content
stringlengths
5
1.05M
class Solution: def isValid(self, s): o = ['{', '(', '['] c = ['}', ')', ']'] occurances = {} occurances['{'] = '}' occurances['('] = ')' occurances['['] = ']' list_occ = [] for letter in s: if letter in o: list_occ.append(letter) elif letter in c: if len(list_occ) ==0 : return False if letter == occurances[list_occ[len(list_occ)-1]]: del list_occ[-1] else: return False if len(list_occ): return False return True a = Solution() print(a.isValid("[]"))
__author__ = "arunrajms" from rest_framework import serializers from resource.models import Switch from rest_framework.validators import UniqueValidator import re TIER_CHOICES = ['Spine','Leaf','Core','Host','Any','any'] class JSONSerializerField(serializers.Field): """ Serializer for JSONField -- required to make field writable""" def to_internal_value(self, data): return data def to_representation(self, value): return value class SwitchSerializer(serializers.Serializer): id = serializers.IntegerField(read_only=True) name = serializers.CharField(max_length=100,required=True, \ validators=[UniqueValidator(queryset=Switch.objects.all())]) model = serializers.CharField(max_length=100,required=True) image = serializers.CharField(max_length=100,required=True) line_cards = serializers.CharField(max_length=100,required=True) slots = serializers.IntegerField() tier = serializers.ChoiceField(TIER_CHOICES) def create(self,validated_data): ''' TBD ''' return Pool.objects.create(**validated_data) class SwitchGetSerializer(serializers.Serializer): id = serializers.IntegerField(read_only=True) name = serializers.CharField(max_length=100,required=True) model = serializers.CharField(max_length=100,required=True) image = serializers.CharField(max_length=100,required=True) line_cards = serializers.CharField(max_length=100,required=True) slots = serializers.IntegerField() tier = serializers.CharField(max_length=100,required=True)
import os import zipfile import glob import shutil from pathlib import Path def duplicate(path): shutil.copy2(path, path + '_cpy') return path + '_cpy' def modify_to_rar(path): if path.endswith('.pptx_cpy'): new_str = path[:-9] + '.zip' os.rename(path, new_str) return new_str else: print('File Type Error') def decompress(path): zip_file = zipfile.ZipFile(path) tmp_decompression_path = path[:-4] + '_files' os.mkdir(tmp_decompression_path) os.chdir(tmp_decompression_path) zip_file.extractall() zip_file.close() return tmp_decompression_path # extract audios to the parent directory of current path def extract_audio(path): files = glob.iglob(os.path.join(path + '/ppt/media', "*.m4a")) original_path = Path(path) savings_path = original_path.parent for file in files: if os.path.isfile(file): shutil.copy2(file, savings_path) def rm_cache(path): if path.endswith('.zip'): os.remove(path) else: shutil.rmtree(path) def extract_from(path): duplication_path = duplicate(path) modification_path = modify_to_rar(duplication_path) decompression_path = decompress(modification_path) extract_audio(decompression_path) rm_cache(modification_path) rm_cache(decompression_path)
# This code belongs to the paper # # J. Hertrich and G. Steidl. # Inertial Stochastic PALM (iSPALM) and Applications in Machine Learning. # ArXiv preprint arXiv:2005.02204, 2020. # # Please cite the paper, if you use the code. from palm_algs import * import numpy.random import numpy.matlib import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import time import pickle import os #load and normalize data mnist=tf.keras.datasets.mnist (x_train,y_train),(x_test,y_test)=mnist.load_data() x_train=1.0*x_train x_test=1.0*x_test x_train_flat=[] x_test_flat=[] y_train_vec=[] y_test_vec=[] for i in range(0,len(x_train)): x_train_flat.append(x_train[i,:,:].reshape((28*28))) y_vec=np.zeros(10) y_vec[y_train[i]]=1.0 y_train_vec.append(y_vec) for i in range(0,len(x_test)): x_test_flat.append(x_test[i,:,:].reshape((28*28))) y_vec=np.zeros(10) y_vec[y_test[i]]=1.0 y_test_vec.append(y_vec) x_train=1.0*np.array(x_train_flat).astype(np.float32) y_train=1.0*np.array(y_train_vec).astype(np.float32) x_test=1.0*np.array(x_test_flat).astype(np.float32) y_test=1.0*np.array(y_test_vec).astype(np.float32) mean_x_train=1.0/len(x_train)*np.sum(x_train,axis=0) x_train=x_train-np.matlib.repmat(mean_x_train,len(x_train),1) x_test=x_test-np.matlib.repmat(mean_x_train,len(x_test),1) max_x_train=np.max(np.abs(x_train)) x_train=x_train/max_x_train x_test=x_test/max_x_train print(np.prod(y_train.shape)) # parameters n=x_train.shape[1] sizes=[784,400,200] my_activation=tf.keras.activations.elu # required functions for PALM models def H(X,batch): # computes the loss function of the model on the data contained in batch params=X[0] Ts=[] bs=[] ind=0 for i in range(len(sizes)): Ts.append(tf.reshape(params[ind:(ind+sizes[i]*n)],[n,sizes[i]])) ind+=sizes[i]*n bs.append(params[ind:(ind+sizes[i])]) ind+=sizes[i] Ts.append(tf.reshape(params[ind:],[10,n])) x=batch[:,:n] y=batch[:,n:] for i in range(len(sizes)): x=tf.linalg.matvec(Ts[i],x,transpose_a=True)+bs[i] x=my_activation(x) x=tf.linalg.matvec(Ts[i],x) x=tf.linalg.matvec(Ts[-1],x) x=tf.keras.activations.sigmoid(x) loss=tf.reduce_sum((x-y)**2) return loss def accuracy(X,batch): # computes the accuracy of the model on the data contained in batch params=X[0] Ts=[] bs=[] ind=0 for i in range(len(sizes)): Ts.append(tf.reshape(params[ind:(ind+sizes[i]*n)],[n,sizes[i]])) ind+=sizes[i]*n bs.append(params[ind:(ind+sizes[i])]) ind+=sizes[i] Ts.append(tf.reshape(params[ind:],[10,n])) x=batch[:,:n] y=batch[:,n:] for i in range(len(sizes)): x=tf.linalg.matvec(Ts[i],x,transpose_a=True)+bs[i] x=my_activation(x) x=tf.linalg.matvec(Ts[i],x) x=tf.linalg.matvec(Ts[-1],x) x=tf.keras.activations.sigmoid(x) x_max=tf.argmax(x,axis=1) y_max=tf.argmax(y,axis=1) correct=tf.reduce_sum(tf.cast(tf.equal(x_max,y_max),dtype=tf.float32)) accuracy=correct/y.shape[0] return accuracy.numpy() @tf.function def proj_orth(X): # Projects the matrix X onto the Stiefel manifold. num_iter=4 Y=X for i in range(num_iter): Y_inv=tf.eye(X.shape[1])+tf.matmul(Y,Y,transpose_a=True) Y=2*tf.matmul(Y,tf.linalg.inv(Y_inv)) return Y def prox_f(arg,lam): # prox of the iota-function of the feasible set out=[] ind=0 for i in range(len(sizes)): T=tf.reshape(arg[ind:(ind+sizes[i]*n)],[n,sizes[i]]) T=proj_orth(T) out.append(tf.reshape(T,[-1])) ind+=sizes[i]*n out.append(arg[ind:(ind+sizes[i])]) ind+=sizes[i] last_T=tf.maximum(tf.minimum(arg[ind:],100.),-100.) out.append(last_T) return tf.concat(out,0) batch_size=1500 test_batch_size=1500 steps_per_epch=x_train.shape[0]//batch_size epch=200 sarah_p=1000 ens_full=100 runs=10 springs=[] ispalms=[] palms=[] ipalms=[] sgds=[] samples=np.concatenate([x_train,y_train],1) samples_test=np.concatenate([x_test,y_test],1) print(samples.shape) # initialization init_vals=[] for i in range(len(sizes)): T=tf.random.normal((n,sizes[i])) q,r=tf.linalg.qr(T) init_vals.append(tf.reshape(q,[-1])) init_vals.append(tf.zeros(sizes[i])) init_vals.append(0.05*tf.random.normal([10*n])) init_vals=[tf.concat(init_vals,0).numpy()] mydir='PNN_results' if not os.path.isdir(mydir): os.mkdir(mydir) def record_grad(optimizer): # computes after each epoch the norm of the Riemannian gradient record_ds=tf.data.Dataset.from_tensor_slices(samples).batch(batch_size) optimizer.precompile() grad_norms=[] for epoch in range(epch): optimizer.exec_epoch() grad_norm=0. grad=0. for batch in record_ds: grad+=optimizer.model.grad_batch(batch,0) ind=0 params=optimizer.model.X[0] for i in range(len(sizes)): grad_T=tf.reshape(grad[ind:(ind+sizes[i]*n)],[n,sizes[i]]) T=tf.reshape(params[ind:(ind+sizes[i]*n)],[n,sizes[i]]) W_hat=tf.linalg.matmul(grad_T,tf.transpose(T))-0.5*tf.linalg.matmul(T,tf.linalg.matmul(tf.transpose(T),tf.linalg.matmul(grad_T,tf.transpose(T)))) W=W_hat-tf.transpose(W_hat) rie_grad=tf.linalg.matmul(W,T) grad_norm+=tf.reduce_sum(rie_grad**2) ind+=sizes[i]*n grad_norm+=tf.reduce_sum(grad[ind:(ind+sizes[i])]**2) ind+=sizes[i] grad_norm+=tf.reduce_sum(grad[ind:]**2) grad_norm=grad_norm.numpy() grad_norms.append(grad_norm) print(grad_norm) return optimizer.my_times,optimizer.test_vals,optimizer.train_vals,grad_norms for run in range(0,runs): np.random.seed(10+2*run) tf.random.set_seed(11+2*run) sarah_seq=tf.random.uniform(shape=[epch*steps_per_epch+100],minval=0,maxval=1,dtype=tf.float32) # PALM_Model declaration model=PALM_Model(init_vals,dtype='float32') model.H=H model.prox_funs=[prox_f] model2=PALM_Model(init_vals,dtype='float32') model3=PALM_Model(init_vals,dtype='float32') model4=PALM_Model(init_vals,dtype='float32') model2.H=H model2.prox_funs=[prox_f] model3.H=H model3.prox_funs=[prox_f] model4.H=H model4.prox_funs=[prox_f] # run algorithms print('\n-------------------- RUN '+str(run+1)+' SPRING --------------------\n') spring_optimizer=PALM_Optimizer(model,data=samples,batch_size=batch_size,method='SPRING-SARAH',step_size=0.7,steps_per_epoch=steps_per_epch,sarah_seq=sarah_seq,ensure_full=ens_full,backup_dir=None,sarah_p=sarah_p,test_data=samples_test,test_batch_size=test_batch_size) spring=record_grad(spring_optimizer) spring=spring+(accuracy(model.X,samples_test),) with open(mydir+'/spring'+str(run)+'.pickle', 'wb') as f: pickle.dump(spring,f) springs.append(spring) print('\n-------------------- RUN '+str(run+1)+' iSPALM --------------------\n') ispalm_optimizer=PALM_Optimizer(model2,data=samples,batch_size=batch_size,method='iSPALM-SARAH',step_size=.7,inertial_step_size=.99,steps_per_epoch=steps_per_epch,sarah_seq=sarah_seq,ensure_full=ens_full,backup_dir=None,sarah_p=sarah_p,test_data=samples_test,test_batch_size=test_batch_size) ispalm=record_grad(ispalm_optimizer) ispalm=ispalm+(accuracy(model2.X,samples_test),) with open(mydir+'/ispalm'+str(run)+'.pickle', 'wb') as f: pickle.dump(ispalm,f) ispalms.append(ispalm) if run==0: print('\n-------------------- RUN '+str(run+1)+' PALM --------------------\n') palm_optimizer=PALM_Optimizer(model3,data=samples,batch_size=batch_size,method='PALM',step_size=1.,backup_dir=None,test_data=samples_test) palm=record_grad(palm_optimizer) palm=palm+(accuracy(model3.X,samples_test),) with open(mydir+'/palm'+str(run)+'.pickle', 'wb') as f: pickle.dump(palm,f) palms.append(palm) print('\n-------------------- RUN '+str(run+1)+' iPALM --------------------\n') ipalm_optimizer=PALM_Optimizer(model4,data=samples,batch_size=batch_size,method='iPALM',step_size=.9,backup_dir=None,test_data=samples_test) ipalm=record_grad(ipalm_optimizer) ipalm=ipalm+(accuracy(model4.X,samples_test),) with open(mydir+'/ipalm'+str(run)+'.pickle', 'wb') as f: pickle.dump(ipalm,f) ipalms.append(ipalm) av_acc_palm=np.mean([p[4] for p in palms]) av_acc_ipalm=np.mean([p[4] for p in ipalms]) av_acc_spring=np.mean([p[4] for p in springs]) av_acc_ispalm=np.mean([p[4] for p in ispalms]) print('Average accuracy PALM: '+str(av_acc_palm)) print('Average accuracy iPALM: '+str(av_acc_ipalm)) print('Average accuracy SPRING: '+str(av_acc_spring)) print('Average accuracy iSPALM: '+str(av_acc_ispalm)) av_grad_palm=np.mean(np.stack([p[3] for p in palms]),axis=0) av_grad_ipalm=np.mean(np.stack([p[3] for p in ipalms]),axis=0) av_grad_spring=np.mean(np.stack([p[3] for p in springs]),axis=0) av_grad_ispalm=np.mean(np.stack([p[3] for p in ispalms]),axis=0) fig=plt.figure() plt.plot(av_grad_palm,'-',c='red') plt.plot(av_grad_ipalm,'--',c='green') plt.plot(av_grad_spring,'-.',c='black') plt.plot(av_grad_ispalm,':',c='blue') plt.yscale("log") plt.legend(['PALM','iPALM','SPRING-SARAH','iSPALM-SARAH']) fig.savefig(mydir+'/PNNs_grads.png',dpi=1200) plt.close(fig) av_steps_palm=np.mean(np.stack([p[2] for p in palms]),axis=0)/np.prod(y_train.shape) av_steps_ipalm=np.mean(np.stack([p[2] for p in ipalms]),axis=0)/np.prod(y_train.shape) av_steps_spring=np.mean(np.stack([p[2] for p in springs]),axis=0)/np.prod(y_train.shape) av_steps_ispalm=np.mean(np.stack([p[2] for p in ispalms]),axis=0)/np.prod(y_train.shape) if runs>1: std_steps_spring=np.sqrt(np.mean((np.stack([p[2]/np.prod(y_train.shape) for p in springs])-av_steps_spring)**2,axis=0)) std_steps_ispalm=np.sqrt(np.mean((np.stack([p[2]/np.prod(y_train.shape) for p in ispalms])-av_steps_ispalm)**2,axis=0)) av_steps_palm_test=np.mean(np.stack([p[1] for p in palms]),axis=0)/np.prod(y_test.shape) av_steps_ipalm_test=np.mean(np.stack([p[1] for p in ipalms]),axis=0)/np.prod(y_test.shape) av_steps_spring_test=np.mean(np.stack([p[1] for p in springs]),axis=0)/np.prod(y_test.shape) av_steps_ispalm_test=np.mean(np.stack([p[1] for p in ispalms]),axis=0)/np.prod(y_test.shape) # Plot results fig=plt.figure() plt.plot(av_steps_palm,'-',c='red') plt.plot(av_steps_ipalm,'--',c='green') plt.plot(av_steps_spring,'-.',c='black') plt.plot(av_steps_ispalm,':',c='blue') plt.yscale("log") plt.legend(['PALM','iPALM','SPRING-SARAH','iSPALM-SARAH']) fig.savefig(mydir+'/PNNs_train.png',dpi=1200) plt.close(fig) if runs>1: fig=plt.figure() plt.plot(std_steps_spring,'-.',c='black') plt.plot(std_steps_ispalm,':',c='blue') plt.legend(['SPRING-SARAH','iSPALM-SARAH']) fig.savefig(mydir+'/PNNs_train_std.png',dpi=1200) plt.close(fig) fig=plt.figure() plt.plot(av_steps_palm_test,'-',c='red') plt.plot(av_steps_ipalm_test,'--',c='green') plt.plot(av_steps_spring_test,'-.',c='black') plt.plot(av_steps_ispalm_test,':',c='blue') plt.yscale("log") plt.legend(['PALM','iPALM','SPRING-SARAH','iSPALM-SARAH']) fig.savefig(mydir+'/PNNs_test.png',dpi=1200) plt.close(fig) all_end_times=[p[0][-1] for p in palms+ipalms+springs+ispalms] my_end_time=np.min(all_end_times) def average_times(data,end_time): times=np.sort(np.concatenate([p[0] for p in data],0)) times=times[times<=end_time] inds=[0]*len(data) vals=[] vals_train=[] for t in times: obj=0. obj_train=0. for i in range(len(data)): p=data[i] times_p=p[0] while times_p[inds[i]+1]<t: inds[i]+=1 t_low=times_p[inds[i]] t_high=times_p[inds[i]+1] coord=(t-t_low)/(t_high-t_low) obj+=((1-coord)*p[1][inds[i]]+coord*p[1][inds[i]+1])/np.prod(x_test.shape) obj_train+=((1-coord)*p[2][inds[i]]+coord*p[2][inds[i]+1])/np.prod(x_train.shape) vals.append(obj/len(data)) vals_train.append(obj_train/len(data)) return times,vals,vals_train t_palm,v_test_palm,v_palm=average_times(palms,my_end_time) t_ipalm,v_test_ipalm,v_ipalm=average_times(ipalms,my_end_time) t_spring,v_test_spring,v_spring=average_times(springs,my_end_time) t_ispalm,v_test_ispalm,v_ispalm=average_times(ispalms,my_end_time) fig=plt.figure() plt.plot(t_palm,v_palm,'-',c='red') plt.plot(t_ipalm,v_ipalm,'--',c='green') plt.plot(t_spring,v_spring,'-.',c='black') plt.plot(t_ispalm,v_ispalm,':',c='blue') plt.yscale("log") plt.legend(['PALM','iPALM','SPRING-SARAH','iSPALM-SARAH']) fig.savefig(mydir+'/PNNs_train_times.png',dpi=1200) plt.close(fig) fig=plt.figure() plt.plot(t_palm,v_test_palm,'-',c='red') plt.plot(t_ipalm,v_test_ipalm,'--',c='green') plt.plot(t_spring,v_test_spring,'-.',c='black') plt.plot(t_ispalm,v_test_ispalm,':',c='blue') plt.yscale("log") plt.legend(['PALM','iPALM','SPRING-SARAH','iSPALM-SARAH']) fig.savefig(mydir+'/PNNs_test_times.png',dpi=1200) plt.close(fig)
# Copyright (c) 2016, Philippe Remy <github: philipperemy> # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. from __future__ import print_function import os from argparse import ArgumentParser from subprocess import Popen from sys import argv from sys import stderr import nltk stoplistlines = open("stopwords1.txt",'r').readlines() stoplist = [] for i in stoplistlines: stoplist.append(i.strip().lower()) JAVA_BIN_PATH = 'java' DOT_BIN_PATH = 'dot' STANFORD_IE_FOLDER = 'stanford-openie' tmp_folder = '/tmp/openie/' if not os.path.exists(tmp_folder): os.makedirs(tmp_folder) def arg_parse(): arg_p = ArgumentParser('Stanford IE Python Wrapper') arg_p.add_argument('-f', '--filename', type=str, default=None) arg_p.add_argument('-v', '--verbose', action='store_true') arg_p.add_argument('-g', '--generate_graph', action='store_true') return arg_p def debug_print(log, verbose): if verbose: print(log) def process_entity_relations(entity_relations_str, verbose=True): # format is ollie. entity_relations = list() for s in entity_relations_str: entity_relations.append(s[s.find("(") + 1:s.find(")")].split(';')) return entity_relations def generate_graphviz_graph(entity_relations, verbose=True): """digraph G { # a -> b [ label="a to b" ]; # b -> c [ label="another label"]; }""" graph = list() graph.append('digraph {') for er in entity_relations: graph.append('"{}" -> "{}" [ label="{}" ];'.format(er[0], er[2], er[1])) graph.append('}') out_dot = tmp_folder + 'out.dot' with open(out_dot, 'w') as output_file: output_file.writelines(graph) out_png = tmp_folder + 'out.png' command = '{} -Tpng {} -o {}'.format(DOT_BIN_PATH, out_dot, out_png) debug_print('Executing command = {}'.format(command), verbose) dot_process = Popen(command, stdout=stderr, shell=True) dot_process.wait() assert not dot_process.returncode, 'ERROR: Call to dot exited with a non-zero code status.' print('Wrote graph to {} and {}'.format(out_dot, out_png)) def stanford_ie(input_filename, verbose=True, generate_graphviz=True): out = tmp_folder + 'out.txt' input_filename = input_filename.replace(',', ' ') new_filename = '' for filename in input_filename.split(): if filename.startswith('/'): # absolute path. new_filename += '{} '.format(filename) else: new_filename += '../{} '.format(filename) absolute_path_to_script = os.path.dirname(os.path.realpath(__file__)) + '/' command = 'cd {};'.format(absolute_path_to_script) command += 'cd {}; {} -mx4g -cp "stanford-openie.jar:stanford-openie-models.jar:lib/*" ' \ 'edu.stanford.nlp.naturalli.OpenIE {} -format ollie > {}'. \ format(STANFORD_IE_FOLDER, JAVA_BIN_PATH, new_filename, out) if verbose: debug_print('Executing command = {}'.format(command), verbose) java_process = Popen(command, stdout=stderr, shell=True) else: java_process = Popen(command, stdout=stderr, stderr=open(os.devnull, 'w'), shell=True) java_process.wait() assert not java_process.returncode, 'ERROR: Call to stanford_ie exited with a non-zero code status.' with open(out, 'r') as output_file: results_str = output_file.readlines() os.remove(out) results = process_entity_relations(results_str, verbose) if generate_graphviz: generate_graphviz_graph(results, verbose) return results args = argv[:] arg_p = arg_parse().parse_args(args[1:]) filename = arg_p.filename verbose = arg_p.verbose generate_graphviz = arg_p.generate_graph if filename is None: print('please provide a text file containing your input. Program will exit.') exit(1) if verbose: debug_print('filename = {}'.format(filename), verbose) global entities_relations entities_relations = stanford_ie(filename, verbose, generate_graphviz) global relations pronouns = ['WP', 'PRP', '$WP', '$PRP','PRP$'] proper_nouns = ['NNP','NN'] #female = ['girl'] #female_pronoun = ['she','her'] #Requires mapping for both gender pronouns to replace pronouns with apt proper nouns ''' for i in range(len(entities_relations)): a = nltk.pos_tag(nltk.word_tokenize(entities_relations[i][0])) print (entities_relations[i][0],a[0][1]) if a[0][1] in pronouns and entities_relations[i][0] not in female_pronoun: for j in range(i-1,-1,-1): print (nltk.pos_tag(nltk.word_tokenize(entities_relations[j][0]))[0][1], entities_relations[j][0]) if nltk.pos_tag(nltk.word_tokenize(entities_relations[j][0]))[0][1] in proper_nouns: if entities_relations[i][0] not in female_pronoun: entities_relations[i][0] = entities_relations[j][0] print (entities_relations[i][0], entities_relations[j][0]) break if a[0][1] in pronouns and entities_relations[i][0] in female_pronoun: for j in range(i-1,-1,-1): for k in female: if k in entities_relations[j][0]: entities_relations[i][0] = entities_relations[j][0] break print (entities_relations[i][0], entities_relations[j][0]) ''' """************ #Replaces pronoun with previous propernoun for i in range(len(entities_relations)): a = nltk.pos_tag(nltk.word_tokenize(entities_relations[i][0])) if entities_relations[i][0] == 'his friendship': print (a, a[0][0],a[0][1] ) #print (entities_relations[i][0],a[0][1]) if a[0][1] in pronouns: #**************don't predict the pronoun and proper noun to be in 0th index in both. find the index of the pronoun and propernoun for j in range(i-1,-1,-1): #print (nltk.pos_tag(nltk.word_tokenize(entities_relations[j][0]))[0][1], entities_relations[j][0]) if nltk.pos_tag(nltk.word_tokenize(entities_relations[j][0]))[0][1] in proper_nouns: entities_relations[i][0] = entities_relations[i][0].replace(a[0][0],entities_relations[j][0]) #print (entities_relations[i][0], entities_relations[j][0]) break ***********""" ''' for i in entities_relations: if i[0] in relations: relations[i[0]].append(i[2]) else: relations[i[0]] = [i[2]] #Open IE output for i, v in relations.items(): v = [j.decode('utf-8') for j in v] i = [i.decode('utf-8')] ''' relations = entities_relations[:] for i in relations: print (i)
from pytest import raises from webhelpers2.number import * def eq(a, b, cutoff=0.001): """Assert that two floats are equal within 'cutoff' margin of error. """ assert abs(a - b) < cutoff class TestEQ(object): def test_good(self): eq(1.0001, 1.0002) def test_bad(self): with raises(AssertionError): eq(1.0, 2.0) def test_custom_cutoff(self): eq(2.0, 4.0, cutoff=3.0) class TestPercentOf(object): def test1(self): assert percent_of(5, 100) == 5.0 def test2(self): assert percent_of(13, 26) == 50.0 class TestMean(object): def test1(self): assert mean([5, 10]) == 7.5 class TestMedian(object): incomes = [18000, 24000, 32000, 44000, 67000, 9999999] def test_median(self): assert median(self.incomes) == 49500.0 def test_compare_to_mean(self): eq(mean(self.incomes), 1697499.833333333) class TestStandardDeviation(object): temps_socal = [ # Temperatures in Southern California. # Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 70, 70, 70, 75, 80, 85, 90, 95, 90, 80, 75, 70] temps_mt = [ # Temperatures in Montana. # Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec -32, -10, 20, 30, 60, 90, 100, 80, 60, 30, 10, -32] def test1(self): a = standard_deviation([0, 0, 14, 14]) eq(a, 8.082903768654761) def test2(self): a = standard_deviation([0, 6, 8, 14]) eq(a, 5.773502691896258) def test3(self): a = standard_deviation([6, 6, 8, 8]) eq(a, 1.1547005383792515) def test4(self): assert standard_deviation([0, 0, 14, 14], sample=False) == 7.0 def test5(self): assert standard_deviation([0, 6, 8, 14], sample=False) == 5.0 def test6(self): assert standard_deviation([6, 6, 8, 8], sample=False) == 1.0 def test_temperatures_southern_california(self): a = standard_deviation(self.temps_socal) eq(a, 9.00336637385) def test_temperatures_southern_california2(self): a = standard_deviation(self.temps_socal, sample=False) eq(a, 8.620067027323) def test_temperatures_montana(self): a = standard_deviation(self.temps_mt) eq(a, 45.1378360405574) def test_temperatures_montana2(self): a = standard_deviation(self.temps_mt, sample=False) eq(a, 43.2161878106906) class TestFormatDataSize(object): def test_bytes(self): assert format_byte_size(1) == "1 B" def test_kibibytes(self): assert format_byte_size(1000, binary=True) == "1000 B" assert format_byte_size(1024, 0, True) == "1 KiB" assert format_byte_size(1024, 2, True) == "1.00 KiB" def test_kilobytes(self): assert format_byte_size(1000), "1.0 kB" assert format_byte_size(1024, 0, False) == "1 kB" assert format_byte_size(1024, 2, False) == "1.02 kB" assert format_byte_size(1024, 0, False, True) == "1 kilobytes" assert format_byte_size(1024, 2, False, True) == "1.02 kilobytes" def test_kilobits(self): assert format_bit_size(1024, 0, False, False) == "1 kb" assert format_bit_size(1024, 2, False, False) == "1.02 kb" assert format_bit_size(1024, 0, False, True) == "1 kilobits" assert format_bit_size(1024, 2, False, True) == "1.02 kilobits" def test_megabytes(self): assert format_byte_size(12345678, 2, True) == "11.77 MiB" assert format_byte_size(12345678, 2, False) == "12.35 MB" def test_terabytes(self): assert format_byte_size(12345678901234, 2, True) == "11.23 TiB" assert format_byte_size(12345678901234, 2, False) == "12.35 TB" def test_zettabytes(self): assert format_byte_size(1234567890123456789012, 2, True) == "1.05 ZiB" assert format_byte_size(1234567890123456789012, 2, False) == "1.23 ZB" def test_yottabytes(self): assert format_byte_size(123456789012345678901234567890, 2, True) == "102121.06 YiB" assert format_byte_size(123456789012345678901234567890, 2, False) == "123456.79 YB"
"""This makes functions a subpackage(submodule) of combine"""
import lldb from lldbsuite.test.decorators import * from lldbsuite.test.lldbtest import * from lldbsuite.test import lldbutil class TestBitfieldIvars(TestBase): mydir = TestBase.compute_mydir(__file__) def test(self): self.build() lldbutil.run_to_source_breakpoint(self, "// break here", lldb.SBFileSpec("main.m")) self.expect_expr("chb->hb->field1", result_type="unsigned int", result_value="0") ## This should happen second self.expect_expr("chb->hb->field2", result_type="unsigned int", result_value="1") self.expect_expr("hb2->field1", result_type="unsigned int", result_value="10") self.expect_expr("hb2->field2", result_type="unsigned int", result_value="3") self.expect_expr("hb2->field3", result_type="unsigned int", result_value="4") self.expect("frame var *hb2", substrs = [ 'x =', '100', 'field1 =', '10', 'field2 =', '3', 'field3 =', '4']) # This test is meant to be xfailed, but running the test triggers an ASan # issue, so it must be skipped for now. @skipIf def testExprWholeObject(self): self.build() lldbutil.run_to_source_breakpoint(self, "// break here", lldb.SBFileSpec("main.m")) ## FIXME expression with individual bit-fields obtains correct values but not with the whole object self.expect("expr *hb2", substrs = [ 'x =', '100', 'field1 =', '10', 'field2 =', '3', 'field3 =', '4'])
import os, time, sys from colorama import Fore os.system("clear") print(Fore.RED + """ [ 1 ] { DMITRY } [ 2 ] { WAFW00F } [ 3 ] { THEHARVESTER } [ 4 ] { NBTSCAN } [ 5 ] { SNMP-CHECK } CODED + BY + Furkan """) isc = input(Fore.BLUE + "["+ Fore.GREEN + " ENTER YOUR SELECTION " + Fore.BLUE + "] : ") if isc == "1": os.system("clear") os.system("dmitry") elif isc == "2": os.system("clear") os.system("wafw00f") elif isc == "3": os.system("clear") os.system("theHarvester") elif isc == "4": os.system("clear") os.system("nbtscan") elif isc == "5": os.system("clear") os.system("snmp-check")
def add_native_methods(clazz): def flushBuffer__long__int__java_lang_Runnable__(a0, a1, a2, a3): raise NotImplementedError() clazz.flushBuffer__long__int__java_lang_Runnable__ = flushBuffer__long__int__java_lang_Runnable__
from mmdet.apis import init_detector, inference_detector, show_result import mmcv import os demopath = os.path.dirname(os.path.realpath(__file__)) # config_file = 'configs/faster_rcnn_r50_fpn_1x.py' # checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth' config_file = 'configs/mask_rcnn_r50_fpn_1x.py' checkpoint_file = 'checkpoints/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth' # build the model from a config file and a checkpoint file model = init_detector(config_file, checkpoint_file, device='cuda:0') # test a single image and show the results img = os.path.join(demopath, '000000125100.jpg') # or img = mmcv.imread(img), which will only load it once result = inference_detector(model, img) show_result(img, result, model.CLASSES) # test a list of images and write the results to image files # imgs = ['test1.jpg', 'test2.jpg'] # for i, result in enumerate(inference_detector(model, imgs)): # show_result(imgs[i], result, model.CLASSES, out_file='result_{}.jpg'.format(i)) # test a video and show the results # video = mmcv.VideoReader('video.mp4') # for frame in video: # result = inference_detector(model, frame) # show_result(frame, result, model.CLASSES, wait_time=1)
from .alias import Alias from .actor import Actor, HTTP_METHODS from .execution import Execution, HTTP_METHODS from .worker import Worker, HTTP_METHODS from .nonce import Nonce from .message import Message
"""Test cases describing different beliefs over quantities of interest of a linear system."""
from __future__ import division import mbuild as mb import numpy as np class SquarePattern(mb.Pattern): """A nanoparticle coating pattern where points are removed from two opposite poles on two axes. Parameters ---------- chain_density : float Density of chain coating on the nanoparticle (chains / nm^2) radius : float Radius of the nanoparticle (nm) fractional_sa : float Fractional surface area of the nanoparticle to exclude coating (nm^2) """ def __init__(self, chain_density, radius, fractional_sa, **args): pattern = mb.SpherePattern(int(chain_density * 4.0 * np.pi * radius**2.0)) pattern.scale(radius) total_sa = 4.0 * np.pi * radius**2.0 patch_sa = total_sa * fractional_sa cutoff = patch_sa / (8 * np.pi * radius) points = np.array([xyz for xyz in pattern.points if xyz[2] < radius-cutoff and xyz[2] > cutoff-radius and xyz[1] < radius-cutoff and xyz[1] > cutoff-radius]) super(SquarePattern, self).__init__(points=points, orientations=None) if __name__ == "__main__": from save_pattern import save_pattern square_pattern = SquarePattern(4.0, 2.0, 0.5) save_pattern('test.xyz', square_pattern)
from functools import partial from Lab4.settings import START, STOP def is_even(x): return x % 2 == 0 def is_odd(x): return x % 2 == 1 def is_divisible_by_n(x, n): return x % n == 0 def does_data_satisfy_concept(data, concept): return all(concept(item) for item in data) def concept_power(concept): return len([i for i in range(START, STOP + 1) if concept(i)]) def concept_label(concept): if isinstance(concept, partial): return "{}, n = {}".format(concept.func.__name__, concept.keywords['n']) else: return concept.__name__ if __name__ == "__main__": pass
from .fixtures import foo_file from libextract.core import parse_html, pipeline def test_parse_html(foo_file): etree = parse_html(foo_file, encoding='ascii') divs = etree.xpath('//body/article/div') for node in divs: assert node.tag == 'div' assert node.text == 'foo.' assert len(divs) == 9 def test_pipeline(): functions = [ lambda x: x + [1], lambda x: x + [2], ] assert pipeline([], functions) == [1, 2] assert pipeline([1], functions) == [1, 1, 2]
from typing import Optional, TYPE_CHECKING import wx if TYPE_CHECKING: from gui.pane import FunctionPane # noinspection PyPep8Naming class ArrayControl(wx.ComboBox): # noinspection PyShadowingBuiltins def __init__(self, parent, id): from functions import Function choices = list(Function.get_all_vars().keys()) super().__init__(parent, id, choices=choices, value=choices[0]) def get_pane(self, window: wx.Window) -> "FunctionPane": from gui.pane import FunctionPane parent = window.GetParent() if isinstance(parent, FunctionPane): return parent if parent is None: raise ValueError("Could not find a FunctionPane parent for element") return self.get_pane(parent) def SetValue(self, value: Optional[str]): if value is None: self.SetSelection(0) else: super().SetValue(value) def GetValue(self): from gui.gui import MainFrame frame: MainFrame = self.GetTopLevelParent() return eval(super().GetValue(), frame.get_vars(self)) def GetCode(self): return super().GetValue()
import os def get_file_list(file_path): files = [] for root, dirs, files in os.walk(file_path): print('# of files: {0}'.format(len(files))) # can be "pass" file_list = files return file_list
import logging import sys import os sys.path.append(os.path.realpath(os.path.dirname(os.path.abspath(__file__)) + "/../../..")) from scripts.extract import extract_from from taipan.core import TaipanTarget def execute(cursor): logging.info('Reading guides from database') guides_db = extract_from(cursor, 'target', conditions=[ ('is_guide', True), ], columns=['target_id', 'ra', 'dec', 'ux', 'uy', 'uz']) return_objects = [TaipanTarget( g['target_id'], g['ra'], g['dec'], guide=True, ucposn=(g['ux'], g['uy'], g['uz']), ) for g in guides_db] logging.info('Extracted %d guides from database' % guides_db.shape[0]) return return_objects
import datetime import unittest from openregister_client.util import Year, YearMonth, camel_case, markdown, utc from openregister_client.util import parse_curie, parse_datetime, parse_item_hash, parse_text, parse_timestamp class UtilTestCase(unittest.TestCase): def test_datetime_parsing(self): self.assertEqual(parse_datetime('2017-02-02'), datetime.date(2017, 2, 2)) self.assertEqual(parse_datetime('2017-02-02T12'), datetime.datetime(2017, 2, 2, 12, tzinfo=utc)) self.assertEqual(parse_datetime('2017-02-02T12:30'), datetime.datetime(2017, 2, 2, 12, 30, tzinfo=utc)) self.assertEqual(parse_datetime('2017-02-02T12:30:15'), datetime.datetime(2017, 2, 2, 12, 30, 15, tzinfo=utc)) self.assertEqual(parse_datetime('2017-02-02T12:30:15Z'), datetime.datetime(2017, 2, 2, 12, 30, 15, tzinfo=utc)) self.assertEqual(parse_datetime('2017'), Year(2017)) self.assertEqual(parse_datetime('2017-02'), YearMonth(2017, 2)) self.assertEqual(str(parse_datetime('2017-02')), '2017-02') with self.assertRaises(ValueError): parse_datetime(None) with self.assertRaises(ValueError): parse_datetime('2017-02-30') with self.assertRaises(ValueError): parse_datetime('2017-02-30T12:00:00') def test_item_hash_parsing(self): item = parse_item_hash('sha-256:61c1403c4493fd7dffcdd122c62e46e22cfb64ef68f057a0b5d7d753b9237689') self.assertEqual(item, 'sha-256:61c1403c4493fd7dffcdd122c62e46e22cfb64ef68f057a0b5d7d753b9237689') self.assertEqual(item.algorithm, 'sha-256') self.assertEqual(item.value, '61c1403c4493fd7dffcdd122c62e46e22cfb64ef68f057a0b5d7d753b9237689') with self.assertRaises(ValueError): parse_item_hash(None) with self.assertRaises(ValueError): parse_item_hash('') with self.assertRaises(ValueError): parse_item_hash('sha-256') with self.assertRaises(ValueError): parse_item_hash('sha-256:61c1403c4493fd7dffcdd122c62e46e22cfb64ef68f057a0b5d7d753b923768') with self.assertRaises(ValueError): parse_item_hash('md5:0dbf4d1543bf511ef9a99a6e64d1325a') def test_timestamp_parsing(self): self.assertEqual(parse_timestamp('2017-02-02T12:30:15Z'), datetime.datetime(2017, 2, 2, 12, 30, 15, tzinfo=utc)) with self.assertRaises(ValueError): parse_timestamp(None) with self.assertRaises(ValueError): parse_timestamp('2017-02-02T12:30:15') with self.assertRaises(ValueError): parse_timestamp('2017-02-02') with self.assertRaises(ValueError): parse_timestamp('2017') @unittest.skipUnless(markdown, 'Markdown support is not installed') def test_text_datatype_support(self): self.assertEqual(parse_text(None).html, '') self.assertEqual(parse_text('').html, '') self.assertEqual(parse_text('Ministry of Justice').html, '<p>Ministry of Justice</p>') self.assertEqual(parse_text('*Ministry* of Justice').html, '<p><em>Ministry</em> of Justice</p>') def test_camel_case(self): self.assertEqual(camel_case('register'), 'Register') self.assertEqual(camel_case('country-register'), 'CountryRegister') self.assertEqual(camel_case('COUNTRY-REGISTER'), 'CountryRegister') self.assertEqual(camel_case('CountryRegister'), 'Countryregister') def test_curie(self): curie = parse_curie('country:GB') self.assertEqual(curie.prefix, 'country') self.assertEqual(curie.reference, 'GB') self.assertEqual(curie.safe_format, '[country:GB]') curie = parse_curie('[country:FR]') self.assertEqual(curie.prefix, 'country') self.assertEqual(curie.reference, 'FR') self.assertEqual(str(curie), 'country:FR') self.assertEqual(curie.safe_format, '[country:FR]') with self.assertRaises(ValueError): parse_curie(None) with self.assertRaises(ValueError): parse_curie('') with self.assertRaises(ValueError): parse_curie('country:GB:Wales')
# -*- coding: utf-8 -*- # # Copyright (c) 2018 SMHI, Swedish Meteorological and Hydrological Institute # License: MIT License (see LICENSE.txt or http://opensource.org/licenses/mit). """ Created on Tue Mar 07 11:48:49 2017 @author: """ from .exceptions import * from .gismo import GISMOdataManager from .gismo import GISMOqcManager from sharkpylib.file.file_handlers import SamplingTypeSettingsDirectory, MappingDirectory import os import json import pickle import shutil # Setup logger import logging gismo_logger = logging.getLogger('gismo_session') gismo_logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s\t%(levelname)s\t%(module)s (row=%(lineno)d)\t%(message)s') logger_directory = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'log') if not os.path.exists(logger_directory): os.mkdir(logger_directory) logger_file_path = os.path.join(logger_directory, 'gismo_session.log') file_handler = logging.FileHandler(logger_file_path) file_handler.setFormatter(formatter) gismo_logger.addHandler(file_handler) #============================================================================== #============================================================================== class FileInfo(dict): """ Created 20180628 Updated 20180713 Holds file information. Source file and pkl file. """ def __init__(self, file_path='', pkl_directory=''): self.file_path = file_path self.pkl_directory = pkl_directory file_name = os.path.basename(file_path) name, ending = os.path.splitext(file_name) directory = os.path.dirname(file_path) pkl_file_path = os.path.join(pkl_directory, '{}.pkl'.format(name)) self['file_id'] = name self['directory'] = directory self['file_path'] = file_path self['pkl_file_path'] = pkl_file_path def get_file_path(self): return self['file_path'] #============================================================================== #============================================================================== class UserInfo(): """ Created 20180627 """ #========================================================================== def __init__(self, user='', user_directory=''): """ Created 20180627 Updated 20180627 Loads the json info file. If non existing the file is created. If existing the fields are updated with "update_data". The fields must be initiated here. No "creations" of keys are made in this or other scripts. The json info file will hold the following information: user name loaded files and there origin """ assert all([user, user_directory]) self.user = user self.user_directory = user_directory self.pkl_directory = os.path.join(self.user_directory, 'pkl_files') update_data = {'user': self.user, 'loaded_files': {}} self.file_id_sampling_type_mapping = {} if not os.path.exists(self.user_directory): os.makedirs(self.user_directory) if not os.path.exists(self.pkl_directory): os.makedirs(self.pkl_directory) self.info_file_path = os.path.join(self.user_directory, 'user_info.json') self.content = {} # Load info file if existing if os.path.exists(self.info_file_path): with open(self.info_file_path, "r") as fid: self.content = json.load(fid) # Update content with possibly new fields self.content.update(update_data) # Save info file self._save_file() #========================================================================== def _save_file(self): """ Created 20180627 Save self to json file """ with open(self.info_file_path, "w") as fid: json.dump(self.content, fid) #========================================================================== def add_file(self, sampling_type='', file_path='', settings_file_path=''): """ Created 20180627 Updated 20180713 Information to be added when adding a file. returns a "file name dict" containing information about data file and settings file: directory file_path pkl_file_path """ assert all([sampling_type, file_path]) # file_name = os.path.basename(file_path) # name, ending = os.path.splitext(file_name) # directory = os.path.dirname(file_path) # pkl_file_path = os.path.join(self.pkl_directory, '{}.pkl'.format(name)) # # info_dict = {file_name: {'directory': directory, # 'file_path': file_path}, # 'pkl_file_path': pkl_file_path} self.content.setdefault('loaded_files', {}).setdefault(sampling_type, {}) info_data = FileInfo(file_path=file_path, pkl_directory=self.pkl_directory) info_settings = FileInfo(file_path=settings_file_path, pkl_directory=self.pkl_directory) file_id = info_data.get('file_id') self.content['loaded_files'][sampling_type][file_id] = {} self.content['loaded_files'][sampling_type][file_id]['file_id'] = file_id self.content['loaded_files'][sampling_type][file_id]['data_file'] = info_data # print('settings_file_path', settings_file_path) self.content['loaded_files'][sampling_type][file_id]['settings_file'] = info_settings self.file_id_sampling_type_mapping[file_id] = sampling_type self._save_file() return self.content['loaded_files'][sampling_type][file_id] #========================================================================== def delete_file(self, sampling_type='', file_id=''): """ Created 20180628 Updated 20180713 Deletes information about a file. """ files_dict = self.content['loaded_files'].get(sampling_type, {}) if file_id in files_dict: files_dict.pop(file_id) self.file_id_sampling_type_mapping.pop(file_id) return True #========================================================================== def get_sampling_type_for_file_id(self, file_id): """ Created 20180713 """ return self.file_id_sampling_type_mapping.get(file_id, None) #========================================================================== def get_file_id_list(self, sampling_type): """ Created 20180713 Updated Returns a list of the loaded files (file_id) for the given sampling type. """ return sorted(self.content['loaded_files'].get(sampling_type, {}).keys()) def get_file_path(self, file_id): sampling_type = self.get_sampling_type_for_file_id(file_id) return self.content['loaded_files'][sampling_type][file_id]['data_file'].get_file_path() #============================================================================== #============================================================================== class GISMOsession(object): """ Created 20180625 """ #========================================================================== def __init__(self, root_directory='', users_directory='', log_directory='', user='default', sampling_types_factory=None, qc_routines_factory=None, **kwargs): """ Created 20180625 Updated 20181003 root_directory is optional but needs to be provided if "root" is in the settings files. kwargs can include: save_pkl """ gismo_logger.info('Start session') #if not all([users_directory, user, sampling_types_factory]): # raise GISMOExceptionMissingInputArgument self.root_directory = root_directory self.users_directory = users_directory self.log_directory = log_directory self.save_pkl = kwargs.get('save_pkl', False) self.sampling_types_factory = sampling_types_factory self.qc_routines_factory = qc_routines_factory self.user = user self.user_directory = os.path.join(self.users_directory, self.user) self.data_manager = GISMOdataManager(factory=self.sampling_types_factory) self.qc_manager = GISMOqcManager(factory=self.qc_routines_factory) self.compare_objects = {} self._load_attributes() self._startup_session() def _load_attributes(self): # Settings files self.settings_files = SamplingTypeSettingsDirectory() # if not os.path.exists(self.settings_files_directory): # os.makedirs(self.settings_files_directory) # self.settings_files = {} # for file_name in os.listdir(self.settings_files_directory): # if not file_name.endswith('.json'): # continue # self.settings_files[file_name] = os.path.join(self.settings_files_directory, file_name) # Mapping files self.mapping_files = MappingDirectory() # if not os.path.exists(self.mapping_files_directory): # os.makedirs(self.mapping_files_directory) # self.mapping_files = {} # for file_name in os.listdir(self.mapping_files_directory): # if not file_name.endswith('txt'): # continue # self.mapping_files[file_name] = os.path.join(self.mapping_files_directory, file_name) # ========================================================================== def _startup_session(self): """ Created 20180625 Updated 20180713 """ # Create and load json info file self.user_info = UserInfo(self.user, self.user_directory) # # Initate Boxen that will hold all data # self.boxen = gtb_core.Boxen(controller=self, # root_directory=self.root_directory) def add_settings_directory(self, directory): self.settings_files.add_directory(directory) def add_mapping_directory(self, directory): self.mapping_files.add_directory(directory) def add_compare_object(self, main_file_id, compare_file_id, **kwargs): pass def get_valid_flags(self, file_id): """ Returns the valid flags of the gismo object with the given file_id. :param file_id: :return: """ return self.data_manager.get_valid_flags(file_id) def flag_data(self, file_id, flag, *args, **kwargs): """ Method to manually flag data in given file. :param file_id: :param flag: :param args: :param kwargs: :return: None """ self.data_manager.flag_data(file_id, flag, *args, **kwargs) # ========================================================================== def get_sampling_types(self): return self.sampling_types_factory.get_list() def get_station_list(self): return self.data_manager.get_station_list() def get_settings_files(self): return self.settings_files.get_list() # ========================================================================== def get_qc_routines(self): return self.qc_routines_factory.get_list() def get_valid_qc_routines(self, file_id): return self.data_manager.get_valid_qc_routines(file_id) # ========================================================================== def get_sampling_type_requirements(self, sampling_type): return self.sampling_types_factory.get_requirements(sampling_type) # ========================================================================== def get_qc_routine_requirements(self, routine): return self.qc_routines_factory.get_requirements(routine) # ========================================================================== def get_qc_routine_options(self, routine): return self.qc_manager.get_qc_options(routine) def get_file_path(self, file_id): """ Returns the file path for the given file_id """ gismo_object = self.get_gismo_object(file_id) return os.path.abspath(gismo_object.file_path) def get_filter_options(self, file_id, **kwargs): """ Created 20181004 :param file_id: :param kwargs: :return: list of filter options """ return self.data_manager.get_filter_options(file_id, **kwargs) def get_flag_options(self, file_id, **kwargs): """ Created 20181005 :param file_id: :param kwargs: :return: list of flag options """ return self.data_manager.get_flag_options(file_id, **kwargs) def get_flag_options_mandatory(self, file_id, **kwargs): """ Created 20191130 :param file_id: :param kwargs: :return: list of mandatory flag options """ return self.data_manager.get_flag_options_mandatory(file_id, **kwargs) def get_filtered_file_id_list(self, **kwargs): """ Returns a list of the loaded file_id:s that matches the given criteria. :param kwargs: :return: list of file_id matching given filter """ return self.data_manager.get_filtered_file_id_list(**kwargs) def get_mask_options(self, file_id, **kwargs): """ Created 20181005 :param file_id: :param kwargs: :return: list of mask options """ return self.data_manager.get_mask_options(file_id, **kwargs) def get_save_data_options(self, file_id, **kwargs): """ Created 20181106 :param file_id: :param kwargs: :return: list of mask options """ return self.data_manager.get_save_data_options(file_id, **kwargs) def get_data(self, file_id, *args, **kwargs): """ Created 20181004 :param file_id: :param args: :param kwargs: :return: data as list/array (if one args) or list of lists/arrays (if several args) """ return self.data_manager.get_data(file_id, *args, **kwargs) def get_match_data(self, main_file_id, match_file_id, *args, **kwargs): return self.data_manager.get_match_data(main_file_id, match_file_id, *args, **kwargs) def get_merge_data(self, main_file_id, match_file_id, *args, **kwargs): return self.data_manager.get_merge_data(main_file_id, match_file_id, *args, **kwargs) def get_match_object(self, main_file_id, match_file_id, *args, **kwargs): return self.data_manager.get_match_object(main_file_id, match_file_id, *args, **kwargs) def match_files(self, main_file_id, match_file_id, **kwargs): self.data_manager.match_files(main_file_id, match_file_id, **kwargs) def get_metadata_tree(self, file_id): gismo_object = self.get_gismo_object(file_id) return gismo_object.get_metadata_tree() # ========================================================================== def load_file(self, sampling_type='', data_file_path='', settings_file='', **kwargs): """ :param sampling_type: :param data_file_path: :param settings_file: must be found in self.settings_files_path :param kwargs: :return: """ """ Created 20180628 Updated 20181004 If reload==True the original file is reloaded regardless if a pkl file exists. sampling_type refers to SMTYP in SMHI codelist kwargs can be: file_encoding """ if sampling_type not in self.data_manager.sampling_type_list: raise GISMOExceptionInvalidSamplingType(sampling_type) # print('=', self.settings_files) # print('-', settings_file) # if not settings_file.endswith('.json'): # settings_file = settings_file + '.json' # settings_file_path = self.settings_files.get(settings_file, None) settings_file_path = self.settings_files.get_path(settings_file) if not settings_file_path: raise GISMOExceptionMissingSettingsFile kw = dict(data_file_path=data_file_path, settings_file_path=settings_file_path, # root_directory=self.root_directory, # mapping_files_directory=self.mapping_files_directory, ) kw.update(kwargs) # Check sampling type requirements sampling_type_requirements = self.get_sampling_type_requirements(sampling_type) if not sampling_type_requirements: raise GISMOExceptionMissingRequirements for item in sampling_type_requirements: if not kw.get(item): raise GISMOExceptionMissingInputArgument(item) return self.data_manager.load_file(data_file_path=data_file_path, sampling_type=sampling_type, settings_file_path=settings_file_path, mapping_files=self.mapping_files) # if not all([sampling_type, file_path, settings_file_path]): # raise GISMOExceptionMissingInputArgument # if not all([os.path.exists(file_path), os.path.exists(settings_file_path)]): # raise GISMOExceptionInvalidPath # Add file path to user info file_path = os.path.abspath(kw.get('data_file_path')) settings_file_path = os.path.abspath(kw.get('settings_file_path')) file_paths = self.user_info.add_file(sampling_type=sampling_type, file_path=file_path, settings_file_path=settings_file_path) # Get file paths data_file_path = file_paths.get('data_file', {}).get('file_path', '') data_file_path_pkl = file_paths.get('data_file', {}).get('pkl_file_path', '') data_file_path_settings = file_paths.get('settings_file', {}).get('file_path', '') # Get file_id file_id = file_paths.get('data_file', {}).get('file_id', '') if not file_id: raise GISMOExceptionMissingKey # print(data_file_path) # print(data_file_path_settings) # Check type of file and load if kwargs.get('reload') or not os.path.exists(data_file_path_pkl): # Load original file self.data_manager.load_file(data_file_path=data_file_path, sampling_type=sampling_type, settings_file_path=data_file_path_settings, # root_directory=self.root_directory, # Given in kwargs save_pkl=self.save_pkl, pkl_file_path=data_file_path_pkl, mapping_files=self.mapping_files, # mapping_files_directory=self.mapping_files_directory, **kwargs) else: # Check if sampling_type is correct # file_name = os.path.basename(file_path) # expected_sampling_type = self.user_info.get_sampling_type_for_file_id(file_id) # if expected_sampling_type != sampling_type: # return False # Load buffer pickle file self.data_manager.load_file(sampling_type=sampling_type, load_pkl=self.save_pkl, pkl_file_path=data_file_path_pkl) return file_id def load_files(self, sampling_type='', data_file_paths=[], settings_file='', **kwargs): """ Load several files using the same settings_file. Calls self.load_file with every path in data_file_paths :param sampling_type: :param data_file_paths: :param settings_file: :param kwargs: :return: """ file_id_list = [] for data_file_path in data_file_paths: file_id = self.load_file(sampling_type=sampling_type, data_file_path=data_file_path, settings_file=settings_file, **kwargs) file_id_list.append(file_id) return file_id_list def has_file_id(self): return self.data_manager.has_file_id() def has_metadata(self, file_id): return self.data_manager.has_metadata(file_id) def remove_file(self, file_id): """ Removes the given file_id from the session. :param file_id: :return: """ self.data_manager.remove_file(file_id) #========================================================================== def _load_pickle_file(self, data_file_path_pkl): """ Created 20180828 Loads a pickle file that contains data and settings information. Returns a gismo object. """ with open(data_file_path_pkl, "rb") as fid: gismo_object = pickle.load(fid) return gismo_object def save_file(self, file_id, **kwargs): """ Created 20181106 :param file_id: :param kwargs: :return: None """ self.data_manager.save_file(file_id, **kwargs) # ========================================================================== def get_file_id_list(self, sampling_type=None): """ Created 20180713 Updated Returns a list of the loaded files (file_id) for the given sampling type. """ return self.data_manager.get_file_id_list(sampling_type=sampling_type) # ========================================================================== def get_gismo_object(self, file_id=''): """ Created 20180713 Updated 20181022 Returns a the gismo object marked with the given file_id """ if not file_id: raise GISMOExceptionMissingInputArgument('file_id') return self.data_manager.get_data_object(file_id) # ========================================================================== def get_parameter_list(self, file_id='', **kwargs): if not file_id: raise GISMOExceptionMissingInputArgument return self.data_manager.get_parameter_list(file_id, **kwargs) def get_position(self, file_id, **kwargs): """ :param file_id: :param kwargs: :return: List with position(s). Two options: fixed position: [lat, lon] trajectory: [[lat, lat, lat, ...], [lon, lon, lon, ...]] """ return self.data_manager.get_position(file_id, **kwargs) def get_unit(self, file_id='', unit='', **kwargs): if not file_id: raise GISMOExceptionMissingInputArgument return self.data_manager.get_unit(file_id, unit, **kwargs) # ========================================================================== def print_list_of_gismo_objects(self): """ Created 20180926 Updated 20180927 Prints a list of all loaded gismo object. sorted by sampling_type. """ for st in sorted(self.gismo_objects): print('Sampling type:', st) for file_id in sorted(self.gismo_objects[st]): print(' {}'.format(file_id)) def run_automatic_qc(self, file_id=None, qc_routine=None, **kwargs): """ Runs automatic qc controls on the given gismo object. All routines in qc_routines ar run. :param qismo_object: :param qc_routines: :param kwargs: :return: True if successful """ if not file_id: raise GISMOExceptionMissingInputArgument if type(file_id) != list: file_id = [file_id] gismo_objects = [self.get_gismo_object(f) for f in file_id] # Check qc requirements qc_requirements = self.get_qc_routine_requirements(qc_routine) if qc_requirements is None: raise GISMOExceptionMissingRequirements for item in qc_requirements: if not kwargs.get(item): raise GISMOExceptionMissingInputArgument(item) return self.qc_manager.run_automatic_qc(gismo_objects=gismo_objects, qc_routine=qc_routine, **kwargs) if __name__ == '__main__': from sharkpylib.gismo.session import GISMOsession from sharkpylib.gismo import sampling_types from sharkpylib.gismo import qc_routines from sharkpylib.odv.create import SimpleODVfile from sharkpylib.odv.spreadsheet import SpreadsheetFile d = r'C:\mw\temp_odv' sampling_types_factory = sampling_types.PluginFactory() qc_routines_factory = qc_routines.PluginFactory() session = GISMOsession(root_directory=d, users_directory=d, log_directory=d, user='temp_user', sampling_types_factory=sampling_types_factory, qc_routines_factory=qc_routines_factory, save_pkl=False) # file_path = r'C:\mw\temp_odv/TransPaper_38003_20120601001612_20120630235947_OK.txt' # session.load_file('Ferrybox CMEMS', file_path, 'cmems_ferrybox') # # g = session.data_manager.objects[session.get_file_id_list()[0]] # # s = SimpleODVfile.from_gismo_object(g) # # s.create_file(r'C:\mw\temp_odv/transpaper_odv.txt') # # file_path = r'C:\mw\temp_odv/data_from_asko_odv(5).txt' # # sp = SpreadsheetFile(file_path) # data = sp.get_edited_flags(qf_prefix='8')
from typing import Sequence from Bot import BotState, ReplyResult, ReplyUtils, telegrammer, Room, Message def room_human(msg: Message.Message, _: BotState) -> ReplyResult: if 'Растеряться' in msg.replies: # Билл Гейтс yield 'Растеряться' telegrammer.get_message() for i in range(6): yield 'Загрузка' telegrammer.get_message() yield 'Загрузка' elif 'Зайти в дверь' in msg.replies: # yegrof1 yield 'Зайти в дверь' telegrammer.get_message() yield 'Идти дальше по коридору' telegrammer.get_message() yield 'Зайти в дверь слева' elif 'Попросить лису' in msg.replies: # kiba yield 'Уйти' else: for var in [ '—А... э-э... как Вы здесь оказались?', # Хидэо Кодзима '—Как поживаете?' # Гейб Ньюэл ]: if var in msg.replies: yield var break else: yield 'Войти спиной вперёд' telegrammer.get_message() yield 'Я... э-э... (сбежать)' def room_river(msg: Message.Message, __: BotState) -> ReplyResult: for i in msg.replies: if i.startswith('Вернуться'): return i rooms: Sequence[Room.Room] = [ Room.Room("Архимаг из прошлых эпох", {'rooms/default/monster/easy/archemage.py': 'b857a8aca9235e4ee286a70592e5f11d0495f981'}, ReplyUtils.battle), Room.Room("Армия Вьетнамцев", {'rooms/vietnam/monster/vietnam_army.py': 'f9991f8651da6b33d3a0d7de90794dc84c25c682'}, ReplyUtils.battle), Room.Room("Армия Вьетнамцев", {'rooms/default/missions/caravan/army.py': '2c43669f2d24084b5b50f26b0f5cb1520e892d41', 'rooms/vietnam/missions/caravan/army.py': '6b5f8be0f777cb2d814b871dd8f204c8a66e8ed0'}, ReplyUtils.battle), Room.Room("Банкиры Люцифера", {'rooms/default/usual/lucifer_bank.py': 'af24e3fe59f333dd64d26d2f5e4f46171e82100f'}, ReplyUtils.reply('Придержать у себя')), Room.Room("Библиотека", {'rooms/default/usual/librarian.py': '5972fdd02b9b12ecee68ffbad71dbd6a96f4e667'}, ReplyUtils.reply('Поучиться')), Room.Room("Билл Шифр", {'rooms/default/special/bill_cypher.py': '06a376f6e563b679f925630a019d1ae94d8c018f', 'rooms/vietnam/special/bill_cypher.py': '06a376f6e563b679f925630a019d1ae94d8c018f'}, ReplyUtils.reply("Забирай, они мне не нужны")), Room.Room("Василиск", {'rooms/default/monster/hard/basilisk.py': '6d14e46a86d01d7dc820444496af9f359656794c'}, ReplyUtils.battle), Room.Room("Веган", {'rooms/default/usual/vegan.py': 'f1843a5c051e481796f96f55ccf5acaa76abbe0a'}, ReplyUtils.go_away), Room.Room("Вейпер", {'rooms/default/monster/hard/vaper.py': '3c505d676cc00a04103974e044a9997f58fdbc39'}, ReplyUtils.battle), Room.Room(("Вода", "_Вода_"), {'rooms/default/usual/water.py': 'd5d7257b0d06f309ffd6c5e77a85ee0378032ee2'}, ReplyUtils.concat(ReplyUtils.reply('Ты видишь сундук! Доплыть до него'), ReplyUtils.dice)), Room.Room("Волк-оборотень", {'rooms/default/monster/easy/werewolf.py': 'e882385ad4e6b92609e508dcdacd159f6c6a4c5d'}, ReplyUtils.battle), Room.Room("Гидеон", {'rooms/default/usual/gideon.py': '7b9dc0d904656557f55dc5af0460f1118fead42c'}, ReplyUtils.concat( ReplyUtils.dice, ReplyUtils.get_reply( ReplyUtils.concat( ReplyUtils.conditional( lambda msg, _: ( 'Что-о-о? Как ты это сделал?' in msg.text or 'От шока Гидеон выронил дневник из рук.' in msg.text ), ReplyUtils.set_item('Книга тайн №2', 1), ), ReplyUtils.repeat_message, ignore_func=None ) ), ignore_func=None )), Room.Room("Гном в красной шапке", {'rooms/default/usual/gnome.py': '1a0e14ee3cd86a91dc73d5aa3611d9a88841656d'}, ReplyUtils.reply("1")), Room.Room("Горшок золота", {'rooms/default/usual/lepricone.py': '3ec9ad6fb9326c5d70080bb22bf04306f5237f49'}, ReplyUtils.reply('Взять золото')), Room.Room("Группа Бандитов", {'rooms/default/monster/medium/bandits.py': '011e6d7de2fd3125249a83d9422e62c8d70e3e0b'}, ReplyUtils.reply('Блин, вы либо дольше держите, либо глубже опускайте!')), Room.Room("Гуль", {'rooms/default/monster/medium/ghoul.py': '5d917beef7bcd36b060a5650940c2479462e17ea'}, ReplyUtils.battle), Room.Room("Дверь", {'rooms/default/usual/door.py': 'd5c0a0a50209996df3cf45519848087066ae9565'}, ReplyUtils.reply('Открыть')), Room.Room("Дети", {'rooms/default/monster/kids.py': '27fb10298f2d3579742cb30ec6d0def7eab0d6a5'}, ReplyUtils.concat(ReplyUtils.reply('Гадость'), ReplyUtils.reply('➰ Использовать: ✨ Воображение'), ReplyUtils.dice)), Room.Room("Джейсон Вурхиз", {'rooms/default/monster/hard/jayson.py': '918fe8cd08d11db9324ebdb7ca0322330965c724'}, ReplyUtils.battle), Room.Room("Диппер", {'rooms/default/monster/medium/dipper.py': 'e44301263f09e8d817fe41a43165d8b981a20de7'}, ReplyUtils.concat( ReplyUtils.battle, ReplyUtils.set_item("Книга тайн №3", 1), ignore_func=None )), Room.Room("Длинноволосая брюнетка", {'rooms/default/monster/medium/chubaka.py': 'ca6a6b6ccee1a333384331690a2c23a1cf41b893'}, ReplyUtils.battle), Room.Room("Дозоры", {'rooms/default/usual/watches.py': 'df973e10eb2e5cfedaa24792ff946bdf6002174f'}, ReplyUtils.go_away), Room.Room("Доктор кто", {'rooms/default/monster/doctor_who.py': '313a19a228ec23ea0858d5d909519eb8b1df049e'}, ReplyUtils.reply('Сдаться')), Room.Room("Дракон", {'rooms/default/monster/dragon.py': 'afca1a6f8cb97531b1d63818e6d4c55271423d35'}, ReplyUtils.battle), Room.Room("Дух бесплотный", {'rooms/default/monster/easy/spirit.py': '7783c513c54bd7ca97bbd6995554bd259cc2df47'}, ReplyUtils.battle), Room.Room("Дядя Стенли", {'rooms/default/usual/uncle_stanley.py': 'dcd192e46b40bac97ff8a1ee943233c0611f1b05'}, ReplyUtils.concat( ReplyUtils.set_item('Книга тайн №1', 1), ReplyUtils.go_away, ignore_func=None )), Room.Room("Зеркало", {'rooms/default/monster/medium/mirror.py': 'ecacdbf013032ba1fba1936a8b4a4a3b4bcc56f4', 'rooms/default/missions/main/third.py': '907941d7e85942acff6f2650a4270dd6b166f7fa', 'rooms/vietnam/missions/main/third.py': '907941d7e85942acff6f2650a4270dd6b166f7fa'}, ReplyUtils.conditional( lambda msg, _: 'Разбить' in msg.replies, ReplyUtils.reply("Разбить"), ReplyUtils.battle )), Room.Room("Зомби", {'rooms/default/monster/easy/zombie.py': '830b9ee2955577cf31d1eca398323d79ef4dc882'}, ReplyUtils.battle), Room.Room("Зуллуинский магазин", {'rooms/default/special/helloween_shop.py': '0b0ddee8deffefc09afcbb0b195ad6a8fd8a92d2'}, ReplyUtils.reply("Тыква")), Room.Room("Интернет тролль", {'rooms/default/monster/medium/internet_troll.py': '1be1574e599841f942f2265253e355b90a56326d'}, ReplyUtils.battle), Room.Room("Кабинет директора", {'rooms/default/usual/dumbledore_office.py': 'e7921f2b6dbda3efaa365a9e8b5f37af8800a058'}, ReplyUtils.go_away), Room.Room('Казино "Марианская Впадина"', {'rooms/default/usual/roulette.py': 'c70b95810d4fa8e366065b895ba88b1b9aabb8b6'}, ReplyUtils.go_away), Room.Room("Какой-то игрок", {'rooms/default/usual/some_player.py': '06f0b48bf7ba84dbac4bb7dc8e43e2b6a0e038c4'}, ReplyUtils.go_away), Room.Room("Какой-то мужчина", {'rooms/default/usual/witcher.py': 'c46e4f4898d122faf7239c50effc5cc5f6900fa1'}, ReplyUtils.reply('Ты носишь двуручник за спиной? Ты в каком фильме это видел?')), Room.Room("Караван Дварфов", {'rooms/default/missions/caravan/caravan.py': 'e17a35c25f06ab97e25b588b716fc46e017f63de', 'rooms/vietnam/missions/caravan/caravan.py': '5ece9df31858db029763ff0b0da048030544f5bd', 'rooms/default/missions/caravan/first.py': '4c93401ffa981c886437daa99e303ed576ae3b5c', 'rooms/vietnam/missions/caravan/first.py': 'fc22a1eefc1ad656965a9f581281fc60e9c8373c'}, ReplyUtils.go_away), Room.Room("Катапульта", {'rooms/default/special/stone_room.py': None, 'rooms/vietnam/special/stone_room.py': None}, ReplyUtils.concat(ReplyUtils.reply("@RogBotBot"), ReplyUtils.reply("Привет от бота!"))), Room.Room("Книга судьбы", {'rooms/default/usual/destiny_book.py': 'd495dab11801dd8bc2dfc0df8044257b51fde08c'}, ReplyUtils.go_away), Room.Room("Колизей", {'rooms/default/special/tornament.py': '19ed4328987cbe44591241b06e1c216841d7695a', 'rooms/vietnam/special/tornament.py': '6268e2a24bff30fb856b2aa06c49543d31aa1bda'}, ReplyUtils.battle), Room.Room("Комиссар", {'rooms/default/usual/comissar.py': 'e3ef680bc45f01b9247cab3f5f331eb0a4b7855e'}, ReplyUtils.concat( ReplyUtils.reply('Сказать, что готовы'), ReplyUtils.reply('Да'), ReplyUtils.reply('Нет'), ReplyUtils.reply('Нет'))), Room.Room("Конец игры", {'rooms/default/usual/exit.py': '2304732b666cd8ca101ad0472a5402f217328a6d'}, ReplyUtils.go_away), Room.Room("Король лич", {'rooms/default/boss/lich_king.py': '96d3cebbeb9179c68ee2bf19a44aea8f0b867a19'}, ReplyUtils.battle), Room.Room("Красная Виверна", {'rooms/default/boss/hellkite_dragon.py': '76fbfbddd7910186c48c0abfd7af04281c285904'}, ReplyUtils.battle), Room.Room("Красотка", {'rooms/default/usual/spanish_girl.py': '45f45ce23deaa2f0b272e9f01afbd4913ebecc4e'}, ReplyUtils.go_away), Room.Room("Кролик", {'rooms/default/monster/medium/rabbit.py': '3329e6e7f7f722b65216ae0f6144a998730f345f'}, ReplyUtils.battle), Room.Room("Крыса", {'rooms/default/monster/easy/rat.py': '1cea9b12acbf85237ffe7b2204db022304630a35'}, ReplyUtils.battle), Room.Room("Крыса-летяга", {'rooms/default/monster/easy/bat.py': '9eedc151cc8b46d9371aa6264ed9b8458f128276'}, ReplyUtils.battle), Room.Room("Ктулху", {'rooms/default/boss/cthulhu.py': 'f80b02bdd25c973690f7a3f5974071a1348e8da3'}, ReplyUtils.battle), Room.Room("Куст", {'rooms/vietnam/monster/bush_soldier.py': '47bd022aea513061881a0f47847e7652021c0b5e'}, ReplyUtils.battle), Room.Room("Леприкон", {'rooms/default/missions/lepricone/first.py': 'dd0a7834f88568b61b4d35ffb03a855c30fbb5f5', 'rooms/vietnam/missions/lepricone/first.py': '6fc7056e593c37dedf6a9cc8bace69821b609dcb'}, ReplyUtils.battle), Room.Room(('Лес', 'Дорога', 'Дупло', 'Ничего', 'Мама'), {'rooms/default/usual/nothing.py': '8f08acd5c154d757573cf285cd65f3fc4ee6dbdb'}, ReplyUtils.reply("Идти дальше")), Room.Room("Листва", {'rooms/vietnam/usual/trap.py': '81211364b6cf5af7b5c1b1715df6832f71e55ef8'}, ReplyUtils.reply('Выбираться')), Room.Room("Лунная Бабочка", {'rooms/default/boss/moonlight_butterfly.py': 'ad9d1a98624aaeffac00189a91197f3dbc008118'}, ReplyUtils.battle), Room.Room("Лягушка", {'rooms/default/usual/frog.py': '508f5632c762ae9267dbafc8c492b35fd290f6e2'}, ReplyUtils.reply('Смотреть и ждать')), Room.Room("Медведь", {'rooms/default/monster/medium/bear.py': '3f9d4f8a45d307c1ab49fca6dfd01a7bafa175a8'}, ReplyUtils.battle), Room.Room("Механочерепаха", {'rooms/default/monster/medium/turtle.py': '9510e5397addf0d1876414b4ec8f6f6bf231c5f5'}, ReplyUtils.battle), Room.Room("Миньон", {'rooms/default/monster/easy/minion.py': '9f4bc3a1c57154cdbe7c98bdc36ae9a24aa91930'}, ReplyUtils.battle), Room.Room("Мишень", {'rooms/default/usual/goal.py': '5d64ddafbd2fa4b64efac24603604353e63284e2'}, ReplyUtils.concat(ReplyUtils.reply('Попробовать попасть в нее'), ReplyUtils.dice)), Room.Room("Мост", {'rooms/default/usual/troll_bridge.py': '173d027493e3d63f62c4cff232c7dbe404937868'}, ReplyUtils.reply('Пройти мимо')), Room.Room("Назгул", {'rooms/default/monster/medium/nazgul.py': 'c0d8c4f054c249423a544c404372dc54d2ce3041'}, ReplyUtils.battle), Room.Room("Неестественная семилапка", {'rooms/default/monster/easy/quinquepede.py': '5c43b66b763ac9966218a89ee410df4982a7e92c'}, ReplyUtils.battle), Room.Room("Нечто из глубин", {'rooms/default/special/the_thing_from_below.py': 'e984a28680b7a5ed040ff2820aa02949788473ca', 'rooms/vietnam/special/the_thing_from_below.py': 'e984a28680b7a5ed040ff2820aa02949788473ca'}, ReplyUtils.battle), Room.Room("Озеро из мороженного", {'rooms/default/special/icecream.py': '2830343ede707107e4b81cadc7f5cc603c1b1794', 'rooms/vietnam/special/icecream.py': '2830343ede707107e4b81cadc7f5cc603c1b1794'}, ReplyUtils.reply("Набрать себе")), Room.Room("Орк", {'rooms/default/monster/hard/ork.py': 'd82a84068e87666268c975074d0b6e94c961b529'}, ReplyUtils.battle), Room.Room("Останки", {'rooms/default/special/remains.py': '1187c37030773a737422f96809149741d80f1f27', 'rooms/vietnam/special/remains.py': '8520df6937b2f7334aa5d2db3551ee1025db8a2b'}, ReplyUtils.go_away), Room.Room("Отдел кадров", {'rooms/default/usual/call_back.py': '1e2b8aeeb46bb4d1459dc421bc1559be0df82bb1'}, ReplyUtils.go_away), Room.Room("Парикмахерская", {'rooms/default/usual/haircutter.py': 'e755e86029f87391cec5564db06dd65a580528c7'}, ReplyUtils.reply('Подстричься за 10 золотых')), Room.Room("Подсказка", {'rooms/default/missions/tips/tips.py': '71467737094907733b57ad6572fe727e4a1ebb89', 'rooms/vietnam/missions/tips/tips.py': '78c316889771328066b869ea9af117418bc8389b'}, ReplyUtils.reply("Послушать и уйти")), Room.Room("Портал", {'rooms/default/usual/rick_and_morty.py': '990a07dceb8de522dcc1e792e66eafe4bd91631a'}, ReplyUtils.concat(ReplyUtils.reply('Подойти ближе'), ReplyUtils.reply('Поздороваться'), ReplyUtils.no_pet)), Room.Room("Потрёпанный мужик с дробовиком", {'rooms/default/usual/no_sudden_movement.py': '4f0cd9a7ec553bf1690a2a832b16418ede4b0a49'}, ReplyUtils.reply('Уйти', delay=15 + 5)), Room.Room("Промоутер", {'rooms/default/monster/medium/promote.py': '174dbd42831002ad42f4fb8b6b163d23d61f7fff'}, ReplyUtils.battle), Room.Room("Разверстый Дракон", {'rooms/default/boss/naping_dragon.py': 'fda52fed1fabc7c4f1543941979681ea8c1158df'}, ReplyUtils.battle), Room.Room("Река", {'rooms/default/usual/river.py': '4c6d0bc2631d6646f58c659e89725c283b3d16f6', 'rooms/vietnam/usual/river.py': '93c8d1120f2ed888409fe310e10c6ed533bdf3b0'}, room_river), Room.Room("Рыцарь", {'rooms/default/monster/medium/knight.py': '6df97ddce6befc640de638cac690a3157791156e'}, ReplyUtils.battle), Room.Room("Сайтама", {'rooms/default/monster/expert/saitama.py': '2e02d1bb70fd4a7010abc1b75ade8adf32d2441d'}, ReplyUtils.battle), Room.Room("Сильфида", {'rooms/default/monster/easy/sylph.py': '6c0e2a4143d13428800bccb10d858b6ac7a70e06'}, ReplyUtils.battle), Room.Room("Слизень", {'rooms/default/monster/easy/slime.py': 'd8395df941471814c2ddfdf8c6654012c0377ff6'}, ReplyUtils.reply('Раздавить')), Room.Room("Собачка", {'rooms/default/usual/dog.py': '3a0a4cba9cff146851f21daf0c4604ee3e720d9a'}, ReplyUtils.no_pet), Room.Room("Сокровищница", {'rooms/default/special/rick_astley.py': '510b6f4e67409dbfd49c02b83677e2a179115bda', 'rooms/vietnam/special/rick_astley.py': '8c39b1858f6cdd4f5a29e83ff62590e2444f5ba7'}, ReplyUtils.concat(ReplyUtils.reply('NEVER GONNA GIVE YOU UP!'), ReplyUtils.reply('NEVER GONNA RUN AROUND!'), ReplyUtils.reply('NEVER GONNA MAKE YOU CRY!'))), Room.Room("Спортзал", {'rooms/default/usual/musclelot.py': '3106188b57cbde78fa94dcb45575b408a435f663'}, ReplyUtils.reply('Подкачаться')), Room.Room("Старик", {'rooms/default/missions/main/first.py': '99ebfeaaeb07e06b33a7a1f2a94451907fa7320e', 'rooms/vietnam/missions/main/first.py': '6f9128268ba12ea84a399b07c6b23c68f103bfb1'}, ReplyUtils.go_away), Room.Room("Сундук", {'rooms/default/monster/medium/mimic.py': '42c4cc9191bc6ce2ca8ddbc4511b04eebf6b784c', 'rooms/default/usual/chest.py': '3a9f0acb99e088b585c7d3e61bed9eabbb303cf1'}, ReplyUtils.go_away), Room.Room("Сэр Качкалот", {'rooms/default/missions/main/second.py': '4fc0fa4c2edbf7cef18caf83902ced379a2d35cb', 'rooms/vietnam/missions/main/second.py': '4fc0fa4c2edbf7cef18caf83902ced379a2d35cb'}, ReplyUtils.go_away), Room.Room("Твиттер-блоггер", {'rooms/default/monster/twi_monster.py': '41513b65caef2224f60de60c23e8827ca1aa7fa8'}, ReplyUtils.nothing), Room.Room("Темная комната", {'rooms/default/usual/fog_door.py': '38bc16d0b2e22d5e6b9f87ad3182db021b98ca45'}, ReplyUtils.go_away), Room.Room("Темный лорд", {'rooms/default/monster/hard/darklord.py': '95bb5e0a7633ccacdb5a93f0d5eb70d119af3ee5'}, ReplyUtils.nothing), Room.Room("Торговец", {'rooms/default/usual/orc_shop.py': '5f6780f2a4fad715c0b9e5a243fc84d14b75341f'}, ReplyUtils.go_away), Room.Room("Трава", {'rooms/default/monster/easy/grass.py': '11570f96ed1553213d9d9bba306d5895fe589a1b'}, ReplyUtils.go_away), Room.Room("Туман", {'rooms/default/usual/slender.py': 'e5d6ea2a7c31368b4636f2d541f6eedc639f3d97'}, ReplyUtils.go_away), Room.Room("Удача", {'rooms/default/usual/luck.py': '1b145e589e1ee9ea44ebc2087b8c05d51c7c018a'}, ReplyUtils.nothing), Room.Room("Указатель", {'rooms/default/special/sign.py': '259eee2f111e609113303b138d25d30b9249efb6', 'rooms/vietnam/special/sign.py': '259eee2f111e609113303b138d25d30b9249efb6'}, lambda _, replies, __: replies[0]), Room.Room("Утка", {'rooms/default/monster/easy/duck.py': '10d1ada297a0358ac641d2e65b7894cbc492addf'}, ReplyUtils.battle), Room.Room("Уютная комната", {'rooms/default/usual/devil.py': 'f5980453c5514e28d84758f78da38c814ad399eb'}, ReplyUtils.go_away), Room.Room("Хиппи", {'rooms/vietnam/monster/hippie.py': 'b9f99e7b94fd0219b04e8204921058f26ce769bd'}, ReplyUtils.battle), Room.Room("Цезарь", {'rooms/default/usual/cesar.py': '4f0c99f28ff7b90a7904046971abe17c648a348d'}, ReplyUtils.go_away), Room.Room("Человек", {'rooms/default/special/bill_gates.py': '4a378fcbddeb670c84be02bd94b80ce787b313bc', 'rooms/vietnam/special/bill_gates.py': '4a378fcbddeb670c84be02bd94b80ce787b313bc', 'rooms/default/special/gabe.py': '2ae11911abde825a263dc815867d16baedf54658', 'rooms/default/special/kiba.py': 'ca162b633f299c74d68ef26ecb16ad8dd04fbabd', 'rooms/vietnam/special/kiba.py': 'ca162b633f299c74d68ef26ecb16ad8dd04fbabd', 'rooms/default/special/kodzima.py': '4f16e355fde3674e85ad8baf9243cbddfb22bd49', 'rooms/default/special/yegorf1.py': 'acfdc7af26b08cc6a92aed2395076bd799cd8d1d', 'rooms/vietnam/special/yegorf1.py': 'acfdc7af26b08cc6a92aed2395076bd799cd8d1d', 'rooms/default/usual/vladislav.py': '2bce14d125da9b7562afdf3c4706572792b44bc0', 'rooms/vietnam/special/gabe.py': 'd503ea4026ea8815bd8dab7bdfcf251cff310688', 'rooms/vietnam/special/kodzima.py': '40d31d5d9f9737e2d6745b8e2aae4cacfaf38ba5' }, room_human), Room.Room("Черный Рыцарь", {'rooms/default/boss/black_knight.py': '0ba4107847e3d6336c171c1e3f892e32bae82061'}, ReplyUtils.battle), Room.Room("Шаолиньский монастырь", {'rooms/default/usual/shaolin_monastery.py': 'e34f3d53fb0d46439b46816113af196ad9202d80'}, ReplyUtils.reply('Потренироваться')), Room.Room("Шар", {'rooms/default/usual/clairvoyance.py': 'c5435cd9e02bbfec6da1c1ca936b970e9dfc42c8'}, ReplyUtils.reply('Идти на свет')), Room.Room("Яблоня", {'rooms/default/usual/apple_tree.py': '457eb7c7b559f17649a51e2560b5607ad98f1701'}, ReplyUtils.reply('Взять')), Room.Room("先生", {'rooms/default/usual/sensei.py': '26c3a434b8c0440799baf5c1637489aa81aa616b'}, ReplyUtils.reply('Сказать, что уже знаешь')), ]
def disp(*txt, p): print(*txt) ask = lambda p : p.b(input()) functions = {">>":disp,"?":ask}
# imports import matlab.engine import sys # get the path from the shell arguments target_path = sys.argv[1] # start the matlab engine eng = matlab.engine.start_matlab() # add paths to the matlab path with the required functions # TODO: add these from a separate file eng.addpath('D:\Code Repos\miniscope_processing') eng.addpath('R:\Share\Simon\Drago_Volker_Simon\invivo_depth_GUI') # run min1PIPE path_out = eng.min1pipe_HPC_Python(target_path, nargout=1) # show the generated path print(path_out)
# we have if-else conditionals # int and input are builtin functions data = int(input('enter a number: ')) if data == 0: print('it was zero') elif data < 0: print('negative') else: data = 'abc' print(data) print(type(data)) # while loop # while input('enter x: ') != 'x': # print('error, enter x') # for loop # in python, you always iterate over a sequence of some kind for i in range(0, 5, 1): # or range(5), same thing here print(i) # range is a sequence data type in python # that is 'lazy', it doesn't precompute the whole thing like a list, # it calculates each value as needed # usually you don't even write loops like that... you figure out a way to # iterate over the collections of data that you'd be using that "i" to access sequence = [1, 3, 7, 2, 5 ] for item in sequence: print(item) # comprehension syntax in python is applied here and it's pretty powerful # if you want to iterate over a list AND have an index as well for i, item in enumerate(sequence): if i > 0: print(item != sequence[i - 1])
#!/usr/bin/env python import random import sys number = 100 if len(sys.argv) > 1: number = int(sys.argv[1]) def accumulate(list): acu = 0 out = [] for el in list: acu += el out.append(acu) return out numbers = [ '00' ] numbers += [ str(x) for x in xrange(0,37) ] from enum import Enum COLORS = Enum('COLORS', 'green red black') colors = [ COLORS.green, COLORS.green ] # colors = [ COLORS.red, COLORS.black ] colors += [ COLORS.red if x % 2 == 0 else COLORS.black for x in xrange(1,37) ] from collections import namedtuple pair = namedtuple('pair', 'number color') wheel = [ pair(*x) for x in zip(numbers,colors) ] def simulate(number): redblack = [ 1 if random.choice(wheel).color == COLORS.red else -1 for x in xrange(number) ] field = [ 36 if int(random.choice(wheel).number) == 17 else -1 for x in xrange(number) ] acc_redblack = accumulate(redblack) acc_field = accumulate(field) return acc_redblack, acc_field import matplotlib.pyplot as plt acc_redblack, acc_field = simulate(number) plt.ioff() plt.clf() # plt.plot(redblack) plt.plot(acc_redblack) # plt.plot(field) plt.plot(acc_field) plt.draw() plt.show()
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals import sys import six import logging import os import itertools import json import abc import numpy as np @six.add_metaclass(abc.ABCMeta) class Model(): def __init__(self, config, mode): """ Args: config (dict): hyper param mode (propeller.RunMode): will creat `TRAIN` and `EVAL` model in propeller.train_and_eval """ self.mode = mode @abc.abstractmethod def forward(self, features): """ Args: features (list of Tensor): depends on your Dataset.output_shapes Returns: return (Tensor): """ pass @abc.abstractmethod def loss(self, predictions, label): """ Args: predictions (Tensor): result of `self.forward` label (Tensor): depends on your Dataset.output_shapes Returns: return (paddle scalar): loss """ pass @abc.abstractmethod def backward(self, loss): """ Call in TRAIN mode Args: loss (Tensor): result of `self.loss` Returns: None """ pass @abc.abstractmethod def metrics(self, predictions, label): """ Call in EVAL mode Args: predictions (Tensor): result of `self.forward` label (Tensor): depends on your Dataset.output_shapes Returns: (dict): k-v map like: {"metrics_name": propeller.Metrics } """ return {}
# -*- coding: utf-8 -*- import urllib import urllib.request import urllib.parse import os import todoist from datetime import timedelta, date, datetime slack_icon_url = 'https://pbs.twimg.com/profile_images/644169103750512640/zWCOmZLI.png' def get_today_items(): today_items = [] api = todoist.TodoistAPI(token=os.environ["TODOIST_TOKEN"]) response = api.sync(resource_types=['items']) for item in response['Items']: if item['due_date'] != None: due_date = datetime.strptime(item['due_date'], '%a %d %b %Y %H:%M:%S +0000') if date.today() == due_date.date(): today_items.append(item['content']) # print(today_items) return today_items def get_uncompleted_items(): uncompleted_items = [] api = todoist.TodoistAPI(token=os.environ["TODOIST_TOKEN"]) response = api.sync(resource_types=['items']) for item in response['Items']: if item['due_date'] != None: due_date = datetime.strptime(item['due_date'], '%a %d %b %Y %H:%M:%S +0000') if date.today() != due_date.date(): uncompleted_items.append(item['content']) # print(uncompleted_items) return uncompleted_items def get_yesterday_completed_items(): yesterday_completed_items = [] yesterday = date.today() - timedelta(days=1) api = todoist.TodoistAPI(token=os.environ["TODOIST_TOKEN"]) response = api.get_all_completed_items(kwargs='') for item in response['items']: completed_date = datetime.strptime(item['completed_date'], '%a %d %b %Y %H:%M:%S +0000') if yesterday == completed_date.date(): yesterday_completed_items.append(item['content']) # print(yesterday_completed_items) return yesterday_completed_items def get_today_completed_items(): today_completed_items = [] today = date.today() api = todoist.TodoistAPI(token=os.environ["TODOIST_TOKEN"]) response = api.get_all_completed_items(kwargs='') for item in response['items']: completed_date = datetime.strptime(item['completed_date'], '%a %d %b %Y %H:%M:%S +0000') if today == completed_date.date(): today_completed_items.append(item['content']) # print(yesterday_completed_items) return today_completed_items def generate_posts(): posts = ["\n:heavy_check_mark: *Yesterday's completed task*\n"] yesterday_completed_items = get_yesterday_completed_items() if len(yesterday_completed_items) != 0: for item in yesterday_completed_items: posts.append(':ballot_box_with_check: ' + item + '\n') else: posts.append('Nothing.:sob:\n') posts.append("\n:heavy_check_mark: *Today's completed task*\n") today_completed_items = get_today_completed_items() if len(today_completed_items) != 0: for item in today_completed_items: posts.append(':ballot_box_with_check: ' + item + '\n') else: posts.append('Nothing.:sob:\n') posts.append("\n\n:warning: *Today's uncompleted task*\n") today_items = get_today_items() if len(today_items) != 0: for item in today_items: posts.append(':white_medium_square: ' + item + '\n') else: posts.append('Nothing.:sleepy:\n') posts.append("\n\n:warning: *Other uncompleted task*\n") uncompleted_items = get_uncompleted_items() if len(uncompleted_items) != 0: for item in uncompleted_items: posts.append(':white_medium_square: ' + item + '\n') else: posts.append(':white_flower:Nothing! Excellent!!\n') slack_post(''.join(posts)) def slack_post(text): url = "https://slack.com/api/chat.postMessage" params = dict(token=os.environ["SLACK_TOKEN"], channel=os.environ["SLACK_CHANNEL"], username='Todoist', icon_url=slack_icon_url, text=text) params = urllib.parse.urlencode(params) params = params.encode('ascii') headers = {'Content-Type': 'application/x-www-form-urlencoded'} request = urllib.request.Request(url, data=params, headers=headers) with urllib.request.urlopen(request) as response: response.read() def main(): generate_posts() if __name__ == '__main__': main()
from modeltranslation.translator import translator, TranslationOptions from .models import Person class PersonTranslationOptions(TranslationOptions): fields = ('name', 'surname') translator.register(Person, PersonTranslationOptions)
# -*- coding: utf-8 -*- """ Dataloading class for backtesting. """ from utils.common import * from utils.timeseriessplit import TimeSeriesSplitCustom from dataviewer import Viewer class Loader: """ Dataloading class. """ def __init__(self): log_path = '.'.join(['backtest', __name__]) #self.logger = logging.getLogger(log_path) trade_dir = os.path.dirname(os.path.realpath(__file__)) parent_dir = os.path.abspath(trade_dir + '/../') self.data_path = os.path.join(parent_dir, 'datamining/data/') self.price_path = os.path.join(self.data_path, 'exchanges/') self.viewer = Viewer() def get_prices(self, coin): """ Gets price data (OHLCV) for COIN. """ return self.viewer.get_price_data(coin) def get_y(self, df, ternary=False): """ Generates Y DataFrame for training/test set. This method generates labels when the Y is ternary: Y {-1, 1}. """ return self.get_avg(df, col='close') def get_avg(self, df, col=''): """ Generates average for COL for DF. COL is expected to have multiple values for multiple exchanges, ex. multiple Open prices. Will only consider USD for now. May consider Volume weighing in the future. Args: df (pd.DataFrame): DataFrame to average COLs. col (str): Columns to average for each row. Returns: avg_df (pd.DataFrame): DataFrame with averaged values with axis=1. """ avg_cols = [x for x in df.columns if 'USD' in x and col in x] avg_df = df[avg_cols].mean(axis=1) return avg_df def split_dataset(self, df, split_all=True, split_size=24, train_splits=24): """ Splits DF into training, and test sets. Cross-validation will be done in a walk-forward fashion. Args: df (pd.DataFrame): DataFrame to split split_size (int): # of ticks to distribute to each split. split_all (bool): Determines whether to make each tick a split. If False, each split will have 1+ ticks. Returns: split (iterable): df split into training, cv test_i (np.array): array of range with test indices """ n_samples = len(df) n_test = n_samples // 4 test_start = n_samples - n_test + 1 test_i = np.arange(test_start, n_samples - 1) if split_all: n_splits = n_samples - n_test else: n_splits = (n_samples - n_test) // split_size - 1 tscv = TimeSeriesSplitCustom(n_splits=n_splits) split = tscv.split(df[:test_start], fixed_length=True, train_splits=train_splits, test_splits=1) return split, test_i def preprocess(self, df, stationarity=False, lag=False, n_lags=5): if stationarity: df = self.difference(df) if lag: df = self.lag(df, n_lags=n_lags) return df def difference(self, df): """ Returns differentiated price data to insure stationarity """ diff_df = df.diff(periods=1) diff_df = diff_df.dropna() return diff_df def invert_diff(self, diff_df, price_df): """ Inverts difference to create price DataFrame. """ return price_df + diff_df def lag(self, df, n_lags): """ Adds lagged price data to DataFrame. Args: df (pd.DataFrame): DataFrame with price data. n_lags (int): Number of lags to input as features into DF. Returns: df (pd.DataFrame): DataFrame with lags as features """ return_df = df for i in range(1, n_lags+1): lag_df = df.shift(i) return_df = return_df.merge(lag_df, left_index=True, right_index=True, suffixes=('', '_lag{}'.format(i))) return_df.dropna(axis=0, inplace=True) return return_df
# -*- mode: Python; tab-width: 4 -*- import sys import getopt import os import os.path import subprocess import configparser # Example config # [Global] # ctags=c:\wsr\apps\ctags58\ctags.exe # [Carmageddon] # wildcards=*.cpp;*.c;*.h;*.inl # tagpaths=c:\Dev\LoveBucket\Development\Beelzebub\SOURCE;c:\Dev\LoveBucket\Development\Build\Source # flags=--c++-kinds=cfnstunedm;--c-kinds=cfnstunedm;--extra=+q ConfigFile = "tagbank.conf" def is_one_of(file_name, filemasks): return "*"+os.path.splitext(file_name)[1] in filemasks def index_filename(name): return name + ".files" def create_index(name, projectdirs, filetypes): index_file = open(index_filename(name), "w") for d in projectdirs: for root, dirs, files in os.walk(d): for name in files: fullname = os.path.join(root, name) if is_one_of(fullname, filetypes): index_file.write(fullname + '\n') index_file.close() def invoke_ctags(prog, flags): args = [ prog ] + flags subprocess.call(args) if __name__ == "__main__": config = configparser.ConfigParser() config.read(ConfigFile) ctags_exe = config.get("Global", "ctags") for section in config.sections(): if (section == "Global"): continue tagpaths = config.get(section, "tagpaths").split(';') wildcards = config.get(section, "wildcards").split(';') flags = config.get(section, "flags").split(';') create_index(section, tagpaths, wildcards) invoke_ctags(ctags_exe, flags + [ "-o" ] + [ section + ".TAGS" ] + [ "-L"] + [ index_filename(section) ]) sys.exit(0)
import json import time from typing import List from instagrapi.exceptions import (ClientLoginRequired, ClientNotFoundError, LocationNotFound) from instagrapi.extractors import extract_location from instagrapi.types import Location, Media class LocationMixin: """ Helper class to get location """ def location_search(self, lat: float, lng: float) -> List[Location]: """ Get locations using lat and long Parameters ---------- lat: float Latitude you want to search for lng: float Longitude you want to search for Returns ------- List[Location] List of objects of Location """ params = { "latitude": lat, "longitude": lng, # rankToken=c544eea5-726b-4091-a916-a71a35a76474 - self.uuid? # fb_access_token=EAABwzLixnjYBABK2YBFkT...pKrjju4cijEGYtcbIyCSJ0j4ZD } result = self.private_request("location_search/", params=params) locations = [] for venue in result["venues"]: if "lat" not in venue: venue["lat"] = lat venue["lng"] = lng locations.append(extract_location(venue)) return locations def location_complete(self, location: Location) -> Location: """ Smart complete of location Parameters ---------- location: Location An object of location Returns ------- Location An object of Location """ assert location and isinstance( location, Location ), f'Location is wrong "{location}" ({type(location)})' if location.pk and not location.lat: # search lat and lng info = self.location_info(location.pk) location.lat = info.lat location.lng = info.lng if not location.external_id and location.lat: # search extrernal_id and external_id_source try: venue = self.location_search(location.lat, location.lng)[0] location.external_id = venue.external_id location.external_id_source = venue.external_id_source except IndexError: pass if not location.pk and location.external_id: info = self.location_info(location.external_id) if info.name == location.name or ( info.lat == location.lat and info.lng == location.lng ): location.pk = location.external_id return location def location_build(self, location: Location) -> str: """ Build correct location data Parameters ---------- location: Location An object of location Returns ------- str """ if not location: return "{}" if not location.external_id and location.lat: try: location = self.location_search(location.lat, location.lng)[0] except IndexError: pass data = { "name": location.name, "address": location.address, "lat": location.lat, "lng": location.lng, "external_source": location.external_id_source, "facebook_places_id": location.external_id, } return json.dumps(data, separators=(",", ":")) def location_info_a1(self, location_pk: int) -> Location: """ Get a location using location pk Parameters ---------- location_pk: int Unique identifier for a location Returns ------- Location An object of Location """ try: data = self.public_a1_request(f"/explore/locations/{location_pk}/") if not data.get("location"): raise LocationNotFound(location_pk=location_pk, **data) return extract_location(data["location"]) except ClientNotFoundError: raise LocationNotFound(location_pk=location_pk) def location_info(self, location_pk: int) -> Location: """ Get a location using location pk Parameters ---------- location_pk: int Unique identifier for a location Returns ------- Location An object of Location """ return self.location_info_a1(location_pk) def location_medias_a1( self, location_pk: int, amount: int = 24, sleep: float = 0.5, tab_key: str = "" ) -> List[Media]: """ Get medias for a location Parameters ---------- location_pk: int Unique identifier for a location amount: int, optional Maximum number of media to return, default is 24 sleep: float, optional Timeout between requests, default is 0.5 tab_key: str, optional Tab Key, default value is "" Returns ------- List[Media] List of objects of Media """ medias = [] end_cursor = None while True: data = self.public_a1_request( f"/explore/locations/{location_pk}/", params={"max_id": end_cursor} if end_cursor else {}, )["location"] page_info = data["edge_location_to_media"]["page_info"] end_cursor = page_info["end_cursor"] edges = data[tab_key]["edges"] for edge in edges: if amount and len(medias) >= amount: break node = edge["node"] medias.append(self.media_info_gql(node["id"])) # time.sleep(sleep) if not page_info["has_next_page"] or not end_cursor: break if amount and len(medias) >= amount: break time.sleep(sleep) uniq_pks = set() medias = [m for m in medias if not (m.pk in uniq_pks or uniq_pks.add(m.pk))] if amount: medias = medias[:amount] return medias def location_medias_top_a1( self, location_pk: int, amount: int = 9, sleep: float = 0.5 ) -> List[Media]: """ Get top medias for a location Parameters ---------- location_pk: int Unique identifier for a location amount: int, optional Maximum number of media to return, default is 9 sleep: float, optional Timeout between requests, default is 0.5 Returns ------- List[Media] List of objects of Media """ return self.location_medias_a1( location_pk, amount, sleep=sleep, tab_key="edge_location_to_top_posts" ) def location_medias_top( self, location_pk: int, amount: int = 9, sleep: float = 0.5 ) -> List[Media]: """ Get top medias for a location Parameters ---------- location_pk: int Unique identifier for a location amount: int, optional Maximum number of media to return, default is 9 sleep: float, optional Timeout between requests, default is 0.5 Returns ------- List[Media] List of objects of Media """ try: return self.location_medias_top_a1(location_pk, amount, sleep) except ClientLoginRequired as e: if not self.inject_sessionid_to_public(): raise e return self.location_medias_top_a1(location_pk, amount, sleep) # retry def location_medias_recent_a1( self, location_pk: int, amount: int = 24, sleep: float = 0.5 ) -> List[Media]: """ Get recent medias for a location Parameters ---------- location_pk: int Unique identifier for a location amount: int, optional Maximum number of media to return, default is 24 sleep: float, optional Timeout between requests, default is 0.5 Returns ------- List[Media] List of objects of Media """ return self.location_medias_a1( location_pk, amount, sleep=sleep, tab_key="edge_location_to_media" ) def location_medias_recent( self, location_pk: int, amount: int = 24, sleep: float = 0.5 ) -> List[Media]: """ Get recent medias for a location Parameters ---------- location_pk: int Unique identifier for a location amount: int, optional Maximum number of media to return, default is 24 sleep: float, optional Timeout between requests, default is 0.5 Returns ------- List[Media] List of objects of Media """ try: return self.location_medias_recent_a1(location_pk, amount, sleep) except ClientLoginRequired as e: if not self.inject_sessionid_to_public(): raise e return self.location_medias_recent_a1(location_pk, amount, sleep) # retry
import scrapy import requests from bs4 import BeautifulSoup import urllib.parse as urlparse from clien_crawl.items import Article from pymongo import MongoClient import datetime import sys import PyRSS2Gen class MacSpider(scrapy.Spider): name = 'mac' allowed_domains = ['clien.net'] start_urls = ['https://www.clien.net/service/board/cm_mac'] base_url = 'https://www.clien.net' request_header = { "Accept": "*/*", 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac Os X 10_9_5) AppleWebKit 537.36 (KHMTL, like Gecko) Chrome', 'Accept-Language': 'ko-KR,ko;q=0.8,en-US;q=0.6,en;q=0.4' } def parse(self, response): meta = dict() for i in range(3,-1,-1): if i == 0: print(self.start_urls[0]) try: r = requests.get(self.start_urls[0]) bs_obj = BeautifulSoup(r.text, 'lxml') links = bs_obj.findAll('div', {'class' : 'list_item symph_row'}) for link in links: article_url = link.find('a')['href'] article_title = link.a.find('span', {'data-role' : 'list-title-text'}).attrs['title'] meta['article_title'] = article_title meta['article_url'] = urlparse.urljoin(self.base_url, article_url) yield scrapy.Request( urlparse.urljoin(self.base_url, article_url), callback=self.parse_articles, headers=self.request_header, meta=meta ) except: continue else: # print u + '&po=%d' % i try: r = requests.get(self.start_urls[0] + '?&po=%d' % i) bs_obj = BeautifulSoup(r.text, 'lxml') links = bs_obj.findAll('div', {'class' : 'list_item symph_row'}) for link in links: article_url = link.find('a')['href'] article_title = link.a.find('span', {'data-role' : 'list-title-text'}).attrs['title'] meta['article_title'] = article_title meta['article_url'] = urlparse.urljoin(self.base_url, article_url) yield scrapy.Request( urlparse.urljoin(self.base_url, article_url), callback=self.parse_articles, headers=self.request_header, meta=meta ) except: continue def parse_articles(self, response): meta = response.meta.copy() item = Article() bs_obj = BeautifulSoup(response.text, 'lxml') client = MongoClient('localhost', 27017) db = client.scrap_clien item['title'] = meta['article_title'] item['body'] = bs_obj.find('div', {'class' : 'post_article fr-view'}).text # or .get_text() item['url'] = meta['article_url'] collection = db.article collection.insert_one({'title': item['title'], 'body': item['body'], 'url': item['url']}) yield item
import os from dotenv import load_dotenv import openai load_dotenv() openai.organization = "org-D2FBgBhwLFkKAOsgtSp86b4i" openai.api_key = os.getenv("OPENAI_API_KEY") # Creates a fine-tuned model for search remote_files = openai.File.list()["data"] fine_tuning_files = filter(lambda f: "fine_tune.jsonl" in f["filename"], remote_files) validation_files = filter(lambda f: "fine_tune_validation.jsonl" in f["filename"], remote_files) latest_fine_tuning_file = max(fine_tuning_files, key=lambda x: x["created_at"]) latest_validation_file = max(validation_files, key=lambda x: x["created_at"]) openai.FineTune.create( training_file=latest_fine_tuning_file["id"], validation_file=latest_validation_file["id"], model="ada", n_epochs=4, batch_size=4, learning_rate_multiplier=0.1, prompt_loss_weight=0.1 )
''' Created on Oct 18, 2018 @author: srwle ''' def str2ascii(in_str): ret='' if isinstance(in_str, str): for c in in_str: ret += hex(ord(c)) return ret else: return None def testmain(): print(str2ascii('1234')) if __name__ == '__main__': testmain()
from revoke import RevocationList def test_set_check(): nl = RevocationList() assert 16 * 1024 * 8 == nl.size() assert not nl.is_revoked(54) nl.revoke(54) assert nl.is_revoked(54) assert not nl.is_revoked(10320) nl.revoke(10320) assert nl.is_revoked(10320) assert nl.is_revoked(54) def test_lifecycle(): nl = RevocationList() revoke_list = [2, 131000, 57] for i in revoke_list: assert not nl.is_revoked(i) for i in revoke_list: nl.revoke(i) for i in revoke_list: assert nl.is_revoked(i) encoded = nl.encode() back = RevocationList.decode(encoded) for i in revoke_list: assert back.is_revoked(i) assert not back.is_revoked(1)
from model.contact import Contact from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as ec from selenium.webdriver.common.by import By class ContactHelper: def __init__(self, application): self.app = application def create(self, contact): wd = self.app.wd wd.find_element_by_link_text("add new").click() self.fill_form(contact) wd.find_element_by_xpath("(//input[@name='submit'])[2]").click() self.app.navigation.back_to_home_page() self.contacts_cache = None def delete_first(self): self.delete_by_index(0) def delete_by_index(self, index): wd = self.app.wd self.app.navigation.open_home_page() wd.find_elements_by_name("selected[]")[index].click() wd.find_element_by_xpath("//input[@value='Delete']").click() wd.switch_to.alert.accept() WebDriverWait(wd, 10).until(ec.presence_of_element_located((By.ID, "maintable"))) self.contacts_cache = None def select_to_edit_by_index(self, index): wd = self.app.wd self.app.navigation.open_home_page() wd.find_elements_by_xpath("//*[@title='Edit']")[index].click() def edit_first(self, contact): self.edit_by_index(contact, 0) def edit_by_index(self, contact, index): wd = self.app.wd self.select_to_edit_by_index(index) self.fill_form(contact) wd.find_element_by_name("update").click() self.contacts_cache = None def fill_form(self, contact): self.enter_field("firstname", contact.first_name) self.enter_field("lastname", contact.last_name) self.enter_field("title", contact.title) self.enter_field("company", contact.company) self.enter_field("address", contact.primary_address) self.enter_field("mobile", contact.mobile_number) self.enter_field("home", contact.home_number) self.enter_field("work", contact.work_number) self.enter_field("email", contact.email) self.enter_field("email2", contact.email2) self.enter_field("email3", contact.email3) def enter_field(self, by_name, value): wd = self.app.wd if value is not None: wd.find_element_by_name(by_name).clear() wd.find_element_by_name(by_name).send_keys(value) def get_count(self): wd = self.app.wd self.app.navigation.open_home_page() return len(wd.find_elements_by_name("selected[]")) contacts_cache = None def get_contacts(self): if self.contacts_cache is None: wd = self.app.wd self.app.navigation.open_home_page() self.contacts_cache = [] for element in wd.find_elements_by_name("entry"): id = element.find_element_by_name("selected[]").get_attribute("value") cols = element.find_elements_by_tag_name("td") l_name = cols[1].text f_name = cols[2].text address = cols[3].text emails = cols[4].text phones = cols[5].text self.contacts_cache.append(Contact(first_name=f_name, last_name=l_name, primary_address=address, all_emails=emails, all_phones=phones, id=id)) return list(self.contacts_cache) def get_field_value(self, by_name): wd = self.app.wd return wd.find_element_by_name(by_name).get_attribute("value") def get_contact_from_edit_page(self, index): self.select_to_edit_by_index(index) first_name = self.get_field_value("firstname") last_name = self.get_field_value("lastname") title = self.get_field_value("title") company = self.get_field_value("company") address = self.get_field_value("address") mobile_phone = self.get_field_value("mobile") home_phone = self.get_field_value("home") work_phone = self.get_field_value("work") email = self.get_field_value("email") email_2 = self.get_field_value("email2") email_3 = self.get_field_value("email3") return Contact(first_name=first_name, last_name=last_name, title=title, company=company, primary_address=address, mobile_number=mobile_phone, email=email, email2=email_2, email3=email_3, home_number=home_phone, work_number=work_phone)
from . import api @api.route('/') def index(): return "Hello, world!" @api.route('/hello') def hello(): return "<h1>Testing</h1>"
# this script helps to move issue from one youtrack instance to another import sys def main() : try : source_url, source_login, source_password, source_issue_id, target_url, target_login = sys.argv[1:7] target_password, target_project_id = sys.argv[7:9] except : print "Usage : " print "copyOneIssue source_url source_login source_password source_issue_id target_url target_login target_password target_project_id" def doCopy(source_url, source_login, source_password, source_issue_id, target_url, target_login, target_password, target_project_id) : print "source_url : " + source_url print "source_login : " + source_login print "source_password : " + source_password print "source_issue_id : " + source_issue_id print "target_url : " + target_url print "target_login : " + target_login print "target_password : " + target_password print "target_project_id : " + target_project_id if __name__ == "__main__": main()
import openpyxl import re import sys import datetime import json import requests import threading import time import gatherData import printData import getItemIds path = "Rs3 Investments.xlsx" wb_obj = openpyxl.load_workbook(path.strip()) # from the active attribute sheet_obj = wb_obj.active max_column=sheet_obj.max_column max_row=sheet_obj.max_row items = [] alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'] def get_Data(x,y): lock = threading.Lock() start_time = time.time() total_items_added = 0 gatherData.load_urls() for i in range(x, y): url = 'http://services.runescape.com/m=itemdb_rs/api/catalogue/items.json?category='+ str(i) + '&alpha=a' items_in_category = gatherData.get_items_in_category(url) print('Items in this category: ' + str(items_in_category)) current_items = 0 for j in alphabet: url = 'http://services.runescape.com/m=itemdb_rs/api/catalogue/items.json?category='+ str(i) + '&alpha=' + str(j) + '&page=1' gatherData.run(url,1,lock) current_items = current_items + gatherData.get_current_items() print('Items added so far in category: ' + str(current_items) +'/'+str(items_in_category)) gatherData.reset_current_items() if (current_items == items_in_category): break total_items_added = total_items_added + current_items print('Total items added: ' + str(total_items_added)) print('Toal time: ' + str((time.time() - start_time)) + ' seconds.') print("grabbing item IDs from spreadsheet") for j in range(3, max_column+1):#column checking item IDs item_id = sheet_obj.cell(row=2,column=j) items.append(item_id.value) items.reverse() currentrow = 0 print("adding the new date row") for j in range(14,max_row):#setting date/updating values date = sheet_obj.cell(row=j,column=2) if date.value is None: current_time = datetime.date.today() dttm = current_time.strftime('%m/%d/%Y') date.value = dttm currentrow = j break if currentrow == 0: currentrow = max_row + 1 print("adding updated prices to new row") item_url = "https://services.runescape.com/m=itemdb_rs/api/graph/X.json" amtItems = len(items) amtSamePrice = 0 for j in range(3, max_column+1):#updating value for gp for today price = sheet_obj.cell(row=currentrow,column=j) if price.value is None:#use items.pop() for the name to check in database for new GP value item = items.pop() request = item_url.replace("X", "{}".format(item)) response = requests.get(request) if response.status_code is not 200: print("HTTP Error. API Response Was Not 200: " + str(response.status_code)) else: jsonResponse = response.json() lastKey = list(jsonResponse['daily'].keys())[-1] lastValue = jsonResponse['daily'][lastKey] print(lastValue) previousValue = sheet_obj.cell(row=currentrow-1,column=j) price.value = lastValue if(previousValue.value == lastValue or previousValue.value is None): #If amount matches the amount from the previous day, or if it is a newly added item to the sheet amtSamePrice += 1 print("amt the same:" + str(amtSamePrice)) print("amt items:" + str(amtItems)) if amtSamePrice == amtItems: print("GE isnt updated yet, all values the same. Task should be scheduled to restart this 4 hours from now.") wb_obj.close() exit(1) wb_obj.save(path) wb_obj.close() #Update Database: #for i in range(0,1): #lower = 0 + (i*18) #upper = (18+i) + (i*18) lower = 0 upper = 37 mythread = threading.Thread(name = "Thread-{}".format(1),target = get_Data,kwargs={'x': lower,'y': upper}) mythread.start() time.sleep(.1) #get_Data(0,37)
from website.app import init_app from website.models import Node, User from framework import Q from framework.analytics import piwik app = init_app('website.settings', set_backends=True) # NOTE: This is a naive implementation for migration, requiring a POST request # for every user and every node. It is possible to bundle these together in a # single request, but it would require duplication of logic and strict error # checking of the result. Doing it this way is idempotent, and allows any # exceptions raised to halt the process with a usable error message. for user in User.find(): if user.piwik_token: continue piwik.create_user(user) for node in Node.find(Q('is_public', 'eq', True) & Q('is_deleted', 'eq', False)): if node.piwik_site_id: continue piwik._provision_node(node._id)
from torch import nn from torch.nn import functional as F from .ops import gram_matrix class ContentLoss(nn.Module): def __init__(self, target,): super(ContentLoss, self).__init__() # we 'detach' the target content from the tree used # to dynamically compute the gradient: this is a stated value, # not a variable. Otherwise the forward method of the criterion # will throw an error. self.target = target.detach() def forward(self, input): self.loss = F.mse_loss(input, self.target) return input class StyleLoss(nn.Module): def __init__(self, target_feature): super(StyleLoss, self).__init__() self.target = gram_matrix(target_feature).detach() def forward(self, input): G = gram_matrix(input) self.loss = F.mse_loss(G, self.target) return input
# import hashlib # # from allauth.account.signals import user_signed_up, user_logged_in # from django.dispatch.dispatcher import receiver # from .models import Profile # @receiver(user_signed_up) # def social_login_fname_lname_profilepic(sociallogin, user, **kwargs): # preferred_avatar_size_pixels=256 # picture_url = "http://www.gravatar.com/avatar/{0}?s={1}".format( # hashlib.md5(user.email.encode('UTF-8')).hexdigest(), # preferred_avatar_size_pixels # ) # if sociallogin: # # Extract first / last names from social nets and store on User record # if sociallogin.account.provider == 'facebook': # # f_name = sociallogin.account.extra_data['first_name'] # # l_name = sociallogin.account.extra_data['last_name'] # # if f_name: # # user.first_name = f_name # # if l_name: # # user.last_name = l_name # #verified = sociallogin.account.extra_data['verified'] # picture_url = "http://graph.facebook.com/{0}/picture?width={1}&height={1}".format( # sociallogin.account.uid, preferred_avatar_size_pixels) # if sociallogin.account.provider == 'google': # # f_name = sociallogin.account.extra_data['given_name'] # # l_name = sociallogin.account.extra_data['family_name'] # # if f_name: # # user.first_name = f_name # # if l_name: # # user.last_name = l_name # #verified = sociallogin.account.extra_data['verified_email'] # picture_url = sociallogin.account.extra_data['picture'] # user.save() # profile = Profile(user=user, social_img=picture_url) # profile.save()
#!/usr/bin/env python3 import os, sys import json from urllib import request from urllib.parse import urlencode ENTRY = os.environ.get('GITLAB_URL') TOKEN = os.environ.get('GITLAB_TOKEN') DOING_LABEL = 'Doing' GANTT_START = 'GanttStart:' GANTT_END = 'GanttDue:' # ToDo: get project by url # ToDO: group by milestone # ToDo: issue start date by /spend class Gitlab: def __init__(self, gitlab_url, gitlab_token): self.gitlab_url, self.gitlab_token = gitlab_url, gitlab_token def req_api(self, path, data=None): headers = { 'PRIVATE-TOKEN': self.gitlab_token, 'Access-Control-Request-Headers': 'private-token', 'User-Agent': 'gitlab-issue-keeper', } if data is None: r = request.Request(f'{self.gitlab_url}{path}', headers=headers) else: params = urlencode(data) # stupid RESTful r = request.Request(f'{self.gitlab_url}{path}?{params}', headers=headers, method='PUT') return json.loads(request.urlopen(r, timeout=4).read()) def get_projects(self): r = self.req_api('/api/v4/projects/?membership=true&per_page=100') return dict(( p["path_with_namespace"], { "path": p["path_with_namespace"], "name": p["name"], "namespace": p["namespace"].get("path"), "last_activity_at": p["last_activity_at"], "description": p["description"], "url": p["web_url"], "id": p["id"], } ) for p in r if p["archived"] is False and p["namespace"].get("kind") == "group") @classmethod def guess_progress(cls, issue): total = issue["time_stats"].get("time_estimate") if not total or total <= 0: return spent = issue["time_stats"].get("total_time_spent") or 0 return spent / total * 100 class GitlabProject: def __init__(self, gitlab_obj, project_id): self.project_id = project_id self.gitlab_obj = gitlab_obj @property def labels_map(self): labels = getattr(self, '_labels', None) self.labels = labels or dict((x['name'], x['id']) for x in self.gitlab_obj.req_api(f'/api/v4/projects/{self.project_id}/labels') or []) # noqa return self.labels def get_issue_notes(self, iid): r = self.gitlab_obj.req_api(f'/api/v4/projects/{self.project_id}/issues/{iid}/notes') return r def get_doing_close_date(self, iid): label_id = self.labels_map[DOING_LABEL] issue_notes = list(self.get_issue_notes(iid)) starts = sorted([x for x in issue_notes if x['system'] and x['body'] == f'added ~{label_id} label' # noqa ], key=lambda x: x['id']) or issue_notes[-2:] if not starts: return None, None ends1 = sorted([x for x in issue_notes if x['system'] and x['body'] == 'closed' # noqa ], key=lambda x: x['id']) ends2 = sorted([x for x in issue_notes if x['system'] and x['body'] == f'removed ~{label_id} label' # noqa ], key=lambda x: x['id']) ends = ends1[-2:] + ends2[-2:] return starts[0]['updated_at'], min(ends, key=lambda x: x['id'])['updated_at'] if ends else None def list_issues(self): r = self.gitlab_obj.req_api(f'/api/v4/projects/{self.project_id}/issues?page=1&per_page=100&state=all') for issue in r: start, end = self.get_doing_close_date(issue['iid']) yield issue, start, end def update_issue(self, issue, start, end): """issue = {iid: 1, description: "", project_id: 0}""" gantt_str = '' if start: gantt_str = '%s\n%s%s' % (gantt_str, GANTT_START, start) if end: gantt_str = '%s\n%s%s' % (gantt_str, GANTT_END, end) if start or end: # remove old str lines = [] inline_edit = False for l in issue['description'].splitlines(): if l.startswith(GANTT_START) and start: lines.append(f'{GANTT_START}{start}') inline_edit = True elif l.startswith(GANTT_END) and end: lines.append(f'{GANTT_END}{end}') inline_edit = True desc_back = '\n'.join(lines) desc = '%s\n\n<!--\n下面是issue耗时跟踪不要删\n%s\n-->' % (desc_back, gantt_str) r = self.gitlab_obj.req_api(f'/api/v4/projects/{issue["project_id"]}/issues/{issue["iid"]}', {"description": desc}) def output_json(data, padding=None): if padding: # @ToDo: add sanitize padding return '%s(%s)' % (padding, json.dumps(data)) else: return json.dumps(data) if '__main__' == __name__: exit(0)
'''This file contains the lengthy dictionaries used by the validation tool script''' #list of field names fieldNames = ["OID@","SHAPE@","STATEID","PARCELID","TAXPARCELID","PARCELDATE","TAXROLLYEAR", "OWNERNME1","OWNERNME2","PSTLADRESS","SITEADRESS","ADDNUMPREFIX","ADDNUM","ADDNUMSUFFIX","PREFIX","STREETNAME", "STREETTYPE","SUFFIX","LANDMARKNAME","UNITTYPE","UNITID","PLACENAME","ZIPCODE","ZIP4","STATE","SCHOOLDIST", "SCHOOLDISTNO","IMPROVED","CNTASSDVALUE","LNDVALUE","IMPVALUE","FORESTVALUE","ESTFMKVALUE","NETPRPTA","GRSPRPTA", "PROPCLASS","AUXCLASS","ASSDACRES","DEEDACRES","GISACRES","CONAME","LOADDATE","PARCELFIPS","PARCELSRC", "SHAPE@LENGTH","SHAPE@AREA","SHAPE@XY","GeneralElementErrors","AddressElementErrors","TaxrollElementErrors","GeometricElementErrors"] fieldListPass = ["OID","OID@","SHAPE","SHAPE@","SHAPE_LENGTH","SHAPE_AREA","SHAPE_XY","SHAPE@LENGTH","SHAPE@AREA","SHAPE@XY","LONGITUDE","LATITUDE","GENERALELEMENTERRORS","ADDRESSELEMENTERRORS","TAXROLLELEMENTERRORS","GEOMETRICELEMENTERRORS"] #V3 schema requirements schemaReq = { 'STATEID':[['String'],[100]], 'PARCELID':[['String'],[100]], 'TAXPARCELID':[['String'],[100]], 'PARCELDATE':[['String'],[25]], 'TAXROLLYEAR':[['String'],[10]], 'OWNERNME1':[['String'],[254]], 'OWNERNME2':[['String'],[254]], 'PSTLADRESS':[['String'],[200]], 'SITEADRESS':[['String'],[200]], 'ADDNUMPREFIX':[['String'],[50]], 'ADDNUM':[['String'],[50]], 'ADDNUMSUFFIX':[['String'],[50]], 'PREFIX':[['String'],[50]], 'STREETNAME':[['String'],[50]], 'STREETTYPE':[['String'],[50]], 'SUFFIX':[['String'],[50]], 'LANDMARKNAME':[['String'],[50]], 'UNITTYPE':[['String'],[50]], 'UNITID':[['String'],[50]], 'PLACENAME':[['String'],[100]], 'ZIPCODE':[['String'],[50]], 'ZIP4':[['String'],[50]], 'STATE':[['String'],[50]], 'SCHOOLDIST':[['String'],[50]], 'SCHOOLDISTNO':[['String'],[50]], 'IMPROVED':[['String'],[10]], 'CNTASSDVALUE':[['String','Double'],[50,8]], 'LNDVALUE':[['String','Double'],[50,8]], 'IMPVALUE':[['String','Double'],[50,8]], 'FORESTVALUE':[['String','Double'],[50,8]], 'ESTFMKVALUE':[['String','Double'],[50,8]], 'NETPRPTA':[['String','Double'],[50,8]], 'GRSPRPTA':[['String','Double'],[50,8]], 'PROPCLASS':[['String'],[150]], 'AUXCLASS':[['String'],[150]], 'ASSDACRES':[['String','Double'],[50,8]], 'DEEDACRES':[['String','Double'],[50,8]], 'GISACRES':[['String','Double'],[50,8]], 'CONAME':[['String'],[50]], 'LOADDATE':[['String'],[10]], 'PARCELFIPS':[['String'],[10]], 'PARCELSRC':[['String'],[50]], } #bad characters dictionary fieldNamesBadChars = { "PARCELID": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")"], "TAXPARCELID": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")"], "PARCELDATE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\-"], "TAXROLLYEAR": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',"\-"], "OWNERNME1": ["\n","\r"], "OWNERNME2": ["\n","\r"], "PSTLADRESS": ["\n","\r"], "SITEADRESS": ["\n","\r"], "ADDNUMPREFIX": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "ADDNUM": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "ADDNUMSUFFIX": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~",',','.'], "PREFIX": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "STREETNAME": ["\n","\r","$","^","=","<",">","@","#","%","?","!","*","~","(",")"], "STREETTYPE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "SUFFIX": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "LANDMARKNAME": ["\n","\r"], "UNITTYPE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "UNITID": ["\n","\r","$","^","=","<",">","@","%","?","`","!","*","~","(",")",','], "PLACENAME": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',',"\-"], "ZIPCODE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "ZIP4": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "STATE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "SCHOOLDIST": ["\n","\r","$","^","=","<",">","@","#","%","&","?","!","*","~","(",")","\\",'/',','], "SCHOOLDISTNO": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "IMPROVED": ["\n","\r","$","^","=","@","#","%","&","?","`","!","*","~","(",")",',','.',"\-"], "CNTASSDVALUE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',',"\-"], "LNDVALUE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',',"\-"], "IMPVALUE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")",',',"\-"], "FORESTVALUE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',',"\-"], "ESTFMKVALUE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',',"\-"], "NETPRPTA": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',',"\-"], "GRSPRPTA": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',',"\-"], "PROPCLASS": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/','.',"\-"], "AUXCLASS": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/','.',"\-"], "ASSDACRES": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',',"\-"], "DEEDACRES": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',',"\-"], "GISACRES": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',','], "CONAME": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',',"\-"], "LOADDATE": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")",',','.','\-'], "PARCELFIPS": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"], "PARCELSRC": ["\n","\r","$","^","=","<",">","@","#","%","&","?","`","!","*","~","(",")","\\",'/',',','.',"\-"] } #acceptable COP domains copDomains = ['1','2','3','4','5','6','7','5M','M'] #acceptable AUXCOP domains auxDomins = ['W1','W2','W3','W4','W5','W6','W7','W8','W9','X1','X2','X3','X4','M'] #dictionary for V3 completeness collection v3CompDict = { 'STATEID':0, 'PARCELID':0, 'TAXPARCELID':0, 'PARCELDATE':0, 'TAXROLLYEAR':0, 'OWNERNME1':0, 'OWNERNME2':0, 'PSTLADRESS':0, 'SITEADRESS':0, 'ADDNUMPREFIX':0, 'ADDNUM':0, 'ADDNUMSUFFIX':0, 'PREFIX':0, 'STREETNAME':0, 'STREETTYPE':0, 'SUFFIX':0, 'LANDMARKNAME':0, 'UNITTYPE':0, 'UNITID':0, 'PLACENAME':0, 'ZIPCODE':0, 'ZIP4':0, 'STATE':0, 'SCHOOLDIST':0, 'SCHOOLDISTNO':0, 'IMPROVED':0, 'CNTASSDVALUE':0, 'LNDVALUE':0, 'IMPVALUE':0, 'FORESTVALUE':0, 'ESTFMKVALUE':0, 'NETPRPTA':0, 'GRSPRPTA':0, 'PROPCLASS':0, 'AUXCLASS':0, 'ASSDACRES':0, 'DEEDACRES':0, 'GISACRES':0, 'CONAME':0, 'LOADDATE':0, 'PARCELFIPS':0, 'PARCELSRC':0, }
# Reference : https://www.w3schools.com/python/python_file_handling.asp # Modes ''' By default "mode=r" Both read & write: mode=r+ "r" - Read - Default value. Opens a file for reading, error if the file does not exist "a" - Append - Opens a file for appending, creates the file if it does not exist "w" - Write - Opens a file for writing, creates the file if it does not exist "x" - Create - Creates the specified file, returns an error if the file exists In addition you can specify if the file should be handled as binary or text mode "t" - Text - Default value. Text mode "b" - Binary - Binary mode (e.g. images) (Like mode = wb) ''' f = open('test.txt') print(f.read()) ''' Output : Hey There Its me ''' '''Remember that read() reads the entire thing present in the file. So if you want to re read the file from the beginning make sure to f.seek(0) to place the cursor back to the starting''' f = open('test.txt') print(f.readline()) # Reads the contents of the file line by line # Output : Hey There f = open('test.txt') print(f.readlines()) #Returns a lists which contains all the lines # Output : ['Hey there \n', 'Its me'] # Standard Way To Open A File with open('test.txt') as f : print(f.readlines()) # Always close the file once opened f.close() #Another Example with open('test.txt',mode='r+') as f: text = f.write('hellooooo') '''Output : hellooooo Its me ''' # Its better to perform file operations within try and except block
# Code Sample from the tutorial at https://learncodeshare.net/2015/07/09/delete-crud-using-cx_oracle/ # section titled "Deleting records referenced by Foreign Keys" 1st example # Using the base template, the example code executes a simple delete using named bind variables. # When following the tutorial with default data this section intentionally throws an error # to demonstrate foreign key functionality. import cx_Oracle import os connectString = os.getenv('DB_CONNECT') # The environment variable for the connect string: DB_CONNECT=user/password@database con = cx_Oracle.connect(connectString) def get_all_rows(label, data_type='people'): # Query all rows cur = con.cursor() if (data_type == 'pets'): statement = 'select id, name, owner, type from lcs_pets order by owner, id' else: statement = 'select id, name, age, notes from lcs_people order by id' cur.execute(statement) res = cur.fetchall() print(label + ': ') print (res) print(' ') cur.close() get_all_rows('Original People Data', 'people') get_all_rows('Original Pet Data', 'pets') cur = con.cursor() statement = 'delete from lcs_people where id = :id' cur.execute(statement, {'id':1}) con.commit() get_all_rows('New People Data', 'people') get_all_rows('New Pet Data', 'pets')
from .learner import DBRMLearner from .nn_structure import make_ope_networks
import skimage import skimage.feature import numpy as np import llops as yp import llops.operators as ops import llops.filter as filters import scipy as sp # Feature-based registration imports from skimage.feature import ORB, match_descriptors, plot_matches from skimage.measure import ransac from skimage.transform import EuclideanTransform def _preprocessForRegistration(image0, image1, methods=['pad'], **kwargs): # Ensure methods argument is a list if type(methods) not in (list, tuple): methods = [methods] # Perform 'reflection', which pads an object with antisymmetric copies of itself if 'pad' in methods: # Get pad factor pad_factor = kwargs.get('pad_factor', 2) # Get pad value pad_type = kwargs.get('pad_type', 'reflect') # Generate pad operator which pads the object to 2x it's size pad_size = [sp.fftpack.next_fast_len(int(pad_factor * s)) for s in yp.shape(image0)] # Perform padding image0 = yp.pad(image0, pad_size, pad_value=pad_type, center=True) image1 = yp.pad(image1, pad_size, pad_value=pad_type, center=True) # Normalize to the range [0,1] (Always do if we're filtering) if 'normalize' in methods: image0 = filters._normalize(image0) image1 = filters._normalize(image1) # Sobel filtering if 'sobel' in methods: image0 = filters.sobel(image0) image1 = filters.sobel(image1) # Gaussian filtering if 'gaussian' in methods: image0 = filters.gaussian(image0, sigma=1) image1 = filters.gaussian(image1, sigma=1) # High-pass filtering (using gaussian) if 'highpass' in methods: image0 = filters.gaussian(image0, sigma=2) - filters.gaussian(image0, sigma=4) image1 = filters.gaussian(image1, sigma=2) - filters.gaussian(image1, sigma=4) # Roberts filtering if 'roberts' in methods: image0 = filters.roberts(image0) image1 = filters.roberts(image1) # Scharr filtering if 'scharr' in methods: image0 = filters.scharr(image0) image1 = filters.scharr(image1) # Prewitt filtering if 'prewitt' in methods: image0 = filters.prewitt(image0) image1 = filters.prewitt(image1) # Canny filtering if 'canny' in methods: image0 = filters.canny(image0, sigma=kwargs.get('sigma', 1), low_threshold=kwargs.get('low_threshold', 0.01), high_threshold=kwargs.get('high_threshold', 0.05)) image1 = filters.canny(image1, sigma=kwargs.get('sigma', 1), low_threshold=kwargs.get('low_threshold', 0.01), high_threshold=kwargs.get('high_threshold', 0.05)) return image0, image1 def registerImage(image0, image1, method='xc', axis=None, preprocess_methods=['reflect'], debug=False, **kwargs): # Perform preprocessing if len(preprocess_methods) > 0: image0, image1 = _preprocessForRegistration(image0, image1, preprocess_methods, **kwargs) # Parameter on whether we can trust our registration trust_ratio = 1.0 if method in ['xc' or 'cross_correlation']: # Get energy ratio threshold trust_threshold = kwargs.get('energy_ratio_threshold', 1.5) # Pad arrays for optimal speed pad_size = tuple([sp.fftpack.next_fast_len(s) for s in yp.shape(image0)]) # Perform padding if pad_size is not yp.shape(image0): image0 = yp.pad(image0, pad_size, pad_value='edge', center=True) image1 = yp.pad(image1, pad_size, pad_value='edge', center=True) # Take F.T. of measurements src_freq, target_freq = yp.Ft(image0, axes=axis), yp.Ft(image1, axes=axis) # Whole-pixel shift - Compute cross-correlation by an IFFT image_product = src_freq * yp.conj(target_freq) # image_product /= abs(src_freq * yp.conj(target_freq)) cross_correlation = yp.iFt(image_product, center=False, axes=axis) # Take sum along axis if we're doing 1D if axis is not None: axis_to_sum = list(range(yp.ndim(image1))) del axis_to_sum[axis] cross_correlation = yp.sum(cross_correlation, axis=axis_to_sum) # Locate maximum shape = yp.shape(src_freq) maxima = yp.argmax(yp.abs(cross_correlation)) midpoints = np.array([np.fix(axis_size / 2) for axis_size in shape]) shifts = np.array(maxima, dtype=np.float64) shifts[shifts > midpoints] -= np.array(shape)[shifts > midpoints] # If its only one row or column the shift along that dimension has no # effect. We set to zero. for dim in range(yp.ndim(src_freq)): if shape[dim] == 1: shifts[dim] = 0 # If energy ratio is too small, set all shifts to zero trust_metric = yp.scalar(yp.max(yp.abs(cross_correlation) ** 2) / yp.mean(yp.abs(cross_correlation) ** 2)) # Determine if this registraition can be trusted trust_ratio = trust_metric / trust_threshold elif method == 'orb': # Get user-defined mean_residual_threshold if given trust_threshold = kwargs.get('mean_residual_threshold', 40.0) # Get user-defined mean_residual_threshold if given orb_feature_threshold = kwargs.get('orb_feature_threshold', 25) match_count = 0 fast_threshold = 0.05 while match_count < orb_feature_threshold: descriptor_extractor = ORB(n_keypoints=500, fast_n=9, harris_k=0.1, fast_threshold=fast_threshold) # Extract keypoints from first frame descriptor_extractor.detect_and_extract(np.asarray(image0).astype(np.double)) keypoints0 = descriptor_extractor.keypoints descriptors0 = descriptor_extractor.descriptors # Extract keypoints from second frame descriptor_extractor.detect_and_extract(np.asarray(image1).astype(np.double)) keypoints1 = descriptor_extractor.keypoints descriptors1 = descriptor_extractor.descriptors # Set match count match_count = min(len(keypoints0), len(keypoints1)) fast_threshold -= 0.01 if fast_threshold == 0: raise RuntimeError('Could not find any keypoints (even after shrinking fast threshold).') # Match descriptors matches = match_descriptors(descriptors0, descriptors1, cross_check=True) # Filter descriptors to axes (if provided) if axis is not None: matches_filtered = [] for (index_0, index_1) in matches: point_0 = keypoints0[index_0, :] point_1 = keypoints1[index_1, :] unit_vec = point_0 - point_1 unit_vec /= np.linalg.norm(unit_vec) if yp.abs(unit_vec[axis]) > 0.99: matches_filtered.append((index_0, index_1)) matches_filtered = np.asarray(matches_filtered) else: matches_filtered = matches # Robustly estimate affine transform model with RANSAC model_robust, inliers = ransac((keypoints0[matches_filtered[:, 0]], keypoints1[matches_filtered[:, 1]]), EuclideanTransform, min_samples=3, residual_threshold=2, max_trials=100) # Note that model_robust has a translation property, but this doesn't # seem to be as numerically stable as simply averaging the difference # between the coordinates along the desired axis. # Apply match filter matches_filtered = matches_filtered[inliers, :] # Process keypoints if yp.shape(matches_filtered)[0] > 0: # Compute shifts difference = keypoints0[matches_filtered[:, 0]] - keypoints1[matches_filtered[:, 1]] shifts = (yp.sum(difference, axis=0) / yp.shape(difference)[0]) shifts = np.round(shifts[0]) # Filter to axis mask if axis is not None: _shifts = [0, 0] _shifts[axis] = shifts[axis] shifts = _shifts # Calculate residuals residuals = yp.sqrt(yp.sum(yp.abs(keypoints0[matches_filtered[:, 0]] + np.asarray(shifts) - keypoints1[matches_filtered[:, 1]]) ** 2)) # Define a trust metric trust_metric = residuals / yp.shape(keypoints0[matches_filtered[:, 0]])[0] # Determine if this registration can be trusted trust_ratio = 1 / (trust_metric / trust_threshold) print('===') print(trust_ratio) print(trust_threshold) print(trust_metric) print(shifts) else: trust_metric = 1e10 trust_ratio = 0.0 shifts = np.asarray([0, 0]) elif method == 'optimize': # Create Operators L2 = ops.L2Norm(yp.shape(image0), dtype='complex64') R = ops.PhaseRamp(yp.shape(image0), dtype='complex64') REAL = ops.RealFilter((2, 1), dtype='complex64') # Take Fourier Transforms of images image0_f, image1_f = yp.astype(yp.Ft(image0), 'complex64'), yp.astype(yp.Ft(image1), 'complex64') # Diagonalize one of the images D = ops.Diagonalize(image0_f) # Form objective objective = L2 * (D * R * REAL - image1_f) # Solve objective solver = ops.solvers.GradientDescent(objective) shifts = solver.solve(iteration_count=1000, step_size=1e-8) # Convert to numpy array, take real part, and round. shifts = yp.round(yp.real(yp.asbackend(shifts, 'numpy'))) # Flip shift axes (x,y to y, x) shifts = np.fliplr(shifts) # TODO: Trust metric and trust_threshold trust_threshold = 1 trust_ratio = 1.0 else: raise ValueError('Invalid Registration Method %s' % method) # Mark whether or not this measurement is of good quality if not trust_ratio > 1: if debug: print('Ignoring shift with trust metric %g (threshold is %g)' % (trust_metric, trust_threshold)) shifts = yp.zeros_like(np.asarray(shifts)).tolist() # Show debugging figures if requested if debug: import matplotlib.pyplot as plt plt.figure(figsize=(6, 5)) plt.subplot(131) plt.imshow(yp.abs(image0)) plt.axis('off') plt.subplot(132) plt.imshow(yp.abs(image1)) plt.title('Trust ratio: %g' % (trust_ratio)) plt.axis('off') plt.subplot(133) if method in ['xc' or 'cross_correlation']: if axis is not None: plt.plot(yp.abs(yp.squeeze(cross_correlation))) else: plt.imshow(yp.abs(yp.fftshift(cross_correlation))) else: plot_matches(plt.gca(), yp.real(image0), yp.real(image1), keypoints0, keypoints1, matches_filtered) plt.title(str(shifts)) plt.axis('off') # Return return shifts, trust_ratio def register_roi_list(measurement_list, roi_list, axis=None, use_overlap_region=True, debug=False, preprocess_methods=['highpass', 'normalize'], use_mean_offset=False, replace_untrusted=False, tolerance=(200, 200), force_2d=False, energy_ratio_threshold=1.5, method='xc'): """ Register a list of overlapping ROIs """ # Loop over frame indicies offsets = [] trust_mask = [] # Parse and set up axis definition if axis is not None and force_2d: _axis = None else: _axis = axis # Loop over frames rois_used = [] for frame_index in range(len(measurement_list)): # Get ROIs roi_current = roi_list[frame_index] frame_current = measurement_list[frame_index] # Determine which rois overlap overlapping_rois = [(index, roi) for (index, roi) in enumerate(rois_used) if roi.overlaps(roi_current)] # Loop over overlapping ROIs if len(overlapping_rois) > 0: local_offset_list = [] for index, overlap_roi in overlapping_rois: # Get overlap regions overlap_current, overlap_prev = yp.roi.getOverlapRegion((frame_current, measurement_list[index]), (roi_current, roi_list[index])) # Perform registration _local_offset, _trust_metric = registerImage(overlap_current, overlap_prev, axis=_axis, method=method, preprocess_methods=preprocess_methods, pad_factor=1.5, pad_type=0, energy_ratio_threshold=energy_ratio_threshold, sigma=0.1, debug=False) # Deal with axis definitions if axis is not None and force_2d: local_offset = [0] * len(_local_offset) local_offset[axis] = _local_offset[axis] else: local_offset = _local_offset # Filter to tolerance for ax in range(len(local_offset)): if abs(local_offset[ax]) > tolerance[ax]: local_offset[ax] = 0 # local_offset = np.asarray([int(min(local_offset[i], tolerance[i])) for i in range(len(local_offset))]) # local_offset = np.asarray([int(max(local_offset[i], -tolerance[i])) for i in range(len(local_offset))]) # Append offset to list if _trust_metric > 1.0: local_offset_list.append(local_offset) if debug: print('Registered with trust ratio %g' % _trust_metric) else: if debug: print('Did not register with trust ratio %g' % _trust_metric) # Append offset to list if len(local_offset_list) > 0: offsets.append(tuple((np.round(yp.mean(np.asarray(local_offset_list), axis=0)[0]).tolist()))) trust_mask.append(True) else: offsets.append((0, 0)) trust_mask.append(False) else: offsets.append((0, 0)) trust_mask.append(True) # Store thir ROI in rois_used rois_used.append(roi_current) # Convert offsets to array and reverse diretion offsets = -1 * np.array(offsets) if not any(trust_mask): print('WARNING: Did not find any good registration values! Returning zero offset.') offsets = [np.asarray([0, 0])] * len(offsets) else: # Take mean of offsets if desired if use_mean_offset: # This flag sets all measurements to the mean of trusted registration offsets = np.asarray(offsets) trust_mask = np.asarray(trust_mask) offsets[:, 0] = np.mean(offsets[trust_mask, 0]) offsets[:, 1] = np.mean(offsets[trust_mask, 1]) offsets = offsets.tolist() elif replace_untrusted: # This flag replaces untrusted measurements with the mean of all trusted registrations offsets = np.asarray(offsets) trust_mask = np.asarray(trust_mask) trust_mask_inv = np.invert(trust_mask) offsets[trust_mask_inv, 0] = np.round(np.mean(offsets[trust_mask, 0])) offsets[trust_mask_inv, 1] = np.round(np.mean(offsets[trust_mask, 1])) offsets = offsets.tolist() # Convert to numpy array offsets = np.asarray(offsets) # Determine aggrigate offsets aggrigate_offsets = [offsets[0]] for offset_index in range(len(offsets) - 1): aggrigate_offsets.append(sum(offsets[slice(0, offset_index + 2)]).astype(np.int).tolist()) # Return the recovered offsets return aggrigate_offsets def register_translation(src_image, target_image, upsample_factor=1, energy_ratio_threshold=2, space="real"): """ Efficient subpixel image translation registration by cross-correlation. This code gives the same precision as the FFT upsampled cross-correlation in a fraction of the computation time and with reduced memory requirements. It obtains an initial estimate of the cross-correlation peak by an FFT and then refines the shift estimation by upsampling the DFT only in a small neighborhood of that estimate by means of a matrix-multiply DFT. Parameters ---------- src_image : ndarray Reference image. target_image : ndarray Image to register. Must be same dimensionality as ``src_image``. upsample_factor : int, optional Upsampling factor. Images will be registered to within ``1 / upsample_factor`` of a pixel. For example ``upsample_factor == 20`` means the images will be registered within 1/20th of a pixel. Default is 1 (no upsampling) space : string, one of "real" or "fourier", optional Defines how the algorithm interprets input data. "real" means data will be FFT'd to compute the correlation, while "fourier" data will bypass FFT of input data. Case insensitive. return_error : bool, optional Returns error and phase difference if on, otherwise only shifts are returned Returns ------- shifts : ndarray Shift vector (in pixels) required to register ``target_image`` with ``src_image``. Axis ordering is consistent with numpy (e.g. Z, Y, X) error : float Translation invariant normalized RMS error between ``src_image`` and ``target_image``. phasediff : float Global phase difference between the two images (should be zero if images are non-negative). References ---------- .. [1] Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup, "Efficient subpixel image registration algorithms," Optics Letters 33, 156-158 (2008). :DOI:`10.1364/OL.33.000156` .. [2] James R. Fienup, "Invariant error metrics for image reconstruction" Optics Letters 36, 8352-8357 (1997). :DOI:`10.1364/AO.36.008352` """ # images must be the same shape if yp.shape(src_image) != yp.shape(target_image): raise ValueError("Error: images must be same size for " "register_translation") # only 2D data makes sense right now if yp.ndim(src_image) > 3 and upsample_factor > 1: raise NotImplementedError("Error: register_translation only supports " "subpixel registration for 2D and 3D images") # assume complex data is already in Fourier space if space.lower() == 'fourier': src_freq = src_image target_freq = target_image # real data needs to be fft'd. elif space.lower() == 'real': src_freq = yp.Ft(src_image) target_freq = yp.Ft(target_image) else: raise ValueError("Error: register_translation only knows the \"real\" " "and \"fourier\" values for the ``space`` argument.") # Whole-pixel shift - Compute cross-correlation by an IFFT shape = yp.shape(src_freq) image_product = src_freq * yp.conj(target_freq) cross_correlation = yp.iFt(image_product, center=False) # Locate maximum maxima = yp.argmax(yp.abs(cross_correlation)) midpoints = np.array([np.fix(axis_size / 2) for axis_size in shape]) shifts = np.array(maxima, dtype=np.float64) shifts[shifts > midpoints] -= np.array(shape)[shifts > midpoints] # if upsample_factor > 1: # # Initial shift estimate in upsampled grid # shifts = np.round(shifts * upsample_factor) / upsample_factor # upsampled_region_size = np.ceil(upsample_factor * 1.5) # # Center of output array at dftshift + 1 # dftshift = np.fix(upsampled_region_size / 2.0) # upsample_factor = np.array(upsample_factor, dtype=np.float64) # normalization = (src_freq.size * upsample_factor ** 2) # # Matrix multiply DFT around the current shift estimate # sample_region_offset = dftshift - shifts*upsample_factor # cross_correlation = _upsampled_dft(image_product.conj(), # upsampled_region_size, # upsample_factor, # sample_region_offset).conj() # cross_correlation /= normalization # # Locate maximum and map back to original pixel grid # maxima = np.array(np.unravel_index( # np.argmax(np.abs(cross_correlation)), # cross_correlation.shape), # dtype=np.float64) # maxima -= dftshift # # shifts = shifts + maxima / upsample_factor # If its only one row or column the shift along that dimension has no # effect. We set to zero. for dim in range(yp.ndim(src_freq)): if shape[dim] == 1: shifts[dim] = 0 # If energy ratio is too small, set all shifts to zero energy_ratio = yp.max(yp.abs(cross_correlation) ** 2) / yp.sum(yp.abs(cross_correlation) ** 2) * yp.prod(yp.shape(cross_correlation)) if energy_ratio < energy_ratio_threshold: print('Ignoring shift with energy ratio %g (threshold is %g)' % (energy_ratio, energy_ratio_threshold)) shifts = yp.zeros_like(shifts) return shifts
""" Sample data: { "data": { "id": "95.0", "meta": { "type": "attribute_change", "entity_id": 758, "new_value": "This is the newest description ever!!", "old_value": "This is the old description!", "entity_type": "Asset", "attribute_name": "description", "field_data_type": "text" }, "user": { "id": 113, "type": "HumanUser" }, "entity": { "id": 758, "type": "Asset" }, "project": { "id": 65, "type": "Project" }, "operation": "update", "created_at": "2019-07-12 21:14:36.598835", "event_type": "Shotgun_Asset_Change", "session_uuid": "07473c00-a4ea-11e9-b3b8-0242ac110006", "attribute_name": "description", "event_log_entry_id": 248249 } } """ import socket import pika from flask import Flask from flask import request from celery_worker import tasks app = Flask(__name__) @app.route('/') def index(): return f'Hello World! {socket.gethostname()}' @app.route('/event', methods=['POST']) def event(): connection = pika.BlockingConnection(pika.ConnectionParameters('localhost')) channel = connection.channel() channel.queue_declare(queue='hello') channel.basic_publish( exchange='', routing_key='hello', body=request.get_data()) connection.close() return '200' if __name__ == '__main__': app.run(debug=True)
from django.db import models from decimal import Decimal # Create your models here. class College(models.Model): name = models.CharField(max_length=255, default='') slug = models.CharField(max_length=255, default='') acceptance = models.DecimalField(max_digits=3, decimal_places=2, default=0.00) city = models.CharField(max_length=255, default='') state = models.CharField(max_length=255, default='') grad_rate = models.DecimalField(max_digits=4, decimal_places=2, default=0.00) desirability = models.IntegerField(default=0) influence = models.IntegerField(default=0) overall_rank = models.IntegerField(default=0) sat = models.IntegerField(default=0) act = models.IntegerField(default=0) undergrad_student_body = models.IntegerField(default=0) tuition = models.IntegerField(default=0) domain = models.CharField(max_length=255, default='') def __str__(self): return self.name
import unittest from datetime import timedelta from cachepot.expire import to_timedelta class TestExpireSeconds(unittest.TestCase): def test_to_timedelta(self) -> None: # float self.assertEqual(to_timedelta(1.0), timedelta(seconds=1.0)) # int self.assertEqual(to_timedelta(3), timedelta(seconds=3)) # timedelta self.assertEqual(timedelta(days=5), timedelta(days=5))
from web3 import Web3 OWNER_ACCOUNT_NO = 0 ADDER_ACCOUNT_NO = 1 # these values need to match with the values # defined in CounterControllerV1 and CounterControllerV2 VALUE_INITIALIZED = 100 VALUE_INITIALIZED_V2 = 42
from django.db import models from django.core.validators import MaxValueValidator, MinValueValidator from django.contrib.auth.models import User # Create your models here. class Location(models.Model): title = models.CharField(max_length=200) category = models.CharField(max_length=100) location_logo = models.FileField() description = models.TextField(null=True,blank=True) lalitude = models.CharField(max_length=50,null=True,blank=True) longitude = models.CharField(max_length=50,null=True,blank=True) def __str__(self): return self.title class Myrating(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) location = models.ForeignKey(Location, on_delete=models.CASCADE) rating = models.IntegerField(default=0, validators=[MaxValueValidator(5), MinValueValidator(0)]) class MyList(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) location = models.ForeignKey(Location, on_delete=models.CASCADE) Visited = models.BooleanField(default=False)
def get_abi(): return [ { "inputs": [], "stateMutability": "nonpayable", "type": "constructor" }, { "anonymous": False, "inputs": [ { "indexed": True, "internalType": "address", "name": "owner", "type": "address" }, { "indexed": True, "internalType": "address", "name": "spender", "type": "address" }, { "indexed": False, "internalType": "uint256", "name": "value", "type": "uint256" } ], "name": "Approval", "type": "event" }, { "anonymous": False, "inputs": [ { "indexed": True, "internalType": "address", "name": "from", "type": "address" }, { "indexed": True, "internalType": "address", "name": "to", "type": "address" }, { "indexed": False, "internalType": "uint256", "name": "value", "type": "uint256" } ], "name": "Transfer", "type": "event" }, { "inputs": [], "name": "DOMAIN_SEPARATOR", "outputs": [ { "internalType": "bytes32", "name": "", "type": "bytes32" } ], "stateMutability": "view", "type": "function" }, { "inputs": [], "name": "PERMIT_TYPEHASH", "outputs": [ { "internalType": "bytes32", "name": "", "type": "bytes32" } ], "stateMutability": "view", "type": "function" }, { "inputs": [ { "internalType": "address", "name": "_owner", "type": "address" }, { "internalType": "address", "name": "_spender", "type": "address" } ], "name": "allowance", "outputs": [ { "internalType": "uint256", "name": "", "type": "uint256" } ], "stateMutability": "view", "type": "function" }, { "inputs": [ { "internalType": "address", "name": "_spender", "type": "address" }, { "internalType": "uint256", "name": "_value", "type": "uint256" } ], "name": "approve", "outputs": [ { "internalType": "bool", "name": "", "type": "bool" } ], "stateMutability": "nonpayable", "type": "function" }, { "inputs": [ { "internalType": "address", "name": "_owner", "type": "address" } ], "name": "balanceOf", "outputs": [ { "internalType": "uint256", "name": "", "type": "uint256" } ], "stateMutability": "view", "type": "function" }, { "inputs": [], "name": "decimals", "outputs": [ { "internalType": "uint256", "name": "", "type": "uint256" } ], "stateMutability": "view", "type": "function" }, { "inputs": [], "name": "name", "outputs": [ { "internalType": "string", "name": "", "type": "string" } ], "stateMutability": "view", "type": "function" }, { "inputs": [ { "internalType": "address", "name": "", "type": "address" } ], "name": "nonces", "outputs": [ { "internalType": "uint256", "name": "", "type": "uint256" } ], "stateMutability": "view", "type": "function" }, { "inputs": [ { "internalType": "address", "name": "owner", "type": "address" }, { "internalType": "address", "name": "spender", "type": "address" }, { "internalType": "uint256", "name": "value", "type": "uint256" }, { "internalType": "uint256", "name": "deadline", "type": "uint256" }, { "internalType": "uint8", "name": "v", "type": "uint8" }, { "internalType": "bytes32", "name": "r", "type": "bytes32" }, { "internalType": "bytes32", "name": "s", "type": "bytes32" } ], "name": "permit", "outputs": [], "stateMutability": "nonpayable", "type": "function" }, { "inputs": [], "name": "symbol", "outputs": [ { "internalType": "string", "name": "", "type": "string" } ], "stateMutability": "view", "type": "function" }, { "inputs": [], "name": "totalSupply", "outputs": [ { "internalType": "uint256", "name": "", "type": "uint256" } ], "stateMutability": "view", "type": "function" }, { "inputs": [ { "internalType": "address", "name": "_to", "type": "address" }, { "internalType": "uint256", "name": "_value", "type": "uint256" } ], "name": "transfer", "outputs": [ { "internalType": "bool", "name": "", "type": "bool" } ], "stateMutability": "nonpayable", "type": "function" }, { "inputs": [ { "internalType": "address", "name": "_from", "type": "address" }, { "internalType": "address", "name": "_to", "type": "address" }, { "internalType": "uint256", "name": "_value", "type": "uint256" } ], "name": "transferFrom", "outputs": [ { "internalType": "bool", "name": "", "type": "bool" } ], "stateMutability": "nonpayable", "type": "function" } ]
from enum import Enum, auto class JagEvent(Enum): DISCOVERED = auto() AWARENESS = auto() PREPARING = auto() ADDRESSING = auto() COMPLETION = auto() SUMMARY = auto() def __lt__(self, other): """ USC """ if self.__class__ is other.__class__: return self.value < other.value return NotImplemented
ALLOWED_HOSTS = ['*'] DEBUG = True LOCAL_SETTINGS = True DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'fusionti_amcm_db', 'USER': 'fusionti_amcm_user', 'PASSWORD': 'UZLs{R4s{Yr~', 'HOST': '', 'PORT': '', } }
import numpy as np import glob import tqdm import cv2 import os import math import datetime import seaborn as sns import pandas as pd import random import matplotlib.pyplot as plt from sklearn.cluster import KMeans class DatasetRebalancing(): def __init__(self): self.grid_info = { "0": [0, 0.33, 0, 0.33], "1": [0.33, 0.67, 0, 0.33], "2": [0.67, 1.00, 0, 0.33], "3": [0, 0.33, 0.33, 0.67], "4": [0.33, 0.67, 0.33, 0.67], "5": [0.67, 1.00, 0.33, 0.67], "6": [0, 0.33, 0.67, 1.00], "7": [0.33, 0.67, 0.67, 1.00], "8": [0.67, 1.00, 0.67, 1.00], } self.vector_list = None self.clustering_vector_list = None self.candidate_list = None self.train_list = None self.valid_list = None def color_extractor(self, img, topk=1): kmeans = KMeans(n_clusters=topk) kmeans = kmeans.fit(img.reshape((img.shape[1] * img.shape[0], 3))) color = [int(kmeans.cluster_centers_[0][0]), int(kmeans.cluster_centers_[0][1]), int(kmeans.cluster_centers_[0][2])] return color def img2vector(self, img, grid_info): vector = [] for grid in grid_info.values(): st_x = int(grid[0] * img.shape[1]) end_x = int(grid[1] * img.shape[1]) st_y = int(grid[2] * img.shape[0]) end_y = int(grid[3] * img.shape[0]) crop = img[st_y:end_y, st_x:end_x] vector.extend(self.color_extractor(crop)) return np.array(vector) def save_vector_info(self, vector, file_path): with open(file_path, 'a') as file: for index in range(len(vector)): item = vector[index] file.write(str(item)) if (index != len(vector) - 1): file.write(",") file.write("\n") def save_dataset(self, data, file_path): with open(file_path, 'w') as file: for index in range(len(data)): jpg_path = data[index] if index != (len(data) - 1): file.write(jpg_path + "\n") else: file.write(jpg_path) print(file_path + " is saved") def read_vector_info(self, file_path): vector_list = [] with open(file_path, 'r') as file: lines = file.readlines() print("== Start load vector ==") print("load file path ->", file_path) for line in tqdm.tqdm(lines): line = line.replace("\n", "") vector = [] for value in line.split(","): vector.append(int(value)) vector_list.append(vector) self.vector_list = vector_list print("== Finish load vector ==") def read_clustering_vector_info(self, file_path): vector_list = [] with open(file_path, 'r') as file: lines = file.readlines() print("== Start load clustering vector ==") print("load file path :", file_path) for line in tqdm.tqdm(lines): line = line.replace("\n", "") vector = [] for value in line.split(","): vector.append(int(value)) vector_list.append(vector) self.clustering_vector_list = np.array(vector_list) print("== Finish load clustering vector ==") def read_dataset(self, file_path): self.candidate_list = {} with open(file_path, 'r') as file: lines = file.readlines() print("== Start load dataset ==") print("target :", file_path) for line in tqdm.tqdm(lines): cls, img_path = line.split(',') img_path = img_path.replace("\n", "") cls = int(cls) if cls in self.candidate_list: lst = self.candidate_list[cls] lst.append(img_path) self.candidate_list[cls] = lst else: self.candidate_list[cls] = [img_path] print("== Finish load dataset ==") def vector_clustering(self, result_path, topk=1000, verbose=1): vector_list = np.array(self.vector_list) kmeans = KMeans(n_clusters=topk, verbose=verbose) kmeans = kmeans.fit(vector_list) result = [] for index in range(topk): result.append(kmeans.cluster_centers_[index]) with open(result_path, 'w') as file: for vector in result: for index in range(len(vector)): value = str(int(vector[index])) file.write(value) if index != len(vector) - 1: file.write(",") file.write("\n") return result def vector_extraction(self, dataset_path): vector_list = [] now = datetime.datetime.now() vector_filepath = now.strftime('%Y-%m-%d %H-%M-%S' + "_vector_info.txt") for img_path in tqdm.tqdm(dataset_path): img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV) vector = self.img2vector(img, self.grid_info) self.save_vector_info(vector, vector_filepath) vector_list.append(vector) self.vector_list = vector_list return vector_list def mse(self, vector1, vector2): error = np.mean(np.power(vector1 - vector2, 2), axis=1) return error def classification(self, result_path, dataset): self.candidate_list = {} if os.path.isfile(result_path): with open(result_path, 'w') as file: pass for img_path in tqdm.tqdm(dataset): img = cv2.imread(img_path) img = cv2.cvtColor(img, cv2.COLOR_BGR2YUV) vector = np.array(self.img2vector(img, self.grid_info)) cur_vector_tile = np.tile(vector, (len(self.clustering_vector_list), 1)) error_list = self.mse(cur_vector_tile, self.clustering_vector_list) cls = np.argmin(error_list) with open(result_path, 'a') as file: file.write(str(cls) + "," + img_path + "\n") if cls in self.candidate_list: lst = self.candidate_list[cls] lst.append(img_path) self.candidate_list[cls] = lst else: self.candidate_list[cls] = [img_path] def collection(self, train_lst_path="train.txt", valid_lst_path="valid.txt", valid_ratio=0.2, select_num=2, verbose=True): ''' :param train_lst_path: train file path :param valid_lst_path: valid file path :param valid_ratio: validation ratio :param select_option: data select num :param verbose: plot show option :return: ''' self.candidate_list = sorted(self.candidate_list.items()) self.train_list = [] self.valid_list = [] cls_list = [] count_list = [] for dict in tqdm.tqdm(self.candidate_list): cls = dict[0] count = len(dict[1]) cls_list.append(cls) count_list.append(count) count_list = np.array(count_list) min_cls = np.argmin(count_list) max_cls = np.argmax(count_list) min_count = count_list[min_cls] max_count = count_list[max_cls] mean_count = int(np.mean(count_list)) if verbose: _fig = plt.figure(figsize=(20, 5)) colors = sns.color_palette('hls', len(cls_list)) plt.bar(cls_list, count_list, color=colors) plt.xlabel("class") plt.ylabel("count") plt.show() print("minimum_count = ", min_count) print("maximum_count = ", max_count) print("mean_count = ", mean_count) train_thresh_count = select_num for dict in tqdm.tqdm(self.candidate_list): file_list = dict[1] loop = len(file_list) if loop > train_thresh_count: loop = train_thresh_count for index in range(loop): self.train_list.append(file_list[index]) valid_thresh_count = int(len(self.train_list) * valid_ratio) for dict in tqdm.tqdm(self.candidate_list): file_list = dict[1] loop = len(file_list) if loop == train_thresh_count: continue for index, file_path in enumerate(file_list[train_thresh_count:]): self.valid_list.append(file_path) random.shuffle(self.valid_list) self.valid_list = self.valid_list[:valid_thresh_count] self.save_dataset(self.train_list, train_lst_path) self.save_dataset(self.valid_list, valid_lst_path) if __name__ == "__main__": target_dataset = glob.glob("/home/fsai2/sangmin/ObjectDetection/dteg/dataset/negative/**/*.jpg", recursive=True) dr = DatasetRebalancing() clustering_data = dr.vector_extraction(target_dataset) # dr.read_vector_info("./2021-10-25 13-01-51_vector_info.txt") vector_list = dr.vector_clustering("./negative_kmeans_vector_info.txt", topk=5000, verbose=1) dr.read_clustering_vector_info("./negative_kmeans_vector_info.txt") dr.classification("./negative_dataset_list.txt", target_dataset) dr.read_dataset("./negative_dataset_list.txt") dr.collection("negative_train.txt", "negative_valid.txt", select_num=2, verbose=False)
from enum import Enum from typing import List, Dict import numpy as np from nagi.constants import IZ_MEMBRANE_POTENTIAL_THRESHOLD, STDP_PARAMS, STDP_LEARNING_WINDOW, NEURON_WEIGHT_BUDGET, \ THRESHOLD_THETA_INCREMENT_RATE, THRESHOLD_THETA_DECAY_RATE, IZ_SPIKE_VOLTAGE from nagi.neat import Genome, NeuralNodeGene, InputNodeGene, OutputNodeGene from nagi.stdp import * class StdpType(Enum): input = 1 output = 2 class SpikingNeuron(object): """Class representing a single spiking neuron.""" def __init__(self, bias: float, a: float, b: float, c: float, d: float, inputs: List[int], learning_rule: LearningRule, is_inhibitory: bool, stdp_parameters: Dict[str, float]): """ a, b, c, and d are the parameters of the Izhikevich model. :param bias: The bias of the neuron. :param a: The time-scale of the recovery variable. :param b: The sensitivity of the recovery variable. :param c: The after-spike reset value of the membrane potential. :param d: The after-spike reset value of the recovery variable. :param inputs: A dictionary of incoming connection weights. """ self.bias = bias self.a = a self.b = b self.c = c self.d = d self.inputs = {key: np.random.normal(0.5, 0.1) for key in inputs} self._normalize_weights() self.learning_rule = learning_rule self.is_inhibitory = is_inhibitory self.stdp_parameters = stdp_parameters self.membrane_potential = self.c self.membrane_recovery = self.b * self.membrane_potential self.fired = 0 self.current = self.bias self.threshold_theta = 0 # Variables containing time elapsed since last input and output spikes. self.output_spike_timing: float = 0 self.input_spike_timings: Dict[int, List[float]] = {key: [] for key in self.inputs.keys()} self.has_fired = False def advance(self, dt: float): """ Advances simulation time by the given time step in milliseconds. Update of membrane potential "v" and membrane recovery "u" given by formulas: v += dt * (0.04 * v^2 + 5v + 140 - u + I) u += dt * a * (b * v - u) Once membrane potential exceeds threshold: v = c u = u + d :param dt: Time step in milliseconds. """ if self.fired: self.membrane_potential = self.c self.membrane_recovery += self.d self.threshold_theta += THRESHOLD_THETA_INCREMENT_RATE else: v = self.membrane_potential u = self.membrane_recovery self.membrane_potential += dt * (0.04 * v ** 2 + 5 * v + 140 - u + self.current) self.membrane_recovery += dt * self.a * (self.b * v - u) self.fired = 0 self.output_spike_timing += dt for key in self.input_spike_timings.keys(): # STDP update on received input spike. if 0 in self.input_spike_timings[key] and self.has_fired: self.stpd_update(key, StdpType.input) self.input_spike_timings[key] = [t + dt for t in self.input_spike_timings[key] if t + dt < STDP_LEARNING_WINDOW] if self.membrane_potential > IZ_MEMBRANE_POTENTIAL_THRESHOLD + self.threshold_theta: self.fired = IZ_SPIKE_VOLTAGE if not self.is_inhibitory else -IZ_SPIKE_VOLTAGE self.has_fired = True self.output_spike_timing = 0 # STDP on output spike. for key in self.input_spike_timings.keys(): self.stpd_update(key, StdpType.output) else: self.threshold_theta -= THRESHOLD_THETA_DECAY_RATE * self.threshold_theta def reset(self): """ Resets all state variables.""" self.membrane_potential = self.c self.membrane_recovery = self.b * self.membrane_potential self.fired = 0 self.current = self.bias self.output_spike_timing = 0 self.input_spike_timings = {key: 0 for key in self.inputs.keys()} def apply_learning_rule(self, delta_t: float): return get_learning_rule_function(self.learning_rule)(delta_t, **self.stdp_parameters) def stpd_update(self, key: int, stdp_type: StdpType): """ Applies STDP to the weight with the supplied key. :param stdp_type: :param key: The key identifying the synapse weight to be updated. :return: void """ delta_weight = 0 weight = self.inputs[key] sigma, w_min, w_max = STDP_PARAMS['sigma'], STDP_PARAMS['w_min'], STDP_PARAMS['w_max'] if stdp_type is StdpType.input: delta_t = self.output_spike_timing - 0 if abs(delta_t) < STDP_LEARNING_WINDOW: delta_weight = self.apply_learning_rule(delta_t) elif stdp_type is StdpType.output: for input_spike_timing in self.input_spike_timings[key]: delta_t = self.output_spike_timing - input_spike_timing if abs(delta_t) < STDP_LEARNING_WINDOW: delta_weight += self.apply_learning_rule(delta_t) if delta_weight > 0: self.inputs[key] += sigma * delta_weight * (w_max - weight) elif delta_weight < 0: self.inputs[key] += sigma * delta_weight * (weight - abs(w_min)) self._normalize_weights() def _normalize_weights(self): sum_of_input_weights = sum(self.inputs.values()) if sum_of_input_weights > NEURON_WEIGHT_BUDGET: self.inputs = {key: value * NEURON_WEIGHT_BUDGET / sum_of_input_weights for key, value in self.inputs.items()} class SpikingNeuralNetwork(object): """Class representing a spiking neural network.""" def __init__(self, neurons: Dict[int, SpikingNeuron], inputs: List[int], outputs: List[int]): """ :param neurons: Dictionary containing key/node pairs. :param inputs: List of input node keys. :param outputs: List of output node keys. :var self.input_values: Dictionary containing input key/voltage pairs. """ self.neurons = neurons self.inputs = inputs self.outputs = outputs self.input_values: Dict[int, float] = {} self.number_of_hidden_neurons = len(self.neurons) - len(outputs) def set_inputs(self, inputs: List[float]): """ Assigns voltages to the input nodes. :param inputs: List of voltage values.""" assert len(inputs) == len( self.inputs), f"Number of inputs {len(inputs)} does not match number of input nodes {len(self.inputs)} " for key, voltage in zip(self.inputs, inputs): self.input_values[key] = voltage def advance(self, dt: float) -> List[float]: """ Advances the neural network with the given input values and neuron states. Iterates through each neuron, then through each input of each neuron and evaluates the values to advance the network. The values can come from either input nodes, or firing neurons in a previous layer. :param dt: Time step in miliseconds. :return: List of the output values of the network after advance.""" for neuron in self.neurons.values(): neuron.current = neuron.bias for key, weight in neuron.inputs.items(): in_neuron = self.neurons.get(key) if in_neuron is not None: in_value = in_neuron.fired else: in_value = self.input_values[key] # Trigger STDP on received input spike. if in_value: neuron.input_spike_timings[key].append(0) neuron.current += in_value * weight for neuron in self.neurons.values(): neuron.advance(dt) return [self.neurons[key].fired for key in self.outputs] def reset(self): """Resets all state variables in all neurons in the entire neural network.""" for neuron in self.neurons.values(): neuron.reset() def get_weights(self): weights = {} for destination_key, neuron in self.neurons.items(): for origin_key, weight in neuron.inputs.items(): weights[(origin_key, destination_key)] = weight return weights def get_membrane_potentials(self): return {key: (neuron.membrane_potential, IZ_MEMBRANE_POTENTIAL_THRESHOLD + neuron.threshold_theta) for key, neuron in self.neurons.items()} @staticmethod def create(genome: Genome, bias: float, a: float, b: float, c: float, d: float): learning_nodes = {key: node for key, node in genome.nodes.items() if isinstance(node, NeuralNodeGene)} node_inputs = {key: [] for key in learning_nodes.keys()} input_keys = [node.key for node in genome.nodes.values() if isinstance(node, InputNodeGene)] output_keys = [node.key for node in genome.nodes.values() if isinstance(node, OutputNodeGene)] for connection_gene in genome.get_enabled_connections(): node_inputs[connection_gene.destination_node].append(connection_gene.origin_node) neurons = {key: SpikingNeuron(bias, a, b, c, d, inputs, learning_nodes[key].learning_rule, learning_nodes[key].is_inhibitory, learning_nodes[key].stdp_parameters) for key, inputs in node_inputs.items()} return SpikingNeuralNetwork(neurons, input_keys, output_keys)
# NOTICE # # This software was produced for the U. S. Government under Basic Contract No. # W56KGU-19-D-0004, and is subject to the Rights in Noncommercial Computer # Software and Noncommercial Computer Software Documentation Clause # 252.227-7014 (FEB 2012) # # (c) 2020 The MITRE Corporation. Approved for Public Release. Distribution Unlimited. Case Number 20-2258 from __future__ import absolute_import from __future__ import print_function import logging import os import sys import time import uuid import json import re from dxlclient.callbacks import RequestCallback, ResponseCallback from dxlclient.client import DxlClient from dxlclient.client_config import DxlClientConfig from dxlclient.message import Message, Request, Response from dxlclient.service import ServiceRegistrationInfo from dxlclient.message import Event from messages import InitiateAssessmentMessage, RequestAcknowledgementMessage, CancelAssessmentMessage, ReportResultsMessage, MessageType, QueryMessage, QueryResultMessage, CollectorRequestMessage # Import common logging and configuration sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/..") from common import * # Configure local logger logger = logging.getLogger(__name__) # Topic that manager listens on for assessment requests SERVICE_INITIATE_ASSESSMENT_TOPIC = "/scap/service/assessment/initiate" # Topic that manager listens on for cancel requests TODO: May go away SERVICE_CANCEL_ASSESSMENT_TOPIC = "/scap/service/assessment/cancel" # Topic used to send collection requests to the collector EVENT_COLLECTOR_REQUEST_TOPIC = "/scap/event/collector/request" # Topic used to send queries to the repository SERVICE_REPOSITORY_QUERY_TOPIC = "/scap/service/repository/query" # Base topic for application assessment results EVENT_ASSESSMENT_RESULTS_TOPIC = "/scap/event/assessment/results" # Topic that repository listens for data to store EVENT_STORE_DATA_TOPIC = "/scap/event/data/store" # Create DXL configuration from file config = DxlClientConfig.create_dxl_config_from_file(CONFIG_FILE) # Stores initiate assessment requests for processing assessment_requests = [] # Stores transactions of ongoing assessments for each application transactions = {} # Stores transactions associated with targets so we know where # to send cancellation requests transactions_targets = {} # Create the client with DxlClient(config) as client: # Query the repository for certain information def query_repository(query): # Create query message and send it to the repository req = Request(SERVICE_REPOSITORY_QUERY_TOPIC) qm = QueryMessage(query) req.payload = (qm.to_json()).encode() res = client.sync_request(req) # Parse and return the query results qrm = QueryResultMessage() qrm.parse(res.payload.decode()) return qrm # Send collection results to the appropriate application def send_collection_results_event(rrsm): send_event(EVENT_ASSESSMENT_RESULTS_TOPIC+"/"+rrsm.requestor_id, rrsm.to_json()) # Store data in the repository def store_data(m): logger.info("Storing data in the repository: %s", m.to_s()) send_event(EVENT_STORE_DATA_TOPIC, m.to_json()) # Task specific collector with collection request def task_collector(crm, collector): logger.info("Tasking collector %s with request: %s", collector, crm.to_s()) send_event(EVENT_COLLECTOR_REQUEST_TOPIC+"/"+collector, crm.to_json()) # Send event to the specified topic def send_event(topic, m): event = Event(topic) event.payload = m.encode() client.send_event(event) # Acknowledge incoming requests with an acknowledgement message # and assign a transaction id def acknowledge_request(request): # Prepare response and assign a new transaction # id res = Response(request) rm = RequestAcknowledgementMessage() rm.transaction_id = str(uuid.uuid4()) res.payload = (rm.to_json()).encode() # Send the request acknowledgement to the application # in reponse to the request and return the transaction # id logger.info("Sending request acknowlegement: %s", rm.to_s()) client.send_response(res) return rm.transaction_id # Parse the content and extract the check identifiers # If there is content just extract imaginary identifiers # 1, 2, and 3. Otherwise, it should remain the empty string # because it represents a cancel assessment request def get_ids(content): ids = "" if content == "inventory": ids = "1,2,3" elif content == "assess": ids = "4,5,6" elif content == "remaining_request": ids = "7,8,9" return ids # Determine if the report request represents on-going monitoring # or a point-in-time assessment. Only support point-in-time # assessments for now. def is_point_in_time_assessment(iam): if iam.content == "assess" or iam.content == "inventory": return True else: return False # Build repository query based on targeting information and the # type of information that is needed def query_builder(targeting, option): query = "" if re.search(".*[Ww][Ii][Nn][Dd][Oo][Ww][Ss].*",targeting): query = "windows" elif re.search(".*[Rr][Hh][Ee][Ll].*",targeting): query = "rhel" elif re.search(".*[Ss][Oo][Ll][Aa][Rr][Ii][Ss].*",targeting): query = "solaris" elif re.search(".*[Mm][Aa][Cc][Oo][Ss].*",targeting): query = "macos" elif re.search(".*[Uu][Bb][Uu][Nn][Tt][Uu].*",targeting): query = "ubuntu" elif re.search("\*", targeting): query = "windows_rhel_solaris_macos_ubuntu" else: return None return query+"_"+option # Get previous assessment results from the repository def get_previous_results(iam, targets): logger.info("Searching for previous results") query = query_builder(iam.targeting, "results") # Query the repository and filter based on oldest results, # result_format_filters, collection_method, and targeting # properties of the report request message qrm = query_repository(query) if qrm.result == "": logger.info("Found: "+str(None)) return None else: rrsm = ReportResultsMessage(iam.transaction_id, iam.requestor_id, "", "", qrm.result) logger.info("Found: "+qrm.result) return rrsm # Get applicable/undetermined targets from the repository def get_applicable_targets(iam): logger.info("Searching for applicable/undetermined targets") query = query_builder(iam.targeting, "targets") # Query the repository for applicable and undetermined # assets qrm = query_repository(query) logger.info("Found: "+str(qrm.result)) return qrm.result # Get in scope collectors based on targets from the repository def get_collectors(targets): logger.info("Searching for in scope collectors") query = "targets_"+json.dumps(targets) # Query the repository for in scope collectors # based on specified targets qrm = query_repository(query) logger.info("Found: "+str(qrm.result)) return qrm.result # Task the collectors with the initiate assessment request def task_collectors(iam, targets, collectors): logger.info("Tasking the collectors %s with collection request", collectors) # Extract the check identifiers from the content and create # a collection request using the information from the initiate # assessment request ids = get_ids(iam.content) crm = CollectorRequestMessage(ids, iam.targeting, iam.latest_return, iam.collection_method, iam.result_format_filters, iam.collection_parameters, iam.transaction_id, iam.requestor_id, targets) # Send collector request events to the appropriate # collectors for collector in collectors: task_collector(crm, collector) # Using the previously collected results and the initiate # assessment request to determine what checks are remaining # from the report request. Just pass the request through for now def get_remaining_request(previous_results, iam): # Assume the previous results cover the entire assessment # so just return None if previous_results == None: return iam else: iam.content = "remaining_request" return iam # Process incoming assessments from applications class InitiateAssessmentCallback(RequestCallback): def on_request(self, request): # Acknowledge the initiate assessment request # and get a new transaction id transaction_id = acknowledge_request(request) # Parse the initiate assessment request message # and set the transaction id with the new # transaction id iam = InitiateAssessmentMessage() iam.parse(request.payload.decode()) iam.transaction_id = transaction_id logger.info("Manager recieved initiate assessment request: %s", iam.to_s()) # Add to the list of active assessment transactions if iam.requestor_id in transactions.keys(): transactions[iam.requestor_id].append(transaction_id) else: transactions[iam.requestor_id] = [transaction_id] # Append the initiate assessment request to the list # of requests that need to be processed assessment_requests.append(iam) # Process incoming cancel assessment messages from the application class CancelAssessmentCallback(RequestCallback): def on_request(self, request): # Parse cancel assessment message cam = CancelAssessmentMessage() cam.parse(request.payload.decode()) logger.info("Manager received cancel assessment request: %s", cam.to_s()) # Check to make sure it came from the application # that originally requested the assessment. If it # is not, just ignore the message if cam.requestor_id in transactions.keys() and cam.transaction_id in transactions[cam.requestor_id]: assessment_requests.append(cam) # Cancel request didn't come from originating application so ignore else: logger.info("Ignoring cancel request "+cam.transaction_id+" for application "+cam.requestor_id) # Send request acknowledgement message with the transaction # id that was cancelled res = Response(request) ram = RequestAcknowledgementMessage() ram.transaction_id = cam.transaction_id res.payload = (ram.to_json()).encode() client.send_response(res) # Prepare service registration information info = ServiceRegistrationInfo(client, "/scap/manager") # Have manager provide assessment request, cancel assessment, and query services info.add_topic(SERVICE_INITIATE_ASSESSMENT_TOPIC, InitiateAssessmentCallback()) info.add_topic(SERVICE_CANCEL_ASSESSMENT_TOPIC, CancelAssessmentCallback()) # Connect to the message fabric and register the service client.connect() client.register_service_sync(info, 10) # Wait forever while True: # Process all initiate assessment requests that were received while assessment_requests: ar = assessment_requests.pop(0) if ar.message_type == MessageType.CANCEL_ASSESSMENT.value: iam = InitiateAssessmentMessage() iam.transaction_id = ar.transaction_id iam.requestor_id = ar.requestor_id targets = transactions_targets[ar.transaction_id] # Query the repository for in scope collectors collectors = get_collectors(targets) # Task the in scope collectors task_collectors(iam, targets, collectors) else: # Store the initiate assessment request in the repository store_data(ar) # Query the repository for applicable targets targets = get_applicable_targets(ar) # Store targets associated with the transaction_id transactions_targets[ar.transaction_id] = targets # If point-in-time assessment, get any previous results from # the database previous_results = None if is_point_in_time_assessment(ar): previous_results = get_previous_results(ar, targets) # If there are previous results, send the results to the # application if previous_results != None: # Send results to the requesting application send_collection_results_event(previous_results) # Based on previous results determine what is left # and task the collector rr_ar = get_remaining_request(previous_results,ar) # Query the repository for in scope collectors collectors = get_collectors(targets) # Task the in scope collectors task_collectors(rr_ar, targets, collectors) time.sleep(1)
class Solution: res = [] # 生成第 row 行的数据 def search(self, row, all_rows): if row == all_rows: return arr = [1] * (row + 1) for i in range(1, row): arr[i] = self.res[row - 1][i - 1] + self.res[row - 1][i] self.res.append(arr) self.search(row + 1, all_rows) def generate(self, numRows): self.res.clear() self.search(0, numRows) return self.res
from enum import Enum from operator import attrgetter from django.db import models from django.db.models import sql from django.db.models.deletion import Collector from django.utils import six from django_types.operations import CustomTypeOperation from .fields import EnumField """ Use a symbol = value style as per Enum expectations. Where a value is the human readable or sensible value, and the symbol is the constant or programming flag to use. For readbility of the database values, the human readable values are used. """ class EnumState: @classmethod def values(cls): return [em.value for em in cls] @classmethod def values_set(cls): return set(cls.values()) def enum_state(values, name=None, app_label=None): """ Create an EnumState representing the values or Enum """ if isinstance(values, type) and issubclass(values, Enum): if not name: name = values.__name__ values = (em.value for em in values) elif not name: name = 'Unnamed Enum' e = Enum(name, [(v, v) for v in values], type=EnumState) e.Meta = type('Meta', (object,), {}) e.Meta.app_label = app_label return e class SQLCollector(Collector): """ Collector that generates the required deletion SQL instead of performing it """ def as_sql(self): """ Generate SQL queries that perform related deletion """ # List of (sql, params) tuples to perform deletion query_list = [] for model, instances in self.data.items(): self.data[model] = sorted(instances, key=attrgetter("pk")) self.sort() # Do not send pre_delete signals as in .delete() # Fast deletes for qs in self.fast_deletes: # TODO Check for any potential caveats from complex queries - assume none are generated by Collector # Clone queryset into DeleteQuery to use .as_sql() query_list.append(qs.query.clone(klass=sql.DeleteQuery).get_compiler(self.using).as_sql()) # update fields for model, instances_for_fieldvalues in six.iteritems(self.field_updates): query = sql.UpdateQuery(model) for (field, value), instances in six.iteritems(instances_for_fieldvalues): query.add_update_values({field.name: value}) query.add_q(models.Q(pk__in=[obj.pk for obj in instances])) query_list.append(query.get_compiler(using=self.using).as_sql()) # reverse instance collections for instances in six.itervalues(self.data): instances.reverse() # delete instances for model, instances in six.iteritems(self.data): query = sql.DeleteQuery(model) pk_list = [obj.pk for obj in instances] query.where = query.where_class() query.add_q(models.Q(pk__in=pk_list)) query_list.append(query.get_compiler(using=self.using).as_sql()) # Do not update instances as in .delete() return query_list class EnumOperation(CustomTypeOperation): field_type = EnumField class CreateEnum(EnumOperation): def __init__(self, db_type, values): # Values follow Enum functional API options to specify self.db_type = db_type self.values = values def describe(self): return 'Create enum type {db_type}'.format(db_type=self.db_type) def state_forwards(self, app_label, state): enum = enum_state(self.values, name=self.db_type, app_label=app_label) state.add_type(self.db_type, enum) def database_forwards(self, app_label, schema_editor, from_state, to_state): if schema_editor.connection.features.requires_enum_declaration: enum = to_state.db_types[self.db_type] sql = schema_editor.sql_create_enum % { 'enum_type': self.db_type, 'values': ', '.join(['%s'] * len(enum))} schema_editor.execute(sql, enum.values()) def database_backwards(self, app_label, schema_editor, from_state, to_state): if schema_editor.connection.features.requires_enum_declaration: sql = schema_editor.sql_delete_enum % { 'enum_type': self.db_type} schema_editor.execute(sql) class RemoveEnum(EnumOperation): def __init__(self, db_type): self.db_type = db_type def describe(self): return 'Remove enum type {db_type}'.format(db_type=self.db_type) def state_forwards(self, app_label, state): # TODO Add dependency checking and cascades state.remove_type(self.db_type) def database_forwards(self, app_label, schema_editor, from_state, to_state): if schema_editor.connection.features.requires_enum_declaration: sql = schema_editor.sql_delete_enum % { 'enum_type': self.db_type} schema_editor.execute(sql) def database_backwards(self, app_label, schema_editor, from_state, to_state): if schema_editor.connection.features.requires_enum_declaration: enum = to_state.db_types[self.db_type] sql = schema_editor.sql_create_enum % { 'enum_type': self.db_type, 'values': ', '.join(['%s'] * len(enum))} schema_editor.execute(sql, enum.values()) class RenameEnum(EnumOperation): def __init__(self, old_type, new_type): self.old_db_type = old_type self.db_type = new_type def describe(self): return 'Rename enum type {old} to {new}'.format( old=self.old_db_type, new=self.db_type) def state_forwards(self, app_label, state): old_enum = state.db_types[self.old_db_type] enum = enum_state(old_enum, name=self.db_type, app_label=app_label) state.remove_type(self.old_db_type) state.add_type(self.db_type, enum) # Update all fields using this enum for info in self.get_fields(state, db_type=self.old_db_type): changed_field = info.field.clone() changed_field.type_name = self.db_type info.model_state.fields[info.field_index] = (info.field_name, changed_field) state.reload_model(info.model_app_label, info.model_name) def database_forwards(self, app_label, schema_editor, from_state, to_state): if schema_editor.connection.features.requires_enum_declaration: sql = schema_editor.sql_rename_enum % { 'old_type': self.old_db_type, 'enum_type': self.db_type} schema_editor.execute(sql) def database_backwards(self, app_label, schema_editor, from_state, to_state): self.old_db_type, self.db_type = self.db_type, self.old_db_type self.database_forwards(app_label, schema_editor, from_state, to_state) self.old_db_type, self.db_type = self.db_type, self.old_db_type class AlterEnum(EnumOperation): temp_db_type = 'django_enum_temp' transition_db_type = 'django_enum_transition' def __init__(self, db_type, add_values=None, remove_values=None, on_delete=models.PROTECT): self.db_type = db_type self.add_values = set(add_values or ()) self.remove_values = set(remove_values or ()) self.on_delete = on_delete def describe(self): return 'Alter enum type {db_type},{added}{removed}'.format( db_type=self.db_type, added=' added {} value(s)'.format(len(self.add_values)) if self.add_values else '', removed=' removed {} value(s)'.format(len(self.remove_values)) if self.remove_values else '') def state_forwards(self, app_label, state): from_enum = state.db_types[self.db_type] to_enum = enum_state((from_enum.values_set() | self.add_values) - self.remove_values, name=self.db_type, app_label=app_label) state.add_type(self.db_type, to_enum) # Update all fields using this enum for info in self.get_fields(state): changed_field = info.field.clone() changed_field.type_def = to_enum info.model_state.fields[info.field_index] = (info.field_name, changed_field) state.reload_model(info.model_app_label, info.model_name) def database_forwards(self, app_label, schema_editor, from_state, to_state): # Compare from_state and to_state and generate the appropriate ALTER commands pre_actions = [] post_actions = [] # Make sure ORM is ready for use from_state.clear_delayed_apps_cache() db_alias = schema_editor.connection.alias # Get field/model list fields = [ (from_model, to_model, from_field, self.on_delete or from_field.on_delete) for info in self.get_fields(from_state) for from_model in [from_state.apps.get_model(info.model_app_label, info.model_name)] for from_field in [from_model._meta.get_field(info.field_name)] for to_model in [to_state.apps.get_model(info.model_app_label, info.model_name)] ] if self.remove_values: # The first post delete actions are to finalise the field types if schema_editor.connection.features.has_enum: if schema_editor.connection.features.requires_enum_declaration: sql_alter_column_type = getattr( schema_editor, 'sql_alter_column_type_using', schema_editor.sql_alter_column_type) for (from_model, to_model, field, on_delete) in fields: db_table = schema_editor.quote_name(from_model._meta.db_table) db_field = schema_editor.quote_name(field.column) sql = schema_editor.sql_alter_column % { 'table': db_table, 'changes': sql_alter_column_type % { 'column': db_field, 'type': self.temp_db_type, 'old_type': self.db_type}} post_actions.append((sql, [])) else: for (from_model, to_model, field, on_delete) in fields: db_table = schema_editor.quote_name(from_model._meta.db_table) db_field = schema_editor.quote_name(field.column) new_field = to_model._meta.get_field(field.name) db_type, params = new_field.db_type(schema_editor.connection).paramatized sql = schema_editor.sql_alter_column % { 'table': db_table, 'changes': schema_editor.sql_alter_column_type % { 'column': db_field, 'type': db_type}} post_actions.append((sql, params)) if self.add_values: # If there's the possibility of inconsistent actions, use transition type # ie, ADD VALUE 'new_val' and REMOVE VALUE 'rem_val' ON DELETE SET('new_val') # On DB's without enum support this isn't necessary as they are always CHAR transition_fields = [ (from_model, field) for (from_model, to_model, field, on_delete) in fields if hasattr(on_delete, 'deconstruct') or (on_delete == models.SET_DEFAULT and field.get_default() in self.add_values)] if transition_fields and schema_editor.connection.features.has_enum: transition_values = to_state.db_types[self.db_type].values_set() | self.remove_values transition_enum = enum_state(transition_values, 'transitional_enum') if schema_editor.connection.features.requires_enum_declaration: # Create transition type sql = schema_editor.sql_create_enum % { 'enum_type': self.transition_db_type, 'choices': ', '.join(['%s'] * len(transition_values))} pre_actions.append((sql, list(transition_values))) # Drop transition type after done sql = schema_editor.sql_delete_enum % { 'enum_type': self.transition_db_type} post_actions.append((sql, [])) # Set fields to transition type for (model, field) in transition_fields: db_table = schema_editor.quote_name(model._meta.db_table) db_field = schema_editor.quote_name(field.column) field.type_name = self.transition_db_type field.type_def = transition_enum db_type, params = field.db_type(schema_editor.connection).paramatized sql = schema_editor.sql_alter_column % { 'table': db_table, 'changes': schema_editor.sql_alter_column_type % { 'column': db_field, 'type': db_type}} pre_actions.append((sql, params)) if schema_editor.connection.features.requires_enum_declaration: # Create new type with temporary name to_enum = to_state.db_types[self.db_type] sql = schema_editor.sql_create_enum % { 'enum_type': self.temp_db_type, 'values': ', '.join(['%s'] * len(to_enum))} pre_actions.append((sql, to_enum.values())) # Clean up original type and rename new one to replace it sql = schema_editor.sql_delete_enum % { 'enum_type': self.db_type} post_actions.append((sql, [])) sql = schema_editor.sql_rename_enum % { 'old_type': self.temp_db_type, 'enum_type': self.db_type} post_actions.append((sql, [])) elif self.add_values: # Just adding values? Directly modify types, no hassle! if schema_editor.connection.features.requires_enum_declaration: for value in self.add_values: sql = schema_editor.sql_alter_enum % { 'enum_type': self.db_type, 'value': '%s'} post_actions.append((sql, [value])) elif schema_editor.connection.features.has_enum: for (from_model, to_model, field, on_delete) in fields: db_table = schema_editor.quote_name(from_model._meta.db_table) db_field = schema_editor.quote_name(field.column) new_field = to_model._meta.get_field(field.name) db_type, params = new_field.db_type(schema_editor.connection).paramatized schema_editor.sql_alter_column % { 'table': db_table, 'changes': schema_editor.sql_alter_column_type % { 'column': db_field, 'type': db_type}} post_actions.append((sql, params)) # Prepare database for data to be migrated for sql, params in pre_actions: schema_editor.execute(sql, params) # Apply all on_delete actions making data consistent with to_state values if self.remove_values: # Cheap hack to allow on_delete to work for (from_model, to_model, field, on_delete) in fields: field.remote_field = self # Records affected by on_delete action on_delete_gen = (( field, from_model.objects.using(db_alias).filter( models.Q(('{}__in'.format(field.name), self.remove_values)) ).only('pk'), on_delete) for (from_model, to_model, field, on_delete) in fields) # Validate on_delete constraints collector = SQLCollector(using=db_alias) for (field, qs, on_delete) in on_delete_gen: if qs: # Trigger the on_delete collection directly on_delete(collector, field, qs, db_alias) for sql, params in collector.as_sql(): # Use SQLCollector.as_sql() instead of directly executing # Such that manage.py sqlmigration correctly reflects all actions schema_editor.execute(sql, params) # Apply final changes for sql, params in post_actions: schema_editor.execute(sql, params) def database_backwards(self, app_label, schema_editor, from_state, to_state): self.add_values, self.remove_values = self.remove_values, self.add_values self.database_forwards(app_label, schema_editor, from_state, to_state) self.add_values, self.remove_values = self.remove_values, self.add_values
from uvm.base import sv from uvm.comps import UVMScoreboard from uvm.macros import uvm_component_utils, uvm_info from uvm.tlm1 import UVMAnalysisImp class ram_scoreboard(UVMScoreboard): """ Compare signals from the DUT to a reference and give it a score (PASS / FAIL) """ def __init__(self, name, parent): UVMScoreboard.__init__(self, name, parent) def build_phase(self, phase): pass def write(self, trans): # TODO
"""Serializer of Category""" from rest_framework import serializers from apps.category.models import Category class CategorySerializer(serializers.ModelSerializer): """Serializer Class of Category""" class Meta: """Meta Class""" model = Category fields = "__all__"
"""trunk URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.conf.urls import include from django.urls import path, re_path from django.conf import settings from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi from ncore.views import LoginView schema_view = get_schema_view( openapi.Info( title="XXX API", default_version='v1', description="XXXX", terms_of_service="http://www.polarwin.cn/contact", contact=openapi.Contact(email="info@polarwin.cn"), license=openapi.License(name="BSD License"), ), public=True, permission_classes=(permissions.AllowAny,), ) urlpatterns = [ path('admin/', admin.site.urls), path('login/', LoginView.as_view(), name='login'), ] if settings.DEBUG: urlpatterns += [ path(r'api-auth/', include('rest_framework.urls', namespace='rest_framework')), re_path(r'swagger(?P<format>\.json|\.yaml)$', schema_view.without_ui(cache_timeout=0), name='schema-json'), path(r'swagger/', schema_view.with_ui('swagger', cache_timeout=0), name='schema-swagger-ui'), path(r'cached/swagger/', schema_view.with_ui('swagger', cache_timeout=None), name='schema-swagger-ui-cached'), path(r'redoc/', schema_view.with_ui('redoc', cache_timeout=0), name='schema-redoc'), ] if settings.DEBUG: from rest_framework.routers import DefaultRouter from ncore.views import UserView from ncore.views import CustomObtainJSONWebTokenView, CustomRefreshJSONWebTokenView from dingtalkapi.views import DingTalkLoginView from entwechatapi.views import EntWeChatLoginView from wechatminiprogramapi.views import WeChatMiniProgramCodeView, WeChatMiniProgramLoginView router = DefaultRouter() router.register(r'users', UserView, base_name='user') urlpatterns += [ path(r'', include(router.urls)), # path('dlogin/', DingTalkLoginView.as_view(), name='dlogin'), # path('entwlogin/', EntWeChatLoginView.as_view(), name='entwlogin'), # path('api-token-auth/', CustomObtainJSONWebTokenView.as_view(), name='jwt_obtain'), # path('api-token-refresh/', CustomRefreshJSONWebTokenView.as_view(), name='jwt_refresh'), # path('wechat-mini-program-code/', WeChatMiniProgramCodeView.as_view(), name='wechat_mini_program_code'), # path('wechat-mini-program-login/', WeChatMiniProgramLoginView.as_view(), name='wechat_mini_program_login'), ] # urlpatterns += [path(r'silk/', include('silk.urls', namespace='silk'))]
#!/usr/bin/env python3 print((int(input())//2)**2)
class Config(): def __init__(self): self.is_training = True # path self.glove = 'data/glove.840B.300d.txt.filtered' self.turian = 'data/turian.50d.txt' self.train_path = "data/train.english.jsonlines" self.dev_path = "data/dev.english.jsonlines" self.test_path = "data/test.english.jsonlines" self.char_path = "data/char_vocab.english.txt" self.cuda = "0" self.max_word = 1500 self.epoch = 200 # config # self.use_glove = True # self.use_turian = True #No self.use_elmo = False self.use_CNN = True self.model_heads = True #Yes self.use_width = True # Yes self.use_distance = True #Yes self.use_metadata = True #Yes self.mention_ratio = 0.4 self.max_sentences = 50 self.span_width = 10 self.feature_size = 20 #宽度信息emb的size self.lr = 0.001 self.lr_decay = 1e-3 self.max_antecedents = 100 # 这个参数在mention detection中没有用 self.atten_hidden_size = 150 self.mention_hidden_size = 150 self.sa_hidden_size = 150 self.char_emb_size = 8 self.filter = [3,4,5] # decay = 1e-5 # 打印用 def __str__(self): d = self.__dict__ out = 'config==============\n' for i in list(d): out += i+":" out += str(d[i])+"\n" out+="config==============\n" return out if __name__=="__main__": config = Config() print(config)
# -*- coding: utf-8 -*- # Generated by Django 1.11.3 on 2017-07-30 11:44 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('fpraktikum', '0001_initial'), ] operations = [ migrations.AlterField( model_name='course', name='graduation', field=models.CharField(blank=True, choices=[('BA', 'Bachelor'), ('MA', 'Master'), ('L', 'Lehramt')], max_length=2), ), migrations.AlterField( model_name='fpregistration', name='semester', field=models.CharField(blank=True, default='WS17', max_length=4, verbose_name='semester'), ), ]
import os import doodad as pd import doodad.ssh as ssh import doodad.mount as mount from doodad.easy_sweep import hyper_sweep import os.path as osp import glob instance_types = { 'c4.large': dict(instance_type='c4.large',spot_price=0.20), 'c4.xlarge': dict(instance_type='c4.xlarge',spot_price=0.20), 'c4.2xlarge': dict(instance_type='c4.2xlarge',spot_price=0.50), 'c4.4xlarge': dict(instance_type='c4.4xlarge',spot_price=0.50), 'c5.large': dict(instance_type='c5.large',spot_price=0.20), 'c5.xlarge': dict(instance_type='c5.xlarge',spot_price=0.20), 'c5.2xlarge': dict(instance_type='c5.2xlarge',spot_price=0.50), 'c5.4xlarge': dict(instance_type='c5.4xlarge',spot_price=0.50), } def launch(project_dir, method, params, mode='local', code_dependencies=list(), data_dependencies=dict(), instance_type='c4.xlarge', docker_image='justinfu/rlkit:0.4', s3_log_prefix='rlkit'): """ Arguments: project_dir (str): The main directory containing all project files. Data will be saved to project_dir/data This will additionally add all dependencies in project_dir/dependencies method (fn): The function to call params (dict): The set of hyperparameters to sweep over mode (str): Choose between ['ec2', 'docker', 'local'] code_dependencies (list): List of code locations that need to be additionally mounted in the Docker image and added to the python path. data_dependencies (dict): for remote_location:data_dir in this dict, the directory `data_dir` will be accessible in the Docker image at `/tmp/data/{remote_location}` instance_type (str / dict): if str, uses an instance type from `instance_types` above. If dict, need keys `instance_type` and `spot_price` docker_image (str): Name of docker image s3_log_prefix (str): Where data will be stored on s3 """ PROJECT_DIR = osp.realpath(project_dir) LOCAL_OUTPUT_DIR = osp.join(PROJECT_DIR,'data') # Set up code and output directories REMOTE_OUTPUT_DIR = '/tmp/outputs' # this is the directory visible to the target REMOTE_DATA_DIR = '/tmp/data' main_mount = mount.MountLocal(local_dir=PROJECT_DIR, pythonpath=True, filter_dir=('data','analysis','dependencies')) all_code_dependencies = [ item for item in glob.glob(osp.join(PROJECT_DIR, "dependencies/*")) + code_dependencies if osp.isdir(item) ] code_mounts = [main_mount] + [mount.MountLocal(local_dir=directory, pythonpath=True) for directory in all_code_dependencies] # MuJoCo code_mounts.append(mount.MountLocal(local_dir=osp.expanduser('~/.mujoco'), mount_point='/root/.mujoco', pythonpath=True)) code_mounts.append(mount.MountLocal(local_dir=osp.expanduser('~/projects/rank_collapse/doodad_old/'), pythonpath=True)) params['output_dir'] = [REMOTE_OUTPUT_DIR] params['data_dir'] = [REMOTE_DATA_DIR] if mode == 'local': doodad_mode = pd.mode.Local() params['output_dir'] = [LOCAL_OUTPUT_DIR] elif mode == 'docker': doodad_mode = pd.mode.LocalDocker( image=docker_image ) elif mode == 'ec2': assert instance_type in instance_types doodad_mode = pd.mode.EC2AutoconfigDocker( image=docker_image, image_id='ami-086ecbff428fa44a8', region='us-west-1', # EC2 region s3_log_prefix=s3_log_prefix, # Folder to store log files under s3_log_name=s3_log_prefix, terminate=True, # Whether to terminate on finishing job **instance_types[instance_type] ) data_mounts = [ mount.MountLocal(local_dir=osp.realpath(directory), mount_point=osp.join(REMOTE_DATA_DIR,remote_name)) for remote_name,directory in data_dependencies.items() ] if mode == 'local': output_mounts = [] elif mode == 'docker' or mode == 'ssh': output_dir = osp.join(LOCAL_OUTPUT_DIR, 'docker/') output_mounts= [mount.MountLocal(local_dir=output_dir, mount_point=REMOTE_OUTPUT_DIR,output=True)] elif mode == 'ec2': output_mounts = [mount.MountS3(s3_path='data',mount_point=REMOTE_OUTPUT_DIR,output=True)] mounts = code_mounts + data_mounts + output_mounts hyper_sweep.run_sweep_doodad(method, params, doodad_mode, mounts)
def test_enter(player, limo): player.perform("enter limo") assert player.saw("You enter a fancy limo") assert player.saw("electric") def test_enter_and_exit(player, limo): player.perform("enter limo") player.forget() player.perform("go out") assert player.saw("Antechamber")
# This code is part of the Biopython distribution and governed by its # license. Please see the LICENSE file that should have been included # as part of this package. """Tests for Affy module.""" import unittest import struct import os import sys try: from numpy import array import numpy.testing except ImportError: from Bio import MissingPythonDependencyError raise MissingPythonDependencyError( "Install NumPy if you want to use Bio.Affy.CelFile" ) from None from Bio.Affy import CelFile class AffyTest(unittest.TestCase): def setUp(self): self.affy3 = "Affy/affy_v3_example.CEL" self.affy4 = "Affy/affy_v4_example.CEL" self.affy4Bad = "Affy/affy_v4_bad_example.CEL" with open(self.affy4Bad, "wb") as f: self.writeExampleV4(f, bad=True) def tearDown(self): os.remove(self.affy4Bad) # tests the Affymetrix v3 parser def testAffy3(self): with open(self.affy3) as f: record = CelFile.read(f) self.assertGreater(len(record.DatHeader), 0) self.assertEqual(record.intensities.shape, (5, 5)) self.assertEqual(record.intensities.shape, record.stdevs.shape) self.assertEqual(record.intensities.shape, record.npix.shape) self.assertEqual(record.ncols, 5) self.assertEqual(record.nrows, 5) self.assertEqual(record.version, 3) self.assertEqual(record.GridCornerUL, (206, 129)) self.assertEqual(record.GridCornerUR, (3570, 107)) self.assertEqual(record.GridCornerLR, (3597, 3470)) self.assertEqual(record.GridCornerLL, (234, 3492)) self.assertEqual(record.DatHeader["filename"], "1g_A9AF") self.assertEqual(record.DatHeader["CLS"], 3684) self.assertEqual(record.DatHeader["RWS"], 3684) self.assertEqual(record.DatHeader["XIN"], 1) self.assertEqual(record.DatHeader["YIN"], 1) self.assertEqual(record.DatHeader["VE"], 30) self.assertAlmostEqual(record.DatHeader["laser-power"], 2.0) self.assertEqual(record.DatHeader["scan-date"], "08/23/07") self.assertEqual(record.DatHeader["scan-time"], "11:23:24") self.assertEqual(record.DatHeader["scanner-id"], "50205880") self.assertEqual(record.DatHeader["scanner-type"], "M10") self.assertEqual(record.DatHeader["array-type"], "Tgondii_SNP1.1sq") self.assertEqual(record.DatHeader["image-orientation"], 6) self.assertEqual(record.Algorithm, "Percentile") self.assertEqual(len(record.AlgorithmParameters), 16) self.assertEqual(record.AlgorithmParameters["Percentile"], 75) self.assertEqual(record.AlgorithmParameters["CellMargin"], 2) self.assertAlmostEqual(record.AlgorithmParameters["OutlierHigh"], 1.500) self.assertAlmostEqual(record.AlgorithmParameters["OutlierLow"], 1.004) self.assertEqual(record.AlgorithmParameters["AlgVersion"], "6.0") self.assertEqual( record.AlgorithmParameters["FixedCellSize"], True ) # noqa: A502 self.assertEqual(record.AlgorithmParameters["FullFeatureWidth"], 7) self.assertEqual(record.AlgorithmParameters["FullFeatureHeight"], 7) self.assertEqual( record.AlgorithmParameters["IgnoreOutliersInShiftRows"], False ) # noqa: A502 self.assertEqual( record.AlgorithmParameters["FeatureExtraction"], True ) # noqa: A502 self.assertEqual(record.AlgorithmParameters["PoolWidthExtenstion"], 2) self.assertEqual(record.AlgorithmParameters["PoolHeightExtension"], 2) self.assertEqual( record.AlgorithmParameters["UseSubgrids"], False ) # noqa: A502 self.assertEqual( record.AlgorithmParameters["RandomizePixels"], False ) # noqa: A502 self.assertEqual(record.AlgorithmParameters["ErrorBasis"], "StdvMean") self.assertAlmostEqual(record.AlgorithmParameters["StdMult"], 1.0) self.assertEqual(record.NumberCells, 25) global message try: numpy.testing.assert_allclose( record.intensities, [ [234.0, 170.0, 22177.0, 164.0, 22104.0], [188.0, 188.0, 21871.0, 168.0, 21883.0], [188.0, 193.0, 21455.0, 198.0, 21300.0], [188.0, 182.0, 21438.0, 188.0, 20945.0], [193.0, 20370.0, 174.0, 20605.0, 168.0], ], ) message = None except AssertionError as err: message = str(err) if message is not None: self.fail(message) try: numpy.testing.assert_allclose( record.stdevs, [ [24.0, 34.5, 2669.0, 19.7, 3661.2], [29.8, 29.8, 2795.9, 67.9, 2792.4], [29.8, 88.7, 2976.5, 62.0, 2914.5], [29.8, 76.2, 2759.5, 49.2, 2762.0], [38.8, 2611.8, 26.6, 2810.7, 24.1], ], ) message = None except AssertionError as err: message = str(err) if message is not None: self.fail(message) try: numpy.testing.assert_array_equal( record.npix, [ [25, 25, 25, 25, 25], [25, 25, 25, 25, 25], [25, 25, 25, 25, 25], [25, 25, 25, 25, 25], [25, 25, 25, 25, 25], ], ) message = None except AssertionError as err: message = str(err) if message is not None: self.fail(message) self.assertEqual(record.nmask, 3) try: numpy.testing.assert_array_equal( record.mask, [ [False, False, False, False, False], [False, False, False, True, True], [False, False, False, False, True], [False, False, False, False, False], [False, False, False, False, False], ], ) message = None except AssertionError as err: message = str(err) if message is not None: self.fail(message) self.assertEqual(record.noutliers, 3) try: numpy.testing.assert_array_equal( record.outliers, [ [False, False, False, False, False], [False, True, True, False, False], [False, False, False, False, False], [False, True, False, False, False], [False, False, False, False, False], ], ) message = None except AssertionError as err: message = str(err) if message is not None: self.fail(message) self.assertEqual(record.nmodified, 3) try: numpy.testing.assert_allclose( record.modified, [ [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 189.0, 220.0], [0.0, 0.0, 0.0, 21775.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0], ], ) message = None except AssertionError as err: message = str(err) if message is not None: self.fail(message) def testAffy4(self): with open(self.affy4, "rb") as f: record = CelFile.read(f) self.assertEqual(record.intensities.shape, (5, 5)) self.assertEqual(record.intensities.shape, record.stdevs.shape) self.assertEqual(record.intensities.shape, record.npix.shape) self.assertEqual(record.ncols, 5) self.assertEqual(record.nrows, 5) global message try: numpy.testing.assert_allclose( record.intensities, [ [0.0, 1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], ], ) message = None except AssertionError as err: message = str(err) if message is not None: self.fail(message) try: numpy.testing.assert_allclose( record.stdevs, [ [0.0, -1.0, -2.0, -3.0, -4.0], [-5.0, -6.0, -7.0, -8.0, -9.0], [-10.0, -11.0, -12.0, -13.0, -14.0], [-15.0, -16.0, -17.0, -18.0, -19.0], [-20.0, -21.0, -22.0, -23.0, -24.0], ], ) message = None except AssertionError as err: message = str(err) if message is not None: self.fail(message) try: numpy.testing.assert_allclose( record.npix, [ [9, 9, 9, 9, 9], [9, 9, 9, 9, 9], [9, 9, 9, 9, 9], [9, 9, 9, 9, 9], [9, 9, 9, 9, 9], ], ) message = None except AssertionError as err: message = str(err) if message is not None: self.fail(message) self.assertEqual(len(record.AlgorithmParameters), 329) self.assertEqual(len(record.GridCornerUL), 7) self.assertEqual(record.AlgorithmParameters[-3:], "169") def testAffyBadHeader(self): with self.assertRaises(CelFile.ParserError): with open(self.affy4Bad, "rb") as f: record = CelFile.read(f) def testAffyWrongModeReadV3(self): with self.assertRaises(ValueError): with open(self.affy3, "rb") as f: record = CelFile.read(f, version=3) def testAffyWrongModeReadV4(self): with self.assertRaises(ValueError): with open(self.affy4) as f: record = CelFile.read(f, version=4) # Writes a small example Affymetrix V4 CEL File def writeExampleV4(self, f, bad=False): preHeaders = { "cellNo": 25, "columns": 5, "headerLen": 752, "magic": 64, "rows": 5, "version": 4, } goodH = {"Axis-invertX": b"0"} badH = {"Axis-invertX": b"1"} headers = { "Algorithm": b"Percentile", "AlgorithmParameters": b"Percentile:75;CellMargin:4;Outlie" b"rHigh:1.500;OutlierLow:1.004;AlgVersion:6.0;FixedCellSize" b":TRUE;FullFeatureWidth:7;FullFeatureHeight:7;IgnoreOutlie" b"rsInShiftRows:FALSE;FeatureExtraction:TRUE;PoolWidthExten" b"stion:1;PoolHeightExtension:1;UseSubgrids:FALSE;Randomize" b"Pixels:FALSE;ErrorBasis:StdvMean;StdMult:1.000000;NumDATS" b"ubgrids:169", "AxisInvertY": b"0", "Cols": b"5", "DatHeader": b"[0..65534] 20_10N:CLS=19420RWS=19420XIN=0" b" YIN=0 VE=30 2.0 05/25/05 23:19:07 50102310 M10 " b" \x14 \x14 HuEx-1_0-st-v2.1sq \x14 \x14 \x14 \x14 " b"\x14570 \x14 25540.671875 \x14 3.500000 \x14 0.7000 \x14" b" 3", "GridCornerLL": b"518 18668", "GridCornerLR": b"18800 18825", "GridCornerUL": b"659 469", "GridCornerUR": b"18942 623", "OffsetX": b"0", "OffsetY": b"0", "Rows": b"5", "TotalX": b"2560", "TotalY": b"2560", "swapXY": b"0", } if not bad: headers.update(goodH) else: headers.update(badH) prePadding = b"this text doesn't matter and is ignored\x04" preHeadersOrder = ["magic", "version", "columns", "rows", "cellNo", "headerLen"] headersEncoded = struct.pack( "<" + "i" * len(preHeadersOrder), *(preHeaders[header] for header in preHeadersOrder), ) def packData(intensity, sdev, pixel): return struct.pack("< f f h", intensity, sdev, pixel) f.write(headersEncoded) for header in headers: try: f.write( bytes(header, encoding="utf-8") + b"=" + headers[header] + b"\n" ) except TypeError: f.write(header + b"=" + headers[header] + b"\n") f.write(prePadding) f.write(b"\x00" * 15) for i in range(25): f.write(packData(float(i), float(-i), 9)) if __name__ == "__main__": runner = unittest.TextTestRunner(verbosity=0) unittest.main(testRunner=runner)
from bisect import bisect_left from collections import defaultdict M = 9999991# 100007 N = 51 class MaClass: def __init__(self): self.authors = [None for i in range(M)] self.books = [None for i in range(M)] def H(self,s): h = 0 for c in s: h = h * N + ord(c) return h % M def func(self,s): res = "" for i in range(len(s)): res += s[i] + ', ' res = res[:len(res) - 2:] return res def addBook(self, author, title): cur = self.H(author) while self.authors[cur] is not None: if self.authors[cur] == author: num = bisect_left(self.books[cur], title) if not (num < len(self.books[cur]) and self.books[cur][num] == title): self.books[cur].insert(num, title) return cur = (cur + N) % M self.authors[cur] = author self.books[cur] = [title] def find(self, author, title): cur = self.H(author) while self.authors[cur] is not None: if self.authors[cur] == author: num = bisect_left(self.books[cur], title) return True if num < len(self.books[cur]) and title == self.books[cur][num] else False cur = (cur + N) % M return False def findByAuthor(self, author): cur = self.H(author) while self.authors[cur] is not None: if self.authors[cur] == author: return self.books[cur] cur = (cur + N) % M return [] def findByAuthor_(self, author): cur = self.H(author) while self.authors[cur] is not None: if self.authors[cur] == author: return self.func(self.books[cur]) cur = (cur + N) % M return [] n = 3 l_to_e = defaultdict(list) obj1 = MaClass() for i in range(n): e_word, l_words = input().split(' - ') l_trans = l_words.split(', ') for l in l_trans: obj1.addBook(l, e_word) l_to_e[l].append(e_word) print(len(l_to_e)) for wrd in sorted(l_to_e): print(wrd, ' - ', obj1.findByAuthor_(wrd))
########################################################################## # # MRC FGU Computational Genomics Group # # $Id$ # # Copyright (C) 2009 Andreas Heger # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ########################################################################## ''' PamMatrices.py - ====================================================== :Author: Andreas Heger :Release: $Id$ :Date: |today| :Tags: Python Code ---- ''' import string import re # ------------------------------------------------------------------------ # data section # translate pam matrix new_labels = "ACDEFGHIKLMNPQRSTVWY" old_labels = "ARNDCQEGHILKMFPSTWYV" # note: pam-matrices are in the literature cited as Mij, Mij gives the probability that j mutates into i. # Therefore rows and columns are exchanged here. pam1 = """ Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val A R N D C Q E G H I L K M F P S T W Y V Ala A 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2 18 Arg R 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0 1 Asn N 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 1 Asp D 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0 0 1 Cys C 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3 2 Gln Q 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0 1 Glu E 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0 1 2 Gly G 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0 0 5 His H 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4 1 Ile I 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1 33 Leu L 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 15 Lys K 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0 1 1 Met M 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0 0 4 Phe F 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28 0 Pro P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0 2 Ser S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2 2 Thr T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2 9 Trp W 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1 0 Tyr Y 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9945 1 Val V 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2 9901 """ pam250 = """ Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val A R N D C Q E G H I L K M F P S T W Y V Ala A 13 6 9 9 5 8 9 12 6 8 6 7 7 4 11 11 11 2 4 9 Arg R 3 17 4 3 2 5 3 2 6 3 2 9 4 1 4 4 3 7 2 2 Asn N 4 4 6 7 2 5 6 4 6 3 2 5 3 2 4 5 4 2 3 3 Asp D 5 4 8 11 1 7 10 5 6 3 2 5 3 1 4 5 5 1 2 3 Cys C 2 1 1 1 52 1 1 2 2 2 1 1 1 1 2 3 2 1 4 2 Gln Q 3 5 5 6 1 10 7 3 7 2 3 5 3 1 4 3 3 1 2 3 Glu E 5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3 Gly G 12 5 10 10 4 7 9 27 5 5 4 6 5 3 8 11 9 2 3 7 His H 2 5 5 4 2 7 4 2 15 2 2 3 2 2 3 3 2 2 3 2 Ile I 3 2 2 2 2 2 2 2 2 10 6 2 6 5 2 3 4 1 3 9 Leu L 6 4 4 3 2 6 4 3 5 15 34 4 20 13 5 4 6 6 7 13 Lys K 6 18 10 8 2 10 8 5 8 5 4 24 9 2 6 8 8 4 3 5 Met M 1 1 1 1 0 1 1 1 1 2 3 2 6 2 1 1 1 1 1 2 Phe F 2 1 2 1 1 1 1 1 3 5 6 1 4 32 1 2 2 4 20 3 Pro P 7 5 5 4 3 5 4 5 5 3 3 4 3 2 20 6 5 1 2 4 Ser S 9 6 8 7 7 6 7 9 6 5 4 7 5 3 9 10 9 4 4 6 Thr T 8 5 6 6 4 5 5 6 4 6 4 6 5 3 6 8 11 2 3 6 Trp W 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 55 1 0 Tyr Y 1 1 2 1 3 1 1 1 3 2 2 1 2 15 1 2 2 3 31 2 Val V 7 4 4 4 4 4 4 4 5 4 15 10 4 10 5 5 5 72 4 17 """ # ------------------------------------------------------------------------ def ExponentiateMatrix(matrix): l = len(matrix) new_matrix = [] for row in range(0, l): new_matrix.append([0.0] * l) for col in range(0, l): v = 0 for x in range(0, l): v = v + matrix[row][x] * matrix[col][x] new_matrix[row][col] = v return new_matrix def NormalizeMatrix(matrix): l = len(matrix) # normalize matrix: for row in range(0, l): total = 0.0 for col in range(0, l): total += matrix[row][col] for col in range(0, l): matrix[row][col] = float(matrix[row][col]) / total def MultiplyMatrices(matrix_a, matrix_b): l = len(matrix_b) m = len(matrix_a[0]) new_matrix = [] for row in range(0, l): new_matrix.append([0.0] * l) for col in range(0, m): v = 0 for x in range(0, m): v = v + matrix_a[row][x] * matrix_b[x][col] new_matrix[row][col] = v return new_matrix def PrintMatrix(matrix): # print matrix for row in range(0, len(matrix)): print new_labels[row], string.join(map(lambda x: "%6.4f " % x, matrix[row]), "") def CreateMatrix(matrix_string): new_indices = {} for x in range(0, len(new_labels)): new_indices[new_labels[x]] = x # create matrix matrix = [] for i in range(0, len(new_labels)): matrix.append([0.0] * len(new_labels)) rx = re.compile("\s+") row = 0 for line in string.split(pam1, "\n")[3:]: data = map(string.atoi, rx.split(line)[2:]) if len(data) != len(old_labels): continue for col in range(0, len(old_labels)): # exchange row and col matrix[new_indices[old_labels[col]]][ new_indices[old_labels[row]]] = data[col] row = row + 1 return matrix def GetIdentityMatrix(): matrix = [] for i in range(0, len(new_labels)): matrix.append([0.0] * len(new_labels)) for i in range(0, len(new_labels)): matrix[i][i] = 1.0 return matrix def GetMatrix(matrix_number): current_matrix = CreateMatrix(pam1) NormalizeMatrix(current_matrix) result_matrix = GetIdentityMatrix() x = matrix_number while x > 0: if x & 1: result_matrix = MultiplyMatrices(result_matrix, current_matrix) x = x >> 1 current_matrix = ExponentiateMatrix(current_matrix) return result_matrix # ------------------------------------------------------------------------ if __name__ == '__main__': matrix = GetMatrix(100) PrintMatrix(matrix)
URL_MAPPER = { 'COL:em-bonds':'https://www.trounceflow.com/api/v1/chart/granularbondholdingschart/non-resident-portfolio-flows-in-colombia-chart-in-colombian-peso.json', 'BRA:em-bonds':'https://www.trounceflow.com/api/v1/chart/granularbondholdingsflowchart/foreign-holdings-flow-in-brazil-chart.json', 'CHN:em-bonds':'https://www.trounceflow.com/api/v1/chart/granularbondholdingschart/non-resident-portfolio-flows-in-china-chart-in-chinese-yuan.json', 'ASIA:debt':'https://www.trounceflow.com/api/v1/chart/cumulativebyyearcategoryfundflowchart/cumulative-fund-flows-for-asia-debt-funds.json', 'GBI-EM:fundflow':'https://www.trounceflow.com/api/v1/chart/categoryfundflowchart/daily-em-debt-funds-flow-chart.json', 'IND:bbg':'https://www.trounceflow.com/api/v1/chart/indexchart/fiinnetusd-index-chart-in-usd.json', 'ZAF:bbg':'https://www.trounceflow.com/api/v1/chart/indexchart/sabo-index-chart-in-usd.json', 'THA:bbg':'https://www.trounceflow.com/api/v1/chart/indexchart/tbtvnetusd-index-chart-in-usd.json', }
from pylangacq.dependency import DependencyGraph _CHAT_GRAPH_DATA = [ ("but", "CONJ", "but", (1, 3, "LINK")), ("I", "PRO:SUB", "I", (2, 3, "SUBJ")), ("thought", "V", "think&PAST", (3, 0, "ROOT")), ("you", "PRO", "you", (4, 3, "OBJ")), ("wanted", "V", "want-PAST", (5, 3, "JCT")), ("me", "PRO:OBJ", "me", (6, 5, "POBJ")), ("to", "INF", "to", (7, 8, "INF")), ("turn", "V", "turn", (8, 3, "XCOMP")), ("it", "PRO", "it", (9, 8, "OBJ")), (".", ".", "", (10, 3, "PUNCT")), ] def test_dep_graph_to_tikz(): graph = DependencyGraph(_CHAT_GRAPH_DATA) assert ( graph.to_tikz() == """ \\begin{dependency}[theme = simple] \\begin{deptext}[column sep=1em] but \\& I \\& thought \\& you \\& wanted \\& me \\& to \\& turn \\& it \\& . \\\\ \\end{deptext} \\deproot{3}{ROOT} \\depedge{1}{3}{LINK} \\depedge{2}{3}{SUBJ} \\depedge{3}{0}{ROOT} \\depedge{4}{3}{OBJ} \\depedge{5}{3}{JCT} \\depedge{6}{5}{POBJ} \\depedge{7}{8}{INF} \\depedge{8}{3}{XCOMP} \\depedge{9}{8}{OBJ} \\depedge{10}{3}{PUNCT} \\end{dependency} """.strip() # noqa ) def test_dep_graph_to_conll(): graph = DependencyGraph(_CHAT_GRAPH_DATA) assert ( graph.to_conll() == """ but CONJ 3 LINK I PRO:SUB 3 SUBJ thought V 0 ROOT you PRO 3 OBJ wanted V 3 JCT me PRO:OBJ 5 POBJ to INF 8 INF turn V 3 XCOMP it PRO 8 OBJ . . 3 PUNCT """.strip() )
import curses from typing import Dict from typing import NamedTuple from typing import Optional from typing import Tuple from babi import color_kd from babi.color import Color def _color_to_curses(color: Color) -> Tuple[int, int, int]: factor = 1000 / 255 return int(color.r * factor), int(color.g * factor), int(color.b * factor) class ColorManager(NamedTuple): colors: Dict[Color, int] raw_pairs: Dict[Tuple[int, int], int] def init_color(self, color: Color) -> None: if curses.can_change_color(): n = min(self.colors.values(), default=256) - 1 self.colors[color] = n curses.init_color(n, *_color_to_curses(color)) elif curses.COLORS >= 256: self.colors[color] = color_kd.nearest(color, color_kd.make_256()) else: self.colors[color] = -1 def color_pair(self, fg: Optional[Color], bg: Optional[Color]) -> int: fg_i = self.colors[fg] if fg is not None else -1 bg_i = self.colors[bg] if bg is not None else -1 return self.raw_color_pair(fg_i, bg_i) def raw_color_pair(self, fg: int, bg: int) -> int: try: return self.raw_pairs[(fg, bg)] except KeyError: pass n = self.raw_pairs[(fg, bg)] = len(self.raw_pairs) + 1 curses.init_pair(n, fg, bg) return n @classmethod def make(cls) -> 'ColorManager': return cls({}, {})
"""Comment copied from Python/compile.c: All about a_lnotab. c_lnotab is an array of unsigned bytes disguised as a Python string. It is used to map bytecode offsets to source code line #s (when needed for tracebacks). The array is conceptually a list of (bytecode offset increment, line number increment) pairs. The details are important and delicate, best illustrated by example: byte code offset source code line number 0 1 6 2 50 7 350 307 361 308 The first trick is that these numbers aren't stored, only the increments from one row to the next (this doesn't really work, but it's a start): 0, 1, 6, 1, 44, 5, 300, 300, 11, 1 The second trick is that an unsigned byte can't hold negative values, or values larger than 255, so (a) there's a deep assumption that byte code offsets and their corresponding line #s both increase monotonically, and (b) if at least one column jumps by more than 255 from one row to the next, more than one pair is written to the table. In case #b, there's no way to know from looking at the table later how many were written. That's the delicate part. A user of c_lnotab desiring to find the source line number corresponding to a bytecode address A should do something like this lineno = addr = 0 for addr_incr, line_incr in c_lnotab: addr += addr_incr if addr > A: return lineno lineno += line_incr Note: this is no longer valid as of CPython 3.6. After CPython 3.6, the line offset is signed, and this code should be used: lineno = addr = 0 for addr_incr, line_incr in co_lnotab: addr += addr_incr if addr > A: return lineno if line_incr >= 0x80: line_incr -= 0x100 lineno += line_incr In order for this to work, when the addr field increments by more than 255, the line # increment in each pair generated must be 0 until the remaining addr increment is < 256. So, in the example above, assemble_lnotab (it used to be called com_set_lineno) should not (as was actually done until 2.2) expand 300, 300 to 255, 255, 45, 45, but to 255, 0, 45, 255, 0, 45. """ def lnotab(pairs, first_lineno=0): """Yields byte integers representing the pairs of integers passed in.""" assert first_lineno <= pairs[0][1] cur_byte, cur_line = 0, first_lineno for byte_off, line_off in pairs: byte_delta = byte_off - cur_byte line_delta = line_off - cur_line assert byte_delta >= 0 while byte_delta > 255: yield 255 # byte yield 0 # line byte_delta -= 255 yield byte_delta # The threshold of 0x80 is smaller than necessary on Python # 3.4 and 3.5 (the value is treated as unsigned), but won't # produce an incorrect lnotab. On Python 3.6+, 0x80 is the # correct value. while line_delta >= 0x80: yield 0x7F # line yield 0 # byte line_delta -= 0x7F while line_delta < -0x80: yield 0x80 # line yield 0 # byte line_delta += 0x80 if line_delta < 0: line_delta += 0x100 assert 0x80 <= line_delta <= 0xFF yield line_delta cur_byte, cur_line = byte_off, line_off def lnotab_string(pairs, first_lineno=0): return bytes(lnotab(pairs, first_lineno))
import numpy as np import pandas as pd array = [1,2,np.nan,4,5,np.nan,np.nan,1,2,2,np.nan,np.nan,4] df_array = pd.DataFrame(array) print("Arranjo original") print(df_array) print("\n") print("Determinando a quantidade de NaNs no arranjo") n_nans = df_array.isnull().values.sum() print(n_nans) print("\n") print("Substituindo os NaNs por 0") df_array_new = df_array.fillna(0) print("\n") print("Arranjo modificado") print(df_array_new) print("\n") print("Média arranjo original ",df_array.mean()) print("\n") print("Média arranjo modificado ",df_array_new.mean())
from collections.abc import Iterable from gaptrain.log import logger import numpy as np def soap(*args): """ Create a SOAP vector using dscribe (https://github.com/SINGROUP/dscribe) for a set of configurations soap(config) -> [[v0, v1, ..]] soap(config1, config2) -> [[v0, v1, ..], [u0, u1, ..]] soap(configset) -> [[v0, v1, ..], ..] --------------------------------------------------------------------------- :param args: (gaptrain.configurations.Configuration) or (gaptrain.configurations.ConfigurationSet) :return: (np.ndarray) shape = (len(args), n) where n is the length of the SOAP descriptor """ from dscribe.descriptors import SOAP configurations = args # If a configuration set is specified then use that as the list of configs if len(args) == 1 and isinstance(args[0], Iterable): configurations = args[0] logger.info(f'Calculating SOAP descriptor for {len(configurations)}' f' configurations') unique_elements = list(set(atom.label for atom in configurations[0].atoms)) # Compute the average SOAP vector where the expansion coefficients are # calculated over averages over each site soap_desc = SOAP(species=unique_elements, rcut=5, # Distance cutoff (Å) nmax=6, # Maximum component of the radials lmax=6, # Maximum component of the angular average='inner') soap_vec = soap_desc.create([conf.ase_atoms() for conf in configurations]) logger.info('SOAP calculation done') return soap_vec def soap_kernel_matrix(configs, zeta=4): """ Calculate the kernel matrix between a set of configurations where the kernel is K(p_a, p_b) = (p_a . p_b / (p_a.p_a x p_b.p_b)^1/2 )^ζ :param configs: (gaptrain.configurations.ConfigurationSet) :param zeta: (float) Power to raise the kernel matrix to :return: (np.ndarray) shape = (len(configs), len(configs)) """ soap_vecs = soap(configs) n, _ = soap_vecs.shape # Normalise each soap vector (row) soap_vecs = soap_vecs / np.linalg.norm(soap_vecs, axis=1).reshape(n, 1) k_mat = np.matmul(soap_vecs, soap_vecs.T) k_mat = np.power(k_mat, zeta) return k_mat
class Scenario: STAGES = [ { "name": "install", "path": "build/{version}/com/se/vulns/javacard/vulns.new.cap", "comment": "", }, { "name": "install", "path": "build/{version}/com/se/applets/javacard/applets.cap", }, { "name": "send", "comment": "NREAD_SHORT", "payload": "0x80 0x10 0x01 0x02 0x06 0x00 0x00 0x00 0x00 0x00 0x00 0x7F", "optional": False, }, { "name": "send", "comment": "NWRITE_SHORT", "payload": "0x80 0x11 0x01 0x02 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x11 0x22 0x7F", "optional": False, }, ]
import numpy as np from functions import priors, likelihood from functions import BIGNEG import emcee from emcee.autocorr import AutocorrError from emcee.moves import DESnookerMove class Tuner(object): """Decide which stretch parameter is best to use. Tracks previous trials and generates new trials along with when to stop. """ def __init__(self, max_depth=3): """max_depth determines how granular a search for the optimal parameter value is conducted. """ self.trial_queue = [0.5, 1.0, 1.5] self.alphas = [] self.acceptances = [] self.good_alpha = None self.depth = 0 self.max_depth = max_depth def update(self, alpha, f_accept): """Update record of trials and results.""" self.alphas.append(alpha) self.acceptances.append(f_accept) if 0.2 < f_accept < 0.8: self.good_alpha = alpha self.acceptances = [x for _, x in sorted(zip(self.alphas, self.acceptances))] self.alphas = sorted(self.alphas) def get_trial(self): """What parameter value to try next? Returns: alpha, stopcode alpha (float) value of parameter for next trial. stopcode (boolean) whether to stop trials """ if self.good_alpha is not None: return self.good_alpha, True if self.depth >= self.max_depth: return self.get_consolation(), True if len(self.trial_queue) < 1: self.update_queue() tri = self.trial_queue.pop(0) return tri, False def update_queue(self): """Add further trials to the queue.""" alps, accs = self.alphas, self.acceptances best = np.argmax(accs) EDGE = False if best == 0: left = 0. EDGE = True else: left = alps[best-1] if best == len(accs)-1: right = alps[-1] * 2 EDGE = True else: right = alps[best+1] if not EDGE: self.depth += 1 self.trial_queue.append((alps[best]+left)/2) self.trial_queue.append((alps[best]+right)/2) def get_consolation(self): """Get most value of most successful trial.""" best = np.argmax(self.acceptances) return self.alphas[best] def prob_func(x, b, mdls, berr, prior, PFOS, C8): """ log-probability of posterior. Takes current state vector and obs vector along with additional information and returns posterior log-probability of sample based on defined likelihood and prior. Arguments: x (array) proposal b (array) observations mdls (array) observation MDLs berr (array) obervation relative errors prior (string) name of prior function to use PFOS (tuple(float,float)) observed PFOS and PFOS MDL C8 (Boolean) whether C8 was measured. Returns: (float) log-probability of proposal given observations """ # log-posterior, so sum prior and likelihood lp = priors[prior](x, PFOS=PFOS, b=b) if not np.isfinite(lp): return BIGNEG ll = likelihood(x, b, mdls, berr, C8) if not np.isfinite(ll): return BIGNEG return ll + lp def sample_measurement(b, mdls, berr, PFOS, prior='AFFF', C8=False, nwalkers=32, Nincrement=2000, TARGET_EFFECTIVE_STEPS=2500, MAX_STEPS=100000, MAX_DEPTH=3): """For a given measurement b, sample the posterior. Some MCMC options are set here to do ensemble MCMC sampling in the 8 state vector dimensions using 32 walkers doing Snooker moves. Arguments: b (array) observations mdls (array) observation MDLs berr (array) observation relative errors PFOS (tuple(float,float)) observed PFOS and PFOS MDL Keyword arguments: prior (string; default 'AFFF') name of prior function to use C8 (boolean; default False) whether C8 was measured nwalkers (int; default 32) number of samplers in ensemble Nincrement (int; default 2000) interations between status checks TARGET_EFFECTIVE_STEPS (int; default 2500) effective sample size goal MAX_STEPS (int; default 100000) cap on number of interations MAX_DEPTH (int; default 3) level of granularity in windowed meta-parameter search Returns: (emcee.EnsembleSampler) ensemble of samplers with results """ ndim = 9 WEGOOD = False tuner = Tuner(max_depth=MAX_DEPTH) print('-' * 50) print(f'Number of walkers moving on each iteration: {nwalkers}') print('Doing burn-in initialization and parameter tuning...') while not WEGOOD: alpha, WEGOOD = tuner.get_trial() if WEGOOD: print(f'alpha of {alpha} selected.') sampler = emcee.EnsembleSampler(nwalkers, ndim, prob_func, args=(b, mdls, berr, prior, PFOS, C8), moves=[(DESnookerMove(alpha), 1.0)]) init = np.random.rand(nwalkers, ndim) state = sampler.run_mcmc(init, Nincrement) sampler.reset() INIT = False S = 1 while not INIT: try: state = sampler.run_mcmc(state, Nincrement) INIT = True except ValueError: print('...') state = sampler.run_mcmc(init, Nincrement*S) S *= 1.5 f_accept = np.mean(sampler.acceptance_fraction) print(f'acceptance rate is {np.mean(f_accept):.2f} when alpha is {alpha}') tuner.update(alpha, f_accept) print(f'Sampling posterior in {Nincrement}-iteration increments.') WEGOOD = False count = 0 prev_Nindep = 0 Nindep = 1 sampler.reset() while (not WEGOOD) and (count < MAX_STEPS): state = sampler.run_mcmc(state, Nincrement) f_accept = np.mean(sampler.acceptance_fraction) count += Nincrement try: tac = sampler.get_autocorr_time() mtac = np.nanmax(tac) # go by the slowest-sampling dim or mean?? if np.isnan(mtac): WEGOOD = False else: WEGOOD = True except AutocorrError: mtac = 'unavailable' WEGOOD = False print(f'After {count} iterations, autocorr time: {mtac}') WEGOOD = False while (not WEGOOD) and (count < MAX_STEPS): if Nindep < prev_Nindep: print("WARNING: Number of independent samples decreasing!") state = sampler.run_mcmc(state, Nincrement) f_accept = np.mean(sampler.acceptance_fraction) count += Nincrement try: tac = sampler.get_autocorr_time() mtac = np.nanmax(tac) except AutocorrError: pass prev_Nindep = Nindep Nindep = count * nwalkers / mtac print( f'After {count} iterations, effective number of samples:\ {int(Nindep)}' ) if Nindep > TARGET_EFFECTIVE_STEPS: WEGOOD = True if MAX_STEPS <= count: print("WARNING: maximum number of iterations reached! Terminating.") print('SAMPLE DONE') return sampler
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2019 Ryan L. Collins <rlcollins@g.harvard.edu> # and the Talkowski Laboratory # Distributed under terms of the MIT license. """ Collect lists of genes overlapped by a BED file of regions """ import pybedtools as pbt import argparse from sys import stdout from os import path import gzip import csv import pandas as pd import re import subprocess import gzip def process_gtf(gtf_in): """ Read & process gtf """ gtfbt = pbt.BedTool(gtf_in) # Build lists of eligible gene names and transcript IDs genes, transcripts = [], [] for f in gtfbt: if f.fields[2] == 'transcript': gname = f.attrs['gene_name'] tname = f.attrs['transcript_id'] if gname not in genes: genes.append(gname) if tname not in transcripts: transcripts.append(tname) # Filter & clean records in gtf def _filter_gtf(feature): """ Restrict GTF features to desired elements """ if feature.fields[2] == 'transcript' \ and feature.attrs['gene_name'] in genes \ and feature.attrs['transcript_id'] in transcripts: return True else: return False attrs_to_drop = 'gene_id gene_type gene_status transcript_type ' + \ 'transcript_status transcript_name protein_id ' + \ 'tag ccdsid havana_gene havana_transcript' attrs_to_drop = attrs_to_drop.split() def _clean_feature(feature): """ Clean unnecessary fields & info from GTF features """ for key in attrs_to_drop: if key in feature.attrs.keys(): feature.attrs.pop(key) return feature gtfbt = gtfbt.filter(_filter_gtf).filter(_clean_feature).saveas() return gtfbt, genes, transcripts def annotate_regions(regions_path, gtfbt): """ Load regions and annotate with genes """ regions = pd.read_csv(regions_path, sep='\t') # regions.rename(columns={regions.columns.tolist()[0] : \ # regions.columns.tolist()[0].replace('#', '')}, # inplace=True) intervals_dict = {rid : i.split(';') for rid, i in regions.iloc[:, [3, -2]].values} intervals_str = '' for rid, ints in intervals_dict.items(): for i in ints: intervals_str += '\t'.join([re.sub(':|-', '\t', i), rid]) + '\n' intervals_bt = pbt.BedTool(intervals_str, from_string=True) genes_dict = {x : [] for x in regions.iloc[:, 3].values} for x in intervals_bt.intersect(gtfbt, wa=True, wb=True): gene = str([f.split()[1].replace('"', '') for f in x[-1].split(';') \ if f.startswith('gene_name')][0]) genes_dict[x.name].append(gene) genes_dict = {rid : sorted(list(set(g))) for rid, g in genes_dict.items()} ngenes_dict = {rid : len(g) for rid, g in genes_dict.items()} genes_str_dict = {rid : ';'.join(g) for rid, g in genes_dict.items()} regions['n_genes'] = regions.iloc[:, 3].map(ngenes_dict) regions['genes'] = regions.iloc[:, 3].map(genes_str_dict) return regions.sort_values(by=regions.columns[0:3].tolist(), axis=0) def main(): """ Main block """ # Parse command line arguments and options parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('regions', help='BED file of final regions after refinement. ' + 'Fourth column must be unique row name and second-to-last ' + 'column must be a semicolon-delimited list of chr:start-end ' + 'intervals to compare vs gtf.') parser.add_argument('gtf', help='GTF of genes to consider.') parser.add_argument('-o', '--outbed', help='Path to output file. ' + '[default: stdout]') parser.add_argument('-z', '--bgzip', dest='bgzip', action='store_true', help='Compress output BED with bgzip.') args = parser.parse_args() # Open connection to output file if args.outbed is None \ or args.outbed in 'stdout -'.split(): outbed = stdout else: if path.splitext(args.outbed)[-1] in '.gz .bz .bgz .bgzip .gzip'.split(): outbed_path = path.splitext(args.outbed)[0] else: outbed_path = args.outbed outbed = open(outbed_path, 'w') # Extract canonical transcripts from input GTF gtfbt, genes, transcripts = process_gtf(args.gtf) # Load regions & annotate with genes regions = annotate_regions(args.regions, gtfbt) # Sort & write original bed out to file with extra columns for n_genes and genes regions.to_csv(outbed, sep='\t', na_rep='NA', header=True, index=False) outbed.close() # Bgzip output, if optioned if args.outbed is not None \ and args.outbed not in 'stdout -'.split() \ and args.bgzip: subprocess.run(['bgzip', '-f', outbed_path]) if __name__ == '__main__': main()
# -*- coding:utf-8 -*- from bs4 import BeautifulSoup import requests class Article: def __init__(self): self.title="" self.time="" self.text="" self.category="" self.tag=[] class GetHtml(object): def __init__(self,Url,Blog): ''' Contrust a GetHtml object It will give you the html of the article and the text of the time and title :param Url: Blog_index :param Blog: Blog_type ''' self.__url=Url self.__cnt=0 self.__article_list=[] while self.__url!='': url_list=self.get_url_list(Blog) for url in url_list: self.get_article(url,Blog) def get_html(self,url): try: r=requests.get(url,timeout=30) r.raise_for_status() r.encoding=r.apparent_encoding return r.text except: print("获取链接"+url+"时失败") def get_url_list(self,Blog): ''' :param Blog: Judge different blogs :return: The url of every article ''' url_list=[] html=self.get_html(self.__url) soup=BeautifulSoup(html,'lxml') lista=[] lista=soup.find_all(Blog['index_url']['tag'],attrs={Blog['index_url']['key']:Blog['index_url']['valve']}) next_page=soup.find(Blog['next_page']['tag'],attrs={Blog['next_page']['key']:Blog['next_page']['valve'],},text=Blog['next_page']['text']) self.__url='' if not next_page is None: self.__url = next_page['href'] for Url in lista: try: url_list.append(Url.a['href']) self.__cnt=self.__cnt+1 except: print('获取单篇博客链接失败') return url_list def get_article(self,url,Blog): ''' Get the html of the article,the text of the time and the head :param url: The url of the article :param Blog: Judge different blogs :return: None ''' html=self.get_html(url) soup=BeautifulSoup(html,'lxml') article_html=soup.find(Blog['body']['tag'],attrs={Blog['body']['key']:Blog['body']['valve']}) title=soup.find(Blog['title']['tag'],attrs={Blog['title']['key']:Blog['title']['valve']}).text time=soup.find(Blog['time']['tag'],attrs={Blog['time']['key']:Blog['time']['valve']}).text tag=[] category='' if Blog['name']=='cnblogs': BlogData_soup = soup.find_all('script', type='text/javascript') BlogData = str(BlogData_soup[0].text + BlogData_soup[2].text) currentBlogApp=self.get_string(BlogData,'currentBlogApp',4,"'") cb_blogId=self.get_string(BlogData, 'cb_blogId', 1, ",") cb_entryId=self.get_string(BlogData, 'cb_entryId', 1, ",") category,tag=self.get_categoris_cnblogs(currentBlogApp,cb_blogId,cb_entryId) else: category_soup=soup.find(Blog['category']['tag'],attrs={Blog['category']['key']:Blog['category']['valve']}) if not category_soup is None: category=category_soup.contents[0] tag_soup=soup.find(Blog['tag']['tag'],attrs={Blog['tag']['key']:Blog['tag']['key']}) tag_list=[] if not tag_soup is None: tag_list=tag_soup.find_all('a') for i in tag_list: tag.append(i.text) article=Article() article.text=article_html article.time=time article.category=category article.tag=tag article.title=title self.__article_list.append(article) def get_string(self,text, string_to_find_tag, length, end): tag_start = text.find(string_to_find_tag) string_to_find_start = tag_start + len(string_to_find_tag) + length string_to_find_back = text.find(end, string_to_find_start) string_to_find = text[string_to_find_start:string_to_find_back] return str(string_to_find) def get_categoris_cnblogs(self,blogApp,blogId,postId): get_data={'blogApp':blogApp,'blogId':blogId,'postId':postId} url = "http://www.cnblogs.com/mvc/blog/CategoriesTags.aspx" r=requests.get(url,params=get_data) r_json=r.json() category_soup=BeautifulSoup(r_json['Categories'],'lxml') tags_soup=BeautifulSoup(r_json['Tags'],'lxml') if category_soup.text!='': category=category_soup.a.text else: category="" tag_list=[] if tags_soup.text!='': tags=tags_soup.find_all('a') for i in tags: tag_list.append(i.text) return category,tag_list def get_article_list(self): return self.__article_list def get_cnt(self): return self.__cnt
#encoding: utf-8 from PIL import Image import numpy as np from config import config as cfg from torch.utils.data import Dataset from torchvision import transforms as T from sklearn.preprocessing import MultiLabelBinarizer from imgaug import augmenters as iaa import pathlib import cv2 import pandas as pd from torch.utils.data import DataLoader import os from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold class HumanDataset(Dataset): def __init__(self, images_df, base_path, target_shape=(512, 512), augument=True, use_yellow=False, mode="train"): if not isinstance(base_path, pathlib.Path): base_path = pathlib.Path(base_path) self.images_df = images_df.copy() self.augument = augument self.images_df.Id = self.images_df.Id.apply(lambda x: base_path / x) self.mlb = MultiLabelBinarizer(classes=np.arange(0, cfg.num_classes)) self.mlb.fit(np.arange(0, cfg.num_classes)) self.mode = mode self.target_shape = target_shape self.use_yellow = use_yellow def __len__(self): return len(self.images_df) def __getitem__(self, index): X = self.read_images(index) if not self.mode == "test": labels = np.array(list(map(int, self.images_df.iloc[index].Target.split(' ')))) y = np.eye(cfg.num_classes, dtype=np.float)[labels].sum(axis=0) else: y = str(self.images_df.iloc[index].Id.absolute()) if self.augument: X = self.augumentor(X) X = T.Compose([T.ToPILImage(), T.ToTensor()])(X) return X.float(), y def read_images(self, index): row = self.images_df.iloc[index] filename = str(row.Id.absolute()) if 'ENSG' in filename: filename = os.path.split(filename)[-1] filename = os.path.join(cfg.extra_data, filename) images = np.array(Image.open(filename + ".png")) else: r = np.array(Image.open(filename + "_red.png")) g = np.array(Image.open(filename + "_green.png")) b = np.array(Image.open(filename + "_blue.png")) images = [r, g, b] if self.use_yellow: y = np.array(Image.open(filename + "_yellow.png")) images.append(y) images = np.stack(images, axis=-1) images = images.astype(np.uint8) if self.target_shape == (512, 512) and images.shape[:2] == (512, 512): return images else: return cv2.resize(images, self.target_shape) def augumentor(self, image): sometimes = lambda aug: iaa.Sometimes(0.8, aug) augment_img = iaa.Sequential([iaa.Fliplr(0.5), iaa.Flipud(0.5), iaa.BilateralBlur(), iaa.Affine(rotate=90), iaa.ContrastNormalization((0.8, 1.3)), sometimes(iaa.Affine(scale={"x": (0.8, 1.2), "y": (0.8, 1.2)}, translate_percent={"x": (-0.1, 0.1), "y": (-0.1, 0.1)}, rotate=(-30, 30), shear=(-5, 5) )) ], random_order=True) image_aug = augment_img.augment_image(image) return image_aug def get_dataloader(mix_up=False): train_df = pd.read_csv(cfg.train_csv) test_df = pd.read_csv(cfg.submission_csv) train_data_list, val_data_list = train_test_split(train_df, test_size=cfg.split_ratio, random_state=42) trainset = HumanDataset(train_data_list, cfg.train_data, mode="train") train_loader = DataLoader(trainset, batch_size=cfg.batch_size, shuffle=True, pin_memory=True, num_workers=cfg.n_workers) val_gen = HumanDataset(val_data_list, cfg.train_data, augument=False, mode="train") val_loader = DataLoader(val_gen, batch_size=cfg.batch_size, shuffle=False, pin_memory=True, num_workers=cfg.n_workers) test_gen = HumanDataset(test_df, cfg.test_data, augument=False, mode="test") test_loader = DataLoader(test_gen, 1, shuffle=False, pin_memory=True, num_workers=cfg.n_workers) if mix_up: mix_loader = DataLoader(trainset, batch_size=cfg.batch_size, shuffle=False, pin_memory=True, num_workers=cfg.n_workers) return train_loader, val_loader, test_loader, mix_loader else: return train_loader, val_loader, test_loader def get_kfold_dataloader(k=5, n_select=0, use_extra=True, target_shape=(512, 512)): kf = KFold(k, random_state=42) train_df = pd.read_csv(cfg.train_csv) if use_extra: extra_df = pd.read_csv(cfg.extra_csv) print('number of extra data is ', len(extra_df), '\tnumber of hpi data is ', len(train_df)) train_df = pd.concat([train_df, extra_df], axis=0) print('after concat, number of train data is ', len(train_df)) test_df = pd.read_csv(cfg.submission_csv) print('trainset split ', kf.get_n_splits(train_df), 'folds') train_val_groups = [] for train_index, val_index in kf.split(train_df): print('length of trainset is ', len(train_index), '\tlength of valset is ', len(val_index)) train_val_groups.append([train_df.iloc[train_index], train_df.iloc[val_index]]) train_data_list, val_data_list = train_val_groups[n_select] trainset = HumanDataset(train_data_list, cfg.train_data, mode="train", target_shape=target_shape) train_loader = DataLoader(trainset, batch_size=cfg.batch_size, shuffle=True, pin_memory=True, num_workers=cfg.n_workers) val_gen = HumanDataset(val_data_list, cfg.train_data, augument=False, mode="train", target_shape=target_shape) val_loader = DataLoader(val_gen, batch_size=cfg.batch_size, shuffle=False, pin_memory=True, num_workers=cfg.n_workers) test_gen = HumanDataset(test_df, cfg.test_data, augument=False, mode="test", target_shape=target_shape) test_loader = DataLoader(test_gen, 1, shuffle=False, pin_memory=True, num_workers=cfg.n_workers) return train_loader, val_loader, test_loader
""" Django settings for Match4healthcare project. Generated by 'django-admin startproject' using Django 3.0.4. For more information on this file, see https://docs.djangoproject.com/en/3.0/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.0/ref/settings/ """ import os from os import path from django.contrib.messages import constants as messages from django.utils.translation import ugettext_lazy as _ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) # or better: # add paths here and import: from django.conf import settings and use settings.XXX_DIR BASE_DIR = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) RUN_DIR = os.path.join(BASE_DIR, "run") # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "django_filters", "widget_tweaks", "crispy_forms", "django_tables2", "apps.mapview", "apps.iamstudent", "apps.ineedstudent", "apps.accounts", "apps.use_statistics", ] MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "django.middleware.locale.LocaleMiddleware", ] ROOT_URLCONF = "match4healthcare.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": [os.path.join(BASE_DIR, "templates")], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", ], }, }, ] LOGIN_REDIRECT_URL = "/accounts/login_redirect" CRISPY_TEMPLATE_PACK = "bootstrap4" WSGI_APPLICATION = "match4healthcare.wsgi.application" MAX_EMAILS_PER_HOSPITAL_PER_DAY = 200 NEWSLETTER_REQUIRED_APPROVERS = 2 # Password validation # https://docs.djangoproject.com/en/3.0/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ {"NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator",}, {"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",}, {"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator",}, {"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator",}, ] # Internationalization # https://docs.djangoproject.com/en/3.0/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "UTC" USE_I18N = True AUTH_USER_MODEL = "accounts.User" USE_L10N = True USE_TZ = True # Translations # Provide a lists of languages which your site supports. LANGUAGES = ( ("en", _("English")), ("de", _("Deutsch")), ) # Set the default language for your site. LANGUAGE_CODE = "de" # Tell Django where the project's translation files should be. LOCALE_PATHS = (os.path.join(BASE_DIR, "locale"),) RUN_DIR = os.path.join(BASE_DIR, "run") # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.0/howto/static-files/ PROJECT_DIR = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) STATIC_URL = "/static/" MEDIA_ROOT = os.path.join(RUN_DIR, "media") MEDIA_URL = "/media/" STATIC_ROOT = os.path.join(RUN_DIR, "static") STATICFILES_DIRS = (os.path.join(BASE_DIR, "static"),) MAPBOX_TOKEN = os.getenv("MAPBOX_TOKEN") MESSAGE_TAGS = { messages.DEBUG: "alert-info", messages.INFO: "alert-info", messages.SUCCESS: "alert-success", messages.WARNING: "alert-warning", messages.ERROR: "alert-danger", } # Configure Logging for all environments LOGGING = { "version": 1, "disable_existing_loggers": False, "filters": { "require_debug_false": {"()": "django.utils.log.RequireDebugFalse",}, "require_debug_true": {"()": "django.utils.log.RequireDebugTrue",}, }, "formatters": { "json": { # Made for Django Requests and General logging, will create parseable error logs "class": "match4healthcare.logging.formatters.DjangoRequestJSONFormatter" }, "text": { "class": "match4healthcare.logging.formatters.OneLineExceptionFormatter", "format": "%(asctime)s: %(name)-12s %(levelname)-8s |%(message)s|", }, }, "handlers": { "mail_admin": { "class": "logging.NullHandler" # Make sure to disable Djangos default e-Mail Logger }, "null": {"class": "logging.NullHandler",}, # Disable Django Default Server Logger "console": {"class": "logging.StreamHandler", "formatter": "text",}, "errorlogfile": { "class": "logging.handlers.RotatingFileHandler", "formatter": "json", "level": "ERROR", "filename": path.join(RUN_DIR, "match4healthcare.json.error.log"), "maxBytes": 1024 * 1024 * 15, # 15MB "backupCount": 10, }, "auditlogfile": { "class": "logging.handlers.RotatingFileHandler", "formatter": "json", "level": "INFO", "filename": path.join(RUN_DIR, "match4healthcare.json.audit.log"), "maxBytes": 1024 * 1024 * 15, # 15MB "backupCount": 10, }, "slack": { "level": "ERROR", "()": "match4healthcare.logging.loggers.SlackMessageHandlerFactory", "webhook_url": os.environ.get("SLACK_LOG_WEBHOOK", ""), }, }, # Now put it all together "loggers": { "": { # Root Logger Configuration, should catch all remaining Warnings and Errors, that were not specifically handled below "level": "WARNING", "handlers": ["errorlogfile", "console", "slack"], }, "apps": { # Logging Configuration for all Django apps, i.e. our software, matches any loggers under apps subdirectory using __name__ "level": "INFO", "handlers": ["auditlogfile"], "propagate": False, }, "django.request": { # Main error logger and last line of defense for #500 Errors, will log all errors "level": "WARNING", "handlers": ["errorlogfile", "console", "slack"], "propagate": False, }, "django.server": { # Only for development server, all of these are mirrored on django.request anyway "level": "ERROR", "handlers": ["null"], "propagate": False, }, }, } # ========== determine wether this is a forked version of m4h ==========# IS_TRAVIS = "TRAVIS" in os.environ and bool(os.environ["TRAVIS"]) IS_CI = "CI" in os.environ and bool(os.environ["CI"]) IS_FORK = False if IS_TRAVIS and os.environ["TRAVIS_PULL_REQUEST_SLUG"] is ["match4everyone/match4healthcare"]: IS_FORK = True
import hashlib import logging from django import http from django.core.cache import cache from django.contrib import messages from django.shortcuts import render, redirect, get_object_or_404 from django.views.decorators.http import require_POST from django.db.models import Q, Count from funfactory.urlresolvers import reverse from jsonview.decorators import json_view from airmozilla.base.utils import paginate from airmozilla.main.models import Event, VidlySubmission from airmozilla.manage import forms from airmozilla.manage import vidly from .decorators import superuser_required @superuser_required def vidly_media(request): events = Event.objects.filter( Q(template__name__contains='Vid.ly') | Q(pk__in=VidlySubmission.objects.all() .values_list('event_id', flat=True)) ) status = request.GET.get('status') repeated = request.GET.get('repeated') == 'event' repeats = {} if status: if status not in ('New', 'Processing', 'Finished', 'Error'): return http.HttpResponseBadRequest("Invalid 'status' value") # make a list of all tags -> events _tags = {} for event in events: environment = event.template_environment or {} if not environment.get('tag') or environment.get('tag') == 'None': continue _tags[environment['tag']] = event.id event_ids = [] for tag in vidly.medialist(status): try: event_ids.append(_tags[tag]) except KeyError: # it's on vid.ly but not in this database logging.debug("Unknown event with tag=%r", tag) events = events.filter(id__in=event_ids) elif repeated: repeats = dict( (x['event_id'], x['event__id__count']) for x in VidlySubmission.objects .values('event_id') .annotate(Count('event__id')) .filter(event__id__count__gt=1) ) events = Event.objects.filter(id__in=repeats.keys()) def get_repeats(event): return repeats[event.id] events = events.order_by('-start_time') events = events.select_related('template') paged = paginate(events, request.GET.get('page'), 15) vidly_resubmit_form = forms.VidlyResubmitForm() context = { 'paginate': paged, 'status': status, 'vidly_resubmit_form': vidly_resubmit_form, 'repeated': repeated, 'get_repeats': get_repeats, } return render(request, 'manage/vidly_media.html', context) @superuser_required @json_view def vidly_media_status(request): if request.GET.get('tag'): tag = request.GET.get('tag') else: if not request.GET.get('id'): return http.HttpResponseBadRequest("No 'id'") event = get_object_or_404(Event, pk=request.GET['id']) environment = event.template_environment or {} if not environment.get('tag') or environment.get('tag') == 'None': # perhaps it has a VidlySubmission anyway submissions = ( VidlySubmission.objects .exclude(tag__isnull=True) .filter(event=event).order_by('-submission_time') ) for submission in submissions[:1]: environment = {'tag': submission.tag} break else: return {} tag = environment['tag'] cache_key = 'vidly-query-{md5}'.format( md5=hashlib.md5(tag.encode('utf8')).hexdigest().strip()) force = request.GET.get('refresh', False) if force: results = None # force a refresh else: results = cache.get(cache_key) if not results: results = vidly.query(tag).get(tag, {}) expires = 60 # if it's healthy we might as well cache a bit # longer because this is potentially used a lot if results.get('Status') == 'Finished': expires = 60 * 60 if results: cache.set(cache_key, results, expires) _status = results.get('Status') return {'status': _status} @superuser_required @json_view def vidly_media_info(request): def as_fields(result): return [ {'key': a, 'value': b} for (a, b) in sorted(result.items()) ] if not request.GET.get('id'): return http.HttpResponseBadRequest("No 'id'") event = get_object_or_404(Event, pk=request.GET['id']) environment = event.template_environment or {} if not environment.get('tag') or environment.get('tag') == 'None': # perhaps it has a VidlySubmission anyway submissions = ( VidlySubmission.objects .exclude(tag__isnull=True) .filter(event=event).order_by('-submission_time') ) for submission in submissions[:1]: environment = {'tag': submission.tag} break if not environment.get('tag') or environment.get('tag') == 'None': return {'fields': as_fields({ '*Note*': 'Not a valid tag in template', '*Template contents*': unicode(environment), })} else: tag = environment['tag'] cache_key = 'vidly-query-%s' % tag force = request.GET.get('refresh', False) if force: results = None # force a refresh else: results = cache.get(cache_key) if not results: all_results = vidly.query(tag) if tag not in all_results: return { 'ERRORS': ['Tag (%s) not found in Vid.ly' % tag] } results = all_results[tag] cache.set(cache_key, results, 60) data = {'fields': as_fields(results)} is_hd = results.get('IsHD', False) if is_hd == 'false': is_hd = False data['past_submission'] = { 'url': results['SourceFile'], 'email': results['UserEmail'], 'hd': bool(is_hd), 'token_protection': event.privacy != Event.PRIVACY_PUBLIC, } if request.GET.get('past_submission_info'): qs = ( VidlySubmission.objects .filter(event=event) .order_by('-submission_time') ) for submission in qs[:1]: if event.privacy != Event.PRIVACY_PUBLIC: # forced token_protection = True else: # whatever it was before token_protection = submission.token_protection data['past_submission'] = { 'url': submission.url, 'email': submission.email, 'hd': submission.hd, 'token_protection': token_protection, } return data @require_POST @superuser_required def vidly_media_resubmit(request): if request.POST.get('cancel'): return redirect(reverse('manage:vidly_media') + '?status=Error') form = forms.VidlyResubmitForm(data=request.POST) if not form.is_valid(): return http.HttpResponse(str(form.errors)) event = get_object_or_404(Event, pk=form.cleaned_data['id']) environment = event.template_environment or {} if not environment.get('tag') or environment.get('tag') == 'None': raise ValueError("Not a valid tag in template") if event.privacy != Event.PRIVACY_PUBLIC: token_protection = True # no choice else: token_protection = form.cleaned_data['token_protection'] old_tag = environment['tag'] shortcode, error = vidly.add_media( url=form.cleaned_data['url'], email=form.cleaned_data['email'], hd=form.cleaned_data['hd'], token_protection=token_protection ) VidlySubmission.objects.create( event=event, url=form.cleaned_data['url'], email=form.cleaned_data['email'], token_protection=token_protection, hd=form.cleaned_data['hd'], tag=shortcode, submission_error=error ) if error: messages.warning( request, "Media could not be re-submitted:\n<br>\n%s" % error ) else: messages.success( request, "Event re-submitted to use tag '%s'" % shortcode ) vidly.delete_media( old_tag, email=form.cleaned_data['email'] ) event.template_environment['tag'] = shortcode event.save() cache_key = 'vidly-query-%s' % old_tag cache.delete(cache_key) return redirect(reverse('manage:vidly_media') + '?status=Error')
#!/usr/bin/env python # -*- coding: utf-8 -*- def print_stat(gltf): """ モデル情報表示 :param gltf: glTFオブジェクト """ vrm = gltf['extensions']['VRM'] print 'vrm materials:', len(vrm['materialProperties']) print 'materials:', len(gltf['materials']) print 'textures:', len(gltf['textures']) print 'images:', len(gltf['images']) meshes = gltf['meshes'] print 'meshes:', len(meshes) print 'primitives:', sum([len(m['primitives']) for m in meshes]) for mesh in meshes: print '\t', mesh['name'], ':', len(mesh['primitives'])
from google.protobuf.duration_pb2 import Duration from feast import FeatureView, FileSource driver_hourly_stats = FileSource( path="driver_stats.parquet", # this parquet is not real and will not be read ) driver_hourly_stats_view = FeatureView( name="driver_hourly_stats", # Intentionally use the same FeatureView name entities=["driver_id"], online=False, batch_source=driver_hourly_stats, ttl=Duration(seconds=10), tags={}, ) driver_hourly_stats_view_dup1 = FeatureView( name="driver_hourly_stats", # Intentionally use the same FeatureView name entities=["driver_id"], online=False, batch_source=driver_hourly_stats, ttl=Duration(seconds=10), tags={}, )
from binaryninja import * from binjago import * def find_func_symbol_refs(view): bt = StdCallSearch(view) bt.start() def find_rop_gadgets(view): rop_search = ROPSearch(view) rop_search.start() def find_prologues(view): sig_search = PrologSearch(view) sig_search.start() PluginCommand.register( "binjago: Find standard function references", "Locate and annotate symbol references for standard API calls", find_func_symbol_refs ) PluginCommand.register( "binjago: Find ROP gadgets", "Search .text for ROP gadgets", find_rop_gadgets ) PluginCommand.register( "binjago: Find function prologues", "Search binary files for function prologues", find_prologues )
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.cloud.osconfig_v1alpha.types import config_common from google.protobuf import timestamp_pb2 # type: ignore __protobuf__ = proto.module( package="google.cloud.osconfig.v1alpha", manifest={ "InstanceOSPoliciesCompliance", "GetInstanceOSPoliciesComplianceRequest", "ListInstanceOSPoliciesCompliancesRequest", "ListInstanceOSPoliciesCompliancesResponse", }, ) class InstanceOSPoliciesCompliance(proto.Message): r"""This API resource represents the OS policies compliance data for a Compute Engine virtual machine (VM) instance at a given point in time. A Compute Engine VM can have multiple OS policy assignments, and each assignment can have multiple OS policies. As a result, multiple OS policies could be applied to a single VM. You can use this API resource to determine both the compliance state of your VM as well as the compliance state of an individual OS policy. For more information, see `View compliance <https://cloud.google.com/compute/docs/os-configuration-management/view-compliance>`__. Attributes: name (str): Output only. The ``InstanceOSPoliciesCompliance`` API resource name. Format: ``projects/{project_number}/locations/{location}/instanceOSPoliciesCompliances/{instance_id}`` instance (str): Output only. The Compute Engine VM instance name. state (google.cloud.osconfig_v1alpha.types.OSPolicyComplianceState): Output only. Compliance state of the VM. detailed_state (str): Output only. Detailed compliance state of the VM. This field is populated only when compliance state is ``UNKNOWN``. It may contain one of the following values: - ``no-compliance-data``: Compliance data is not available for this VM. - ``no-agent-detected``: OS Config agent is not detected for this VM. - ``config-not-supported-by-agent``: The version of the OS Config agent running on this VM does not support configuration management. - ``inactive``: VM is not running. - ``internal-service-errors``: There were internal service errors encountered while enforcing compliance. - ``agent-errors``: OS config agent encountered errors while enforcing compliance. detailed_state_reason (str): Output only. The reason for the ``detailed_state`` of the VM (if any). os_policy_compliances (Sequence[google.cloud.osconfig_v1alpha.types.InstanceOSPoliciesCompliance.OSPolicyCompliance]): Output only. Compliance data for each ``OSPolicy`` that is applied to the VM. last_compliance_check_time (google.protobuf.timestamp_pb2.Timestamp): Output only. Timestamp of the last compliance check for the VM. last_compliance_run_id (str): Output only. Unique identifier for the last compliance run. This id will be logged by the OS config agent during a compliance run and can be used for debugging and tracing purpose. """ class OSPolicyCompliance(proto.Message): r"""Compliance data for an OS policy Attributes: os_policy_id (str): The OS policy id os_policy_assignment (str): Reference to the ``OSPolicyAssignment`` API resource that the ``OSPolicy`` belongs to. Format: ``projects/{project_number}/locations/{location}/osPolicyAssignments/{os_policy_assignment_id@revision_id}`` state (google.cloud.osconfig_v1alpha.types.OSPolicyComplianceState): Compliance state of the OS policy. os_policy_resource_compliances (Sequence[google.cloud.osconfig_v1alpha.types.OSPolicyResourceCompliance]): Compliance data for each ``OSPolicyResource`` that is applied to the VM. """ os_policy_id = proto.Field(proto.STRING, number=1,) os_policy_assignment = proto.Field(proto.STRING, number=2,) state = proto.Field( proto.ENUM, number=4, enum=config_common.OSPolicyComplianceState, ) os_policy_resource_compliances = proto.RepeatedField( proto.MESSAGE, number=5, message=config_common.OSPolicyResourceCompliance, ) name = proto.Field(proto.STRING, number=1,) instance = proto.Field(proto.STRING, number=2,) state = proto.Field( proto.ENUM, number=3, enum=config_common.OSPolicyComplianceState, ) detailed_state = proto.Field(proto.STRING, number=4,) detailed_state_reason = proto.Field(proto.STRING, number=5,) os_policy_compliances = proto.RepeatedField( proto.MESSAGE, number=6, message=OSPolicyCompliance, ) last_compliance_check_time = proto.Field( proto.MESSAGE, number=7, message=timestamp_pb2.Timestamp, ) last_compliance_run_id = proto.Field(proto.STRING, number=8,) class GetInstanceOSPoliciesComplianceRequest(proto.Message): r"""A request message for getting OS policies compliance data for the given Compute Engine VM instance. Attributes: name (str): Required. API resource name for instance OS policies compliance resource. Format: ``projects/{project}/locations/{location}/instanceOSPoliciesCompliances/{instance}`` For ``{project}``, either Compute Engine project-number or project-id can be provided. For ``{instance}``, either Compute Engine VM instance-id or instance-name can be provided. """ name = proto.Field(proto.STRING, number=1,) class ListInstanceOSPoliciesCompliancesRequest(proto.Message): r"""A request message for listing OS policies compliance data for all Compute Engine VMs in the given location. Attributes: parent (str): Required. The parent resource name. Format: ``projects/{project}/locations/{location}`` For ``{project}``, either Compute Engine project-number or project-id can be provided. page_size (int): The maximum number of results to return. page_token (str): A pagination token returned from a previous call to ``ListInstanceOSPoliciesCompliances`` that indicates where this listing should continue from. filter (str): If provided, this field specifies the criteria that must be met by a ``InstanceOSPoliciesCompliance`` API resource to be included in the response. """ parent = proto.Field(proto.STRING, number=1,) page_size = proto.Field(proto.INT32, number=2,) page_token = proto.Field(proto.STRING, number=3,) filter = proto.Field(proto.STRING, number=4,) class ListInstanceOSPoliciesCompliancesResponse(proto.Message): r"""A response message for listing OS policies compliance data for all Compute Engine VMs in the given location. Attributes: instance_os_policies_compliances (Sequence[google.cloud.osconfig_v1alpha.types.InstanceOSPoliciesCompliance]): List of instance OS policies compliance objects. next_page_token (str): The pagination token to retrieve the next page of instance OS policies compliance objects. """ @property def raw_page(self): return self instance_os_policies_compliances = proto.RepeatedField( proto.MESSAGE, number=1, message="InstanceOSPoliciesCompliance", ) next_page_token = proto.Field(proto.STRING, number=2,) __all__ = tuple(sorted(__protobuf__.manifest))
import pytest from pathlib import Path from modnet.utils import get_hash_of_file _TEST_DATA_HASHES = { "MP_2018.6_subset.zip": ( "d7d75e646dbde539645c8c0b065fd82cbe93f81d3500809655bd13d0acf2027c" "1786091a73f53985b08868c5be431a3c700f7f1776002df28ebf3a12a79ab1a1" ), "MP_2018.6_small.zip": ( "937a29dad32d18e47c84eb7c735ed8af09caede21d2339c379032fbd40c463d8" "ca377d9e3a777710b5741295765f6c12fbd7ab56f9176cc0ca11c9120283d878" ), } def _load_moddata(filename): """Loads the pickled MODData from the test directory and checks it's hash.""" from modnet.preprocessing import MODData data_file = Path(__file__).parent.joinpath(f"data/{filename}") if filename not in _TEST_DATA_HASHES: raise RuntimeError( f"Cannot verify hash of {filename} as it was not provided, will not load pickle." ) # Loading pickles can be dangerous, so lets at least check that the MD5 matches # what it was when created assert get_hash_of_file(data_file) == _TEST_DATA_HASHES[filename] return MODData.load(data_file) @pytest.fixture(scope="function") def subset_moddata(): """Loads the 100-structure featurized subset of MP.2018.6 for use in other tests, checking only the hash. """ return _load_moddata("MP_2018.6_subset.zip") @pytest.fixture(scope="function") def small_moddata(): """Loads the small 5-structure featurized subset of MP.2018.6 for use in other tests, checking only the hash. """ return _load_moddata("MP_2018.6_small.zip") @pytest.fixture(scope="module") def tf_session(): """This fixture can be used to sandbox tests that require tensorflow.""" import tensorflow tensorflow.compat.v1.disable_eager_execution() with tensorflow.device("/device:CPU:0") as session: yield session tensorflow.keras.backend.clear_session()
from test.util import TestCase from unittest.mock import Mock from OpenCast.infra.data.repo.context import Context class ContextTest(TestCase): def setUp(self): self.repo = Mock() self.context = Context(self.repo) self.entity = "toto" def test_add(self): self.context.add(self.entity) self.assertListEqual([self.entity], self.context.entities()) self.context.commit() self.repo.create.assert_called_once_with(self.entity) def test_update(self): self.context.update(self.entity) self.assertListEqual([self.entity], self.context.entities()) self.context.commit() self.repo.update.assert_called_once_with(self.entity) def test_delete(self): self.context.delete(self.entity) self.assertListEqual([self.entity], self.context.entities()) self.context.commit() self.repo.delete.assert_called_once_with(self.entity)
import argparse import asyncio from aioconsole import ainput from .setup_agent import setup_agent async def message_processor(register_msg): user_id = await ainput('Provide user id: ') while True: msg = await ainput(f'You ({user_id}): ') msg = msg.strip() if msg: response = await register_msg(utterance=msg, user_external_id=user_id, user_device_type='cmd', location='lab', channel_type='cmd_client', deadline_timestamp=None, require_response=True) print('Bot: ', response['dialog'].utterances[-1].text) def run_cmd(pipeline_configs, debug): agent, session, workers = setup_agent(pipeline_configs=pipeline_configs) loop = asyncio.get_event_loop() loop.set_debug(debug) future = asyncio.ensure_future(message_processor(agent.register_msg)) for i in workers: loop.create_task(i.call_service(agent.process)) try: loop.run_until_complete(future) except KeyboardInterrupt: pass except Exception as e: raise e finally: future.cancel() if session: loop.run_until_complete(session.close()) loop.stop() loop.close() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-pl', '--pipeline_configs', help='Pipeline config (overwrite value, defined in settings)', type=str, action='append') parser.add_argument('-d', '--debug', help='run in debug mode', action='store_true') args = parser.parse_args() run_cmd(args.pipeline_configs, args.debug)
from typing import Dict, Iterator, List, Union, Any, Type, cast import numpy as np import collections import qulacs from cirq import circuits, ops, protocols, schedules, study, value from cirq.sim import SimulatesFinalState, SimulationTrialResult, wave_function def _get_google_rotx(exponent : float) -> np.ndarray: rot = exponent g = np.exp(1.j*np.pi*rot/2) c = np.cos(np.pi*rot/2) s = np.sin(np.pi*rot/2) mat = np.array([ [g*c, -1.j*g*s], [-1.j*g*s, g*c] ]) return mat def _get_google_rotz(exponent : float) -> np.ndarray: return np.diag([1., np.exp(1.j*np.pi*exponent)]) class QulacsSimulator(SimulatesFinalState): def __init__(self, *, dtype: Type[np.number] = np.complex128, seed: value.RANDOM_STATE_LIKE = None): self._dtype = dtype self._prng = value.parse_random_state(seed) def _get_qulacs_state(self, num_qubits: int): return qulacs.QuantumState(num_qubits) def simulate_sweep( self, program: Union[circuits.Circuit, schedules.Schedule], params: study.Sweepable, qubit_order: ops.QubitOrderOrList = ops.QubitOrder.DEFAULT, initial_state: Any = None, ) -> List['SimulationTrialResult']: """Simulates the supplied Circuit or Schedule with Qulacs Args: program: The circuit or schedule to simulate. params: Parameters to run with the program. qubit_order: Determines the canonical ordering of the qubits. This is often used in specifying the initial state, i.e. the ordering of the computational basis states. initial_state: The initial state for the simulation. The form of this state depends on the simulation implementation. See documentation of the implementing class for details. Returns: List of SimulationTrialResults for this run, one for each possible parameter resolver. """ trial_results = [] # sweep for each parameters resolvers = study.to_resolvers(params) for resolver in resolvers: # result circuit cirq_circuit = protocols.resolve_parameters(program, resolver) qubits = ops.QubitOrder.as_qubit_order(qubit_order).order_for(cirq_circuit.all_qubits()) qubit_map = {q: i for i, q in enumerate(qubits)} num_qubits = len(qubits) # create state qulacs_state = self._get_qulacs_state(num_qubits) if initial_state is not None: cirq_state = wave_function.to_valid_state_vector(initial_state,num_qubits) qulacs_state.load(cirq_state) del cirq_state # create circuit qulacs_circuit = qulacs.QuantumCircuit(num_qubits) address_to_key = {} register_address = 0 for moment in cirq_circuit: operations = moment.operations for op in operations: indices = [num_qubits - 1 - qubit_map[qubit] for qubit in op.qubits] result = self._try_append_gate(op, qulacs_circuit, indices) if result: continue if isinstance(op.gate, ops.ResetChannel): qulacs_circuit.update_quantum_state(qulacs_state) qulacs_state.set_zero_state() qulacs_circuit = qulacs.QuantumCircuit(num_qubits) elif protocols.is_measurement(op): for index in indices: qulacs_circuit.add_gate(qulacs.gate.Measurement(index, register_address)) address_to_key[register_address] = protocols.measurement_key(op.gate) register_address += 1 elif protocols.has_mixture(op): indices.reverse() qulacs_gates = [] gate = cast(ops.GateOperation, op).gate channel = protocols.channel(gate) for krauss in channel: krauss = krauss.astype(np.complex128) qulacs_gate = qulacs.gate.DenseMatrix(indices, krauss) qulacs_gates.append(qulacs_gate) qulacs_cptp_map = qulacs.gate.CPTP(qulacs_gates) qulacs.circuit.add_gate(qulacs_cptp_map) # perform simulation qulacs_circuit.update_quantum_state(qulacs_state) # fetch final state and measurement results final_state = qulacs_state.get_vector() measurements = collections.defaultdict(list) for register_index in range(register_address): key = address_to_key[register_index] value = qulacs_state.get_classical_value(register_index) measurements[key].append(value) # create result for this parameter result = SimulationTrialResult( params = resolver, measurements = measurements, final_simulator_state = final_state ) trial_results.append(result) # release memory del qulacs_state del qulacs_circuit return trial_results def _try_append_gate(self, op : ops.GateOperation, qulacs_circuit : qulacs.QuantumCircuit, indices : np.array): # One qubit gate if isinstance(op.gate, ops.pauli_gates._PauliX): qulacs_circuit.add_X_gate(indices[0]) elif isinstance(op.gate, ops.pauli_gates._PauliY): qulacs_circuit.add_Y_gate(indices[0]) elif isinstance(op.gate, ops.pauli_gates._PauliZ): qulacs_circuit.add_Z_gate(indices[0]) elif isinstance(op.gate, ops.common_gates.HPowGate): qulacs_circuit.add_H_gate(indices[0]) elif isinstance(op.gate, ops.common_gates.XPowGate): qulacs_circuit.add_RX_gate(indices[0], -np.pi*op.gate._exponent) elif isinstance(op.gate, ops.common_gates.YPowGate): qulacs_circuit.add_RY_gate(indices[0], -np.pi*op.gate._exponent) elif isinstance(op.gate, ops.common_gates.ZPowGate): qulacs_circuit.add_RZ_gate(indices[0], -np.pi*op.gate._exponent) elif isinstance(op.gate, ops.SingleQubitMatrixGate): mat = op.gate._matrix qulacs_circuit.add_dense_matrix_gate(indices[0], mat) elif isinstance(op.gate, circuits.qasm_output.QasmUGate): lmda = op.gate.lmda theta = op.gate.theta phi = op.gate.phi gate = qulacs.gate.U3(indices[0], theta*np.pi, phi*np.pi, lmda*np.pi) qulacs_circuit.add_gate(gate) # Two qubit gate elif isinstance(op.gate, ops.common_gates.CNotPowGate): if op.gate._exponent == 1.0: qulacs_circuit.add_CNOT_gate(indices[0], indices[1]) else: mat = _get_google_rotx(op.gate._exponent) gate = qulacs.gate.DenseMatrix(indices[1], mat) gate.add_control_qubit(indices[0],1) qulacs_circuit.add_gate(gate) elif isinstance(op.gate, ops.common_gates.CZPowGate): if op.gate._exponent == 1.0: qulacs_circuit.add_CZ_gate(indices[0], indices[1]) else: mat = _get_google_rotz(op.gate._exponent) gate = qulacs.gate.DenseMatrix(indices[1], mat) gate.add_control_qubit(indices[0],1) qulacs_circuit.add_gate(gate) elif isinstance(op.gate, ops.common_gates.SwapPowGate): if op.gate._exponent == 1.0: qulacs_circuit.add_SWAP_gate(indices[0], indices[1]) else: qulacs_circuit.add_dense_matrix_gate(indices,op._unitary_()) elif isinstance(op.gate, ops.parity_gates.XXPowGate): qulacs_circuit.add_multi_Pauli_rotation_gate(indices, [1,1], -np.pi*op.gate._exponent) elif isinstance(op.gate, ops.parity_gates.YYPowGate): qulacs_circuit.add_multi_Pauli_rotation_gate(indices, [2,2], -np.pi*op.gate._exponent) elif isinstance(op.gate, ops.parity_gates.ZZPowGate): qulacs_circuit.add_multi_Pauli_rotation_gate(indices, [3,3], -np.pi*op.gate._exponent) elif isinstance(op.gate, ops.TwoQubitMatrixGate): indices.reverse() mat = op.gate._matrix qulacs_circuit.add_dense_matrix_gate(indices, mat) # Three qubit gate """ # deprecated because these functions cause errors in gpu elif isinstance(op.gate, ops.three_qubit_gates.CCXPowGate): mat = _get_google_rotx(op.gate._exponent) gate = qulacs.gate.DenseMatrix(indices[2], mat) gate.add_control_qubit(indices[0],1) gate.add_control_qubit(indices[1],1) qulacs_circuit.add_gate(gate) elif isinstance(op.gate, ops.three_qubit_gates.CCZPowGate): mat = _get_google_rotz(op.gate._exponent) gate = qulacs.gate.DenseMatrix(indices[2], mat) gate.add_control_qubit(indices[0],1) gate.add_control_qubit(indices[1],1) qulacs_circuit.add_gate(gate) """ elif isinstance(op.gate, ops.three_qubit_gates.CSwapGate): mat = np.zeros(shape=(4,4)) mat[0,0] = 1; mat[1,2] = 1; mat[2,1] = 1; mat[3,3] = 1 gate = qulacs.gate.DenseMatrix(indices[1:], mat) gate.add_control_qubit(indices[0],1) qulacs_circuit.add_gate(gate) # Misc elif protocols.has_unitary(op): indices.reverse() mat = op._unitary_() qulacs_circuit.add_dense_matrix_gate(indices,mat) # Not unitary else: return False return True class QulacsSimulatorGpu(QulacsSimulator): def _get_qulacs_state(self, num_qubits : int): try: state = qulacs.QuantumStateGpu(num_qubits) return state except AttributeError: raise Exception("GPU simulator is not installed")
#file to tell python that this directory contains a package from alphadoc.docstring import get_docstring from alphadoc.main import main
from tutorial3_nohup1 import * class NoHUPStartSSH(NoHUPStart): username = batch.Property() password = batch.Property() server = batch.Property() terminal = batch.Controller(SSHTerminal, username, password, server)
class Topic: topics = {} def __init__(self): pass def add_topic(self, data): username = data['username'] topicname = data['topicname'] users = data['users'].users # permission check if not username in users or users[username]['role'] != 'admin': print('Only admins can create topics') self.topics[topicname] = {} print('Added new Topic') def remove_topic(self, data): username = data['username'] topicname = data['topicname'] users = data['users'].users # permission check if not username in users or users[username]['role'] != 'admin': print('Only admins can remove topics') del self.topics[topicname] print('Removed Topic')
import math class Node: leftLength = 0 value = "" isBalanced = True def __init__(self, string, optimalLength=1000, minLength=500, maxLength=1500, isRoot=True): halfWay = int(math.ceil(len(string) / 2)) self.isRoot = isRoot # These are constants which are used to decide whether or not to re-build the tree self.OPTIMAL_LENGTH = optimalLength self.MIN_LENGTH = minLength self.MAX_LENGTH = maxLength # We build the rope by splitting the string in two until we get to the desired length if halfWay > self.OPTIMAL_LENGTH: self.left = Node(string[:halfWay], self.OPTIMAL_LENGTH, self.MIN_LENGTH, self.MAX_LENGTH, False) self.right = Node(string[halfWay:], self.OPTIMAL_LENGTH, self.MIN_LENGTH, self.MAX_LENGTH, False) self.leftLength = halfWay else: self.value = string def __str__(self): if self.value != "": return self.value else: return str(self.left) + str(self.right) def __len__(self): if self.value != "": return len(self.value) else: return self.leftLength + len(self.right) def insert(self, offset, string): if self.value != "": value = self.value[:offset] + string + self.value[offset:] self.value = value length = len(value) if not checkIfOptimalLength(length, self.MIN_LENGTH, self.MAX_LENGTH) and not self.isRoot: self.isBalanced = False return length else: if offset > self.leftLength: self.right.insert(offset - self.leftLength, string) else: length = self.left.insert(offset, string) self.leftLength = length return self.leftLength def delete(self, offset, length): if self.value != "": value = self.value[:offset] + self.value[length + offset:] self.value = value length = len(value) if not checkIfOptimalLength(length, self.MIN_LENGTH, self.MAX_LENGTH) and not self.isRoot: self.isBalanced = False return length else: if offset > self.leftLength: self.right.delete(offset - self.leftLength, length) elif offset + length > self.leftLength: leftLength = self.left.delete(offset, self.leftLength - offset) self.right.delete(0, length - (self.leftLength - offset)) self.leftLength = leftLength else: leftLength = self.left.delete(offset, length) self.leftLength = leftLength return self.leftLength def amIBalanced(self): if self.value != "": return self.isBalanced else: if self.left.amIBalanced() and self.right.amIBalanced(): return True return False # Checks to see if the length provided is within the desired range def checkIfOptimalLength(length, minimum_length, maximum_length): if length > minimum_length and length < maximum_length: return True return False
import json from random import randint from colorama import init, Fore # initialize colours init() GREEN = Fore.GREEN RED = Fore.RED BLUE = Fore.BLUE WHITE = Fore.WHITE CYAN = Fore.CYAN def intro(): print(f"""{CYAN} ______ __ __ ______ __ __ ______ ______ __ __ /\ ___\ /\ "-./ \ /\ __ \ /\ \ /\ \ /\ ___\ /\ ___\ /\ "-.\ \ \ \ __\ \ \ \-./\ \ \ \ __ \ \ \ \ \ \ \____ \ \ \__ \ \ \ __\ \ \ \-. \ \ \_____\ \ \_\ \ \_\ \ \_\ \_\ \ \_\ \ \_____\ \ \_____\ \ \_____\ \ \_\\"\_\ \/_____/ \/_/ \/_/ \/_/\/_/ \/_/ \/_____/ \/_____/ \/_____/ \/_/ \/_/ {WHITE}-- Made with ❤️ by YY """) # Reads and opens the correct json files def read_json(): with open('names.json') as name: names = json.load(name) with open('surnames.json') as surname: surnames = json.load(surname) return names, surnames # Collects all given data to craft the appropriate amount of e-mails. Generated email are collected in list and returned. def generate(names, surnames, max_email): hosts = ["@gmail", "@hotmail", "@outlook", "@protonmail", "@aol", "@yahoo", "@zoho", "@gmx"] generated = [] for i in range(0, max_email): email = names[randint(0, len(names) - 1)] + "_" + surnames[randint(0, len(surnames) - 1)] + hosts[ randint(0, len(hosts) - 1)] + ".com" generated.append(email) return generated # Save generated e-mails in 'generated.txt'. def write_txt(generated, max_email): with open('generated.txt', 'w') as file: for email in generated: file.write("%s\n" % email) print(f"{GREEN}[ ✅ ]{WHITE} all {GREEN}{max_email}{WHITE} emails are saved in {GREEN}generated.txt{WHITE} ! ") # Save generated e-mails in 'generated.csv'. def write_csv(generated, max_email): file = open('generated.csv', 'w') for email in generated: file.write("%s\n" % email) print(f"{GREEN}- ✅{WHITE} all {GREEN}{max_email}{WHITE} emails are saved in {GREEN}generated.csv{WHITE} ! ") # Print all generated e-mails in command line. def output(generated, max_email): print(f"{GREEN}- ✅ {WHITE}generated {GREEN}{max_email}{WHITE} emails -> \n") for email in generated: print(email)
from ...helpers import format_result from .queries import (GQL_CREATE_ORGANIZATION, GQL_DELETE_ORGANIZATION, GQL_UPDATE_ORGANIZATION) def create_organization(client, name: str, address: str, zip_code: str, city: str, country: str): variables = { 'name': name, 'address': address, 'zipCode': zip_code, 'city': city, 'country': country } result = client.execute(GQL_CREATE_ORGANIZATION, variables) return format_result('data', result) def update_organization(client, organization_id: str, name: str, address: str, zip_code: str, city: str, country: str): variables = { 'organizationID': organization_id, 'name': name, 'address': address, 'zipCode': zip_code, 'city': city, 'country': country } result = client.execute(GQL_UPDATE_ORGANIZATION, variables) return format_result('data', result) def delete_organization(client, organization_id: str): variables = {'organizationID': organization_id} result = client.execute(GQL_DELETE_ORGANIZATION, variables) return format_result('data', result)