content
stringlengths
5
1.05M
import pyOcean_cpu as ocean a = ocean.asTensor([1,2,3]) s = a.storage b = ocean.int8(9) x = ocean.ensure(a, a.dtype) print(x.obj == a.obj) print(x.storage.obj == a.storage.obj) x = ocean.ensure(a, ocean.float) print(x) ocean.ensure(a, ocean.int8, ocean.cpu, True) print(a) x = ocean.ensure(s, s.dtype) print(x is s) print(x.obj == s.obj) x = ocean.ensure(s, ocean.half) print(x) ocean.ensure(s, ocean.cfloat, True) print(s) print(a) x = ocean.ensure(b, b.dtype) print(x) x = ocean.ensure(b, ocean.double) print(x) ocean.ensure(b, ocean.float) print(b)
import os import shutil import build_utils import build_config def get_supported_targets(platform): if platform == 'win32': return ['win32'] else: return [] def get_dependencies_for_target(target): return [] def build_for_target(target, working_directory_path, root_project_path): if target == 'win32': _build_win32(working_directory_path, root_project_path) def get_download_info(): return 'Libs/libpvr_win32' def _build_win32(working_directory_path, root_project_path): source_folder_path=os.path.join(root_project_path, get_download_info()) (build_folder_x86,build_folder_x64)=build_utils.build_and_copy_libraries_win32_cmake( os.path.join(working_directory_path, 'gen'), source_folder_path, root_project_path, "PVRTexLib.sln", "PVRTexLib", "PVRTexLib.lib", "PVRTexLib.lib", "PVRTexLib.lib", "PVRTexLib.lib", "PVRTexLib.lib", "PVRTexLib.lib", static_runtime=True) # PVRTexLib is a DLL library which wraps original static library PVRTexLib.lib to # make msvc2017 linker happy. So use only release version of DLL and import library lib_path_x86=os.path.join(root_project_path, 'Libs/lib_CMake/win/x86') build_folder_x86=os.path.join(build_folder_x86, 'Release') shutil.copyfile(os.path.join(build_folder_x86, 'PVRTexLib.lib'), os.path.join(lib_path_x86, 'Debug/PVRTexLib.lib')) shutil.copyfile(os.path.join(build_folder_x86, 'PVRTexLib.lib'), os.path.join(lib_path_x86, 'Release/PVRTexLib.lib')) shutil.copyfile(os.path.join(build_folder_x86, 'PVRTexLib.dll'), os.path.join(lib_path_x86, 'Release/PVRTexLib.dll')) lib_path_x64=os.path.join(root_project_path, 'Libs/lib_CMake/win/x64') build_folder_x64=os.path.join(build_folder_x64, 'Release') shutil.copyfile(os.path.join(build_folder_x64, 'PVRTexLib.lib'), os.path.join(lib_path_x64, 'Debug/PVRTexLib.lib')) shutil.copyfile(os.path.join(build_folder_x64, 'PVRTexLib.lib'), os.path.join(lib_path_x64, 'Release/PVRTexLib.lib')) shutil.copyfile(os.path.join(build_folder_x64, 'PVRTexLib.dll'), os.path.join(lib_path_x64, 'Release/PVRTexLib.dll'))
"""Tests for full relationship schema checking.""" import pytest from open_alchemy.schemas.validation.property_.relationship import full TESTS = [ pytest.param( { "type": "object", "properties": {"id": {"type": "integer", "x-primary-key": True}}, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "x-tablename": "ref_schema", "type": "object", "x-secondary": "schema_ref_schema", "properties": {"id": {"type": "integer", "x-primary-key": True}}, } }, (False, "source schema :: every model must define x-tablename"), id="many-to-many source no tablename", ), pytest.param( { "x-tablename": "schema", "type": "object", "properties": {"id": {"type": "integer", "x-primary-key": True}}, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "x-secondary": "schema_ref_schema", "type": "object", "properties": {"id": {"type": "integer", "x-primary-key": True}}, } }, (False, "referenced schema :: every model must define x-tablename"), id="many-to-many referenced no tablename", ), pytest.param( { "x-tablename": "schema", "type": "object", "properties": {"id": {"type": "integer"}}, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "type": "object", "x-tablename": "ref_schema", "x-secondary": "schema_ref_schema", "properties": {"id": {"type": "integer", "x-primary-key": True}}, } }, (False, "source schema :: schema must have a primary key"), id="many-to-many source no primary key property", ), pytest.param( { "x-tablename": "schema", "type": "object", "properties": {"id": {"x-primary-key": True}}, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "type": "object", "x-tablename": "ref_schema", "x-secondary": "schema_ref_schema", "properties": {"id": {"type": "integer", "x-primary-key": True}}, } }, ( False, "source schema :: id property :: malformed schema :: Every property " "requires a type. ", ), id="many-to-many source invalid primary key property", ), pytest.param( { "x-tablename": "schema", "type": "object", "properties": { "id": {"type": "integer", "x-primary-key": True}, "name": {"type": "string", "x-primary-key": True}, }, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "x-tablename": "ref_schema", "type": "object", "x-secondary": "schema_ref_schema", "properties": {"id": {"type": "integer", "x-primary-key": True}}, } }, ( False, "source schema :: many-to-many relationships currently only support single " "primary key schemas", ), id="many-to-many source multiple primary key property", ), pytest.param( { "x-tablename": "schema", "type": "object", "properties": {"id": {"type": "integer", "x-primary-key": True}}, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "x-tablename": "ref_schema", "type": "object", "x-secondary": "schema_ref_schema", "properties": {"id": {"type": "integer"}}, } }, (False, "referenced schema :: schema must have a primary key"), id="many-to-many referenced no primary key property", ), pytest.param( { "x-tablename": "schema", "type": "object", "properties": {"id": {"type": "integer", "x-primary-key": True}}, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "x-tablename": "ref_schema", "type": "object", "x-secondary": "schema_ref_schema", "properties": {"id": {"x-primary-key": True}}, } }, ( False, "referenced schema :: id property :: malformed schema :: Every property " "requires a type. ", ), id="many-to-many referenced invalid primary key property", ), pytest.param( { "x-tablename": "schema", "type": "object", "properties": {"id": {"type": "integer", "x-primary-key": True}}, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "x-tablename": "ref_schema", "type": "object", "x-secondary": "schema_ref_schema", "properties": { "id": {"type": "integer", "x-primary-key": True}, "name": {"type": "string", "x-primary-key": True}, }, } }, ( False, "referenced schema :: many-to-many relationships currently only support " "single primary key schemas", ), id="many-to-many referenced multiple primary key property", ), pytest.param( { "x-tablename": "schema", "type": "object", "properties": {"id": {"type": "integer", "x-primary-key": True}}, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "x-tablename": "ref_schema", "type": "object", "x-secondary": "schema_ref_schema", "properties": {"id": {"type": "integer", "x-primary-key": True}}, } }, (True, None), id="many-to-many valid", ), pytest.param( { "x-tablename": "schema", "type": "object", "properties": {"id": {"type": "integer", "x-primary-key": True}}, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "allOf": [ { "x-tablename": "ref_schema", "x-inherits": True, "x-secondary": "schema_ref_schema", "properties": {"other": {}}, }, {"$ref": "#/components/schemas/ParentSchema"}, ] }, "ParentSchema": { "type": "object", "x-tablename": "parent_schema", "x-secondary": "schema_ref_schema", "properties": {"id": {"type": "integer", "x-primary-key": True}}, }, }, (False, "referenced schema :: schema must have a primary key"), id="many-to-many joined table inheritance", ), pytest.param( { "x-tablename": "schema", "type": "object", "properties": {"id": {"type": "integer", "x-primary-key": True}}, }, "ref_schemas", {"type": "array", "items": {"$ref": "#/components/schemas/RefSchema"}}, { "RefSchema": { "allOf": [ { "x-inherits": True, "x-secondary": "schema_ref_schema", "properties": {"other": {}}, }, {"$ref": "#/components/schemas/ParentSchema"}, ] }, "ParentSchema": { "type": "object", "x-tablename": "parent_schema", "x-secondary": "schema_ref_schema", "properties": {"id": {"type": "integer", "x-primary-key": True}}, }, }, (True, None), id="many-to-many single table inheritance", ), ] @pytest.mark.parametrize( "parent_schema, property_name, property_schema, schemas, expected_result", TESTS, ) @pytest.mark.schemas def test_check(parent_schema, property_name, property_schema, schemas, expected_result): """ GIVEN schemas, the parent and property schema and the expected result WHEN check is called with the schemas and parent and property schema THEN the expected result is returned. """ returned_result = full.check(schemas, parent_schema, property_name, property_schema) assert returned_result == expected_result
# -*- coding: utf-8 -*- """Module with init command.""" from argparse import Namespace import six from termius.account.commands import LoginCommand from termius.cloud.commands import PullCommand, PushCommand from termius.core.commands import AbstractCommand from termius.porting.commands import SSHImportCommand class InitCommand(AbstractCommand): """initialize the Termius CLI""" # pylint: disable=no-self-use def prompt_username(self): """Ask username prompt.""" self.log.info('Please enter your Termius credentials\n') return six.moves.input("Username: ") # pylint: disable=no-self-use def prompt_authy_token(self): """Ask authy token prompt.""" return six.moves.input('Authy token: ') def extend_parser(self, parser): """Add more arguments to parser.""" parser.add_argument('-u', '--username', metavar='USERNAME') parser.add_argument('-p', '--password', metavar='PASSWORD') return parser def init_namespace(self, parsed_args, username, password): """Make authenticated Namespace instance.""" return Namespace( log_file=parsed_args.log_file, username=username, password=password ) def login(self, parsed_args): """Wrapper for login command.""" command = LoginCommand(self.app, self.app_args, self.cmd_name) command.take_action(parsed_args) def pull(self, parsed_args): """Wrapper for pull command.""" command = PullCommand(self.app, self.app_args, self.cmd_name) command.take_action(parsed_args) def import_ssh(self, parsed_args): """Wrapper for sync command.""" command = SSHImportCommand(self.app, self.app_args, self.cmd_name) command.take_action(parsed_args) def push(self, parsed_args): """Wrapper for push command.""" command = PushCommand(self.app, self.app_args, self.cmd_name) command.take_action(parsed_args) def take_action(self, parsed_args): """Process command call.""" self.log.info('Initializing Termius CLI...\n') username = parsed_args.username or self.prompt_username() password = parsed_args.password or self.prompt_password() namespace = self.init_namespace( parsed_args, username, password ) self.login(namespace) self.log.info('\nCollecting data from the Termius Cloud...') self.pull(namespace) self.log.info('\nImporting ~/.ssh/config...') self.import_ssh(namespace) self.log.info('\nPushing data to the Termius Cloud...') self.push(namespace) self.log.info('\nTermius CLI successfully initialized.')
#!/usr/bin/env python3 import pytest import yaml from romanlengths.roman_conversion import convert_to_numeral numerals = yaml.load(open("tests/roman-numerals.yml", 'r')) @pytest.mark.parametrize('value', range(1, 5000)) def test_conversion(value): assert convert_to_numeral(value) == numerals[value]
import torch import torch.nn as nn import copy import time import numpy as np import torch.optim as optim from .meta_pruner import MetaPruner class Pruner(MetaPruner): def __init__(self, model, args): super(Pruner, self).__init__(model, args) def prune(self): self._get_kept_wg_L1() self._prune_and_build_new_model()
# Generated by Django 4.0.2 on 2022-03-07 05:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('store', '0011_orderitem_complete_orderitem_customer'), ] operations = [ migrations.AddField( model_name='shippingaddress', name='default', field=models.BooleanField(default=False), ), migrations.AddField( model_name='shippingaddress', name='payment_option', field=models.CharField(choices=[('S', 'Stripe'), ('P', 'Paypal')], default='P', max_length=2), preserve_default=False, ), migrations.AddField( model_name='shippingaddress', name='save_info', field=models.BooleanField(default=False), ), migrations.AddField( model_name='shippingaddress', name='use_default', field=models.BooleanField(default=False), ), ]
# -*- coding: utf-8 -*- from typing import Callable, Awaitable, List from mypy_extensions import Arg from aiohttp.web import Request from mtpylon.income_message import IncomeMessage from mtpylon.middlewares import MiddleWareFunc from mtpylon.message_sender import MessageSender HandleStrategy = Callable[ [ Arg(List[MiddleWareFunc], 'middlewares'), # noqa: F821 Arg(MessageSender, 'sender'), # noqa: F821 Arg(Request, 'request'), # noqa: F821 Arg(IncomeMessage, 'message'), # noqa: F821 ], Awaitable[None] ]
from django.conf import settings from django.utils.safestring import mark_safe from django.utils.text import slugify from django.utils.translation import gettext as _ from django.utils.translation import gettext_lazy as _l from qatrack.faults import models from qatrack.qatrack_core.dates import format_datetime from qatrack.reports import filters from qatrack.reports.reports import BaseReport from qatrack.units import models as umodels def format_fault_types(fault): return ', '.join(ft.code for ft in fault.fault_types.all()) class FaultReportMixin: category = _l("Faults") def get_queryset(self): return models.Fault.objects.select_related( "unit", "unit__site", "created_by", "modified_by", "modality", ).prefetch_related( "fault_types", "related_service_events", "faultreviewinstance_set", "faultreviewinstance_set__reviewed_by", "faultreviewinstance_set__fault_review_group", ) def filter_form_valid(self, filter_form): nfaults = self.filter_set.qs.count() if nfaults > self.MAX_FAULTS: filter_form.add_error( "__all__", "This report can only be generated with %d or fewer Faults" " Your filters are including %d. Please reduce the " "number of Faults." % (self.MAX_FAULTS, nfaults) ) return filter_form.is_valid() def get_unit_details(self, val): units = umodels.Unit.objects.filter(pk__in=val).select_related("site") return ( "Unit(s)", ', '.join("%s%s" % ("%s - " % unit.site.name if unit.site else "", unit.name) for unit in units) ) def get_unit__site_details(self, sites): return ("Site(s)", (', '.join(s.name if s != 'null' else _("Other") for s in sites)).strip(", ")) def get_review_status_details(self, val): return (_("Review Status"), dict(self.filter_set.form.fields['review_status'].choices)[val] if val else "") def get_faults_for_site(self, qs, site): """Get Test List Instances from filtered queryset for input site""" faults = qs.filter(unit__site=site) faults = faults.order_by( "unit__%s" % settings.ORDER_UNITS_BY, "occurred", ).select_related( "created_by", "modified_by", ).prefetch_related( "fault_types", "related_service_events", "faultreviewinstance_set", "faultreviewinstance_set__reviewed_by", "faultreviewinstance_set__fault_review_group", ) return faults class FaultSummaryReport(FaultReportMixin, BaseReport): report_type = "fault_summary" name = _l("Fault Summary") filter_class = filters.FaultSummaryFilter description = mark_safe(_l( "This report includes a summary of all faults from a given time period for selected units" )) template = "reports/faults/summary.html" MAX_FAULTS = 3000 def get_filename(self, report_format): return "%s.%s" % (slugify(self.name or "faults-summary"), report_format) def get_context(self): context = super().get_context() # since we're grouping by site, we need to handle sites separately form = self.get_filter_form() reviewed = form.cleaned_data.get("review_status") qs = self.filter_set.qs if reviewed == "unreviewed": qs = qs.filter(faultreviewinstance=None) elif reviewed == "reviewed": qs = qs.exclude(faultreviewinstance=None) sites = qs.order_by( "unit__site__name", ).values_list( "unit__site", flat=True, ).distinct() sites_data = [] for site in sites: if site: # site can be None here since not all units may have a site site = umodels.Site.objects.get(pk=site) sites_data.append((site.name if site else "", [])) for fault in self.get_faults_for_site(qs, site): sites_data[-1][-1].append({ 'id': fault.id, 'fault_type': format_fault_types(fault), 'unit_name': fault.unit.name, 'modality': fault.modality.name if fault.modality else _("Not specified"), 'occurred': format_datetime(fault.occurred), 'link': self.make_url(fault.get_absolute_url(), plain=True), }) context['sites_data'] = sites_data return context def to_table(self, context): rows = super().to_table(context) rows.append([]) header = [ _("Fault ID"), _("Occurred"), _("Site"), _("Unit"), _("Fault Type"), _("Modality"), _("Link"), ] rows.append(header) for site, faults in context['sites_data']: for fault in faults: row = [ fault['id'], fault['occurred'], site, fault['unit_name'], fault['fault_type'], fault['modality'], fault['link'], ] rows.append(row) return rows
# -*- coding: utf-8 -*- """ Created on Tue Oct 10 17:40:37 2017 @author: karja """ from math import sqrt # The best formula for GCD that can be found in wikipedia def gcd(a,b): while b != 0: a, b = b, a % b return a # Class that set the dict that represent the # range of pythagores that have integer values. class Pytha_tri: def __init__(self,num1): self.num1 = num1 def pair_em(self): # This taken from the book # Learning Python from PACKT by (thanks to) Fabrizio Romano. legs = [(a,b,sqrt(a**2 + b**2)) for a in range(1,self.num1) for b in range(a,self.num1)] legs = [(a,b,int(c)) for a, b, c in legs if c.is_integer()] for m in range(1,int(self.num1**.5)+1): for n in range(1,m): # Alternate additional condition (and (m-n)%2 == 1:) if gcd(m,n) == 1: # Eucledean formula for finding triple pythagorean # (a,b,c) => a= m**2 - n**2, b = 2mn , c =m**2 + n**2 # Where (m,n) have GCD of 1 if m > n: a = m**2 - n**2 else: a = n**2 - m**2 b = 2*m*n c = m**2 + n**2 legs.append((a,b,c)) # I made this class to compliment the pythagores triple that # thought in the book. check = [((a**2+b**2)==c**2) for a, b, c in legs ] check = {a:b for a,b in zip(legs,check)} return check print(check) # Globals that can be called within the functions. pairs = {} pytha_num = None # Function that give max values to Pytha_tri and assign globals variables. def call_p(nums): global pairs,pytha_num pairs = Pytha_tri(nums).pair_em() pytha_num = Pytha_tri(nums) import unicodedata as uni # Function that will test your knowledge about Pythagores formulas in fun way # because the result will true if integer and will be false if float. def gpyt(): # Translating and printing the a² + b² = c² sup2 = str.maketrans('2',uni.normalize('NFC',u'\u00B2')) print('Pythagorean triple with total records of', len(pairs),'\nFormula of a2 + b2 = c2'.translate(sup2)) # The try out of Phytagorean Triple while True: try: triple = tuple([int(b) for b in input('input 3 numbers e.g. 1 2 3 : ').split()]) except: print('Please input number e.g 1 2 3') continue else: try: a, b, c = triple except: print('Please input number e.g 1 2 3') continue else: # Checking the answer if is True or False print (triple, triple[0]**2 + triple[1]**2, '=', triple[2]**2, pairs.get(triple,False)) # If is true then the record is deleted if pairs.get(triple,False) == True: pairs.pop(triple,True) break else: break # The game begin with How many records that can be generated # and try to guess them all out. def run_gpyt(): while True: # Create records in_num = input('Create list of Pythagorean Triple, give numbers' + '\ngreater than 5 and less then 1000: ') try: int(in_num) except: print('Please Key integer numbers') continue else: if int(in_num) < 5: print('Numbers are too small') continue elif int(in_num) > 1000: print('Numbers are too big') continue else: call_p(int(in_num)) break # Start playing gpyt() while True: try: # To continue or end quest = str(input('Continue? [Y]es or Enter: ').upper()) except: print('Please key in "Y" to continue or Enter to end!') continue else: if quest == 'Y': # Checking the records if len(pairs) > 0: gpyt() continue else: # If record is 0 then game is finished and end. print('Congratulation, you have finished the game.') input() break else: if len(pairs) == 0: print('Congratulation, you have finished the game.') input() break else: break # Self-started run_gpyt()
from social_core.backends.mendeley import MendeleyMixin, MendeleyOAuth, \ MendeleyOAuth2
import brownie from brownie import Wei, accounts, Contract, config import math def test_cloning( gov, token, vault, strategist, whale, strategy, keeper, rewards, chain, StrategyFraxUniswapUSDC, guardian, amount, tests_using_tenderly, ): # tenderly doesn't work for "with brownie.reverts" if tests_using_tenderly: ## clone our strategy tx = strategy.cloneFraxUni( vault, strategist, rewards, keeper, {"from": gov}, ) newStrategy = StrategyFraxUniswapUSDC.at(tx.return_value) else: # Shouldn't be able to call initialize again with brownie.reverts(): strategy.initialize( vault, strategist, rewards, keeper, {"from": gov}, ) ## clone our strategy tx = strategy.cloneFraxUni( vault, strategist, rewards, keeper, {"from": gov}, ) newStrategy = StrategyFraxUniswapUSDC.at(tx.return_value) # Shouldn't be able to call initialize again with brownie.reverts(): newStrategy.initialize( vault, strategist, rewards, keeper, {"from": gov}, ) ## shouldn't be able to clone a clone with brownie.reverts(): newStrategy.cloneFraxUni( vault, strategist, rewards, keeper, {"from": gov}, ) # revoke and send all funds back to vault vault.revokeStrategy(strategy, {"from": gov}) strategy.harvest({"from": gov}) # attach our new strategy and approve it on the proxy vault.addStrategy(newStrategy, 10_000, 0, 2**256 - 1, 1_000, {"from": gov}) # setup our NFT on our new strategy, IMPORTANT*** token.transfer(newStrategy, 100e6, {"from": whale}) newStrategy.mintNFT({"from": gov}) assert vault.withdrawalQueue(1) == newStrategy assert vault.strategies(newStrategy)["debtRatio"] == 10_000 assert vault.withdrawalQueue(0) == strategy assert vault.strategies(strategy)["debtRatio"] == 0 ## deposit to the vault after approving; this is basically just our simple_harvest test before_pps = vault.pricePerShare() startingWhale = token.balanceOf(whale) token.approve(vault, 2**256 - 1, {"from": whale}) vault.deposit(amount, {"from": whale}) # harvest, store asset amount tx = newStrategy.harvest({"from": gov}) old_assets_dai = vault.totalAssets() assert old_assets_dai > 0 assert newStrategy.estimatedTotalAssets() > 0 print("\nStarting Assets: ", old_assets_dai / (10 ** token.decimals())) # simulate one day of earnings chain.sleep(86400) chain.mine(1) # harvest after a day, store new asset amount newStrategy.harvest({"from": gov}) new_assets_dai = vault.totalAssets() # we can't use strategyEstimated Assets because the profits are sent to the vault # if we're not making profit, check that we didn't lose too much on conversions assert new_assets_dai >= old_assets_dai print("\nAssets after 2 days: ", new_assets_dai / (10 ** token.decimals())) # Display estimated APR print( "\nEstimated APR: ", "{:.2%}".format( ((new_assets_dai - old_assets_dai) * (365)) / (newStrategy.estimatedTotalAssets()) ), ) # simulate a day of waiting for share price to bump back up chain.sleep(86400) chain.mine(1) # withdraw and check on our losses (due to slippage on big swaps in/out) tx = vault.withdraw(amount, whale, 10_000, {"from": whale}) loss = startingWhale - token.balanceOf(whale) print("Losses from withdrawal slippage:", loss / (10 ** token.decimals())) assert vault.pricePerShare() > 10 ** token.decimals() print("Vault share price", vault.pricePerShare() / (10 ** token.decimals()))
############################################################################### # Copyright (c) 2007-2018, National Research Foundation (Square Kilometre Array) # # Licensed under the BSD 3-Clause License (the "License"); you may not use # this file except in compliance with the License. You may obtain a copy # of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### """Tests for polynomial fitters. :author: Ludwig Schwardt :license: Modified BSD """ from __future__ import division from builtins import range import numpy as np from numpy.testing import (TestCase, assert_equal, assert_almost_equal, run_module_suite) from scikits.fitting import (Polynomial1DFit, Polynomial2DFit, PiecewisePolynomial1DFit, NotFittedError) from scikits.fitting.poly import _stepwise_interp, _linear_interp class TestPolynomial1DFit(TestCase): """Fit a 1-D polynomial to data from a known polynomial, and compare.""" def setUp(self): self.poly = np.array([1.0, -2.0, 1.0]) # Zero mean case self.x = np.arange(-3.0, 4.0, 1.0) self.y = np.polyval(self.poly, self.x) # Non-zero mean case self.x2 = np.arange(0., 10.0, 1.0) self.y2 = np.polyval(self.poly, self.x2) self.randx = np.random.randn(100) self.randp = np.random.randn(4) def test_fit_eval(self): """Polynomial1DFit: Basic function fitting + evaluation (zero-mean).""" interp = Polynomial1DFit(2) self.assertRaises(NotFittedError, interp, self.x) interp.fit(self.x, self.y) y = interp(self.x) self.assertAlmostEqual(interp._mean, 0.0, places=10) assert_almost_equal(interp.poly, self.poly, decimal=10) assert_almost_equal(y, self.y, decimal=10) def test_fit_eval2(self): """Polynomial1DFit: Basic fitting and evaluation (non-zero-mean).""" interp = Polynomial1DFit(2) interp.fit(self.x2, self.y2) y2 = interp(self.x2) assert_almost_equal(interp.poly, self.poly, decimal=10) assert_almost_equal(y2, self.y2, decimal=10) def test_cov_params(self): """Polynomial1DFit: Compare parameter stats to covariance matrix.""" interp = Polynomial1DFit(2) std_y = 1.3 M = 200 poly_set = np.zeros((len(self.poly), M)) for n in range(M): yn = self.y2 + std_y * np.random.randn(len(self.y2)) interp.fit(self.x2, yn, std_y) poly_set[:, n] = interp.poly mean_poly = poly_set.mean(axis=1) norm_poly = poly_set - mean_poly[:, np.newaxis] cov_poly = np.dot(norm_poly, norm_poly.T) / M std_poly = np.sqrt(np.diag(interp.cov_poly)) self.assertTrue( (np.abs(mean_poly - self.poly) / std_poly < 0.5).all(), "Sample mean coefficient vector differs too much from true value") self.assertTrue( (np.abs(cov_poly - interp.cov_poly) / np.abs(interp.cov_poly) < 0.5).all(), "Sample coefficient covariance matrix differs too much") def test_vs_numpy(self): """Polynomial1DFit: Compare fitter to np.polyfit and np.polyval.""" x, p = self.randx, self.randp y = p[0] * (x ** 3) + p[1] * (x ** 2) + p[2] * x + p[3] interp = Polynomial1DFit(3) interp.fit(x, y) interp_y = interp(x) np_poly = np.polyfit(x, y, 3) np_y = np.polyval(np_poly, x) self.assertAlmostEqual(interp._mean, self.randx.mean(), places=10) assert_almost_equal(interp.poly, np_poly, decimal=10) assert_almost_equal(interp_y, np_y, decimal=10) # pylint: disable-msg=R0201 def test_reduce_degree(self): """Polynomial1DFit: Reduce polynomial degree if too few data points.""" interp = Polynomial1DFit(2) interp.fit([1.0], [1.0]) assert_almost_equal(interp.poly, [1.0], decimal=10) class TestPolynomial2DFit(TestCase): """Fit a 2-D polynomial to data from a known polynomial, and compare.""" def setUp(self): self.poly = np.array([0.1, -0.2, 0.3, -0.4, 0.5, -0.6]) self.degrees = (1, 2) # Zero mean case x1 = np.arange(-1., 1.1, 0.1) x2 = np.arange(-1., 1.2, 0.2) xx1, xx2 = np.meshgrid(x1, x2) self.x = X = np.vstack((xx1.ravel(), xx2.ravel())) A = np.c_[X[0] * X[1]**2, X[0] * X[1], X[0], X[1]**2, X[1], np.ones(X.shape[1])].T self.y = np.dot(self.poly, A) # Non-zero mean (and uneven scale) case x1 = np.arange(0., 10.) x2 = np.arange(0., 5.) xx1, xx2 = np.meshgrid(x1, x2) self.x2 = X = np.vstack((xx1.ravel(), xx2.ravel())) A = np.c_[X[0] * X[1]**2, X[0] * X[1], X[0], X[1]**2, X[1], np.ones(X.shape[1])].T self.y2 = np.dot(self.poly, A) def test_fit_eval(self): """Polynomial2DFit: Basic function fitting + evaluation (zero-mean).""" interp = Polynomial2DFit(self.degrees) self.assertRaises(NotFittedError, interp, self.x) interp.fit(self.x, self.y) y = interp(self.x) assert_almost_equal(interp._mean, [0.0, 0.0], decimal=10) assert_almost_equal(interp._scale, [1.0, 1.0], decimal=10) assert_almost_equal(interp.poly, self.poly, decimal=10) assert_almost_equal(y, self.y, decimal=10) def test_fit_eval2(self): """Polynomial2DFit: Basic fitting and evaluation (non-zero-mean).""" interp = Polynomial2DFit(self.degrees) interp.fit(self.x2, self.y2) y2 = interp(self.x2) assert_almost_equal(interp.poly, self.poly, decimal=10) assert_almost_equal(y2, self.y2, decimal=10) def test_cov_params(self): """Polynomial2DFit: Compare parameter stats to covariance matrix.""" interp = Polynomial2DFit(self.degrees) std_y = 1.7 M = 200 poly_set = np.zeros((len(self.poly), M)) for n in range(M): yn = self.y2 + std_y * np.random.randn(len(self.y2)) interp.fit(self.x2, yn, std_y) poly_set[:, n] = interp.poly mean_poly = poly_set.mean(axis=1) norm_poly = poly_set - mean_poly[:, np.newaxis] cov_poly = np.dot(norm_poly, norm_poly.T) / M std_poly = np.sqrt(np.diag(interp.cov_poly)) self.assertTrue( (np.abs(mean_poly - self.poly) / std_poly < 0.5).all(), "Sample mean coefficient vector differs too much from true value") self.assertTrue( (np.abs(cov_poly - interp.cov_poly) / np.abs(interp.cov_poly) < 1.0).all(), "Sample coefficient covariance matrix differs too much") class TestPiecewisePolynomial1DFit(TestCase): """Fit a 1-D piecewise polynomial to data from a known polynomial.""" def setUp(self): self.poly = np.array([1.0, 2.0, 3.0, 4.0]) self.x = np.linspace(-3.0, 2.0, 100) self.y = np.polyval(self.poly, self.x) def test_fit_eval(self): """PiecewisePolynomial1DFit: Basic function fitting and evaluation.""" interp = PiecewisePolynomial1DFit(max_degree=3) self.assertRaises(NotFittedError, interp, self.x) self.assertRaises(ValueError, interp.fit, [0, 0], [1, 2]) interp.fit(self.x[::2], self.y[::2]) y = interp(self.x) assert_almost_equal(y[5:-5], self.y[5:-5], decimal=10) # Fit a single data point interp.fit(self.x[0], self.y[0]) y = interp(self.x) assert_equal(y, np.tile(self.y[0], self.x.shape)) def test_stepwise_interp(self): """PiecewisePolynomial1DFit: Test underlying 0th-order interpolator.""" x = np.sort(np.random.rand(100)) * 4. - 2.5 y = np.random.randn(100) interp = PiecewisePolynomial1DFit(max_degree=0) interp.fit(x, y) assert_almost_equal(interp(x), y, decimal=10) assert_almost_equal(interp(x + 1e-15), y, decimal=10) assert_almost_equal(interp(x - 1e-15), y, decimal=10) assert_almost_equal(_stepwise_interp(x, y, x), y, decimal=10) assert_almost_equal(interp(self.x), _stepwise_interp(x, y, self.x), decimal=10) def test_linear_interp(self): """PiecewisePolynomial1DFit: Test underlying 1st-order interpolator.""" x = np.sort(np.random.rand(100)) * 4. - 2.5 y = np.random.randn(100) interp = PiecewisePolynomial1DFit(max_degree=1) interp.fit(x, y) assert_almost_equal(interp(x), y, decimal=10) assert_almost_equal(_linear_interp(x, y, x), y, decimal=10) assert_almost_equal(interp(self.x), _linear_interp(x, y, self.x), decimal=10) if __name__ == "__main__": run_module_suite()
'''Views and logic for github OAuth.''' from flask import url_for, request, session, redirect from flask_oauthlib.client import OAuth import github def install_github_oauth(app): oauth = OAuth(app) github_auth = oauth.remote_app( 'github', consumer_key=app.config['GITHUB_CLIENT_ID'], consumer_secret=app.config['GITHUB_CLIENT_SECRET'], request_token_params={'scope': 'repo,user'}, base_url='https://api.github.com/', request_token_url=None, access_token_method='POST', access_token_url='https://github.com/login/oauth/access_token', authorize_url='https://github.com/login/oauth/authorize' ) @app.route('/login') def login(): return github_auth.authorize(callback=url_for('authorized', _external=True, next=request.args.get('next') or request.referrer or None)) @app.route('/logout') def logout(): session.pop('token', None) return redirect(url_for('index')) @app.route('/oauth_callback') @github_auth.authorized_handler def authorized(resp): next_url = request.args.get('next') or url_for('index') if resp is None: return 'Access denied: reason=%s error=%s' % ( request.args['error_reason'], request.args['error_description'] ) session['token'] = resp['access_token'] user_info = github.get_current_user_info(session['token']) if not user_info: return "Unable to get user info." session['login'] = user_info['login'] return redirect(next_url) @github_auth.tokengetter def get_github_oauth_token(): token = session.get('token') if token: return (token, '') else: return token
# # WIEN2k.py derived from OpenMX.py # # Interface to WIEN2k (http://susi.theochem.tuwien.ac.at/) # # Copyright (c) 2001 P. Blaha and K. Schwarz # import numpy as np class Wien2kParser(object): def __init__(self): self._prefix = None self._lattice_vector = None self._inverse_lattice_vector = None self._atomic_kinds = None self._element_list = [] self._element_dict = {} self._initial_charges = None self._common_settings = None self._nat = 0 self._x_fractional = None self._counter = 1 self._kmesh = None self._nzerofills = 0 self._disp_conversion_factor = 1.0 self._energy_conversion_factor = 1.0 self._force_conversion_factor = 1.0 self._initial_structure_loaded = False self._print_disp = True self._print_force = True self._print_energy = False self._print_born = False self._BOHR_TO_ANGSTROM = 0.5291772108 self._RYDBERG_TO_EV = 13.60569253 self._kd = [] def load_initial_structure(self, file_original): #search_target = [ # "atoms.number", # "atoms.speciesandcoordinates.unit", # "<atoms.speciesandcoordinates", # "atoms.speciesandcoordinates>", # "atoms.unitvectors.unit", # "<atoms.unitvectors", # "atoms.unitvectors>", # "scf.kgrid" #] search_target = [ "P", "MODE OF CALC=RELA unit=", "ATOM", ] nat = None lavec = [] common_settings = [] kd = [] zkd = [] x_frac0 = [] initial_charges = [] kgrid = [] zline = 4 # read original struct file and pull out some information with open(file_original, 'r') as f: lines = f.read().splitlines() for i, line in enumerate(lines): #if search_target[0] in line.strip().split()[0]: if i == 1: nat = int(line.strip().split()[2]) #elif search_target[1] in line: elif i == 2: lavec_unit = line.strip().split("=")[2] coord_unit = "au" elif i == 3: lavec.append([float(line.strip().split()[0]), float(0), float(0)]) lavec.append([float(0), float(line.strip().split()[1]), float(0)]) lavec.append([float(0), float(0), float(line.strip().split()[2])]) elif search_target[2] in line: line_split = line.strip().split() line_split[2] = line_split[2].strip("X=") line_split[3] = line_split[3].strip("Y=") line_split[4] = line_split[4].strip("Z=") #kd.append(line_split[1]) #x_frac0.append([float(t) for t in line_split[2:5]]) x_frac0.append([float(t) for t in line_split[2:5]]) #initial_charges.append([float(t) for t in line_split[5:7]]) initial_charges.append([float(0),float(0)]) zline = i + 2 elif i == zline: #kd.append(line.strip().split()[0]) kd.append(line.strip().split()[0]) zkd.append(line.strip().split()[7]) #elif search_target[1] in line.lower(): # coord_unit = line.strip().split()[1].lower() #elif search_target[2] in line.lower(): # ipos_coord = i + 1 #elif search_target[3] in line.lower(): # fpos_coord = i #elif search_target[4] in line.lower(): # lavec_unit = line.strip().split()[1].lower() #elif search_target[5] in line.lower(): # ipos_lavec = i + 1 #elif search_target[6] in line.lower(): # fpos_lavec = i #elif search_target[7] in line.lower(): # kgrid.extend([int(t) for t in line.strip().split()[1:]]) if nat is None: raise RuntimeError("Failed to extract the LATTICE,NONEQUIV.ATOMS value from the file.") #if nat != (fpos_coord - ipos_coord): # raise RuntimeError("The number of entries in Atoms.SpeciesAndCoordinates does not match" # "with the Atoms.Number value.") #for line in lines[ipos_coord:fpos_coord]: # line_split = line.strip().split() # kd.append(line_split[1]) # x_frac0.append([float(t) for t in line_split[2:5]]) # initial_charges.append([float(t) for t in line_split[5:7]]) #for line in lines[ipos_lavec:fpos_lavec]: # lavec.append([float(t) for t in line.strip().split()]) #if ipos_lavec > ipos_coord: # common_settings.extend(lines[:ipos_coord-1]) # common_settings.extend(lines[fpos_coord+1:ipos_lavec-1]) # common_settings.extend(lines[fpos_lavec+1:]) #else: # common_settings.extend(lines[:ipos_lavec-1]) # common_settings.extend(lines[fpos_lavec+1:ipos_coord-1]) # common_settings.extend(lines[fpos_coord+1:]) common_settings.extend(lines[:5]) x_frac0 = np.array(x_frac0) lavec = np.array(lavec).transpose() lavec_inv = np.linalg.inv(lavec) #initial_charges = np.array(initial_charges) #kgrid = np.array(kgrid) # convert the unit of lattice vectors to angstrom if necessary if lavec_unit == "au": lavec *= self._BOHR_TO_ANGSTROM lavec_inv = np.linalg.inv(lavec) # convert to frac coordinate if coord_unit == "ang": for i in range(nat): #x_frac0[i] = np.dot(x_frac0[i], lavec_inv) pass elif coord_unit == "au": for i in range(nat): #x_frac0[i] = np.dot(x_frac0[i], lavec_inv) * self._BOHR_TO_ANGSTROM pass kd_uniq = [] for entry in kd: if entry not in kd_uniq: kd_uniq.append(entry) self._element_list = kd_uniq counter = 0 for entry in kd_uniq: self._element_dict[entry] = counter counter += 1 self._lattice_vector = lavec self._inverse_lattice_vector = lavec_inv self._nat = nat self._x_fractional = x_frac0 self._atomic_kinds = [self._element_dict[elem] for elem in kd] self._initial_charges = initial_charges self._kmesh = kgrid self._common_settings = common_settings self._initial_structure_loaded = True self._kd = kd self._zkd = zkd def generate_structures(self, prefix, header_list, disp_list): self._set_number_of_zerofill(len(disp_list)) self._prefix = prefix self._counter = 1 if len(self._initial_charges) < self._nat: raise RuntimeError("The length of initial_charges is not nat. " "It should be updated as well.") for header, disp in zip(header_list, disp_list): self._generate_input(header, disp) def parse(self, initial_dat, out_files, out_file_offset, str_unit, output_flags, filter_emin=None, filter_emax=None): if not self._initial_structure_loaded: self.load_initial_structure(initial_dat) self._set_unit_conversion_factor(str_unit) self._set_output_flags(output_flags) if self._print_disp or self._print_force: self._print_displacements_and_forces(out_files, out_file_offset, filter_emin, filter_emax) elif self._print_energy: self._print_energies(out_files, out_file_offset) def _generate_input(self, header, disp): filename = self._prefix + str(self._counter).zfill(self._nzerofills) + ".struct" with open(filename, 'w') as f: for line in self._common_settings: if "blebleble" in line: f.write("blebleble\n") f.write("P LATTICE,NONEQUIV.ATOMS %3d 1 P1\n" % self._nat) elif "MODE" in line.strip().split()[0]: f.write("MODE OF CALC=RELA unit=bohr\n") f.write(" %9.6f" % (self._lattice_vector[0, 0])) f.write(" %9.6f" % (self._lattice_vector[1, 1])) f.write(" %9.6f" % (self._lattice_vector[2, 2])) f.write(" 90.000000 90.000000 90.000000\n") #elif "scf.kgrid" in line.lower(): # f.write("scf.Kgrid %d %d %d\n" % (self._kmesh[0], self._kmesh[1], self._kmesh[2])) elif "ATOM" in line.strip().split()[0]: for i in range(self._nat): #f.write("%4d %3s" % (i + 1, self._element_list[self.kd[i]])) #x_cartesian_disp = np.dot(self._x_fractional[i, :] + disp[i, :], # self._lattice_vector.transpose()) x_cartesian_disp = self._x_fractional[i, :] + disp[i, :] #for j in range(3): # f.write("%21.16f" % x_cartesian_disp[j]) f.write("ATOM %3d:" % -(i + 1)) f.write(" X=%10.8f" % x_cartesian_disp[0]) f.write(" Y=%10.8f" % x_cartesian_disp[1]) f.write(" Z=%10.8f" % x_cartesian_disp[2]) f.write("\n") f.write(" MULT= 1 ISPLIT=15\n") #f.write("%2s" % (self._element_list[self._atomic_kinds[i]])) f.write("%2s" % (self._kd[i])) f.write(" NPT= 781 R0=.000100000 RMT= 2.00000 Z: %9.5f\n" %(float(self._zkd[i]))) f.write("LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000\n") f.write(" 0.0000000 1.0000000 0.0000000\n") f.write(" 0.0000000 0.0000000 1.0000000\n") #for j in range(2): # f.write("%6.2f" % (self._initial_charges[i, j])) f.write(" 0 NUMBER OF SYMMETRY OPERATIONS\n") #elif "atoms.unitvectors.unit" in line.lower(): # f.write("Atoms.UnitVectors.Unit Ang\n") # f.write("<Atoms.UnitVectors\n") # for i in range(3): # for j in range(3): # f.write("%21.16f" % (self._lattice_vector[j, i])) # f.write('\n') # f.write("Atoms.UnitVectors>\n") #else: # f.write("%s\n" % line) self._counter += 1 def _print_displacements_and_forces(self, out_files, file_offset, filter_emin, filter_emax): # vec_refold = np.vectorize(refold) lavec_transpose = self._lattice_vector.transpose() x0 = np.round(self._x_fractional, 8) if file_offset is None: disp_offset = np.zeros((self._nat, 3)) force_offset = np.zeros((self._nat, 3)) epot_offset = 0.0 else: x0_offset, force_offset = self._get_coordinate_and_force_outfile(file_offset) try: x0_offset = np.reshape(x0_offset, (self._nat, 3)) except: raise RuntimeError("File %s contains too many position entries" % file_offset) disp_offset = x0_offset - x0 try: force_offset = np.reshape(force_offset, (self._nat, 3)) except: raise RuntimeError("File %s contains too many force entries" % file_offset) epot_offset = self._get_energies_outfile(file_offset) for search_target in out_files: x, force = self._get_coordinate_and_force_outfile(search_target) epot = self._get_energies_outfile(search_target) epot -= epot_offset epot *= self._RYDBERG_TO_EV * 2.0 ndata = 1 for idata in range(ndata): if filter_emin is not None: if filter_emin > epot[idata]: continue if filter_emax is not None: if filter_emax < epot[idata]: continue if self._print_disp: disp = x - x0 - disp_offset disp[disp > 0.96] -= 1.0 for i in range(self._nat): disp[i] = np.dot(disp[i], lavec_transpose) disp[np.absolute(disp) < 1e-5] = 0.0 disp *= self._disp_conversion_factor if self._print_force: f = force - force_offset f *= self._force_conversion_factor print("# Filename: %s, Snapshot: %d, E_pot (eV): %s" % (search_target, idata + 1, epot[idata])) if self._print_disp and self._print_force: for i in range(self._nat): print("%15.7F %15.7F %15.7F %20.8E %15.8E %15.8E" % (disp[i, 0], disp[i, 1], disp[i, 2], f[i, 0], f[i, 1], f[i, 2])) elif self._print_disp: for i in range(self._nat): print("%15.7F %15.7F %15.7F" % (disp[i, 0], disp[i, 1], disp[i, 2])) elif self._print_force: for i in range(self._nat): print("%15.8E %15.8E %15.8E" % (f[i, 0], f[i, 1], f[i, 2])) def _print_energies(self, out_files, file_offset): if file_offset is None: etot_offset = 0.0 else: etot_offset = self._get_energies_outfile(file_offset) print("# Etot") for search_target in out_files: etot = self._get_energies_outfile(search_target) for idata in range(len(etot)): val = etot[idata] - etot_offset val *= self._energy_conversion_factor print("%19.11E" % val) def _set_number_of_zerofill(self, npattern): nzero = 1 while True: npattern //= 10 if npattern == 0: break nzero += 1 self._nzerofills = nzero def _set_unit_conversion_factor(self, str_unit): if str_unit == "ev": disp_conv_factor = 1.0 energy_conv_factor = 2.0 * self._RYDBERG_TO_EV force_conv_factor = energy_conv_factor / self._BOHR_TO_ANGSTROM elif str_unit == "rydberg": disp_conv_factor = 1.0 / self._BOHR_TO_ANGSTROM energy_conv_factor = 2.0 force_conv_factor = 2.0 elif str_unit == "hartree": disp_conv_factor = 1.0 / self._BOHR_TO_ANGSTROM energy_conv_factor = 1.0 force_conv_factor = 1.0 else: raise RuntimeError("This cannot happen") self._disp_conversion_factor = disp_conv_factor self._force_conversion_factor = force_conv_factor self._energy_conversion_factor = energy_conv_factor def _set_output_flags(self, output_flags): self._print_disp, self._print_force, \ self._print_energy, self._print_born = output_flags @property def nat(self): return self._nat @nat.setter def nat(self, nat): self._nat = nat @property def lattice_vector(self): return self._lattice_vector @property def inverse_lattice_vector(self): return self._inverse_lattice_vector @lattice_vector.setter def lattice_vector(self, lattice_vector): self._lattice_vector = lattice_vector self._inverse_lattice_vector = np.linalg.inv(lattice_vector) @property def kmesh(self): return self._kmesh @kmesh.setter def kmesh(self, kmesh): self._kmesh = kmesh @property def atomic_kinds(self): return self._atomic_kinds @property def atomic_kinds_in_str(self): return [self._element_list[i] for i in self._atomic_kinds] @atomic_kinds.setter def atomic_kinds(self, kd): self._atomic_kinds = [self._element_dict[elem] for elem in kd] @property def x_fractional(self): return self._x_fractional @x_fractional.setter def x_fractional(self, x_fractional): self._x_fractional = x_fractional @property def initial_charges(self): return self._initial_charges @initial_charges.setter def initial_charges(self, initial_charges): self._initial_charges = initial_charges def _get_coordinate_and_force_outfile(self, out_file): """ Return fractional coordinates and atomic forces in units of Hartree/Bohr """ search_flag = "<coordinates.forces" f = open(out_file, 'r') line = f.readline() found_tag = False x = np.zeros((self._nat, 3)) force = np.zeros((self._nat, 3)) while line: if search_flag in line: found_tag = True f.readline() # skip one line for i in range(self._nat): line = f.readline() x[i][:] = [float(t) for t in line.rstrip().split()[2:5]] force[i][:] = [float(t) for t in line.rstrip().split()[5:]] break line = f.readline() if not found_tag: raise RuntimeError("%s tag not found in %s" % (search_flag, out_file)) x = np.array(x) for i in range(self._nat): x[i, :] = np.dot(x[i, :], self._inverse_lattice_vector.transpose()) return x, np.array(force) @staticmethod def _get_energies_outfile(out_file): target = "Utot." etot = [] f = open(out_file, 'r') for line in f: ss = line.strip().split() if len(ss) > 0 and ss[0] == target: etot.extend([float(ss[1])]) break else: continue if len(etot) == 0: raise RuntimeError("Total energy not found.") return np.array(etot, dtype=np.float)
# Copyright (c) 2012, GPy authors (see AUTHORS.txt). # Licensed under the BSD 3-clause license (see LICENSE.txt) import numpy as np from ..core.parameterization import Parameterized, Param from paramz.transformations import Logexp import sys class WarpingFunction(Parameterized): """ abstract function for warping z = f(y) """ def __init__(self, name): super(WarpingFunction, self).__init__(name=name) self.rate = 0.1 def f(self, y, psi): """function transformation y is a list of values (GP training data) of shape [N, 1] """ raise NotImplementedError def fgrad_y(self, y, psi): """gradient of f w.r.t to y""" raise NotImplementedError def fgrad_y_psi(self, y, psi): """gradient of f w.r.t to y""" raise NotImplementedError def f_inv(self, z, max_iterations=250, y=None): """ Calculate the numerical inverse of f. This should be overwritten for specific warping functions where the inverse can be found in closed form. :param max_iterations: maximum number of N.R. iterations """ z = z.copy() y = np.ones_like(z) it = 0 update = np.inf while np.abs(update).sum() > 1e-10 and it < max_iterations: fy = self.f(y) fgrady = self.fgrad_y(y) update = (fy - z) / fgrady y -= self.rate * update it += 1 #if it == max_iterations: # print("WARNING!!! Maximum number of iterations reached in f_inv ") # print("Sum of roots: %.4f" % np.sum(fy - z)) return y def plot(self, xmin, xmax): y = np.arange(xmin, xmax, 0.01) f_y = self.f(y) from matplotlib import pyplot as plt plt.figure() plt.plot(y, f_y) plt.xlabel('y') plt.ylabel('f(y)') plt.title('warping function') plt.show() class TanhFunction(WarpingFunction): """ This is the function proposed in Snelson et al.: A sum of tanh functions with linear trends outside the range. Notice the term 'd', which scales the linear trend. """ def __init__(self, n_terms=3, initial_y=None): """ n_terms specifies the number of tanh terms to be used """ self.n_terms = n_terms self.num_parameters = 3 * self.n_terms + 1 self.psi = np.ones((self.n_terms, 3)) super(TanhFunction, self).__init__(name='warp_tanh') self.psi = Param('psi', self.psi) self.psi[:, :2].constrain_positive() self.d = Param('%s' % ('d'), 1.0, Logexp()) self.link_parameter(self.psi) self.link_parameter(self.d) self.initial_y = initial_y def f(self, y): """ Transform y with f using parameter vector psi psi = [[a,b,c]] :math:`f = (y * d) + \\sum_{terms} a * tanh(b *(y + c))` """ d = self.d mpsi = self.psi z = d * y.copy() for i in range(len(mpsi)): a, b, c = mpsi[i] z += a * np.tanh(b * (y + c)) return z def fgrad_y(self, y, return_precalc=False): """ gradient of f w.r.t to y ([N x 1]) :returns: Nx1 vector of derivatives, unless return_precalc is true, then it also returns the precomputed stuff """ d = self.d mpsi = self.psi # vectorized version S = (mpsi[:,1] * (y[:,:,None] + mpsi[:,2])).T R = np.tanh(S) D = 1 - (R ** 2) GRAD = (d + (mpsi[:,0:1][:,:,None] * mpsi[:,1:2][:,:,None] * D).sum(axis=0)).T if return_precalc: return GRAD, S, R, D return GRAD def fgrad_y_psi(self, y, return_covar_chain=False): """ gradient of f w.r.t to y and psi :returns: NxIx4 tensor of partial derivatives """ mpsi = self.psi w, s, r, d = self.fgrad_y(y, return_precalc=True) gradients = np.zeros((y.shape[0], y.shape[1], len(mpsi), 4)) for i in range(len(mpsi)): a,b,c = mpsi[i] gradients[:, :, i, 0] = (b * (1.0/np.cosh(s[i])) ** 2).T gradients[:, :, i, 1] = a * (d[i] - 2.0 * s[i] * r[i] * (1.0/np.cosh(s[i])) ** 2).T gradients[:, :, i, 2] = (-2.0 * a * (b ** 2) * r[i] * ((1.0 / np.cosh(s[i])) ** 2)).T gradients[:, :, 0, 3] = 1.0 if return_covar_chain: covar_grad_chain = np.zeros((y.shape[0], y.shape[1], len(mpsi), 4)) for i in range(len(mpsi)): a,b,c = mpsi[i] covar_grad_chain[:, :, i, 0] = (r[i]).T covar_grad_chain[:, :, i, 1] = (a * (y + c) * ((1.0 / np.cosh(s[i])) ** 2).T) covar_grad_chain[:, :, i, 2] = a * b * ((1.0 / np.cosh(s[i])) ** 2).T covar_grad_chain[:, :, 0, 3] = y return gradients, covar_grad_chain return gradients def update_grads(self, Y_untransformed, Kiy): grad_y = self.fgrad_y(Y_untransformed) grad_y_psi, grad_psi = self.fgrad_y_psi(Y_untransformed, return_covar_chain=True) djac_dpsi = ((1.0 / grad_y[:, :, None, None]) * grad_y_psi).sum(axis=0).sum(axis=0) dquad_dpsi = (Kiy[:, None, None, None] * grad_psi).sum(axis=0).sum(axis=0) warping_grads = -dquad_dpsi + djac_dpsi self.psi.gradient[:] = warping_grads[:, :-1] self.d.gradient[:] = warping_grads[0, -1] class LogFunction(WarpingFunction): """ Easy wrapper for applying a fixed log warping function to positive-only values. The closed_inverse flag should only be set to False for debugging and testing purposes. """ def __init__(self, closed_inverse=True): self.num_parameters = 0 super(LogFunction, self).__init__(name='log') if closed_inverse: self.f_inv = self._f_inv def f(self, y): return np.log(y) def fgrad_y(self, y): return 1. / y def update_grads(self, Y_untransformed, Kiy): pass def fgrad_y_psi(self, y, return_covar_chain=False): if return_covar_chain: return 0, 0 return 0 def _f_inv(self, z, y=None): return np.exp(z) class IdentityFunction(WarpingFunction): """ Identity warping function. This is for testing and sanity check purposes and should not be used in practice. The closed_inverse flag should only be set to False for debugging and testing purposes. """ def __init__(self, closed_inverse=True): self.num_parameters = 0 super(IdentityFunction, self).__init__(name='identity') if closed_inverse: self.f_inv = self._f_inv def f(self, y): return y def fgrad_y(self, y): return np.ones(y.shape) def update_grads(self, Y_untransformed, Kiy): pass def fgrad_y_psi(self, y, return_covar_chain=False): if return_covar_chain: return 0, 0 return 0 def _f_inv(self, z, y=None): return z
import numpy as np import scipy.stats as st # ------------------------------ # functions # ------------------------------ # make 2D Gaussian array # this script is introduced in stack overflow # https://stackoverflow.com/questions/29731726/how-to-calculate-a-gaussian-kernel-matrix-efficiently-in-numpy def gkern(kernlen=21, nsig=3): """Returns a 2D Gaussian kernel array.""" interval = (2*nsig+1.)/(kernlen) x = np.linspace(-nsig-interval/2., nsig+interval/2., kernlen+1) kern1d = np.diff(st.norm.cdf(x)) kernel_raw = np.sqrt(np.outer(kern1d, kern1d)) kernel = kernel_raw/kernel_raw.sum() return kernel
# Import classifiers from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier # Import similarity indices predictors from linkprediction.prediction_methods.prediction.similarity_indices import ( AdamicAdar, AdjustedRand, CommonNeighbors, Jaccard, Salton, PreferentialAttachement, Sorensen, ResourceAllocation, SameCommunity, ShortestPath, TotalNeighbors, UDegree, VDegree, HubPromoted, HubDepressed, LeichtHolmeNewman) # Import social theory predictors from linkprediction.prediction_methods.prediction.social_theory import ( StructuralHoleTheory, SocialExchangeTheory, EndogenousBalanceTheory, EndogenousCollectiveActionTheory, HomophilyTheories, ResourceDependencyTheory, ExogenousBalanceTheory, ExogenousCollectiveActionTheory) class LinkPredictorFactory: def create(self, model, **kwargs): if self._is_topology(model): return self._create_topology(model, **kwargs) elif self._is_socialtheory_endogenous(model): return self._create_socialtheory_endogenous(model, **kwargs) elif self._is_socialtheory_exogenous(model): return self._create_socialtheory_exogenous(model, **kwargs) elif self._is_classifier(model): return self._create_classifier(model, **kwargs) elif self._is_others(model): return self._create_others(model, **kwargs) else: raise ValueError( "Invalid value for `feature_type` ({0})." .format(model['feature_type']) ) def _create_topology(self, model, graph): name = model['designation'] if name == "AdamicAdar": return AdamicAdar(graph.to_undirected()) elif name == "AdjustedRand": return AdjustedRand(graph.to_undirected()) elif name == "CommonNeighbors": return CommonNeighbors(graph.to_undirected()) elif name == "Jaccard": return Jaccard(graph.to_undirected()) elif name == "Salton": return Salton(graph.to_undirected()) elif name == "PreferentialAttachement": return PreferentialAttachement(graph.to_undirected()) elif name == "ResourceAllocation": return ResourceAllocation(graph.to_undirected()) elif name == "SameCommunity": return SameCommunity(graph.to_undirected()) elif name == "ShortestPath": return ShortestPath(graph.to_undirected()) elif name == "TotalNeighbors": return TotalNeighbors(graph.to_undirected()) elif name == "UDegree": return UDegree(graph.to_undirected()) elif name == "VDegree": return VDegree(graph.to_undirected()) elif name == "Sorensen": return Sorensen(graph.to_undirected()) elif name == "HubPromoted": return HubPromoted(graph.to_undirected()) elif name == "HubDepressed": return HubDepressed(graph.to_undirected()) elif name == "LeichtHolmeNewman": return LeichtHolmeNewman(graph.to_undirected()) else: raise ValueError( "Invalid value for `designation` ({0})." .format(name) ) def _create_socialtheory_endogenous(self, model, graph, predicted_graph, threshold): name = model['designation'] if name == "SocialExchangeTheory": return SocialExchangeTheory(graph, predicted_graph) elif name == "BalanceTheory": return EndogenousBalanceTheory(graph, predicted_graph) elif name == "CollectiveActionTheory": return EndogenousCollectiveActionTheory(graph, predicted_graph) elif name == "StructuralHoleTheory": return StructuralHoleTheory(graph, predicted_graph) else: raise ValueError( "Invalid value for `designation` ({0})." .format(name) ) def _create_socialtheory_exogenous(self, model, graph, predicted_graph, threshold): name = model['designation'] weightings = {} for weight in model['parameters']['attribute_weightings']: weightings[weight['attribute']] = weight['value'] if name == "HomophilyTheories": return HomophilyTheories(graph, predicted_graph, threshold, weightings) elif name == "BalanceTheory": return ExogenousBalanceTheory(graph, predicted_graph, threshold, weightings) elif name == "ResourceDependenceTheory": return ResourceDependencyTheory(graph, predicted_graph, threshold, weightings) elif name == "CollectiveActionTheory": return ExogenousCollectiveActionTheory(graph, predicted_graph, threshold, weightings) else: raise ValueError( "Invalid value for `designation` ({0})." .format(name) ) def _create_classifier(self, model): name = model['designation'] if name == "DecisionTree": return DecisionTreeClassifier() elif name == "SupportVector": return SVC(probability=True) elif name == "RandomForest": return RandomForestClassifier() elif name == "LogisticRegression": return LogisticRegression() elif name == "KNeighbors": return KNeighborsClassifier() elif name == "GaussianNB": return GaussianNB() elif name == "GradientBoosting": return GradientBoostingClassifier() else: raise ValueError( "Invalid value for `designation` ({0})." .format(name) ) def _create_others(self, model): raise NotImplementedError() def _is_topology(self, model): return model['feature_type'] == 'Topology' def _is_socialtheory_endogenous(self, model): return model['feature_type'] == 'Social Theory with endogenous Attributes' def _is_socialtheory_exogenous(self, model): return model['feature_type'] == 'Social Theory with exogenous Attributes' def _is_classifier(self, model): return model['feature_type'] == 'ML-Classifier' def _is_others(self, model): return model['feature_type'] == 'Others'
# -*- encoding: utf-8 -*- """ Copyright (c) 2019 - present AppSeed.us """ from apps.home import blueprint from flask import render_template, request from flask_login import login_required from jinja2 import TemplateNotFound @blueprint.route('/index') @login_required def index(): return render_template('home/index.html', segment='index') @blueprint.route('/<template>') @login_required def route_template(template): try: if not template.endswith('.html'): template += '.html' # Detect the current page segment = get_segment(request) # Serve the file (if exists) from app/templates/home/FILE.html return render_template("home/" + template, segment=segment) except TemplateNotFound: return render_template('home/page-404.html'), 404 except: return render_template('home/page-500.html'), 500 # Helper - Extract current page name from request def get_segment(request): try: segment = request.path.split('/')[-1] if segment == '': segment = 'index' return segment except: return None
import numpy as np import matplotlib.pyplot as plt import seekr2.modules.common_base as base import matplotlib.animation as animation import plotting title = "Entropy Barrier System" model_file = "/home/lvotapka/toy_seekr_systems/entropy_barrier/model.xml" model = base.load_model(model_file) boundaries = np.array([[-1.0, 1.0], [-1.0, 1.0]]) toy_plot = plotting.Toy_plot(model, title, boundaries) milestone_cv_functions = ["value"] plotting.draw_linear_milestones(toy_plot, milestone_cv_functions) ani = toy_plot.animate_trajs(animating_anchor_indices=[0, 1, 2, 3, 4, 5, 6]) #plt.show() movie_filename = "entropy_barrier.mp4" writervideo = animation.FFMpegWriter(fps=60) ani.save(movie_filename, writer=writervideo)
import os,sys class ScenarioConfig(object): # ADD_TO_CONF_SYSTEM 加入参数搜索路径 do not remove this comment !!! map_ = '3m' step_mul = 8 difficulty = '7' game_version = 'latest' replay_dir = '' episode_limit = 60 N_TEAM = 1 N_AGENT_EACH_TEAM = [3,] # because map_ = '3m' AGENT_ID_EACH_TEAM = [range(0,3),] TEAM_NAMES = [ 'ALGORITHM.Starcraft.star_foundation->StarFoundation', ] ActAsUnity = False RewardAsUnity = True state_provided = True avail_act_provided = True def make_sc2_env(env_id, rank): return Env_Compat_Wrapper(rank) # 一层套一层。。。这层是为了参数对齐 class Env_Compat_Wrapper(): def __init__(self, rank): from smac.env import StarCraft2Env self.env = StarCraft2Env(map_name=ScenarioConfig.map_, step_mul=ScenarioConfig.step_mul, difficulty=ScenarioConfig.difficulty, game_version=ScenarioConfig.game_version, replay_dir=ScenarioConfig.replay_dir) env_info = self.env.get_env_info() self.observation_space = { 'state_shape': env_info["state_shape"], 'obs_shape':env_info["obs_shape"]} self.action_space = { 'n_actions': env_info["n_actions"], 'n_agents': env_info["n_agents"]} assert env_info["n_agents"] == ScenarioConfig.N_AGENT_EACH_TEAM[0], ('Changed a map? Reconfig ScenarioConfig Above!!') assert env_info["episode_limit"] == ScenarioConfig.episode_limit, ('Changed a map? Reconfig ScenarioConfig Above!!') self.id = rank pass def step(self, act): reward, terminated, info = self.env.step(act) reward = [reward] done = terminated ob = self.env.get_obs() info['state'] = self.env.get_state() info['avail-act'] = self.env.get_avail_actions() return (ob, reward, done, info) def reset(self): self.env.reset() ob = self.env.get_obs() info = {} info['state'] = self.env.get_state() info['avail-act'] = self.env.get_avail_actions() return ob, info def render(self): return # self.env.close() # self.env.reset() # state = self.env.get_state() # obs = self.env.get_obs() # reward, terminated, info = self.env.step(actions) # win_tag = True if terminated and 'battle_won' in info and info['battle_won'] else False
import time,random,re,requests,json # 因为时间有点久, 忘记这个文件是否可以删除了 class Qiass: def __init__(self) -> None: self.__createSession() def __createSession(self): self.__session = requests.session() self.__refreshSessionHeaders() def __refreshSessionHeaders(self): self.__session.headers = {"User-Agent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36"} # 时间 def __timeLocal(self): return time.localtime() def timeLocal(self, mode=0): date = self.__timeLocal() year = date.tm_year month = date.tm_mon day = date.tm_mday hour = date.tm_hour minute = date.tm_min if mode == 0: data = { "year": year, "month": month, "day": day, "hour": hour, "minute": minute, } return data if mode == 1: return "%s-%s-%s" % (year, month, day) if mode == 2: return "%s-%s-%s(%s:%s)" % (year, month, day, hour, minute) if mode == 3: return "%s年%s月%s日" % (year, month, day) if mode == 4: return "%s年%s月%s日(%s:%s)" % (year, month, day, hour, minute) def __timeNetwork(self):pass def timeNetwork(self):pass # 时间戳 def __timeStamp(self) -> int: return int(time.mktime(time.localtime())) def timeStamp(self, Mode:int) -> int: if Mode == 0: return self.__timeStamp() if Mode == 1: return self.__timeStamp() + random.randint(100,900) if Mode == 2: return int(str(self.timeStamp) + str(random.randint(100,999))) return False # 前缀匹配(前缀, 模糊, 正则) def __prefix(self, text:str, prifixList:list): result = False for i in prifixList: # 默认语句(不带参数) if len(text) == len(i) and text == i: result = "Default" break # 带参语句 if text[:len(i)] == i: result = text[len(i):] break # 这里是为了去掉空格 if result != False and result != "Default": number = 0 for i in result: if i == " ": number += 1 continue break if number > 0: result = result[number:] # 这里是因为上面去掉空格, 那就是没有传参, 那就是使用Default了, 被误伤了 if result == "": return "Default" return result def prefix(self, text: str, prifixList: list) -> str: if len(prifixList) > 0: return self.__prefix(text, prifixList) prifixList = [ '#', '[CQ:at,qq=1053287283]', '大晴', ] prifixReList = [ "\[CQ:reply,id=.*?\]", # 为了匹配回复: [CQ:reply,id=.*?][CQ:at,qq=1053287283] [CQ:at,qq=1053287283] 在吗 "\[CQ:at,qq=1053287283\]" # 为了匹配回复: [CQ:reply,id=.*?][CQ:at,qq=1053287283] 不在吗 ] return self.__prefix(text, prifixList) # 词库屏蔽 def __shielding(self, text:str, reList:list, shieldingWord=None): isExecute = False if shieldingWord == None: shieldingWord = "*" for pattern in reList: l = re.findall(pattern, text) if len(l) >= 1: for j in l: keyWord = j if shieldingWord == "*": text = text.replace(keyWord, shieldingWord * len(keyWord)) if shieldingWord != "*": text = text.replace(keyWord, shieldingWord) isExecute = text return isExecute def shielding(self, text:str) -> str: re0 = [ "[0-9]{11}", "[0-9]{10}", "jj", "\{face:[0-9]\}|\{face:[0-9]{2}\}|\{face:[0-9]{3}\}", "狂撸", "狂射", "9000次", "求草" "你就不能搞点新创意出来嘛", "face57","我不是大便,我的粉丝也不是苍蝇", "别发这么无聊的信息行不", ] re1 = [ '傻逼', '煞笔', '神经病', '母猪', "tianyu" ] re2 = [ '菲菲', '浩哥', '小燕', '吴珂', '王雨昕', '茉姐', "杨秀花" ] text = self.__shielding(text, re0) text = self.__shielding(text, re1, "小可爱") text = self.__shielding(text, re2, "小晴") return text # 分页 def __paging(self, qslb:list, pageRows:int, pageSee:int): countTotal = len(qslb) pageTotal = countTotal / pageRows if not pageTotal.is_integer(): pageTotal = int(pageTotal) + 1 if pageSee > pageTotal: return False if pageSee <= 1: start = 0 end = pageRows if pageSee > 1: start = pageRows * pageSee - pageRows end = pageRows * pageSee data = {} for i in list(qslb)[start:end]: data[i] = qslb[i] result = { "pageSee":pageSee, "pageTotal":pageTotal, "data":data } return result def paging(self, qslb:list, pageRows=5, pageSee=1): try: pageRows = int(pageRows) pageSee = int(pageSee) except: return False return self.__paging(qslb, pageRows, pageSee) # 概率 def __probability(self, number=10, percentage=2): data = {"True" : 0, "False" : 0} for i in range(0, number): lucky = random.randint(0, 100 * 10) # 概率公式 if lucky <= percentage * 10: data["True"] += 1 else: data["False"] += 1 return data def probability(self, number=1, percentage=2): if number < 1: return None data = self.__probability(number, percentage) if number == 1: if data["True"] > 0: return True else: return False return data # 聊天(本地词库, 图灵123, 青云客) def __chatThesaurus(self, text:str): #TODO 后期改为数据库储存 data = { "早":"早啊,祝你今天愉快!", "中午好": "中午好,吃午饭没呀", "晚上好": "晚上好,我去睡觉觉啦", } for i in data: if i == text: return data[i] return False def __chatTuLing123(self, text:str) -> requests.Response: # TODO 这里需要填写自己的apiKey url = "http://openapi.tuling123.com/openapi/api/v2" dataAll = { "reqType": "0", # 0-文本(默认)、1-图片、2-音频 "perception": { # 文本,图片,音频,客户端 "inputText": { "text": text, }, "inputImage": { "url": "", }, "inputMedia": { "url": "", }, "selfInfo": { # 所在城市 省份 街道 "location": { "city": "", "province": "", "street": "", }, }, }, "userInfo": { # 机器人标识,用户唯一标识,群聊唯一标识,群内用户昵称 "apiKey": "就是这个地方", "userId": "", "groupId": "", "userIdName": "", }, } params = { "reqType": "0", "perception": { "inputText": { "text": text, } }, "userInfo": { "apiKey": "就是这个地方", "userId": "5", }, } return self.__session.post(url, data=json.dumps(params)) def __chatQingYunKe(self, text:str) -> requests.Response: url = "http://api.qingyunke.com/api.php" params = { "key": "free", "appid": "0", "msg": text, } return self.__session.get(url, params=params) def chatThesaurus(self, text:str): answer = self.__chatThesaurus(text) return answer def chatTuLing123(self, text:str): res = self.__chatTuLing123(text) data = json.loads(res.text) answer = data["results"][0]["values"]["text"] if answer == "请求次数超限制!": answer = False return answer def chatQingYunKe(self, text:str): res = self.__chatQingYunKe(text) if res.status_code == 200: data = json.loads(res.text) answer = data["content"] else: answer = False return answer # 帮我选择 def helpMeChoose(self, text:str): l = text.split("*") return "已为您选择: " + l[random.randint(0, len(l)-1)] # 投掷骰子 def roll(self, text:str): if not text.isdigit(): return "以为您投掷骰子(Default)\n结果为: %d" % random.randint(0, 10) text = int(text) if text < 0: return "以为您投掷骰子(Default): %d" % random.randint(0, 10) return "已为您投掷骰子(0,%d)\n结果为: %d" % (text, random.randint(0, text)) # 功能列表/查看 def functionList(self, text:str, mode:int): # 数据源 start = "使用方法如下:\n" data = { "聊天系统":start+"1.发送'大晴 你好'\n2.发送'# 你好'\n3.发送'@大晴 你好'", "时间系统":start+"1.发送'当前时间'\n2.发送'获取时间戳'", "随机系统":start+"1.发送'帮我选择 打游戏*学习'\n2.发送'扔骰子 66'\n3.发送'随机食物'\n4.发送'随机表情'", "娱乐系统":start+"1.发送'戳一戳 @群友'", "功能系统":start+"1.发送'功能列表'\n2.发送'查看功能 聊天系统'", "公告系统":start+"1.发送'公告列表'\n2.发送'查看公告 v1.0'", "翻译系统":start+"暂无介绍...", "查询系统":start+"暂无介绍...", "新闻系统":start+"暂无介绍...", "模板系统":start+"暂无介绍...", "被动系统":start+"1.有概率自动回复\n2.主动欢迎新人入群\n", "计算系统":start+"暂无介绍...", "好感度系统":start+"暂无介绍...", "模拟器系统":start+"暂无介绍...", "黑白名单系统":start+"暂无介绍...", } # 列表 if mode == 0: ''' result = "" i = 0 for items in data: result += "%d.%s\n" % (i, items) i += 1 return result + "Tips: 发送'查看功能 功能名'即可获取功能信息" ''' result = "[功能列表]\n" for i in range(0, len(data)): if i != 0 and i % 2 == 0: result += "\n" name = list(data)[i] if len(name) > 4: result += "%s%s" % (name, " "*(4+(4-len(name)))) continue result += "%s%s" % (name, " "*4) return result + "\nTips: 发送'查看功能 功能名'即可获取功能信息" # 信息 if mode == 1: # 先使用roid if text.isdigit(): if int(text) > -1 and int(text) < len(data): k = list(data)[int(text)] v = data[k] return "[%s]\n%s" % (k, v) # 再使用key-value result = data.get(text) if result == None: return "未找到[%s]功能的信息" % text if result != None: return "[%s]\n%s" % (text, result) return False # 公告列表/查看 def noticeList(self, text:str, mode:int): data = { "测试公告标题":("测试公告内容", "测试公告作者", "测试公告发布时间"), "v1.0":("暂无内容", "晴兽", "2022年3月3日18:45:47"), } # 列表 if mode == 0: result = "" i = 0 for items in data: result += "%d.%s\n" % (i, items) i += 1 return result + "Tips: 发送'查看公告 公告名'即可获取公告信息" # 信息 if mode == 1: result = data.get(text) if result == None: return "未找到[%s]公告的信息" % text if result != None: return "[%s]\n作者:%s\n内容:%s\n发布时间:%s" % (text, result[0],result[1],result[2]) return False if __name__ == "__main__": q = Qiass()
from sklearn.cluster import DBSCAN, KMeans import numpy as np import cv2 from numba import jit def get_clustering_points(img): ''' Retrieve points that need to be clustered from a grayscale image Parameters: img - grayscale img Returns: coordinates of each non-zero pixel in the mask (row, col) ''' rows, cols = np.nonzero(img) return list(zip(rows, cols)) def get_number_of_clusters(labels): ''' From a set of an array where each element is a cluster label Extract the number of clusters ''' return len(set(labels)) - (1 if -1 in labels else 0) def cluster_dbscan(img, eps = 3, min_samples=10): ''' Apply clustering. Parameters: img -- binary mask where eps -- distance needed to be included in the cluster min_samples - how many samples make a cluster Returns: X, labels, n_clusters X - coordinates of each non-zero pixel in the mask (row, col) labels - cluster labels n_clusters - total clusters ''' labels = [] n_clusters = 0 X = get_clustering_points(img) if len(X) == 0: return X, labels, n_clusters algo = DBSCAN(eps = eps, min_samples = min_samples) try: labels = algo.fit_predict(X) n_clusters = get_number_of_clusters(labels) except: pass return X, labels, n_clusters def cluster_kmeans(img, n_classes=2): ''' Apply k-means clustering. Parameters: img -- binary mask where n_clusters - number of classes Returns: X, labels, n_clusters X - coordinates of each non-zero pixel in the mask (row, col) labels - cluster labels ''' X = get_clustering_points(img) kmeans = KMeans(n_clusters = n_classes) labels = kmeans.fit_predict(X) return X, labels @jit def min_max_coords(rect1, pt2): (l1, t1, r1, b1) = rect1 (l2, t2) = pt2 l = min(l1, l2) t = min(t1, t2) r = max(r1, l2) b = max(b1, t2) return l, t, r, b @jit def map_clusters_to_bounding_boxes(labels, coords, n_clusters = None): ''' Map each cluster to its bounding box ''' if n_clusters is None: n_clusters = len(set(labels)) - (1 if -1 in labels else 0) buds = [None] * n_clusters for label, coord in zip(labels, coords): if label == -1: continue t, l = coord if buds[label] is None: buds[label] = (l, t, l, t) else: buds[label] = min_max_coords(buds[label], (l, t)) return buds def mask_from_clusters(labels, coords, mask_shape_row_col): ''' Create a 2D mask where each (row, col) is set to the label of its cluster or 0 if it is non-clustered Parameters: labels - array-like where labels[i] == cluster_number coords - coordinates of each element in labels[i] mask_shape_row_col - tuple of (rows, cols) for the output mask Returns: A 2D image where each pixel is set to the number of the cluster + 1 and un-clustered pixels are set to 0 ''' mask = np.zeros(mask_shape_row_col) mask[tuple(zip(*coords))] = labels + 1 return mask def get_box_center (rect): l, t, r, b = rect return ((l + r) // 2, (t + b) // 2) def get_box_radius(rect): l, t, r, b = rect return max((r-l) // 2, (b - t) // 2) def draw_clusters(img, clusters, color=(255, 255, 0), radius = None): for bud in clusters: if radius is None: rad = get_box_radius(bud) else: rad = radius _ = cv2.circle(img, get_box_center(bud), rad, color, 2) def get_clusters_from_mask_verbose(mask, eps = 1, min_samples = 1): ''' Apply DBSCAN clustering to a mask Parameters: mask - the mask to compute clusters from eps - max radius around a given point so points within the circle of this radius are included in the same cluster min_samples - minimal number of points to define a cluster Returns: centers, radii, non-zero pixel coordinates, array of labels, number of clusters, average radius ''' coords, clusters, n_clusters = cluster_dbscan(mask, eps=eps, min_samples = min_samples) if n_clusters == 0: return None, None, None, None, 0, None clustered_rects = map_clusters_to_bounding_boxes(clusters, coords, n_clusters) radii = np.array(list(map(get_box_radius, clustered_rects))) centers = np.array(list(map(get_box_center, clustered_rects))) avg_radius = np.mean(radii) return centers, radii, coords, clusters, n_clusters, avg_radius def get_clusters_from_mask(mask, eps = 1, min_samples = 1): ''' Apply DBSCAN clustering to a mask Parameters: mask - the mask to compute clusters from eps - max radius around a given point so points within the circle of this radius are included in the same cluster min_samples - minimal number of points to define a cluster Returns: centers, radii, non-zero pixel coordinates, array of labels, number of clusters, average radius ''' centers, radii, coords, clusters, n_clusters, avg_radius = get_clusters_from_mask_verbose(mask, eps, min_samples) return centers, radii
import requests def LookupActress(): url = 'https://jav-rest-api-htpvmrzjet.now.sh/api/actress?name=' actressName = input("Search for an actress: ") actressURL = url + actressName # print(actressURL) actressRequest = requests.get(actressURL).json() counts = len(actressRequest['result']) print("{:<3} | {:<7} | {:17} | {}\t".format("#", "ID", "Actress Name", "Japanese Name")) print("=======================================================") for i in range(counts): actress_id = actressRequest['result'][i]['id'] actress_name = actressRequest['result'][i]['name'] actress_japName = actressRequest['result'][i]['japanName'] print("{:<3} | {:<7} | {:17} | {}\t".format(i+1, actress_id, actress_name, actress_japName)) print('Found {} babes named "{}"'.format(counts, actressName)) print() def LookUpMovies(): video_url = 'https://jav-rest-api-htpvmrzjet.now.sh/api/videos/' actress_id = input("Enter actress ID: ") vidURL = video_url + actress_id videoRequest = requests.get(vidURL).json() video_counts = len(videoRequest['result']) actress_name = videoRequest['result'][0]['actress'][0]['name'] print("{:<3} | {} | {}\t| {:<15} | {}".format("#", "Year", "Name", "Code", "Title")) print("=============================================================================") for i in range(video_counts): video_title = videoRequest['result'][i]['name'] if len(videoRequest['result'][i]['name']) > 50: video_title = video_title.replace(video_title[49:], '...') else: video_title = videoRequest['result'][i]['name'] siteUrl = videoRequest['result'][i]['siteUrl'] video_code = siteUrl[(siteUrl.find("cid=") + 4):(len(siteUrl) - 1)].upper() year = videoRequest['result'][i]['date'][:4] message = "{:<3} | {} | {}\t| {:<15} | {}".format(i+1, year, actress_name, video_code, video_title) print(message) print("Found {} videos for {}".format(video_counts, actress_name)) print() def programLoop(): while True: LookupActress() LookUpMovies() cont = input("Do you wish to continue?[Y/N]: ") if cont.lower() == 'n': print('Enjoy ;)') break def SuggestAnActress(): #work in progress pass def SuggestAMovie(): #work in progress6 pass if __name__ == "__main__": programLoop() #Thanks anh Hoàng toidicodedao for the Jav API :v # if len(actress_name) > 11: # print("{}\t | {} \t| {}\t".format(actress_id, actress_name, actress_japName)) # else: # print("{}\t | {}\t\t| {}\t".format(actress_id, actress_name, actress_japName))
# -*- coding:utf-8 -*- from .symbol import Symbol from .exception import CoilSyntaxError, CoilRuntimeError class Scheme(object): """ """ symbol_tables = {keyword: Symbol(keyword) for keyword in ['quote', 'if', 'set!', 'define', 'lambda', 'begin']} @classmethod def pause(cls, tokenizer): """ """ return [cls.__symbolize(token, tokenizer) for token in tokenizer][0] @classmethod def evaluate(cls, token, environment): """ """ if isinstance(token, Symbol): return environment.find(token)[token] elif not isinstance(token, list): return token elif token[0] is cls.__symbol('quote'): (_, exp) = token return exp elif token[0] is cls.__symbol('if'): (_, test, conseq, alt) = token return Scheme.evaluate((conseq if Scheme.evaluate(test, environment) else alt), environment) elif token[0] is cls.__symbol('set!'): (_, var, exp) = token environment.find(var)[var] = Scheme.evaluate(exp, environment) elif token[0] is cls.__symbol('define'): (_, var, exp) = token environment[var] = Scheme.evaluate(exp, environment) elif token[0] is cls.__symbol('lambda'): (_, var, exp) = token return lambda *args: Scheme.evaluate(var, Environment(var, args, environment)) elif token[0] is cls.__symbol('begin'): for exp in token[1:]: val = Scheme.evaluate(exp, env) return val else: exps = [Scheme.evaluate(exp, environment) for exp in token] proc = exps.pop(0) return proc(*exps) @classmethod def __symbolize(cls, token, tokenizer): """ """ if token == '(': lists = [] while True: next_token = next(tokenizer) if next_token == ')': return lists else: lists.append(cls.__symbolize(next_token, tokenizer)) elif token == ')': raise CoilSyntaxError("syntax error, unexpected ')'") else: return cls.__atom(token) @classmethod def __atom(cls, token): """ """ if token == '#t' or token == '#f': return True if token == '#t' else False if token.isnumeric(): return float(token) else: return cls.__symbol(token) @classmethod def __format(cls, atom): """ """ if atom is True or atom is False: return '#t' if atom is True else '#f' elif isinstance(atom, Symbol): return atom else: return str(atom) @classmethod def __symbol(cls, token): """ """ if token not in cls.symbol_tables: cls.symbol_tables[token] = Symbol(token) return cls.symbol_tables[token]
import bisect # Usig binary search class Solution(object): def suggestedProducts(self, products, searchWord): """ :type products: List[str] :type searchWord: str :rtype: List[List[str]] """ products.sort() result, prefix, startIdx = [], "", 0 for char in searchWord: prefix += char startIdx = bisect.bisect_left(products, prefix, startIdx) currnetSearchRes = [] for product in products[startIdx: startIdx + 3]: if product.startswith(prefix): currnetSearchRes.append(product) result.append(currnetSearchRes) return result
# Copyright (c) 1999-2008 Mark D. Hill and David A. Wood # Copyright (c) 2009 The Hewlett-Packard Development Company # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer; # redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution; # neither the name of the copyright holders nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from m5.util import orderdict from slicc.util import PairContainer from slicc.symbols.Symbol import Symbol from slicc.symbols.Var import Var class DataMember(PairContainer): def __init__(self, ident, type, pairs, init_code): super(DataMember, self).__init__(pairs) self.ident = ident self.type = type self.init_code = init_code class Enumeration(PairContainer): def __init__(self, ident, pairs): super(Enumeration, self).__init__(pairs) self.ident = ident class Type(Symbol): def __init__(self, table, ident, location, pairs, machine=None): super(Type, self).__init__(table, ident, location, pairs) self.c_ident = ident self.abstract_ident = "" if machine: if self.isExternal or self.isPrimitive: if "external_name" in self: self.c_ident = self["external_name"] else: # Append with machine name self.c_ident = "%s_%s" % (machine, ident) self.pairs.setdefault("desc", "No description avaliable") # check for interface that this Type implements if "interface" in self: interface = self["interface"] if interface in ("Message", "NetworkMessage"): self["message"] = "yes" if interface == "NetworkMessage": self["networkmessage"] = "yes" # FIXME - all of the following id comparisons are fragile hacks if self.ident in ("CacheMemory"): self["cache"] = "yes" if self.ident in ("TBETable"): self["tbe"] = "yes" if self.ident == "TimerTable": self["timer"] = "yes" if self.ident == "DirectoryMemory": self["dir"] = "yes" if self.ident == "PersistentTable": self["persistent"] = "yes" if self.ident == "Prefetcher": self["prefetcher"] = "yes" self.isMachineType = (ident == "MachineType") self.isStateDecl = ("state_decl" in self) self.statePermPairs = [] self.data_members = orderdict() self.methods = {} self.enums = orderdict() @property def isPrimitive(self): return "primitive" in self @property def isNetworkMessage(self): return "networkmessage" in self @property def isMessage(self): return "message" in self @property def isBuffer(self): return "buffer" in self @property def isInPort(self): return "inport" in self @property def isOutPort(self): return "outport" in self @property def isEnumeration(self): return "enumeration" in self @property def isExternal(self): return "external" in self @property def isGlobal(self): return "global" in self @property def isInterface(self): return "interface" in self # Return false on error def addDataMember(self, ident, type, pairs, init_code): if ident in self.data_members: return False member = DataMember(ident, type, pairs, init_code) self.data_members[ident] = member var = Var(self.symtab, ident, self.location, type, "m_%s" % ident, {}, None) self.symtab.registerSym(ident, var) return True def dataMemberType(self, ident): return self.data_members[ident].type def methodId(self, name, param_type_vec): return '_'.join([name] + [ pt.c_ident for pt in param_type_vec ]) def methodIdAbstract(self, name, param_type_vec): return '_'.join([name] + [ pt.abstract_ident for pt in param_type_vec ]) def statePermPairAdd(self, state_name, perm_name): self.statePermPairs.append([state_name, perm_name]) def addFunc(self, func): ident = self.methodId(func.ident, func.param_types) if ident in self.methods: return False self.methods[ident] = func return True def addEnum(self, ident, pairs): if ident in self.enums: return False self.enums[ident] = Enumeration(ident, pairs) # Add default if "default" not in self: self["default"] = "%s_NUM" % self.c_ident return True def writeCodeFiles(self, path, includes): if self.isExternal: # Do nothing pass elif self.isEnumeration: self.printEnumHH(path) self.printEnumCC(path) else: # User defined structs and messages self.printTypeHH(path) self.printTypeCC(path) def printTypeHH(self, path): code = self.symtab.codeFormatter() code(''' /** \\file ${{self.c_ident}}.hh * * * Auto generated C++ code started by $__file__:$__line__ */ #ifndef __${{self.c_ident}}_HH__ #define __${{self.c_ident}}_HH__ #include <iostream> #include "mem/ruby/slicc_interface/RubySlicc_Util.hh" ''') for dm in self.data_members.values(): if not dm.type.isPrimitive: code('#include "mem/protocol/$0.hh"', dm.type.c_ident) parent = "" if "interface" in self: code('#include "mem/protocol/$0.hh"', self["interface"]) parent = " : public %s" % self["interface"] code(''' $klass ${{self.c_ident}}$parent { public: ${{self.c_ident}} ''', klass="class") if self.isMessage: code('(Tick curTime) : %s(curTime) {' % self["interface"]) else: code('()\n\t\t{') code.indent() if not self.isGlobal: code.indent() for dm in self.data_members.values(): ident = dm.ident if "default" in dm: # look for default value code('m_$ident = ${{dm["default"]}}; // default for this field') elif "default" in dm.type: # Look for the type default tid = dm.type.c_ident code('m_$ident = ${{dm.type["default"]}}; // default value of $tid') else: code('// m_$ident has no default') code.dedent() code('}') # ******** Copy constructor ******** if not self.isGlobal: code('${{self.c_ident}}(const ${{self.c_ident}}&other)') # Call superclass constructor if "interface" in self: code(' : ${{self["interface"]}}(other)') code('{') code.indent() for dm in self.data_members.values(): code('m_${{dm.ident}} = other.m_${{dm.ident}};') code.dedent() code('}') # ******** Full init constructor ******** if not self.isGlobal: params = [ 'const %s& local_%s' % (dm.type.c_ident, dm.ident) \ for dm in self.data_members.itervalues() ] params = ', '.join(params) if self.isMessage: params = "const Tick curTime, " + params code('${{self.c_ident}}($params)') # Call superclass constructor if "interface" in self: if self.isMessage: code(' : ${{self["interface"]}}(curTime)') else: code(' : ${{self["interface"]}}()') code('{') code.indent() for dm in self.data_members.values(): code('m_${{dm.ident}} = local_${{dm.ident}};') if "nextLineCallHack" in dm: code('m_${{dm.ident}}${{dm["nextLineCallHack"]}};') code.dedent() code('}') # create a clone member code(''' ${{self.c_ident}}* clone() const { return new ${{self.c_ident}}(*this); } ''') if not self.isGlobal: # const Get methods for each field code('// Const accessors methods for each field') for dm in self.data_members.values(): code(''' /** \\brief Const accessor method for ${{dm.ident}} field. * \\return ${{dm.ident}} field */ const ${{dm.type.c_ident}}& get${{dm.ident}}() const { return m_${{dm.ident}}; } ''') # Non-const Get methods for each field code('// Non const Accessors methods for each field') for dm in self.data_members.values(): code(''' /** \\brief Non-const accessor method for ${{dm.ident}} field. * \\return ${{dm.ident}} field */ ${{dm.type.c_ident}}& get${{dm.ident}}() { return m_${{dm.ident}}; } ''') #Set methods for each field code('// Mutator methods for each field') for dm in self.data_members.values(): code(''' /** \\brief Mutator method for ${{dm.ident}} field */ void set${{dm.ident}}(const ${{dm.type.c_ident}}& local_${{dm.ident}}) { m_${{dm.ident}} = local_${{dm.ident}}; } ''') code('void print(std::ostream& out) const;') code.dedent() code(' //private:') code.indent() # Data members for each field for dm in self.data_members.values(): if "abstract" not in dm: const = "" init = "" # global structure if self.isGlobal: const = "static const " # init value if dm.init_code: # only global structure can have init value here assert self.isGlobal init = " = %s" % (dm.init_code) if "desc" in dm: code('/** ${{dm["desc"]}} */') code('$const${{dm.type.c_ident}} m_${{dm.ident}}$init;') # Prototypes for methods defined for the Type for item in self.methods: proto = self.methods[item].prototype if proto: code('$proto') code.dedent() code('};') code(''' inline std::ostream& operator<<(std::ostream& out, const ${{self.c_ident}}& obj) { obj.print(out); out << std::flush; return out; } #endif // __${{self.c_ident}}_HH__ ''') code.write(path, "%s.hh" % self.c_ident) def printTypeCC(self, path): code = self.symtab.codeFormatter() code(''' /** \\file ${{self.c_ident}}.cc * * Auto generated C++ code started by $__file__:$__line__ */ #include <iostream> #include "mem/protocol/${{self.c_ident}}.hh" #include "mem/ruby/common/Global.hh" #include "mem/ruby/system/System.hh" using namespace std; ''') code(''' /** \\brief Print the state of this object */ void ${{self.c_ident}}::print(ostream& out) const { out << "[${{self.c_ident}}: "; ''') # For each field code.indent() for dm in self.data_members.values(): code('out << "${{dm.ident}} = " << m_${{dm.ident}} << " ";''') if self.isMessage: code('out << "Time = " << g_system_ptr->clockPeriod() * getTime() << " ";') code.dedent() # Trailer code(''' out << "]"; }''') # print the code for the methods in the type for item in self.methods: code(self.methods[item].generateCode()) code.write(path, "%s.cc" % self.c_ident) def printEnumHH(self, path): code = self.symtab.codeFormatter() code(''' /** \\file ${{self.c_ident}}.hh * * Auto generated C++ code started by $__file__:$__line__ */ #ifndef __${{self.c_ident}}_HH__ #define __${{self.c_ident}}_HH__ #include <iostream> #include <string> ''') if self.isStateDecl: code('#include "mem/protocol/AccessPermission.hh"') if self.isMachineType: code('#include "base/misc.hh"') code('#include "mem/ruby/common/Address.hh"') code('struct MachineID;') code(''' // Class definition /** \\enum ${{self.c_ident}} * \\brief ${{self.desc}} */ enum ${{self.c_ident}} { ${{self.c_ident}}_FIRST, ''') code.indent() # For each field for i,(ident,enum) in enumerate(self.enums.iteritems()): desc = enum.get("desc", "No description avaliable") if i == 0: init = ' = %s_FIRST' % self.c_ident else: init = '' code('${{self.c_ident}}_${{enum.ident}}$init, /**< $desc */') code.dedent() code(''' ${{self.c_ident}}_NUM }; // Code to convert from a string to the enumeration ${{self.c_ident}} string_to_${{self.c_ident}}(const std::string& str); // Code to convert state to a string std::string ${{self.c_ident}}_to_string(const ${{self.c_ident}}& obj); // Code to increment an enumeration type ${{self.c_ident}} &operator++(${{self.c_ident}} &e); ''') # MachineType hack used to set the base component id for each Machine if self.isMachineType: code(''' int ${{self.c_ident}}_base_level(const ${{self.c_ident}}& obj); MachineType ${{self.c_ident}}_from_base_level(int); int ${{self.c_ident}}_base_number(const ${{self.c_ident}}& obj); int ${{self.c_ident}}_base_count(const ${{self.c_ident}}& obj); ''') for enum in self.enums.itervalues(): if enum.ident == "DMA": code(''' MachineID map_Address_to_DMA(const Address &addr); ''') code(''' MachineID get${{enum.ident}}MachineID(NodeID RubyNode); ''') if self.isStateDecl: code(''' // Code to convert the current state to an access permission AccessPermission ${{self.c_ident}}_to_permission(const ${{self.c_ident}}& obj); ''') # Trailer code(''' std::ostream& operator<<(std::ostream& out, const ${{self.c_ident}}& obj); #endif // __${{self.c_ident}}_HH__ ''') code.write(path, "%s.hh" % self.c_ident) def printEnumCC(self, path): code = self.symtab.codeFormatter() code(''' /** \\file ${{self.c_ident}}.hh * * Auto generated C++ code started by $__file__:$__line__ */ #include <cassert> #include <iostream> #include <string> #include "base/misc.hh" #include "mem/protocol/${{self.c_ident}}.hh" using namespace std; ''') if self.isStateDecl: code(''' // Code to convert the current state to an access permission AccessPermission ${{self.c_ident}}_to_permission(const ${{self.c_ident}}& obj) { switch(obj) { ''') # For each case code.indent() for statePerm in self.statePermPairs: code(' case ${{self.c_ident}}_${{statePerm[0]}}:') code(' return AccessPermission_${{statePerm[1]}};') code.dedent() code (''' default: panic("Unknown state access permission converstion for ${{self.c_ident}}"); } } ''') if self.isMachineType: for enum in self.enums.itervalues(): if enum.get("Primary"): code('#include "mem/protocol/${{enum.ident}}_Controller.hh"') code('#include "mem/ruby/common/MachineID.hh"') code(''' // Code for output operator ostream& operator<<(ostream& out, const ${{self.c_ident}}& obj) { out << ${{self.c_ident}}_to_string(obj); out << flush; return out; } // Code to convert state to a string string ${{self.c_ident}}_to_string(const ${{self.c_ident}}& obj) { switch(obj) { ''') # For each field code.indent() for enum in self.enums.itervalues(): code(' case ${{self.c_ident}}_${{enum.ident}}:') code(' return "${{enum.ident}}";') code.dedent() # Trailer code(''' default: panic("Invalid range for type ${{self.c_ident}}"); } } // Code to convert from a string to the enumeration ${{self.c_ident}} string_to_${{self.c_ident}}(const string& str) { ''') # For each field start = "" code.indent() for enum in self.enums.itervalues(): code('${start}if (str == "${{enum.ident}}") {') code(' return ${{self.c_ident}}_${{enum.ident}};') start = "} else " code.dedent() code(''' } else { panic("Invalid string conversion for %s, type ${{self.c_ident}}", str); } } // Code to increment an enumeration type ${{self.c_ident}}& operator++(${{self.c_ident}}& e) { assert(e < ${{self.c_ident}}_NUM); return e = ${{self.c_ident}}(e+1); } ''') # MachineType hack used to set the base level and number of # components for each Machine if self.isMachineType: code(''' /** \\brief returns the base vector index for each machine type to be * used by NetDest * * \\return the base vector index for each machine type to be used by NetDest * \\see NetDest.hh */ int ${{self.c_ident}}_base_level(const ${{self.c_ident}}& obj) { switch(obj) { ''') # For each field code.indent() for i,enum in enumerate(self.enums.itervalues()): code(' case ${{self.c_ident}}_${{enum.ident}}:') code(' return $i;') code.dedent() # total num code(''' case ${{self.c_ident}}_NUM: return ${{len(self.enums)}}; default: panic("Invalid range for type ${{self.c_ident}}"); } } /** \\brief returns the machine type for each base vector index used by NetDest * * \\return the MachineType */ MachineType ${{self.c_ident}}_from_base_level(int type) { switch(type) { ''') # For each field code.indent() for i,enum in enumerate(self.enums.itervalues()): code(' case $i:') code(' return ${{self.c_ident}}_${{enum.ident}};') code.dedent() # Trailer code(''' default: panic("Invalid range for type ${{self.c_ident}}"); } } /** \\brief The return value indicates the number of components created * before a particular machine\'s components * * \\return the base number of components for each machine */ int ${{self.c_ident}}_base_number(const ${{self.c_ident}}& obj) { int base = 0; switch(obj) { ''') # For each field code.indent() code(' case ${{self.c_ident}}_NUM:') for enum in reversed(self.enums.values()): # Check if there is a defined machine with this type if enum.get("Primary"): code(' base += ${{enum.ident}}_Controller::getNumControllers();') else: code(' base += 0;') code(' case ${{self.c_ident}}_${{enum.ident}}:') code(' break;') code.dedent() code(''' default: panic("Invalid range for type ${{self.c_ident}}"); } return base; } /** \\brief returns the total number of components for each machine * \\return the total number of components for each machine */ int ${{self.c_ident}}_base_count(const ${{self.c_ident}}& obj) { switch(obj) { ''') # For each field for enum in self.enums.itervalues(): code('case ${{self.c_ident}}_${{enum.ident}}:') if enum.get("Primary"): code('return ${{enum.ident}}_Controller::getNumControllers();') else: code('return 0;') # total num code(''' case ${{self.c_ident}}_NUM: default: panic("Invalid range for type ${{self.c_ident}}"); } } ''') for enum in self.enums.itervalues(): if enum.ident == "DMA": code(''' MachineID map_Address_to_DMA(const Address &addr) { MachineID dma = {MachineType_DMA, 0}; return dma; } ''') code(''' MachineID get${{enum.ident}}MachineID(NodeID RubyNode) { MachineID mach = {MachineType_${{enum.ident}}, RubyNode}; return mach; } ''') # Write the file code.write(path, "%s.cc" % self.c_ident) __all__ = [ "Type" ]
import re import types from unittest import TestCase from django import forms from django.core import validators from django.core.exceptions import ValidationError from django.core.files.uploadedfile import SimpleUploadedFile class TestFieldWithValidators(TestCase): def test_all_errors_get_reported(self): class UserForm(forms.Form): full_name = forms.CharField( max_length=50, validators=[ validators.validate_integer, validators.validate_email, ], ) string = forms.CharField( max_length=50, validators=[ validators.RegexValidator( regex="^[a-zA-Z]*$", message="Letters only.", ) ], ) ignore_case_string = forms.CharField( max_length=50, validators=[ validators.RegexValidator( regex="^[a-z]*$", message="Letters only.", flags=re.IGNORECASE, ) ], ) form = UserForm( { "full_name": "not int nor mail", "string": "2 is not correct", "ignore_case_string": "IgnORE Case strIng", } ) with self.assertRaises(ValidationError) as e: form.fields["full_name"].clean("not int nor mail") self.assertEqual(2, len(e.exception.messages)) self.assertFalse(form.is_valid()) self.assertEqual(form.errors["string"], ["Letters only."]) self.assertEqual(form.errors["string"], ["Letters only."]) def test_field_validators_can_be_any_iterable(self): class UserForm(forms.Form): full_name = forms.CharField( max_length=50, validators=( validators.validate_integer, validators.validate_email, ), ) form = UserForm({"full_name": "not int nor mail"}) self.assertFalse(form.is_valid()) self.assertEqual( form.errors["full_name"], ["Enter a valid integer.", "Enter a valid email address."], ) class ValidatorCustomMessageTests(TestCase): def test_value_placeholder_with_char_field(self): cases = [ (validators.validate_integer, "-42.5", "invalid"), (validators.validate_email, "a", "invalid"), (validators.validate_email, "a@b\n.com", "invalid"), (validators.validate_email, "a\n@b.com", "invalid"), (validators.validate_slug, "你 好", "invalid"), (validators.validate_unicode_slug, "你 好", "invalid"), (validators.validate_ipv4_address, "256.1.1.1", "invalid"), (validators.validate_ipv6_address, "1:2", "invalid"), (validators.validate_ipv46_address, "256.1.1.1", "invalid"), (validators.validate_comma_separated_integer_list, "a,b,c", "invalid"), (validators.int_list_validator(), "-1,2,3", "invalid"), (validators.MaxLengthValidator(10), 11 * "x", "max_length"), (validators.MinLengthValidator(10), 9 * "x", "min_length"), (validators.URLValidator(), "no_scheme", "invalid"), (validators.URLValidator(), "http://test[.com", "invalid"), (validators.URLValidator(), "http://[::1:2::3]/", "invalid"), ( validators.URLValidator(), "http://" + ".".join(["a" * 35 for _ in range(9)]), "invalid", ), (validators.RegexValidator("[0-9]+"), "xxxxxx", "invalid"), ] for validator, value, code in cases: if isinstance(validator, types.FunctionType): name = validator.__name__ else: name = type(validator).__name__ with self.subTest(name, value=value): class MyForm(forms.Form): field = forms.CharField( validators=[validator], error_messages={code: "%(value)s"}, ) form = MyForm({"field": value}) self.assertIs(form.is_valid(), False) self.assertEqual(form.errors, {"field": [value]}) def test_value_placeholder_with_null_character(self): class MyForm(forms.Form): field = forms.CharField( error_messages={"null_characters_not_allowed": "%(value)s"}, ) form = MyForm({"field": "a\0b"}) self.assertIs(form.is_valid(), False) self.assertEqual(form.errors, {"field": ["a\x00b"]}) def test_value_placeholder_with_integer_field(self): cases = [ (validators.MaxValueValidator(0), 1, "max_value"), (validators.MinValueValidator(0), -1, "min_value"), (validators.URLValidator(), "1", "invalid"), ] for validator, value, code in cases: with self.subTest(type(validator).__name__, value=value): class MyForm(forms.Form): field = forms.IntegerField( validators=[validator], error_messages={code: "%(value)s"}, ) form = MyForm({"field": value}) self.assertIs(form.is_valid(), False) self.assertEqual(form.errors, {"field": [str(value)]}) def test_value_placeholder_with_decimal_field(self): cases = [ ("NaN", "invalid"), ("123", "max_digits"), ("0.12", "max_decimal_places"), ("12", "max_whole_digits"), ] for value, code in cases: with self.subTest(value=value): class MyForm(forms.Form): field = forms.DecimalField( max_digits=2, decimal_places=1, error_messages={code: "%(value)s"}, ) form = MyForm({"field": value}) self.assertIs(form.is_valid(), False) self.assertEqual(form.errors, {"field": [value]}) def test_value_placeholder_with_file_field(self): class MyForm(forms.Form): field = forms.FileField( validators=[validators.validate_image_file_extension], error_messages={"invalid_extension": "%(value)s"}, ) form = MyForm(files={"field": SimpleUploadedFile("myfile.txt", b"abc")}) self.assertIs(form.is_valid(), False) self.assertEqual(form.errors, {"field": ["myfile.txt"]})
from typing import Union from .validator import Validator, ValidationError, StopValidation class CurrentPassword(Validator): def __init__(self, model, message: Union[str, None] = None, parse: bool = True) -> None: self.parse = parse self.message = message or 'The password is incorrect.' self.model = model def handler(self, value, field, request): if not self.model.verify_password(value): raise ValidationError(self.message)
# coding: utf-8 class Solution: """ @param A : A string includes Upper Case letters @param B : A string includes Upper Case letters @return : if string A contains all of the characters in B return True else return False """ def compareStrings(self, A, B): # write your code here if not B: return True count = {} for i, ch in enumerate(B): if ch not in count: count[ch] = 1 else: count[ch] += 1 for i, ch in enumerate(A): if ch in count: count[ch] -= 1 if count[ch] == 0: del(count[ch]) return not count # easy: http://lintcode.com/zh-cn/problem/compare-strings/
'''You are given two lists, rat_1 and rat_2, that contain the daily weights of two rats over a period of ten days. Assume the rats never have exactly the same weight. Write statements to do the following:''' rat_1 = [2,4] rat_2 = [1,3] """ We are assuming the rats never have the same weight""" #1 If the weight of rat 1 is greater than that of rat 2 on day 1, print "Rat 1 weighed more than rat 2 on day 1."; otherwise, print "Rat 1 weighed less than rat 2 on day 1.".” if rat_1[0] > rat_2[0]: print("Rat 1 weighed more than rat 2 on day 1") #2 “If rat 1 weighed more than rat 2 on day 1 and if rat 1 weighs more than rat 2 on the last day, print "Rat 1 remained heavier than Rat 2."; otherwise, print "Rat 2 became heavier than Rat 1.” if rat_1[-1] > rat_2[-1]: print("Rat 1 remained heavier than rat 2") elif rat_1[-1] < rat_2[-1]: print("Rat 2 became havier than Rat 1") elif rat_1[0] < rat_2[0]: print("Rat 1 weighed less than rat 2 on day 1") #3 “If your solution to the previous exercise used nested if statements, then do it without nesting, or vice versa.” if rat_1[0] > rat_2[0] and rat_1[-1] > rat_2[-1]: print("Rat 1 remained heavier than rat 2") if rat_1[0] > rat_2[0] and rat_1[-1] < rat_2[-1]: print("Rat 2 became havier than Rat 1")
"""This module sets up a base list of configuration entries.""" __revision__ = '$Revision$' import copy import lxml.etree import sys # py3k compatibility if sys.hexversion >= 0x03000000: from functools import reduce import Bcfg2.Server.Plugin class Base(Bcfg2.Server.Plugin.Plugin, Bcfg2.Server.Plugin.Structure, Bcfg2.Server.Plugin.XMLDirectoryBacked): """This Structure is good for the pile of independent configs needed for most actual systems. """ name = 'Base' __version__ = '$Id$' __author__ = 'bcfg-dev@mcs.anl.gov' __child__ = Bcfg2.Server.Plugin.StructFile deprecated = True """Base creates independent clauses based on client metadata.""" def __init__(self, core, datastore): Bcfg2.Server.Plugin.Plugin.__init__(self, core, datastore) Bcfg2.Server.Plugin.Structure.__init__(self) try: Bcfg2.Server.Plugin.XMLDirectoryBacked.__init__(self, self.data, self.core.fam) except OSError: self.logger.error("Failed to load Base repository") raise Bcfg2.Server.Plugin.PluginInitError def BuildStructures(self, metadata): """Build structures for client described by metadata.""" ret = lxml.etree.Element("Independent", version='2.0') fragments = reduce(lambda x, y: x + y, [base.Match(metadata) for base in list(self.entries.values())], []) [ret.append(copy.copy(frag)) for frag in fragments] return [ret]
icons = "♠ ♥ ♦" result = "" r1 = " _____\n|♠ |\n| |\n| A|\n ¯¯¯¯¯ " r2 = " _____\n|♠ |\n| |\n| K|\n ¯¯¯¯¯ " r3 = " _____\n|♠ |\n| |\n| Q|\n ¯¯¯¯¯ " r4 = " _____\n|♠ |\n| |\n| J|\n ¯¯¯¯¯ " r5 = " _____\n|♠ |\n| |\n| 2|\n ¯¯¯¯¯ " r6 = " _____\n|♠ |\n| |\n| 3|\n ¯¯¯¯¯ " r7 = " _____\n|♠ |\n| |\n| 4|\n ¯¯¯¯¯ " r8 = " _____\n|♦ |\n| |\n| A|\n ¯¯¯¯¯ " r9 = " _____\n|♦ |\n| |\n| K|\n ¯¯¯¯¯ " r10 = " _____\n|♦ |\n| |\n| Q|\n ¯¯¯¯¯ " r11 = " _____\n|♦ |\n| |\n| J|\n ¯¯¯¯¯ " r12 = " _____\n|♦ |\n| |\n| 2|\n ¯¯¯¯¯ " r13 = " _____\n|♦ |\n| |\n| 3|\n ¯¯¯¯¯ " r14 = " _____\n|♦ |\n| |\n| 4|\n ¯¯¯¯¯ " r15 = " _____\n|♥ |\n| |\n| A|\n ¯¯¯¯¯ " r16 = " _____\n|♥ |\n| |\n| K|\n ¯¯¯¯¯ " r17 = " _____\n|♥ |\n| |\n| Q|\n ¯¯¯¯¯ " r18 = " _____\n|♥ |\n| |\n| J|\n ¯¯¯¯¯ " r19 = " _____\n|♥ |\n| |\n| 2|\n ¯¯¯¯¯ " r20 = " _____\n|♥ |\n| |\n| 3|\n ¯¯¯¯¯ " r21 = " _____\n|♥ |\n| |\n| 4|\n ¯¯¯¯¯ " #========================================================================================================== print("Welcome to the 21 Card Game") inp1 = input("Press Enter to continue...") if inp1 == "": print("Here are 21 cards. Choose any card you like:") print() print(" _____ _____ _____ _____ _____ _____ _____") print("|♠ | |♠ | |♠ | |♠ | |♠ | |♠ | |♠ |") print("| | | | | | | | | | | | | |") print("| A| | K| | Q| | J| | 2| | 3| | 4|") print(" ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ") print(" _____ _____ _____ _____ _____ _____ _____") print("|♦ | |♦ | |♦ | |♦ | |♦ | |♦ | |♦ |") print("| | | | | | | | | | | | | |") print("| A| | K| | Q| | J| | 2| | 3| | 4|") print(" ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ") print(" _____ _____ _____ _____ _____ _____ _____") print("|♥ | |♥ | |♥ | |♥ | |♥ | |♥ | |♥ |") print("| | | | | | | | | | | | | |") print("| A| | K| | Q| | J| | 2| | 3| | 4|") print(" ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ") print() print("If you have done with choosing a card, help me to find your car with some info.") number1 = input("Enter the Row number(1-3), where your card is located: ") result += number1 print("Let's do this again") print() print(" _____ _____ _____ _____ _____ _____ _____") print("|♠ | |♠ | |♠ | |♦ | |♦ | |♥ | |♥ |") print("| | | | | | | | | | | | | |") print("| A| | J| | 4| | Q| | 3| | K| | 2|") print(" ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ") print(" _____ _____ _____ _____ _____ _____ _____") print("|♠ | |♠ | |♦ | |♦ | |♦ | |♥ | |♥ |") print("| | | | | | | | | | | | | |") print("| K| | 2| | A| | J| | 4| | Q| | 3|") print(" ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ") print(" _____ _____ _____ _____ _____ _____ _____") print("|♠ | |♠ | |♦ | |♦ | |♥ | |♥ | |♥ |") print("| | | | | | | | | | | | | |") print("| Q| | 3| | K| | 2| | A| | J| | 4|") print(" ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ") number2 = input("Again look at these cards and Enter the row number of your card: ") result += number2 print() print("One last step.") print(" _____ _____ _____ _____ _____ _____ _____") print("|♠ | |♦ | |♥ | |♠ | |♥ | |♠ | |♥ |") print("| | | | | | | | | | | | | |") print("| K| | J| | 3| | 4| | K| | 3| | A|") print(" ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ") print(" _____ _____ _____ _____ _____ _____ _____") print("|♠ | |♦ | |♠ | |♦ | |♥ | |♦ | |♥ |") print("| | | | | | | | | | | | | |") print("| 2| | 4| | A| | Q| | 2| | K| | J|") print(" ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ") print(" _____ _____ _____ _____ _____ _____ _____") print("|♦ | |♥ | |♠ | |♦ | |♠ | |♦ | |♥ |") print("| | | | | | | | | | | | | |") print("| A| | Q| | J| | 3| | Q| | 2| | 4|") print(" ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ¯¯¯¯¯ ") number3 = input("Look at the following cards and Enter the row number of your card: ") result += number3 else: print("Restart the game to play again") #================================================================================================== if result == "112": print(r1) elif result == "121": print(r2) elif result == "133": print(r3) elif result == "113": print(r4) elif result == "122": print(r5) elif result == "131": print(r6) elif result == "111": print(r7) elif result == "223": print(r8) elif result == "232": print(r9) elif result == "212": print(r10) elif result == "221": print(r11) elif result == "233": print(r12) elif result == "213": print(r13) elif result == "222": print(r14) elif result == "331": print(r15) elif result == "311": print(r16) elif result == "323": print(r17) elif result == "332": print(r18) elif result == "312": print(r19) elif result == "321": print(r20) elif result == "333": print(r21) else: print('Wrong input') print() LAST = input("PRESS ENTER TO CLOSE...")
# VerTeX | Copyright (c) 2010-2021 Steve Kieffer | MIT license # SPDX-License-Identifier: MIT """ Translating math mode snippets from VerTeX to TeX. """ import re from vertex2tex.config import * ############### # Node classes class Node: """ The basic Node class, which contains the basic translation method (`xlat`). Other node types should subclass Node and simply override the three methods `buildArg`, `addcomma`, and `build`, as needed. """ def __init__(self, token_stream): self.toks = token_stream self.output = '' # Subclasses should override self.commawords, if necessary. self.commawords = [] # Basic Node considers nothing to be a commaword. ########################################################### # If possible, subclasses should use 'Node's basic xlat # method below, and customize it simply by overriding # the following three methods. def buildArg(self, s): self.output += s+' ' def addcomma(self, T): """ Should return True iff it is time to quit (i.e. the final comma word has been received). """ self.buildArg(T) return False def build(self): return self.output.strip() ########################################################### def xlat(self): T = self.toks.next() while T: # First check if the token is escaped with a \. if T[0] == '\\': # Tokens beginning with double backslash and having at least one character beyond # that are passed through after lopping off the backslashes. if len(T) >= 3 and T[1] == '\\': s = T[2:] # Otherwise, the token passes through unaltered. So this includes both the case of a token # that begins only with a single backslash, and the case of a double backslash followed # by nothing else, as is used in TeX arrays, for example. else: s = T self.buildArg(s) # Let HTML codes like &gt; and &lt; pass through unaltered. elif T in html_exceptions: s = T self.buildArg(s) elif T in unarynodes: code = unarynodes[T] lefty = UnaryNode(code, self.toks) s = lefty.xlat() self.buildArg(s) elif T in binarynodes: w, c, o = binarynodes[T] lefty = BinaryNode(w, c, o, self.toks) s = lefty.xlat() self.buildArg(s) elif T in tertiarynodes: w, c, o = tertiarynodes[T] lefty = TertiaryNode(w, c, o, self.toks) s = lefty.xlat() self.buildArg(s) elif T in rangenodes: symbol = rangenodes[T] lefty = RangeNode(symbol,self.toks) s = lefty.xlat() self.buildArg(s) elif T in specialnodes: klass = specialnodes[T] lefty = klass(self.toks) s = lefty.xlat() self.buildArg(s) elif T in self.commawords: tobreak = self.addcomma(T) if tobreak: break elif T in builtins: s = builtins[T] self.buildArg(s) elif T in bsmes: self.buildArg('\\'+T) elif fontword(T): s = fontword(T) self.buildArg(s) #Automatic subscripting elif (len(T) >= 2 and re.match('[A-Za-z]', T) and T.find(' ') == -1): s = autosub(T) self.buildArg(s) #Anything else just passes through. else: self.buildArg(T) #Get the next token. T = self.toks.next() s = self.build() return s class UnaryNode(Node): def __init__(self, wrappers, ts): self.toks = ts self.wrappers = wrappers self.stuff = '' self.commawords = [';'] def buildArg(self, s): self.stuff += s+' ' def addcomma(self, T): return True def build(self): a = self.stuff w = self.wrappers s = w[0]+a+w[1] return s class BinaryNode(Node): def __init__(self, wrappers, comma, order, ts): self.toks = ts self.wrappers = wrappers self.commawords = [comma,';'] self.order = order self.args = ['',''] self.argptr = 0 def buildArg(self, s): self.args[self.argptr] += s+' ' def addcomma(self, T): self.argptr += 1 return T == ';' def build(self): a, b = [self.args[i] for i in self.order] w = self.wrappers s = w[0]+a+w[1]+b+w[2] return s class TertiaryNode(Node): def __init__(self, wrappers, comma, order, ts): self.toks = ts self.wrappers = wrappers self.commawords = list(comma)+[';'] self.order = order self.args = ['','',''] self.argptr = 0 self.commaseq = [] def buildArg(self, s): self.args[self.argptr] += s+' ' def addcomma(self, T): self.argptr += 1 self.commaseq.append(T) return T == ';' def build(self): a, b, c = [self.args[i] for i in self.order] w = self.wrappers s = w[0]+a+w[1]+b+w[2]+c+w[3] return s class RangeNode(Node): def __init__(self, symbol, ts): self.toks = ts self.symbol = symbol self.commawords = ['over', 'from', 'to', ';'] self.args = ['', '', ''] self.argptr = -1 self.commaseq = [] def buildArg(self, s): self.args[self.argptr] += s+' ' def addcomma(self, T): self.argptr += 1 self.commaseq.append(T) return T == ';' def build(self): if self.commaseq == [';']: s = self.symbol+' ' elif self.commaseq == ['over', ';']: c = self.symbol r = self.args[0] s = c+'_{'+r+'} ' elif self.commaseq == ['over', 'from', 'to', ';']: c = self.symbol v, a, b = self.args s = c+'_{'+v+'='+a+'}^{'+b+'} ' else: s = '--error in range operator--' return s class Matrixnode(Node): """ To make a matrix of N columns (we don't care how many rows you make), start with the keyword 'matrix', then write out the number N, then the keyword 'cols', and then write the entries, separated by semicolons. You don't have to start a new line; we handle that automatically based on the number of columns. Thus, you can't start a new line early; we need to see N semicolons in order to complete each line. When you've written the last entry, you should not follow it by a semicolon. Just write the keyword 'endmatrix'. (A semicolon will cause a new row to begin, giving you one blank row at the end of your matrix.) """ def __init__(self, ts): self.toks = ts self.commawords = ['cols', ';', 'endmatrix'] self.args = [] self.stuff = '' self.cols = 0 self.err = False def buildArg(self, s): self.stuff += s+' ' def addcomma(self, c): if c == 'endmatrix': if self.stuff: self.args.append(self.stuff) done = True elif c == 'cols': try: self.cols = int(self.stuff) except: self.err = True self.stuff = '' done = False else: # c == ';' self.args.append(self.stuff) self.stuff = '' done = False return done def build(self): if self.err: s = '-- error in matrix node --' else: C = self.cols s = '\\begin{array}{' s += 'c'*C s += '}' A = self.args for k in range(len(A)): r = k%C if r > 0: s += ' & ' s += A[k] if r == C-1: s += '\\\\' if s[-1] != '\n': s += '\n' s += '\\end{array}' return s class Padspnode(Node): """ This is intended for p-adic numbers with extra spaces between the digits. Probably you can think of other uses for it too. The name could mean 'p-adic space node' or 'padded space node'. When you've written the last entry, you can follow it by a semicolon, but you don't have to. To end, write the keyword 'end'. """ def __init__(self, ts): self.toks = ts self.commawords = [';', 'end'] self.args = [] self.stuff = '' self.spacer = '\\: ' self.err = False def buildArg(self, s): self.stuff += s+' ' def addcomma(self, c): if c == 'end': if self.stuff: self.args.append(self.stuff) done = True else: # c == ';' self.args.append(self.stuff) self.stuff = '' done = False return done def build(self): if self.err: s = '-- error in padsp node --' else: s = self.spacer.join(self.args) return s specialnodes = { 'matrix': Matrixnode, 'padsp': Padspnode } ########## # Auto-subscripting # Regular expressions to match letter sets and variations: any_letter = all_letter_re_component+"|[A-Za-z]" letter_matcher = re.compile(any_letter) opt_font_any_letter = '(%s)?(%s)' % ( font_prefix_re_component, any_letter ) letter_matcher_fonts = re.compile(opt_font_any_letter) r = '(%s|[0-9,+-])' % opt_font_any_letter sub_matcher = re.compile(r) r = '(UU|uu|vv|%s|[0-9,+-])' % opt_font_any_letter uusub_matcher = re.compile(r) def autosub(s): r""" Autosubscripting (and superscripting). If s is a string starting with some [A-Za-z], and having no spaces in it, and has already failed to match anything else (so, it was not escaped with a \, it was not a leftword, commaword, userdef, built-in def, bsme word, or font-letter), then we do automatic subscripting. First we match the longest letter name we can, at the beginning of s. Call this L, and call the remainder R. We then split R into letter names, digits, and the characters [+-,], translate this as needed, and put them all together into a subscript. The exceptions are the codes 'uu' and 'vv'. If we find 'uu' anywhere in the subscript, this switches us from subscript to superscript. You may use 'uu' without any foregoing subscript. The code 'vv' initiates a subscript. If used in the midst of another subscript, you will get a double subscript, as in $a_{i_1}$. If used in the midst of a superscript, you will get a subscript on the superscript, as in $2^{alpha_i}$. If used as the very first thing in an automatic subscript, it will have no effect, but is useful in creating a subscript which would otherwise have triggered a keyword. For example, 'pvvie' will give $p_{i e}$ instead of $\pi$. """ #Make sure s starts with a letter, and has no spaces. #If it is not so, then return the empty string. if not re.match('[A-Za-z]', s) or s.find(' ') >= 0: return '' #translator class class Xlator: def __init__(self): self.vvcount = 0 self.state = 0 def reset(self): self.vvcount = 0; self.state = 0 def xlat(self,t): s = '' if t == 'uu': s = '}^{' elif t == 'UU': if self.vvcount == 0: s = t else: self.vvcount -= 1 s = '}}^{' elif t == 'vv': # If 'vv' is the very first token, do not raise vvcount. if self.state > 0: self.vvcount += 1 s = '_{' else: s = Node(TokenStream([t])).xlat() if self.state == 0: self.state = 1 return s def getvvcount(self): return self.vvcount #create translator instance X = Xlator() #Match the longest initial vertex letter. M = letter_matcher_fonts.match(s) L = X.xlat(M.group()) s = s[M.end():] #Parse and translate the subscript. X.reset() A = uusub_matcher.findall(s) sub = ' '.join([X.xlat(x[0]) for x in A]) sub = '_{'+sub+'}' sub += '}'*X.getvvcount() if sub[:3] == '_{}': sub = sub[3:] # in case started with uu elif sub[:3] == '_{_': sub = sub[2:] # in case started with vv return L+sub ########## def fontword(T): """ Check whether T is of the form <font><letter>. If so, return the string that should be passed to the parsing node's buildArg method. If not, return an empty string. """ #translation function def xlat(t): return Node(TokenStream([t])).xlat() s = '' if len(T) > 0 and letter_matcher.split(T)[-1] == '': letter = letter_matcher.findall(T)[-1] prefix = T[:-len(letter)] if prefix in fonts: font = fonts[prefix] letter = xlat(letter) s = '\\%s{%s}'%(font,letter) return s class TokenStream: def __init__(self,token_list): self.token_list = token_list self.k = 0 self.N = len(token_list) def next(self): """ Return the next token, or None if none remain. """ if self.k < self.N: T = self.token_list[self.k] self.k += 1 return T else: return None def showRest(self): """ Return a list containing a copy of the remaining tokens. """ return self.token_list[self.k:] def getPtr(self): """ Get the current pointer value. """ return self.k def getSlice(self,a,b): """ Return the tokens in the clopen interval from a to b. Thus, you get token a, but not b. In other words, it's just the [a:b] slice. """ return self.token_list[a:b] TOKEN_RE = re.compile( (r'\\{' + r'|\\[^{\s]*' + r'|[A-Za-z][A-Za-z0-9+\-,]*[A-Za-z0-9]' + r'|#\d+' + "|"+"|".join(html_exceptions) + r'|\S' + r'|\s+') ) def tokenize(text): return re.findall(TOKEN_RE, text) def compress(text): """ Delete all whitespace characters except those followed by an upper or lowercase letter. :param text: The text to be compressed. :return: The compressed text. """ return re.sub(r'\s+(?![a-zA-Z])', '', text) def translate_snippet(text): """ Translate a single "snippet" (i.e. the contents of a TeX math mode) from VerTeX into plain TeX. :param text: The text of the snippet. :return: The translated text. """ tokens = tokenize(text) ts = TokenStream(tokens) root = Node(ts) out = root.xlat() out = compress(out) return out
# Importing the base class from co_simulation_solvers.gauss_seidel_strong_coupling_solver import GaussSeidelStrongCouplingSolver def CreateSolver(cosim_solver_settings, level): return SimpleSteadyCouplingSolver(cosim_solver_settings, level) class SimpleSteadyCouplingSolver(GaussSeidelStrongCouplingSolver): def _SynchronizeInputData(self, solver, solver_name): input_data_list = self.cosim_solver_details[solver_name]["input_data_list"] for input_data in input_data_list: from_solver = self.solvers[input_data["from_solver"]] data_name = input_data["data_name"] data_definition = from_solver.GetDataDefinition(data_name) data_settings = { "data_format" : data_definition["data_format"], "data_name" : data_name, "io_settings" : input_data["io_settings"] } solver.ImportData(data_settings, from_solver) def _SynchronizeOutputData(self, solver, solver_name): output_data_list = self.cosim_solver_details[solver_name]["output_data_list"] for output_data in output_data_list: to_solver = self.solvers[output_data["to_solver"]] data_name = output_data["data_name"] data_definition = to_solver.GetDataDefinition(data_name) data_settings = { "data_format" : data_definition["data_format"], "data_name" : data_name, "io_settings" : output_data["io_settings"] } solver.ExportData(data_settings, to_solver)
import pathlib class _BaseSaver: """ Base class to save figures or data """ def __init__(self, *args, **kwargs): allowed_kwargs = { 'out_dir', 'modes', 'clip', 'alpha', 'version', 'vmin', 'vmax', 'cmap', 'super_precision', 'n_precision_enhancers', 'norm_dict', 'station_positions', 'num_stations', 'num_vars', } for kwarg in kwargs: if kwarg not in allowed_kwargs: raise TypeError('Keyword argument not understood: ', kwarg) self.out_dir = kwargs.get('out_dir') self.out_dir = pathlib.Path(self.out_dir) self.modes = kwargs.get('modes', ['train', 'val', 'test']) # Make required directories sub_out_dirs = [self.out_dir / mode for mode in self.modes] for sub_out_dir in sub_out_dirs: if not sub_out_dir.exists(): sub_out_dir.mkdir(parents=True) def save(self, *args, **kwargs): self._save(*args, **kwargs)
import torch from torch.nn import functional as F from torch.nn import Dropout, Sequential, Linear, Softmax class GradientReversalFunction(torch.autograd.Function): """Revert gradient without any further input modification.""" @staticmethod def forward(ctx, x, l, c): ctx.l = l ctx.c = c return x.view_as(x) @staticmethod def backward(ctx, grad_output): grad_output = grad_output.clamp(-ctx.c, ctx.c) return ctx.l * grad_output.neg(), None, None class GradientClippingFunction(torch.autograd.Function): """Clip gradient without any further input modification.""" @staticmethod def forward(ctx, x, c): ctx.c = c return x.view_as(x) @staticmethod def backward(ctx, grad_output): grad_output = grad_output.clamp(-ctx.c, ctx.c) return grad_output, None class ReversalClassifier(torch.nn.Module): """Adversarial classifier (with two FC layers) with a gradient reversal layer. Arguments: input_dim -- size of the input layer (probably should match the output size of encoder) hidden_dim -- size of the hiden layer output_dim -- number of channels of the output (probably should match the number of speakers/languages) gradient_clipping_bound (float) -- maximal value of the gradient which flows from this module Keyword arguments: scale_factor (float, default: 1.0)-- scale multiplier of the reversed gradientts """ def __init__(self, input_dim, hidden_dim, output_dim, gradient_clipping_bounds, scale_factor=1.0): super(ReversalClassifier, self).__init__() self._lambda = scale_factor self._clipping = gradient_clipping_bounds self._output_dim = output_dim self._classifier = Sequential( Linear(input_dim, hidden_dim), Linear(hidden_dim, output_dim) ) def forward(self, x): x = GradientReversalFunction.apply(x, self._lambda, self._clipping) x = self._classifier(x) return x @staticmethod def loss(input_lengths, speakers, prediction, embeddings=None): ignore_index = -100 ml = torch.max(input_lengths) input_mask = torch.arange(ml, device=input_lengths.device)[None, :] < input_lengths[:, None] target = speakers.repeat(ml, 1).transpose(0,1) target[~input_mask] = ignore_index return F.cross_entropy(prediction.transpose(1,2), target, ignore_index=ignore_index) class CosineSimilarityClassifier(torch.nn.Module): """Cosine similarity-based adversarial classifier. Arguments: input_dim -- size of the input layer (probably should match the output size of encoder) output_dim -- number of channels of the output (probably should match the number of speakers/languages) gradient_clipping_bound (float) -- maximal value of the gradient which flows from this module """ def __init__(self, input_dim, output_dim, gradient_clipping_bounds): super(CosineSimilarityClassifier, self).__init__() self._classifier = Linear(input_dim, output_dim) self._clipping = gradient_clipping_bounds def forward(self, x): x = GradientClippingFunction.apply(x, self._clipping) return self._classifier(x) @staticmethod def loss(input_lengths, speakers, prediction, embeddings, instance): l = ReversalClassifier.loss(input_lengths, speakers, prediction) w = instance._classifier.weight.T # output x input dot = embeddings @ w norm_e = torch.norm(embeddings, 2, 2).unsqueeze(-1) cosine_loss = torch.div(dot, norm_e) norm_w = torch.norm(w, 2, 0).view(1, 1, -1) cosine_loss = torch.div(cosine_loss, norm_w) cosine_loss = torch.abs(cosine_loss) cosine_loss = torch.sum(cosine_loss, dim=2) l += torch.mean(cosine_loss) return l
from django.db import models from django.utils.text import slugify from django.shortcuts import reverse class Actor(models.Model): name = models.CharField(max_length=30) photo = models.ImageField(upload_to="actor_photo/", blank=True) def __str__(self): return self.name class Movie(models.Model): title = models.CharField(max_length=50) price = models.DecimalField(max_digits=9, decimal_places=2) director = models.CharField(max_length=30) actors = models.ManyToManyField(Actor) genres = models.CharField(max_length=100) country = models.CharField(max_length=5) year = models.CharField(max_length=4) imdb_score = models.DecimalField(max_digits=9, decimal_places=2) imdb_link = models.URLField(default="") trailer = models.URLField(default="", null=True) description = models.TextField() slug = models.SlugField(default="", unique=True) is_active = models.BooleanField(default=True) poster = models.ImageField(upload_to="movie_poster/", blank=True) def save(self, *args, **kwargs): self.slug = slugify(self.title) super(Movie, self).save(*args, **kwargs) def __str__(self): return self.title def get_absolute_url(self): return reverse("movie-detail", kwargs={"slug": self.slug}) def get_add_to_cart_url(self): return reverse("cart:add-to-cart", kwargs={"slug": self.slug}) def get_remove_from_cart_url(self): return reverse("cart:remove-from-cart", kwargs={"slug": self.slug})
# Generated by Django 2.2.1 on 2019-07-27 12:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0010_auto_20190724_1051'), ] operations = [ migrations.CreateModel( name='OpenTime', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('start', models.IntegerField(default=0)), ('end', models.IntegerField(default=24)), ], ), ]
#!/usr/bin/env python # # Copyright The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # """ Verify that a failed build action with -j works as expected. """ import TestSCons python = TestSCons.python test = TestSCons.TestSCons() try: import psutil # noqa: F401 except ImportError: test.skip_test("Failed to import psutil required for test, skipping.") test.dir_fixture('fixture') # We want to verify that -j 2 starts precisely two jobs, the first of # which fails and the second of which succeeds, and then stops processing # due to the first build failure - the second build job does not just # continue processing tasks. To try to control the timing, the two # task scripts will be managed by a server script which regulates the # state of the test. # # The failure script waits until the server responds that the # copy script has, in fact, gotten started. If we don't wait, then SCons # could detect our script failure early (typically if a high system load # happens to delay SCons' ability to start the next script) and then not # start the successful script at all. # # The successful script waits until the server responds that the # failure script has finished (the server checks that the task pid does not # exist). If we don't wait for that, then SCons could detect our successful # exit first (typically if a high system load happens to delay the failure # script) and start another job before it sees the failure from the first # script. # # Both scripts are set to bail if they had to wait too long for what # they expected to see. test.run(arguments='-j 2 .', status=2, stderr="scons: *** [f3] Error 1\n") test.must_not_exist(test.workpath('f3')) test.must_match(test.workpath('f4'), 'f4.in') test.must_not_exist(test.workpath('f5')) test.must_not_exist(test.workpath('f6')) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
"""Basic timing tools.""" from functools import wraps import time import numpy as np def timed(f): """Wraps a function so it returns results and run time.""" @wraps(f) def wrapper(*args, **kwargs): start = time.monotonic() result = f(*args, **kwargs) end = time.monotonic() return result, end - start return wrapper def time_repeat(f, repeats=3): """Time a function multiple times and return results and statistics. Expects a function without arguments. """ results = [] times = np.zeros(repeats, dtype=float) for i in range(repeats): start = time.monotonic() res = f() results.append(res) end = time.monotonic() times[i] = end - start return ( results, { "times": times.tolist(), "mean": np.mean(times).item(), "min": np.min(times).item(), "max": np.max(times).item(), }, )
#!/usr/bin/env python3 # # usage: # python3 -m venv ve3 # ve3/bin/pip install markdown2 # ve3/bin/python misc/release.py import argparse import base64 import io import logging import os import re import shlex import subprocess import tarfile import time try: import grp def groupname(gid): return grp.getgrgid(gid)[0] except: def groupname(gid): return str(gid) import markdown2 logger = logging.getLogger(__name__) #GOOS GOARCH DEB_HOST_ARCH osArchArch = [ ('linux', 'amd64', 'amd64'), ('linux', 'arm', 'armhf'), ('linux', 'arm64', 'arm64'), ('darwin', 'amd64', None), ] channel = 'indexer' filespec = [ # [files], source path, deb path, tar path [ ['algorand-indexer.service', 'algorand-indexer@.service'], 'misc/systemd', 'lib/systemd/system', '', ], [ ['algorand-indexer'], 'cmd/algorand-indexer', 'usr/bin', '', ], [ ['LICENSE'], '', None, '', ], ] debian_copyright_top = ( '''Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/ Upstream-Name: Algorand Indexer Upstream-Contact: Algorand developers <dev@algorand.com> Source: https://github.com/algorand/indexer Files: * Copyright: Algorand developers <dev@algorand.com> License: MIT ''') def debian_copyright(outpath): with open(outpath, 'wt') as fout: fout.write(debian_copyright_top) with open('LICENSE') as fin: for line in fin: line = line.strip() if not line: line = ' .\n' else: line = ' ' + line + '\n' fout.write(line) def arch_ver(outpath, inpath, debarch, version): with open(outpath, 'wt') as fout: with open(inpath) as fin: for line in fin: line = line.replace('@ARCH@', debarch) line = line.replace('@VER@', version) line = line.replace('@CHANNEL@', channel) fout.write(line) def link(sourcepath, destpath): if os.path.exists(destpath): if (os.path.getmtime(destpath) >= os.path.getmtime(sourcepath)): return # nothing to do os.remove(destpath) os.link(sourcepath, destpath) _tagpat = re.compile(r'tag:\s+([^,]+)') def compile_version_opts(release_version=None, allow_mismatch=False): result = subprocess.run(['git', 'log', '-n', '1', '--pretty=%H %D'], stdout=subprocess.PIPE) result.check_returncode() so = result.stdout.decode() githash, desc = so.split(None, 1) tags = [] tag = None for m in _tagpat.finditer(desc): tag = m.group(1) tags.append(tag) if tag == release_version: break if tag != release_version: if not allow_mismatch: raise Exception('.version is {!r} but tags {!r}'.format(release_version, tags)) else: logger.warning('.version is %r but tags %r', release_version, tags) now = time.strftime('%Y-%m-%dT%H:%M:%S', time.gmtime()) + '+0000' result = subprocess.run(['git', 'status', '--porcelain'], stdout=subprocess.PIPE) result.check_returncode() if len(result.stdout) > 2: dirty = "true" else: dirty = "" # Note: keep these in sync with Makefile ldflags = '-ldflags=-X github.com/algorand/indexer/version.Hash={}'.format(githash) ldflags += ' -X github.com/algorand/indexer/version.Dirty={}'.format(dirty) ldflags += ' -X github.com/algorand/indexer/version.CompileTime={}'.format(now) ldflags += ' -X github.com/algorand/indexer/version.GitDecorateBase64={}'.format(base64.b64encode(desc.encode()).decode()) if release_version: ldflags += ' -X github.com/algorand/indexer/version.ReleaseVersion={}'.format(release_version) logger.debug('Hash=%r Dirty=%r CompileTime=%r decorate=%r ReleaseVersion=%r', githash, dirty, now, desc, release_version) logger.debug('%s', ldflags) return ldflags def compile(goos=None, goarch=None, ldflags=None): env = dict(os.environ) env['CGO_ENABLED'] = '0' if goos is not None: env['GOOS'] = goos if goarch is not None: env['GOARCH'] = goarch cmd = ['go', 'build'] if ldflags is not None: cmd.append(ldflags) subprocess.run(cmd, cwd='cmd/algorand-indexer', env=env).check_returncode() def build_deb(debarch, version, outdir): os.makedirs('.deb_tmp/DEBIAN', exist_ok=True) debian_copyright('.deb_tmp/DEBIAN/copyright') arch_ver('.deb_tmp/DEBIAN/control', 'misc/debian/control', debarch, version) os.makedirs('.deb_tmp/etc/apt/apt.conf.d', exist_ok=True) arch_ver('.deb_tmp/etc/apt/apt.conf.d/52algorand-indexer-upgrades', 'misc/debian/52algorand-indexer-upgrades', debarch, version) for files, source_path, deb_path, _ in filespec: if deb_path is None: continue for fname in files: if deb_path: os.makedirs(os.path.join('.deb_tmp', deb_path), exist_ok=True) link(os.path.join(source_path, fname), os.path.join('.deb_tmp', deb_path, fname)) debname = 'algorand-indexer_{}_{}.deb'.format(version, debarch) debpath = os.path.join(outdir, debname) subprocess.run( ['dpkg-deb', '--build', '.deb_tmp', debpath]) return debpath def extract_usage(): usage = False usageBuffer = "" with open('README.md') as infile: for line in infile: if "USAGE_START_MARKER" in line: usage = True continue elif "USAGE_END_MARKER" in line: usage = False continue elif usage: usageBuffer += line return usageBuffer _usage_html = None def usage_html(): global _usage_html if _usage_html is not None: return _usage_html md = extract_usage() _usage_html = markdown2.markdown(md, extras=["tables", "fenced-code-blocks"]) return _usage_html def build_tar(goos, goarch, version, outdir): rootdir = 'algorand-indexer_{}_{}_{}'.format(goos, goarch, version) tarname = os.path.join(outdir, rootdir) + '.tar.bz2' tf = tarfile.open(tarname, 'w:bz2') for files, source_path, _, tar_path in filespec: if tar_path is None: continue for fname in files: tf.add(os.path.join(source_path, fname), os.path.join(rootdir, tar_path, fname)) ti = tarfile.TarInfo(os.path.join(rootdir, "usage.html")) ti.mtime = time.time() ti.mode = 0o444 ti.type = tarfile.REGTYPE ti.uid = os.getuid() ti.uname = os.getenv('USER') ti.gid = os.getgid() ti.gname = groupname(os.getgid()) uhtml = usage_html().encode('utf-8') ti.size=len(uhtml) tf.addfile(ti, io.BytesIO(uhtml)) tf.close() return tarname def hostOsArch(): result = subprocess.run(['go', 'env'], stdout=subprocess.PIPE) result.check_returncode() goenv = {} for line in result.stdout.decode().splitlines(): line = line.strip() k,v = line.split('=', 1) goenv[k] = shlex.split(v)[0] return goenv['GOHOSTOS'], goenv['GOHOSTARCH'] def main(): start = time.time() ap = argparse.ArgumentParser() ap.add_argument('-o', '--outdir', help='The output directory for the build assets', type=str, default='.') ap.add_argument('--no-deb', action='store_true', default=False, help='disable debian package building') ap.add_argument('--host-only', action='store_true', default=False, help='only build for host OS and CPU') ap.add_argument('--build-only', action='store_true', default=False, help="don't make tar or deb release") ap.add_argument('--fake-release', action='store_true', default=False, help='relax some checks during release script development') ap.add_argument('--verbose', action='store_true', default=False) args = ap.parse_args() if args.verbose: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) outdir = args.outdir if args.host_only: hostos, hostarch = hostOsArch() logger.info('will only run %s %s', hostos, hostarch) with open('.version') as fin: version = fin.read().strip() ldflags = compile_version_opts(version, allow_mismatch=args.fake_release) for goos, goarch, debarch in osArchArch: if args.host_only and (goos != hostos or goarch != hostarch): logger.debug('skip %s %s', goos, goarch) continue logger.info('GOOS=%s GOARCH=%s DEB_HOST_ARCH=%s', goos, goarch, debarch) compile(goos, goarch, ldflags) if args.build_only: logger.debug('skip packaging') continue tarname = build_tar(goos, goarch, version, outdir) logger.info('\t%s', tarname) if (not args.no_deb) and (debarch is not None): debname = build_deb(debarch, version, outdir) logger.info('\t%s', debname) dt = time.time() - start logger.info('done %0.1fs', dt) return if __name__ == '__main__': main()
import math import numpy as np class Utils(): @staticmethod def normal_distr(x, avg, std): return 1/(std*((2*math.pi)**0.5))*math.exp(-0.5*((x - avg)/std)**2) @staticmethod def get_freq_hist(data): freq = np.zeros(data.shape[0]) unique = np.unique(data) for val in unique: val_filter = (data == val) freq[val_filter] = np.arange(freq[val_filter].shape[0]) return freq @staticmethod def calc_err(x_data, y_data, r, t_min, y=0): curve_fit = Utils.softplus_func(x_data, r, t_min, y) return np.sum(np.abs(y_data - curve_fit)) @staticmethod def softplus_func(t, r, t_min, y=0): lin = r*(t - t_min) lin[lin < 100] = np.log(np.exp(lin[lin < 100]) + np.exp(y)) return lin
import argparse import sys from termy.constants import TERMY_INTRO_MESSAGE, VERSION from termy.service.flow_handler.handle_flows import configure_termy, search_and_execute, update_termy, \ resolve_command_from_GPT3, display_current_configs, periodic_update_prompt DESCRIPTION = TERMY_INTRO_MESSAGE def init_cli_app(): parser = argparse.ArgumentParser(add_help=False, description=DESCRIPTION, formatter_class=argparse.RawTextHelpFormatter, usage=argparse.SUPPRESS) parser.add_argument('search', help='Input query in natural language', nargs='*') parser.add_argument("-c", "--configure", action='store_true', help="Configure your termy with the google sheet containing commands") parser.add_argument("--show-config", action='store_true', help="Shows the current configurations") parser.add_argument("--gpt3", action='store_true', help="Use GPT-3 API to convert any natural language query into a terminal command") parser.add_argument("-u", "--update", action='store_true', help="Update termy and sync the latest commands from the google sheet") parser.add_argument("-v", "--version", action='store_true', help="Version Info") parser.add_argument("-h", "--help", action='store_true', help="How to use Termy") args = parser.parse_args() if args.gpt3: # gpt3 search query if args.search: query = ' '.join(args.search) else: query = '' resolve_command_from_GPT3(query) elif args.search: # regular search query query = ' '.join(args.search) periodic_update_prompt() search_and_execute(query) elif args.configure: configure_termy() elif args.update: update_termy() elif args.version: print(VERSION) elif args.show_config: display_current_configs() else: parser.print_help(sys.stdout) if __name__ == '__main__': init_cli_app()
#!/usr/bin/env python '''CPS Helpers for the DHCP IO Library''' # Copyright (c) 2018 Inocybe Technologies. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # THIS CODE IS PROVIDED ON AN *AS IS* BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT # LIMITATION ANY IMPLIED WARRANTIES OR CONDITIONS OF TITLE, FITNESS # FOR A PARTICULAR PURPOSE, MERCHANTABLITY OR NON-INFRINGEMENT. # # See the Apache Version 2.0 License for specific language governing # permissions and limitations under the License. import cps_utils import cps import nas_os_utils import nas_acl IFNAME = "if/interfaces/interface/name" IFOBJ = "dell-base-if-cmn/if/interfaces/interface" PORTS = "dell-if/if/interfaces/interface/untagged-ports" TBL_ID = 1 # we may decide to use our own table - check UDP = 17 #E_STG = {'INGRESS': 1, 'EGRESS': 2} #E_FTYPE = {'IN_PORTS': 7, 'IN_PORT': 9, 'L4_SRC_PORT':17, 'L4_DST_PORT':18, 'IP_PROTOCOL': 20} #E_ATYPE = {'PACKET_ACTION': 3} #E_PTYPE = {'DROP': 1, 'COPY_TO_CPU': 3, 'TRAP_TO_CPU': 5, 'COPY_TO_CPU_CANCEL_AND_DROP': 6} def get_ports(bridge): '''A simple function to return the openswitch perception of the port list in a vlan''' cps_obj = cps_utils.CPSObject(IFOBJ, data={IFNAME:bridge.encode('ascii')}) cps_result = [] if not cps.get([cps_obj.get()], cps_result): return None result = [] for value in cps_result[0]['data'][PORTS]: result.append(cps_utils.cps_attr_types_map.from_data(PORTS, value)) return result def _add_filter(ports, udp_port, prio, entry_name, exclude=None): '''Add a filter for a port which drops the packet to CPU so that the DHCP agent can work on it''' ifaces = [] for port in ports: if exclude is not None and ifaces != exclude: ifaces.append(nas_os_utils.if_nametoindex(port)) entry = nas_acl.EntryCPSObj(table_id=TBL_ID, entry_id=entry_name, priority=prio) entry.add_match_filter(filter_type="IP_PROTOCOL", filter_val=UDP) entry.add_match_filter(filter_type="L4_DST_PORT", filter_val=udp_port) entry.add_match_filter(filter_type="IN_PORTS", filter_val=ifaces) entry.add_action(action_type="PACKET_ACTION", action_val="TRAP_TO_CPU") cps_upd = ({'operation':'create', 'change':entry.data()}) return cps.transaction([cps_upd]) def add_filter(bridge, udp_port, prio, entry_name, exclude=None): '''Add a filter for a port which drops the packet to CPU so that the DHCP agent can work on it''' return _add_filter(get_ports(bridge), udp_port, prio, entry_name, exclude=exclude) def del_filter(name): '''Delete a filter based on its unique ID returned by set_filters''' cps_obj = cps_utils.CPSObject(module='base-acl/entry', data={'table-id': TBL_ID, 'name':name}) cps_upd = ('delete', cps_obj.get()) cps_trans = cps_utils.CPSTransaction([cps_upd]) return cps_trans.commit()
def main(): a = float(input()) b = float(input()) c = float(input()) pi = 3.14159 d = ((a*c)/2) e = (pi*c*c) f = (((a+b)*c)/2) g = (b*b) h = (a*b) print("TRIANGULO: %.3f" %d) print("CIRCULO: %.3f" %e) print("TRAPEZIO: %.3f" %f) print("QUADRADO: %.3f" %g) print("RETANGULO: %.3f" %h) main()
import tensorflow as tf from stepcovnet.config.TrainingConfig import TrainingConfig from stepcovnet.inputs.AbstractInput import AbstractInput from stepcovnet.training.TrainingFeatureGenerator import TrainingFeatureGenerator class TrainingInput(AbstractInput): def __init__(self, training_config: TrainingConfig): super(TrainingInput, self).__init__(config=training_config) self.output_types = ( {"arrow_input": tf.dtypes.int32, "arrow_mask": tf.dtypes.int32, "audio_input": tf.dtypes.float64}, tf.dtypes.int8, # labels tf.dtypes.float16 # sample weights ) self.output_shape = ( {"arrow_input": tf.TensorShape((None,) + self.config.arrow_input_shape), "arrow_mask": tf.TensorShape((None,) + self.config.arrow_mask_shape), "audio_input": tf.TensorShape((None,) + self.config.audio_input_shape)}, tf.TensorShape((None,) + self.config.label_shape), # labels tf.TensorShape((None,)) # sample weights ) self.train_feature_generator = TrainingFeatureGenerator(dataset_path=self.config.dataset_path, dataset_type=self.config.dataset_type, lookback=self.config.lookback, batch_size=self.config.hyperparameters.batch_size, indexes=self.config.train_indexes, num_samples=self.config.num_train_samples, scalers=self.config.train_scalers, difficulty=self.config.difficulty, warmup=True, tokenizer_name=self.config.tokenizer_name) self.val_feature_generator = TrainingFeatureGenerator(dataset_path=self.config.dataset_path, dataset_type=self.config.dataset_type, lookback=self.config.lookback, batch_size=self.config.hyperparameters.batch_size, indexes=self.config.val_indexes, num_samples=self.config.num_val_samples, scalers=self.config.train_scalers, difficulty=self.config.difficulty, shuffle=False, tokenizer_name=self.config.tokenizer_name) self.all_feature_generator = TrainingFeatureGenerator(dataset_path=self.config.dataset_path, dataset_type=self.config.dataset_type, lookback=self.config.lookback, batch_size=self.config.hyperparameters.batch_size, indexes=self.config.all_indexes, num_samples=self.config.num_samples, scalers=self.config.all_scalers, difficulty=self.config.difficulty, warmup=True, tokenizer_name=self.config.tokenizer_name) def get_tf_dataset(self, generator): return tf.data.Dataset.from_generator( generator, output_types=self.output_types, output_shapes=self.output_shape, ).prefetch(tf.data.experimental.AUTOTUNE) @property def train_generator(self): return self.get_tf_dataset(self.train_feature_generator) @property def val_generator(self): return self.get_tf_dataset(self.val_feature_generator) @property def all_generator(self): return self.get_tf_dataset(self.all_feature_generator)
"""demo_register URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include from django.conf.urls import include, url from accounts import views from django.conf.urls.static import static from django.views.generic import TemplateView from django.conf import settings admin.autodiscover() urlpatterns = [ path('accounts/', include('accounts.urls')), path('', include('pages.urls')), path('admin/', admin.site.urls), url(r'^index/', views.index, name = 'index'), #url(r'^fullcalendar/', views.fullcalendar, name = 'fullcalendar'), url(r'^$', views.index, name = 'index'), url(r'^schedule/', include('schedule.urls')), url(r'^fullcalendar/', TemplateView.as_view(template_name="fullcalendar.html"), name='fullcalendar'), url(r'^mymeetings/', TemplateView.as_view(template_name="mymeetings.html"), name='mymeetings'), url(r'^doctor/', TemplateView.as_view(template_name="doctor.html"), name='doctor'), url(r'^admin/', admin.site.urls), ] if settings.DEBUG: import debug_toolbar urlpatterns += [ url(r'^__debug__/', include(debug_toolbar.urls)), ]
from city_scrapers_core.constants import COMMISSION from city_scrapers_core.spiders import CityScrapersSpider from city_scrapers.mixins import DetCityMixin class DetEntertainmentCommissionSpider(DetCityMixin, CityScrapersSpider): name = "det_entertainment_commission" agency = "Detroit Entertainment Commission" agency_cal_id = "1616" agency_doc_id = ["1616", "7066", "7071"] def _parse_title(self, response): title = super()._parse_title(response) if "commission" not in title.lower(): return title return "Entertainment Commission" def _parse_description(self, response): return "" def _parse_classification(self, response): return COMMISSION
"""Find translation keys that are in Lokalise but no longer defined in source.""" import argparse import json from .const import CORE_PROJECT_ID, FRONTEND_DIR, FRONTEND_PROJECT_ID, INTEGRATIONS_DIR from .error import ExitApp from .lokalise import get_api from .util import get_base_arg_parser def get_arguments() -> argparse.Namespace: """Get parsed passed in arguments.""" parser = get_base_arg_parser() parser.add_argument( "--target", type=str, default="core", choices=["core", "frontend"], ) return parser.parse_args() def find_extra(base, translations, path_prefix, missing_keys): """Find all keys that are in translations but not in base.""" for key, value in translations.items(): cur_path = f"{path_prefix}::{key}" if path_prefix else key # Value is either a dict or a string if isinstance(value, dict): base_search = None if base is None else base.get(key) find_extra(base_search, value, cur_path, missing_keys) elif base is None or key not in base: missing_keys.append(cur_path) def find_core(): """Find all missing keys in core.""" missing_keys = [] for int_dir in INTEGRATIONS_DIR.iterdir(): strings = int_dir / "strings.json" if not strings.is_file(): continue translations = int_dir / "translations" / "en.json" strings_json = json.loads(strings.read_text()) translations_json = json.loads(translations.read_text()) find_extra( strings_json, translations_json, f"component::{int_dir.name}", missing_keys ) return missing_keys def find_frontend(): """Find all missing keys in frontend.""" if not FRONTEND_DIR.is_dir(): raise ExitApp(f"Unable to find frontend at {FRONTEND_DIR}") source = FRONTEND_DIR / "src/translations/en.json" translated = FRONTEND_DIR / "translations/en.json" missing_keys = [] find_extra( json.loads(source.read_text()), json.loads(translated.read_text()), "", missing_keys, ) return missing_keys def run(): """Clean translations.""" args = get_arguments() if args.target == "frontend": missing_keys = find_frontend() lokalise = get_api(FRONTEND_PROJECT_ID) else: missing_keys = find_core() lokalise = get_api(CORE_PROJECT_ID) if not missing_keys: print("No missing translations!") return 0 key_data = lokalise.keys_list( {"filter_keys": ",".join(missing_keys), "limit": 1000} ) if len(key_data) != len(missing_keys): print( f"Lookin up key in Lokalise returns {len(key_data)} results, expected {len(missing_keys)}" ) return 1 print(f"Deleting {len(missing_keys)} keys:") for key in missing_keys: print(" -", key) print() while input("Type YES to delete these keys: ") != "YES": pass print(lokalise.keys_delete_multiple([key["key_id"] for key in key_data])) return 0
import csv import json import time from datetime import datetime from django.contrib import messages from django.core.urlresolvers import reverse from django.db import transaction from django.http import JsonResponse, HttpResponse, HttpResponseRedirect from django.shortcuts import render_to_response, get_object_or_404 from django.template import RequestContext from accounts.models import UserUploadedImage from astrometry.models import AstrometrySubmission from astrometry.process import process_astrometry_online from corrections import get_jd_for_analysis from imageflow.models import ImageAnalysis, ImageAnalysisPair, ImageFilter, Reduction from lightcurve.alcdef import AlcdefWriter from lightcurve.models import LightCurve from lightcurve.util import ordered_analysis_status from reduction.util import find_point_by_id, find_star_by_designation def edit_lightcurve(request, lightcurve_id): lc = LightCurve.objects.get(id=lightcurve_id) images = UserUploadedImage.objects.filter(lightcurve=lc).order_by('analysis__image_datetime') # Always add 5 extra empty image pairs to the list. image_pairs = list(ImageAnalysisPair.objects.filter(lightcurve=lc)) + ([None] * 5) context = { 'lightcurve': lc, 'reduction': lc.get_or_create_reduction(), 'images': images, 'image_filters': ImageFilter.objects.all(), 'magband_filters': ImageFilter.objects.all().exclude(band='C'), 'image_pairs': image_pairs, 'ci_bands': ImageFilter.objects.get_ci_bands(), } return render_to_response('lightcurve.html', context, context_instance=RequestContext(request)) def images(request, lightcurve_id): '''List images in lightcurve. ''' lc = LightCurve.objects.get(id=lightcurve_id) images = UserUploadedImage.objects.filter(lightcurve=lc).order_by('analysis__image_datetime') sort = request.GET.get('sort') if sort == 'filename': images = images.order_by('original_filename') elif sort == 'timestamp': images = images.order_by('analysis__image_datetime') elif sort == 'status': images = images.annotate(status_sort = ordered_analysis_status()).order_by('status_sort') context = { 'lightcurve': lc, 'images': images, } return render_to_response('images.html', context, context_instance=RequestContext(request)) def plot_lightcurve(request, lightcurve_id): lc = LightCurve.objects.get(id=lightcurve_id) context = { 'lightcurve': lc, } return render_to_response('lightcurve_plot.html', context, context_instance=RequestContext(request)) def plot_lightcurve_json(request, lightcurve_id): lc = LightCurve.objects.get(id=lightcurve_id) ret = [] if request.GET.get('type') == 'instrumental': analyses = ImageAnalysis.objects.filter(useruploadedimage__lightcurve=lc) \ .exclude(status=ImageAnalysis.ASTROMETRY_PENDING) for analysis in analyses: result = find_point_by_id(analysis.annotated_point_sources, analysis.target_id) if not result: continue ret.append({ 'analysisId': analysis.id, 'timestamp': analysis.image_datetime, 'timestampJd': get_jd_for_analysis(analysis), 'result': result, }) else: # type == 'standard' or type == 'error' reductions = Reduction.objects.filter(analysis__useruploadedimage__lightcurve=lc, analysis__status=ImageAnalysis.ADDED_TO_LIGHT_CURVE, status=Reduction.COMPLETE) for reduction in reductions: result = find_point_by_id(reduction.reduced_stars, reduction.analysis.target_id) if not result: # Reduction not complete. continue ret.append({ 'analysisId': reduction.analysis.id, 'reductionId': reduction.id, 'timestamp': reduction.analysis.image_datetime, 'timestampJd': get_jd_for_analysis(reduction.analysis), # TODO(ian): Maybe one day we can bake the target id into the URL. # That way you can compare your target light curve to any light # curve from a known object! 'result': result, }) return JsonResponse({ 'success': True, 'results': ret, }) @transaction.atomic def save_observation_default(request, lightcurve_id): lc = get_object_or_404(LightCurve, id=lightcurve_id, user=request.user.id) images = lc.imageanalysis_set.all() lat = request.POST.get('lat') lng = request.POST.get('lng') elevation = request.POST.get('elevation') extinction = request.POST.get('extinction') target_name = request.POST.get('target') magband = request.POST.get('magband') filter = request.POST.get('filter') for image in images: if lat: image.image_latitude= float(lat) if lng: image.image_longitude = float(lng) if elevation: image.image_elevation = float(elevation) if extinction: reduction = lc.get_or_create_reduction() reduction.second_order_extinction = float(extinction) reduction.save() if magband: lc.magband = ImageFilter.objects.get(band=magband) if filter: lc.filter = ImageFilter.objects.get(band=filter) # Unconditionally set (None if blank) lc.target_name = target_name lc.save() image.save() return JsonResponse({ 'success': True, }) @transaction.atomic def apply_photometry_settings(request, lightcurve_id): lc = get_object_or_404(LightCurve, id=lightcurve_id, user=request.user.id) template_analysis = ImageAnalysis.objects.get(pk=request.POST.get('analysisId')) template_settings = template_analysis.get_or_create_photometry_settings() # Apply the settings from this analysis to every analysis. count = 0 print 'template', template_settings for analysis in lc.imageanalysis_set.all(): settings = analysis.get_or_create_photometry_settings() changed = settings.sigma_psf != template_settings.sigma_psf or \ settings.crit_separation != template_settings.crit_separation or \ settings.threshold != template_settings.threshold or \ settings.box_size != template_settings.box_size or \ settings.iters != template_settings.iters if changed or True: settings.sigma_psf = template_settings.sigma_psf settings.crit_separation = template_settings.crit_separation settings.treshold = template_settings.threshold settings.box_size = template_settings.box_size settings.iters = template_settings.iters settings.save() analysis.status = ImageAnalysis.PHOTOMETRY_PENDING analysis.save() count += 1 return JsonResponse({ 'success': True, 'numUpdated': count, }) @transaction.atomic def save_image_pairs(request, lightcurve_id): lc = get_object_or_404(LightCurve, id=lightcurve_id, user=request.user.id) reduction = lc.get_or_create_reduction() color_index_manual = request.POST.get('manual_color_index') if color_index_manual: reduction.color_index_manual = float(color_index_manual) else: reduction.color_index_manual = None reduction.save() images = lc.imageanalysis_set.all() ciband = request.POST.get('ciband') pairs = json.loads(request.POST.get('pairs')) if ciband: lc.ciband = ciband lc.save() if pairs: # Clear existing ImageAnalysisPairs ImageAnalysisPair.objects.filter(lightcurve=lc).delete() # Rebuild them for pair in pairs: # Exclude Nones if all(pair): analysis1 = ImageAnalysis.objects.get(pk=pair[0], user=request.user.id) analysis2 = ImageAnalysis.objects.get(pk=pair[1], user=request.user.id) ImageAnalysisPair.objects.create(lightcurve=lc, analysis1=analysis1, analysis2=analysis2) return JsonResponse({ 'success': True, }) @transaction.atomic def add_images(request, lightcurve_id): # Add all images that are currently eligible to be in the lightcurve. lc = get_object_or_404(LightCurve, id=lightcurve_id, user=request.user.id) analyses = lc.imageanalysis_set.filter(status=ImageAnalysis.REDUCTION_COMPLETE) for analysis in analyses: analysis.status = ImageAnalysis.ADDED_TO_LIGHT_CURVE analysis.save() return JsonResponse({ 'success': True, 'count': len(analyses), }) def add_image_toggle(request, lightcurve_id): analysis_id = request.POST.get('analysisId') lc = get_object_or_404(LightCurve, id=lightcurve_id, user=request.user.id) image = lc.imageanalysis_set.get(id=analysis_id) if image.status == ImageAnalysis.ADDED_TO_LIGHT_CURVE: image.status = ImageAnalysis.REDUCTION_COMPLETE elif image.status == ImageAnalysis.REDUCTION_COMPLETE: image.status = ImageAnalysis.ADDED_TO_LIGHT_CURVE image.save() return JsonResponse({ 'added': image.status == ImageAnalysis.ADDED_TO_LIGHT_CURVE, 'success': True, }) def edit_lightcurve_name(request, lightcurve_id): name = request.POST.get('name') lc = get_object_or_404(LightCurve, id=lightcurve_id, user=request.user.id) lc.name = name lc.save() return JsonResponse({ 'success': True, }) def status(request, lightcurve_id): lc = get_object_or_404(LightCurve, pk=lightcurve_id, user=request.user.id) if request.method == 'POST': val = request.POST.get('status') if val == 'REDUCTION_PENDING': lc.status = LightCurve.REDUCTION_PENDING elif val == 'PHOTOMETRY_PENDING': lc.status = LightCurve.PHOTOMETRY_PENDING else: return JsonResponse({ 'success': False, 'message': 'Did not recognize status %s' % val }) lc.save() return JsonResponse({ 'success': True, }) else: images = lc.useruploadedimage_set.all() pairs = ImageAnalysisPair.objects.filter(lightcurve=lc) num_processed = sum([image.submission.is_done() for image in images if image.submission]) num_photometry = sum([image.analysis.is_photometry_complete() for image in images if image.analysis]) num_target = sum([image.analysis.target_id > 0 for image in images if image.analysis]) num_reviewed = sum([image.analysis.is_reviewed() for image in images if image.analysis]) num_lightcurve = sum([image.analysis.status == ImageAnalysis.ADDED_TO_LIGHT_CURVE for image in images if image.analysis]) num_reduction_complete = sum([image.analysis.status == ImageAnalysis.REDUCTION_COMPLETE for image in images if image.analysis]) return JsonResponse({ 'success': True, 'status': lc.status, 'numProcessed': num_processed, 'numPhotometry': num_photometry, 'numPairs': len(pairs), 'numComparisonStars': len(lc.comparison_stars), 'numTarget': num_target, 'numReductionComplete': num_reduction_complete + num_lightcurve, 'numReviewed': num_reviewed, 'numLightcurve': num_lightcurve, 'numImages': len(images), }) def comparison_desigs(request, lightcurve_id): lc = get_object_or_404(LightCurve, pk=lightcurve_id, user=request.user.id) if request.method == 'POST': desigs = set(json.loads(request.POST.get('desigs'))) lc.comparison_stars = [star for star in lc.common_stars if star['designation'] in desigs] lc.save() return JsonResponse({ 'success': True, }) return JsonResponse({ 'success': True, 'desigs': [star['designation'] for star in lc.comparison_desigs], }) @transaction.atomic def run_image_reductions(request, lightcurve_id): lc = get_object_or_404(LightCurve, pk=lightcurve_id, user=request.user.id) analyses = lc.imageanalysis_set.all() count = 0 for analysis in analyses: if analysis.target_id and analysis.target_id > 0: analysis.status = ImageAnalysis.REVIEW_PENDING analysis.save() reduction = analysis.get_or_create_reduction() reduction.status = Reduction.PENDING reduction.save() count += 1 return JsonResponse({ 'success': True, 'numTriggered': count, }) def my_lightcurve(request): lc_list = LightCurve.objects.filter(user=request.user.id) context_list = [] for lc in lc_list: images = UserUploadedImage.objects.filter(lightcurve=lc) context_list.append({ 'lightcurve': lc, 'images': images, }) return render_to_response('lightcurve_list.html', {'contexts': context_list}, context_instance=RequestContext(request)) def all_lightcurve(request): lc_list = LightCurve.objects.all() context_list = [] for lc in lc_list: images = UserUploadedImage.objects.filter(lightcurve=lc) context_list.append({ 'lightcurve': lc, 'images': images, }) return render_to_response('lightcurve_list.html', {'contexts': context_list, 'request_all': True}, context_instance=RequestContext(request)) def download(request, lightcurve_id): file_type = request.GET.get('file_type') lc = LightCurve.objects.get(id=lightcurve_id) analyses = ImageAnalysis.objects.filter(useruploadedimage__lightcurve=lc) \ .exclude(status=ImageAnalysis.ASTROMETRY_PENDING) if file_type == 'csv': response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="LightCurve%s.csv"' % (lightcurve_id) writer = csv.writer(response) writer.writerow(['Datetime', 'JD', 'Mag instrumental', 'Mag standard', 'Mag std']) for analysis in analyses: if analysis.annotated_point_sources != []: result = find_point_by_id(analysis.annotated_point_sources, analysis.target_id) if not result: continue writer.writerow([analysis.image_datetime, get_jd_for_analysis(analysis), result.get('mag_instrumental', None), result.get('mag_standard', None), result.get('mag_std', None)]) elif file_type == 'alcdef': myalcdef = AlcdefWriter() myalcdef.set('CIBAND', lc.ciband) myalcdef.set('CONTACTNAME', lc.user) myalcdef.set('CONTACTINFO', lc.user.email) myalcdef.set('DELIMITER', 'PIPE') myalcdef.set('FILTER', 'C') myalcdef.set('OBSERVERS', lc.user) myalcdef.set('OBJECTNAME', lc.target_name) myalcdef.set('OBJECTNUMBER', lc.target_name) myalcdef.add_comment(lc.notes) total_time = 0 for analysis in analyses: total_time += time.mktime(analysis.image_datetime.timetuple()) if analysis.annotated_point_sources != []: result = find_point_by_id(analysis.annotated_point_sources, analysis.target_id) if not result: continue myalcdef.add_data(get_jd_for_analysis(analysis), result.get('mag_instrumental', None), result.get('mag_instrumental_unc', None), result.get('airmass', None)) mid_time = datetime.utcfromtimestamp(total_time / len(analyses)) myalcdef.set('SESSIONDATE', mid_time.strftime("%Y-%m-%d")) myalcdef.set('SESSIONTIME', mid_time.strftime("%H:%M:%S")) content = myalcdef.tostring() if isinstance(content, set): messages.error(request, ', '.join(content)) return HttpResponseRedirect(reverse('edit_lightcurve', args=lightcurve_id)) response = HttpResponse(content, content_type='text/plain; charset=us-ascii') response['Content-Disposition'] = 'attachment; filename="LightCurve%s.alcdef"' % (lightcurve_id) return response
# -*- coding: utf-8 -*- # Copyright (c) 2015 Ericsson AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import sys import os import random import time import json import uuid import Queue import multiprocessing import traceback from mock import Mock from twisted.internet import reactor from calvin.utilities import calvinlogger from calvin.utilities.calvin_callback import CalvinCB, CalvinCBClass from calvin.runtime.south.transports.calvinip import calvinip_transport _log = calvinlogger.get_logger(__name__) """ @pytest.fixture(scope="session", autouse=True) def cleanup(request): def fin(): reactor.callFromThread(reactor.stop) request.addfinalizer(fin) print "hejsan" """ def slay(plist): import signal for p in plist: if p.is_alive(): p.terminate() p.join(timeout=.2) if p.is_alive(): print "Warning: process %s still alive slay!!" % p._name os.kill(p.pid, signal.SIGKILL) time.sleep(.1) if len(multiprocessing.active_children()) > 1: print "Error: children is still alive", multiprocessing.active_children() for a in multiprocessing.active_children(): a.terminate() class BaseTHandler(multiprocessing.Process): def __init__(self, uri, outqueue, inqueue, timeout=5): multiprocessing.Process.__init__(self) self._timeout = timeout self._item = None self._uri = uri self._outqueue = outqueue self._inqueue = inqueue self._running = False def set_ttf(self, ttf): self._ttf = ttf def _return(self, test=False, variables={}, stack=None): if stack is None: stack = traceback.format_stack(limit=15)[:-1] else: stack = [] self._outqueue.put([test, stack, variables]) def _stop_reactor(self, timeout=False): if timeout: self.__timeout() if self._item: # Server not stopped fail self._return(False, {'self._item': repr(self._item)}) self._running = False print(reactor, reactor.running) if reactor.running: reactor.callLater(.1, reactor.stop) def _read_thread(self): print("%s - Read thread started" % self._name) while self._running: try: cmd = self._inqueue.get(timeout=.1) except: continue func = getattr(self, cmd[0]) print("Running: %s(%s, %s)" % (func.__name__, cmd[1], cmd[2])) reactor.callFromThread(func, *cmd[1], **cmd[2]) print("%s - Read thread died" % self._name) def start(self): self._running = True self.daemon = True multiprocessing.Process.start(self) def __timeout(self, command=None, *args): print("Timeout in", self) self._return("timeout", {command: args}) def _base_run(self): # make it work with twisted py.test plugin also reactor._started = False print "timeout %s", self._timeout reactor.callLater(self._timeout, self._stop_reactor, timeout=True) reactor.callInThread(self._read_thread) reactor.run() def run(self): self._base_run() class TransportTestServerHandler(BaseTHandler): def __init__(self, *args, **kwargs): self._name = "TestServerHandler" BaseTHandler.__init__(self, *args, **kwargs) self._tp = None def get_callbacks(self): return {'server_started': [CalvinCB(self._server_started)], 'server_stopped': [CalvinCB(self._server_stopped)], 'join_failed': [CalvinCB(self._join_failed)], 'peer_disconnected': [CalvinCB(self._peer_disconnected)], 'peer_connected': [CalvinCB(self._peer_connected)]} def _data_received(self, *args): print("server_data_received", args) def _peer_connected(self, transport, uri): print("server_peer_connected", transport) transport.callback_register('join_finished', CalvinCB(self._join_finished)) transport.callback_register('data_received', CalvinCB(self._data_received)) def _join_failed(self, transport, _id, uri, is_orginator, reason): _log.debug("Server join failed on uri %s, reason %s", uri, reason) self._return('server_join_failed', {'transport': repr(transport), 'uri': uri, 'reason': reason}) def _join_finished(self, transport, _id, uri, is_orginator): print("server_join_finished", transport, _id, uri) self._return(transport._coder is not None and _id and uri, {'transport._coder': transport._coder , 'id': _id, 'uri': uri}) self._return('server_join_finished', {'transport': repr(transport), '_id': _id, 'uri': uri}) pass def _peer_disconnected(self, *args): print("server peer disconnected", args) def _server_stopped(self, *args): print("Server stopped", args) self._item = None self._outqueue.put(["server_stopped", repr(args)]) # Die here ? self._stop_reactor() def _stop_server(self): print("_stop_server") self._item.stop() self._return(not self._item.is_listening()) def stop(self): print("server_stop", self._item) if self._item: self._stop_server() # Timeout reactor.callLater(1, self._stop_reactor) def _server_started(self, server, port): print("Server started", server, port) self._item = server # put in queue self._return(port > 0 and port < 65536, {'port': port}) self._return('server_started', port) def _start_server(self): self._tp = self._ttf.listen(self._uri) def run(self): print("start server") reactor.callLater(0, self._start_server) self._base_run() print("server finished") def _run_command(self, command, *args): comand(args) reactor.callLater(0, self.start_server) class TransportTestClientHandler(BaseTHandler): def __init__(self, *args, **kwargs): self._name = "TestClientHandler" self._port = None self._stop = False self._tp = None BaseTHandler.__init__(self, *args, **kwargs) def set_ttf(self, ttf): self._ttf = ttf def set_port(self, port): print("set_port", port) self._port = port def get_callbacks(self): return {'peer_disconnected': [CalvinCB(self._peer_disconnected)], 'peer_connection_failed': [CalvinCB(self._connection_failed)], 'join_failed': [CalvinCB(self._join_failed)], 'peer_connected': [CalvinCB(self._peer_connected)]} def _data_received(self, data): print("client_data_received", data) self._return('client_data_received', {'data': data}) def _peer_connected(self, transport, uri): print("client_peer_connected", transport) transport.callback_register('join_finished', CalvinCB(self._join_finished)) transport.callback_register('data_received', CalvinCB(self._data_received)) self._return('client_connected', {'transport': repr(transport), 'uri': uri}) self._item = transport def _connection_failed(self, tp_link, uri, reason): _log.debug("Client connection failed on uri %s, reason %s", uri, reason) self._return('client_connection_failed', {'link': repr(tp_link), 'uri': uri, 'reason': reason}) def _join_failed(self, transport, _id, uri, is_orginator, reason): _log.debug("Client join failed on uri %s, reason %s", uri, reason) self._return('client_join_failed', {'transport': repr(transport), 'uri': uri, 'reason': reason}) def _join_finished(self, transport, _id, uri, is_orginator): print("client_join_finished", transport, _id, uri) self._return(transport._coder is not None and _id and uri, {'transport._coder': transport._coder , 'id': _id, 'uri': uri}) self._return('client_join_finished', {'transport': repr(transport), '_id': _id, 'uri': uri}) def _peer_disconnected(self, transport, uri, reason): print("client_peer_disconnected", transport, uri, reason) #self._return(not self._item.is_connected(), variables={'is_connected': self._item.is_connected()}) self._return('client_disconnected', {'transport': repr(transport), 'reason': reason, 'uri': uri}) # If we have stop stop everything if self._stop: self._item = None self._stop_reactor() def _stop_client(self): print("_stop_client(disconnect)") self._stop = True self._item.disconnect() def stop(self): print("client_stop", self._item) if self._item: self._stop_client() # Timeout reactor.callLater(1, self._stop_reactor) def _join(self): self._tp = self._ttf.join(self._uri) def run(self): print("start client") self._uri = "%s:%s" % (self._uri, self._port) reactor.callLater(0, self._join) self._base_run() print("client finished") class ConnectionFailed(Exception): pass class ServerJoinFailed(Exception): pass class ClientJoinFailed(Exception): pass # @pytest.mark.interactive class TestTransportServer(object): @pytest.mark.essential def test_start_stop(self, monkeypatch): _mmanager = multiprocessing.Manager() shqs = [_mmanager.Queue(), _mmanager.Queue()] sh = TransportTestServerHandler("calvinip://localhost", shqs[0], shqs[1], timeout=2) ttf_uuid = str(uuid.uuid4()) ttf = calvinip_transport.CalvinTransportFactory(ttf_uuid, ttf_uuid, sh.get_callbacks()) sh.set_ttf(ttf) sh.start() error = None try: while sh.is_alive(): try: mess = shqs[0].get(timeout=.3) # print(mess) except: continue if mess[0] == 'timeout': print(mess[1]) raise Exception("Timeout: %s" % "\n".join(mess[1][11:])) elif mess[0] == 'server_started': pass shqs[1].put(['stop', [], {}]) elif mess[0] == 'server_stopped': break else: # print mess if not mess[0]: for a in mess[1]: print a, for k,v in mess[2].items(): print "%s = %s" % (k, repr(v)) raise Exception("\n".join(mess[1][11:])) except Exception as e: import traceback traceback.print_exc() error = e shqs[1].put(['stop', [], {}]) sh.join(timeout=.2) slay([sh]) if error: pytest.fail(error) def test_callbacks(self, monkeypatch): #self.test_start_stop(monkeypatch) pass def test_peer_connected(self, monkeypatch): pass class TestTransportClient(object): test_nodes = 2 @pytest.mark.essential def test_connect(self, monkeypatch): queues = [] _mmanager = multiprocessing.Manager() shqs = [_mmanager.Queue(), _mmanager.Queue()] chqs = [_mmanager.Queue(), _mmanager.Queue()] sh = TransportTestServerHandler("calvinip://127.0.0.1", shqs[0], shqs[1], timeout=2) ch = TransportTestClientHandler("calvinip://127.0.0.1", chqs[0], chqs[1], timeout=2) ttfs_uuid = str(uuid.uuid4()) ttfs = calvinip_transport.CalvinTransportFactory(ttfs_uuid, ttfs_uuid, sh.get_callbacks()) ttfc_uuid = str(uuid.uuid4()) ttfc = calvinip_transport.CalvinTransportFactory(ttfc_uuid, ttfc_uuid, ch.get_callbacks()) sh.set_ttf(ttfs) ch.set_ttf(ttfc) sh.start() #ch.start() queues = [shqs, chqs] cstop = sstop = False stop = False error = None try: while not stop: for q in queues: try: mess = q[0].get(timeout=.1) #print(mess[0]) except: continue if mess[0] == 'timeout': print(mess[1]) # TODO: terminate raise Exception("Timeout: %s" % "\n".join(mess[1][11:])) elif mess[0] == 'server_stopped': print "Hej hej" sstop = True stop = (sstop and cstop) elif mess[0] == 'server_started': ch.set_port(mess[2]) ch.start() elif mess[0] == 'client_disconnected': if mess[2]['reason'] != "OK": raise Exception("Did not disconnect cleanly") cstop = True stop = (sstop and cstop) elif mess[0] == 'client_join_finished': stop = True elif mess[0] == 'client_join_failed': raise ClientJoinFailed(str(mess[2])) elif mess[0] == 'server_join_failed': raise ServerJoinFailed(str(mess[2])) elif mess[0] == 'client_connection_failed': raise ConnectionFailed(str(mess[1:])) else: # print mess if not mess[0]: for a in mess[1][11:-1]: print a, for k,v in mess[2].items(): print "%s = %s" % (k, repr(v)) raise Exception("\n".join(mess[1][11:])) except Exception as e: error = e for tq in queues: print(repr(tq)) tq[1].put(['stop', [], {}]) time.sleep(.2) slay([sh, ch]) if error: pytest.fail(error) def test_connect_client_join_fail(self, monkeypatch): _mmanager = multiprocessing.Manager() queues = [] shqs = [_mmanager.Queue(), _mmanager.Queue()] chqs = [_mmanager.Queue(), _mmanager.Queue()] sh = TransportTestServerHandler("calvinip://127.0.0.1", shqs[0], shqs[1]) ch = TransportTestClientHandler("calvinip://127.0.0.1", chqs[0], chqs[1]) ttfs_uuid = str(uuid.uuid4()) ttfs = calvinip_transport.CalvinTransportFactory(ttfs_uuid, ttfs_uuid, sh.get_callbacks()) ttfc_uuid = str(uuid.uuid4()) ttfc = calvinip_transport.CalvinTransportFactory(ttfc_uuid, ttfc_uuid, ch.get_callbacks()) sh.set_ttf(ttfs) ch.set_ttf(ttfc) monkeypatch.setattr(ttfc, "_client_validator", lambda x: False) sh.start() queues = [shqs, chqs] cstop = sstop = False stop = False error = None try: while not stop: for q in queues: try: mess = q[0].get(timeout=.1) #print(mess[0]) except: continue if mess[0] == 'timeout': print(mess[1]) # TODO: terminate raise Exception("Timeout: %s" % "\n".join(mess[1][11:])) elif mess[0] == 'server_stopped': print "Hej hej" sstop = True stop = (sstop and cstop) elif mess[0] == 'server_started': ch.set_port(mess[2]) ch.start() elif mess[0] == 'client_disconnected': cstop = True stop = (sstop and cstop) elif mess[0] == 'client_join_finished': stop = True elif mess[0] == 'client_join_failed': raise ClientJoinFailed(str(mess[2])) elif mess[0] == 'server_join_failed': raise ServerJoinFailed(str(mess[2])) elif mess[0] == 'client_connection_failed': raise ConnectionFailed(str(mess[2])) else: # print mess if not mess[0]: for a in mess[1][11:-1]: print a, for k,v in mess[2].items(): print "%s = %s" % (k, repr(v)) raise Exception("\n".join(mess[1][11:])) except Exception as e: error = e for tq in queues: print(repr(tq)) tq[1].put(['stop', [], {}]) slay([sh, ch]) if error: with pytest.raises(ClientJoinFailed): import traceback traceback.print_exc(error) raise error else: pytest.fail("No exception") def test_connect_server_join_fail(self, monkeypatch): _mmanager = multiprocessing.Manager() queues = [] shqs = [_mmanager.Queue(), _mmanager.Queue()] chqs = [_mmanager.Queue(), _mmanager.Queue()] sh = TransportTestServerHandler("calvinip://127.0.0.1", shqs[0], shqs[1]) ch = TransportTestClientHandler("calvinip://127.0.0.1", chqs[0], chqs[1]) ttfs_uuid = str(uuid.uuid4()) ttfs = calvinip_transport.CalvinTransportFactory(ttfs_uuid, ttfs_uuid, sh.get_callbacks()) ttfc_uuid = str(uuid.uuid4()) ttfc = calvinip_transport.CalvinTransportFactory(ttfc_uuid, ttfc_uuid, ch.get_callbacks()) sh.set_ttf(ttfs) ch.set_ttf(ttfc) monkeypatch.setattr(ttfs, "_client_validator", lambda x: False) sh.start() queues = [shqs, chqs] cstop = sstop = False stop = False error = None try: while not stop: for q in queues: try: mess = q[0].get(timeout=.1) #print(mess[0]) except: continue if mess[0] == 'timeout': print(mess[1]) # TODO: terminate raise Exception("Timeout: %s" % "\n".join(mess[1][11:])) elif mess[0] == 'server_stopped': print "Hej hej" sstop = True stop = (sstop and cstop) elif mess[0] == 'server_started': ch.set_port(mess[2]) ch.start() elif mess[0] == 'client_disconnected': cstop = True stop = (sstop and cstop) elif mess[0] == 'client_join_finished': stop = True elif mess[0] == 'client_join_failed': raise ClientJoinFailed(str(mess[2])) elif mess[0] == 'server_join_failed': raise ServerJoinFailed(str(mess[2])) elif mess[0] == 'client_connection_failed': raise ConnectionFailed(str(mess[2])) else: # print mess if not mess[0]: for a in mess[1][11:-1]: print a, for k,v in mess[2].items(): print "%s = %s" % (k, repr(v)) raise Exception("\n".join(mess[1][11:])) except Exception as e: error = e for tq in queues: print(repr(tq)) tq[1].put(['stop', [], {}]) slay([sh, ch]) if error: with pytest.raises(ServerJoinFailed): import traceback traceback.print_exc(error) raise error else: pytest.fail("No exception") def test_connect_fail(self, monkeypatch): _mmanager = multiprocessing.Manager() queues = [] shqs = [_mmanager.Queue(), _mmanager.Queue()] chqs = [_mmanager.Queue(), _mmanager.Queue()] sh = TransportTestServerHandler("calvinip://127.0.0.1", shqs[0], shqs[1]) ch = TransportTestClientHandler("calvinip://127.0.0.1", chqs[0], chqs[1]) ttfs_uuid = str(uuid.uuid4()) ttfs = calvinip_transport.CalvinTransportFactory(ttfs_uuid, ttfs_uuid, sh.get_callbacks()) ttfc_uuid = str(uuid.uuid4()) ttfc = calvinip_transport.CalvinTransportFactory(ttfc_uuid, ttfc_uuid, ch.get_callbacks()) sh.set_ttf(ttfs) ch.set_ttf(ttfc) sh.start() #ch.start() queues = [shqs, chqs] cstop = sstop = False stop = False error = None try: while not stop: for q in queues: try: mess = q[0].get(timeout=.1) #print(mess[0]) except: continue if mess[0] == 'timeout': print(mess[1]) # TODO: terminate raise Exception("Timeout: %s" % "\n".join(mess[1][11:])) elif mess[0] == 'server_stopped': print "Hej hej" sstop = True stop = (sstop and cstop) elif mess[0] == 'server_started': ch.set_port(str(int(mess[2])+1)) ch.start() elif mess[0] == 'client_disconnected': cstop = True stop = (sstop and cstop) elif mess[0] == 'client_join_finished': stop = True elif mess[0] == 'client_join_failed': raise ClientJoinFailed(str(mess[2])) elif mess[0] == 'server_join_failed': raise ServerJoinFailed(str(mess[2])) elif mess[0] == 'client_connection_failed': raise ConnectionFailed(str(mess[2])) else: # print mess if not mess[0]: for a in mess[1][11:-1]: print a, for k,v in mess[2].items(): print "%s = %s" % (k, repr(v)) raise Exception("\n".join(mess[1][11:])) except Exception as e: error = e for tq in queues: print "hej", repr(tq) tq[1].put(['stop', [], {}]) print sh, ch slay([sh, ch]) if error: with pytest.raises(ConnectionFailed): import traceback traceback.print_exc(error) raise error else: pytest.fail("No exception") def test_data(self, monkeypatch): pass def test_callback(self, monkeypatch): pass
"""Step placement functions.""" from genologics.entities import Process, StepActions def finish_protocol_complete(lims, process_id): """Finish next step after current step is finished (Dx Mark protocol complete).""" process = Process(lims, id=process_id) inputs = '' actions = [] # Check all analytes for analyte in process.analytes()[0]: analyte_workflow_stages_and_statuses = analyte.workflow_stages_and_statuses if analyte_workflow_stages_and_statuses[-1][2] == 'Dx Mark protocol complete' and analyte_workflow_stages_and_statuses[-1][1] == 'QUEUED': actions.append({'action': 'complete', 'artifact': analyte}) step_uri = analyte_workflow_stages_and_statuses[-1][0].step.uri inputs += '<input uri="{0}" replicates="1"/>'.format(analyte.uri) # Generate start step XML xml = '''<?xml version="1.0" encoding="UTF-8" standalone="yes"?> <tmp:step-creation xmlns:tmp="http://genologics.com/ri/step"> <configuration uri="{0}"/> <inputs> {1} </inputs> </tmp:step-creation> '''.format(step_uri, inputs) # Start step output = lims.post( uri=lims.get_uri('steps'), data=xml ) # Get started step uri step_action_uri = output.find('actions').get('uri') step_actions = StepActions(lims, uri=step_action_uri) # Advance to next step screen step = step_actions.step step.advance() # Next step # Mark everything complete step_actions.set_next_actions(actions) step_actions.put() # Finish step step.advance()
# -*- coding: utf-8 -*- """ Test 'pymonzo.monzo_api' file """ from __future__ import unicode_literals import codecs import json import os import tempfile import pytest from six.moves.urllib.parse import urljoin from pymonzo import MonzoAPI from pymonzo import config from pymonzo.api_objects import MonzoAccount, MonzoBalance, MonzoPot, MonzoTransaction class TestMonzoAPI: """ Test `monzo_api.MonzoAPI` class. """ @pytest.fixture(scope='session') def monzo(self): """Helper fixture that returns a `MonzoAPI` instance""" return MonzoAPI(access_token='explicit_access_token') @pytest.fixture def mocked_monzo(self, mocker): """Helper fixture that returns a mocked `MonzoAPI` instance""" mocker.patch('pymonzo.monzo_api.OAuth2Session') mocker.patch('pymonzo.monzo_api.MonzoAPI._save_token_on_disk') client_id = 'explicit_client_id' client_secret = 'explicit_client_secret' auth_code = 'explicit_auth_code' monzo = MonzoAPI( client_id=client_id, client_secret=client_secret, auth_code=auth_code, ) return monzo def test_class_initialization(self, monkeypatch, mocker): """ Test class `__init__` method. Quite long and complicated because of the number of possible scenarios. Possibly to revisit in the future. """ access_token = 'explicit_access_token' client_id = 'explicit_client_id' client_secret = 'explicit_client_secret' auth_code = 'explicit_auth_code' monkeypatch.setenv(config.MONZO_ACCESS_TOKEN_ENV, 'env_access_token') monkeypatch.setenv(config.MONZO_CLIENT_ID_ENV, 'env_client_id') monkeypatch.setenv(config.MONZO_CLIENT_SECRET_ENV, 'env_client_secret') monkeypatch.setenv(config.MONZO_AUTH_CODE_ENV, 'env_auth_code') # When we provide all variables both explicitly and via environment # variables, the explicit 'access token' should take precedence mocker.patch('os.path.isfile', return_value=True) mocked_oauth2_session = mocker.patch('pymonzo.monzo_api.OAuth2Session') expected_token = { 'access_token': 'explicit_access_token', 'token_type': 'Bearer', } monzo = MonzoAPI( access_token=access_token, client_id=client_id, client_secret=client_secret, auth_code=auth_code, ) assert monzo._access_token == 'explicit_access_token' assert monzo._client_id is None assert monzo._client_secret is None assert monzo._auth_code is None assert monzo._token == expected_token mocked_oauth2_session.assert_called_once_with( client_id=None, token=expected_token, ) # Don't pass 'access_token' explicitly mocked_oauth2_session = mocker.patch('pymonzo.monzo_api.OAuth2Session') mocked_get_oauth_token = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_oauth_token' ) mocked_save_token_on_disk = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._save_token_on_disk' ) expected_token = mocked_get_oauth_token.return_value monzo = MonzoAPI( client_id=client_id, client_secret=client_secret, auth_code=auth_code, ) assert monzo._access_token is None assert monzo._client_id == 'explicit_client_id' assert monzo._client_secret == 'explicit_client_secret' assert monzo._auth_code == 'explicit_auth_code' assert monzo._token == expected_token mocked_get_oauth_token.assert_called_once_with() mocked_save_token_on_disk.assert_called_once_with() mocked_oauth2_session.assert_called_once_with( client_id='explicit_client_id', token=expected_token, ) # Don't pass anything explicitly and the token file exists mocked_oauth2_session = mocker.patch('pymonzo.monzo_api.OAuth2Session') mocker.patch('os.path.isfile', return_value=True) mocked_open = mocker.patch('codecs.open', mocker.mock_open()) mocked_json_load = mocker.patch('json.load') expected_token = mocked_json_load.return_value monzo = MonzoAPI() assert monzo._access_token is None assert monzo._client_id is expected_token['client_id'] assert monzo._client_secret is expected_token['client_secret'] assert monzo._auth_code is None assert monzo._token == expected_token mocked_open.assert_called_once_with( config.TOKEN_FILE_PATH, 'r', 'utf-8', ) mocked_json_load.assert_called_once_with(mocked_open.return_value) mocked_get_oauth_token.assert_called_once_with() mocked_oauth2_session.assert_called_once_with( client_id=expected_token['client_id'], token=expected_token, ) # Don't pass anything explicitly, the token file doesn't exist # and 'access_token' environment variable exists mocked_oauth2_session = mocker.patch('pymonzo.monzo_api.OAuth2Session') mocker.patch('os.path.isfile', return_value=False) expected_token = { 'access_token': 'env_access_token', 'token_type': 'Bearer', } monzo = MonzoAPI() assert monzo._access_token == 'env_access_token' assert monzo._client_id is None assert monzo._client_secret is None assert monzo._auth_code is None assert monzo._token == expected_token mocked_oauth2_session.assert_called_once_with( client_id=None, token=expected_token, ) # Don't pass anything explicitly, the token file doesn't exist # and 'access_token' environment variable doesn't exist monkeypatch.delenv(config.MONZO_ACCESS_TOKEN_ENV) mocked_oauth2_session = mocker.patch('pymonzo.monzo_api.OAuth2Session') mocked_get_oauth_token = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_oauth_token' ) mocked_save_token_on_disk = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._save_token_on_disk' ) expected_token = mocked_get_oauth_token.return_value monzo = MonzoAPI() assert monzo._access_token is None assert monzo._client_id == 'env_client_id' assert monzo._client_secret == 'env_client_secret' assert monzo._auth_code == 'env_auth_code' assert monzo._token == expected_token mocked_get_oauth_token.assert_called_once_with() mocked_save_token_on_disk.assert_called_once_with() mocked_oauth2_session.assert_called_once_with( client_id='env_client_id', token=expected_token, ) # None of the above monkeypatch.delenv(config.MONZO_CLIENT_ID_ENV) with pytest.raises(ValueError): MonzoAPI( auth_code=auth_code, client_id=client_id, ) def test_class_save_token_on_disk_method(self, monzo): """Test class `_save_token_on_disk` method""" config.TOKEN_FILE_PATH = os.path.join( tempfile.gettempdir(), 'pymonzo_test', ) monzo._token = { 'foo': u'UNICODE', 'bar': 1, 'baz': False, } expected_token = monzo._token.copy() expected_token.update(client_secret=monzo._client_secret) monzo._save_token_on_disk() with codecs.open(config.TOKEN_FILE_PATH, 'r', 'utf-8') as f: assert json.load(f) == expected_token def test_class_get_oauth_token_method(self, mocker, mocked_monzo): """Test class `_get_oauth_token` method""" mocked_fetch_token = mocker.MagicMock() mocked_oauth2_session = mocker.patch('pymonzo.monzo_api.OAuth2Session') mocked_oauth2_session.return_value.fetch_token = mocked_fetch_token token = mocked_monzo._get_oauth_token() assert token == mocked_fetch_token.return_value mocked_oauth2_session.assert_called_once_with( client_id=mocked_monzo._client_id, redirect_uri=config.REDIRECT_URI, ) mocked_fetch_token.assert_called_once_with( token_url=urljoin(mocked_monzo.api_url, '/oauth2/token'), code=mocked_monzo._auth_code, client_secret=mocked_monzo._client_secret, ) def test_class_refresh_oath_token_method(self, mocker, mocked_monzo): """Test class `_refresh_oath_token` method""" mocked_requests_post_json = mocker.MagicMock() mocked_requests_post = mocker.patch('pymonzo.monzo_api.requests.post') mocked_requests_post.return_value.json = mocked_requests_post_json mocked_save_token_on_disk = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._save_token_on_disk' ) expected_data = { 'grant_type': 'refresh_token', 'client_id': mocked_monzo._client_id, 'client_secret': mocked_monzo._client_secret, 'refresh_token': mocked_monzo._token['refresh_token'], } mocked_monzo._refresh_oath_token() assert mocked_monzo._token == mocked_requests_post_json.return_value mocked_requests_post.assert_called_once_with( urljoin(mocked_monzo.api_url, '/oauth2/token'), data=expected_data, ) mocked_requests_post_json.assert_called_once_with() mocked_save_token_on_disk.assert_called_once_with() def test_class_whoami_method(self, mocker, mocked_monzo): """Test class `whoami` method""" mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) result = mocked_monzo.whoami() mocked_get_response.assert_called_once_with( method='get', endpoint='/ping/whoami', ) expected_result = mocked_get_response.return_value.json.return_value assert result == expected_result def test_class_accounts_method(self, mocker, mocked_monzo, accounts_api_response): """Test class `accounts` method""" mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) mocked_get_response.return_value.json.return_value = accounts_api_response assert mocked_monzo._cached_accounts is None result = mocked_monzo.accounts() mocked_get_response.assert_called_once_with( method='get', endpoint='/accounts', ) accounts_json = accounts_api_response['accounts'] expected_result = [ MonzoAccount(data=account) for account in accounts_json ] assert result == expected_result assert mocked_monzo._cached_accounts == expected_result # Calling it again should fetch '_cached_accounts' mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) mocked_get_response.return_value.json.return_value = accounts_api_response result = mocked_monzo.accounts() assert mocked_get_response.call_count == 0 assert result == mocked_monzo._cached_accounts # But calling it with 'refresh=True' should do an API request mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) mocked_get_response.return_value.json.return_value = accounts_api_response assert mocked_monzo._cached_accounts is not None result = mocked_monzo.accounts(refresh=True) mocked_get_response.assert_called_once_with( method='get', endpoint='/accounts', ) accounts_json = accounts_api_response['accounts'] expected_result = [ MonzoAccount(data=account) for account in accounts_json ] assert result == expected_result assert mocked_monzo._cached_accounts == expected_result def test_class_balance_method(self, mocker, mocked_monzo, balance_api_response, accounts_api_response): """Test class `balance` method""" mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) mocked_get_response.return_value.json.return_value = balance_api_response accounts_json = accounts_api_response['accounts'] mocked_monzo._cached_accounts = [ MonzoAccount(data=account) for account in accounts_json ] result = mocked_monzo.balance() mocked_get_response.assert_called_once_with( method='get', endpoint='/balance', params={ 'account_id': mocked_monzo._cached_accounts[0].id, }, ) expected_result = MonzoBalance(balance_api_response) assert result == expected_result # It should raise an 'ValueError' if there more (or less) then 1 account mocked_monzo._cached_accounts = mocked_monzo._cached_accounts * 2 with pytest.raises(ValueError): mocked_monzo.balance() def test_class_pots_method(self, mocker, mocked_monzo, pots_api_response): """Test class `pots` method""" mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) mocked_get_response.return_value.json.return_value = pots_api_response assert mocked_monzo._cached_pots is None result = mocked_monzo.pots() mocked_get_response.assert_called_once_with( method='get', endpoint='/pots/listV1', ) pots_json = pots_api_response['pots'] expected_result = [MonzoPot(data=pot) for pot in pots_json] assert result == expected_result assert mocked_monzo._cached_pots == expected_result # Calling it again should fetch '_cached_pots' mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) mocked_get_response.return_value.json.return_value = pots_api_response result = mocked_monzo.pots() assert mocked_get_response.call_count == 0 assert result == mocked_monzo._cached_pots # But calling it with 'refresh=True' should do an API request mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) mocked_get_response.return_value.json.return_value = pots_api_response assert mocked_monzo._cached_pots is not None result = mocked_monzo.pots(refresh=True) mocked_get_response.assert_called_once_with( method='get', endpoint='/pots/listV1', ) pots_json = pots_api_response['pots'] expected_result = [MonzoPot(data=pot) for pot in pots_json] assert result == expected_result assert mocked_monzo._cached_pots == expected_result def test_class_transactions_method(self, mocker, mocked_monzo, transactions_api_response, accounts_api_response): """Test class `transactions` method""" mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) mocked_get_response.return_value.json.return_value = transactions_api_response accounts_json = accounts_api_response['accounts'] mocked_monzo._cached_accounts = [ MonzoAccount(data=account) for account in accounts_json ] result = mocked_monzo.transactions() mocked_get_response.assert_called_once_with( method='get', endpoint='/transactions', params={ 'account_id': mocked_monzo._cached_accounts[0].id, }, ) transactions_json = transactions_api_response['transactions'] expected_result = [ MonzoTransaction(data=transaction) for transaction in transactions_json ] assert result == expected_result # It should raise an 'ValueError' if there more (or less) then 1 account mocked_monzo._cached_accounts = mocked_monzo._cached_accounts * 2 with pytest.raises(ValueError): mocked_monzo.transactions() def test_class_transaction_method(self, mocker, mocked_monzo, transaction_api_response): """Test class `transaction` method""" mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) mocked_get_response.return_value.json.return_value = transaction_api_response result = mocked_monzo.transaction('foobar') mocked_get_response.assert_called_once_with( method='get', endpoint='/transactions/foobar', params={}, ) expected_result = MonzoTransaction(transaction_api_response['transaction']) assert result == expected_result # With expanded merchant info mocked_get_response = mocker.patch( 'pymonzo.monzo_api.MonzoAPI._get_response', ) mocked_get_response.return_value.json.return_value = transaction_api_response result = mocked_monzo.transaction('foobar', expand_merchant=True) mocked_get_response.assert_called_once_with( method='get', endpoint='/transactions/foobar', params={ 'expand[]': 'merchant', }, ) expected_result = MonzoTransaction(transaction_api_response['transaction']) assert result == expected_result
import vtk def getSliderObjects(sliderRep, sliderWidget, titleText, iren, initVal, minVal, maxVal, posXLeft, posY, callBackFunc): sliderRep.SetMinimumValue(minVal) sliderRep.SetMaximumValue(maxVal) sliderRep.SetValue(initVal) sliderRep.SetTitleText(titleText) sliderRep.GetPoint1Coordinate().SetCoordinateSystemToDisplay() sliderRep.GetPoint1Coordinate().SetValue(posXLeft, posY, 0) sliderRep.GetPoint2Coordinate().SetCoordinateSystemToDisplay() sliderRep.GetPoint2Coordinate().SetValue(posXLeft+300, posY, 0) sliderRep.SetSliderLength(0.025) sliderRep.SetSliderWidth(0.025) sliderRep.SetEndCapLength(0.0125) sliderWidget.SetInteractor(iren) sliderWidget.SetRepresentation(sliderRep) sliderWidget.KeyPressActivationOff() sliderWidget.SetAnimationModeToAnimate() sliderWidget.SetEnabled(True) sliderWidget.AddObserver("InteractionEvent", callBackFunc)
from typing import IO import javaproperties from .._FileWriter import FileWriter from ._Report import Report from . import constants class ReportFileWriter(FileWriter[str, Report, "ReportFileWriter"]): """ Writer for report files. """ def _dump(self, obj: Report, file: IO[str]): # Create a Java properties dictionary properties = {constants.PROPERTY_PARENTID: str(obj.database_id)} # Add the fields and their types as properties for field in obj: name = str(field) properties[name] = str(obj.get_value(field)) properties[name + constants.DATATYPE_SUFFIX] = field.datatype.to_display() print(javaproperties.to_comment(javaproperties.java_timestamp()), file=file) print(javaproperties.to_comment("Simple report format (= Java properties file format)"), file=file) javaproperties.dump(properties, file, timestamp=False, sort_keys=True)
import os import tensorflow as tf import numpy as np from tensorflow import keras import time from matplotlib import pyplot as plt from gd import Discriminator, Generator tf.random.set_seed(22) np.random.seed(22) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' assert tf.__version__.startswith('2.') batch_size = 1 IMG_WIDTH = 256 IMG_HEIGHT = 256 path_to_zip = keras.utils.get_file('facades.tar.gz', cache_subdir=os.path.abspath('.'), origin='https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/facades.tar.gz', extract=True) PATH = os.path.join(os.path.dirname(path_to_zip), 'facades/') print('dataset path:', PATH) def load_image(image_file, is_train): """ load and preprocess images :param image_file: :param is_train: :return: """ image = tf.io.read_file(image_file) image = tf.image.decode_jpeg(image) w = image.shape[1] w = w // 2 real_image = image[:, :w, :] input_image = image[:, w:, :] input_image = tf.cast(input_image, tf.float32) real_image = tf.cast(real_image, tf.float32) if is_train: # random jittering # resizing to 286 x 286 x 3 input_image = tf.image.resize(input_image, [286, 286]) real_image = tf.image.resize(real_image, [286, 286]) # randomly cropping to 256 x 256 x 3 stacked_image = tf.stack([input_image, real_image], axis=0) cropped_image = tf.image.random_crop(stacked_image, size=[2, IMG_HEIGHT, IMG_WIDTH, 3]) input_image, real_image = cropped_image[0], cropped_image[1] if np.random.random() > 0.5: # random mirroring input_image = tf.image.flip_left_right(input_image) real_image = tf.image.flip_left_right(real_image) else: input_image = tf.image.resize(input_image, size=[IMG_HEIGHT, IMG_WIDTH]) real_image = tf.image.resize(real_image, size=[IMG_HEIGHT, IMG_WIDTH]) # normalizing the images to [-1, 1] input_image = (input_image / 127.5) - 1 real_image = (real_image / 127.5) - 1 # [256, 256, 3], [256, 256, 3] # print(input_image.shape, real_image.shape) # => [256, 256, 6] out = tf.concat([input_image, real_image], axis=2) return out train_dataset = tf.data.Dataset.list_files(PATH+'/train/*.jpg') # The following snippet can not work, so load it hand by hand. # train_dataset = train_dataset.map(lambda x: load_image(x, True)).batch(1) train_iter = iter(train_dataset) train_data = [] for x in train_iter: train_data.append(load_image(x, True)) train_data = tf.stack(train_data, axis=0) # [800, 256, 256, 3] print('train:', train_data.shape) train_dataset = tf.data.Dataset.from_tensor_slices(train_data) train_dataset = train_dataset.shuffle(400).batch(1) test_dataset = tf.data.Dataset.list_files(PATH+'test/*.jpg') # test_dataset = test_dataset.map(lambda x: load_image(x, False)).batch(1) test_iter = iter(test_dataset) test_data = [] for x in test_iter: test_data.append(load_image(x, False)) test_data = tf.stack(test_data, axis=0) # [800, 256, 256, 3] print('test:', test_data.shape) test_dataset = tf.data.Dataset.from_tensor_slices(test_data) test_dataset = test_dataset.shuffle(400).batch(1) generator = Generator() generator.build(input_shape=(batch_size, 256, 256, 3)) generator.summary() discriminator = Discriminator() discriminator.build(input_shape=[(batch_size, 256, 256, 3), (batch_size, 256, 256, 3)]) discriminator.summary() g_optimizer = keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5) d_optimizer = keras.optimizers.Adam(learning_rate=2e-4, beta_1=0.5) def discriminator_loss(disc_real_output, disc_generated_output): # [1, 30, 30, 1] with [1, 30, 30, 1] # print(disc_real_output.shape, disc_generated_output.shape) real_loss = keras.losses.binary_crossentropy( tf.ones_like(disc_real_output), disc_real_output, from_logits=True) generated_loss = keras.losses.binary_crossentropy( tf.zeros_like(disc_generated_output), disc_generated_output, from_logits=True) real_loss = tf.reduce_mean(real_loss) generated_loss = tf.reduce_mean(generated_loss) total_disc_loss = real_loss + generated_loss return total_disc_loss def generator_loss(disc_generated_output, gen_output, target): LAMBDA = 100 gan_loss = keras.losses.binary_crossentropy( tf.ones_like(disc_generated_output), disc_generated_output, from_logits=True) # mean absolute error l1_loss = tf.reduce_mean(tf.abs(target - gen_output)) gan_loss = tf.reduce_mean(gan_loss) total_gen_loss = gan_loss + (LAMBDA * l1_loss) return total_gen_loss def generate_images(model, test_input, tar, epoch): # the training=True is intentional here since # we want the batch statistics while running the model # on the test dataset. If we use training=False, we will get # the accumulated statistics learned from the training dataset # (which we don't want) prediction = model(test_input, training=True) plt.figure(figsize=(15,15)) display_list = [test_input[0], tar[0], prediction[0]] title = ['Input Image', 'Ground Truth', 'Predicted Image'] for i in range(3): plt.subplot(1, 3, i+1) plt.title(title[i]) # getting the pixel values between [0, 1] to plot it. plt.imshow(display_list[i] * 0.5 + 0.5) plt.axis('off') plt.savefig('images/epoch%d.png'%epoch) print('saved images.') # plt.show() def main(): epochs = 1000 for epoch in range(epochs): start = time.time() for step, inputs in enumerate(train_dataset): input_image, target = tf.split(inputs, num_or_size_splits=[3, 3], axis=3) # print(input_image.shape, target.shape) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: # get generated pixel2pixel image gen_output = generator(input_image, training=True) # fed real pixel2pixel image together with original image disc_real_output = discriminator([input_image, target], training=True) # fed generated/fake pixel2pixel image together with original image disc_generated_output = discriminator([input_image, gen_output], training=True) gen_loss = generator_loss(disc_generated_output, gen_output, target) disc_loss = discriminator_loss(disc_real_output, disc_generated_output) generator_gradients = gen_tape.gradient(gen_loss, generator.trainable_variables) g_optimizer.apply_gradients(zip(generator_gradients, generator.trainable_variables)) discriminator_gradients = disc_tape.gradient(disc_loss, discriminator.trainable_variables) d_optimizer.apply_gradients(zip(discriminator_gradients, discriminator.trainable_variables)) if step% 100 == 0: # print(disc_loss.shape, gen_loss.shape) print(epoch, step, float(disc_loss), float(gen_loss)) if epoch % 1 == 0: for inputs in test_dataset: input_image, target = tf.split(inputs, num_or_size_splits=[3, 3], axis=3) generate_images(generator, input_image, target, epoch) break print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, time.time() - start)) for inputs in test_dataset: input_image, target = tf.split(inputs, num_or_size_splits=[3, 3], axis=3) generate_images(generator, input_image, target, 99999) break if __name__ == '__main__': main()
from models.Playerlist import * import time def main(): with open("players.txt", 'r') as f: players = f.readlines() PlayerList = Playerlist() #users that were not found in riot database errorUsers = list() j = 0 for player in players: #make sure we dont exceed request limit from temp api if(j<5): j += 1 else: j = 0 time.sleep(15) # try and catch any errors requesting info from RIOT API try: PlayerList.addPlayer(player.strip('\n')) except Exception as e: errorUsers.append(e) print(str(e)) if len(errorUsers) > 0: print("Players not found in Riot Database for North America:") with open("ErrorUsers.txt",'w') as errUsr: for p in errorUsers: print(p) errUsr.write(str(p) + '\n') #Create the Teams PlayerList.createTeams() print("Teams:") print("-----------------------") #print out all the teams PlayerList.printTeams() #convert output to csv PlayerList.toCsv() if __name__ == '__main__': main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from neodroid.utilities.unity_specifications import Motion, Reaction, ReactionParameters __author__ = "Christian Heider Nielsen" import neodroid.wrappers.formal_wrapper as neo def construct_reactions(env): parameters = ReactionParameters( terminable=True, step=True, reset=False, configure=False, describe=False, episode_count=True, ) action1, action2 = env.action_space.sample() motions = [ Motion("ActorActor", "ActorTransformX_", action1), Motion("ActorActor", "ActorTransformZ_", action2), ] reactions = [ Reaction( environment_name=f"EnvironmentPrototypingEnvironment", parameters=parameters, motions=motions, ) ] for i in range(19): action1, action2 = env.action_space.sample() motions = [ Motion("ActorActor", "ActorTransformX_", action1), Motion("ActorActor", "ActorTransformZ_", action2), ] reaction = Reaction( environment_name=f"Environment(Clone){i}PrototypingEnvironment", parameters=parameters, motions=motions, ) reactions.append(reaction) return reactions def main(): _environments = neo.NeodroidEnvironment(name="multienv", connect_to_running=True) while _environments.is_connected: reactions = construct_reactions(_environments) states = _environments.react(reactions) if __name__ == "__main__": main()
import time import numpy as np from extra_foam.algorithms import ( nanmean, nansum ) def benchmark_nan_without_axis(f_cpp, f_py, shape, dtype): data = np.random.randn(*shape).astype(dtype) + 1. # shift to avoid very small mean data[:, :3, ::3] = np.nan t0 = time.perf_counter() ret_cpp = f_cpp(data) dt_cpp = time.perf_counter() - t0 t0 = time.perf_counter() ret_py = f_py(data) dt_py = time.perf_counter() - t0 np.testing.assert_allclose(ret_cpp, ret_py, rtol=1e-4) print(f"\nwithout axis, dtype = {dtype} - \n" f"dt (cpp): {dt_cpp:.4f}, " f"dt (numpy): {dt_py:.4f}") def benchmark_nan_keep_zero_axis(f_cpp, f_py, shape, dtype): data = np.random.randn(*shape).astype(dtype=dtype) + 1. # shift to avoid very small mean data[:, :3, ::3] = np.nan t0 = time.perf_counter() ret_cpp = f_cpp(data, axis=(-2, -1)) dt_cpp = time.perf_counter() - t0 t0 = time.perf_counter() ret_py = f_py(data, axis=(-2, -1)) dt_py = time.perf_counter() - t0 np.testing.assert_allclose(ret_cpp, ret_py, rtol=1e-4) print(f"\nkeep zero axis, dtype = {dtype} - \n" f"dt (cpp): {dt_cpp:.4f}, " f"dt (numpy): {dt_py:.4f}") if __name__ == "__main__": print("*" * 80) print("Benchmark statistics functions") print("*" * 80) s = (16, 1096, 1120) for f_cpp, f_py in [(nansum, np.nansum), (nanmean, np.nanmean)]: print(f"\n----- {f_cpp.__name__} ------") benchmark_nan_without_axis(f_cpp, f_py, s, np.float32) benchmark_nan_without_axis(f_cpp, f_py, s, np.float64) benchmark_nan_keep_zero_axis(f_cpp, f_py, s, np.float32) benchmark_nan_keep_zero_axis(f_cpp, f_py, s, np.float64)
#!/usr/bin/env python # -*- coding: utf-8 -*- # ***************************************************************************** # Copyright (c) 2016-2020, Intel Corporation # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF # THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** """ NumPy is the fundamental package for array computing with Python. It provides: - a powerful N-dimensional array object - sophisticated (broadcasting) functions - tools for integrating C/C++ and Fortran code - useful linear algebra, Fourier transform, and random number capabilities - and much more """ import importlib.machinery as imm # Python 3 is required import sys import os import dpctl import numpy from setuptools import setup, Extension from Cython.Build import cythonize from Cython.Compiler import Options as cython_options from utils.command_style import source_style from utils.command_clean import source_clean from utils.command_build_clib import custom_build_clib, dpnp_backend_c_description, _project_backend_dir, _sdl_cflags, _project_extra_link_args, IS_WIN from utils.command_build_cmake_clib import custom_build_cmake_clib """ Python version check """ if sys.version_info[:2] < (3, 6): raise RuntimeError("DPNP: Python version >= 3.6 required.") """ Get the project version """ thefile_path = os.path.abspath(os.path.dirname(__file__)) version_mod = imm.SourceFileLoader('version', os.path.join(thefile_path, 'dpnp', 'version.py')).load_module() __version__ = version_mod.__version__ """ Set project auxilary data like readme and licence files """ with open('README.md') as f: __readme_file__ = f.read() CLASSIFIERS = """\ Development Status :: 4 - Beta Intended Audience :: Science/Research Intended Audience :: Developers License :: OSI Approved Programming Language :: C Programming Language :: Python Programming Language :: Python :: 3 Programming Language :: Python :: 3.6 Programming Language :: Python :: 3.7 Programming Language :: Python :: 3.8 Programming Language :: Python :: Implementation :: CPython Topic :: Software Development Topic :: Scientific/Engineering Operating System :: Microsoft :: Windows Operating System :: POSIX Operating System :: Unix Operating System :: MacOS """ """ Extra defined commands for the build system >$ python ./setup.py --help-commands >$ python ./setup.py style >$ python ./setup.py style -a >$ python ./setup.py clean TODO: spell check, valgrind, code coverage """ # TODO: refactor/fix # on Win we need a specific build_clib definition to prevent using cmake during build_ext execution if IS_WIN: dpnp_build_commands = {'style': source_style, 'build_clib_setuptools': custom_build_clib, 'build_clib': custom_build_clib, 'clean': source_clean } else: dpnp_build_commands = {'style': source_style, 'build_clib_setuptools': custom_build_clib, 'build_clib': custom_build_cmake_clib, 'clean': source_clean } if IS_WIN: ''' This variable controls setuptools execution on windows to avoid automatically search and confirm workability of the compiler If not set, error "Microsoft Visual C++ 14.0 or greater is required." appiars ''' os.environ["DISTUTILS_USE_SDK"] = "1" """ The project modules description """ kwargs_common = { "include_dirs": [numpy.get_include(), dpctl.get_include()] + _project_backend_dir, "library_dirs": [os.path.dirname(dpctl.get_include()),], "libraries": ["DPCTLSyclInterface"], "extra_compile_args": _sdl_cflags, "extra_link_args": _project_extra_link_args, "define_macros": [("NPY_NO_DEPRECATED_API", "NPY_1_7_API_VERSION")], "language": "c++" } dpnp_algo = Extension( name="dpnp.dpnp_algo.dpnp_algo", sources=[os.path.join("dpnp", "dpnp_algo", "dpnp_algo.pyx")], **kwargs_common) dpnp_dparray = Extension( name="dpnp.dparray", sources=[os.path.join("dpnp", "dparray.pyx")], **kwargs_common) dpnp_random = Extension( name="dpnp.random.dpnp_algo_random", sources=[os.path.join("dpnp", "random", "dpnp_algo_random.pyx")], **kwargs_common) dpnp_linalg = Extension( name="dpnp.linalg.dpnp_algo_linalg", sources=[os.path.join("dpnp", "linalg", "dpnp_algo_linalg.pyx")], **kwargs_common) dpnp_fft = Extension( name="dpnp.fft.dpnp_algo_fft", sources=[os.path.join("dpnp", "fft", "dpnp_algo_fft.pyx")], **kwargs_common) dpnp_utils = Extension( name="dpnp.dpnp_utils.dpnp_algo_utils", sources=[os.path.join("dpnp", "dpnp_utils", "dpnp_algo_utils.pyx")], **kwargs_common) cython_options.docstrings = True cython_options.warning_errors = True dpnp_cython_mods = cythonize([dpnp_algo, dpnp_dparray, dpnp_random, dpnp_utils, dpnp_linalg, dpnp_fft], compiler_directives={"language_level": sys.version_info[0], "warn.unused": False, "warn.unused_result": False, "warn.maybe_uninitialized": False, "warn.undeclared": False, "boundscheck": True, "linetrace": True }, gdb_debug=False, build_dir="build_cython", annotate=False, quiet=False) setup(name="dpnp", version=__version__, description="NumPy-like API accelerated with SYCL", long_description=__readme_file__, long_description_content_type="text/markdown", author="Intel Corporation", maintainer="Intel Corp.", maintainer_email="scripting@intel.com", url="https://intelpython.github.io/dpnp/", download_url="https://github.com/IntelPython/dpnp", license='BSD', classifiers=[_f for _f in CLASSIFIERS.split('\n') if _f], keywords="sycl numpy python3 intel mkl oneapi gpu dpcpp pstl", platforms=["Linux", "Windows"], test_suite="pytest", python_requires=">=3.6", install_requires=["numpy>=1.15"], setup_requires=["numpy>=1.15"], tests_require=["numpy>=1.15"], ext_modules=dpnp_cython_mods, cmdclass=dpnp_build_commands, packages=['dpnp', 'dpnp.dpnp_algo', 'dpnp.dpnp_utils', 'dpnp.fft', 'dpnp.linalg', 'dpnp.random' ], package_data={'dpnp': ['libdpnp_backend_c.so', 'dpnp_backend_c.lib', 'dpnp_backend_c.dll']}, include_package_data=True, # this is needed for 'build' command to automatically call 'build_clib' # it attach the library to all extensions (it is not needed) libraries=dpnp_backend_c_description )
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from typing import Any from omegaconf import DictConfig import hydra def add(app_cfg: DictConfig, key1: str, key2: str) -> Any: num1 = app_cfg[key1] num2 = app_cfg[key2] ret = num1 + num2 print(f"Hello {app_cfg.user}, {num1} + {num2} = {ret}") return ret @hydra.main(config_path="conf", config_name="config") def main(cfg: DictConfig) -> None: add(cfg.app, "num1", "num2") if __name__ == "__main__": main()
# -*- coding: utf-8 -*- import os import sys sys.path.insert(0, os.path.dirname(os.path.dirname(__file__))) from webtest import http from doctest import SKIP from tests.apps import input_app PY3 = sys.version_info >= (3,) def setup_test(test): for example in test.examples: # urlopen as moved in py3 if PY3: example.options.setdefault(SKIP, 1) if not PY3: server = http.StopableWSGIServer.create(input_app) server.wait() path_to_html_file = os.path.join('tests', 'test.html') test.globs.update( input_app=input_app, server=server, your_url=server.application_url.rstrip('/') + '/html', path_to_html_file=path_to_html_file, ) setup_test.__test__ = False def teardown_test(test): if 'server' in test.globs: test.globs['server'].shutdown() teardown_test.__test__ = False
import json class nsfc: @staticmethod def load_discipline(): dic = {} with open('data/nsfc.jl', 'r', encoding='utf-8') as f: for line in f: th = json.loads(line) dic[th['_id']] = th return dic discipline = load_discipline.__func__()
import utility from .UnivariateLocalEstimator import UnivariateLocalEstimator from .VineKernelDensity import VineKernelDensity
import sys import datetime from pyspark import SparkContext from csv import reader from operator import add def week(datetimestr): #get weeknumber of the yaer date, time = datetimestr.split(' ') yearstr, monthstr, daystr = date.split('-') year = int(yearstr) month = int(monthstr) day = int(daystr) isoyear, isoweeknum, isoweekdaynum = datetime.date(year, month, day).isocalendar() if isoyear == year: return isoweeknum else: return 0 if __name__ == "__main__": sc = SparkContext() rddbike = sc.textFile('BikeResult.txt') lines = rddbike.mapPartitions(lambda x: reader(x)) neighbor_count = lines.filter(lambda x: int(x[1]) >= 0).map(lambda x: (int(x[1]), 1)).reduceByKey(add).sortBy(lambda x: x[0]).map(lambda x: "%d,%d" % (x[0], x[1])) neighbor_count.saveAsTextFile("bike_n_count.txt") week_count = lines.filter(lambda x: int(x[1]) >= 0).map(lambda x:(week(x[0]), 1)).reduceByKey(add).sortBy(lambda x: x[0]).map(lambda x: "%d,%d" % (x[0], x[1])) week_count.saveAsTextFile("bike_week_count.txt")
# Copyright (c) 2008, Willow Garage, Inc. # All rights reserved. # # Software License Agreement (BSD License 2.0) # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Willow Garage, Inc. nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # This file is originally from: # https://github.com/ros/ros_comm/blob/6e5016f4b2266d8a60c9a1e163c4928b8fc7115e/tools/rostopic/src/rostopic/__init__.py from argparse import ArgumentTypeError from collections import defaultdict import functools import math import threading import rclpy from rclpy.clock import Clock from rclpy.clock import ClockType from rclpy.qos import qos_profile_sensor_data from ros2cli.node.direct import DirectNode from ros2topic.api import get_msg_class from ros2topic.api import TopicNameCompleter from ros2topic.verb import VerbExtension DEFAULT_WINDOW_SIZE = 10000 def unsigned_int(string): try: value = int(string) except ValueError: value = -1 if value < 0: raise ArgumentTypeError('value must be non-negative integer') return value class HzVerb(VerbExtension): """Print the average publishing rate to screen.""" def add_arguments(self, parser, cli_name): arg = parser.add_argument( 'topic_name', help="Name of the ROS topic to listen to (e.g. '/chatter')") arg.completer = TopicNameCompleter( include_hidden_topics_key='include_hidden_topics') parser.add_argument( '--window', '-w', dest='window_size', type=unsigned_int, default=DEFAULT_WINDOW_SIZE, help='window size, in # of messages, for calculating rate ' '(default: %d)' % DEFAULT_WINDOW_SIZE, metavar='WINDOW') parser.add_argument( '--filter', dest='filter_expr', default=None, help='only measure messages matching the specified Python expression', metavar='EXPR') parser.add_argument( '--wall-time', dest='use_wtime', default=False, action='store_true', help='calculates rate using wall time which can be helpful' ' when clock is not published during simulation') def main(self, *, args): return main(args) def main(args): topic = args.topic_name if args.filter_expr: def expr_eval(expr): def eval_fn(m): return eval(expr) return eval_fn filter_expr = expr_eval(args.filter_expr) else: filter_expr = None with DirectNode(args) as node: _rostopic_hz(node.node, topic, window_size=args.window_size, filter_expr=filter_expr, use_wtime=args.use_wtime) class ROSTopicHz(object): """ROSTopicHz receives messages for a topic and computes frequency.""" def __init__(self, node, window_size, filter_expr=None, use_wtime=False): self.lock = threading.Lock() self.last_printed_tn = 0 self.msg_t0 = -1 self.msg_tn = 0 self.times = [] self._last_printed_tn = defaultdict(int) self._msg_t0 = defaultdict(lambda: -1) self._msg_tn = defaultdict(int) self._times = defaultdict(list) self.filter_expr = filter_expr self.use_wtime = use_wtime self.window_size = window_size # Clock that has support for ROS time. self._clock = node.get_clock() def get_last_printed_tn(self, topic=None): if topic is None: return self.last_printed_tn return self._last_printed_tn[topic] def set_last_printed_tn(self, value, topic=None): if topic is None: self.last_printed_tn = value self._last_printed_tn[topic] = value def get_msg_t0(self, topic=None): if topic is None: return self.msg_t0 return self._msg_t0[topic] def set_msg_t0(self, value, topic=None): if topic is None: self.msg_t0 = value self._msg_t0[topic] = value def get_msg_tn(self, topic=None): if topic is None: return self.msg_tn return self._msg_tn[topic] def set_msg_tn(self, value, topic=None): if topic is None: self.msg_tn = value self._msg_tn[topic] = value def get_times(self, topic=None): if topic is None: return self.times return self._times[topic] def set_times(self, value, topic=None): if topic is None: self.times = value self._times[topic] = value def callback_hz(self, m, topic=None): """ Calculate interval time. :param m: Message instance :param topic: Topic name """ # ignore messages that don't match filter if self.filter_expr is not None and not self.filter_expr(m): return with self.lock: # Uses ROS time as the default time source and Walltime only if requested curr_rostime = self._clock.now() if not self.use_wtime else \ Clock(clock_type=ClockType.SYSTEM_TIME).now() # time reset if curr_rostime.nanoseconds == 0: if len(self.get_times(topic=topic)) > 0: print('time has reset, resetting counters') self.set_times([], topic=topic) return curr = curr_rostime.nanoseconds msg_t0 = self.get_msg_t0(topic=topic) if msg_t0 < 0 or msg_t0 > curr: self.set_msg_t0(curr, topic=topic) self.set_msg_tn(curr, topic=topic) self.set_times([], topic=topic) else: self.get_times(topic=topic).append(curr - self.get_msg_tn(topic=topic)) self.set_msg_tn(curr, topic=topic) if len(self.get_times(topic=topic)) > self.window_size: self.get_times(topic=topic).pop(0) def get_hz(self, topic=None): """ Calculate the average publising rate. :param topic: topic name, ``list`` of ``str`` :returns: tuple of stat results (rate, min_delta, max_delta, standard deviation, window number) None when waiting for the first message or there is no new one """ if not self.get_times(topic=topic): return elif self.get_last_printed_tn(topic=topic) == 0: self.set_last_printed_tn(self.get_msg_tn(topic=topic), topic=topic) return elif self.get_msg_tn(topic=topic) < self.get_last_printed_tn(topic=topic) + 1e9: return with self.lock: # Get frequency every one minute times = self.get_times(topic=topic) n = len(times) mean = sum(times) / n rate = 1. / mean if mean > 0. else 0 # std dev std_dev = math.sqrt(sum((x - mean)**2 for x in times) / n) # min and max max_delta = max(times) min_delta = min(times) self.set_last_printed_tn(self.get_msg_tn(topic=topic), topic=topic) return rate, min_delta, max_delta, std_dev, n def print_hz(self, topic=None): """Print the average publishing rate to screen.""" ret = self.get_hz(topic) if ret is None: return rate, min_delta, max_delta, std_dev, window = ret print('average rate: %.3f\n\tmin: %.3fs max: %.3fs std dev: %.5fs window: %s' % (rate * 1e9, min_delta * 1e-9, max_delta * 1e-9, std_dev * 1e-9, window)) return def _rostopic_hz(node, topic, window_size=DEFAULT_WINDOW_SIZE, filter_expr=None, use_wtime=False): """ Periodically print the publishing rate of a topic to console until shutdown. :param topic: topic name, ``list`` of ``str`` :param window_size: number of messages to average over, -1 for infinite, ``int`` :param filter_expr: Python filter expression that is called with m, the message instance """ # pause hz until topic is published msg_class = get_msg_class(node, topic, blocking=True) if msg_class is None: node.destroy_node() return rt = ROSTopicHz(node, window_size, filter_expr=filter_expr, use_wtime=use_wtime) node.create_subscription( msg_class, topic, functools.partial(rt.callback_hz, topic=topic), qos_profile=qos_profile_sensor_data) while rclpy.ok(): rclpy.spin_once(node) rt.print_hz(topic) node.destroy_node() rclpy.shutdown()
#!/usr/bin/env python ################################################################## # Copyright (c) 2012, Sergej Srepfler <sergej.srepfler@gmail.com> # February 2012 - # Version 0.3.1, Last change on Nov 15, 2012 # This software is distributed under the terms of BSD license. ################################################################## # Decode SMPP packet from libSmpp import * import sys if __name__ == "__main__": # level for decoding are: DEBUG, INFO, WARNING, ERROR, CRITICAL logging.basicConfig(level=logging.DEBUG) LoadDictionary("dictSMPP.xml") msg=sys.argv[1] print msg print "="*30 H=HDRItem() stripHdr(H,msg) print "Len=",H.len,"Code=",H.operation,"Status=",H.result,"Sequence=",H.sequence,"Message=",H.msg splitMsgAVPs(H) print "Mandatory:",H.mandatory print "Optional:",H.optional ###################################################### # History # 0.3.1 - Nov 15, 2012 - SMPP decode initial version
from typing import Tuple, Union, Iterable, List, Callable, Dict, Optional from nnuncert.models._network import MakeNet from nnuncert.models.dnnc import DNNCModel, DNNCRidge, DNNCHorseshoe, DNNCPred from nnuncert.models.mc_dropout import DropoutTF, MCDropout, MCDropoutPred from nnuncert.models.ensemble import Ensemble, PNNEnsemble, NLMEnsemble, EnsPredGauss from nnuncert.models.gp import GPModel, GPPred from nnuncert.models.nlm import NLM, NLMPred from nnuncert.models.pbp import PBPModel, PBPPred from nnuncert.models.pnn import PNN, PNNPred STR2TYPE = { "DNNC-R" : DNNCRidge, "DNNC-HS" : DNNCHorseshoe, "MCDropout" : MCDropout, "MC Dropout" : MCDropout, "MC dropout" : MCDropout, "PNN" : PNN, "Deep emsemble" : PNNEnsemble, "GP" : GPModel, "GP-ReLU" : GPModel, "PNN-E" : PNNEnsemble, "NLM" : NLM, "NLM-E" : NLMEnsemble, "PBP" : PBPModel, } def make_network(model_type: Union[type, str], input_shape: Tuple, architecture: List[Tuple[int, str, float]], *args, **kwargs) -> MakeNet: """Generate network with 'architecture' for given 'model_type'. Parameters ---------- model_type : Union[type, str] Model to generate network for. input_shape : Tuple Shape of inputs for neural network. architecture : List[Tuple[int, str, float]] Network architecture, per hidden layer: [Number of hidden units, activation function in layer, dropout rate] Returns ------- MakeNet Network to used as input for model initialization. """ if isinstance(model_type, str): model_type = STR2TYPE[model_type] MakeNetDict = { DNNCModel : MakeNet.mean_only(input_shape, architecture, *args, **kwargs), DNNCRidge : MakeNet.mean_only(input_shape, architecture, *args, **kwargs), DNNCHorseshoe : MakeNet.mean_only(input_shape, architecture, *args, **kwargs), MCDropout : MakeNet.joint(input_shape, architecture, dropout_type=DropoutTF, *args, **kwargs), PNN : MakeNet.joint(input_shape, architecture, *args, **kwargs), PNNEnsemble : MakeNet.joint(input_shape, architecture, *args, **kwargs), NLM : MakeNet.joint(input_shape, architecture, *args, **kwargs), NLMEnsemble : MakeNet.joint(input_shape, architecture, *args, **kwargs), PBPModel : MakeNet.joint(input_shape, architecture, *args, **kwargs), GPModel : MakeNet.mean_only(input_shape, architecture, *args, **kwargs), } return MakeNetDict[model_type] def make_model(model_type: Union[type, str], input_shape: Tuple, architecture: List[Tuple[int, str, float]], net_kwargs: Optional[Dict] = {}, *args, **kwargs): """Initialize model with given architecture. Parameters ---------- model_type : Union[type, str] Model to generate network for. input_shape : Tuple Shape of inputs for neural network. architecture : List[Tuple[int, str, float]] Network architecture, per hidden layer: [Number of hidden units, activation function in layer, dropout rate] net_kwargs : Optional[Dict] Arguments to be passed to MakeNet creator function. """ if isinstance(model_type, str): model_type = STR2TYPE[model_type] # generate network net = make_network(model_type, input_shape, architecture, **net_kwargs) # init model model = model_type(net, *args, **kwargs) return model
class UndergroundSystem(object): def __init__(self): # record the customer's starting trip # card ID: [station, t] self.customer_trip = {} # record the average travel time from start station to end station # (start, end): [t, times] self.trips = {} def checkIn(self, id, stationName, t): self.customer_trip[id] = [stationName, t] def checkOut(self, id, stationName, t): # get the check in information of the customer start_station, start_t = self.customer_trip[id] del self.customer_trip[id] # the trip information # stationName => end_station # t => end_t trip = (start_station, stationName) travel_time = t - start_t # store / update the trip information if trip not in self.trips: self.trips[trip] = [travel_time, 1] else: # another way to write that is store the total traveling time and the number of travels # so that you do not need to calculate the avg time everytime avg_t, times = self.trips[trip] self.trips[trip] = [ (avg_t * times + travel_time) / (times + 1.0), times + 1] def getAverageTime(self, startStation, endStation): return self.trips[(startStation, endStation)][0] # Your UndergroundSystem object will be instantiated and called as such: # obj = UndergroundSystem() # obj.checkIn(id,stationName,t) # obj.checkOut(id,stationName,t) # param_3 = obj.getAverageTime(startStation,endStation)
from .interface import Capreole
#! /usr/bin/env python # -*- coding: utf-8 -*- """ Module that contains decorators for Qt """ from __future__ import print_function, division, absolute_import from functools import wraps from Qt.QtCore import Qt from Qt.QtWidgets import QApplication from Qt.QtGui import QCursor def show_wait_cursor(fn): """ Decorator that shows wait cursor during function execution :param fn: """ @wraps(fn) def wrapper(*args, **kwargs): cursor = QCursor(Qt.WaitCursor) QApplication.setOverrideCursor(cursor) try: return fn(*args, **kwargs) finally: QApplication.restoreOverrideCursor() return wrapper def show_arrow_cursor(fn): """ Decorator that shows arrow cursor during function execution :param fn: """ @wraps(fn) def wrapper(*args, **kwargs): cursor = QCursor(Qt.ArrowCursor) QApplication.setOverrideCursor(cursor) try: return fn(*args, **kwargs) finally: QApplication.restoreOverrideCursor() return wrapper
# -*- coding: utf-8 -*- """ Created on Mon Jul 26 13:44:11 2021 @author: user24 """ import tkinter as tk import tkinter.filedialog as fd root = tk.Tk() root.withdraw() file = fd.askopenfilename( title="ファイルを選んでください。", filetypes=[("TEXT", ".txt"), ("TEXT", ".py"), ("HTML", ".html")] ) if file: with open(file, "r", encoding="utf_8") as fileobj: text = fileobj.read() print(text)
import pandas as pd import numpy as np import scipy.stats import matplotlib.pyplot as plt plt.style.use('../acmart.mplrc') ### latency vs stages print("loading csv") d = pd.read_csv('perf-data/results.csv') print("filtering data") d = d[d['max_copy'] == 512] d = d[d['pipes'] == 6] d = d[d['samples'] == 20000000] d = d[['sdr', 'scheduler', 'stages', 'run', 'time', 'event', 'block', 'items']] def gr_block_index(d): if d['sdr'] == 'gr' and d['event'] == 'rx': return d['block'] - d['stages'] * 2 - 2 else: return d['block'] print("applying block index change for GR...", end='') d['block'] = d.apply(gr_block_index, axis=1) print("done") g = d.groupby(['sdr', 'scheduler', 'stages', 'run']) r = pd.DataFrame({'sdr': pd.Series(dtype='str'), 'scheduler': pd.Series(dtype='str'), 'stages': pd.Series(dtype='int64'), 'latency': pd.Series(dtype='int64')}) for (i, x) in g: a = x[['time', 'event', 'block', 'items']] rx = a[a['event'] == 'rx'].set_index(['block', 'items']) tx = a[a['event'] == 'tx'].set_index(['block', 'items']) lat = rx.join(tx, lsuffix='_rx', how='inner') foo = rx.join(tx, lsuffix='_rx', how='outer') diff = foo.shape[0] - lat.shape[0] if diff > 6: print(f"{i} item lost {diff} of {lat.shape[0]}") lat = lat['time_rx'] - lat['time'] assert np.all(lat > 0) t = pd.DataFrame(lat, columns=['latency']) t['sdr'] = i[0] t['scheduler'] = i[1] t['stages'] = i[2] r = pd.concat([r, t], axis=0) r['latency'] = r['latency']/1e6 r.to_pickle("latency.data") ############################################################## ############################################################## ############################################################## ############################################################## r = pd.read_pickle("latency.data") def percentile(n): def percentile_(x): return np.percentile(x, n) percentile_.__name__ = 'percentile_%s' % n return percentile_ d = r.groupby(['sdr', 'scheduler', 'stages']).agg({'latency': [np.mean, np.std, percentile(5), percentile(95)]}) fig, ax = plt.subplots(1, 1) fig.subplots_adjust(bottom=.192, left=.11, top=.99, right=.97) t = d.loc[('gr')].reset_index() t[('latency', 'percentile_5')] = t[('latency', 'mean')] - t[('latency', 'percentile_5')] t[('latency', 'percentile_95')] = t[('latency', 'percentile_95')] - t[('latency', 'mean')] ax.errorbar(t['stages'], t[('latency', 'mean')], yerr=[t[('latency', 'percentile_5')], t[('latency', 'percentile_95')]], label='GNU\,Radio') t = d.loc[('fs', 'smoln')].reset_index(); t[('latency', 'percentile_5')] = t[('latency', 'mean')] - t[('latency', 'percentile_5')] t[('latency', 'percentile_95')] = t[('latency', 'percentile_95')] - t[('latency', 'mean')] ax.errorbar(t['stages']-0.3, t[('latency', 'mean')], yerr=[t[('latency', 'percentile_5')], t[('latency', 'percentile_95')]], label='Smol-N') t = d.loc[('fs', 'flow')].reset_index(); t[('latency', 'percentile_5')] = t[('latency', 'mean')] - t[('latency', 'percentile_5')] t[('latency', 'percentile_95')] = t[('latency', 'percentile_95')] - t[('latency', 'mean')] ax.errorbar(t['stages']+0.3, t[('latency', 'mean')], yerr=[t[('latency', 'percentile_5')], t[('latency', 'percentile_95')]], label='Flow') plt.setp(ax.get_yticklabels(), rotation=90, va="center") ax.set_xlabel('\#\,Stages') ax.set_ylabel('Latency (in ms)') # ax.set_ylim(0, 99) handles, labels = ax.get_legend_handles_labels() handles = [x[0] for x in handles] ax.legend(handles, labels, handlelength=2.95) plt.savefig('fir_rand_latency.pdf') plt.close('all')
"""Treadmill trace CLI. """ from __future__ import division from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import import logging import sys import click from six.moves import urllib_parse from treadmill import cli from treadmill import context from treadmill import restclient from treadmill.websocket import client as ws_client from treadmill.apptrace import (events, printer) _LOGGER = logging.getLogger(__name__) _RC_DEFAULT_EXIT = 100 _RC_ABORTED = 101 _RC_KILLED = 102 _RC_NO_TRACES = 103 def _trace_loop(ctx, app, snapshot): """Instance trace loop.""" trace_printer = printer.AppTracePrinter() rc = {'rc': _RC_DEFAULT_EXIT} if not snapshot: click.echo( '# No trace information yet, waiting...\r', nl=False, err=True ) def on_message(result): """Callback to process trace message.""" _LOGGER.debug('result: %r', result) event = events.AppTraceEvent.from_dict(result['event']) if event is None: return False trace_printer.process(event) if isinstance(event, events.FinishedTraceEvent): rc['rc'] = event.rc if isinstance(event, events.KilledTraceEvent): rc['rc'] = _RC_KILLED if isinstance(event, events.AbortedTraceEvent): rc['rc'] = _RC_ABORTED if isinstance(event, events.DeletedTraceEvent): return False return True def on_error(result): """Callback to process errors.""" click.echo('Error: %s' % result['_error'], err=True) try: ws_client.ws_loop( ctx['wsapi'], {'topic': '/trace', 'filter': app}, snapshot, on_message, on_error ) sys.exit(rc['rc']) except ws_client.WSConnectionError: click.echo('Could not connect to any Websocket APIs', err=True) sys.exit(-1) def init(): """Return top level command handler.""" ctx = {} @click.command() @click.option('--cell', required=True, envvar='TREADMILL_CELL', callback=cli.handle_context_opt, expose_value=False) @click.option('--api', required=False, help='REST API url to use.', metavar='URL', envvar='TREADMILL_RESTAPI') @click.option('--wsapi', required=False, help='WebSocket API url to use.', metavar='URL', envvar='TREADMILL_WSAPI') @click.option('--last', is_flag=True, default=False) @click.option('--snapshot', is_flag=True, default=False) @click.argument('app') def trace(api, wsapi, last, snapshot, app): """Trace application events. Invoking treadmill_trace with non existing application instance will cause the utility to wait for the specified instance to be started. Specifying already finished instance of the application will display historical trace information and exit status. Specifying only an application name will list all the instance IDs with trace information available. The trace will exit with the exit code of the container service that caused container finish (reached retry count). Special error codes if service did not exit gracefully and it is not possible to capture the return code: 101 - container was aborted. 102 - container was killed (possible out of memory) 103 - no trace information 100 - everything else. """ # Disable too many branches. # # pylint: disable=R0912 ctx['api'] = api ctx['wsapi'] = wsapi if '#' not in app: apis = context.GLOBAL.state_api(ctx['api']) url = '/state/?finished=1&match={app}'.format( app=urllib_parse.quote(app) ) try: response = restclient.get(apis, url) app_states = response.json() except restclient.NotFoundError: app_states = [] if not app_states: click.echo('# Trace information does not exist.', err=True) sys.exit(_RC_NO_TRACES) elif not last: for name in [app['name'] for app in app_states]: cli.out(name) return else: app = app_states[-1]['name'] return _trace_loop(ctx, app, snapshot) return trace
import sys from typing import Any, Dict, Iterable, Optional import mlflow import pandas as pd import pytest import yaml from kedro.config import ConfigLoader from kedro.extras.datasets.pickle import PickleDataSet from kedro.framework.hooks import hook_impl from kedro.framework.project import Validator, _ProjectPipelines, _ProjectSettings from kedro.framework.session import KedroSession from kedro.framework.startup import bootstrap_project from kedro.io import DataCatalog, MemoryDataSet from kedro.pipeline import Pipeline, node from kedro.runner import SequentialRunner from kedro.versioning import Journal from mlflow.entities import RunStatus from mlflow.models import infer_signature from mlflow.tracking import MlflowClient from kedro_mlflow.framework.context import get_mlflow_config from kedro_mlflow.framework.hooks.pipeline_hook import ( MlflowPipelineHook, _format_conda_env, _generate_kedro_command, ) from kedro_mlflow.io.metrics import ( MlflowMetricDataSet, MlflowMetricHistoryDataSet, MlflowMetricsDataSet, ) from kedro_mlflow.pipeline import pipeline_ml_factory from kedro_mlflow.pipeline.pipeline_ml import PipelineML @pytest.fixture def python_version(): python_version = ".".join( [ str(sys.version_info.major), str(sys.version_info.minor), str(sys.version_info.micro), ] ) return python_version @pytest.fixture def requirements_path(tmp_path): return tmp_path / "requirements.txt" @pytest.fixture def requirements_path_str(requirements_path): return requirements_path.as_posix() @pytest.fixture def environment_path(tmp_path): return tmp_path / "environment.yml" @pytest.fixture def environment_path_str(environment_path): return environment_path.as_posix() @pytest.fixture def env_from_none(python_version): return dict(python=python_version) @pytest.fixture def env_from_requirements(requirements_path, python_version): requirements_data = ["pandas>=1.0.0,<2.0.0", "kedro==0.15.9"] with open(requirements_path, mode="w") as file_handler: for item in requirements_data: file_handler.write(f"{item}\n") return dict(python=python_version, dependencies=requirements_data) @pytest.fixture def env_from_dict(python_version): env_from_dict = dict(python=python_version, dependencies=["pandas>=1.0.0,<2.0.0"]) return env_from_dict @pytest.fixture def env_from_environment(environment_path, env_from_dict): with open(environment_path, mode="w") as file_handler: yaml.dump(env_from_dict, file_handler) env_from_environment = env_from_dict return env_from_environment class DummyProjectHooks: @hook_impl def register_config_loader(self, conf_paths: Iterable[str]) -> ConfigLoader: return ConfigLoader(conf_paths) @hook_impl def register_catalog( self, catalog: Optional[Dict[str, Dict[str, Any]]], credentials: Dict[str, Dict[str, Any]], load_versions: Dict[str, str], save_version: str, journal: Journal, ) -> DataCatalog: return DataCatalog.from_config( catalog, credentials, load_versions, save_version, journal ) def _mock_imported_settings_paths(mocker, mock_settings): for path in [ "kedro.framework.context.context.settings", "kedro.framework.session.session.settings", "kedro.framework.project.settings", ]: mocker.patch(path, mock_settings) return mock_settings def _mock_settings_with_hooks(mocker, hooks): class MockSettings(_ProjectSettings): _HOOKS = Validator("HOOKS", default=hooks) return _mock_imported_settings_paths(mocker, MockSettings()) @pytest.fixture def mock_settings_with_mlflow_hooks(mocker): return _mock_settings_with_hooks( mocker, hooks=( DummyProjectHooks(), MlflowPipelineHook(), # MlflowNodeHook(), ), ) @pytest.fixture(autouse=True) def mocked_logging(mocker): # Disable logging.config.dictConfig in KedroSession._setup_logging as # it changes logging.config and affects other unit tests return mocker.patch("logging.config.dictConfig") @pytest.fixture def mock_failing_pipelines(mocker): def failing_node(): mlflow.start_run(nested=True) raise ValueError("Let's make this pipeline fail") def mocked_register_pipelines(): failing_pipeline = Pipeline( [ node( func=failing_node, inputs=None, outputs="fake_output", ) ] ) return {"__default__": failing_pipeline, "pipeline_off": failing_pipeline} mocker.patch.object( _ProjectPipelines, "_get_pipelines_registry_callable", return_value=mocked_register_pipelines, ) @pytest.mark.parametrize( "conda_env,expected", ( [None, pytest.lazy_fixture("env_from_none")], [pytest.lazy_fixture("env_from_dict"), pytest.lazy_fixture("env_from_dict")], [ pytest.lazy_fixture("requirements_path"), pytest.lazy_fixture("env_from_requirements"), ], [ pytest.lazy_fixture("requirements_path_str"), pytest.lazy_fixture("env_from_requirements"), ], [ pytest.lazy_fixture("environment_path"), pytest.lazy_fixture("env_from_environment"), ], [ pytest.lazy_fixture("environment_path_str"), pytest.lazy_fixture("env_from_environment"), ], ), ) def test_format_conda_env(conda_env, expected): conda_env = _format_conda_env(conda_env) assert conda_env == expected def test_format_conda_env_error(): with pytest.raises(ValueError, match="Invalid conda_env"): _format_conda_env(["invalid_list"]) @pytest.fixture def dummy_pipeline(): def preprocess_fun(data): return data def train_fun(data, param): return 2 def metrics_fun(data, model): return {"metric_key": {"value": 1.1, "step": 0}} def metric_fun(data, model): return 1.1 def metric_history_fun(data, model): return [0.1, 0.2] def predict_fun(model, data): return data * model dummy_pipeline = Pipeline( [ node( func=preprocess_fun, inputs="raw_data", outputs="data", tags=["training", "inference"], ), node( func=train_fun, inputs=["data", "params:unused_param"], outputs="model", tags=["training"], ), node( func=metrics_fun, inputs=["model", "data"], outputs="my_metrics", tags=["training"], ), node( func=metrics_fun, inputs=["model", "data"], outputs="another_metrics", tags=["training"], ), node( func=metric_fun, inputs=["model", "data"], outputs="my_metric", tags=["training"], ), node( func=metric_fun, inputs=["model", "data"], outputs="another_metric", tags=["training"], ), node( func=metric_history_fun, inputs=["model", "data"], outputs="my_metric_history", tags=["training"], ), node( func=metric_history_fun, inputs=["model", "data"], outputs="another_metric_history", tags=["training"], ), node( func=predict_fun, inputs=["model", "data"], outputs="predictions", tags=["inference"], ), ] ) return dummy_pipeline @pytest.fixture def dummy_pipeline_ml(dummy_pipeline, env_from_dict): dummy_pipeline_ml = pipeline_ml_factory( training=dummy_pipeline.only_nodes_with_tags("training"), inference=dummy_pipeline.only_nodes_with_tags("inference"), input_name="raw_data", conda_env=env_from_dict, model_name="model", ) return dummy_pipeline_ml @pytest.fixture def dummy_catalog(tmp_path): dummy_catalog = DataCatalog( { "raw_data": MemoryDataSet(pd.DataFrame(data=[1], columns=["a"])), "params:unused_param": MemoryDataSet("blah"), "data": MemoryDataSet(), "model": PickleDataSet((tmp_path / "model.csv").as_posix()), "my_metrics": MlflowMetricsDataSet(), "another_metrics": MlflowMetricsDataSet(prefix="foo"), "my_metric": MlflowMetricDataSet(), "another_metric": MlflowMetricDataSet(key="foo"), "my_metric_history": MlflowMetricHistoryDataSet(), "another_metric_history": MlflowMetricHistoryDataSet(key="bar"), } ) return dummy_catalog @pytest.fixture def pipeline_ml_with_parameters(): def remove_stopwords(data, stopwords): return data def train_fun_hyperparam(data, hyperparam): return 2 def predict_fun(model, data): return data * model def convert_probs_to_pred(data, threshold): return (data > threshold) * 1 full_pipeline = Pipeline( [ # almost the same that previsously but stopwords are parameters # this is a shared parameter between inference and training22 node( func=remove_stopwords, inputs=dict(data="data", stopwords="params:stopwords"), outputs="cleaned_data", tags=["training", "inference"], ), # parameters in training pipeline, should not be persisted node( func=train_fun_hyperparam, inputs=["cleaned_data", "params:penalty"], outputs="model", tags=["training"], ), node( func=predict_fun, inputs=["model", "cleaned_data"], outputs="predicted_probs", tags=["inference"], ), # this time, there is a parameter only for the inference pipeline node( func=convert_probs_to_pred, inputs=["predicted_probs", "params:threshold"], outputs="predictions", tags=["inference"], ), ] ) pipeline_ml_with_parameters = pipeline_ml_factory( training=full_pipeline.only_nodes_with_tags("training"), inference=full_pipeline.only_nodes_with_tags("inference"), input_name="data", conda_env={"python": "3.7.0", "dependencies": ["kedro==0.16.5"]}, ) return pipeline_ml_with_parameters @pytest.fixture def dummy_signature(dummy_catalog, dummy_pipeline_ml): input_data = dummy_catalog.load(dummy_pipeline_ml.input_name) dummy_signature = infer_signature(input_data) return dummy_signature @pytest.fixture def dummy_run_params(tmp_path): dummy_run_params = { "run_id": "abcdef", "project_path": tmp_path.as_posix(), "env": "local", "kedro_version": "0.16.0", "tags": [], "from_nodes": [], "to_nodes": [], "node_names": [], "from_inputs": [], "load_versions": [], "pipeline_name": "my_cool_pipeline", "extra_params": [], } return dummy_run_params @pytest.mark.parametrize( "pipeline_to_run", [ (pytest.lazy_fixture("dummy_pipeline")), (pytest.lazy_fixture("dummy_pipeline_ml")), ], ) def test_mlflow_pipeline_hook_with_different_pipeline_types( kedro_project_with_mlflow_conf, env_from_dict, pipeline_to_run, dummy_catalog, dummy_run_params, ): bootstrap_project(kedro_project_with_mlflow_conf) with KedroSession.create(project_path=kedro_project_with_mlflow_conf): # config_with_base_mlflow_conf is a conftest fixture pipeline_hook = MlflowPipelineHook() runner = SequentialRunner() pipeline_hook.after_catalog_created( catalog=dummy_catalog, # `after_catalog_created` is not using any of below arguments, # so we are setting them to empty values. conf_catalog={}, conf_creds={}, feed_dict={}, save_version="", load_versions="", run_id=dummy_run_params["run_id"], ) pipeline_hook.before_pipeline_run( run_params=dummy_run_params, pipeline=pipeline_to_run, catalog=dummy_catalog ) runner.run(pipeline_to_run, dummy_catalog) run_id = mlflow.active_run().info.run_id pipeline_hook.after_pipeline_run( run_params=dummy_run_params, pipeline=pipeline_to_run, catalog=dummy_catalog ) # test : parameters should have been logged mlflow_conf = get_mlflow_config() mlflow_client = MlflowClient(mlflow_conf.mlflow_tracking_uri) run_data = mlflow_client.get_run(run_id).data # all run_params are recorded as tags for k, v in dummy_run_params.items(): if v: assert run_data.tags[k] == str(v) # params are not recorded because we don't have MlflowNodeHook here # and the model should not be logged when it is not a PipelineML nb_artifacts = len(mlflow_client.list_artifacts(run_id)) if isinstance(pipeline_to_run, PipelineML): assert nb_artifacts == 1 else: assert nb_artifacts == 0 # Check if metrics datasets have prefix with its names. # for metric assert dummy_catalog._data_sets["my_metrics"]._prefix == "my_metrics" assert dummy_catalog._data_sets["another_metrics"]._prefix == "foo" assert dummy_catalog._data_sets["my_metric"].key == "my_metric" assert dummy_catalog._data_sets["another_metric"].key == "foo" if isinstance(pipeline_to_run, PipelineML): trained_model = mlflow.pyfunc.load_model(f"runs:/{run_id}/model") assert trained_model.metadata.signature.to_dict() == { "inputs": '[{"name": "a", "type": "long"}]', "outputs": None, } @pytest.mark.parametrize( "copy_mode,expected", [ (None, {"raw_data": None, "data": None, "model": None}), ("assign", {"raw_data": "assign", "data": "assign", "model": "assign"}), ("deepcopy", {"raw_data": "deepcopy", "data": "deepcopy", "model": "deepcopy"}), ({"model": "assign"}, {"raw_data": None, "data": None, "model": "assign"}), ], ) def test_mlflow_pipeline_hook_with_copy_mode( kedro_project_with_mlflow_conf, dummy_pipeline_ml, dummy_catalog, dummy_run_params, copy_mode, expected, ): # config_with_base_mlflow_conf is a conftest fixture bootstrap_project(kedro_project_with_mlflow_conf) with KedroSession.create(project_path=kedro_project_with_mlflow_conf): pipeline_hook = MlflowPipelineHook() runner = SequentialRunner() pipeline_hook.after_catalog_created( catalog=dummy_catalog, # `after_catalog_created` is not using any of arguments bellow, # so we are setting them to empty values. conf_catalog={}, conf_creds={}, feed_dict={}, save_version="", load_versions="", run_id=dummy_run_params["run_id"], ) pipeline_to_run = pipeline_ml_factory( training=dummy_pipeline_ml.training, inference=dummy_pipeline_ml.inference, input_name=dummy_pipeline_ml.input_name, conda_env={"python": "3.7.0", "dependencies": ["kedro==0.16.5"]}, model_name=dummy_pipeline_ml.model_name, copy_mode=copy_mode, ) pipeline_hook.before_pipeline_run( run_params=dummy_run_params, pipeline=pipeline_to_run, catalog=dummy_catalog ) runner.run(pipeline_to_run, dummy_catalog) run_id = mlflow.active_run().info.run_id pipeline_hook.after_pipeline_run( run_params=dummy_run_params, pipeline=pipeline_to_run, catalog=dummy_catalog ) mlflow_tracking_uri = (kedro_project_with_mlflow_conf / "mlruns").as_uri() mlflow.set_tracking_uri(mlflow_tracking_uri) loaded_model = mlflow.pyfunc.load_model(model_uri=f"runs:/{run_id}/model") actual_copy_mode = { name: ds._copy_mode for name, ds in loaded_model._model_impl.python_model.loaded_catalog._data_sets.items() } assert actual_copy_mode == expected def test_mlflow_pipeline_hook_metric_metrics_with_run_id( kedro_project_with_mlflow_conf, dummy_pipeline_ml, dummy_run_params ): bootstrap_project(kedro_project_with_mlflow_conf) with KedroSession.create(project_path=kedro_project_with_mlflow_conf): mlflow_conf = get_mlflow_config() mlflow.set_tracking_uri(mlflow_conf.mlflow_tracking_uri) with mlflow.start_run(): existing_run_id = mlflow.active_run().info.run_id dummy_catalog_with_run_id = DataCatalog( { "raw_data": MemoryDataSet(pd.DataFrame(data=[1], columns=["a"])), "params:unused_param": MemoryDataSet("blah"), "data": MemoryDataSet(), "model": PickleDataSet( (kedro_project_with_mlflow_conf / "data" / "model.csv").as_posix() ), "my_metrics": MlflowMetricsDataSet(run_id=existing_run_id), "another_metrics": MlflowMetricsDataSet( run_id=existing_run_id, prefix="foo" ), "my_metric": MlflowMetricDataSet(run_id=existing_run_id), "another_metric": MlflowMetricDataSet( run_id=existing_run_id, key="foo" ), "my_metric_history": MlflowMetricHistoryDataSet(run_id=existing_run_id), "another_metric_history": MlflowMetricHistoryDataSet( run_id=existing_run_id, key="bar" ), } ) pipeline_hook = MlflowPipelineHook() runner = SequentialRunner() pipeline_hook.after_catalog_created( catalog=dummy_catalog_with_run_id, # `after_catalog_created` is not using any of arguments bellow, # so we are setting them to empty values. conf_catalog={}, conf_creds={}, feed_dict={}, save_version="", load_versions="", run_id=dummy_run_params["run_id"], ) pipeline_hook.before_pipeline_run( run_params=dummy_run_params, pipeline=dummy_pipeline_ml, catalog=dummy_catalog_with_run_id, ) runner.run(dummy_pipeline_ml, dummy_catalog_with_run_id) current_run_id = mlflow.active_run().info.run_id pipeline_hook.after_pipeline_run( run_params=dummy_run_params, pipeline=dummy_pipeline_ml, catalog=dummy_catalog_with_run_id, ) mlflow_client = MlflowClient(mlflow_conf.mlflow_tracking_uri) # the first run is created in Default (id 0), # but the one initialised in before_pipeline_run # is create in kedro_project experiment (id 1) all_runs_id = set( [ run.run_id for k in range(2) for run in mlflow_client.list_run_infos(experiment_id=f"{k}") ] ) # the metrics are supposed to have been logged inside existing_run_id run_data = mlflow_client.get_run(existing_run_id).data # Check if metrics datasets have prefix with its names. # for metric assert all_runs_id == {current_run_id, existing_run_id} assert run_data.metrics["my_metrics.metric_key"] == 1.1 assert run_data.metrics["foo.metric_key"] == 1.1 assert run_data.metrics["my_metric"] == 1.1 assert run_data.metrics["foo"] == 1.1 assert ( run_data.metrics["my_metric_history"] == 0.2 ) # the list is tored, but only the last value is retrieved assert ( run_data.metrics["bar"] == 0.2 ) # the list is tored, but only the last value is retrieved def test_mlflow_pipeline_hook_save_pipeline_ml_with_parameters( kedro_project_with_mlflow_conf, # a fixture to be in a kedro project tmp_path, pipeline_ml_with_parameters, dummy_run_params, ): # config_with_base_mlflow_conf is a conftest fixture bootstrap_project(kedro_project_with_mlflow_conf) with KedroSession.create(project_path=kedro_project_with_mlflow_conf): mlflow_conf = get_mlflow_config() mlflow.set_tracking_uri(mlflow_conf.mlflow_tracking_uri) catalog_with_parameters = DataCatalog( { "data": MemoryDataSet(pd.DataFrame(data=[1], columns=["a"])), "cleaned_data": MemoryDataSet(), "params:stopwords": MemoryDataSet(["Hello", "Hi"]), "params:penalty": MemoryDataSet(0.1), "model": PickleDataSet( (kedro_project_with_mlflow_conf / "data" / "model.csv").as_posix() ), "params:threshold": MemoryDataSet(0.5), } ) pipeline_hook = MlflowPipelineHook() runner = SequentialRunner() pipeline_hook.after_catalog_created( catalog=catalog_with_parameters, # `after_catalog_created` is not using any of arguments bellow, # so we are setting them to empty values. conf_catalog={}, conf_creds={}, feed_dict={}, save_version="", load_versions="", run_id=dummy_run_params["run_id"], ) pipeline_hook.before_pipeline_run( run_params=dummy_run_params, pipeline=pipeline_ml_with_parameters, catalog=catalog_with_parameters, ) runner.run(pipeline_ml_with_parameters, catalog_with_parameters) current_run_id = mlflow.active_run().info.run_id # This is what we want to test: model must be saved and the parameters automatically persisted on disk pipeline_hook.after_pipeline_run( run_params=dummy_run_params, pipeline=pipeline_ml_with_parameters, catalog=catalog_with_parameters, ) # the 2 parameters which are inputs of inference pipeline # must have been persisted and logged inside the model's artifacts model = mlflow.pyfunc.load_model(f"runs:/{current_run_id}/model") assert set( model.metadata.to_dict()["flavors"]["python_function"]["artifacts"].keys() ) == {"model", "params:stopwords", "params:threshold"} # the model should be loadable and predict() should work (this tests KedroPipelineModel) assert model.predict(pd.DataFrame(data=[1], columns=["a"])).values[0][0] == 1 @pytest.mark.parametrize( "model_signature,expected_signature", ( [None, None], ["auto", pytest.lazy_fixture("dummy_signature")], [ pytest.lazy_fixture("dummy_signature"), pytest.lazy_fixture("dummy_signature"), ], ), ) def test_mlflow_pipeline_hook_with_pipeline_ml_signature( kedro_project_with_mlflow_conf, env_from_dict, dummy_pipeline, dummy_catalog, dummy_run_params, model_signature, expected_signature, ): # config_with_base_mlflow_conf is a conftest fixture bootstrap_project(kedro_project_with_mlflow_conf) with KedroSession.create(project_path=kedro_project_with_mlflow_conf): pipeline_hook = MlflowPipelineHook() runner = SequentialRunner() pipeline_to_run = pipeline_ml_factory( training=dummy_pipeline.only_nodes_with_tags("training"), inference=dummy_pipeline.only_nodes_with_tags("inference"), input_name="raw_data", conda_env=env_from_dict, model_name="model", model_signature=model_signature, ) pipeline_hook.after_catalog_created( catalog=dummy_catalog, # `after_catalog_created` is not using any of arguments bellow, # so we are setting them to empty values. conf_catalog={}, conf_creds={}, feed_dict={}, save_version="", load_versions="", run_id=dummy_run_params["run_id"], ) pipeline_hook.before_pipeline_run( run_params=dummy_run_params, pipeline=pipeline_to_run, catalog=dummy_catalog ) runner.run(pipeline_to_run, dummy_catalog) run_id = mlflow.active_run().info.run_id pipeline_hook.after_pipeline_run( run_params=dummy_run_params, pipeline=pipeline_to_run, catalog=dummy_catalog ) # test : parameters should have been logged trained_model = mlflow.pyfunc.load_model(f"runs:/{run_id}/model") assert trained_model.metadata.signature == expected_signature def test_generate_kedro_commands(): # TODO : add a better test because the formatting of record_data is subject to change # We could check that the command is recored and then rerun properly record_data = { "tags": ["tag1", "tag2"], "from_nodes": ["node1"], "to_nodes": ["node3"], "node_names": ["node1", "node2", "node1"], "from_inputs": ["data_in"], "load_versions": {"data_inter": "01:23:45"}, "pipeline_name": "fake_pl", } expected = "kedro run --from-inputs=data_in --from-nodes=node1 --to-nodes=node3 --node=node1,node2,node1 --pipeline=fake_pl --tag=tag1,tag2 --load-version=data_inter:01:23:45" assert _generate_kedro_command(**record_data) == expected @pytest.mark.parametrize("default_value", [None, []]) def test_generate_default_kedro_commands(default_value): """This test ensures that the _generate_kedro_comands accepts both `None` and empty `list` as default value, because CLI and interactive `Journal` do not use the same default. Args: default_value ([type]): [description] """ record_data = { "tags": default_value, "from_nodes": default_value, "to_nodes": default_value, "node_names": default_value, "from_inputs": default_value, "load_versions": default_value, "pipeline_name": "fake_pl", } expected = "kedro run --pipeline=fake_pl" assert _generate_kedro_command(**record_data) == expected def test_on_pipeline_error( kedro_project_with_mlflow_conf, mock_settings_with_mlflow_hooks, mock_failing_pipelines, ): tracking_uri = (kedro_project_with_mlflow_conf / "mlruns").as_uri() bootstrap_project(kedro_project_with_mlflow_conf) with KedroSession.create(project_path=kedro_project_with_mlflow_conf) as session: with pytest.raises(ValueError): session.run() # the run we want is the last one in Default experiment failing_run_info = MlflowClient(tracking_uri).list_run_infos("0")[0] assert mlflow.active_run() is None # the run must have been closed assert failing_run_info.status == RunStatus.to_string( RunStatus.FAILED ) # it must be marked as failed
import logging import numpy as np from scipy.stats import ks_2samp, describe from sklearn.pipeline import Pipeline from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedKFold from test_harness.experiments.baseline_experiment import BaselineExperiment logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s") file_handler = logging.FileHandler("../logs/app.log") file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(formatter) logger.addHandler(file_handler) class UncertaintyKSExperiment(BaselineExperiment): def __init__(self, model, dataset, k, significance_thresh, param_grid=None): super().__init__(model, dataset, param_grid) self.name = "Method 2 (Uncertainty-KS)" self.k = k self.significance_thresh = significance_thresh self.ref_distributions = [] self.det_distributions = [] self.p_vals = [] @staticmethod def make_kfold_predictions(X, y, model, dataset, k): """A KFold version of LeaveOneOut predictions. Rather than performing exhaustive leave-one-out methodology to get predictions for each observation, we use a less exhaustive KFold approach. When k == len(X), this is equivalent to LeaveOneOut: expensive, but robust. Reducing k saves computation, but reduces robustness of model. Args: X (pd.Dataframe) - features in evaluation window y (pd.Series) - labels in evaluation window k (int) - number of folds type (str) - specified kfold or LeaveOneOut split methodology Returns: preds (np.array) - an array of predictions for each X in the input (NOT IN ORDER OF INPUT) """ # NOTE - need to think through if this should be a pipeline with MinMaxScaler...??? splitter = StratifiedKFold(n_splits=k, random_state=42, shuffle=True) # splitter = LeaveOneOut() preds = np.array([]) split_ACCs = np.array([]) for train_indicies, test_indicies in splitter.split(X, y): # create column transformer column_transformer = ColumnTransformer( [ ( "continuous", StandardScaler(), dataset.column_mapping["numerical_features"], ), ( "categorical", "passthrough", dataset.column_mapping["categorical_features"], ), ] ) # instantiate training pipeline pipe = Pipeline( steps=[ ("scaler", column_transformer), ("clf", model), ] ) # fit it pipe.fit(X.iloc[train_indicies], y.iloc[train_indicies]) # score it on this Kfold's test data y_preds_split = pipe.predict_proba(X.iloc[test_indicies]) y_preds_split_posclass_proba = y_preds_split[:, 1] preds = np.append(preds, y_preds_split_posclass_proba) # get accuracy for split split_ACC = pipe.score(X.iloc[test_indicies], y.iloc[test_indicies]) split_ACCs = np.append(split_ACCs, split_ACC) logger.info(f"FINAL SHAPE kfold preds: {preds.shape}") return preds, split_ACCs def get_reference_response_distribution(self): # get data in reference window window_idx = self.reference_window_idx logger.info(f"GETTING REFERENCE DISTRIBUTION FOR WINDOW: {window_idx}") X_train, y_train = self.dataset.get_window_data(window_idx, split_labels=True) # perform kfoldsplits to get predictions preds, split_ACCs = self.make_kfold_predictions( X_train, y_train, self.model, self.dataset, self.k ) ref_ACC = np.mean(split_ACCs) ref_ACC_SD = np.std(split_ACCs) return preds, ref_ACC, ref_ACC_SD def get_detection_response_distribution(self): # get data in prediction window window_idx = self.detection_window_idx logger.info(f"GETTING DETECTION DISTRIBUTION FOR WINDOW: {window_idx}") X_test, y_test = self.dataset.get_window_data(window_idx, split_labels=True) # use trained model to get response distribution preds = self.trained_model.predict_proba(X_test)[:, 1] # get accuracy for detection window det_ACC = self.evaluate_model_aggregate(window="detection") return preds, det_ACC @staticmethod def perform_ks_test(dist1, dist2): return ks_2samp(dist1, dist2) def calculate_errors(self): self.false_positives = [ True if self.drift_signals[i] and not self.drift_occurences[i] else False for i in range(len(self.drift_signals)) ] self.false_negatives = [ True if not self.drift_signals[i] and self.drift_occurences[i] else False for i in range(len(self.drift_signals)) ] def run(self): """Response Uncertainty Experiment This experiment uses a KS test to detect changes in the target/response distribution between the reference and detection windows. Logic flow: - Train on initial reference window - Perform Stratified KFold to obtain prediction distribution on reference window - Use trained model to generate predictions on detection window - Perform statistical test (KS) between reference and detection window response distributions - If different, retrain and update both windows - If from same distribution, update detection window and repeat """ logger.info( f"-------------------- Started SQSI Model Replacement Run --------------------" ) self.train_model_gscv(window="reference", gscv=True) CALC_REF_RESPONSE = True for i, split in enumerate(self.dataset.splits): if i > self.reference_window_idx: logger.info(f"Dataset index of split end: {self.dataset.splits[i]}") logger.info( f"Need to calculate Reference response distribution? - {CALC_REF_RESPONSE}" ) # log actual score on detection window self.experiment_metrics["scores"].extend( self.evaluate_model_incremental(n=10) ) # get reference window response distribution with kfold + detection response distribution if CALC_REF_RESPONSE: ( ref_response_dist, ref_ACC, ref_ACC_SD, ) = self.get_reference_response_distribution() det_response_dist, det_ACC = self.get_detection_response_distribution() logger.info(f"REFERENCE STATS: {describe(ref_response_dist)}") logger.info(f"DETECTION STATS: {describe(det_response_dist)}") logger.info(f"Dataset Split: {i}") logger.info(f"REFERENCE STATS: {describe(ref_response_dist)}") logger.info(f"DETECTION STATS: {describe(det_response_dist)}") self.ref_distributions.append(ref_response_dist) self.det_distributions.append(det_response_dist) # compare distributions ks_result = self.perform_ks_test( dist1=ref_response_dist, dist2=det_response_dist ) self.p_vals.append(ks_result.pvalue) logger.info(f"KS Test: {ks_result}") significant_change = ( True if ks_result[1] < self.significance_thresh else False ) self.drift_signals.append(significant_change) # compare accuracies to see if detection was false alarm # i.e. check if change in accuracy is significant delta_ACC = np.absolute(det_ACC - ref_ACC) threshold_ACC = 3 * ref_ACC_SD # considering outside 3 SD significant significant_ACC_change = True if delta_ACC > threshold_ACC else False self.drift_occurences.append(significant_ACC_change) if significant_change: # reject null hyp, distributions are NOT identical --> retrain self.train_model_gscv(window="detection", gscv=True) self.update_reference_window() CALC_REF_RESPONSE = True _ks_result_report = "FAILED" else: CALC_REF_RESPONSE = False _ks_result_report = "PASSED" self.update_detection_window() logger.info(f"KS Test Result: {_ks_result_report} | {ks_result}") self.calculate_label_expense() self.calculate_train_expense() self.calculate_errors()
import sys import unittest import six from conans.errors import ConanException from conans.model.options import Options, OptionsValues, PackageOptionValues, PackageOptions, \ option_undefined_msg from conans.model.ref import ConanFileReference class OptionsTest(unittest.TestCase): def setUp(self): package_options = PackageOptions.loads("""{static: [True, False], optimized: [2, 3, 4], path: ANY}""") values = PackageOptionValues() values.add_option("static", True) values.add_option("optimized", 3) values.add_option("path", "NOTDEF") package_options.values = values self.sut = Options(package_options) def test_int(self): self.assertEqual(3, int(self.sut.optimized)) def test_in(self): package_options = PackageOptions.loads("{static: [True, False]}") sut = Options(package_options) self.assertTrue("static" in sut) self.assertFalse("shared" in sut) self.assertTrue("shared" not in sut) self.assertFalse("static" not in sut) def test_undefined_value(self): """ Not assigning a value to options will raise an error at validate() step """ package_options = PackageOptions.loads("""{ path: ANY}""") with six.assertRaisesRegex(self, ConanException, option_undefined_msg("path")): package_options.validate() package_options.path = "Something" package_options.validate() def test_undefined_value_none(self): """ The value None is allowed as default, not necessary to default to it """ package_options = PackageOptions.loads('{path: [None, "Other"]}') package_options.validate() package_options = PackageOptions.loads('{path: ["None", "Other"]}') package_options.validate() def test_items(self): self.assertEqual(self.sut.items(), [("optimized", "3"), ("path", "NOTDEF"), ("static", "True")]) self.assertEqual(self.sut.items(), [("optimized", "3"), ("path", "NOTDEF"), ("static", "True")]) def test_change(self): self.sut.path = "C:/MyPath" self.assertEqual(self.sut.items(), [("optimized", "3"), ("path", "C:/MyPath"), ("static", "True")]) self.assertEqual(self.sut.items(), [("optimized", "3"), ("path", "C:/MyPath"), ("static", "True")]) with six.assertRaisesRegex(self, ConanException, "'5' is not a valid 'options.optimized' value"): self.sut.optimized = 5 def test_boolean(self): self.sut.static = False self.assertFalse(self.sut.static) self.assertTrue(not self.sut.static) self.assertTrue(self.sut.static == False) self.assertFalse(self.sut.static == True) self.assertFalse(self.sut.static != False) self.assertTrue(self.sut.static != True) self.assertTrue(self.sut.static == "False") self.assertTrue(self.sut.static != "True") def test_basic(self): boost_values = PackageOptionValues() boost_values.add_option("static", False) boost_values.add_option("thread", True) boost_values.add_option("thread.multi", "off") poco_values = PackageOptionValues() poco_values.add_option("deps_bundled", True) hello1_values = PackageOptionValues() hello1_values.add_option("static", False) hello1_values.add_option("optimized", 4) options = {"Boost": boost_values, "Poco": poco_values, "Hello1": hello1_values} down_ref = ConanFileReference.loads("Hello0/0.1@diego/testing") own_ref = ConanFileReference.loads("Hello1/0.1@diego/testing") self.sut.propagate_upstream(options, down_ref, own_ref) self.assertEqual(self.sut.values.as_list(), [("optimized", "4"), ("path", "NOTDEF"), ("static", "False"), ("Boost:static", "False"), ("Boost:thread", "True"), ("Boost:thread.multi", "off"), ("Poco:deps_bundled", "True")]) boost_values = PackageOptionValues() boost_values.add_option("static", 2) boost_values.add_option("thread", "Any") boost_values.add_option("thread.multi", "on") poco_values = PackageOptionValues() poco_values.add_option("deps_bundled", "What") hello1_values = PackageOptionValues() hello1_values.add_option("static", True) hello1_values.add_option("optimized", "2") options2 = {"Boost": boost_values, "Poco": poco_values, "Hello1": hello1_values} down_ref = ConanFileReference.loads("Hello2/0.1@diego/testing") with six.assertRaisesRegex(self, ConanException, "Hello2/0.1@diego/testing tried to change " "Hello1/0.1@diego/testing option optimized to 2"): self.sut.propagate_upstream(options2, down_ref, own_ref) self.assertEqual(self.sut.values.dumps(), """optimized=4 path=NOTDEF static=False Boost:static=False Boost:thread=True Boost:thread.multi=off Poco:deps_bundled=True""") def test_pattern_positive(self): boost_values = PackageOptionValues() boost_values.add_option("static", False) boost_values.add_option("path", "FuzzBuzz") options = {"Boost.*": boost_values} own_ref = ConanFileReference.loads("Boost.Assert/0.1@diego/testing") down_ref = ConanFileReference.loads("Consumer/0.1@diego/testing") self.sut.propagate_upstream(options, down_ref, own_ref) self.assertEqual(self.sut.values.as_list(), [("optimized", "3"), ("path", "FuzzBuzz"), ("static", "False"), ("Boost.*:path", "FuzzBuzz"), ("Boost.*:static", "False"), ]) def test_multi_pattern(self): boost_values = PackageOptionValues() boost_values.add_option("static", False) boost_values.add_option("path", "FuzzBuzz") boost_values2 = PackageOptionValues() boost_values2.add_option("optimized", 2) options = {"Boost.*": boost_values, "*": boost_values2} own_ref = ConanFileReference.loads("Boost.Assert/0.1@diego/testing") down_ref = ConanFileReference.loads("Consumer/0.1@diego/testing") self.sut.propagate_upstream(options, down_ref, own_ref) self.assertEqual(self.sut.values.as_list(), [("optimized", "2"), ("path", "FuzzBuzz"), ("static", "False"), ('*:optimized', '2'), ("Boost.*:path", "FuzzBuzz"), ("Boost.*:static", "False"), ]) def test_multi_pattern_error(self): boost_values = PackageOptionValues() boost_values.add_option("optimized", 4) boost_values2 = PackageOptionValues() boost_values2.add_option("optimized", 2) options = {"Boost.*": boost_values, "*": boost_values2} own_ref = ConanFileReference.loads("Boost.Assert/0.1@diego/testing") down_ref = ConanFileReference.loads("Consumer/0.1@diego/testing") self.sut.propagate_upstream(options, down_ref, own_ref) self.assertEqual(self.sut.values.as_list(), [('optimized', '4'), ('path', 'NOTDEF'), ('static', 'True'), ('*:optimized', '2'), ('Boost.*:optimized', '4')]) def test_all_positive(self): boost_values = PackageOptionValues() boost_values.add_option("static", False) boost_values.add_option("path", "FuzzBuzz") options = {"*": boost_values} own_ref = ConanFileReference.loads("Boost.Assert/0.1@diego/testing") down_ref = ConanFileReference.loads("Consumer/0.1@diego/testing") self.sut.propagate_upstream(options, down_ref, own_ref) self.assertEqual(self.sut.values.as_list(), [("optimized", "3"), ("path", "FuzzBuzz"), ("static", "False"), ("*:path", "FuzzBuzz"), ("*:static", "False"), ]) def test_pattern_ignore(self): boost_values = PackageOptionValues() boost_values.add_option("fake_option", "FuzzBuzz") options = {"Boost.*": boost_values} down_ref = ConanFileReference.loads("Consumer/0.1@diego/testing") own_ref = ConanFileReference.loads("Boost.Assert/0.1@diego/testing") self.sut.propagate_upstream(options, down_ref, own_ref) self.assertEqual(self.sut.values.as_list(), [("optimized", "3"), ("path", "NOTDEF"), ("static", "True"), ("Boost.*:fake_option", "FuzzBuzz"), ]) def test_pattern_unmatch(self): boost_values = PackageOptionValues() boost_values.add_option("fake_option", "FuzzBuzz") options = {"OpenSSL.*": boost_values} down_ref = ConanFileReference.loads("Boost.Assert/0.1@diego/testing") own_ref = ConanFileReference.loads("Boost.Assert/0.1@diego/testing") self.sut.propagate_upstream(options, down_ref, own_ref) self.assertEqual(self.sut.values.as_list(), [("optimized", "3"), ("path", "NOTDEF"), ("static", "True"), ("OpenSSL.*:fake_option", "FuzzBuzz"), ]) def test_get_safe_options(self): self.assertEqual(True, self.sut.get_safe("static")) self.assertEqual(3, self.sut.get_safe("optimized")) self.assertEqual("NOTDEF", self.sut.get_safe("path")) self.assertEqual(None, self.sut.get_safe("unknown")) self.sut.path = "None" self.sut.static = False self.assertEqual(False, self.sut.get_safe("static")) self.assertEqual("None", self.sut.get_safe("path")) self.assertEqual(False, self.sut.get_safe("static", True)) self.assertEqual("None", self.sut.get_safe("path", True)) self.assertEqual(True, self.sut.get_safe("unknown", True)) class OptionsValuesPropagationUpstreamNone(unittest.TestCase): def test_propagate_in_options(self): package_options = PackageOptions.loads("""{opt: [None, "a", "b"],}""") values = PackageOptionValues() values.add_option("opt", "a") package_options.values = values sut = Options(package_options) other_options = PackageOptionValues() other_options.add_option("opt", None) options = {"whatever.*": other_options} down_ref = ConanFileReference.loads("Boost.Assert/0.1@diego/testing") own_ref = ConanFileReference.loads("Boost.Assert/0.1@diego/testing") sut.propagate_upstream(options, down_ref, own_ref) self.assertEqual(sut.values.as_list(), [("opt", "a"), ("whatever.*:opt", "None"), ]) def test_propagate_in_pacakge_options(self): package_options = PackageOptions.loads("""{opt: [None, "a", "b"],}""") values = PackageOptionValues() package_options.values = values package_options.propagate_upstream({'opt': None}, None, None, []) self.assertEqual(package_options.values.items(), [('opt', 'None'), ]) class OptionsValuesTest(unittest.TestCase): def setUp(self): self.sut = OptionsValues.loads("""static=True optimized=3 Poco:deps_bundled=True Boost:static=False Boost:thread=True Boost:thread.multi=off """) def test_from_list(self): option_values = OptionsValues(self.sut.as_list()) self.assertEqual(option_values.dumps(), self.sut.dumps()) def test_from_dict(self): options_as_dict = dict([item.split('=') for item in self.sut.dumps().splitlines()]) option_values = OptionsValues(options_as_dict) self.assertEqual(option_values.dumps(), self.sut.dumps()) def test_consistency(self): def _check_equal(hs1, hs2, hs3, hs4): opt_values1 = OptionsValues(hs1) opt_values2 = OptionsValues(hs2) opt_values3 = OptionsValues(hs3) opt_values4 = OptionsValues(hs4) self.assertEqual(opt_values1.dumps(), opt_values2.dumps()) self.assertEqual(opt_values1.dumps(), opt_values3.dumps()) self.assertEqual(opt_values1.dumps(), opt_values4.dumps()) # Check that all possible input options give the same result _check_equal([('opt', 3)], [('opt', '3'), ], ('opt=3', ), {'opt': 3}) _check_equal([('opt', True)], [('opt', 'True'), ], ('opt=True', ), {'opt': True}) _check_equal([('opt', False)], [('opt', 'False'), ], ('opt=False', ), {'opt': False}) _check_equal([('opt', None)], [('opt', 'None'), ], ('opt=None', ), {'opt': None}) _check_equal([('opt', 0)], [('opt', '0'), ], ('opt=0', ), {'opt': 0}) _check_equal([('opt', '')], [('opt', ''), ], ('opt=', ), {'opt': ''}) # Check for leading and trailing spaces _check_equal([(' opt ', 3)], [(' opt ', '3'), ], (' opt =3', ), {' opt ': 3}) _check_equal([('opt', ' value ')], [('opt', ' value '), ], ('opt= value ', ), {'opt': ' value '}) # This is expected behaviour: self.assertNotEqual(OptionsValues([('opt', ''), ]).dumps(), OptionsValues(('opt=""', )).dumps()) def test_dumps(self): self.assertEqual(self.sut.dumps(), "\n".join(["optimized=3", "static=True", "Boost:static=False", "Boost:thread=True", "Boost:thread.multi=off", "Poco:deps_bundled=True"])) def test_sha_constant(self): self.assertEqual(self.sut.sha, "2442d43f1d558621069a15ff5968535f818939b5") self.sut.new_option = False self.sut["Boost"].new_option = "off" self.sut["Poco"].new_option = 0 self.assertEqual(self.sut.dumps(), "\n".join(["new_option=False", "optimized=3", "static=True", "Boost:new_option=off", "Boost:static=False", "Boost:thread=True", "Boost:thread.multi=off", "Poco:deps_bundled=True", "Poco:new_option=0"])) self.assertEqual(self.sut.sha, "2442d43f1d558621069a15ff5968535f818939b5") def test_loads_exceptions(self): emsg = "not enough values to unpack" if six.PY3 and sys.version_info.minor > 4 \ else "need more than 1 value to unpack" with six.assertRaisesRegex(self, ValueError, emsg): OptionsValues.loads("a=2\nconfig\nb=3") with six.assertRaisesRegex(self, ValueError, emsg): OptionsValues.loads("config\na=2\ncommit\nb=3") def test_exceptions_empty_value(self): emsg = "not enough values to unpack" if six.PY3 and sys.version_info.minor > 4 \ else "need more than 1 value to unpack" with six.assertRaisesRegex(self, ValueError, emsg): OptionsValues("a=2\nconfig\nb=3") with six.assertRaisesRegex(self, ValueError, emsg): OptionsValues(("a=2", "config")) with six.assertRaisesRegex(self, ValueError, emsg): OptionsValues([('a', 2), ('config', ), ]) def test_exceptions_repeated_value(self): try: OptionsValues.loads("a=2\na=12\nb=3").dumps() OptionsValues(("a=2", "b=23", "a=12")) OptionsValues([('a', 2), ('b', True), ('a', '12')]) except Exception as e: self.fail("Not expected exception: {}".format(e)) def test_package_with_spaces(self): self.assertEqual(OptionsValues([('pck2:opt', 50), ]).dumps(), OptionsValues([('pck2 :opt', 50), ]).dumps()) def test_validate_any_as_list(): package_options = PackageOptions.loads("""{ path: ["ANY", "kk"]}""") values = PackageOptionValues() values.add_option("path", "FOO") package_options.values = values sut = Options(package_options) assert sut.path == "FOO" package_options = PackageOptions.loads("""{ path: "ANY"}""") values = PackageOptionValues() values.add_option("path", "WHATEVER") package_options.values = values sut = Options(package_options) assert sut.path == "WHATEVER"
import hashlib import hmac import logging import os import tornado.escape import tornado.httpserver import tornado.gen import tornado.ioloop import tornado.log import tornado.web from . import update_pr class MainHandler(tornado.web.RequestHandler): def get(self): self.set_status(404) self.write_error(404) class WebhookHandler(tornado.web.RequestHandler): @tornado.gen.coroutine def post(self): headers = self.request.headers event = headers.get('X-GitHub-Event', None) hmac_digest = headers.get('X-Hub-Signature', None) webhook_secret = os.environ['WEBHOOK_SECRET'].encode() # Compute the payload's hmac digest. expected_hmac = hmac.new( webhook_secret, self.request.body, hashlib.sha1).hexdigest() expected_digest = 'sha1={}'.format(expected_hmac) if hmac_digest != expected_digest: logging.warning('HMAC FAIL: expected: {}; got: {};' ''.format(expected_digest, hmac_digest)) self.set_status(403) if event == 'ping': self.write('pong') elif event == 'pull_request': body = tornado.escape.json_decode(self.request.body) repo_name = body['repository']['name'] owner = body['repository']['owner']['login'] pr_id = int(body['pull_request']['number']) is_open = body['pull_request']['state'] == 'open' # Do some sanity chceking if is_open and owner.lower() in ['scitools', 'scitools-incubator']: yield update_pr.check_pr('{}/{}'.format(owner, repo_name), pr_id) else: self.write('Unhandled event "{}".'.format(event)) self.set_status(404) def main(): tornado.log.enable_pretty_logging() application = tornado.web.Application([ (r"/", MainHandler), (r"/webhook", WebhookHandler), ]) http_server = tornado.httpserver.HTTPServer(application) PORT = os.environ.get('PORT', 8080) http_server.listen(PORT) tornado.ioloop.IOLoop.current().start() if __name__ == "__main__": main()
import sys from PyQt5.QtWidgets import QApplication, QWidget, QLabel, QGridLayout, QPushButton from PyQt5.QtGui import QIcon from PyQt5.QtCore import pyqtSlot def window(): app = QApplication(sys.argv) win = QWidget() grid = QGridLayout() for i in range(0,5): for j in range(0,5): grid.addWidget(QPushButton(str(i)+str(j)),i,j) win.setLayout(grid) win.setWindowTitle("PyQt Grid Example") win.setGeometry(50,50,200,200) win.show() sys.exit(app.exec_()) if __name__ == '__main__': window()
nodeList = [] class CLS_node(object): def __init__(self,v,i,l,r): self.left = l self.right = r self.ind = i self.value = v def __str__(self): return str(nodeList[self.left])+str(self.value)+str(nodeList[self.right])
from itertools import combinations,product comb = list(combinations([0,1,2,3,4,5,6,7,8,9],6)) comb = [[6 if y==9 else y for y in x ] for x in comb] valid = [tuple(map(int, list(str(s*s).zfill(2)))) for s in range(1,10)] valid.remove((0,9)) valid.remove((4,9)) valid.append((0,6)) valid.append((4,6)) def isvalid(comb1,comb2): combx = list(product(comb1, comb2))+list(product(comb2,comb1)) for i in valid: if i not in combx: return False return True res=0 for i in range(len(comb)): for j in range(i+1,len(comb)): if isvalid(comb[i],comb[j])==True: res+=1 ''' a = [0,5,6,7,8,6] b = [1,2,3,4,8,6] print(isvalid(a,b)) ''' print(res)
from .main import greet if __name__ == '__main__': greet()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from copy import deepcopy from math import isfinite, isnan import numpy as np from ax.core.metric import Metric from ax.core.objective import Objective from ax.core.observation import ObservationData from ax.core.optimization_config import OptimizationConfig from ax.core.outcome_constraint import OutcomeConstraint, ScalarizedOutcomeConstraint from ax.core.types import ComparisonOp from ax.modelbridge.transforms.power_transform_y import ( PowerTransformY, _compute_power_transforms, _compute_inverse_bounds, ) from ax.modelbridge.transforms.utils import get_data, match_ci_width_truncated from ax.utils.common.testutils import TestCase from sklearn.preprocessing import PowerTransformer def get_constraint(metric, bound, relative): return [ OutcomeConstraint( metric=metric, op=ComparisonOp.GEQ, bound=bound, relative=relative ) ] class PowerTransformYTest(TestCase): def setUp(self): self.obsd1 = ObservationData( metric_names=["m1", "m2"], means=np.array([0.5, 0.9]), covariance=np.array([[0.03, 0.0], [0.0, 0.001]]), ) self.obsd2 = ObservationData( metric_names=["m1", "m2"], means=np.array([0.1, 0.4]), covariance=np.array([[0.005, 0.0], [0.0, 0.05]]), ) self.obsd3 = ObservationData( metric_names=["m1", "m2"], means=np.array([0.9, 0.8]), covariance=np.array([[0.02, 0.0], [0.0, 0.01]]), ) self.obsd_nan = ObservationData( metric_names=["m1", "m2"], means=np.array([0.3, 0.2]), covariance=np.array([[float("nan"), 0.0], [0.0, float("nan")]]), ) def testInit(self): shared_init_args = { "search_space": None, "observation_features": None, "observation_data": [self.obsd1, self.obsd2], } # Test error for not specifying a config with self.assertRaises(ValueError): PowerTransformY(**shared_init_args) # Test error for not specifying at least one metric with self.assertRaises(ValueError): PowerTransformY(**shared_init_args, config={}) # Test default init for m in ["m1", "m2"]: tf = PowerTransformY(**shared_init_args, config={"metrics": [m]}) # tf.power_transforms should only exist for m and be a PowerTransformer self.assertIsInstance(tf.power_transforms, dict) self.assertEqual([*tf.power_transforms], [m]) # Check keys self.assertIsInstance(tf.power_transforms[m], PowerTransformer) # tf.inv_bounds should only exist for m and be a tuple of length 2 self.assertIsInstance(tf.inv_bounds, dict) self.assertEqual([*tf.inv_bounds], [m]) # Check keys self.assertIsInstance(tf.inv_bounds[m], tuple) self.assertTrue(len(tf.inv_bounds[m]) == 2) def testGetData(self): for m in ["m1", "m2"]: Ys = get_data([self.obsd1, self.obsd2, self.obsd3], m) self.assertIsInstance(Ys, dict) self.assertEqual([*Ys], [m]) if m == "m1": self.assertEqual(Ys[m], [0.5, 0.1, 0.9]) else: self.assertEqual(Ys[m], [0.9, 0.4, 0.8]) def testComputePowerTransform(self): Ys = get_data([self.obsd1, self.obsd2, self.obsd3], ["m2"]) pts = _compute_power_transforms(Ys) self.assertEqual(pts["m2"].method, "yeo-johnson") self.assertIsInstance(pts["m2"].lambdas_, np.ndarray) self.assertEqual(pts["m2"].lambdas_.shape, (1,)) Y_np = np.array(Ys["m2"])[:, None] Y_trans = pts["m2"].transform(Y_np) # Output should be standardized self.assertAlmostEqual(Y_trans.mean(), 0.0) self.assertAlmostEqual(Y_trans.std(), 1.0) # Transform back Y_np2 = pts["m2"].inverse_transform(Y_trans) self.assertAlmostEqual(np.max(np.abs(Y_np - Y_np2)), 0.0) def testComputeInverseBounds(self): Ys = get_data([self.obsd1, self.obsd2, self.obsd3], ["m2"]) pt = _compute_power_transforms(Ys)["m2"] # lambda < 0: im(f) = (-inf, -1/lambda) without standardization pt.lambdas_.fill(-2.5) bounds = _compute_inverse_bounds({"m2": pt})["m2"] self.assertEqual(bounds[0], -np.inf) # Make sure we got the boundary right left = pt.inverse_transform(np.array(bounds[1] - 0.01, ndmin=2)) right = pt.inverse_transform(np.array(bounds[1] + 0.01, ndmin=2)) self.assertTrue(isnan(right) and not isnan(left)) # 0 <= lambda <= 2: im(f) = R pt.lambdas_.fill(1.0) bounds = _compute_inverse_bounds({"m2": pt})["m2"] self.assertTrue(bounds == (-np.inf, np.inf)) # lambda > 2: im(f) = (1 / (2 - lambda), inf) without standardization pt.lambdas_.fill(3.5) bounds = _compute_inverse_bounds({"m2": pt})["m2"] self.assertEqual(bounds[1], np.inf) # Make sure we got the boundary right left = pt.inverse_transform(np.array(bounds[0] - 0.01, ndmin=2)) right = pt.inverse_transform(np.array(bounds[0] + 0.01, ndmin=2)) self.assertTrue(not isnan(right) and isnan(left)) def testMatchCIWidth(self): Ys = get_data([self.obsd1, self.obsd2, self.obsd3], ["m2"]) pt = _compute_power_transforms(Ys) pt["m2"].lambdas_.fill(-3.0) bounds = _compute_inverse_bounds(pt)["m2"] # Both will be NaN since we are far outside the bounds new_mean_1, new_var_1 = match_ci_width_truncated( mean=bounds[1] + 2.0, variance=0.1, transform=lambda y: pt["m2"].inverse_transform(np.array(y, ndmin=2)), lower_bound=bounds[0], upper_bound=bounds[1], margin=0.001, clip_mean=False, ) # This will be finite since we clip new_mean_2, new_var_2 = match_ci_width_truncated( mean=bounds[1] + 2.0, variance=0.1, transform=lambda y: pt["m2"].inverse_transform(np.array(y, ndmin=2)), lower_bound=bounds[0], upper_bound=bounds[1], margin=0.001, clip_mean=True, ) self.assertTrue(isnan(new_mean_1) and isnan(new_var_1)) self.assertTrue(isfinite(new_mean_2) and isfinite(new_var_2)) def testTransformAndUntransformOneMetric(self): observation_data = [deepcopy(self.obsd1), deepcopy(self.obsd2)] pt = PowerTransformY( search_space=None, observation_features=None, observation_data=observation_data, config={"metrics": ["m1"]}, ) # Transform the data and make sure we don't touch m1 observation_data_tf = pt.transform_observation_data(observation_data, []) for obsd, obsd_orig in zip(observation_data_tf, [self.obsd1, self.obsd2]): self.assertNotAlmostEqual(obsd.means[0], obsd_orig.means[0]) self.assertNotAlmostEqual(obsd.covariance[0][0], obsd_orig.covariance[0][0]) self.assertAlmostEqual(obsd.means[1], obsd_orig.means[1]) self.assertAlmostEqual(obsd.covariance[1][1], obsd_orig.covariance[1][1]) # Untransform the data and make sure the means are the same observation_data_untf = pt.untransform_observation_data(observation_data_tf, []) for obsd, obsd_orig in zip(observation_data_untf, [self.obsd1, self.obsd2]): self.assertAlmostEqual(obsd.means[0], obsd_orig.means[0], places=4) self.assertAlmostEqual(obsd.means[1], obsd_orig.means[1], places=4) # NaN covar values remain as NaNs transformed_obsd_nan = pt.transform_observation_data( [deepcopy(self.obsd_nan)], [] )[0] cov_results = np.array(transformed_obsd_nan.covariance) self.assertTrue(np.all(np.isnan(np.diag(cov_results)))) def testTransformAndUntransformAllMetrics(self): observation_data = [deepcopy(self.obsd1), deepcopy(self.obsd2)] pt = PowerTransformY( search_space=None, observation_features=None, observation_data=observation_data, config={"metrics": ["m1", "m2"]}, ) observation_data_tf = pt.transform_observation_data(observation_data, []) for obsd, obsd_orig in zip(observation_data_tf, [self.obsd1, self.obsd2]): for i in range(2): # Both metrics should be transformed self.assertNotAlmostEqual(obsd.means[i], obsd_orig.means[i]) self.assertNotAlmostEqual( obsd.covariance[i][i], obsd_orig.covariance[i][i] ) # Untransform the data and make sure the means are the same observation_data_untf = pt.untransform_observation_data(observation_data_tf, []) for obsd, obsd_orig in zip(observation_data_untf, [self.obsd1, self.obsd2]): for i in range(2): # Both metrics should be transformed self.assertAlmostEqual(obsd.means[i], obsd_orig.means[i]) # NaN covar values remain as NaNs transformed_obsd_nan = pt.transform_observation_data( [deepcopy(self.obsd_nan)], [] )[0] cov_results = np.array(transformed_obsd_nan.covariance) self.assertTrue(np.all(np.isnan(np.diag(cov_results)))) def testCompareToSklearn(self): # Make sure the transformed values agree with Sklearn observation_data = [self.obsd1, self.obsd2, self.obsd3] y_orig = np.array([data.means[0] for data in observation_data])[:, None] y1 = PowerTransformer("yeo-johnson").fit(y_orig).transform(y_orig).ravel() pt = PowerTransformY( search_space=None, observation_features=None, observation_data=deepcopy(observation_data), config={"metrics": ["m1"]}, ) observation_data_tf = pt.transform_observation_data(observation_data, []) y2 = [data.means[0] for data in observation_data_tf] for y1_, y2_ in zip(y1, y2): self.assertAlmostEqual(y1_, y2_) def testTransformOptimizationConfig(self): # basic test m1 = Metric(name="m1") objective_m1 = Objective(metric=m1, minimize=False) oc = OptimizationConfig(objective=objective_m1, outcome_constraints=[]) tf = PowerTransformY( search_space=None, observation_features=None, observation_data=[self.obsd1, self.obsd2], config={"metrics": ["m1"]}, ) oc_tf = tf.transform_optimization_config(deepcopy(oc), None, None) self.assertEqual(oc_tf, oc) # Output constraint on a different metric should not transform the bound m2 = Metric(name="m2") for bound in [-1.234, 0, 2.345]: oc = OptimizationConfig( objective=objective_m1, outcome_constraints=get_constraint( metric=m2, bound=bound, relative=False ), ) oc_tf = tf.transform_optimization_config(deepcopy(oc), None, None) self.assertEqual(oc_tf, oc) # Output constraint on the same metric should transform the bound objective_m2 = Objective(metric=m2, minimize=False) for bound in [-1.234, 0, 2.345]: oc = OptimizationConfig( objective=objective_m2, outcome_constraints=get_constraint( metric=m1, bound=bound, relative=False ), ) oc_tf = tf.transform_optimization_config(deepcopy(oc), None, None) oc_true = deepcopy(oc) tf_bound = ( tf.power_transforms["m1"].transform(np.array(bound, ndmin=2)).item() ) oc_true.outcome_constraints[0].bound = tf_bound self.assertEqual(oc_tf, oc_true) # Relative constraints aren't supported oc = OptimizationConfig( objective=objective_m2, outcome_constraints=get_constraint(metric=m1, bound=2.345, relative=True), ) with self.assertRaisesRegex( ValueError, "PowerTransformY cannot be applied to metric m1 since it is " "subject to a relative constraint.", ): tf.transform_optimization_config(oc, None, None) # Support for scalarized outcome constraints isn't implemented m3 = Metric(name="m3") oc = OptimizationConfig( objective=objective_m2, outcome_constraints=[ ScalarizedOutcomeConstraint( metrics=[m1, m3], op=ComparisonOp.GEQ, bound=2.345, relative=False ) ], ) with self.assertRaises(NotImplementedError) as cm: tf.transform_optimization_config(oc, None, None) self.assertEqual( "PowerTransformY cannot be used for metric(s) {'m1'} " "that are part of a ScalarizedOutcomeConstraint.", str(cm.exception), )
""" Overall these views are awful. - Add back option between steps - Make use of GeneriViews - ViewClass - between each step, post to self, validate data and use next to go to next step """ from django.shortcuts import render, redirect from collections import defaultdict, namedtuple from .forms import SetupForm, score_form_factory, ObservationsForm, TemplateForm, skip_form_factory from .models import Template, Question, Score, Interview from base.models import Candidate, Position, Seniority, Subarea, Area import uuid, csv, xlrd, io def setup(request): """setup screen render function""" form = SetupForm() return render(request, 'interview/setup.html', {'form': form}) def evaluation(request): """ Evaluation screen render function. Receive data to create interview from query params. Store the initial setup data for the interview on the current session. """ candidate_name = request.GET['candidate'] candidate, _ = Candidate.objects.get_or_create(name=candidate_name) request.session['template_id'] = request.GET['template'] request.session['candidate_id'] = candidate.id request.session['position_id'] = request.GET['position'] template_id = request.GET['template'] template = Template.objects.get(pk=template_id) questions = template.questions.all() formatter = lambda q: f'score_{q.id}' score_field_names = [formatter(question) for question in questions] ScoreForm = score_form_factory(score_field_names) score_form = ScoreForm() checkbox_formatter = lambda q: f'skip_{q.id}' skip_field_names = [checkbox_formatter(question) for question in questions] SkipForm = skip_form_factory(skip_field_names) skip_form = SkipForm() areas = defaultdict(list) for question in questions: area = question.subarea.area areas[area.area].append(question) areas = {area: [(i + 1, question, score_form[formatter(question)], skip_form[checkbox_formatter(question)]) for i, question in enumerate(questions)] for area, questions in areas.items()} return render(request, 'interview/evaluation.html', {'areas': areas}) def observations(request): store_scores(request) return render(request, 'interview/observations.html', { 'form': ObservationsForm() }) def review(request): comments = request.POST['comments'] interviewer_score = request.POST['interviewer_score'] request.session['comments'] = comments request.session['interviewer_score'] = interviewer_score template_id = request.session['template_id'] candidate_id = request.session['candidate_id'] position_id = request.session['position_id'] position = Position.objects.get(pk=position_id) candidate = Candidate.objects.get(pk=candidate_id) template = Template.objects.get(pk=template_id) question_scores = [(Question.objects.get(pk=pk), score) for pk, score in request.session['scores']] return render(request, 'interview/review.html', { 'question_scores': question_scores, 'comments': comments, 'position': position, 'candidate': candidate, 'template': template, 'interviewer_score': interviewer_score, }) def conclusion(request): template_id = request.session['template_id'] candidate_id = request.session['candidate_id'] position_id = request.session['position_id'] interview = Interview() interview.position = Position.objects.get(pk=position_id) interview.candidate = Candidate.objects.get(pk=candidate_id) interview.interviewer = request.user interview.comments = request.session['comments'] interview.interviewer_score = request.session['interviewer_score'] interview.save() question_scores = [(Question.objects.get(pk=pk), score) for pk, score in request.session['scores']] for question, score in question_scores: Score(question=question, score=score, interview=interview).save() return redirect('viz:detail', interview.id) def template_upload(request): if request.POST: f = TemplateForm(request.POST, request.FILES) f.is_valid() template = Template() template.name = f.cleaned_data['name'] template.description = f.cleaned_data['description'] template.owner = request.user uploaded_file = f.cleaned_data['csv'] file_name = f'/tmp/{str(uuid.uuid4())}.xlsx' with open(file_name, 'wb+') as f: for chunk in uploaded_file.chunks(): f.write(chunk) rows = excel_to_dicts(file_name) questions = [add_question_from_template(row) for row in rows] template.save() template.questions.set(questions) template.save() return redirect('viz:list') else: form = TemplateForm() return render(request, 'interview/template_upload.html', { 'form': form }) def excel_to_dicts(file): book = xlrd.open_workbook(file) sheet = book.sheet_by_index(0) labels = [cell.value for cell in sheet.row(0)] rows = [{label: cell.value for label, cell in zip(labels, row)} for row in list(sheet.get_rows())[1:]] return rows def add_question_from_template(row): #TODO should be a get as bands are static seniority, _ = Seniority.objects.get_or_create(seniority=row['Senioridade']) subarea, _ = Subarea.objects.get_or_create(subarea=row['Subarea']) area, _ = Area.objects.get_or_create(area=row['Area']) if subarea.area != area: # TODO assert subarea.area = area, if it isn't throw error subarea.area = area subarea.save() question_body = row['Questao'] answer = row['Resposta'] weight = row['Peso'] question, created = Question.objects.update_or_create(question=question_body, defaults={ 'answer': answer, 'weight': weight, 'subarea': subarea, 'seniority': seniority }) return question def store_scores(request): """ Store score for each question in session object, does not store score for skipped questions """ remove_prefix = lambda key: int(key.split('_')[1]) skip_pks = [remove_prefix(key) for key, _ in request.POST.items() if 'skip_' in key] scores = {remove_prefix(key): int(score) for key, score in request.POST.items() if 'score_' in key} request.session['scores'] = [(pk, score) for pk, score in scores.items() if pk not in skip_pks]
# Generated by Django 2.2 on 2021-07-01 02:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0005_auto_20210701_0707'), ] operations = [ migrations.AlterField( model_name='category', name='category_name', field=models.CharField(db_column='Name', max_length=100, unique=True), ), migrations.AlterField( model_name='owner', name='is_staff', field=models.BooleanField(default=True), ), ]
from argparse import Namespace from typing import Tuple, Callable import torch.nn as nn import torch from torch import Tensor from .learnable import Scale, Balance from .registry import register @register("linear_residual") class LinearResidual(nn.Module): def __init__(self, weight: float, learnable_weight: bool, weighting_type: str, layer: Callable): super().__init__() assert weighting_type in ['shortcut', 'residual'], "weighting type must be one of 'shortcut' or 'residual'" self.weighting_type = weighting_type self.layer = layer self.scale = Scale(weight) self.balance = Balance() def forward(self, x: Tensor) -> Tensor: if self.weighting_type == 'shortcut': return self.balance(self.layer(x), self.scale(x)) elif self.weighting_type == 'residual': return self.balance(self.scale(self.layer(x)), x) else: raise ValueError @register("mlp") class MLP(nn.Module): def __init__(self, in_features: int, hidden_features: int=None, out_features: int=None, act_layer: Callable=nn.GELU, drop: float=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x: Tensor) -> Tensor: x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x
import os from flask import Flask, render_template, redirect, request from flask_dropzone import Dropzone from convert import convert_to_line app = Flask(__name__) dropzone = Dropzone(app) filename = None dir_path = os.path.dirname(os.path.realpath(__file__)) input_path = os.path.join(dir_path, 'static/input') app.config.update( UPLOADED_PATH=input_path, # Flask-Dropzone config: DROPZONE_ALLOWED_FILE_TYPE='image', DROPZONE_MAX_FILE_SIZE=3, DROPZONE_MAX_FILES=1 ) app.config['DROPZONE_REDIRECT_VIEW'] = 'coloring' app.secret_key = 'development key' @app.route('/') @app.route('/main', methods=['POST', 'GET']) def main(): global filename file = None if request.method == 'POST': f = request.files.get('file') file = f.save(os.path.join(app.config['UPLOADED_PATH'], f.filename)) filename = f.filename convert_to_line(filename) return render_template('main.html') @app.route('/github') def github(): return redirect('https://github.com/7-B/yoco') @app.route('/coloring', methods=['POST', 'GET']) def coloring(): global filename try: filename = filename.split('/')[-1] filename = filename.split('.')[0] + '.svg' filename = os.path.join('output/',filename) except Exception as ex: # 에러 종류Exception: print(ex) return render_template('coloring.html', file_name = filename) @app.after_request def add_header(r): """ 캐시 비워주는 함수 Add headers to both force latest IE rendering engine or Chrome Frame, and also to cache the rendered page for 10 minutes. """ r.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" r.headers["Pragma"] = "no-cache" r.headers["Expires"] = "0" r.headers['Cache-Control'] = 'public, max-age=0' return r if __name__ == "__main__": app.run(host='0.0.0.0', port=8000, debug=True)
import os import sys from helperFunctions import * foldersToCreate = ['SummedSystematics', 'SingleSystematicResults', 'UEsubtractedJetResults', 'Efficiencycorrected', 'Efficiencycorrected/PDF'] folderEffCorrection = 'Efficiencycorrected' if len(sys.argv) < 2: print('Provide name of analysis folder') exit() analysisFolder=sys.argv[1] systematicDay=sys.argv[2] #### Read config ### config = getConfig(analysisFolder) config['analysisFolder'] = analysisFolder #### Produce correction factor parameters ### parameters = list(()) for spec in ('Electron', 'Muon', 'Pion', 'Kaon', 'Proton'): for charge in ('neg', 'pos'): configName = 'FS_Parameters_' + spec + '_' + charge parameters.append('-'.join(config[configName])) arguments = { 'effFile' : config['analysisFolder'] + "/Data/MCData/" + config['efficiencyFileNamePattern'].format('Jets_Inclusive'), 'outputfile' : config['analysisFolder'] + "/Data/MCData/fastSimulationParameters" + "_" + config['MCRunName'] + ".root", 'parameters' : parametersString } callRootMacro("FitCorrFactors", arguments) #### Produce Corrections factors of full MC run arguments = { 'pathNameEfficiency' : config['analysisFolder'] + "/Data/MCData/" + config['efficiencyFileNamePattern'].format('Jets'), 'outfileName' : config['pathMCCorrectionFile'], } callRootMacro("createFileForBbBCorrections", arguments) #TODO: Give observables, jetPts as argument, check if it can be merged with writeOutCorrectionFiles #### Write correction files ### for eff in config['MCVariationsEff']: varFolder="Eff" + eff + "_Res100/" arguments = { 'effFilePath': config['analysisFolder'] + "/Data/MCData/" + varFolder + config['efficiencyFileNamePattern'].format('Jets'), 'outFilePath' : config['analysisFolder'] + "/Data/MCData/", 'addToFile' : varFolder } callRootMacro("writeOutCorrectionFiles", arguments) #TODO: Give observables, jetPts as argument (also below). Check if this triple call can be simplified for res in config['MCVariationsRes']: varFolder="Eff100" + "_Res" + res + "/" arguments = { 'effFilePath': config['analysisFolder'] + "/Data/MCData/" + varFolder + config['efficiencyFileNamePattern'].format('Jets'), 'outFilePath' : config['analysisFolder'] + "/Data/MCData/", 'addToFile' : varFolder } callRootMacro("writeOutCorrectionFiles", arguments) for varFolder in config['MCVariationsLowPt']: arguments = { 'effFilePath': config['analysisFolder'] + "/Data/MCData/" + varFolder + config['efficiencyFileNamePattern'].format('Jets'), 'outFilePath' : config['analysisFolder'] + "/Data/MCData/", 'addToFile' : varFolder } callRootMacro("writeOutCorrectionFiles", arguments) #### Produce correction files for fast simulation ### arguments = { 'effFilePath': config['analysisFolder'], 'outFilePath' : config['analysisFolder'] + "/MCSystematicsFiles", 'addToFile' : varFolder } callRootMacro("sysErrorsPythiaFastJet_new", arguments) #TODO: Give jetPtString etc. #### Read systematic variables ### systematics = getSystematicConfig(analysisFolder) #### Make result folders ### for resFolder in (foldersToCreate): os.makedirs(analysisFolder + '/' + resFolder, exist_ok = True) #### Run individual systematic Error Estimation if config['doInclusive'] == 1: print('Do inclusive analysis') jetString = 'Jets_Inclusive' runSystematicProcess(config['systematicsInclusive'], systematics, config, jetString, systematicDay) runCalculateEfficiency(jetString, config, systematicDay, systematicDay) if config['doJets'] == 1: print('Do jet analysis') jetString = 'Jets' runSystematicProcess(config['systematicsJets'], systematics, config, jetString, systematicDay) runCalculateEfficiency(jetString, config, systematicDay, systematicDay) if config['doUE'] == 1: print('Do UE analysis') jetString = 'Jets_UE' runSystematicProcess(config['systematicsUE'], systematics, config, jetString, systematicDay) runCalculateEfficiency(jetString, config, systematicDay, systematicDay) #### Subtract Underlying event ### arguments = { 'jetFilePattern' : analysisFolder + "/Efficiencycorrected/output_EfficiencyCorrection_outputSystematicsTotal_SummedSystematicErrors_Jets_%s__%s%s__" + systematicDay + "__" + systematicDay + ".root", 'ueFilePattern' : analysisFolder + "/Efficiencycorrected/output_EfficiencyCorrection_outputSystematicsTotal_SummedSystematicErrors_Jets_UE_%s__%s%s__" + systematicDay + "__" + systematicDay + ".root", 'jetPtStepsString' : config['jetPtString'], 'centStepsString' : config['centString'], 'modesInputString' : config['modesJetsString'], 'outputFilePattern' : analysisFolder + "/UEsubtractedJetResults/output_EfficiencyCorrection_outputSystematicsTotal_SummedSystematicErrors_Jets_%s__%s%s__" + systematicDay + "__" + systematicDay + "_UEsubtractedJetResults.root", } callRootMacro("SubtractUnderlyingEvent", arguments)
""" MIT License Copyright (c) 2021 Matthias Konrath Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from timeit import default_timer as timer def KSA(key_hex, key_length): """ Key-scheduling algorithm """ # Initialize the variables j = 0 array_s = [] # Initialize the array for i in range(256): array_s.append(i) # Run the algorithm for i in range(256): j = (j + array_s[i] + ord(key_hex[i % key_length])) % 256 tmp = array_s[i] array_s[i] = array_s[j] array_s[j] = tmp return array_s def PRGA(array_s, payload_length): """ Pseudo-random generation algorithm """ # Initialize the variables j = 0 i = 0 k = 0 keystream = [] # Run the algorithm for _ in range(payload_length): i = (i + 1) % 256 j = (j + array_s[i]) % 256 tmp = array_s[i] array_s[i] = array_s[j] array_s[j] = tmp k = array_s[(array_s[i] + array_s[j]) % 256] keystream.append(k) return keystream #### #### #### #### # MAIN FUNCTION # #### #### #### #### print '---- ---- ---- ---- ---- ---- ---- ----' print ' RC4 Python Implementation ' print '---- ---- ---- ---- ---- ---- ---- ----' print 'Author: Matthias Konrath' print 'Email: matthas AT inet-sec.at' print '\n' key_str = "ae6c3c41884d35df3ab5adf30f5b2d360938c658341886b0ba510b421e5ab405" key_hex = key_str.decode("hex") key_length = len(key_str)/2 payload_str = "3ae280d0d5cd70d8e0f81300dc9031a2e0f8512cb35a7579fd79575cf287c595" payload_str_hex = payload_str.decode("hex") payload_str_length = len(payload_str)/2 cyphertext = [] print '[*] KEY:' print key_str print '' print '[*] Payload:' print payload_str print '' array_s = KSA(key_hex, key_length) print '[*] ARRAY_S:' print ''.join('{:02x}'.format(x) for x in array_s) print '' keystream = PRGA(array_s, payload_str_length) print '[*] KEYSTREAM:' print ''.join('{:02x}'.format(x) for x in keystream) print '' print '[*] CIPHERTEXT:' for i in range(payload_str_length): cyphertext.append(ord(payload_str_hex[i]) ^ keystream[i]) print ''.join('{:02x}'.format(x) for x in cyphertext) print '' print '[*] SPEED TEST' test_size_bytes = 1024 * 1000 * 50 # 50 Megabyte payload_str = "61" * test_size_bytes payload_str_hex = payload_str.decode("hex") payload_str_length = len(payload_str)/2 cyphertext = [] start = timer() array_s = KSA(key_hex, key_length) keystream = PRGA(array_s, payload_str_length) for i in range(payload_str_length): cyphertext.append(ord(payload_str_hex[i]) ^ keystream[i]) stop = timer() # For 50 MB --> 658b79745390f3ccd8242c9d0178a018add82ba8d0058adf9dfb3a2b02d188a3 #last_bytes = ''.join('{:02x}'.format(x) for x in cyphertext[-32:]) #print "[*] LAST 32 bytes: " + last_bytes print '[+] Encrypted {} MB in {:.2f} seconds ({:.2f} MB/s)'.format((test_size_bytes / (1024 * 1000)), (stop - start), float((float(test_size_bytes) / (1024 * 1000)) / float(stop - start)))
import numpy as np from scipy.signal import savgol_filter class SavitzkyGolov(object): def __init__(self, window_length:int, poly:int): self.size=window_length self.poly=poly def set_window_size(self, size): self.size=size if self.size%2==0: self.size = self.size+1 def process(self, traj:np.ndarray)->np.ndarray: x = traj[:,1] y = traj[:,2] result = [] for i in range(0, 4): _x = savgol_filter(x=x, window_length=self.size, polyorder=self.poly, deriv=i, delta=0.1) _y = savgol_filter(x=y, window_length=self.size, polyorder=self.poly, deriv=i, delta=0.1) result.append(_x) result.append(_y) return np.dstack(result) def filter(self, vector:np.ndarray)->np.ndarray: vector = np.squeeze(vector) x = vector[:,0] y = vector[:,1] p = np.dstack((np.zeros(len(x)), x, y)) p = np.squeeze(p) return self.process(p) def filter2(self, vector:np.ndarray)->np.ndarray: vector = np.squeeze(vector) result = [savgol_filter(x=vector[:, i], window_length=self.size, polyorder=self.poly)\ for i in range(0, vector.shape[1])] return np.dstack(result)
from pathlib import Path from typing import Union __all__ = ("ScreenshotPath",) class ScreenshotPath: def __init__(self, dir_: Path) -> None: self.dir = dir_ self.rerun: Union[int, None] = None self.timestamp: Union[int, None] = None self.scenario_path: Union[Path, None] = None self.scenario_subject: Union[str, None] = None self.step_name: Union[str, None] = None self.tab_index: Union[int, None] = None def resolve(self) -> Path: dir_path = self.dir if self.scenario_path is not None: cwd = Path().resolve() rel_path = self.scenario_path.relative_to(cwd) dir_path = self.dir.joinpath(rel_path.with_suffix("")) file_path = "screenshot" if self.scenario_subject is not None: file_path = self.scenario_subject if self.rerun is not None: file_path = f"[{self.rerun}]{file_path}" if self.timestamp is not None: file_path += f"__{self.timestamp}" if self.step_name is not None: file_path += f"__{self.step_name}" if self.tab_index is not None: file_path = f"tab{self.tab_index}__{file_path}" return dir_path / (file_path + ".png") def __repr__(self) -> str: path = self.resolve() return f"{self.__class__.__name__}<{path}>"
from django.shortcuts import render from django.http import HttpResponse import telebot from .models import * from django.views.decorators.csrf import csrf_exempt import json import re from block_io import BlockIo from datetime import datetime import requests from time import sleep from django.utils.translation import ugettext as _ from django.utils.translation import activate def is_digit(string): if string.isdigit(): return True else: try: float(string) return True except ValueError: return False def isint(s): try: int(s) return True except ValueError: return False @csrf_exempt def bot(request): token = '434214801:AAH67lvsi1k3vFnElT8OlCIBhrXpwDMuE5k' try: bot = telebot.TeleBot(token) data = json.loads(request.body.decode('utf-8')) if 'callback_query' in data.keys(): chat_id = data['callback_query']['from']['id'] callback_data = data['callback_query']['data'] text = '' file_id = '' phone_number = '' elif 'message' in data.keys(): if 'contact' in data['message'].keys(): phone_number = data['message']['contact']['phone_number'] chat_id = data["message"]["chat"]["id"] callback_data = '' text = '' file_id = "" if 'text' in data['message'].keys(): text = data['message']['text'] chat_id = data['message']['chat']['id'] callback_data = '' file_id = '' phone_number = '' else: mes = 'Error' bot.send_message(chat_id, mes) return HttpResponse('OK') isOld = BotUser.objects.filter(chat_id=chat_id).count() settings = Settings.objects.all().first() blockio_api_keys_btc = settings.blockio_api_keys_btc blockio_sercret_pin = settings.blockio_sercret_pin version = 2 # API version block_io = BlockIo(blockio_api_keys_btc, blockio_sercret_pin, version) if isOld != 0: user = BotUser.objects.get(chat_id=chat_id) if text == '/start': try: username = data["message"]["from"]["username"] except: username = "" try: fio1 = data["message"]["from"]["first_name"] except: fio1 = "" try: fio2 = data["message"]["from"]["last_name"] except: fio2 = "" fio = fio1 + ' ' + fio2 if isOld == 0: try: response = block_io.get_new_address(label=str(chat_id)) if response["status"] == "success": btc_wallet = response["data"]["address"] else: btc_wallet = None except: # response["status"] == "fail": try: response2 = block_io.get_address_by(label=str(chat_id)) if response2["status"] == "success": btc_wallet = response2["data"]["address"] else: btc_wallet = None except: bot.send_message(354691583, 'Не выдается кошелек BTC для пополнения') btc_wallet = None return HttpResponse('OK') user = BotUser.objects.create(chat_id=chat_id, fio=fio, username=username, step="home", btc_wallet=btc_wallet) else: BotUser.objects.filter(chat_id=chat_id).update(step="home") mes = 'Choose language / Выберите язык' button = telebot.types.ReplyKeyboardMarkup(True, False) button.row('Русский') button.row('English') bot.send_message(chat_id, mes, reply_markup=button) user.step = 'home' user.save() return HttpResponse('OK') if text == 'Русский' or text == 'English': if text == 'Русский': user.lang = 'ru' user.save() elif text == 'English': user.lang = 'en' user.save() activate(user.lang) mes = _('BeeWallet является самым защищенным и самым быстрым кошельком. Отправляя средства внутри BeeWallet вы мгновенно получаете доступ к средствам без необходимости дожидаться подтверждения сети. Пригласите своих друзей в BeeWallet и экономьте до 40% на плате за транзакцию.') button = telebot.types.ReplyKeyboardMarkup(True, False) button.row(_('Баланс'), _('История')) button.row(_('Отправить'), _('Получить')) button.row(_('Настройки'), _('Поддержка')) bot.send_message(chat_id, mes, reply_markup=button) user.step = 'menu' user.save() return HttpResponse('OK') ################### # Установить язык # ################### activate(user.lang) ################### if text == _('Главное меню') or callback_data == 'to_home': mes = _('BeeWallet является самым защищенным и самым быстрым кошельком. Отправляя средства внутри BeeWallet вы мгновенно получаете доступ к средствам без необходимости дожидаться подтверждения сети. Пригласите своих друзей в BeeWallet и экономьте до 40% на плате за транзакцию.') button = telebot.types.ReplyKeyboardMarkup(True, False) button.row(_('Баланс'), _('История')) button.row(_('Отправить'), _('Получить')) button.row(_('Настройки'), _('Поддержка')) bot.send_message(chat_id, mes, reply_markup=button) user.step = 'menu' user.save() return HttpResponse('OK') if user.btc_wallet is None: try: response = block_io.get_new_address(label=str(chat_id)) is_Error = False if response["status"] == "success": btc_wallet = response["data"]["address"] else: is_Error = True except: # response["status"] == "fail": try: response2 = block_io.get_address_by(label=str(chat_id)) if response2["status"] == "success": btc_wallet = response2["data"]["address"] else: is_Error = True except: bot.send_message(354691583, 'Не выдается кошелек BTC для пополнения') Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) return HttpResponse('OK') if is_Error: bot.send_message(354691583, 'Не выдается кошелек BTC для пополнения') Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) return HttpResponse('OK') user.btc_wallet = btc_wallet user.save() if phone_number != "": mes = _('Теперь вам могут переводить средства внутри BeeWallet, просто указав ваш номер телефона.') user.phone_number = phone_number.replace('+', '').replace(')', '').replace('(', '').replace('-', '').replace(' ', '') user.save() bot.send_message(chat_id, mes) return HttpResponse('OK') if text == _('Баланс'): try: response = block_io.get_address_balance(labels=str(chat_id)) print(response) if response["status"] == "success": available_balance = float(response["data"]["available_balance"]) pending_received_balance = float(response["data"]["pending_received_balance"]) else: Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) except Exception as e: Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) try: kurs = json.loads( requests.get('https://api.coinmarketcap.com/v1/ticker/bitcoin/?convert=%s' % user.currency).text)[ 0]['price_' + user.currency.lower()] s1 = '~ %.2f %s' % (round(float(kurs) * available_balance, 2), user.currency) s2 = '~ %.2f %s' % (round(float(kurs) * pending_received_balance, 2), user.currency) except: s1 = '' s2 = '' mes = _('Ваш баланс:\n%.8fBTC\n%s\n\n') % (available_balance, s1) mes += _('Ожидает подтверждения:\n%.8fBTC\n%s') % (pending_received_balance, s2) bot.send_message(chat_id, mes) return HttpResponse('OK') if text == _('Получить'): mes = _('Адрес вашего кошелька:\n%s\n\nQR код вашего кошелька:') % user.btc_wallet bot.send_message(chat_id, mes) bot.send_photo(chat_id, 'http://www.btcfrog.com/qr/bitcoinPNG.php?address=%s' % user.btc_wallet) return HttpResponse('OK') if text == _('Настройки'): mes = _( 'Здесь вы можете:\n-изменить язык интерфейса\n-привязать телефон, чтобы Вам могли совершать переводы по телефону\n-изменить валюту эквивалента для биткоина') button = telebot.types.ReplyKeyboardMarkup(True, False) b1 = telebot.types.KeyboardButton(text=_('Изменить язык')) b2 = telebot.types.KeyboardButton(text=_('Привязать телефон'), request_contact=True) b3 = telebot.types.KeyboardButton(text=_('Изменить валюту')) b4 = telebot.types.KeyboardButton(text=_('Главное меню')) button.add(b1, b2, b3, b4) bot.send_message(chat_id, mes, reply_markup=button) return HttpResponse('OK') if text == _('Изменить язык'): mes = 'Choose language / Выберите язык' button = telebot.types.ReplyKeyboardMarkup(True, False) button.row('Русский') button.row('English') bot.send_message(chat_id, mes, reply_markup=button) return HttpResponse('OK') if text == _('Изменить валюту'): mes = _('Выберите валюту') keyboard = telebot.types.InlineKeyboardMarkup() keyboard.row_width = 5 b1 = telebot.types.InlineKeyboardButton(text='USD', callback_data='currencyUSD') b2 = telebot.types.InlineKeyboardButton(text='BRL', callback_data='currencyBRL') b3 = telebot.types.InlineKeyboardButton(text='CAD', callback_data='currencyCAD') b4 = telebot.types.InlineKeyboardButton(text='CHF', callback_data='currencyCHF') b5 = telebot.types.InlineKeyboardButton(text='AUD', callback_data='currencyAUD') keyboard.add(b1, b2, b3, b4, b5) b1 = telebot.types.InlineKeyboardButton(text='CNY', callback_data='currencyCNY') b2 = telebot.types.InlineKeyboardButton(text='CZK', callback_data='currencyCZK') b3 = telebot.types.InlineKeyboardButton(text='DKK', callback_data='currencyDKK') b4 = telebot.types.InlineKeyboardButton(text='EUR', callback_data='currencyEUR') b5 = telebot.types.InlineKeyboardButton(text='GBP', callback_data='currencyGBP') keyboard.add(b1, b2, b3, b4, b5) b1 = telebot.types.InlineKeyboardButton(text='HKD', callback_data='currencyHKD') b2 = telebot.types.InlineKeyboardButton(text='HUF', callback_data='currencyHUF') b3 = telebot.types.InlineKeyboardButton(text='IDR', callback_data='currencyIDR') b4 = telebot.types.InlineKeyboardButton(text='ILS', callback_data='currencyILS') b5 = telebot.types.InlineKeyboardButton(text='INR', callback_data='currencyINR') keyboard.add(b1, b2, b3, b4, b5) b1 = telebot.types.InlineKeyboardButton(text='JPY', callback_data='currencyJPY') b2 = telebot.types.InlineKeyboardButton(text='KRW', callback_data='currencyKRW') b3 = telebot.types.InlineKeyboardButton(text='MXN', callback_data='currencyMXN') b4 = telebot.types.InlineKeyboardButton(text='MYR', callback_data='currencyMYR') b5 = telebot.types.InlineKeyboardButton(text='NOK', callback_data='currencyNOK') keyboard.add(b1, b2, b3, b4, b5) b1 = telebot.types.InlineKeyboardButton(text='NZD', callback_data='currencyNZD') b2 = telebot.types.InlineKeyboardButton(text='PHP', callback_data='currencyPHP') b3 = telebot.types.InlineKeyboardButton(text='RUB', callback_data='currencyRUB') b4 = telebot.types.InlineKeyboardButton(text='SEK', callback_data='currencySEK') b5 = telebot.types.InlineKeyboardButton(text='CLP', callback_data='currencyCLP') keyboard.add(b1, b2, b3, b4, b5) b1 = telebot.types.InlineKeyboardButton(text='SGD', callback_data='currencySGD') b2 = telebot.types.InlineKeyboardButton(text='THB', callback_data='currencyTHB') b3 = telebot.types.InlineKeyboardButton(text='TRY', callback_data='currencyTRY') b4 = telebot.types.InlineKeyboardButton(text='TWD', callback_data='currencyTWD') b5 = telebot.types.InlineKeyboardButton(text='ZAR', callback_data='currencyZAR') keyboard.add(b1, b2, b3, b4, b5) bot.send_message(chat_id, mes, reply_markup=keyboard) return HttpResponse('OK') if callback_data.find('currency') != -1: currency = callback_data[8:] user.currency = currency user.save() mes = _('Вы изменили валюту эквивалента на %s') % currency bot.edit_message_text(chat_id=data["callback_query"]["message"]["chat"]["id"], message_id=data["callback_query"]["message"]["message_id"], text=mes) return HttpResponse('OK') if text == _('Поддержка'): mes = _('Если у вас возникли вопросы или трудности при использовании кошелька, обратитесь в официальный чат @beeqb') bot.send_message(user.chat_id, mes) return HttpResponse('OK') if text == _('История'): try: response = block_io.get_transactions(type='sent', addresses=user.btc_wallet) if response["status"] == "success": # print(response) mes = _("Исходящие:\n") txs = response["data"]["txs"] if txs == []: mes += _('Пусто') for tx in txs: # print(tx) mes += _('Дата: %s\n') % datetime.fromtimestamp(int(tx['time'])).strftime('%Y-%m-%d %H:%M:%S') mes += _('Сумма: %sBTC\n') % tx['amounts_sent'][0]['amount'] # print(mes) # from_wallet = tx['senders'][0] # try: # from_wallet = BotUser.objects.get(btc_wallet = from_wallet).fio #.decode("utf-8") # except: # pass # mes += 'От: %s\n' % from_wallet to_wallet = tx['amounts_sent'][0]['recipient'] # print(to_wallet) try: u = BotUser.objects.get(btc_wallet=to_wallet) print(u) to_wallet = u.fio if u.username is not None or u.username == '': to_wallet += ' (@%s)' % u.username if u.phone_number is not None or u.phone_number == '': to_wallet += ' %s' % u.phone_number except Exception as e: print(str(e)) pass mes += _('Кому: %s\n\n') % to_wallet bot.send_message(user.chat_id, mes) else: Log.objects.create(bot_user=user, type_log="error_btc", text=json.dumps(response)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) except Exception as e: try: Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) except: pass sleep(0.5) try: response = block_io.get_transactions(type='received', addresses=user.btc_wallet) # print(response) if response["status"] == "success": mes = _("Входящие:\n") txs = response["data"]["txs"] # print(txs) if txs == []: mes += _('Пусто') for tx in txs: # print(tx) mes += _('Дата: %s\n') % datetime.fromtimestamp(tx['time']).strftime('%Y-%m-%d %H:%M:%S') # mes += 'Подтверждений: %s' % tx['confirmations'] mes += _('Сумма: %sBTC\n') % tx['amounts_received'][0]['amount'] from_wallet = tx['senders'][0] try: u = BotUser.objects.get(btc_wallet=from_wallet) print(u) from_wallet = u.fio if u.username is not None or u.username == '': from_wallet += ' (@%s)' % u.username if u.phone_number is not None or u.phone_number == '': from_wallet += ' %s' % u.phone_number except Exception as e: print(str(e)) pass mes += _('От: %s\n\n') % from_wallet # to_wallet = tx['amounts_received'][0]['recipient'] # try: # to_wallet = BotUser.objects.get(btc_wallet = to_wallet).fio #.decode("utf-8") # except: # pass # mes += 'Кому: %s\n\n' % to_wallet bot.send_message(chat_id, mes) else: Log.objects.create(bot_user=user, type_log="error_btc", text=json.dumps(response)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) except Exception as e: try: Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) except: pass if text == _('Отправить'): try: response = block_io.get_address_balance(labels=str(chat_id)) print(response) if response["status"] == "success": available_balance = float(response["data"]["available_balance"]) else: Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) except Exception as e: Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) mes = _('Ваш баланс %.8fBTC.\nВведите адрес кошелька или номер телефона в формате “+12223334455” или имя пользователя в формате "@username" кому хотите перевести деньги.') % available_balance # mes = 'Введите сумму BTC, которую хотите перевести:' button = telebot.types.ReplyKeyboardMarkup(True, False) button.row(_('Главное меню')) bot.send_message(chat_id, mes, reply_markup=button) user.step = 'input_whom_btc_withdraw' user.save() return HttpResponse('OK') if user.step == 'input_whom_btc_withdraw': text = text.replace('+', '').replace(')', '').replace('(', '').replace('-', '').replace(' ', '') match = re.search(r'^[13][a-km-zA-HJ-NP-Z1-9]{25,34}$', text) if match is not None: mes = _('Введите сумму BTC, которую хотите перевести:') user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row(_('Главное меню')) bot.send_message(chat_id, mes, reply_markup=user_markup) # user.wallet_btc = text user.step = 'input_amount_btc_withdraw' user.wallet_btc_withdraw = text user.save() return HttpResponse('OK') else: if text[0] == '@': try: u = BotUser.objects.get(username__iexact=text[1:].lower()) mes = _('Введите сумму BTC, которую хотите перевести:') user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row(_('Главное меню')) bot.send_message(chat_id, mes, reply_markup=user_markup) # user.wallet_btc = text user.step = 'input_amount_btc_withdraw' user.wallet_btc_withdraw = str(u.chat_id) user.save() except: mes = _('Ошибка! Пользователь с таким именем не зарегистрирован.') user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row(_('Главное меню')) bot.send_message(chat_id, mes, reply_markup=user_markup) else: match = re.search(r'^[0-9]{5,14}$', text) if match is not None: try: u = BotUser.objects.get(phone_number=text) mes = _('Введите сумму BTC, которую хотите перевести:') user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row(_('Главное меню')) bot.send_message(chat_id, mes, reply_markup=user_markup) # user.wallet_btc = text user.step = 'input_amount_btc_withdraw' user.wallet_btc_withdraw = str(u.chat_id) user.save() except: mes = _('Ошибка! Пользователь с таким телефоном не зарегистрирован.') user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row(_('Главное меню')) bot.send_message(chat_id, mes, reply_markup=user_markup) else: mes = _('Ошибка! Некорректное значение.') user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row(_('Главное меню')) bot.send_message(chat_id, mes, reply_markup=user_markup) return HttpResponse('OK') if user.step == 'input_amount_btc_withdraw': text = text.replace(',', '.').replace(' ', '') if not is_digit(text): mes = _('Ошибка: Значение должно быть числовым. Введите другую сумму.') user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row(_('Главное меню')) bot.send_message(chat_id, mes, reply_markup=user_markup) return HttpResponse('OK') try: response = block_io.get_address_balance(labels=str(chat_id)) print(response) if response["status"] == "success": available_balance = float(response["data"]["available_balance"]) else: Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) return HttpResponse('OK') except Exception as e: Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) summa = float(text) if summa < 0.00001: mes = _('Ошибка! Минимальная сумма - 0.00001BTC. Введите другую сумму.') user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row(_('Главное меню')) bot.send_message(chat_id, mes, reply_markup=user_markup) return HttpResponse('OK') # available_balance = 1 if summa > available_balance: mes = _('Ошибка! У вас недостаточно средств на счету') user_markup = telebot.types.ReplyKeyboardMarkup(True, False) user_markup.row(_('Главное меню')) bot.send_message(chat_id, mes, reply_markup=user_markup) return HttpResponse('OK') bot.send_message(chat_id, _('Ожидайте...')) if isint(user.wallet_btc_withdraw): u = BotUser.objects.get(chat_id=int(user.wallet_btc_withdraw)) mes = _('Вы уверены, что хотите перевести %.8f BTC пользователю %s?\n') % (summa, str(u.fio)) to_wallet = u.btc_wallet else: mes = _('Вы уверены, что хотите перевести %.8f BTC на кошелек %s?\n') % (summa, user.wallet_btc_withdraw) u = None to_wallet = user.wallet_btc_withdraw procent_fee = settings.procent_fee procent_amount = summa * procent_fee if procent_amount < 0.00001: procent_amount = 0.00001 procent_wallet = settings.wallet_for_fee amounts_str = '%.8f' % summa + ',' + '%.8f' % procent_amount print(amounts_str) #print(wallet_str) wallet_str = to_wallet + ',' + procent_wallet print(wallet_str) try: response = block_io.get_network_fee_estimate(amounts='%.8f' % summa, to_addresses=to_wallet, priority='low') print(response) lowfee = response["data"]["estimated_network_fee"] except Exception as e: bot.send_message(chat_id, str(e)) return HttpResponse('OK') if BotUser.objects.filter(btc_wallet=to_wallet).exists(): medfee = None highfee = None else: try: sleep(0.5) response = block_io.get_network_fee_estimate(amounts='%.8f' % summa, to_addresses=to_wallet, priority='medium') medfee = response["data"]["estimated_network_fee"] except Exception as e: medfee = None try: sleep(0.5) response = block_io.get_network_fee_estimate(amounts='%.8f' % summa, to_addresses=to_wallet, priority='high') highfee = response["data"]["estimated_network_fee"] except Exception as e: highfee = None keyboard = telebot.types.InlineKeyboardMarkup() keyboard.add(telebot.types.InlineKeyboardButton(text=_('Перевести за %sBTC') % lowfee, callback_data='yes_btc_withdraw_lowfee')) if medfee is not None: keyboard.add(telebot.types.InlineKeyboardButton(text=_('Перевести за %sBTC') % medfee, callback_data='yes_btc_withdraw_medfee')) if highfee is not None: keyboard.add(telebot.types.InlineKeyboardButton(text=_('Перевести за %sBTC') % highfee, callback_data='yes_btc_withdraw_highfee')) # keyboard.add(telebot.types.InlineKeyboardButton(text=_('Да, переводить!') , callback_data = 'yes_btc_withdraw' )) keyboard.add(telebot.types.InlineKeyboardButton(text=_('Отмена'), callback_data='to_home')) bot.send_message(chat_id, mes, reply_markup=keyboard) user.step = 'home' user.amount_btc_withdraw = summa user.save() return HttpResponse('OK') if callback_data.find('yes_btc_withdraw') != -1: try: if isint(user.wallet_btc_withdraw): u = BotUser.objects.get(chat_id=int(user.wallet_btc_withdraw)) to_wallet = u.btc_wallet else: u = None to_wallet = user.wallet_btc_withdraw procent_fee = settings.procent_fee amount = user.amount_btc_withdraw procent_amount = amount * procent_fee if procent_amount < 0.00001: procent_amount = 0.00001 procent_wallet = settings.wallet_for_fee amounts_str = '%.8f' % amount + ',' + '%.8f' % procent_amount wallet_str = to_wallet + ',' + procent_wallet print(amounts_str) print(wallet_str) if callback_data.find('lowfee') != -1: priority = 'low' elif callback_data.find('medfee') != -1: priority = 'medium' elif callback_data.find('highfee') != -1: priority = 'high' try: #response = block_io.withdraw(amounts=amounts_str, to_addresses=wallet_str, priority=priority) response = block_io.withdraw(amounts='%.8f' % amount, to_addresses=to_wallet, priority=priority) except Exception as e: bot.send_message(chat_id, str(e)) return HttpResponse('OK') print(response) if response["status"] == "success": mes = _('Вы успешно отправили: %sBTC') % user.amount_btc_withdraw bot.edit_message_text(chat_id=data["callback_query"]["message"]["chat"]["id"], message_id=data["callback_query"]["message"]["message_id"], text=mes, reply_markup=keyboard) if u is not None: bot.send_message(u.chat_id, _("%s вам перевел %.8fBTC.") % (user.fio, amount)) # History.objects.create(bot_user = user, trans_id = response["data"]["txid"], trans_type = 'withdraw', wallet_type = 'BTC', summa = summa) else: Log.objects.create(bot_user=user, type_log="error_btc", text=json.dumps(response)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) except Exception as e: try: Log.objects.create(bot_user=user, type_log="error_btc", text=str(e)) mes = _('Возникла ошибка. Обратитесь в службу поддержки @beeqb') bot.send_message(user.chat_id, mes) except: pass user.wallet_btc_withdraw = '' user.save() return HttpResponse('OK') return HttpResponse('OK') except Exception as e: print(e) bot.send_message(354691583, str(e)) return HttpResponse('OK')
from pycsp3 import * n, m, points1, points2 = data nPairs = len(points1) # x[i][j] is the value at row i and column j (a boundary is put around the board). x = VarArray(size=[n + 2, m + 2], dom=lambda i, j: {0} if i in {0, n + 1} or j in {0, m + 1} else range(nPairs + 1)) table = ({(0, ANY, ANY, ANY, ANY)} | {tuple(ne(v) if k in (i, j) else v for k in range(5)) for i, j in combinations(range(1, 5), 2) for v in range(1, nPairs + 1)}) satisfy( # putting two occurrences of each value on the board [x[i, j] == v + 1 for v in range(nPairs) for (i, j) in [points1[v], points2[v]]], # each cell with a fixed value has exactly one neighbour with the same value [Count([x[i - 1][j], x[i + 1][j], x[i][j - 1], x[i][j + 1]], value=v + 1) == 1 for v in range(nPairs) for (i, j) in [points1[v], points2[v]]], # each empty cell either contains 0 or has exactly two neighbours with the same value [(x[i][j], x[i - 1][j], x[i + 1][j], x[i][j - 1], x[i][j + 1]) in table for i in range(1, n + 1) for j in range(1, m + 1) if [i, j] not in points1 + points2] ) minimize( Sum(x) ) # Note that the table use (smart) conditions, which make code more compact than: # table = ({(0, ANY, ANY, ANY, ANY)} # | {(v, v, v, ne(v), ne(v)) for v in range(1, nPairs + 1)} # | {(v, v, ne(v), v, ne(v)) for v in range(1, nPairs + 1)} # | {(v, v, ne(v), ne(v), v) for v in range(1, nPairs + 1)} # | {(v, ne(v), v, v, ne(v)) for v in range(1, nPairs + 1)} # | {(v, ne(v), v, ne(v), v) for v in range(1, nPairs + 1)} # | {(v, ne(v), ne(v), v, v) for v in range(1, nPairs + 1)})
AVATAR_AUTO_GENERATE_SIZES = 150 # Control the forms that django-allauth uses ACCOUNT_FORMS = { "login": "allauth.account.forms.LoginForm", "add_email": "allauth.account.forms.AddEmailForm", "change_password": "allauth.account.forms.ChangePasswordForm", "set_password": "allauth.account.forms.SetPasswordForm", "reset_password": "allauth.account.forms.ResetPasswordForm", "reset_password_from_key": "allauth.account.forms.ResetPasswordKeyForm", "disconnect": "allauth.socialaccount.forms.DisconnectForm", # Use our custom signup form "signup": "ool.users.forms.UserCreationFormX", }
from typing import List """ Rotate array equals to flip array 3 times. First time, flip the whole array. Second time, flip the left part all the way to length k. Third time, flip the remaining right part. Time complexity: O(N) Space complexity: O(1) """ class Solution: def rotate(self, nums: List[int], k: int) -> None: """ Do not return anything, modify nums in-place instead. """ if k == 0: return else: k = k % len(nums) # if k is greater than length of array. self.flip(nums, 0, len(nums)-1) self.flip(nums,0, k-1) self.flip(nums, k, len(nums)-1) return def flip(self, nums, l, r): if l > r or l < 0 or r > len(nums)-1: return while l <= r: nums[l], nums[r] = nums[r], nums[l] l += 1 r -= 1 return
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle def _tensors(ts, name): if isinstance(ts, (list, tuple)): assert len(ts) > 0, "{} connot be empty".format(name) for each_t in ts: assert isinstance( each_t, paddle.Tensor ) or each_t is None, "Elements of {} must be paddle.Tensor or None".format( name) return list(ts) else: assert isinstance(ts, paddle.Tensor), "{} must be Tensor".format(name) return [ts] def _stack_tensor_or_return_none(origin_list): assert len(origin_list) > 0, "Can't not stack an empty list" return paddle.stack( origin_list, axis=0) if isinstance(origin_list[0], paddle.Tensor) else None def _replace_none_with_zero_tensor(t, spec_t): if t is None: zero_t = paddle.zeros(shape=spec_t.shape, dtype=spec_t.dtype) zero_t.stop_gradient = spec_t.stop_gradient return zero_t else: return t
from django.apps import AppConfig class CoderDojoChiConfig(AppConfig): name = "coderdojochi" verbose_name = "CoderDojoChi" def ready(self): import coderdojochi.signals_handlers
print("How many primes do you want?") N = input() a = 2 while a < N: a =a+1 j=2 x=a while x > j: if x%j==0 and j!=x: #print x, " is not prime, divisible by ", j break j=j+1 else: print j,# " is prime, divisible by 1 and itself", x
# # demo_kmeans.py # import kmeans import numpy as np import matplotlib.pyplot as plt data = [] number_of_clusters = 5 points_per_cluster = 25 np.random.seed(4) ''' Generate random clusters. ''' for _ in range(number_of_clusters): ages_centroid = np.random.uniform(20.0, 70.0) income_centroid = np.random.uniform(100000.0, 500000.0) age = np.random.normal(ages_centroid, 2.0, points_per_cluster) income = np.random.normal(income_centroid, 10000.0, points_per_cluster) points = [[age[i], income[i]] for i in range(len(age))] data.extend(points) ''' Use k-means to identify the clusters and compute their centroids. ''' centroids, assignments, data = kmeans.centroids(k=5, data=data, max_iterations=100000) ''' Assign each data point a color associated to their respective cluster. ''' colors = ['blue', 'green', 'purple', 'orange', 'pink'] for i in range(len(data)): data[i].append(colors[assignments[i]]) ''' Plot the data points colored to represent the cluster they belong to. ''' ages = [x[0] for x in data] incomes = [x[1] for x in data] colors = [x[2] for x in data] centroids_x = [x[0] for x in centroids] centroids_y = [y[1] for y in centroids] plt.xlabel('age') plt.ylabel('income') plt.scatter(ages, incomes, c=colors) plt.scatter(centroids_x, centroids_y, c='red') plt.show()