content
stringlengths
5
1.05M
import logging import os from processFolder import loadTrajectories from processXML import loadTrajectory from processXML import loadTrajectoryFromString from predict import predictDiversion classifyLogger = logging.getLogger(__name__) def classifyXml(clf, scaler, interval, xmlstring, threshold): try: trajectory = loadTrajectoryFromString(xmlstring) diversionDetected = classifyTrajectory(clf, scaler, trajectory, interval, threshold) return diversionDetected except Exception as e: classifyLogger.error("Error classifying XML: %s" %format(e)) def classifyFile(clf, scaler, interval, filepath, threshold): try: trajectory = loadTrajectory(filepath) diversionDetected = classifyTrajectory(clf, scaler, trajectory, interval, threshold) return diversionDetected except Exception as e: classifyLogger.error("Error classifying file %s: %s" %(filepath, format(e))) def classifyFolder(clf, scaler, interval, folder, threshold): filepahtsClassifiedAsDiverted = [] try: (filepaths, trajectories) = loadTrajectories(folder) i = 0 for trajectory in trajectories: diversionDetected = classifyTrajectory(clf, scaler, trajectory, interval, threshold) if diversionDetected: filepahtsClassifiedAsDiverted.append(filepaths[i]) i += 1 return len(trajectories), len(filepahtsClassifiedAsDiverted), len(trajectories) - len(filepahtsClassifiedAsDiverted), filepahtsClassifiedAsDiverted except Exception as e: classifyLogger.error("Error classifying folder '%s': %s" %(folder, format(e))) def classifyFsNodes(clf, scaler, interval, fsNodesPaths, threshold): filepahtsClassifiedAsDiverted = [] trajectories = [] for fsNodePath in fsNodesPaths: if (os.path.isfile(fsNodePath)): try: nutrajectory = loadTrajectory(fsNodePath) diversionDetected = classifyTrajectory(clf, scaler, nutrajectory, interval, threshold) if diversionDetected: filepahtsClassifiedAsDiverted.append(fsNodePath) trajectories = trajectories + nutrajectory except Exception as e: classifyLogger.error("Error classifying file '%s': %s" %(fsNodePath, format(e))) elif (os.path.isdir(fsNodePath)): try: (filepaths, nutrajectories) = loadTrajectories(fsNodePath, interval) i = 0 for nutrajectory in nutrajectories: i += 1 diversionDetected = classifyTrajectory(clf, scaler, nutrajectory, interval, threshold) if diversionDetected: filepahtsClassifiedAsDiverted.append(filepaths[i]) trajectories = trajectories + nutrajectory except Exception as e: classifyLogger.error("Error classifying folder '%s': %s" %(fsNodePath, format(e))) return len(trajectories), len(filepahtsClassifiedAsDiverted), len(trajectories) - len(filepahtsClassifiedAsDiverted), filepahtsClassifiedAsDiverted def classifyTrajectory(clf, scaler, trajectory, interval, threshold): try: trajectoryUnderAnalysis = trajectory.createTrajectoryForAnalysis(interval) if trajectoryUnderAnalysis.totaldist == 0: classifyLogger.warn("Trajectory total distance = 0 for flight at '%s'" %(trajectoryUnderAnalysis.filename)) return True data = trajectoryUnderAnalysis.getVectors() if not data: classifyLogger.debug("Insufficient data for diversion prediction of flight at '%s'" %(trajectoryUnderAnalysis.filename)) return False # insufficient data try: datat = scaler.transform(data) except Exception as e: # print "Error in classification of: ", trajectory.filename, format(e) classifyLogger.error("Error while classifying trajectory of flight at '%s': %s", str(trajectoryUnderAnalysis.filename) + ":" + format(e)) return False classification = clf.predict(datat) decfunout = clf.decision_function(datat) decfunout = [item for sublist in decfunout for item in sublist] # flatten the list of lists in a "simple" list (diversionPredicted, severities, firstAlertPosition) = predictDiversion(trajectoryUnderAnalysis, classification, decfunout, threshold) return diversionPredicted except Exception as e: classifyLogger.error("Error while classifying flight %s: %s" %(trajectory.flightId, format(e)))
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class JingdongItem(scrapy.Item): # define the fields for your item here like: filename = scrapy.Field() intruduce = scrapy.Field() img_urls = scrapy.Field() good_id = scrapy.Field() img_name = scrapy.Field() class JingdongItem2(scrapy.Item): # define the fields for your item here like: filename = scrapy.Field() page = scrapy.Field() contents_Urls = scrapy.Field() contents = scrapy.Field() productColors = scrapy.Field()
def cnd(ip,username,password): net_dev = {} net_dev['ip'] = ip net_dev['username'] = username net_dev['password'] = password return net_dev
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ .. module:: filter :platform: Unix :synopsis: the top-level submodule of T_System that contains the classes related to T_System's data filter ability. .. moduleauthor:: Cem Baybars GÜÇLÜ <cem.baybars@gmail.com> """ import numpy as np from scipy.signal import butter, lfilter, freqz class LowPassFilter: """Class to define an kind of filter. This class provides necessary initiations and a function named :func:`t_system.motion.Motor.move` for the provide move of servo motor. """ def __init__(self): """Initialization method of :class:`t_system.motor.Motor` class. """ pass @staticmethod def butter_low_pass(cutoff, fs, order=5): """Method to start of the motor initially. Args: init_angel (float): Initialization angle value for servo motor in radian unit. """ nyq = 0.5 * fs normal_cutoff = cutoff / nyq c = butter(order, normal_cutoff, btype='low', analog=False) b = c[0] a = c[1] # this lines would be like "b,a = ..." but there was a warning. return b, a def butter_low_pass_filter(self, data, cutoff, fs, order=5): """Method to start of the motor initially. Args: init_angel (float): Initialization angle value for servo motor in radian unit. """ b, a = self. butter_low_pass(cutoff, fs, order=order) y = lfilter(b, a, data) return y
import Tkinter as tk import tkMessageBox import ttk import tkFont as tkFont import tkColorChooser from Tkinter import StringVar, IntVar class ClockForegroundOptions(tk.Frame): def __init__(self, master, parent): tk.Frame.__init__(self, master) self.parent = parent self.grid() self.clock = master.clock clock = self.clock self.valXLabel = StringVar() self.valYLabel = StringVar() self.valFontLabel = StringVar() self.valFontSizeLabel = StringVar() self.valFontColourLabel = StringVar() self.xVar = StringVar() self.yVar = StringVar() self.fontVar = StringVar() self.fontSizeVar = StringVar() self._12HourFormatVar = IntVar() self.hourLeadingZeroesVar = IntVar() self.longMonthVar = IntVar() self.onVar = IntVar() self.symbolVar = StringVar() self.lastSymbolId = 0 self.setSwitch = {"Hour": clock.setHour, "Minute": clock.setMinute, "Second": clock.setSecond, "Year": clock.setYear, "Month": clock.setMonth, "Day Number": clock.setDayNumber, "Day of Week": clock.setDayOfWeek, "AM/PM": clock.setAMPM, "Symbols": clock.setSymbol} self.getSwitch = {"Hour": clock.getHour, "Minute": clock.getMinute, "Second": clock.getSecond, "Year": clock.getYear, "Month": clock.getMonth, "Day Number": clock.getDayNumber, "Day of Week": clock.getDayOfWeek, "AM/PM" : clock.getAMPM, "Symbols" : clock.getSymbols} self.createWidgets() self.getDefaults("Hour") # Gets defaults for widgets based on label given and sets labels as necessary def getDefaults(self, label): defaults = self.getSwitch[label]() self.setDefaults(defaults, label) def setDefaults(self, defaults, label): if label == "Symbols": self.symbols = defaults self.symbolTextbox.delete('1.0', 'end') else: self.xVar.set(defaults[0]) self.yVar.set(defaults[1]) self.fontVar.set(defaults[2]) self.valFont.select_clear(0, "end") i = 0 while (i < self.valFont.size()): if self.valFont.get(i).strip() == self.fontVar.get().strip(): t = self.valFont.get(i) self.valFont.delete(i) self.valFont.insert(0, t) self.valFont.select_set(0) i = 10000 i+=1 self.fontSizeVar.set(defaults[3]) self.fontColourDefault = defaults[4] self.onVar.set(defaults[5]) if (label == "Hour"): self._12HourFormatVar.set(defaults[5]) self.hourLeadingZeroesVar.set(defaults[6]) self.onVar.set(defaults[7]) elif (label == "Month"): self.longMonthVar.set(defaults[5]) self.onVar.set(defaults[6]) self.setAllLabels(label) def setAllLabels(self, label): self.valXLabel.set(label + " X Coordinate") self.valYLabel.set(label + " Y Coordinate") self.valFontLabel.set(label + " Font") self.valFontSizeLabel.set(label + " Font Size") self.valFontColourLabel.set(label + " Font Colour") # Handle edge case items if (label != "Hour"): self.hourCheckButton.grid_forget() self.hourLeadingZeroes.grid_forget() else: self.hourCheckButton.grid(row = 0, column = 1, pady = 10, sticky = "NW") self.hourLeadingZeroes.grid(row = 0, column = 2, pady = 10, sticky = "NW") if (label != "Month"): self.monthCheckButton.grid_forget() else: self.monthCheckButton.grid(row = 0, column = 1, pady = 10, sticky = "NW") if (label != "Symbols"): self.symbolSelect.grid_forget() self.onCheckButton.grid(row = 1, column = 1, pady= 10, sticky="nw") try: self.symbolLabel.grid_forget() self.symbolTextbox.grid_forget() self.symbolDeleteButton.grid_forget() except: print("issues forgetting") else: symbols = list() for item in self.symbols: curSym = ("Symbol " + str(self.symbols[item]["idNum"]) + ' : "' + self.symbols[item]["sym"] + '"') symbols.append(curSym) symbols.append("New Symbol") self.symbolSelect.config(values = symbols) self.symbolVar.set(symbols[self.lastSymbolId]) self.lastSymbolId = 0 self.selectSymbol(None) self.onCheckButton.grid_forget() self.symbolSelect.grid(row = 0, column = 1, pady = 10, sticky = "NW") # Fix apply to all if (label == "Month" or label == "Year" or label == "Day of Week" or label == "Day Number"): self.applyToAll.config(text="Apply font, font size, and\ncolour to all date options", command = self.applyToAllDate) elif (label == "Symbols"): self.applyToAll.config(text="Apply font, font size, and\ncolour to all symbols", command = self.applyToAllSymbols) else: self.applyToAll.config(text="Apply font, font size, and\ncolour to all time options", command = self.applyToAllTime) def createWidgets(self): fonts = tkFont.families(self.master) fonts = set(fonts) fonts = sorted(fonts) options = ["Hour", "Minute", "Second", "AM/PM", "Day of Week", "Month", "Day Number", "Year", "Symbols"] self.currentOption = tk.Listbox(self, selectmode="SINGLE", exportselection=False) for option in options: self.currentOption.insert("end", option) self.currentOption.select_set(0) self.currentOption.bind("<ButtonRelease-1>", self.showOptions) self.currentOption.grid(row = 0, column = 0, rowspan = 10, pady = 10, sticky = "NW") # Hour checkbuttons self.hourCheckButton = tk.Checkbutton(self, text = "12 hour clock", variable = self._12HourFormatVar) self.hourCheckButton.grid(row = 0, column = 1, pady= 10, sticky = "NW") self.hourLeadingZeroes = tk.Checkbutton(self, text = "Leading zeroes", variable = self.hourLeadingZeroesVar) self.hourLeadingZeroes.grid(row = 0, column = 2, pady = 10, sticky = "NW") # Month checkbutton self.monthCheckButton = tk.Checkbutton(self, text = "Long month form", variable = self.longMonthVar) # Symbol stuff self.symbolSelect = ttk.Combobox(self, textvariable=self.symbolVar, state = "readonly") self.symbolSelect.bind("<<ComboboxSelected>>", self.selectSymbol) self.symbolLabel = tk.Label(self, text="Symbol: ") self.symbolTextbox = tk.Text(self, width = 24, height=1) self.symbolDeleteButton = tk.Button(self, text="Delete Symbol", command = self.removeSymbol) # On checkbutton self.onCheckButton = tk.Checkbutton(self, text = "Visible", variable = self.onVar) self.onCheckButton.grid(row = 1, column = 1, pady= 10, sticky = "NW") # val X tk.Label(self, text="Hour X", textvariable = self.valXLabel).grid(row=2, column = 1, pady = 5, sticky = "NW") maxX = self.master.winfo_screenwidth() maxY = self.master.winfo_screenheight() self.valX = tk.Spinbox(self, from_=0, to=maxX, textvariable = self.xVar) self.valX.grid(row=2, column = 2) # val Y tk.Label(self, textvariable = self.valYLabel).grid(row=3, column = 1, pady = 5, sticky = "NW") self.valY = tk.Spinbox(self, from_=0, to=maxY, textvariable = self.yVar) self.valY.grid(row=3, column = 2) # val font listbox scrollbar = tk.Scrollbar(self) tk.Label(self, textvariable = self.valFontLabel).grid(row=4, column = 1, pady = 5, sticky = "NW") self.valFont = tk.Listbox(self, selectmode = "SINGLE", exportselection = False, yscrollcommand = scrollbar.set) scrollbar.config(command = self.valFont.yview) scrollbar.grid(row=4, column = 2) self.valFont.grid(row=4, column = 2, pady = 5) for font in fonts: self.valFont.insert("end", font) # val font size tk.Label(self, textvariable = self.valFontSizeLabel).grid(row=5, column = 1, pady = 5, sticky = "NW") self.valFontSize = tk.Spinbox(self, from_=0, to=1000, textvariable = self.fontSizeVar) self.valFontSize.grid(row = 5, column = 2) # val font colour tk.Button(self, textvariable = self.valFontColourLabel, command = self.showColourPicker).grid(row = 6, column = 1, sticky = "NW") # Buttons tk.Button(self, text="Apply", command=self.apply).grid(row = 8, column = 2, sticky = "NE", pady=30) self.applyToAll = tk.Button(self, text="Apply font, font size, and\ncolour to all time options", command = self.applyToAllTime) self.applyToAll.grid(row = 8, column = 1, stick = "NW", pady=30) tk.Button(self, text="Drag and drop mode", command=self.beginDragMode).grid(row=8, column=0, sticky="NW", pady=30) # Applys current options def apply(self): f = self.valFont.get(self.valFont.curselection()) o = self.currentOption.get(self.currentOption.curselection()) try: int(self.valX.get()) int(self.valY.get()) int(self.valFontSize.get()) if (o.strip() == "Month"): self.setSwitch[o](self.valX.get(), self.valY.get(), f, self.valFontSize.get(), self.fontColourDefault, self.longMonthVar.get(), self.onVar.get()) elif o.strip() == "Hour": self.setSwitch[o](self.valX.get(), self.valY.get(), f, self.valFontSize.get(), self.fontColourDefault, self._12HourFormatVar.get(), self.hourLeadingZeroesVar.get(), self.onVar.get()) elif o.strip() == "Symbols": if self.symbolSelect.get() == "New Symbol": idNum = len(self.symbols) sym = self.symbolTextbox.get('1.0', 'end') sym = sym[:-1] if len(sym.strip()) == 0: raise Exception else: t = self.symbolSelect.get() idNum = int(t.split(" ")[1]) sym = self.symbols[idNum]["sym"] self.setSwitch[o](self.valX.get(), self.valY.get(), f, self.valFontSize.get(), self.fontColourDefault, idNum, sym, self.onVar.get()) self.lastSymbolId = idNum else : self.setSwitch[o](self.valX.get(), self.valY.get(), f, self.valFontSize.get(), self.fontColourDefault, self.onVar.get()) self.clock.saveClockOptions() except: tkMessageBox.showerror("Invalid input", "A value entered was not valid", parent = self) self.getDefaults(o.strip()) # Applies current settings to all time options def applyToAllTime(self): f = self.valFont.get(self.valFont.curselection()) self.clock.setHour(self.clock.hourX, self.clock.hourY, f, self.valFontSize.get(), self.fontColourDefault, self._12HourFormatVar.get(), self.hourLeadingZeroesVar.get(), self.onVar.get()) self.clock.setMinute(self.clock.minuteX, self.clock.minuteY, f, self.valFontSize.get(), self.fontColourDefault, self.onVar.get()) self.clock.setSecond(self.clock.secondX, self.clock.secondY, f, self.valFontSize.get(), self.fontColourDefault, self.onVar.get()) self.clock.setAMPM(self.clock.ampmX, self.clock.ampmY, f, self.valFontSize.get(), self.fontColourDefault, self.onVar.get()) self.clock.saveClockOptions() # Applies current settings to all date options def applyToAllDate(self): f = self.valFont.get(self.valFont.curselection()) self.clock.setYear(self.clock.yearX, self.clock.yearY, f, self.valFontSize.get(), self.fontColourDefault, self.onVar.get()) self.clock.setMonth(self.clock.monthX, self.clock.monthY, f, self.valFontSize.get(), self.fontColourDefault, self.longMonthVar.get(), self.onVar.get()) self.clock.setDayNumber(self.clock.dayNumberX, self.clock.dayNumberY, f, self.valFontSize.get(), self.fontColourDefault, self.onVar.get()) self.clock.setDayOfWeek(self.clock.dayOfWeekX, self.clock.dayOfWeekY, f, self.valFontSize.get(), self.fontColourDefault, self.onVar.get()) self.clock.saveClockOptions() # Applies current settings to all symbols def applyToAllSymbols(self): f = self.valFont.get(self.valFont.curselection()) for item in self.symbols: cur = self.symbols[item] self.setSwitch["Symbols"](cur['x'], cur['y'], f, self.valFontSize.get(), self.fontColourDefault, cur["idNum"], cur["sym"], 1) # Handler for drag and drop placement mode button def beginDragMode(self): self.parent.beginDragMode() # Handler to close windwo def close(self): self.parent.close() # Event handler for click on select list of time options def showOptions(self, position): o = self.currentOption.get(self.currentOption.curselection()) self.getDefaults(o) # Event handler for click on select list of all symbols def selectSymbol(self, event): s = self.symbolSelect.get() if (s == "New Symbol"): self.prepareForNewSymbol() return try: self.symbolLabel.grid_forget() self.symbolTextbox.grid_forget() except: None self.clock.saveClockOptions() self.symbolDeleteButton.grid(row = 0, column = 2) idNum = s.split(" ") idNum = int(idNum[1]) curSym = self.symbols[idNum] self.xVar.set(curSym["x"]) self.yVar.set(curSym["y"]) self.fontVar.set(curSym["font"]) self.fontSizeVar.set(curSym["size"]) self.fontColourDefault = curSym["colour"] self.onVar.set(curSym["on"]) self.valFont.select_clear(0, "end") i = 0 while (i < self.valFont.size()): if self.valFont.get(i).strip() == self.fontVar.get().strip(): t = self.valFont.get(i) self.valFont.delete(i) self.valFont.insert(0, t) self.valFont.select_set(0) i = 10000 i+=1 # Prepares window to show options for new symbol def prepareForNewSymbol(self): self.xVar.set(0) self.yVar.set(0) self.fontVar.set("") self.fontSizeVar.set(12) self.fontColourDefault = "#000000" self.onVar.set(1) self.valFont.select_clear(0, "end") self.valFont.select_set(0) self.symbolLabel.grid(row=1, column =1, sticky = "nw") self.symbolTextbox.grid(row = 1, column = 2, sticky="nw") print("Grid forget at 388") self.symbolDeleteButton.grid_forget() # Handler for delete symbol button def removeSymbol(self): idNum = int(self.symbolSelect.get().split(" ")[1]) self.clock.removeSymbol(idNum) self.clock.saveClockOptions() self.getDefaults("Symbols") # Handler for font colour button def showColourPicker(self): colours = tkColorChooser.askcolor(parent = self, color = self.fontColourDefault) if colours[1] != None: self.fontColourDefault = colours[1]
import Qt.QtWidgets as QtWidgets import Qt.QtCore as QtCore import Qt.QtGui as QtGui import kitsupublisher.utils.data as utils_data from kitsupublisher.utils.colors import combine_colors from kitsupublisher.views.TasksTabItem import TasksTabItem from kitsupublisher.ui_data.color import ( main_color, table_alternate_color, text_color, ) from kitsupublisher.ui_data.ui_values import ( height_table, row_height, max_width_table, ) class StyleDelegateForQTableWidget(QtWidgets.QStyledItemDelegate): """ Class overriding QTableWidgetItem color policy, to obtain transparency when a row is selected """ def __init__(self, parent): QtWidgets.QStyledItemDelegate.__init__(self, parent) self.parent = parent self.color_default = QtGui.QColor("#5e60ba") def paint(self, painter, option, index): if option.state & QtWidgets.QStyle.State_Selected: option.palette.setColor( QtGui.QPalette.HighlightedText, QtGui.QColor(self.parent.text_color), ) color = combine_colors( self.color_default, self.background(option, index) ) option.palette.setColor(QtGui.QPalette.Highlight, color) QtWidgets.QStyledItemDelegate.paint(self, painter, option, index) def background(self, option, index): item = self.parent.itemFromIndex(index) if item: if item.background() != QtGui.QBrush(): return item.background().color() if self.parent.alternatingRowColors(): if index.row() % 2 == 1: return option.palette.color(QtGui.QPalette.AlternateBase) return option.palette.color(QtGui.QPalette.Base) class TasksTab(QtWidgets.QTableWidget): """ The table containing all the tasks to do for the current user. The columns of the array are set manually at instantiation. """ def __init__(self, window, dict_cols): QtWidgets.QTableWidget.__init__(self) self.window = window self.tab_columns = dict_cols self.list_ids = list(dict_cols.keys()) self.setColumnCount(len(dict_cols)) self.text_color = text_color self.create_header(dict_cols) self.tasks_to_do = utils_data.get_all_tasks_to_do() self.fill_tasks_tab(self.tasks_to_do) self.resize_to_content() self.activate_sort() self.item_delegate = StyleDelegateForQTableWidget(self) self.setItemDelegate(self.item_delegate) self.color_tab() self.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.setSelectionBehavior(QtWidgets.QAbstractItemView.SelectRows) self.setSelectionMode(QtWidgets.QAbstractItemView.SingleSelection) self.setFocusPolicy(QtCore.Qt.NoFocus) self.setHorizontalScrollMode(QtWidgets.QAbstractItemView.ScrollPerPixel) self.manage_size() self.selected_row = None self.clicked.connect(self.on_click) def manage_size(self): data_width = self.horizontalHeader().length() + self.verticalHeader().width() + 2 if data_width > max_width_table: self.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAsNeeded) self.setFixedWidth(min(max_width_table, data_width)) self.setSizePolicy( QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Fixed ) def sizeHint(self): """ Overriden size hint. """ return QtCore.QSize( self.horizontalHeader().length() + self.verticalHeader().width(), height_table, ) def create_header(self, dict_cols): """ Create the header and set its visual aspect. """ self.setHorizontalHeaderLabels(dict_cols.values()) self.horizontalHeader().setHighlightSections(False) self.horizontalHeader().setSectionsClickable(False) self.horizontalHeader().setDefaultAlignment(QtCore.Qt.AlignLeft) stylesheet = ( "QHeaderView::section{color:" + self.text_color + "; font-weight: bold; font-size: 18px}" ) self.horizontalHeader().setStyleSheet(stylesheet) font = self.horizontalHeader().font() font.setBold(True) font.setPointSize(14) self.horizontalHeader().setFont(font) height = QtGui.QFontMetrics( self.horizontalHeader().fontMetrics() ).height() self.horizontalHeader().setFixedHeight(1.3 * height) def fill_tasks_tab(self, tasks): """ Fill the table with the given tasks. """ for nb_row, task in enumerate(tasks): current_row_nb = self.rowCount() + 1 self.setRowCount(current_row_nb) for nb_col, task_attribute in enumerate(self.list_ids): assert task_attribute in task, ( "The attribute " + task_attribute + " doesn't belong to the attributes of a " "gazu task object " ) item = TasksTabItem(self, nb_row, nb_col, task, task_attribute) self.setEditTriggers(QtWidgets.QAbstractItemView.NoEditTriggers) self.setItem(nb_row, nb_col, item) self.setRowHeight(nb_row, row_height) def reload(self): """ Delete the datas of the table, then fills with the new ones. """ self.clicked.disconnect() self.empty() self.deactivate_sort() self.create_header(self.tab_columns) self.tasks_to_do = utils_data.get_all_tasks_to_do() self.fill_tasks_tab(self.tasks_to_do) self.resize_to_content() self.activate_sort() self.color_tab() if self.selected_row: try: for col in range(self.columnCount()): self.item(self.selected_row, col).setSelected(True) except: try: for col in range(self.columnCount()): self.item(0, col).setSelected(True) except: pass self.clicked.connect(self.on_click) def empty(self): """ Empty the table. """ self.clear() self.setRowCount(0) def resize_to_content(self): """ Resize the table to its contents. """ self.resizeColumnsToContents() self.manage_size() def activate_sort(self): """ Activate the sorting of the table. """ self.setSortingEnabled(True) self.sortItems(0, QtCore.Qt.AscendingOrder) def deactivate_sort(self): """ Deactivate the sorting of the table. """ self.setSortingEnabled(False) def on_click(self): """ On table item click, call the initialization/update of the right panel. Does nothing if the row is the same. """ if ( not self.selected_row or self.currentItem().row() != self.selected_row ): self.selected_row = self.currentItem().row() self.window.setup_task_panel(self.currentItem().task) def color_tab(self): """ Paint the items of the table with alternate nuances of grey. """ for nb_row in range(self.rowCount()): row_color = ( QtGui.QColor(main_color) if nb_row % 2 == 0 else QtGui.QColor(table_alternate_color) ) for nb_col in range(self.columnCount() - 1): item = self.item(nb_row, nb_col) item_color = row_color if item.is_bg_colored: item_color = combine_colors( row_color, item.background().color() ) brush = QtGui.QBrush(item_color) item.setBackground(brush)
# Generated by Django 3.1.12 on 2021-06-28 20:03 from django.db import migrations, models import django.db.models.deletion import uuid class Migration(migrations.Migration): initial = True dependencies = [ ("extras", "0005_configcontext_device_types"), ("contenttypes", "0002_remove_content_type_name"), ] operations = [ migrations.CreateModel( name="Sync", fields=[ ( "id", models.UUIDField( default=uuid.uuid4, editable=False, primary_key=True, serialize=False, unique=True ), ), ("source", models.CharField(max_length=64)), ("target", models.CharField(max_length=64)), ("start_time", models.DateTimeField(blank=True, null=True)), ("dry_run", models.BooleanField(default=False)), ("diff", models.JSONField(blank=True)), ( "job_result", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to="extras.jobresult" ), ), ], options={ "ordering": ["start_time"], }, ), migrations.CreateModel( name="SyncLogEntry", fields=[ ( "id", models.UUIDField( default=uuid.uuid4, editable=False, primary_key=True, serialize=False, unique=True ), ), ("timestamp", models.DateTimeField(auto_now_add=True)), ("action", models.CharField(max_length=32)), ("status", models.CharField(max_length=32)), ("diff", models.JSONField(blank=True, null=True)), ("synced_object_id", models.UUIDField(blank=True, null=True)), ("object_repr", models.CharField(blank=True, default="", editable=False, max_length=200)), ("message", models.CharField(blank=True, max_length=511)), ( "sync", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="logs", related_query_name="log", to="nautobot_ssot.sync", ), ), ( "synced_object_type", models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to="contenttypes.contenttype", ), ), ], options={ "verbose_name_plural": "sync log entries", "ordering": ["sync", "timestamp"], }, ), ]
class CombineAction(object): @staticmethod def combine(action, action_to_combine): method_name = '_' + action.type if hasattr(CombineAction, method_name): return getattr(CombineAction, method_name)(action, action_to_combine) raise ValueError('Action type {0} is not supported'.format(action.type)) @staticmethod def _setVlan(action, action_to_combine): action.connectionParams.vlanIds += action_to_combine.connectionParams.vlanIds return action @staticmethod def _removeVlan(action, action_to_combine): action.connectorAttributes += action_to_combine.connectorAttributes return action
from __future__ import print_function import boto3 import json # needs to be generated required_steps = {} required_steps['sum'] = {'sq'} required_steps['count'] = {'sq'} required_steps['avg'] = {'sum', 'count'} required_steps['out'] = {'avg', 'sum', 'count'} # needs to be generated work_flow = { 'inputs': { }, 'outputs': { }, 'steps': { 'sq': { 'inputs': {'': ''}, 'outputs': {'out'}, 'sqs_arn': '' }, 'sum': { 'inputs': {'inp': '#sq/out'}, 'outputs': {'out'}, 'sqs_arn': '' }, 'count': { 'inputs': {'inp': '#sq/out'}, 'outputs': {'out'}, 'sqs_arn': '' }, 'avg': { 'inputs': {'sum': '#sum/out', 'count': '#count/out'}, 'outputs': {'out'}, 'sqs_arn': '' }, 'out': { 'inputs': {}, 'sqs_arn': '' } } } def lambda_handler(event, context): ''' ''' record = event['Records'] if record['eventName'] == 'MODIFY': newRecords = find_new_records(record['OldImage'], record['NewImage']) startList = find_steps_to_start(record['NewImage'], newRecords) start_docker_task(startList, record['NewImage']) def find_new_records(oldImage, newImage): ''' find the new records in the modified data entry oldImage: newImage ''' res = {} for key in newImage: if key not in oldImage: res[key] = newImage[key] return res def find_steps_to_start(newImage, newRecords): ''' find new steps that could start based on newest update. ''' res = [] for key in newRecords: for step in required_steps: if key in required_steps[step]: has_every_steps = True for x in required_steps[step]: has_every_steps = has_every_steps and x in newImage if has_every_steps is True: res.append(step) return res def start_docker_task(startList, newImage): for step in startList: info = {} for para in work_flow['steps'][step]['inputs']: tmp = work_flow['steps'][step]['inputs'][para].split('/') info[para] = newImage[tmp[0][1:]][tmp[1]] # start ecs container # addapt from previous lambda_run_task_template.py
from sqlalchemy import Column, Integer, String, ForeignKey, Text, or_, desc from app.models.base import Base, db from app.models.contest import Contest from app.models.problem import Problem from app.models.user import User from app.models.relationship.problem_contest import ProblemContestRel class Clarification(Base): __tablename__ = 'clarification' fields = ['id', 'who', 'to', 'problem_id_in_contest', 'content'] id = Column(Integer, primary_key=True, autoincrement=True) _who = Column('who', String(100), ForeignKey(User.username), nullable=False) _to = Column('to', String(100), ForeignKey(User.username)) contest_id = Column(Integer, ForeignKey(Contest.id)) problem_id = Column(Integer, ForeignKey(Problem.id)) content = Column(Text, default='') @property def who(self): return User.get_by_id(self._who) @who.setter def who(self, user): self._who = user.username @property def to(self): return User.get_by_id(self._to) @to.setter def to(self, user): self._to = user.username @property def problem_id_in_contest(self): if self.problem_id is None: return None return ProblemContestRel. \ get_by_problem_id_and_contest_id(self.contest_id, self.problem_id).problem_id_in_contest @classmethod def search_by_contest_id(cls, contest_id, page=1, page_size=20): res = db.session.query(Clarification).filter(Clarification.contest_id == contest_id) from flask_login import current_user if current_user.is_anonymous: res = res.filter(Clarification._to.is_(None)) elif not Contest.get_by_id(contest_id).is_admin(current_user): res = res.filter( or_( Clarification._to == current_user.username, Clarification._who == current_user.username, Clarification._to.is_(None) ) ) res = res.order_by(desc(Clarification.id)) data = { 'meta': { 'count': res.count(), 'page': page, 'page_size': page_size } } if page_size != -1: res = res.offset((page - 1) * page_size).limit(page_size) res = res.all() data['data'] = res return data
import click import logging.config import datetime from config import LOGGING, STUDOMATIC_URL from session import ScrapeSession from lxml import html from ics import Calendar, Event from pytz import timezone logging.config.dictConfig(LOGGING) logger = logging.getLogger('studomatic-scrapper') class Scrapper(object): schedule = [] viewState = None eventValidation = None viewStateGenerator = None def __init__(self, username, password, weeks, wait=None): logger.info('Started scrapper for user {}'.format(username)) self.schedule = [] self.today = datetime.date.today() self.last_monday = self.today - datetime.timedelta(days=self.today.weekday()) self.weeks = weeks self.html_parser = html.HTMLParser(encoding='windows-1250') self.session = ScrapeSession(wait=wait) self.init_session() self.username = username self.login(username, password) self.fetchSchedule() logger.info('Scraping finished') self.generateCalendar() logger.info('Generated {}.ics'.format(username)) def init_session(self): self.session.get(STUDOMATIC_URL) def fetchSchedule(self): monday = self.last_monday weekCnt = 1 weekScheduleFirstPage = self.session.get(STUDOMATIC_URL + '/Raspored.aspx') self.extractViewState(weekScheduleFirstPage) while weekCnt <= self.weeks: weekSchedulePage = self.session.post(STUDOMATIC_URL + '/Raspored.aspx', { '__EVENTTARGET': 'puiDatum', '__EVENTARGUMENT': '', '__LASTFOCUS': '', '__VIEWSTATE': self.viewState, '__VIEWSTATEGENERATOR': self.viewStateGenerator, '__EVENTVALIDATION': self.eventValidation, 'puiDatum': 'ponedjeljak, ' + monday.strftime('%d. %m. %Y.'), } ) weekSchedulePageHtml = html.fromstring(weekSchedulePage.content, parser=self.html_parser) classes = weekSchedulePageHtml.xpath('//table[@class="raspored"]//table/tr') for cls in classes: classInfo = cls.xpath('./td')[0].xpath('.//text()') classDate = str(classInfo[0]).strip() classTime = str(classInfo[1]).strip() classLocation = str(classInfo[2]).strip() classDescription = cls.xpath('./td')[1].xpath('.//text()') classProfessor = str(classDescription[0]).strip() className = str(classDescription[2]).strip() classType = str(classDescription[4]).strip() classAdditionalInfo = str(classDescription[5]).strip() classDuration = int(classAdditionalInfo[0]) self.schedule.append({ 'date': classDate, 'time': classTime, 'date_time': timezone('CET').localize( datetime.datetime.strptime('{} {}'.format(classDate, classTime), '%d.%m.%Y. %H:%M')), 'location': classLocation, 'professor': classProfessor, 'name': className, 'type': classType, 'additional_info': classAdditionalInfo, 'duration': classDuration }) self.extractViewState(weekSchedulePage) weekCnt += 1 monday += datetime.timedelta(days=7) def extractViewState(self, response): responseHtml = html.fromstring(response.content) if len(responseHtml.xpath('//input[@id="__VIEWSTATE"]/@value')) > 0: self.viewState = str(responseHtml.xpath('//input[@id="__VIEWSTATE"]/@value')[0]) else: self.viewState = None if len(responseHtml.xpath('//input[@id="__EVENTVALIDATION"]/@value')) > 0: self.eventValidation = str(responseHtml.xpath('//input[@id="__EVENTVALIDATION"]/@value')[0]) else: self.eventValidation = None if len(responseHtml.xpath('//input[@id="__VIEWSTATEGENERATOR"]/@value')) > 0: self.viewStateGenerator = str(responseHtml.xpath('//input[@id="__VIEWSTATEGENERATOR"]/@value')[0]) else: self.viewStateGenerator = None def login(self, username, password): loginPage = self.session.get(STUDOMATIC_URL) self.extractViewState(loginPage) startPage = self.session.post(STUDOMATIC_URL + 'Login.aspx?ReturnUrl=%2fvern-student%2fdefault.aspx', { 'login': username, 'password': password, 'butSubmit.x':'37', 'butSubmit.y':'22', 'butSubmit':'Prijava', '__EVENTVALIDATION': self.eventValidation, '__VIEWSTATEGENERATOR': self.viewStateGenerator, '__VIEWSTATE': self.viewState }) self.extractViewState(startPage) def generateCalendar(self): calendar = Calendar(creator=self.username) for event in self.schedule: evt = Event() evt.name = event['name'] evt.location = event['location'] evt.begin = event['date_time'] evt.duration = datetime.timedelta(minutes=45 * event['duration']) evt.description = '{}, {}'.format(event['professor'], event['type']) calendar.events.add(evt) self.calendar = calendar with open('{}.ics'.format(self.username), 'w') as f: f.writelines(calendar) @click.command() @click.option( '--username', prompt=True, help='Studomatic username') @click.option('--password', prompt=True, hide_input=True, help='Studomatic password') @click.option('--weeks', default=20, help='Number of weeks ahead to scrape. Default is 20.') @click.option('--wait', default=1, type=float, help='Minimum time in seconds to wait in between requests' ' for the session. Default is 1 second.') def cli(*args, **kwargs): Scrapper(*args, **kwargs) if __name__ == '__main__': cli()
import os import shutil import time from collections import OrderedDict from copy import deepcopy import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np from skimage import io from FfmpegWrapper.ffmpeg_wrapper import FfmpegWrapper from Tracker.tracks_data import VideoMotAssignment from Utils import multiprocess_worker as mp from Animator.utils import eprint class DemoCompiler: def __init__(self, sampled_fps, out_fps, video_root, output_dir): """ demo video generator :param sampled_fps: the frame sample rate :param out_fps: the output video frame rate :param video_root: :param output_dir: """ self.sampled_fps = sampled_fps self.out_fps = out_fps self.num_distinct_colors = 16 self.colors = np.random.rand(self.num_distinct_colors, 3) # RGB self.frame_name_format = '%06d.jpg' self.visualization_video_name = 'demo.mp4' containing_folder, vid_name = os.path.split(video_root) self.original_video_name = vid_name.split(".")[0] demo_file_name = f'{self.original_video_name}_demo.mp4' self.demo_path = os.path.join(output_dir, demo_file_name) def generate_demo(self, shot_to_frames_to_detections: VideoMotAssignment, shot_to_offline_mot: OrderedDict, working_dir: str) -> None: """ compile a demo video based on the tracking output :param working_dir: the visualization directory in which all frames will be rendered and saved :param shot_to_frames_to_detections: mapping a shot to its frames and a frame to its detections :param shot_to_offline_mot: shot name to tracks :return: None (void) """ start_time = time.time() plt.ioff() # clear the visualization folder if os.path.isdir(working_dir): shutil.rmtree(working_dir) os.mkdir(working_dir) video_level_frame_number = 0 frame_index_to_kwargs = [] for shot_name, frame_to_detections in shot_to_frames_to_detections.shot_mot.items(): for frame_name, frame_path_and_detections in frame_to_detections.frame_mot.items(): # making sure no resources are shared between processes! curr_frame_detections = deepcopy(frame_path_and_detections.detections) current_frame_path = frame_path_and_detections.frame_path current_shot_mot = OrderedDict({shot_name: deepcopy(shot_to_offline_mot[shot_name])}) curr_frame_args = dict(frame_str=str(video_level_frame_number), frame_path=current_frame_path, shot_name=shot_name, detections=curr_frame_detections, shot_to_offline_mot=current_shot_mot, visualization_dir=working_dir) frame_index_to_kwargs.append(curr_frame_args) video_level_frame_number += 1 # process visualization in parallel semaphore = mp.Semaphore(n_processes=10) semaphore.parallelize(frame_index_to_kwargs, self.demo_single_frame) plt.close('all') # stats duration = int(time.time()-start_time) print(f'done with demo frames at {video_level_frame_number/duration:.3f} FPS in total time of {duration}') # compile frames to video with ffmpeg try: FfmpegWrapper().compile_video(working_dir, self.sampled_fps, self.out_fps, self.demo_path) print(f'Saved the demo video into: {self.demo_path}') time.sleep(2) shutil.rmtree(working_dir) except PermissionError as e: eprint(f'Generating a demo video raised a PermissionError exception: {e}', e) eprint(f'Continue execution without deleting the visualization dir: {working_dir}') except Exception as e: eprint('Generating a demo video raised an exception.', e) raise e def demo_single_frame(self, frame_str: str, frame_path: str, shot_name: str, detections: list, shot_to_offline_mot: OrderedDict, visualization_dir: str): """ draw a single frame as part of the demo video :param frame_str: the string representation of the frame's index :param frame_path: the path to the frame :param shot_name: the shot str :param detections: the list of CharacterDetections from the json :param shot_to_offline_mot: the shot's MOT track ids :param visualization_dir: the output visualization repo :return: """ fig = plt.figure(frame_str) ax = fig.add_subplot(111, aspect='equal') im = io.imread(frame_path) ax.imshow(im) ax.set_title(f"{shot_name}, {frame_str}") for box in detections: if shot_name not in shot_to_offline_mot or box.Id not in shot_to_offline_mot[shot_name]: continue track_id = shot_to_offline_mot[shot_name][box.Id] # draw a rectangular bbox rect = patches.Rectangle((box.Rect.X, box.Rect.Y), box.Rect.Width, box.Rect.Height, fill=False, lw=2.5, ec=self.colors[track_id % self.num_distinct_colors, :]) ax.add_patch(rect) box_title = f'{track_id}, C:{box.Confidence:.2f}' ax.text(box.Rect.X, box.Rect.Y, box_title, horizontalalignment='left', verticalalignment='top', fontsize=12) fig.tight_layout() fig.savefig(os.path.join(visualization_dir, self.frame_name_format % int(frame_str))) fig.canvas.flush_events() ax.cla() plt.close(frame_str)
# python function def print '************** Function def Test Programs **************' def my_abs(x): if x>=0: return x else: return -x; print my_abs(-1) def empty_func(x): pass print empty_func(None) raw_input()
from temboo.Library.CloudMine.ObjectStorage.ObjectDelete import ObjectDelete, ObjectDeleteInputSet, ObjectDeleteResultSet, ObjectDeleteChoreographyExecution from temboo.Library.CloudMine.ObjectStorage.ObjectGet import ObjectGet, ObjectGetInputSet, ObjectGetResultSet, ObjectGetChoreographyExecution from temboo.Library.CloudMine.ObjectStorage.ObjectSearch import ObjectSearch, ObjectSearchInputSet, ObjectSearchResultSet, ObjectSearchChoreographyExecution from temboo.Library.CloudMine.ObjectStorage.ObjectSet import ObjectSet, ObjectSetInputSet, ObjectSetResultSet, ObjectSetChoreographyExecution from temboo.Library.CloudMine.ObjectStorage.ObjectUpdate import ObjectUpdate, ObjectUpdateInputSet, ObjectUpdateResultSet, ObjectUpdateChoreographyExecution
from django.conf.urls import patterns, include, url from .views import MapView from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^admin/', include(admin.site.urls)), url('^$', 'mobiletrans.views.index', { 'template_name':'index.html'}, name="index"), url('^about/$', 'mobiletrans.views.about', { 'template_name':'about.html'}, name="about"), url('^routemap/$', MapView.as_view( template_name='routemap.html'), name="routemap"), url('^transitheat/$', MapView.as_view( template_name='transitheat.html'), name="transitheat"), url('^kml/$', 'mobiletrans.mtlocation.views.renderkml', { }, name="mtlocation_renderkml"), url('^kml/longlat/(?P<long>[-\d.]+),(?P<lat>[-\d.]+)/$', 'mobiletrans.mtlocation.views.renderkml', { }, name="mtlocation_renderkml_longlat"), url('^kml/latlong/(?P<lat>[-\d.]+),(?P<long>[-\d.]+)/$', 'mobiletrans.mtlocation.views.renderkml', { }, name="mtlocation_renderkml_latlong"), url('^api/', include('mobiletrans.mtapi.urls')), )
from unittest.mock import patch import pytest from hydep.settings import SerpentSettings from hydep.serpent import SerpentRunner MAGIC_OMP_THREADS = 1234 @pytest.mark.serpent @patch.dict("os.environ", {"OMP_NUM_THREADS": str(MAGIC_OMP_THREADS)}) def test_runner(): r = SerpentRunner() assert r.executable is None assert r.omp == MAGIC_OMP_THREADS assert r.mpi == 1 r.executable = "sss2" assert r.executable == "sss2" r.omp = 20 assert r.omp == 20 r.mpi = 20 assert r.mpi == 20 with pytest.raises(TypeError): r.omp = 1.5 with pytest.raises(ValueError): r.omp = 0 with pytest.raises(ValueError): r.omp = -1 with pytest.raises(TypeError): r.mpi = 1.5 with pytest.raises(ValueError): r.mpi = 0 with pytest.raises(ValueError): r.mpi = -1 r = SerpentRunner(executable="sss2", omp=20, mpi=4) cmd = r.makeCommand() assert int(cmd[cmd.index("-omp") + 1]) == r.omp == 20 assert cmd[0].startswith("mpi") assert r.mpi == 4 for sub in cmd[1:cmd.index(r.executable)]: if str(r.mpi) == sub: break else: raise ValueError(f"Number of MPI tasks not found in {cmd}") @pytest.mark.serpent def test_config(): settings = SerpentSettings(executable="sss2", omp=10, mpi=4) runner = SerpentRunner() runner.configure(settings) assert runner.executable == "sss2" assert runner.omp == 10 assert runner.mpi == 4
# Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE file in the project root for full license information. import time, inspect, re from datetime import datetime class PerfBenchmark(object): PerfNameResults = {} ## <string, List<long>> ExecutionTimeList = [] # List<long> @staticmethod def RunPerfSuite(perfClass, args, sparkContext, sqlContext): for name, fun in inspect.getmembers(perfClass, lambda fun : inspect.isfunction(fun) and fun.__name__.startswith("Run")) : PerfBenchmark.ExecutionTimeList = [] runCount = int(args[1]) for k in range(runCount): print(str(datetime.now()) + " Starting perf suite : " + str(perfClass.__name__) + "." + str(name) + " times[" + str(k + 1) + "]-" + str(runCount)) fun(args, sparkContext, sqlContext) executionTimeListRef = [] for v in PerfBenchmark.ExecutionTimeList : executionTimeListRef.append(v) PerfBenchmark.PerfNameResults[name] = executionTimeListRef @staticmethod def ReportResult() : print(str(datetime.now()) + " ** Printing results of the perf run (python) **") allMedianCosts = {} for name in PerfBenchmark.PerfNameResults : perfResult = PerfBenchmark.PerfNameResults[name] # print(str(datetime.now()) + " " + str(result) + " time costs : " + ", ".join(("%.3f" % e) for e in perfResult)) # multiple enumeration happening - ignoring that for now precision = "%.0f" minimum = precision % min(perfResult) maximum = precision % max(perfResult) runCount = len(perfResult) avg = precision % (sum(perfResult) / runCount) median = precision % PerfBenchmark.GetMedian(perfResult) values = ", ".join((precision % e) for e in perfResult) print(str(datetime.now()) + " ** Execution time for " + str(name) + " in seconds: " + \ "Min=" + str(minimum) + ", Max=" + str(maximum) + ", Average=" + str(avg) + ", Median=" + str(median) + \ ". Run count=" + str(runCount) + ", Individual execution duration=[" + values + "]") allMedianCosts[name] = median print(str(datetime.now()) + " ** *** **") print(time.strftime('%Y-%m-%d %H:%M:%S ') + re.sub(r'(\w)\S*\s*', r'\1', time.strftime('%Z')) + " Python version: Run count = " + str(runCount) + ", all median time costs[" + str(len(allMedianCosts)) + "] : " + \ "; ".join((e + "=" + allMedianCosts[e]) for e in sorted(allMedianCosts))) @staticmethod def GetMedian(values) : itemCount = len(values) values.sort() if itemCount == 1: return values[0] if itemCount % 2 == 0: return (values[int(itemCount / 2)] + values[int(itemCount / 2 - 1)]) / 2 return values[int((itemCount - 1) / 2)]
from Collection import * def topNTime(collection): time = [] for i in collection: tmp = str() tmp += i.__getitem__("StartTime") +" - " + i.__getitem__("EndTime") time.append(tmp) counts = [] dell = [] for i in range(len(time)): count = 1 for j in range(len(time)): if i != j and time[i] == time[j]: count += 1 dell.append(j) counts.append(count) for i in range(len(dell)): time.pop(dell[i]) return time, counts def topNType(collection): type = [] for i in collection: type.append(i.__getitem__("Type")) counts = [] dell = [] for i in range(len(type)): count = 1 for j in range(len(type)): if i != j and type[i] == type[j]: count += 1 dell.append(j) counts.append(count) for i in range(len(dell)): type.pop(dell[i]) return type, counts if __name__ == "__main__": collection = readCollection("Input") print(collection) time, counts = topNTime(collection) for i in range(len(time)): print(time[i] + " " + str(counts[i])) with open("Out", "w") as file: for i in range(0, len(time)): file.write(time[i] + " " + str(counts[i]) + "\n") ell = inputElement() collection.append(ell) print("After append:") print(collection)
import autofit as af from autofit.mock.mock import MockSearch, MockSamples class MockResult(af.MockResult): def __init__( self, samples=None, instance=None, model=None, analysis=None, search=None, mask=None, model_image=None, max_log_likelihood_tracer=None, hyper_galaxy_image_path_dict=None, hyper_model_image=None, hyper_galaxy_visibilities_path_dict=None, hyper_model_visibilities=None, pixelization=None, positions=None, updated_positions=None, updated_positions_threshold=None, stochastic_log_evidences=None, use_as_hyper_dataset=False, ): super().__init__( samples=samples, instance=instance, model=model, analysis=analysis, search=search, ) self.previous_model = model self.gaussian_tuples = None self.mask = None self.positions = None self.mask = mask self.hyper_galaxy_image_path_dict = hyper_galaxy_image_path_dict self.hyper_model_image = hyper_model_image self.hyper_galaxy_visibilities_path_dict = hyper_galaxy_visibilities_path_dict self.hyper_model_visibilities = hyper_model_visibilities self.model_image = model_image self.unmasked_model_image = model_image self.max_log_likelihood_tracer = max_log_likelihood_tracer self.pixelization = pixelization self.use_as_hyper_dataset = use_as_hyper_dataset self.positions = positions self.updated_positions = ( updated_positions if updated_positions is not None else [] ) self.updated_positions_threshold = updated_positions_threshold self._stochastic_log_evidences = stochastic_log_evidences def stochastic_log_evidences(self): return self._stochastic_log_evidences @property def image_plane_multiple_image_positions_of_source_plane_centres(self): return self.updated_positions class MockResults(af.ResultsCollection): def __init__( self, samples=None, instance=None, model=None, analysis=None, search=None, mask=None, model_image=None, max_log_likelihood_tracer=None, hyper_galaxy_image_path_dict=None, hyper_model_image=None, hyper_galaxy_visibilities_path_dict=None, hyper_model_visibilities=None, pixelization=None, positions=None, updated_positions=None, updated_positions_threshold=None, stochastic_log_evidences=None, use_as_hyper_dataset=False, ): """ A collection of results from previous phases. Results can be obtained using an index or the name of the phase from whence they came. """ super().__init__() result = MockResult( samples=samples, instance=instance, model=model, analysis=analysis, search=search, mask=mask, model_image=model_image, max_log_likelihood_tracer=max_log_likelihood_tracer, hyper_galaxy_image_path_dict=hyper_galaxy_image_path_dict, hyper_model_image=hyper_model_image, hyper_galaxy_visibilities_path_dict=hyper_galaxy_visibilities_path_dict, hyper_model_visibilities=hyper_model_visibilities, pixelization=pixelization, positions=positions, updated_positions=updated_positions, updated_positions_threshold=updated_positions_threshold, stochastic_log_evidences=stochastic_log_evidences, use_as_hyper_dataset=use_as_hyper_dataset, ) self.__result_list = [result] @property def last(self): """ The result of the last phase """ if len(self.__result_list) > 0: return self.__result_list[-1] return None def __getitem__(self, item): """ Get the result of a previous phase by index Parameters ---------- item: int The index of the result Returns ------- result: Result The result of a previous phase """ return self.__result_list[item] def __len__(self): return len(self.__result_list)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ File to produce Gutzwiller coefficients Needs some installation from https://github.com/tcompa/BoseHubbardGutzwiller Credits: - https://github.com/tcompa/BoseHubbardGutzwiller Author: Patrick Huembeli """ import math import numpy # import matplotlib # matplotlib.use('Agg') import pylab as plt from lib_gutzwiller_simulated_annealing import Gutzwiller from lib_gutzwiller_simulated_annealing import SA_for_gutzwiller # Physical parameters z = 4 # number of neighbors nmax = 20 # cutoff on the occupation number per site U = 1.0 # on-site interaction coefficient mu = 0.5 # chemical potential V = 0.00 # nearest-neighbor interaction coefficient P = 0.0 # induced-tunneling coefficient make_2D_plot = False # Simulated-annealing parameters beta_min = 0.1 beta_max = 1e4 cooling_rate = 0.025 # 0.05 n_steps_per_T = 1000 quench_to_T_equal_to_0 = True n_steps_at_T_equal_to_0 = 10000 def produce_states(run, start, end, steps, J): mu_list = numpy.linspace(start, end, steps) coeff_out = [] labels = [] for mu in mu_list: G = Gutzwiller(nmax=nmax, U=U, zJ=J, mu=mu, zV=z*V, zP=z*P) G = SA_for_gutzwiller(G, beta_min=beta_min, beta_max=beta_max, cooling_rate=cooling_rate, n_steps_per_T=n_steps_per_T, quench_to_T_equal_to_0=quench_to_T_equal_to_0, n_steps_at_T_equal_to_0=n_steps_at_T_equal_to_0) coeff = [i for i in G.f_new] coeff_out.append(coeff) dens = G.compute_density() print('mu:', mu, 'density:', dens) if mu % 1 == 0: if abs(dens - mu) > 10**(-3): labels.append([1., 0.]) print('SF-Phase') else: labels.append([0., 1.]) print('Mott-Phase') else: if abs(dens - math.ceil(mu)) > 10**(-2): labels.append([1., 0.]) print('SF-Phase') else: labels.append([0., 1.]) print('Mott-Phase') numpy.save('J_'+str(J)+'labels_source'+str(run), labels) numpy.save('J_'+str(J)+'coeff_source'+str(run), coeff_out) J_list = numpy.linspace(0.003, 0.3, 100) start = 0.03 end = 3.0 steps = 100 run_list = numpy.linspace(1, 100, 100) for run in run_list: for J in J_list: produce_states(int(run), start, end, steps, J) if make_2D_plot: # make 2D plot for a 50x50 grid J_list = numpy.linspace(0.0, 0.3, 51) mu_list = numpy.linspace(0.0, 3.00, 51) mu_list = mu_list.tolist() meas_J = [] coeff_J = [] dens_der_J = [] for J in J_list: meas_mu = [] coeff_mu = [] density_list = [] dens_der_mu = [] for mu in mu_list: # Initialize Gutzwiller-class instance G = Gutzwiller(nmax=nmax, U=U, zJ=J, mu=mu, zV=z*V, zP=z*P) # Perform simulated-annealing optimization G = SA_for_gutzwiller(G, beta_min=beta_min, beta_max=beta_max, cooling_rate=cooling_rate, n_steps_per_T=n_steps_per_T, quench_to_T_equal_to_0=quench_to_T_equal_to_0, n_steps_at_T_equal_to_0=n_steps_at_T_equal_to_0) density = G.compute_density() density_list.append(density) if mu_list.index(mu) == 0: dens_derivative = 1.0 else: dens_derivative = density-density_list[-2] coeff = [i for i in G.f_new] coeff_mu.append(coeff) dens_der_mu.append(dens_derivative) meas_mu.append([J, mu, G.energy, density, dens_derivative]) meas_J.append(meas_mu) coeff_J.append(coeff_mu) dens_der_J.append(dens_der_mu) numpy.save('Gutzwiller_find_boundaries_params_2D_plot', meas_J) numpy.save('Gutzwiller_find_boundaries_coeffs_2D_plot', coeff_J) print('This is the screen with 2D plot') plt.clf() plt.pcolormesh(numpy.array(dens_der_J)) plt.savefig('states_plot')
#!/usr/bin/python # TODO: # * Give a useful error if the serial port disappears or has an error. # * Save and restore state. import itertools import logging import optparse import subprocess import sys import time import trollius import trollius as asyncio sys.path.append('../../legtool/') from legtool.async import trollius_trace from trollius import From, Return import PySide.QtCore as QtCore import PySide.QtGui as QtGui from legtool.async import asyncio_qt from legtool.async import asyncio_serial import ui_manager_main_window import ui_kiosk_window def _critical_task_done(task): if task.exception() is None: return if task._tb_logger: tb_text = task._tb_logger.tb else: tb_text = ['No traceback info'] e = task.exception() print '%s %s' % (e.__class__.__name__, e) print '\n'.join(tb_text) sys.exit(1) def CriticalTask(coro): task = asyncio.Task(coro) task.add_done_callback(_critical_task_done) return task class Mech(object): def __init__(self, item): self.ident = 0 self.name = 'unknown' self.hp = 0 self.item = item self.sound = '' def update(self): self.item.setText('%02X: %s: HP %d' % (self.ident, self.name, self.hp)) class HistoryItem(object): def __init__(self, ident, value): self.stamp = time.time() self.ident = ident self.value = value class State(object): def __init__(self): self.mechs = [] self.history = [] def add_history(self, item): assert isinstance(item, HistoryItem) self.history.append(item) def find(self, ident): for x in self.mechs: if x.ident == ident: return x return class Panel(object): parent = None layout = None header = None line = None history = None class KioskWindow(QtGui.QDialog): def __init__(self, state, parent=None): super(KioskWindow, self).__init__(parent) self.state = state self.ui = ui_kiosk_window.Ui_KioskWindow() self.ui.setupUi(self) self.layout = QtGui.QHBoxLayout(self.ui.widget) palette = QtGui.QPalette(self.palette()) palette.setColor(QtGui.QPalette.Background, QtCore.Qt.white) self.ui.widget.setAutoFillBackground(True) self.ui.widget.setPalette(palette) self.panels = [] def update(self): while len(self.panels) > len(self.state.mechs): self.layout.removeWidget(self.panels[-1].parent) del self.panels[-1] while self.layout.count() < len(self.state.mechs): panel = Panel() panel.parent = QtGui.QWidget(self.ui.widget) panel.layout = QtGui.QVBoxLayout(panel.parent) panel.header = QtGui.QLabel(panel.parent) panel.header.setFont(QtGui.QFont("Helvetica", 40, 3)) panel.layout.addWidget(panel.header) panel.line = QtGui.QFrame(panel.parent) panel.line.setFrameShape(QtGui.QFrame.HLine) panel.line.setFrameShadow(QtGui.QFrame.Sunken) panel.layout.addWidget(panel.line) panel.history = QtGui.QLabel(panel.parent) panel.history.setAlignment(QtCore.Qt.AlignLeft | QtCore.Qt.AlignTop) panel.layout.addWidget(panel.history) panel.layout.setStretch(2, 1) self.layout.addWidget(panel.parent) self.panels.append(panel) assert len(self.panels) == len(self.state.mechs) for panel, mech in zip(self.panels, self.state.mechs): panel.header.setText( '%s (%02X): %d' % (mech.name, mech.ident, mech.hp)) text = '' for item in itertools.islice( [x for x in reversed(self.state.history) if x.ident == mech.ident], 10): text += '%s: %02X: %s\n' % ( time.asctime(time.localtime(item.stamp)), item.ident, item.value) panel.history.setText(text) class ManagerMainWindow(QtGui.QMainWindow): def __init__(self, parent=None): super(ManagerMainWindow, self).__init__(parent) self.ui = ui_manager_main_window.Ui_ManagerMainWindow() self.ui.setupUi(self) self.ui.mechAddButton.clicked.connect( self.handle_mech_add_button) self.ui.mechRemoveButton.clicked.connect( self.handle_mech_remove_button) self.ui.mechListWidget.currentRowChanged.connect( self.handle_mech_current_row) self.ui.propertiesIdEdit.editingFinished.connect( self.handle_mech_properties) self.ui.propertiesNameEdit.editingFinished.connect( self.handle_mech_properties) self.ui.propertiesHpEdit.editingFinished.connect( self.handle_mech_properties) self.ui.propertiesAddHpButton.clicked.connect( self.handle_add_hp_button) self.ui.propertiesRemoveHpButton.clicked.connect( self.handle_remove_hp_button) self.ui.propertiesSetHpButton.clicked.connect( self.handle_set_hp_button) self.ui.propertiesSoundButton.clicked.connect( self.handle_sound_button) self.ui.openKioskButton.clicked.connect( self.handle_open_kiosk_button) self.state = State() self.kiosk = KioskWindow(self.state) def open_serial(self, serial): self.serial = asyncio_serial.AsyncioSerial(serial, baudrate=38400) CriticalTask(self._read_serial()) @asyncio.coroutine def _read(self): value = yield From(self.serial.read(1)) raise Return(ord(value)) @asyncio.coroutine def _read_serial(self): with (yield From(self.serial.read_lock)): while True: data = yield From(self._read()) if data != 0x55: continue ident = yield From(self._read()) identcsum = yield From(self._read()) panel = yield From(self._read()) if identcsum != 0xff - ident: print 'malformed packet %02X %02X %02X %02X' % ( 0x55, ident, identcsum, panel) continue self._transponder_hit(ident, panel) def _transponder_hit(self, ident, panel): mech = self.state.find(ident) if mech is None: self.handle_mech_add_button() mech = self.state.mechs[-1] mech.ident = ident newhp = mech.hp - 1 self._add_history(HistoryItem( mech.ident, '(%s) panel %d HP %d -> %d' % ( mech.name, panel, mech.hp, newhp))) mech.hp = newhp if mech.sound != '': subprocess.check_call( 'mplayer %s </dev/null >/dev/null &' % mech.sound, shell=True) QtGui.QSound.play(mech.sound) mech.update() self.handle_mech_current_row() self.kiosk.update() def handle_mech_add_button(self): widget = self.ui.mechListWidget widget.addItem('') item = widget.item(widget.count() - 1) self.state.mechs.append(Mech(item)) self.state.mechs[-1].update() widget.setCurrentRow(widget.count() - 1) def handle_mech_remove_button(self): mech = self._current_mech() if mech is None: return result = QtGui.QMessageBox.question( self, 'Remove Mech', 'Confirm removing mech %02X (%s)' % (mech.ident, mech.name), QtGui.QMessageBox.Yes | QtGui.QMessageBox.No) if result == QtGui.QMessageBox.No: return index = self.state.mechs.index(mech) del self.state.mechs[index] self.ui.mechListWidget.takeItem(index) self.handle_mech_current_row() self.kiosk.update() def handle_mech_current_row(self): row = self.ui.mechListWidget.currentRow() if row < 0 or row >= len(self.state.mechs): return mech = self.state.mechs[row] self.ui.propertiesIdEdit.setText('%02X' % mech.ident) self.ui.propertiesNameEdit.setText(mech.name) self.ui.propertiesHpEdit.setText('%d' % mech.hp) self.ui.propertiesSoundEdit.setText(mech.sound) def _current_mech(self): row = self.ui.mechListWidget.currentRow() if row < 0: return if row >= len(self.state.mechs): return return self.state.mechs[row] def _add_history(self, item): self.state.add_history(item) self.update_history() def handle_mech_properties(self): mech = self._current_mech() if mech is None: return mech.ident = int(self.ui.propertiesIdEdit.text(), 16) mech.name = self.ui.propertiesNameEdit.text() if not self.ui.propertiesHpEdit.isReadOnly(): newhp = int(self.ui.propertiesHpEdit.text()) self._add_history(HistoryItem( mech.ident, '(%s) manual HP %d -> %d' % ( mech.name, mech.hp, newhp))) mech.hp = newhp self.ui.propertiesHpEdit.setReadOnly(True) mech.update() self.kiosk.update() def handle_add_hp_button(self): self._change_hp(1) def handle_remove_hp_button(self): self._change_hp(-1) def _change_hp(self, delta): mech = self._current_mech() if mech is None: return newhp = mech.hp + delta self._add_history( HistoryItem(mech.ident, '(%s) manual HP %d -> %d' % ( mech.name, mech.hp, newhp))) mech.hp = newhp mech.update() self.handle_mech_current_row() self.kiosk.update() def handle_set_hp_button(self): mech = self._current_mech() if mech is None: return self.ui.propertiesHpEdit.setReadOnly(False) def handle_sound_button(self): mech = self._current_mech() if mech is None: return result = QtGui.QFileDialog.getOpenFileName( self, 'Select sound', '', 'Sounds (*.wav *.mp3 *.ogg)') if result != None: result = result[0] else: return mech.sound = result self.handle_mech_current_row() def update_history(self): text = '' for item in itertools.islice(reversed(self.state.history), 20): text += '%s: %02X: %s\n' % ( time.asctime(time.localtime(item.stamp)), item.ident, item.value) self.ui.historyEdit.setPlainText(text) def handle_open_kiosk_button(self): self.kiosk.show() def main(): logging.basicConfig(level=logging.WARN, stream=sys.stdout) asyncio.set_event_loop_policy(asyncio_qt.QtEventLoopPolicy()) app = QtGui.QApplication(sys.argv) app.setApplicationName('mjscore_manager') parser = optparse.OptionParser() parser.add_option('-s', '--serial', help='serial port to use') options, args = parser.parse_args() assert len(args) == 0 manager = ManagerMainWindow() if options.serial: manager.open_serial(options.serial) manager.show() asyncio.get_event_loop().run_forever() if __name__ == '__main__': main()
import numpy as np import pandas as pd from orion.primitives.timeseries_anomalies import _find_sequences from orion.evaluation.utils import from_list_points_timestamps def format_anomalies(y_hat, index, interval=21600, anomaly_padding=50): """Format binary predictions into anomalous sequences. Args: y_hat (ndarray): Array of predictions. index (ndarray): Array of indices of the windows. threshold (int): Space between indices. anomaly_padding (int): Optional. Number of errors before and after a found anomaly that are added to the anomalous sequence. If not given, 50 is used. Returns: ndarray: Array containing start-index, end-index for each anomalous sequence that was found. """ gap = interval + 2 * anomaly_padding anomalies = from_list_points_timestamps(index[y_hat.astype(bool)], gap=gap) return np.asarray(anomalies)
#!/usr/bin/python # -*- coding: utf-8 -*- import csv import sys import getopt import array import xml.etree.cElementTree as ET import subprocess # from abc import ABCMeta # class CartelTemplate: # __metaclass__ = ABCMeta # @abstractmethod # def width: raise NotImplementedError # @abstractmethod # def height: raise NotImplementedError # class BaseCartelDescription: # __metaclass__ = ABCMeta # @abstractmethod # def render(self, template): raise NotImplementedError avenirStyle = "font-style:normal;font-variant:normal;font-weight:500;font-stretch:normal;line-height:125%;font-family:Avenir;-inkscape-font-specification:'Avenir, Medium';writing-mode:lr-tb;" avenirStyleLeft = avenirStyle+"text-anchor:start;text-align:start;" avenirStyleRight = avenirStyle+"text-anchor:end;text-align:start;" avenirStyleJustified = avenirStyle+"text-anchor:end;text-align:justify;" format_config = { "1": {"w":20, "h":15}, "2": {"w":10, "h":6} } unit = "cm" maxLengthBottomLine = 55 class CartelContent: def __init__(self, author, title, date, description, technique, dimensions, collection, template): self._template = template self._author = author self._title = title self._date = date self._description = description self._technique = technique self._dimensions = dimensions self._collection = collection def size(self): return format_config[self._template] def widthWithUnit(self): return str(format_config[self._template]["w"]) + unit def heightWithUnit(self): return str(format_config[self._template]["h"]) + unit def render(self, rootXML, x, y): cartel = ET.SubElement(rootXML, "svg", {"height":self.heightWithUnit(), "width":self.widthWithUnit(), "x":str(x)+unit, "y":str(y)+unit}) if self._template == "1": image = ET.SubElement(cartel, "image", {"height":self.heightWithUnit(), "width":self.widthWithUnit(), "x":"0cm", "y":"0cm", "xlink:href":"img/vermont_big_hq.jpg"}) author = ET.SubElement(cartel, "text", {"style":avenirStyleLeft + "font-size:22px", "x":"2cm", "y":"2cm"}).text = self._author.decode('utf-8') titleBox = ET.SubElement(cartel, "flowRoot") titleBoxRegion = ET.SubElement(titleBox, "flowRegion") titleBoxRegionShape = ET.SubElement(titleBoxRegion, "rect", {"width":"17cm", "height":"4cm", "x":"2cm", "y":"2.8cm"}) title = ET.SubElement(titleBox, "flowPara", { "style":avenirStyleLeft + "font-size:40px" }).text = self._title.decode('utf-8') date = ET.SubElement(titleBox, "flowPara", { "style":avenirStyleLeft + "font-size:23px" }).text = self._date.decode('utf-8') descBox = ET.SubElement(cartel, "flowRoot") descBoxRegion = ET.SubElement(descBox, "flowRegion") descBoxRegionShape = ET.SubElement(descBoxRegion, "rect", {"width":"17cm", "height":"5.5cm", "x":"2cm", "y":"7.5cm"}) text = ET.SubElement(descBox, "flowPara", { "style":avenirStyleJustified + "font-size:21px" }).text = self._description.decode('utf-8') if len(self._technique) + len(self._dimensions) + len(self._collection) > maxLengthBottomLine: technique = ET.SubElement(cartel, "text", {"style":avenirStyleLeft + "font-size:22px", "x":"2cm", "y":"12.7cm"}).text = self._technique.decode('utf-8') dimensions = ET.SubElement(cartel, "text", {"style":avenirStyleLeft + "font-size:22px", "x":"2cm", "y":"13.5cm"}).text = self._dimensions.decode('utf-8') else: media = ET.SubElement(cartel, "text", {"style":avenirStyleLeft + "font-size:22px", "x":"2cm", "y":"13.5cm"}).text = str.join(", ", filter(None, [self._technique, self._dimensions])).decode('utf-8') collection = ET.SubElement(cartel, "text", {"style":avenirStyleRight + "font-size:22px", "x":"19cm", "y":"13.5cm"}).text = self._collection.decode('utf-8') elif self._template == "2": cartel = ET.SubElement(rootXML, "svg", {"height":self.heightWithUnit(), "width":self.widthWithUnit(), "x":str(x)+unit, "y":str(y)+unit}) image = ET.SubElement(cartel, "image", {"height":self.heightWithUnit(), "width":self.widthWithUnit(), "x":"0cm", "y":"0cm", "xlink:href":"img/vermont_small_hq.jpg"}) author = ET.SubElement(cartel, "text", {"style":avenirStyleLeft + "font-size:15px", "x":"1cm", "y":"1.2cm"}).text = self._author.decode('utf-8') titleBox = ET.SubElement(cartel, "flowRoot") titleBoxRegion = ET.SubElement(titleBox, "flowRegion") titleBoxRegionShape = ET.SubElement(titleBoxRegion, "rect", {"width":"8.5cm", "height":"2.5cm", "x":"1cm", "y":"1.8cm"}) title = ET.SubElement(titleBox, "flowPara", { "style":avenirStyleLeft + "font-size:24px" }).text = self._title.decode('utf-8') date = ET.SubElement(titleBox, "flowPara", { "style":avenirStyleLeft + "font-size:17px" }).text = self._date.decode('utf-8') media = ET.SubElement(cartel, "text", {"style":avenirStyleRight + "font-size:12px", "x":"9.6cm", "y":"5cm"}).text = self._technique.decode('utf-8') collection = ET.SubElement(cartel, "text", {"style":avenirStyleRight + "font-size:12px", "x":"9.6cm", "y":"5.5cm"}).text = self._collection.decode('utf-8') cornerTopLeft = ET.SubElement(cartel, "path", {"style":"fill:none;fill-rule:evenodd;stroke:#696866;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1", "d":"M 20 0 L 0 0 L 0 20"}) class FinalDocument: def __init__(self, documents, width = 100, unit = "cm"): self._documents = documents self._width = width self._x = 0 self._y = 0 self.initSVG() # compute document limits def initSVG(self): x = 0 y = 0 for document in filter(lambda x : x._template == "1", self._documents): if(x + document.size()["w"] > self._width): # goto new line y += document.size()["h"] # reset x origin x = 0 x += document.size()["w"] else: x += document.size()["w"] # go to next line if(x != 0): y += format_config["1"]["h"] x = 0 for document in filter(lambda x : x._template == "2", self._documents): if(x + document.size()["w"] > self._width): # goto new line y += document.size()["h"] # reset x origin x = 0 x += document.size()["w"] else: x += document.size()["w"] # go to next line if(x != 0): y += format_config["2"]["h"] x = 0 self._svgContainer = ET.Element("svg", {"version":"1.2", "xmlns:xlink":"http://www.w3.org/1999/xlink", "xmlns":"http://www.w3.org/2000/svg", "height":str(y)+unit, "width":str(self._width)+unit}) colorProfileDef = ET.SubElement(self._svgContainer, "defs") colorProfile = ET.SubElement(colorProfileDef, "color-profile", { "name":"FOGRA39L-Coated", "xlink:href":"/usr/share/color/icc/colord/FOGRA39L_coated.icc" }) # render global document def render(self, filePath = "document.svg"): # insert first template for document in filter(lambda x : x._template == "1", self._documents): if(self._x + document.size()["w"] > self._width): # goto new line self._y += document.size()["h"] # reset x origin self._x = 0 document.render(self._svgContainer, self._x, self._y) # self._x += document.size()["w"] else: document.render(self._svgContainer, self._x, self._y) self._x += document.size()["w"] # go to nex line if(self._x != 0): self._y += format_config["1"]["h"] self._x = 0 # insert other template for document in filter(lambda x : x._template == "2", self._documents): if(self._x + document.size()["w"] > self._width): # goto new line self._y += document.size()["h"] # reset x origin self._x = 0 document.render(self._svgContainer, self._x, self._y) # self._x += document.size()["w"] else: document.render(self._svgContainer, self._x, self._y) self._x += document.size()["w"] tree = ET.ElementTree(self._svgContainer) tree.write(filePath) def loadCartelDescriptions(csvfile): result = [] with open(csvfile, 'rb') as csvcontent: spamreader = csv.reader(csvcontent, delimiter='|', quoting=csv.QUOTE_NONE) for row in spamreader: if row and len(row) == 8: auteur, titre, date, technique, dimensions, collection, template, description = row result.append(CartelContent(auteur, titre, date, description, technique, dimensions, collection, template)) else: print "Ignore line" + str(row) return result def help(): print 'Command line:' print 'cartel-generation.py -i <input-csv-file> [-s <intermediate-svg-file> -o <output-pdf-file>]' print "Generate a svg (then a pdf if required) from a csv description." print " " print "Options" print " -i, --icsv=INPUTFILE input CSV file. Separator: \"|\", no quotes arround each cell." print " -s, --svg=INPUTFILE output SVG file (default: document.svg)" print " -o, --opdf=INPUTFILE output PDF file" def main(argv): inputcsvfile = '' outputsvgfile = 'document.svg' outputpdffile = '' try: opts, args = getopt.getopt(argv,"hi:s:o:",["icsv=","svg=", "opdf="]) except getopt.GetoptError: print "Error while reading parameters. Abort." help() sys.exit(2) for opt, arg in opts: if opt == '-h': help() sys.exit() elif opt in ("-i", "--icsv"): inputcsvfile = arg elif opt in ("-s", "--svg"): outputsvgfile = arg elif opt in ("-o", "--odf"): outputpdffile = arg if inputcsvfile == "": print "You have to give an input csv file." print " " help() sys.exit(3) print 'Loading input csv file "'+inputcsvfile+'"' try: cartelDescriptions = loadCartelDescriptions(inputcsvfile) except ValueError as e: print "Error while reading csv file:", e print "Abort" sys.exit(4) except: print "Error while reading csv file. Abort." sys.exit(4) print "Initialize final document" finalDocument = FinalDocument(cartelDescriptions) print 'Save final document as "'+outputsvgfile+'"' finalDocument.render(outputsvgfile) if outputpdffile: # export in PDF the generated SVG, using the inkscape command line # choose 300dpi and convert text to paths print 'Save final document as "'+outputpdffile+'"' subprocess.call(["inkscape", "-A", outputpdffile, outputsvgfile, "-d", "300", "-T"]) if __name__ == "__main__": main(sys.argv[1:])
import numpy as np import random def blobs( width=8, height=8, k=3, min_extend=0, max_extend=1, random_seed=None): """Generates a 1 to k number of blobs on a 2D grid Args: width: width of grid generated height: height of grid generated k: number of random points min_extend: min cells to recursively extend for each neighbor of k max_extend: max cells to recursively extend for each neighbor of k random_seed: not used Returns: grid, count: count of blobs """ grid = np.zeros((width, height), dtype=np.uint8) def getNeighbours(coordinates, visited): """Return the neighbors of coordinates, that are not in visited (taboo set) The neighbors are represented with the pairs of their (row, column) coordinates. Args: coordinates: set of (row, column) coordinate pairs visited: a taboo set Returns: neighbors: list of (r, c) pairs that are neighbors to coordinates """ neighbors = [] for r, c in coordinates: for dr, dc in [(1, 0), (0, 1), (-1, 0), (0, -1)]: rn, cn = r + dr, c + dc if ((0 <= rn < width) and (0 <= cn < height) and grid[rn, cn] != 1 and (rn, cn) not in visited): neighbors.append((rn, cn)) return neighbors filled = set() # STEP 1: take k random points for i in range(k): rc = random.randint(0, width - 1) rr = random.randint(0, height - 1) cell = (rr, rc) grid[cell] = 1 filled.add(cell) neighbours = getNeighbours(filled, filled) # STEP 2: extend recursively in min to max distance randomly # from every k point l = random.randint(min_extend, max_extend) while l > 0: l -= 1 for i in range(len(neighbours)): r = random.randint(0, len(neighbours) - 1) neighbor = neighbours[r] if neighbor not in filled: grid[neighbor] += 1 filled.add(neighbor) neighbours = getNeighbours(filled, filled) visited = set() def get_blob_size(i, j): """Add 1 for every neighbor that is in filled, else return 0""" if 0 < i > width or 0 < j > height or (i, j) not in filled or (i, j) in visited: return 0 visited.add((i, j)) size = 1 size += get_blob_size(i + 1, j) size += get_blob_size(i - 1, j) size += get_blob_size(i, j + 1) size += get_blob_size(i, j - 1) return size # STEP 3: count blobs count = 0 for r, c in filled: if (get_blob_size(r, c) > 0): count += 1 return grid, count def blob_generator(*args, **kwargs): while True: yield blobs(*args, **kwargs) if __name__ == "__main__": b = blob_generator(14, 14, k=4, max_extend=2) grid, count = next(b) print (grid, count)
# -*- coding: utf-8 -*- """ A class for FFT filtering General-mode spectroscopic imaging data as reported in: [Rapid mapping of polarization switching through complete information acquisition](http://www.nature.com/articles/ncomms13290) Created on Tue Nov 07 11:48:53 2017 @author: Suhas Somnath """ from __future__ import division, print_function, absolute_import, unicode_literals import h5py import numpy as np from collections import Iterable from pyUSID.processing.process import Process from pyUSID.processing.comp_utils import parallel_compute from pyUSID.io.hdf_utils import create_results_group, write_main_dataset, write_simple_attrs, create_empty_dataset, \ write_ind_val_dsets from pyUSID.io.write_utils import Dimension from .fft import get_noise_floor, are_compatible_filters, build_composite_freq_filter from .gmode_utils import test_filter # TODO: correct implementation of num_pix class SignalFilter(Process): def __init__(self, h5_main, frequency_filters=None, noise_threshold=None, write_filtered=True, write_condensed=False, num_pix=1, phase_rad=0, **kwargs): """ Filters the entire h5 dataset with the given filtering parameters. Parameters ---------- h5_main : h5py.Dataset object Dataset to process frequency_filters : (Optional) single or list of pycroscopy.fft.FrequencyFilter objects Frequency (vertical) filters to apply to signal noise_threshold : (Optional) float. Default - None Noise tolerance to apply to data. Value must be within (0, 1) write_filtered : (Optional) bool. Default - True Whether or not to write the filtered data to file write_condensed : Optional) bool. Default - False Whether or not to write the condensed data in frequency space to file. Use this for datasets that are very large but sparse in frequency space. num_pix : (Optional) uint. Default - 1 Number of pixels to use for filtering. More pixels means a lower noise floor and the ability to pick up weaker signals. Use only if absolutely necessary. This value must be a divisor of the number of pixels in the dataset phase_rad : (Optional). float Degrees by which the output is rotated with respect to the input to compensate for phase lag. This feature has NOT yet been implemented. kwargs : (Optional). dictionary Please see Process class for additional inputs """ super(SignalFilter, self).__init__(h5_main, 'FFT_Filtering', **kwargs) if frequency_filters is None and noise_threshold is None: raise ValueError('Need to specify at least some noise thresholding / frequency filter') if noise_threshold is not None: if noise_threshold >= 1 or noise_threshold <= 0: raise ValueError('Noise threshold must be within (0 1)') self.composite_filter = 1 if frequency_filters is not None: if not isinstance(frequency_filters, Iterable): frequency_filters = [frequency_filters] if not are_compatible_filters(frequency_filters): raise ValueError('frequency filters must be a single or list of FrequencyFilter objects') self.composite_filter = build_composite_freq_filter(frequency_filters) else: write_condensed = False if write_filtered is False and write_condensed is False: raise ValueError('You need to write the filtered and/or the condensed dataset to the file') num_effective_pix = h5_main.shape[0] * 1.0 / num_pix if num_effective_pix % 1 > 0: raise ValueError('Number of pixels not divisible by the number of pixels to use for FFT filter') self.num_effective_pix = int(num_effective_pix) self.phase_rad = phase_rad self.noise_threshold = noise_threshold self.frequency_filters = frequency_filters self.write_filtered = write_filtered self.write_condensed = write_condensed """ Remember that the default number of pixels corresponds to only the raw data that can be held in memory In the case of signal filtering, the datasets that will occupy space are: 1. Raw, 2. filtered (real + freq space copies), 3. Condensed (substantially lesser space) The actual scaling of memory depends on options: """ scaling_factor = 1 + 2 * self.write_filtered + 0.25 * self.write_condensed self._max_pos_per_read = int(self._max_pos_per_read / scaling_factor) if self.verbose and self.mpi_rank == 0: print('Allowed to read {} pixels per chunk'.format(self._max_pos_per_read)) self.parms_dict = dict() if self.frequency_filters is not None: for filter in self.frequency_filters: self.parms_dict.update(filter.get_parms()) if self.noise_threshold is not None: self.parms_dict['noise_threshold'] = self.noise_threshold self.parms_dict['num_pix'] = self.num_effective_pix self.duplicate_h5_groups, self.partial_h5_groups = self._check_for_duplicates() self.data = None self.filtered_data = None self.condensed_data = None self.noise_floors = None self.h5_filtered = None self.h5_condensed = None self.h5_noise_floors = None def test(self, pix_ind=None, excit_wfm=None, **kwargs): """ Tests the signal filter on a single pixel (randomly chosen unless manually specified) worth of data. Parameters ---------- pix_ind : int, optional. default = random Index of the pixel whose data will be used for inference excit_wfm : array-like, optional. default = None Waveform against which the raw and filtered signals will be plotted. This waveform can be a fraction of the length of a single pixel's data. For example, in the case of G-mode, where a single scan line is yet to be broken down into pixels, the excitation waveform for a single pixel can br provided to automatically break the raw and filtered responses also into chunks of the same size. Returns ------- fig, axes """ if self.mpi_rank > 0: return if pix_ind is None: pix_ind = np.random.randint(0, high=self.h5_main.shape[0]) return test_filter(self.h5_main[pix_ind], frequency_filters=self.frequency_filters, excit_wfm=excit_wfm, noise_threshold=self.noise_threshold, plot_title='Pos #' + str(pix_ind), show_plots=True, **kwargs) def _create_results_datasets(self): """ Creates all the datasets necessary for holding all parameters + data. """ self.h5_results_grp = create_results_group(self.h5_main, self.process_name) self.parms_dict.update({'last_pixel': 0, 'algorithm': 'pycroscopy_SignalFilter'}) write_simple_attrs(self.h5_results_grp, self.parms_dict) assert isinstance(self.h5_results_grp, h5py.Group) if isinstance(self.composite_filter, np.ndarray): h5_comp_filt = self.h5_results_grp.create_dataset('Composite_Filter', data=np.float32(self.composite_filter)) if self.verbose and self.mpi_rank == 0: print('Rank {} - Finished creating the Composite_Filter dataset'.format(self.mpi_rank)) # First create the position datsets if the new indices are smaller... if self.num_effective_pix != self.h5_main.shape[0]: # TODO: Do this part correctly. See past solution: """ # need to make new position datasets by taking every n'th index / value: new_pos_vals = np.atleast_2d(h5_pos_vals[slice(0, None, self.num_effective_pix), :]) pos_descriptor = [] for name, units, leng in zip(h5_pos_inds.attrs['labels'], h5_pos_inds.attrs['units'], [int(np.unique(h5_pos_inds[:, dim_ind]).size / self.num_effective_pix) for dim_ind in range(h5_pos_inds.shape[1])]): pos_descriptor.append(Dimension(name, units, np.arange(leng))) ds_pos_inds, ds_pos_vals = build_ind_val_dsets(pos_descriptor, is_spectral=False, verbose=self.verbose) h5_pos_vals.data = np.atleast_2d(new_pos_vals) # The data generated above varies linearly. Override. """ h5_pos_inds_new, h5_pos_vals_new = write_ind_val_dsets(self.h5_results_grp, Dimension('pixel', 'a.u.', self.num_effective_pix), is_spectral=False, verbose=self.verbose and self.mpi_rank==0) if self.verbose and self.mpi_rank == 0: print('Rank {} - Created the new position ancillary dataset'.format(self.mpi_rank)) else: h5_pos_inds_new = self.h5_main.h5_pos_inds h5_pos_vals_new = self.h5_main.h5_pos_vals if self.verbose and self.mpi_rank == 0: print('Rank {} - Reusing source datasets position datasets'.format(self.mpi_rank)) if self.noise_threshold is not None: self.h5_noise_floors = write_main_dataset(self.h5_results_grp, (self.num_effective_pix, 1), 'Noise_Floors', 'Noise', 'a.u.', None, Dimension('arb', '', [1]), dtype=np.float32, aux_spec_prefix='Noise_Spec_', h5_pos_inds=h5_pos_inds_new, h5_pos_vals=h5_pos_vals_new, verbose=self.verbose and self.mpi_rank == 0) if self.verbose and self.mpi_rank == 0: print('Rank {} - Finished creating the Noise_Floors dataset'.format(self.mpi_rank)) if self.write_filtered: # Filtered data is identical to Main_Data in every way - just a duplicate self.h5_filtered = create_empty_dataset(self.h5_main, self.h5_main.dtype, 'Filtered_Data', h5_group=self.h5_results_grp) if self.verbose and self.mpi_rank == 0: print('Rank {} - Finished creating the Filtered dataset'.format(self.mpi_rank)) self.hot_inds = None if self.write_condensed: self.hot_inds = np.where(self.composite_filter > 0)[0] self.hot_inds = np.uint(self.hot_inds[int(0.5 * len(self.hot_inds)):]) # only need to keep half the data condensed_spec = Dimension('hot_frequencies', '', int(0.5 * len(self.hot_inds))) self.h5_condensed = write_main_dataset(self.h5_results_grp, (self.num_effective_pix, len(self.hot_inds)), 'Condensed_Data', 'Complex', 'a. u.', None, condensed_spec, h5_pos_inds=h5_pos_inds_new, h5_pos_vals=h5_pos_vals_new, dtype=np.complex, verbose=self.verbose and self.mpi_rank == 0) if self.verbose and self.mpi_rank == 0: print('Rank {} - Finished creating the Condensed dataset'.format(self.mpi_rank)) if self.mpi_size > 1: self.mpi_comm.Barrier() self.h5_main.file.flush() def _get_existing_datasets(self): """ Extracts references to the existing datasets that hold the results """ if self.write_filtered: self.h5_filtered = self.h5_results_grp['Filtered_Data'] if self.write_condensed: self.h5_condensed = self.h5_results_grp['Condensed_Data'] if self.noise_threshold is not None: self.h5_noise_floors = self.h5_results_grp['Noise_Floors'] def _write_results_chunk(self): """ Writes data chunks back to the file """ # Get access to the private variable: pos_in_batch = self._get_pixels_in_current_batch() if self.write_condensed: self.h5_condensed[pos_in_batch, :] = self.condensed_data if self.noise_threshold is not None: self.h5_noise_floors[pos_in_batch, :] = np.atleast_2d(self.noise_floors) if self.write_filtered: self.h5_filtered[pos_in_batch, :] = self.filtered_data # Not responsible for checkpointing anymore. Process class handles this. def _unit_computation(self, *args, **kwargs): """ Processing per chunk of the dataset Parameters ---------- args : list Not used kwargs : dictionary Not used """ # get FFT of the entire data chunk self.data = np.fft.fftshift(np.fft.fft(self.data, axis=1), axes=1) if self.noise_threshold is not None: self.noise_floors = parallel_compute(self.data, get_noise_floor, cores=self._cores, func_args=[self.noise_threshold], verbose=self.verbose) if isinstance(self.composite_filter, np.ndarray): # multiple fft of data with composite filter self.data *= self.composite_filter if self.noise_threshold is not None: # apply thresholding self.data[np.abs(self.data) < np.tile(np.atleast_2d(self.noise_floors), self.data.shape[1])] = 1E-16 if self.write_condensed: # set self.condensed_data here self.condensed_data = self.data[:, self.hot_inds] if self.write_filtered: # take inverse FFT self.filtered_data = np.real(np.fft.ifft(np.fft.ifftshift(self.data, axes=1), axis=1)) if self.phase_rad > 0: # TODO: implement phase compensation # do np.roll on data # self.data = np.roll(self.data, 0, axis=1) pass
""" Assuming that we have some email addresses in the "username@companyname.com" format, please write program to print the user name of a given email address. Both user names and company names are composed of letters only. """ """Question: Assuming that we have some email addresses in the "username@companyname.com" format, please write program to print the user name of a given email address. Both user names and company names are composed of letters only. Example: If the following email address is given as input to the program: john@google.com Then, the output of the program should be: john In case of input data being supplied to the question, it should be assumed to be a console input. Hints: Use \w to match letters. """ import re emailAddress = raw_input() pat2 = "(\w+)@((\w+\.)+(com))" r2 = re.match(pat2,emailAddress) print r2.group(1)
from pathlib import Path import os import logging # Build paths inside the project like this: BASE_DIR / 'subdir'. PROD_STATUS = os.environ.get("PRODUCTION", False) # Using the production status of the server to set the DEBUG value # (doing it this way because of a qwerk of the django-celery module). if PROD_STATUS: DEBUG=False else: DEBUG=True BASE_DIR = Path(__file__).resolve().parent.parent # SECURITY: SECRET_KEY = os.environ.get("SECRET_KEY", "test_django_secret_key") ALLOWED_HOSTS = ["*"] # Application definition: INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', # 3rd Party Applications: "rest_framework", "rest_framework.authtoken", "django_celery_beat", "djoser", "drf_yasg", "django_filters", "tinymce", "crispy_forms", "django_plotly_dash.apps.DjangoPlotlyDashConfig", # Frontend Application: "application_frontend", # Core API Logic: "api_core", # Project specific API Applications: "data_APIs.reddit_api", "data_APIs.twitter_api", "data_APIs.articles_api" ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'private_rest_api.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [(os.path.join(BASE_DIR, "templates"))], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'private_rest_api.wsgi.application' # REST FRAMEWORK Configuration: REST_FRAMEWORK = { # Authentication/Permission: 'DEFAULT_PERMISSION_CLASSES': ['rest_framework.permissions.IsAuthenticated'], 'DEFAULT_AUTHENTICATION_CLASSES': ['rest_framework.authentication.TokenAuthentication'], "DEFAULT_SCHEMA_CLASS": "rest_framework.schemas.coreapi.AutoSchema", "DEFAULT_PAGINATION_CLASS": "rest_framework.pagination.LimitOffsetPagination", } # Database DEFAULT_AUTO_FIELD = 'django.db.models.AutoField' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } """ DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': os.environ["POSTGRES_DB"], 'USER': os.environ["POSTGRES_USER"], 'PASSWORD': os.environ["POSTGRES_PASSWORD"], 'HOST': os.environ["POSTGRES_HOST"], 'PORT': os.environ["POSTGRES_PORT"] } } """ # Celery Settings: CELERY_BEAT_SCHEDULER = 'django_celery_beat.schedulers:DatabaseScheduler' CELERY_BEAT_SCHEDULE_FILENAME = "celerybeat-schedule" """ # Don't use pickle as serializer, json is much safer CELERY_BROKER_URL = os.environ["CELERY_BROKER_URL"] CELERY_RESULT_BACKEND = os.environ["CELERY_RESULT_BACKEND"] CELERY_TASK_SERIALIZER = "json" CELERY_ACCEPT_CONTENT = ['application/json'] CELERY_RESULT_SERIALIZER = 'json' CELERY_ENABLE_UTC = True CELERY_TIMEZONE = "UTC" """ # Password validation AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Sentry Error Catching Configuration (not for ): """ # Importing SDK: import sentry_sdk from sentry_sdk.integrations.django import DjangoIntegration sentry_sdk.init( dsn="https://fe8a2428b4984abd83604d5c26a9c051@o1148429.ingest.sentry.io/6219915", integrations=[DjangoIntegration()], traces_sample_rate=1.0, send_default_pii=True ) """ # Configuration for Swagger UI: SWAGGER_SETTINGS = { # Token Authorization: 'SECURITY_DEFINITIONS': { 'api_key': { 'type': 'apiKey', 'in': 'header', 'name': 'Authorization' } }, } # Internationalization LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') STATIC_URL = '/static/' STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')] # Media Files: MEDIA_ROOT = os.path.join(BASE_DIR, 'media') MEDIA_URL = '/media/' # Frontend styling for TinyMCE: TINYMCE_JS_URL = 'https://cdn.tiny.cloud/1/no-api-key/tinymce/5/tinymce.min.js' TINYMCE_COMPRESSOR = False # Pointing to the Custom User Model: AUTH_USER_MODEL = "api_core.CustomUser" # Login route configs: LOGIN_REDIRECT_URL = "/" LOGOUT_REDIRECT_URL = "/" # Crispy Forms Configurations: CRISPY_TEMPLATE_PACK = 'bootstrap4' # Django-Dash Settings: X_FRAME_OPTIONS = 'SAMEORIGIN'
import os, sys, re, os.path, copy, pickle, gc, string, weakref, math, new try: import numpy # Request, but do not require except: pass import paraview import paraview.annotation import paraview.benchmark import paraview.calculator import paraview.collaboration import paraview.compile_all_pv import paraview.coprocessing import paraview.cpexport import paraview.cpstate import paraview.extract_selection import paraview.lookuptable import paraview.numeric import paraview.pvfilters import paraview.pvvtkextensions import paraview.python_view import paraview.servermanager import paraview.simple import paraview.smstate import paraview.smtesting import paraview.smtrace import paraview.spatiotemporalparallelism import paraview.util import paraview.variant import paraview.vtk import paraview.vtk.algorithms import paraview.vtk.dataset_adapter
'''tzinfo timezone information for America/Port_of_Spain.''' from pytz.tzinfo import DstTzInfo from pytz.tzinfo import memorized_datetime as d from pytz.tzinfo import memorized_ttinfo as i class Port_of_Spain(DstTzInfo): '''America/Port_of_Spain timezone definition. See datetime.tzinfo for details''' zone = 'America/Port_of_Spain' _utc_transition_times = [ d(1,1,1,0,0,0), d(1912,3,2,4,6,4), ] _transition_info = [ i(-14760,0,'LMT'), i(-14400,0,'AST'), ] Port_of_Spain = Port_of_Spain()
# from data import models # from algo import pde # %% from scipy.linalg import cholesky import numpy as np import datetime from opricer.model import models from opricer.algo import pde, analytics, mc import matplotlib.pyplot as plt from matplotlib.widgets import Cursor from scipy.sparse import diags from scipy.linalg import lu_solve, lu_factor # from opricer.teststaff import simulate import pandas as pd np.random.seed(123) a = models.Underlying(datetime.datetime(2010, 1, 1), 100) a1 = models.Underlying(datetime.datetime(2010, 1, 1), 200) b = models.EurOption(datetime.datetime(2011, 1, 1), 'call') b1 = models.AmeOption(datetime.datetime(2011, 1, 1), 'call') c = models.BasketOption(datetime.datetime(2011, 1, 1), 'call') d = models.BarOption(datetime.datetime(2011, 1, 1), 'put') b._attach_asset(100, a) b1._attach_asset(100, a1) c._attach_asset(100, a, a1) # d._attach_asset([30, np.inf], 100, a) solver = analytics.AnalyticSolver(high_val=2, low_val=0) price = solver(b) solver1 = pde.EurSolver() solver2 = pde.AmeSolver(high_val=2, low_val=0) # AMeprice = solver2() Msolver = mc.EurMCSolver(path_no=60000, asset_no=10, time_no=100, high_val=2, low_val=0) print(str(solver.__class__.__name__)) solver4 = pde.BarSolver(high_val=2, low_val=0, asset_no=solver.asset_no) Msolver2 = mc.BarMCSolver(high_val=2, low_val=0, asset_no=solver.asset_no) Msolver3 = mc.BasketMCSolver(high_val=2, low_val=0, asset_no=solver.asset_no) ABSolver = mc.BasketAmeSolver(high_val=2, low_val=0, asset_no=solver.asset_no) ASolver = mc.AmeMCSolver(high_val=2, low_val=0, asset_no=solver.asset_no) def plot(options, solvers, Msolvers, with_cursor=False): fig = plt.figure(figsize=(15, 8)) ax = plt.axes() price = solver(b) MCprice = Msolver(b) ax.plot(solver.asset_samples, price, label='AnalyticSol') # for opt, sol in zip(options, solvers): # ax.plot(solver.asset_samples, sol(opt)[0], label=type( # sol).__name__ + type(opt).__name__) for opt, sol in zip(options, Msolvers): ax.plot(solver.asset_samples, sol(opt), label=type( sol).__name__ + type(opt).__name__) ax.legend(loc='best') if with_cursor: cursor = Cursor(ax, useblit=True, linewidth=2) plt.show() plt.gcf() # plot([b1, c], [], [ASolver, ABSolver]) # print(solver.asset_samples.flatten(), price[:, 0]) # Msolver3(c) # print(Msolver3.asset_samples.shape, # Msolver3.time_samples.shape, Msolver3(c).shape) # plt.show() # plt.gcf() # print(ABSolver(c), ABSolver.asset_samples.squeeze( # 1).sum(axis=1).shape, ABSolver.time_samples.shape) # print(Msolver3.asset_samples.squeeze(1)) # corr_mat = cholesky(np.array([[1, 0.2], [0.2, 1]])) # asset = np.dot(Msolver3.asset_samples.squeeze(1), corr_mat) # print(np.power(asset, 2).sum(axis=1).shape) # a = np.arange(30) # b = np.arange(40).reshape(20, 1, 2).squeeze(1) # print([str(np.tile(b, (1, 30, 1)[x, y])) # for x, y in zip(range(20), range(30))]) # bStr = [', '.join(row) for row in b.astype(str)] # print(f('a', 'b', 'c')) # print(np.tile(bStr, (10, 1)))
# PLOTS THE FIELD GENERATED BY THE PF COILS # Andre Torres #18.01.19 from field import getPFFlux2 from coilDefinitions import PF0, PF1, PF2, v, ht, hb import matplotlib.pyplot as plt import numpy as np <<<<<<< HEAD #%matplotlib qt4 ======= %matplotlib qt4 >>>>>>> e2761a0bad5346fc8b93f67684dcc2c0a49829ff def plotPF(PF, title ="", probes=True): nr=50 nz=50 if probes: rlim=[0.5,0.75] zlim=[-0.1,0.1] else: rlim=[0.25,0.65] zlim=[-0.2,0.2] R=np.linspace(rlim[0],rlim[1], nr) Z=np.linspace(zlim[0],zlim[1], nz) Br=np.zeros(shape=(nz,nr)) Bz=np.zeros(shape=(nz,nr)) for i in range(len(R)): for j in range(len(Z)): Br[j][i], Bz[j][i] = getPFFlux2(R[i],Z[j],PF, biotSavart=False) fig, ax = plt.subplots(figsize=(8, 6), dpi=100) plt.xlabel("R [m]") plt.ylabel("Z [m]") plt.xlim(rlim) plt.ylim(zlim) plt.title(title) limiter = plt.Circle((0.46, 0), 0.0935, color='k', linestyle="-", fill=False, linewidth=3) ax.add_artist(limiter) if probes: vcoil=plt.plot([v.r-v.w/2., v.r+v.w/2.], [v.z,v.z], "r", linewidth=2) htcoil=plt.plot([ht.r, ht.r], [ht.z-ht.w/2.,ht.z+ht.w/2.], "g",linewidth=2) hbcoil=plt.plot([hb.r, hb.r], [hb.z-hb.w/2.,hb.z+hb.w/2.], "b",linewidth=2) ctr=plt.contourf(R,Z,np.sqrt(Bz**2+Br**2)*1e3, cmap="GnBu")#, levels=np.linspace(-1e-2,0,200) plt.streamplot(R,Z,Br,Bz, color="k") cbar=plt.colorbar(ctr) cbar.set_label("[mT/A]") ax.set_aspect('equal') plotPF(PF0[0],"Primary, PF0") plotPF(PF0[1],"Vertical, PF0") plotPF(PF0[2],"Horizontal, PF0") plotPF(PF0[0],"Primary", False) plotPF(PF0[1],"Vertical PF", False) plotPF(PF0[2],"Horizontal PF", False) <<<<<<< HEAD if __name__ == '__main__': plt.show() ======= >>>>>>> e2761a0bad5346fc8b93f67684dcc2c0a49829ff
import json import uuid from enum import Enum, IntEnum from typing import Optional from fastapi import HTTPException from pydantic import BaseModel from sqlalchemy import text from sqlalchemy.exc import NoResultFound from sqlalchemy.sql.expression import select from .db import engine class InvalidToken(Exception): """指定されたtokenが不正だったときに投げる""" class SafeUser(BaseModel): """token を含まないUser""" id: int name: str leader_card_id: int class Config: orm_mode = True def create_user(name: str, leader_card_id: int) -> str: """Create new user and returns their token""" token = str(uuid.uuid4()) # NOTE: tokenが衝突したらリトライする必要がある. with engine.begin() as conn: result = conn.execute( text( "INSERT INTO `user` (name, token, leader_card_id) VALUES (:name, :token, :leader_card_id)" ), {"name": name, "token": token, "leader_card_id": leader_card_id}, ) # print(result) return token def _get_user_by_token(conn, token: str) -> Optional[SafeUser]: # TODO: 実装 result = conn.execute( text("SELECT `id`, `name`, `leader_card_id` FROM `user` WHERE `token`=:token"), dict(token=token), ) try: row = result.one() except NoResultFound: return None return SafeUser.from_orm(row) def get_user_by_token(token: str) -> Optional[SafeUser]: with engine.begin() as conn: return _get_user_by_token(conn, token) def update_user(token: str, name: str, leader_card_id: int) -> None: # このコードを実装してもらう with engine.begin() as conn: user = _get_user_by_token(conn, token) if user is None: raise InvalidToken conn.execute( text( "UPDATE `user` SET `name` = :name, `leader_card_id` = :leader_card_id WHERE `id` = :id" ), dict(name=name, leader_card_id=leader_card_id, id=user.id), ) # Room RoomMaxUserCount = 4 class LiveDifficulty(IntEnum): normal = 1 hard = 2 class JoinRoomResult(IntEnum): Ok = 1 RoomFull = 2 Disbanded = 3 OtherError = 4 class WaitRoomStatus(IntEnum): Waiting = 1 LiveStart = 2 Dissoution = 3 class RoomInfo(BaseModel): room_id: int live_id: int joined_user_count: int max_user_count: int class RoomUser(BaseModel): user_id: int name: str leader_card_id: int select_difficulty: LiveDifficulty is_me: bool is_host: bool class ResultUser(BaseModel): user_id: int judge_count_list: list[int] score: int def _add_user_in_room( conn, room_id: int, user_id: int, select_difficulty: LiveDifficulty ): result = conn.execute( text( "INSERT INTO `room_user` (room_id, user_id, select_difficulty) VALUES (:room_id, :user_id, :select_difficulty)" ), { "room_id": room_id, "user_id": user_id, "select_difficulty": int(select_difficulty), }, ) def create_room_with_host( token: str, live_id: int, select_difficulty: LiveDifficulty ) -> int: """Create new user and returns their token""" with engine.begin() as conn: user = _get_user_by_token(conn, token) if user is None: raise InvalidToken result = conn.execute( text( "INSERT INTO `room` (live_id, status, owner) VALUES (:live_id, :status, :owner)" ), { "live_id": live_id, "status": int(WaitRoomStatus.Waiting), "owner": user.id, }, ) room_id = result.lastrowid _add_user_in_room(conn, room_id, user.id, select_difficulty) return room_id def list_room(live_id: int) -> list[RoomInfo]: with engine.begin() as conn: if live_id == 0: result = conn.execute( text( """ SELECT r.`id`, r.`live_id`, COUNT(*) FROM `room` r JOIN `room_user` ru ON r.`id` = ru.`room_id` WHERE r.`status` = :status GROUP BY r.`id` """ ), {"status": int(WaitRoomStatus.Waiting), "live_id": live_id}, ) else: result = conn.execute( text( """ SELECT r.`id`, r.`live_id`, COUNT(*) FROM `room` r JOIN `room_user` ru ON r.`id` = ru.`room_id` WHERE r.`status` = :status AND r.`live_id` = :live_id GROUP BY r.`id` """ ), {"status": int(WaitRoomStatus.Waiting), "live_id": live_id}, ) ret = [] for row in result: ret.append( RoomInfo( room_id=row.id, live_id=row.live_id, joined_user_count=row["COUNT(*)"], max_user_count=4, ) ) return ret def join_room( token: str, room_id: int, select_difficulty: LiveDifficulty ) -> JoinRoomResult: with engine.begin() as conn: user = _get_user_by_token(conn, token) if user is None: raise InvalidToken room_status = conn.execute( text( """SELECT status FROM `room` WHERE id=:room_id FOR UPDATE""" ), {"room_id": room_id}, ).one() room_user_count = conn.execute( text( """SELECT COUNT(*) FROM `room_user` WHERE `room_id` = :room_id GROUP BY `room_id` FOR UPDATE""" ), {"room_id": room_id}, ).one() if room_user_count["COUNT(*)"] >= RoomMaxUserCount: return JoinRoomResult.RoomFull elif room_status.status != WaitRoomStatus.Waiting: return JoinRoomResult.Disbanded _add_user_in_room(conn, room_id, user.id, select_difficulty) conn.execute(text("COMMIT")) return JoinRoomResult.Ok def wait_room(room_id: int, token: str) -> tuple[WaitRoomStatus, list[RoomUser]]: with engine.begin() as conn: user = _get_user_by_token(conn, token) if user is None: raise InvalidToken room = conn.execute( text("SELECT `status`, `owner` FROM `room` WHERE id = :room_id"), {"room_id": room_id}, ).one() result = conn.execute( text( """SELECT u.`id`, u.`name`, u.`leader_card_id`, ru.`select_difficulty` FROM `user` u JOIN `room_user` ru ON u.`id` = ru.`user_id` WHERE ru.`room_id` = :room_id""" ), {"room_id": room_id}, ) ret = [] for row in result: ret.append( RoomUser( user_id=row.id, name=row.name, leader_card_id=row.leader_card_id, select_difficulty=row.select_difficulty, is_me=True if user.id == row.id else False, is_host=True if room.owner == row.id else False, ) ) return room.status, ret def _update_room_status(conn, room_id: int, status: WaitRoomStatus): result = conn.execute( text( """UPDATE `room` SET `status` = :status WHERE `id` = :room_id""" ), { "status": int(status), "room_id": room_id, }, ) def start_room(token: str, room_id: int): with engine.begin() as conn: # user = _get_user_by_token(conn, token) # if user is None: # raise InvalidToken # result = conn.execute( # text( # """ # SELECT `owner` # FROM `room` # WHERE `id` = :room_id # """ # ), # {"room_id": room_id}, # ) # if result.one().owner != user.id: # raise InvalidToken conn.execute( text( """SELECT `status` FROM `room` WHERE `id`=:room_id FOR UPDATE""" ), {"room_id": room_id}, ) _update_room_status(conn, room_id, WaitRoomStatus.LiveStart) conn.execute(text("COMMIT")) def end_room(token: str, room_id: int, judge: list[int], score: int): with engine.begin() as conn: user = _get_user_by_token(conn, token) _update_room_status(conn, room_id, WaitRoomStatus.Dissoution) result = conn.execute( text( """UPDATE `room_user` SET `score` = :score, `judge_count_list` = :judge WHERE `room_id`=:room_id and `user_id` = :user_id""" ), { "room_id": room_id, "user_id": user.id, "score": score, "judge": ",".join(map(str, judge)), # decoding judge: list(map(int, judge.split(","))) }, ) def result_room(room_id: int) -> list[ResultUser]: with engine.begin() as conn: result = conn.execute( text( """SELECT `user_id`, `judge_count_list`, `score` FROM `room_user` WHERE `room_id` = :room_id""" ), {"room_id": room_id}, ) try: rows = result.all() except NoResultFound: return [] ret = [] for row in rows: if row.score is None: return [] ret.append( ResultUser( user_id=row.user_id, judge_count_list=list(map(int, row.judge_count_list.split(","))), score=row.score, ) ) return ret def leave_room(token: str, room_id: int): with engine.begin() as conn: user = _get_user_by_token(conn, token) if user is None: raise InvalidToken conn.execute( text( """SELECT status FROM `room` WHERE `id`=:room_id FOR UPDATE""" ), {"room_id": room_id}, ) count_result = conn.execute( text( """SELECT COUNT(*) FROM `room_user` WHERE `room_id` = :room_id GROUP BY `room_id` FOR UPDATE""" ), {"room_id": room_id}, ).one() count = count_result["COUNT(*)"] conn.execute( text( """DELETE FROM `room_user` WHERE `room_id`=:room_id AND `user_id`=:user_id""" ), { "room_id": room_id, "user_id": user.id, }, ) if count == 1: _update_room_status(conn, room_id, WaitRoomStatus.Dissoution) conn.execute(text("COMMIT"))
import os import subprocess prefix = 'raw/' for id in range(1,105): filetoread = prefix + 'id_'+str(id)+'.txt' with open(filetoread, "r") as ins: linecounter = 0 for line in ins: linecounter += 1 if linecounter == 1: year = int(line[-5:]) print(year,end=''), print(',',end=''), if linecounter == 3: nstages = int(line[-3:]) print(nstages,end=''), print(',',end=''), if linecounter == 4: nkm = line[-6:] nkm = nkm.replace(" ","") nkm = int(nkm) print(nkm,end=''), print(',',end=''), if linecounter == 5: nkm = line[-7:] nkm = float(nkm) print(nkm) if linecounter > 15: # drivers continue if not(len(line)==1 or len(line)==14): # skip last line wasname = False wasriderno = False wasteam = False wastime = False wasgap = False wasfirst = False lastisachar = False lastchar = '' last2char = '' isnumberlast3 = False isnumberlast2 = False isnumberlast1 = False isnumber = False print(str(year)+", ",end=''), flag = False col = 0 skipnext = 0 haveskipped = False for char in line: if skipnext>0: skipnext -= 1 continue if haveskipped and char.isalpha(): haveskipped = False print(char,end= "") continue col += 1 if char=="\'" and col< 50: continue if char=="," and col< 50: continue if char.isspace(): print(" ",end=''), continue if char=="*": lastisanumber = False lastisachar = True print(',',end='') skipnext = 5 haveskipped = True continue isachar = char.isalpha() or char=="*" or char==")" or char=="." isanumber = char.isdigit() isnumberlast3 = isnumberlast2 isnumberlast2 = isnumberlast1 isnumberlast1 = isanumber if lastchar=='\'' and last2char =='\'': break if isachar and lastisanumber: if not(char=="h"): print(",",end=''), if char=="\'": if lastchar=="\'": print('s',end=''), else: print('m',end=''), if lastisachar and isanumber: if not(lastchar=="h"): if not(lastchar=="F" and char=="1" and last2char=="D"): print(",",end=''), lastisachar = isachar lastisanumber = isanumber last2char = lastchar lastchar = char; if not(char=="*"): print(char,end=''), if lastchar=='\'' and last2char =='\'': if id==16: if not(flag): flag = True else: print(",",end=''), print(",",end=''), #if char=="+": # print(",",end=''), # if linecounter==16: # print(" ,+ 00h 00\' 00\'\'",end=''), print("")
# Generated by Django 2.1.7 on 2019-03-03 14:17 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('topic', '0008_auto_20190216_1712'), ] operations = [ migrations.AlterField( model_name='topic', name='pin', field=models.BooleanField(default=False, help_text='push pin topic will sort at first', verbose_name='Pushpin topic'), ), ]
from django.conf import settings from django.contrib.auth.models import User from theJekyllProject.models import ( Page, Post, PostCategory, SiteData, SiteSocialProfile, SiteTheme, Repo ) from github import Github from markdown2 import Markdown import html2markdown import os import re import shutil import subprocess def assign_boolean_to_comments(comments): if(comments == 'on'): return True else: return False def save_post_database(repo, author, comments, date, time, layout, title, content, pk=None): if pk is not None: post = Post.objects.get(pk=pk) post.author = author post.comments = comments post.date = date post.time = time post.layout = layout post.title = title post.content = content post.save() else: post = Post( repo=repo, author=author, comments=comments, date=date, time=time, layout=layout, title=title, content=content, ) post.save() return post def save_page_database(repo, title, permalink, content, pk=None): if pk is not None: page = Page.objects.get(pk=pk) page.title = title page.permalink = permalink page.content = content page.save() else: page = Page( repo=repo, title=title, permalink=permalink, content=content, ) page.save() return page def save_post_category_database(post, category, pk=None): if pk is not None: # FIXME use filter instead of get post = Post.objects.get(pk=pk) try: post_category = PostCategory.objects.get(post=post) except PostCategory.DoesNotExist: post_category = '' else: post_category.category = category post_category.save() else: post_category = PostCategory( post=post, category=category ) post_category.save() def create_file_name(date, title): title = title.lower().replace(' ', '-') file_name = str(date) + '-' + title + '.markdown' return file_name def header_content(author=None, comments=None, date=None, time=None, layout=None, title=None): string = '---\n' if(author is not None): string += 'author: ' + author + '\n' if(comments is not None): comments = str(comments).lower() string += 'comments: ' + comments + '\n' if(date is not None): string += 'date: ' + date if(time is not None): string += ' ' + time + '\n' if(layout is not None): string += 'layout: ' + layout + '\n' if(title is not None): string += 'title: ' + title + '\n' title = title.lower() slug = title.replace(' ', '-') string += 'slug: ' + slug + '\n' string += '---\n' return string def page_header_content(title=None, permalink=None): string = '---\n' layout = 'page' string += 'layout: ' + layout + '\n' if(title is not None): string += 'title: ' + title + '\n' if(permalink is not None): string += 'permalink: ' + permalink + '\n' string += '---\n' return string def convert_content(content): return html2markdown.convert(content) def write_file(user, repo, file_name, head_content, body_content): base_dir = settings.BASE_DIR file = open(base_dir + '/../JekLog/' + user.username + '/' + repo.repo + '/_posts/' + file_name, 'w+') file.write(head_content + body_content) file.close() def write_page_file(file_name, user, repo, head_content, body_content): base_dir = settings.BASE_DIR file = open(base_dir + '/../JekLog/' + user.username + '/' + repo.repo + '/' + file_name + '.md', 'w+') file.write(head_content + body_content) file.close() def push_online(user, repo): base_dir = settings.BASE_DIR subprocess.Popen(['/bin/bash', base_dir + '/../' + 'gitsendupstream.sh', user.username, repo.repo, base_dir]) def save_site_data(repo, title=None, description=None, avatar=None): site_data = SiteData( repo=repo, title=title, description=description, avatar=avatar ) site_data.save() def save_site_theme_data(repo, theme=None): site_theme = SiteTheme( repo=repo, theme=theme ) site_theme.save() def create_config_file(user, repo): user = User.objects.get(username=user.username) try: site_data = SiteData.objects.get(repo=repo) title = site_data.title description = site_data.description # FIXME Check avatar properly avatar = site_data.avatar except: title = 'your name' description = 'Web Developer from Somewhere' # FIXME Create avatar properly #avatar = '' try: site_social_profile = SiteSocialProfile.objects.get(user=user) dribbble = site_social_profile.dribbble email = site_social_profile.email facebook = site_social_profile.facebook flickr = site_social_profile.flickr github = site_social_profile.github instagram = site_social_profile.instagram linkedin = site_social_profile.linkedin pinterest = site_social_profile.pinterest rss = site_social_profile.rss twitter = site_social_profile.twitter stackoverflow = site_social_profile.stackoverflow youtube = site_social_profile.youtube googleplus = site_social_profile.googleplus disqus = site_social_profile.disqus google_analytics = site_social_profile.google_analytics except: dribbble = '' email = '' facebook = '' flickr = '' github = '' instagram = '' linkedin = '' pinterest = '' rss = '' twitter = '' stackoverflow = '' youtube = '' googleplus = '' disqus = '' google_analytics = '' try: site_theme = SiteTheme.objects.get(user=user) theme = site_theme.theme except: theme = 'jekyll-theme-cayman' base_dir = settings.BASE_DIR with open(base_dir + '/../' + 'JekLog/' + user.username + '/' + repo.repo + '/' + '_config.yml', 'r') as conf_file: file_data = conf_file.read() title_data = re.findall(r'name:.+', file_data) description_data = re.findall(r'description:.+', file_data) avatar_data = re.findall(r'avatar:.+', file_data) dribbble_data = re.findall(r'dribbble:.+|dribbble:', file_data) email_data = re.findall(r'email:.+|email:', file_data) facebook_data = re.findall(r'facebook:.+|facebook:', file_data) flickr_data = re.findall(r'flickr:.+|flickr:', file_data) github_data = re.findall(r'github:.+|github:', file_data) instagram_data = re.findall(r'instagram:.+|instagram:', file_data) linkedin_data = re.findall(r'linkedin:.+|linkedin:', file_data) pinterest_data = re.findall(r'pinterest:.+|pinterest:', file_data) rss_data = re.findall(r'rss:.+|rss:', file_data) twitter_data = re.findall(r'twitter:.+|twitter:', file_data) stackoverflow_data = re.findall(r'stackoverflow:.+|stackoverflow:', file_data) youtube_data = re.findall(r'youtube:.+|youtube:', file_data) googleplus_data = re.findall(r'googleplus:.+|googleplus:', file_data) disqus_data = re.findall(r'disqus:.+|disqus:', file_data) google_analytics_data = re.findall(r'google_analytics:.+|google_analytics:', file_data) theme_data = re.findall(r'theme:.+|theme:', file_data) file_data = file_data.replace(title_data[0], 'name: ' + title) file_data = file_data.replace(description_data[0], 'description: ' + description) #file_data = file_data.replace(avatar_data[0], 'avatar: ' + avatar) file_data = file_data.replace(dribbble_data[0], 'dribbble: ' + dribbble) file_data = file_data.replace(email_data[0], 'email: ' + email) file_data = file_data.replace(facebook_data[0], 'facebook: ' + facebook) file_data = file_data.replace(flickr_data[0], 'flickr: ' + flickr) file_data = file_data.replace(github_data[0], 'github: ' + github) file_data = file_data.replace(instagram_data[0], 'instagram: ' + instagram) file_data = file_data.replace(linkedin_data[0], 'linkedin: ' + linkedin) file_data = file_data.replace(pinterest_data[0], 'pinterest: ' + pinterest) file_data = file_data.replace(rss_data[0], 'rss: ' + rss) file_data = file_data.replace(twitter_data[0], 'twitter: ' + twitter) file_data = file_data.replace(stackoverflow_data[0], 'stackoverflow: ' + stackoverflow) file_data = file_data.replace(youtube_data[0], 'youtube: ' + youtube) file_data = file_data.replace(googleplus_data[0], 'googleplus: ' + googleplus) file_data = file_data.replace(disqus_data[0], 'disqus: ' + disqus) file_data = file_data.replace(google_analytics_data[0], 'google_analytics: ' + google_analytics) file_data = file_data.replace(theme_data[0], 'theme: ' + theme) with open(base_dir + '/../' + 'JekLog/' + user.username + '/' + repo.repo + '/' + '_config.yml', 'w') as conf_file: conf_file.write(file_data) def get_repo_list(token): g = Github(token) repositories_name = [] for repo in g.get_user().get_repos(): repositories_name.append(repo.name) return repositories_name def save_repo_data(user, repo): repo = Repo( user=user, repo=repo, main=True ) repo.save() # Now set all other repo `main` to False for the given user all_repos = Repo.objects.filter(user=user) current_repo = Repo.objects.get(id=repo.id) for repo in all_repos: if repo.id is not current_repo.id: repo.main = False repo.save() def create_repo(user, repo): user = User.objects.get(username=user.username) social = user.social_auth.get(provider='github') user_token = social.extra_data['access_token'] g = Github(user_token) user = g.get_user() repo = user.create_repo(repo) def copy_jekyll_files(user, repo_name): base_dir = settings.BASE_DIR dest_path = '/'.join(['JekLog', user.username, repo_name]) dest_path = base_dir + '/../' + dest_path source_path = '/'.join(['JekyllNow', 'jekyll-now']) source_path = base_dir + '/../' + source_path shutil.copytree(source_path, dest_path) def add_theme_name(user, repo_name): base_dir = settings.BASE_DIR with open(base_dir + '/../' + 'JekLog/' + user.username + '/' + repo_name + '/' + '_config.yml', 'a') as conf_file: conf_file.write('theme: jekyll-theme-cayman') def read_all_pages(user, repo_name): """read_all_pages will put all the pages information into the database Example: No need to click any button this is the default behaviour. TODO: * Read all .md files in the root directory of the blog code. * Leave the README and 404 file. * Process all other files and put things into Page model. """ base_dir = settings.BASE_DIR for file in os.listdir(base_dir + "/../JekLog/" + user.username + "/" + repo_name): if file.endswith(".md"): if(str(file) != 'README.md' and str(file) != '404.md'): with open(base_dir+ '/../JekLog/' + user.username + '/' + repo_name + '/' + str(file)) as page_file: file_data = page_file.read() title = re.findall(r'title:.+', file_data) permalink = re.findall(r'permalink:.+', file_data) page_text = '' temp = 0 list_file_data = file_data.split('\n') for line in list_file_data: if(temp==2): page_text += line + '\n' if(temp == 1): if(line == '---'): temp=2 if(line == '---' and temp==0): temp=1 title = title[0].replace('title: ', '') permalink = permalink[0].replace('permalink: ', '') repo = Repo.objects.get(main=True, user=user) markdowner = Markdown() page_text = markdowner.convert(page_text) page = Page(repo=repo, title=title, permalink=permalink, content=page_text) page.save() def change_site_baseurl(user, repo_name): """ Deprecated: new eg: jekyllnow.handlers.jekyllnow_handlers.update_baseurl """ base_dir = settings.BASE_DIR with open(base_dir + '/../' +'JekLog/' + user.username + '/' + repo_name + '/' + '_config.yml', 'r') as conf_file: filedata = conf_file.read() filedata = filedata.replace('baseurl: ""', 'baseurl: "/' + repo_name + '"') with open(base_dir + '/../' + 'JekLog/' + user.username + '/' + repo_name + '/' + '_config.yml', 'w') as conf_file: conf_file.write(filedata) def run_git_script(user, repo_name): base_dir = settings.BASE_DIR user = User.objects.get(username=user.username) social = user.social_auth.get(provider='github') user_token = social.extra_data['access_token'] subprocess.Popen(['/bin/bash', base_dir + '/../' + 'gitscript.sh', user.username, repo_name, user_token, base_dir]) def select_main_site(user, pk): """select_main_site to select the following repo as the main site. Example: Triggers when: User chooses another repo to be considered as the main repo Tasks: * Find all repos of the user. * Get the current repo using the primary key * Change the attribute main to True * Set all the other repo's main attribute to False """ all_repos = Repo.objects.filter(user=user) current_repo = Repo.objects.get(pk=pk) current_repo.main = True current_repo.save() for repo in all_repos: if repo.id is not current_repo.id: repo.main = False repo.save()
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Jobs operating on explorations that can be used for production tests. To use these jobs, first need to register them in jobs_registry (at the moment they are not displayed there to avoid accidental use). """ from core import jobs from core.domain import exp_domain from core.domain import exp_services from core.domain import rights_manager from core.domain import user_services from core.platform import models import feconf (base_models, exp_models,) = models.Registry.import_models([ models.NAMES.base_model, models.NAMES.exploration]) class ExpCopiesRealtimeModel( jobs.BaseRealtimeDatastoreClassForContinuousComputations): """Realtime model class for ExpCopiesAggregator.""" pass class ExpCopiesAggregator(jobs.BaseContinuousComputationManager): """A continuous-computation job creating 10 published copies of every existing exploration, with the eid being '[old_eid]copy[copy_number]', title 'Copy' and category 'Copies'. """ @classmethod def get_event_types_listened_to(cls): """Returns the list of events that this class subscribes to. Returns: list. An empty list of events. """ return [] @classmethod def _get_realtime_datastore_class(cls): return ExpCopiesRealtimeModel @classmethod def _get_batch_job_manager_class(cls): return ExpCopiesMRJobManager @classmethod def _handle_incoming_event(cls, active_realtime_layer, event_type, *args): pass class ExpCopiesMRJobManager( jobs.BaseMapReduceJobManagerForContinuousComputations): """A continuous-computation job creating 10 published copies of every existing exploration, with the eid being '[old_eid]copy[copy_number]', title 'Copy' and category 'Copies'. """ @classmethod def _get_continuous_computation_class(cls): """Returns the ExpCopiesAggregator class associated with this MapReduce job. """ return ExpCopiesAggregator @classmethod def entity_classes_to_map_over(cls): """Returns a list of datastore class references to map over.""" return [exp_models.ExplorationModel] @staticmethod def map(item): """Yields the id of each newly-created exploration copy, together with its YAML representation. Args: item: ExplorationModel. An exploration storage model. Yields: str. The string containing exploration id of each newly-created exploration. It is of the format: <exp_id>copy<copy_number> """ if ExpCopiesMRJobManager._entity_created_before_job_queued(item): for count in range(10): yield ('%scopy%d' % (item.id, count), exp_services.get_exploration_from_model(item).to_yaml()) @staticmethod def reduce(exp_id, list_of_exps): """Saves and publishes the newly created copy of the existing exploration. Args: exp_id: str. The exploration id. list_of_exps: list(str). The list containing newly-created exploration copies in the YAML representation. """ for stringified_exp in list_of_exps: exploration = exp_domain.Exploration.from_untitled_yaml( exp_id, 'Copy', 'Copies', stringified_exp) exp_services.save_new_exploration( feconf.SYSTEM_COMMITTER_ID, exploration) system_user = user_services.get_system_user() rights_manager.publish_exploration( system_user, exp_id) # Job to delete all copied explorations. class DeleteExpCopiesRealtimeModel( jobs.BaseRealtimeDatastoreClassForContinuousComputations): """Realtime model class for DeleteExpCopiesAggregator.""" pass class DeleteExpCopiesAggregator(jobs.BaseContinuousComputationManager): """A continuous-computation job deleting all explorations in category 'Copies'. """ @classmethod def get_event_types_listened_to(cls): """Returns the list of events that this class subscribes to. Returns: list. An empty list of events. """ return [] @classmethod def _get_realtime_datastore_class(cls): return DeleteExpCopiesRealtimeModel @classmethod def _get_batch_job_manager_class(cls): return DeleteExpCopiesMRJobManager @classmethod def _handle_incoming_event(cls, active_realtime_layer, event_type, *args): pass class DeleteExpCopiesMRJobManager( jobs.BaseMapReduceJobManagerForContinuousComputations): """Job that deletes all explorations in category 'Copies'.""" @classmethod def _get_continuous_computation_class(cls): """Returns the DeleteExpCopiesAggregator class associated with this MapReduce job. """ return DeleteExpCopiesAggregator @classmethod def entity_classes_to_map_over(cls): """Returns a list of datastore class references to map over.""" return [exp_models.ExplorationModel] @staticmethod def map(item): """Deletes the exploration with the given id if it is of the 'Copies' category. Args: item: ExplorationModel. An exploration storage model. """ if item.category == 'Copies': exp_services.delete_exploration( feconf.SYSTEM_COMMITTER_ID, item.id, force_deletion=True) @staticmethod def reduce(exp_id, list_of_exps): """Null reduce method (not used).""" pass
import logging import argparse import os # os.environ["CUDA_VISIBLE_DEVICES"] = "3" import random import numpy as np import paddle from visualdl import LogWriter from tqdm import tqdm import paddle.nn.functional as F from models.modeling import VisionTransformer from utils.data_utils import get_loader class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def simple_accuracy(preds, labels): return (preds == labels).mean() def save_model(args, model): # layer_state_dict = emb.state_dict() model_to_save = model.state_dict() #.module if hasattr(model, 'module') else model model_checkpoint = os.path.join(args.output_dir, "%s_checkpoint.pdparams" % args.name) paddle.save(model_to_save, model_checkpoint) def setup(args): # Prepare model # config = CONFIGS[args.model_type] num_classes = 10 if args.dataset == "cifar10" else 100 if args.dataset == "imagenet": num_classes=1000 model = VisionTransformer() model_PATH = "data/data105204/cifar100-224_checkpoint.pdparams" model_state_dict = paddle.load(model_PATH) model.set_dict(model_state_dict) return args, model class kl_loss(paddle.nn.Layer): def __init__(self): super(kl_loss, self).__init__() self.cross_entropy_loss = paddle.nn.CrossEntropyLoss() def forward(self, p, q, label): ce_loss = 0.5 * (self.cross_entropy_loss(p, label) + self.cross_entropy_loss(q, label)) kl_loss = self.compute_kl_loss(p, q) # carefully choose hyper-parameters loss = ce_loss + 0.3 * kl_loss return loss def compute_kl_loss(self, p, q): p_loss = F.kl_div(F.log_softmax(p, axis=-1), F.softmax(q, axis=-1), reduction='none') q_loss = F.kl_div(F.log_softmax(q, axis=-1), F.softmax(p, axis=-1), reduction='none') # You can choose whether to use function "sum" and "mean" depending on your task p_loss = p_loss.sum() q_loss = q_loss.sum() loss = (p_loss + q_loss) / 2 return loss def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) paddle.seed(args.seed) def valid(args, model, test_loader): # Validation! eval_losses = AverageMeter() model.eval() all_preds, all_label = [], [] epoch_iterator = tqdm(test_loader, desc="Validating... (loss=X.X)", bar_format="{l_bar}{r_bar}", dynamic_ncols=True) loss_fct = paddle.nn.CrossEntropyLoss() for step, batch in enumerate(epoch_iterator): x, y = batch with paddle.no_grad(): logits = model(x)#[0] eval_loss = loss_fct(logits, y) eval_losses.update(eval_loss.item()) preds = paddle.argmax(logits, axis=-1) if len(all_preds) == 0: all_preds.append(preds.detach().cpu().numpy()) all_label.append(y.detach().cpu().numpy()) else: all_preds[0] = np.append( all_preds[0], preds.detach().cpu().numpy(), axis=0 ) all_label[0] = np.append( all_label[0], y.detach().cpu().numpy(), axis=0 ) epoch_iterator.set_description("Validating... (loss=%2.5f)" % eval_losses.val) all_preds, all_label = all_preds[0], all_label[0] accuracy = simple_accuracy(all_preds, all_label) print("accuracy: {}".format(accuracy)) return accuracy def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--name", required=True, help="Name of this run. Used for monitoring.", default="cifar100-test") parser.add_argument("--dataset", choices=["cifar10", "cifar100","imagenet"], default="cifar100", help="Which downstream task.") parser.add_argument("--model_type", choices=["ViT-B_16", "ViT-B_32", "ViT-L_16", "ViT-L_32", "ViT-H_14"], default="ViT-B_16", help="Which variant to use.") parser.add_argument("--pretrained_dir", type=str, default="data/data104692/ViT-B_16.npz", help="Where to search for pretrained ViT models.") parser.add_argument("--output_dir", default="output", type=str, help="The output directory where checkpoints will be written.") parser.add_argument("--img_size", default=384, type=int, help="Resolution size") parser.add_argument("--train_batch_size", default=512, type=int, help="Total batch size for training.") parser.add_argument("--eval_batch_size", default=64, type=int, help="Total batch size for eval.") parser.add_argument("--eval_every", default=100, type=int, help="Run prediction on validation set every so many steps." "Will always run one evaluation at the end of training.") parser.add_argument("--learning_rate", default=1e-2, type=float, help="The initial learning rate for SGD.") parser.add_argument("--weight_decay", default=0., type=float, help="Weight deay if we apply some.") parser.add_argument("--num_steps", default=100000, type=int, help="Total number of training epochs to perform.") parser.add_argument("--decay_type", choices=["cosine", "linear"], default="cosine", help="How to decay the learning rate.") parser.add_argument("--warmup_steps", default=500, type=int, help="Step of training to perform learning rate warmup for.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--alpha", default=0.3, type=float, help="alpha for kl loss") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument('--gradient_accumulation_steps', type=int, default=16, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument('--loss_scale', type=float, default=0, help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n" "0 (default value): dynamic loss scaling.\n" "Positive power of 2: static loss scaling value.\n") args = parser.parse_args() # Set seed set_seed(args) # Model & Tokenizer Setup args, model = setup(args) train_loader, test_loader = get_loader(args) accuracy = valid(args, model, test_loader) # Training if __name__ == "__main__": main()
from TextGameModule import TextGame # Game start # To get user's name, we need to build a welcome scene to do it. TextGame.clearScreen() # print('歡迎來到文字遊戲世界') # name = input('請輸入你的名字: ') # TextGame.clearScreen() # print("Hello", name) # print("遊戲即將開始...") # TextGame.screenWait(500) # TextGame.showString('abcdefg') # input(':') # # TextGame.showString('hijklmnop', 200) options = 'test1 test2 test3 test4'.split() TextGame.userInputOptions(options) #Game Setting # tg = TextGame(name) #開始場景 startScene = "" #遊戲過程場景 # tg.setScene('front', # 'test', # ['test1','test2','test3'], # ['1','2'])
names = input().split(", ") dict_names = {name: {} for name in names} while True: command = input() if command == "End": break d_name, d_item, d_value = command.split("-") if d_item not in dict_names[d_name]: dict_names[d_name][d_item] = int(d_value) # [print(f"{k} -> Items: {len(dict_names[k])}, Cost: {sum(dict_names[k].values())}") for k, v in dict_names.items()] [print(f"{k} -> Items: {len(dict_names[k])}, Cost: {sum(dict_names[k].values())}") for k in dict_names] # for k, v in dict_names.items(): # print(f"{k} -> Items: {len(dict_names[k])}, Cost: {sum(dict_names[k].values())}") # #Вариант с речник и списъци като values: # names = input().split(", ") # dict_names = {name: {} for name in names} # # while True: # command = input() # if command == "End": # break # d_name, d_item, d_value = command.split("-") # if d_name in dict_names: # if d_item not in dict_names[d_name]: # dict_names[d_name][d_item] = int(d_value) # # key_sum = 0 # for key, value in dict_names.items(): # for k, v in value.items(): # key_sum += v # # print(f"{key} -> Items: {len(value)}, Cost: {key_sum}")
#!/usr/bin/env python3 from yateto import * def add(generator, dim, nbf, Nbf, nq, Nq, petsc_alignment): J_Q = Tensor('J_Q', (Nq,)) Jinv_Q = Tensor('Jinv_Q', (Nq,)) G_Q = Tensor('G_Q', (dim, dim, Nq)) K = Tensor('K', (Nbf,)) K_Q = Tensor('K_Q', (Nq,)) W = Tensor('W', (Nq,)) E_Q = Tensor('E_Q', (Nbf, Nq)) matE_Q_T = Tensor('matE_Q_T', (Nq, Nbf)) Dxi_Q = Tensor('Dxi_Q', (Nbf, dim, Nq)) Dx_Q = Tensor('Dx_Q', Dxi_Q.shape()) A = Tensor('A', (Nbf, Nbf)) M = Tensor('M', (Nbf, Nbf)) MinvRef = Tensor('MinvRef', (Nbf, Nbf)) MinvWA = Tensor('MinvWA', (Nbf, Nbf)) matM = Tensor('matM', (Nbf, Nbf)) generator.add('massMatrix', M['kl'] <= E_Q['kq'] * W['q'] * J_Q['q'] * E_Q['lq']) generator.add('MinvWA', MinvWA['kl'] <= MinvRef['kr'] * W['q'] * Jinv_Q['q'] * E_Q['rq'] * E_Q['sq'] * MinvRef['sl']) generator.add('project_K_lhs', matM['kl'] <= matE_Q_T['qk'] * W['q'] * J_Q['q'] * matE_Q_T['ql']) generator.add('project_K_rhs', K['k'] <= K_Q['q'] * matE_Q_T['qk'] * W['q'] * J_Q['q']) generator.add('Dx_Q', Dx_Q['kiq'] <= G_Q['eiq'] * Dxi_Q['keq']) generator.add('assembleVolume', A['kl'] <= J_Q['q'] * W['q'] * K['m'] * matE_Q_T['qm'] * Dx_Q['kiq'] * Dx_Q['liq'] ) G_q = Tensor('G_q', (dim, dim, nq)) n_q = Tensor('n_q', (dim, nq)) n_unit_q = Tensor('n_unit_q', (dim, nq)) nl_q = Tensor('nl_q', (nq,)) w = Tensor('w', (nq,)) E_q = [Tensor('E_q({})'.format(x), (Nbf, nq)) for x in range(2)] matE_q_T = Tensor('matE_q_T', (nq, Nbf)) Dxi_q = [Tensor('Dxi_q({})'.format(x), (Nbf, dim, nq)) for x in range(2)] K_Dx_q = [Tensor('K_Dx_q({})'.format(x), (Nbf, dim, nq)) for x in range(2)] a = [[Tensor('a({},{})'.format(x, y), (Nbf, Nbf)) for y in range(2)] for x in range(2)] c0 = [Scalar('c0{}'.format(x)) for x in range(2)] c1 = [Scalar('c1{}'.format(x)) for x in range(2)] c2 = [Scalar('c2{}'.format(x)) for x in range(2)] Lift = [Tensor('Lift({})'.format(x), (Nbf, dim, Nbf)) for x in range(2)] L_q = [Tensor('L_q({})'.format(x), (Nbf, nq)) for x in range(2)] Minv = [Tensor('Minv({})'.format(x), (Nbf, Nbf)) for x in range(2)] K_q = [Tensor('K_q({})'.format(x), (nq,)) for x in range(2)] generator.add('K_Dx_q', K_Dx_q[0]['kiq'] <= K['m'] * matE_q_T['qm'] * G_q['eiq'] * Dxi_q[0]['keq']) generator.add('K_q', K_q[0]['q'] <= K['m'] * matE_q_T['qm']) generator.addFamily('lift_ip', simpleParameterSpace(2), \ lambda x: L_q[x]['lq'] <= E_q[x]['lq'] * nl_q['q']) generator.addFamily('lift_skeleton', simpleParameterSpace(2), lambda x: [ Lift[0]['liu'] <= 0.5 * Minv[0]['us'] * E_q[0]['sq'] * E_q[x]['lq'] * n_q['iq'] * w['q'], Lift[1]['liv'] <= 0.5 * Minv[1]['vs'] * E_q[1]['sq'] * E_q[x]['lq'] * n_q['iq'] * w['q'], L_q[x]['lq'] <= 0.5 * n_q['iq'] * ( \ K_q[0]['q'] * E_q[0]['uq'] * Lift[0]['liu'] + \ K_q[1]['q'] * E_q[1]['vq'] * Lift[1]['liv']) ]) generator.add('lift_boundary', [ Lift[0]['liu'] <= Minv[0]['us'] * E_q[0]['sq'] * E_q[0]['lq'] * n_q['iq'] * w['q'], L_q[0]['lq'] <= n_q['iq'] * K_q[0]['q'] * E_q[0]['uq'] * Lift[0]['liu'] ]) def surface(x, y): return a[x][y]['kl'] <= c0[y] * w['q'] * K_Dx_q[x]['kiq'] * n_q['iq'] * E_q[y]['lq'] + \ c1[x] * w['q'] * K_Dx_q[y]['liq'] * n_q['iq'] * E_q[x]['kq'] + \ c2[abs(y-x)] * w['q'] * E_q[x]['kq'] * L_q[y]['lq'] generator.addFamily('assembleSurface', simpleParameterSpace(2, 2), surface) b = Tensor('b', (Nbf,), alignStride=petsc_alignment) F_Q = Tensor('F_Q', (Nq,)) generator.add('rhsVolume', b['k'] <= b['k'] + J_Q['q'] * W['q'] * E_Q['kq'] * F_Q['q']) f_q = Tensor('f_q', (nq,)) f_lifted = [Tensor('f_lifted({})'.format(x), (Nbf, dim)) for x in range(2)] f_lifted_q = Tensor('f_lifted_q', (nq,)) generator.add('rhs_lift_ip', f_lifted_q['q'] <= nl_q['q'] * f_q['q']) generator.add('rhs_lift_boundary', [ f_lifted[0]['li'] <= Minv[0]['lm'] * E_q[0]['mq'] * f_q['q'] * w['q'] * n_q['iq'], f_lifted_q['q'] <= n_q['iq'] * K_q[0]['q'] * E_q[0]['lq'] * f_lifted[0]['li'] ]) generator.add('rhs_lift_skeleton', [ f_lifted[0]['li'] <= 0.5 * Minv[0]['lm'] * E_q[0]['mq'] * f_q['q'] * w['q'] * n_q['iq'], f_lifted[1]['li'] <= 0.5 * Minv[1]['lm'] * E_q[1]['mq'] * f_q['q'] * w['q'] * n_q['iq'], f_lifted_q['q'] <= 0.5 * n_q['iq'] * ( \ K_q[0]['q'] * E_q[0]['lq'] * f_lifted[0]['li'] + \ K_q[1]['q'] * E_q[1]['lq'] * f_lifted[1]['li'] \ ) ]) generator.add('rhsFacet', b['k'] <= b['k'] + \ c1[0] * w['q'] * K_Dx_q[0]['kiq'] * n_q['iq'] * f_q['q'] + \ c2[0] * w['q'] * E_q[0]['kq'] * f_lifted_q['q']) # matrix-free U = Tensor('U', (Nbf,), alignStride=petsc_alignment) U_ext = Tensor('U_ext', (Nbf,), alignStride=petsc_alignment) U_new = Tensor('U_new', (Nbf,), alignStride=petsc_alignment) u_hat_q = Tensor('u_hat_q', (nq,)) sigma_hat_q = Tensor('sigma_hat_q', (dim, nq)) E_Q_T = Tensor('E_Q_T', (Nq, Nbf)) negative_E_Q_T = Tensor('negative_E_Q_T', (Nq, Nbf)) E_q_T = [Tensor('E_q_T({})'.format(x), (nq, Nbf)) for x in range(2)] negative_E_q_T = [Tensor('negative_E_q_T({})'.format(x), (nq, Nbf)) for x in range(2)] Dxi_q_120 = [Tensor('Dxi_q_120({})'.format(x), (dim, nq, Nbf)) for x in range(2)] J_W_K_Q = Tensor('J_W_K_Q', (Nq,)) K_G_q = [Tensor('K_G_q({})'.format(x), (dim, dim, nq)) for x in range(2)] generator.add('J_W_K_Q', J_W_K_Q['q'] <= J_Q['q'] * W['q'] * K['m'] * matE_Q_T['qm']) generator.add('K_G_q', K_G_q[0]['eiq'] <= K['m'] * matE_q_T['qm'] * G_q['eiq']) generator.add('flux_u_skeleton', u_hat_q['q'] <= 0.5 * (negative_E_q_T[0]['ql'] * U['l'] + E_q_T[1]['ql'] * U_ext['l'])) generator.add('flux_u_boundary', u_hat_q['q'] <= negative_E_q_T[0]['ql'] * U['l']) generator.add('flux_sigma_skeleton', sigma_hat_q['pq'] <= 0.5 * (K_G_q[0]['epq'] * Dxi_q_120[0]['eql'] * U['l'] + K_G_q[1]['epq'] * Dxi_q_120[1]['eql'] * U_ext['l']) + c0[0] * (E_q_T[0]['ql'] * U['l'] + negative_E_q_T[1]['ql'] * U_ext['l']) * n_unit_q['pq']) generator.add('flux_sigma_boundary', sigma_hat_q['pq'] <= K_G_q[0]['epq'] * Dxi_q_120[0]['eql'] * U['l'] + c0[0] * E_q_T[0]['ql'] * U['l'] * n_unit_q['pq']) generator.add('apply_volume', [ Dx_Q['krq'] <= Dxi_Q['keq'] * G_Q['erq'], U_new['k'] <= J_W_K_Q['q'] * Dx_Q['krq'] * Dx_Q['lrq'] * U['l'] ]) generator.add('apply_facet', U_new['k'] <= U_new['k'] + w['q'] * n_q['rq'] * ( u_hat_q['q'] * K_G_q[0]['erq'] * Dxi_q[0]['keq'] - E_q[0]['kq'] * sigma_hat_q['rq'] )) # traction u = [Tensor('u({})'.format(x), (Nbf,), alignStride=petsc_alignment) for x in range(2)] grad_u = Tensor('grad_u', (dim, nq)) generator.add('grad_u', grad_u['pq'] <= 0.5 * (K_Dx_q[0]['lpq'] * u[0]['l'] + K_Dx_q[1]['lpq'] * u[1]['l']) + c0[0] * (E_q[0]['lq'] * u[0]['l'] - E_q[1]['lq'] * u[1]['l'] - f_q['q']) * n_unit_q['pq']) generator.add('grad_u_bnd', grad_u['pq'] <= K_Dx_q[0]['lpq'] * u[0]['l'] + c0[0] * (E_q[0]['lq'] * u[0]['l'] - f_q['q']) * n_unit_q['pq'])
import numpy as anp def metadata(A): return anp.shape(A), anp.ndim(A), anp.result_type(A), anp.iscomplexobj(A) def unbroadcast(x, target_meta, broadcast_idx=0): target_shape, target_ndim, dtype, target_iscomplex = target_meta while anp.ndim(x) > target_ndim: x = anp.sum(x, axis=broadcast_idx) for axis, size in enumerate(target_shape): if size == 1: x = anp.sum(x, axis=axis, keepdims=True) if anp.iscomplexobj(x) and not target_iscomplex: x = anp.real(x) return x def unbroadcast_f(target, f): target_meta = metadata(target) return lambda g: unbroadcast(f(g), target_meta) def balanced_eq(x, z, y): return (x == z) / (1.0 + (x == y)) fn = lambda ans, x, y : unbroadcast_f(x, lambda g: g * balanced_eq(x, ans, y))
from codecs import open from os import path, listdir import re from setuptools import setup, find_packages from setuptools.command.install import install here = path.abspath(path.dirname(__file__)) NAME = "mockquitto" class InstallWithBabel(install): def run(self): self.babel_compile() super().run() def babel_compile(self): from babel.messages.frontend import compile_catalog compiler = compile_catalog(self.distribution) option_dict = self.distribution.get_option_dict('compile_catalog') compiler.domain = [option_dict['domain'][1]] compiler.directory = option_dict['directory'][1] compiler.run() # super().run() def get_release() -> str: version = get_version() return ".".join(version.split('.')[:2]) def get_version() -> str: filehash = {} with open("{}/version.py".format(get_name())) as fp: exec(fp.read(), filehash) return filehash['__version__'] def get_name() -> str: return NAME def read(fname): with open(path.join(here, fname), encoding='utf-8', mode='r') as f: return f.read() setup( name=get_name(), version=get_version(), description='A sample Python project', long_description=read("README.rst"), url='https://github.com/Samsung-IoT-Academy/mockquitto', author='Georgiy Odisharia', author_email='math.kraut.cat@gmail.com', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Education', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Education', 'Topic :: Communications', 'Topic :: Internet', ], keywords='mqtt', packages=find_packages(exclude=['contrib', 'docs', 'tests']), cmdclass={ 'install': InstallWithBabel, }, command_options={ 'build_sphinx': { 'project': ('setup.py', get_name()), 'release': ('setup.py', get_release()), 'version': ('setup.py', get_version()), }, }, install_requires=[ 'hbmqtt>=0.9.1' ], python_requires="~=3.4", # extras_require={ # 'dev': ['check-manifest'], # 'test': ['coverage'], # }, include_package_data=True, entry_points={ 'console_scripts': [ 'mockquitto-server = mockquitto.scripts.broker:main', 'mockquitto-async-generator = mockquitto.scripts.mqtt_generator_asyncio:main', ], }, )
import scandir import sys import os import re DEP_RE = re.compile(r"(\s*\.*)(\w+\()") ''' run from root dir of project ''' EXCLUDE_DIR = ["venv", ".ipynb_checkpoints","ipynb"] EXCLUDE_FILE = ["__init__", "auto_doc"] EXCLUDE_DEPS = ["print","list","enumerate","Exception"] EXCLUDE_ARG = ["self"] def get_annotation_list(line_list, idx): annotation_list = [] if line_list[idx-1].strip().startswith("@"): annotation_list.append(line_list[idx-1].strip()) annotation_list = annotation_list + get_annotation_list(line_list, idx-1) return annotation_list def get_f_args(line): try: arg_csv = line.split("(")[1].split(")")[0] except IndexError: return [] arg_list = [a.strip() for a in arg_csv.split(",") if a != ""] arg_list = [a for a in arg_list if a not in EXCLUDE_ARG] return arg_list def get_thingy(type_of_thingy, line_list, idx, pause_characters=False): # print(f"{idx}|{pause_characters}|{line_list[idx]}") return_list = [] if pause_characters == True and ("'''" in line_list[idx] or '"""' in line_list[idx]): if idx+1 < len(line_list): return_list = get_thingy(type_of_thingy, line_list, idx+1, pause_characters=False) elif pause_characters == True and not ("'''" in line_list[idx] or '"""' in line_list[idx]): if idx+1 < len(line_list): return_list = get_thingy(type_of_thingy, line_list, idx+1, pause_characters=pause_characters) elif pause_characters == False and ("'''" in line_list[idx] or '"""' in line_list[idx]): if idx+1 < len(line_list): return_list = get_thingy(type_of_thingy, line_list, idx+1, pause_characters=True) else: if line_list[idx].startswith(" ") and line_list[idx].strip().split(" ")[0] == str(type_of_thingy): try: return_list.append(line_list[idx].strip().split("{} ".format(str(type_of_thingy)))[1]) except IndexError: pass if idx + 1 < len(line_list)\ and not line_list[idx+1].strip().startswith("class") \ and not line_list[idx+1].strip().startswith("def"): return_list = return_list + get_thingy(type_of_thingy, line_list, idx+1) return return_list def get_attributes(line_list, idx): attr_list = [] if " self." in line_list[idx] or ",self." in line_list[idx]: attr_list = [element for element in line_list[idx].split(" ") if element.strip().startswith("self.")] attr_list = [element.split("=")[0].strip() for element in attr_list] mstr_attr_list = [] for attr_l in attr_list: mstr_attr_list += [element.strip() for element in attr_l.split(",")] attr_list = [element for element in attr_list if not element.strip().endswith(")")] if idx + 1 < len(line_list) \ and not line_list[idx+1].strip().startswith("class"): attr_list = attr_list + get_attributes(line_list, idx+1) attr_list = [x for x in attr_list if "(" not in x] return attr_list def get_deps(line_list, idx): return None return_list = [] if not line_list[idx].strip().startswith("def") and not line_list[idx].strip().startswith("class") \ and ")" in line_list[idx].split("#")[0].strip() and "(" in line_list[idx].split("#")[0].strip(): re_matches = re.findall(string=line_list[idx].split("#")[0].strip(), pattern=DEP_RE) return_list = [thing[1].strip("(").strip(".").strip() for thing in re_matches] if idx + 1 < len(line_list) and line_list[idx+1].startswith(" ") \ and not line_list[idx+1].strip().startswith("class") \ and not line_list[idx+1].strip().startswith("def"): return_list = return_list + get_deps(line_list, idx+1) return_list = [x for x in return_list if x not in EXCLUDE_DEPS] return_list = list(set(return_list)) return return_list def get_import_list(line_list): imports = [] for line in line_list: if line.startswith('import'): import_list = line.replace("import","").strip().split(",") import_list = [x.strip() for x in import_list] imports += import_list elif (line.startswith('from') and 'import' in line): import_list = line.replace("from","").strip().split("import")[-1].split(",") first_part = line.replace("from","").strip().split("import")[0] import_list = [first_part + x.strip() for x in import_list] import_list = [x.replace(" ",".").replace(":","") for x in import_list] imports += import_list return imports def write_lines(file_obj, header, iter_list): if iter_list: sys.stdout.write("\n\n##### {}".format(str(header))) file_obj.write("\n\n##### {}".format(str(header))) for i in iter_list: this_line = "\n- {}".format(str(i)) sys.stdout.write(this_line) file_obj.write(this_line) def write_data(file_obj, current_module=None, dep_list=None, annotation_list=None, current_class=None,\ inheritance_list=None, attribute_list=None, current_function=None, args_list=None, return_list=None, exception_list=None): full_module_parts_list = list(filter(lambda x: x, [current_module,current_class,current_function])) full_module_str = ".".join(full_module_parts_list) full_module_str = "\n\n#### {}".format(str(full_module_str)) sys.stdout.write(full_module_str) file_obj.write(full_module_str) write_lines(file_obj, header="Inherits from", iter_list=inheritance_list) write_lines(file_obj, header="Attributes", iter_list=attribute_list) write_lines(file_obj, header="Dependencies", iter_list=dep_list) write_lines(file_obj, header="Arguments", iter_list=args_list) write_lines(file_obj, header="Returns", iter_list=return_list) write_lines(file_obj, header="Exceptions", iter_list=exception_list) write_lines(file_obj, header="Annotations", iter_list=annotation_list) sys.stdout.flush() def write_import_list(file_obj, import_list): write_lines(file_obj, header="Imports", iter_list=import_list) def document_module(module_path, file_obj): module_name = module_path.rstrip(".py").replace("./","").replace(".","").replace("\\",".").replace("/",".").lstrip(".") file_obj.write("\n\n# {}\n".format(str(module_name))) sys.stdout.write("\n\n# {}\n".format(str(module_name))) with open(module_path, "r") as f: current_class = None current_function = None current_module = module_name line_list = f.readlines() line_list = [element for element in line_list if not element.strip().startswith("#")] import_list = get_import_list(line_list) write_import_list(file_obj, import_list) for idx, line in enumerate(line_list): line = line.replace("\n","") if line.strip() == "": continue #determine current class: if line.startswith("class"): current_class = line.split("class ")[1].split("(")[0] inheritance_list = get_f_args(line) attribute_list = get_attributes(line_list, idx) write_data(file_obj, current_module=current_module, dep_list=None, annotation_list=None, current_class=current_class,\ inheritance_list=inheritance_list, attribute_list=attribute_list, current_function=None, args_list=None, return_list=None, exception_list=None) else: inheritance_list = None attribute_list = None #determine class inheritance #determine current function (and if function is part of a class) if line.startswith("def"): current_class = None current_function = line.split("def ")[1].split("(")[0] args_list = get_f_args(line) return_list = get_thingy("return", line_list, idx) exception_list = get_thingy("raise", line_list, idx) annotation_list = get_annotation_list(line_list, idx) #dep_list = get_deps(line_list, idx) dep_list = None write_data(file_obj, current_module, dep_list, annotation_list, current_class, inheritance_list, attribute_list, current_function, args_list, return_list, exception_list) elif line.startswith(" ") and "def " in line: current_function = line.split("def ")[1].split("(")[0] args_list = get_f_args(line) return_list = get_thingy("return", line_list, idx) exception_list = get_thingy("raise", line_list, idx) annotation_list = get_annotation_list(line_list, idx) #dep_list = get_deps(line_list, idx) dep_list = None write_data(file_obj, current_module, dep_list, annotation_list, current_class, inheritance_list, attribute_list, current_function, args_list, return_list, exception_list) def scany_stuff(scan_path, file_obj): for element in scandir.scandir(scan_path): if element.is_dir(): matches = list(filter(lambda x: x in element.path, EXCLUDE_DIR)) if not matches: scany_stuff(element.path, file_obj) elif element.is_file(): if element.name.endswith(".py") and element.name.split(".")[0] not in EXCLUDE_FILE: document_module(element.path, file_obj) if __name__=="__main__": with open("docs.md","w") as file_obj: scany_stuff(os.curdir,file_obj=file_obj)
from django.urls import path from . import views app_name = "news" urlpatterns = [ path("", views.IndexView.as_view(), name="index"), path( "<int:year>/<int:month>/<int:day>/<slug:slug>/", views.ArticleView.as_view(), name="article", ), ]
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- # ----------------------------------------------------------------------------- # # P A G E B O T N A N O # # Copyright (c) 2020+ Buro Petr van Blokland + Claudia Mens # www.pagebot.io # Licensed under MIT conditions # # Supporting DrawBot, www.drawbot.com # ----------------------------------------------------------------------------- # # ThemeSpecimens.py # # This ThemeColors.py shows samples of all standard theme colors, # with their closest spot color, CMYK, RGB, CSS hex-color and CSS name. # from random import shuffle from pagebotnano.constants import (A4, LEFT, RIGHT, SPORTS, BIRDS, TOOLS, CITIES, FRUITS, COFFEES) from pagebotnano.document import Document from pagebotnano.elements import Rect, Text, Stacked from pagebotnano.toolbox.color import Color from pagebotnano.babelstring import BabelString S = 4 # Scaling for Instagram W, H = 1000*S, 1000*S FONT = 'Georgia' GUTTER_Y = 10*S GUTTER_X = 40*S PAD = 50*S labelSize=15*S labelColor = Color(0.8) labelFontName = 'Upgrade-Medium' SETS = ( # Choose other fonts that exist on your computer here. (SPORTS, 'Sports', CITIES, 'Cities', 'Upgrade-Medium', 'Upgrade-MediumItalic', True), (BIRDS, 'Birds', FRUITS, 'Fruits', 'Upgrade-UltraBlack', 'Upgrade-UltraBlackItalic', True), (TOOLS, 'Tools', COFFEES, 'Coffees', 'Upgrade-Bold', 'Upgrade-BoldItalic', True), ) for words1, title1, words2, title2, fontName1, fontName2, capsOnly in SETS: doc = Document(w=W, h=H) words1 = list(words1) words2 = list(words2) shuffle(words1) shuffle(words2) page = doc.newPage() page.padding = PAD cw = (page.pw-GUTTER_X)/2 e = Stacked([title1] + words1, font=fontName1, x=page.pl, y=page.pt, w=cw, h=page.ph, gh=GUTTER_Y, capsOnly=capsOnly, fill=0.9) page.addElement(e) e = Stacked([title2] + words2, font=fontName2, x=page.pl+cw+GUTTER_X, y=page.pt, w=cw, h=page.ph, gh=GUTTER_Y, capsOnly=capsOnly, fill=0.9) page.addElement(e) footNoteStyle = dict(font=labelFontName, tracking=0.5, fontSize=labelSize, fill=labelColor, align=LEFT) bs = BabelString('TYPETR '+fontName1, footNoteStyle) e = Text(bs, x=page.pl, y=page.pb/2, w=page.pw) page.addElement(e) footNoteStyle = dict(font=labelFontName, tracking=0.5, fontSize=labelSize, fill=labelColor, align=LEFT) bs = BabelString('TYPETR '+fontName1, footNoteStyle) e = Text(bs, x=page.pl, y=page.pb/2, w=page.pw) page.addElement(e) footNoteStyle['align'] = RIGHT bs = BabelString('Generated by PageBotNano', footNoteStyle) e = Text(bs, x=page.pl+page.pw, y=page.pb/2, w=page.pw) page.addElement(e) doc.export('_export/Stacked-%s-%s.jpg' % (title1, title2), multipage=True) # Instagram print('Done')
from sqlalchemy import create_engine, Column, Integer, String, Numeric from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.engine.url import URL import settings DeclarativeBase = declarative_base() def create_competitor_prices_table(engine): DeclarativeBase.metadata.create_all(engine) def db_connect(): """ Performs database connection using settings from settings.py. Returns sqlalchemy engine instance. """ return create_engine(URL(**settings.DATABASE)) class CompetitorPrices(DeclarativeBase): """ sqlalchemy competitor_prices model """ __tablename__ = "competitor_prices" product_id = Column(Integer, primary_key = True) product_name = Column('product_name', String, nullable = True) brand = Column('brand', String, nullable = True) price_high = Column('price_high', Numeric(10, 2), nullable = True) price_low = Column('price_low', Numeric(10, 2), nullable = True)
# Generated by Django 3.1.5 on 2021-01-31 17:57 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('network', '0004_auto_20210128_2324'), ] operations = [ migrations.AlterField( model_name='follower', name='followers', field=models.ManyToManyField(blank=True, related_name='following', to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='follower', name='user', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='followed_user', to=settings.AUTH_USER_MODEL), ), ]
import numpy as np def vertical_grid(h,dz): """ Description: Computes vertical grid for column model. Input: h : depth of ocean [ m ] dz : size of grid box [ m ] Output: zt : vertical grid for temperature/salinity [ m ] zw : vertical grid for velocity [ m ] nzt : size of temperature/salinity vertical grid nzw : size of velocity vertical grid """ nzt = int(h/dz) nzw = nzt + 1 zt = np.arange(-h, 0, dz) + dz/2 zw = np.arange(-h, dz, dz) return zt, zw, nzt, nzw
from .util import find_keywords # putting the old parser back in here for now until there's a solution # making Automat faster from .spaghetti import FSM, State, Transition class MicrodescriptorParser(object): """ Parsers microdescriptors line by line. New relays are emitted via the 'create_relay' callback. """ def __init__(self, create_relay): self._create_relay = create_relay self._relay_attrs = None class die(object): __name__ = 'die' # FIXME? just to ease spagetti.py:82's pain def __init__(self, msg): self.msg = msg def __call__(self, *args): raise RuntimeError(self.msg % tuple(args)) waiting_r = State("waiting_r") waiting_w = State("waiting_w") waiting_p = State("waiting_p") waiting_s = State("waiting_s") def ignorable_line(x): x = x.strip() return x in ['.', 'OK', ''] or x.startswith('ns/') waiting_r.add_transition(Transition(waiting_r, ignorable_line, None)) waiting_r.add_transition(Transition(waiting_s, lambda x: x.startswith('r '), self._router_begin)) # FIXME use better method/func than die!! waiting_r.add_transition(Transition(waiting_r, lambda x: not x.startswith('r '), die('Expected "r " while parsing routers not "%s"'))) waiting_s.add_transition(Transition(waiting_w, lambda x: x.startswith('s '), self._router_flags)) waiting_s.add_transition(Transition(waiting_s, lambda x: x.startswith('a '), self._router_address)) waiting_s.add_transition(Transition(waiting_r, ignorable_line, None)) waiting_s.add_transition(Transition(waiting_r, lambda x: not x.startswith('s ') and not x.startswith('a '), die('Expected "s " while parsing routers not "%s"'))) waiting_s.add_transition(Transition(waiting_r, lambda x: x.strip() == '.', None)) waiting_w.add_transition(Transition(waiting_p, lambda x: x.startswith('w '), self._router_bandwidth)) waiting_w.add_transition(Transition(waiting_r, ignorable_line, None)) waiting_w.add_transition(Transition(waiting_s, lambda x: x.startswith('r '), self._router_begin)) # "w" lines are optional waiting_w.add_transition(Transition(waiting_r, lambda x: not x.startswith('w '), die('Expected "w " while parsing routers not "%s"'))) waiting_w.add_transition(Transition(waiting_r, lambda x: x.strip() == '.', None)) waiting_p.add_transition(Transition(waiting_r, lambda x: x.startswith('p '), self._router_policy)) waiting_p.add_transition(Transition(waiting_r, ignorable_line, None)) waiting_p.add_transition(Transition(waiting_s, lambda x: x.startswith('r '), self._router_begin)) # "p" lines are optional waiting_p.add_transition(Transition(waiting_r, lambda x: x[:2] != 'p ', die('Expected "p " while parsing routers not "%s"'))) waiting_p.add_transition(Transition(waiting_r, lambda x: x.strip() == '.', None)) self._machine = FSM([waiting_r, waiting_s, waiting_w, waiting_p]) self._relay_attrs = None def feed_line(self, line): """ A line has been received. """ self._machine.process(line) def done(self, *args): """ All lines have been fed. """ self._maybe_callback_router() def _maybe_callback_router(self): if self._relay_attrs is not None: self._create_relay(**self._relay_attrs) self._relay_attrs = None def _router_begin(self, data): self._maybe_callback_router() args = data.split()[1:] self._relay_attrs = dict( nickname=args[0], idhash=args[1], orhash=args[2], modified=args[3] + ' ' + args[4], ip=args[5], orport=args[6], dirport=args[7], ) def _router_flags(self, data): args = data.split()[1:] self._relay_attrs['flags'] = args def _router_address(self, data): """only for IPv6 addresses""" args = data.split()[1:] try: self._relay_attrs['ip_v6'].extend(args) except KeyError: self._relay_attrs['ip_v6'] = list(args) def _router_bandwidth(self, data): args = data.split()[1:] kw = find_keywords(args) self._relay_attrs['bandwidth'] = kw['Bandwidth'] def _router_policy(self, data): pass
# -*- coding: utf-8 -*- #from datetime import datetime # import time # DateTime from sqlalchemy import Column, Integer, String, Sequence, ForeignKey, \ create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import scoped_session, sessionmaker, relationship, joinedload, lazyload engine = create_engine('mysql://nrs_app:HydrogenAlpha522#@DEVSFRPSQL1.mcap.com/newrecoverydb', echo=True,\ convert_unicode=True) db_session = scoped_session(sessionmaker(autocommit=False, autoflush=False, bind=engine)) Base = declarative_base() Base.query = db_session.query_property() #from orm.database import Base class Task(Base): """ select t.name_ from jbpm_processdefinition d left join jbpm_task t on d.id_=t.PROCESSDEFINITION_ where d.id_=3655; """ __tablename__ = 'jbpm_task' id = Column('id_', Integer, Sequence('id_'), primary_key=True) name = Column('NAME_',String(255)) flow_definition_id = Column('PROCESSDEFINITION_', Integer, ForeignKey('jbpm_processdefinition.id_')) def __repr__(self): return "<Task('%d','%s')>" % (self.id, self.name) class FlowDefinition(Base): __tablename__ = 'jbpm_processdefinition' id = Column('id_', Integer, Sequence('id_'), primary_key=True) name = Column('NAME_',String(255)) version = Column('VERSION_', Integer) def __repr__(self): return "<FlowDefinition('%d','%s')>" % (self.id, self.name) class Node(Base): """ select n.name_ from jbpm_processdefinition d left join jbpm_node n on d.id_=n.PROCESSDEFINITION_ where d.id_=3655; """ __tablename__ = 'jbpm_node' id = Column('id_', Integer, Sequence('id_'), primary_key=True) name = Column('NAME_',String(255)) flow_definition_id = Column('PROCESSDEFINITION_', Integer, ForeignKey('jbpm_processdefinition.id_')) def __repr__(self): return "<Node('%d','%s')>" % (self.id, self.name) class Transition(Base): """ select t.id_, t.name_, n1.id_ as start_id, n1.name_ as start,n2.id_ as end_id, n2.name_ as end from jbpm_processdefinition d left join jbpm_transition t on d.id_=t.PROCESSDEFINITION_ left join jbpm_node n1 on t.from_=n1.id_ left join jbpm_node n2 on t.to_=n2.id_ where d.id_=3655; """ __tablename__ = 'jbpm_transition' id = Column('id_', Integer, Sequence('id_'), primary_key=True) name = Column('NAME_',String(255)) flow_definition_id = Column('PROCESSDEFINITION_', Integer, ForeignKey('jbpm_processdefinition.id_')) start_node_id = Column('FROM_', Integer, ForeignKey('jbpm_node.id_')) end_node_id = Column('TO_', Integer, ForeignKey('jbpm_node.id_')) flow_definition = relationship("FlowDefinition") start = relationship("Node", foreign_keys=[start_node_id],lazy='joined') end = relationship("Node", foreign_keys=[end_node_id], lazy='joined') def __repr__(self): return "<Transition('%d','%s','%s','%s')>" % (self.id, self.name, self.start.name, self.end.name) tasks = Task.query.filter(Task.flow_definition_id == 3655) # for task in tasks: # print task #print task.id, task.name transitions = Transition.query.filter(Transition.flow_definition_id == 3655) for t in transitions: if t.start.name == 'biddingMemo' or t.end.name=='mortgageSale': print t
""" Field-like classes that aren't really fields. It's easier to use objects that have the same attributes as fields sometimes (avoids a lot of special casing). """ from django.db.models import fields class OrderWrt(fields.IntegerField): """ A proxy for the _order database field that is used when Meta.order_with_respect_to is specified. """ def __init__(self, *args, **kwargs): kwargs['name'] = '_order' kwargs['editable'] = False super().__init__(*args, **kwargs)
from converter.qiskit.transpiler._basepasses import TransformationPass class CXCancellation(TransformationPass): pass def run(self, dag): pass
import vsketch class PenElectrophoresisSketch(vsketch.SketchClass): rows = vsketch.Param(250) cols = vsketch.Param(25) def draw(self, vsk: vsketch.Vsketch) -> None: vsk.size("a4", landscape=False) vsk.scale("cm") vsk.penWidth('.3mm') # Sharpie Ultra Fine for y in range(1, self.rows): with vsk.pushMatrix(): for x in range(1, self.cols): with vsk.pushMatrix(): random = vsk.random(.0001 * (x * y)) vsk.line(.5,random,0,random) vsk.translate(.75, 0) vsk.translate(0, .1) def finalize(self, vsk: vsketch.Vsketch) -> None: vsk.vpype("linemerge linesimplify reloop linesort") if __name__ == "__main__": PenElectrophoresisSketch.display()
import unittest from conans.test.utils.genconanfile import GenConanfile from conans.test.utils.tools import TestClient class QbsGeneratorTest(unittest.TestCase): def test(self): client = TestClient() client.run("new dep/0.1 -b") client.run("create . user/testing") pkg = GenConanfile("pkg", "0.1").with_requires("dep/0.1@user/testing") client.save({"conanfile.py": pkg}, clean_first=True) client.run("create . user/testing") client.run("install pkg/0.1@user/testing -g=qbs") qbs = client.load("conanbuildinfo.qbs") self.assertIn('Depends { name: "dep" }', qbs)
from __future__ import print_function import sys from setuptools import setup from Cython.Build import cythonize with open('requirements.txt') as f: INSTALL_REQUIRES = [l.strip() for l in f.readlines() if l] try: import numpy except ImportError: print('numpy is required during installation') sys.exit(1) try: import scipy except ImportError: print('scipy is required during installation') sys.exit(1) setup(name='pyarff', version='0.0.1', description='A cythonized ARFF reader/writer for python', author='Raghav R V', packages=['pyarff'], ext_modules=cythonize('pyarff/*.pyx', language='c++'), include_dirs=[numpy.get_include()], install_requires=['numpy', 'scipy'], author_email='rvraghav93@gmail.com', )
# Generated by Django 3.1.7 on 2021-04-24 13:50 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0002_auto_20210424_1632'), ] operations = [ migrations.AlterModelOptions( name='auto_brands', options={'managed': True}, ), migrations.AlterModelTable( name='auto_brands', table='Auto_brands', ), ]
import sys import os import signal from getopt import getopt from .helper import TujianHelper from .tools import printSort, getToday, getArchive, getAll, printByPID, getByPID from .upload import upoladPics from . import print2 pars = sys.argv[1:] try: opt, par = getopt(pars, 'hp:', ['help', 'path=']) except: TujianHelper(pars) dir = './Tujian/' path = os.path.abspath(dir) def exitTujian(signum, frame): raise KeyboardInterrupt('操作被用户终止') signal.signal(signal.SIGINT, exitTujian) signal.signal(signal.SIGTERM, exitTujian) for o, a in opt: if o in ('-h', '--help'): par2 = ['help'] + par TujianHelper(par2) sys.exit() elif o in ('-p', '--path'): path = os.path.join(a, 'Tujian') if not os.path.isdir(path): os.makedirs(path) try: key = par[0] except IndexError: TujianHelper(par) sys.exit() if key == 'help': TujianHelper(par) elif key == 'path': print(path) elif key == 'today': getToday(path) elif key == 'archive': getArchive(par, path) elif key == 'sort': printSort() elif key == 'all': getAll(path) elif key == 'info': printByPID(par) elif key == 'upload': upoladPics(par) elif key == 'get': getByPID(par,path) else: print2.error('找不到这个命令') print('使用 help 查看帮助') sys.exit(1) sys.exit()
# -*- coding: utf-8 -*- """ module containing the logic for the chart abstract base class """ __author__ = 'Samir Adrik' __email__ = 'samir.adrik@gmail.com' from abc import abstractmethod from itertools import chain import numpy as np from pyqtgraph import PlotWidget from PyQt5.QtCore import QObject from source.util import Assertor class Chart(QObject): """ Chart abstract base class """ @abstractmethod def __init__(self): """ Constructor / Instantiation of class """ super().__init__(parent=None) self.name = self.__class__.__name__ @staticmethod def clear_graphics(graphics_view: PlotWidget): """ static method for clearing content in all graphics Parameters ---------- graphics_view : PlotWidget graphics view to place chart """ Assertor.assert_data_types([graphics_view], [PlotWidget]) graphics_view.clear() @staticmethod def create_bins(x: list, y: list, bins: list): """ method for creating bins for bar char Parameters ---------- x : list x-values y : list y-value bins : list bins Returns ------- out : np.ndarray bins for bar chart """ Assertor.assert_data_types([x, y, bins], [list, list, list]) bin_array = [] for i, value in enumerate(x): if y[i] != 0: bin_array.append([value] * y[i]) else: bin_array.append([0]) return np.histogram(list(chain(*bin_array)), bins=bins)
import os import glob import shutil import pathspec import click @click.command() @click.argument('src', metavar='<source>', type=click.Path(exists=True, dir_okay=True, readable=True), required=True, nargs=1) @click.argument('dst', metavar='<destination>', type=click.Path(exists=False), required=True, nargs=1) @click.option('--overwrite', '-ow', help='Overwrite dst folder if exists', is_flag=True) @click.option('--git', '-g', help='Copy .git folder if exists', is_flag=True) def main(src, dst, overwrite, git): """This script copies folder <source> which must be a git repo (i.e. containing a .gitignore file) to folder <destination>. Only those files not mentionned in .gitignore are copied. If <overwrite> is set the <destination> folder contents are overwritten. If <git> is set the .git folder in <source> if any is copied to <destination>. """ click.echo('source = {}'.format(os.path.abspath(src))) click.echo('destination = {}'.format(os.path.abspath(dst))) click.echo('src is a git repo ? {}'.format(is_git_repo(src))) if os.path.exists(dst): click.echo('destination folder exists') if not overwrite or (overwrite and not click.confirm('overwrite ?')): click.echo('abort') return else: delete_folder(dst) else: click.echo('destination folder will be created') click.echo('make copy') ig_func = build_ignore_function(src, incl_git=git) make_copy(src, dst, ignore_func=ig_func) click.echo('done') def is_git_repo(src): """ """ path = os.path.join(src, '.git') return os.path.exists(path) def remove_empty_folders(path): """ remove empty directories as shutil.copytree cannot do it """ for (_path, _dirs, _files) in os.walk(path, topdown=False): # skip remove if _files: continue if '.git' in _path: continue try: delete_folder(_path) except OSError as e: print('error :', e) def make_copy(src, dst, ignore_func=None): """ shutil copytree call """ shutil.copytree(src, dst, ignore=ignore_func) remove_empty_folders(dst) def delete_folder(drc): """ shutil rmtree """ shutil.rmtree(drc) def build_ignore_function(src, incl_git=False): path = os.path.join(src, '.gitignore') spec_src = [] if os.path.isfile(path): with open(path, 'r') as f: # .gitignore lines spec_src = [e.rstrip() for e in f.readlines()] # .git folder if not incl_git: spec_src.append('.git/*') spec = pathspec.PathSpec.from_lines('gitwildmatch', spec_src) # data to recompose path relative to source abs_src = os.path.abspath(src) len_abs_src = len(abs_src) + 1 def ig_f(curr_dir, files): """ ignore function to be used in shutil.copytree """ def path_rel_src(f): """ build path relative to source necessary to use pathspec """ abs_f = os.path.abspath(os.path.join(curr_dir, f)) path = abs_f[len_abs_src:] return path if os.path.basename(curr_dir) == 'node_modules': ignored_files = files else: ignored_files = [f for f in files if spec.match_file(path_rel_src(f))] return ignored_files return ig_f
import cupy def test_bytes(): out = cupy.random.bytes(10) assert isinstance(out, bytes)
from django.apps import AppConfig from django.core import checks from .checks import storage_check class S3FileConfig(AppConfig): name = "s3file" verbose_name = "S3File" def ready(self): from django import forms from django.core.files.storage import FileSystemStorage, default_storage from storages.backends.s3boto3 import S3Boto3Storage from .forms import S3FileInputMixin if ( isinstance(default_storage, (S3Boto3Storage, FileSystemStorage)) and S3FileInputMixin not in forms.ClearableFileInput.__bases__ ): forms.ClearableFileInput.__bases__ = ( S3FileInputMixin, ) + forms.ClearableFileInput.__bases__ elif S3FileInputMixin in forms.ClearableFileInput.__bases__: forms.ClearableFileInput.__bases__ = tuple( cls for cls in forms.ClearableFileInput.__bases__ if cls is not S3FileInputMixin ) checks.register(storage_check, checks.Tags.security, deploy=True)
# -*- coding: utf-8 -*- from django.http import JsonResponse from django.shortcuts import render from django.contrib.auth.decorators import login_required # from django.template import RequestContext from django import forms from django.forms import ModelForm from django.db.models import Q from django.template.loader import render_to_string from registro.models import Registro, Fichero from gauss.rutas import * # from django.views.decorators.csrf import csrf_exempt # import simplejson as json from django.http import HttpResponse # from django.forms.formsets import formset_factory from datetime import datetime # from django.core.mail import EmailMessage from autenticar.control_acceso import permiso_required import mimetypes mimetypes.add_type('application/vnd.openxmlformats-officedocument.wordprocessingml.document', '.docx') class RegistroForm(ModelForm): class Meta: model = Registro fields = ('asunto', 'texto', 'receptor', 'tipo', 'emisor', 'fecha') widgets = { 'asunto': forms.TextInput(attrs={'size': '100', 'class': 'detectar'}), 'receptor': forms.TextInput(attrs={'size': '50', 'class': 'detectar'}), 'emisor': forms.TextInput(attrs={'size': '50', 'class': 'detectar'}), 'tipo': forms.Select(attrs={'class': 'detectar'}), 'texto': forms.Textarea(attrs={'cols': 80, 'rows': 8}), 'fecha': forms.TextInput(attrs={'size': '10', 'value': datetime.today().strftime("%d/%m/%Y")}), } # @permiso_required('acceso_absentismo') def registro(request): g_e = request.session['gauser_extra'] registros = Registro.objects.filter(entidad=g_e.ronda.entidad).order_by('num_id').reverse()[:8] if request.method == 'POST': if request.POST['action'] == 'save_registro' and g_e.has_permiso('crea_registros'): try: num_id = Registro.objects.filter(entidad=g_e.ronda.entidad).latest('num_id').num_id + 1 except: num_id = 1000 # Rellenamos en un nuevo registro los datos que no se piden en el formulario nuevo_registro = Registro(entidad=g_e.ronda.entidad, num_id=num_id, registrador=g_e.gauser) # Completamos el formulario con la instancia del nuevo registro creada form1 = RegistroForm(request.POST, prefix="texto", instance=nuevo_registro) if form1.is_valid(): registro = form1.save() for input_file, object_file in request.FILES.items(): for fichero in request.FILES.getlist(input_file): archivo = Fichero.objects.create(fichero=fichero, content_type=fichero.content_type, entidad=g_e.ronda.entidad) registro.ficheros.add(archivo) if request.POST['action'] == 'pdf_registro': id_fich = request.POST['id_registro'] fichero = Fichero.objects.get(id=id_fich) response = HttpResponse(open(RUTA_BASE + fichero.fichero.url, 'rb'), content_type=fichero.content_type) response['Content-Disposition'] = 'attachment; filename="%s"' % (fichero.fich_name) return response return render(request, "registro.html", { 'iconos': ({'tipo': 'button', 'nombre': 'plus', 'texto': 'Nuevo', 'title': 'Crear un nuevo registro', 'permiso': 'crea_registros'}, {'tipo': 'button', 'nombre': 'check', 'texto': 'Aceptar', 'title': 'Grabar el nuevo registro', 'permiso': 'crea_registros'}), 'formname': 'registro', 'registros': registros, }) @login_required() def ajax_registros(request): g_e = request.session['gauser_extra'] if request.is_ajax(): action = request.POST['action'] if action == 'busca_registros': texto = request.POST['texto'] tipo = request.POST['tipo_busqueda'] try: inicio = datetime.strptime(request.POST['id_fecha_inicio'], '%d-%m-%Y') except: inicio = datetime.strptime(request.POST['id_fecha_inicio'], '%d/%m/%Y') try: fin = datetime.strptime(request.POST['id_fecha_fin'], '%d-%m-%Y') except: fin = datetime.strptime(request.POST['id_fecha_fin'], '%d/%m/%Y') registros = Registro.objects.filter(entidad=g_e.ronda.entidad, fecha__gte=inicio, fecha__lte=fin) registros_contain_texto = registros.filter( Q(asunto__icontains=texto) | Q(texto__icontains=texto) | Q(emisor__icontains=texto) | Q( receptor__icontains=texto), ~Q(tipo=tipo)) num_registros = registros_contain_texto.count() max_num_registros = 100 if num_registros > max_num_registros: html = '<b style="color:red;">Se han encontrado %s coincidencias.</b><b><br>' \ 'El sistema está configurado para no mostrar los resultados cuando la cantidad ' \ 'de coincidencias excede de</b> <b style="color:red;">%s</b>.<b><br>Escribe más texto para' \ ' mejorar la búsqueda.</b>' % ( num_registros, max_num_registros) return JsonResponse({'html': html, 'ok': True}) else: html = render_to_string('registro_append.html', {'registros': registros_contain_texto}) return JsonResponse({'html': html, 'ok': True}) elif action == 'registro_append': registro = Registro.objects.get(id=request.POST['id_registro']) accordion = render_to_string('registro_append.html', {'registros': [registro]}) return HttpResponse(accordion) elif action == 'delete_registro' and g_e.has_permiso('borra_registros'): registro = Registro.objects.get(id=request.POST['id']) crear_aviso(request, True, u'Ejecuta borrar registro: %s' % (registro.asunto)) registro.delete() return HttpResponse(True) elif action == 'add_registro' and g_e.has_permiso('crea_registros'): form1 = RegistroForm(prefix="texto") formulario = render_to_string('registro_add.html', {'form1': form1}) return HttpResponse(formulario)
from .graph import Graph from .vertex import Vertex import numpy as np def generate_K(x): spacing = 2*np.pi/(x) g = Graph(monitor=False, figsize=(x, x)) for i in range(x): g.add_vertex(Vertex(name=i, position=((x+3)*np.cos(spacing*i), (x+3)*np.sin(spacing*i)), radius=1)) for j in range(i): g.add_edge(a=i, b=j) return g
""" Functies specifiek voor waterschap Vallei en Veluwe """ import math import numpy as np import geopandas as gpd import pandas as pd import fiona from shapely.geometry import LineString from tohydamogml.domeinen_damo_1_4 import * from tohydamogml.read_database import read_filegdb # Columns in DAMO to search for id of related object DM_COL_CODEGERELATEERD_OBJECT = [ # 'COUPUREID', 'DUIKERSIFONHEVELID', # 'FLEXIBELEWATERKERINGID', 'GEMAALID', # 'SLUISID', 'STUWID', # 'REGENWATERBUFFERCOMPARTIMENTID', # 'TUNNELID', # 'VISPASSAGEID' ] DM_LAYERS = { "hydroobject": "HydroObject", "stuw": "Stuw", "afsluitmiddel": "Afsluitmiddel", "doorstroomopening": "Doorstroomopening", "duikersifonhevel": "DuikerSifonHevel", "gemaal": "Gemaal", "brug": "Brug", "bodemval": "Bodemval", "aquaduct": "Aquaduct", "afvoergebied": "AfvoergebiedAanvoergebied", } COL_OBJECTID = "OBJECTID" def stuw_kruinbreedte(damo_gdf=None, obj=None, damo_kruinbreedte="KRUINBREEDTE", damo_doorstroombreedte="DOORSTROOMBREEDTE", damo_kruinvorm="WS_KRUINVORM"): """ als KRUINBREEDTE is NULL en WS_KRUINVORM =3 (rechthoek) dan KRUINBREEDTE = DOORSTROOMBREEDTE """ return damo_gdf.apply( lambda x: _stuw_get_kruinbreedte_rechthoek(x[damo_kruinbreedte], x[damo_kruinvorm], x[damo_doorstroombreedte]), axis=1) def stuw_laagstedoorstroombreedte(damo_gdf=None, obj=None, damo_doorstroombreedte="DOORSTROOMBREEDTE", damo_kruinvorm="WS_KRUINVORM"): """ als LAAGSTEDOORSTROOMHOOGTE is NULL en WS_KRUINVORM =3 (rechthoek) dan LAAGSTEDOORSTROOMBREEDTE = DOORSTROOMBREEDTE """ return damo_gdf.apply( lambda x: _stuw_get_laagstedoorstroombreedte_rechthoek(x[damo_kruinvorm], x[damo_doorstroombreedte]), axis=1) def _stuw_get_kruinbreedte_rechthoek(kruinbreedte: float, kruinvorm: float, doorstroombreedte: float, kruinvorm_rechthoek=[3.0]): """ als KRUINBREEDTE is NULL en WS_KRUINVORM =3 (rechthoek) dan KRUINBREEDTE = DOORSTROOMBREEDTE """ if np.isnan(kruinbreedte): if kruinvorm in kruinvorm_rechthoek: return doorstroombreedte else: return kruinbreedte def _stuw_get_laagstedoorstroombreedte_rechthoek(kruinvorm: float, doorstroombreedte: float, kruinvorm_rechthoek=[3.0]): """ als LAAGSTEDOORSTROOMHOOGTE is NULL en WS_KRUINVORM =3 (rechthoek) dan LAAGSTEDOORSTROOMBREEDTE = DOORSTROOMBREEDTE """ if kruinvorm in kruinvorm_rechthoek: return doorstroombreedte else: return np.nan def duikerhevelsifon_soortkokervormigeconstructiecode(damo_gdf=None, obj=None, damo_typekruising="TYPEKRUISING"): return damo_gdf.apply(lambda x: _duikerhevelsifon_get_skvccode(x[damo_typekruising]), axis=1) def _duikerhevelsifon_get_skvccode(damo_typekruising): """ Convert DAMO Typekruising to soortkokervormigeconstructiecode """ if TYPEKRUISING[damo_typekruising] == "duiker": return 1 elif TYPEKRUISING[damo_typekruising] == "hevel": return 2 elif TYPEKRUISING[damo_typekruising] == "sifon": return 3 else: return 999 def obj_soortmateriaal(damo_gdf=None, obj=None, damo_soortmateriaal="SOORTMATERIAAL"): return damo_gdf.apply(lambda x: _obj_get_soortmateriaal(x[damo_soortmateriaal]), axis=1) def _obj_get_soortmateriaal(materiaalcode): """Return Strickler Ks waarde Bron: Ven te Chow - Open channel hydraulics tbl 5-6 TODO: omschrijven naar dictionary in config""" if materiaalcode in MATERIAALKUNSTWERK.keys(): if MATERIAALKUNSTWERK[materiaalcode] == "beton": return 75 if MATERIAALKUNSTWERK[materiaalcode] == "gewapend beton": return 75 if MATERIAALKUNSTWERK[materiaalcode] == "metselwerk": return 65 if MATERIAALKUNSTWERK[materiaalcode] == "metaal": return 80 if MATERIAALKUNSTWERK[materiaalcode] == "aluminium": return 80 if MATERIAALKUNSTWERK[materiaalcode] == "ijzer": return 80 if MATERIAALKUNSTWERK[materiaalcode] == "gietijzer": return 75 if MATERIAALKUNSTWERK[materiaalcode] == "PVC": return 80 if MATERIAALKUNSTWERK[materiaalcode] == "gegolfd plaatstaal": return 65 if MATERIAALKUNSTWERK[materiaalcode] == "asbestcement": return 110 return 999 def afsluitmiddel_codegerelateerdobject(damo_gdf=None, obj=None, col_relaties=DM_COL_CODEGERELATEERD_OBJECT): """Get code of related object. Is more the one code is defined, None value is returned TODO: improve code """ code_src = [] code_rel = [] for objectname in col_relaties: if DM_LAYERS[objectname[0:-2].lower()] in fiona.listlayers(obj["source"]['path']): gdf_tmp = _create_gdf(DM_LAYERS[objectname[0:-2].lower()], obj["source"]['path'], index_name=obj["index"]['name'], index_col_src=obj["index"]["src_col"]) for index, value in damo_gdf[objectname].dropna().iteritems(): code_src.append(index) code_rel.append(gdf_tmp[gdf_tmp['OBJECTID'].astype(int) == int(value)].index.values[0]) damo_gdf["relaties"] = pd.DataFrame(data=code_rel, index=code_src) return damo_gdf["relaties"] def brug_pt_to_line(damo_gdf=None): return damo_gdf.apply(lambda x: _brug_profile_geometry(x, lijn_lengte="WS_LENGTEBRUG", rotate_degree=0), axis=1) def brug_profile_geometry(damo_gdf=None): return damo_gdf.apply(lambda x: _brug_profile_geometry(x, lijn_lengte="WS_BREEDTEBRUG", rotate_degree=90), axis=1) def _brug_profile_geometry(row, direction="RICHTING", lijn_lengte="WS_LENGTEBRUG", rotate_degree=0, default_width=1, default_dir=0): """ Convert bridge point to line direction in degrees""" dir = math.radians(row[direction] + rotate_degree) if not pd.isnull(row[direction]) else math.radians( default_dir + rotate_degree) length = row[lijn_lengte] if not pd.isnull(row[lijn_lengte]) else default_width dx = math.cos(dir) * 0.5 * length dy = math.sin(dir) * 0.5 * length return LineString([(row.geometry.x - float(dx), row.geometry.y - float(dy)), (row.geometry.x + float(dx), row.geometry.y + float(dy))]) def _create_gdf(layer, filegdb, index_name: str, index_col_src: str = None): """ Create geodataframe from database. Optionally remove object based on statusobjectcode filter: dict, {"column_name": [values] } filter_type: str, include or exclude """ gdf = read_filegdb(filegdb, layer=layer) gdf.set_index(index_col_src, inplace=True) gdf.index.names = [index_name] # remove objects without a unique code gdf = gdf[gdf.index.notnull()] return gdf
import os import json import pathlib import eland as ed import pandas as pd from elasticsearch import Elasticsearch from slugify import slugify from typer import Typer app = Typer() column_values = { "INSTNM": str, "INSTURL": str, "CITY": str, "ST_FIPS": int, "PBI": float, "ANNHI": float, "TRIBAL": float, "AANAPII": float, "HSI": float, "NANTI": float, "HBCU": float, "CURROPER": float, "LATITUDE": float, "LONGITUDE": float, "MENONLY": float, "WOMENONLY": float, "CONTROL": int, "RELAFFIL": str, "HIGHDEG": str, "MAIN": float, "HCM2": float, } def _translate_code(json_file, df_column, if_None: str="Unknown"): j_file = json.loads(pathlib.Path(json_file).read_text()) return lambda x:j_file.get(str(x), if_None) converter_list = [ ("RELAFFIL", _translate_code("translations/relaffil.json", "RELAFFIL", if_None="None")), ("CONTROL", _translate_code("translations/control.json", "CONTROL")), ("ST_FIPS", _translate_code("translations/st_fips.json", "ST_FIPS")), ("HIGHDEG", _translate_code("translations/high_deg.json", "HIGHDEG")), ] converters = {x:y for x,y in converter_list} # To return "ST_FIPS": lambda x:st_fips_json.get(str(x), "Unknown"), etc base_df = pd.read_csv( "base_data/Most-Recent-Cohorts-All-Data-Elements.csv", usecols=list(column_values.keys()), converters=converters, dtype=column_values, ) base_df.fillna(0, inplace=True) base_df['location'] = base_df.apply(lambda x:f"{x.LATITUDE}, {x.LONGITUDE}", axis=1) # Create DATAFRAME FOR ACTIVE HBCUs and PBIs hbcus = base_df.loc[(base_df.HBCU == 1) & (base_df.CURROPER == 1)] pbis = base_df.loc[(base_df.PBI == 1) & (base_df.CURROPER == 1)] def _gen_slug_link(school): """create markdown link to associated pages object""" slug = slugify(school.INSTNM) return f"[{school.INSTNM}](/pages/{slug}.md) - {school.INSTURL}" @app.command() def gen_list( filename: pathlib.Path = "readme.md", title="HBCUs in the the United States" ): """build readme with readme_templates""" states = [] for df in (hbcus, pbis): df["readme"] = df.apply(_gen_slug_link, axis=1) for name in sorted(df["ST_FIPS"].unique()): state_sections = {} for df_name, df in (("hbcus", hbcus), ("pbis", pbis)): schools = df[df["ST_FIPS"] == name]["readme"].values.tolist() if schools: schools = "\n\n".join(schools) else: schools = "None" state_sections[df_name] = schools state_section = f"""## {name} ### HBCUs {state_sections['hbcus']} ### PBIs {state_sections['pbis']}""" states.append(state_section) states = "\n".join(states) filename.write_text( f"""# {title} {states} --- #### source: [College Scorecard US Dept. of Education](https://data.ed.gov/dataset/college-scorecard-all-data-files-through-6-2020/resources?resource=823ac095-bdfc-41b0-b508-4e8fc3110082) #### license: [MIT License](/LICENSE)""" ) # Elastic Load Data client = Elasticsearch( cloud_id=os.environ.get("ES_CLOUD_ID"), http_auth=( os.environ.get("ES_USERNAME"), os.environ.get("ES_PASSWORD"), ), ) es_type_overrides = { "location": "geo_point", } @app.command() def load_to_es(): ed.pandas_to_eland( pd_df=base_df, es_client=client, es_dest_index=f"US_COLLEGES".lower(), es_if_exists="replace", es_refresh=True, use_pandas_index_for_es_ids=False, es_type_overrides = es_type_overrides, ) @app.command() def build_pages(): # TODO REMOVE DEPENDENCY ON WIKIPEDIA for df in (hbcus, pbis): df.drop(columns=['CURROPER', 'LATITUDE', 'LONGITUDE'], inplace=True) dfj = df.to_dict(orient="records") for row in dfj: f_meta = [] f_name = row.pop('INSTNM') filepath = pathlib.Path(slugify(f_name)).with_suffix(".md") f_url = row.pop('INSTURL').rstrip('/') for name, val in row.items(): if val in (1.0, 0.0): if val: f_name += f" - {name}" else: f_meta.append(f"**{name}**: {val}") f_text = "\n\n".join(f_meta) page = pathlib.Path("pages").joinpath(filepath) page.write_text( f"""# {f_name} ### {f_url} --- {f_text}""" ) if __name__ == "__main__": app()
import os ROOT_DIR = os.path.abspath(os.path.dirname(__file__)) STATIONS_PATH = os.path.join(ROOT_DIR, "stations.json")
from django.urls import path from django.contrib.auth import views as auth_views from . import views from django.conf.urls import url app_name = "departments" urlpatterns = [ path('create/new/', views.CreateDepartment , name='create_department'), path('UIC/all/departments/', views.AllDepartments.as_view(), name='all_departments'), path('edit/<department_slug>/', views.UpdateDepartment.as_view(), name='update_department'), path('<department_slug>/', views.DepartmentDetail.as_view(), name='department_detail'), path('department/<department_slug>/delete', views.DepartmentDelete.as_view(), name='delete_department'), path('<department_slug>/students/', views.DepartmentStudents.as_view(), name='department_students' ), path('<department_slug>/teachers/', views.DepartmentTeachers.as_view(), name='department_teachers' ), ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ################################################### # # pitch2svg.py # # Make an SVG of a pitch trace. # # Based loosely off code from Martijn Millecamp # (martijn.millecamp@student.kuleuven.be) and # Miroslav Masat (miro.masat@gmail.com): # https://github.com/miromasat/pitch-detection-librosa-python # ################################################### from __future__ import print_function, unicode_literals, division, absolute_import from io import open import logging import argparse import os import numpy as np from math import floor import pystache import librosa from audio_util import * FMIN = 80 FMAX = 1000 THRESHOLD = 0.75 SVG_TEMPLATE = '''<svg id='pitch' preserveAspectRatio='none' viewBox="0 0 {{width}} {{height}}" xmlns="http://www.w3.org/2000/svg" height="{{height}}" width="{{width}}"> <polygon points="{{#points}}{{x}},{{y}} {{/points}}"></polygon> </svg> ''' def render_svg(pitches, width=512, height=100, zero_height=5): data = { "height": height, "width": width, "points": [] } data["points"].append({"x":0.0, "y": float(height)}) data["points"].append({"x":0.0, "y": float(height - zero_height)}) for i, pitch in enumerate(pitches): x = i + 0.5 y = (1.0 - pitch) * (height - zero_height) y = "%.2f" % y data["points"].append({"x": x, "y": y}) data["points"].append({"x":float(width), "y": float(height - zero_height)}) data["points"].append({"x":float(width), "y": float(height)}) return pystache.render(SVG_TEMPLATE, data) def extract_pitches(waveform, nbuckets=512): nsamples = waveform.shape[0] hop_length = int(floor(nsamples / nbuckets)) pitches, magnitudes = librosa.core.piptrack(y=waveform, sr=SAMPLE_RATE, fmin=FMIN, fmax=FMAX, hop_length=hop_length, threshold=THRESHOLD) pitches = pitches[:,:nbuckets] pitches = pitches.max(axis=0) pitches /= pitches.max() return smooth(pitches, window_size=int(floor(nbuckets/40))) def make_pitch_svg(input_path, nbuckets=512, height=100, width=512, zero_height=5): waveform = load_wav_or_smil(input_path) pitches = extract_pitches(waveform, nbuckets) return render_svg(pitches, width, height, zero_height) def main(input_path, output_path, nbuckets=512, width=512, height=100, zero_height=5): svg = make_pitch_svg(input_path, nbuckets, width, height, zero_height) save_txt(output_path, svg) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Convert a WAV or SMIL file to a SVG file of its pitch trace') parser.add_argument('input', type=str, help='Input WAV or SMIL file') parser.add_argument('output', type=str, help='Output SVG file') parser.add_argument('--nbuckets', type=int, default=512, help='Number of sample buckets (default: 256)') parser.add_argument('--width', type=int, default=512, help='Width of output SVG (default: 512)') parser.add_argument('--height', type=int, default=100, help='Height of output SVG (default: 100)') parser.add_argument('--zero_height', type=int, default=5, help='Padding around zero (default: 5)') args = parser.parse_args() main(args.input, args.output, args.nbuckets, args.width, args.height, args.zero_height)
# Copyright 2014 Diamond Light Source Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module:: time_based_correction :platform: Unix :synopsis: A time-based dark and flat field correction using linear\ interpolation .. moduleauthor:: Nicola Wadeson <scientificsoftware@diamond.ac.uk> """ import numpy as np from savu.plugins.driver.cpu_plugin import CpuPlugin from savu.plugins.corrections.base_correction import BaseCorrection from savu.plugins.utils import register_plugin @register_plugin class TimeBasedCorrection(BaseCorrection, CpuPlugin): """ Apply a time-based dark and flat field correction to data. :param in_range: Set to True if you require values in the \ range [0, 1]. Default: False. """ def __init__(self, name="TimeBasedCorrection"): super(TimeBasedCorrection, self).__init__(name) def pre_process(self): self.count = 0 inData = self.get_in_datasets()[0] pData = self.get_plugin_in_datasets()[0] self.mfp = inData._get_plugin_data()._get_max_frames_process() self.proj_dim = \ inData.get_data_dimension_by_axis_label('rotation_angle') self.slice_dir = pData.get_slice_dimension() nDims = len(pData.get_shape()) self.sslice = [slice(None)]*nDims self.image_key = inData.data.get_image_key() changes = np.where(np.diff(self.image_key) != 0)[0] + 1 self.split_key = np.split(self.image_key, changes) self.split_idx = np.split(np.arange(len(self.image_key)), changes) self.data_key = inData.data.get_index(0) self.dark, self.dark_idx = self.calc_average(inData.data.dark(), 2) self.flat, self.flat_idx = self.calc_average(inData.data.flat(), 1) inData.meta_data.set('multiple_dark', self.dark) inData.meta_data.set('multiple_flat', self.flat) def calc_average(self, data, key): im_key = np.where(self.image_key == key)[0] splits = np.where(np.diff(im_key) > 1)[0]+1 local_idx = np.split(np.arange(len(im_key)), splits) mean_data = [np.mean(data[np.array(local_idx[i])], axis=0) for i in range(len(local_idx))] list_idx = list(np.where([key in i for i in self.split_key])[0]) return mean_data, list_idx def process_frames(self, data): proj = data[0] frame = self.get_global_frame_index()[self.count] flat = self.calculate_flat_field( *self.find_nearest_frames(self.flat_idx, frame)) dark = self.calculate_dark_field( *self.find_nearest_frames(self.dark_idx, frame)) if self.parameters['in_range']: proj = self.in_range(proj, flat) self.count += 1 return np.nan_to_num((proj-dark)/(flat-dark)) def in_range(self, data, flat): data[data > flat] = flat[data > flat] return data def find_nearest_frames(self, idx_list, value): """ Find the index of the two entries that 'value' lies between in \ 'idx_list' and calculate the distance between each of them. """ global_val = self.data_key[value] # find which list (index) global_val belongs to list_idx = [global_val in i for i in self.split_idx].index(True) val_list = self.split_idx[list_idx] # find length of list length_list = len(val_list) # find position of global_val in list and distance from each end pos = np.where(val_list == global_val)[0][0] dist = [(length_list-pos)/float(length_list), pos/float(length_list)] # find closest before and after idx_list entries new_list = list(np.sort(np.append(idx_list, list_idx))) new_idx = new_list.index(list_idx) entry1 = new_idx-1 if new_idx != 0 else new_idx+1 entry2 = new_idx+1 if new_idx != len(new_list)-1 else new_idx-1 before = idx_list.index(new_list[entry1]) after = idx_list.index(new_list[entry2]) return [before, after], dist def calculate_flat_field(self, frames, distance): return self.flat[frames[0]]*distance[0] + \ self.flat[frames[1]]*distance[1] def calculate_dark_field(self, frames, distance): return self.dark[frames[0]]*distance[0] + \ self.dark[frames[1]]*distance[1] def get_max_frames(self): return 'single'
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Defines the UIAutomatorOptions named tuple.""" import collections UIAutomatorOptions = collections.namedtuple('UIAutomatorOptions', [ 'tool', 'cleanup_test_files', 'push_deps', 'annotations', 'exclude_annotations', 'test_filter', 'test_data', 'save_perf_json', 'screenshot_failures', 'uiautomator_jar', 'uiautomator_info_jar', 'package_name'])
#!/usr/bin/env python3 # https://codeforces.com/problemset/problem/760/A m,d = list(map(int,input().split())) l = [None] + [31,28] + [31,30]*2 + [31,31] + [30,31]*2 print((l[m]+d+5)//7)
""" a person object: fields + behavior change: the tax method is now a computed attribute """ class Person: def __init__(self, name, job, pay=0): self.name = name self.job = job self.pay = pay # real instance data def __getattr__(self, attr): # on person.attr if attr == 'tax': return self.pay * 0.30 # computed on access else: raise AttributeError() # other unknown names def info(self): return self.name, self.job, self.pay, self.tax
from django.db import models from django.urls import reverse # Create your models here. class Schedule(models.Model): DAY_CHOICES = [ ('A','A'), ('B','B'), ('C','C'), ('D','D'), ('E','E'), ] day = models.CharField(max_length=1,choices=DAY_CHOICES) date = models.DateField(auto_now_add=True) def __str__(self): return self.day class Routine(models.Model): DAY_CHOICES = [ ('A','A'), ('B','B'), ('C','C'), ('D','D'), ('E','E'), ] day = models.CharField(max_length=1,choices=DAY_CHOICES) morning_lab = models.BooleanField(default = False) first_period = models.CharField(max_length=30, null = " ",blank=True,default = "-") second_period = models.CharField(max_length=30, null = " ",blank=True,default = "-") third_period = models.CharField(max_length=30, null = " ",blank=True,default = "-") after_morning_lab=models.BooleanField(default = False) fourth_period = models.CharField(max_length=30, null = " ",blank=True,default = "-") fifth_period = models.CharField(max_length=30, null = " ",blank=True,default = "-") sixth_period = models.CharField(max_length=30, null = " ",blank=True,default = "-") afternoon_lab=models.BooleanField(default = False) seventh_period = models.CharField(max_length=30, null = " ",blank=True,default = "-") eigth_period = models.CharField(max_length=30, null = " ",blank=True,default = "-") ninth_period = models.CharField(max_length=30, null = " ",blank=True,default = "-") def __str__(self): return self.day + " Day Routine"
''' Functions given the file list of korenberg photography For each block, the entier file list is split into 3 groups: filelist = bad + moderate + great good files = moderate + great ''' import matplotlib.pyplot as plt import PyCACalebExtras.Common as cc import PyCACalebExtras.Display as cd import PyCA.Core as ca import time plt.ion() # tell it to use interactive mode -- see results immediately import glob from subprocess import Popen, PIPE plt.close('all') def get_file_dist(fname): return int(fname[fname.rfind('_')+1: fname.rfind('.')]) def get_imset(hd=False, col='bw'): if hd is False: if col == 'bw': imdir = '/home/sci/crottman/korenberg/data/photo/seg_low_res_crop8/bw/' elif col == 'rgb': imdir = '/home/sci/crottman/korenberg/data/photo/seg_low_res_crop8/color/' else: if col == 'bw': imdir = '/home/sci/crottman/korenberg/data/photo/seg_high_res_crop/bw/' elif col == 'rgb': imdir = '/home/sci/crottman/korenberg/data/photo/seg_high_res_crop/color/' files = glob.glob(imdir + 'block1/' + '*.png') newfiles1 = sorted(files, key=lambda x: get_file_dist(x)) files = glob.glob(imdir + 'block2/' + '*.png') newfiles2 = sorted(files, key=lambda x: get_file_dist(x)) files = glob.glob(imdir + 'block3/' + '*.png') newfiles3 = sorted(files, key=lambda x: get_file_dist(x)) files = glob.glob(imdir + 'block4/' + '*.png') newfiles4 = sorted(files, key=lambda x: get_file_dist(x)) # Very Bad Files b1 = [ '/DDP_Seg_660.png', '/DDP_Seg_12180.png', '/DDP_Seg_12210.png', '/DDP_Seg_12240.png', '/DDP_Seg_12270.png' ] b2 = [ '/DDP_Seg_3030.png', ] b3 = [ '/DDP_Seg_3300.png', ] b4 = [ '/DDP_Seg_3030.png', '/DDP_Seg_3060.png', '/DDP_Seg_4560.png', '/DDP_Seg_15450.png', '/DDP_Seg_18420.png', '/DDP_Seg_22920.png', '/DDP_Seg_25530.png', # wrong size '/DDP_Seg_5070.png', '/DDP_Seg_10200.png', # out of order ] # Moderately bad files m1 = [] m2 = [ '/DDP_Seg_12570.png', '/DDP_Seg_12660.png', '/DDP_Seg_12690.png', '/DDP_Seg_12720.png', '/DDP_Seg_12750.png', '/DDP_Seg_12780.png', '/DDP_Seg_12810.png', '/DDP_Seg_12840.png', '/DDP_Seg_12870.png', '/DDP_Seg_12900.png', '/DDP_Seg_12930.png', '/DDP_Seg_12990.png', '/DDP_Seg_13020.png', '/DDP_Seg_13140.png', '/DDP_Seg_13200.png', '/DDP_Seg_13230.png', '/DDP_Seg_13260.png', '/DDP_Seg_13350.png', '/DDP_Seg_13380.png', '/DDP_Seg_13410.png', '/DDP_Seg_13440.png', '/DDP_Seg_13470.png', '/DDP_Seg_13500.png', '/DDP_Seg_13530.png', '/DDP_Seg_13590.png', '/DDP_Seg_13620.png', '/DDP_Seg_13680.png', '/DDP_Seg_13710.png', '/DDP_Seg_13740.png', '/DDP_Seg_13770.png' ] m3 = [ # Ice damage: '/DDP_Seg_0.png', '/DDP_Seg_30.png', '/DDP_Seg_60.png', '/DDP_Seg_90.png', '/DDP_Seg_120.png', '/DDP_Seg_150.png', '/DDP_Seg_180.png', '/DDP_Seg_210.png', '/DDP_Seg_390.png', '/DDP_Seg_420.png', '/DDP_Seg_450.png', '/DDP_Seg_480.png', '/DDP_Seg_510.png', '/DDP_Seg_540.png', '/DDP_Seg_570.png', '/DDP_Seg_600.png', '/DDP_Seg_630.png', '/DDP_Seg_660.png', '/DDP_Seg_690.png', '/DDP_Seg_1440.png', '/DDP_Seg_1470.png', '/DDP_Seg_1500.png', '/DDP_Seg_1530.png', '/DDP_Seg_1560.png', '/DDP_Seg_1590.png', '/DDP_Seg_1620.png', '/DDP_Seg_240.png', '/DDP_Seg_270.png', '/DDP_Seg_300.png', '/DDP_Seg_330.png', '/DDP_Seg_360.png', '/DDP_Seg_720.png', '/DDP_Seg_750.png', '/DDP_Seg_780.png', '/DDP_Seg_810.png', '/DDP_Seg_840.png', '/DDP_Seg_870.png', '/DDP_Seg_900.png', '/DDP_Seg_930.png', '/DDP_Seg_960.png', '/DDP_Seg_990.png', '/DDP_Seg_1020.png', '/DDP_Seg_1050.png', '/DDP_Seg_1080.png', '/DDP_Seg_1110.png', '/DDP_Seg_1140.png', '/DDP_Seg_1170.png', '/DDP_Seg_1200.png', '/DDP_Seg_1230.png', '/DDP_Seg_1260.png', '/DDP_Seg_1290.png', '/DDP_Seg_1320.png', '/DDP_Seg_1350.png', '/DDP_Seg_1380.png', '/DDP_Seg_1410.png', '/DDP_Seg_1440.png', '/DDP_Seg_4950.png', '/DDP_Seg_4980.png', '/DDP_Seg_5010.png', '/DDP_Seg_5040.png', '/DDP_Seg_5070.png', '/DDP_Seg_5100.png', '/DDP_Seg_5130.png', '/DDP_Seg_5190.png', '/DDP_Seg_5220.png', '/DDP_Seg_5250.png', '/DDP_Seg_5280.png', '/DDP_Seg_5310.png', '/DDP_Seg_5340.png', '/DDP_Seg_5370.png', '/DDP_Seg_5400.png', '/DDP_Seg_5430.png', ] m4 = [] imset = [[newfiles1, b1, m1], [newfiles2, b2, m2], [newfiles3, b3, m3], [newfiles4, b4, m4]] return imset def get_all_good_files(hd=False, col='bw'): '''returns a list of all of the good (moderate + great) files''' return get_good_files(0, hd, col) + \ get_good_files(1, hd, col) + \ get_good_files(2, hd, col) + \ get_good_files(3, hd, col) def get_all_great_files(hd=False, col='bw'): '''returns a list of all of the great (neither moderate or poor) files''' return get_great_files(0, hd, col) + \ get_great_files(1, hd, col) + \ get_great_files(2, hd, col) + \ get_great_files(3, hd, col) def get_all_files(hd=False, col='bw'): '''returns a list of all (poor + moderate + great) files''' [[newfiles1, l1, m1], [newfiles2, l2, m2], [newfiles3, l3, m3], [newfiles4, l4, m4]] = get_imset(hd, col) return newfiles1+newfiles2+newfiles3+newfiles4 def get_bad_files(idx=0, hd=False, col='bw'): '''returns a list of all of the bad (neither moderate or great) files for a given set''' imset = get_imset(hd, col) filelist = imset[idx][0] badfilelist = imset[idx][1] badlist = [] for badstr in badfilelist: badlist += [f for f in filelist if badstr in f] return badlist def get_mod_files(idx=0, hd=False, col='bw'): '''returns a list of all of the moderate (neither poor or great) files for a given set''' imset = get_imset(hd, col) filelist = imset[idx][0] modfilelist = imset[idx][2] modlist = [] for modstr in modfilelist: modlist += [f for f in filelist if modstr in f] return modlist def get_good_files(idx=0, hd=False, col='bw'): '''returns a list of all of the good (moderate and great) files for a given set''' imset = get_imset(hd, col) filelist = imset[idx][0] badfilelist = imset[idx][1] goodlist = filelist[:] for badfile in badfilelist: goodlist = [f for f in goodlist if badfile not in f] return goodlist def get_great_files(idx=0, hd=False, col='bw'): '''returns a list of all of the great (neither moderate or poor) files for a given set''' imset = get_imset(hd, col) filelist = imset[idx][0] badfilelist = imset[idx][1] + imset[idx][2] goodlist = filelist[:] for badfile in badfilelist: goodlist = [f for f in goodlist if badfile not in f] return goodlist def show_files(filelist, sleeptime=.6): '''given a list of files, it shows all those images (Doesn't yet work for color images''' plt.figure() loadtimelist = [] if type(filelist) is not list: filelist = [filelist] for i in xrange(len(filelist)): fname = filelist[i] t = time.time() name = fname[fname.rfind('/') : fname.rfind('.')] Im = cc.LoadTIFF(fname, ca.MEM_HOST) print name, i cd.DispImage(Im, newFig=False, title=name) p = Popen(['xsel', '-pi'], stdin=PIPE) p.communicate(input="'" + name + ".png'" + ',\n') loadtime = time.time() - t loadtimelist.append(loadtime) time.sleep(sleeptime) # plt.figure() # plt.plot(loadtimelist) if __name__ == '__main__': # show_files(get_bad_files(3), .5) # show_files(get_good_files(3)[310:], 1) # print 'block1:', len(get_great_files(0)), ',', len(get_good_files(0)), 'out of', len(newfiles1) # print 'block2:', len(get_great_files(1)), ',', len(get_good_files(1)), 'out of', len(newfiles2) # print 'block3:', len(get_great_files(2)), ',', len(get_good_files(2)), 'out of', len(newfiles3) # print 'block4:', len(get_great_files(3)), ',', len(get_good_files(3)), 'out of', len(newfiles4) # show_files(get_great_files(3)[:], .1) # show_files(get_pretty_bad_files(1)[:], .5) # show_files(get_mod_files(2)) # print get_great_files(0) show_files(get_bad_files(3))
""" Example of using the API class """ from filmweb_api import FilmwebApi if __name__ == '__main__': filmweb_api = FilmwebApi('USERNAME', 'PASSWORD') filmweb_api.login() films = filmweb_api.get_user_films_want_to_see() print(films) films = filmweb_api.get_film_info_full(824633) print(films)
import time import logging import threading class Log(object): _loggers = {} CRITICAL=logging.CRITICAL ERROR=logging.ERROR WARNING=logging.WARNING INFO=logging.INFO DEBUG=logging.DEBUG NOTSET=logging.NOTSET chosen_level=logging.INFO COLOURS = { "critical": "\033[1;31;40m", # red "error": "\033[1;33;40m", # yellow "warning": "\033[1;35;40m", # purple "info": "\033[1;37;40m", # white "debug": "\033[1;37;40m" # grey } @staticmethod def debug(tag, message=None): """ Post a debug-level message. :param String tag: tag for the log message. :param String message: message to post, if one is not provided, the tag is used as the message instead. :return: None """ Log._post("debug", tag, message) @staticmethod def info(tag, message=None): """ Post an info-level message. :param String tag: tag for the log message. :param String message: message to post, if one is not provided, the tag is used as the message instead. :return: None """ Log._post("info", tag, message) @staticmethod def warning(tag, message=None): """ Post a warning-level message. :param String tag: tag for the log message. :param String message: message to post, if one is not provided, the tag is used as the message instead. :return: None """ Log._post("warning", tag, message) @staticmethod def error(tag, message=None): """ Post an error-level message. :param String tag: tag for the log message. :param String message: message to post, if one is not provided, the tag is used as the message instead. :return: None """ Log._post("error", tag, message) @staticmethod def critical(tag, message=None): """ Post a critical-level message. :param String tag: tag for the log message. :param String message: message to post, if one is not provided, the tag is used as the message instead. :return: None """ Log._post("critical", tag, message) @staticmethod def log(tag, message=None): """ Post a log-level message. :param String tag: tag for the log message. :param String message: message to post, if one is not provided, the tag is used as the message instead. :return: None """ Log._post("log", tag, message) @staticmethod def exception(tag, message=None): """ Post an exception-level message. :param String tag: tag for the log message. :param String message: message to post, if one is not provided, the tag is used as the message instead. :return: None """ Log._post("exception", tag, message) @staticmethod def init(level): """ Initiate the logging system. :param int level: level to set for the logger (only applies on first call, can't be changed once logger is created). :return: Logger """ Log.chosen_level = level logging.basicConfig( format="%(levelname)s\t%(name)s\t%(asctime)s\t%(message)s", level=level) @staticmethod def _post(level, tag, message=None): """ Post a message to a logger of a given tag at the given level. :param String tag: tag for the log message. :param String level: level of the log message, as a lowercase String, :param String message: message to post, the message is posted as-is, but in the right colour. :return: None """ if message == None: message = tag tag = "hotword" message = "%s%s\033[0;37;40m" % (Log.COLOURS[level], message) logger = Log._get_logger(level, tag) method = getattr(logger, level) method(Log._message(message)) @staticmethod def _get_logger(level, tag): """ Retrieve a Logger for a given tag. :param int level: level to set for the logger (only applies on first call, can't be changed once logger is created). :param String tag: tag for the log message. :return: Logger """ try: return Log._loggers[tag] except KeyError: Log._loggers[tag] = logging.getLogger(tag) Log._loggers[tag].setLevel(Log.chosen_level) return Log._loggers[tag] @staticmethod def _message(message): """ Augment a message by including Thread information. :param String message: message to post, adds time and Thread information to the String. :return: String """ str_thread = "Thread-%d" % threading.current_thread().ident return "%s\t%s" % (str_thread, message)
import numpy as np import numpy.linalg as la class GROUSE(object): def __init__(self, n, d, U = None, eta = None): self.n = n self.d = d if U is not None: self.U = U else: self.U = np.eye(N=self.n, M=self.d) if eta is not None: self.eta0 = eta else: self.eta0 = 10.0 self.it = 1.0 def add_data(self, v): mask_c = np.isnan(v) mask = 1 - mask_c U = self.U n = self.n d = self.d Ov = v[mask==1] OU = U[mask==1,:] w, _, __, ___ = la.lstsq(OU, Ov) p = U.dot(w) r = np.zeros((n,)) r[mask==1] = Ov - p[mask==1] sigma = la.norm(r) * la.norm(p) eta = self.eta0 / self.it pw = la.norm(p) * la.norm(w) rw = la.norm(r) * la.norm(w) if pw == 0 or rw == 0: return U = U + (np.cos(sigma * eta) - 1.0) * np.outer(p, w) / pw \ + np.sin(sigma * eta) * np.outer(r, w) / rw self.U = U self.it += 1.0
# I was going to do numbers and strings together but nope, we ain't doing it that way # write a string using " " or ' ' "this is a string" 'this is also a string' """ this is also a string """ ''' this as well ''' "i'll stop being annoying now" a_string_variable = "assign a string to a variable" print("i know this seems stupid but yeah, this is how you print strings") # okay enough playing around example_string = "hello world" # access elements of a string using [] # string indexes start from 0 x = example_string[4] print(x) print(example_string[6]) print(example_string[-2]) #access elements from the right # get a range of elements y = example_string[3:7] print(y) print(example_string[-2:-5]) # some string methods now another_example = " Hello world " uppercase = another_example.upper() lowercase = another_example.lower() length_of_string = len(another_example) remove_white_spaces = another_example.strip() split_space_seperated_string_into_list = another_example.split(" ") a_string = "Hi, Hello" split_string_into_list_by_comma = a_string.split(",") print("orignal string:", another_example) print("uppercase: ", uppercase) print("lowercase: ", lowercase) print("remove white spaces: ", remove_white_spaces) print("split with space: ", uppercase) print("\nother example string:", a_string) print("split string with comma:", split_string_into_list_by_comma) # you can use different operators to split the string with # there are lots of string methods, i'll keep on adding more in the future, # but till then please check out the python documentation for more methods # concat string string_one = "first string" string_two = " second string" concat_string = string_one + string_two print("\nstring one: ", string_one) print("string two: ", string_two) print("concat string: ", concat_string) # concat string and numbers using the format method an_integer_num = 775 a_floating_num = 44.5 string_for_formatting = "\nThe integer number is {} and the floating number is {}." print(string_for_formatting.format(an_integer_num, a_floating_num)) # find substrings in string print("find:", string_for_formatting.find("he")) # this will return the first index where it found the substring print("rfind:", string_for_formatting.rfind("he")) # this will return the last index where it found the substring
# yedict_script.py """Script for generating two files from the yedict dictionary. One for traditional characters and one for simplified characters. One word per line. """ path = 'data/yedict.txt' simp_path = 'data/yue-Hans.txt' trad_path = 'data/yue-Hant.txt' def main(): with open(path, 'r') as f: with open(simp_path, 'w') as simp_f: with open(trad_path, 'w') as trad_f: for line in f: trad = line.split()[0] simp = line.split()[1] simp_f.write(simp + '\n') trad_f.write(trad + '\n') if __name__ == '__main__': main()
import os import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib.dates import MonthLocator # import matplotlib.ticker import numpy as np from sense.canopy import OneLayer from sense.soil import Soil from sense import model import scipy.stats from scipy.optimize import minimize import pdb # Helper functions for statistical parameters #-------------------------------------------- def rmse_prediction(predictions, targets): """ calculation of RMSE """ return np.sqrt(np.nanmean((predictions - targets) ** 2)) def linregress(predictions, targets): """ Calculate a linear least-squares regression for two sets of measurements """ slope, intercept, r_value, p_value, std_err = scipy.stats.linregress(predictions, targets) return slope, intercept, r_value, p_value, std_err def read_mni_data(path, file_name, extention, field, sep=';'): """ read MNI campaign data """ df = pd.io.parsers.read_csv(os.path.join(path, file_name + extension), header=[0, 1], sep=sep) df = df.set_index(pd.to_datetime(df[field]['date'])) df = df.drop(df.filter(like='date'), axis=1) return df def read_agrometeo(path, file_name, extentio, sep=';', decimal=','): """ read agro-meteorological station (hourly data) """ df = pd.read_csv(os.path.join(path, file_name + extension), sep=sep, decimal=decimal) df['SUM_NN050'] = df['SUM_NN050'].str.replace(',','.') df['SUM_NN050'] = df['SUM_NN050'].str.replace('-','0').astype(float) df['date'] = df['Tag'] + ' ' + df['Stunde'] df = df.set_index(pd.to_datetime(df['date'], format='%d.%m.%Y %H:%S')) return df def filter_relativorbit(data, field, orbit1, orbit2=None, orbit3=None, orbit4=None): """ data filter for relativ orbits """ output = data[[(check == orbit1 or check == orbit2 or check == orbit3 or check == orbit4) for check in data[(field,'relativeorbit')]]] return output def smooth(x,window_len=11,window='hanning'): if x.ndim != 1: raise ValueError #, "smooth only accepts 1 dimension arrays." if x.size < window_len: raise ValueError #, "Input vector needs to be bigger than window size." if window_len<3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError #, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'" s=np.r_[2*x[0]-x[window_len-1::-1],x,2*x[-1]-x[-1:-window_len:-1]] if window == 'flat': #moving average w=np.ones(window_len,'d') else: w=eval('np.'+window+'(window_len)') y=np.convolve(w/w.sum(),s,mode='same') return y[window_len:-window_len+1] def read_data(path, file_name, extension, field, path_agro, file_name_agro, extension_agro): # Read MNI data df = read_mni_data(path, file_name, extension, field) # Read agro-meteorological station df_agro = read_agrometeo(path_agro, file_name_agro, extension_agro) # filter for field field_data = df.filter(like=field) # filter for relativorbit field_data_orbit = filter_relativorbit(field_data, field, 95, 168) # field_data = field_data_orbit # get rid of NaN values parameter_nan = 'LAI' field_data = field_data[~np.isnan(field_data.filter(like=parameter_nan).values)] # available auxiliary data theta_field = np.deg2rad(field_data.filter(like='theta')) # theta_field[:] = 45 sm_field = field_data.filter(like='SM') height_field = field_data.filter(like='Height')/100 lai_field = field_data.filter(like='LAI') vwc_field = field_data.filter(like='VWC') pol_field = field_data.filter(like='sigma_sentinel_'+pol) return df, df_agro, field_data, field_data_orbit, theta_field, sm_field, height_field, lai_field, vwc_field, pol_field ### Optimization ### #----------------------------------------------------------------- def solve_fun(VALS): for i in range(len(var_opt)): dic[var_opt[i]] = VALS[i] ke = dic['coef'] * np.sqrt(dic['lai']) # ke = dic['coef'] * np.sqrt(dic['vwc']) # ke=1 dic['ke'] = ke # surface soil = Soil(mv=dic['mv'], C_hh=dic['C_hh'], C_vv=dic['C_vv'], D_hh=dic['D_hh'], D_vv=dic['D_vv'], C_hv=dic['C_hv'], D_hv=dic['D_hv'], V2=dic['V2'], s=dic['s'], clay=dic['clay'], sand=dic['sand'], f=dic['f'], bulk=dic['bulk'], l=dic['l']) # canopy can = OneLayer(canopy=dic['canopy'], ke_h=dic['ke'], ke_v=dic['ke'], d=dic['d'], ks_h = dic['omega']*dic['ke'], ks_v = dic['omega']*dic['ke'], V1=dic['V1'], V2=dic['V2'], A_hh=dic['A_hh'], B_hh=dic['B_hh'], A_vv=dic['A_vv'], B_vv=dic['B_vv'], A_hv=dic['A_hv'], B_hv=dic['B_hv']) S = model.RTModel(surface=soil, canopy=can, models=models, theta=dic['theta'], freq=dic['f']) S.sigma0() return S.__dict__['stot'][pol[::-1]] def fun_opt(VALS): # return(10.*np.log10(np.nansum(np.square(solve_fun(VALS)-dic['pol_value'])))) return(np.nansum(np.square(solve_fun(VALS)-dic['pol_value']))) def data_optimized_run(n, field_data, theta_field, sm_field, height_field, lai_field, vwc_field, pol): n = np.int(np.floor(n/2)) if n > 0: field_data = field_data.drop(field_data.index[-n:]) field_data = field_data.drop(field_data.index[0:n]) theta_field = theta_field.drop(theta_field.index[-n:]) theta_field = theta_field.drop(theta_field.index[0:n]) sm_field = field_data.filter(like='SM') height_field = field_data.filter(like='Height')/100 lai_field = field_data.filter(like='LAI') vwc_field = field_data.filter(like='VWC') vv_field = field_data.filter(like='sigma_sentinel_vv') vh_field = field_data.filter(like='sigma_sentinel_vh') pol_field = field_data.filter(like='sigma_sentinel_'+pol) return field_data, theta_field, sm_field, height_field, lai_field, vwc_field, vv_field, vh_field, pol_field #----------------------------------------------------------------- ### Data preparation ### #----------------------------------------------------------------- # storage information path = '/media/tweiss/Daten/new_data' file_name = 'multi10' # theta needs to be changed to for norm multi extension = '.csv' path_agro = '/media/nas_data/2017_MNI_campaign/field_data/meteodata/agrarmeteorological_station' file_name_agro = 'Eichenried_01012017_31122017_hourly' extension_agro = '.csv' field = '508_high' field_plot = ['508_high', '508_low', '508_med'] pol = 'vv' # pol = 'vh' # output path plot_output_path = '/media/tweiss/Daten/plots/paper/' df, df_agro, field_data, field_data_orbit, theta_field, sm_field, height_field, lai_field, vwc_field, pol_field = read_data(path, file_name, extension, field, path_agro, file_name_agro, extension_agro) #----------------------------------------------------------------- ### Run SenSe module #----------------------------------------------------------------- #### Choose models #----------------- surface_list = ['Oh92', 'Oh04', 'Dubois95', 'WaterCloud', 'I2EM'] # surface_list = ['Oh92', 'Oh04', 'WaterCloud'] # surface_list = ['WaterCloud'] canopy_list = ['turbid_isotropic', 'water_cloud'] # canopy_list = ['water_cloud'] # surface_list = ['Oh92'] # surface_list = ['Oh04'] # surface_list = ['Dubois95'] # surface_list = ['WaterCloud'] # surface_list = ['I2EM'] # canopy_list = ['turbid_isotropic'] # canopy_list = ['water_cloud'] ### option for time invariant or variant calibration of parameter #------------------------------- opt_mod = 'time invariant' # opt_mod = 'time variant' #--------------------------- ### plot option: "single" or "all" modelcombination #------------------------------ # plot = 'single' plot = 'all' #------------------------------ ### plot option scatterplot or not #------------------------------- # style = 'scatterplot' style = '' ### plot option for scatterplot single ESU #------------------------------------ # style_2 = 'scatterplot_single_ESU' style_2 = '' #----------------------------------- # Initialize plot settings #--------------------------- if style == 'scatterplot': fig, ax = plt.subplots(figsize=(10, 10)) else: fig, ax = plt.subplots(figsize=(17, 10)) # plt.title('Winter Wheat') plt.ylabel('Backscatter [dB]', fontsize=15) plt.xlabel('Date', fontsize=15) plt.tick_params(labelsize=12) if pol == 'vv': ax.set_ylim([-25,-7.5]) elif pol == 'vh': ax.set_ylim([-30,-15]) colormaps = ['Greens', 'Purples', 'Blues', 'Oranges', 'Reds', 'Greys', 'pink', 'bone', 'Blues', 'Blues', 'Blues'] j = 0 colormap = plt.get_cmap(colormaps[j]) colors = [colormap(jj) for jj in np.linspace(0.35, 1., 3)] for k in surface_list: for kk in canopy_list: df, df_agro, field_data, field_data_orbit, theta_field, sm_field, height_field, lai_field, vwc_field, pol_field = read_data(path, file_name, extension, field, path_agro, file_name_agro, extension_agro) freq = 5.405 clay = 0.08 sand = 0.12 bulk = 1.5 s = 0.0105 # vv s = 0.0115 # s = 0.009 # vh ????? C_hh = 0 D_hh = 0 C_hv = -22.5 D_hv = 3.2 C_vv = -14.609339 D_vv = 12.884086 ### Canopy # Water Cloud (A, B, V1, V2, theta) # SSRT (coef, omega, theta) #----------------------------------- A_hh = 0 B_hh = 0 A_hv = 0.029 B_hv = 0.0013 A_vv = 0.0029 B_vv = 0.13 V1 = lai_field.values.flatten() V2 = V1 # initialize in surface model coef = 1. omega = 0.027 # vv omega = 0.015 # vh # IEM l = 0.01 surface = k canopy = kk models = {'surface': surface, 'canopy': canopy} #### Optimization #----------------- if opt_mod == 'time invariant': dic = {"mv":sm_field.values.flatten(), "C_hh":C_hh, "C_vv":C_vv, "D_hh":D_hh, "D_vv":D_vv, "C_hv":C_hv, "D_hv":D_hv, "s":s, "clay":clay, "sand":sand, "f":freq, "bulk":bulk, "l":l, "canopy":canopy, "d":height_field.values.flatten(), "V1":V1, "V2":V2, "A_hh":A_hh, "B_hh":B_hh, "A_vv":A_vv, "B_vv":B_vv, "A_hv":A_hv, "B_hv":B_hv, "lai":lai_field.values.flatten(), "vwc":vwc_field.values.flatten(), "pol_value":pol_field.values.flatten(), "theta":theta_field.values.flatten(), "omega": omega, "coef": coef} if canopy == 'turbid_isotropic': var_opt = ['coef'] guess = [2.] bounds = [(0.001,5.5)] elif surface == 'WaterCloud' and canopy == 'water_cloud': var_opt = ['A_vv', 'B_vv', 'A_hv', 'B_hv', 'C_vv', 'D_vv', 'C_hv', 'D_hv'] guess = [A_vv, B_vv, A_hv, B_hv, C_vv, D_vv, C_hv, D_hv] bounds = [(0.,1), (0.,1), (0.,1), (0.,1), (-20.,-1.), (1.,20.), (-20.,-1.), (1.,20.)] elif canopy == 'water_cloud': var_opt = ['A_vv', 'B_vv', 'A_hv', 'B_hv'] guess = [A_vv, B_vv, A_hv, B_hv] bounds = [(0.,1), (0.,1), (0.,1), (0.,1)] method = 'L-BFGS-B' res = minimize(fun_opt,guess,bounds=bounds, method=method) fun_opt(res.x) aaa = res.x if opt_mod == 'time variant': aaa = [[],[],[],[],[],[],[],[],[],[],[],[]] n=7 for i in range(len(pol_field.values.flatten())-n+1): if type(coef) == float: dic = {"mv":sm_field.values.flatten()[i:i+n], "C_hh":C_hh, "C_vv":C_vv, "D_hh":D_hh, "D_vv":D_vv, "C_hv":C_hv, "D_hv":D_hv, "V2":V2[i:i+n], "s":s, "clay":clay, "sand":sand, "f":freq, "bulk":bulk, "l":l, "canopy":canopy, "d":height_field.values.flatten()[i:i+n], "V1":V1[i:i+n], "A_hh":A_hh, "B_hh":B_hh, "A_vv":A_vv, "B_vv":B_vv, "A_hv":A_hv, "B_hv":B_hv, "lai":lai_field.values.flatten()[i:i+n], "vwc":vwc_field.values.flatten()[i:i+n], "pol_value":pol_field.values.flatten()[i:i+n], "theta":theta_field.values.flatten()[i:i+n], "omega": omega, "coef": coef} else: dic = {"mv":sm_field.values.flatten()[i:i+n], "C_hh":C_hh, "C_vv":C_vv, "D_hh":D_hh, "D_vv":D_vv, "C_hv":C_hv, "D_hv":D_hv, "V2":V2[i:i+n], "s":s, "clay":clay, "sand":sand, "f":freq, "bulk":bulk, "l":l, "canopy":canopy, "d":height_field.values.flatten()[i:i+n], "V1":V1[i:i+n], "A_hh":A_hh, "B_hh":B_hh, "A_vv":A_vv, "B_vv":B_vv, "A_hv":A_hv, "B_hv":B_hv, "lai":lai_field.values.flatten()[i:i+n], "vwc":vwc_field.values.flatten()[i:i+n], "pol_value":pol_field.values.flatten()[i:i+n], "theta":theta_field.values.flatten()[i:i+n], "omega": omega, "coef": coef[i:i+n]} if canopy == 'turbid_isotropic' and surface == 'WaterCloud': var_opt = ['coef', 'C_vv', 'D_vv', 'C_hv', 'D_hv'] guess = [0.01, C_vv, D_vv, C_hv, D_hv] bounds = [(0.1,5.5), (-20.,-1.), (1.,20.), (-20.,-1.), (1.,20.)] elif canopy == 'turbid_isotropic': var_opt = ['coef'] guess = [0.1] bounds = [(0.,2)] elif surface == 'WaterCloud' and canopy == 'water_cloud': # var_opt = ['A_vv', 'B_vv', 'A_hv', 'B_hv', 'C_vv', 'D_vv', 'C_hv', 'D_hv'] # guess = [A_vv, B_vv, A_hv, B_hv, C_vv, D_vv, C_hv, D_hv] # bounds = [(0.,1), (guess[1]*0.55, guess[1]*1.55), (0.,1), (guess[3]*0.75, guess[3]*1.25), (-20.,-1.), (1.,20.), (-20.,-1.), (1.,20.)] var_opt = ['C_vv', 'D_vv', 'C_hv', 'D_hv'] guess = [C_vv, D_vv, C_hv, D_hv] bounds = [(-20.,-1.), (1.,20.), (-20.,-1.), (1.,20.)] elif canopy == 'water_cloud': var_opt = ['A_vv', 'B_vv', 'A_hv', 'B_hv'] guess = [A_vv, B_vv, A_hv, B_hv] bounds = [(0.,1), (0.,1), (0.00001,1), (0.00001,1)] # var_opt = ['omega'] # guess = [0.1] # bounds = [(0.,5.5)] # var_opt = ['s', 'coef', 'omega'] # guess = [0.01, 0.1, 0.01] # bounds = [(0.001,0.03),(0.,2.5),(0.001,0.1)] # var_opt = ['C_hv', 'D_hv'] # guess = [-13, 14] # bounds = [(-200.,100.),(-200.,400.)] # var_opt = ['A_vv', 'B_vv'] # try: # guess = [res.x[0], res.x[1]] # except: # guess = [0.005, 0.09] # # bounds = [(0.000,5.),(0.001,5.)] # bounds = [(guess[0]*0.75, guess[0]*1.25), (guess[1]*0.75, guess[1]*1.25)] # bounds = [(guess[0]*0.9, guess[0]*1.1), (guess[1]*0.75, guess[1]*1.25)] # var_opt = ['coef', 'omega'] # guess = [0.1, 0.22] # bounds = [(0.,5.5),(0.00001,0.2)] method = 'L-BFGS-B' # method = 'trust-exact' res = minimize(fun_opt,guess,bounds=bounds, method=method) fun_opt(res.x) for j in range(len(res.x)): aaa[j].append(res.x[j]) field_data, theta_field, sm_field, height_field, lai_field, vwc_field, vv_field, vh_field, pol_field = data_optimized_run(n, field_data, theta_field, sm_field, height_field, lai_field, vwc_field, pol) V1 = lai_field.values.flatten() V2 = V1 # initialize in surface model #----------------------------------------------------------------- for i in range(len(res.x)): exec('%s = %s' % (var_opt[i],aaa[i])) ke = coef * np.sqrt(lai_field.values.flatten()) # ke = smooth(ke, 11) soil = Soil(mv=sm_field.values.flatten(), C_hh=np.array(C_hh), C_vv=np.array(C_vv), D_hh=np.array(D_hh), D_vv=np.array(D_vv), C_hv=np.array(C_hv), D_hv=np.array(D_hv), s=s, clay=clay, sand=sand, f=freq, bulk=bulk, l=l) can = OneLayer(canopy=canopy, ke_h=ke, ke_v=ke, d=height_field.values.flatten(), ks_h = omega*ke, ks_v = omega*ke, V1=np.array(V1), V2=np.array(V2), A_hh=np.array(A_hh), B_hh=np.array(B_hh), A_vv=np.array(A_vv), B_vv=np.array(B_vv), A_hv=np.array(A_hv), B_hv=np.array(B_hv)) S = model.RTModel(surface=soil, canopy=can, models=models, theta=theta_field.values.flatten(), freq=freq) S.sigma0() #----------------------------------------------------------------- date = field_data.index colormap = plt.get_cmap(colormaps[j]) colors = [colormap(jj) for jj in np.linspace(0.35, 1., 4)] # ax.plot(10*np.log10(pol_field), 'ks-', label='Sentinel-1 Pol: ' + pol, linewidth=3) # ax.plot(date, 10*np.log10(S.__dict__['s0g'][pol[::-1]]), color=colors[0], marker='s', linestyle='--', label=pol+' s0g') # ax.plot(date, 10*np.log10(S.__dict__['s0c'][pol[::-1]]), color=colors[1], marker='s', linestyle='--', label=pol+' s0c') # ax.plot(date, 10*np.log10(S.__dict__['s0cgt'][pol[::-1]]), 'ms-', label=pol+' s0cgt') # ax.plot(date, 10*np.log10(S.__dict__['s0gcg'][pol[::-1]]), 'ys-', label=pol+' s0gcg') mask = ~np.isnan(pol_field.values.flatten()) & ~np.isnan(S.__dict__['stot'][pol[::-1]]) slope, intercept, r_value, p_value, std_err = scipy.stats.linregress((pol_field.values.flatten()[mask]), (S.__dict__['stot'][pol[::-1]][mask])) slope1, intercept1, r_value1, p_value1, std_err1 = scipy.stats.linregress(10*np.log10(pol_field.values.flatten())[mask], 10*np.log10(S.__dict__['stot'][pol[::-1]])[mask]) rmse = rmse_prediction(10*np.log10(pol_field.values.flatten()), 10*np.log10(S.__dict__['stot'][pol[::-1]])) if k == 'Oh92': hm = 'Oh92' colors = 'blue' elif k == 'Oh04': hm = 'Oh04' colors = 'red' elif k == 'Dubois95': hm='Dubois95' colors = 'orange' elif k == 'WaterCloud': hm = 'Water Cloud' colors = 'purple' elif k == 'I2EM': hm = 'IEM' colors = 'green' if plot == 'all': if kk == 'turbid_isotropic': ax.plot(date, 10*np.log10(S.__dict__['stot'][pol[::-1]]), color=colors, marker='s', linestyle='dashed', label = hm+ ' + ' + 'SSRT' + '; Pol: ' + pol + '; RMSE: ' + str(rmse)[0:4] + '; $R^2$: ' + str(r_value)[0:4]) else: ax.plot(date, 10*np.log10(S.__dict__['stot'][pol[::-1]]), color=colors, marker='s', label = hm+ ' + ' + 'Water Cloud' + '; Pol: ' + pol + '; RMSE: ' + str(rmse)[0:4] + '; $R^2$: ' + str(r_value)[0:4]) if plot == 'single': if style == 'scatterplot': if pol == 'vv': ax.set_xlim([-22.5,-7.5]) elif pol == 'vh': ax.set_xlim([-30,-15]) if style_2 == 'scatterplot_single_ESU': ax.plot(10*np.log10(pol_field.values.flatten()),10*np.log10(S.__dict__['stot'][pol[::-1]]), 'rs', label=field) x = 10*np.log10(pol_field.values.flatten()) y = 10*np.log10(S.__dict__['stot'][pol[::-1]]) lower_position = np.nanargmin(x) upper_position = np.nanargmax(x) ax.plot(np.array((x[lower_position],x[upper_position])),np.array((y[lower_position],y[upper_position])), '--r') else: aa = [] bb = [] # cc = [] # field_plot = ['508_high', '508_low', '508_med'] jj = 0 colors = ['ks', 'ys', 'ms', 'rs'] for field in field_plot: df, df_agro, field_data, field_data_orbit, theta_field, sm_field, height_field, lai_field, vwc_field, pol_field = read_data(path, file_name, extension, field, path_agro, file_name_agro, extension_agro) field_data, theta_field, sm_field, height_field, lai_field, vwc_field, vv_field, vh_field, pol_field = data_optimized_run(n, field_data, theta_field, sm_field, height_field, lai_field, vwc_field, pol) soil = Soil(mv=sm_field.values.flatten(), C_hh=np.array(C_hh), C_vv=np.array(C_vv), D_hh=np.array(D_hh), D_vv=np.array(D_vv), C_hv=np.array(C_hv), D_hv=np.array(D_hv), s=s, clay=clay, sand=sand, f=freq, bulk=bulk, l=l) can = OneLayer(canopy=canopy, ke_h=ke, ke_v=ke, d=height_field.values.flatten(), ks_h = omega*ke, ks_v = omega*ke, V1=np.array(V1), V2=np.array(V2), A_hh=np.array(A_hh), B_hh=np.array(B_hh), A_vv=np.array(A_vv), B_vv=np.array(B_vv), A_hv=np.array(A_hv), B_hv=np.array(B_hv)) S = model.RTModel(surface=soil, canopy=can, models=models, theta=theta_field.values.flatten(), freq=freq) S.sigma0() ax.plot(10*np.log10(pol_field.values.flatten()),10*np.log10(S.__dict__['stot'][pol[::-1]]), colors[jj], label=field) slope, intercept, r_value, p_value, std_err = linregress(10*np.log10(pol_field.values.flatten())[~np.isnan(10*np.log10(S.__dict__['stot'][pol[::-1]]))], 10*np.log10(S.__dict__['stot'][pol[::-1]])[~np.isnan(10*np.log10(S.__dict__['stot'][pol[::-1]]))]) line = slope * 10*np.log10(S.__dict__['stot'][pol[::-1]]) + intercept # ax.plot(10*np.log10(S.__dict__['stot'][pol[::-1]]), line) lower_position = np.nanargmin(line) upper_position = np.nanargmax(line) ax.plot(np.array((10*np.log10(S.__dict__['stot'][pol[::-1]])[lower_position],10*np.log10(S.__dict__['stot'][pol[::-1]])[upper_position])),np.array((line[lower_position],line[upper_position])), '--'+colors[jj][0]) aa = np.append(aa, 10*np.log10(pol_field.values.flatten())) bb = np.append(bb, 10*np.log10(S.__dict__['stot'][pol[::-1]])) jj = jj+1 else: ax.plot(date, 10*np.log10(S.__dict__['stot'][pol[::-1]]), color='orange', marker='s', label=S.models['surface']+ ' + ' + S.models['canopy'] + ' Pol: ' + pol + '; RMSE: ' + str(rmse)[0:4] + '; $R^2$: ' + str(r_value)[0:4]) ax.plot(date, 10*np.log10(S.__dict__['s0g'][pol[::-1]]), color='red', marker='s', label='Ground contribution') ax.plot(date, 10*np.log10(S.__dict__['s0c'][pol[::-1]]), color='green', marker='s', label='Canopy contribution') j = j+1 if style == 'scatterplot': pass else: ax.plot(10*np.log10(pol_field), 'ks-', label='Sentinel-1 Pol: ' + pol, linewidth=3) plt.legend() plt.title(field) if plot == 'all': # plt.show() plt.savefig(plot_output_path+pol+'_all_'+opt_mod) if plot == 'single': if style == 'scatterplot': plt.ylabel(surface + ' ' + canopy + ' [dB]') plt.xlabel('Sentinel-1 [dB]') plt.legend() x = np.linspace(np.min(10*np.log10(pol_field.values.flatten()))-2, np.max(10*np.log10(pol_field.values.flatten()))+2, 16) ax.plot(x,x) if style_2 == 'scatterplot_single_ESU': www = rmse_prediction(10*np.log10(pol_field).values.flatten(), 10*np.log10(S.__dict__['stot'][pol[::-1]])) plt.title(pol+' ' + field + ' ' + surface + ' ' + canopy + '$R^2$='+str(r_value)+' RMSE='+str(www)) plt.savefig(plot_output_path+'scatterplot_fertig_single_'+field+'_'+pol+'_'+file_name+'_'+S.models['surface']+'_'+S.models['canopy']) else: www = rmse_prediction(aa, bb) # slope, intercept, r_value, p_value, std_err = linregress(aaa[~np.isnan(bbb)], bbb[~np.isnan(bbb)]) plt.title(pol+' ' + field + ' ' + surface + ' ' + canopy + '$R^2$='+str(r_value)+' RMSE='+str(www)) plt.savefig(plot_output_path+'scatterplot_fertig_'+field+'_'+pol+'_'+file_name+'_'+S.models['surface']+'_'+S.models['canopy']) else: plt.savefig(plot_output_path+pol+'_single_'+opt_mod+'_'+S.models['surface']+'_'+S.models['canopy']) pdb.set_trace()
# Copyright (c) 2014 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Proof for adding 3 operand xmm/memory fp scalar ops.""" import proof_tools from proof_tools_templates import XmmOrMemory3operand # FP scalar (single operand/double operand) AVX1 Instructions of the form: # src1 is an xmm register. # src2 is an xmm register or memory operand. # dest is an xmm register. # # These essentially operate on the least signficant bits of the vector. MNEMONICS = [ 'vaddsd', 'vaddss', 'vdivsd', 'vdivss', 'vmaxsd', 'vmaxss', 'vminsd', 'vminss', 'vmulsd', 'vmulss', 'vsubsd', 'vsubss' ] def Validate(trie_diffs, bitness): """Validates that all allowed patterns of MNEMONICS are added.""" expected_adds = set() for mnemonic in MNEMONICS: expected_adds.update(XmmOrMemory3operand(mnemonic_name=mnemonic, bitness=bitness)) proof_tools.AssertDiffSetEquals( trie_diffs, expected_adds=expected_adds, expected_removes=set()) if __name__ == '__main__': proof_tools.RunProof(proof_tools.ParseStandardOpts(), Validate)
from django.test import TestCase from ..models import Puppy class PuppyTest(TestCase): """ Test module for Puppy model """ def setUp(self): Puppy.objects.create( name='Casper', age=3, breed='Bull Dog', color='Black') Puppy.objects.create( name='Muffin', age=1, breed='Gradane', color='Brown') def test_puppy_breed(self): puppy_casper = Puppy.objects.get(name='Casper') puppy_muffin = Puppy.objects.get(name='Muffin') self.assertEqual( puppy_casper.get_breed(), "Casper belongs to Bull Dog breed.") self.assertEqual( puppy_muffin.get_breed(), "Muffin belongs to Gradane breed.")
""" Implementation for AWS SecretsManager @author Arttu Manninen <arttu@kaktus.cc> """ import re from config.external.aws.boto3 import Boto3 from config.external.interface import ExternalInterface boto3 = Boto3() class SecretsManager(ExternalInterface): def load(self): """ Load AWS SecretManager secrets to the configuration """ prefix = self.config.get('aws.secretsmanager.prefix', default='') client = boto3.client('secretsmanager') paginator = client.get_paginator('list_secrets') secrets = [] for page in paginator.paginate(): for _i, secret_metadata in enumerate(page['SecretList']): secrets.append(secret_metadata) def sort_secrets(secret): """ Sort secrets """ if '@' in secret['Name']: return 1 return 0 secrets.sort(key=sort_secrets) for secret_metadata in secrets: name = secret_metadata['Name'] key = name if prefix and re.search('@', key): if name.find(prefix + '@') != 0: continue key = name[len(prefix) + 1:] if self.config.get('aws.secretsmanager.skip_unprefixed') and \ (name.find(prefix + '@') != 0): continue stored_secret = client.get_secret_value(SecretId=name) stored_value = self._parse_secret_value(stored_secret['SecretString']) # Special case: when the name of the secret is "config" it is handled # as a full set of configuration instead of a subset if key == 'config': self.config.set(None, stored_value) break self.config.set(key, stored_value)
ip_ranges = { "Bank of Canada": [ "140.80.0.0/16" ], "CRTC": [ "199.246.230.0/23", "199.246.232.0/21", "199.246.240.0/21", "199.246.248.0/22", "199.246.252.0/23" ], "Canada Centre for Inland Waters": [ "192.75.68.0/24", "198.73.135.0/24", "198.73.136.0/24", "205.189.5.0/24", "205.189.6.0/23" ], "Canadian Broadcasting Corporation": [ "159.33.160.0/19", "159.33.0.0/19" ], "Canadian Department of National Defence": [ "131.132.0.0/14", "131.136.0.0/14", "131.140.0.0/15" ], "Canadian House of Commons": [ "192.197.82.0/24" ], "Canadian Hydrographic Service": [ "204.187.48.0/24" ], "Canadian Museum of Civilization": [ "204.19.14.0/24" ], "Canadian Space Agency": [ "142.74.1.0/24", "142.74.2.0/23", "142.74.4.0/24" ], "Communications Security Establishment Canada": [ "108.174.30.160/29" ], "Correctional Services Canada": [ "142.191.8.0/21", "142.236.0.0/17" ], "Department of Fisheries and Oceans": [ "192.197.244.0/24", "192.139.141.0/24", "192.197.243.0/24", "198.103.161.0/24" ], "Department of Justice Canada": [ "199.212.200.0/24", "199.212.215.0/23" ], "Employment and Immigration Canada": [ "167.227.0.0/16" ], "Environment Canada": [ "199.212.16.0/22", "199.212.20.0/23", "205.189.8.0/23", "205.189.10.0/24", "205.211.132.0/23", "205.211.134.0/24" ], "Federal Court of Canada": [ "198.103.145.0/24" ], "Finance Canada": [ "198.103.32.0/19" ], "Foreign Affairs Canada": [ "216.174.155.0/28" ], "Government of Canada": [ "192.139.201.0/24", "192.139.202.0/23", "192.139.204.0/24", "192.197.77.0/23", "192.197.80.0/24", "192.197.84.0/24", "192.197.86.0/24" ], "Health Canada": [ "204.187.49.0/24", ], "Industry Canada": [ "192.197.183.0/24", "161.187.0.0/16", "142.53.0.0/16", "192.197.185.0/24", "192.197.178.0/23", "192.197.180.0/23", "192.197.182.0/24", "192.197.184.0", "142.92.0.0/16", "192.75.72.0/16" ], "Institute for Biodiagnostics": [ "192.70.172.0/24" ], "Library and Archives Canada": [ "142.78.0.0/16" ], "National Research Council": [ "132.246.0.0/16", "192.75.14.0/24", "192.139.21.0/24", "192.139.198.0/24", "204.174.103.0/24", "132.246.3.0/24" ], "National Research Council (SSC)": [ "167.37.244.0/24", "167.37.246.0/23", "167.37.249.0/24", "192.139.116.0/23" ], "National Research Council (UBC)": [ "206.12.28.0/24" ], "National Research Council (UofT)": [ "198.164.40.0/22" ], "Natural Resources Canada": [ "132.156.4.0/23", "132.156.10.0/23", "132.156.12.0/23", "132.156.16.0/23", "132.156.20.0/22", "132.156.46.0/23", "132.156.120.0/23", "192.67.45.0/24", "192.75.99.0/24", "192.139.6.0/24", "192.139.7.0/24", "192.139.194.0/24", "132.156.0.0/16", "192.197.114.0/24", "192.197.115.0/24" ], "Service Canada": [ "216.174.155.0/28" ], "Shared Services Canada": [ "167.55.240.0/24", "205.194.0.0/17", "205.193.0.0/16", "167.32.0.0/17", "192.197.69.0/24", "192.197.76.0/23", "192.197.79.0/24", "192.197.83.0/24", "198.103.0.0/16" ], "Statistics Canada": [ "142.206.0.0/16" ], "Transport Canada": [ "142.209.0.0/16", "142.210.0.0/15", "198.103.96.0/24" ] }
# coding: utf-8 """ EVE Swagger Interface An OpenAPI for EVE Online # noqa: E501 OpenAPI spec version: 0.8.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from swagger_client.models.get_loyalty_stores_corporation_id_offers_required_item import GetLoyaltyStoresCorporationIdOffersRequiredItem # noqa: F401,E501 class GetLoyaltyStoresCorporationIdOffers200Ok(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'offer_id': 'int', 'type_id': 'int', 'quantity': 'int', 'lp_cost': 'int', 'isk_cost': 'int', 'ak_cost': 'int', 'required_items': 'list[GetLoyaltyStoresCorporationIdOffersRequiredItem]' } attribute_map = { 'offer_id': 'offer_id', 'type_id': 'type_id', 'quantity': 'quantity', 'lp_cost': 'lp_cost', 'isk_cost': 'isk_cost', 'ak_cost': 'ak_cost', 'required_items': 'required_items' } def __init__(self, offer_id=None, type_id=None, quantity=None, lp_cost=None, isk_cost=None, ak_cost=None, required_items=None): # noqa: E501 """GetLoyaltyStoresCorporationIdOffers200Ok - a model defined in Swagger""" # noqa: E501 self._offer_id = None self._type_id = None self._quantity = None self._lp_cost = None self._isk_cost = None self._ak_cost = None self._required_items = None self.discriminator = None self.offer_id = offer_id self.type_id = type_id self.quantity = quantity self.lp_cost = lp_cost self.isk_cost = isk_cost if ak_cost is not None: self.ak_cost = ak_cost self.required_items = required_items @property def offer_id(self): """Gets the offer_id of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 offer_id integer # noqa: E501 :return: The offer_id of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :rtype: int """ return self._offer_id @offer_id.setter def offer_id(self, offer_id): """Sets the offer_id of this GetLoyaltyStoresCorporationIdOffers200Ok. offer_id integer # noqa: E501 :param offer_id: The offer_id of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :type: int """ if offer_id is None: raise ValueError("Invalid value for `offer_id`, must not be `None`") # noqa: E501 self._offer_id = offer_id @property def type_id(self): """Gets the type_id of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 type_id integer # noqa: E501 :return: The type_id of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :rtype: int """ return self._type_id @type_id.setter def type_id(self, type_id): """Sets the type_id of this GetLoyaltyStoresCorporationIdOffers200Ok. type_id integer # noqa: E501 :param type_id: The type_id of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :type: int """ if type_id is None: raise ValueError("Invalid value for `type_id`, must not be `None`") # noqa: E501 self._type_id = type_id @property def quantity(self): """Gets the quantity of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 quantity integer # noqa: E501 :return: The quantity of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :rtype: int """ return self._quantity @quantity.setter def quantity(self, quantity): """Sets the quantity of this GetLoyaltyStoresCorporationIdOffers200Ok. quantity integer # noqa: E501 :param quantity: The quantity of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :type: int """ if quantity is None: raise ValueError("Invalid value for `quantity`, must not be `None`") # noqa: E501 self._quantity = quantity @property def lp_cost(self): """Gets the lp_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 lp_cost integer # noqa: E501 :return: The lp_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :rtype: int """ return self._lp_cost @lp_cost.setter def lp_cost(self, lp_cost): """Sets the lp_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. lp_cost integer # noqa: E501 :param lp_cost: The lp_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :type: int """ if lp_cost is None: raise ValueError("Invalid value for `lp_cost`, must not be `None`") # noqa: E501 self._lp_cost = lp_cost @property def isk_cost(self): """Gets the isk_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 isk_cost integer # noqa: E501 :return: The isk_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :rtype: int """ return self._isk_cost @isk_cost.setter def isk_cost(self, isk_cost): """Sets the isk_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. isk_cost integer # noqa: E501 :param isk_cost: The isk_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :type: int """ if isk_cost is None: raise ValueError("Invalid value for `isk_cost`, must not be `None`") # noqa: E501 self._isk_cost = isk_cost @property def ak_cost(self): """Gets the ak_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 Analysis kredit cost # noqa: E501 :return: The ak_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :rtype: int """ return self._ak_cost @ak_cost.setter def ak_cost(self, ak_cost): """Sets the ak_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. Analysis kredit cost # noqa: E501 :param ak_cost: The ak_cost of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :type: int """ self._ak_cost = ak_cost @property def required_items(self): """Gets the required_items of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 required_items array # noqa: E501 :return: The required_items of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :rtype: list[GetLoyaltyStoresCorporationIdOffersRequiredItem] """ return self._required_items @required_items.setter def required_items(self, required_items): """Sets the required_items of this GetLoyaltyStoresCorporationIdOffers200Ok. required_items array # noqa: E501 :param required_items: The required_items of this GetLoyaltyStoresCorporationIdOffers200Ok. # noqa: E501 :type: list[GetLoyaltyStoresCorporationIdOffersRequiredItem] """ if required_items is None: raise ValueError("Invalid value for `required_items`, must not be `None`") # noqa: E501 self._required_items = required_items def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, GetLoyaltyStoresCorporationIdOffers200Ok): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
import boto3 import sure # noqa # pylint: disable=unused-import from moto import mock_ec2, mock_kms from tests import EXAMPLE_AMI_ID @mock_ec2 @mock_kms def test_run_instance_with_encrypted_ebs(): kms = boto3.client("kms", region_name="us-east-1") resp = kms.create_key(Description="my key", KeyUsage="ENCRYPT_DECRYPT") key_id = resp["KeyMetadata"]["Arn"] ec2 = boto3.client("ec2", region_name="us-east-1") kwargs = { "MinCount": 1, "MaxCount": 1, "ImageId": EXAMPLE_AMI_ID, "KeyName": "the_key", "InstanceType": "t1.micro", "BlockDeviceMappings": [ { "DeviceName": "/dev/sda2", "Ebs": { "VolumeSize": 50, "VolumeType": "gp2", "Encrypted": True, "KmsKeyId": key_id, }, } ], } instance = ec2.run_instances(**kwargs) instance_id = instance["Instances"][0]["InstanceId"] instances = ( ec2.describe_instances(InstanceIds=[instance_id]) .get("Reservations")[0] .get("Instances") ) volume = instances[0]["BlockDeviceMappings"][0]["Ebs"] volumes = ec2.describe_volumes(VolumeIds=[volume["VolumeId"]]) volumes["Volumes"][0]["Size"].should.equal(50) volumes["Volumes"][0]["Encrypted"].should.equal(True) volumes["Volumes"][0]["KmsKeyId"].should.equal(key_id)
# 1046. Last Stone Weight - LeetCode Contest # https://leetcode.com/contest/weekly-contest-137/problems/last-stone-weight/ class Solution: def lastStoneWeight(self, stones) -> int: stones = sorted(stones,reverse=True) while len(stones) > 1: first_stone = stones.pop(0) second_stone = stones.pop(0) if first_stone > second_stone: remains = first_stone - second_stone i = 0 while i < len(stones) and stones[i] > remains: i += 1 stones.insert(i,remains) if len(stones) == 1: return stones[0] else: return 0 s = Solution() print(s.lastStoneWeight([2,7,4,1,8,1]))
import eel import random from time import sleep eel.init("front") @eel.expose def randGen(top): for num in range(top): #print in front end eel.diceShow(random.randint(1,top)) if top > 100: sleep(.015) else: sleep(.15) eel.start("front.html")
from datetime import datetime from django.shortcuts import get_object_or_404 from django.views import generic from django.conf import settings from django.db.models import Sum, Count, ExpressionWrapper, Max, Min, DurationField import json from .models import Observations, Pulsars, Proposals, Ephemerides, Utcs, get_observations_summary from .plots import pulsar_summary_plot from .logic import get_meertime_filters from sentry_sdk import last_event_id from django.shortcuts import render def handler500(request): if settings.ENABLE_SENTRY_DSN: return render(request, "500.html", {"sentry_event_id": last_event_id(), "sentry_dsn": settings.SENTRY_DSN,}) else: return render(request, "500.html", {}) class WelcomeView(generic.TemplateView): """ This is the landing page which informs visitors what they can find on the portal. It also provides a link to the public data accessible without logging in. """ template_name = "dataportal/welcome.html" def get_context_data(cls, **kwargs): context = super().get_context_data(**kwargs) qs = Pulsars.get_observations(mode="observations") context["totals"] = qs.aggregate(global_tint_h=Sum("total_tint_h"), global_nobs=Sum("nobs")) context["totals"]["global_npsr"] = qs.count() return context class SessionView(generic.ListView): """ Display observations in an observing session """ context_object_name = "obs_list" template_name = "dataportal/session.html" page_title = "last meertime session" detail_url_name = "pulsar_detail" get_proposal_filters = get_meertime_filters def get_queryset(cls): return Observations.get_last_session_by_gap(get_proposal_filters=cls.get_proposal_filters) def get_context_data(cls, **kwargs): context = super().get_context_data(**kwargs) context["session_meta"] = get_observations_summary(context["obs_list"]) context["detail_url_name"] = cls.detail_url_name context["title"] = cls.page_title return context class IndexBaseView(generic.ListView): """ Base view for main table views. """ context_object_name = "per_pulsar_list" def get_context_data(cls, **kwargs): context = super().get_context_data(**kwargs) context["project_id"] = cls.request.GET.get("project_id") context["band"] = cls.request.GET.get("band") qs = context["per_pulsar_list"] context["totals"] = qs.aggregate(global_tint_h=Sum("total_tint_h"), global_nobs=Sum("nobs")) context["totals"]["global_npsr"] = qs.count() return context class FoldView(IndexBaseView): """ Display pulsars and the latest meertime observation data. """ template_name = "dataportal/index.html" page_title = "folded observations" detail_url_name = "pulsar_detail" get_proposal_filters = get_meertime_filters def get_queryset(cls): qs = Pulsars.get_observations( mode="observations", proposal=cls.request.GET.get("project_id"), band=cls.request.GET.get("band"), get_proposal_filters=cls.get_proposal_filters, ) if not cls.request.user.is_authenticated: return qs.order_by("jname") else: return qs def get_context_data(cls, **kwargs): context = super().get_context_data(**kwargs) proposal_filter = cls.get_proposal_filters() context["projects"] = Proposals.objects.filter(**proposal_filter) # page title context["title"] = cls.page_title if cls.request.user.is_authenticated: context["detail_url_name"] = cls.detail_url_name else: context["detail_url_name"] = f"public_{cls.detail_url_name}" return context class SearchmodeView(IndexBaseView): """ Display pulsars and the latest observation data. """ template_name = "dataportal/searchmode.html" get_proposal_filters = get_meertime_filters detail_url_name = "pulsar_detail_search" page_title = "searchmode observations" def get_queryset(cls): return Pulsars.get_observations( mode="searchmode", proposal=cls.request.GET.get("project_id"), get_proposal_filters=cls.get_proposal_filters, ) def get_context_data(cls, **kwargs): context = super().get_context_data(**kwargs) # page title context["title"] = cls.page_title context["detail_url_name"] = cls.detail_url_name return context class DetailView(generic.ListView): context_object_name = "obs_list" parent_url_name = "fold" def setup(cls, request, *args, **kwargs): super().setup(request, *args, **kwargs) cls.pulsar = get_object_or_404(Pulsars, jname=cls.kwargs["psr"]) def get_context_data(cls, **kwargs): context = super().get_context_data(**kwargs) # Add ephemeris to the context context["psr"] = cls.kwargs["psr"] try: ephemeris = Ephemerides.objects.get(pulsar=cls.pulsar) except Ephemerides.DoesNotExist: ephemeris = None updated = None if ephemeris: updated = ephemeris.updated_at ephemeris = json.loads(ephemeris.ephemeris) context["ephemeris"] = ephemeris context["updated"] = updated context["parent_url_name"] = cls.parent_url_name # Add a payload for kronos/meerwatch links context["kronos"] = settings.KRONOS_PAYLOAD return context class PulsarDetailView(DetailView): """ Display detail list of meertime observations for a single pulsar. """ template_name = "dataportal/show_single_psr.html" get_proposal_filters = get_meertime_filters def get_queryset(cls): return cls.pulsar.observations_detail_data(get_proposal_filters=cls.get_proposal_filters) def get_context_data(cls, **kwargs): context = super().get_context_data(**kwargs) # Add a summary plot to the context plot_list = [(obs.utc.utc_ts, obs.snr_spip, obs.length, obs.band) for obs in context["obs_list"]] # If no observations exist, the unpacking below will throw a value error try: [UTCs, snrs, lengths, bands] = list(zip(*plot_list)) except ValueError: [UTCs, snrs, lengths, bands] = [ (), (), (), (), ] bokeh_js, bokeh_div = pulsar_summary_plot(UTCs, snrs, lengths, bands) context["bokeh_js"] = bokeh_js context["bokeh_div"] = bokeh_div # get total size qs = context["obs_list"] context["total_size_estimate"] = qs.aggregate(total_size_estimate=Sum("estimated_size")) # get other aggregates annotations = {} context["totals"] = qs.annotate(**annotations).aggregate( tint=Sum("length"), nobs=Count("id"), project_count=Count("proposal", distinct=True), timespan=ExpressionWrapper(Max("utc__utc_ts") - Min("utc__utc_ts"), output_field=DurationField()), ) context["title"] = context["psr"] return context class SearchDetailView(DetailView): """ Display detail list of search mode observations for a single pulsar """ template_name = "dataportal/show_single_psr_search.html" page_title_prefix = "" get_proposal_filters = get_meertime_filters def get_queryset(cls): return cls.pulsar.searchmode_detail_data(get_proposal_filters=cls.get_proposal_filters) def get_context_data(cls, **kwargs): context = super().get_context_data(**kwargs) # page title context["title"] = f'{cls.page_title_prefix} {context["psr"]} searchmode' return context class ObservationDetailView(generic.TemplateView): """ Display details of a single observation """ template_name = "dataportal/observation.html" def setup(cls, request, *args, **kwargs): super().setup(request, *args, **kwargs) cls.beam = cls.kwargs["beam"] cls.pulsar = get_object_or_404(Pulsars, jname=cls.kwargs["psr"]) cls.utc_str = cls.kwargs["utc"] utc_ts = datetime.strptime(f"{cls.utc_str} +0000", "%Y-%m-%d-%H:%M:%S %z") utc = get_object_or_404(Utcs, utc_ts=utc_ts) cls.observation = get_object_or_404(Observations, pulsar=cls.pulsar, utc=utc, beam=cls.beam) def get_context_data(cls, **kwargs): context = super().get_context_data(**kwargs) context["obs"] = cls.observation # Add a payload for kronos/meerwatch links context["kronos"] = settings.KRONOS_PAYLOAD context["title"] = f"{cls.pulsar}/{cls.utc_str}/{cls.beam}" return context
import sys from ai_interface import * from utils import * class TestAI: def __init__(self): pass def action(self, state): res = {} for ship in state.my_ships: if state.my_side == Side.DEFENSE: if ship.params.soul > 1 and ship.temp > 0: res[ship.id] = [{'command': 'split', 'p1': 1, 'p2': 0, 'p3': 0, 'p4': 1}] else: gx, gy = calc_gravity(ship.x, ship.y) res[ship.id] = [{'command': 'accel', 'x': gx, 'y': gy}] else: res[ship.id] = [ {'command': 'lazer', 'x': state.enemy_ships[0].x, 'y': state.enemy_ships[0].y, 'power': ship.params.p2}] print(f'id={ship.id}, x={ship.x}, y={ship.y}, vx={ship.vx}, vy={ship.vy}, ') return res def set_specs(self, limit, side): if side == Side.ATTACK: return ShipParameter(0, (limit - 2) // 12, 0, 1) else: return ShipParameter(limit - (4 * 0 + 12 * 0 + 2 * 2), 0, 0, 2)
def count_subsets(nums, sum): n = len(nums) dp = [[-1 for x in range(sum + 1)] for y in range(n)] # populate the sum = 0 columns, as we will always have an empty set for zero sum for i in range(0, n): dp[i][0] = 1 # with only one number, we can form a subset only when the required sum is equal to its value for s in range(1, sum + 1): dp[0][s] = 1 if nums[0] == s else 0 # Note <<< 0's # process all subsets for all sums for i in range(1, n): for s in range(1, sum + 1): count_by_excluding = dp[i - 1][s] # exclude the number count_by_including = 0 if s >= nums[i]: # include the number, if it does not exceed the sum count_by_including = dp[i - 1][s - nums[i]] dp[i][s] = count_by_including + count_by_excluding return dp[n - 1][sum] # the bottom-right corner will have our answer. def main(): print("Total subsets : ", count_subsets([1, 1, 2, 3], 4)) print("Total subsets : ", count_subsets([1, 2, 7, 1, 5], 9)) main()
import numpy as np import matplotlib.pyplot as plt import reltest from reltest.mctest import MCTestPSI, MCTestCorr import reltest.mmd as mmd import reltest.ksd as ksd from reltest import kernel from kmod.mctest import SC_MMD from freqopttest.util import meddistance import logging import sys import os from ex_models import generatelRBM ## Setting n_samples = 1000 ydim = 20 xdim = 5 n_trials = 300 to_perturb = float(sys.argv[1]) perturbs = [0.2, 0.25, 0.35, 0.4, 0.45, 0.5] n_models = len(perturbs) perturbs[1] = to_perturb print("perturb " + str(to_perturb)) print(perturbs) def independent_test(perturbs, n_samples, n_trials, setting): src = generatelRBM(perturbs, ydim, xdim) res_psi= {'mmd_u':[], 'mmd_lin':[], 'ksd_u':[], 'ksd_lin':[], } res_cor= { #'ksd_u_bh':[], 'ksd_u_by':[], # 'ksd_u_bn':[], #'mmd_u_bh':[], 'mmd_u_by':[], #'mmd_u_bn':[], } model_dens = src.get_densities() for j in range(n_trials): models, Q = src.sample(n_samples, seed=j) psiTest = MCTestPSI(Q.data()) corrtest = MCTestCorr(Q.data()) mmd_med = mmd.med_heuristic([i.data() for i in models], Q.data(), subsample=1000) ksd_med = ksd.med_heuristic(Q.data(), subsample=1000) mmd_kernel, ksd_kernel = kernel.KGauss(mmd_med), kernel.KGauss(ksd_med) mmd_u = mmd.MMD_U(mmd_kernel) mmd_lin = mmd.MMD_Linear(mmd_kernel) ksd_u = ksd.KSD_U(ksd_kernel) ksd_lin = ksd.KSD_Linear(ksd_kernel) model_samples = [i.data() for i in models] ## PSI Based Test res_psi['ksd_u'].append(psiTest.perform_tests(model_dens, ksd_u)) res_psi['ksd_lin'].append(psiTest.perform_tests(model_dens, ksd_lin)) res_psi['mmd_u'].append(psiTest.perform_tests(model_samples, mmd_u)) res_psi['mmd_lin'].append(psiTest.perform_tests(model_samples, mmd_lin)) ## Correction Based Test #res_cor['mmd_u_bh'].append(corrtest.perform_tests(model_samples, Q.data(), n_samples, mmd_u, split=0.5, density=False, correction=0)) res_cor['mmd_u_by'].append(corrtest.perform_tests(model_samples, mmd_u, split=0.5, density=False, correction=1)) # res_cor['mmd_u_bn'].append(corrtest.perform_tests(model_samples, Q.data(), n_samples, mmd_u, split=True, density=False, correction=2)) # res_cor['ksd_u_bh'].append(corrtest.perform_tests(model_dens, Q.data(), n_samples, ksd_u, split=0.5, density=True, correction=0)) res_cor['ksd_u_by'].append(corrtest.perform_tests(model_dens, ksd_u, split=0.5, density=True, correction=1)) # res_cor['ksd_u_bn'].append(corrtest.perform_tests(model_dens, Q.data(), n_samples, ksd_u, split=True, density=True, correction=2)) return res_psi,res_cor setting = {'n':n_models, 'dim':ydim} SAVE_DIR = "./temp/rbm/" if not os.path.isdir(SAVE_DIR): os.mkdir(SAVE_DIR) np.save(SAVE_DIR+"PSI"+str(to_perturb),0) np.save(SAVE_DIR+"COR"+str(to_perturb),0) res_psi,res_cor = independent_test(perturbs,n_samples,n_trials,setting) np.save(SAVE_DIR+"PSI"+str(to_perturb),res_psi) np.save(SAVE_DIR+"COR"+str(to_perturb),res_cor)
# # This file is part of ravstack. Ravstack is free software available under # the terms of the MIT license. See the file "LICENSE" that was provided # together with this source file for the licensing terms. # # Copyright (c) 2015 the ravstack authors. See the file "AUTHORS" for a # complete list. from __future__ import absolute_import, print_function import sys import json from . import ravello, util, runtime, defaults from .runtime import LOG def main(): """Check a password.""" # We support two ways of validating a password: # # - If the username is "admin", the password is checked against the # per-instance password in /var/run/ravstack. Per-instance means that the # password is only valid under the current CloudInit instance, and is # regenerated if the instance changes. This closes a security hole where # static passwords could become embedded in a Ravello blueprint. # # - If the username is not "admin", the password is checked against the # Ravello API. This also prevents the issue where a static passwords gets # embedded into a blueprint. However, if you are preparing a public # appliance, do not use this technique as the password is cached on disk # by the default mod_authnz_external configuration in share/. username = sys.stdin.readline() if not username.endswith('\n'): sys.exit(2) username = username[:-1] password = sys.stdin.readline() if not password.endswith('\n'): sys.exit(2) password = password[:-1] if username == 'admin': instance = util.get_cloudinit_instance() if not instance: LOG.error('no cloudinit instance, cannot use `admin` user.') sys.exit(1) with open(defaults.password_file) as fin: pwdata = json.loads(fin.read()) if instance not in pwdata: LOG.error('instance not configured in password file.') sys.exit(1) if util.constant_time_strcmp(password, pwdata[instance]): LOG.error('unable to authenticate user `{}`.'.format(username)) sys.exit(1) else: meta = ravello.get_injected_metadata() appid = meta.get('appId') if appid is None: LOG.error('metadata not injected, cannot check password.') sys.exit(3) client = ravello.RavelloClient() try: client.login(username, password) client.call('GET', '/applications/{}'.format(appid)) except Exception as e: LOG.error('unable to authenticate user `{}`: {}'.format(username, e)) sys.exit(1) LOG.info('successfully authenticated user `{}`.'.format(username)) sys.exit(0) if __name__ == '__main__': runtime.run_main(main)
import os from leapp.actors import Actor from leapp.models import RpmTransactionTasks from leapp.tags import IPUWorkflowTag, FactsPhaseTag class TransactionWorkarounds(Actor): """ Provides additional RPM transaction tasks based on bundled RPM packages. After collecting bundled RPM packages, a message with relevant data will be produced. """ name = 'transaction_workarounds' consumes = () produces = (RpmTransactionTasks,) tags = (IPUWorkflowTag, FactsPhaseTag) def process(self): location = self.get_folder_path('bundled-rpms') local_rpms = [] for name in os.listdir(location): if name.endswith('.rpm'): local_rpms.append(os.path.join(location, name)) if local_rpms: self.produce(RpmTransactionTasks(local_rpms=local_rpms))
# Copyright 2014 Florian Ludwig # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import tempfile import subprocess import atexit import shutil import argparse import pkg_resources def start(root, address='127.0.0.1', port=8000): conf_template = pkg_resources.resource_string('nginc', 'nginx.conf') conf_template = conf_template.decode('utf-8') tmp = tempfile.mkdtemp(prefix='nginc') @atexit.register def cleanup_tmp(): shutil.rmtree(tmp) root = os.path.abspath(root) root = root.replace('"', '\\"') config = conf_template.format(tmp=tmp, root=root, port=port, address=address) conf_path = tmp + '/nginx.conf' conf_file = open(conf_path, 'w') conf_file.write(config) conf_file.close() proc = subprocess.Popen(['nginx', '-c', conf_path]) @atexit.register def cleanup_proc(): try: proc.kill() except OSError: pass return proc def main(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--port', type=int, default=8000, help='port to bind to') parser.add_argument('-r', '--root', type=str, default='.', help='directory to serve, defaults to current working directory') parser.add_argument('-a', '--address', type=str, default='127.0.0.1', help='address to bind to') parser.add_argument('-A', action='store_true', help='shortcut for --address 0.0.0.0') args = parser.parse_args() address = args.address if args.A: address = '0.0.0.0' proc = start(args.root, address, args.port) try: proc.wait() except KeyboardInterrupt: proc.kill()
import math import random import numpy as np from src.dataclass import Context from src.model import LinearAttention, Trainer from src.utils.formatting import pretty_print import tensorflow as tf def setup_torch(seed: int): random.seed(seed) np.random.seed(seed) def get_model(ctx: Context, load_model: bool) -> Trainer: mod = Trainer(LinearAttention(ctx)) if ctx.model.print_on_init: pretty_print(str(mod)) #parameters = sum(np.prod(p.size()) for p in filter(lambda p: p.requires_grad, mod.parameters())) #base = int(math.log10(parameters) / 3) #pretty_print(f'Parameters: {parameters / (1000 ** base):.1f}{" kMBT"[base]}') if load_model: mod.load() return mod def encode(prompt: str) -> tf.Tensor: return tf.convert_to_tensor(np.frombuffer(prompt.encode('UTF-8'), dtype=np.uint8)) def decode(output: tf.Tensor) -> str: return ''.join(chr(c) for c in output.view(-1).unbind(0))
#!/usr/bin/env python from __future__ import print_function import optparse import re from bs4 import BeautifulSoup def ftp_profile(publish_settings): """Takes PublishSettings, extracts ftp user, password, and host""" soup = BeautifulSoup(publish_settings, 'html.parser') profiles = soup.find_all('publishprofile') ftp_profile = [profile for profile in profiles if profile['publishmethod'] == 'FTP'][0] matches = re.search('ftp://(.+)/site/wwwroot', ftp_profile['publishurl']) host = matches.group(1) if matches else '' username = ftp_profile['username'].replace("\\$", "%5C%24") password = ftp_profile['userpwd'] return host, username, password, ftp_profile['publishurl'] def default_db_connection(publish_settings): """"Takes PublishSettings looks for Azure default db connection, returns default db connection string for local environment and SQL to add user to local db""" username, password = '', '' soup = BeautifulSoup(publish_settings, 'html.parser') connections = soup.find_all('add') regex = 'Database=(.+);Data Source=(.+);User Id=(.+);Password=(.+)' db_connection = [conn for conn in connections if conn['name'] == 'defaultConnection'][0] matches = re.search(regex, db_connection['connectionstring']) if matches: username = matches.group(3) password = matches.group(4) return username, password def main(): """Executes program and handles options""" p = optparse.OptionParser( description='Parses MS Azure PublishSettings file and eturns properly formatted CLI for use with Unix ftp command', prog='get_ftp_cli', version='%prog 1.0.1', usage='%prog [path/to/*.PublishSettings]') options, arguments = p.parse_args() if len(arguments) == 1: infile = open(arguments[0], 'r') contents = infile.read() ftp_host, ftp_username, ftp_password, publish_url = ftp_profile(contents) db_user, db_passwd = default_db_connection(contents) print('') print('Execute the following command to connect to the Azure FTP:') print('----------------------------------------------------------') print('ftp ftp://{}:{}@{}'.format(ftp_username, ftp_password, ftp_host)) print('') print('Execute the following command to put the contents of a directory to the Azure website:') print('----------------------------------------------------------') print('wput $HOME/Sites/[appdir]/* ftp://{}:{}@{}/'.format(ftp_username, ftp_password, publish_url)) print('') print('Append the following line to `./httpd.conf`. (Substitute correct [Local_DB_Name]:') print('----------------------------------------------------------') print( '''SetEnv MYSQLCONNSTR_defaultConnection "Database=[Local_DB_Name];Data Source=localhost;User Id={};Password={}"'''.format(db_user, db_passwd)) print('') print('Execute the following command to add the user to the local MySQL database:') print('----------------------------------------------------------') print( '''mysql -u root -p -e "GRANT ALL PRIVILEGES ON *.* TO '{}'@'localhost' IDENTIFIED BY '{}';"'''.format(db_user, db_passwd)) print('') else: p.print_help() if __name__ == '__main__': main()
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = [ 'GetCertificateResult', 'AwaitableGetCertificateResult', 'get_certificate', ] @pulumi.output_type class GetCertificateResult: """ A collection of values returned by getCertificate. """ def __init__(__self__, certificate=None, created=None, domain_names=None, fingerprint=None, id=None, labels=None, name=None, not_valid_after=None, not_valid_before=None, type=None, with_selector=None): if certificate and not isinstance(certificate, str): raise TypeError("Expected argument 'certificate' to be a str") pulumi.set(__self__, "certificate", certificate) if created and not isinstance(created, str): raise TypeError("Expected argument 'created' to be a str") pulumi.set(__self__, "created", created) if domain_names and not isinstance(domain_names, list): raise TypeError("Expected argument 'domain_names' to be a list") pulumi.set(__self__, "domain_names", domain_names) if fingerprint and not isinstance(fingerprint, str): raise TypeError("Expected argument 'fingerprint' to be a str") pulumi.set(__self__, "fingerprint", fingerprint) if id and not isinstance(id, int): raise TypeError("Expected argument 'id' to be a int") pulumi.set(__self__, "id", id) if labels and not isinstance(labels, dict): raise TypeError("Expected argument 'labels' to be a dict") pulumi.set(__self__, "labels", labels) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if not_valid_after and not isinstance(not_valid_after, str): raise TypeError("Expected argument 'not_valid_after' to be a str") pulumi.set(__self__, "not_valid_after", not_valid_after) if not_valid_before and not isinstance(not_valid_before, str): raise TypeError("Expected argument 'not_valid_before' to be a str") pulumi.set(__self__, "not_valid_before", not_valid_before) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if with_selector and not isinstance(with_selector, str): raise TypeError("Expected argument 'with_selector' to be a str") pulumi.set(__self__, "with_selector", with_selector) @property @pulumi.getter def certificate(self) -> str: """ (string) PEM encoded TLS certificate. """ return pulumi.get(self, "certificate") @property @pulumi.getter def created(self) -> str: """ (string) Point in time when the Certificate was created at Hetzner Cloud (in ISO-8601 format). """ return pulumi.get(self, "created") @property @pulumi.getter(name="domainNames") def domain_names(self) -> Sequence[str]: """ (list) Domains and subdomains covered by the certificate. """ return pulumi.get(self, "domain_names") @property @pulumi.getter def fingerprint(self) -> str: """ (string) Fingerprint of the certificate. """ return pulumi.get(self, "fingerprint") @property @pulumi.getter def id(self) -> int: """ (int) Unique ID of the certificate. """ return pulumi.get(self, "id") @property @pulumi.getter def labels(self) -> Mapping[str, Any]: """ (map) User-defined labels (key-value pairs) assigned to the certificate. """ return pulumi.get(self, "labels") @property @pulumi.getter def name(self) -> Optional[str]: """ (string) Name of the Certificate. """ return pulumi.get(self, "name") @property @pulumi.getter(name="notValidAfter") def not_valid_after(self) -> str: """ (string) Point in time when the Certificate stops being valid (in ISO-8601 format). """ return pulumi.get(self, "not_valid_after") @property @pulumi.getter(name="notValidBefore") def not_valid_before(self) -> str: """ (string) Point in time when the Certificate becomes valid (in ISO-8601 format). """ return pulumi.get(self, "not_valid_before") @property @pulumi.getter def type(self) -> str: return pulumi.get(self, "type") @property @pulumi.getter(name="withSelector") def with_selector(self) -> Optional[str]: return pulumi.get(self, "with_selector") class AwaitableGetCertificateResult(GetCertificateResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetCertificateResult( certificate=self.certificate, created=self.created, domain_names=self.domain_names, fingerprint=self.fingerprint, id=self.id, labels=self.labels, name=self.name, not_valid_after=self.not_valid_after, not_valid_before=self.not_valid_before, type=self.type, with_selector=self.with_selector) def get_certificate(id: Optional[int] = None, name: Optional[str] = None, with_selector: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetCertificateResult: """ Provides details about a specific Hetzner Cloud Certificate. ```python import pulumi import pulumi_hcloud as hcloud sample_certificate1 = hcloud.get_certificate(name="sample-certificate-1") sample_certificate2 = hcloud.get_certificate(id=4711) ``` :param int id: ID of the certificate. :param str name: Name of the certificate. :param str with_selector: [Label selector](https://docs.hetzner.cloud/#overview-label-selector) """ __args__ = dict() __args__['id'] = id __args__['name'] = name __args__['withSelector'] = with_selector if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('hcloud:index/getCertificate:getCertificate', __args__, opts=opts, typ=GetCertificateResult).value return AwaitableGetCertificateResult( certificate=__ret__.certificate, created=__ret__.created, domain_names=__ret__.domain_names, fingerprint=__ret__.fingerprint, id=__ret__.id, labels=__ret__.labels, name=__ret__.name, not_valid_after=__ret__.not_valid_after, not_valid_before=__ret__.not_valid_before, type=__ret__.type, with_selector=__ret__.with_selector)
from jpype import * import yaml import numpy as np import sys sys.path.append("resources") from python.TreeBuilder import * import unittest startJVM(getDefaultJVMPath(), "-ea", "-Djava.class.path=%s" % "./RiverSolver.jar") PokerSolver = JClass('icybee.solver.runtime.PokerSolver') class TestSolver(unittest.TestCase): @classmethod def setUpClass(self): with open('resources/yamls/general_rule.yaml') as fhdl: self.conf = yaml.load(fhdl) self.ps_shortdeck = PokerSolver("Dic5Compairer", "./resources/compairer/card5_dic_sorted_shortdeck.txt", 376993, ['A', 'K', 'Q', 'J', 'T', '9', '8', '7', '6'], ['h', 's', 'd', 'c'] ) self.ps_holdem = PokerSolver("Dic5Compairer", "./resources/compairer/card5_dic_sorted.txt", 2598961, ['A', 'K', 'Q', 'J', 'T', '9', '8', '7', '6', '5', '4', '3'], ['h', 's', 'd', 'c'] ) @classmethod def tearDownClass(self): pass def setUp(self): pass def tearDown(self): pass def test_shortdeck_flop(self): rule = RulesBuilder( self.conf, current_commit = [2,2], current_round = 2, raise_limit = 1, check_limit = 2, small_blind = 0.5, big_blind = 1, stack = 10, bet_sizes = ["1_pot"], ) gameTree = PartGameTreeBuilder(rule) depth = np.inf json = gameTree.gen_km_json("./.tree.km".format(depth),limit=depth,ret_json=True) self.ps_shortdeck.build_game_tree("./.tree.km") result_json = self.ps_shortdeck.train( "AA,KK,QQ,JJ,TT,99,88,77,66,AK,AQ,AJ,AT,A9,A8,A7,A6,KQ,KJ,KT,K9,K8,K7,K6,QJ,QT,Q9,Q8,Q7,Q6,JT,J9,J8,J7,J6,T9,T8,T7,T6,98,97,96,87,86,76", "AA,KK,QQ,JJ,TT,99,88,77,66,AK,AQ,AJ,AT,A9,A8,A7,A6,KQ,KJ,KT,K9,K8,K7,K6,QJ,QT,Q9,Q8,Q7,Q6,JT,J9,J8,J7,J6,T9,T8,T7,T6,98,97,96,87,86,76", "Kd,Jd,Td", 50, # iterations 10, # print_interval False, # debug True, # parallel None, "log.txt", "discounted_cfr", "none", -1, # threads 1, # action fork prob 1, # chance fork prob 1, # fork every tree depth 4, # fork minimal size ) def test_shortdeck_turn(self): rule = RulesBuilder( self.conf, current_commit = [2,2], current_round = 3, raise_limit = 1, check_limit = 2, small_blind = 0.5, big_blind = 1, stack = 10, bet_sizes = ["0.5_pot","1_pot","2_pot","all-in"], ) gameTree = PartGameTreeBuilder(rule) depth = np.inf json = gameTree.gen_km_json("./.tree.km".format(depth),limit=depth,ret_json=True) self.ps_shortdeck.build_game_tree("./.tree.km") result_json = self.ps_shortdeck.train( "AA,KK,QQ,JJ,TT,99,88,77,66,AK,AQ,AJ,AT,A9,A8,A7,A6,KQ,KJ,KT,K9,K8,K7,K6,QJ,QT,Q9,Q8,Q7,Q6,JT,J9,J8,J7,J6,T9,T8,T7,T6,98,97,96,87,86,76", "AA,KK,QQ,JJ,TT,99,88,77,66,AK,AQ,AJ,AT,A9,A8,A7,A6,KQ,KJ,KT,K9,K8,K7,K6,QJ,QT,Q9,Q8,Q7,Q6,JT,J9,J8,J7,J6,T9,T8,T7,T6,98,97,96,87,86,76", "Kd,Jd,Td,7s", 50, # iterations 10, # print_interval False, # debug True, # parallel None, "log.txt", "discounted_cfr", "none", -1, # threads 1, # action fork prob 1, # chance fork prob 1, # fork every tree depth 4, # fork minimal size ) def test_shortdeck_river(self): rule = RulesBuilder( self.conf, current_commit = [2,2], current_round = 4, raise_limit = 1, check_limit = 2, small_blind = 0.5, big_blind = 1, stack = 10, bet_sizes = ["0.5_pot","1_pot","2_pot","all-in"], ) gameTree = PartGameTreeBuilder(rule) depth = np.inf json = gameTree.gen_km_json("./.tree.km".format(depth),limit=depth,ret_json=True) self.ps_shortdeck.build_game_tree("./.tree.km") result_json = self.ps_shortdeck.train( "AA,KK,QQ,JJ,TT,99,88,77,66,AK,AQ,AJ,AT,A9,A8,A7,A6,KQ,KJ,KT,K9,K8,K7,K6,QJ,QT,Q9,Q8,Q7,Q6,JT,J9,J8,J7,J6,T9,T8,T7,T6,98,97,96,87,86,76", "AA,KK,QQ,JJ,TT,99,88,77,66,AK,AQ,AJ,AT,A9,A8,A7,A6,KQ,KJ,KT,K9,K8,K7,K6,QJ,QT,Q9,Q8,Q7,Q6,JT,J9,J8,J7,J6,T9,T8,T7,T6,98,97,96,87,86,76", "Kd,Jd,Td,7s,8s", 50, # iterations 10, # print_interval False, # debug True, # parallel None, "log.txt", "discounted_cfr", "none", -1, # threads 1, # action fork prob 1, # chance fork prob 1, # fork every tree depth 4, # fork minimal size ) def test_holdem_turn(self): rule = RulesBuilder( self.conf, current_commit = [2,2], current_round = 3, raise_limit = 1, check_limit = 2, small_blind = 0.5, big_blind = 1, stack = 10, bet_sizes = ["0.5_pot","1_pot","2_pot","all-in"], ) gameTree = PartGameTreeBuilder(rule) depth = np.inf json = gameTree.gen_km_json("./.tree.km".format(depth),limit=depth,ret_json=True) self.ps_holdem.build_game_tree("./.tree.km") result_json = self.ps_holdem.train( "AA,KK,QQ,JJ,TT,99,88,77,66,AK,AQ,AJ,AT,A9,A8,A7,A6,KQ,KJ,KT,K9,K8,K7,K6,QJ,QT,Q9,Q8,Q7,Q6,JT,J9,J8,J7,J6,T9,T8,T7,T6,98,97,96,87,86,76,83", "AA,KK,QQ,JJ,TT,99,88,77,66,AK,AQ,AJ,AT,A9,A8,A7,A6,KQ,KJ,KT,K9,K8,K7,K6,QJ,QT,Q9,Q8,Q7,Q6,JT,J9,J8,J7,J6,T9,T8,T7,T6,98,97,96,87,86,76,83", "Kd,Jd,Td,7s", 50, # iterations 10, # print_interval False, # debug True, # parallel None, "log.txt", "discounted_cfr", "none", -1, # threads 1, # action fork prob 1, # chance fork prob 1, # fork every tree depth 4, # fork minimal size ) def test_holdem_river(self): rule = RulesBuilder( self.conf, current_commit = [2,2], current_round = 4, raise_limit = 1, check_limit = 2, small_blind = 0.5, big_blind = 1, stack = 10, bet_sizes = ["0.5_pot","1_pot","2_pot","all-in"], ) gameTree = PartGameTreeBuilder(rule) depth = np.inf json = gameTree.gen_km_json("./.tree.km".format(depth),limit=depth,ret_json=True) self.ps_holdem.build_game_tree("./.tree.km") result_json = self.ps_holdem.train( "AA,KK,QQ,JJ,TT,99,88,77,66,AK,AQ,AJ,AT,A9,A8,A7,A6,KQ,KJ,KT,K9,K8,K7,K6,QJ,QT,Q9,Q8,Q7,Q6,JT,J9,J8,J7,J6,T9,T8,T7,T6,98,97,96,87,86,76,83", "AA,KK,QQ,JJ,TT,99,88,77,66,AK,AQ,AJ,AT,A9,A8,A7,A6,KQ,KJ,KT,K9,K8,K7,K6,QJ,QT,Q9,Q8,Q7,Q6,JT,J9,J8,J7,J6,T9,T8,T7,T6,98,97,96,87,86,76,83", "Kd,Jd,Td,7s,8s", 50, # iterations 10, # print_interval False, # debug True, # parallel None, "log.txt", "discounted_cfr", "none", -1, # threads 1, # action fork prob 1, # chance fork prob 1, # fork every tree depth 4, # fork minimal size ) def test_holdem_river_range_with_float(self): rule = RulesBuilder( self.conf, current_commit = [2,2], current_round = 4, raise_limit = 1, check_limit = 2, small_blind = 0.5, big_blind = 1, stack = 10, bet_sizes = ["0.5_pot","1_pot","2_pot","all-in"], ) gameTree = PartGameTreeBuilder(rule) depth = np.inf json = gameTree.gen_km_json("./.tree.km".format(depth),limit=depth,ret_json=True) self.ps_holdem.build_game_tree("./.tree.km") result_json = self.ps_holdem.train( "AA:0.7,KK:0.6,QQ:0.5,76:0.4,83:0.9", "AA:0.87,KK:0.9,QQ:0.2,76:0.5,83:0.4", "Kd,Jd,Td,7s,8s", 50, # iterations 10, # print_interval False, # debug True, # parallel None, "log.txt", "discounted_cfr", "none", -1, # threads 1, # action fork prob 1, # chance fork prob 1, # fork every tree depth 4, # fork minimal size ) if __name__ == '__main__': unittest.main(verbosity=1)
# Robert Li 18 March 2019 <robertwli@gmail.com> # Predicting 2019 AFL results for fun # Based on https://github.com/dashee87/blogScripts/blob/master/Jupyter/ # 2017-06-04-predicting-football-results-with-statistical-modelling.ipynb import pandas as pd import matplotlib.pyplot as plt import numpy as np from scipy.stats import poisson import statsmodels.api as sm import statsmodels.formula.api as smf HISTORICAL_DATA = 'data_historical/afl.xlsx' HISTORICAL_YEARS_TO_MODEL = 2016 # Code drops data older than this date FIXTURE_DATA_2019 = 'data_current_season/afl-2019-AUSEasternStandardTime.xlsx' RESULTS_FILE_MARKDOWN = 'outputs/results.md' RESULTS_POISSON_GRAPH = 'outputs/results.png' # Generate a basic distribution graph. def graph_hist_poisson(historical_score_data): # construct Poisson for each mean goals value poisson_pred = np.column_stack([[poisson.pmf(i, historical_score_data.mean()[j]) for i in range(200)] for j in range(2)]) # plot histogram of actual goals plt.hist(historical_score_data[['Home Score', 'Away Score']].values, range(201), alpha=0.7, label=['Home', 'Away'], normed=True, color=["#fc7e0f", "#BBBBBB"]) # add lines for the Poisson distributions pois1, = plt.plot([i for i in range(0, 201)], poisson_pred[:, 0], linestyle='-', marker='o', label="Home", color='#fc7e0f') pois2, = plt.plot([i for i in range(0, 201)], poisson_pred[:, 1], linestyle='-', marker='o', label="Away", color='#BBBBBB') leg = plt.legend(loc='upper right', fontsize=13, ncol=2) leg.set_title("Poisson Actual ", prop={'size': '14', 'weight': 'bold'}) plt.xticks([i for i in range(0, 201, 20)], [i for i in range(0, 201, 20)]) plt.xlabel("Points per Match", size=13) plt.ylabel("Proportion of Matches", size=13) plt.title("Number of Points per Match (AFL from 2009)", size=14, fontweight='bold') plt.ylim([-0.004, 0.05]) plt.tight_layout() plt.savefig(RESULTS_POISSON_GRAPH) def simulate_match(stats_model, home_team, away_team, max_goals=200): home_goals_avg = stats_model.predict(pd.DataFrame(data={'team': home_team, 'opponent': away_team,'home': 1}, index=[1])).values[0] away_goals_avg = stats_model.predict(pd.DataFrame(data={'team': away_team, 'opponent': home_team,'home': 0}, index=[1])).values[0] team_pred = [[poisson.pmf(i, team_avg) for i in range(0, max_goals+1)] for team_avg in [home_goals_avg, away_goals_avg]] return np.outer(np.array(team_pred[0]), np.array(team_pred[1])) def main(): # Historical data history = pd.read_excel(HISTORICAL_DATA, header=1) history = history.drop(history.loc[history['Play Off Game?'] == 'Y'].index) # Get rid of finals games graph_hist_poisson(history) # Generate Poisson distribution history = history.drop(history.loc[history['Date'].dt.year < HISTORICAL_YEARS_TO_MODEL].index) # 2019 Match fixtures data and cleansing matches = pd.read_excel(FIXTURE_DATA_2019) matches = matches.drop(matches.loc[matches['Home Team'] == 'To be announced'].index) # Get rid of finals games # Clean matches names to be same as history data matches['Home Team'] = matches['Home Team'].str.replace(r"^Adelaide Crows$", 'Adelaide', regex=True) matches['Away Team'] = matches['Away Team'].str.replace(r"^Adelaide Crows$", 'Adelaide', regex=True) matches['Home Team'] = matches['Home Team'].str.replace(r"Brisbane Lions", 'Brisbane', regex=True) matches['Away Team'] = matches['Away Team'].str.replace(r"Brisbane Lions", 'Brisbane', regex=True) matches['Home Team'] = matches['Home Team'].str.replace(r"Sydney Swans", 'Sydney', regex=True) matches['Away Team'] = matches['Away Team'].str.replace(r"Sydney Swans", 'Sydney', regex=True) matches['Home Team'] = matches['Home Team'].str.replace(r"Geelong Cats", 'Geelong', regex=True) matches['Away Team'] = matches['Away Team'].str.replace(r"Geelong Cats", 'Geelong', regex=True) matches['Home Team'] = matches['Home Team'].str.replace(r"West Coast Eagles", 'West Coast', regex=True) matches['Away Team'] = matches['Away Team'].str.replace(r"West Coast Eagles", 'West Coast', regex=True) matches['Home Team'] = matches['Home Team'].str.replace(r"Gold Coast Suns", 'Gold Coast', regex=True) matches['Away Team'] = matches['Away Team'].str.replace(r"Gold Coast Suns", 'Gold Coast', regex=True) # Clean up historical data for stats model goal_model_data = pd.concat([ history[['Home Team', 'Away Team', 'Home Score']].assign(home=1).rename( columns={'Home Team': 'team', 'Away Team': 'opponent', 'Home Score': 'goals'}), history[['Away Team', 'Home Team', 'Away Score']].assign(home=0).rename( columns={'Away Team': 'team', 'Home Team': 'opponent', 'Away Score': 'goals'}) ]) # Create Poisson model poisson_model = smf.glm(formula="goals ~ home + team + opponent", data=goal_model_data, family=sm.families.Poisson()).fit() # poisson_model.summary() # Use Poisson model to simulate every matchup for 2019 and write results to markdown file. with open(RESULTS_FILE_MARKDOWN, 'w') as file: print('# Stat model results', file=file) print('## Predictions for 2019 AFL Season', file=file) print('| Round | Predicted Winner | Home Team | Away Team ' '| Chance Home Team Wins | Chance of Draw | Chance Away Team Wins |', file=file) print('| --- | --- | --- | --- | ---: | ---: | ---: |', file=file) for index, row in matches.iterrows(): match_info = row round_nb = match_info['Round Number'] home_team = match_info['Home Team'] away_team = match_info['Away Team'] home_away_sim = simulate_match(poisson_model, home_team, away_team, max_goals=200) home_win_perc = np.sum(np.tril(home_away_sim, -1)) draw_perc = np.sum(np.diag(home_away_sim)) away_win_perc = np.sum(np.triu(home_away_sim, 1)) predicted_winner = '???' if home_win_perc > away_win_perc: predicted_winner = home_team else: predicted_winner = away_team print(f'| {round_nb} | {predicted_winner} | {home_team} | {away_team} | ' f'{home_win_perc:.2%} | {draw_perc:.2%} | {away_win_perc:.2%} |', file=file) main()