seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
72515571067
from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.chains import RetrievalQAWithSourcesChain, RetrievalQA from langchain import OpenAI from langchain.vectorstores import Chroma import gradio as gr from langchain.chains.question_answering import load_qa_chain qa_chain = load_qa_chain(OpenAI(temperature=0.7), chain_type="map_rerank") import json # create embedding from jsonloader path = "./source/blog.json" # load json and get lines and slug pages = [] slugs = [] def load_json(path=path): with open(path, "r") as f: raw = json.load(f) # get lines and slug for i, j in enumerate(raw["pages"]): j = json.loads(j) # flat to lines line = " ".join(j["lines"]) if line == "": continue pages.append(line) s = {"source": j["slug"]} slugs.append(s) splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0) docs = splitter.create_documents(texts=pages, metadatas=slugs) return docs def split_documents(docs): """documents を tokenize する Args: docs (_type_): _description_ Returns: _type_: _description_ """ # split chauncs splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) return splitter.split_documents(docs) def get_embeddings_for_search(texts): embeddings = OpenAIEmbeddings() docsearch = Chroma.from_documents(texts, embeddings=embeddings, #metadatas=[{"source": meta[i]} for i in range(len(meta))] ) return docsearch class Chain(): def __init__(self, doc): self.doc = doc self.chain = RetrievalQA(combine_documents_chain=qa_chain, retriever=self.doc.as_retriever(), return_source_documents=True) def get(self, query): #res = self.chain.run(question=query) res = self.chain({"query": query}) sources = [] for r in res["source_documents"]: sources.append(f'https://uni-3.app/{r.metadata["source"]}') return res["result"], "\n".join(sources) def main(): # get docsearch docs = load_json() # get embeddings #print("docs", docs) docsearch = get_embeddings_for_search(docs) # init chain c = Chain(docsearch) # launch gradio app with gr.Blocks() as demo: # input query then get_query input_query = gr.Textbox(label="Query") # show query result result = gr.Textbox(label="Result") source = gr.Markdown(label="source") b = gr.Button("run") b.click(c.get, inputs=[input_query], outputs=[result, source]) demo.launch() if __name__ == '__main__': main()
uni-3/gradio-apps
qa_retrieval/app.py
app.py
py
2,753
python
en
code
0
github-code
6
71754427069
import paramiko import paramiko.client client = paramiko.client.SSHClient() client.load_system_host_keys() client.set_missing_host_key_policy( paramiko.AutoAddPolicy() ) client.connect( "localhost", username="developer", password="4linux" ) (stdin, stdout, stderr) = client.exec_command("ls") status = stdout.channel.recv_exit_status() if status == 0: stdout.flush() print(stdout.read().decode()) else: stderr.flush() print(stderr.read().decode()) client.close()
elderlima/4linux
ssh/main.py
main.py
py
500
python
en
code
0
github-code
6
4487177002
""" Lab 7.4 Document Exceptons """ class AbstractException(Exception): """ Basic class for class exceptions""" def __init__(self, message): super().__init__(message) self.message = message class WrongInput(AbstractException): """ Invalid input """ class CursorRangeError(AbstractException): """ Cursor out of range """ class CallHomeError(AbstractException): """ Unable to call home method """ class CallEndError(AbstractException): """ Unable to call end method """ class FileWrongName(AbstractException): """ Unable to create file """ class Document: """ Class with information methods to work with the document """ def __init__(self) -> None: """ Init class values with empty row and cursor """ self.characters = [] self.cursor = Cursor(self) self.filename = 'example.txt' def insert(self, character:str) -> None: """ Insert character on current cursor position """ if not hasattr(character, "character"): character = Character(character) self.characters.insert(self.cursor.position, character) self.cursor.forward() def delete(self): """ Delete character on cursor """ if len(self.characters) == 0: raise CursorRangeError("There are no character to delete") del self.characters[self.cursor.position] def save(self) -> None: """ Write document information into the file """ if self.filename == '': raise FileWrongName("Invalid file name") with open(self.filename, "w", encoding='utf-8') as file: file.write("".join((str(c) for c in self.characters))) @property def string(self) -> str: """ String. Return the document's test """ return "".join((str(c) for c in self.characters)) class Cursor: """ Cursor class """ def __init__(self, document:Document) -> None: """ Init cursor values with default position as 0 """ self.document = document self.position = 0 def forward(self) -> None: """ Move forward on 1 character. Raise: CursorRangeError if it is last position """ if self.position == len(self.document.characters): raise CursorRangeError( "It is the last position, you can't move forward") self.position += 1 def back(self) -> None: """ Move back on 1 character. Raise: CursorRangeError if it is the first position """ if self.position == 0: raise CursorRangeError("It is in the first position, you can't move back") self.position -= 1 def home(self): """ Change cursor position to the first one in a row """ if len(self.document.characters) == 0: raise CallHomeError( "Unable to use method on empty document") while self.position and self.document.characters[self.position - 1].character != "\n": self.position -= 1 def end(self): """ Change cursor position to the last one in a row """ if len(self.document.characters) == 0: raise CallEndError( "Unable to use method on empty document") while (self.position < len(self.document.characters))\ and (self.document.characters[self.position].character != "\n"): self.position += 1 class Character: """ One character class provides different styles """ def __init__(self, character, bold=False, italic=False, underline=False): """ Init character values without additional text style as default. """ if len(character) != 1: raise WrongInput("Invlid input character") self.character = character self.bold = bold self.italic = italic self.underline = underline def __str__(self): """ String representation of the character """ bold = "*" if self.bold else "" italic = "/" if self.italic else "" underline = "_" if self.underline else "" return bold + italic + underline + self.character
sviat-l/FP_Labs
7_Lab_Exceptions_Tests/4_Document/main.py
main.py
py
4,283
python
en
code
0
github-code
6
20678034139
from omegaconf import DictConfig import hydra from VisualClassificationRunner import VisualClassificationRunner class CueConflictRunner(VisualClassificationRunner): def test(self) -> dict: """Test the model on the standard dataset and the randomized datasets. :return: Dictionary with randomized test added :rtype: dict """ self.module.testset.set_shape_or_texture('shape') shape_test_log = super().test() self.module.testset.set_shape_or_texture('texture') texture_test_log = super().test() return {'shape_bias': 100.0 * shape_test_log['correct'] / (shape_test_log['correct'] + texture_test_log['correct'])} def extract_test_log(self, log: dict) -> dict: out_log = { 'correct': log['correct'] } return out_log @hydra.main(config_path="../conf", config_name="visual_classification.yaml") def main(conf: DictConfig): runner = CueConflictRunner(conf) runner.main() if __name__ == '__main__': main()
nathansomavarapu/core-ml
src/CueConflictRunner.py
CueConflictRunner.py
py
1,053
python
en
code
0
github-code
6
24416364915
import grp import json import logging import os import pkgutil import tempfile from cloudify.decorators import operation from cloudify.exceptions import NonRecoverableError from managed_nagios_plugin._compat import text_type from managed_nagios_plugin.constants import ( BASE_OBJECTS_DIR, OBJECT_DIR_PERMISSIONS, OBJECT_OWNERSHIP, RATE_BASE_PATH, ) from managed_nagios_plugin.rest_utils import ( get_entities, run_workflow, StartWorkflowFailed, ) from managed_nagios_plugin.utils import ( deploy_configuration_file, deploy_file, disable_service, download_and_deploy_file_from_blueprint, enable_service, generate_certs, reload_systemd_configuration, run, start_service, stop_service, yum_install, yum_remove, _decode_if_bytes ) SSL_KEY_PATH = '/etc/nagios/ssl.key' SSL_CERT_PATH = '/etc/nagios/ssl.crt' BLUEPRINT_SSL_KEY_PATH = 'ssl/{key_file}' BLUEPRINT_SSL_CERT_PATH = 'ssl/{cert_file}' NAGIOSREST_SERVICES = ['nagiosrest-gunicorn', 'httpd'] @operation def create(ctx): props = ctx.node.properties ctx.logger.info('Validating SSL properties') if bool(props['ssl_certificate']) != bool(props['ssl_key']): raise NonRecoverableError( 'Either ssl_certificate and ssl_key must both be provided, ' 'or neither of them must be provided. ' 'ssl_certificate was: {ssl_certificate}; ' 'ssl_key was: {ssl_key}'.format( ssl_certificate=props['ssl_certificate'], ssl_key=props['ssl_key'], ) ) ctx.logger.info('Enabling EPEL (if required)') yum_install(text_type('epel-release')) ctx.logger.info('Installing required packages') yum_install([ 'mod_ssl', 'nagios', 'nagios-plugins-disk', 'nagios-plugins-load', 'nagios-plugins-ping', 'nagios-plugins-snmp', 'nagios-selinux', 'net-snmp', 'net-snmp-utils', 'python-flask', 'python-gunicorn', 'python-jinja2', 'python-requests', 'selinux-policy-devel', 'incron', ]) ctx.logger.info('Deploying SELinux configuration') # Prepare SELinux context for trap handler tmp_path = tempfile.mkdtemp() with open( os.path.join(tmp_path, 'cloudify-nagios-snmp-trap-handler.te'), 'w', ) as policy_handle: policy_handle.write(_decode_if_bytes(pkgutil.get_data( 'managed_nagios_plugin', 'resources/selinux/cloudify_nagios_snmp_trap_handler.te', ))) run(['make', '-f', '/usr/share/selinux/devel/Makefile', '-C', tmp_path], sudo=True) run(['semodule', '-i', os.path.join(tmp_path, 'cloudify-nagios-snmp-trap-handler.pp')], sudo=True) run(['rm', '-rf', tmp_path], sudo=True) ctx.logger.info('Deploying nagios plugins and SNMP trap handler') for supporting_lib in ('_compat.py', 'constants.py', 'utils.py', 'snmp_utils.py', 'nagios_utils.py', 'rest_utils.py', 'resources/scripts/nagios_plugin_utils.py', 'resources/scripts/logging_utils.py'): if supporting_lib.startswith('resources/scripts/'): destination_filename = supporting_lib[len('resources/scripts/'):] else: destination_filename = supporting_lib deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', supporting_lib, ), destination='/usr/lib64/nagios/plugins/' + destination_filename, ownership='root.nagios', permissions='440', sudo=True, ) for script in ('check_snmp_numeric', 'check_snmp_aggregate', 'check_group_aggregate', 'check_group_meta_aggregate', 'cloudify_nagios_snmp_trap_handler', 'notify_cloudify', 'check_nagios_command_file', 'check_snmptrap_checks'): source = os.path.join('resources/scripts/', script) script_content = pkgutil.get_data('managed_nagios_plugin', source) destination = os.path.join('/usr/lib64/nagios/plugins', script) deploy_file( data=script_content, destination=destination, permissions='550', sudo=True, ) ctx.logger.info('Deploying nagiosrest') run(['mkdir', '-p', '/usr/local/www/nagiosrest'], sudo=True) for nagiosrest_file in ('nagiosrest.py', 'nagiosrest_group.py', 'nagiosrest_target.py', 'nagiosrest_tenant.py', 'logging_utils.py'): deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/scripts/' + nagiosrest_file, ), destination='/usr/local/www/nagiosrest/' + nagiosrest_file, ownership='root.nagios', permissions='440', sudo=True, ) for supporting_lib in ('_compat.py', 'nagios_utils.py', 'utils.py', 'constants.py'): deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', supporting_lib, ), destination='/usr/local/www/nagiosrest/' + supporting_lib, ownership='root.nagios', permissions='440', sudo=True, ) for template in ('hostgroup.template', 'target.template', 'node.template', 'group.template', 'group_check.template', 'meta_group_check.template'): deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', os.path.join('resources', template), ), destination='/usr/local/www/nagiosrest/' + template, ownership='root.nagios', permissions='440', sudo=True, ) deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/systemd_nagiosrest.conf', ), destination='/usr/lib/systemd/system/nagiosrest-gunicorn.service', ownership='root.root', permissions='440', sudo=True, ) ctx.logger.info('Deploying notification configuration script') deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/scripts/update_notify_cloudify_configuration', ), destination='/usr/local/bin/update_notify_cloudify_configuration', ownership='root.root', permissions='500', sudo=True, # Must have the group of the agent user for reconcile operation to # work correctly template_params={'group': grp.getgrgid(os.getgid()).gr_name}, ) deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', '_compat.py', ), destination='/usr/local/bin/_compat.py', ownership='root.root', permissions='400', sudo=True, ) deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'utils.py', ), destination='/usr/local/bin/utils.py', ownership='root.root', permissions='400', sudo=True, ) deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'constants.py', ), destination='/usr/local/bin/constants.py', ownership='root.root', permissions='400', sudo=True, ) ctx.logger.info( 'Creating directory structure for storing temporary rate data' ) for rate_dir in ('nodes', 'instances'): rate_storage_path = os.path.join(RATE_BASE_PATH, rate_dir) run(['mkdir', '-p', rate_storage_path], sudo=True) run(['chown', 'nagios.', rate_storage_path], sudo=True) run(['restorecon', rate_storage_path], sudo=True) if props['ssl_certificate']: if props['ssl_certificate'].startswith("-----BEGIN CERTIFICATE-----"): deploy_file( data=props['ssl_key'], destination=SSL_KEY_PATH, ownership='root.root', permissions='440', sudo=True, ) deploy_file( data=props['ssl_certificate'], destination=SSL_CERT_PATH, ownership='root.root', permissions='444', sudo=True, ) else: download_and_deploy_file_from_blueprint( source=BLUEPRINT_SSL_KEY_PATH.format( key_file=props['ssl_key'], ), destination=SSL_KEY_PATH, ownership='root.root', permissions='440', ctx=ctx, ) download_and_deploy_file_from_blueprint( source=BLUEPRINT_SSL_CERT_PATH.format( cert_file=props['ssl_certificate'], ), destination=SSL_CERT_PATH, ownership='root.root', permissions='444', ctx=ctx, ) else: ctx.logger.info('Generating SSL certificate') generate_certs(SSL_KEY_PATH, SSL_CERT_PATH, ctx.logger) with open(SSL_CERT_PATH) as crt_handle: ctx.instance.runtime_properties['ssl_certificate'] = crt_handle.read() ctx.logger.info('Reloading systemd configuration') reload_systemd_configuration() @operation def configure(ctx): props = ctx.node.properties ctx.logger.info('Configuring nagios web user') username = props['nagios_web_username'] password = props['nagios_web_password'] tmpdir = tempfile.mkdtemp() tmp_htpass = os.path.join(tmpdir, 'passwd') run(['htpasswd', '-bc', tmp_htpass, username, password]) run(['mv', tmp_htpass, '/etc/nagios/passwd'], sudo=True) run(['rm', '-rf', tmpdir]) run(['chown', 'root.apache', '/etc/nagios/passwd'], sudo=True) run(['chmod', '640', '/etc/nagios/passwd'], sudo=True) run(['usermod', '-G', 'nagios', 'apache'], sudo=True) ctx.logger.info('Deploying automated reaction configuration') # We're using username+password because current token implementation is # unsuitable for this. reaction_configuration = { 'username': props['cloudify_manager_username'], 'password': props['cloudify_manager_password'], } deploy_file( data=json.dumps(reaction_configuration), destination='/etc/nagios/cloudify_manager.json', ownership='nagios.{group}'.format( # Must have the group of the agent user for reconcile operation to # work correctly group=grp.getgrgid(os.getgid()).gr_name, ), permissions='440', sudo=True, ) notification_plugin_storage_dir = '/var/spool/nagios/cloudifyreaction' run(['mkdir', '-p', notification_plugin_storage_dir], sudo=True) run(['restorecon', notification_plugin_storage_dir], sudo=True) run(['chown', 'nagios.nagios', notification_plugin_storage_dir], sudo=True) run(['chmod', '750', notification_plugin_storage_dir], sudo=True) ctx.logger.info('Preparing object paths') run(['rm', '-rf', BASE_OBJECTS_DIR], sudo=True) object_subdirs = [ 'checks', 'commands', 'contacts', 'groups/group_instances', 'groups/tenants', 'groups/types', 'templates', 'timeperiods', 'deployments', 'snmp_traps', 'targets', 'target_types', 'tenants', ] for subdir in object_subdirs: subdir = os.path.join(BASE_OBJECTS_DIR, subdir) run(['mkdir', '-p', subdir], sudo=True) run(['chown', '-R', OBJECT_OWNERSHIP, BASE_OBJECTS_DIR], sudo=True) run(['chmod', '-R', OBJECT_DIR_PERMISSIONS, BASE_OBJECTS_DIR], sudo=True) ctx.logger.info('Deploying nagios object configuration') config_source_dest_params = ( # Fully qualified paths because these two go outside the objects dir ('cgi.cfg', '/etc/nagios/cgi.cfg', {'user': username}), ('nagios.cfg', '/etc/nagios/nagios.cfg', {}), # The rest are 'normal' configuration files ('base_system.cfg', 'base_system.cfg', {}), ('command_host_icmp.cfg', 'commands/check_host_icmp.cfg', {}), ('command_no_check.cfg', 'commands/no_check.cfg', {}), ('command_local_load.cfg', 'commands/check_local_load.cfg', {}), ('command_local_disk.cfg', 'commands/check_local_disk.cfg', {}), ('command_snmp_value.cfg', 'commands/check_snmp_value.cfg', {}), ('command_check_nagios_command_file.cfg', 'commands/check_nagios_command_file.cfg', {}), ('command_snmp_aggregate.cfg', 'commands/check_snmp_aggregate.cfg', {}), ('command_group_aggregate.cfg', 'commands/check_group_aggregate.cfg', {}), ('command_group_meta_aggregate.cfg', 'commands/check_group_meta_aggregate.cfg', {}), ('command_snmptrap_checks.cfg', 'commands/check_snmptrap_checks.cfg', {}), ('notification.cfg', 'commands/notify_automation.cfg', {}), ('contact.cfg', 'contacts/automation.cfg', {}), ('template_generic_service.cfg', 'templates/generic_service.cfg', {}), ('template_generic_host.cfg', 'templates/generic_host.cfg', {}), ('template_pseudo_host.cfg', 'templates/pseudo_host.cfg', {}), ('timeperiod_24x7.cfg', 'timeperiods/24x7.cfg', {}), ) for source, dest, params in config_source_dest_params: deploy_configuration_file( ctx.logger, source=os.path.join('resources/base_configuration', source), destination=dest, template_params=params, # We can't validate before we've put all of the configuration in # place as it will be invalid until it's finished validate=False, # We can't reload, it's not running yet reload_service=False, sudo=True, ) ctx.logger.info('Configuring httpd for ssl') deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/httpd.conf', ), destination='/etc/httpd/conf/httpd.conf', ownership='root.apache', permissions='440', sudo=True, ) deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/ssl.conf', ), destination='/etc/httpd/conf.d/ssl.conf', ownership='root.apache', permissions='440', sudo=True, ) ctx.logger.info('Configuring httpd for nagiosrest') deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/httpd_nagiosrest.conf', ), destination='/etc/httpd/conf.d/nagiosrest.conf', ownership='root.apache', permissions='440', sudo=True, ) ctx.logger.info('Allowing nagiosrest to restart nagios') deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/sudoers-nagiosrest', ), destination='/etc/sudoers.d/nagios-service-restart', ownership='root.root', permissions='440', sudo=True, ) ctx.logger.info('Deploying base SNMP configuration') deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/snmp', ), destination='/etc/snmp/snmp.conf', ownership='root.root', permissions='440', sudo=True, ) trap_community = ctx.node.properties['trap_community'] if trap_community: ctx.logger.info('Configuring SNMP traps to use handler') deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/snmptrapd', ), destination='/etc/snmp/snmptrapd.conf', ownership='root.root', permissions='440', sudo=True, template_params={ 'trap_community': trap_community, }, ) ctx.logger.info('Configuring notification script') deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/incron.allow', ), destination='/etc/incron.allow', ownership='root.root', permissions='440', sudo=True, ) deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/incron_root_spool', ), destination='/var/spool/incron/root', ownership='root.root', permissions='400', template_params={ 'homedir': os.path.expanduser('~'), }, sudo=True, ) agent_config_dir = os.path.join( os.path.expanduser('~'), '.cfy-agent', ) agent_configs = [ os.path.join(agent_config_dir, filename) for filename in os.listdir(agent_config_dir) ] # We'll use the most recently updated agent config current_agent_config = max(agent_configs, key=os.path.getmtime) run( [ '/usr/local/bin/update_notify_cloudify_configuration', current_agent_config, ], sudo=True, ) ctx.logger.info('Deploying logging configuration') level = props['component_log_level'].upper() validate_level = logging.getLevelName(level) if not isinstance(validate_level, int): raise NonRecoverableError( '{level} is not a valid logging level. ' 'It is recommended that component_log_level be set to one of ' 'DEBUG, INFO, WARNING, ERROR'.format(level=level) ) component_logging_config = { 'version': 1, 'disable_existing_loggers': False, 'formatters': { 'default': { 'format': '%(name)s(%(process)s) [%(levelname)s]: %(message)s', }, }, 'handlers': { 'syslog': { 'formatter': 'default', 'level': level, 'class': 'logging.handlers.SysLogHandler', 'address': '/dev/log', }, }, 'loggers': { '': { 'handlers': ['syslog'], 'level': level, 'propagate': True, }, }, } deploy_file( data=json.dumps(component_logging_config), destination='/etc/nagios/cloudify_components_logging.cfg', ownership='root.nagios', permissions='440', sudo=True, ) deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/logrotate_config', ), destination='/etc/logrotate.d/managed_nagios', ownership='root.root', permissions='444', sudo=True, ) deploy_file( data=pkgutil.get_data( 'managed_nagios_plugin', 'resources/base_configuration/rsyslog_config', ), destination='/etc/rsyslog.d/managed_nagios_logging.conf', ownership='root.root', permissions='444', sudo=True, ) stop_service('rsyslog') start_service('rsyslog') @operation def start(ctx): ctx.logger.info('Enabling and starting nagios and httpd services') services = ['nagios', 'incrond'] if ctx.node.properties['start_nagiosrest']: services.extend(NAGIOSREST_SERVICES) if ctx.node.properties['trap_community']: services.append('snmptrapd') for service in services: enable_service(service) start_service(service) @operation def delete(ctx): ctx.logger.info('Uninstalling nagios and web server packages') yum_remove([ 'nagios', 'httpd', # Installed by nagios, remove it as it is outward facing 'nagios-selinux', 'nagios-plugins-load', 'nagios-plugins-disk', 'nagios-plugins-ping', 'nagios-plugins-snmp', 'net-snmp', ]) ctx.logger.info('Removing nagiosrest') stop_service('nagiosrest-gunicorn') disable_service('nagiosrest-gunicorn') run(['rm', '/usr/lib/systemd/system/nagiosrest-gunicorn.service'], sudo=True) reload_systemd_configuration() ctx.logger.info('Removing leftover data, configuration, and scripts') for path in ( '/etc/nagios', '/etc/httpd', '/usr/lib64/nagios', '/usr/local/www/nagiosrest', '/var/spool/nagios', '/var/log/nagios', '/etc/snmp', '/var/spool/incron/root', ): run(['rm', '-rf', path], sudo=True) def _node_has_nagiosrest_properties(node): return 'nagiosrest_monitoring' in node.get('properties', {}) @operation def reconcile_monitoring(ctx, only_deployments=None, only_tenants=None): if not only_deployments: only_deployments = [] if not only_tenants: only_tenants = [] ctx.logger.info('Getting tenant list') tenants = [ tenant['name'] for tenant in get_entities( entity_type='tenants', tenant='default_tenant', properties=['name'], logger=ctx.logger, ) ] problem_deployments = {} targets = None for tenant in tenants: if only_tenants and tenant not in only_tenants: ctx.logger.info('Skipping tenant {tenant}'.format( tenant=tenant, )) continue ctx.logger.info('Checking deployments for tenant {tenant}'.format( tenant=tenant, )) targets = {} interesting_nodes = get_entities( entity_type='nodes', tenant=tenant, properties=['deployment_id', 'id'], logger=ctx.logger, include=_node_has_nagiosrest_properties, ) ctx.logger.info( 'Found {num} nodes with monitoring configuration'.format( num=len(interesting_nodes), ) ) notified_skipped_deployments = [] for node in interesting_nodes: dep_id = node['deployment_id'] if only_deployments and dep_id not in only_deployments: if dep_id not in notified_skipped_deployments: ctx.logger.info('Skipping deployment {dep}'.format( dep=dep_id, )) notified_skipped_deployments.append(dep_id) continue if dep_id not in targets: targets[dep_id] = [] targets[dep_id].append(node['id']) if targets: for deployment, nodes in targets.items(): ctx.logger.info( 'Starting monitoring for deployment {deployment}'.format( deployment=deployment, ) ) try: run_workflow( tenant=tenant, deployment=deployment, workflow_id='execute_operation', parameters={ "node_ids": nodes, "operation": ( "cloudify.interfaces.monitoring.start" ), }, allow_custom_parameters=False, force=False, logger=ctx.logger, ) except StartWorkflowFailed as err: ctx.logger.error( '{deployment} failed to start workflow: {err}'.format( deployment=deployment, err=text_type(err), ) ) if tenant not in problem_deployments: problem_deployments[tenant] = [] problem_deployments[tenant].append(deployment) if targets: ctx.logger.info('All monitored instances not listed as problems ' 'should be re-added to ' 'nagios within a short time. See individual ' 'deployments for execution states. ' 'Problem messages state: ' 'Tenant <name> had problems starting workflows, ' 'and list which deployments had these problems. ' 'If any of these appear you can re-run just those ' 'deployments by using the only_deployments ' 'argument.') if problem_deployments: for tenant in problem_deployments: ctx.logger.warn( 'Tenant {tenant} had problems starting workflows for ' 'deployments: {deps}'.format( tenant=tenant, deps=','.join(problem_deployments[tenant]), ) ) else: ctx.logger.info('No problems were reported starting workflows.') else: ctx.logger.warn('Nothing needed to be done. Either the combination ' 'of tenant and deployment filtering left no targets ' 'or there are no monitored deployments using the ' 'nagiosrest plugin on the cloudify manager.') @operation def start_nagiosrest(ctx): ctx.logger.info('Enabling and starting nagios and httpd services') services = ['httpd', 'nagiosrest-gunicorn'] for service in services: enable_service(service) start_service(service)
cloudify-cosmo/cloudify-managed-nagios-plugin
managed_nagios_plugin/nagios/tasks.py
tasks.py
py
26,382
python
en
code
0
github-code
6
11711962924
import os import numpy as np import bpy import mathutils import math from satvis.utils.blender_utils import make_sat, make_sun, \ make_camera, make_torch, setup_depth, rotate_sat, \ rotate_earth, save_render, get_data, CAMERA_VIEW_DIRECTION, \ get_sat_path, move_sun, move_chaser from satvis.orbital_dynamics.sun_position import julian_date, get_sun_dir from satvis.orbital_dynamics.satellite import ReferenceSatellite from satvis.orbital_dynamics.clohessy_wiltshire import compute_cw def setup_scene(configs): bpy.context.scene.render.resolution_x = configs["height"] bpy.context.scene.render.resolution_y = configs["height"] bpy.context.scene.render.resolution_percentage = 100 bpy.context.scene.world.horizon_color = (0, 0, 0) bpy.context.scene.world.light_settings.use_environment_light = True bpy.context.scene.world.light_settings.environment_energy = 0.02 def setup_params_partial(configs, params, depth_path): # Setup parameters initial_pos = np.array(configs["initial_pos"], dtype=np.float32) * configs["distance_scale"] configs["cam_pos"] = np.array(configs["cam_pos"], dtype=np.float32) * configs["distance_scale"] configs["max_depth"] = configs["max_depth"] * configs["distance_scale"] configs["attitude"] = [math.radians(float(i)) for i in configs["attitude"]] # If ang_vel is not a list of euler angles, get the rotation from axis angle if not isinstance(configs["ang_vel"], (list, np.ndarray)): axis = configs["axis"] axis /= np.linalg.norm(axis) # Rotate axis to line up with the camera view direction rotation_diff = mathutils.Vector(CAMERA_VIEW_DIRECTION).rotation_difference(mathutils.Vector(configs["cam_dir"])) axis = mathutils.Vector(axis) axis.rotate(rotation_diff) # Work out the rotation per step as a quaternion angle = math.radians(configs["ang_vel"]) rotation_step = mathutils.Quaternion(axis, angle) else: ang_vel = [math.radians(float(i)) for i in configs["ang_vel"]] rotation_step = mathutils.Euler(ang_vel, 'XYZ').to_quaternion() # Convert angular velocity into quaternion rotation per step axis, angle = rotation_step.to_axis_angle() rotation_step = mathutils.Quaternion(axis, angle*configs["frame_skip"]/configs["fps"]) if params.sun_behind: configs["sun_dir"] = 0 # If sun_dir is an angle, rotate this much from the view direction, around the world z axis if not isinstance(configs["sun_dir"], (list, np.ndarray)): angle = configs["sun_dir"] * np.pi / 180. Rz = np.array([[np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1]]) # rotation matrix about z sun_dir = Rz @ configs["cam_dir"] configs["sun_dir"] = sun_dir # Make objects earth = bpy.data.objects['Earth'] earth.location = initial_pos earth.scale = np.array([1,1,1]) * 637100 * configs['distance_scale'] #earth.transform_apply(scale=True) sat_initial_attitude = mathutils.Euler(configs["attitude"], 'XYZ').to_quaternion() sat_path = get_sat_path(configs["satObjDir"], configs["target"]) sat = make_sat(sat_path, sat_initial_attitude, configs["distance_scale"]) sun = make_sun(configs["sun_dir"], -10000000*configs["distance_scale"]*np.array(configs["sun_dir"])) cam = make_camera(configs["cam_pos"], configs["cam_dir"], configs["distance_scale"], configs["fov"]) torch = make_torch(configs["cam_pos"], configs["cam_dir"], configs["distance_scale"], use_torch=not params.no_torch) setup_depth(depth_path) # Set clip distance cam.data.clip_end = 1.5 * np.linalg.norm(initial_pos) for a in bpy.context.screen.areas: if a.type == 'VIEW_3D': for s in a.spaces: if s.type == 'VIEW_3D': s.clip_end = 1.5 * np.linalg.norm(initial_pos) return rotation_step, earth, sat, sun, cam, torch def setup_params_full(configs, params, depth_path): # Setup random orbit inclination, ascending_node, periapsis = np.random.rand(3) * np.pi mu = float(configs["mu"]) angular_momentum = np.sqrt(mu * configs["radius"]) ref_sat = ReferenceSatellite(0, angular_momentum, mu, inclination, ascending_node, periapsis) print(ref_sat) # Start at a random point in orbit num_steps_in_orbit = ref_sat.period * configs["fps"] start_iter = np.random.randint(num_steps_in_orbit) times = np.arange(configs["duration"]*configs["fps"]+1) / configs["fps"] + start_iter anomalies = times / num_steps_in_orbit * 2*np.pi anomalies = anomalies % (2*np.pi) ref_sat.set_states(anomalies) # Convert date and time to Julian date date = configs["date"].split('/') assert(len(date) == 3 and len(date[2]) == 4), 'Date should be in the form dd/mm/yyyy' year, month, day = [float(i) for i in date] day += float(configs["time"]) / 24. jd = julian_date(year, month, day) # Get initial position of Earth, Sun and chaser initial_pos = np.array(configs["radius"] * configs["distance_scale"]) * np.array([-1, 0, 0]) configs["max_depth"] = configs["max_depth"] * configs["distance_scale"] configs["attitude"] = [math.radians(float(i)) for i in configs["attitude"]] sun_dir = get_sun_dir(jd, 0, ref_sat.get_state()[:3]) # Get states of target and chaser # If ang_vel is not a list of euler angles, get the rotation from axis angle if not isinstance(configs["ang_vel"], (list, np.ndarray)): axis = mathutils.Vector(configs["axis"]) axis.normalize() # Work out the rotation per step as a quaternion angle = math.radians(configs["ang_vel"]) rotation_step = mathutils.Quaternion(axis, angle) else: ang_vel = [math.radians(float(i)) for i in configs["ang_vel"]] rotation_step = mathutils.Euler(ang_vel, 'XYZ').to_quaternion() # Convert angular velocity into quaternion rotation per step axis, angle = rotation_step.to_axis_angle() rotation_step = mathutils.Quaternion(axis, angle*configs["frame_skip"]/configs["fps"]) # Get chaser states chaser_initial_state = np.array([configs["distance"], 0, 0, 0, -2*ref_sat.omega*configs["distance"], 0]) # Initial state for a circular relative orbit chaser_pos = chaser_initial_state[:3] * configs["distance_scale"] chaser_dir = -chaser_initial_state[:3] / np.linalg.norm(chaser_initial_state[:3]) chaser_states = compute_cw(chaser_initial_state, ref_sat, anomalies) # Get sun direction at each step sun_dirs = [] for i, t in enumerate(times): ref_sat.set_iter(i) sun_dirs.append(get_sun_dir(jd, times[i], ref_sat.get_state())) # Make objects earth = bpy.data.objects['Earth'] earth.location = initial_pos earth.scale = np.array([1,1,1]) * 637100 * configs['distance_scale'] #earth.transform_apply(scale=True) sat_initial_attitude = mathutils.Euler(configs["attitude"], 'XYZ').to_quaternion() sat_path = get_sat_path(configs["satObjDir"], configs["target"]) sat = make_sat(sat_path, sat_initial_attitude, configs["distance_scale"]) sun = make_sun(sun_dir, -10000000*configs["distance_scale"]*np.array(sun_dir)) cam = make_camera(chaser_pos, chaser_dir, configs["distance_scale"], configs["fov"]) torch = make_torch(chaser_pos, chaser_dir, configs["distance_scale"], use_torch=not params.no_torch) setup_depth(depth_path) # Set clip distance cam.data.clip_end = 1.5 * np.linalg.norm(initial_pos) for a in bpy.context.screen.areas: if a.type == 'VIEW_3D': for s in a.spaces: if s.type == 'VIEW_3D': s.clip_end = 1.5 * np.linalg.norm(initial_pos) return rotation_step, earth, sat, sun, cam, torch, ref_sat.period, chaser_states, sun_dirs def animate(configs, params, save_path, data_path, rotation_step, earth, sat, sun, cam, torch, period, chaser_states=None, sun_dirs=None): frame_end = configs["duration"] * configs["fps"] bpy.context.scene.frame_end = configs["duration"] * configs["fps"] earth_rot_angle = configs["frame_skip"] / configs["fps"] / period * 2 * np.pi # Rotate satellite by constant angular velocity for i in range(frame_end//configs["frame_skip"]+1): rotate_sat(sat, i*configs["frame_skip"], rotation_step) rotate_earth(earth, i*configs["frame_skip"], earth_rot_angle) # If doing a full simulation, move chaser and sun accordingly to the dynamics if chaser_states is not None: iter = i * configs["frame_skip"] move_sun(sun, i, sun_dirs[iter], -1E8*configs["distance_scale"]*sun_dirs[iter]) move_chaser(cam, torch, i, chaser_states[iter,:3]*configs["distance_scale"], -chaser_states[iter,:3]/np.linalg.norm(chaser_states[iter,:3])) # Save animation data = [] for i in range(frame_end//configs["frame_skip"]+1): bpy.context.scene.frame_set(i*configs["frame_skip"]) save_render(i, save_path) data.append(get_data(sat, cam, i/configs["fps"]*configs["frame_skip"], configs["distance_scale"])) # Save data to file np.savetxt(os.path.join(data_path, "data.txt"), data, header="pos[3], target q[4], chaser q[4], time")
Ben-Guthrie/satvis
utils/vis_utils.py
vis_utils.py
py
9,405
python
en
code
3
github-code
6
41117547284
""" Created by hu-jinwen on 2022/4/25 """ # 打开文件 file_read = open("content") file_write = open("content[copy]", "w") # 读写 while True: #读取一行内容 text = file_read.readline() # 判断是否读取到内容 if not text: break file_write.write(text) # 关闭 file_write.close() file_read.close()
wu-qiqin/python_learn
documents/open_write_read_copy.py
open_write_read_copy.py
py
341
python
en
code
0
github-code
6
8213198289
import sublime import sublime_plugin import os class JaiToolsBuildCommand(sublime_plugin.WindowCommand): common_parent_dir = None abs_file_paths = [] rel_file_paths = [] active_rel_file_path = None def run(self): paths_set = get_all_jai_project_file_paths() # Add open files to the paths set, in case they're not part of the project for view in sublime.active_window().views(): if view_is_jai(view) and view.file_name() != None: paths_set.add(view.file_name()) if len(paths_set) == 0: sublime.error_message('There are no Jai files open or in your project. Save a Jai file and try again.') return None self.common_parent_dir = get_common_parent_dir(list(paths_set)) if len(paths_set) == 1: self.active_rel_file_path = os.path.relpath(list(paths_set)[0], self.common_parent_dir) self.perform_exec_command() else: self.abs_file_paths = sorted(list(paths_set)) self.rel_file_paths = list(map(lambda p: os.path.relpath(p, self.common_parent_dir), self.abs_file_paths)) list_input = map(lambda p: "Run 'jai " + p + "'", self.rel_file_paths) self.window.show_quick_panel(list(list_input), self.on_quick_panel_done) def perform_exec_command(self): exec_args = { 'cmd': ['jai', self.active_rel_file_path], 'working_dir': self.common_parent_dir, 'file_regex': build_result_file_regex } self.window.run_command('exec', exec_args) def on_quick_panel_done(self, file_path_index): if file_path_index < 0: return self.active_rel_file_path = self.rel_file_paths[file_path_index] self.perform_exec_command()
RobinWragg/JaiTools
JaiToolsBuildCommand.py
JaiToolsBuildCommand.py
py
1,602
python
en
code
28
github-code
6
16557567463
from zscript import * ####################################################################################################################### # p_init = """L = 1350 # albedo = 0.3 # epsilon = 1 # sigma = 5.67*10^-8 # waterdepth = 4000 # heatcapground = 4.2*1000^2*waterdepth # heatcapair = 100^2*30 # # csurface = 6.916*10^7 # tsurface = 1.669*10^8 # circlearea = 6.39*10^13 # cshadow = 8.425*10^6 # tshadow = 4.910*10^7 # cair = 226 # cground = 247 # tair = 282 # tground = 303 # tgroundsolar = L*(1-albedo)*tshadow # cgroundsolar = L*(1-albedo)*cshadow # cgroundcap = heatcapground*csurface # caircap = heatcapair*csurface # tgroundcap = heatcapground*tsurface # taircap = heatcapair*tsurface # cgroundcon = cground*cgroundcap # caircon = cair*caircap # tgroundcon = tground*tgroundcap # taircon = tair*taircap # dt = 60*60*24 # # tcair = 0 # tcground = 0 # tairspace == (epsilon*tsurface*sigma*tair^4) # tairground == (epsilon*tsurface*sigma*tair^4) # tgroundair == epsilon*tsurface*sigma*tground^4 # # ctair = 0 # ctground = 0 # cairspace == (epsilon*csurface*sigma*cair^4) # cairground == (epsilon*csurface*sigma*cair^4) # cgroundair == epsilon*csurface*sigma*cground^4 # # tairin == tgroundair + ctair # tairout == tairground + tairspace + tcair # tgroundin == tairground + ctground + tgroundsolar # tgroundout == tcground + tgroundair # # cairin == cgroundair + tcair # cairout == cairground + cairspace + tcair # cgroundin == cairground + tcground + cgroundsolar # cgroundout == ctground + cgroundair # """ # # p_loop = """ # tcair = tairin - tairout # tcground = tgroundin - tgroundout # ctair = cairin - cairout # ctground = cgroundin - cgroundout # # cairdelta = cairin - cairout # cgrounddelta = cgroundin - cgroundout # tairdelta = tairin - tairout # tgrounddelta = tgroundin - tgroundout # # caircon = caircon + cairdelta*dt # cgroundcon = cgroundcon + cgrounddelta*dt # taircon = taircon + tairdelta*dt # tgroundcon = tgroundcon + tgrounddelta*dt # # cair = caircon/caircap # cground = cgroundcon/cgroundcap # tair = taircon/taircap # tground = tgroundcon/tgroundcap # """ # # env = {} # compilerun(p_init, env) # # for i in range(100): # print() # print() # print(i) # compilerun(p_loop, env) # # print('--------------------------------------------------------------------------------------------------------------') # for k, v in env.items(): # print(k, ': ', v(env)) # print('--------------------------------------------------------------------------------------------------------------') # print(env) ####################################################################################################################### p = ''' p = 9 c = p < 10 c ''' print(list(compilerun(p, {}))) f = ''' for i=0; i < 10; i+1 | i in list a = a + i b = b + a + a c = c + b + b d = d + c + c next ''' '''x = [] for i in lexer(f): x.append(i) if i[0] == 'NL': print(x) x = [] ''' repl()
zavierboyd/ZS-Appengine
testing.py
testing.py
py
2,943
python
en
code
0
github-code
6
4083668934
from urllib.parse import urlencode import httpx from common.kan_params import crd_params from common.voe_ipc import KanAgent #host = 'localhost' #host = 'kan-agent' #port = '8088' class KanAgentClient: #def __init__(self, host=host, port=port, scope='default', version='v1', ref='v1alpha2.ReferenceK8sCRD'): def __init__(self, scope='default', version='v1', ref='v1alpha2.ReferenceK8sCRD'): #self.url = f'http://{host}:{port}/v1alpha2/agent/references' self.url = f'{KanAgent.Url}/v1alpha2/agent/references' self.scope = scope self.version = version self.ref = ref def _gen_params(self, crd_name): return { 'scope': self.scope, 'version': self.version, 'ref': self.ref } def _get(self, crd_name, object_name): params = self._gen_params(crd_name) params['kind'] = crd_params[crd_name]['plural'] params['group'] = crd_params[crd_name]['group'] params['id'] = object_name #FIXME error handling #print(params) try: r = httpx.get(self.url, params=params) except: raise Exception('Cannot access Kan Agent') return r.json() def get_target(self, name): return self._get('Target', name) def get_device(self, name): return self._get('Device', name) def get_solution(self, name): return self._get('Solution', name) def get_instance(self, name): return self._get('Instance', name) def get_skill(self, name): return self._get('Skill', name) def get_model(self, name): return self._get('Model', name) def get_skill_with_instance_name_and_alias(self, name, instance_name, alias): params = self._gen_params('Skill') params['kind'] = crd_params['Skill']['plural'] params['group'] = crd_params['Skill']['group'] params['id'] = name params['instance'] = instance_name params['alias'] = alias try: r = httpx.get(self.url, params=params) except: raise Exception('Cannot access Kan Agent') return r.json() def export_model(self, name): params = self._gen_params('Model') params['kind'] = crd_params['Model']['plural'] params['group'] = crd_params['Model']['group'] params['id'] = name params['lookup'] = 'download' params['iteration'] = 'latest' params['platform'] = 'ONNX' try: r = httpx.get(self.url, params=params) except: raise Exception('Cannot access Kan Agent') return r.json() def _post(self, crd_name, object_name, data): params = self._gen_params(crd_name) params['kind'] = crd_params[crd_name]['plural'] params['group'] = crd_params[crd_name]['group'] params['id'] = object_name try: r = httpx.post(self.url, params=params, json=data) except: raise Exception('Cannot access Kan Agent') def post_instance_status(self, name, status_code, status_description): self._post('Instance', name, data={"status_code": status_code, "status_description": status_description}) def post_instance_fps(self, name, skill_name, fps): self._post('Instance', name, data={f'fps_{skill_name}': str(fps)}) if __name__ == '__main__': sac = KanAgentClient() print(sac.get_target('sdsdsd'))
Azure/KAN
src/edge/EdgeSolution/modules/common/common/kan_agent_client.py
kan_agent_client.py
py
3,527
python
en
code
61
github-code
6
4520925854
from django.urls import path from rest_framework_simplejwt.views import ( TokenObtainPairView, TokenRefreshView, TokenVerifyView, TokenObtainSlidingView, TokenRefreshSlidingView ) from .views import SingUpView, BlacklistRefreshView urlpatterns = [ path('signup/', SingUpView.as_view(), name='sign_up'), # path('api/logout/', BlacklistRefreshView.as_view(), name="logout"), path('api/token/', TokenObtainPairView.as_view(), name='token_obtain_pair'), path('api/token/refresh/', TokenRefreshView.as_view(), name='token_refresh'), path('api/token/verify/', TokenVerifyView.as_view(), name='token_verify'), ]
rustamovjavohir/EcommerceSHOP
auth_user/urls.py
urls.py
py
638
python
en
code
8
github-code
6
6846678287
from tkinter import Frame, Label, Menu, ttk from tkinter.messagebox import showinfo import tkinter as tk import requests class AttackInfo(Frame): def __init__(self, master=None): super(AttackInfo, self).__init__(master) master = master self.type_label = Label(self, text=" ", font=('Helvetica', 18, "bold"), pady=10) self.type_label.grid(row=0, column=2) self.info_label = Label(self, text=" ", font=('Helvetica', 8), wraplength=600) self.info_label.grid(row=1, column=2, sticky='w') reply = requests.get('http://127.0.0.1:23432/attack/') attacks = reply.json() print(attacks) attack_titles = [attack['type'] for attack in attacks] attack_info = [attack['info'] for attack in attacks] var = tk.Variable(value=attack_titles) listbox = tk.Listbox( self, listvariable=var, height=len(attack_titles)) listbox.grid(row=0, column=0, rowspan=2, sticky="ns") self.rowconfigure(0, weight=1) self.rowconfigure(1, weight=1) scrollbar = ttk.Scrollbar( self, orient=tk.VERTICAL, command=listbox.yview ) listbox['yscrollcommand'] = scrollbar.set scrollbar.grid(row=0, rowspan=2, column=1, sticky="ns") def items_selected(event): # get selected indices self.info_label.destroy() self.type_label.destroy() selected_indices = listbox.curselection()[0] print(selected_indices) self.type_label = Label(self, text=attack_titles[selected_indices], font=('Helvetica', 18, "bold"), pady=10) self.type_label.grid(row=0, column=2, sticky="n") self.info_label = Label(self, text=attack_info[selected_indices], font=('Helvetica', 8), wraplength=600) self.info_label.grid(row=1, column=2, sticky='n') listbox.bind('<<ListboxSelect>>', items_selected)
iamcrysun/eqw
desktop/views/attackinfo.py
attackinfo.py
py
2,001
python
en
code
0
github-code
6
10167784496
# (c) Nelen & Schuurmans. MIT licensed, see LICENSE.rst. from __future__ import unicode_literals from django.http.multipartparser import parse_header from rest_framework.renderers import BaseRenderer COLNAME_FORMAT = '%Y-%m-%d %H:%M:%S.%f' class CSVRenderer(BaseRenderer): """ Renderer which serializes to csv. """ media_type = 'text/csv' format = 'csv' def render(self, data, accepted_media_type=None, renderer_context=None): """ Render `obj` into csv. """ if data is None: return '' response = '"datetime (utc)";' + \ ';'.join(['"%s"' % column for column in data.columns]) + '\n' + \ ''.join(['%s\n' % row for row in \ ['"%s";' % timestamp.strftime(COLNAME_FORMAT) + \ ';'.join(['"%s"' % row[i] for i, _ in enumerate(data.columns)]) for timestamp, row in data.iterrows()]]) return response
ddsc/dikedata-api
dikedata_api/renderers.py
renderers.py
py
957
python
en
code
0
github-code
6
14959290509
import json from json import JSONEncoder from yoti_python_sdk.crypto import Crypto from yoti_python_sdk.http import SignedRequestBuilder import yoti_python_sandbox from .anchor import SandboxAnchor from .attribute import SandboxAttribute from .endpoint import SandboxEndpoint from .sandbox_exception import SandboxException from .token import YotiTokenRequest from .token import YotiTokenResponse class SandboxEncoder(JSONEncoder): def default(self, o): if isinstance(o, YotiTokenRequest): return o.__dict__() if isinstance(o, SandboxAttribute): return o.__dict__() if isinstance(o, SandboxAnchor): return o.__dict__() return json.JSONEncoder.default(self, o) class SandboxClient(object): def __init__(self, sdk_id, pem_file, sandbox_url=None): if sandbox_url is None: sandbox_url = yoti_python_sandbox.DEFAULT_SANDBOX_URL self.sdk_id = sdk_id self.__endpoint = SandboxEndpoint(sdk_id) self.__sandbox_url = sandbox_url if isinstance(pem_file, Crypto): self.__crypto = pem_file else: self.__crypto = Crypto.read_pem_file(pem_file, "SandboxClient.__init__") def setup_sharing_profile(self, request_token): """ Using the supplied YotiTokenRequest, this function will make a request to the defined sandbox environment to create a profile with the supplied values. The returned token can be used against the sandbox environment to retrieve the profile using the standard YotiClient. :param YotiTokenRequest request_token: :return: the token for accessing a profile """ request_path = self.__endpoint.get_sandbox_path() payload = json.dumps(request_token, cls=SandboxEncoder).encode("utf-8") signed_request = ( SignedRequestBuilder() .with_pem_file(self.__crypto) .with_base_url(self.__sandbox_url) .with_endpoint(request_path) .with_payload(payload) .with_post() .build() ) response_payload = signed_request.execute() if response_payload.status_code < 200 or response_payload.status_code >= 300: raise SandboxException( "Error making request to sandbox service: " + str(response_payload.status_code), response_payload, ) parsed = json.loads(response_payload.text) return YotiTokenResponse(parsed["token"]) @staticmethod def builder(): """ Creates an instance of the sandbox client builder :return: instance of SandboxClientBuilder """ return SandboxClientBuilder() class SandboxClientBuilder(object): def __init__(self): self.__sdk_id = None self.__pem_file = None self.__sandbox_url = None def for_application(self, sdk_id): """ Sets the application ID on the builder :param str sdk_id: the SDK ID supplied from Yoti Hub :return: the updated builder """ self.__sdk_id = sdk_id return self def with_pem_file(self, pem_file): """ Sets the pem file to be used on the builder :param str pem_file: path to the PEM file :return: the updated builder """ self.__pem_file = pem_file return self def with_sandbox_url(self, sandbox_url): """ Sets the URL of the sandbox environment on the builder :param str sandbox_url: the sandbox environment URL :return: the updated builder """ self.__sandbox_url = sandbox_url return self def build(self): """ Using all supplied values, create an instance of the SandboxClient. :raises ValueError: one or more of the values is None :return: instance of SandboxClient """ if self.__sdk_id is None or self.__pem_file is None: raise ValueError("SDK ID/PEM file must not be None") return SandboxClient(self.__sdk_id, self.__pem_file, self.__sandbox_url)
getyoti/yoti-python-sdk-sandbox
yoti_python_sandbox/client.py
client.py
py
4,176
python
en
code
0
github-code
6
6105704383
import requests import sys import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) proxies = {'http': 'http://127.0.0.1:8080', 'https': 'http://127.0.0.1:8080'} def promote_to_admin(s, url): # login as the wiener user login_url = url + "/login" data_login = {"username": "wiener", "password": "peter"} r = s.post(login_url, data=data_login, verify=False, proxies=proxies) res = r.text if "Log out" in res: print("(+) Successfully logged in as the wiener user.") # Exploit access control vulnerability to promote the user to admin admin_roles_url = url + "/admin-roles?username=wiener&action=upgrade" r = s.get(admin_roles_url, verify=False, proxies=proxies) res = r.text if "Admin panel" in res: print("(+) Successfully promoted the user to administrator.") else: print("(-) Could not promote the user to administrator.") sys.exit(-1) else: print("(-) Could not login as the wiener user.") sys.exit(-1) def main(): if len(sys.argv) != 2: print("(+) Usage: %s <url>" % sys.argv[0]) print("(+) Example: %s www.example.com" % sys.argv[0]) sys.exit(-1) s = requests.Session() url = sys.argv[1] promote_to_admin(s, url) if __name__ == "__main__": main()
rkhal101/Web-Security-Academy-Series
broken-access-control/lab-06/access-control-lab-06.py
access-control-lab-06.py
py
1,364
python
en
code
396
github-code
6
20701388833
import sqlite3 samira = sqlite3.connect('shallownowschool.db') cursor = samira.cursor() cursor.execute(""" INSERT INTO td_estudante(nome, endereco, nascimento, matricula) VALUES ('Maria da Conceição', 'Rua da Paz', '1902-12-12', 20161382596); """) samira.commit() print("Inserido com sucesso.") samira.close()
kemelynfigueiredo/TopicosEspeciais
MeuPrimeiroSQLite/temp.py
temp.py
py
324
python
pt
code
0
github-code
6
13511594492
""" This module is unit-tested using doctest when run directly. :) python duration_string.py """ import doctest import re __version__ = "1.2.3" TIMING_MAP = {"s": 1, "m": 60, "h": 60 * 60, "d": 24 * 60 * 60} def is_valid(string): """ >>> is_valid('') False >>> is_valid(None) False >>> is_valid('f') False >>> is_valid('2') True >>> is_valid('2x') False >>> is_valid('2s') True >>> is_valid(2) True >>> is_valid(' 2 ') True >>> is_valid(' 2h ') True >>> is_valid(' 2 h ') True """ val, _ = is_valid_w_reason(string) return val def is_valid_w_reason(string): if not string: return False, "Valid String value required." if not isinstance(string, str) and not isinstance(string, int): return False, "Invalid duration: %s" % string if isinstance(string, int): string = str(string) _, time_string = separate_time_string(string) if time_string and time_string not in TIMING_MAP: return ( False, "Invalid duration string. Valid ones are %s" % ",".join(list(TIMING_MAP.keys())), ) return True, "" def separate_time_string(string): if isinstance(string, int): string = str(string) string = re.sub(r"\s", "", string) time_value = re.sub(r"[^\d\.]", "", string) time_string = string.replace(time_value, "") return time_value, time_string def get_valid_time_parts(string): validity, reason = is_valid_w_reason(string) if not validity: raise ValueError(validity) return separate_time_string(string) def get(string): """ >>> get('2h') 7200 >>> get(' 2h ') 7200 >>> get(' 2 h ') 7200 >>> get('2s') 2 >>> get('1m') 60 >>> get('0.5m') 30 >>> get('2') 2 >>> get(2) 2 """ time_value, time_string = get_valid_time_parts(string) multiplier = TIMING_MAP.get(time_string, TIMING_MAP["s"]) return int(multiplier * float(time_value)) if __name__ == "__main__": doctest.testmod()
geonyoro/durationstring
durationstring.py
durationstring.py
py
2,106
python
en
code
2
github-code
6
17625798812
import sys import os import pandas as pd from util import load_column_transformers, preprocess_data from alphagan_class import AlphaGAN from keras.losses import MeanAbsoluteError from bigan import BIGAN import keras.backend as K import tensorflow as tf import numpy as np if __name__ == '__main__': session = K.get_session() init = tf.global_variables_initializer() session.run(init) ag = AlphaGAN() ag.load_pretrained_models('./snapshots/3900_') test_normal_df = pd.read_csv('./data/test_set_normal.csv') preprocess_data(test_normal_df, './data/ranges.csv') test_abnomal_df = pd.read_csv('./data/test_set_abnomal.csv') preprocess_data(test_abnomal_df, './data/ranges.csv') X_1 = test_normal_df.to_numpy() X_2 = test_abnomal_df.to_numpy() Z_hat_1 = ag.encoder.predict(X_1) X_hat_1 = ag.generator.predict(Z_hat_1) Z_hat_2 = ag.encoder.predict(X_2) X_hat_2 = ag.generator.predict(Z_hat_2) rec_losses_normal = np.linalg.norm(np.subtract(X_1, X_hat_1), axis=1) rec_losses_fraud = np.linalg.norm(np.subtract(X_2, X_hat_2), axis=1) num = len(rec_losses_normal) + len(rec_losses_fraud) print('Number of test samples: %d' % num) THRESH = 9.25 rec_losses_normal_correct = [loss for loss in rec_losses_normal if loss < THRESH] print('Precision of normal transactions: %1.2f%%(%d/%d)' % (len(rec_losses_normal_correct) * 100 / len(rec_losses_normal), len(rec_losses_normal_correct), len(rec_losses_normal))) rec_losses_fraud_correct = [loss for loss in rec_losses_fraud if loss > THRESH] print('Precision of fraud transactions: %1.2f%%(%d/%d)' % \ (len(rec_losses_fraud_correct) * 100 / len(rec_losses_fraud), len(rec_losses_fraud_correct), len(rec_losses_fraud)))
royalsalute/fraud-creditcard-detection
eval.py
eval.py
py
1,784
python
en
code
1
github-code
6
30789951381
#!/usr/bin/env python # coding: utf-8 # In[1]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.graph_objects as go from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, confusion_matrix from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.svm import SVC from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score from sklearn.neighbors import KNeighborsClassifier from sklearn.impute import KNNImputer from sklearn.metrics import f1_score # # Exploratory Data Analysis (EDA): # # Step 1: Loaded the dataset and examined its structure and dimensions. # # Step 2: Checked for missing values and handled them appropriately (e.g., imputation or removal). # # Step 3: Explored the distribution and summary statistics of each feature. # # Step 4: Visualized the relationships between variables using heat map. # In[2]: # Load the dataset data = pd.read_csv(r"C:\Users\Nimisha\OneDrive\Desktop\Assessment\starcraft_player_data.csv") # Display the first few rows of the dataset data.head() # In[3]: data.info() # In[4]: # Check the shape of the dataset print("Shape of the dataset:", data.shape) # Check for missing values print("Missing values:\n", data.isna().sum()) # Summary statistics print("Summary statistics:\n", data.describe()) # In[5]: # Check the distribution of the target variable print("Distribution of the target variable:\n", data['LeagueIndex'].value_counts()) # In[6]: class_counts = data['LeagueIndex'].value_counts() plt.bar(class_counts.index, class_counts.values) plt.xlabel('Class') plt.ylabel('Count') plt.title('Class Distribution') plt.show() # After looking at the dimension and structure of the dataset , I noticed a few important characteristics about the dataset: # 1. There are 3 columns described as objects and those are Age, TotalHours and HoursPerWeek. I tried to find the null values in these columns but there are no null values. Instead, they have '?' so it needs to be either removed or imputed. First, we will simply remove all the '?' from the dataset. # # 2. This is a class imbalance problem which we will address later on. As we can see there are very few data points with LeagueIndex 7 and 8. # Conducted feature selection using correlation analysis and identified relevant features. # In[7]: data['Age'].unique() # In[8]: data['HoursPerWeek'].unique() # In[9]: data['TotalHours'].unique() # In[10]: data[data['TotalHours']=='?'] # I checked all the three columns with '?' and figured out that TotalHours has the maximum '?' and if we drop its rows then our # issue will be resolved because it combines the '?' rows of the other 2 columns as well. # In[11]: data2 = data.drop(data[data['TotalHours'] == '?'].dropna().index) # In[12]: data2.head() # In[13]: data2.info() # In[14]: data2[data2['Age']=='?'] # In[15]: data2[data2['HoursPerWeek']=='?'] # Then I converted all the 3 columns to integer type to find the correlation between the features. # In[16]: #converting them into integer data2['Age'] = data2['Age'].astype('int64') data2['HoursPerWeek'] = data2['HoursPerWeek'].astype('int64') data2['TotalHours'] = data2['TotalHours'].astype('int64') # In[17]: data2.isna().sum() # In[18]: #Then I checked correlation between columns to understand what impact does the other features have on target variable. correl = data2.corr() trace = go.Heatmap(z=correl.values, x=correl.index.values, y=correl.columns.values) data=[trace] layout = go.Layout(width=1000, height=900) fig = go.Figure(data=data, layout=layout) fig.show() # In[19]: sorted_corr = correl['LeagueIndex'].sort_values(ascending=False) sorted_corr #found the two least correlated columns to LeagueIndex i.e. GameID and TotalHours # # Data Preprocessing and Feature Engineering: # # Step 1: Split the data into features (X) and the target variable (y) for rank prediction. # # Step 2: Scaled the continuous variables using standardization or normalization. # In[20]: # Split the dataset into features and target variable X = data2.drop('LeagueIndex', axis=1) y = data2['LeagueIndex'] # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Feature scaling using StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # # Model Selection, Training and Evaluation: # # 1. Selected appropriate models for rank prediction, such as logistic regression, decision trees, random forests, gradient boosting, SVM, or Neural Network. # # # 2. Split the data into training and testing sets for model evaluation. # # # 3. Trained the chosen models on the training set. # # # 4. Evaluated the trained models on the testing set using suitable metrics like F1 score. I used F1 score to evaluate the performance instead of accuracy because this is a class imbalance problem. # In[21]: # Create and train different models models = [ LogisticRegression(), DecisionTreeClassifier(), RandomForestClassifier(), GradientBoostingClassifier(), SVC(), MLPClassifier() ] model_names = [ 'Logistic Regression', 'Decision Tree', 'Random Forest', 'Gradient Boosting', 'SVM', 'Neural Network' ] scores = [] # Evaluate models and print accuracy for model, name in zip(models, model_names): model.fit(X_train_scaled, y_train) y_pred = model.predict(X_test_scaled) f1score = f1_score(y_test, y_pred, average='weighted') print(f"{name} f1 Score: {f1score}") scores.append(f1score) # In[22]: # Plotting the F1 scores plt.figure(figsize=(8, 6)) plt.bar(model_names, scores) plt.xlabel('Models') plt.ylabel('F1 Score') plt.title('Comparison of F1 Scores for Different Models') plt.xticks(rotation=45) plt.ylim(0, 1) # Set the y-axis limit plt.show() # # Class Imbalance Problem # Now we will address the class imbalance problem by class weighting. Assign higher weights to the minority class samples or # lower weights to the majority class samples during model training. This gives more importance to the minority class during the # learning process. I added weights and re-evaluated the decision tree classifier. # In[23]: # Calculate class weights class_weights = dict(zip(np.unique(y_train), np.bincount(y_train))) # Create and train the decision tree classifier with class weights dt_classifier = DecisionTreeClassifier(class_weight = class_weights) dt_classifier.fit(X_train_scaled, y_train) # Make predictions on the testing data y_pred = dt_classifier.predict(X_test_scaled) # Compute the weighted F1 score f1score = f1_score(y_test, y_pred, average='weighted') print("f1 Score:",f1score) # # Removed least correlated columns # In[24]: #Next, we remove the two least correlated columns to LeagueIndex. data3 = data2.drop(columns=['GameID','TotalHours']) # In[25]: # Split the dataset into features and target variable X = data3.drop('LeagueIndex', axis=1) y = data3['LeagueIndex'] # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Feature scaling using StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # Create and train different models models = [ LogisticRegression(), DecisionTreeClassifier(), RandomForestClassifier(), GradientBoostingClassifier(), SVC(), MLPClassifier() ] model_names = [ 'Logistic Regression', 'Decision Tree', 'Random Forest', 'Gradient Boosting', 'SVM', 'Neural Network' ] # Evaluate models and print accuracy for model, name in zip(models, model_names): model.fit(X_train_scaled, y_train) y_pred = model.predict(X_test_scaled) f1score = f1_score(y_test, y_pred, average="weighted") print(f"{name} F1 Score: {f1score}") # # K-Nearest Neighbors Classifier # In[26]: knn_model = KNeighborsClassifier(n_neighbors=14) knn_model.fit(X_train_scaled, y_train) knn_pred = knn_model.predict(X_test_scaled) f1score = f1_score(y_test, knn_pred, average="weighted") print("KNN F1 Score:", f1score) # # Imputation using KNN # Now we will perform imputation. Instead of dropping all the rows with '?', we will fill the missing values through imputation. # In[27]: sampledata = pd.read_csv(r"C:\Users\Nimisha\OneDrive\Desktop\Assessment\starcraft_player_data.csv") # In[28]: sampledata[['Age','TotalHours','HoursPerWeek']] = sampledata[['Age','TotalHours','HoursPerWeek']].replace('?', None) # In[29]: sampledata.info() # In[30]: sampledata.isna().sum() # In[31]: #imputing the values using knn missingdata = sampledata[['Age','TotalHours','HoursPerWeek']] # In[32]: k = 5 knn_imputer = KNNImputer(n_neighbors=k) imputed_data = knn_imputer.fit_transform(missingdata) # In[33]: df_imputed = pd.DataFrame(imputed_data, columns=missingdata.columns) # In[34]: df_imputed.info() # In[35]: sampledata[['Age','TotalHours','HoursPerWeek']] = df_imputed[['Age','TotalHours','HoursPerWeek']] # In[36]: sampledata.info() # In[37]: sampledata.isna().sum() # In[38]: # Split the dataset into features and target variable X = sampledata.drop('LeagueIndex', axis=1) y = sampledata['LeagueIndex'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=50) X_train X_test y_train y_test # In[39]: rf_model = RandomForestClassifier() rf_model.fit(X_train, y_train) rf_pred = rf_model.predict(X_test) f1score = f1_score(y_test, rf_pred,average= "weighted") print("Random Forest F1 Score:", f1score) # Finally, let's address the hypothetical scenario where stakeholders want to collect more data and seek guidance. Based on the EDA and model results, I would suggest the following: # # 1. Collect more samples for the minority classes: Since the dataset is imbalanced, collecting more data for the underrepresented rank levels can improve the model's performance. # # 2. Gather additional features: If there are relevant features that are not present in the current dataset, collecting additional data with those features can enhance the model's predictive power. # # 3. Monitor data quality: Ensure that the new data collection process maintains data quality standards, such as avoiding missing values, outliers, or inconsistencies. # # 4. Perform iterative model updates: As more data becomes available, it's beneficial to periodically update and retrain the model using the augmented dataset to capture any evolving patterns or changes in player performance. # # These recommendations aim to enhance the predictive capabilities of the model and provide more accurate rank predictions. # In[ ]:
nimishakhaitan/Evil-Geniuses-assessment
Assessment_Data_Science.py
Assessment_Data_Science.py
py
11,117
python
en
code
0
github-code
6
13659068319
from django.http import HttpResponse from django.shortcuts import redirect, render from .forms import ContactForm from django.core.mail import send_mail, BadHeaderError from config.settings import RECIPIENTS_EMAIL, DEFAULT_FROM_EMAIL # Create your views here. def contact_view(request): if request.method == "GET": form = ContactForm() elif request.method == "POST": form = ContactForm(request.POST) if form.is_valid(): full_name = form.cleaned_data['full_name'] from_email = form.cleaned_data['from_email'] message = form.cleaned_data['message'] try: send_mail(f'{full_name} от {from_email}', message, DEFAULT_FROM_EMAIL, [DEFAULT_FROM_EMAIL], RECIPIENTS_EMAIL) except BadHeaderError: return HttpResponse('Ошибка в теме письма.') return redirect('success') else: return HttpResponse('Неверный запрос.') return render(request, "email/contact.html", {'form': form}) def success_view(request): return render(request, "email/consuc.html")
Dauka03/food_project_back
sendemail/views.py
views.py
py
1,235
python
en
code
1
github-code
6
24519278933
import argparse import os import cv2 from wand.image import Image import numpy as np #ArgumentParser객체:명령행을 파이썬 데이터형으로 파싱하는데 필요한 모든 정보가 들어있음 #ArgumentParser객체 생성 ap=argparse.ArgumentParser() ap.add_argument("-i","--images",required=True, help="absolute path to the input image") ap.add_argument("-c","--cascade",default="C:/Users/cat7892/Documents/GitHub/catholic/catface_detection/haarcascade_frontalcatface.xml",help="absolute path to detector haar cascade") #parse_args():문자열을 객체로 변환 후 namespace의 attribute로 설정 args=vars(ap.parse_args()) count=0 #imagefolder->only heic, jpg type images imagefolder=args['images'].replace('\\','/') for image in os.listdir(args["images"]): print(image) #If the image file format is 'heic', it is converted to 'jpg'. if image[-3:]!='jpg': img=Image(filename=imagefolder+'/'+image) img.format='jpg' image=image.replace('heic', 'jpg') img.save(filename=imagefolder+'/'+image) img.close() os.remove(imagefolder+'/'+image.replace('jpg','heic')) ''' # load image+convert grayscale color=cv2.imread(imagefolder+'/'+image) gray=cv2.cvtColor(color, cv2.COLOR_BGR2GRAY) #load detector, then detect detector=cv2.CascadeClassifier(args["cascade"]) rects=detector.detectMultiScale(gray, scaleFactor=1.3, minNeighbors=10) #loop over detect and save file for (i, (x,y,w,h)) in enumerate(rects): roi=color[y:y+h,x:x+w].copy() print(x,y,w,h) cv2.imwrite('C:/Users/cat7892/Documents/GitHub/catholic/catface_detection/test_detect/'+str(count)+'.jpg',roi) cv2.waitKey() count+=1 '''
Zzang-yeah/catholic
cat_detection/feic_to_jpg.py
feic_to_jpg.py
py
1,733
python
en
code
0
github-code
6
34607069404
import os import json import pandas as pd import numpy as np import networkx as nx #所有节点和边构成网络图 def form_graph(parent_path): every_pro_path = os.path.join(parent_path, r'dataset\secondExperiments\COVID_Node2Vec.csv') simGO_path = os.path.join(parent_path, r'dataset\secondExperiments\train_COVID_AllHuman_GoSim.xls') # 网络图的构建 G = nx.Graph() pro_file = pd.read_csv(every_pro_path) pro = np.array(pro_file["name"]) proList = [] # 每个蛋白质的索引 for i in range(len(pro)): proList.append(pro[i]) G.add_node(i) edges_df = pd.read_excel(simGO_path) source = np.array(edges_df["protein"]) target = np.array(edges_df["neghbor_protein"]) sim = np.array(edges_df["sim"]) edgesList = [] for j in range(len(source)): edgesList.append((source[j].split("_")[1], target[j].split("_")[1])) G.add_edge(int(source[j].split("_")[0]), int(target[j].split("_")[0])) G[int(source[j].split("_")[0])][int(target[j].split("_")[0])]['weight'] = sim[j] print("图形已构成") return G #通过所有核数据 def readresultjson(parent_path, graph): result_corefile = os.path.join(parent_path, r'result\secondExperiments\train_COVID_result.json') with open(result_corefile, 'r', encoding='utf8')as fp: json_data = json.load(fp) seed = [] for core_k, core_v in json_data.items(): core = core_v[0]["cover"] seed.extend(core) seed = list(set(seed)) return json_data,seed #通过核获得一阶邻点 def getfirstneighbor(json_data,seed,graph): adj = graph._adj neighbordict = {} for k,v in json_data.items(): allneighborNode = [] neighborNode = [] core = v[0]["cover"] for i in core: everyneigh = adj[int(i)].keys() neighborNode.extend(everyneigh) neighborNode = list(set(neighborNode)) for i in neighborNode: if i not in seed: allneighborNode.append(i) neighbordict[k] = neighborNode return adj,neighbordict #适应度函数 def fitness_function(adj,complex, core,graph): sum_degree_in = 0 # 所有顶点的入度之和 sum_degree_out = 0 # 所有顶点的出度之和 E = 0 for i in range(len(complex)): degree_in = 0 # 每个节点的入度 degree_out = 0 # 每个节点的出度 i_adj = adj[complex[i]].keys() for z in i_adj: if z in complex: if (complex[i], int(z)) in graph.edges(): degree_in += graph[complex[i]][int(z)]['weight'] else: degree_in += graph[int(z)][complex[i]]['weight'] else: if (complex[i], int(z)) in graph.edges(): degree_out += graph[complex[i]][int(z)]['weight'] else: degree_out += graph[int(z)][complex[i]]['weight'] for j in range(len(complex)): if i < j: if (complex[i], complex[j]) in graph.edges() or ( complex[j], complex[i]) in graph.edges(): E += 1 sum_degree_in += degree_in sum_degree_out += degree_out a = 0.8 modularity = (sum_degree_in - sum_degree_out) / (sum_degree_out + sum_degree_in) density = (2 * E) / (len(complex) * (len(complex) - 1)) score = a*density+(1-a)*modularity return score #通过分数形成核心-附件的形式 def core_accessories(json_data,neighbordict,adj,graph): resultDict = {} for k, v in json_data.items(): complexjson = {} resultList = [] core = [int(i) for i in v[0]["cover"]] complex = core+neighbordict[k] #求每个一阶邻点与core总的功能相似性 score_neighbordict = {} for j in neighbordict[k]: score = 0 for z in core: if (int(z), int(j)) in graph.edges(): score += graph[int(z)][int(j)]['weight'] elif (int(j), int(z)) in graph.edges(): score += graph[int(j)][int(z)]['weight'] else: score += 0 score_neighbordict[j] = score score_neighbordict = sorted(score_neighbordict.items(), key=lambda item: item[1]) if len(complex) > 3: core_score = fitness_function(adj, complex, core, graph) for i in score_neighbordict: # for i in neighbordict[k]: if len(complex) > 3: complex.remove(i[0]) complex_score = fitness_function(adj, complex, core, graph) if complex_score >= core_score: core_score = complex_score else: complex.append(i[0]) else: break elif len(complex) == 3: core_score = fitness_function(adj, complex, core, graph) else: # continue core_score = 0 # if len(core) > 1: # core_score = fitness_function(adj,core) # else: # core_score = 0 # complex = core # for i in neighbordict[k]: # complex.append(i) # complex_score = fitness_function(adj, complex) # if complex_score >= core_score: # core_score = complex_score # else: # complex.remove(i) complexjson["cover"] = complex complexjson["score"] = core_score resultList.append(complexjson) resultDict[k] = resultList return resultDict def savecomplex(parent_path,complexjson): result_path = parent_path + r'\result\secondExperiments\train_COVID_resultComplex.json' with open(result_path, 'w') as fw: json.dump(complexjson, fw) if __name__ == '__main__': ROOT_DIR = os.path.dirname(os.path.abspath('__file__')) parent_path = os.path.dirname(ROOT_DIR) graph = form_graph(parent_path) json_data,seed = readresultjson(parent_path, graph) adj,neighbordict = getfirstneighbor(json_data,seed,graph) complexjson = core_accessories(json_data,neighbordict,adj,graph) print(complexjson.__len__()) savecomplex(parent_path,complexjson)
LittleBird120/DiseaseGenePredicition
DiseaseGenePredicition/20210315covering-clustering-algorithm - COVID/algorithm/formComplex.py
formComplex.py
py
6,315
python
en
code
0
github-code
6
1414123757
import pytest import os import shutil import tngsdk.project.workspace as workspace from tngsdk.project.workspace import Workspace from tngsdk.project.project import Project class TestProjectUnit: # create and return a temporary workspace 'test-ws' @pytest.fixture(scope='module') def workspace(self): # start clean without workspace if os.path.isdir('test-ws'): shutil.rmtree('test-ws') args = workspace.parse_args_workspace([ '-w', 'test-ws', '--debug' ]) workspace.init_workspace(args) assert os.path.isdir('test-ws') yield 'test-ws' shutil.rmtree('test-ws') # test descriptors of project 'example-project' def test_example_project_descriptors(self, workspace): ws = Workspace.load_workspace(workspace) example_project = Project.load_project('example-project', workspace=ws) example_project.status() vnfds = example_project.get_vnfds() assert vnfds == ['tango_vnfd0.yml'] nsds = example_project.get_nsds() assert nsds == ['tango_nsd.yml']
sonata-nfv/tng-sdk-project
tests/test_project_unit.py
test_project_unit.py
py
1,124
python
en
code
5
github-code
6
41283122101
# -*- coding: utf-8 -*- import math import numpy as np from scipy.interpolate import interp1d class SpatialParameters: def __init__(self, signal, fs, window_size, running_step): self.time_steps, self.iacc, self.tiacc, self.wiacc = self.__get_xcorr_descriptors( signal, fs, window_size, running_step) def __get_xcorr_descriptors(self, signal, fs, window_size, running_step): w_samples = round(window_size * fs) rs_samples = round(running_step * fs) time_steps = np.array([]) iacc = np.array([]) tiacc = np.array([]) wiacc = np.array([]) wiacc_d = np.array([]) wiacc_u = np.array([]) max_delay = 1 # (ms) dT = math.floor(max_delay * 0.001 * fs) t_axis_length = (2*dT) + 1 T_AXIS = np.linspace(-max_delay, max_delay, t_axis_length) delta = t_axis_length//2 iD = 0 iU = w_samples lim = math.ceil(t_axis_length/2)-1 while iU < len(signal): c = 0 idx = 0 max_value = 0 ts = np.round(iD / fs, 2) time_steps = np.append(time_steps,ts) cll0 = np.correlate(signal[iD:iU,0], signal[iD:iU,0]) crr0 = np.correlate(signal[iD:iU,1], signal[iD:iU,1]) if((cll0 == 0) or (crr0 == 0)): iacc = np.append(iacc, 0) wiacc = np.append(wiacc, 0) wiacc_d = np.append(wiacc_d, 0) wiacc_u = np.append(wiacc_u, 0) if((cll0 == 0) and (crr0 != 0)): tiacc = np.append(tiacc, 1) if((cll0 != 0) and (crr0 == 0)): tiacc = np.append(tiacc, -1) else: tiacc = np.append(tiacc, 0) scale = math.sqrt(cll0*crr0) iacf = np.zeros([(2*delta)+1]) for tau in range(2*delta, -1, -1): L = [0] R = [0] if(c < lim): L = signal[iD+delta-c:iU, 0] R = signal[iD:iU-delta+c, 1] elif(c == lim): L = signal[iD:iU, 0] R = signal[iD:iU, 1] else: L = signal[iD:iU-c+delta, 0] R = signal[iD+c-delta:iU, 1] xcorr = np.correlate(L, R) / scale #iacf[tau, step] = xcorr c += 1 if(xcorr > max_value): max_value = xcorr idx = tau iacc = np.append(iacc, max_value) tiacc_window = T_AXIS[idx] tiacc = np.append(tiacc, tiacc_window) alpha = 0.9*max_value idx_minus = np.linspace(idx, 0, idx+1) idx_plus = np.linspace(idx, t_axis_length-1, t_axis_length-idx) t_minus = -1; t_plus = 1; i_m = 0 i_p = 0 m_found = False if(len(idx_minus) > 1): for i in idx_minus: if(iacf[int(i)] < alpha): i_m = int(i) if(idx-i > 0): m_found = True x_m = iacf[i_m:idx+1] y_m = T_AXIS[i_m:idx+1] t_f = interp1d(x_m, y_m, kind='linear') t_minus = t_f(alpha) break p_found = False if(len(idx_plus) > 1): for i in idx_plus: if(iacf[int(i)] < alpha): i_p = int(i) if(i-idx > 0): p_found = True x_p = iacf[idx:i_p+1] y_p = T_AXIS[idx:i_p+1] t_f = interp1d(x_p, y_p, kind='linear') t_plus = t_f(alpha) break wiacc_d = np.append(wiacc_d, t_minus) wiacc_u = np.append(wiacc_u, t_plus) if(not(m_found)): wiacc = np.append(wiacc, (t_plus - tiacc_window) * 2) elif(not(p_found)): wiacc = np.append(wiacc, (tiacc_window - t_minus) * 2) else: wiacc = np.append(wiacc, (t_plus - t_minus)) iD += rs_samples iU += rs_samples return time_steps, iacc, tiacc, wiacc
kgordillo-hub/SoundMonitor-MetricsCalculator
SpatialParameters.py
SpatialParameters.py
py
4,821
python
en
code
0
github-code
6
25273398870
import sys sys.stdin = open('input.txt', 'r') def check(L, i): c = 0 cnt = 0 for j in range(N): if L[i][j]: cnt += 1 if not L[i][j] or j == N-1: if cnt == K: c += 1 cnt = 0 return c for t in range(1, int(input())+1): N, K = map(int, input().split()) box = [list(map(int, input().split())) for _ in range(N)] box_rev = list(zip(*box)) total = 0 for i in range(N): total += check(box, i) total += check(box_rev, i) print('#{} {}'.format(t, total))
powerticket/algorithm
Practice/실습/D10_문제풀이.py
D10_문제풀이.py
py
575
python
en
code
0
github-code
6
2416697564
import pygame import sys from random import randint display = True class snakeGame: snake = [(16, 16),(16,15)] apple = (18, 18) is_dead = False is_left = False is_right = False def move_left(self): self.is_left = True self.move_forward() self.is_left = False self.is_right = False def move_right(self): self.is_right = True self.move_forward() self.is_left = False self.is_right = False def move_forward(self): vect = (self.snake[0][0] - self.snake[1][0], self.snake[0][1] - self.snake[1][1]) if self.is_right: vect = (-vect[1], vect[0]) elif self.is_left: vect = (vect[1], -vect[0]) dest_pos = (self.snake[0][0] + vect[0],self.snake[0][1]+ vect[1]) if not(0 <= dest_pos[0] < 32 and 0 <= dest_pos[1] < 32): self.is_dead =True elif dest_pos in self.snake: self.is_dead = True elif dest_pos == self.apple: prev_tail = self.snake[-1] for i in range(len(self.snake) - 1,0,-1): self.snake[i] = self.snake[i-1] self.snake[0] = dest_pos self.snake.append(prev_tail) #APPLE CREATION self.apple = (randint(0,32), randint(0,32)) flag = True while flag: flag = False for pos in self.snake: if pos[0] == self.apple[0] and pos[1] == self.apple[1]: self.apple = (randint(0,32), randint(0,32)) flag = True else: for i in range(len(self.snake) - 1,0,-1): self.snake[i] = self.snake[i-1] self.snake[0] = dest_pos def game(self): if display: pygame.init() DisplaySurface = pygame.display.set_mode((640, 640)) # Game Name Pong pygame.display.set_caption("Pong") self.is_dead = False while not self.is_dead: # User Events; if display: pygame.display.update() for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() keys = pygame.key.get_pressed() if keys[pygame.K_RIGHT]: self.move_right() elif keys[pygame.K_LEFT]: self.move_left() self.move_forward() if display: DisplaySurface.fill((0,0,0)) self.update(DisplaySurface) (pygame.time.Clock()).tick(16) pygame.quit() sys.exit() def update(self, surface): for elem in self.snake: pygame.draw.rect(surface, (255,255,255), (elem[0]*20,elem[1]*20,20,20)) pygame.draw.rect(surface, (255, 0, 0), (self.apple[0] * 20,self.apple[1] * 20, 20, 20)) snakeGame().game()
dogancanalgul/Pong
scratch.py
scratch.py
py
3,004
python
en
code
0
github-code
6
43364784094
from pathlib import Path from argparse import ArgumentParser # The path the project resides in BASE_PATH = Path(__file__).parent.parent # Alarm net dimensions ALARM_HUGE = (5000, 2000, 500, 200) ALARM_BIG = (1000, 500, 200, 75) ALARM_SMALL = (100, 50, 25, 10) # Standard arguments def add_standard_arguments(parser: ArgumentParser): """ Add basic arguments useful to all experiments :param parser: argument parser object :return: argument parser with standard arguments added """ parser.add_argument( "random_seed", type=int, help="Seed to fix randomness" ) parser.add_argument( "data_split", type=str, help="Data split on which to evaluate the performance (i.e. val or test)" ) parser.add_argument( "--p_contamination", default=0.0, type=float, help="Fraction of contamination, i.e. anomalies in the training data" ) parser.add_argument( "--n_train_anomalies", default=0, type=int, help="Number of known anomalies in the training set" ) parser.add_argument( "--plot_freq", default=0, type=int, help="Plotting frequency to visualise the latent and image space" ) parser.add_argument( "--n_epochs", default=500, type=int, help="Number of epochs" ) parser.add_argument( "--learning_rate", default=.0001, type=float, help="Learning rate for adam" ) parser.add_argument( "--sample_stddev", default=None, type=float, help="Standard deviation of the generated anomalies (in the code layer)" ) parser.add_argument( "--model_path", default=BASE_PATH / "models", type=Path, help="Base output path for the models" ) parser.add_argument( "--result_path", default=None, type=Path, help="Base output path for the results, if None use the model path" # default = BASE_PATH / "results" ) parser.add_argument( "--is_override", default=False, type=bool, help="Override existing models" ) return parser
Fraunhofer-AISEC/DA3D
libs/constants.py
constants.py
py
2,063
python
en
code
1
github-code
6
30896806208
import cv2 # loading the images img1 = cv2.imread("png//yy.jpg") img2 = cv2.imread("png//ra.jpg") # resizing the both images in same resolution scale_percent = 60 # percent of original size width = int(img1.shape[1] * scale_percent / 90) height = int(img2.shape[0] * scale_percent / 90) dim = (width, height) # resize image reimg1 = cv2.resize(img1,dsize= dim, interpolation = cv2.INTER_AREA) reimg2 = cv2.resize(img2, dsize=dim, interpolation = cv2.INTER_AREA) #including face detection face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') gray1 = cv2.cvtColor(reimg1,cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(reimg2,cv2.COLOR_BGR2GRAY) face1 = face_cascade.detectMultiScale(gray1,scaleFactor = 1.05, minNeighbors=5) face2 = face_cascade.detectMultiScale(gray2,scaleFactor = 1.05 ,minNeighbors=5) # putting the rectangle on the faces for x,y ,w,h in face1: reimg1 = cv2.rectangle(reimg1, (x, y), (x+w, y+h),(255, 0, 0), 3) for x,y ,w,h in face2: reimg2 = cv2.rectangle(reimg2, (x, y), (x+w, y+h), (0, 0, 250), 3) # difference img of the images diff = cv2.subtract(reimg1, reimg2) cv2.imshow("diff",diff) if cv2.waitKey(0) == ord('q'): cv2.destroyAllWindows() print("Difference : ",diff) # comparing the two images for exactly same of not b, g, r = cv2.split(diff) if cv2.countNonZero(b)==0 and cv2.countNonZero(g) == 0 and cv2.countNonZero(r) == 0: print("Both Images Are Identical !") else: print("Images Are Not Identical") # finding the similarities of two images sift = cv2.xfeatures2d.SIFT_create() kp1, desc1 = sift.detectAndCompute(reimg2, None) # key-points corresponds to the position kp2, desc2 = sift.detectAndCompute(reimg1, None) index_params = dict(algorithm=0, trees=5) search_params = dict() # Fast Library for Approximate Nearest Neighbors flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(desc1, desc2, k=2) # to get the best matches good_points = [] # correct matches ratio = 0.6 for m, n in matches: if m.distance < ratio*n.distance: good_points.append(m) # showing the both images (compare mode) result = cv2.drawMatches(reimg1, kp1, reimg2, kp2, good_points, None) cv2.imshow("result", result) cv2.imshow("img1", reimg1) cv2.imshow("img2", reimg2) cv2.waitKey(0) cv2.destroyAllWindows() acc = len(good_points)*100/len(matches) print("Good Points : {}".format(len(good_points))) print("Total Matches : {}".format(len(matches))) print("Accuracy : {}".format(acc)) if acc > 0: print("Both Are The same person") else: print("Different Persons")
singhsaurabh1998/OpenCv
SimilarImg.py
SimilarImg.py
py
2,656
python
en
code
0
github-code
6
37693718022
from enum import Enum, auto from typing import Any, Tuple from mesa import Model from mesa.datacollection import DataCollector from mesa.space import ContinuousSpace from mesa.time import SimultaneousActivation from autonomous_intersection.agents.direction import Direction from autonomous_intersection.agents.visualcell import VisualCell from autonomous_intersection.constants import PIXEL_PER_METER, STEPS_PER_SECOND from autonomous_intersection.managers.advanced_reservation_manager import AdvancedReservationBasedManager from autonomous_intersection.managers.prediction_manager import PredictionBasedManager from autonomous_intersection.managers.reservation_manager import ReservationBasedManager from autonomous_intersection.managers.traffic_light_manager import TrafficLightManager from autonomous_intersection.rect import Rect class Manager(Enum): TrafficLight = auto() BasicReservation = auto() AdvancedReservation = auto() Prediction = auto() class Intersection(Model): def __init__(self, height=1000, width=1000, spawn_rate=10, manager: str = Manager.TrafficLight.name, *args: Any, **parameters: Any): super().__init__(*args, **parameters) self.schedule = SimultaneousActivation(self) self.space = ContinuousSpace(height, width, False) self.width = width self.height = height self.road_width = 7 * PIXEL_PER_METER self.manager = self.get_manager(manager)(self.width, self.height, self.road_width, parameters, self) self.build_background() self.agent_id = 0 self.running = True self.spawn_rate = spawn_rate / 100 self.car_height = int(1.5 * PIXEL_PER_METER) self.data_collector = DataCollector(model_reporters={"Throughput [cars / min]": self.get_agent_rate}) @staticmethod def get_manager(manager): if manager == Manager.TrafficLight.name: return TrafficLightManager if manager == Manager.BasicReservation.name: return ReservationBasedManager if manager == Manager.AdvancedReservation.name: return AdvancedReservationBasedManager return PredictionBasedManager def get_agent_id(self): self.agent_id += 1 return self.agent_id def build_background(self): for cell in self.manager.build_background(): self.space.place_agent(cell, (cell.x, cell.y)) self.schedule.add(cell) def spawn_car(self, entry, width, height): cell = self.manager.create_new_car(entry, (width, height), self.get_agent_id()) self.space.place_agent(cell, (cell.x, cell.y)) self.schedule.add(cell) def add_new_agents(self): for entry in Direction: if not self.manager.is_entry_occupied(entry) and self.random.random() < self.spawn_rate: self.spawn_car(entry, *self.random_car_size(self.car_height)) def random_car_size(self, height) -> Tuple[int, int]: return self.random.randint(round(height * 1.3), height * 2), height def step(self): self.add_new_agents() self.manager.remove_cars(self.space, self.schedule) self.manager.control_cars() self.schedule.step() self.data_collector.collect(self) def draw_debug_object(self, rect: Rect, color: str) -> VisualCell: cell = VisualCell((rect.left, rect.top), (rect.width, rect.height), self, color, 2) self.space.place_agent(cell, (cell.x, cell.y)) self.schedule.add(cell) return cell def delete_debug_object(self, cell: VisualCell) -> None: self.space.remove_agent(cell) self.schedule.remove(cell) def get_agent_rate(self): if self.manager.first_step is None: return 0 steps = self.manager.steps - self.manager.first_step + 1 if steps < 50: return 0 return ((STEPS_PER_SECOND * 60) * self.manager.agent_count) // steps
GrzegorzNieuzyla/Autonomous-Intersection
autonomous_intersection/model.py
model.py
py
3,906
python
en
code
0
github-code
6
39363863586
import networkx as nx from node import Node class Graph(nx.Graph): def __init__(self): super().__init__() self.arcs=[] self.nao_servido = 0 def increment_nao_servido(self): self.nao_servido += 1 def decrement_nao_serveido(self): self.nao_servido-=1 def create_node(self, id: str) -> Node: node = Node(id) return node def create_nodes(self, matrix): listaN = [] dict_ap = {} for i in range(1, len(matrix[0])): node_name = matrix[0][i] node = self.create_node(node_name) listaN.append(node) dict_ap[node_name] = node self.add_nodes_from(listaN) multiple = set() i = 0 for i in range(1, len(matrix)): for j in range(1, len(matrix[i])): if matrix[i][j] == '1': if(not (matrix[0][j], matrix[i][0]) in multiple): dict_ap[matrix[0][j]].add_neighbor( dict_ap[matrix[i][0]]) dict_ap[matrix[i][0]].add_neighbor( dict_ap[matrix[0][j]]) self.add_edge(dict_ap[matrix[0][j]], dict_ap[matrix[i][0]]) multiple.add((matrix[0][j], matrix[i][0])) multiple.add((matrix[i][0], matrix[0][j])) def create_arcs(self): for i in self.nodes: for j in i.vizinhos: if ((i.id, j.id) not in self.arcs) and ((j.id, i.id) not in self.arcs): self.arcs.append((i, j))
marcoscezar1/Simulador
Simulação I/graph.py
graph.py
py
1,642
python
en
code
0
github-code
6
12755233630
""" This file contains the 16-state EKF for INS/GNSS integration in direct configuration The following states are estimated in three dimensions position, velocity, orientation, accel bias, gyro bias References https://github.com/NorthStarUAS/insgnss_tools/blob/main/insgnss_tools/Kinematics.py https://github.com/PX4/PX4-ECL/tree/master/EKF/python/ekf_derivation https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812568/ """ import math import numpy as np from ins_data_utilities.quaternion_utils import * # Model Constants def create_skew(w): """ Create skew symmetric matrix from vector :param w: :return: """ return np.array([ [0.0, -w[2], w[1]], [w[2], 0.0, -w[0]], [-w[1], w[0], 0.0]]) class NavEKF16: """ 16-state EKF for INS/GNSS integration in direct configuration """ gravity_const = 9.81 # Acceleration due to gravity _I2 = np.identity(2) _I3 = np.identity(3) _I5 = np.identity(5) _I16 = np.identity(16) def __init__(self): # Sensor variances (as standard deviation) and models (tau) self.aNoiseSigma_mps2 = 0.5 # Std dev of Accelerometer Wide Band Noise (m/s^2) self.aMarkovSigma_mps2 = 0.1 # Std dev of Accelerometer Markov Bias self.tau_acc_bias = 300.0 # Correlation time or time constant self.wNoiseSigma_rps = math.radians(0.1) # Std dev of rotation rate output noise (rad/s) self.wMarkovSigma_rps = math.radians(0.015) # Std dev of correlated rotation rate bias (rad/s) # self.tau_angular_acc_bias = 1000.0 # Correlation time or time constant # TODO: Figure out hhy does it not work when using real GNSS noise is decreased to correct values 2.5 cm? # Seems to velocity is updated wrongly self.rNoiseSigma_NE_m = 3 # GPS measurement noise std dev (m) self.rNoiseSigma_U_m = 1 # GPS measurement noise std dev (m) self.vNoiseSigma_NE_mps = 0.5 # GPS measurement noise std dev (m/s) self.vNoiseSigma_D_mps = 1.0 # GPS measurement noise std dev (m/s) # Initial set of covariance self.pErrSigma_Init_m = 10.0 # Std dev of initial position error (m) self.vErrSigma_Init_mps = 1.0 # Std dev of initial velocity error (m/s) self.attErrSigma_Init_rad = math.radians(20) # Std dev of initial attitude (phi and theta) error (rad) self.hdgErrSigma_Init_rad = math.radians(90) # Std dev of initial Heading (psi) error (rad) self.aBiasSigma_Init_mps2 = 0.1 * self.gravity_const # Std dev of initial acceleration bias (m/s^2) self.wBiasSigma_Init_rps = math.radians(1) # Std dev of initial rotation rate bias (rad/s) # Kalman Matrices self.H = np.zeros((6, 16)) # Observation matrix self.R = np.zeros((6, 6)) # Covariance of the Observation Noise (associated with MeasUpdate()) self.Rw = np.zeros((6, 6)) # Covariance of the Sensor Noise (associated with TimeUpdate()) self.S = np.zeros((6, 6)) # Innovation covariance self.P = np.zeros((16, 16)) # Covariance estimate self.K = np.zeros((16, 6)) # Kalman gain self.Q = np.zeros((16, 16)) # Process noise covariance self.Fx = self._I16 # State transition matrix # State estimates self.est_pos = np.zeros(3) # Estimated position in ENU self.est_vel = np.zeros(3) # Estimated velocity in ENU self.est_ori = np.zeros(4) # Quaternion of B wrt Local self.est_acc_bias = np.zeros(3) # acceleration bias self.est_rate_of_rot_bias = np.zeros(3) # rotation rate bias # Estimates from previous data self.est_acc = np.zeros(3) # Estimated acceleration in Body self.est_rate_rotation = np.zeros(3) # Bias free rate of rotation self._configure() def _configure(self): # Observation matrix (H) self.H[0:5, 0:5] = self._I5 # Covariance of the Process Noise (associated with TimeUpdate()) self.Rw[0:3, 0:3] = self.aNoiseSigma_mps2 ** 2 * self._I3 self.Rw[3:6, 3:6] = self.wNoiseSigma_rps ** 2 * self._I3 # self.Rw[6:9, 6:9] = 2 / self.tau_acc_bias * self.aMarkovSigma_mps2 ** 2 * self._I3 # TODO: Check this # self.Rw[9:12, 9:12] = 2 / self.tau_angular_acc_bias * self.wMarkovSigma_rps ** 2 * self._I3 # Covariance of the Observation Noise (associated with MeasUpdate()) self.R[0:2, 0:2] = self.rNoiseSigma_NE_m ** 2 * self._I2 self.R[2, 2] = self.rNoiseSigma_U_m ** 2 self.R[3:5, 3:5] = self.vNoiseSigma_NE_mps ** 2 * self._I2 self.R[5, 5] = self.vNoiseSigma_D_mps ** 2 # Initial Innovation Covariance Estimate (S) # Zeros # Initial Covariance Estimate (P) self.P[0:3, 0:3] = self.pErrSigma_Init_m ** 2 * self._I3 self.P[3:6, 3:6] = self.vErrSigma_Init_mps ** 2 * self._I3 self.P[6:8, 6:8] = self.attErrSigma_Init_rad ** 2 * self._I2 self.P[8, 8] = self.hdgErrSigma_Init_rad ** 2 self.P[9:12, 9:12] = self.aBiasSigma_Init_mps2 ** 2 * self._I3 self.P[12:15, 12:15] = self.wBiasSigma_Init_rps ** 2 * self._I3 def get_euler_angles(self): # Euler angles from quaternion return quaternion_to_euler(self.est_ori) def initialize(self, r0, v0, s0): # Initialize Position and Velocity self.est_pos = r0 # Position in ENU self.est_vel = v0 # Velocity in ENU # Euler to quaternion self.est_ori = euler_to_quaternion(s0) def create_state_transition_matrix(self, dt) -> np.ndarray: q0, q1, q2, q3 = self.est_ori dvx, dvy, dvz = self.est_acc # delta velocity dax, day, daz = self.est_rate_rotation # delta angle dvx_b, dvy_b, dvz_b = self.est_acc_bias # Accelerometer bias dax_b, day_b, daz_b = self.est_rate_of_rot_bias g = self.gravity_const # tau_dvb = self.tau_acc_bias # tau_dab = self.tau_angular_acc_bias return np.array( [[1, 0, 0, dt, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, dt, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, dt, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, dt * (2 * q2 * (dvz - dvz_b - g) - 2 * q3 * (dvy - dvy_b)), dt * (2 * q2 * (dvy - dvy_b) + 2 * q3 * (dvz - dvz_b - g)), dt * (2 * q0 * (dvz - dvz_b - g) + 2 * q1 * (dvy - dvy_b) - 4 * q2 * (dvx - dvx_b)), dt * (-2 * q0 * (dvy - dvy_b) + 2 * q1 * (dvz - dvz_b - g) - 4 * q3 * (dvx - dvx_b)), 0, 0, 0, dt * (2 * q2 ** 2 + 2 * q3 ** 2 - 1), dt * (2 * q0 * q3 - 2 * q1 * q2), dt * (-2 * q0 * q2 - 2 * q1 * q3)], [0, 0, 0, 0, 1, 0, dt * (-2 * q1 * (dvz - dvz_b - g) + 2 * q3 * (dvx - dvx_b)), dt * (-2 * q0 * (dvz - dvz_b - g) - 4 * q1 * (dvy - dvy_b) + 2 * q2 * (dvx - dvx_b)), dt * (2 * q1 * (dvx - dvx_b) + 2 * q3 * (dvz - dvz_b - g)), dt * (2 * q0 * (dvx - dvx_b) + 2 * q2 * (dvz - dvz_b - g) - 4 * q3 * (dvy - dvy_b)), 0, 0, 0, dt * (-2 * q0 * q3 - 2 * q1 * q2), dt * (2 * q1 ** 2 + 2 * q3 ** 2 - 1), dt * (2 * q0 * q1 - 2 * q2 * q3)], [0, 0, 0, 0, 0, 1, dt * (2 * q1 * (dvy - dvy_b) - 2 * q2 * (dvx - dvx_b)), dt * (2 * q0 * (dvy - dvy_b) - 4 * q1 * (dvz - dvz_b - g) + 2 * q3 * (dvx - dvx_b)), dt * (-2 * q0 * (dvx - dvx_b) - 4 * q2 * (dvz - dvz_b - g) + 2 * q3 * (dvy - dvy_b)), dt * (2 * q1 * (dvx - dvx_b) + 2 * q2 * (dvy - dvy_b)), 0, 0, 0, dt * (2 * q0 * q2 - 2 * q1 * q3), dt * (-2 * q0 * q1 - 2 * q2 * q3), dt * (2 * q1 ** 2 + 2 * q2 ** 2 - 1)], [0, 0, 0, 0, 0, 0, 1, -0.5 * dax + 0.5 * dax_b, -0.5 * day + 0.5 * day_b, -0.5 * daz + 0.5 * daz_b, 0.5 * q1, 0.5 * q2, 0.5 * q3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0.5 * dax - 0.5 * dax_b, 1, 0.5 * daz - 0.5 * daz_b, -0.5 * day + 0.5 * day_b, -0.5 * q0, 0.5 * q3, -0.5 * q2, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0.5 * day - 0.5 * day_b, -0.5 * daz + 0.5 * daz_b, 1, 0.5 * dax - 0.5 * dax_b, -0.5 * q3, -0.5 * q0, 0.5 * q1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0.5 * daz - 0.5 * daz_b, 0.5 * day - 0.5 * day_b, -0.5 * dax + 0.5 * dax_b, 1, 0.5 * q2, -0.5 * q1, -0.5 * q0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]] ) def create_process_update_matrix(self, dt): q0, q1, q2, q3 = self.est_ori return np.array( [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, dt * (-2 * q2 ** 2 - 2 * q3 ** 2 + 1), dt * (-2 * q0 * q3 + 2 * q1 * q2), dt * (2 * q0 * q2 + 2 * q1 * q3)], [0, 0, 0, dt * (2 * q0 * q3 + 2 * q1 * q2), dt * (-2 * q1 ** 2 - 2 * q3 ** 2 + 1), dt * (-2 * q0 * q1 + 2 * q2 * q3)], [0, 0, 0, dt * (-2 * q0 * q2 + 2 * q1 * q3), dt * (2 * q0 * q1 + 2 * q2 * q3), dt * (-2 * q1 ** 2 - 2 * q2 ** 2 + 1)], [-0.5 * q1, -0.5 * q2, -0.5 * q3, 0, 0, 0], [0.5 * q0, -0.5 * q3, 0.5 * q2, 0, 0, 0], [0.5 * q3, 0.5 * q0, -0.5 * q1, 0, 0, 0], [-0.5 * q2, 0.5 * q1, 0.5 * q0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] ) def predict(self, measured_angular_vel, measured_acc, dt): # A-priori accel and rotation rate estimate self.est_acc = measured_acc - self.est_acc_bias self.est_rate_rotation = measured_angular_vel - self.est_rate_of_rot_bias # Kalman Time Update (Prediction) # Compute DCM (Body to/from ENU) Transformations from Quaternion local_to_body_trans = quaternion_to_dcm(self.est_ori) body_to_local_trans = local_to_body_trans.T # Attitude Update attitude_delta = np.hstack((1, 0.5 * dt * self.est_rate_rotation)) self.est_ori = quaternion_mult(self.est_ori, attitude_delta) # Avoid quaternion flips sign if self.est_ori[0] < 0: self.est_ori = -self.est_ori # Velocity Update gravity_vector = np.array([0.0, 0.0, -self.gravity_const]) self.est_vel += (body_to_local_trans @ self.est_acc + gravity_vector) * dt # Position Update self.est_pos += (dt * self.est_vel) self.Fx = self.create_state_transition_matrix(dt) # Process Noise Covariance (Discrete approximation) Fu = self.create_process_update_matrix(dt) # Discrete Process Noise self.Q = Fu @ self.Rw @ Fu.T self.Q = 0.5 * (self.Q + self.Q.T) # Covariance Time Update self.P = self.Fx @ self.P @ self.Fx.T + self.Q self.P = 0.5 * (self.P + self.P.T) def correct(self, measured_position, measured_velocity, measured_angular_vel, measured_acc): # Kalman Measurement Update # Position Error pos_err = measured_position - self.est_pos # Velocity Error vel_err = measured_velocity - self.est_vel # Create measurement Y, as Error between Measures and Outputs y = np.zeros(6) y[0:3] = pos_err y[3:6] = vel_err # Innovation covariance self.S = self.H @ self.P @ self.H.T + self.R # Kalman gain self.K = self.P @ self.H.T @ np.linalg.inv(self.S) # Covariance update I_KH = self._I16 - self.K @ self.H self.P = I_KH @ self.P @ I_KH.T + self.K @ self.R @ self.K.T # State update, x = K * y x = self.K @ y # Pull apart x terms to update the Position, velocity, orientation, and sensor biases # Position update pos_delta = x[0:3] # Position Deltas in ENU self.est_pos += pos_delta # Velocity update vel_delta = x[3:6] # Velocity Deltas in ENU self.est_vel += vel_delta # Attitude correction quat_delta = x[6:10] # Quaternion Delta attitude_delta = np.array([quat_delta[0], quat_delta[1], quat_delta[2], quat_delta[3]]) self.est_ori = quaternion_mult(self.est_ori, attitude_delta) # Update biases from states acc_bias_delta = x[10:13] # Accel Bias Deltas self.est_acc_bias += acc_bias_delta w_bias_delta = x[13:16] # Rotation Rate Bias Deltas self.est_rate_of_rot_bias += w_bias_delta # Post-priori accel and rotation rate estimate, biases updated in MeasUpdate() self.est_acc = measured_acc - self.est_acc_bias # only for users convenience self.est_rate_rotation = measured_angular_vel - self.est_rate_of_rot_bias # only for users convenience
Birkehoj/gazebo_ins_analysis
ins_samples/ins_ekf_16_states.py
ins_ekf_16_states.py
py
13,019
python
en
code
0
github-code
6
42253873273
from tkinter import IntVar from tkinter.constants import N, NE, S, TRUE, W from controllers.edocsController import * from helpers import helper import json class view: def __init__(self, program): self.program = program self.frame_bgc = "#f5f5f5" self.controller = edocsController() def index(self): try: self.program.header("Configuracion de cuenta EDOC's") general_info_frame = self.program.newFrame(Row = 0 , Col = 0, Pos='NW', Margin = 5, Bg=self.frame_bgc) self.program.newLabel( LabelName = "API URL:", Row = 0, Col = 0, Bg=self.frame_bgc , into_frame = general_info_frame) self.program.newEntry( Row = 0, Col = 1, Pos = 'W', Long = 80 , Data = self.controller.val1 , into_frame = general_info_frame) self.program.newLabel( LabelName = "Usuario:", Row = 1, Col = 0, Bg=self.frame_bgc , into_frame = general_info_frame) self.program.newEntry( Row = 1, Col = 1, Pos = 'W', Long = 20 , Data = self.controller.val2 , into_frame = general_info_frame) self.program.newLabel( LabelName = "Contraseña:", Row = 2, Col = 0, Bg=self.frame_bgc , into_frame = general_info_frame) self.program.newEntry( Row = 2, Col = 1, Pos = 'W', Long = 20 , Data = self.controller.val3 , into_frame = general_info_frame , mask = True) self.program.newLabel( LabelName = "Token:", Row = 3, Col = 0, Bg=self.frame_bgc , into_frame = general_info_frame) self.program.newEntry( Row = 3, Col = 1, Pos = 'W', Long = 50 , Data = self.controller.val4 , into_frame = general_info_frame , mask = True) self.program.newButton( Name = "Conectar", Row = 4 , Col = 0, Pos = 'W', Command= lambda : self.controller.save() , into_frame = general_info_frame ) except Exception as e : messagebox.showerror(message=str(e) , title="Error")
REYJDR/COLOMETRIC_ANALISYS
views/Settings/Edocs.py
Edocs.py
py
1,958
python
en
code
0
github-code
6
5095318867
import random import torchvision from torchvision import datasets, transforms from data.RPSLS.types import * transformations = transforms.Compose([ transforms.ToTensor(), ]) dataset = datasets.ImageFolder( root='../../../data/RPSLS/rock-paper-scissors-lizard-spock', transform = transformations ) def generate_data(dataset): examples = list() i = list(range(len(dataset))) random.shuffle(i) i = iter(i) while True: try: examples.append(next_example(i,dataset)) except StopIteration: break def next_example(i,dataset): x1, x2 = next(i), next(i) y = winner(x1, x2,dataset) return x1, x2, y generate_data(dataset)
AytugAltin/ProblogRPSLS
examples/RPSLS/Rock-Paper-Scissors/generate_data.py
generate_data.py
py
698
python
en
code
1
github-code
6
34511399562
from django import forms from .models import Producto from django.forms import ModelForm class ProductosForm(forms.ModelForm): class Meta: model = Producto fields = ('nombre','material','cantidad','categoria') labels = { 'nombre':'Nombre', 'cantidad':'n. cantidad' } def __init__(self, *args, **kwargs): super(ProductosForm,self).__init__(*args, **kwargs) self.fields['categoria'].empty_label = "Select" self.fields['cantidad'].required = False
SteveManfred/eco_facil_mio
test/electivo_2023/productos/forms.py
forms.py
py
543
python
es
code
0
github-code
6
28051281167
""" Tests for the petl.fluent module. """ from __future__ import absolute_import, print_function, division from tempfile import NamedTemporaryFile import csv from nose.tools import eq_ import petl import petl.interactive as etl from petl.testutils import ieq def test_basics(): t1 = (('foo', 'bar'), ('A', 1), ('B', 2)) w1 = etl.wrap(t1) eq_(('foo', 'bar'), w1.header()) eq_(petl.header(w1), w1.header()) ieq((('A', 1), ('B', 2)), w1.data()) ieq(petl.data(w1), w1.data()) w2 = w1.cut('bar', 'foo') expect2 = (('bar', 'foo'), (1, 'A'), (2, 'B')) ieq(expect2, w2) ieq(petl.cut(w1, 'bar', 'foo'), w2) w3 = w1.cut('bar', 'foo').cut('foo', 'bar') ieq(t1, w3) def test_staticmethods(): f = NamedTemporaryFile(delete=False) writer = csv.writer(f, delimiter='\t') table = (('foo', 'bar'), ('a', 1), ('b', 2), ('c', 2)) for row in table: writer.writerow(row) f.close() actual = etl.fromcsv(f.name, delimiter='\t') expect = (('foo', 'bar'), ('a', '1'), ('b', '2'), ('c', '2')) ieq(expect, actual) ieq(expect, actual) # verify can iterate twice def test_container(): table = (('foo', 'bar'), ('a', 1), ('b', 2), ('c', 2)) actual = etl.wrap(table)[0] expect = ('foo', 'bar') eq_(expect, actual) actual = len(etl.wrap(table)) expect = 4 eq_(expect, actual) def test_repr_html(): table = (('foo', 'bar'), ('a', 1), ('b', 2), ('c', 2)) expect = u"""<table class='petl'> <thead> <tr> <th>foo</th> <th>bar</th> </tr> </thead> <tbody> <tr> <td>a</td> <td style='text-align: right'>1</td> </tr> <tr> <td>b</td> <td style='text-align: right'>2</td> </tr> <tr> <td>c</td> <td style='text-align: right'>2</td> </tr> </tbody> </table> """ actual = etl.wrap(table)._repr_html_() for l1, l2 in zip(expect.split('\n'), actual.split('\r\n')): eq_(l1, l2) def test_repr_html_limit(): table = (('foo', 'bar'), ('a', 1), ('b', 2), ('c', 2)) # lower repr limit etl.repr_html_limit = 2 expect = u"""<table class='petl'> <thead> <tr> <th>foo</th> <th>bar</th> </tr> </thead> <tbody> <tr> <td>a</td> <td style='text-align: right'>1</td> </tr> <tr> <td>b</td> <td style='text-align: right'>2</td> </tr> </tbody> </table> <p><strong>...</strong></p> """ actual = etl.wrap(table)._repr_html_() for l1, l2 in zip(expect.split('\n'), actual.split('\r\n')): eq_(l1, l2)
podpearson/petl
src/petl/test/test_interactive.py
test_interactive.py
py
2,716
python
en
code
null
github-code
6
33585138405
__author__ = 'Vivek' # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None # @param A : head node of linked list # @return the head node in the linked list def mergeTwoLists(self, A, B): curA, curB = A, B if A == None : return B elif B == None : return A if curA.val <= curB.val : C = curA curA = curA.next else : C = curB curB = curB.next curC = C while curA != None and curB != None : if curA.val <= curB.val : curC.next = curA curA = curA.next curC = curC.next else : curC.next = curB curB = curB.next curC = curC.next while curA != None : curC.next = curA curA = curA.next curC = curC.next while curB != None : curC.next = curB curB = curB.next curC = curC.next return C def split(self, start) : if start == None or start.next == None : first = start second = None else : slow = start fast = start while fast != None and fast.next != None : slow = slow.next fast = fast.next.next first = start second = slow.next slow.next = None return first, second def sortList(self, A): if A == None or A.next == None : return A firstHalf = None secondHalf = None firstHalf, secondHalf = self.split(A) self.sortList(firstHalf) self.sortList(secondHalf) #self.mergeTwoLists(firstHalf, secondHalf) return self.mergeTwoLists(firstHalf, secondHalf)
viveksyngh/InterviewBit
Linked List/SORTLIST.py
SORTLIST.py
py
1,904
python
en
code
3
github-code
6
37740591228
from fastapi import Depends, FastAPI, Header, HTTPException from fastapi.middleware.cors import CORSMiddleware from app.auth import main as auths from app.users import main as users from app.blogs import main as blogs, sub as blogs_sub app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) app.include_router(auths.app) app.include_router(users.app) app.include_router(blogs.app) app.include_router(blogs_sub.app)
tokusumi/fastapi-nuxt-blog
backend/app/app/main.py
main.py
py
524
python
en
code
6
github-code
6
17813388652
from typing import Callable, Any, Type from lyrid import Address from lyrid.base import ActorSystemBase from lyrid.core.node import NodeSpawnProcessMessage from lyrid.core.process import Process from lyrid.core.system import Placement from tests.factory.system import create_actor_system from tests.mock.messenger import MessengerMock from tests.mock.placement_policy import PlacementPolicyMatcherMock, PlacementPolicyMock from tests.mock.randomizer import RandomizerMock def assert_pass_process_type_to_policy_matcher(spawn_process: Callable[[ActorSystemBase], Any], type_: Type[Process]): matcher = PlacementPolicyMatcherMock() system = create_actor_system(placements=[Placement(match=matcher, policy=PlacementPolicyMock())], node_addresses=[Address("#node0"), Address("#node1"), Address("#node2")]) spawn_process(system) assert matcher.match__type == type_ def assert_send_node_spawn_process_message_to_the_address_from_policy(spawn_process: Callable[[ActorSystemBase], Any]): messenger = MessengerMock() policy = PlacementPolicyMock(get_placement_node__return=Address("#node1")) system = create_actor_system(messenger=messenger, placements=[Placement(PlacementPolicyMatcherMock(match__return=True), policy)], node_addresses=[Address("#node0"), Address("#node1"), Address("#node2")]) spawn_process(system) assert messenger.send__receiver == Address("#node1") and \ isinstance(messenger.send__message, NodeSpawnProcessMessage) def assert_use_node_address_from_first_matched_policy(spawn_process: Callable[[ActorSystemBase], Any]): messenger = MessengerMock() placements = [ Placement( match=PlacementPolicyMatcherMock(match__return=False), policy=PlacementPolicyMock(get_placement_node__return=Address("#node0")), ), Placement( match=PlacementPolicyMatcherMock(match__return=True), policy=PlacementPolicyMock(get_placement_node__return=Address("#node1")), ), Placement( match=PlacementPolicyMatcherMock(match__return=True), policy=PlacementPolicyMock(get_placement_node__return=Address("#node2")), ), ] # noinspection DuplicatedCode system = create_actor_system(messenger=messenger, placements=placements, node_addresses=[Address("#node0"), Address("#node1"), Address("#node2")]) spawn_process(system) assert messenger.send__receiver == Address("#node1") and \ isinstance(messenger.send__message, NodeSpawnProcessMessage) def assert_use_random_node_when_no_matched_policy(spawn_process: Callable[[ActorSystemBase], Any]): messenger = MessengerMock() placements = [ Placement( match=PlacementPolicyMatcherMock(match__return=False), policy=PlacementPolicyMock(get_placement_node__return=Address("#node0")), ), Placement( match=PlacementPolicyMatcherMock(match__return=False), policy=PlacementPolicyMock(get_placement_node__return=Address("#node1")), ), ] randomizer = RandomizerMock(randrange__return=2) system = create_actor_system(messenger=messenger, placements=placements, randomizer=randomizer, node_addresses=[Address("#node0"), Address("#node1"), Address("#node2")]) spawn_process(system) assert messenger.send__receiver == Address("#node2") and \ isinstance(messenger.send__message, NodeSpawnProcessMessage)
SSripilaipong/lyrid
tests/system/actor_placement/_assertion.py
_assertion.py
py
3,625
python
en
code
12
github-code
6
36511035270
def read_file(fileName): content = [] with open(fileName, 'r', encoding='utf-8-sig') as f: for line in f: content.append(line.strip()) return content def convert(textContent): output = [] person = None for line in textContent: if line == 'Allen': person = 'Allen' continue elif line == 'Tom': person = 'Tom' continue if person: output.append(person + ": " + line) return output def write_file(fileName, lines): with open(fileName, 'w') as f: for line in lines: f.write(line + '\n') def main(): lines = read_file('input.txt') lines = convert(lines) write_file('output.txt', lines) main()
taylorchen78/chat
chat.py
chat.py
py
634
python
en
code
0
github-code
6
21832705996
from .piece import Piece class King(Piece): """ Class that represents a king. """ def __init__(self, color, row, column, board, rooks): Piece.__init__(self, color, row, column, board) self.offsets = [(1, -1), (1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1)] self.rooks = rooks def generate_legal_moves(self, king, prev_move): #glitch where king can take a defended piece end_squares = self.threatened_squares() possible_moves = [(self.row, self.column, square[0], square[1]) for square in end_squares] opposite_color = "B" if self.color == "W" else "W" #maybe make this more efficient enemy_threatened_squares = self.board.get_threatened_squares(opposite_color) legal_moves = self.filter_checks_and_pins(king, possible_moves) if not (self.row, self.column) in enemy_threatened_squares and not king.get_has_moved(): self.castle(king, legal_moves, enemy_threatened_squares) return legal_moves def castle(self, king, legal_moves, enemy_threatened_squares): for rook in self.rooks: if rook.get_has_moved() or rook.is_killed(): continue rook_row = rook.get_row() rook_column = rook.get_column() king_column = king.get_column() king_row = king.get_row() exceptions = [(rook_row, rook_column), (king_row, king_column)] can_castle = True #adapted for chess 960 #queenside if king_column < rook_column: #make sure can't castle into check #check [?][5] and [?][4] for not being occupied - exception of occupied by # king or correct rook #4 = rook, 5 = king if (self.row, 5) in enemy_threatened_squares: #make sure can't castle into check continue #make sure final squares for rook and king are not occupied by other pieces if self.board.is_occupied(self.row, 4) and (self.row, 4) not in exceptions: continue elif self.board.is_occupied(self.row, 5) and (self.row, 5) not in exceptions: continue #make sure no pieces are inbetween king and rook for column in range(king_column + 1, rook_column): if self.board.is_occupied(self.row, column): can_castle = False break #make sure all squares king has to move over aren't attacked for column in range(king_column, 6): if (king_row, column) in enemy_threatened_squares: can_castle = False break if can_castle: legal_moves.append((self.row, self.column, self.row, rook_column)) for column in range(king_column + 2, rook_column): legal_moves.append((self.row, self.column, self.row, column)) #kingside else: #make sure can't castle into check # check [?][1] and [?][2] for not being occupied #2 = rook, 1 = king if (self.row, 1) in enemy_threatened_squares: continue elif self.board.is_occupied(self.row, 1) and (self.row, 1) not in exceptions: continue elif self.board.is_occupied(self.row, 2) and (self.row, 2) not in exceptions: continue for column in range(king_column - 1, rook_column, -1): if self.board.is_occupied(self.row, column): can_castle = False break for column in range(king_column, 0, -1): if (king_row, column) in enemy_threatened_squares: can_castle = False break if can_castle: legal_moves.append((self.row, self.column, self.row, rook_column)) for column in range(king_column - 2, rook_column, -1): legal_moves.append((self.row, self.column, self.row, column)) def threatened_squares(self): possible_moves = [] for row_offset, col_offset in self.offsets: curr_row, curr_column = self.row + row_offset, self.column + col_offset if curr_row < 0 or curr_row >= 8 or curr_column < 0 or curr_column >= 8: continue elif self.board.is_occupied(curr_row, curr_column): if self.board.get_piece_color(curr_row, curr_column) != self.color: possible_moves.append((curr_row, curr_column)) else: possible_moves.append((curr_row, curr_column)) return possible_moves def is_attacked(self): # opposite_color = "B" if self.color == "W" else "W" # threatened_squares = self.board.get_threatened_squares(opposite_color) # if (self.row, self.column) in threatened_squares: # return True # return False king_row, king_column = self.row, self.column straight_offsets = [(1, 0), (0, 1), (0, -1), (-1, 0)] for row_offset, column_offset in straight_offsets: curr_row, curr_column = king_row + row_offset, king_column + column_offset while curr_row >= 0 and curr_row < 8 and curr_column >= 0 and curr_column < 8: square = self.board.get_square(curr_row, curr_column) if square: if square.get_color() == self.color: break else: if square.get_symbol()[1] == "k": if abs(king_row - curr_row) <= 1 and abs(king_column - curr_column) <= 1: return True #if opposite color and its a piece that can attack vertically elif square.get_symbol()[1] in "rq": return True else: break curr_row, curr_column = curr_row + row_offset, curr_column + column_offset diagonal_offsets = [(1, 1), (1, -1),(-1, 1), (-1, -1)] for row_offset, column_offset in diagonal_offsets: curr_row, curr_column = king_row + row_offset, king_column + column_offset while curr_row >= 0 and curr_row < 8 and curr_column >= 0 and curr_column < 8: square = self.board.get_square(curr_row, curr_column) if square: if square.get_color() == self.color: break else: #if opposite color and its a piece that can attack vertically if square.get_symbol()[1] == "k": if abs(king_row - curr_row) <= 1 and abs(king_column - curr_column) <= 1: return True elif square.get_symbol()[1] == "p": if self.color == "W": if curr_row == king_row + 1 and abs(curr_column - king_column) == 1: return True else: break else: if curr_row == king_row - 1 and abs(curr_column - king_column) == 1: return True else: break elif square.get_symbol()[1] in "kbq": return True else: break curr_row, curr_column = curr_row + row_offset, curr_column + column_offset knight_offsets = [(2, 1), (2, -1), (-2, 1), (-2, -1), (1, 2), (-1, 2), (1, -2), (-1, -2)] for row_offset, column_offset in knight_offsets: curr_row, curr_column = king_row + row_offset, king_column + column_offset if curr_row >= 0 and curr_row < 8 and curr_column >= 0 and curr_column < 8: square = self.board.get_square(curr_row, curr_column) if square: if square.get_color() != self.color: #if opposite color and its a knight if square.get_symbol()[1] == "n": return True else: continue return False def get_rooks(self): return self.rooks def __str__(self): return f""" King. Coordinates: [{self.row}][{self.column}] """ def get_symbol(self): return self.color + "k"
wuhw234/chess_bot
chess_game/pieces/king.py
king.py
py
9,001
python
en
code
0
github-code
6
35091600325
import unittest from Soda import Soda class TestSoda(unittest.TestCase): def test_valid_no_tasty(self): self.soda = Soda('') self.assertEqual(self.soda.show_my_drink(), 'Обычная газировка') def test_valid_add_tasty(self): self.soda = Soda('клубника') self.assertEqual(self.soda.show_my_drink(), 'Газировка и клубника') if __name__ == '__main__': unittest.main()
Sensor45/oop
soda_test.py
soda_test.py
py
453
python
ru
code
0
github-code
6
15484480802
#!/usr/bin/env python from __future__ import print_function import sys import os if sys.version_info >= (3, 0): import tkinter else: import Tkinter as tkinter import interaction import canvas import FigureManager # The size of the button (width, height) for buttons in root gui. SIZE_BUTTON = (18, 4) def find_show_image(): """Search, open and show an pmg image. """ filename = interaction.find_pmg() if filename: FigureManager.g_figure_manager.add_pmg(filename) canvas.show_figure_from_manager( FigureManager.g_figure_manager, title=os.path.basename(filename)) def main(): """The main entry of the program. """ root = tkinter.Tk() root.title('Pytena') tkinter.Button( root, text='Script', height=SIZE_BUTTON[1], width=SIZE_BUTTON[0], command=interaction.load_python_script).pack(side=tkinter.TOP) tkinter.Button( root, text='Image', height=SIZE_BUTTON[1], width=SIZE_BUTTON[0], command=find_show_image).pack(side=tkinter.TOP) tkinter.Button( root, text='Command', height=SIZE_BUTTON[1], width=SIZE_BUTTON[0], command=interaction.start_text_box).pack(side=tkinter.TOP) tkinter.Button( root, text='Help', height=SIZE_BUTTON[1], width=SIZE_BUTTON[0], command=interaction.show_help_box).pack(side=tkinter.TOP) root.mainloop() if __name__ == '__main__': main()
t-lou/pytena
main.py
main.py
py
1,537
python
en
code
0
github-code
6
21138659052
from neo4j import GraphDatabase # neo4j connection driver = GraphDatabase.driver("bolt://127.0.0.1:7687", auth=("neo4j", "neo4j")) # random walk k = 10 # Number of neighbors pre_weight = 2 # Weight of return n = -1 # number of users to use, -1 means using all the users. batch_size = 1000 # batchsize to save cores = 12 # Multi threads # Neo4j SQL to sample the motif. motif_sql = ''' match (a:User {{user_id: {id} }})<-[:msg|click]-(m)-[:msg|click]->(f) return "RESPOND" as r1, m.user_id as middle, f.user_id as final, 2 as weight limit {n1} union match (a:User {{user_id: {id} }})-[:msg|click]->(m)<-[:msg|click]-(f) return "DOUBLE" as r1, m.user_id as middle, f.user_id as final, 2 as weight limit {n2} ''' """ match (a:User {{user_id: {id} }})<-[:msg|click]-(m)-[:msg|click]->(f) return "RESPOND" as r1, m.user_id as middle, f.user_id as final, 2 as weight limit {n1} union match (a:User {{user_id: {id} }})<-->(m)-[:msg|click]->(f) return "SEND" as r1, m.user_id as middle, f.user_id as final, 3 as weight limit {n1} union match (a:User {{user_id: {id} }})<-[:msg|click]-(m)<-->(f) return "DOUBLE" as r1, m.user_id as middle, f.user_id as final, 3 as weight limit {n2} union match (a:User {{user_id: {id} }})-[:msg|click]->(m)<-[:msg|click]-(f) return "DOUBLE" as r1, m.user_id as middle, f.user_id as final, 2 as weight limit {n2} union match (a:User {{user_id: {id} }})<-->(m)<-[:msg|click]-(f) return "DOUBLE" as r1, m.user_id as middle, f.user_id as final, 2 as weight limit {n2} union match (a:User {{user_id: {id} }})-[:msg|click]->(m)<-->(f) return "DOUBLE" as r1, m.user_id as middle, f.user_id as final, 3 as weight limit {n2} union match (a:User {{user_id: {id} }})<-->(m)<-->(f) return "DOUBLE" as r1, m.user_id as middle, f.user_id as final, 4 as weight limit {n2} """ raw_walk_path = "../data/sjjy_data/motif_random_walk_path_M1+M4_b_{}.txt".format(pre_weight) # Path of the raw random walk sequences raw_emb_path = "../model/sjjy_motif_walk_M1+M4_b_{}.emb".format(pre_weight) # Path of the raw embedding path emb_save_path = "../model/sjjy_motif_walk_M1+M4_b_{}.emb".format(pre_weight) # No need for data Sjjy # motif random walk raw_train_data_path = "../data/sjjy_data/train_data_v4.csv" # train user pairs file path 原始的用户对id raw_test_data_path = ""'../data/sjjy_data/test_data_v4.csv' # test file path train_data_path = "../data/sjjy_data/rec_data_train_M1+M4_b_{}.csv".format(pre_weight) # train user pairs with neighbors test_data_path = "../data/sjjy_data/rec_data_train_test_M1+M4_b_{}.csv".format(pre_weight) # train uid2idx_path = "../data/uid_2_idx.pkl" # user_id to id model_save_path = "../model/recommend_M1+M4_b_{}.pb".format(pre_weight) # final model save path check_point_path = "../checkpoint/recommend_M1+M4_b_{}.pth".format(pre_weight) # checkpoint path feature_dict_path = "../data/sjjy_data/enc_feature_dict.pkl"
RManLuo/MotifGNN
src_sjjy/pipline_config.py
pipline_config.py
py
3,021
python
en
code
7
github-code
6
36636572184
import random import pyxel import utils import stage TYPE_AGGRESSIVE = 0 TYPE_MILD = 1 TYPE_RANDOM_SLOW = 2 TYPE_RANDOM_FAST = 3 TYPES = [ TYPE_AGGRESSIVE, TYPE_MILD, TYPE_RANDOM_SLOW, TYPE_RANDOM_FAST ] TICKS_PER_FRAME = 10 MAX_FRAME = 4 MAX_SPEED = 0.4 MAX_RESPAWN_TICKS = 300 # 5 secs class Spinner: def __init__(self, x, y, type): self.x = x self.y = y self.type = 2 if type in TYPES: self.type = type self.vx = random.choice([-MAX_SPEED, MAX_SPEED]) self.vy = random.choice([-MAX_SPEED, MAX_SPEED]) self.radius = 4 self.frame = 0 self.frame_ticks = 0 self.is_dead = False self.respawn_ticks = MAX_RESPAWN_TICKS def _set_new_position(self, stageObj): px = stageObj.player.x py = stageObj.player.y loc = None loclist = [ stage.SPAWN_SECTOR_TOPLEFT, stage.SPAWN_SECTOR_BOTTOMLEFT, stage.SPAWN_SECTOR_TOPRIGHT, stage.SPAWN_SECTOR_BOTTOMRIGHT ] if px < 80: if py < 75: loclist.remove(stage.SPAWN_SECTOR_TOPLEFT) else: loclist.remove(stage.SPAWN_SECTOR_BOTTOMLEFT) else: if py < 75: loclist.remove(stage.SPAWN_SECTOR_TOPRIGHT) else: loclist.remove(stage.SPAWN_SECTOR_BOTTOMRIGHT) loc = stageObj.get_random_spawn_loc(random.choice(loclist)) self.x = loc[0] self.y = loc[1] def kill(self): self.is_dead = True self.respawn_ticks = MAX_RESPAWN_TICKS def _do_collisions(self, stage): new_x = self.x + self.vx for b in stage.solid_rects: if utils.circle_rect_overlap(new_x, self.y, self.radius, b[0], b[1], b[2], b[3]): if self.x > b[0] + b[2]: # was prev to right of border. new_x = b[0] + b[2] + self.radius elif self.x < b[0]: # was prev to left of border. new_x = b[0] - self.radius self.vx *= -1 break new_y = self.y + self.vy for b in stage.solid_rects: if utils.circle_rect_overlap(self.x, new_y, self.radius, b[0], b[1], b[2], b[3]): if self.y > b[1] + b[3]: # was prev below border. new_y = b[1] + b[3] + self.radius elif self.y < b[1]: # was prev above border. new_y = b[1] - self.radius self.vy *= -1 break self.x = new_x self.y = new_y def respawn(self): self.is_dead = False def update(self, stage): if self.is_dead: self.respawn_ticks -= 1 if self.respawn_ticks == 0: self.respawn() elif self.respawn_ticks == 30: self._set_new_position(stage) else: self._do_collisions(stage) self.frame_ticks += 1 if self.frame_ticks == TICKS_PER_FRAME: self.frame_ticks = 0 self.frame += 1 if self.frame == MAX_FRAME: self.frame = 0 def draw(self, shake_x, shake_y): if self.is_dead: framex = None if self.respawn_ticks < 10: framex = 42 elif self.respawn_ticks < 20: framex = 63 elif self.respawn_ticks < 30: framex = 84 if framex is not None: pyxel.blt( self.x + shake_x - 10, self.y + shake_y - 10, 0, framex, 231, 21, 21, 8 ) else: pyxel.blt( self.x + shake_x - 4, self.y + shake_y - 4, 0, 160 + self.frame*9, 8, 9, 9, 8 )
helpcomputer/megaball
megaball/spinner.py
spinner.py
py
4,317
python
en
code
7
github-code
6
1568812252
#mark ericson #9/12/2022 #This program creates a cubic grid import rhinoscriptsyntax as rs from random import uniform def cubic_grid(x_number, y_number, z_number, cell_size): rs.EnableRedraw(False) point_list = [] for i in range(0, x_number,cell_size): x = i for j in range(0, y_number, cell_size): y = j for p in range(0, z_number, cell_size): z = p point = (x,y,z) point_list.append(point) rs.AddPoint(point) return(point_list) x_value = rs.GetInteger("Please provide the number of units in the x direction.") y_value = rs.GetInteger("Please provide the number of units in the y direction.") z_value = rs.GetInteger("Please provide the number of units in the z direction.") cell_value = rs.GetInteger("Please provide a unit size for the grid.") points = cubic_grid(x_value, y_value,z_value, cell_value) for i in points: radius = uniform(1,5) rs.AddSphere(i,radius) print (points)
mcericson/arch_441_repo_fall_22
03_week/sphere_grid_inclasss.py
sphere_grid_inclasss.py
py
1,037
python
en
code
0
github-code
6
21998531046
from collections import Counter class Solution: def minWindow(self, s: str, t: str) -> str: s_len = len(s) t_len = len(t) begin = 0 win_freq = {} t_freq = dict(Counter(t)) min_len = s_len + 1 distance = 0 left = 0 right = 0 while right < s_len: if s[right] in t_freq and t_freq[s[right]] == 0: right += 1 continue win_freq.setdefault(s[right], 0) if s[right] in t_freq and win_freq[s[right]] < t_freq[s[right]]: distance += 1 win_freq[s[right]] += 1 right += 1 # 满足条件时,进行左边缘移动 while distance == t_len: # win_freq.setdefault(s[left], 0) if right - left < min_len: min_len = right - left begin = left if s[left] not in t_freq: left += 1 continue if s[left] in t_freq and win_freq[s[left]] == t_freq[s[left]]: distance -= 1 win_freq[s[left]] -= 1 left += 1 if min_len == s_len + 1: return "" return s[begin:begin + min_len] so = Solution() print(so.minWindow(s="ADOBECODEBANC", t="ABC"))
hangwudy/leetcode
1-99/76. 最小覆盖子串.py
76. 最小覆盖子串.py
py
1,359
python
en
code
0
github-code
6
1004121962
from flask import Flask, render_template, request import pypandoc app = Flask(__name__) @app.route('/') def home(): return render_template('index.html') @app.route('/convert', methods=['POST']) def convert(): input_markup = request.form['input_markup'] output_markup = pypandoc.convert(input_markup, format='mediawiki', to='markdown_github') return render_template('index.html', input_markup=input_markup, output_markup=output_markup) if __name__ == '__main__': app.run(debug=True)
myw/wiki-converter
converter.py
converter.py
py
552
python
en
code
0
github-code
6
19203182463
import os from dotenv import load_dotenv from minio import Minio from io import BytesIO from data_pipeline.classes.data_loader.DataLoader import DataLoader class MinIOLoader(DataLoader): def __init__(self, endpoint, bucket_name): super().__init__(endpoint) self._bucket_name = bucket_name self._create_bucket() def _open_connection(self): load_dotenv() access_key = os.getenv("MINIO_USER") secret_key = os.getenv("MINIO_PASSWORD") return Minio(self._endpoint, access_key=access_key, secret_key=secret_key, secure=False) def _create_bucket(self): bucket_exists = self._connection.bucket_exists(self._bucket_name) if not bucket_exists: return self._connection.make_bucket(f"{self._bucket_name}") else: print(f"Bucket {self._bucket_name} already exists") def load_from_csv(self, upload_filepath, file_name, file_type='csv'): self._load_file(upload_filepath, file_name, file_type) def load_from_dataframe(self, dataframe, file_name, file_type='csv'): csv_file = dataframe.to_csv().encode('utf-8') csv_buffer = BytesIO(csv_file) self._connection.put_object( self._bucket_name, file_name, csv_buffer, length=len(csv_file), content_type=f'application/{file_type}' ) def load_from_json(self, upload_filepath, file_name, file_type='json'): self._load_file(upload_filepath, file_name, file_type) def _load_file(self, upload_filepath, file_name, file_type): self._connection.fput_object( self._bucket_name, file_name, upload_filepath, content_type=f'application/{file_type}' )
robbailiff/data_pipeline
src/data_pipeline/classes/data_loader/MinIOLoader.py
MinIOLoader.py
py
1,836
python
en
code
0
github-code
6
72519791227
import json from warnings import warn # def init_from_config(meas_cls, config: dict): # arg_str = '' # # for key, value in config.items(): # arg_str = key+'='+value def export_measurement_config(obj, attr_keys=None): if attr_keys is None: attr_keys = obj.__init__.__code__.co_varnames params = {} for key in attr_keys: flag = 0 if isinstance(obj, dict): if key in obj.keys(): param = obj[key] flag = 1 else: if key != 'self' and hasattr(obj, key): param = obj.__getattribute__(key) flag = 1 if flag: if param.__class__.__name__ in ['dict', 'list', 'tuple', 'str', 'int', 'float', 'bool', 'NoneType']: params[key] = param else: warn('The parameter \'%s\' of type \'%s\' is not JSON serializable and is skipped.' % (key, param.__class__.__name__)) return params def save_config(config, filename): with open(filename, 'w') as fp: json.dump(config, fp, indent='\t') def load_config(filename): with open(filename, 'r') as fp: config = json.load(fp) return config
yyzidea/measurement-automation
utilities/measurement_helper.py
measurement_helper.py
py
1,278
python
en
code
0
github-code
6
8068261091
from torchvision.models.detection import maskrcnn_resnet50_fpn from rigl_torch.models import ModelFactory @ModelFactory.register_model_loader(model="maskrcnn", dataset="coco") def get_maskrcnn(*args, **kwargs): return maskrcnn_resnet50_fpn( weights=None, weights_backbone=None, trainable_backbone_layers=5 ) if __name__ == "__main__": model = get_maskrcnn() print(model)
calgaryml/condensed-sparsity
src/rigl_torch/models/maskrcnn.py
maskrcnn.py
py
400
python
en
code
10
github-code
6
69868074749
# 字典 values() 方法返回一个迭代器,可以使用 list() 来转换为列表,列表为字典中的所有值。 # dict.values() # 返回值 返回迭代器。 Object = { "name": "Tom", "age": 18, "other": "其他" } print(Object.values()) # dict_values(['Tom', 18, '其他']) for value in Object.values(): print('value', value) # value Tom\value 18\value 其他 print(list(Object.values())) # ['Tom', 18, '其他']
yangbaoxi/dataProcessing
python/字典(对象)/遍历字典/values.py
values.py
py
467
python
zh
code
1
github-code
6
38160567413
#import bpy from random import seed from random import uniform import numpy as np import cv2 # seed random number generator seed(1) """ def test1(): # make mesh vertices = [(1, 0, 0),(1,0,5),(0,1,0)] edges = [] faces = [] faces.append([0,1,2]) faces.append([2,0,3]) #new_mesh = bpy.data.meshes.new('new_mesh') #new_mesh.from_pydata(vertices, edges, faces) #knew_mesh.update() # make object from mesh #new_object = bpy.data.objects.new('new_object', new_mesh) # make collection #new_collection = bpy.data.collections.new('new_collection') #bpy.context.scene.collection.children.link(new_collection) # add object to scene collection #new_collection.objects.link(new_object) def add_mesh(name, verts, faces, edges=None, col_name="Collection"): if edges is None: edges = [] mesh = bpy.data.meshes.new(name) obj = bpy.data.objects.new(mesh.name, mesh) col = bpy.data.collections.get(col_name) col.objects.link(obj) bpy.context.view_layer.objects.active = obj mesh.from_pydata(verts, edges, faces) """ def get_translation_between_points(pt1,pt2): transl = (pt2[0] - pt1[0], pt2[1] - pt1[1]) return transl class Geometry2d: def __init__(self, points=[]): self.points = points def reverse(self): self.points.reverse() def get_last_point(self): return self.points[-1] def get_first_point(self): return self.points[0] def remove_first_element(self): self.points.pop(0) def remove_last_element(self): self.points.pop() def translate_points(self, transl): points = self.points for i,p in enumerate(points): p = (p[0]+transl[0], p[1]+transl[1]) points[i] = p return Geometry2d(points) def scale_points(self, scale): points = self.points for i,p in enumerate(points): p = (p[0]*scale, p[1]*scale) points[i] = p return Geometry2d(points) def flip_y(self): points = self.points for i,p in enumerate(self.points): points[i] = (p[0],-p[1]) return Geometry2d(points) def draw(self): width = 300 height = 300 img = np.zeros((300,300)) scale_obj = self.scale_points(30) draw_obj = scale_obj.flip_y() draw_obj = draw_obj.translate_points((int(width/2), int(height/2))) for point in draw_obj.points: print(point) point = (int(point[0]), int(point[1])) cv2.circle(img, point, 2, (255,0,0), 2) cv2.imshow("img", img) cv2.waitKey(0) def combine_at_first(self, geo2d_obj): new_geo2d_obj = Geometry2d() first_pt_obj1 = self.get_first_point() print("first_pt") print(first_pt_obj1) first_pt_obj2 = geo2d_obj.get_first_point() print("last pt") print(first_pt_obj2) transl = get_translation_between_points(first_pt_obj2, first_pt_obj1) print("transl") print(transl) transl_obj = geo2d_obj.translate_points(transl) print("translated points") print(transl_obj.points) transl_obj.points.pop(0) transl_obj.points = self.points + transl_obj.points return transl_obj def combine_at_last(self, geo2d_obj): first_pt_obj1 = self.get_last_point() print("first_pt") print(first_pt_obj1) first_pt_obj2 = geo2d_obj.get_first_point() print("last pt") print(first_pt_obj2) transl = get_translation_between_points(first_pt_obj2, first_pt_obj1) print("transl") print(transl) transl_obj = geo2d_obj.translate_points(transl) print("translated points") print(transl_obj.points) transl_obj.points.pop(0) transl_obj.points = self.points + transl_obj.points return transl_obj """ def generate_2d_corner(height, width, corner_point): p1 = (corner_point[0] + width, corner_point[1]) p2 = corner_point p3 = (corner_point[0], corner_point[1]+height) verts = [] # create bottom vertices for i in range(num_points): i = i/num_points*x_stop x = i+uniform(-step,step) y = -width/2 z = uniform(0,z_limit) point = (x,y,z) verts.append(point) y = width/2 point = (x,y,z) verts.append(point) faces = [] for point in verts: print(point) # create faces num_points = len(verts) print(f'num points: {num_points}') for i in range(0,num_points-2, 2): faces.append([i+1, i, i+2, i+3]) print("Faces:") print(faces) for face in faces: print(face) add_mesh("testsets", verts, faces) #verts = [( 1.0, 1.0, 0.0), # ( 1.0, -1.0, 0.0), # (-1.0, -1.0, 0.0), # (-1.0, 1.0, 0.0), #] #faces = [[0, 1, 2, 3]] #add_mesh("myBeautifulMesh_1", verts, faces) #verts = [( 3.0, 1.0, 0.0), # ( 3.0, -1.0, 0.0), # ( 2.0, -1.0, 0.0), # ( 2.0, 1.0, 0.0), # ] #add_mesh("myBeautifulMesh_2", verts, faces) """ if __name__ == '__main__': geo2d_obj = Geometry2d([(1,0), (0,0),(0,1),(0,2), (0,3)]) geo2d_obj1 = Geometry2d([(0,0), (1,0), (1,2), (2,1.5),(3,2), (3,0), (4,0)]) geo2d_obj1 = geo2d_obj1.translate_points((4,4)) geo_comb = geo2d_obj.combine_at_last(geo2d_obj1) geo_comb.draw()
olaals/masteroppgave-old
src/testing/blender/generate-mesh/generate-alu-parts/generate-test.py
generate-test.py
py
5,601
python
en
code
0
github-code
6
39019535632
from typing import Union import numpy as np from numpy import typing as npt from .outlier_removal_interface import OutlierRemovalInterface class AbsoluteOutlierRemoval(OutlierRemovalInterface): def __init__(self, top: float=None, bottom= None) -> None: super().__init__(top, bottom) def fit(self, X: npt.ArrayLike): self.lower_filter_ = self._bottom if self._bottom is not None else np.min(X) self.top_filter_ = self._top if self._top is not None else np.max(X) return self def transform(self, X: npt.ArrayLike) -> npt.ArrayLike: return np.where( (X >= self.lower_filter_) & (X <= self.top_filter_) ) if __name__ == '__main__': a = np.asarray([1, 2, 1, 2, 3, 2, 20, 30]) iqr_removal = AbsoluteOutlierRemoval(bottom=2) iqr_removal.fit(a) print(a) print(a[iqr_removal.transform(a)])
Diogo364/AirBnB_PriceRegressor
utils/outlier_removal/absolute_outlier_removal.py
absolute_outlier_removal.py
py
893
python
en
code
0
github-code
6
2521814692
#!/usr/bin/env python import random def merge(left, right): res = [] while True: if len(left) == 0: res += right break elif len(right) == 0: res += left break elif left[0] > right[0]: res += [ right.pop(0) ] else: res += [ left.pop(0) ] if len(left) == 0 and len(right) == 0: break #print(res) return res def merge_sort(a): N = len(a) if N == 1: return a else: m = N//2 left = a[0:m] right = a[m:] #print('%s %s' % (left, right)) left = merge_sort(left) right = merge_sort(right) return merge(left, right) N = 100 a = [] for i in range(N): a.append(random.randint(0, 10000)) b = merge_sort(a) s = True c = sorted(a) for i in range(len(a)): if b[i] != c[i]: s = False print(s)
pmediaandy/bullpen
hackerrank/merge_sort.py
merge_sort.py
py
918
python
en
code
0
github-code
6
37304550340
import pyrealsense2 as rs import numpy as np import cv2 WIDTH = 640 HEIGHT = 480 FPS = 30 # file name which you want to open FILE = './data/stairs.bag' def main(): # stream(Depth/Color) setting config = rs.config() config.enable_stream(rs.stream.color, WIDTH, HEIGHT, rs.format.rgb8, FPS) config.enable_stream(rs.stream.depth, WIDTH, HEIGHT, rs.format.z16, FPS) config.enable_device_from_file(FILE) # Start streaming pipeline = rs.pipeline() pipeline.start(config) try: while True: # Wait for frames(Color/Depth) frames = pipeline.wait_for_frames() depth_frame = frames.get_depth_frame() color_frame = frames.get_color_frame() if not depth_frame or not color_frame: continue # Convert images to numpy arrays depth_image = np.asanyarray(depth_frame.get_data()) depth_colormap = cv2.applyColorMap(cv2.convertScaleAbs(depth_image, alpha=0.08), cv2.COLORMAP_JET) color_image = np.asanyarray(color_frame.get_data()) # Show images color_image_s = cv2.resize(color_image, (WIDTH, HEIGHT)) depth_colormap_s = cv2.resize(depth_colormap, (WIDTH, HEIGHT)) images = np.hstack((color_image_s, depth_colormap_s)) cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE) cv2.imshow('RealSense', images) INTERVAL = 10 if cv2.waitKey(INTERVAL) & 0xff == 27: # End with ESC cv2.destroyAllWindows() break finally: # Stop streaming pipeline.stop() if __name__ == '__main__': main()
masachika-kamada/realsense-matome
play_bagfile.py
play_bagfile.py
py
1,686
python
en
code
0
github-code
6
35566573513
from locale import windows_locale import turtle import tkinter as tk from tkinter import ttk """ Koch Snowflake Program Author: Katherine Butt This program uses a recursive algorithm to draw a koch snowflake The user is able to use a slider and button to control the number of times the recursion occurs Depending on how many times the recursion occurs different orders of the snowflake building process are drawn """ """ The main purpose of this function is the recursion required to to produce the snowflake This function is called from the drawSnowflake function once the user input has been gained This function runs for as many order given by the user """ def snowflake(sidelength, i): if i == 0: t.forward(sidelength) return sidelength /= 3.0 snowflake(sidelength, i-1) t.left(60) snowflake(sidelength, i-1) t.right(120) snowflake(sidelength, i-1) t.left(60) snowflake(sidelength, i-1) check = "True" """ This function is responsible for getting the user input and initating the snowflake drawing This function holds all the commands to get the turtle element of the program to begin running """ def drawsnowflake(): global size t.clear() order = (inputval.get()-1) while(check == "True"): size = root.winfo_width()/2 t.penup() t.pendown() screen.tracer(0) for i in range(3): snowflake(size, order) t.right(120) screen.tracer(1) resizechecker() def resizechecker(): if(size != root.winfo_width()/2): t.clear() drawsnowflake() """ The following code produces the gui window and allows for the tkinter and turtle modules to be on the same window It sets all the defaults required fro the gui window and the interation that allow it to be resizeable """ root = tk.Tk() root.geometry("500x500")#This sets the base size of the window root.minsize(300,300) root.resizable(True,True) #This allows the window to be resizeable by both the width and the height canvas = tk.Canvas(master = root) #Adding the canvas to the root window canvas.pack(fill = tk.BOTH, expand=tk.YES) #Allowing the canvas to be expanded root.update() """ This section of code adds all the elements required to the gui window This means that all element are shown to the user """ screen = turtle.TurtleScreen(canvas) t = turtle.RawTurtle(screen) t.hideturtle() #This line hides the drawing icon inputval = tk.DoubleVar() s = tk.Scale(master = root, label='Pick your order', from_=1, to=10, orient=tk.HORIZONTAL, length=200, showvalue=0,tickinterval=1, variable=inputval).pack(side=tk.LEFT, anchor="sw") tk.Button(master = root, text = "Next", command = drawsnowflake).pack(side=tk.LEFT, anchor="sw") tk.mainloop() root.mainloop()
Katherinebutt/COSC-326
Etude 3/snowflake.py
snowflake.py
py
2,777
python
en
code
0
github-code
6
46046574096
#!/usr/bin/env python # -*- coding: utf-8 -*- import os from setuptools import setup README = open(os.path.join(os.path.dirname(__file__), 'README.md')).read() REQUIREMENTS = open(os.path.join(os.path.dirname(__file__), 'requirements.txt')).read() # allow setup.py to be run from any path os.chdir(os.path.normpath(os.path.join(os.path.abspath(__file__), os.pardir))) setup( name='django-hooks', version='0.2.0-pre', description='A plugin system for django.', author='Esteban Castro Borsani', author_email='ecastroborsani@gmail.com', long_description=README, url='https://github.com/nitely/django-hooks', packages=[ 'hooks', 'hooks.templatetags', ], include_package_data=True, zip_safe=False, install_requires=REQUIREMENTS, license='MIT License', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Topic :: Internet :: WWW/HTTP', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', ], )
nitely/django-hooks
setup.py
setup.py
py
1,303
python
en
code
16
github-code
6
35470658937
import queue, time import threading '''This is a basic reference script that shows how to use Queues & different types of Queues in python There are basically 3 types of Queues :- 1. FIFO (default) 2. LIFO 3. Priority ''' # q = queue.Queue() # q.put(5) # print(q.get()) # to fetch the items in the Queue # print(q.empty()) # once we fetch the object from the queue the item is removed automatically from the queue # for i in range(1,5): # print('inserting inside queue ....{} \n'.format(i)) # q.put(i) # while not q.empty(): # '''Always use q.empty() otherwise if you are using single thread only then if there are no items in the queue then your queue will # get freezed and it will wait till next items comes in the queue. So , ALWAYS USE DIFFERENT THEREADS TO ACCESS THE 1 QUEUE # ''' # print(q.get(), end=' ') def putting_thread(q): while True: print('Starting thread \n') time.sleep(5) q.put(5) print('put something \n') q = queue.Queue() t = threading.Thread(target=putting_thread, args=(q,), daemon=True) # make it a daemon thread so main func finished automatically daemon thread will also finish t.start() q.put(55) print('first item gotten \n') # print(q.get()) while True: print(q.get()) print('finished')
AbhishekMaity001/Python-Code-Snippets
Queue-Threading-1.py
Queue-Threading-1.py
py
1,311
python
en
code
1
github-code
6
36846615388
from typing import cast from .kotlin_entities import ( KotlinEntity, KotlinProperty, KotlinEntityEnumeration, PARSING_ERRORS_PROP_NAME, ENTITY_STATIC_CREATOR ) from ..base import Generator from ... import utils from ...config import GenerationMode, GeneratedLanguage, TEMPLATE_SUFFIX from ...schema.modeling.entities import ( StringEnumeration, EntityEnumeration, Entity, Object, ObjectFormat, ) from ...schema.modeling.text import Text, EMPTY class KotlinGenerator(Generator): def __init__(self, config): super(KotlinGenerator, self).__init__(config) self.kotlin_annotations = config.generation.kotlin_annotations self._error_collectors = config.generation.errors_collectors self._generate_equality = config.generation.generate_equality self.generate_serialization = config.generation.generate_serialization def filename(self, name: str) -> str: return f'{utils.capitalize_camel_case(name)}.kt' def _entity_declaration(self, entity: Entity) -> Text: entity: KotlinEntity = cast(KotlinEntity, entity) entity.__class__ = KotlinEntity entity.eval_errors_collector_enabled(self._error_collectors) entity.update_bases() if entity.generate_as_protocol: return self.__declaration_as_interface(entity) result: Text = self.__main_declaration_header(entity) is_template = entity.generation_mode.is_template if is_template: result += EMPTY result += ' constructor (' result += ' env: ParsingEnvironment,' result += f' parent: {utils.capitalize_camel_case(entity.name)}? = null,' result += ' topLevel: Boolean = false,' result += ' json: JSONObject' result += ' ) {' result += ' val logger = env.logger' constructor = entity.constructor_body(with_commas=False).indented(indent_width=8) if constructor.lines: result += constructor result += ' }' result += EMPTY result += entity.value_resolving_declaration.indented(indent_width=4) if self.generate_serialization: result += EMPTY result += entity.serialization_declaration.indented(indent_width=4) if not is_template and self._generate_equality and not entity.instance_properties: result += EMPTY result += self.__manual_equals_hash_code_declaration.indented(indent_width=4) if not is_template: patch = entity.copy_with_new_array_declaration if patch: result += patch static_declarations = entity.static_declarations(self.generate_serialization) if static_declarations.lines: result += EMPTY result += ' companion object {' result += static_declarations.indented(indent_width=8) result += ' }' result += EMPTY if entity.inner_types: for inner_type in filter(lambda t: not isinstance(t, StringEnumeration) or not is_template, entity.inner_types): result += EMPTY result += self._main_declaration(inner_type).indented(indent_width=4) result += '}' return result @staticmethod def __declaration_as_interface(entity: KotlinEntity) -> Text: result = Text(f'interface {utils.capitalize_camel_case(entity.name)} {{') for prop in entity.instance_properties_kotlin: result += prop.declaration(overridden=False, in_interface=True, with_comma=False, with_default=False).indented(indent_width=4) result += '}' return result def __main_declaration_header(self, entity: KotlinEntity) -> Text: result = Text() for annotation in self.kotlin_annotations.classes: result += annotation data_prefix = 'data ' if entity.generation_mode.is_template or not self._generate_equality or not entity.instance_properties: data_prefix = '' prefix = f'{data_prefix}class {utils.capitalize_camel_case(entity.name)}' interfaces = ['JSONSerializable'] if self.generate_serialization else [] protocol_plus_super_entities = entity.protocol_plus_super_entities() if protocol_plus_super_entities is not None: interfaces.append(protocol_plus_super_entities) interfaces = ', '.join(interfaces) suffix = f' : {interfaces}' if interfaces else '' suffix += ' {' def add_instance_properties(text: Text, is_template: bool) -> Text: mixed_properties = entity.instance_properties_kotlin if entity.errors_collector_enabled: mixed_properties.append(KotlinProperty( name=PARSING_ERRORS_PROP_NAME, description='', description_translations={}, dict_field='', property_type=Object(name='List<Exception>', object=None, format=ObjectFormat.DEFAULT), optional=True, is_deprecated=False, mode=GenerationMode.NORMAL_WITHOUT_TEMPLATES, supports_expressions_flag=False, default_value=None, platforms=None )) for prop in mixed_properties: overridden = False if entity.implemented_protocol is not None: overridden = any(p.name == prop.name for p in entity.implemented_protocol.properties) text += prop.declaration( overridden=overridden, in_interface=False, with_comma=not is_template, with_default=not is_template ).indented(indent_width=4) return text if entity.generation_mode.is_template: result += prefix + suffix if entity.instance_properties: result = add_instance_properties(text=result, is_template=True) else: constructor_prefix = '' if self.kotlin_annotations.constructors: constructor_annotations = ', '.join(self.kotlin_annotations.constructors) constructor_prefix = f' {constructor_annotations} constructor ' if not entity.instance_properties: result += f'{prefix}{constructor_prefix}(){suffix}' else: result += f'{prefix}{constructor_prefix}(' result = add_instance_properties(text=result, is_template=False) result += f'){suffix}' return result @property def __manual_equals_hash_code_declaration(self) -> Text: result = Text('override fun equals(other: Any?) = javaClass == other?.javaClass') result += EMPTY result += 'override fun hashCode() = javaClass.hashCode()' return result def _entity_enumeration_declaration(self, entity_enumeration: EntityEnumeration) -> Text: entity_enumeration: KotlinEntityEnumeration = cast(KotlinEntityEnumeration, entity_enumeration) entity_enumeration.__class__ = KotlinEntityEnumeration declaration_name = utils.capitalize_camel_case(entity_enumeration.name) entity_declarations = list(map(utils.capitalize_camel_case, entity_enumeration.entity_names)) default_entity_decl = utils.capitalize_camel_case(str(entity_enumeration.default_entity_declaration)) result = Text() for annotation in self.kotlin_annotations.classes: result += annotation interfaces = ['JSONSerializable'] if self.generate_serialization else [] interfaces.append(entity_enumeration.mode.protocol_name( lang=GeneratedLanguage.KOTLIN, name=entity_enumeration.resolved_prefixed_declaration)) interfaces = ', '.join(filter(None, interfaces)) suffix = f' : {interfaces}' if interfaces else '' suffix += ' {' result += f'sealed class {declaration_name}{suffix}' for decl in entity_declarations: naming = entity_enumeration.format_case_naming(decl) decl = f'class {naming}(val value: {decl}) : {declaration_name}()' result += Text(indent_width=4, init_lines=decl) result += EMPTY result += f' fun value(): {entity_enumeration.common_interface(GeneratedLanguage.KOTLIN) or "Any"} {{' result += ' return when (this) {' for decl in entity_declarations: naming = entity_enumeration.format_case_naming(decl) decl = f'is {naming} -> value' result += Text(indent_width=12, init_lines=decl) result += ' }' result += ' }' result += EMPTY if self.generate_serialization: result += ' override fun writeToJSON(): JSONObject {' result += ' return when (this) {' for decl in entity_declarations: naming = entity_enumeration.format_case_naming(decl) decl = f'is {naming} -> value.writeToJSON()' result += Text(indent_width=12, init_lines=decl) result += ' }' result += ' }' result += EMPTY if entity_enumeration.mode.is_template: self_name = entity_enumeration.resolved_prefixed_declaration result += f' override fun resolve(env: ParsingEnvironment, data: JSONObject): {self_name} {{' result += ' return when (this) {' for decl in entity_declarations: case_name = entity_enumeration.format_case_naming(decl) line = f'is {case_name} -> {self_name}.{case_name}(value.resolve(env, data))' result += Text(indent_width=12, init_lines=line) result += ' }' result += ' }' result += EMPTY result += ' val type: String' result += ' get() {' result += ' return when (this) {' for decl in entity_declarations: naming = entity_enumeration.format_case_naming(decl) line = f'is {naming} -> {decl}.TYPE' result += Text(indent_width=16, init_lines=line) result += ' }' result += ' }' result += EMPTY elif self._generate_equality: result += ' override fun equals(other: Any?): Boolean {' result += ' if (this === other) { return true }' result += f' if (other is {declaration_name}) {{' result += ' return value().equals(other.value())' result += ' }' result += ' return false' result += ' }' result += EMPTY if not self.generate_serialization: result += '}' return result result += ' companion object {' result += ' @Throws(ParsingException::class)' source_name = 'json' source_type = 'JSONObject' read_type_expr = 'json.read("type", logger = logger, env = env)' read_type_opt_expr = 'json.readOptional("type", logger = logger, env = env)' throwing_expr = 'throw typeMismatch(json = json, key = "type", value = type)' if entity_enumeration.mode.is_template: def deserialization_args(s): return f'env, parent?.value() as {s}?, topLevel, {source_name}' result += ' operator fun invoke(' result += ' env: ParsingEnvironment,' result += ' topLevel: Boolean = false,' result += f' {source_name}: {source_type}' result += f' ): {declaration_name} {{' result += ' val logger = env.logger' if default_entity_decl: result += f' val receivedType: String = {read_type_opt_expr} ?: {default_entity_decl}Template.TYPE' else: result += f' val receivedType: String = {read_type_expr}' result += f' val parent = env.templates[receivedType] as? {declaration_name}' result += ' val type = parent?.type ?: receivedType' else: def deserialization_args(s): return f'env, {source_name}' result += ' @JvmStatic' result += ' @JvmName("fromJson")' args = f'env: ParsingEnvironment, {source_name}: {source_type}' result += f' operator fun invoke({args}): {declaration_name} {{' result += ' val logger = env.logger' if default_entity_decl: result += f' val type: String = {read_type_opt_expr} ?: {default_entity_decl}.TYPE' else: result += f' val type: String = {read_type_expr}' result += ' when (type) {' for decl in entity_declarations: naming = entity_enumeration.format_case_naming(decl) line = f'{decl}.TYPE -> return {naming}({decl}({deserialization_args(decl)}))' result += Text(indent_width=16, init_lines=line) if entity_enumeration.mode is GenerationMode.NORMAL_WITH_TEMPLATES: result += ' }' name = utils.capitalize_camel_case(entity_enumeration.name + TEMPLATE_SUFFIX) template_type = entity_enumeration.template_declaration_prefix + name result += f' val template = env.templates.getOrThrow(type, json) as? {template_type}' result += ' if (template != null) {' result += f' return template.resolve(env, {source_name})' result += ' } else {' result += f' {throwing_expr}' result += ' }' else: result += f' else -> {throwing_expr}' result += ' }' result += ' }' static_creator_lambda = f'env: ParsingEnvironment, it: JSONObject -> {declaration_name}(env, json = it)' result += f' val {ENTITY_STATIC_CREATOR} = {{ {static_creator_lambda} }}' result += ' }' result += '}' return result def _string_enumeration_declaration(self, string_enumeration: StringEnumeration) -> Text: declaration_name = utils.capitalize_camel_case(string_enumeration.name) cases_declarations = list(map(lambda s: Text(indent_width=16, init_lines=f'{s}.value -> {s}'), map(lambda s: utils.fixing_first_digit(utils.constant_upper_case(s[0])), string_enumeration.cases))) result = Text(f'enum class {declaration_name}(private val value: String) {{') for ind, case in enumerate(string_enumeration.cases): terminal = ',' if ind != (len(cases_declarations) - 1) else ';' name = utils.fixing_first_digit(utils.constant_upper_case(case[0])) value = case[1] result += Text(indent_width=4, init_lines=f'{name}("{value}"){terminal}') result += EMPTY result += ' companion object Converter {' result += f' fun toString(obj: {declaration_name}): String {{' result += ' return obj.value' result += ' }' result += EMPTY result += f' fun fromString(string: String): {declaration_name}? {{' result += ' return when (string) {' result += cases_declarations result += ' else -> null' result += ' }' result += ' }' result += EMPTY result += ' val FROM_STRING = { string: String ->' result += ' when (string) {' result += cases_declarations result += ' else -> null' result += ' }' result += ' }' result += ' }' result += '}' return result
divkit/divkit
api_generator/api_generator/generators/kotlin/generator.py
generator.py
py
16,470
python
en
code
1,940
github-code
6
38959212336
obj=open("Demo.txt","w+") obj.write("Hello World") obj.seek(3) #Move to 4th Byte print(obj.tell()) #Gives the byte number(in terms of index print(obj.read()) obj.seek(2,0)#Move 2 bytes further from beginning(0[First character at 0]+2=2) print(obj.read()) obj.close() obj=open("Demo.txt","rb") obj.seek(1) obj.seek(5,1)#Move 5 bytes further from current position[1[Currently at 2nd byte]+5=6] print(obj.read().decode("utf-8")) obj.seek(3) obj.seek(-2,1)#Move 2 bytes back from current position print(obj.read().decode("utf-8")) obj.seek(-3,2) #Move 3 bytes backward[Reference position is from end] print(obj.read().decode("utf-8"))
9Mugen/int108
seeking_another.py
seeking_another.py
py
646
python
en
code
0
github-code
6
41058690136
# Nicolas Gomollon, Lab 6 class Poly: def __init__(self,*terms): # __str__ uses the name self.terms for the dictionary of terms # So __init__ should build this dictionary from terms self.terms = {} for coeff, power in terms: assert type(coeff) in (int, float), "Poly.__init__: illegal coefficient in : {}".format((coeff, power)) assert (type(power) is int) and (power >= 0), "Poly.__init__: illegal power in : {}".format((coeff, power)) assert power not in self.terms, "Poly.__init__: power({}) can only be defined once".format(power) if coeff != 0: self.terms[power] = coeff # Fill in the rest of this method, using *terms to intialize self.terms # I have written str(...) because it is used in the bsc.txt file and # it is a bit subtle to get correct. Notice that it assumes that # every Poly object stores a dict whose keys are powers and whose # associated values are coefficients. This function does not depend # on any other method in this class being written correctly. def __str__(self): def term(c,p,var): return (str(c) if p == 0 or c != 1 else '') +\ ('' if p == 0 else var+('^'+str(p) if p != 1 else '')) if len(self.terms) == 0: return '0' else: return ' + '.join([term(c,p,'x') for p,c in sorted(self.terms.items(),reverse=True)]).replace('+ -','- ') def __repr__(self): return "Poly({})".format(', '.join((str((coeff, power)) for power, coeff in self.terms.items()))) def __len__(self): if len(self.terms) == 0: return 0 return max(self.terms) def __call__(self,arg): return sum([(coeff * (arg ** power)) for power, coeff in self.terms.items()]) def __iter__(self): for power, coeff in sorted(self.terms.items(), reverse=True): yield (coeff, power) def __getitem__(self,index): if (type(index) is not int) or (index < 0): raise TypeError("Poly.__getitem__: illegal index : {}".format(index)) if index not in self.terms: return 0 return self.terms[index] def __setitem__(self,index,value): if (type(index) is not int) or (index < 0): raise TypeError("Poly.__setitem__: illegal index : {}".format(index)) if (value != 0): self.terms[index] = value elif index in self.terms: self.terms.pop(index) return None def __delitem__(self,index): if (type(index) is not int) or (index < 0): raise TypeError("Poly.__delitem__: illegal index : {}".format(index)) if index in self.terms: self.terms.pop(index) return None def _add_term(self,c,p): if type(c) not in (int, float): raise TypeError("Poly._add_term: illegal coefficient in : {}".format((c, p))) if (type(p) is not int) or (p < 0): raise TypeError("Poly._add_term: illegal power in : {}".format((c, p))) if (c != 0) and (p not in self.terms): self[p] = c elif (p in self.terms): self[p] += c return None def __add__(self,right): if type(right) is Poly: new_terms = dict(self.terms) for power, coeff in right.terms.items(): if power in new_terms: if (new_terms[power] + coeff) != 0: new_terms[power] += coeff else: new_terms.pop(power) else: new_terms[power] = coeff return Poly(*[(coeff, power) for power, coeff in new_terms.items()]) elif type(right) in (int, float): new_terms = [(coeff, power) for power, coeff in self.terms.items() if power > 0] new_terms += [(self[0] + right, 0)] return Poly(*new_terms) raise TypeError("Poly.__add__: illegal operand : {}".format(right)) def __radd__(self,left): return self.__add__(left) def __mul__(self,right): if type(right) is Poly: new_terms = {} for p1, c1 in self.terms.items(): for p2, c2 in right.terms.items(): new_p = p1 + p2 new_c = c1 * c2 if new_p in new_terms: new_terms[new_p] += new_c else: new_terms[new_p] = new_c return Poly(*[(coeff, power) for power, coeff in new_terms.items()]) elif type(right) in (int, float): new_terms = dict(self.terms) for power, coeff in new_terms.items(): new_terms[power] *= right return Poly(*[(coeff, power) for power, coeff in new_terms.items()]) raise TypeError("Poly.__mul__: illegal operand : {}".format(right)) def __rmul__(self,left): return self.__mul__(left) def __eq__(self,right): if type(right) is Poly: return self.terms == right.terms elif type(right) in (int, float): if (len(self.terms) == 1) and (len(self) == 0): return self.terms[0] == right return False raise TypeError("Poly.__eq__: illegal operand : {}".format(right)) if __name__ == '__main__': # Some simple tests; you can comment them out and/or add your own before # the driver is called. print('Start simple tests') p = Poly((3,2),(-2,1), (4,0)) print(' For Polynomial: 3x^2 - 2x + 4') print(' str(p):',p) print(' repr(p):',repr(p)) print(' len(p):',len(p)) print(' p(2):',p(2)) print(' list collecting iterator results:',[t for t in p]) print(' p+p:',p+p) print(' p+2:',p+2) print(' p*p:',p*p) print(' p*2:',p*2) print('End simple tests\n') import driver #driver.default_show_exception=True #driver.default_show_exception_message=True #driver.default_show_traceback=True driver.driver()
solomc1/python
ics 33/solutions/ile2 solutions/Lab 6/GomollonNicolas/poly.py
poly.py
py
6,377
python
en
code
0
github-code
6
1282652745
import datetime import pandas as pd from tqdm import tqdm from emailer import Emailer from shipping import Shipping from shipstation import Shipstation def main(): # Instantiate objects to be used throughout the script shipstation = Shipstation() shipping = Shipping() # Get all shipment information from ShipStation print("\nGetting shipments...", end="") all_shipments = shipstation.get_shipments() print("done!\n") # Filter shipments for only those that were delivered, per ShipStation print("\nFiltering for delivered shipments...", end="") delivered_shipments = [ shipment for shipment in all_shipments if shipment["confirmation"] == "delivery" ] print("done!\n") # Filter delivered shipments created in the last week for those with orders created in the last week print("\nFiltering for orders within the last week...", end="") good_shipments = [] for shipment in tqdm(delivered_shipments, position=0, leave=True): order_response = shipstation.get_order(shipment["orderId"]) order_date = datetime.datetime.strptime( order_response["orderDate"], "%Y-%m-%dT%H:%M:%S.%f0" ) if order_date > datetime.datetime.now() - datetime.timedelta(days=8): if len(order_response["items"]) == 1: good_shipments.append((shipment, order_response)) print("done!\n") # Get tracking info from USPS and UPS print("\nGetting tracking info...", end="") usps_info = {} usps_tracking_numbers = [ s[0]["trackingNumber"] for s in good_shipments if "usps" in s[0]["serviceCode"] ] for tracking_number in usps_tracking_numbers: usps_info[tracking_number] = shipping.get_ups_tracking(tracking_number) ups_info = {} ups_tracking_numbers = [ s[0]["trackingNumber"] for s in good_shipments if "ups" in s[0]["serviceCode"] ] for tracking_number in ups_tracking_numbers: ups_info[tracking_number] = shipping.get_ups_tracking(tracking_number) # Combine tracking info into one dictionary tracking_info = {**ups_info, **usps_info} print("done!\n") # Filter shipments for those that were confirmed as delivered during the previous business day by USPS or UPS print("\nFiltering for deliveries confirmed by the carrier...", end="") actually_delivered = [ s for s in good_shipments if tracking_info.get(s[0]["trackingNumber"], [0, False])[1] and datetime.datetime.strptime( tracking_info.get(s[0]["trackingNumber"], ["2023-01-01 00:00", False])[0], "%Y-%m-%d %H:%M", ).date() == (datetime.datetime.now() - datetime.timedelta(days=3)).date() ] print("done!\n") # Create pandas DataFrame for data to be exported print("\nSending to CSV...", end="") filename = "shipstation_delivered.csv" values = [] for i in range(len(actually_delivered)): shipment_id = actually_delivered[i][0]["shipmentId"] order_id = actually_delivered[i][0]["orderId"] email = actually_delivered[i][0]["customerEmail"] ship_date = actually_delivered[i][0]["shipDate"] order_date = actually_delivered[i][1]["createDate"] bill_to = actually_delivered[i][1]["billTo"] ship_to = actually_delivered[i][1]["shipTo"] item = actually_delivered[i][1]["items"][0]["sku"] quantity = actually_delivered[i][1]["items"][0]["quantity"] tracking_number = actually_delivered[i][0]["trackingNumber"] values.append( ( shipment_id, order_id, email, ship_date, order_date, bill_to, ship_to, item, quantity, tracking_number, ) ) df = pd.DataFrame( values, columns=[ "shipmentId", "orderId", "customerEmail", "shipDate", "orderDate", "billTo", "shipTo", "sku", "quantity", "trackingNumber", ], ) df["deliveryDate"] = df["trackingNumber"].map( {k: v[0] for k, v in usps_info.items()} ) df["deliveryDate"] = pd.to_datetime(df["deliveryDate"]) df.to_csv(filename, index=False) print("done!\n") # Sending email to relevant parties emailer = Emailer(to_address="matt@jmac.com") print("\nSending email...", end="") subject = "ShipStation Daily Report" body = f""" Attached are the {len(df)} cherry-picked orders/shipments that were delivered during the previous business day. """ emailer.send_email(subject, body, filename) print("done!\n") if __name__ == "__main__": main()
mattgrcia/review-booster
main.py
main.py
py
4,870
python
en
code
0
github-code
6
21894452141
from dsa_stack import DSAStack import sys from typing import Union class TowersOfHanoi: def __init__(self, num_pegs: int, num_disks: int) -> None: self.num_pegs = num_pegs self.num_disks = num_disks self.pegs = [ DSAStack(num_disks), DSAStack(num_disks), DSAStack(num_disks), ] def place_disk(self, peg: int, disk: int) -> None: peg = self.pegs[peg] if peg.is_empty() or disk < peg.top(): peg.push(disk) else: raise ValueError( "Disk of size {} cannot be placed on disk of size {}.".format(disk, peg.top())) def remove_disk(self, peg: int) -> int: peg = self.pegs[peg] return peg.pop() def move_disk(self, src: int, dst: int) -> None: self.place_disk(dst, self.remove_disk(src)) # Gets the disk at the given peg and index from bottom, or None if none # exists. def disk_at(self, peg: int, i: int) -> Union[int, None]: p = self.pegs[peg].as_list() if i < len(p): d = p[-1 - i] else: d = None return d # Moves n disks from peg src to peg dst (1-indexed). def solve(n: int, src: int, dst: int) -> None: src -= 1 dst -= 1 towers = TowersOfHanoi(3, n) for i in range(n, 0, -1): towers.place_disk(src, i) step = 0 display_progress(towers, step) solve_impl(towers, n, src, dst, step) # Moves n disks from peg src to peg dst (0-indexed). # Returns the new step count. def solve_impl(towers: TowersOfHanoi, n: int, src: int, dst: int, step: int) -> int: if n <= 0: raise AssertionError("n must be > 0.") elif n == 1: towers.move_disk(src, dst) step += 1 display_progress(towers, step) else: other = 3 - src - dst step = solve_impl(towers, n - 1, src, other, step) towers.move_disk(src, dst) step += 1 display_progress(towers, step) step = solve_impl(towers, n - 1, other, dst, step) return step def display_progress(towers: TowersOfHanoi, step: int) -> None: header = "Step {}:".format(step) indent = " " * (len(header) + 2) disk_width = len(str(towers.num_disks)) print(header) for i in range(towers.num_disks - 1, -1, -1): print(indent, end="") for j in range(towers.num_pegs): disk = towers.disk_at(j, i) if disk is None: s = "|" else: s = str(disk) # Padding for when disk could be multiple columns wide. s = " " * (disk_width - len(s)) + s print(s + " ", end="") print() print() if len(sys.argv) != 4: print("Usage: python {} num_disks src_peg dst_peg".format(sys.argv[0])) else: try: num_disks = int(sys.argv[1]) src = int(sys.argv[2]) dst = int(sys.argv[3]) except ValueError: print("Parameters must be integers.") else: if num_disks < 1: print("num_disks must be > 0.") # Currently needs 8 extra stack frames to run, will require adjustment # if implementation changes. elif sys.getrecursionlimit() < num_disks + 8: print("Solving with num_disks={} would exceed max call stack depth." .format(num_disks)) elif not 0 < src <= 3: print("src_peg must be > 0 and <= 3.") elif not 0 < dst <= 3: print("dst_peg must be > 0 and <= 3.") else: print("Solving Towers of Hanoi with {} pegs and {} disks, starting from peg {} and ending at peg {}." .format(3, num_disks, src, dst)) print("Number of moves required: {}.".format(2 ** num_disks - 1)) print() solve(num_disks, src, dst)
MC-DeltaT/DSA-Practicals
P2/towers_of_hanoi.py
towers_of_hanoi.py
py
3,845
python
en
code
0
github-code
6
26333498275
# Face detection is done using classifier # classifier is an algorithm that decides wherether a face is present or not # classifier need to be trained images thousands of with and without the faces. # Opencv have pretrained classifier called haarcascade, localbinary pattern. import cv2 as cv img = cv.imread('Images/group.jpg') cv.imshow('group', img) # firstly we covert an image into grayscale because face detection does not involve any colors # haarcascade looks at object in an image and using edges find the faces in an image gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('GrayScale', gray) # Now Reading into haarcascade file haar_cascade = cv.CascadeClassifier('haar_face.xml') # Detection of Face face_rect = haar_cascade.detectMultiScale(gray, 1.1, minNeighbors=3) # detects a face and returns list of the rectangle coordinates of each faces print(f'No. of faces detected : {len(face_rect)}') # print(face_rect) for (x,y,w,h) in face_rect: cv.rectangle(img, (x,y), (x+w,y+h), (0,0,255), thickness=2) # so for the group of people haarcascade is more sensitiveto noise which will end up with more no. of faces than the actual no. of faces # less minNeighbour value leads to more face and vise versa cv.imshow('Detected_Faces', img) cv.waitKey(0)
JinalSinroja/OpenCV
Face_Detection.py
Face_Detection.py
py
1,299
python
en
code
0
github-code
6
26435457278
# Import all necessary libraries from distutils.cmd import Command import tkinter as tk from tkinter import ttk from tkinter import * from tkinter import font as tkFont import math # Initialize tkinter and set the display root = tk.Tk() root.configure(bg = "green") root.title("Calculator MIN 3000") root.geometry("294x389") root.resizable(False, False) options = {"padx": 1, "pady": 1} relation = "" #Function to update entered number and syntax in entry box def button_click(num): """This function collects all the selected characters and displays them""" global relation relation = relation + str(num) equation.set(relation) #Function to evaluate the final expresion def click_equal(): """This function evaluates the expression when equal is selected""" try: global relation total = str(eval(relation)) equation.set(total) relation = "" except: equation.set("error") relation = "" #Function to clear and delete the contents of text entry box def delete(): """This function deletes contents of text entry box""" global relation relation = "" equation.set("") # Define variables and constants equation = StringVar() helv36 = tkFont.Font(family='Helvetica', size=20, weight=tkFont.BOLD) sqrt = math.sqrt prct = 1/100 # Configuration of the display and buttons result_display = ttk.Entry( root, textvariable = equation , width=19, font=helv36 ).grid( column=0, row=0, columnspan=4, **options ) button_percent = Button( root, text="%", width=3, font=helv36, bg="#ADD8E6", command= lambda: button_click("prct") ).grid( column=0, row=1, sticky="nsew", **options ) button_left_parenthesis = Button( root, text="(", width=3, command=lambda: button_click("("), font=helv36, bg="#ADD8E6" ).grid( column=1, row=1, sticky="nsew", **options ) button_right_parenthesis = Button( root, text=")", width=3, command=lambda: button_click(")"), font=helv36, bg="#ADD8E6" ).grid( column=2, row=1, sticky="nsew", **options ) button_del = Button( root, text="DEL", width=3, font=helv36, command = delete, bg="#ADD8E6", fg="red" ).grid( column=3, row=1, sticky="nsew", **options ) button_square = Button( root, text="x^2", width=3, command=lambda: button_click("**2"), font=helv36, bg="#ADD8E6" ).grid( column=0, row=2, sticky="nsew", **options ) button_sqrt = Button( root, text="√", width=3, font=helv36, bg="#ADD8E6", command=lambda: button_click("sqrt") ).grid( column=1, row=2, sticky="nsew", **options ) button_1_devide_x = Button( root, text="1⁄x", width=3, font=helv36, bg="#ADD8E6" ).grid( column=2, row=2, sticky="nsew", **options ) button_multiply = Button( root, text="×", width=3, command= lambda: button_click("*"), font=helv36, bg="#ADD8E6" ).grid( column=3, row=2, sticky="nsew", **options ) button_7 = Button( root, text="7", width=3, command=lambda: button_click(7), font=helv36 ).grid( column=0, row=3, sticky="nsew", **options ) button_8 = Button( root, text="8", width=3, command=lambda: button_click(8), font=helv36 ).grid( column=1, row=3, sticky="nsew", **options ) button_9 = Button( root, text="9", width=3, command=lambda: button_click(9), font=helv36 ).grid( column=2, row=3, sticky="nsew", **options ) button_devide = Button( root, text="÷", width=3, command=lambda: button_click("/"), font=helv36, bg="#ADD8E6" ).grid( column=3, row=3, sticky="nsew", **options ) button_4 = Button( root, text="4", width=3, command=lambda: button_click(4), font=helv36 ).grid( column=0, row=4, sticky="nsew", **options ) button_5 = Button( root, text="5", width=3, command=lambda: button_click(5), font=helv36 ).grid( column=1, row=4, sticky="nsew", **options ) button_6 = Button( root, text="6", width=3, command=lambda: button_click(6), font=helv36 ).grid( column=2, row=4, sticky="nsew", **options ) button_subtract = Button( root, text="-", width=3, command=lambda: button_click("-"), font=helv36, bg="#ADD8E6" ).grid( column=3, row=4, sticky="nsew", **options ) button_1 = Button( root, text="1", width=3, command=lambda: button_click(1), font=helv36 ).grid( column=0, row=5, sticky="nsew", **options ) button_2 = Button( root, text="2", width=3, command=lambda: button_click(2), font=helv36 ).grid( column=1, row=5, sticky="nsew", **options ) button_3 = Button( root, text="3", width=3, command=lambda: button_click(3), font=helv36 ).grid( column=2, row=5, sticky="nsew", **options ) button_add = Button( root, text="+", width=3, command=lambda: button_click("+"), font=helv36, bg="#ADD8E6" ).grid( column=3, row=5, sticky="nsew", **options ) button_0 = Button( root, text="0", width=6, command=lambda: button_click(0), font=helv36 ).grid( column=0, row=6, columnspan=2, sticky="nsew", **options ) button_dot = Button( root, text="∙", width=3, command=lambda: button_click("."), font=helv36 ).grid( column=2, row=6, sticky="nsew", **options ) button_equal = Button( root, text="=", width=3, command = click_equal, font=helv36, bg="#ADD8E6" ).grid( column=3, row=6, sticky="nsew", **options ) root.mainloop()
IonMurzac/tkinter_calculator
P_13_Calculator.py
P_13_Calculator.py
py
7,168
python
en
code
0
github-code
6
575142348
#breakout.py #A. Colwell (2015) # graphics2 module returns a TUPLE when using .getOverlap() # The tuple will have two numbers, indicating which objects # have overlapped. Only useful if you know the corresponding # object. In this case, the first brick (brick1) is the first # object drawn in the window, and therefore the object 1. # All the bricks are drawn first, so their numbers are 1-36 # Paddle is number 37 # Ball is number 38 # Submitting this document will give you 50% plus: # 10% if you can add 10 points for every brick hit Yes # 10% display points in the window Yes # 10% add 30 points for every brick in top row only No # 10% vary direction of ball movement (any angle) No # 10% reset and replay game after finished Yes Power = 'On' while Power == 'On': Reset = 'y' from graphics2 import * from time import sleep while Reset == 'y': winx=600 winy=400 win = GraphWin('Brick Breaker',600,400) move={'Left':(-1,0),'Right':(1,0),'':(0,0)} speed = 4 #--------------------Start Game----------------------------- Start = Text(Point(300,200),'Click anywhere to start the game') Start.draw(win) coord=win.getMouse() x=coord.getX() y=coord.getY() if x<600 and y<400: Start.undraw() Esc = Text(Point(500,10),'Press Esc key to close the game') Esc.setSize(10) Esc.draw(win) #--------------------Bricks----------------------------- brick1 = Rectangle(Point(0,40),Point(49,49)) brick1.setFill('red') brick1.setOutline('lightgrey') brick1.draw(win) brick2 = Rectangle(Point(50,40),Point(99,49)) brick2.setFill('blue') brick2.setOutline('lightgrey') brick2.draw(win) brick3 = Rectangle(Point(100,40),Point(149,49)) brick3.setFill('yellow') brick3.setOutline('lightgrey') brick3.draw(win) brick4 = Rectangle(Point(150,40),Point(199,49)) brick4.setFill('green') brick4.setOutline('lightgrey') brick4.draw(win) brick5 = Rectangle(Point(200,40),Point(249,49)) brick5.setFill('purple') brick5.setOutline('lightgrey') brick5.draw(win) brick6 = Rectangle(Point(250,40),Point(299,49)) brick6.setFill('red') brick6.setOutline('lightgrey') brick6.draw(win) brick7 = Rectangle(Point(300,40),Point(349,49)) brick7.setFill('blue') brick7.setOutline('lightgrey') brick7.draw(win) brick8 = Rectangle(Point(350,40),Point(399,49)) brick8.setFill('green') brick8.setOutline('lightgrey') brick8.draw(win) brick9 = Rectangle(Point(400,40),Point(449,49)) brick9.setFill('yellow') brick9.setOutline('lightgrey') brick9.draw(win) brick10 = Rectangle(Point(450,40),Point(499,49)) brick10.setFill('purple') brick10.setOutline('lightgrey') brick10.draw(win) brick11 = Rectangle(Point(500,40),Point(549,49)) brick11.setFill('red') brick11.setOutline('lightgrey') brick11.draw(win) brick12 = Rectangle(Point(550,40),Point(599,49)) brick12.setFill('blue') brick12.setOutline('lightgrey') brick12.draw(win) brick13 = Rectangle(Point(0,30),Point(49,39)) brick13.setFill('green') brick13.setOutline('lightgrey') brick13.draw(win) brick14 = Rectangle(Point(50,30),Point(99,39)) brick14.setFill('yellow') brick14.setOutline('lightgrey') brick14.draw(win) brick15 = Rectangle(Point(100,30),Point(149,39)) brick15.setFill('purple') brick15.setOutline('lightgrey') brick15.draw(win) brick16 = Rectangle(Point(150,30),Point(199,39)) brick16.setFill('red') brick16.setOutline('lightgrey') brick16.draw(win) brick17 = Rectangle(Point(200,30),Point(299,39)) brick17.setFill('blue') brick17.setOutline('lightgrey') brick17.draw(win) brick18 = Rectangle(Point(250,30),Point(299,39)) brick18.setFill('green') brick18.setOutline('lightgrey') brick18.draw(win) brick19 = Rectangle(Point(300,30),Point(349,39)) brick19.setFill('yellow') brick19.setOutline('lightgrey') brick19.draw(win) brick20 = Rectangle(Point(350,30),Point(399,39)) brick20.setFill('purple') brick20.setOutline('lightgrey') brick20.draw(win) brick21 = Rectangle(Point(400,30),Point(449,39)) brick21.setFill('red') brick21.setOutline('lightgrey') brick21.draw(win) brick22 = Rectangle(Point(450,30),Point(499,39)) brick22.setFill('blue') brick22.setOutline('lightgrey') brick22.draw(win) brick23 = Rectangle(Point(500,30),Point(549,39)) brick23.setFill('green') brick23.setOutline('lightgrey') brick23.draw(win) brick24 = Rectangle(Point(550,30),Point(599,39)) brick24.setFill('yellow') brick24.setOutline('lightgrey') brick24.draw(win) brick25 = Rectangle(Point(0,20),Point(49,29)) brick25.setFill('purple') brick25.setOutline('lightgrey') brick25.draw(win) brick26 = Rectangle(Point(50,20),Point(99,29)) brick26.setFill('red') brick26.setOutline('lightgrey') brick26.draw(win) brick27 = Rectangle(Point(100,20),Point(149,29)) brick27.setFill('blue') brick27.setOutline('lightgrey') brick27.draw(win) brick28 = Rectangle(Point(150,20),Point(199,29)) brick28.setFill('green') brick28.setOutline('lightgrey') brick28.draw(win) brick29 = Rectangle(Point(200,20),Point(249,29)) brick29.setFill('yellow') brick29.setOutline('lightgrey') brick29.draw(win) brick30 = Rectangle(Point(250,20),Point(299,29)) brick30.setFill('purple') brick30.setOutline('lightgrey') brick30.draw(win) brick31 = Rectangle(Point(300,20),Point(349,29)) brick31.setFill('red') brick31.setOutline('lightgrey') brick31.draw(win) brick32 = Rectangle(Point(350,20),Point(399,29)) brick32.setFill('blue') brick32.setOutline('lightgrey') brick32.draw(win) brick33 = Rectangle(Point(400,20),Point(449,29)) brick33.setFill('green') brick33.setOutline('lightgrey') brick33.draw(win) brick34 = Rectangle(Point(450,20),Point(499,29)) brick34.setFill('yellow') brick34.setOutline('lightgrey') brick34.draw(win) brick35 = Rectangle(Point(500,20),Point(549,29)) brick35.setFill('purple') brick35.setOutline('lightgrey') brick35.draw(win) brick36 = Rectangle(Point(550,20),Point(599,29)) brick36.setFill('red') brick36.setOutline('lightgrey') brick36.draw(win) #bricks 600/12=49 will be width of brick #bricks 9 will be height of brick #brickname will be based on 25-36 ************ # 13-24 ************ # 1-12 ************ #brickList is used to undraw the bricks in main program #if a brick is hit, it is undrawn then a 0 is placed in the list brickList=[[brick25,brick13,brick1],[brick26,brick14,brick2], [brick27,brick15,brick3],[brick28,brick16,brick4], [brick29,brick17,brick5],[brick30,brick18,brick6], [brick31,brick19,brick7],[brick32,brick20,brick8], [brick33,brick21,brick9],[brick34,brick22,brick10], [brick35,brick23,brick11],[brick36,brick24,brick12]] Reset = 'n' #--------------------Paddle----------------------------- px = winx/2-30 py = winy-30 paddle = Rectangle(Point(px,py),Point(px+60,py+10)) paddle.setFill('black') paddle.setOutline('lightgrey') paddle.draw(win) #--------------------Ball------------------------------- bx = winx/2-5 by = winy/4-5 dx = 1 dy = 1 ball = Circle(Point(bx,by),5) ball.setFill('grey') ball.setOutline('black') ball.draw(win) #--------------------Functions-------------------------- #--------------------Main Loop-------------------------- score = 0 scoreText = Text(Point(58,10),score) scoreText2 = Text(Point(24,10),'Score:') scoreText2.draw(win) game = True #used in code to stop the game while win.isOpen() == True and game == True: sleep(.005) # speed or slow the game #look after the paddle m = win.checkKey() if m == 'Escape': win.close() else: try: x,y = move[m] except: pass paddle.move(x*speed,y*speed) c=paddle.getCenter() if c.getX() > (600-30): paddle.move(-1*(c.getX() - 570),0) if c.getX() < (0+30): paddle.move((-1*c.getX()+30),0) #look after ball movement bc = ball.getCenter() if bc.getX() > 595: dx = dx*-1 ball.move((bc.getX()-595)*-1,0) if bc.getX() < 5: dx = dx*-1 ball.move((bc.getX()-5)*-1,0) if bc.getY() < 5: dy = dy*-1 ball.move((bc.getY()-5)*-1,0) ball.move(dx,dy) #check for ball collisions if bc.getY() < 50: #bricks collision section x=int(bc.getX()//50) #convert width of window to x value (column) y=int(bc.getY()//10) - 2 #convert height of bricks area to y value (row) if brickList[x][y] != 0 : #check to see if brick has already been undrawn brickList[x][y].undraw() #undraw brick brickList[x][y]=0 #replace brick object in list with number 0 score = score+10 scoreText.undraw() scoreText = Text(Point(58,10),score) scoreText.draw(win) dy = dy*-1 #change direction of ball movement ball.move(dx,dy+2) #move ball with a nudge of 2 if bc.getY() > 365: #out of bounds at bottom collision section if len(ball.getOverlap())>1: dy*=-1 ball.move(dx,dy-2) elif bc.getY()>395: #closes window if ball passes by paddle Replay = 'n' win.close() #--------------------Retry-------------------------- win= GraphWin('Brick Breaker',600,400) label1 = Rectangle(Point(0,0),Point(300,405)) label1.draw(win) label2 = Rectangle(Point(300,0),Point(600,405)) label2.draw(win) label1.setFill('red') label2.setFill('blue') gameOver = Text(Point(300,20),'Game has ended. Your score was') gameOver.setSize(25) gameOver.draw(win) finalScore = Text(Point(300,50),score) finalScore.setSize(23) finalScore.draw(win) Retry = Text(Point(300,70),'Would you like to play again?') Retry.setSize(15) Retry.draw(win) yes = Text(Point(150,200),'Yes') no = Text(Point(450,200),'No') yes.setSize(20) no.setSize(20) yes.draw(win) no.draw(win) coord=win.getMouse() x=coord.getX() y=coord.getY() if x<300 and y<400: Reset = 'y' win.close() if x>300 and y<400: Reset = 'n' win.close() if Reset == 'n': Power = 'Off' #--------------------Final Message-------------------------- win= GraphWin('Brick Breaker',600,200) win.setBackground('yellow') End = Text(Point(300,100),'Thank You For Playing!!! :)') End.draw(win) End.setSize(36) End.setTextColor('blue') Closing = Text(Point(300,150),'Click anywhere to close') Closing.draw(win) coord=win.getMouse() x=coord.getX() y=coord.getY() if x<600 and y<200: win.close()
MrColwell/PythonProfessionalLearning
PythonForTeachers/StudentCode/Example6_BrickBreaker.py
Example6_BrickBreaker.py
py
13,772
python
en
code
0
github-code
6
11137230909
#!/usr/bin/python ''' Advent of code - Day 1: Chronal Calibration - Problem 1.2 https://adventofcode.com/2018/day/1#part2 ''' import os, sys # Reading file filename = 'input1.txt' lines = [] input_file_path = "%s/%s" % (os.path.abspath(os.path.dirname(__file__)), filename) try: with open(input_file_path, 'r') as f: lines = [line.strip() for line in f] except Exception as e: sys.exit("Error - while reading input file: %s" % e) # Computing frequency reached twice total = 0 reachedTwice = False frequencyDict = {0: 1} # 0 was already reached while (not reachedTwice): for num in lines: num = int(num) total += num if total in frequencyDict: reachedTwice = total break else: frequencyDict[total] = 1 if reachedTwice: print("First frequency reached twice is: %d" % reachedTwice) else: print("No frequency was reached twice")
dvdantunes/adventofcode-2018
day-01/day-01-02.py
day-01-02.py
py
940
python
en
code
0
github-code
6
906797873
import os from gptwntranslator.helpers.config_helper import Config from gptwntranslator.helpers.file_helper import write_md_as_epub from gptwntranslator.helpers.text_helper import write_novel_md, parse_chapters from gptwntranslator.helpers.ui_helper import print_title, wait_for_user_input from gptwntranslator.storage.json_storage import JsonStorage from gptwntranslator.ui.page_base import PageBase from gptwntranslator.ui.page_message import PageMessage from gptwntranslator.ui.ui_resources import get_resources class PageNovelExporting(PageBase): def __init__(self) -> None: pass def render(self, screen, **kwargs) -> tuple[PageBase, dict]: resources = get_resources() novel_code = kwargs["novel_url_code"] targets = kwargs["target"] novel_origin = kwargs["novel_origin"] storage = JsonStorage() config = Config() target_language = config.data.config.translator.target_language # Print title last_y = print_title(screen, resources["title"], 0) last_y += 2 screen.print_at(f"Exporting targets: {targets}", 2, last_y) while True: last_y += 2 try: message = "(1/3) Parsing chapter targets... " screen.print_at(message, 2, last_y) screen.refresh() targets = parse_chapters(targets) screen.print_at("success.", 2 + len(message), last_y) screen.refresh() last_y += 1 except Exception as e: screen.print_at("failed.", 2 + len(message), last_y) last_y += 1 messages = [ f"Error: Chapter targets parsing failed.", f"Error: {e}"] target = PageMessage params = {"messages": messages, "return_page": self.args["return_page"], "return_kwargs": self.args["return_kwargs"]} break try: message = "(2/3) Loading local storage... " screen.print_at(message, 2, last_y) screen.refresh() novels = storage.get_data() novel = [novel for novel in novels if novel.novel_code == novel_code and novel.novel_origin == novel_origin][0] screen.print_at("success.", 2 + len(message), last_y) screen.refresh() last_y += 1 except Exception as e: screen.print_at("failed.", 2 + len(message), last_y) last_y += 1 messages = [ f"Error: Error loading local storage.", f"Error: {e}"] target = PageMessage params = {"messages": messages, "return_page": self.args["return_page"], "return_kwargs": self.args["return_kwargs"]} break try: message = "(3/3) Exporting novel to epub... " screen.print_at(message, 2, last_y) screen.refresh() md_text = write_novel_md(novel, targets) output = os.path.join(config.vars["output_path"], f"{novel_origin}-{novel.novel_code}-{target_language}.epub") write_md_as_epub(md_text, output) screen.print_at("success.", 2 + len(message), last_y) screen.refresh() last_y += 1 target, params = self.args["return_page"], self.args["return_kwargs"] except Exception as e: screen.print_at("failed.", 2 + len(message), last_y) last_y += 1 messages = [ f"Error: Error exporting novel to epub.", f"Error: {e}"] target = PageMessage params = {"messages": messages, "return_page": self.args["return_page"], "return_kwargs": self.args["return_kwargs"]} break last_y += 1 screen.refresh() wait_for_user_input(screen, 2, last_y) return target, params
combobulativedesigns/gptwntranslator
src/gptwntranslator/ui/page_novel_exporting.py
page_novel_exporting.py
py
4,092
python
en
code
18
github-code
6
41559253356
from selenium import webdriver from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait as wait from selenium.webdriver.common.action_chains import ActionChains as ac from selenium.common.exceptions import NoSuchElementException import pandas as pd import time # seamless 로그아웃 def logout(driver): driver.find_element_by_xpath('/html/body/div/div/div/div/div[2]/div[2]/span/button').click() driver.find_element_by_xpath('/html/body/div/div/div/div/div[2]/div[2]/ul/li[6]/a').click() driver.close() # 스크랩한 기업 삭제 def delete_companies(driver): wait(driver, 20).until(EC.element_to_be_clickable((By.XPATH, '/html/body/div/div/div/div[2]/div/div[2]/table/thead/tr/th/div/span/div/div/div/label/span'))).click() time.sleep(1) wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div/div/div/div[2]/div/div[2]/div/div[2]/div[2]/div[2]/span/button'))).click() time.sleep(1) wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div/div/div/div[2]/div/div[2]/div/div[2]/div[2]/div[2]/ul/li/a'))).click() time.sleep(1) wait(driver, 10).until( EC.element_to_be_clickable((By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div/input'))).send_keys( 'delete') time.sleep(1) wait(driver, 10).until( EC.element_to_be_clickable((By.XPATH, '/html/body/div[7]/div[2]/div/div/div[3]/button[2]'))).send_keys( Keys.ENTER) time.sleep(5) def scrap(keyword, start_page, end_page, columns, file_name): driver = webdriver.Chrome('chromedriver.exe') driver.get('https://login.seamless.ai/login') driver.set_window_size(1500, 1000) time.sleep(1) driver.find_element_by_name('username').send_keys('********') driver.find_element_by_name('password').send_keys('********') driver.find_element_by_css_selector('form > button').click() time.sleep(3) try: driver.get('https://login.seamless.ai/search/companies?page=' + str( start_page) + '&locations=1&companiesExactMatch=false&companyKeywords=' + keyword) driver.execute_script("location.reload(true);") time.sleep(1) driver.find_element_by_css_selector('button > svg').click() for p1 in range(start_page, end_page + 1): driver.find_element_by_css_selector('body').send_keys(Keys.HOME) time.sleep(5) # 페이지 전체 한꺼번에 스크랩 wait(driver, 60).until(EC.element_to_be_clickable((By.XPATH, '/html/body/div/div/div/div[2]/div/div[2]/div[2]/table/thead/tr/th/div/span/div/div/div/label/span'))).click() time.sleep(1) wait(driver, 60).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div/div/div/div[2]/div/div[2]/div[2]/div/div[2]/button'))).click() if p1 < end_page: driver.find_element_by_css_selector('body').send_keys(Keys.END) time.sleep(20) wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div/div/div/div[2]/div/div[2]/div[2]/div[2]/div/button[2]'))).send_keys( Keys.ENTER) else: time.sleep(10) # 스크랩한 기업 정보 가져오기 all_data = list() # 정보 저장할 리스트 wait(driver, 10).until( EC.element_to_be_clickable( (By.XPATH, '/html/body/div/div/div/div/div/div[3]/a'))).click() # 스크랩한 기업 목록으로 넘어감 time.sleep(5) item_info = wait(driver, 10).until( EC.element_to_be_clickable((By.XPATH, '/html/body/div/div/div/div[2]/div/div[2]/div/div/div[2]'))).text item_len = int(item_info.split()[-1]) pages = (item_len - 1) // 15 + 1 for p2 in range(pages): if p2 < pages - 1: items = 15 else: items = item_len % 15 if item_len % 15 else 15 for i in range(items): company_data = list() wait(driver, 10).until(EC.element_to_be_clickable((By.XPATH, '/html/body/div/div/div/div[2]/div/div[2]/table/tbody/tr[' + str( i + 1) + ']/td[2]/div/div/button'))).send_keys( Keys.ENTER) time.sleep(5) wait(driver, 60).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div/div[2]/button'))).send_keys(Keys.ENTER) time.sleep(5) wait(driver, 30).until(EC.element_to_be_clickable((By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div[2]/div[2]/div/span/span/span[4]/span/span/a'))).send_keys( Keys.ENTER) name = wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div/div[2]'))).text desc = wait(driver, 10).until(EC.element_to_be_clickable((By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div[2]/div[2]/div/span/span'))).text website = wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div[3]/div[2]'))).text industry = wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div[4]/div[2]'))).text size = wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div[5]/div[2]'))).text founded = wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div[6]/div[2]'))).text company_type = wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div[7]/div[2]'))).text revenue = wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div[8]/div[2]'))).text location = wait(driver, 10).until(EC.element_to_be_clickable( (By.XPATH, '/html/body/div[7]/div[2]/div/div/div[2]/div[2]/div/div[2]/div/div[9]/div[2]'))).text company_data.extend([name, desc, website, industry, size, founded, company_type, revenue, location]) all_data.append(company_data) time.sleep(20) driver.find_element_by_css_selector('body').send_keys(Keys.ESCAPE) if i % 5 == 4: time.sleep(1) driver.find_element_by_css_selector('body').send_keys(Keys.PAGE_DOWN) time.sleep(1) time.sleep(1) driver.find_element_by_css_selector('body').send_keys(Keys.HOME) time.sleep(2) delete_companies(driver) except Exception: time.sleep(1) driver.find_element_by_css_selector('body').send_keys(Keys.ESCAPE) time.sleep(1) wait(driver, 10).until( EC.element_to_be_clickable( (By.XPATH, '/html/body/div/div/div/div/div/div[3]/a'))).click() # 스크랩한 기업 목록으로 넘어감 time.sleep(1) ac(driver).move_by_offset(0, 500).click().perform() time.sleep(5) try: item_info = wait(driver, 30).until(EC.element_to_be_clickable(( By.CSS_SELECTOR, 'div.RecordCount__RecordCountContainer-jdtFHI'))).text item_len = int(item_info.split()[-1]) pages = (item_len - 1) // 15 + 1 for p in range(pages): delete_companies(driver) except NoSuchElementException: pass else: all_columns = [ 'Company Name', 'Description', 'Website', 'Industry', 'Company Size', 'Founded', 'Company Type', 'Revenue', 'Location' ] all_data.reverse() all_data = pd.DataFrame(all_data, columns=all_columns, index=list(range(1, item_len + 1)))[columns] all_data.to_excel(file_name, encoding='utf-8-sig') finally: logout(driver)
cermen/SecondCompanyScraping
scrap.py
scrap.py
py
8,973
python
en
code
0
github-code
6
4501146166
import asyncio import contextlib import types import unittest import pytest from lsst.ts import salobj, watcher from lsst.ts.idl.enums.Watcher import AlarmSeverity # Timeout for normal operations (seconds) STD_TIMEOUT = 5 class GetRuleClassTestCase(unittest.TestCase): """Test `lsst.ts.watcher.get_rule_class`.""" def test_good_names(self): for classname, desired_class in ( ("Enabled", watcher.rules.Enabled), ("test.NoConfig", watcher.rules.test.NoConfig), ("test.ConfiguredSeverities", watcher.rules.test.ConfiguredSeverities), ): rule_class = watcher.get_rule_class(classname) assert rule_class == desired_class def test_bad_names(self): for bad_name in ( "NoSuchRule", # no such rule "test.NoSuchRule", # no such rule "test.Enabled", # wrong module "NoConfig", # wrong module "test_NoConfig", # wrong separator ): with pytest.raises(ValueError): watcher.get_rule_class(bad_name) class ModelTestCase(unittest.IsolatedAsyncioTestCase): def setUp(self): salobj.set_random_lsst_dds_partition_prefix() @contextlib.asynccontextmanager async def make_model(self, names, enable, escalation=(), use_bad_callback=False): """Make a Model as self.model, with one or more Enabled rules. Parameters ---------- names : `list` [`str`] Name and index of one or more CSCs. Each entry is of the form "name" or name:index". The associated alarm names have a prefix of "Enabled.". enable : `bool` Enable the model? escalation : `list` of `dict`, optional Escalation information. See `CONFIG_SCHEMA` for the format of entries. use_bad_callback : `bool` If True then specify an invalid callback function: one that is synchronous. This should raise TypeError. """ if not names: raise ValueError("Must specify one or more CSCs") self.name_index_list = [salobj.name_to_name_index(name) for name in names] configs = [dict(name=name_index) for name_index in names] watcher_config_dict = dict( disabled_sal_components=[], auto_acknowledge_delay=3600, auto_unacknowledge_delay=3600, rules=[dict(classname="Enabled", configs=configs)], escalation=escalation, ) watcher_config = types.SimpleNamespace(**watcher_config_dict) self.read_severities = dict() self.read_max_severities = dict() self.controllers = [] for name_index in names: name, index = salobj.name_to_name_index(name_index) self.controllers.append(salobj.Controller(name=name, index=index)) if use_bad_callback: def bad_callback(): pass alarm_callback = bad_callback else: alarm_callback = self.alarm_callback self.model = watcher.Model( domain=self.controllers[0].domain, config=watcher_config, alarm_callback=alarm_callback, ) for name, rule in self.model.rules.items(): rule.alarm.init_severity_queue() self.read_severities[name] = [] self.read_max_severities[name] = [] controller_start_tasks = [ controller.start_task for controller in self.controllers ] await asyncio.gather(self.model.start_task, *controller_start_tasks) if enable: await self.model.enable() for rule in self.model.rules.values(): assert rule.alarm.nominal assert not rule.alarm.acknowledged assert not rule.alarm.muted self.assert_not_muted(rule.alarm) try: yield finally: await self.model.close() controller_close_tasks = [ asyncio.create_task(controller.close()) for controller in self.controllers ] await asyncio.gather(*controller_close_tasks) async def alarm_callback(self, alarm): """Callback function for each alarm. Updates self.read_severities and self.read_max_severities, dicts of alarm_name: list of severity/max_severity. """ self.read_severities[alarm.name].append(alarm.severity) self.read_max_severities[alarm.name].append(alarm.max_severity) # Print the state to aid debugging test failures. print( f"alarm_callback({alarm.name}, severity={alarm.severity!r}): " f"read_severities={self.read_severities[alarm.name]}" ) async def write_states(self, index, states): """Write a sequence of summary states to a specified controller.""" controller = self.controllers[index] controller_name_index = f"{controller.salinfo.name}:{controller.salinfo.index}" rule_name = f"Enabled.{controller_name_index}" rule = self.model.rules[rule_name] previous_state = None for state in states: await controller.evt_summaryState.set_write( summaryState=state, force_output=True ) if self.model.enabled and previous_state != state: await asyncio.wait_for( rule.alarm.severity_queue.get(), timeout=STD_TIMEOUT ) assert rule.alarm.severity_queue.empty() elif self.model.enabled: # State didn't changed should not receive any new event with pytest.raises(asyncio.TimeoutError): await asyncio.wait_for( rule.alarm.severity_queue.get(), timeout=STD_TIMEOUT ) assert rule.alarm.severity_queue.empty() else: # We don't have any event we can wait for, so sleep a bit # to give the model time to react to the data. await asyncio.sleep(0.1) previous_state = state def assert_muted(self, alarm, muted_severity, muted_by): """Assert that the specified alarm is muted. Parameters ---------- alarm : `lsst.ts.watcher.Alarm` Alarm to test. muted_severity : `lsst.ts.idl.enums.Watcher.AlarmSeverity` Expected value for rule.severity. muted_by : `str` Expected value for rule.muted_by. """ assert alarm.muted assert alarm.muted_severity == muted_severity assert alarm.muted_by == muted_by def assert_not_muted(self, alarm): """Assert that the specified alarm is not muted. Parameters ---------- alarm : `lsst.ts.watcher.Alarm` Alarm to test. """ assert not alarm.muted assert alarm.muted_severity == AlarmSeverity.NONE assert alarm.muted_by == "" async def test_constructor_bad_callback(self): remote_names = ["ScriptQueue:5", "Test:7"] with pytest.raises(TypeError): async with self.make_model( names=remote_names, enable=False, use_bad_callback=True ): pass async def test_acknowledge_full_name(self): user = "test_ack_alarm" remote_names = ["ScriptQueue:5", "Test:7"] nrules = len(remote_names) async with self.make_model(names=remote_names, enable=True): full_rule_name = f"Enabled.{remote_names[0]}" assert full_rule_name in self.model.rules # Send STANDBY to all controllers to put all alarms into warning. for index in range(nrules): await self.write_states(index=index, states=[salobj.State.STANDBY]) for name, rule in self.model.rules.items(): assert not rule.alarm.nominal assert rule.alarm.severity == AlarmSeverity.WARNING assert rule.alarm.max_severity == AlarmSeverity.WARNING # Acknowledge one rule by full name but not the other. await self.model.acknowledge_alarm( name=full_rule_name, severity=AlarmSeverity.WARNING, user=user ) for name, rule in self.model.rules.items(): if name == full_rule_name: assert rule.alarm.acknowledged assert rule.alarm.acknowledged_by == user else: assert not rule.alarm.acknowledged assert rule.alarm.acknowledged_by == "" async def test_acknowledge_regex(self): user = "test_ack_alarm" remote_names = ["ScriptQueue:1", "ScriptQueue:2", "Test:62"] nrules = len(remote_names) async with self.make_model(names=remote_names, enable=True): assert len(self.model.rules) == nrules # Send STANDBY to all controllers to put all alarms into warning. for index in range(nrules): await self.write_states(index=index, states=[salobj.State.STANDBY]) for rule in self.model.rules.values(): assert not rule.alarm.nominal assert rule.alarm.severity == AlarmSeverity.WARNING assert rule.alarm.max_severity == AlarmSeverity.WARNING # Acknowledge the ScriptQueue alarms but not Test. await self.model.acknowledge_alarm( name="Enabled.ScriptQueue:*", severity=AlarmSeverity.WARNING, user=user ) for name, rule in self.model.rules.items(): if "ScriptQueue" in name: assert rule.alarm.acknowledged assert rule.alarm.acknowledged_by == user else: assert not rule.alarm.acknowledged assert rule.alarm.acknowledged_by == "" async def test_enable(self): remote_names = ["ScriptQueue:5", "Test:7"] async with self.make_model(names=remote_names, enable=True): assert len(self.model.rules) == 2 # Enable the model and write ENABLED several times. # This triggers the rule callback but that does not # change the state of the alarm. await self.model.enable() for index in range(len(remote_names)): await self.write_states( index=index, states=( salobj.State.ENABLED, salobj.State.ENABLED, salobj.State.ENABLED, ), ) for name, rule in self.model.rules.items(): assert rule.alarm.nominal assert self.read_severities[name] == [AlarmSeverity.NONE] assert self.read_max_severities[name] == [AlarmSeverity.NONE] # Disable the model and issue several events that would # trigger an alarm if the model was enabled. Since the # model is disabled the alarm does not change states. self.model.disable() for index in range(len(remote_names)): await self.write_states( index=index, states=(salobj.State.FAULT, salobj.State.STANDBY) ) for name, rule in self.model.rules.items(): assert rule.alarm.nominal assert self.read_severities[name] == [AlarmSeverity.NONE] assert self.read_max_severities[name] == [AlarmSeverity.NONE] # Enable the model. This will trigger a callback with # the current state of the event (STANDBY). # Note that the earlier FAULT event is is ignored # because it arrived while disabled. await self.model.enable() for name, rule in self.model.rules.items(): await rule.alarm.assert_next_severity(AlarmSeverity.WARNING) assert not rule.alarm.nominal assert rule.alarm.severity == AlarmSeverity.WARNING assert rule.alarm.max_severity == AlarmSeverity.WARNING assert self.read_severities[name] == [ AlarmSeverity.NONE, AlarmSeverity.WARNING, ] assert self.read_max_severities[name] == [ AlarmSeverity.NONE, AlarmSeverity.WARNING, ] # Issue more events; they should be processed normally. for index in range(len(remote_names)): await self.write_states( index=index, states=(salobj.State.FAULT, salobj.State.STANDBY) ) for name, rule in self.model.rules.items(): assert not rule.alarm.nominal assert rule.alarm.severity == AlarmSeverity.WARNING assert rule.alarm.max_severity == AlarmSeverity.CRITICAL assert self.read_severities[name] == [ AlarmSeverity.NONE, AlarmSeverity.WARNING, AlarmSeverity.CRITICAL, AlarmSeverity.WARNING, ] assert self.read_max_severities[name] == [ AlarmSeverity.NONE, AlarmSeverity.WARNING, AlarmSeverity.CRITICAL, AlarmSeverity.CRITICAL, ] async def test_escalation(self): remote_names = ["ScriptQueue:1", "ScriptQueue:2", "Test:1", "Test:2", "Test:52"] # Escalation info for the first two rules; # check that case does not have to match. esc_info12 = dict( alarms=["enabled.scriptqueue:*"], responder="chaos", delay=0.11, ) # Escalation info for the next two rules esc_info34 = dict( alarms=["Enabled.Test:?"], responder="stella", delay=0.12, ) # Escalation info that does not match any alarm names esc_notused = dict( alarms=["Enabled.NoMatch"], responder="someone", delay=0.13, ) async with self.make_model( names=remote_names, enable=False, escalation=[esc_info12, esc_info34, esc_notused], ): alarms = [rule.alarm for rule in self.model.rules.values()] assert len(alarms) == len(remote_names) for alarm in alarms[0:2]: assert alarm.escalation_responder == esc_info12["responder"] assert alarm.escalation_delay == esc_info12["delay"] for alarm in alarms[2:4]: assert alarm.escalation_responder == esc_info34["responder"] assert alarm.escalation_delay == esc_info34["delay"] for alarm in alarms[4:]: assert alarm.escalation_responder == "" assert alarm.escalation_delay == 0 for alarm in alarms: assert alarm.timestamp_escalate == 0 async def test_get_rules(self): remote_names = ["ScriptQueue:1", "ScriptQueue:2", "Test:1", "Test:2", "Test:52"] async with self.make_model(names=remote_names, enable=False): rules = self.model.get_rules("NoSuchName") assert len(list(rules)) == 0 # Search starts at beginning, so Enabled.foo works # but foo does not. rules = self.model.get_rules("ScriptQueue") assert len(list(rules)) == 0 rules = self.model.get_rules(".*") assert len(list(rules)) == len(remote_names) rules = self.model.get_rules("Enabled") assert len(list(rules)) == len(remote_names) rules = self.model.get_rules("Enabled.ScriptQueue") assert len(list(rules)) == 2 rules = self.model.get_rules("Enabled.Test") assert len(list(rules)) == 3 async def test_mute_full_name(self): """Test mute and unmute by full alarm name.""" user = "test_mute_alarm" remote_names = ["ScriptQueue:5", "Test:7"] async with self.make_model(names=remote_names, enable=True): full_rule_name = f"Enabled.{remote_names[0]}" assert full_rule_name in self.model.rules # Mute one rule by full name. await self.model.mute_alarm( name=full_rule_name, duration=5, severity=AlarmSeverity.WARNING, user=user, ) for name, rule in self.model.rules.items(): if name == full_rule_name: self.assert_muted( rule.alarm, muted_severity=AlarmSeverity.WARNING, muted_by=user ) else: self.assert_not_muted(rule.alarm) # Nnmute one rule by full name. await self.model.unmute_alarm(name=full_rule_name) for rule in self.model.rules.values(): self.assert_not_muted(rule.alarm) async def test_mute_regex(self): """Test mute and unmute by regex.""" user = "test_mute_alarm" remote_names = ["ScriptQueue:1", "ScriptQueue:2", "Test:62"] nrules = len(remote_names) async with self.make_model(names=remote_names, enable=True): assert len(self.model.rules) == nrules # Mute the ScriptQueue alarms but not Test. await self.model.mute_alarm( name="Enabled.ScriptQueue.*", duration=5, severity=AlarmSeverity.WARNING, user=user, ) for name, rule in self.model.rules.items(): if "ScriptQueue" in name: self.assert_muted( rule.alarm, muted_severity=AlarmSeverity.WARNING, muted_by=user ) else: self.assert_not_muted(rule.alarm) # Unmute the ScriptQueue alarms but not Test. await self.model.unmute_alarm(name="Enabled.ScriptQueue.*") for rule in self.model.rules.values(): self.assert_not_muted(rule.alarm)
lsst-ts/ts_watcher
tests/test_model.py
test_model.py
py
18,435
python
en
code
0
github-code
6
7323087980
from __future__ import division from collections import deque class BiGramDict(object): def __init__(self): self.count = dict() self.dictionary = dict() def put(self, key, value): if key not in self.dictionary: self.count[key] = 0 self.dictionary[key] = dict() if value not in self.dictionary[key]: self.dictionary[key][value] = 0 self.dictionary[key][value] += 1 self.count[key] += 1 def normalize(self): for key_dict in self.dictionary.iterkeys(): for value_dict in self.dictionary[key_dict].iterkeys(): self.dictionary[key_dict][value_dict] /= self.count[key_dict] def get(self, key, value): if key in self.dictionary and value in self.dictionary[key]: return self.dictionary[key][value] return False class TriGramDict(object): def __init__(self): # Don't need a count. BiGramDict on each gram will maintain a tab self.dictionary = dict() def put(self, first_gram, second_gram, third_gram): if first_gram not in self.dictionary: self.dictionary[first_gram] = BiGramDict() self.dictionary[first_gram].put(second_gram, third_gram) def normalize(self): for gram in self.dictionary.iterkeys(): self.dictionary[gram].normalize() def get(self, first_gram, second_gram, third_gram): if first_gram not in self.dictionary: return False return self.dictionary[first_gram].get(second_gram, third_gram) class HMM(object): def __init__(self): self.states = set() self.trigramDictionary = TriGramDict() self.bigramStateDictionary = BiGramDict() self.emissionDictionary = BiGramDict() self.initDictionary = BiGramDict() pass def trainHMM(self, filename): prevPosTag = None prevPosTags = [None] * 2 with open(filename, "r") as train_file: for line in train_file: line = line.strip() if line == "###/###": prevPosTags[1] = None continue word, posTag = line.split('/') posTag = posTag.replace('\n', '') self.emissionDictionary.put(posTag, word) previous_BiGram_nexists = prevPosTags[1] == None if previous_BiGram_nexists: self.initDictionary.put('init', posTag) prevPosTags[1] = posTag continue self.bigramStateDictionary.put(prevPosTags[1], posTag) prevPosTags[0], prevPosTags[1] = prevPosTags[1], posTag self.trigramDictionary.put(prevPosTags[0], prevPosTags[1], posTag) self.emissionDictionary.normalize() self.bigramStateDictionary.normalize() self.initDictionary.normalize() self.states.update(self.bigramStateDictionary.dictionary.keys()) def __initial_probability__(self, state): return self.initDictionary.get('init', state) or 0 def __emission_probability__(self, state, observation): return self.emissionDictionary.get(state, observation) or 0.0000015 def __transition_probability__(self, prevState, nextState): return self.bigramStateDictionary.get(prevState, nextState) or 0.0000015 def testHMM(self, filename): with open(filename, "r") as test_file: actual_count = 0 successful_count = 0 true_states = [] obs = [] for line in test_file: line = line.strip() if line != '###/###': word, tag = line.split('/') true_states.append(tag) obs.append(word) continue if len(true_states) == 0: continue (probability, pred_states) = self.__predict_tagsets__(obs) for i in xrange(len(true_states)): if true_states[i] == pred_states[i]: successful_count += 1 actual_count += 1 #print pred_states #print true_states print (actual_count - successful_count)/actual_count * 100 obs = [] true_states = [] #raw_input() def __predict_tagsets__(self, observations): viterbi = [{}] path = {} for s0 in self.states: viterbi[0][s0] = self.__initial_probability__(s0) * self.__emission_probability__(s0, observations[0]) path[s0] = [s0] for t in range(1, len(observations)): viterbi.append({}) newpath = {} for sj in self.states: (prob, state) = max((viterbi[t-1][si] * self.__transition_probability__(si, sj) * self.__emission_probability__(sj, observations[t]), si) for si in self.states) viterbi[t][sj] = prob newpath[sj] = path[state] + [sj] path = newpath n = 0 if len(observations) != 1: n = len(observations) - 1 (prob, state) = max((viterbi[n][y], y) for y in self.states) return (prob, path[state]) if __name__ == '__main__': hmm = HMM() hmm.trainHMM("entrain.txt") hmm.testHMM("entest.txt")
vigneshwerv/HMM
hmm.py
hmm.py
py
4,436
python
en
code
0
github-code
6
38831039266
# Module 5 # Programming Assignment 6 # Prob-2.py # Esther Pisano from graphics import * def main(): # creating a label "win" for the graph that we wish to draw in. # titled it "Squares" win = GraphWin("Squares", 200, 200) # created first rectangle shape = Rectangle(Point(50, 50), Point(20, 20)) # colored the shape shape.setOutline("red") shape.setFill("red") # executed the drawing function shape.draw(win) # made a loop to make more rectangles. # This will loop 5 times for i in range(5): p = win.getMouse() c = shape.getCenter() dx = p.getX() - c.getX() dy = p.getY() - c.getY() # code below will add the new coordinate to the first coordinate (50,50) # it will then create a new rectangle where the new float number is (which is where the mouse was clicked) new_shape = Rectangle(Point(50+dx, 50+dy), Point(20+dx, 20+dy)) new_shape.setOutline("red") new_shape.setFill("red") new_shape.draw(win) # create a label to show window is ending label = Text(Point(100, 120), "Click once more to quit") label.draw(win) win.getMouse() win.close() main()
CTEC-121-Spring-2020/mod-4-programming-assignment-EPisano526
Prob-2/Prob-2.py
Prob-2.py
py
1,215
python
en
code
0
github-code
6
2544504801
import cv2 import numpy as np ###Color detection def empty(a): pass def stackImages(scale,imgArray): rows = len(imgArray) cols = len(imgArray[0]) rowsAvailable = isinstance(imgArray[0], list) width = imgArray[0][0].shape[1] height = imgArray[0][0].shape[0] if rowsAvailable: for x in range ( 0, rows): for y in range(0, cols): if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]: imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale) else: imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale) if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR) imageBlank = np.zeros((height, width, 3), np.uint8) hor = [imageBlank]*rows hor_con = [imageBlank]*rows for x in range(0, rows): hor[x] = np.hstack(imgArray[x]) ver = np.vstack(hor) else: for x in range(0, rows): if imgArray[x].shape[:2] == imgArray[0].shape[:2]: imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale) else: imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale) if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR) hor= np.hstack(imgArray) ver = hor return ver cv2.namedWindow("trackBars") cv2.resizeWindow("trackBars",640,240) #name of window,add on which window,initial value, max value, function executed when trak bar value is changed #Hue ranges from 0 to 255 but opencv supports still 179 so max value 179 cv2.createTrackbar("Hue Min","trackBars",0,179,empty) cv2.createTrackbar("Hue Max","trackBars",13,179,empty) cv2.createTrackbar("Sat Min","trackBars",24,255,empty) cv2.createTrackbar("Sat Max","trackBars",250,255,empty) cv2.createTrackbar("Value Min","trackBars",119,255,empty) cv2.createTrackbar("Value Max","trackBars",255,255,empty) while True: img = cv2.imread("lambo.png") imgHSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV) #trackbar name, window name is which it belongs h_min = cv2.getTrackbarPos("Hue Min","trackBars") h_max = cv2.getTrackbarPos("Hue Max","trackBars") s_min = cv2.getTrackbarPos("Sat Min","trackBars") s_max = cv2.getTrackbarPos("Sat Max","trackBars") v_min = cv2.getTrackbarPos("Value Min","trackBars") v_max = cv2.getTrackbarPos("Value Max","trackBars") print(h_min,h_max,s_min,s_max,v_min,v_max) lower = np.array([h_min,s_min,v_min]) upper = np.array([h_max,s_max,v_max]) #creating a mask mask = cv2.inRange(imgHSV,lower,upper) #cv2.imshow("lambo ",img) #cv2.imshow("lamboHSV ",imgHSV) #cv2.imshow("mask ", mask) # keep things in black color if you dont want it #which will add 2 images together to create a new image it will check both images and wherever the pixel are both present it will take it has a yes or a 1 and it will store that in new image # cv2.bitwise_and(img,img,mask=mask) source image,output image, mask imgResult = cv2.bitwise_and(img,img,mask=mask) #cv2.imshow("Result masked image ", imgResult) imgStack = stackImages(0.6,([img,imgHSV],[mask,imgResult])) cv2.imshow("Stack Images",imgStack) cv2.waitKey(1)
monsterpit/openCVDemo
Resources/chapter7.py
chapter7.py
py
3,458
python
en
code
0
github-code
6
19399743449
from typing import List import collections class Solution: def combine(self, n: int, k: int) -> List[List[int]]: q = collections.deque() for i in range(1, n + 1): q.append([i]) while q: e = q.popleft() if len(e) == k: q.appendleft(e) break else: for i in range(e[-1] + 1, n + 1): a = e[:] a.append(i) q.append(a) return list(q) n = 3 k = 3 r = Solution().combine(n, k) print(r)
Yigang0622/LeetCode
combine.py
combine.py
py
576
python
en
code
1
github-code
6
20521842050
import time from telapi import tas_api from database import db api_caller = tas_api(db.phone1.accountId, db.phone1.mailboxId) api_callee = tas_api(db.phone2.accountId, db.phone2.mailboxId) session_id, caller_party_id = api_caller.callout(db.phone1.deviceId, db.phone2.number) callee_party_id = api_caller.get_party_by_number(session_id, 2) if callee_party_id is None: print("Impossible to obtain callee party ID.") exit(-1) if api_callee.get_amount_devices() > 1: time.sleep(5) api_callee.answer(session_id, callee_party_id, db.phone2.deviceId) time.sleep(2) api_caller.transfer_to_park_orbit(caller_party_id, session_id, db.parkOrbitId) print(api_caller.get_session(session_id)) time.sleep(2) body = api_caller.pickup(callee_party_id, session_id, db.phone1.deviceId) print(body)
annoviko/sandbox
applications/telapi/scenario_pickup_outgoing.py
scenario_pickup_outgoing.py
py
829
python
en
code
5
github-code
6
6017725196
import re re.findall(r'(\w+)=(\d+)', 'set width=20 and height=10') # 查全部 没有为[], [('width', '20'), ('height', '10')] def dashreplace(matchobj): """普通替换""" if matchobj.group(0) == '-': return ' ' else: return '' re.sub('-{1,4}', dashreplace, 'pro----gram-files') # program files def dashreplace2(matchobj): """分组替换""" # print(matchobj.groupdict()) # {'first_name': 'Malcolm', 'last_name': 'Reynolds'} first_name = matchobj.group('first_name') last_name = matchobj.group('last_name') return f"{first_name}-{last_name}" re.sub(r'(?P<first_name>\w+) (?P<last_name>\w+)', dashreplace2, "Malcolm Reynolds") # 检查字符串中任何位置的匹配,查第一个 没有为None, res = re.search(r"\w+", "abc def gh abc") # <re.Match object; span=(0, 3), match='abc'> # 检查字符串开头是否匹配 m = re.match(r"(\d+)\.(\d+)", "24.1632") # m.groups() => ('24', '1632') m = re.match(r"(?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds") # m.groupdict() # {'first_name': 'Malcolm', 'last_name': 'Reynolds'} # fullmatch: 完全匹配
Yuelioi/Program-Learning
Python/Basic/标准库/05.文本处理服务/_re.py
_re.py
py
1,135
python
en
code
0
github-code
6
69986222269
from django.db import models from django.contrib.auth.models import AbstractUser from django.contrib.auth import get_user_model class CustomUser(AbstractUser): phone = models.CharField(max_length=13, blank=True, null=True) bonus_coin = models.IntegerField(default=0) class NameIt(models.Model): name = models.CharField(max_length=255) class Meta: abstract = True def __str__(self): return self.name class Category(NameIt): pass class Product(NameIt): price = models.IntegerField(null=False) category = models.ForeignKey(Category, on_delete=models.CASCADE, null=False) compound = models.TextField(null=True) description = models.TextField(null=True) class ProductImage(models.Model): image = models.ImageField(upload_to='images', verbose_name='Изображение_товара') product = models.ForeignKey(Product, on_delete=models.CASCADE, related_name='images') is_main = models.BooleanField(default=False) is_active = models.BooleanField(default=True) def __str__(self): return "%s" % self.id class Reviews(models.Model): body = models.TextField() publish_date = models.DateTimeField(blank=True, null=True) is_published = models.BooleanField(default=False) author = models.ForeignKey(get_user_model(), on_delete=models.CASCADE) def __str__(self): return self.body # Create your models here.
Pdnky/MySite
FoodDelivery/core/models.py
models.py
py
1,427
python
en
code
0
github-code
6
11120994067
import logging import typing as tp from collections import deque from librarius.domain.messages import ( AbstractMessage, AbstractEvent, AbstractCommand, AbstractQuery, ) from librarius.service.uow import AbstractUnitOfWork from librarius.domain.exceptions import SkipMessage logger = logging.getLogger(__name__) class MessageBus: def __init__( self, uow: AbstractUnitOfWork, event_handlers: dict[tp.Type[AbstractEvent], list[tp.Callable]], command_handlers: dict[tp.Type[AbstractCommand], tp.Callable], query_handlers: dict[tp.Type[AbstractQuery], tp.Callable], ): self.queue: deque[AbstractMessage] = deque() self.uow = uow self.event_handlers = event_handlers self.command_handlers = command_handlers self.query_handlers = query_handlers def handle(self, message: AbstractMessage): self.queue.append(message) try: while self.queue: message = self.queue.popleft() if isinstance(message, AbstractEvent): self.handle_event(message) elif isinstance(message, AbstractCommand): self.handle_command(message) elif isinstance(message, AbstractQuery): return self.handle_query(message) else: raise Exception(f"{message} was not an Event, Command or Query") except SkipMessage as error: logger.warning(f"Skipping message {message.uuid} because {error.reason}") def handle_event(self, event: AbstractEvent) -> None: for handler in self.event_handlers[type(event)]: try: logger.debug(f"Handling event {event} with handler {handler}") handler(event) self.queue.extend(self.uow.collect_new_events()) except Exception: logger.exception(f"Exception handling event {event}") continue def handle_command(self, command: AbstractCommand) -> None: logger.debug(f"Handling command {command}") try: handler = self.command_handlers[type(command)] handler(command) self.queue.extend(self.uow.collect_new_events()) except Exception: logger.exception(f"Exception handling command {command}") raise def handle_query(self, query: AbstractQuery): logger.debug(f"Handling query {query}") try: handler = self.query_handlers[type(query)] results = handler(query) self.queue.extend(self.uow.collect_new_events()) return results except Exception: logger.exception(f"Exception handling query {query}") raise
adriangabura/vega
librarius/service/message_bus.py
message_bus.py
py
2,802
python
en
code
1
github-code
6
8213590960
import numpy as np from ..helpers import unify_tags, flatten_fillins from .special_tokens import BLANK_TOK def create_blanked_sents(doc, indexes=None): if indexes: if type(indexes[0]) == int: indexes = [indexes] indexes_list = indexes #[indexes] else: indexes_list = get_random_idxes( doc, is_token_only=False, max_count=3) blanks = set([flatten_fillins( doc, indexes, [BLANK_TOK] * len(indexes)) \ for indexes in indexes_list]) return blanks # the function for placing BLANKS. def get_one_random_idx_set( doc, max_blank_block=3, req_dep=None, blank_type_prob=None, pre_selected_idxes=None, is_token_only=False): if req_dep is not None: if type(req_dep) == str: req_dep = [req_dep] idx_range = [i for i, token in enumerate(doc) if token.dep_ in req_dep or unify_tags(token.dep_) in req_dep] else: idx_range = list(range(len(doc))) # only keep those pre_selected_idxes if pre_selected_idxes is not None: idx_range = [i for i in idx_range if i in pre_selected_idxes] max_blank_block = min(len(idx_range), max_blank_block) #print(req_dep, idx_range) selected_indexes = [] while max_blank_block > 0 and not selected_indexes: # if fixed the thing to change, then do one specific change n_perturb = np.random.choice(list(range(1, max_blank_block+1))) #if req_dep is None else 1 replace_idx, total_run = -1, 1000 while (total_run > 0 and n_perturb > 0): #and len(span_and_edits) == 0: replace_idx = np.random.choice(idx_range) token = doc[replace_idx] if token.is_punct: total_run -= 1 continue if blank_type_prob: p = blank_type_prob else: # if fixed the tree, then mostly use the tree if is_token_only: p = [0.7, 0, 0.3] elif req_dep is None: p = [0.4, 0.35, 0.25] else: p = [0.1, 0.7, 0.2] is_replace_subtree = np.random.choice(["token", "subtree", "insert"], p=p) if is_replace_subtree == "subtree": start, end = token.left_edge.i, token.right_edge.i+1 elif is_replace_subtree == "token": start, end = token.i, token.i+1 else: start, end = token.i, token.i if all([end < sstart or start > send for sstart, send in selected_indexes]): selected_indexes.append([start, end]) n_perturb -= 1 total_run -= 1 return sorted(selected_indexes, key=lambda idx: (idx[0], idx[1])) def get_random_idxes(doc, pre_selected_idxes=None, deps=None, is_token_only=False, max_blank_block=3, max_count=None): unique_blanks = {str([[0, len(doc)]]): [[0, len(doc)]]} default_deps = [None, "", ["subj","obj"], ["aux", "ROOT"], ["conj", "modifier", "clause"]] if is_token_only: unique_blanks = {} if deps is None: deps = default_deps for dep in deps: # for each different dep, get some blank rounds = 1 if dep is not None else 2 if is_token_only: rounds = 5 for _ in range(rounds): curr_idx = get_one_random_idx_set( doc, req_dep=dep, max_blank_block=max_blank_block, pre_selected_idxes=pre_selected_idxes, is_token_only=is_token_only) if dep != "" else None if curr_idx is not None: unique_blanks[str(curr_idx)] = curr_idx unique_blanks = list(unique_blanks.values()) if max_count is not None: try: unique_blanks = list(np.random.choice( np.array(unique_blanks, dtype="object"), min(len(unique_blanks), max_count), replace=False)) except: unique_blanks = unique_blanks[:max_count] return unique_blanks
tongshuangwu/polyjuice
polyjuice/generations/create_blanks.py
create_blanks.py
py
3,984
python
en
code
89
github-code
6
23091348874
''' Epidemic modelling YOUR NAME Functions for running a simple epidemiological simulation ''' import random import sys import click # This seed should be used for debugging purposes only! Do not refer # to this variable in your code. TEST_SEED = 20170217 def has_an_infected_neighbor(city, location): ''' Determine whether a person at a specific location has an infected neighbor in a city modelled as a ring. Args: city (list of tuples): the state of all people in the simulation at the start of the day location (int): the location of the person to check Returns (boolean): True, if the person has an infected neighb False otherwise. ''' # The location needs to be a valid index for the city list. assert 0 <= location < len(city) # This function should only be called when the person at location # is susceptible to infection. disease_state, _ = city[location] assert disease_state == "S" disease_state_left, _ = city[location-1] disease_state_right, _ = city[(location+1) % len(city)] # these define the state of the neighbors to the immediate left or right of the selected person if disease_state_left == "I" or disease_state_right == "I": # if the person has an infeccted neighbor to their left or their right, it is true that they neighbor an infected person return True # REPLACE False WITH AN APPROPRIATE RETURN VALUE return False # if the person doesn't have an infected neighbor, it is false that they would neighbor an infectee def advance_person_at_location(city, location, days_contagious): ''' Compute the next state for the person at the specified location. Args: city (list): the state of all people in the simulation at the start of the day location (int): the location of the person to check days_contagious (int): the number of a days a person is infected Returns (string, int): the disease state and the number of days the person has been in that state after simulating one day. ''' disease_state, _ = city[location] assert 0 <= location < len(city) state, days_in_state = city[location] days_in_state +=1 # the day increases by one everytime we advance a person (a day has passed for their condition to be rechecked) if state == "S": if has_an_infected_neighbor(city, location): #if the person is susceptible and it is true that their neighbor is an infected person state = "I" days_in_state = 0 # the suspectible person becomes infected and have been so for zero days if disease_state[0] == "I": if days_in_state >= days_contagious: # if the person is infected and have been so past the life of the virus state = "R" days_in_state = 0 # they recover and have been so for 0 days # We don't add a condition for recovered people. #Their condition cannot change so all that happens is a day passes in their life # REPLACE ("R", 0) WITH AN APPROPRIATE RETURN VALUE return (state, days_in_state) def simulate_one_day(starting_city, days_contagious): ''' Move the simulation forward a single day. Args: starting_city (list): the state of all people in the simulation at the start of the day days_contagious (int): the number of a days a person is infected Returns (list of tuples): the state of the city after one day ''' ending_city = [] # we set an empty set, which will be the city after one day for location in range(len(starting_city)): # for a person in the city ending_city.append(advance_person_at_location(starting_city, location, days_contagious)) # we advance a person through a day, and add them to the new city # REPLACE [] WITH AN APPROPRIATE RETURN VALUE return ending_city # this leaves us with an ending city, where the people have all gone through one day # thus, a day has been simulated def is_transmission_possible(city): """ Is there at least one susceptible person who has an infected neighbor? Args: city (list): the current state of the city Returns (boolean): True if the city has at least one susceptible person with an infected neighbor, False otherwise. """ # YOUR CODE HERE for location in range(len(city)): state, _ = city[location] # we define the state of each person in the city if state == "S" and has_an_infected_neighbor(city, location): return True # if a person is suspectible and neighbors an infected person, we say that transmission can occur # REPLACE False WITH AN APPROPRIATE RETURN VALUE return False # In any other case, the city has no susceptible people next to sick neighbors def run_simulation(starting_city, days_contagious): ''' Run the entire simulation Args: starting_city (list): the state of all people in the city at the start of the simulation days_contagious (int): the number of a days a person is infected Returns tuple (list of tuples, int): the final state of the city and the number of days actually simulated. ''' pass city = starting_city days = 0 while is_transmission_possible(city): # while susceptible people in the city can be infected city=simulate_one_day(city, days_contagious) days +=1 # we simulate a day, and do so until no more susceptible people can get infected # REPLACE ([], 0) WITH AN APPROPRIATE RETURN VALUE return (city, days) def vaccinate_person(vax_tuple): ''' Attempt to vaccinate a single person based on their current disease state and personal eagerness to be vaccinated. Args: vax_tuple (string, int, float): information about a person, including their eagerness to be vaccinated. Returns (string, int): a person tuple ''' # YOUR CODE HERE state, days, chance = vax_tuple # we only check the case for susceptible people, as recovered or infected people aren't allowed to get vaccinated if state =="S" and random.random() < chance: # if the person is susceptible and they pass the probability test state = "V" days = 0 # they become vaccinated, and have been so for 0 days # REPLACE ("R", 0) WITH AN APPROPRIATE RETURN VALUE return (state, days) def vaccinate_city(city_vax_tuples, random_seed): ''' Vaccinate the people in the city based on their current state and eagerness to be vaccinated. Args: city_vax_tuples (list of (string, int, float) triples): state of all people in the simulation at the start of the simulation, including their eagerness to be vaccinated. random_seed (int): seed for the random number generator Returns (list of (string, int) tuples): state of the people in the city after vaccination ''' # YOUR CODE HERE random.seed(random_seed) city_end = [] # empty city_end will represent the city after one day has passed for person in city_vax_tuples: city_end.append(vaccinate_person(person)) # we check if any person gets vaccinated given the above function, and move these post-day people to city_end # REPLACE [] WITH AN APPROPRIATE RETURN VALUE return city_end def vaccinate_and_simulate(city_vax_tuples, days_contagious, random_seed): """ Vaccinate the city and then simulate the infection spread Args: city_vax_tuples (list): a list with the state of the people in the city, including their eagerness to be vaccinated. days_contagious (int): the number of days a person is infected random_seed (int): the seed for the random number generator Returns (list of tuples, int): the state of the city at the end of the simulation and the number of days simulated. """ # YOUR CODE HERE city = vaccinate_city(city_vax_tuples, random_seed) # this returns the city after we perform the above simulation of a day where people can get vaccinated # REPLACE ([], 0) WITH AN APPROPRIATE RETURN VALUE return run_simulation(city, days_contagious) # this returns the city after a simulated day, where people can get infected or recover # now, vaccinated people can't get infected ################ Do not change the code below this line ####################### def run_trials(vax_city, days_contagious, random_seed, num_trials): """ Run multiple trials of vaccinate_and_simulate and compute the median result for the number of days until infection transmission stops. Args: vax_city (list of (string, int, float) triples): a list with vax tuples for the people in the city days_contagious (int): the number of days a person is infected random_seed (int): the seed for the random number generator num_trials (int): the number of trial simulations to run Returns: (int) the median number of days until infection transmission stops """ days = [] for i in range(num_trials): if random_seed: _, num_days_simulated = vaccinate_and_simulate(vax_city, days_contagious, random_seed+i) else: _, num_days_simulated = vaccinate_and_simulate(vax_city, days_contagious, random_seed) days.append(num_days_simulated) # quick way to compute the median return sorted(days)[num_trials // 2] def parse_city_file(filename, is_vax_tuple): """ Read a city represented as person tuples or vax tuples from a file. Args: filename (string): the name of the file is_vax_tuple (boolean): True if the file is expected to contain (string, int) pairs. False if the file is expected to contain (string, int, float) triples. Returns: list of tuples or None, if the file does not exist or cannot be parsed. """ try: with open(filename) as f: residents = [line.split() for line in f] except IOError: print("Could not open:", filename, file=sys.stderr) return None ds_types = ('S', 'I', 'R', 'V') rv = [] if is_vax_tuple: try: for i, res in enumerate(residents): ds, nd, ve = res num_days = int(nd) vax_eagerness = float(ve) if ds not in ds_types or num_days < 0 or \ vax_eagerness < 0 or vax_eagerness > 1.0: raise ValueError() rv.append((ds, num_days, vax_eagerness)) except ValueError: emsg = ("Error in line {}: vax tuples are represented " "with a disease state {}" "a non-negative integer, and a floating point value " "between 0 and 1.0.") print(emsg.format(i, ds_types), file=sys.stderr) return None else: try: for i, res in enumerate(residents): ds, nd = res num_days = int(nd) if ds not in ds_types or num_days < 0: raise ValueError() rv.append((ds, num_days)) except ValueError: emsg = ("Error in line {}: persons are represented " "with a disease state {} and a non-negative integer.") print(emsg.format(i, ds_types), file=sys.stderr) return None return rv @click.command() @click.argument("filename", type=str) @click.option("--days-contagious", default=2, type=int) @click.option("--task-type", default="no_vax", type=click.Choice(['no_vax', 'vax'])) @click.option("--random-seed", default=None, type=int) @click.option("--num-trials", default=1, type=int) def cmd(filename, days_contagious, task_type, random_seed, num_trials): ''' Process the command-line arguments and do the work. ''' city = parse_city_file(filename, task_type == "vax") if not city: return -1 if task_type == "no_vax": print("Running simulation ...") final_city, num_days_simulated = run_simulation( city, days_contagious) print("Final city:", final_city) print("Days simulated:", num_days_simulated) elif num_trials == 1: print("Running one vax clinic and simulation ...") final_city, num_days_simulated = vaccinate_and_simulate( city, days_contagious, random_seed) print("Final city:", final_city) print("Days simulated:", num_days_simulated) else: print("Running multiple trials of the vax clinic and simulation ...") median_num_days = run_trials(city, days_contagious, random_seed, num_trials) print("Median number of days until infection transmission stops:", median_num_days) return 0 if __name__ == "__main__": cmd() # pylint: disable=no-value-for-parameter
MaxSaint01/pa1
sir.py
sir.py
py
13,436
python
en
code
1
github-code
6
11324258537
import pygame from random import randint from pygame.locals import * pygame.init() display_widht = 600 display_height = 360 spaceship_widht = 84 spaceship_height = 50 shots_x = [] shots_y = [] asteroids_x = [] asteroids_y = [] asteroids_type = [] gameDisplay = pygame.display.set_mode((display_widht, display_height)) pygame.display.set_caption('The battle of death') clock = pygame.time.Clock() spaceshipImg = pygame.image.load('spaceship.png') backgroundImg = pygame.image.load('background.png') laserImg = pygame.image.load('laser.png') asteroidImg = pygame.image.load('asteroid.png') def spaceship(x,y): gameDisplay.blit(spaceshipImg, (x,y)) def shot(x,y): x += 4 gameDisplay.blit(laserImg, (x,y)) gameDisplay.blit(laserImg, (x, y + spaceship_height - 7)) shots_x.append(x) shots_y.append(y) def move_shoots(): for i in range(len(shots_x)): shots_x[i] += 8 if shots_x[i] < display_widht: gameDisplay.blit(laserImg, (shots_x[i],shots_y[i])) gameDisplay.blit(laserImg, (shots_x[i],shots_y[i] + spaceship_height - 7)) def create_asteroid(): up_side = randint(0,2) x = randint(1, display_widht) y = randint(1, display_height) asteroids_type.append(up_side) if up_side == 0: y = 0 asteroids_x.append(x) asteroids_y.append(y) else: x = display_widht - 40 asteroids_y.append(y) asteroids_x.append(x) gameDisplay.blit(asteroidImg, (x,y)) def move_asteroids(): global asteroids_x global asteroids_y for i in range(len(asteroids_x)): if (asteroids_x[i] < display_widht or asteroids_x[i] > 0) and asteroids_type[i] != 0: asteroids_x[i] -= 7 gameDisplay.blit(asteroidImg, (asteroids_x[i], asteroids_y[i])) else: asteroids_y[i] += 7 gameDisplay.blit(asteroidImg, (asteroids_x[i], asteroids_y[i])) def game_loop(): x = 0 y = display_height * 0.5 x_change = 0 y_change = 0 gameExit = False while not gameExit: gameDisplay.blit(backgroundImg, (0,0)) for event in pygame.event.get(): if event.type == pygame.QUIT: gameExit = True if event.type == pygame.KEYDOWN: if event.key == pygame.K_RIGHT: x_change = 4 if event.key == pygame.K_LEFT: x_change = -4 if event.key == pygame.K_UP: y_change = -4 if event.key == pygame.K_DOWN: y_change = 4 if event.key == pygame.K_SPACE: shot(x,y) create_asteroid() if event.type == pygame.KEYUP: if event.key == pygame.K_RIGHT or event.key == pygame.K_LEFT: x_change = 0 if event.key == pygame.K_UP or event.key == pygame.K_DOWN: y_change = 0 x += x_change y += y_change if y > display_height - spaceship_height: y = display_height - spaceship_height if x > display_widht - spaceship_widht: x = display_widht - spaceship_widht if x < 0: x = 0 if y < 0: y = 0 spaceship(x,y) move_shoots() move_asteroids() pygame.display.update() clock.tick(60) game_loop() pygame.quit() quit()
macelai/star-wars
game.py
game.py
py
3,439
python
en
code
0
github-code
6
22868194593
import requests from googletrans import Translator, LANGUAGES import pickle import webScraping with open('Resources/API key/oxford.pck', 'rb') as file: api_key = pickle.load(file) app_id = api_key['app id'] app_key = api_key['app key'] url_base = 'https://od-api.oxforddictionaries.com/api/v2/' language_code = 'en-us' def lemmatize(word): endpoint = 'lemmas' url = url_base + endpoint + '/' + language_code + '/' + word res = requests.get(url, headers={'app_id': app_id, 'app_key': app_key}) if format(res.status_code) != '404': return res.json()['results'][0]['lexicalEntries'][0]['inflectionOf'][0]['id'] else: return '' def Definition(word): word = lemmatize(word) if word != '': endpoint = 'entries' url = url_base + endpoint + '/' + language_code + '/' + word res = requests.get(url, headers={'app_id': app_id, 'app_key': app_key}) try: return res.json()['results'][0]['lexicalEntries'][0]['entries'][0]['senses'][0]['definitions'][0] except: return None else: return None def Synonyms(word): word = lemmatize(word) if word != '': endpoint = 'entries' url = url_base + endpoint + '/' + language_code + '/' + word res = requests.get(url, headers={"app_id": app_id, "app_key": app_key}) try: list_of_synonyms = res.json()['results'][0]['lexicalEntries'][0]['entries'][0]['senses'][0]['synonyms'] result_list = [] for i in range(min(5, len(list_of_synonyms))): result_list.append(list_of_synonyms[i]['text']) return result_list except: return None else: return None def Antonyms(word): if word.find(' ') != -1: return None word = lemmatize(word) return webScraping.Get_Antonyms(word) def lang_translate(text,language): if language in LANGUAGES.values(): translator = Translator() result = translator.translate(text, src='en', dest=language) return result else: return None
TroySigX/smartbot
dictionary.py
dictionary.py
py
2,176
python
en
code
2
github-code
6
39263007416
import datetime as datetime import json from django.db.models import Q from django.test import override_settings from mock import MagicMock, patch from rest_framework.status import HTTP_403_FORBIDDEN, HTTP_201_CREATED from eums.models import MultipleChoiceAnswer, TextAnswer, Flow, Run, \ NumericAnswer, Alert, RunQueue from eums.test.api.authorization.authenticated_api_test_case import AuthenticatedAPITestCase from eums.test.config import BACKEND_URL from eums.test.factories.consignee_factory import ConsigneeFactory from eums.test.factories.delivery_factory import DeliveryFactory from eums.test.factories.delivery_node_factory import DeliveryNodeFactory from eums.test.factories.flow_factory import FlowFactory from eums.test.factories.option_factory import OptionFactory from eums.test.factories.purchase_order_factory import PurchaseOrderFactory from eums.test.factories.purchase_order_item_factory import PurchaseOrderItemFactory from eums.test.factories.question_factory import TextQuestionFactory, MultipleChoiceQuestionFactory, \ NumericQuestionFactory ENDPOINT_URL = BACKEND_URL + 'web-answers' class WebAnswerEndpointTest(AuthenticatedAPITestCase): mock_get = MagicMock(return_value={}) mock_distribution_alert_raise = MagicMock() def setUp(self): super(WebAnswerEndpointTest, self).setUp() self.setup_flow_with_questions(Flow.Label.IMPLEMENTING_PARTNER) def setup_flow_with_questions(self, flow_type): flow = FlowFactory(label=flow_type) delivery_received_qn = MultipleChoiceQuestionFactory(label='deliveryReceived', flow=flow) OptionFactory(question=delivery_received_qn, text='Yes') OptionFactory(question=delivery_received_qn, text='No') TextQuestionFactory(label='dateOfReceipt', flow=flow) good_order_qn = MultipleChoiceQuestionFactory(label='isDeliveryInGoodOrder', flow=flow) OptionFactory(question=good_order_qn, text='Yes') OptionFactory(question=good_order_qn, text='No') OptionFactory(question=good_order_qn, text='Incomplete') satisfied_qn = MultipleChoiceQuestionFactory(label='areYouSatisfied', flow=flow) OptionFactory(question=satisfied_qn, text='Yes') OptionFactory(question=satisfied_qn, text='No') TextQuestionFactory(label='additionalDeliveryComments', flow=flow) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) def test_should_save_answers(self): delivery = DeliveryFactory() date_of_receipt = self.__get_current_date() good_comment = "All is good" data = { 'runnable': delivery.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'Yes'}, {'question_label': 'dateOfReceipt', 'value': date_of_receipt}, {'question_label': 'isDeliveryInGoodOrder', 'value': 'Yes'}, {'question_label': 'areYouSatisfied', 'value': 'Yes'}, {'question_label': 'additionalDeliveryComments', 'value': good_comment} ]} response = self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') answer_for_delivery_received = self._get_answer_for(MultipleChoiceAnswer, delivery.id, 'deliveryReceived') answer_for_date_of_receipt = self._get_answer_for(TextAnswer, delivery.id, 'dateOfReceipt') answer_for_delivery_order = self._get_answer_for(MultipleChoiceAnswer, delivery.id, 'isDeliveryInGoodOrder') answer_for_satisfaction = self._get_answer_for(MultipleChoiceAnswer, delivery.id, 'areYouSatisfied') answer_for_additional_comments = self._get_answer_for(TextAnswer, delivery.id, 'additionalDeliveryComments') self.assertEqual(response.status_code, 201) self.assertEqual(answer_for_delivery_received.value.text, 'Yes') self.assertEqual(answer_for_date_of_receipt.value, date_of_receipt) self.assertEqual(answer_for_delivery_order.value.text, 'Yes') self.assertEqual(answer_for_satisfaction.value.text, 'Yes') self.assertEqual(answer_for_additional_comments.value, good_comment) self.assertTrue(self.mock_distribution_alert_raise.delay.called) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) @patch('eums.models.DistributionPlan.confirm') def test_should_confirm_delivery_when_answers_are_saved(self, mock_confirm): delivery = DeliveryFactory() date_of_receipt = self.__get_current_date() good_comment = "All is good" data = { 'runnable': delivery.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'Yes'}, {'question_label': 'dateOfReceipt', 'value': date_of_receipt}, {'question_label': 'isDeliveryInGoodOrder', 'value': 'Yes'}, {'question_label': 'areYouSatisfied', 'value': 'Yes'}, {'question_label': 'additionalDeliveryComments', 'value': good_comment} ]} response = self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') self.assertEqual(response.status_code, 201) self.assertTrue(mock_confirm.called) self.assertTrue(self.mock_distribution_alert_raise.delay.called) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) @patch('eums.services.response_alert_handler.ResponseAlertHandler') def test_should_format_answers_to_rapidpro_hook_api_and_handle_corresponding_alerts(self, mock_alert_handler): delivery = DeliveryFactory() date_of_receipt = self.__get_current_date() good_comment = "All is good" data = { 'runnable': delivery.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'Yes'}, {'question_label': 'dateOfReceipt', 'value': date_of_receipt}, {'question_label': 'isDeliveryInGoodOrder', 'value': 'Yes'}, {'question_label': 'areYouSatisfied', 'value': 'Yes'}, {'question_label': 'additionalDeliveryComments', 'value': good_comment} ]} response = self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') self.assertEqual(response.status_code, 201) rapidpro_formatted_answers = [ {"category": {'eng': 'Yes', 'base': 'Yes'}, 'label': 'deliveryReceived'}, {"category": {'eng': date_of_receipt, 'base': date_of_receipt}, 'label': 'dateOfReceipt'}, {"category": {'eng': 'Yes', 'base': 'Yes'}, 'label': 'isDeliveryInGoodOrder',}, {"category": {'eng': 'Yes', 'base': 'Yes'}, 'label': 'areYouSatisfied'}, {"category": {'eng': good_comment, 'base': good_comment}, 'label': 'additionalDeliveryComments'} ] self.assertTrue(mock_alert_handler.called_once_with(delivery, rapidpro_formatted_answers)) self.assertTrue(self.mock_distribution_alert_raise.delay.called) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) @patch('eums.services.response_alert_handler.ResponseAlertHandler.process') def test_should_process_alerts(self, mock_process): delivery = DeliveryFactory() date_of_receipt = self.__get_current_date() good_comment = "All is good" data = { 'runnable': delivery.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'Yes'}, {'question_label': 'dateOfReceipt', 'value': date_of_receipt}, {'question_label': 'isDeliveryInGoodOrder', 'value': 'Yes'}, {'question_label': 'areYouSatisfied', 'value': 'Yes'}, {'question_label': 'additionalDeliveryComments', 'value': good_comment} ]} response = self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') self.assertEqual(response.status_code, 201) self.assertTrue(mock_process.called) self.assertTrue(self.mock_distribution_alert_raise.delay.called) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) def test_should_create_alerts_integration(self): purchase_order = PurchaseOrderFactory(order_number=5678) purchase_order_item = PurchaseOrderItemFactory(purchase_order=purchase_order) consignee = ConsigneeFactory(name="Liverpool FC") delivery = DeliveryFactory(consignee=consignee) DeliveryNodeFactory(item=purchase_order_item, distribution_plan=delivery) date_of_receipt = self.__get_current_date() good_comment = "All is good" data = { 'runnable': delivery.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'No'}, {'question_label': 'dateOfReceipt', 'value': date_of_receipt}, {'question_label': 'isDeliveryInGoodOrder', 'value': 'Yes'}, {'question_label': 'areYouSatisfied', 'value': 'Yes'}, {'question_label': 'additionalDeliveryComments', 'value': good_comment} ]} response = self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') self.assertEqual(response.status_code, 201) alert = Alert.objects.get(consignee_name="Liverpool FC", order_number=5678) self.assertEqual(alert.issue, Alert.ISSUE_TYPES.not_received) self.assertTrue(self.mock_distribution_alert_raise.delay.called) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) def test_should_cancel_existing_runs_when_saving_a_new_set_of_answers(self): delivery = DeliveryFactory() data = { 'runnable': delivery.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'Yes'} ]} self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') runs = Run.objects.filter(runnable=delivery) self.assertEqual(len(runs), 1) self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') runs = Run.objects.filter(runnable=delivery) self.assertEqual(len(runs), 2) self.assertEqual(len(Run.objects.filter(runnable=delivery, status='cancelled')), 1) self.assertEqual(len(Run.objects.filter(runnable=delivery, status='completed')), 1) self.assertTrue(self.mock_distribution_alert_raise.delay.called) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) def test_should_save_delivery_node_answers(self): self.setup_flow_with_questions(Flow.Label.WEB) node = DeliveryNodeFactory() date_of_receipt = self.__get_current_date() data = { 'runnable': node.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'Yes'}, {'question_label': 'dateOfReceipt', 'value': date_of_receipt} ]} self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') runs = Run.objects.filter(runnable=node) self.assertEqual(len(runs), 1) self.assertEqual(len(TextAnswer.objects.filter(run__runnable=node)), 1) self.assertEqual(len(MultipleChoiceAnswer.objects.filter(run__runnable=node)), 1) self.assertTrue(self.mock_distribution_alert_raise.delay.called) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) def test_should_save_delivery_node_answers_to_web_flow(self): self.setup_flow_with_questions(Flow.Label.WEB) node = DeliveryNodeFactory() date_of_receipt = self.__get_current_date() data = { 'runnable': node.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'Yes'}, {'question_label': 'dateOfReceipt', 'value': date_of_receipt} ]} self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') web_flow = Flow.objects.get(label=Flow.Label.WEB) self.assertEqual(len(TextAnswer.objects.filter(question__flow=web_flow)), 1) self.assertEqual(len(MultipleChoiceAnswer.objects.filter(question__flow=web_flow)), 1) self.assertTrue(self.mock_distribution_alert_raise.delay.called) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) def test_should_save_numeric_answers(self): self.setup_flow_with_questions(Flow.Label.WEB) web_flow = Flow.objects.filter(label=Flow.Label.WEB).first() NumericQuestionFactory(label='quantityDelivered', flow=web_flow) node = DeliveryNodeFactory() data = { 'runnable': node.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'Yes'}, {'question_label': 'quantityDelivered', 'value': '2'} ]} self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') self.assertEqual(len(NumericAnswer.objects.filter(question__flow=web_flow)), 1) self.assertTrue(self.mock_distribution_alert_raise.delay.called) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) def test_should_dequeue_next_run_in_the_queue(self): first_delivery_to_be_answered = DeliveryFactory(track=True) contact = {'name': 'Some name', 'phone': '098765433'} first_delivery_to_be_answered.build_contact = MagicMock(return_value=contact) self._schedule_run_for(first_delivery_to_be_answered) second_delivery_to_be_answered = DeliveryFactory(track=True) self._schedule_run_for(second_delivery_to_be_answered) data = { 'runnable': first_delivery_to_be_answered.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'Yes'}] } next_run = RunQueue.objects.filter( Q(contact_person_id=second_delivery_to_be_answered.contact_person_id) & Q( status='not_started')).order_by( '-run_delay').first() self.client.post(ENDPOINT_URL, data=json.dumps(data), content_type='application/json') first_runs = Run.objects.filter(runnable=first_delivery_to_be_answered) next_run = RunQueue.objects.get(id=next_run.id) self.assertEqual(len(first_runs), 2) self.assertEqual(next_run.status, 'started') self.assertTrue(self.mock_distribution_alert_raise.delay.called) def _get_answer_for(self, answer_type, delivery_id, question_label): return answer_type.objects.filter(run__runnable=delivery_id, question__label=question_label).first() def _schedule_run_for(self, runnable): if runnable.completed_run() is None: if Run.has_scheduled_run(runnable.contact_person_id): RunQueue.enqueue(runnable, 0) else: contact = runnable.build_contact() task = '231x31231231' Run.objects.create(scheduled_message_task_id=task, runnable=runnable, status=Run.STATUS.scheduled, phone=contact['phone'] if contact else None) def __get_current_date(self): return datetime.datetime.strftime(datetime.datetime.now().date(), '%Y-%m-%d') def test_unicef_admin_should_not_have_permission_to_create_web_answer(self): self.log_and_assert_create_web_answer_permission(self.log_unicef_admin_in, HTTP_403_FORBIDDEN) def test_unicef_editor_should_not_have_permission_to_create_web_answer(self): self.log_and_assert_create_web_answer_permission(self.log_unicef_editor_in, HTTP_403_FORBIDDEN) def test_unicef_viewer_should_not_have_permission_to_create_web_answer(self): self.log_and_assert_create_web_answer_permission(self.log_unicef_viewer_in, HTTP_403_FORBIDDEN) @override_settings(CELERY_LIVE=True) @patch('eums.services.contact_service.ContactService.get', mock_get) @patch('eums.services.flow_scheduler.distribution_alert_raise', mock_distribution_alert_raise) def test_ip_editor_should_have_permission_to_create_web_answer(self): self.log_and_assert_create_web_answer_permission(self.log_ip_editor_in, HTTP_201_CREATED) self.assertTrue(self.mock_distribution_alert_raise.delay.called) def test_ip_viewer_should_not_have_permission_to_create_web_answer(self): self.log_and_assert_create_web_answer_permission(self.log_ip_viewer_in, HTTP_403_FORBIDDEN) def log_and_assert_create_web_answer_permission(self, log_func, expected_status_code): log_func() self.setup_flow_with_questions(Flow.Label.WEB) web_flow = Flow.objects.filter(label=Flow.Label.WEB).first() NumericQuestionFactory(label='quantityDelivered', flow=web_flow) node = DeliveryNodeFactory() request_body = { 'runnable': node.id, 'answers': [ {'question_label': 'deliveryReceived', 'value': 'Yes'}, {'question_label': 'quantityDelivered', 'value': '2'} ]} response = self.client.post(ENDPOINT_URL, data=json.dumps(request_body), content_type='application/json') self.assertEqual(response.status_code, expected_status_code)
unicefuganda/eums
eums/test/api/test_web_answers_end_point.py
test_web_answers_end_point.py
py
18,674
python
en
code
9
github-code
6
38979909130
from datetime import datetime, timedelta, timezone import pytz tokyo_tz = pytz.timezone('Asia/Tokyo') # def delete_feed_with_too_many_entries(reader, db, url): # entries = list(reader.get_entries()) # if len(entries) > 300: # print("deleting feeds: ", url) # reader.delete_feed(url) # return setup_feed(db, url) # return reader def delete_old_entries(reader): entries = list(reader.get_entries()) for entry in entries: if entry.published.replace(tzinfo=None) < datetime.now() - timedelta(days=1): print(entry) reader.delete_entry(entry)
kei49/rss-to-slack
src/feed.py
feed.py
py
637
python
en
code
0
github-code
6
34891232871
import todo def main(): run = 1 todo.create_table() while run: print("\n") print("1. Inser Task in todo list \n" "2. View data from todo list \n" "3. Delete task from todo list \n" "4. Exit \n") x = int(input("Choose any of the above option")) if x==1: task = str(input("Enter your todo: ")) todo.data_entry(task) elif x==2: todo.printData() elif x==3: indexToDelete = int(input("Enter the number of task to be deleted")) todo.data_delete(indexToDelete) elif x==4: run=0 else: print("Please choose valid option") todo.closeCursor() if __name__ == '__main__': main()
hrishikesh-godbole/Python_Daily
TODO App/my_todo.py
my_todo.py
py
808
python
en
code
0
github-code
6
17321484534
from uiplib.setWallpaper import change_background import os from uiplib.constants import CURR_DIR, PICS_FOLDER, WEBSITE, TIMEOUT import random import time from uiplib.scrape import get_images from threading import Thread import sys from select import select try: import msvcrt except ImportError: #not on windows pass class scheduler(): def __init__(self, offline): directory = os.path.join(CURR_DIR, PICS_FOLDER) if not offline: fetch = Thread(target=self.initFetch) # all child threads need to be daemons to die upon main thread exit fetch.setDaemon(True) fetch.start() while not ((os.path.isdir(os.path.join(CURR_DIR, PICS_FOLDER)) and os.listdir(directory) != [])): print('Downloading images..') time.sleep(60) elif not os.path.exists(directory): os.makedirs(directory) if os.listdir(directory) != []: print("You can wait for next wallpaper or skip this wallpaper" " by just pressing enter.") self.change_random() self.setStartTime(time.time()) self.changeCycle() else: print("No downloaded images. Try again in online mode.") def initFetch(self): try: get_images(WEBSITE) except ValueError as e: print("File could not be retrieved.", e) def change_random(self): directory = os.path.join(CURR_DIR, PICS_FOLDER) filename = random.choice(os.listdir(directory)) path = os.path.join(directory, filename) print("changing desktop wallpaper to: ", path) change_background(path) def kbhit(self): ''' Returns True if keyboard character was hit, False otherwise. ''' if os.name == 'nt': return msvcrt.kbhit() else: dr,dw,de = select([sys.stdin], [], [], 0) return dr != [] def getch(self): ''' Returns a keyboard character after kbhit() has been called. Should not be called in the same program as getarrow(). ''' s = '' if os.name == 'nt': return msvcrt.getch().decode('utf-8') else: return sys.stdin.read(1) def changeCycle(self): while True: if not self.kbhit(): delta = self.deltaTime() if delta >= TIMEOUT: self.change_random() self.time = time.time() else: self.getch() print("Skipping this wallpaper") self.change_random() self.time = time.time() def setStartTime(self, time): self.time = time def deltaTime(self): return (time.time()-self.time)
teja-315/UIP
uiplib/scheduler.py
scheduler.py
py
2,856
python
en
code
null
github-code
6
14362032569
import math infile = open("bank1.cc", "r") outfile = open("bank2.cc", "w") i=0 for line in infile: i=i+1 if i==1: val = 2 else: val = int(math.log(i/2, 10) + 2) line2 = line[val:] outfile.write (line2)
Skeletrox/Dump
zz.py
zz.py
py
213
python
en
code
0
github-code
6
1466500793
from dataclasses import dataclass, field from src.shared.general_functions import sum_all_initialized_int_attributes @dataclass class ShareholdersEquity: """Shareholders' equity is the amount that the owners of a company have invested in their business. This includes the money they've directly invested and the accumulation of income the company has earned and that has been reinvested since inception.""" preferred_Stock: int common_stock: int retained_earnings: int accumulated_other_comprehensive_income_loss: int other_total_stockholders_equity: int minority_interest: int total_shareholders_equity: int = field(init=False) def __post_init__(self): self.total_shareholders_equity = sum_all_initialized_int_attributes(self)
hakunaprojects/stock-investing
src/domain/financial_statements/balance_sheet_statement/shareholders_equity.py
shareholders_equity.py
py
785
python
en
code
0
github-code
6
18959073144
import boto3 import time import json import configparser from botocore.exceptions import ClientError redshift_client = boto3.client('redshift', region_name='ap-southeast-1') ec2 = boto3.resource('ec2', region_name='ap-southeast-1') def create_udacity_cluster(config): """Create an Amazon Redshift cluster Args: config: configurations file Returns: response['Cluster']: return cluster dictionary information Raises: ClientError """ try: response = redshift_client.create_cluster( ClusterIdentifier='udacity-cluster', ClusterType='multi-node', NumberOfNodes=2, NodeType='dc2.large', PubliclyAccessible=True, DBName=config.get('CLUSTER', 'DB_NAME'), MasterUsername=config.get('CLUSTER', 'DB_USER'), MasterUserPassword=config.get('CLUSTER', 'DB_PASSWORD'), Port=int(config.get('CLUSTER', 'DB_PORT')), IamRoles=[config.get('IAM_ROLE', 'ROLE_ARN')], VpcSecurityGroupIds=['sg-077f9a08ba80c09e4'] ) except ClientError as e: print(f'ERROR: {e}') return None else: return response['Cluster'] def wait_for_creation(cluster_id): """Wait for cluster creation Args: cluster_id: Cluster identifier Returns: cluster_info: return cluster dictionary information Raises: None """ while True: response = redshift_client.describe_clusters(ClusterIdentifier=cluster_id) cluster_info = response['Clusters'][0] if cluster_info['ClusterStatus'] == 'available': break time.sleep(30) return cluster_info def opentcp(config,cluster_info): """Open an incoming TCP port to access the cluster endpoint Args: config: configurations file cluster_info: cluster dictionary information Returns: None Raises: None """ try: vpc = ec2.Vpc(id=cluster_info['VpcId']) defaultSg = list(vpc.security_groups.all())[0] print(defaultSg) defaultSg.authorize_ingress( GroupName=defaultSg.group_name, CidrIp='0.0.0.0/0', IpProtocol='TCP', FromPort=int(config.getint('CLUSTER', 'DB_PORT')), ToPort=int(config.getint('CLUSTER', 'DB_PORT')) ) except Exception as e: print(e) def main(): """Create cluster""" config = configparser.ConfigParser() config.read('../dwh.cfg') cluster_info = create_udacity_cluster(config) if cluster_info is not None: print('Cluster is being created') cluster_info = wait_for_creation(cluster_info['ClusterIdentifier']) print(f'Cluster has been created.') print(f"Endpoint to copy={cluster_info['Endpoint']['Address']}") opentcp(config,cluster_info) if __name__ == '__main__': main()
hieutdle/bachelor-thesis
airflow/scripts/create_cluster.py
create_cluster.py
py
2,942
python
en
code
1
github-code
6
6371745337
#!/usr/bin/python3 """ this module defines the Pascal's Triangle function """ def pascal_triangle(n): """ this stands for the size(n) of pascal's Triangle """ if n <= 0: return [] triangle = [[1]] while len(triangle) != n: th_triangle = triangle[-1] new = [1] for d in range(len(th_triangle) - 1): new.append(th_triangle[d] + th_triangle[d + 1]) new.append(1) triangle.append(new) return (triangle)
Laabk/alx-higher_level_programming
0x0B-python-input_output/12-pascal_triangle.py
12-pascal_triangle.py
py
490
python
en
code
0
github-code
6
22164374876
from .bayesianPwLinearRegression import BayesianPieceWiseLinearRegression from .bayesianLinearRegression import BayesianLinearRegression from .seqCoupledBayesianPwLinReg import SeqCoupledBayesianPieceWiseLinearRegression from .globCoupBayesianPwLinReg import GlobCoupledBayesianPieceWiseLinearRegression from .vvglobCoup import VVglobCoupled from .scores import calculateFeatureScores, adjMatrixRoc, credible_interval, \ credible_score, get_betas_over_time, get_scores_over_time, beta_post_matrix, score_beta_matrix from .fullParentsBpwLinReg import FPBayesianPieceWiseLinearRegression from .fpBayesianLinearRegression import FpBayesianLinearRegression from .fpGlobCoupBpwLinReg import FpGlobCoupledBayesianPieceWiseLinearRegression from .fpSeqCoupBpwlinReg import FpSeqCoupledBayesianPieceWiseLinearRegression from .fpvvGlobCoup import FpVVglobCoupled import numpy as np class Network(): ''' Class that serves as the waypoint to infer the network topology of a dataset using various different implemented algorithms Attributes: data : numpy.ndarray numpy array with shape (num_samples, variables) chain_length : int integer containing the chain length burn_in : int integer that determines the burn_in interval of the MCMC chain ''' def __init__(self, data, chain_length, burn_in, lag, change_points = []): self.data = data self.lag = lag self.change_points = change_points self.network_configuration = None self.chain_length = chain_length self.burn_in = burn_in #self.method = 'nh_dbn' self.true_adj_matrix = None self.proposed_adj_matrix = [] # proposed adj matrix self.edge_scores = None self.chain_results = None self.scores_over_time = [] # scores over time list of matrices self.betas_over_time = [] # we also want the betas over time for diagnostics self.cps_over_response = [] # we want all the different computed chains self.network_configurations = [] # the list of all the design matrices of all the network configs self.network_args = { 'model': None, 'type': None, 'length': str(self.chain_length), 'burn-in': str(self.burn_in), 'thinning': 'modulo 10', 'scoring_method': None, 'network_configs': [] } # dict where we are going to save the args used by the network def set_network_configuration(self, configuration): ''' Method transforms and sets the 'raw' data using the given configuration into a dictionary of the form: { 'features': { 'X1': numpy.ndarray ... } 'response': { 'y': numpy.ndarray } } Args: configuration : int integer that indicates which variable X_i is the current response ''' network_list = self.data # retreive the network data dims = self.data[0].shape[1] # dimensions of the data points dimsVector = [x for x in range(dims)] num_samples = 0 for segment in network_list: # add the length of the segment num_samples = segment.data.shape[0] + num_samples #num_samples = self.data.shape[0] # number of data points currResponse = configuration # Which column will be the response for the configuration # You have to evaluate because the filter returns an obj currFeatures = list(filter(lambda x: x != configuration, dimsVector)) data_dict = { 'features': {}, 'response': {} } # add an aditional matrix for each max lag count_label = 1 for lag in range(self.lag): # Add the features to the dict for el in currFeatures: # if the lag is greater than 1 then label will be the count if lag + 1 > 1: label = count_label else: label = el col_name = 'X' + str(label) feature_data = np.array([]) # data initilize as empty for segment in network_list: curr_segment_len = segment.shape[0] # select all but the last data point segment_data = segment[:curr_segment_len - (lag + 1), el] # we do the insert only if lag > 1 if lag + 1 > 1: # insert a 0 at the beginning for each lag beyond 1 for _ in range(lag): # if we have a length greater than 1 then we append 0s to match the # dimensions of the original design matrix segment_data = np.insert(segment_data, 0, [0]) # concatenate(stack) the segment data into the data of the curr feature feature_data = np.concatenate((feature_data, segment_data)) if feature_data.size else segment_data # add to the dict data_dict['features'][col_name] = feature_data count_label = count_label + 1 # sum 1 to the label # Select + stack the data for the response resp_data = np.array([]) # resp init as empty for segment in network_list: curr_resp_len = segment.shape[0] segment_data = segment[1:curr_resp_len, currResponse] # select curr resp data # concatenate the resp data resp_data = np.concatenate((resp_data, segment_data), axis = 0) if resp_data.size else segment_data data_dict['response']['y'] = resp_data self.network_configuration = data_dict # add the current config to the network self.network_configurations.append(data_dict) # append the current network config # dictionary that will save the args used in the conf formated_dict = { 'features': list(data_dict['features'].keys()), 'response': 'X' + str(currResponse) } self.network_args['network_configs'].append(formated_dict) def fit(self, method): ''' Method that will the current data configuration of the network using the provided method (algorithm) Args: method : str string that will determine which method we are going to use ''' num_samples = self.network_configuration['response']['y'].shape[0] # Number of data points if method == 'varying_nh_dbn': # call the nh-dbn with varying cps self.network_args['model'] = 'Bayesian Non-Homogeneous' self.network_args['type'] = 'Varying Parents' baReg = BayesianPieceWiseLinearRegression( self.network_configuration, # Current data config 'varying_nh', # varying changepoints non-homogeneous num_samples, # number of data points self.chain_length, # len of chain [num_samples + 2] # just the last pseudo cp [] ) baReg.fit() # Call the fit method of the regressor self.chain_results = baReg.results # Set the results elif method == 'fp_varying_nh_dbn': # full parents credible intervals method self.network_args['model'] = 'Bayesian Non-Homogeneous' self.network_args['type'] = 'Full Parents' baReg = FPBayesianPieceWiseLinearRegression( self.network_configuration, # Current data config 'varying_nh', # varying changepoints non-homogeneous num_samples, # number of data points self.chain_length, # len of chain [num_samples + 2] # just the last pseudo cp [] ) baReg.fit() # Call the fit method of the regressor self.chain_results = baReg.results # Set the results elif method == 'fixed_nh_dbn': # call the nh-dbn with fixed cps self.network_args['model'] = 'Bayesian Non-Homogeneous' self.network_args['type'] = 'Varying Parents-Fixed changepoints' baReg = BayesianPieceWiseLinearRegression( self.network_configuration, # Current data config of the network 'fixed_nh', # fixed cps non-homogeneous num_samples - 1, # number of data points self.chain_length, # length of the MCMC self.change_points # predefined cps ) baReg.fit() # call the fit method of the regressor self.chain_results = baReg.results # set the results elif method == 'h_dbn': # call the h-dbn self.network_args['model'] = 'Bayesian Homogeneous' self.network_args['type'] = 'Varying Parents' baReg = BayesianLinearRegression( self.network_configuration, # current data config of the network num_samples + 1, # number of samples self.chain_length # length of the MCMC chain ) baReg.fit() # call to the fit method of the regressor self.chain_results = baReg.results # set the results elif method == 'fp_h_dbn': # call the full parents h-dbn self.network_args['model'] = 'Bayesian Homogeneous' self.network_args['type'] = 'Full Parents' baReg = FpBayesianLinearRegression( self.network_configuration, # current data config of the network num_samples + 1, # number of samples self.chain_length # length of the MCMC chain ) baReg.fit() # call the fit method of the regressor self.chain_results = baReg.results # set the results elif method == 'seq_coup_nh_dbn': self.network_args['model'] = 'Sequentilly Coupled Non-Homogeneous' self.network_args['type'] = 'Varying Parents' baReg = SeqCoupledBayesianPieceWiseLinearRegression( self.network_configuration, # Current data config 'seq_coup_nh', # varying changepoints non-homogeneous seq coupled num_samples - 1, # number of data points self.chain_length, # len of chain [num_samples + 2] # just the last pseudo cp [] ) baReg.fit() # call the fit method of the regressor self.chain_results = baReg.results # set the results elif method == 'fp_seq_coup_nh_dbn': self.network_args['model'] = 'Sequentilly Coupled Non-Homogeneous' self.network_args['type'] = 'Full Parents' baReg = FpSeqCoupledBayesianPieceWiseLinearRegression( self.network_configuration, # Current data config 'seq_coup_nh', # varying changepoints non-homogeneous seq coupled num_samples - 1, # number of data points self.chain_length, # len of chain [num_samples + 2] # just the last pseudo cp [] ) baReg.fit() # call the fit method of the regressor self.chain_results = baReg.results # set the results elif method == 'glob_coup_nh_dbn': self.network_args['model'] = 'Globally Coupled Non-Homogeneous' self.network_args['type'] = 'Varying Parents' baReg = GlobCoupledBayesianPieceWiseLinearRegression( self.network_configuration, # current data config 'glob_coup_nh', # glob coup additional functions num_samples, # number of data points self.chain_length, # len of chain [num_samples + 2] # just the last pseudo cp [] ) baReg.fit() # call to the fit method of the glob coup regressor self.chain_results = baReg.results elif method == 'fp_glob_coup_nh_dbn': self.network_args['model'] = 'Globally Coupled Non-Homogeneous' self.network_args['type'] = 'Full Parents' baReg = FpGlobCoupledBayesianPieceWiseLinearRegression( self.network_configuration, # current data config 'glob_coup_nh', # glob coup additional functions num_samples, # number of data points self.chain_length, # length of the chain [num_samples + 2] # just the last pseudo cp [] ) baReg.fit() # call to the fit method of the glob coup regressor self.chain_results = baReg.results elif method == 'var_glob_coup_nh_dbn': self.network_args['model'] = 'Varying Globally Coupled Non-Homogeneous' self.network_args['type'] = 'Varying Parents' baReg = VVglobCoupled( self.network_configuration, # current data config 'var_glob_coup_nh', # glob coup additional functions num_samples, # number of data points self.chain_length, # len of chain [num_samples + 2] # just the last pseudo cp [] ) baReg.fit() # call to the fit method of the glob coup regressor self.chain_results = baReg.results elif method == 'fp_var_glob_coup_nh_dbn': self.network_args['model'] = 'Varying Globally Coupled Non-Homogeneous' self.network_args['type'] = 'Full Parents' baReg = FpVVglobCoupled( self.network_configuration, # current data config 'var_glob_coup_nh', # glob coup additional functions num_samples, # number of data points self.chain_length, # len of chain [num_samples + 2] # just the last pseudo cp [] ) baReg.fit() # call to the fit method of the glob coup regressor self.chain_results = baReg.results def score_edges(self, currResponse, method): ''' Calculates de edge score for the current configuration of the network Args: currResponse : int integer referencing which variable X_i is the current response of the configuration method : str string that contains the type of method used so we can evaluate with the chain_results of the pi_vector or with the credible intervals for the full parent sets ''' # current features + data dimensions according to the lag currFeatures = [int(string[1:]) for string in list(self.network_configuration['features'])] dims = self.data[0].shape[1] # dimensions of the data points #dims = len(currFeatures) + 1 # check if the method is for full parents # this should only check the first 2 letters of the method if (method == 'fp_varying_nh_dbn' or method == 'fp_h_dbn' or method == 'fp_seq_coup_nh_dbn' or method == 'fp_glob_coup_nh_dbn' or method == 'fp_var_glob_coup_nh_dbn'): # thin + burn the chain on the global mean chain if (method == 'fp_glob_coup_nh_dbn' or method == 'fp_var_glob_coup_nh_dbn'): # if the method is from the glob coup we will use the global mean vector burned_chain = self.chain_results['mu_vector'][self.burn_in:] thinned_chain = [burned_chain[x] for x in range(len(burned_chain)) if x%10==0] # necessary so the beta matrix is built correctly mu_thinned_chain = [[element] for element in thinned_chain] # shift the betas by 2 so it fits with the cps betas_chain = self.chain_results['betas_vector'][2:] # burn the shifted chain burned_chain = betas_chain[self.burn_in:] # thin both of the chains betas_thinned_chain = [burned_chain[x] for x in range(len(burned_chain)) if x%10==0] # we only have chainpoints in the non-homogeneous model if method != 'fp_h_dbn': # burn the cps chain burned_cps = self.chain_results['tau_vector'][self.burn_in:] thinned_changepoints = [burned_cps[x] for x in range(len(burned_cps)) if x%10==0] else: thinned_changepoints = [] # if not then we just assign an empty list # This will get the betas over time as diagnostic if (method == 'fp_varying_nh_dbn' or method == 'fp_seq_coup_nh_dbn' or method == 'fp_glob_coup_nh_dbn' or method == 'fp_var_glob_coup_nh_dbn'): # get the len of the time-series time_pts = self.network_configuration['response']['y'].shape[0] betas_over_time = get_betas_over_time(time_pts, thinned_changepoints, betas_thinned_chain, dims) #TODO add the dims self.betas_over_time.append(betas_over_time) # append to the network scores_over_time = get_scores_over_time(betas_over_time, currFeatures, dims) self.scores_over_time.append(scores_over_time) # append to the network if method == 'fp_glob_coup_nh_dbn': # if we are using a glob coup model change the scores to the global vector # TODO make this a user input betas_thinned_chain = mu_thinned_chain betas_matrix = beta_post_matrix(betas_thinned_chain) # construct the betas post matrix edge_scores = score_beta_matrix(betas_matrix, currFeatures, currResponse) # score the matrix self.network_args['scoring_method'] = 'fraq-score' self.proposed_adj_matrix.append(edge_scores) # append to the proposed adj matrix self.cps_over_response.append(thinned_changepoints) # append the cps chain over the curr response else: # we are doing the varying parents model(s) # TODO make a single prune_chain() method prunning = burn + thinning # burn + thin the features (parents) chain burned_chain = self.chain_results['pi_vector'][self.burn_in:] thinned_chain = [burned_chain[x] for x in range(len(burned_chain)) if x%10!=0] self.edge_scores = calculateFeatureScores( #self.chain_results['pi_vector'][self.burn_in:], thinned_chain, dims, currFeatures, currResponse) self.network_args['scoring_method'] = 'edge-scores' self.proposed_adj_matrix.append(self.edge_scores) # append to the proposed adj matrix # betas chain prunning # shift the betas by 2 so it fits with the cps betas_chain = self.chain_results['padded_betas'][2:] burned_chain = betas_chain[self.burn_in:] betas_thinned_chain = [burned_chain[x] for x in range(len(burned_chain)) if x%10==0] # cps chain pruning if len(self.chain_results['tau_vector']) == 0: # we are on the homogeneous dbn model beta_dim = len(currFeatures) + 1 # we sum 1 because of the intercept time_pts = self.network_configuration['response']['y'].shape[0] # get the len of the time-series # -> create an artificial cps set that has just 1 cp as cp length + 2 so get_betas_over_time works thinned_changepoints = [[time_pts + 2] for _ in range(len(betas_thinned_chain))] betas_over_time = get_betas_over_time(time_pts, thinned_changepoints, betas_thinned_chain, beta_dim) #TODO add the dims self.betas_over_time.append(betas_over_time) # append to the network self.cps_over_response.append(thinned_changepoints) # append the cps chain over the curr response else: burned_cps = self.chain_results['tau_vector'][self.burn_in:] thinned_changepoints = [burned_cps[x] for x in range(len(burned_cps)) if x%10==0] # get the dims of the betas beta_dim = len(currFeatures) + 1 # we sum 1 because of the intercept time_pts = self.network_configuration['response']['y'].shape[0] # get the len of the time-series betas_over_time = get_betas_over_time(time_pts, thinned_changepoints, betas_thinned_chain, beta_dim) #TODO add the dims self.betas_over_time.append(betas_over_time) # append to the network self.cps_over_response.append(thinned_changepoints) # append the cps chain over the curr response def infer_network(self, method): ''' Infers the network topology on the data by changing to all possible configurations of the network Args: method : str string with the name of the method we are going to use to fit the data ''' # because data is now a list we have to select the first allways # existing element dims = self.data[0].shape[1] # dimensions of the data points dimsVector = [x for x in range(dims)] for configuration in dimsVector: self.set_network_configuration(configuration) self.fit(method) self.score_edges(configuration, method)
charx7/DynamicBayesianNetworks
src/dyban/network.py
network.py
py
19,868
python
en
code
16
github-code
6
45385920976
# -*- coding: utf-8 -*- #!/usr/bin/env python ##### System wide lib ##### import sys import os import operator from StringIO import StringIO ##### Theory lib ##### from theory.apps.command.baseCommand import SimpleCommand from theory.gui import field from theory.apps import apps from theory.db.migrations import Migration from theory.db.migrations.loader import MigrationLoader from theory.db.migrations.autodetector import MigrationAutodetector from theory.db.migrations.questioner import MigrationQuestioner, InteractiveMigrationQuestioner from theory.db.migrations.state import ProjectState from theory.db.migrations.writer import MigrationWriter from theory.gui.color import noStyle from theory.utils.six import iteritems from theory.utils.six.moves import reduce ##### Theory third-party lib ##### ##### Local app ##### ##### Theory app ##### ##### Misc ##### class MakeMigration(SimpleCommand): """ Creates new migration(s) for apps. """ name = "makeMigration" verboseName = "makeMigration" _notations = ["Command",] _drums = {"Terminal": 1, } class ParamForm(SimpleCommand.ParamForm): appLabelLst = field.ListField( field.TextField(maxLength=32), label="Application Name", helpText='Specify the app label(s) to create migrations for.', required=False, initData=[], ) isDryRun = field.BooleanField( label="is dry run", helpText=( "Just show what migrations would be made; " "don't actually write them." ), required=False, initData=False, ) isMerge = field.BooleanField( label="is merge", helpText="Enable fixing of migration conflicts.", required=False, initData=False, ) isEmpty = field.BooleanField( label="is empty", helpText="Create an empty migration.", required=False, initData=False, ) def run(self): options = self.paramForm.clean() self.verbosity = options.get('verbosity') self.interactive = False self.dryRun = options.get('isDryRun', False) self.merge = options.get('isMerge', False) self.empty = options.get('isEmpty', False) self.stdout = StringIO() self.style = noStyle() # Make sure the app they asked for exists appLabels = set(options["appLabelLst"]) badAppLabels = set() for appLabel in appLabels: try: apps.getAppConfig(appLabel) except LookupError: badAppLabels.add(appLabel) if badAppLabels: for appLabel in badAppLabels: self.stdout.write("App '%s' could not be found. Is it in INSTALLED_APPS?" % appLabel) sys.exit(2) # Load the current graph state. Pass in None for the connection so # the loader doesn't try to resolve replaced migrations from DB. loader = MigrationLoader(None, ignoreNoMigrations=True) # Before anything else, see if there's conflicting apps and drop out # hard if there are any and they don't want to merge conflicts = loader.detectConflicts() # If appLabels is specified, filter out conflicting migrations for unspecified apps if appLabels: conflicts = dict( (appLabel, conflict) for appLabel, conflict in iteritems(conflicts) if appLabel in appLabels ) if conflicts and not self.merge: nameStr = "; ".join( "%s in %s" % (", ".join(names), app) for app, names in conflicts.items() ) raise CommandError("Conflicting migrations detected (%s).\nTo fix them run 'python manage.py makemigrations --merge'" % nameStr) # If they want to merge and there's nothing to merge, then politely exit if self.merge and not conflicts: self.stdout.write("No conflicts detected to merge.") self._stdOut = self.stdout.getvalue() self.stdout.close() return # If they want to merge and there is something to merge, then # divert into the merge code if self.merge and conflicts: self._stdOut = self.stdout.getvalue() self.stdout.close() return self.handleMerge(loader, conflicts) # Set up autodetector autodetector = MigrationAutodetector( loader.projectState(), ProjectState.fromApps(apps), InteractiveMigrationQuestioner(specifiedApps=appLabels, dryRun=self.dryRun), ) # If they want to make an empty migration, make one for each app if self.empty: if not appLabels: raise CommandError("You must supply at least one app label when using --empty.") # Make a fake changes() result we can pass to arrangeForGraph changes = dict( (app, [Migration("custom", app)]) for app in appLabels ) changes = autodetector.arrangeForGraph(changes, loader.graph) self.writeMigrationFiles(changes) self._stdOut = self.stdout.getvalue() self.stdout.close() return # Detect changes changes = autodetector.changes( graph=loader.graph, trimToApps=appLabels or None, convertApps=appLabels or None, ) # No changes? Tell them. if not changes and self.verbosity >= 1: if len(appLabels) == 1: self.stdout.write("No changes detected in app '%s'" % appLabels.pop()) elif len(appLabels) > 1: self.stdout.write("No changes detected in apps '%s'" % ("', '".join(appLabels))) else: self.stdout.write("No changes detected") self._stdOut = self.stdout.getvalue() self.stdout.close() return self.writeMigrationFiles(changes) def writeMigrationFiles(self, changes): """ Takes a changes dict and writes them out as migration files. """ directoryCreated = {} for appLabel, appMigrations in changes.items(): if self.verbosity >= 1: self.stdout.write(self.style.MIGRATE_HEADING("Migrations for '%s':" % appLabel) + "\n") for migration in appMigrations: # Describe the migration writer = MigrationWriter(migration) if self.verbosity >= 1: self.stdout.write(" %s:\n" % (self.style.MIGRATE_LABEL(writer.filename),)) for operation in migration.operations: self.stdout.write(" - %s\n" % operation.describe()) if not self.dryRun: # Write the migrations file to the disk. migrationsDirectory = os.path.dirname(writer.path) if not directoryCreated.get(appLabel, False): if not os.path.isdir(migrationsDirectory): os.mkdir(migrationsDirectory) initPath = os.path.join(migrationsDirectory, "__init__.py") if not os.path.isfile(initPath): open(initPath, "w").close() # We just do this once per app directoryCreated[appLabel] = True migrationString = writer.asString() with open(writer.path, "wb") as fh: fh.write(migrationString) elif self.verbosity == 3: # Alternatively, makemigrations --dry-run --verbosity 3 # will output the migrations to stdout rather than saving # the file to the disk. self.stdout.write(self.style.MIGRATE_HEADING("Full migrations file '%s':" % writer.filename) + "\n") self.stdout.write("%s\n" % writer.asString()) def handleMerge(self, loader, conflicts): """ Handles merging together conflicted migrations interactively, if it's safe; otherwise, advises on how to fix it. """ if self.interactive: questioner = InteractiveMigrationQuestioner() else: questioner = MigrationQuestioner(defaults={'askMerge': True}) for appLabel, migrationNames in conflicts.items(): # Grab out the migrations in question, and work out their # common ancestor. mergeMigrations = [] for migrationName in migrationNames: migration = loader.getMigration(appLabel, migrationName) migration.ancestry = loader.graph.forwardsPlan((appLabel, migrationName)) mergeMigrations.append(migration) commonAncestor = None for level in zip(*[m.ancestry for m in mergeMigrations]): if reduce(operator.eq, level): commonAncestor = level[0] else: break if commonAncestor is None: raise ValueError("Could not find common ancestor of %s" % migrationNames) # Now work out the operations along each divergent branch for migration in mergeMigrations: migration.branch = migration.ancestry[ (migration.ancestry.index(commonAncestor) + 1): ] migration.mergedOperations = [] for nodeApp, nodeName in migration.branch: migration.mergedOperations.extend( loader.getMigration(nodeApp, nodeName).operations ) # In future, this could use some of the Optimizer code # (canOptimizeThrough) to automatically see if they're # mergeable. For now, we always just prompt the user. if self.verbosity > 0: self.stdout.write(self.style.MIGRATE_HEADING("Merging %s" % appLabel)) for migration in mergeMigrations: self.stdout.write(self.style.MIGRATE_LABEL(" Branch %s" % migration.name)) for operation in migration.mergedOperations: self.stdout.write(" - %s\n" % operation.describe()) if questioner.askMerge(appLabel): # If they still want to merge it, then write out an empty # file depending on the migrations needing merging. numbers = [ MigrationAutodetector.parseNumber(migration.name) for migration in mergeMigrations ] try: biggestNumber = max([x for x in numbers if x is not None]) except ValueError: biggestNumber = 1 subclass = type("Migration", (Migration, ), { "dependencies": [(appLabel, migration.name) for migration in mergeMigrations], }) newMigration = subclass("%04iMerge" % (biggestNumber + 1), appLabel) writer = MigrationWriter(newMigration) with open(writer.path, "wb") as fh: fh.write(writer.asString()) if self.verbosity > 0: self.stdout.write("\nCreated new merge migration %s" % writer.path)
grapemix/theory
theory/apps/command/makeMigration.py
makeMigration.py
py
10,198
python
en
code
1
github-code
6
39680498179
""" General functions for data_tables and data_table_manager We are using a class here just to make it easier to pass around """ import logging import pprint import subprocess from pathlib import Path import re from typing import Union import matplotlib.pyplot as mpl import numpy as np import pandas as pd from pylibrary.plotting import plothelpers as PH from pylibrary.tools import cprint from pyqtgraph.Qt import QtGui import ephys.datareaders as DR from ephys.ephys_analysis import spike_analysis from ephys.tools import utilities import ephys UTIL = utilities.Utility() CP = cprint.cprint class CustomFormatter(logging.Formatter): grey = "\x1b[38;21m" yellow = "\x1b[33;21m" red = "\x1b[31;21m" bold_red = "\x1b[31;1m" white = "\x1b[37m" reset = "\x1b[0m" lineformat = "%(asctime)s - %(levelname)s - (%(filename)s:%(lineno)d) %(message)s " FORMATS = { logging.DEBUG: grey + lineformat + reset, logging.INFO: white + lineformat + reset, logging.WARNING: yellow + lineformat + reset, logging.ERROR: red + lineformat + reset, logging.CRITICAL: bold_red + lineformat + reset, } def format(self, record): log_fmt = self.FORMATS.get(record.levelno) formatter = logging.Formatter(log_fmt) return formatter.format(record) def get_git_hashes(): process = subprocess.Popen(["git", "rev-parse", "HEAD"], shell=False, stdout=subprocess.PIPE) git_head_hash = process.communicate()[0].strip() ephyspath = Path(ephys.__file__).parent process = subprocess.Popen( ["git", "-C", str(ephyspath), "rev-parse", "HEAD"], shell=False, stdout=subprocess.PIPE, ) ephys_git_hash = process.communicate()[0].strip() return {"project": git_head_hash, "ephys": ephys_git_hash} def create_logger( log_name: str = "Log Name", log_file: str = "log_file.log", log_message: str = "Starting Logging", ): logging.getLogger("fontTools.subset").disabled = True Logger = logging.getLogger(log_name) level = logging.DEBUG Logger.setLevel(level) # create file handler which logs even debug messages logging_fh = logging.FileHandler(filename=log_file) logging_fh.setLevel(level) logging_sh = logging.StreamHandler() logging_sh.setLevel(level) log_formatter = logging.Formatter( "%(asctime)s - %(name)s - %(levelname)s (%(filename)s:%(lineno)d) - %(message)s " ) logging_fh.setFormatter(log_formatter) logging_sh.setFormatter(CustomFormatter()) # log_formatter) Logger.addHandler(logging_fh) Logger.addHandler(logging_sh) Logger.info(log_message) return Logger Logger = create_logger( log_name="Spike Analysis", log_file="spike_analysis.log", log_message="Starting Process Spike Analysis", ) PrettyPrinter = pprint.PrettyPrinter datacols = [ "holding", "RMP", "RMP_SD", "Rin", "taum", "dvdt_rising", "dvdt_falling", "current", "AP_thr_V", "AP_HW", "AP15Rate", "AdaptRatio", "AHP_trough_V", "AHP_depth_V", "tauh", "Gh", "FiringRate", ] iv_keys: list = [ "holding", "WCComp", "CCComp", "BridgeAdjust", "RMP", "RMP_SD", "RMPs", "Irmp", "taum", "taupars", "taufunc", "Rin", "Rin_peak", "tauh_tau", "tauh_bovera", "tauh_Gh", "tauh_vss", ] spike_keys: list = [ "FI_Growth", "AdaptRatio", "FI_Curve", "FiringRate", "AP1_Latency", "AP1_HalfWidth", "AP1_HalfWidth_interpolated", "AP2_Latency", "AP2_HalfWidth", "AP2_HalfWidth_interpolated", "FiringRate_1p5T", "AHP_Depth", "AHP_Trough", "spikes", "iHold", "pulseDuration", "baseline_spikes", "poststimulus_spikes", ] # map spike measurements to top level keys mapper: dict = { "AP1_HalfWidth": "halfwidth", "AP1_HalfWidth_interpolated": "halfwidth_interpolated", "AHP_trough_V": "trough_V", "AHP_Trough": "trough_T", "AHP_depth_V": "trough_V", "AP1_Latency": "AP_latency", "AP_thr_V": "AP_begin_V", "AP_HW": "halfwidth", "dvdt_rising": "dvdt_rising", "dvdt_falling": "dvdt_falling", } # map summary/not individual spike data to top level keys mapper1: dict = { "AP15Rate": "FiringRate_1p5T", "AdaptRatio": "AdaptRatio", } iv_mapper: dict = { "tauh": "tauh_tau", "Gh": "tauh_Gh", "taum": "taum", "Rin": "Rin", "RMP": "RMP", } def print_spike_keys(row): if pd.isnull(row.IV): return row # print(row.IV) return row class Functions: def __init__(self): self.textbox = None pass def get_row_selection(self, table_manager): """ Find the selected rows in the currently managed table, and if there is a valid selection, return the index to the first row and the data from that row """ self.selected_index_rows = table_manager.table.selectionModel().selectedRows() if self.selected_index_rows is None: return None, None else: index_row = self.selected_index_rows[0] selected = table_manager.get_table_data(index_row) # table_data[index_row] if selected is None: return None, None else: return index_row, selected def get_multiple_row_selection(self, table_manager): """ Find the selected rows in the currently managed table, and if there is a valid selection, return a list of indexs from the selected rows. """ self.selected_index_rows = table_manager.table.selectionModel().selectedRows() if self.selected_index_rows is None: return None, None else: return self.selected_index_rows def get_datasummary_protocols(self, datasummary): """ Print a configuration file-like text of all the datasummary protocols, as categorized here. """ data_complete = datasummary["data_complete"].values print("# of datasummary entries: ", len(data_complete)) protocols = [] for i, prots in enumerate(data_complete): prots = prots.split(",") for prot in prots: protocols.append(prot[:-4].strip(" ")) # remove trailing "_000" etc allprots = sorted(list(set(protocols))) print("# of unique protocols: ", len(allprots)) # print(allprots) # make a little table for config dict: txt = "protocols:\n" txt += " CCIV:" ncciv = 0 prots_used = [] for i, prot in enumerate(allprots): if "CCIV".casefold() in prot.casefold(): computes = "['RmTau', 'IV', 'Spikes', 'FI']" if "posonly".casefold() in prot.casefold(): # cannot compute rmtau for posonly computes = "['IV', 'Spikes', 'FI']" txt += f"\n {prot:s}: {computes:s}" prots_used.append(i) ncciv += 1 if ncciv == 0: txt += " None" txt += "\n VCIV:" nvciv = 0 for i, prot in enumerate(allprots): if "VCIV".casefold() in prot.casefold(): computes = "['VC']" txt += f"\n {prot:s}: {computes:s}" nvciv += 1 prots_used.append(i) if nvciv == 0: txt += " None" txt += "\n Maps:" nmaps = 0 for i, prot in enumerate(allprots): if "Map".casefold() in prot.casefold(): computes = "['Maps']" txt += f"\n {prot:s}: {computes:s}" nmaps += 1 prots_used.append(i) if nmaps == 0: txt += " None" txt += "\n Minis:" nminis = 0 for i, prot in enumerate(allprots): cprot = prot.casefold() if "Mini".casefold() in cprot or "VC_Spont".casefold() in cprot: computes = "['Mini']" txt += f"\n {prot:s}: {computes:s}" nminis += 1 prots_used.append(i) if nminis == 0: txt += " None" txt += "\n PSCs:" npsc = 0 for i, prot in enumerate(allprots): if "PSC".casefold() in prot.casefold(): computes = "['PSC']" txt += f"\n {prot:s}: {computes:s}" npsc += 1 prots_used.append(i) if npsc == 0: txt += " None" txt += "\n Uncategorized:" allprots = [prot for i, prot in enumerate(allprots) if i not in prots_used] nother = 0 for i, prot in enumerate(allprots): if len(prot) == 0 or prot == " ": prot = "No Name" computes = "None" txt += f"\n {prot:s}: {computes:s}" nother += 1 if nother == 0: txt += "\n None" print(f"\n{txt:s}\n") # this print should be pasted into the configuration file (watch indentation) def moving_average(self, data, window_size): """moving_average Compute a triangular moving average on the data over a window Parameters ---------- data : _type_ _description_ window_size : _type_ _description_ Returns ------- _type_ _description_ """ window = np.bartlett(window_size) # Normalize the window window /= window.sum() return np.convolve(data, window, "valid") / window_size def get_slope(self, y, x, index, window_size): """get_slope get slope of a smoothed curve at a given index Parameters ---------- y : _type_ _description_ x : _type_ _description_ index : _type_ _description_ window_size : _type_ _description_ Returns ------- _type_ _description_ """ # Smooth the data y_smooth = self.moving_average(y, window_size) x_smooth = self.moving_average(x, window_size) # Adjust the index for the reduced size of the smoothed data index -= window_size // 2 if index < 1 or index >= len(y_smooth) - 1: # Can't calculate slope at the start or end return None else: dy = y_smooth[index + 1] - y_smooth[index - 1] dx = x_smooth[index + 1] - x_smooth[index - 1] return dy / dx def draw_orthogonal_line(self, x, y, index, slope, length, color, ax): # Calculate the slope of the orthogonal line orthogonal_slope = -1.0 / slope # Calculate the start and end points of the orthogonal line x_start = x[index] - length / 2 x_end = x[index] + length / 2 y_start = y[index] + orthogonal_slope * (x_start - x[index]) y_end = y[index] + orthogonal_slope * (x_end - x[index]) # Plot the orthogonal line ax.plot([x_start, x_end], [y_start, y_end], color=color) def get_selected_cell_data_spikes(self, experiment, table_manager, assembleddata): self.get_row_selection(table_manager) if self.selected_index_rows is not None: for nplots, index_row in enumerate(self.selected_index_rows): selected = table_manager.get_table_data(index_row) day = selected.date[:-4] slicecell = selected.cell_id[-4:] cell_df, cell_df_tmp = self.get_cell(experiment, assembleddata, cell=selected.cell_id) protocols = list(cell_df["Spikes"].keys()) min_index = None min_current = 1 V = None min_protocol = None spike = None for ip, protocol in enumerate(protocols): min_current_index, current, trace = self.find_lowest_current_trace( cell_df["Spikes"][protocol] ) if current < min_current: I = current V = trace min_index = min_current_index min_protocol = ip min_current = current spike = cell_df["Spikes"][protocol] pp = PrettyPrinter(indent=4) print("spike keys: ", spike["spikes"].keys()) print( "min I : ", I, "min V: ", V, "min index: ", min_index, "min_current: ", min_current, ) pp.pprint(spike["spikes"][V][min_index]) low_spike = spike["spikes"][V][min_index] if nplots == 0: import matplotlib.pyplot as mpl f, ax = mpl.subplots(1, 2, figsize=(10, 5)) vtime = (low_spike.Vtime - low_spike.peak_T) * 1e3 ax[0].plot(vtime, low_spike.V * 1e3) ax[1].plot(low_spike.V * 1e3, low_spike.dvdt) dvdt_ticks = np.arange(-4, 2.01, 0.1) t_indices = np.array([np.abs(vtime - point).argmin() for point in dvdt_ticks]) thr_index = np.abs(vtime - (low_spike.AP_latency - low_spike.peak_T) * 1e3).argmin() # Create a colormap cmap = mpl.get_cmap("tab10") # Create an array of colors based on the index of each point colors = cmap(np.linspace(0, 1, len(t_indices))) # for i in range(len(t_indices)): # local_slope = self.get_slope( # low_spike.V * 1e3, low_spike.dvdt, t_indices[i], 7, # ) # if local_slope is not None: # self.draw_orthogonal_line( # low_spike.V * 1e3, # low_spike.dvdt, # index=t_indices[i], # slope=local_slope, # length=5.0, # color=colors[i], # ax=ax[1], # ) # ax[1].scatter( # low_spike.V[t_indices[i]] * 1e3, # low_spike.dvdt[t_indices[i]], # s=12, # marker='|', # color=colors[i], # zorder = 10 # ) # Plot each point with a different color # ax[1].scatter( # low_spike.V[t_indices] * 1e3, # low_spike.dvdt[t_indices], # s=12, # marker='|', # color=colors, # zorder = 10 # ) ax[1].scatter( low_spike.V[thr_index] * 1e3, low_spike.dvdt[thr_index], s=12, marker="o", color="r", zorder=12, ) latency = (low_spike.AP_latency - low_spike.peak_T) * 1e3 # in msec ax[0].plot( latency, low_spike.AP_begin_V * 1e3, "ro", markersize=2.5, zorder=10, ) ax[0].plot( [ (low_spike.left_halfwidth_T - low_spike.peak_T - 0.0001) * 1e3, (low_spike.right_halfwidth_T - low_spike.peak_T + 0.0001) * 1e3, ], [ # in msec low_spike.halfwidth_V * 1e3, low_spike.halfwidth_V * 1e3, ], "g-", zorder=10, ) # ax[0].plot( # (low_spike.right_halfwidth_T - low_spike.peak_T) # * 1e3, # in msec # low_spike.halfwidth_V * 1e3, # "co", # ) if nplots == 0: # annotate ax[0].set_xlabel("Time (msec), re Peak") ax[0].set_ylabel("V (mV)") ax[1].set_xlabel("V (mV)") ax[1].set_ylabel("dV/dt (mV/ms)") PH.nice_plot(ax[0]) PH.nice_plot(ax[1]) PH.talbotTicks(ax[0]) PH.talbotTicks(ax[1]) nplots += 1 if nplots > 0: mpl.show() return cell_df else: return None def get_selected_cell_data_FI(self, experiment, table_manager, assembleddata): self.get_row_selection(table_manager) pp = PrettyPrinter(indent=4, width=120) if self.selected_index_rows is not None: for nplots, index_row in enumerate(self.selected_index_rows): selected = table_manager.get_table_data(index_row) day = selected.date[:-4] slicecell = selected.cell_id[-4:] # cell_df, _ = self.get_cell( # experiment, assembleddata, cell=selected.cell_id # ) fig, ax = mpl.subplots(1, 1) self.compute_FI_Fits( experiment, assembleddata, selected.cell_id, plot_fits=True, ax=ax ) if nplots > 0: mpl.show() return self.selected_index_rows else: return None def average_FI(self, FI_Data_I_, FI_Data_FR_, max_current: float = 1.0e-9): if len(FI_Data_I_) > 0: try: FI_Data_I, FI_Data_FR = zip(*sorted(zip(FI_Data_I_, FI_Data_FR_))) except: raise ValueError("couldn't zip the data sets: ") if len(FI_Data_I) > 0: # has data... print("averaging FI data") FI_Data_I_ = np.array(FI_Data_I) FI_Data_FR_ = np.array(FI_Data_FR) f1_index = np.where((FI_Data_I_ >= 0.0) & (FI_Data_I_ <= max_current))[ 0 ] # limit to 1 nA, regardless FI_Data_I, FI_Data_FR, FI_Data_FR_Std, FI_Data_N = self.avg_group( FI_Data_I_[f1_index], FI_Data_FR_[f1_index], ndim=FI_Data_I_.shape ) return FI_Data_I, FI_Data_FR, FI_Data_FR_Std, FI_Data_N def avg_group(self, x, y, ndim=2): if ndim == 2: x = np.array([a for b in x for a in b]) y = np.array([a for b in y for a in b]) else: x = np.array(x) y = np.array(y) # x = np.ravel(x) # np.array(x) # y = np.array(y) xa, ind, counts = np.unique( x, return_index=True, return_counts=True ) # find unique values in x ya = y[ind] ystd = np.zeros_like(ya) yn = np.ones_like(ya) for dupe in xa[counts > 1]: # for each duplicate value, replace with mean # print("dupe: ", dupe) # print(np.where(x==dupe), np.where(xa==dupe)) ya[np.where(xa == dupe)] = np.nanmean(y[np.where(x == dupe)]) ystd[np.where(xa == dupe)] = np.nanstd(y[np.where(x == dupe)]) yn[np.where(xa == dupe)] = np.count_nonzero(~np.isnan(y[np.where(x == dupe)])) return xa, ya, ystd, yn # get maximum slope from fit. def hill_deriv(self, x: float, y0: float, ymax: float, m: float, n: float): """hill_deriv analyztical solution computed from SageMath Parameters ---------- x : float current y0 : float baseline ymax : float maximum y value m : float growth rate n : float growth power """ hd = m * n * ymax hd *= np.power(m / x, n - 1) hd /= (x * x) * np.power((np.power(m / x, n) + 1.0), 2.0) return hd def fit_FI_Hill( self, FI_Data_I, FI_Data_FR, FI_Data_FR_Std, FI_Data_I_, FI_Data_FR_, FI_Data_N, hill_max_derivs, hill_i_max_derivs, FI_fits, linfits, cell: str, celltype: str, plot_fits=False, ax: Union[mpl.Axes, None] = None, ): plot_raw = False # only to plot the unaveraged points. spanalyzer = spike_analysis.SpikeAnalysis() spanalyzer.fitOne( i_inj=FI_Data_I, spike_count=FI_Data_FR, pulse_duration=None, # protodurs[ivname], info="", function="Hill", fixNonMonotonic=True, excludeNonMonotonic=False, max_current=None, ) try: fitpars = spanalyzer.analysis_summary["FI_Growth"][0]["parameters"][0] except: CP( "r", f"fitpars has no solution? : {cell!s}, {celltype:s}, {spanalyzer.analysis_summary['FI_Growth']!s}", ) return ( hill_max_derivs, hill_i_max_derivs, FI_fits, linfits, ) # no fit, return without appending a new fit # raise ValueError("couldn't get fitpars: no solution?") y0 = fitpars[0] ymax = fitpars[1] m = fitpars[2] n = fitpars[3] xyfit = spanalyzer.analysis_summary["FI_Growth"][0]["fit"] i_range = np.linspace(1e-12, np.max(xyfit[0]), 1000) # print(f"fitpars: y0={y0:.3f}, ymax={ymax:.3f}, m={m*1e9:.3f}, n={n:.3f}") deriv_hill = [self.hill_deriv(x=x, y0=y0, ymax=ymax, m=m, n=n) for x in i_range] deriv_hill = np.array(deriv_hill) * 1e-9 # convert to sp/nA max_deriv = np.max(deriv_hill) arg_max_deriv = np.argmax(deriv_hill) i_max_deriv = i_range[arg_max_deriv] * (1e12) hill_max_derivs.append(max_deriv) hill_i_max_derivs.append(i_max_deriv) # print(f"max deriv: {max_deriv:.3f} sp/nA at {i_max_deriv:.1f} pA") # print(xyfit[1]) if len(spanalyzer.analysis_summary["FI_Growth"]) > 0: FI_fits["fits"].append(spanalyzer.analysis_summary["FI_Growth"][0]["fit"]) FI_fits["pars"].append(spanalyzer.analysis_summary["FI_Growth"][0]["parameters"]) linfit = spanalyzer.getFISlope( i_inj=FI_Data_I, spike_count=FI_Data_FR, pulse_duration=None, # FR is already duration min_current=0e-12, max_current=300e-12, ) linfits.append(linfit) linx = np.arange(0, 300e-12, 10e-12) liny = linfit.slope * linx + linfit.intercept if plot_fits: if ax is None: fig, ax = mpl.subplots(1, 1) fig.suptitle(f"{celltype:s} {cell:s}") line_FI = ax.errorbar( np.array(FI_Data_I) * 1e9, FI_Data_FR, yerr=FI_Data_FR_Std, marker="o", color="k", linestyle=None, ) # ax[1].plot(FI_Data_I * 1e12, FI_Data_N, marker="s") if plot_raw: for i, d in enumerate(FI_Data_I_): # plot the raw points before combining ax.plot(np.array(FI_Data_I_[i]) * 1e9, FI_Data_FR_[i], "x", color="k") # print("fit x * 1e9: ", spanalyzer.analysis_summary['FI_Growth'][0]['fit'][0]*1e9) # print("fit y * 1: ", spanalyzer.analysis_summary['FI_Growth'][0]['fit'][1]) # ax[0].plot(linx * 1e12, liny, color="c", linestyle="dashdot") celln = Path(cell).name if len(spanalyzer.analysis_summary["FI_Growth"]) >= 0: line_fit = ax.plot( spanalyzer.analysis_summary["FI_Growth"][0]["fit"][0][0] * 1e9, spanalyzer.analysis_summary["FI_Growth"][0]["fit"][1][0], color="r", linestyle="-", zorder=100, ) # derivative (in blue) line_deriv = ax.plot( i_range * 1e9, deriv_hill, color="b", linestyle="--", zorder=100 ) d_max = np.argmax(deriv_hill) ax2 = ax.twinx() ax2.set_ylim(0, 500) ax2.set_ylabel("Firing Rate Slope (sp/s/nA)") line_drop = ax2.plot( [i_range[d_max] * 1e9, i_range[d_max] * 1e9], [0, 1.1 * deriv_hill[d_max]], color="b", zorder=100, ) ax.set_xlabel("Current (nA)") ax.set_ylabel("Firing Rate (sp/s)") # turn off top box for loc, spine in ax.spines.items(): if loc in ["left", "bottom"]: spine.set_visible(True) elif loc in ["right", "top"]: spine.set_visible(False) for loc, spine in ax2.spines.items(): if loc in ["right", "bottom"]: spine.set_visible(True) elif loc in ["left", "top"]: spine.set_visible(False) # spine.set_color('none') # do not draw the spine # spine.set_color('none') # do not draw the spine PH.talbotTicks(ax, density=[2.0, 2.0]) PH.talbotTicks(ax2, density=[2.0, 2.0]) ax.legend( [line_FI, line_fit[0], line_deriv[0], line_drop[0]], ["Firing Rate", "Hill Fit", "Derivative", "Max Derivative"], loc="best", frameon=False, ) mpl.show() return hill_max_derivs, hill_i_max_derivs, FI_fits, linfits def check_excluded_dataset(self, day_slice_cell, experiment, protocol): exclude_flag = day_slice_cell in experiment["excludeIVs"] print(" IV is in exclusion table: ", exclude_flag) if exclude_flag: exclude_table = experiment["excludeIVs"][day_slice_cell] print(" excluded table data: ", exclude_table) print(" testing protocol: ", protocol) proto = Path(protocol).name # passed protocol has day/slice/cell/protocol if proto in exclude_table["protocols"] or exclude_table["protocols"] == ["all"]: CP( "y", f"Excluded cell/protocol: {day_slice_cell:s}, {proto:s} because: {exclude_table['reason']:s}", ) Logger.info( f"Excluded cell: {day_slice_cell:s}, {proto:s} because: {exclude_table['reason']:s}" ) return True print(" Protocol passed: ", protocol) return False def compute_FI_Fits( self, experiment, df: pd.DataFrame, cell: str, protodurs: list = [1.0], plot_fits: bool = False, ax: Union[mpl.Axes, None] = None, ): CP("g", f"\n{'='*80:s}\nCell: {cell!s}, {df[df.cell_id==cell].cell_type.values[0]:s}") df_cell, df_tmp = self.get_cell(experiment, df, cell) if df_cell is None: return None print(" df_tmp group>>: ", df_tmp.Group.values) print(" df_cell group>>: ", df_cell.keys()) protocols = list(df_cell.Spikes.keys()) spike_keys = list(df_cell.Spikes[protocols[0]].keys()) iv_keys = list(df_cell.IV[protocols[0]].keys()) srs = {} dur = {} important = {} # for each CCIV type of protocol that was run: for nprot, protocol in enumerate(protocols): if protocol.endswith("0000"): # bad protocol name continue day_slice_cell = str(Path(df_cell.date, df_cell.slice_slice, df_cell.cell_cell)) CP("m", f"day_slice_cell: {day_slice_cell:s}, protocol: {protocol:s}") if self.check_excluded_dataset(day_slice_cell, experiment, protocol): continue fullpath = Path(experiment["rawdatapath"], experiment["directory"], protocol) with DR.acq4_reader.acq4_reader(fullpath, "MultiClamp1.ma") as AR: try: AR.getData(fullpath) sample_rate = AR.sample_rate[0] duration = AR.tend - AR.tstart srs[protocol] = sample_rate dur[protocol] = duration important[protocol] = AR.checkProtocolImportant(fullpath) CP("g", f" Protocol {protocol:s} has sample rate of {sample_rate:e}") except ValueError: CP("r", f"Acq4Read failed to read data file: {str(fullpath):s}") raise ValueError(f"Acq4Read failed to read data file: {str(fullpath):s}") protocols = list(srs.keys()) # only count valid protocols CP("c", f"Valid Protocols: {protocols!s}") if len(protocols) > 1: protname = "combined" elif len(protocols) == 1: protname = protocols[0] else: return None # parse group correctly. # the first point in the Group column is likely a nan. # if it is, then use the next point. print("Group: ", df_tmp.Group, "protoname: ", protname) group = df_tmp.Group.values[0] datadict = { "ID": str(df_tmp.cell_id.values[0]), "Subject": str(df_tmp.cell_id.values[0]), "cell_id": cell, "Group": group, "Date": str(df_tmp.Date.values[0]), "age": str(df_tmp.age.values[0]), "weight": str(df_tmp.weight.values[0]), "sex": str(df_tmp.sex.values[0]), "cell_type": df_tmp.cell_type.values[0], "protocol": protname, "important": important, "protocols": list(df_cell.IV), "sample_rate": srs, "duration": dur, } # get the measures for the fixed values from the measure list for measure in datacols: datadict = self.get_measure(df_cell, measure, datadict, protocols, threshold_slope=experiment["AP_threshold_dvdt"]) # now combine the FI data across protocols for this cell FI_Data_I1_:list_ = [] FI_Data_FR1_:list_ = [] # firing rate FI_Data_I4_:list_ = [] FI_Data_FR4_:list_ = [] # firing rate FI_fits:dict = {"fits": [], "pars": [], "names": []} linfits:list = [] hill_max_derivs:list = [] hill_i_max_derivs:list = [] protofails = 0 for protocol in protocols: if protocol.endswith("0000"): # bad protocol name continue # check if duration is acceptable: if protodurs is not None: durflag = False for d in protodurs: if not np.isclose(dur[protocol], d): durflag = True if durflag: CP("y", f" >>>> Protocol {protocol:s} has duration of {dur[protocol]:e}") CP("y", f" This is not in accepted limits of: {protodurs!s}") continue else: CP("g", f" >>>> Protocol {protocol:s} has acceptable duration of {dur[protocol]:e}") # print("protocol: ", protocol, "spikes: ", df_cell.Spikes[protocol]['spikes']) if len(df_cell.Spikes[protocol]["spikes"]) == 0: CP("y", f" >>>> Skipping protocol with no spikes: {protocol:s}") continue else: CP("g", f" >>>> Analyzing FI for protocol: {protocol:s}") try: fidata = df_cell.Spikes[protocol]["FI_Curve"] except KeyError: print("FI curve not found for protocol: ", protocol, "for cell: ", cell) # print(df_cell.Spikes[protocol]) protofails += 1 if protofails > 4: raise ValueError( "FI curve data not found for protocol: ", protocol, "for cell: ", cell, ) else: continue if np.max(fidata[0]) > 1.01e-9: # accumulate high-current protocols FI_Data_I4_.extend(fidata[0]) FI_Data_FR4_.extend(fidata[1] / dur[protocol]) else: # accumulate other protocols <= 1 nA FI_Data_I1_.extend(fidata[0]) FI_Data_FR1_.extend(fidata[1] / dur[protocol]) FI_Data_I1 = [] FI_Data_FR1 = [] FI_Data_I4 = [] FI_Data_FR4 = [] if len(FI_Data_I1_) > 0: FI_Data_I1, FI_Data_FR1, FI_Data_FR1_Std, FI_Data_N1 = self.average_FI( FI_Data_I1_, FI_Data_FR1_, 1e-9 ) if len(FI_Data_I4_) > 0: FI_Data_I4, FI_Data_FR4, FI_Data_FR4_Std, FI_Data_N1 = self.average_FI( FI_Data_I4_, FI_Data_FR4_, 4e-9 ) if len(FI_Data_I1) > 0: # do a curve fit on the first 1 nA of the protocol hill_max_derivs, hill_i_max_derivs, FI_fits, linfits = self.fit_FI_Hill( FI_Data_I=FI_Data_I1, FI_Data_FR=FI_Data_FR1, FI_Data_I_=FI_Data_I1_, FI_Data_FR_=FI_Data_FR1_, FI_Data_FR_Std=FI_Data_FR1_Std, FI_Data_N=FI_Data_N1, hill_max_derivs=hill_max_derivs, hill_i_max_derivs=hill_i_max_derivs, FI_fits=FI_fits, linfits=linfits, cell=cell, celltype=df_tmp.cell_type.values[0], plot_fits=plot_fits, ax=ax, ) # save the results datadict["FI_Curve"] = [FI_Data_I1, FI_Data_FR1] datadict["FI_Curve4"] = [FI_Data_I4, FI_Data_FR4] datadict["current"] = FI_Data_I1 datadict["spsec"] = FI_Data_FR1 # datadict["Subject"] = df_tmp.cell_id.values[0] # datadict["Group"] = df_tmp.Group.values[0] # datadict["sex"] = df_tmp.sex.values[0] # datadict["celltype"] = df_tmp.cell_type.values[0] datadict["pars"] = [FI_fits["pars"]] datadict["names"] = [] datadict["fit"] = [FI_fits["fits"]] datadict["F1amp"] = np.nan datadict["F2amp"] = np.nan datadict["Irate"] = np.nan datadict["maxHillSlope"] = np.nan datadict["maxHillSlope_SD"] = np.nan datadict["I_maxHillSlope"] = np.nan datadict["I_maxHillSlope_SD"] = np.nan if len(linfits) > 0: datadict["FISlope"] = np.mean([s.slope for s in linfits]) else: datadict["FISlope"] = np.nan if len(hill_max_derivs) > 0: datadict["maxHillSlope"] = np.mean(hill_max_derivs) datadict["maxHillSlope_SD"] = np.std(hill_max_derivs) datadict["I_maxHillSlope"] = np.mean(hill_i_max_derivs) datadict["I_maxHillSlope_SD"] = np.std(hill_i_max_derivs) if len(FI_Data_I1) > 0: i_one = np.where(FI_Data_I1 <= 1.01e-9)[0] datadict["FIMax_1"] = np.nanmax(FI_Data_FR1[i_one]) if len(FI_Data_I4) > 0: i_four = np.where(FI_Data_I4 <= 4.01e-9)[0] datadict["FIMax_4"] = np.nanmax(FI_Data_FR4[i_four]) return datadict def get_cell(self, experiment, df: pd.DataFrame, cell: str): df_tmp = df[df.cell_id == cell] # df.copy() # .dropna(subset=["Date"]) print("\nGet_cell:: df_tmp head: \n", "Groups: ", df_tmp["Group"].unique(), "\n len df_tmp: ", len(df_tmp)) if len(df_tmp) == 0: return None, None try: celltype = df_tmp.cell_type.values[0] except ValueError: celltype = df_tmp.cell_type celltype = str(celltype).replace("\n", "") if celltype == " ": # no cell type celltype = "unknown" CP("m", f"get cell: df_tmp cell type: {celltype:s}") # look for original PKL file for cell in the dataset # if it exists, use it to get the FI curve # base_cellname = str(Path(cell)).split("_") # print("base_cellname: ", base_cellname) # sn = int(base_cellname[-1][1]) # cn = int(base_cellname[-1][3]) # different way from cell_id: # The cell name may be a path, or just the cell name. # we have to handle both cases. parent = Path(cell).parent if parent == ".": # just cell, not path cell_parts = str(cell).split("_") re_parse = re.compile("([Ss]{1})(\d{1,3})([Cc]{1})(\d{1,3})") cnp = re_parse.match(cell_parts[-1]).group(2) cn = int(cnp) snp = re_parse.match(cell_parts[-1]).group(4) sn = int(snp) cell_day_name = cell_parts[-3].split("_")[0] dir_path = None else: cell = Path(cell).name # just get the name here cell_parts = cell.split("_") re_parse = re.compile("([Ss]{1})(\d{1,3})([Cc]{1})(\d{1,3})") # print("cell_parts: ", cell_parts[-1]) snp = re_parse.match(cell_parts[-1]).group(2) sn = int(snp) cnp = re_parse.match(cell_parts[-1]).group(4) cn = int(cnp) cell_day_name = cell_parts[0] dir_path = parent # print("Cell name, slice, cell: ", cell_parts, sn, cn) # if cell_parts != ['2019.02.22', '000', 'S0C0']: # return None, None cname2 = f"{cell_day_name.replace('.', '_'):s}_S{snp:s}C{cnp:s}_{celltype:s}_IVs.pkl" datapath2 = Path(experiment["analyzeddatapath"], experiment["directory"], celltype, cname2) # cname2 = f"{cell_day_name.replace('.', '_'):s}_S{sn:02d}C{cn:02d}_{celltype:s}_IVs.pkl" # datapath2 = Path(experiment["analyzeddatapath"], experiment["directory"], celltype, cname2) # cname1 = f"{cell_day_name.replace('.', '_'):s}_S{sn:01d}C{cn:01d}_{celltype:s}_IVs.pkl" # datapath1 = Path(experiment["analyzeddatapath"], experiment["directory"], celltype, cname1) # print(datapath) # if datapath1.is_file(): # CP("c", f"... {datapath1!s} is OK") # datapath = datapath1 if datapath2.is_file(): CP("c", f"... {datapath2!s} is OK") datapath = datapath2 else: CP("r", f"no file: matching: {datapath2!s}, \n") # or: {datapath2!s}\n") print("cell type: ", celltype) raise ValueError return None, None try: df_cell = pd.read_pickle(datapath, compression="gzip") except ValueError: try: df_cell = pd.read_pickle(datapath) # try with no compression except ValueError: CP("r", f"Could not read {datapath!s}") raise ValueError("Failed to read compressed pickle file") if "Spikes" not in df_cell.keys() or df_cell.Spikes is None: CP( "r", f"df_cell: {df_cell.age!s}, {df_cell.cell_type!s}, No spike protos:", ) return None, None # print( # "df_cell: ", # df_cell.age, # df_cell.cell_type, # "N spike protos: ", # len(df_cell.Spikes), # "\n", # df_tmp['Group'], # ) return df_cell, df_tmp def get_lowest_current_spike(self, row, SP): measured_first_spike = False dvdts = [] for tr in SP.spikeShapes: # for each trace if len(SP.spikeShapes[tr]) > 1: # if there is a spike spk = SP.spikeShapes[tr][0] # get the first spike in the trace dvdts.append(spk) # accumulate first spike info if len(dvdts) > 0: currents = [] for d in dvdts: # for each first spike, make a list of the currents currents.append(d.current) min_current = np.argmin(currents) # find spike elicited by the minimum current row.dvdt_rising = dvdts[min_current].dvdt_rising row.dvdt_falling = dvdts[min_current].dvdt_falling row.dvdt_current = currents[min_current] * 1e12 # put in pA row.AP_thr_V = 1e3 * dvdts[min_current].AP_begin_V if dvdts[min_current].halfwidth_interpolated is not None: row.AP_HW = dvdts[min_current].halfwidth_interpolated * 1e3 row.AP_begin_V = 1e3 * dvdts[min_current].AP_begin_V CP( "y", f"I={currents[min_current]*1e12:6.1f} pA, dvdtRise={row.dvdt_rising:6.1f}, dvdtFall={row.dvdt_falling:6.1f}, APthr={row.AP_thr_V:6.1f} mV, HW={row.AP_HW*1e3:6.1f} usec", ) return row def find_lowest_current_trace(self, spikes): current = [] trace = [] for sweep in spikes["spikes"]: for spike in spikes["spikes"][sweep]: this_spike = spikes["spikes"][sweep][spike] current.append(this_spike.current) trace.append(this_spike.trace) break # only get the first one # now find the index of the lowest current if len(current) == 0: return np.nan, np.nan, np.nan min_current_index = np.argmin(current) # print("current: ", current, "traces: ", trace) # print(current[min_current_index], trace[min_current_index]) return min_current_index, current[min_current_index], trace[min_current_index] def convert_FI_array(self, FI_values): """convert_FI_array Take a potential string representing the FI_data, and convert it to a numpy array Parameters ---------- FI_values : str or numpy array data to be converted Returns ------- numpy array converted data from FI_values """ if isinstance(FI_values, str): fistring = FI_values.replace("[", "").replace("]", "").replace("\n", "") fistring = fistring.split(" ") FI_data = np.array([float(s) for s in fistring if len(s) > 0]) FI_data = FI_data.reshape(2, int(FI_data.shape[0] / 2)) else: FI_data = FI_values FI_data = np.array(FI_data) return FI_data def get_measure(self, df_cell, measure, datadict, protocols, threshold_slope:float=20.0): """get_measure : for the giveen cell, get the measure from the protocols Parameters ---------- df_cell : _type_ _description_ measure : _type_ _description_ datadict : _type_ _description_ protocols : _type_ _description_ Returns ------- _type_ _description_ """ m = [] if measure in iv_keys: for protocol in protocols: if measure in df_cell.IV[protocol].keys(): m.append(df_cell.IV[protocol][measure]) elif measure in iv_mapper.keys() and iv_mapper[measure] in iv_keys: for protocol in protocols: if iv_mapper[measure] in df_cell.IV[protocol].keys(): m.append(df_cell.IV[protocol][iv_mapper[measure]]) elif measure in spike_keys: maxadapt = 0 for protocol in protocols: # print("p: ", p) if measure == "AdaptRatio": if df_cell.Spikes[protocol][mapper1[measure]] > 8.0: continue # print("\nprot, measure: ", protocol, measure, df_cell.Spikes[protocol][mapper1[measure]]) # print(df_cell.Spikes[protocol].keys()) # maxadapt = np.max([maxadapt, df_cell.Spikes[protocol][mapper1['AdaptRatio']]]) if measure in df_cell.Spikes[protocol].keys(): m.append(df_cell.Spikes[protocol][measure]) # if maxadapt > 8: # exit() elif measure in mapper1.keys() and mapper1[measure] in spike_keys: for protocol in protocols: if mapper1[measure] in df_cell.Spikes[protocol].keys(): m.append(df_cell.Spikes[protocol][mapper1[measure]]) elif measure == "current": for protocol in protocols: # for all protocols with spike analysis data for this cell if "spikes" not in df_cell.Spikes[protocol].keys(): continue # we need to get the first spike evoked by the lowest current level ... min_current_index, current, trace = self.find_lowest_current_trace( df_cell.Spikes[protocol] ) if not np.isnan(min_current_index): m.append(current) else: m.append(np.nan) else: for protocol in protocols: # for all protocols with spike analysis data for this cell # we need to get the first spike evoked by the lowest current level ... prot_spike_count = 0 if "spikes" not in df_cell.Spikes[protocol].keys(): continue spike_data = df_cell.Spikes[protocol]["spikes"] if measure in [ "dvdt_rising", "dvdt_falling", "AP_HW", "AHP_trough_V", "AHP_depth_V", ]: # use lowest current spike min_current_index, current, trace = self.find_lowest_current_trace( df_cell.Spikes[protocol] ) if not np.isnan(min_current_index): spike_data = df_cell.Spikes[protocol]["spikes"][trace][0].__dict__ # print("spike data ", spike_data['dvdt_rising']) m.append(spike_data[mapper[measure]]) else: m.append(np.nan) # print("spike data: ", spike_data.keys()) elif measure == "AP_thr_V": # have to try two variants. Note that threshold slope is defined in config file min_current_index, current, trace = self.find_lowest_current_trace( df_cell.Spikes[protocol] ) if not np.isnan(min_current_index): spike_data = df_cell.Spikes[protocol]["spikes"][trace][0].__dict__ # CP("c", "Check AP_thr_V") Vthr, Vthr_time = UTIL.find_threshold( spike_data["V"], np.mean(np.diff(spike_data["Vtime"])), threshold_slope=threshold_slope, ) m.append(Vthr) else: m.append(np.nan) elif ( measure in mapper.keys() and mapper[measure] in spike_data.keys() ): # if the measure exists for this sweep m.append(spike_data[mapper[measure]]) else: # print(measure in mapper.keys()) # print(spike_data.keys()) CP( "r", f"measure not found in spike_data, either: <{measure:s}>, {mapper.keys()!s}", ) CP( "r", f"\n or mapped in {mapper[measure]!s} to {spike_data.keys()!s}", ) raise ValueError() exit() prot_spike_count += 1 # CP("c", f"measure: {measure!s} : {m!s}") # else: # print( # f"measure {measure:s} not found in either IV or Spikes keys. Skipping" # ) # raise ValueError(f"measure {measure:s} not found in either IV or Spikes keys. Skipping") for i, xm in enumerate(m): if xm is None: m[i] = np.nan # m = [u for u in m if u is not None else np.nan] # sanitize data N = np.count_nonzero(~np.isnan(m)) # print("N: ", N) if N > 0: datadict[measure] = np.nanmean(m) else: datadict[measure] = np.nan return datadict def textbox_setup(self, textbox): self.textbox = textbox def textclear(self): if self.textbox is None: raise ValueError("datatables - functions - textbox has not been set up") if self is None: # or self.in_Parallel: return else: self.textbox.clear() def text_get(self): if self.textbox is None: raise ValueError("datatables - functions - textbox has not been set up") return self.textbox.toPlainText() def textappend(self, text, color="white"): if self.textbox is None: raise ValueError("datatables - functions - textbox has not been set up") colormap = { "[31m": "red", "[48:5:208:0m": "orange", "[33m": "yellow", "[32m": "limegreen", "[34m": "pink", "[35m": "magenta", "[36m": "cyan", "[30m": "black", "[37m": "white", "[0m": "white", "[100m": "backgray", } if self is None: CP(color, text) # just go straight to the terminal else: text = "".join(text) text = text.split("\n") for textl in text: # print(f"text: <{textl:s}>") if len(textl) > 0 and textl[0] == "\x1b": textl = textl[1:] # clip the escape sequence for k in colormap.keys(): if textl.startswith(k): # skip the escape sequence textl = textl[len(k) :] textl = textl.replace("[0m", "") color = colormap[k] self.textbox.setTextColor(QtGui.QColor(color)) break textl = textl.replace("[0m", "") self.textbox.append(textl) self.textbox.setTextColor(QtGui.QColor("white"))
marsiwiec/ephys
ephys/gui/data_table_functions.py
data_table_functions.py
py
51,215
python
en
code
null
github-code
6
27001984731
import random def structDataSampling(**kwargs): """ :param num: :param struct: :return: """ result = [] for index in range(0, kwargs['num']): element = [] for key, value in kwargs['struct'].items(): if value['datatype'] == "int": it = iter(value['datarange']) tmp = random.randint(next(it), next(it)) elif value['datatype'] == "float": it = iter(value['datarange']) tmp = random.uniform(next(it), next(it)) elif value['datatype'] == "str": tmp = ''.join(random.SystemRandom().choice(value['datarange']) for _ in range(value['len'])) else: break element.append(tmp) result.append(element) return result def structDataSamplinga(**kwargs): """ :param num: :param struct: :return: """ result = list() for index in range(0, kwargs['num']): element = list() for key, value in kwargs['struct'].items(): if key == "int": it = iter(value['datarange']) tmp = random.randint(next(it), next(it)) elif key == "float": it = iter(value['datarange']) tmp = random.uniform(next(it), next(it)) elif key == "str": tmp = ''.join(random.SystemRandom().choice(value['datarange']) for _ in range(value['len'])) else: break; element.append(tmp) result.append(element) return result def out_1(): para = {"num": 4, "struct": {"int": {"datarange": (0, 100)}, "float": {"datarange": (0, 1000)}}} t = structDataSamplinga(**para) print(t) parb = {"num": 4, "struct": {"int": {"datarange": (0, 90)}, "str": {"datarange": "ABCD", "len": 2}, "float": {"datarange": (0, 100)}}} m = structDataSamplinga(**parb) print(m) parc = {"num": 3, "struct": { "field1": {"datatype": 'int', "datarange": [100, 140]}, "field2": {"datatype": 'float', "datarange": [100, 150]}, "field3": {"datatype": 'str', "datarange": "ABCDEFG", "len": 3} }} n = structDataSampling(**parc) print(n) if __name__ == '__main__': out_1()
wanghan79/2023_Python
2021013675 刘蓝营/work1/work1.py
work1.py
py
2,428
python
en
code
8
github-code
6
1422010768
#Dilation and Erosion import cv2 import matplotlib.pyplot as plt import numpy as np #-----------------------------------Dilation------------------------------ # Reads in a binary image img = cv2.imread('j.png',0) # Create a 5x5 kernel of ones Kernel = np.ones((5,5), np.uint8) ''' To dilate an image in OpenCV, you can use the dilate function and three inputs: an original binary image, a kernel that determines the size of the dilation (None will result in a default size), and a number of iterations to perform the dilation (typically = 1). In the below example, we have a 5x5 kernel of ones, which move over an image, like a filter, and turn a pixel white if any of its surrounding pixels are white in a 5x5 window! We’ll use a simple image of the cursive letter “j” as an example. ''' dilation = cv2.dilate(img, Kernel, iterations = 1) plt.imshow(dilation, cmap = 'gray') #-----------------------------------Erosion-------------------------------- erosion = cv2.erode(img, Kernel, iterations = 1) plt.imshow(erosion, cmap = 'gray') #----------------------------------Opening------------------------------ ''' As mentioned, above, these operations are often combined for desired results! One such combination is called opening, which is erosion followed by dilation. This is useful in noise reduction in which erosion first gets rid of noise (and shrinks the object) then dilation enlarges the object again, but the noise will have disappeared from the previous erosion! To implement this in OpenCV, we use the function morphologyEx with our original image, the operation we want to perform, and our kernel passed in. ''' opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, Kernel) plt.imshow(opening, cmap = 'gray') #----------------------------------Closing------------------------------ ''' Closing is the reverse combination of opening; it’s dilation followed by erosion, which is useful in closing small holes or dark areas within an object. Closing is reverse of Opening, Dilation followed by Erosion. It is useful in closing small holes inside the foreground objects, or small black points on the object. ''' closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, Kernel) plt.imshow(closing, cmap = 'gray')
haderalim/Computer-Vision
Types of features and Image segmentation/Dilation- Erosion- Opeining and Closing/test.py
test.py
py
2,245
python
en
code
1
github-code
6
7436815802
from pathlib import Path from zoneinfo import ZoneInfo import datetime import sys TIME_ZONE = ZoneInfo('US/Eastern') def main(): station_name = sys.argv[1] dir_path = Path(sys.argv[2]) file_paths = sorted(dir_path.glob('*.WAV')) for file_path in file_paths: move_file(file_path, station_name) def move_file(file_path, station_name): recorder_name = file_path.parent.parent.name file_name = file_path.name start_time = parse_file_name(file_name) night = get_night(start_time) night_dir_name = night.strftime('%Y-%m-%d') start_time_string = start_time.strftime('%Y-%m-%d_%H.%M.%S_Z') new_file_name = f'{station_name}_{recorder_name}_{start_time_string}.wav' night_dir_path = file_path.parent / night_dir_name night_dir_path.mkdir(mode=0o755, parents=True, exist_ok=True) new_file_path = night_dir_path / new_file_name file_path.rename(new_file_path) print(f'{start_time} {night_dir_path} {new_file_path}') def parse_file_name(file_name): start_time = datetime.datetime.strptime(file_name, '%Y%m%d_%H%M%S.WAV') return start_time.replace(tzinfo=ZoneInfo('UTC')) def get_night(dt): dt = dt.astimezone(TIME_ZONE) date = dt.date() hour = dt.hour if hour >= 12: return date else: return datetime.date.fromordinal(dt.toordinal() - 1) if __name__ == '__main__': main()
HaroldMills/Vesper
scripts/organize_audiomoth_wav_files_by_night.py
organize_audiomoth_wav_files_by_night.py
py
1,464
python
en
code
47
github-code
6
3929101533
from sqlalchemy import Column, INTEGER, Identity, String from src.data_access.database.models.base_entity import InoversityLibraryBase __all__ = [ "StaffEntity" ] class StaffEntity(InoversityLibraryBase): user_id = Column("id", INTEGER, Identity(), primary_key=True, index=True) role_level = Column("roleLevel", String(256), nullable=False, index=True) staff_number = Column("staffNumber", String(20), nullable=False, unique=True) department = Column("department", String(100), nullable=False) job_title = Column("jobTitle", String(100), nullable=False)
mariusvrstr/PythonMicroservice
src/data_access/database/models/staff_entity.py
staff_entity.py
py
582
python
en
code
0
github-code
6
16543455789
from ai_chatbot.scripts import REDataHeader as Header import dateparser import datetime def printData(data): print('Station from : {0}'.format(data[Header.STATIONFROM])) print('Station to : {0}'.format(data[Header.STATIONTO])) print('departure date : {0}'.format(data[Header.DEPARTDATE])) print('departure time : {0}'.format(data[Header.DEPARTTIME])) def datecheck(date): now = datetime.datetime.now() dateobject = dateparser.parse(date) if dateobject > now: return 0 else: return 1 def returndatecheck(date, returndate): dateobject = dateparser.parse(date) returndateobject = dateparser.parse(returndate) if dateobject < returndateobject: return 0 else: return 1 def timecheck(date, time): now = datetime.datetime.now() dateobject = dateparser.parse(date) timeobject = dateparser.parse(time) fullobject = datetime.datetime.combine(dateobject.date(), timeobject.time()) if fullobject > now: return 0 else: return 1 def missingDataCheck(data): if data[Header.STATIONFROM] == '': return Header.STATIONFROM elif data[Header.STATIONTO] == '': return Header.STATIONTO elif data[Header.DEPARTDATE] == '': return Header.DEPARTDATE elif datecheck(data[Header.DEPARTDATE]) == 1: data[Header.DEPARTDATE] = '' return Header.BADDATE elif data[Header.DEPARTTIME] == '': return Header.DEPARTTIME elif timecheck(data[Header.DEPARTDATE], data[Header.DEPARTTIME]) == 1: data[Header.DEPARTDATE] = '' data[Header.DEPARTTIME] = '' return Header.BADTIME elif data[Header.SINGLERETURN].lower() == '': return Header.SINGLERETURN elif data[Header.SINGLERETURN].lower() == 'return': if data[Header.RETURNDATE] == '': return Header.RETURNDATE elif returndatecheck(data[Header.DEPARTDATE], data[Header.RETURNDATE]) == 1: data[Header.RETURNDATE] = '' return Header.BADDATE elif data[Header.RETURNTIME] == '': return Header.RETURNTIME return 0 else: return 0 def verificationCheck(data): if data[Header.CONFIRMED] == 'true': return 0 return 1 def getURL(data): # call function in scraper/scraper.py print('Getting URL for...') print('\t {0} --> {1}'.format(data.stationFrom, data.stationTo)) print('\t Departure date : {0}'.format(data.DepDate)) print('\t Departure time : {0}'.format(data.DepTime))
Grimmii/TrainChatBot
src/ai_chatbot/scripts/RE_function_booking.py
RE_function_booking.py
py
2,542
python
en
code
0
github-code
6
38217506704
import matplotlib.pyplot as plt from matplotlib.lines import Line2D import matplotlib.animation as animation import matplotlib.patches as mpatches from matplotlib import ticker from matplotlib import cm from matplotlib.ticker import FuncFormatter import numpy as np from utils.occ_map_utils import load_map, display_occ_map, plot_grid_map_hmm, show_traj, \ black_cm, green_cm, red_cm, blue_cm, greens_cm, greys_cm from utils.occ_map_utils import show_map from utils.plot_utils import plot_4d_tensor # key press to update figure for the next tracking setp def on_press(event, animation): if event.key == ' ': if animation.pause: animation.event_source.stop() else: animation.event_source.start() animation.pause ^= True def onclick(event, anim): models = anim.models ix, iy = event.xdata, event.ydata coords = np.floor(np.array([ix, iy]) / models[0].map_res).astype(int) print("Click at coordinates: {}".format(coords)) all_axes = [plot.axes for plot in anim.plots] for i, ax in enumerate(all_axes): # For infomation, print which axes the click was in if ax == event.inaxes: #print "Click is at filter {}".format(anim.models[i].name) break clicked = np.zeros_like(models[0].map) x, y = coords[0], coords[1] clicked[x, y] = 1 for plot in anim.plots: plot.set_axes_data("occupancy_axes", clicked) anim.fig.canvas.draw() accessories_figures = [anim.nn_output_fig, anim.kernel_fig] for fig in accessories_figures: if fig is not None: fig.clear() anim.nn_output_fig.suptitle('Network Output') anim.kernel_fig.suptitle('Motion pattern') if models[i].kernels.ndim == 6: kernel = models[i].kernels[x, y] condi_prob = models[i].nn_probs[x, y] else: kernel = models[i].kernels condi_prob = None plot_4d_tensor(kernel, fig=anim.kernel_fig) if condi_prob is not None: plot_4d_tensor(condi_prob, fig=anim.nn_output_fig) anim.set_axis_ticks(models[i].extent) anim.accessories_plots['ma_plot'].set_axes_data("occupancy_axes", np.ones_like(models[i].ma_vel)) anim.accessories_plots['vel_plot'].set_axes_data("occupancy_axes", models[i].P_Vt_pred[x, y]) anim.accessories_plots['merge_vel_plot'].set_axes_data("occupancy_axes", models[i].P_Vt_merged[x, y]) anim.accessories_plots['final_vel_plot'].set_axes_data("occupancy_axes", models[i].P_Vt[x, y]) accessories_figures += [anim.vel_fig] for fig in accessories_figures: if fig is not None: fig.canvas.draw() for k, plot in anim.accessories_plots.items(): plot.refresh_colorbar() model_names = map(lambda model: model.name, models) occs = map(lambda model: model.P_Ot[x, y], models) for name, occ in zip(model_names, occs): print("loc ({}, {}) of model {} has occupancy of {}".format(x, y, name, occ)) class Plot(object): def __init__(self, axes, map, res, plot_map=True, plot_seen=False, show_text=True, colorbar_on=None, title=None): self.axes = axes self.map = map self.res = res self.plot_seen = plot_seen self.plot_map = plot_map self.map_axes = None self.occupancy_axes = None self.ground_truth_axes = None self.seen_axes = None self.colorbars = [] self.show_text = show_text if title is None: title = 'Measurements' self.axes.set_title(title) if show_text: self.text = self.axes.text(0.92, 0.92, "", bbox={'facecolor': 'red', 'alpha': 0.5, 'pad': 5}, transform=self.axes.transAxes, ha="right", color='white', zorder=14) self.add_images() self.add_colorbar(colorbar_on) def add_images(self): """Add AxesImages for showing map, occupancy and seen.""" occupancy = np.zeros(self.map.shape, dtype=float) self.occupancy_axes = show_map(occupancy, self.res, cmap=red_cm, ax=self.axes, zorder=11) # initialize plots with map map_ = self.map if self.plot_map else np.zeros_like(self.map) self.map_axes = show_map(map_, self.res, cmap=black_cm, ax=self.axes, zorder=12) if self.plot_seen: # add seen image self.seen_axes = show_map(occupancy, self.res, cmap=black_cm, alpha=0.2, ax=self.axes) def set_axes_data(self, axes_name, data, vmin=None, vmax=None): image_ax = getattr(self, axes_name) image_ax.set_data(np.rot90(data)) vmin = vmin if vmin is not None else data.min() vmax = vmax if vmax is not None else data.max() image_ax.set_clim([vmin, vmax]) def add_custom_image(self, axes_name, cmap=None, image=None, **kwargs): if image is None: image = np.zeros(self.map.shape, dtype=float) image_ax = show_map(image, self.res, cmap=cmap, ax=self.axes, **kwargs) setattr(self, axes_name, image_ax) def add_colorbar(self, colorbar_on): if colorbar_on is None: return image_axes = getattr(self, colorbar_on) if image_axes is not None: cb = plt.colorbar(image_axes, ax=self.axes, fraction=0.046, pad=0.04) tick_locator = ticker.MaxNLocator(nbins=5) cb.locator = tick_locator self.colorbars.append(cb) def set_ylabel(self, text='', **kwargs): self.axes.set_ylabel(text, **kwargs) def refresh_colorbar(self): for cb in self.colorbars: cb.update_ticks() def add_traj_line(self, num_targets=1): """ Add 2D Lines for showing trajectories.""" colors = cm.Dark2(np.linspace(0, 1, num_targets)) # add lines for showing trajectories self.lines = map(lambda _: self.axes.add_line(Line2D([], [], zorder=14, color='grey')), range(num_targets)) def set_title(self, title): self.axes.set_title(title) def set_text(self, text): self.text.set_text(text) class TrackingAnimation(animation.TimedAnimation): def __init__(self, models, num_steps, simulated_data, plot_seen=False, plot_map=True, show_text=True, accessories=None): self.num_models = len(models) self.models = models self.map = models[0].map self.res = models[0].map_res self.num_steps = num_steps self.simulated_data = simulated_data self.show_map = plot_map self.show_seen = plot_seen self.show_text = show_text self.nn_output_fig = None self.kernel_fig = None self.vel_fig = None self.accessories_plots = None self.accessories = accessories self.initialize_figure() self.initialize_models() self.initialize_accessories() print(self.accessories_plots) self.fig.canvas.mpl_connect('key_press_event', lambda event: on_press(event, self)) self.fig.canvas.mpl_connect('button_press_event', lambda event: onclick(event, self)) animation.TimedAnimation.__init__(self, self.fig, interval=500, blit=True, repeat=True, repeat_delay=1000) def initialize_figure(self): fig_size = (5 * self.num_models, 5) self.fig = plt.figure(figsize=fig_size) self.pause = True # bind key press event to pause animation self.plots = [] for i in range(self.num_models): axes = self.fig.add_subplot(1, self.num_models, i + 1) title = self.models[i].name colorbar_on = "occupancy_axes" if self.simulated_data else None plot = Plot(axes, self.map, self.res, self.show_map, self.show_seen, self.show_text, colorbar_on, title=title) self.add_custom_element(plot) self.plots.append(plot) self.fig_title_axes = self.fig.add_axes([.4, .9, .2, .05]) self.fig_title_axes.set_axis_off() self.fig_title = self.fig.text(.49, .9, "", transform=self.fig_title_axes.transAxes, fontsize=15, color='r', ha='center') if not self.simulated_data: self.add_legend() def initialize_accessories(self): if "motion_pattern" in self.accessories: self.nn_output_fig = plt.figure(figsize=(5, 5)) self.nn_output_fig.suptitle('Network Output') self.kernel_fig = plt.figure(figsize=(5, 5)) self.kernel_fig.suptitle('Motion pattern') if "velocities" in self.accessories: self.vel_fig = plt.figure(figsize=(12, 3)) ma_ax = self.vel_fig.add_subplot(141) ma_plot = Plot(ma_ax, self.models[0].ma_vel, 1, False, False, False, colorbar_on=None, title=r'$P(V_{ma})$') vel_ax = self.vel_fig.add_subplot(142) vel_plot = Plot(vel_ax, self.models[0].ma_vel, 1, False, False, False, colorbar_on=None, title=r'$P(V_{pred})$') merge_vel_ax = self.vel_fig.add_subplot(143) merge_vel_plot = Plot(merge_vel_ax, self.models[0].ma_vel, 1, False, False, False, colorbar_on=None, title=r'$P(V_{merge})$') final_vel_ax = self.vel_fig.add_subplot(144) final_vel_plot = Plot(final_vel_ax, self.models[0].ma_vel, 1, False, False, False, colorbar_on=None, title='$P(V)$') self.accessories_plots = dict(ma_plot=ma_plot, vel_plot=vel_plot, merge_vel_plot=merge_vel_plot, final_vel_plot=final_vel_plot) def set_axis_ticks(self, extent): if self.vel_fig is not None: xlabels = (np.arange(extent) + np.array([-(extent // 2)])).tolist() ylabels = xlabels def format_fn_x(tick_val, tick_pos): if int(tick_val) in range(7): return xlabels[int(tick_val)] else: return '' def format_fn_y(tick_val, tick_pos): if int(tick_val) in range(7): return ylabels[int(tick_val)] else: return '' ax = self.vel_fig.get_axes()[0] max_extent = float(extent) ax.set_xticks(np.arange(.5, max_extent, 1.0)) ax.set_yticks(np.arange(0.5, max_extent, 1.0)) ax.xaxis.set_major_formatter(FuncFormatter(format_fn_x)) ax.yaxis.set_major_formatter(FuncFormatter(format_fn_y)) ylabel = ax.set_ylabel(r'$V_y$', color='darkred', fontsize=12) ylabel.set_rotation(0) ax.yaxis.set_label_coords(-0.06, .95) ax.set_xlabel(r'$V_x$', color='darkred', fontsize=12) ax.xaxis.set_label_coords(1.05, -0.025) for ax in self.vel_fig.get_axes()[1:]: ax.set_xticks([]) ax.set_yticks([]) def add_custom_element(self, plot): """Add extra elements to plot. This method has to be overwritten by subclasses. """ pass def update_custom_element(self, idx): """ Update custom elements on animation. This method has to be overwritten by subclasses. """ def initialize_models(self): """Initialize BOFUM models. This method has to be overwritten by subclasses.""" pass def _draw_frame(self, framedata): t = self.models[0].t t_count = "frame = " + str(t) print(t_count) self.fig_title.set_text(t_count) measurement = self.models[0].measurement_at() for model in self.models: model.tracking_step(measurement=measurement) # plot new occupancy Ot_max = max(map(lambda model: model.P_Ot.max(), self.models)) Ot_min = min(map(lambda model: model.P_Ot.min(), self.models)) for i, model in enumerate(self.models): self.plots[i].set_axes_data("occupancy_axes", model.P_Ot, Ot_min, Ot_max) if self.show_seen: seen = model.evaluate_loc_at(t) self.plots[i].set_axes_data("seen_axes", seen) if self.plots[i].show_text: x_ent = model.calc_cross_entropy() f1_score = model.calc_f1_score() average_precision = model.calc_average_precision() self.plots[i].text.set_text("x_ent: {:.3f}, f1: {:.3f}, ap: {:.3f}".format(x_ent, f1_score, average_precision)) self.update_custom_element(i) # if i == self.num_models-1: # self.add_legend() self.plots[i].refresh_colorbar() # repeat tracking if framedata == self.num_steps-1: for model in self.models: model.reset() def new_frame_seq(self): return iter(range(self.num_steps)) def _init_draw(self): pass class TrackingAnimSimulation(TrackingAnimation): def __init__(self, models, num_steps, num_targets=1, diagonal=False, plot_map=True, **kwargs): self.num_targets = num_targets self.diagonal = diagonal self.trajs = None self.distances = None super(TrackingAnimSimulation, self).__init__(models, num_steps, True, plot_map=plot_map, **kwargs) def add_custom_element(self, plot): plot.add_traj_line(self.num_targets) def update_custom_element(self, idx): # add trajectory lines truncated_trajs = self.models[0].traversed_traj_at() for idx_, line in enumerate(self.plots[idx].lines): xs, ys = truncated_trajs[idx_].T[0][-5:], truncated_trajs[idx_].T[1][-5:] line.set_data(xs, ys) def initialize_models(self): self.distances , self.trajs = self.models[0].initialize(self.num_targets, self.num_steps) init_model = lambda model: model.initialize(self.num_targets, self.num_steps, distances=self.distances, trajectories=self.trajs) map(init_model, self.models[1:]) class TrackingAnimRealdata(TrackingAnimation): def __init__(self, models, num_steps, scene, plot_map=True,plot_seen=False, simulated_scenes=False, **kwargs): self.scene = scene self.simulated_scenes = simulated_scenes super(TrackingAnimRealdata, self).__init__(models, num_steps, False, plot_seen=plot_seen, plot_map=plot_map, **kwargs) def update(self, scene, update_num_steps=True): self.scene = scene update_map = lambda plot: plot.set_axes_data("map_axes", self.scene.static_map) map(update_map, self.plots) map(lambda model: model.update(scene), self.models) if update_num_steps: self.num_steps = len(scene.hits) self.frame_seq = self.new_frame_seq() def initialize_models(self): init_model = lambda model: model.initialize(self.scene, not self.simulated_scenes) map(init_model, self.models) def add_custom_element(self, plot): # add false negative axes # it shows locations where ground truth is occupied # but BOFUM fails to track plot.add_custom_image("fn_axes", blue_cm) # add true positive axes # it shows locations where ground truth is occupied # and BOFUM predicts occupancy prob higher than 0 plot.add_custom_image("tp_axes", greens_cm) plot.add_colorbar("tp_axes") # add false positive axes plot.add_custom_image("fp_axes", red_cm) def add_legend(self): g_patch = mpatches.Patch(color='g', label='True positive') b_patch = mpatches.Patch(color='b', label='False negative') o_patch = mpatches.Patch(color='orange', label='False positive') plt.legend(handles=[g_patch, b_patch, o_patch], bbox_to_anchor=(1, 1), bbox_transform=self.fig.transFigure) def update_custom_element(self, idx): t = self.models[0].t - 1 model = self.models[idx] plot = self.plots[idx] occupancy_prob = model.P_Ot h_max = occupancy_prob.max()/2 #occupancy_prob = np.where(occupancy_prob>h_max, occupancy_prob, 0) ground_truth = model.ground_truth_at(t) overlap = np.logical_and(occupancy_prob, ground_truth) # if occupany on ground truth location is higher than 0.1, # it is not thought as a false negative occupancy_temp = np.where(overlap, occupancy_prob, 0) #predicted = np.where(occupancy_temp>0.1, 1, 0) false_negative = np.where(occupancy_temp>0.1, 0, ground_truth) # if model predicts occupancy higher than 0 on ground truth locations, # it is thought as a true positive true_positive = np.where(overlap, occupancy_prob, 0) # if model predicts occupancy higher than 0 on non-ground truth locations, # it is thought as a false positive false_positive = occupancy_prob.copy() false_positive[overlap] = 0 # only show for occupancies higher than 1/2 highest occupancy h_max = false_positive.max() / 4 false_positive = np.where(false_positive>h_max, false_positive, 0) Ot_max = max(map(lambda model: model.P_Ot.max(), self.models)) plot.set_axes_data("fn_axes", false_negative, 0, 1) plot.set_axes_data("tp_axes", true_positive, 0, Ot_max) plot.set_axes_data("fp_axes", false_positive, 0, Ot_max) plot.set_axes_data("occupancy_axes", np.zeros_like(occupancy_prob))
stomachacheGE/bofmp
tracking/animation.py
animation.py
py
17,318
python
en
code
0
github-code
6
33359791664
import sys import unittest import psycopg2 sys.path.insert(0, '../src') from src.utils import daily_reports_return_json, daily_reports_return_csv, time_series_return_csv, check_query_data_active, check_request from src.config import connect_database # import copy class TestUtils(unittest.TestCase): def __init__(self, *args, **kwargs): super(TestUtils, self).__init__(*args, **kwargs) self.conn = connect_database() def test_daily_reports_return_json(self): try: # conn = connect_database() cur = self.conn.cursor() # create a test table in the database with the table format of a daily report cur.execute("DROP TABLE IF EXISTS test;") self.conn.commit() cur.execute("CREATE TABLE test (state VARCHAR(5), region VARCHAR(5), last_update VARCHAR(20), " "confirmed INTEGER, deaths INTEGER, recovered INTEGER, active INTEGER, combined_key VARCHAR(" "5));") self.conn.commit() cur.execute("INSERT INTO test VALUES ('a', 'a', '2021-01-02 05:22:33', 10, 5, 0, 5, 'a, a'), " "(null, 'b', '2021-01-02 05:22:33', 1, 0, 0, 1, 'b'), " "('b', 'b', '2021-01-02 05:22:33', 4, 3, 0, 1, 'b, b');" ) self.conn.commit() date = "01/01/21" types = ["Confirmed", "Deaths", "Recovered", "Active"] locations = [{"Country/Region": "b"}, {"Country/Region": "a", "Province/State": "a", "Combined_Key": "a, a"} ] result = daily_reports_return_json(cur, date, locations, types, 'test') expected = { "Date": date, "Reports": [ { "Active": 2, "Confirmed": 5, "Country/Region": "b", "Deaths": 3, "Recovered": 0 }, { "Active": 5, "Confirmed": 10, "Country/Region": "a", "Deaths": 5, "Province/State": "a", "Combined_Key": "a, a", "Recovered": 0 } ] } self.assertEqual(result, expected) except psycopg2.Error: assert False, "Database Error" def test_daily_reports_return_csv(self): json_data = { "Date": "01/01/21", "Reports": [ { "Active": 2, "Confirmed": 5, "Country/Region": "b", "Deaths": 3, "Recovered": 0 }, { "Active": 5, "Confirmed": 10, "Country/Region": "a", "Deaths": 5, "Province/State": "a", "Combined_Key": "a, a", "Recovered": 0 } ] } result = daily_reports_return_csv(json_data, ["Confirmed", "Deaths", "Recovered", "Active"]) expected = "Date,Province/State,Country/Region,Combined_Key,Confirmed,Deaths,Recovered,Active" \ "\n01/01/21,,b,,5,3,0,2\n01/01/21,a,a,a, a,10,5,0,5" self.assertEqual(result, expected) def test_time_series_return_csv(self): json_data = {"01/26/20": [{"Active": 0, "Confirmed": 0, "Country/Region": "Albania"}]} expected = "Date,Province/State,Country/Region,Confirmed\n01/26/20,,Albania,0" result = time_series_return_csv(json_data, ["01/26/20"], ["Confirmed"]) self.assertEqual(result, expected) def test_check_query_data_active(self): try: # conn = connect_database() cur = self.conn.cursor() # create a test table in the database with the table format of a daily report cur.execute("DROP TABLE IF EXISTS test;") self.conn.commit() self.assertEqual(check_query_data_active(cur, ["test"]), False) except psycopg2.Error: assert False, "Database Error" def test_check_request(self): result = check_request(['test'], {}) self.assertEqual(result[0], 'test') if __name__ == '__main__': unittest.main()
shin19991207/CSC301-A2
tests/test_utils.py
test_utils.py
py
4,518
python
en
code
0
github-code
6