content
stringlengths
5
1.05M
class A: test = 123 a1 = A() a2 = A() print(a1.test) print(a2.test) A.test = 321 print(a1.test) print(a2.test)
import os from keras.applications.inception_v3 import InceptionV3 from keras.applications.mobilenet_v2 import MobileNetV2 from keras.models import Model from keras.layers import Dense, GlobalAveragePooling2D from keras.metrics import categorical_accuracy from keras import backend as K import keras.optimizers from metrics import * def create_inceptionv3(n_classes): base_model = InceptionV3(weights='imagenet', include_top=False) model, output_node_name, n_new_layers = add_fc_layer_and_output_layer(base_model, n_classes) image_size = 299 return model, output_node_name, image_size, n_new_layers def create_mobilenetv2(n_classes): image_size = 224 input_shape = (image_size, image_size, 3) # alpha=1.4 has the best results from what I read, but I get OOM errors for alpha=1.4. base_model = MobileNetV2(input_shape=input_shape, alpha=1.3, weights='imagenet', include_top=False) model, output_node_name, n_new_layers = add_fc_layer_and_output_layer(base_model, n_classes) return model, output_node_name, image_size, n_new_layers def load_model(path, n_classes): base_model = keras.models.load_model(path) print(base_model.layers[-1]) print(base_model.output) #base_model.summary() base_model.layers.pop() base_model.layers.pop() #base_model.summary() # Rename the last two layers otherwise we will get a name clash when add a new dense layer below. #base_model.layers[-2].name = base_model.layers[-2].name + '_original' #base_model.layers[-1].name = base_model.layers[-1].name + '_original' predictions = add_output_layer(base_model.layers[-1].output, n_classes) # this is the model we will train new_model = Model(inputs=base_model.input, outputs=predictions) #new_model.summary() image_size = 224 # Assume that its a mobilenetv2 model. n_new_layers = 1 return new_model, 'dense_1/Softmax', image_size, n_new_layers def add_fc_layer_and_output_layer(base_model, n_classes): # add a global spatial average pooling layer x = base_model.output x = GlobalAveragePooling2D()(x) predictions = add_output_layer(x, n_classes) # this is the model we will train n_new_layers = 2 return Model(inputs=base_model.input, outputs=predictions), 'dense_2/Softmax', n_new_layers def add_output_layer(input, n_classes): # let's add a fully-connected layer x = Dense(n_classes, activation='relu')(input) # and a logistic layer predictions = Dense(n_classes, activation='softmax')(x) return predictions def freeze_layers(model, n_layers): # at this point, the top layers are well trained and we can start fine-tuning # convolutional layers from inception V3. We will freeze the bottom N layers # and train the remaining top layers. # let's visualize layer names and layer indices to see how many layers # we should freeze: #for i, layer in enumerate(base_model.layers): # print(i, layer.name) # we chose to train the top 2 inception blocks, i.e. we will freeze # the first 249 layers and unfreeze the rest: print("Freezing %s out of %s layers" % (n_layers, len(model.layers))) for layer in model.layers[:n_layers]: layer.trainable = False for layer in model.layers[n_layers:]: layer.trainable = True def compile(model, n_classes): #def w_acc(y_true, y_pred): # return weighted_accuracy(n_classes, y_true, y_pred) model.compile( #optimizer=keras.optimizers.RMSprop(lr=0.00001), optimizer=keras.optimizers.SGD(lr=0.01, momentum=0.85, decay=0.001), #optimizer=keras.optimizers.Adam(lr=0.0001), #optimizer=keras.optimizers.Adagrad(lr=0.001, decay=0.001), #optimizer=keras.optimizers.Adadelta(lr=0.01), loss='categorical_crossentropy', metrics=[categorical_accuracy]) def save_model(model, output_dir, model_name, output_node_name, classes): saver = tf.train.Saver() #saver.save(K.get_session(), checkpoint_path) sess = K.get_session() frozen_graph = freeze_session(sess, output_names=[out.op.name for out in model.outputs]) #graph_def = tf.graph_util.convert_variables_to_constants(sess, sess.graph_def, [ output_node_name ]) os.makedirs(output_dir) pb_path = os.path.join(output_dir, '%s.pb' % model_name) with tf.gfile.GFile(pb_path, 'wb') as f: f.write(frozen_graph.SerializeToString()) print("Saved to", pb_path) hdf5_path = os.path.join(output_dir, '%s.h5py' % model_name) keras.models.save_model(model, hdf5_path, include_optimizer=False) print("Saved to", hdf5_path) save_labels(classes, os.path.join(output_dir, "labels.txt")) saver = tf.train.Saver() saver_path = saver.save(sess, os.path.join(output_dir, "%s.ckpt" % model_name)) print("Saved to", saver_path) def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): """ Freezes the state of a session into a pruned computation graph. Creates a new computation graph where variable nodes are replaced by constants taking their current value in the session. The new graph will be pruned so subgraphs that are not necessary to compute the requested outputs are removed. @param session The TensorFlow session to be frozen. @param keep_var_names A list of variable names that should not be frozen, or None to freeze all the variables in the graph. @param output_names Names of the relevant graph outputs. @param clear_devices Remove the device directives from the graph for better portability. @return The frozen graph definition. """ graph = session.graph with graph.as_default(): freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or [])) output_names = output_names or [] output_names += [v.op.name for v in tf.global_variables()] input_graph_def = graph.as_graph_def() if clear_devices: for node in input_graph_def.node: node.device = "" frozen_graph = tf.graph_util.convert_variables_to_constants( session, input_graph_def, output_names, freeze_var_names) return frozen_graph
import cv2 import numpy as np def read_image(image_path: str) -> np.ndarray: stream = open(image_path, "rb") bytes = bytearray(stream.read()) array = np.asarray(bytes, dtype=np.uint8) image = cv2.imdecode(array, cv2.IMREAD_UNCHANGED) return image
# -*- coding: utf-8 -*- """ @Time : 2020/4/13 下午6:07 @File : jqtestbase.py @author : pchaos @license : Copyright(C), pchaos @Contact : p19992003#gmail.com """ import unittest import datetime import os from jqdatasdk import * from dotenv import load_dotenv from .testbase import TestingBase def getEnvVar(key): from os import sys, path # __file__ should be defined in this case DIRNAME = path.dirname(path.dirname(path.abspath(__file__))) if DIRNAME not in sys.path: sys.path.append(DIRNAME) load_dotenv(verbose=True) return os.getenv(key) class jqTestingbase(TestingBase): @classmethod def userInit(cls): """用户初始化 """ # .env 文件中写入相应的参数 userid = getEnvVar('jquserid') passwd = getEnvVar('jqpasswd') assert userid auth(userid, passwd) @classmethod def userEnd(cls): """class结束,用户释放资源 """ pass
# -*- coding: utf-8 -*- # Copyright 2019 Spanish National Research Council (CSIC) # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy import hashlib import hmac from aiohttp import web import aiohttp_jinja2 import aiohttp_session_flash as flash import markdown from deep_dashboard import config from deep_dashboard import deep_oc from deep_dashboard import log CONF = config.CONF LOG = log.LOG routes = web.RouteTableDef() @routes.get('/modules', name="modules") @aiohttp_jinja2.template('modules/index.html') async def index(request): request.context["templates"] = await request.app.cache.modules.get_all() request.context["breadcrumbs"] = [ ("Home", False, "/"), ("Modules", True, "/modules"), # FIXME(aloga): use url ] return request.context @routes.post("/reload", name="reload") async def reload_all_modules(request): """Load TOSCA templates and map them to modules This function is used to refresh the TOSCA templates and the mapping between modules and TOSCA templates. A webhook is set up so that when any of the repos [1][2] is updated, Github will POST to this method to refresh the Dashboard. The webhook's secret has to be the same has GITHUB_SECRET in the conf so that we can validate that the payload comes indeed from Github and the webhook has to be configured to deliver an 'application/json'. [1] https://github.com/deephdc/deep-oc [2] https://github.com/indigo-dc/tosca-templates/tree/master/deep-oc [3] https://gist.github.com/categulario/deeb41c402c800d1f6e6 """ # Check request comes indeed from Github if CONF.github_secret: if 'X-Hub-Signature' not in request.headers: return web.Response( text='Refresh petitions must be signed from Github.', status=403 ) # FIXME(aloga): this does not work signature = hmac.new( CONF.github_secret, request.data, hashlib.sha1 ).hexdigest() if not hmac.compare_digest( signature, request.headers['X-Hub-Signature'].split('=')[1] ): return web.Response( text='Failed to verify the signature!', status=403 ) LOG.info('Reloading modules and TOSCA templates ...') await deep_oc.load_deep_oc_as_task(request.app) return web.Response(status=201) @routes.get("/modules/{module}/train", name="module.train") @aiohttp_jinja2.template('modules/train.html') async def configure_module_training(request): module = request.match_info["module"].lower() if not await request.app.cache.modules.exists(module): flash.flash( request, ("danger", f"Module does not exist: {module}.") ) return web.HTTPFound("/modules") request.context["selected_module"] = module module_meta = await request.app.cache.modules.get(module) selected_tosca = request.query.get( "selected_tosca", list(module_meta["tosca_templates"].keys())[0] ) template_name = module_meta["tosca_templates"][selected_tosca] hardware_configuration = request.query.get("hardware_configuration", "CPU").lower() docker_tag = request.query.get("docker_tag", module_meta["docker_tags"][0]).lower() run_command = request.query.get("run_command", "DEEPaaS") general_configuration = { "tosca_templates": { "available": module_meta["tosca_templates"].keys(), "selected": selected_tosca, }, "docker_tags": { "available": module_meta["docker_tags"], "selected": docker_tag, }, "hardware_configuration": { "available": ["CPU", "GPU"], "selected": hardware_configuration, }, "run_command": { "available": ["DEEPaaS", "JupyterLab", "Custom command"], "selected": run_command, }, } tosca_template = module_meta["tosca_templates"].get(selected_tosca) if tosca_template is None: flash.flash( request, ("danger", f"TOSCA template does not exist: {tosca_template}.") ) return web.HTTPFound("/modules") aux = await request.app.cache.tosca_templates.get(tosca_template) inputs = copy.deepcopy( aux["inputs"] ) inputs['docker_image'].setdefault( 'default', module_meta['sources']['docker_registry_repo']) docker_tags = module_meta['docker_tags'] if docker_tag not in docker_tags: docker_tag = docker_tags[0] if run_command == 'deepaas': inputs['run_command']['default'] = 'deepaas-run --listen-ip=0.0.0.0' if hardware_configuration == 'gpu': inputs['run_command']['default'] += ' --listen-port=$PORT0' elif run_command == 'jupyterlab': flash.flash( request, ("warning", 'Remember to set a Jupyter password.') ) inputs['run_command']['default'] = ( '/srv/.jupyter/run_jupyter.sh --allow-root' ) if hardware_configuration == 'gpu': inputs['run_command']['default'] = ( "jupyterPORT=$PORT2 " + inputs['run_command']['default'] ) if hardware_configuration == 'cpu': inputs['num_cpus']['default'] = 1 inputs['num_gpus']['default'] = 0 inputs['run_command']['default'] = ( "monitorPORT=6006 " + inputs['run_command']['default'] ) elif hardware_configuration == 'gpu': inputs['num_cpus']['default'] = 1 inputs['num_gpus']['default'] = 1 inputs['run_command']['default'] = ( "monitorPORT=$PORT1 " + inputs['run_command']['default'] ) # FIXME(aloga): improve conditions here if run_command == "custom command": inputs['run_command']['default'] = '' inputs['docker_image']['default'] += ':{}'.format(docker_tag) grouped = { "docker": {}, "jupyter": {}, "storage": {}, "hardware": {}, "other": {}, } for k, v in inputs.items(): if k.startswith("docker_"): grouped["docker"][k] = v elif k.startswith("jupyter_"): grouped["jupyter"][k] = v elif any([k.startswith("rclone_"), k.startswith("onedata_"), k.startswith("oneclient_"), k == "app_in_out_base_dir"]): grouped["storage"][k] = v elif k in ["mem_size", "num_cpus", "num_gpus"]: grouped["hardware"][k] = v else: grouped["other"][k] = v template_meta = { "inputs": inputs, "grouped": grouped, } request.context["general_configuration"] = general_configuration request.context["template_meta"] = template_meta request.context["template_name"] = template_name request.context["slas"] = request.app.slas request.context["module_meta"] = module_meta request.context["breadcrumbs"] = [ ("Home", False, "/"), ("Modules", False, "/modules"), # FIXME(aloga): use url (module, False, f"/modules/{module}"), # FIXME(aloga): use url ("train", True, f"/modules/{module}/train"), # FIXME(aloga): use url ] return request.context @routes.get("/modules/{module}", name="module") @aiohttp_jinja2.template('modules/module.html') async def module_info(request): module = request.match_info["module"].lower() if not await request.app.cache.modules.exists(module): flash.flash( request, ("danger", f"Module does not exist: {module}.") ) return web.HTTPFound("/modules") module_meta = await request.app.cache.modules.get(module) request.context["modulename"] = module request.context["module_meta"] = copy.deepcopy(module_meta) description = module_meta.get("description") if description: description = "\n".join(description) else: description = "No description provided." description = markdown.markdown(description) request.context["module_meta"]["description"] = description request.context["breadcrumbs"] = [ ("Home", False, "/"), ("Modules", False, "/modules"), # FIXME(aloga): use url (module, True, f"/modules/{module}"), # FIXME(aloga): use url ] return request.context
#-*- coding: utf-8 -*- # Creation Date : 2016-10-21 # Created by : Antoine LeBel import observer class MailingService(observer.Observer): MIN_HUMIDITY = 20 def __init__(self): self.sensor = None def update(self, HumiditySensor): self.sensor = HumiditySensor if HumiditySensor.humidity < self.MIN_HUMIDITY: self._send_humidity_warning() def _send_humidity_warning(self): print("Un message courriel a été envoyé pour avertir que les plantes sont sèches!")
import config_tb from config_db import config import requests from datetime import datetime from bs4 import BeautifulSoup import telebot from db import UseDataBase from emoji import * # заглавная страница сервиса Яндекс.Погода с прогнозом # по текущему месту положения URL = 'https://yandex.ru/pogoda/' # список регионов России URL_REGIONS = 'https://yandex.ru/pogoda/region/225?via=reg' # ссылка на конкретный регион URL_REGION = None class Var(): def __init__(self): # первая буква из названия региона self.btn = None # первая буква из субъекта региона self.btn_sub_reg = None # список регионов или их субъектов self.regions = None users_property = {} bot = telebot.TeleBot(config_tb.TOKEN) @bot.message_handler(commands=['start']) def welcome(message): users_property[message.chat.id] = Var() with UseDataBase(config) as cursor: query = f""" INSERT INTO users_property ( chat_id, url, url_region ) VALUES ( {message.chat.id}, '{URL}', '{URL_REGION}' ) ON CONFLICT(chat_id) DO NOTHING; """ cursor.execute(query) bot.send_message( message.chat.id, ( 'Привет! Я помогу тебе узнать прогноз погоды.\n' 'Чтобы посмотреть данные о погоде на текущий момент ' '/weather_now.\n' 'Посмотреть подробный прогноз на сегодня ' '/weather_today.\n' 'Посмотреть прогноз погоды на 10 дней /10_day_forecast.\n' 'Выбрать местоположение /select_city_or_area.\n' 'Получить помощь /help.\n' f'Текущее местоположение: {start_area()}' ) ) @bot.message_handler(commands=['help']) def help(message): bot.send_message( message.chat.id, ( '1) Посмотреть погоду на текущий момент /weather_now.\n' '2) Посмотреть подробный прогноз на сегодня ' '/weather_today.\n' '3) Посмотреть прогноз погоды на 10 дней /10_day_forecast.\n' '4) Нажми «Обновить», чтобы получить обновленную информацию о' ' погоде.\n' '5) Для смены региона в прогнозе погоды /location_selection.\n' '6) Бот поддерживает встроенный режим. Введи <yournameforthebot>' ' в любом чате и выбери команду для составления прогноза погоды.' ), # добавьте по желанию ## reply_markup=button( ## text='Связаться с разработчиком', ## ## ## url='telegram.me/<yourrandomdeveloper>' ## ) ) @bot.message_handler(commands=['weather_now']) def current_weather(message): bot.send_chat_action(message.chat.id, 'typing') bot.send_message( message.chat.id, set_message(get_urls('url', message.chat.id)), parse_mode='html', reply_markup=button( text='Обновить', callback_data='update_current', switch_inline_query='Current' ) ) @bot.message_handler(commands=['weather_today']) def weather_today(message): bot.send_chat_action(message.chat.id, 'typing') bot.send_message( message.chat.id, set_today_message(get_urls('url', message.chat.id)), parse_mode='html', reply_markup=button( text='Обновить', callback_data='update_today', switch_inline_query='Today' ) ) @bot.message_handler(commands=['10_day_forecast']) def ten_day_weather(message): bot.send_chat_action(message.chat.id, 'typing') bot.send_message( message.chat.id, set_message_10_day(get_urls('url', message.chat.id)), parse_mode='html', reply_markup=button( text='Обновить', callback_data='update_10_day', switch_inline_query='10 day' ) ) def start_area(): soup = scraping(URL) area = soup.find('ol', 'breadcrumbs__list') country, region, area = area.find_all('span', 'breadcrumbs__title') return f'{country.text} > {region.text} > {area.text}' @bot.message_handler(commands=['select_city_or_area']) def location_selection(message): users_property[message.chat.id] = Var() bot.send_chat_action(message.chat.id, 'typing') keyboard = alphabet( URL_REGIONS, 'set_region' ) bot.send_message( message.chat.id, 'Выберите первый символ из названия региона РФ', reply_markup=keyboard ) @bot.callback_query_handler(func=lambda call: call.data.startswith('update')) def weather_callback(query): bot.answer_callback_query(query.id) if query.message: bot.send_chat_action(query.message.chat.id, 'typing') if query.data == 'update_current': bot.edit_message_text( set_message( get_urls( 'url', query.message.chat.id ), True ), query.message.chat.id, query.message.message_id, parse_mode='HTML' ) bot.edit_message_reply_markup( query.message.chat.id, query.message.message_id, reply_markup=button( text='Обновить', callback_data='update_current', switch_inline_query='Current' ) ) elif query.data == 'update_10_day': bot.edit_message_text( set_message_10_day( get_urls( 'url', query.message.chat.id ), True ), query.message.chat.id, query.message.message_id, parse_mode='HTML' ) bot.edit_message_reply_markup( query.message.chat.id, query.message.message_id, reply_markup=button( text='Обновить', callback_data='update_10_day', switch_inline_query='10 day' ) ) elif query.data == 'update_today': bot.edit_message_text( set_today_message( get_urls( 'url', query.message.chat.id ), True ), query.message.chat.id, query.message.message_id, parse_mode='HTML' ) bot.edit_message_reply_markup( query.message.chat.id, query.message.message_id, reply_markup=button( text='Обновить', callback_data='update_today', switch_inline_query='Today' ) ) elif query.inline_message_id: bot.send_chat_action(query.from_user.id, 'typing') if query.data == 'update_current': bot.edit_message_text( set_message( get_urls( 'url', query.from_user.id ), True ), inline_message_id=query.inline_message_id, parse_mode='HTML' ) bot.edit_message_reply_markup( inline_message_id=query.inline_message_id, reply_markup=button( text='Обновить', callback_data='update_current', switch_inline_query='Current' ) ) elif query.data == 'update_10_day': bot.edit_message_text( set_message_10_day( get_urls( 'url', query.from_user.id ), True ), inline_message_id=query.inline_message_id, parse_mode='HTML' ) bot.edit_message_reply_markup( inline_message_id=query.inline_message_id, reply_markup=button( text='Обновить', callback_data='update_10_day', switch_inline_query='10 day' ) ) elif query.data == 'update_today': bot.edit_message_text( set_today_message( get_urls( 'url', query.from_user.id ), True ), inline_message_id=query.inline_message_id, parse_mode='HTML' ) bot.edit_message_reply_markup( inline_message_id=query.inline_message_id, reply_markup=button( text='Обновить', callback_data='update_today', switch_inline_query='Today' ) ) @bot.callback_query_handler(func=lambda call: True) def location_query(query): if query.message.chat.id not in users_property: users_property[query.message.chat.id] = Var() user = users_property[query.message.chat.id] bot.answer_callback_query(query.id) try: if query.data == 'set_location_back': keyboard = alphabet( URL_REGIONS, 'set_region' ) bot.edit_message_text( 'Выберите первый символ из названия региона РФ', query.message.chat.id, query.message.message_id ) elif query.data.startswith('set_region'): regions = set_region( query.data[-1], URL_REGIONS ) keyboard = telebot.types.InlineKeyboardMarkup(2) lst = [ telebot.types.InlineKeyboardButton( regions[region][0], callback_data=( f'set_sub_reg{query.data[-1]}' f'|{regions[region][1]}' ) ) for region in range(len(regions)) ] keyboard.add(*lst) keyboard.add( telebot.types.InlineKeyboardButton( '<<Назад', callback_data='set_location_back' ) ) bot.edit_message_text( 'Выберите регион', query.message.chat.id, query.message.message_id ) elif (query.data.startswith('set_sub_reg') or query.data == 'set_sub_reg_back'): if query.data != 'set_sub_reg_back': btn, value = query.data.split('|') set_urls( 'url_region', value, query.message.chat.id ) user.btn = btn[-1] keyboard = alphabet( get_urls( 'url_region', query.message.chat.id ), 'main_sub_reg' ) keyboard.add( telebot.types.InlineKeyboardButton( '<<Назад', callback_data=f'set_region{user.btn}' ) ) bot.edit_message_text( 'Выберите первый символ из названия субъекта региона', query.message.chat.id, query.message.message_id ) elif query.data.startswith('main_sub_reg'): if query.data != 'main_sub_reg_back': user.btn_sub_reg = query.data[-1] url_region = get_urls('url_region', query.message.chat.id) user.regions = set_region(user.btn_sub_reg, url_region) keyboard = telebot.types.InlineKeyboardMarkup(2) lst = [ telebot.types.InlineKeyboardButton( user.regions[region][0], callback_data=f'current|{user.regions[region][0][:12]}' ) for region in range(len(user.regions)) ] keyboard.add(*lst) keyboard.add( telebot.types.InlineKeyboardButton( '<<Назад', callback_data='set_sub_reg_back' ) ) bot.edit_message_text( 'Выберите место', query.message.chat.id, query.message.message_id ) elif query.data.startswith('current'): key = query.data.split("|")[1] regions = dict(user.regions) sub_reg = [ (region, regions[region]) for region in regions.keys() if region.startswith(key) ] set_urls( 'url', sub_reg[0][1], query.message.chat.id ) keyboard = telebot.types.InlineKeyboardMarkup() keyboard.row( telebot.types.InlineKeyboardButton( '<<Назад', callback_data='main_sub_reg_back' ) ) bot.edit_message_text( f'Вы выбрали "{sub_reg[0][0]}" локацией по умолчанию.', query.message.chat.id, query.message.message_id ) except TypeError: keyboard = alphabet( URL_REGIONS, 'set_region' ) bot.edit_message_text( 'Выберите первый символ из названия региона РФ', query.message.chat.id, query.message.message_id ) bot.edit_message_reply_markup( query.message.chat.id, query.message.message_id, reply_markup=keyboard ) def scraping(url: str): html = requests.get(url) soup = BeautifulSoup(html.text, 'lxml') return soup def set_message(url, change: bool = False): soup = scraping(url) sub_reg = soup.find('h1').text area = soup.find('ol', 'breadcrumbs__list') region = area.find_all('span', 'breadcrumbs__title')[1].text weather_value = soup.find_all('div', 'term__value') condition = soup.find('div', 'link__condition day-anchor i-bem').text time = soup.find('time') current_time = time.text tz = time.get('datetime') time_of_day = int((tz.strip(". ").split(' ')[1].split(':')[0])) weather_value = [item.text for item in weather_value] try: wind = wind_dir[(weather_value[2].split("м/с, ")[1])] except IndexError: wind = '' if change is True: update = '<i>(Обновлено)</i>\n' else: update = '' sun_card = soup.find('div', 'sun-card__text-info') for v, item in enumerate(sun_card): if v == 2: magnetic_field = item elif v == 4: uv_index = item return ( f'{sub_reg}\n(<i>{region}</i>)\n' f'{update}\n' f'{current_time.strip(". ")}(МСК{time_zone(tz)})\n' f'текущая температура {"".join([weather_value[0], "°"])}\n' f'ощущается как {"".join([weather_value[1], "°"])}\n' f'{condition} {get_weather_emoji(condition, time_of_day)}\n' f'{dashing_away} {weather_value[2]}' f'{wind}\n' f'{droplet} {weather_value[3]} ' f'{barometer} {weather_value[4]}\n' f'{uv_index}\n' f'{magnetic_field}' ) def set_today_message(url, change=None): url = url.split('?')[0] + '/details' soup = scraping(url) area = soup.find('nav', 'breadcrumbs') region, city = area.find_all('span', 'breadcrumbs__title')[1:3] data = soup.find('div', 'card') fields_val = soup.find_all('dd', 'forecast-fields__value')[:2] uv_index, magnetic_field = [item.text for item in fields_val] today = data.find( 'h2', 'forecast-details__title' ) day = today.find('strong').text month = today.find('span').text table = data.find_all( 'tr', 'weather-table__row' ) rows = [] if change is True: update = '<i>(Обновлено)</i>\n' else: update = '' for val in table: daypart = val.find( 'div', 'weather-table__daypart' ).text # температура, прогнозируемая на определенную часть суток # и как она ощущается temp = val.find_all( 'span', 'temp__value temp__value_with-unit' ) temp = [t.text for t in temp] condition = val.find( 'td', 'weather-table__body-cell weather-table__body-cell_type_condition' ).text pressure = val.find( 'td', ( 'weather-table__body-cell weather-table__body-cell_type_air-' 'pressure' ) ).text humidity = val.find( 'td', 'weather-table__body-cell weather-table__body-cell_type_humidity' ).text wind_speed = val.find('span', 'wind-speed').text direct = val.find('abbr').text rows.append( { 'daypart': daypart, 'temp': temp, 'condition': condition, 'pressure': pressure, 'humidity': humidity, 'wind_speed': wind_speed, 'direct': direct } ) mes = [ ' '.join ( [ i["daypart"].capitalize(), ( i["temp"][0] + '°' + '...' + i["temp"][1] + '°' ), '\n', i["condition"], get_weather_emoji( i["condition"], i["daypart"] ), '\n', barometer, i["pressure"], droplet, i["humidity"], dashing_away, i["wind_speed"], i["direct"], wind_dir[i["direct"]], '\n', 'ощущается как', (i["temp"][2] + '°'), '\n\n' ] ) for i in rows ] return ( f'Cегодня {day} {month}\n' f'{city.text}\n<i>({region.text})</i>\n' f'{update}\n' f'{"".join(mes)}' f'УФ-индекс {uv_index}\n' f'Магнитное поле {magnetic_field}' ) def set_message_10_day(url, change: bool = False): soup = scraping(url) sub_reg = soup.find( 'h1', class_='title title_level_1 header-title__title' ).text area = soup.find('ol', 'breadcrumbs__list') region = area.find_all('span', 'breadcrumbs__title')[1].text ten_day = soup.find_all('div', 'forecast-briefly__name') time = soup.find_all('time', class_='forecast-briefly__date') t_day = soup.find_all( 'div', class_='temp forecast-briefly__temp forecast-briefly__temp_day' ) t_night = soup.find_all( 'div', class_='temp forecast-briefly__temp forecast-briefly__temp_night' ) condition = soup.find_all('div', class_='forecast-briefly__condition') if change is True: update = '<i>(Обновлено)</i>\n' else: update = '' mes = [ ' '.join( [ ten_day[i].text, time[i].text, ( '\n' + t_day[i].text + '°' ), ( ', ' + t_night[i].text + '°' ) ] ) + f'\n {condition[i].text}' + f' {get_weather_emoji(condition[i].text)}' + '\n\n' for i in range(2, 12) ] return ( f'{sub_reg}' f'\n<i>({region})</i>' '\nПрогноз на 10 дней\n' f'{update}\n' f'{"".join(mes)}' ) def set_urls(url, value, chat_id): with UseDataBase(config) as cursor: operation = f""" UPDATE users_property SET {url} = '{value}' WHERE chat_id = {chat_id}; """ cursor.execute(operation) def get_urls(url, chat_id): with UseDataBase(config) as cursor: operation = f""" SELECT {url} FROM users_property WHERE chat_id = {chat_id}; """ cursor.execute(operation) result = cursor.fetchall() return result[0][0] def alphabet(url, choosing_region): alphabet = scraping(url) alphabet = alphabet.find_all( 'h2', 'title title_level_2 place-list__letter' ) alphabet = [i.get_text() for i in alphabet] keyboard = keyboard_rows(alphabet, choosing_region) return keyboard def keyboard_rows(data, choosing_region): keyboard = telebot.types.InlineKeyboardMarkup(row_width=4) lst = [ telebot.types.InlineKeyboardButton( data[btn], callback_data=f'{choosing_region + data[btn]}' ) for btn in range(len(data)) ] keyboard.add(*lst) return keyboard def set_region(letter, url): regions = get_location(url) regions = [ (region, regions[region]) for region in regions.keys() if region.startswith(letter) ] return regions def get_location(url): soup = scraping(url) soup = soup.find_all( 'li', 'place-list__item place-list__item_region_yes' ) names = [name.get_text() for name in soup] links = [ 'https://yandex.ru' + link.find('a').get('href') for link in soup ] regions = dict(zip(names, links)) return regions def time_zone(tz): tz = int(tz.split('+')[1][:2]) - 3 if tz > 0: tz = '+' + str(tz) elif tz == 0: tz = '' else: tz = '-' + str(tz) return tz def button(text: str, url: str = None, callback_data: str = None, switch_inline_query: str = None): keyboard = telebot.types.InlineKeyboardMarkup() first_btn = telebot.types.InlineKeyboardButton( text, url, callback_data ) if switch_inline_query: keyboard.row( first_btn, telebot.types.InlineKeyboardButton( text='Поделиться', switch_inline_query=switch_inline_query ) ) else: keyboard.add(first_btn) return keyboard def get_weather_emoji(value, hour=None): value = value.lower() try: if hour is not None: # яндекс считает ночным временем с 0 ч. по 6 ч. if isinstance(hour, str): if hour == 'ночью': hour = 3 # для удобства получения emoji выбрано это время if isinstance(hour, int): if hour < 6: return weather_conditions_night[value] return weather_conditions[value] except KeyError as err: with open('report_emoji.txt', 'a') as file: print(f'KeyError get_weather_emoji: {err}', file=file) return '' @bot.inline_handler(func=lambda query: True) def inline_mode(inline_query): current = telebot.types.InlineQueryResultArticle( '1', 'Current', telebot.types.InputTextMessageContent( set_message( get_urls( 'url', inline_query.from_user.id ) ) ), reply_markup=button( text='Обновить', callback_data='update_current', switch_inline_query='Current' ), description='Погода сейчас', thumb_url=( 'https://www.clipartkey.com/mpngs/m/273-2739384_weather' '-icon-heart.png' ) ) ten_day = telebot.types.InlineQueryResultArticle( '3', '10 day', telebot.types.InputTextMessageContent( set_message_10_day( get_urls( 'url', inline_query.from_user.id ) ) ), reply_markup=button( text='Обновить', callback_data='update_10_day', switch_inline_query='10 day' ), description='Прогноз на 10 дней', thumb_url=( 'https://unblast.com/wp-content/uploads/2020/05/Weather-' 'Vector-Icons-1536x1152.jpg' ) ) today = telebot.types.InlineQueryResultArticle( '2', 'Today', telebot.types.InputTextMessageContent( set_today_message( get_urls( 'url', inline_query.from_user.id ) ) ), reply_markup=button( text='Обновить', callback_data='update_today', switch_inline_query='Today' ), description='Прогноз на сегодня', thumb_url=( 'https://www.clipartkey.com/mpngs/m/273-2739384_weather' '-icon-heart.png' ) ) bot.answer_inline_query( inline_query.id, [current, today, ten_day] ) if __name__ == '__main__': bot.polling(none_stop=True)
import torch import torch.nn as nn import torch.nn.functional as F class DQN(nn.Module): def __init__(self, input_dimension, output_dimension): super(DQN, self).__init__() self.layer_1 = nn.Linear( in_features=input_dimension, out_features=64) self.layer_2 = nn.Linear(in_features=64, out_features=128) self.layer_3 = nn.Linear(in_features=128, out_features=64) #size = 128 * output_dimension input_size = 64 self.output_layer = nn.Linear( in_features=input_size, out_features=output_dimension) def forward(self, net_input): #net_input = net_input.view(net_input.size(0), -1) layer_1_output = F.relu(self.layer_1(net_input)) layer_2_output = F.relu(self.layer_2(layer_1_output)) layer_3_output = F.relu(self.layer_3(layer_2_output)) #output = self.output_layer(layer_3_output.view(layer_3_output.size(0), -1)) output = self.output_layer(layer_3_output) return output
from __future__ import annotations import pytest from ufoLib2.objects import Glyph, Layer def test_init_layer_with_glyphs_dict() -> None: a = Glyph() b = Glyph() layer = Layer("My Layer", {"a": a, "b": b}) assert layer.name == "My Layer" assert "a" in layer assert layer["a"] is a assert a.name == "a" assert "b" in layer assert layer["b"] is b assert b.name == "b" with pytest.raises( ValueError, match="glyph has incorrect name: expected 'a', found 'b'" ): Layer(glyphs={"a": b}) with pytest.raises(KeyError, match=".*Glyph .* can't be added twice"): Layer(glyphs={"a": a, "b": a}) with pytest.raises(TypeError, match="Expected Glyph, found int"): Layer(glyphs={"a": 1}) # type: ignore def test_init_layer_with_glyphs_list() -> None: a = Glyph("a") b = Glyph("b") layer = Layer(glyphs=[a, b]) assert layer["a"] is a assert layer["b"] is b with pytest.raises(KeyError, match="glyph named 'a' already exists"): Layer(glyphs=[a, a]) c = Glyph() with pytest.raises(ValueError, match=".*Glyph .* has no name"): Layer(glyphs=[c]) with pytest.raises(KeyError, match="glyph named 'b' already exists"): Layer(glyphs=[a, b, Glyph("b")]) with pytest.raises(TypeError, match="Expected Glyph, found int"): Layer(glyphs=[1]) # type: ignore def test_addGlyph() -> None: a = Glyph("a") layer = Layer() layer.addGlyph(a) assert "a" in layer assert layer["a"] is a with pytest.raises(KeyError, match="glyph named 'a' already exists"): layer.addGlyph(a) def test_insertGlyph() -> None: g = Glyph() pen = g.getPen() pen.moveTo((0, 0)) pen.lineTo((1, 1)) pen.lineTo((0, 1)) pen.closePath() layer = Layer() layer.insertGlyph(g, "a") assert "a" in layer assert layer["a"].name == "a" assert layer["a"].contours == g.contours assert layer["a"] is not g layer.insertGlyph(g, "b") assert "b" in layer assert layer["b"].name == "b" assert layer["b"].contours == layer["a"].contours assert layer["b"] is not layer["a"] assert layer["b"] is not g assert g.name is None with pytest.raises(KeyError, match="glyph named 'a' already exists"): layer.insertGlyph(g, "a", overwrite=False) with pytest.raises(ValueError, match=".*Glyph .* has no name; can't add it"): layer.insertGlyph(g) def test_newGlyph() -> None: layer = Layer() a = layer.newGlyph("a") assert "a" in layer assert layer["a"] is a with pytest.raises(KeyError, match="glyph named 'a' already exists"): layer.newGlyph("a") def test_renameGlyph() -> None: g = Glyph() layer = Layer(glyphs={"a": g}) assert g.name == "a" layer.renameGlyph("a", "a") # no-op assert g.name == "a" layer.renameGlyph("a", "b") assert g.name == "b" layer.insertGlyph(g, "a") with pytest.raises(KeyError, match="target glyph named 'a' already exists"): layer.renameGlyph("b", "a")
from typing import Callable, Union, List from .errors import CredentialError, TokenExpired, QRExpiredError from .utils import password_fixer import json import os import threading import requests import websocket class PyTeleBirr: def __init__( self, phone_no: Union[int, str], passwd: Union[int, str], device_id: str ): if len(str(passwd)) < 6: raise CredentialError( "Password Must Be 6 Digit" ) self._headers = { 'Content-Type': 'application/json; charset=utf-8', 'Host': 'app.ethiomobilemoney.et:2121', 'Connection': 'Keep-Alive', } self._qr_header = { 'authority': 'api.qrcode-monkey.com', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/91.0.4472.164 Safari/537.36', 'content-type': 'text/plain;charset=UTF-8', 'accept': '*/*', 'origin': 'https://www.qrcode-monkey.com', 'sec-fetch-site': 'same-site', 'sec-fetch-mode': 'cors', 'referer': 'https://www.qrcode-monkey.com/', } self._passwd = passwd self._phone = phone_no self._device_id = device_id self._tele_url = "https://app.ethiomobilemoney.et:2121/{}" self._r = requests.Session() self._base64_pass = password_fixer(self._passwd) self._headers['Content-Length'] = str(len(self._base64_pass)) data = json.dumps({ "code": None, "mid": str(self._phone), "password": self._base64_pass, "sid": self._device_id, "language": "en" }) _res = self._r.post( self._tele_url.format("service-information/safelogin"), data=data, headers=self._headers ) if _res.json()['code'] != 200: raise CredentialError( "[ Error ] : Password, Phone Number or Device id is incorrect" ) self._token = _res.json()['data']['token'] self._header = { 'amm-token': self._token, 'Content-Type': 'application/json; charset=utf-8', 'Host': 'app.ethiomobilemoney.et:2121', 'Connection': 'Keep-Alive', 'Accept-Encoding': 'gzip' } def get_balance(self) -> object: url = self._tele_url.format( "service-transaction/getBalance" ) res = self._r.post( url, data='{}', headers=self._header ) if res.json().get("code") in [401]: raise TokenExpired( "[ Error ] : Token Expired" ) return res.json()['data'] def generate_qrcode( self, amount: Union[str, int] = '', size: Union[str, int] = 350, bg_color: str = "ffffff", logo: str = "e8cb9ae2340c568713010178b6834ad9edced49f.png" ) -> str: url = self._tele_url.format( "service-transfe/produceC2CQRCode" ) res = self._r.post( url, data=json.dumps( { "money": amount, "content": "" } ), headers=self._header ) if res.json().get("code") in [401]: raise TokenExpired( "[ Error ] : Token Expired" ) _response = requests.get( 'https://api.qrcode-monkey.com//qr/custom?download=true&file=png&data=' + str( res.json()['data'][ 'content']) + f'&size={size}&config=%7B%22body%22%3A%22mosaic%22%2C%22eye%22%3A%22frame1%22%2C' '%22eyeBall ' '%22%3A%22ball15%22%2C%22erf1%22%3A%5B%22fh%22%5D%2C%22erf2%22%3A%5B%5D%2C%22erf3' '%22%3A ' '%5B%22fh%22%2C%22fv%22%5D%2C%22brf1%22%3A%5B%5D%2C%22brf2%22%3A%5B%5D%2C%22brf3%22' '%3A ' f'%5B%5D%2C%22bodyColor%22%3A%22%23000000%22%2C%22bgColor%22%3A%22%23{bg_color}%22%2C' '%22eye1Color%22%3A%22%23000000%22%2C%22eye2Color%22%3A%22%23000000%22%2C%22eye3Color' '%22%3A%22%23000000%22%2C%22eyeBall1Color%22%3A%22%23000000%22%2C%22eyeBall2Color' '%22%3A ' '%22%23000000%22%2C%22eyeBall3Color%22%3A%22%23000000%22%2C%22gradientColor1%22%3A%22' '%23CC3873%22%2C%22gradientColor2%22%3A%22%235302BD%22%2C%22gradientType%22%3A' '%22linear ' '%22%2C%22gradientOnEyes%22%3A%22true%22%2C%22logo%22%3A' f'%22{logo}%22%2C%22logoMode%22%3A%22clean%22' '%7D', headers=self._qr_header ) if os.path.exists("qr"): with open("qr/qr.png", "wb") as f: f.write(_response.content) else: os.mkdir("qr") with open("qr/qr.png", "wb") as f: f.write(_response.content) return "qr/qr.png" def refresh_token(self): """ tokens are valid for refresh token :return: """ _data = json.dumps( { "code": None, "mid": str(self._phone), "password": self._base64_pass, "sid": self._device_id, "language": "en" } ) _res = self._r.post( self._tele_url.format( "service-information/safelogin" ), data=_data, headers=self._header ) if _res.json().get("code") in [401, 1000] or _res.status_code != 200: raise TokenExpired( "[ Error ] : Password, Phone Number or Device id is incorrect" ) self._token = _res.json()['data']['token'] print("[ Token Refreshed ]") def on_payment( self, on_payment: Callable, on_error: Callable = lambda a: print("Socket error"), on_open: Callable = lambda a: print("Socket Connected") ) -> None: """ when payment received on_msg will be called notice: this method only works when sending payments via qr code for phone number payment or ussd payment use by tx id """ def _on_message(_, msg): on_payment(msg) def _on_closed(): print("[ Socket Restarted ]") self.on_payment(on_payment) _ws = websocket.WebSocketApp( self._tele_url.format( f"websocket?token={self._token}" ).replace("https", "wss"), on_open=on_open, on_message=_on_message, on_error=on_error, on_close=_on_closed, header={ 'Origin': 'http://localhost', 'Sec-WebSocket-Key': 'aZwQ6W5X+KKAu9jzEdw8Mw==', 'Host': 'app.ethiomobilemoney.et:2121', 'User-Agent': 'okhttp/3.12.11' } ) print("[ Thread Started ]") _tr = threading.Thread( target=_ws.run_forever, args=() ) _tr.daemon = True _tr.start() def check_tx( self, tx_id: str ) -> Union[bool, dict]: """ Checks if transaction id is valid """ _url = self._tele_url.format( "service-transaction/cusTransactionRecordDetail" ) _res = self._r.post( _url, data=json.dumps( { "receiptNumber": tx_id } ), headers=self._header ) if _res.json().get("code") in [401]: raise TokenExpired( "[ Error ] : Token Expired" ) _exists = _res.json() if _exists.get("code") in [1000, 401]: return False else: return _exists def is_my_tx( self, tx_id: str ) -> bool: """ since the api can see all transactions this function checks if transaction is send to receiver """ _res = self._r.post( self._tele_url.format( "service-transaction/cusFourTransactionRecord" ), data=json.dumps( { "startDateTime": "20210622", "endDateTime": "", "type": "1" } ), headers=self._header ) if _res.json().get("code") in [401]: raise TokenExpired( "[ Error ] : Token Expired" ) _exists = _res.json() for _tx in _exists: if type(_tx) == list: for _t in _tx: if _t.get("receiptNumber") == tx_id: if _t.get("resTransactionType") == "Transfer": if "+" in _t.get("resAmount"): return True return False def get_packages( self ) -> List[dict]: """ get all available packages :returns: lists of dict """ _res = self._r.post( self._tele_url.format( "service-topup/productSettings" ), headers=self._header, data=json.dumps( { "category": "PACKAGE" } ) ) if _res.json().get("code") in [401]: raise TokenExpired( "[ Error ] : Token Expired" ) return _res.json()['data'] def scan_qr( self, content: Union[str, int] = None ): """ get the user data you are sending for you can get the receiver phone number by qr code :0 scan the qr code and pass the content to content param :param content: receiver content number scan qr code to get this :return: dict """ _res = self._r.post( self._tele_url.format( 'service-transfe/scanReceiveC2CQRCode' ), headers=self._header, data=json.dumps( { "content": str(content) } ) ) if _res.json().get("code") in [401]: raise TokenExpired( "[ Error ] : Token Expired" ) if _res.json()['data']: return _res.json()['data'] else: raise QRExpiredError( "[ ERROR ] QR expired" ) def _get_umc_session_id( self, money: Union[str, int], phone: Union[str, int], content: Union[str, int] ) -> dict: _data = json.dumps( {"money": str(money), "msisdn": str(phone), "pin": password_fixer(self._passwd), "content": str(content)}) print(_data) self._header['Content-Length'] = str(len(_data)) _res = self._r.post( self._tele_url.format( 'service-transfe/getTransferInfo' ), headers=self._header, data=_data ) if _res.json().get("code") in [401]: raise TokenExpired( "[ Error ] : Token Expired" ) print(_res.text) return _res.json()['data'] def send_payment( self, amount: Union[str, int], phone: Union[str, int], content: Union[str, int] ): umc_id = self._get_umc_session_id( phone=phone, money=amount, content=content )['umcSessionId'] print(umc_id) _res = self._r.post( self._tele_url.format( 'service-transfe/syncTransferC2C' ), headers=self._header, data=json.dumps( { "confirmationAction": "1", "umcSessionId": umc_id, "flag": "", "mid": phone } ) ) if _res.json().get("code") in [401]: raise TokenExpired( "[ Error ] : Token Expired" ) print(_res.text) return _res.json()['data'] def get_token(self): return self._token
# coding=utf-8 """ """ import os import unittest import shutil from md_utils.rename_files import main from md_utils.md_common import (capture_stdout, capture_stderr, silent_remove) import logging # logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) DISABLE_REMOVE = logger.isEnabledFor(logging.DEBUG) __author__ = 'hmayes' # Directories # DATA_DIR = os.path.join(os.path.dirname(__file__), 'test_data') SUB_DATA_DIR = os.path.join(DATA_DIR, 'rename_files') # Files # SMALL_FILE = os.path.join(SUB_DATA_DIR, 'small_file.txt') # test data # TEST_FILE_NAMES = ['has space.txt', 'has two spaces.txt', 'now!exclaim.txt'] REPLACED_FILE_NAMES1 = ['hasspace.txt', 'hastwospaces.txt', 'now!exclaim.txt'] REPLACED_FILE_NAMES2 = ['has space.txt', 'has two spaces.txt', 'now_exclaim.txt'] # REPLACED_FILE_NAMES3 = ['has_space.txt', 'has_two_spaces.txt', 'now!exclaim.txt'] def make_files(fname_list): """ Create files fresh, because will be moved when program runs @param fname_list: list of file names without directory name """ for fname in fname_list: new_file = os.path.join(SUB_DATA_DIR, fname) shutil.copyfile(SMALL_FILE, new_file) def add_sub_dir(fname_list, abs_dir): """ Create files fresh, because will be moved when program runs @param fname_list: list of file names without directory name @param abs_dir: absolute directory name @return full_name_list: a list of file names with the specified absolute directory """ full_name_list = [] for fname in fname_list: full_name_list.append(os.path.join(abs_dir, fname)) return full_name_list def count_files(fname_list): """ Counts how many files in list exist @param fname_list: list of file names @return num_existing_files: a list of file names with the specified absolute directory """ num_existing_files = 0 for fname in fname_list: if os.path.isfile(fname): num_existing_files += 1 return num_existing_files class TestRenameNoOutput(unittest.TestCase): def testHelp(self): test_input = ['-h'] if logger.isEnabledFor(logging.DEBUG): main(test_input) with capture_stderr(main, test_input) as output: self.assertFalse(output) with capture_stdout(main, test_input) as output: self.assertTrue("optional arguments" in output) def testInvalidArg(self): test_input = ['-@'] if logger.isEnabledFor(logging.DEBUG): main(test_input) with capture_stderr(main, test_input) as output: self.assertTrue("unrecognized arguments" in output) class TestRename(unittest.TestCase): def testNoFilesRenamed(self): test_input = [] if logger.isEnabledFor(logging.DEBUG): main(test_input) with capture_stdout(main, test_input) as output: self.assertTrue("Found and renamed 0 files" in output) def testDefaultPatterns(self): make_files(TEST_FILE_NAMES) test_input = ["-d", SUB_DATA_DIR] initial_fnames = add_sub_dir(TEST_FILE_NAMES, SUB_DATA_DIR) expected_fnames = add_sub_dir(REPLACED_FILE_NAMES1, SUB_DATA_DIR) try: if logger.isEnabledFor(logging.DEBUG): main(test_input) # need to make again for capturing std out make_files(TEST_FILE_NAMES) with capture_stdout(main, test_input) as output: self.assertTrue("Found and renamed 2 files" in output) self.assertTrue(count_files(initial_fnames), 2) self.assertTrue(count_files(expected_fnames), 3) finally: for fname in expected_fnames: silent_remove(fname, disable=DISABLE_REMOVE) def testAltPattern(self): make_files(TEST_FILE_NAMES) test_input = ["-d", SUB_DATA_DIR, "-p", "!", "-n", "_"] initial_fnames = add_sub_dir(TEST_FILE_NAMES, SUB_DATA_DIR) expected_fnames = add_sub_dir(REPLACED_FILE_NAMES2, SUB_DATA_DIR) try: if logger.isEnabledFor(logging.DEBUG): main(test_input) # need to make again for capturing std out make_files(TEST_FILE_NAMES) with capture_stdout(main, test_input) as output: self.assertTrue("Found and renamed 1 files" in output) self.assertTrue(count_files(initial_fnames), 1) self.assertTrue(count_files(expected_fnames), 3) finally: for fname in expected_fnames: silent_remove(fname, disable=DISABLE_REMOVE)
""" Generic templates for different types of Encryption Schemes """ __version__ = "2.0.2"
def test_epochs_mapping(client): case_id = 'scoring' epochs_mapping_json = client.get(f'api/sandbox/epoch/{case_id}').json assert epochs_mapping_json[0]['epoch_num'] == 1 assert epochs_mapping_json[1]['individual_id'] is not None assert epochs_mapping_json[1]['epoch_num'] == 2 def test_case_params(client): case_id = 'scoring' case_params_json = client.get(f'api/sandbox/params/{case_id}').json assert case_params_json['dataset_name'] == 'scoring' assert case_params_json['metric_id'] == 'roc_auc' assert case_params_json['task_id'] == 'classification'
import numpy as np import sys import gc import chroma.api as api if api.is_gpu_api_cuda(): import pycuda.driver as cuda from pycuda import gpuarray as ga elif api.is_gpu_api_opencl(): import pyopencl as cl #from pyopencl.array import Array as ga import pyopencl.array as ga from chroma.tools import profile_if_possible from chroma import event from chroma.gpu.tools import get_module, api_options, chunk_iterator, to_float3, copy_to_float3 from chroma.gpu.gpufuncs import GPUFuncs import time class GPUPhotons(object): def __init__(self, photons, ncopies=1, cl_context=None): """Load ``photons`` onto the GPU, replicating as requested. Args: - photons: chroma.Event.Photons Photon state information to load onto GPU - ncopies: int, *optional* Number of times to replicate the photons on the GPU. This is used if you want to propagate the same event many times, for example in a likelihood calculation. The amount of GPU storage will be proportionally larger if ncopies > 1, so be careful. """ nphotons = len(photons) # Allocate GPU memory for photon info and push to device if api.is_gpu_api_cuda(): self.pos = ga.empty(shape=nphotons*ncopies, dtype=ga.vec.float3) self.dir = ga.empty(shape=nphotons*ncopies, dtype=ga.vec.float3) self.pol = ga.empty(shape=nphotons*ncopies, dtype=ga.vec.float3) self.wavelengths = ga.empty(shape=nphotons*ncopies, dtype=np.float32) self.t = ga.empty(shape=nphotons*ncopies, dtype=np.float32) self.last_hit_triangles = ga.empty(shape=nphotons*ncopies, dtype=np.int32) self.flags = ga.empty(shape=nphotons*ncopies, dtype=np.uint32) self.weights = ga.empty(shape=nphotons*ncopies, dtype=np.float32) self.current_node_index = ga.zeros( shape=nphotons*ncopies, dtype=np.uint32 ) # deprecated self.requested_workcode = ga.empty( shape=nphotons*ncopies, dtype=np.uint32 ) # deprecated elif api.is_gpu_api_opencl(): queue = cl.CommandQueue( cl_context ) self.pos = ga.empty(queue, shape=nphotons*ncopies, dtype=ga.vec.float3) self.dir = ga.empty(queue, shape=nphotons*ncopies, dtype=ga.vec.float3) self.pol = ga.empty(queue, shape=nphotons*ncopies, dtype=ga.vec.float3) self.wavelengths = ga.empty(queue, shape=nphotons*ncopies, dtype=np.float32) self.t = ga.empty(queue, shape=nphotons*ncopies, dtype=np.float32) self.last_hit_triangles = ga.empty(queue, shape=nphotons*ncopies, dtype=np.int32) self.flags = ga.empty(queue, shape=nphotons*ncopies, dtype=np.uint32) self.weights = ga.empty(queue, shape=nphotons*ncopies, dtype=np.float32) self.current_node_index = ga.zeros( queue, shape=nphotons*ncopies, dtype=np.uint32 ) # deprecated self.requested_workcode = ga.empty( queue, shape=nphotons*ncopies, dtype=np.uint32 ) # deprecated # Assign the provided photons to the beginning (possibly # the entire array if ncopies is 1 self.pos[:nphotons].set(to_float3(photons.pos)) self.dir[:nphotons].set(to_float3(photons.dir)) self.pol[:nphotons].set(to_float3(photons.pol)) self.wavelengths[:nphotons].set(photons.wavelengths.astype(np.float32)) self.t[:nphotons].set(photons.t.astype(np.float32)) self.last_hit_triangles[:nphotons].set(photons.last_hit_triangles.astype(np.int32)) self.flags[:nphotons].set(photons.flags.astype(np.uint32)) self.weights[:nphotons].set(photons.weights.astype(np.float32)) if api.is_gpu_api_cuda(): self.module = get_module('propagate.cu', options=api_options, include_source_directory=True) elif api.is_gpu_api_opencl(): self.module = get_module('propagate.cl', cl_context, options=api_options, include_source_directory=True) # define the texture references self.define_texture_references() # get kernel functions self.gpu_funcs = GPUFuncs(self.module) # Replicate the photons to the rest of the slots if needed if ncopies > 1: max_blocks = 1024 nthreads_per_block = 64 for first_photon, photons_this_round, blocks in \ chunk_iterator(nphotons, nthreads_per_block, max_blocks): self.gpu_funcs.photon_duplicate(np.int32(first_photon), np.int32(photons_this_round), self.pos, self.dir, self.wavelengths, self.pol, self.t, self.flags, self.last_hit_triangles, self.weights, np.int32(ncopies-1), np.int32(nphotons), block=(nthreads_per_block,1,1), grid=(blocks, 1)) # Save the duplication information for the iterate_copies() method self.true_nphotons = nphotons self.ncopies = ncopies def define_texture_references( self, module=None ): # unbound texture references declared for use with propagate if module==None: module = self.module if api.is_gpu_api_cuda(): self.node_texture_ref = module.get_texref( "nodevec_tex_ref" ) self.node_texture_ref.set_format( cuda.array_format.UNSIGNED_INT32, 4 ) self.extra_node_texture_ref = module.get_texref( "extra_node_tex_ref" ) self.extra_node_texture_ref.set_format( cuda.array_format.UNSIGNED_INT32, 4 ) self.vertices_texture_ref = module.get_texref( "verticesvec_tex_ref" ) self.vertices_texture_ref.set_format( cuda.array_format.FLOAT, 4 ) self.triangles_texture_ref = module.get_texref( "trianglesvec_tex_ref" ) self.triangles_texture_ref.set_format( cuda.array_format.UNSIGNED_INT32, 4 ) self.node_texture_ref_bound = False elif api.is_gpu_api_opencl(): # texture usage not used at the moment pass def get(self): ncols = 3 if api.is_gpu_api_opencl(): ncols = 4 # must include padding pos = self.pos.get().view(np.float32).reshape((len(self.pos),ncols)) dir = self.dir.get().view(np.float32).reshape((len(self.dir),ncols)) pol = self.pol.get().view(np.float32).reshape((len(self.pol),ncols)) wavelengths = self.wavelengths.get() t = self.t.get() last_hit_triangles = self.last_hit_triangles.get() flags = self.flags.get() weights = self.weights.get() return event.Photons(pos, dir, pol, wavelengths, t, last_hit_triangles, flags, weights) def iterate_copies(self): '''Returns an iterator that yields GPUPhotonsSlice objects corresponding to the event copies stored in ``self``.''' for i in xrange(self.ncopies): window = slice(self.true_nphotons*i, self.true_nphotons*(i+1)) yield GPUPhotonsSlice(pos=self.pos[window], dir=self.dir[window], pol=self.pol[window], wavelengths=self.wavelengths[window], t=self.t[window], last_hit_triangles=self.last_hit_triangles[window], flags=self.flags[window], weights=self.weights[window]) @profile_if_possible def propagate(self, gpu_geometry, rng_states, nthreads_per_block=64, max_blocks=1024, max_steps=10, use_weights=False, scatter_first=0, cl_context=None): """Propagate photons on GPU to termination or max_steps, whichever comes first. May be called repeatedly without reloading photon information if single-stepping through photon history. ..warning:: `rng_states` must have at least `nthreads_per_block`*`max_blocks` number of curandStates. """ nphotons = self.pos.size # bind node texture reference if api.is_gpu_api_cuda() and not self.node_texture_ref_bound: # we have to unroll, as pycuda doesn't seem to support vector times right now for binding self.unrolled_nodes = ga.to_gpu( gpu_geometry.nodes.get().ravel().view( np.uint32 ) ) self.unrolled_extra_nodes = ga.to_gpu( gpu_geometry.extra_nodes.ravel().view( np.uint32 ) ) self.unrolled_triangles = ga.to_gpu( gpu_geometry.triangles.get().ravel().view( np.uint32 ) ) self.unrolled_triangles4 = ga.to_gpu( gpu_geometry.triangles4.ravel().view( np.uint32 ) ) self.unrolled_vertices = ga.to_gpu( gpu_geometry.vertices.get().ravel().view( np.float32 ) ) self.unrolled_vertices4 = ga.to_gpu( gpu_geometry.vertices4.ravel().view( np.float32 ) ) self.node_texture_ref.set_address( self.unrolled_nodes.gpudata, self.unrolled_nodes.nbytes ) self.extra_node_texture_ref.set_address( self.unrolled_extra_nodes.gpudata, self.unrolled_extra_nodes.nbytes ) #self.unrolled_nodes.bind_to_texref_ext( self.node_texture_ref ) #self.unrolled_extra_nodes.bind_to_texref_ext( self.extra_node_texture_ref ) #self.unrolled_triangles.bind_to_texref_ext( self.triangles_texture_ref ) self.triangles_texture_ref.set_address( self.unrolled_triangles4.gpudata, self.unrolled_triangles4.nbytes ) #self.unrolled_vertices.bind_to_texref_ext( self.vertices_texture_ref ) self.vertices_texture_ref.set_address( self.unrolled_vertices4.gpudata, self.unrolled_vertices4.nbytes ) print "[BOUND TO TEXTURE MEMORY]" print "Nodes: ",self.unrolled_nodes.nbytes/1.0e3," kbytes" print "Extra nodes: ",self.unrolled_extra_nodes.nbytes/1.0e3," kbytes" print "Triangles: ",self.unrolled_triangles4.nbytes/1.0e3," kbytes" print "Vertices: ",self.unrolled_vertices4.nbytes/1.0e3," kbytes" print "Total: ",(self.unrolled_nodes.nbytes+self.unrolled_extra_nodes.nbytes+self.unrolled_triangles4.nbytes+self.unrolled_vertices4.nbytes)/1.0e3,"kbytes" self.node_texture_ref_bound = True # setup queue maxqueue = nphotons step = 0 input_queue = np.empty(shape=maxqueue+1, dtype=np.uint32) input_queue[0] = 0 # Order photons initially in the queue to put the clones next to each other for copy in xrange(self.ncopies): input_queue[1+copy::self.ncopies] = np.arange(self.true_nphotons, dtype=np.uint32) + copy * self.true_nphotons if api.is_gpu_api_cuda(): input_queue_gpu = ga.to_gpu(input_queue) elif api.is_gpu_api_opencl(): comqueue = cl.CommandQueue(cl_context) input_queue_gpu = ga.to_device(comqueue,input_queue[1:]) # why the offset? output_queue = np.zeros(shape=maxqueue+1, dtype=np.uint32) output_queue[0] = 1 if api.is_gpu_api_cuda(): output_queue_gpu = ga.to_gpu(output_queue) elif api.is_gpu_api_opencl(): output_queue_gpu = ga.to_device(comqueue,output_queue) if use_weights: iuse_weights = 1 else: iuse_weights = 0 adapt_factor = 1.0 start_prop = time.time() while step < max_steps: # Just finish the rest of the steps if the # of photons is low #if nphotons < nthreads_per_block * 16 * 8 or use_weights: # nsteps = max_steps - step #else: # nsteps = 1 nsteps = 1 start_step = time.time() for first_photon, photons_this_round, blocks in \ chunk_iterator(nphotons, nthreads_per_block, max( int(adapt_factor*max_blocks), 1 )): #print nphotons, nthreads_per_block, max_blocks," : ",first_photon, photons_this_round, blocks, adapt_factor start_chunk = time.time() if api.is_gpu_api_cuda(): self.gpu_funcs.propagate(np.int32(first_photon), np.int32(photons_this_round), input_queue_gpu[1:], output_queue_gpu, rng_states, self.pos, self.dir, self.wavelengths, self.pol, self.t, self.flags, self.last_hit_triangles, self.weights, np.int32(nsteps), np.int32(iuse_weights), np.int32(scatter_first), gpu_geometry.gpudata, block=(nthreads_per_block,1,1), grid=(blocks, 1)) #cuda.Context.get_current().synchronize() elif api.is_gpu_api_opencl(): self.gpu_funcs.propagate( comqueue, (photons_this_round,1,1), None, np.int32(first_photon), np.int32(photons_this_round), input_queue_gpu.data, output_queue_gpu.data, rng_states.data, self.pos.data, self.dir.data, self.wavelengths.data, self.pol.data, self.t.data, self.flags.data, self.last_hit_triangles.data, self.weights.data, np.int32(nsteps), np.int32(iuse_weights), np.int32(scatter_first), gpu_geometry.world_scale, gpu_geometry.world_origin.data, np.int32(len(gpu_geometry.nodes)), gpu_geometry.material_data['n'], gpu_geometry.material_data['step'], gpu_geometry.material_data["wavelength0"], gpu_geometry.vertices.data, gpu_geometry.triangles.data, gpu_geometry.material_codes.data, gpu_geometry.colors.data, gpu_geometry.nodes.data, gpu_geometry.extra_nodes.data, gpu_geometry.material_data["nmaterials"], gpu_geometry.material_data['refractive_index'].data, gpu_geometry.material_data['absorption_length'].data, gpu_geometry.material_data['scattering_length'].data, gpu_geometry.material_data['reemission_prob'].data, gpu_geometry.material_data['reemission_cdf'].data, gpu_geometry.surface_data['nsurfaces'], gpu_geometry.surface_data['detect'].data, gpu_geometry.surface_data['absorb'].data, gpu_geometry.surface_data['reemit'].data, gpu_geometry.surface_data['reflect_diffuse'].data, gpu_geometry.surface_data['reflect_specular'].data, gpu_geometry.surface_data['eta'].data, gpu_geometry.surface_data['k'].data, gpu_geometry.surface_data['reemission_cdf'].data, gpu_geometry.surface_data['model'].data, gpu_geometry.surface_data['transmissive'].data, gpu_geometry.surface_data['thickness'].data, gpu_geometry.surface_data['nplanes'].data, gpu_geometry.surface_data['wire_diameter'].data, gpu_geometry.surface_data['wire_pitch'].data, g_times_l=True ).wait() end_chunk = time.time() chunk_time = end_chunk-start_chunk #print "chunk time: ",chunk_time #if chunk_time>2.5: # adapt_factor *= 0.5 step += nsteps scatter_first = 0 # Only allow non-zero in first pass end_step = time.time() #print "step time: ",end_step-start_step if step < max_steps: start_requeue = time.time() #print "reset photon queues" if api.is_gpu_api_cuda(): cuda.Context.get_current().synchronize() # ensure all threads done #temp = input_queue_gpu #input_queue_gpu = output_queue_gpu #output_queue_gpu = temp # Assign with a numpy array of length 1 to silence # warning from PyCUDA about setting array with different strides/storage orders. #output_queue_gpu[:1].set(np.ones(shape=1, dtype=np.uint32)) #nphotons = input_queue_gpu[:1].get()[0] - 1 # new style output_queue_gpu.get( output_queue ) nphotons = output_queue[0]-1 input_queue_gpu.set( output_queue ) output_queue_gpu[:1].set(np.ones(shape=1,dtype=np.uint32)) elif api.is_gpu_api_opencl(): temp_out = output_queue_gpu.get() nphotons = temp_out[0] input_queue_gpu.set( temp_out[1:], queue=comqueue ) # set the input queue to have index of photons still need to be run output_queue_gpu[:1].set( np.ones(shape=1,dtype=np.uint32), queue=comqueue ) # reset first instance to be one end_requeue = time.time() #print "re-queue time (nphotons=",nphotons"): ",end_requeue-start_requeue if nphotons==0: break end_prop = time.time() print "propagation time: ",end_prop-start_prop," secs" end_flags = self.flags.get() end_flag = np.max(end_flags) if end_flag & (1 << 31): print >>sys.stderr, "WARNING: ABORTED PHOTONS" if api.is_gpu_api_cuda(): cuda.Context.get_current().synchronize() elif api.is_gpu_api_opencl(): cl.enqueue_barrier( comqueue ) @profile_if_possible def select(self, target_flag, nthreads_per_block=64, max_blocks=1024, start_photon=None, nphotons=None): '''Return a new GPUPhoton object containing only photons that have a particular bit set in their history word.''' cuda.Context.get_current().synchronize() index_counter_gpu = ga.zeros(shape=1, dtype=np.uint32) cuda.Context.get_current().synchronize() if start_photon is None: start_photon = 0 if nphotons is None: nphotons = self.pos.size - start_photon # First count how much space we need for first_photon, photons_this_round, blocks in \ chunk_iterator(nphotons, nthreads_per_block, max_blocks): self.gpu_funcs.count_photons(np.int32(start_photon+first_photon), np.int32(photons_this_round), np.uint32(target_flag), index_counter_gpu, self.flags, block=(nthreads_per_block,1,1), grid=(blocks, 1)) cuda.Context.get_current().synchronize() reduced_nphotons = int(index_counter_gpu.get()[0]) # Then allocate new storage space pos = ga.empty(shape=reduced_nphotons, dtype=ga.vec.float3) dir = ga.empty(shape=reduced_nphotons, dtype=ga.vec.float3) pol = ga.empty(shape=reduced_nphotons, dtype=ga.vec.float3) wavelengths = ga.empty(shape=reduced_nphotons, dtype=np.float32) t = ga.empty(shape=reduced_nphotons, dtype=np.float32) last_hit_triangles = ga.empty(shape=reduced_nphotons, dtype=np.int32) flags = ga.empty(shape=reduced_nphotons, dtype=np.uint32) weights = ga.empty(shape=reduced_nphotons, dtype=np.float32) # And finaly copy photons, if there are any if reduced_nphotons > 0: index_counter_gpu.fill(0) for first_photon, photons_this_round, blocks in \ chunk_iterator(nphotons, nthreads_per_block, max_blocks): self.gpu_funcs.copy_photons(np.int32(start_photon+first_photon), np.int32(photons_this_round), np.uint32(target_flag), index_counter_gpu, self.pos, self.dir, self.wavelengths, self.pol, self.t, self.flags, self.last_hit_triangles, self.weights, pos, dir, wavelengths, pol, t, flags, last_hit_triangles, weights, block=(nthreads_per_block,1,1), grid=(blocks, 1)) assert index_counter_gpu.get()[0] == reduced_nphotons return GPUPhotonsSlice(pos, dir, pol, wavelengths, t, last_hit_triangles, flags, weights) def __del__(self): del self.pos del self.dir del self.pol del self.wavelengths del self.t del self.flags del self.last_hit_triangles # Free up GPU memory quickly if now available gc.collect() def __len__(self): return self.pos.size class GPUPhotonsSlice(GPUPhotons): '''A `slice`-like view of a subrange of another GPU photons array. Works exactly like an instance of GPUPhotons, but the GPU storage is taken from another GPUPhotons instance. Returned by the GPUPhotons.iterate_copies() iterator.''' def __init__(self, pos, dir, pol, wavelengths, t, last_hit_triangles, flags, weights): '''Create new object using slices of GPUArrays from an instance of GPUPhotons. NOTE THESE ARE NOT CPU ARRAYS!''' self.pos = pos self.dir = dir self.pol = pol self.wavelengths = wavelengths self.t = t self.last_hit_triangles = last_hit_triangles self.flags = flags self.weights = weights module = get_cu_module('propagate.cu', options=cuda_options) self.gpu_funcs = GPUFuncs(module) self.true_nphotons = len(pos) self.ncopies = 1 def __del__(self): pass # Do nothing, because we don't own any of our GPU memory
"""This module finds similar songs based on common adjectives. Note: This module is based on the module lyrics_topics but is not included in or combined with lyrics_topics to avoid confusion and to allow the possibility of working with only one method to find similar lyrics since they do not lead to equally good or bad results. Functions: The following functions can be used without an XML tree: get_adjectives(string) -> list adjectives_sorted(string) -> Counter find_repeated_adjectives(string) -> list get_duplicates(list) -> list The following functions can only be used with an XML tree: find_similar_songs(xml.etree.ElementTree.Element, xml.etree.ElementTree.Element) -> list query_get_song_recommendation(string, string, xml.etree.ElementTree.Element) -> string """ from collections import Counter import spacy import song_information nlp = spacy.load(("en_core_web_sm")) def get_adjectives(lyrics): """Finds all adjectives from the lyrics. Args: lyrics: A string containing the lyrics of a song. Returns: A list of all adjectives found in the lyrics. """ doc = nlp(lyrics.lower()) all_adjectives = [token.lemma_ for token in doc if token.pos_ == "ADJ"] return all_adjectives def adjectives_sorted(lyrics): """Creates a Counter of all adjectives from the lyrics. Args: lyrics: A string containing the lyrics of a song. Returns: A Counter of all adjectives found in the lyrics. """ adjectives = get_adjectives(lyrics) sorted_adjectives = Counter(adjectives) return sorted_adjectives def find_repeated_adjectives(lyrics): """Creates a list of all repeating adjectives from the lyrics. Args: lyrics: A string containing the lyrics of a song. Returns: A list of all adjectives found more than once in the lyrics. """ adjectives = adjectives_sorted(lyrics) repeated_adjectives = [key for key, value in adjectives.most_common() if value > 1] return repeated_adjectives def get_duplicates(song_list): """Finds all duplicates in a list. Args: song_list: A list of "song by artist" strings with which this function is called from find_similar_songs. Returns: A list of all strings found more than once in the input list. """ duplicates = [key for key in Counter(song_list).keys() if Counter(song_list)[key] > 1] return duplicates def find_similar_songs(song, root): """Finds all similar songs to a song which are stored as children of an XML corpus. Args: song: A child of an ElementTree. root: The root of the ElementTree which has the child song. Returns: A list of all songs that have at least two adjectives in common with the passed song. """ lyrics = song_information.get_lyrics(song) adjectives = find_repeated_adjectives(lyrics) similar_songs = [] for child in root: if child != song: lyrics_child = song_information.get_lyrics(child) adjectives_child = find_repeated_adjectives(lyrics_child) for topic in adjectives_child: if topic in adjectives: song_artist = ("'" + song_information.get_songtitle(child) + "' by " + song_information.get_artist(child)) similar_songs.append(song_artist) result = get_duplicates(similar_songs) return result def query_get_song_recommendation(songtitle, artist, root): """Tries to recommend similar songs to the requested song. Args: songtitle: A string containing a song name. artist: A string containing the artist of the song. root: The root of the ElementTree. Returns: A string message including which similar song(s) to the requested song the inquirer might like or an apology if either the song could not be found in the corpus or if a similar song could not be found. """ for child in root: if (song_information.get_songtitle(child) == songtitle and song_information.get_artist(child) == artist): song = child else: answer = ("Sorry, '" + songtitle + "' by " + artist + "could not be found in this corpus") similar_songs = find_similar_songs(song, root) if len(similar_songs) > 0: answer = ("If you like '" + songtitle + "' by " + artist + ", you might like " + ", ".join(similar_songs)) else: answer = ("Sorry, there is no similar song to '" + songtitle + "' by " + artist + " in this corpus") return answer
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright 2008-2009 Zuza Software Foundation # # This file is part of the Translate Toolkit. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, see <http://www.gnu.org/licenses/>. """Tests for Qt Linguist storage class""" from lxml import etree from translate.misc.multistring import multistring from translate.storage import ts2 as ts from translate.storage import test_base from translate.storage.placeables import parse from translate.storage.placeables import xliff from translate.storage.placeables.lisa import xml_to_strelem xliffparsers = [] for attrname in dir(xliff): attr = getattr(xliff, attrname) if type(attr) is type and \ attrname not in ('XLIFFPlaceable') and \ hasattr(attr, 'parse') and \ attr.parse is not None: xliffparsers.append(attr.parse) def rich_parse(s): return parse(s, xliffparsers) class TestTSUnit(test_base.TestTranslationUnit): UnitClass = ts.tsunit class TestTSfile(test_base.TestTranslationStore): StoreClass = ts.tsfile def test_basic(self): tsfile = ts.tsfile() assert tsfile.units == [] tsfile.addsourceunit("Bla") assert len(tsfile.units) == 1 newfile = ts.tsfile.parsestring(str(tsfile)) print str(tsfile) assert len(newfile.units) == 1 assert newfile.units[0].source == "Bla" assert newfile.findunit("Bla").source == "Bla" assert newfile.findunit("dit") is None def test_source(self): tsfile = ts.tsfile() tsunit = tsfile.addsourceunit("Concept") tsunit.source = "Term" newfile = ts.tsfile.parsestring(str(tsfile)) print str(tsfile) assert newfile.findunit("Concept") is None assert newfile.findunit("Term") is not None def test_target(self): tsfile = ts.tsfile() tsunit = tsfile.addsourceunit("Concept") tsunit.target = "Konsep" newfile = ts.tsfile.parsestring(str(tsfile)) print str(tsfile) assert newfile.findunit("Concept").target == "Konsep" def test_plurals(self): """Test basic plurals""" tsfile = ts.tsfile() tsunit = tsfile.addsourceunit("File(s)") tsunit.target = [u"Leêr", u"Leêrs"] newfile = ts.tsfile.parsestring(str(tsfile)) print str(tsfile) checkunit = newfile.findunit("File(s)") assert checkunit.target == [u"Leêr", u"Leêrs"] assert checkunit.hasplural() def test_language(self): """Check that we can get and set language and sourcelanguage in the header""" tsstr = '''<!DOCTYPE TS> <TS version="2.0" language="fr" sourcelanguage="de"> </TS> ''' tsfile = ts.tsfile.parsestring(tsstr) assert tsfile.gettargetlanguage() == 'fr' assert tsfile.getsourcelanguage() == 'de' tsfile.settargetlanguage('pt_BR') assert 'pt_BR' in str(tsfile) assert tsfile.gettargetlanguage() == 'pt-br' # We convert en_US to en tsstr = '''<!DOCTYPE TS> <TS version="2.0" language="fr" sourcelanguage="en_US"> </TS> ''' tsfile = ts.tsfile.parsestring(tsstr) assert tsfile.getsourcelanguage() == 'en' def test_locations(self): """test that locations work well""" tsstr = '''<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE TS> <TS version="2.0" language="hu"> <context> <name>MainWindow</name> <message> <location filename="../tools/qtconfig/mainwindow.cpp" line="+202"/> <source>Desktop Settings (Default)</source> <translation>Asztali beállítások (Alapértelmezett)</translation> </message> <message> <location line="+5"/> <source>Choose style and palette based on your desktop settings.</source> <translation>Stílus és paletta alapú kiválasztása az asztali beállításokban.</translation> </message> </context> </TS> ''' tsfile = ts.tsfile.parsestring(tsstr) assert len(tsfile.units) == 2 assert tsfile.units[0].getlocations() == ['../tools/qtconfig/mainwindow.cpp:+202'] assert tsfile.units[1].getlocations() == ['+5'] def test_merge_with_fuzzies(self): """test that merge with fuzzy works well""" tsstr1 = '''<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE TS> <TS version="2.0" language="hu"> <context> <name>MainWindow</name> <message> <location filename="../tools/qtconfig/mainwindow.cpp" line="+202"/> <source>Desktop Settings (Default)</source> <translation type="unfinished">Asztali beállítások (Alapértelmezett)</translation> </message> <message> <location line="+5"/> <source>Choose style and palette based on your desktop settings.</source> <translation>Stílus és paletta alapú kiválasztása az asztali beállításokban.</translation> </message> </context> </TS> ''' tsstr2 = '''<?xml version="1.0" encoding="utf-8"?> <!DOCTYPE TS> <TS version="2.0" language="hu"> <context> <name>MainWindow</name> <message> <location filename="../tools/qtconfig/mainwindow.cpp" line="+202"/> <source>Desktop Settings (Default)</source> <translation type="unfinished"/> </message> <message> <location line="+5"/> <source>Choose style and palette based on your desktop settings.</source> <translation type="unfinished"/> </message> </context> </TS> ''' tsfile = ts.tsfile.parsestring(tsstr1) tsfile2 = ts.tsfile.parsestring(tsstr2) assert len(tsfile.units) == 2 assert len(tsfile2.units) == 2 tsfile2.units[0].merge(tsfile.units[0]) #fuzzy tsfile2.units[1].merge(tsfile.units[1]) #not fuzzy assert tsfile2.units[0].isfuzzy() == True assert tsfile2.units[1].isfuzzy() == False
# Generated by Django 2.1.7 on 2019-07-30 14:40 from django.db import migrations, models import uuid class Migration(migrations.Migration): dependencies = [ ('user', '0001_initial'), ] operations = [ migrations.AlterField( model_name='subjectinfo', name='subject_id', field=models.CharField(default=uuid.UUID('629eebf7-b35d-4cf5-beae-a25917c9ced7'), editable=False, max_length=50, primary_key=True, serialize=False, verbose_name='科目ID'), ), migrations.AlterField( model_name='userprofile', name='user_id', field=models.CharField(default=uuid.UUID('1fc50d2b-b434-42da-b594-62a263b3173c'), editable=False, max_length=50, primary_key=True, serialize=False, verbose_name='用户ID'), ), ]
import requests import base64 serverip = "172.20.10.3" port = "8080" router = "detectionMinic" url = "http://" + serverip + ":" + port + "/" + router def request(imgFile): with open(imgFile, 'rb') as f: rdata = f.read() e64data = base64.b64encode(rdata) prm = {'img': e64data} ret = requests.post(url, prm) print(ret.text) def request2(): prm = {'img': "hello world", "size": "128"} ret = requests.post(url, prm) print(ret.text) def request3(imgFile): with open(imgFile, 'rb') as f: rdata = f.read() prm = {'img': rdata} ret = requests.post(url, prm) print(ret.text) if __name__ == '__main__': request("test.jpg") # request2() # request3('test.jpg') # main() # imgFile = '../test.jpg' # img = cv2.imread(imgFile) # img2 = cv2.resize(img, (10,10)) # cv2.imwrite('../test5.jpg', img2)
import os import matplotlib.pyplot as plt import pandas as pd from lstchain.io.io import dl2_params_lstcam_key from lstchain.visualization import plot_dl2 def test_plot_disp(simulated_dl2_file): dl2_df = pd.read_hdf(simulated_dl2_file, key=dl2_params_lstcam_key) plot_dl2.plot_disp(dl2_df) def test_direction_results(tmp_path, simulated_dl2_file): dl2_df = pd.read_hdf(simulated_dl2_file, key=dl2_params_lstcam_key) # Strings are required as input for the output files not PosixPath plot_dl2.direction_results( dl2_df, points_outfile=os.path.join(tmp_path, 'dir.h5'), plot_outfile=os.path.join(tmp_path, 'dir.png') ) def test_energy_results(tmp_path, simulated_dl2_file): dl2_df = pd.read_hdf(simulated_dl2_file, key=dl2_params_lstcam_key) # Strings are required as input for the output files not PosixPath plot_dl2.energy_results( dl2_df, points_outfile=os.path.join(tmp_path, 'ene.h5'), plot_outfile=os.path.join(tmp_path, 'ene.png') ) def test_plot_models_features_importances(rf_models): fig, axes = plt.subplots(2, 2, figsize=(15, 10)) plot_dl2.plot_models_features_importances(rf_models["path"], axes=axes, alpha=0.5, fill=False)
from dbnd._core.tracking.schemas.base import ApiStrictSchema from dbnd._vendor.marshmallow import fields class LogMessageSchema(ApiStrictSchema): source = fields.String(allow_none=True) stack_trace = fields.String(allow_none=True) timestamp = fields.DateTime(allow_none=True) dbnd_version = fields.String(allow_none=True, missing=None)
# This file is adapted from the perturbseq library by Thomas Norman # https://github.com/thomasmaxwellnorman/perturbseq_demo/blob/master/perturbseq/cell_cycle.py import pandas as pd import numpy as np from collections import OrderedDict from scipy.sparse import issparse from ..tools.utils import einsum_correlation, log1p_ def group_corr(adata, layer, gene_list): """Measures the correlation of all genes within a list to the average expression of all genes within that list (used for cell cycle position calling) Arguments --------- adata: an anndata object. layer: `str` or None (default: `None`) The layer of data to use for calculating correlation. If None, use adata.X. gene_list: list of gene names Returns --------- (valid_gene_list, corr): A tuple of valid gene names and the correlation coefficient of each gene with the mean expression of all. """ # returns list of correlations of each gene within a list of genes with the total expression of the group intersect_genes = adata.var_names.intersection(gene_list) if len(intersect_genes) == 0: raise Exception(f"your adata doesn't have any gene from the gene_list {gene_list}.") if layer is None: expression_matrix = adata[:, intersect_genes].X else: expression_matrix = adata[:, intersect_genes].layers[layer] expression_matrix = log1p_(adata, expression_matrix) avg_exp = expression_matrix.mean(axis=1) cor = einsum_correlation(np.array(expression_matrix.A.T, dtype='float'), np.array(avg_exp.A1, dtype='float')) if issparse(expression_matrix) \ else einsum_correlation(np.array(expression_matrix.T, dtype='float'), np.array(avg_exp, dtype='float')) return np.array(intersect_genes), cor.flatten() def refine_gene_list(adata, layer, gene_list, threshold, return_corrs=False): """Refines a list of genes by removing those that don't correlate well with the average expression of those genes Parameters ---------- adata: an anndata object. layer: `str` or None (default: `None`) The layer of data to use for calculating correlation. If None, use adata.X. gene_list: list of gene names threshold: threshold on correlation coefficient used to discard genes (expression of each gene is compared to the bulk expression of the group and any gene with a correlation coefficient less than this is discarded) return_corrs: whether to return the correlations along with the gene names (default: False) Returns ------- Refined list of genes that are well correlated with the average expression trend """ gene_list, corrs = group_corr(adata, layer, gene_list) if (return_corrs): return corrs[corrs >= threshold] else: return gene_list[corrs >= threshold] def group_score(adata, layer, gene_list): """Scores cells within population for expression of a set of genes. Raw expression data are first log transformed, then the values are summed, and then scores are Z-normalized across all cells. Arguments --------- adata: an anndata object. layer: `str` or None (default: `None`) The layer of data to use for calculating correlation. If None, use adata.X. gene_list: list of gene names Returns ------- Z-scored expression data """ intersect_genes = adata.var_names.intersection(gene_list) if len(intersect_genes) == 0: raise Exception(f"your adata doesn't have any gene from the gene_list {gene_list}.") if layer is None: expression_matrix = adata[:, intersect_genes].X else: expression_matrix = adata[:, intersect_genes].layers[layer] expression_matrix = log1p_(adata, expression_matrix) if layer is None or layer.startswith('X_'): scores = expression_matrix.sum(1).A1 if issparse(expression_matrix) \ else expression_matrix.sum(1) else: if issparse(expression_matrix): expression_matrix.data = np.log(expression_matrix.data + 1) scores = expression_matrix.sum(1).A1 else: scores = np.log(expression_matrix + 1).sum(1) scores = (scores - scores.mean())/scores.std() return scores def batch_group_score(adata, layer, gene_lists): """Scores cells within population for expression of sets of genes. Raw expression data are first log transformed, then the values are summed, and then scores are Z-normalized across all cells. Returns an OrderedDict of each score. Arguments --------- adata: an anndata object. layer: `str` or None (default: `None`) The layer of data to use for calculating correlation. If None, use adata.X. gene_lists: list of lists of gene names Returns ------- an OrderedDict of each score. """ batch_scores = OrderedDict() for gene_list in gene_lists: batch_scores[gene_list] = group_score(adata, layer, gene_lists[gene_list]) return batch_scores def get_cell_phase_genes(adata, layer, refine=True, threshold=0.3): """Returns a list of cell-cycle-regulated marker genes, filtered for coherence Arguments --------- adata: an anndata object. layer: `str` or None (default: `None`) The layer of data to use for calculating correlation. If None, use adata.X. refine: `bool` (default: `True`) whether to refine the gene lists based on how consistent the expression is among the groups threshold: `float` or None (default: `0.3`) threshold on correlation coefficient used to discard genes (expression of each gene is compared to the bulk expression of the group and any gene with a correlation coefficient less than this is discarded) Returns ------- a list of cell-cycle-regulated marker genes that show strong co-expression """ cell_phase_genes = OrderedDict() cell_phase_genes['G1-S'] = pd.Series(['ARGLU1', 'BRD7', 'CDC6', 'CLSPN', 'ESD', 'GINS2', 'GMNN', 'LUC7L3', 'MCM5', 'MCM6', 'NASP', 'PCNA', 'PNN', 'SLBP', 'SRSF7', 'SSR3', 'ZRANB2']) cell_phase_genes['S'] = pd.Series(['ASF1B', 'CALM2', 'CDC45', 'CDCA5', 'CENPM', 'DHFR', 'EZH2', 'FEN1', 'HIST1H2AC', 'HIST1H4C', 'NEAT1', 'PKMYT1', 'PRIM1', 'RFC2', 'RPA2', 'RRM2', 'RSRC2', 'SRSF5', 'SVIP', 'TOP2A', 'TYMS', 'UBE2T', 'ZWINT']) cell_phase_genes['G2-M'] = pd.Series(['AURKB', 'BUB3', 'CCNA2', 'CCNF', 'CDCA2', 'CDCA3', 'CDCA8', 'CDK1', 'CKAP2', 'DCAF7', 'HMGB2', 'HN1', 'KIF5B', 'KIF20B', 'KIF22', 'KIF23', 'KIFC1', 'KPNA2', 'LBR', 'MAD2L1', 'MALAT1', 'MND1', 'NDC80', 'NUCKS1', 'NUSAP1', 'PIF1', 'PSMD11', 'PSRC1', 'SMC4', 'TIMP1', 'TMEM99', 'TOP2A', 'TUBB', 'TUBB4B', 'VPS25']) cell_phase_genes['M'] = pd.Series(['ANP32B', 'ANP32E', 'ARL6IP1', 'AURKA', 'BIRC5', 'BUB1', 'CCNA2', 'CCNB2', 'CDC20', 'CDC27', 'CDC42EP1', 'CDCA3', 'CENPA', 'CENPE', 'CENPF', 'CKAP2', 'CKAP5', 'CKS1B', 'CKS2', 'DEPDC1', 'DLGAP5', 'DNAJA1', 'DNAJB1', 'GRK6', 'GTSE1', 'HMG20B', 'HMGB3', 'HMMR', 'HN1', 'HSPA8', 'KIF2C', 'KIF5B', 'KIF20B', 'LBR', 'MKI67', 'MZT1', 'NUF2', 'NUSAP1', 'PBK', 'PLK1', 'PRR11', 'PSMG3', 'PWP1', 'RAD51C', 'RBM8A', 'RNF126', 'RNPS1', 'RRP1', 'SFPQ', 'SGOL2', 'SMARCB1', 'SRSF3', 'TACC3', 'THRAP3', 'TPX2', 'TUBB4B', 'UBE2D3', 'USP16', 'WIBG', 'YWHAH', 'ZNF207']) cell_phase_genes['M-G1'] = pd.Series(['AMD1', 'ANP32E', 'CBX3', 'CDC42', 'CNIH4', 'CWC15', 'DKC1', 'DNAJB6', 'DYNLL1', 'EIF4E', 'FXR1', 'GRPEL1', 'GSPT1', 'HMG20B', 'HSPA8', 'ILF2', 'KIF5B', 'KPNB1', 'LARP1', 'LYAR', 'MORF4L2', 'MRPL19', 'MRPS2', 'MRPS18B', 'NUCKS1', 'PRC1', 'PTMS', 'PTTG1', 'RAN', 'RHEB', 'RPL13A', 'SRSF3', 'SYNCRIP', 'TAF9', 'TMEM138', 'TOP1', 'TROAP', 'UBE2D3', 'ZNF593']) if (refine): for phase in cell_phase_genes: cur_cell_phase_genes = cell_phase_genes[phase] if adata.var_names[0].isupper() \ else [i.capitalize() for i in cell_phase_genes[phase]] cell_phase_genes[phase] = refine_gene_list(adata, layer, cur_cell_phase_genes, threshold) return cell_phase_genes def get_cell_phase(adata, layer=None, gene_list=None, refine=True, threshold=0.3): """Compute cell cycle phase scores for cells in the population Arguments --------- adata: an anndata object. layer: `str` or None (default: `None`) The layer of data to use for calculating correlation. If None, use adata.X. gene_list: `OrderedDict` or None (default: `None`) OrderedDict of marker genes to use for cell cycle phases. If None, the default list will be used. refine: `bool` (default: `True`) whether to refine the gene lists based on how consistent the expression is among the groups threshold: `float` or None (default: `0.3`) threshold on correlation coefficient used to discard genes (expression of each gene is compared to the bulk expression of the group and any gene with a correlation coefficient less than this is discarded) Returns ------- Cell cycle scores indicating the likelihood a given cell is in a given cell cycle phase """ # get list of genes if one is not provided if gene_list is None: cell_phase_genes = get_cell_phase_genes(adata, layer, refine=refine, threshold=threshold) else: cell_phase_genes = gene_list # score each cell cycle phase and Z-normalize phase_scores = pd.DataFrame(batch_group_score(adata, layer, cell_phase_genes)) normalized_phase_scores = phase_scores.sub(phase_scores.mean(axis=1), axis=0).div(phase_scores.std(axis=1), axis=0) normalized_phase_scores_corr = normalized_phase_scores.transpose() normalized_phase_scores_corr['G1-S'] = [1, 0, 0, 0, 0] normalized_phase_scores_corr['S'] = [0, 1, 0, 0, 0] normalized_phase_scores_corr['G2-M'] = [0, 0, 1, 0, 0] normalized_phase_scores_corr['M'] = [0, 0, 0, 1, 0] normalized_phase_scores_corr['M-G1'] = [0, 0, 0, 0, 1] phase_list = ['G1-S', 'S', 'G2-M', 'M', 'M-G1'] # final scores for each phaase are correlation of expression profile with vectors defined above cell_cycle_scores = normalized_phase_scores_corr.corr()[-len(phase_list):].transpose()[:-len(phase_list)] # pick maximal score as the phase for that cell cell_cycle_scores['cell_cycle_phase'] = cell_cycle_scores.idxmax(axis=1) cell_cycle_scores['cell_cycle_phase'] = cell_cycle_scores['cell_cycle_phase'].astype('category') cell_cycle_scores['cell_cycle_phase'].cat.set_categories(phase_list, inplace=True) def progress_ratio(x, phase_list): ind = phase_list.index(x['cell_cycle_phase']) return x[phase_list[(ind - 1) % len(phase_list)]] - x[phase_list[(ind + 1) % len(phase_list)]] # interpolate position within given cell cycle phase cell_cycle_scores['cell_cycle_progress'] = cell_cycle_scores.apply(lambda x: progress_ratio(x, list(phase_list)), axis=1) cell_cycle_scores.sort_values(['cell_cycle_phase', 'cell_cycle_progress'], ascending=[True, False], inplace=True) # order of cell within cell cycle phase cell_cycle_scores['cell_cycle_order'] = cell_cycle_scores.groupby('cell_cycle_phase').cumcount() cell_cycle_scores['cell_cycle_order'] = cell_cycle_scores.groupby('cell_cycle_phase')['cell_cycle_order'].apply( lambda x: x / (len(x) - 1)) return cell_cycle_scores def cell_cycle_scores(adata, layer=None, gene_list=None, refine=True, threshold=0.3): """Call cell cycle positions for cells within the population. If more direct control is desired, use get_cell_phase. Arguments --------- adata: an anndata object. layer: `str` or None (default: `None`) The layer of data to use for calculating correlation. If None, use adata.X. gene_list: OrderedDict of marker genes to use for cell cycle phases. If None, the default list will be used. refine: `bool` (default: `True`) whether to refine the gene lists based on how consistent the expression is among the groups threshold: `float` or None (default: `0.3`) threshold on correlation coefficient used to discard genes (expression of each gene is compared to the bulk expression of the group and any gene with a correlation coefficient less than this is discarded) Returns ------- Returns an updated adata object with cell_cycle_phase as new column in .obs and a new data frame with `cell_cycle_scores` key to .obsm where the cell cycle scores indicating the likelihood a given cell is in a given cell cycle phase. """ cell_cycle_scores = get_cell_phase(adata, layer=layer, refine=refine, gene_list=gene_list, threshold=threshold) cell_cycle_scores.index = adata.obs_names[cell_cycle_scores.index.values.astype('int')] adata.obs['cell_cycle_phase'] = cell_cycle_scores['cell_cycle_phase'].astype('category') # adata.obsm['cell_cycle_scores'] = cell_cycle_scores.set_index(adata.obs_names) adata.obsm['cell_cycle_scores'] = cell_cycle_scores.loc[adata.obs_names, :] #.values
from os import environ # if you set a property in SESSION_CONFIG_DEFAULTS, it will be inherited by all configs # in SESSION_CONFIGS, except those that explicitly override it. # the session config can be accessed from methods in your apps as self.session.config, # e.g. self.session.config['participation_fee'] SESSION_CONFIG_DEFAULTS = { 'real_world_currency_per_point': 1.00, 'participation_fee': 0.00, 'doc': "", } SESSION_CONFIGS = [ { 'name': 'qv', 'display_name': "Quadratic Voting", 'num_demo_participants': 1, 'app_sequence': ['qv'], 'Survey_Title': 'Survey' }, ] # ISO-639 code # for example: de, fr, ja, ko, zh-hans LANGUAGE_CODE = 'en' # e.g. EUR, GBP, CNY, JPY REAL_WORLD_CURRENCY_CODE = 'USD' USE_POINTS = True ROOMS = [] ADMIN_USERNAME = 'admin' # for security, best to set admin password in an environment variable ADMIN_PASSWORD = environ.get('OTREE_ADMIN_PASSWORD') DEMO_PAGE_INTRO_HTML = """ """ SECRET_KEY = 'aivcd7#1k#_z(pb7baw5tx^+4w=xtbh(hb-t-&3-xfxe^vixzx' # if an app is included in SESSION_CONFIGS, you don't need to list it here INSTALLED_APPS = ['otree']
import tensorflow as tf # This part can be uncommented if GPU is available in computer system. #tf.test.is_gpu_available #from tensorflow.python.client import device_lib #print(device_lib.list_local_devices()) ### Modified on Feb 10 2021 due to tensorflow update import os import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from tensorflow import keras from tensorflow.keras import layers from sklearn.metrics import r2_score from sklearn import preprocessing from tqdm import tqdm from sklearn.preprocessing import StandardScaler import math from sklearn.preprocessing import MinMaxScaler from time import time np.set_printoptions(suppress=True) def dl2(param_size, num_prop, file_name): df_gold = pd.read_csv("dl-gold.csv") df_gold = df_gold.iloc[:, 0:num_prop] df_weight = pd.read_csv("dl-weight.csv") df_weight = df_weight.iloc[:, 0:num_prop] data = pd.read_csv(file_name) data_size = data.shape[0] properties = np.arange(0, num_prop) x = data.loc[:,data.columns[range(param_size)]] y = data.loc[:,data.columns[range(param_size, num_prop+param_size)]] x = np.asarray(x).astype(np.float32) y = np.asarray(y).astype(np.float32) x_train_ns, x_test_ns, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) y_train_ns = y_train #y_train_ns = y_train.astype("float32") y_test_ns = y_test #y_test_ns = y_test.astype("float32") scaler = StandardScaler() x_train = scaler.fit_transform(x_train_ns) x_test = scaler.transform(x_test_ns) y_train = scaler.fit_transform(y_train_ns) y_test = scaler.transform(y_test_ns) y_train= y_train_ns y_test = y_test_ns tf.keras.backend.clear_session() # MODEL FOR REGRESSION PART def build_model(): model = tf.keras.Sequential([ layers.Dense(num_prop,activation=tf.nn.relu, input_shape=[param_size]), layers.Dense(num_prop, activation=tf.nn.relu), layers.Dense(num_prop, activation='linear') ]) opt = tf.keras.optimizers.Adam(lr=0.001) model.compile(loss='mean_absolute_error', optimizer=opt, metrics=['mean_absolute_error', 'mean_squared_error']) return model model = build_model() #The early stopping algorithm from tensorflow.keras.callbacks import EarlyStopping es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=100) EPOCHS = 50000 pbar = tqdm(total=EPOCHS) class PrintDot(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs): pbar.update() history = model.fit( x_train, y_train, epochs=EPOCHS, validation_data=(x_test, y_test), verbose=0, callbacks=[PrintDot(), es] ) pbar.close() scores = model.evaluate(x_test, y_test, verbose=0) print("%s: %.2f" % (model.metrics_names[1], scores[1])) file = open("accuracy.dat","a+") file.write(str(scores[1]) + "\n") file.close() #tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) # # #weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'dense_2/kernel') # # # #init_op = tf.initialize_all_variables() # # #with tf.Session() as sess: # sess.run(init_op) # ww = sess.run(weights) # model_json = model.to_json() with open("model.json", "w") as json_file: json_file.write(model_json) model.save_weights("model.h5") print("Saved model to disk") return scores[1]
from distutils.core import setup setup(name='pypp', version='0.0', description='post-processing eigendecompositions computed with paladin', url='https://github.com/michael-a-hansen/paladin', author='Mike Hansen', author_email='mike.hansen.utah@gmail.com', license='MIT', packages=['pypp'], install_requires=['numpy', 'scipy', 'matplotlib'], zip_safe=False)
#!/usr/bin/env python3 import numpy as np class Car: """ Kinematic model of a car-like robot with ref point on front axle States: x, y, yaw, v Inputs: a, delta """ def __init__(self, x=0, y=0, yaw=0, v=0): self.x = 0 self.y = 0 self.yaw = 0 self.v = 0 self.a = 0 self.delta = 0 self.L = 3 # m self.a_max = 1 # m/s^2 self.delta_max = 1.22 # rad def _update_controls(self, v, delta): self.a = np.fmin(np.fmax(v, -self.a_max), self.a_max) self.delta = np.fmin(np.fmax(delta, -self.delta_max), self.delta_max) def model(self, v, delta): self._update_controls(v, delta) state_dot = np.array([0., 0., 0., 0.]) state_dot[0] = self.v * np.cos(self.yaw + self.delta) state_dot[1] = self.v * np.sin(self.yaw + self.delta) state_dot[2] = self.v * np.sin(self.delta) / self.L state_dot[3] = self.a return state_dot def step(self, a, delta, dt): state_dot = self.model(a, delta) state = self.get_state() self.set_state(state + state_dot * dt) def get_state(self): state = np.array([0., 0., 0., 0.]) state[0] = self.x state[1] = self.y state[2] = self.yaw state[3] = self.v return state def set_state(self, state): self.x = state[0] self.y = state[1] self.yaw = state[2] self.v = state[3]
import cv2 from matplotlib import pyplot as plt from os import walk import os class LocalDescriptors: def __init__(self): pass def orb_descriptor(self,file, nfeatures=500): img = cv2.imread(file) # Initiate STAR detector orb = cv2.ORB_create(nfeatures=nfeatures) # find the keypoints with ORB kp = orb.detect(img, None) # compute the descriptors with ORB kp, des = orb.compute(img, kp) if des is None: return [] return des def hog_descriptor(self,file,nfeatures=500): pass if __name__ == '__main__': pass
# -*- coding: utf-8 -*- '文件发送方' import socket import threading import header import os import sys def transfer_file(sock, file_path, print_type): '发送文件' # 准备发送文件 sock.send(header.SEND_FILE) # 打开的文件 fp = None while True: data = header.unpack_msg(sock.recv(1024)) if data[0] == header.RECV_FILE: # 可以发送文件了,先发送文件信息 file_size = os.path.getsize(file_path) file_name = os.path.split(file_path)[1] print u'INFO:文件名: {}, 文件大小: {}'.format(file_name, file_size) #发送文件信息 sock.send(header.FILE_INFO + file_name.encode('utf-8') + header.SPLIT \ + str(file_size) + header.SPLIT + str(print_type)) elif data[0] == header.START_TRANSFER: # 开始传输文件,读入文件 try: fp = open(file_path, 'rb') except: raise BaseException(u'读取文件失败') # 发送第一段数据 buffer = fp.read(1000) sock.send(header.DATA + buffer) elif data[0] == header.NEXT: # 发送下一段数据 buffer = fp.read(1000) if buffer != '': sock.send(header.DATA + buffer) else: # 文件传输完毕 sock.send(header.STOP_TRANSFER) fp.close() break elif data[0] == header.NONE: raise BaseException(u'未知的 header') if __name__ == '__main__': try: if len(sys.argv) != 4: print u'ERROR:参数个数不正确' os._exit(0) # 获取 ip,文件路径,打印类型 ip, file_path, print_type = sys.argv[1], sys.argv[2].decode('gbk').strip(), int(sys.argv[3]) if not os.path.isfile(file_path): raise BaseException(u'文件不存在') s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # 建立连接 s.connect((ip, 8899)) # 发送文件 transfer_file(s, file_path, print_type) s.close() print u'SUCCESS' except socket.gaierror as e: print u'ERROR:socket 连接错误' except BaseException as e: message = u'未知错误' if e.message == '' or e.message == None else e.message print u'ERROR:{}'.format(message)
import urllib2 import re import slate import pdfminer url="http://45.32.111.231:8080/birt/frameset?__report=mydsi/exam/Exam_Result_Sheet_dsce.rptdesign&__format=pdf&USN=" usn = "1DS15IS00" i=0 def main(): global i,usn for i in range(1,9): download_file(url+usn+str(i)) usn = "1DS15IS0" for i in range(10,99): print(usn) download_file(url+usn+str(i)) usn="1DS15IS" for i in range(134,200): download_file(url+usn+str(i)) return 0 #download_file(url+"1DS15CS015") def download_file(download_url): response = urllib2.urlopen(download_url) file = open("documentbast.pdf", 'wb') file.write(response.read()) file.close() with open('documentbast.pdf',"rb") as f: doc = slate.PDF(f) s1= str(doc) print(s1) f2 = open("mydata.txt","a") res1 = re.findall(r"the Student:(\w+\s\w+)",s1) tstr=str(res1) if tstr == "[]": res1 = re.findall(r"CODE(\w+\s\w+)",s1) tstr=str(res1) if tstr == "[]": res1 = re.findall(r"the Student:(\w+)",s1) tstr=str(res1) res2 = re.findall(r'(\d\.\d*)', s1) if str(res2)=="[]": res2 = re.findall(r'SGPA\\n\\n(\d)', s1) tstr = tstr + " " tstr=tstr + str(res2) tstr=re.sub("\[\'","",tstr,2) tstr=re.sub("\'\]","",tstr,2) print(tstr) f2.write(usn+str(i)+" ") f2.write(tstr) f2.write("\n") f2.close() if __name__ == "__main__": main()
""" Ex - 047 - Crie um programa que mostre na tela todos os números pares que estão no intervalo de 1 a 50""" # Como eu Fiz print(f'{"> Números Pares <":=^40}') # Criar var: num_par = [] # Criar laço de repetição: for count in range(1, 51): par = count % 2 if par == 0: num_par.append(count) print('{} Acabou'.format(num_par)) # Como o professor Guanabara fez for n in range(2, 51, 2): print(n, end=' ') print('Acabou')
from flask import Flask, jsonify, request, render_template, redirect import logging from enum import Enum app = Flask(__name__) BootupStatus = Enum('BootupStatus', ('Initial', 'NeedBootup')) current_bootup_status = BootupStatus.Initial @app.route("/") def index(): return render_template('index.html', current_bootup_status = current_bootup_status) @app.route('/bootup', methods=['POST']) def bootup(): global current_bootup_status app.logger.info("Need Bootup ! ") current_bootup_status = BootupStatus.NeedBootup return redirect('/') @app.route('/get-bootup-status', methods=['GET']) def get_bootup_status(): return current_bootup_status.name @app.route('/has-bootup', methods=['GET']) def has_bootup(): app.logger.info("Has Bootup ! ") global current_bootup_status current_bootup_status = BootupStatus.Initial return current_bootup_status.name if __name__ == '__main__': app.run(debug=True) else: gunicorn_logger = logging.getLogger('gunicorn.error') app.logger.handlers = gunicorn_logger.handlers app.logger.setLevel(gunicorn_logger.level)
"""Heatmap and dendograms""" import matplotlib import pylab import scipy.cluster.hierarchy as hierarchy import scipy.spatial.distance as distance import numpy as np # get rid of this dependence import easydev import colormap from biokit.viz.linkage import Linkage __all__ = ['Heatmap'] def get_heatmap_df(): """a simple example to play with and perform test""" import pandas as pd df = pd.DataFrame( {'A':[1,0,1,1], 'B':[.9,0.1,.6,1], 'C':[.5,.2,0,1], 'D':[.5,.2,0,1]}) return df #def heatmap(data, *args, **kargs): # """alias to Heatmap class""" # h = Heatmap(data, *args, **kargs) # h.plot() # return h class Heatmap(Linkage): """Heatmap and dendograms of an input matrix A heat map is an image representation of a matrix with a dendrogram added to the left side and to the top. Typically, reordering of the rows and columns according to some set of values (row or column means) within the restrictions imposed by the dendrogram is carried out. .. plot:: :include-source: :width: 50% from biokit.viz import heatmap df = heatmap.get_heatmap_df() h = heatmap.Heatmap(df) h.plot() .. warning:: in progress """ def __init__(self, data=None, row_method='complete', column_method='complete', row_metric='euclidean',column_metric='euclidean', cmap='yellow_black_blue', col_side_colors=None, row_side_colors=None, verbose=True ): """.. rubric:: constructor :param data: a dataframe or possibly a numpy matrix. .. todo:: if row_method id none, no ordering in the dendogram """ # should be a copy since it may be reshuffled ? try: if data is None and verbose is True: print("No data provided, please fill the `df` attribute manually") else: self._df = data.copy() except AttributeError as err: print("input must be a pandas data frame or numpy matrix") raise(err) self._row_method = row_method self._column_method = column_method self._column_metric = column_metric self._row_metric = row_metric # some default parameters self.cluster_criterion = 'distance' self.params = easydev.AttrDict() self.params.col_side_colors = ['r', 'g', 'b', 'y', 'w', 'k', 'm'] self.params.row_side_colors = ['r', 'g', 'b', 'y', 'w', 'k', 'm'] self.params.cmap = cmap self.category_row = None self.category_column = None if col_side_colors: self.params.col_side_colors = col_side_colors if row_side_colors: self.params.row_side_colors = row_side_colors def _get_df(self): return self._df def _set_df(self, data): self._df = data.copy() df = property(_get_df, _set_df) frame = property(_get_df, _set_df) def _get_row_method(self): return self._row_method def _set_row_method(self, value): self.check_method(value) self._row_method = value row_method = property(_get_row_method, _set_row_method) def _get_col_method(self): return self._column_method def _set_col_method(self, value): self.check_method(value) self._column_method = value column_method = property(_get_col_method, _set_col_method) def _get_col_metric(self): return self._column_metric def _set_col_metric(self, value): self.check_metric(value) self._column_metric = value column_metric = property(_get_col_metric, _set_col_metric) def _get_row_metric(self): return self._row_metric def _set_row_metric(self, value): self.check_metric(value) self._row_metric = value row_metric = property(_get_row_metric, _set_row_metric) def plot(self, num=1, cmap=None, colorbar=True, vmin=None, vmax=None, colorbar_position='right', gradient_span='None' ): """ :param gradient_span: None is default in R Using:: df = pd.DataFrame({'A':[1,0,1,1], 'B':[.9,0.1,.6,1], 'C':[.5,.2,0,1], 'D':[.5,.2,0,1]}) and :: h = Heatmap(df) h.plot(vmin=0, vmax=1.1) we seem to get the same as in R wiht :: df = data.frame(A=c(1,0,1,1), B=c(.9,.1,.6,1), C=c(.5,.2,0,1), D=c(.5,.2,0,1)) heatmap((as.matrix(df)), scale='none') .. todo:: right now, the order of cols and rows is random somehow. could be ordered like in heatmap (r) byt mean of the row and col or with a set of vector for col and rows. heatmap((as.matrix(df)), Rowv=c(3,2), Colv=c(1), scale='none') gives same as:: df = get_heatmap_df() h = heatmap.Heatmap(df) h.plot(vmin=-0, vmax=1.1) """ # save all parameters in a dict layout = {} if cmap is None: cmap = self.params.cmap try:cmap = colormap.cmap_builder(cmap) except:pass # keep track of row and column names for later. row_header = self.frame.index column_header = self.frame.columns # FIXME something clever for the fontsize if len(row_header) > 100 or len(column_header) > 100: matplotlib.rcParams['font.size'] = 6 if len(row_header) > 50 or len(column_header) > 50: matplotlib.rcParams['font.size'] = 7 else: matplotlib.rcParams['font.size'] = 12 # scaling min/max range self.gradient_span = gradient_span #'only_max' # min_to_max, min_to_max_centered, only_max, only_min if self.gradient_span == 'min_to_max_centered': vmax = max([vmax, abs(vmin)]) vmin = vmax * -1 if self.gradient_span == 'only_max': vmin = 0 vmax = self.frame.max().max() if self.gradient_span == 'only_min': vmin = self.frame.min().min() vmax = 0 norm = matplotlib.colors.Normalize(vmin, vmax) # Scale the figure window size # fig = pylab.figure(num=num, figsize=(12, 8)) fig.clf() # LAYOUT -------------------------------------------------- # ax1 (dendrogram 1) on the left of the heatmap [ax1_x, ax1_y, ax1_w, ax1_h] = [0.05, 0.22, 0.2, 0.6] width_between_ax1_axr = 0.004 # distance between the top color bar axis and the matrix height_between_ax1_axc = 0.004 # Sufficient size to show color_bar_w = 0.015 # axr, placement of row side colorbar # second to last controls the width of the side color bar - 0.015 when showing [axr_x, axr_y, axr_w, axr_h] = [0.31, 0.1, color_bar_w, 0.6] axr_x = ax1_x + ax1_w + width_between_ax1_axr axr_y = ax1_y; axr_h = ax1_h width_between_axr_axm = 0.004 # axc, placement of column side colorbar # # last one controls the hight of the top color bar - 0.015 when showing [axc_x, axc_y, axc_w, axc_h] = [0.4, 0.63, 0.5, color_bar_w] axc_x = axr_x + axr_w + width_between_axr_axm axc_y = ax1_y + ax1_h + height_between_ax1_axc height_between_axc_ax2 = 0.004 # axm, placement of heatmap for the data matrix # why larger than 1? [axm_x, axm_y, axm_w, axm_h] = [0.4, 0.9, 2.5, 0.5] axm_x = axr_x + axr_w + width_between_axr_axm axm_y = ax1_y; axm_h = ax1_h axm_w = axc_w # ax2 (dendrogram 2), on the top of the heatmap # [ax2_x, ax2_y, ax2_w, ax2_h] = [0.3, 0.72, 0.6, 0.15] ax2_x = axr_x + axr_w + width_between_axr_axm ax2_y = ax1_y + ax1_h + height_between_ax1_axc + axc_h + height_between_axc_ax2 ax2_w = axc_w # axcb - placement of the color legend # if colorbar_position == 'top left': [axcb_x, axcb_y, axcb_w, axcb_h] = [0.07, 0.88, 0.18, 0.09] elif colorbar_position == 'right': [axcb_x, axcb_y, axcb_w, axcb_h] = [0.85, 0.2, 0.08, 0.6] else: raise ValueError("'top left' or 'right' accepted for now") # COMPUTATION DENDOGRAM 1 ------------------------------------- if self.column_method: Y = self.linkage(self.frame.transpose(),self.column_method, self.column_metric ) ax2 = fig.add_axes([ax2_x, ax2_y, ax2_w, ax2_h], frame_on=True) Z = hierarchy.dendrogram(Y) ind2 = hierarchy.fcluster(Y, 0.7*max(Y[:,2]), self.cluster_criterion) ax2.set_xticks([]) ax2.set_yticks([]) # apply the clustering for the array-dendrograms to the actual matrix data idx2 = Z['leaves'] self.frame = self.frame.iloc[:,idx2] # reorder the flat cluster to match the order of the leaves the dendrogram ind2 = ind2[idx2] layout['dendogram2'] = ax2 else: idx2 = range(self.frame.shape[1]) # COMPUTATION DENDOGRAM 2 --------------------------------- if self.row_method: Y = self.linkage(self.frame, self.row_method, self.row_metric ) ax1 = fig.add_axes([ax1_x, ax1_y, ax1_w, ax1_h], frame_on=True) Z = hierarchy.dendrogram(Y, orientation='right') ind1 = hierarchy.fcluster(Y, 0.7*max(Y[:,2]), self.cluster_criterion) ax1.set_xticks([]) ax1.set_yticks([]) # apply the clustering for the array-dendrograms to the actual matrix data idx1 = Z['leaves'] self.frame = self.frame.iloc[idx1,:] # reorder the flat cluster to match the order of the leaves the dendrogram ind1 = ind1[idx1] layout['dendogram1'] = ax1 else: idx1 = range(self.frame.shape[0]) # HEATMAP itself axm = fig.add_axes([axm_x, axm_y, axm_w, axm_h]) axm.imshow(self.frame, aspect='auto', origin='lower', interpolation='None', cmap=cmap, norm=norm) axm.set_xticks([]) axm.set_yticks([]) layout['heatmap'] = axm # TEXT new_row_header = [] new_column_header = [] for i in range(self.frame.shape[0]): axm.text(self.frame.shape[1]-0.5, i, ' ' + str(row_header[idx1[i]]), verticalalignment="center") new_row_header.append(row_header[idx1[i]] if self.row_method else row_header[i]) for i in range(self.frame.shape[1]): axm.text(i, -0.9, ' '+str(column_header[idx2[i]]), rotation=90, verticalalignment="top", horizontalalignment="center") new_column_header.append(column_header[idx2[i]] if self.column_method else column_header[i]) # CATEGORY column ------------------------------ if self.category_column: axc = fig.add_axes([axc_x, axc_y, axc_w, axc_h]) cmap_c = matplotlib.colors.ListedColormap(self.params.col_side_colors) category_col = [self.category_column[self.df.columns[i]] for i in idx2] dc = np.array(category_col, dtype=int) dc.shape = (1,len(ind2)) axc.matshow(dc, aspect='auto', origin='lower', cmap=cmap_c) axc.set_xticks([]) axc.set_yticks([]) layout['category_column'] = axc # CATEGORY row ------------------------------- if self.category_row: axr = fig.add_axes([axr_x, axr_y, axr_w, axr_h]) # self.category_row must be a dictionary with names as found in the columns # of the dataframe. category_row = [self.category_row[self.df.columns[i]] for i in idx1] dr = np.array(category_row, dtype=int) dr.shape = (len(category_row),1) cmap_r = matplotlib.colors.ListedColormap(self.params.col_side_colors) axr.matshow(dr, aspect='auto', origin='lower', cmap=cmap_r) axr.set_xticks([]) axr.set_yticks([]) layout['category_row'] = axr # COLORBAR ---------------------- if colorbar == True: axcb = fig.add_axes([axcb_x, axcb_y, axcb_w, axcb_h], frame_on=False) if colorbar_position == 'right': orientation = 'vertical' else: orientation = 'horizontal' cb = matplotlib.colorbar.ColorbarBase(axcb, cmap=cmap, norm=norm, orientation=orientation) #axcb.set_title("whatever") #max_cb_ticks = 5 #axcb.xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(max_cb_ticks)) layout['colorbar'] = cb # could be useful self.d = {'ordered': self.frame.copy(), 'rorder': idx1, 'corder': idx2} return layout
from django.http import HttpResponse from django.views.generic import ListView, TemplateView from .models import Player class IndexView(TemplateView): template_name = 'quarto/index.html' class BoardView(TemplateView): template_name = 'quarto/board.html' context_object_name = 'board' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['board'] = range(1, 17) class PlayersView(ListView): context_object_name = 'players' def get_queryset(self): return Player.objects.all()
# import Python's built-in JSON library import json, sys # import the psycopg2 database adapter for PostgreSQL from psycopg2 import connect, Error #Get necessary functions from scryfall_get import * scry_resp()
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-11-15 19:23 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bruv', '0019_auto_20161025_2316'), ] operations = [ migrations.RemoveField( model_name='set', name='substrate', ), migrations.RenameModel( old_name='Substrate', new_name='BenthicCategory', ), migrations.RenameModel( old_name='HabitatSubstrate', new_name='BenthicCategoryValue', ), migrations.AddField( model_name='set', name='benthic_category', field=models.ManyToManyField(through='bruv.BenthicCategoryValue', to='bruv.BenthicCategory'), ), ]
from robocorp_ls_core.python_ls import PythonLanguageServer from robocorp_ls_core.basic import overrides, log_and_silence_errors import os import time from robotframework_ls.constants import DEFAULT_COMPLETIONS_TIMEOUT from robocorp_ls_core.robotframework_log import get_logger from typing import Any, Optional, List, Dict from robocorp_ls_core.protocols import ( IConfig, IWorkspace, IIdMessageMatcher, IRobotFrameworkApiClient, IMonitor, ) from pathlib import Path from robotframework_ls.ep_providers import ( EPConfigurationProvider, EPDirCacheProvider, EPEndPointProvider, ) from robocorp_ls_core.jsonrpc.endpoint import require_monitor from robocorp_ls_core.jsonrpc.monitor import Monitor from functools import partial import itertools from robotframework_ls import __version__, rf_interactive_integration import typing import sys from robocorp_ls_core.watchdog_wrapper import IFSObserver from robocorp_ls_core.lsp import CodeLensTypedDict log = get_logger(__name__) LINT_DEBOUNCE_S = 0.4 # 400 ms class _CurrLintInfo(object): def __init__( self, rf_lint_api_client: IRobotFrameworkApiClient, lsp_messages, doc_uri, is_saved, ) -> None: from robocorp_ls_core.lsp import LSPMessages self._rf_lint_api_client = rf_lint_api_client self.lsp_messages: LSPMessages = lsp_messages self.doc_uri = doc_uri self.is_saved = is_saved self._monitor = Monitor() def __call__(self) -> None: from robocorp_ls_core.jsonrpc.exceptions import JsonRpcRequestCancelled from robocorp_ls_core.client_base import wait_for_message_matcher from robotframework_ls.server_api.client import SubprocessDiedError try: doc_uri = self.doc_uri self._monitor.check_cancelled() found = [] message_matcher = self._rf_lint_api_client.request_lint(doc_uri) if message_matcher is not None: if wait_for_message_matcher( message_matcher, monitor=self._monitor, request_cancel=self._rf_lint_api_client.request_cancel, timeout=60 * 3, ): diagnostics_msg = message_matcher.msg if diagnostics_msg: found = diagnostics_msg.get("result", []) self.lsp_messages.publish_diagnostics(doc_uri, found) except JsonRpcRequestCancelled: log.info(f"Cancelled linting: {self.doc_uri}.") except SubprocessDiedError: log.info(f"Subprocess exited while linting: {self.doc_uri}.") except Exception: log.exception("Error linting.") def cancel(self): self._monitor.cancel() def run_in_new_thread(func, thread_name): import threading t = threading.Thread(target=func) t.name = thread_name t.start() class _LintManager(object): def __init__(self, server_manager, lsp_messages) -> None: from robotframework_ls.server_manager import ServerManager self._server_manager: ServerManager = server_manager self._lsp_messages = lsp_messages self._next_id = partial(next, itertools.count()) self._doc_id_to_info: Dict[str, _CurrLintInfo] = {} def schedule_lint(self, doc_uri: str, is_saved: bool) -> None: self.cancel_lint(doc_uri) rf_lint_api_client = self._server_manager.get_lint_rf_api_client(doc_uri) if rf_lint_api_client is None: log.info(f"Unable to get lint api for: {doc_uri}") return curr_info = _CurrLintInfo( rf_lint_api_client, self._lsp_messages, doc_uri, is_saved ) from robocorp_ls_core.timeouts import TimeoutTracker timeout_tracker = TimeoutTracker.get_singleton() timeout_tracker.call_on_timeout( LINT_DEBOUNCE_S, partial(run_in_new_thread, curr_info, f"Lint: {doc_uri}") ) def cancel_lint(self, doc_uri: str) -> None: curr_info = self._doc_id_to_info.pop(doc_uri, None) if curr_info is not None: curr_info.cancel() class RobotFrameworkLanguageServer(PythonLanguageServer): def __init__(self, rx, tx) -> None: from robocorp_ls_core.pluginmanager import PluginManager from robotframework_ls.rf_interactive_integration import _RfInterpretersManager from robotframework_ls.server_manager import ServerManager from robotframework_ls.ep_providers import DefaultConfigurationProvider from robotframework_ls.ep_providers import DefaultEndPointProvider from robotframework_ls.ep_providers import DefaultDirCacheProvider from robocorp_ls_core import watchdog_wrapper from robocorp_ls_core.remote_fs_observer_impl import RemoteFSObserver from robocorp_ls_core.options import Setup PythonLanguageServer.__init__(self, rx, tx) from robocorp_ls_core.cache import DirCache from robotframework_ls import robot_config home = robot_config.get_robotframework_ls_home() cache_dir = os.path.join(home, ".cache") log.debug(f"Cache dir: {cache_dir}") self._dir_cache = DirCache(cache_dir) self._pm = PluginManager() self._config_provider = DefaultConfigurationProvider(self.config) self._pm.set_instance(EPConfigurationProvider, self._config_provider) self._pm.set_instance( EPDirCacheProvider, DefaultDirCacheProvider(self._dir_cache) ) self._pm.set_instance( EPEndPointProvider, DefaultEndPointProvider(self._endpoint) ) self._rf_interpreters_manager = _RfInterpretersManager(self._endpoint, self._pm) watch_impl = os.environ.get("ROBOTFRAMEWORK_LS_WATCH_IMPL", "auto") if watch_impl not in ("watchdog", "fsnotify", "auto"): log.info( f"ROBOTFRAMEWORK_LS_WATCH_IMPL should be 'auto', 'watchdog' or 'fsnotify'. Found: {watch_impl} (falling back to auto)" ) watch_impl = "auto" if watch_impl == "auto": # In auto mode we use watchdog for windows and fsnotify (polling) # for Linux and Mac. The reason for that is that on Linux and Mac # if big folders are watched the system may complain due to the # lack of resources, which may prevent the extension from working # properly. # # If users want to opt-in, they can change to watchdog (and # ideally install it to their env to get native extensions). if sys.platform == "win32": watch_impl = "watchdog" else: watch_impl = "fsnotify" self._fs_observer = watchdog_wrapper.create_remote_observer( watch_impl, (".py", ".libspec", "robot", ".resource") ) remote_observer = typing.cast(RemoteFSObserver, self._fs_observer) log_file = Setup.options.log_file if not isinstance(log_file, str): log_file = None remote_observer.start_server(log_file=log_file) self._server_manager = ServerManager(self._pm, language_server=self) self._lint_manager = _LintManager(self._server_manager, self._lsp_messages) def get_remote_fs_observer_port(self) -> Optional[int]: from robocorp_ls_core.remote_fs_observer_impl import RemoteFSObserver remote_observer = typing.cast(RemoteFSObserver, self._fs_observer) return remote_observer.port @overrides(PythonLanguageServer._create_config) def _create_config(self) -> IConfig: from robotframework_ls.robot_config import RobotConfig return RobotConfig() @overrides(PythonLanguageServer._on_workspace_set) def _on_workspace_set(self, workspace: IWorkspace): PythonLanguageServer._on_workspace_set(self, workspace) self._server_manager.set_workspace(workspace) @overrides(PythonLanguageServer._obtain_fs_observer) def _obtain_fs_observer(self) -> IFSObserver: return self._fs_observer @overrides(PythonLanguageServer._create_workspace) def _create_workspace( self, root_uri: str, fs_observer: IFSObserver, workspace_folders ): from robotframework_ls.impl.robot_workspace import RobotWorkspace return RobotWorkspace( root_uri, fs_observer, workspace_folders, generate_ast=False ) def m_initialize( self, processId=None, rootUri=None, rootPath=None, initializationOptions=None, workspaceFolders=None, **_kwargs, ) -> dict: # capabilities = _kwargs.get("capabilities", {}) # text_document_capabilities = capabilities.get("textDocument", {}) # document_symbol_capabilities = text_document_capabilities.get( # "documentSymbol", {} # ) # hierarchical_document_symbol_support = document_symbol_capabilities.get( # "hierarchicalDocumentSymbolSupport", False # ) # self._hierarchical_document_symbol_support = ( # hierarchical_document_symbol_support # ) ret = PythonLanguageServer.m_initialize( self, processId=processId, rootUri=rootUri, rootPath=rootPath, initializationOptions=initializationOptions, workspaceFolders=workspaceFolders, **_kwargs, ) initialization_options = initializationOptions if initialization_options: plugins_dir = initialization_options.get("pluginsDir") if isinstance(plugins_dir, str): if not os.path.isdir(plugins_dir): log.critical(f"Expected: {plugins_dir} to be a directory.") else: self._pm.load_plugins_from(Path(plugins_dir)) return ret @overrides(PythonLanguageServer.capabilities) def capabilities(self): from robocorp_ls_core.lsp import TextDocumentSyncKind from robotframework_ls.impl.semantic_tokens import TOKEN_TYPES, TOKEN_MODIFIERS from robotframework_ls import commands server_capabilities = { "codeActionProvider": False, "codeLensProvider": {"resolveProvider": True}, "completionProvider": { "resolveProvider": False # We know everything ahead of time }, "documentFormattingProvider": True, "documentHighlightProvider": False, "documentRangeFormattingProvider": False, "documentSymbolProvider": True, "definitionProvider": True, "executeCommandProvider": { "commands": [ "robot.addPluginsDir", "robot.resolveInterpreter", "robot.getLanguageServerVersion", "robot.getInternalInfo", "robot.listTests", ] + commands.ALL_SERVER_COMMANDS }, "hoverProvider": True, "referencesProvider": False, "renameProvider": False, "foldingRangeProvider": True, # Note that there are no auto-trigger characters (there's no good # character as there's no `(` for parameters and putting it as a # space becomes a bit too much). "signatureHelpProvider": {"triggerCharacters": []}, "textDocumentSync": { "change": TextDocumentSyncKind.INCREMENTAL, "save": {"includeText": False}, "openClose": True, }, "workspace": { "workspaceFolders": {"supported": True, "changeNotifications": True} }, "workspaceSymbolProvider": True, # The one below isn't accepted by lsp4j (it's still in LSP 3.15.0). # "workspaceSymbolProvider": {"workDoneProgress": False}, "semanticTokensProvider": { "legend": { "tokenTypes": TOKEN_TYPES, "tokenModifiers": TOKEN_MODIFIERS, }, "range": False, "full": True, }, } log.info("Server capabilities: %s", server_capabilities) return server_capabilities def m_workspace__execute_command(self, command=None, arguments=()) -> Any: if command == "robot.addPluginsDir": directory: str = arguments[0] assert os.path.isdir(directory), f"Expected: {directory} to be a directory." self._pm.load_plugins_from(Path(directory)) return True elif command == "robot.getInternalInfo": in_memory_docs = [] workspace = self.workspace if workspace: for doc in workspace.iter_documents(): in_memory_docs.append({"uri": doc.uri}) return { "settings": self.config.get_full_settings(), "inMemoryDocs": in_memory_docs, "processId": os.getpid(), } elif command == "robot.resolveInterpreter": try: from robocorp_ls_core import uris from robotframework_ls.ep_resolve_interpreter import ( EPResolveInterpreter, ) from robotframework_ls.ep_resolve_interpreter import IInterpreterInfo target_robot: str = arguments[0] for ep in self._pm.get_implementations(EPResolveInterpreter): interpreter_info: IInterpreterInfo = ( ep.get_interpreter_info_for_doc_uri( uris.from_fs_path(target_robot) ) ) if interpreter_info is not None: return { "pythonExe": interpreter_info.get_python_exe(), "environ": interpreter_info.get_environ(), "additionalPythonpathEntries": interpreter_info.get_additional_pythonpath_entries(), } except: log.exception(f"Error resolving interpreter. Args: {arguments}") elif command == "robot.getLanguageServerVersion": return __version__ elif command.startswith("robot.internal.rfinteractive."): return rf_interactive_integration.execute_command( command, self, self._rf_interpreters_manager, arguments ) elif command == "robot.listTests": doc_uri = arguments[0]["uri"] rf_api_client = self._server_manager.get_others_api_client(doc_uri) if rf_api_client is not None: func = partial( self._async_api_request, rf_api_client, "request_list_tests", doc_uri=doc_uri, ) func = require_monitor(func) return func log.info("Unable to list tests (no api available).") return [] @overrides(PythonLanguageServer.m_workspace__did_change_configuration) @log_and_silence_errors(log) def m_workspace__did_change_configuration(self, **kwargs): PythonLanguageServer.m_workspace__did_change_configuration(self, **kwargs) self._server_manager.set_config(self.config) # --- Methods to forward to the api @overrides(PythonLanguageServer.m_shutdown) @log_and_silence_errors(log) def m_shutdown(self, **kwargs): try: from robocorp_ls_core.remote_fs_observer_impl import RemoteFSObserver remote_observer = typing.cast(RemoteFSObserver, self._fs_observer) remote_observer.dispose() except Exception: log.exception("Error disposing RemoteFSObserver.") self._server_manager.shutdown() PythonLanguageServer.m_shutdown(self, **kwargs) @overrides(PythonLanguageServer.m_exit) @log_and_silence_errors(log) def m_exit(self, **kwargs): self._server_manager.exit() PythonLanguageServer.m_exit(self, **kwargs) def m_text_document__formatting( self, textDocument=None, options=None ) -> Optional[list]: doc_uri = textDocument["uri"] source_format_rf_api_client = self._server_manager.get_others_api_client( doc_uri ) if source_format_rf_api_client is None: log.info("Unable to get API for source format.") return [] message_matcher = source_format_rf_api_client.request_source_format( text_document=textDocument, options=options ) if message_matcher is None: raise RuntimeError( "Error requesting code formatting (message_matcher==None)." ) curtime = time.time() maxtime = curtime + DEFAULT_COMPLETIONS_TIMEOUT # i.e.: wait X seconds for the code format and bail out if we # can't get it. available_time = maxtime - time.time() if available_time <= 0: raise RuntimeError("Code formatting timed-out (available_time <= 0).") if message_matcher.event.wait(available_time): msg = message_matcher.msg if msg is not None: result = msg.get("result") if result: return result else: return [] raise RuntimeError("Code formatting timed-out.") @overrides(PythonLanguageServer.m_text_document__did_close) def m_text_document__did_close(self, textDocument=None, **_kwargs): self._server_manager.forward( ("api", "lint", "others"), "textDocument/didClose", {"textDocument": textDocument}, ) PythonLanguageServer.m_text_document__did_close( self, textDocument=textDocument, **_kwargs ) @overrides(PythonLanguageServer.m_text_document__did_open) def m_text_document__did_open(self, textDocument=None, **_kwargs): self._server_manager.forward( ("api", "lint", "others"), "textDocument/didOpen", {"textDocument": textDocument}, ) PythonLanguageServer.m_text_document__did_open( self, textDocument=textDocument, **_kwargs ) @overrides(PythonLanguageServer.m_text_document__did_change) def m_text_document__did_change( self, contentChanges=None, textDocument=None, **_kwargs ): self._server_manager.forward( ("api", "lint", "others"), "textDocument/didChange", {"contentChanges": contentChanges, "textDocument": textDocument}, ) PythonLanguageServer.m_text_document__did_change( self, contentChanges=contentChanges, textDocument=textDocument, **_kwargs ) @overrides(PythonLanguageServer.m_workspace__did_change_workspace_folders) def m_workspace__did_change_workspace_folders(self, event=None, **_kwargs): self._server_manager.forward( ("api", "lint", "others"), "workspace/didChangeWorkspaceFolders", {"event": event}, ) PythonLanguageServer.m_workspace__did_change_workspace_folders( self, event=event, **_kwargs ) # --- Customized implementation @overrides(PythonLanguageServer.lint) def lint(self, doc_uri, is_saved) -> None: self._lint_manager.schedule_lint(doc_uri, is_saved) @overrides(PythonLanguageServer.cancel_lint) def cancel_lint(self, doc_uri) -> None: self._lint_manager.cancel_lint(doc_uri) def m_text_document__completion(self, **kwargs): doc_uri = kwargs["textDocument"]["uri"] # Note: 0-based line, col = kwargs["position"]["line"], kwargs["position"]["character"] rf_api_client = self._server_manager.get_regular_rf_api_client(doc_uri) if rf_api_client is not None: func = partial( self._threaded_document_completion, rf_api_client, doc_uri, line, col ) func = require_monitor(func) return func log.info("Unable to get completions (no api available).") return [] @log_and_silence_errors(log, return_on_error=[]) def _threaded_document_completion( self, rf_api_client: IRobotFrameworkApiClient, doc_uri: str, line: int, col: int, monitor: IMonitor, ) -> list: from robotframework_ls.impl.completion_context import CompletionContext from robotframework_ls.impl import section_completions from robotframework_ls.impl import snippets_completions from robocorp_ls_core.client_base import wait_for_message_matchers ws = self.workspace if not ws: log.critical("Workspace must be set before returning completions.") return [] document = ws.get_document(doc_uri, accept_from_file=True) if document is None: log.critical("Unable to find document (%s) for completions." % (doc_uri,)) return [] ctx = CompletionContext(document, line, col, config=self.config) completions = [] # Asynchronous completion. message_matchers: List[Optional[IIdMessageMatcher]] = [] message_matchers.append(rf_api_client.request_complete_all(doc_uri, line, col)) # These run locally (no need to get from the server). completions.extend(section_completions.complete(ctx)) completions.extend(snippets_completions.complete(ctx)) accepted_message_matchers = wait_for_message_matchers( message_matchers, monitor, rf_api_client.request_cancel, DEFAULT_COMPLETIONS_TIMEOUT, ) for message_matcher in accepted_message_matchers: msg = message_matcher.msg if msg is not None: result = msg.get("result") if result: completions.extend(result) return completions @log_and_silence_errors(log) def _async_api_request( self, rf_api_client: IRobotFrameworkApiClient, request_method_name: str, doc_uri: str, monitor: IMonitor, **kwargs, ): from robocorp_ls_core.client_base import wait_for_message_matcher func = getattr(rf_api_client, request_method_name) ws = self.workspace if not ws: log.critical( "Workspace must be set before calling %s.", request_method_name ) return None document = ws.get_document(doc_uri, accept_from_file=True) if document is None: log.critical( "Unable to find document (%s) for %s." % (doc_uri, request_method_name) ) return None # Asynchronous completion. message_matcher: Optional[IIdMessageMatcher] = func(doc_uri, **kwargs) if message_matcher is None: log.debug("Message matcher for %s returned None.", request_method_name) return None if wait_for_message_matcher( message_matcher, rf_api_client.request_cancel, DEFAULT_COMPLETIONS_TIMEOUT, monitor, ): msg = message_matcher.msg if msg is not None: result = msg.get("result") if result: return result return None @log_and_silence_errors(log) def _async_api_request_no_doc( self, rf_api_client: IRobotFrameworkApiClient, request_method_name: str, monitor: Optional[IMonitor], **kwargs, ): from robocorp_ls_core.client_base import wait_for_message_matcher func = getattr(rf_api_client, request_method_name) # Asynchronous completion. message_matcher: Optional[IIdMessageMatcher] = func(**kwargs) if message_matcher is None: log.debug("Message matcher for %s returned None.", request_method_name) return None if wait_for_message_matcher( message_matcher, rf_api_client.request_cancel, DEFAULT_COMPLETIONS_TIMEOUT, monitor, ): msg = message_matcher.msg if msg is not None: result = msg.get("result") if result: return result return None def m_text_document__definition(self, **kwargs): doc_uri = kwargs["textDocument"]["uri"] # Note: 0-based line, col = kwargs["position"]["line"], kwargs["position"]["character"] rf_api_client = self._server_manager.get_regular_rf_api_client(doc_uri) if rf_api_client is not None: func = partial( self._async_api_request, rf_api_client, "request_find_definition", doc_uri=doc_uri, line=line, col=col, ) func = require_monitor(func) return func log.info("Unable to find definition (no api available).") return None def m_text_document__signature_help(self, **kwargs): """ "params": { "textDocument": { "uri": "file:///x%3A/vscode-robot/local_test/Basic/resources/keywords.robot" }, "position": {"line": 7, "character": 22}, "context": { "isRetrigger": False, "triggerCharacter": " ", "triggerKind": 2, }, }, """ doc_uri = kwargs["textDocument"]["uri"] # Note: 0-based line, col = kwargs["position"]["line"], kwargs["position"]["character"] rf_api_client = self._server_manager.get_regular_rf_api_client(doc_uri) if rf_api_client is not None: func = partial( self._async_api_request, rf_api_client, "request_signature_help", doc_uri=doc_uri, line=line, col=col, ) func = require_monitor(func) return func log.info("Unable to get signature (no api available).") return [] def m_text_document__folding_range(self, **kwargs): """ "params": { "textDocument": { "uri": "file:///x%3A/vscode-robot/local_test/Basic/resources/keywords.robot" }, }, """ doc_uri = kwargs["textDocument"]["uri"] rf_api_client = self._server_manager.get_others_api_client(doc_uri) if rf_api_client is not None: func = partial( self._async_api_request, rf_api_client, "request_folding_range", doc_uri=doc_uri, ) func = require_monitor(func) return func log.info("Unable to get folding range (no api available).") return [] def m_text_document__code_lens(self, **kwargs): doc_uri = kwargs["textDocument"]["uri"] rf_api_client = self._server_manager.get_others_api_client(doc_uri) if rf_api_client is not None: func = partial( self._async_api_request, rf_api_client, "request_code_lens", doc_uri=doc_uri, ) func = require_monitor(func) return func log.info("Unable to get code lens (no api available).") return [] def m_code_lens__resolve(self, **kwargs): code_lens: CodeLensTypedDict = kwargs code_lens_command = code_lens.get("command") data = code_lens.get("data") if code_lens_command is None and isinstance(data, dict): # For the interactive shell we need to resolve the arguments. uri = data.get("uri") rf_api_client = self._server_manager.get_others_api_client(uri) if rf_api_client is not None: func = partial( self._async_api_request_no_doc, rf_api_client, "request_resolve_code_lens", code_lens=code_lens, ) func = require_monitor(func) return func log.info("Unable to resolve code lens (no api available).") return code_lens def m_text_document__document_symbol(self, **kwargs): doc_uri = kwargs["textDocument"]["uri"] rf_api_client = self._server_manager.get_others_api_client(doc_uri) if rf_api_client is not None: func = partial( self._async_api_request, rf_api_client, "request_document_symbol", doc_uri=doc_uri, ) func = require_monitor(func) return func log.info("Unable to get document symbol (no api available).") return [] def m_text_document__hover(self, **kwargs): doc_uri = kwargs["textDocument"]["uri"] # Note: 0-based line, col = kwargs["position"]["line"], kwargs["position"]["character"] rf_api_client = self._server_manager.get_regular_rf_api_client(doc_uri) if rf_api_client is not None: func = partial( self._async_api_request, rf_api_client, "request_hover", doc_uri=doc_uri, line=line, col=col, ) func = require_monitor(func) return func log.info("Unable to compute hover (no api available).") return [] def m_text_document__semantic_tokens__range(self, textDocument=None, range=None): raise RuntimeError("Not currently implemented!") def m_text_document__semantic_tokens__full(self, textDocument=None): doc_uri = textDocument["uri"] api = self._server_manager.get_others_api_client(doc_uri) if api is None: log.info("Unable to get api client when computing semantic tokens (full).") return {"resultId": None, "data": []} func = partial( self._async_api_request_no_doc, api, "request_semantic_tokens_full", text_document=textDocument, ) func = require_monitor(func) return func def m_workspace__symbol(self, query: Optional[str] = None) -> Any: api = self._server_manager.get_others_api_client("") if api is None: log.info("Unable to search workspace symbols (no api available).") return None func = partial( self._async_api_request_no_doc, api, "request_workspace_symbols", query=query, ) func = require_monitor(func) return func
#---------------------------------------------------------------------- # Copyright (c) 2014-2016, Persistent Objects Ltd http://p-o.co.uk/ # # License: BSD #---------------------------------------------------------------------- """ WSGI config for mldemo project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.6/howto/deployment/wsgi/ """ #pylint: disable=invalid-name import os import sys BASE_DIR = os.path.dirname(os.path.realpath(__file__)) BASE_DIR = os.path.dirname(os.path.realpath(BASE_DIR)) sys.path.append(BASE_DIR) os.environ.setdefault("DJANGO_SETTINGS_MODULE", "mldemo.settings") from django.core.wsgi import get_wsgi_application application = get_wsgi_application()
pattern_zero=[0.0, 0.01586888658, 0.03121748179, 0.03225806452, 0.04604578564, 0.04812695109, 0.06035379813, 0.06347554631, 0.06451612903, 0.07414151925, 0.07830385016, 0.08038501561, 0.08740894901, 0.09261186264, 0.09573361082, 0.09677419355, 0.10015608741, 0.10639958377, 0.11056191467, 0.11238293444, 0.11264308013, 0.11966701353, 0.12408949011, 0.12486992716, 0.12799167534, 0.12903225807, 0.13241415193, 0.13527575442, 0.13865764828, 0.14281997919, 0.14464099896, 0.14490114464, 0.14594172737, 0.15192507804, 0.15608740895, 0.15634755463, 0.15712799168, 0.16024973985, 0.16129032258, 0.16467221644, 0.16571279917, 0.16753381894, 0.1709157128, 0.17481789802, 0.1750780437, 0.17689906348, 0.17715920916, 0.17819979188, 0.18340270552, 0.18418314256, 0.18834547347, 0.18860561915, 0.18938605619, 0.19146722164, 0.19250780437, 0.1935483871, 0.19693028096, 0.19797086368, 0.19901144641, 0.19979188346, 0.20317377732, 0.20603537981, 0.20707596254, 0.20733610822, 0.20915712799, 0.20941727367, 0.2104578564, 0.21253902185, 0.21566077003, 0.21644120708, 0.21852237253, 0.22060353798, 0.22086368366, 0.22164412071, 0.22372528616, 0.22398543184, 0.22476586889, 0.22580645161, 0.22892819979, 0.22918834547, 0.2302289282, 0.23126951093, 0.23204994797, 0.23335067638, 0.23543184183, 0.2372528616, 0.23829344433, 0.23933402706, 0.23959417274, 0.24063475546, 0.24141519251, 0.24167533819, 0.24271592092, 0.24349635796, 0.24479708637, 0.2458376691, 0.24765868887, 0.24791883455, 0.24869927159, 0.24895941727, 0.24973985432, 0.25, 0.25078043705, 0.2528616025, 0.25312174818, 0.25390218522, 0.25598335068, 0.25624349636, 0.2570239334, 0.25806451613, 0.26118626431, 0.26144640999, 0.26248699272, 0.26352757544, 0.26430801249, 0.2656087409, 0.26768990635, 0.26951092612, 0.27055150885, 0.27159209157, 0.27185223725, 0.27289281998, 0.27367325702, 0.27393340271, 0.27497398543, 0.27575442248, 0.27705515088, 0.27809573361, 0.27991675338, 0.28017689906, 0.28095733611, 0.28121748179, 0.28199791884, 0.28225806452, 0.28303850156, 0.28511966701, 0.2853798127, 0.28616024974, 0.28824141519, 0.28850156087, 0.28928199792, 0.29032258065, 0.29344432882, 0.29370447451, 0.29474505723, 0.29578563996, 0.296566077, 0.29786680541, 0.29994797086, 0.30176899064, 0.30280957336, 0.30385015609, 0.30411030177, 0.3051508845, 0.30593132154, 0.30619146722, 0.30723204995, 0.30801248699, 0.3093132154, 0.31035379813, 0.3121748179, 0.31243496358, 0.31321540062, 0.31347554631, 0.31425598335, 0.31451612903, 0.31529656608, 0.31737773153, 0.31763787721, 0.31841831426, 0.32049947971, 0.32075962539, 0.32154006244, 0.32258064516, 0.32570239334, 0.32596253902, 0.32700312175, 0.32804370448, 0.32882414152, 0.33012486993, 0.33220603538, 0.33402705515, 0.33506763788, 0.3361082206, 0.33636836629, 0.33740894901, 0.33818938606, 0.33844953174, 0.33949011446, 0.34027055151, 0.34157127992, 0.34261186264, 0.34443288241, 0.3446930281, 0.34547346514, 0.34573361082, 0.34651404787, 0.34677419355, 0.34755463059, 0.34963579605, 0.34989594173, 0.35067637877, 0.35275754423, 0.35301768991, 0.35379812695, 0.35483870968, 0.35796045786, 0.35822060354, 0.35926118626, 0.36030176899, 0.36108220604, 0.36238293444, 0.3644640999, 0.36628511967, 0.36732570239, 0.36836628512, 0.3686264308, 0.36966701353, 0.37044745057, 0.37070759625, 0.37174817898, 0.37252861603, 0.37382934443, 0.37486992716, 0.37669094693, 0.37695109261, 0.37773152966, 0.37799167534, 0.37877211238, 0.37903225807, 0.37981269511, 0.38189386056, 0.38215400624, 0.38293444329, 0.38501560874, 0.38527575442, 0.38605619147, 0.38709677419, 0.39021852237, 0.39047866805, 0.39151925078, 0.39255983351, 0.39334027055, 0.39464099896, 0.39672216441, 0.39854318418, 0.39958376691, 0.40062434964, 0.40088449532, 0.40192507804, 0.40270551509, 0.40296566077, 0.4040062435, 0.40478668054, 0.40608740895, 0.40712799168, 0.40894901145, 0.40920915713, 0.40998959417, 0.41024973985, 0.4110301769, 0.41129032258, 0.41207075963, 0.41415192508, 0.41441207076, 0.4151925078, 0.41727367326, 0.41753381894, 0.41831425598, 0.41935483871, 0.42247658689, 0.42273673257, 0.4237773153, 0.42481789802, 0.42559833507, 0.42689906348, 0.42898022893, 0.4308012487, 0.43184183143, 0.43288241415, 0.43314255983, 0.43418314256, 0.43496357961, 0.43522372529, 0.43626430801, 0.43704474506, 0.43834547347, 0.43938605619, 0.44120707596, 0.44146722164, 0.44224765869, 0.44250780437, 0.44328824142, 0.4435483871, 0.44432882414, 0.44640998959, 0.44667013528, 0.44745057232, 0.44953173777, 0.44979188346, 0.4505723205, 0.45161290323, 0.45473465141, 0.45499479709, 0.45603537981, 0.45707596254, 0.45785639958, 0.45915712799, 0.46123829344, 0.46305931322, 0.46409989594, 0.46514047867, 0.46540062435, 0.46644120708, 0.46722164412, 0.4674817898, 0.46852237253, 0.46930280957, 0.47060353798, 0.47164412071, 0.47346514048, 0.47372528616, 0.47450572321, 0.47476586889, 0.47554630593, 0.47580645161, 0.47658688866, 0.47866805411, 0.47892819979, 0.47970863684, 0.48178980229, 0.48204994797, 0.48283038502, 0.48387096774, 0.48699271592, 0.4872528616, 0.48829344433, 0.48933402706, 0.4901144641, 0.49141519251, 0.49349635796, 0.49531737773, 0.49635796046, 0.49739854318, 0.49765868887, 0.49869927159, 0.49947970864, 0.49973985432, 0.50078043705, 0.50156087409, 0.5028616025, 0.50390218522, 0.505723205, 0.50598335068, 0.50676378772, 0.5070239334, 0.50780437045, 0.50806451613, 0.50884495317, 0.51092611863, 0.51118626431, 0.51196670135, 0.51404786681, 0.51430801249, 0.51508844953, 0.51612903226, 0.51925078044, 0.51951092612, 0.52055150885, 0.52159209157, 0.52237252862, 0.52367325702, 0.52575442248, 0.52757544225, 0.52861602497, 0.5296566077, 0.52991675338, 0.53095733611, 0.53173777315, 0.53199791884, 0.53303850156, 0.53381893861, 0.53511966701, 0.53616024974, 0.53798126951, 0.53824141519, 0.53902185224, 0.53928199792, 0.54006243496, 0.54032258065, 0.54110301769, 0.54318418314, 0.54344432882, 0.54422476587, 0.54630593132, 0.546566077, 0.54734651405, 0.54838709677, 0.55150884495, 0.55176899064, 0.55280957336, 0.55385015609, 0.55463059313, 0.55593132154, 0.55801248699, 0.55983350676, 0.56087408949, 0.56191467222, 0.5621748179, 0.56321540062, 0.56399583767, 0.56425598335, 0.56529656608, 0.56607700312, 0.56737773153, 0.56841831426, 0.57023933403, 0.57049947971, 0.57127991675, 0.57154006244, 0.57232049948, 0.57258064516, 0.57336108221, 0.57544224766, 0.57570239334, 0.57648283039, 0.57856399584, 0.57882414152, 0.57960457856, 0.58064516129, 0.58376690947, 0.58402705515, 0.58506763788, 0.5861082206, 0.58688865765, 0.58818938606, 0.59027055151, 0.59209157128, 0.59313215401, 0.59417273673, 0.59443288241, 0.59547346514, 0.59625390219, 0.59651404787, 0.59755463059, 0.59833506764, 0.59963579605, 0.60067637877, 0.60249739854, 0.60275754423, 0.60353798127, 0.60379812695, 0.604578564, 0.60483870968, 0.60561914672, 0.60770031218, 0.60796045786, 0.6087408949, 0.61082206035, 0.61108220604, 0.61186264308, 0.61290322581, 0.61602497399, 0.61628511967, 0.61732570239, 0.61836628512, 0.61914672216, 0.62044745057, 0.62252861603, 0.6243496358, 0.62539021852, 0.62643080125, 0.62669094693, 0.62773152966, 0.6285119667, 0.62877211238, 0.62981269511, 0.63059313215, 0.63189386056, 0.63293444329, 0.63475546306, 0.63501560874, 0.63579604579, 0.63605619147, 0.63683662851, 0.63709677419, 0.63787721124, 0.63995837669, 0.64021852237, 0.64099895942, 0.64308012487, 0.64334027055, 0.6441207076, 0.64516129032, 0.6482830385, 0.64854318418, 0.64958376691, 0.65062434964, 0.65140478668, 0.65270551509, 0.65478668054, 0.65660770031, 0.65764828304, 0.65868886577, 0.65894901145, 0.65998959417, 0.66077003122, 0.6610301769, 0.66207075963, 0.66285119667, 0.66415192508, 0.6651925078, 0.66701352758, 0.66727367326, 0.6680541103, 0.66831425598, 0.66909469303, 0.66935483871, 0.67013527575, 0.67221644121, 0.67247658689, 0.67325702393, 0.67533818939, 0.67559833507, 0.67637877211, 0.67741935484, 0.68054110302, 0.6808012487, 0.68184183143, 0.68288241415, 0.6836628512, 0.68496357961, 0.68704474506, 0.68886576483, 0.68990634756, 0.69094693028, 0.69120707596, 0.69224765869, 0.69302809573, 0.69328824142, 0.69432882414, 0.69510926119, 0.69640998959, 0.69745057232, 0.69927159209, 0.69953173777, 0.70031217482, 0.7005723205, 0.70135275754, 0.70161290323, 0.70239334027, 0.70447450572, 0.70473465141, 0.70551508845, 0.7075962539, 0.70785639958, 0.70863683663, 0.70967741936, 0.71279916753, 0.71305931322, 0.71409989594, 0.71514047867, 0.71592091571, 0.71722164412, 0.71930280957, 0.72112382934, 0.72216441207, 0.7232049948, 0.72346514048, 0.72450572321, 0.72528616025, 0.72554630593, 0.72658688866, 0.7273673257, 0.72866805411, 0.72970863684, 0.73152965661, 0.73178980229, 0.73257023933, 0.73283038502, 0.73361082206, 0.73387096774, 0.73465140479, 0.73673257024, 0.73699271592, 0.73777315297, 0.73985431842, 0.7401144641, 0.74089490115, 0.74193548387, 0.74505723205, 0.74531737773, 0.74635796046, 0.74739854318, 0.74817898023, 0.74947970864, 0.75156087409, 0.75338189386, 0.75442247659, 0.75546305931, 0.755723205, 0.75676378772, 0.75754422477, 0.75780437045, 0.75884495317, 0.75962539022, 0.76092611863, 0.76196670135, 0.76378772112, 0.76404786681, 0.76482830385, 0.76508844953, 0.76586888658, 0.76612903226, 0.7669094693, 0.76899063476, 0.76925078044, 0.77003121748, 0.77211238293, 0.77237252862, 0.77315296566, 0.77419354839, 0.77731529657, 0.77757544225, 0.77861602497, 0.7796566077, 0.78043704475, 0.78173777315, 0.78381893861, 0.78563995838, 0.7866805411, 0.78772112383, 0.78798126951, 0.78902185224, 0.78980228928, 0.79006243496, 0.79110301769, 0.79188345474, 0.79318418314, 0.79422476587, 0.79604578564, 0.79630593132, 0.79708636837, 0.79734651405, 0.79812695109, 0.79838709677, 0.79916753382, 0.80124869927, 0.80150884495, 0.802289282, 0.80437044745, 0.80463059313, 0.80541103018, 0.8064516129, 0.80957336108, 0.80983350676, 0.81087408949, 0.81191467222, 0.81269510926, 0.81399583767, 0.81607700312, 0.81789802289, 0.81893860562, 0.81997918835, 0.82023933403, 0.82127991675, 0.8220603538, 0.82232049948, 0.82336108221, 0.82414151925, 0.82544224766, 0.82648283039, 0.82830385016, 0.82856399584, 0.82934443288, 0.82960457856, 0.83038501561, 0.83064516129, 0.83142559834, 0.83350676379, 0.83376690947, 0.83454734651, 0.83662851197, 0.83688865765, 0.83766909469, 0.83870967742, 0.8418314256, 0.84209157128, 0.84313215401, 0.84417273673, 0.84495317378, 0.84625390219, 0.84833506764, 0.85015608741, 0.85119667014, 0.85223725286, 0.85249739854, 0.85353798127, 0.85431841831, 0.854578564, 0.85561914672, 0.85639958377, 0.85770031218, 0.8587408949, 0.86056191467, 0.86082206035, 0.8616024974, 0.86186264308, 0.86264308013, 0.86290322581, 0.86368366285, 0.8657648283, 0.86602497399, 0.86680541103, 0.86888657648, 0.86914672216, 0.86992715921, 0.87096774194, 0.87408949011, 0.8743496358, 0.87539021852, 0.87643080125, 0.87721123829, 0.8785119667, 0.88059313215, 0.88241415193, 0.88345473465, 0.88449531738, 0.88475546306, 0.88579604579, 0.88657648283, 0.88683662851, 0.88787721124, 0.88865764828, 0.88995837669, 0.89099895942, 0.89281997919, 0.89308012487, 0.89386056192, 0.8941207076, 0.89490114464, 0.89516129032, 0.89594172737, 0.89802289282, 0.8982830385, 0.89906347555, 0.901144641, 0.90140478668, 0.90218522373, 0.90322580645, 0.90634755463, 0.90660770031, 0.90764828304, 0.90868886577, 0.90946930281, 0.91077003122, 0.91285119667, 0.91467221644, 0.91571279917, 0.91675338189, 0.91701352758, 0.9180541103, 0.91883454735, 0.91909469303, 0.92013527575, 0.9209157128, 0.92221644121, 0.92325702393, 0.9250780437, 0.92533818939, 0.92611862643, 0.92637877211, 0.92715920916, 0.92741935484, 0.92819979188, 0.93028095734, 0.93054110302, 0.93132154006, 0.93340270552, 0.9336628512, 0.93444328824, 0.93548387097, 0.93860561915, 0.93886576483, 0.93990634756, 0.94094693028, 0.94172736733, 0.94302809573, 0.94510926119, 0.94693028096, 0.94797086368, 0.94901144641, 0.94927159209, 0.95031217482, 0.95109261186, 0.95135275754, 0.95239334027, 0.95317377732, 0.95447450572, 0.95551508845, 0.95733610822, 0.9575962539, 0.95837669095, 0.95863683663, 0.95941727367, 0.95967741936, 0.9604578564, 0.96253902185, 0.96279916753, 0.96357960458, 0.96566077003, 0.96592091571, 0.96670135276, 0.96774193548, 0.97086368366, 0.97112382934, 0.97216441207, 0.9732049948, 0.97398543184, 0.97528616025, 0.9773673257, 0.97918834547, 0.9802289282, 0.98126951093, 0.98152965661, 0.98257023933, 0.98335067638, 0.98361082206, 0.98465140479, 0.98543184183, 0.98673257024, 0.98777315297, 0.98959417274, 0.98985431842, 0.99063475546, 0.99089490115, 0.99167533819, 0.99193548387, 0.99271592092, 0.99479708637, 0.99505723205, 0.9958376691, 0.99791883455, 0.99817898023, 0.99895941727] pattern_odd=[0.0, 0.0031217482, 0.0033818939, 0.0044224766, 0.0054630593, 0.0062434964, 0.0075442248, 0.0096253902, 0.01144641, 0.0124869927, 0.0135275754, 0.0137877211, 0.0148283039, 0.0156087409, 0.0158688866, 0.0169094693, 0.0176899063, 0.0189906348, 0.0200312175, 0.0218522373, 0.0221123829, 0.02289282, 0.0231529657, 0.0239334027, 0.0241935484, 0.0249739854, 0.0270551509, 0.0273152966, 0.0280957336, 0.0301768991, 0.0304370447, 0.0312174818, 0.0322580645, 0.0353798127, 0.0356399584, 0.0366805411, 0.0377211238, 0.0385015609, 0.0398022893, 0.0418834547, 0.0437044745, 0.0447450572, 0.04578564, 0.0460457856, 0.0470863684, 0.0478668054, 0.0481269511, 0.0491675338, 0.0499479709, 0.0512486993, 0.052289282, 0.0541103018, 0.0543704475, 0.0551508845, 0.0554110302, 0.0561914672, 0.0564516129, 0.0572320499, 0.0593132154, 0.0595733611, 0.0603537981, 0.0624349636, 0.0626951093, 0.0634755463, 0.064516129, 0.0676378772, 0.0678980229, 0.0689386056, 0.0699791883, 0.0707596254, 0.0720603538, 0.0741415193, 0.075962539, 0.0770031217, 0.0780437045, 0.0783038502, 0.0793444329, 0.0801248699, 0.0803850156, 0.0814255983, 0.0822060354, 0.0835067638, 0.0845473465, 0.0863683663, 0.086628512, 0.087408949, 0.0876690947, 0.0884495317, 0.0887096774, 0.0894901145, 0.0915712799, 0.0918314256, 0.0926118626, 0.0946930281, 0.0949531738, 0.0957336108, 0.0967741935, 0.0998959417, 0.1001560874, 0.1011966701, 0.1022372529, 0.1030176899, 0.1043184183, 0.1063995838, 0.1082206035, 0.1092611863, 0.110301769, 0.1105619147, 0.1116024974, 0.1123829344, 0.1126430801, 0.1136836629, 0.1144640999, 0.1157648283, 0.116805411, 0.1186264308, 0.1188865765, 0.1196670135, 0.1199271592, 0.1207075963, 0.1209677419, 0.121748179, 0.1238293444, 0.1240894901, 0.1248699272, 0.1269510926, 0.1272112383, 0.1279916753, 0.1290322581, 0.1321540062, 0.1324141519, 0.1334547347, 0.1344953174, 0.1352757544, 0.1365764828, 0.1386576483, 0.1404786681, 0.1415192508, 0.1425598335, 0.1428199792, 0.1438605619, 0.144640999, 0.1449011446, 0.1459417274, 0.1467221644, 0.1480228928, 0.1490634755, 0.1508844953, 0.151144641, 0.151925078, 0.1521852237, 0.1529656608, 0.1532258065, 0.1540062435, 0.1560874089, 0.1563475546, 0.1571279917, 0.1592091571, 0.1594693028, 0.1602497399, 0.1612903226, 0.1644120708, 0.1646722164, 0.1657127992, 0.1667533819, 0.1675338189, 0.1688345473, 0.1709157128, 0.1727367326, 0.1737773153, 0.174817898, 0.1750780437, 0.1761186264, 0.1768990635, 0.1771592092, 0.1781997919, 0.1789802289, 0.1802809573, 0.1813215401, 0.1831425598, 0.1834027055, 0.1841831426, 0.1844432882, 0.1852237253, 0.185483871, 0.186264308, 0.1883454735, 0.1886056191, 0.1893860562, 0.1914672216, 0.1917273673, 0.1925078044, 0.1935483871, 0.1966701353, 0.196930281, 0.1979708637, 0.1990114464, 0.1997918835, 0.2010926119, 0.2031737773, 0.2049947971, 0.2060353798, 0.2070759625, 0.2073361082, 0.2083766909, 0.209157128, 0.2094172737, 0.2104578564, 0.2112382934, 0.2125390219, 0.2135796046, 0.2154006244, 0.21566077, 0.2164412071, 0.2167013528, 0.2174817898, 0.2177419355, 0.2185223725, 0.220603538, 0.2208636837, 0.2216441207, 0.2237252862, 0.2239854318, 0.2247658689, 0.2258064516, 0.2289281998, 0.2291883455, 0.2302289282, 0.2312695109, 0.232049948, 0.2333506764, 0.2354318418, 0.2372528616, 0.2382934443, 0.2393340271, 0.2395941727, 0.2406347555, 0.2414151925, 0.2416753382, 0.2427159209, 0.243496358, 0.2447970864, 0.2458376691, 0.2476586889, 0.2479188345, 0.2486992716, 0.2489594173, 0.2497398543, 0.25, 0.250780437, 0.2528616025, 0.2531217482, 0.2539021852, 0.2559833507, 0.2562434964, 0.2570239334, 0.2580645161, 0.2611862643, 0.26144641, 0.2624869927, 0.2635275754, 0.2643080125, 0.2656087409, 0.2676899063, 0.2695109261, 0.2705515088, 0.2715920916, 0.2718522373, 0.27289282, 0.273673257, 0.2739334027, 0.2749739854, 0.2757544225, 0.2770551509, 0.2780957336, 0.2799167534, 0.2801768991, 0.2809573361, 0.2812174818, 0.2819979188, 0.2822580645, 0.2830385016, 0.285119667, 0.2853798127, 0.2861602497, 0.2882414152, 0.2885015609, 0.2892819979, 0.2903225806, 0.2934443288, 0.2937044745, 0.2947450572, 0.29578564, 0.296566077, 0.2978668054, 0.2999479709, 0.3017689906, 0.3028095734, 0.3038501561, 0.3041103018, 0.3051508845, 0.3059313215, 0.3061914672, 0.3072320499, 0.308012487, 0.3093132154, 0.3103537981, 0.3121748179, 0.3124349636, 0.3132154006, 0.3134755463, 0.3142559834, 0.314516129, 0.3152965661, 0.3173777315, 0.3176378772, 0.3184183143, 0.3204994797, 0.3207596254, 0.3215400624, 0.3225806452, 0.3257023933, 0.325962539, 0.3270031217, 0.3280437045, 0.3288241415, 0.3301248699, 0.3322060354, 0.3340270552, 0.3350676379, 0.3361082206, 0.3363683663, 0.337408949, 0.3381893861, 0.3384495317, 0.3394901145, 0.3402705515, 0.3415712799, 0.3426118626, 0.3444328824, 0.3446930281, 0.3454734651, 0.3457336108, 0.3465140479, 0.3467741935, 0.3475546306, 0.349635796, 0.3498959417, 0.3506763788, 0.3527575442, 0.3530176899, 0.353798127, 0.3548387097, 0.3579604579, 0.3582206035, 0.3592611863, 0.360301769, 0.361082206, 0.3623829344, 0.3644640999, 0.3662851197, 0.3673257024, 0.3683662851, 0.3686264308, 0.3696670135, 0.3704474506, 0.3707075963, 0.371748179, 0.372528616, 0.3738293444, 0.3748699272, 0.3766909469, 0.3769510926, 0.3777315297, 0.3779916753, 0.3787721124, 0.3790322581, 0.3798126951, 0.3818938606, 0.3821540062, 0.3829344433, 0.3850156087, 0.3852757544, 0.3860561915, 0.3870967742, 0.3902185224, 0.3904786681, 0.3915192508, 0.3925598335, 0.3933402706, 0.394640999, 0.3967221644, 0.3985431842, 0.3995837669, 0.4006243496, 0.4008844953, 0.401925078, 0.4027055151, 0.4029656608, 0.4040062435, 0.4047866805, 0.4060874089, 0.4071279917, 0.4089490114, 0.4092091571, 0.4099895942, 0.4102497399, 0.4110301769, 0.4112903226, 0.4120707596, 0.4141519251, 0.4144120708, 0.4151925078, 0.4172736733, 0.4175338189, 0.418314256, 0.4193548387, 0.4224765869, 0.4227367326, 0.4237773153, 0.424817898, 0.4255983351, 0.4268990635, 0.4289802289, 0.4308012487, 0.4318418314, 0.4328824142, 0.4331425598, 0.4341831426, 0.4349635796, 0.4352237253, 0.436264308, 0.4370447451, 0.4383454735, 0.4393860562, 0.441207076, 0.4414672216, 0.4422476587, 0.4425078044, 0.4432882414, 0.4435483871, 0.4443288241, 0.4464099896, 0.4466701353, 0.4474505723, 0.4495317378, 0.4497918835, 0.4505723205, 0.4516129032, 0.4547346514, 0.4549947971, 0.4560353798, 0.4570759625, 0.4578563996, 0.459157128, 0.4612382934, 0.4630593132, 0.4640998959, 0.4651404787, 0.4654006244, 0.4664412071, 0.4672216441, 0.4674817898, 0.4685223725, 0.4693028096, 0.470603538, 0.4716441207, 0.4734651405, 0.4737252862, 0.4745057232, 0.4747658689, 0.4755463059, 0.4758064516, 0.4765868887, 0.4786680541, 0.4789281998, 0.4797086368, 0.4817898023, 0.482049948, 0.482830385, 0.4838709677, 0.4869927159, 0.4872528616, 0.4882934443, 0.4893340271, 0.4901144641, 0.4914151925, 0.493496358, 0.4953173777, 0.4963579605, 0.4973985432, 0.4976586889, 0.4986992716, 0.4994797086, 0.4997398543, 0.500780437, 0.5015608741, 0.5028616025, 0.5039021852, 0.505723205, 0.5059833507, 0.5067637877, 0.5070239334, 0.5078043704, 0.5080645161, 0.5088449532, 0.5109261186, 0.5111862643, 0.5119667014, 0.5140478668, 0.5143080125, 0.5150884495, 0.5161290323, 0.5192507804, 0.5195109261, 0.5205515088, 0.5215920916, 0.5223725286, 0.523673257, 0.5257544225, 0.5275754422, 0.528616025, 0.5296566077, 0.5299167534, 0.5309573361, 0.5317377732, 0.5319979188, 0.5330385016, 0.5338189386, 0.535119667, 0.5361602497, 0.5379812695, 0.5382414152, 0.5390218522, 0.5392819979, 0.540062435, 0.5403225806, 0.5411030177, 0.5431841831, 0.5434443288, 0.5442247659, 0.5463059313, 0.546566077, 0.547346514, 0.5483870968, 0.551508845, 0.5517689906, 0.5528095734, 0.5538501561, 0.5546305931, 0.5559313215, 0.558012487, 0.5598335068, 0.5608740895, 0.5619146722, 0.5621748179, 0.5632154006, 0.5639958377, 0.5642559834, 0.5652965661, 0.5660770031, 0.5673777315, 0.5684183143, 0.570239334, 0.5704994797, 0.5712799168, 0.5715400624, 0.5723204995, 0.5725806452, 0.5733610822, 0.5754422477, 0.5757023933, 0.5764828304, 0.5785639958, 0.5788241415, 0.5796045786, 0.5806451613, 0.5837669095, 0.5840270552, 0.5850676379, 0.5861082206, 0.5868886576, 0.5881893861, 0.5902705515, 0.5920915713, 0.593132154, 0.5941727367, 0.5944328824, 0.5954734651, 0.5962539022, 0.5965140479, 0.5975546306, 0.5983350676, 0.599635796, 0.6006763788, 0.6024973985, 0.6027575442, 0.6035379813, 0.603798127, 0.604578564, 0.6048387097, 0.6056191467, 0.6077003122, 0.6079604579, 0.6087408949, 0.6108220604, 0.611082206, 0.6118626431, 0.6129032258, 0.616024974, 0.6162851197, 0.6173257024, 0.6183662851, 0.6191467222, 0.6204474506, 0.622528616, 0.6243496358, 0.6253902185, 0.6264308012, 0.6266909469, 0.6277315297, 0.6285119667, 0.6287721124, 0.6298126951, 0.6305931322, 0.6318938606, 0.6329344433, 0.6347554631, 0.6350156087, 0.6357960458, 0.6360561915, 0.6368366285, 0.6370967742, 0.6378772112, 0.6399583767, 0.6402185224, 0.6409989594, 0.6430801249, 0.6433402706, 0.6441207076, 0.6451612903, 0.6482830385, 0.6485431842, 0.6495837669, 0.6506243496, 0.6514047867, 0.6527055151, 0.6547866805, 0.6566077003, 0.657648283, 0.6586888658, 0.6589490114, 0.6599895942, 0.6607700312, 0.6610301769, 0.6620707596, 0.6628511967, 0.6641519251, 0.6651925078, 0.6670135276, 0.6672736733, 0.6680541103, 0.668314256, 0.669094693, 0.6693548387, 0.6701352758, 0.6722164412, 0.6724765869, 0.6732570239, 0.6753381894, 0.6755983351, 0.6763787721, 0.6774193548, 0.680541103, 0.6808012487, 0.6818418314, 0.6828824142, 0.6836628512, 0.6849635796, 0.6870447451, 0.6888657648, 0.6899063476, 0.6909469303, 0.691207076, 0.6922476587, 0.6930280957, 0.6932882414, 0.6943288241, 0.6951092612, 0.6964099896, 0.6974505723, 0.6992715921, 0.6995317378, 0.7003121748, 0.7005723205, 0.7013527575, 0.7016129032, 0.7023933403, 0.7044745057, 0.7047346514, 0.7055150885, 0.7075962539, 0.7078563996, 0.7086368366, 0.7096774194, 0.7127991675, 0.7130593132, 0.7140998959, 0.7151404787, 0.7159209157, 0.7172216441, 0.7193028096, 0.7211238293, 0.7221644121, 0.7232049948, 0.7234651405, 0.7245057232, 0.7252861603, 0.7255463059, 0.7265868887, 0.7273673257, 0.7286680541, 0.7297086368, 0.7315296566, 0.7317898023, 0.7325702393, 0.732830385, 0.7336108221, 0.7338709677, 0.7346514048, 0.7367325702, 0.7369927159, 0.737773153, 0.7398543184, 0.7401144641, 0.7408949011, 0.7419354839, 0.7450572321, 0.7453173777, 0.7463579605, 0.7473985432, 0.7481789802, 0.7494797086, 0.7515608741, 0.7533818939, 0.7544224766, 0.7554630593, 0.755723205, 0.7567637877, 0.7575442248, 0.7578043704, 0.7588449532, 0.7596253902, 0.7609261186, 0.7619667014, 0.7637877211, 0.7640478668, 0.7648283039, 0.7650884495, 0.7658688866, 0.7661290323, 0.7669094693, 0.7689906348, 0.7692507804, 0.7700312175, 0.7721123829, 0.7723725286, 0.7731529657, 0.7741935484, 0.7773152966, 0.7775754422, 0.778616025, 0.7796566077, 0.7804370447, 0.7817377732, 0.7838189386, 0.7856399584, 0.7866805411, 0.7877211238, 0.7879812695, 0.7890218522, 0.7898022893, 0.790062435, 0.7911030177, 0.7918834547, 0.7931841831, 0.7942247659, 0.7960457856, 0.7963059313, 0.7970863684, 0.797346514, 0.7981269511, 0.7983870968, 0.7991675338, 0.8012486993, 0.801508845, 0.802289282, 0.8043704475, 0.8046305931, 0.8054110302, 0.8064516129, 0.8095733611, 0.8098335068, 0.8108740895, 0.8119146722, 0.8126951093, 0.8139958377, 0.8160770031, 0.8178980229, 0.8189386056, 0.8199791883, 0.820239334, 0.8212799168, 0.8220603538, 0.8223204995, 0.8233610822, 0.8241415193, 0.8254422477, 0.8264828304, 0.8283038502, 0.8285639958, 0.8293444329, 0.8296045786, 0.8303850156, 0.8306451613, 0.8314255983, 0.8335067638, 0.8337669095, 0.8345473465, 0.836628512, 0.8368886576, 0.8376690947, 0.8387096774, 0.8418314256, 0.8420915713, 0.843132154, 0.8441727367, 0.8449531738, 0.8462539022, 0.8483350676, 0.8501560874, 0.8511966701, 0.8522372529, 0.8524973985, 0.8535379813, 0.8543184183, 0.854578564, 0.8556191467, 0.8563995838, 0.8577003122, 0.8587408949, 0.8605619147, 0.8608220604, 0.8616024974, 0.8618626431, 0.8626430801, 0.8629032258, 0.8636836629, 0.8657648283, 0.866024974, 0.866805411, 0.8688865765, 0.8691467222, 0.8699271592, 0.8709677419, 0.8740894901, 0.8743496358, 0.8753902185, 0.8764308012, 0.8772112383, 0.8785119667, 0.8805931322, 0.8824141519, 0.8834547347, 0.8844953174, 0.8847554631, 0.8857960458, 0.8865764828, 0.8868366285, 0.8878772112, 0.8886576483, 0.8899583767, 0.8909989594, 0.8928199792, 0.8930801249, 0.8938605619, 0.8941207076, 0.8949011446, 0.8951612903, 0.8959417274, 0.8980228928, 0.8982830385, 0.8990634755, 0.901144641, 0.9014047867, 0.9021852237, 0.9032258065, 0.9063475546, 0.9066077003, 0.907648283, 0.9086888658, 0.9094693028, 0.9107700312, 0.9128511967, 0.9146722164, 0.9157127992, 0.9167533819, 0.9170135276, 0.9180541103, 0.9188345473, 0.919094693, 0.9201352758, 0.9209157128, 0.9222164412, 0.9232570239, 0.9250780437, 0.9253381894, 0.9261186264, 0.9263787721, 0.9271592092, 0.9274193548, 0.9281997919, 0.9302809573, 0.930541103, 0.9313215401, 0.9334027055, 0.9336628512, 0.9344432882, 0.935483871, 0.9386056191, 0.9388657648, 0.9399063476, 0.9409469303, 0.9417273673, 0.9430280957, 0.9451092612, 0.946930281, 0.9479708637, 0.9490114464, 0.9492715921, 0.9503121748, 0.9510926119, 0.9513527575, 0.9523933403, 0.9531737773, 0.9544745057, 0.9555150885, 0.9573361082, 0.9575962539, 0.9583766909, 0.9586368366, 0.9594172737, 0.9596774194, 0.9604578564, 0.9625390219, 0.9627991675, 0.9635796046, 0.96566077, 0.9659209157, 0.9667013528, 0.9677419355, 0.9708636837, 0.9711238293, 0.9721644121, 0.9732049948, 0.9739854318, 0.9752861603, 0.9773673257, 0.9791883455, 0.9802289282, 0.9812695109, 0.9815296566, 0.9825702393, 0.9833506764, 0.9836108221, 0.9846514048, 0.9854318418, 0.9867325702, 0.987773153, 0.9895941727, 0.9898543184, 0.9906347555, 0.9908949011, 0.9916753382, 0.9919354839, 0.9927159209, 0.9947970864, 0.9950572321, 0.9958376691, 0.9979188345, 0.9981789802, 0.9989594173] pattern_even=[0.0, 0.0031217482, 0.0033818939, 0.0044224766, 0.0054630593, 0.0062434964, 0.0075442248, 0.0096253902, 0.01144641, 0.0124869927, 0.0135275754, 0.0137877211, 0.0148283039, 0.0156087409, 0.0158688866, 0.0169094693, 0.0176899063, 0.0189906348, 0.0200312175, 0.0218522373, 0.0221123829, 0.02289282, 0.0231529657, 0.0239334027, 0.0241935484, 0.0249739854, 0.0270551509, 0.0273152966, 0.0280957336, 0.0301768991, 0.0304370447, 0.0312174818, 0.0322580645, 0.0353798127, 0.0356399584, 0.0366805411, 0.0377211238, 0.0385015609, 0.0398022893, 0.0418834547, 0.0437044745, 0.0447450572, 0.04578564, 0.0460457856, 0.0470863684, 0.0478668054, 0.0481269511, 0.0491675338, 0.0499479709, 0.0512486993, 0.052289282, 0.0541103018, 0.0543704475, 0.0551508845, 0.0554110302, 0.0561914672, 0.0564516129, 0.0572320499, 0.0593132154, 0.0595733611, 0.0603537981, 0.0624349636, 0.0626951093, 0.0634755463, 0.064516129, 0.0676378772, 0.0678980229, 0.0689386056, 0.0699791883, 0.0707596254, 0.0720603538, 0.0741415193, 0.075962539, 0.0770031217, 0.0780437045, 0.0783038502, 0.0793444329, 0.0801248699, 0.0803850156, 0.0814255983, 0.0822060354, 0.0835067638, 0.0845473465, 0.0863683663, 0.086628512, 0.087408949, 0.0876690947, 0.0884495317, 0.0887096774, 0.0894901145, 0.0915712799, 0.0918314256, 0.0926118626, 0.0946930281, 0.0949531738, 0.0957336108, 0.0967741935, 0.0998959417, 0.1001560874, 0.1011966701, 0.1022372529, 0.1030176899, 0.1043184183, 0.1063995838, 0.1082206035, 0.1092611863, 0.110301769, 0.1105619147, 0.1116024974, 0.1123829344, 0.1126430801, 0.1136836629, 0.1144640999, 0.1157648283, 0.116805411, 0.1186264308, 0.1188865765, 0.1196670135, 0.1199271592, 0.1207075963, 0.1209677419, 0.121748179, 0.1238293444, 0.1240894901, 0.1248699272, 0.1269510926, 0.1272112383, 0.1279916753, 0.1290322581, 0.1321540062, 0.1324141519, 0.1334547347, 0.1344953174, 0.1352757544, 0.1365764828, 0.1386576483, 0.1404786681, 0.1415192508, 0.1425598335, 0.1428199792, 0.1438605619, 0.144640999, 0.1449011446, 0.1459417274, 0.1467221644, 0.1480228928, 0.1490634755, 0.1508844953, 0.151144641, 0.151925078, 0.1521852237, 0.1529656608, 0.1532258065, 0.1540062435, 0.1560874089, 0.1563475546, 0.1571279917, 0.1592091571, 0.1594693028, 0.1602497399, 0.1612903226, 0.1644120708, 0.1646722164, 0.1657127992, 0.1667533819, 0.1675338189, 0.1688345473, 0.1709157128, 0.1727367326, 0.1737773153, 0.174817898, 0.1750780437, 0.1761186264, 0.1768990635, 0.1771592092, 0.1781997919, 0.1789802289, 0.1802809573, 0.1813215401, 0.1831425598, 0.1834027055, 0.1841831426, 0.1844432882, 0.1852237253, 0.185483871, 0.186264308, 0.1883454735, 0.1886056191, 0.1893860562, 0.1914672216, 0.1917273673, 0.1925078044, 0.1935483871, 0.1966701353, 0.196930281, 0.1979708637, 0.1990114464, 0.1997918835, 0.2010926119, 0.2031737773, 0.2049947971, 0.2060353798, 0.2070759625, 0.2073361082, 0.2083766909, 0.209157128, 0.2094172737, 0.2104578564, 0.2112382934, 0.2125390219, 0.2135796046, 0.2154006244, 0.21566077, 0.2164412071, 0.2167013528, 0.2174817898, 0.2177419355, 0.2185223725, 0.220603538, 0.2208636837, 0.2216441207, 0.2237252862, 0.2239854318, 0.2247658689, 0.2258064516, 0.2289281998, 0.2291883455, 0.2302289282, 0.2312695109, 0.232049948, 0.2333506764, 0.2354318418, 0.2372528616, 0.2382934443, 0.2393340271, 0.2395941727, 0.2406347555, 0.2414151925, 0.2416753382, 0.2427159209, 0.243496358, 0.2447970864, 0.2458376691, 0.2476586889, 0.2479188345, 0.2486992716, 0.2489594173, 0.2497398543, 0.25, 0.250780437, 0.2528616025, 0.2531217482, 0.2539021852, 0.2559833507, 0.2562434964, 0.2570239334, 0.2580645161, 0.2611862643, 0.26144641, 0.2624869927, 0.2635275754, 0.2643080125, 0.2656087409, 0.2676899063, 0.2695109261, 0.2705515088, 0.2715920916, 0.2718522373, 0.27289282, 0.273673257, 0.2739334027, 0.2749739854, 0.2757544225, 0.2770551509, 0.2780957336, 0.2799167534, 0.2801768991, 0.2809573361, 0.2812174818, 0.2819979188, 0.2822580645, 0.2830385016, 0.285119667, 0.2853798127, 0.2861602497, 0.2882414152, 0.2885015609, 0.2892819979, 0.2903225806, 0.2934443288, 0.2937044745, 0.2947450572, 0.29578564, 0.296566077, 0.2978668054, 0.2999479709, 0.3017689906, 0.3028095734, 0.3038501561, 0.3041103018, 0.3051508845, 0.3059313215, 0.3061914672, 0.3072320499, 0.308012487, 0.3093132154, 0.3103537981, 0.3121748179, 0.3124349636, 0.3132154006, 0.3134755463, 0.3142559834, 0.314516129, 0.3152965661, 0.3173777315, 0.3176378772, 0.3184183143, 0.3204994797, 0.3207596254, 0.3215400624, 0.3225806452, 0.3257023933, 0.325962539, 0.3270031217, 0.3280437045, 0.3288241415, 0.3301248699, 0.3322060354, 0.3340270552, 0.3350676379, 0.3361082206, 0.3363683663, 0.337408949, 0.3381893861, 0.3384495317, 0.3394901145, 0.3402705515, 0.3415712799, 0.3426118626, 0.3444328824, 0.3446930281, 0.3454734651, 0.3457336108, 0.3465140479, 0.3467741935, 0.3475546306, 0.349635796, 0.3498959417, 0.3506763788, 0.3527575442, 0.3530176899, 0.353798127, 0.3548387097, 0.3579604579, 0.3582206035, 0.3592611863, 0.360301769, 0.361082206, 0.3623829344, 0.3644640999, 0.3662851197, 0.3673257024, 0.3683662851, 0.3686264308, 0.3696670135, 0.3704474506, 0.3707075963, 0.371748179, 0.372528616, 0.3738293444, 0.3748699272, 0.3766909469, 0.3769510926, 0.3777315297, 0.3779916753, 0.3787721124, 0.3790322581, 0.3798126951, 0.3818938606, 0.3821540062, 0.3829344433, 0.3850156087, 0.3852757544, 0.3860561915, 0.3870967742, 0.3902185224, 0.3904786681, 0.3915192508, 0.3925598335, 0.3933402706, 0.394640999, 0.3967221644, 0.3985431842, 0.3995837669, 0.4006243496, 0.4008844953, 0.401925078, 0.4027055151, 0.4029656608, 0.4040062435, 0.4047866805, 0.4060874089, 0.4071279917, 0.4089490114, 0.4092091571, 0.4099895942, 0.4102497399, 0.4110301769, 0.4112903226, 0.4120707596, 0.4141519251, 0.4144120708, 0.4151925078, 0.4172736733, 0.4175338189, 0.418314256, 0.4193548387, 0.4224765869, 0.4227367326, 0.4237773153, 0.424817898, 0.4255983351, 0.4268990635, 0.4289802289, 0.4308012487, 0.4318418314, 0.4328824142, 0.4331425598, 0.4341831426, 0.4349635796, 0.4352237253, 0.436264308, 0.4370447451, 0.4383454735, 0.4393860562, 0.441207076, 0.4414672216, 0.4422476587, 0.4425078044, 0.4432882414, 0.4435483871, 0.4443288241, 0.4464099896, 0.4466701353, 0.4474505723, 0.4495317378, 0.4497918835, 0.4505723205, 0.4516129032, 0.4547346514, 0.4549947971, 0.4560353798, 0.4570759625, 0.4578563996, 0.459157128, 0.4612382934, 0.4630593132, 0.4640998959, 0.4651404787, 0.4654006244, 0.4664412071, 0.4672216441, 0.4674817898, 0.4685223725, 0.4693028096, 0.470603538, 0.4716441207, 0.4734651405, 0.4737252862, 0.4745057232, 0.4747658689, 0.4755463059, 0.4758064516, 0.4765868887, 0.4786680541, 0.4789281998, 0.4797086368, 0.4817898023, 0.482049948, 0.482830385, 0.4838709677, 0.4869927159, 0.4872528616, 0.4882934443, 0.4893340271, 0.4901144641, 0.4914151925, 0.493496358, 0.4953173777, 0.4963579605, 0.4973985432, 0.4976586889, 0.4986992716, 0.4994797086, 0.4997398543, 0.500780437, 0.5015608741, 0.5028616025, 0.5039021852, 0.505723205, 0.5059833507, 0.5067637877, 0.5070239334, 0.5078043704, 0.5080645161, 0.5088449532, 0.5109261186, 0.5111862643, 0.5119667014, 0.5140478668, 0.5143080125, 0.5150884495, 0.5161290323, 0.5192507804, 0.5195109261, 0.5205515088, 0.5215920916, 0.5223725286, 0.523673257, 0.5257544225, 0.5275754422, 0.528616025, 0.5296566077, 0.5299167534, 0.5309573361, 0.5317377732, 0.5319979188, 0.5330385016, 0.5338189386, 0.535119667, 0.5361602497, 0.5379812695, 0.5382414152, 0.5390218522, 0.5392819979, 0.540062435, 0.5403225806, 0.5411030177, 0.5431841831, 0.5434443288, 0.5442247659, 0.5463059313, 0.546566077, 0.547346514, 0.5483870968, 0.551508845, 0.5517689906, 0.5528095734, 0.5538501561, 0.5546305931, 0.5559313215, 0.558012487, 0.5598335068, 0.5608740895, 0.5619146722, 0.5621748179, 0.5632154006, 0.5639958377, 0.5642559834, 0.5652965661, 0.5660770031, 0.5673777315, 0.5684183143, 0.570239334, 0.5704994797, 0.5712799168, 0.5715400624, 0.5723204995, 0.5725806452, 0.5733610822, 0.5754422477, 0.5757023933, 0.5764828304, 0.5785639958, 0.5788241415, 0.5796045786, 0.5806451613, 0.5837669095, 0.5840270552, 0.5850676379, 0.5861082206, 0.5868886576, 0.5881893861, 0.5902705515, 0.5920915713, 0.593132154, 0.5941727367, 0.5944328824, 0.5954734651, 0.5962539022, 0.5965140479, 0.5975546306, 0.5983350676, 0.599635796, 0.6006763788, 0.6024973985, 0.6027575442, 0.6035379813, 0.603798127, 0.604578564, 0.6048387097, 0.6056191467, 0.6077003122, 0.6079604579, 0.6087408949, 0.6108220604, 0.611082206, 0.6118626431, 0.6129032258, 0.616024974, 0.6162851197, 0.6173257024, 0.6183662851, 0.6191467222, 0.6204474506, 0.622528616, 0.6243496358, 0.6253902185, 0.6264308012, 0.6266909469, 0.6277315297, 0.6285119667, 0.6287721124, 0.6298126951, 0.6305931322, 0.6318938606, 0.6329344433, 0.6347554631, 0.6350156087, 0.6357960458, 0.6360561915, 0.6368366285, 0.6370967742, 0.6378772112, 0.6399583767, 0.6402185224, 0.6409989594, 0.6430801249, 0.6433402706, 0.6441207076, 0.6451612903, 0.6482830385, 0.6485431842, 0.6495837669, 0.6506243496, 0.6514047867, 0.6527055151, 0.6547866805, 0.6566077003, 0.657648283, 0.6586888658, 0.6589490114, 0.6599895942, 0.6607700312, 0.6610301769, 0.6620707596, 0.6628511967, 0.6641519251, 0.6651925078, 0.6670135276, 0.6672736733, 0.6680541103, 0.668314256, 0.669094693, 0.6693548387, 0.6701352758, 0.6722164412, 0.6724765869, 0.6732570239, 0.6753381894, 0.6755983351, 0.6763787721, 0.6774193548, 0.680541103, 0.6808012487, 0.6818418314, 0.6828824142, 0.6836628512, 0.6849635796, 0.6870447451, 0.6888657648, 0.6899063476, 0.6909469303, 0.691207076, 0.6922476587, 0.6930280957, 0.6932882414, 0.6943288241, 0.6951092612, 0.6964099896, 0.6974505723, 0.6992715921, 0.6995317378, 0.7003121748, 0.7005723205, 0.7013527575, 0.7016129032, 0.7023933403, 0.7044745057, 0.7047346514, 0.7055150885, 0.7075962539, 0.7078563996, 0.7086368366, 0.7096774194, 0.7127991675, 0.7130593132, 0.7140998959, 0.7151404787, 0.7159209157, 0.7172216441, 0.7193028096, 0.7211238293, 0.7221644121, 0.7232049948, 0.7234651405, 0.7245057232, 0.7252861603, 0.7255463059, 0.7265868887, 0.7273673257, 0.7286680541, 0.7297086368, 0.7315296566, 0.7317898023, 0.7325702393, 0.732830385, 0.7336108221, 0.7338709677, 0.7346514048, 0.7367325702, 0.7369927159, 0.737773153, 0.7398543184, 0.7401144641, 0.7408949011, 0.7419354839, 0.7450572321, 0.7453173777, 0.7463579605, 0.7473985432, 0.7481789802, 0.7494797086, 0.7515608741, 0.7533818939, 0.7544224766, 0.7554630593, 0.755723205, 0.7567637877, 0.7575442248, 0.7578043704, 0.7588449532, 0.7596253902, 0.7609261186, 0.7619667014, 0.7637877211, 0.7640478668, 0.7648283039, 0.7650884495, 0.7658688866, 0.7661290323, 0.7669094693, 0.7689906348, 0.7692507804, 0.7700312175, 0.7721123829, 0.7723725286, 0.7731529657, 0.7741935484, 0.7773152966, 0.7775754422, 0.778616025, 0.7796566077, 0.7804370447, 0.7817377732, 0.7838189386, 0.7856399584, 0.7866805411, 0.7877211238, 0.7879812695, 0.7890218522, 0.7898022893, 0.790062435, 0.7911030177, 0.7918834547, 0.7931841831, 0.7942247659, 0.7960457856, 0.7963059313, 0.7970863684, 0.797346514, 0.7981269511, 0.7983870968, 0.7991675338, 0.8012486993, 0.801508845, 0.802289282, 0.8043704475, 0.8046305931, 0.8054110302, 0.8064516129, 0.8095733611, 0.8098335068, 0.8108740895, 0.8119146722, 0.8126951093, 0.8139958377, 0.8160770031, 0.8178980229, 0.8189386056, 0.8199791883, 0.820239334, 0.8212799168, 0.8220603538, 0.8223204995, 0.8233610822, 0.8241415193, 0.8254422477, 0.8264828304, 0.8283038502, 0.8285639958, 0.8293444329, 0.8296045786, 0.8303850156, 0.8306451613, 0.8314255983, 0.8335067638, 0.8337669095, 0.8345473465, 0.836628512, 0.8368886576, 0.8376690947, 0.8387096774, 0.8418314256, 0.8420915713, 0.843132154, 0.8441727367, 0.8449531738, 0.8462539022, 0.8483350676, 0.8501560874, 0.8511966701, 0.8522372529, 0.8524973985, 0.8535379813, 0.8543184183, 0.854578564, 0.8556191467, 0.8563995838, 0.8577003122, 0.8587408949, 0.8605619147, 0.8608220604, 0.8616024974, 0.8618626431, 0.8626430801, 0.8629032258, 0.8636836629, 0.8657648283, 0.866024974, 0.866805411, 0.8688865765, 0.8691467222, 0.8699271592, 0.8709677419, 0.8740894901, 0.8743496358, 0.8753902185, 0.8764308012, 0.8772112383, 0.8785119667, 0.8805931322, 0.8824141519, 0.8834547347, 0.8844953174, 0.8847554631, 0.8857960458, 0.8865764828, 0.8868366285, 0.8878772112, 0.8886576483, 0.8899583767, 0.8909989594, 0.8928199792, 0.8930801249, 0.8938605619, 0.8941207076, 0.8949011446, 0.8951612903, 0.8959417274, 0.8980228928, 0.8982830385, 0.8990634755, 0.901144641, 0.9014047867, 0.9021852237, 0.9032258065, 0.9063475546, 0.9066077003, 0.907648283, 0.9086888658, 0.9094693028, 0.9107700312, 0.9128511967, 0.9146722164, 0.9157127992, 0.9167533819, 0.9170135276, 0.9180541103, 0.9188345473, 0.919094693, 0.9201352758, 0.9209157128, 0.9222164412, 0.9232570239, 0.9250780437, 0.9253381894, 0.9261186264, 0.9263787721, 0.9271592092, 0.9274193548, 0.9281997919, 0.9302809573, 0.930541103, 0.9313215401, 0.9334027055, 0.9336628512, 0.9344432882, 0.935483871, 0.9386056191, 0.9388657648, 0.9399063476, 0.9409469303, 0.9417273673, 0.9430280957, 0.9451092612, 0.946930281, 0.9479708637, 0.9490114464, 0.9492715921, 0.9503121748, 0.9510926119, 0.9513527575, 0.9523933403, 0.9531737773, 0.9544745057, 0.9555150885, 0.9573361082, 0.9575962539, 0.9583766909, 0.9586368366, 0.9594172737, 0.9596774194, 0.9604578564, 0.9625390219, 0.9627991675, 0.9635796046, 0.96566077, 0.9659209157, 0.9667013528, 0.9677419355, 0.9708636837, 0.9711238293, 0.9721644121, 0.9732049948, 0.9739854318, 0.9752861603, 0.9773673257, 0.9791883455, 0.9802289282, 0.9812695109, 0.9815296566, 0.9825702393, 0.9833506764, 0.9836108221, 0.9846514048, 0.9854318418, 0.9867325702, 0.987773153, 0.9895941727, 0.9898543184, 0.9906347555, 0.9908949011, 0.9916753382, 0.9919354839, 0.9927159209, 0.9947970864, 0.9950572321, 0.9958376691, 0.9979188345, 0.9981789802, 0.9989594173] averages_even={0.0: [0.0], 0.25: [0.5], 0.0096253902: [0.0806451612903, 0.9193548387097], 0.1688345473: [0.6290322580645, 0.3709677419355], 0.3850156087: [0.258064516129, 0.741935483871], 0.0481269511: [0.0161290322581, 0.9838709677419], 0.3530176899: [0.6612903225806, 0.3387096774194], 0.6433402706: [0.6612903225806, 0.3387096774194], 0.6077003122: [0.1935483870968, 0.8064516129032], 0.3790322581: [0.5], 0.4560353798: [0.7903225806452, 0.2096774193548], 0.8626430801: [0.5161290322581, 0.4838709677419], 0.732830385: [0.5322580645161, 0.4677419354839], 0.3933402706: [0.1612903225806, 0.8387096774194], 0.4328824142: [0.7741935483871, 0.2258064516129], 0.0044224766: [0.7903225806452, 0.2096774193548], 0.482049948: [0.6612903225806, 0.3387096774194], 0.8764308012: [0.2741935483871, 0.7258064516129], 0.7817377732: [0.6290322580645, 0.3709677419355], 0.9274193548: [0.5], 0.3506763788: [0.0645161290323, 0.9354838709677], 0.5434443288: [0.1451612903226, 0.8548387096774], 0.0322580645: [0.0], 0.1675338189: [0.1612903225806, 0.8387096774194], 0.4383454735: [0.6935483870968, 0.3064516129032], 0.0478668054: [0.1290322580645, 0.8709677419355], 0.361082206: [0.1612903225806, 0.8387096774194], 0.7221644121: [0.7096774193548, 0.2903225806452], 0.1925078044: [0.0322580645161, 0.9677419354839], 0.4640998959: [0.7096774193548, 0.2903225806452], 0.232049948: [0.1612903225806, 0.8387096774194], 0.4838709677: [0.0], 0.9635796046: [0.0645161290323, 0.9354838709677], 0.5837669095: [0.6451612903226, 0.3548387096774], 0.0356399584: [0.8870967741935, 0.1129032258065], 0.4193548387: [0.0], 0.96566077: [0.258064516129, 0.741935483871], 0.7960457856: [0.4516129032258, 0.5483870967742], 0.5902705515: [0.0806451612903, 0.9193548387097], 0.5140478668: [0.258064516129, 0.741935483871], 0.6347554631: [0.4516129032258, 0.5483870967742], 0.3051508845: [0.4032258064516, 0.5967741935484], 0.7963059313: [0.758064516129, 0.241935483871], 0.6253902185: [0.7096774193548, 0.2903225806452], 0.0835067638: [0.6935483870968, 0.3064516129032], 0.6974505723: [0.5645161290323, 0.4354838709677], 0.4341831426: [0.4032258064516, 0.5967741935484], 0.8043704475: [0.258064516129, 0.741935483871], 0.2010926119: [0.6290322580645, 0.3709677419355], 0.5080645161: [0.5], 0.9721644121: [0.7903225806452, 0.2096774193548], 0.8563995838: [0.4193548387097, 0.5806451612903], 0.0814255983: [0.8225806451613, 0.1774193548387], 0.8285639958: [0.758064516129, 0.241935483871], 0.6620707596: [0.8225806451613, 0.1774193548387], 0.3132154006: [0.9032258064516, 0.0967741935484], 0.2812174818: [0.5322580645161, 0.4677419354839], 0.3902185224: [0.6451612903226, 0.3548387096774], 0.7911030177: [0.8225806451613, 0.1774193548387], 0.7408949011: [0.0322580645161, 0.9677419354839], 0.3072320499: [0.8225806451613, 0.1774193548387], 0.8368886576: [0.6612903225806, 0.3387096774194], 0.5704994797: [0.758064516129, 0.241935483871], 0.4102497399: [0.5322580645161, 0.4677419354839], 0.4872528616: [0.8870967741935, 0.1129032258065], 0.349635796: [0.1935483870968, 0.8064516129032], 0.8012486993: [0.1935483870968, 0.8064516129032], 0.2406347555: [0.4032258064516, 0.5967741935484], 0.9791883455: [0.3870967741935, 0.6129032258065], 0.546566077: [0.6612903225806, 0.3387096774194], 0.1831425598: [0.4516129032258, 0.5483870967742], 0.3662851197: [0.3870967741935, 0.6129032258065], 0.04578564: [0.2258064516129, 0.7741935483871], 0.7140998959: [0.7903225806452, 0.2096774193548], 0.9575962539: [0.758064516129, 0.241935483871], 0.360301769: [0.2741935483871, 0.7258064516129], 0.4693028096: [0.4193548387097, 0.5806451612903], 0.8418314256: [0.6451612903226, 0.3548387096774], 0.075962539: [0.3870967741935, 0.6129032258065], 0.1238293444: [0.1935483870968, 0.8064516129032], 0.2476586889: [0.4516129032258, 0.5483870967742], 0.1771592092: [0.0161290322581, 0.9838709677419], 0.5754422477: [0.1935483870968, 0.8064516129032], 0.7286680541: [0.6935483870968, 0.3064516129032], 0.4893340271: [0.2741935483871, 0.7258064516129], 0.8618626431: [0.5322580645161, 0.4677419354839], 0.4112903226: [0.5], 0.2416753382: [0.0161290322581, 0.9838709677419], 0.6527055151: [0.6290322580645, 0.3709677419355], 0.4630593132: [0.3870967741935, 0.6129032258065], 0.5119667014: [0.0645161290323, 0.9354838709677], 0.8834547347: [0.7096774193548, 0.2903225806452], 0.0460457856: [0.0483870967742, 0.9516129032258], 0.3683662851: [0.7741935483871, 0.2258064516129], 0.3363683663: [0.0483870967742, 0.9516129032258], 0.9867325702: [0.6935483870968, 0.3064516129032], 0.064516129: [0.0], 0.3623829344: [0.6290322580645, 0.3709677419355], 0.4393860562: [0.5645161290323, 0.4354838709677], 0.8616024974: [0.9032258064516, 0.0967741935484], 0.7044745057: [0.1935483870968, 0.8064516129032], 0.8264828304: [0.5645161290323, 0.4354838709677], 0.1781997919: [0.8225806451613, 0.1774193548387], 0.6441207076: [0.0322580645161, 0.9677419354839], 0.7127991675: [0.6451612903226, 0.3548387096774], 0.3350676379: [0.2903225806452, 0.7096774193548], 0.2167013528: [0.5322580645161, 0.4677419354839], 0.9094693028: [0.1612903225806, 0.8387096774194], 0.1592091571: [0.258064516129, 0.741935483871], 0.0398022893: [0.6290322580645, 0.3709677419355], 0.5954734651: [0.4032258064516, 0.5967741935484], 0.5528095734: [0.7903225806452, 0.2096774193548], 0.3124349636: [0.758064516129, 0.241935483871], 0.5608740895: [0.7096774193548, 0.2903225806452], 0.9947970864: [0.1935483870968, 0.8064516129032], 0.6641519251: [0.6935483870968, 0.3064516129032], 0.4474505723: [0.0645161290323, 0.9354838709677], 0.2237252862: [0.258064516129, 0.741935483871], 0.7003121748: [0.9032258064516, 0.0967741935484], 0.9222164412: [0.6935483870968, 0.3064516129032], 0.4047866805: [0.4193548387097, 0.5806451612903], 0.4414672216: [0.758064516129, 0.241935483871], 0.8189386056: [0.7096774193548, 0.2903225806452], 0.9157127992: [0.7096774193548, 0.2903225806452], 0.2177419355: [0.5], 0.2624869927: [0.7903225806452, 0.2096774193548], 0.5382414152: [0.758064516129, 0.241935483871], 0.0801248699: [0.1290322580645, 0.8709677419355], 0.2885015609: [0.6612903225806, 0.3387096774194], 0.0156087409: [0.1290322580645, 0.8709677419355], 0.9014047867: [0.6612903225806, 0.3387096774194], 0.0689386056: [0.7903225806452, 0.2096774193548], 0.3915192508: [0.7903225806452, 0.2096774193548], 0.551508845: [0.6451612903226, 0.3548387096774], 0.669094693: [0.5161290322581, 0.4838709677419], 0.8785119667: [0.6290322580645, 0.3709677419355], 0.7211238293: [0.3870967741935, 0.6129032258065], 0.4175338189: [0.6612903225806, 0.3387096774194], 0.1560874089: [0.1935483870968, 0.8064516129032], 0.5881893861: [0.6290322580645, 0.3709677419355], 0.0676378772: [0.6451612903226, 0.3548387096774], 0.7721123829: [0.258064516129, 0.741935483871], 0.7151404787: [0.2741935483871, 0.7258064516129], 0.8337669095: [0.1451612903226, 0.8548387096774], 0.0249739854: [0.3225806451613, 0.6774193548387], 0.5028616025: [0.6935483870968, 0.3064516129032], 0.0998959417: [0.6451612903226, 0.3548387096774], 0.8909989594: [0.5645161290323, 0.4354838709677], 0.2382934443: [0.2903225806452, 0.7096774193548], 0.0595733611: [0.1451612903226, 0.8548387096774], 0.6888657648: [0.3870967741935, 0.6129032258065], 0.9281997919: [0.3225806451613, 0.6774193548387], 0.7232049948: [0.7741935483871, 0.2258064516129], 0.470603538: [0.6935483870968, 0.3064516129032], 0.0031217482: [0.6451612903226, 0.3548387096774], 0.1508844953: [0.4516129032258, 0.5483870967742], 0.5039021852: [0.5645161290323, 0.4354838709677], 0.9513527575: [0.0161290322581, 0.9838709677419], 0.8857960458: [0.4032258064516, 0.5967741935484], 0.9812695109: [0.7741935483871, 0.2258064516129], 0.174817898: [0.2258064516129, 0.7741935483871], 0.3176378772: [0.1451612903226, 0.8548387096774], 0.6722164412: [0.1935483870968, 0.8064516129032], 0.6828824142: [0.2741935483871, 0.7258064516129], 0.4120707596: [0.3225806451613, 0.6774193548387], 0.6402185224: [0.1451612903226, 0.8548387096774], 0.5538501561: [0.2741935483871, 0.7258064516129], 0.9846514048: [0.8225806451613, 0.1774193548387], 0.1196670135: [0.9032258064516, 0.0967741935484], 0.2393340271: [0.7741935483871, 0.2258064516129], 0.4466701353: [0.1451612903226, 0.8548387096774], 0.0926118626: [0.0645161290323, 0.9354838709677], 0.8577003122: [0.6935483870968, 0.3064516129032], 0.3384495317: [0.0161290322581, 0.9838709677419], 0.6048387097: [0.5], 0.2333506764: [0.6290322580645, 0.3709677419355], 0.2937044745: [0.8870967741935, 0.1129032258065], 0.8522372529: [0.7741935483871, 0.2258064516129], 0.1011966701: [0.7903225806452, 0.2096774193548], 0.6701352758: [0.3225806451613, 0.6774193548387], 0.1438605619: [0.4032258064516, 0.5967741935484], 0.7775754422: [0.8870967741935, 0.1129032258065], 0.4547346514: [0.6451612903226, 0.3548387096774], 0.4227367326: [0.8870967741935, 0.1129032258065], 0.7515608741: [0.0806451612903, 0.9193548387097], 0.209157128: [0.1290322580645, 0.8709677419355], 0.5463059313: [0.258064516129, 0.741935483871], 0.9209157128: [0.4193548387097, 0.5806451612903], 0.8483350676: [0.0806451612903, 0.9193548387097], 0.7866805411: [0.7096774193548, 0.2903225806452], 0.2083766909: [0.4032258064516, 0.5967741935484], 0.2757544225: [0.4193548387097, 0.5806451612903], 0.8046305931: [0.6612903225806, 0.3387096774194], 0.5962539022: [0.1290322580645, 0.8709677419355], 0.0377211238: [0.2741935483871, 0.7258064516129], 0.3017689906: [0.3870967741935, 0.6129032258065], 0.5715400624: [0.5322580645161, 0.4677419354839], 0.5109261186: [0.1935483870968, 0.8064516129032], 0.29578564: [0.2741935483871, 0.7258064516129], 0.5275754422: [0.3870967741935, 0.6129032258065], 0.946930281: [0.3870967741935, 0.6129032258065], 0.0221123829: [0.758064516129, 0.241935483871], 0.6482830385: [0.6451612903226, 0.3548387096774], 0.1449011446: [0.0161290322581, 0.9838709677419], 0.7336108221: [0.5161290322581, 0.4838709677419], 0.5796045786: [0.0322580645161, 0.9677419354839], 0.424817898: [0.2741935483871, 0.7258064516129], 0.3257023933: [0.6451612903226, 0.3548387096774], 0.6992715921: [0.4516129032258, 0.5483870967742], 0.9836108221: [0.0161290322581, 0.9838709677419], 0.6087408949: [0.0645161290323, 0.9354838709677], 0.9302809573: [0.1935483870968, 0.8064516129032], 0.2479188345: [0.758064516129, 0.241935483871], 0.0863683663: [0.4516129032258, 0.5483870967742], 0.4651404787: [0.7741935483871, 0.2258064516129], 0.2718522373: [0.0483870967742, 0.9516129032258], 0.7297086368: [0.5645161290323, 0.4354838709677], 0.8119146722: [0.2741935483871, 0.7258064516129], 0.5317377732: [0.1290322580645, 0.8709677419355], 0.1209677419: [0.5], 0.3766909469: [0.4516129032258, 0.5483870967742], 0.8054110302: [0.0322580645161, 0.9677419354839], 0.3798126951: [0.3225806451613, 0.6774193548387], 0.7096774194: [0.0], 0.7609261186: [0.6935483870968, 0.3064516129032], 0.1844432882: [0.5322580645161, 0.4677419354839], 0.737773153: [0.0645161290323, 0.9354838709677], 0.6409989594: [0.0645161290323, 0.9354838709677], 0.6118626431: [0.0322580645161, 0.9677419354839], 0.2539021852: [0.0645161290323, 0.9354838709677], 0.2070759625: [0.7741935483871, 0.2258064516129], 0.5619146722: [0.7741935483871, 0.2258064516129], 0.7856399584: [0.3870967741935, 0.6129032258065], 0.2489594173: [0.5322580645161, 0.4677419354839], 0.6818418314: [0.7903225806452, 0.2096774193548], 0.9128511967: [0.0806451612903, 0.9193548387097], 0.9334027055: [0.258064516129, 0.741935483871], 0.9927159209: [0.3225806451613, 0.6774193548387], 0.7338709677: [0.5], 0.6129032258: [0.0], 0.1594693028: [0.6612903225806, 0.3387096774194], 0.668314256: [0.5322580645161, 0.4677419354839], 0.2861602497: [0.0645161290323, 0.9354838709677], 0.6899063476: [0.7096774193548, 0.2903225806452], 0.7255463059: [0.0161290322581, 0.9838709677419], 0.5723204995: [0.5161290322581, 0.4838709677419], 0.2239854318: [0.6612903225806, 0.3387096774194], 0.5296566077: [0.7741935483871, 0.2258064516129], 0.7369927159: [0.1451612903226, 0.8548387096774], 0.1207075963: [0.5161290322581, 0.4838709677419], 0.9479708637: [0.7096774193548, 0.2903225806452], 0.2049947971: [0.3870967741935, 0.6129032258065], 0.0512486993: [0.6935483870968, 0.3064516129032], 0.9739854318: [0.1612903225806, 0.8387096774194], 0.5983350676: [0.4193548387097, 0.5806451612903], 0.0200312175: [0.5645161290323, 0.4354838709677], 0.8982830385: [0.1451612903226, 0.8548387096774], 0.4040062435: [0.8225806451613, 0.1774193548387], 0.9573361082: [0.4516129032258, 0.5483870967742], 0.7658688866: [0.5161290322581, 0.4838709677419], 0.523673257: [0.6290322580645, 0.3709677419355], 0.0593132154: [0.1935483870968, 0.8064516129032], 0.3548387097: [0.0], 0.0353798127: [0.6451612903226, 0.3548387096774], 0.7648283039: [0.9032258064516, 0.0967741935484], 0.3121748179: [0.4516129032258, 0.5483870967742], 0.9583766909: [0.9032258064516, 0.0967741935484], 0.5785639958: [0.258064516129, 0.741935483871], 0.5861082206: [0.2741935483871, 0.7258064516129], 0.2770551509: [0.6935483870968, 0.3064516129032], 0.0418834547: [0.0806451612903, 0.9193548387097], 0.1030176899: [0.1612903225806, 0.8387096774194], 0.3465140479: [0.5161290322581, 0.4838709677419], 0.4060874089: [0.6935483870968, 0.3064516129032], 0.6808012487: [0.8870967741935, 0.1129032258065], 0.6183662851: [0.2741935483871, 0.7258064516129], 0.7554630593: [0.7741935483871, 0.2258064516129], 0.6285119667: [0.1290322580645, 0.8709677419355], 0.8098335068: [0.8870967741935, 0.1129032258065], 0.9989594173: [0.0322580645161, 0.9677419354839], 0.4008844953: [0.0483870967742, 0.9516129032258], 0.1425598335: [0.2258064516129, 0.7741935483871], 0.2531217482: [0.1451612903226, 0.8548387096774], 0.8709677419: [0.0], 0.6870447451: [0.0806451612903, 0.9193548387097], 0.7346514048: [0.3225806451613, 0.6774193548387], 0.8303850156: [0.5161290322581, 0.4838709677419], 0.1365764828: [0.6290322580645, 0.3709677419355], 0.1750780437: [0.0483870967742, 0.9516129032258], 0.7877211238: [0.7741935483871, 0.2258064516129], 0.7983870968: [0.5], 0.505723205: [0.4516129032258, 0.5483870967742], 0.8449531738: [0.1612903225806, 0.8387096774194], 0.5411030177: [0.3225806451613, 0.6774193548387], 0.1123829344: [0.1290322580645, 0.8709677419355], 0.593132154: [0.7096774193548, 0.2903225806452], 0.2611862643: [0.6451612903226, 0.3548387096774], 0.2395941727: [0.0483870967742, 0.9516129032258], 0.3381893861: [0.1290322580645, 0.8709677419355], 0.5920915713: [0.3870967741935, 0.6129032258065], 0.3322060354: [0.0806451612903, 0.9193548387097], 0.0551508845: [0.9032258064516, 0.0967741935484], 0.9170135276: [0.0483870967742, 0.9516129032258], 0.3748699272: [0.5645161290323, 0.4354838709677], 0.116805411: [0.5645161290323, 0.4354838709677], 0.4672216441: [0.1290322580645, 0.8709677419355], 0.4352237253: [0.0161290322581, 0.9838709677419], 0.9250780437: [0.4516129032258, 0.5483870967742], 0.6430801249: [0.258064516129, 0.741935483871], 0.8824141519: [0.3870967741935, 0.6129032258065], 0.1761186264: [0.4032258064516, 0.5967741935484], 0.6724765869: [0.1451612903226, 0.8548387096774], 0.1571279917: [0.0645161290323, 0.9354838709677], 0.220603538: [0.1935483870968, 0.8064516129032], 0.6951092612: [0.4193548387097, 0.5806451612903], 0.3402705515: [0.4193548387097, 0.5806451612903], 0.1043184183: [0.6290322580645, 0.3709677419355], 0.4172736733: [0.258064516129, 0.741935483871], 0.6370967742: [0.5], 0.7450572321: [0.6451612903226, 0.3548387096774], 0.2216441207: [0.0645161290323, 0.9354838709677], 0.0554110302: [0.5322580645161, 0.4677419354839], 0.5944328824: [0.0483870967742, 0.9516129032258], 0.7567637877: [0.4032258064516, 0.5967741935484], 0.0634755463: [0.0322580645161, 0.9677419354839], 0.6566077003: [0.3870967741935, 0.6129032258065], 0.755723205: [0.0483870967742, 0.9516129032258], 0.2903225806: [0.0], 0.5806451613: [0.0], 0.9773673257: [0.0806451612903, 0.9193548387097], 0.9596774194: [0.5], 0.8556191467: [0.8225806451613, 0.1774193548387], 0.3475546306: [0.3225806451613, 0.6774193548387], 0.6006763788: [0.5645161290323, 0.4354838709677], 0.1966701353: [0.6451612903226, 0.3548387096774], 0.9490114464: [0.7741935483871, 0.2258064516129], 0.8064516129: [0.0], 0.3103537981: [0.5645161290323, 0.4354838709677], 0.4963579605: [0.2903225806452, 0.7096774193548], 0.7159209157: [0.1612903225806, 0.8387096774194], 0.6693548387: [0.5], 0.1521852237: [0.5322580645161, 0.4677419354839], 0.7931841831: [0.6935483870968, 0.3064516129032], 0.500780437: [0.8225806451613, 0.1774193548387], 0.8743496358: [0.8870967741935, 0.1129032258065], 0.7879812695: [0.0483870967742, 0.9516129032258], 0.1269510926: [0.258064516129, 0.741935483871], 0.8241415193: [0.4193548387097, 0.5806451612903], 0.7193028096: [0.0806451612903, 0.9193548387097], 0.1272112383: [0.6612903225806, 0.3387096774194], 0.1126430801: [0.0161290322581, 0.9838709677419], 0.8511966701: [0.7096774193548, 0.2903225806452], 0.4495317378: [0.258064516129, 0.741935483871], 0.6191467222: [0.1612903225806, 0.8387096774194], 0.4664412071: [0.4032258064516, 0.5967741935484], 0.2882414152: [0.258064516129, 0.741935483871], 0.1917273673: [0.6612903225806, 0.3387096774194], 0.9503121748: [0.4032258064516, 0.5967741935484], 0.2302289282: [0.7903225806452, 0.2096774193548], 0.4516129032: [0.0], 0.9510926119: [0.1290322580645, 0.8709677419355], 0.1727367326: [0.3870967741935, 0.6129032258065], 0.9627991675: [0.1451612903226, 0.8548387096774], 0.901144641: [0.258064516129, 0.741935483871], 0.3225806452: [0.0], 0.6350156087: [0.758064516129, 0.241935483871], 0.3394901145: [0.8225806451613, 0.1774193548387], 0.9950572321: [0.1451612903226, 0.8548387096774], 0.8951612903: [0.5], 0.1186264308: [0.4516129032258, 0.5483870967742], 0.1667533819: [0.2741935483871, 0.7258064516129], 0.4425078044: [0.5322580645161, 0.4677419354839], 0.9908949011: [0.5322580645161, 0.4677419354839], 0.7245057232: [0.4032258064516, 0.5967741935484], 0.4685223725: [0.8225806451613, 0.1774193548387], 0.6849635796: [0.6290322580645, 0.3709677419355], 0.8441727367: [0.2741935483871, 0.7258064516129], 0.2312695109: [0.2741935483871, 0.7258064516129], 0.0803850156: [0.0161290322581, 0.9838709677419], 0.9711238293: [0.8870967741935, 0.1129032258065], 0.0678980229: [0.8870967741935, 0.1129032258065], 0.1737773153: [0.2903225806452, 0.7096774193548], 0.9898543184: [0.758064516129, 0.241935483871], 0.6243496358: [0.3870967741935, 0.6129032258065], 0.7078563996: [0.6612903225806, 0.3387096774194], 0.3415712799: [0.6935483870968, 0.3064516129032], 0.4505723205: [0.0322580645161, 0.9677419354839], 0.7991675338: [0.3225806451613, 0.6774193548387], 0.4255983351: [0.1612903225806, 0.8387096774194], 0.919094693: [0.0161290322581, 0.9838709677419], 0.2715920916: [0.7741935483871, 0.2258064516129], 0.9659209157: [0.6612903225806, 0.3387096774194], 0.9981789802: [0.6612903225806, 0.3387096774194], 0.8772112383: [0.1612903225806, 0.8387096774194], 0.2656087409: [0.6290322580645, 0.3709677419355], 0.9677419355: [0.0], 0.6774193548: [0.0], 0.854578564: [0.0161290322581, 0.9838709677419], 0.1001560874: [0.8870967741935, 0.1129032258065], 0.5192507804: [0.6451612903226, 0.3548387096774], 0.0054630593: [0.2741935483871, 0.7258064516129], 0.1428199792: [0.0483870967742, 0.9516129032258], 0.394640999: [0.6290322580645, 0.3709677419355], 0.5632154006: [0.4032258064516, 0.5967741935484], 0.4141519251: [0.1935483870968, 0.8064516129032], 0.5205515088: [0.7903225806452, 0.2096774193548], 0.7773152966: [0.6451612903226, 0.3548387096774], 0.4976586889: [0.0483870967742, 0.9516129032258], 0.5975546306: [0.8225806451613, 0.1774193548387], 0.0564516129: [0.5], 0.273673257: [0.1290322580645, 0.8709677419355], 0.2458376691: [0.5645161290323, 0.4354838709677], 0.1352757544: [0.1612903225806, 0.8387096774194], 0.5673777315: [0.6935483870968, 0.3064516129032], 0.2676899063: [0.0806451612903, 0.9193548387097], 0.1883454735: [0.1935483870968, 0.8064516129032], 0.836628512: [0.258064516129, 0.741935483871], 0.0915712799: [0.1935483870968, 0.8064516129032], 0.4027055151: [0.1290322580645, 0.8709677419355], 0.1199271592: [0.5322580645161, 0.4677419354839], 0.7005723205: [0.5322580645161, 0.4677419354839], 0.8293444329: [0.9032258064516, 0.0967741935484], 0.3967221644: [0.0806451612903, 0.9193548387097], 0.02289282: [0.9032258064516, 0.0967741935484], 0.8387096774: [0.0], 0.4997398543: [0.0161290322581, 0.9838709677419], 0.4006243496: [0.7741935483871, 0.2258064516129], 0.5621748179: [0.0483870967742, 0.9516129032258], 0.7692507804: [0.1451612903226, 0.8548387096774], 0.5195109261: [0.8870967741935, 0.1129032258065], 0.3527575442: [0.258064516129, 0.741935483871], 0.7265868887: [0.8225806451613, 0.1774193548387], 0.8160770031: [0.0806451612903, 0.9193548387097], 0.1893860562: [0.0645161290323, 0.9354838709677], 0.3467741935: [0.5], 0.801508845: [0.1451612903226, 0.8548387096774], 0.4349635796: [0.1290322580645, 0.8709677419355], 0.6930280957: [0.1290322580645, 0.8709677419355], 0.3704474506: [0.1290322580645, 0.8709677419355], 0.4817898023: [0.258064516129, 0.741935483871], 0.4497918835: [0.6612903225806, 0.3387096774194], 0.1834027055: [0.758064516129, 0.241935483871], 0.9386056191: [0.6451612903226, 0.3548387096774], 0.3028095734: [0.2903225806452, 0.7096774193548], 0.8254422477: [0.6935483870968, 0.3064516129032], 0.3288241415: [0.1612903225806, 0.8387096774194], 0.0822060354: [0.4193548387097, 0.5806451612903], 0.8959417274: [0.3225806451613, 0.6774193548387], 0.5712799168: [0.9032258064516, 0.0967741935484], 0.0887096774: [0.5], 0.4318418314: [0.7096774193548, 0.2903225806452], 0.1321540062: [0.6451612903226, 0.3548387096774], 0.5392819979: [0.5322580645161, 0.4677419354839], 0.0572320499: [0.3225806451613, 0.6774193548387], 0.1144640999: [0.4193548387097, 0.5806451612903], 0.907648283: [0.7903225806452, 0.2096774193548], 0.0135275754: [0.2258064516129, 0.7741935483871], 0.6079604579: [0.1451612903226, 0.8548387096774], 0.6610301769: [0.0161290322581, 0.9838709677419], 0.7086368366: [0.0322580645161, 0.9677419354839], 0.27289282: [0.4032258064516, 0.5967741935484], 0.4953173777: [0.3870967741935, 0.6129032258065], 0.1415192508: [0.2903225806452, 0.7096774193548], 0.5338189386: [0.4193548387097, 0.5806451612903], 0.1334547347: [0.7903225806452, 0.2096774193548], 0.7661290323: [0.5], 0.401925078: [0.4032258064516, 0.5967741935484], 0.4745057232: [0.9032258064516, 0.0967741935484], 0.4099895942: [0.9032258064516, 0.0967741935484], 0.4994797086: [0.1290322580645, 0.8709677419355], 0.1979708637: [0.7903225806452, 0.2096774193548], 0.3673257024: [0.2903225806452, 0.7096774193548], 0.7453173777: [0.8870967741935, 0.1129032258065], 0.7575442248: [0.1290322580645, 0.8709677419355], 0.1404786681: [0.3870967741935, 0.6129032258065], 0.3579604579: [0.6451612903226, 0.3548387096774], 0.0894901145: [0.3225806451613, 0.6774193548387], 0.8095733611: [0.6451612903226, 0.3548387096774], 0.6599895942: [0.4032258064516, 0.5967741935484], 0.2749739854: [0.8225806451613, 0.1774193548387], 0.7596253902: [0.4193548387097, 0.5806451612903], 0.843132154: [0.7903225806452, 0.2096774193548], 0.8199791883: [0.7741935483871, 0.2258064516129], 0.1344953174: [0.2741935483871, 0.7258064516129], 0.243496358: [0.4193548387097, 0.5806451612903], 0.570239334: [0.4516129032258, 0.5483870967742], 0.8420915713: [0.8870967741935, 0.1129032258065], 0.9146722164: [0.3870967741935, 0.6129032258065], 0.3270031217: [0.7903225806452, 0.2096774193548], 0.0239334027: [0.5161290322581, 0.4838709677419], 0.1990114464: [0.2741935483871, 0.7258064516129], 0.2570239334: [0.0322580645161, 0.9677419354839], 0.6680541103: [0.9032258064516, 0.0967741935484], 0.3340270552: [0.3870967741935, 0.6129032258065], 0.0176899063: [0.4193548387097, 0.5806451612903], 0.547346514: [0.0322580645161, 0.9677419354839], 0.558012487: [0.0806451612903, 0.9193548387097], 0.3280437045: [0.2741935483871, 0.7258064516129], 0.1092611863: [0.2903225806452, 0.7096774193548], 0.0273152966: [0.1451612903226, 0.8548387096774], 0.7401144641: [0.6612903225806, 0.3387096774194], 0.1157648283: [0.6935483870968, 0.3064516129032], 0.8139958377: [0.6290322580645, 0.3709677419355], 0.9086888658: [0.2741935483871, 0.7258064516129], 0.308012487: [0.4193548387097, 0.5806451612903], 0.4570759625: [0.2741935483871, 0.7258064516129], 0.9732049948: [0.2741935483871, 0.7258064516129], 0.8233610822: [0.8225806451613, 0.1774193548387], 0.5840270552: [0.8870967741935, 0.1129032258065], 0.9021852237: [0.0322580645161, 0.9677419354839], 0.9667013528: [0.0322580645161, 0.9677419354839], 0.7741935484: [0.0], 0.9625390219: [0.1935483870968, 0.8064516129032], 0.3361082206: [0.7741935483871, 0.2258064516129], 0.3041103018: [0.0483870967742, 0.9516129032258], 0.7970863684: [0.9032258064516, 0.0967741935484], 0.3301248699: [0.6290322580645, 0.3709677419355], 0.1490634755: [0.5645161290323, 0.4354838709677], 0.482830385: [0.0322580645161, 0.9677419354839], 0.1467221644: [0.4193548387097, 0.5806451612903], 0.4331425598: [0.0483870967742, 0.9516129032258], 0.6162851197: [0.8870967741935, 0.1129032258065], 0.8535379813: [0.4032258064516, 0.5967741935484], 0.8930801249: [0.758064516129, 0.241935483871], 0.0470863684: [0.4032258064516, 0.5967741935484], 0.6357960458: [0.9032258064516, 0.0967741935484], 0.5059833507: [0.758064516129, 0.241935483871], 0.459157128: [0.6290322580645, 0.3709677419355], 0.2135796046: [0.5645161290323, 0.4354838709677], 0.2073361082: [0.0483870967742, 0.9516129032258], 0.6378772112: [0.3225806451613, 0.6774193548387], 0.9063475546: [0.6451612903226, 0.3548387096774], 0.0780437045: [0.2258064516129, 0.7741935483871], 0.2801768991: [0.758064516129, 0.241935483871], 0.8220603538: [0.1290322580645, 0.8709677419355], 0.6368366285: [0.5161290322581, 0.4838709677419], 0.3061914672: [0.0161290322581, 0.9838709677419], 0.4151925078: [0.0645161290323, 0.9354838709677], 0.5483870968: [0.0], 0.7473985432: [0.2741935483871, 0.7258064516129], 0.9430280957: [0.6290322580645, 0.3709677419355], 0.9336628512: [0.6612903225806, 0.3387096774194], 0.7047346514: [0.1451612903226, 0.8548387096774], 0.4092091571: [0.758064516129, 0.241935483871], 0.5684183143: [0.5645161290323, 0.4354838709677], 0.7544224766: [0.7096774193548, 0.2903225806452], 0.2830385016: [0.3225806451613, 0.6774193548387], 0.778616025: [0.7903225806452, 0.2096774193548], 0.3454734651: [0.9032258064516, 0.0967741935484], 0.0720603538: [0.6290322580645, 0.3709677419355], 0.2562434964: [0.6612903225806, 0.3387096774194], 0.3707075963: [0.0161290322581, 0.9838709677419], 0.9833506764: [0.1290322580645, 0.8709677419355], 0.9167533819: [0.7741935483871, 0.2258064516129], 0.2822580645: [0.5], 0.3592611863: [0.7903225806452, 0.2096774193548], 0.0793444329: [0.4032258064516, 0.5967741935484], 0.987773153: [0.5645161290323, 0.4354838709677], 0.4370447451: [0.4193548387097, 0.5806451612903], 0.3852757544: [0.6612903225806, 0.3387096774194], 0.4882934443: [0.7903225806452, 0.2096774193548], 0.8524973985: [0.0483870967742, 0.9516129032258], 0.2643080125: [0.1612903225806, 0.8387096774194], 0.6287721124: [0.0161290322581, 0.9838709677419], 0.8223204995: [0.0161290322581, 0.9838709677419], 0.6514047867: [0.1612903225806, 0.8387096774194], 0.0918314256: [0.1451612903226, 0.8548387096774], 0.0624349636: [0.258064516129, 0.741935483871], 0.9958376691: [0.0645161290323, 0.9354838709677], 0.3860561915: [0.0322580645161, 0.9677419354839], 0.4464099896: [0.1935483870968, 0.8064516129032], 0.7619667014: [0.5645161290323, 0.4354838709677], 0.0491675338: [0.8225806451613, 0.1774193548387], 0.1646722164: [0.8870967741935, 0.1129032258065], 0.6586888658: [0.7741935483871, 0.2258064516129], 0.5725806452: [0.5], 0.4737252862: [0.758064516129, 0.241935483871], 0.1240894901: [0.1451612903226, 0.8548387096774], 0.7533818939: [0.3870967741935, 0.6129032258065], 0.7130593132: [0.8870967741935, 0.1129032258065], 0.2291883455: [0.8870967741935, 0.1129032258065], 0.5150884495: [0.0322580645161, 0.9677419354839], 0.8296045786: [0.5322580645161, 0.4677419354839], 0.3777315297: [0.9032258064516, 0.0967741935484], 0.5161290323: [0.0], 0.6547866805: [0.0806451612903, 0.9193548387097], 0.7234651405: [0.0483870967742, 0.9516129032258], 0.7640478668: [0.758064516129, 0.241935483871], 0.4654006244: [0.0483870967742, 0.9516129032258], 0.5660770031: [0.4193548387097, 0.5806451612903], 0.1116024974: [0.4032258064516, 0.5967741935484], 0.5788241415: [0.6612903225806, 0.3387096774194], 0.4144120708: [0.1451612903226, 0.8548387096774], 0.866805411: [0.0645161290323, 0.9354838709677], 0.8844953174: [0.7741935483871, 0.2258064516129], 0.2060353798: [0.2903225806452, 0.7096774193548], 0.1657127992: [0.7903225806452, 0.2096774193548], 0.7494797086: [0.6290322580645, 0.3709677419355], 0.2934443288: [0.6451612903226, 0.3548387096774], 0.4973985432: [0.7741935483871, 0.2258064516129], 0.0231529657: [0.5322580645161, 0.4677419354839], 0.7650884495: [0.5322580645161, 0.4677419354839], 0.616024974: [0.6451612903226, 0.3548387096774], 0.9180541103: [0.4032258064516, 0.5967741935484], 0.6108220604: [0.258064516129, 0.741935483871], 0.5361602497: [0.5645161290323, 0.4354838709677], 0.3134755463: [0.5322580645161, 0.4677419354839], 0.4224765869: [0.6451612903226, 0.3548387096774], 0.3904786681: [0.8870967741935, 0.1129032258065], 0.1248699272: [0.0645161290323, 0.9354838709677], 0.6670135276: [0.4516129032258, 0.5483870967742], 0.7689906348: [0.1935483870968, 0.8064516129032], 0.9188345473: [0.1290322580645, 0.8709677419355], 0.2695109261: [0.3870967741935, 0.6129032258065], 0.5070239334: [0.5322580645161, 0.4677419354839], 0.0148283039: [0.4032258064516, 0.5967741935484], 0.2635275754: [0.2741935483871, 0.7258064516129], 0.186264308: [0.3225806451613, 0.6774193548387], 0.7481789802: [0.1612903225806, 0.8387096774194], 0.528616025: [0.7096774193548, 0.2903225806452], 0.7055150885: [0.0645161290323, 0.9354838709677], 0.599635796: [0.6935483870968, 0.3064516129032], 0.3985431842: [0.3870967741935, 0.6129032258065], 0.6628511967: [0.4193548387097, 0.5806451612903], 0.1188865765: [0.758064516129, 0.241935483871], 0.8878772112: [0.8225806451613, 0.1774193548387], 0.3925598335: [0.2741935483871, 0.7258064516129], 0.1802809573: [0.6935483870968, 0.3064516129032], 0.2780957336: [0.5645161290323, 0.4354838709677], 0.7796566077: [0.2741935483871, 0.7258064516129], 0.8868366285: [0.0161290322581, 0.9838709677419], 0.5517689906: [0.8870967741935, 0.1129032258065], 0.3870967742: [0.0], 0.9271592092: [0.5161290322581, 0.4838709677419], 0.9815296566: [0.0483870967742, 0.9516129032258], 0.8805931322: [0.0806451612903, 0.9193548387097], 0.5111862643: [0.1451612903226, 0.8548387096774], 0.2447970864: [0.6935483870968, 0.3064516129032], 0.6995317378: [0.758064516129, 0.241935483871], 0.9895941727: [0.4516129032258, 0.5483870967742], 0.7172216441: [0.6290322580645, 0.3709677419355], 0.3426118626: [0.5645161290323, 0.4354838709677], 0.8108740895: [0.7903225806452, 0.2096774193548], 0.9201352758: [0.8225806451613, 0.1774193548387], 0.5764828304: [0.0645161290323, 0.9354838709677], 0.6932882414: [0.0161290322581, 0.9838709677419], 0.3686264308: [0.0483870967742, 0.9516129032258], 0.6732570239: [0.0645161290323, 0.9354838709677], 0.0946930281: [0.258064516129, 0.741935483871], 0.7578043704: [0.0161290322581, 0.9838709677419], 0.1813215401: [0.5645161290323, 0.4354838709677], 0.3173777315: [0.1935483870968, 0.8064516129032], 0.9313215401: [0.0645161290323, 0.9354838709677], 0.0366805411: [0.7903225806452, 0.2096774193548], 0.7942247659: [0.5645161290323, 0.4354838709677], 0.9544745057: [0.6935483870968, 0.3064516129032], 0.0876690947: [0.5322580645161, 0.4677419354839], 0.5015608741: [0.4193548387097, 0.5806451612903], 0.9802289282: [0.7096774193548, 0.2903225806452], 0.7588449532: [0.8225806451613, 0.1774193548387], 0.3446930281: [0.758064516129, 0.241935483871], 0.1563475546: [0.1451612903226, 0.8548387096774], 0.8949011446: [0.5161290322581, 0.4838709677419], 0.9261186264: [0.9032258064516, 0.0967741935484], 0.1532258065: [0.5], 0.8314255983: [0.3225806451613, 0.6774193548387], 0.285119667: [0.1935483870968, 0.8064516129032], 0.6909469303: [0.7741935483871, 0.2258064516129], 0.9232570239: [0.5645161290323, 0.4354838709677], 0.2208636837: [0.1451612903226, 0.8548387096774], 0.7367325702: [0.1935483870968, 0.8064516129032], 0.6589490114: [0.0483870967742, 0.9516129032258], 0.418314256: [0.0322580645161, 0.9677419354839], 0.2947450572: [0.7903225806452, 0.2096774193548], 0.6495837669: [0.7903225806452, 0.2096774193548], 0.3207596254: [0.6612903225806, 0.3387096774194], 0.8462539022: [0.6290322580645, 0.3709677419355], 0.4071279917: [0.5645161290323, 0.4354838709677], 0.8990634755: [0.0645161290323, 0.9354838709677], 0.4237773153: [0.7903225806452, 0.2096774193548], 0.0626951093: [0.6612903225806, 0.3387096774194], 0.353798127: [0.0322580645161, 0.9677419354839], 0.866024974: [0.1451612903226, 0.8548387096774], 0.9594172737: [0.5161290322581, 0.4838709677419], 0.5215920916: [0.2741935483871, 0.7258064516129], 0.797346514: [0.5322580645161, 0.4677419354839], 0.6329344433: [0.5645161290323, 0.4354838709677], 0.4308012487: [0.3870967741935, 0.6129032258065], 0.6056191467: [0.3225806451613, 0.6774193548387], 0.0949531738: [0.6612903225806, 0.3387096774194], 0.1324141519: [0.8870967741935, 0.1129032258065], 0.3738293444: [0.6935483870968, 0.3064516129032], 0.2414151925: [0.1290322580645, 0.8709677419355], 0.0301768991: [0.258064516129, 0.741935483871], 0.5088449532: [0.3225806451613, 0.6774193548387], 0.2112382934: [0.4193548387097, 0.5806451612903], 0.611082206: [0.6612903225806, 0.3387096774194], 0.0189906348: [0.6935483870968, 0.3064516129032], 0.196930281: [0.8870967741935, 0.1129032258065], 0.2528616025: [0.1935483870968, 0.8064516129032], 0.5598335068: [0.3870967741935, 0.6129032258065], 0.9916753382: [0.5161290322581, 0.4838709677419], 0.7013527575: [0.5161290322581, 0.4838709677419], 0.5309573361: [0.4032258064516, 0.5967741935484], 0.5257544225: [0.0806451612903, 0.9193548387097], 0.0312174818: [0.0322580645161, 0.9677419354839], 0.9906347555: [0.9032258064516, 0.0967741935484], 0.8608220604: [0.758064516129, 0.241935483871], 0.3818938606: [0.1935483870968, 0.8064516129032], 0.3498959417: [0.1451612903226, 0.8548387096774], 0.4758064516: [0.5], 0.622528616: [0.0806451612903, 0.9193548387097], 0.3821540062: [0.1451612903226, 0.8548387096774], 0.8980228928: [0.1935483870968, 0.8064516129032], 0.7398543184: [0.258064516129, 0.741935483871], 0.4789281998: [0.1451612903226, 0.8548387096774], 0.8938605619: [0.9032258064516, 0.0967741935484], 0.1529656608: [0.5161290322581, 0.4838709677419], 0.657648283: [0.2903225806452, 0.7096774193548], 0.6318938606: [0.6935483870968, 0.3064516129032], 0.1644120708: [0.6451612903226, 0.3548387096774], 0.8543184183: [0.1290322580645, 0.8709677419355], 0.0447450572: [0.2903225806452, 0.7096774193548], 0.1789802289: [0.4193548387097, 0.5806451612903], 0.325962539: [0.8870967741935, 0.1129032258065], 0.2174817898: [0.5161290322581, 0.4838709677419], 0.0543704475: [0.758064516129, 0.241935483871], 0.5868886576: [0.1612903225806, 0.8387096774194], 0.4289802289: [0.0806451612903, 0.9193548387097], 0.6836628512: [0.1612903225806, 0.8387096774194], 0.0304370447: [0.6612903225806, 0.3387096774194], 0.4549947971: [0.8870967741935, 0.1129032258065], 0.5639958377: [0.1290322580645, 0.8709677419355], 0.8847554631: [0.0483870967742, 0.9516129032258], 0.8376690947: [0.0322580645161, 0.9677419354839], 0.0770031217: [0.2903225806452, 0.7096774193548], 0.1540062435: [0.3225806451613, 0.6774193548387], 0.0385015609: [0.1612903225806, 0.8387096774194], 0.3829344433: [0.0645161290323, 0.9354838709677], 0.9451092612: [0.0806451612903, 0.9193548387097], 0.4797086368: [0.0645161290323, 0.9354838709677], 0.6360561915: [0.5322580645161, 0.4677419354839], 0.4110301769: [0.5161290322581, 0.4838709677419], 0.540062435: [0.5161290322581, 0.4838709677419], 0.2185223725: [0.3225806451613, 0.6774193548387], 0.1480228928: [0.6935483870968, 0.3064516129032], 0.8178980229: [0.3870967741935, 0.6129032258065], 0.5390218522: [0.9032258064516, 0.0967741935484], 0.2580645161: [0.0], 0.1290322581: [0.0], 0.5941727367: [0.7741935483871, 0.2258064516129], 0.8501560874: [0.3870967741935, 0.6129032258065], 0.2125390219: [0.6935483870968, 0.3064516129032], 0.151925078: [0.9032258064516, 0.0967741935484], 0.9919354839: [0.5], 0.0967741935: [0.0], 0.1935483871: [0.0], 0.0241935484: [0.5], 0.5757023933: [0.1451612903226, 0.8548387096774], 0.5330385016: [0.8225806451613, 0.1774193548387], 0.5442247659: [0.0645161290323, 0.9354838709677], 0.4901144641: [0.1612903225806, 0.8387096774194], 0.5223725286: [0.1612903225806, 0.8387096774194], 0.0541103018: [0.4516129032258, 0.5483870967742], 0.0845473465: [0.5645161290323, 0.4354838709677], 0.2289281998: [0.6451612903226, 0.3548387096774], 0.930541103: [0.1451612903226, 0.8548387096774], 0.8688865765: [0.258064516129, 0.741935483871], 0.7325702393: [0.9032258064516, 0.0967741935484], 0.802289282: [0.0645161290323, 0.9354838709677], 0.8699271592: [0.0322580645161, 0.9677419354839], 0.7700312175: [0.0645161290323, 0.9354838709677], 0.5403225806: [0.5], 0.6943288241: [0.8225806451613, 0.1774193548387], 0.372528616: [0.4193548387097, 0.5806451612903], 0.790062435: [0.0161290322581, 0.9838709677419], 0.9523933403: [0.8225806451613, 0.1774193548387], 0.7463579605: [0.7903225806452, 0.2096774193548], 0.9107700312: [0.6290322580645, 0.3709677419355], 0.9708636837: [0.6451612903226, 0.3548387096774], 0.6277315297: [0.4032258064516, 0.5967741935484], 0.7023933403: [0.3225806451613, 0.6774193548387], 0.0137877211: [0.0483870967742, 0.9516129032258], 0.5850676379: [0.7903225806452, 0.2096774193548], 0.7804370447: [0.1612903225806, 0.8387096774194], 0.1886056191: [0.1451612903226, 0.8548387096774], 0.4869927159: [0.6451612903226, 0.3548387096774], 0.0783038502: [0.0483870967742, 0.9516129032258], 0.8335067638: [0.1935483870968, 0.8064516129032], 0.6964099896: [0.6935483870968, 0.3064516129032], 0.9604578564: [0.3225806451613, 0.6774193548387], 0.3582206035: [0.8870967741935, 0.1129032258065], 0.5143080125: [0.6612903225806, 0.3387096774194], 0.110301769: [0.7741935483871, 0.2258064516129], 0.4422476587: [0.9032258064516, 0.0967741935484], 0.1105619147: [0.0483870967742, 0.9516129032258], 0.441207076: [0.4516129032258, 0.5483870967742], 0.436264308: [0.8225806451613, 0.1774193548387], 0.935483871: [0.0], 0.6451612903: [0.0], 0.8605619147: [0.4516129032258, 0.5483870967742], 0.2892819979: [0.0322580645161, 0.9677419354839], 0.8629032258: [0.5], 0.8657648283: [0.1935483870968, 0.8064516129032], 0.5642559834: [0.0161290322581, 0.9838709677419], 0.3152965661: [0.3225806451613, 0.6774193548387], 0.0270551509: [0.1935483870968, 0.8064516129032], 0.5078043704: [0.5161290322581, 0.4838709677419], 0.2705515088: [0.2903225806452, 0.7096774193548], 0.6506243496: [0.2741935483871, 0.7258064516129], 0.052289282: [0.5645161290323, 0.4354838709677], 0.1386576483: [0.0806451612903, 0.9193548387097], 0.087408949: [0.9032258064516, 0.0967741935484], 0.9344432882: [0.0322580645161, 0.9677419354839], 0.4443288241: [0.3225806451613, 0.6774193548387], 0.6204474506: [0.6290322580645, 0.3709677419355], 0.6266909469: [0.0483870967742, 0.9516129032258], 0.2031737773: [0.0806451612903, 0.9193548387097], 0.8126951093: [0.1612903225806, 0.8387096774194], 0.535119667: [0.6935483870968, 0.3064516129032], 0.7981269511: [0.5161290322581, 0.4838709677419], 0.7669094693: [0.3225806451613, 0.6774193548387], 0.1841831426: [0.9032258064516, 0.0967741935484], 0.8212799168: [0.4032258064516, 0.5967741935484], 0.0280957336: [0.0645161290323, 0.9354838709677], 0.6027575442: [0.758064516129, 0.241935483871], 0.2853798127: [0.1451612903226, 0.8548387096774], 0.5067637877: [0.9032258064516, 0.0967741935484], 0.603798127: [0.5322580645161, 0.4677419354839], 0.2486992716: [0.9032258064516, 0.0967741935484], 0.5299167534: [0.0483870967742, 0.9516129032258], 0.8587408949: [0.5645161290323, 0.4354838709677], 0.4914151925: [0.6290322580645, 0.3709677419355], 0.4612382934: [0.0806451612903, 0.9193548387097], 0.9492715921: [0.0483870967742, 0.9516129032258], 0.2427159209: [0.8225806451613, 0.1774193548387], 0.3444328824: [0.4516129032258, 0.5483870967742], 0.6298126951: [0.8225806451613, 0.1774193548387], 0.6607700312: [0.1290322580645, 0.8709677419355], 0.26144641: [0.8870967741935, 0.1129032258065], 0.1852237253: [0.5161290322581, 0.4838709677419], 0.7838189386: [0.0806451612903, 0.9193548387097], 0.8740894901: [0.6451612903226, 0.3548387096774], 0.9825702393: [0.4032258064516, 0.5967741935484], 0.9417273673: [0.1612903225806, 0.8387096774194], 0.7731529657: [0.0322580645161, 0.9677419354839], 0.3644640999: [0.0806451612903, 0.9193548387097], 0.4734651405: [0.4516129032258, 0.5483870967742], 0.0124869927: [0.2903225806452, 0.7096774193548], 0.2497398543: [0.5161290322581, 0.4838709677419], 0.4674817898: [0.0161290322581, 0.9838709677419], 0.0699791883: [0.2741935483871, 0.7258064516129], 0.7723725286: [0.6612903225806, 0.3387096774194], 0.6024973985: [0.4516129032258, 0.5483870967742], 0.3995837669: [0.2903225806452, 0.7096774193548], 0.493496358: [0.0806451612903, 0.9193548387097], 0.3204994797: [0.258064516129, 0.741935483871], 0.1602497399: [0.0322580645161, 0.9677419354839], 0.086628512: [0.758064516129, 0.241935483871], 0.314516129: [0.5], 0.4765868887: [0.3225806451613, 0.6774193548387], 0.8753902185: [0.7903225806452, 0.2096774193548], 0.0561914672: [0.5161290322581, 0.4838709677419], 0.2247658689: [0.0322580645161, 0.9677419354839], 0.9586368366: [0.5322580645161, 0.4677419354839], 0.3142559834: [0.5161290322581, 0.4838709677419], 0.604578564: [0.5161290322581, 0.4838709677419], 0.0033818939: [0.8870967741935, 0.1129032258065], 0.4435483871: [0.5], 0.6763787721: [0.0322580645161, 0.9677419354839], 0.5431841831: [0.1935483870968, 0.8064516129032], 0.6922476587: [0.4032258064516, 0.5967741935484], 0.296566077: [0.1612903225806, 0.8387096774194], 0.0741415193: [0.0806451612903, 0.9193548387097], 0.6753381894: [0.258064516129, 0.741935483871], 0.8636836629: [0.3225806451613, 0.6774193548387], 0.1612903226: [0.0], 0.1997918835: [0.1612903225806, 0.8387096774194], 0.0499479709: [0.4193548387097, 0.5806451612903], 0.6651925078: [0.5645161290323, 0.4354838709677], 0.1063995838: [0.0806451612903, 0.9193548387097], 0.5965140479: [0.0161290322581, 0.9838709677419], 0.1914672216: [0.258064516129, 0.741935483871], 0.4578563996: [0.1612903225806, 0.8387096774194], 0.820239334: [0.0483870967742, 0.9516129032258], 0.2258064516: [0.0], 0.1459417274: [0.8225806451613, 0.1774193548387], 0.680541103: [0.6451612903226, 0.3548387096774], 0.7252861603: [0.1290322580645, 0.8709677419355], 0.691207076: [0.0483870967742, 0.9516129032258], 0.6485431842: [0.8870967741935, 0.1129032258065], 0.7890218522: [0.4032258064516, 0.5967741935484], 0.0062434964: [0.1612903225806, 0.8387096774194], 0.0218522373: [0.4516129032258, 0.5483870967742], 0.8345473465: [0.0645161290323, 0.9354838709677], 0.5652965661: [0.8225806451613, 0.1774193548387], 0.7918834547: [0.4193548387097, 0.5806451612903], 0.8283038502: [0.4516129032258, 0.5483870967742], 0.5379812695: [0.4516129032258, 0.5483870967742], 0.8928199792: [0.4516129032258, 0.5483870967742], 0.3696670135: [0.4032258064516, 0.5967741935484], 0.9032258065: [0.0], 0.0169094693: [0.8225806451613, 0.1774193548387], 0.5733610822: [0.3225806451613, 0.6774193548387], 0.7273673257: [0.4193548387097, 0.5806451612903], 0.4089490114: [0.4516129032258, 0.5483870967742], 0.3184183143: [0.0645161290323, 0.9354838709677], 0.144640999: [0.1290322580645, 0.8709677419355], 0.3769510926: [0.758064516129, 0.241935483871], 0.4986992716: [0.4032258064516, 0.5967741935484], 0.7016129032: [0.5], 0.6399583767: [0.1935483870968, 0.8064516129032], 0.8899583767: [0.6935483870968, 0.3064516129032], 0.9854318418: [0.4193548387097, 0.5806451612903], 0.9409469303: [0.2741935483871, 0.7258064516129], 0.4432882414: [0.5161290322581, 0.4838709677419], 0.7317898023: [0.758064516129, 0.241935483871], 0.3215400624: [0.0322580645161, 0.9677419354839], 0.3457336108: [0.5322580645161, 0.4677419354839], 0.1136836629: [0.8225806451613, 0.1774193548387], 0.151144641: [0.758064516129, 0.241935483871], 0.8865764828: [0.1290322580645, 0.8709677419355], 0.9752861603: [0.6290322580645, 0.3709677419355], 0.2809573361: [0.9032258064516, 0.0967741935484], 0.371748179: [0.8225806451613, 0.1774193548387], 0.9979188345: [0.258064516129, 0.741935483871], 0.01144641: [0.3870967741935, 0.6129032258065], 0.9399063476: [0.7903225806452, 0.2096774193548], 0.7315296566: [0.4516129032258, 0.5483870967742], 0.4747658689: [0.5322580645161, 0.4677419354839], 0.6305931322: [0.4193548387097, 0.5806451612903], 0.250780437: [0.3225806451613, 0.6774193548387], 0.9531737773: [0.4193548387097, 0.5806451612903], 0.5559313215: [0.6290322580645, 0.3709677419355], 0.0884495317: [0.5161290322581, 0.4838709677419], 0.1768990635: [0.1290322580645, 0.8709677419355], 0.6755983351: [0.6612903225806, 0.3387096774194], 0.2154006244: [0.4516129032258, 0.5483870967742], 0.7419354839: [0.0], 0.9388657648: [0.8870967741935, 0.1129032258065], 0.0437044745: [0.3870967741935, 0.6129032258065], 0.6035379813: [0.9032258064516, 0.0967741935484], 0.9066077003: [0.8870967741935, 0.1129032258065], 0.6672736733: [0.758064516129, 0.241935483871], 0.0603537981: [0.0645161290323, 0.9354838709677], 0.1709157128: [0.0806451612903, 0.9193548387097], 0.337408949: [0.4032258064516, 0.5967741935484], 0.2094172737: [0.0161290322581, 0.9838709677419], 0.0075442248: [0.6290322580645, 0.3709677419355], 0.3038501561: [0.7741935483871, 0.2258064516129], 0.7637877211: [0.4516129032258, 0.5483870967742], 0.4716441207: [0.5645161290323, 0.4354838709677], 0.2354318418: [0.0806451612903, 0.9193548387097], 0.9263787721: [0.5322580645161, 0.4677419354839], 0.2978668054: [0.6290322580645, 0.3709677419355], 0.9555150885: [0.5645161290323, 0.4354838709677], 0.7075962539: [0.258064516129, 0.741935483871], 0.3093132154: [0.6935483870968, 0.3064516129032], 0.1082206035: [0.3870967741935, 0.6129032258065], 0.2164412071: [0.9032258064516, 0.0967741935484], 0.5546305931: [0.1612903225806, 0.8387096774194], 0.1279916753: [0.0322580645161, 0.9677419354839], 0.4268990635: [0.6290322580645, 0.3709677419355], 0.7898022893: [0.1290322580645, 0.8709677419355], 0.0158688866: [0.0161290322581, 0.9838709677419], 0.0707596254: [0.1612903225806, 0.8387096774194], 0.2104578564: [0.8225806451613, 0.1774193548387], 0.2799167534: [0.4516129032258, 0.5483870967742], 0.6264308012: [0.7741935483871, 0.2258064516129], 0.21566077: [0.758064516129, 0.241935483871], 0.2372528616: [0.3870967741935, 0.6129032258065], 0.3059313215: [0.1290322580645, 0.8709677419355], 0.2739334027: [0.0161290322581, 0.9838709677419], 0.0957336108: [0.0322580645161, 0.9677419354839], 0.8306451613: [0.5], 0.3779916753: [0.5322580645161, 0.4677419354839], 0.2999479709: [0.0806451612903, 0.9193548387097], 0.1022372529: [0.2741935483871, 0.7258064516129], 0.121748179: [0.3225806451613, 0.6774193548387], 0.3787721124: [0.5161290322581, 0.4838709677419], 0.9253381894: [0.758064516129, 0.241935483871], 0.4029656608: [0.0161290322581, 0.9838709677419], 0.185483871: [0.5], 0.4755463059: [0.5161290322581, 0.4838709677419], 0.8886576483: [0.4193548387097, 0.5806451612903], 0.8941207076: [0.5322580645161, 0.4677419354839], 0.6173257024: [0.7903225806452, 0.2096774193548], 0.8691467222: [0.6612903225806, 0.3387096774194], 0.2559833507: [0.258064516129, 0.741935483871], 0.5319979188: [0.0161290322581, 0.9838709677419], 0.2819979188: [0.5161290322581, 0.4838709677419], 0.4786680541: [0.1935483870968, 0.8064516129032]} averages_odd={0.0: [0.0], 0.25: [0.5], 0.0096253902: [0.0806451612903, 0.9193548387097], 0.1688345473: [0.6290322580645, 0.3709677419355], 0.3850156087: [0.258064516129, 0.741935483871], 0.0481269511: [0.0161290322581, 0.9838709677419], 0.3530176899: [0.6612903225806, 0.3387096774194], 0.6433402706: [0.6612903225806, 0.3387096774194], 0.6077003122: [0.1935483870968, 0.8064516129032], 0.3790322581: [0.5], 0.4560353798: [0.7903225806452, 0.2096774193548], 0.8626430801: [0.5161290322581, 0.4838709677419], 0.732830385: [0.5322580645161, 0.4677419354839], 0.3933402706: [0.1612903225806, 0.8387096774194], 0.4328824142: [0.7741935483871, 0.2258064516129], 0.0044224766: [0.7903225806452, 0.2096774193548], 0.482049948: [0.6612903225806, 0.3387096774194], 0.8764308012: [0.2741935483871, 0.7258064516129], 0.7817377732: [0.6290322580645, 0.3709677419355], 0.9274193548: [0.5], 0.3506763788: [0.0645161290323, 0.9354838709677], 0.5434443288: [0.1451612903226, 0.8548387096774], 0.0322580645: [0.0], 0.1675338189: [0.1612903225806, 0.8387096774194], 0.4383454735: [0.6935483870968, 0.3064516129032], 0.0478668054: [0.1290322580645, 0.8709677419355], 0.361082206: [0.1612903225806, 0.8387096774194], 0.7221644121: [0.7096774193548, 0.2903225806452], 0.1925078044: [0.0322580645161, 0.9677419354839], 0.4640998959: [0.7096774193548, 0.2903225806452], 0.232049948: [0.1612903225806, 0.8387096774194], 0.4838709677: [0.0], 0.9635796046: [0.0645161290323, 0.9354838709677], 0.5837669095: [0.6451612903226, 0.3548387096774], 0.0356399584: [0.8870967741935, 0.1129032258065], 0.4193548387: [0.0], 0.96566077: [0.258064516129, 0.741935483871], 0.7960457856: [0.4516129032258, 0.5483870967742], 0.5902705515: [0.0806451612903, 0.9193548387097], 0.5140478668: [0.258064516129, 0.741935483871], 0.6347554631: [0.4516129032258, 0.5483870967742], 0.3051508845: [0.4032258064516, 0.5967741935484], 0.7963059313: [0.758064516129, 0.241935483871], 0.6253902185: [0.7096774193548, 0.2903225806452], 0.0835067638: [0.6935483870968, 0.3064516129032], 0.6974505723: [0.5645161290323, 0.4354838709677], 0.4341831426: [0.4032258064516, 0.5967741935484], 0.8043704475: [0.258064516129, 0.741935483871], 0.2010926119: [0.6290322580645, 0.3709677419355], 0.5080645161: [0.5], 0.9721644121: [0.7903225806452, 0.2096774193548], 0.8563995838: [0.4193548387097, 0.5806451612903], 0.0814255983: [0.8225806451613, 0.1774193548387], 0.8285639958: [0.758064516129, 0.241935483871], 0.6620707596: [0.8225806451613, 0.1774193548387], 0.3132154006: [0.9032258064516, 0.0967741935484], 0.2812174818: [0.5322580645161, 0.4677419354839], 0.3902185224: [0.6451612903226, 0.3548387096774], 0.7911030177: [0.8225806451613, 0.1774193548387], 0.7408949011: [0.0322580645161, 0.9677419354839], 0.3072320499: [0.8225806451613, 0.1774193548387], 0.8368886576: [0.6612903225806, 0.3387096774194], 0.5704994797: [0.758064516129, 0.241935483871], 0.4102497399: [0.5322580645161, 0.4677419354839], 0.4872528616: [0.8870967741935, 0.1129032258065], 0.349635796: [0.1935483870968, 0.8064516129032], 0.8012486993: [0.1935483870968, 0.8064516129032], 0.2406347555: [0.4032258064516, 0.5967741935484], 0.9791883455: [0.3870967741935, 0.6129032258065], 0.546566077: [0.6612903225806, 0.3387096774194], 0.1831425598: [0.4516129032258, 0.5483870967742], 0.3662851197: [0.3870967741935, 0.6129032258065], 0.04578564: [0.2258064516129, 0.7741935483871], 0.7140998959: [0.7903225806452, 0.2096774193548], 0.9575962539: [0.758064516129, 0.241935483871], 0.360301769: [0.2741935483871, 0.7258064516129], 0.4693028096: [0.4193548387097, 0.5806451612903], 0.8418314256: [0.6451612903226, 0.3548387096774], 0.075962539: [0.3870967741935, 0.6129032258065], 0.1238293444: [0.1935483870968, 0.8064516129032], 0.2476586889: [0.4516129032258, 0.5483870967742], 0.1771592092: [0.0161290322581, 0.9838709677419], 0.5754422477: [0.1935483870968, 0.8064516129032], 0.7286680541: [0.6935483870968, 0.3064516129032], 0.4893340271: [0.2741935483871, 0.7258064516129], 0.8618626431: [0.5322580645161, 0.4677419354839], 0.4112903226: [0.5], 0.2416753382: [0.0161290322581, 0.9838709677419], 0.6527055151: [0.6290322580645, 0.3709677419355], 0.4630593132: [0.3870967741935, 0.6129032258065], 0.5119667014: [0.0645161290323, 0.9354838709677], 0.8834547347: [0.7096774193548, 0.2903225806452], 0.0460457856: [0.0483870967742, 0.9516129032258], 0.3683662851: [0.7741935483871, 0.2258064516129], 0.3363683663: [0.0483870967742, 0.9516129032258], 0.9867325702: [0.6935483870968, 0.3064516129032], 0.064516129: [0.0], 0.3623829344: [0.6290322580645, 0.3709677419355], 0.4393860562: [0.5645161290323, 0.4354838709677], 0.8616024974: [0.9032258064516, 0.0967741935484], 0.7044745057: [0.1935483870968, 0.8064516129032], 0.8264828304: [0.5645161290323, 0.4354838709677], 0.1781997919: [0.8225806451613, 0.1774193548387], 0.6441207076: [0.0322580645161, 0.9677419354839], 0.7127991675: [0.6451612903226, 0.3548387096774], 0.3350676379: [0.2903225806452, 0.7096774193548], 0.2167013528: [0.5322580645161, 0.4677419354839], 0.9094693028: [0.1612903225806, 0.8387096774194], 0.1592091571: [0.258064516129, 0.741935483871], 0.0398022893: [0.6290322580645, 0.3709677419355], 0.5954734651: [0.4032258064516, 0.5967741935484], 0.5528095734: [0.7903225806452, 0.2096774193548], 0.3124349636: [0.758064516129, 0.241935483871], 0.5608740895: [0.7096774193548, 0.2903225806452], 0.9947970864: [0.1935483870968, 0.8064516129032], 0.6641519251: [0.6935483870968, 0.3064516129032], 0.4474505723: [0.0645161290323, 0.9354838709677], 0.2237252862: [0.258064516129, 0.741935483871], 0.7003121748: [0.9032258064516, 0.0967741935484], 0.9222164412: [0.6935483870968, 0.3064516129032], 0.4047866805: [0.4193548387097, 0.5806451612903], 0.4414672216: [0.758064516129, 0.241935483871], 0.8189386056: [0.7096774193548, 0.2903225806452], 0.9157127992: [0.7096774193548, 0.2903225806452], 0.2177419355: [0.5], 0.2624869927: [0.7903225806452, 0.2096774193548], 0.5382414152: [0.758064516129, 0.241935483871], 0.0801248699: [0.1290322580645, 0.8709677419355], 0.2885015609: [0.6612903225806, 0.3387096774194], 0.0156087409: [0.1290322580645, 0.8709677419355], 0.9014047867: [0.6612903225806, 0.3387096774194], 0.0689386056: [0.7903225806452, 0.2096774193548], 0.3915192508: [0.7903225806452, 0.2096774193548], 0.551508845: [0.6451612903226, 0.3548387096774], 0.669094693: [0.5161290322581, 0.4838709677419], 0.8785119667: [0.6290322580645, 0.3709677419355], 0.7211238293: [0.3870967741935, 0.6129032258065], 0.4175338189: [0.6612903225806, 0.3387096774194], 0.1560874089: [0.1935483870968, 0.8064516129032], 0.5881893861: [0.6290322580645, 0.3709677419355], 0.0676378772: [0.6451612903226, 0.3548387096774], 0.7721123829: [0.258064516129, 0.741935483871], 0.7151404787: [0.2741935483871, 0.7258064516129], 0.8337669095: [0.1451612903226, 0.8548387096774], 0.0249739854: [0.3225806451613, 0.6774193548387], 0.5028616025: [0.6935483870968, 0.3064516129032], 0.0998959417: [0.6451612903226, 0.3548387096774], 0.8909989594: [0.5645161290323, 0.4354838709677], 0.2382934443: [0.2903225806452, 0.7096774193548], 0.0595733611: [0.1451612903226, 0.8548387096774], 0.6888657648: [0.3870967741935, 0.6129032258065], 0.9281997919: [0.3225806451613, 0.6774193548387], 0.7232049948: [0.7741935483871, 0.2258064516129], 0.470603538: [0.6935483870968, 0.3064516129032], 0.0031217482: [0.6451612903226, 0.3548387096774], 0.1508844953: [0.4516129032258, 0.5483870967742], 0.5039021852: [0.5645161290323, 0.4354838709677], 0.9513527575: [0.0161290322581, 0.9838709677419], 0.8857960458: [0.4032258064516, 0.5967741935484], 0.9812695109: [0.7741935483871, 0.2258064516129], 0.174817898: [0.2258064516129, 0.7741935483871], 0.3176378772: [0.1451612903226, 0.8548387096774], 0.6722164412: [0.1935483870968, 0.8064516129032], 0.6828824142: [0.2741935483871, 0.7258064516129], 0.4120707596: [0.3225806451613, 0.6774193548387], 0.6402185224: [0.1451612903226, 0.8548387096774], 0.5538501561: [0.2741935483871, 0.7258064516129], 0.9846514048: [0.8225806451613, 0.1774193548387], 0.1196670135: [0.9032258064516, 0.0967741935484], 0.2393340271: [0.7741935483871, 0.2258064516129], 0.4466701353: [0.1451612903226, 0.8548387096774], 0.0926118626: [0.0645161290323, 0.9354838709677], 0.8577003122: [0.6935483870968, 0.3064516129032], 0.3384495317: [0.0161290322581, 0.9838709677419], 0.6048387097: [0.5], 0.2333506764: [0.6290322580645, 0.3709677419355], 0.2937044745: [0.8870967741935, 0.1129032258065], 0.8522372529: [0.7741935483871, 0.2258064516129], 0.1011966701: [0.7903225806452, 0.2096774193548], 0.6701352758: [0.3225806451613, 0.6774193548387], 0.1438605619: [0.4032258064516, 0.5967741935484], 0.7775754422: [0.8870967741935, 0.1129032258065], 0.4547346514: [0.6451612903226, 0.3548387096774], 0.4227367326: [0.8870967741935, 0.1129032258065], 0.7515608741: [0.0806451612903, 0.9193548387097], 0.209157128: [0.1290322580645, 0.8709677419355], 0.5463059313: [0.258064516129, 0.741935483871], 0.9209157128: [0.4193548387097, 0.5806451612903], 0.8483350676: [0.0806451612903, 0.9193548387097], 0.7866805411: [0.7096774193548, 0.2903225806452], 0.2083766909: [0.4032258064516, 0.5967741935484], 0.2757544225: [0.4193548387097, 0.5806451612903], 0.8046305931: [0.6612903225806, 0.3387096774194], 0.5962539022: [0.1290322580645, 0.8709677419355], 0.0377211238: [0.2741935483871, 0.7258064516129], 0.3017689906: [0.3870967741935, 0.6129032258065], 0.5715400624: [0.5322580645161, 0.4677419354839], 0.5109261186: [0.1935483870968, 0.8064516129032], 0.29578564: [0.2741935483871, 0.7258064516129], 0.5275754422: [0.3870967741935, 0.6129032258065], 0.946930281: [0.3870967741935, 0.6129032258065], 0.0221123829: [0.758064516129, 0.241935483871], 0.6482830385: [0.6451612903226, 0.3548387096774], 0.1449011446: [0.0161290322581, 0.9838709677419], 0.7336108221: [0.5161290322581, 0.4838709677419], 0.5796045786: [0.0322580645161, 0.9677419354839], 0.424817898: [0.2741935483871, 0.7258064516129], 0.3257023933: [0.6451612903226, 0.3548387096774], 0.6992715921: [0.4516129032258, 0.5483870967742], 0.9836108221: [0.0161290322581, 0.9838709677419], 0.6087408949: [0.0645161290323, 0.9354838709677], 0.9302809573: [0.1935483870968, 0.8064516129032], 0.2479188345: [0.758064516129, 0.241935483871], 0.0863683663: [0.4516129032258, 0.5483870967742], 0.4651404787: [0.7741935483871, 0.2258064516129], 0.2718522373: [0.0483870967742, 0.9516129032258], 0.7297086368: [0.5645161290323, 0.4354838709677], 0.8119146722: [0.2741935483871, 0.7258064516129], 0.5317377732: [0.1290322580645, 0.8709677419355], 0.1209677419: [0.5], 0.3766909469: [0.4516129032258, 0.5483870967742], 0.8054110302: [0.0322580645161, 0.9677419354839], 0.3798126951: [0.3225806451613, 0.6774193548387], 0.7096774194: [0.0], 0.7609261186: [0.6935483870968, 0.3064516129032], 0.1844432882: [0.5322580645161, 0.4677419354839], 0.737773153: [0.0645161290323, 0.9354838709677], 0.6409989594: [0.0645161290323, 0.9354838709677], 0.6118626431: [0.0322580645161, 0.9677419354839], 0.2539021852: [0.0645161290323, 0.9354838709677], 0.2070759625: [0.7741935483871, 0.2258064516129], 0.5619146722: [0.7741935483871, 0.2258064516129], 0.7856399584: [0.3870967741935, 0.6129032258065], 0.2489594173: [0.5322580645161, 0.4677419354839], 0.6818418314: [0.7903225806452, 0.2096774193548], 0.9128511967: [0.0806451612903, 0.9193548387097], 0.9334027055: [0.258064516129, 0.741935483871], 0.9927159209: [0.3225806451613, 0.6774193548387], 0.7338709677: [0.5], 0.6129032258: [0.0], 0.1594693028: [0.6612903225806, 0.3387096774194], 0.668314256: [0.5322580645161, 0.4677419354839], 0.2861602497: [0.0645161290323, 0.9354838709677], 0.6899063476: [0.7096774193548, 0.2903225806452], 0.7255463059: [0.0161290322581, 0.9838709677419], 0.5723204995: [0.5161290322581, 0.4838709677419], 0.2239854318: [0.6612903225806, 0.3387096774194], 0.5296566077: [0.7741935483871, 0.2258064516129], 0.7369927159: [0.1451612903226, 0.8548387096774], 0.1207075963: [0.5161290322581, 0.4838709677419], 0.9479708637: [0.7096774193548, 0.2903225806452], 0.2049947971: [0.3870967741935, 0.6129032258065], 0.0512486993: [0.6935483870968, 0.3064516129032], 0.9739854318: [0.1612903225806, 0.8387096774194], 0.5983350676: [0.4193548387097, 0.5806451612903], 0.0200312175: [0.5645161290323, 0.4354838709677], 0.8982830385: [0.1451612903226, 0.8548387096774], 0.4040062435: [0.8225806451613, 0.1774193548387], 0.9573361082: [0.4516129032258, 0.5483870967742], 0.7658688866: [0.5161290322581, 0.4838709677419], 0.523673257: [0.6290322580645, 0.3709677419355], 0.0593132154: [0.1935483870968, 0.8064516129032], 0.3548387097: [0.0], 0.0353798127: [0.6451612903226, 0.3548387096774], 0.7648283039: [0.9032258064516, 0.0967741935484], 0.3121748179: [0.4516129032258, 0.5483870967742], 0.9583766909: [0.9032258064516, 0.0967741935484], 0.5785639958: [0.258064516129, 0.741935483871], 0.5861082206: [0.2741935483871, 0.7258064516129], 0.2770551509: [0.6935483870968, 0.3064516129032], 0.0418834547: [0.0806451612903, 0.9193548387097], 0.1030176899: [0.1612903225806, 0.8387096774194], 0.3465140479: [0.5161290322581, 0.4838709677419], 0.4060874089: [0.6935483870968, 0.3064516129032], 0.6808012487: [0.8870967741935, 0.1129032258065], 0.6183662851: [0.2741935483871, 0.7258064516129], 0.7554630593: [0.7741935483871, 0.2258064516129], 0.6285119667: [0.1290322580645, 0.8709677419355], 0.8098335068: [0.8870967741935, 0.1129032258065], 0.9989594173: [0.0322580645161, 0.9677419354839], 0.4008844953: [0.0483870967742, 0.9516129032258], 0.1425598335: [0.2258064516129, 0.7741935483871], 0.2531217482: [0.1451612903226, 0.8548387096774], 0.8709677419: [0.0], 0.6870447451: [0.0806451612903, 0.9193548387097], 0.7346514048: [0.3225806451613, 0.6774193548387], 0.8303850156: [0.5161290322581, 0.4838709677419], 0.1365764828: [0.6290322580645, 0.3709677419355], 0.1750780437: [0.0483870967742, 0.9516129032258], 0.7877211238: [0.7741935483871, 0.2258064516129], 0.7983870968: [0.5], 0.505723205: [0.4516129032258, 0.5483870967742], 0.8449531738: [0.1612903225806, 0.8387096774194], 0.5411030177: [0.3225806451613, 0.6774193548387], 0.1123829344: [0.1290322580645, 0.8709677419355], 0.593132154: [0.7096774193548, 0.2903225806452], 0.2611862643: [0.6451612903226, 0.3548387096774], 0.2395941727: [0.0483870967742, 0.9516129032258], 0.3381893861: [0.1290322580645, 0.8709677419355], 0.5920915713: [0.3870967741935, 0.6129032258065], 0.3322060354: [0.0806451612903, 0.9193548387097], 0.0551508845: [0.9032258064516, 0.0967741935484], 0.9170135276: [0.0483870967742, 0.9516129032258], 0.3748699272: [0.5645161290323, 0.4354838709677], 0.116805411: [0.5645161290323, 0.4354838709677], 0.4672216441: [0.1290322580645, 0.8709677419355], 0.4352237253: [0.0161290322581, 0.9838709677419], 0.9250780437: [0.4516129032258, 0.5483870967742], 0.6430801249: [0.258064516129, 0.741935483871], 0.8824141519: [0.3870967741935, 0.6129032258065], 0.1761186264: [0.4032258064516, 0.5967741935484], 0.6724765869: [0.1451612903226, 0.8548387096774], 0.1571279917: [0.0645161290323, 0.9354838709677], 0.220603538: [0.1935483870968, 0.8064516129032], 0.6951092612: [0.4193548387097, 0.5806451612903], 0.3402705515: [0.4193548387097, 0.5806451612903], 0.1043184183: [0.6290322580645, 0.3709677419355], 0.4172736733: [0.258064516129, 0.741935483871], 0.6370967742: [0.5], 0.7450572321: [0.6451612903226, 0.3548387096774], 0.2216441207: [0.0645161290323, 0.9354838709677], 0.0554110302: [0.5322580645161, 0.4677419354839], 0.5944328824: [0.0483870967742, 0.9516129032258], 0.7567637877: [0.4032258064516, 0.5967741935484], 0.0634755463: [0.0322580645161, 0.9677419354839], 0.6566077003: [0.3870967741935, 0.6129032258065], 0.755723205: [0.0483870967742, 0.9516129032258], 0.2903225806: [0.0], 0.5806451613: [0.0], 0.9773673257: [0.0806451612903, 0.9193548387097], 0.9596774194: [0.5], 0.8556191467: [0.8225806451613, 0.1774193548387], 0.3475546306: [0.3225806451613, 0.6774193548387], 0.6006763788: [0.5645161290323, 0.4354838709677], 0.1966701353: [0.6451612903226, 0.3548387096774], 0.9490114464: [0.7741935483871, 0.2258064516129], 0.8064516129: [0.0], 0.3103537981: [0.5645161290323, 0.4354838709677], 0.4963579605: [0.2903225806452, 0.7096774193548], 0.7159209157: [0.1612903225806, 0.8387096774194], 0.6693548387: [0.5], 0.1521852237: [0.5322580645161, 0.4677419354839], 0.7931841831: [0.6935483870968, 0.3064516129032], 0.500780437: [0.8225806451613, 0.1774193548387], 0.8743496358: [0.8870967741935, 0.1129032258065], 0.7879812695: [0.0483870967742, 0.9516129032258], 0.1269510926: [0.258064516129, 0.741935483871], 0.8241415193: [0.4193548387097, 0.5806451612903], 0.7193028096: [0.0806451612903, 0.9193548387097], 0.1272112383: [0.6612903225806, 0.3387096774194], 0.1126430801: [0.0161290322581, 0.9838709677419], 0.8511966701: [0.7096774193548, 0.2903225806452], 0.4495317378: [0.258064516129, 0.741935483871], 0.6191467222: [0.1612903225806, 0.8387096774194], 0.4664412071: [0.4032258064516, 0.5967741935484], 0.2882414152: [0.258064516129, 0.741935483871], 0.1917273673: [0.6612903225806, 0.3387096774194], 0.9503121748: [0.4032258064516, 0.5967741935484], 0.2302289282: [0.7903225806452, 0.2096774193548], 0.4516129032: [0.0], 0.9510926119: [0.1290322580645, 0.8709677419355], 0.1727367326: [0.3870967741935, 0.6129032258065], 0.9627991675: [0.1451612903226, 0.8548387096774], 0.901144641: [0.258064516129, 0.741935483871], 0.3225806452: [0.0], 0.6350156087: [0.758064516129, 0.241935483871], 0.3394901145: [0.8225806451613, 0.1774193548387], 0.9950572321: [0.1451612903226, 0.8548387096774], 0.8951612903: [0.5], 0.1186264308: [0.4516129032258, 0.5483870967742], 0.1667533819: [0.2741935483871, 0.7258064516129], 0.4425078044: [0.5322580645161, 0.4677419354839], 0.9908949011: [0.5322580645161, 0.4677419354839], 0.7245057232: [0.4032258064516, 0.5967741935484], 0.4685223725: [0.8225806451613, 0.1774193548387], 0.6849635796: [0.6290322580645, 0.3709677419355], 0.8441727367: [0.2741935483871, 0.7258064516129], 0.2312695109: [0.2741935483871, 0.7258064516129], 0.0803850156: [0.0161290322581, 0.9838709677419], 0.9711238293: [0.8870967741935, 0.1129032258065], 0.0678980229: [0.8870967741935, 0.1129032258065], 0.1737773153: [0.2903225806452, 0.7096774193548], 0.9898543184: [0.758064516129, 0.241935483871], 0.6243496358: [0.3870967741935, 0.6129032258065], 0.7078563996: [0.6612903225806, 0.3387096774194], 0.3415712799: [0.6935483870968, 0.3064516129032], 0.4505723205: [0.0322580645161, 0.9677419354839], 0.7991675338: [0.3225806451613, 0.6774193548387], 0.4255983351: [0.1612903225806, 0.8387096774194], 0.919094693: [0.0161290322581, 0.9838709677419], 0.2715920916: [0.7741935483871, 0.2258064516129], 0.9659209157: [0.6612903225806, 0.3387096774194], 0.9981789802: [0.6612903225806, 0.3387096774194], 0.8772112383: [0.1612903225806, 0.8387096774194], 0.2656087409: [0.6290322580645, 0.3709677419355], 0.9677419355: [0.0], 0.6774193548: [0.0], 0.854578564: [0.0161290322581, 0.9838709677419], 0.1001560874: [0.8870967741935, 0.1129032258065], 0.5192507804: [0.6451612903226, 0.3548387096774], 0.0054630593: [0.2741935483871, 0.7258064516129], 0.1428199792: [0.0483870967742, 0.9516129032258], 0.394640999: [0.6290322580645, 0.3709677419355], 0.5632154006: [0.4032258064516, 0.5967741935484], 0.4141519251: [0.1935483870968, 0.8064516129032], 0.5205515088: [0.7903225806452, 0.2096774193548], 0.7773152966: [0.6451612903226, 0.3548387096774], 0.4976586889: [0.0483870967742, 0.9516129032258], 0.5975546306: [0.8225806451613, 0.1774193548387], 0.0564516129: [0.5], 0.273673257: [0.1290322580645, 0.8709677419355], 0.2458376691: [0.5645161290323, 0.4354838709677], 0.1352757544: [0.1612903225806, 0.8387096774194], 0.5673777315: [0.6935483870968, 0.3064516129032], 0.2676899063: [0.0806451612903, 0.9193548387097], 0.1883454735: [0.1935483870968, 0.8064516129032], 0.836628512: [0.258064516129, 0.741935483871], 0.0915712799: [0.1935483870968, 0.8064516129032], 0.4027055151: [0.1290322580645, 0.8709677419355], 0.1199271592: [0.5322580645161, 0.4677419354839], 0.7005723205: [0.5322580645161, 0.4677419354839], 0.8293444329: [0.9032258064516, 0.0967741935484], 0.3967221644: [0.0806451612903, 0.9193548387097], 0.02289282: [0.9032258064516, 0.0967741935484], 0.8387096774: [0.0], 0.4997398543: [0.0161290322581, 0.9838709677419], 0.4006243496: [0.7741935483871, 0.2258064516129], 0.5621748179: [0.0483870967742, 0.9516129032258], 0.7692507804: [0.1451612903226, 0.8548387096774], 0.5195109261: [0.8870967741935, 0.1129032258065], 0.3527575442: [0.258064516129, 0.741935483871], 0.7265868887: [0.8225806451613, 0.1774193548387], 0.8160770031: [0.0806451612903, 0.9193548387097], 0.1893860562: [0.0645161290323, 0.9354838709677], 0.3467741935: [0.5], 0.801508845: [0.1451612903226, 0.8548387096774], 0.4349635796: [0.1290322580645, 0.8709677419355], 0.6930280957: [0.1290322580645, 0.8709677419355], 0.3704474506: [0.1290322580645, 0.8709677419355], 0.4817898023: [0.258064516129, 0.741935483871], 0.4497918835: [0.6612903225806, 0.3387096774194], 0.1834027055: [0.758064516129, 0.241935483871], 0.9386056191: [0.6451612903226, 0.3548387096774], 0.3028095734: [0.2903225806452, 0.7096774193548], 0.8254422477: [0.6935483870968, 0.3064516129032], 0.3288241415: [0.1612903225806, 0.8387096774194], 0.0822060354: [0.4193548387097, 0.5806451612903], 0.8959417274: [0.3225806451613, 0.6774193548387], 0.5712799168: [0.9032258064516, 0.0967741935484], 0.0887096774: [0.5], 0.4318418314: [0.7096774193548, 0.2903225806452], 0.1321540062: [0.6451612903226, 0.3548387096774], 0.5392819979: [0.5322580645161, 0.4677419354839], 0.0572320499: [0.3225806451613, 0.6774193548387], 0.1144640999: [0.4193548387097, 0.5806451612903], 0.907648283: [0.7903225806452, 0.2096774193548], 0.0135275754: [0.2258064516129, 0.7741935483871], 0.6079604579: [0.1451612903226, 0.8548387096774], 0.6610301769: [0.0161290322581, 0.9838709677419], 0.7086368366: [0.0322580645161, 0.9677419354839], 0.27289282: [0.4032258064516, 0.5967741935484], 0.4953173777: [0.3870967741935, 0.6129032258065], 0.1415192508: [0.2903225806452, 0.7096774193548], 0.5338189386: [0.4193548387097, 0.5806451612903], 0.1334547347: [0.7903225806452, 0.2096774193548], 0.7661290323: [0.5], 0.401925078: [0.4032258064516, 0.5967741935484], 0.4745057232: [0.9032258064516, 0.0967741935484], 0.4099895942: [0.9032258064516, 0.0967741935484], 0.4994797086: [0.1290322580645, 0.8709677419355], 0.1979708637: [0.7903225806452, 0.2096774193548], 0.3673257024: [0.2903225806452, 0.7096774193548], 0.7453173777: [0.8870967741935, 0.1129032258065], 0.7575442248: [0.1290322580645, 0.8709677419355], 0.1404786681: [0.3870967741935, 0.6129032258065], 0.3579604579: [0.6451612903226, 0.3548387096774], 0.0894901145: [0.3225806451613, 0.6774193548387], 0.8095733611: [0.6451612903226, 0.3548387096774], 0.6599895942: [0.4032258064516, 0.5967741935484], 0.2749739854: [0.8225806451613, 0.1774193548387], 0.7596253902: [0.4193548387097, 0.5806451612903], 0.843132154: [0.7903225806452, 0.2096774193548], 0.8199791883: [0.7741935483871, 0.2258064516129], 0.1344953174: [0.2741935483871, 0.7258064516129], 0.243496358: [0.4193548387097, 0.5806451612903], 0.570239334: [0.4516129032258, 0.5483870967742], 0.8420915713: [0.8870967741935, 0.1129032258065], 0.9146722164: [0.3870967741935, 0.6129032258065], 0.3270031217: [0.7903225806452, 0.2096774193548], 0.0239334027: [0.5161290322581, 0.4838709677419], 0.1990114464: [0.2741935483871, 0.7258064516129], 0.2570239334: [0.0322580645161, 0.9677419354839], 0.6680541103: [0.9032258064516, 0.0967741935484], 0.3340270552: [0.3870967741935, 0.6129032258065], 0.0176899063: [0.4193548387097, 0.5806451612903], 0.547346514: [0.0322580645161, 0.9677419354839], 0.558012487: [0.0806451612903, 0.9193548387097], 0.3280437045: [0.2741935483871, 0.7258064516129], 0.1092611863: [0.2903225806452, 0.7096774193548], 0.0273152966: [0.1451612903226, 0.8548387096774], 0.7401144641: [0.6612903225806, 0.3387096774194], 0.1157648283: [0.6935483870968, 0.3064516129032], 0.8139958377: [0.6290322580645, 0.3709677419355], 0.9086888658: [0.2741935483871, 0.7258064516129], 0.308012487: [0.4193548387097, 0.5806451612903], 0.4570759625: [0.2741935483871, 0.7258064516129], 0.9732049948: [0.2741935483871, 0.7258064516129], 0.8233610822: [0.8225806451613, 0.1774193548387], 0.5840270552: [0.8870967741935, 0.1129032258065], 0.9021852237: [0.0322580645161, 0.9677419354839], 0.9667013528: [0.0322580645161, 0.9677419354839], 0.7741935484: [0.0], 0.9625390219: [0.1935483870968, 0.8064516129032], 0.3361082206: [0.7741935483871, 0.2258064516129], 0.3041103018: [0.0483870967742, 0.9516129032258], 0.7970863684: [0.9032258064516, 0.0967741935484], 0.3301248699: [0.6290322580645, 0.3709677419355], 0.1490634755: [0.5645161290323, 0.4354838709677], 0.482830385: [0.0322580645161, 0.9677419354839], 0.1467221644: [0.4193548387097, 0.5806451612903], 0.4331425598: [0.0483870967742, 0.9516129032258], 0.6162851197: [0.8870967741935, 0.1129032258065], 0.8535379813: [0.4032258064516, 0.5967741935484], 0.8930801249: [0.758064516129, 0.241935483871], 0.0470863684: [0.4032258064516, 0.5967741935484], 0.6357960458: [0.9032258064516, 0.0967741935484], 0.5059833507: [0.758064516129, 0.241935483871], 0.459157128: [0.6290322580645, 0.3709677419355], 0.2135796046: [0.5645161290323, 0.4354838709677], 0.2073361082: [0.0483870967742, 0.9516129032258], 0.6378772112: [0.3225806451613, 0.6774193548387], 0.9063475546: [0.6451612903226, 0.3548387096774], 0.0780437045: [0.2258064516129, 0.7741935483871], 0.2801768991: [0.758064516129, 0.241935483871], 0.8220603538: [0.1290322580645, 0.8709677419355], 0.6368366285: [0.5161290322581, 0.4838709677419], 0.3061914672: [0.0161290322581, 0.9838709677419], 0.4151925078: [0.0645161290323, 0.9354838709677], 0.5483870968: [0.0], 0.7473985432: [0.2741935483871, 0.7258064516129], 0.9430280957: [0.6290322580645, 0.3709677419355], 0.9336628512: [0.6612903225806, 0.3387096774194], 0.7047346514: [0.1451612903226, 0.8548387096774], 0.4092091571: [0.758064516129, 0.241935483871], 0.5684183143: [0.5645161290323, 0.4354838709677], 0.7544224766: [0.7096774193548, 0.2903225806452], 0.2830385016: [0.3225806451613, 0.6774193548387], 0.778616025: [0.7903225806452, 0.2096774193548], 0.3454734651: [0.9032258064516, 0.0967741935484], 0.0720603538: [0.6290322580645, 0.3709677419355], 0.2562434964: [0.6612903225806, 0.3387096774194], 0.3707075963: [0.0161290322581, 0.9838709677419], 0.9833506764: [0.1290322580645, 0.8709677419355], 0.9167533819: [0.7741935483871, 0.2258064516129], 0.2822580645: [0.5], 0.3592611863: [0.7903225806452, 0.2096774193548], 0.0793444329: [0.4032258064516, 0.5967741935484], 0.987773153: [0.5645161290323, 0.4354838709677], 0.4370447451: [0.4193548387097, 0.5806451612903], 0.3852757544: [0.6612903225806, 0.3387096774194], 0.4882934443: [0.7903225806452, 0.2096774193548], 0.8524973985: [0.0483870967742, 0.9516129032258], 0.2643080125: [0.1612903225806, 0.8387096774194], 0.6287721124: [0.0161290322581, 0.9838709677419], 0.8223204995: [0.0161290322581, 0.9838709677419], 0.6514047867: [0.1612903225806, 0.8387096774194], 0.0918314256: [0.1451612903226, 0.8548387096774], 0.0624349636: [0.258064516129, 0.741935483871], 0.9958376691: [0.0645161290323, 0.9354838709677], 0.3860561915: [0.0322580645161, 0.9677419354839], 0.4464099896: [0.1935483870968, 0.8064516129032], 0.7619667014: [0.5645161290323, 0.4354838709677], 0.0491675338: [0.8225806451613, 0.1774193548387], 0.1646722164: [0.8870967741935, 0.1129032258065], 0.6586888658: [0.7741935483871, 0.2258064516129], 0.5725806452: [0.5], 0.4737252862: [0.758064516129, 0.241935483871], 0.1240894901: [0.1451612903226, 0.8548387096774], 0.7533818939: [0.3870967741935, 0.6129032258065], 0.7130593132: [0.8870967741935, 0.1129032258065], 0.2291883455: [0.8870967741935, 0.1129032258065], 0.5150884495: [0.0322580645161, 0.9677419354839], 0.8296045786: [0.5322580645161, 0.4677419354839], 0.3777315297: [0.9032258064516, 0.0967741935484], 0.5161290323: [0.0], 0.6547866805: [0.0806451612903, 0.9193548387097], 0.7234651405: [0.0483870967742, 0.9516129032258], 0.7640478668: [0.758064516129, 0.241935483871], 0.4654006244: [0.0483870967742, 0.9516129032258], 0.5660770031: [0.4193548387097, 0.5806451612903], 0.1116024974: [0.4032258064516, 0.5967741935484], 0.5788241415: [0.6612903225806, 0.3387096774194], 0.4144120708: [0.1451612903226, 0.8548387096774], 0.866805411: [0.0645161290323, 0.9354838709677], 0.8844953174: [0.7741935483871, 0.2258064516129], 0.2060353798: [0.2903225806452, 0.7096774193548], 0.1657127992: [0.7903225806452, 0.2096774193548], 0.7494797086: [0.6290322580645, 0.3709677419355], 0.2934443288: [0.6451612903226, 0.3548387096774], 0.4973985432: [0.7741935483871, 0.2258064516129], 0.0231529657: [0.5322580645161, 0.4677419354839], 0.7650884495: [0.5322580645161, 0.4677419354839], 0.616024974: [0.6451612903226, 0.3548387096774], 0.9180541103: [0.4032258064516, 0.5967741935484], 0.6108220604: [0.258064516129, 0.741935483871], 0.5361602497: [0.5645161290323, 0.4354838709677], 0.3134755463: [0.5322580645161, 0.4677419354839], 0.4224765869: [0.6451612903226, 0.3548387096774], 0.3904786681: [0.8870967741935, 0.1129032258065], 0.1248699272: [0.0645161290323, 0.9354838709677], 0.6670135276: [0.4516129032258, 0.5483870967742], 0.7689906348: [0.1935483870968, 0.8064516129032], 0.9188345473: [0.1290322580645, 0.8709677419355], 0.2695109261: [0.3870967741935, 0.6129032258065], 0.5070239334: [0.5322580645161, 0.4677419354839], 0.0148283039: [0.4032258064516, 0.5967741935484], 0.2635275754: [0.2741935483871, 0.7258064516129], 0.186264308: [0.3225806451613, 0.6774193548387], 0.7481789802: [0.1612903225806, 0.8387096774194], 0.528616025: [0.7096774193548, 0.2903225806452], 0.7055150885: [0.0645161290323, 0.9354838709677], 0.599635796: [0.6935483870968, 0.3064516129032], 0.3985431842: [0.3870967741935, 0.6129032258065], 0.6628511967: [0.4193548387097, 0.5806451612903], 0.1188865765: [0.758064516129, 0.241935483871], 0.8878772112: [0.8225806451613, 0.1774193548387], 0.3925598335: [0.2741935483871, 0.7258064516129], 0.1802809573: [0.6935483870968, 0.3064516129032], 0.2780957336: [0.5645161290323, 0.4354838709677], 0.7796566077: [0.2741935483871, 0.7258064516129], 0.8868366285: [0.0161290322581, 0.9838709677419], 0.5517689906: [0.8870967741935, 0.1129032258065], 0.3870967742: [0.0], 0.9271592092: [0.5161290322581, 0.4838709677419], 0.9815296566: [0.0483870967742, 0.9516129032258], 0.8805931322: [0.0806451612903, 0.9193548387097], 0.5111862643: [0.1451612903226, 0.8548387096774], 0.2447970864: [0.6935483870968, 0.3064516129032], 0.6995317378: [0.758064516129, 0.241935483871], 0.9895941727: [0.4516129032258, 0.5483870967742], 0.7172216441: [0.6290322580645, 0.3709677419355], 0.3426118626: [0.5645161290323, 0.4354838709677], 0.8108740895: [0.7903225806452, 0.2096774193548], 0.9201352758: [0.8225806451613, 0.1774193548387], 0.5764828304: [0.0645161290323, 0.9354838709677], 0.6932882414: [0.0161290322581, 0.9838709677419], 0.3686264308: [0.0483870967742, 0.9516129032258], 0.6732570239: [0.0645161290323, 0.9354838709677], 0.0946930281: [0.258064516129, 0.741935483871], 0.7578043704: [0.0161290322581, 0.9838709677419], 0.1813215401: [0.5645161290323, 0.4354838709677], 0.3173777315: [0.1935483870968, 0.8064516129032], 0.9313215401: [0.0645161290323, 0.9354838709677], 0.0366805411: [0.7903225806452, 0.2096774193548], 0.7942247659: [0.5645161290323, 0.4354838709677], 0.9544745057: [0.6935483870968, 0.3064516129032], 0.0876690947: [0.5322580645161, 0.4677419354839], 0.5015608741: [0.4193548387097, 0.5806451612903], 0.9802289282: [0.7096774193548, 0.2903225806452], 0.7588449532: [0.8225806451613, 0.1774193548387], 0.3446930281: [0.758064516129, 0.241935483871], 0.1563475546: [0.1451612903226, 0.8548387096774], 0.8949011446: [0.5161290322581, 0.4838709677419], 0.9261186264: [0.9032258064516, 0.0967741935484], 0.1532258065: [0.5], 0.8314255983: [0.3225806451613, 0.6774193548387], 0.285119667: [0.1935483870968, 0.8064516129032], 0.6909469303: [0.7741935483871, 0.2258064516129], 0.9232570239: [0.5645161290323, 0.4354838709677], 0.2208636837: [0.1451612903226, 0.8548387096774], 0.7367325702: [0.1935483870968, 0.8064516129032], 0.6589490114: [0.0483870967742, 0.9516129032258], 0.418314256: [0.0322580645161, 0.9677419354839], 0.2947450572: [0.7903225806452, 0.2096774193548], 0.6495837669: [0.7903225806452, 0.2096774193548], 0.3207596254: [0.6612903225806, 0.3387096774194], 0.8462539022: [0.6290322580645, 0.3709677419355], 0.4071279917: [0.5645161290323, 0.4354838709677], 0.8990634755: [0.0645161290323, 0.9354838709677], 0.4237773153: [0.7903225806452, 0.2096774193548], 0.0626951093: [0.6612903225806, 0.3387096774194], 0.353798127: [0.0322580645161, 0.9677419354839], 0.866024974: [0.1451612903226, 0.8548387096774], 0.9594172737: [0.5161290322581, 0.4838709677419], 0.5215920916: [0.2741935483871, 0.7258064516129], 0.797346514: [0.5322580645161, 0.4677419354839], 0.6329344433: [0.5645161290323, 0.4354838709677], 0.4308012487: [0.3870967741935, 0.6129032258065], 0.6056191467: [0.3225806451613, 0.6774193548387], 0.0949531738: [0.6612903225806, 0.3387096774194], 0.1324141519: [0.8870967741935, 0.1129032258065], 0.3738293444: [0.6935483870968, 0.3064516129032], 0.2414151925: [0.1290322580645, 0.8709677419355], 0.0301768991: [0.258064516129, 0.741935483871], 0.5088449532: [0.3225806451613, 0.6774193548387], 0.2112382934: [0.4193548387097, 0.5806451612903], 0.611082206: [0.6612903225806, 0.3387096774194], 0.0189906348: [0.6935483870968, 0.3064516129032], 0.196930281: [0.8870967741935, 0.1129032258065], 0.2528616025: [0.1935483870968, 0.8064516129032], 0.5598335068: [0.3870967741935, 0.6129032258065], 0.9916753382: [0.5161290322581, 0.4838709677419], 0.7013527575: [0.5161290322581, 0.4838709677419], 0.5309573361: [0.4032258064516, 0.5967741935484], 0.5257544225: [0.0806451612903, 0.9193548387097], 0.0312174818: [0.0322580645161, 0.9677419354839], 0.9906347555: [0.9032258064516, 0.0967741935484], 0.8608220604: [0.758064516129, 0.241935483871], 0.3818938606: [0.1935483870968, 0.8064516129032], 0.3498959417: [0.1451612903226, 0.8548387096774], 0.4758064516: [0.5], 0.622528616: [0.0806451612903, 0.9193548387097], 0.3821540062: [0.1451612903226, 0.8548387096774], 0.8980228928: [0.1935483870968, 0.8064516129032], 0.7398543184: [0.258064516129, 0.741935483871], 0.4789281998: [0.1451612903226, 0.8548387096774], 0.8938605619: [0.9032258064516, 0.0967741935484], 0.1529656608: [0.5161290322581, 0.4838709677419], 0.657648283: [0.2903225806452, 0.7096774193548], 0.6318938606: [0.6935483870968, 0.3064516129032], 0.1644120708: [0.6451612903226, 0.3548387096774], 0.8543184183: [0.1290322580645, 0.8709677419355], 0.0447450572: [0.2903225806452, 0.7096774193548], 0.1789802289: [0.4193548387097, 0.5806451612903], 0.325962539: [0.8870967741935, 0.1129032258065], 0.2174817898: [0.5161290322581, 0.4838709677419], 0.0543704475: [0.758064516129, 0.241935483871], 0.5868886576: [0.1612903225806, 0.8387096774194], 0.4289802289: [0.0806451612903, 0.9193548387097], 0.6836628512: [0.1612903225806, 0.8387096774194], 0.0304370447: [0.6612903225806, 0.3387096774194], 0.4549947971: [0.8870967741935, 0.1129032258065], 0.5639958377: [0.1290322580645, 0.8709677419355], 0.8847554631: [0.0483870967742, 0.9516129032258], 0.8376690947: [0.0322580645161, 0.9677419354839], 0.0770031217: [0.2903225806452, 0.7096774193548], 0.1540062435: [0.3225806451613, 0.6774193548387], 0.0385015609: [0.1612903225806, 0.8387096774194], 0.3829344433: [0.0645161290323, 0.9354838709677], 0.9451092612: [0.0806451612903, 0.9193548387097], 0.4797086368: [0.0645161290323, 0.9354838709677], 0.6360561915: [0.5322580645161, 0.4677419354839], 0.4110301769: [0.5161290322581, 0.4838709677419], 0.540062435: [0.5161290322581, 0.4838709677419], 0.2185223725: [0.3225806451613, 0.6774193548387], 0.1480228928: [0.6935483870968, 0.3064516129032], 0.8178980229: [0.3870967741935, 0.6129032258065], 0.5390218522: [0.9032258064516, 0.0967741935484], 0.2580645161: [0.0], 0.1290322581: [0.0], 0.5941727367: [0.7741935483871, 0.2258064516129], 0.8501560874: [0.3870967741935, 0.6129032258065], 0.2125390219: [0.6935483870968, 0.3064516129032], 0.151925078: [0.9032258064516, 0.0967741935484], 0.9919354839: [0.5], 0.0967741935: [0.0], 0.1935483871: [0.0], 0.0241935484: [0.5], 0.5757023933: [0.1451612903226, 0.8548387096774], 0.5330385016: [0.8225806451613, 0.1774193548387], 0.5442247659: [0.0645161290323, 0.9354838709677], 0.4901144641: [0.1612903225806, 0.8387096774194], 0.5223725286: [0.1612903225806, 0.8387096774194], 0.0541103018: [0.4516129032258, 0.5483870967742], 0.0845473465: [0.5645161290323, 0.4354838709677], 0.2289281998: [0.6451612903226, 0.3548387096774], 0.930541103: [0.1451612903226, 0.8548387096774], 0.8688865765: [0.258064516129, 0.741935483871], 0.7325702393: [0.9032258064516, 0.0967741935484], 0.802289282: [0.0645161290323, 0.9354838709677], 0.8699271592: [0.0322580645161, 0.9677419354839], 0.7700312175: [0.0645161290323, 0.9354838709677], 0.5403225806: [0.5], 0.6943288241: [0.8225806451613, 0.1774193548387], 0.372528616: [0.4193548387097, 0.5806451612903], 0.790062435: [0.0161290322581, 0.9838709677419], 0.9523933403: [0.8225806451613, 0.1774193548387], 0.7463579605: [0.7903225806452, 0.2096774193548], 0.9107700312: [0.6290322580645, 0.3709677419355], 0.9708636837: [0.6451612903226, 0.3548387096774], 0.6277315297: [0.4032258064516, 0.5967741935484], 0.7023933403: [0.3225806451613, 0.6774193548387], 0.0137877211: [0.0483870967742, 0.9516129032258], 0.5850676379: [0.7903225806452, 0.2096774193548], 0.7804370447: [0.1612903225806, 0.8387096774194], 0.1886056191: [0.1451612903226, 0.8548387096774], 0.4869927159: [0.6451612903226, 0.3548387096774], 0.0783038502: [0.0483870967742, 0.9516129032258], 0.8335067638: [0.1935483870968, 0.8064516129032], 0.6964099896: [0.6935483870968, 0.3064516129032], 0.9604578564: [0.3225806451613, 0.6774193548387], 0.3582206035: [0.8870967741935, 0.1129032258065], 0.5143080125: [0.6612903225806, 0.3387096774194], 0.110301769: [0.7741935483871, 0.2258064516129], 0.4422476587: [0.9032258064516, 0.0967741935484], 0.1105619147: [0.0483870967742, 0.9516129032258], 0.441207076: [0.4516129032258, 0.5483870967742], 0.436264308: [0.8225806451613, 0.1774193548387], 0.935483871: [0.0], 0.6451612903: [0.0], 0.8605619147: [0.4516129032258, 0.5483870967742], 0.2892819979: [0.0322580645161, 0.9677419354839], 0.8629032258: [0.5], 0.8657648283: [0.1935483870968, 0.8064516129032], 0.5642559834: [0.0161290322581, 0.9838709677419], 0.3152965661: [0.3225806451613, 0.6774193548387], 0.0270551509: [0.1935483870968, 0.8064516129032], 0.5078043704: [0.5161290322581, 0.4838709677419], 0.2705515088: [0.2903225806452, 0.7096774193548], 0.6506243496: [0.2741935483871, 0.7258064516129], 0.052289282: [0.5645161290323, 0.4354838709677], 0.1386576483: [0.0806451612903, 0.9193548387097], 0.087408949: [0.9032258064516, 0.0967741935484], 0.9344432882: [0.0322580645161, 0.9677419354839], 0.4443288241: [0.3225806451613, 0.6774193548387], 0.6204474506: [0.6290322580645, 0.3709677419355], 0.6266909469: [0.0483870967742, 0.9516129032258], 0.2031737773: [0.0806451612903, 0.9193548387097], 0.8126951093: [0.1612903225806, 0.8387096774194], 0.535119667: [0.6935483870968, 0.3064516129032], 0.7981269511: [0.5161290322581, 0.4838709677419], 0.7669094693: [0.3225806451613, 0.6774193548387], 0.1841831426: [0.9032258064516, 0.0967741935484], 0.8212799168: [0.4032258064516, 0.5967741935484], 0.0280957336: [0.0645161290323, 0.9354838709677], 0.6027575442: [0.758064516129, 0.241935483871], 0.2853798127: [0.1451612903226, 0.8548387096774], 0.5067637877: [0.9032258064516, 0.0967741935484], 0.603798127: [0.5322580645161, 0.4677419354839], 0.2486992716: [0.9032258064516, 0.0967741935484], 0.5299167534: [0.0483870967742, 0.9516129032258], 0.8587408949: [0.5645161290323, 0.4354838709677], 0.4914151925: [0.6290322580645, 0.3709677419355], 0.4612382934: [0.0806451612903, 0.9193548387097], 0.9492715921: [0.0483870967742, 0.9516129032258], 0.2427159209: [0.8225806451613, 0.1774193548387], 0.3444328824: [0.4516129032258, 0.5483870967742], 0.6298126951: [0.8225806451613, 0.1774193548387], 0.6607700312: [0.1290322580645, 0.8709677419355], 0.26144641: [0.8870967741935, 0.1129032258065], 0.1852237253: [0.5161290322581, 0.4838709677419], 0.7838189386: [0.0806451612903, 0.9193548387097], 0.8740894901: [0.6451612903226, 0.3548387096774], 0.9825702393: [0.4032258064516, 0.5967741935484], 0.9417273673: [0.1612903225806, 0.8387096774194], 0.7731529657: [0.0322580645161, 0.9677419354839], 0.3644640999: [0.0806451612903, 0.9193548387097], 0.4734651405: [0.4516129032258, 0.5483870967742], 0.0124869927: [0.2903225806452, 0.7096774193548], 0.2497398543: [0.5161290322581, 0.4838709677419], 0.4674817898: [0.0161290322581, 0.9838709677419], 0.0699791883: [0.2741935483871, 0.7258064516129], 0.7723725286: [0.6612903225806, 0.3387096774194], 0.6024973985: [0.4516129032258, 0.5483870967742], 0.3995837669: [0.2903225806452, 0.7096774193548], 0.493496358: [0.0806451612903, 0.9193548387097], 0.3204994797: [0.258064516129, 0.741935483871], 0.1602497399: [0.0322580645161, 0.9677419354839], 0.086628512: [0.758064516129, 0.241935483871], 0.314516129: [0.5], 0.4765868887: [0.3225806451613, 0.6774193548387], 0.8753902185: [0.7903225806452, 0.2096774193548], 0.0561914672: [0.5161290322581, 0.4838709677419], 0.2247658689: [0.0322580645161, 0.9677419354839], 0.9586368366: [0.5322580645161, 0.4677419354839], 0.3142559834: [0.5161290322581, 0.4838709677419], 0.604578564: [0.5161290322581, 0.4838709677419], 0.0033818939: [0.8870967741935, 0.1129032258065], 0.4435483871: [0.5], 0.6763787721: [0.0322580645161, 0.9677419354839], 0.5431841831: [0.1935483870968, 0.8064516129032], 0.6922476587: [0.4032258064516, 0.5967741935484], 0.296566077: [0.1612903225806, 0.8387096774194], 0.0741415193: [0.0806451612903, 0.9193548387097], 0.6753381894: [0.258064516129, 0.741935483871], 0.8636836629: [0.3225806451613, 0.6774193548387], 0.1612903226: [0.0], 0.1997918835: [0.1612903225806, 0.8387096774194], 0.0499479709: [0.4193548387097, 0.5806451612903], 0.6651925078: [0.5645161290323, 0.4354838709677], 0.1063995838: [0.0806451612903, 0.9193548387097], 0.5965140479: [0.0161290322581, 0.9838709677419], 0.1914672216: [0.258064516129, 0.741935483871], 0.4578563996: [0.1612903225806, 0.8387096774194], 0.820239334: [0.0483870967742, 0.9516129032258], 0.2258064516: [0.0], 0.1459417274: [0.8225806451613, 0.1774193548387], 0.680541103: [0.6451612903226, 0.3548387096774], 0.7252861603: [0.1290322580645, 0.8709677419355], 0.691207076: [0.0483870967742, 0.9516129032258], 0.6485431842: [0.8870967741935, 0.1129032258065], 0.7890218522: [0.4032258064516, 0.5967741935484], 0.0062434964: [0.1612903225806, 0.8387096774194], 0.0218522373: [0.4516129032258, 0.5483870967742], 0.8345473465: [0.0645161290323, 0.9354838709677], 0.5652965661: [0.8225806451613, 0.1774193548387], 0.7918834547: [0.4193548387097, 0.5806451612903], 0.8283038502: [0.4516129032258, 0.5483870967742], 0.5379812695: [0.4516129032258, 0.5483870967742], 0.8928199792: [0.4516129032258, 0.5483870967742], 0.3696670135: [0.4032258064516, 0.5967741935484], 0.9032258065: [0.0], 0.0169094693: [0.8225806451613, 0.1774193548387], 0.5733610822: [0.3225806451613, 0.6774193548387], 0.7273673257: [0.4193548387097, 0.5806451612903], 0.4089490114: [0.4516129032258, 0.5483870967742], 0.3184183143: [0.0645161290323, 0.9354838709677], 0.144640999: [0.1290322580645, 0.8709677419355], 0.3769510926: [0.758064516129, 0.241935483871], 0.4986992716: [0.4032258064516, 0.5967741935484], 0.7016129032: [0.5], 0.6399583767: [0.1935483870968, 0.8064516129032], 0.8899583767: [0.6935483870968, 0.3064516129032], 0.9854318418: [0.4193548387097, 0.5806451612903], 0.9409469303: [0.2741935483871, 0.7258064516129], 0.4432882414: [0.5161290322581, 0.4838709677419], 0.7317898023: [0.758064516129, 0.241935483871], 0.3215400624: [0.0322580645161, 0.9677419354839], 0.3457336108: [0.5322580645161, 0.4677419354839], 0.1136836629: [0.8225806451613, 0.1774193548387], 0.151144641: [0.758064516129, 0.241935483871], 0.8865764828: [0.1290322580645, 0.8709677419355], 0.9752861603: [0.6290322580645, 0.3709677419355], 0.2809573361: [0.9032258064516, 0.0967741935484], 0.371748179: [0.8225806451613, 0.1774193548387], 0.9979188345: [0.258064516129, 0.741935483871], 0.01144641: [0.3870967741935, 0.6129032258065], 0.9399063476: [0.7903225806452, 0.2096774193548], 0.7315296566: [0.4516129032258, 0.5483870967742], 0.4747658689: [0.5322580645161, 0.4677419354839], 0.6305931322: [0.4193548387097, 0.5806451612903], 0.250780437: [0.3225806451613, 0.6774193548387], 0.9531737773: [0.4193548387097, 0.5806451612903], 0.5559313215: [0.6290322580645, 0.3709677419355], 0.0884495317: [0.5161290322581, 0.4838709677419], 0.1768990635: [0.1290322580645, 0.8709677419355], 0.6755983351: [0.6612903225806, 0.3387096774194], 0.2154006244: [0.4516129032258, 0.5483870967742], 0.7419354839: [0.0], 0.9388657648: [0.8870967741935, 0.1129032258065], 0.0437044745: [0.3870967741935, 0.6129032258065], 0.6035379813: [0.9032258064516, 0.0967741935484], 0.9066077003: [0.8870967741935, 0.1129032258065], 0.6672736733: [0.758064516129, 0.241935483871], 0.0603537981: [0.0645161290323, 0.9354838709677], 0.1709157128: [0.0806451612903, 0.9193548387097], 0.337408949: [0.4032258064516, 0.5967741935484], 0.2094172737: [0.0161290322581, 0.9838709677419], 0.0075442248: [0.6290322580645, 0.3709677419355], 0.3038501561: [0.7741935483871, 0.2258064516129], 0.7637877211: [0.4516129032258, 0.5483870967742], 0.4716441207: [0.5645161290323, 0.4354838709677], 0.2354318418: [0.0806451612903, 0.9193548387097], 0.9263787721: [0.5322580645161, 0.4677419354839], 0.2978668054: [0.6290322580645, 0.3709677419355], 0.9555150885: [0.5645161290323, 0.4354838709677], 0.7075962539: [0.258064516129, 0.741935483871], 0.3093132154: [0.6935483870968, 0.3064516129032], 0.1082206035: [0.3870967741935, 0.6129032258065], 0.2164412071: [0.9032258064516, 0.0967741935484], 0.5546305931: [0.1612903225806, 0.8387096774194], 0.1279916753: [0.0322580645161, 0.9677419354839], 0.4268990635: [0.6290322580645, 0.3709677419355], 0.7898022893: [0.1290322580645, 0.8709677419355], 0.0158688866: [0.0161290322581, 0.9838709677419], 0.0707596254: [0.1612903225806, 0.8387096774194], 0.2104578564: [0.8225806451613, 0.1774193548387], 0.2799167534: [0.4516129032258, 0.5483870967742], 0.6264308012: [0.7741935483871, 0.2258064516129], 0.21566077: [0.758064516129, 0.241935483871], 0.2372528616: [0.3870967741935, 0.6129032258065], 0.3059313215: [0.1290322580645, 0.8709677419355], 0.2739334027: [0.0161290322581, 0.9838709677419], 0.0957336108: [0.0322580645161, 0.9677419354839], 0.8306451613: [0.5], 0.3779916753: [0.5322580645161, 0.4677419354839], 0.2999479709: [0.0806451612903, 0.9193548387097], 0.1022372529: [0.2741935483871, 0.7258064516129], 0.121748179: [0.3225806451613, 0.6774193548387], 0.3787721124: [0.5161290322581, 0.4838709677419], 0.9253381894: [0.758064516129, 0.241935483871], 0.4029656608: [0.0161290322581, 0.9838709677419], 0.185483871: [0.5], 0.4755463059: [0.5161290322581, 0.4838709677419], 0.8886576483: [0.4193548387097, 0.5806451612903], 0.8941207076: [0.5322580645161, 0.4677419354839], 0.6173257024: [0.7903225806452, 0.2096774193548], 0.8691467222: [0.6612903225806, 0.3387096774194], 0.2559833507: [0.258064516129, 0.741935483871], 0.5319979188: [0.0161290322581, 0.9838709677419], 0.2819979188: [0.5161290322581, 0.4838709677419], 0.4786680541: [0.1935483870968, 0.8064516129032]}
#!/usr/bin/python from optparse import OptionParser import re import os, sys def usage(argv): if len(argv) != 3: print "Error: \n Usage: " + argv[0] + " wordlist directory \n" sys.exit(1) def ReadFromDir(directory): #for pattern in directory: listing = [] for fname in os.listdir(directory): path = os.path.join(directory, fname) if os.path.isdir(path): continue listing.append(path) return listing # Returns the contents of a file as a string def load_file_contents(fname): # Open the file, read the contents and close the file f = open(fname, "r") fcontents = f.read() f.close() return fcontents # Loads a file containing the words to be found in each # document. Returns a list of words. def load_word_list(fname): # Load the file tmp = load_file_contents(fname) # Split the contents of the file on a newline # and return the result as an array #print [x for x in tmp.split("\n") if x] return [x for x in tmp.split("\n") if x] def extractUtt(moveline): c=moveline.split(",") #print c move = c[0] time1 = c[1] time2 = c[2] utterance = c[3] t= utterance.rstrip() return t.strip() def splitUtt(moveline): c=moveline.split(",") return c def replaceText(tempfilepath, landmarks, outfilepath): tempfile = open(tempfilepath, 'r') with open(outfilepath, 'w') as outfile: for line in tempfile: myline = extractUtt(line) c = splitUtt(line) outfile.write(str(c[0]) +","+ str(c[1]) +","+ str(c[2])+ ", ") for word in myline.split(): #print word if word in landmarks: #print str(word +" ") outfile.write(str("[landmark] ")) else: outfile.write(str(word)+ " ") #print "\n" outfile.write("\n") outfile.close() if __name__== "__main__": usage(sys.argv) #inputdir = sys.argv[1] #incontents = load_file_contents(inputfile) wordlist = sys.argv[1] directory = sys.argv[2] files = ReadFromDir(directory) mylist = load_word_list(wordlist) for i in files: outfile = i + ".LM" replaceText(i, wordlist, outfile)
"""MicroESP Errors """ __author__ = 'Oleksandr Shepetko' __email__ = 'a@shepetko.com' __license__ = 'MIT' class ESP8266Error(Exception): pass class DeviceNotConnectedError(ESP8266Error): pass class DeviceCodeExecutionError(ESP8266Error): pass
import os import pytest from api_flow.config import Config from api_flow.flow import Flow from api_flow.step import Step from unittest.mock import patch @pytest.fixture(autouse=True) def setup(): Config.data_path = os.path.join(os.path.dirname(__file__), 'test_data') @pytest.fixture def mock_step_execute(): with patch.object(Step, 'execute') as mock_step_execute: mock_step_execute.return_value = True yield mock_step_execute class TestFlow: def test___init__(self): flow = Flow('multiple_dependencies', profile='foo', profiles=['bar', 'baz']) assert flow.flow_name == 'multiple_dependencies' assert isinstance(flow.flow_store.multiple_dependencies, Flow) assert len(flow.flow_dependencies) == 2 assert flow.flow_description == 'multiple_dependencies' def test_single_dependency(self): flow = Flow('single_dependency') assert flow.flow_definition.depends_on == 'something_else' assert flow.flow_description == 'my single-dependency flow' assert len(flow.flow_dependencies) == 1 assert flow.flow_dependencies[0] == 'something_else' def test_execute(self, mock_step_execute): flow = Flow('single_dependency') assert flow.execute() assert flow.flow_dependencies_succeeded assert flow.flow_steps_succeeded def test_execute_dependencies_fail(self, mock_step_execute): flow = Flow('single_dependency') flow.flow_store.current_step = Step('bogus_step', {}) flow.flow_dependencies_succeeded = False assert not flow.execute() def test_execute_steps_fail(self, mock_step_execute): flow = Flow('single_dependency') flow.flow_dependencies_succeeded = True mock_step_execute.return_value = False assert not flow.execute() def test_empty_flow_succeeds(self): flow = Flow('empty') assert flow.execute()
from dataclasses import dataclass from enum import Enum, auto from functools import cache class TokenType(Enum): # Two or more character tokens and operators DEFINE = "=" EQUALS = "==" NOT_EQUALS = "!=" SMALLER_OR_EQUAL_THAN = "<=" GREATER_OR_EQUAL_THAN = ">=" RANGE = ".." # Single-character tokens and operators LEFT_PAREN = "(" RIGHT_PAREN = ")" LEFT_BRACE = "{" RIGHT_BRACE = "}" LEFT_BRACKET = "[" RIGHT_BRACKET = "]" LEFT_POINTY_BRACKET = "<" RIGHT_POINTY_BRACKET = ">" COMMA = "," DOT = "." PLUS = "+" MINUS = "-" SLASH = "/" STAR = "*" CARET = "^" COLON = ":" SEMICOLON = ";" SMALLER_THAN = "<" GREATER_THAN = ">" # Literal tokens INTEGER_LITERAL = auto() FLOAT_LITERAL = auto() STRING_LITERAL = auto() IDENTIFIER_LITERAL = auto() BOOLEAN_LITERAL = auto() KEYWORD = auto() @staticmethod @cache def first_characters() -> list[str]: return [ str(t.value)[0] for t in TokenType.__members__.values() if not isinstance(t.value, int) ] @dataclass class Token: typ: TokenType image: str line: int column: int def match(self, *types: TokenType): return self.typ in types def __str__(self): return (f"Token(type=<{self.typ.name}>" f", image=`{self.image}`" f", position=[{self.line}:{self.column}])") def __repr__(self): return self.__str__() def source_position(self) -> str: return f"{self.line}:{self.column}"
from .callhub import CallHub
"""Definition of an ElkM1 Area""" from .const import Max, TextDescriptions from .elements import Element, Elements from .message import add_message_handler, as_encode, al_encode, dm_encode class Area(Element): """Class representing an Area""" def __init__(self, index, elk): super().__init__(index, elk) self.armed_status = None self.arm_up_state = None self.alarm_state = None self.is_exit = False self.timer1 = 0 self.timer2 = 0 def arm(self, level, code): """(Helper) Arm system at specified level (away, vacation, etc)""" self._elk.send(al_encode(level, self._index, code)) def disarm(self, code): """(Helper) Disarm system.""" self.arm(0, code) def display_message(self, clear, beep, timeout, line1, line2): """Display a message on all of the keypads in this area.""" self._elk.send( dm_encode(self._index, clear, beep, timeout, line1, line2) ) class Areas(Elements): """Handling for multiple areas""" def __init__(self, elk): super().__init__(elk, Area, Max.AREAS.value) add_message_handler('AS', self._as_handler) add_message_handler('EE', self._ee_handler) def sync(self): """Retrieve areas from ElkM1""" self.elk.send(as_encode()) self.get_descriptions(TextDescriptions.AREA.value) def _as_handler(self, armed_statuses, arm_up_states, alarm_states): for area in self.elements: area.setattr('armed_status', armed_statuses[area.index], False) area.setattr('arm_up_state', arm_up_states[area.index], False) area.setattr('alarm_state', alarm_states[area.index], True) # pylint: disable=too-many-arguments def _ee_handler(self, area, is_exit, timer1, timer2, armed_status): area = self.elements[area] area.setattr('armed_status', armed_status, False) area.setattr('timer1', timer1, False) area.setattr('timer2', timer2, False) area.setattr('is_exit', is_exit, True)
#!/usr/bin/env python import numpy as np ############################# ## DEFAULT PARAMETER GRIDS ## ############################# DEFAULT_DIFF_COEFS = np.logspace(-2.0, 2.0, 100) DEFAULT_LOC_ERRORS = np.arange(0.0, 0.072, 0.002) DEFAULT_HURST_PARS = np.arange(0.05, 1.0, 0.05) ############################################### ## DEFAULT PREPROCESSING AND HYPERPARAMETERS ## ############################################### # When trajectories are too long, split them into smaller trajectories. # *splitsize* defines the maximum trajectory length (in # jumps) before # splitting. DEFAULT_SPLITSIZE = 10 # Default concentration parameter for the prior distribution over state # occupations. DEFAULT_CONC_PARAM = 1.0 # Default number of iterations to do when inferring posterior DEFAULT_MAX_ITER = 200 # Default first frame to consider DEFAULT_START_FRAME = 0 # Maximum number of trajectories to consider when running state arrays DEFAULT_SAMPLE_SIZE = 10000 ################################ ## DETECTION-LEVEL ATTRIBUTES ## ################################ # Column in the detections DataFrame encoding frame index FRAME = "frame" # Column in the detections DataFrame encoding trajectory index TRACK = "trajectory" # Column in the detections DataFrame encoding trajectory length (in frames) TRACK_LENGTH = "track_length" # Column in the detections DataFrame encoding y-position in pixels PY = "y" # Column in the detections DataFrame encoding x-position in pixels PX = "x" ########################### ## JUMP-LEVEL ATTRIBUTES ## ########################### # Column in the jumps DataFrame encoding number of frames over which # the jump happened DFRAMES = "dframes" # Column in the jumps DataFrame encoding the change in y-position in microns DY = "dy" # Column in the jumps DataFrame encoding the change in x-position in microns DX = "dx" # Column in the jumps DataFrame encoding the squared 2D radial jump length # in squared microns DR2 = "dr2" # Column in the jumps DataFrame encoding the number of jumps per trajectory JUMPS_PER_TRACK = "jumps_per_track" #################################### ## AVAILABLE LIKELIHOOD FUNCTIONS ## #################################### # Names of likelihood functions RBME = "rbme" RBME_MARGINAL = "rbme_marginal" GAMMA = "gamma" FBME = "fbme" # All available likelihood functions LIKELIHOOD_TYPES = [RBME, RBME_MARGINAL, GAMMA, FBME] ########### ## OTHER ## ########### # Bucket condition column for StateArrayDatasets without an experimental condition DEFAULT_CONDITION_COL = "default_condition" DEFAULT_CONDITION = "no_condition"
from __future__ import unicode_literals import frappe def execute(): if frappe.db.exists("DocType", "Membership"): if 'webhook_payload' in frappe.db.get_table_columns("Membership"): frappe.db.sql("alter table `tabMembership` drop column webhook_payload")
# test_getopt.py # David Goodger <dgoodger@bigfoot.com> 2000-08-19 import getopt from getopt import GetoptError from test_support import verbose def expectException(teststr, expected, failure=AssertionError): """Executes a statement passed in teststr, and raises an exception (failure) if the expected exception is *not* raised.""" try: exec teststr except expected: pass else: raise failure if verbose: print 'Running tests on getopt.short_has_arg' assert getopt.short_has_arg('a', 'a:') assert not getopt.short_has_arg('a', 'a') expectException("tmp = getopt.short_has_arg('a', 'b')", GetoptError) expectException("tmp = getopt.short_has_arg('a', '')", GetoptError) if verbose: print 'Running tests on getopt.long_has_args' has_arg, option = getopt.long_has_args('abc', ['abc=']) assert has_arg assert option == 'abc' has_arg, option = getopt.long_has_args('abc', ['abc']) assert not has_arg assert option == 'abc' has_arg, option = getopt.long_has_args('abc', ['abcd']) assert not has_arg assert option == 'abcd' expectException("has_arg, option = getopt.long_has_args('abc', ['def'])", GetoptError) expectException("has_arg, option = getopt.long_has_args('abc', [])", GetoptError) expectException("has_arg, option = " + \ "getopt.long_has_args('abc', ['abcd','abcde'])", GetoptError) if verbose: print 'Running tests on getopt.do_shorts' opts, args = getopt.do_shorts([], 'a', 'a', []) assert opts == [('-a', '')] assert args == [] opts, args = getopt.do_shorts([], 'a1', 'a:', []) assert opts == [('-a', '1')] assert args == [] #opts, args = getopt.do_shorts([], 'a=1', 'a:', []) #assert opts == [('-a', '1')] #assert args == [] opts, args = getopt.do_shorts([], 'a', 'a:', ['1']) assert opts == [('-a', '1')] assert args == [] opts, args = getopt.do_shorts([], 'a', 'a:', ['1', '2']) assert opts == [('-a', '1')] assert args == ['2'] expectException("opts, args = getopt.do_shorts([], 'a1', 'a', [])", GetoptError) expectException("opts, args = getopt.do_shorts([], 'a', 'a:', [])", GetoptError) if verbose: print 'Running tests on getopt.do_longs' opts, args = getopt.do_longs([], 'abc', ['abc'], []) assert opts == [('--abc', '')] assert args == [] opts, args = getopt.do_longs([], 'abc=1', ['abc='], []) assert opts == [('--abc', '1')] assert args == [] opts, args = getopt.do_longs([], 'abc=1', ['abcd='], []) assert opts == [('--abcd', '1')] assert args == [] expectException("opts, args = getopt.do_longs([], 'abc=1', ['abc'], [])", GetoptError) expectException("opts, args = getopt.do_longs([], 'abc', ['abc='], [])", GetoptError) # note: the empty string between '-a' and '--beta' is significant: # it simulates an empty string option argument ('-a ""') on the command line. cmdline = ['-a', '1', '-b', '--alpha=2', '--beta', '-a', '3', '-a', '', '--beta', 'arg1', 'arg2'] if verbose: print 'Running tests on getopt.getopt' opts, args = getopt.getopt(cmdline, 'a:b', ['alpha=', 'beta']) assert opts == [('-a', '1'), ('-b', ''), ('--alpha', '2'), ('--beta', ''), ('-a', '3'), ('-a', ''), ('--beta', '')] # Note ambiguity of ('-b', '') and ('-a', '') above. This must be # accounted for in the code that calls getopt(). assert args == ['arg1', 'arg2'] expectException( "opts, args = getopt.getopt(cmdline, 'a:b', ['alpha', 'beta'])", GetoptError) if verbose: print "Module getopt: tests completed successfully."
from rlagent.noises.ounoise import OUNoise
#!/usr/bin/env python #pylint: skip-file # This source code is licensed under the Apache license found in the # LICENSE file in the root directory of this project. class PolicyApplication(object): def __init__(self): """ Attributes: swaggerTypes (dict): The key is attribute name and the value is attribute type. attributeMap (dict): The key is attribute name and the value is json key in definition. """ self.swaggerTypes = { 'raw': 'str', 'trafficClass': 'str', 'stale': 'bool', 'id': 'str', 'appName': 'str' } self.attributeMap = { 'raw': 'raw', 'trafficClass': 'trafficClass', 'stale': 'stale', 'id': 'id', 'appName': 'appName' } #Either raw Application of the form port:protocol should be specified or appId should be specified self.raw = None # str #Traffic class to which the app belongs self.trafficClass = None # str #Indicates whether the application has been updated since the last time this policy was provisioned self.stale = None # bool #id self.id = None # str self.appName = None # str
from django.http import HttpResponse def index(request): result = "<h1>welcome to my site</h1>" return HttpResponse(result)
import platform import os def mkdir(path): e = os.path.exists(path) if not e: os.makedirs(path) return True else: return False def mkfile(filePath): pipfile = "[global]\ntrusted-host=mirrors.aliyun.com\nindex-url=http://mirrors.aliyun.com/pypi/simple/" if os.path.exists(filePath): if str(input("File exist!Cover?(Y/N))")).upper() == 'N': print("Not Cover.") return with open(filePath, 'w') as fp: fp.write(pipfile) print("Write finish.") def change_pypi_source(): systype = platform.system() print("System type: " + systype) if systype == "Windows": path = os.path.join(os.getenv('HOMEPATH'), 'pip') mkdir(path) mkfile(os.path.join(path, 'pip.ini')) elif systype == "Linux" or systype == "Darwin": path = os.path.join(os.path.expandvars('$HOME'), ".pip") mkdir(path) mkfile(os.path.join(path, 'pip.conf')) else: print("System type: " + systype + " Not Support!")
from rect import Rect class Bomb(Rect): Bombs = [] def __init__(self, x, y): self.total_frames = 0 super(Bomb, self).__init__(x, y, 32, 32) Bomb.Bombs.append(self)
import pytest @pytest.fixture def mock_execution_context(mocker): mock_context = mocker.Mock() mock_context.parameters.database = "test_database" mock_context.parameters.model_version_id = 12345 return mock_context @pytest.fixture def mock_ezfuncs(mocker): return mocker.patch("cascade.core.db.ezfuncs") @pytest.fixture def mock_database_access(mock_ezfuncs): return {"cursor": mock_ezfuncs.get_connection().cursor(), "connection": mock_ezfuncs.get_connetion()}
############################################################################## # Copyright (c) 2015 Huawei Technologies Co.,Ltd and others. # # All rights reserved. This program and the accompanying materials # are made available under the terms of the Apache License, Version 2.0 # which accompanies this distribution, and is available at # http://www.apache.org/licenses/LICENSE-2.0 ############################################################################## import subprocess import os import collections import logging import tempfile import six import pkg_resources from yardstick import ssh from yardstick.benchmark import contexts from yardstick.benchmark.contexts.base import Context from yardstick.common.constants import ANSIBLE_DIR, YARDSTICK_ROOT_PATH from yardstick.common.ansible_common import AnsibleCommon from yardstick.common.exceptions import ContextUpdateCollectdForNodeError LOG = logging.getLogger(__name__) DEFAULT_DISPATCH = 'script' class NodeContext(Context): """Class that handle nodes info""" __context_type__ = contexts.CONTEXT_NODE def __init__(self): self.file_path = None self.nodes = [] self.networks = {} self.controllers = [] self.computes = [] self.baremetals = [] self.env = {} self.attrs = {} self.DISPATCH_TYPES = { "ansible": self._dispatch_ansible, "script": self._dispatch_script, } super(NodeContext, self).__init__() def init(self, attrs): """initializes itself from the supplied arguments""" super(NodeContext, self).init(attrs) cfg = self.read_pod_file(attrs) self.env = attrs.get('env', {}) self.attrs = attrs LOG.debug("Env: %r", self.env) # add optional static network definition self.networks.update(cfg.get("networks", {})) def deploy(self): config_type = self.env.get('type', DEFAULT_DISPATCH) self.DISPATCH_TYPES[config_type]("setup") def undeploy(self): config_type = self.env.get('type', DEFAULT_DISPATCH) self.DISPATCH_TYPES[config_type]("teardown") super(NodeContext, self).undeploy() def _dispatch_script(self, key): steps = self.env.get(key, []) for step in steps: for host, info in step.items(): self._execute_script(host, info) def _dispatch_ansible(self, key): try: playbooks = self.env[key] except KeyError: pass else: self._do_ansible_job(playbooks) def _do_ansible_job(self, playbooks): self.ansible_exec = AnsibleCommon(nodes=self.nodes, test_vars=self.env) # playbooks relative to ansible dir # playbooks can also be a list of playbooks self.ansible_exec.gen_inventory_ini_dict() if isinstance(playbooks, six.string_types): playbooks = [playbooks] playbooks = [self.fix_ansible_path(playbook) for playbook in playbooks] tmpdir = tempfile.mkdtemp(prefix='ansible-') self.ansible_exec.execute_ansible(playbooks, tmpdir, verbose=self.env.get("verbose", False)) def fix_ansible_path(self, playbook): if not os.path.isabs(playbook): # make relative paths absolute in ANSIBLE_DIR playbook = os.path.join(ANSIBLE_DIR, playbook) return playbook def _get_physical_nodes(self): return self.nodes def _get_physical_node_for_server(self, server_name): node_name, context_name = self.split_host_name(server_name) if context_name is None or self.name != context_name: return None for n in (n for n in self.nodes if n["name"] == node_name): return "{}.{}".format(n["name"], self._name) return None def update_collectd_options_for_node(self, options, attr_name): node_name, _ = self.split_host_name(attr_name) matching_nodes = (n for n in self.nodes if n["name"] == node_name) try: node = next(matching_nodes) except StopIteration: raise ContextUpdateCollectdForNodeError(attr_name=attr_name) node["collectd"] = options def _get_server(self, attr_name): """lookup server info by name from context attr_name: a name for a server listed in nodes config file """ node_name, name = self.split_host_name(attr_name) if name is None or self.name != name: return None matching_nodes = (n for n in self.nodes if n["name"] == node_name) try: # A clone is created in order to avoid affecting the # original one. node = dict(next(matching_nodes)) except StopIteration: return None try: duplicate = next(matching_nodes) except StopIteration: pass else: raise ValueError("Duplicate nodes!!! Nodes: %s %s" % (node, duplicate)) node["name"] = attr_name node.setdefault("interfaces", {}) return node def _get_network(self, attr_name): if not isinstance(attr_name, collections.Mapping): network = self.networks.get(attr_name) else: # Don't generalize too much Just support vld_id vld_id = attr_name.get('vld_id', {}) # for node context networks are dicts iter1 = (n for n in self.networks.values() if n.get('vld_id') == vld_id) network = next(iter1, None) if network is None: return None result = { # name is required "name": network["name"], "vld_id": network.get("vld_id"), "segmentation_id": network.get("segmentation_id"), "network_type": network.get("network_type"), "physical_network": network.get("physical_network"), } return result def _execute_script(self, node_name, info): if node_name == 'local': self._execute_local_script(info) else: self._execute_remote_script(node_name, info) def _execute_remote_script(self, node_name, info): prefix = self.env.get('prefix', '') script, options = self._get_script(info) script_file = pkg_resources.resource_filename(prefix, script) self._get_client(node_name) self.client._put_file_shell(script_file, '~/{}'.format(script)) cmd = 'sudo bash {} {}'.format(script, options) status, _, stderr = self.client.execute(cmd) if status: raise RuntimeError(stderr) def _execute_local_script(self, info): script, options = self._get_script(info) script = os.path.join(YARDSTICK_ROOT_PATH, script) cmd = ['bash', script, options] p = subprocess.Popen(cmd, stdout=subprocess.PIPE) LOG.debug('\n%s', p.communicate()[0]) def _get_script(self, info): return info.get('script'), info.get('options', '') def _get_client(self, node_name): node = self._get_node_info(node_name.strip()) if node is None: raise SystemExit('No such node') self.client = ssh.SSH.from_node(node, defaults={'user': 'ubuntu'}) self.client.wait(timeout=600) def _get_node_info(self, name): return next((n for n in self.nodes if n['name'].strip() == name))
from unittest import TestCase from packaging.version import Version from packaging.specifiers import SpecifierSet from pyrrot import Pyrrot class TestIsOld(TestCase): def setUp(self): self.l = Version('2.0.0') def test_equals(self): specs = SpecifierSet('==1.0.0') self.assertTrue(Pyrrot.is_old(self.l, specs)) latest = Version('1.0.0') self.assertFalse(Pyrrot.is_old(latest, specs)) def test_less_than(self): specs = SpecifierSet('<1.0.0') self.assertTrue(Pyrrot.is_old(self.l, specs)) specs = SpecifierSet('<2.0.0') self.assertTrue(Pyrrot.is_old(self.l, specs)) specs = SpecifierSet('<3.0.0') self.assertFalse(Pyrrot.is_old(self.l, specs)) def test_less_or_equal(self): specs = SpecifierSet('<=1.0.0') self.assertTrue(Pyrrot.is_old(self.l, specs)) specs = SpecifierSet('<=2.0.0') self.assertFalse(Pyrrot.is_old(self.l, specs)) def test_greaters(self): specs = SpecifierSet('>1.0.0') self.assertFalse(Pyrrot.is_old(self.l, specs)) # FIXME: latest is older than our requirements specs = SpecifierSet('>2.0.0') self.assertFalse(Pyrrot.is_old(self.l, specs)) specs = SpecifierSet('>=1.0.0') self.assertFalse(Pyrrot.is_old(self.l, specs)) specs = SpecifierSet('>=2.0.0') self.assertFalse(Pyrrot.is_old(self.l, specs))
from abaqusConstants import * class OdbDataFrame: """The OdbDataFrame object. Notes ----- This object can be accessed by: .. code-block:: python import visualization session.odbData[name].steps[i].frames[i] """ def setValues(self, activateFrame: Boolean, update: Boolean = OFF): """This method modifies the OdbDataFrame object. Parameters ---------- activateFrame A Boolean specifying whether to activate the frame. update A Boolean specifying whether to update the model. The default value is ON """ pass
from fastapi import FastAPI from routes.student import student_router import uvicorn import os app = FastAPI() # uvicorn main:app --reload # Register routes app.include_router(student_router) if __name__ == '__main__': host = "127.0.0.1" port = 5000 os.system("start \"\" http://" + host + ":" + str(port) + "/docs") uvicorn.run("main:app", host=host, port=port, reload=True)
import pytest from pyschieber.rules.count_rules import counting_factor from pyschieber.deck import Deck from pyschieber.trumpf import Trumpf from pyschieber.player.random_player import RandomPlayer from pyschieber.game import Game, get_player_index from pyschieber.team import Team @pytest.mark.parametrize("start_key, last_key", [ (0, 3), (1, 0), (2, 1), (3, 2), ]) def test_get_player_key(start_key, last_key): key = 0 count = 0 for i in get_player_index(start_key): key = i count += 1 assert count == 3 assert last_key == key def test_game(): random_players = [RandomPlayer(name=i) for i in range(4)] team_1 = Team(players=[random_players[0], random_players[1]]) team_2 = Team(players=[random_players[1], random_players[2]]) teams = [team_1, team_2] game = Game(teams=teams, point_limit=1500) game.play() for player in random_players: assert len(player.cards) == 0 @pytest.mark.parametrize("start_key, next_key", [ (0, 1), (1, 2), (2, 3), (3, 0), ]) def test_get_player_index(start_key, next_key): generator = get_player_index(start_index=start_key) current_key = next(generator) assert current_key == next_key @pytest.mark.parametrize("trumpf", list(Trumpf)[:6]) def test_add_points(trumpf): round_points = 152 deck = Deck() random_players = [RandomPlayer(name=i) for i in range(4)] team_1 = Team(players=[random_players[0], random_players[1]]) team_2 = Team(players=[random_players[1], random_players[2]]) teams = [team_1, team_2] game = Game(teams=teams, use_counting_factor=True) game.trumpf = trumpf game.add_points(team_index=0, cards=deck.cards, last=False) assert team_1.points == round_points * counting_factor[trumpf] game.use_counting_factor = False game.add_points(team_index=1, cards=deck.cards, last=False) assert team_2.points == round_points
import PILasOPENCV as Image # from PIL import Image # img1 = Image.open('Images/cat.jpg') img2 = Image.open('Images/landscape.jpg').resize(img1.size) mask = Image.open('Images/mask1.jpg') mask = mask.resize(img1.size) # im_new1 = Image.composite(img1, img2, mask) im_new1.show() img1 = Image.open('Images/cat.jpg') img2 = Image.open('Images/landscape.jpg').resize(img1.size) mask = Image.open('Images/mask2.jpg') mask = mask.resize(img1.size) # im_new2 = Image.composite(img1, img2, mask) im_new2.show() img1 = Image.open('Images/cat.jpg') img2 = Image.open('Images/landscape.jpg').resize(img1.size) mask = Image.open('Images/mask3.jpg') mask = mask.resize(img1.size) # im_new3 = Image.composite(img1, img2, mask) im_new3.show()
from flask_restplus import Resource, Namespace from app.extensions import api as app_api from app.api.utils.access_decorators import requires_role_mine_view, requires_role_mine_create class DummyResource(Resource): @requires_role_mine_view def get(self): return "Example view method" @requires_role_mine_create def post(self): return "Example create method" api = Namespace('test') api.add_resource(DummyResource, '') app_api.add_namespace(api) # Test view role def test_get_no_auth(test_client): resp = test_client.get('/test', headers={}) assert resp.status_code == 401 def test_get_view_only(test_client, auth_headers): resp = test_client.get('/test', headers=auth_headers['view_only_auth_header']) assert resp.status_code == 200 def test_get_full_auth(test_client, auth_headers): resp = test_client.get('/test', headers=auth_headers['full_auth_header']) assert resp.status_code == 200 # Test create role def test_post_no_auth(test_client): resp = test_client.post('/test', headers={}) assert resp.status_code == 401 def test_post_view_only(test_client, auth_headers): resp = test_client.post('/test', headers=auth_headers['view_only_auth_header']) assert resp.status_code == 401 def test_post_full_auth(test_client, auth_headers): resp = test_client.post('/test', headers=auth_headers['full_auth_header']) assert resp.status_code == 200
# # @lc app=leetcode id=1178 lang=python3 # # [1178] Number of Valid Words for Each Puzzle # # @lc code=start class Solution: def findNumOfValidWords(self, words: List[str], puzzles: List[str]) -> List[int]: ans = [] freq = dict() for word in words: mask = 0 for c in word: mask = mask | (1 << (ord(c) - 97)) if mask not in freq: freq[mask] = 0 freq[mask] += 1 for p in puzzles: total = 0 l = len(p) - 1 for i in range(0, 1 << l): mask = 1 << (ord(p[0]) - 97) for j in range(0, l): if i & (1 << j): mask = mask | (1 << (ord(p[j + 1]) - 97)) if mask in freq: total += freq[mask] ans.append(total) return ans # @lc code=end
# -*- coding: utf-8 -*- # Copyright 2015 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Task to analyse Hadoop AppRoot files.""" from __future__ import unicode_literals import codecs import logging import os import subprocess from turbinia import TurbiniaException from turbinia.lib import text_formatter as fmt from turbinia.evidence import ReportText from turbinia.lib.utils import extract_artifacts from turbinia.workers import TurbiniaTask from turbinia.workers import Priority log = logging.getLogger('turbinia') class HadoopAnalysisTask(TurbiniaTask): """Task to analyse Hadoop AppRoot files.""" def _AnalyzeHadoopAppRoot(self, collected_artifacts, output_dir): """Runs a naive AppRoot files parsing method. This extracts strings from the saved task file, and searches for usual post-compromise suspicious patterns. TODO: properly parse the Proto. Some documentation can be found over there: https://svn.apache.org/repos/asf/hadoop/common/branches/branch-0.23.7/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-api/src/main/proto/yarn_protos.proto Args: collected_artifacts(list(str)): a list of paths to extracted files output_dir(str): The base directory the artfacts are in. Returns: Tuple( list(str): The report data as a list of lines report_priority(int): The priority of the report (0 - 100) summary(str): A summary of the report (used for task status) ) """ report = [] evil_commands = [] strings_count = 0 priority = Priority.MEDIUM summary = '' for filepath in collected_artifacts: relpath = os.path.relpath(filepath, output_dir) command = 'strings -a "{0:s}"'.format(filepath) log.debug('Running command [{0:s}]'.format(command)) proc = subprocess.Popen( command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) strings_output, _ = proc.communicate() strings_output = codecs.decode(strings_output, 'utf-8') for line in strings_output.splitlines(): strings_count += 1 if (line.find('curl') >= 0) or (line.find('wget') >= 0): evil_commands.append((relpath, line)) if evil_commands: msg = 'Found suspicious commands!' report.append(fmt.heading4(fmt.bold(msg))) summary = msg priority = Priority.CRITICAL else: msg = 'Did not find any suspicious commands.' report.append(fmt.heading4(msg)) summary = msg for filepath, command in evil_commands: report.append(fmt.bullet(fmt.bold('Command:'))) report.append(fmt.code(command)) report.append('Found in file:') report.append(fmt.code(filepath)) msg = 'Extracted {0:d} strings from {1:d} file(s)'.format( strings_count, len(collected_artifacts)) report.append(fmt.bullet(msg)) return (report, priority, summary) def run(self, evidence, result): """Run Hadoop specific analysis on the evidences. Args: evidence (Evidence object): The evidence we will process result (TurbiniaTaskResult): The object to place task results into. Returns: TurbiniaTaskResult object. """ # What type of evidence we should output. output_evidence = ReportText() # Where to store the resulting output file. output_file_name = 'hadoop_analysis.txt' output_file_path = os.path.join(self.output_dir, output_file_name) output_evidence.local_path = output_file_path try: # We don't use FileArtifactExtractionTask as it export one evidence per # file extracted output_dir = os.path.join(self.output_dir, 'artifacts') collected_artifacts = extract_artifacts( artifact_names=['HadoopAppRoot'], disk_path=evidence.local_path, output_dir=output_dir) (report, priority, summary) = self._AnalyzeHadoopAppRoot( collected_artifacts, output_dir) if not report: raise TurbiniaException( 'Report generated by _AnalyzeHadoopAppRoot() is empty') output_evidence.text_data = '\n'.join(report) result.report_data = output_evidence.text_data # Write the report to the output file. with open(output_file_path, 'wb') as fh: fh.write(output_evidence.text_data.encode('utf8')) fh.write('\n'.encode('utf8')) result.add_evidence(output_evidence, evidence.config) result.report_priority = priority result.close(self, success=True, status=summary) except TurbiniaException as e: result.close(self, success=False, status=str(e)) return result return result
# Copyright (c) 2020 The FedVision Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import pickle from typing import Optional import grpc from paddle import fluid from fedvision.framework.utils.logger import Logger from fedvision.paddle_fl.protobuf import scheduler_pb2_grpc, scheduler_pb2 from paddle_fl.paddle_fl.core.master.fl_job import FLJobBase class TrainerSchedulerAgent(Logger): def __init__(self, worker_name, scheduler_ep): self._worker_name = worker_name self._scheduler_ep = scheduler_ep self._channel: Optional[grpc.Channel] = None self._stub: Optional[scheduler_pb2_grpc.SchedulerStub] = None def start_channel(self): self._channel = grpc.insecure_channel(self._scheduler_ep) self._stub = scheduler_pb2_grpc.SchedulerStub(self._channel) self.debug(f"waiting channel ready") future = grpc.channel_ready_future(self._channel) future.result() self.debug(f"channel ready") return self def init_worker(self): self.debug(f"start to init") self._stub.Init(scheduler_pb2.Init.REQ(name=self._worker_name)) self.debug(f"init success") def join(self, step: int): self.debug("start to join") response = self._stub.WorkerJoin( scheduler_pb2.WorkerJoin.REQ(name=self._worker_name, step=step) ) self.debug(f"join success: {response.status}") return response.status == scheduler_pb2.WorkerJoin.ACCEPT def finish(self): self.debug("start to finish") status = self._stub.WorkerFinish( scheduler_pb2.WorkerFinish.REQ(name=self._worker_name) ) self.debug(f"finish success: {status}") return status == scheduler_pb2.WorkerFinish.DONE def close(self): self._channel.close() class FedAvgTrainer(FLJobBase): def __init__(self, scheduler_ep, trainer_ep): self._logger = logging.getLogger("FLTrainer") super(FedAvgTrainer, self).__init__() self._scheduler_ep = scheduler_ep self._trainer_ep = trainer_ep self.scheduler_agent: Optional[TrainerSchedulerAgent] = None self.exe: Optional[fluid.Executor] = None self.cur_step = 0 def start(self, place): self.scheduler_agent = TrainerSchedulerAgent( scheduler_ep=self._scheduler_ep, worker_name=self._trainer_ep ) self.scheduler_agent.start_channel() self.scheduler_agent.init_worker() self.exe = fluid.Executor(place) self.exe.run(self._startup_program) def load_job( self, startup_program: str, main_program: str, send_program: str, recv_program: str, feed_names: str, target_names: str, strategy: str, ): self._startup_program = self._load_program(startup_program) self._main_program = self._load_program(main_program) self._send_program = self._load_program(send_program) self._recv_program = self._load_program(recv_program) self._step = self._load_strategy(strategy)._inner_step self._feed_names = self._load_str_list(feed_names) self._target_names = self._load_str_list(target_names) def load_feed_list(self, feeds_path): data = [] with open(feeds_path, "rb") as f: num = pickle.load(f) for _ in range(num): data.append(fluid.data(**pickle.load(f))) return data @staticmethod def _load_strategy(input_file): return pickle.load(open(input_file, "rb")) def reset(self): self.cur_step = 0 def run_with_epoch(self, reader, feeder, fetch, num_epoch): self._logger.debug("begin to run recv program") self.exe.run(self._recv_program) self._logger.debug("recv done") epoch = 0 for i in range(num_epoch): for data in reader(): acc = self.exe.run( self._main_program, feed=feeder.feed(data), fetch_list=fetch ) print(f"acc: {acc}") self.cur_step += 1 epoch += 1 self._logger.debug("begin to run send program") self.exe.run(self._send_program) def run(self, feed, fetch): self._logger.debug( f"begin to run FedAvgTrainer, cur_step={self.cur_step}, inner_step={self._step}" ) if self.cur_step % self._step == 0: self._logger.debug("run recv program start") self.exe.run(self._recv_program) self._logger.debug("run recv program done") self._logger.debug("run main program start") loss = self.exe.run(self._main_program, feed=feed, fetch_list=fetch) self._logger.debug("run main program done") if self.cur_step % self._step == 0: self._logger.debug("run send program start") self.exe.run(self._send_program) self._logger.debug("run send program done") self.cur_step += 1 return loss def save_model(self, model_path): fluid.io.save_inference_model( dirname=model_path, feeded_var_names=self._feed_names, target_vars=[ self._main_program.global_block().var(fetch_var_name) for fetch_var_name in self._target_names ], executor=self.exe, main_program=self._main_program, )
# encoding: utf-8 ''' @author: Minghao Guo @contact: mh.guo0111@gmail.com @software: nef @file: sart.py @date: 8/28/2019 @desc: ''' from nefct import nef_class import numpy as np from nefct.data.image import Image from nefct.data.projection import ProjectionSequence from nefct.functions.project import Project from nefct.functions.back_project import BackProject import tensorflow as tf from nefct.utils import tqdm @nef_class class SART: n_iter: int lambda_: float emap: Image project: Project back_project: BackProject def __call__(self, projection: ProjectionSequence, x: Image = None) -> Image: if x is None: x = self.emap * 0 for _ in tqdm(range(self.n_iter)): _projection_tf = self.project(x) _bproj_tf = self.back_project(projection - _projection_tf) _bproj_tf2 = _bproj_tf.update(data = tf.div_no_nan(_bproj_tf.data, self.emap.data)) x = x.update(data = (x + _bproj_tf2 * self.lambda_).data.numpy()) return x
#!/usr/bin/env python # #___INFO__MARK_BEGIN__ ########################################################################## # Copyright 2016,2017 Univa Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################### #___INFO__MARK_END__ # from utils import needs_uge from utils import create_config_file from utils import generate_random_string from uge.api.qconf_api import QconfApi from uge.config.config_manager import ConfigManager from uge.log.log_manager import LogManager from uge.exceptions.object_not_found import ObjectNotFound from uge.exceptions.object_already_exists import ObjectAlreadyExists create_config_file() API = QconfApi() OPERATOR_NAME = '%s' % generate_random_string(6) CONFIG_MANAGER = ConfigManager.get_instance() LOG_MANAGER = LogManager.get_instance() @needs_uge def test_list_operators(): ol = API.list_operators() assert(ol is not None) def test_add_operator(): ol = API.list_operators() ol2 = API.add_operators([OPERATOR_NAME]) assert(len(ol2) == len(ol)+1) assert(ol2.count(OPERATOR_NAME) == 1) def test_delete_operator(): ol = API.list_operators() ol2 = API.delete_operators([OPERATOR_NAME]) assert(len(ol2) == len(ol)-1) assert(ol2.count(OPERATOR_NAME) == 0) def test_object_already_exists(): API.add_operators([OPERATOR_NAME]) try: API.add_operators([OPERATOR_NAME]) assert(False) except ObjectAlreadyExists, ex: # ok pass API.delete_operators([OPERATOR_NAME]) def test_object_not_found(): try: API.delete_operators([OPERATOR_NAME]) except ObjectNotFound, ex: # ok pass
#!/usr/bin/env python ############################################################################## # # diffpy.structure by DANSE Diffraction group # Simon J. L. Billinge # (c) 2008 trustees of the Michigan State University. # All rights reserved. # # File coded by: Pavol Juhas # # See AUTHORS.txt for a list of people who contributed. # See LICENSE_DANSE.txt for license information. # ############################################################################## """class Lattice stores properties and provides simple operations in lattice coordinate system. Module variables: cartesian -- constant instance of Lattice, default Cartesian system """ import math import numpy import numpy.linalg as numalg from diffpy.structure import LatticeError # Helper Functions ----------------------------------------------------------- # exact values of cosd _EXACT_COSD = { 0.0 : +1.0, 60.0 : +0.5, 90.0 : 0.0, 120.0 : -0.5, 180.0 : -1.0, 240.0 : -0.5, 270.0 : 0.0, 300.0 : +0.5 } def cosd(x): """Return the cosine of x (measured in degrees). Avoid round-off errors for exact cosine values. """ rv = _EXACT_COSD.get(x % 360.0) if rv is None: rv = math.cos(math.radians(x)) return rv def sind(x): """Return the sine of x (measured in degrees). Avoid round-off errors for exact sine values. """ return cosd(90.0 - x) # ---------------------------------------------------------------------------- class Lattice(object): """ General coordinate system and associated operations. Parameters ---------- a : float or Lattice, optional The cell length *a*. When present, other cell parameters must be also specified. When of the *Lattice* type, create a duplicate Lattice. b : float The cell length *b*. c : float The cell length *c*. alpha : float The angle between the *b* and *c* axes in degrees. beta : float The angle between the *b* and *c* axes in degrees. gamma : float The angle between the *a* and *b* axes in degrees. baserot : array_like, optional The 3x3 rotation matrix of the base vectors with respect to their standard setting. base : array_like, optional The 3x3 array of row base vectors. This must be the only argument when present. Attributes ---------- metrics : ndarray The metrics tensor. base : ndarray The 3x3 matrix of row base vectors in Cartesian coordinates, which may be rotated, i.e., ``base = stdbase @ baserot``. stdbase : ndarray The 3x3 matrix of row base vectors in standard orientation. baserot : ndarray The rotation matrix for the `base`. recbase : ndarray The inverse of the `base` matrix, where the columns give reciprocal vectors in Cartesian coordinates. normbase : ndarray The `base` vectors scaled by magnitudes of reciprocal cell lengths. recnormbase : ndarray The inverse of the `normbase` matrix. isotropicunit : ndarray The 3x3 tensor for a unit isotropic displacement parameters in this coordinate system. This is an identity matrix when this Lattice is orthonormal. Note ---- The array attributes are read-only. They get updated by changing some lattice parameters or by calling the `setLatPar()` or `setLatBase()` methods. Examples -------- Create a Cartesian coordinate system:: >>> Lattice() Create coordinate system with the cell lengths ``a``, ``b``, ``c`` and cell angles ``alpha``, ``beta``, ``gamma`` in degrees:: >>> Lattice(a, b, c, alpha, beta, gamma) Create a duplicate of an existing Lattice ``lat``:: >>> Lattice(lat) Create coordinate system with the base vectors given by rows of the ``abc`` matrix:: >>> Lattice(base=abc) """ # round-off tolerance _epsilon = 1.0e-8 # properties ------------------------------------------------------------- a = property(lambda self: self._a, lambda self, value: self.setLatPar(a=value), doc='The unit cell length *a*.') b = property(lambda self: self._b, lambda self, value: self.setLatPar(b=value), doc='The unit cell length *b*.') c = property(lambda self: self._c, lambda self, value: self.setLatPar(c=value), doc='The unit cell length *c*.') alpha = property(lambda self: self._alpha, lambda self, value: self.setLatPar(alpha=value), doc='The cell angle *alpha* in degrees.') beta = property(lambda self: self._beta, lambda self, value: self.setLatPar(beta=value), doc='The cell angle *beta* in degrees.') gamma = property(lambda self: self._gamma, lambda self, value: self.setLatPar(gamma=value), doc='The cell angle *gamma* in degrees.') # read-only derived properties @property def unitvolume(self): '''The unit cell volume when a = b = c = 1. ''' # Recalculate lattice cosines to ensure this is right # even if ca, cb, cg data were not yet updated. ca = cosd(self.alpha) cb = cosd(self.beta) cg = cosd(self.gamma) rv = math.sqrt( 1.0 + 2.0*ca*cb*cg - ca*ca - cb*cb - cg*cg) return rv volume = property(lambda self: self.a * self.b * self.c * self.unitvolume, doc='The unit cell volume.') ar = property(lambda self: self._ar, doc='The cell length *a* of the reciprocal lattice.') br = property(lambda self: self._br, doc='The cell length *b* of the reciprocal lattice.') cr = property(lambda self: self._cr, doc='The cell length *c* of the reciprocal lattice.') alphar = property(lambda self: self._alphar, doc='The reciprocal cell angle *alpha* in degrees.') betar = property(lambda self: self._betar, doc='The reciprocal cell angle *beta* in degrees') gammar = property(lambda self: self._gammar, doc='The reciprocal cell angle *gamma* in degrees') ca = property(lambda self: self._ca, doc='The cosine of the cell angle *alpha*.') cb = property(lambda self: self._cb, doc='The cosine of the cell angle *beta*.') cg = property(lambda self: self._cg, doc='The cosine of the cell angle *gamma*.') sa = property(lambda self: self._sa, doc='The sine of the cell angle *alpha*.') sb = property(lambda self: self._sb, doc='The sine of the cell angle *beta*.') sg = property(lambda self: self._sg, doc='The sine of the cell angle *gamma*.') car = property(lambda self: self._car, doc='The cosine of the reciprocal angle *alpha*.') cbr = property(lambda self: self._cbr, doc='The cosine of the reciprocal angle *beta*.') cgr = property(lambda self: self._cgr, doc='The cosine of the reciprocal angle *gamma*.') sar = property(lambda self: self._sar, doc='The sine of the reciprocal angle *alpha*.') sbr = property(lambda self: self._sbr, doc='flot: Sine of the reciprocal angle *beta*.') sgr = property(lambda self: self._sgr, doc='The sine of the reciprocal angle *gamma*.') # done with properties --------------------------------------------------- def __init__(self, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, baserot=None, base=None): # build a set of provided argument names for later use. apairs = (('a', a), ('b', b), ('c', c), ('alpha', alpha), ('beta', beta), ('gamma', gamma), ('baserot', baserot), ('base', base)) argset = set(n for n, v in apairs if v is not None) # initialize data members, they values will be set by setLatPar() self._a = self._b = self._c = None self._alpha = self._beta = self._gamma = None self._ca = self._cb = self._cg = None self._sa = self._sb = self._sg = None self._ar = self._br = self._cr = None self._alphar = self._betar = self._gammar = None self._car = self._cbr = self._cgr = None self._sar = self._sbr = self._sgr = None self.baserot = numpy.identity(3) self.base = self.recbase = None self.normbase = self.recnormbase = None # work out argument variants # Lattice() if not argset: self.setLatPar(1.0, 1.0, 1.0, 90.0, 90.0, 90.0, baserot) # Lattice(base=abc) elif base is not None: if len(argset) > 1: raise ValueError("'base' must be the only argument.") self.setLatBase(base) # Lattice(lat) elif isinstance(a, Lattice): if len(argset) > 1: raise ValueError("Lattice object must be the only argument.") self.__dict__.update(a.__dict__) # otherwise do default Lattice(a, b, c, alpha, beta, gamma) else: abcabg = ('a', 'b', 'c', 'alpha', 'beta', 'gamma') if not argset.issuperset(abcabg): raise ValueError("Provide all 6 cell parameters.") self.setLatPar(a, b, c, alpha, beta, gamma, baserot=baserot) return def setLatPar(self, a=None, b=None, c=None, alpha=None, beta=None, gamma=None, baserot=None): """Set one or more lattice parameters. This updates all attributes that depend on the lattice parameters. Parameters ---------- a : float, optional The new value of the cell length *a*. b : float, optional The new value of the cell length *b*. c : float, optional The new value of the cell length *c*. alpha : float, optional The new value of the cell angle *alpha* in degrees. beta : float, optional The new value of the cell angle *beta* in degrees. gamma : float, optional The new value of the cell angle *gamma* in degrees. baserot : array_like, optional The new 3x3 rotation matrix of the base vectors with respect to their standard setting in Cartesian coordinates. Note ---- Parameters that are not specified will keep their initial values. """ if a is not None: self._a = float(a) if b is not None: self._b = float(b) if c is not None: self._c = float(c) if alpha is not None: self._alpha = float(alpha) if beta is not None: self._beta = float(beta) if gamma is not None: self._gamma = float(gamma) if baserot is not None: self.baserot = numpy.array(baserot) self._ca = ca = cosd(self.alpha) self._cb = cb = cosd(self.beta) self._cg = cg = cosd(self.gamma) self._sa = sa = sind(self.alpha) self._sb = sb = sind(self.beta) self._sg = sg = sind(self.gamma) # cache the unit volume value Vunit = self.unitvolume # reciprocal lattice self._ar = ar = sa/(self.a*Vunit) self._br = br = sb/(self.b*Vunit) self._cr = cr = sg/(self.c*Vunit) self._car = car = (cb*cg - ca)/(sb*sg) self._cbr = cbr = (ca*cg - cb)/(sa*sg) self._cgr = cgr = (ca*cb - cg)/(sa*sb) self._sar = math.sqrt(1.0 - car*car) self._sbr = math.sqrt(1.0 - cbr*cbr) self._sgr = sgr = math.sqrt(1.0 - cgr*cgr) self._alphar = math.degrees(math.acos(car)) self._betar = math.degrees(math.acos(cbr)) self._gammar = math.degrees(math.acos(cgr)) # metrics tensor self.metrics = numpy.array( [ [ self.a*self.a, self.a*self.b*cg, self.a*self.c*cb ], [ self.b*self.a*cg, self.b*self.b, self.b*self.c*ca ], [ self.c*self.a*cb, self.c*self.b*ca, self.c*self.c ] ], dtype=float ) # standard Cartesian coordinates of lattice vectors self.stdbase = numpy.array( [ [ 1.0/ar, -cgr/sgr/ar, cb*self.a ], [ 0.0, self.b*sa, self.b*ca ], [ 0.0, 0.0, self.c ] ], dtype=float ) # Cartesian coordinates of lattice vectors self.base = numpy.dot(self.stdbase, self.baserot) self.recbase = numalg.inv(self.base) # bases normalized to unit reciprocal vectors self.normbase = self.base * [[ar], [br], [cr]] self.recnormbase = self.recbase / [ar, br, cr] self.isotropicunit = _isotropicunit(self.recnormbase) return def setLatBase(self, base): """Set new base vectors for this lattice. This updates the cell lengths and cell angles according to the new base. The `stdbase`, `baserot`, and `metrics` attributes are also updated. Parameters ---------- base : array_like The 3x3 matrix of row base vectors expressed in Cartesian coordinates. """ self.base = numpy.array(base) detbase = numalg.det(self.base) if abs(detbase) < 1.0e-8: emsg = "base vectors are degenerate" raise LatticeError(emsg) elif detbase < 0.0: emsg = "base is not right-handed" raise LatticeError(emsg) self._a = a = math.sqrt(numpy.dot(self.base[0,:], self.base[0,:])) self._b = b = math.sqrt(numpy.dot(self.base[1,:], self.base[1,:])) self._c = c = math.sqrt(numpy.dot(self.base[2,:], self.base[2,:])) self._ca = ca = numpy.dot(self.base[1,:], self.base[2,:]) / (b*c) self._cb = cb = numpy.dot(self.base[0,:], self.base[2,:]) / (a*c) self._cg = cg = numpy.dot(self.base[0,:], self.base[1,:]) / (a*b) self._sa = sa = math.sqrt(1.0 - ca**2) self._sb = sb = math.sqrt(1.0 - cb**2) self._sg = sg = math.sqrt(1.0 - cg**2) self._alpha = math.degrees(math.acos(ca)) self._beta = math.degrees(math.acos(cb)) self._gamma = math.degrees(math.acos(cg)) # cache the unit volume value Vunit = self.unitvolume # reciprocal lattice self._ar = ar = sa/(self.a*Vunit) self._br = br = sb/(self.b*Vunit) self._cr = cr = sg/(self.c*Vunit) self._car = car = (cb*cg - ca)/(sb*sg) self._cbr = cbr = (ca*cg - cb)/(sa*sg) self._cgr = cgr = (ca*cb - cg)/(sa*sb) self._sar = math.sqrt(1.0 - car**2) self._sbr = math.sqrt(1.0 - cbr**2) self._sgr = sgr = math.sqrt(1.0 - cgr**2) self._alphar = math.degrees(math.acos(car)) self._betar = math.degrees(math.acos(cbr)) self._gammar = math.degrees(math.acos(cgr)) # standard orientation of lattice vectors self.stdbase = numpy.array([ [ 1.0/ar, -cgr/sgr/ar, cb*a ], [ 0.0, b*sa, b*ca ], [ 0.0, 0.0, c ]], dtype=float) # calculate unit cell rotation matrix, base = stdbase @ baserot self.baserot = numpy.dot(numalg.inv(self.stdbase), self.base) self.recbase = numalg.inv(self.base) # bases normalized to unit reciprocal vectors self.normbase = self.base * [[ar], [br], [cr]] self.recnormbase = self.recbase / [ar, br, cr] self.isotropicunit = _isotropicunit(self.recnormbase) # update metrics tensor self.metrics = numpy.array([ [ a*a, a*b*cg, a*c*cb ], [ b*a*cg, b*b, b*c*ca ], [ c*a*cb, c*b*ca, c*c ]], dtype=float) return def abcABG(self): """ Returns ------- A tuple of ``(a, b, c, alpha, beta, gamma)``. """ rv = (self.a, self.b, self.c, self.alpha, self.beta, self.gamma) return rv def reciprocal(self): """ Returns ------- Lattice The reciprocal lattice of the current lattice. """ rv = Lattice(base=numpy.transpose(self.recbase)) return rv def cartesian(self, u): """Transform lattice vector to Cartesian coordinates. Parameters ---------- u : array_like Vector of lattice coordinates or an Nx3 array of lattice vectors. Returns ------- rc : ndarray Cartesian coordinates of the *u* vector. """ rc = numpy.dot(u, self.base) return rc def fractional(self, rc): """Transform Cartesian vector to fractional lattice coordinates. Parameters ---------- rc : array_like A vector of Cartesian coordinates or an Nx3 array of Cartesian vectors. Returns ------- u : ndarray Fractional coordinates of the Cartesian vector *rc*. """ u = numpy.dot(rc, self.recbase) return u def dot(self, u, v): """Calculate dot product of 2 lattice vectors. Parameters ---------- u : array_like The first lattice vector or an Nx3 array. v : array_like The second lattice vector or an array of the same shape as *u*. Returns ------- float or ndarray The dot product of lattice vectors *u*, *v*. """ dp = (u * numpy.dot(v, self.metrics)).sum(axis=-1) return dp def norm(self, xyz): """Calculate norm of a lattice vector. Parameters ---------- xyz : array_like A vector or an Nx3 array of fractional coordinates. Returns ------- float or ndarray The magnitude of the lattice vector *xyz*. """ # this is a few percent faster than sqrt(dot(u, u)). return numpy.sqrt((self.cartesian(xyz)**2).sum(axis=-1)) def rnorm(self, hkl): """Calculate norm of a reciprocal vector. Parameters ---------- hkl : array_like A vector or an Nx3 array of reciprocal coordinates. Returns ------- float or ndarray The magnitude of the reciprocal vector *hkl*. """ hklcartn = numpy.dot(hkl, self.recbase.T) return numpy.sqrt((hklcartn**2).sum(axis=-1)) def dist(self, u, v): """Calculate distance between 2 points in lattice coordinates. Parameters ---------- u : array_like A vector or an Nx3 matrix of fractional coordinates. v : ndarray A vector or an Nx3 matrix of fractional coordinates. Note ---- *u* and *v* must be of the same shape when matrices. Returns ------- float or ndarray The distance between lattice points *u* and *v*. """ duv = numpy.asarray(u) - v return self.norm(duv) def angle(self, u, v): """Calculate angle between 2 lattice vectors in degrees. Parameters ---------- u : array_like The first lattice vector. v : array_like The second lattice vector. Returns ------- float The angle between lattice vectors *u* and *v* in degrees. """ ca = self.dot(u, v)/( self.norm(u)*self.norm(v) ) # avoid round-off errors that would make abs(ca) greater than 1 if numpy.isscalar(ca): ca = max(min(ca, 1), -1) rv = math.degrees(math.acos(ca)) else: ca[ca < -1] = -1 ca[ca > +1] = +1 rv = numpy.degrees(numpy.arccos(ca)) return rv def isanisotropic(self, umx): """True if displacement parameter matrix is anisotropic. This checks if the specified matrix of anisotropic displacement parameters (ADP) differs from isotropic values for this lattice by more than a small round-off error. Parameters ---------- umx : array_like The 3x3 matrix of displacement parameters. Returns ------- bool True when *umx* is anisotropic by more than a round-off error. """ umx = numpy.asarray(umx) utr = numpy.trace(umx) / umx.shape[0] udmax = numpy.fabs(umx - utr * self.isotropicunit).max() rv = udmax > self._epsilon return rv def __repr__(self): """String representation of this lattice. """ I3 = numpy.identity(3, dtype=float) rotbaseI3diff = max(numpy.reshape(numpy.fabs(self.baserot-I3), 9)) cartlatpar = numpy.array([1.0, 1.0, 1.0 , 90.0, 90.0, 90.0]) latpardiff = cartlatpar - self.abcABG() if rotbaseI3diff > self._epsilon: s = "Lattice(base=%r)" % self.base elif numpy.fabs(latpardiff).max() < self._epsilon: s = "Lattice()" else: s = "Lattice(a=%g, b=%g, c=%g, alpha=%g, beta=%g, gamma=%g)" % \ self.abcABG() return s # End of class Lattice # Local Helpers -------------------------------------------------------------- def _isotropicunit(recnormbase): """Calculate tensor of unit isotropic displacement parameters. Parameters ---------- recnormbase : ndarray The inverse of normalized base vectors of some lattice. Returns ------- ndarray The 3x3 matrix of displacement parameters corresponding to a unit isotropic displacements. """ isounit = numpy.dot(recnormbase.T, recnormbase) # ensure there are no round-off deviations on the diagonal isounit[0, 0] = 1 isounit[1, 1] = 1 isounit[2, 2] = 1 return isounit # Module Constants ----------------------------------------------------------- cartesian = Lattice()
import json import argparse from deepfrier.Predictor import Predictor def get_all_labels(annot_file, ont='mf'): if ont == 'ec': with open(annot_file, "r") as f: f.readline() tasks = f.readline().strip().split("\t") task_dict = {v: k for k, v in enumerate(tasks)} f.readline() labels = {} for line in f: name, pos_tasks = line.strip().split("\t") pos_tasks = [task_dict[x] for x in pos_tasks.split(",")] labels[name] = pos_tasks else: with open(annot_file, "r") as f: lines = f.readlines() if ont == 'mf': idx = 1 elif ont == 'bp': idx = 2 elif ont == 'cc': idx = 3 tasks = lines[(idx - 1) * 4 + 1].strip().split("\t") task_dict = {v: k for k, v in enumerate(tasks)} lines = lines[13:] labels = {} for line in lines: name = line.strip().split("\t")[0] try: pos_tasks = line.strip().split("\t")[idx] pos_tasks = [task_dict[x] for x in pos_tasks.split(",")] except: pos_tasks = [] labels[name] = pos_tasks return labels def get_seq_dict(fasta_file, split_file='', cutoff=95): if not split_file == '': select_list = [] with open(split_file, 'r') as f: head = f.readline().strip() fields = head.split(',') col = fields.index("<{}%".format(str(cutoff))) for line in f.readlines(): line = line.strip() if line == '': continue pdb_id = line.split(',')[0] valid = int(line.split(',')[col]) if valid: select_list.append(pdb_id) else: select_list = None seq_dict = {} f = open(fasta_file, 'r') for line in f.readlines(): line = line.strip() if line == '': continue if line.startswith('>'): _id = line.replace('>', '').split(' ')[0] seq_dict[_id] = '' else: seq_dict[_id] += line if select_list is not None: seq_dict = {k: v for k, v in seq_dict.items() if k in select_list} return seq_dict if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-s', '--seq', type=str, help="Protein sequence to be annotated.") parser.add_argument('-cm', '--cmap', type=str, help="Protein contact map to be annotated (in *npz file format).") parser.add_argument('-pdb', '--pdb_fn', type=str, help="Protein PDB file to be annotated.") parser.add_argument('--cmap_csv', type=str, help="Catalogue with chain to file path mapping.") parser.add_argument('--pdb_dir', type=str, help="Directory with PDB files of predicted Rosetta/DMPFold structures.") parser.add_argument('--fasta_fn', type=str, help="Fasta file with protein sequences.") parser.add_argument('--model_config', type=str, default='./trained_models/model_config.json', help="JSON file with model names.") parser.add_argument('-ont', '--ontology', type=str, default=['mf'], nargs='+', required=True, choices=['mf', 'bp', 'cc', 'ec'], help="Gene Ontology/Enzyme Commission.") parser.add_argument('-o', '--output_fn_prefix', type=str, default='DeepFRI', help="Save predictions/saliency in file.") parser.add_argument('-v', '--verbose', help="Prints predictions.", action="store_true") parser.add_argument('--use_guided_grads', help="Use guided grads to compute gradCAM.", action="store_true") parser.add_argument('--saliency', help="Compute saliency maps for every protein and every MF-GO term/EC number.", action="store_true") parser.add_argument('--annot_file', type=str, help='The annotation file.') parser.add_argument('--fasta_file', type=str, default='', help='The fasta file for all test sequences') parser.add_argument('--split_file', type=str, default='', help='The split file for all test sequences') parser.add_argument('--cutoff', type=int, default=95, choices=[30, 40, 50, 70, 95], help='Sequence identity cutoff') args = parser.parse_args() with open(args.model_config) as json_file: params = json.load(json_file) if args.seq is not None or args.fasta_fn is not None: params = params['cnn'] elif args.cmap is not None or args.pdb_fn is not None or args.cmap_csv is not None or args.pdb_dir is not None: params = params['gcn'] gcn = params['gcn'] layer_name = params['layer_name'] models = params['models'] labels = get_all_labels(args.annot_file, ont=args.ontology[0]) if not args.fasta_file == '': seq_dict = get_seq_dict(args.fasta_file, split_file=args.split_file, cutoff=args.cutoff) else: seq_dict = None for ont in args.ontology: predictor = Predictor(models[ont], gcn=gcn) if args.seq is not None: predictor.predict(args.seq) if args.cmap is not None: predictor.predict(args.cmap) if args.pdb_fn is not None: predictor.predict(args.pdb_fn) if args.fasta_fn is not None: predictor.predict_from_fasta(args.fasta_fn, labels, split_file=args.split_file, cutoff=args.cutoff) if args.cmap_csv is not None: predictor.predict_from_catalogue(args.cmap_csv) if args.pdb_dir is not None: predictor.predict_from_PDB_dir(args.pdb_dir, labels, seq_dict=seq_dict) # save predictions # predictor.export_csv(args.output_fn_prefix + "_" + ont.upper() + "_predictions.csv", args.verbose) # predictor.save_predictions(args.output_fn_prefix + "_" + ont.upper() + "_pred_scores.json") # # # save saliency maps # if args.saliency and ont in ['mf', 'ec']: # predictor.compute_GradCAM(layer_name=layer_name, use_guided_grads=args.use_guided_grads) # predictor.save_GradCAM(args.output_fn_prefix + "_" + ont.upper() + "_saliency_maps.json")
""" The ``serve`` subcommand launches a server that exposes trained models via a REST API, and that includes a web interface for exploring their predictions. .. code-block:: bash $ python -m allennlp.run serve --help usage: run [command] serve [-h] [--port PORT] [--workers WORKERS] [--config-file CONFIG_FILE] Run the web service, which provides an HTTP API as well as a web demo. optional arguments: -h, --help show this help message and exit --port PORT --workers WORKERS --config-file CONFIG_FILE path to a JSON file specifying the configuration for the models """ import argparse from typing import Dict from allennlp.service import server_sanic def add_subparser(parser: argparse._SubParsersAction, trained_models: Dict[str, str]) -> argparse.ArgumentParser: # pylint: disable=protected-access description = '''Run the web service, which provides an HTTP API as well as a web demo.''' subparser = parser.add_parser( 'serve', description=description, help='Run the web service and demo.') subparser.add_argument('--port', type=int, default=8000) subparser.add_argument('--workers', type=int, default=1) subparser.set_defaults(func=serve(trained_models)) return subparser def serve(trained_models: Dict[str, str]): def serve_inner(args: argparse.Namespace) -> None: server_sanic.run(args.port, args.workers, trained_models) return serve_inner
#··················································································# #··················································································# # How to run # # python3 ProtList.py -i ./ScopDatabaseFile.txt -o ScopeNewList.txt # #··················································································# #··················································································# #··················································································# #··················································································# # Modules # #··················································································# #··················································································# import re import os import argparse #··················································································# #··················································································# # Arguments # #··················································································# #··················································································# # Arguments that contains the paths to the parser = argparse.ArgumentParser() parser.add_argument("-i", "--inputfile", help="Path to the file that contains the SCOP database proteins") parser.add_argument("-o", "--outputfile", help="Path to the file that will contain the protein list") args = parser.parse_args() # Get values from the arguments InputFile = args.inputfile OutputFile = args.outputfile #··················································································# #··················································································# # Main Code # #··················································································# #··················································································# # Open the file that contains the proteins from SCOP database File = open(InputFile,"r"); Result = open(OutputFile,"w") # Find all the proteins in the file with a regular expression Pattern = re.compile(r'>.+ \(\w:\)') Count = 0 for line in File: if line.startswith(">"): try: # Once the program found a protein, this save it into a list file Match = Pattern.findall(line) Protein = Match[0].replace(">","") Protein = Protein.split(" ") Protein = Protein[0] + " " + Protein[1] + "\n" Result.write(Protein) Count += 1 except: continue # Show how many proteins the script fount print("The script succesfully found {} proteins".format(Count)) # Close files File.close() Result.close()
"""Code for flask mongodb extension in scout""" import os from scout.adapter.client import get_connection class MongoDB: """Flask interface to mongodb""" @staticmethod def init_app(app): """Initialize from flask""" db_name = os.environ.get("MONGO_DBNAME") or app.config.get("MONGO_DBNAME", "scout") client = get_connection( host=os.environ.get("MONGO_HOST") or app.config.get("MONGO_HOST", "localhost"), port=os.environ.get("MONGO_PORT") or app.config.get("MONGO_PORT", 27017), username=os.environ.get("MONGO_USERNAME") or app.config.get("MONGO_USERNAME", None), password=os.environ.get("MONGO_PASSWORD") or app.config.get("MONGO_PASSWORD", None), uri=os.environ.get("MONGO_URI") or app.config.get("MONGO_URI", None), mongodb=db_name, ) app.config["MONGO_DATABASE"] = client[db_name] app.config["MONGO_CLIENT"] = client def __repr__(self): return f"{self.__class__.__name__}"
from enum import Enum class FieldState(Enum): NONE = " " BOT = "O" PLAYER = "X"
#!/usr/bin/env python import asyncio import json import threading import time import websockets queue = asyncio.Queue() new_loop = asyncio.new_event_loop() def start_loop(loop): asyncio.set_event_loop(loop) loop.run_forever() async def producer(): for i in range(5): await asyncio.sleep(1) queue.put_nowait(i) print(f'put {i}') async def consumer(websocket): print('server starts to wait producer...') while 1: var = await queue.get() print(f'get {var}') t_serv_rec = str(time.time()) payload = json.dumps((var, t_serv_rec)) await websocket.send(payload) async def echo(websocket, path): name = await websocket.recv() tasks = [producer(), consumer(websocket)] asyncio.gather(*tasks, return_exceptions=True) start_server = websockets.serve(echo, 'localhost', 8888) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever()
# Copyright (c) 2016 Intel Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from neutron_lib import constants as lib_constants from neutron.objects import address_scope from neutron.tests.unit.objects import test_base from neutron.tests.unit.objects import test_rbac from neutron.tests.unit import testlib_api class AddressScopeIfaceObjectTestCase(test_base.BaseObjectIfaceTestCase): _test_class = address_scope.AddressScope class AddressScopeDbObjectTestCase(test_base.BaseDbObjectTestCase, testlib_api.SqlTestCase): _test_class = address_scope.AddressScope class AddressScopeRBACDbObjectTestCase(test_rbac.TestRBACObjectMixin, test_base.BaseDbObjectTestCase, testlib_api.SqlTestCase): _test_class = address_scope.AddressScopeRBAC def setUp(self): super(AddressScopeRBACDbObjectTestCase, self).setUp() for obj in self.db_objs: as_obj = address_scope.AddressScope( self.context, id=obj['object_id'], name="test_as_%s_%s" % (obj['object_id'], obj['project_id']), project_id=obj['project_id'], ip_version=lib_constants.IP_ALLOWED_VERSIONS[0], ) as_obj.create() def _create_test_address_scope_rbac(self): self.objs[0].create() return self.objs[0] class AddressScopeRBACIfaceObjectTestCase(test_rbac.TestRBACObjectMixin, test_base.BaseObjectIfaceTestCase): _test_class = address_scope.AddressScopeRBAC
from rpython.rlib import jit from . import oop, pretty class Cont(pretty.PrettyBase): _immutable_ = True def to_pretty(self): return pretty.atom('#<Cont>') # Not necessarily safe to call this directly. def plug_reduce(self, w_value, env): assert isinstance(w_value, oop.W_Value) raise NotImplementedError('Cont.plug_reduce: abstract method') class Halt(Cont): _immutable_ = True def to_pretty(self): return pretty.atom('#halt') def plug_reduce(self, w_value, env): from .interp import HaltException raise HaltException(w_value) # From pycket. This helps to avoid stack overflow for ReturnCont. def label0(func, enter): from .ast import Expr func = jit.unroll_safe(func) class Label(Expr): _immutable_ = True should_enter = enter def evaluate(self, env, cont): assert isinstance(cont, ValueCont) w_value = cont._w_value prev = cont._cont return func(prev, w_value, env) def to_pretty(self): return pretty.atom('#label').append_kw('name', func.func_name) \ .append_kw('module', func.__module__) \ .append_kw('line', func.__code__.co_firstlineno) class ValueCont(Cont): _immutable_ = True def __init__(self, w_value, cont): self._w_value = w_value self._cont = cont label_instance = Label() def wraps(cont, w_value, env): return label_instance, env, ValueCont(w_value, cont) return wraps def label(func): return label0(func, enter=False) def loop_label(func): return label0(func, enter=True)
# A part of esc2pdf (https://github.com/szihlmann/esc2pdf) # Copyright (C) 2021 Serge Zihlmann, Bern, Switzerland # MIT license -- See LICENSE.txt for details class State(object): # State object which provides utility functions for the individual state def __init__(self): pass def on_byte(self, byte, Flowable): # Handle events that are delegated to this State. return self def Name(self): # Returns the name of the State. return self.__class__.__name__ def isState(self, stateName = 'None'): # Verifies that state corresponds to a given stateName (string) return self.__class__.__name__ == stateName
# Data science project config file import os # Project name PROJECT_NAME = 'kaggle-talkingdata2' # Paths DATA_BASE_PATH = os.path.expanduser(os.getenv('DATA_BASE_PATH')) DATA_PATH = os.path.join(DATA_BASE_PATH, PROJECT_NAME) # Comet COMET = { 'api_key': os.getenv('COMET_API_KEY'), 'project_name': PROJECT_NAME, 'auto_param_logging': True, 'auto_metric_logging': False, 'parse_args': False }
import pyowm import json import requests from pyowm import timeutils, exceptions from telegram import Message, Chat, Update, Bot, InlineKeyboardButton, InlineKeyboardMarkup from telegram.ext import run_async from emilia import dispatcher, updater, API_WEATHER, API_ACCUWEATHER, spamcheck from emilia.modules.disable import DisableAbleCommandHandler from emilia.modules.languages import tl from emilia.modules.helper_funcs.alternate import send_message @run_async @spamcheck def cuaca(update, context): args = context.args location = " ".join(args) if location.lower() == context.bot.first_name.lower(): send_message(update.effective_message, tl(update.effective_message, "Saya akan terus mengawasi di saat senang maupun sedih!")) context.bot.send_sticker(update.effective_chat.id, BAN_STICKER) return try: owm = pyowm.OWM(API_WEATHER, language='id') observation = owm.weather_at_place(location) cuacanya = observation.get_weather() obs = owm.weather_at_place(location) lokasi = obs.get_location() lokasinya = lokasi.get_name() temperatur = cuacanya.get_temperature(unit='celsius')['temp'] fc = owm.three_hours_forecast(location) # Simbol cuaca statusnya = "" cuacaskrg = cuacanya.get_weather_code() if cuacaskrg < 232: # Hujan badai statusnya += "⛈️ " elif cuacaskrg < 321: # Gerimis statusnya += "🌧️ " elif cuacaskrg < 504: # Hujan terang statusnya += "🌦️ " elif cuacaskrg < 531: # Hujan berawan statusnya += "⛈️ " elif cuacaskrg < 622: # Bersalju statusnya += "🌨️ " elif cuacaskrg < 781: # Atmosfer statusnya += "🌪️ " elif cuacaskrg < 800: # Cerah statusnya += "🌤️ " elif cuacaskrg < 801: # Sedikit berawan statusnya += "⛅️ " elif cuacaskrg < 804: # Berawan statusnya += "☁️ " statusnya += cuacanya._detailed_status cuacabsk = besok.get_weather_code() send_message(update.effective_message, tl(update.effective_message, "{} hari ini sedang {}, sekitar {}°C.\n").format(lokasinya, statusnya, temperatur)) except pyowm.exceptions.api_call_error.APICallError: send_message(update.effective_message, tl(update.effective_message, "Tulis lokasi untuk mengecek cuacanya")) except pyowm.exceptions.api_response_error.NotFoundError: send_message(update.effective_message, tl(update.effective_message, "Maaf, lokasi tidak ditemukan 😞")) else: return @run_async @spamcheck def accuweather(update, context): chat_id = update.effective_chat.id message = update.effective_message args = context.args if not args: return send_message(update.effective_message, tl(update.effective_message, "Masukan nama lokasinya untuk mengecek cuacanya!")) location = " ".join(args) if location.lower() == context.bot.first_name.lower(): send_message(update.effective_message, tl(update.effective_message, "Saya akan terus mengawasi di saat senang maupun sedih!")) context.bot.send_sticker(update.effective_chat.id, BAN_STICKER) return if True: url = "http://api.accuweather.com/locations/v1/cities/search.json?q={}&apikey={}".format(location, API_ACCUWEATHER) headers = {'Content-type': 'application/json'} r = requests.get(url, headers=headers) try: data = r.json()[0] except: return send_message(update.effective_message, tl(update.effective_message, "Maaf, lokasi tidak ditemukan 😞")) locid = data.get('Key') weatherlang = tl(update.effective_message, "weather_lang") urls = "http://api.accuweather.com/currentconditions/v1/{}.json?apikey={}&language={}&details=true&getphotos=true".format(locid, API_ACCUWEATHER, weatherlang) rs = requests.get(urls, headers=headers) datas = rs.json()[0] if datas.get('WeatherIcon') <= 44: icweather = "☁" elif datas.get('WeatherIcon') <= 42: icweather = "⛈" elif datas.get('WeatherIcon') <= 40: icweather = "🌧" elif datas.get('WeatherIcon') <= 38: icweather = "☁" elif datas.get('WeatherIcon') <= 36: icweather = "⛅" elif datas.get('WeatherIcon') <= 33: icweather = "🌑" elif datas.get('WeatherIcon') <= 32: icweather = "🌬" elif datas.get('WeatherIcon') <= 31: icweather = "⛄" elif datas.get('WeatherIcon') <= 30: icweather = "🌡" elif datas.get('WeatherIcon') <= 29: icweather = "☃" elif datas.get('WeatherIcon') <= 24: icweather = "❄" elif datas.get('WeatherIcon') <= 23: icweather = "🌥" elif datas.get('WeatherIcon') <= 19: icweather = "☁" elif datas.get('WeatherIcon') <= 18: icweather = "🌨" elif datas.get('WeatherIcon') <= 17: icweather = "🌦" elif datas.get('WeatherIcon') <= 15: icweather = "⛈" elif datas.get('WeatherIcon') <= 14: icweather = "🌦" elif datas.get('WeatherIcon') <= 12: icweather = "🌧" elif datas.get('WeatherIcon') <= 11: icweather = "🌫" elif datas.get('WeatherIcon') <= 8: icweather = "⛅️" elif datas.get('WeatherIcon') <= 5: icweather = "☀️" else: icweather = "" cuaca = "*{} {}*\n".format(icweather, datas.get('WeatherText')) cuaca += tl(update.effective_message, "*Suhu:* `{}°C`/`{}°F`\n").format(datas.get('Temperature').get('Metric').get('Value'), datas.get('Temperature').get('Imperial').get('Value')) cuaca += tl(update.effective_message, "*Kelembapan:* `{}`\n").format(datas.get('RelativeHumidity')) direct = "{}".format(datas.get('Wind').get('Direction').get('English')) direct = direct.replace("N", "↑").replace("E", "→").replace("S", "↓").replace("W", "←") cuaca += tl(update.effective_message, "*Angin:* `{} {} km/h` | `{} mi/h`\n").format(direct, datas.get('Wind').get('Speed').get('Metric').get('Value'), datas.get('Wind').get('Speed').get('Imperial').get('Value')) cuaca += tl(update.effective_message, "*Tingkat UV:* `{}`\n").format(datas.get('UVIndexText')) cuaca += tl(update.effective_message, "*Tekanan:* `{}` (`{} mb`)\n").format(datas.get('PressureTendency').get('LocalizedText'), datas.get('Pressure').get('Metric').get('Value')) lok = [] lok.append(data.get('LocalizedName')) lok.append(data.get('AdministrativeArea').get('LocalizedName')) for x in reversed(range(len(data.get('SupplementalAdminAreas')))): lok.append(data.get('SupplementalAdminAreas')[x].get('LocalizedName')) lok.append(data.get('Country').get('LocalizedName')) teks = tl(update.effective_message, "*Cuaca di {} saat ini*\n").format(data.get('LocalizedName')) teks += "{}\n".format(cuaca) teks += tl(update.effective_message, "*Lokasi:* `{}`\n\n").format(", ".join(lok)) # try: # context.bot.send_photo(chat_id, photo=datas.get('Photos')[0].get('LandscapeLink'), caption=teks, parse_mode="markdown", reply_to_message_id=message.message_id, reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton(text="More info", url=datas.get('Link'))]])) # except: send_message(update.effective_message, teks, parse_mode="markdown", disable_web_page_preview=True, reply_markup=InlineKeyboardMarkup([[InlineKeyboardButton(text="More info", url=datas.get('Link'))]])) __help__ = "weather_help" __mod_name__ = "Weather" CUACA_HANDLER = DisableAbleCommandHandler(["cuaca", "weather"], accuweather, pass_args=True) # ACCUWEATHER_HANDLER = DisableAbleCommandHandler("accuweather", accuweather, pass_args=True) dispatcher.add_handler(CUACA_HANDLER) # dispatcher.add_handler(ACCUWEATHER_HANDLER)
from django.shortcuts import redirect def admin_check(user): if user.is_active and user.is_authenticated: if user.is_user_admin: return True return False def admin_required(function=None, redirect_field_name=None, login_url='/login/'): """ Decorator for views that checks that the user is logged in and has the "admin" permission set. """ def _decorated(view_func): def _view(request, *args, **kwargs): if admin_check(request.user): return view_func(request, *args, **kwargs) else: # Not admin return redirect(login_url) _view.__name__ = view_func.__name__ _view.__dict__ = view_func.__dict__ _view.__doc__ = view_func.__doc__ return _view if function is None: return _decorated else: return _decorated(function)
""" demo04_bin.py 二值化 """ import numpy as np import sklearn.preprocessing as sp samples = np.array([[17., 100., 4000.], [20., 80., 5000.], [23., 60., 5500.]]) bin = sp.Binarizer(threshold=80) r_samples = bin.transform(samples) print(r_samples) samples[samples<=80] = 0 samples[samples>80] = 1 print(samples)
def getStrandPairMethylation(methylationLocationsOneFileName, methylationLocationsTwoFileName, outputFileName): # Gets the locations of the methylated bases that are in both strands # Also determines the fraction of methylated bases in each strand that are methylated in the other strand # ASSUMES THAT LOCATIONS IN FILE TWO CORRESPOND TO LOCATIONS IN FILE ONE + 1 (usually: file one is OT, two is OB) # ASSUMES THAT BOTH FILES ARE SORTED BY CHROM, BASE AND HAVE NO REPEATS methylationLocationsOneFile = open(methylationLocationsOneFileName) methylationLocationsTwoFile = open(methylationLocationsTwoFileName) outputFile = open(outputFileName, 'w+') methylationOneCount = 0 methylationOverlapCount = 0 methylationTwoCount = 0 lineTwo = methylationLocationsTwoFile.readline() lineTwoElements = lineTwo.split("\t") fileTwoDone = False for line in methylationLocationsOneFile: # Iterate through locations in the first file and find those that correspond to locations in the second file methylationOneCount = methylationOneCount + 1 if fileTwoDone == True: # The second file has been read to completion, so continue continue lineElements = line.split("\t") while lineElements[0] > lineTwoElements[0]: # Iterate through lines from the second file until a line with the right chromosome is reached methylationTwoCount = methylationTwoCount + 1 lineTwo = methylationLocationsTwoFile.readline() if lineTwo == "": # The second file has been read to completion, so stop fileTwoDone = True break lineTwoElements = lineTwo.split("\t") if fileTwoDone == True: # The second file has been read to completion, so continue continue while (lineElements[0] == lineTwoElements[0]) and (int(lineElements[1].strip()) >= int(lineTwoElements[1].strip())): # Iterate through the lines from the second file until a line with the right base is reached methylationTwoCount = methylationTwoCount + 1 lineTwo = methylationLocationsTwoFile.readline() if lineTwo == "": # The second file has been read to completion, so stop fileTwoDone = True break lineTwoElements = lineTwo.split("\t") if fileTwoDone == True: # The second file has been read to completion, so continue continue if (lineElements[0] == lineTwoElements[0]) and (int(lineElements[1].strip()) + 1 == int(lineTwoElements[1].strip())): methylationOverlapCount = methylationOverlapCount + 1 outputFile.write(lineElements[0] + "\t" + lineElements[1].strip() + "\n") if fileTwoDone == False: # Increment counts for the second file based on how many lines remain methylationTwoCount = methylationTwoCount + 1 # The latest line has not yet been counted methylationTwoLines = methylationLocationsTwoFile.readlines() methylationTwoCount = methylationTwoCount + len(methylationTwoLines) print float(methylationOverlapCount)/float(methylationOneCount) print float(methylationOverlapCount)/float(methylationTwoCount) methylationLocationsOneFile.close() methylationLocationsTwoFile.close() outputFile.close() if __name__=="__main__": import sys methylationLocationsOneFileName = sys.argv[1] methylationLocationsTwoFileName = sys.argv[2] outputFileName = sys.argv[3] getStrandPairMethylation(methylationLocationsOneFileName, methylationLocationsTwoFileName, outputFileName)
""" Module to write truth catalogs for AGNs using the AGNs parameters db as input. """ import os import sys import json import logging import sqlite3 import numpy as np import pandas as pd from lsst.sims.photUtils import PhotometricParameters from lsst.sims.utils import angularSeparation from .synthetic_photometry import SyntheticPhotometry, find_sed_file from .write_sqlite import write_sqlite __all__ = ['AGNTruthWriter', 'agn_mag_norms', 'write_agn_variability_truth'] logging.basicConfig(format="%(asctime)s %(name)s: %(message)s", stream=sys.stdout) def agn_mag_norms(mjds, redshift, tau, sf, seed, start_date=58580.): """ Return the delta mag_norm values wrt the infinite-time average mag_norm for the provided AGN light curve parameters. mag_norm is the object's un-reddened monochromatic magnitude at 500nm. Parameters ---------- mjds: np.array Times at which to evaluate the light curve delta flux values in MJD. Observer frame. redshift: float Redshift of the AGN, used to account for time-dilation between rest frame and observer frame. tau: float Variability time scale in days. sf: float Structure function parameter, i.e., asymptotic rms variability on long time scales. seed: int Random number seed. start_date: float [58580.] Start date for the random walk in MJD. This will ensure that the same random walk is generated for a given redshift, tau, sf, and seed regardless of the mjds requested. Returns ------- np.array of delta mag_norm values. Notes ----- This code is stolen from https://github.com/astroML/astroML/blob/master/astroML/time_series/generate.py """ if min(mjds) < start_date: raise RuntimeError(f'mjds must start after {start_date}') t_obs = np.arange(start_date, max(mjds + 1), dtype=float) t_rest = t_obs/(1 + redshift)/tau rng = np.random.RandomState(seed) nbins = len(t_rest) steps = rng.normal(0, 1, nbins) delta_mag_norm = np.zeros(nbins) delta_mag_norm[0] = steps[0]*sf for i in range(1, nbins): dt = t_rest[i] - t_rest[i - 1] delta_mag_norm[i] \ = delta_mag_norm[i - 1]*(1. - dt) + np.sqrt(2*dt)*sf*steps[i] return np.interp(mjds, t_obs, delta_mag_norm) class AGNTruthWriter: ''' Write Summary and Variable truth tables for unlensed AGNs. ''' agn_type_id = 117 def __init__(self, outfile, agn_db_file, ddf_bounds=(52.479, 53.771, -28.667, -27.533)): ''' Parameters ---------- outfile: str Name of the sqlite3 file to contain the truth tables. agn_db_file: str The sqlite3 file containing the AGN model parameters. ddf_bounds: 4-tuple [(52.479, 53.771, -28.667, -27.533)] Bounds of DDF region in degrees. ''' self.outfile = outfile if not os.path.isfile(agn_db_file): raise FileNotFoundError(f'{agn_db_file} not found.') self.conn = sqlite3.connect(agn_db_file) ra_min, ra_max, dec_min, dec_max = ddf_bounds self.query = f'''select galaxy_id, magNorm, redshift, M_i, ra, dec, varParamStr from agn_params where {ra_min} <= ra and ra <= {ra_max} and {dec_min} <= dec and dec <= {dec_max} ''' curs = self.conn.execute(self.query) self.icol = {_[0]: icol for icol, _ in enumerate(curs.description)} @staticmethod def object_id(galaxy_id): """Return the AGN object ID based on the host galaxy ID""" return str(galaxy_id*1024 + AGNTruthWriter.agn_type_id) def write(self, chunk_size=10000, verbose=False): ''' Extract the column data from the agn db file and write the summary truth table to the sqlite file. Parameters ---------- chunk_size: int [10000] Number of records to read in at a time from the star db file and write to the output file. verbose: bool [False] Flag to write the number of records that have been processed. ''' logger = logging.getLogger('AGNTruthWriter.write') if verbose: logger.setLevel(logging.INFO) bands = 'ugrizy' curs = self.conn.execute(self.query) irec = 0 while True: ids, galaxy_ids, ra, dec, redshift = [], [], [], [], [] is_variable, is_pointsource = [], [] flux_by_band_MW = {_: [] for _ in bands} flux_by_band_noMW = {_: [] for _ in bands} chunk = curs.fetchmany(chunk_size) if not chunk: break logger.info('%d', irec) for row in chunk: irec += 1 # All AGNs are variable point sources: is_pointsource.append(1) is_variable.append(1) # AGN-dependent entries: ra.append(row[self.icol['ra']]) dec.append(row[self.icol['dec']]) redshift.append(row[self.icol['redshift']]) ids.append(self.object_id(row[self.icol['galaxy_id']])) galaxy_ids.append(row[self.icol['galaxy_id']]) sed_file = find_sed_file('agnSED/agn.spec.gz') # Create SyntheticPhotometry object initially without # Milky Way dust parameters. synth_phot = SyntheticPhotometry(sed_file, row[self.icol['magNorm']], redshift[-1]) for band in bands: flux_by_band_noMW[band].append(synth_phot.calcFlux(band)) # Set Milky Way dust parameters and compute ugrizy fluxes. synth_phot.add_MW_dust(ra[-1], dec[-1], Rv=3.1) for band in bands: flux_by_band_MW[band].append(synth_phot.calcFlux(band)) write_sqlite(self.outfile, ids=ids, galaxy_ids=galaxy_ids, ra=ra, dec=dec, redshift=redshift, is_variable=is_variable, is_pointsource=is_pointsource, flux_by_band_MW=flux_by_band_MW, flux_by_band_noMW=flux_by_band_noMW, good_ixes=range(len(ids)), create_index=False) with sqlite3.connect(self.outfile) as conn: conn.cursor().execute('create index radec_ix on ' 'truth_summary(ra,dec)') conn.commit() def write_auxiliary_truth(self, chunk_size=10000, verbose=False): """ Write the AGN auxiliary truth table from the AGN db file. Parameters ---------- chunk_size: int [10000] Number of records to read in at a time from the star db file and write to the output file. verbose: bool [False] Flag to write the number of records that have been processed. """ logger = logging.getLogger('AGNTruthWriter.write_auxiliary_truth') if verbose: logger.setLevel(logging.INFO) bands = 'ugrizy' curs = self.conn.execute(self.query) table_name = 'agn_auxiliary_info' cmd = f'''CREATE TABLE IF NOT EXISTS {table_name} (id TEXT, host_galaxy BIGINT, M_i DOUBLE, seed BIGINT, tau_u DOUBLE, tau_g DOUBLE, tau_r DOUBLE, tau_i DOUBLE, tau_z DOUBLE, tau_y DOUBLE, sf_u DOUBLE, sf_g DOUBLE, sf_r DOUBLE, sf_i DOUBLE, sf_z DOUBLE, sf_y DOUBLE)''' with sqlite3.connect(self.outfile) as conn: cursor = conn.cursor() cursor.execute(cmd) conn.commit() irec = 0 while True: chunk = curs.fetchmany(chunk_size) if not chunk: break values = [] logger.info('%d', irec) for row in chunk: irec += 1 pars = json.loads(row[self.icol['varParamStr']])['p'] my_row = [self.object_id(row[self.icol['galaxy_id']]), row[self.icol['galaxy_id']], row[self.icol['M_i']], pars['seed']] my_row.extend([pars[f'agn_tau_{band}'] for band in bands]) my_row.extend([pars[f'agn_sf_{band}'] for band in bands]) values.append(my_row) cursor.executemany(f'''INSERT INTO {table_name} VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)''', values) conn.commit() def write_agn_variability_truth(agn_db_file, query, opsim_db_file, start_mjd=59580., end_mjd=61405, fp_radius=2.05, object_range=None, outfile=None, verbose=False): """ Write the AGN fluxes for each visit. Parameters ---------- agn_db_file: str File containing the AGN model parameters. query: str Query string for the AGN parameters from agn_db_file. opsim_db_file: str The sqlite3 file containing the OpSim Summary table which has the pointing information for each visit. start_mjd: float [59580.] Starting MJD for the visits to be used from the opsim db file. The default is the start date of the minion 1016 db file. end_mjd: float [61405.] Ending MJD for the visits to be used from the opsim db file. The default is the end of 5 years from the start date of the minion 1016 db file. fp_radius: float [2.05] Effective radius of the focal plane in degrees. This defines the acceptance cone centered on the pointing direction for determining if an object is being observed by LSST for the purpose of computing a flux entry for the visit to be entered in the Variability Truth Table. object_range: (int, int) [None] The range of objects to process. This is useful for testing. If None, then write all entries for all AGNs in the agn_db_file. outfile: str [None] Output file for the `agn_variability_truth` table. If None, then 'agn_variability_truth_cat.db' will be used. """ logger = logging.getLogger('write_agn_variability_truth') if verbose: logger.setLevel(logging.INFO) bands = 'ugrizy' # Retrieve the pointing information for each visit from the opsim db. with sqlite3.connect(opsim_db_file) as conn: opsim_df = pd.read_sql( f'''select obsHistID, descDitheredRA, descDitheredDec, filter, expMJD from Summary where expMJD >= {start_mjd} and expMJD <= {end_mjd}''', conn) opsim_df['ra'] = np.degrees(opsim_df['descDitheredRA']) opsim_df['dec'] = np.degrees(opsim_df['descDitheredDec']) # Read in the AGN parameters table so that ranges of rows # can be easily handled. with sqlite3.connect(agn_db_file) as con: agn_df = pd.read_sql(query, con) if object_range is None: object_range = (0, len(agn_df)) # Create the Variability Truth table. table_name = 'agn_variability_truth' cmd = f'''CREATE TABLE IF NOT EXISTS {table_name} (id TEXT, obsHistID INTEGER, MJD FLOAT, bandpass TEXT, delta_flux FLOAT, num_photons FLOAT)''' if outfile is None: outfile = 'agn_variability_truth_cat.db' with sqlite3.connect(outfile) as conn: cursor = conn.cursor() cursor.execute(cmd) conn.commit() # Loop over rows in AGN db and add the flux for each # observation where the AGN is observed by LSST. sed_file = find_sed_file('agnSED/agn.spec.gz') for iloc in range(*object_range): row = agn_df.iloc[iloc] # Extract the AGN info and model parameters: object_id = AGNTruthWriter.object_id(row['galaxy_id']) logger.info('%d %s', iloc, object_id) ra = row['ra'] dec = row['dec'] magNorm = row['magNorm'] redshift = row['redshift'] params = json.loads(row['varParamStr'])['p'] seed = params['seed'] # Compute baseline fluxes in each band. synth_phot = SyntheticPhotometry(sed_file, magNorm, redshift) gAv, gRv = synth_phot.add_MW_dust(ra, dec) flux0 = {band: synth_phot.calcFlux(band) for band in bands} # Select the visits from the opsim db in which the AGN # is observed by applying cuts on the sky coordinates. dec_cut = f'{dec - fp_radius} <= dec <= {dec + fp_radius}' df = pd.DataFrame(opsim_df.query(dec_cut)) df['ang_sep'] = angularSeparation(df['ra'].to_numpy(), df['dec'].to_numpy(), ra, dec) df = df.query(f'ang_sep <= {fp_radius}') # Compute delta fluxes for each band. for band in bands: phot_params = PhotometricParameters(nexp=1, exptime=30, gain=1, bandpass=band) bp = synth_phot.bp_dict[band] tau = params[f'agn_tau_{band}'] sf = params[f'agn_sf_{band}'] my_df = df.query(f'filter == "{band}"') if len(my_df) == 0: continue obsHistIDs = my_df['obsHistID'].to_list() mjds = my_df['expMJD'].to_numpy() mag_norms = (agn_mag_norms(mjds, redshift, tau, sf, seed) + magNorm) values = [] for obsHistID, mjd, mag_norm in zip(obsHistIDs, mjds, mag_norms): synth_phot = SyntheticPhotometry(sed_file, mag_norm, redshift=redshift, gAv=gAv, gRv=gRv) delta_flux = synth_phot.calcFlux(band) - flux0[band] num_photons = synth_phot.sed.calcADU(bp, phot_params) values.append((object_id, obsHistID, mjd, band, delta_flux, num_photons)) cursor.executemany(f'''INSERT INTO {table_name} VALUES (?, ?, ?, ?, ?, ?)''', values) conn.commit()
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest import numpy as np import tensorflow as tf import onnx from onnx_tf.backend import run_node, prepare from onnx import helper from onnx.onnx_pb2 import TensorProto class TestModel(unittest.TestCase): """ Tests for models """ def test_relu_node_inplace(self): X = np.random.randn(3, 2).astype(np.float32) Y_ref = np.clip(X, 0, np.inf) node_def = helper.make_node( "Relu", ["X"], ["X"]) graph_def = helper.make_graph( [node_def], name="test", inputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, [3, 2])], outputs=[helper.make_tensor_value_info("X", TensorProto.FLOAT, [3, 2])]) tf_rep = prepare(helper.make_model(graph_def)) output = tf_rep.run({"X": X}) np.testing.assert_almost_equal(output.X, Y_ref) def test_initializer(self): X = np.array([[1, 2], [3, 4]]).astype(np.float32) Y = np.array([[1, 2], [3, 4]]).astype(np.float32) weight = np.array([[1, 0], [0, 1]]) graph_def = helper.make_graph( [helper.make_node("Add", ["X", "Y"], ["Z0"]), helper.make_node("Cast", ["Z0"], ["Z"], to="float"), helper.make_node("Mul", ["Z", "weight"], ["W"]), helper.make_node("Tanh", ["W"], ["W"]), helper.make_node("Sigmoid", ["W"], ["W"])], name="test_initializer", inputs=[ helper.make_tensor_value_info("X", TensorProto.FLOAT, (2, 2)), helper.make_tensor_value_info("Y", TensorProto.FLOAT, (2, 2)), helper.make_tensor_value_info("weight", TensorProto.FLOAT, (2, 2)), ], outputs=[ helper.make_tensor_value_info("W", TensorProto.FLOAT, (2, 2)) ], initializer=[helper.make_tensor("weight", TensorProto.FLOAT, [2, 2], weight.flatten().astype(float))] ) def sigmoid(x): return 1 / (1 + np.exp(-x)) W_ref = sigmoid(np.tanh((X + Y) * weight)) tf_rep = prepare(helper.make_model(graph_def)) output = tf_rep.run({"X": X, "Y": Y}) np.testing.assert_almost_equal(output["W"], W_ref) if __name__ == '__main__': unittest.main()
# coding=utf-8 # Copyright 2021 import tensorflow as tf import numpy as np import pickle import re import os.path import argparse import ConfMapper as cm from pathlib import Path from datetime import datetime # Config # Creat a parser instance as interface for command arguments parser = argparse.ArgumentParser\ (description="default configuration: " "batch_size = 60\n" "c_length = 19\n" "num_train = 11470\n" "embedding_size = 128\n" "num_attention_heads= 4\n" "base_num=1\n" "nblock = 3\n" "epoches = int(num_train / batch_size)\n" "num_training_steps = epoches * 500\n" "use_GPU: default is None, which means tensorflow has access to all the device," "use_GPU parameter assigns values to environment variables CUDA_VISIBLE_DEVICES, " "to give permission to specified GPUs.") parser.add_argument('-b','--batch_size', type=int, default=60) parser.add_argument('--nblock', type=int, default=3) parser.add_argument('--embeddingsize', type=int, default=128) parser.add_argument('--nheads', type=int, default=8) parser.add_argument('-in', '--iter_num', type=int, default=5) parser.add_argument('-nn', '--name_num', default='01') parser.add_argument('-bn', '--base_num', type=int, default=1) parser.add_argument('-en', '--epoch_num', type=int, default=1200) parser.add_argument('-use_GPU', type=str, default=None) args = parser.parse_args() use_GPU = args.use_GPU if use_GPU is not None: os.environ["CUDA_VISIBLE_DEVICES"] = use_GPU batch_size = args.batch_size nblock = args.nblock embedding_size = args.embeddingsize num_attention_heads = args.nheads iter_num = args.iter_num name_num = args.name_num base_num = args.base_num epoc = args.epoch_num c_length = 19 num_train = 11470 epoches = int(num_train / batch_size) num_training_steps = epoches * epoc iter_width = 12 # data restoring directory directory0 = "data/" directory1 = 'data_HPSCC/' accu_file_name = 'HPSCC_epoch%d_basenum%d_name%s.txt' % (epoc, base_num,name_num) data_name = directory0 + directory1 + accu_file_name # func0 def create_initializer(initializer_range=0.02): """Creates a `truncated_normal_initializer` with the given range.""" return tf.truncated_normal_initializer(stddev=initializer_range) # func1 def flatten_tensor_to_2d(tensor): if tensor.shape.dim <= 2: return tensor else: width = tensor.shape[-1] output = tf.reshape(tensor, [-1, width]) return output # func2 def get_shape_list(tensor): # 获取动态shape(class:Tensor)的list shape = tensor.shape.as_list() # placeholder的None维度无法获取 non_static_index = [] for (index, dim) in enumerate(shape): if dim is None: non_static_index.append(index) if not non_static_index: return shape dyn_shape = tf.shape(tensor) for index in non_static_index: shape[index] = dyn_shape[index] return shape # func3 def layer_norm(input_tensor, name=None): """Run layer normalization on the last dimension of the tensor.""" return tf.contrib.layers.layer_norm( inputs=input_tensor, begin_norm_axis=-1, begin_params_axis=-1, scope=name) # func4 def gelu(x): """Gaussian Error Linear Unit. This is a smoother version of the RELU. Original paper: https://arxiv.org/abs/1606.08415 Args: x: float Tensor to perform activation. Returns: `x` with the GELU activation applied. """ cdf = 0.5 * (1.0 + tf.tanh( (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3))))) return x * cdf # layer 0 * 2 def HP_layer_lookup(input_seqs, n_hidden=iter_width, n_neuron=50, initializer_range=0.02): # 检查input dtype&shape if input_seqs.shape.ndims != 2: raise ValueError("input_seqs has unmatched ndims: %d" % input_seqs.shape.ndims) # inputseqs就是x, 是一个int32,[-1,19]的tensor,由(0,1)两种取值构成 with tf.variable_scope("HP_layer", reuse=tf.AUTO_REUSE): W_emb1 = tf.get_variable("W_emb1", [2, n_hidden * n_neuron], dtype=tf.float32, initializer=create_initializer(initializer_range)) W_emb2 = tf.get_variable("W_emb2", [2, n_hidden * n_neuron], dtype=tf.float32, initializer=create_initializer(initializer_range)) B_emb1 = tf.get_variable("B_emb1", [2, n_neuron], initializer=tf.constant_initializer(0.1)) B_emb2 = tf.get_variable("B_emb2", [2, n_hidden], initializer=tf.constant_initializer(0.1)) WHP1 = tf.reshape(tf.nn.embedding_lookup(W_emb1, input_seqs), [-1, c_length, n_hidden, n_neuron]) bHP1 = tf.reshape(tf.nn.embedding_lookup(B_emb1, input_seqs), [-1, c_length, n_neuron]) WHP2 = tf.reshape(tf.nn.embedding_lookup(W_emb2, input_seqs), [-1, c_length, n_neuron, n_hidden]) bHP2 = tf.reshape(tf.nn.embedding_lookup(B_emb2, input_seqs), [-1, c_length, n_hidden]) return (WHP1, bHP1,WHP2, bHP2) def HP_layer(iter_xx, WHP1, bHP1,WHP2, bHP2, n_hidden=iter_width, n_neuron=50): with tf.variable_scope("HP_layer", reuse=tf.AUTO_REUSE): iter_xx = tf.reshape(iter_xx, [-1, c_length, n_hidden, 1]) HP_layer1 = gelu(tf.reduce_sum(iter_xx * WHP1, axis=-2) + bHP1) HP_layer1 = tf.reshape(HP_layer1, [-1, c_length, n_neuron, 1]) HP_layer2 = gelu(tf.reduce_sum(HP_layer1 * WHP2, axis=-2) + bHP2) return HP_layer2 # layer 1 def attention_layer(input_tensor, num_attention_heads=num_attention_heads, size_per_head=int(embedding_size / num_attention_heads), attention_keep_probs=0.9, initializer_range=0.02, act=None, name="attention_layer"): def transpose_to_multiheads(tensor): # id_nums = tensor.shape[1] tensor = tf.reshape(tensor, [-1,id_nums, num_attention_heads, size_per_head]) output_tensor = tf.transpose(tensor, [0, 2, 1, 3]) return output_tensor if input_tensor.shape.ndims != 3: print(input_tensor.shape) raise ValueError("One batch of embedding 19mer should be rank 3") # if size_per_head * num_attention_heads != input_tensor.shape[-1]: # raise ValueError("size_per_head * num_attention_heads == hidden_size") with tf.variable_scope(name, reuse=tf.AUTO_REUSE): shape = input_tensor.shape.as_list() id_nums = shape[1] query_layer = tf.layers.dense(input_tensor, num_attention_heads * size_per_head, activation=act, name="query", kernel_initializer=create_initializer(initializer_range), reuse=tf.AUTO_REUSE) key_layer = tf.layers.dense(input_tensor, num_attention_heads * size_per_head, activation=act, name="key", kernel_initializer=create_initializer(initializer_range), reuse=tf.AUTO_REUSE) value_layer = tf.layers.dense(input_tensor, num_attention_heads * size_per_head, activation=act, name="value", kernel_initializer=create_initializer(initializer_range), reuse=tf.AUTO_REUSE) q = transpose_to_multiheads(query_layer) # [-1, num_heads, id_num, head_size] k = transpose_to_multiheads(key_layer) v = transpose_to_multiheads(value_layer) attention_score = tf.matmul(q, tf.transpose(k, [0, 1, 3, 2]), name="attention_score") a_s_probs = tf.nn.softmax(tf.multiply(attention_score, 1.0 / tf.sqrt(float(size_per_head))), axis=-1, name="attention_score_probs") a_s_probs = tf.nn.dropout(a_s_probs, attention_keep_probs, name="attention_score_dropout") context_layer = tf.transpose(tf.matmul(a_s_probs, v), [0, 2, 1, 3]) context_layer = tf.reshape(context_layer, [-1, id_nums, num_attention_heads * size_per_head], name="context_layer") return context_layer # module 0 def encoder_block(input_tensor, iter_width=iter_width, dense_width=embedding_size, initializer_range=0.02, intermediate_act=gelu, intermediate_size=768, blockname="encoder_block", dense_keep_prob=0.9, attention_keep_probs=0.9): with tf.variable_scope(blockname, reuse=tf.AUTO_REUSE): attention_output = attention_layer(input_tensor, attention_keep_probs=attention_keep_probs) dense1 = tf.layers.dense(attention_output, iter_width, kernel_initializer=create_initializer(initializer_range), activation=None, name="Dense1", reuse=tf.AUTO_REUSE) dropout_dense1 = tf.nn.dropout(dense1, keep_prob=dense_keep_prob) residual_norm_output1 = layer_norm(dropout_dense1 + input_tensor) # 等会试试在intermediate层把它们混在一起 residual_norm_output1_ = tf.reshape(residual_norm_output1, [-1, c_length, iter_width, 1]) W_conv1 = tf.get_variable(name="W_conv1", shape=[5, 5, 1, 64], dtype=tf.float32, initializer=create_initializer(initializer_range)) W_conv2 = tf.get_variable(name="W_conv2", shape=[4, 3, 64, 64], dtype=tf.float32, initializer=create_initializer(initializer_range)) b_conv1 = tf.get_variable(name="b_conv1", shape=[64], dtype=tf.float32, initializer=tf.constant_initializer(0.1)) b_conv2 = tf.get_variable(name="b_conv1", shape=[64], dtype=tf.float32, initializer=tf.constant_initializer(0.1)) conv1 = tf.nn.relu(tf.nn.conv2d(residual_norm_output1_, W_conv1, strides=[1, 3, 1, 1], padding='SAME') + b_conv1) conv2 = tf.nn.relu(tf.nn.conv2d(conv1, W_conv2, strides=[1, 1, 1, 1], padding='VALID') + b_conv2) conv2 = tf.reshape(conv2, [-1, 4 * 64 * 10]) dense2 = tf.layers.dense(conv2, iter_width * c_length, name="Dense2", kernel_initializer=create_initializer(initializer_range), reuse=tf.AUTO_REUSE) dense2_ = tf.reshape(dense2, [-1, c_length, iter_width]) dropout_dense2 = tf.nn.dropout(dense2_, keep_prob=dense_keep_prob) residual_norm_output2 = layer_norm(dropout_dense2 + residual_norm_output1) residual_norm_output2_ = tf.reshape(residual_norm_output2, [-1, c_length, iter_width, 1]) W_conv3 = tf.get_variable(name="W_conv3", shape=[5, 5, 1, 64], dtype=tf.float32, initializer=create_initializer(initializer_range)) W_conv4 = tf.get_variable(name="W_conv4", shape=[3, 3, 64, 64], dtype=tf.float32, initializer=create_initializer(initializer_range)) b_conv3 = tf.get_variable(name="b_conv3", shape=[64], dtype=tf.float32, initializer=tf.constant_initializer(0.1)) b_conv4 = tf.get_variable(name="b_conv4", shape=[64], dtype=tf.float32, initializer=tf.constant_initializer(0.1)) conv3 = tf.nn.relu(tf.nn.conv2d(residual_norm_output2_, W_conv3, strides=[1, 1, 1, 1], padding='VALID') + b_conv3) conv4 = tf.nn.relu(tf.nn.conv2d(conv3, W_conv4, strides=[1, 1, 1, 1], padding='VALID') + b_conv4) conv4 = tf.reshape(conv4, [-1, 13 * 64 * (iter_width - 6)]) dense3 = tf.layers.dense(conv4, iter_width * c_length, name="Dense3", kernel_initializer=create_initializer(initializer_range), reuse=tf.AUTO_REUSE) dense3 = tf.reshape(dense3,[-1, c_length, iter_width]) dropout_dense3 = tf.nn.dropout(dense3, keep_prob=dense_keep_prob) residual_norm_output3 = layer_norm(dropout_dense3 + residual_norm_output2) return residual_norm_output3 # model def attentionCNN_model(input_tensor, num_of_blocks=nblock, dense_width=embedding_size, iter_width=iter_width, initializer_range=0.02, intermediate_act=tf.nn.relu, intermediate_size=768, dense_keep_prob=0.9, attention_keep_probs=0.9, return_all_layer=False, encoder_block_name="encoder_block"): all_block_outputs = [] prev_block_output = input_tensor for layer_index in range(num_of_blocks): layer_output = encoder_block(prev_block_output, iter_width=iter_width, dense_width=dense_width, initializer_range=initializer_range, intermediate_act=intermediate_act, intermediate_size=intermediate_size, dense_keep_prob=dense_keep_prob, attention_keep_probs=attention_keep_probs, blockname="%s%d" % (encoder_block_name, layer_index)) all_block_outputs.append(layer_output) prev_block_output = layer_output if return_all_layer: return all_block_outputs else: return all_block_outputs[-1] def output_layer(input, base_num=base_num): with tf.name_scope("output_layer"): dense_output = tf.layers.dense(tf.reshape(input, [-1, c_length * iter_width]), 1024, kernel_initializer=create_initializer(), activation=tf.nn.relu, name="dense_output") output = tf.layers.dense(dense_output, cm.get_outputshape(base_num)[0] * cm.get_outputshape(base_num)[1], kernel_initializer=create_initializer(), name="y_output") output_probs = tf.nn.softmax(tf.reshape(output, [-1, cm.get_outputshape(base_num)[0], cm.get_outputshape(base_num)[1]]), axis=-1, name="output_probs") return output_probs # Training Model def ANN_HPSCC_model(x, y_, iter_xx, base_num=base_num): iteration_xx = iter_xx WHP1, bHP1, WHP2, bHP2 = HP_layer_lookup(x) iteration_xx_output = None for i in range(iter_num): iter_output = HP_layer(iteration_xx, WHP1, bHP1, WHP2, bHP2) iteration_xx_output = attentionCNN_model(iter_output, dense_keep_prob=dropout_keep_probs, attention_keep_probs=dropout_keep_probs) iteration_xx = tf.nn.softmax(iteration_xx_output, axis=-1) y = output_layer(iteration_xx_output) y_ = tf.one_hot(y_, cm.get_outputshape(base_num)[1]) with tf.name_scope('loss_optimization'): cross_entropy = tf.reduce_mean(tf.reduce_sum(-tf.log(y + 1e-8) * y_, reduction_indices=[-2, -1]), name="cross_entropy") return y, cross_entropy # Evaluation Metrics def accuracy_metrics(y_pred, y_label, base_num, num_seq=19): with tf.name_scope('Accuracy_metrics'): y_pred = tf.cast(tf.argmax(y_pred, axis=-1), tf.int32) y_label = tf.cast(y_label, tf.int32) y_pred = cm.convert_dectoter(y_pred, base_num) y_label = cm.convert_dectoter(y_label, base_num) accu_per_position = tf.equal(y_pred, y_label) # shape: [Batch, 19] accu_per_seq = tf.reduce_sum(tf.cast(accu_per_position, tf.int32), axis=-1) # shape: [Batch] accs_train_ones = tf.ones_like(accu_per_seq) accuracy_distribution = [] accuracy_distribution_test = [] for i in range(num_seq + 1): accuracy_i = tf.equal(accu_per_seq, accs_train_ones * i) # 也就是Batch 个 i accuracy_distribution.append(tf.reduce_mean(tf.cast(accuracy_i, tf.float32))) accuracy_distribution_test.append(tf.reduce_mean(tf.cast(accuracy_i, tf.float32))) return accuracy_distribution # feed_dict with tf.name_scope('input_output_placeholder'): x = tf.placeholder(tf.int32, [None, c_length], 'input_seq_x') iter_xx = tf.placeholder(tf.float32, [None, c_length, iter_width], 'iter_xx') y_ = tf.placeholder(tf.int32, [None, cm.get_outputshape(base_num)[0]], 'output_label_y') dropout_keep_probs = tf.placeholder(tf.float32, [], 'dropout_keep_probs') y, loss = ANN_HPSCC_model(x, y_, iter_xx) train_step = tf.train.AdamOptimizer(1e-4).minimize(loss) accuracy_distribution = accuracy_metrics(y, y_, base_num=base_num) def main_func(input_train, output_train, input_test, output_test, base_num=base_num): with tf.Session() as sess: # Session initialization sess.run(tf.global_variables_initializer()) idx = np.arange(num_train) accu_test_list = [] iter_xx_init = np.ones((batch_size, c_length, iter_width), np.float32) * (1.0 / iter_width) for i in range(num_training_steps): # Training Process np.random.shuffle(idx) train_dict = {x: input_train[idx[0:batch_size]], y_: cm.convert_tertodec(output_train[idx[0:batch_size]], base_num), iter_xx: iter_xx_init, dropout_keep_probs: 0.9} sess.run(train_step, feed_dict=train_dict) # Evaluation Metrics if i % 100 == 0: # train accuracy of 1000 training samples accu_train_dict = {x: input_train[idx[0:1000]], y_: cm.convert_tertodec(output_train[idx[0:1000]], base_num), iter_xx: np.ones((1000, c_length, iter_width), np.float32) * (1.0 / iter_width), dropout_keep_probs: 1.0} accuracy_list_train, loss_eval = sess.run((accuracy_distribution, loss), feed_dict=accu_train_dict) print("Step %d, Train Accuracy Distribution:\n" % i, accuracy_list_train) print("Train Cross Entropy:", loss_eval) # test accuracy of test sets accu_test_dict = {x: input_test, y_: cm.convert_tertodec(output_test, base_num), iter_xx: np.ones((2000, c_length, iter_width), np.float32) * (1.0 / iter_width), dropout_keep_probs: 1.0} accuracy_list_test = sess.run(accuracy_distribution, feed_dict=accu_test_dict) accu_test_list.append(accuracy_list_test[-1]) with open(data_name, 'wb') as data: pickle.dump(accu_test_list, data) print("Step %d, Test Accuracy Distribution:\n" % i, accuracy_list_test) if len(accu_test_list) > 50: print("*" * 50, "Test set latest accuracies:", sep="\n") print(accu_test_list[-50:-1], end="\n" + "*" * 50 + '\n') else: print("*" * 50, "Test set latest accuracies:", sep="\n") print(accu_test_list, end="\n" + "*" * 50 + '\n') if __name__ == "__main__": # Data Pipeline: with open('dataset/HP19trainset11470.txt', 'rb') as f: trainset = pickle.load(f) input_train = np.array(trainset['input'], dtype=np.int32) # [1,0,0,1,1,0,0,0....] output_train = np.array(trainset['output'], dtype=np.int32) + 1 # [1,0,-1] |--> [0,1,2] with open('dataset/HP19testset2000.txt', 'rb') as f: testset = pickle.load(f) input_test = np.array(testset['input'], dtype=np.int32) # [1,0,0,1,1,0,0,0....] output_test = np.array(testset['output'], dtype=np.int32) + 1 # [1,0,-1] |--> [0,1,2] main_func(input_train, output_train, input_test, output_test, base_num=base_num)
from math import e import warnings from typing import Dict, List, Tuple import numpy as np import pandas as pd from ..optimize import Optimizer from .optimal_scaling_problem import OptimalScalingProblem from .parameter import InnerParameter from .problem import InnerProblem from .solver import InnerSolver REDUCED = 'reduced' STANDARD = 'standard' MAXMIN = 'max-min' MAX = 'max' class OptimalScalingInnerSolver(InnerSolver): """ Solve the inner subproblem of the optimal scaling approach for ordinal data. """ def __init__(self, optimizer: Optimizer = None, options: Dict = None): self.optimizer = optimizer self.options = options if self.options is None: self.options = OptimalScalingInnerSolver.get_default_options() if self.options['method'] == STANDARD \ and self.options['reparameterized']: raise NotImplementedError( 'Combining standard approach with ' 'reparameterization not implemented.' ) self.x_guesses = None def solve( self, problem: InnerProblem, sim: List[np.ndarray], sigma: List[np.ndarray], scaled: bool, ) -> list: """ Get results for every group (inner optimization problem) Parameters ---------- problem: InnerProblem from pyPESTO hierarchical sim: Simulations from AMICI sigma: List of sigmas (not needed for this approach) scaled: ... """ optimal_surrogates = [] #print("EVO SIM:", sim) for gr in problem.get_groups_for_xs(InnerParameter.OPTIMALSCALING): xs = problem.get_xs_for_group(gr) if (gr in problem.hard_constraints.group.values): #print(gr, "Tu sam") hard_constraints = problem.get_hard_constraints_for_group(gr) #print(hard_constraints) obj = calculate_obj_fun_for_hard_constraints(xs, sim, self.options, hard_constraints) #fake optimization results, explain more ZEBO surrogate_opt_results_from_hard_constraints = {'success' : True, 'fun' : obj} optimal_surrogates.append(surrogate_opt_results_from_hard_constraints) continue #print("Running for group: ", gr) surrogate_opt_results = optimize_surrogate_data(xs, sim, self.options) optimal_surrogates.append(surrogate_opt_results) return optimal_surrogates @staticmethod def calculate_obj_function(x_inner_opt: list): """ Calculate the inner objective function from a list of inner optimization results returned from compute_optimal_surrogate_data Parameters ---------- x_inner_opt: List of optimization results """ if False in [x_inner_opt[idx]['success'] for idx in range(len(x_inner_opt))]: obj = np.nan warnings.warn(f"Inner optimization failed.") else: obj = np.sum( [x_inner_opt[idx]['fun'] for idx in range(len(x_inner_opt))] ) # print(obj) #print("I calculated the obj function with optimized inner pars") return obj def calculate_gradients(self, problem: OptimalScalingProblem, x_inner_opt, sim, sy, parameter_mapping, par_opt_ids, amici_model, snllh, ): #breakpoint() condition_map_sim_var = parameter_mapping[0].map_sim_var #print(condition_map_sim_var) par_sim_ids = list(amici_model.getParameterIds()) par_sim_idx=-1 #print(par_sim_ids) # TODO: Doesn't work with condition specific parameters for par_sim, par_opt in condition_map_sim_var.items(): if not isinstance(par_opt, str): continue if par_opt.startswith('optimalScaling_'): continue #par_sim_idx = par_sim_ids.index(par_sim) ZEBO REPLACE par_sim_idx += 1 par_opt_idx = par_opt_ids.index(par_opt) grad = 0.0 #print(par_sim, par_opt) for idx, gr in enumerate(problem.get_groups_for_xs(InnerParameter.OPTIMALSCALING)): if (gr in problem.hard_constraints.group.values): #group of hard constraint measurements hard_constraints = problem.get_hard_constraints_for_group(gr) xi = get_xi_for_hard_constraints(gr, problem, hard_constraints, sim, self.options) sim_all = get_sim_all(problem.get_xs_for_group(gr), sim) sy_all = get_sy_all(problem.get_xs_for_group(gr), sy, par_sim_idx) #print(sim_all) #print(sy_all) problem.groups[gr]['W'] = problem.get_w(gr, sim_all) problem.groups[gr]['Wdot'] = problem.get_wdot(gr, sim_all, sy_all) res = np.block([xi[:problem.groups[gr]['num_datapoints']] - sim_all, np.zeros(problem.groups[gr]['num_inner_params'] - problem.groups[gr]['num_datapoints'])]) #print(res) dy_dtheta = get_dy_dtheta(gr, problem, sy_all) df_dtheta = res.dot(res.dot(problem.groups[gr]['Wdot']) - 2*problem.groups[gr]['W'].dot(dy_dtheta)) # -2 * problem.W.dot(dy_dtheta).dot(res) grad += df_dtheta continue xi = get_xi(gr, problem, x_inner_opt[idx], sim, self.options) sim_all = get_sim_all(problem.get_xs_for_group(gr), sim) sy_all = get_sy_all(problem.get_xs_for_group(gr), sy, par_sim_idx) #print("sim_all for group ", gr, ": \n", sim_all) #breakpoint() #print(sy_all) problem.groups[gr]['W'] = problem.get_w(gr, sim_all) problem.groups[gr]['Wdot'] = problem.get_wdot(gr, sim_all, sy_all) res = np.block([xi[:problem.groups[gr]['num_datapoints']] - sim_all, np.zeros(problem.groups[gr]['num_inner_params'] - problem.groups[gr]['num_datapoints'])]) #print(res) df_dxi = 2 * problem.groups[gr]['W'].dot(res) dy_dtheta = get_dy_dtheta(gr, problem, sy_all) dd_dtheta = problem.get_dd_dtheta(gr, problem.get_xs_for_group(gr), sim_all, sy_all) d = problem.get_d(gr, problem.get_xs_for_group(gr), sim_all, self.options['minGap']) mu = get_mu(gr, problem, xi, res, d) dxi_dtheta = calculate_dxi_dtheta(gr, problem, xi, mu, dy_dtheta, res, d, dd_dtheta) df_dtheta = res.dot(res.dot(problem.groups[gr]['Wdot']) - 2*problem.groups[gr]['W'].dot(dy_dtheta)) # -2 * problem.W.dot(dy_dtheta).dot(res) grad += dxi_dtheta.dot(df_dxi) + df_dtheta snllh[par_opt_idx] = grad #print("I calculated the grad with optimized inner pars") return snllh @staticmethod def get_default_options() -> Dict: """ Return default options for solving the inner problem, if no options provided """ options = {'method': 'reduced', 'reparameterized': True, 'intervalConstraints': 'max', 'minGap': 1e-16} return options def calculate_dxi_dtheta(gr, problem: OptimalScalingProblem, xi, mu, dy_dtheta, res, d, dd_dtheta): from scipy.sparse import csc_matrix, linalg A = np.block([[2 * problem.groups[gr]['W'], problem.groups[gr]['C'].transpose()], [(mu*problem.groups[gr]['C'].transpose()).transpose(), np.diag(problem.groups[gr]['C'].dot(xi) + d)]]) A_sp = csc_matrix(A) b = np.block( [2 * dy_dtheta.dot(problem.groups[gr]['W']) - 2*problem.groups[gr]['Wdot'].dot(res), -mu*dd_dtheta]) dxi_dtheta = linalg.spsolve(A_sp, b) return dxi_dtheta[:problem.groups[gr]['num_inner_params']] def get_dy_dtheta(gr, problem: OptimalScalingProblem, sy_all): return np.block([sy_all, np.zeros(2*problem.groups[gr]['num_categories'])]) def get_mu(gr, problem: OptimalScalingProblem, xi, res, d): from scipy import linalg ''' mu = np.zeros(problem.groups[gr]['num_constr_full']) mu_zero_indices = np.array(problem.groups[gr]['C'].dot(xi) - d).nonzero()[0] mu_non_zero_indices = np.where(np.array(problem.groups[gr]['C'].dot(xi) - d) == 0)[0] A = problem.groups[gr]['C'].transpose()[:, mu_non_zero_indices] mu_non_zero = linalg.lstsq(A, -2*res.dot(problem.groups[gr]['W']))[0] mu[mu_non_zero_indices] = mu_non_zero ''' mu = linalg.lstsq(problem.groups[gr]['C'].transpose(), -2*res.dot(problem.groups[gr]['W']), lapack_driver='gelsy') return mu[0] def get_xi(gr, problem: OptimalScalingProblem, x_inner_opt: Dict, sim: List[np.ndarray], options: Dict): xs = problem.get_xs_for_group(gr) interval_range, interval_gap = \ compute_interval_constraints(xs, sim, options) xi = np.zeros(problem.groups[gr]['num_inner_params']) surrogate_all, x_lower, x_upper = \ get_surrogate_all(xs, x_inner_opt['x'], sim, interval_range, interval_gap, options) xi[:problem.groups[gr]['num_datapoints']] = surrogate_all.flatten() xi[problem.groups[gr]['lb_indices']] = x_lower xi[problem.groups[gr]['ub_indices']] = x_upper return xi def optimize_surrogate_data(xs: List[InnerParameter], sim: List[np.ndarray], options: Dict): """Run optimization for inner problem""" from scipy.optimize import minimize interval_range, interval_gap = \ compute_interval_constraints(xs, sim, options) w = get_weight_for_surrogate(xs, sim) def obj_surr(x): return obj_surrogate_data(xs, x, sim, interval_gap, interval_range, w, options) inner_options = \ get_inner_options(options, xs, sim, interval_range, interval_gap) try: results = minimize(obj_surr, **inner_options) except: print('x0 violate bound constraints. Retrying with array of zeros.') inner_options['x0'] = np.zeros(len(inner_options['x0'])) results = minimize(obj_surr, **inner_options) return results def get_inner_options(options: Dict, xs: List[InnerParameter], sim: List[np.ndarray], interval_range: float, interval_gap: float) -> Dict: """Return default options for scipy optimizer""" from scipy.optimize import Bounds min_all, max_all = get_min_max(xs, sim) # print("Evo max", max_all) if options['method'] == REDUCED: parameter_length = len(xs) x0 = np.linspace( np.max([min_all, interval_range]), max_all + (interval_range + interval_gap)*parameter_length, parameter_length ) #print("Min", min_all, "i max", max_all) #print("Evo i x0", x0) elif options['method'] == STANDARD: parameter_length = 2 * len(xs) x0 = np.linspace(0, max_all + interval_range, parameter_length) else: raise NotImplementedError( f"Unkown optimal scaling method {options['method']}. " f"Please use {STANDARD} or {REDUCED}." ) if options['reparameterized']: x0 = y2xi(x0, xs, interval_gap, interval_range) bounds = Bounds([0.0] * parameter_length, [max_all + (interval_range + interval_gap)*parameter_length] * parameter_length) inner_options = {'x0': x0, 'method': 'L-BFGS-B', 'options': {'maxiter': 2000, 'ftol': 1e-10}, 'bounds': bounds} else: constraints = get_constraints_for_optimization(xs, sim, options) inner_options = {'x0': x0, 'method': 'SLSQP', 'options': {'maxiter': 2000, 'ftol': 1e-10, 'disp': True}, 'constraints': constraints} return inner_options def get_min_max(xs: List[InnerParameter], sim: List[np.ndarray]) -> Tuple[float, float]: """Return minimal and maximal simulation value""" sim_all = get_sim_all(xs, sim) min_all = np.min(sim_all) max_all = np.max(sim_all) return min_all, max_all def get_sy_all(xs, sy, par_idx): sy_all = [] for x in xs: for sy_i, mask_i in \ zip(sy, x.ixs): sim_sy = sy_i[:, par_idx, :][mask_i] #if mask_i.any(): for sim_sy_i in sim_sy: sy_all.append(sim_sy_i) return np.array(sy_all) def get_sim_all(xs, sim: List[np.ndarray]) -> list: """"Get list of all simulations for all xs""" sim_all = [] for x in xs: for sim_i, mask_i in \ zip(sim, x.ixs): sim_x = sim_i[mask_i] #if mask_i.any(): for sim_x_i in sim_x: sim_all.append(sim_x_i) #print("Evo sim all: ", sim_all) return sim_all def get_surrogate_all(xs, optimal_scaling_bounds, sim, interval_range, interval_gap, options): if options['reparameterized']: optimal_scaling_bounds = \ xi2y(optimal_scaling_bounds, xs, interval_gap, interval_range) surrogate_all = [] x_lower_all = [] x_upper_all = [] for x in xs: x_upper, x_lower = \ get_bounds_for_category( x, optimal_scaling_bounds, interval_gap, options ) #print("Upper:", x_upper, "\n lower:", x_lower) for sim_i, mask_i in \ zip(sim, x.ixs): #if mask_i.any(): y_sim = sim_i[mask_i] for y_sim_i in y_sim: if x_lower > y_sim_i: y_surrogate = x_lower elif y_sim_i > x_upper: y_surrogate = x_upper elif x_lower <= y_sim_i <= x_upper: y_surrogate = y_sim_i else: continue surrogate_all.append(y_surrogate) x_lower_all.append(x_lower) x_upper_all.append(x_upper) return np.array(surrogate_all), np.array(x_lower_all), np.array(x_upper_all) def get_weight_for_surrogate(xs: List[InnerParameter], sim: List[np.ndarray]) -> float: """Calculate weights for objective function""" sim_x_all = get_sim_all(xs, sim) eps = 1e-8 # v_net = 0 # for idx in range(len(sim_x_all) - 1): # v_net += np.abs(sim_x_all[idx + 1] - sim_x_all[idx]) # w = 0.5 * np.sum(np.abs(sim_x_all)) + v_net + eps # print(w ** 2) return np.sum(np.abs(sim_x_all)) + eps # TODO: w ** 2 def compute_interval_constraints(xs: List[InnerParameter], sim: List[np.ndarray], options: Dict) -> Tuple[float, float]: """Compute minimal interval range and gap""" # compute constraints on interval size and interval gap size # similar to Pargett et al. (2014) if 'minGap' not in options: eps = 1e-16 else: eps = options['minGap'] min_simulation, max_simulation = get_min_max(xs, sim) if options['intervalConstraints'] == MAXMIN: interval_range = \ (max_simulation - min_simulation) / (2 * len(xs) + 1) interval_gap = \ (max_simulation - min_simulation) / (4 * (len(xs) - 1) + 1) elif options['intervalConstraints'] == MAX: interval_range = max_simulation / (2 * len(xs) + 1) interval_gap = max_simulation / (4 * (len(xs) - 1) + 1) else: raise ValueError( f"intervalConstraints = " f"{options['intervalConstraints']} not implemented. " f"Please use {MAX} or {MAXMIN}." ) #if interval_gap < eps: # interval_gap = eps return interval_range, interval_gap + eps def y2xi(optimal_scaling_bounds: np.ndarray, xs: List[InnerParameter], interval_gap: float, interval_range: float) -> np.ndarray: """Get optimal scaling bounds and return reparameterized parameters""" optimal_scaling_bounds_reparameterized = \ np.full(shape=(np.shape(optimal_scaling_bounds)), fill_value=np.nan) for x in xs: x_category = int(x.category) if x_category == 1: optimal_scaling_bounds_reparameterized[x_category - 1] = \ optimal_scaling_bounds[x_category - 1] \ - interval_range else: optimal_scaling_bounds_reparameterized[x_category - 1] = \ optimal_scaling_bounds[x_category - 1] \ - optimal_scaling_bounds[x_category - 2] \ - interval_gap - interval_range return optimal_scaling_bounds_reparameterized def xi2y( optimal_scaling_bounds_reparameterized: np.ndarray, xs: List[InnerParameter], interval_gap: float, interval_range: float) -> np.ndarray: """ Get reparameterized parameters and return original optimal scaling bounds """ # TODO: optimal scaling parameters in # parameter sheet have to be ordered at the moment optimal_scaling_bounds = \ np.full(shape=(np.shape(optimal_scaling_bounds_reparameterized)), fill_value=np.nan) for x in xs: x_category = int(x.category) if x_category == 1: optimal_scaling_bounds[x_category - 1] = \ interval_range + optimal_scaling_bounds_reparameterized[ x_category - 1] else: optimal_scaling_bounds[x_category - 1] = \ optimal_scaling_bounds_reparameterized[x_category - 1] + \ interval_gap + interval_range + optimal_scaling_bounds[ x_category - 2] return optimal_scaling_bounds def obj_surrogate_data(xs: List[InnerParameter], optimal_scaling_bounds: np.ndarray, sim: List[np.ndarray], interval_gap: float, interval_range: float, w: float, options: Dict) -> float: """compute optimal scaling objective function""" obj = 0.0 if options['reparameterized']: optimal_scaling_bounds = \ xi2y(optimal_scaling_bounds, xs, interval_gap, interval_range) for x in xs: x_upper, x_lower = \ get_bounds_for_category( x, optimal_scaling_bounds, interval_gap, options ) for sim_i, mask_i in \ zip(sim, x.ixs): #if mask_i.any(): y_sim = sim_i[mask_i] for y_sim_i in y_sim: if x_lower > y_sim_i: y_surrogate = x_lower elif y_sim_i > x_upper: y_surrogate = x_upper elif x_lower <= y_sim_i <= x_upper: y_surrogate = y_sim_i else: continue obj += (y_surrogate - y_sim_i) ** 2 obj = np.divide(obj, w) # print("Evo objective:", obj) return obj def get_bounds_for_category(x: InnerParameter, optimal_scaling_bounds: np.ndarray, interval_gap: float, options: Dict) -> Tuple[float, float]: """Return upper and lower bound for a specific category x""" x_category = int(x.category) if options['method'] == REDUCED: x_upper = optimal_scaling_bounds[x_category - 1] if x_category == 1: x_lower = 0 elif x_category > 1: x_lower = optimal_scaling_bounds[x_category - 2] + 0.5 * interval_gap else: raise ValueError('Category value needs to be larger than 0.') elif options['method'] == STANDARD: x_lower = optimal_scaling_bounds[2 * x_category - 2] x_upper = optimal_scaling_bounds[2 * x_category - 1] else: raise NotImplementedError( f"Unkown optimal scaling method {options['method']}. " f"Please use {REDUCED} or {STANDARD}." ) return x_upper, x_lower def get_constraints_for_optimization(xs: List[InnerParameter], sim: List[np.ndarray], options: Dict) -> Dict: """Return constraints for inner optimization""" num_categories = len(xs) interval_range, interval_gap = \ compute_interval_constraints(xs, sim, options) if options['method'] == REDUCED: a = np.diag(-np.ones(num_categories), -1) \ + np.diag(np.ones(num_categories + 1)) a = a[:-1, :-1] b = np.empty((num_categories,)) b[0] = interval_range b[1:] = interval_range + interval_gap elif options['method'] == STANDARD: a = np.diag(-np.ones(2 * num_categories), -1) \ + np.diag(np.ones(2 * num_categories + 1)) a = a[:-1, :] a = a[:, :-1] b = np.empty((2 * num_categories,)) b[0] = 0 b[1::2] = interval_range b[2::2] = interval_gap ineq_cons = {'type': 'ineq', 'fun': lambda x: a.dot(x) - b} return ineq_cons def calculate_obj_fun_for_hard_constraints(xs: List[InnerParameter], sim: List[np.ndarray], options: Dict, hard_constraints: pd.DataFrame): interval_range, interval_gap = \ compute_interval_constraints(xs, sim, options) w = get_weight_for_surrogate(xs, sim) obj = 0.0 parameter_length = len(xs) min_all, max_all = get_min_max(xs, sim) max_upper = max_all + (interval_range + interval_gap)*parameter_length for x in xs: x_upper, x_lower = \ get_bounds_from_hard_constraints( x, hard_constraints, max_upper, interval_gap ) for sim_i, mask_i in \ zip(sim, x.ixs): #if mask_i.any(): y_sim = sim_i[mask_i] for y_sim_i in y_sim: if x_lower > y_sim_i: y_surrogate = x_lower elif y_sim_i > x_upper: y_surrogate = x_upper elif x_lower <= y_sim_i <= x_upper: y_surrogate = y_sim_i else: continue obj += (y_surrogate - y_sim_i) ** 2 obj = np.divide(obj, w) return obj def get_bounds_from_hard_constraints(x: InnerParameter, hard_constraints: pd.DataFrame, max_upper: float, interval_gap: float) -> Tuple[float, float]: x_category = int(x.category) constraint = hard_constraints[hard_constraints['category']==x_category] lower_constraint=-1 upper_constraint=-1 measurement = constraint['measurement'].values[0] measurement = measurement.replace(" ", "") if('<' in measurement and '>' in measurement): lower_constraint = float(measurement.split(',')[0][1:]) upper_constraint = float(measurement.split(',')[1][1:]) elif('<' in measurement): upper_constraint = float(measurement[1:]) elif('>' in measurement): lower_constraint = float(measurement[1:]) #print("bounds point", x_category, measurement, lower_constraint, upper_constraint) if(upper_constraint == -1): x_upper = max_upper else: x_upper = upper_constraint if(lower_constraint!=-1 ): #print("lower constraint in action") x_lower=lower_constraint + 1e-6 elif(x_category == 1): #print("no lower constraint") x_lower = 0 return x_upper, x_lower def get_xi_for_hard_constraints(gr, problem: OptimalScalingProblem, hard_constraints: pd.DataFrame, sim: List[np.ndarray], options: Dict): xs = problem.get_xs_for_group(gr) interval_range, interval_gap = \ compute_interval_constraints(xs, sim, options) parameter_length = len(xs) min_all, max_all = get_min_max(xs, sim) max_upper = max_all + (interval_range + interval_gap)*parameter_length xi = np.zeros(problem.groups[gr]['num_inner_params']) surrogate_all = [] x_lower_all = [] x_upper_all = [] for x in xs: x_upper, x_lower = \ get_bounds_from_hard_constraints( x, hard_constraints, max_upper, interval_gap ) for sim_i, mask_i in \ zip(sim, x.ixs): #if mask_i.any(): y_sim = sim_i[mask_i] for y_sim_i in y_sim: if x_lower > y_sim_i: y_surrogate = x_lower elif y_sim_i > x_upper: y_surrogate = x_upper elif x_lower <= y_sim_i <= x_upper: y_surrogate = y_sim_i else: continue surrogate_all.append(y_surrogate) #print("GLE OVO ", x.category ,y_surrogate, x_lower, x_upper) x_lower_all.append(x_lower) x_upper_all.append(x_upper) xi[:problem.groups[gr]['num_datapoints']] = np.array(surrogate_all).flatten() xi[problem.groups[gr]['lb_indices']] = np.array(x_lower_all) xi[problem.groups[gr]['ub_indices']] = np.array(x_upper_all) return xi
# -*- coding: utf-8 -*- """Settings for when running under docker in development mode.""" from .dev import * # noqa DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(ABS_PATH('./'), 'db.sqlite3'), }, 'backend': { 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'NAME': os.environ['POSTGRES_DB'], 'USER': os.environ['POSTGRES_USER'], 'PASSWORD': os.environ['POSTGRES_PASS'], 'HOST': os.environ['POSTGRES_HOST'], 'PORT': os.environ['POSTGRES_PORT'], 'TEST_NAME': 'unittests', }, }
import logging from datetime import timedelta, datetime import traceback import time from django_cronium.models import CronJobLog from django.utils import timezone class Schedule(object): def __init__(self, run_every_mins=None, run_at_times=[], retry_after_failure_mins=None): self.run_every_mins = run_every_mins self.run_at_times = run_at_times self.retry_after_failure_mins = retry_after_failure_mins class CronJobBase(object): """ Sub-classes should have the following properties: + code - This should be a code specific to the cron being run. Eg. 'general.stats' etc. + schedule Following functions: + do - This is the actual business logic to be run at the given schedule """ pass class CronJobManager(object): """ A manager instance should be created per cron job to be run. Does all the logging tracking etc. for it. """ @classmethod def __should_run_now(self, cron_job, force=False): """ Returns a boolean determining whether this cron should run now or not! """ # If we pass --force options, we force cron run self.user_time = None if force: return True if cron_job.schedule.run_every_mins != None: # We check last job - success or not last_job = None try: last_job = CronJobLog.objects.filter(code=cron_job.code).latest('start_time') except CronJobLog.DoesNotExist: pass if last_job: if not last_job.is_success and cron_job.schedule.retry_after_failure_mins: if timezone.now() > last_job.start_time + timedelta(minutes=cron_job.schedule.retry_after_failure_mins): return True else: return False previously_ran_successful_cron = None try: previously_ran_successful_cron = CronJobLog.objects.filter(code=cron_job.code, is_success=True, ran_at_time__isnull=True).latest('start_time') except CronJobLog.DoesNotExist: pass if previously_ran_successful_cron: if timezone.now() > previously_ran_successful_cron.start_time + timedelta(minutes=cron_job.schedule.run_every_mins): return True else: return True if cron_job.schedule.run_at_times: for time_data in cron_job.schedule.run_at_times: user_time = time.strptime(time_data, "%H:%M") actual_time = time.strptime("%s:%s" % (datetime.now().hour, datetime.now().minute), "%H:%M") if actual_time >= user_time: qset = CronJobLog.objects.filter(code=cron_job.code, start_time__gt=datetime.today().date(), ran_at_time=time_data) if not qset: self.user_time = time_data return True return False @classmethod def run(self, cron_job, force=False, silent=False): """ apply the logic of the schedule and call do() on the CronJobBase class """ if not isinstance(cron_job, CronJobBase): raise Exception('The cron_job to be run should be a subclass of %s' % CronJobBase.__class__) if CronJobManager.__should_run_now(cron_job, force): logging.debug("Running cron: %s" % cron_job) cron_log = CronJobLog(code=cron_job.code, start_time=timezone.now()) try: msg = cron_job.do() cron_log.is_success = True cron_log.message = msg or '' except Exception: error = traceback.format_exc() if not silent: print(error) cron_log.is_success = False cron_log.message = error[-1000:] cron_log.ran_at_time = self.user_time if self.user_time else None cron_log.end_time = timezone.now() cron_log.save()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import itertools from paddlerec.core.utils import envs from paddlerec.core.model import ModelBase class Model(ModelBase): def __init__(self, config): ModelBase.__init__(self, config) def _init_hyper_parameters(self): self.is_distributed = True if envs.get_fleet_mode().upper( ) == "PSLIB" else False self.sparse_feature_number = envs.get_global_env( "hyper_parameters.sparse_feature_number") self.sparse_feature_dim = envs.get_global_env( "hyper_parameters.sparse_feature_dim") self.learning_rate = envs.get_global_env( "hyper_parameters.optimizer.learning_rate") def _SENETLayer(self, inputs, filed_size, reduction_ratio=3): reduction_size = max(1, filed_size // reduction_ratio) Z = fluid.layers.reduce_mean(inputs, dim=-1) A_1 = fluid.layers.fc( input=Z, size=reduction_size, param_attr=fluid.initializer.Xavier(uniform=False), act='relu', name='W_1') A_2 = fluid.layers.fc( input=A_1, size=filed_size, param_attr=fluid.initializer.Xavier(uniform=False), act='relu', name='W_2') V = fluid.layers.elementwise_mul( inputs, y=fluid.layers.unsqueeze( input=A_2, axes=[2])) return fluid.layers.split(V, num_or_sections=filed_size, dim=1) def _BilinearInteraction(self, inputs, filed_size, embedding_size, bilinear_type="interaction"): if bilinear_type == "all": p = [ fluid.layers.elementwise_mul( fluid.layers.fc( input=v_i, size=embedding_size, param_attr=fluid.initializer.Xavier(uniform=False), act=None, name=None), fluid.layers.squeeze( input=v_j, axes=[1])) for v_i, v_j in itertools.combinations(inputs, 2) ] else: raise NotImplementedError return fluid.layers.concat(input=p, axis=1) def _DNNLayer(self, inputs, dropout_rate=0.5): deep_input = inputs for i, hidden_unit in enumerate([400, 400, 400]): fc_out = fluid.layers.fc( input=deep_input, size=hidden_unit, param_attr=fluid.initializer.Xavier(uniform=False), act='relu', name='d_' + str(i)) fc_out = fluid.layers.dropout(fc_out, dropout_prob=dropout_rate) deep_input = fc_out return deep_input def net(self, input, is_infer=False): self.sparse_inputs = self._sparse_data_var[1:] self.dense_input = self._dense_data_var[0] self.label_input = self._sparse_data_var[0] emb = [] for data in self.sparse_inputs: feat_emb = fluid.embedding( input=data, size=[self.sparse_feature_number, self.sparse_feature_dim], param_attr=fluid.ParamAttr( name='dis_emb', learning_rate=5, initializer=fluid.initializer.Xavier( fan_in=self.sparse_feature_dim, fan_out=self.sparse_feature_dim)), is_sparse=True) emb.append(feat_emb) concat_emb = fluid.layers.concat(emb, axis=1) filed_size = len(self.sparse_inputs) bilinear_type = envs.get_global_env("hyper_parameters.bilinear_type") reduction_ratio = envs.get_global_env( "hyper_parameters.reduction_ratio") dropout_rate = envs.get_global_env("hyper_parameters.dropout_rate") senet_output = self._SENETLayer(concat_emb, filed_size, reduction_ratio) senet_bilinear_out = self._BilinearInteraction( senet_output, filed_size, self.sparse_feature_dim, bilinear_type) concat_emb = fluid.layers.split( concat_emb, num_or_sections=filed_size, dim=1) bilinear_out = self._BilinearInteraction( concat_emb, filed_size, self.sparse_feature_dim, bilinear_type) dnn_input = fluid.layers.concat( input=[senet_bilinear_out, bilinear_out, self.dense_input], axis=1) dnn_output = self._DNNLayer(dnn_input, dropout_rate) y_pred = fluid.layers.fc( input=dnn_output, size=1, param_attr=fluid.initializer.Xavier(uniform=False), act='sigmoid', name='logit') self.predict = y_pred auc, batch_auc, _ = fluid.layers.auc(input=self.predict, label=self.label_input, num_thresholds=2**12, slide_steps=20) if is_infer: self._infer_results["AUC"] = auc self._infer_results["BATCH_AUC"] = batch_auc return self._metrics["AUC"] = auc self._metrics["BATCH_AUC"] = batch_auc cost = fluid.layers.log_loss( input=self.predict, label=fluid.layers.cast( x=self.label_input, dtype='float32')) avg_cost = fluid.layers.reduce_mean(cost) self._cost = avg_cost
#!/usr/bin/env python import torch import tqdm import sys from fairseq.models.bart import BARTModel if len(sys.argv) < 5: print("Usage: python bart_infer.py ckp_path bin_path source_file target_file") sys.exit(0) ckp_path = sys.argv[1] bin_path = sys.argv[2] source_file = sys.argv[3] target_file = sys.argv[4] bart = BARTModel.from_pretrained( ckp_path, checkpoint_file='checkpoint_best.pt', data_name_or_path=bin_path, ) bart.cuda() bart.eval() bart.half() count = 1 bsz = 2 # make it small (2) for atis, 32 for others with open(source_file) as source, open(target_file, 'w') as fout: sline = source.readline().strip() slines = [sline] for sline in tqdm.tqdm(source): if count % bsz == 0: with torch.no_grad(): hypotheses_batch = bart.sample(slines, beam=4, lenpen=2.0, max_len_b=20, min_len=6, no_repeat_ngram_size=3) for hypothesis in hypotheses_batch: fout.write(hypothesis + '\n') fout.flush() slines = [] slines.append(sline.strip()) count += 1 # leftover if len(slines) != 0: with torch.no_grad(): hypotheses_batch = bart.sample(slines, beam=4, lenpen=2.0, max_len_b=20, min_len=6, no_repeat_ngram_size=3) for hypothesis in hypotheses_batch: fout.write(hypothesis + '\n') fout.flush()
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import numpy as np from phrun.cache import Cache from phrun.runner import Runner Cache.set_root_dir('.') def test_cache(): cache = Cache.get_cache('test_common') cache.set('int', 100) assert cache.get('int') == 100 cache.clean() def test_runner(): r = Runner().use_cache('test_common') r.add_phase('src', lambda: (1, 2)) \ .add_phase('add', lambda x: x[0] + x[1]) \ .add_phase('pow', lambda x: x ** 2) out = r.run() print(out) out = r.run_from(1) print(out) def main(): # test_cache() test_runner() return if __name__ == '__main__': main()
import xml.etree.ElementTree as ET from urllib import request, parse from copy import copy def soap_request(url, data): req = request.Request(url, data=data.encode('utf-8'), headers={'content-type': 'text/xml;charset=utf-8'}, method='POST') rep = request.urlopen(req) return xml_to_dict(ET.fromstring(rep.read().decode('utf-8'))) if rep.getcode() is 200 else None def url_decode(url): return parse.unquote(url) def strip_tag_name(t): idx = t.rfind("}") if idx != -1: t = t[idx + 1:] return t def xml_to_dict(r, root=True): if root: return {strip_tag_name(r.tag): xml_to_dict(r, False)} d = copy(r.attrib) if r.text: d['text'] = r.text for x in r.findall("./*"): if x.tag not in d: d[strip_tag_name(x.tag)] = [] d[strip_tag_name(x.tag)].append(xml_to_dict(x, False)) return d
# -*- coding: utf-8 -*- from .permissions import SignedPermission # noqa from .signing import sign_filter_permissions # noqa from .views import SignedViewSetMixin # noqa
import numpy as np import cv2 import sys cap = cv2.VideoCapture(0) ret, frame = cap.read() print (sys.argv[1]) cv2.imwrite("./faces/"+sys.argv[1]+".jpg", frame) cap.release()
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Purpose Retrieves a player achievement, earned or unearned. This is a player facing Lambda function and used in-game. """ import botocore from gamekithelpers import handler_request, handler_response, ddb import distutils.core import os ddb_player_table = ddb.get_table(os.environ['PLAYER_ACHIEVEMENTS_TABLE_NAME']) ddb_game_table = ddb.get_table(os.environ['ACHIEVEMENTS_TABLE_NAME']) def _get_player_achievement(player_id, achievement_id, use_consistent_read): try: response = ddb_player_table.get_item( **ddb.get_item_request_param({'player_id': player_id, 'achievement_id': achievement_id}, use_consistent_read)) player_achievement = ddb.get_response_item(response) except botocore.exceptions.ClientError as err: print(f"Error retrieving achievement_id: {achievement_id} for player_id: {player_id}. Error: {err}") raise err if player_achievement is None: player_achievement = { 'current_value': 0, 'earned': False, 'earned_at': None } return player_achievement def _get_achievement(player_id, achievement_id, use_consistent_read): response = ddb_game_table.get_item(**ddb.get_item_request_param({'achievement_id': achievement_id}, use_consistent_read)) achievement = ddb.get_response_item(response) if achievement is not None and achievement['is_hidden']: return None if achievement is not None: # get player achievement player_achievement = _get_player_achievement(player_id, achievement['achievement_id'], use_consistent_read) if achievement['is_secret'] and not player_achievement['earned']: return None # merge results; the timestamp attributes will be from the player's achievement achievement.update(player_achievement) achievement.setdefault('current_value', 0) achievement.setdefault('earned', False) achievement.setdefault('earned_at', None) return achievement def lambda_handler(event, context): """ This is the lambda function handler. """ handler_request.log_event(event) # Get player_id from requestContext player_id = handler_request.get_player_id(event) if player_id is None: return handler_response.response_envelope(401) # Get achievement_id from path achievement_id = handler_request.get_path_param(event, 'achievement_id') if achievement_id is None: return handler_response.invalid_request() use_consistent_read = bool(distutils.util.strtobool(handler_request.get_query_string_param(event, 'use_consistent_read', 'false'))) try: achievement = _get_achievement(player_id, achievement_id, use_consistent_read) except botocore.exceptions.ClientError as err: print(f"Error retrieving items. Error: {err}") raise err if achievement is None: return handler_response.response_envelope(404, None) return handler_response.response_envelope(200, None, achievement)
from tkinter import * from PIL import ImageTk, Image root = Tk() # Init app root.title("Images") # Set title here root.iconbitmap("Images/neon.ico") # Insert icon here my_img = ImageTk.PhotoImage(Image.open("Images/Burger.jpg").resize((300,400))) # Insert image here my_label = Label(image=my_img) my_label.pack() button_quit = Button(root, text="Exit Program", command=root.quit) button_quit.pack() root.mainloop() # Keep the app running
#!/usr/bin/env python import wx import images FRAMETB = True TBFLAGS = ( wx.TB_HORIZONTAL | wx.NO_BORDER | wx.TB_FLAT #| wx.TB_TEXT #| wx.TB_HORZ_LAYOUT ) #--------------------------------------------------------------------------- class TestSearchCtrl(wx.SearchCtrl): maxSearches = 5 def __init__(self, parent, id=-1, value="", pos=wx.DefaultPosition, size=wx.DefaultSize, style=0, doSearch=None): style |= wx.TE_PROCESS_ENTER wx.SearchCtrl.__init__(self, parent, id, value, pos, size, style) self.Bind(wx.EVT_TEXT_ENTER, self.OnTextEntered) self.Bind(wx.EVT_SEARCHCTRL_SEARCH_BTN, self.OnTextEntered) self.Bind(wx.EVT_MENU_RANGE, self.OnMenuItem, id=1, id2=self.maxSearches) self.doSearch = doSearch self.searches = [] def OnTextEntered(self, evt): text = self.GetValue() if self.doSearch(text): self.searches.append(text) if len(self.searches) > self.maxSearches: del self.searches[0] self.SetMenu(self.MakeMenu()) self.SetValue("") def OnMenuItem(self, evt): text = self.searches[evt.GetId()-1] self.doSearch(text) def MakeMenu(self): menu = wx.Menu() item = menu.Append(-1, "Recent Searches") item.Enable(False) for idx, txt in enumerate(self.searches): menu.Append(1+idx, txt) return menu class TestToolBar(wx.Frame): def __init__(self, parent, log): wx.Frame.__init__(self, parent, -1, 'Test ToolBar', size=(600, 400)) self.log = log self.timer = None self.Bind(wx.EVT_CLOSE, self.OnCloseWindow) client = wx.Panel(self) client.SetBackgroundColour(wx.WHITE) if FRAMETB: # Use the wxFrame internals to create the toolbar and # associate it all in one tidy method call. By using # CreateToolBar or SetToolBar the "client area" of the # frame will be adjusted to exclude the toolbar. tb = self.CreateToolBar( TBFLAGS ) # Here's a 'simple' toolbar example, and how to bind it using SetToolBar() #tb = wx.ToolBarSimple(self, -1, wx.DefaultPosition, wx.DefaultSize, # wx.TB_HORIZONTAL | wx.NO_BORDER | wx.TB_FLAT) #self.SetToolBar(tb) # But we're doing it a different way here. else: # The toolbar can also be a child of another widget, and # be managed by a sizer, although there may be some # implications of doing this on some platforms. tb = wx.ToolBar(client, style=TBFLAGS) sizer = wx.BoxSizer(wx.VERTICAL) sizer.Add(tb, 0, wx.EXPAND) client.SetSizer(sizer) log.write("Default toolbar tool size: %s\n" % tb.GetToolBitmapSize()) self.CreateStatusBar() tsize = (24,24) new_bmp = wx.ArtProvider.GetBitmap(wx.ART_NEW, wx.ART_TOOLBAR, tsize) open_bmp = wx.ArtProvider.GetBitmap(wx.ART_FILE_OPEN, wx.ART_TOOLBAR, tsize) copy_bmp = wx.ArtProvider.GetBitmap(wx.ART_COPY, wx.ART_TOOLBAR, tsize) paste_bmp= wx.ArtProvider.GetBitmap(wx.ART_PASTE, wx.ART_TOOLBAR, tsize) tb.SetToolBitmapSize(tsize) #tb.AddTool(10, new_bmp, "New", "Long help for 'New'") tb.AddTool(10, "New", new_bmp, wx.NullBitmap, wx.ITEM_NORMAL, "New", "Long help for 'New'", None) self.Bind(wx.EVT_TOOL, self.OnToolClick, id=10) self.Bind(wx.EVT_TOOL_RCLICKED, self.OnToolRClick, id=10) #tb.AddTool(20, open_bmp, "Open", "Long help for 'Open'") tb.AddTool(20, "Open", open_bmp, wx.NullBitmap, wx.ITEM_NORMAL, "Open", "Long help for 'Open'", None) self.Bind(wx.EVT_TOOL, self.OnToolClick, id=20) self.Bind(wx.EVT_TOOL_RCLICKED, self.OnToolRClick, id=20) tb.AddSeparator() tb.AddTool(30, "Copy", copy_bmp, wx.NullBitmap, wx.ITEM_NORMAL, "Copy", "Long help for 'Copy'", None) self.Bind(wx.EVT_TOOL, self.OnToolClick, id=30) self.Bind(wx.EVT_TOOL_RCLICKED, self.OnToolRClick, id=30) tb.AddTool(40, "Paste", paste_bmp, wx.NullBitmap, wx.ITEM_NORMAL, "Paste", "Long help for 'Paste'", None) self.Bind(wx.EVT_TOOL, self.OnToolClick, id=40) self.Bind(wx.EVT_TOOL_RCLICKED, self.OnToolRClick, id=40) tb.AddSeparator() #tool = tb.AddCheckTool(50, images.Tog1.GetBitmap(), shortHelp="Toggle this") tool = tb.AddTool(50, "Checkable", images.Tog1.GetBitmap(), shortHelp="Toggle this", kind=wx.ITEM_CHECK) self.Bind(wx.EVT_TOOL, self.OnToolClick, id=50) self.Bind(wx.EVT_TOOL_ENTER, self.OnToolEnter) self.Bind(wx.EVT_TOOL_RCLICKED, self.OnToolRClick) # Match all self.Bind(wx.EVT_TIMER, self.OnClearSB) tb.AddSeparator() cbID = wx.NewIdRef() tb.AddControl( wx.ComboBox( tb, cbID, "", choices=["", "This", "is a", "wx.ComboBox"], size=(150,-1), style=wx.CB_DROPDOWN )) self.Bind(wx.EVT_COMBOBOX, self.OnCombo, id=cbID) tb.AddStretchableSpace() search = TestSearchCtrl(tb, size=(150,-1), doSearch=self.DoSearch) tb.AddControl(search) # Final thing to do for a toolbar is call the Realize() method. This # causes it to render (more or less, that is). tb.Realize() def DoSearch(self, text): # called by TestSearchCtrl self.log.WriteText("DoSearch: %s\n" % text) # return true to tell the search ctrl to remember the text return True def OnToolClick(self, event): self.log.WriteText("tool %s clicked\n" % event.GetId()) #tb = self.GetToolBar() tb = event.GetEventObject() tb.EnableTool(10, not tb.GetToolEnabled(10)) def OnToolRClick(self, event): self.log.WriteText("tool %s right-clicked\n" % event.GetId()) def OnCombo(self, event): self.log.WriteText("combobox item selected: %s\n" % event.GetString()) def OnToolEnter(self, event): self.log.WriteText('OnToolEnter: %s, %s\n' % (event.GetId(), event.GetInt())) if self.timer is None: self.timer = wx.Timer(self) if self.timer.IsRunning(): self.timer.Stop() self.timer.Start(2000) event.Skip() def OnClearSB(self, event): # called for the timer event handler self.SetStatusText("") self.timer.Stop() self.timer = None def OnCloseWindow(self, event): if self.timer is not None: self.timer.Stop() self.timer = None self.Destroy() #--------------------------------------------------------------------------- class TestPanel(wx.Panel): def __init__(self, parent, log): self.log = log wx.Panel.__init__(self, parent, -1) b = wx.Button(self, -1, "Show the ToolBar sample", (50,50)) self.Bind(wx.EVT_BUTTON, self.OnButton, b) def OnButton(self, evt): win = TestToolBar(self, self.log) win.Show(True) self.frame = win #--------------------------------------------------------------------------- def runTest(frame, nb, log): win = TestPanel(nb, log) return win #--------------------------------------------------------------------------- overview = """\ wx.ToolBar is a narrow strip of icons on one side of a frame (top, bottom, sides) that acts much like a menu does, except it is always visible. Additionally, actual wxWindows controls, such as wx.TextCtrl or wx.ComboBox, can be added to the toolbar and used from within it. Toolbar creation is a two-step process. First, the toolbar is defined using the various Add* methods of wx.ToolBar. Once all is set up, then wx.Toolbar.Realize() must be called to render it. wx.Toolbar events are also propogated as Menu events; this is especially handy when you have a menu bar that contains items that carry out the same function. For example, it is not uncommon to have a little 'floppy' toolbar icon to 'save' the current file (whatever it is) as well as a FILE/SAVE menu item that does the same thing. In this case, both events can be captured and acted upon using the same event handler with no ill effects. If there are cases where a toolbar icon should *not* be associated with a menu item, use a unique ID to trap it. There are a number of ways to create a toolbar for a wx.Frame. wx.Frame.CreateToolBar() does all the work except it adds no buttons at all unless you override the virtual method OnCreateToolBar(). On the other hand, you can just subclass wx.ToolBar and then use wx.Frame.SetToolBar() instead. Note that wx.TB_DOCKABLE is only supported under GTK. An attempt to alleviate this is provided in wx.lib.floatbar, but it is not formally supported. """ if __name__ == '__main__': import sys,os import run run.main(['', os.path.basename(sys.argv[0])] + sys.argv[1:])
#!/usr/bin/env python3 # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. import pytest from basecls.layers import NORM_TYPES from basecls.models.resnet import resnet18 from basecls.solver.optimizer import SGD from basecls.solver.weight_decay import get_param_groups @pytest.mark.parametrize("weight_decay", [0, 1e-4, [(1e-5, "bias"), (0, NORM_TYPES), 1e-4]]) def test_weight_decay(weight_decay): model = resnet18() params = get_param_groups(model, weight_decay) SGD(params, 0.1, momentum=0.9)
from logger import Logger logger = Logger() logger.log("hello") logger.log("goodbye") logger.print_messages() logger.log("something else") print("") logger.print_messages()
#!/usr/bin/env python """ Copyright 2015 ARC Centre of Excellence for Climate Systems Science author: Scott Wales <scott.wales@unimelb.edu.au> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from Fortran03Lexer import Fortran03Lexer from Fortran03Parser import Fortran03Parser from antlr4 import CommonTokenStream def parse(stream): """ Parse a stream using antlr Inputs: - stream: an antlr4.FileStream (to parse a file) or antlr4.InputStream (to parse a string) Outputs: - An Antlr parser object. Extract parse trees using functions with the names of grammar products, e.g. parse(InputStream('function foo(bar)')).functionStmt() """ lex = Fortran03Lexer(stream) toks = CommonTokenStream(lex) par = Fortran03Parser(toks) return par
""" LibMCS2018.py Module assembling algorithms and data structures Supplemental Material for the Lecture Notes "Networks - A brief Introduction using a Paradigmatic Combinatorial Optimization Problem" at the international summer school "Modern Computational Science 10 - Energy of the Future" held in Oldenburg, September 3-14, 2018 Author: O. Melchert Date: 2018-09-11 """ from src.graphAdjacencyList import fetchWeightedGraph from src.minWgtSpannTree import mstKruskal, mstGraphviz # EOF: LibMCS2018.py
import pytest from assertions import list_is dummy_lst = [{"name": "Elmer"}, {"name": "Sam"}] params = ( ("lst", "subset_lst", "expected"), [ ([], [], True), ([{}, {}], [{}, {}, {}], True), ( [{"id": 1, "name": "Jon", "pets": []}, {"id": 2, "name": "Sam"}], [{"id": 1, "pets": []}], True, ), ([{"id": 1}], [{"id": 1, "name": "Jon"}, {"id": 2, "name": "Sam"}], False), ([{"id": 1}], [{"id": 1, "name": "Elmer"}], False), ( [{"id": 1, "name": "Elmer"}, {"id": 2, "name": "Sam"}], [{"id": 1, "name": "Elmer"}, {"id": 2, "name": "Sam"}], True, ), (dummy_lst, dummy_lst, True), ], ) @pytest.mark.parametrize(*params) def test_list_is_subset_of(lst, subset_lst, expected): if expected is True: assert list_is(subset_lst).subset_of(lst) assert list_is(subset_lst) <= lst else: assert not list_is(subset_lst).subset_of(lst) assert not list_is(subset_lst) <= lst @pytest.mark.parametrize(*params) def test_list_has_subset(lst, subset_lst, expected): if expected is True: assert list_is(lst).has_subset(subset_lst) assert list_is(lst) >= subset_lst else: assert not list_is(lst).has_subset(subset_lst) assert not list_is(lst) >= subset_lst
api_key = 'Your API Key goes here' api_key_secret = 'Your API Secret Key goes here' access_token = 'Your Access Token goes here' access_token_secret = 'Your Access Token Secret goes here'