seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
8833474558
######################################################## # Rodrigo Leite - drigols # # Last update: 17/12/2021 # ######################################################## import pandas as pd from matplotlib import pyplot as plt df = pd.DataFrame( { 'Name': ['Dan', 'Joann', 'Pedro', 'Rosie', 'Ethan', 'Vicky', 'Frederic'], 'Salary':[50000, 54000, 50000, 189000, 55000, 40000, 59000], 'Hours':[41, 40, 36, 17, 35, 39, 40], 'Grade':[50, 50, 46, 95, 50, 5,57] } ) # Utiliza o atributo showfliers = False - Ou seja, ignora dados discrepantes. df['Salary'].plot(kind='box', title='Salary Distribution', figsize=(10,8), showfliers=False) plt.savefig('../images/first-boxplot-03.png', format='png') plt.show()
drigols/studies
modules/math-codes/modules/statistics-and-probability/src/outliers-v2.py
outliers-v2.py
py
804
python
en
code
0
github-code
6
21437122618
import kivy from kivy.app import App from kivy.uix.label import Label # 2 from kivymd.app import MDApp from kivymd.uix.label import MDLabel from kivymd.uix.screen import Screen kivy.require('2.1.0') class MyFirstApp(App): def build(self): # lbl = Label(text='Hello World') # lbl = Label(text='Hello World and Good Morning', font_size='20sp', color=[0.41, 0.42, 0.74, 1]) lbl = Label(text="[color=ff3333][b]'Hello World'[/b][/color]\n[color=3333ff]Good Morning[/color]", font_size='20sp', markup=True) """ [b][/b] → 太字を有効にする [i][/i] → イタリック体のテキストをアクティブにする [u][/u] → 下線テキスト [s][/s] →取り消し線付きテキスト [font=][/font] → フォントを変更する [サイズ=][/size]]です。→ フォントサイズを変更する [色=#][/color] → 文字色の変更 [ref=][/ref] -> インタラクティブゾーンを追加します。参照+参照内部のバウンディングボックスがLabel.refsで利用可能になります。 [anchor=] -> テキストにアンカーを入れる。テキスト内のアンカーの位置はLabel.anchorsで取得できます。 [sub][/sub] -> 前のテキストからの相対的な添え字の位置でテキストを表示します。 [sup][/sup] -> 前のテキストと相対的な上付き文字の位置でテキストを表示します。 """ return lbl class Demo(MDApp): def build(self): screen = Screen() l = MDLabel(text="Welcome", pos_hint={'center_x': 0.8, 'center_y': 0.8}, theme_text_color='Custom', text_color=(0.5, 0, 0.5, 1), font_style='Caption' ) l1 = MDLabel(text="Welcome", pos_hint={'center_x': 0.8, 'center_y': 0.5}, theme_text_color='Custom', text_color=(0.5, 0, 0.5, 1), font_style='H2' ) l2 = MDLabel(text="Welcome", pos_hint={'center_x': 0.8, 'center_y': 0.2}, theme_text_color='Custom', text_color=(0.5, 0, 0.5, 1), font_style='H1' ) screen.add_widget(l) screen.add_widget(l1) screen.add_widget(l2) return screen if __name__ == '__main__': # MyFirstApp().run() Demo().run()
gonzales54/python_script
kivy/kivy1(text)/main1.py
main1.py
py
2,528
python
ja
code
0
github-code
6
5609431554
import gym class SparseRewardWrapper(gym.Wrapper): def __init__(self, env, sparse_level=-1, timestep_limit=-1): super(SparseRewardWrapper, self).__init__(env) self.sparse_level = sparse_level self.timestep_limit = timestep_limit self.acc_reward = 0 self.acc_t = 0 def step(self, action): obs, rew, done, info = self.env.step(action) self.acc_t += 1 if self.timestep_limit > 0 and (self.acc_t) >= self.timestep_limit: done = True if self.sparse_level == 0: return obs, rew, done, info self.acc_reward += rew ret_rew = 0 if self.sparse_level != -1: if done or (self.acc_t > 0 and self.acc_t % self.sparse_level == 0): ret_rew = self.acc_reward self.acc_reward = 0 else: if done: ret_rew = self.acc_reward self.acc_reward = 0 return obs, ret_rew, done, info def reset(self, **kwargs): self.acc_t = 0 self.acc_reward = 0 return self.env.reset(**kwargs)
pfnet-research/piekd
sparse_wrapper.py
sparse_wrapper.py
py
1,118
python
en
code
6
github-code
6
36154798504
import streamlit as st st.set_option('deprecation.showPyplotGlobalUse', False) # for manipulation import pandas as pd import numpy as np # for data visualization import matplotlib.pyplot as plt import seaborn as sns sns.set(style="ticks") plt.style.use("dark_background") #sns.set_style('whitegrid') # to filter warnings import warnings warnings.filterwarnings('ignore') # for interactivity from ipywidgets import interact st.title("Agricultural Production Optimization Engine") # Reading the dataset data= pd.read_csv('data.csv') x= data.drop(['label'], axis=1) y= data['label'] # let's create training and testing sets for validation of results from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test= train_test_split(x,y, test_size=0.2, random_state=42) # let's create predictive model from sklearn.linear_model import LogisticRegression LogReg = LogisticRegression() LogReg.fit(x_train,y_train) from sklearn import linear_model from sklearn.ensemble import RandomForestClassifier random_forest= RandomForestClassifier(n_estimators=100) random_forest.fit(x_train, y_train) from sklearn.tree import DecisionTreeClassifier DecTree= DecisionTreeClassifier() DecTree.fit(x_train,y_train) from sklearn.neighbors import KNeighborsClassifier KNN= KNeighborsClassifier() KNN.fit(x_train, y_train) from sklearn.naive_bayes import GaussianNB NB= GaussianNB() NB.fit(x_train, y_train) from sklearn.svm import SVC svm = SVC() svm.fit(x_train, y_train) Nv = st.sidebar.radio("Navigator", ["Home","Prediction","Contribute"]) if Nv== "Home": #st.write("### Home") st.image("app.png", width= 700) if st.checkbox("Show Dataset"): st.table(data) st.subheader("\nSoil Requirement of Each Crop") if st.checkbox("Show Soil Requirement Graphs"): condition = st.selectbox("Conditions",['Nitrogen Requirement','Phosphorous Requirement','Potassium Requirement','Temperature Requirement', 'PH Requirement','Humidity Requirement','Rainfall Requirement']) if condition == "Nitrogen Requirement": plt.figure(figsize=(5, 3)) sns.barplot(data['label'], data["N"]) plt.xlabel('\nCrops', fontsize=14) plt.xticks(rotation=90) plt.ylabel("Nitrogen Requirement", fontsize=12) st.pyplot() if condition == "Phosphorous Requirement": plt.figure(figsize=(5, 3)) sns.barplot(data['label'], data["P"]) plt.xlabel('\nCrops', fontsize=14) plt.xticks(rotation=90) plt.ylabel("Phosphorous Requirement", fontsize=12) st.pyplot() if condition == "Potassium Requirement": plt.figure(figsize=(5, 3)) sns.barplot(data['label'], data["K"]) plt.xlabel('\nCrops', fontsize=14) plt.xticks(rotation=90) plt.ylabel("Potassium Requirement", fontsize=12) st.pyplot() if condition == "Temperature Requirement": plt.figure(figsize=(5, 3)) sns.barplot(data['label'], data["temperature"]) plt.xlabel('\nCrops', fontsize=14) plt.xticks(rotation=90) plt.ylabel("Temperature Requirement", fontsize=12) st.pyplot() if condition == "Humidity Requirement": plt.figure(figsize=(5, 3)) sns.barplot(data['label'], data["humidity"]) plt.xlabel('\nCrops', fontsize=14) plt.xticks(rotation=90) plt.ylabel("Humidity Requirement", fontsize=12) st.pyplot() if condition == "PH Requirement": plt.figure(figsize=(5, 3)) sns.barplot(data['label'], data["ph"]) plt.xlabel('\nCrops', fontsize=14) plt.xticks(rotation=90) plt.ylabel("PH Requirement", fontsize=12) st.pyplot() if condition == "Rainfall Requirement": plt.figure(figsize=(5, 3)) sns.barplot(data['label'], data["rainfall"]) plt.xlabel('\nCrops', fontsize=14) plt.xticks(rotation=90) plt.ylabel("Rainfall Requirement", fontsize=12) st.pyplot() st.subheader("\nDistribution of Agricultural Conditions") if st.checkbox("Show Distribution Graphs"): con = st.selectbox("Conditions",['N','P','K','Temperature','PH','Humidity','Rainfall']) if con == "N": plt.figure(figsize=(5, 3)) sns.distplot(data["N"]) plt.xlabel("\nNitrogen", fontsize=14) plt.ylabel('Density',fontsize=14) plt.axvline(data["N"].min(), color='y', label='Minimum') plt.axvline(data["N"].mean(), color='orange', label='Mean') plt.axvline(data["N"].max(), color='grey', label='Maximum') plt.legend() st.pyplot() if con == "P": plt.figure(figsize=(5, 3)) sns.distplot(data["P"]) plt.xlabel("\nPhosphourous", fontsize=14) plt.ylabel('Density',fontsize=14) plt.axvline(data["P"].min(), color='y', label='Minimum') plt.axvline(data["P"].mean(), color='orange', label='Mean') plt.axvline(data["P"].max(), color='grey', label='Maximum') plt.legend() st.pyplot() if con == "K": plt.figure(figsize=(5, 3)) sns.distplot(data["K"]) plt.xlabel("\nPotassium", fontsize=14) plt.ylabel('Density',fontsize=14) plt.axvline(data["K"].min(), color='y', label='Minimum') plt.axvline(data["K"].mean(), color='orange', label='Mean') plt.axvline(data["K"].max(), color='grey', label='Maximum') plt.legend() st.pyplot() if con == "Temperature": plt.figure(figsize=(5, 3)) sns.distplot(data["temperature"]) plt.xlabel("\nTemperature", fontsize=14) plt.ylabel('Density',fontsize=14) plt.axvline(data["temperature"].min(), color='y', label='Minimum') plt.axvline(data["temperature"].mean(), color='orange', label='Mean') plt.axvline(data["temperature"].max(), color='grey', label='Maximum') plt.legend() st.pyplot() if con == "PH": plt.figure(figsize=(5, 3)) sns.distplot(data["ph"]) plt.xlabel("\nPH", fontsize=14) plt.ylabel('Density',fontsize=14) plt.axvline(data["ph"].min(), color='y', label='Minimum') plt.axvline(data["ph"].mean(), color='orange', label='Mean') plt.axvline(data["ph"].max(), color='grey', label='Maximum') plt.legend() st.pyplot() if con == "Humidity": plt.figure(figsize=(5, 3)) sns.distplot(data["humidity"]) plt.xlabel("\nHumidity", fontsize=14) plt.ylabel('Density',fontsize=14) plt.axvline(data["humidity"].min(), color='y', label='Minimum') plt.axvline(data["humidity"].mean(), color='orange', label='Mean') plt.axvline(data["humidity"].max(), color='grey', label='Maximum') plt.legend() st.pyplot() if con == "Rainfall": plt.figure(figsize=(5, 3)) sns.distplot(data["rainfall"]) plt.xlabel("\nRainfall", fontsize=14) plt.ylabel('Density',fontsize=14) plt.axvline(data["rainfall"].min(), color='y', label='Minimum') plt.axvline(data["rainfall"].mean(), color='orange', label='Mean') plt.axvline(data["rainfall"].max(), color='grey', label='Maximum') plt.legend() st.pyplot() if Nv == "Prediction": st.subheader("\nCrop Predictor\n") N = st.number_input("\nNitrogen Value: ",50.00, step=0.10) P = st.number_input("Phosphorous Value: ", 50.00 ,step=0.10) K = st.number_input("Potassium Value: ", 50.00 ,step=0.10) T = st.number_input("Tempreture: ", 25.00 ,step=0.10) H = st.number_input("Humidity: ", 50.00 ,step=0.10) PH = st.number_input("PH Value: ", 7.00 ,step=0.10) R = st.number_input("Rainfall: ", 200.00 ,step=0.10) st.write("\n\n\n") op=st.selectbox("Choose ML Algorithm",['Random Forest','Logistic Regression', 'Decision Tree','KNN', 'Naive Bayes', 'SVM']) st.write("\n\n\n") if st.button("Predict"): if op=="Logistic Regression": y_pred_LR= LogReg.predict([[N, P, K, T, H, PH, R]]) st.subheader(f"\nPredicted Crop by using Logistic Regression is:") st.success(y_pred_LR) if op=="Random Forest": y_pred_RF= random_forest.predict([[N, P, K, T, H, PH, R]]) st.subheader(f"\nPredicted Crop by using Random Forest is:") st.success(y_pred_RF) if op=="Decision Tree": y_pred_DT= DecTree.predict([[N, P, K, T, H, PH, R]]) st.subheader(f"\nPredicted Crop by using Decision Tree is:") st.success(y_pred_DT) if op=="KNN": y_pred_KNN= DecTree.predict([[N, P, K, T, H, PH, R]]) st.subheader(f"\nPredicted Crop by using KNN is:") st.success(y_pred_KNN) if op=="Naive Bayes": y_pred_NB= NB.predict([[N, P, K, T, H, PH, R]]) st.subheader(f"\nPredicted Crop by using Naive Bayes is:") st.success(y_pred_NB) if op=="SVM": y_pred_SVM= svm.predict([[N, P, K, T, H, PH, R]]) st.subheader(f"\nPredicted Crop by using SVM is:") st.success(y_pred_SVM) if Nv == "Contribute": st.subheader("Contribute to our Dataset") N = st.number_input("Nitrogen Value: ", 0.00, 150.00, 50.00, step=0.5) P = st.number_input("Phosphorous Value: ", 0.00, 150.00, 50.00, step=0.5) K = st.number_input("Potassium Value: ", 0.00, 120.00, 50.00, step=0.5) T = st.number_input("Tempreture: ", 0.00, 60.00, 25.00, step=0.5) H = st.number_input("Humidity: ", 10.00, 100.00, 50.00, step=0.5) PH = st.number_input("PH Value: ", 0.00, 10.00, 7.00, step=0.5) R = st.number_input("Rainfall: ", 20.00, 300.00, 200.00, step=0.5) crop = st.text_input("Crop: ") if st.button("Contribute"): to_add= {"N":[N], "P":[P], "K":[K], "temperature":[T], "humidity":[H], "ph":[PH], "rainfall":[R], "label":[crop]} to_add= pd.DataFrame(to_add) to_add.to_csv("app.csv", mode='a', header=False, index=False) st.success("Thanks for Your Contribution")
Jkauser/Agricultural-Production-Optimization-Engine
app.py
app.py
py
10,888
python
en
code
0
github-code
6
8380997732
import os from flask import Flask, jsonify, request from math import sqrt app = Flask(__name__) @app.route('/') def nao_entre_em_panico(): nmax = 50 n1 = 0 n2 = 1 cont = 0 fib = 0 res = "Essa é sequencia dos 50 primeiros números da razão de Fibonacci: <br> Desenvolvido por Jefferson Alves. <br> <br>" while cont < nmax: fib = n1 + n2 n1 = n2 n2 = fib cont = cont + 1 res = res + str(fib) + "<br>" return res if __name__ == "__main__": port = int(os.environ.get("PORT", 5000)) app.run(host='0.0.0.0', port=port)
jeffersonpedroza/Docker
fibonacci.py
fibonacci.py
py
606
python
pt
code
0
github-code
6
36837090213
import streamlit as st from streamlit_option_menu import option_menu import math import datetime from datetime import date import calendar from PIL import Image from title_1 import * from img import * with open('final.css') as f: st.markdown(f"<style>{f.read()}</style>",unsafe_allow_html=True) def average(): image() st.markdown(" <h1 style='text-align: center; color: Black;font-size: 25px;'>Application to Find the Average</h1>", unsafe_allow_html=True) w1,col1,col2,w2=st.columns((1,2,2,1)) us1,bc1,bc2,us2=st.columns((4,1.5,1.8,6)) with col1: st.markdown("") st.write("# Enter the Date ") # ------------to create the function to clear the input-----------# with bc2: st.markdown("") st.markdown("") def clear_text(): st.session_state["text"] = "" st.button("Clear", on_click=clear_text) with col2: vAR_input_num=st.text_input("",key="text") vAR_list=[] #----- Average -------# with bc1: st.markdown("") st.markdown("") if st.button("Submit"): with col2: if vAR_input_num != '': vAR_input_data = vAR_input_num.split(",") for i in vAR_input_data: num=int(i) vAR_list.append(num) def Average(vAR_list): vAR_avg= sum(vAR_list) / len(vAR_list) vAR_avg=round(vAR_avg,4) st.success(vAR_avg) Average(vAR_list) else: st.error("Error") with col1: st.write("# Answer is ")
Deepsphere-AI/AI-lab-Schools
Grade 08/Application/find_avg.py
find_avg.py
py
1,787
python
en
code
0
github-code
6
19686018633
#Caesar Cipher Technique print ("\nCaesar Cipher Technique") def encrypt(text,s): result = ("") for i in range(len(text)): char = text[i] if (char.isupper()): result += chr((ord(char) + Shift - 65) % 26 + 65) else: result += chr((ord(char) + s - 97) % 26 + 97) return result #check the above function Technique = input("\nEnter the Caesar Cipher Technique, \ni.e. Either Encrypt or Decrypt, Type ('Encrypt' or 'Decrypt').\n") if Technique =='Encrypt': Text = input("\nEnter the Plain Text : ") Shift = int(input("\nEnter Key : ")) E = encrypt(Text,Shift) print ("\nYour Text : " + Text) print ("\nShift : " + str(Shift)) print ("\nEncrypted Text : " + E) elif Technique =='Decrypt': Text = input("\nEnter the Cipher Text : ") Shift = int(input("\nEnter the key : ")) D = encrypt(Text,(26 - Shift)) print ("\nYour Cipher Text : " + Text) print ("\nShift : " + str(Shift)) print ("\nDecrypted Text : " + D) else : print ("Wrong Choice Please Try Again ... ")
hsenhgiv/i
Practical 1.1 Caesar Cipher Technique.py
Practical 1.1 Caesar Cipher Technique.py
py
1,256
python
en
code
0
github-code
6
35021100800
from .base import BaseEnvironment import os import subprocess class K3dEnvironment(BaseEnvironment): name = "k3d" def load_images(self, images): loaded = [] for img, is_latest in images: md = open(img+".txt") image_id = md.readline().strip() image_repo_tag = md.readline().strip() self.load_image(image_repo_tag, image_id) def load_image(self, repo_tag, id): print(f"Loading image {repo_tag} ({id})") cmd = f"k3d image import {repo_tag} -c k3s-default" print(cmd) subprocess.check_call(cmd, shell=True) def start_cluster(self, nodes, version): assert version is None #regpath = os.path.join(os.path.dirname(__file__), "k3d-registries.yaml") # , "--volume", regpath+":/etc/rancher/k3s/registries.yaml"] args = ["k3d", "cluster", "create", "k3s-default"] subprocess.check_call(args) # connect network of the cluster to the local image registry #subprocess.call(["docker", "network", "connect", "k3d-k3s-cluster", "registry.localhost"]) def stop_cluster(self): args = ["k3d", "cluster", "stop", "k3s-default"] subprocess.check_call(args) def delete_cluster(self): args = ["k3d", "cluster", "delete", "k3s-default"] subprocess.check_call(args)
mvvitorsilvati/mysql-operator
tests/utils/ote/k3d.py
k3d.py
py
1,357
python
en
code
null
github-code
6
2061469568
from sklearn.preprocessing import StandardScaler from sklearn import svm class OneClassSVM: def __init__(self, scaling=True): self._scaling = scaling def fit(self, X): if self._scaling: self._scaler = StandardScaler() X = self._scaler.fit_transform(X) X = X[:4096] self._svm = svm.OneClassSVM().fit(X) return self def anomaly_scores(self, batch): if self._scaling: batch = self._scaler.transform(batch) return -self._svm.decision_function(batch)
rom1mouret/cheatmeal
benchmarks/baselines/one_class_svm.py
one_class_svm.py
py
559
python
en
code
2
github-code
6
41014218939
#coding=utf-8 import numpy as np import pyten from scipy import stats from pyten.method.PoissonAirCP import PoissonAirCP from pyten.method import AirCP from pyten.tools import tenerror from pyten.method import cp_als from pyten.method import falrtc,TNCP import matplotlib.pyplot as plt #参数设置 missList = [0.7] duplicate=1 prespecifyrank = 5 para_alpha = [1,1,1] para_lmbda = 1 def normalize(mat): ''' 将矩阵每一列都标准化,不然在计算余弦相似度时都非常相近 :param mat: :return: ''' X_mean = mat.mean(axis=0) # standardize X X1 = (mat - X_mean) return(X1) from sklearn.metrics.pairwise import cosine_similarity def cons_similarity(dat): siz = dat.shape temp = np.sum(dat, axis=1) tagvector = normalize(np.sum(dat, axis=1)) cos_dist = 1 - cosine_similarity(tagvector) aux0 = np.exp(-(cos_dist**2)) # 2时间相似性用AR(1)模型的acf去做 from statsmodels.tsa.arima_model import ARMA ts = np.sum(np.sum(dat, axis=0),axis = 1) order = (1,0) tempModel = ARMA(ts,order).fit() rho = np.abs(tempModel.arparams) aux1 = np.diag(np.ones(siz[1])) for nn in range(1, siz[1]): aux1 = aux1 + np.diag(np.ones(siz[1] - nn), -nn) * rho ** nn + np.diag(np.ones(siz[1] - nn), nn) * rho ** nn # 3话题之间相关性 aux2 = np.diag(np.ones(siz[2])) Pl = np.sum(temp, axis=1) / np.sum(temp) for i in range(siz[2]): for j in range(siz[2]): aux2[i,j] = np.exp(-np.sum((((temp[:, i] - temp[:, j]) / np.max(temp, 1)) ** 2) * Pl)) aux = [aux0, aux1, aux2] return (aux) def convertMon(mat): ''' 将数据从daily_data转化为monthly_data :param mat: :return: ''' monthdat = [] month = range(0, 365, 30) for i in range(12): monthdat.append(np.sum(mat[:, month[i]:month[i + 1]], axis=1)) monthdat = np.array(monthdat) monthdat = monthdat.transpose((1, 0, 2)) return(monthdat) dat =np.load('newbuild_tensor.npy') #预处理,先筛选一次国家,0太多的的不纳入考虑,只剩下235->195个 idx = np.sum(np.sum(dat ==0,axis = 1),axis=1)>1000 dat = dat[idx] #可供选择的调整方法,整理成月数据 dat = convertMon(dat) siz = dat.shape true_data = dat.copy() true_data = pyten.tenclass.tensor.Tensor(true_data) # 这里是为了画图比较 finalList1 = [] finalList22 = [] finalList2 = [] finalListTNCP=[] finalListfal = [] for miss in missList: aux = [np.diag(np.ones(siz[0])), np.diag(np.ones(siz[1])), np.diag(np.ones(siz[2]))] RE2 = [] RE22 = [] for dup in range(duplicate): np.random.seed(dup*4) #每次都用同一份数据去做 data = dat.copy() #观测值:丢失部分数据的 Omega = (np.random.random(siz) > miss) * 1 data[Omega == 0] -= data[Omega == 0] data = pyten.tenclass.tensor.Tensor(data) #补全时候用的rank print('missing ratio: {0}'.format(miss)) #补全时候用的rank com_rank = prespecifyrank # 这部分引入了更新辅助矩阵的算法 simerror = 1 Iter = 1 while (simerror > 1e-2 and Iter < 10): self2 = PoissonAirCP(data, omega=Omega, rank=com_rank, max_iter=3000, tol=1e-5, OnlyObs=True, TrueValue=true_data, sim_mats=aux, alpha=para_alpha, lmbda=para_lmbda) self2.run() temp_aux = cons_similarity(self2.X.data) simerror = np.max((np.linalg.norm(aux[0] - temp_aux[0]), np.linalg.norm(aux[1] - temp_aux[1]), np.linalg.norm(aux[2] - temp_aux[2]))) aux = temp_aux Iter = Iter + 1 print('ExpAirCP loop with similarity error: {0}'.format(simerror)) [EEr, EReEr1, EReEr2] = tenerror(self2.X, true_data, Omega) if Iter ==2: RE22.append(EReEr1) print(EReEr1) # 到这里为止 [EErr, EReErr1, EReErr2] = tenerror(self2.X, true_data, Omega) print ('ExpAirCP Completion Error: {0}, {1}, {2}'.format(EErr, EReErr1, EReErr2)) RE2.append(EReErr1) finalList22.append(np.mean(RE22)) finalList2.append(np.mean(RE2)) for miss in missList: aux = [np.diag(np.ones(siz[0])), np.diag(np.ones(siz[1])), np.diag(np.ones(siz[2]))] RE1 = [] RE11 = [] for dup in range(duplicate): np.random.seed(dup*4) #每次都用同一份数据去做 data = dat.copy() #观测值:丢失部分数据的 Omega = (np.random.random(siz) > miss) * 1 data[Omega == 0] -= data[Omega == 0] data = pyten.tenclass.tensor.Tensor(data) #补全时候用的rank print('missing ratio: {0}'.format(miss)) #补全时候用的rank com_rank = prespecifyrank # 这部分引入了更新辅助矩阵的算法 simerror = 1 Iter = 1 while (simerror > 1e-2 and Iter < 10): self = AirCP(data, omega=Omega, rank=com_rank, max_iter=3000, tol=1e-5, sim_mats=aux, alpha=para_alpha, lmbda=para_lmbda) self.run() temp_aux = cons_similarity(self.X.data) simerror = np.max((np.linalg.norm(aux[0] - temp_aux[0]), np.linalg.norm(aux[1] - temp_aux[1]), np.linalg.norm(aux[2] - temp_aux[2]))) aux = temp_aux Iter = Iter + 1 print('AirCP loop with similarity error: {0}'.format(simerror)) [EEr, EReEr1, EReEr2] = tenerror(self.X, true_data, Omega) print(EReEr1) # 到这里为止 #这里看对原始数据的补全准不准 [Err, ReErr1, ReErr2] = tenerror(self.X, true_data, Omega) print ('AirCP Completion Error: {0}, {1}, {2}'.format(Err, ReErr1, ReErr2)) RE1.append(ReErr1) finalList1.append(np.mean(RE1)) # for miss in missList: # RETNCP = [] # # for dup in range(duplicate): # np.random.seed(dup*4) # #每次都用同一份数据去做 # data = dat.copy() # #观测值:丢失部分数据的 # Omega = (np.random.random(siz) > miss) * 1 # data[Omega == 0] -= data[Omega == 0] # data = pyten.tenclass.tensor.Tensor(data) # # #补全时候用的rank # print('missing ratio: {0}'.format(miss)) # #补全时候用的rank # com_rank = prespecifyrank # self3 = TNCP(data, Omega, rank=com_rank,alpha = para_alpha, lmbda=para_lmbda) # self3.run() # [EErrr, EReErrr1, EReErrr2] = tenerror(self3.X, true_data, Omega) # print ('TNCP Completion Error: {0}, {1}, {2}'.format(EErrr, EReErrr1, EReErrr2)) # RETNCP.append(EReErrr1) # finalListTNCP.append(np.mean(RETNCP)) # # # #对于fal不受到rank改变的影响,所以单独写出来 # for miss in missList: # REfal = [] # for dup in range(duplicate): # np.random.seed(dup*4) # #每次都用同一份数据去做 # data = dat.copy() # #观测值:丢失部分数据的 # Omega = (np.random.random(siz) > miss) * 1 # data[Omega == 0] -= data[Omega == 0] # data = pyten.tenclass.tensor.Tensor(data) # print('missing ratio: {0}'.format(miss)) # rX1 = falrtc(data, Omega, max_iter=100) # [Errfal, ReErrfal, ReErr2fal] = tenerror(rX1, true_data, Omega) # print ('falrtc Completion Error: {0}, {1}, {2}'.format(Errfal, ReErrfal, ReErr2fal)) # REfal.append(ReErrfal) # finalListfal.append(np.mean(REfal)) # print(finalList1) print(finalList2) print(finalListTNCP) print(finalListfal) result = [finalList1,finalList2,finalListTNCP] result_name = 'prerank='+str(prespecifyrank)+'.csv' #np.savetxt(result_name,result,fmt='%.4f',delimiter=',')
yangjichen/ExpCP
realdata/GDELT_step3.py
GDELT_step3.py
py
7,907
python
en
code
0
github-code
6
38026626999
from tkinter import * from tkinter import ttk from tkinter import messagebox from Utils import Calendar class App: def __init__(self): self.root = Tk() self.root.title("Calendar App") self.root.geometry("600x500") self.root.resizable(False,False) self.today = Calendar.getToday() self.year = self.today.year self.monthIndex = self.today.month self.day = self.today.day self.weekDay = self.today.weekday() self.dayName = Calendar.weekdays[self.today.weekday()] self.dateLabelsOnWindow = [] self.frame = Frame(self.root,background="#ececec") self.move_to_date_frame = Frame(self.root) self.menu = Menu(self.root) self.setUpCalendar() self.root.mainloop() def selectDate(self,e): for items in self.dateLabelsOnWindow: if int(items.cget("text")) == self.today.day and self.year == self.today.year and self.monthIndex == self.today.month: items.config(background="#19668A",foreground="white") else: items.config(background="#D3D3D3",foreground="black") items.selected = False e.widget.config(background="#3f3f3f",foreground="white") e.widget.selected = True def nextMonth(self): self.monthIndex +=1 self.dateLabelsOnWindow = [] if self.monthIndex > 12: self.monthIndex = 1 self.year+=1 self.setUpCalendar() def previousMonth(self): self.monthIndex -=1 self.dateLabelsOnWindow = [] if self.monthIndex < 1: self.monthIndex = 12 self.year-=1 self.setUpCalendar() def getToday(self): self.monthIndex = self.today.month self.year = self.today.year self.setUpCalendar() def moveToDate(self,year,month): try: if month =="" or year == "": raise Exception() self.year = int(year) self.monthIndex=Calendar.months.index(month.capitalize())+1 self.setUpCalendar() except Exception as e: messagebox.showwarning(title="Warning",message="Fill all the entries carefully") def createMenuBar(self): self.menu = Menu(self.root) home = Menu(self.menu,tearoff=False) about = Menu(self.menu,tearoff=False) self.menu.add_cascade(label="Home",menu=home) self.menu.add_cascade(label="About",menu=about) home.add_cascade(label="Today",command=self.getToday) home.add_cascade(label="Move to Date",command=self.moveToDatePage) home.add_separator() home.add_cascade(label="Exit",command=self.root.destroy) about.add_cascade(label="About",command=lambda:messagebox.askokcancel(title="About",message="This is a calendar app made using python by Paras Punjabi")) self.root.config(menu=self.menu) def moveToDatePage(self): self.frame.pack_forget() month = StringVar() year = StringVar() year.set(self.year) month.set("January") Label(self.move_to_date_frame,text="Go To Date",font=("monospace",25,"bold")).grid(row=0,column=0,columnspan=2,pady=20) Label(self.move_to_date_frame,text="Month",font=("monospace",15,"bold")).grid(row=1,column=0,pady=10) combobox = ttk.Combobox(self.move_to_date_frame,textvariable=month,width=40,font=("monospace",15,"bold")) combobox["values"] = Calendar.months combobox.grid(row=1,column=1,pady=10) Label(self.move_to_date_frame,text="Year",font=("monospace",15,"bold")).grid(row=2,column=0,pady=10) Entry(self.move_to_date_frame,textvariable=year,font=("monospace",15,"bold"),width=40).grid(row=2,column=1,pady=10) Button(self.move_to_date_frame,text="Go to Date",font=("monospace",15,"bold"),command=lambda:self.moveToDate(year.get(),month.get())).grid(row=3,column=1,pady=10) Button(self.move_to_date_frame,text="Home",font=("monospace",15,"bold"),command=self.setUpCalendar).grid(row=4,column=1,pady=10) self.move_to_date_frame.pack() def setUpCalendar(self): self.move_to_date_frame.pack_forget() self.dateLabelsOnWindow = [] self.frame.destroy() self.createMenuBar() self.frame = Frame(self.root,background="#ececec") heading = Label(self.frame,text=Calendar.months[self.monthIndex-1].upper() + " " + str(self.year),font=("monospace",20,"bold"),anchor="center") heading.grid(row=0,column=2,columnspan=5,padx=10,pady=10) Button(self.frame,text="\u25C4",font=("monospace",15,"bold"),command=self.previousMonth).grid(row=0,column=0,pady=10,padx=10) Button(self.frame,text="\u25BA",font=("monospace",15,"bold"),command=self.nextMonth).grid(row=0,column=8,pady=10,padx=10) # all days of calendar Label(self.frame,text=" ",font=("monospace",10,"bold")).grid(row=2,column=0,padx=10) for i in range(7): label = Label(self.frame,text=Calendar.weekdays[i],font=("monospace",10,"bold")) label.grid(row=2,column=i+1,padx=10) Label(self.frame,text="",font=("monospace",10,"bold")).grid(row=2,column=8,padx=10) # all dates of calendar columnIndex = 1 rowIndex = 3 todaysCalendar = Calendar().getCalendarArray(self.year,self.monthIndex) for items in todaysCalendar: if columnIndex>7: columnIndex =1 rowIndex +=1 columnIndex = items["day"]+1 label = Label(self.frame,text=str(f'0{items["date"]}') if items["date"] <= 9 else str(items["date"]) ,font=("monospace",13,"bold"),background="#D3D3D3",border="2") label.grid(row=rowIndex,column=items["day"]+1,padx=10,pady=5,ipadx=10,ipady=10) label.selected = False if items["date"] == self.today.day and items["day"] == self.today.weekday() and self.today.year == self.year and self.today.month == self.monthIndex: label.config(background="#19668A",foreground="white") self.dateLabelsOnWindow.append(label) label.bind("<Button-1>",lambda e:self.selectDate(e)) columnIndex+=1 self.frame.pack(ipadx=10,ipady=10,side="top") if __name__ == '__main__': App() ''' To convert into exe:- pyinstaller --onefile -w Calendar.py '''
Paras-Punjabi/Calendar-App-in-Python
Calendar.py
Calendar.py
py
6,488
python
en
code
0
github-code
6
25849292828
# imports import socket import json def extractData(ledger): ledger = ledger['ledger'] title = ledger['title'] date = ledger['date'] people = [person['name'] for person in ledger['people']] people = ', '.join(people) summary = ledger['summary'] items = ledger['transactions'] htmlTable = [] for item in items: htmlTable.append(f"<tr><td>{item['item']}</td><td>{item['amount']}</td><td>{item['date']}</td><td>{item['paid_by']}</td></tr>") htmlTable = ''.join(htmlTable) return title, date, people, summary, htmlTable def generateHTML(title, date, people, summary, table): html = f'''<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title>Email</title> </head> <body> <h1>Subject: {title}</h1> <p>You have been sent a record of shared expenses between {people}. The following is a snapshop of that ledger from {date}</p> <table style="width:80%"> <tr> <th>Item</th> <th>Amount</th> <th>Date</th> <th>Paid By</th> </tr> {table} </table> <p>Note that items with an " * " means they have been edited. Items with "del" have been removed from the summary.</p> <h2>Ledger summary: </h2> <p>{summary}</p> </body> </html>''' return html # setup HOST = "localhost" PORT = 65432 server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind((HOST, PORT)) while True: server.listen(1) print(f'Server listening on port: {PORT} \n') commSocket, addr = server.accept() print(f'Connected by {addr} \n') dataLen = int(commSocket.recv(1024).decode()) print(f'length of data to receive: {dataLen} \n') # LENGTH VERIFICATION commSocket.send(str(dataLen).encode()) ledgerData = '' while True: data = commSocket.recv(1024).decode() ledgerData += data if len(ledgerData) == dataLen: print(f'Server received: {ledgerData}\n') ledgerData = json.loads(ledgerData) title, date, people, summary, htmlTable = extractData(ledgerData) html = generateHTML(title, date, people, summary, htmlTable) commSocket.send(html.encode()) print('sending html') commSocket.close() print('Connection closed.') break
alexcw08/email-microservice
server.py
server.py
py
2,524
python
en
code
0
github-code
6
15751603227
from elasticsearch import Elasticsearch, exceptions import json, time import itertools from project import config class SelectionAnalytics(): ''' SelectionAnalytics class data analytics - elasticsearch ''' # declare globals for the Elasticsearch client host DOMAIN = config.DOMAIN LOGIN = config.LOGIN PASSWORD = config.PASSWORD PORT = config.PORT index_name = 'news_analysis' client = None def __init__(self): ''' Create an Elasticsearch connection object :param index_name: index name :type index_name: string :return: null ''' self.client = Elasticsearch( [self.DOMAIN], http_auth=(self.LOGIN, self.PASSWORD), scheme="https", port=self.PORT) # Confirming there is a valid connection to Elasticsearch try: # use the JSON library's dump() method for indentation info = json.dumps(self.client.info(), indent=4) # pass client object to info() method print ("Elasticsearch client info():", info) except exceptions.ConnectionError as err: # print ConnectionError for Elasticsearch print ("\nElasticsearch info() ERROR:", err) print ("\nThe client host:", host, "is invalid or cluster is not running") # change the client's value to 'None' if ConnectionError self.client = None def get_elements_list(self, element_name): ''' get_elements_list :param self: self :type self: None :param element_name: element_name :type element_name: str :return: elements_list :rtype: list of dics (doc_count & key) ''' res = self.client.search(index=self.index_name, body={ "size": 0, "aggs": { "Articles": { "filter": { "range": { "date": { "gte": "2020-01-01T00:00:00.00" } } }, "aggs": { "GroupBy": { "terms": { "field": element_name + ".keyword", "size": 10000 } } } } } } ) elements_docs = res['aggregations']['Articles']['GroupBy']['buckets'] # sorting by doc_count desc elements_list = [item for item in sorted(elements_docs, key = lambda i: i['doc_count'], reverse=True)] # remove empty sections (bug to fix) sections_to_exclude = ['les-decodeurs', 'm-le-mag', 'm-perso', 'm-styles', 'series-d-ete'] for item in elements_list[:18]: # print(item) if (item['key'] in sections_to_exclude): elements_list.remove(item) # list of dics (doc_count & key) return elements_list[:18] def get_custom_corpus(self, section_name, query_size): ''' get_custom_corpus :param section_name: section_name :type section_name: str :param query_size: query_size :type query_size: int :return: (custom_corpus, total_hits) :rtype: dict (custom_corpus & total_hits) ''' res = self.client.search(index=self.index_name, body= { "size": query_size, "query": { "bool" : { "must" : { "term" : { "section" : section_name } }, }, }, "_source": ["doc_token"] } ) # total hits total_hits = res['hits']['total']['value'] # concat doc_token fields from documents results_list = [] results_list = [item["_source"]['doc_token'] for item in res['hits']['hits']] # merge lists to unique list of tokens custom_corpus = list(itertools.chain.from_iterable(results_list)) return (custom_corpus, total_hits) def get_documents(self, string_search, nb_wanted): ''' get_documents :param string_search: tokens to search :type string_search: str :param nb_wanted: total docs wanted :type nb_wanted: int :return: (hits, nb_wanted, documents_list) :rtype: tuple ''' res = self.client.search(index=self.index_name, body={ "size": nb_wanted, "query": { "match": { "doc_token": string_search }, }, "_source": { "include": ["author", "date", "link", "section", "title"] }, } ) hits = res['hits']['total']['value'] documents_list = res['hits']['hits'] return (hits, nb_wanted, documents_list) def get_document_by_id(self, id_doc): ''' get_documents :param id_doc: id_doc :type id_doc: str :return: doc :rtype: dict ''' res = self.client.search(index=self.index_name, body={ "size": 1, "query": { "terms": { "_id": [id_doc] }, }, "_source": { "include": ["author", "content_html", "date", "doc_token", "link", "teaser", "section", "title"] }, } ) doc = res['hits']['hits'][0] return doc def get_custom_corpus_list(self, section_name, query_size): ''' get_custom_corpus :param section_name: section_name :type section_name: str :param query_size: query_size :type query_size: int :return: custom_corpus :rtype: list of lists ''' res = self.client.search(index='news_analysis', body= { "size": query_size, "query": { "bool" : { "must" : { "term" : { "section" : section_name } }, }, }, "_source": ["doc_token"] } ) # from doc_token fields create list of lists results_list = [] results_list = [item["_source"]['doc_token'] for item in res['hits']['hits']] return (results_list) def count_by_sections(self): ''' count docs by sections :return: sections_list :rtype: list of dicts ''' res = self.client.search(index='news_analysis', body={ # "size": 9999, "aggs": { "sections": { "terms": { "field": "section.keyword" } } }, "_source": { "include": ["_id", "date", "section"] }, } ) result = res['aggregations']['sections'] buckets = result['buckets'][:9] sections_list = [] # get total docs total_docs = 0 for item in buckets: total_docs += item['doc_count'] # get percent for item in buckets: doc_percent = round(item['doc_count']/total_docs*100) sections_list.append({'score':item['doc_count'], 'percent':doc_percent, 'section':item['key']}) # Rename sections sections_names = { 'international': 'International', 'economie':'Economie', 'planete': 'Planète', 'idees':'Idées', 'afrique':'Afrique', 'politique':'Politique', 'societe': 'Societe', 'culture':'Culture', 'sport':'Sport' } for item in sections_list: if item['section'] in sections_names: item['section']= sections_names[item['section']] return(sections_list) def count_by_dates(self): res = self.client.search(index='news_analysis', body={ "aggs": { "amount_per_week": { "date_histogram": { "field": "date", "interval": "week", "format" : "yyyy-MM-dd" }, # "aggs": { # "total_amount": { # "sum": { # "field": "date" # } # } # }, "aggs": { "sections": { "terms": { "field": "section.keyword" } } }, } }, } ) res_list = res['aggregations']['amount_per_week']['buckets'] # dict for sections selection & renaming sections_names = { 'international': 'International', 'economie':'Economie', 'planete': 'Planète', 'idees':'Idées', 'afrique':'Afrique', 'politique':'Politique', 'societe': 'Société', 'culture':'Culture', 'sport':'Sport' } # build data list data = [] for item in res_list: nb_docs = item['doc_count'] # filter year 2020 year = item['key_as_string'][0:4] if (year != '2019'): # get & subtring date date = item['key_as_string'][0:10] buckets = item['sections']['buckets'] sections_scores = [] # select sections and rename for i in buckets: if i['key'] in sections_names: sections_scores.append({'section':sections_names[i['key']], 'score':i['doc_count']}) # set empty sections to zero listed_sections = [element['section'] for element in sections_scores] for name in sections_names.values(): if name not in listed_sections: sections_scores.append({'section':name, 'score':0}) # data list to return data.append({'date':date, 'nb_docs':nb_docs, 'sections_scores':sections_scores}) # reformat data data_list = [] for item in data: item_dict = {'date': item['date'].replace('-', '')} for element in item['sections_scores']: item_dict[element['section']] = element['score'] data_list.append(item_dict) return data_list class SelectionRelational(): ''' SelectionRelational class data statistics - Azure SQL ''' def __init__(self): ''' Create an Elasticsearch connection object :param index_name: index name :type index_name: string :return: null ''' return 'hello SelectionRelational'
flabastie/news-analysis
project/queries/selection.py
selection.py
py
11,437
python
en
code
0
github-code
6
22088681014
from helpers import setup_logger menu_name = "Hardware test" from threading import Event, Thread from traceback import format_exc from subprocess import call from time import sleep import sys import os from ui import Menu, Printer, PrettyPrinter, GraphicsPrinter from helpers import ExitHelper, local_path_gen logger = setup_logger(__name__, "warning") i = None o = None #Code from downloading a song from http://freemusicarchive.org/ downloaded = Event() url = "http://wiki.zerophone.org/images/b/b5/Otis_McMusic.mp3" music_filename = "test.mp3" local_path = local_path_gen(__name__) music_path = local_path(music_filename) def init_app(input, output): global i, o i = input; o = output if music_filename not in os.listdir(local_path('.')): def download(): downloaded.clear() logger.debug("Downloading music for hardware test app!") call(["wget", url, "-O", music_path]) downloaded.set() t = Thread(target=download) t.daemon=True t.start() else: downloaded.set() def callback(): try: #Testing I2C - 0x12 should answer, 0x20 should raise IOError with busy errno from smbus import SMBus bus = SMBus(1) try: bus.read_byte(0x12) except IOError: PrettyPrinter("Keypad does not respond!", i, o) else: PrettyPrinter("Keypad found!", i, o) #Checking IO expander expander_ok = False try: bus.read_byte(0x20) except IOError as e: if e.errno == 16: PrettyPrinter("IO expander OK!", i, o) expander_ok = True elif e.errno == 121: PrettyPrinter("IO expander not found!", i, o) else: PrettyPrinter("IO expander driver not loaded!", i, o) #Launching splashscreen GraphicsPrinter("splash.png", i, o, 2) #Launching key_test app from app folder, that's symlinked from example app folder PrettyPrinter("Testing keypad", i, o, 1) import key_test key_test.init_app(i, o) key_test.callback() #Following things depend on I2C IO expander, #which might not be present: if expander_ok: #Testing charging detection PrettyPrinter("Testing charger detection", i, o, 1) from zerophone_hw import is_charging eh = ExitHelper(i, ["KEY_LEFT", "KEY_ENTER"]).start() if is_charging(): PrettyPrinter("Charging, unplug charger to continue \n Enter to bypass", None, o, 0) while is_charging() and eh.do_run(): sleep(1) else: PrettyPrinter("Not charging, plug charger to continue \n Enter to bypass", None, o, 0) while not is_charging() and eh.do_run(): sleep(1) #Testing the RGB LED PrettyPrinter("Testing RGB LED", i, o, 1) from zerophone_hw import RGB_LED led = RGB_LED() for color in ["red", "green", "blue"]: led.set_color(color) Printer(color.center(o.cols), i, o, 3) led.set_color("none") #Testing audio jack sound PrettyPrinter("Testing audio jack", i, o, 1) if not downloaded.isSet(): PrettyPrinter("Audio jack test music not yet downloaded, waiting...", i, o) downloaded.wait() disclaimer = ["Track used:" "", "Otis McDonald", "-", "Otis McMusic", "YT AudioLibrary"] Printer([s.center(o.cols) for s in disclaimer], i, o, 3) PrettyPrinter("Press C1 to restart music, C2 to continue testing", i, o) import pygame pygame.mixer.init() pygame.mixer.music.load(music_path) pygame.mixer.music.play() continue_event = Event() def restart(): pygame.mixer.music.stop() pygame.mixer.init() pygame.mixer.music.load(music_path) pygame.mixer.music.play() def stop(): pygame.mixer.music.stop() continue_event.set() i.clear_keymap() i.set_callback("KEY_F1", restart) i.set_callback("KEY_F2", stop) i.set_callback("KEY_ENTER", stop) continue_event.wait() #Self-test passed, it seems! except: exc = format_exc() PrettyPrinter(exc, i, o, 10) else: PrettyPrinter("Self-test passed!", i, o, 3, skippable=False)
LouisPi/piportablerecorder
apps/test_hardware/main.py
main.py
py
4,539
python
en
code
1
github-code
6
37379251526
import os import glob import numpy as np import time from osgeo import gdal from osgeo import ogr from osgeo import osr from configs import * def merge_shp(shp_list, save_dir): """merge shapefiles in shp_list to a single shapefile in save_dir Args: shp_list (list): _description_ save_dir (str): the path of save dir Returns: str: the merged shp file path """ files_string = " ".join(shp_list) print(files_string) shp_dir = os.path.join(os.path.dirname(shp_list[0]), save_dir) if not os.path.exists(shp_dir): os.makedirs(shp_dir) # the path maybe need to be changed command = "ogrmerge.py -single -o {}/merged.shp ".format(shp_dir) + files_string print(os.popen(command).read()) time.sleep(1) return shp_dir + "/merged.shp" def trans_shp(fn): """create a new feature depending on the 'CC' field Args: fn (function): _description_ """ driver = ogr.GetDriverByName("ESRI Shapefile") dataSource = driver.Open(fn, 1) layer = dataSource.GetLayer() feature = layer.GetNextFeature() sum = 0 newField = ogr.FieldDefn('My_class', ogr.OFTInteger) if layer.GetLayerDefn().GetFieldIndex('My_class') == -1: layer.CreateField(newField) while feature: DLBM = feature.GetField('DLBM') # if DLBM in 水田: # feature.SetField('My_class', 0) # elif DLBM in 旱地: # feature.SetField('My_class', 1) # elif DLBM in 果园: # feature.SetField('My_class', 2) # elif DLBM in 茶园: # feature.SetField('My_class', 3) # elif DLBM in 乔木林地: # feature.SetField('My_class', 4) # elif DLBM in 灌木林地: # feature.SetField('My_class', 5) # elif DLBM in 苗圃: # feature.SetField('My_class', 6) # elif DLBM in 草地: # feature.SetField('My_class', 7) # elif DLBM in 工矿用地: # feature.SetField('My_class', 8) # elif DLBM in 公共建筑: # feature.SetField('My_class', 9) # elif DLBM in 城镇住宅: # feature.SetField('My_class', 10) # elif DLBM in 农村住宅: # feature.SetField('My_class', 11) # elif DLBM in 公路用地: # feature.SetField('My_class', 12) # elif DLBM in 农村道路: # feature.SetField('My_class', 13) # elif DLBM in 河流: # feature.SetField('My_class', 14) # elif DLBM in 裸地: # feature.SetField('My_class', 15) # else: # feature.SetField('My_class', 16) # sum += 1 if DLBM in 田地: feature.SetField('My_class', 0) elif DLBM in 园地: feature.SetField('My_class', 1) elif DLBM in 林地: feature.SetField('My_class', 2) elif DLBM in 建筑用地: feature.SetField('My_class', 3) elif DLBM in 道路: feature.SetField('My_class', 4) elif DLBM in 水体: feature.SetField('My_class', 5) else: feature.SetField('My_class', 6) sum += 1 layer.SetFeature(feature) feature = layer.GetNextFeature() print(sum) return def trans_shp_all_class(fn): """create a new feature depending on the 'CC' field Args: fn (function): _description_ """ driver = ogr.GetDriverByName("ESRI Shapefile") dataSource = driver.Open(fn, 1) layer = dataSource.GetLayer() feature = layer.GetNextFeature() newField = ogr.FieldDefn('My_class', ogr.OFTInteger) if layer.GetLayerDefn().GetFieldIndex('My_class') == -1: layer.CreateField(newField) while feature: DLBM = feature.GetField('DLBM') if DLBM not in CORRESPOND: code = 56 else: code = CORRESPOND_LABEL[CORRESPOND[DLBM]] feature.SetField('My_class', code) layer.SetFeature(feature) feature = layer.GetNextFeature() return def shp2raster(shapename, output_raster, pixel_size, colormap=None): """convert shapefile to raster Args: shapename (str): the path of shapefile output_raster (str): the path of output raster pixel_size (float): the pixel size of output raster colormap(array): the color map of output raster """ input_shp = ogr.Open(shapename) shp_layer = input_shp.GetLayer() extent = shp_layer.GetExtent() x_min = extent[0] x_max = extent[1] y_min = extent[2] y_max = extent[3] x_res = int((x_max - x_min) / pixel_size) y_res = int((y_max - y_min) / pixel_size) image_type = "GTiff" driver = gdal.GetDriverByName(image_type) new_raster = driver.Create(output_raster, x_res, y_res, 1, gdal.GDT_Byte) new_raster.SetGeoTransform((x_min, pixel_size, 0, y_max, 0, -pixel_size)) band = new_raster.GetRasterBand(1) ct = colormap # band.SetRasterColorTable(ct) band.SetNoDataValue(255) band.FlushCache() gdal.RasterizeLayer(new_raster, [1], shp_layer, options=["Attribute=My_class"]) new_rasterSRS = osr.SpatialReference() new_rasterSRS.ImportFromEPSG(4524) new_raster.SetProjection(new_rasterSRS.ExportToWkt()) return def count_features_by_field(shp_file, field_name): driver = ogr.GetDriverByName('ESRI Shapefile') data_source = driver.Open(shp_file, 0) layer = data_source.GetLayer() feature_count = {} for feature in layer: field_value = feature.GetField(field_name) if field_value not in feature_count: feature_count[field_value] = 1 else: feature_count[field_value] += 1 return feature_count def area_features_by_field(shp_file): driver = ogr.GetDriverByName('ESRI Shapefile') data_source = driver.Open(shp_file, 0) layer = data_source.GetLayer() feature_area = {} for feature in layer: field_value = feature.GetField("DLBM") field_area = feature.GetField("SHAPE_Area") if field_value not in feature_area: feature_area[field_value] = field_area else: feature_area[field_value] += field_area return feature_area def gdb_to_shp(gdb_file, output_folder): ogr_command = "ogr2ogr -f 'ESRI Shapefile' -lco ENCODING=UTF-8 -s_srs EPSG:4490 -t_srs EPSG:4524 {} {}".format(output_folder, gdb_file) os.system(ogr_command) def rename_lcpa_copy(shp_dir, target_dir): for dir, _, file_names in os.walk(shp_dir): for file_name in file_names: if "LCPA" in file_name: source_file = os.path.join(dir, file_name) taget_name = file_name.replace("LCPA", dir.split('/')[-1]) target_file = os.path.join(target_dir, taget_name) os.popen('cp {} {}'.format(source_file, target_file)) if __name__ == "__main__": a=0 # gdb_dir = "/media/dell/DATA/wy/data/guiyang/地理国情监测/2021/分区/" # output_dir = "/media/dell/DATA/wy/data/guiyang/地理国情监测/2021/shape/" # if not os.path.exists(output_dir): # os.makedirs(output_dir) # gdb_list = os.listdir(gdb_dir) # for gdb_name in gdb_list: # print(gdb_name) # gdb_path = os.path.join(gdb_dir, gdb_name) # output_shp_dir = os.path.join(output_dir, gdb_name.split('.')[0]) # if not os.path.exists(output_shp_dir): # os.makedirs(output_shp_dir) # gdb_to_shp(gdb_path, output_shp_dir) # rename_lcpa_copy("/media/dell/DATA/wy/data/guiyang/地理国情监测/2021/shape/", "/media/dell/DATA/wy/data/guiyang/地理国情监测/2021/LCPA/") # merge_shp() # data_dir = "J:/GuangdongSHP/splitSHP/merge_shp/" # file_list = glob.glob(('{}*.shp'.format(data_dir))) # for i, file_name in enumerate(file_list): # print("{}/{}".format(str(i+1), str(len(file_list)))) # output_raster = file_name.split(".")[0] + '.tif' # pixel_size = 7.516606439032443e-06 # shp2raster(file_name, output_raster, pixel_size)
faye0078/RS-ImgShp2Dataset
make_dataset/shp_functions.py
shp_functions.py
py
8,144
python
en
code
1
github-code
6
10434320461
""" .. moduleauthor:: Martí Congost <marti.congost@whads.com> """ from woost.models import ExtensionAssets, Page, CustomBlock def install(): """Creates the assets required by the googlesearch extension.""" assets = ExtensionAssets("googlesearch") assets.require( Page, "results_page", title = assets.TRANSLATIONS, blocks = [ assets.require( CustomBlock, "results_block", view_class = "woost.extensions.googlesearch.GoogleCSEResults" ) ] )
marticongost/woost.extensions.googlesearch
woost/extensions/googlesearch/installation.py
installation.py
py
574
python
en
code
0
github-code
6
21334940324
import logging import re import urlparse find_href = re.compile(r'\bhref\s*=\s*(?!.*mailto:)(?!.*&#109;&#97;&#105;&#108;&#116;&#111;&#58;)("[^"]*"|\'[^\']*\'|[^"\'<>=\s]+)') # FYI: added a workaround to not to break inline akavita counter script find_src = re.compile(r'\bsrc\s*=\s*("[^"\']*"|\'[^"\']*\'|[^"\'<>=\s;]{2,})') PATTERNS = [find_href, find_src] def fix_urls(document, base_url, pattern): ret = [] last_end = 0 for match in pattern.finditer(document): url = match.group(1) logging.info("Checking url: %s" % url) if url[0] in "\"'": url = url.strip(url[0]) parsed = urlparse.urlparse(url) if parsed.scheme == parsed.netloc == '': if not url.startswith('/' + base_url) and not url.startswith(base_url): logging.info("Processing url: %s" % url) url = '/%s%s' % (base_url, url) logging.info("Processed url: %s" % url) ret.append(document[last_end:match.start(1)]) ret.append('"%s"' % (url)) last_end = match.end(1) ret.append(document[last_end:]) return ''.join(ret) def add_subdir_hook(): def replace_hook(options, page): if options.get('url_subdir'): for pattern in PATTERNS: page.rendered = fix_urls(page.rendered, options['url_subdir'], pattern) return [replace_hook]
stachern/bseu_fm
hooks/subdir.py
subdir.py
py
1,410
python
en
code
0
github-code
6
20543259826
""" TIC TAC TOE """ #variables board = ["*", "*", "*", "*", "*", "*", "*", "*", "*"] player = "X" #first player is always X winner = None game_running = True print("\033[95m-- TIC TAC TOE --\033[m\n") #creating the board game def print_board(board): print("-" *10) print(board[0] + " | " + board[1] + " | " + board[2]) print("-" *10) print(board[3] + " | " + board[4] + " | " + board[5]) print("-" *10) print(board[6] + " | " + board[7] + " | " + board[8]) print("-" *10) #taking player input def player_input(board): choice = int(input("Enter your move: ")) if choice >= 1 or choice <= 9 and board[choice -1] != "*": board[choice -1] = player else: print("Ops, try again!") #checking for winners horizontally def check_horiz(board): global winner if board[0] == board[1] == board[2] and board[0] != "*": winner = board[0] return True elif board[3] == board[4] == board[5] and board[3] != "*": winner = board[3] return True elif board[6] == board[7] == board[8] and board[6] != "*": winner = board[6] return True #checking for winners vertically def check_vert(board): global winner if board[0] == board[3] == board[6] and board[0] != "*": winner = board[0] return True elif board[1] == board[4] == board[7] and board[1] != "*": winner = board[1] return True elif board[2] == board[5] == board[8] and board[2] != "*": winner = board[2] return True #checking for winners diagonally def check_diag(board): global winner if board[0] == board[4] == board[8] and board[0] != "*": winner = board[0] return True elif board[2] == board[4] == board[6] and board[2] != "*": winner = board[2] return True #main function to check the winner def check_winner(): global game_running if check_horiz(board) or check_vert(board) or check_diag(board): print_board(board) print(f"The winner is {winner}") game_running = False #checking for tie def chack_tie(board): global game_running if "*" not in board: print_board(board) print("It is a tie!") game_running = False #switching players def switch_player(): global player if player == "X": player = "O" else: player = "X" #all functions while game_running: print_board(board) player_input(board) check_winner() chack_tie(board) switch_player() print("\033[93mGame Over\033[m")
rlorimier/tictactoe
tictactoe.py
tictactoe.py
py
2,603
python
en
code
0
github-code
6
42496516652
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def append(self, data): new_node = Node(data) if self.head is None: self.head = new_node return last_node = self.head while last_node.next: last_node = last_node.next last_node.next = new_node def prepend(self, data): new_node = Node(data) new_node.next = self.head self.head = new_node def print_list(self): current_node = self.head while current_node: print(current_node.data) current_node = current_node.next def insert_after_node(self, prev_node, data): new_node = Node(data) new_node.next = prev_node.next prev_node.next = new_node def length_of_list(self): if self.head is None: print("List is empty.") return current_node = self.head length = 1 while current_node.next: length += 1 current_node = current_node.next print(length) llist = LinkedList() llist.append("A") llist.append("B") llist.append("E") llist.append("D") # llist.print_list() llist.insert_after_node(llist.head.next, "C") llist.print_list() llist.length_of_list()
kedarjk44/basic_python
linkedlist_insertion.py
linkedlist_insertion.py
py
1,379
python
en
code
0
github-code
6
70780596348
from flask import Flask, render_template, request from modelo import modelagemPredicao from data import gerarNovosDados app = Flask(__name__, template_folder='templates', static_folder='static') @app.route('/', methods=['GET', 'POST']) def index(): # variáveis auxiliares partidas = 0 precisaomedalha = 0 precisaotaxavitoria = 0 probabilidade = 0 team = 'RADIANT' if request.method == 'POST': radiantheroes = request.form.get('radiantheroes') direheroes = request.form.get('direheroes') radiantmedals = request.form.get('radiantmedals') diremedals = request.form.get('diremedals') if radiantheroes and direheroes: # separando os heróis radiantheroes = radiantheroes.split(',') direheroes = direheroes.split(',') # separando as medalhas radiantmedals = radiantmedals.split(',') diremedals = diremedals.split(',') if len(radiantheroes) == 5 and len(direheroes) == 5 and len(radiantmedals) == 5 and len(diremedals) == 5: # enviando para trasnformação dos dados dados = modelagemPredicao.preprocessamentomedalha(radiantheroes, radiantmedals, direheroes, diremedals) print(dados) # predict do modelo team, probabilidade = modelagemPredicao.predicao(dados, 1) elif len(radiantheroes) == 5 and len(direheroes) == 5: # enviando para trasnformação dos dados dados = modelagemPredicao.preprocessamentotaxavitoria(radiantheroes, direheroes) print(dados) # predict do modelo team, probabilidade = modelagemPredicao.predicao(dados, 2) # precisão dos modelos precisaomedalha, precisaotaxavitoria, partidas = modelagemPredicao.precisaomodelos() # deixando valor da precisao em número inteiro precisaomedalha = int(precisaomedalha*100) precisaotaxavitoria = int(precisaotaxavitoria*100) # deixando a probabilidade em número inteiro probabilidade = int(probabilidade*100) # deixando texto maiusculo team = team.upper() # definindo cor para html de acordo com o time color = '' if team == 'RADIANT': color = '#64FF56' else: color = '#d84a4a' # renderizando modelo return render_template("index.html", partidas=partidas, precisaotaxavitoria=precisaotaxavitoria, precisaomedalha=precisaomedalha, chance=probabilidade, team=team, color=color) @app.route('/atualizarDados') def atualizarDados(): # chamando função de inserção de novos dados gerarNovosDados.gerarNovosDadosPartidas() # renderizando modelo return render_template("atualizarDados.html")
stardotwav/Dota2Predictor
web service/app.py
app.py
py
2,788
python
pt
code
2
github-code
6
70110821308
from copy import deepcopy CHECK_DIRECTION = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1) ] DEBUG = False def load_data(filename): with open(filename, 'r') as f: data = [[int(i) for i in line.strip()] for line in f.readlines()] return data def print_data(data): for j in range(10): print(''.join(map(str, data[j])).replace('0', '*')) def check_flashes(data): indices = [] for j in range(10): for i in range(10): if data[j][i] > 9: data[j][i] = 0 indices.append((j, i)) return indices def step1(data): for j in range(10): for i in range(10): data[j][i] += 1 def step2(data, indices): for j, i in indices: for dj, di in CHECK_DIRECTION: if all([ -1 < j+dj < len(data), -1 < i+di < len(data[0]), ]): if data[j+dj][i+di] != 0: data[j+dj][i+di] += 1 def pt_1(data): flashes = 0 if DEBUG: print_data(data) for i in range(100): step1(data) indices = check_flashes(data) while indices: flashes += len(indices) step2(data, indices) indices = check_flashes(data) if DEBUG: print('\nAfter step {}:'.format(i+1)) print_data(data) return flashes def pt_2(data): day = 0 if DEBUG: print_data(data) while True: flashes = 0 step1(data) indices = check_flashes(data) while indices: flashes += len(indices) step2(data, indices) indices = check_flashes(data) day += 1 if DEBUG: print('\nAfter step {}:'.format(day)) print_data(data) if flashes == 100: return day if __name__ == '__main__': data = load_data('input.txt') print(pt_1(deepcopy(data))) print(pt_2(deepcopy(data)))
eVen-gits/advent_of_code_2021
day_11/code.py
code.py
py
2,004
python
en
code
1
github-code
6
10420612333
from __future__ import annotations from typing import TYPE_CHECKING from randovania.exporter.hints import guaranteed_item_hint from randovania.exporter.hints.hint_exporter import HintExporter from randovania.exporter.hints.joke_hints import JOKE_HINTS from randovania.game_description.db.hint_node import HintNode from randovania.games.common.prime_family.exporter.hint_namer import colorize_text from randovania.games.prime2.patcher import echoes_items if TYPE_CHECKING: from random import Random from randovania.exporter.hints.hint_namer import HintNamer from randovania.game_description.db.node_identifier import NodeIdentifier from randovania.game_description.db.region_list import RegionList from randovania.game_description.game_patches import GamePatches from randovania.game_description.resources.resource_database import ResourceDatabase from randovania.games.prime2.exporter.hint_namer import EchoesHintNamer from randovania.interface_common.players_configuration import PlayersConfiguration def create_simple_logbook_hint(asset_id: int, hint: str) -> dict: return { "asset_id": asset_id, "strings": [hint, "", hint], } def create_patches_hints( all_patches: dict[int, GamePatches], players_config: PlayersConfiguration, region_list: RegionList, namer: HintNamer, rng: Random, ) -> list: exporter = HintExporter(namer, rng, JOKE_HINTS) hints_for_asset: dict[NodeIdentifier, str] = {} for identifier, hint in all_patches[players_config.player_index].hints.items(): hints_for_asset[identifier] = exporter.create_message_for_hint(hint, all_patches, players_config, True) return [ create_simple_logbook_hint( logbook_node.extra["string_asset_id"], hints_for_asset.get(region_list.identifier_for_node(logbook_node), "Someone forgot to leave a message."), ) for logbook_node in region_list.iterate_nodes() if isinstance(logbook_node, HintNode) ] def hide_patches_hints(region_list: RegionList) -> list: """ Creates the string patches entries that changes the Lore scans in the game completely useless text. :return: """ return [ create_simple_logbook_hint(logbook_node.extra["string_asset_id"], "Some item was placed somewhere.") for logbook_node in region_list.iterate_nodes() if isinstance(logbook_node, HintNode) ] _SKY_TEMPLE_KEY_SCAN_ASSETS = [ 0xD97685FE, 0x32413EFD, 0xDD8355C3, 0x3F5F4EBA, 0xD09D2584, 0x3BAA9E87, 0xD468F5B9, 0x2563AE34, 0xCAA1C50A, ] def create_stk_hints( all_patches: dict[int, GamePatches], players_config: PlayersConfiguration, resource_database: ResourceDatabase, namer: HintNamer, hide_area: bool, ) -> list: """ Creates the string patches entries that changes the Sky Temple Gateway hint scans with hints for where the STK actually are. :param all_patches: :param players_config: :param resource_database: :param namer: :param hide_area: Should the hint include only the db? :return: """ resulting_hints = guaranteed_item_hint.create_guaranteed_hints_for_resources( all_patches, players_config, namer, hide_area, [resource_database.get_item(index) for index in echoes_items.SKY_TEMPLE_KEY_ITEMS], True, ) return [ create_simple_logbook_hint( _SKY_TEMPLE_KEY_SCAN_ASSETS[key_number], resulting_hints[resource_database.get_item(key_index)], ) for key_number, key_index in enumerate(echoes_items.SKY_TEMPLE_KEY_ITEMS) ] def hide_stk_hints(namer: EchoesHintNamer) -> list: """ Creates the string patches entries that changes the Sky Temple Gateway hint scans with hints for completely useless text. :return: """ return [ create_simple_logbook_hint( _SKY_TEMPLE_KEY_SCAN_ASSETS[key_number], "{} is lost somewhere in Aether.".format( colorize_text(namer.color_item, f"Sky Temple Key {key_number + 1}", True) ), ) for key_number in range(9) ]
randovania/randovania
randovania/games/prime2/exporter/hints.py
hints.py
py
4,216
python
en
code
165
github-code
6
32653169006
from flask import Flask, send_file, send_from_directory, safe_join, abort app = Flask(__name__) # app.config["CLIENT_IMAGES"] = "/home/mahima/console/static/client/img" app.config["CLIENT_IMAGES"] = "/home/lenovo/SEproject/OpsConsole/api/static" # The absolute path of the directory containing CSV files for users to download app.config["CLIENT_CSV"] = "/home/mahima/console/static/client/csv" # The absolute path of the directory containing PDF files for users to download app.config["CLIENT_PDF"] = "/home/mahima/console/static/client/pdf" @app.route("/getimg/<img_name>") def get_img(img_name): try: return send_from_directory(app.config["CLIENT_IMAGES"], filename = img_name, as_attachment=True) except FileNotFoundError: abort(404) @app.route('/hello') def hello(): return "Hello Lifeeee" if __name__ == "__main__": app.run(debug = True)
trishu99/Platypus
api/static/fileserver.py
fileserver.py
py
882
python
en
code
0
github-code
6
41123532534
from tkinter import * import random def resetSuggestion(): global currentSuspect global currentWeapon global currentLocation global xChar, yChar global count #NEW xChar = 200 yChar = 400 count = 0 currentSuspect = "White" currentWeapon = "Dagger" currentLocation = "Dining" drawSuggestion() def suspectParade(): global currentSuspect global currentWeapon global currentLocation global xChar global count global window #NEW global foo, man, chu currentSuspect = random.choice(foo) currentWeapon = random.choice(chu) currentLocation = random.choice(man) anim() def anim(): global xChar global count if count < 8: window.after(100, anim) #NEW count = count + 1 xChar = xChar + 50 drawSuggestion() # we will use only lowercase letters in the filenames # spaces will be changed to be underscores # dots will be changed to be 'd' def fixFilename(name): return name.lower().replace(" ","_").replace(".","d") # def drawLocation(): global currentLocation global currentLocationImage global canvas locationFile = fixFilename(currentLocation) + ".gif" currentLocationImage = PhotoImage(file=locationFile) canvas.create_image(400, 300, image=currentLocationImage) def change_coord(event): global window #NEW global xChar, yChar if event.keysym == 'Up': yChar = yChar - 15 drawSuggestion() elif event.keysym == 'Down': yChar = yChar + 15 drawSuggestion() elif event.keysym == 'Right': xChar = xChar + 15 drawSuggestion() elif event.keysym == 'Left': xChar = xChar - 15 drawSuggestion() def drawSuspect(): global currentSuspect global currentSuspectImage global canvas suspectFile = fixFilename(currentSuspect) + ".gif" currentSuspectImage = PhotoImage(file=suspectFile) canvas.create_image(xChar, yChar, image=currentSuspectImage) def drawSuggestion(): drawLocation() drawSuspect() def setLocation(location): global currentLocation currentLocation = location drawSuggestion() def drawWeapon(): global currentWeapon global currentWeaponImage global canvas weaponFile= fixFilename(currentWeapon) + ".gif" currentWeaponImage = PhotoImage(file=weaponFile) canvas.create_image(300, 300, image=currentWeaponImage) canvas.create_image(xChar, yChar, image=currentSuspectImage) def setLocation(location): global currentLocation currentLocation = location drawSuggestion() def setDining(): global currentLocation currentLocation = "dining" drawSuggestion() def setLounge(): global currentLocation currentLocation = "lounge" drawSuggestion() def setConservatory(): global currentLocation currentLocation = "conservatory" drawSuggestion() def setLibrary(): global currentLocation currentLocation = "Library" drawSuggestion() def setBilliard(): global currentLocation currentLocation = "Billiard" drawSuggestion() def setHall(): global currentLocation currentLocation = "Hall" drawSuggestion() def setStudy(): global currentLocation currentLocation = "Study" drawSuggestion() def setWhite(): global currentSuspect currentSuspect = "White" drawSuggestion() def setMustard(): global currentSuspect currentSuspect = "Mustard" drawSuggestion() def setGreen(): global currentSuspect currentSuspect = "Green" drawSuggestion() def setPeacock(): global currentSuspect currentSuspect = "Peacock" drawSuggestion() def setWeapon(): global currentWeapon currentWeapon = "Dagger" drawSuggestion() def setRope(): global currentWeapon currentWeapon = "Rope" drawSuggestion() def setCandlestick(): global currentWeapon currentWeapon = "Candlestick" drawSuggestion() def setLeadpipe(): global currentWeapon currentWeapon = "Leadpipe" drawSuggestion() def setRevolver(): global currentWeapon currentWeapon = "Revolver" drawSuggestion() def setSpanner(): global currentWeapon currentWeapon = "Spanner" drawSuggestion() def setupGameControls(w): global canvas btnReset = Button(w, text="Reset Suggestion", command=resetSuggestion) btnReset.place(x = 10, y = 5) btnReset = Button(w, text="Suspect Parade", command=suspectParade) btnReset.place(x = 200, y = 5) #Background btnLibrary = Button(w, text="Dining", command=setDining) btnLibrary.place(x = 10, y = 650) btnLibrary = Button(w, text="Lounge", command=setLounge) btnLibrary.place(x = 80, y = 650) btnLibrary = Button(w, text="Conservatory", command=setConservatory) btnLibrary.place(x = 160, y = 650) btnLibrary = Button(w, text="Library", command=setLibrary) btnLibrary.place(x = 270, y = 650) btnLibrary = Button(w, text="Billiard", command=setBilliard) btnLibrary.place(x = 340, y = 650) btnLibrary = Button(w, text="Hall", command=setHall) btnLibrary.place(x = 410, y = 650) btnLibrary = Button(w, text="Study", command=setStudy) btnLibrary.place(x = 460, y = 650) #Characters btnScarlet = Button(w, text="Mrs.White", command=setWhite) btnScarlet.place(x = 10, y = 700) btnPlum = Button(w, text="Colonel Mustard", command=setMustard) btnPlum.place(x = 110, y = 700) btnPlum = Button(w, text="Reverend Green", command=setGreen) btnPlum.place(x = 240, y = 700) btnPlum = Button(w, text="Mrs. Peacock", command=setPeacock) btnPlum.place(x = 370, y = 700) #Weapon btnPlum = Button(w, text="Dagger", command=setWeapon) btnPlum.place(x = 10, y = 750) btnPlum = Button(w, text="Rope", command=setRope) btnPlum.place(x = 80, y = 750) btnPlum = Button(w, text="Candlestick", command=setCandlestick) btnPlum.place(x = 140, y = 750) btnPlum = Button(w, text="Leadpipe", command=setLeadpipe) btnPlum.place(x = 240, y = 750) btnPlum = Button(w, text="Revolver", command=setRevolver) btnPlum.place(x = 330, y = 750) btnPlum = Button(w, text="Spanner", command=setSpanner) btnPlum.place(x = 410, y = 750) canvas = Canvas(w, width=800, height=600) canvas.place(x=10, y=30) canvas.create_rectangle(0, 0, 800, 600, fill="white") #NEW window = Tk() window.geometry("900x800") window.bind_all('<Up>', change_coord) window.bind_all('<Down>', change_coord) window.bind_all('<Left>', change_coord) window.bind_all('<Right>', change_coord) xChar = 200 yChar = 400 count = 0 foo = ['colonel_mustard', 'miss_white', 'reverend_green', 'miss_peacock', 'miss_scarlet', 'professor_plum'] man = ['ballroom', 'billard', 'conservatory', 'dinroom', 'hall', 'kitchen', 'library', 'lounge', 'study'] chu = ['candlestick', 'dagger', 'lead_pipe', 'revolver', 'rope', 'spanner'] setupGameControls(window) resetSuggestion() drawSuggestion() window.mainloop()
xantin/code-examples
python/Project - Haya_py/cluedo.py
cluedo.py
py
7,073
python
en
code
0
github-code
6
16164892137
from flask import Flask, request, jsonify, abort, Response, redirect from flask_sqlalchemy import SQLAlchemy from flask_cors import CORS from os import environ import sys import os import asyncio import requests from invokes import invoke_http import pika import amqp_setup import json from datetime import datetime app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = environ.get('dbURL') app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SQLALCHEMY_ENGINE_OPTIONS'] = {'pool_recycle': 299} db = SQLAlchemy(app) CORS(app) verification_URL = environ.get( 'verificationURL') or "http://localhost:6001/verification/" account_URL = environ.get('accountURL') or "http://localhost:6003/account/" epayment_URL = environ.get('epaymentURL') or "http://localhost:6203/epayment" loyalty_URL = environ.get('loyaltyURL') or "http://localhost:6301/loyalty/" promo_URL = environ.get('promoURL') or "http://localhost:6204/promo/" queue_URL = environ.get('queueURL') or "http://localhost:6202/queueticket/" order_URL = environ.get('orderURL') or "http://localhost:6201/order/" @app.route('/order/get_payment_method/<int:account_id>', methods=['POST']) async def select_payment_method(account_id): payment_method1 = request.get_json() payment_method = payment_method1['payment_method'] check_qid = invoke_http( queue_URL, method='GET') if check_qid["code"] == 200: if len(check_qid["data"]["queues"]) == 0: queue_id = 1 else: queue_id = len(check_qid["data"]["queues"]) + 1 else: queue_id = 1 data = { "account_id": account_id, "queue_id": queue_id, "payment_method": payment_method } if (payment_method == "external"): response = invoke_http(epayment_URL + 'create_checkout_session', method="POST", json={"account_id": data["account_id"]}) if response: response["queue_id"] = data["queue_id"] ini_create_ticket = invoke_http( order_URL + str(account_id) + "/paying", method='POST', json=data) if ini_create_ticket["code"] == 201: return jsonify({ "code": 200, "data": response, "queue_id": data["queue_id"] }), 200 else: return jsonify({ "code": 405, "data": response, "message": "Failed to create ticket" }), 405 else: return jsonify({'status': 'error', 'message': 'Failed to create checkout session', 'data': response}) elif (payment_method == "promo"): promo_json = { "is_used": 1, "promo_code": payment_method1["promo_code"] } update_promo = invoke_http( promo_URL + str(account_id), method="PATCH", json=promo_json) if update_promo["code"] == 200: ini_create_ticket = invoke_http( order_URL + str(account_id) + "/paying", method='POST', json=data) if ini_create_ticket["code"] == 201: return jsonify({ "code": 200, "message": "Promo code has been redeemed", "data": update_promo["data"], "queue_id": data["queue_id"] }), 200 else: return jsonify({ "code": 405, "message": update_promo["message"] }), 405 elif (payment_method == "loyalty"): points = { "points": 500 } update_loyalty = invoke_http( loyalty_URL + str(account_id) + "/redeem", method='PATCH', json=points) if update_loyalty["code"] == 200: ini_create_ticket = invoke_http( order_URL + str(account_id) + "/paying", method='POST', json=data) if ini_create_ticket["code"] == 201: return jsonify({ "code": 200, "message": "Loyalty points have been redeemed", "data": update_loyalty["data"], "queue_id": data["queue_id"], "available_points": update_loyalty["data"]["available_points"] }), 200 else: return jsonify({ "code": 405, "message": update_loyalty["message"], "available_points": update_loyalty["data"]["available_points"] }), 405 else: return "Cannot find payment method" @app.route("/order/<int:account_id>/paying", methods=['POST']) def ini_create_ticket(account_id): # this function initialises the create ticket post # invoked by one of 3 payment microservice to indicate that it has been paid if (not request.is_json): return jsonify({ "code": 404, "message": "Invalid JSON input: " + str(request.get_data()) }), 404 data = request.get_json() create_ticket = invoke_http( queue_URL, method='POST', json=data) if create_ticket["code"] == 201: # For User Scenario 3, Update Challenge Status challenge_message = { "mission_id": 2, "code": 201 } challenge_message.update(create_ticket["data"]) message = json.dumps(challenge_message) amqp_setup.channel.basic_publish(exchange=amqp_setup.exchangename1, routing_key="challenge.challenge_complete", body=message, properties=pika.BasicProperties(delivery_mode=2)) return jsonify({ "code": 201, "message": "Queueticket being created", "data": create_ticket["data"] }), 201 else: return jsonify({ "code": 405, "message": "Queueticket not being created", "error": create_ticket, }), 405 @app.patch("/order/<int:account_id>/paid") def update_order(account_id): # this function is being invoked by post queue ticket # indicates that the ticket has been created if (not request.is_json): return jsonify({ "code": 404, "message": "Invalid JSON input: " + str(request.get_data()) }), 404 data = request.get_json() update_account = invoke_http( account_URL + str(account_id), method='PATCH', json=data) if update_account["code"] == 200: account_result = invoke_http( verification_URL + "account/" + str(data["account_id"]), method='GET') notification_message = { "type": "queueticket", "account_id": data["account_id"], "first_name": account_result["data"]["first_name"], "phone_number": account_result["data"]["phone"], "payment_method": data["payment_method"], "queue_id": data["queue_id"], "message": "You have successfully created a queueticket." } message = json.dumps(notification_message) amqp_setup.channel.basic_publish(exchange=amqp_setup.exchangename, routing_key="notification.sms", body=message, properties=pika.BasicProperties(delivery_mode=2)) return jsonify({ "code": 200, "message": "Account updated successfully (is express)", "queue_id": data["queue_id"] }), 200 else: return jsonify({ "code": 405, "message": "Order not updated" }), 405 @app.route("/order/<int:queue_id>/used", methods=['PATCH']) def ticket_used(queue_id): if (not request.is_json): return jsonify({ "code": 404, "message": "Invalid JSON input: " + str(request.get_data()) }), 404 data = request.get_json() ticket_update = invoke_http( queue_URL + str(data["queue_id"]), method='PATCH', json=data) if ticket_update["code"] == 200: update_is_prio = { "is_priority": 0 } account_res = invoke_http( account_URL + str(account_URL), method='PATCH', json=update_is_prio) if account_res["code"] == 200: return jsonify({ "code": 200, "message": "Ticket used successfully" }), 200 account_result = invoke_http( verification_URL + "account/" + str(ticket_update["data"]["account_id"]), method='GET') notification_message = { "type": "use_queue", "account_id": ticket_update["data"]["account_id"], "first_name": account_result["data"]["first_name"], "phone_number": account_result["data"]["phone"], "payment_method": ticket_update["data"]["payment_method"], "queue_id": ticket_update["data"]["queue_id"], "message": "You have redeemed your queue ticket." } message = json.dumps(notification_message) amqp_setup.channel.basic_publish(exchange=amqp_setup.exchangename, routing_key="notification.sms", body=message, properties=pika.BasicProperties(delivery_mode=2)) return jsonify({ "code": 200, "message": "Ticket used successfully", "data": ticket_update["data"] }), 200 else: return jsonify({ "code": 405, "message": ticket_update["message"] }), 405 if __name__ == '__main__': app.run(host='0.0.0.0', port=6201, debug=True)
ESDeezknee/ESDeezknee
order/order.py
order.py
py
9,606
python
en
code
1
github-code
6
27257763451
#! /usr/bin/python -u import fileinput import getopt import os import re import string, sys, time,random printablestringre=re.compile('[\x80-\xFF\x00-\x08\x0A-\x1F]') def safestring(badstring): """only printable range..i.e. upper ascii minus lower junk like line feeds, etc""" return printablestringre.sub('',badstring) def main(): "The 'heart' of the program, executes all other functions" global options options = read_options() if options["file"] != '': fp = open(options['file'], 'r') while 1: if options["file"] != '': line = safestring(fp.readline().strip()) if not line: break else: time.sleep(random.uniform(0.1,1.0)) sys.stdout.write(line + '\n') def read_options(): """Read options from config files and the command line, returns the defaults if no user options are found""" # required options required = ['file'] # defaults options = {'file' : ''} # read from command line helpstr = 'Usage: ' + sys.argv[0] + ' [OPTIONS]' + """\n Options: * -f, --file <filename> the log file to replay to stdout A '*' means this option is required.""" optlist, args = getopt.getopt(sys.argv[1:], 'f:', ['file=']) # parse options for o, a in optlist: if (o == '-h' or o == '--help'): print(helpstr) sys.exit() else: for option in options.keys(): execcode = "if (o == '-%s' or o == '--%s'): options['%s'] = a" % (option[0], option, option) exec(execcode) for option in required: if not options[option]: print( "Required option '%s' is not set!" % option) sys.exit() # return all options return options main()
jeffbryner/blendersecviz
logs/logreplay.py
logreplay.py
py
1,832
python
en
code
4
github-code
6
50847831
class Solution: def makeLargestSpecial(self, s: str) -> str: def dfs(sbs): res = [] i, height = 0, 0 for j in range(len(sbs)): if sbs[j] == '1': height += 1 else: height -= 1 if height == 0: sub = '1' + dfs(sbs[i+1:j]) + '0' res.append(sub) i = j+1 res.sort(reverse=True) return "".join(res) res = dfs(s) return res if __name__ == "__main__": sol = Solution() s = "11011000" assert sol.makeLargestSpecial(s) == "11100100"
code-cp/leetcode
solutions/761/main.py
main.py
py
680
python
en
code
0
github-code
6
72510037949
from django import forms from django.contrib.auth.models import User from django.contrib.auth.forms import UserCreationForm from .models import Profile from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Submit, HTML, Div, Row, Column, Fieldset from crispy_forms.bootstrap import InlineRadios from django.contrib.auth.forms import PasswordResetForm class EmailValidationOnForgotPassword(PasswordResetForm): def clean_email(self): email = self.cleaned_data['email'] if not User.objects.filter(email__iexact=email, is_active=True).exists(): msg = ("There is no user registered with the specified E-Mail address.") self.add_error('email', msg) return email class UserRegisterForm(UserCreationForm): class Meta(): model = User fields = ['username', 'email', 'password1'] # fields = ['username', 'email', 'password1'] # def __init__(self, *args, **kwargs): # super(UserRegisterForm, self).__init__(*args, **kwargs) # self.fields['username'].widget.attrs.update({'class': 'form-control', 'placeholder': 'username'}) # self.fields['email'].widget.attrs.update({'class': 'form-control', 'placeholder': 'email'}) # self.fields['password1'].widget.attrs.update({'class': 'form-control', 'placeholder': 'password'}) # self.fields['password2'].widget.attrs.update({'class': 'form-control', 'placeholder': 'repeat password'}) """ Update user profile fields """ class UserUpdateForm(forms.ModelForm): class Meta: model = User fields = ['username', 'email', 'first_name', 'last_name'] """ Update user profile image """ class ProfileUpdateForm(forms.ModelForm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.form_class = 'form-group' self.helper.form_tag = False self.helper.layout = Layout( 'phone_number' ) class Meta: model = Profile fields = ['image', 'phone_number'] class ExampleForm(forms.Form): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.helper = FormHelper() self.helper.layout = Layout( 'first arg is the legend of the fieldset', 'favorite_number', 'favorite_color', 'favorite_food', HTML("""<p>We use notes to get better, <strong>please help us {{ username }}</strong></p>"""), 'notes', Row( Column('name'), Column('email'), Column(InlineRadios('like_website')), ), Submit('submit', 'Submit', css_class='button white'), ) like_website = forms.TypedChoiceField( label = "Do you like this website?", choices = ((1, "Yes"), (0, "No")), coerce = lambda x: bool(int(x)), widget = forms.RadioSelect, initial = '1', required = True, ) favorite_food = forms.CharField( label = "What is your favorite food?", max_length = 80, required = True, ) favorite_color = forms.CharField( label = "What is your favorite color?", max_length = 80, required = True, ) favorite_number = forms.IntegerField( label = "Favorite number", required = False, ) notes = forms.CharField( label = "Additional notes or feedback", required = False, ) name = forms.CharField( label = 'What is your name?', required=False ) email = forms.EmailField( label='What is your email?', required=False )
userksv/carsbay
users/forms.py
forms.py
py
3,773
python
en
code
0
github-code
6
16566979883
# 파티 # N개의 마을에 학생이 각 한 명씩 있음. 모두들 특정 마을로 모이기로 함. # 학생들이 모였다가 다시 본인들의 마을로 돌아가야 한다고 할 때, 가장 많은 시간을 소비하는 학생을 구하라. # 내 답안1 import sys import heapq input = sys.stdin.readline INF = 987654321 N, M, X = map(int, input().split()) graph = [[]for _ in range(N+1)] for i in range(M): a,b,c = map(int, input().split()) graph[a].append((b, c)) def dijkstra(start): q = [] heapq.heappush(q, (0, start)) d = [INF for _ in range(N + 1)] d[start] = 0 while q: dist, now = heapq.heappop(q) if d[now] < dist: continue for b, c in graph[now]: cost = d[now] + c if cost < d[b]: d[b] = cost heapq.heappush(q, (cost, b)) return d ans = 0 for i in range(1, N+1): backward = dijkstra(X) forward = dijkstra(i) ans = max(ans, backward[i]+ forward[X]) print(ans)
dngus1683/codingTestStudy
알고리즘/dijkstra/백준/python/1238.py
1238.py
py
1,028
python
ko
code
0
github-code
6
14992716515
#!/usr/bin/env python # coding: utf-8 # In[37]: # Questions for 10/28 meeting: # Test set -> Should the test be just one game? Answer: Leave it the way it is for now. # Train set -> Should we duplicate previous games to add weighting? Answer: Yes. ## November 6th, 2020 Backend Meeting ## # 4 Factors to include for opponent: efg, tov_pct, orb_pct, ftr ... - Done # Add win (boolean) column for each game -> predict on that instead of points - Done # Later on: Using most recent games??? ## November 10th, 2020 Backend Meeting ## # Next Steps: # Get it on the dashboard # Other functionality? # Imports import numpy as np import pandas as pd get_ipython().run_line_magic('matplotlib', 'inline') from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn import metrics from sklearn.feature_selection import f_regression from sklearn.feature_selection import SelectKBest from matplotlib import pyplot pd.set_option("display.max_rows", None, "display.max_columns", None) # In[38]: # Read in box score data provided by Ludis df = pd.read_csv("team_boxscores_v3.csv") df = df.fillna(0) # pd.set_option('display.max_columns', None) pd.set_option('display.max_columns', 59) # In[39]: ### Hard-coded teamIDs from dataset for testing purposes ### # Kentucky team1 = '2267a1f4-68f6-418b-aaf6-2aa0c4b291f1' # LSU team2 = '70e2bedd-3a0a-479c-ac99-e3f58aa6824b' # Ohio State team3 = '857462b3-0ab6-4d26-9669-10ca354e382b' # Florida team4 = '912f8837-1d81-4ef9-a576-a21f271d4c64' # Michigan State team5 = 'a41d5a05-4c11-4171-a57e-e7a1ea325a6d' floatArr = ["efg","orb_pct","ftr"] negFloatArr = ["tov_pct"] intArr = ["assists", "blocks","defensive_rebounds", "fast_break_pts", "points_in_paint","points_off_turnovers","rebounds","steals"] negIntArr = ["turnovers","opponent_drb"] # In[40]: # Returns all game records for a given teamID def getAllTeamMatchRecords(teamID, df): return df[df["team_id"] == teamID] # In[41]: # Returns win/loss ratio for a given team across entire dataset # Add functionality for filtering by season? def statWinLoss(teamID, df): wins = 0 losses = 0 team_stats = df[df["team_id"] == teamID] for index, row in team_stats.iterrows(): if row["points"] > row["points_against"]: wins = wins + 1 else: losses = losses + 1 if losses == 0: return 1 else: return wins/losses # In[42]: # Return all gameIDs for a given team def getGameIDs(teamID, df): return df[df["team_id"] == teamID]["game_id"] # In[43]: # Returns common game IDs between two teams def getMatchupGameIDs(team1, team2, df): return pd.merge(getGameIDs(team1, df), getGameIDs(team2, df)) # In[44]: # Returns average of a given statistic for a given teamID def getAvgStatForTeam(teamID, statistic, df): runningSum = 0 #runningSum = float(0) runningCount = 0 team_stats = df[df["team_id"] == teamID] for index, row in team_stats.iterrows(): runningSum += row[statistic] runningCount += 1 return runningSum / runningCount return runningSum / runningCount print(getAvgStatForTeam(team1, "rebounds", df)) # In[45]: # This function will get the record of a team by a specific year and can also calculate some avg def getTeamRecordByYear(teamID, year, df): team_record = df[df["team_id"] == teamID] sum_two_pts_made = 0 count = 0 avg_two_pts_made = 0 sum_field_goals_made =0 count2 = 0 avg_field_goals_made = 0 for index, row in team_record.iterrows(): if (row["season"] == year): team_record1 = team_record[df["season"] == row["season"]] for index, row in team_record1.iterrows(): sum_two_pts_made += row["two_points_made"] sum_field_goals_made += row["field_goals_made"] count +=1 count2 +=1 avg_two_pts_made = sum_two_pts_made / count avg_field_goals_made = sum_field_goals_made / count2 return_value = "%f %f" %(avg_two_pts_made,avg_field_goals_made) return team_record1 # In[46]: # Return dataframe with selected features def filterRowsFS(df): return df[["assists","blocks","defensive_rebounds","opponent_drb","fast_break_pts","points_in_paint","points_off_turnovers","rebounds","steals","turnovers","efg","tov_pct","orb_pct","ftr"]] # In[105]: # Calculate correct predictions -> wins/losses def calcPredError(df): error = 0 correct = 0 i = 0 for index, row in df.iterrows(): i = i + 1 if df.loc[index, 'Actual'] != df.loc[index, 'Predicted (int)']: error = error + 1 else: correct = correct + 1 return ((correct / i) * 100) # In[48]: # Calculate win percentage def winPct(teamPred): # return round((teamPred['Predicted (float)'].sum() / len(teamPred['Predicted (float)']) * 100)) return float(teamPred['Predicted (float)'].sum() / len(teamPred['Predicted (float)']) * 100) # In[49]: # feature selection def select_features(X_train, y_train, X_test): # configure to select all features fs = SelectKBest(score_func=f_regression, k='all') # learn relationship from training data fs.fit(X_train, y_train) # transform train input data X_train_fs = fs.transform(X_train) # transform test input data X_test_fs = fs.transform(X_test) return X_train_fs, X_test_fs, fs # In[50]: def overallFeatures(df): datasetForFS = df datasetForFS.fillna(0) # X1 = datasetForFS[["assists","personal_fouls","ftr","orb_pct", "tov_pct", "points_in_paint", "blocks"]] # X1 = datasetForFS[["assists","blocks","personal_fouls"]] X1 = datasetForFS[["assists","blocks","defensive_rebounds","opponent_drb","fast_break_pts","points_in_paint","points_off_turnovers","rebounds","steals","turnovers","efg","tov_pct","orb_pct","ftr"]] y1 = datasetForFS['win'] X_train, X_test, y_train, y_test = train_test_split(X1, y1, test_size=0.2, random_state=0) X_train_fs, X_test_fs, fs = select_features(X_train, y_train, X_test) colList = X1.columns.values.tolist() statScoreDF = pd.DataFrame(data={'Stat': pd.Series(colList), 'Score': pd.Series(fs.scores_.tolist())}) statScoreDF = statScoreDF.sort_values(by=['Score'], ascending=False) # plot the scores pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_) pyplot.show() return statScoreDF # print(overallFeatures(df)) # In[122]: def teamFeatures(team1, team2, df): datasetForFS = getAllTeamMatchRecords(team1, df).merge(getMatchupGameIDs(team1, team2, df)) datasetForFS.fillna(0) # X1 = datasetForFS[["assists","personal_fouls","ftr","orb_pct", "tov_pct", "points_in_paint", "blocks"]] # X1 = datasetForFS[["assists","blocks","personal_fouls"]] X1 = datasetForFS[["assists","blocks","defensive_rebounds","opponent_drb","fast_break_pts","points_in_paint","points_off_turnovers","rebounds","steals","turnovers","efg","tov_pct","orb_pct","ftr"]] y1 = datasetForFS['win'] X_train, X_test, y_train, y_test = train_test_split(X1, y1, test_size=0.2, random_state=0) X_train_fs, X_test_fs, fs = select_features(X_train, y_train, X_test) colList = X1.columns.values.tolist() statScoreDF = pd.DataFrame(data={'Stat': pd.Series(colList), 'Score': pd.Series(fs.scores_.tolist())}) statScoreDF = statScoreDF.sort_values(by=['Score'], ascending=False) # Plot the scores - PyPlot # pyplot.bar([i for i in range(len(fs.scores_))], fs.scores_) # pyplot.show() return statScoreDF # teamFeatures(team1, team2, df) # In[123]: def learn(dataset): dataset = pd.read_csv("team_boxscores_v3.csv") dataset = dataset.fillna(0) # Shuffle dataset = dataset.sample(frac = 1) X1 = dataset[["assists","blocks","defensive_rebounds","opponent_drb","fast_break_pts","points_in_paint","points_off_turnovers","rebounds","steals","turnovers","efg","tov_pct","orb_pct","ftr"]] y1 = dataset['win'] # No shuffle # X_train, X_test, y_train, y_test = train_test_split(X1, y1, test_size=0.2, random_state=0) # W/ shuffle X_train = X1[int(len(X1)/5):] X_test = X1[:int(len(X1)/5)] y_train = y1[int(len(y1)/5):] y_test = y1[:int(len(y1)/5)] regressor = LinearRegression() regressor.fit(X_train, y_train) coeff_df = pd.DataFrame(regressor.coef_, X1.columns, columns=['Coefficient']) y_pred = regressor.predict(X_test) y_pred_round = np.around(regressor.predict(X_test)) # print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) # print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) # print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) return regressor, pd.DataFrame({'Actual': y_test, 'Predicted (int)': y_pred_round, 'Predicted (float)': y_pred}) # reg, pred = learn(pd.read_csv("team_boxscores_v3.csv")) # print(calcPredError(pred), winPct(pred)) # df1 = filterRowsFS(getAllTeamMatchRecords(team1, df)) # df2 = getAllTeamMatchRecords(team1, df)["win"] # dfPred = reg.predict(df1) # dfPredRound = np.around(dfPred) # temp = pd.DataFrame({'Actual': df2, 'Predicted (int)': dfPredRound, 'Predicted (float)': dfPred}) # print(calcPredError(temp), winPct(temp)) # In[124]: def learnMatchup(team1, team2): dataset = pd.read_csv("team_boxscores_v3.csv") dataset = dataset.fillna(0) dfTeam1 = getAllTeamMatchRecords(team1, dataset) matchups = getMatchupGameIDs(team1, team2, df)["game_id"].tolist() dfTeam1 = dfTeam1.reset_index() # Elijah - Save rows for later and append to train set for index, row in dfTeam1.iterrows(): for i in range(0, len(matchups)): if str(dfTeam1.loc[index, "game_id"]) == matchups[i]: dfTeam1 = dfTeam1.append(dfTeam1.loc[index], ignore_index=True) dfTeam1 = dfTeam1.sample(frac = 1) X1 = dfTeam1[["assists","blocks","defensive_rebounds","opponent_drb","fast_break_pts","points_in_paint","points_off_turnovers","rebounds","steals","turnovers","efg","tov_pct","orb_pct","ftr"]] y1 = dfTeam1['win'] # rng = np.random.randint(0, 42) rng = 0 # X_train, X_test, y_train, y_test = train_test_split(X1, y1, test_size=0.2, random_state=rng) # W/ shuffle X_train = X1[int(len(X1)/5):] X_test = X1[:int(len(X1)/5)] y_train = y1[int(len(y1)/5):] y_test = y1[:int(len(y1)/5)] regressor = LinearRegression() regressor.fit(X_train, y_train) coeff_df = pd.DataFrame(regressor.coef_, X1.columns, columns=['Coefficient']) y_pred = regressor.predict(X_test) y_pred_round = np.around(regressor.predict(X_test)) print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) return regressor, pd.DataFrame({'Actual': y_test, 'Predicted (int)': y_pred_round, 'Predicted (float)': y_pred}) reg, pred = learnMatchup(team1, team2) # In[125]: def avgDataRow(df): df1 = dict() for (columnName, columnData) in df.iteritems(): df1[columnName] = [df[columnName].mean()] return pd.DataFrame(df1) # In[128]: stats = teamFeatures(team1, team2, df).head()['Stat'].tolist() df1 = getAllTeamMatchRecords(team1, df) df2 = avgDataRow(filterRowsFS(getAllTeamMatchRecords(team1, df))) df3 = df1["win"] dfPred = reg.predict(df2) dfPredRound = np.around(dfPred) dfFinal = pd.DataFrame({'Actual': df3.mean(), 'Predicted (int)': dfPredRound, 'Predicted (float)': dfPred}) print(dfFinal) # print(df2) df2.at[0,"assists"] = df2.at[0,"assists"] + 10 dfPred = reg.predict(df2) dfPredRound = np.around(dfPred) dfFinal = pd.DataFrame({'Actual': df3.mean(), 'Predicted (int)': dfPredRound, 'Predicted (float)': dfPred}) print(dfFinal) # print(df2) # In[54]: # Return win percentage as stat changes # df - dataframe, e.g. getAllTeamMatchRecords(team1, df) # reg - regressor from above # var - the feature to change # val - the value to add to the feature def predOnStat(df, reg, var, val): df1 = df[["assists","blocks","defensive_rebounds","opponent_drb","fast_break_pts","points_in_paint","points_off_turnovers","rebounds","steals","turnovers","efg","tov_pct","orb_pct","ftr"]] for index, row in df1.iterrows(): df1.at[index, var] = df1.at[index, var] + val temp_pred = reg.predict(df1) temp_pred_round = np.around(reg.predict(df1)) test = pd.DataFrame({'Actual': df['win'], 'Predicted (int)': temp_pred_round, 'Predicted (float)': temp_pred}) return float(winPct(test)) # In[ ]: # df -> dataframe # reg -> regressor # Return new win pct def updateWinPct(df, reg): reg.predict() # In[28]: # statList = ["assists", "blocks", "orb_pct"] def compTeams(df, teamID, opponentID, win_percent): topFive = teamFeatures(teamID, opponentID, df)["Stat"].head().tolist() print(topFive) reg, pred = learnMatchup(teamID, opponentID) intVal = 0 floatVal = 0 originalPct = predOnStat(getAllTeamMatchRecords(teamID, df), reg, 'assists', 0) for stat in topFive: currentPct = originalPct print(stat) floatVal = 0 intVal = 0 if stat in intArr: while (currentPct <= win_percent): print("intyyy") intVal = intVal + 1 currentPct = predOnStat(getAllTeamMatchRecords(teamID, df), reg, stat, intVal) print(stat, intVal) if stat in negIntArr: while (currentPct <= win_percent): print("neggggintyyy") intVal = intVal - 1 currentPct = predOnStat(getAllTeamMatchRecords(teamID, df), reg, stat, intVal) print(stat, intVal) elif stat in floatArr: while (currentPct <= win_percent): print("floattty") floatVal = floatVal + 0.1 currentPct = predOnStat(getAllTeamMatchRecords(teamID, df), reg, stat, floatVal) print(stat, floatVal) elif stat in negFloatArr: while (currentPct <= win_percent): print("neggggfloattty") floatVal = floatVal - 0.1 currentPct = predOnStat(getAllTeamMatchRecords(teamID, df), reg, stat, floatVal) print(stat, floatVal) print(val) return temp win_percent = 80.5 compTeams(df, team1, team2, win_percent) # In[19]: # testey = getAllTeamMatchRecords(team1, df) # prediction_acc, win_percent = predOnStat(testey, reg, "assists", 0) # print("Prediction accuracy:", prediction_acc, "\nWin Percent:", win_percent) # prediction_acc, win_percent = predOnStat(testey, reg, "assists", 5) # print("Prediction accuracy:", prediction_acc, "\nWin Percent:", win_percent) # prediction_acc, win_percent = predOnStat(testey, reg, "assists", 10) # print("Prediction accuracy:", prediction_acc, "\nWin Percent:", win_percent) # In[ ]:
oohshan/SmartGameGoalsGenerator
passenger.py
passenger.py
py
15,323
python
en
code
1
github-code
6
72650289467
# # @lc app=leetcode id=148 lang=python3 # # [148] Sort List # # @lc code=start # Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def sortList(self, head: Optional[ListNode]) -> Optional[ListNode]: arr = [] while head: arr.append(head.val) head = head.next arr.sort() head = ListNode() new_list = head for num in arr: new_list.next = ListNode(num) new_list = new_list.next return head.next # @lc code=end
hieun314/leetcode_NguyenKimHieu
148.sort-list.py
148.sort-list.py
py
636
python
en
code
0
github-code
6
32644084947
import maya.cmds as cmds import pymel.core as pm from mgear.core import attribute ATTR_SLIDER_TYPES = ["long", "float", "double", "doubleLinear", "doubleAngle"] DEFAULT_RANGE = 1000 # TODO: filter channel by color. By right click menu in a channel with color def init_table_config_data(): """Initialize the dictionary to store the channel master table data Items are the channels or attributes fullname in a list items_data is a dictionary with each channel configuration, the keys is the fullName Returns: dict: configuration dictionary """ config_data = {} config_data["channels"] = [] config_data["channels_data"] = {} return config_data def init_channel_master_config_data(): """Initialize the dictionary to store channel master tabs configuration""" config_data = {} config_data["tabs"] = [] config_data["tabs_data"] = {} config_data["current_tab"] = 0 return config_data def get_keyable_attribute(node): """Get keyable attributes from node Args: node (str): name of the node that have the attribute Returns: list: list of keyable attributes """ if cmds.nodeType(node) == "blendShape": attrs = cmds.listAttr("{}.w".format(node), m=True) else: attrs = cmds.listAttr(node, ud=False, k=True) return attrs def get_single_attribute_config(node, attr): """Summary Args: node (str): name of the node that have the attribute attr (str): attribute name Returns: dict: attribute configuration """ config = {} # config["ctl"] = node # config["ctl"] = pm.NameParser(node).stripNamespace().__str__() config["ctl"] = node config["color"] = None # This is a place holder for the channel UI color try: config["type"] = cmds.attributeQuery(attr, node=node, attributeType=True) except: return # check it the attr is alias alias = cmds.aliasAttr(node, q=True) if alias and attr in alias: config["niceName"] = attr config["longName"] = attr else: config["niceName"] = cmds.attributeQuery( attr, node=node, niceName=True ) config["longName"] = cmds.attributeQuery( attr, node=node, longName=True ) config["fullName"] = config["ctl"] + "." + config["longName"] if config["type"] in ATTR_SLIDER_TYPES: if cmds.attributeQuery(attr, node=node, maxExists=True): config["max"] = cmds.attributeQuery(attr, node=node, max=True)[0] else: config["max"] = DEFAULT_RANGE if cmds.attributeQuery(attr, node=node, minExists=True): config["min"] = cmds.attributeQuery(attr, node=node, min=True)[0] else: config["min"] = DEFAULT_RANGE * -1 config["default"] = cmds.attributeQuery( attr, node=node, listDefault=True )[0] elif config["type"] in ["enum"]: items = cmds.attributeQuery(attr, node=node, listEnum=True)[0] config["items"] = [x for x in items.split(":")] # Get value at channel creation time # this value can be different from the default value config["creationValue"] = cmds.getAttr("{}.{}".format(node, attr)) return config def get_attributes_config(node): """Get the configuration to all the keyable attributes Args: node (str): name of the node that have the attribute Returns: dict: All keyable attributes configuration """ # attrs_config = {} keyable_attrs = get_keyable_attribute(node) config_data = init_table_config_data() if keyable_attrs: # attrs_config["_attrs"] = keyable_attrs for attr in keyable_attrs: config = get_single_attribute_config(node, attr) # attrs_config[attr] = config if config: config_data["channels"].append(config["fullName"]) config_data["channels_data"][config["fullName"]] = config return config_data def get_table_config_from_selection(): oSel = pm.selected() attrs_config = None namespace = None if oSel: namespace = oSel[-1].namespace() ctl = oSel[-1].name() attrs_config = get_attributes_config(ctl) return attrs_config, namespace def get_ctl_with_namespace(attr_config, namespace=None): if namespace: ctl = ( namespace + pm.NameParser(attr_config["ctl"]).stripNamespace().__str__() ) else: ctl = attr_config["ctl"] return ctl def reset_attribute(attr_config, namespace=None): """Reset the value of a given attribute for the attribute configuration Args: attr_config (dict): Attribute configuration """ ctl = get_ctl_with_namespace(attr_config, namespace=None) obj = pm.PyNode(ctl) attr = attr_config["longName"] attribute.reset_selected_channels_value(objects=[obj], attributes=[attr]) def reset_creation_value_attribute(attr_config, namespace=None): """Reset the value of a given attribute for the attribute configuration Args: attr_config (dict): Attribute configuration """ ctl = get_ctl_with_namespace(attr_config, namespace=None) attr = attr_config["longName"] fullname_attr = "{}.{}".format(ctl, attr) if "creationValue" in attr_config.keys(): val = attr_config["creationValue"] cmds.setAttr(fullname_attr, val) else: pm.displayWarning( "Initial Creation Value was not originally stored for {}".format( fullname_attr ) ) def sync_graph_editor(attr_configs, namespace=None): """sync the channels in the graph editor Args: attr_configs (list): list of attribute configuration """ # select channel host controls ctls = [] for ac in attr_configs: ctl = ac["ctl"] if ctl not in ctls: if namespace: ctl = namespace + pm.NameParser(ctl).stripNamespace().__str__() ctls.append(ctl) pm.select(ctls, r=True) # filter curves in graph editor\ cnxs = [] for ac in attr_configs: attr = ac["fullName"] if namespace: attr = namespace + pm.NameParser(attr).stripNamespace().__str__() cnxs.append(attr) def ge_update(): pm.selectionConnection("graphEditor1FromOutliner", e=True, clear=True) for c in cnxs: cmds.selectionConnection( "graphEditor1FromOutliner", e=True, select=c ) # we need to evalDeferred to allow grapheditor update the selection # highlight in grapheditor outliner pm.evalDeferred(ge_update) ################ # Keyframe utils ################ def current_frame_has_key(attr): """Check if the attribute has keyframe in the current frame Args: attr (str): Attribute fullName Returns: bool: Return true if the attribute has keyframe in the current frame """ k = pm.keyframe(attr, query=True, time=pm.currentTime()) if k: return True def channel_has_animation(attr): """Check if the current channel has animaton Args: attr (str): Attribute fullName Returns: bool: Return true if the attribute has animation """ k = cmds.keyframe(attr, query=True) if k: return True def get_anim_value_at_current_frame(attr): """Get the animation value in the current framwe from a given attribute Args: attr (str): Attribute fullName Returns: bol, int or float: animation current value """ val = cmds.keyframe(attr, query=True, eval=True) if val: return val[0] def set_key(attr): """Keyframes the attribute at current frame Args: attr (str): Attribute fullName """ cmds.setKeyframe(attr) def remove_key(attr): """Remove the keyframe of an attribute at current frame Args: attr (str): Attribute fullName """ pm.cutKey(attr, clear=True, time=pm.currentTime()) def remove_animation(attr): """Remove the animation of an attribute Args: attr (str): Attribute fullName """ pm.cutKey(attr, clear=True) def _go_to_keyframe(attr, which): frame = cmds.findKeyframe(attr, which=which) cmds.currentTime(frame, e=True) def next_keyframe(attr): _go_to_keyframe(attr, which="next") def previous_keyframe(attr): _go_to_keyframe(attr, which="previous") def value_equal_keyvalue(attr, current_time=False): """Compare the animation value and the current value of a given attribute Args: attr (str): the attribute fullName Returns: bool: Return true is current value and animation value are the same """ anim_val = get_anim_value_at_current_frame(attr) if current_time: val = cmds.getAttr(attr, time=current_time) else: val = cmds.getAttr(attr) if anim_val == val: return True
mgear-dev/mgear4
release/scripts/mgear/animbits/channel_master_utils.py
channel_master_utils.py
py
9,005
python
en
code
209
github-code
6
15142385428
import requests from flask import redirect, url_for, flash from app.github import bp from app.github.functions import request_interface @bp.route('/update-database', methods=['GET', 'POST']) async def update_database(): # get all repos sorted by star rating # The max number of items per page is 100 url = 'https://api.github.com/search/repositories?q=language:python&sort=stars&per_page=100' response = requests.get(url) try: response.raise_for_status() except requests.exceptions.HTTPError as e: flash('Rate Limit Exceeded, please wait a little while and try again') return redirect(url_for('main.home')) response_dict = response.json() status = await request_interface(response_dict) if status == 200: return redirect(url_for('main.home')) else: return 'Oh no! Something is amiss!'
Red-Hammer/most-starred-python-repos
app/github/routes.py
routes.py
py
872
python
en
code
0
github-code
6
37226233681
class flag(): def __init__(self, short_flag, long_flag, args_num, args_name_list, if_force_num): self.short_flag = short_flag self.long_flag = long_flag self.args_num = args_num self.args_name_list = args_name_list self.if_force_num = if_force_num try: assert args_num >= 0 assert args_name_list != [] assert short_flag is None or len(short_flag) == 1 assert long_flag != 'header' except: print('attribute error in class flag') class parser(): def __init__(self, header_flag=None, flags_list=[]): self.header = header_flag self.flags = flags_list def parse_args(self, string): args = dict() arg_name_list = [name for flag in self.flags for name in flag.args_name_list] if self.header is not None: arg_name_list += self.header.args_name_list for key in arg_name_list: args[key] = None args_cnt = 0 args_num = 0 if_force_num = None if self.header is not None: wait_status = 'arg_or_flag' flag_status = self.header.args_name_list args_num = self.header.args_num if_force_num = self.header.if_force_num else: wait_status = 'flag' flag_status = None words = string.split(' ') words = [word.replace(' ', '') for word in words] words = [word for word in words if word != '' and word != ' '] for word in words: if wait_status == 'arg_or_flag' or wait_status == 'flag': this_flag = None for flag in self.flags: if word == '-' + flag.short_flag: this_flag = flag break elif word == '--' + flag.long_flag: this_flag = flag break if this_flag is None: if wait_status != 'arg_or_flag': return 'unknown_flags_or_too_many_arguments' if this_flag is not None: if this_flag.args_num == 0: args[this_flag.args_name_list[0]] = True wait_status = 'flag' continue wait_status = 'arg' flag_status = this_flag.args_name_list args_num = this_flag.args_num if_force_num = this_flag.if_force_num args_cnt = 0 continue # wait_status == 'arg' args[flag_status[args_cnt]] = word args_cnt += 1 if args_cnt == args_num: wait_status = 'flag' flag_status = None args_num = None args_cnt = 0 if_force_num = None continue if if_force_num == False: wait_status = 'arg_or_flag' else: wait_status = 'arg' return args
Ntimesp/AkinaChann
utils/arg_parser.py
arg_parser.py
py
3,295
python
en
code
0
github-code
6
21099702516
from sklearn import svm import sklearn.linear_model.stochastic_gradient as sg from sklearn.model_selection import GridSearchCV as grid import numpy #linear kernel support vector machine using tf-idf vectorizations class SVM: train_X = [] train_Y = [] test_X = [] test_Y = [] def __init__(self, train_X, train_Y, test_X, test_Y, n_iter, alpha): self.n_iter = n_iter self.alpha = alpha self.train_X = train_X.apply(lambda x: ' '.join(x)).tolist() self.train_Y = train_Y self.test_X = test_X.apply(lambda x: ' '.join(x)).tolist() self.test_Y = test_Y # Convert text to tf-idf vectors and return accuracy obtained from SVM def predict(self): from sklearn.feature_extraction.text import TfidfVectorizer #convert train set to tf-idf vectors tf_idf = TfidfVectorizer() self.train_X = tf_idf.fit_transform(self.train_X) self.test_X = tf_idf.transform( raw_documents=self.test_X) #SVM very slow, better suited for task but does not scale to large datasets # SVM = svm.SVC(kernel='linear', verbose=True) # SVM.fit(X=self.train_X, y=self.train_Y) # prediction = SVM.predict(self.test_X) # accuracy = numpy.mean(prediction == self.test_Y) # param_grid = [ # {'alpha': [.00001, .0001, .001, .01]} # ] # best results for lowest alpha SGD = sg.SGDClassifier(verbose=True, n_iter=self.n_iter, alpha=self.alpha) # clf = grid(SGD, param_grid, cv=3) SGD.fit(X=self.train_X, y=self.train_Y) prediction = SGD.predict(self.test_X) accuracy = numpy.mean(prediction == self.test_Y) return accuracy
hadarohana/Tweets
Tweets/SVM.py
SVM.py
py
1,710
python
en
code
0
github-code
6
34196758257
#/usr/bin/env python3 with open("day18_in.txt") as f: lines = [l.strip() for l in f] grid = ''.join(lines) Y_END = len(lines) X_END = len(lines[0]) def run(grid, times): cache = {grid: 0} i = 0 while i < times: grid = next_grid(grid) if grid in cache: i = iterations_fast_jump(i, cache[grid], times) cache.clear() cache[grid] = i i += 1 return grid.count('|') * grid.count('#') def next_grid(grid): return ''.join(next_grid_generator(grid)) def next_grid_generator(grid): for y, x in ((y, x) for y in range(Y_END) for x in range(X_END)): val = grid[y * X_END + x] adjs = list(adjacents(grid, y, x)) if val == '.' and adjs.count('|') >= 3: val = '|' elif val == '|' and adjs.count('#') >= 3: val = '#' elif val == '#' and (adjs.count('#') == 0 or adjs.count('|') == 0): val = '.' yield val def adjacents(grid, y, x): ymin, xmin = max(y - 1, 0), max(x - 1, 0) yend, xend = min(y + 2, Y_END), min(x + 2, X_END) for y2, x2 in ((y2, x2) for y2 in range(ymin, yend) for x2 in range(xmin, xend)): if (y2 != y or x2 != x): yield grid[y2 * X_END + x2] def iterations_fast_jump(i, i_prev, i_max): jump = i - i_prev jumps = (i_max - 1 - i) // jump return i + jump * jumps print(f"Part 1: trees * lumberyards = {run(grid, 10)}") print(f"Part 2: trees * lumberyards = {run(grid, 1000000000)}")
naggety/adventofcode2018.py
day18.py
day18.py
py
1,518
python
en
code
0
github-code
6
19325512904
from statsmodels.tsa.seasonal import seasonal_decompose from dateutil.parser import parse import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv('../timeserie_train.csv', parse_dates=['data'], index_col='data', squeeze=True) # Multiplicative Decomposition result_mul = seasonal_decompose(df, model='multiplicative', period=365*24, extrapolate_trend='freq') # Additive Decomposition result_add = seasonal_decompose(df, model='additive',period=365*24, extrapolate_trend='freq') # Extract the Components ---- # Actual Values = Product of (Seasonal * Trend * Resid) df_reconstructed_mul = pd.concat([result_mul.seasonal, result_mul.trend, result_mul.resid, result_mul.observed], axis=1) df_reconstructed_mul.columns = ['seas', 'trend', 'resid', 'actual_values'] df_reconstructed_mul.to_csv('timeserie_decom_mul_train.csv') #df_reconstructed_mul.head() # Actual Values = Sum of (Seasonal * Trend * Resid) df_reconstructed_add = pd.concat([result_add.seasonal, result_add.trend, result_add.resid, result_add.observed], axis=1) df_reconstructed_add.columns = ['seas', 'trend', 'resid', 'actual_values'] df_reconstructed_add.to_csv('timeserie_decom_add_train.csv') #df_reconstructed_add.head() # Plot result_mul.plot().suptitle('Multiplicative Decompose', fontsize=22) result_add.plot().suptitle('Additive Decompose', fontsize=22) plt.show()
gsilva49/timeseries
H/python_code/decom.py
decom.py
py
1,379
python
en
code
0
github-code
6
19066210421
from utils.crawling import * Ctcd_name = {"11": "서울", "21": "부산", "22": "대구", "23": "인천", #4 "24": "광주", "25": "대전", "26": "울산", "45": "세종", #4 "31": "경기", "32": "강원", "33": "충북", "34": "충남", #4 "35": "전북", "36": "전남", "37": "경북", "38": "경남", "50": "제주"} #5 Pcd1_name = {"03": "석기", "05": "청동기", "07": "철기", #3 "11": "고구려", "12": "백제", "13": "신라", "14": "가야", "20": "통일신라", #5 "30": "고려", "40": "조선", "45": "대한제국", "50": "일제강점기"} #4 heritage_df = csv_to_df("heritage.csv") for i in range(len(heritage_df)): heritage_df.loc[i, "ccbaCtcdNm"] = Ctcd_name[heritage_df.loc[i, "ccbaCtcd"]] heritage_df.loc[i, "ccbaPcd1Nm"] = Pcd1_name[heritage_df.loc[i, "ccbaPcd1"]] col = ['ccbaCpno', 'ccbaPcd1', 'ccbaPcd1Nm', 'longitude', 'latitude', 'ccbaCtcd', 'ccbaCtcdNm', 'ccbaKdcd', 'ccmaName', 'crltsnoNm', 'ccbaMnm1', 'ccbaMnm2', 'imageUrl', 'content', 'ccceName', 'ccbaLcad', 'ccbaAdmin', 'ccbaPoss', 'ccbaAsdt'] save_df(heritage_df[col], "heritage.csv")
Park-Min-Jeong/Interface-Project-DataPreProcessing
7 decode_data.py
7 decode_data.py
py
1,185
python
en
code
0
github-code
6
72994074107
import torch.nn as nn import torch class NetworksFactory: def __init__(self): pass @staticmethod def get_by_name(network_name, *args, **kwargs): ################ Ours ################# if network_name == 'Ours_Reconstruction': from networks.Ours_Reconstruction import Net network = Net(*args, **kwargs) elif network_name == 'Ours_DeblurOnly': from networks.Ours_DeblurOnly import Net network = Net(*args, **kwargs) else: raise ValueError("Network %s not recognized." % network_name) # print(network) print("Network %s was created: " % network_name) print('Network parameters: {}'.format(sum([p.data.nelement() for p in network.network.parameters()]))) return network class NetworkBase(nn.Module): def __init__(self): super(NetworkBase, self).__init__() self._name = 'BaseNetwork' @property def name(self): return self._name
Lynn0306/LEDVDI
CODES/networks/networks.py
networks.py
py
1,012
python
en
code
20
github-code
6
13437468850
# Display a runtext with double-buffering. import sys sys.path.append("matrix/bindings/python/samples") from samplebase import SampleBase from rgbmatrix import graphics import time from PIL import Image import requests import json import threading from threading import Thread from queue import Queue import traceback import logging LOG_FILENAME = "Logs/mtatext.log" logging.basicConfig(filename=LOG_FILENAME, level=logging.DEBUG) logging.debug("Startup test in mtatext.py") #GPIO PIN = 35 DIRECTIONS = ["N", "S"] ### MATRIX HELPER FUNCTIONS ### def fillRectangle(gx, canvas, xUL=0, yUL=0, xBR=63, yBR=31, color=graphics.Color(0,0,0)): if xUL>=xBR or yUL>=yBR: print("ERROR, bad rectangle boundaries.") else: for x in range(xUL,xBR+1): gx.DrawLine(canvas, x,yUL,x,yBR,color) def scrollText(gx, canvas, leftBoundary, rightBoudary, height, color, text): text_length = graphics.DrawText(offscreen_canvas, font, pos, 20, textColor, my_text) #hardcoded now, update for different trains def printTrainBulletId(canvas, x, y, route_id): #printTrainBullet(canvas, x, y, 0, 106, 9) image = Image.open("pixelMaps/%strain.ppm"%(route_id)).convert('RGB') canvas.SetImage(image, x, y) #position is 0 or 1 def printTrainLine(gx, canvas, route_id, font, min_font, destination, mins_left, position, text_frame): height = 8 + position*17 bullet_position = (0, height - 7) #was 6,height destination_position = (bullet_position[0]+16, height+int(font.baseline/2)-1) mins_left_position = (48, height+int(font.baseline/2)-1) text_color = gx.Color(100,100,100) left_boundary = destination_position[0]-1 right_boundary = mins_left_position[0]-2 text_width = gx.DrawText(canvas, font, destination_position[0]-text_frame, destination_position[1], text_color, destination) fillRectangle(gx, canvas, xBR=left_boundary, yUL=position*16, yBR=16+position*16) fillRectangle(gx, canvas, xUL=right_boundary, yUL=position*16, yBR=16+position*16) printTrainBulletId(canvas, bullet_position[0], bullet_position[1], route_id) gx.DrawText(canvas, min_font, mins_left_position[0], mins_left_position[1], text_color, "%sm"%(mins_left)) return text_width-text_frame def getTrains(stations): station_string = ",".join(stations) if len(stations)>1 else stations[0] try: response = requests.get("http://localhost:5000/train-schedule/%s"%(station_string)) trains = json.loads(response.text) valid = trains and len(trains)>0 and trains[0]["destination"] is not None if valid: logging.debug("Valid response returning trains:") logging.debug(str(trains)) return trains logging.debug("Not valid returning NONE") return None except: logging.exception("Ex in getTrains:") return None server_live = threading.Event() class ServerLiveThread(Thread): def __init__(self): Thread.__init__(self) def run(self): trains = None try: valid = trains and len(trains)>0 and trains[0]["destination"] is not None while not valid: logging.debug("Startup server still not valid, pinging again") trains = getTrains(["F21"]) valid = trains and len(trains)>0 and trains[0]["destination"] is not None logging.debug("Server online, starting UI") server_live.set() except: logging.exception("Ex in ServerLiveThread:") time.sleep(2) self.run() class GetTrainsThread(Thread): def __init__(self, stations, queue): Thread.__init__(self) self.trains = [] self.stations = stations self.queue = queue def setTrains(self, trains): self.trains = trains def run(self): self.trains = getTrains(self.stations) if self.trains: self.queue.put(self.trains) class RunText(SampleBase): def __init__(self, *args, **kwargs): super(RunText, self).__init__(*args, **kwargs) self.parser.add_argument("-s", "--stations", help="List of stations", nargs="*", default=["F21"]) def run(self): offscreen_canvas = self.matrix.CreateFrameCanvas() font = graphics.Font() font.LoadFont("matrix/fonts/6x12.bdf") min_font = graphics.Font() min_font.LoadFont("matrix/fonts/5x8.bdf") textColor = graphics.Color(200, 200, 200) black = graphics.Color(0,0,0) pos = offscreen_canvas.width stations = self.args.stations time_step = 0.09 freeze_time = 3 train_update_time = 25 secondary_switch_time = 10 trains_queue = Queue() pos1 = 0 freeze1 = int(freeze_time/time_step) pos2 = 0 freeze2 = int(freeze_time/time_step) train_update = 0 switch_time = int(secondary_switch_time/time_step) trains = None secondary_train = 1 primary_train = 0 t = ServerLiveThread() t.start() server_live.wait() while True: now = time.time() offscreen_canvas.Clear() if train_update==0 and trains_queue.qsize()==0 and threading.active_count()==1: train_thread = GetTrainsThread(stations,trains_queue) train_thread.start() train_update = int(train_update_time/time_step) if(trains_queue.qsize()>0): trains = trains_queue.get() if trains: if switch_time==0: secondary_train = max(1,(secondary_train+2)%len(trains)) primary_train = secondary_train-1 switch_time = int(secondary_switch_time/time_step) else: switch_time-=1 reset1 = printTrainLine(graphics, offscreen_canvas, trains[primary_train]["route_id"], font, min_font, trains[primary_train]["destination"], trains[primary_train]["mins_left"], 0, pos1) if len(trains) > 1: reset2 = printTrainLine(graphics, offscreen_canvas, trains[secondary_train]["route_id"], font, min_font,trains[secondary_train]["destination"], trains[secondary_train]["mins_left"], 1, pos2) else: reset2 = -1 offscreen_canvas = self.matrix.SwapOnVSync(offscreen_canvas) if trains: if pos1==0 and freeze1>0: freeze1-=1 else: pos1+=1 freeze1 = int(freeze_time/time_step) if pos2==0 and freeze2>0: freeze2-=1 else: pos2+=1 freeze2 = int(freeze_time/time_step) if reset1<0: pos1 = 0 if reset2<0: pos2 = 0 train_update= max(0, train_update-1) elapsed = time.time()-now time.sleep(max(0,time_step-elapsed)) # Main function if __name__ == "__main__": run_text = RunText() if (not run_text.process()): run_text.print_help()
aqwesd8/MTAProject
mtatext.py
mtatext.py
py
7,270
python
en
code
0
github-code
6
1396103450
from django.shortcuts import render, redirect, reverse from django.http import JsonResponse from django.forms import ValidationError from .models import * import pyshorteners def index(request): data = {} if request.method == "POST": try: l = Link() s = pyshorteners.Shortener() l.original_url = request.POST["url"] l.short_url = s.tinyurl.short(l.original_url) l.full_clean() l.save() return redirect(reverse("encode", args=(l.id,))) except ValidationError as v: data["error"] = v.message_dict return render(request, 'pages/index.html', data) def encode(request, link_id): l = Link.objects.get(id=link_id) data = { "short_url" : l.short_url } return JsonResponse(data) def decode(request, link_id): l = Link.objects.get(id=link_id) data = { "original_url": l.original_url } return JsonResponse(data)
jennytoc/url-shortener
url_shortener_app/views.py
views.py
py
976
python
en
code
0
github-code
6
10117546059
import pytest from dao.genre import GenreDAO from service.genre import GenreService class TestGenreService: @pytest.fixture(autouse=True) def genre_service(self, genre_Dao: GenreDAO): self.genre_service = GenreService(genre_Dao) def test_get_one(self): certain_genre = self.genre_service.get_one(1) assert certain_genre is not None assert certain_genre.id == 1 assert certain_genre.name == 'horror' def test_get_all(self): all_genres = self.genre_service.get_all(None) assert all_genres is not None assert type(all_genres) == list
AgzigitovOskar/CR_4_Agzigitov
tests/service_tests/genre_service.py
genre_service.py
py
618
python
en
code
0
github-code
6
8236657823
# sets: unordered, mutable, no duplicates myset = {1, 2, 3, 1, 2} # no duplicates allowed print(myset) # {1, 2, 3} myset1 = set([1, 2, 3, 4, 1, 2, 3, 4]) # turn list into a set and it removes duplicates print(myset1) # {1, 2, 3, 4} myset2 = set("Hello") # unordered print(myset2) # {'e', 'H', 'l', 'o'} myset3 = set() # empty set myset3.add(1) # add 1 to set myset3.add(2) # add 2 to set myset3.add(3) # add 3 to set myset3.discard(3) # remove 3 from set print(myset3) myset3.add(3) # add 3 to set print(myset3.pop()) # remove and return an arbitrary element from set odds = {1, 3, 5, 7, 9} evens = {0, 2, 4, 6, 8} primes = {2, 3, 5, 7} u = odds.union(evens) # union of two sets (adds two sets print(u) # {1, 2, 3, 4, 5, 6, 7, 8, 9} i = odds.intersection(evens) # intersection of two sets (only common elements) print(i) # empty set() i1 = odds.intersection(primes) # intersection of two sets (only common elements) print(i1) # {3, 5, 7} a = {1, 2, 3, 4, 5, 6, 7, 8, 9} b = {1, 2, 3, 10, 11, 12} diff = a.difference(b) # elements in a but not in b print(diff) # {4, 5, 6, 7, 8, 9} symdiff = a.symmetric_difference(b) # elements in either a or b but not both print(symdiff) # {4, 5, 6, 7, 8, 9, 10, 11, 12} a.update(b) # add all elements from b to a print(a) # {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} a = {1, 2, 3, 4, 5, 6, 7, 8, 9} b = {1, 2, 3, 10, 11, 12} a.intersection_update(b) # set a to only common elements of a and b print(a) # {1, 2, 3} a = {1, 2, 3, 4, 5, 6 } b = {1, 2, 3} print(b.issubset(a)) # b is a subset of a: True print(b.issuperset(a)) # b is a superset of a: False # to copy a set, use the copy() method # frozenset is immutable (cannot oadd or remove elements)
bhagya2002/python
Intermediate/4_sets.py
4_sets.py
py
1,703
python
en
code
0
github-code
6
37974828359
''' Program to be called from cron for working with lights - on and off This is a wrapper for the Client, handling command line parameters Author: Howard Webb Date: 2/10/2021 ''' import argparse from exp import exp from GrowLight import GrowLight parser = argparse.ArgumentParser() # list of acceptable arguments parser.add_argument("-a", help="Send a light command (on, off, ...", type=str) args = parser.parse_args() #print(args) gl = GrowLight() if args.a == "on": gl.on() elif args.a == "off": gl.off()
webbhm/GBE-Digital
python/Light_Switch.py
Light_Switch.py
py
538
python
en
code
1
github-code
6
72708100028
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2022/8/13 15:04 # @Author : 0x00A0 # @File : main.py # @Description : TKINTER窗口程序 import asyncio import multiprocessing import os import re import shutil import sys import threading import time import tkinter from tkinter import filedialog, messagebox from tkinter.ttk import Progressbar import paddle import predict from ProgressBar import ProgressBar from ppgan.apps import StyleGANv2EditingPredictor from ppgan.apps import Pixel2Style2PixelPredictor from tkinter import * import tkinter as tk from PIL import Image, ImageTk shutil.rmtree("img") os.mkdir("img") """ ================================================= 主窗口 ================================================= """ root = Tk() root.title("人脸时光机") # root.resizable(False,False) # 不可缩放 root.minsize(1000, 750) h_box = w_box = root.winfo_screenwidth() / 4 # 指定图片框的最大大小为屏幕的1/4 window = tk.Frame(root) prog = None global photo0 global photo1 global done done = False """ ================================================= 控件定义 ================================================= """ work_path = os.getcwd() ori_path = "" # 图片路径 # ===原始图片框=== def resize(w, h, w_box, h_box, pil_image): """ 对一个pil_image对象进行缩放,让它在一个矩形框内,还能保持比例 """ f1 = 1.0 * w_box / w f2 = 1.0 * h_box / h factor = min([f1, f2]) width = int(w * factor) height = int(h * factor) return pil_image.resize((width, height), Image.ANTIALIAS) img0 = Image.open(os.path.join("statics", "L.png")) w, h = img0.size img0 = resize(w, h, w_box, h_box, img0) photo0 = ImageTk.PhotoImage(img0) imgbox_ori = Label(window, image=photo0) lbl_ori = Label(window, text="原始图像", font=("微软雅黑", 19)) # ===生成图片框=== img1 = Image.open(os.path.join("statics", "R.png")) w, h = img1.size img1 = resize(w, h, w_box, h_box, img1) photo1 = ImageTk.PhotoImage(img1) imgbox_dst = Label(window, image=photo1) lbl_dst = Label(window, text="生成图像", font=("微软雅黑", 19)) # ===打开图片按钮=== def openImg(): filename = filedialog.askopenfilename() if filename != '': global ori_path ori_path = filename img0 = Image.open(ori_path) w, h = img0.size img0 = resize(w, h, w_box, h_box, img0) global photo0 photo0 = ImageTk.PhotoImage(img0) imgbox_ori.configure(image=photo0) img1 = Image.open(os.path.join("statics", "R.png")) w, h = img1.size img1 = resize(w, h, w_box, h_box, img1) global photo1 photo1 = ImageTk.PhotoImage(img1) imgbox_dst.configure(image=photo1) else: messagebox.showinfo("提示", "您没有选择任何文件") func_openImg = window.register(openImg) # 必要的函数包装 btn_OpenImg = Button(window, text="打开图片", font=("微软雅黑", 19), command=func_openImg) # ===年龄输入框=== lbl_Age = Label(window, text="需要增长的年龄(负数表示年轻):", font=("微软雅黑", 19)) def checkInput(content): """ 只允许输入框输入数字和正负号 """ if re.match(r"^-?(\.\d+|\d+(\.\d+)?)", content) or content == '-' or content == "": return True else: return False val_var = tk.StringVar(value="0") func_checkInput = window.register(checkInput) # 必要的函数包装 txt_Age = Entry(window, font=("微软雅黑", 19), textvariable=val_var, validate="key", validatecommand=(func_checkInput, '%P')) # ===图片生成按钮=== def getDistance(age): if age > 0: return age / 10 else: return age / 15 def getResult(): global done if done: if os.path.exists(os.path.join(work_path, "img", "dst.editing.png")): img1 = Image.open(os.path.join(work_path, "img", "dst.editing.png")) w, h = img1.size img1 = resize(w, h, w_box, h_box, img1) global photo1 photo1 = ImageTk.PhotoImage(img1) imgbox_dst.configure(image=photo1) prog.quit() btn_genImg["state"] = "normal" messagebox.showinfo("提示", "图片生成完成", parent=root) shutil.copy(os.path.join(work_path, "img", "dst.editing.png"), ''.join(os.path.normpath(ori_path).split(r"\\")[:-1])) done = False return root.after(1000, getResult) def pred(): try: predictor = predict.predictor(os.path.normpath(ori_path), os.path.join(work_path, "img"), getDistance(int(txt_Age.get()))) predictor.predict() except Exception as e: prog.quit() btn_genImg["state"] = "normal" messagebox.showerror("错误", ''.join(e.args), parent=root) global done done = True def genImg(): shutil.rmtree("img") os.mkdir("img") btn_genImg["state"] = "disabled" if txt_Age.get() == "" or txt_Age.get() == "-": messagebox.showinfo("提示", "未填写年龄", parent=root) print((os.path.normpath(ori_path), os.path.join(work_path, "img"), getDistance(int(txt_Age.get())))) th = threading.Thread(target=pred) th.setDaemon(True) # 标记成Daemon以防止出现孤儿进程 th.start() root.after(1000, getResult) global prog prog = ProgressBar() prog.start(root) func_genImg = window.register(genImg) # 必要的函数包装 btn_genImg = Button(window, text="生成照片", font=("微软雅黑", 19), command=func_genImg) # ===About信息=== lbl_about = Label(window, text="浙大宁波理工学院 计算机与数据工程学院" + "大数据201 万昕睿" + "技术支持: 百度Paddle提供深度学习框架与模型\n" + " 开源地址: https://github.com/PaddlePaddle/Paddle\n" + "本项目已开源至GitHub\n" + " 开源地址: https://github.com/0x00A0/FaceAge", font=("微软雅黑", 9), foreground="#45AA48" ) """ ================================================= 放置所有控件 ================================================= """ window.place(anchor="center", relx=.50, rely=.50) lbl_ori.grid(row=0, column=0, rowspan=1, columnspan=4) imgbox_ori.grid(row=1, column=0, rowspan=4, columnspan=4, sticky="NSWE") lbl_dst.grid(row=0, column=5, rowspan=1, columnspan=4) imgbox_dst.grid(row=1, column=5, rowspan=4, columnspan=4, sticky="NSWE") btn_OpenImg.grid(row=6, column=0, rowspan=1, columnspan=10, sticky="WE") lbl_Age.grid(row=7, column=0, rowspan=1, columnspan=4, sticky="WE") txt_Age.grid(row=7, column=5, rowspan=1, columnspan=4, sticky="WE") btn_genImg.grid(row=8, column=0, rowspan=1, columnspan=10, sticky="WE") lbl_about.grid(row=9, column=0, rowspan=1, columnspan=10, sticky="WE") """ ================================================= 调用mainloop()显示主窗口 ================================================= """ window.mainloop()
0x00A0/FaceAge
main.pyw
main.pyw
pyw
6,807
python
en
code
2
github-code
6
38928831481
import os from dotenv import load_dotenv import requests from lxml import etree import re from postgres import cursor, connection from slugify import slugify load_dotenv() # -------------------------- # link đến trang hình ảnh của chapter nettruyen = os.getenv("PUBLIC_NETTRUYEN_URL") def openWebsite(domain: str): headersList = { "Accept": "*/*", "User-Agent": "Thunder Client (https://www.thunderclient.com)" } response = requests.request("GET", domain, data="", headers=headersList) return response def crawlChapters(crawl_id: str): # crawl_id là id của truyện tranh để truy vấn và lấy ra danh sách chhapter # Gọi api domain lấy danh sách chương response = openWebsite(nettruyen + "Comic/Services/ComicService.asmx/ProcessChapterList?comicId=" + crawl_id) return response.json() # Assuming the response is in JSON format def updateChapter(comic_id: str, crawl_id: str): # comic_id : id cua table comics, crawl_id : chapter_id cua table crawls # Thu thập dữ liệu data = crawlChapters(crawl_id) if len(data['chapters']): for chap in data['chapters']: # Thêm dữ liệu vào db cursor.execute("INSERT INTO public.chapters(comic_id, title, crawl_id) " "VALUES (%s, %s, %s) ON CONFLICT (crawl_id) DO NOTHING", # Đảm bảo các dữ liệu thêm vào không bị trùng lặp (comic_id, chap['name'], chap['url'])) # Đảm bảo lưu thay đổi vào cơ sở dữ liệu connection.commit() # print("Thêm chapter vào db thành công:") print(chap['name']) # set is_updated comics = false cursor.execute("UPDATE public.comics SET is_updated = false WHERE id = %s", (comic_id,)) connection.commit() cursor.execute("UPDATE public.crawls SET is_updated = false WHERE chapter_id = %s", (crawl_id,)) connection.commit() return # func auto update def autoUpdateChapter(): # Lấy danh sách truyện cursor.execute("SELECT id, crawl_id FROM public.comics WHERE is_updated = true ORDER BY id ASC limit 5") results = cursor.fetchall() if results is not None: for row in results: comic_id = row[0] # id cua truyen tranh crawl_id = row[1] # crawl id fk id cua comic cursor.execute("SELECT chapter_id FROM public.crawls WHERE id = %s", (crawl_id,)) crawlResult = cursor.fetchone() if crawlResult is not None: updateChapter(comic_id, crawlResult[0]) return autoUpdateChapter()
baocuns/BCunsAutoCrawls
crawlChaptersNettruyenToPostgres.py
crawlChaptersNettruyenToPostgres.py
py
2,686
python
vi
code
0
github-code
6
31008546048
from flask import Flask from flask_pymongo import PyMongo from flask import Response import random import requests from flask import request import json from itsdangerous import (TimedJSONWebSignatureSerializer as Serializer, BadSignature, SignatureExpired) from flask import jsonify from bson.objectid import ObjectId from functools import wraps import uuid from bson import json_util app = Flask(__name__) app.config['SECRET_KEY'] = "secret" app.config['MONGO_DBNAME'] = "tasker_db" app.config['MONGO_URI'] = "mongodb://localhost:27017" mongo = PyMongo(app) def to_json(data): """Convert Mongo object(s) to JSON""" return json.dumps(data, default=json_util.default) #region Security def generate_auth_token(id, expiration=600): ss = str(id) s = Serializer(app.config['SECRET_KEY'], expires_in=expiration) return s.dumps({'id': ss}) def authorize(f): @wraps(f) def wrapper(*args, **kwargs): if not 'Authorization' in request.headers: return Response(status="401") data = request.headers['Authorization'] user = verify_auth_token(data) if not user: return Response(status="404") return f(user) return wrapper def verify_auth_token(token): s = Serializer(app.config['SECRET_KEY']) t = token.replace('\'', '')[1:] try: data = s.loads(t) except SignatureExpired: return None # valid token, but expired except BadSignature: return None # invalid token dd = data['id'] user = mongo.db.users.find_one({'_id': ObjectId(dd)}) return user #endregion @app.route('/') def home_page(): user = mongo.db.users return "Success!" # region Registration @app.route('/register', methods=['POST']) def register(): req = request.get_json(silent=True) rnd = random.randrange(1000, 9999) if mongo.db.users.find_one({'phone': req['phone']}): return Response( "Указанный номер зарегистрирован", status_code=409, content_type="utf-8") tmp_users = mongo.db.template_users user = tmp_users.find_one({'phone': req['phone']}) if not tmp_users.find_one_and_update({'phone': req['phone']}, {'$set': {'code': rnd}}, upsert=True): tmp_users.insert({'phone': req['phone'], 'code': rnd}) #remove this return Response(status="200") r = requests.post('https://sms.ru/sms/send?api_id=840B3593-66E9-5AB4-4965-0B9589019F3A&to=' + str( req['phone']) + '&msg=Код%20для%20регистрации:%20' + str(rnd) + '&json=1') return Response( r.text, status=r.status_code, content_type=r.headers['content-type']) @app.route('/register/confirm', methods=['POST']) def finish_registration(): req = request.get_json(silent=True) if mongo.db.users.find_one({'phone': req['phone']}): return Response("Указанный номер уже зарегистирован", status="409", content_type="utf-8") tmp_users = mongo.db.template_users if tmp_users.find_one({'phone': req['phone'], 'code': int(req['code'])}): to_insert = {'phone': req['phone'], 'profile': {'first_name': '', 'last_name': '', 'birth_date': None}} mongo.db.users.insert_one( {'phone': req['phone'], 'profile': {'first_name': '', 'last_name': '', 'birth_date': None}}) return Response(json.dumps(to_insert), status="200", content_type='application/json') else: return Response(status="404") @app.route('/login', methods=['POST']) def tasks(): req = request.get_json(silent=True) user = mongo.db.users.find_one({'phone': req['phone']}) if user: token = generate_auth_token(user['_id']) return Response(json.dumps({'token': str(token)}), status="200", content_type='application/json') else: return Response(status="404") # endregion #region Task @app.route('/tasks', methods=['GET']) @authorize def get_all_task(user): tasks = mongo.db.tasks.find({'user_id': str(user['_id'])}) json_result = [] for task in tasks: json_result.append(task) result = to_json(json_result) return Response(result, status="200", content_type='application/json') @app.route('/task', methods=['POST']) @authorize def add_task(user): req = request.get_json(silent=True) mongo.db.tasks.insert({'data': req['data'], 'date': req['date'], 'guid': req['guid'], 'user_id': str(user['_id'])}) return Response(status="200") @app.route('/task', methods=['PUT']) @authorize def update_task(user): req = request.get_json(silent=True) mongo.db.tasks.update({'guid': req['guid']}, {"$set" : {'data': req['data'], 'date': req['date']}}) return Response(status="200") @app.route('/task', methods=['GET']) @authorize def get_task(user): req = request.get_json(silent=True) id = request.args.get('id') task = mongo.db.tasks.find_one({'guid' : id}) return Response(to_json(task), status="200", content_type='application/json') @app.route('/task', methods=['DELETE']) @authorize def delete_task(user): req = request.get_json(silent=True) mongo.db.tasks.delete_one({'guid' : req['guid']}) return Response(status="200") #endregion if __name__ == "__main__": app.run()
SvTitov/tasker
SRV/tasker_srv/application.py
application.py
py
5,493
python
en
code
0
github-code
6
18711654900
import argparse import logging from pathlib import Path from typing import List import yaml from topaz3.conversions import phase_remove_bad_values, phase_to_map from topaz3.database_ops import prepare_labels_database, prepare_training_database from topaz3.delete_temp_files import delete_temp_files from topaz3.get_cc import get_cc from topaz3.mtz_info import mtz_get_cell from topaz3.space_group import mtz_find_space_group, textfile_find_space_group def prepare_training_data( phase_directory: str, cell_info_directory: str, cell_info_path: str, space_group_directory: str, space_group_path: str, xyz_limits: List[int], output_directory: str, database: str = None, delete_temp: bool = True, ): """Convert both the original and inverse hands of a structure into a regular map file based on information about the cell info and space group and the xyz dimensions. Return True if no exceptions""" logging.info("Preparing training data") # Check all directories exist try: phase_dir = Path(phase_directory) assert phase_dir.exists() except Exception: logging.error(f"Could not find phase directory at {phase_directory}") raise try: cell_info_dir = Path(cell_info_directory) assert cell_info_dir.exists() except Exception: logging.error(f"Could not find cell info directory at {cell_info_directory}") raise try: space_group_dir = Path(space_group_directory) assert space_group_dir.exists() except Exception: logging.error( f"Could not find space group directory at {space_group_directory}" ) raise try: output_dir = Path(output_directory) assert output_dir.exists() except Exception: logging.error(f"Could not find output directory at {output_directory}") raise # Check xyz limits are of correct format try: assert type(xyz_limits) == list or type(xyz_limits) == tuple assert len(xyz_limits) == 3 assert all(type(values) == int for values in xyz_limits) except AssertionError: logging.error( "xyz_limits muste be provided as a list or tupls of three integer values" ) raise # Get lists of child directories phase_structs = [struct.stem for struct in phase_dir.iterdir()] cell_info_structs = [struct.stem for struct in cell_info_dir.iterdir()] space_group_structs = [struct.stem for struct in space_group_dir.iterdir()] assert ( phase_structs == cell_info_structs == space_group_structs ), "Same structures not found in all given directories" phase_structs = sorted(phase_structs) logging.debug(f"Following structures found to transform: {phase_structs}") # Get cell info and space group cell_info_dict = {} space_group_dict = {} # Set up function to get space group depending on suffix if Path(space_group_path).suffix == ".mtz": find_space_group = mtz_find_space_group else: find_space_group = textfile_find_space_group for struct in phase_structs: logging.info( f"Collecting info from {struct}, {phase_structs.index(struct)+1}/{len(phase_structs)}" ) try: cell_info_file = cell_info_dir / Path(struct) / Path(cell_info_path) assert cell_info_file.exists() except Exception: logging.error(f"Could not find cell info file at {cell_info_dir}") raise try: cell_info_dict[struct] = mtz_get_cell(cell_info_file) except Exception: logging.error(f"Could not get cell info from {cell_info_file}") raise try: space_group_file = space_group_dir / Path(struct) / Path(space_group_path) assert space_group_file.exists() except Exception: logging.error(f"Could not find space group file at {space_group_dir}") raise try: space_group_dict[struct] = find_space_group(space_group_file) except Exception: logging.error(f"Could not get space group from {space_group_file}") raise logging.info("Collected cell info and space group") # Begin transformation for struct in phase_structs: logging.info( f"Converting {struct}, {phase_structs.index(struct)+1}/{len(phase_structs)}" ) # Create original and inverse hands try: original_hand = Path( phase_dir / struct / space_group_dict[struct] / (struct + ".phs") ) inverse_hand = Path( phase_dir / struct / space_group_dict[struct] / (struct + "_i.phs") ) # Catch a weird situation where some space groups RXX can also be called RXX:H if (space_group_dict[struct][0] == "R") and ( original_hand.exists() is False ): original_hand = Path( phase_dir / struct / (space_group_dict[struct] + ":H") / (struct + ".phs") ) inverse_hand = Path( phase_dir / struct / (space_group_dict[struct] + ":H") / (struct + "_i.phs") ) assert original_hand.exists(), f"Could not find original hand for {struct}" assert inverse_hand.exists(), f"Could not find inverse hand for {struct}" except Exception: logging.error( f"Could not find phase files of {struct} in space group {space_group_dict[struct]}" ) raise # Convert original # Check the phase file first original_hand_good = phase_remove_bad_values( original_hand, output_dir.parent / (original_hand.stem + "_temp.phs") ) # Log the result if original_hand is not original_hand_good: logging.info( f"Filtered bad values from {original_hand.stem} and stored results in {original_hand_good}" ) try: phase_to_map( original_hand_good, cell_info_dict[struct], space_group_dict[struct], xyz_limits, output_dir / (struct + ".map"), ) except Exception: logging.error(f"Could not convert original hand for {struct}") raise # Convert inverse # Check the phase file first inverse_hand_good = phase_remove_bad_values( inverse_hand, output_dir.parent / (inverse_hand.stem + "_temp.phs") ) # Log the result if inverse_hand is not inverse_hand_good: logging.info( f"Filtered bad values from {inverse_hand.stem} and stored results in {inverse_hand_good}" ) try: phase_to_map( inverse_hand_good, cell_info_dict[struct], space_group_dict[struct], xyz_limits, output_dir / (struct + "_i.map"), ) except Exception: logging.error(f"Could not convert inverse hand for {struct}") raise logging.info(f"Successfully converted {struct}") logging.info("Finished conversions") # If a database file is given, attempt to provide the training and labels table if database is not None: logging.info(f"Adding to database at {database}") # Build up database - collect all cc information first then put it into database logging.info("Collecting CC information") # Dictionary of correlation coefficients cc_original_dict = {} cc_inverse_dict = {} for struct in phase_structs: # Create original and inverse hands try: original_hand = Path( phase_dir / struct / space_group_dict[struct] / (struct + ".lst") ) inverse_hand = Path( phase_dir / struct / space_group_dict[struct] / (struct + "_i.lst") ) # Catch a weird situation where some space groups RXX can also be called RXX:H if (space_group_dict[struct][0] == "R") and ( original_hand.exists() is False ): original_hand = Path( phase_dir / struct / (space_group_dict[struct] + ":H") / (struct + ".lst") ) inverse_hand = Path( phase_dir / struct / (space_group_dict[struct] + ":H") / (struct + "_i.lst") ) assert ( original_hand.exists() ), f"Could not find original hand for {struct}" assert ( inverse_hand.exists() ), f"Could not find inverse hand for {struct}" except Exception: logging.error( f"Could not find lst files of {struct} in space group {space_group_dict[struct]}" ) raise try: cc_original_dict[struct] = get_cc(original_hand) cc_inverse_dict[struct] = get_cc(inverse_hand) except Exception: logging.error( f"Could not get CC info of {struct} in space group {space_group_dict[struct]}" ) raise try: database_path = Path(database) assert database_path.exists() except Exception: logging.error(f"Could not find database at {database}") raise # Generate list of results cc_results = [] for struct in phase_structs: cc_results.append( ( struct, cc_original_dict[struct], cc_inverse_dict[struct], (cc_original_dict[struct] > cc_inverse_dict[struct]), (cc_original_dict[struct] < cc_inverse_dict[struct]), ) ) # Put in database prepare_training_database(str(database_path), cc_results) prepare_labels_database(str(database_path)) # Delete temporary files if requested if delete_temp is True: delete_temp_files(output_directory) logging.info("Deleted temporary files in output directory") return True def params_from_yaml(args): """Extract the parameters for prepare_training_data from a yaml file and return a dict""" # Check the path exists try: config_file_path = Path(args.config_file) assert config_file_path.exists() except Exception: logging.error(f"Could not find config file at {args.config_file}") raise # Load the data from the config file try: with open(config_file_path, "r") as f: params = yaml.safe_load(f) except Exception: logging.error( f"Could not extract parameters from yaml file at {config_file_path}" ) raise if "db_path" not in params.keys(): params["db_path"] = None if "delete_temp" not in params.keys(): params["delete_temp"] = True return params def params_from_cmd(args): """Extract the parameters for prepare_training_data from the command line and return a dict""" params = { "phase_dir": args.phase_dir, "cell_info_dir": args.cell_info_dir, "cell_info_path": args.cell_info_path, "space_group_dir": args.space_group_dir, "space_group_path": args.space_group_path, "xyz_limits": args.xyz, "db_path": args.db, "output_dir": args.output_dir, "delete_temp": True, } if args.keep_temp: params["delete_temp"] = False return params if __name__ == "__main__": logging.basicConfig(level=logging.INFO) log = logging.getLogger(name="debug_log") userlog = logging.getLogger(name="usermessages") # Parser for command line interface parser = argparse.ArgumentParser() subparsers = parser.add_subparsers() yaml_parser = subparsers.add_parser("yaml") yaml_parser.add_argument( "config_file", type=str, help="yaml file with configuration information for this program", ) yaml_parser.set_defaults(func=params_from_yaml) cmd_parser = subparsers.add_parser("cmd") cmd_parser.add_argument( "phase_dir", type=str, help="top level directory for phase information" ) cmd_parser.add_argument( "cell_info_dir", type=str, help="top level directory for cell info" ) cmd_parser.add_argument( "cell_info_path", type=str, help="cell info file within each structure folder" ) cmd_parser.add_argument( "space_group_dir", type=str, help="top level directory for space group" ) cmd_parser.add_argument( "space_group_path", type=str, help="space group file within each structure folder", ) cmd_parser.add_argument( "xyz", type=int, nargs=3, help="xyz size of the output map file" ) cmd_parser.add_argument( "output_dir", type=str, help="directory to output all map files to" ) cmd_parser.add_argument( "db", type=str, help="location of the sqlite3 database to store training information", ) cmd_parser.add_argument( "--keep_temp", action="store_false", help="keep the temporary files after processing", ) cmd_parser.set_defaults(func=params_from_cmd) # Extract the parameters based on the yaml/command line argument args = parser.parse_args() parameters = args.func(args) print(parameters) # Execute the command try: prepare_training_data( parameters["phase_dir"], parameters["cell_info_dir"], parameters["cell_info_path"], parameters["space_group_dir"], parameters["space_group_path"], parameters["xyz_limits"], parameters["output_dir"], parameters["db_path"], parameters["delete_temp"], ) except KeyError as e: logging.error(f"Could not find parameter {e} to prepare training data")
mevol/python_topaz3
topaz3/prepare_training_data.py
prepare_training_data.py
py
14,661
python
en
code
0
github-code
6
8042412809
import tornado.web import tornado.ioloop import tornado.httpserver import tornado.options # define parameter,like --port=9000 list=a,b,c,de, tornado.options.define("port", default=8000, type=None) tornado.options.define("list", default=[], type=str, multiple=True) class IndexHandler(tornado.web.RequestHandler): def get(self, *args, **kwargs): self.write("hello customer server.") if __name__ == '__main__': tornado.options.options.logging = None # turn off logging tornado.options.parse_config_file("config") print(tornado.options.options.list) app = tornado.web.Application([ (r"/", IndexHandler) ]) httpserver = tornado.httpserver.HTTPServer(app) # use parameter value httpserver.bind(tornado.options.options.port) httpserver.start(1) tornado.ioloop.IOLoop.current().start()
zuohd/python-excise
tornado/server04.py
server04.py
py
847
python
en
code
0
github-code
6
4786996440
#まだわからん。 from collections import defaultdict n,k = map(int,input().split()) a = list(map(int,input().split())) d = defaultdict(int) right = 0 ans = 0 # 区間の最大を保存する。 kinds = 0 for left in range(n): while right < n and kinds < k: d[a[right]] += 1 right += 1 kinds = len(d) print("whileループの中",kinds,d) """ if left == right: right += 1 continue """ print(left,right," ",right-left) if ans < right - left: ans = right-left print("ansを更新しました!",ans) d[a[left]] -= 1 if d[a[left]] == 0: print("削除します",d) kinds -= 1 del d[a[left]] print(ans)
K5h1n0/compe_prog_new
typical90/034/main.py
main.py
py
725
python
ja
code
0
github-code
6
34859170758
##### # Remove "warn" logs from spark ##### from os.path import abspath from pyspark.sql import SparkSession # warehouse_location points to the default location for managed databases and tables warehouse_location = abspath('spark-warehouse') spark = SparkSession \ .builder \ .appName("Pyspark integration with Hive") \ .config("spark.sql.warehouse.dir", warehouse_location) \ .enableHiveSupport() \ .getOrCreate() # enableHiveSupport() option in spark session supports the connection with Hive # Queries are expressed in HiveQL spark.sql("SELECT * FROM company.employees").show() employees_df = spark.sql("SELECT id, first_name, last_name, age, gender \ FROM company.employees \ WHERE age < 30 \ ORDER BY first_name") employees_df.show(50)
zaka-ai/data-engineer-track
Big_data_warehousing_in_hadoop/hive_hands_on/2_hive_partitioning_pyspark_integration/2_2_hive_with_pyspark.py
2_2_hive_with_pyspark.py
py
828
python
en
code
0
github-code
6
35164168406
#!/usr/bin/python3 import os import json import html import random import string import threading import subprocess from bottle import app, error, post, request, redirect, route, run, static_file from beaker.middleware import SessionMiddleware session_opts = { 'session.type': 'file', 'session.data_dir': './cfg/', 'session.auto': True, } sapp = SessionMiddleware(app(), session_opts) sess = request.environ.get('beaker.session') ipfspath = '/usr/local/bin/ipfs' with open('cfg/email.cfg', 'r') as ecf: email = ecf.read() ipfs_id = '' if os.path.exists('ipfs/config'): with open('ipfs/config', 'r') as ipcfg: ipconfig = ipcfg.read() jtxt = json.loads(ipconfig) ipfs_id = jtxt['Identity']['PeerID'] @route('/') def index(): sess = request.environ.get('beaker.session') sess['csrf'] = ''.join(random.choice(string.ascii_letters) for i in range(12)) sess.save() htmlsrc = '<html><head>' htmlsrc += '<title>IPFS Podcast Node</title>' htmlsrc += '<meta name="viewport" content="width=device-width, initial-scale=1.0" />' htmlsrc += '<link rel="icon" href="/favicon.png">' htmlsrc += '<style>' htmlsrc += 'body { background-image: url("ipfspod.png"); background-repeat: no-repeat; background-position: 50% 50%; font-family: "Helvetica Neue",Helvetica,Arial,sans-serif; font-size: 14px; margin: 1em; } ' htmlsrc += '.nfo { border-radius: 20px; background-color: darkcyan; color: white; opacity: 0.6; padding: 10px; } ' htmlsrc += 'label { display: inline-block; width: 65px; text-align: right; } ' htmlsrc += 'form#ecfg { margin-bottom: 0; } ' htmlsrc += 'form#ecfg input { margin: 4px; width: calc(100% - 150px); max-width: 200px; } ' htmlsrc += 'form#frst button { background-color: pink; border-color: indianred; margin: 4px; padding: 3px 13px; font-weight: bold; border-radius: 10px; display: inline-block; font-size: 9pt; white-space: nowrap; } ' htmlsrc += 'form#igc { display: inline-block; margin-left: 5px; } ' htmlsrc += 'div.prog { height: 5px; background-color: gray; border-radius: 0.25rem; } ' htmlsrc += 'div.prog div.used { height: 5px; background-color: lime; border-radius: 0.25rem; } ' htmlsrc += 'pre { overflow: auto; height: 50%; display: flex; flex-direction: column-reverse; white-space: break-spaces; } ' htmlsrc += 'div#links a { background-color: lightgray; margin: 4px; padding: 5px 13px; font-weight: bold; border-radius: 10px; display: inline-block; font-size: 9pt; text-decoration: none; } ' htmlsrc += 'a.ppass, a.pwarn, a.pfail { padding: 3px 8px 1px 8px; border-radius: 8px; display: inline-block; font-size: 9pt; font-weight: bold; text-decoration: none; } ' htmlsrc += 'a.ppass { background-color: lightgreen; color: green; } ' htmlsrc += 'a.pwarn { background-color: palegoldenrod; color: darkorange; } ' htmlsrc += 'a.pfail { background-color: pink; color: red; } ' htmlsrc += 'div#tmr { height: 3px; margin-bottom: 0.5em; background-color: lightblue; animation: tbar 60s linear; } ' htmlsrc += '@keyframes tbar { 0% { width: 0%; } 90% { background-color: cornflowerblue; } 100% { width: 100%; background-color: red; } } ' htmlsrc += '</style>' htmlsrc += '</head>' htmlsrc += '<body>' htmlsrc += '<h2>IPFS Podcasting Node</h2>' htmlsrc += '<div class="nfo" style="background-color: #222; overflow: hidden;">' if ipfs_id != '': htmlsrc += '<div style="white-space: nowrap;"><label>IPFS ID : </label> <b>' + str(ipfs_id) + '</b></div>' htmlsrc += '<form id="ecfg" action="/" method="post">' htmlsrc += '<input id="csrf" name="csrf" type="hidden" value="' + sess['csrf'] + '" />' htmlsrc += '<label title="E-mail Address (optional)">E-Mail : </label><input id="email" name="email" type="email" placeholder="user@example.com" title="E-mail Address (optional)" value="' + email + '" />' htmlsrc += '<button>Update</button><br/>' htmlsrc += '</form>' htmlsrc += '<label>Network : </label> ' httpstat = 'pfail' hstat = subprocess.run('timeout 1 bash -c "</dev/tcp/ipfspodcasting.net/80"', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if hstat.returncode == 0: httpstat = 'ppass' htmlsrc += '<a class="' + httpstat + '" href="https://ipfspodcasting.net/Help/Network" title="Port 80 Status" target="_blank">HTTP</a> ' httpsstat = 'pfail' hsstat = subprocess.run('timeout 1 bash -c "</dev/tcp/ipfspodcasting.net/443"', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if hsstat.returncode == 0: httpsstat = 'ppass' htmlsrc += '<a class="' + httpsstat + '" href="https://ipfspodcasting.net/Help/Network" title="Port 443 Status" target="_blank">HTTPS</a> ' peercnt = 0 speers = subprocess.run(ipfspath + ' swarm peers|wc -l', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if speers.returncode == 0: peercnt = int(speers.stdout.decode().strip()) if peercnt > 400: ipfsstat = 'ppass' elif peercnt > 100: ipfsstat = 'pwarn' else: ipfsstat = 'pfail' htmlsrc += '<a class="' + ipfsstat + '" href="https://ipfspodcasting.net/Help/Network" title="Port 4001 Status" target="_blank">IPFS <span style="font-weight: normal; color: #222;">- ' + str(peercnt) + ' Peers</span></a><br/>' repostat = subprocess.run(ipfspath + ' repo stat -s|grep RepoSize', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if repostat.returncode == 0: repolen = repostat.stdout.decode().strip().split(':') used = int(repolen[1].strip()) else: used = 0 df = os.statvfs('/') avail = df.f_bavail * df.f_frsize percent = round(used/(used+avail)*100, 1) if used < (1024*1024*1024): used = str(round(used/1024/1024, 1)) + ' MB' elif used < (1024*1024*1024*1024): used = str(round(used/1024/1024/1024, 1)) + ' GB' else: used = str(round(used/1024/1024/1024/1024, 2)) + ' TB' if avail < (1024*1024*1024): avail = str(round(avail/1024/1024, 1)) + ' MB' elif avail < (1024*1024*1024*1024): avail = str(round(avail/1024/1024/1024, 1)) + ' GB' else: avail = str(round(avail/1024/1024/1024/1024, 2)) + ' TB' htmlsrc += '<label>Storage : </label>' htmlsrc += '<div style="display: inline-block; margin-left: 5px; position: relative; top: 5px; width: calc(100% - 150px);">' htmlsrc += '<div class="prog"><div class="used" style="width: ' + str(percent) + '%; min-width: 4px;"></div></div>' htmlsrc += '<div style="display: flex; margin-top: 3px;"><span style="width: 33.3%; text-align: left;">' + str(used) + ' Used</span><span style="width: 33.3%; text-align: center;">' + str(percent) + '%</span><span style="width: 33.3%; text-align: right;">' + str(avail) + ' Available</span></div>' htmlsrc += '</div>' #don't allow gc while pinning (or already running) gctxt = '' gcrun = subprocess.run('ps x|grep -E "(repo gc|ipfs pin)"|grep -v grep', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if gcrun.returncode == 0: gctxt = gcrun.stdout.decode().strip() if gctxt == '': disabled = '' title = 'Run IPFS Garbage Collection' else: disabled = 'disabled="disabled"' title = 'Not available while pinning or GC already running...' htmlsrc += '<form id="igc" action="/" method="post">' htmlsrc += '<input id="csrf" name="csrf" type="hidden" value="' + sess['csrf'] + '" />' htmlsrc += '<input id="rungc" name="rungc" type="hidden" value="1" />' htmlsrc += '<button ' + disabled + ' title="' + title + '">Clean Up</button>' htmlsrc += '</form>' htmlsrc += '</div>' htmlsrc += '<h3 style="margin-bottom: 0;">Activity Log</h3>' htmlsrc += '<pre class="nfo" style="margin-top: 0;">' with open('ipfspodcastnode.log', 'r') as pcl: logtxt = pcl.read() htmlsrc += html.escape(logtxt) htmlsrc += '</pre>' htmlsrc += '<div id="tmr"></div>' htmlsrc += '<form id="frst" action="/" method="post" style="float: right;">' htmlsrc += '<input id="csrf" name="csrf" type="hidden" value="' + sess['csrf'] + '" />' htmlsrc += '<input id="reset" name="reset" type="hidden" value="1" />' htmlsrc += '<button title="Hard reset the IPFS app (when &quot;it\'s just not working&quot;)">Restart IPFS</button>' htmlsrc += '</form>' htmlsrc += '<div id="links"><a href="https://ipfspodcasting.net/Manage" target="_blank">Manage</a><a href="https://ipfspodcasting.net/faq" target="_blank">FAQ</a></div>' #<a id="ipfsui" href="http://umbrel.local:5001/webui" target="_blank">IPFS WebUI</a><a id="ipfspn" href="http://umbrel.local:5001/webui/#/pins" target="_blank">Pinned Files</a> htmlsrc += '<script>window.setTimeout( function() { window.location.reload(); }, 60000); </script>' #document.getElementById("ipfsui").href=window.location.href; document.getElementById("ipfsui").href=document.getElementById("ipfsui").href.replace("8675", "5001/webui"); document.getElementById("ipfspn").href=window.location.href; document.getElementById("ipfspn").href=document.getElementById("ipfspn").href.replace("8675", "5001/webui/#/pins"); htmlsrc += '</body></html>' return htmlsrc @post('/') def do_email(): csrf = request.forms.get('csrf') sess = request.environ.get('beaker.session') if csrf == sess['csrf']: if request.forms.get('email') is not None: global email email = request.forms.get('email') with open('cfg/email.cfg', 'w') as ecf: ecf.write(email) if request.forms.get('reset') == '1': suicide = subprocess.run('kill 1', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if request.forms.get('rungc') == '1': gcrun = subprocess.run(ipfspath + ' repo gc --silent', shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) redirect('/') @route('/ipfspod.png') def server_static(): return static_file('ipfspod.png', root='') @route('/favicon.png') def server_static(): return static_file('favicon.png', root='') #run(host='0.0.0.0', port=8675, debug=True) threading.Thread(target=run, kwargs=dict(host='0.0.0.0', port=8675, app=sapp, debug=False)).start()
Cameron-IPFSPodcasting/podcastnode-Umbrel
webui.py
webui.py
py
9,972
python
en
code
4
github-code
6
71552358588
import pyttsx3 import datetime import speech_recognition as sr import wikipedia import webbrowser import os, os.path import smtplib import random import win32gui import win32con try: engine=pyttsx3.init('sapi5') voices=engine.getProperty('voices') print(voices[0].id) engine.setProperty('voice',voices[0].id) def speak(audio): engine.say(audio) engine.runAndWait() def chrome_webbrowser(chrome_path, url): webbrowser.get(chrome_path).open(url) def wishme(): hour=int(datetime.datetime.now().hour) if hour>=0 and hour<12: speak('Good Morning Vicky') elif hour>=12 and hour>=17: speak('Good Afternoon Vicky') else: speak('Good Evening') print('Hellow I am Computer, How can I help you!') speak('Hellow I am Computer, How can I help you!') def takecommand(): r=sr.Recognizer() with sr.Microphone() as source: print('Listening....') r.pause_threshold=1 audio=r.listen(source,timeout=1,phrase_time_limit=3) try: print('Recognizing....') querry=r.recognize_google(audio,language='en-in') print(f'You said {querry}') except Exception: print('Say That Again Please!') return 'None' return querry if __name__ == "__main__": chrome_path="C:/Program Files (x86)/Google/Chrome/Application/chrome.exe %s" webbrowser.get(chrome_path) while True: querry=takecommand().lower() # Strt if "poweroff computer" in querry: speak("Computer has been closed") os.system("shutdown /s /t 1") elif "power off computer" in querry: speak("Computer has been closed") os.system("shutdown /s /t 1") elif "power of computer" in querry: speak("Computer has been closed") os.system("shutdown /s /t 1") elif "shutdown computer" in querry or "shut down computer" in querry: speak("Computer has been closed") os.system("shutdown /s /t 1") elif "computer shutdown" in querry or "computer shut down" in querry: speak("Computer has been closed") os.system("shutdown /s /t 1") elif "quit computer" in querry: speak("Computer has been power off") os.system("shutdown /s /t 1") elif "restartcomputer" in querry: speak("We restarting your PC") os.system("shutdown /r /t 1") elif "restart computer" in querry: speak("We restarting your PC") os.system("shutdown /r /t 1") elif "rstart computer" in querry: speak("We restarting your PC") os.system("shutdown /r /t 1") elif "restart computer" in querry: speak("We restarting your PC") os.system("shutdown /r /t 1") elif "hybrid" in querry or "hybernate" in querry or "hybernation" in querry or "hibernation" in querry: speak("We set your PC to sleeping mode") os.system("Rundll32.exe Powrprof.dll,SetSuspendState Sleep") elif "sleep" in querry or "sleap" in querry: speak("We set your PC to sleeping mode or turn off your screen") win32gui.SendMessage(win32con.HWND_BROADCAST,win32con.WM_SYSCOMMAND, win32con.SC_MONITORPOWER, 2) elif "open screen" in querry or "openscreen" in querry or "screen" in querry: speak("We open your screen") win32gui.SendMessage(win32con.HWND_BROADCAST, win32con.WM_SYSCOMMAND, win32con.SC_MONITORPOWER, -1) elif "vscode" in querry or "vs code" in querry: speak("Vs code open to you Vicky") os.system("code .") # end if "commands" in querry or "command" in querry: i=0 while True: if i==0: i=1 wishme() querry=takecommand().lower() if 'wikipedia' in querry: speak('Searching wikipedia...') querry=querry.replace('wikipedia','') querry=querry.replace('please','') results=wikipedia.summary(querry,sentences=2) speak('According to wikipedia, ') print(results) speak(results) elif "vscode" in querry or "vs code" in querry: speak("Vs code open to you Vicky") os.system("code .") elif 'who are you' in querry: print('I am Computer Sir!') speak('I am Computer Sir!') elif 'made you' in querry: print('I am made by you Sir Waqas powered by Vicky World Production') speak('I am made by you Sir Waqas powered by Vicky World Production') elif "sleep" in querry or "sleap" in querry: speak("We set your PC to sleeping mode") # os.system("Powercfg -H OFF") os.system("rundll32.exe Powercfg -H OFF,SetSuspendState 0,1,0") elif 'open youtube' in querry: url=('youtube.com') chrome_webbrowser(chrome_path,url) # webbrowser.open('youtube.com') speak('Youtube has been opened dear Vicky') elif 'open google' in querry or 'open chrome' in querry: # webbrowser.open('google.com') url=('google.com') chrome_webbrowser(chrome_path,url) speak('Google Has been opened dear Vicky') elif 'stack overflow' in querry: # webbrowser.open('stackoverflow.com') url=('stackoverflow.com') chrome_webbrowser(chrome_path,url) elif 'stackoverflow' in querry: url=('stackoverflow.com') chrome_webbrowser(chrome_path,url) elif 'time' in querry: str=datetime.datetime.now().strftime('%H:%M:%S') print(f"Time is{str}") speak(f"Time is {str}") elif 'search' in querry: querry=querry.replace('search','') querry=querry.replace('please','') chrome_webbrowser(chrome_path,querry) elif 'song' in querry or 'songs' in querry: music_dir=r'E:\D\New folder (2)' songs=os.listdir(music_dir) print(songs) files_len= len([name for name in os.listdir('.') if os.path.isfile(name)]) print(files_len) r= random.randint(0, files_len-1) print(songs[r]) os.startfile(os.path.join(music_dir,songs[r])) elif 'stop' in querry: print('Commands has been stopped Thank You Sir!') speak('Commands has been stopped Thank You Sir!') break elif 'quit' in querry or 'exit' in querry: print('Commands has been stopped. Thank You Sir!') speak('Commands has been stopped. Thank You Sir!') break elif "shutdown computer" in querry or "shut down computer" in querry: speak("Computer has been closed") os.system("shutdown /s /t 1") elif "computer shutdown" in querry or "computer shut down" in querry: speak("Computer has been closed") os.system("shutdown /s /t 1") elif "poweroff computer" in querry: speak("Computer has been closed") os.system("shutdown /s /t 1") elif "power off computer" in querry: speak("Computer has been closed") os.system("shutdown /s /t 1") elif "power of computer" in querry: speak("Computer has been closed") os.system("shutdown /s /t 1") elif "quit Computer" in querry: speak("Computer has been power off") os.system("shutdown /s /t 1") elif "restartcomputer" in querry: speak("We restarting your PC") os.system("shutdown /r /t 1") elif "restart computer" in querry: speak("We restarting your PC") os.system("shutdown /r /t 1") elif "rstart computer" in querry: speak("We restarting your PC") os.system("shutdown /r /t 1") elif "restart Computer" in querry: speak("We restarting your PC") os.system("shutdown /r /t 1") elif "sleep" in querry or "sleap" in querry: speak("We set your PC to sleeping mode or turn off your screen") win32gui.SendMessage(win32con.HWND_BROADCAST,win32con.WM_SYSCOMMAND, win32con.SC_MONITORPOWER, 2) elif "open screen" in querry or "openscreen" in querry: speak("Screen has been turn") win32gui.SendMessage(win32con.HWND_BROADCAST, win32con.WM_SYSCOMMAND, win32con.SC_MONITORPOWER, -1) except Exception as e: speak('An unknown Error has been occured Check Your Connection Please')
IamVicky90/Desktop-AI
task.py
task.py
py
10,566
python
en
code
0
github-code
6
24260931224
# first=(input("Please input your first name:")) # last=(input("Please input your last name:")) # user={"name":first,"lname":last} # print("My name is, " + user["lname"] + " " + user["name"]) #activity 2 first_name = "Wesley" last_name = "Kolar" home_address = {"street": "1200 Richmond Ave", "city": "Houston"} vacation_home_address = {"street": "5533 Stiener Ranch", "city": "Austin"} addresses = [home_address, vacation_home_address] user = {"first_name": first_name, "last_name": last_name, "addresses": addresses} print(user)
wesleyjkolar/week1
day4/dictionary.py
dictionary.py
py
550
python
en
code
0
github-code
6
23476634886
import joblib wordsTB = ["'s", ',', 'keywords', 'Twitter', 'account', 'a', 'all', 'anyone', 'are', 'awesome', 'be', 'behavior', 'by', 'bye', 'can', 'chatting', 'check', 'could', 'data', 'day', 'detail', 'do', 'dont', 'find', 'for', 'give', 'good', 'goodbye', 'have', 'hello', 'help', 'helpful', 'helping', 'hey', 'hi', 'history', 'how', 'i', 'id', 'is', 'later', 'list', 'load', 'locate', 'log', 'looking', 'lookup', 'management', 'me', 'module', 'next', 'nice', 'of', 'offered', 'open', 'provide', 'reaction', 'related', 'result', 'search', 'searching', 'see', 'show', 'support', 'task', 'thank', 'thanks', 'that', 'there', 'till', 'time', 'to', 'transfer', 'up', 'want', 'what', 'which', 'with', 'you'] classesTB = ['goodbye', 'greeting', 'options', 'thanks', 'no_response'] joblib.dump(wordsTB, 'wordsTB.pkl') joblib.dump(classesTB, 'classesTB.pkl') ''' x = joblib.load('x.pkl') print(x) '''
kaitong-li/Twitter-Bot
Twitter Bot/generatePkl.py
generatePkl.py
py
906
python
en
code
0
github-code
6
27579907019
from pyspark import SparkConf from pyspark.context import SparkContext from pyspark.sql.session import SparkSession conf = SparkConf().set("spark.cores.max", "32") \ .set("spark.driver.memory", "50g") \ .set("spark.executor.memory", "50g") \ .set("spark.executor.memory_overhead", "50g") \ .set("spark.driver.maxResultsSize", "16g")\ .set("spark.executor.heartbeatInterval", "30s") sc = SparkContext(conf=conf).getOrCreate(); spark = SparkSession(sc) # read baskets_prior baskets = spark.read.csv('./data/baskets_prior.csv',header=True, inferSchema=True) baskets.createOrReplaceTempView("baskets") baskets.show(5) print(baskets.count()) # transform string to list import pyspark.sql.functions as F df2 = baskets.withColumn( "new_items", F.from_json(F.col("items"), "array<string>") ) df2 = df2.drop('items') df2.show(5) from pyspark.ml.fpm import FPGrowth import time start = time.time() local_time = time.ctime(start) print("Start time:", local_time) fpGrowth = FPGrowth(itemsCol="new_items", minSupport=0.000015, minConfidence=0.7) model = fpGrowth.fit(df2) model.associationRules.show() print(model.associationRules.count()) assoRules = model.associationRules freqItems = model.freqItemsets end = time.time() print("run time: ", (end-start)/60) local_time = time.ctime(end) print("End time:", local_time) # freq to pandas freq_pd =freqItems.toPandas() freq_pd = freq_pd.sort_values('freq', ascending=False) print(freq_pd.head(5)) freq_pd.to_csv('./data/freqItems_baskets3M.csv', index=False) # save rules from pyspark.sql.functions import udf from pyspark.sql.types import StringType def array_to_string(my_list): return '[' + ','.join([str(elem) for elem in my_list]) + ']' array_to_string_udf = udf(array_to_string, StringType()) assoRules = assoRules.withColumn('antecedent', array_to_string_udf(assoRules["antecedent"])) assoRules = assoRules.withColumn('consequent', array_to_string_udf(assoRules["consequent"])) print('after convert string to save: ', assoRules.show(7)) assoRules.coalesce(1).write.csv('./data/assoRules_baskets3M_50_70%')
thuy4tbn99/spark_instacart
baskets.py
baskets.py
py
2,095
python
en
code
0
github-code
6
1584371171
import ctypes import ctypes.util import threading # this is mostly copied from https://bugs.python.org/issue15500#msg230736 def patch(): if getattr(threading.Thread.start, "_namedthreads_patched", None): # threading module is already patched return libpthread_path = ctypes.util.find_library("pthread") if not libpthread_path: # pthread library not found, not patching" return libpthread = ctypes.CDLL(libpthread_path) if not hasattr(libpthread, "pthread_setname_np"): # pthread library does not have pthread_setname_np function, not patching return pthread_setname_np = libpthread.pthread_setname_np pthread_setname_np.argtypes = [ctypes.c_void_p, ctypes.c_char_p] pthread_setname_np.restype = ctypes.c_int orig_start = threading.Thread.start def start(self): orig_start(self) try: name = self.name if name: if hasattr(name, "encode"): name = name.encode('ascii', 'replace') ident = getattr(self, "ident", None) if ident is not None: pthread_setname_np(ident, name[:15]) except Exception: pass # Don't care about failure to set name start._namedthreads_patched = True start._namedthreads_orig = threading.Thread.start threading.Thread.start = start return True def unpatch(): if not getattr(threading.Thread.start, "_namedthreads_patched", None): # threading module is not patched return patched_start = threading.Threading.start threading.Thread.start = patched_start._namedthreads_orig
beniwohli/namedthreads
namedthreads.py
namedthreads.py
py
1,681
python
en
code
1
github-code
6
27458445454
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.distributions.python.ops import vector_diffeomixture as vector_diffeomixture_lib from tensorflow.contrib.linalg.python.ops import linear_operator_diag as linop_diag_lib from tensorflow.contrib.linalg.python.ops import linear_operator_identity as linop_identity_lib from tensorflow.python.ops import array_ops from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops.distributions import normal as normal_lib from tensorflow.python.platform import test class VectorDistributionTestHelpers(object): """VectorDistributionTestHelpers helps test vector-event distributions.""" def linop(self, num_rows=None, multiplier=None, diag=None): """Helper to create non-singular, symmetric, positive definite matrices.""" if num_rows is not None and multiplier is not None: if any(p is not None for p in [diag]): raise ValueError("Found extra args for scaled identity.") return linop_identity_lib.LinearOperatorScaledIdentity( num_rows=num_rows, multiplier=multiplier, is_positive_definite=True) elif num_rows is not None: if any(p is not None for p in [multiplier, diag]): raise ValueError("Found extra args for identity.") return linop_identity_lib.LinearOperatorIdentity( num_rows=num_rows, is_positive_definite=True) elif diag is not None: if any(p is not None for p in [num_rows, multiplier]): raise ValueError("Found extra args for diag.") return linop_diag_lib.LinearOperatorDiag( diag=diag, is_positive_definite=True) else: raise ValueError("Must specify at least one arg.") def run_test_sample_consistent_log_prob( self, sess, dist, num_samples=int(1e5), radius=1., center=0., seed=42, rtol=1e-2, atol=0.): """Tests that sample/log_prob are mutually consistent. "Consistency" means that `sample` and `log_prob` correspond to the same distribution. The idea of this test is to compute the Monte-Carlo estimate of the volume enclosed by a hypersphere, i.e., the volume of an `n`-ball. While we could choose an arbitrary function to integrate, the hypersphere's volume is nice because it is intuitive, has an easy analytical expression, and works for `dimensions > 1`. Technical Details: Observe that: ```none int_{R**d} dx [x in Ball(radius=r, center=c)] = E_{p(X)}[ [X in Ball(r, c)] / p(X) ] = lim_{m->infty} m**-1 sum_j^m [x[j] in Ball(r, c)] / p(x[j]), where x[j] ~iid p(X) ``` Thus, for fixed `m`, the above is approximately true when `sample` and `log_prob` are mutually consistent. Furthermore, the above calculation has the analytical result: `pi**(d/2) r**d / Gamma(1 + d/2)`. Note: this test only verifies a necessary condition for consistency--it does does not verify sufficiency hence does not prove `sample`, `log_prob` truly are consistent. For this reason we recommend testing several different hyperspheres (assuming the hypersphere is supported by the distribution). Furthermore, we gain additional trust in this test when also tested `sample` against the first, second moments (`run_test_sample_consistent_mean_covariance`); it is probably unlikely that a "best-effort" implementation of `log_prob` would incorrectly pass both tests and for different hyperspheres. For a discussion on the analytical result (second-line) see: https://en.wikipedia.org/wiki/Volume_of_an_n-ball. For a discussion of importance sampling (fourth-line) see: https://en.wikipedia.org/wiki/Importance_sampling. Args: sess: Tensorflow session. dist: Distribution instance or object which implements `sample`, `log_prob`, `event_shape_tensor` and `batch_shape_tensor`. The distribution must have non-zero probability of sampling every point enclosed by the hypersphere. num_samples: Python `int` scalar indicating the number of Monte-Carlo samples to draw from `dist`. radius: Python `float`-type indicating the radius of the `n`-ball which we're computing the volume. center: Python floating-type vector (or scalar) indicating the center of the `n`-ball which we're computing the volume. When scalar, the value is broadcast to all event dims. seed: Python `int` indicating the seed to use when sampling from `dist`. In general it is not recommended to use `None` during a test as this increases the likelihood of spurious test failure. rtol: Python `float`-type indicating the admissible relative error between actual- and approximate-volumes. atol: Python `float`-type indicating the admissible absolute error between actual- and approximate-volumes. In general this should be zero since a typical radius implies a non-zero volume. """ def actual_hypersphere_volume(dims, radius): # https://en.wikipedia.org/wiki/Volume_of_an_n-ball # Using tf.lgamma because we'd have to otherwise use SciPy which is not # a required dependency of core. radius = np.asarray(radius) dims = math_ops.cast(dims, dtype=radius.dtype) return math_ops.exp( (dims / 2.) * np.log(np.pi) - math_ops.lgamma(1. + dims / 2.) + dims * math_ops.log(radius)) def is_in_ball(x, radius, center): return math_ops.cast(linalg_ops.norm(x - center, axis=-1) <= radius, dtype=x.dtype) def monte_carlo_hypersphere_volume(dist, num_samples, radius, center): # https://en.wikipedia.org/wiki/Importance_sampling x = dist.sample(num_samples, seed=seed) return math_ops.reduce_mean( math_ops.exp(-dist.log_prob(x)) * is_in_ball(x, radius, center), axis=0) [ batch_shape_, actual_volume_, sample_volume_, ] = sess.run([ dist.batch_shape_tensor(), actual_hypersphere_volume( dims=dist.event_shape_tensor()[0], radius=radius), monte_carlo_hypersphere_volume( dist, num_samples=num_samples, radius=radius, center=center), ]) self.assertAllClose(np.tile(actual_volume_, reps=batch_shape_), sample_volume_, rtol=rtol, atol=atol) def run_test_sample_consistent_mean_covariance( self, sess, dist, num_samples=int(1e5), seed=24, rtol=1e-2, atol=0., cov_rtol=None, cov_atol=None): """Tests that sample/mean/covariance are consistent with each other. "Consistency" means that `sample`, `mean`, `covariance`, etc all correspond to the same distribution. Args: sess: Tensorflow session. dist: Distribution instance or object which implements `sample`, `log_prob`, `event_shape_tensor` and `batch_shape_tensor`. num_samples: Python `int` scalar indicating the number of Monte-Carlo samples to draw from `dist`. seed: Python `int` indicating the seed to use when sampling from `dist`. In general it is not recommended to use `None` during a test as this increases the likelihood of spurious test failure. rtol: Python `float`-type indicating the admissible relative error between analytical and sample statistics. atol: Python `float`-type indicating the admissible absolute error between analytical and sample statistics. cov_rtol: Python `float`-type indicating the admissible relative error between analytical and sample covariance. Default: rtol. cov_atol: Python `float`-type indicating the admissible absolute error between analytical and sample covariance. Default: atol. """ def vec_osquare(x): """Computes the outer-product of a vector, i.e., x.T x.""" return x[..., :, array_ops.newaxis] * x[..., array_ops.newaxis, :] x = dist.sample(num_samples, seed=seed) sample_mean = math_ops.reduce_mean(x, axis=0) sample_covariance = math_ops.reduce_mean( vec_osquare(x - sample_mean), axis=0) sample_variance = array_ops.matrix_diag_part(sample_covariance) sample_stddev = math_ops.sqrt(sample_variance) [ sample_mean_, sample_covariance_, sample_variance_, sample_stddev_, mean_, covariance_, variance_, stddev_ ] = sess.run([ sample_mean, sample_covariance, sample_variance, sample_stddev, dist.mean(), dist.covariance(), dist.variance(), dist.stddev(), ]) self.assertAllClose(mean_, sample_mean_, rtol=rtol, atol=atol) self.assertAllClose(covariance_, sample_covariance_, rtol=cov_rtol or rtol, atol=cov_atol or atol) self.assertAllClose(variance_, sample_variance_, rtol=rtol, atol=atol) self.assertAllClose(stddev_, sample_stddev_, rtol=rtol, atol=atol) class VectorDiffeomixtureTest(VectorDistributionTestHelpers, test.TestCase): """Tests the VectorDiffeomixture distribution.""" def testSampleProbConsistentBroadcastMix(self): with self.test_session() as sess: dims = 4 vdm = vector_diffeomixture_lib.VectorDiffeomixture( mix_loc=[[0.], [1.]], mix_scale=[1.], distribution=normal_lib.Normal(0., 1.), loc=[ None, np.float32([2.]*dims), ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.1), is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], validate_args=True) # Ball centered at component0's mean. self.run_test_sample_consistent_log_prob( sess, vdm, radius=2., center=0., rtol=0.005) # Larger ball centered at component1's mean. self.run_test_sample_consistent_log_prob( sess, vdm, radius=4., center=2., rtol=0.005) def testSampleProbConsistentBroadcastMixNonStandardBase(self): with self.test_session() as sess: dims = 4 vdm = vector_diffeomixture_lib.VectorDiffeomixture( mix_loc=[[0.], [1.]], mix_scale=[1.], distribution=normal_lib.Normal(1., 1.5), loc=[ None, np.float32([2.]*dims), ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.1), is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], validate_args=True) # Ball centered at component0's mean. self.run_test_sample_consistent_log_prob( sess, vdm, radius=2., center=1., rtol=0.006) # Larger ball centered at component1's mean. self.run_test_sample_consistent_log_prob( sess, vdm, radius=4., center=3., rtol=0.009) def testMeanCovariance(self): with self.test_session() as sess: dims = 3 vdm = vector_diffeomixture_lib.VectorDiffeomixture( mix_loc=[[0.], [4.]], mix_scale=[10.], distribution=normal_lib.Normal(0., 1.), loc=[ np.float32([-2.]), None, ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.5), is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], validate_args=True) self.run_test_sample_consistent_mean_covariance( sess, vdm, rtol=0.02, cov_rtol=0.06) def testMeanCovarianceUncenteredNonStandardBase(self): with self.test_session() as sess: dims = 3 vdm = vector_diffeomixture_lib.VectorDiffeomixture( mix_loc=[[0.], [4.]], mix_scale=[10.], distribution=normal_lib.Normal(-1., 1.5), loc=[ np.float32([-2.]), np.float32([0.]), ], scale=[ linop_identity_lib.LinearOperatorScaledIdentity( num_rows=dims, multiplier=np.float32(1.5), is_positive_definite=True), linop_diag_lib.LinearOperatorDiag( diag=np.linspace(2.5, 3.5, dims, dtype=np.float32), is_positive_definite=True), ], validate_args=True) self.run_test_sample_consistent_mean_covariance( sess, vdm, num_samples=int(1e6), rtol=0.01, cov_atol=0.025) # TODO(jvdillon): We've tested that (i) .sample and .log_prob are consistent, # (ii) .mean, .stddev etc... and .sample are consistent. However, we haven't # tested that the quadrature approach well-approximates the integral. # # To that end, consider adding these tests: # # Test1: In the limit of high mix_scale, this approximates a discrete mixture, # and there are many discrete mixtures where we can explicitly compute # mean/var, etc... So test1 would choose one of those discrete mixtures and # show our mean/var/etc... is close to that. # # Test2: In the limit of low mix_scale, the a diffeomixture of Normal(-5, 1), # Normal(5, 1) should (I believe...must check) should look almost like # Uniform(-5, 5), and thus (i) .prob(x) should be about 1/10 for x in (-5, 5), # and (ii) the first few moments should approximately match that of # Uniform(-5, 5) # # Test3: If mix_loc is symmetric, then for any mix_scale, our # quadrature-based diffeomixture of Normal(-1, 1), Normal(1, 1) should have # mean zero, exactly. # TODO(jvdillon): Add more tests which verify broadcasting. if __name__ == "__main__": test.main()
playbar/tfandroid
tensorflow/contrib/distributions/python/kernel_tests/vector_diffeomixture_test.py
vector_diffeomixture_test.py
py
14,527
python
en
code
7
github-code
6
8765318097
""" Faça um programa que pergunte ao usuário se ele quer passar uma temperatura de Fahrenheit para Celsius ou de Celsius para Fahrenheit, e que, a partir da resposta do usuário, faça a devida conversão. """ conversao = input("Digite F (De C° para F°) ou C (De F° para C°)") temp = int(input("Digite a temperatura : ")) if conversao == "f": print(f"A temperatura em F° é {(temp*9)/5}") else: print(f"A temperatura em F° é {temp - 32 * 5/9}")
AndreDosSantosMaier/Liguagem_Programacao
Lista de Exercicios/Exer-16.py
Exer-16.py
py
473
python
pt
code
0
github-code
6
20123867357
import requests import json from collections import OrderedDict target = "static/data/words_cached.json" words_cached = json.loads(requests.get("http://mnemonic-si.appspot.com/api/words").text) open(target, "w").write(json.dumps(words_cached, indent=4)) print("wrote to %s" % target) words = OrderedDict({}) for word in words_cached["result"]: words[word["name"]] = word target = "static/data/words.json" open(target, "w").write(json.dumps(words, indent=4)) print("wrote to %s" % target) binary_to_name = OrderedDict({}) for word in words_cached["result"]: binary_to_name[word["binary"]] = word["name"] target = "static/data/binary_to_name.json" open(target, "w").write(json.dumps(binary_to_name, indent=4)) print("wrote to %s" % target) decimal_to_name = OrderedDict({}) for word in words_cached["result"]: decimal_to_name[word["decimal"]] = word["name"] target = "static/data/decimal_to_name.json" open(target, "w").write(json.dumps(decimal_to_name, indent=4)) print("wrote to %s" % target)
flowcoin/mnemonic
frontend/scripts/dump_words.py
dump_words.py
py
1,010
python
en
code
1
github-code
6
8056801684
""" Static Pipeline representation to create a CodePipeline dedicated to building Lambda Layers """ from troposphere import ( Parameter, Template, GetAtt, Ref, Sub ) from ozone.handlers.lambda_tools import check_params_exist from ozone.resources.iam.roles.pipeline_role import pipelinerole_build from ozone.resources.devtools.pipeline import ( SourceAction, BuildAction, DeployAction, InvokeAction, CodePipeline ) from ozone.outputs import object_outputs def template(**kwargs): """ """ template_required_params = [ 'BucketName', 'Source', 'LayerBuildProjects', 'LayersMergeProject', 'LayerName', 'GeneratorFunctionName', 'CloudformationRoleArn' ] check_params_exist(template_required_params, kwargs) template = Template() token = template.add_parameter(Parameter( 'GitHubOAuthToken', Type="String", NoEcho=True )) role = pipelinerole_build( UseCodeCommit=True, UseCodeBuild=True, UseLambda=True, UseCloudformation=True, Bucket=kwargs['BucketName'] ) if kwargs['Source']['Provider'].lower() == 'github': kwargs['Source']['Config']['OAuthToken'] = Ref(token) source = SourceAction( name='SourceCode', provider=kwargs['Source']['Provider'], config=kwargs['Source']['Config'] ) build_actions = [] builds_projects = kwargs['LayerBuildProjects'] for project in builds_projects: build_actions.append(BuildAction( project, source.outputs, project )) build_outputs = [] for action in build_actions: build_outputs += action.outputs merge_action = BuildAction( 'MergeAction', build_outputs, kwargs['LayersMergeProject'] ) invoke = InvokeAction( 'GenerateTemplateForCfn', merge_action.outputs, function_name=kwargs['GeneratorFunctionName'] ) input_name = invoke.outputs[0].Name deploy = DeployAction( 'DeployToCfn', invoke.outputs, 'CloudFormation', StackName=f'layer-{kwargs["LayerName"]}', RoleArn=kwargs['CloudformationRoleArn'], TemplatePath=f'{input_name}::tmp/template.json' ) stages = [ ('Source', [source]), ('BuildLayers', build_actions), ('MergeLayers', [merge_action]), ('GenerateCfnTemplate', [invoke]), ('DeployWithCfn', [deploy]), ] pipeline = CodePipeline( 'Pipeline', GetAtt(role, 'Arn'), kwargs['BucketName'], stages ) template.add_resource(role) template.add_resource(pipeline) template.add_output(object_outputs(pipeline, True)) return template
lambda-my-aws/ozone
ozone/templates/awslambdalayer_pipeline.py
awslambdalayer_pipeline.py
py
2,782
python
en
code
0
github-code
6
6757711914
import json import sys import os.path from mutagen.id3 import (ID3, CTOC, CHAP, TIT2, TALB, TPE1, COMM, USLT, APIC, CTOCFlags) audio = ID3(sys.argv[1]) if len(sys.argv) > 2: data = json.loads(sys.argv[2]) chapters = data["chapters"] ctoc_ids = list(map(lambda i: i.get("id"), chapters)) audio.delall('TALB') audio["TALB"] = TALB(encoding=3, text=data["podcast_title"]) audio.delall('TPE1') audio["TPE1"] = TPE1(encoding=3, text=data["podcast_title"]) audio.delall('TIT2') audio["TIT2"] = TIT2(encoding=3, text=data["episode_title"]) audio.delall('COMM') audio["COMM"] = COMM(encoding=3, lang=u'eng', text=data["episode_description"]) audio.delall('USLT') audio["USLT"] = USLT(encoding=3, lang=u'eng', text=data["episode_description"]) if "podcast_cover" in data and os.path.isfile(data["podcast_cover"]): audio.delall('APIC') audio["APIC"] = APIC(encoding=3, mime='image/jpeg', type=3, desc=u'Cover', data=open(data["podcast_cover"]).read()) audio.delall('CTOC') audio.add(CTOC(element_id=u"toc", flags=CTOCFlags.TOP_LEVEL | CTOCFlags.ORDERED, child_element_ids=ctoc_ids, sub_frames=[ TIT2(text=[u"TOC"]), ])) audio.delall('CHAP') for chapter in chapters: audio.add(CHAP(element_id=chapter.get("id"), start_time=int(chapter.get("start")), end_time=int(chapter.get("end")), sub_frames=[ TIT2(text=[chapter.get("title")]), ])) audio.save() for key, value in audio.items(): print(value.pprint())
lukekarrys/audiobook
id3.py
id3.py
py
1,967
python
en
code
1
github-code
6
74221349948
t = int(input()) outs = [] for g in range(t): equiv = [] for k in range(51): equiv.append(0) n = int(input()) a = [] a = list(map(int, input().split())) s = input() news = list(s) ans = [] for i in range(n): u = a[i] if equiv[u] == 0: equiv[u] = s[i] ans.append(s[i]) else: ans.append(equiv[u]) if ans == news: outs.append("YES") else: outs.append("NO") for i in outs: print(i)
El-Medonho/Contests
Geral/CodeForces/Contests/rnd 828/a.py
a.py
py
479
python
en
code
1
github-code
6
4993994587
# -*- coding: utf-8 -*- """ Created on Sat Oct 19 13:04:11 2019 @author: Diego Wanderley @python: 3.6 @description: Train script with training class """ import tqdm import argparse import torch import torch.optim as optim import numpy as np from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from torchvision import transforms from torch.autograd import Variable from terminaltables import AsciiTable import utils.transformations as tsfrm from test_yolo import evaluate from models.yolo import Darknet from models.yolo_utils.utils import * from utils.datasets import OvaryDataset from utils.helper import gettrainname class Training: """ Training class """ def __init__(self, model, device, train_set, valid_set, optim, class_names, train_name='yolov3', logger=None, iou_thres=0.5, conf_thres=0.5, nms_thres=0.5): ''' Training class - Constructor ''' self.model = model self.device = device self.train_set = train_set self.valid_set = valid_set self.optimizer = optim self.train_name = train_name self.model_name = "_".join(train_name.split('_')[2:]) self.logger = logger self.class_names = class_names self.gradient_accumulations = 2 self.iou_thres = iou_thres self.conf_thres = conf_thres self.nms_thres = nms_thres self.metrics = [ "grid_size", "loss", "x", "y", "w", "h", "conf", "cls", "cls_acc", "recall50", "recall75", "precision", "conf_obj", "conf_noobj", ] self.epoch = 0 def _saveweights(self, state, log=None): ''' Save network weights. Arguments: @state (dict): parameters of the network ''' path = '../weights/' filename = path + self.train_name + '_weights.pth.tar' torch.save(state, filename) # Save Log table if type(log) == str: logname = filename.replace('.pth.tar','.log') logname = logname.replace('_weights','_train') log_file = open(logname, "w") log_file.write(log) log_file.close() def _iterate_train(self, data_loader): # Init loss count lotal_loss = 0 data_train_len = len(self.train_set) # Active train self.model.train() self.model = self.model.to(self.device) # Batch iteration - Training dataset for batch_idx, (names, imgs, targets) in enumerate(tqdm.tqdm(data_loader, desc="Training epoch")): batches_done = len(data_loader) * self.epoch + batch_idx targets = Variable(targets.to(self.device), requires_grad=False) imgs = Variable(imgs.to(self.device)) bs = len(imgs) # Forward and loss loss, output = self.model(imgs, targets=targets) loss.backward() if batches_done % self.gradient_accumulations: # Accumulates gradient before each step self.optimizer.step() self.optimizer.zero_grad() self.model.seen += imgs.size(0) # Log metrics at each YOLO layer batch_factor = bs / data_train_len for i, metric in enumerate(self.metrics): out_metrics = [(yolo.metrics.get(metric, 0) * batch_factor) for yolo in self.model.yolo_layers] # Fill average for j in range(len(self.avg_metrics[metric])): self.avg_metrics[metric][j] += out_metrics[j] lotal_loss += loss.item() * batch_factor return lotal_loss def _logging(self, epoch, avg_loss_train, val_evaluation): # 1. Log scalar values (scalar summary) info = val_evaluation info.append(('train_loss_total', avg_loss_train)) for tag, value in info: self.logger.add_scalar(tag, value, epoch+1) # 2. Log values and gradients of the parameters (histogram summary) for yolo_tag, value in self.model.named_parameters(): # Define tag name tag_parts = yolo_tag.split('.') tag = self.model_name + '/' + tag_parts[-2] + '/' + tag_parts[-1] # Ignore bias from batch normalization if (not 'batch_norm' in tag_parts[-2]) or (not 'bias' in tag_parts[-1]): # add data to histogram self.logger.add_histogram(tag, value.data.cpu().numpy(), epoch+1) # add gradient if exist #if not value.grad is None: # self.logger.add_histogram(tag +'/grad', value.grad.data.cpu().numpy(), epoch+1) def train(self, epochs=100, batch_size=4): ''' Train network function Arguments: @param net: network model @param epochs: number of training epochs (int) @param batch_size: batch size (int) ''' # Load Dataset data_loader_train = DataLoader(self.train_set, batch_size=batch_size, shuffle=True, collate_fn=self.train_set.collate_fn_yolo) data_loader_val = DataLoader(self.valid_set, batch_size=1, shuffle=False, collate_fn=self.valid_set.collate_fn_yolo) # Define parameters best_loss = 1000000 # Init best loss with a too high value best_ap = 0 # Init best average precision as zero # Run epochs for e in range(epochs): self.epoch = e print('Starting epoch {}/{}.'.format(self.epoch + 1, epochs)) log_str = '' metric_table = [["Metrics", *["YOLO Layer " + str(i) for i in range(len(model.yolo_layers))]]] self.avg_metrics = { i : [0]*len(self.model.yolo_layers) for i in self.metrics } # ========================= Training =============================== # loss_train = self._iterate_train(data_loader_train) # Log metrics at each YOLO layer for i, metric in enumerate(self.metrics): formats = {m: "%.6f" for m in self.metrics} formats["grid_size"] = "%2d" formats["cls_acc"] = "%.2f%%" row_metrics = self.avg_metrics[metric] metric_table += [[metric, *row_metrics]] log_str += AsciiTable(metric_table).table log_str += "\nTotal loss: %0.5f"%loss_train print(log_str) print('') # ========================= Validation ============================= # precision, recall, AP, f1, ap_class = evaluate(self.model, data_loader_val, self.iou_thres, self.conf_thres, self.nms_thres, self.device) # Group metrics evaluation_metrics = [ ("val_precision", precision.mean()), ("val_recall", recall.mean()), ("val_mAP", AP.mean()), ("val_f1", f1.mean()), ] # Print class APs and mAP ap_table = [["Index", "Class name", "AP"]] for i, c in enumerate(ap_class): ap_table += [[c, self.class_names[c], "%.5f" % AP[i]]] print(AsciiTable(ap_table).table) print("mAP: "+ str(AP.mean())) print('\n') # ======================== Save weights ============================ # best_loss = loss_train if loss_train <= best_loss else best_loss is_best = AP.mean() >= best_ap if is_best: best_ap = AP.mean() # save self._saveweights({ 'epoch': self.epoch + 1, 'state_dict': self.model.state_dict(), 'train_loss_total': loss_train, 'train_best_loss': best_loss, 'val_precision': precision.mean(), 'val_recall': recall.mean(), 'val_mAP': AP.mean(), 'val_f1': f1.mean(), 'batch_size': batch_size, 'optimizer': str(self.optimizer), 'optimizer_dict': self.optimizer.state_dict(), 'device': str(self.device), 'avg_metrics': self.avg_metrics, 'iou_thres': self.iou_thres, 'conf_thres': self.conf_thres, 'nms_thres': self.nms_thres }, log=log_str ) print('Model {:s} updated!'.format(self.train_name)) print('\n') # ====================== Tensorboard Logging ======================= # if self.logger: self._logging(self.epoch, loss_train, evaluation_metrics) def parse_yolo_name(backbone_name, num_anchors, num_classes): """ Get the .cfg filename given the Yolo v3 hyperparameters. """ model_name = 'yolov3' if 'tiny' in backbone_name: model_name += '-tiny' elif 'spp' in backbone_name: model_name += '-spp' model_name += '_a' + str(num_anchors) model_name += '_c' + str(num_classes) return model_name if __name__ == "__main__": parser = argparse.ArgumentParser() # Training parameters parser.add_argument("--batch_size", type=int, default=4, help="size of each image batch") parser.add_argument("--num_epochs", type=int, default=150, help="size of each image batch") parser.add_argument("--model_name", type=str, default="yolov3", help="name of the model definition (used to load the .cfg file)") parser.add_argument("--num_anchors", type=int, default=6, help="number of anchors") parser.add_argument("--num_classes", type=int, default=3, help="number of classes") # Evaluation parameters parser.add_argument("--iou_thres", type=float, default=0.5, help="iou threshold required to qualify as detected") parser.add_argument("--conf_thres", type=float, default=0.5, help="object confidence threshold") parser.add_argument("--nms_thres", type=float, default=0.4, help="iou thresshold for non-maximum suppression") opt = parser.parse_args() print(opt) # Classes names cls_names = ['background','follicle','ovary'] # Input parameters n_classes = opt.num_classes has_ovary = True if n_classes > 2 else False n_epochs = opt.num_epochs batch_size = opt.batch_size network_name = parse_yolo_name(opt.model_name, opt.num_anchors, n_classes) train_name = gettrainname(network_name) mode_config_path = 'config/'+ network_name +'.cfg' # Load network model model = Darknet(mode_config_path) # Load CUDA if exist device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Transformation parameters transform = tsfrm.Compose([tsfrm.RandomHorizontalFlip(p=0.5), tsfrm.RandomVerticalFlip(p=0.5), tsfrm.RandomAffine(90, translate=(0.15, 0.15), scale=(0.75, 1.5), resample=3, fillcolor=0) ]) # Dataset definitions dataset_train = OvaryDataset(im_dir='../datasets/ovarian/im/train/', gt_dir='../datasets/ovarian/gt/train/', clahe=False, transform=transform, ovary_inst=has_ovary) dataset_val = OvaryDataset(im_dir='../datasets/ovarian/im/val/', gt_dir='../datasets/ovarian/gt/val/', clahe=False, transform=False, ovary_inst=has_ovary) # Optmization optimizer = optim.Adam(model.parameters()) # Set logs folder log_dir = '../logs/' + train_name + '/' writer = SummaryWriter(log_dir=log_dir) # Run training training = Training(model, device, dataset_train, dataset_val, optimizer, logger=writer, class_names=cls_names[:n_classes], train_name=train_name, iou_thres=opt.iou_thres, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres) training.train(epochs=n_epochs, batch_size=batch_size) print('')
dswanderley/detntorch
python/train_yolo.py
train_yolo.py
py
12,881
python
en
code
1
github-code
6
21041808334
"""Pytorch dataset module""" import json from glob import glob from pathlib import Path import albumentations as A import cv2 import numpy as np import torch from albumentations.pytorch import ToTensorV2 from torch import Tensor from torch.utils.data import Dataset from data.config import DataConfig, keypoint_indices val_transforms = A.Compose( [ A.LongestMaxSize(max_size=DataConfig.IMAGE_SIZE), A.PadIfNeeded( min_height=DataConfig.IMAGE_SIZE, min_width=DataConfig.IMAGE_SIZE, border_mode=cv2.BORDER_REPLICATE, ), A.Normalize(), ToTensorV2(), ], keypoint_params=A.KeypointParams(format='xy', remove_invisible=False), bbox_params=A.BboxParams(format='pascal_voc', label_fields=['classes']), ) train_transforms = A.Compose( [ # spatial A.HorizontalFlip(), A.VerticalFlip(), A.Affine(mode=cv2.BORDER_REPLICATE), A.Perspective(pad_mode=cv2.BORDER_REPLICATE), A.Rotate(limit=30, border_mode=cv2.BORDER_REPLICATE), A.SmallestMaxSize(max_size=320), A.RandomScale(scale_limit=.1), A.RandomCrop( height=DataConfig.IMAGE_SIZE, width=DataConfig.IMAGE_SIZE, ), # pixel level A.RandomBrightnessContrast(p=.15), A.AdvancedBlur(p=.15), A.ChannelShuffle(p=.15), A.MedianBlur(p=.15), A.Posterize(p=.15), A.Solarize(p=.015), # format data A.Normalize(), ToTensorV2(), ], keypoint_params=A.KeypointParams(format='xy', remove_invisible=False), bbox_params=A.BboxParams(format='pascal_voc', label_fields=['classes']), ) class DeepFashion2Dataset(Dataset): def __init__( self, base_path: str, transforms: A.Compose, max_objects: int, ) -> None: super().__init__() base_path = Path(base_path) self._base_path = Path(base_path) self._length = len(glob(str(self._base_path / 'image/*.jpg'))) self._transforms = transforms self._max_objects = max_objects def __len__(self) -> int: return self._length def _pad_classes(self, classes: list[int]) -> Tensor: classes = torch.LongTensor(classes) classes = torch.cat( [ classes, torch.zeros( self._max_objects - classes.size(0), dtype=torch.int32, ), ], ) return classes def _pad_bboxes(self, bboxes: list[tuple[float]]) -> Tensor: bboxes = torch.FloatTensor(bboxes).clip(0, DataConfig.IMAGE_SIZE) bboxes /= DataConfig.IMAGE_SIZE bboxes = torch.cat( [ bboxes, torch.zeros( (self._max_objects - bboxes.size(0), 4), dtype=torch.float32, ), ], ) return bboxes def _pad_keypoints( self, keypoints: list[list[tuple[float]]], classes: Tensor, ) -> Tensor: keypoints = [ ( torch.FloatTensor(keypoint).clip(0, DataConfig.IMAGE_SIZE) / DataConfig.IMAGE_SIZE ) for keypoint in keypoints ] result = torch.zeros( (self._max_objects, DataConfig.NUM_KEYPOINTS, 2), dtype=torch.float32, ) for i, (class_, keypoint) in enumerate(zip(classes, keypoints)): class_ = class_.item() if class_ == 0: break start, end = keypoint_indices[class_] result[i, start:end] = keypoint return result def _pad_visibilities( self, visibilities: list[np.ndarray], classes: Tensor, ) -> Tensor: visibilities = [ torch.FloatTensor(visibility).reshape(-1, 1) / 2. for visibility in visibilities ] result = torch.zeros( (self._max_objects, DataConfig.NUM_KEYPOINTS, 1), dtype=torch.float32, ) for i, (class_, visibility) in enumerate(zip(classes, visibilities)): class_ = class_.item() if class_ == 0: break start, end = keypoint_indices[class_] result[i, start:end] = visibility return result def _getitem(self, index: int) -> tuple[Tensor]: # create paths image_path = self._base_path / f'image/{index + 1:06d}.jpg' annotation_path = self._base_path / f'annos/{index + 1:06d}.json' # load image and annotation image = cv2.imread(str(image_path), cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) with open(annotation_path) as f: annotation = json.load(f) # restructure annotation annotation = [ { 'bbox': v['bounding_box'], 'class': v['category_id'], 'keypoints': np.array(v['landmarks']).reshape(-1, 3)[:, :2], 'visibilities': np.array(v['landmarks']).reshape(-1, 3)[:, 2], } for k, v in annotation.items() if k.startswith('item') ] # create keypoint, bbox, and classes lists. (pack keypoints) bboxes = [item['bbox'] for item in annotation] keypoints = np.concatenate([item['keypoints'] for item in annotation]) keypoints_border = [item['keypoints'].shape[0] for item in annotation] classes = [item['class'] for item in annotation] visibilities = [item['visibilities'] for item in annotation] # apply transform transformed = self._transforms( image=image, bboxes=bboxes, keypoints=keypoints, classes=classes, ) # separate transformed results image = transformed['image'] bboxes = transformed['bboxes'] keypoints = transformed['keypoints'] classes = transformed['classes'] # unpack keypoints keypoints_border = np.cumsum([0] + keypoints_border) iterator = zip(keypoints_border[:-1], keypoints_border[1:]) keypoints = [keypoints[start:end] for start, end in iterator] # normalize and fix length of classes, bboxes, keypoints, # and visibilities classes = self._pad_classes(classes) bboxes = self._pad_bboxes(bboxes) keypoints = self._pad_keypoints(keypoints, classes) visibilities = self._pad_visibilities(visibilities, classes) return image, classes, bboxes, keypoints, visibilities def __getitem__(self, index: int) -> tuple[Tensor]: try: return self._getitem(index) except Exception: return self[(index + 1) % len(self)] if __name__ == '__main__': ds = DeepFashion2Dataset( base_path='/home/aj/data/DeepFashion2/validation', transforms=train_transforms, # transforms=val_transforms, max_objects=10, ) image, classes, bboxes, keypoints, visibilities = ds[0] from torchvision.utils import save_image save_image(image, '/tmp/tmp.png')
mohamad-hasan-sohan-ajini/deep_fashion_2
data/data_pt.py
data_pt.py
py
7,291
python
en
code
1
github-code
6
69936276028
import torch.nn as nn import torch.optim as optimizers from nlp.generation.models import CharLSTM class CharLSTMTrainer: def __init__(self, model: CharLSTM, vocab_size: int, learning_rate: float = 1e-3, weights_decay: float = 1e-3, epochs: int = 1, logging_level: int = 0): self.vocab_size = vocab_size self.logging_level = logging_level self.model = model.train() self.epochs = epochs self.learning_rate = learning_rate self._loss = nn.CrossEntropyLoss() self._optimizer = optimizers.Adam(self.model.parameters(), lr=self.learning_rate, weight_decay=weights_decay) def train(self, text_dataloader): for epoch in range(self.epochs): for input_chars, target_chars in text_dataloader: self._optimizer.zero_grad() predicted_chars = self.model(input_chars) loss = self._loss(predicted_chars.transpose(1, 2), target_chars) loss.backward() self._optimizer.step()
Danielto1404/bachelor-courses
python-backend/projects/nlp.ai/nlp/generation/trainers.py
trainers.py
py
1,129
python
en
code
5
github-code
6
25442443781
import pygame from . import view from . import render from . import callback from . import button HORIZONTAL = 0 VERTICAL = 1 SCROLLBAR_SIZE = 12 class ScrollbarThumbView(view.View): """Draggable thumb of a scrollbar.""" def __init__(self, direction): size = SCROLLBAR_SIZE view.View.__init__(self, pygame.Rect(0, 0, size, size)) self.direction = direction self.draggable = True def key_down(self, key, code): # Simulate mouse drag to scroll with keyboard. if self.direction == VERTICAL: if key == pygame.K_DOWN: self.mouse_drag((0, 0), (0, 1)) elif key == pygame.K_UP: self.mouse_drag((0, 0), (0, - 1)) else: if key == pygame.K_RIGHT: self.mouse_drag((0, 0), (1, 0)) elif key == pygame.K_LEFT: self.mouse_drag((0, 0), (-1, 0)) #def draw(self, force=False): # if view.View.draw(self, force): # print self.__class__.__name__ + '::draw' class ScrollbarView(view.View): """A scrollbar.""" def __init__(self, scroll_view, direction): """Create a scrollbar for the given scrollable view.""" if direction == VERTICAL: height = scroll_view.frame.h - SCROLLBAR_SIZE frame = pygame.Rect(0, 0, SCROLLBAR_SIZE, height) frame.right = scroll_view.frame.w else: width = scroll_view.frame.w - SCROLLBAR_SIZE frame = pygame.Rect(0, 0, width, SCROLLBAR_SIZE) frame.bottom = scroll_view.frame.h view.View.__init__(self, frame) self.direction = direction self.scroll_view = scroll_view self.thumb = ScrollbarThumbView(self.direction) self.add_child(self.thumb) def layout(self): self._update_thumb() self.thumb.layout() view.View.layout(self) def _update_thumb(self): self.thumb.frame.top = max(0, self.thumb.frame.top) self.thumb.frame.bottom = min(self.frame.bottom, self.thumb.frame.bottom) self.thumb.frame.left = max(0, self.thumb.frame.left) self.thumb.frame.right = min(self.frame.right, self.thumb.frame.right) if self.direction == VERTICAL: self.thumb.frame.centerx = SCROLLBAR_SIZE // 2 else: self.thumb.frame.centery = SCROLLBAR_SIZE // 2 if self.direction == VERTICAL: self.frame.right = self.scroll_view.frame.w off_x = self.scroll_view._content_offset[0] off_y = self.thumb.frame.top / float(self.frame.h) self.scroll_view.set_content_offset(off_x, off_y) percentage = (self.scroll_view.frame.h / float(self.scroll_view.content_view.frame.h)) self.thumb.frame.h = self.frame.h * percentage # self.hidden = (percentage >= 1) else: self.frame.bottom = self.scroll_view.frame.h off_x = self.thumb.frame.left / float(self.frame.w) off_y = self.scroll_view._content_offset[1] self.scroll_view.set_content_offset(off_x, off_y) percentage = (self.scroll_view.frame.w / float(self.scroll_view.content_view.frame.w)) self.thumb.frame.w = self.frame.w * percentage self.hidden = (percentage >= 1) if (self.direction == VERTICAL and self.scroll_view.hscrollbar.hidden and not self.scroll_view.vscrollbar.hidden): self.frame.h = self.scroll_view.frame.h elif (self.direction == HORIZONTAL and self.scroll_view.vscrollbar.hidden and not self.scroll_view.hscrollbar.hidden): self.frame.w = self.scroll_view.frame.w self.updated = True #def draw(self, force=False): # if view.View.draw(self, force): # print self.__class__.__name__ + '::draw' def _child_dragged(self, child): assert child == self.thumb self.layout() # Jump to offset at clicked point; does not allow dragging # without reclicking thumb def mouse_down(self, button, point): if self.direction == VERTICAL: self.thumb.frame.top = point[1] self._update_thumb() else: self.thumb.frame.left = point[0] self._update_thumb() class VBar(ScrollbarView): """A scrollbar.""" def __init__(self, scroll_view): self.btn_size = 45 height = scroll_view.frame.h - SCROLLBAR_SIZE - self.btn_size * 2 frame = pygame.Rect(0, self.btn_size, SCROLLBAR_SIZE, height) #frame.bottom = frame.bottom - self.btn_size frame.right = scroll_view.frame.w view.View.__init__(self, frame) self.direction = VERTICAL self.scroll_view = scroll_view self.thumb = ScrollbarThumbView(self.direction) self.add_child(self.thumb) def _update_thumb(self): self.thumb.frame.top = max(0, self.thumb.frame.top) self.thumb.frame.bottom = min(self.frame.bottom-self.btn_size, self.thumb.frame.bottom) #dunno why I had to subtract btn_size here self.thumb.frame.left = max(0, self.thumb.frame.left) self.thumb.frame.right = min(self.frame.right, self.thumb.frame.right) self.thumb.frame.centerx = SCROLLBAR_SIZE // 2 self.frame.right = self.scroll_view.frame.w off_x = self.scroll_view._content_offset[0] off_y = self.thumb.frame.top / float(self.frame.h) self.scroll_view.set_content_offset(off_x, off_y) percentage = (self.scroll_view.frame.h / float(self.scroll_view.content_view.frame.h)) if (self.scroll_view.content_view.frame.h > 0) else 0 #print 'VBar::_update_thumb pct:' + str(percentage) + ' h: ' + str(self.thumb.frame.h) self.thumb.frame.h = self.frame.h * percentage if (self.scroll_view.vscrollbar.hidden): # and not self.scroll_view.hscrollbar.hidden): self.frame.h = self.scroll_view.frame.h - self.btn_size * 2 #print '\t thmb y: ' + str(self.thumb.frame.top) class ScrollView(view.View): """A view that scrolls a content view Signals on_scrolled(scroll_view) content offset was updated. """ def __init__(self, frame, content_view): width = frame.size[0] + SCROLLBAR_SIZE height = frame.size[1] + SCROLLBAR_SIZE rect = pygame.Rect(frame.topleft, (width, height)) view.View.__init__(self, rect) self.on_scrolled = callback.Signal() self.content_view = content_view self._content_offset = (0, 0) self.add_child(self.content_view) self.hscrollbar = ScrollbarView(self, HORIZONTAL) self.vscrollbar = ScrollbarView(self, VERTICAL) self.add_child(self.hscrollbar) self.add_child(self.vscrollbar) def update_content_view(self, content_view): self.rm_child(self.content_view) self.add_child(content_view) self.content_view = content_view #self.stylize() def layout(self): self.hscrollbar.layout() self.vscrollbar.layout() view.View.layout(self) def set_content_offset(self, percent_w, percent_h, update_scrollbar_size=True): self._content_offset = (min(1, max(0, percent_w)), min(1, max(0, percent_h))) self.content_view.frame.topleft = ( -self._content_offset[0] * self.content_view.frame.w, -self._content_offset[1] * self.content_view.frame.h) if update_scrollbar_size: self.vscrollbar.thumb.centery = percent_h * self.vscrollbar.frame.h self.hscrollbar.thumb.centerx = percent_w * self.hscrollbar.frame.w self.on_scrolled(self) def draw(self, force=False): if not view.View.draw(self, force): return False #print self.__class__.__name__ + '::draw' if not self.vscrollbar.hidden and not self.hscrollbar.hidden: hole = pygame.Rect(self.vscrollbar.frame.left, self.vscrollbar.frame.bottom, SCROLLBAR_SIZE, SCROLLBAR_SIZE) render.fillrect(self.surface, self.hole_color, hole) return True """ ScrollBox """ class ScrollBox(ScrollView): def __init__(self, frame, content_view): self.btn_size = 45 width = frame.size[0] + SCROLLBAR_SIZE height = frame.size[1] + SCROLLBAR_SIZE rect = pygame.Rect(frame.topleft, (width, height)) view.View.__init__(self, rect) self.on_scrolled = callback.Signal() self._content_offset = (0, 0) self.content_view = content_view self.vscrollbar = VBar(self) """ icon_down = button.IconButton( pygame.Rect(width - self.btn_size, 0, self.btn_size, self.btn_size), 'chevron-down', 12) icon_up = button.IconButton( pygame.Rect(width - self.btn_size, height - self.btn_size, self.btn_size, self.btn_size), 'chevron-up', 12) icon_down.tag_name = 'Down' icon_up.tag_name ='Up' icon_down.on_clicked.connect(self.on_page_nav_clicked) icon_up.on_clicked.connect(self.on_page_nav_clicked) self.icon_down = icon_down self.icon_up = icon_up self.add_child(self.icon_down) self.add_child(self.icon_up) """ self.add_child(self.content_view) self.add_child(self.vscrollbar) self.scrolled = False self.scrollable = True if self.content_view.frame.height > self.frame.height else False if not self.scrollable: self.vscrollbar.hidden = True def on_page_nav_clicked(self, btn, mouse_btn): pass """ idx = 1 if btn == self.page_down: for button in self.child_btns[self.current_child_index][idx:]: btn_y = button.frame.top + self.label_height offset = self.current_child.content_view.frame.top btn_vy = btn_y + offset if btn_vy > self.current_child.frame.height: #self.active_btn.state = 'normal' #self.active_btn = button pct = (self.current_child.frame.height - self.label_height) / float(self.current_child.content_view.frame.h) self.current_child.do_scroll(pct, 'down') #self.active_btn.state = 'focused' #self.active_btn_index = idx #self.sibling_active = False break idx += 1 else: for button in self.child_btns[self.current_child_index][idx:]: btn_y = button.frame.top + self.label_height offset = self.current_child.content_view.frame.top btn_vy = btn_y + offset if btn_vy < 0: #self.active_btn.state = 'normal' #self.active_btn = button pct = (self.current_child.frame.height - self.label_height) / float(self.current_child.content_view.frame.h) self.current_child.do_scroll(pct, 'up') #self.active_btn.state = 'focused' #self.active_btn_index = idx #self.sibling_active = False break idx += 1 """ def update_content_view(self, content_view): self.rm_child(self.content_view) self.add_child(content_view) self.content_view = content_view self.scrollable = True if self.content_view.frame.height > self.frame.height else False if not self.scrollable: self.vscrollbar.hidden = True else: self.vscrollbar.hidden = False def layout(self): self.vscrollbar.layout() view.View.layout(self) def do_scroll(self, pct, dir): change = pct * self.vscrollbar.frame.h if dir == 'up': self.vscrollbar.thumb.frame.top = self.vscrollbar.thumb.frame.top - change self.vscrollbar._update_thumb() else: self.vscrollbar.thumb.frame.top = self.vscrollbar.thumb.frame.top + change self.vscrollbar._update_thumb() self.updated = True def set_content_offset(self, percent_w, percent_h, update_scrollbar_size=True): self._content_offset = (min(1, max(0, percent_w)), min(1, max(0, percent_h))) self.content_view.frame.topleft = ( -self._content_offset[0] * self.content_view.frame.w, -self._content_offset[1] * self.content_view.frame.h) if update_scrollbar_size: self.vscrollbar.thumb.centery = percent_h * self.vscrollbar.frame.h if self._content_offset[1] != 0: self.scrolled = True else: self.scrolled = False self.on_scrolled(self) def draw(self, force=False): if not view.View.draw(self, force): return False if not self.vscrollbar.hidden: hole = pygame.Rect(self.vscrollbar.frame.left, self.vscrollbar.frame.bottom, SCROLLBAR_SIZE, SCROLLBAR_SIZE) render.fillrect(self.surface, self.hole_color, hole) return True """ ScrollList """ class ScrollList(ScrollBox): def __init__(self, frame, content_frame): content_view = view.View(content_frame) ScrollBox.__init__(self,frame,content_view) self.active_idx = 0 def empty_list(self): del self.content_view.children[:] self.active_idx = 0 self.scrollable = False self.vscrollbar.hidden = True def add_list_item(self, item): self.content_view.add_child(item) self.scrollable = True if self.content_view.frame.height > self.frame.height else False if not self.scrollable: self.vscrollbar.hidden = True else: self.vscrollbar.hidden = False
jwayneroth/mpd-touch
pygameui/scroll.py
scroll.py
py
14,197
python
en
code
5
github-code
6
71943493307
import csv import math import sys import numpy as np import matplotlib.pyplot as plt from sklearn.feature_selection import chi2, f_regression, mutual_info_regression def mylog(x): if x==0: return -10000000000 else: return math.log(x) def entropy(probs, neg, pos): ''' entropy for binary classification data ''' entropy=0.0 entropy=(probs[1]/pos-probs[0]/neg)*mylog((probs[1]*neg)/(probs[0]*pos)) return entropy def get_bin_from_score(score): ''' get bin number. 0-low, 1-high. avg. threshold=280 ''' return min(1,int(score//280)) def iv(header, data): ''' Information Value based feature selection ''' neg,pos = 0,0 probs=np.zeros((9,5,2)) for datum in data: score_bin=get_bin_from_score(float(datum[9])) if(score_bin==0): neg+=1 else: pos+=1 for i in range(9): probs[i][int(datum[i])-1][score_bin]+=1 feature_score=[0 for _ in range(9)] for i in range(9): for j in range(5): feature_score[i]+=entropy(probs[i][j], neg, pos) fig = plt.figure() plt.barh(header[::-1],feature_score[::-1]) plt.show() def anova(header, regressors, target): ''' ANOVA based feature selection ''' # chi_scores = chi2(regressors,target) anova_scores = f_regression(regressors, target) fig = plt.figure() plt.barh(header[::-1],anova_scores[0][::-1]) plt.show() def mutual_info(header, regressors, target): ''' Mutual Information based feature selection ''' # chi_scores = chi2(regressors,target) mi_scores = mutual_info_regression(regressors, target) fig = plt.figure() plt.barh(header[::-1],mi_scores[::-1]) plt.show() def main(): ''' reads training data and calls appropriate method for feature-selection ''' data,regressors,target = [],[],[] with open('data.csv','r') as csv_file: csv_reader=csv.reader(csv_file,delimiter=',') for row in csv_reader: data.append(row) header=data[0] data=data[1:] for datum in data: for i in range(9): datum[i]=int(datum[i]) regressors.append(datum[:9]) target.append(float(datum[9])) if len(sys.argv)<2: print('Usage: python feature_selectors.py [iv/anova/mi]') else: option=sys.argv[1] if option=='iv': iv(header, data) elif option=='anova': anova(header, regressors, target) elif option=='mi': mutual_info(header, regressors, target) else: print('Usage: python feature_selectors.py [iv/anova/mi]') if __name__=='__main__': main()
Arnabjana1999/scoring_models
feature_selectors.py
feature_selectors.py
py
2,740
python
en
code
0
github-code
6
41559834396
import string def day3_part1(file): priorities = string.ascii_letters priority_sum = 0 with open(file, "r") as f: data = f.readlines() for line in data: line_len = len(line) half_way = int(line_len / 2) comp_1 = line[0:half_way] comp_2 = line[half_way:line_len] for letter in comp_1: if letter in comp_2: priority_sum += priorities.index(letter) + 1 break print("The sum of priorities: {}".format(priority_sum)) def day3_part2(file): priorities = string.ascii_letters priority_sum = 0 with open(file, "r") as f: data = f.readlines() cur_line = 0 for line_num in range(int(len(data) / 3)): for letter in data[cur_line]: if letter in data[cur_line + 1]: if letter in data[cur_line + 2]: priority_sum += priorities.index(letter) + 1 break cur_line += 3 print("The sum of priorities: {}".format(priority_sum)) day3_part1("day3.txt") day3_part2("day3.txt")
cerneris/Advent_of_code_2022
day3.py
day3.py
py
1,082
python
en
code
0
github-code
6
39959163393
# to build, use "cd (playsong directory)" # pyinstaller --onefile playSong.py #lib imports import keyboard import threading import time import os import re #local imports from settings import SETTINGS,map_velocity,apply_range_bounds global isPlaying global midi_action_list isPlaying = False storedIndex = 0 conversionCases = {'!': '1', '@': '2', '£': '3', '$': '4', '%': '5', '^': '6', '&': '7', '*': '8', '(': '9', ')': '0'} """ #maps a string representing a note to a note index where C0 = 0 note_offsets = {"C":0,"D":2,"E":4,"F":5,"G":7,"A":9,"B":11} def note_to_index(note): is_sharp = (note[1] == "#") note_letter = note[0] if is_sharp: note_number = int(note[2:]) else: note_number = int(note[1:]) index = note_offsets[note_letter] + int(is_sharp) + 12*note_number return index octave_note_order = ["C","C#","D","D#","E","F","F#","G","G#","A","A#","B"] def index_to_note(index): base_letter = "A" base_octave = 0 val = 21 #A0 is value 21 in midi octave = (index - 12) // 12 letter = (index - 12) % 12 return octave_note_order[letter] + str(octave) """ def onDelPress(event): global isPlaying isPlaying = not isPlaying if isPlaying: print("Playing...") playNextNote() else: print("Stopping...") return True def isShifted(charIn): #print(charIn) if "shift" in charIn: return True asciiValue = ord(charIn) if(asciiValue >= 65 and asciiValue <= 90): return True if(charIn in "!@#$%^&*()_+{}|:\"<>?"): return True return False def pressLetter(strLetter): if isShifted(strLetter): # we have to convert all symbols to numbers if strLetter in conversionCases: strLetter = conversionCases[strLetter] keyboard.release(strLetter.lower()) keyboard.press("shift") keyboard.press(strLetter.lower()) keyboard.release("shift") if SETTINGS.get("key_instant_release") == True: keyboard.release(strLetter.lower()) else: keyboard.release(strLetter) keyboard.press(strLetter) if SETTINGS.get("key_instant_release") == True: keyboard.release(strLetter) return def releaseLetter(strLetter): if isShifted(strLetter): if strLetter in conversionCases: strLetter = conversionCases[strLetter] keyboard.release(strLetter.lower()) else: keyboard.release(strLetter) return #Mini class to organize different actions into standard chunks class Midi_Action: def __init__(self,offset,note_list,velocity,tempo_change): self.tempo_change = tempo_change self.note_list = note_list self.velocity = velocity self.offset = offset def processFile(song_path): global playback_speed with open(song_path,"r") as macro_file: lines = macro_file.read().split("\n") processed_notes = [] for line in lines: if len(line.strip()) == 0: continue try: #print(line) offset,note_str = line.split(" ",1) note_group,velocity = note_str.split(":") if "tempo" in note_str: tempo_change = int(note_group.split("tempo=")[1]) note_list = [] else: tempo_change = None note_list = note_group.split(" ") new_note_list = [] for n in note_list: v = apply_range_bounds(int(n)) if v is not None: new_note_list.append(SETTINGS["key_map"][v]) note_list = new_note_list #print(note_list) #input() m = Midi_Action( float(offset), note_list, int(velocity), tempo_change) processed_notes.append(m) except Exception as e: print(f"Error reading line:: '{line}'") print(e) input() return processed_notes # for this method, we instead use delays as l[0] and work using indexes with delays instead of time # we'll use recursion and threading to press keys def set_note_offsets(midi_action_list): # parse time between each note # while loop is required because we are editing the array as we go i = 0 while i < len(midi_action_list)-1: note = midi_action_list[i] nextNote = midi_action_list[i+1] if note.tempo_change: tempo = 60/float(note.tempo_change) midi_action_list.pop(i) note = midi_action_list[i] if i < len(midi_action_list)-1: nextNote = midi_action_list[i+1] else: note.offset = (nextNote.offset - note.offset) * tempo i += 1 # let's just hold the last note for 1 second because we have no data on it midi_action_list[-1].offset = 1.00 return midi_action_list def playNextNote(): global isPlaying global storedIndex global playback_speed while isPlaying and storedIndex < len(midi_action_list): note = midi_action_list[storedIndex] delay = max(note.offset,0) if note.velocity == 0: #release notes for n in note.note_list: releaseLetter(n) else: #press notes if SETTINGS.get("alt_velocity",False) == True: vel_key = map_velocity(note.velocity) print("alt+",vel_key) keyboard.press("alt") keyboard.press_and_release(vel_key) keyboard.release("alt") if SETTINGS.get("hold_to_play",False) == True: while not keyboard.is_pressed(SETTINGS.get("hold_to_play_key")): time.sleep(.05) for n in note.note_list: pressLetter(n) if(note.tempo_change is None and note.velocity != 0): print("%10.2f %15s %d" % (delay,"".join(note.note_list),note.velocity)) #print("%10.2f %15s" % (delay/playback_speed,noteInfo[1])) storedIndex += 1 if(delay != 0): threading.Timer(delay/playback_speed, playNextNote).start() return if storedIndex > len(midi_action_list)-1: isPlaying = False storedIndex = 0 return #TODO (BUG) #Rewind and Fast Forward skip over tempo events # missing a critical tempo event will change playback significantly. def rewind(KeyboardEvent): global storedIndex if storedIndex - 10 < 0: storedIndex = 0 else: storedIndex -= 10 print("Rewound to %.2f" % storedIndex) def skip(KeyboardEvent): global storedIndex if storedIndex + 10 > len(midi_action_list): isPlaying = False storedIndex = 0 else: storedIndex += 10 print("Skipped to %.2f" % storedIndex) def get_file_choice(song_dir): fileList = os.listdir(song_dir) songList = [] for f in fileList: if(".txt" in f or ".txt" in f.lower()): songList.append(f) print("\nType the number of a song file then press enter:\n") for i in range(len(songList)): print(i+1,":",songList[i]) choice = int(input(">")) print() choice_index = int(choice) return songList[choice_index-1],songList def mode_play(song_path): global isPlaying global midi_action_list global playback_speed playback_speed = SETTINGS["playback_speed"] isPlaying = False storedIndex = 0 midi_action_list = processFile(song_path) set_note_offsets(midi_action_list) keyboard.on_press_key(SETTINGS["pause_key"], onDelPress) keyboard.on_press_key(SETTINGS["rewind_key"], rewind) keyboard.on_press_key(SETTINGS["advance_key"], skip) print() print("Controls") print("-"*20) print(f"Press {SETTINGS['pause_key'].upper()} to play/pause") print(f"Press {SETTINGS['rewind_key'].upper()} to rewind") print(f"Press {SETTINGS['advance_key'].upper()} to advance") if SETTINGS.get("hold_to_play",False) == True: print(f"Hold {SETTINGS['hold_to_play_key'].upper()} while song is unpaused to play notes") while True: input("Press Ctrl+C to go back\n\n") def main(): song_dir = SETTINGS["song_dir"] while True: song_choice,_ = get_file_choice(song_dir) song_path = os.path.join(song_dir,song_choice) try: mode_play(song_path) except KeyboardInterrupt as e: pass finally: keyboard.unhook_all() storedIndex = 0 isPlaying = False if __name__ == "__main__": main()
eddiemunson/nn
playSong.py
playSong.py
py
7,532
python
en
code
0
github-code
6
2958627650
import Algorithmia import logging import os LOG_FOLDER = 'logs' if os.path.exists(LOG_FOLDER) is False: os.mkdir(LOG_FOLDER) logging.basicConfig(filename=LOG_FOLDER + '/' + __name__ + '.log', format='[%(asctime)s] %(message)s\n\n', level=logging.DEBUG) api_key = None def get_emotion(photo: bytes) -> str or None: '''Returns emotions by face image Args: photo: bytes data Returns: main_emotion: most possible emotion name None: if failed ''' try: client = Algorithmia.client(api_key) algo = client.algo('deeplearning/EmotionRecognitionCNNMBP/0.1.3') img = bytearray(photo) emotions = algo.pipe(img).result['results'][0]['emotion'] main_emotion = str() confidence = 0.0 for emotion in emotions: if emotion[0] > confidence: confidence = emotion[0] main_emotion = emotion[1] return main_emotion.lower() except Exception as e: logging.error(str(e)) print('Algorithmia:', str(e)) return None def celebrities_similarity(photo: bytes) -> str or None: '''Returns person similarity to some celebrity Args: photo: bytes data Returns: Name of the most possible celebrity None: if failed ''' try: client = Algorithmia.client(api_key) algo = client.algo('deeplearning/DeepFaceRecognition/0.1.1') img = bytearray(photo) celebrities = algo.pipe(img).result['results'] return ' '.join(celebrities[0][1].split('_')) except Exception as e: logging.error(str(e)) return None def verify_faces(photo1: bytes, photo2: bytes) -> float or None: '''Returns two photos similarity Args: photo1: bytes data photo2: bytes data Returns: similarity confidence: if data recieved None: if failed ''' try: data = [bytearray(photo1), bytearray(photo2)] client = Algorithmia.client(api_key) algo = client.algo('zskurultay/ImageSimilarity/0.1.2') return algo.pipe(data) except Exception as e: logging.error(str(e)) return None def gender(photo: bytes) -> str or None: '''Computes gender probabilities Args: photo: bytes data Returns: gender name None: if failed ''' try: img = bytearray(photo) data = {'image': img} client = Algorithmia.client(api_key) algo = client.algo('deeplearning/GenderClassification/1.0.2') gender_list = algo.pipe(img).result['results'][0]['gender'] if gender_list[0][0] > gender_list[1][0]: return gender_list[0][1].lower() else: return gender_list[1][1].lower() except Exception as e: logging.error(str(e)) return None def age(photo: bytes) -> str or None: '''Returns age groups with probabilies Args: photo: bytes data Returns: the most possible age interval : list with structure [min_age, max_age] None: if failed ''' try: img = bytearray(photo) client = Algorithmia.client(api_key) algo = client.algo('deeplearning/AgeClassification/1.0.3') ages = algo.pipe(img).result['results'][0]['age'] str_age_interval = str() age_confidence = 0.0 for age in ages: if age[0] > age_confidence: age_confidence = age[0] str_age_interval = age[1] age_string_interval = str_age_interval.strip('()').split(', ') age_interval = [int(age_string_interval[0]), int(age_string_interval[1])] return age_interval except Exception as e: logging.error(str(e)) print(str(e)) return None
FunRobots/candybot_v2
src/coffebot/vision/utils/algorithmia.py
algorithmia.py
py
3,841
python
en
code
0
github-code
6
25760910262
import random import numpy as np from keras.models import Sequential from keras.layers import Dense, LSTM # Define the RNN model model = Sequential() model.add(LSTM(64, input_shape=(1, 1))) model.add(Dense(1, activation='linear')) model.compile(optimizer='adam', loss='mean_squared_error') balance = 100 bet = 1 sim_numbers = [] while True: cup = random.randint(1, 3) game = input("Choice ('simulate x' or 'play cups'): ") if game.startswith("simulate"): input_list = game.split(" ") num = int(input_list[1]) if num >= 100000: print("Please wait a few minutes, numbers above 100.000 take longer for the model to simulate...") sim_numbers += [random.randint(1, 3) for _ in range(num)] print(sim_numbers) sim_numbers_arr = np.array(sim_numbers) sim_numbers_arr = sim_numbers_arr.reshape(sim_numbers_arr.shape[0], 1, 1) model.fit(sim_numbers_arr[:-1], sim_numbers_arr[1:], epochs=10, verbose=0) predicted_number = model.predict(sim_numbers_arr[-1].reshape(1, 1, 1)) print(f'Predicted next number: {predicted_number[0][0]:.0f}') elif game == "play cups" or game == "play": choice = input("What cup do you want to choose? 1, 2 or 3: ") bet_choice = input(f'How much do you want to bet on cup {choice}?: ') bet = bet_choice if int(choice) == cup: balance += int(bet) print(f'You won ${bet}! Total balance is now ${balance}!') elif int(choice) != cup: balance -= int(bet) print(f'You lost ${bet}. Total balance is now ${balance}. Correct cup was cup {cup}.') else: print("Please input a valid number") continue else: print("Please input a valid choice...")
atleastimnotgay/python
3cups_prediction.py
3cups_prediction.py
py
1,897
python
en
code
0
github-code
6
73583270588
#!/usr/bin/python # coding: utf-8 from flask import Flask, Blueprint, flash, g, redirect, render_template, request, url_for, session import os app = Flask(__name__) tests = [] class TestObj: def __init__(self, name, path): self.name = name self.path = path+self.name self.countfile = self.path+"/count.txt" self.count = self.read_count() self.run_file = self.path + "/run.txt" self.running = self.get_run_state() def read_count(self): return int(open(self.countfile).read()) def get_run_state(self): return int(open(self.run_file).read()) def toggle_run(self): newstate = str(int(not bool(self.get_run_state()))) with open(self.run_file,'w') as rf: rf.write(newstate) @app.route('/', methods=('GET','POST')) def main(): if request.method == 'POST': print('got request') test = list(dict(request.form))[0] testobj = None for t in tests: if t.name == test: testobj = t testobj.toggle_run() print ('test',testobj) global tests tests = generate_tests() return render_template('index.html',tests=tests) def generate_tests(): a_dir = "/home/pi/current_tests/" tests = [name for name in os.listdir(a_dir) if os.path.isdir(os.path.join(a_dir, name))] testobjs= [ TestObj(x,a_dir) for x in tests] return testobjs if __name__ == '__main__': print(generate_tests()) app.run(host='0.0.0.0', debug=True)
rjames711/automation
flaskweb/app.py
app.py
py
1,568
python
en
code
0
github-code
6
40411500341
#!/usr/bin/env python3 """ Name: example_ndfc_policy_delete_using_switch_serial_entity_type_entity_name.py Description: Delete policies matching switch serial number, entity type, and entity name """ import sys from ndfc_python.log import log from ndfc_python.ndfc import NDFC, NdfcRequestError from ndfc_python.ndfc_credentials import NdfcCredentials from ndfc_python.ndfc_policy import NdfcPolicy nc = NdfcCredentials() logger = log("ndfc_policy_create_log", "INFO", "DEBUG") ndfc = NDFC() ndfc.logger = logger ndfc.username = nc.username ndfc.password = nc.password ndfc.ip4 = nc.ndfc_ip ndfc.login() instance = NdfcPolicy() instance.logger = logger instance.ndfc = ndfc instance.serial_number = "FDO21120U5D" try: instance.delete() except ValueError as err: msg = f"exiting. Exception detail: {err}" instance.logger.error(msg) sys.exit(1) except NdfcRequestError as err: msg = f"exiting. Exception detail: {err}" instance.logger.error(msg) sys.exit(1) instance.logger.info("Delete request succeeded")
allenrobel/ndfc-python
examples/ndfc_policy/policy_delete_using_switch_serial.py
policy_delete_using_switch_serial.py
py
1,036
python
en
code
0
github-code
6
27216859235
from django.conf.urls.defaults import patterns, include, url # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', # Examples: (r'^$', 'rss_duna.feed.views.home'), # url(r'^myproject/', include('myproject.foo.urls')), # Uncomment the admin/doc line below to enable admin documentation: # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: (r'^admin/', include(admin.site.urls)), #(r'^feed/$', DunaEntriesFeed()), (r'^duna/(?P<programa_id>\D+)/rss/$', 'rss_duna.feed.views.get_feed_rss'), (r'^duna/feeds/$', 'rss_duna.feed.views.list_feeds'), #(r'^prueba/$', 'rss_duna.feed.views.prueba') ) #if settings.DEBUG: # urlpatterns += patterns('', # (r'^files/(?P<path>.*)$', 'django.views.static.serve', {'document_root': settings.MEDIA_ROOT, 'show_indexes':False}), # )
yonsing/rss_duna
urls.py
urls.py
py
965
python
en
code
0
github-code
6
13114754891
import requests import tkinter.messagebox user = open('user.txt','r').read().splitlines() def checking(): for users in user: tik = (f'https://m.tiktok.com/node/share/user/@{users}') head = { 'accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'accept-encoding':'gzip, deflate, br', 'accept-language':'en-US,en;q=0.9', 'cache-control':'max-age=0', 'cookie':'tt_webid_v2=6930696974879032837; tt_webid=6930696974879032837; tt_csrf_token=d8lRPZdjfD3sgWCKlFHeaq-0', 'sec-fetch-dest':'document', 'sec-fetch-mode':'navigate', 'sec-fetch-site':'none', 'sec-fetch-user':'?1', 'upgrade-insecure-requests':'1', 'user-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36 OPR/73.0.3856.344', } Tik = requests.get(tik,headers=head) if ('"statusCode":10202,"statusMsg":""') in Tik.text: tkinter.messagebox.showinfo(title='NewUser',message=users) elif ('statusCode":10221') in Tik.text: print(f'Status : Banned >> {users}') elif ('"pageId"') in Tik.text: print(f'Taken >> {users}') checking()
8-wrk/TikCheck
Check.py
Check.py
py
1,463
python
en
code
0
github-code
6
21764401402
# Approach 1: Merge Sort # Time: O(n log n) # Space: O(n) class Solution: def sortArray(self, nums: List[int]) -> List[int]: temp_arr = [0] * len(nums) def merge(left, mid, right): start1 = left start2 = mid + 1 n1 = mid - left + 1 n2 = right - mid # Copy elements of both halves in a temp arr for i in range(n1): temp_arr[start1 + i] = nums[start1 + i] for i in range(n2): temp_arr[start2 + i] = nums[start2 + i] # Merge the sub-arrays 'in tempArray' back into the original array 'arr' in sorted order i, j , k = 0, 0, left while i < n1 and j < n2: if temp_arr[start1 + i] <= temp_arr[start2 + j]: nums[k] = temp_arr[start1 + i] i += 1 else: nums[k] = temp_arr[start2 + j] j += 1 k += 1 # Copy remaining elements while i < n1: nums[k] = temp_arr[start1 + i] i += 1 k += 1 while j < n2: nums[k] = temp_arr[start2 + j] j += 1 k += 1 def merge_sort(left, right): if left >= right: return mid = (left + right) // 2 merge_sort(left, mid) merge_sort(mid + 1, right) merge(left, mid, right) merge_sort(0, len(nums) - 1) return nums
jimit105/leetcode-submissions
problems/sort_an_array/solution.py
solution.py
py
1,582
python
en
code
0
github-code
6
19882566170
from jinja2 import Environment, BaseLoader, TemplateNotFound import importlib_resources class PackageLoader(BaseLoader): def __init__(self, path): self.path = path def get_source(self, environment, template): from backendService import templates try: source = importlib_resources.read_text(templates, template) except FileNotFoundError as exc: raise TemplateNotFound(template) from exc return source, self.path, lambda: True JINJA_ENV = Environment(loader=PackageLoader("backendService.http.templates")) def get_template(name): return JINJA_ENV.get_template(name)
bitlogik/guardata
backendService/templates/__init__.py
__init__.py
py
648
python
en
code
9
github-code
6
10424214131
#-*- coding: utf-8 -*- u""" @author: Martí Congost @contact: marti.congost@whads.com @organization: Whads/Accent SL @since: October 2008 """ import cherrypy from cocktail.modeling import cached_getter from woost.controllers.publishablecontroller import PublishableController class DocumentController(PublishableController): """A controller that serves rendered pages.""" def __call__(self, **kwargs): # Document specified redirection document = self.context["publishable"] if document.redirection_mode: redirection_target = document.find_redirection_target() if redirection_target is None: raise cherrypy.NotFound() raise cherrypy.HTTPRedirect(redirection_target.get_uri()) # No redirection, serve the document normally return PublishableController.__call__(self) @cached_getter def page_template(self): template = self.context["publishable"].template if template is None: raise cherrypy.NotFound() return template @cached_getter def view_class(self): return self.page_template.identifier
marticongost/woost
woost/controllers/documentcontroller.py
documentcontroller.py
py
1,181
python
en
code
0
github-code
6
31628139132
# fastapi from fastapi import APIRouter from fastapi_sqlalchemy import db # starlette from starlette.requests import Request # models from server.models import User router = APIRouter( prefix="/accounts", tags=["accounts"], dependencies=[], responses={ 400: {"description": "Bad request"} }, ) @router.get("/profile/") def profile(request: Request): user_id = request.state.user_id user = db.session.query(User).filter( User.id == user_id ).first() return user.dict()
RajeshJ3/arya.ai
server/accounts/account_controllers.py
account_controllers.py
py
525
python
en
code
0
github-code
6
21729046794
import firebase_admin from firebase_admin import db from flask import jsonify from hashlib import md5 from random import randint from time import time from time import time, sleep firebase_admin.initialize_app(options={ 'databaseURL': 'https://copy-passed.firebaseio.com', }) waitlist = db.reference('waitlist') ids = db.reference('ids') timeoutSeconds = 120 def put(ref, data): orig = ref.get() if not orig: return False for i, j in data.items(): orig[i] = j ref.update(orig) return True def add_user(request): delBlankw = False delBlanki = False if waitlist.get() and request.json["id"] in waitlist.get(): return "Conflict", 409 if not waitlist.get(): delBlankw = True db.reference().update({"waitlist": {"blank--": 0}}) if not ids.get(): delBlanki = True db.reference().update({"ids": {"blank--": 0}}) put(waitlist, {request.json["id"]: "x"}) start = time() # print("entering waitlist") while waitlist.child(request.json["id"]).get() == "x": sleep(.5) if (time() - start) >= timeoutSeconds: if delBlanki: ids.child("blank--").delete() if delBlankw: waitlist.child("blank--").delete() waitlist.child(request.json["id"]).delete() return "Request Timeout", 408 uuid = waitlist.child(request.json["id"]).get() waitlist.child(request.json["id"]).delete() if not ids.get(): delBlanki = True db.reference().update({"ids": {"blank--": 0}}) idu = get_id(uuid) while idu in ids.get(): idu = get_id(uuid) put(ids, {idu: {"uid": uuid, "timestamp": time()}}) # print(ids) if delBlanki: ids.child("blank--").delete() if delBlankw: waitlist.child("blank--").delete() return jsonify({"id": idu}), 201 def get_id(oid): return md5((str(randint(0, 1e12)) + oid).encode()).hexdigest() def authenticator(request): if not request.json or 'id' not in request.json: return "Not Acceptable", 406 if "revoke" in request.json and request.json["revoke"]: if ids.get() and ids.child(request.json["id"]).get(): ids.child(request.json["id"]).delete() return "Deleted", 200 else: return "Not Found", 204 if request.path == '/' or request.path == '': if request.method == 'POST': return add_user(request) else: return 'Method not supported', 405 return 'URL not found', 404
ocular-data/copy-passed-firebase
python_functions/authenticator/main.py
main.py
py
2,575
python
en
code
0
github-code
6
15581775407
#!/usr/bin/env python import pygame import constants from network import Type import physical_object from physical_object import PhysicalObject import bullet import math from pygame.rect import Rect import play_sound from pygame import mixer from pygame.mixer import Sound TURRET_WIDTH = 24 TURRET_HEIGHT = 28 GUN_CHARGEUP_TIME = 100 class Turret(PhysicalObject): """This class represents a turret""" typ = Type.TURRET timeLeftToCharge = 0 def __init__(self, position, level): PhysicalObject.__init__(self, position) self.level = level self.controllingPlayer = physical_object.OWNER_DEFENDER self.physicsRect = pygame.rect.Rect(self.r_x, self.r_y, TURRET_WIDTH, TURRET_HEIGHT) self.image = pygame.image.load('images/defenses.png') self.rect = self.image.get_rect() self.actions = {"charged 0": (0, 112, TURRET_WIDTH, TURRET_HEIGHT), "charged 50": (TURRET_WIDTH, 112, TURRET_WIDTH, TURRET_HEIGHT), "charged 100": (2*TURRET_WIDTH, 112, TURRET_WIDTH, TURRET_HEIGHT)} self.boundsRect = Rect(level.rect.x,level.rect.y,level.rect.width,constants.SCREEN_HEIGHT) self.action = "charged 0" self.area = pygame.rect.Rect(self.actions[self.action]) #print 'turret (x,y) = ', (self.r_x, self.r_y) #print 'turret owner = ', self.controllingPlayer self.timeLeftToCharge = GUN_CHARGEUP_TIME def step(self, scrollPosition): # translate movement boundary self.boundsRect.y = scrollPosition # update self PhysicalObject.step(self, scrollPosition) if self.timeLeftToCharge < (1/5.0)*GUN_CHARGEUP_TIME: self.action = "charged 100" elif self.timeLeftToCharge < (3/5.0)*GUN_CHARGEUP_TIME: self.action = "charged 50" else: self.action = "charged 0" self.area = pygame.rect.Rect(self.actions[self.action]) if self.physicsRect.colliderect(self.boundsRect): turretSeesShip = False target = None for o in self.level.physicalObjects: if(o.controllingPlayer == physical_object.OWNER_ATTACKER and o.targetType == physical_object.TARGET_TYPE_SHIP): turretSeesShip = True target = o if turretSeesShip: self.timeLeftToCharge -= 1 if self.timeLeftToCharge <= 0: # it's the ship! get it! soundEfx = pygame.mixer.Sound(constants.TURRET_BULLET_SFX) soundEfx.set_volume(0.5) play_sound.PlaySounds(soundEfx, 2) theBullet = bullet.Bullet((self.rect.x + TURRET_WIDTH/2 - bullet.BULLET_WIDTH/2, self.rect.y + (bullet.BULLET_HEIGHT + 6)), "tur") theBullet.controllingPlayer = self.controllingPlayer # old velocity code #deltaX = o.r_x - self.r_x #deltaY = o.r_y - self.r_y #distance = math.hypot(deltaX, deltaY) #theBullet.v_x = bullet.DEFAULT_SPEED*(deltaX/distance) # v_x = speed*cos #theBullet.v_y = bullet.DEFAULT_SPEED*(deltaY/distance) # v_y = speed*sin # new velocity code; apparently tries to divide by zero and take the square root of a negative number #timeToImpact = ((o.r_x*o.v_x + o.r_y*o.v_y + math.sqrt(-pow(o.r_y,2)*(-1 + pow(o.v_x, 2)) + o.r_x*(o.r_x + 2*o.r_y*o.v_x*o.v_y - o.r_x*pow(o.v_y, 2))))/(-1 + pow(o.v_x, 2) + pow(o.v_y, 2))) #theBullet.v_x = (o.r_x + timeToImpact*o.v_x)/timeToImpact #theBullet.v_y = (o.r_y + timeToImpact*o.v_y)/timeToImpact # new velocity code, mk. II futurepos = (target.r_x, target.r_y) # Guess that where they'll be in the future is where they are now MY_SPEED = 1.5 + constants.SCROLL_RATE for i in range(0, 4): dist = (futurepos[0] - self.r_x, futurepos[1] - self.r_y) timetotarget = math.hypot(dist[0], dist[1]) / bullet.DEFAULT_SPEED distcovered = (target.v_x*timetotarget, target.v_y*timetotarget) futurepos = (target.r_x + distcovered[0], target.r_y + distcovered[1]) dirNotNormalized = (futurepos[0] - self.r_x, futurepos[1] - self.r_y) dirNormalized = ((dirNotNormalized[0]/math.hypot(dirNotNormalized[0], dirNotNormalized[1]), dirNotNormalized[1]/math.hypot(dirNotNormalized[0], dirNotNormalized[1]))) theBullet.v_x = MY_SPEED*dirNormalized[0] theBullet.v_y = MY_SPEED*dirNormalized[1] # end of velocity code self.childObjects.append(theBullet) self.timeLeftToCharge = GUN_CHARGEUP_TIME else: # if the turret doesn't see the ship, self.timeLeftToCharge = GUN_CHARGEUP_TIME # then the turret should power down
Nayruden/GameDev
turret.py
turret.py
py
4,330
python
en
code
6
github-code
6
18262922550
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import sys import types import re import subprocess import unitTestUtil import logging sensorDict = {} util_support_map = ['fbttn', 'fbtp', 'lightning', 'minipack', 'fby2', 'yosemite'] multi_host_map = ['fby2', 'yosemite'] lm_sensor_support_map = ['wedge', 'wedge100', 'galaxy100', 'cmm'] def sensorTest(platformType, data, util): """ Check that sensor data is with spec or is just present """ # no drivers present from sensor cmd if platformType in util_support_map: failed = sensorTestUtil(platformType, data, util) # drivers present from sensor cmd else: failed = sensorTestNetwork(platformType, data, util) if len(failed) == 0: print("Sensor Readings on " + platformType + " [PASSED]") sys.exit(0) else: print("Sensor Readings on " + platformType + " for keys: " + str(failed) + " [FAILED]") sys.exit(1) def sensorTestNetwork(platformType, data, util): failed = [] createSensorDictNetworkLmSensors(util) logger.debug("Checking values against json file") for driver in data: if isinstance(data[driver], dict): for reading in data[driver]: if data[driver][reading] == "yes": try: raw_value = sensorDict[driver][reading] except Exception: failed += [driver, reading] continue if isinstance(data[driver][reading], list): values = re.findall(r"[-+]?\d*\.\d+|\d+", raw_value) if len(values) == 0: failed += [driver, reading] continue rang = data[driver][reading] if float(rang[0]) > float(values[0]) or float( values[0]) > float(rang[1]): failed += [driver, reading] else: if bool(re.search(r'\d', raw_value)): continue else: failed += [driver, reading] return failed def sensorTestUtil(platformType, data, util): failed = [] createSensorDictUtil(util) logger.debug("checking values against json file") for sensor in data: # skip type argument in json file if sensor == "type": continue try: raw_values = sensorDict[sensor] except Exception: failed += [sensor] continue if platformType in multi_host_map: if len(raw_values) not in [1, 4]: failed += [sensor] continue elif len(raw_values) not in [1]: failed += [sensor] continue if isinstance(data[sensor], list): for raw_value in raw_values: values = re.findall(r"[-+]?\d*\.\d+|\d+", raw_value) if len(values) == 0: failed += [sensor] continue rang = data[sensor] if float(rang[0]) > float(values[0]) or float(values[0]) > float( rang[1]): failed += [sensor] else: for raw_value in raw_values: if 'ok' not in raw_value: failed += [sensor + raw_value] break return failed def createSensorDictNetworkLmSensors(util): """ Creating a sensor dictionary driver -> sensor -> reading Supports wedge, wedge100, galaxy100, and cmm """ cmd = util.SensorCmd if cmd is None: raise Exception("sensor command not implemented") logger.debug("executing command: ".format(cmd)) f = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) info, err = f.communicate() if len(err) != 0: raise Exception(err) logger.debug("Creating sensor dictionary") info = info.decode('utf-8') info = info.split('\n') currentKey = '' for line in info: if ':' in line: lineInfo = line.split(':') key = lineInfo[0] val = ''.join(lineInfo[1:]) sensorDict[currentKey][key] = val elif len(line) == 0 or line[0] == ' ': continue else: sensorDict[line] = {} currentKey = line def createSensorDictUtil(util): """ Creating a sensor dictionary sensor -> reading Supports fbtp and fbttn """ cmd = util.SensorCmd if cmd is None: raise Exception("sensor command not implemented") logger.debug("executing command: " + str(cmd)) f = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) info, err = f.communicate() if len(err) != 0: raise Exception(err) logger.debug("creating sensor dictionary") info = info.decode('utf-8') info = info.split('\n') for line in info: if ':' in line: lineInfo = line.split(':') key = lineInfo[0] val = ''.join(lineInfo[1:]) if key not in sensorDict: sensorDict[key] = [] sensorDict[key].append(val) if "timed out" in line: print(line) raise Exception(line) if __name__ == "__main__": """ Input to this file should look like the following: python sensorTest.py wedgeSensor.json """ util = unitTestUtil.UnitTestUtil() logger = util.logger(logging.WARN) try: data = {} args = util.Argparser(['json', '--verbose'], [str, None], ['json file', 'output all steps from test with mode options: DEBUG, INFO, WARNING, ERROR']) if args.verbose is not None: logger = util.logger(args.verbose) data = util.JSONparser(args.json) platformType = data['type'] utilType = util.importUtil(platformType) sensorTest(platformType, data, utilType) except Exception as e: print("Sensor test [FAILED]") print("Error code returned: {}".format(e)) sys.exit(1)
WeilerWebServices/Facebook
openbmc/tests/common/sensorTest.py
sensorTest.py
py
6,525
python
en
code
3
github-code
6
34172290130
import os import csv file_path = os.path.join(".","Resources", "budget_data.csv") # print(file_path) with open(file_path, "r") as csv_file: csv_reader_obj = csv.reader(csv_file, delimiter=",") # print(list(csv_reader_obj)) # Read the header row first and move the pointer to next line csv_header = next(csv_file) print(csv_header) data_list = list(csv_reader_obj) total_month = len(data_list) # print(total_month) total_profit_loss = int(data_list[0][1]) total_change = 0 greatest_profit_increase = 0 greatest_profit_decrease = 0 greatest_profit_increase_month = "" greatest_profit_decrease_month = "" previous_month_profit = int(data_list[0][1]) for i in range(1, total_month): current_month_profit = int(data_list[i][1]) change = current_month_profit - previous_month_profit total_profit_loss += current_month_profit total_change += change previous_month_profit = current_month_profit if greatest_profit_increase < change: greatest_profit_increase = change greatest_profit_increase_month = data_list[i][0] if greatest_profit_decrease > current_month_profit: greatest_profit_decrease = change greatest_profit_decrease_month = data_list[i][0] # print(total_profit_loss) # print(total_change) result = f"\ Financial Ananlysis\n\ -------------------------------\n\ Total Months: {total_month}\n\ Total: ${total_profit_loss}\n\ Average Change: ${round(total_change / (total_month - 1), 2)}\n\ Greatest Increase in Profits: {greatest_profit_increase_month} (${greatest_profit_increase})\n\ Greatest Decrease in Profits: {greatest_profit_decrease_month} (${greatest_profit_decrease})\n\ " print(result) with open("PyBank_results.txt", "w") as file: file.write(result)
Simon-Xu-Lan/python-challenge
PyBank/main.py
main.py
py
1,772
python
en
code
0
github-code
6
39275871070
import sys import time import traceback from datetime import datetime import random import re from decimal import Decimal import numexpr from typing import List, Dict import disnake from disnake.ext import commands, tasks from disnake import ActionRow, Button from disnake.enums import OptionType from disnake.app_commands import Option from disnake.enums import ButtonStyle import copy import store from Bot import logchanbot, EMOJI_ZIPPED_MOUTH, EMOJI_ERROR, EMOJI_RED_NO, EMOJI_ARROW_RIGHTHOOK, \ EMOJI_MONEYFACE, NOTIFICATION_OFF_CMD, EMOJI_SPEAK, EMOJI_BELL, EMOJI_BELL_SLASH, EMOJI_HOURGLASS_NOT_DONE, \ EMOJI_INFORMATION, EMOJI_PARTY, SERVER_BOT, seconds_str, RowButtonCloseMessage, RowButtonRowCloseAnyMessage, \ text_to_num, truncate from cogs.wallet import WalletAPI from cogs.utils import Utils, num_format_coin class MyMathBtn(disnake.ui.Button): def __init__(self, label, _style, _custom_id): super().__init__(label=label, style=_style, custom_id=_custom_id) class MathButton(disnake.ui.View): message: disnake.Message a_index: int coin_list: Dict def __init__(self, bot, ctx, answer_list, answer_index: int, timeout: float, coin_list): super().__init__(timeout=timeout) i = 0 self.bot = bot self.utils = Utils(self.bot) self.a_index = answer_index self.coin_list = coin_list self.ctx = ctx for name in answer_list: custom_id = "mathtip_answers_" + str(i) self.add_item(MyMathBtn(name, ButtonStyle.green, custom_id)) i += 1 async def on_timeout(self): i = 0 for child in self.children: if isinstance(child, disnake.ui.Button): child.disabled = True if i == self.a_index: child.style = ButtonStyle.red i += 1 ## Update content get_mathtip = None try: original_message = await self.ctx.original_message() get_mathtip = await store.get_discord_mathtip_by_msgid(str(original_message.id)) except Exception: traceback.print_exc(file=sys.stdout) return if get_mathtip is None: await logchanbot(f"[ERROR MATH TIP] Failed timeout in guild {self.ctx.guild.name} / {self.ctx.guild.id}!") return if get_mathtip['status'] == "ONGOING": answered_msg_id = await store.get_math_responders_by_message_id(str(self.message.id)) amount = get_mathtip['real_amount'] coin_name = get_mathtip['token_name'] owner_displayname = get_mathtip['from_username'] total_answer = answered_msg_id['total'] coin_decimal = getattr(getattr(self.coin_list, coin_name), "decimal") contract = getattr(getattr(self.coin_list, coin_name), "contract") token_display = getattr(getattr(self.coin_list, coin_name), "display_name") price_with = getattr(getattr(self.coin_list, coin_name), "price_with") coin_emoji = getattr(getattr(self.coin_list, coin_name), "coin_emoji_discord") coin_emoji = coin_emoji + " " if coin_emoji else "" indiv_amount_str = num_format_coin(truncate(amount / len(answered_msg_id['right_ids']), 12)) if \ len(answered_msg_id['right_ids']) > 0 else num_format_coin(truncate(amount, 12)) indiv_amount = truncate(amount / len(answered_msg_id['right_ids']), 12) if \ len(answered_msg_id['right_ids']) > 0 else truncate(amount, 12) amount_in_usd = 0.0 each_amount_in_usd = 0.0 total_equivalent_usd = "" per_unit = None if price_with: per_unit = get_mathtip['unit_price_usd'] if per_unit and per_unit > 0 and len(answered_msg_id['right_ids']) > 0: each_amount_in_usd = per_unit * float(indiv_amount) if each_amount_in_usd > 0.0001: num = len(answered_msg_id['right_ids']) if len(answered_msg_id['right_ids']) > 0 else 1 total_equivalent_usd = " ~ {:,.4f} USD".format(each_amount_in_usd * num) elif per_unit and per_unit > 0 and len(answered_msg_id['right_ids']) == 0: each_amount_in_usd = per_unit * float(indiv_amount) total_equivalent_usd = " ~ {:,.4f} USD".format(each_amount_in_usd) embed = disnake.Embed( title=f"🧮 Math Tip {coin_emoji}{num_format_coin(amount)} "\ f"{token_display} {total_equivalent_usd} - Total answer {total_answer}", description=get_mathtip['eval_content'], timestamp=datetime.fromtimestamp(get_mathtip['math_endtime'] ) ) embed.add_field( name="Correct answer", value=get_mathtip['eval_answer'], inline=False ) embed.add_field( name="Correct ( {} )".format(len(answered_msg_id['right_ids'])), value="{}".format( " | ".join(answered_msg_id['right_names']) if len(answered_msg_id['right_names']) > 0 else "N/A"), inline=False ) embed.add_field( name="Incorrect ( {} )".format(len(answered_msg_id['wrong_ids'])), value="{}".format( " | ".join(answered_msg_id['wrong_names']) if len(answered_msg_id['wrong_names']) > 0 else "N/A"), inline=False ) if len(answered_msg_id['right_ids']) > 0: embed.add_field( name='Each Winner Receives:', value=f"{coin_emoji}{indiv_amount_str} {token_display}", inline=True ) embed.set_footer(text=f"MathTip by {owner_displayname}") if len(answered_msg_id['right_ids']) > 0: await store.sql_user_balance_mv_multiple( get_mathtip['from_userid'], answered_msg_id['right_ids'], get_mathtip['guild_id'], get_mathtip['channel_id'], float(indiv_amount), coin_name, "MATHTIP", coin_decimal, SERVER_BOT, contract, float(each_amount_in_usd), None ) # Change status change_status = await store.discord_mathtip_update(get_mathtip['message_id'], "COMPLETED") await original_message.edit(embed=embed, view=self) else: await original_message.edit(view=self) class MathTips(commands.Cog): def __init__(self, bot): self.bot = bot self.wallet_api = WalletAPI(self.bot) self.utils = Utils(self.bot) self.math_duration_min = 5 self.math_duration_max = 45 self.max_ongoing_by_user = self.bot.config['discord']['max_ongoing_by_user'] self.max_ongoing_by_guild = self.bot.config['discord']['max_ongoing_by_guild'] async def async_mathtip(self, ctx, amount: str, token: str, duration: str, math_exp: str = None): coin_name = token.upper() if len(self.bot.coin_alias_names) > 0 and coin_name in self.bot.coin_alias_names: coin_name = self.bot.coin_alias_names[coin_name] # Token name check if not hasattr(self.bot.coin_list, coin_name): msg = f'{ctx.author.mention}, **{coin_name}** does not exist with us.' await ctx.response.send_message(msg) return # End token name check await ctx.response.send_message(f"{ctx.author.mention}, /mathtip preparation... ") serverinfo = self.bot.other_data['guild_list'].get(str(ctx.guild.id)) if serverinfo and serverinfo['tiponly'] and serverinfo['tiponly'] != "ALLCOIN" and coin_name not in serverinfo[ 'tiponly'].split(","): allowed_coins = serverinfo['tiponly'] msg = f"{ctx.author.mention}, **{coin_name}** is not allowed here. Currently, allowed `{allowed_coins}`. "\ "You can ask guild owner to allow. `/SETTING TIPONLY coin1,coin2,...`" await ctx.edit_original_message(content=msg) return try: self.bot.commandings.append((str(ctx.guild.id) if hasattr(ctx, "guild") and hasattr(ctx.guild, "id") else "DM", str(ctx.author.id), SERVER_BOT, "/mathtip", int(time.time()))) await self.utils.add_command_calls() except Exception: traceback.print_exc(file=sys.stdout) # check lock try: is_user_locked = self.utils.is_locked_user(str(ctx.author.id), SERVER_BOT) if is_user_locked is True: await ctx.edit_original_message( content = f"{EMOJI_RED_NO} {ctx.author.mention}, your account is locked for using the Bot. "\ "Please contact bot dev by /about link." ) return except Exception: traceback.print_exc(file=sys.stdout) # end check lock # Check if there is many airdrop/mathtip/triviatip try: count_ongoing = await store.discord_freetip_ongoing(str(ctx.author.id), "ONGOING") if count_ongoing >= self.max_ongoing_by_user and \ ctx.author.id != self.bot.config['discord']['owner_id']: msg = f"{EMOJI_INFORMATION} {ctx.author.mention}, you still have some ongoing tips. "\ f"Please wait for them to complete first!" await ctx.edit_original_message(content=msg) return count_ongoing = await store.discord_freetip_ongoing_guild(str(ctx.guild.id), "ONGOING") # Check max if set in guild if serverinfo and count_ongoing >= serverinfo['max_ongoing_drop'] and\ ctx.author.id != self.bot.config['discord']['owner_id']: msg = f"{EMOJI_INFORMATION} {ctx.author.mention}, there are still some ongoing drops"\ f" or tips in this guild. Please wait for them to complete first!" await ctx.edit_original_message(content=msg) return elif serverinfo is None and count_ongoing >= self.max_ongoing_by_guild and\ ctx.author.id != self.bot.config['discord']['owner_id']: msg = f"{EMOJI_INFORMATION} {ctx.author.mention}, there are still some ongoing drops or"\ f" tips in this guild. Please wait for them to complete first!" await ctx.edit_original_message(content=msg) await logchanbot(f"[MATHTIP] server {str(ctx.guild.id)} has no data in discord_server.") return except Exception: traceback.print_exc(file=sys.stdout) # End of ongoing check try: token_display = getattr(getattr(self.bot.coin_list, coin_name), "display_name") contract = getattr(getattr(self.bot.coin_list, coin_name), "contract") try: coin_emoji = "" if ctx.guild.get_member(int(self.bot.user.id)).guild_permissions.external_emojis is True: coin_emoji = getattr(getattr(self.bot.coin_list, coin_name), "coin_emoji_discord") coin_emoji = coin_emoji + " " if coin_emoji else "" except Exception: traceback.print_exc(file=sys.stdout) net_name = getattr(getattr(self.bot.coin_list, coin_name), "net_name") type_coin = getattr(getattr(self.bot.coin_list, coin_name), "type") deposit_confirm_depth = getattr(getattr(self.bot.coin_list, coin_name), "deposit_confirm_depth") coin_decimal = getattr(getattr(self.bot.coin_list, coin_name), "decimal") min_tip = getattr(getattr(self.bot.coin_list, coin_name), "real_min_tip") max_tip = getattr(getattr(self.bot.coin_list, coin_name), "real_max_tip") price_with = getattr(getattr(self.bot.coin_list, coin_name), "price_with") get_deposit = await self.wallet_api.sql_get_userwallet( str(ctx.author.id), coin_name, net_name, type_coin, SERVER_BOT, 0 ) if get_deposit is None: get_deposit = await self.wallet_api.sql_register_user( str(ctx.author.id), coin_name, net_name, type_coin, SERVER_BOT, 0 ) wallet_address = get_deposit['balance_wallet_address'] if type_coin in ["TRTL-API", "TRTL-SERVICE", "BCN", "XMR"]: wallet_address = get_deposit['paymentid'] elif type_coin in ["XRP"]: wallet_address = get_deposit['destination_tag'] except Exception: traceback.print_exc(file=sys.stdout) msg = f"{EMOJI_RED_NO} {ctx.author.mention}, some internal error. Please try again." await ctx.edit_original_message(content=msg) return height = await self.wallet_api.get_block_height(type_coin, coin_name, net_name) # check if amount is all all_amount = False if not amount.isdigit() and amount.upper() == "ALL": all_amount = True userdata_balance = await store.sql_user_balance_single( str(ctx.author.id), coin_name, wallet_address, type_coin, height, deposit_confirm_depth, SERVER_BOT ) amount = float(userdata_balance['adjust']) # If $ is in amount, let's convert to coin/token elif "$" in amount[-1] or "$" in amount[0]: # last is $ # Check if conversion is allowed for this coin. amount = amount.replace(",", "").replace("$", "") if price_with is None: msg = f"{EMOJI_RED_NO} {ctx.author.mention}, dollar conversion is not "\ f"enabled for this `{coin_name}`." await ctx.edit_original_message(content=msg) return else: per_unit = await self.utils.get_coin_price(coin_name, price_with) if per_unit and per_unit['price'] and per_unit['price'] > 0: per_unit = per_unit['price'] amount = float(Decimal(amount) / Decimal(per_unit)) else: msg = f"{EMOJI_RED_NO} {ctx.author.mention}, I cannot fetch equivalent price. "\ f"Try with different method." await ctx.edit_original_message(content=msg) return else: amount = amount.replace(",", "") amount = text_to_num(amount) if amount is None: msg = f'{EMOJI_RED_NO} {ctx.author.mention}, invalid given amount.' await ctx.edit_original_message(content=msg) return # end of check if amount is all # Check if tx in progress if str(ctx.author.id) in self.bot.tipping_in_progress and \ int(time.time()) - self.bot.tipping_in_progress[str(ctx.author.id)] < 150: msg = f"{EMOJI_ERROR} {ctx.author.mention}, you have another transaction in progress." await ctx.edit_original_message(content=msg) return try: amount = float(amount) except ValueError: msg = f'{EMOJI_RED_NO} {ctx.author.mention}, invalid amount.' await ctx.edit_original_message(content=msg) return if amount <= 0: msg = f'{EMOJI_RED_NO} {ctx.author.mention}, please get more {token_display}.' await ctx.edit_original_message(content=msg) return def hms_to_seconds(time_string): duration_in_second = 0 if time_string.isdigit(): return int(time_string) try: time_string = time_string.replace("hours", "h") time_string = time_string.replace("hour", "h") time_string = time_string.replace("hrs", "h") time_string = time_string.replace("hr", "h") time_string = time_string.replace("minutes", "mn") time_string = time_string.replace("mns", "mn") time_string = time_string.replace("mins", "mn") time_string = time_string.replace("min", "mn") time_string = time_string.replace("mn", "mn") mult = {'h': 60 * 60, 'mn': 60, 's': 1} duration_in_second = sum( int(num) * mult.get(val, 1) for num, val in re.findall('(\d+)(\w+)', time_string)) except Exception: traceback.print_exc(file=sys.stdout) return duration_in_second default_duration = 60 duration_s = 0 try: duration_s = hms_to_seconds(duration) except Exception: traceback.print_exc(file=sys.stdout) msg = f'{EMOJI_RED_NO} {ctx.author.mention}, invalid duration.' await ctx.edit_original_message(content=msg) return if duration_s == 0: # Skip message duration_s = default_duration # Just info, continue elif duration_s < self.math_duration_min or duration_s > self.math_duration_max: msg = f"{EMOJI_RED_NO} {ctx.author.mention}, invalid duration. "\ f"Please use between {str(self.math_duration_min)}s to {str(self.math_duration_max)}s." await ctx.edit_original_message(content=msg) return try: amount = float(amount) except ValueError: msg = f'{EMOJI_RED_NO} {ctx.author.mention}, invalid amount.' await ctx.edit_original_message(content=msg) return result_float = None wrong_answer_1 = None wrong_answer_2 = None wrong_answer_3 = None eval_string_original = "" if math_exp and len(math_exp) > 0: eval_string_original = math_exp math_exp = math_exp.replace(",", "").replace(" ", "") supported_function = ['+', '-', '*', '/', '(', ')', '.', ',', '!', '^'] additional_support = ['exp', 'sqrt', 'abs', 'log10', 'log', 'sinh', 'cosh', 'tanh', 'sin', 'cos', 'tan'] has_operation = False for each_op in ['exp', 'sqrt', 'abs', 'log10', 'log', 'sinh', 'cosh', 'tanh', 'sin', 'cos', 'tan', '+', '-', '*', '/', '!', '^']: if each_op in math_exp: has_operation = True if has_operation is False: msg = f'{EMOJI_RED_NO} {ctx.author.mention}, nothing to calculate.' await ctx.edit_original_message(content=msg) return test_string = math_exp for each in additional_support: test_string = test_string.replace(each, "") if all([c.isdigit() or c in supported_function for c in test_string]): try: result = numexpr.evaluate(math_exp).item() listrand = [2, 3, 4, 5, 6, 7, 8, 9, 10] # OK have result. Check it if it's bigger than 10**10 or below 0.0001 if abs(result) > 10 ** 10: msg = f'{EMOJI_RED_NO} Result for `{eval_string_original}` is too big.' await ctx.edit_original_message(content=msg) return elif abs(result) < 0.0001: msg = f'{EMOJI_RED_NO} Result for `{eval_string_original}` is too small.' await ctx.edit_original_message(content=msg) return else: # store result in float XX.XXXX if result >= 0: result_float = truncate(float(result), 4) wrong_answer_1 = truncate(float(result * random.choice(listrand)), 4) wrong_answer_2 = truncate(float(result + random.choice(listrand)), 4) wrong_answer_3 = truncate(float(result - random.choice(listrand)), 4) else: result_float = - abs(truncate(float(result), 4)) wrong_answer_1 = - abs(truncate(float(result * random.choice(listrand)), 4)) wrong_answer_2 = - abs(truncate(float(result + random.choice(listrand)), 4)) wrong_answer_3 = - abs(truncate(float(result - random.choice(listrand)), 4)) except Exception: msg = f'{EMOJI_RED_NO}, invalid result for `{eval_string_original}`.' await ctx.edit_original_message(content=msg) return else: msg = f'{EMOJI_ERROR} {ctx.author.mention}, unsupported usage for `{eval_string_original}`.' await ctx.edit_original_message(content=msg) return else: msg = f'{EMOJI_RED_NO} {ctx.author.mention}, invalid math expression.' await ctx.edit_original_message(content=msg) return userdata_balance = await store.sql_user_balance_single( str(ctx.author.id), coin_name, wallet_address, type_coin, height, deposit_confirm_depth, SERVER_BOT ) actual_balance = float(userdata_balance['adjust']) if amount > max_tip or amount < min_tip: msg = f"{EMOJI_RED_NO} {ctx.author.mention}, transactions cannot be bigger "\ f"than **{num_format_coin(max_tip)} {token_display}** "\ f"or smaller than **{num_format_coin(min_tip)} {token_display}**." await ctx.edit_original_message(content=msg) return elif amount > actual_balance: msg = f"{EMOJI_RED_NO} {ctx.author.mention}, insufficient balance to do a math tip of "\ f"**{num_format_coin(amount)} {token_display}**." await ctx.edit_original_message(content=msg) return ## add to queue if str(ctx.author.id) not in self.bot.tipping_in_progress: self.bot.tipping_in_progress[str(ctx.author.id)] = int(time.time()) equivalent_usd = "" total_in_usd = 0.0 per_unit = None if price_with: native_token_name = getattr(getattr(self.bot.coin_list, coin_name), "native_token_name") coin_name_for_price = coin_name if native_token_name: coin_name_for_price = native_token_name if coin_name_for_price in self.bot.token_hints: id = self.bot.token_hints[coin_name_for_price]['ticker_name'] per_unit = self.bot.coin_paprika_id_list[id]['price_usd'] else: per_unit = self.bot.coin_paprika_symbol_list[coin_name_for_price]['price_usd'] if per_unit and per_unit > 0: total_in_usd = float(Decimal(amount) * Decimal(per_unit)) if total_in_usd >= 0.0001: equivalent_usd = " ~ {:,.4f} USD".format(total_in_usd) owner_displayname = "{}#{}".format(ctx.author.name, ctx.author.discriminator) embed = disnake.Embed( title=f"🧮 Math Tip {coin_emoji}{num_format_coin(amount)} {token_display} {equivalent_usd}", description=eval_string_original, timestamp=datetime.fromtimestamp(int(time.time()) + duration_s)) embed.add_field( name="Answering", value="None", inline=False ) embed.set_footer(text=f"Math tip by {owner_displayname}") answers = [str(result_float), str(wrong_answer_1), str(wrong_answer_2), str(wrong_answer_3)] random.shuffle(answers) index_answer = answers.index(str(result_float)) try: view = MathButton(self.bot, ctx, answers, index_answer, duration_s, self.bot.coin_list) view.message = await ctx.original_message() await store.insert_discord_mathtip( coin_name, contract, str(ctx.author.id), owner_displayname, str(view.message.id), eval_string_original, result_float, wrong_answer_1, wrong_answer_2, wrong_answer_3, str(ctx.guild.id), str(ctx.channel.id), amount, total_in_usd, equivalent_usd, per_unit, coin_decimal, int(time.time()) + duration_s, net_name ) await ctx.edit_original_message(content=None, embed=embed, view=view) except disnake.errors.Forbidden: await ctx.edit_original_message(content="Missing permission! Or failed to send embed message.") except Exception: traceback.print_exc(file=sys.stdout) try: del self.bot.tipping_in_progress[str(ctx.author.id)] except Exception: pass @commands.guild_only() @commands.bot_has_permissions(send_messages=True) @commands.slash_command( dm_permission=False, usage='mathtip <amount> <token> <duration> <math expression>', options=[ Option('amount', 'amount', OptionType.string, required=True), Option('token', 'token', OptionType.string, required=True), Option('duration', 'duration', OptionType.string, required=True), Option('math_exp', 'math_exp', OptionType.string, required=True) ], description="Spread math tip by user's answer" ) async def mathtip( self, ctx, amount: str, token: str, duration: str, math_exp: str ): await self.async_mathtip(ctx, amount, token, duration, math_exp) @mathtip.autocomplete("token") async def mathtip_token_name_autocomp(self, inter: disnake.CommandInteraction, string: str): string = string.lower() return [name for name in self.bot.coin_name_list if string in name.lower()][:10] def setup(bot): bot.add_cog(MathTips(bot))
wrkzcoin/TipBot
wrkzcoin_tipbot/cogs/mathtip.py
mathtip.py
py
26,213
python
en
code
137
github-code
6
21813222206
LEFT = 0 RIGHT = 1 DATA = 2 node = [ [1, 2, "38.5℃以上のねつがある?"], [3, 4, "胸がヒリヒリする"], [5, 6, "元気がある?"], [None, None, "速攻病院"], [None, None, "解熱剤で病院"], [None, None, "様子を見る"], [None, None, "氷枕で病院"] ] MAX = len(node) a = 0 while True: print(node[a][DATA], end="") s = input("(y/n)") if s == "": break if s == "y": a = node[a][LEFT] if s == "n": a = node[a][RIGHT] if node[a][LEFT] == None and node[a][RIGHT] == None: print("診断結果:",node[a][DATA]) break
itc-s21007/algrithm_class
練習問題/YesOrNo.py
YesOrNo.py
py
641
python
en
code
0
github-code
6
18195204561
#implementation of doubly link list #-------implementation of node class------ class Node: head = None tail = None def __init__(self, data): self.key = data self.prev = None self.next = None #--------Insert function------------- def insert(data): if Node.head == None: Node.head = Node(data) Node.tail = Node.head else: temp = Node(data) temp.prev = Node.tail Node.tail.next = temp Node.tail = temp #---------Insert at begin---------------- def insert_at_begin(data): if Node.head == None: insert(data) else: temp = Node(data) temp.next = Node.head Node.head.prev = temp Node.head = temp #--------Inser at a position------------ def insert_at_pos(data, pos): if Node.head == None: print("wrong position") elif pos == 1: insert_at_begin(data) else: temp = Node(data) curr = Node.head for index in range(pos - 2): curr = curr.next if curr == None: print("wrong position") return temp.next = curr.next temp.prev = curr curr.next = temp #--------delete a node--------------------- def delete(): if Node.head == None: print("Nothing to delete") else: Node.tail = Node.tail.prev Node.tail.next = None #---------delete at begin------------------- def delete_first(): if Node.head == None: print("Nothing to delete") else: Node.head = Node.head.next Node.head.prev = None #--------delete at pos---------------------- def delete_at_pos(pos): if Node.head == None: print("wrong pos") elif pos == 1: delete_first() else: curr = Node.head for index in range(pos - 2): curr = curr.next nextNode = curr.next.next curr.next = nextNode if curr.next != None: nextNode.prev = curr #---------traverse function----------------- def traverse(): if Node.head == None: return else: curr = Node.head while curr != None: print(curr.key) curr = curr.next #---------search a node---------------------- def search(data): index = 0 if Node.head == None: print("List is empty") else: curr = Node.head while curr != None: index += 1 if curr.key == data: print(index) return curr = curr.next if curr.next == Node.head: print("-1") #-------reverse the doubly link list--------- def reverse(): if Node.head == None: return if Node.head.next == None: return else: stack = [] curr = Node.head Node.head = None while curr is not None: stack.append(curr.key) curr = curr.next while len(stack) > 0: insert(stack.pop()) insert(10) insert(20) insert(30) insert(40) insert(50) insert(60) delete_at_pos(6) traverse() reverse() traverse()
Sjasvin93/datastructures-with-python
doubly_linked_list.py
doubly_linked_list.py
py
3,122
python
en
code
0
github-code
6
30357800081
from math import log10 from pyface.qt import QtCore, QtGui from traits.api import TraitError, Str, Float, Any, Bool from .editor_factory import TextEditor from .editor import Editor from .constants import OKColor, ErrorColor from .helper import IconButton # ------------------------------------------------------------------------- # 'BaseRangeEditor' class: # ------------------------------------------------------------------------- class BaseRangeEditor(Editor): """The base class for Range editors. Using an evaluate trait, if specified, when assigning numbers the object trait. """ # ------------------------------------------------------------------------- # Trait definitions: # ------------------------------------------------------------------------- #: Function to evaluate floats/ints evaluate = Any() def _set_value(self, value): if self.evaluate is not None: value = self.evaluate(value) Editor._set_value(self, value) class SimpleSliderEditor(BaseRangeEditor): """Simple style of range editor that displays a slider and a text field. The user can set a value either by moving the slider or by typing a value in the text field. """ # ------------------------------------------------------------------------- # Trait definitions: # ------------------------------------------------------------------------- #: Low value for the slider range low = Any() #: High value for the slider range high = Any() def init(self, parent): """Finishes initializing the editor by creating the underlying toolkit widget. """ factory = self.factory if not factory.low_name: self.low = factory.low if not factory.high_name: self.high = factory.high self.evaluate = factory.evaluate self.sync_value(factory.evaluate_name, "evaluate", "from") self.sync_value(factory.low_name, "low", "from") self.sync_value(factory.high_name, "high", "from") self.control = QtGui.QWidget() panel = QtGui.QHBoxLayout(self.control) panel.setContentsMargins(0, 0, 0, 0) fvalue = self.value try: if not (self.low <= fvalue <= self.high): fvalue = self.low fvalue_text = self.string_value(fvalue) except: fvalue_text = "" fvalue = self.low ivalue = self._convert_to_slider(fvalue) self._label_lo = QtGui.QLabel() self._label_lo.setAlignment( QtCore.Qt.AlignmentFlag.AlignRight | QtCore.Qt.AlignmentFlag.AlignVCenter ) if factory.label_width > 0: self._label_lo.setMinimumWidth(int(factory.label_width)) panel.addWidget(self._label_lo) self.control.slider = slider = QtGui.QSlider(QtCore.Qt.Orientation.Horizontal) slider.setTracking(factory.auto_set) slider.setMinimum(0) slider.setMaximum(10000) slider.setPageStep(1000) slider.setSingleStep(100) slider.setValue(ivalue) slider.valueChanged.connect(self.update_object_on_scroll) panel.addWidget(slider) self._label_hi = QtGui.QLabel() panel.addWidget(self._label_hi) if factory.label_width > 0: self._label_hi.setMinimumWidth(int(factory.label_width)) self.control.text = text = QtGui.QLineEdit(fvalue_text) text.editingFinished.connect(self.update_object_on_enter) # The default size is a bit too big and probably doesn't need to grow. sh = text.sizeHint() sh.setWidth(sh.width() // 2) text.setMaximumSize(sh) panel.addWidget(text) low_label = factory.low_label if factory.low_name != "": low_label = self.string_value(self.low) high_label = factory.high_label if factory.high_name != "": high_label = self.string_value(self.high) self._label_lo.setText(low_label) self._label_hi.setText(high_label) self.set_tooltip(slider) self.set_tooltip(self._label_lo) self.set_tooltip(self._label_hi) self.set_tooltip(text) def update_object_on_scroll(self, pos): """Handles the user changing the current slider value.""" value = self._convert_from_slider(pos) blocked = self.control.text.blockSignals(True) try: self.value = value self.control.text.setText(self.string_value(value)) except TraitError as exc: from traitsui.api import raise_to_debug raise_to_debug() finally: self.control.text.blockSignals(blocked) def update_object_on_enter(self): """Handles the user pressing the Enter key in the text field.""" # It is possible the event is processed after the control is removed # from the editor if self.control is None: return try: value = eval(str(self.control.text.text()).strip()) except Exception as ex: # They entered something that didn't eval as a number, (e.g., # 'foo') pretend it didn't happen value = self.value self.control.text.setText(str(value)) # for compound editor, value may be non-numeric if not isinstance(value, (int, float)): return if not self.factory.is_float: value = int(value) # If setting the value yields an error, the resulting error dialog # stealing focus could trigger another editingFinished signal so we # block signals here blocked = self.control.text.blockSignals(True) try: self.value = value blocked = self.control.slider.blockSignals(True) try: self.control.slider.setValue( self._convert_to_slider(self.value) ) finally: self.control.slider.blockSignals(blocked) except TraitError: # They entered something invalid, pretend it didn't happen value = self.value self.control.text.setText(str(value)) finally: self.control.text.blockSignals(blocked) def update_editor(self): """Updates the editor when the object trait changes externally to the editor. """ value = self.value low = self.low high = self.high try: text = self.string_value(value) 1 / (low <= value <= high) except: text = "" value = low ivalue = self._convert_to_slider(value) self.control.text.setText(text) blocked = self.control.slider.blockSignals(True) try: self.control.slider.setValue(ivalue) finally: self.control.slider.blockSignals(blocked) def get_error_control(self): """Returns the editor's control for indicating error status.""" return self.control.text def _low_changed(self, low): if self.value < low: if self.factory.is_float: self.value = float(low) else: self.value = int(low) if self._label_lo is not None: self._label_lo.setText(self.string_value(low)) self.update_editor() def _high_changed(self, high): if self.value > high: if self.factory.is_float: self.value = float(high) else: self.value = int(high) if self._label_hi is not None: self._label_hi.setText(self.string_value(high)) self.update_editor() def _convert_to_slider(self, value): """Returns the slider setting corresponding to the user-supplied value.""" if self.high > self.low: ivalue = int( (float(value - self.low) / (self.high - self.low)) * 10000.0 ) else: ivalue = self.low if ivalue is None: ivalue = 0 return ivalue def _convert_from_slider(self, ivalue): """Returns the float or integer value corresponding to the slider setting. """ value = self.low + ((float(ivalue) / 10000.0) * (self.high - self.low)) if not self.factory.is_float: value = int(round(value)) return value # ------------------------------------------------------------------------- class LogRangeSliderEditor(SimpleSliderEditor): # ------------------------------------------------------------------------- """A slider editor for log-spaced values""" def _convert_to_slider(self, value): """Returns the slider setting corresponding to the user-supplied value.""" value = max(value, self.low) ivalue = int( (log10(value) - log10(self.low)) / (log10(self.high) - log10(self.low)) * 10000.0 ) return ivalue def _convert_from_slider(self, ivalue): """Returns the float or integer value corresponding to the slider setting. """ value = float(ivalue) / 10000.0 * (log10(self.high) - log10(self.low)) # Do this to handle floating point errors, where fvalue may exceed # self.high. fvalue = min(self.low * 10 ** (value), self.high) if not self.factory.is_float: fvalue = int(round(fvalue)) return fvalue class LargeRangeSliderEditor(BaseRangeEditor): """A slider editor for large ranges. The editor displays a slider and a text field. A subset of the total range is displayed in the slider; arrow buttons at each end of the slider let the user move the displayed range higher or lower. """ # ------------------------------------------------------------------------- # Trait definitions: # ------------------------------------------------------------------------- #: Low value for the slider range low = Any(0) #: High value for the slider range high = Any(1) #: Low end of displayed range cur_low = Float() #: High end of displayed range cur_high = Float() #: Flag indicating that the UI is in the process of being updated ui_changing = Bool(False) def init(self, parent): """Finishes initializing the editor by creating the underlying toolkit widget. """ factory = self.factory # Initialize using the factory range defaults: self.low = factory.low self.high = factory.high self.evaluate = factory.evaluate # Hook up the traits to listen to the object. self.sync_value(factory.low_name, "low", "from") self.sync_value(factory.high_name, "high", "from") self.sync_value(factory.evaluate_name, "evaluate", "from") self.init_range() low = self.cur_low high = self.cur_high self._set_format() self.control = QtGui.QWidget() panel = QtGui.QHBoxLayout(self.control) panel.setContentsMargins(0, 0, 0, 0) fvalue = self.value try: fvalue_text = self._format % fvalue 1 / (low <= fvalue <= high) except: fvalue_text = "" fvalue = low if high > low: ivalue = int((float(fvalue - low) / (high - low)) * 10000) else: ivalue = low # Lower limit label: self.control.label_lo = label_lo = QtGui.QLabel() label_lo.setAlignment(QtCore.Qt.AlignmentFlag.AlignRight | QtCore.Qt.AlignmentFlag.AlignVCenter) panel.addWidget(label_lo) # Lower limit button: self.control.button_lo = IconButton( QtGui.QStyle.StandardPixmap.SP_ArrowLeft, self.reduce_range ) panel.addWidget(self.control.button_lo) # Slider: self.control.slider = slider = QtGui.QSlider(QtCore.Qt.Orientation.Horizontal) slider.setTracking(factory.auto_set) slider.setMinimum(0) slider.setMaximum(10000) slider.setPageStep(1000) slider.setSingleStep(100) slider.setValue(ivalue) slider.valueChanged.connect(self.update_object_on_scroll) panel.addWidget(slider) # Upper limit button: self.control.button_hi = IconButton( QtGui.QStyle.StandardPixmap.SP_ArrowRight, self.increase_range ) panel.addWidget(self.control.button_hi) # Upper limit label: self.control.label_hi = label_hi = QtGui.QLabel() panel.addWidget(label_hi) # Text entry: self.control.text = text = QtGui.QLineEdit(fvalue_text) text.editingFinished.connect(self.update_object_on_enter) # The default size is a bit too big and probably doesn't need to grow. sh = text.sizeHint() sh.setWidth(sh.width() // 2) text.setMaximumSize(sh) panel.addWidget(text) label_lo.setText(str(low)) label_hi.setText(str(high)) self.set_tooltip(slider) self.set_tooltip(label_lo) self.set_tooltip(label_hi) self.set_tooltip(text) # Update the ranges and button just in case. self.update_range_ui() def update_object_on_scroll(self, pos): """Handles the user changing the current slider value.""" value = self.cur_low + ( (float(pos) / 10000.0) * (self.cur_high - self.cur_low) ) self.control.text.setText(self._format % value) if self.factory.is_float: self.value = value else: self.value = int(value) def update_object_on_enter(self): """Handles the user pressing the Enter key in the text field.""" # It is possible the event is processed after the control is removed # from the editor if self.control is None: return try: self.value = eval(str(self.control.text.text()).strip()) except TraitError as excp: pass def update_editor(self): """Updates the editor when the object trait changes externally to the editor. """ value = self.value low = self.low high = self.high try: text = self._format % value 1 / (low <= value <= high) except: value = low self.value = value if not self.ui_changing: self.init_range() self.update_range_ui() def update_range_ui(self): """Updates the slider range controls.""" low, high = self.cur_low, self.cur_high value = self.value self._set_format() self.control.label_lo.setText(self._format % low) self.control.label_hi.setText(self._format % high) if high > low: ivalue = int((float(value - low) / (high - low)) * 10000.0) else: ivalue = low blocked = self.control.slider.blockSignals(True) self.control.slider.setValue(ivalue) self.control.slider.blockSignals(blocked) text = self._format % self.value self.control.text.setText(text) self.control.button_lo.setEnabled(low != self.low) self.control.button_hi.setEnabled(high != self.high) def init_range(self): """Initializes the slider range controls.""" value = self.value low, high = self.low, self.high if (high is None) and (low is not None): high = -low mag = abs(value) if mag <= 10.0: cur_low = max(value - 10, low) cur_high = min(value + 10, high) else: d = 0.5 * (10 ** int(log10(mag) + 1)) cur_low = max(low, value - d) cur_high = min(high, value + d) self.cur_low, self.cur_high = cur_low, cur_high def reduce_range(self): """Reduces the extent of the displayed range.""" low, high = self.low, self.high if abs(self.cur_low) < 10: self.cur_low = max(-10, low) self.cur_high = min(10, high) elif self.cur_low > 0: self.cur_high = self.cur_low self.cur_low = max(low, self.cur_low / 10) else: self.cur_high = self.cur_low self.cur_low = max(low, self.cur_low * 10) self.ui_changing = True self.value = min(max(self.value, self.cur_low), self.cur_high) self.ui_changing = False self.update_range_ui() def increase_range(self): """Increased the extent of the displayed range.""" low, high = self.low, self.high if abs(self.cur_high) < 10: self.cur_low = max(-10, low) self.cur_high = min(10, high) elif self.cur_high > 0: self.cur_low = self.cur_high self.cur_high = min(high, self.cur_high * 10) else: self.cur_low = self.cur_high self.cur_high = min(high, self.cur_high / 10) self.ui_changing = True self.value = min(max(self.value, self.cur_low), self.cur_high) self.ui_changing = False self.update_range_ui() def _set_format(self): self._format = "%d" factory = self.factory low, high = self.cur_low, self.cur_high diff = high - low if factory.is_float: if diff > 99999: self._format = "%.2g" elif diff > 1: self._format = "%%.%df" % max(0, 4 - int(log10(high - low))) else: self._format = "%.3f" def get_error_control(self): """Returns the editor's control for indicating error status.""" return self.control.text def _low_changed(self, low): if self.control is not None: if self.value < low: if self.factory.is_float: self.value = float(low) else: self.value = int(low) self.update_editor() def _high_changed(self, high): if self.control is not None: if self.value > high: if self.factory.is_float: self.value = float(high) else: self.value = int(high) self.update_editor() class SimpleSpinEditor(BaseRangeEditor): """A simple style of range editor that displays a spin box control.""" # ------------------------------------------------------------------------- # Trait definitions: # ------------------------------------------------------------------------- # Low value for the slider range low = Any() # High value for the slider range high = Any() def init(self, parent): """Finishes initializing the editor by creating the underlying toolkit widget. """ factory = self.factory if not factory.low_name: self.low = factory.low if not factory.high_name: self.high = factory.high self.sync_value(factory.low_name, "low", "from") self.sync_value(factory.high_name, "high", "from") low = self.low high = self.high self.control = QtGui.QSpinBox() self.control.setMinimum(low) self.control.setMaximum(high) self.control.setValue(self.value) self.control.valueChanged.connect(self.update_object) if not factory.auto_set: self.control.setKeyboardTracking(False) self.set_tooltip() def update_object(self, value): """Handles the user selecting a new value in the spin box.""" self._locked = True try: self.value = value finally: self._locked = False def update_editor(self): """Updates the editor when the object trait changes externally to the editor. """ if not self._locked: blocked = self.control.blockSignals(True) try: self.control.setValue(int(self.value)) except Exception: from traitsui.api import raise_to_debug raise_to_debug() finally: self.control.blockSignals(blocked) def _low_changed(self, low): if self.value < low: if self.factory.is_float: self.value = float(low) else: self.value = int(low) if self.control: self.control.setMinimum(low) self.control.setValue(int(self.value)) def _high_changed(self, high): if self.value > high: if self.factory.is_float: self.value = float(high) else: self.value = int(high) if self.control: self.control.setMaximum(high) self.control.setValue(int(self.value)) class RangeTextEditor(TextEditor): """Editor for ranges that displays a text field. If the user enters a value that is outside the allowed range, the background of the field changes color to indicate an error. """ # ------------------------------------------------------------------------- # Trait definitions: # ------------------------------------------------------------------------- #: Low value for the slider range low = Any() #: High value for the slider range high = Any() #: Function to evaluate floats/ints evaluate = Any() def init(self, parent): """Finishes initializing the editor by creating the underlying toolkit widget. """ TextEditor.init(self, parent) factory = self.factory if not factory.low_name: self.low = factory.low if not factory.high_name: self.high = factory.high self.evaluate = factory.evaluate self.sync_value(factory.evaluate_name, "evaluate", "from") self.sync_value(factory.low_name, "low", "from") self.sync_value(factory.high_name, "high", "from") # force value to start in range if self.low is not None and self.low > self.value: self.value = self.low elif self.high is not None and self.high < self.value: self.value = self.low if self.low is not None else self.high def update_object(self): """Handles the user entering input data in the edit control.""" try: value = eval(str(self.control.text())) if self.evaluate is not None: value = self.evaluate(value) if self.low is not None and self.low > value: value = self.low col = ErrorColor elif self.high is not None and self.high < value: value = self.low if self.low is not None else self.high col = ErrorColor else: col = OKColor self.value = value except Exception: col = ErrorColor if self.control is not None: pal = QtGui.QPalette(self.control.palette()) pal.setColor(QtGui.QPalette.ColorRole.Base, col) self.control.setPalette(pal) # ------------------------------------------------------------------------- # 'SimpleEnumEditor' factory adaptor: # ------------------------------------------------------------------------- def SimpleEnumEditor(parent, factory, ui, object, name, description, **kwargs): return CustomEnumEditor( parent, factory, ui, object, name, description, "simple" ) def CustomEnumEditor( parent, factory, ui, object, name, description, style="custom", **kwargs ): """Factory adapter that returns a enumeration editor of the specified style. """ if factory._enum is None: import traitsui.editors.enum_editor as enum_editor factory._enum = enum_editor.ToolkitEditorFactory( values=list(range(factory.low, factory.high + 1)), cols=factory.cols, ) if style == "simple": return factory._enum.simple_editor( ui, object, name, description, parent ) return factory._enum.custom_editor(ui, object, name, description, parent) # ------------------------------------------------------------------------- # Defines the mapping between editor factory 'mode's and Editor classes: # ------------------------------------------------------------------------- # Mapping between editor factory modes and simple editor classes SimpleEditorMap = { "slider": SimpleSliderEditor, "xslider": LargeRangeSliderEditor, "spinner": SimpleSpinEditor, "enum": SimpleEnumEditor, "text": RangeTextEditor, "logslider": LogRangeSliderEditor, } # Mapping between editor factory modes and custom editor classes CustomEditorMap = { "slider": SimpleSliderEditor, "xslider": LargeRangeSliderEditor, "spinner": SimpleSpinEditor, "enum": CustomEnumEditor, "text": RangeTextEditor, "logslider": LogRangeSliderEditor, }
enthought/traitsui
traitsui/qt/range_editor.py
range_editor.py
py
25,173
python
en
code
290
github-code
6
3986831730
"""The abstract class for http routing""" from abc import ABCMeta, abstractmethod from typing import AbstractSet, Any, Mapping, Tuple from .http_callbacks import HttpRequestCallback from .http_response import HttpResponse class HttpRouter(metaclass=ABCMeta): """The interface for an HTTP router""" @property # type: ignore @abstractmethod def not_found_response(self) -> HttpResponse: """The response when a handler could not be found for a method/path Returns: HttpResponse: The response when a route cannot be found. """ @not_found_response.setter # type: ignore @abstractmethod def not_found_response(self, value: HttpResponse) -> None: ... @abstractmethod def add( self, methods: AbstractSet[str], path: str, callback: HttpRequestCallback ) -> None: """Add an HTTP request handler Args: methods (AbstractSet[str]): The supported HTTP methods. path (str): The path. callback (HttpRequestCallback): The request handler. """ @abstractmethod def resolve( self, method: str, path: str ) -> Tuple[HttpRequestCallback, Mapping[str, Any]]: """Resolve a request to a handler with the route matches Args: method (str): The HTTP method. path (str): The path. Returns: Tuple[HttpRequestCallback, Mapping[str, Any]]: A handler and the route matches. """
rob-blackbourn/bareASGI
bareasgi/http/http_router.py
http_router.py
py
1,583
python
en
code
26
github-code
6
29180093984
from bs4 import BeautifulSoup as soup from urllib.request import urlopen as uReq from datetime import datetime as dt import re import copy import MySQLdb dataBase = MySQLdb userInput1 = str(input("Please Provide with Calendar link: ")) userInput2 = str(input("Please Provide a file name ending in .sql: ")) userInput3 = str(input("Please select student type: (undergrad or graduate): ")) url = userInput1 # get data from the link client = uReq(url) pageHtml = client.read() client.close() # create parsabel html html = soup(pageHtml, "html.parser") header = html.h2 headTables = header.find_next_siblings("table") list_of_rows = [] # Loop through the sibling tables of h2 and find tr for i in headTables: rows = i.find_all("tr") # loop through all the tr's and find td's for j in rows: list_of_cells = [] cols = j.find_all("td") # loop through all the td's and get data for data in cols: event = data.text.replace("\r\n\t\t\t",' ') # assignment based on regex time = re.match(r"[ADFJMNOS]\w* [\d]{1,2}, [\d]{4}",event) doubleTime = re.match(r"[ADFJMNOS]\w* [\d]{1,2} to [\d]{1,2}, [\d]{4}", event) doubleDates = re.match(r"[ADFJMNOS]\w* [\d]{1,2} and [\d]{1,2}, [\d]{4}", event) crossYear = re.match(r"[ADFJMNOS]\w* [\d]{1,2}, [\d]{4} to [ADFJMNOS]\w* [\d]{1,2}, [\d]{4}", event) global updateEvent if crossYear: dates = re.split(r"\ to \ |\ |,\ ",event) # get the start date numbers and join startDates = " ".join([dates[0],dates[1],dates[2]]) # get the end date values and join endDates = " ".join([dates[4],dates[5],dates[6]]) startTime = dt.strptime(startDates, "%B %d %Y") endTime = dt.strptime(endDates, "%B %d %Y") finalDates = ' to '.join([str(startTime), str(endTime)]) event = re.sub(r"[ADFJMNOS]\w* [\d]{1,2}, [\d]{4} to [ADFJMNOS]\w* [\d]{1,2}, [\d]{4}",str(finalDates), event) # print(event) # converts Month Day, Year elif time: timeVal = dt.strptime(time.group(), "%B %d, %Y") # global variable for storage of date value updateEvent = timeVal event = re.sub(r"[ADFJMNOS]\w* [\d]{1,2}, [\d]{4}",str(timeVal), event) # convets date in format: Month Day to Day, Year elif doubleTime: dates = re.split(r"\ to\ |\ |,\ ", event) # get the start date numbers and join startDates = " ".join([dates[0],dates[1],dates[3]]) # get the end date values and join endDates = " ".join([dates[0],dates[2],dates[3]]) startTime = dt.strptime(startDates, "%B %d %Y") endTime = dt.strptime(endDates, "%B %d %Y") #global variable for empty date updateEvent = str(startTime) finalDates = ' to '.join([str(startTime), str(endTime)]) # print(finalDates) event = re.sub(r"[ADFJMNOS]\w* [\d]{1,2} to [\d]{1,2}, [\d]{4}",str(finalDates), event) # converts Month Day and Day, Year elif doubleDates: dates = re.split(r"\ and\ |\ |,\ ", event) # get the start date numbers and join startDates = " ".join([dates[0],dates[1],dates[3]]) # get the end date values and join endDates = " ".join([dates[0],dates[2],dates[3]]) startTime = dt.strptime(startDates, "%B %d %Y") #global variable for empty dates endTime = dt.strptime(endDates, "%B %d %Y") updateEvent = str(startTime) finalDates = ' to '.join([str(startTime), str(endTime)]) event = re.sub(r"[ADFJMNOS]\w* [\d]{1,2} and [\d]{1,2}, [\d]{4}",str(finalDates), event) else : # Fill in all the date values that are empty with date value # before it event = re.sub(r"\xa0", str(updateEvent), event) #append to list of cols list_of_cells.append(event) newCells = copy.deepcopy(list_of_cells[0]) toSplit = re.match(r"[\d]{4}-[\d]{1,2}-[\d]{1,2} [\d]{1,2}:[\d]{1,2}:[\d]{1,2} to [\d]{4}-[\d]{1,2}-[\d]{1,2} [\d]{1,2}:[\d]{1,2}:[\d]{1,2}", newCells) global endTimes if toSplit: # print(toSplit.group()) newSplit = toSplit.group().split(' to') endTimes = newSplit[1].replace("00:00:00","11:59:59") else: endTimes = newCells.replace("00:00:00","11:59:59") list_of_cells.append(endTimes) startDate = list_of_cells[0].split('to') strParts = list_of_cells[1].split('. ') global title, description if len(strParts) > 1: title = str(strParts[0]) description = str(strParts[1]) else: title= str(strParts[0]) description = str(strParts[0]) newTitle =str(dataBase.escape_string(title)) newDesc =str(dataBase.escape_string(description)) query = "INSERT INTO tbl_entries ( event_name, event_description, event_categories, event_tags, event_startdate, event_enddate, open_to, location_building, location_room, location_campus, location_other, start_hour, start_minute, start_ampm, end_hour, end_minute, end_ampm, contact_event_firstname, contact_event_lastname, contact_event_phonenumber, contact_event_phoneext, contact_event_email, contact_firstname, contact_lastname, contact_phonenumber, contact_phoneext, contact_email, event_url, event_url_protocol, upload_image, date_submitted, date_approved, repeated, repeat_freq, repeat_day, repeat_until, repeat_until_date, repeat_until_num, clickable, pending, approved, archived, cancelled, frontpage, submission_ip) VALUES " registrars = str(dataBase.escape_string("'Registar's'"))[1:] global values if userInput3 == 'undergrad': values = "(" + str(newTitle)[1:] + " ," + str(newDesc)[1:]+ ", '73', '0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0', '"+ startDate[0] + "','" + endTimes + "', '29', 0, '', 2, 'Ontario Tech', 0, 0, 'am', 11, 59, 'pm', "+ registrars +", 'Office', '905.721.3190', '', 'connect@uoit.ca', " + registrars + ", 'Office', '905.721.3190', '', 'connect@uoit.ca', '" + url + "', 'https', NULL, '" + str(dt.now())+ "', '" + str(dt.now()) + "', 0, '', '', 0, '" + str(dt.now()) + "', 0, 1, 0, 1, 0, 0, 0, '00.000.0.000')," elif userInput3 == 'graduate': values = "(" + str(newTitle)[1:] + " ," + str(newDesc)[1:]+ ", '74', '0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0', '"+ startDate[0] + "','" + endTimes + "', '29', 0, '', 2, 'Ontario Tech', 0, 0, 'am', 11, 59, 'pm','School of Graduate', 'and Postdoctoral Studies', '905.721.8668', '6209', 'connect@uoit.ca', 'School of Graduate', 'and Postdoctoral Studies', '905.721.8668', '6209','connect@uoit.ca', '" + url + "', 'https', NULL, '" + str(dt.now())+ "', '" + str(dt.now()) + "', 0, '', '', 0, '" + str(dt.now()) + "', 0, 1, 0, 1, 0, 0, 0, '00.000.0.000')," #append to rows list_of_rows.append(values) lastString = str(list_of_rows.pop(len(list_of_rows)-1)) lastString = lastString[:-1] +';' list_of_rows.append(lastString) outfile = open(userInput2, "w") outfile.write(query) for item in list_of_rows: outfile.write("%s\n" % item) outfile.close
ZbonaL/WebScraper
webscraper-Important-Dates.py
webscraper-Important-Dates.py
py
7,088
python
en
code
1
github-code
6
37407141564
from .core.Backtest import BackTesting from .core.Feature import ApplyRule import pandas as pd import numpy as np class ESG_rule(ApplyRule): def __init__(self, min_buy_score, roe_score=None, roic_score=None): self.min_buy_score = min_buy_score self.roe_score = roe_score self.roic_score = roic_score # ROE more than 15 def buy_rule(self, df): buy_esg = df['ESG Combined Score']>= self.min_buy_score buy_roe = df['ROE']>=self.roe_score if self.roe_score else True buy_roic = df['ROIC']>=self.roic_score if self.roic_score else True buy = buy_esg & buy_roe & buy_roic df['buy_signal'] = buy.map(lambda x: 1 if x else None) return df def sell_rule(self, df): sell_esg = df['ESG Combined Score']< self.min_buy_score sell_roe = df['ROE']<self.roe_score if self.roe_score else False sell_roic = df['ROIC']<self.roic_score if self.roic_score else False sell = sell_esg | sell_roe | sell_roic df['sell_signal'] = sell.map(lambda x: -1 if x else None) return df @ApplyRule.get_action def run(self,df): df = self.buy_rule(df) df = self.sell_rule(df) df = self.get_signal(df) return df
etq-quant/etqbankloan
Lib/etiqabacktest/ESGRule.py
ESGRule.py
py
1,279
python
en
code
0
github-code
6
20162423075
# Level 1 # Task 1. Reverse a negative integer and keep the negative sign at the beginning. def reverse_negative_integer(n: int): n = str(n) n = "-" + n[:0:-1] return int(n) print(reverse_negative_integer(-234)) # Task 2. Write a function that takes two strings as input and returns True if they are anagrams of each other, and False otherwise. # The strings can contain uppercase and lowercase letters, and should be ignored during the comparison. def are_anagrams(s1: str, s2: str): print(f'{s1} and {s2} are anagrams!') return sorted(s1.lower()) == sorted(s2.lower()) print(are_anagrams('Rat', 'Tar')) # Level 2 # Task 3. Given a sentence, reverse the order of characters in each word def reverse_words(sentence: str): sentence = sentence.split() sentence_list = [] for w in sentence: word = w[::-1] sentence_list.append(word) result = ' '.join(sentence_list) + '.' return result print(reverse_words('ehT taC sah caT')) # Task 4. Given a string made of digits [0-9], return a string where each digit is repeated a number of times equals to its value def repeat_digits(s: str): result = '' for char in s: char *= int(char) result += str(char) + ' ' return result print(repeat_digits('0123456789')) # Task 5. Create a function called shortcut to remove the lowercase vowels (a, e, i, o, u) in a given string. # “y” is not considered a vowel for this task. The input string is always in lowercase. def shortcut(s: str): vowel = 'aeiou' result = '' for i in s: if i not in vowel: result += i return result print(shortcut('i love trap music!'))
OrbitWon45/git_hw
algorrithms_hw_2.py
algorrithms_hw_2.py
py
1,692
python
en
code
0
github-code
6
1956715633
from collections import deque ulaz = open('ulaz.txt', 'r') sve = ulaz.read() ulaz.close() igrači = sve.split('\n\n') prvi = deque(igrači[0].split('\n')[1:]) drugi = deque(igrači[1].split('\n')[1:]) while len(prvi) != 0 and len(drugi) != 0: a = int(prvi.popleft()) b = int(drugi.popleft()) if a > b: prvi.extend([str(a), str(b)]) else: drugi.extend([str(b), str(a)]) if len(prvi) > 0: l = prvi else: l = drugi l.reverse() rezultat = 0 for i in range(len(l)): rezultat += int(l[i]) * (i + 1) print(rezultat)
bonkach/Advent-of-Code-2020
22a.py
22a.py
py
582
python
hr
code
1
github-code
6
40403637355
# Program swaps max and min elements of an array mas = [5, 6, 7, 4, 3, 2, 1, 0, -2, 0, 9, 4, 7, -5, 3, 1] def find_max(array): maximum = array[0] for i in range(1, len(array)): if array[i] > maximum: maximum = array[i] return maximum def find_min(array): maximum = array[0] for i in range(1, len(array)): if array[i] < maximum: maximum = array[i] return maximum max_va = mas.index(find_max(mas)) min_va = mas.index(find_min(mas)) mas[max_va], mas[min_va] = mas[min_va], mas[max_va] print(mas)
danielsummer044/EDUCATION
swap_min_max.py
swap_min_max.py
py
516
python
en
code
0
github-code
6
70965223549
### THEORETICAL PROBABILITY ### # For the following problems, use python to simulate the problem and calculate an experimental probability, then compare that to the theoretical probability. from scipy import stats import numpy as np # Grades of State University graduates are normally distributed with a mean of 3.0 and a standard deviation of .3. # Calculate the following: #**Theoretical # What grade point average is required to be in the top 5% of the graduating class? p_top_5 = 5/100 mean_graduates = 3 sd_graduates = 0.3 grads = stats.norm(mean_graduates, sd_graduates) grads.isf(p_top_5) # An eccentric alumnus left scholarship money for students in the third decile from the bottom of their class. Determine the range of the third decile. p_third_point = 3/10 p_fourth_point = 4/10 third_point = grads.ppf(p_third_point) fourth_point = grads.ppf(p_fourth_point) # Would a student with a 2.8 grade point average qualify for this scholarship? n = 2.8 qualify = n > third_point and n < fourth_point qualify # If I have a GPA of 3.5, what percentile am I in? in_percentile = grads.cdf(3.5) in_percentile #**Simulated sim_no_of_students = 10_000 graduates_data = np.random.normal(mean_graduates, sd_graduates,sim_no_of_students) top_five_percent = np.percentile(graduates_data, 95) #30th percentile - 20th percentile thirtieth_percentile = np.percentile(graduates_data, 30) twentieth_percentile = np.percentile(graduates_data, 20) student_gpa = 2.8 student_qualify = student_gpa > twentieth_percentile and student_gpa < thirtieth_percentile # A marketing website has an average click-through rate of 2%. # One day they observe 4326 visitors and 97 click-throughs. How likely is it that this many people or more click through? ctr = 2/100 ctr_observed = 97/4326 website = stats.poisson(ctr).sf(ctr_observed) website # You are working on some statistics homework consisting of 100 questions where all of the answers are a probability rounded to the hundreths place. Looking to save time, you put down random probabilities as the answer to each question. # What is the probability that at least one of your first 60 answers is correct? questions = 100 p_success = 0.5 homework = stats.binom(questions, p_success).pmf(60) #pmf because being correct or incorrect is discrete? homework first_sixty = np.random.choice(["Correct", "Incorrect"],(sim_visitors,60)) ((first_sixty == "Incorrect").sum(axis=1) == 60).mean() # The codeup staff tends to get upset when the student break area is not cleaned up. # Suppose that there's a 3% chance that any one student cleans the break area when they visit it, and, on any given day, about 90% of the 3 active cohorts of 22 students visit the break area. # How likely is it that the break area gets cleaned up each day? How likely is it that it goes two days without getting cleaned up? All week? p_cleaning = .03 n_students = .90 * (3*22) #success = days the break area is cleaned cleaning = stats.binom(n_students,p_cleaning).pmf(5) #all week days cleaning cleaning = stats.binom(n_students,p_cleaning).pmf(1) #once in a week cleaning cleaning = stats.binom(n_students,p_cleaning).pmf(0) #not cleaned at all cleaning # You want to get lunch at La Panaderia, but notice that the line is usually very long at lunchtime. # After several weeks of careful observation, you notice that the average number of people in line when your lunch break starts is normally distributed # with a mean of 15 and standard deviation of 3. # If it takes 2 minutes for each person to order, and 10 minutes from ordering to getting your food # what is the likelihood that you have at least 15 minutes left to eat your food before you have to go back to class? # Assume you have one hour for lunch, and ignore travel time to and from La Panaderia. p_of_service = .2 mean_customers = 15 sd_customers = 3 served = stats.norm(mean_customers,sd_customers) order_time = 12 # Connect to the employees database and find the average salary of current employees, along with the standard deviation. Model the distribution of employees salaries with a normal distribution and answer the following questions: def get_db_url(u,p,h,d): url = f'mysql+pymysql://{u}:{p}@{h}/{d}' return url # Use your function to obtain a connection to the employees database. from env import host, user, password host = host user = user password = password url = get_db_url(user,password,host,"employees") url salaries_df = pd.read_sql('SELECT * FROM salaries', url) # What percent of employees earn less than 60,000? salaries_df.head() mean_salary = salaries_df.salary.mean() sd_salary = salaries_df.salary.std() salary_dist = stats.norm(mean_salary,sd_salary) salary_dist.cdf(60_000) # What percent of employees earn more than 95,000? salary_dist.sf(95_000) # What percent of employees earn between 65,000 and 80,000? lower_bound = salary_dist.sf(65_000) upper_bound = salary_dist.sf(80_000) in_between = lower_bound - upper_bound in_between # What do the top 5% of employees make? percentage = .95 salary_dist.isf(percentage) ### EXPERIMENTAL PROBABILITY ### import pandas as pd import matplotlib.pyplot as plt np.random.seed(3) # A marketing website has an average click-through rate of 2%. # One day they observe 4326 visitors and 97 click-throughs. # How likely is it that this many people or more click through? sim_visitors = 100_000_000 ctr_observed mean_website = 2/100 sim_ctr = np.random.normal(mean_website, 0.03, sim_visitors) >= ctr_observed sim_ctr.mean() # You are working on some statistics homework consisting of 100 questions where all of the answers are a probability rounded to the hundreths place. # Looking to save time, you put down random probabilities as the answer to each question. # What is the probability that at least one of your first 60 answers is correct? #bunch of data, see if the first 60 answers out of 100 are correct. # The codeup staff tends to get upset when the student break area is not cleaned up. # Suppose that there's a 3% chance that any one student cleans the break area when they visit it, # and, on any given day, about 90% of the 3 active cohorts of 22 students visit the break area. # How likely is it that the break area gets cleaned up each day? How likely is it that it goes two days without getting cleaned up? All week? cleaning_probability = ["Cleaned"] * 2 + ["Not Cleaned"] * 64 weekly_cleaning_streak = (((np.random.choice(cleaning_probability,(sim_visitors,7)) == "Cleaned").sum(axis=1)) == 7).mean() weekly_cleaning_streak_2 = (((np.random.choice(cleaning_probability,(sim_visitors,2)) == "Not Cleaned").sum(axis=1)) == 2).mean() weekly_cleaning_streak_7 = (((np.random.choice(cleaning_probability,(sim_visitors,7)) == "Not Cleaned").sum(axis=1)) == 7).mean() # You want to get lunch at La Panaderia, but notice that the line is usually very long at lunchtime. # After several weeks of careful observation, you notice that the average number of people in line when your lunch break starts is normally distributed with a mean of 15 and standard deviation of 3. # If it takes 2 minutes for each person to order, and 10 minutes from ordering to getting your food, what is the likelihood that you have at least 15 minutes left to eat your food before you have to go back to class? Assume you have one hour for lunch, and ignore travel time to and from La Panaderia. mean_customers sd_customers panaderia_traffic = np.random.normal(mean_customers,sd_customers,sim_visitors) panaderia_traffic_with_time = panaderia_traffic * 12 (panaderia_traffic_with_time <= 45).mean() # Connect to the employees database and find the average salary of current employees, along with the standard deviation. # Model the distribution of employees salaries with a normal distribution and answer the following questions: # What percent of employees earn less than 60,000? # What percent of employees earn more than 95,000? # What percent of employees earn between 65,000 and 80,000? # What do the top 5% of employees make? employees_simulation = np.random.normal(mean_salary,sd_salary,sim_visitors) (employees_simulation < 60_000).mean() (employees_simulation > 95_000).mean() ((employees_simulation >= 65_000) & (employees_simulation <= 80_000)).mean() top_5_employee_salary = np.percentile(employees_simulation,95) top_5_employee_salary # A bank found that the average number of cars waiting during the noon hour at a drive-up window follows a Poisson distribution with a mean of 2 cars. # Make a chart of this distribution and answer these questions concerning the probability of cars waiting at the drive-up window. # What is the probability that no cars drive up in the noon hour? # What is the probability that 3 or more cars come through the drive through? # How likely is it that the drive through gets at least 1 car? cars = np.random.poisson(2,sim_visitors) cars plt.hist(cars) no_cars = (np.isin(cars,0).sum())/len(cars) three_or_more_cars = (cars >= 3).mean() at_least_one = (cars > 0).mean()
crisgiovanoni/statistics-exercises
probability_distributions.py
probability_distributions.py
py
9,018
python
en
code
0
github-code
6
36559869570
from turtle import Turtle, Screen from layout import Layout import random is_race_on = False screen = Screen() screen.setup(width=500, height=400) user_bet = screen.textinput(title="Make your bet", prompt="Which turtle will win the race? Enter a color: ") # Create layout layout = Layout() layout.draw_end_flag() # Create Turtles colors = ["red", "orange", "yellow", "green", "blue", "purple"] all_turtle = [] y_position = -100 for turtle_index in range(0, 6): new_turtle = Turtle(shape="turtle") new_turtle.penup() new_turtle.goto(x=-230, y=y_position) new_turtle.color(colors[turtle_index]) all_turtle.append(new_turtle) y_position += 40 # Check if the user bet was successful if user_bet: is_race_on = True # Start race while is_race_on: for turtle in all_turtle: random_distance = random.randint(0, 8) turtle.forward(random_distance) # Check if turtle cross the end flag if turtle.xcor() > 190: is_race_on = False winner_color = turtle.pencolor() # Check if the user wins if user_bet == winner_color: layout.victory(winner_color) else: layout.defeat(winner_color) screen.exitonclick()
portoduque/Turtle-Race
main.py
main.py
py
1,258
python
en
code
1
github-code
6
16799554480
import argparse from pathlib import Path import sys # Add aoc_common to the python path file = Path(__file__) root = file.parent.parent sys.path.append(root.as_posix()) import re from functools import lru_cache from math import inf parser = argparse.ArgumentParser() parser.add_argument('--sample', '-s', help='Run with sample data', action='store_true', default=False) parsed_args = parser.parse_args() if parsed_args.sample: print("Using sample data!") def dprint(*args, **kwargs): if parsed_args.sample: print(*args, **kwargs) with open('input.txt' if not parsed_args.sample else 'sample.txt') as f: input_data = list(map(lambda x: x.replace('\n', ''), f.readlines())) dprint(input_data) valve_flow_rates = {} valve_tunnels = {} input_re = re.compile(r"Valve ([A-Z]{2}) has flow rate=(\d+); tunnels? leads? to valves? (.*)") for line in input_data: matcher = input_re.match(line) valve, rate, tunnels = matcher.groups() tunnels = tunnels.split(', ') valve_flow_rates[valve] = int(rate) valve_tunnels[valve] = tunnels dprint(valve_flow_rates) dprint(valve_tunnels) potential_valves = sorted([x[0] for x in valve_flow_rates.items() if x[1] != 0]) @lru_cache(maxsize=None) def get_max_flow_rate(current_position, opened_valves, time_left): if time_left <= 0: return 0 # If the valve can open, we want to open the valve and consider the case where we can't open the valve # If the valve can't open, we just want to cosnider the adjacent spaces if valve_flow_rates[current_position] == 0 or current_position in opened_valves: best = 0 for adjacent in valve_tunnels[current_position]: best = max(best, get_max_flow_rate(adjacent, opened_valves, time_left - 1)) return best else: gained_flow = (time_left - 1) * valve_flow_rates[current_position] best = 0 opened = tuple(sorted(opened_valves + (current_position,))) for adjacent in valve_tunnels[current_position]: best = max(best, gained_flow + get_max_flow_rate(adjacent, opened, time_left - 2)) best = max(best, get_max_flow_rate(adjacent, opened_valves, time_left - 1)) return best valve_distances = {} def djikstra(valve): possible = {valve: 0} explored = set() while len(explored) < len(valve_tunnels): current = min(((k, v) for k, v in possible.items() if k not in explored), key=lambda x: x[1])[0] for other in valve_tunnels[current]: new_dist = possible[current] + 1 if possible.get(other, inf) > new_dist: explored.discard(other) possible[other] = new_dist explored.add(current) return possible valve_distances = {k: djikstra(k) for k in valve_tunnels.keys() } max_flow_seen = 0 @lru_cache(maxsize=None) def run_part_2(cur, other, closed_valves): cur_time_left, cur_pos = cur other_time_left, other_pos = other totals = [0] for valve in closed_valves: time_to_valve = valve_distances[cur_pos].get(valve) + 1 time_left = cur_time_left - time_to_valve if time_left <= 0: continue # Can't get to the valve and open it flow_gained = time_left * valve_flow_rates[valve] # Move the person that has the most time left if time_left > other_time_left: totals.append(flow_gained + run_part_2((time_left, valve), other, closed_valves - {valve})) else: totals.append(flow_gained + run_part_2(other, (time_left, valve), closed_valves - {valve})) max_flow = max(totals) global max_flow_seen if max_flow > max_flow_seen: print("New max:", max_flow) max_flow_seen = max_flow return max_flow def part_1(): return get_max_flow_rate('AA', (), 30) def part_2(): return run_part_2((26, 'AA'), (26, 'AA'), frozenset(potential_valves)) print(f"Part 1: {part_1()}") print(f"Part 2: {part_2()}")
mrkirby153/AdventOfCode2022
day16/day16.py
day16.py
py
3,973
python
en
code
0
github-code
6
18810536610
from sympy import * #Exercice de dérivation: x = Symbol('x') L=[] def derivee(y): yprime = y.diff(x) print("la dérivée est :", yprime) for i in range(1): a=(input("Entrez la fonction à derivé :")) L.append(a) #print(L) for a in L: print(derivee(a))
Mehdi921NSI/derivation
python.py
python.py
py
299
python
fr
code
0
github-code
6
26024379550
# 积分守恒型 Lax - Friedrichs 格式 # 导入所需要的模块 import numpy as np from fealpy.decorator import cartesian from scipy.sparse import diags from scipy.sparse import csr_matrix from typing import Union,Tuple,List # Union: 将多个集合合并为一个集合 from scipy.sparse.linalg import spsolve import matplotlib.pyplot as plt from fealpy.mesh import UniformMesh1d # 创建类 class Hyperbolic1dPDEData: def __init__(self,D: Union[Tuple[int,int],List[int]] = (0,2),T: Union[Tuple[int, int], List[int]] = (0, 4)): self._domain = D self._duration = T def domain(self) -> Union[Tuple[float,float],List[float]]: return self._domain def duration(self) -> Union[Tuple[float,float],List[float]]: return self._duration @cartesian def solution(self,p: np.ndarray,t: np.float64) -> np.ndarray: val = np.zeros_like(p) flag1 = p <= t flag2 = p > t+1 flag3 = ~flag1 & ~flag2 val[flag1] = 1 val[flag3] = 1 - p[flag3] + t val[flag2] = p[flag2] - t -1 return val @cartesian def init_solution(self,p: np.ndarray) -> np.ndarray: val = np.zeros_like(p) val = np.abs(p-1) return val @cartesian def source(self,p: np.ndarray, t: np.float64) -> np.ndarray: return 0.0 @cartesian def dirichlet(self,p: np.ndarray,t: np.float64) -> np.ndarray: return np.ones(p.shape) def a(self) -> np.float64: return 1 # 创建对象 pde =Hyperbolic1dPDEData() # 空间离散 domain = pde.domain() nx = 40 hx = (domain[1] - domain[0]) / nx mesh = UniformMesh1d([0,nx], h = hx, origin = domain[0]) # 时间离散 duration = pde.duration() nt = 3200 tau = (duration[1] - duration[0]) / nt # 准备初值 uh0 = mesh.interpolate(pde.init_solution, intertype = 'node') # 组装矩阵 def hyperbolic_operator_explicity_lax_friedrichs(mesh, tau, a): """ @brief 积分守恒型 lax_friedrichs 格式 """ r = a*tau/mesh.h if r > 1.0: raise ValueError(f"The r: {r} should be smaller than 0.5") NN = mesh.number_of_nodes() k = np.arange(NN) A = diags([0], [0], shape=(NN, NN), format='csr') val0 = np.broadcast_to(1/2 -1/2*r, (NN-1, )) val1 = np.broadcast_to(1/2 +1/2*r, (NN-1, )) I = k[1:] J = k[0:-1] A += csr_matrix((val0, (J, I)), shape=(NN, NN), dtype=mesh.ftype) A += csr_matrix((val1, (I, J)), shape=(NN, NN), dtype=mesh.ftype) return A # 时间步进 def hyperbolic_lax(n, *fargs): t = duration[0] + n*tau if n == 0: return uh0, t else: A = hyperbolic_operator_explicity_lax_friedrichs(mesh,pde.a(), tau) uh0[:] = A@uh0 gD = lambda p: pde.dirichlet(p, t) mesh.update_dirichlet_bc(gD, uh0, threshold=0) solution = lambda p: pde.solution(p, t) e = mesh.error(solution, uh0, errortype='max') print(f"the max error is {e}") return uh0, t # 制作动画 box = [0, 2, 0, 2] fig, axes = plt.subplots() mesh.show_animation(fig, axes, box, hyperbolic_lax, frames=nt+1) plt.show()
suanhaitech/pythonstudy2023
python-jovan/Numerical solution of differential equation/hyperbolic/test_exp2.py
test_exp2.py
py
3,132
python
en
code
2
github-code
6
28670801665
from os import close from numpy.lib.npyio import NpzFile import pandas as pd import os import tqdm import re import numpy as np from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt from sklearn.metrics import r2_score from scipy import stats Folder_Path = r'C:\Users\hp\Desktop\wdpashp\wdpadata1\wdpa_ntl7_count' #要拼接的文件夹及其完整路径,注意不要包含中文 SaveFile_Path_base = r'C:\Users\hp\Desktop\wdpashp\wdpadata3\Picuture\case\BufferCount' SaveFile_Path = r'C:\Users\hp\Desktop\wdpashp\wdpadata3\Picuture\case\RingBufferCount' #拼接后要保存的文件路径 SaveFile_Path_sum = r'C:\Users\hp\Desktop\wdpashp\wdpadata3\Picuture\case\RingBufferSum' SaveFile_Path_mean = r'C:\Users\hp\Desktop\wdpashp\wdpadata3\Picuture\case\RingBufferMean' SaveFile_Path_mean_base = r'C:\Users\hp\Desktop\wdpashp\wdpadata3\Picuture\case\RingBufferMean_base' SaveFile_Path_sum_base = r'C:\Users\hp\Desktop\wdpashp\wdpadata3\Picuture\case\RingBufferSum_base' # Base_path = r'C:\Users\hp\Desktop\wdpashp\wdpadata3\Picuture\case\case.csv' Base_path = r'C:\Users\hp\Desktop\wdpashp\wdpadata3\Picuture\case\case2.csv' # Base_path = r'C:\Users\hp\Desktop\wdpashp\wdpadata3\Picuture\case\RingBufferSum\bufferIntensityMode.csv' Base_path_First = r'C:\Users\hp\Desktop\wdpashp\wdpadata3\Picuture\case\RingBufferMean\FirstRingBase.csv' # 从空间抽取数据 def SpaticalSelect(pattern,filename): basedf = pd.read_csv(Base_path) # viirs2018 # dmsp2010 for i in range(0,51,1): df = pd.read_csv(os.path.join(Folder_Path,'wdpa_ntl7_count'+str(i)+'.csv')) if pattern in df.columns: df = df[['objectid',pattern]] else: df[pattern]=np.nan df = df[['objectid',pattern]] basedf = basedf.merge(df, on='objectid',how='left',suffixes = ('','_b'+str(i))) # .fillna("") basedf.to_csv(os.path.join(SaveFile_Path,filename), index=False) def getRingSumValue(filename,year): df= pd.read_csv(os.path.join(SaveFile_Path_sum_base,filename)) ntlValue = np.array(df.iloc[:,1:]) firstArr = None ids = np.array(df.iloc[:,[0]]).ravel() for i in range(len(ids)): value = ntlValue[i,2:] id = ids[i] indexmin = int(ntlValue[i,0])-1 indexmax = int(ntlValue[i,1]) value[np.where(np.isinf(value))] = np.nan if indexmax == indexmin: meanV = value[indexmin-1] else: goubi = value[indexmin:indexmax] meanV = np.nansum(value[indexmin:indexmax]) # if id == 16515: # gouzi firstLine = np.array([id,meanV]) if firstArr is None: firstArr = firstLine else: firstArr = np.vstack((firstArr,firstLine)) pdValue = pd.DataFrame(firstArr,columns=['objectid',year]) return pdValue def getIntensityValue(filename,year): df= pd.read_csv(os.path.join(SaveFile_Path,filename)) ntlValue = np.array(df.iloc[:,1:]) firstArr = None ids = np.array(df.iloc[:,[0]]).ravel() for i in range(len(ids)): value = ntlValue[i,2:] id = ids[i] mode = int(ntlValue[i,0]) value_before = ntlValue[i,1:-1] ringV = value - value_before indexArr = np.arange(1,51,1) intensity = np.divide(ringV,indexArr) modeV = intensity[mode] firstLine = np.array([id,modeV]) if firstArr is None: firstArr = firstLine else: firstArr = np.vstack((firstArr,firstLine)) pdValue = pd.DataFrame(firstArr,columns=['objectid',year]) return pdValue def getRingSumValue2csv(filename,year): df= pd.read_csv(os.path.join(SaveFile_Path_base,filename)) columnsArr = np.delete(df.columns,1) ntlValue = np.array(df.iloc[:,1:]) firstArr = None ids = np.array(df.iloc[:,[0]]).ravel() for i in range(len(ids)): value = ntlValue[i,1:] id = ids[i] value_before = ntlValue[i,:-1] ringV = value - value_before firstLine = np.hstack((id,ringV)) if firstArr is None: firstArr = firstLine else: firstArr = np.vstack((firstArr,firstLine)) pdValue = pd.DataFrame(firstArr,columns=columnsArr) return pdValue def getRingMeanValue2csv(filename,year): df= pd.read_csv(os.path.join(SaveFile_Path,filename)) columnsArr = df.columns ntlValue = np.array(df.iloc[:,1:]) df_sum= pd.read_csv(os.path.join(SaveFile_Path_sum,filename)) firstArr = None ids = np.array(df.iloc[:,[0]]).ravel() for i in range(len(ids)): value = ntlValue[i,:] id = ids[i] value_sum = np.array(df_sum.loc[df_sum['objectid'] == id]).ravel()[1:] meanV = value_sum/value firstLine = np.hstack((id,meanV)) if firstArr is None: firstArr = firstLine else: firstArr = np.vstack((firstArr,firstLine)) pdValue = pd.DataFrame(firstArr,columns=columnsArr) return pdValue def LinearModel(x,y): model = LinearRegression() model.fit(x, y) y_pred = model.predict(x) a = model.coef_ b = model.intercept_ r2 = r2_score(y,y_pred) return y_pred,a,b,r2 def writefile(filename,lines): f = open(filename,'a') for line in lines: f.writelines(line + '\n') if __name__ == "__main__": # # part I and partII(替换BaseDF) # for year in tqdm.tqdm(range(1992,2014,1)): # pattern = 'dmsp' + str(year) # filename = 'case_' + str(year) + '.csv' # SpaticalSelect(pattern,filename) # for year in tqdm.tqdm(range(2014,2019,1)): # pattern = 'viirs' + str(year) # filename = 'case_' + str(year) + '.csv' # SpaticalSelect(pattern,filename) # # part II 获取ring buffer # for year in tqdm.tqdm(range(1992,2019,1)): # filename = 'case_' + str(year) + '.csv' # pdValue = getRingSumValue2csv(filename,str(year)) # pdValue.to_csv(os.path.join(SaveFile_Path,'case' + str(year) + '.csv'), index=False) # # part II 获取ring buffer Mean # for year in tqdm.tqdm(range(1992,2019,1)): # filename = 'case' + str(year) + '.csv' # pdValue = getRingMeanValue2csv(filename,str(year)) # pdValue.to_csv(os.path.join(SaveFile_Path_mean,'case' + str(year) + '.csv'), index=False) # # part 合并BaseDF # for year in tqdm.tqdm(range(1992,2019,1)): # filename = 'case' + str(year) + '.csv' # basedf = pd.read_csv(Base_path_First) # df= pd.read_csv(os.path.join(SaveFile_Path_sum,filename)) # basedf = basedf.merge(df, on='objectid',how='left') # basedf.to_csv(os.path.join(SaveFile_Path_sum_base,filename), index=False) # # # part II 获取1992-2018年灯光最强的index # ValueList = [] # for year in tqdm.tqdm(range(1992,2019,1)): # filename = 'case' + str(year) + '.csv' # pdValue = getRingSumValue(filename,str(year)) # ValueList.append(pdValue) # basedf = None # for value in ValueList: # if basedf is None: # basedf = value # else: # basedf = basedf.merge(value, on='objectid',how='left') # basedf.to_csv(os.path.join(SaveFile_Path_sum_base,'bufferSum.csv'), index=False) # part IV 计算最大buffer的众数的斜率 df= pd.read_csv(os.path.join(SaveFile_Path_sum_base,'bufferSum.csv')) ntlValue = np.array(df.iloc[:,1:]) ids = np.array(df.iloc[:,[0]]).ravel() firstArr = None lines = [] for i in tqdm.tqdm(range(len(ids))): x = np.arange(1, 28, 1) x_lable = [str(i) for i in np.arange(1992, 2019, 1)] y = ntlValue[i,:] y1,a1,b1,r2_1 = LinearModel(x.reshape(-1, 1),y.reshape(-1, 1)) tau, p_value = stats.kendalltau(x, y) res = stats.theilslopes(y, x, 0.90) # print(res[0],res[1],res[2],res[3]) r2_res = r2_score(y,res[1] + res[0] * x) if int(ids[i]) == 40780: plt.rcParams['axes.facecolor'] = '#424242' plt.rc('font',family='Times New Roman') plt.figure(figsize=(15,8)) # plt.plot(x.reshape(-1, 1), y1, 'g-') plt.xlabel('Year',size = 35) plt.ylabel('NTL DN Value', size = 35) plt.xticks(x, x_lable, fontproperties = 'Times New Roman', size = 30) plt.yticks(fontproperties = 'Times New Roman', size = 30) ax= plt.gca() for tick in ax.get_xticklabels(): tick.set_rotation(45) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) import matplotlib.ticker as ticker ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) plt.scatter(x, y, s=200 ,c='#B36E5F') plt.plot(x, res[1] + res[0] * x, '-',color='#E3B96D',linewidth=3) # plt.plot(x, res[1] + res[2] * x, 'r--') # plt.plot(x, res[1] + res[3] * x, 'r--') plt.title("max_index:"+str(ids[i]),size = 15) line = str(ids[i]) + ',' + str(a1) + ',' + str(b1) + ',' + str(r2_1) + ',' +str(tau) + ',' + str(p_value) + ',' + str(res[0]) + ',' + str(res[1]) + ',' + str(res[2]) + ',' + str(res[3]) + ',' + str(r2_res) print(line) plt.tight_layout() plt.show() # plt.savefig(os.path.join(SaveFile_Path_sum_base ,'Picture1',str(int(ids[i])) + '.png')) plt.close() line = str(ids[i]) + ',' + str(a1) + ',' + str(b1) + ',' + str(r2_1) + ',' +str(tau) + ',' + str(p_value) + ',' + str(res[0]) + ',' + str(res[1]) + ',' + str(res[2]) + ',' + str(res[3]) + ',' + str(r2_res) lines.append(line.replace('[','').replace(']','')) # writefile(os.path.join(SaveFile_Path_sum_base, 'bufferSumslopsen.csv'),lines)
HaoweiGis/EarthLearning
tools/LightPollution/LightPollution2.py
LightPollution2.py
py
9,858
python
en
code
3
github-code
6