venue"), ("Off Campus", "Off Campus"), ) class Event(models.Model): name = models.CharField(max_length=40) date_of_event = models.DateField() time_of_event = models.CharField(max_length=40, choices=hours) event_location = models.CharField(max_length=100, choices=event_locations) event_location_other = models.CharField(max_length=100, blank=True, null=True) name_of_planner = models.CharField(max_length=100) phone_number_of_planner = models.CharField(max_length=40) email_of_planner = models.CharField(max_length=40) expected_number_guests = models.IntegerField() affiliated_council = models.CharField(max_length=40, choices=councils) type_of_event = models.CharField(max_length=40, choices=event_types) type_event_other = models.CharField(max_length=100, blank=True, null=True) event_description = models.TextField() invitation_type = models.CharField(max_length=100, choices=invitation_types) transportation = models.TextField(blank=True, null=True) one_entry_point = models.CharField( max_length=10, choices=(("", "Will there be one entry point?"), ("Yes", "Yes"), ("No", "No")), ) entry_point_location = models.CharField(max_length=100) co_sponsored_description = models.TextField(blank=True, null=True) alcohol_distribution = models.TextField(blank=True, null=True) sober_monitors = models.TextField() presidents_email = models.EmailField() host = models.ForeignKey(Host, models.CASCADE) def __str__(self): return self.name def host_email(self): return self.host.user.email class Guest(models.Model): first_name = models.CharField(max_length=40) last_name = models.CharField(max_length=40) date_of_birth = models.DateField() gender = models.CharField(max_length=10, choices=(("Male", "Male"), ("Female", "Female"))) event = models.ManyToManyField(Event) def __str__(self): return "{last_name}, {first_name}".format( last_name=self.last_name, first_name=self.first_name ) categories = ( ("", "Select category for flag"), ("Underage Drinking", "Underage Drinking"), ("Stealing", "Stealing"), ("Vandalism", "Vandalism"), ("Violence", "Violence"), ("Other", "Other"), ) priorities = ( ("", "Select severity of violation"), ("Low", "Low"), ("Medium", "Medium"), ("High", "High"), ) class Flag(models.Model): guest = models.ForeignKey(Guest, models.CASCADE) host = models.ForeignKey(Host, models.CASCADE, null=True, blank=True) administrator = models.ForeignKey(Administrator, models.CASCADE, null=True, blank=True) priority = models.CharField(max_length=10, choices=priorities) category = models.CharField(max_length=20, choices=categories) other_description = models.CharField( max_length=30, blank=True, null=True, help_text="If you chose other, fill in description" ) class GuestImage(models.Model): image = models.ImageField(upload_to="images/guests") guest = models.ForeignKey(Guest, models.CASCADE) event = models.ForeignKey(Event, models.CASCADE) date_time_taken = models.DateTimeField() def __str__(self): return str(self.guest) def event_name(self): return str(self.event)
import numpy as np from io import StringIO try : from colorama import Fore except: class ForeDummy: def __getattribute__(self, attr): return '' Fore = ForeDummy() NULL_BYTE = b'\x00' def read_null_terminated_string(f, max_len=128): string = b'' next_char = b'' while next_char != NULL_BYTE: string = string + next_char next_char = f.read(1) assert len(string) < max_len return string def generate_bitfield(n): bf = 1 << np.arange(n) return bf def eval_bitfield(x, bitfield): return (x & bitfield) > 0 class assert_size_in_bytes: def __init__(self, byte_size): self.byte_size = byte_size def __call__(self, f): def wrapped_f(*args,**kwargs): val = f(*args, **kwargs) assert type(val) is np.dtype, \ 'expected numpy.dtype not {0}'.format(type(val)) assert val.itemsize == self.byte_size,\ 'expected {0} bytes, found {1} bytes'.format(self.byte_size, val.itemsize) return val return wrapped_f def arr2str(x): outstring = '' for name in x.dtype.names: val = x[name] if type(val) is np.void: val = bytes(val) if type(val) is bytes: valstring = '{0}B bytestring'.format(len(val)) else: valstring = str(val) outstring = outstring + Fore.LIGHTBLUE_EX+name+': ' + Fore.RESET + valstring + '\n' return outstring def print_arr(x): print(arr2str(x)) def prettyvars(obj, skip_private = True): d = vars(obj) for key,val in d.items(): if key[0] == '_': continue print(Fore.LIGHTBLUE_EX + key + ': ' + Fore.RESET + str(val)) def print_table(data, headers=None, col_width=16): io = StringIO() num_cols = len(data[0]) fmt = '{:>' + str(col_width) + '}' if headers: print(Fore.LIGHTBLUE_EX + \ (fmt*num_cols).format(*headers, col_width=col_width) + \ Fore.RESET, \ file=io ) for row in data: val_strings = tuple(map(str, row)) print((fmt*num_cols).format(*val_strings, col_width=col_width), file=io) io.seek(0) s = io.read() print(s) return s def ensure_not_none(x, default_val): if x is None: return default_val return x def has_len(x): try: len(x) return True except: return False def read_from_bytearr(bytearr, dtype = 'uint8', offset = 0, count = 1): dtype = np.dtype(dtype) num_bytes = dtype.itemsize*count val = bytearr[offset:(offset+num_bytes)].view(dtype) return val def split_bytearr(bytearr, offset, size): """ e.g. offset = [0, 1000, 2000] size = 192 would read bytearr[0:192], bytearr[1000:1192], bytearr[2000:2192] and concatenate into one bytearr size can also be an array, e.g. size = [192, 200, 300] """ split_inds = np.empty(2*len(offset), dtype='u8') split_inds[0::2] = offset split_inds[1::2] = offset + size byte_groups = np.split(bytearr, split_inds) val = np.concatenate(byte_groups[1::2]) return val
import os import sys import tempfile import subprocess import cv2 import pymesh import numpy as np import torch import triangle as tr from tridepth import BaseMesh from tridepth.extractor import calculate_canny_edges from tridepth.extractor import SVGReader from tridepth.extractor import resolve_self_intersection, cleanup from tridepth.extractor import add_frame class Mesh2DExtractor: def __init__(self, canny_params={"denoise": False}, at_params={"filter_itr": 4, "error_thresh": 0.01}): self.canny_params = canny_params # TODO self.autotrace_cmd = ['autotrace', '--centerline', '--remove-adjacent-corners', '--filter-iterations', str(at_params["filter_itr"]), '--error-threshold', str(at_params["error_thresh"]), '--input-format=bmp', '--output-format=svg'] def _execute_autotrace(self, filename, debug=False): """Execute autotrace with input (bmp-file) - https://github.com/autotrace/autotrace Returns: svg_string: string starting from '<svg/>' """ # Execute autotrace p = subprocess.Popen(self.autotrace_cmd + [filename], stdout=subprocess.PIPE) # Read the converted svg contents svg_string = p.communicate()[0] if not len(svg_string): print("autotrace_cmd: " + ' '.join(self.autotrace_cmd + [filename]), file=sys.stderr) print("ERROR: returned nothing, leaving tmp bmp file around for you to debug", file=sys.stderr) sys.exit(1) else: if debug: print(filename) sys.exit(1) else: os.unlink(filename) # Remove the tempolary file return svg_string def _read_polygon_from_svg(self, svg_string): """ """ # Extract polygon information from svg-string # - https://github.com/guyc/scadtrace/blob/master/svg.py svg_reader = SVGReader(svg_string) verts_2d, edges = svg_reader.run() # Store polygons as wire-format (w/ cleaning) # - https://github.com/PyMesh/PyMesh/blob/master/scripts/svg_to_mesh.py if verts_2d.shape[0] == 0: wires = pymesh.wires.WireNetwork.create_empty() else: wires = pymesh.wires.WireNetwork.create_from_data(verts_2d, edges) wires = resolve_self_intersection(wires, min_edge_size=1.5) wires = cleanup(wires) return wires def _triangulation(self, np_edge, wires, output_size, debug=False): """ """ height, width = output_size # We use cython wrapper of Triangle, # since other implementations (Pymesh) can't output edges :( # - https://github.com/drufat/triangle input_dic = {} input_dic["vertices"] = wires.vertices.copy() input_dic["segments"] = wires.edges.copy() # [Options] # p: Triangulates a Planar Straight Line Graph. # q: no angles smaller than 20 degrees try: t = tr.triangulate(input_dic, 'pq') except: import uuid unique_filename = str(uuid.uuid4()) + ".png" print(wires.vertices.shape, wires.edges.shape) cv2.imwrite(unique_filename, np_edge) exit() if debug: import matplotlib.pyplot as plt plt.gca().invert_yaxis() # plt.imshow(np_edge) for edge in wires.edges: v1x, v1y = wires.vertices[edge[0]] v2x, v2y = wires.vertices[edge[1]] plt.plot([v1x, v2x], [v1y, v2y], 'k-', color='r', linewidth=1.0) for tri in t['triangles']: v1x, v1y = t['vertices'][tri[0]] v2x, v2y = t['vertices'][tri[1]] v3x, v3y = t['vertices'][tri[2]] plt.plot([v1x, v2x], [v1y, v2y], 'k-', color='black', linewidth=1.0) plt.plot([v2x, v3x], [v2y, v3y], 'k-', color='black', linewidth=1.0) plt.plot([v3x, v1x], [v3y, v1y], 'k-', color='black', linewidth=1.0) plt.scatter(wires.vertices[:, 0], wires.vertices[:, 1], s=3.0, c="black") plt.show() print(t['vertices'].shape, t['triangles'].shape) exit() # Normalize (range=[0,1]) vertices = t["vertices"] t["vertices"] = np.concatenate((vertices[:, :1] / width, vertices[:, 1:2] / height, vertices[:, 2:]), 1) t["edgemap"] = np_edge return t def __call__(self, np_scene): """ Args: np_scene: [H,W,3] (ndarray, uint8) """ height, width, _ = np_scene.shape # Calculate canny edge np_edge, _ = calculate_canny_edges(np_scene, denoise=self.canny_params["denoise"]) # Save into temp file as bmp-format with tempfile.NamedTemporaryFile(suffix='.bmp', delete=False) as temp: cv2.imwrite(temp.name, np_edge) # Execute vectorization (by Autotrace) svg_string = self._execute_autotrace(temp.name) # Extract polygon information wires = self._read_polygon_from_svg(svg_string) # Triangulation wires = add_frame(wires, output_size=(height, width)) mesh_dic = self._triangulation(np_edge, wires, output_size=(height, width)) # Finally integrate all the information, and create disconnected mesh mesh = BaseMesh(mesh_dic) return mesh
from __future__ import print_function import logging import os import psutil import signal import socket from .worker import Worker from ..common import algorithm_loader def run(bind_address, yaml, parameter_server_url, timeout): algorithm = algorithm_loader.load(yaml['path']) _run_agents( bind_address=bind_address, agent_factory=_get_factory( algorithm=algorithm, yaml=yaml, parameter_server_url=parameter_server_url ), timeout=timeout ) def _get_factory(algorithm, yaml, parameter_server_url): config = algorithm.Config(yaml) return lambda n_agent: algorithm.Agent( config=config, parameter_server=algorithm.BridgeControl().parameter_server_stub(parameter_server_url) ) def _run_agents(bind_address, agent_factory, timeout): signal.signal(signal.SIGCHLD, signal.SIG_IGN) socket_ = socket.socket() try: _info('listening %s', bind_address) socket_.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) socket_.bind(_parse_address(bind_address)) socket_.listen(100) n_agent = 0 while True: connection, address = socket_.accept() try: _debug('accepted %s from %s', str(connection), str(address)) available = _available_memory() required = _memory_per_child() if required is None: _info('memory %.3f, None' % available) else: _info('memory %.3f, %.3f' % (available, required)) if required is not None and available < required: _warning( 'Cannot start new child: available memory (%.3f) is less than memory per child (%.3f)' % (available, required) ) else: pid = None try: pid = os.fork() except OSError as e: _warning('{} : {}'.format(bind_address, e.message)) if pid == 0: socket_.close() connection.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) Worker(agent_factory, timeout, n_agent, connection, address).run() break finally: connection.close() n_agent += 1 finally: socket_.close() def _debug(message, *args): logging.debug('%d:' + message, os.getpid(), *args) def _info(message, *args): logging.info('%d:' + message, os.getpid(), *args) def _parse_address(address): host, port = address.split(':') return host, int(port) def _available_memory(): vm = psutil.virtual_memory() return 100 * float(vm.available) / vm.total def _memory_per_child(): process = psutil.Process(os.getpid()) n = 0 mem = 0 for child in process.children(recursive=False): n += 1 mem += _process_tree_memory(child) if n == 0: return None return mem / n def _process_tree_memory(process): mem = process.memory_percent() for child in process.children(recursive=True): mem += child.memory_percent() return mem def _warning(message, *args): logging.warning('%d:' + message, os.getpid(), *args)
# guests_at_party #fetch the input functions from BTCInput import * #create an empty guests list guests=[] number_guests=read_int('How many guests do you expect? ') # read in 10 sales figures for count in range(1,number_guests+1): # assemble a prompt string prompt='Enter the names of the guests: ' # read a value and append it to sales array guests.append(read_text(prompt)) # print a heading print('Guest list') count = 1 # work through the guests figures and print them for guest_value in guests: # print an item print('Guest number', count,'is',guest_value) # advance the stand counter count = count + 1 def save_guests(file_path): ''' Saves the contents of the guests ''' print('Save the guests in:', file_path) try: # create a file object with open(file_path,'w') as output_file: # Work through the guest values in the list for guest in guests: # write out the sale as a string output_file.write(guest+'\n') except: print('Something went wrong writing the file') print(guests) save_guests('guest_list.txt')
import rospy from python_qt_binding import QtCore from python_qt_binding import QtGui from python_qt_binding import QtWidgets from python_qt_binding.QtWidgets import QWidget from rqt_ez_publisher import ez_publisher_model as ez_model from rqt_ez_publisher import widget as ez_widget from rqt_ez_publisher import publisher class EzPublisherWidget(QWidget): '''Main widget of this GUI''' sig_sysmsg = QtCore.Signal(str) def __init__(self, parent=None, modules=[]): self._model = ez_model.EzPublisherModel( publisher.TopicPublisherWithTimer, modules=modules) self._sliders = [] QWidget.__init__(self, parent=parent) self.setup_ui() def add_slider_from_combo(self): return self.add_slider_by_text(str(self._combo.currentText())) def close_slider(self, widget, remove=True): widget.hide() if remove: self._sliders.remove(widget) self._main_vertical_layout.removeWidget(widget) def get_next_index(self, topic_name, attributes): array_index = 0 text = ez_model.make_text(topic_name, attributes, array_index) while text in [x.get_text() for x in self._sliders]: array_index += 1 text = ez_model.make_text(topic_name, attributes, array_index) return array_index def add_widget(self, output_type, topic_name, attributes, array_index, position=None): widget_class = None type_class_dict = {float: ez_widget.DoubleValueWidget, int: ez_widget.IntValueWidget, 'uint': ez_widget.UIntValueWidget, bool: ez_widget.BoolValueWidget, str: ez_widget.StringValueWidget} for module in self._model.get_modules(): type_class_dict[ module.get_msg_string()] = module.get_widget_class() if output_type in type_class_dict: widget_class = type_class_dict[output_type] else: self.sig_sysmsg.emit('not supported type %s' % output_type) return False widget = widget_class(topic_name, attributes, array_index, self._model.get_publisher(topic_name), self) self._model.get_publisher(topic_name).set_manager(self) self._sliders.append(widget) if widget.add_button: widget.add_button.clicked.connect( lambda: self.add_widget( output_type, topic_name, attributes, self.get_next_index(topic_name, attributes), self._main_vertical_layout.indexOf(widget) + 1)) if position: self._main_vertical_layout.insertWidget(position, widget) else: self._main_vertical_layout.addWidget(widget) return True def move_down_widget(self, widget): index = self._main_vertical_layout.indexOf(widget) if index < self._main_vertical_layout.count() - 1: self._main_vertical_layout.removeWidget(widget) self._main_vertical_layout.insertWidget(index + 1, widget) def move_up_widget(self, widget): index = self._main_vertical_layout.indexOf(widget) if index > 1: self._main_vertical_layout.removeWidget(widget) self._main_vertical_layout.insertWidget(index - 1, widget) def add_slider_by_text(self, text): if text.endswith('/header/seq'): rospy.loginfo('header/seq is not created') return if text in [x.get_text() for x in self._sliders]: self.sig_sysmsg.emit('%s is already exists' % text) return results = self._model.register_topic_by_text(text) if not results: self.sig_sysmsg.emit('%s does not exists' % text) return topic_name, attributes, builtin_type, is_array, array_index = results if builtin_type: if is_array and array_index is None: # use index 0 array_index = 0 self.add_widget(builtin_type, topic_name, attributes, array_index) else: for string in self._model.expand_attribute(text, array_index): self.add_slider_by_text(string) def get_sliders_for_topic(self, topic): return [x for x in self._sliders if x.get_topic_name() == topic] def get_sliders(self): return self._sliders def clear_sliders(self): for widget in self._sliders: self.close_slider(widget, False) self._sliders = [] def update_combo_items(self): self._combo.clear() for topic in self._model.get_topic_names(): self._combo.addItem(topic) def set_configurable(self, value): self._reload_button.setVisible(value) self._topic_label.setVisible(value) self._clear_button.setVisible(value) self._combo.setVisible(value) for slider in self._sliders: slider.set_configurable(value) def setup_ui(self): self._horizontal_layout = QtWidgets.QHBoxLayout() self._reload_button = QtWidgets.QPushButton(parent=self) self._reload_button.setMaximumWidth(30) self._reload_button.setIcon( self.style().standardIcon(QtWidgets.QStyle.SP_BrowserReload)) self._reload_button.clicked.connect(self.update_combo_items) self._topic_label = QtWidgets.QLabel('topic(+data member) name') self._clear_button = QtWidgets.QPushButton('all clear') self._clear_button.setMaximumWidth(200) self._clear_button.clicked.connect(self.clear_sliders) self._combo = QtWidgets.QComboBox() self._combo.setEditable(True) self.update_combo_items() self._combo.activated.connect(self.add_slider_from_combo) self._horizontal_layout.addWidget(self._reload_button) self._horizontal_layout.addWidget(self._topic_label) self._horizontal_layout.addWidget(self._combo) self._horizontal_layout.addWidget(self._clear_button) self._main_vertical_layout = QtWidgets.QVBoxLayout() self._main_vertical_layout.addLayout(self._horizontal_layout) self._main_vertical_layout.setAlignment( self._horizontal_layout, QtCore.Qt.AlignTop) self.setLayout(self._main_vertical_layout) def shutdown(self): self._model.shutdown() def main(): import sys app = QtWidgets.QApplication(sys.argv) main_window = QtWidgets.QMainWindow() main_widget = EzPublisherWidget() main_window.setCentralWidget(main_widget) main_window.show() app.exec_() if __name__ == '__main__': rospy.init_node('ez_publisher') main()
""" link: https://leetcode-cn.com/problems/generalized-abbreviation problem: 输出字符串的所有缩写,缩写规则为将连续n位用字符串n替代,不可以连续替换 solution: dfs + 备忘录。记录上一操作是否转换了数字。 solution-fix: 所有缩写可能数量定为 2**n 个,n为原串长度。可以将缩写串表达成长度为 n 的一个二进制数,第 i 为 0 时表示缩写,1 代表不变取原字符。 更高的时间复杂度,但空间复杂度更好。 """ class Solution: def generateAbbreviations(self, word: str) -> List[str]: if word == "": return [""] @functools.lru_cache(maxsize=None) def dfs(k: str, pre_num: bool) -> List[str]: if k == "": return [""] t = [] for i in range(len(k)): for kk in dfs(k[i + 1:], not pre_num): t.append((str(i + 1) + kk) if not pre_num else k[:i + 1] + kk) return t return dfs(word, False) + dfs(word, True) # --- class Solution: def generateAbbreviations(self, word: str) -> List[str]: n, res = len(word), [] for i in range(1 << n): cnt, cur, k, t = 0, 0, i, "" while cnt != n: if k & 1: cur += 1 cnt += 1 else: if cur != 0: t = str(cur) + t cur = 0 t = word[n - 1 - cnt] + t cnt += 1 k >>= 1 if cur != 0: t = str(cur) + t res.append(t) return res
try: from . import generic as g except BaseException: import generic as g class LoaderTest(g.unittest.TestCase): def test_obj_groups(self): # a wavefront file with groups defined mesh = g.get_mesh('groups.obj') # make sure some data got loaded assert g.trimesh.util.is_shape(mesh.faces, (-1, 3)) assert g.trimesh.util.is_shape(mesh.vertices, (-1, 3)) # make sure groups are the right length assert len(mesh.metadata['face_groups']) == len(mesh.faces) # check to make sure there is signal not just zeros assert mesh.metadata['face_groups'].ptp() > 0 def test_remote(self): """ Try loading a remote mesh using requests """ # get a unit cube from localhost with g.serve_meshes() as address: mesh = g.trimesh.io.load.load_remote( url=address + '/unit_cube.STL') assert g.np.isclose(mesh.volume, 1.0) assert isinstance(mesh, g.trimesh.Trimesh) def test_obj_quad(self): mesh = g.get_mesh('quadknot.obj') # make sure some data got loaded assert g.trimesh.util.is_shape(mesh.faces, (-1, 3)) assert g.trimesh.util.is_shape(mesh.vertices, (-1, 3)) assert mesh.is_watertight assert mesh.is_winding_consistent def test_obj_multiobj(self): # test a wavefront file with multiple objects in the same file meshes = g.get_mesh('two_objects.obj') self.assertTrue(len(meshes) == 2) for mesh in meshes: # make sure some data got loaded assert g.trimesh.util.is_shape(mesh.faces, (-1, 3)) assert g.trimesh.util.is_shape(mesh.vertices, (-1, 3)) assert mesh.is_watertight assert mesh.is_winding_consistent def test_obj_split_attributes(self): # test a wavefront file where pos/uv/norm have different indices # and where multiple objects share vertices # Note 'process=False' to avoid merging vertices meshes = g.get_mesh('joined_tetrahedra.obj', process=False) self.assertTrue(len(meshes) == 2) assert g.trimesh.util.is_shape(meshes[0].faces, (4, 3)) assert g.trimesh.util.is_shape(meshes[0].vertices, (9, 3)) assert g.trimesh.util.is_shape(meshes[1].faces, (4, 3)) assert g.trimesh.util.is_shape(meshes[1].vertices, (9, 3)) def test_obj_simple_order(self): # test a simple wavefront model without split indexes # and make sure we don't reorder vertices unnecessarily file_name = g.os.path.join(g.dir_models, 'cube.OBJ') # load a simple OBJ file without merging vertices m = g.trimesh.load(file_name, process=False) # we're going to load faces in a basic text way # and compare the order from this method to the # trimesh loader, to see if we get the same thing faces = [] verts = [] with open(file_name, 'r') as f: for line in f: line = line.strip() if line[0] == 'f': faces.append(line[1:].strip().split()) if line[0] == 'v': verts.append(line[1:].strip().split()) # get faces as basic numpy array faces = g.np.array(faces, dtype=g.np.int64) - 1 verts = g.np.array(verts, dtype=g.np.float64) # trimesh loader should return the same face order assert g.np.allclose(faces, m.faces) assert g.np.allclose(verts, m.vertices) def test_obj_compressed(self): mesh = g.get_mesh('cube_compressed.obj', process=False) assert g.np.allclose(g.np.abs(mesh.vertex_normals).sum(axis=1), 1.0) def test_stl(self): model = g.get_mesh('empty.stl') assert model.is_empty def test_3MF(self): # an assembly with instancing s = g.get_mesh('counterXP.3MF') # should be 2 unique meshes assert len(s.geometry) == 2 # should be 6 instances around the scene assert len(s.graph.nodes_geometry) == 6 # a single body 3MF assembly s = g.get_mesh('featuretype.3MF') # should be 2 unique meshes assert len(s.geometry) == 1 # should be 6 instances around the scene assert len(s.graph.nodes_geometry) == 1 if __name__ == '__main__': g.trimesh.util.attach_to_log() g.unittest.main()
def create_db_table_pages_metadata(db, drop=True): if drop: db["pages_metadata"].drop(ignore=True) db["pages_metadata"].create({ "id": str, "page_idx": int, # This is just a count as we work through the pages "page_char_start": int, "page_char_end": int, "page_leaf_num": int, "page_num": str, "page_num_conf": float # A confidence value relating to the page number detection }, pk=("id", "page_idx")) # compound foreign keys not currently available via sqlite_utils?
from django.contrib.auth import get_user_model from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import LoginRequiredMixin from django.db.models import Count from django.shortcuts import render, get_object_or_404, redirect from django.urls import reverse, reverse_lazy from django.views.generic import CreateView, UpdateView, DeleteView from django.views.generic.base import TemplateView from django.views.generic.list import ListView from .forms import PostForm, CommentForm from .models import Post, Group, Follow from .utils import get_user_profile, check_following User = get_user_model() class IndexView(ListView): """Главная страница сайта.""" paginate_by = 10 template_name = 'index.html' def get_queryset(self): return ( Post.objects.select_related('author', 'group') .annotate(comment_count=Count('comments')) .all() ) class FollowView(LoginRequiredMixin, ListView): """Страница постов авторов, на которых подписан пользователь.""" paginate_by = 10 template_name = 'follow.html' def get_queryset(self): return ( Post.objects.select_related('author', 'group') .annotate(comment_count=Count('comments')) .filter(author__following__user=self.request.user) ) class GroupView(ListView): """Страница сообщества с постами.""" template_name = 'group.html' paginate_by = 10 def get_queryset(self): group = get_object_or_404(Group, slug=self.kwargs['slug']) return ( group.posts.select_related('author', 'group') .annotate(comment_count=Count('comments')) .all() ) def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['group'] = get_object_or_404(Group, slug=self.kwargs['slug']) return context class GroupListView(ListView): """Страница со списком сообществ.""" model = Group template_name = 'group_list.html' paginate_by = 30 class PostCreate(LoginRequiredMixin, CreateView): """Страница создания нового поста.""" form_class = PostForm template_name = 'post_edit.html' success_url = reverse_lazy('index') def form_valid(self, form): form.instance.author = self.request.user return super().form_valid(form) class PostUpdate(LoginRequiredMixin, UpdateView): """Страница редактирования поста.""" model = Post pk_url_kwarg = 'post_id' form_class = PostForm template_name = 'post_edit.html' def get(self, request, *args, **kwargs): post = self.get_object() if post.author != request.user: # если пользователь пытается редактировать чужой пост - перенаправляем его на страницу просмотра поста return redirect('post', **kwargs) return super().get(request, *args, **kwargs) def get_success_url(self): return reverse_lazy('post', kwargs=self.kwargs) class PostDelete(LoginRequiredMixin, DeleteView): """Контроллер удаления поста. """ model = Post pk_url_kwarg = 'post_id' http_method_names = ['post'] def delete(self, request, *args, **kwargs): post = self.get_object() if request.user != post.author: return redirect('post', **kwargs) return super().delete(request, *args, **kwargs) def get_success_url(self): return reverse_lazy('profile', args=[self.kwargs['username']]) class ProfileView(ListView): """Страница профиля пользователя.""" template_name = 'profile.html' paginate_by = 5 def get_queryset(self): author = get_user_profile(self.kwargs['username']) self.kwargs['author'] = author return ( author.posts.select_related('author', 'group') .annotate(comment_count=Count('comments')) .all() ) def get_context_data(self, *, object_list=None, **kwargs): context = super().get_context_data(object_list=object_list, **kwargs) context['author'] = self.kwargs['author'] context['following'] = check_following(self.request.user, context['author']) return context class PostView(TemplateView): """Страница просмотра поста.""" template_name = 'post.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) author = get_user_profile(self.kwargs['username']) post = get_object_or_404(Post.objects.annotate(comment_count=Count('comments')), pk=self.kwargs['post_id']) comments = post.comments.select_related('author', 'author__profile').order_by('created').all() new_comment_form = CommentForm() context['author'] = author context['following'] = context['following'] = check_following(self.request.user, context['author']) context['post'] = post context['comments'] = comments context['new_comment_form'] = new_comment_form return context class CommentCreate(LoginRequiredMixin, CreateView): """Контроллер для создания комментария. """ http_method_names = ['post'] form_class = CommentForm def form_valid(self, form): form.instance.author = self.request.user form.instance.post = Post.objects.get(pk=self.kwargs['post_id']) return super().form_valid(form) def get_success_url(self): return reverse('post', kwargs=self.kwargs) @login_required def profile_follow(request, username): """Контроллер для подписки на автора.""" author = get_object_or_404(User, username=username) if author == request.user: # подписаться на самого себя нельзя return redirect('profile', username=username) if Follow.objects.filter(user=request.user, author=author).exists(): # подписаться несколько раз на одного пользователя нельзя return redirect('profile', username=username) follow = Follow.objects.create(user=request.user, author=author) return redirect('profile', username=username) @login_required def profile_unfollow(request, username): """Контроллер для отписки от автора.""" author = get_object_or_404(User, username=username) follow = get_object_or_404(Follow, user=request.user, author=author) follow.delete() return redirect('profile', username=username) def page_not_found(request, exception): """Страница ошибки при обращении к несуществующему адресу.""" return render(request, "misc/404.html", {"path": request.path}, status=404) def server_error(request): """Страница, выводимая при возникновении ошибки на сервере.""" return render(request, "misc/500.html", status=500)
#!/usr/bin/env python3 import rospy import numpy as np import math from std_msgs.msg import Float32 from std_msgs.msg import Int32 from sensor_msgs.msg import PointCloud2, PointField from sensor_msgs import point_cloud2 import os import open3d.ml as _ml3d import open3d.ml.torch as ml3d import open3d as o3d import copy import sys import time import struct import ctypes import roslib from geometry_msgs.msg import Transform, Vector3, Quaternion import numpy.lib.recfunctions as nlr from matplotlib.cm import get_cmap class ply2pointcloud(object): def __init__(self): # file_path = '/home/yellow/KPConv-PyTorch/Data/Stanford3dDataset_v1.2/input_0.020/Area_3.ply' file_path = '/home/yellow/Open3D/examples/test_data/Bunny.ply' print("Load a ply point cloud, print it, and render it") pcd = o3d.io.read_point_cloud(file_path) self.xyz_load = np.asarray(pcd.points) self.pub_msg = self.xyzrgb_array_to_pointcloud2( self.xyz_load, self.xyz_load) self.timer = rospy.Timer(rospy.Duration(0.5), self.timer_callback) self.pub_points = rospy.Publisher('input_points', PointCloud2, queue_size=1) print("ply2pointcloud init done") def xyzrgb_array_to_pointcloud2(self,points, colors, stamp=None, frame_id='base_link', seq=None): ''' Create a sensor_msgs.PointCloud2 from an array of points. ''' msg = PointCloud2() assert(points.shape == colors.shape) buf = [] if stamp: msg.header.stamp = stamp if frame_id: msg.header.frame_id = frame_id if seq: msg.header.seq = seq if len(points.shape) == 3: msg.height = points.shape[1] msg.width = points.shape[0] else: N = len(points) xyzrgb = np.array(np.hstack([points, colors]), dtype=np.float32) msg.height = 1 msg.width = N msg.fields = [ PointField('x', 0, PointField.FLOAT32, 1), PointField('y', 4, PointField.FLOAT32, 1), PointField('z', 8, PointField.FLOAT32, 1), PointField('r', 12, PointField.FLOAT32, 1), PointField('g', 16, PointField.FLOAT32, 1), PointField('b', 20, PointField.FLOAT32, 1) ] msg.is_bigendian = False msg.point_step = 24 msg.row_step = msg.point_step * N msg.is_dense = True; msg.data = xyzrgb.tostring() return msg def timer_callback(self,event): self.pub_points.publish(self.pub_msg) rospy.loginfo('pub_points') if __name__ == "__main__": rospy.init_node("ply2pointcloud") Ply2PointCloud = ply2pointcloud() rospy.spin()
import collections import os def ensure_dir(dirname): """ Ensure directory exists. Roughly equivalent to `mkdir -p` """ if not os.path.isdir(dirname): os.makedirs(dirname) def derive_out_path(in_paths, out_dir, out_extension='', strip_in_extension=True, out_prefix=None): """ Derives an 'output' path given some 'input' paths and an output directory. In the simple case that only a single path is supplied, this is simply the pathname resulting from replacing extension suffix and moving dir, e.g. ``input_dir/basename.in`` -> ``output_dir/basename.out`` If the out_dir is specified as 'None' then it is assumed that the new file should be located in the same directory as the first input path. In the case that multiple input paths are supplied, their basenames are concatenated, e.g. ``in_dir/base1.in`` + ``in_dir/base2.in`` -> ``out_dir/base1_base2.out`` If the resulting output path is identical to any input path, this raises an exception. NB the extension should be supplied including the '.' prefix. """ in_paths = listify(in_paths) if out_dir is None: out_dir = os.path.dirname(in_paths[0]) in_basenames = [os.path.basename(ip) for ip in in_paths] if strip_in_extension: in_basenames = [ os.path.splitext(bn)[0] for bn in in_basenames ] out_basename = '_'.join(in_basenames) if out_prefix: out_basename = out_prefix+out_basename out_path = os.path.join(out_dir, out_basename + out_extension) for ip in in_paths: if os.path.abspath(out_path) == os.path.abspath(ip): raise RuntimeError( 'Specified path derivation results in output overwriting input!') return out_path def save_script(script, filename): """Save a list of casa commands as a text file""" with open(filename, 'w') as fp: fp.write('\n'.join(script)) def byteify(input): """ Co-erce unicode to 'bytestring' (or string containing unicode, or dict containing unicode) Useful when e.g. importing filenames from JSON (CASA sometimes breaks if passed Unicode strings.) cf http://stackoverflow.com/a/13105359/725650 """ if isinstance(input, dict): return {byteify(key):byteify(value) for key,value in input.iteritems()} elif isinstance(input, list): return [byteify(element) for element in input] elif isinstance(input, unicode): return input.encode('utf-8') else: return input def listify(x): """ Ensure x is a (non-string) iterable; if not, enclose in a list. Returns: x or [x], accordingly. """ if isinstance(x, basestring): return [x] elif isinstance(x, collections.Iterable): return x else: return [x]
# import json # from fastapi.testclient import TestClient # from main import app # import hashing # client = TestClient(app) # class TestUser(): # def test_create_user(self): # new_user = self.user_thiago() # response = client.post('/user', data = json.dumps(new_user)) # new_user_response = response.json() # print('--=======') # print(new_user_response) # assert response.status_code == 201, response.text # assert new_user_response['name'] == new_user['name'] # # assert new_user_response['password'] == new_user['password'] # assert new_user_response['email'] == new_user['email'] # def user_thiago(self): # return { # 'id': 1, # 'name': 'Thiago Henry', # 'password': hashing.Hash().bcrypt('123456'), # 'email': 'thiago@email.com' # }
from abc import abstractmethod from pyautofinance.common.engine.engine_component import EngineComponent class Timer(EngineComponent): def __init__(self, when, **parameters): self.when = when self.parameters = parameters @abstractmethod def execute(self, cerebro, strat=None): # Returns the function of the timer pass def attach_to_engine(self, engine): engine.cerebro.add_timer(self.when, execute=self.execute, **self.parameters)
# Author: OMKAR PATHAK # Created On: 31st July 2017 # Best = Average = O(nlog(n)), Worst = O(n ^ 2) # quick_sort algorithm def sort(List): if len(List) <= 1: return List pivot = List[len(List) // 2] left = [x for x in List if x < pivot] middle = [x for x in List if x == pivot] right = [x for x in List if x > pivot] return sort(left) + middle + sort(right) # time complexities def time_complexities(): return '''Best Case: O(nlogn), Average Case: O(nlogn), Worst Case: O(n ^ 2)''' # easily retrieve the source code of the sort function def get_code(): import inspect return inspect.getsource(sort)
#!/usr/bin/env python """ $ python main.py grid.txt 4 70600674 """ import sys from operator import mul from functools import reduce def get_adjacents(grid, a, b, size): x_range = range(a, a + size) y_range = range(b, b + size) y_range_rev = range(b, b - size, -1) yield [grid[a][y] for y in y_range] yield [grid[x][b] for x in x_range] yield [grid[x][y] for x, y in zip(x_range, y_range)] yield [grid[x][y] for x, y in zip(x_range, y_range_rev)] if __name__ == '__main__': filename, size = sys.argv[1], int(sys.argv[2]) with open(filename) as f: grid = [ [int(i) for i in row.split()] for row in f ] x_max, y_max = len(grid), len(grid[0]) max_ = -1 for a in range(size - 1, x_max - size + 1): for b in range(size - 1, y_max - size + 1): for line in get_adjacents(grid, a, b, size): product = reduce(mul, line) if product > max_: max_ = product print(max_)
# -*- coding: utf-8 -*- import unittest import compat import sys from plmn.network_checks import * class NetworkRegisterVerizon(unittest.TestCase): def test_register_on_verizon(self): NetworkChecks.network_register('Verizon', 'vzwinternet') NetworkChecks.network_connect('Verizon', 'vzwinternet') if __name__ == '__main__': nargs = process_args() unittest.main(argv=sys.argv[nargs:], exit=False) Results.print_results()
"""Tests for C-implemented GenericAlias.""" import unittest import pickle from collections import ( defaultdict, deque, OrderedDict, Counter, UserDict, UserList ) from collections.abc import * from contextlib import AbstractContextManager, AbstractAsyncContextManager from os import DirEntry from re import Pattern, Match from types import GenericAlias, MappingProxyType import typing from typing import TypeVar T = TypeVar('T') class BaseTest(unittest.TestCase): """Test basics.""" def test_subscriptable(self): for t in (type, tuple, list, dict, set, frozenset, defaultdict, deque, OrderedDict, Counter, UserDict, UserList, Pattern, Match, AbstractContextManager, AbstractAsyncContextManager, Awaitable, Coroutine, AsyncIterable, AsyncIterator, AsyncGenerator, Generator, Iterable, Iterator, Reversible, Container, Collection, Callable, Set, MutableSet, Mapping, MutableMapping, MappingView, KeysView, ItemsView, ValuesView, Sequence, MutableSequence, MappingProxyType, DirEntry ): tname = t.__name__ with self.subTest(f"Testing {tname}"): alias = t[int] self.assertIs(alias.__origin__, t) self.assertEqual(alias.__args__, (int,)) self.assertEqual(alias.__parameters__, ()) def test_unsubscriptable(self): for t in int, str, float, Sized, Hashable: tname = t.__name__ with self.subTest(f"Testing {tname}"): with self.assertRaises(TypeError): t[int] def test_instantiate(self): for t in tuple, list, dict, set, frozenset, defaultdict, deque: tname = t.__name__ with self.subTest(f"Testing {tname}"): alias = t[int] self.assertEqual(alias(), t()) if t is dict: self.assertEqual(alias(iter([('a', 1), ('b', 2)])), dict(a=1, b=2)) self.assertEqual(alias(a=1, b=2), dict(a=1, b=2)) elif t is defaultdict: def default(): return 'value' a = alias(default) d = defaultdict(default) self.assertEqual(a['test'], d['test']) else: self.assertEqual(alias(iter((1, 2, 3))), t((1, 2, 3))) def test_unbound_methods(self): t = list[int] a = t() t.append(a, 'foo') self.assertEqual(a, ['foo']) x = t.__getitem__(a, 0) self.assertEqual(x, 'foo') self.assertEqual(t.__len__(a), 1) def test_subclassing(self): class C(list[int]): pass self.assertEqual(C.__bases__, (list,)) self.assertEqual(C.__class__, type) def test_class_methods(self): t = dict[int, None] self.assertEqual(dict.fromkeys(range(2)), {0: None, 1: None}) # This works self.assertEqual(t.fromkeys(range(2)), {0: None, 1: None}) # Should be equivalent def test_no_chaining(self): t = list[int] with self.assertRaises(TypeError): t[int] def test_generic_subclass(self): class MyList(list): pass t = MyList[int] self.assertIs(t.__origin__, MyList) self.assertEqual(t.__args__, (int,)) self.assertEqual(t.__parameters__, ()) def test_repr(self): class MyList(list): pass self.assertEqual(repr(list[str]), 'list[str]') self.assertEqual(repr(list[()]), 'list[()]') self.assertEqual(repr(tuple[int, ...]), 'tuple[int, ...]') self.assertTrue(repr(MyList[int]).endswith('.BaseTest.test_repr.<locals>.MyList[int]')) self.assertEqual(repr(list[str]()), '[]') # instances should keep their normal repr def test_exposed_type(self): import types a = types.GenericAlias(list, int) self.assertEqual(str(a), 'list[int]') self.assertIs(a.__origin__, list) self.assertEqual(a.__args__, (int,)) self.assertEqual(a.__parameters__, ()) def test_parameters(self): from typing import TypeVar T = TypeVar('T') K = TypeVar('K') V = TypeVar('V') D0 = dict[str, int] self.assertEqual(D0.__args__, (str, int)) self.assertEqual(D0.__parameters__, ()) D1a = dict[str, V] self.assertEqual(D1a.__args__, (str, V)) self.assertEqual(D1a.__parameters__, (V,)) D1b = dict[K, int] self.assertEqual(D1b.__args__, (K, int)) self.assertEqual(D1b.__parameters__, (K,)) D2a = dict[K, V] self.assertEqual(D2a.__args__, (K, V)) self.assertEqual(D2a.__parameters__, (K, V)) D2b = dict[T, T] self.assertEqual(D2b.__args__, (T, T)) self.assertEqual(D2b.__parameters__, (T,)) L0 = list[str] self.assertEqual(L0.__args__, (str,)) self.assertEqual(L0.__parameters__, ()) L1 = list[T] self.assertEqual(L1.__args__, (T,)) self.assertEqual(L1.__parameters__, (T,)) def test_parameter_chaining(self): from typing import TypeVar T = TypeVar('T') self.assertEqual(list[T][int], list[int]) self.assertEqual(dict[str, T][int], dict[str, int]) self.assertEqual(dict[T, int][str], dict[str, int]) self.assertEqual(dict[T, T][int], dict[int, int]) with self.assertRaises(TypeError): list[int][int] dict[T, int][str, int] dict[str, T][str, int] dict[T, T][str, int] def test_equality(self): self.assertEqual(list[int], list[int]) self.assertEqual(dict[str, int], dict[str, int]) self.assertNotEqual(dict[str, int], dict[str, str]) self.assertNotEqual(list, list[int]) self.assertNotEqual(list[int], list) def test_isinstance(self): self.assertTrue(isinstance([], list)) with self.assertRaises(TypeError): isinstance([], list[str]) def test_issubclass(self): class L(list): ... self.assertTrue(issubclass(L, list)) with self.assertRaises(TypeError): issubclass(L, list[str]) def test_type_generic(self): t = type[int] Test = t('Test', (), {}) self.assertTrue(isinstance(Test, type)) test = Test() self.assertEqual(t(test), Test) self.assertEqual(t(0), int) def test_type_subclass_generic(self): class MyType(type): pass with self.assertRaises(TypeError): MyType[int] def test_pickle(self): alias = GenericAlias(list, T) s = pickle.dumps(alias) loaded = pickle.loads(s) self.assertEqual(alias.__origin__, loaded.__origin__) self.assertEqual(alias.__args__, loaded.__args__) self.assertEqual(alias.__parameters__, loaded.__parameters__) def test_union(self): a = typing.Union[list[int], list[str]] self.assertEqual(a.__args__, (list[int], list[str])) self.assertEqual(a.__parameters__, ()) def test_union_generic(self): T = typing.TypeVar('T') a = typing.Union[list[T], tuple[T, ...]] self.assertEqual(a.__args__, (list[T], tuple[T, ...])) self.assertEqual(a.__parameters__, (T,)) if __name__ == "__main__": unittest.main()
# =============================================================================== # Copyright 2012 Jake Ross # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== # ============= enthought library imports ======================= from __future__ import absolute_import from traits.api import HasTraits from traitsui.menu import Action, Menu as MenuManager from pychron.pychron_constants import PLUSMINUS # from pyface.action.group import Group # from pyface.action.api import Group, MenuManager # ============= standard library imports ======================== # ============= local library imports ========================== class ContextMenuMixin(HasTraits): use_context_menu = True def close_popup(self): pass def action_factory(self, name, func, **kw): return Action(name=name, on_perform=getattr(self, func), **kw) def contextual_menu_contents(self): """ """ save = [('PDF', 'save_pdf', {}), ('PNG', 'save_png', {})] save_actions = [self.action_factory(n, f, **kw) for n, f, kw in save] save_menu = MenuManager(name='Save Figure', *save_actions) export_actions = [self.action_factory('CSV', 'export_data')] export_menu = MenuManager(name='Export', *export_actions) rescale = [('X', 'rescale_x_axis', {}), ('Y', 'rescale_y_axis', {}), ('Both', 'rescale_both', {})] a = self.get_rescale_actions() if a: rescale.extend(a) rescale_actions = [self.action_factory(n, f, **kw) for n, f, kw in rescale] rescale_menu = MenuManager(name='Rescale', *rescale_actions) contents = [save_menu, export_menu, rescale_menu] c = self.get_child_context_menu_actions() if c: contents.extend(c) return contents def get_rescale_actions(self): return def get_child_context_menu_actions(self): return def get_contextual_menu(self): """ """ ctx_menu = MenuManager(*self.contextual_menu_contents()) return ctx_menu # class IsotopeContextMenuMixin(ContextMenuMixin): # def set_status_omit(self): # ''' # override this method in a subclass # ''' # pass # # def set_status_include(self): # ''' # override this method in a subclass # ''' # pass # # def recall_analysis(self): # ''' # override this method in a subclass # ''' # pass # # def contextual_menu_contents(self): # # contents = super(IsotopeContextMenuMixin, self).contextual_menu_contents() # contents.append(self.action_factory('Edit Analyses', 'edit_analyses')) # actions = [] # if hasattr(self, 'selected_analysis'): # if self.selected_analysis: # actions.append(self.action_factory('Recall', 'recall_analysis')) # if self.selected_analysis.status == 0: # actions.append(self.action_factory('Omit', 'set_status_omit')) # else: # actions.append(self.action_factory('Include', 'set_status_include')) # actions.append(self.action_factory('Void', 'set_status_void')) # # contents.append(MenuManager(name='Analysis', *actions)) # # # contents.append(MenuManager( # # self.action_factory('Recall', 'recall_analysis', enabled=enabled), # # self.action_factory('Omit', 'set_status_omit', enabled=enabled), # # self.action_factory('Include', 'set_status_include', enabled=enabled), # # name='Analysis')) # return contents class RegressionContextMenuMixin(ContextMenuMixin): def contextual_menu_contents(self): contents = super(RegressionContextMenuMixin, self).contextual_menu_contents() actions = [('linear', 'cm_linear'), ('parabolic', 'cm_parabolic'), ('cubic', 'cm_cubic'), ('quartic', 'cm_quartic'), ('exponential', 'cm_exponential'), (u'average {}SD'.format(PLUSMINUS), 'cm_average_std'), (u'average {}SEM'.format(PLUSMINUS), 'cm_average_sem')] menu = MenuManager(*[self.action_factory(name, func) for name, func in actions], name='Fit') actions = [('SD', 'cm_sd'), ('SEM', 'cm_sem'), ('CI', 'cm_ci'), ('MonteCarlo', 'cm_mc')] emenu = MenuManager(*[self.action_factory(name, func) for name, func in actions], name='Error') fmenu = MenuManager(self.action_factory('Show/Hide Filter Region', 'cm_toggle_filter_bounds'), self.action_factory('Show/Hide All Filter Region', 'cm_toggle_filter_bounds_all'), name='Filtering') contents.append(menu) contents.append(emenu) contents.append(fmenu) return contents # ============= EOF =============================================
import functools import importlib import os import sys import matplotlib as mpl from . import _backports from ._mplcairo import ( cairo_to_premultiplied_argb32, cairo_to_premultiplied_rgba8888, cairo_to_straight_rgba8888, ) @functools.lru_cache(1) def get_tex_font_map(): return mpl.dviread.PsfontsMap(mpl.dviread.find_tex_file("pdftex.map")) def get_glyph_name(dvitext): ps_font = get_tex_font_map()[dvitext.font.texname] return (_backports._parse_enc(ps_font.encoding)[dvitext.glyph] if ps_font.encoding is not None else None) def get_matplotlib_gtk_backend(): import gi required = gi.get_required_version("Gtk") if required == "4.0": versions = [4] elif required == "3.0": versions = [3] elif os.environ.get("_GTK_API"): # Private undocumented API. versions = [int(os.environ["_GTK_API"])] else: versions = [4, 3] for version in versions: # Matplotlib converts require_version ValueErrors into ImportErrors. try: mod = importlib.import_module( f"matplotlib.backends.backend_gtk{version}") return mod, getattr(mod, f"_BackendGTK{version}") except ImportError: pass raise ImportError("Failed to import any Matplotlib GTK backend") @functools.lru_cache(1) def fix_ipython_backend2gui(): # matplotlib#12637 (<3.1). # Fix hard-coded module -> toolkit mapping in IPython (used for `ipython # --auto`). This cannot be done at import time due to ordering issues (so # we do it when creating a canvas) and should only be done once (hence the # `lru_cache(1)`). if sys.modules.get("IPython") is None: # Can be explicitly set to None. return import IPython ip = IPython.get_ipython() if not ip: return from IPython.core import pylabtools as pt pt.backend2gui.update({ "module://mplcairo.gtk": "gtk3", "module://mplcairo.qt": "qt", "module://mplcairo.tk": "tk", "module://mplcairo.wx": "wx", "module://mplcairo.macosx": "osx", }) # Work around pylabtools.find_gui_and_backend always reading from # rcParamsOrig. orig_origbackend = mpl.rcParamsOrig["backend"] try: mpl.rcParamsOrig["backend"] = mpl.rcParams["backend"] ip.enable_matplotlib() finally: mpl.rcParamsOrig["backend"] = orig_origbackend
import numpy as np import modules_disp as disp class Module: def sgd_step(self, lrate): pass # For modules w/o weights class Linear(Module): def __init__(self,m,n): self.m, self.n = (m, n) # (in size, out size) self.W0=np.zeros([self.n,1]) # (n x 1) self.W = np.random.normal(0,1.0*m**(-.5),[m,n]) # (m x n) def forward(self,A): self.A = A # (m x b) return np.transpose(self.W)@(self.A) + self.W0 # Your code (n x b) def backward(self,dLdZ): # dLdZ is (n x b), uses stored self.A self.dLdW = self.A@np.transpose(dLdZ) # Your code self.dLdW0 = np.sum(dLdZ,axis=1) # Your code return self.dLdW+self.dLdW0 # Your code (m x b) def sgd_step(self, lrate): # Gradient descent step self.W = self.W - lrate * self.dLdW # Your code self.W0 = self.W0 - lrate * self.dLdW0 # Your code layer=Linear(2,3) print(layer) print(layer.forward(np.array([[1,2,3],[2,6,4]]))) print(layer.backward(np.array([[0.5,0.5,0.5],[0.1,0.3,1.1],[0.2,0.1,0.2]]))) layer.sgd_step(0.001) class Tanh(Module): # Layer activation def forward(self,Z): self.A = np.tanh(Z) return self.A def backward(self,dLdA): # Uses stored self.A return None # Your code class ReLU(Module): # Layer activation def forward(self,Z): self.A = None # Your code return self.A def backward(self,dLdA): # uses stored self.A return None # Your code class SoftMax(Module): # Output activation def forward(self,Z): return None # Your code def backward(self,dLdZ): # Assume that dLdZ is passed in return dLdZ def class_fun(self, Ypred): # Return class indices return None # Your code class NLL(Module): # Loss def forward(self,Ypred,Y): self.Ypred = Ypred self.Y = Y return None # Your code def backward(self): # Use stored self.Ypred, self.Y return None # Your code (see end of 5.2) class Sequential: def __init__(self, modules, loss): # List of modules, loss module self.modules = modules self.loss = loss def sgd(self, X, Y, iters = 100, lrate = 0.005): # Train D,N = X.shape for it in range(iters): pass # Your code def forward(self,X): # Compute Ypred for m in self.modules: X = m.forward(X) return X def backward(self,delta): # Update dLdW and dLdW0 # Note reversered list of modules for m in self.modules[::-1]: delta = m.backward(delta) def sgd_step(self,lrate): # Gradient descent step for m in self.modules: m.sgd_step(lrate) #net = Sequential([Linear(2,3), Tanh(), # Linear(3,3), Tanh(), # Linear(3,2), SoftMax()]) # train the network on data and labels #net.sgd(X, Y) ###################################################################### # Data Sets ###################################################################### def super_simple_separable_through_origin(): X = np.array([[2, 3, 9, 12], [5, 1, 6, 5]]) y = np.array([[1, 0, 1, 0]]) return X, for_softmax(y) def super_simple_separable(): X = np.array([[2, 3, 9, 12], [5, 2, 6, 5]]) y = np.array([[1, 0, 1, 0]]) return X, for_softmax(y) def xor(): X = np.array([[1, 2, 1, 2], [1, 2, 2, 1]]) y = np.array([[1, 1, 0, 0]]) return X, for_softmax(y) def xor_more(): X = np.array([[1, 2, 1, 2, 2, 4, 1, 3], [1, 2, 2, 1, 3, 1, 3, 3]]) y = np.array([[1, 1, 0, 0, 1, 1, 0, 0]]) return X, for_softmax(y) def hard(): X= np.array([[-0.23390341, 1.18151883, -2.46493986, 1.55322202, 1.27621763, 2.39710997, -1.3440304 , -0.46903436, -0.64673502, -1.44029872, -1.37537243, 1.05994811, -0.93311512, 1.02735575, -0.84138778, -2.22585412, -0.42591102, 1.03561105, 0.91125595, -2.26550369], [-0.92254932, -1.1030963 , -2.41956036, -1.15509002, -1.04805327, 0.08717325, 0.8184725 , -0.75171045, 0.60664705, 0.80410947, -0.11600488, 1.03747218, -0.67210575, 0.99944446, -0.65559838, -0.40744784, -0.58367642, 1.0597278 , -0.95991874, -1.41720255]]) y= np.array([[ 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 1., 1., 1., 0., 0., 0., 1., 1., 0.]]) return X, for_softmax(y) def for_softmax(y): return np.vstack([y, 1-y]) ###################################################################### # Tests ###################################################################### def sgd_test(nn): lrate = 0.005 # data X,Y = super_simple_separable() print('X\n', X) print('Y\n', Y) # define the modules assert len(nn.modules) == 4 (l_1, f_1, l_2, f_2) = nn.modules Loss = nn.loss print('l_1.W\n', l_1.W) print('l_1.W0\n', l_1.W0) print('l_2.W\n', l_2.W) print('l_2.W0\n', l_2.W0) z_1 = l_1.forward(X) print('z_1\n', z_1) a_1 = f_1.forward(z_1) print('a_1\n', a_1) z_2 = l_2.forward(a_1) print('z_2\n', z_2) a_2 = f_2.forward(z_2) print('a_2\n', a_2) Ypred = a_2 loss = Loss.forward(Ypred, Y) print('loss\n', loss) dloss = Loss.backward() print('dloss\n', dloss) dL_dz2 = f_2.backward(dloss) print('dL_dz2\n', dL_dz2) dL_da1 = l_2.backward(dL_dz2) print('dL_da1\n', dL_da1) dL_dz1 = f_1.backward(dL_da1) print('dL_dz1\n', dL_dz1) dL_dX = l_1.backward(dL_dz1) print('dL_dX\n', dL_dX) l_1.sgd_step(lrate) print('l_1.W\n', l_1.W) print('l_1.W0\n', l_1.W0) l_2.sgd_step(lrate) print('l_2.W\n', l_2.W) print('l_2.W0\n', l_2.W0) ###################################################################### # Desired output ###################################################################### ''' # sgd_test for Tanh activation and SoftMax output # np.random.seed(0) # sgd_test(Sequential([Linear(2,3), Tanh(), Linear(3,2), SoftMax()], NLL())) X [[ 2 3 9 12] [ 5 2 6 5]] Y [[1 0 1 0] [0 1 0 1]] l_1.W [[ 1.24737338 0.28295388 0.69207227] [ 1.58455078 1.32056292 -0.69103982]] l_1.W0 [[ 0.] [ 0.] [ 0.]] l_2.W [[ 0.5485338 -0.08738612] [-0.05959343 0.23705916] [ 0.08316359 0.8396252 ]] l_2.W0 [[ 0.] [ 0.]] z_1 [[ 10.41750064 6.91122168 20.73366505 22.8912344 ] [ 7.16872235 3.48998746 10.46996239 9.9982611 ] [ -2.07105455 0.69413716 2.08241149 4.84966811]] a_1 [[ 1. 0.99999801 1. 1. ] [ 0.99999881 0.99814108 1. 1. ] [-0.96871843 0.60063321 0.96941021 0.99987736]] z_2 [[ 0.40837833 0.53900088 0.56956001 0.57209377] [-0.66368766 0.65353931 0.96361427 0.98919526]] a_2 [[ 0.74498961 0.47139666 0.4027417 0.39721055] [ 0.25501039 0.52860334 0.5972583 0.60278945]] loss 2.3475491206369514 dloss [[-0.25501039 0.47139666 -0.5972583 0.39721055] [ 0.25501039 -0.47139666 0.5972583 -0.39721055]] dL_dz2 [[-0.25501039 0.47139666 -0.5972583 0.39721055] [ 0.25501039 -0.47139666 0.5972583 -0.39721055]] dL_da1 [[-0.16216619 0.29977053 -0.37980845 0.2525941 ] [ 0.07564949 -0.13984104 0.17717822 -0.11783354] [ 0.19290557 -0.35659347 0.45180297 -0.30047453]] dL_dz1 [[ -5.80088442e-10 1.19079549e-06 -0.00000000e+00 0.00000000e+00] [ 1.79552879e-07 -5.19424389e-04 5.70658808e-10 -9.74876621e-10] [ 1.18800113e-02 -2.27948719e-01 2.72183509e-02 -7.36963862e-05]] dL_dX [[ 8.22187641e-03 -1.57902474e-01 1.88370660e-02 -5.10035008e-05] [ -8.20932462e-03 1.56837595e-01 -1.88089635e-02 5.09258498e-05]] l_1.W [[ 1.24737336 0.28296167 0.69415229] [ 1.58455077 1.32056811 -0.68987204]] l_1.W0 [[ -5.95107701e-09] [ 2.59622620e-06] [ 9.44620265e-04]] l_2.W [[ 0.54845212 -0.08730444] [-0.05967074 0.23713647] [ 0.08142188 0.84136692]] l_2.W0 [[ -8.16925787e-05] [ 8.16925787e-05]] ''' ''' # Compare to the results above np.random.seed(0) nn = Sequential([Linear(2, 3), Tanh(), Linear(3,2), SoftMax()], NLL()) # These should match the initial weights above print('-----------------') print(nn.modules[0].W, '\n', nn.modules[0].W0) print(nn.modules[2].W, '\n', nn.modules[2].W0) # Run one iteration nn.sgd(X,Y, iters = 1, lrate=lrate) # These should match the final weights above print('-----------------') print(nn.modules[0].W, '\n', nn.modules[0].W0) print(nn.modules[2].W, '\n', nn.modules[2].W0) ''' ''' # sgd_test for ReLU activation and SoftMax output # np.random.seed(0) # sgd_test(Sequential([Linear(2,3), ReLU(), Linear(3,2), SoftMax()], NLL())) X [[ 2 3 9 12] [ 5 2 6 5]] Y [[1 0 1 0] [0 1 0 1]] l_1.W [[ 1.24737338 0.28295388 0.69207227] [ 1.58455078 1.32056292 -0.69103982]] l_1.W0 [[ 0.] [ 0.] [ 0.]] l_2.W [[ 0.5485338 -0.08738612] [-0.05959343 0.23705916] [ 0.08316359 0.8396252 ]] l_2.W0 [[ 0.] [ 0.]] z_1 [[ 10.41750064 6.91122168 20.73366505 22.8912344 ] [ 7.16872235 3.48998746 10.46996239 9.9982611 ] [ -2.07105455 0.69413716 2.08241149 4.84966811]] a_1 [[ 10.41750064 6.91122168 20.73366505 22.8912344 ] [ 7.16872235 3.48998746 10.46996239 9.9982611 ] [ 0. 0.69413716 2.08241149 4.84966811]] z_2 [[ 5.28714248 3.64078533 10.92235599 12.36410102] [ 0.78906625 0.80620366 2.41861097 4.44170662]] a_2 [[ 9.88992134e-01 9.44516196e-01 9.99797333e-01 9.99637598e-01] [ 1.10078665e-02 5.54838042e-02 2.02666719e-04 3.62401857e-04]] loss 10.8256925657554 dloss [[ -1.10078665e-02 9.44516196e-01 -2.02666719e-04 9.99637598e-01] [ 1.10078665e-02 -9.44516196e-01 2.02666719e-04 -9.99637598e-01]] dL_dz2 [[ -1.10078665e-02 9.44516196e-01 -2.02666719e-04 9.99637598e-01] [ 1.10078665e-02 -9.44516196e-01 2.02666719e-04 -9.99637598e-01]] dL_da1 [[ -7.00012165e-03 6.00636672e-01 -1.28879806e-04 6.35689470e-01] [ 3.26551207e-03 -2.80193173e-01 6.01216067e-05 -2.96545080e-01] [ 8.32702834e-03 -7.14490239e-01 1.53309592e-04 -7.56187463e-01]] dL_dz1 [[ -7.00012165e-03 6.00636672e-01 -1.28879806e-04 6.35689470e-01] [ 3.26551207e-03 -2.80193173e-01 6.01216067e-05 -2.96545080e-01] [ 0.00000000e+00 -7.14490239e-01 1.53309592e-04 -7.56187463e-01]] dL_dX [[ -7.80777608e-03 1.75457571e-01 -3.76482800e-05 1.85697170e-01] [ -6.77973405e-03 1.07546779e+00 -2.30765264e-04 1.13823145e+00]] l_1.W [[ 1.20029826 0.30491412 0.74815397] [ 1.56283104 1.33069504 -0.66499483]] l_1.W0 [[-0.00614599] [ 0.00286706] [ 0.00735262]] l_2.W [[ 0.40207469 0.05907299] [-0.1256432 0.30310892] [ 0.05564803 0.86714076]] l_2.W0 [[-0.00966472] [ 0.00966472]] ''' ''' X, Y = hard() nn = Sequential([Linear(2, 10), ReLU(), Linear(10, 10), ReLU(), Linear(10,2), SoftMax()], NLL()) disp.classify(X, Y, nn, it=100000) ''' ####### # Test cases ###### def nn_tanh_test(): np.random.seed(0) nn = Sequential([Linear(2,3), Tanh(), Linear(3,2), SoftMax()], NLL()) X,Y = super_simple_separable() nn.sgd(X,Y, iters = 1, lrate=0.005) return [np.vstack([nn.modules[0].W, nn.modules[0].W0.T]).tolist(), np.vstack([nn.modules[2].W, nn.modules[2].W0.T]).tolist()] def nn_relu_test(): np.random.seed(0) nn = Sequential([Linear(2,3), ReLU(), Linear(3,2), SoftMax()], NLL()) X,Y = super_simple_separable() nn.sgd(X,Y, iters = 2, lrate=0.005) return [np.vstack([nn.modules[0].W, nn.modules[0].W0.T]).tolist(), np.vstack([nn.modules[2].W, nn.modules[2].W0.T]).tolist()] def nn_pred_test(): np.random.seed(0) nn = Sequential([Linear(2,3), ReLU(), Linear(3,2), SoftMax()], NLL()) X,Y = super_simple_separable() nn.sgd(X,Y, iters = 1, lrate=0.005) Ypred = nn.forward(X) return nn.modules[-1].class_fun(Ypred).tolist(), [nn.loss.forward(Ypred, Y)]
import discord import random import configparser config = configparser.ConfigParser() def loadconfig(): config = configparser.ConfigParser() config.read('config.sffc') Version = config['Data']['version'] token = config['Data']['token'] alttoken = config['Data']['alttoken'] prefix = config['Data']['prefix'] currency = config['Data']['currency'] return Version, token, alttoken, prefix, currency; def cserverconfig(sID, sCH, sMO): config = configparser.ConfigParser() config.add_section("Data") config.add_section("Flags") config['Data']['Version'] = '1' config['Data']['Server ID'] = sID config['Flags']['SuggestChannel'] = sCH config['Data']['Moderators'] = sMO with open(sID + '.sffs', 'w') as configfile: config.write(configfile) def lserverconfig(): config = configparser.ConfigParser(sID) config.read(sID + '.sffs') sID = config['Data']['Server ID'] sCH = config['Flags']['SuggestChannel'] sMO = config['Data']['Moderators'] return sID, sCH, sMO; def cuserconfig(money, uID): #Actually just writes money config = configparser.ConfigParser() config.add_section("Metadata") config.add_section("Economy") config['Metadata']['UserID'] = uID config['Metadata']['Version'] = '1' config['Economy']['money'] = money with open(uID + '.sffu', 'w') as configfile: config.write(configfile) def luserconfig(uID): #Actually just returns amount of money config = configparser.ConfigParser() config.read(uID + '.sffu') Money = config['Economy']['money'] return Money
import functools import gc def clear_all_lru_caches(): gc.collect() wrappers = [ a for a in gc.get_objects() if isinstance(a, functools._lru_cache_wrapper) ] for wrapper in wrappers: wrapper.cache_clear()
""" /****************************************************************************** This source file is part of the Avogadro project. Copyright 2016 Kitware, Inc. This source code is released under the New BSD License, (the "License"). Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ******************************************************************************/ """ import argparse import json import sys from cclib.io.ccio import ccopen from cclib.io.cjsonwriter import CJSON def getMetaData(): metaData = {} metaData['inputFormat'] = 'cjson' metaData['outputFormat'] = 'cjson' metaData['operations'] = ['read'] metaData['identifier'] = 'CJSON writer' metaData['name'] = 'CJSON' metaData['description'] = "The cclib script provided by the cclib repository is used to " +\ "write the CJSON format using the input file provided " +\ "to Avogadro2." metaData['fileExtensions'] = ['out', 'log', 'adfout', 'g09'] metaData['mimeTypes'] = [''] return metaData def read(): # Pass the standard input to ccopen: log = ccopen(sys.stdin) ccdata = log.parse() output_obj = CJSON(ccdata, terse=True) output = output_obj.generate_repr() return output if __name__ == "__main__": parser = argparse.ArgumentParser('Read files using cclib') parser.add_argument('--metadata', action='store_true') parser.add_argument('--read', action='store_true') parser.add_argument('--write', action='store_true') parser.add_argument('--display-name', action='store_true') parser.add_argument('--lang', nargs='?', default='en') args = vars(parser.parse_args()) if args['metadata']: print(json.dumps(getMetaData())) elif args['display_name']: print(getMetaData()['name']) elif args['read']: print(read()) elif args['write']: pass